Bug Summary

File:include/llvm/Support/Error.h
Warning:line 200, column 5
Potential leak of memory pointed to by 'Payload._M_t._M_head_impl'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name MCDwarf.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-9/lib/clang/9.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/lib/MC -I /build/llvm-toolchain-snapshot-9~svn362543/lib/MC -I /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/include -I /build/llvm-toolchain-snapshot-9~svn362543/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/9.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-9/lib/clang/9.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-9~svn362543/build-llvm/lib/MC -fdebug-prefix-map=/build/llvm-toolchain-snapshot-9~svn362543=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2019-06-05-060531-1271-1 -x c++ /build/llvm-toolchain-snapshot-9~svn362543/lib/MC/MCDwarf.cpp -faddrsig

/build/llvm-toolchain-snapshot-9~svn362543/lib/MC/MCDwarf.cpp

1//===- lib/MC/MCDwarf.cpp - MCDwarf implementation ------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "llvm/MC/MCDwarf.h"
10#include "llvm/ADT/ArrayRef.h"
11#include "llvm/ADT/DenseMap.h"
12#include "llvm/ADT/Hashing.h"
13#include "llvm/ADT/Optional.h"
14#include "llvm/ADT/STLExtras.h"
15#include "llvm/ADT/SmallString.h"
16#include "llvm/ADT/SmallVector.h"
17#include "llvm/ADT/StringRef.h"
18#include "llvm/ADT/Twine.h"
19#include "llvm/BinaryFormat/Dwarf.h"
20#include "llvm/Config/config.h"
21#include "llvm/MC/MCAsmInfo.h"
22#include "llvm/MC/MCContext.h"
23#include "llvm/MC/MCExpr.h"
24#include "llvm/MC/MCObjectFileInfo.h"
25#include "llvm/MC/MCObjectStreamer.h"
26#include "llvm/MC/MCRegisterInfo.h"
27#include "llvm/MC/MCSection.h"
28#include "llvm/MC/MCStreamer.h"
29#include "llvm/MC/MCSymbol.h"
30#include "llvm/MC/StringTableBuilder.h"
31#include "llvm/Support/Casting.h"
32#include "llvm/Support/Endian.h"
33#include "llvm/Support/EndianStream.h"
34#include "llvm/Support/ErrorHandling.h"
35#include "llvm/Support/LEB128.h"
36#include "llvm/Support/MathExtras.h"
37#include "llvm/Support/Path.h"
38#include "llvm/Support/SourceMgr.h"
39#include "llvm/Support/raw_ostream.h"
40#include <cassert>
41#include <cstdint>
42#include <string>
43#include <utility>
44#include <vector>
45
46using namespace llvm;
47
48/// Manage the .debug_line_str section contents, if we use it.
49class llvm::MCDwarfLineStr {
50 MCSymbol *LineStrLabel = nullptr;
51 StringTableBuilder LineStrings{StringTableBuilder::DWARF};
52 bool UseRelocs = false;
53
54public:
55 /// Construct an instance that can emit .debug_line_str (for use in a normal
56 /// v5 line table).
57 explicit MCDwarfLineStr(MCContext &Ctx) {
58 UseRelocs = Ctx.getAsmInfo()->doesDwarfUseRelocationsAcrossSections();
59 if (UseRelocs)
60 LineStrLabel =
61 Ctx.getObjectFileInfo()->getDwarfLineStrSection()->getBeginSymbol();
62 }
63
64 /// Emit a reference to the string.
65 void emitRef(MCStreamer *MCOS, StringRef Path);
66
67 /// Emit the .debug_line_str section if appropriate.
68 void emitSection(MCStreamer *MCOS);
69};
70
71static inline uint64_t ScaleAddrDelta(MCContext &Context, uint64_t AddrDelta) {
72 unsigned MinInsnLength = Context.getAsmInfo()->getMinInstAlignment();
73 if (MinInsnLength == 1)
74 return AddrDelta;
75 if (AddrDelta % MinInsnLength != 0) {
76 // TODO: report this error, but really only once.
77 ;
78 }
79 return AddrDelta / MinInsnLength;
80}
81
82//
83// This is called when an instruction is assembled into the specified section
84// and if there is information from the last .loc directive that has yet to have
85// a line entry made for it is made.
86//
87void MCDwarfLineEntry::Make(MCObjectStreamer *MCOS, MCSection *Section) {
88 if (!MCOS->getContext().getDwarfLocSeen())
89 return;
90
91 // Create a symbol at in the current section for use in the line entry.
92 MCSymbol *LineSym = MCOS->getContext().createTempSymbol();
93 // Set the value of the symbol to use for the MCDwarfLineEntry.
94 MCOS->EmitLabel(LineSym);
95
96 // Get the current .loc info saved in the context.
97 const MCDwarfLoc &DwarfLoc = MCOS->getContext().getCurrentDwarfLoc();
98
99 // Create a (local) line entry with the symbol and the current .loc info.
100 MCDwarfLineEntry LineEntry(LineSym, DwarfLoc);
101
102 // clear DwarfLocSeen saying the current .loc info is now used.
103 MCOS->getContext().clearDwarfLocSeen();
104
105 // Add the line entry to this section's entries.
106 MCOS->getContext()
107 .getMCDwarfLineTable(MCOS->getContext().getDwarfCompileUnitID())
108 .getMCLineSections()
109 .addLineEntry(LineEntry, Section);
110}
111
112//
113// This helper routine returns an expression of End - Start + IntVal .
114//
115static inline const MCExpr *MakeStartMinusEndExpr(const MCStreamer &MCOS,
116 const MCSymbol &Start,
117 const MCSymbol &End,
118 int IntVal) {
119 MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
120 const MCExpr *Res =
121 MCSymbolRefExpr::create(&End, Variant, MCOS.getContext());
122 const MCExpr *RHS =
123 MCSymbolRefExpr::create(&Start, Variant, MCOS.getContext());
124 const MCExpr *Res1 =
125 MCBinaryExpr::create(MCBinaryExpr::Sub, Res, RHS, MCOS.getContext());
126 const MCExpr *Res2 =
127 MCConstantExpr::create(IntVal, MCOS.getContext());
128 const MCExpr *Res3 =
129 MCBinaryExpr::create(MCBinaryExpr::Sub, Res1, Res2, MCOS.getContext());
130 return Res3;
131}
132
133//
134// This helper routine returns an expression of Start + IntVal .
135//
136static inline const MCExpr *
137makeStartPlusIntExpr(MCContext &Ctx, const MCSymbol &Start, int IntVal) {
138 MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
139 const MCExpr *LHS = MCSymbolRefExpr::create(&Start, Variant, Ctx);
140 const MCExpr *RHS = MCConstantExpr::create(IntVal, Ctx);
141 const MCExpr *Res = MCBinaryExpr::create(MCBinaryExpr::Add, LHS, RHS, Ctx);
142 return Res;
143}
144
145//
146// This emits the Dwarf line table for the specified section from the entries
147// in the LineSection.
148//
149static inline void
150EmitDwarfLineTable(MCObjectStreamer *MCOS, MCSection *Section,
151 const MCLineSection::MCDwarfLineEntryCollection &LineEntries) {
152 unsigned FileNum = 1;
153 unsigned LastLine = 1;
154 unsigned Column = 0;
155 unsigned Flags = DWARF2_LINE_DEFAULT_IS_STMT1 ? DWARF2_FLAG_IS_STMT(1 << 0) : 0;
156 unsigned Isa = 0;
157 unsigned Discriminator = 0;
158 MCSymbol *LastLabel = nullptr;
159
160 // Loop through each MCDwarfLineEntry and encode the dwarf line number table.
161 for (const MCDwarfLineEntry &LineEntry : LineEntries) {
162 int64_t LineDelta = static_cast<int64_t>(LineEntry.getLine()) - LastLine;
163
164 if (FileNum != LineEntry.getFileNum()) {
165 FileNum = LineEntry.getFileNum();
166 MCOS->EmitIntValue(dwarf::DW_LNS_set_file, 1);
167 MCOS->EmitULEB128IntValue(FileNum);
168 }
169 if (Column != LineEntry.getColumn()) {
170 Column = LineEntry.getColumn();
171 MCOS->EmitIntValue(dwarf::DW_LNS_set_column, 1);
172 MCOS->EmitULEB128IntValue(Column);
173 }
174 if (Discriminator != LineEntry.getDiscriminator() &&
175 MCOS->getContext().getDwarfVersion() >= 4) {
176 Discriminator = LineEntry.getDiscriminator();
177 unsigned Size = getULEB128Size(Discriminator);
178 MCOS->EmitIntValue(dwarf::DW_LNS_extended_op, 1);
179 MCOS->EmitULEB128IntValue(Size + 1);
180 MCOS->EmitIntValue(dwarf::DW_LNE_set_discriminator, 1);
181 MCOS->EmitULEB128IntValue(Discriminator);
182 }
183 if (Isa != LineEntry.getIsa()) {
184 Isa = LineEntry.getIsa();
185 MCOS->EmitIntValue(dwarf::DW_LNS_set_isa, 1);
186 MCOS->EmitULEB128IntValue(Isa);
187 }
188 if ((LineEntry.getFlags() ^ Flags) & DWARF2_FLAG_IS_STMT(1 << 0)) {
189 Flags = LineEntry.getFlags();
190 MCOS->EmitIntValue(dwarf::DW_LNS_negate_stmt, 1);
191 }
192 if (LineEntry.getFlags() & DWARF2_FLAG_BASIC_BLOCK(1 << 1))
193 MCOS->EmitIntValue(dwarf::DW_LNS_set_basic_block, 1);
194 if (LineEntry.getFlags() & DWARF2_FLAG_PROLOGUE_END(1 << 2))
195 MCOS->EmitIntValue(dwarf::DW_LNS_set_prologue_end, 1);
196 if (LineEntry.getFlags() & DWARF2_FLAG_EPILOGUE_BEGIN(1 << 3))
197 MCOS->EmitIntValue(dwarf::DW_LNS_set_epilogue_begin, 1);
198
199 MCSymbol *Label = LineEntry.getLabel();
200
201 // At this point we want to emit/create the sequence to encode the delta in
202 // line numbers and the increment of the address from the previous Label
203 // and the current Label.
204 const MCAsmInfo *asmInfo = MCOS->getContext().getAsmInfo();
205 MCOS->EmitDwarfAdvanceLineAddr(LineDelta, LastLabel, Label,
206 asmInfo->getCodePointerSize());
207
208 Discriminator = 0;
209 LastLine = LineEntry.getLine();
210 LastLabel = Label;
211 }
212
213 // Emit a DW_LNE_end_sequence for the end of the section.
214 // Use the section end label to compute the address delta and use INT64_MAX
215 // as the line delta which is the signal that this is actually a
216 // DW_LNE_end_sequence.
217 MCSymbol *SectionEnd = MCOS->endSection(Section);
218
219 // Switch back the dwarf line section, in case endSection had to switch the
220 // section.
221 MCContext &Ctx = MCOS->getContext();
222 MCOS->SwitchSection(Ctx.getObjectFileInfo()->getDwarfLineSection());
223
224 const MCAsmInfo *AsmInfo = Ctx.getAsmInfo();
225 MCOS->EmitDwarfAdvanceLineAddr(INT64_MAX(9223372036854775807L), LastLabel, SectionEnd,
226 AsmInfo->getCodePointerSize());
227}
228
229//
230// This emits the Dwarf file and the line tables.
231//
232void MCDwarfLineTable::Emit(MCObjectStreamer *MCOS,
233 MCDwarfLineTableParams Params) {
234 MCContext &context = MCOS->getContext();
235
236 auto &LineTables = context.getMCDwarfLineTables();
237
238 // Bail out early so we don't switch to the debug_line section needlessly and
239 // in doing so create an unnecessary (if empty) section.
240 if (LineTables.empty())
241 return;
242
243 // In a v5 non-split line table, put the strings in a separate section.
244 Optional<MCDwarfLineStr> LineStr;
245 if (context.getDwarfVersion() >= 5)
246 LineStr = MCDwarfLineStr(context);
247
248 // Switch to the section where the table will be emitted into.
249 MCOS->SwitchSection(context.getObjectFileInfo()->getDwarfLineSection());
250
251 // Handle the rest of the Compile Units.
252 for (const auto &CUIDTablePair : LineTables) {
253 CUIDTablePair.second.EmitCU(MCOS, Params, LineStr);
254 }
255
256 if (LineStr)
257 LineStr->emitSection(MCOS);
258}
259
260void MCDwarfDwoLineTable::Emit(MCStreamer &MCOS, MCDwarfLineTableParams Params,
261 MCSection *Section) const {
262 if (!HasSplitLineTable)
263 return;
264 Optional<MCDwarfLineStr> NoLineStr(None);
265 MCOS.SwitchSection(Section);
266 MCOS.EmitLabel(Header.Emit(&MCOS, Params, None, NoLineStr).second);
267}
268
269std::pair<MCSymbol *, MCSymbol *>
270MCDwarfLineTableHeader::Emit(MCStreamer *MCOS, MCDwarfLineTableParams Params,
271 Optional<MCDwarfLineStr> &LineStr) const {
272 static const char StandardOpcodeLengths[] = {
273 0, // length of DW_LNS_copy
274 1, // length of DW_LNS_advance_pc
275 1, // length of DW_LNS_advance_line
276 1, // length of DW_LNS_set_file
277 1, // length of DW_LNS_set_column
278 0, // length of DW_LNS_negate_stmt
279 0, // length of DW_LNS_set_basic_block
280 0, // length of DW_LNS_const_add_pc
281 1, // length of DW_LNS_fixed_advance_pc
282 0, // length of DW_LNS_set_prologue_end
283 0, // length of DW_LNS_set_epilogue_begin
284 1 // DW_LNS_set_isa
285 };
286 assert(array_lengthof(StandardOpcodeLengths) >=((array_lengthof(StandardOpcodeLengths) >= (Params.DWARF2LineOpcodeBase
- 1U)) ? static_cast<void> (0) : __assert_fail ("array_lengthof(StandardOpcodeLengths) >= (Params.DWARF2LineOpcodeBase - 1U)"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/MC/MCDwarf.cpp"
, 287, __PRETTY_FUNCTION__))
287 (Params.DWARF2LineOpcodeBase - 1U))((array_lengthof(StandardOpcodeLengths) >= (Params.DWARF2LineOpcodeBase
- 1U)) ? static_cast<void> (0) : __assert_fail ("array_lengthof(StandardOpcodeLengths) >= (Params.DWARF2LineOpcodeBase - 1U)"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/MC/MCDwarf.cpp"
, 287, __PRETTY_FUNCTION__))
;
288 return Emit(
289 MCOS, Params,
290 makeArrayRef(StandardOpcodeLengths, Params.DWARF2LineOpcodeBase - 1),
291 LineStr);
292}
293
294static const MCExpr *forceExpAbs(MCStreamer &OS, const MCExpr* Expr) {
295 MCContext &Context = OS.getContext();
296 assert(!isa<MCSymbolRefExpr>(Expr))((!isa<MCSymbolRefExpr>(Expr)) ? static_cast<void>
(0) : __assert_fail ("!isa<MCSymbolRefExpr>(Expr)", "/build/llvm-toolchain-snapshot-9~svn362543/lib/MC/MCDwarf.cpp"
, 296, __PRETTY_FUNCTION__))
;
297 if (Context.getAsmInfo()->hasAggressiveSymbolFolding())
298 return Expr;
299
300 MCSymbol *ABS = Context.createTempSymbol();
301 OS.EmitAssignment(ABS, Expr);
302 return MCSymbolRefExpr::create(ABS, Context);
303}
304
305static void emitAbsValue(MCStreamer &OS, const MCExpr *Value, unsigned Size) {
306 const MCExpr *ABS = forceExpAbs(OS, Value);
307 OS.EmitValue(ABS, Size);
308}
309
310void MCDwarfLineStr::emitSection(MCStreamer *MCOS) {
311 // Switch to the .debug_line_str section.
312 MCOS->SwitchSection(
313 MCOS->getContext().getObjectFileInfo()->getDwarfLineStrSection());
314 // Emit the strings without perturbing the offsets we used.
315 LineStrings.finalizeInOrder();
316 SmallString<0> Data;
317 Data.resize(LineStrings.getSize());
318 LineStrings.write((uint8_t *)Data.data());
319 MCOS->EmitBinaryData(Data.str());
320}
321
322void MCDwarfLineStr::emitRef(MCStreamer *MCOS, StringRef Path) {
323 int RefSize = 4; // FIXME: Support DWARF-64
324 size_t Offset = LineStrings.add(Path);
325 if (UseRelocs) {
326 MCContext &Ctx = MCOS->getContext();
327 MCOS->EmitValue(makeStartPlusIntExpr(Ctx, *LineStrLabel, Offset), RefSize);
328 } else
329 MCOS->EmitIntValue(Offset, RefSize);
330}
331
332void MCDwarfLineTableHeader::emitV2FileDirTables(MCStreamer *MCOS) const {
333 // First the directory table.
334 for (auto &Dir : MCDwarfDirs) {
335 MCOS->EmitBytes(Dir); // The DirectoryName, and...
336 MCOS->EmitBytes(StringRef("\0", 1)); // its null terminator.
337 }
338 MCOS->EmitIntValue(0, 1); // Terminate the directory list.
339
340 // Second the file table.
341 for (unsigned i = 1; i < MCDwarfFiles.size(); i++) {
342 assert(!MCDwarfFiles[i].Name.empty())((!MCDwarfFiles[i].Name.empty()) ? static_cast<void> (0
) : __assert_fail ("!MCDwarfFiles[i].Name.empty()", "/build/llvm-toolchain-snapshot-9~svn362543/lib/MC/MCDwarf.cpp"
, 342, __PRETTY_FUNCTION__))
;
343 MCOS->EmitBytes(MCDwarfFiles[i].Name); // FileName and...
344 MCOS->EmitBytes(StringRef("\0", 1)); // its null terminator.
345 MCOS->EmitULEB128IntValue(MCDwarfFiles[i].DirIndex); // Directory number.
346 MCOS->EmitIntValue(0, 1); // Last modification timestamp (always 0).
347 MCOS->EmitIntValue(0, 1); // File size (always 0).
348 }
349 MCOS->EmitIntValue(0, 1); // Terminate the file list.
350}
351
352static void emitOneV5FileEntry(MCStreamer *MCOS, const MCDwarfFile &DwarfFile,
353 bool EmitMD5, bool HasSource,
354 Optional<MCDwarfLineStr> &LineStr) {
355 assert(!DwarfFile.Name.empty())((!DwarfFile.Name.empty()) ? static_cast<void> (0) : __assert_fail
("!DwarfFile.Name.empty()", "/build/llvm-toolchain-snapshot-9~svn362543/lib/MC/MCDwarf.cpp"
, 355, __PRETTY_FUNCTION__))
;
356 if (LineStr)
357 LineStr->emitRef(MCOS, DwarfFile.Name);
358 else {
359 MCOS->EmitBytes(DwarfFile.Name); // FileName and...
360 MCOS->EmitBytes(StringRef("\0", 1)); // its null terminator.
361 }
362 MCOS->EmitULEB128IntValue(DwarfFile.DirIndex); // Directory number.
363 if (EmitMD5) {
364 const MD5::MD5Result &Cksum = *DwarfFile.Checksum;
365 MCOS->EmitBinaryData(
366 StringRef(reinterpret_cast<const char *>(Cksum.Bytes.data()),
367 Cksum.Bytes.size()));
368 }
369 if (HasSource) {
370 if (LineStr)
371 LineStr->emitRef(MCOS, DwarfFile.Source.getValueOr(StringRef()));
372 else {
373 MCOS->EmitBytes(
374 DwarfFile.Source.getValueOr(StringRef())); // Source and...
375 MCOS->EmitBytes(StringRef("\0", 1)); // its null terminator.
376 }
377 }
378}
379
380void MCDwarfLineTableHeader::emitV5FileDirTables(
381 MCStreamer *MCOS, Optional<MCDwarfLineStr> &LineStr) const {
382 // The directory format, which is just a list of the directory paths. In a
383 // non-split object, these are references to .debug_line_str; in a split
384 // object, they are inline strings.
385 MCOS->EmitIntValue(1, 1);
386 MCOS->EmitULEB128IntValue(dwarf::DW_LNCT_path);
387 MCOS->EmitULEB128IntValue(LineStr ? dwarf::DW_FORM_line_strp
388 : dwarf::DW_FORM_string);
389 MCOS->EmitULEB128IntValue(MCDwarfDirs.size() + 1);
390 // Try not to emit an empty compilation directory.
391 const StringRef CompDir = CompilationDir.empty()
392 ? MCOS->getContext().getCompilationDir()
393 : StringRef(CompilationDir);
394 if (LineStr) {
395 // Record path strings, emit references here.
396 LineStr->emitRef(MCOS, CompDir);
397 for (const auto &Dir : MCDwarfDirs)
398 LineStr->emitRef(MCOS, Dir);
399 } else {
400 // The list of directory paths. Compilation directory comes first.
401 MCOS->EmitBytes(CompDir);
402 MCOS->EmitBytes(StringRef("\0", 1));
403 for (const auto &Dir : MCDwarfDirs) {
404 MCOS->EmitBytes(Dir); // The DirectoryName, and...
405 MCOS->EmitBytes(StringRef("\0", 1)); // its null terminator.
406 }
407 }
408
409 // The file format, which is the inline null-terminated filename and a
410 // directory index. We don't track file size/timestamp so don't emit them
411 // in the v5 table. Emit MD5 checksums and source if we have them.
412 uint64_t Entries = 2;
413 if (HasAllMD5)
414 Entries += 1;
415 if (HasSource)
416 Entries += 1;
417 MCOS->EmitIntValue(Entries, 1);
418 MCOS->EmitULEB128IntValue(dwarf::DW_LNCT_path);
419 MCOS->EmitULEB128IntValue(LineStr ? dwarf::DW_FORM_line_strp
420 : dwarf::DW_FORM_string);
421 MCOS->EmitULEB128IntValue(dwarf::DW_LNCT_directory_index);
422 MCOS->EmitULEB128IntValue(dwarf::DW_FORM_udata);
423 if (HasAllMD5) {
424 MCOS->EmitULEB128IntValue(dwarf::DW_LNCT_MD5);
425 MCOS->EmitULEB128IntValue(dwarf::DW_FORM_data16);
426 }
427 if (HasSource) {
428 MCOS->EmitULEB128IntValue(dwarf::DW_LNCT_LLVM_source);
429 MCOS->EmitULEB128IntValue(LineStr ? dwarf::DW_FORM_line_strp
430 : dwarf::DW_FORM_string);
431 }
432 // Then the counted list of files. The root file is file #0, then emit the
433 // files as provide by .file directives.
434 // MCDwarfFiles has an unused element [0] so use size() not size()+1.
435 // But sometimes MCDwarfFiles is empty, in which case we still emit one file.
436 MCOS->EmitULEB128IntValue(MCDwarfFiles.empty() ? 1 : MCDwarfFiles.size());
437 // To accommodate assembler source written for DWARF v4 but trying to emit
438 // v5: If we didn't see a root file explicitly, replicate file #1.
439 assert((!RootFile.Name.empty() || MCDwarfFiles.size() >= 1) &&(((!RootFile.Name.empty() || MCDwarfFiles.size() >= 1) &&
"No root file and no .file directives") ? static_cast<void
> (0) : __assert_fail ("(!RootFile.Name.empty() || MCDwarfFiles.size() >= 1) && \"No root file and no .file directives\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/MC/MCDwarf.cpp"
, 440, __PRETTY_FUNCTION__))
440 "No root file and no .file directives")(((!RootFile.Name.empty() || MCDwarfFiles.size() >= 1) &&
"No root file and no .file directives") ? static_cast<void
> (0) : __assert_fail ("(!RootFile.Name.empty() || MCDwarfFiles.size() >= 1) && \"No root file and no .file directives\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/MC/MCDwarf.cpp"
, 440, __PRETTY_FUNCTION__))
;
441 emitOneV5FileEntry(MCOS, RootFile.Name.empty() ? MCDwarfFiles[1] : RootFile,
442 HasAllMD5, HasSource, LineStr);
443 for (unsigned i = 1; i < MCDwarfFiles.size(); ++i)
444 emitOneV5FileEntry(MCOS, MCDwarfFiles[i], HasAllMD5, HasSource, LineStr);
445}
446
447std::pair<MCSymbol *, MCSymbol *>
448MCDwarfLineTableHeader::Emit(MCStreamer *MCOS, MCDwarfLineTableParams Params,
449 ArrayRef<char> StandardOpcodeLengths,
450 Optional<MCDwarfLineStr> &LineStr) const {
451 MCContext &context = MCOS->getContext();
452
453 // Create a symbol at the beginning of the line table.
454 MCSymbol *LineStartSym = Label;
455 if (!LineStartSym)
456 LineStartSym = context.createTempSymbol();
457 // Set the value of the symbol, as we are at the start of the line table.
458 MCOS->EmitLabel(LineStartSym);
459
460 // Create a symbol for the end of the section (to be set when we get there).
461 MCSymbol *LineEndSym = context.createTempSymbol();
462
463 // The first 4 bytes is the total length of the information for this
464 // compilation unit (not including these 4 bytes for the length).
465 emitAbsValue(*MCOS,
466 MakeStartMinusEndExpr(*MCOS, *LineStartSym, *LineEndSym, 4), 4);
467
468 // Next 2 bytes is the Version.
469 unsigned LineTableVersion = context.getDwarfVersion();
470 MCOS->EmitIntValue(LineTableVersion, 2);
471
472 // Keep track of the bytes between the very start and where the header length
473 // comes out.
474 unsigned PreHeaderLengthBytes = 4 + 2;
475
476 // In v5, we get address info next.
477 if (LineTableVersion >= 5) {
478 MCOS->EmitIntValue(context.getAsmInfo()->getCodePointerSize(), 1);
479 MCOS->EmitIntValue(0, 1); // Segment selector; same as EmitGenDwarfAranges.
480 PreHeaderLengthBytes += 2;
481 }
482
483 // Create a symbol for the end of the prologue (to be set when we get there).
484 MCSymbol *ProEndSym = context.createTempSymbol(); // Lprologue_end
485
486 // Length of the prologue, is the next 4 bytes. This is actually the length
487 // from after the length word, to the end of the prologue.
488 emitAbsValue(*MCOS,
489 MakeStartMinusEndExpr(*MCOS, *LineStartSym, *ProEndSym,
490 (PreHeaderLengthBytes + 4)),
491 4);
492
493 // Parameters of the state machine, are next.
494 MCOS->EmitIntValue(context.getAsmInfo()->getMinInstAlignment(), 1);
495 // maximum_operations_per_instruction
496 // For non-VLIW architectures this field is always 1.
497 // FIXME: VLIW architectures need to update this field accordingly.
498 if (LineTableVersion >= 4)
499 MCOS->EmitIntValue(1, 1);
500 MCOS->EmitIntValue(DWARF2_LINE_DEFAULT_IS_STMT1, 1);
501 MCOS->EmitIntValue(Params.DWARF2LineBase, 1);
502 MCOS->EmitIntValue(Params.DWARF2LineRange, 1);
503 MCOS->EmitIntValue(StandardOpcodeLengths.size() + 1, 1);
504
505 // Standard opcode lengths
506 for (char Length : StandardOpcodeLengths)
507 MCOS->EmitIntValue(Length, 1);
508
509 // Put out the directory and file tables. The formats vary depending on
510 // the version.
511 if (LineTableVersion >= 5)
512 emitV5FileDirTables(MCOS, LineStr);
513 else
514 emitV2FileDirTables(MCOS);
515
516 // This is the end of the prologue, so set the value of the symbol at the
517 // end of the prologue (that was used in a previous expression).
518 MCOS->EmitLabel(ProEndSym);
519
520 return std::make_pair(LineStartSym, LineEndSym);
521}
522
523void MCDwarfLineTable::EmitCU(MCObjectStreamer *MCOS,
524 MCDwarfLineTableParams Params,
525 Optional<MCDwarfLineStr> &LineStr) const {
526 MCSymbol *LineEndSym = Header.Emit(MCOS, Params, LineStr).second;
527
528 // Put out the line tables.
529 for (const auto &LineSec : MCLineSections.getMCLineEntries())
530 EmitDwarfLineTable(MCOS, LineSec.first, LineSec.second);
531
532 // This is the end of the section, so set the value of the symbol at the end
533 // of this section (that was used in a previous expression).
534 MCOS->EmitLabel(LineEndSym);
535}
536
537Expected<unsigned> MCDwarfLineTable::tryGetFile(StringRef &Directory,
538 StringRef &FileName,
539 Optional<MD5::MD5Result> Checksum,
540 Optional<StringRef> Source,
541 uint16_t DwarfVersion,
542 unsigned FileNumber) {
543 return Header.tryGetFile(Directory, FileName, Checksum, Source, DwarfVersion,
1
Calling 'MCDwarfLineTableHeader::tryGetFile'
544 FileNumber);
545}
546
547bool isRootFile(const MCDwarfFile &RootFile, StringRef &Directory,
548 StringRef &FileName, Optional<MD5::MD5Result> Checksum) {
549 if (RootFile.Name.empty() || RootFile.Name != FileName.data())
550 return false;
551 return RootFile.Checksum == Checksum;
552}
553
554Expected<unsigned>
555MCDwarfLineTableHeader::tryGetFile(StringRef &Directory,
556 StringRef &FileName,
557 Optional<MD5::MD5Result> Checksum,
558 Optional<StringRef> Source,
559 uint16_t DwarfVersion,
560 unsigned FileNumber) {
561 if (Directory == CompilationDir)
2
Assuming the condition is false
3
Taking false branch
562 Directory = "";
563 if (FileName.empty()) {
4
Assuming the condition is false
5
Taking false branch
564 FileName = "<stdin>";
565 Directory = "";
566 }
567 assert(!FileName.empty())((!FileName.empty()) ? static_cast<void> (0) : __assert_fail
("!FileName.empty()", "/build/llvm-toolchain-snapshot-9~svn362543/lib/MC/MCDwarf.cpp"
, 567, __PRETTY_FUNCTION__))
;
6
Assuming the condition is true
7
'?' condition is true
568 // Keep track of whether any or all files have an MD5 checksum.
569 // If any files have embedded source, they all must.
570 if (MCDwarfFiles.empty()) {
8
Taking false branch
571 trackMD5Usage(Checksum.hasValue());
572 HasSource = (Source != None);
573 }
574 if (isRootFile(RootFile, Directory, FileName, Checksum) && DwarfVersion >= 5)
575 return 0;
576 if (FileNumber == 0) {
9
Assuming 'FileNumber' is not equal to 0
10
Taking false branch
577 // File numbers start with 1 and/or after any file numbers
578 // allocated by inline-assembler .file directives.
579 FileNumber = MCDwarfFiles.empty() ? 1 : MCDwarfFiles.size();
580 SmallString<256> Buffer;
581 auto IterBool = SourceIdMap.insert(
582 std::make_pair((Directory + Twine('\0') + FileName).toStringRef(Buffer),
583 FileNumber));
584 if (!IterBool.second)
585 return IterBool.first->second;
586 }
587 // Make space for this FileNumber in the MCDwarfFiles vector if needed.
588 if (FileNumber >= MCDwarfFiles.size())
11
Assuming the condition is false
12
Taking false branch
589 MCDwarfFiles.resize(FileNumber + 1);
590
591 // Get the new MCDwarfFile slot for this FileNumber.
592 MCDwarfFile &File = MCDwarfFiles[FileNumber];
593
594 // It is an error to see the same number more than once.
595 if (!File.Name.empty())
13
Assuming the condition is true
14
Taking true branch
596 return make_error<StringError>("file number already allocated",
15
Calling 'make_error<llvm::StringError, char const (&)[30], std::error_code>'
597 inconvertibleErrorCode());
598
599 // If any files have embedded source, they all must.
600 if (HasSource != (Source != None))
601 return make_error<StringError>("inconsistent use of embedded source",
602 inconvertibleErrorCode());
603
604 if (Directory.empty()) {
605 // Separate the directory part from the basename of the FileName.
606 StringRef tFileName = sys::path::filename(FileName);
607 if (!tFileName.empty()) {
608 Directory = sys::path::parent_path(FileName);
609 if (!Directory.empty())
610 FileName = tFileName;
611 }
612 }
613
614 // Find or make an entry in the MCDwarfDirs vector for this Directory.
615 // Capture directory name.
616 unsigned DirIndex;
617 if (Directory.empty()) {
618 // For FileNames with no directories a DirIndex of 0 is used.
619 DirIndex = 0;
620 } else {
621 DirIndex = llvm::find(MCDwarfDirs, Directory) - MCDwarfDirs.begin();
622 if (DirIndex >= MCDwarfDirs.size())
623 MCDwarfDirs.push_back(Directory);
624 // The DirIndex is one based, as DirIndex of 0 is used for FileNames with
625 // no directories. MCDwarfDirs[] is unlike MCDwarfFiles[] in that the
626 // directory names are stored at MCDwarfDirs[DirIndex-1] where FileNames
627 // are stored at MCDwarfFiles[FileNumber].Name .
628 DirIndex++;
629 }
630
631 File.Name = FileName;
632 File.DirIndex = DirIndex;
633 File.Checksum = Checksum;
634 trackMD5Usage(Checksum.hasValue());
635 File.Source = Source;
636 if (Source)
637 HasSource = true;
638
639 // return the allocated FileNumber.
640 return FileNumber;
641}
642
643/// Utility function to emit the encoding to a streamer.
644void MCDwarfLineAddr::Emit(MCStreamer *MCOS, MCDwarfLineTableParams Params,
645 int64_t LineDelta, uint64_t AddrDelta) {
646 MCContext &Context = MCOS->getContext();
647 SmallString<256> Tmp;
648 raw_svector_ostream OS(Tmp);
649 MCDwarfLineAddr::Encode(Context, Params, LineDelta, AddrDelta, OS);
650 MCOS->EmitBytes(OS.str());
651}
652
653/// Given a special op, return the address skip amount (in units of
654/// DWARF2_LINE_MIN_INSN_LENGTH).
655static uint64_t SpecialAddr(MCDwarfLineTableParams Params, uint64_t op) {
656 return (op - Params.DWARF2LineOpcodeBase) / Params.DWARF2LineRange;
657}
658
659/// Utility function to encode a Dwarf pair of LineDelta and AddrDeltas.
660void MCDwarfLineAddr::Encode(MCContext &Context, MCDwarfLineTableParams Params,
661 int64_t LineDelta, uint64_t AddrDelta,
662 raw_ostream &OS) {
663 uint64_t Temp, Opcode;
664 bool NeedCopy = false;
665
666 // The maximum address skip amount that can be encoded with a special op.
667 uint64_t MaxSpecialAddrDelta = SpecialAddr(Params, 255);
668
669 // Scale the address delta by the minimum instruction length.
670 AddrDelta = ScaleAddrDelta(Context, AddrDelta);
671
672 // A LineDelta of INT64_MAX is a signal that this is actually a
673 // DW_LNE_end_sequence. We cannot use special opcodes here, since we want the
674 // end_sequence to emit the matrix entry.
675 if (LineDelta == INT64_MAX(9223372036854775807L)) {
676 if (AddrDelta == MaxSpecialAddrDelta)
677 OS << char(dwarf::DW_LNS_const_add_pc);
678 else if (AddrDelta) {
679 OS << char(dwarf::DW_LNS_advance_pc);
680 encodeULEB128(AddrDelta, OS);
681 }
682 OS << char(dwarf::DW_LNS_extended_op);
683 OS << char(1);
684 OS << char(dwarf::DW_LNE_end_sequence);
685 return;
686 }
687
688 // Bias the line delta by the base.
689 Temp = LineDelta - Params.DWARF2LineBase;
690
691 // If the line increment is out of range of a special opcode, we must encode
692 // it with DW_LNS_advance_line.
693 if (Temp >= Params.DWARF2LineRange ||
694 Temp + Params.DWARF2LineOpcodeBase > 255) {
695 OS << char(dwarf::DW_LNS_advance_line);
696 encodeSLEB128(LineDelta, OS);
697
698 LineDelta = 0;
699 Temp = 0 - Params.DWARF2LineBase;
700 NeedCopy = true;
701 }
702
703 // Use DW_LNS_copy instead of a "line +0, addr +0" special opcode.
704 if (LineDelta == 0 && AddrDelta == 0) {
705 OS << char(dwarf::DW_LNS_copy);
706 return;
707 }
708
709 // Bias the opcode by the special opcode base.
710 Temp += Params.DWARF2LineOpcodeBase;
711
712 // Avoid overflow when addr_delta is large.
713 if (AddrDelta < 256 + MaxSpecialAddrDelta) {
714 // Try using a special opcode.
715 Opcode = Temp + AddrDelta * Params.DWARF2LineRange;
716 if (Opcode <= 255) {
717 OS << char(Opcode);
718 return;
719 }
720
721 // Try using DW_LNS_const_add_pc followed by special op.
722 Opcode = Temp + (AddrDelta - MaxSpecialAddrDelta) * Params.DWARF2LineRange;
723 if (Opcode <= 255) {
724 OS << char(dwarf::DW_LNS_const_add_pc);
725 OS << char(Opcode);
726 return;
727 }
728 }
729
730 // Otherwise use DW_LNS_advance_pc.
731 OS << char(dwarf::DW_LNS_advance_pc);
732 encodeULEB128(AddrDelta, OS);
733
734 if (NeedCopy)
735 OS << char(dwarf::DW_LNS_copy);
736 else {
737 assert(Temp <= 255 && "Buggy special opcode encoding.")((Temp <= 255 && "Buggy special opcode encoding.")
? static_cast<void> (0) : __assert_fail ("Temp <= 255 && \"Buggy special opcode encoding.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/MC/MCDwarf.cpp"
, 737, __PRETTY_FUNCTION__))
;
738 OS << char(Temp);
739 }
740}
741
742bool MCDwarfLineAddr::FixedEncode(MCContext &Context,
743 MCDwarfLineTableParams Params,
744 int64_t LineDelta, uint64_t AddrDelta,
745 raw_ostream &OS,
746 uint32_t *Offset, uint32_t *Size) {
747 if (LineDelta != INT64_MAX(9223372036854775807L)) {
748 OS << char(dwarf::DW_LNS_advance_line);
749 encodeSLEB128(LineDelta, OS);
750 }
751
752 // Use address delta to adjust address or use absolute address to adjust
753 // address.
754 bool SetDelta;
755 // According to DWARF spec., the DW_LNS_fixed_advance_pc opcode takes a
756 // single uhalf (unencoded) operand. So, the maximum value of AddrDelta
757 // is 65535. We set a conservative upper bound for it for relaxation.
758 if (AddrDelta > 60000) {
759 const MCAsmInfo *asmInfo = Context.getAsmInfo();
760 unsigned AddrSize = asmInfo->getCodePointerSize();
761
762 OS << char(dwarf::DW_LNS_extended_op);
763 encodeULEB128(1 + AddrSize, OS);
764 OS << char(dwarf::DW_LNE_set_address);
765 // Generate fixup for the address.
766 *Offset = OS.tell();
767 *Size = AddrSize;
768 SetDelta = false;
769 OS.write_zeros(AddrSize);
770 } else {
771 OS << char(dwarf::DW_LNS_fixed_advance_pc);
772 // Generate fixup for 2-bytes address delta.
773 *Offset = OS.tell();
774 *Size = 2;
775 SetDelta = true;
776 OS << char(0);
777 OS << char(0);
778 }
779
780 if (LineDelta == INT64_MAX(9223372036854775807L)) {
781 OS << char(dwarf::DW_LNS_extended_op);
782 OS << char(1);
783 OS << char(dwarf::DW_LNE_end_sequence);
784 } else {
785 OS << char(dwarf::DW_LNS_copy);
786 }
787
788 return SetDelta;
789}
790
791// Utility function to write a tuple for .debug_abbrev.
792static void EmitAbbrev(MCStreamer *MCOS, uint64_t Name, uint64_t Form) {
793 MCOS->EmitULEB128IntValue(Name);
794 MCOS->EmitULEB128IntValue(Form);
795}
796
797// When generating dwarf for assembly source files this emits
798// the data for .debug_abbrev section which contains three DIEs.
799static void EmitGenDwarfAbbrev(MCStreamer *MCOS) {
800 MCContext &context = MCOS->getContext();
801 MCOS->SwitchSection(context.getObjectFileInfo()->getDwarfAbbrevSection());
802
803 // DW_TAG_compile_unit DIE abbrev (1).
804 MCOS->EmitULEB128IntValue(1);
805 MCOS->EmitULEB128IntValue(dwarf::DW_TAG_compile_unit);
806 MCOS->EmitIntValue(dwarf::DW_CHILDREN_yes, 1);
807 EmitAbbrev(MCOS, dwarf::DW_AT_stmt_list, context.getDwarfVersion() >= 4
808 ? dwarf::DW_FORM_sec_offset
809 : dwarf::DW_FORM_data4);
810 if (context.getGenDwarfSectionSyms().size() > 1 &&
811 context.getDwarfVersion() >= 3) {
812 EmitAbbrev(MCOS, dwarf::DW_AT_ranges, context.getDwarfVersion() >= 4
813 ? dwarf::DW_FORM_sec_offset
814 : dwarf::DW_FORM_data4);
815 } else {
816 EmitAbbrev(MCOS, dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr);
817 EmitAbbrev(MCOS, dwarf::DW_AT_high_pc, dwarf::DW_FORM_addr);
818 }
819 EmitAbbrev(MCOS, dwarf::DW_AT_name, dwarf::DW_FORM_string);
820 if (!context.getCompilationDir().empty())
821 EmitAbbrev(MCOS, dwarf::DW_AT_comp_dir, dwarf::DW_FORM_string);
822 StringRef DwarfDebugFlags = context.getDwarfDebugFlags();
823 if (!DwarfDebugFlags.empty())
824 EmitAbbrev(MCOS, dwarf::DW_AT_APPLE_flags, dwarf::DW_FORM_string);
825 EmitAbbrev(MCOS, dwarf::DW_AT_producer, dwarf::DW_FORM_string);
826 EmitAbbrev(MCOS, dwarf::DW_AT_language, dwarf::DW_FORM_data2);
827 EmitAbbrev(MCOS, 0, 0);
828
829 // DW_TAG_label DIE abbrev (2).
830 MCOS->EmitULEB128IntValue(2);
831 MCOS->EmitULEB128IntValue(dwarf::DW_TAG_label);
832 MCOS->EmitIntValue(dwarf::DW_CHILDREN_yes, 1);
833 EmitAbbrev(MCOS, dwarf::DW_AT_name, dwarf::DW_FORM_string);
834 EmitAbbrev(MCOS, dwarf::DW_AT_decl_file, dwarf::DW_FORM_data4);
835 EmitAbbrev(MCOS, dwarf::DW_AT_decl_line, dwarf::DW_FORM_data4);
836 EmitAbbrev(MCOS, dwarf::DW_AT_low_pc, dwarf::DW_FORM_addr);
837 EmitAbbrev(MCOS, dwarf::DW_AT_prototyped, dwarf::DW_FORM_flag);
838 EmitAbbrev(MCOS, 0, 0);
839
840 // DW_TAG_unspecified_parameters DIE abbrev (3).
841 MCOS->EmitULEB128IntValue(3);
842 MCOS->EmitULEB128IntValue(dwarf::DW_TAG_unspecified_parameters);
843 MCOS->EmitIntValue(dwarf::DW_CHILDREN_no, 1);
844 EmitAbbrev(MCOS, 0, 0);
845
846 // Terminate the abbreviations for this compilation unit.
847 MCOS->EmitIntValue(0, 1);
848}
849
850// When generating dwarf for assembly source files this emits the data for
851// .debug_aranges section. This section contains a header and a table of pairs
852// of PointerSize'ed values for the address and size of section(s) with line
853// table entries.
854static void EmitGenDwarfAranges(MCStreamer *MCOS,
855 const MCSymbol *InfoSectionSymbol) {
856 MCContext &context = MCOS->getContext();
857
858 auto &Sections = context.getGenDwarfSectionSyms();
859
860 MCOS->SwitchSection(context.getObjectFileInfo()->getDwarfARangesSection());
861
862 // This will be the length of the .debug_aranges section, first account for
863 // the size of each item in the header (see below where we emit these items).
864 int Length = 4 + 2 + 4 + 1 + 1;
865
866 // Figure the padding after the header before the table of address and size
867 // pairs who's values are PointerSize'ed.
868 const MCAsmInfo *asmInfo = context.getAsmInfo();
869 int AddrSize = asmInfo->getCodePointerSize();
870 int Pad = 2 * AddrSize - (Length & (2 * AddrSize - 1));
871 if (Pad == 2 * AddrSize)
872 Pad = 0;
873 Length += Pad;
874
875 // Add the size of the pair of PointerSize'ed values for the address and size
876 // of each section we have in the table.
877 Length += 2 * AddrSize * Sections.size();
878 // And the pair of terminating zeros.
879 Length += 2 * AddrSize;
880
881 // Emit the header for this section.
882 // The 4 byte length not including the 4 byte value for the length.
883 MCOS->EmitIntValue(Length - 4, 4);
884 // The 2 byte version, which is 2.
885 MCOS->EmitIntValue(2, 2);
886 // The 4 byte offset to the compile unit in the .debug_info from the start
887 // of the .debug_info.
888 if (InfoSectionSymbol)
889 MCOS->EmitSymbolValue(InfoSectionSymbol, 4,
890 asmInfo->needsDwarfSectionOffsetDirective());
891 else
892 MCOS->EmitIntValue(0, 4);
893 // The 1 byte size of an address.
894 MCOS->EmitIntValue(AddrSize, 1);
895 // The 1 byte size of a segment descriptor, we use a value of zero.
896 MCOS->EmitIntValue(0, 1);
897 // Align the header with the padding if needed, before we put out the table.
898 for(int i = 0; i < Pad; i++)
899 MCOS->EmitIntValue(0, 1);
900
901 // Now emit the table of pairs of PointerSize'ed values for the section
902 // addresses and sizes.
903 for (MCSection *Sec : Sections) {
904 const MCSymbol *StartSymbol = Sec->getBeginSymbol();
905 MCSymbol *EndSymbol = Sec->getEndSymbol(context);
906 assert(StartSymbol && "StartSymbol must not be NULL")((StartSymbol && "StartSymbol must not be NULL") ? static_cast
<void> (0) : __assert_fail ("StartSymbol && \"StartSymbol must not be NULL\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/MC/MCDwarf.cpp"
, 906, __PRETTY_FUNCTION__))
;
907 assert(EndSymbol && "EndSymbol must not be NULL")((EndSymbol && "EndSymbol must not be NULL") ? static_cast
<void> (0) : __assert_fail ("EndSymbol && \"EndSymbol must not be NULL\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/MC/MCDwarf.cpp"
, 907, __PRETTY_FUNCTION__))
;
908
909 const MCExpr *Addr = MCSymbolRefExpr::create(
910 StartSymbol, MCSymbolRefExpr::VK_None, context);
911 const MCExpr *Size = MakeStartMinusEndExpr(*MCOS,
912 *StartSymbol, *EndSymbol, 0);
913 MCOS->EmitValue(Addr, AddrSize);
914 emitAbsValue(*MCOS, Size, AddrSize);
915 }
916
917 // And finally the pair of terminating zeros.
918 MCOS->EmitIntValue(0, AddrSize);
919 MCOS->EmitIntValue(0, AddrSize);
920}
921
922// When generating dwarf for assembly source files this emits the data for
923// .debug_info section which contains three parts. The header, the compile_unit
924// DIE and a list of label DIEs.
925static void EmitGenDwarfInfo(MCStreamer *MCOS,
926 const MCSymbol *AbbrevSectionSymbol,
927 const MCSymbol *LineSectionSymbol,
928 const MCSymbol *RangesSectionSymbol) {
929 MCContext &context = MCOS->getContext();
930
931 MCOS->SwitchSection(context.getObjectFileInfo()->getDwarfInfoSection());
932
933 // Create a symbol at the start and end of this section used in here for the
934 // expression to calculate the length in the header.
935 MCSymbol *InfoStart = context.createTempSymbol();
936 MCOS->EmitLabel(InfoStart);
937 MCSymbol *InfoEnd = context.createTempSymbol();
938
939 // First part: the header.
940
941 // The 4 byte total length of the information for this compilation unit, not
942 // including these 4 bytes.
943 const MCExpr *Length = MakeStartMinusEndExpr(*MCOS, *InfoStart, *InfoEnd, 4);
944 emitAbsValue(*MCOS, Length, 4);
945
946 // The 2 byte DWARF version.
947 MCOS->EmitIntValue(context.getDwarfVersion(), 2);
948
949 // The DWARF v5 header has unit type, address size, abbrev offset.
950 // Earlier versions have abbrev offset, address size.
951 const MCAsmInfo &AsmInfo = *context.getAsmInfo();
952 int AddrSize = AsmInfo.getCodePointerSize();
953 if (context.getDwarfVersion() >= 5) {
954 MCOS->EmitIntValue(dwarf::DW_UT_compile, 1);
955 MCOS->EmitIntValue(AddrSize, 1);
956 }
957 // The 4 byte offset to the debug abbrevs from the start of the .debug_abbrev,
958 // it is at the start of that section so this is zero.
959 if (AbbrevSectionSymbol == nullptr)
960 MCOS->EmitIntValue(0, 4);
961 else
962 MCOS->EmitSymbolValue(AbbrevSectionSymbol, 4,
963 AsmInfo.needsDwarfSectionOffsetDirective());
964 if (context.getDwarfVersion() <= 4)
965 MCOS->EmitIntValue(AddrSize, 1);
966
967 // Second part: the compile_unit DIE.
968
969 // The DW_TAG_compile_unit DIE abbrev (1).
970 MCOS->EmitULEB128IntValue(1);
971
972 // DW_AT_stmt_list, a 4 byte offset from the start of the .debug_line section,
973 // which is at the start of that section so this is zero.
974 if (LineSectionSymbol)
975 MCOS->EmitSymbolValue(LineSectionSymbol, 4,
976 AsmInfo.needsDwarfSectionOffsetDirective());
977 else
978 MCOS->EmitIntValue(0, 4);
979
980 if (RangesSectionSymbol) {
981 // There are multiple sections containing code, so we must use the
982 // .debug_ranges sections.
983
984 // AT_ranges, the 4 byte offset from the start of the .debug_ranges section
985 // to the address range list for this compilation unit.
986 MCOS->EmitSymbolValue(RangesSectionSymbol, 4);
987 } else {
988 // If we only have one non-empty code section, we can use the simpler
989 // AT_low_pc and AT_high_pc attributes.
990
991 // Find the first (and only) non-empty text section
992 auto &Sections = context.getGenDwarfSectionSyms();
993 const auto TextSection = Sections.begin();
994 assert(TextSection != Sections.end() && "No text section found")((TextSection != Sections.end() && "No text section found"
) ? static_cast<void> (0) : __assert_fail ("TextSection != Sections.end() && \"No text section found\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/MC/MCDwarf.cpp"
, 994, __PRETTY_FUNCTION__))
;
995
996 MCSymbol *StartSymbol = (*TextSection)->getBeginSymbol();
997 MCSymbol *EndSymbol = (*TextSection)->getEndSymbol(context);
998 assert(StartSymbol && "StartSymbol must not be NULL")((StartSymbol && "StartSymbol must not be NULL") ? static_cast
<void> (0) : __assert_fail ("StartSymbol && \"StartSymbol must not be NULL\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/MC/MCDwarf.cpp"
, 998, __PRETTY_FUNCTION__))
;
999 assert(EndSymbol && "EndSymbol must not be NULL")((EndSymbol && "EndSymbol must not be NULL") ? static_cast
<void> (0) : __assert_fail ("EndSymbol && \"EndSymbol must not be NULL\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/MC/MCDwarf.cpp"
, 999, __PRETTY_FUNCTION__))
;
1000
1001 // AT_low_pc, the first address of the default .text section.
1002 const MCExpr *Start = MCSymbolRefExpr::create(
1003 StartSymbol, MCSymbolRefExpr::VK_None, context);
1004 MCOS->EmitValue(Start, AddrSize);
1005
1006 // AT_high_pc, the last address of the default .text section.
1007 const MCExpr *End = MCSymbolRefExpr::create(
1008 EndSymbol, MCSymbolRefExpr::VK_None, context);
1009 MCOS->EmitValue(End, AddrSize);
1010 }
1011
1012 // AT_name, the name of the source file. Reconstruct from the first directory
1013 // and file table entries.
1014 const SmallVectorImpl<std::string> &MCDwarfDirs = context.getMCDwarfDirs();
1015 if (MCDwarfDirs.size() > 0) {
1016 MCOS->EmitBytes(MCDwarfDirs[0]);
1017 MCOS->EmitBytes(sys::path::get_separator());
1018 }
1019 const SmallVectorImpl<MCDwarfFile> &MCDwarfFiles = context.getMCDwarfFiles();
1020 // MCDwarfFiles might be empty if we have an empty source file.
1021 // If it's not empty, [0] is unused and [1] is the first actual file.
1022 assert(MCDwarfFiles.empty() || MCDwarfFiles.size() >= 2)((MCDwarfFiles.empty() || MCDwarfFiles.size() >= 2) ? static_cast
<void> (0) : __assert_fail ("MCDwarfFiles.empty() || MCDwarfFiles.size() >= 2"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/MC/MCDwarf.cpp"
, 1022, __PRETTY_FUNCTION__))
;
1023 const MCDwarfFile &RootFile =
1024 MCDwarfFiles.empty()
1025 ? context.getMCDwarfLineTable(/*CUID=*/0).getRootFile()
1026 : MCDwarfFiles[1];
1027 MCOS->EmitBytes(RootFile.Name);
1028 MCOS->EmitIntValue(0, 1); // NULL byte to terminate the string.
1029
1030 // AT_comp_dir, the working directory the assembly was done in.
1031 if (!context.getCompilationDir().empty()) {
1032 MCOS->EmitBytes(context.getCompilationDir());
1033 MCOS->EmitIntValue(0, 1); // NULL byte to terminate the string.
1034 }
1035
1036 // AT_APPLE_flags, the command line arguments of the assembler tool.
1037 StringRef DwarfDebugFlags = context.getDwarfDebugFlags();
1038 if (!DwarfDebugFlags.empty()){
1039 MCOS->EmitBytes(DwarfDebugFlags);
1040 MCOS->EmitIntValue(0, 1); // NULL byte to terminate the string.
1041 }
1042
1043 // AT_producer, the version of the assembler tool.
1044 StringRef DwarfDebugProducer = context.getDwarfDebugProducer();
1045 if (!DwarfDebugProducer.empty())
1046 MCOS->EmitBytes(DwarfDebugProducer);
1047 else
1048 MCOS->EmitBytes(StringRef("llvm-mc (based on LLVM " PACKAGE_VERSION"9.0.0" ")"));
1049 MCOS->EmitIntValue(0, 1); // NULL byte to terminate the string.
1050
1051 // AT_language, a 4 byte value. We use DW_LANG_Mips_Assembler as the dwarf2
1052 // draft has no standard code for assembler.
1053 MCOS->EmitIntValue(dwarf::DW_LANG_Mips_Assembler, 2);
1054
1055 // Third part: the list of label DIEs.
1056
1057 // Loop on saved info for dwarf labels and create the DIEs for them.
1058 const std::vector<MCGenDwarfLabelEntry> &Entries =
1059 MCOS->getContext().getMCGenDwarfLabelEntries();
1060 for (const auto &Entry : Entries) {
1061 // The DW_TAG_label DIE abbrev (2).
1062 MCOS->EmitULEB128IntValue(2);
1063
1064 // AT_name, of the label without any leading underbar.
1065 MCOS->EmitBytes(Entry.getName());
1066 MCOS->EmitIntValue(0, 1); // NULL byte to terminate the string.
1067
1068 // AT_decl_file, index into the file table.
1069 MCOS->EmitIntValue(Entry.getFileNumber(), 4);
1070
1071 // AT_decl_line, source line number.
1072 MCOS->EmitIntValue(Entry.getLineNumber(), 4);
1073
1074 // AT_low_pc, start address of the label.
1075 const MCExpr *AT_low_pc = MCSymbolRefExpr::create(Entry.getLabel(),
1076 MCSymbolRefExpr::VK_None, context);
1077 MCOS->EmitValue(AT_low_pc, AddrSize);
1078
1079 // DW_AT_prototyped, a one byte flag value of 0 saying we have no prototype.
1080 MCOS->EmitIntValue(0, 1);
1081
1082 // The DW_TAG_unspecified_parameters DIE abbrev (3).
1083 MCOS->EmitULEB128IntValue(3);
1084
1085 // Add the NULL DIE terminating the DW_TAG_unspecified_parameters DIE's.
1086 MCOS->EmitIntValue(0, 1);
1087 }
1088
1089 // Add the NULL DIE terminating the Compile Unit DIE's.
1090 MCOS->EmitIntValue(0, 1);
1091
1092 // Now set the value of the symbol at the end of the info section.
1093 MCOS->EmitLabel(InfoEnd);
1094}
1095
1096// When generating dwarf for assembly source files this emits the data for
1097// .debug_ranges section. We only emit one range list, which spans all of the
1098// executable sections of this file.
1099static void EmitGenDwarfRanges(MCStreamer *MCOS) {
1100 MCContext &context = MCOS->getContext();
1101 auto &Sections = context.getGenDwarfSectionSyms();
1102
1103 const MCAsmInfo *AsmInfo = context.getAsmInfo();
1104 int AddrSize = AsmInfo->getCodePointerSize();
1105
1106 MCOS->SwitchSection(context.getObjectFileInfo()->getDwarfRangesSection());
1107
1108 for (MCSection *Sec : Sections) {
1109 const MCSymbol *StartSymbol = Sec->getBeginSymbol();
1110 MCSymbol *EndSymbol = Sec->getEndSymbol(context);
1111 assert(StartSymbol && "StartSymbol must not be NULL")((StartSymbol && "StartSymbol must not be NULL") ? static_cast
<void> (0) : __assert_fail ("StartSymbol && \"StartSymbol must not be NULL\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/MC/MCDwarf.cpp"
, 1111, __PRETTY_FUNCTION__))
;
1112 assert(EndSymbol && "EndSymbol must not be NULL")((EndSymbol && "EndSymbol must not be NULL") ? static_cast
<void> (0) : __assert_fail ("EndSymbol && \"EndSymbol must not be NULL\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/MC/MCDwarf.cpp"
, 1112, __PRETTY_FUNCTION__))
;
1113
1114 // Emit a base address selection entry for the start of this section
1115 const MCExpr *SectionStartAddr = MCSymbolRefExpr::create(
1116 StartSymbol, MCSymbolRefExpr::VK_None, context);
1117 MCOS->emitFill(AddrSize, 0xFF);
1118 MCOS->EmitValue(SectionStartAddr, AddrSize);
1119
1120 // Emit a range list entry spanning this section
1121 const MCExpr *SectionSize = MakeStartMinusEndExpr(*MCOS,
1122 *StartSymbol, *EndSymbol, 0);
1123 MCOS->EmitIntValue(0, AddrSize);
1124 emitAbsValue(*MCOS, SectionSize, AddrSize);
1125 }
1126
1127 // Emit end of list entry
1128 MCOS->EmitIntValue(0, AddrSize);
1129 MCOS->EmitIntValue(0, AddrSize);
1130}
1131
1132//
1133// When generating dwarf for assembly source files this emits the Dwarf
1134// sections.
1135//
1136void MCGenDwarfInfo::Emit(MCStreamer *MCOS) {
1137 MCContext &context = MCOS->getContext();
1138
1139 // Create the dwarf sections in this order (.debug_line already created).
1140 const MCAsmInfo *AsmInfo = context.getAsmInfo();
1141 bool CreateDwarfSectionSymbols =
1142 AsmInfo->doesDwarfUseRelocationsAcrossSections();
1143 MCSymbol *LineSectionSymbol = nullptr;
1144 if (CreateDwarfSectionSymbols)
1145 LineSectionSymbol = MCOS->getDwarfLineTableSymbol(0);
1146 MCSymbol *AbbrevSectionSymbol = nullptr;
1147 MCSymbol *InfoSectionSymbol = nullptr;
1148 MCSymbol *RangesSectionSymbol = nullptr;
1149
1150 // Create end symbols for each section, and remove empty sections
1151 MCOS->getContext().finalizeDwarfSections(*MCOS);
1152
1153 // If there are no sections to generate debug info for, we don't need
1154 // to do anything
1155 if (MCOS->getContext().getGenDwarfSectionSyms().empty())
1156 return;
1157
1158 // We only use the .debug_ranges section if we have multiple code sections,
1159 // and we are emitting a DWARF version which supports it.
1160 const bool UseRangesSection =
1161 MCOS->getContext().getGenDwarfSectionSyms().size() > 1 &&
1162 MCOS->getContext().getDwarfVersion() >= 3;
1163 CreateDwarfSectionSymbols |= UseRangesSection;
1164
1165 MCOS->SwitchSection(context.getObjectFileInfo()->getDwarfInfoSection());
1166 if (CreateDwarfSectionSymbols) {
1167 InfoSectionSymbol = context.createTempSymbol();
1168 MCOS->EmitLabel(InfoSectionSymbol);
1169 }
1170 MCOS->SwitchSection(context.getObjectFileInfo()->getDwarfAbbrevSection());
1171 if (CreateDwarfSectionSymbols) {
1172 AbbrevSectionSymbol = context.createTempSymbol();
1173 MCOS->EmitLabel(AbbrevSectionSymbol);
1174 }
1175 if (UseRangesSection) {
1176 MCOS->SwitchSection(context.getObjectFileInfo()->getDwarfRangesSection());
1177 if (CreateDwarfSectionSymbols) {
1178 RangesSectionSymbol = context.createTempSymbol();
1179 MCOS->EmitLabel(RangesSectionSymbol);
1180 }
1181 }
1182
1183 assert((RangesSectionSymbol != nullptr) || !UseRangesSection)(((RangesSectionSymbol != nullptr) || !UseRangesSection) ? static_cast
<void> (0) : __assert_fail ("(RangesSectionSymbol != nullptr) || !UseRangesSection"
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/MC/MCDwarf.cpp"
, 1183, __PRETTY_FUNCTION__))
;
1184
1185 MCOS->SwitchSection(context.getObjectFileInfo()->getDwarfARangesSection());
1186
1187 // Output the data for .debug_aranges section.
1188 EmitGenDwarfAranges(MCOS, InfoSectionSymbol);
1189
1190 if (UseRangesSection)
1191 EmitGenDwarfRanges(MCOS);
1192
1193 // Output the data for .debug_abbrev section.
1194 EmitGenDwarfAbbrev(MCOS);
1195
1196 // Output the data for .debug_info section.
1197 EmitGenDwarfInfo(MCOS, AbbrevSectionSymbol, LineSectionSymbol,
1198 RangesSectionSymbol);
1199}
1200
1201//
1202// When generating dwarf for assembly source files this is called when symbol
1203// for a label is created. If this symbol is not a temporary and is in the
1204// section that dwarf is being generated for, save the needed info to create
1205// a dwarf label.
1206//
1207void MCGenDwarfLabelEntry::Make(MCSymbol *Symbol, MCStreamer *MCOS,
1208 SourceMgr &SrcMgr, SMLoc &Loc) {
1209 // We won't create dwarf labels for temporary symbols.
1210 if (Symbol->isTemporary())
1211 return;
1212 MCContext &context = MCOS->getContext();
1213 // We won't create dwarf labels for symbols in sections that we are not
1214 // generating debug info for.
1215 if (!context.getGenDwarfSectionSyms().count(MCOS->getCurrentSectionOnly()))
1216 return;
1217
1218 // The dwarf label's name does not have the symbol name's leading
1219 // underbar if any.
1220 StringRef Name = Symbol->getName();
1221 if (Name.startswith("_"))
1222 Name = Name.substr(1, Name.size()-1);
1223
1224 // Get the dwarf file number to be used for the dwarf label.
1225 unsigned FileNumber = context.getGenDwarfFileNumber();
1226
1227 // Finding the line number is the expensive part which is why we just don't
1228 // pass it in as for some symbols we won't create a dwarf label.
1229 unsigned CurBuffer = SrcMgr.FindBufferContainingLoc(Loc);
1230 unsigned LineNumber = SrcMgr.FindLineNumber(Loc, CurBuffer);
1231
1232 // We create a temporary symbol for use for the AT_high_pc and AT_low_pc
1233 // values so that they don't have things like an ARM thumb bit from the
1234 // original symbol. So when used they won't get a low bit set after
1235 // relocation.
1236 MCSymbol *Label = context.createTempSymbol();
1237 MCOS->EmitLabel(Label);
1238
1239 // Create and entry for the info and add it to the other entries.
1240 MCOS->getContext().addMCGenDwarfLabelEntry(
1241 MCGenDwarfLabelEntry(Name, FileNumber, LineNumber, Label));
1242}
1243
1244static int getDataAlignmentFactor(MCStreamer &streamer) {
1245 MCContext &context = streamer.getContext();
1246 const MCAsmInfo *asmInfo = context.getAsmInfo();
1247 int size = asmInfo->getCalleeSaveStackSlotSize();
1248 if (asmInfo->isStackGrowthDirectionUp())
1249 return size;
1250 else
1251 return -size;
1252}
1253
1254static unsigned getSizeForEncoding(MCStreamer &streamer,
1255 unsigned symbolEncoding) {
1256 MCContext &context = streamer.getContext();
1257 unsigned format = symbolEncoding & 0x0f;
1258 switch (format) {
1259 default: llvm_unreachable("Unknown Encoding")::llvm::llvm_unreachable_internal("Unknown Encoding", "/build/llvm-toolchain-snapshot-9~svn362543/lib/MC/MCDwarf.cpp"
, 1259)
;
1260 case dwarf::DW_EH_PE_absptr:
1261 case dwarf::DW_EH_PE_signed:
1262 return context.getAsmInfo()->getCodePointerSize();
1263 case dwarf::DW_EH_PE_udata2:
1264 case dwarf::DW_EH_PE_sdata2:
1265 return 2;
1266 case dwarf::DW_EH_PE_udata4:
1267 case dwarf::DW_EH_PE_sdata4:
1268 return 4;
1269 case dwarf::DW_EH_PE_udata8:
1270 case dwarf::DW_EH_PE_sdata8:
1271 return 8;
1272 }
1273}
1274
1275static void emitFDESymbol(MCObjectStreamer &streamer, const MCSymbol &symbol,
1276 unsigned symbolEncoding, bool isEH) {
1277 MCContext &context = streamer.getContext();
1278 const MCAsmInfo *asmInfo = context.getAsmInfo();
1279 const MCExpr *v = asmInfo->getExprForFDESymbol(&symbol,
1280 symbolEncoding,
1281 streamer);
1282 unsigned size = getSizeForEncoding(streamer, symbolEncoding);
1283 if (asmInfo->doDwarfFDESymbolsUseAbsDiff() && isEH)
1284 emitAbsValue(streamer, v, size);
1285 else
1286 streamer.EmitValue(v, size);
1287}
1288
1289static void EmitPersonality(MCStreamer &streamer, const MCSymbol &symbol,
1290 unsigned symbolEncoding) {
1291 MCContext &context = streamer.getContext();
1292 const MCAsmInfo *asmInfo = context.getAsmInfo();
1293 const MCExpr *v = asmInfo->getExprForPersonalitySymbol(&symbol,
1294 symbolEncoding,
1295 streamer);
1296 unsigned size = getSizeForEncoding(streamer, symbolEncoding);
1297 streamer.EmitValue(v, size);
1298}
1299
1300namespace {
1301
1302class FrameEmitterImpl {
1303 int CFAOffset = 0;
1304 int InitialCFAOffset = 0;
1305 bool IsEH;
1306 MCObjectStreamer &Streamer;
1307
1308public:
1309 FrameEmitterImpl(bool IsEH, MCObjectStreamer &Streamer)
1310 : IsEH(IsEH), Streamer(Streamer) {}
1311
1312 /// Emit the unwind information in a compact way.
1313 void EmitCompactUnwind(const MCDwarfFrameInfo &frame);
1314
1315 const MCSymbol &EmitCIE(const MCDwarfFrameInfo &F);
1316 void EmitFDE(const MCSymbol &cieStart, const MCDwarfFrameInfo &frame,
1317 bool LastInSection, const MCSymbol &SectionStart);
1318 void EmitCFIInstructions(ArrayRef<MCCFIInstruction> Instrs,
1319 MCSymbol *BaseLabel);
1320 void EmitCFIInstruction(const MCCFIInstruction &Instr);
1321};
1322
1323} // end anonymous namespace
1324
1325static void emitEncodingByte(MCObjectStreamer &Streamer, unsigned Encoding) {
1326 Streamer.EmitIntValue(Encoding, 1);
1327}
1328
1329void FrameEmitterImpl::EmitCFIInstruction(const MCCFIInstruction &Instr) {
1330 int dataAlignmentFactor = getDataAlignmentFactor(Streamer);
1331 auto *MRI = Streamer.getContext().getRegisterInfo();
1332
1333 switch (Instr.getOperation()) {
1334 case MCCFIInstruction::OpRegister: {
1335 unsigned Reg1 = Instr.getRegister();
1336 unsigned Reg2 = Instr.getRegister2();
1337 if (!IsEH) {
1338 Reg1 = MRI->getDwarfRegNumFromDwarfEHRegNum(Reg1);
1339 Reg2 = MRI->getDwarfRegNumFromDwarfEHRegNum(Reg2);
1340 }
1341 Streamer.EmitIntValue(dwarf::DW_CFA_register, 1);
1342 Streamer.EmitULEB128IntValue(Reg1);
1343 Streamer.EmitULEB128IntValue(Reg2);
1344 return;
1345 }
1346 case MCCFIInstruction::OpWindowSave:
1347 Streamer.EmitIntValue(dwarf::DW_CFA_GNU_window_save, 1);
1348 return;
1349
1350 case MCCFIInstruction::OpNegateRAState:
1351 Streamer.EmitIntValue(dwarf::DW_CFA_AARCH64_negate_ra_state, 1);
1352 return;
1353
1354 case MCCFIInstruction::OpUndefined: {
1355 unsigned Reg = Instr.getRegister();
1356 Streamer.EmitIntValue(dwarf::DW_CFA_undefined, 1);
1357 Streamer.EmitULEB128IntValue(Reg);
1358 return;
1359 }
1360 case MCCFIInstruction::OpAdjustCfaOffset:
1361 case MCCFIInstruction::OpDefCfaOffset: {
1362 const bool IsRelative =
1363 Instr.getOperation() == MCCFIInstruction::OpAdjustCfaOffset;
1364
1365 Streamer.EmitIntValue(dwarf::DW_CFA_def_cfa_offset, 1);
1366
1367 if (IsRelative)
1368 CFAOffset += Instr.getOffset();
1369 else
1370 CFAOffset = -Instr.getOffset();
1371
1372 Streamer.EmitULEB128IntValue(CFAOffset);
1373
1374 return;
1375 }
1376 case MCCFIInstruction::OpDefCfa: {
1377 unsigned Reg = Instr.getRegister();
1378 if (!IsEH)
1379 Reg = MRI->getDwarfRegNumFromDwarfEHRegNum(Reg);
1380 Streamer.EmitIntValue(dwarf::DW_CFA_def_cfa, 1);
1381 Streamer.EmitULEB128IntValue(Reg);
1382 CFAOffset = -Instr.getOffset();
1383 Streamer.EmitULEB128IntValue(CFAOffset);
1384
1385 return;
1386 }
1387 case MCCFIInstruction::OpDefCfaRegister: {
1388 unsigned Reg = Instr.getRegister();
1389 if (!IsEH)
1390 Reg = MRI->getDwarfRegNumFromDwarfEHRegNum(Reg);
1391 Streamer.EmitIntValue(dwarf::DW_CFA_def_cfa_register, 1);
1392 Streamer.EmitULEB128IntValue(Reg);
1393
1394 return;
1395 }
1396 case MCCFIInstruction::OpOffset:
1397 case MCCFIInstruction::OpRelOffset: {
1398 const bool IsRelative =
1399 Instr.getOperation() == MCCFIInstruction::OpRelOffset;
1400
1401 unsigned Reg = Instr.getRegister();
1402 if (!IsEH)
1403 Reg = MRI->getDwarfRegNumFromDwarfEHRegNum(Reg);
1404
1405 int Offset = Instr.getOffset();
1406 if (IsRelative)
1407 Offset -= CFAOffset;
1408 Offset = Offset / dataAlignmentFactor;
1409
1410 if (Offset < 0) {
1411 Streamer.EmitIntValue(dwarf::DW_CFA_offset_extended_sf, 1);
1412 Streamer.EmitULEB128IntValue(Reg);
1413 Streamer.EmitSLEB128IntValue(Offset);
1414 } else if (Reg < 64) {
1415 Streamer.EmitIntValue(dwarf::DW_CFA_offset + Reg, 1);
1416 Streamer.EmitULEB128IntValue(Offset);
1417 } else {
1418 Streamer.EmitIntValue(dwarf::DW_CFA_offset_extended, 1);
1419 Streamer.EmitULEB128IntValue(Reg);
1420 Streamer.EmitULEB128IntValue(Offset);
1421 }
1422 return;
1423 }
1424 case MCCFIInstruction::OpRememberState:
1425 Streamer.EmitIntValue(dwarf::DW_CFA_remember_state, 1);
1426 return;
1427 case MCCFIInstruction::OpRestoreState:
1428 Streamer.EmitIntValue(dwarf::DW_CFA_restore_state, 1);
1429 return;
1430 case MCCFIInstruction::OpSameValue: {
1431 unsigned Reg = Instr.getRegister();
1432 Streamer.EmitIntValue(dwarf::DW_CFA_same_value, 1);
1433 Streamer.EmitULEB128IntValue(Reg);
1434 return;
1435 }
1436 case MCCFIInstruction::OpRestore: {
1437 unsigned Reg = Instr.getRegister();
1438 if (!IsEH)
1439 Reg = MRI->getDwarfRegNumFromDwarfEHRegNum(Reg);
1440 if (Reg < 64) {
1441 Streamer.EmitIntValue(dwarf::DW_CFA_restore | Reg, 1);
1442 } else {
1443 Streamer.EmitIntValue(dwarf::DW_CFA_restore_extended, 1);
1444 Streamer.EmitULEB128IntValue(Reg);
1445 }
1446 return;
1447 }
1448 case MCCFIInstruction::OpGnuArgsSize:
1449 Streamer.EmitIntValue(dwarf::DW_CFA_GNU_args_size, 1);
1450 Streamer.EmitULEB128IntValue(Instr.getOffset());
1451 return;
1452
1453 case MCCFIInstruction::OpEscape:
1454 Streamer.EmitBytes(Instr.getValues());
1455 return;
1456 }
1457 llvm_unreachable("Unhandled case in switch")::llvm::llvm_unreachable_internal("Unhandled case in switch",
"/build/llvm-toolchain-snapshot-9~svn362543/lib/MC/MCDwarf.cpp"
, 1457)
;
1458}
1459
1460/// Emit frame instructions to describe the layout of the frame.
1461void FrameEmitterImpl::EmitCFIInstructions(ArrayRef<MCCFIInstruction> Instrs,
1462 MCSymbol *BaseLabel) {
1463 for (const MCCFIInstruction &Instr : Instrs) {
1464 MCSymbol *Label = Instr.getLabel();
1465 // Throw out move if the label is invalid.
1466 if (Label && !Label->isDefined()) continue; // Not emitted, in dead code.
1467
1468 // Advance row if new location.
1469 if (BaseLabel && Label) {
1470 MCSymbol *ThisSym = Label;
1471 if (ThisSym != BaseLabel) {
1472 Streamer.EmitDwarfAdvanceFrameAddr(BaseLabel, ThisSym);
1473 BaseLabel = ThisSym;
1474 }
1475 }
1476
1477 EmitCFIInstruction(Instr);
1478 }
1479}
1480
1481/// Emit the unwind information in a compact way.
1482void FrameEmitterImpl::EmitCompactUnwind(const MCDwarfFrameInfo &Frame) {
1483 MCContext &Context = Streamer.getContext();
1484 const MCObjectFileInfo *MOFI = Context.getObjectFileInfo();
1485
1486 // range-start range-length compact-unwind-enc personality-func lsda
1487 // _foo LfooEnd-_foo 0x00000023 0 0
1488 // _bar LbarEnd-_bar 0x00000025 __gxx_personality except_tab1
1489 //
1490 // .section __LD,__compact_unwind,regular,debug
1491 //
1492 // # compact unwind for _foo
1493 // .quad _foo
1494 // .set L1,LfooEnd-_foo
1495 // .long L1
1496 // .long 0x01010001
1497 // .quad 0
1498 // .quad 0
1499 //
1500 // # compact unwind for _bar
1501 // .quad _bar
1502 // .set L2,LbarEnd-_bar
1503 // .long L2
1504 // .long 0x01020011
1505 // .quad __gxx_personality
1506 // .quad except_tab1
1507
1508 uint32_t Encoding = Frame.CompactUnwindEncoding;
1509 if (!Encoding) return;
1510 bool DwarfEHFrameOnly = (Encoding == MOFI->getCompactUnwindDwarfEHFrameOnly());
1511
1512 // The encoding needs to know we have an LSDA.
1513 if (!DwarfEHFrameOnly && Frame.Lsda)
1514 Encoding |= 0x40000000;
1515
1516 // Range Start
1517 unsigned FDEEncoding = MOFI->getFDEEncoding();
1518 unsigned Size = getSizeForEncoding(Streamer, FDEEncoding);
1519 Streamer.EmitSymbolValue(Frame.Begin, Size);
1520
1521 // Range Length
1522 const MCExpr *Range = MakeStartMinusEndExpr(Streamer, *Frame.Begin,
1523 *Frame.End, 0);
1524 emitAbsValue(Streamer, Range, 4);
1525
1526 // Compact Encoding
1527 Size = getSizeForEncoding(Streamer, dwarf::DW_EH_PE_udata4);
1528 Streamer.EmitIntValue(Encoding, Size);
1529
1530 // Personality Function
1531 Size = getSizeForEncoding(Streamer, dwarf::DW_EH_PE_absptr);
1532 if (!DwarfEHFrameOnly && Frame.Personality)
1533 Streamer.EmitSymbolValue(Frame.Personality, Size);
1534 else
1535 Streamer.EmitIntValue(0, Size); // No personality fn
1536
1537 // LSDA
1538 Size = getSizeForEncoding(Streamer, Frame.LsdaEncoding);
1539 if (!DwarfEHFrameOnly && Frame.Lsda)
1540 Streamer.EmitSymbolValue(Frame.Lsda, Size);
1541 else
1542 Streamer.EmitIntValue(0, Size); // No LSDA
1543}
1544
1545static unsigned getCIEVersion(bool IsEH, unsigned DwarfVersion) {
1546 if (IsEH)
1547 return 1;
1548 switch (DwarfVersion) {
1549 case 2:
1550 return 1;
1551 case 3:
1552 return 3;
1553 case 4:
1554 case 5:
1555 return 4;
1556 }
1557 llvm_unreachable("Unknown version")::llvm::llvm_unreachable_internal("Unknown version", "/build/llvm-toolchain-snapshot-9~svn362543/lib/MC/MCDwarf.cpp"
, 1557)
;
1558}
1559
1560const MCSymbol &FrameEmitterImpl::EmitCIE(const MCDwarfFrameInfo &Frame) {
1561 MCContext &context = Streamer.getContext();
1562 const MCRegisterInfo *MRI = context.getRegisterInfo();
1563 const MCObjectFileInfo *MOFI = context.getObjectFileInfo();
1564
1565 MCSymbol *sectionStart = context.createTempSymbol();
1566 Streamer.EmitLabel(sectionStart);
1567
1568 MCSymbol *sectionEnd = context.createTempSymbol();
1569
1570 // Length
1571 const MCExpr *Length =
1572 MakeStartMinusEndExpr(Streamer, *sectionStart, *sectionEnd, 4);
1573 emitAbsValue(Streamer, Length, 4);
1574
1575 // CIE ID
1576 unsigned CIE_ID = IsEH ? 0 : -1;
1577 Streamer.EmitIntValue(CIE_ID, 4);
1578
1579 // Version
1580 uint8_t CIEVersion = getCIEVersion(IsEH, context.getDwarfVersion());
1581 Streamer.EmitIntValue(CIEVersion, 1);
1582
1583 if (IsEH) {
1584 SmallString<8> Augmentation;
1585 Augmentation += "z";
1586 if (Frame.Personality)
1587 Augmentation += "P";
1588 if (Frame.Lsda)
1589 Augmentation += "L";
1590 Augmentation += "R";
1591 if (Frame.IsSignalFrame)
1592 Augmentation += "S";
1593 if (Frame.IsBKeyFrame)
1594 Augmentation += "B";
1595 Streamer.EmitBytes(Augmentation);
1596 }
1597 Streamer.EmitIntValue(0, 1);
1598
1599 if (CIEVersion >= 4) {
1600 // Address Size
1601 Streamer.EmitIntValue(context.getAsmInfo()->getCodePointerSize(), 1);
1602
1603 // Segment Descriptor Size
1604 Streamer.EmitIntValue(0, 1);
1605 }
1606
1607 // Code Alignment Factor
1608 Streamer.EmitULEB128IntValue(context.getAsmInfo()->getMinInstAlignment());
1609
1610 // Data Alignment Factor
1611 Streamer.EmitSLEB128IntValue(getDataAlignmentFactor(Streamer));
1612
1613 // Return Address Register
1614 unsigned RAReg = Frame.RAReg;
1615 if (RAReg == static_cast<unsigned>(INT_MAX2147483647))
1616 RAReg = MRI->getDwarfRegNum(MRI->getRARegister(), IsEH);
1617
1618 if (CIEVersion == 1) {
1619 assert(RAReg <= 255 &&((RAReg <= 255 && "DWARF 2 encodes return_address_register in one byte"
) ? static_cast<void> (0) : __assert_fail ("RAReg <= 255 && \"DWARF 2 encodes return_address_register in one byte\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/MC/MCDwarf.cpp"
, 1620, __PRETTY_FUNCTION__))
1620 "DWARF 2 encodes return_address_register in one byte")((RAReg <= 255 && "DWARF 2 encodes return_address_register in one byte"
) ? static_cast<void> (0) : __assert_fail ("RAReg <= 255 && \"DWARF 2 encodes return_address_register in one byte\""
, "/build/llvm-toolchain-snapshot-9~svn362543/lib/MC/MCDwarf.cpp"
, 1620, __PRETTY_FUNCTION__))
;
1621 Streamer.EmitIntValue(RAReg, 1);
1622 } else {
1623 Streamer.EmitULEB128IntValue(RAReg);
1624 }
1625
1626 // Augmentation Data Length (optional)
1627 unsigned augmentationLength = 0;
1628 if (IsEH) {
1629 if (Frame.Personality) {
1630 // Personality Encoding
1631 augmentationLength += 1;
1632 // Personality
1633 augmentationLength +=
1634 getSizeForEncoding(Streamer, Frame.PersonalityEncoding);
1635 }
1636 if (Frame.Lsda)
1637 augmentationLength += 1;
1638 // Encoding of the FDE pointers
1639 augmentationLength += 1;
1640
1641 Streamer.EmitULEB128IntValue(augmentationLength);
1642
1643 // Augmentation Data (optional)
1644 if (Frame.Personality) {
1645 // Personality Encoding
1646 emitEncodingByte(Streamer, Frame.PersonalityEncoding);
1647 // Personality
1648 EmitPersonality(Streamer, *Frame.Personality, Frame.PersonalityEncoding);
1649 }
1650
1651 if (Frame.Lsda)
1652 emitEncodingByte(Streamer, Frame.LsdaEncoding);
1653
1654 // Encoding of the FDE pointers
1655 emitEncodingByte(Streamer, MOFI->getFDEEncoding());
1656 }
1657
1658 // Initial Instructions
1659
1660 const MCAsmInfo *MAI = context.getAsmInfo();
1661 if (!Frame.IsSimple) {
1662 const std::vector<MCCFIInstruction> &Instructions =
1663 MAI->getInitialFrameState();
1664 EmitCFIInstructions(Instructions, nullptr);
1665 }
1666
1667 InitialCFAOffset = CFAOffset;
1668
1669 // Padding
1670 Streamer.EmitValueToAlignment(IsEH ? 4 : MAI->getCodePointerSize());
1671
1672 Streamer.EmitLabel(sectionEnd);
1673 return *sectionStart;
1674}
1675
1676void FrameEmitterImpl::EmitFDE(const MCSymbol &cieStart,
1677 const MCDwarfFrameInfo &frame,
1678 bool LastInSection,
1679 const MCSymbol &SectionStart) {
1680 MCContext &context = Streamer.getContext();
1681 MCSymbol *fdeStart = context.createTempSymbol();
1682 MCSymbol *fdeEnd = context.createTempSymbol();
1683 const MCObjectFileInfo *MOFI = context.getObjectFileInfo();
1684
1685 CFAOffset = InitialCFAOffset;
1686
1687 // Length
1688 const MCExpr *Length = MakeStartMinusEndExpr(Streamer, *fdeStart, *fdeEnd, 0);
1689 emitAbsValue(Streamer, Length, 4);
1690
1691 Streamer.EmitLabel(fdeStart);
1692
1693 // CIE Pointer
1694 const MCAsmInfo *asmInfo = context.getAsmInfo();
1695 if (IsEH) {
1696 const MCExpr *offset =
1697 MakeStartMinusEndExpr(Streamer, cieStart, *fdeStart, 0);
1698 emitAbsValue(Streamer, offset, 4);
1699 } else if (!asmInfo->doesDwarfUseRelocationsAcrossSections()) {
1700 const MCExpr *offset =
1701 MakeStartMinusEndExpr(Streamer, SectionStart, cieStart, 0);
1702 emitAbsValue(Streamer, offset, 4);
1703 } else {
1704 Streamer.EmitSymbolValue(&cieStart, 4);
1705 }
1706
1707 // PC Begin
1708 unsigned PCEncoding =
1709 IsEH ? MOFI->getFDEEncoding() : (unsigned)dwarf::DW_EH_PE_absptr;
1710 unsigned PCSize = getSizeForEncoding(Streamer, PCEncoding);
1711 emitFDESymbol(Streamer, *frame.Begin, PCEncoding, IsEH);
1712
1713 // PC Range
1714 const MCExpr *Range =
1715 MakeStartMinusEndExpr(Streamer, *frame.Begin, *frame.End, 0);
1716 emitAbsValue(Streamer, Range, PCSize);
1717
1718 if (IsEH) {
1719 // Augmentation Data Length
1720 unsigned augmentationLength = 0;
1721
1722 if (frame.Lsda)
1723 augmentationLength += getSizeForEncoding(Streamer, frame.LsdaEncoding);
1724
1725 Streamer.EmitULEB128IntValue(augmentationLength);
1726
1727 // Augmentation Data
1728 if (frame.Lsda)
1729 emitFDESymbol(Streamer, *frame.Lsda, frame.LsdaEncoding, true);
1730 }
1731
1732 // Call Frame Instructions
1733 EmitCFIInstructions(frame.Instructions, frame.Begin);
1734
1735 // Padding
1736 // The size of a .eh_frame section has to be a multiple of the alignment
1737 // since a null CIE is interpreted as the end. Old systems overaligned
1738 // .eh_frame, so we do too and account for it in the last FDE.
1739 unsigned Align = LastInSection ? asmInfo->getCodePointerSize() : PCSize;
1740 Streamer.EmitValueToAlignment(Align);
1741
1742 Streamer.EmitLabel(fdeEnd);
1743}
1744
1745namespace {
1746
1747struct CIEKey {
1748 static const CIEKey getEmptyKey() {
1749 return CIEKey(nullptr, 0, -1, false, false, static_cast<unsigned>(INT_MAX2147483647),
1750 false);
1751 }
1752
1753 static const CIEKey getTombstoneKey() {
1754 return CIEKey(nullptr, -1, 0, false, false, static_cast<unsigned>(INT_MAX2147483647),
1755 false);
1756 }
1757
1758 CIEKey(const MCSymbol *Personality, unsigned PersonalityEncoding,
1759 unsigned LSDAEncoding, bool IsSignalFrame, bool IsSimple,
1760 unsigned RAReg, bool IsBKeyFrame)
1761 : Personality(Personality), PersonalityEncoding(PersonalityEncoding),
1762 LsdaEncoding(LSDAEncoding), IsSignalFrame(IsSignalFrame),
1763 IsSimple(IsSimple), RAReg(RAReg), IsBKeyFrame(IsBKeyFrame) {}
1764
1765 explicit CIEKey(const MCDwarfFrameInfo &Frame)
1766 : Personality(Frame.Personality),
1767 PersonalityEncoding(Frame.PersonalityEncoding),
1768 LsdaEncoding(Frame.LsdaEncoding), IsSignalFrame(Frame.IsSignalFrame),
1769 IsSimple(Frame.IsSimple), RAReg(Frame.RAReg),
1770 IsBKeyFrame(Frame.IsBKeyFrame) {}
1771
1772 StringRef PersonalityName() const {
1773 if (!Personality)
1774 return StringRef();
1775 return Personality->getName();
1776 }
1777
1778 bool operator<(const CIEKey &Other) const {
1779 return std::make_tuple(PersonalityName(), PersonalityEncoding, LsdaEncoding,
1780 IsSignalFrame, IsSimple, RAReg) <
1781 std::make_tuple(Other.PersonalityName(), Other.PersonalityEncoding,
1782 Other.LsdaEncoding, Other.IsSignalFrame,
1783 Other.IsSimple, Other.RAReg);
1784 }
1785
1786 const MCSymbol *Personality;
1787 unsigned PersonalityEncoding;
1788 unsigned LsdaEncoding;
1789 bool IsSignalFrame;
1790 bool IsSimple;
1791 unsigned RAReg;
1792 bool IsBKeyFrame;
1793};
1794
1795} // end anonymous namespace
1796
1797namespace llvm {
1798
1799template <> struct DenseMapInfo<CIEKey> {
1800 static CIEKey getEmptyKey() { return CIEKey::getEmptyKey(); }
1801 static CIEKey getTombstoneKey() { return CIEKey::getTombstoneKey(); }
1802
1803 static unsigned getHashValue(const CIEKey &Key) {
1804 return static_cast<unsigned>(hash_combine(
1805 Key.Personality, Key.PersonalityEncoding, Key.LsdaEncoding,
1806 Key.IsSignalFrame, Key.IsSimple, Key.RAReg, Key.IsBKeyFrame));
1807 }
1808
1809 static bool isEqual(const CIEKey &LHS, const CIEKey &RHS) {
1810 return LHS.Personality == RHS.Personality &&
1811 LHS.PersonalityEncoding == RHS.PersonalityEncoding &&
1812 LHS.LsdaEncoding == RHS.LsdaEncoding &&
1813 LHS.IsSignalFrame == RHS.IsSignalFrame &&
1814 LHS.IsSimple == RHS.IsSimple && LHS.RAReg == RHS.RAReg &&
1815 LHS.IsBKeyFrame == RHS.IsBKeyFrame;
1816 }
1817};
1818
1819} // end namespace llvm
1820
1821void MCDwarfFrameEmitter::Emit(MCObjectStreamer &Streamer, MCAsmBackend *MAB,
1822 bool IsEH) {
1823 Streamer.generateCompactUnwindEncodings(MAB);
1824
1825 MCContext &Context = Streamer.getContext();
1826 const MCObjectFileInfo *MOFI = Context.getObjectFileInfo();
1827 const MCAsmInfo *AsmInfo = Context.getAsmInfo();
1828 FrameEmitterImpl Emitter(IsEH, Streamer);
1829 ArrayRef<MCDwarfFrameInfo> FrameArray = Streamer.getDwarfFrameInfos();
1830
1831 // Emit the compact unwind info if available.
1832 bool NeedsEHFrameSection = !MOFI->getSupportsCompactUnwindWithoutEHFrame();
1833 if (IsEH && MOFI->getCompactUnwindSection()) {
1834 bool SectionEmitted = false;
1835 for (const MCDwarfFrameInfo &Frame : FrameArray) {
1836 if (Frame.CompactUnwindEncoding == 0) continue;
1837 if (!SectionEmitted) {
1838 Streamer.SwitchSection(MOFI->getCompactUnwindSection());
1839 Streamer.EmitValueToAlignment(AsmInfo->getCodePointerSize());
1840 SectionEmitted = true;
1841 }
1842 NeedsEHFrameSection |=
1843 Frame.CompactUnwindEncoding ==
1844 MOFI->getCompactUnwindDwarfEHFrameOnly();
1845 Emitter.EmitCompactUnwind(Frame);
1846 }
1847 }
1848
1849 if (!NeedsEHFrameSection) return;
1850
1851 MCSection &Section =
1852 IsEH ? *const_cast<MCObjectFileInfo *>(MOFI)->getEHFrameSection()
1853 : *MOFI->getDwarfFrameSection();
1854
1855 Streamer.SwitchSection(&Section);
1856 MCSymbol *SectionStart = Context.createTempSymbol();
1857 Streamer.EmitLabel(SectionStart);
1858
1859 DenseMap<CIEKey, const MCSymbol *> CIEStarts;
1860
1861 const MCSymbol *DummyDebugKey = nullptr;
1862 bool CanOmitDwarf = MOFI->getOmitDwarfIfHaveCompactUnwind();
1863 // Sort the FDEs by their corresponding CIE before we emit them.
1864 // This isn't technically necessary according to the DWARF standard,
1865 // but the Android libunwindstack rejects eh_frame sections where
1866 // an FDE refers to a CIE other than the closest previous CIE.
1867 std::vector<MCDwarfFrameInfo> FrameArrayX(FrameArray.begin(), FrameArray.end());
1868 llvm::stable_sort(FrameArrayX,
1869 [](const MCDwarfFrameInfo &X, const MCDwarfFrameInfo &Y) {
1870 return CIEKey(X) < CIEKey(Y);
1871 });
1872 for (auto I = FrameArrayX.begin(), E = FrameArrayX.end(); I != E;) {
1873 const MCDwarfFrameInfo &Frame = *I;
1874 ++I;
1875 if (CanOmitDwarf && Frame.CompactUnwindEncoding !=
1876 MOFI->getCompactUnwindDwarfEHFrameOnly())
1877 // Don't generate an EH frame if we don't need one. I.e., it's taken care
1878 // of by the compact unwind encoding.
1879 continue;
1880
1881 CIEKey Key(Frame);
1882 const MCSymbol *&CIEStart = IsEH ? CIEStarts[Key] : DummyDebugKey;
1883 if (!CIEStart)
1884 CIEStart = &Emitter.EmitCIE(Frame);
1885
1886 Emitter.EmitFDE(*CIEStart, Frame, I == E, *SectionStart);
1887 }
1888}
1889
1890void MCDwarfFrameEmitter::EmitAdvanceLoc(MCObjectStreamer &Streamer,
1891 uint64_t AddrDelta) {
1892 MCContext &Context = Streamer.getContext();
1893 SmallString<256> Tmp;
1894 raw_svector_ostream OS(Tmp);
1895 MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OS);
1896 Streamer.EmitBytes(OS.str());
1897}
1898
1899void MCDwarfFrameEmitter::EncodeAdvanceLoc(MCContext &Context,
1900 uint64_t AddrDelta,
1901 raw_ostream &OS) {
1902 // Scale the address delta by the minimum instruction length.
1903 AddrDelta = ScaleAddrDelta(Context, AddrDelta);
1904
1905 support::endianness E =
1906 Context.getAsmInfo()->isLittleEndian() ? support::little : support::big;
1907 if (AddrDelta == 0) {
1908 } else if (isUIntN(6, AddrDelta)) {
1909 uint8_t Opcode = dwarf::DW_CFA_advance_loc | AddrDelta;
1910 OS << Opcode;
1911 } else if (isUInt<8>(AddrDelta)) {
1912 OS << uint8_t(dwarf::DW_CFA_advance_loc1);
1913 OS << uint8_t(AddrDelta);
1914 } else if (isUInt<16>(AddrDelta)) {
1915 OS << uint8_t(dwarf::DW_CFA_advance_loc2);
1916 support::endian::write<uint16_t>(OS, AddrDelta, E);
1917 } else {
1918 assert(isUInt<32>(AddrDelta))((isUInt<32>(AddrDelta)) ? static_cast<void> (0) :
__assert_fail ("isUInt<32>(AddrDelta)", "/build/llvm-toolchain-snapshot-9~svn362543/lib/MC/MCDwarf.cpp"
, 1918, __PRETTY_FUNCTION__))
;
1919 OS << uint8_t(dwarf::DW_CFA_advance_loc4);
1920 support::endian::write<uint32_t>(OS, AddrDelta, E);
1921 }
1922}

/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h

1//===- llvm/Support/Error.h - Recoverable error handling --------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines an API used to report recoverable errors.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_SUPPORT_ERROR_H
14#define LLVM_SUPPORT_ERROR_H
15
16#include "llvm-c/Error.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/SmallVector.h"
19#include "llvm/ADT/StringExtras.h"
20#include "llvm/ADT/Twine.h"
21#include "llvm/Config/abi-breaking.h"
22#include "llvm/Support/AlignOf.h"
23#include "llvm/Support/Compiler.h"
24#include "llvm/Support/Debug.h"
25#include "llvm/Support/ErrorHandling.h"
26#include "llvm/Support/ErrorOr.h"
27#include "llvm/Support/Format.h"
28#include "llvm/Support/raw_ostream.h"
29#include <algorithm>
30#include <cassert>
31#include <cstdint>
32#include <cstdlib>
33#include <functional>
34#include <memory>
35#include <new>
36#include <string>
37#include <system_error>
38#include <type_traits>
39#include <utility>
40#include <vector>
41
42namespace llvm {
43
44class ErrorSuccess;
45
46/// Base class for error info classes. Do not extend this directly: Extend
47/// the ErrorInfo template subclass instead.
48class ErrorInfoBase {
49public:
50 virtual ~ErrorInfoBase() = default;
51
52 /// Print an error message to an output stream.
53 virtual void log(raw_ostream &OS) const = 0;
54
55 /// Return the error message as a string.
56 virtual std::string message() const {
57 std::string Msg;
58 raw_string_ostream OS(Msg);
59 log(OS);
60 return OS.str();
61 }
62
63 /// Convert this error to a std::error_code.
64 ///
65 /// This is a temporary crutch to enable interaction with code still
66 /// using std::error_code. It will be removed in the future.
67 virtual std::error_code convertToErrorCode() const = 0;
68
69 // Returns the class ID for this type.
70 static const void *classID() { return &ID; }
71
72 // Returns the class ID for the dynamic type of this ErrorInfoBase instance.
73 virtual const void *dynamicClassID() const = 0;
74
75 // Check whether this instance is a subclass of the class identified by
76 // ClassID.
77 virtual bool isA(const void *const ClassID) const {
78 return ClassID == classID();
79 }
80
81 // Check whether this instance is a subclass of ErrorInfoT.
82 template <typename ErrorInfoT> bool isA() const {
83 return isA(ErrorInfoT::classID());
84 }
85
86private:
87 virtual void anchor();
88
89 static char ID;
90};
91
92/// Lightweight error class with error context and mandatory checking.
93///
94/// Instances of this class wrap a ErrorInfoBase pointer. Failure states
95/// are represented by setting the pointer to a ErrorInfoBase subclass
96/// instance containing information describing the failure. Success is
97/// represented by a null pointer value.
98///
99/// Instances of Error also contains a 'Checked' flag, which must be set
100/// before the destructor is called, otherwise the destructor will trigger a
101/// runtime error. This enforces at runtime the requirement that all Error
102/// instances be checked or returned to the caller.
103///
104/// There are two ways to set the checked flag, depending on what state the
105/// Error instance is in. For Error instances indicating success, it
106/// is sufficient to invoke the boolean conversion operator. E.g.:
107///
108/// @code{.cpp}
109/// Error foo(<...>);
110///
111/// if (auto E = foo(<...>))
112/// return E; // <- Return E if it is in the error state.
113/// // We have verified that E was in the success state. It can now be safely
114/// // destroyed.
115/// @endcode
116///
117/// A success value *can not* be dropped. For example, just calling 'foo(<...>)'
118/// without testing the return value will raise a runtime error, even if foo
119/// returns success.
120///
121/// For Error instances representing failure, you must use either the
122/// handleErrors or handleAllErrors function with a typed handler. E.g.:
123///
124/// @code{.cpp}
125/// class MyErrorInfo : public ErrorInfo<MyErrorInfo> {
126/// // Custom error info.
127/// };
128///
129/// Error foo(<...>) { return make_error<MyErrorInfo>(...); }
130///
131/// auto E = foo(<...>); // <- foo returns failure with MyErrorInfo.
132/// auto NewE =
133/// handleErrors(E,
134/// [](const MyErrorInfo &M) {
135/// // Deal with the error.
136/// },
137/// [](std::unique_ptr<OtherError> M) -> Error {
138/// if (canHandle(*M)) {
139/// // handle error.
140/// return Error::success();
141/// }
142/// // Couldn't handle this error instance. Pass it up the stack.
143/// return Error(std::move(M));
144/// );
145/// // Note - we must check or return NewE in case any of the handlers
146/// // returned a new error.
147/// @endcode
148///
149/// The handleAllErrors function is identical to handleErrors, except
150/// that it has a void return type, and requires all errors to be handled and
151/// no new errors be returned. It prevents errors (assuming they can all be
152/// handled) from having to be bubbled all the way to the top-level.
153///
154/// *All* Error instances must be checked before destruction, even if
155/// they're moved-assigned or constructed from Success values that have already
156/// been checked. This enforces checking through all levels of the call stack.
157class LLVM_NODISCARD[[clang::warn_unused_result]] Error {
158 // Both ErrorList and FileError need to be able to yank ErrorInfoBase
159 // pointers out of this class to add to the error list.
160 friend class ErrorList;
161 friend class FileError;
162
163 // handleErrors needs to be able to set the Checked flag.
164 template <typename... HandlerTs>
165 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
166
167 // Expected<T> needs to be able to steal the payload when constructed from an
168 // error.
169 template <typename T> friend class Expected;
170
171 // wrap needs to be able to steal the payload.
172 friend LLVMErrorRef wrap(Error);
173
174protected:
175 /// Create a success value. Prefer using 'Error::success()' for readability
176 Error() {
177 setPtr(nullptr);
178 setChecked(false);
179 }
180
181public:
182 /// Create a success value.
183 static ErrorSuccess success();
184
185 // Errors are not copy-constructable.
186 Error(const Error &Other) = delete;
187
188 /// Move-construct an error value. The newly constructed error is considered
189 /// unchecked, even if the source error had been checked. The original error
190 /// becomes a checked Success value, regardless of its original state.
191 Error(Error &&Other) {
192 setChecked(true);
193 *this = std::move(Other);
194 }
195
196 /// Create an error value. Prefer using the 'make_error' function, but
197 /// this constructor can be useful when "re-throwing" errors from handlers.
198 Error(std::unique_ptr<ErrorInfoBase> Payload) {
199 setPtr(Payload.release());
200 setChecked(false);
20
Potential leak of memory pointed to by 'Payload._M_t._M_head_impl'
201 }
202
203 // Errors are not copy-assignable.
204 Error &operator=(const Error &Other) = delete;
205
206 /// Move-assign an error value. The current error must represent success, you
207 /// you cannot overwrite an unhandled error. The current error is then
208 /// considered unchecked. The source error becomes a checked success value,
209 /// regardless of its original state.
210 Error &operator=(Error &&Other) {
211 // Don't allow overwriting of unchecked values.
212 assertIsChecked();
213 setPtr(Other.getPtr());
214
215 // This Error is unchecked, even if the source error was checked.
216 setChecked(false);
217
218 // Null out Other's payload and set its checked bit.
219 Other.setPtr(nullptr);
220 Other.setChecked(true);
221
222 return *this;
223 }
224
225 /// Destroy a Error. Fails with a call to abort() if the error is
226 /// unchecked.
227 ~Error() {
228 assertIsChecked();
229 delete getPtr();
230 }
231
232 /// Bool conversion. Returns true if this Error is in a failure state,
233 /// and false if it is in an accept state. If the error is in a Success state
234 /// it will be considered checked.
235 explicit operator bool() {
236 setChecked(getPtr() == nullptr);
237 return getPtr() != nullptr;
238 }
239
240 /// Check whether one error is a subclass of another.
241 template <typename ErrT> bool isA() const {
242 return getPtr() && getPtr()->isA(ErrT::classID());
243 }
244
245 /// Returns the dynamic class id of this error, or null if this is a success
246 /// value.
247 const void* dynamicClassID() const {
248 if (!getPtr())
249 return nullptr;
250 return getPtr()->dynamicClassID();
251 }
252
253private:
254#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
255 // assertIsChecked() happens very frequently, but under normal circumstances
256 // is supposed to be a no-op. So we want it to be inlined, but having a bunch
257 // of debug prints can cause the function to be too large for inlining. So
258 // it's important that we define this function out of line so that it can't be
259 // inlined.
260 LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn))
261 void fatalUncheckedError() const;
262#endif
263
264 void assertIsChecked() {
265#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
266 if (LLVM_UNLIKELY(!getChecked() || getPtr())__builtin_expect((bool)(!getChecked() || getPtr()), false))
267 fatalUncheckedError();
268#endif
269 }
270
271 ErrorInfoBase *getPtr() const {
272 return reinterpret_cast<ErrorInfoBase*>(
273 reinterpret_cast<uintptr_t>(Payload) &
274 ~static_cast<uintptr_t>(0x1));
275 }
276
277 void setPtr(ErrorInfoBase *EI) {
278#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
279 Payload = reinterpret_cast<ErrorInfoBase*>(
280 (reinterpret_cast<uintptr_t>(EI) &
281 ~static_cast<uintptr_t>(0x1)) |
282 (reinterpret_cast<uintptr_t>(Payload) & 0x1));
283#else
284 Payload = EI;
285#endif
286 }
287
288 bool getChecked() const {
289#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
290 return (reinterpret_cast<uintptr_t>(Payload) & 0x1) == 0;
291#else
292 return true;
293#endif
294 }
295
296 void setChecked(bool V) {
297 Payload = reinterpret_cast<ErrorInfoBase*>(
298 (reinterpret_cast<uintptr_t>(Payload) &
299 ~static_cast<uintptr_t>(0x1)) |
300 (V ? 0 : 1));
301 }
302
303 std::unique_ptr<ErrorInfoBase> takePayload() {
304 std::unique_ptr<ErrorInfoBase> Tmp(getPtr());
305 setPtr(nullptr);
306 setChecked(true);
307 return Tmp;
308 }
309
310 friend raw_ostream &operator<<(raw_ostream &OS, const Error &E) {
311 if (auto P = E.getPtr())
312 P->log(OS);
313 else
314 OS << "success";
315 return OS;
316 }
317
318 ErrorInfoBase *Payload = nullptr;
319};
320
321/// Subclass of Error for the sole purpose of identifying the success path in
322/// the type system. This allows to catch invalid conversion to Expected<T> at
323/// compile time.
324class ErrorSuccess final : public Error {};
325
326inline ErrorSuccess Error::success() { return ErrorSuccess(); }
327
328/// Make a Error instance representing failure using the given error info
329/// type.
330template <typename ErrT, typename... ArgTs> Error make_error(ArgTs &&... Args) {
331 return Error(llvm::make_unique<ErrT>(std::forward<ArgTs>(Args)...));
16
Calling 'make_unique<llvm::StringError, char const (&)[30], std::error_code>'
18
Returned allocated memory
19
Calling constructor for 'Error'
332}
333
334/// Base class for user error types. Users should declare their error types
335/// like:
336///
337/// class MyError : public ErrorInfo<MyError> {
338/// ....
339/// };
340///
341/// This class provides an implementation of the ErrorInfoBase::kind
342/// method, which is used by the Error RTTI system.
343template <typename ThisErrT, typename ParentErrT = ErrorInfoBase>
344class ErrorInfo : public ParentErrT {
345public:
346 using ParentErrT::ParentErrT; // inherit constructors
347
348 static const void *classID() { return &ThisErrT::ID; }
349
350 const void *dynamicClassID() const override { return &ThisErrT::ID; }
351
352 bool isA(const void *const ClassID) const override {
353 return ClassID == classID() || ParentErrT::isA(ClassID);
354 }
355};
356
357/// Special ErrorInfo subclass representing a list of ErrorInfos.
358/// Instances of this class are constructed by joinError.
359class ErrorList final : public ErrorInfo<ErrorList> {
360 // handleErrors needs to be able to iterate the payload list of an
361 // ErrorList.
362 template <typename... HandlerTs>
363 friend Error handleErrors(Error E, HandlerTs &&... Handlers);
364
365 // joinErrors is implemented in terms of join.
366 friend Error joinErrors(Error, Error);
367
368public:
369 void log(raw_ostream &OS) const override {
370 OS << "Multiple errors:\n";
371 for (auto &ErrPayload : Payloads) {
372 ErrPayload->log(OS);
373 OS << "\n";
374 }
375 }
376
377 std::error_code convertToErrorCode() const override;
378
379 // Used by ErrorInfo::classID.
380 static char ID;
381
382private:
383 ErrorList(std::unique_ptr<ErrorInfoBase> Payload1,
384 std::unique_ptr<ErrorInfoBase> Payload2) {
385 assert(!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() &&((!Payload1->isA<ErrorList>() && !Payload2->
isA<ErrorList>() && "ErrorList constructor payloads should be singleton errors"
) ? static_cast<void> (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 386, __PRETTY_FUNCTION__))
386 "ErrorList constructor payloads should be singleton errors")((!Payload1->isA<ErrorList>() && !Payload2->
isA<ErrorList>() && "ErrorList constructor payloads should be singleton errors"
) ? static_cast<void> (0) : __assert_fail ("!Payload1->isA<ErrorList>() && !Payload2->isA<ErrorList>() && \"ErrorList constructor payloads should be singleton errors\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 386, __PRETTY_FUNCTION__))
;
387 Payloads.push_back(std::move(Payload1));
388 Payloads.push_back(std::move(Payload2));
389 }
390
391 static Error join(Error E1, Error E2) {
392 if (!E1)
393 return E2;
394 if (!E2)
395 return E1;
396 if (E1.isA<ErrorList>()) {
397 auto &E1List = static_cast<ErrorList &>(*E1.getPtr());
398 if (E2.isA<ErrorList>()) {
399 auto E2Payload = E2.takePayload();
400 auto &E2List = static_cast<ErrorList &>(*E2Payload);
401 for (auto &Payload : E2List.Payloads)
402 E1List.Payloads.push_back(std::move(Payload));
403 } else
404 E1List.Payloads.push_back(E2.takePayload());
405
406 return E1;
407 }
408 if (E2.isA<ErrorList>()) {
409 auto &E2List = static_cast<ErrorList &>(*E2.getPtr());
410 E2List.Payloads.insert(E2List.Payloads.begin(), E1.takePayload());
411 return E2;
412 }
413 return Error(std::unique_ptr<ErrorList>(
414 new ErrorList(E1.takePayload(), E2.takePayload())));
415 }
416
417 std::vector<std::unique_ptr<ErrorInfoBase>> Payloads;
418};
419
420/// Concatenate errors. The resulting Error is unchecked, and contains the
421/// ErrorInfo(s), if any, contained in E1, followed by the
422/// ErrorInfo(s), if any, contained in E2.
423inline Error joinErrors(Error E1, Error E2) {
424 return ErrorList::join(std::move(E1), std::move(E2));
425}
426
427/// Tagged union holding either a T or a Error.
428///
429/// This class parallels ErrorOr, but replaces error_code with Error. Since
430/// Error cannot be copied, this class replaces getError() with
431/// takeError(). It also adds an bool errorIsA<ErrT>() method for testing the
432/// error class type.
433template <class T> class LLVM_NODISCARD[[clang::warn_unused_result]] Expected {
434 template <class T1> friend class ExpectedAsOutParameter;
435 template <class OtherT> friend class Expected;
436
437 static const bool isRef = std::is_reference<T>::value;
438
439 using wrap = std::reference_wrapper<typename std::remove_reference<T>::type>;
440
441 using error_type = std::unique_ptr<ErrorInfoBase>;
442
443public:
444 using storage_type = typename std::conditional<isRef, wrap, T>::type;
445 using value_type = T;
446
447private:
448 using reference = typename std::remove_reference<T>::type &;
449 using const_reference = const typename std::remove_reference<T>::type &;
450 using pointer = typename std::remove_reference<T>::type *;
451 using const_pointer = const typename std::remove_reference<T>::type *;
452
453public:
454 /// Create an Expected<T> error value from the given Error.
455 Expected(Error Err)
456 : HasError(true)
457#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
458 // Expected is unchecked upon construction in Debug builds.
459 , Unchecked(true)
460#endif
461 {
462 assert(Err && "Cannot create Expected<T> from Error success value.")((Err && "Cannot create Expected<T> from Error success value."
) ? static_cast<void> (0) : __assert_fail ("Err && \"Cannot create Expected<T> from Error success value.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 462, __PRETTY_FUNCTION__))
;
463 new (getErrorStorage()) error_type(Err.takePayload());
464 }
465
466 /// Forbid to convert from Error::success() implicitly, this avoids having
467 /// Expected<T> foo() { return Error::success(); } which compiles otherwise
468 /// but triggers the assertion above.
469 Expected(ErrorSuccess) = delete;
470
471 /// Create an Expected<T> success value from the given OtherT value, which
472 /// must be convertible to T.
473 template <typename OtherT>
474 Expected(OtherT &&Val,
475 typename std::enable_if<std::is_convertible<OtherT, T>::value>::type
476 * = nullptr)
477 : HasError(false)
478#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
479 // Expected is unchecked upon construction in Debug builds.
480 , Unchecked(true)
481#endif
482 {
483 new (getStorage()) storage_type(std::forward<OtherT>(Val));
484 }
485
486 /// Move construct an Expected<T> value.
487 Expected(Expected &&Other) { moveConstruct(std::move(Other)); }
488
489 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
490 /// must be convertible to T.
491 template <class OtherT>
492 Expected(Expected<OtherT> &&Other,
493 typename std::enable_if<std::is_convertible<OtherT, T>::value>::type
494 * = nullptr) {
495 moveConstruct(std::move(Other));
496 }
497
498 /// Move construct an Expected<T> value from an Expected<OtherT>, where OtherT
499 /// isn't convertible to T.
500 template <class OtherT>
501 explicit Expected(
502 Expected<OtherT> &&Other,
503 typename std::enable_if<!std::is_convertible<OtherT, T>::value>::type * =
504 nullptr) {
505 moveConstruct(std::move(Other));
506 }
507
508 /// Move-assign from another Expected<T>.
509 Expected &operator=(Expected &&Other) {
510 moveAssign(std::move(Other));
511 return *this;
512 }
513
514 /// Destroy an Expected<T>.
515 ~Expected() {
516 assertIsChecked();
517 if (!HasError)
518 getStorage()->~storage_type();
519 else
520 getErrorStorage()->~error_type();
521 }
522
523 /// Return false if there is an error.
524 explicit operator bool() {
525#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
526 Unchecked = HasError;
527#endif
528 return !HasError;
529 }
530
531 /// Returns a reference to the stored T value.
532 reference get() {
533 assertIsChecked();
534 return *getStorage();
535 }
536
537 /// Returns a const reference to the stored T value.
538 const_reference get() const {
539 assertIsChecked();
540 return const_cast<Expected<T> *>(this)->get();
541 }
542
543 /// Check that this Expected<T> is an error of type ErrT.
544 template <typename ErrT> bool errorIsA() const {
545 return HasError && (*getErrorStorage())->template isA<ErrT>();
546 }
547
548 /// Take ownership of the stored error.
549 /// After calling this the Expected<T> is in an indeterminate state that can
550 /// only be safely destructed. No further calls (beside the destructor) should
551 /// be made on the Expected<T> vaule.
552 Error takeError() {
553#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
554 Unchecked = false;
555#endif
556 return HasError ? Error(std::move(*getErrorStorage())) : Error::success();
557 }
558
559 /// Returns a pointer to the stored T value.
560 pointer operator->() {
561 assertIsChecked();
562 return toPointer(getStorage());
563 }
564
565 /// Returns a const pointer to the stored T value.
566 const_pointer operator->() const {
567 assertIsChecked();
568 return toPointer(getStorage());
569 }
570
571 /// Returns a reference to the stored T value.
572 reference operator*() {
573 assertIsChecked();
574 return *getStorage();
575 }
576
577 /// Returns a const reference to the stored T value.
578 const_reference operator*() const {
579 assertIsChecked();
580 return *getStorage();
581 }
582
583private:
584 template <class T1>
585 static bool compareThisIfSameType(const T1 &a, const T1 &b) {
586 return &a == &b;
587 }
588
589 template <class T1, class T2>
590 static bool compareThisIfSameType(const T1 &a, const T2 &b) {
591 return false;
592 }
593
594 template <class OtherT> void moveConstruct(Expected<OtherT> &&Other) {
595 HasError = Other.HasError;
596#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
597 Unchecked = true;
598 Other.Unchecked = false;
599#endif
600
601 if (!HasError)
602 new (getStorage()) storage_type(std::move(*Other.getStorage()));
603 else
604 new (getErrorStorage()) error_type(std::move(*Other.getErrorStorage()));
605 }
606
607 template <class OtherT> void moveAssign(Expected<OtherT> &&Other) {
608 assertIsChecked();
609
610 if (compareThisIfSameType(*this, Other))
611 return;
612
613 this->~Expected();
614 new (this) Expected(std::move(Other));
615 }
616
617 pointer toPointer(pointer Val) { return Val; }
618
619 const_pointer toPointer(const_pointer Val) const { return Val; }
620
621 pointer toPointer(wrap *Val) { return &Val->get(); }
622
623 const_pointer toPointer(const wrap *Val) const { return &Val->get(); }
624
625 storage_type *getStorage() {
626 assert(!HasError && "Cannot get value when an error exists!")((!HasError && "Cannot get value when an error exists!"
) ? static_cast<void> (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 626, __PRETTY_FUNCTION__))
;
627 return reinterpret_cast<storage_type *>(TStorage.buffer);
628 }
629
630 const storage_type *getStorage() const {
631 assert(!HasError && "Cannot get value when an error exists!")((!HasError && "Cannot get value when an error exists!"
) ? static_cast<void> (0) : __assert_fail ("!HasError && \"Cannot get value when an error exists!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 631, __PRETTY_FUNCTION__))
;
632 return reinterpret_cast<const storage_type *>(TStorage.buffer);
633 }
634
635 error_type *getErrorStorage() {
636 assert(HasError && "Cannot get error when a value exists!")((HasError && "Cannot get error when a value exists!"
) ? static_cast<void> (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 636, __PRETTY_FUNCTION__))
;
637 return reinterpret_cast<error_type *>(ErrorStorage.buffer);
638 }
639
640 const error_type *getErrorStorage() const {
641 assert(HasError && "Cannot get error when a value exists!")((HasError && "Cannot get error when a value exists!"
) ? static_cast<void> (0) : __assert_fail ("HasError && \"Cannot get error when a value exists!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 641, __PRETTY_FUNCTION__))
;
642 return reinterpret_cast<const error_type *>(ErrorStorage.buffer);
643 }
644
645 // Used by ExpectedAsOutParameter to reset the checked flag.
646 void setUnchecked() {
647#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
648 Unchecked = true;
649#endif
650 }
651
652#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
653 LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn))
654 LLVM_ATTRIBUTE_NOINLINE__attribute__((noinline))
655 void fatalUncheckedExpected() const {
656 dbgs() << "Expected<T> must be checked before access or destruction.\n";
657 if (HasError) {
658 dbgs() << "Unchecked Expected<T> contained error:\n";
659 (*getErrorStorage())->log(dbgs());
660 } else
661 dbgs() << "Expected<T> value was in success state. (Note: Expected<T> "
662 "values in success mode must still be checked prior to being "
663 "destroyed).\n";
664 abort();
665 }
666#endif
667
668 void assertIsChecked() {
669#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
670 if (LLVM_UNLIKELY(Unchecked)__builtin_expect((bool)(Unchecked), false))
671 fatalUncheckedExpected();
672#endif
673 }
674
675 union {
676 AlignedCharArrayUnion<storage_type> TStorage;
677 AlignedCharArrayUnion<error_type> ErrorStorage;
678 };
679 bool HasError : 1;
680#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
681 bool Unchecked : 1;
682#endif
683};
684
685/// Report a serious error, calling any installed error handler. See
686/// ErrorHandling.h.
687LLVM_ATTRIBUTE_NORETURN__attribute__((noreturn)) void report_fatal_error(Error Err,
688 bool gen_crash_diag = true);
689
690/// Report a fatal error if Err is a failure value.
691///
692/// This function can be used to wrap calls to fallible functions ONLY when it
693/// is known that the Error will always be a success value. E.g.
694///
695/// @code{.cpp}
696/// // foo only attempts the fallible operation if DoFallibleOperation is
697/// // true. If DoFallibleOperation is false then foo always returns
698/// // Error::success().
699/// Error foo(bool DoFallibleOperation);
700///
701/// cantFail(foo(false));
702/// @endcode
703inline void cantFail(Error Err, const char *Msg = nullptr) {
704 if (Err) {
705 if (!Msg)
706 Msg = "Failure value returned from cantFail wrapped call";
707 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 707)
;
708 }
709}
710
711/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
712/// returns the contained value.
713///
714/// This function can be used to wrap calls to fallible functions ONLY when it
715/// is known that the Error will always be a success value. E.g.
716///
717/// @code{.cpp}
718/// // foo only attempts the fallible operation if DoFallibleOperation is
719/// // true. If DoFallibleOperation is false then foo always returns an int.
720/// Expected<int> foo(bool DoFallibleOperation);
721///
722/// int X = cantFail(foo(false));
723/// @endcode
724template <typename T>
725T cantFail(Expected<T> ValOrErr, const char *Msg = nullptr) {
726 if (ValOrErr)
727 return std::move(*ValOrErr);
728 else {
729 if (!Msg)
730 Msg = "Failure value returned from cantFail wrapped call";
731 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 731)
;
732 }
733}
734
735/// Report a fatal error if ValOrErr is a failure value, otherwise unwraps and
736/// returns the contained reference.
737///
738/// This function can be used to wrap calls to fallible functions ONLY when it
739/// is known that the Error will always be a success value. E.g.
740///
741/// @code{.cpp}
742/// // foo only attempts the fallible operation if DoFallibleOperation is
743/// // true. If DoFallibleOperation is false then foo always returns a Bar&.
744/// Expected<Bar&> foo(bool DoFallibleOperation);
745///
746/// Bar &X = cantFail(foo(false));
747/// @endcode
748template <typename T>
749T& cantFail(Expected<T&> ValOrErr, const char *Msg = nullptr) {
750 if (ValOrErr)
751 return *ValOrErr;
752 else {
753 if (!Msg)
754 Msg = "Failure value returned from cantFail wrapped call";
755 llvm_unreachable(Msg)::llvm::llvm_unreachable_internal(Msg, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 755)
;
756 }
757}
758
759/// Helper for testing applicability of, and applying, handlers for
760/// ErrorInfo types.
761template <typename HandlerT>
762class ErrorHandlerTraits
763 : public ErrorHandlerTraits<decltype(
764 &std::remove_reference<HandlerT>::type::operator())> {};
765
766// Specialization functions of the form 'Error (const ErrT&)'.
767template <typename ErrT> class ErrorHandlerTraits<Error (&)(ErrT &)> {
768public:
769 static bool appliesTo(const ErrorInfoBase &E) {
770 return E.template isA<ErrT>();
771 }
772
773 template <typename HandlerT>
774 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
775 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 775, __PRETTY_FUNCTION__))
;
776 return H(static_cast<ErrT &>(*E));
777 }
778};
779
780// Specialization functions of the form 'void (const ErrT&)'.
781template <typename ErrT> class ErrorHandlerTraits<void (&)(ErrT &)> {
782public:
783 static bool appliesTo(const ErrorInfoBase &E) {
784 return E.template isA<ErrT>();
785 }
786
787 template <typename HandlerT>
788 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
789 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 789, __PRETTY_FUNCTION__))
;
790 H(static_cast<ErrT &>(*E));
791 return Error::success();
792 }
793};
794
795/// Specialization for functions of the form 'Error (std::unique_ptr<ErrT>)'.
796template <typename ErrT>
797class ErrorHandlerTraits<Error (&)(std::unique_ptr<ErrT>)> {
798public:
799 static bool appliesTo(const ErrorInfoBase &E) {
800 return E.template isA<ErrT>();
801 }
802
803 template <typename HandlerT>
804 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
805 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 805, __PRETTY_FUNCTION__))
;
806 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
807 return H(std::move(SubE));
808 }
809};
810
811/// Specialization for functions of the form 'void (std::unique_ptr<ErrT>)'.
812template <typename ErrT>
813class ErrorHandlerTraits<void (&)(std::unique_ptr<ErrT>)> {
814public:
815 static bool appliesTo(const ErrorInfoBase &E) {
816 return E.template isA<ErrT>();
817 }
818
819 template <typename HandlerT>
820 static Error apply(HandlerT &&H, std::unique_ptr<ErrorInfoBase> E) {
821 assert(appliesTo(*E) && "Applying incorrect handler")((appliesTo(*E) && "Applying incorrect handler") ? static_cast
<void> (0) : __assert_fail ("appliesTo(*E) && \"Applying incorrect handler\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 821, __PRETTY_FUNCTION__))
;
822 std::unique_ptr<ErrT> SubE(static_cast<ErrT *>(E.release()));
823 H(std::move(SubE));
824 return Error::success();
825 }
826};
827
828// Specialization for member functions of the form 'RetT (const ErrT&)'.
829template <typename C, typename RetT, typename ErrT>
830class ErrorHandlerTraits<RetT (C::*)(ErrT &)>
831 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
832
833// Specialization for member functions of the form 'RetT (const ErrT&) const'.
834template <typename C, typename RetT, typename ErrT>
835class ErrorHandlerTraits<RetT (C::*)(ErrT &) const>
836 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
837
838// Specialization for member functions of the form 'RetT (const ErrT&)'.
839template <typename C, typename RetT, typename ErrT>
840class ErrorHandlerTraits<RetT (C::*)(const ErrT &)>
841 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
842
843// Specialization for member functions of the form 'RetT (const ErrT&) const'.
844template <typename C, typename RetT, typename ErrT>
845class ErrorHandlerTraits<RetT (C::*)(const ErrT &) const>
846 : public ErrorHandlerTraits<RetT (&)(ErrT &)> {};
847
848/// Specialization for member functions of the form
849/// 'RetT (std::unique_ptr<ErrT>)'.
850template <typename C, typename RetT, typename ErrT>
851class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>)>
852 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
853
854/// Specialization for member functions of the form
855/// 'RetT (std::unique_ptr<ErrT>) const'.
856template <typename C, typename RetT, typename ErrT>
857class ErrorHandlerTraits<RetT (C::*)(std::unique_ptr<ErrT>) const>
858 : public ErrorHandlerTraits<RetT (&)(std::unique_ptr<ErrT>)> {};
859
860inline Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload) {
861 return Error(std::move(Payload));
862}
863
864template <typename HandlerT, typename... HandlerTs>
865Error handleErrorImpl(std::unique_ptr<ErrorInfoBase> Payload,
866 HandlerT &&Handler, HandlerTs &&... Handlers) {
867 if (ErrorHandlerTraits<HandlerT>::appliesTo(*Payload))
868 return ErrorHandlerTraits<HandlerT>::apply(std::forward<HandlerT>(Handler),
869 std::move(Payload));
870 return handleErrorImpl(std::move(Payload),
871 std::forward<HandlerTs>(Handlers)...);
872}
873
874/// Pass the ErrorInfo(s) contained in E to their respective handlers. Any
875/// unhandled errors (or Errors returned by handlers) are re-concatenated and
876/// returned.
877/// Because this function returns an error, its result must also be checked
878/// or returned. If you intend to handle all errors use handleAllErrors
879/// (which returns void, and will abort() on unhandled errors) instead.
880template <typename... HandlerTs>
881Error handleErrors(Error E, HandlerTs &&... Hs) {
882 if (!E)
883 return Error::success();
884
885 std::unique_ptr<ErrorInfoBase> Payload = E.takePayload();
886
887 if (Payload->isA<ErrorList>()) {
888 ErrorList &List = static_cast<ErrorList &>(*Payload);
889 Error R;
890 for (auto &P : List.Payloads)
891 R = ErrorList::join(
892 std::move(R),
893 handleErrorImpl(std::move(P), std::forward<HandlerTs>(Hs)...));
894 return R;
895 }
896
897 return handleErrorImpl(std::move(Payload), std::forward<HandlerTs>(Hs)...);
898}
899
900/// Behaves the same as handleErrors, except that by contract all errors
901/// *must* be handled by the given handlers (i.e. there must be no remaining
902/// errors after running the handlers, or llvm_unreachable is called).
903template <typename... HandlerTs>
904void handleAllErrors(Error E, HandlerTs &&... Handlers) {
905 cantFail(handleErrors(std::move(E), std::forward<HandlerTs>(Handlers)...));
906}
907
908/// Check that E is a non-error, then drop it.
909/// If E is an error, llvm_unreachable will be called.
910inline void handleAllErrors(Error E) {
911 cantFail(std::move(E));
912}
913
914/// Handle any errors (if present) in an Expected<T>, then try a recovery path.
915///
916/// If the incoming value is a success value it is returned unmodified. If it
917/// is a failure value then it the contained error is passed to handleErrors.
918/// If handleErrors is able to handle the error then the RecoveryPath functor
919/// is called to supply the final result. If handleErrors is not able to
920/// handle all errors then the unhandled errors are returned.
921///
922/// This utility enables the follow pattern:
923///
924/// @code{.cpp}
925/// enum FooStrategy { Aggressive, Conservative };
926/// Expected<Foo> foo(FooStrategy S);
927///
928/// auto ResultOrErr =
929/// handleExpected(
930/// foo(Aggressive),
931/// []() { return foo(Conservative); },
932/// [](AggressiveStrategyError&) {
933/// // Implicitly conusme this - we'll recover by using a conservative
934/// // strategy.
935/// });
936///
937/// @endcode
938template <typename T, typename RecoveryFtor, typename... HandlerTs>
939Expected<T> handleExpected(Expected<T> ValOrErr, RecoveryFtor &&RecoveryPath,
940 HandlerTs &&... Handlers) {
941 if (ValOrErr)
942 return ValOrErr;
943
944 if (auto Err = handleErrors(ValOrErr.takeError(),
945 std::forward<HandlerTs>(Handlers)...))
946 return std::move(Err);
947
948 return RecoveryPath();
949}
950
951/// Log all errors (if any) in E to OS. If there are any errors, ErrorBanner
952/// will be printed before the first one is logged. A newline will be printed
953/// after each error.
954///
955/// This function is compatible with the helpers from Support/WithColor.h. You
956/// can pass any of them as the OS. Please consider using them instead of
957/// including 'error: ' in the ErrorBanner.
958///
959/// This is useful in the base level of your program to allow clean termination
960/// (allowing clean deallocation of resources, etc.), while reporting error
961/// information to the user.
962void logAllUnhandledErrors(Error E, raw_ostream &OS, Twine ErrorBanner = {});
963
964/// Write all error messages (if any) in E to a string. The newline character
965/// is used to separate error messages.
966inline std::string toString(Error E) {
967 SmallVector<std::string, 2> Errors;
968 handleAllErrors(std::move(E), [&Errors](const ErrorInfoBase &EI) {
969 Errors.push_back(EI.message());
970 });
971 return join(Errors.begin(), Errors.end(), "\n");
972}
973
974/// Consume a Error without doing anything. This method should be used
975/// only where an error can be considered a reasonable and expected return
976/// value.
977///
978/// Uses of this method are potentially indicative of design problems: If it's
979/// legitimate to do nothing while processing an "error", the error-producer
980/// might be more clearly refactored to return an Optional<T>.
981inline void consumeError(Error Err) {
982 handleAllErrors(std::move(Err), [](const ErrorInfoBase &) {});
983}
984
985/// Helper for converting an Error to a bool.
986///
987/// This method returns true if Err is in an error state, or false if it is
988/// in a success state. Puts Err in a checked state in both cases (unlike
989/// Error::operator bool(), which only does this for success states).
990inline bool errorToBool(Error Err) {
991 bool IsError = static_cast<bool>(Err);
992 if (IsError)
993 consumeError(std::move(Err));
994 return IsError;
995}
996
997/// Helper for Errors used as out-parameters.
998///
999/// This helper is for use with the Error-as-out-parameter idiom, where an error
1000/// is passed to a function or method by reference, rather than being returned.
1001/// In such cases it is helpful to set the checked bit on entry to the function
1002/// so that the error can be written to (unchecked Errors abort on assignment)
1003/// and clear the checked bit on exit so that clients cannot accidentally forget
1004/// to check the result. This helper performs these actions automatically using
1005/// RAII:
1006///
1007/// @code{.cpp}
1008/// Result foo(Error &Err) {
1009/// ErrorAsOutParameter ErrAsOutParam(&Err); // 'Checked' flag set
1010/// // <body of foo>
1011/// // <- 'Checked' flag auto-cleared when ErrAsOutParam is destructed.
1012/// }
1013/// @endcode
1014///
1015/// ErrorAsOutParameter takes an Error* rather than Error& so that it can be
1016/// used with optional Errors (Error pointers that are allowed to be null). If
1017/// ErrorAsOutParameter took an Error reference, an instance would have to be
1018/// created inside every condition that verified that Error was non-null. By
1019/// taking an Error pointer we can just create one instance at the top of the
1020/// function.
1021class ErrorAsOutParameter {
1022public:
1023 ErrorAsOutParameter(Error *Err) : Err(Err) {
1024 // Raise the checked bit if Err is success.
1025 if (Err)
1026 (void)!!*Err;
1027 }
1028
1029 ~ErrorAsOutParameter() {
1030 // Clear the checked bit.
1031 if (Err && !*Err)
1032 *Err = Error::success();
1033 }
1034
1035private:
1036 Error *Err;
1037};
1038
1039/// Helper for Expected<T>s used as out-parameters.
1040///
1041/// See ErrorAsOutParameter.
1042template <typename T>
1043class ExpectedAsOutParameter {
1044public:
1045 ExpectedAsOutParameter(Expected<T> *ValOrErr)
1046 : ValOrErr(ValOrErr) {
1047 if (ValOrErr)
1048 (void)!!*ValOrErr;
1049 }
1050
1051 ~ExpectedAsOutParameter() {
1052 if (ValOrErr)
1053 ValOrErr->setUnchecked();
1054 }
1055
1056private:
1057 Expected<T> *ValOrErr;
1058};
1059
1060/// This class wraps a std::error_code in a Error.
1061///
1062/// This is useful if you're writing an interface that returns a Error
1063/// (or Expected) and you want to call code that still returns
1064/// std::error_codes.
1065class ECError : public ErrorInfo<ECError> {
1066 friend Error errorCodeToError(std::error_code);
1067
1068 virtual void anchor() override;
1069
1070public:
1071 void setErrorCode(std::error_code EC) { this->EC = EC; }
1072 std::error_code convertToErrorCode() const override { return EC; }
1073 void log(raw_ostream &OS) const override { OS << EC.message(); }
1074
1075 // Used by ErrorInfo::classID.
1076 static char ID;
1077
1078protected:
1079 ECError() = default;
1080 ECError(std::error_code EC) : EC(EC) {}
1081
1082 std::error_code EC;
1083};
1084
1085/// The value returned by this function can be returned from convertToErrorCode
1086/// for Error values where no sensible translation to std::error_code exists.
1087/// It should only be used in this situation, and should never be used where a
1088/// sensible conversion to std::error_code is available, as attempts to convert
1089/// to/from this error will result in a fatal error. (i.e. it is a programmatic
1090///error to try to convert such a value).
1091std::error_code inconvertibleErrorCode();
1092
1093/// Helper for converting an std::error_code to a Error.
1094Error errorCodeToError(std::error_code EC);
1095
1096/// Helper for converting an ECError to a std::error_code.
1097///
1098/// This method requires that Err be Error() or an ECError, otherwise it
1099/// will trigger a call to abort().
1100std::error_code errorToErrorCode(Error Err);
1101
1102/// Convert an ErrorOr<T> to an Expected<T>.
1103template <typename T> Expected<T> errorOrToExpected(ErrorOr<T> &&EO) {
1104 if (auto EC = EO.getError())
1105 return errorCodeToError(EC);
1106 return std::move(*EO);
1107}
1108
1109/// Convert an Expected<T> to an ErrorOr<T>.
1110template <typename T> ErrorOr<T> expectedToErrorOr(Expected<T> &&E) {
1111 if (auto Err = E.takeError())
1112 return errorToErrorCode(std::move(Err));
1113 return std::move(*E);
1114}
1115
1116/// This class wraps a string in an Error.
1117///
1118/// StringError is useful in cases where the client is not expected to be able
1119/// to consume the specific error message programmatically (for example, if the
1120/// error message is to be presented to the user).
1121///
1122/// StringError can also be used when additional information is to be printed
1123/// along with a error_code message. Depending on the constructor called, this
1124/// class can either display:
1125/// 1. the error_code message (ECError behavior)
1126/// 2. a string
1127/// 3. the error_code message and a string
1128///
1129/// These behaviors are useful when subtyping is required; for example, when a
1130/// specific library needs an explicit error type. In the example below,
1131/// PDBError is derived from StringError:
1132///
1133/// @code{.cpp}
1134/// Expected<int> foo() {
1135/// return llvm::make_error<PDBError>(pdb_error_code::dia_failed_loading,
1136/// "Additional information");
1137/// }
1138/// @endcode
1139///
1140class StringError : public ErrorInfo<StringError> {
1141public:
1142 static char ID;
1143
1144 // Prints EC + S and converts to EC
1145 StringError(std::error_code EC, const Twine &S = Twine());
1146
1147 // Prints S and converts to EC
1148 StringError(const Twine &S, std::error_code EC);
1149
1150 void log(raw_ostream &OS) const override;
1151 std::error_code convertToErrorCode() const override;
1152
1153 const std::string &getMessage() const { return Msg; }
1154
1155private:
1156 std::string Msg;
1157 std::error_code EC;
1158 const bool PrintMsgOnly = false;
1159};
1160
1161/// Create formatted StringError object.
1162template <typename... Ts>
1163Error createStringError(std::error_code EC, char const *Fmt,
1164 const Ts &... Vals) {
1165 std::string Buffer;
1166 raw_string_ostream Stream(Buffer);
1167 Stream << format(Fmt, Vals...);
1168 return make_error<StringError>(Stream.str(), EC);
1169}
1170
1171Error createStringError(std::error_code EC, char const *Msg);
1172
1173/// This class wraps a filename and another Error.
1174///
1175/// In some cases, an error needs to live along a 'source' name, in order to
1176/// show more detailed information to the user.
1177class FileError final : public ErrorInfo<FileError> {
1178
1179 friend Error createFileError(const Twine &, Error);
1180 friend Error createFileError(const Twine &, size_t, Error);
1181
1182public:
1183 void log(raw_ostream &OS) const override {
1184 assert(Err && !FileName.empty() && "Trying to log after takeError().")((Err && !FileName.empty() && "Trying to log after takeError()."
) ? static_cast<void> (0) : __assert_fail ("Err && !FileName.empty() && \"Trying to log after takeError().\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 1184, __PRETTY_FUNCTION__))
;
1185 OS << "'" << FileName << "': ";
1186 if (Line.hasValue())
1187 OS << "line " << Line.getValue() << ": ";
1188 Err->log(OS);
1189 }
1190
1191 Error takeError() { return Error(std::move(Err)); }
1192
1193 std::error_code convertToErrorCode() const override;
1194
1195 // Used by ErrorInfo::classID.
1196 static char ID;
1197
1198private:
1199 FileError(const Twine &F, Optional<size_t> LineNum,
1200 std::unique_ptr<ErrorInfoBase> E) {
1201 assert(E && "Cannot create FileError from Error success value.")((E && "Cannot create FileError from Error success value."
) ? static_cast<void> (0) : __assert_fail ("E && \"Cannot create FileError from Error success value.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 1201, __PRETTY_FUNCTION__))
;
1202 assert(!F.isTriviallyEmpty() &&((!F.isTriviallyEmpty() && "The file name provided to FileError must not be empty."
) ? static_cast<void> (0) : __assert_fail ("!F.isTriviallyEmpty() && \"The file name provided to FileError must not be empty.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 1203, __PRETTY_FUNCTION__))
1203 "The file name provided to FileError must not be empty.")((!F.isTriviallyEmpty() && "The file name provided to FileError must not be empty."
) ? static_cast<void> (0) : __assert_fail ("!F.isTriviallyEmpty() && \"The file name provided to FileError must not be empty.\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/Support/Error.h"
, 1203, __PRETTY_FUNCTION__))
;
1204 FileName = F.str();
1205 Err = std::move(E);
1206 Line = std::move(LineNum);
1207 }
1208
1209 static Error build(const Twine &F, Optional<size_t> Line, Error E) {
1210 return Error(
1211 std::unique_ptr<FileError>(new FileError(F, Line, E.takePayload())));
1212 }
1213
1214 std::string FileName;
1215 Optional<size_t> Line;
1216 std::unique_ptr<ErrorInfoBase> Err;
1217};
1218
1219/// Concatenate a source file path and/or name with an Error. The resulting
1220/// Error is unchecked.
1221inline Error createFileError(const Twine &F, Error E) {
1222 return FileError::build(F, Optional<size_t>(), std::move(E));
1223}
1224
1225/// Concatenate a source file path and/or name with line number and an Error.
1226/// The resulting Error is unchecked.
1227inline Error createFileError(const Twine &F, size_t Line, Error E) {
1228 return FileError::build(F, Optional<size_t>(Line), std::move(E));
1229}
1230
1231/// Concatenate a source file path and/or name with a std::error_code
1232/// to form an Error object.
1233inline Error createFileError(const Twine &F, std::error_code EC) {
1234 return createFileError(F, errorCodeToError(EC));
1235}
1236
1237/// Concatenate a source file path and/or name with line number and
1238/// std::error_code to form an Error object.
1239inline Error createFileError(const Twine &F, size_t Line, std::error_code EC) {
1240 return createFileError(F, Line, errorCodeToError(EC));
1241}
1242
1243Error createFileError(const Twine &F, ErrorSuccess) = delete;
1244
1245/// Helper for check-and-exit error handling.
1246///
1247/// For tool use only. NOT FOR USE IN LIBRARY CODE.
1248///
1249class ExitOnError {
1250public:
1251 /// Create an error on exit helper.
1252 ExitOnError(std::string Banner = "", int DefaultErrorExitCode = 1)
1253 : Banner(std::move(Banner)),
1254 GetExitCode([=](const Error &) { return DefaultErrorExitCode; }) {}
1255
1256 /// Set the banner string for any errors caught by operator().
1257 void setBanner(std::string Banner) { this->Banner = std::move(Banner); }
1258
1259 /// Set the exit-code mapper function.
1260 void setExitCodeMapper(std::function<int(const Error &)> GetExitCode) {
1261 this->GetExitCode = std::move(GetExitCode);
1262 }
1263
1264 /// Check Err. If it's in a failure state log the error(s) and exit.
1265 void operator()(Error Err) const { checkError(std::move(Err)); }
1266
1267 /// Check E. If it's in a success state then return the contained value. If
1268 /// it's in a failure state log the error(s) and exit.
1269 template <typename T> T operator()(Expected<T> &&E) const {
1270 checkError(E.takeError());
1271 return std::move(*E);
1272 }
1273
1274 /// Check E. If it's in a success state then return the contained reference. If
1275 /// it's in a failure state log the error(s) and exit.
1276 template <typename T> T& operator()(Expected<T&> &&E) const {
1277 checkError(E.takeError());
1278 return *E;
1279 }
1280
1281private:
1282 void checkError(Error Err) const {
1283 if (Err) {
1284 int ExitCode = GetExitCode(Err);
1285 logAllUnhandledErrors(std::move(Err), errs(), Banner);
1286 exit(ExitCode);
1287 }
1288 }
1289
1290 std::string Banner;
1291 std::function<int(const Error &)> GetExitCode;
1292};
1293
1294/// Conversion from Error to LLVMErrorRef for C error bindings.
1295inline LLVMErrorRef wrap(Error Err) {
1296 return reinterpret_cast<LLVMErrorRef>(Err.takePayload().release());
1297}
1298
1299/// Conversion from LLVMErrorRef to Error for C error bindings.
1300inline Error unwrap(LLVMErrorRef ErrRef) {
1301 return Error(std::unique_ptr<ErrorInfoBase>(
1302 reinterpret_cast<ErrorInfoBase *>(ErrRef)));
1303}
1304
1305} // end namespace llvm
1306
1307#endif // LLVM_SUPPORT_ERROR_H

/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h

1//===- llvm/ADT/STLExtras.h - Useful STL related functions ------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file contains some templates that are useful if you are working with the
10// STL at all.
11//
12// No library is required when using these functions.
13//
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_ADT_STLEXTRAS_H
17#define LLVM_ADT_STLEXTRAS_H
18
19#include "llvm/ADT/Optional.h"
20#include "llvm/ADT/SmallVector.h"
21#include "llvm/ADT/iterator.h"
22#include "llvm/ADT/iterator_range.h"
23#include "llvm/Config/abi-breaking.h"
24#include "llvm/Support/ErrorHandling.h"
25#include <algorithm>
26#include <cassert>
27#include <cstddef>
28#include <cstdint>
29#include <cstdlib>
30#include <functional>
31#include <initializer_list>
32#include <iterator>
33#include <limits>
34#include <memory>
35#include <tuple>
36#include <type_traits>
37#include <utility>
38
39#ifdef EXPENSIVE_CHECKS
40#include <random> // for std::mt19937
41#endif
42
43namespace llvm {
44
45// Only used by compiler if both template types are the same. Useful when
46// using SFINAE to test for the existence of member functions.
47template <typename T, T> struct SameType;
48
49namespace detail {
50
51template <typename RangeT>
52using IterOfRange = decltype(std::begin(std::declval<RangeT &>()));
53
54template <typename RangeT>
55using ValueOfRange = typename std::remove_reference<decltype(
56 *std::begin(std::declval<RangeT &>()))>::type;
57
58} // end namespace detail
59
60//===----------------------------------------------------------------------===//
61// Extra additions to <type_traits>
62//===----------------------------------------------------------------------===//
63
64template <typename T>
65struct negation : std::integral_constant<bool, !bool(T::value)> {};
66
67template <typename...> struct conjunction : std::true_type {};
68template <typename B1> struct conjunction<B1> : B1 {};
69template <typename B1, typename... Bn>
70struct conjunction<B1, Bn...>
71 : std::conditional<bool(B1::value), conjunction<Bn...>, B1>::type {};
72
73template <typename T> struct make_const_ptr {
74 using type =
75 typename std::add_pointer<typename std::add_const<T>::type>::type;
76};
77
78template <typename T> struct make_const_ref {
79 using type = typename std::add_lvalue_reference<
80 typename std::add_const<T>::type>::type;
81};
82
83//===----------------------------------------------------------------------===//
84// Extra additions to <functional>
85//===----------------------------------------------------------------------===//
86
87template <class Ty> struct identity {
88 using argument_type = Ty;
89
90 Ty &operator()(Ty &self) const {
91 return self;
92 }
93 const Ty &operator()(const Ty &self) const {
94 return self;
95 }
96};
97
98template <class Ty> struct less_ptr {
99 bool operator()(const Ty* left, const Ty* right) const {
100 return *left < *right;
101 }
102};
103
104template <class Ty> struct greater_ptr {
105 bool operator()(const Ty* left, const Ty* right) const {
106 return *right < *left;
107 }
108};
109
110/// An efficient, type-erasing, non-owning reference to a callable. This is
111/// intended for use as the type of a function parameter that is not used
112/// after the function in question returns.
113///
114/// This class does not own the callable, so it is not in general safe to store
115/// a function_ref.
116template<typename Fn> class function_ref;
117
118template<typename Ret, typename ...Params>
119class function_ref<Ret(Params...)> {
120 Ret (*callback)(intptr_t callable, Params ...params) = nullptr;
121 intptr_t callable;
122
123 template<typename Callable>
124 static Ret callback_fn(intptr_t callable, Params ...params) {
125 return (*reinterpret_cast<Callable*>(callable))(
126 std::forward<Params>(params)...);
127 }
128
129public:
130 function_ref() = default;
131 function_ref(std::nullptr_t) {}
132
133 template <typename Callable>
134 function_ref(Callable &&callable,
135 typename std::enable_if<
136 !std::is_same<typename std::remove_reference<Callable>::type,
137 function_ref>::value>::type * = nullptr)
138 : callback(callback_fn<typename std::remove_reference<Callable>::type>),
139 callable(reinterpret_cast<intptr_t>(&callable)) {}
140
141 Ret operator()(Params ...params) const {
142 return callback(callable, std::forward<Params>(params)...);
143 }
144
145 operator bool() const { return callback; }
146};
147
148// deleter - Very very very simple method that is used to invoke operator
149// delete on something. It is used like this:
150//
151// for_each(V.begin(), B.end(), deleter<Interval>);
152template <class T>
153inline void deleter(T *Ptr) {
154 delete Ptr;
155}
156
157//===----------------------------------------------------------------------===//
158// Extra additions to <iterator>
159//===----------------------------------------------------------------------===//
160
161namespace adl_detail {
162
163using std::begin;
164
165template <typename ContainerTy>
166auto adl_begin(ContainerTy &&container)
167 -> decltype(begin(std::forward<ContainerTy>(container))) {
168 return begin(std::forward<ContainerTy>(container));
169}
170
171using std::end;
172
173template <typename ContainerTy>
174auto adl_end(ContainerTy &&container)
175 -> decltype(end(std::forward<ContainerTy>(container))) {
176 return end(std::forward<ContainerTy>(container));
177}
178
179using std::swap;
180
181template <typename T>
182void adl_swap(T &&lhs, T &&rhs) noexcept(noexcept(swap(std::declval<T>(),
183 std::declval<T>()))) {
184 swap(std::forward<T>(lhs), std::forward<T>(rhs));
185}
186
187} // end namespace adl_detail
188
189template <typename ContainerTy>
190auto adl_begin(ContainerTy &&container)
191 -> decltype(adl_detail::adl_begin(std::forward<ContainerTy>(container))) {
192 return adl_detail::adl_begin(std::forward<ContainerTy>(container));
193}
194
195template <typename ContainerTy>
196auto adl_end(ContainerTy &&container)
197 -> decltype(adl_detail::adl_end(std::forward<ContainerTy>(container))) {
198 return adl_detail::adl_end(std::forward<ContainerTy>(container));
199}
200
201template <typename T>
202void adl_swap(T &&lhs, T &&rhs) noexcept(
203 noexcept(adl_detail::adl_swap(std::declval<T>(), std::declval<T>()))) {
204 adl_detail::adl_swap(std::forward<T>(lhs), std::forward<T>(rhs));
205}
206
207/// Test whether \p RangeOrContainer is empty. Similar to C++17 std::empty.
208template <typename T>
209constexpr bool empty(const T &RangeOrContainer) {
210 return adl_begin(RangeOrContainer) == adl_end(RangeOrContainer);
211}
212
213// mapped_iterator - This is a simple iterator adapter that causes a function to
214// be applied whenever operator* is invoked on the iterator.
215
216template <typename ItTy, typename FuncTy,
217 typename FuncReturnTy =
218 decltype(std::declval<FuncTy>()(*std::declval<ItTy>()))>
219class mapped_iterator
220 : public iterator_adaptor_base<
221 mapped_iterator<ItTy, FuncTy>, ItTy,
222 typename std::iterator_traits<ItTy>::iterator_category,
223 typename std::remove_reference<FuncReturnTy>::type> {
224public:
225 mapped_iterator(ItTy U, FuncTy F)
226 : mapped_iterator::iterator_adaptor_base(std::move(U)), F(std::move(F)) {}
227
228 ItTy getCurrent() { return this->I; }
229
230 FuncReturnTy operator*() { return F(*this->I); }
231
232private:
233 FuncTy F;
234};
235
236// map_iterator - Provide a convenient way to create mapped_iterators, just like
237// make_pair is useful for creating pairs...
238template <class ItTy, class FuncTy>
239inline mapped_iterator<ItTy, FuncTy> map_iterator(ItTy I, FuncTy F) {
240 return mapped_iterator<ItTy, FuncTy>(std::move(I), std::move(F));
241}
242
243/// Helper to determine if type T has a member called rbegin().
244template <typename Ty> class has_rbegin_impl {
245 using yes = char[1];
246 using no = char[2];
247
248 template <typename Inner>
249 static yes& test(Inner *I, decltype(I->rbegin()) * = nullptr);
250
251 template <typename>
252 static no& test(...);
253
254public:
255 static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
256};
257
258/// Metafunction to determine if T& or T has a member called rbegin().
259template <typename Ty>
260struct has_rbegin : has_rbegin_impl<typename std::remove_reference<Ty>::type> {
261};
262
263// Returns an iterator_range over the given container which iterates in reverse.
264// Note that the container must have rbegin()/rend() methods for this to work.
265template <typename ContainerTy>
266auto reverse(ContainerTy &&C,
267 typename std::enable_if<has_rbegin<ContainerTy>::value>::type * =
268 nullptr) -> decltype(make_range(C.rbegin(), C.rend())) {
269 return make_range(C.rbegin(), C.rend());
270}
271
272// Returns a std::reverse_iterator wrapped around the given iterator.
273template <typename IteratorTy>
274std::reverse_iterator<IteratorTy> make_reverse_iterator(IteratorTy It) {
275 return std::reverse_iterator<IteratorTy>(It);
276}
277
278// Returns an iterator_range over the given container which iterates in reverse.
279// Note that the container must have begin()/end() methods which return
280// bidirectional iterators for this to work.
281template <typename ContainerTy>
282auto reverse(
283 ContainerTy &&C,
284 typename std::enable_if<!has_rbegin<ContainerTy>::value>::type * = nullptr)
285 -> decltype(make_range(llvm::make_reverse_iterator(std::end(C)),
286 llvm::make_reverse_iterator(std::begin(C)))) {
287 return make_range(llvm::make_reverse_iterator(std::end(C)),
288 llvm::make_reverse_iterator(std::begin(C)));
289}
290
291/// An iterator adaptor that filters the elements of given inner iterators.
292///
293/// The predicate parameter should be a callable object that accepts the wrapped
294/// iterator's reference type and returns a bool. When incrementing or
295/// decrementing the iterator, it will call the predicate on each element and
296/// skip any where it returns false.
297///
298/// \code
299/// int A[] = { 1, 2, 3, 4 };
300/// auto R = make_filter_range(A, [](int N) { return N % 2 == 1; });
301/// // R contains { 1, 3 }.
302/// \endcode
303///
304/// Note: filter_iterator_base implements support for forward iteration.
305/// filter_iterator_impl exists to provide support for bidirectional iteration,
306/// conditional on whether the wrapped iterator supports it.
307template <typename WrappedIteratorT, typename PredicateT, typename IterTag>
308class filter_iterator_base
309 : public iterator_adaptor_base<
310 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
311 WrappedIteratorT,
312 typename std::common_type<
313 IterTag, typename std::iterator_traits<
314 WrappedIteratorT>::iterator_category>::type> {
315 using BaseT = iterator_adaptor_base<
316 filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>,
317 WrappedIteratorT,
318 typename std::common_type<
319 IterTag, typename std::iterator_traits<
320 WrappedIteratorT>::iterator_category>::type>;
321
322protected:
323 WrappedIteratorT End;
324 PredicateT Pred;
325
326 void findNextValid() {
327 while (this->I != End && !Pred(*this->I))
328 BaseT::operator++();
329 }
330
331 // Construct the iterator. The begin iterator needs to know where the end
332 // is, so that it can properly stop when it gets there. The end iterator only
333 // needs the predicate to support bidirectional iteration.
334 filter_iterator_base(WrappedIteratorT Begin, WrappedIteratorT End,
335 PredicateT Pred)
336 : BaseT(Begin), End(End), Pred(Pred) {
337 findNextValid();
338 }
339
340public:
341 using BaseT::operator++;
342
343 filter_iterator_base &operator++() {
344 BaseT::operator++();
345 findNextValid();
346 return *this;
347 }
348};
349
350/// Specialization of filter_iterator_base for forward iteration only.
351template <typename WrappedIteratorT, typename PredicateT,
352 typename IterTag = std::forward_iterator_tag>
353class filter_iterator_impl
354 : public filter_iterator_base<WrappedIteratorT, PredicateT, IterTag> {
355 using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT, IterTag>;
356
357public:
358 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
359 PredicateT Pred)
360 : BaseT(Begin, End, Pred) {}
361};
362
363/// Specialization of filter_iterator_base for bidirectional iteration.
364template <typename WrappedIteratorT, typename PredicateT>
365class filter_iterator_impl<WrappedIteratorT, PredicateT,
366 std::bidirectional_iterator_tag>
367 : public filter_iterator_base<WrappedIteratorT, PredicateT,
368 std::bidirectional_iterator_tag> {
369 using BaseT = filter_iterator_base<WrappedIteratorT, PredicateT,
370 std::bidirectional_iterator_tag>;
371 void findPrevValid() {
372 while (!this->Pred(*this->I))
373 BaseT::operator--();
374 }
375
376public:
377 using BaseT::operator--;
378
379 filter_iterator_impl(WrappedIteratorT Begin, WrappedIteratorT End,
380 PredicateT Pred)
381 : BaseT(Begin, End, Pred) {}
382
383 filter_iterator_impl &operator--() {
384 BaseT::operator--();
385 findPrevValid();
386 return *this;
387 }
388};
389
390namespace detail {
391
392template <bool is_bidirectional> struct fwd_or_bidi_tag_impl {
393 using type = std::forward_iterator_tag;
394};
395
396template <> struct fwd_or_bidi_tag_impl<true> {
397 using type = std::bidirectional_iterator_tag;
398};
399
400/// Helper which sets its type member to forward_iterator_tag if the category
401/// of \p IterT does not derive from bidirectional_iterator_tag, and to
402/// bidirectional_iterator_tag otherwise.
403template <typename IterT> struct fwd_or_bidi_tag {
404 using type = typename fwd_or_bidi_tag_impl<std::is_base_of<
405 std::bidirectional_iterator_tag,
406 typename std::iterator_traits<IterT>::iterator_category>::value>::type;
407};
408
409} // namespace detail
410
411/// Defines filter_iterator to a suitable specialization of
412/// filter_iterator_impl, based on the underlying iterator's category.
413template <typename WrappedIteratorT, typename PredicateT>
414using filter_iterator = filter_iterator_impl<
415 WrappedIteratorT, PredicateT,
416 typename detail::fwd_or_bidi_tag<WrappedIteratorT>::type>;
417
418/// Convenience function that takes a range of elements and a predicate,
419/// and return a new filter_iterator range.
420///
421/// FIXME: Currently if RangeT && is a rvalue reference to a temporary, the
422/// lifetime of that temporary is not kept by the returned range object, and the
423/// temporary is going to be dropped on the floor after the make_iterator_range
424/// full expression that contains this function call.
425template <typename RangeT, typename PredicateT>
426iterator_range<filter_iterator<detail::IterOfRange<RangeT>, PredicateT>>
427make_filter_range(RangeT &&Range, PredicateT Pred) {
428 using FilterIteratorT =
429 filter_iterator<detail::IterOfRange<RangeT>, PredicateT>;
430 return make_range(
431 FilterIteratorT(std::begin(std::forward<RangeT>(Range)),
432 std::end(std::forward<RangeT>(Range)), Pred),
433 FilterIteratorT(std::end(std::forward<RangeT>(Range)),
434 std::end(std::forward<RangeT>(Range)), Pred));
435}
436
437/// A pseudo-iterator adaptor that is designed to implement "early increment"
438/// style loops.
439///
440/// This is *not a normal iterator* and should almost never be used directly. It
441/// is intended primarily to be used with range based for loops and some range
442/// algorithms.
443///
444/// The iterator isn't quite an `OutputIterator` or an `InputIterator` but
445/// somewhere between them. The constraints of these iterators are:
446///
447/// - On construction or after being incremented, it is comparable and
448/// dereferencable. It is *not* incrementable.
449/// - After being dereferenced, it is neither comparable nor dereferencable, it
450/// is only incrementable.
451///
452/// This means you can only dereference the iterator once, and you can only
453/// increment it once between dereferences.
454template <typename WrappedIteratorT>
455class early_inc_iterator_impl
456 : public iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
457 WrappedIteratorT, std::input_iterator_tag> {
458 using BaseT =
459 iterator_adaptor_base<early_inc_iterator_impl<WrappedIteratorT>,
460 WrappedIteratorT, std::input_iterator_tag>;
461
462 using PointerT = typename std::iterator_traits<WrappedIteratorT>::pointer;
463
464protected:
465#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
466 bool IsEarlyIncremented = false;
467#endif
468
469public:
470 early_inc_iterator_impl(WrappedIteratorT I) : BaseT(I) {}
471
472 using BaseT::operator*;
473 typename BaseT::reference operator*() {
474#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
475 assert(!IsEarlyIncremented && "Cannot dereference twice!")((!IsEarlyIncremented && "Cannot dereference twice!")
? static_cast<void> (0) : __assert_fail ("!IsEarlyIncremented && \"Cannot dereference twice!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 475, __PRETTY_FUNCTION__))
;
476 IsEarlyIncremented = true;
477#endif
478 return *(this->I)++;
479 }
480
481 using BaseT::operator++;
482 early_inc_iterator_impl &operator++() {
483#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
484 assert(IsEarlyIncremented && "Cannot increment before dereferencing!")((IsEarlyIncremented && "Cannot increment before dereferencing!"
) ? static_cast<void> (0) : __assert_fail ("IsEarlyIncremented && \"Cannot increment before dereferencing!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 484, __PRETTY_FUNCTION__))
;
485 IsEarlyIncremented = false;
486#endif
487 return *this;
488 }
489
490 using BaseT::operator==;
491 bool operator==(const early_inc_iterator_impl &RHS) const {
492#if LLVM_ENABLE_ABI_BREAKING_CHECKS1
493 assert(!IsEarlyIncremented && "Cannot compare after dereferencing!")((!IsEarlyIncremented && "Cannot compare after dereferencing!"
) ? static_cast<void> (0) : __assert_fail ("!IsEarlyIncremented && \"Cannot compare after dereferencing!\""
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 493, __PRETTY_FUNCTION__))
;
494#endif
495 return BaseT::operator==(RHS);
496 }
497};
498
499/// Make a range that does early increment to allow mutation of the underlying
500/// range without disrupting iteration.
501///
502/// The underlying iterator will be incremented immediately after it is
503/// dereferenced, allowing deletion of the current node or insertion of nodes to
504/// not disrupt iteration provided they do not invalidate the *next* iterator --
505/// the current iterator can be invalidated.
506///
507/// This requires a very exact pattern of use that is only really suitable to
508/// range based for loops and other range algorithms that explicitly guarantee
509/// to dereference exactly once each element, and to increment exactly once each
510/// element.
511template <typename RangeT>
512iterator_range<early_inc_iterator_impl<detail::IterOfRange<RangeT>>>
513make_early_inc_range(RangeT &&Range) {
514 using EarlyIncIteratorT =
515 early_inc_iterator_impl<detail::IterOfRange<RangeT>>;
516 return make_range(EarlyIncIteratorT(std::begin(std::forward<RangeT>(Range))),
517 EarlyIncIteratorT(std::end(std::forward<RangeT>(Range))));
518}
519
520// forward declarations required by zip_shortest/zip_first/zip_longest
521template <typename R, typename UnaryPredicate>
522bool all_of(R &&range, UnaryPredicate P);
523template <typename R, typename UnaryPredicate>
524bool any_of(R &&range, UnaryPredicate P);
525
526template <size_t... I> struct index_sequence;
527
528template <class... Ts> struct index_sequence_for;
529
530namespace detail {
531
532using std::declval;
533
534// We have to alias this since inlining the actual type at the usage site
535// in the parameter list of iterator_facade_base<> below ICEs MSVC 2017.
536template<typename... Iters> struct ZipTupleType {
537 using type = std::tuple<decltype(*declval<Iters>())...>;
538};
539
540template <typename ZipType, typename... Iters>
541using zip_traits = iterator_facade_base<
542 ZipType, typename std::common_type<std::bidirectional_iterator_tag,
543 typename std::iterator_traits<
544 Iters>::iterator_category...>::type,
545 // ^ TODO: Implement random access methods.
546 typename ZipTupleType<Iters...>::type,
547 typename std::iterator_traits<typename std::tuple_element<
548 0, std::tuple<Iters...>>::type>::difference_type,
549 // ^ FIXME: This follows boost::make_zip_iterator's assumption that all
550 // inner iterators have the same difference_type. It would fail if, for
551 // instance, the second field's difference_type were non-numeric while the
552 // first is.
553 typename ZipTupleType<Iters...>::type *,
554 typename ZipTupleType<Iters...>::type>;
555
556template <typename ZipType, typename... Iters>
557struct zip_common : public zip_traits<ZipType, Iters...> {
558 using Base = zip_traits<ZipType, Iters...>;
559 using value_type = typename Base::value_type;
560
561 std::tuple<Iters...> iterators;
562
563protected:
564 template <size_t... Ns> value_type deref(index_sequence<Ns...>) const {
565 return value_type(*std::get<Ns>(iterators)...);
566 }
567
568 template <size_t... Ns>
569 decltype(iterators) tup_inc(index_sequence<Ns...>) const {
570 return std::tuple<Iters...>(std::next(std::get<Ns>(iterators))...);
571 }
572
573 template <size_t... Ns>
574 decltype(iterators) tup_dec(index_sequence<Ns...>) const {
575 return std::tuple<Iters...>(std::prev(std::get<Ns>(iterators))...);
576 }
577
578public:
579 zip_common(Iters &&... ts) : iterators(std::forward<Iters>(ts)...) {}
580
581 value_type operator*() { return deref(index_sequence_for<Iters...>{}); }
582
583 const value_type operator*() const {
584 return deref(index_sequence_for<Iters...>{});
585 }
586
587 ZipType &operator++() {
588 iterators = tup_inc(index_sequence_for<Iters...>{});
589 return *reinterpret_cast<ZipType *>(this);
590 }
591
592 ZipType &operator--() {
593 static_assert(Base::IsBidirectional,
594 "All inner iterators must be at least bidirectional.");
595 iterators = tup_dec(index_sequence_for<Iters...>{});
596 return *reinterpret_cast<ZipType *>(this);
597 }
598};
599
600template <typename... Iters>
601struct zip_first : public zip_common<zip_first<Iters...>, Iters...> {
602 using Base = zip_common<zip_first<Iters...>, Iters...>;
603
604 bool operator==(const zip_first<Iters...> &other) const {
605 return std::get<0>(this->iterators) == std::get<0>(other.iterators);
606 }
607
608 zip_first(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
609};
610
611template <typename... Iters>
612class zip_shortest : public zip_common<zip_shortest<Iters...>, Iters...> {
613 template <size_t... Ns>
614 bool test(const zip_shortest<Iters...> &other, index_sequence<Ns...>) const {
615 return all_of(std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
616 std::get<Ns>(other.iterators)...},
617 identity<bool>{});
618 }
619
620public:
621 using Base = zip_common<zip_shortest<Iters...>, Iters...>;
622
623 zip_shortest(Iters &&... ts) : Base(std::forward<Iters>(ts)...) {}
624
625 bool operator==(const zip_shortest<Iters...> &other) const {
626 return !test(other, index_sequence_for<Iters...>{});
627 }
628};
629
630template <template <typename...> class ItType, typename... Args> class zippy {
631public:
632 using iterator = ItType<decltype(std::begin(std::declval<Args>()))...>;
633 using iterator_category = typename iterator::iterator_category;
634 using value_type = typename iterator::value_type;
635 using difference_type = typename iterator::difference_type;
636 using pointer = typename iterator::pointer;
637 using reference = typename iterator::reference;
638
639private:
640 std::tuple<Args...> ts;
641
642 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const {
643 return iterator(std::begin(std::get<Ns>(ts))...);
644 }
645 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const {
646 return iterator(std::end(std::get<Ns>(ts))...);
647 }
648
649public:
650 zippy(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
651
652 iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); }
653 iterator end() const { return end_impl(index_sequence_for<Args...>{}); }
654};
655
656} // end namespace detail
657
658/// zip iterator for two or more iteratable types.
659template <typename T, typename U, typename... Args>
660detail::zippy<detail::zip_shortest, T, U, Args...> zip(T &&t, U &&u,
661 Args &&... args) {
662 return detail::zippy<detail::zip_shortest, T, U, Args...>(
663 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
664}
665
666/// zip iterator that, for the sake of efficiency, assumes the first iteratee to
667/// be the shortest.
668template <typename T, typename U, typename... Args>
669detail::zippy<detail::zip_first, T, U, Args...> zip_first(T &&t, U &&u,
670 Args &&... args) {
671 return detail::zippy<detail::zip_first, T, U, Args...>(
672 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
673}
674
675namespace detail {
676template <typename Iter>
677static Iter next_or_end(const Iter &I, const Iter &End) {
678 if (I == End)
679 return End;
680 return std::next(I);
681}
682
683template <typename Iter>
684static auto deref_or_none(const Iter &I, const Iter &End)
685 -> llvm::Optional<typename std::remove_const<
686 typename std::remove_reference<decltype(*I)>::type>::type> {
687 if (I == End)
688 return None;
689 return *I;
690}
691
692template <typename Iter> struct ZipLongestItemType {
693 using type =
694 llvm::Optional<typename std::remove_const<typename std::remove_reference<
695 decltype(*std::declval<Iter>())>::type>::type>;
696};
697
698template <typename... Iters> struct ZipLongestTupleType {
699 using type = std::tuple<typename ZipLongestItemType<Iters>::type...>;
700};
701
702template <typename... Iters>
703class zip_longest_iterator
704 : public iterator_facade_base<
705 zip_longest_iterator<Iters...>,
706 typename std::common_type<
707 std::forward_iterator_tag,
708 typename std::iterator_traits<Iters>::iterator_category...>::type,
709 typename ZipLongestTupleType<Iters...>::type,
710 typename std::iterator_traits<typename std::tuple_element<
711 0, std::tuple<Iters...>>::type>::difference_type,
712 typename ZipLongestTupleType<Iters...>::type *,
713 typename ZipLongestTupleType<Iters...>::type> {
714public:
715 using value_type = typename ZipLongestTupleType<Iters...>::type;
716
717private:
718 std::tuple<Iters...> iterators;
719 std::tuple<Iters...> end_iterators;
720
721 template <size_t... Ns>
722 bool test(const zip_longest_iterator<Iters...> &other,
723 index_sequence<Ns...>) const {
724 return llvm::any_of(
725 std::initializer_list<bool>{std::get<Ns>(this->iterators) !=
726 std::get<Ns>(other.iterators)...},
727 identity<bool>{});
728 }
729
730 template <size_t... Ns> value_type deref(index_sequence<Ns...>) const {
731 return value_type(
732 deref_or_none(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
733 }
734
735 template <size_t... Ns>
736 decltype(iterators) tup_inc(index_sequence<Ns...>) const {
737 return std::tuple<Iters...>(
738 next_or_end(std::get<Ns>(iterators), std::get<Ns>(end_iterators))...);
739 }
740
741public:
742 zip_longest_iterator(std::pair<Iters &&, Iters &&>... ts)
743 : iterators(std::forward<Iters>(ts.first)...),
744 end_iterators(std::forward<Iters>(ts.second)...) {}
745
746 value_type operator*() { return deref(index_sequence_for<Iters...>{}); }
747
748 value_type operator*() const { return deref(index_sequence_for<Iters...>{}); }
749
750 zip_longest_iterator<Iters...> &operator++() {
751 iterators = tup_inc(index_sequence_for<Iters...>{});
752 return *this;
753 }
754
755 bool operator==(const zip_longest_iterator<Iters...> &other) const {
756 return !test(other, index_sequence_for<Iters...>{});
757 }
758};
759
760template <typename... Args> class zip_longest_range {
761public:
762 using iterator =
763 zip_longest_iterator<decltype(adl_begin(std::declval<Args>()))...>;
764 using iterator_category = typename iterator::iterator_category;
765 using value_type = typename iterator::value_type;
766 using difference_type = typename iterator::difference_type;
767 using pointer = typename iterator::pointer;
768 using reference = typename iterator::reference;
769
770private:
771 std::tuple<Args...> ts;
772
773 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) const {
774 return iterator(std::make_pair(adl_begin(std::get<Ns>(ts)),
775 adl_end(std::get<Ns>(ts)))...);
776 }
777
778 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) const {
779 return iterator(std::make_pair(adl_end(std::get<Ns>(ts)),
780 adl_end(std::get<Ns>(ts)))...);
781 }
782
783public:
784 zip_longest_range(Args &&... ts_) : ts(std::forward<Args>(ts_)...) {}
785
786 iterator begin() const { return begin_impl(index_sequence_for<Args...>{}); }
787 iterator end() const { return end_impl(index_sequence_for<Args...>{}); }
788};
789} // namespace detail
790
791/// Iterate over two or more iterators at the same time. Iteration continues
792/// until all iterators reach the end. The llvm::Optional only contains a value
793/// if the iterator has not reached the end.
794template <typename T, typename U, typename... Args>
795detail::zip_longest_range<T, U, Args...> zip_longest(T &&t, U &&u,
796 Args &&... args) {
797 return detail::zip_longest_range<T, U, Args...>(
798 std::forward<T>(t), std::forward<U>(u), std::forward<Args>(args)...);
799}
800
801/// Iterator wrapper that concatenates sequences together.
802///
803/// This can concatenate different iterators, even with different types, into
804/// a single iterator provided the value types of all the concatenated
805/// iterators expose `reference` and `pointer` types that can be converted to
806/// `ValueT &` and `ValueT *` respectively. It doesn't support more
807/// interesting/customized pointer or reference types.
808///
809/// Currently this only supports forward or higher iterator categories as
810/// inputs and always exposes a forward iterator interface.
811template <typename ValueT, typename... IterTs>
812class concat_iterator
813 : public iterator_facade_base<concat_iterator<ValueT, IterTs...>,
814 std::forward_iterator_tag, ValueT> {
815 using BaseT = typename concat_iterator::iterator_facade_base;
816
817 /// We store both the current and end iterators for each concatenated
818 /// sequence in a tuple of pairs.
819 ///
820 /// Note that something like iterator_range seems nice at first here, but the
821 /// range properties are of little benefit and end up getting in the way
822 /// because we need to do mutation on the current iterators.
823 std::tuple<IterTs...> Begins;
824 std::tuple<IterTs...> Ends;
825
826 /// Attempts to increment a specific iterator.
827 ///
828 /// Returns true if it was able to increment the iterator. Returns false if
829 /// the iterator is already at the end iterator.
830 template <size_t Index> bool incrementHelper() {
831 auto &Begin = std::get<Index>(Begins);
832 auto &End = std::get<Index>(Ends);
833 if (Begin == End)
834 return false;
835
836 ++Begin;
837 return true;
838 }
839
840 /// Increments the first non-end iterator.
841 ///
842 /// It is an error to call this with all iterators at the end.
843 template <size_t... Ns> void increment(index_sequence<Ns...>) {
844 // Build a sequence of functions to increment each iterator if possible.
845 bool (concat_iterator::*IncrementHelperFns[])() = {
846 &concat_iterator::incrementHelper<Ns>...};
847
848 // Loop over them, and stop as soon as we succeed at incrementing one.
849 for (auto &IncrementHelperFn : IncrementHelperFns)
850 if ((this->*IncrementHelperFn)())
851 return;
852
853 llvm_unreachable("Attempted to increment an end concat iterator!")::llvm::llvm_unreachable_internal("Attempted to increment an end concat iterator!"
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 853)
;
854 }
855
856 /// Returns null if the specified iterator is at the end. Otherwise,
857 /// dereferences the iterator and returns the address of the resulting
858 /// reference.
859 template <size_t Index> ValueT *getHelper() const {
860 auto &Begin = std::get<Index>(Begins);
861 auto &End = std::get<Index>(Ends);
862 if (Begin == End)
863 return nullptr;
864
865 return &*Begin;
866 }
867
868 /// Finds the first non-end iterator, dereferences, and returns the resulting
869 /// reference.
870 ///
871 /// It is an error to call this with all iterators at the end.
872 template <size_t... Ns> ValueT &get(index_sequence<Ns...>) const {
873 // Build a sequence of functions to get from iterator if possible.
874 ValueT *(concat_iterator::*GetHelperFns[])() const = {
875 &concat_iterator::getHelper<Ns>...};
876
877 // Loop over them, and return the first result we find.
878 for (auto &GetHelperFn : GetHelperFns)
879 if (ValueT *P = (this->*GetHelperFn)())
880 return *P;
881
882 llvm_unreachable("Attempted to get a pointer from an end concat iterator!")::llvm::llvm_unreachable_internal("Attempted to get a pointer from an end concat iterator!"
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 882)
;
883 }
884
885public:
886 /// Constructs an iterator from a squence of ranges.
887 ///
888 /// We need the full range to know how to switch between each of the
889 /// iterators.
890 template <typename... RangeTs>
891 explicit concat_iterator(RangeTs &&... Ranges)
892 : Begins(std::begin(Ranges)...), Ends(std::end(Ranges)...) {}
893
894 using BaseT::operator++;
895
896 concat_iterator &operator++() {
897 increment(index_sequence_for<IterTs...>());
898 return *this;
899 }
900
901 ValueT &operator*() const { return get(index_sequence_for<IterTs...>()); }
902
903 bool operator==(const concat_iterator &RHS) const {
904 return Begins == RHS.Begins && Ends == RHS.Ends;
905 }
906};
907
908namespace detail {
909
910/// Helper to store a sequence of ranges being concatenated and access them.
911///
912/// This is designed to facilitate providing actual storage when temporaries
913/// are passed into the constructor such that we can use it as part of range
914/// based for loops.
915template <typename ValueT, typename... RangeTs> class concat_range {
916public:
917 using iterator =
918 concat_iterator<ValueT,
919 decltype(std::begin(std::declval<RangeTs &>()))...>;
920
921private:
922 std::tuple<RangeTs...> Ranges;
923
924 template <size_t... Ns> iterator begin_impl(index_sequence<Ns...>) {
925 return iterator(std::get<Ns>(Ranges)...);
926 }
927 template <size_t... Ns> iterator end_impl(index_sequence<Ns...>) {
928 return iterator(make_range(std::end(std::get<Ns>(Ranges)),
929 std::end(std::get<Ns>(Ranges)))...);
930 }
931
932public:
933 concat_range(RangeTs &&... Ranges)
934 : Ranges(std::forward<RangeTs>(Ranges)...) {}
935
936 iterator begin() { return begin_impl(index_sequence_for<RangeTs...>{}); }
937 iterator end() { return end_impl(index_sequence_for<RangeTs...>{}); }
938};
939
940} // end namespace detail
941
942/// Concatenated range across two or more ranges.
943///
944/// The desired value type must be explicitly specified.
945template <typename ValueT, typename... RangeTs>
946detail::concat_range<ValueT, RangeTs...> concat(RangeTs &&... Ranges) {
947 static_assert(sizeof...(RangeTs) > 1,
948 "Need more than one range to concatenate!");
949 return detail::concat_range<ValueT, RangeTs...>(
950 std::forward<RangeTs>(Ranges)...);
951}
952
953//===----------------------------------------------------------------------===//
954// Extra additions to <utility>
955//===----------------------------------------------------------------------===//
956
957/// Function object to check whether the first component of a std::pair
958/// compares less than the first component of another std::pair.
959struct less_first {
960 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
961 return lhs.first < rhs.first;
962 }
963};
964
965/// Function object to check whether the second component of a std::pair
966/// compares less than the second component of another std::pair.
967struct less_second {
968 template <typename T> bool operator()(const T &lhs, const T &rhs) const {
969 return lhs.second < rhs.second;
970 }
971};
972
973/// \brief Function object to apply a binary function to the first component of
974/// a std::pair.
975template<typename FuncTy>
976struct on_first {
977 FuncTy func;
978
979 template <typename T>
980 auto operator()(const T &lhs, const T &rhs) const
981 -> decltype(func(lhs.first, rhs.first)) {
982 return func(lhs.first, rhs.first);
983 }
984};
985
986// A subset of N3658. More stuff can be added as-needed.
987
988/// Represents a compile-time sequence of integers.
989template <class T, T... I> struct integer_sequence {
990 using value_type = T;
991
992 static constexpr size_t size() { return sizeof...(I); }
993};
994
995/// Alias for the common case of a sequence of size_ts.
996template <size_t... I>
997struct index_sequence : integer_sequence<std::size_t, I...> {};
998
999template <std::size_t N, std::size_t... I>
1000struct build_index_impl : build_index_impl<N - 1, N - 1, I...> {};
1001template <std::size_t... I>
1002struct build_index_impl<0, I...> : index_sequence<I...> {};
1003
1004/// Creates a compile-time integer sequence for a parameter pack.
1005template <class... Ts>
1006struct index_sequence_for : build_index_impl<sizeof...(Ts)> {};
1007
1008/// Utility type to build an inheritance chain that makes it easy to rank
1009/// overload candidates.
1010template <int N> struct rank : rank<N - 1> {};
1011template <> struct rank<0> {};
1012
1013/// traits class for checking whether type T is one of any of the given
1014/// types in the variadic list.
1015template <typename T, typename... Ts> struct is_one_of {
1016 static const bool value = false;
1017};
1018
1019template <typename T, typename U, typename... Ts>
1020struct is_one_of<T, U, Ts...> {
1021 static const bool value =
1022 std::is_same<T, U>::value || is_one_of<T, Ts...>::value;
1023};
1024
1025/// traits class for checking whether type T is a base class for all
1026/// the given types in the variadic list.
1027template <typename T, typename... Ts> struct are_base_of {
1028 static const bool value = true;
1029};
1030
1031template <typename T, typename U, typename... Ts>
1032struct are_base_of<T, U, Ts...> {
1033 static const bool value =
1034 std::is_base_of<T, U>::value && are_base_of<T, Ts...>::value;
1035};
1036
1037//===----------------------------------------------------------------------===//
1038// Extra additions for arrays
1039//===----------------------------------------------------------------------===//
1040
1041/// Find the length of an array.
1042template <class T, std::size_t N>
1043constexpr inline size_t array_lengthof(T (&)[N]) {
1044 return N;
1045}
1046
1047/// Adapt std::less<T> for array_pod_sort.
1048template<typename T>
1049inline int array_pod_sort_comparator(const void *P1, const void *P2) {
1050 if (std::less<T>()(*reinterpret_cast<const T*>(P1),
1051 *reinterpret_cast<const T*>(P2)))
1052 return -1;
1053 if (std::less<T>()(*reinterpret_cast<const T*>(P2),
1054 *reinterpret_cast<const T*>(P1)))
1055 return 1;
1056 return 0;
1057}
1058
1059/// get_array_pod_sort_comparator - This is an internal helper function used to
1060/// get type deduction of T right.
1061template<typename T>
1062inline int (*get_array_pod_sort_comparator(const T &))
1063 (const void*, const void*) {
1064 return array_pod_sort_comparator<T>;
1065}
1066
1067/// array_pod_sort - This sorts an array with the specified start and end
1068/// extent. This is just like std::sort, except that it calls qsort instead of
1069/// using an inlined template. qsort is slightly slower than std::sort, but
1070/// most sorts are not performance critical in LLVM and std::sort has to be
1071/// template instantiated for each type, leading to significant measured code
1072/// bloat. This function should generally be used instead of std::sort where
1073/// possible.
1074///
1075/// This function assumes that you have simple POD-like types that can be
1076/// compared with std::less and can be moved with memcpy. If this isn't true,
1077/// you should use std::sort.
1078///
1079/// NOTE: If qsort_r were portable, we could allow a custom comparator and
1080/// default to std::less.
1081template<class IteratorTy>
1082inline void array_pod_sort(IteratorTy Start, IteratorTy End) {
1083 // Don't inefficiently call qsort with one element or trigger undefined
1084 // behavior with an empty sequence.
1085 auto NElts = End - Start;
1086 if (NElts <= 1) return;
1087#ifdef EXPENSIVE_CHECKS
1088 std::mt19937 Generator(std::random_device{}());
1089 std::shuffle(Start, End, Generator);
1090#endif
1091 qsort(&*Start, NElts, sizeof(*Start), get_array_pod_sort_comparator(*Start));
1092}
1093
1094template <class IteratorTy>
1095inline void array_pod_sort(
1096 IteratorTy Start, IteratorTy End,
1097 int (*Compare)(
1098 const typename std::iterator_traits<IteratorTy>::value_type *,
1099 const typename std::iterator_traits<IteratorTy>::value_type *)) {
1100 // Don't inefficiently call qsort with one element or trigger undefined
1101 // behavior with an empty sequence.
1102 auto NElts = End - Start;
1103 if (NElts <= 1) return;
1104#ifdef EXPENSIVE_CHECKS
1105 std::mt19937 Generator(std::random_device{}());
1106 std::shuffle(Start, End, Generator);
1107#endif
1108 qsort(&*Start, NElts, sizeof(*Start),
1109 reinterpret_cast<int (*)(const void *, const void *)>(Compare));
1110}
1111
1112// Provide wrappers to std::sort which shuffle the elements before sorting
1113// to help uncover non-deterministic behavior (PR35135).
1114template <typename IteratorTy>
1115inline void sort(IteratorTy Start, IteratorTy End) {
1116#ifdef EXPENSIVE_CHECKS
1117 std::mt19937 Generator(std::random_device{}());
1118 std::shuffle(Start, End, Generator);
1119#endif
1120 std::sort(Start, End);
1121}
1122
1123template <typename Container> inline void sort(Container &&C) {
1124 llvm::sort(adl_begin(C), adl_end(C));
1125}
1126
1127template <typename IteratorTy, typename Compare>
1128inline void sort(IteratorTy Start, IteratorTy End, Compare Comp) {
1129#ifdef EXPENSIVE_CHECKS
1130 std::mt19937 Generator(std::random_device{}());
1131 std::shuffle(Start, End, Generator);
1132#endif
1133 std::sort(Start, End, Comp);
1134}
1135
1136template <typename Container, typename Compare>
1137inline void sort(Container &&C, Compare Comp) {
1138 llvm::sort(adl_begin(C), adl_end(C), Comp);
1139}
1140
1141//===----------------------------------------------------------------------===//
1142// Extra additions to <algorithm>
1143//===----------------------------------------------------------------------===//
1144
1145/// For a container of pointers, deletes the pointers and then clears the
1146/// container.
1147template<typename Container>
1148void DeleteContainerPointers(Container &C) {
1149 for (auto V : C)
1150 delete V;
1151 C.clear();
1152}
1153
1154/// In a container of pairs (usually a map) whose second element is a pointer,
1155/// deletes the second elements and then clears the container.
1156template<typename Container>
1157void DeleteContainerSeconds(Container &C) {
1158 for (auto &V : C)
1159 delete V.second;
1160 C.clear();
1161}
1162
1163/// Get the size of a range. This is a wrapper function around std::distance
1164/// which is only enabled when the operation is O(1).
1165template <typename R>
1166auto size(R &&Range, typename std::enable_if<
1167 std::is_same<typename std::iterator_traits<decltype(
1168 Range.begin())>::iterator_category,
1169 std::random_access_iterator_tag>::value,
1170 void>::type * = nullptr)
1171 -> decltype(std::distance(Range.begin(), Range.end())) {
1172 return std::distance(Range.begin(), Range.end());
1173}
1174
1175/// Provide wrappers to std::for_each which take ranges instead of having to
1176/// pass begin/end explicitly.
1177template <typename R, typename UnaryPredicate>
1178UnaryPredicate for_each(R &&Range, UnaryPredicate P) {
1179 return std::for_each(adl_begin(Range), adl_end(Range), P);
1180}
1181
1182/// Provide wrappers to std::all_of which take ranges instead of having to pass
1183/// begin/end explicitly.
1184template <typename R, typename UnaryPredicate>
1185bool all_of(R &&Range, UnaryPredicate P) {
1186 return std::all_of(adl_begin(Range), adl_end(Range), P);
1187}
1188
1189/// Provide wrappers to std::any_of which take ranges instead of having to pass
1190/// begin/end explicitly.
1191template <typename R, typename UnaryPredicate>
1192bool any_of(R &&Range, UnaryPredicate P) {
1193 return std::any_of(adl_begin(Range), adl_end(Range), P);
1194}
1195
1196/// Provide wrappers to std::none_of which take ranges instead of having to pass
1197/// begin/end explicitly.
1198template <typename R, typename UnaryPredicate>
1199bool none_of(R &&Range, UnaryPredicate P) {
1200 return std::none_of(adl_begin(Range), adl_end(Range), P);
1201}
1202
1203/// Provide wrappers to std::find which take ranges instead of having to pass
1204/// begin/end explicitly.
1205template <typename R, typename T>
1206auto find(R &&Range, const T &Val) -> decltype(adl_begin(Range)) {
1207 return std::find(adl_begin(Range), adl_end(Range), Val);
1208}
1209
1210/// Provide wrappers to std::find_if which take ranges instead of having to pass
1211/// begin/end explicitly.
1212template <typename R, typename UnaryPredicate>
1213auto find_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1214 return std::find_if(adl_begin(Range), adl_end(Range), P);
1215}
1216
1217template <typename R, typename UnaryPredicate>
1218auto find_if_not(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1219 return std::find_if_not(adl_begin(Range), adl_end(Range), P);
1220}
1221
1222/// Provide wrappers to std::remove_if which take ranges instead of having to
1223/// pass begin/end explicitly.
1224template <typename R, typename UnaryPredicate>
1225auto remove_if(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1226 return std::remove_if(adl_begin(Range), adl_end(Range), P);
1227}
1228
1229/// Provide wrappers to std::copy_if which take ranges instead of having to
1230/// pass begin/end explicitly.
1231template <typename R, typename OutputIt, typename UnaryPredicate>
1232OutputIt copy_if(R &&Range, OutputIt Out, UnaryPredicate P) {
1233 return std::copy_if(adl_begin(Range), adl_end(Range), Out, P);
1234}
1235
1236template <typename R, typename OutputIt>
1237OutputIt copy(R &&Range, OutputIt Out) {
1238 return std::copy(adl_begin(Range), adl_end(Range), Out);
1239}
1240
1241/// Wrapper function around std::find to detect if an element exists
1242/// in a container.
1243template <typename R, typename E>
1244bool is_contained(R &&Range, const E &Element) {
1245 return std::find(adl_begin(Range), adl_end(Range), Element) != adl_end(Range);
1246}
1247
1248/// Wrapper function around std::count to count the number of times an element
1249/// \p Element occurs in the given range \p Range.
1250template <typename R, typename E>
1251auto count(R &&Range, const E &Element) ->
1252 typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
1253 return std::count(adl_begin(Range), adl_end(Range), Element);
1254}
1255
1256/// Wrapper function around std::count_if to count the number of times an
1257/// element satisfying a given predicate occurs in a range.
1258template <typename R, typename UnaryPredicate>
1259auto count_if(R &&Range, UnaryPredicate P) ->
1260 typename std::iterator_traits<decltype(adl_begin(Range))>::difference_type {
1261 return std::count_if(adl_begin(Range), adl_end(Range), P);
1262}
1263
1264/// Wrapper function around std::transform to apply a function to a range and
1265/// store the result elsewhere.
1266template <typename R, typename OutputIt, typename UnaryPredicate>
1267OutputIt transform(R &&Range, OutputIt d_first, UnaryPredicate P) {
1268 return std::transform(adl_begin(Range), adl_end(Range), d_first, P);
1269}
1270
1271/// Provide wrappers to std::partition which take ranges instead of having to
1272/// pass begin/end explicitly.
1273template <typename R, typename UnaryPredicate>
1274auto partition(R &&Range, UnaryPredicate P) -> decltype(adl_begin(Range)) {
1275 return std::partition(adl_begin(Range), adl_end(Range), P);
1276}
1277
1278/// Provide wrappers to std::lower_bound which take ranges instead of having to
1279/// pass begin/end explicitly.
1280template <typename R, typename T>
1281auto lower_bound(R &&Range, T &&Value) -> decltype(adl_begin(Range)) {
1282 return std::lower_bound(adl_begin(Range), adl_end(Range),
1283 std::forward<T>(Value));
1284}
1285
1286template <typename R, typename T, typename Compare>
1287auto lower_bound(R &&Range, T &&Value, Compare C)
1288 -> decltype(adl_begin(Range)) {
1289 return std::lower_bound(adl_begin(Range), adl_end(Range),
1290 std::forward<T>(Value), C);
1291}
1292
1293/// Provide wrappers to std::upper_bound which take ranges instead of having to
1294/// pass begin/end explicitly.
1295template <typename R, typename T>
1296auto upper_bound(R &&Range, T &&Value) -> decltype(adl_begin(Range)) {
1297 return std::upper_bound(adl_begin(Range), adl_end(Range),
1298 std::forward<T>(Value));
1299}
1300
1301template <typename R, typename T, typename Compare>
1302auto upper_bound(R &&Range, T &&Value, Compare C)
1303 -> decltype(adl_begin(Range)) {
1304 return std::upper_bound(adl_begin(Range), adl_end(Range),
1305 std::forward<T>(Value), C);
1306}
1307
1308template <typename R>
1309void stable_sort(R &&Range) {
1310 std::stable_sort(adl_begin(Range), adl_end(Range));
1311}
1312
1313template <typename R, typename Compare>
1314void stable_sort(R &&Range, Compare C) {
1315 std::stable_sort(adl_begin(Range), adl_end(Range), C);
1316}
1317
1318/// Binary search for the first index where a predicate is true.
1319/// Returns the first I in [Lo, Hi) where C(I) is true, or Hi if it never is.
1320/// Requires that C is always false below some limit, and always true above it.
1321///
1322/// Example:
1323/// size_t DawnModernEra = bsearch(1776, 2050, [](size_t Year){
1324/// return Presidents.for(Year).twitterHandle() != None;
1325/// });
1326///
1327/// Note the return value differs from std::binary_search!
1328template <typename Predicate>
1329size_t bsearch(size_t Lo, size_t Hi, Predicate P) {
1330 while (Lo != Hi) {
1331 assert(Hi > Lo)((Hi > Lo) ? static_cast<void> (0) : __assert_fail (
"Hi > Lo", "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 1331, __PRETTY_FUNCTION__))
;
1332 size_t Mid = Lo + (Hi - Lo) / 2;
1333 if (P(Mid))
1334 Hi = Mid;
1335 else
1336 Lo = Mid + 1;
1337 }
1338 return Hi;
1339}
1340
1341/// Binary search for the first iterator where a predicate is true.
1342/// Returns the first I in [Lo, Hi) where C(*I) is true, or Hi if it never is.
1343/// Requires that C is always false below some limit, and always true above it.
1344template <typename It, typename Predicate,
1345 typename Val = decltype(*std::declval<It>())>
1346It bsearch(It Lo, It Hi, Predicate P) {
1347 return std::lower_bound(Lo, Hi, 0u,
1348 [&](const Val &V, unsigned) { return !P(V); });
1349}
1350
1351/// Binary search for the first iterator in a range where a predicate is true.
1352/// Requires that C is always false below some limit, and always true above it.
1353template <typename R, typename Predicate>
1354auto bsearch(R &&Range, Predicate P) -> decltype(adl_begin(Range)) {
1355 return bsearch(adl_begin(Range), adl_end(Range), P);
1356}
1357
1358/// Wrapper function around std::equal to detect if all elements
1359/// in a container are same.
1360template <typename R>
1361bool is_splat(R &&Range) {
1362 size_t range_size = size(Range);
1363 return range_size != 0 && (range_size == 1 ||
1364 std::equal(adl_begin(Range) + 1, adl_end(Range), adl_begin(Range)));
1365}
1366
1367/// Given a range of type R, iterate the entire range and return a
1368/// SmallVector with elements of the vector. This is useful, for example,
1369/// when you want to iterate a range and then sort the results.
1370template <unsigned Size, typename R>
1371SmallVector<typename std::remove_const<detail::ValueOfRange<R>>::type, Size>
1372to_vector(R &&Range) {
1373 return {adl_begin(Range), adl_end(Range)};
1374}
1375
1376/// Provide a container algorithm similar to C++ Library Fundamentals v2's
1377/// `erase_if` which is equivalent to:
1378///
1379/// C.erase(remove_if(C, pred), C.end());
1380///
1381/// This version works for any container with an erase method call accepting
1382/// two iterators.
1383template <typename Container, typename UnaryPredicate>
1384void erase_if(Container &C, UnaryPredicate P) {
1385 C.erase(remove_if(C, P), C.end());
1386}
1387
1388//===----------------------------------------------------------------------===//
1389// Extra additions to <memory>
1390//===----------------------------------------------------------------------===//
1391
1392// Implement make_unique according to N3656.
1393
1394/// Constructs a `new T()` with the given args and returns a
1395/// `unique_ptr<T>` which owns the object.
1396///
1397/// Example:
1398///
1399/// auto p = make_unique<int>();
1400/// auto p = make_unique<std::tuple<int, int>>(0, 1);
1401template <class T, class... Args>
1402typename std::enable_if<!std::is_array<T>::value, std::unique_ptr<T>>::type
1403make_unique(Args &&... args) {
1404 return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
17
Memory is allocated
1405}
1406
1407/// Constructs a `new T[n]` with the given args and returns a
1408/// `unique_ptr<T[]>` which owns the object.
1409///
1410/// \param n size of the new array.
1411///
1412/// Example:
1413///
1414/// auto p = make_unique<int[]>(2); // value-initializes the array with 0's.
1415template <class T>
1416typename std::enable_if<std::is_array<T>::value && std::extent<T>::value == 0,
1417 std::unique_ptr<T>>::type
1418make_unique(size_t n) {
1419 return std::unique_ptr<T>(new typename std::remove_extent<T>::type[n]());
1420}
1421
1422/// This function isn't used and is only here to provide better compile errors.
1423template <class T, class... Args>
1424typename std::enable_if<std::extent<T>::value != 0>::type
1425make_unique(Args &&...) = delete;
1426
1427struct FreeDeleter {
1428 void operator()(void* v) {
1429 ::free(v);
1430 }
1431};
1432
1433template<typename First, typename Second>
1434struct pair_hash {
1435 size_t operator()(const std::pair<First, Second> &P) const {
1436 return std::hash<First>()(P.first) * 31 + std::hash<Second>()(P.second);
1437 }
1438};
1439
1440/// A functor like C++14's std::less<void> in its absence.
1441struct less {
1442 template <typename A, typename B> bool operator()(A &&a, B &&b) const {
1443 return std::forward<A>(a) < std::forward<B>(b);
1444 }
1445};
1446
1447/// A functor like C++14's std::equal<void> in its absence.
1448struct equal {
1449 template <typename A, typename B> bool operator()(A &&a, B &&b) const {
1450 return std::forward<A>(a) == std::forward<B>(b);
1451 }
1452};
1453
1454/// Binary functor that adapts to any other binary functor after dereferencing
1455/// operands.
1456template <typename T> struct deref {
1457 T func;
1458
1459 // Could be further improved to cope with non-derivable functors and
1460 // non-binary functors (should be a variadic template member function
1461 // operator()).
1462 template <typename A, typename B>
1463 auto operator()(A &lhs, B &rhs) const -> decltype(func(*lhs, *rhs)) {
1464 assert(lhs)((lhs) ? static_cast<void> (0) : __assert_fail ("lhs", "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 1464, __PRETTY_FUNCTION__))
;
1465 assert(rhs)((rhs) ? static_cast<void> (0) : __assert_fail ("rhs", "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 1465, __PRETTY_FUNCTION__))
;
1466 return func(*lhs, *rhs);
1467 }
1468};
1469
1470namespace detail {
1471
1472template <typename R> class enumerator_iter;
1473
1474template <typename R> struct result_pair {
1475 friend class enumerator_iter<R>;
1476
1477 result_pair() = default;
1478 result_pair(std::size_t Index, IterOfRange<R> Iter)
1479 : Index(Index), Iter(Iter) {}
1480
1481 result_pair<R> &operator=(const result_pair<R> &Other) {
1482 Index = Other.Index;
1483 Iter = Other.Iter;
1484 return *this;
1485 }
1486
1487 std::size_t index() const { return Index; }
1488 const ValueOfRange<R> &value() const { return *Iter; }
1489 ValueOfRange<R> &value() { return *Iter; }
1490
1491private:
1492 std::size_t Index = std::numeric_limits<std::size_t>::max();
1493 IterOfRange<R> Iter;
1494};
1495
1496template <typename R>
1497class enumerator_iter
1498 : public iterator_facade_base<
1499 enumerator_iter<R>, std::forward_iterator_tag, result_pair<R>,
1500 typename std::iterator_traits<IterOfRange<R>>::difference_type,
1501 typename std::iterator_traits<IterOfRange<R>>::pointer,
1502 typename std::iterator_traits<IterOfRange<R>>::reference> {
1503 using result_type = result_pair<R>;
1504
1505public:
1506 explicit enumerator_iter(IterOfRange<R> EndIter)
1507 : Result(std::numeric_limits<size_t>::max(), EndIter) {}
1508
1509 enumerator_iter(std::size_t Index, IterOfRange<R> Iter)
1510 : Result(Index, Iter) {}
1511
1512 result_type &operator*() { return Result; }
1513 const result_type &operator*() const { return Result; }
1514
1515 enumerator_iter<R> &operator++() {
1516 assert(Result.Index != std::numeric_limits<size_t>::max())((Result.Index != std::numeric_limits<size_t>::max()) ?
static_cast<void> (0) : __assert_fail ("Result.Index != std::numeric_limits<size_t>::max()"
, "/build/llvm-toolchain-snapshot-9~svn362543/include/llvm/ADT/STLExtras.h"
, 1516, __PRETTY_FUNCTION__))
;
1517 ++Result.Iter;
1518 ++Result.Index;
1519 return *this;
1520 }
1521
1522 bool operator==(const enumerator_iter<R> &RHS) const {
1523 // Don't compare indices here, only iterators. It's possible for an end
1524 // iterator to have different indices depending on whether it was created
1525 // by calling std::end() versus incrementing a valid iterator.
1526 return Result.Iter == RHS.Result.Iter;
1527 }
1528
1529 enumerator_iter<R> &operator=(const enumerator_iter<R> &Other) {
1530 Result = Other.Result;
1531 return *this;
1532 }
1533
1534private:
1535 result_type Result;
1536};
1537
1538template <typename R> class enumerator {
1539public:
1540 explicit enumerator(R &&Range) : TheRange(std::forward<R>(Range)) {}
1541
1542 enumerator_iter<R> begin() {
1543 return enumerator_iter<R>(0, std::begin(TheRange));
1544 }
1545
1546 enumerator_iter<R> end() {
1547 return enumerator_iter<R>(std::end(TheRange));
1548 }
1549
1550private:
1551 R TheRange;
1552};
1553
1554} // end namespace detail
1555
1556/// Given an input range, returns a new range whose values are are pair (A,B)
1557/// such that A is the 0-based index of the item in the sequence, and B is
1558/// the value from the original sequence. Example:
1559///
1560/// std::vector<char> Items = {'A', 'B', 'C', 'D'};
1561/// for (auto X : enumerate(Items)) {
1562/// printf("Item %d - %c\n", X.index(), X.value());
1563/// }
1564///
1565/// Output:
1566/// Item 0 - A
1567/// Item 1 - B
1568/// Item 2 - C
1569/// Item 3 - D
1570///
1571template <typename R> detail::enumerator<R> enumerate(R &&TheRange) {
1572 return detail::enumerator<R>(std::forward<R>(TheRange));
1573}
1574
1575namespace detail {
1576
1577template <typename F, typename Tuple, std::size_t... I>
1578auto apply_tuple_impl(F &&f, Tuple &&t, index_sequence<I...>)
1579 -> decltype(std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...)) {
1580 return std::forward<F>(f)(std::get<I>(std::forward<Tuple>(t))...);
1581}
1582
1583} // end namespace detail
1584
1585/// Given an input tuple (a1, a2, ..., an), pass the arguments of the
1586/// tuple variadically to f as if by calling f(a1, a2, ..., an) and
1587/// return the result.
1588template <typename F, typename Tuple>
1589auto apply_tuple(F &&f, Tuple &&t) -> decltype(detail::apply_tuple_impl(
1590 std::forward<F>(f), std::forward<Tuple>(t),
1591 build_index_impl<
1592 std::tuple_size<typename std::decay<Tuple>::type>::value>{})) {
1593 using Indices = build_index_impl<
1594 std::tuple_size<typename std::decay<Tuple>::type>::value>;
1595
1596 return detail::apply_tuple_impl(std::forward<F>(f), std::forward<Tuple>(t),
1597 Indices{});
1598}
1599
1600/// Return true if the sequence [Begin, End) has exactly N items. Runs in O(N)
1601/// time. Not meant for use with random-access iterators.
1602template <typename IterTy>
1603bool hasNItems(
1604 IterTy &&Begin, IterTy &&End, unsigned N,
1605 typename std::enable_if<
1606 !std::is_same<
1607 typename std::iterator_traits<typename std::remove_reference<
1608 decltype(Begin)>::type>::iterator_category,
1609 std::random_access_iterator_tag>::value,
1610 void>::type * = nullptr) {
1611 for (; N; --N, ++Begin)
1612 if (Begin == End)
1613 return false; // Too few.
1614 return Begin == End;
1615}
1616
1617/// Return true if the sequence [Begin, End) has N or more items. Runs in O(N)
1618/// time. Not meant for use with random-access iterators.
1619template <typename IterTy>
1620bool hasNItemsOrMore(
1621 IterTy &&Begin, IterTy &&End, unsigned N,
1622 typename std::enable_if<
1623 !std::is_same<
1624 typename std::iterator_traits<typename std::remove_reference<
1625 decltype(Begin)>::type>::iterator_category,
1626 std::random_access_iterator_tag>::value,
1627 void>::type * = nullptr) {
1628 for (; N; --N, ++Begin)
1629 if (Begin == End)
1630 return false; // Too few.
1631 return true;
1632}
1633
1634/// Returns a raw pointer that represents the same address as the argument.
1635///
1636/// The late bound return should be removed once we move to C++14 to better
1637/// align with the C++20 declaration. Also, this implementation can be removed
1638/// once we move to C++20 where it's defined as std::to_addres()
1639///
1640/// The std::pointer_traits<>::to_address(p) variations of these overloads has
1641/// not been implemented.
1642template <class Ptr> auto to_address(const Ptr &P) -> decltype(P.operator->()) {
1643 return P.operator->();
1644}
1645template <class T> constexpr T *to_address(T *P) { return P; }
1646
1647} // end namespace llvm
1648
1649#endif // LLVM_ADT_STLEXTRAS_H