Bug Summary

File:lib/CodeGen/MIRParser/MIParser.cpp
Warning:line 1610, column 15
The left operand of '>' is a garbage value

Annotated Source Code

[?] Use j/k keys for keyboard navigation

/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp

1//===- MIParser.cpp - Machine instructions parser implementation ----------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the parsing of machine instructions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "MIParser.h"
15#include "MILexer.h"
16#include "llvm/ADT/APInt.h"
17#include "llvm/ADT/APSInt.h"
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/DenseMap.h"
20#include "llvm/ADT/None.h"
21#include "llvm/ADT/Optional.h"
22#include "llvm/ADT/SmallVector.h"
23#include "llvm/ADT/StringMap.h"
24#include "llvm/ADT/StringRef.h"
25#include "llvm/ADT/StringSwitch.h"
26#include "llvm/ADT/Twine.h"
27#include "llvm/AsmParser/Parser.h"
28#include "llvm/AsmParser/SlotMapping.h"
29#include "llvm/CodeGen/MIRPrinter.h"
30#include "llvm/CodeGen/MachineBasicBlock.h"
31#include "llvm/CodeGen/MachineFrameInfo.h"
32#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineInstr.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineMemOperand.h"
36#include "llvm/CodeGen/MachineOperand.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
38#include "llvm/CodeGen/TargetInstrInfo.h"
39#include "llvm/CodeGen/TargetRegisterInfo.h"
40#include "llvm/CodeGen/TargetSubtargetInfo.h"
41#include "llvm/IR/BasicBlock.h"
42#include "llvm/IR/Constants.h"
43#include "llvm/IR/DataLayout.h"
44#include "llvm/IR/DebugInfoMetadata.h"
45#include "llvm/IR/DebugLoc.h"
46#include "llvm/IR/Function.h"
47#include "llvm/IR/InstrTypes.h"
48#include "llvm/IR/Instructions.h"
49#include "llvm/IR/Intrinsics.h"
50#include "llvm/IR/Metadata.h"
51#include "llvm/IR/Module.h"
52#include "llvm/IR/ModuleSlotTracker.h"
53#include "llvm/IR/Type.h"
54#include "llvm/IR/Value.h"
55#include "llvm/IR/ValueSymbolTable.h"
56#include "llvm/MC/LaneBitmask.h"
57#include "llvm/MC/MCDwarf.h"
58#include "llvm/MC/MCInstrDesc.h"
59#include "llvm/MC/MCRegisterInfo.h"
60#include "llvm/Support/AtomicOrdering.h"
61#include "llvm/Support/BranchProbability.h"
62#include "llvm/Support/Casting.h"
63#include "llvm/Support/ErrorHandling.h"
64#include "llvm/Support/LowLevelTypeImpl.h"
65#include "llvm/Support/MemoryBuffer.h"
66#include "llvm/Support/SMLoc.h"
67#include "llvm/Support/SourceMgr.h"
68#include "llvm/Support/raw_ostream.h"
69#include "llvm/Target/TargetIntrinsicInfo.h"
70#include "llvm/Target/TargetMachine.h"
71#include <algorithm>
72#include <cassert>
73#include <cctype>
74#include <cstddef>
75#include <cstdint>
76#include <limits>
77#include <string>
78#include <utility>
79
80using namespace llvm;
81
82PerFunctionMIParsingState::PerFunctionMIParsingState(MachineFunction &MF,
83 SourceMgr &SM, const SlotMapping &IRSlots,
84 const Name2RegClassMap &Names2RegClasses,
85 const Name2RegBankMap &Names2RegBanks)
86 : MF(MF), SM(&SM), IRSlots(IRSlots), Names2RegClasses(Names2RegClasses),
87 Names2RegBanks(Names2RegBanks) {
88}
89
90VRegInfo &PerFunctionMIParsingState::getVRegInfo(unsigned Num) {
91 auto I = VRegInfos.insert(std::make_pair(Num, nullptr));
92 if (I.second) {
93 MachineRegisterInfo &MRI = MF.getRegInfo();
94 VRegInfo *Info = new (Allocator) VRegInfo;
95 Info->VReg = MRI.createIncompleteVirtualRegister();
96 I.first->second = Info;
97 }
98 return *I.first->second;
99}
100
101namespace {
102
103/// A wrapper struct around the 'MachineOperand' struct that includes a source
104/// range and other attributes.
105struct ParsedMachineOperand {
106 MachineOperand Operand;
107 StringRef::iterator Begin;
108 StringRef::iterator End;
109 Optional<unsigned> TiedDefIdx;
110
111 ParsedMachineOperand(const MachineOperand &Operand, StringRef::iterator Begin,
112 StringRef::iterator End, Optional<unsigned> &TiedDefIdx)
113 : Operand(Operand), Begin(Begin), End(End), TiedDefIdx(TiedDefIdx) {
114 if (TiedDefIdx)
115 assert(Operand.isReg() && Operand.isUse() &&(static_cast <bool> (Operand.isReg() && Operand
.isUse() && "Only used register operands can be tied"
) ? void (0) : __assert_fail ("Operand.isReg() && Operand.isUse() && \"Only used register operands can be tied\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 116, __extension__ __PRETTY_FUNCTION__))
116 "Only used register operands can be tied")(static_cast <bool> (Operand.isReg() && Operand
.isUse() && "Only used register operands can be tied"
) ? void (0) : __assert_fail ("Operand.isReg() && Operand.isUse() && \"Only used register operands can be tied\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 116, __extension__ __PRETTY_FUNCTION__))
;
117 }
118};
119
120class MIParser {
121 MachineFunction &MF;
122 SMDiagnostic &Error;
123 StringRef Source, CurrentSource;
124 MIToken Token;
125 PerFunctionMIParsingState &PFS;
126 /// Maps from instruction names to op codes.
127 StringMap<unsigned> Names2InstrOpCodes;
128 /// Maps from register names to registers.
129 StringMap<unsigned> Names2Regs;
130 /// Maps from register mask names to register masks.
131 StringMap<const uint32_t *> Names2RegMasks;
132 /// Maps from subregister names to subregister indices.
133 StringMap<unsigned> Names2SubRegIndices;
134 /// Maps from slot numbers to function's unnamed basic blocks.
135 DenseMap<unsigned, const BasicBlock *> Slots2BasicBlocks;
136 /// Maps from slot numbers to function's unnamed values.
137 DenseMap<unsigned, const Value *> Slots2Values;
138 /// Maps from target index names to target indices.
139 StringMap<int> Names2TargetIndices;
140 /// Maps from direct target flag names to the direct target flag values.
141 StringMap<unsigned> Names2DirectTargetFlags;
142 /// Maps from direct target flag names to the bitmask target flag values.
143 StringMap<unsigned> Names2BitmaskTargetFlags;
144 /// Maps from MMO target flag names to MMO target flag values.
145 StringMap<MachineMemOperand::Flags> Names2MMOTargetFlags;
146
147public:
148 MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
149 StringRef Source);
150
151 /// \p SkipChar gives the number of characters to skip before looking
152 /// for the next token.
153 void lex(unsigned SkipChar = 0);
154
155 /// Report an error at the current location with the given message.
156 ///
157 /// This function always return true.
158 bool error(const Twine &Msg);
159
160 /// Report an error at the given location with the given message.
161 ///
162 /// This function always return true.
163 bool error(StringRef::iterator Loc, const Twine &Msg);
164
165 bool
166 parseBasicBlockDefinitions(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
167 bool parseBasicBlocks();
168 bool parse(MachineInstr *&MI);
169 bool parseStandaloneMBB(MachineBasicBlock *&MBB);
170 bool parseStandaloneNamedRegister(unsigned &Reg);
171 bool parseStandaloneVirtualRegister(VRegInfo *&Info);
172 bool parseStandaloneRegister(unsigned &Reg);
173 bool parseStandaloneStackObject(int &FI);
174 bool parseStandaloneMDNode(MDNode *&Node);
175
176 bool
177 parseBasicBlockDefinition(DenseMap<unsigned, MachineBasicBlock *> &MBBSlots);
178 bool parseBasicBlock(MachineBasicBlock &MBB,
179 MachineBasicBlock *&AddFalthroughFrom);
180 bool parseBasicBlockLiveins(MachineBasicBlock &MBB);
181 bool parseBasicBlockSuccessors(MachineBasicBlock &MBB);
182
183 bool parseNamedRegister(unsigned &Reg);
184 bool parseVirtualRegister(VRegInfo *&Info);
185 bool parseRegister(unsigned &Reg, VRegInfo *&VRegInfo);
186 bool parseRegisterFlag(unsigned &Flags);
187 bool parseRegisterClassOrBank(VRegInfo &RegInfo);
188 bool parseSubRegisterIndex(unsigned &SubReg);
189 bool parseRegisterTiedDefIndex(unsigned &TiedDefIdx);
190 bool parseRegisterOperand(MachineOperand &Dest,
191 Optional<unsigned> &TiedDefIdx, bool IsDef = false);
192 bool parseImmediateOperand(MachineOperand &Dest);
193 bool parseIRConstant(StringRef::iterator Loc, StringRef Source,
194 const Constant *&C);
195 bool parseIRConstant(StringRef::iterator Loc, const Constant *&C);
196 bool parseLowLevelType(StringRef::iterator Loc, LLT &Ty);
197 bool parseTypedImmediateOperand(MachineOperand &Dest);
198 bool parseFPImmediateOperand(MachineOperand &Dest);
199 bool parseMBBReference(MachineBasicBlock *&MBB);
200 bool parseMBBOperand(MachineOperand &Dest);
201 bool parseStackFrameIndex(int &FI);
202 bool parseStackObjectOperand(MachineOperand &Dest);
203 bool parseFixedStackFrameIndex(int &FI);
204 bool parseFixedStackObjectOperand(MachineOperand &Dest);
205 bool parseGlobalValue(GlobalValue *&GV);
206 bool parseGlobalAddressOperand(MachineOperand &Dest);
207 bool parseConstantPoolIndexOperand(MachineOperand &Dest);
208 bool parseSubRegisterIndexOperand(MachineOperand &Dest);
209 bool parseJumpTableIndexOperand(MachineOperand &Dest);
210 bool parseExternalSymbolOperand(MachineOperand &Dest);
211 bool parseMDNode(MDNode *&Node);
212 bool parseDIExpression(MDNode *&Node);
213 bool parseMetadataOperand(MachineOperand &Dest);
214 bool parseCFIOffset(int &Offset);
215 bool parseCFIRegister(unsigned &Reg);
216 bool parseCFIEscapeValues(std::string& Values);
217 bool parseCFIOperand(MachineOperand &Dest);
218 bool parseIRBlock(BasicBlock *&BB, const Function &F);
219 bool parseBlockAddressOperand(MachineOperand &Dest);
220 bool parseIntrinsicOperand(MachineOperand &Dest);
221 bool parsePredicateOperand(MachineOperand &Dest);
222 bool parseTargetIndexOperand(MachineOperand &Dest);
223 bool parseCustomRegisterMaskOperand(MachineOperand &Dest);
224 bool parseLiveoutRegisterMaskOperand(MachineOperand &Dest);
225 bool parseMachineOperand(MachineOperand &Dest,
226 Optional<unsigned> &TiedDefIdx);
227 bool parseMachineOperandAndTargetFlags(MachineOperand &Dest,
228 Optional<unsigned> &TiedDefIdx);
229 bool parseOffset(int64_t &Offset);
230 bool parseAlignment(unsigned &Alignment);
231 bool parseOperandsOffset(MachineOperand &Op);
232 bool parseIRValue(const Value *&V);
233 bool parseMemoryOperandFlag(MachineMemOperand::Flags &Flags);
234 bool parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV);
235 bool parseMachinePointerInfo(MachinePointerInfo &Dest);
236 bool parseOptionalScope(LLVMContext &Context, SyncScope::ID &SSID);
237 bool parseOptionalAtomicOrdering(AtomicOrdering &Order);
238 bool parseMachineMemoryOperand(MachineMemOperand *&Dest);
239
240private:
241 /// Convert the integer literal in the current token into an unsigned integer.
242 ///
243 /// Return true if an error occurred.
244 bool getUnsigned(unsigned &Result);
245
246 /// Convert the integer literal in the current token into an uint64.
247 ///
248 /// Return true if an error occurred.
249 bool getUint64(uint64_t &Result);
250
251 /// Convert the hexadecimal literal in the current token into an unsigned
252 /// APInt with a minimum bitwidth required to represent the value.
253 ///
254 /// Return true if the literal does not represent an integer value.
255 bool getHexUint(APInt &Result);
256
257 /// If the current token is of the given kind, consume it and return false.
258 /// Otherwise report an error and return true.
259 bool expectAndConsume(MIToken::TokenKind TokenKind);
260
261 /// If the current token is of the given kind, consume it and return true.
262 /// Otherwise return false.
263 bool consumeIfPresent(MIToken::TokenKind TokenKind);
264
265 void initNames2InstrOpCodes();
266
267 /// Try to convert an instruction name to an opcode. Return true if the
268 /// instruction name is invalid.
269 bool parseInstrName(StringRef InstrName, unsigned &OpCode);
270
271 bool parseInstruction(unsigned &OpCode, unsigned &Flags);
272
273 bool assignRegisterTies(MachineInstr &MI,
274 ArrayRef<ParsedMachineOperand> Operands);
275
276 bool verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
277 const MCInstrDesc &MCID);
278
279 void initNames2Regs();
280
281 /// Try to convert a register name to a register number. Return true if the
282 /// register name is invalid.
283 bool getRegisterByName(StringRef RegName, unsigned &Reg);
284
285 void initNames2RegMasks();
286
287 /// Check if the given identifier is a name of a register mask.
288 ///
289 /// Return null if the identifier isn't a register mask.
290 const uint32_t *getRegMask(StringRef Identifier);
291
292 void initNames2SubRegIndices();
293
294 /// Check if the given identifier is a name of a subregister index.
295 ///
296 /// Return 0 if the name isn't a subregister index class.
297 unsigned getSubRegIndex(StringRef Name);
298
299 const BasicBlock *getIRBlock(unsigned Slot);
300 const BasicBlock *getIRBlock(unsigned Slot, const Function &F);
301
302 const Value *getIRValue(unsigned Slot);
303
304 void initNames2TargetIndices();
305
306 /// Try to convert a name of target index to the corresponding target index.
307 ///
308 /// Return true if the name isn't a name of a target index.
309 bool getTargetIndex(StringRef Name, int &Index);
310
311 void initNames2DirectTargetFlags();
312
313 /// Try to convert a name of a direct target flag to the corresponding
314 /// target flag.
315 ///
316 /// Return true if the name isn't a name of a direct flag.
317 bool getDirectTargetFlag(StringRef Name, unsigned &Flag);
318
319 void initNames2BitmaskTargetFlags();
320
321 /// Try to convert a name of a bitmask target flag to the corresponding
322 /// target flag.
323 ///
324 /// Return true if the name isn't a name of a bitmask target flag.
325 bool getBitmaskTargetFlag(StringRef Name, unsigned &Flag);
326
327 void initNames2MMOTargetFlags();
328
329 /// Try to convert a name of a MachineMemOperand target flag to the
330 /// corresponding target flag.
331 ///
332 /// Return true if the name isn't a name of a target MMO flag.
333 bool getMMOTargetFlag(StringRef Name, MachineMemOperand::Flags &Flag);
334
335 /// parseStringConstant
336 /// ::= StringConstant
337 bool parseStringConstant(std::string &Result);
338};
339
340} // end anonymous namespace
341
342MIParser::MIParser(PerFunctionMIParsingState &PFS, SMDiagnostic &Error,
343 StringRef Source)
344 : MF(PFS.MF), Error(Error), Source(Source), CurrentSource(Source), PFS(PFS)
345{}
346
347void MIParser::lex(unsigned SkipChar) {
348 CurrentSource = lexMIToken(
349 CurrentSource.data() + SkipChar, Token,
350 [this](StringRef::iterator Loc, const Twine &Msg) { error(Loc, Msg); });
351}
352
353bool MIParser::error(const Twine &Msg) { return error(Token.location(), Msg); }
63
Calling 'MIToken::location'
64
Returning from 'MIToken::location'
354
355bool MIParser::error(StringRef::iterator Loc, const Twine &Msg) {
356 const SourceMgr &SM = *PFS.SM;
357 assert(Loc >= Source.data() && Loc <= (Source.data() + Source.size()))(static_cast <bool> (Loc >= Source.data() &&
Loc <= (Source.data() + Source.size())) ? void (0) : __assert_fail
("Loc >= Source.data() && Loc <= (Source.data() + Source.size())"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 357, __extension__ __PRETTY_FUNCTION__))
;
358 const MemoryBuffer &Buffer = *SM.getMemoryBuffer(SM.getMainFileID());
359 if (Loc >= Buffer.getBufferStart() && Loc <= Buffer.getBufferEnd()) {
360 // Create an ordinary diagnostic when the source manager's buffer is the
361 // source string.
362 Error = SM.GetMessage(SMLoc::getFromPointer(Loc), SourceMgr::DK_Error, Msg);
363 return true;
364 }
365 // Create a diagnostic for a YAML string literal.
366 Error = SMDiagnostic(SM, SMLoc(), Buffer.getBufferIdentifier(), 1,
367 Loc - Source.data(), SourceMgr::DK_Error, Msg.str(),
368 Source, None, None);
369 return true;
370}
371
372static const char *toString(MIToken::TokenKind TokenKind) {
373 switch (TokenKind) {
374 case MIToken::comma:
375 return "','";
376 case MIToken::equal:
377 return "'='";
378 case MIToken::colon:
379 return "':'";
380 case MIToken::lparen:
381 return "'('";
382 case MIToken::rparen:
383 return "')'";
384 default:
385 return "<unknown token>";
386 }
387}
388
389bool MIParser::expectAndConsume(MIToken::TokenKind TokenKind) {
390 if (Token.isNot(TokenKind))
391 return error(Twine("expected ") + toString(TokenKind));
392 lex();
393 return false;
394}
395
396bool MIParser::consumeIfPresent(MIToken::TokenKind TokenKind) {
397 if (Token.isNot(TokenKind))
398 return false;
399 lex();
400 return true;
401}
402
403bool MIParser::parseBasicBlockDefinition(
404 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
405 assert(Token.is(MIToken::MachineBasicBlockLabel))(static_cast <bool> (Token.is(MIToken::MachineBasicBlockLabel
)) ? void (0) : __assert_fail ("Token.is(MIToken::MachineBasicBlockLabel)"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 405, __extension__ __PRETTY_FUNCTION__))
;
406 unsigned ID = 0;
407 if (getUnsigned(ID))
408 return true;
409 auto Loc = Token.location();
410 auto Name = Token.stringValue();
411 lex();
412 bool HasAddressTaken = false;
413 bool IsLandingPad = false;
414 unsigned Alignment = 0;
415 BasicBlock *BB = nullptr;
416 if (consumeIfPresent(MIToken::lparen)) {
417 do {
418 // TODO: Report an error when multiple same attributes are specified.
419 switch (Token.kind()) {
420 case MIToken::kw_address_taken:
421 HasAddressTaken = true;
422 lex();
423 break;
424 case MIToken::kw_landing_pad:
425 IsLandingPad = true;
426 lex();
427 break;
428 case MIToken::kw_align:
429 if (parseAlignment(Alignment))
430 return true;
431 break;
432 case MIToken::IRBlock:
433 // TODO: Report an error when both name and ir block are specified.
434 if (parseIRBlock(BB, MF.getFunction()))
435 return true;
436 lex();
437 break;
438 default:
439 break;
440 }
441 } while (consumeIfPresent(MIToken::comma));
442 if (expectAndConsume(MIToken::rparen))
443 return true;
444 }
445 if (expectAndConsume(MIToken::colon))
446 return true;
447
448 if (!Name.empty()) {
449 BB = dyn_cast_or_null<BasicBlock>(
450 MF.getFunction().getValueSymbolTable()->lookup(Name));
451 if (!BB)
452 return error(Loc, Twine("basic block '") + Name +
453 "' is not defined in the function '" +
454 MF.getName() + "'");
455 }
456 auto *MBB = MF.CreateMachineBasicBlock(BB);
457 MF.insert(MF.end(), MBB);
458 bool WasInserted = MBBSlots.insert(std::make_pair(ID, MBB)).second;
459 if (!WasInserted)
460 return error(Loc, Twine("redefinition of machine basic block with id #") +
461 Twine(ID));
462 if (Alignment)
463 MBB->setAlignment(Alignment);
464 if (HasAddressTaken)
465 MBB->setHasAddressTaken();
466 MBB->setIsEHPad(IsLandingPad);
467 return false;
468}
469
470bool MIParser::parseBasicBlockDefinitions(
471 DenseMap<unsigned, MachineBasicBlock *> &MBBSlots) {
472 lex();
473 // Skip until the first machine basic block.
474 while (Token.is(MIToken::Newline))
475 lex();
476 if (Token.isErrorOrEOF())
477 return Token.isError();
478 if (Token.isNot(MIToken::MachineBasicBlockLabel))
479 return error("expected a basic block definition before instructions");
480 unsigned BraceDepth = 0;
481 do {
482 if (parseBasicBlockDefinition(MBBSlots))
483 return true;
484 bool IsAfterNewline = false;
485 // Skip until the next machine basic block.
486 while (true) {
487 if ((Token.is(MIToken::MachineBasicBlockLabel) && IsAfterNewline) ||
488 Token.isErrorOrEOF())
489 break;
490 else if (Token.is(MIToken::MachineBasicBlockLabel))
491 return error("basic block definition should be located at the start of "
492 "the line");
493 else if (consumeIfPresent(MIToken::Newline)) {
494 IsAfterNewline = true;
495 continue;
496 }
497 IsAfterNewline = false;
498 if (Token.is(MIToken::lbrace))
499 ++BraceDepth;
500 if (Token.is(MIToken::rbrace)) {
501 if (!BraceDepth)
502 return error("extraneous closing brace ('}')");
503 --BraceDepth;
504 }
505 lex();
506 }
507 // Verify that we closed all of the '{' at the end of a file or a block.
508 if (!Token.isError() && BraceDepth)
509 return error("expected '}'"); // FIXME: Report a note that shows '{'.
510 } while (!Token.isErrorOrEOF());
511 return Token.isError();
512}
513
514bool MIParser::parseBasicBlockLiveins(MachineBasicBlock &MBB) {
515 assert(Token.is(MIToken::kw_liveins))(static_cast <bool> (Token.is(MIToken::kw_liveins)) ? void
(0) : __assert_fail ("Token.is(MIToken::kw_liveins)", "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 515, __extension__ __PRETTY_FUNCTION__))
;
516 lex();
517 if (expectAndConsume(MIToken::colon))
518 return true;
519 if (Token.isNewlineOrEOF()) // Allow an empty list of liveins.
520 return false;
521 do {
522 if (Token.isNot(MIToken::NamedRegister))
523 return error("expected a named register");
524 unsigned Reg = 0;
525 if (parseNamedRegister(Reg))
526 return true;
527 lex();
528 LaneBitmask Mask = LaneBitmask::getAll();
529 if (consumeIfPresent(MIToken::colon)) {
530 // Parse lane mask.
531 if (Token.isNot(MIToken::IntegerLiteral) &&
532 Token.isNot(MIToken::HexLiteral))
533 return error("expected a lane mask");
534 static_assert(sizeof(LaneBitmask::Type) == sizeof(unsigned),
535 "Use correct get-function for lane mask");
536 LaneBitmask::Type V;
537 if (getUnsigned(V))
538 return error("invalid lane mask value");
539 Mask = LaneBitmask(V);
540 lex();
541 }
542 MBB.addLiveIn(Reg, Mask);
543 } while (consumeIfPresent(MIToken::comma));
544 return false;
545}
546
547bool MIParser::parseBasicBlockSuccessors(MachineBasicBlock &MBB) {
548 assert(Token.is(MIToken::kw_successors))(static_cast <bool> (Token.is(MIToken::kw_successors)) ?
void (0) : __assert_fail ("Token.is(MIToken::kw_successors)"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 548, __extension__ __PRETTY_FUNCTION__))
;
549 lex();
550 if (expectAndConsume(MIToken::colon))
551 return true;
552 if (Token.isNewlineOrEOF()) // Allow an empty list of successors.
553 return false;
554 do {
555 if (Token.isNot(MIToken::MachineBasicBlock))
556 return error("expected a machine basic block reference");
557 MachineBasicBlock *SuccMBB = nullptr;
558 if (parseMBBReference(SuccMBB))
559 return true;
560 lex();
561 unsigned Weight = 0;
562 if (consumeIfPresent(MIToken::lparen)) {
563 if (Token.isNot(MIToken::IntegerLiteral) &&
564 Token.isNot(MIToken::HexLiteral))
565 return error("expected an integer literal after '('");
566 if (getUnsigned(Weight))
567 return true;
568 lex();
569 if (expectAndConsume(MIToken::rparen))
570 return true;
571 }
572 MBB.addSuccessor(SuccMBB, BranchProbability::getRaw(Weight));
573 } while (consumeIfPresent(MIToken::comma));
574 MBB.normalizeSuccProbs();
575 return false;
576}
577
578bool MIParser::parseBasicBlock(MachineBasicBlock &MBB,
579 MachineBasicBlock *&AddFalthroughFrom) {
580 // Skip the definition.
581 assert(Token.is(MIToken::MachineBasicBlockLabel))(static_cast <bool> (Token.is(MIToken::MachineBasicBlockLabel
)) ? void (0) : __assert_fail ("Token.is(MIToken::MachineBasicBlockLabel)"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 581, __extension__ __PRETTY_FUNCTION__))
;
582 lex();
583 if (consumeIfPresent(MIToken::lparen)) {
584 while (Token.isNot(MIToken::rparen) && !Token.isErrorOrEOF())
585 lex();
586 consumeIfPresent(MIToken::rparen);
587 }
588 consumeIfPresent(MIToken::colon);
589
590 // Parse the liveins and successors.
591 // N.B: Multiple lists of successors and liveins are allowed and they're
592 // merged into one.
593 // Example:
594 // liveins: %edi
595 // liveins: %esi
596 //
597 // is equivalent to
598 // liveins: %edi, %esi
599 bool ExplicitSuccessors = false;
600 while (true) {
601 if (Token.is(MIToken::kw_successors)) {
602 if (parseBasicBlockSuccessors(MBB))
603 return true;
604 ExplicitSuccessors = true;
605 } else if (Token.is(MIToken::kw_liveins)) {
606 if (parseBasicBlockLiveins(MBB))
607 return true;
608 } else if (consumeIfPresent(MIToken::Newline)) {
609 continue;
610 } else
611 break;
612 if (!Token.isNewlineOrEOF())
613 return error("expected line break at the end of a list");
614 lex();
615 }
616
617 // Parse the instructions.
618 bool IsInBundle = false;
619 MachineInstr *PrevMI = nullptr;
620 while (!Token.is(MIToken::MachineBasicBlockLabel) &&
621 !Token.is(MIToken::Eof)) {
622 if (consumeIfPresent(MIToken::Newline))
623 continue;
624 if (consumeIfPresent(MIToken::rbrace)) {
625 // The first parsing pass should verify that all closing '}' have an
626 // opening '{'.
627 assert(IsInBundle)(static_cast <bool> (IsInBundle) ? void (0) : __assert_fail
("IsInBundle", "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 627, __extension__ __PRETTY_FUNCTION__))
;
628 IsInBundle = false;
629 continue;
630 }
631 MachineInstr *MI = nullptr;
632 if (parse(MI))
633 return true;
634 MBB.insert(MBB.end(), MI);
635 if (IsInBundle) {
636 PrevMI->setFlag(MachineInstr::BundledSucc);
637 MI->setFlag(MachineInstr::BundledPred);
638 }
639 PrevMI = MI;
640 if (Token.is(MIToken::lbrace)) {
641 if (IsInBundle)
642 return error("nested instruction bundles are not allowed");
643 lex();
644 // This instruction is the start of the bundle.
645 MI->setFlag(MachineInstr::BundledSucc);
646 IsInBundle = true;
647 if (!Token.is(MIToken::Newline))
648 // The next instruction can be on the same line.
649 continue;
650 }
651 assert(Token.isNewlineOrEOF() && "MI is not fully parsed")(static_cast <bool> (Token.isNewlineOrEOF() && "MI is not fully parsed"
) ? void (0) : __assert_fail ("Token.isNewlineOrEOF() && \"MI is not fully parsed\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 651, __extension__ __PRETTY_FUNCTION__))
;
652 lex();
653 }
654
655 // Construct successor list by searching for basic block machine operands.
656 if (!ExplicitSuccessors) {
657 SmallVector<MachineBasicBlock*,4> Successors;
658 bool IsFallthrough;
659 guessSuccessors(MBB, Successors, IsFallthrough);
660 for (MachineBasicBlock *Succ : Successors)
661 MBB.addSuccessor(Succ);
662
663 if (IsFallthrough) {
664 AddFalthroughFrom = &MBB;
665 } else {
666 MBB.normalizeSuccProbs();
667 }
668 }
669
670 return false;
671}
672
673bool MIParser::parseBasicBlocks() {
674 lex();
675 // Skip until the first machine basic block.
676 while (Token.is(MIToken::Newline))
677 lex();
678 if (Token.isErrorOrEOF())
679 return Token.isError();
680 // The first parsing pass should have verified that this token is a MBB label
681 // in the 'parseBasicBlockDefinitions' method.
682 assert(Token.is(MIToken::MachineBasicBlockLabel))(static_cast <bool> (Token.is(MIToken::MachineBasicBlockLabel
)) ? void (0) : __assert_fail ("Token.is(MIToken::MachineBasicBlockLabel)"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 682, __extension__ __PRETTY_FUNCTION__))
;
683 MachineBasicBlock *AddFalthroughFrom = nullptr;
684 do {
685 MachineBasicBlock *MBB = nullptr;
686 if (parseMBBReference(MBB))
687 return true;
688 if (AddFalthroughFrom) {
689 if (!AddFalthroughFrom->isSuccessor(MBB))
690 AddFalthroughFrom->addSuccessor(MBB);
691 AddFalthroughFrom->normalizeSuccProbs();
692 AddFalthroughFrom = nullptr;
693 }
694 if (parseBasicBlock(*MBB, AddFalthroughFrom))
695 return true;
696 // The method 'parseBasicBlock' should parse the whole block until the next
697 // block or the end of file.
698 assert(Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof))(static_cast <bool> (Token.is(MIToken::MachineBasicBlockLabel
) || Token.is(MIToken::Eof)) ? void (0) : __assert_fail ("Token.is(MIToken::MachineBasicBlockLabel) || Token.is(MIToken::Eof)"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 698, __extension__ __PRETTY_FUNCTION__))
;
699 } while (Token.isNot(MIToken::Eof));
700 return false;
701}
702
703bool MIParser::parse(MachineInstr *&MI) {
704 // Parse any register operands before '='
705 MachineOperand MO = MachineOperand::CreateImm(0);
706 SmallVector<ParsedMachineOperand, 8> Operands;
707 while (Token.isRegister() || Token.isRegisterFlag()) {
708 auto Loc = Token.location();
709 Optional<unsigned> TiedDefIdx;
710 if (parseRegisterOperand(MO, TiedDefIdx, /*IsDef=*/true))
711 return true;
712 Operands.push_back(
713 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
714 if (Token.isNot(MIToken::comma))
715 break;
716 lex();
717 }
718 if (!Operands.empty() && expectAndConsume(MIToken::equal))
719 return true;
720
721 unsigned OpCode, Flags = 0;
722 if (Token.isError() || parseInstruction(OpCode, Flags))
723 return true;
724
725 // Parse the remaining machine operands.
726 while (!Token.isNewlineOrEOF() && Token.isNot(MIToken::kw_debug_location) &&
727 Token.isNot(MIToken::coloncolon) && Token.isNot(MIToken::lbrace)) {
728 auto Loc = Token.location();
729 Optional<unsigned> TiedDefIdx;
730 if (parseMachineOperandAndTargetFlags(MO, TiedDefIdx))
731 return true;
732 Operands.push_back(
733 ParsedMachineOperand(MO, Loc, Token.location(), TiedDefIdx));
734 if (Token.isNewlineOrEOF() || Token.is(MIToken::coloncolon) ||
735 Token.is(MIToken::lbrace))
736 break;
737 if (Token.isNot(MIToken::comma))
738 return error("expected ',' before the next machine operand");
739 lex();
740 }
741
742 DebugLoc DebugLocation;
743 if (Token.is(MIToken::kw_debug_location)) {
744 lex();
745 if (Token.isNot(MIToken::exclaim))
746 return error("expected a metadata node after 'debug-location'");
747 MDNode *Node = nullptr;
748 if (parseMDNode(Node))
749 return true;
750 DebugLocation = DebugLoc(Node);
751 }
752
753 // Parse the machine memory operands.
754 SmallVector<MachineMemOperand *, 2> MemOperands;
755 if (Token.is(MIToken::coloncolon)) {
756 lex();
757 while (!Token.isNewlineOrEOF()) {
758 MachineMemOperand *MemOp = nullptr;
759 if (parseMachineMemoryOperand(MemOp))
760 return true;
761 MemOperands.push_back(MemOp);
762 if (Token.isNewlineOrEOF())
763 break;
764 if (Token.isNot(MIToken::comma))
765 return error("expected ',' before the next machine memory operand");
766 lex();
767 }
768 }
769
770 const auto &MCID = MF.getSubtarget().getInstrInfo()->get(OpCode);
771 if (!MCID.isVariadic()) {
772 // FIXME: Move the implicit operand verification to the machine verifier.
773 if (verifyImplicitOperands(Operands, MCID))
774 return true;
775 }
776
777 // TODO: Check for extraneous machine operands.
778 MI = MF.CreateMachineInstr(MCID, DebugLocation, /*NoImplicit=*/true);
779 MI->setFlags(Flags);
780 for (const auto &Operand : Operands)
781 MI->addOperand(MF, Operand.Operand);
782 if (assignRegisterTies(*MI, Operands))
783 return true;
784 if (MemOperands.empty())
785 return false;
786 MachineInstr::mmo_iterator MemRefs =
787 MF.allocateMemRefsArray(MemOperands.size());
788 std::copy(MemOperands.begin(), MemOperands.end(), MemRefs);
789 MI->setMemRefs(MemRefs, MemRefs + MemOperands.size());
790 return false;
791}
792
793bool MIParser::parseStandaloneMBB(MachineBasicBlock *&MBB) {
794 lex();
795 if (Token.isNot(MIToken::MachineBasicBlock))
796 return error("expected a machine basic block reference");
797 if (parseMBBReference(MBB))
798 return true;
799 lex();
800 if (Token.isNot(MIToken::Eof))
801 return error(
802 "expected end of string after the machine basic block reference");
803 return false;
804}
805
806bool MIParser::parseStandaloneNamedRegister(unsigned &Reg) {
807 lex();
808 if (Token.isNot(MIToken::NamedRegister))
809 return error("expected a named register");
810 if (parseNamedRegister(Reg))
811 return true;
812 lex();
813 if (Token.isNot(MIToken::Eof))
814 return error("expected end of string after the register reference");
815 return false;
816}
817
818bool MIParser::parseStandaloneVirtualRegister(VRegInfo *&Info) {
819 lex();
820 if (Token.isNot(MIToken::VirtualRegister))
821 return error("expected a virtual register");
822 if (parseVirtualRegister(Info))
823 return true;
824 lex();
825 if (Token.isNot(MIToken::Eof))
826 return error("expected end of string after the register reference");
827 return false;
828}
829
830bool MIParser::parseStandaloneRegister(unsigned &Reg) {
831 lex();
832 if (Token.isNot(MIToken::NamedRegister) &&
833 Token.isNot(MIToken::VirtualRegister))
834 return error("expected either a named or virtual register");
835
836 VRegInfo *Info;
837 if (parseRegister(Reg, Info))
838 return true;
839
840 lex();
841 if (Token.isNot(MIToken::Eof))
842 return error("expected end of string after the register reference");
843 return false;
844}
845
846bool MIParser::parseStandaloneStackObject(int &FI) {
847 lex();
848 if (Token.isNot(MIToken::StackObject))
849 return error("expected a stack object");
850 if (parseStackFrameIndex(FI))
851 return true;
852 if (Token.isNot(MIToken::Eof))
853 return error("expected end of string after the stack object reference");
854 return false;
855}
856
857bool MIParser::parseStandaloneMDNode(MDNode *&Node) {
858 lex();
859 if (Token.is(MIToken::exclaim)) {
860 if (parseMDNode(Node))
861 return true;
862 } else if (Token.is(MIToken::md_diexpr)) {
863 if (parseDIExpression(Node))
864 return true;
865 } else
866 return error("expected a metadata node");
867 if (Token.isNot(MIToken::Eof))
868 return error("expected end of string after the metadata node");
869 return false;
870}
871
872static const char *printImplicitRegisterFlag(const MachineOperand &MO) {
873 assert(MO.isImplicit())(static_cast <bool> (MO.isImplicit()) ? void (0) : __assert_fail
("MO.isImplicit()", "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 873, __extension__ __PRETTY_FUNCTION__))
;
874 return MO.isDef() ? "implicit-def" : "implicit";
875}
876
877static std::string getRegisterName(const TargetRegisterInfo *TRI,
878 unsigned Reg) {
879 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "expected phys reg")(static_cast <bool> (TargetRegisterInfo::isPhysicalRegister
(Reg) && "expected phys reg") ? void (0) : __assert_fail
("TargetRegisterInfo::isPhysicalRegister(Reg) && \"expected phys reg\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 879, __extension__ __PRETTY_FUNCTION__))
;
880 return StringRef(TRI->getName(Reg)).lower();
881}
882
883/// Return true if the parsed machine operands contain a given machine operand.
884static bool isImplicitOperandIn(const MachineOperand &ImplicitOperand,
885 ArrayRef<ParsedMachineOperand> Operands) {
886 for (const auto &I : Operands) {
887 if (ImplicitOperand.isIdenticalTo(I.Operand))
888 return true;
889 }
890 return false;
891}
892
893bool MIParser::verifyImplicitOperands(ArrayRef<ParsedMachineOperand> Operands,
894 const MCInstrDesc &MCID) {
895 if (MCID.isCall())
896 // We can't verify call instructions as they can contain arbitrary implicit
897 // register and register mask operands.
898 return false;
899
900 // Gather all the expected implicit operands.
901 SmallVector<MachineOperand, 4> ImplicitOperands;
902 if (MCID.ImplicitDefs)
903 for (const MCPhysReg *ImpDefs = MCID.getImplicitDefs(); *ImpDefs; ++ImpDefs)
904 ImplicitOperands.push_back(
905 MachineOperand::CreateReg(*ImpDefs, true, true));
906 if (MCID.ImplicitUses)
907 for (const MCPhysReg *ImpUses = MCID.getImplicitUses(); *ImpUses; ++ImpUses)
908 ImplicitOperands.push_back(
909 MachineOperand::CreateReg(*ImpUses, false, true));
910
911 const auto *TRI = MF.getSubtarget().getRegisterInfo();
912 assert(TRI && "Expected target register info")(static_cast <bool> (TRI && "Expected target register info"
) ? void (0) : __assert_fail ("TRI && \"Expected target register info\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 912, __extension__ __PRETTY_FUNCTION__))
;
913 for (const auto &I : ImplicitOperands) {
914 if (isImplicitOperandIn(I, Operands))
915 continue;
916 return error(Operands.empty() ? Token.location() : Operands.back().End,
917 Twine("missing implicit register operand '") +
918 printImplicitRegisterFlag(I) + " %" +
919 getRegisterName(TRI, I.getReg()) + "'");
920 }
921 return false;
922}
923
924bool MIParser::parseInstruction(unsigned &OpCode, unsigned &Flags) {
925 if (Token.is(MIToken::kw_frame_setup)) {
926 Flags |= MachineInstr::FrameSetup;
927 lex();
928 }
929 if (Token.isNot(MIToken::Identifier))
930 return error("expected a machine instruction");
931 StringRef InstrName = Token.stringValue();
932 if (parseInstrName(InstrName, OpCode))
933 return error(Twine("unknown machine instruction name '") + InstrName + "'");
934 lex();
935 return false;
936}
937
938bool MIParser::parseNamedRegister(unsigned &Reg) {
939 assert(Token.is(MIToken::NamedRegister) && "Needs NamedRegister token")(static_cast <bool> (Token.is(MIToken::NamedRegister) &&
"Needs NamedRegister token") ? void (0) : __assert_fail ("Token.is(MIToken::NamedRegister) && \"Needs NamedRegister token\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 939, __extension__ __PRETTY_FUNCTION__))
;
940 StringRef Name = Token.stringValue();
941 if (getRegisterByName(Name, Reg))
942 return error(Twine("unknown register name '") + Name + "'");
943 return false;
944}
945
946bool MIParser::parseVirtualRegister(VRegInfo *&Info) {
947 assert(Token.is(MIToken::VirtualRegister) && "Needs VirtualRegister token")(static_cast <bool> (Token.is(MIToken::VirtualRegister)
&& "Needs VirtualRegister token") ? void (0) : __assert_fail
("Token.is(MIToken::VirtualRegister) && \"Needs VirtualRegister token\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 947, __extension__ __PRETTY_FUNCTION__))
;
948 unsigned ID;
949 if (getUnsigned(ID))
950 return true;
951 Info = &PFS.getVRegInfo(ID);
952 return false;
953}
954
955bool MIParser::parseRegister(unsigned &Reg, VRegInfo *&Info) {
956 switch (Token.kind()) {
957 case MIToken::underscore:
958 Reg = 0;
959 return false;
960 case MIToken::NamedRegister:
961 return parseNamedRegister(Reg);
962 case MIToken::VirtualRegister:
963 if (parseVirtualRegister(Info))
964 return true;
965 Reg = Info->VReg;
966 return false;
967 // TODO: Parse other register kinds.
968 default:
969 llvm_unreachable("The current token should be a register")::llvm::llvm_unreachable_internal("The current token should be a register"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 969)
;
970 }
971}
972
973bool MIParser::parseRegisterClassOrBank(VRegInfo &RegInfo) {
974 if (Token.isNot(MIToken::Identifier) && Token.isNot(MIToken::underscore))
975 return error("expected '_', register class, or register bank name");
976 StringRef::iterator Loc = Token.location();
977 StringRef Name = Token.stringValue();
978
979 // Was it a register class?
980 auto RCNameI = PFS.Names2RegClasses.find(Name);
981 if (RCNameI != PFS.Names2RegClasses.end()) {
982 lex();
983 const TargetRegisterClass &RC = *RCNameI->getValue();
984
985 switch (RegInfo.Kind) {
986 case VRegInfo::UNKNOWN:
987 case VRegInfo::NORMAL:
988 RegInfo.Kind = VRegInfo::NORMAL;
989 if (RegInfo.Explicit && RegInfo.D.RC != &RC) {
990 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
991 return error(Loc, Twine("conflicting register classes, previously: ") +
992 Twine(TRI.getRegClassName(RegInfo.D.RC)));
993 }
994 RegInfo.D.RC = &RC;
995 RegInfo.Explicit = true;
996 return false;
997
998 case VRegInfo::GENERIC:
999 case VRegInfo::REGBANK:
1000 return error(Loc, "register class specification on generic register");
1001 }
1002 llvm_unreachable("Unexpected register kind")::llvm::llvm_unreachable_internal("Unexpected register kind",
"/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 1002)
;
1003 }
1004
1005 // Should be a register bank or a generic register.
1006 const RegisterBank *RegBank = nullptr;
1007 if (Name != "_") {
1008 auto RBNameI = PFS.Names2RegBanks.find(Name);
1009 if (RBNameI == PFS.Names2RegBanks.end())
1010 return error(Loc, "expected '_', register class, or register bank name");
1011 RegBank = RBNameI->getValue();
1012 }
1013
1014 lex();
1015
1016 switch (RegInfo.Kind) {
1017 case VRegInfo::UNKNOWN:
1018 case VRegInfo::GENERIC:
1019 case VRegInfo::REGBANK:
1020 RegInfo.Kind = RegBank ? VRegInfo::REGBANK : VRegInfo::GENERIC;
1021 if (RegInfo.Explicit && RegInfo.D.RegBank != RegBank)
1022 return error(Loc, "conflicting generic register banks");
1023 RegInfo.D.RegBank = RegBank;
1024 RegInfo.Explicit = true;
1025 return false;
1026
1027 case VRegInfo::NORMAL:
1028 return error(Loc, "register bank specification on normal register");
1029 }
1030 llvm_unreachable("Unexpected register kind")::llvm::llvm_unreachable_internal("Unexpected register kind",
"/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 1030)
;
1031}
1032
1033bool MIParser::parseRegisterFlag(unsigned &Flags) {
1034 const unsigned OldFlags = Flags;
1035 switch (Token.kind()) {
1036 case MIToken::kw_implicit:
1037 Flags |= RegState::Implicit;
1038 break;
1039 case MIToken::kw_implicit_define:
1040 Flags |= RegState::ImplicitDefine;
1041 break;
1042 case MIToken::kw_def:
1043 Flags |= RegState::Define;
1044 break;
1045 case MIToken::kw_dead:
1046 Flags |= RegState::Dead;
1047 break;
1048 case MIToken::kw_killed:
1049 Flags |= RegState::Kill;
1050 break;
1051 case MIToken::kw_undef:
1052 Flags |= RegState::Undef;
1053 break;
1054 case MIToken::kw_internal:
1055 Flags |= RegState::InternalRead;
1056 break;
1057 case MIToken::kw_early_clobber:
1058 Flags |= RegState::EarlyClobber;
1059 break;
1060 case MIToken::kw_debug_use:
1061 Flags |= RegState::Debug;
1062 break;
1063 case MIToken::kw_renamable:
1064 Flags |= RegState::Renamable;
1065 break;
1066 default:
1067 llvm_unreachable("The current token should be a register flag")::llvm::llvm_unreachable_internal("The current token should be a register flag"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 1067)
;
1068 }
1069 if (OldFlags == Flags)
1070 // We know that the same flag is specified more than once when the flags
1071 // weren't modified.
1072 return error("duplicate '" + Token.stringValue() + "' register flag");
1073 lex();
1074 return false;
1075}
1076
1077bool MIParser::parseSubRegisterIndex(unsigned &SubReg) {
1078 assert(Token.is(MIToken::dot))(static_cast <bool> (Token.is(MIToken::dot)) ? void (0)
: __assert_fail ("Token.is(MIToken::dot)", "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 1078, __extension__ __PRETTY_FUNCTION__))
;
1079 lex();
1080 if (Token.isNot(MIToken::Identifier))
1081 return error("expected a subregister index after '.'");
1082 auto Name = Token.stringValue();
1083 SubReg = getSubRegIndex(Name);
1084 if (!SubReg)
1085 return error(Twine("use of unknown subregister index '") + Name + "'");
1086 lex();
1087 return false;
1088}
1089
1090bool MIParser::parseRegisterTiedDefIndex(unsigned &TiedDefIdx) {
1091 if (!consumeIfPresent(MIToken::kw_tied_def))
1092 return true;
1093 if (Token.isNot(MIToken::IntegerLiteral))
1094 return error("expected an integer literal after 'tied-def'");
1095 if (getUnsigned(TiedDefIdx))
1096 return true;
1097 lex();
1098 if (expectAndConsume(MIToken::rparen))
1099 return true;
1100 return false;
1101}
1102
1103bool MIParser::assignRegisterTies(MachineInstr &MI,
1104 ArrayRef<ParsedMachineOperand> Operands) {
1105 SmallVector<std::pair<unsigned, unsigned>, 4> TiedRegisterPairs;
1106 for (unsigned I = 0, E = Operands.size(); I != E; ++I) {
1107 if (!Operands[I].TiedDefIdx)
1108 continue;
1109 // The parser ensures that this operand is a register use, so we just have
1110 // to check the tied-def operand.
1111 unsigned DefIdx = Operands[I].TiedDefIdx.getValue();
1112 if (DefIdx >= E)
1113 return error(Operands[I].Begin,
1114 Twine("use of invalid tied-def operand index '" +
1115 Twine(DefIdx) + "'; instruction has only ") +
1116 Twine(E) + " operands");
1117 const auto &DefOperand = Operands[DefIdx].Operand;
1118 if (!DefOperand.isReg() || !DefOperand.isDef())
1119 // FIXME: add note with the def operand.
1120 return error(Operands[I].Begin,
1121 Twine("use of invalid tied-def operand index '") +
1122 Twine(DefIdx) + "'; the operand #" + Twine(DefIdx) +
1123 " isn't a defined register");
1124 // Check that the tied-def operand wasn't tied elsewhere.
1125 for (const auto &TiedPair : TiedRegisterPairs) {
1126 if (TiedPair.first == DefIdx)
1127 return error(Operands[I].Begin,
1128 Twine("the tied-def operand #") + Twine(DefIdx) +
1129 " is already tied with another register operand");
1130 }
1131 TiedRegisterPairs.push_back(std::make_pair(DefIdx, I));
1132 }
1133 // FIXME: Verify that for non INLINEASM instructions, the def and use tied
1134 // indices must be less than tied max.
1135 for (const auto &TiedPair : TiedRegisterPairs)
1136 MI.tieOperands(TiedPair.first, TiedPair.second);
1137 return false;
1138}
1139
1140bool MIParser::parseRegisterOperand(MachineOperand &Dest,
1141 Optional<unsigned> &TiedDefIdx,
1142 bool IsDef) {
1143 unsigned Flags = IsDef ? RegState::Define : 0;
1144 while (Token.isRegisterFlag()) {
1145 if (parseRegisterFlag(Flags))
1146 return true;
1147 }
1148 if (!Token.isRegister())
1149 return error("expected a register after register flags");
1150 unsigned Reg;
1151 VRegInfo *RegInfo;
1152 if (parseRegister(Reg, RegInfo))
1153 return true;
1154 lex();
1155 unsigned SubReg = 0;
1156 if (Token.is(MIToken::dot)) {
1157 if (parseSubRegisterIndex(SubReg))
1158 return true;
1159 if (!TargetRegisterInfo::isVirtualRegister(Reg))
1160 return error("subregister index expects a virtual register");
1161 }
1162 if (Token.is(MIToken::colon)) {
1163 if (!TargetRegisterInfo::isVirtualRegister(Reg))
1164 return error("register class specification expects a virtual register");
1165 lex();
1166 if (parseRegisterClassOrBank(*RegInfo))
1167 return true;
1168 }
1169 MachineRegisterInfo &MRI = MF.getRegInfo();
1170 if ((Flags & RegState::Define) == 0) {
1171 if (consumeIfPresent(MIToken::lparen)) {
1172 unsigned Idx;
1173 if (!parseRegisterTiedDefIndex(Idx))
1174 TiedDefIdx = Idx;
1175 else {
1176 // Try a redundant low-level type.
1177 LLT Ty;
1178 if (parseLowLevelType(Token.location(), Ty))
1179 return error("expected tied-def or low-level type after '('");
1180
1181 if (expectAndConsume(MIToken::rparen))
1182 return true;
1183
1184 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1185 return error("inconsistent type for generic virtual register");
1186
1187 MRI.setType(Reg, Ty);
1188 }
1189 }
1190 } else if (consumeIfPresent(MIToken::lparen)) {
1191 // Virtual registers may have a tpe with GlobalISel.
1192 if (!TargetRegisterInfo::isVirtualRegister(Reg))
1193 return error("unexpected type on physical register");
1194
1195 LLT Ty;
1196 if (parseLowLevelType(Token.location(), Ty))
1197 return true;
1198
1199 if (expectAndConsume(MIToken::rparen))
1200 return true;
1201
1202 if (MRI.getType(Reg).isValid() && MRI.getType(Reg) != Ty)
1203 return error("inconsistent type for generic virtual register");
1204
1205 MRI.setType(Reg, Ty);
1206 } else if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1207 // Generic virtual registers must have a type.
1208 // If we end up here this means the type hasn't been specified and
1209 // this is bad!
1210 if (RegInfo->Kind == VRegInfo::GENERIC ||
1211 RegInfo->Kind == VRegInfo::REGBANK)
1212 return error("generic virtual registers must have a type");
1213 }
1214 Dest = MachineOperand::CreateReg(
1215 Reg, Flags & RegState::Define, Flags & RegState::Implicit,
1216 Flags & RegState::Kill, Flags & RegState::Dead, Flags & RegState::Undef,
1217 Flags & RegState::EarlyClobber, SubReg, Flags & RegState::Debug,
1218 Flags & RegState::InternalRead, Flags & RegState::Renamable);
1219
1220 return false;
1221}
1222
1223bool MIParser::parseImmediateOperand(MachineOperand &Dest) {
1224 assert(Token.is(MIToken::IntegerLiteral))(static_cast <bool> (Token.is(MIToken::IntegerLiteral))
? void (0) : __assert_fail ("Token.is(MIToken::IntegerLiteral)"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 1224, __extension__ __PRETTY_FUNCTION__))
;
1225 const APSInt &Int = Token.integerValue();
1226 if (Int.getMinSignedBits() > 64)
1227 return error("integer literal is too large to be an immediate operand");
1228 Dest = MachineOperand::CreateImm(Int.getExtValue());
1229 lex();
1230 return false;
1231}
1232
1233bool MIParser::parseIRConstant(StringRef::iterator Loc, StringRef StringValue,
1234 const Constant *&C) {
1235 auto Source = StringValue.str(); // The source has to be null terminated.
1236 SMDiagnostic Err;
1237 C = parseConstantValue(Source, Err, *MF.getFunction().getParent(),
1238 &PFS.IRSlots);
1239 if (!C)
1240 return error(Loc + Err.getColumnNo(), Err.getMessage());
1241 return false;
1242}
1243
1244bool MIParser::parseIRConstant(StringRef::iterator Loc, const Constant *&C) {
1245 if (parseIRConstant(Loc, StringRef(Loc, Token.range().end() - Loc), C))
1246 return true;
1247 lex();
1248 return false;
1249}
1250
1251bool MIParser::parseLowLevelType(StringRef::iterator Loc, LLT &Ty) {
1252 if (Token.is(MIToken::ScalarType)) {
1253 Ty = LLT::scalar(APSInt(Token.range().drop_front()).getZExtValue());
1254 lex();
1255 return false;
1256 } else if (Token.is(MIToken::PointerType)) {
1257 const DataLayout &DL = MF.getDataLayout();
1258 unsigned AS = APSInt(Token.range().drop_front()).getZExtValue();
1259 Ty = LLT::pointer(AS, DL.getPointerSizeInBits(AS));
1260 lex();
1261 return false;
1262 }
1263
1264 // Now we're looking for a vector.
1265 if (Token.isNot(MIToken::less))
1266 return error(Loc,
1267 "expected unsized, pN, sN or <N x sM> for GlobalISel type");
1268
1269 lex();
1270
1271 if (Token.isNot(MIToken::IntegerLiteral))
1272 return error(Loc, "expected <N x sM> for vctor type");
1273 uint64_t NumElements = Token.integerValue().getZExtValue();
1274 lex();
1275
1276 if (Token.isNot(MIToken::Identifier) || Token.stringValue() != "x")
1277 return error(Loc, "expected '<N x sM>' for vector type");
1278 lex();
1279
1280 if (Token.isNot(MIToken::ScalarType))
1281 return error(Loc, "expected '<N x sM>' for vector type");
1282 uint64_t ScalarSize = APSInt(Token.range().drop_front()).getZExtValue();
1283 lex();
1284
1285 if (Token.isNot(MIToken::greater))
1286 return error(Loc, "expected '<N x sM>' for vector type");
1287 lex();
1288
1289 Ty = LLT::vector(NumElements, ScalarSize);
1290 return false;
1291}
1292
1293bool MIParser::parseTypedImmediateOperand(MachineOperand &Dest) {
1294 assert(Token.is(MIToken::IntegerType))(static_cast <bool> (Token.is(MIToken::IntegerType)) ? void
(0) : __assert_fail ("Token.is(MIToken::IntegerType)", "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 1294, __extension__ __PRETTY_FUNCTION__))
;
1295 auto Loc = Token.location();
1296 lex();
1297 if (Token.isNot(MIToken::IntegerLiteral))
1298 return error("expected an integer literal");
1299 const Constant *C = nullptr;
1300 if (parseIRConstant(Loc, C))
1301 return true;
1302 Dest = MachineOperand::CreateCImm(cast<ConstantInt>(C));
1303 return false;
1304}
1305
1306bool MIParser::parseFPImmediateOperand(MachineOperand &Dest) {
1307 auto Loc = Token.location();
1308 lex();
1309 if (Token.isNot(MIToken::FloatingPointLiteral) &&
1310 Token.isNot(MIToken::HexLiteral))
1311 return error("expected a floating point literal");
1312 const Constant *C = nullptr;
1313 if (parseIRConstant(Loc, C))
1314 return true;
1315 Dest = MachineOperand::CreateFPImm(cast<ConstantFP>(C));
1316 return false;
1317}
1318
1319bool MIParser::getUnsigned(unsigned &Result) {
1320 if (Token.hasIntegerValue()) {
9
Assuming the condition is false
10
Taking false branch
31
Assuming the condition is false
32
Taking false branch
54
Assuming the condition is true
55
Taking true branch
1321 const uint64_t Limit = uint64_t(std::numeric_limits<unsigned>::max()) + 1;
56
Calling 'numeric_limits::max'
57
Returning from 'numeric_limits::max'
1322 uint64_t Val64 = Token.integerValue().getLimitedValue(Limit);
58
Calling 'MIToken::integerValue'
59
Returning from 'MIToken::integerValue'
1323 if (Val64 == Limit)
60
Assuming 'Val64' is equal to 'Limit'
61
Taking true branch
1324 return error("expected 32-bit integer (too large)");
62
Calling 'MIParser::error'
65
Returning from 'MIParser::error'
1325 Result = Val64;
1326 return false;
1327 }
1328 if (Token.is(MIToken::HexLiteral)) {
11
Calling 'MIToken::is'
12
Returning from 'MIToken::is'
13
Taking true branch
33
Calling 'MIToken::is'
34
Returning from 'MIToken::is'
35
Taking true branch
1329 APInt A;
14
Calling default constructor for 'APInt'
17
Returning from default constructor for 'APInt'
36
Calling default constructor for 'APInt'
39
Returning from default constructor for 'APInt'
1330 if (getHexUint(A))
18
Assuming the condition is false
19
Taking false branch
40
Assuming the condition is false
41
Taking false branch
1331 return true;
1332 if (A.getBitWidth() > 32)
20
Calling 'APInt::getBitWidth'
21
Returning from 'APInt::getBitWidth'
22
Assuming the condition is false
23
Taking false branch
42
Calling 'APInt::getBitWidth'
43
Returning from 'APInt::getBitWidth'
44
Assuming the condition is false
45
Taking false branch
1333 return error("expected 32-bit integer (too large)");
1334 Result = A.getZExtValue();
1335 return false;
1336 }
1337 return true;
1338}
1339
1340bool MIParser::parseMBBReference(MachineBasicBlock *&MBB) {
1341 assert(Token.is(MIToken::MachineBasicBlock) ||(static_cast <bool> (Token.is(MIToken::MachineBasicBlock
) || Token.is(MIToken::MachineBasicBlockLabel)) ? void (0) : __assert_fail
("Token.is(MIToken::MachineBasicBlock) || Token.is(MIToken::MachineBasicBlockLabel)"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 1342, __extension__ __PRETTY_FUNCTION__))
1342 Token.is(MIToken::MachineBasicBlockLabel))(static_cast <bool> (Token.is(MIToken::MachineBasicBlock
) || Token.is(MIToken::MachineBasicBlockLabel)) ? void (0) : __assert_fail
("Token.is(MIToken::MachineBasicBlock) || Token.is(MIToken::MachineBasicBlockLabel)"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 1342, __extension__ __PRETTY_FUNCTION__))
;
1343 unsigned Number;
1344 if (getUnsigned(Number))
1345 return true;
1346 auto MBBInfo = PFS.MBBSlots.find(Number);
1347 if (MBBInfo == PFS.MBBSlots.end())
1348 return error(Twine("use of undefined machine basic block #") +
1349 Twine(Number));
1350 MBB = MBBInfo->second;
1351 // TODO: Only parse the name if it's a MachineBasicBlockLabel. Deprecate once
1352 // we drop the <irname> from the bb.<id>.<irname> format.
1353 if (!Token.stringValue().empty() && Token.stringValue() != MBB->getName())
1354 return error(Twine("the name of machine basic block #") + Twine(Number) +
1355 " isn't '" + Token.stringValue() + "'");
1356 return false;
1357}
1358
1359bool MIParser::parseMBBOperand(MachineOperand &Dest) {
1360 MachineBasicBlock *MBB;
1361 if (parseMBBReference(MBB))
1362 return true;
1363 Dest = MachineOperand::CreateMBB(MBB);
1364 lex();
1365 return false;
1366}
1367
1368bool MIParser::parseStackFrameIndex(int &FI) {
1369 assert(Token.is(MIToken::StackObject))(static_cast <bool> (Token.is(MIToken::StackObject)) ? void
(0) : __assert_fail ("Token.is(MIToken::StackObject)", "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 1369, __extension__ __PRETTY_FUNCTION__))
;
1370 unsigned ID;
1371 if (getUnsigned(ID))
1372 return true;
1373 auto ObjectInfo = PFS.StackObjectSlots.find(ID);
1374 if (ObjectInfo == PFS.StackObjectSlots.end())
1375 return error(Twine("use of undefined stack object '%stack.") + Twine(ID) +
1376 "'");
1377 StringRef Name;
1378 if (const auto *Alloca =
1379 MF.getFrameInfo().getObjectAllocation(ObjectInfo->second))
1380 Name = Alloca->getName();
1381 if (!Token.stringValue().empty() && Token.stringValue() != Name)
1382 return error(Twine("the name of the stack object '%stack.") + Twine(ID) +
1383 "' isn't '" + Token.stringValue() + "'");
1384 lex();
1385 FI = ObjectInfo->second;
1386 return false;
1387}
1388
1389bool MIParser::parseStackObjectOperand(MachineOperand &Dest) {
1390 int FI;
1391 if (parseStackFrameIndex(FI))
1392 return true;
1393 Dest = MachineOperand::CreateFI(FI);
1394 return false;
1395}
1396
1397bool MIParser::parseFixedStackFrameIndex(int &FI) {
1398 assert(Token.is(MIToken::FixedStackObject))(static_cast <bool> (Token.is(MIToken::FixedStackObject
)) ? void (0) : __assert_fail ("Token.is(MIToken::FixedStackObject)"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 1398, __extension__ __PRETTY_FUNCTION__))
;
1399 unsigned ID;
1400 if (getUnsigned(ID))
1401 return true;
1402 auto ObjectInfo = PFS.FixedStackObjectSlots.find(ID);
1403 if (ObjectInfo == PFS.FixedStackObjectSlots.end())
1404 return error(Twine("use of undefined fixed stack object '%fixed-stack.") +
1405 Twine(ID) + "'");
1406 lex();
1407 FI = ObjectInfo->second;
1408 return false;
1409}
1410
1411bool MIParser::parseFixedStackObjectOperand(MachineOperand &Dest) {
1412 int FI;
1413 if (parseFixedStackFrameIndex(FI))
1414 return true;
1415 Dest = MachineOperand::CreateFI(FI);
1416 return false;
1417}
1418
1419bool MIParser::parseGlobalValue(GlobalValue *&GV) {
1420 switch (Token.kind()) {
1421 case MIToken::NamedGlobalValue: {
1422 const Module *M = MF.getFunction().getParent();
1423 GV = M->getNamedValue(Token.stringValue());
1424 if (!GV)
1425 return error(Twine("use of undefined global value '") + Token.range() +
1426 "'");
1427 break;
1428 }
1429 case MIToken::GlobalValue: {
1430 unsigned GVIdx;
1431 if (getUnsigned(GVIdx))
1432 return true;
1433 if (GVIdx >= PFS.IRSlots.GlobalValues.size())
1434 return error(Twine("use of undefined global value '@") + Twine(GVIdx) +
1435 "'");
1436 GV = PFS.IRSlots.GlobalValues[GVIdx];
1437 break;
1438 }
1439 default:
1440 llvm_unreachable("The current token should be a global value")::llvm::llvm_unreachable_internal("The current token should be a global value"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 1440)
;
1441 }
1442 return false;
1443}
1444
1445bool MIParser::parseGlobalAddressOperand(MachineOperand &Dest) {
1446 GlobalValue *GV = nullptr;
1447 if (parseGlobalValue(GV))
1448 return true;
1449 lex();
1450 Dest = MachineOperand::CreateGA(GV, /*Offset=*/0);
1451 if (parseOperandsOffset(Dest))
1452 return true;
1453 return false;
1454}
1455
1456bool MIParser::parseConstantPoolIndexOperand(MachineOperand &Dest) {
1457 assert(Token.is(MIToken::ConstantPoolItem))(static_cast <bool> (Token.is(MIToken::ConstantPoolItem
)) ? void (0) : __assert_fail ("Token.is(MIToken::ConstantPoolItem)"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 1457, __extension__ __PRETTY_FUNCTION__))
;
1458 unsigned ID;
1459 if (getUnsigned(ID))
1460 return true;
1461 auto ConstantInfo = PFS.ConstantPoolSlots.find(ID);
1462 if (ConstantInfo == PFS.ConstantPoolSlots.end())
1463 return error("use of undefined constant '%const." + Twine(ID) + "'");
1464 lex();
1465 Dest = MachineOperand::CreateCPI(ID, /*Offset=*/0);
1466 if (parseOperandsOffset(Dest))
1467 return true;
1468 return false;
1469}
1470
1471bool MIParser::parseJumpTableIndexOperand(MachineOperand &Dest) {
1472 assert(Token.is(MIToken::JumpTableIndex))(static_cast <bool> (Token.is(MIToken::JumpTableIndex))
? void (0) : __assert_fail ("Token.is(MIToken::JumpTableIndex)"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 1472, __extension__ __PRETTY_FUNCTION__))
;
1473 unsigned ID;
1474 if (getUnsigned(ID))
1475 return true;
1476 auto JumpTableEntryInfo = PFS.JumpTableSlots.find(ID);
1477 if (JumpTableEntryInfo == PFS.JumpTableSlots.end())
1478 return error("use of undefined jump table '%jump-table." + Twine(ID) + "'");
1479 lex();
1480 Dest = MachineOperand::CreateJTI(JumpTableEntryInfo->second);
1481 return false;
1482}
1483
1484bool MIParser::parseExternalSymbolOperand(MachineOperand &Dest) {
1485 assert(Token.is(MIToken::ExternalSymbol))(static_cast <bool> (Token.is(MIToken::ExternalSymbol))
? void (0) : __assert_fail ("Token.is(MIToken::ExternalSymbol)"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 1485, __extension__ __PRETTY_FUNCTION__))
;
1486 const char *Symbol = MF.createExternalSymbolName(Token.stringValue());
1487 lex();
1488 Dest = MachineOperand::CreateES(Symbol);
1489 if (parseOperandsOffset(Dest))
1490 return true;
1491 return false;
1492}
1493
1494bool MIParser::parseSubRegisterIndexOperand(MachineOperand &Dest) {
1495 assert(Token.is(MIToken::SubRegisterIndex))(static_cast <bool> (Token.is(MIToken::SubRegisterIndex
)) ? void (0) : __assert_fail ("Token.is(MIToken::SubRegisterIndex)"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 1495, __extension__ __PRETTY_FUNCTION__))
;
1496 StringRef Name = Token.stringValue();
1497 unsigned SubRegIndex = getSubRegIndex(Token.stringValue());
1498 if (SubRegIndex == 0)
1499 return error(Twine("unknown subregister index '") + Name + "'");
1500 lex();
1501 Dest = MachineOperand::CreateImm(SubRegIndex);
1502 return false;
1503}
1504
1505bool MIParser::parseMDNode(MDNode *&Node) {
1506 assert(Token.is(MIToken::exclaim))(static_cast <bool> (Token.is(MIToken::exclaim)) ? void
(0) : __assert_fail ("Token.is(MIToken::exclaim)", "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 1506, __extension__ __PRETTY_FUNCTION__))
;
1507
1508 auto Loc = Token.location();
1509 lex();
1510 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
1511 return error("expected metadata id after '!'");
1512 unsigned ID;
1513 if (getUnsigned(ID))
1514 return true;
1515 auto NodeInfo = PFS.IRSlots.MetadataNodes.find(ID);
1516 if (NodeInfo == PFS.IRSlots.MetadataNodes.end())
1517 return error(Loc, "use of undefined metadata '!" + Twine(ID) + "'");
1518 lex();
1519 Node = NodeInfo->second.get();
1520 return false;
1521}
1522
1523bool MIParser::parseDIExpression(MDNode *&Expr) {
1524 assert(Token.is(MIToken::md_diexpr))(static_cast <bool> (Token.is(MIToken::md_diexpr)) ? void
(0) : __assert_fail ("Token.is(MIToken::md_diexpr)", "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 1524, __extension__ __PRETTY_FUNCTION__))
;
1525 lex();
1526
1527 // FIXME: Share this parsing with the IL parser.
1528 SmallVector<uint64_t, 8> Elements;
1529
1530 if (expectAndConsume(MIToken::lparen))
1531 return true;
1532
1533 if (Token.isNot(MIToken::rparen)) {
1534 do {
1535 if (Token.is(MIToken::Identifier)) {
1536 if (unsigned Op = dwarf::getOperationEncoding(Token.stringValue())) {
1537 lex();
1538 Elements.push_back(Op);
1539 continue;
1540 }
1541 return error(Twine("invalid DWARF op '") + Token.stringValue() + "'");
1542 }
1543
1544 if (Token.isNot(MIToken::IntegerLiteral) ||
1545 Token.integerValue().isSigned())
1546 return error("expected unsigned integer");
1547
1548 auto &U = Token.integerValue();
1549 if (U.ugt(UINT64_MAX(18446744073709551615UL)))
1550 return error("element too large, limit is " + Twine(UINT64_MAX(18446744073709551615UL)));
1551 Elements.push_back(U.getZExtValue());
1552 lex();
1553
1554 } while (consumeIfPresent(MIToken::comma));
1555 }
1556
1557 if (expectAndConsume(MIToken::rparen))
1558 return true;
1559
1560 Expr = DIExpression::get(MF.getFunction().getContext(), Elements);
1561 return false;
1562}
1563
1564bool MIParser::parseMetadataOperand(MachineOperand &Dest) {
1565 MDNode *Node = nullptr;
1566 if (Token.is(MIToken::exclaim)) {
1567 if (parseMDNode(Node))
1568 return true;
1569 } else if (Token.is(MIToken::md_diexpr)) {
1570 if (parseDIExpression(Node))
1571 return true;
1572 }
1573 Dest = MachineOperand::CreateMetadata(Node);
1574 return false;
1575}
1576
1577bool MIParser::parseCFIOffset(int &Offset) {
1578 if (Token.isNot(MIToken::IntegerLiteral))
1579 return error("expected a cfi offset");
1580 if (Token.integerValue().getMinSignedBits() > 32)
1581 return error("expected a 32 bit integer (the cfi offset is too large)");
1582 Offset = (int)Token.integerValue().getExtValue();
1583 lex();
1584 return false;
1585}
1586
1587bool MIParser::parseCFIRegister(unsigned &Reg) {
1588 if (Token.isNot(MIToken::NamedRegister))
1589 return error("expected a cfi register");
1590 unsigned LLVMReg;
1591 if (parseNamedRegister(LLVMReg))
1592 return true;
1593 const auto *TRI = MF.getSubtarget().getRegisterInfo();
1594 assert(TRI && "Expected target register info")(static_cast <bool> (TRI && "Expected target register info"
) ? void (0) : __assert_fail ("TRI && \"Expected target register info\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 1594, __extension__ __PRETTY_FUNCTION__))
;
1595 int DwarfReg = TRI->getDwarfRegNum(LLVMReg, true);
1596 if (DwarfReg < 0)
1597 return error("invalid DWARF register");
1598 Reg = (unsigned)DwarfReg;
1599 lex();
1600 return false;
1601}
1602
1603bool MIParser::parseCFIEscapeValues(std::string &Values) {
1604 do {
28
Loop condition is true. Execution continues on line 1605
50
Loop condition is true. Execution continues on line 1605
1605 if (Token.isNot(MIToken::HexLiteral))
7
Taking false branch
29
Taking false branch
51
Taking false branch
1606 return error("expected a hexadecimal literal");
1607 unsigned Value;
52
'Value' declared without an initial value
1608 if (getUnsigned(Value))
8
Calling 'MIParser::getUnsigned'
24
Returning from 'MIParser::getUnsigned'
25
Taking false branch
30
Calling 'MIParser::getUnsigned'
46
Returning from 'MIParser::getUnsigned'
47
Taking false branch
53
Calling 'MIParser::getUnsigned'
66
Returning from 'MIParser::getUnsigned'
67
Assuming the condition is false
68
Taking false branch
1609 return true;
1610 if (Value > UINT8_MAX(255))
26
Assuming 'Value' is <= UINT8_MAX
27
Taking false branch
48
Assuming 'Value' is <= UINT8_MAX
49
Taking false branch
69
The left operand of '>' is a garbage value
1611 return error("expected a 8-bit integer (too large)");
1612 Values.push_back(static_cast<uint8_t>(Value));
1613 lex();
1614 } while (consumeIfPresent(MIToken::comma));
1615 return false;
1616}
1617
1618bool MIParser::parseCFIOperand(MachineOperand &Dest) {
1619 auto Kind = Token.kind();
1620 lex();
1621 int Offset;
1622 unsigned Reg;
1623 unsigned CFIIndex;
1624 switch (Kind) {
5
Control jumps to 'case kw_cfi_escape:' at line 1700
1625 case MIToken::kw_cfi_same_value:
1626 if (parseCFIRegister(Reg))
1627 return true;
1628 CFIIndex = MF.addFrameInst(MCCFIInstruction::createSameValue(nullptr, Reg));
1629 break;
1630 case MIToken::kw_cfi_offset:
1631 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1632 parseCFIOffset(Offset))
1633 return true;
1634 CFIIndex =
1635 MF.addFrameInst(MCCFIInstruction::createOffset(nullptr, Reg, Offset));
1636 break;
1637 case MIToken::kw_cfi_rel_offset:
1638 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1639 parseCFIOffset(Offset))
1640 return true;
1641 CFIIndex = MF.addFrameInst(
1642 MCCFIInstruction::createRelOffset(nullptr, Reg, Offset));
1643 break;
1644 case MIToken::kw_cfi_def_cfa_register:
1645 if (parseCFIRegister(Reg))
1646 return true;
1647 CFIIndex =
1648 MF.addFrameInst(MCCFIInstruction::createDefCfaRegister(nullptr, Reg));
1649 break;
1650 case MIToken::kw_cfi_def_cfa_offset:
1651 if (parseCFIOffset(Offset))
1652 return true;
1653 // NB: MCCFIInstruction::createDefCfaOffset negates the offset.
1654 CFIIndex = MF.addFrameInst(
1655 MCCFIInstruction::createDefCfaOffset(nullptr, -Offset));
1656 break;
1657 case MIToken::kw_cfi_adjust_cfa_offset:
1658 if (parseCFIOffset(Offset))
1659 return true;
1660 CFIIndex = MF.addFrameInst(
1661 MCCFIInstruction::createAdjustCfaOffset(nullptr, Offset));
1662 break;
1663 case MIToken::kw_cfi_def_cfa:
1664 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1665 parseCFIOffset(Offset))
1666 return true;
1667 // NB: MCCFIInstruction::createDefCfa negates the offset.
1668 CFIIndex =
1669 MF.addFrameInst(MCCFIInstruction::createDefCfa(nullptr, Reg, -Offset));
1670 break;
1671 case MIToken::kw_cfi_remember_state:
1672 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRememberState(nullptr));
1673 break;
1674 case MIToken::kw_cfi_restore:
1675 if (parseCFIRegister(Reg))
1676 return true;
1677 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestore(nullptr, Reg));
1678 break;
1679 case MIToken::kw_cfi_restore_state:
1680 CFIIndex = MF.addFrameInst(MCCFIInstruction::createRestoreState(nullptr));
1681 break;
1682 case MIToken::kw_cfi_undefined:
1683 if (parseCFIRegister(Reg))
1684 return true;
1685 CFIIndex = MF.addFrameInst(MCCFIInstruction::createUndefined(nullptr, Reg));
1686 break;
1687 case MIToken::kw_cfi_register: {
1688 unsigned Reg2;
1689 if (parseCFIRegister(Reg) || expectAndConsume(MIToken::comma) ||
1690 parseCFIRegister(Reg2))
1691 return true;
1692
1693 CFIIndex =
1694 MF.addFrameInst(MCCFIInstruction::createRegister(nullptr, Reg, Reg2));
1695 break;
1696 }
1697 case MIToken::kw_cfi_window_save:
1698 CFIIndex = MF.addFrameInst(MCCFIInstruction::createWindowSave(nullptr));
1699 break;
1700 case MIToken::kw_cfi_escape: {
1701 std::string Values;
1702 if (parseCFIEscapeValues(Values))
6
Calling 'MIParser::parseCFIEscapeValues'
1703 return true;
1704 CFIIndex = MF.addFrameInst(MCCFIInstruction::createEscape(nullptr, Values));
1705 break;
1706 }
1707 default:
1708 // TODO: Parse the other CFI operands.
1709 llvm_unreachable("The current token should be a cfi operand")::llvm::llvm_unreachable_internal("The current token should be a cfi operand"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 1709)
;
1710 }
1711 Dest = MachineOperand::CreateCFIIndex(CFIIndex);
1712 return false;
1713}
1714
1715bool MIParser::parseIRBlock(BasicBlock *&BB, const Function &F) {
1716 switch (Token.kind()) {
1717 case MIToken::NamedIRBlock: {
1718 BB = dyn_cast_or_null<BasicBlock>(
1719 F.getValueSymbolTable()->lookup(Token.stringValue()));
1720 if (!BB)
1721 return error(Twine("use of undefined IR block '") + Token.range() + "'");
1722 break;
1723 }
1724 case MIToken::IRBlock: {
1725 unsigned SlotNumber = 0;
1726 if (getUnsigned(SlotNumber))
1727 return true;
1728 BB = const_cast<BasicBlock *>(getIRBlock(SlotNumber, F));
1729 if (!BB)
1730 return error(Twine("use of undefined IR block '%ir-block.") +
1731 Twine(SlotNumber) + "'");
1732 break;
1733 }
1734 default:
1735 llvm_unreachable("The current token should be an IR block reference")::llvm::llvm_unreachable_internal("The current token should be an IR block reference"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 1735)
;
1736 }
1737 return false;
1738}
1739
1740bool MIParser::parseBlockAddressOperand(MachineOperand &Dest) {
1741 assert(Token.is(MIToken::kw_blockaddress))(static_cast <bool> (Token.is(MIToken::kw_blockaddress)
) ? void (0) : __assert_fail ("Token.is(MIToken::kw_blockaddress)"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 1741, __extension__ __PRETTY_FUNCTION__))
;
1742 lex();
1743 if (expectAndConsume(MIToken::lparen))
1744 return true;
1745 if (Token.isNot(MIToken::GlobalValue) &&
1746 Token.isNot(MIToken::NamedGlobalValue))
1747 return error("expected a global value");
1748 GlobalValue *GV = nullptr;
1749 if (parseGlobalValue(GV))
1750 return true;
1751 auto *F = dyn_cast<Function>(GV);
1752 if (!F)
1753 return error("expected an IR function reference");
1754 lex();
1755 if (expectAndConsume(MIToken::comma))
1756 return true;
1757 BasicBlock *BB = nullptr;
1758 if (Token.isNot(MIToken::IRBlock) && Token.isNot(MIToken::NamedIRBlock))
1759 return error("expected an IR block reference");
1760 if (parseIRBlock(BB, *F))
1761 return true;
1762 lex();
1763 if (expectAndConsume(MIToken::rparen))
1764 return true;
1765 Dest = MachineOperand::CreateBA(BlockAddress::get(F, BB), /*Offset=*/0);
1766 if (parseOperandsOffset(Dest))
1767 return true;
1768 return false;
1769}
1770
1771bool MIParser::parseIntrinsicOperand(MachineOperand &Dest) {
1772 assert(Token.is(MIToken::kw_intrinsic))(static_cast <bool> (Token.is(MIToken::kw_intrinsic)) ?
void (0) : __assert_fail ("Token.is(MIToken::kw_intrinsic)",
"/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 1772, __extension__ __PRETTY_FUNCTION__))
;
1773 lex();
1774 if (expectAndConsume(MIToken::lparen))
1775 return error("expected syntax intrinsic(@llvm.whatever)");
1776
1777 if (Token.isNot(MIToken::NamedGlobalValue))
1778 return error("expected syntax intrinsic(@llvm.whatever)");
1779
1780 std::string Name = Token.stringValue();
1781 lex();
1782
1783 if (expectAndConsume(MIToken::rparen))
1784 return error("expected ')' to terminate intrinsic name");
1785
1786 // Find out what intrinsic we're dealing with, first try the global namespace
1787 // and then the target's private intrinsics if that fails.
1788 const TargetIntrinsicInfo *TII = MF.getTarget().getIntrinsicInfo();
1789 Intrinsic::ID ID = Function::lookupIntrinsicID(Name);
1790 if (ID == Intrinsic::not_intrinsic && TII)
1791 ID = static_cast<Intrinsic::ID>(TII->lookupName(Name));
1792
1793 if (ID == Intrinsic::not_intrinsic)
1794 return error("unknown intrinsic name");
1795 Dest = MachineOperand::CreateIntrinsicID(ID);
1796
1797 return false;
1798}
1799
1800bool MIParser::parsePredicateOperand(MachineOperand &Dest) {
1801 assert(Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred))(static_cast <bool> (Token.is(MIToken::kw_intpred) || Token
.is(MIToken::kw_floatpred)) ? void (0) : __assert_fail ("Token.is(MIToken::kw_intpred) || Token.is(MIToken::kw_floatpred)"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 1801, __extension__ __PRETTY_FUNCTION__))
;
1802 bool IsFloat = Token.is(MIToken::kw_floatpred);
1803 lex();
1804
1805 if (expectAndConsume(MIToken::lparen))
1806 return error("expected syntax intpred(whatever) or floatpred(whatever");
1807
1808 if (Token.isNot(MIToken::Identifier))
1809 return error("whatever");
1810
1811 CmpInst::Predicate Pred;
1812 if (IsFloat) {
1813 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1814 .Case("false", CmpInst::FCMP_FALSE)
1815 .Case("oeq", CmpInst::FCMP_OEQ)
1816 .Case("ogt", CmpInst::FCMP_OGT)
1817 .Case("oge", CmpInst::FCMP_OGE)
1818 .Case("olt", CmpInst::FCMP_OLT)
1819 .Case("ole", CmpInst::FCMP_OLE)
1820 .Case("one", CmpInst::FCMP_ONE)
1821 .Case("ord", CmpInst::FCMP_ORD)
1822 .Case("uno", CmpInst::FCMP_UNO)
1823 .Case("ueq", CmpInst::FCMP_UEQ)
1824 .Case("ugt", CmpInst::FCMP_UGT)
1825 .Case("uge", CmpInst::FCMP_UGE)
1826 .Case("ult", CmpInst::FCMP_ULT)
1827 .Case("ule", CmpInst::FCMP_ULE)
1828 .Case("une", CmpInst::FCMP_UNE)
1829 .Case("true", CmpInst::FCMP_TRUE)
1830 .Default(CmpInst::BAD_FCMP_PREDICATE);
1831 if (!CmpInst::isFPPredicate(Pred))
1832 return error("invalid floating-point predicate");
1833 } else {
1834 Pred = StringSwitch<CmpInst::Predicate>(Token.stringValue())
1835 .Case("eq", CmpInst::ICMP_EQ)
1836 .Case("ne", CmpInst::ICMP_NE)
1837 .Case("sgt", CmpInst::ICMP_SGT)
1838 .Case("sge", CmpInst::ICMP_SGE)
1839 .Case("slt", CmpInst::ICMP_SLT)
1840 .Case("sle", CmpInst::ICMP_SLE)
1841 .Case("ugt", CmpInst::ICMP_UGT)
1842 .Case("uge", CmpInst::ICMP_UGE)
1843 .Case("ult", CmpInst::ICMP_ULT)
1844 .Case("ule", CmpInst::ICMP_ULE)
1845 .Default(CmpInst::BAD_ICMP_PREDICATE);
1846 if (!CmpInst::isIntPredicate(Pred))
1847 return error("invalid integer predicate");
1848 }
1849
1850 lex();
1851 Dest = MachineOperand::CreatePredicate(Pred);
1852 if (expectAndConsume(MIToken::rparen))
1853 return error("predicate should be terminated by ')'.");
1854
1855 return false;
1856}
1857
1858bool MIParser::parseTargetIndexOperand(MachineOperand &Dest) {
1859 assert(Token.is(MIToken::kw_target_index))(static_cast <bool> (Token.is(MIToken::kw_target_index)
) ? void (0) : __assert_fail ("Token.is(MIToken::kw_target_index)"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 1859, __extension__ __PRETTY_FUNCTION__))
;
1860 lex();
1861 if (expectAndConsume(MIToken::lparen))
1862 return true;
1863 if (Token.isNot(MIToken::Identifier))
1864 return error("expected the name of the target index");
1865 int Index = 0;
1866 if (getTargetIndex(Token.stringValue(), Index))
1867 return error("use of undefined target index '" + Token.stringValue() + "'");
1868 lex();
1869 if (expectAndConsume(MIToken::rparen))
1870 return true;
1871 Dest = MachineOperand::CreateTargetIndex(unsigned(Index), /*Offset=*/0);
1872 if (parseOperandsOffset(Dest))
1873 return true;
1874 return false;
1875}
1876
1877bool MIParser::parseCustomRegisterMaskOperand(MachineOperand &Dest) {
1878 assert(Token.stringValue() == "CustomRegMask" && "Expected a custom RegMask")(static_cast <bool> (Token.stringValue() == "CustomRegMask"
&& "Expected a custom RegMask") ? void (0) : __assert_fail
("Token.stringValue() == \"CustomRegMask\" && \"Expected a custom RegMask\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 1878, __extension__ __PRETTY_FUNCTION__))
;
1879 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1880 assert(TRI && "Expected target register info")(static_cast <bool> (TRI && "Expected target register info"
) ? void (0) : __assert_fail ("TRI && \"Expected target register info\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 1880, __extension__ __PRETTY_FUNCTION__))
;
1881 lex();
1882 if (expectAndConsume(MIToken::lparen))
1883 return true;
1884
1885 uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs());
1886 while (true) {
1887 if (Token.isNot(MIToken::NamedRegister))
1888 return error("expected a named register");
1889 unsigned Reg;
1890 if (parseNamedRegister(Reg))
1891 return true;
1892 lex();
1893 Mask[Reg / 32] |= 1U << (Reg % 32);
1894 // TODO: Report an error if the same register is used more than once.
1895 if (Token.isNot(MIToken::comma))
1896 break;
1897 lex();
1898 }
1899
1900 if (expectAndConsume(MIToken::rparen))
1901 return true;
1902 Dest = MachineOperand::CreateRegMask(Mask);
1903 return false;
1904}
1905
1906bool MIParser::parseLiveoutRegisterMaskOperand(MachineOperand &Dest) {
1907 assert(Token.is(MIToken::kw_liveout))(static_cast <bool> (Token.is(MIToken::kw_liveout)) ? void
(0) : __assert_fail ("Token.is(MIToken::kw_liveout)", "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 1907, __extension__ __PRETTY_FUNCTION__))
;
1908 const auto *TRI = MF.getSubtarget().getRegisterInfo();
1909 assert(TRI && "Expected target register info")(static_cast <bool> (TRI && "Expected target register info"
) ? void (0) : __assert_fail ("TRI && \"Expected target register info\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 1909, __extension__ __PRETTY_FUNCTION__))
;
1910 uint32_t *Mask = MF.allocateRegisterMask(TRI->getNumRegs());
1911 lex();
1912 if (expectAndConsume(MIToken::lparen))
1913 return true;
1914 while (true) {
1915 if (Token.isNot(MIToken::NamedRegister))
1916 return error("expected a named register");
1917 unsigned Reg;
1918 if (parseNamedRegister(Reg))
1919 return true;
1920 lex();
1921 Mask[Reg / 32] |= 1U << (Reg % 32);
1922 // TODO: Report an error if the same register is used more than once.
1923 if (Token.isNot(MIToken::comma))
1924 break;
1925 lex();
1926 }
1927 if (expectAndConsume(MIToken::rparen))
1928 return true;
1929 Dest = MachineOperand::CreateRegLiveOut(Mask);
1930 return false;
1931}
1932
1933bool MIParser::parseMachineOperand(MachineOperand &Dest,
1934 Optional<unsigned> &TiedDefIdx) {
1935 switch (Token.kind()) {
3
Control jumps to 'case kw_cfi_escape:' at line 1987
1936 case MIToken::kw_implicit:
1937 case MIToken::kw_implicit_define:
1938 case MIToken::kw_def:
1939 case MIToken::kw_dead:
1940 case MIToken::kw_killed:
1941 case MIToken::kw_undef:
1942 case MIToken::kw_internal:
1943 case MIToken::kw_early_clobber:
1944 case MIToken::kw_debug_use:
1945 case MIToken::kw_renamable:
1946 case MIToken::underscore:
1947 case MIToken::NamedRegister:
1948 case MIToken::VirtualRegister:
1949 return parseRegisterOperand(Dest, TiedDefIdx);
1950 case MIToken::IntegerLiteral:
1951 return parseImmediateOperand(Dest);
1952 case MIToken::IntegerType:
1953 return parseTypedImmediateOperand(Dest);
1954 case MIToken::kw_half:
1955 case MIToken::kw_float:
1956 case MIToken::kw_double:
1957 case MIToken::kw_x86_fp80:
1958 case MIToken::kw_fp128:
1959 case MIToken::kw_ppc_fp128:
1960 return parseFPImmediateOperand(Dest);
1961 case MIToken::MachineBasicBlock:
1962 return parseMBBOperand(Dest);
1963 case MIToken::StackObject:
1964 return parseStackObjectOperand(Dest);
1965 case MIToken::FixedStackObject:
1966 return parseFixedStackObjectOperand(Dest);
1967 case MIToken::GlobalValue:
1968 case MIToken::NamedGlobalValue:
1969 return parseGlobalAddressOperand(Dest);
1970 case MIToken::ConstantPoolItem:
1971 return parseConstantPoolIndexOperand(Dest);
1972 case MIToken::JumpTableIndex:
1973 return parseJumpTableIndexOperand(Dest);
1974 case MIToken::ExternalSymbol:
1975 return parseExternalSymbolOperand(Dest);
1976 case MIToken::SubRegisterIndex:
1977 return parseSubRegisterIndexOperand(Dest);
1978 case MIToken::md_diexpr:
1979 case MIToken::exclaim:
1980 return parseMetadataOperand(Dest);
1981 case MIToken::kw_cfi_same_value:
1982 case MIToken::kw_cfi_offset:
1983 case MIToken::kw_cfi_rel_offset:
1984 case MIToken::kw_cfi_def_cfa_register:
1985 case MIToken::kw_cfi_def_cfa_offset:
1986 case MIToken::kw_cfi_adjust_cfa_offset:
1987 case MIToken::kw_cfi_escape:
1988 case MIToken::kw_cfi_def_cfa:
1989 case MIToken::kw_cfi_register:
1990 case MIToken::kw_cfi_remember_state:
1991 case MIToken::kw_cfi_restore:
1992 case MIToken::kw_cfi_restore_state:
1993 case MIToken::kw_cfi_undefined:
1994 case MIToken::kw_cfi_window_save:
1995 return parseCFIOperand(Dest);
4
Calling 'MIParser::parseCFIOperand'
1996 case MIToken::kw_blockaddress:
1997 return parseBlockAddressOperand(Dest);
1998 case MIToken::kw_intrinsic:
1999 return parseIntrinsicOperand(Dest);
2000 case MIToken::kw_target_index:
2001 return parseTargetIndexOperand(Dest);
2002 case MIToken::kw_liveout:
2003 return parseLiveoutRegisterMaskOperand(Dest);
2004 case MIToken::kw_floatpred:
2005 case MIToken::kw_intpred:
2006 return parsePredicateOperand(Dest);
2007 case MIToken::Error:
2008 return true;
2009 case MIToken::Identifier:
2010 if (const auto *RegMask = getRegMask(Token.stringValue())) {
2011 Dest = MachineOperand::CreateRegMask(RegMask);
2012 lex();
2013 break;
2014 } else
2015 return parseCustomRegisterMaskOperand(Dest);
2016 default:
2017 // FIXME: Parse the MCSymbol machine operand.
2018 return error("expected a machine operand");
2019 }
2020 return false;
2021}
2022
2023bool MIParser::parseMachineOperandAndTargetFlags(
2024 MachineOperand &Dest, Optional<unsigned> &TiedDefIdx) {
2025 unsigned TF = 0;
2026 bool HasTargetFlags = false;
2027 if (Token.is(MIToken::kw_target_flags)) {
1
Taking false branch
2028 HasTargetFlags = true;
2029 lex();
2030 if (expectAndConsume(MIToken::lparen))
2031 return true;
2032 if (Token.isNot(MIToken::Identifier))
2033 return error("expected the name of the target flag");
2034 if (getDirectTargetFlag(Token.stringValue(), TF)) {
2035 if (getBitmaskTargetFlag(Token.stringValue(), TF))
2036 return error("use of undefined target flag '" + Token.stringValue() +
2037 "'");
2038 }
2039 lex();
2040 while (Token.is(MIToken::comma)) {
2041 lex();
2042 if (Token.isNot(MIToken::Identifier))
2043 return error("expected the name of the target flag");
2044 unsigned BitFlag = 0;
2045 if (getBitmaskTargetFlag(Token.stringValue(), BitFlag))
2046 return error("use of undefined target flag '" + Token.stringValue() +
2047 "'");
2048 // TODO: Report an error when using a duplicate bit target flag.
2049 TF |= BitFlag;
2050 lex();
2051 }
2052 if (expectAndConsume(MIToken::rparen))
2053 return true;
2054 }
2055 auto Loc = Token.location();
2056 if (parseMachineOperand(Dest, TiedDefIdx))
2
Calling 'MIParser::parseMachineOperand'
2057 return true;
2058 if (!HasTargetFlags)
2059 return false;
2060 if (Dest.isReg())
2061 return error(Loc, "register operands can't have target flags");
2062 Dest.setTargetFlags(TF);
2063 return false;
2064}
2065
2066bool MIParser::parseOffset(int64_t &Offset) {
2067 if (Token.isNot(MIToken::plus) && Token.isNot(MIToken::minus))
2068 return false;
2069 StringRef Sign = Token.range();
2070 bool IsNegative = Token.is(MIToken::minus);
2071 lex();
2072 if (Token.isNot(MIToken::IntegerLiteral))
2073 return error("expected an integer literal after '" + Sign + "'");
2074 if (Token.integerValue().getMinSignedBits() > 64)
2075 return error("expected 64-bit integer (too large)");
2076 Offset = Token.integerValue().getExtValue();
2077 if (IsNegative)
2078 Offset = -Offset;
2079 lex();
2080 return false;
2081}
2082
2083bool MIParser::parseAlignment(unsigned &Alignment) {
2084 assert(Token.is(MIToken::kw_align))(static_cast <bool> (Token.is(MIToken::kw_align)) ? void
(0) : __assert_fail ("Token.is(MIToken::kw_align)", "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 2084, __extension__ __PRETTY_FUNCTION__))
;
2085 lex();
2086 if (Token.isNot(MIToken::IntegerLiteral) || Token.integerValue().isSigned())
2087 return error("expected an integer literal after 'align'");
2088 if (getUnsigned(Alignment))
2089 return true;
2090 lex();
2091 return false;
2092}
2093
2094bool MIParser::parseOperandsOffset(MachineOperand &Op) {
2095 int64_t Offset = 0;
2096 if (parseOffset(Offset))
2097 return true;
2098 Op.setOffset(Offset);
2099 return false;
2100}
2101
2102bool MIParser::parseIRValue(const Value *&V) {
2103 switch (Token.kind()) {
2104 case MIToken::NamedIRValue: {
2105 V = MF.getFunction().getValueSymbolTable()->lookup(Token.stringValue());
2106 break;
2107 }
2108 case MIToken::IRValue: {
2109 unsigned SlotNumber = 0;
2110 if (getUnsigned(SlotNumber))
2111 return true;
2112 V = getIRValue(SlotNumber);
2113 break;
2114 }
2115 case MIToken::NamedGlobalValue:
2116 case MIToken::GlobalValue: {
2117 GlobalValue *GV = nullptr;
2118 if (parseGlobalValue(GV))
2119 return true;
2120 V = GV;
2121 break;
2122 }
2123 case MIToken::QuotedIRValue: {
2124 const Constant *C = nullptr;
2125 if (parseIRConstant(Token.location(), Token.stringValue(), C))
2126 return true;
2127 V = C;
2128 break;
2129 }
2130 default:
2131 llvm_unreachable("The current token should be an IR block reference")::llvm::llvm_unreachable_internal("The current token should be an IR block reference"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 2131)
;
2132 }
2133 if (!V)
2134 return error(Twine("use of undefined IR value '") + Token.range() + "'");
2135 return false;
2136}
2137
2138bool MIParser::getUint64(uint64_t &Result) {
2139 if (Token.hasIntegerValue()) {
2140 if (Token.integerValue().getActiveBits() > 64)
2141 return error("expected 64-bit integer (too large)");
2142 Result = Token.integerValue().getZExtValue();
2143 return false;
2144 }
2145 if (Token.is(MIToken::HexLiteral)) {
2146 APInt A;
2147 if (getHexUint(A))
2148 return true;
2149 if (A.getBitWidth() > 64)
2150 return error("expected 64-bit integer (too large)");
2151 Result = A.getZExtValue();
2152 return false;
2153 }
2154 return true;
2155}
2156
2157bool MIParser::getHexUint(APInt &Result) {
2158 assert(Token.is(MIToken::HexLiteral))(static_cast <bool> (Token.is(MIToken::HexLiteral)) ? void
(0) : __assert_fail ("Token.is(MIToken::HexLiteral)", "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 2158, __extension__ __PRETTY_FUNCTION__))
;
2159 StringRef S = Token.range();
2160 assert(S[0] == '0' && tolower(S[1]) == 'x')(static_cast <bool> (S[0] == '0' && tolower(S[1
]) == 'x') ? void (0) : __assert_fail ("S[0] == '0' && tolower(S[1]) == 'x'"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 2160, __extension__ __PRETTY_FUNCTION__))
;
2161 // This could be a floating point literal with a special prefix.
2162 if (!isxdigit(S[2]))
2163 return true;
2164 StringRef V = S.substr(2);
2165 APInt A(V.size()*4, V, 16);
2166
2167 // If A is 0, then A.getActiveBits() is 0. This isn't a valid bitwidth. Make
2168 // sure it isn't the case before constructing result.
2169 unsigned NumBits = (A == 0) ? 32 : A.getActiveBits();
2170 Result = APInt(NumBits, ArrayRef<uint64_t>(A.getRawData(), A.getNumWords()));
2171 return false;
2172}
2173
2174bool MIParser::parseMemoryOperandFlag(MachineMemOperand::Flags &Flags) {
2175 const auto OldFlags = Flags;
2176 switch (Token.kind()) {
2177 case MIToken::kw_volatile:
2178 Flags |= MachineMemOperand::MOVolatile;
2179 break;
2180 case MIToken::kw_non_temporal:
2181 Flags |= MachineMemOperand::MONonTemporal;
2182 break;
2183 case MIToken::kw_dereferenceable:
2184 Flags |= MachineMemOperand::MODereferenceable;
2185 break;
2186 case MIToken::kw_invariant:
2187 Flags |= MachineMemOperand::MOInvariant;
2188 break;
2189 case MIToken::StringConstant: {
2190 MachineMemOperand::Flags TF;
2191 if (getMMOTargetFlag(Token.stringValue(), TF))
2192 return error("use of undefined target MMO flag '" + Token.stringValue() +
2193 "'");
2194 Flags |= TF;
2195 break;
2196 }
2197 default:
2198 llvm_unreachable("The current token should be a memory operand flag")::llvm::llvm_unreachable_internal("The current token should be a memory operand flag"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 2198)
;
2199 }
2200 if (OldFlags == Flags)
2201 // We know that the same flag is specified more than once when the flags
2202 // weren't modified.
2203 return error("duplicate '" + Token.stringValue() + "' memory operand flag");
2204 lex();
2205 return false;
2206}
2207
2208bool MIParser::parseMemoryPseudoSourceValue(const PseudoSourceValue *&PSV) {
2209 switch (Token.kind()) {
2210 case MIToken::kw_stack:
2211 PSV = MF.getPSVManager().getStack();
2212 break;
2213 case MIToken::kw_got:
2214 PSV = MF.getPSVManager().getGOT();
2215 break;
2216 case MIToken::kw_jump_table:
2217 PSV = MF.getPSVManager().getJumpTable();
2218 break;
2219 case MIToken::kw_constant_pool:
2220 PSV = MF.getPSVManager().getConstantPool();
2221 break;
2222 case MIToken::FixedStackObject: {
2223 int FI;
2224 if (parseFixedStackFrameIndex(FI))
2225 return true;
2226 PSV = MF.getPSVManager().getFixedStack(FI);
2227 // The token was already consumed, so use return here instead of break.
2228 return false;
2229 }
2230 case MIToken::StackObject: {
2231 int FI;
2232 if (parseStackFrameIndex(FI))
2233 return true;
2234 PSV = MF.getPSVManager().getFixedStack(FI);
2235 // The token was already consumed, so use return here instead of break.
2236 return false;
2237 }
2238 case MIToken::kw_call_entry:
2239 lex();
2240 switch (Token.kind()) {
2241 case MIToken::GlobalValue:
2242 case MIToken::NamedGlobalValue: {
2243 GlobalValue *GV = nullptr;
2244 if (parseGlobalValue(GV))
2245 return true;
2246 PSV = MF.getPSVManager().getGlobalValueCallEntry(GV);
2247 break;
2248 }
2249 case MIToken::ExternalSymbol:
2250 PSV = MF.getPSVManager().getExternalSymbolCallEntry(
2251 MF.createExternalSymbolName(Token.stringValue()));
2252 break;
2253 default:
2254 return error(
2255 "expected a global value or an external symbol after 'call-entry'");
2256 }
2257 break;
2258 default:
2259 llvm_unreachable("The current token should be pseudo source value")::llvm::llvm_unreachable_internal("The current token should be pseudo source value"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 2259)
;
2260 }
2261 lex();
2262 return false;
2263}
2264
2265bool MIParser::parseMachinePointerInfo(MachinePointerInfo &Dest) {
2266 if (Token.is(MIToken::kw_constant_pool) || Token.is(MIToken::kw_stack) ||
2267 Token.is(MIToken::kw_got) || Token.is(MIToken::kw_jump_table) ||
2268 Token.is(MIToken::FixedStackObject) || Token.is(MIToken::StackObject) ||
2269 Token.is(MIToken::kw_call_entry)) {
2270 const PseudoSourceValue *PSV = nullptr;
2271 if (parseMemoryPseudoSourceValue(PSV))
2272 return true;
2273 int64_t Offset = 0;
2274 if (parseOffset(Offset))
2275 return true;
2276 Dest = MachinePointerInfo(PSV, Offset);
2277 return false;
2278 }
2279 if (Token.isNot(MIToken::NamedIRValue) && Token.isNot(MIToken::IRValue) &&
2280 Token.isNot(MIToken::GlobalValue) &&
2281 Token.isNot(MIToken::NamedGlobalValue) &&
2282 Token.isNot(MIToken::QuotedIRValue))
2283 return error("expected an IR value reference");
2284 const Value *V = nullptr;
2285 if (parseIRValue(V))
2286 return true;
2287 if (!V->getType()->isPointerTy())
2288 return error("expected a pointer IR value");
2289 lex();
2290 int64_t Offset = 0;
2291 if (parseOffset(Offset))
2292 return true;
2293 Dest = MachinePointerInfo(V, Offset);
2294 return false;
2295}
2296
2297bool MIParser::parseOptionalScope(LLVMContext &Context,
2298 SyncScope::ID &SSID) {
2299 SSID = SyncScope::System;
2300 if (Token.is(MIToken::Identifier) && Token.stringValue() == "syncscope") {
2301 lex();
2302 if (expectAndConsume(MIToken::lparen))
2303 return error("expected '(' in syncscope");
2304
2305 std::string SSN;
2306 if (parseStringConstant(SSN))
2307 return true;
2308
2309 SSID = Context.getOrInsertSyncScopeID(SSN);
2310 if (expectAndConsume(MIToken::rparen))
2311 return error("expected ')' in syncscope");
2312 }
2313
2314 return false;
2315}
2316
2317bool MIParser::parseOptionalAtomicOrdering(AtomicOrdering &Order) {
2318 Order = AtomicOrdering::NotAtomic;
2319 if (Token.isNot(MIToken::Identifier))
2320 return false;
2321
2322 Order = StringSwitch<AtomicOrdering>(Token.stringValue())
2323 .Case("unordered", AtomicOrdering::Unordered)
2324 .Case("monotonic", AtomicOrdering::Monotonic)
2325 .Case("acquire", AtomicOrdering::Acquire)
2326 .Case("release", AtomicOrdering::Release)
2327 .Case("acq_rel", AtomicOrdering::AcquireRelease)
2328 .Case("seq_cst", AtomicOrdering::SequentiallyConsistent)
2329 .Default(AtomicOrdering::NotAtomic);
2330
2331 if (Order != AtomicOrdering::NotAtomic) {
2332 lex();
2333 return false;
2334 }
2335
2336 return error("expected an atomic scope, ordering or a size integer literal");
2337}
2338
2339bool MIParser::parseMachineMemoryOperand(MachineMemOperand *&Dest) {
2340 if (expectAndConsume(MIToken::lparen))
2341 return true;
2342 MachineMemOperand::Flags Flags = MachineMemOperand::MONone;
2343 while (Token.isMemoryOperandFlag()) {
2344 if (parseMemoryOperandFlag(Flags))
2345 return true;
2346 }
2347 if (Token.isNot(MIToken::Identifier) ||
2348 (Token.stringValue() != "load" && Token.stringValue() != "store"))
2349 return error("expected 'load' or 'store' memory operation");
2350 if (Token.stringValue() == "load")
2351 Flags |= MachineMemOperand::MOLoad;
2352 else
2353 Flags |= MachineMemOperand::MOStore;
2354 lex();
2355
2356 // Optional 'store' for operands that both load and store.
2357 if (Token.is(MIToken::Identifier) && Token.stringValue() == "store") {
2358 Flags |= MachineMemOperand::MOStore;
2359 lex();
2360 }
2361
2362 // Optional synchronization scope.
2363 SyncScope::ID SSID;
2364 if (parseOptionalScope(MF.getFunction().getContext(), SSID))
2365 return true;
2366
2367 // Up to two atomic orderings (cmpxchg provides guarantees on failure).
2368 AtomicOrdering Order, FailureOrder;
2369 if (parseOptionalAtomicOrdering(Order))
2370 return true;
2371
2372 if (parseOptionalAtomicOrdering(FailureOrder))
2373 return true;
2374
2375 if (Token.isNot(MIToken::IntegerLiteral))
2376 return error("expected the size integer literal after memory operation");
2377 uint64_t Size;
2378 if (getUint64(Size))
2379 return true;
2380 lex();
2381
2382 MachinePointerInfo Ptr = MachinePointerInfo();
2383 if (Token.is(MIToken::Identifier)) {
2384 const char *Word =
2385 ((Flags & MachineMemOperand::MOLoad) &&
2386 (Flags & MachineMemOperand::MOStore))
2387 ? "on"
2388 : Flags & MachineMemOperand::MOLoad ? "from" : "into";
2389 if (Token.stringValue() != Word)
2390 return error(Twine("expected '") + Word + "'");
2391 lex();
2392
2393 if (parseMachinePointerInfo(Ptr))
2394 return true;
2395 }
2396 unsigned BaseAlignment = Size;
2397 AAMDNodes AAInfo;
2398 MDNode *Range = nullptr;
2399 while (consumeIfPresent(MIToken::comma)) {
2400 switch (Token.kind()) {
2401 case MIToken::kw_align:
2402 if (parseAlignment(BaseAlignment))
2403 return true;
2404 break;
2405 case MIToken::md_tbaa:
2406 lex();
2407 if (parseMDNode(AAInfo.TBAA))
2408 return true;
2409 break;
2410 case MIToken::md_alias_scope:
2411 lex();
2412 if (parseMDNode(AAInfo.Scope))
2413 return true;
2414 break;
2415 case MIToken::md_noalias:
2416 lex();
2417 if (parseMDNode(AAInfo.NoAlias))
2418 return true;
2419 break;
2420 case MIToken::md_range:
2421 lex();
2422 if (parseMDNode(Range))
2423 return true;
2424 break;
2425 // TODO: Report an error on duplicate metadata nodes.
2426 default:
2427 return error("expected 'align' or '!tbaa' or '!alias.scope' or "
2428 "'!noalias' or '!range'");
2429 }
2430 }
2431 if (expectAndConsume(MIToken::rparen))
2432 return true;
2433 Dest = MF.getMachineMemOperand(Ptr, Flags, Size, BaseAlignment, AAInfo, Range,
2434 SSID, Order, FailureOrder);
2435 return false;
2436}
2437
2438void MIParser::initNames2InstrOpCodes() {
2439 if (!Names2InstrOpCodes.empty())
2440 return;
2441 const auto *TII = MF.getSubtarget().getInstrInfo();
2442 assert(TII && "Expected target instruction info")(static_cast <bool> (TII && "Expected target instruction info"
) ? void (0) : __assert_fail ("TII && \"Expected target instruction info\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 2442, __extension__ __PRETTY_FUNCTION__))
;
2443 for (unsigned I = 0, E = TII->getNumOpcodes(); I < E; ++I)
2444 Names2InstrOpCodes.insert(std::make_pair(StringRef(TII->getName(I)), I));
2445}
2446
2447bool MIParser::parseInstrName(StringRef InstrName, unsigned &OpCode) {
2448 initNames2InstrOpCodes();
2449 auto InstrInfo = Names2InstrOpCodes.find(InstrName);
2450 if (InstrInfo == Names2InstrOpCodes.end())
2451 return true;
2452 OpCode = InstrInfo->getValue();
2453 return false;
2454}
2455
2456void MIParser::initNames2Regs() {
2457 if (!Names2Regs.empty())
2458 return;
2459 // The '%noreg' register is the register 0.
2460 Names2Regs.insert(std::make_pair("noreg", 0));
2461 const auto *TRI = MF.getSubtarget().getRegisterInfo();
2462 assert(TRI && "Expected target register info")(static_cast <bool> (TRI && "Expected target register info"
) ? void (0) : __assert_fail ("TRI && \"Expected target register info\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 2462, __extension__ __PRETTY_FUNCTION__))
;
2463 for (unsigned I = 0, E = TRI->getNumRegs(); I < E; ++I) {
2464 bool WasInserted =
2465 Names2Regs.insert(std::make_pair(StringRef(TRI->getName(I)).lower(), I))
2466 .second;
2467 (void)WasInserted;
2468 assert(WasInserted && "Expected registers to be unique case-insensitively")(static_cast <bool> (WasInserted && "Expected registers to be unique case-insensitively"
) ? void (0) : __assert_fail ("WasInserted && \"Expected registers to be unique case-insensitively\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 2468, __extension__ __PRETTY_FUNCTION__))
;
2469 }
2470}
2471
2472bool MIParser::getRegisterByName(StringRef RegName, unsigned &Reg) {
2473 initNames2Regs();
2474 auto RegInfo = Names2Regs.find(RegName);
2475 if (RegInfo == Names2Regs.end())
2476 return true;
2477 Reg = RegInfo->getValue();
2478 return false;
2479}
2480
2481void MIParser::initNames2RegMasks() {
2482 if (!Names2RegMasks.empty())
2483 return;
2484 const auto *TRI = MF.getSubtarget().getRegisterInfo();
2485 assert(TRI && "Expected target register info")(static_cast <bool> (TRI && "Expected target register info"
) ? void (0) : __assert_fail ("TRI && \"Expected target register info\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 2485, __extension__ __PRETTY_FUNCTION__))
;
2486 ArrayRef<const uint32_t *> RegMasks = TRI->getRegMasks();
2487 ArrayRef<const char *> RegMaskNames = TRI->getRegMaskNames();
2488 assert(RegMasks.size() == RegMaskNames.size())(static_cast <bool> (RegMasks.size() == RegMaskNames.size
()) ? void (0) : __assert_fail ("RegMasks.size() == RegMaskNames.size()"
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 2488, __extension__ __PRETTY_FUNCTION__))
;
2489 for (size_t I = 0, E = RegMasks.size(); I < E; ++I)
2490 Names2RegMasks.insert(
2491 std::make_pair(StringRef(RegMaskNames[I]).lower(), RegMasks[I]));
2492}
2493
2494const uint32_t *MIParser::getRegMask(StringRef Identifier) {
2495 initNames2RegMasks();
2496 auto RegMaskInfo = Names2RegMasks.find(Identifier);
2497 if (RegMaskInfo == Names2RegMasks.end())
2498 return nullptr;
2499 return RegMaskInfo->getValue();
2500}
2501
2502void MIParser::initNames2SubRegIndices() {
2503 if (!Names2SubRegIndices.empty())
2504 return;
2505 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2506 for (unsigned I = 1, E = TRI->getNumSubRegIndices(); I < E; ++I)
2507 Names2SubRegIndices.insert(
2508 std::make_pair(StringRef(TRI->getSubRegIndexName(I)).lower(), I));
2509}
2510
2511unsigned MIParser::getSubRegIndex(StringRef Name) {
2512 initNames2SubRegIndices();
2513 auto SubRegInfo = Names2SubRegIndices.find(Name);
2514 if (SubRegInfo == Names2SubRegIndices.end())
2515 return 0;
2516 return SubRegInfo->getValue();
2517}
2518
2519static void initSlots2BasicBlocks(
2520 const Function &F,
2521 DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2522 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2523 MST.incorporateFunction(F);
2524 for (auto &BB : F) {
2525 if (BB.hasName())
2526 continue;
2527 int Slot = MST.getLocalSlot(&BB);
2528 if (Slot == -1)
2529 continue;
2530 Slots2BasicBlocks.insert(std::make_pair(unsigned(Slot), &BB));
2531 }
2532}
2533
2534static const BasicBlock *getIRBlockFromSlot(
2535 unsigned Slot,
2536 const DenseMap<unsigned, const BasicBlock *> &Slots2BasicBlocks) {
2537 auto BlockInfo = Slots2BasicBlocks.find(Slot);
2538 if (BlockInfo == Slots2BasicBlocks.end())
2539 return nullptr;
2540 return BlockInfo->second;
2541}
2542
2543const BasicBlock *MIParser::getIRBlock(unsigned Slot) {
2544 if (Slots2BasicBlocks.empty())
2545 initSlots2BasicBlocks(MF.getFunction(), Slots2BasicBlocks);
2546 return getIRBlockFromSlot(Slot, Slots2BasicBlocks);
2547}
2548
2549const BasicBlock *MIParser::getIRBlock(unsigned Slot, const Function &F) {
2550 if (&F == &MF.getFunction())
2551 return getIRBlock(Slot);
2552 DenseMap<unsigned, const BasicBlock *> CustomSlots2BasicBlocks;
2553 initSlots2BasicBlocks(F, CustomSlots2BasicBlocks);
2554 return getIRBlockFromSlot(Slot, CustomSlots2BasicBlocks);
2555}
2556
2557static void mapValueToSlot(const Value *V, ModuleSlotTracker &MST,
2558 DenseMap<unsigned, const Value *> &Slots2Values) {
2559 int Slot = MST.getLocalSlot(V);
2560 if (Slot == -1)
2561 return;
2562 Slots2Values.insert(std::make_pair(unsigned(Slot), V));
2563}
2564
2565/// Creates the mapping from slot numbers to function's unnamed IR values.
2566static void initSlots2Values(const Function &F,
2567 DenseMap<unsigned, const Value *> &Slots2Values) {
2568 ModuleSlotTracker MST(F.getParent(), /*ShouldInitializeAllMetadata=*/false);
2569 MST.incorporateFunction(F);
2570 for (const auto &Arg : F.args())
2571 mapValueToSlot(&Arg, MST, Slots2Values);
2572 for (const auto &BB : F) {
2573 mapValueToSlot(&BB, MST, Slots2Values);
2574 for (const auto &I : BB)
2575 mapValueToSlot(&I, MST, Slots2Values);
2576 }
2577}
2578
2579const Value *MIParser::getIRValue(unsigned Slot) {
2580 if (Slots2Values.empty())
2581 initSlots2Values(MF.getFunction(), Slots2Values);
2582 auto ValueInfo = Slots2Values.find(Slot);
2583 if (ValueInfo == Slots2Values.end())
2584 return nullptr;
2585 return ValueInfo->second;
2586}
2587
2588void MIParser::initNames2TargetIndices() {
2589 if (!Names2TargetIndices.empty())
2590 return;
2591 const auto *TII = MF.getSubtarget().getInstrInfo();
2592 assert(TII && "Expected target instruction info")(static_cast <bool> (TII && "Expected target instruction info"
) ? void (0) : __assert_fail ("TII && \"Expected target instruction info\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 2592, __extension__ __PRETTY_FUNCTION__))
;
2593 auto Indices = TII->getSerializableTargetIndices();
2594 for (const auto &I : Indices)
2595 Names2TargetIndices.insert(std::make_pair(StringRef(I.second), I.first));
2596}
2597
2598bool MIParser::getTargetIndex(StringRef Name, int &Index) {
2599 initNames2TargetIndices();
2600 auto IndexInfo = Names2TargetIndices.find(Name);
2601 if (IndexInfo == Names2TargetIndices.end())
2602 return true;
2603 Index = IndexInfo->second;
2604 return false;
2605}
2606
2607void MIParser::initNames2DirectTargetFlags() {
2608 if (!Names2DirectTargetFlags.empty())
2609 return;
2610 const auto *TII = MF.getSubtarget().getInstrInfo();
2611 assert(TII && "Expected target instruction info")(static_cast <bool> (TII && "Expected target instruction info"
) ? void (0) : __assert_fail ("TII && \"Expected target instruction info\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 2611, __extension__ __PRETTY_FUNCTION__))
;
2612 auto Flags = TII->getSerializableDirectMachineOperandTargetFlags();
2613 for (const auto &I : Flags)
2614 Names2DirectTargetFlags.insert(
2615 std::make_pair(StringRef(I.second), I.first));
2616}
2617
2618bool MIParser::getDirectTargetFlag(StringRef Name, unsigned &Flag) {
2619 initNames2DirectTargetFlags();
2620 auto FlagInfo = Names2DirectTargetFlags.find(Name);
2621 if (FlagInfo == Names2DirectTargetFlags.end())
2622 return true;
2623 Flag = FlagInfo->second;
2624 return false;
2625}
2626
2627void MIParser::initNames2BitmaskTargetFlags() {
2628 if (!Names2BitmaskTargetFlags.empty())
2629 return;
2630 const auto *TII = MF.getSubtarget().getInstrInfo();
2631 assert(TII && "Expected target instruction info")(static_cast <bool> (TII && "Expected target instruction info"
) ? void (0) : __assert_fail ("TII && \"Expected target instruction info\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 2631, __extension__ __PRETTY_FUNCTION__))
;
2632 auto Flags = TII->getSerializableBitmaskMachineOperandTargetFlags();
2633 for (const auto &I : Flags)
2634 Names2BitmaskTargetFlags.insert(
2635 std::make_pair(StringRef(I.second), I.first));
2636}
2637
2638bool MIParser::getBitmaskTargetFlag(StringRef Name, unsigned &Flag) {
2639 initNames2BitmaskTargetFlags();
2640 auto FlagInfo = Names2BitmaskTargetFlags.find(Name);
2641 if (FlagInfo == Names2BitmaskTargetFlags.end())
2642 return true;
2643 Flag = FlagInfo->second;
2644 return false;
2645}
2646
2647void MIParser::initNames2MMOTargetFlags() {
2648 if (!Names2MMOTargetFlags.empty())
2649 return;
2650 const auto *TII = MF.getSubtarget().getInstrInfo();
2651 assert(TII && "Expected target instruction info")(static_cast <bool> (TII && "Expected target instruction info"
) ? void (0) : __assert_fail ("TII && \"Expected target instruction info\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MIRParser/MIParser.cpp"
, 2651, __extension__ __PRETTY_FUNCTION__))
;
2652 auto Flags = TII->getSerializableMachineMemOperandTargetFlags();
2653 for (const auto &I : Flags)
2654 Names2MMOTargetFlags.insert(
2655 std::make_pair(StringRef(I.second), I.first));
2656}
2657
2658bool MIParser::getMMOTargetFlag(StringRef Name,
2659 MachineMemOperand::Flags &Flag) {
2660 initNames2MMOTargetFlags();
2661 auto FlagInfo = Names2MMOTargetFlags.find(Name);
2662 if (FlagInfo == Names2MMOTargetFlags.end())
2663 return true;
2664 Flag = FlagInfo->second;
2665 return false;
2666}
2667
2668bool MIParser::parseStringConstant(std::string &Result) {
2669 if (Token.isNot(MIToken::StringConstant))
2670 return error("expected string constant");
2671 Result = Token.stringValue();
2672 lex();
2673 return false;
2674}
2675
2676bool llvm::parseMachineBasicBlockDefinitions(PerFunctionMIParsingState &PFS,
2677 StringRef Src,
2678 SMDiagnostic &Error) {
2679 return MIParser(PFS, Error, Src).parseBasicBlockDefinitions(PFS.MBBSlots);
2680}
2681
2682bool llvm::parseMachineInstructions(PerFunctionMIParsingState &PFS,
2683 StringRef Src, SMDiagnostic &Error) {
2684 return MIParser(PFS, Error, Src).parseBasicBlocks();
2685}
2686
2687bool llvm::parseMBBReference(PerFunctionMIParsingState &PFS,
2688 MachineBasicBlock *&MBB, StringRef Src,
2689 SMDiagnostic &Error) {
2690 return MIParser(PFS, Error, Src).parseStandaloneMBB(MBB);
2691}
2692
2693bool llvm::parseRegisterReference(PerFunctionMIParsingState &PFS,
2694 unsigned &Reg, StringRef Src,
2695 SMDiagnostic &Error) {
2696 return MIParser(PFS, Error, Src).parseStandaloneRegister(Reg);
2697}
2698
2699bool llvm::parseNamedRegisterReference(PerFunctionMIParsingState &PFS,
2700 unsigned &Reg, StringRef Src,
2701 SMDiagnostic &Error) {
2702 return MIParser(PFS, Error, Src).parseStandaloneNamedRegister(Reg);
2703}
2704
2705bool llvm::parseVirtualRegisterReference(PerFunctionMIParsingState &PFS,
2706 VRegInfo *&Info, StringRef Src,
2707 SMDiagnostic &Error) {
2708 return MIParser(PFS, Error, Src).parseStandaloneVirtualRegister(Info);
2709}
2710
2711bool llvm::parseStackObjectReference(PerFunctionMIParsingState &PFS,
2712 int &FI, StringRef Src,
2713 SMDiagnostic &Error) {
2714 return MIParser(PFS, Error, Src).parseStandaloneStackObject(FI);
2715}
2716
2717bool llvm::parseMDNode(PerFunctionMIParsingState &PFS,
2718 MDNode *&Node, StringRef Src, SMDiagnostic &Error) {
2719 return MIParser(PFS, Error, Src).parseStandaloneMDNode(Node);
2720}

/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h

1//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9///
10/// \file
11/// \brief This file implements a class to represent arbitrary precision
12/// integral constant values and operations on them.
13///
14//===----------------------------------------------------------------------===//
15
16#ifndef LLVM_ADT_APINT_H
17#define LLVM_ADT_APINT_H
18
19#include "llvm/Support/Compiler.h"
20#include "llvm/Support/MathExtras.h"
21#include <cassert>
22#include <climits>
23#include <cstring>
24#include <string>
25
26namespace llvm {
27class FoldingSetNodeID;
28class StringRef;
29class hash_code;
30class raw_ostream;
31
32template <typename T> class SmallVectorImpl;
33template <typename T> class ArrayRef;
34
35class APInt;
36
37inline APInt operator-(APInt);
38
39//===----------------------------------------------------------------------===//
40// APInt Class
41//===----------------------------------------------------------------------===//
42
43/// \brief Class for arbitrary precision integers.
44///
45/// APInt is a functional replacement for common case unsigned integer type like
46/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
47/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
48/// than 64-bits of precision. APInt provides a variety of arithmetic operators
49/// and methods to manipulate integer values of any bit-width. It supports both
50/// the typical integer arithmetic and comparison operations as well as bitwise
51/// manipulation.
52///
53/// The class has several invariants worth noting:
54/// * All bit, byte, and word positions are zero-based.
55/// * Once the bit width is set, it doesn't change except by the Truncate,
56/// SignExtend, or ZeroExtend operations.
57/// * All binary operators must be on APInt instances of the same bit width.
58/// Attempting to use these operators on instances with different bit
59/// widths will yield an assertion.
60/// * The value is stored canonically as an unsigned value. For operations
61/// where it makes a difference, there are both signed and unsigned variants
62/// of the operation. For example, sdiv and udiv. However, because the bit
63/// widths must be the same, operations such as Mul and Add produce the same
64/// results regardless of whether the values are interpreted as signed or
65/// not.
66/// * In general, the class tries to follow the style of computation that LLVM
67/// uses in its IR. This simplifies its use for LLVM.
68///
69class LLVM_NODISCARD[[clang::warn_unused_result]] APInt {
70public:
71 typedef uint64_t WordType;
72
73 /// This enum is used to hold the constants we needed for APInt.
74 enum : unsigned {
75 /// Byte size of a word.
76 APINT_WORD_SIZE = sizeof(WordType),
77 /// Bits in a word.
78 APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT8
79 };
80
81 static const WordType WORD_MAX = ~WordType(0);
82
83private:
84 /// This union is used to store the integer value. When the
85 /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
86 union {
87 uint64_t VAL; ///< Used to store the <= 64 bits integer value.
88 uint64_t *pVal; ///< Used to store the >64 bits integer value.
89 } U;
90
91 unsigned BitWidth; ///< The number of bits in this APInt.
92
93 friend struct DenseMapAPIntKeyInfo;
94
95 friend class APSInt;
96
97 /// \brief Fast internal constructor
98 ///
99 /// This constructor is used only internally for speed of construction of
100 /// temporaries. It is unsafe for general use so it is not public.
101 APInt(uint64_t *val, unsigned bits) : BitWidth(bits) {
102 U.pVal = val;
103 }
104
105 /// \brief Determine if this APInt just has one word to store value.
106 ///
107 /// \returns true if the number of bits <= 64, false otherwise.
108 bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
109
110 /// \brief Determine which word a bit is in.
111 ///
112 /// \returns the word position for the specified bit position.
113 static unsigned whichWord(unsigned bitPosition) {
114 return bitPosition / APINT_BITS_PER_WORD;
115 }
116
117 /// \brief Determine which bit in a word a bit is in.
118 ///
119 /// \returns the bit position in a word for the specified bit position
120 /// in the APInt.
121 static unsigned whichBit(unsigned bitPosition) {
122 return bitPosition % APINT_BITS_PER_WORD;
123 }
124
125 /// \brief Get a single bit mask.
126 ///
127 /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
128 /// This method generates and returns a uint64_t (word) mask for a single
129 /// bit at a specific bit position. This is used to mask the bit in the
130 /// corresponding word.
131 static uint64_t maskBit(unsigned bitPosition) {
132 return 1ULL << whichBit(bitPosition);
133 }
134
135 /// \brief Clear unused high order bits
136 ///
137 /// This method is used internally to clear the top "N" bits in the high order
138 /// word that are not used by the APInt. This is needed after the most
139 /// significant word is assigned a value to ensure that those bits are
140 /// zero'd out.
141 APInt &clearUnusedBits() {
142 // Compute how many bits are used in the final word
143 unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1;
144
145 // Mask out the high bits.
146 uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - WordBits);
147 if (isSingleWord())
148 U.VAL &= mask;
149 else
150 U.pVal[getNumWords() - 1] &= mask;
151 return *this;
152 }
153
154 /// \brief Get the word corresponding to a bit position
155 /// \returns the corresponding word for the specified bit position.
156 uint64_t getWord(unsigned bitPosition) const {
157 return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
158 }
159
160 /// Utility method to change the bit width of this APInt to new bit width,
161 /// allocating and/or deallocating as necessary. There is no guarantee on the
162 /// value of any bits upon return. Caller should populate the bits after.
163 void reallocate(unsigned NewBitWidth);
164
165 /// \brief Convert a char array into an APInt
166 ///
167 /// \param radix 2, 8, 10, 16, or 36
168 /// Converts a string into a number. The string must be non-empty
169 /// and well-formed as a number of the given base. The bit-width
170 /// must be sufficient to hold the result.
171 ///
172 /// This is used by the constructors that take string arguments.
173 ///
174 /// StringRef::getAsInteger is superficially similar but (1) does
175 /// not assume that the string is well-formed and (2) grows the
176 /// result to hold the input.
177 void fromString(unsigned numBits, StringRef str, uint8_t radix);
178
179 /// \brief An internal division function for dividing APInts.
180 ///
181 /// This is used by the toString method to divide by the radix. It simply
182 /// provides a more convenient form of divide for internal use since KnuthDiv
183 /// has specific constraints on its inputs. If those constraints are not met
184 /// then it provides a simpler form of divide.
185 static void divide(const WordType *LHS, unsigned lhsWords,
186 const WordType *RHS, unsigned rhsWords, WordType *Quotient,
187 WordType *Remainder);
188
189 /// out-of-line slow case for inline constructor
190 void initSlowCase(uint64_t val, bool isSigned);
191
192 /// shared code between two array constructors
193 void initFromArray(ArrayRef<uint64_t> array);
194
195 /// out-of-line slow case for inline copy constructor
196 void initSlowCase(const APInt &that);
197
198 /// out-of-line slow case for shl
199 void shlSlowCase(unsigned ShiftAmt);
200
201 /// out-of-line slow case for lshr.
202 void lshrSlowCase(unsigned ShiftAmt);
203
204 /// out-of-line slow case for ashr.
205 void ashrSlowCase(unsigned ShiftAmt);
206
207 /// out-of-line slow case for operator=
208 void AssignSlowCase(const APInt &RHS);
209
210 /// out-of-line slow case for operator==
211 bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
212
213 /// out-of-line slow case for countLeadingZeros
214 unsigned countLeadingZerosSlowCase() const LLVM_READONLY__attribute__((__pure__));
215
216 /// out-of-line slow case for countLeadingOnes.
217 unsigned countLeadingOnesSlowCase() const LLVM_READONLY__attribute__((__pure__));
218
219 /// out-of-line slow case for countTrailingZeros.
220 unsigned countTrailingZerosSlowCase() const LLVM_READONLY__attribute__((__pure__));
221
222 /// out-of-line slow case for countTrailingOnes
223 unsigned countTrailingOnesSlowCase() const LLVM_READONLY__attribute__((__pure__));
224
225 /// out-of-line slow case for countPopulation
226 unsigned countPopulationSlowCase() const LLVM_READONLY__attribute__((__pure__));
227
228 /// out-of-line slow case for intersects.
229 bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
230
231 /// out-of-line slow case for isSubsetOf.
232 bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
233
234 /// out-of-line slow case for setBits.
235 void setBitsSlowCase(unsigned loBit, unsigned hiBit);
236
237 /// out-of-line slow case for flipAllBits.
238 void flipAllBitsSlowCase();
239
240 /// out-of-line slow case for operator&=.
241 void AndAssignSlowCase(const APInt& RHS);
242
243 /// out-of-line slow case for operator|=.
244 void OrAssignSlowCase(const APInt& RHS);
245
246 /// out-of-line slow case for operator^=.
247 void XorAssignSlowCase(const APInt& RHS);
248
249 /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
250 /// to, or greater than RHS.
251 int compare(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
252
253 /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
254 /// to, or greater than RHS.
255 int compareSigned(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
256
257public:
258 /// \name Constructors
259 /// @{
260
261 /// \brief Create a new APInt of numBits width, initialized as val.
262 ///
263 /// If isSigned is true then val is treated as if it were a signed value
264 /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
265 /// will be done. Otherwise, no sign extension occurs (high order bits beyond
266 /// the range of val are zero filled).
267 ///
268 /// \param numBits the bit width of the constructed APInt
269 /// \param val the initial value of the APInt
270 /// \param isSigned how to treat signedness of val
271 APInt(unsigned numBits, uint64_t val, bool isSigned = false)
272 : BitWidth(numBits) {
273 assert(BitWidth && "bitwidth too small")(static_cast <bool> (BitWidth && "bitwidth too small"
) ? void (0) : __assert_fail ("BitWidth && \"bitwidth too small\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 273, __extension__ __PRETTY_FUNCTION__))
;
274 if (isSingleWord()) {
275 U.VAL = val;
276 clearUnusedBits();
277 } else {
278 initSlowCase(val, isSigned);
279 }
280 }
281
282 /// \brief Construct an APInt of numBits width, initialized as bigVal[].
283 ///
284 /// Note that bigVal.size() can be smaller or larger than the corresponding
285 /// bit width but any extraneous bits will be dropped.
286 ///
287 /// \param numBits the bit width of the constructed APInt
288 /// \param bigVal a sequence of words to form the initial value of the APInt
289 APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
290
291 /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
292 /// deprecated because this constructor is prone to ambiguity with the
293 /// APInt(unsigned, uint64_t, bool) constructor.
294 ///
295 /// If this overload is ever deleted, care should be taken to prevent calls
296 /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
297 /// constructor.
298 APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
299
300 /// \brief Construct an APInt from a string representation.
301 ///
302 /// This constructor interprets the string \p str in the given radix. The
303 /// interpretation stops when the first character that is not suitable for the
304 /// radix is encountered, or the end of the string. Acceptable radix values
305 /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
306 /// string to require more bits than numBits.
307 ///
308 /// \param numBits the bit width of the constructed APInt
309 /// \param str the string to be interpreted
310 /// \param radix the radix to use for the conversion
311 APInt(unsigned numBits, StringRef str, uint8_t radix);
312
313 /// Simply makes *this a copy of that.
314 /// @brief Copy Constructor.
315 APInt(const APInt &that) : BitWidth(that.BitWidth) {
316 if (isSingleWord())
317 U.VAL = that.U.VAL;
318 else
319 initSlowCase(that);
320 }
321
322 /// \brief Move Constructor.
323 APInt(APInt &&that) : BitWidth(that.BitWidth) {
324 memcpy(&U, &that.U, sizeof(U));
325 that.BitWidth = 0;
326 }
327
328 /// \brief Destructor.
329 ~APInt() {
330 if (needsCleanup())
331 delete[] U.pVal;
332 }
333
334 /// \brief Default constructor that creates an uninteresting APInt
335 /// representing a 1-bit zero value.
336 ///
337 /// This is useful for object deserialization (pair this with the static
338 /// method Read).
339 explicit APInt() : BitWidth(1) { U.VAL = 0; }
15
Calling implicit default constructor
16
Returning from default constructor
37
Calling implicit default constructor
38
Returning from default constructor
340
341 /// \brief Returns whether this instance allocated memory.
342 bool needsCleanup() const { return !isSingleWord(); }
343
344 /// Used to insert APInt objects, or objects that contain APInt objects, into
345 /// FoldingSets.
346 void Profile(FoldingSetNodeID &id) const;
347
348 /// @}
349 /// \name Value Tests
350 /// @{
351
352 /// \brief Determine sign of this APInt.
353 ///
354 /// This tests the high bit of this APInt to determine if it is set.
355 ///
356 /// \returns true if this APInt is negative, false otherwise
357 bool isNegative() const { return (*this)[BitWidth - 1]; }
358
359 /// \brief Determine if this APInt Value is non-negative (>= 0)
360 ///
361 /// This tests the high bit of the APInt to determine if it is unset.
362 bool isNonNegative() const { return !isNegative(); }
363
364 /// \brief Determine if sign bit of this APInt is set.
365 ///
366 /// This tests the high bit of this APInt to determine if it is set.
367 ///
368 /// \returns true if this APInt has its sign bit set, false otherwise.
369 bool isSignBitSet() const { return (*this)[BitWidth-1]; }
370
371 /// \brief Determine if sign bit of this APInt is clear.
372 ///
373 /// This tests the high bit of this APInt to determine if it is clear.
374 ///
375 /// \returns true if this APInt has its sign bit clear, false otherwise.
376 bool isSignBitClear() const { return !isSignBitSet(); }
377
378 /// \brief Determine if this APInt Value is positive.
379 ///
380 /// This tests if the value of this APInt is positive (> 0). Note
381 /// that 0 is not a positive value.
382 ///
383 /// \returns true if this APInt is positive.
384 bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); }
385
386 /// \brief Determine if all bits are set
387 ///
388 /// This checks to see if the value has all bits of the APInt are set or not.
389 bool isAllOnesValue() const {
390 if (isSingleWord())
391 return U.VAL == WORD_MAX >> (APINT_BITS_PER_WORD - BitWidth);
392 return countTrailingOnesSlowCase() == BitWidth;
393 }
394
395 /// \brief Determine if all bits are clear
396 ///
397 /// This checks to see if the value has all bits of the APInt are clear or
398 /// not.
399 bool isNullValue() const { return !*this; }
400
401 /// \brief Determine if this is a value of 1.
402 ///
403 /// This checks to see if the value of this APInt is one.
404 bool isOneValue() const {
405 if (isSingleWord())
406 return U.VAL == 1;
407 return countLeadingZerosSlowCase() == BitWidth - 1;
408 }
409
410 /// \brief Determine if this is the largest unsigned value.
411 ///
412 /// This checks to see if the value of this APInt is the maximum unsigned
413 /// value for the APInt's bit width.
414 bool isMaxValue() const { return isAllOnesValue(); }
415
416 /// \brief Determine if this is the largest signed value.
417 ///
418 /// This checks to see if the value of this APInt is the maximum signed
419 /// value for the APInt's bit width.
420 bool isMaxSignedValue() const {
421 if (isSingleWord())
422 return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
423 return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
424 }
425
426 /// \brief Determine if this is the smallest unsigned value.
427 ///
428 /// This checks to see if the value of this APInt is the minimum unsigned
429 /// value for the APInt's bit width.
430 bool isMinValue() const { return isNullValue(); }
431
432 /// \brief Determine if this is the smallest signed value.
433 ///
434 /// This checks to see if the value of this APInt is the minimum signed
435 /// value for the APInt's bit width.
436 bool isMinSignedValue() const {
437 if (isSingleWord())
438 return U.VAL == (WordType(1) << (BitWidth - 1));
439 return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
440 }
441
442 /// \brief Check if this APInt has an N-bits unsigned integer value.
443 bool isIntN(unsigned N) const {
444 assert(N && "N == 0 ???")(static_cast <bool> (N && "N == 0 ???") ? void (
0) : __assert_fail ("N && \"N == 0 ???\"", "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 444, __extension__ __PRETTY_FUNCTION__))
;
445 return getActiveBits() <= N;
446 }
447
448 /// \brief Check if this APInt has an N-bits signed integer value.
449 bool isSignedIntN(unsigned N) const {
450 assert(N && "N == 0 ???")(static_cast <bool> (N && "N == 0 ???") ? void (
0) : __assert_fail ("N && \"N == 0 ???\"", "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 450, __extension__ __PRETTY_FUNCTION__))
;
451 return getMinSignedBits() <= N;
452 }
453
454 /// \brief Check if this APInt's value is a power of two greater than zero.
455 ///
456 /// \returns true if the argument APInt value is a power of two > 0.
457 bool isPowerOf2() const {
458 if (isSingleWord())
459 return isPowerOf2_64(U.VAL);
460 return countPopulationSlowCase() == 1;
461 }
462
463 /// \brief Check if the APInt's value is returned by getSignMask.
464 ///
465 /// \returns true if this is the value returned by getSignMask.
466 bool isSignMask() const { return isMinSignedValue(); }
467
468 /// \brief Convert APInt to a boolean value.
469 ///
470 /// This converts the APInt to a boolean value as a test against zero.
471 bool getBoolValue() const { return !!*this; }
472
473 /// If this value is smaller than the specified limit, return it, otherwise
474 /// return the limit value. This causes the value to saturate to the limit.
475 uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX(18446744073709551615UL)) const {
476 return ugt(Limit) ? Limit : getZExtValue();
477 }
478
479 /// \brief Check if the APInt consists of a repeated bit pattern.
480 ///
481 /// e.g. 0x01010101 satisfies isSplat(8).
482 /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
483 /// width without remainder.
484 bool isSplat(unsigned SplatSizeInBits) const;
485
486 /// \returns true if this APInt value is a sequence of \param numBits ones
487 /// starting at the least significant bit with the remainder zero.
488 bool isMask(unsigned numBits) const {
489 assert(numBits != 0 && "numBits must be non-zero")(static_cast <bool> (numBits != 0 && "numBits must be non-zero"
) ? void (0) : __assert_fail ("numBits != 0 && \"numBits must be non-zero\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 489, __extension__ __PRETTY_FUNCTION__))
;
490 assert(numBits <= BitWidth && "numBits out of range")(static_cast <bool> (numBits <= BitWidth && "numBits out of range"
) ? void (0) : __assert_fail ("numBits <= BitWidth && \"numBits out of range\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 490, __extension__ __PRETTY_FUNCTION__))
;
491 if (isSingleWord())
492 return U.VAL == (WORD_MAX >> (APINT_BITS_PER_WORD - numBits));
493 unsigned Ones = countTrailingOnesSlowCase();
494 return (numBits == Ones) &&
495 ((Ones + countLeadingZerosSlowCase()) == BitWidth);
496 }
497
498 /// \returns true if this APInt is a non-empty sequence of ones starting at
499 /// the least significant bit with the remainder zero.
500 /// Ex. isMask(0x0000FFFFU) == true.
501 bool isMask() const {
502 if (isSingleWord())
503 return isMask_64(U.VAL);
504 unsigned Ones = countTrailingOnesSlowCase();
505 return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
506 }
507
508 /// \brief Return true if this APInt value contains a sequence of ones with
509 /// the remainder zero.
510 bool isShiftedMask() const {
511 if (isSingleWord())
512 return isShiftedMask_64(U.VAL);
513 unsigned Ones = countPopulationSlowCase();
514 unsigned LeadZ = countLeadingZerosSlowCase();
515 return (Ones + LeadZ + countTrailingZeros()) == BitWidth;
516 }
517
518 /// @}
519 /// \name Value Generators
520 /// @{
521
522 /// \brief Gets maximum unsigned value of APInt for specific bit width.
523 static APInt getMaxValue(unsigned numBits) {
524 return getAllOnesValue(numBits);
525 }
526
527 /// \brief Gets maximum signed value of APInt for a specific bit width.
528 static APInt getSignedMaxValue(unsigned numBits) {
529 APInt API = getAllOnesValue(numBits);
530 API.clearBit(numBits - 1);
531 return API;
532 }
533
534 /// \brief Gets minimum unsigned value of APInt for a specific bit width.
535 static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
536
537 /// \brief Gets minimum signed value of APInt for a specific bit width.
538 static APInt getSignedMinValue(unsigned numBits) {
539 APInt API(numBits, 0);
540 API.setBit(numBits - 1);
541 return API;
542 }
543
544 /// \brief Get the SignMask for a specific bit width.
545 ///
546 /// This is just a wrapper function of getSignedMinValue(), and it helps code
547 /// readability when we want to get a SignMask.
548 static APInt getSignMask(unsigned BitWidth) {
549 return getSignedMinValue(BitWidth);
550 }
551
552 /// \brief Get the all-ones value.
553 ///
554 /// \returns the all-ones value for an APInt of the specified bit-width.
555 static APInt getAllOnesValue(unsigned numBits) {
556 return APInt(numBits, WORD_MAX, true);
557 }
558
559 /// \brief Get the '0' value.
560 ///
561 /// \returns the '0' value for an APInt of the specified bit-width.
562 static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
563
564 /// \brief Compute an APInt containing numBits highbits from this APInt.
565 ///
566 /// Get an APInt with the same BitWidth as this APInt, just zero mask
567 /// the low bits and right shift to the least significant bit.
568 ///
569 /// \returns the high "numBits" bits of this APInt.
570 APInt getHiBits(unsigned numBits) const;
571
572 /// \brief Compute an APInt containing numBits lowbits from this APInt.
573 ///
574 /// Get an APInt with the same BitWidth as this APInt, just zero mask
575 /// the high bits.
576 ///
577 /// \returns the low "numBits" bits of this APInt.
578 APInt getLoBits(unsigned numBits) const;
579
580 /// \brief Return an APInt with exactly one bit set in the result.
581 static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
582 APInt Res(numBits, 0);
583 Res.setBit(BitNo);
584 return Res;
585 }
586
587 /// \brief Get a value with a block of bits set.
588 ///
589 /// Constructs an APInt value that has a contiguous range of bits set. The
590 /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
591 /// bits will be zero. For example, with parameters(32, 0, 16) you would get
592 /// 0x0000FFFF. If hiBit is less than loBit then the set bits "wrap". For
593 /// example, with parameters (32, 28, 4), you would get 0xF000000F.
594 ///
595 /// \param numBits the intended bit width of the result
596 /// \param loBit the index of the lowest bit set.
597 /// \param hiBit the index of the highest bit set.
598 ///
599 /// \returns An APInt value with the requested bits set.
600 static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
601 APInt Res(numBits, 0);
602 Res.setBits(loBit, hiBit);
603 return Res;
604 }
605
606 /// \brief Get a value with upper bits starting at loBit set.
607 ///
608 /// Constructs an APInt value that has a contiguous range of bits set. The
609 /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
610 /// bits will be zero. For example, with parameters(32, 12) you would get
611 /// 0xFFFFF000.
612 ///
613 /// \param numBits the intended bit width of the result
614 /// \param loBit the index of the lowest bit to set.
615 ///
616 /// \returns An APInt value with the requested bits set.
617 static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
618 APInt Res(numBits, 0);
619 Res.setBitsFrom(loBit);
620 return Res;
621 }
622
623 /// \brief Get a value with high bits set
624 ///
625 /// Constructs an APInt value that has the top hiBitsSet bits set.
626 ///
627 /// \param numBits the bitwidth of the result
628 /// \param hiBitsSet the number of high-order bits set in the result.
629 static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
630 APInt Res(numBits, 0);
631 Res.setHighBits(hiBitsSet);
632 return Res;
633 }
634
635 /// \brief Get a value with low bits set
636 ///
637 /// Constructs an APInt value that has the bottom loBitsSet bits set.
638 ///
639 /// \param numBits the bitwidth of the result
640 /// \param loBitsSet the number of low-order bits set in the result.
641 static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
642 APInt Res(numBits, 0);
643 Res.setLowBits(loBitsSet);
644 return Res;
645 }
646
647 /// \brief Return a value containing V broadcasted over NewLen bits.
648 static APInt getSplat(unsigned NewLen, const APInt &V);
649
650 /// \brief Determine if two APInts have the same value, after zero-extending
651 /// one of them (if needed!) to ensure that the bit-widths match.
652 static bool isSameValue(const APInt &I1, const APInt &I2) {
653 if (I1.getBitWidth() == I2.getBitWidth())
654 return I1 == I2;
655
656 if (I1.getBitWidth() > I2.getBitWidth())
657 return I1 == I2.zext(I1.getBitWidth());
658
659 return I1.zext(I2.getBitWidth()) == I2;
660 }
661
662 /// \brief Overload to compute a hash_code for an APInt value.
663 friend hash_code hash_value(const APInt &Arg);
664
665 /// This function returns a pointer to the internal storage of the APInt.
666 /// This is useful for writing out the APInt in binary form without any
667 /// conversions.
668 const uint64_t *getRawData() const {
669 if (isSingleWord())
670 return &U.VAL;
671 return &U.pVal[0];
672 }
673
674 /// @}
675 /// \name Unary Operators
676 /// @{
677
678 /// \brief Postfix increment operator.
679 ///
680 /// Increments *this by 1.
681 ///
682 /// \returns a new APInt value representing the original value of *this.
683 const APInt operator++(int) {
684 APInt API(*this);
685 ++(*this);
686 return API;
687 }
688
689 /// \brief Prefix increment operator.
690 ///
691 /// \returns *this incremented by one
692 APInt &operator++();
693
694 /// \brief Postfix decrement operator.
695 ///
696 /// Decrements *this by 1.
697 ///
698 /// \returns a new APInt value representing the original value of *this.
699 const APInt operator--(int) {
700 APInt API(*this);
701 --(*this);
702 return API;
703 }
704
705 /// \brief Prefix decrement operator.
706 ///
707 /// \returns *this decremented by one.
708 APInt &operator--();
709
710 /// \brief Logical negation operator.
711 ///
712 /// Performs logical negation operation on this APInt.
713 ///
714 /// \returns true if *this is zero, false otherwise.
715 bool operator!() const {
716 if (isSingleWord())
717 return U.VAL == 0;
718 return countLeadingZerosSlowCase() == BitWidth;
719 }
720
721 /// @}
722 /// \name Assignment Operators
723 /// @{
724
725 /// \brief Copy assignment operator.
726 ///
727 /// \returns *this after assignment of RHS.
728 APInt &operator=(const APInt &RHS) {
729 // If the bitwidths are the same, we can avoid mucking with memory
730 if (isSingleWord() && RHS.isSingleWord()) {
731 U.VAL = RHS.U.VAL;
732 BitWidth = RHS.BitWidth;
733 return clearUnusedBits();
734 }
735
736 AssignSlowCase(RHS);
737 return *this;
738 }
739
740 /// @brief Move assignment operator.
741 APInt &operator=(APInt &&that) {
742 assert(this != &that && "Self-move not supported")(static_cast <bool> (this != &that && "Self-move not supported"
) ? void (0) : __assert_fail ("this != &that && \"Self-move not supported\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 742, __extension__ __PRETTY_FUNCTION__))
;
743 if (!isSingleWord())
744 delete[] U.pVal;
745
746 // Use memcpy so that type based alias analysis sees both VAL and pVal
747 // as modified.
748 memcpy(&U, &that.U, sizeof(U));
749
750 BitWidth = that.BitWidth;
751 that.BitWidth = 0;
752
753 return *this;
754 }
755
756 /// \brief Assignment operator.
757 ///
758 /// The RHS value is assigned to *this. If the significant bits in RHS exceed
759 /// the bit width, the excess bits are truncated. If the bit width is larger
760 /// than 64, the value is zero filled in the unspecified high order bits.
761 ///
762 /// \returns *this after assignment of RHS value.
763 APInt &operator=(uint64_t RHS) {
764 if (isSingleWord()) {
765 U.VAL = RHS;
766 clearUnusedBits();
767 } else {
768 U.pVal[0] = RHS;
769 memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
770 }
771 return *this;
772 }
773
774 /// \brief Bitwise AND assignment operator.
775 ///
776 /// Performs a bitwise AND operation on this APInt and RHS. The result is
777 /// assigned to *this.
778 ///
779 /// \returns *this after ANDing with RHS.
780 APInt &operator&=(const APInt &RHS) {
781 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 781, __extension__ __PRETTY_FUNCTION__))
;
782 if (isSingleWord())
783 U.VAL &= RHS.U.VAL;
784 else
785 AndAssignSlowCase(RHS);
786 return *this;
787 }
788
789 /// \brief Bitwise AND assignment operator.
790 ///
791 /// Performs a bitwise AND operation on this APInt and RHS. RHS is
792 /// logically zero-extended or truncated to match the bit-width of
793 /// the LHS.
794 APInt &operator&=(uint64_t RHS) {
795 if (isSingleWord()) {
796 U.VAL &= RHS;
797 return *this;
798 }
799 U.pVal[0] &= RHS;
800 memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
801 return *this;
802 }
803
804 /// \brief Bitwise OR assignment operator.
805 ///
806 /// Performs a bitwise OR operation on this APInt and RHS. The result is
807 /// assigned *this;
808 ///
809 /// \returns *this after ORing with RHS.
810 APInt &operator|=(const APInt &RHS) {
811 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 811, __extension__ __PRETTY_FUNCTION__))
;
812 if (isSingleWord())
813 U.VAL |= RHS.U.VAL;
814 else
815 OrAssignSlowCase(RHS);
816 return *this;
817 }
818
819 /// \brief Bitwise OR assignment operator.
820 ///
821 /// Performs a bitwise OR operation on this APInt and RHS. RHS is
822 /// logically zero-extended or truncated to match the bit-width of
823 /// the LHS.
824 APInt &operator|=(uint64_t RHS) {
825 if (isSingleWord()) {
826 U.VAL |= RHS;
827 clearUnusedBits();
828 } else {
829 U.pVal[0] |= RHS;
830 }
831 return *this;
832 }
833
834 /// \brief Bitwise XOR assignment operator.
835 ///
836 /// Performs a bitwise XOR operation on this APInt and RHS. The result is
837 /// assigned to *this.
838 ///
839 /// \returns *this after XORing with RHS.
840 APInt &operator^=(const APInt &RHS) {
841 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 841, __extension__ __PRETTY_FUNCTION__))
;
842 if (isSingleWord())
843 U.VAL ^= RHS.U.VAL;
844 else
845 XorAssignSlowCase(RHS);
846 return *this;
847 }
848
849 /// \brief Bitwise XOR assignment operator.
850 ///
851 /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
852 /// logically zero-extended or truncated to match the bit-width of
853 /// the LHS.
854 APInt &operator^=(uint64_t RHS) {
855 if (isSingleWord()) {
856 U.VAL ^= RHS;
857 clearUnusedBits();
858 } else {
859 U.pVal[0] ^= RHS;
860 }
861 return *this;
862 }
863
864 /// \brief Multiplication assignment operator.
865 ///
866 /// Multiplies this APInt by RHS and assigns the result to *this.
867 ///
868 /// \returns *this
869 APInt &operator*=(const APInt &RHS);
870 APInt &operator*=(uint64_t RHS);
871
872 /// \brief Addition assignment operator.
873 ///
874 /// Adds RHS to *this and assigns the result to *this.
875 ///
876 /// \returns *this
877 APInt &operator+=(const APInt &RHS);
878 APInt &operator+=(uint64_t RHS);
879
880 /// \brief Subtraction assignment operator.
881 ///
882 /// Subtracts RHS from *this and assigns the result to *this.
883 ///
884 /// \returns *this
885 APInt &operator-=(const APInt &RHS);
886 APInt &operator-=(uint64_t RHS);
887
888 /// \brief Left-shift assignment function.
889 ///
890 /// Shifts *this left by shiftAmt and assigns the result to *this.
891 ///
892 /// \returns *this after shifting left by ShiftAmt
893 APInt &operator<<=(unsigned ShiftAmt) {
894 assert(ShiftAmt <= BitWidth && "Invalid shift amount")(static_cast <bool> (ShiftAmt <= BitWidth &&
"Invalid shift amount") ? void (0) : __assert_fail ("ShiftAmt <= BitWidth && \"Invalid shift amount\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 894, __extension__ __PRETTY_FUNCTION__))
;
895 if (isSingleWord()) {
896 if (ShiftAmt == BitWidth)
897 U.VAL = 0;
898 else
899 U.VAL <<= ShiftAmt;
900 return clearUnusedBits();
901 }
902 shlSlowCase(ShiftAmt);
903 return *this;
904 }
905
906 /// \brief Left-shift assignment function.
907 ///
908 /// Shifts *this left by shiftAmt and assigns the result to *this.
909 ///
910 /// \returns *this after shifting left by ShiftAmt
911 APInt &operator<<=(const APInt &ShiftAmt);
912
913 /// @}
914 /// \name Binary Operators
915 /// @{
916
917 /// \brief Multiplication operator.
918 ///
919 /// Multiplies this APInt by RHS and returns the result.
920 APInt operator*(const APInt &RHS) const;
921
922 /// \brief Left logical shift operator.
923 ///
924 /// Shifts this APInt left by \p Bits and returns the result.
925 APInt operator<<(unsigned Bits) const { return shl(Bits); }
926
927 /// \brief Left logical shift operator.
928 ///
929 /// Shifts this APInt left by \p Bits and returns the result.
930 APInt operator<<(const APInt &Bits) const { return shl(Bits); }
931
932 /// \brief Arithmetic right-shift function.
933 ///
934 /// Arithmetic right-shift this APInt by shiftAmt.
935 APInt ashr(unsigned ShiftAmt) const {
936 APInt R(*this);
937 R.ashrInPlace(ShiftAmt);
938 return R;
939 }
940
941 /// Arithmetic right-shift this APInt by ShiftAmt in place.
942 void ashrInPlace(unsigned ShiftAmt) {
943 assert(ShiftAmt <= BitWidth && "Invalid shift amount")(static_cast <bool> (ShiftAmt <= BitWidth &&
"Invalid shift amount") ? void (0) : __assert_fail ("ShiftAmt <= BitWidth && \"Invalid shift amount\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 943, __extension__ __PRETTY_FUNCTION__))
;
944 if (isSingleWord()) {
945 int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
946 if (ShiftAmt == BitWidth)
947 U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
948 else
949 U.VAL = SExtVAL >> ShiftAmt;
950 clearUnusedBits();
951 return;
952 }
953 ashrSlowCase(ShiftAmt);
954 }
955
956 /// \brief Logical right-shift function.
957 ///
958 /// Logical right-shift this APInt by shiftAmt.
959 APInt lshr(unsigned shiftAmt) const {
960 APInt R(*this);
961 R.lshrInPlace(shiftAmt);
962 return R;
963 }
964
965 /// Logical right-shift this APInt by ShiftAmt in place.
966 void lshrInPlace(unsigned ShiftAmt) {
967 assert(ShiftAmt <= BitWidth && "Invalid shift amount")(static_cast <bool> (ShiftAmt <= BitWidth &&
"Invalid shift amount") ? void (0) : __assert_fail ("ShiftAmt <= BitWidth && \"Invalid shift amount\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 967, __extension__ __PRETTY_FUNCTION__))
;
968 if (isSingleWord()) {
969 if (ShiftAmt == BitWidth)
970 U.VAL = 0;
971 else
972 U.VAL >>= ShiftAmt;
973 return;
974 }
975 lshrSlowCase(ShiftAmt);
976 }
977
978 /// \brief Left-shift function.
979 ///
980 /// Left-shift this APInt by shiftAmt.
981 APInt shl(unsigned shiftAmt) const {
982 APInt R(*this);
983 R <<= shiftAmt;
984 return R;
985 }
986
987 /// \brief Rotate left by rotateAmt.
988 APInt rotl(unsigned rotateAmt) const;
989
990 /// \brief Rotate right by rotateAmt.
991 APInt rotr(unsigned rotateAmt) const;
992
993 /// \brief Arithmetic right-shift function.
994 ///
995 /// Arithmetic right-shift this APInt by shiftAmt.
996 APInt ashr(const APInt &ShiftAmt) const {
997 APInt R(*this);
998 R.ashrInPlace(ShiftAmt);
999 return R;
1000 }
1001
1002 /// Arithmetic right-shift this APInt by shiftAmt in place.
1003 void ashrInPlace(const APInt &shiftAmt);
1004
1005 /// \brief Logical right-shift function.
1006 ///
1007 /// Logical right-shift this APInt by shiftAmt.
1008 APInt lshr(const APInt &ShiftAmt) const {
1009 APInt R(*this);
1010 R.lshrInPlace(ShiftAmt);
1011 return R;
1012 }
1013
1014 /// Logical right-shift this APInt by ShiftAmt in place.
1015 void lshrInPlace(const APInt &ShiftAmt);
1016
1017 /// \brief Left-shift function.
1018 ///
1019 /// Left-shift this APInt by shiftAmt.
1020 APInt shl(const APInt &ShiftAmt) const {
1021 APInt R(*this);
1022 R <<= ShiftAmt;
1023 return R;
1024 }
1025
1026 /// \brief Rotate left by rotateAmt.
1027 APInt rotl(const APInt &rotateAmt) const;
1028
1029 /// \brief Rotate right by rotateAmt.
1030 APInt rotr(const APInt &rotateAmt) const;
1031
1032 /// \brief Unsigned division operation.
1033 ///
1034 /// Perform an unsigned divide operation on this APInt by RHS. Both this and
1035 /// RHS are treated as unsigned quantities for purposes of this division.
1036 ///
1037 /// \returns a new APInt value containing the division result
1038 APInt udiv(const APInt &RHS) const;
1039 APInt udiv(uint64_t RHS) const;
1040
1041 /// \brief Signed division function for APInt.
1042 ///
1043 /// Signed divide this APInt by APInt RHS.
1044 APInt sdiv(const APInt &RHS) const;
1045 APInt sdiv(int64_t RHS) const;
1046
1047 /// \brief Unsigned remainder operation.
1048 ///
1049 /// Perform an unsigned remainder operation on this APInt with RHS being the
1050 /// divisor. Both this and RHS are treated as unsigned quantities for purposes
1051 /// of this operation. Note that this is a true remainder operation and not a
1052 /// modulo operation because the sign follows the sign of the dividend which
1053 /// is *this.
1054 ///
1055 /// \returns a new APInt value containing the remainder result
1056 APInt urem(const APInt &RHS) const;
1057 uint64_t urem(uint64_t RHS) const;
1058
1059 /// \brief Function for signed remainder operation.
1060 ///
1061 /// Signed remainder operation on APInt.
1062 APInt srem(const APInt &RHS) const;
1063 int64_t srem(int64_t RHS) const;
1064
1065 /// \brief Dual division/remainder interface.
1066 ///
1067 /// Sometimes it is convenient to divide two APInt values and obtain both the
1068 /// quotient and remainder. This function does both operations in the same
1069 /// computation making it a little more efficient. The pair of input arguments
1070 /// may overlap with the pair of output arguments. It is safe to call
1071 /// udivrem(X, Y, X, Y), for example.
1072 static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1073 APInt &Remainder);
1074 static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1075 uint64_t &Remainder);
1076
1077 static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1078 APInt &Remainder);
1079 static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
1080 int64_t &Remainder);
1081
1082 // Operations that return overflow indicators.
1083 APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
1084 APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
1085 APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
1086 APInt usub_ov(const APInt &RHS, bool &Overflow) const;
1087 APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
1088 APInt smul_ov(const APInt &RHS, bool &Overflow) const;
1089 APInt umul_ov(const APInt &RHS, bool &Overflow) const;
1090 APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
1091 APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
1092
1093 /// \brief Array-indexing support.
1094 ///
1095 /// \returns the bit value at bitPosition
1096 bool operator[](unsigned bitPosition) const {
1097 assert(bitPosition < getBitWidth() && "Bit position out of bounds!")(static_cast <bool> (bitPosition < getBitWidth() &&
"Bit position out of bounds!") ? void (0) : __assert_fail ("bitPosition < getBitWidth() && \"Bit position out of bounds!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 1097, __extension__ __PRETTY_FUNCTION__))
;
1098 return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
1099 }
1100
1101 /// @}
1102 /// \name Comparison Operators
1103 /// @{
1104
1105 /// \brief Equality operator.
1106 ///
1107 /// Compares this APInt with RHS for the validity of the equality
1108 /// relationship.
1109 bool operator==(const APInt &RHS) const {
1110 assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Comparison requires equal bit widths") ? void (0) : __assert_fail
("BitWidth == RHS.BitWidth && \"Comparison requires equal bit widths\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 1110, __extension__ __PRETTY_FUNCTION__))
;
1111 if (isSingleWord())
1112 return U.VAL == RHS.U.VAL;
1113 return EqualSlowCase(RHS);
1114 }
1115
1116 /// \brief Equality operator.
1117 ///
1118 /// Compares this APInt with a uint64_t for the validity of the equality
1119 /// relationship.
1120 ///
1121 /// \returns true if *this == Val
1122 bool operator==(uint64_t Val) const {
1123 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
1124 }
1125
1126 /// \brief Equality comparison.
1127 ///
1128 /// Compares this APInt with RHS for the validity of the equality
1129 /// relationship.
1130 ///
1131 /// \returns true if *this == Val
1132 bool eq(const APInt &RHS) const { return (*this) == RHS; }
1133
1134 /// \brief Inequality operator.
1135 ///
1136 /// Compares this APInt with RHS for the validity of the inequality
1137 /// relationship.
1138 ///
1139 /// \returns true if *this != Val
1140 bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
1141
1142 /// \brief Inequality operator.
1143 ///
1144 /// Compares this APInt with a uint64_t for the validity of the inequality
1145 /// relationship.
1146 ///
1147 /// \returns true if *this != Val
1148 bool operator!=(uint64_t Val) const { return !((*this) == Val); }
1149
1150 /// \brief Inequality comparison
1151 ///
1152 /// Compares this APInt with RHS for the validity of the inequality
1153 /// relationship.
1154 ///
1155 /// \returns true if *this != Val
1156 bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1157
1158 /// \brief Unsigned less than comparison
1159 ///
1160 /// Regards both *this and RHS as unsigned quantities and compares them for
1161 /// the validity of the less-than relationship.
1162 ///
1163 /// \returns true if *this < RHS when both are considered unsigned.
1164 bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
1165
1166 /// \brief Unsigned less than comparison
1167 ///
1168 /// Regards both *this as an unsigned quantity and compares it with RHS for
1169 /// the validity of the less-than relationship.
1170 ///
1171 /// \returns true if *this < RHS when considered unsigned.
1172 bool ult(uint64_t RHS) const {
1173 // Only need to check active bits if not a single word.
1174 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
1175 }
1176
1177 /// \brief Signed less than comparison
1178 ///
1179 /// Regards both *this and RHS as signed quantities and compares them for
1180 /// validity of the less-than relationship.
1181 ///
1182 /// \returns true if *this < RHS when both are considered signed.
1183 bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
1184
1185 /// \brief Signed less than comparison
1186 ///
1187 /// Regards both *this as a signed quantity and compares it with RHS for
1188 /// the validity of the less-than relationship.
1189 ///
1190 /// \returns true if *this < RHS when considered signed.
1191 bool slt(int64_t RHS) const {
1192 return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative()
1193 : getSExtValue() < RHS;
1194 }
1195
1196 /// \brief Unsigned less or equal comparison
1197 ///
1198 /// Regards both *this and RHS as unsigned quantities and compares them for
1199 /// validity of the less-or-equal relationship.
1200 ///
1201 /// \returns true if *this <= RHS when both are considered unsigned.
1202 bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
1203
1204 /// \brief Unsigned less or equal comparison
1205 ///
1206 /// Regards both *this as an unsigned quantity and compares it with RHS for
1207 /// the validity of the less-or-equal relationship.
1208 ///
1209 /// \returns true if *this <= RHS when considered unsigned.
1210 bool ule(uint64_t RHS) const { return !ugt(RHS); }
1211
1212 /// \brief Signed less or equal comparison
1213 ///
1214 /// Regards both *this and RHS as signed quantities and compares them for
1215 /// validity of the less-or-equal relationship.
1216 ///
1217 /// \returns true if *this <= RHS when both are considered signed.
1218 bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
1219
1220 /// \brief Signed less or equal comparison
1221 ///
1222 /// Regards both *this as a signed quantity and compares it with RHS for the
1223 /// validity of the less-or-equal relationship.
1224 ///
1225 /// \returns true if *this <= RHS when considered signed.
1226 bool sle(uint64_t RHS) const { return !sgt(RHS); }
1227
1228 /// \brief Unsigned greather than comparison
1229 ///
1230 /// Regards both *this and RHS as unsigned quantities and compares them for
1231 /// the validity of the greater-than relationship.
1232 ///
1233 /// \returns true if *this > RHS when both are considered unsigned.
1234 bool ugt(const APInt &RHS) const { return !ule(RHS); }
1235
1236 /// \brief Unsigned greater than comparison
1237 ///
1238 /// Regards both *this as an unsigned quantity and compares it with RHS for
1239 /// the validity of the greater-than relationship.
1240 ///
1241 /// \returns true if *this > RHS when considered unsigned.
1242 bool ugt(uint64_t RHS) const {
1243 // Only need to check active bits if not a single word.
1244 return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
1245 }
1246
1247 /// \brief Signed greather than comparison
1248 ///
1249 /// Regards both *this and RHS as signed quantities and compares them for the
1250 /// validity of the greater-than relationship.
1251 ///
1252 /// \returns true if *this > RHS when both are considered signed.
1253 bool sgt(const APInt &RHS) const { return !sle(RHS); }
1254
1255 /// \brief Signed greater than comparison
1256 ///
1257 /// Regards both *this as a signed quantity and compares it with RHS for
1258 /// the validity of the greater-than relationship.
1259 ///
1260 /// \returns true if *this > RHS when considered signed.
1261 bool sgt(int64_t RHS) const {
1262 return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative()
1263 : getSExtValue() > RHS;
1264 }
1265
1266 /// \brief Unsigned greater or equal comparison
1267 ///
1268 /// Regards both *this and RHS as unsigned quantities and compares them for
1269 /// validity of the greater-or-equal relationship.
1270 ///
1271 /// \returns true if *this >= RHS when both are considered unsigned.
1272 bool uge(const APInt &RHS) const { return !ult(RHS); }
1273
1274 /// \brief Unsigned greater or equal comparison
1275 ///
1276 /// Regards both *this as an unsigned quantity and compares it with RHS for
1277 /// the validity of the greater-or-equal relationship.
1278 ///
1279 /// \returns true if *this >= RHS when considered unsigned.
1280 bool uge(uint64_t RHS) const { return !ult(RHS); }
1281
1282 /// \brief Signed greather or equal comparison
1283 ///
1284 /// Regards both *this and RHS as signed quantities and compares them for
1285 /// validity of the greater-or-equal relationship.
1286 ///
1287 /// \returns true if *this >= RHS when both are considered signed.
1288 bool sge(const APInt &RHS) const { return !slt(RHS); }
1289
1290 /// \brief Signed greater or equal comparison
1291 ///
1292 /// Regards both *this as a signed quantity and compares it with RHS for
1293 /// the validity of the greater-or-equal relationship.
1294 ///
1295 /// \returns true if *this >= RHS when considered signed.
1296 bool sge(int64_t RHS) const { return !slt(RHS); }
1297
1298 /// This operation tests if there are any pairs of corresponding bits
1299 /// between this APInt and RHS that are both set.
1300 bool intersects(const APInt &RHS) const {
1301 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 1301, __extension__ __PRETTY_FUNCTION__))
;
1302 if (isSingleWord())
1303 return (U.VAL & RHS.U.VAL) != 0;
1304 return intersectsSlowCase(RHS);
1305 }
1306
1307 /// This operation checks that all bits set in this APInt are also set in RHS.
1308 bool isSubsetOf(const APInt &RHS) const {
1309 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")(static_cast <bool> (BitWidth == RHS.BitWidth &&
"Bit widths must be the same") ? void (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 1309, __extension__ __PRETTY_FUNCTION__))
;
1310 if (isSingleWord())
1311 return (U.VAL & ~RHS.U.VAL) == 0;
1312 return isSubsetOfSlowCase(RHS);
1313 }
1314
1315 /// @}
1316 /// \name Resizing Operators
1317 /// @{
1318
1319 /// \brief Truncate to new width.
1320 ///
1321 /// Truncate the APInt to a specified width. It is an error to specify a width
1322 /// that is greater than or equal to the current width.
1323 APInt trunc(unsigned width) const;
1324
1325 /// \brief Sign extend to a new width.
1326 ///
1327 /// This operation sign extends the APInt to a new width. If the high order
1328 /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1329 /// It is an error to specify a width that is less than or equal to the
1330 /// current width.
1331 APInt sext(unsigned width) const;
1332
1333 /// \brief Zero extend to a new width.
1334 ///
1335 /// This operation zero extends the APInt to a new width. The high order bits
1336 /// are filled with 0 bits. It is an error to specify a width that is less
1337 /// than or equal to the current width.
1338 APInt zext(unsigned width) const;
1339
1340 /// \brief Sign extend or truncate to width
1341 ///
1342 /// Make this APInt have the bit width given by \p width. The value is sign
1343 /// extended, truncated, or left alone to make it that width.
1344 APInt sextOrTrunc(unsigned width) const;
1345
1346 /// \brief Zero extend or truncate to width
1347 ///
1348 /// Make this APInt have the bit width given by \p width. The value is zero
1349 /// extended, truncated, or left alone to make it that width.
1350 APInt zextOrTrunc(unsigned width) const;
1351
1352 /// \brief Sign extend or truncate to width
1353 ///
1354 /// Make this APInt have the bit width given by \p width. The value is sign
1355 /// extended, or left alone to make it that width.
1356 APInt sextOrSelf(unsigned width) const;
1357
1358 /// \brief Zero extend or truncate to width
1359 ///
1360 /// Make this APInt have the bit width given by \p width. The value is zero
1361 /// extended, or left alone to make it that width.
1362 APInt zextOrSelf(unsigned width) const;
1363
1364 /// @}
1365 /// \name Bit Manipulation Operators
1366 /// @{
1367
1368 /// \brief Set every bit to 1.
1369 void setAllBits() {
1370 if (isSingleWord())
1371 U.VAL = WORD_MAX;
1372 else
1373 // Set all the bits in all the words.
1374 memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
1375 // Clear the unused ones
1376 clearUnusedBits();
1377 }
1378
1379 /// \brief Set a given bit to 1.
1380 ///
1381 /// Set the given bit to 1 whose position is given as "bitPosition".
1382 void setBit(unsigned BitPosition) {
1383 assert(BitPosition <= BitWidth && "BitPosition out of range")(static_cast <bool> (BitPosition <= BitWidth &&
"BitPosition out of range") ? void (0) : __assert_fail ("BitPosition <= BitWidth && \"BitPosition out of range\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 1383, __extension__ __PRETTY_FUNCTION__))
;
1384 WordType Mask = maskBit(BitPosition);
1385 if (isSingleWord())
1386 U.VAL |= Mask;
1387 else
1388 U.pVal[whichWord(BitPosition)] |= Mask;
1389 }
1390
1391 /// Set the sign bit to 1.
1392 void setSignBit() {
1393 setBit(BitWidth - 1);
1394 }
1395
1396 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1397 void setBits(unsigned loBit, unsigned hiBit) {
1398 assert(hiBit <= BitWidth && "hiBit out of range")(static_cast <bool> (hiBit <= BitWidth && "hiBit out of range"
) ? void (0) : __assert_fail ("hiBit <= BitWidth && \"hiBit out of range\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 1398, __extension__ __PRETTY_FUNCTION__))
;
1399 assert(loBit <= BitWidth && "loBit out of range")(static_cast <bool> (loBit <= BitWidth && "loBit out of range"
) ? void (0) : __assert_fail ("loBit <= BitWidth && \"loBit out of range\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 1399, __extension__ __PRETTY_FUNCTION__))
;
1400 assert(loBit <= hiBit && "loBit greater than hiBit")(static_cast <bool> (loBit <= hiBit && "loBit greater than hiBit"
) ? void (0) : __assert_fail ("loBit <= hiBit && \"loBit greater than hiBit\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 1400, __extension__ __PRETTY_FUNCTION__))
;
1401 if (loBit == hiBit)
1402 return;
1403 if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
1404 uint64_t mask = WORD_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
1405 mask <<= loBit;
1406 if (isSingleWord())
1407 U.VAL |= mask;
1408 else
1409 U.pVal[0] |= mask;
1410 } else {
1411 setBitsSlowCase(loBit, hiBit);
1412 }
1413 }
1414
1415 /// Set the top bits starting from loBit.
1416 void setBitsFrom(unsigned loBit) {
1417 return setBits(loBit, BitWidth);
1418 }
1419
1420 /// Set the bottom loBits bits.
1421 void setLowBits(unsigned loBits) {
1422 return setBits(0, loBits);
1423 }
1424
1425 /// Set the top hiBits bits.
1426 void setHighBits(unsigned hiBits) {
1427 return setBits(BitWidth - hiBits, BitWidth);
1428 }
1429
1430 /// \brief Set every bit to 0.
1431 void clearAllBits() {
1432 if (isSingleWord())
1433 U.VAL = 0;
1434 else
1435 memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
1436 }
1437
1438 /// \brief Set a given bit to 0.
1439 ///
1440 /// Set the given bit to 0 whose position is given as "bitPosition".
1441 void clearBit(unsigned BitPosition) {
1442 assert(BitPosition <= BitWidth && "BitPosition out of range")(static_cast <bool> (BitPosition <= BitWidth &&
"BitPosition out of range") ? void (0) : __assert_fail ("BitPosition <= BitWidth && \"BitPosition out of range\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 1442, __extension__ __PRETTY_FUNCTION__))
;
1443 WordType Mask = ~maskBit(BitPosition);
1444 if (isSingleWord())
1445 U.VAL &= Mask;
1446 else
1447 U.pVal[whichWord(BitPosition)] &= Mask;
1448 }
1449
1450 /// Set the sign bit to 0.
1451 void clearSignBit() {
1452 clearBit(BitWidth - 1);
1453 }
1454
1455 /// \brief Toggle every bit to its opposite value.
1456 void flipAllBits() {
1457 if (isSingleWord()) {
1458 U.VAL ^= WORD_MAX;
1459 clearUnusedBits();
1460 } else {
1461 flipAllBitsSlowCase();
1462 }
1463 }
1464
1465 /// \brief Toggles a given bit to its opposite value.
1466 ///
1467 /// Toggle a given bit to its opposite value whose position is given
1468 /// as "bitPosition".
1469 void flipBit(unsigned bitPosition);
1470
1471 /// Negate this APInt in place.
1472 void negate() {
1473 flipAllBits();
1474 ++(*this);
1475 }
1476
1477 /// Insert the bits from a smaller APInt starting at bitPosition.
1478 void insertBits(const APInt &SubBits, unsigned bitPosition);
1479
1480 /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
1481 APInt extractBits(unsigned numBits, unsigned bitPosition) const;
1482
1483 /// @}
1484 /// \name Value Characterization Functions
1485 /// @{
1486
1487 /// \brief Return the number of bits in the APInt.
1488 unsigned getBitWidth() const { return BitWidth; }
1489
1490 /// \brief Get the number of words.
1491 ///
1492 /// Here one word's bitwidth equals to that of uint64_t.
1493 ///
1494 /// \returns the number of words to hold the integer value of this APInt.
1495 unsigned getNumWords() const { return getNumWords(BitWidth); }
1496
1497 /// \brief Get the number of words.
1498 ///
1499 /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1500 ///
1501 /// \returns the number of words to hold the integer value with a given bit
1502 /// width.
1503 static unsigned getNumWords(unsigned BitWidth) {
1504 return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1505 }
1506
1507 /// \brief Compute the number of active bits in the value
1508 ///
1509 /// This function returns the number of active bits which is defined as the
1510 /// bit width minus the number of leading zeros. This is used in several
1511 /// computations to see how "wide" the value is.
1512 unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
1513
1514 /// \brief Compute the number of active words in the value of this APInt.
1515 ///
1516 /// This is used in conjunction with getActiveData to extract the raw value of
1517 /// the APInt.
1518 unsigned getActiveWords() const {
1519 unsigned numActiveBits = getActiveBits();
1520 return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1521 }
1522
1523 /// \brief Get the minimum bit size for this signed APInt
1524 ///
1525 /// Computes the minimum bit width for this APInt while considering it to be a
1526 /// signed (and probably negative) value. If the value is not negative, this
1527 /// function returns the same value as getActiveBits()+1. Otherwise, it
1528 /// returns the smallest bit width that will retain the negative value. For
1529 /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1530 /// for -1, this function will always return 1.
1531 unsigned getMinSignedBits() const {
1532 if (isNegative())
1533 return BitWidth - countLeadingOnes() + 1;
1534 return getActiveBits() + 1;
1535 }
1536
1537 /// \brief Get zero extended value
1538 ///
1539 /// This method attempts to return the value of this APInt as a zero extended
1540 /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1541 /// uint64_t. Otherwise an assertion will result.
1542 uint64_t getZExtValue() const {
1543 if (isSingleWord())
1544 return U.VAL;
1545 assert(getActiveBits() <= 64 && "Too many bits for uint64_t")(static_cast <bool> (getActiveBits() <= 64 &&
"Too many bits for uint64_t") ? void (0) : __assert_fail ("getActiveBits() <= 64 && \"Too many bits for uint64_t\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 1545, __extension__ __PRETTY_FUNCTION__))
;
1546 return U.pVal[0];
1547 }
1548
1549 /// \brief Get sign extended value
1550 ///
1551 /// This method attempts to return the value of this APInt as a sign extended
1552 /// int64_t. The bit width must be <= 64 or the value must fit within an
1553 /// int64_t. Otherwise an assertion will result.
1554 int64_t getSExtValue() const {
1555 if (isSingleWord())
1556 return SignExtend64(U.VAL, BitWidth);
1557 assert(getMinSignedBits() <= 64 && "Too many bits for int64_t")(static_cast <bool> (getMinSignedBits() <= 64 &&
"Too many bits for int64_t") ? void (0) : __assert_fail ("getMinSignedBits() <= 64 && \"Too many bits for int64_t\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/APInt.h"
, 1557, __extension__ __PRETTY_FUNCTION__))
;
1558 return int64_t(U.pVal[0]);
1559 }
1560
1561 /// \brief Get bits required for string value.
1562 ///
1563 /// This method determines how many bits are required to hold the APInt
1564 /// equivalent of the string given by \p str.
1565 static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1566
1567 /// \brief The APInt version of the countLeadingZeros functions in
1568 /// MathExtras.h.
1569 ///
1570 /// It counts the number of zeros from the most significant bit to the first
1571 /// one bit.
1572 ///
1573 /// \returns BitWidth if the value is zero, otherwise returns the number of
1574 /// zeros from the most significant bit to the first one bits.
1575 unsigned countLeadingZeros() const {
1576 if (isSingleWord()) {
1577 unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1578 return llvm::countLeadingZeros(U.VAL) - unusedBits;
1579 }
1580 return countLeadingZerosSlowCase();
1581 }
1582
1583 /// \brief Count the number of leading one bits.
1584 ///
1585 /// This function is an APInt version of the countLeadingOnes
1586 /// functions in MathExtras.h. It counts the number of ones from the most
1587 /// significant bit to the first zero bit.
1588 ///
1589 /// \returns 0 if the high order bit is not set, otherwise returns the number
1590 /// of 1 bits from the most significant to the least
1591 unsigned countLeadingOnes() const {
1592 if (isSingleWord())
1593 return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
1594 return countLeadingOnesSlowCase();
1595 }
1596
1597 /// Computes the number of leading bits of this APInt that are equal to its
1598 /// sign bit.
1599 unsigned getNumSignBits() const {
1600 return isNegative() ? countLeadingOnes() : countLeadingZeros();
1601 }
1602
1603 /// \brief Count the number of trailing zero bits.
1604 ///
1605 /// This function is an APInt version of the countTrailingZeros
1606 /// functions in MathExtras.h. It counts the number of zeros from the least
1607 /// significant bit to the first set bit.
1608 ///
1609 /// \returns BitWidth if the value is zero, otherwise returns the number of
1610 /// zeros from the least significant bit to the first one bit.
1611 unsigned countTrailingZeros() const {
1612 if (isSingleWord())
1613 return std::min(unsigned(llvm::countTrailingZeros(U.VAL)), BitWidth);
1614 return countTrailingZerosSlowCase();
1615 }
1616
1617 /// \brief Count the number of trailing one bits.
1618 ///
1619 /// This function is an APInt version of the countTrailingOnes
1620 /// functions in MathExtras.h. It counts the number of ones from the least
1621 /// significant bit to the first zero bit.
1622 ///
1623 /// \returns BitWidth if the value is all ones, otherwise returns the number
1624 /// of ones from the least significant bit to the first zero bit.
1625 unsigned countTrailingOnes() const {
1626 if (isSingleWord())
1627 return llvm::countTrailingOnes(U.VAL);
1628 return countTrailingOnesSlowCase();
1629 }
1630
1631 /// \brief Count the number of bits set.
1632 ///
1633 /// This function is an APInt version of the countPopulation functions
1634 /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
1635 ///
1636 /// \returns 0 if the value is zero, otherwise returns the number of set bits.
1637 unsigned countPopulation() const {
1638 if (isSingleWord())
1639 return llvm::countPopulation(U.VAL);
1640 return countPopulationSlowCase();
1641 }
1642
1643 /// @}
1644 /// \name Conversion Functions
1645 /// @{
1646 void print(raw_ostream &OS, bool isSigned) const;
1647
1648 /// Converts an APInt to a string and append it to Str. Str is commonly a
1649 /// SmallString.
1650 void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1651 bool formatAsCLiteral = false) const;
1652
1653 /// Considers the APInt to be unsigned and converts it into a string in the
1654 /// radix given. The radix can be 2, 8, 10 16, or 36.
1655 void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1656 toString(Str, Radix, false, false);
1657 }
1658
1659 /// Considers the APInt to be signed and converts it into a string in the
1660 /// radix given. The radix can be 2, 8, 10, 16, or 36.
1661 void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1662 toString(Str, Radix, true, false);
1663 }
1664
1665 /// \brief Return the APInt as a std::string.
1666 ///
1667 /// Note that this is an inefficient method. It is better to pass in a
1668 /// SmallVector/SmallString to the methods above to avoid thrashing the heap
1669 /// for the string.
1670 std::string toString(unsigned Radix, bool Signed) const;
1671
1672 /// \returns a byte-swapped representation of this APInt Value.
1673 APInt byteSwap() const;
1674
1675 /// \returns the value with the bit representation reversed of this APInt
1676 /// Value.
1677 APInt reverseBits() const;
1678
1679 /// \brief Converts this APInt to a double value.
1680 double roundToDouble(bool isSigned) const;
1681
1682 /// \brief Converts this unsigned APInt to a double value.
1683 double roundToDouble() const { return roundToDouble(false); }
1684
1685 /// \brief Converts this signed APInt to a double value.
1686 double signedRoundToDouble() const { return roundToDouble(true); }
1687
1688 /// \brief Converts APInt bits to a double
1689 ///
1690 /// The conversion does not do a translation from integer to double, it just
1691 /// re-interprets the bits as a double. Note that it is valid to do this on
1692 /// any bit width. Exactly 64 bits will be translated.
1693 double bitsToDouble() const {
1694 return BitsToDouble(getWord(0));
1695 }
1696
1697 /// \brief Converts APInt bits to a double
1698 ///
1699 /// The conversion does not do a translation from integer to float, it just
1700 /// re-interprets the bits as a float. Note that it is valid to do this on
1701 /// any bit width. Exactly 32 bits will be translated.
1702 float bitsToFloat() const {
1703 return BitsToFloat(getWord(0));
1704 }
1705
1706 /// \brief Converts a double to APInt bits.
1707 ///
1708 /// The conversion does not do a translation from double to integer, it just
1709 /// re-interprets the bits of the double.
1710 static APInt doubleToBits(double V) {
1711 return APInt(sizeof(double) * CHAR_BIT8, DoubleToBits(V));
1712 }
1713
1714 /// \brief Converts a float to APInt bits.
1715 ///
1716 /// The conversion does not do a translation from float to integer, it just
1717 /// re-interprets the bits of the float.
1718 static APInt floatToBits(float V) {
1719 return APInt(sizeof(float) * CHAR_BIT8, FloatToBits(V));
1720 }
1721
1722 /// @}
1723 /// \name Mathematics Operations
1724 /// @{
1725
1726 /// \returns the floor log base 2 of this APInt.
1727 unsigned logBase2() const { return getActiveBits() - 1; }
1728
1729 /// \returns the ceil log base 2 of this APInt.
1730 unsigned ceilLogBase2() const {
1731 APInt temp(*this);
1732 --temp;
1733 return temp.getActiveBits();
1734 }
1735
1736 /// \returns the nearest log base 2 of this APInt. Ties round up.
1737 ///
1738 /// NOTE: When we have a BitWidth of 1, we define:
1739 ///
1740 /// log2(0) = UINT32_MAX
1741 /// log2(1) = 0
1742 ///
1743 /// to get around any mathematical concerns resulting from
1744 /// referencing 2 in a space where 2 does no exist.
1745 unsigned nearestLogBase2() const {
1746 // Special case when we have a bitwidth of 1. If VAL is 1, then we
1747 // get 0. If VAL is 0, we get WORD_MAX which gets truncated to
1748 // UINT32_MAX.
1749 if (BitWidth == 1)
1750 return U.VAL - 1;
1751
1752 // Handle the zero case.
1753 if (isNullValue())
1754 return UINT32_MAX(4294967295U);
1755
1756 // The non-zero case is handled by computing:
1757 //
1758 // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1759 //
1760 // where x[i] is referring to the value of the ith bit of x.
1761 unsigned lg = logBase2();
1762 return lg + unsigned((*this)[lg - 1]);
1763 }
1764
1765 /// \returns the log base 2 of this APInt if its an exact power of two, -1
1766 /// otherwise
1767 int32_t exactLogBase2() const {
1768 if (!isPowerOf2())
1769 return -1;
1770 return logBase2();
1771 }
1772
1773 /// \brief Compute the square root
1774 APInt sqrt() const;
1775
1776 /// \brief Get the absolute value;
1777 ///
1778 /// If *this is < 0 then return -(*this), otherwise *this;
1779 APInt abs() const {
1780 if (isNegative())
1781 return -(*this);
1782 return *this;
1783 }
1784
1785 /// \returns the multiplicative inverse for a given modulo.
1786 APInt multiplicativeInverse(const APInt &modulo) const;
1787
1788 /// @}
1789 /// \name Support for division by constant
1790 /// @{
1791
1792 /// Calculate the magic number for signed division by a constant.
1793 struct ms;
1794 ms magic() const;
1795
1796 /// Calculate the magic number for unsigned division by a constant.
1797 struct mu;
1798 mu magicu(unsigned LeadingZeros = 0) const;
1799
1800 /// @}
1801 /// \name Building-block Operations for APInt and APFloat
1802 /// @{
1803
1804 // These building block operations operate on a representation of arbitrary
1805 // precision, two's-complement, bignum integer values. They should be
1806 // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1807 // generally a pointer to the base of an array of integer parts, representing
1808 // an unsigned bignum, and a count of how many parts there are.
1809
1810 /// Sets the least significant part of a bignum to the input value, and zeroes
1811 /// out higher parts.
1812 static void tcSet(WordType *, WordType, unsigned);
1813
1814 /// Assign one bignum to another.
1815 static void tcAssign(WordType *, const WordType *, unsigned);
1816
1817 /// Returns true if a bignum is zero, false otherwise.
1818 static bool tcIsZero(const WordType *, unsigned);
1819
1820 /// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
1821 static int tcExtractBit(const WordType *, unsigned bit);
1822
1823 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1824 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1825 /// significant bit of DST. All high bits above srcBITS in DST are
1826 /// zero-filled.
1827 static void tcExtract(WordType *, unsigned dstCount,
1828 const WordType *, unsigned srcBits,
1829 unsigned srcLSB);
1830
1831 /// Set the given bit of a bignum. Zero-based.
1832 static void tcSetBit(WordType *, unsigned bit);
1833
1834 /// Clear the given bit of a bignum. Zero-based.
1835 static void tcClearBit(WordType *, unsigned bit);
1836
1837 /// Returns the bit number of the least or most significant set bit of a
1838 /// number. If the input number has no bits set -1U is returned.
1839 static unsigned tcLSB(const WordType *, unsigned n);
1840 static unsigned tcMSB(const WordType *parts, unsigned n);
1841
1842 /// Negate a bignum in-place.
1843 static void tcNegate(WordType *, unsigned);
1844
1845 /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1846 static WordType tcAdd(WordType *, const WordType *,
1847 WordType carry, unsigned);
1848 /// DST += RHS. Returns the carry flag.
1849 static WordType tcAddPart(WordType *, WordType, unsigned);
1850
1851 /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1852 static WordType tcSubtract(WordType *, const WordType *,
1853 WordType carry, unsigned);
1854 /// DST -= RHS. Returns the carry flag.
1855 static WordType tcSubtractPart(WordType *, WordType, unsigned);
1856
1857 /// DST += SRC * MULTIPLIER + PART if add is true
1858 /// DST = SRC * MULTIPLIER + PART if add is false
1859 ///
1860 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must
1861 /// start at the same point, i.e. DST == SRC.
1862 ///
1863 /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1864 /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1865 /// result, and if all of the omitted higher parts were zero return zero,
1866 /// otherwise overflow occurred and return one.
1867 static int tcMultiplyPart(WordType *dst, const WordType *src,
1868 WordType multiplier, WordType carry,
1869 unsigned srcParts, unsigned dstParts,
1870 bool add);
1871
1872 /// DST = LHS * RHS, where DST has the same width as the operands and is
1873 /// filled with the least significant parts of the result. Returns one if
1874 /// overflow occurred, otherwise zero. DST must be disjoint from both
1875 /// operands.
1876 static int tcMultiply(WordType *, const WordType *, const WordType *,
1877 unsigned);
1878
1879 /// DST = LHS * RHS, where DST has width the sum of the widths of the
1880 /// operands. No overflow occurs. DST must be disjoint from both operands.
1881 static void tcFullMultiply(WordType *, const WordType *,
1882 const WordType *, unsigned, unsigned);
1883
1884 /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1885 /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1886 /// REMAINDER to the remainder, return zero. i.e.
1887 ///
1888 /// OLD_LHS = RHS * LHS + REMAINDER
1889 ///
1890 /// SCRATCH is a bignum of the same size as the operands and result for use by
1891 /// the routine; its contents need not be initialized and are destroyed. LHS,
1892 /// REMAINDER and SCRATCH must be distinct.
1893 static int tcDivide(WordType *lhs, const WordType *rhs,
1894 WordType *remainder, WordType *scratch,
1895 unsigned parts);
1896
1897 /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
1898 /// restrictions on Count.
1899 static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
1900
1901 /// Shift a bignum right Count bits. Shifted in bits are zero. There are no
1902 /// restrictions on Count.
1903 static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
1904
1905 /// The obvious AND, OR and XOR and complement operations.
1906 static void tcAnd(WordType *, const WordType *, unsigned);
1907 static void tcOr(WordType *, const WordType *, unsigned);
1908 static void tcXor(WordType *, const WordType *, unsigned);
1909 static void tcComplement(WordType *, unsigned);
1910
1911 /// Comparison (unsigned) of two bignums.
1912 static int tcCompare(const WordType *, const WordType *, unsigned);
1913
1914 /// Increment a bignum in-place. Return the carry flag.
1915 static WordType tcIncrement(WordType *dst, unsigned parts) {
1916 return tcAddPart(dst, 1, parts);
1917 }
1918
1919 /// Decrement a bignum in-place. Return the borrow flag.
1920 static WordType tcDecrement(WordType *dst, unsigned parts) {
1921 return tcSubtractPart(dst, 1, parts);
1922 }
1923
1924 /// Set the least significant BITS and clear the rest.
1925 static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits);
1926
1927 /// \brief debug method
1928 void dump() const;
1929
1930 /// @}
1931};
1932
1933/// Magic data for optimising signed division by a constant.
1934struct APInt::ms {
1935 APInt m; ///< magic number
1936 unsigned s; ///< shift amount
1937};
1938
1939/// Magic data for optimising unsigned division by a constant.
1940struct APInt::mu {
1941 APInt m; ///< magic number
1942 bool a; ///< add indicator
1943 unsigned s; ///< shift amount
1944};
1945
1946inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
1947
1948inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
1949
1950/// \brief Unary bitwise complement operator.
1951///
1952/// \returns an APInt that is the bitwise complement of \p v.
1953inline APInt operator~(APInt v) {
1954 v.flipAllBits();
1955 return v;
1956}
1957
1958inline APInt operator&(APInt a, const APInt &b) {
1959 a &= b;
1960 return a;
1961}
1962
1963inline APInt operator&(const APInt &a, APInt &&b) {
1964 b &= a;
1965 return std::move(b);
1966}
1967
1968inline APInt operator&(APInt a, uint64_t RHS) {
1969 a &= RHS;
1970 return a;
1971}
1972
1973inline APInt operator&(uint64_t LHS, APInt b) {
1974 b &= LHS;
1975 return b;
1976}
1977
1978inline APInt operator|(APInt a, const APInt &b) {
1979 a |= b;
1980 return a;
1981}
1982
1983inline APInt operator|(const APInt &a, APInt &&b) {
1984 b |= a;
1985 return std::move(b);
1986}
1987
1988inline APInt operator|(APInt a, uint64_t RHS) {
1989 a |= RHS;
1990 return a;
1991}
1992
1993inline APInt operator|(uint64_t LHS, APInt b) {
1994 b |= LHS;
1995 return b;
1996}
1997
1998inline APInt operator^(APInt a, const APInt &b) {
1999 a ^= b;
2000 return a;
2001}
2002
2003inline APInt operator^(const APInt &a, APInt &&b) {
2004 b ^= a;
2005 return std::move(b);
2006}
2007
2008inline APInt operator^(APInt a, uint64_t RHS) {
2009 a ^= RHS;
2010 return a;
2011}
2012
2013inline APInt operator^(uint64_t LHS, APInt b) {
2014 b ^= LHS;
2015 return b;
2016}
2017
2018inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
2019 I.print(OS, true);
2020 return OS;
2021}
2022
2023inline APInt operator-(APInt v) {
2024 v.negate();
2025 return v;
2026}
2027
2028inline APInt operator+(APInt a, const APInt &b) {
2029 a += b;
2030 return a;
2031}
2032
2033inline APInt operator+(const APInt &a, APInt &&b) {
2034 b += a;
2035 return std::move(b);
2036}
2037
2038inline APInt operator+(APInt a, uint64_t RHS) {
2039 a += RHS;
2040 return a;
2041}
2042
2043inline APInt operator+(uint64_t LHS, APInt b) {
2044 b += LHS;
2045 return b;
2046}
2047
2048inline APInt operator-(APInt a, const APInt &b) {
2049 a -= b;
2050 return a;
2051}
2052
2053inline APInt operator-(const APInt &a, APInt &&b) {
2054 b.negate();
2055 b += a;
2056 return std::move(b);
2057}
2058
2059inline APInt operator-(APInt a, uint64_t RHS) {
2060 a -= RHS;
2061 return a;
2062}
2063
2064inline APInt operator-(uint64_t LHS, APInt b) {
2065 b.negate();
2066 b += LHS;
2067 return b;
2068}
2069
2070inline APInt operator*(APInt a, uint64_t RHS) {
2071 a *= RHS;
2072 return a;
2073}
2074
2075inline APInt operator*(uint64_t LHS, APInt b) {
2076 b *= LHS;
2077 return b;
2078}
2079
2080
2081namespace APIntOps {
2082
2083/// \brief Determine the smaller of two APInts considered to be signed.
2084inline const APInt &smin(const APInt &A, const APInt &B) {
2085 return A.slt(B) ? A : B;
2086}
2087
2088/// \brief Determine the larger of two APInts considered to be signed.
2089inline const APInt &smax(const APInt &A, const APInt &B) {
2090 return A.sgt(B) ? A : B;
2091}
2092
2093/// \brief Determine the smaller of two APInts considered to be signed.
2094inline const APInt &umin(const APInt &A, const APInt &B) {
2095 return A.ult(B) ? A : B;
2096}
2097
2098/// \brief Determine the larger of two APInts considered to be unsigned.
2099inline const APInt &umax(const APInt &A, const APInt &B) {
2100 return A.ugt(B) ? A : B;
2101}
2102
2103/// \brief Compute GCD of two unsigned APInt values.
2104///
2105/// This function returns the greatest common divisor of the two APInt values
2106/// using Stein's algorithm.
2107///
2108/// \returns the greatest common divisor of A and B.
2109APInt GreatestCommonDivisor(APInt A, APInt B);
2110
2111/// \brief Converts the given APInt to a double value.
2112///
2113/// Treats the APInt as an unsigned value for conversion purposes.
2114inline double RoundAPIntToDouble(const APInt &APIVal) {
2115 return APIVal.roundToDouble();
2116}
2117
2118/// \brief Converts the given APInt to a double value.
2119///
2120/// Treats the APInt as a signed value for conversion purposes.
2121inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
2122 return APIVal.signedRoundToDouble();
2123}
2124
2125/// \brief Converts the given APInt to a float vlalue.
2126inline float RoundAPIntToFloat(const APInt &APIVal) {
2127 return float(RoundAPIntToDouble(APIVal));
2128}
2129
2130/// \brief Converts the given APInt to a float value.
2131///
2132/// Treast the APInt as a signed value for conversion purposes.
2133inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
2134 return float(APIVal.signedRoundToDouble());
2135}
2136
2137/// \brief Converts the given double value into a APInt.
2138///
2139/// This function convert a double value to an APInt value.
2140APInt RoundDoubleToAPInt(double Double, unsigned width);
2141
2142/// \brief Converts a float value into a APInt.
2143///
2144/// Converts a float value into an APInt value.
2145inline APInt RoundFloatToAPInt(float Float, unsigned width) {
2146 return RoundDoubleToAPInt(double(Float), width);
2147}
2148
2149} // End of APIntOps namespace
2150
2151// See friend declaration above. This additional declaration is required in
2152// order to compile LLVM with IBM xlC compiler.
2153hash_code hash_value(const APInt &Arg);
2154} // End of llvm namespace
2155
2156#endif