Bug Summary

File:tools/llvm-objdump/MachODump.cpp
Warning:line 6488, column 17
Assigned value is garbage or undefined

Annotated Source Code

1//===-- MachODump.cpp - Object file dumping utility for llvm --------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the MachO-specific dumper for llvm-objdump.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Object/MachO.h"
15#include "llvm-objdump.h"
16#include "llvm-c/Disassembler.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/StringExtras.h"
19#include "llvm/ADT/Triple.h"
20#include "llvm/Config/config.h"
21#include "llvm/DebugInfo/DIContext.h"
22#include "llvm/DebugInfo/DWARF/DWARFContext.h"
23#include "llvm/Demangle/Demangle.h"
24#include "llvm/MC/MCAsmInfo.h"
25#include "llvm/MC/MCContext.h"
26#include "llvm/MC/MCDisassembler/MCDisassembler.h"
27#include "llvm/MC/MCInst.h"
28#include "llvm/MC/MCInstPrinter.h"
29#include "llvm/MC/MCInstrDesc.h"
30#include "llvm/MC/MCInstrInfo.h"
31#include "llvm/MC/MCRegisterInfo.h"
32#include "llvm/MC/MCSubtargetInfo.h"
33#include "llvm/Object/MachOUniversal.h"
34#include "llvm/Support/Casting.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/Endian.h"
38#include "llvm/Support/Format.h"
39#include "llvm/Support/FormattedStream.h"
40#include "llvm/Support/GraphWriter.h"
41#include "llvm/Support/LEB128.h"
42#include "llvm/Support/MachO.h"
43#include "llvm/Support/MemoryBuffer.h"
44#include "llvm/Support/TargetRegistry.h"
45#include "llvm/Support/TargetSelect.h"
46#include "llvm/Support/ToolOutputFile.h"
47#include "llvm/Support/raw_ostream.h"
48#include <algorithm>
49#include <cstring>
50#include <system_error>
51
52#ifdef HAVE_LIBXAR
53extern "C" {
54#include <xar/xar.h>
55}
56#endif
57
58using namespace llvm;
59using namespace object;
60
61static cl::opt<bool>
62 UseDbg("g",
63 cl::desc("Print line information from debug info if available"));
64
65static cl::opt<std::string> DSYMFile("dsym",
66 cl::desc("Use .dSYM file for debug info"));
67
68static cl::opt<bool> FullLeadingAddr("full-leading-addr",
69 cl::desc("Print full leading address"));
70
71static cl::opt<bool> NoLeadingAddr("no-leading-addr",
72 cl::desc("Print no leading address"));
73
74static cl::opt<bool> NoLeadingHeaders("no-leading-headers",
75 cl::desc("Print no leading headers"));
76
77cl::opt<bool> llvm::UniversalHeaders("universal-headers",
78 cl::desc("Print Mach-O universal headers "
79 "(requires -macho)"));
80
81cl::opt<bool>
82 llvm::ArchiveHeaders("archive-headers",
83 cl::desc("Print archive headers for Mach-O archives "
84 "(requires -macho)"));
85
86cl::opt<bool>
87 ArchiveMemberOffsets("archive-member-offsets",
88 cl::desc("Print the offset to each archive member for "
89 "Mach-O archives (requires -macho and "
90 "-archive-headers)"));
91
92cl::opt<bool>
93 llvm::IndirectSymbols("indirect-symbols",
94 cl::desc("Print indirect symbol table for Mach-O "
95 "objects (requires -macho)"));
96
97cl::opt<bool>
98 llvm::DataInCode("data-in-code",
99 cl::desc("Print the data in code table for Mach-O objects "
100 "(requires -macho)"));
101
102cl::opt<bool>
103 llvm::LinkOptHints("link-opt-hints",
104 cl::desc("Print the linker optimization hints for "
105 "Mach-O objects (requires -macho)"));
106
107cl::opt<bool>
108 llvm::InfoPlist("info-plist",
109 cl::desc("Print the info plist section as strings for "
110 "Mach-O objects (requires -macho)"));
111
112cl::opt<bool>
113 llvm::DylibsUsed("dylibs-used",
114 cl::desc("Print the shared libraries used for linked "
115 "Mach-O files (requires -macho)"));
116
117cl::opt<bool>
118 llvm::DylibId("dylib-id",
119 cl::desc("Print the shared library's id for the dylib Mach-O "
120 "file (requires -macho)"));
121
122cl::opt<bool>
123 llvm::NonVerbose("non-verbose",
124 cl::desc("Print the info for Mach-O objects in "
125 "non-verbose or numeric form (requires -macho)"));
126
127cl::opt<bool>
128 llvm::ObjcMetaData("objc-meta-data",
129 cl::desc("Print the Objective-C runtime meta data for "
130 "Mach-O files (requires -macho)"));
131
132cl::opt<std::string> llvm::DisSymName(
133 "dis-symname",
134 cl::desc("disassemble just this symbol's instructions (requires -macho)"));
135
136static cl::opt<bool> NoSymbolicOperands(
137 "no-symbolic-operands",
138 cl::desc("do not symbolic operands when disassembling (requires -macho)"));
139
140static cl::list<std::string>
141 ArchFlags("arch", cl::desc("architecture(s) from a Mach-O file to dump"),
142 cl::ZeroOrMore);
143
144bool ArchAll = false;
145
146static std::string ThumbTripleName;
147
148static const Target *GetTarget(const MachOObjectFile *MachOObj,
149 const char **McpuDefault,
150 const Target **ThumbTarget) {
151 // Figure out the target triple.
152 llvm::Triple TT(TripleName);
153 if (TripleName.empty()) {
154 TT = MachOObj->getArchTriple(McpuDefault);
155 TripleName = TT.str();
156 }
157
158 if (TT.getArch() == Triple::arm) {
159 // We've inferred a 32-bit ARM target from the object file. All MachO CPUs
160 // that support ARM are also capable of Thumb mode.
161 llvm::Triple ThumbTriple = TT;
162 std::string ThumbName = (Twine("thumb") + TT.getArchName().substr(3)).str();
163 ThumbTriple.setArchName(ThumbName);
164 ThumbTripleName = ThumbTriple.str();
165 }
166
167 // Get the target specific parser.
168 std::string Error;
169 const Target *TheTarget = TargetRegistry::lookupTarget(TripleName, Error);
170 if (TheTarget && ThumbTripleName.empty())
171 return TheTarget;
172
173 *ThumbTarget = TargetRegistry::lookupTarget(ThumbTripleName, Error);
174 if (*ThumbTarget)
175 return TheTarget;
176
177 errs() << "llvm-objdump: error: unable to get target for '";
178 if (!TheTarget)
179 errs() << TripleName;
180 else
181 errs() << ThumbTripleName;
182 errs() << "', see --version and --triple.\n";
183 return nullptr;
184}
185
186struct SymbolSorter {
187 bool operator()(const SymbolRef &A, const SymbolRef &B) {
188 Expected<SymbolRef::Type> ATypeOrErr = A.getType();
189 if (!ATypeOrErr)
190 report_error(A.getObject()->getFileName(), ATypeOrErr.takeError());
191 SymbolRef::Type AType = *ATypeOrErr;
192 Expected<SymbolRef::Type> BTypeOrErr = B.getType();
193 if (!BTypeOrErr)
194 report_error(B.getObject()->getFileName(), BTypeOrErr.takeError());
195 SymbolRef::Type BType = *BTypeOrErr;
196 uint64_t AAddr = (AType != SymbolRef::ST_Function) ? 0 : A.getValue();
197 uint64_t BAddr = (BType != SymbolRef::ST_Function) ? 0 : B.getValue();
198 return AAddr < BAddr;
199 }
200};
201
202// Types for the storted data in code table that is built before disassembly
203// and the predicate function to sort them.
204typedef std::pair<uint64_t, DiceRef> DiceTableEntry;
205typedef std::vector<DiceTableEntry> DiceTable;
206typedef DiceTable::iterator dice_table_iterator;
207
208// This is used to search for a data in code table entry for the PC being
209// disassembled. The j parameter has the PC in j.first. A single data in code
210// table entry can cover many bytes for each of its Kind's. So if the offset,
211// aka the i.first value, of the data in code table entry plus its Length
212// covers the PC being searched for this will return true. If not it will
213// return false.
214static bool compareDiceTableEntries(const DiceTableEntry &i,
215 const DiceTableEntry &j) {
216 uint16_t Length;
217 i.second.getLength(Length);
218
219 return j.first >= i.first && j.first < i.first + Length;
220}
221
222static uint64_t DumpDataInCode(const uint8_t *bytes, uint64_t Length,
223 unsigned short Kind) {
224 uint32_t Value, Size = 1;
225
226 switch (Kind) {
227 default:
228 case MachO::DICE_KIND_DATA:
229 if (Length >= 4) {
230 if (!NoShowRawInsn)
231 dumpBytes(makeArrayRef(bytes, 4), outs());
232 Value = bytes[3] << 24 | bytes[2] << 16 | bytes[1] << 8 | bytes[0];
233 outs() << "\t.long " << Value;
234 Size = 4;
235 } else if (Length >= 2) {
236 if (!NoShowRawInsn)
237 dumpBytes(makeArrayRef(bytes, 2), outs());
238 Value = bytes[1] << 8 | bytes[0];
239 outs() << "\t.short " << Value;
240 Size = 2;
241 } else {
242 if (!NoShowRawInsn)
243 dumpBytes(makeArrayRef(bytes, 2), outs());
244 Value = bytes[0];
245 outs() << "\t.byte " << Value;
246 Size = 1;
247 }
248 if (Kind == MachO::DICE_KIND_DATA)
249 outs() << "\t@ KIND_DATA\n";
250 else
251 outs() << "\t@ data in code kind = " << Kind << "\n";
252 break;
253 case MachO::DICE_KIND_JUMP_TABLE8:
254 if (!NoShowRawInsn)
255 dumpBytes(makeArrayRef(bytes, 1), outs());
256 Value = bytes[0];
257 outs() << "\t.byte " << format("%3u", Value) << "\t@ KIND_JUMP_TABLE8\n";
258 Size = 1;
259 break;
260 case MachO::DICE_KIND_JUMP_TABLE16:
261 if (!NoShowRawInsn)
262 dumpBytes(makeArrayRef(bytes, 2), outs());
263 Value = bytes[1] << 8 | bytes[0];
264 outs() << "\t.short " << format("%5u", Value & 0xffff)
265 << "\t@ KIND_JUMP_TABLE16\n";
266 Size = 2;
267 break;
268 case MachO::DICE_KIND_JUMP_TABLE32:
269 case MachO::DICE_KIND_ABS_JUMP_TABLE32:
270 if (!NoShowRawInsn)
271 dumpBytes(makeArrayRef(bytes, 4), outs());
272 Value = bytes[3] << 24 | bytes[2] << 16 | bytes[1] << 8 | bytes[0];
273 outs() << "\t.long " << Value;
274 if (Kind == MachO::DICE_KIND_JUMP_TABLE32)
275 outs() << "\t@ KIND_JUMP_TABLE32\n";
276 else
277 outs() << "\t@ KIND_ABS_JUMP_TABLE32\n";
278 Size = 4;
279 break;
280 }
281 return Size;
282}
283
284static void getSectionsAndSymbols(MachOObjectFile *MachOObj,
285 std::vector<SectionRef> &Sections,
286 std::vector<SymbolRef> &Symbols,
287 SmallVectorImpl<uint64_t> &FoundFns,
288 uint64_t &BaseSegmentAddress) {
289 for (const SymbolRef &Symbol : MachOObj->symbols()) {
13
Calling 'ObjectFile::symbols'
14
Returning from 'ObjectFile::symbols'
290 Expected<StringRef> SymName = Symbol.getName();
291 if (!SymName)
292 report_error(MachOObj->getFileName(), SymName.takeError());
293 if (!SymName->startswith("ltmp"))
294 Symbols.push_back(Symbol);
295 }
296
297 for (const SectionRef &Section : MachOObj->sections()) {
15
Calling 'ObjectFile::sections'
16
Returning from 'ObjectFile::sections'
298 StringRef SectName;
299 Section.getName(SectName);
300 Sections.push_back(Section);
301 }
302
303 bool BaseSegmentAddressSet = false;
304 for (const auto &Command : MachOObj->load_commands()) {
17
Assuming '__begin' is equal to '__end'
305 if (Command.C.cmd == MachO::LC_FUNCTION_STARTS) {
306 // We found a function starts segment, parse the addresses for later
307 // consumption.
308 MachO::linkedit_data_command LLC =
309 MachOObj->getLinkeditDataLoadCommand(Command);
310
311 MachOObj->ReadULEB128s(LLC.dataoff, FoundFns);
312 } else if (Command.C.cmd == MachO::LC_SEGMENT) {
313 MachO::segment_command SLC = MachOObj->getSegmentLoadCommand(Command);
314 StringRef SegName = SLC.segname;
315 if (!BaseSegmentAddressSet && SegName != "__PAGEZERO") {
316 BaseSegmentAddressSet = true;
317 BaseSegmentAddress = SLC.vmaddr;
318 }
319 }
320 }
321}
322
323static void PrintIndirectSymbolTable(MachOObjectFile *O, bool verbose,
324 uint32_t n, uint32_t count,
325 uint32_t stride, uint64_t addr) {
326 MachO::dysymtab_command Dysymtab = O->getDysymtabLoadCommand();
327 uint32_t nindirectsyms = Dysymtab.nindirectsyms;
328 if (n > nindirectsyms)
329 outs() << " (entries start past the end of the indirect symbol "
330 "table) (reserved1 field greater than the table size)";
331 else if (n + count > nindirectsyms)
332 outs() << " (entries extends past the end of the indirect symbol "
333 "table)";
334 outs() << "\n";
335 uint32_t cputype = O->getHeader().cputype;
336 if (cputype & MachO::CPU_ARCH_ABI64)
337 outs() << "address index";
338 else
339 outs() << "address index";
340 if (verbose)
341 outs() << " name\n";
342 else
343 outs() << "\n";
344 for (uint32_t j = 0; j < count && n + j < nindirectsyms; j++) {
345 if (cputype & MachO::CPU_ARCH_ABI64)
346 outs() << format("0x%016" PRIx64"l" "x", addr + j * stride) << " ";
347 else
348 outs() << format("0x%08" PRIx32"x", (uint32_t)addr + j * stride) << " ";
349 MachO::dysymtab_command Dysymtab = O->getDysymtabLoadCommand();
350 uint32_t indirect_symbol = O->getIndirectSymbolTableEntry(Dysymtab, n + j);
351 if (indirect_symbol == MachO::INDIRECT_SYMBOL_LOCAL) {
352 outs() << "LOCAL\n";
353 continue;
354 }
355 if (indirect_symbol ==
356 (MachO::INDIRECT_SYMBOL_LOCAL | MachO::INDIRECT_SYMBOL_ABS)) {
357 outs() << "LOCAL ABSOLUTE\n";
358 continue;
359 }
360 if (indirect_symbol == MachO::INDIRECT_SYMBOL_ABS) {
361 outs() << "ABSOLUTE\n";
362 continue;
363 }
364 outs() << format("%5u ", indirect_symbol);
365 if (verbose) {
366 MachO::symtab_command Symtab = O->getSymtabLoadCommand();
367 if (indirect_symbol < Symtab.nsyms) {
368 symbol_iterator Sym = O->getSymbolByIndex(indirect_symbol);
369 SymbolRef Symbol = *Sym;
370 Expected<StringRef> SymName = Symbol.getName();
371 if (!SymName)
372 report_error(O->getFileName(), SymName.takeError());
373 outs() << *SymName;
374 } else {
375 outs() << "?";
376 }
377 }
378 outs() << "\n";
379 }
380}
381
382static void PrintIndirectSymbols(MachOObjectFile *O, bool verbose) {
383 for (const auto &Load : O->load_commands()) {
384 if (Load.C.cmd == MachO::LC_SEGMENT_64) {
385 MachO::segment_command_64 Seg = O->getSegment64LoadCommand(Load);
386 for (unsigned J = 0; J < Seg.nsects; ++J) {
387 MachO::section_64 Sec = O->getSection64(Load, J);
388 uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
389 if (section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
390 section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
391 section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
392 section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS ||
393 section_type == MachO::S_SYMBOL_STUBS) {
394 uint32_t stride;
395 if (section_type == MachO::S_SYMBOL_STUBS)
396 stride = Sec.reserved2;
397 else
398 stride = 8;
399 if (stride == 0) {
400 outs() << "Can't print indirect symbols for (" << Sec.segname << ","
401 << Sec.sectname << ") "
402 << "(size of stubs in reserved2 field is zero)\n";
403 continue;
404 }
405 uint32_t count = Sec.size / stride;
406 outs() << "Indirect symbols for (" << Sec.segname << ","
407 << Sec.sectname << ") " << count << " entries";
408 uint32_t n = Sec.reserved1;
409 PrintIndirectSymbolTable(O, verbose, n, count, stride, Sec.addr);
410 }
411 }
412 } else if (Load.C.cmd == MachO::LC_SEGMENT) {
413 MachO::segment_command Seg = O->getSegmentLoadCommand(Load);
414 for (unsigned J = 0; J < Seg.nsects; ++J) {
415 MachO::section Sec = O->getSection(Load, J);
416 uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
417 if (section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
418 section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
419 section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
420 section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS ||
421 section_type == MachO::S_SYMBOL_STUBS) {
422 uint32_t stride;
423 if (section_type == MachO::S_SYMBOL_STUBS)
424 stride = Sec.reserved2;
425 else
426 stride = 4;
427 if (stride == 0) {
428 outs() << "Can't print indirect symbols for (" << Sec.segname << ","
429 << Sec.sectname << ") "
430 << "(size of stubs in reserved2 field is zero)\n";
431 continue;
432 }
433 uint32_t count = Sec.size / stride;
434 outs() << "Indirect symbols for (" << Sec.segname << ","
435 << Sec.sectname << ") " << count << " entries";
436 uint32_t n = Sec.reserved1;
437 PrintIndirectSymbolTable(O, verbose, n, count, stride, Sec.addr);
438 }
439 }
440 }
441 }
442}
443
444static void PrintDataInCodeTable(MachOObjectFile *O, bool verbose) {
445 MachO::linkedit_data_command DIC = O->getDataInCodeLoadCommand();
446 uint32_t nentries = DIC.datasize / sizeof(struct MachO::data_in_code_entry);
447 outs() << "Data in code table (" << nentries << " entries)\n";
448 outs() << "offset length kind\n";
449 for (dice_iterator DI = O->begin_dices(), DE = O->end_dices(); DI != DE;
450 ++DI) {
451 uint32_t Offset;
452 DI->getOffset(Offset);
453 outs() << format("0x%08" PRIx32"x", Offset) << " ";
454 uint16_t Length;
455 DI->getLength(Length);
456 outs() << format("%6u", Length) << " ";
457 uint16_t Kind;
458 DI->getKind(Kind);
459 if (verbose) {
460 switch (Kind) {
461 case MachO::DICE_KIND_DATA:
462 outs() << "DATA";
463 break;
464 case MachO::DICE_KIND_JUMP_TABLE8:
465 outs() << "JUMP_TABLE8";
466 break;
467 case MachO::DICE_KIND_JUMP_TABLE16:
468 outs() << "JUMP_TABLE16";
469 break;
470 case MachO::DICE_KIND_JUMP_TABLE32:
471 outs() << "JUMP_TABLE32";
472 break;
473 case MachO::DICE_KIND_ABS_JUMP_TABLE32:
474 outs() << "ABS_JUMP_TABLE32";
475 break;
476 default:
477 outs() << format("0x%04" PRIx32"x", Kind);
478 break;
479 }
480 } else
481 outs() << format("0x%04" PRIx32"x", Kind);
482 outs() << "\n";
483 }
484}
485
486static void PrintLinkOptHints(MachOObjectFile *O) {
487 MachO::linkedit_data_command LohLC = O->getLinkOptHintsLoadCommand();
488 const char *loh = O->getData().substr(LohLC.dataoff, 1).data();
489 uint32_t nloh = LohLC.datasize;
490 outs() << "Linker optimiztion hints (" << nloh << " total bytes)\n";
491 for (uint32_t i = 0; i < nloh;) {
492 unsigned n;
493 uint64_t identifier = decodeULEB128((const uint8_t *)(loh + i), &n);
494 i += n;
495 outs() << " identifier " << identifier << " ";
496 if (i >= nloh)
497 return;
498 switch (identifier) {
499 case 1:
500 outs() << "AdrpAdrp\n";
501 break;
502 case 2:
503 outs() << "AdrpLdr\n";
504 break;
505 case 3:
506 outs() << "AdrpAddLdr\n";
507 break;
508 case 4:
509 outs() << "AdrpLdrGotLdr\n";
510 break;
511 case 5:
512 outs() << "AdrpAddStr\n";
513 break;
514 case 6:
515 outs() << "AdrpLdrGotStr\n";
516 break;
517 case 7:
518 outs() << "AdrpAdd\n";
519 break;
520 case 8:
521 outs() << "AdrpLdrGot\n";
522 break;
523 default:
524 outs() << "Unknown identifier value\n";
525 break;
526 }
527 uint64_t narguments = decodeULEB128((const uint8_t *)(loh + i), &n);
528 i += n;
529 outs() << " narguments " << narguments << "\n";
530 if (i >= nloh)
531 return;
532
533 for (uint32_t j = 0; j < narguments; j++) {
534 uint64_t value = decodeULEB128((const uint8_t *)(loh + i), &n);
535 i += n;
536 outs() << "\tvalue " << format("0x%" PRIx64"l" "x", value) << "\n";
537 if (i >= nloh)
538 return;
539 }
540 }
541}
542
543static void PrintDylibs(MachOObjectFile *O, bool JustId) {
544 unsigned Index = 0;
545 for (const auto &Load : O->load_commands()) {
546 if ((JustId && Load.C.cmd == MachO::LC_ID_DYLIB) ||
547 (!JustId && (Load.C.cmd == MachO::LC_ID_DYLIB ||
548 Load.C.cmd == MachO::LC_LOAD_DYLIB ||
549 Load.C.cmd == MachO::LC_LOAD_WEAK_DYLIB ||
550 Load.C.cmd == MachO::LC_REEXPORT_DYLIB ||
551 Load.C.cmd == MachO::LC_LAZY_LOAD_DYLIB ||
552 Load.C.cmd == MachO::LC_LOAD_UPWARD_DYLIB))) {
553 MachO::dylib_command dl = O->getDylibIDLoadCommand(Load);
554 if (dl.dylib.name < dl.cmdsize) {
555 const char *p = (const char *)(Load.Ptr) + dl.dylib.name;
556 if (JustId)
557 outs() << p << "\n";
558 else {
559 outs() << "\t" << p;
560 outs() << " (compatibility version "
561 << ((dl.dylib.compatibility_version >> 16) & 0xffff) << "."
562 << ((dl.dylib.compatibility_version >> 8) & 0xff) << "."
563 << (dl.dylib.compatibility_version & 0xff) << ",";
564 outs() << " current version "
565 << ((dl.dylib.current_version >> 16) & 0xffff) << "."
566 << ((dl.dylib.current_version >> 8) & 0xff) << "."
567 << (dl.dylib.current_version & 0xff) << ")\n";
568 }
569 } else {
570 outs() << "\tBad offset (" << dl.dylib.name << ") for name of ";
571 if (Load.C.cmd == MachO::LC_ID_DYLIB)
572 outs() << "LC_ID_DYLIB ";
573 else if (Load.C.cmd == MachO::LC_LOAD_DYLIB)
574 outs() << "LC_LOAD_DYLIB ";
575 else if (Load.C.cmd == MachO::LC_LOAD_WEAK_DYLIB)
576 outs() << "LC_LOAD_WEAK_DYLIB ";
577 else if (Load.C.cmd == MachO::LC_LAZY_LOAD_DYLIB)
578 outs() << "LC_LAZY_LOAD_DYLIB ";
579 else if (Load.C.cmd == MachO::LC_REEXPORT_DYLIB)
580 outs() << "LC_REEXPORT_DYLIB ";
581 else if (Load.C.cmd == MachO::LC_LOAD_UPWARD_DYLIB)
582 outs() << "LC_LOAD_UPWARD_DYLIB ";
583 else
584 outs() << "LC_??? ";
585 outs() << "command " << Index++ << "\n";
586 }
587 }
588 }
589}
590
591typedef DenseMap<uint64_t, StringRef> SymbolAddressMap;
592
593static void CreateSymbolAddressMap(MachOObjectFile *O,
594 SymbolAddressMap *AddrMap) {
595 // Create a map of symbol addresses to symbol names.
596 for (const SymbolRef &Symbol : O->symbols()) {
597 Expected<SymbolRef::Type> STOrErr = Symbol.getType();
598 if (!STOrErr)
599 report_error(O->getFileName(), STOrErr.takeError());
600 SymbolRef::Type ST = *STOrErr;
601 if (ST == SymbolRef::ST_Function || ST == SymbolRef::ST_Data ||
602 ST == SymbolRef::ST_Other) {
603 uint64_t Address = Symbol.getValue();
604 Expected<StringRef> SymNameOrErr = Symbol.getName();
605 if (!SymNameOrErr)
606 report_error(O->getFileName(), SymNameOrErr.takeError());
607 StringRef SymName = *SymNameOrErr;
608 if (!SymName.startswith(".objc"))
609 (*AddrMap)[Address] = SymName;
610 }
611 }
612}
613
614// GuessSymbolName is passed the address of what might be a symbol and a
615// pointer to the SymbolAddressMap. It returns the name of a symbol
616// with that address or nullptr if no symbol is found with that address.
617static const char *GuessSymbolName(uint64_t value, SymbolAddressMap *AddrMap) {
618 const char *SymbolName = nullptr;
619 // A DenseMap can't lookup up some values.
620 if (value != 0xffffffffffffffffULL && value != 0xfffffffffffffffeULL) {
621 StringRef name = AddrMap->lookup(value);
622 if (!name.empty())
623 SymbolName = name.data();
624 }
625 return SymbolName;
626}
627
628static void DumpCstringChar(const char c) {
629 char p[2];
630 p[0] = c;
631 p[1] = '\0';
632 outs().write_escaped(p);
633}
634
635static void DumpCstringSection(MachOObjectFile *O, const char *sect,
636 uint32_t sect_size, uint64_t sect_addr,
637 bool print_addresses) {
638 for (uint32_t i = 0; i < sect_size; i++) {
639 if (print_addresses) {
640 if (O->is64Bit())
641 outs() << format("%016" PRIx64"l" "x", sect_addr + i) << " ";
642 else
643 outs() << format("%08" PRIx64"l" "x", sect_addr + i) << " ";
644 }
645 for (; i < sect_size && sect[i] != '\0'; i++)
646 DumpCstringChar(sect[i]);
647 if (i < sect_size && sect[i] == '\0')
648 outs() << "\n";
649 }
650}
651
652static void DumpLiteral4(uint32_t l, float f) {
653 outs() << format("0x%08" PRIx32"x", l);
654 if ((l & 0x7f800000) != 0x7f800000)
655 outs() << format(" (%.16e)\n", f);
656 else {
657 if (l == 0x7f800000)
658 outs() << " (+Infinity)\n";
659 else if (l == 0xff800000)
660 outs() << " (-Infinity)\n";
661 else if ((l & 0x00400000) == 0x00400000)
662 outs() << " (non-signaling Not-a-Number)\n";
663 else
664 outs() << " (signaling Not-a-Number)\n";
665 }
666}
667
668static void DumpLiteral4Section(MachOObjectFile *O, const char *sect,
669 uint32_t sect_size, uint64_t sect_addr,
670 bool print_addresses) {
671 for (uint32_t i = 0; i < sect_size; i += sizeof(float)) {
672 if (print_addresses) {
673 if (O->is64Bit())
674 outs() << format("%016" PRIx64"l" "x", sect_addr + i) << " ";
675 else
676 outs() << format("%08" PRIx64"l" "x", sect_addr + i) << " ";
677 }
678 float f;
679 memcpy(&f, sect + i, sizeof(float));
680 if (O->isLittleEndian() != sys::IsLittleEndianHost)
681 sys::swapByteOrder(f);
682 uint32_t l;
683 memcpy(&l, sect + i, sizeof(uint32_t));
684 if (O->isLittleEndian() != sys::IsLittleEndianHost)
685 sys::swapByteOrder(l);
686 DumpLiteral4(l, f);
687 }
688}
689
690static void DumpLiteral8(MachOObjectFile *O, uint32_t l0, uint32_t l1,
691 double d) {
692 outs() << format("0x%08" PRIx32"x", l0) << " " << format("0x%08" PRIx32"x", l1);
693 uint32_t Hi, Lo;
694 Hi = (O->isLittleEndian()) ? l1 : l0;
695 Lo = (O->isLittleEndian()) ? l0 : l1;
696
697 // Hi is the high word, so this is equivalent to if(isfinite(d))
698 if ((Hi & 0x7ff00000) != 0x7ff00000)
699 outs() << format(" (%.16e)\n", d);
700 else {
701 if (Hi == 0x7ff00000 && Lo == 0)
702 outs() << " (+Infinity)\n";
703 else if (Hi == 0xfff00000 && Lo == 0)
704 outs() << " (-Infinity)\n";
705 else if ((Hi & 0x00080000) == 0x00080000)
706 outs() << " (non-signaling Not-a-Number)\n";
707 else
708 outs() << " (signaling Not-a-Number)\n";
709 }
710}
711
712static void DumpLiteral8Section(MachOObjectFile *O, const char *sect,
713 uint32_t sect_size, uint64_t sect_addr,
714 bool print_addresses) {
715 for (uint32_t i = 0; i < sect_size; i += sizeof(double)) {
716 if (print_addresses) {
717 if (O->is64Bit())
718 outs() << format("%016" PRIx64"l" "x", sect_addr + i) << " ";
719 else
720 outs() << format("%08" PRIx64"l" "x", sect_addr + i) << " ";
721 }
722 double d;
723 memcpy(&d, sect + i, sizeof(double));
724 if (O->isLittleEndian() != sys::IsLittleEndianHost)
725 sys::swapByteOrder(d);
726 uint32_t l0, l1;
727 memcpy(&l0, sect + i, sizeof(uint32_t));
728 memcpy(&l1, sect + i + sizeof(uint32_t), sizeof(uint32_t));
729 if (O->isLittleEndian() != sys::IsLittleEndianHost) {
730 sys::swapByteOrder(l0);
731 sys::swapByteOrder(l1);
732 }
733 DumpLiteral8(O, l0, l1, d);
734 }
735}
736
737static void DumpLiteral16(uint32_t l0, uint32_t l1, uint32_t l2, uint32_t l3) {
738 outs() << format("0x%08" PRIx32"x", l0) << " ";
739 outs() << format("0x%08" PRIx32"x", l1) << " ";
740 outs() << format("0x%08" PRIx32"x", l2) << " ";
741 outs() << format("0x%08" PRIx32"x", l3) << "\n";
742}
743
744static void DumpLiteral16Section(MachOObjectFile *O, const char *sect,
745 uint32_t sect_size, uint64_t sect_addr,
746 bool print_addresses) {
747 for (uint32_t i = 0; i < sect_size; i += 16) {
748 if (print_addresses) {
749 if (O->is64Bit())
750 outs() << format("%016" PRIx64"l" "x", sect_addr + i) << " ";
751 else
752 outs() << format("%08" PRIx64"l" "x", sect_addr + i) << " ";
753 }
754 uint32_t l0, l1, l2, l3;
755 memcpy(&l0, sect + i, sizeof(uint32_t));
756 memcpy(&l1, sect + i + sizeof(uint32_t), sizeof(uint32_t));
757 memcpy(&l2, sect + i + 2 * sizeof(uint32_t), sizeof(uint32_t));
758 memcpy(&l3, sect + i + 3 * sizeof(uint32_t), sizeof(uint32_t));
759 if (O->isLittleEndian() != sys::IsLittleEndianHost) {
760 sys::swapByteOrder(l0);
761 sys::swapByteOrder(l1);
762 sys::swapByteOrder(l2);
763 sys::swapByteOrder(l3);
764 }
765 DumpLiteral16(l0, l1, l2, l3);
766 }
767}
768
769static void DumpLiteralPointerSection(MachOObjectFile *O,
770 const SectionRef &Section,
771 const char *sect, uint32_t sect_size,
772 uint64_t sect_addr,
773 bool print_addresses) {
774 // Collect the literal sections in this Mach-O file.
775 std::vector<SectionRef> LiteralSections;
776 for (const SectionRef &Section : O->sections()) {
777 DataRefImpl Ref = Section.getRawDataRefImpl();
778 uint32_t section_type;
779 if (O->is64Bit()) {
780 const MachO::section_64 Sec = O->getSection64(Ref);
781 section_type = Sec.flags & MachO::SECTION_TYPE;
782 } else {
783 const MachO::section Sec = O->getSection(Ref);
784 section_type = Sec.flags & MachO::SECTION_TYPE;
785 }
786 if (section_type == MachO::S_CSTRING_LITERALS ||
787 section_type == MachO::S_4BYTE_LITERALS ||
788 section_type == MachO::S_8BYTE_LITERALS ||
789 section_type == MachO::S_16BYTE_LITERALS)
790 LiteralSections.push_back(Section);
791 }
792
793 // Set the size of the literal pointer.
794 uint32_t lp_size = O->is64Bit() ? 8 : 4;
795
796 // Collect the external relocation symbols for the literal pointers.
797 std::vector<std::pair<uint64_t, SymbolRef>> Relocs;
798 for (const RelocationRef &Reloc : Section.relocations()) {
799 DataRefImpl Rel;
800 MachO::any_relocation_info RE;
801 bool isExtern = false;
802 Rel = Reloc.getRawDataRefImpl();
803 RE = O->getRelocation(Rel);
804 isExtern = O->getPlainRelocationExternal(RE);
805 if (isExtern) {
806 uint64_t RelocOffset = Reloc.getOffset();
807 symbol_iterator RelocSym = Reloc.getSymbol();
808 Relocs.push_back(std::make_pair(RelocOffset, *RelocSym));
809 }
810 }
811 array_pod_sort(Relocs.begin(), Relocs.end());
812
813 // Dump each literal pointer.
814 for (uint32_t i = 0; i < sect_size; i += lp_size) {
815 if (print_addresses) {
816 if (O->is64Bit())
817 outs() << format("%016" PRIx64"l" "x", sect_addr + i) << " ";
818 else
819 outs() << format("%08" PRIx64"l" "x", sect_addr + i) << " ";
820 }
821 uint64_t lp;
822 if (O->is64Bit()) {
823 memcpy(&lp, sect + i, sizeof(uint64_t));
824 if (O->isLittleEndian() != sys::IsLittleEndianHost)
825 sys::swapByteOrder(lp);
826 } else {
827 uint32_t li;
828 memcpy(&li, sect + i, sizeof(uint32_t));
829 if (O->isLittleEndian() != sys::IsLittleEndianHost)
830 sys::swapByteOrder(li);
831 lp = li;
832 }
833
834 // First look for an external relocation entry for this literal pointer.
835 auto Reloc = find_if(Relocs, [&](const std::pair<uint64_t, SymbolRef> &P) {
836 return P.first == i;
837 });
838 if (Reloc != Relocs.end()) {
839 symbol_iterator RelocSym = Reloc->second;
840 Expected<StringRef> SymName = RelocSym->getName();
841 if (!SymName)
842 report_error(O->getFileName(), SymName.takeError());
843 outs() << "external relocation entry for symbol:" << *SymName << "\n";
844 continue;
845 }
846
847 // For local references see what the section the literal pointer points to.
848 auto Sect = find_if(LiteralSections, [&](const SectionRef &R) {
849 return lp >= R.getAddress() && lp < R.getAddress() + R.getSize();
850 });
851 if (Sect == LiteralSections.end()) {
852 outs() << format("0x%" PRIx64"l" "x", lp) << " (not in a literal section)\n";
853 continue;
854 }
855
856 uint64_t SectAddress = Sect->getAddress();
857 uint64_t SectSize = Sect->getSize();
858
859 StringRef SectName;
860 Sect->getName(SectName);
861 DataRefImpl Ref = Sect->getRawDataRefImpl();
862 StringRef SegmentName = O->getSectionFinalSegmentName(Ref);
863 outs() << SegmentName << ":" << SectName << ":";
864
865 uint32_t section_type;
866 if (O->is64Bit()) {
867 const MachO::section_64 Sec = O->getSection64(Ref);
868 section_type = Sec.flags & MachO::SECTION_TYPE;
869 } else {
870 const MachO::section Sec = O->getSection(Ref);
871 section_type = Sec.flags & MachO::SECTION_TYPE;
872 }
873
874 StringRef BytesStr;
875 Sect->getContents(BytesStr);
876 const char *Contents = reinterpret_cast<const char *>(BytesStr.data());
877
878 switch (section_type) {
879 case MachO::S_CSTRING_LITERALS:
880 for (uint64_t i = lp - SectAddress; i < SectSize && Contents[i] != '\0';
881 i++) {
882 DumpCstringChar(Contents[i]);
883 }
884 outs() << "\n";
885 break;
886 case MachO::S_4BYTE_LITERALS:
887 float f;
888 memcpy(&f, Contents + (lp - SectAddress), sizeof(float));
889 uint32_t l;
890 memcpy(&l, Contents + (lp - SectAddress), sizeof(uint32_t));
891 if (O->isLittleEndian() != sys::IsLittleEndianHost) {
892 sys::swapByteOrder(f);
893 sys::swapByteOrder(l);
894 }
895 DumpLiteral4(l, f);
896 break;
897 case MachO::S_8BYTE_LITERALS: {
898 double d;
899 memcpy(&d, Contents + (lp - SectAddress), sizeof(double));
900 uint32_t l0, l1;
901 memcpy(&l0, Contents + (lp - SectAddress), sizeof(uint32_t));
902 memcpy(&l1, Contents + (lp - SectAddress) + sizeof(uint32_t),
903 sizeof(uint32_t));
904 if (O->isLittleEndian() != sys::IsLittleEndianHost) {
905 sys::swapByteOrder(f);
906 sys::swapByteOrder(l0);
907 sys::swapByteOrder(l1);
908 }
909 DumpLiteral8(O, l0, l1, d);
910 break;
911 }
912 case MachO::S_16BYTE_LITERALS: {
913 uint32_t l0, l1, l2, l3;
914 memcpy(&l0, Contents + (lp - SectAddress), sizeof(uint32_t));
915 memcpy(&l1, Contents + (lp - SectAddress) + sizeof(uint32_t),
916 sizeof(uint32_t));
917 memcpy(&l2, Contents + (lp - SectAddress) + 2 * sizeof(uint32_t),
918 sizeof(uint32_t));
919 memcpy(&l3, Contents + (lp - SectAddress) + 3 * sizeof(uint32_t),
920 sizeof(uint32_t));
921 if (O->isLittleEndian() != sys::IsLittleEndianHost) {
922 sys::swapByteOrder(l0);
923 sys::swapByteOrder(l1);
924 sys::swapByteOrder(l2);
925 sys::swapByteOrder(l3);
926 }
927 DumpLiteral16(l0, l1, l2, l3);
928 break;
929 }
930 }
931 }
932}
933
934static void DumpInitTermPointerSection(MachOObjectFile *O, const char *sect,
935 uint32_t sect_size, uint64_t sect_addr,
936 SymbolAddressMap *AddrMap,
937 bool verbose) {
938 uint32_t stride;
939 stride = (O->is64Bit()) ? sizeof(uint64_t) : sizeof(uint32_t);
940 for (uint32_t i = 0; i < sect_size; i += stride) {
941 const char *SymbolName = nullptr;
942 if (O->is64Bit()) {
943 outs() << format("0x%016" PRIx64"l" "x", sect_addr + i * stride) << " ";
944 uint64_t pointer_value;
945 memcpy(&pointer_value, sect + i, stride);
946 if (O->isLittleEndian() != sys::IsLittleEndianHost)
947 sys::swapByteOrder(pointer_value);
948 outs() << format("0x%016" PRIx64"l" "x", pointer_value);
949 if (verbose)
950 SymbolName = GuessSymbolName(pointer_value, AddrMap);
951 } else {
952 outs() << format("0x%08" PRIx64"l" "x", sect_addr + i * stride) << " ";
953 uint32_t pointer_value;
954 memcpy(&pointer_value, sect + i, stride);
955 if (O->isLittleEndian() != sys::IsLittleEndianHost)
956 sys::swapByteOrder(pointer_value);
957 outs() << format("0x%08" PRIx32"x", pointer_value);
958 if (verbose)
959 SymbolName = GuessSymbolName(pointer_value, AddrMap);
960 }
961 if (SymbolName)
962 outs() << " " << SymbolName;
963 outs() << "\n";
964 }
965}
966
967static void DumpRawSectionContents(MachOObjectFile *O, const char *sect,
968 uint32_t size, uint64_t addr) {
969 uint32_t cputype = O->getHeader().cputype;
970 if (cputype == MachO::CPU_TYPE_I386 || cputype == MachO::CPU_TYPE_X86_64) {
971 uint32_t j;
972 for (uint32_t i = 0; i < size; i += j, addr += j) {
973 if (O->is64Bit())
974 outs() << format("%016" PRIx64"l" "x", addr) << "\t";
975 else
976 outs() << format("%08" PRIx64"l" "x", addr) << "\t";
977 for (j = 0; j < 16 && i + j < size; j++) {
978 uint8_t byte_word = *(sect + i + j);
979 outs() << format("%02" PRIx32"x", (uint32_t)byte_word) << " ";
980 }
981 outs() << "\n";
982 }
983 } else {
984 uint32_t j;
985 for (uint32_t i = 0; i < size; i += j, addr += j) {
986 if (O->is64Bit())
987 outs() << format("%016" PRIx64"l" "x", addr) << "\t";
988 else
989 outs() << format("%08" PRIx64"l" "x", addr) << "\t";
990 for (j = 0; j < 4 * sizeof(int32_t) && i + j < size;
991 j += sizeof(int32_t)) {
992 if (i + j + sizeof(int32_t) <= size) {
993 uint32_t long_word;
994 memcpy(&long_word, sect + i + j, sizeof(int32_t));
995 if (O->isLittleEndian() != sys::IsLittleEndianHost)
996 sys::swapByteOrder(long_word);
997 outs() << format("%08" PRIx32"x", long_word) << " ";
998 } else {
999 for (uint32_t k = 0; i + j + k < size; k++) {
1000 uint8_t byte_word = *(sect + i + j + k);
1001 outs() << format("%02" PRIx32"x", (uint32_t)byte_word) << " ";
1002 }
1003 }
1004 }
1005 outs() << "\n";
1006 }
1007 }
1008}
1009
1010static void DisassembleMachO(StringRef Filename, MachOObjectFile *MachOOF,
1011 StringRef DisSegName, StringRef DisSectName);
1012static void DumpProtocolSection(MachOObjectFile *O, const char *sect,
1013 uint32_t size, uint32_t addr);
1014#ifdef HAVE_LIBXAR
1015static void DumpBitcodeSection(MachOObjectFile *O, const char *sect,
1016 uint32_t size, bool verbose,
1017 bool PrintXarHeader, bool PrintXarFileHeaders,
1018 std::string XarMemberName);
1019#endif // defined(HAVE_LIBXAR)
1020
1021static void DumpSectionContents(StringRef Filename, MachOObjectFile *O,
1022 bool verbose) {
1023 SymbolAddressMap AddrMap;
1024 if (verbose)
1025 CreateSymbolAddressMap(O, &AddrMap);
1026
1027 for (unsigned i = 0; i < FilterSections.size(); ++i) {
1028 StringRef DumpSection = FilterSections[i];
1029 std::pair<StringRef, StringRef> DumpSegSectName;
1030 DumpSegSectName = DumpSection.split(',');
1031 StringRef DumpSegName, DumpSectName;
1032 if (DumpSegSectName.second.size()) {
1033 DumpSegName = DumpSegSectName.first;
1034 DumpSectName = DumpSegSectName.second;
1035 } else {
1036 DumpSegName = "";
1037 DumpSectName = DumpSegSectName.first;
1038 }
1039 for (const SectionRef &Section : O->sections()) {
1040 StringRef SectName;
1041 Section.getName(SectName);
1042 DataRefImpl Ref = Section.getRawDataRefImpl();
1043 StringRef SegName = O->getSectionFinalSegmentName(Ref);
1044 if ((DumpSegName.empty() || SegName == DumpSegName) &&
1045 (SectName == DumpSectName)) {
1046
1047 uint32_t section_flags;
1048 if (O->is64Bit()) {
1049 const MachO::section_64 Sec = O->getSection64(Ref);
1050 section_flags = Sec.flags;
1051
1052 } else {
1053 const MachO::section Sec = O->getSection(Ref);
1054 section_flags = Sec.flags;
1055 }
1056 uint32_t section_type = section_flags & MachO::SECTION_TYPE;
1057
1058 StringRef BytesStr;
1059 Section.getContents(BytesStr);
1060 const char *sect = reinterpret_cast<const char *>(BytesStr.data());
1061 uint32_t sect_size = BytesStr.size();
1062 uint64_t sect_addr = Section.getAddress();
1063
1064 outs() << "Contents of (" << SegName << "," << SectName
1065 << ") section\n";
1066
1067 if (verbose) {
1068 if ((section_flags & MachO::S_ATTR_PURE_INSTRUCTIONS) ||
1069 (section_flags & MachO::S_ATTR_SOME_INSTRUCTIONS)) {
1070 DisassembleMachO(Filename, O, SegName, SectName);
1071 continue;
1072 }
1073 if (SegName == "__TEXT" && SectName == "__info_plist") {
1074 outs() << sect;
1075 continue;
1076 }
1077 if (SegName == "__OBJC" && SectName == "__protocol") {
1078 DumpProtocolSection(O, sect, sect_size, sect_addr);
1079 continue;
1080 }
1081#ifdef HAVE_LIBXAR
1082 if (SegName == "__LLVM" && SectName == "__bundle") {
1083 DumpBitcodeSection(O, sect, sect_size, verbose, !NoSymbolicOperands,
1084 ArchiveHeaders, "");
1085 continue;
1086 }
1087#endif // defined(HAVE_LIBXAR)
1088 switch (section_type) {
1089 case MachO::S_REGULAR:
1090 DumpRawSectionContents(O, sect, sect_size, sect_addr);
1091 break;
1092 case MachO::S_ZEROFILL:
1093 outs() << "zerofill section and has no contents in the file\n";
1094 break;
1095 case MachO::S_CSTRING_LITERALS:
1096 DumpCstringSection(O, sect, sect_size, sect_addr, !NoLeadingAddr);
1097 break;
1098 case MachO::S_4BYTE_LITERALS:
1099 DumpLiteral4Section(O, sect, sect_size, sect_addr, !NoLeadingAddr);
1100 break;
1101 case MachO::S_8BYTE_LITERALS:
1102 DumpLiteral8Section(O, sect, sect_size, sect_addr, !NoLeadingAddr);
1103 break;
1104 case MachO::S_16BYTE_LITERALS:
1105 DumpLiteral16Section(O, sect, sect_size, sect_addr, !NoLeadingAddr);
1106 break;
1107 case MachO::S_LITERAL_POINTERS:
1108 DumpLiteralPointerSection(O, Section, sect, sect_size, sect_addr,
1109 !NoLeadingAddr);
1110 break;
1111 case MachO::S_MOD_INIT_FUNC_POINTERS:
1112 case MachO::S_MOD_TERM_FUNC_POINTERS:
1113 DumpInitTermPointerSection(O, sect, sect_size, sect_addr, &AddrMap,
1114 verbose);
1115 break;
1116 default:
1117 outs() << "Unknown section type ("
1118 << format("0x%08" PRIx32"x", section_type) << ")\n";
1119 DumpRawSectionContents(O, sect, sect_size, sect_addr);
1120 break;
1121 }
1122 } else {
1123 if (section_type == MachO::S_ZEROFILL)
1124 outs() << "zerofill section and has no contents in the file\n";
1125 else
1126 DumpRawSectionContents(O, sect, sect_size, sect_addr);
1127 }
1128 }
1129 }
1130 }
1131}
1132
1133static void DumpInfoPlistSectionContents(StringRef Filename,
1134 MachOObjectFile *O) {
1135 for (const SectionRef &Section : O->sections()) {
1136 StringRef SectName;
1137 Section.getName(SectName);
1138 DataRefImpl Ref = Section.getRawDataRefImpl();
1139 StringRef SegName = O->getSectionFinalSegmentName(Ref);
1140 if (SegName == "__TEXT" && SectName == "__info_plist") {
1141 outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
1142 StringRef BytesStr;
1143 Section.getContents(BytesStr);
1144 const char *sect = reinterpret_cast<const char *>(BytesStr.data());
1145 outs() << sect;
1146 return;
1147 }
1148 }
1149}
1150
1151// checkMachOAndArchFlags() checks to see if the ObjectFile is a Mach-O file
1152// and if it is and there is a list of architecture flags is specified then
1153// check to make sure this Mach-O file is one of those architectures or all
1154// architectures were specified. If not then an error is generated and this
1155// routine returns false. Else it returns true.
1156static bool checkMachOAndArchFlags(ObjectFile *O, StringRef Filename) {
1157 auto *MachO = dyn_cast<MachOObjectFile>(O);
1158
1159 if (!MachO || ArchAll || ArchFlags.empty())
1160 return true;
1161
1162 MachO::mach_header H;
1163 MachO::mach_header_64 H_64;
1164 Triple T;
1165 const char *McpuDefault, *ArchFlag;
1166 if (MachO->is64Bit()) {
1167 H_64 = MachO->MachOObjectFile::getHeader64();
1168 T = MachOObjectFile::getArchTriple(H_64.cputype, H_64.cpusubtype,
1169 &McpuDefault, &ArchFlag);
1170 } else {
1171 H = MachO->MachOObjectFile::getHeader();
1172 T = MachOObjectFile::getArchTriple(H.cputype, H.cpusubtype,
1173 &McpuDefault, &ArchFlag);
1174 }
1175 const std::string ArchFlagName(ArchFlag);
1176 if (none_of(ArchFlags, [&](const std::string &Name) {
1177 return Name == ArchFlagName;
1178 })) {
1179 errs() << "llvm-objdump: " + Filename + ": No architecture specified.\n";
1180 return false;
1181 }
1182 return true;
1183}
1184
1185static void printObjcMetaData(MachOObjectFile *O, bool verbose);
1186
1187// ProcessMachO() is passed a single opened Mach-O file, which may be an
1188// archive member and or in a slice of a universal file. It prints the
1189// the file name and header info and then processes it according to the
1190// command line options.
1191static void ProcessMachO(StringRef Name, MachOObjectFile *MachOOF,
1192 StringRef ArchiveMemberName = StringRef(),
1193 StringRef ArchitectureName = StringRef()) {
1194 // If we are doing some processing here on the Mach-O file print the header
1195 // info. And don't print it otherwise like in the case of printing the
1196 // UniversalHeaders or ArchiveHeaders.
1197 if (Disassemble || PrivateHeaders || ExportsTrie || Rebase || Bind || SymbolTable ||
1198 LazyBind || WeakBind || IndirectSymbols || DataInCode || LinkOptHints ||
1199 DylibsUsed || DylibId || ObjcMetaData || (FilterSections.size() != 0)) {
1200 if (!NoLeadingHeaders) {
1201 outs() << Name;
1202 if (!ArchiveMemberName.empty())
1203 outs() << '(' << ArchiveMemberName << ')';
1204 if (!ArchitectureName.empty())
1205 outs() << " (architecture " << ArchitectureName << ")";
1206 outs() << ":\n";
1207 }
1208 }
1209 // To use the report_error() form with an ArchiveName and FileName set
1210 // these up based on what is passed for Name and ArchiveMemberName.
1211 StringRef ArchiveName;
1212 StringRef FileName;
1213 if (!ArchiveMemberName.empty()) {
1214 ArchiveName = Name;
1215 FileName = ArchiveMemberName;
1216 } else {
1217 ArchiveName = StringRef();
1218 FileName = Name;
1219 }
1220
1221 // If we need the symbol table to do the operation then check it here to
1222 // produce a good error message as to where the Mach-O file comes from in
1223 // the error message.
1224 if (Disassemble || IndirectSymbols || FilterSections.size() != 0 ||
1225 UnwindInfo)
1226 if (Error Err = MachOOF->checkSymbolTable())
1227 report_error(ArchiveName, FileName, std::move(Err), ArchitectureName);
1228
1229 if (Disassemble)
1230 DisassembleMachO(FileName, MachOOF, "__TEXT", "__text");
1231 if (IndirectSymbols)
1232 PrintIndirectSymbols(MachOOF, !NonVerbose);
1233 if (DataInCode)
1234 PrintDataInCodeTable(MachOOF, !NonVerbose);
1235 if (LinkOptHints)
1236 PrintLinkOptHints(MachOOF);
1237 if (Relocations)
1238 PrintRelocations(MachOOF);
1239 if (SectionHeaders)
1240 PrintSectionHeaders(MachOOF);
1241 if (SectionContents)
1242 PrintSectionContents(MachOOF);
1243 if (FilterSections.size() != 0)
1244 DumpSectionContents(FileName, MachOOF, !NonVerbose);
1245 if (InfoPlist)
1246 DumpInfoPlistSectionContents(FileName, MachOOF);
1247 if (DylibsUsed)
1248 PrintDylibs(MachOOF, false);
1249 if (DylibId)
1250 PrintDylibs(MachOOF, true);
1251 if (SymbolTable)
1252 PrintSymbolTable(MachOOF, ArchiveName, ArchitectureName);
1253 if (UnwindInfo)
1254 printMachOUnwindInfo(MachOOF);
1255 if (PrivateHeaders) {
1256 printMachOFileHeader(MachOOF);
1257 printMachOLoadCommands(MachOOF);
1258 }
1259 if (FirstPrivateHeader)
1260 printMachOFileHeader(MachOOF);
1261 if (ObjcMetaData)
1262 printObjcMetaData(MachOOF, !NonVerbose);
1263 if (ExportsTrie)
1264 printExportsTrie(MachOOF);
1265 if (Rebase)
1266 printRebaseTable(MachOOF);
1267 if (Bind)
1268 printBindTable(MachOOF);
1269 if (LazyBind)
1270 printLazyBindTable(MachOOF);
1271 if (WeakBind)
1272 printWeakBindTable(MachOOF);
1273
1274 if (DwarfDumpType != DIDT_Null) {
1275 std::unique_ptr<DIContext> DICtx(new DWARFContextInMemory(*MachOOF));
1276 // Dump the complete DWARF structure.
1277 DICtx->dump(outs(), DwarfDumpType, true /* DumpEH */);
1278 }
1279}
1280
1281// printUnknownCPUType() helps print_fat_headers for unknown CPU's.
1282static void printUnknownCPUType(uint32_t cputype, uint32_t cpusubtype) {
1283 outs() << " cputype (" << cputype << ")\n";
1284 outs() << " cpusubtype (" << cpusubtype << ")\n";
1285}
1286
1287// printCPUType() helps print_fat_headers by printing the cputype and
1288// pusubtype (symbolically for the one's it knows about).
1289static void printCPUType(uint32_t cputype, uint32_t cpusubtype) {
1290 switch (cputype) {
1291 case MachO::CPU_TYPE_I386:
1292 switch (cpusubtype) {
1293 case MachO::CPU_SUBTYPE_I386_ALL:
1294 outs() << " cputype CPU_TYPE_I386\n";
1295 outs() << " cpusubtype CPU_SUBTYPE_I386_ALL\n";
1296 break;
1297 default:
1298 printUnknownCPUType(cputype, cpusubtype);
1299 break;
1300 }
1301 break;
1302 case MachO::CPU_TYPE_X86_64:
1303 switch (cpusubtype) {
1304 case MachO::CPU_SUBTYPE_X86_64_ALL:
1305 outs() << " cputype CPU_TYPE_X86_64\n";
1306 outs() << " cpusubtype CPU_SUBTYPE_X86_64_ALL\n";
1307 break;
1308 case MachO::CPU_SUBTYPE_X86_64_H:
1309 outs() << " cputype CPU_TYPE_X86_64\n";
1310 outs() << " cpusubtype CPU_SUBTYPE_X86_64_H\n";
1311 break;
1312 default:
1313 printUnknownCPUType(cputype, cpusubtype);
1314 break;
1315 }
1316 break;
1317 case MachO::CPU_TYPE_ARM:
1318 switch (cpusubtype) {
1319 case MachO::CPU_SUBTYPE_ARM_ALL:
1320 outs() << " cputype CPU_TYPE_ARM\n";
1321 outs() << " cpusubtype CPU_SUBTYPE_ARM_ALL\n";
1322 break;
1323 case MachO::CPU_SUBTYPE_ARM_V4T:
1324 outs() << " cputype CPU_TYPE_ARM\n";
1325 outs() << " cpusubtype CPU_SUBTYPE_ARM_V4T\n";
1326 break;
1327 case MachO::CPU_SUBTYPE_ARM_V5TEJ:
1328 outs() << " cputype CPU_TYPE_ARM\n";
1329 outs() << " cpusubtype CPU_SUBTYPE_ARM_V5TEJ\n";
1330 break;
1331 case MachO::CPU_SUBTYPE_ARM_XSCALE:
1332 outs() << " cputype CPU_TYPE_ARM\n";
1333 outs() << " cpusubtype CPU_SUBTYPE_ARM_XSCALE\n";
1334 break;
1335 case MachO::CPU_SUBTYPE_ARM_V6:
1336 outs() << " cputype CPU_TYPE_ARM\n";
1337 outs() << " cpusubtype CPU_SUBTYPE_ARM_V6\n";
1338 break;
1339 case MachO::CPU_SUBTYPE_ARM_V6M:
1340 outs() << " cputype CPU_TYPE_ARM\n";
1341 outs() << " cpusubtype CPU_SUBTYPE_ARM_V6M\n";
1342 break;
1343 case MachO::CPU_SUBTYPE_ARM_V7:
1344 outs() << " cputype CPU_TYPE_ARM\n";
1345 outs() << " cpusubtype CPU_SUBTYPE_ARM_V7\n";
1346 break;
1347 case MachO::CPU_SUBTYPE_ARM_V7EM:
1348 outs() << " cputype CPU_TYPE_ARM\n";
1349 outs() << " cpusubtype CPU_SUBTYPE_ARM_V7EM\n";
1350 break;
1351 case MachO::CPU_SUBTYPE_ARM_V7K:
1352 outs() << " cputype CPU_TYPE_ARM\n";
1353 outs() << " cpusubtype CPU_SUBTYPE_ARM_V7K\n";
1354 break;
1355 case MachO::CPU_SUBTYPE_ARM_V7M:
1356 outs() << " cputype CPU_TYPE_ARM\n";
1357 outs() << " cpusubtype CPU_SUBTYPE_ARM_V7M\n";
1358 break;
1359 case MachO::CPU_SUBTYPE_ARM_V7S:
1360 outs() << " cputype CPU_TYPE_ARM\n";
1361 outs() << " cpusubtype CPU_SUBTYPE_ARM_V7S\n";
1362 break;
1363 default:
1364 printUnknownCPUType(cputype, cpusubtype);
1365 break;
1366 }
1367 break;
1368 case MachO::CPU_TYPE_ARM64:
1369 switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
1370 case MachO::CPU_SUBTYPE_ARM64_ALL:
1371 outs() << " cputype CPU_TYPE_ARM64\n";
1372 outs() << " cpusubtype CPU_SUBTYPE_ARM64_ALL\n";
1373 break;
1374 default:
1375 printUnknownCPUType(cputype, cpusubtype);
1376 break;
1377 }
1378 break;
1379 default:
1380 printUnknownCPUType(cputype, cpusubtype);
1381 break;
1382 }
1383}
1384
1385static void printMachOUniversalHeaders(const object::MachOUniversalBinary *UB,
1386 bool verbose) {
1387 outs() << "Fat headers\n";
1388 if (verbose) {
1389 if (UB->getMagic() == MachO::FAT_MAGIC)
1390 outs() << "fat_magic FAT_MAGIC\n";
1391 else // UB->getMagic() == MachO::FAT_MAGIC_64
1392 outs() << "fat_magic FAT_MAGIC_64\n";
1393 } else
1394 outs() << "fat_magic " << format("0x%" PRIx32"x", MachO::FAT_MAGIC) << "\n";
1395
1396 uint32_t nfat_arch = UB->getNumberOfObjects();
1397 StringRef Buf = UB->getData();
1398 uint64_t size = Buf.size();
1399 uint64_t big_size = sizeof(struct MachO::fat_header) +
1400 nfat_arch * sizeof(struct MachO::fat_arch);
1401 outs() << "nfat_arch " << UB->getNumberOfObjects();
1402 if (nfat_arch == 0)
1403 outs() << " (malformed, contains zero architecture types)\n";
1404 else if (big_size > size)
1405 outs() << " (malformed, architectures past end of file)\n";
1406 else
1407 outs() << "\n";
1408
1409 for (uint32_t i = 0; i < nfat_arch; ++i) {
1410 MachOUniversalBinary::ObjectForArch OFA(UB, i);
1411 uint32_t cputype = OFA.getCPUType();
1412 uint32_t cpusubtype = OFA.getCPUSubType();
1413 outs() << "architecture ";
1414 for (uint32_t j = 0; i != 0 && j <= i - 1; j++) {
1415 MachOUniversalBinary::ObjectForArch other_OFA(UB, j);
1416 uint32_t other_cputype = other_OFA.getCPUType();
1417 uint32_t other_cpusubtype = other_OFA.getCPUSubType();
1418 if (cputype != 0 && cpusubtype != 0 && cputype == other_cputype &&
1419 (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) ==
1420 (other_cpusubtype & ~MachO::CPU_SUBTYPE_MASK)) {
1421 outs() << "(illegal duplicate architecture) ";
1422 break;
1423 }
1424 }
1425 if (verbose) {
1426 outs() << OFA.getArchFlagName() << "\n";
1427 printCPUType(cputype, cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
1428 } else {
1429 outs() << i << "\n";
1430 outs() << " cputype " << cputype << "\n";
1431 outs() << " cpusubtype " << (cpusubtype & ~MachO::CPU_SUBTYPE_MASK)
1432 << "\n";
1433 }
1434 if (verbose &&
1435 (cpusubtype & MachO::CPU_SUBTYPE_MASK) == MachO::CPU_SUBTYPE_LIB64)
1436 outs() << " capabilities CPU_SUBTYPE_LIB64\n";
1437 else
1438 outs() << " capabilities "
1439 << format("0x%" PRIx32"x",
1440 (cpusubtype & MachO::CPU_SUBTYPE_MASK) >> 24) << "\n";
1441 outs() << " offset " << OFA.getOffset();
1442 if (OFA.getOffset() > size)
1443 outs() << " (past end of file)";
1444 if (OFA.getOffset() % (1 << OFA.getAlign()) != 0)
1445 outs() << " (not aligned on it's alignment (2^" << OFA.getAlign() << ")";
1446 outs() << "\n";
1447 outs() << " size " << OFA.getSize();
1448 big_size = OFA.getOffset() + OFA.getSize();
1449 if (big_size > size)
1450 outs() << " (past end of file)";
1451 outs() << "\n";
1452 outs() << " align 2^" << OFA.getAlign() << " (" << (1 << OFA.getAlign())
1453 << ")\n";
1454 }
1455}
1456
1457static void printArchiveChild(StringRef Filename, const Archive::Child &C,
1458 bool verbose, bool print_offset,
1459 StringRef ArchitectureName = StringRef()) {
1460 if (print_offset)
1461 outs() << C.getChildOffset() << "\t";
1462 Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
1463 if (!ModeOrErr)
1464 report_error(Filename, C, ModeOrErr.takeError(), ArchitectureName);
1465 sys::fs::perms Mode = ModeOrErr.get();
1466 if (verbose) {
1467 // FIXME: this first dash, "-", is for (Mode & S_IFMT) == S_IFREG.
1468 // But there is nothing in sys::fs::perms for S_IFMT or S_IFREG.
1469 outs() << "-";
1470 outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
1471 outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
1472 outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
1473 outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
1474 outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
1475 outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
1476 outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
1477 outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
1478 outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
1479 } else {
1480 outs() << format("0%o ", Mode);
1481 }
1482
1483 Expected<unsigned> UIDOrErr = C.getUID();
1484 if (!UIDOrErr)
1485 report_error(Filename, C, UIDOrErr.takeError(), ArchitectureName);
1486 unsigned UID = UIDOrErr.get();
1487 outs() << format("%3d/", UID);
1488 Expected<unsigned> GIDOrErr = C.getGID();
1489 if (!GIDOrErr)
1490 report_error(Filename, C, GIDOrErr.takeError(), ArchitectureName);
1491 unsigned GID = GIDOrErr.get();
1492 outs() << format("%-3d ", GID);
1493 Expected<uint64_t> Size = C.getRawSize();
1494 if (!Size)
1495 report_error(Filename, C, Size.takeError(), ArchitectureName);
1496 outs() << format("%5" PRId64"l" "d", Size.get()) << " ";
1497
1498 StringRef RawLastModified = C.getRawLastModified();
1499 if (verbose) {
1500 unsigned Seconds;
1501 if (RawLastModified.getAsInteger(10, Seconds))
1502 outs() << "(date: \"" << RawLastModified
1503 << "\" contains non-decimal chars) ";
1504 else {
1505 // Since cime(3) returns a 26 character string of the form:
1506 // "Sun Sep 16 01:03:52 1973\n\0"
1507 // just print 24 characters.
1508 time_t t = Seconds;
1509 outs() << format("%.24s ", ctime(&t));
1510 }
1511 } else {
1512 outs() << RawLastModified << " ";
1513 }
1514
1515 if (verbose) {
1516 Expected<StringRef> NameOrErr = C.getName();
1517 if (!NameOrErr) {
1518 consumeError(NameOrErr.takeError());
1519 Expected<StringRef> NameOrErr = C.getRawName();
1520 if (!NameOrErr)
1521 report_error(Filename, C, NameOrErr.takeError(), ArchitectureName);
1522 StringRef RawName = NameOrErr.get();
1523 outs() << RawName << "\n";
1524 } else {
1525 StringRef Name = NameOrErr.get();
1526 outs() << Name << "\n";
1527 }
1528 } else {
1529 Expected<StringRef> NameOrErr = C.getRawName();
1530 if (!NameOrErr)
1531 report_error(Filename, C, NameOrErr.takeError(), ArchitectureName);
1532 StringRef RawName = NameOrErr.get();
1533 outs() << RawName << "\n";
1534 }
1535}
1536
1537static void printArchiveHeaders(StringRef Filename, Archive *A, bool verbose,
1538 bool print_offset,
1539 StringRef ArchitectureName = StringRef()) {
1540 Error Err = Error::success();
1541 ;
1542 for (const auto &C : A->children(Err, false))
1543 printArchiveChild(Filename, C, verbose, print_offset, ArchitectureName);
1544
1545 if (Err)
1546 report_error(StringRef(), Filename, std::move(Err), ArchitectureName);
1547}
1548
1549// ParseInputMachO() parses the named Mach-O file in Filename and handles the
1550// -arch flags selecting just those slices as specified by them and also parses
1551// archive files. Then for each individual Mach-O file ProcessMachO() is
1552// called to process the file based on the command line options.
1553void llvm::ParseInputMachO(StringRef Filename) {
1554 // Check for -arch all and verifiy the -arch flags are valid.
1555 for (unsigned i = 0; i < ArchFlags.size(); ++i) {
1556 if (ArchFlags[i] == "all") {
1557 ArchAll = true;
1558 } else {
1559 if (!MachOObjectFile::isValidArch(ArchFlags[i])) {
1560 errs() << "llvm-objdump: Unknown architecture named '" + ArchFlags[i] +
1561 "'for the -arch option\n";
1562 return;
1563 }
1564 }
1565 }
1566
1567 // Attempt to open the binary.
1568 Expected<OwningBinary<Binary>> BinaryOrErr = createBinary(Filename);
1569 if (!BinaryOrErr)
1570 report_error(Filename, BinaryOrErr.takeError());
1571 Binary &Bin = *BinaryOrErr.get().getBinary();
1572
1573 if (Archive *A = dyn_cast<Archive>(&Bin)) {
1574 outs() << "Archive : " << Filename << "\n";
1575 if (ArchiveHeaders)
1576 printArchiveHeaders(Filename, A, !NonVerbose, ArchiveMemberOffsets);
1577
1578 Error Err = Error::success();
1579 for (auto &C : A->children(Err)) {
1580 Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
1581 if (!ChildOrErr) {
1582 if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
1583 report_error(Filename, C, std::move(E));
1584 continue;
1585 }
1586 if (MachOObjectFile *O = dyn_cast<MachOObjectFile>(&*ChildOrErr.get())) {
1587 if (!checkMachOAndArchFlags(O, Filename))
1588 return;
1589 ProcessMachO(Filename, O, O->getFileName());
1590 }
1591 }
1592 if (Err)
1593 report_error(Filename, std::move(Err));
1594 return;
1595 }
1596 if (UniversalHeaders) {
1597 if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Bin))
1598 printMachOUniversalHeaders(UB, !NonVerbose);
1599 }
1600 if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Bin)) {
1601 // If we have a list of architecture flags specified dump only those.
1602 if (!ArchAll && ArchFlags.size() != 0) {
1603 // Look for a slice in the universal binary that matches each ArchFlag.
1604 bool ArchFound;
1605 for (unsigned i = 0; i < ArchFlags.size(); ++i) {
1606 ArchFound = false;
1607 for (MachOUniversalBinary::object_iterator I = UB->begin_objects(),
1608 E = UB->end_objects();
1609 I != E; ++I) {
1610 if (ArchFlags[i] == I->getArchFlagName()) {
1611 ArchFound = true;
1612 Expected<std::unique_ptr<ObjectFile>> ObjOrErr =
1613 I->getAsObjectFile();
1614 std::string ArchitectureName = "";
1615 if (ArchFlags.size() > 1)
1616 ArchitectureName = I->getArchFlagName();
1617 if (ObjOrErr) {
1618 ObjectFile &O = *ObjOrErr.get();
1619 if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&O))
1620 ProcessMachO(Filename, MachOOF, "", ArchitectureName);
1621 } else if (auto E = isNotObjectErrorInvalidFileType(
1622 ObjOrErr.takeError())) {
1623 report_error(Filename, StringRef(), std::move(E),
1624 ArchitectureName);
1625 continue;
1626 } else if (Expected<std::unique_ptr<Archive>> AOrErr =
1627 I->getAsArchive()) {
1628 std::unique_ptr<Archive> &A = *AOrErr;
1629 outs() << "Archive : " << Filename;
1630 if (!ArchitectureName.empty())
1631 outs() << " (architecture " << ArchitectureName << ")";
1632 outs() << "\n";
1633 if (ArchiveHeaders)
1634 printArchiveHeaders(Filename, A.get(), !NonVerbose,
1635 ArchiveMemberOffsets, ArchitectureName);
1636 Error Err = Error::success();
1637 for (auto &C : A->children(Err)) {
1638 Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
1639 if (!ChildOrErr) {
1640 if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
1641 report_error(Filename, C, std::move(E), ArchitectureName);
1642 continue;
1643 }
1644 if (MachOObjectFile *O =
1645 dyn_cast<MachOObjectFile>(&*ChildOrErr.get()))
1646 ProcessMachO(Filename, O, O->getFileName(), ArchitectureName);
1647 }
1648 if (Err)
1649 report_error(Filename, std::move(Err));
1650 } else {
1651 consumeError(AOrErr.takeError());
1652 error("Mach-O universal file: " + Filename + " for " +
1653 "architecture " + StringRef(I->getArchFlagName()) +
1654 " is not a Mach-O file or an archive file");
1655 }
1656 }
1657 }
1658 if (!ArchFound) {
1659 errs() << "llvm-objdump: file: " + Filename + " does not contain "
1660 << "architecture: " + ArchFlags[i] + "\n";
1661 return;
1662 }
1663 }
1664 return;
1665 }
1666 // No architecture flags were specified so if this contains a slice that
1667 // matches the host architecture dump only that.
1668 if (!ArchAll) {
1669 for (MachOUniversalBinary::object_iterator I = UB->begin_objects(),
1670 E = UB->end_objects();
1671 I != E; ++I) {
1672 if (MachOObjectFile::getHostArch().getArchName() ==
1673 I->getArchFlagName()) {
1674 Expected<std::unique_ptr<ObjectFile>> ObjOrErr = I->getAsObjectFile();
1675 std::string ArchiveName;
1676 ArchiveName.clear();
1677 if (ObjOrErr) {
1678 ObjectFile &O = *ObjOrErr.get();
1679 if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&O))
1680 ProcessMachO(Filename, MachOOF);
1681 } else if (auto E = isNotObjectErrorInvalidFileType(
1682 ObjOrErr.takeError())) {
1683 report_error(Filename, std::move(E));
1684 continue;
1685 } else if (Expected<std::unique_ptr<Archive>> AOrErr =
1686 I->getAsArchive()) {
1687 std::unique_ptr<Archive> &A = *AOrErr;
1688 outs() << "Archive : " << Filename << "\n";
1689 if (ArchiveHeaders)
1690 printArchiveHeaders(Filename, A.get(), !NonVerbose,
1691 ArchiveMemberOffsets);
1692 Error Err = Error::success();
1693 for (auto &C : A->children(Err)) {
1694 Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
1695 if (!ChildOrErr) {
1696 if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
1697 report_error(Filename, C, std::move(E));
1698 continue;
1699 }
1700 if (MachOObjectFile *O =
1701 dyn_cast<MachOObjectFile>(&*ChildOrErr.get()))
1702 ProcessMachO(Filename, O, O->getFileName());
1703 }
1704 if (Err)
1705 report_error(Filename, std::move(Err));
1706 } else {
1707 consumeError(AOrErr.takeError());
1708 error("Mach-O universal file: " + Filename + " for architecture " +
1709 StringRef(I->getArchFlagName()) +
1710 " is not a Mach-O file or an archive file");
1711 }
1712 return;
1713 }
1714 }
1715 }
1716 // Either all architectures have been specified or none have been specified
1717 // and this does not contain the host architecture so dump all the slices.
1718 bool moreThanOneArch = UB->getNumberOfObjects() > 1;
1719 for (MachOUniversalBinary::object_iterator I = UB->begin_objects(),
1720 E = UB->end_objects();
1721 I != E; ++I) {
1722 Expected<std::unique_ptr<ObjectFile>> ObjOrErr = I->getAsObjectFile();
1723 std::string ArchitectureName = "";
1724 if (moreThanOneArch)
1725 ArchitectureName = I->getArchFlagName();
1726 if (ObjOrErr) {
1727 ObjectFile &Obj = *ObjOrErr.get();
1728 if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&Obj))
1729 ProcessMachO(Filename, MachOOF, "", ArchitectureName);
1730 } else if (auto E = isNotObjectErrorInvalidFileType(
1731 ObjOrErr.takeError())) {
1732 report_error(StringRef(), Filename, std::move(E), ArchitectureName);
1733 continue;
1734 } else if (Expected<std::unique_ptr<Archive>> AOrErr =
1735 I->getAsArchive()) {
1736 std::unique_ptr<Archive> &A = *AOrErr;
1737 outs() << "Archive : " << Filename;
1738 if (!ArchitectureName.empty())
1739 outs() << " (architecture " << ArchitectureName << ")";
1740 outs() << "\n";
1741 if (ArchiveHeaders)
1742 printArchiveHeaders(Filename, A.get(), !NonVerbose,
1743 ArchiveMemberOffsets, ArchitectureName);
1744 Error Err = Error::success();
1745 for (auto &C : A->children(Err)) {
1746 Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
1747 if (!ChildOrErr) {
1748 if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
1749 report_error(Filename, C, std::move(E), ArchitectureName);
1750 continue;
1751 }
1752 if (MachOObjectFile *O =
1753 dyn_cast<MachOObjectFile>(&*ChildOrErr.get())) {
1754 if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(O))
1755 ProcessMachO(Filename, MachOOF, MachOOF->getFileName(),
1756 ArchitectureName);
1757 }
1758 }
1759 if (Err)
1760 report_error(Filename, std::move(Err));
1761 } else {
1762 consumeError(AOrErr.takeError());
1763 error("Mach-O universal file: " + Filename + " for architecture " +
1764 StringRef(I->getArchFlagName()) +
1765 " is not a Mach-O file or an archive file");
1766 }
1767 }
1768 return;
1769 }
1770 if (ObjectFile *O = dyn_cast<ObjectFile>(&Bin)) {
1771 if (!checkMachOAndArchFlags(O, Filename))
1772 return;
1773 if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&*O)) {
1774 ProcessMachO(Filename, MachOOF);
1775 } else
1776 errs() << "llvm-objdump: '" << Filename << "': "
1777 << "Object is not a Mach-O file type.\n";
1778 return;
1779 }
1780 llvm_unreachable("Input object can't be invalid at this point")::llvm::llvm_unreachable_internal("Input object can't be invalid at this point"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/tools/llvm-objdump/MachODump.cpp"
, 1780)
;
1781}
1782
1783typedef std::pair<uint64_t, const char *> BindInfoEntry;
1784typedef std::vector<BindInfoEntry> BindTable;
1785typedef BindTable::iterator bind_table_iterator;
1786
1787// The block of info used by the Symbolizer call backs.
1788struct DisassembleInfo {
1789 bool verbose;
1790 MachOObjectFile *O;
1791 SectionRef S;
1792 SymbolAddressMap *AddrMap;
1793 std::vector<SectionRef> *Sections;
1794 const char *class_name;
1795 const char *selector_name;
1796 char *method;
1797 char *demangled_name;
1798 uint64_t adrp_addr;
1799 uint32_t adrp_inst;
1800 BindTable *bindtable;
1801 uint32_t depth;
1802};
1803
1804// SymbolizerGetOpInfo() is the operand information call back function.
1805// This is called to get the symbolic information for operand(s) of an
1806// instruction when it is being done. This routine does this from
1807// the relocation information, symbol table, etc. That block of information
1808// is a pointer to the struct DisassembleInfo that was passed when the
1809// disassembler context was created and passed to back to here when
1810// called back by the disassembler for instruction operands that could have
1811// relocation information. The address of the instruction containing operand is
1812// at the Pc parameter. The immediate value the operand has is passed in
1813// op_info->Value and is at Offset past the start of the instruction and has a
1814// byte Size of 1, 2 or 4. The symbolc information is returned in TagBuf is the
1815// LLVMOpInfo1 struct defined in the header "llvm-c/Disassembler.h" as symbol
1816// names and addends of the symbolic expression to add for the operand. The
1817// value of TagType is currently 1 (for the LLVMOpInfo1 struct). If symbolic
1818// information is returned then this function returns 1 else it returns 0.
1819static int SymbolizerGetOpInfo(void *DisInfo, uint64_t Pc, uint64_t Offset,
1820 uint64_t Size, int TagType, void *TagBuf) {
1821 struct DisassembleInfo *info = (struct DisassembleInfo *)DisInfo;
1822 struct LLVMOpInfo1 *op_info = (struct LLVMOpInfo1 *)TagBuf;
1823 uint64_t value = op_info->Value;
1824
1825 // Make sure all fields returned are zero if we don't set them.
1826 memset((void *)op_info, '\0', sizeof(struct LLVMOpInfo1));
1827 op_info->Value = value;
1828
1829 // If the TagType is not the value 1 which it code knows about or if no
1830 // verbose symbolic information is wanted then just return 0, indicating no
1831 // information is being returned.
1832 if (TagType != 1 || !info->verbose)
1833 return 0;
1834
1835 unsigned int Arch = info->O->getArch();
1836 if (Arch == Triple::x86) {
1837 if (Size != 1 && Size != 2 && Size != 4 && Size != 0)
1838 return 0;
1839 if (info->O->getHeader().filetype != MachO::MH_OBJECT) {
1840 // TODO:
1841 // Search the external relocation entries of a fully linked image
1842 // (if any) for an entry that matches this segment offset.
1843 // uint32_t seg_offset = (Pc + Offset);
1844 return 0;
1845 }
1846 // In MH_OBJECT filetypes search the section's relocation entries (if any)
1847 // for an entry for this section offset.
1848 uint32_t sect_addr = info->S.getAddress();
1849 uint32_t sect_offset = (Pc + Offset) - sect_addr;
1850 bool reloc_found = false;
1851 DataRefImpl Rel;
1852 MachO::any_relocation_info RE;
1853 bool isExtern = false;
1854 SymbolRef Symbol;
1855 bool r_scattered = false;
1856 uint32_t r_value, pair_r_value, r_type;
1857 for (const RelocationRef &Reloc : info->S.relocations()) {
1858 uint64_t RelocOffset = Reloc.getOffset();
1859 if (RelocOffset == sect_offset) {
1860 Rel = Reloc.getRawDataRefImpl();
1861 RE = info->O->getRelocation(Rel);
1862 r_type = info->O->getAnyRelocationType(RE);
1863 r_scattered = info->O->isRelocationScattered(RE);
1864 if (r_scattered) {
1865 r_value = info->O->getScatteredRelocationValue(RE);
1866 if (r_type == MachO::GENERIC_RELOC_SECTDIFF ||
1867 r_type == MachO::GENERIC_RELOC_LOCAL_SECTDIFF) {
1868 DataRefImpl RelNext = Rel;
1869 info->O->moveRelocationNext(RelNext);
1870 MachO::any_relocation_info RENext;
1871 RENext = info->O->getRelocation(RelNext);
1872 if (info->O->isRelocationScattered(RENext))
1873 pair_r_value = info->O->getScatteredRelocationValue(RENext);
1874 else
1875 return 0;
1876 }
1877 } else {
1878 isExtern = info->O->getPlainRelocationExternal(RE);
1879 if (isExtern) {
1880 symbol_iterator RelocSym = Reloc.getSymbol();
1881 Symbol = *RelocSym;
1882 }
1883 }
1884 reloc_found = true;
1885 break;
1886 }
1887 }
1888 if (reloc_found && isExtern) {
1889 Expected<StringRef> SymName = Symbol.getName();
1890 if (!SymName)
1891 report_error(info->O->getFileName(), SymName.takeError());
1892 const char *name = SymName->data();
1893 op_info->AddSymbol.Present = 1;
1894 op_info->AddSymbol.Name = name;
1895 // For i386 extern relocation entries the value in the instruction is
1896 // the offset from the symbol, and value is already set in op_info->Value.
1897 return 1;
1898 }
1899 if (reloc_found && (r_type == MachO::GENERIC_RELOC_SECTDIFF ||
1900 r_type == MachO::GENERIC_RELOC_LOCAL_SECTDIFF)) {
1901 const char *add = GuessSymbolName(r_value, info->AddrMap);
1902 const char *sub = GuessSymbolName(pair_r_value, info->AddrMap);
1903 uint32_t offset = value - (r_value - pair_r_value);
1904 op_info->AddSymbol.Present = 1;
1905 if (add != nullptr)
1906 op_info->AddSymbol.Name = add;
1907 else
1908 op_info->AddSymbol.Value = r_value;
1909 op_info->SubtractSymbol.Present = 1;
1910 if (sub != nullptr)
1911 op_info->SubtractSymbol.Name = sub;
1912 else
1913 op_info->SubtractSymbol.Value = pair_r_value;
1914 op_info->Value = offset;
1915 return 1;
1916 }
1917 return 0;
1918 }
1919 if (Arch == Triple::x86_64) {
1920 if (Size != 1 && Size != 2 && Size != 4 && Size != 0)
1921 return 0;
1922 if (info->O->getHeader().filetype != MachO::MH_OBJECT) {
1923 // TODO:
1924 // Search the external relocation entries of a fully linked image
1925 // (if any) for an entry that matches this segment offset.
1926 // uint64_t seg_offset = (Pc + Offset);
1927 return 0;
1928 }
1929 // In MH_OBJECT filetypes search the section's relocation entries (if any)
1930 // for an entry for this section offset.
1931 uint64_t sect_addr = info->S.getAddress();
1932 uint64_t sect_offset = (Pc + Offset) - sect_addr;
1933 bool reloc_found = false;
1934 DataRefImpl Rel;
1935 MachO::any_relocation_info RE;
1936 bool isExtern = false;
1937 SymbolRef Symbol;
1938 for (const RelocationRef &Reloc : info->S.relocations()) {
1939 uint64_t RelocOffset = Reloc.getOffset();
1940 if (RelocOffset == sect_offset) {
1941 Rel = Reloc.getRawDataRefImpl();
1942 RE = info->O->getRelocation(Rel);
1943 // NOTE: Scattered relocations don't exist on x86_64.
1944 isExtern = info->O->getPlainRelocationExternal(RE);
1945 if (isExtern) {
1946 symbol_iterator RelocSym = Reloc.getSymbol();
1947 Symbol = *RelocSym;
1948 }
1949 reloc_found = true;
1950 break;
1951 }
1952 }
1953 if (reloc_found && isExtern) {
1954 // The Value passed in will be adjusted by the Pc if the instruction
1955 // adds the Pc. But for x86_64 external relocation entries the Value
1956 // is the offset from the external symbol.
1957 if (info->O->getAnyRelocationPCRel(RE))
1958 op_info->Value -= Pc + Offset + Size;
1959 Expected<StringRef> SymName = Symbol.getName();
1960 if (!SymName)
1961 report_error(info->O->getFileName(), SymName.takeError());
1962 const char *name = SymName->data();
1963 unsigned Type = info->O->getAnyRelocationType(RE);
1964 if (Type == MachO::X86_64_RELOC_SUBTRACTOR) {
1965 DataRefImpl RelNext = Rel;
1966 info->O->moveRelocationNext(RelNext);
1967 MachO::any_relocation_info RENext = info->O->getRelocation(RelNext);
1968 unsigned TypeNext = info->O->getAnyRelocationType(RENext);
1969 bool isExternNext = info->O->getPlainRelocationExternal(RENext);
1970 unsigned SymbolNum = info->O->getPlainRelocationSymbolNum(RENext);
1971 if (TypeNext == MachO::X86_64_RELOC_UNSIGNED && isExternNext) {
1972 op_info->SubtractSymbol.Present = 1;
1973 op_info->SubtractSymbol.Name = name;
1974 symbol_iterator RelocSymNext = info->O->getSymbolByIndex(SymbolNum);
1975 Symbol = *RelocSymNext;
1976 Expected<StringRef> SymNameNext = Symbol.getName();
1977 if (!SymNameNext)
1978 report_error(info->O->getFileName(), SymNameNext.takeError());
1979 name = SymNameNext->data();
1980 }
1981 }
1982 // TODO: add the VariantKinds to op_info->VariantKind for relocation types
1983 // like: X86_64_RELOC_TLV, X86_64_RELOC_GOT_LOAD and X86_64_RELOC_GOT.
1984 op_info->AddSymbol.Present = 1;
1985 op_info->AddSymbol.Name = name;
1986 return 1;
1987 }
1988 return 0;
1989 }
1990 if (Arch == Triple::arm) {
1991 if (Offset != 0 || (Size != 4 && Size != 2))
1992 return 0;
1993 if (info->O->getHeader().filetype != MachO::MH_OBJECT) {
1994 // TODO:
1995 // Search the external relocation entries of a fully linked image
1996 // (if any) for an entry that matches this segment offset.
1997 // uint32_t seg_offset = (Pc + Offset);
1998 return 0;
1999 }
2000 // In MH_OBJECT filetypes search the section's relocation entries (if any)
2001 // for an entry for this section offset.
2002 uint32_t sect_addr = info->S.getAddress();
2003 uint32_t sect_offset = (Pc + Offset) - sect_addr;
2004 DataRefImpl Rel;
2005 MachO::any_relocation_info RE;
2006 bool isExtern = false;
2007 SymbolRef Symbol;
2008 bool r_scattered = false;
2009 uint32_t r_value, pair_r_value, r_type, r_length, other_half;
2010 auto Reloc =
2011 find_if(info->S.relocations(), [&](const RelocationRef &Reloc) {
2012 uint64_t RelocOffset = Reloc.getOffset();
2013 return RelocOffset == sect_offset;
2014 });
2015
2016 if (Reloc == info->S.relocations().end())
2017 return 0;
2018
2019 Rel = Reloc->getRawDataRefImpl();
2020 RE = info->O->getRelocation(Rel);
2021 r_length = info->O->getAnyRelocationLength(RE);
2022 r_scattered = info->O->isRelocationScattered(RE);
2023 if (r_scattered) {
2024 r_value = info->O->getScatteredRelocationValue(RE);
2025 r_type = info->O->getScatteredRelocationType(RE);
2026 } else {
2027 r_type = info->O->getAnyRelocationType(RE);
2028 isExtern = info->O->getPlainRelocationExternal(RE);
2029 if (isExtern) {
2030 symbol_iterator RelocSym = Reloc->getSymbol();
2031 Symbol = *RelocSym;
2032 }
2033 }
2034 if (r_type == MachO::ARM_RELOC_HALF ||
2035 r_type == MachO::ARM_RELOC_SECTDIFF ||
2036 r_type == MachO::ARM_RELOC_LOCAL_SECTDIFF ||
2037 r_type == MachO::ARM_RELOC_HALF_SECTDIFF) {
2038 DataRefImpl RelNext = Rel;
2039 info->O->moveRelocationNext(RelNext);
2040 MachO::any_relocation_info RENext;
2041 RENext = info->O->getRelocation(RelNext);
2042 other_half = info->O->getAnyRelocationAddress(RENext) & 0xffff;
2043 if (info->O->isRelocationScattered(RENext))
2044 pair_r_value = info->O->getScatteredRelocationValue(RENext);
2045 }
2046
2047 if (isExtern) {
2048 Expected<StringRef> SymName = Symbol.getName();
2049 if (!SymName)
2050 report_error(info->O->getFileName(), SymName.takeError());
2051 const char *name = SymName->data();
2052 op_info->AddSymbol.Present = 1;
2053 op_info->AddSymbol.Name = name;
2054 switch (r_type) {
2055 case MachO::ARM_RELOC_HALF:
2056 if ((r_length & 0x1) == 1) {
2057 op_info->Value = value << 16 | other_half;
2058 op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_HI161;
2059 } else {
2060 op_info->Value = other_half << 16 | value;
2061 op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_LO162;
2062 }
2063 break;
2064 default:
2065 break;
2066 }
2067 return 1;
2068 }
2069 // If we have a branch that is not an external relocation entry then
2070 // return 0 so the code in tryAddingSymbolicOperand() can use the
2071 // SymbolLookUp call back with the branch target address to look up the
2072 // symbol and possibility add an annotation for a symbol stub.
2073 if (isExtern == 0 && (r_type == MachO::ARM_RELOC_BR24 ||
2074 r_type == MachO::ARM_THUMB_RELOC_BR22))
2075 return 0;
2076
2077 uint32_t offset = 0;
2078 if (r_type == MachO::ARM_RELOC_HALF ||
2079 r_type == MachO::ARM_RELOC_HALF_SECTDIFF) {
2080 if ((r_length & 0x1) == 1)
2081 value = value << 16 | other_half;
2082 else
2083 value = other_half << 16 | value;
2084 }
2085 if (r_scattered && (r_type != MachO::ARM_RELOC_HALF &&
2086 r_type != MachO::ARM_RELOC_HALF_SECTDIFF)) {
2087 offset = value - r_value;
2088 value = r_value;
2089 }
2090
2091 if (r_type == MachO::ARM_RELOC_HALF_SECTDIFF) {
2092 if ((r_length & 0x1) == 1)
2093 op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_HI161;
2094 else
2095 op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_LO162;
2096 const char *add = GuessSymbolName(r_value, info->AddrMap);
2097 const char *sub = GuessSymbolName(pair_r_value, info->AddrMap);
2098 int32_t offset = value - (r_value - pair_r_value);
2099 op_info->AddSymbol.Present = 1;
2100 if (add != nullptr)
2101 op_info->AddSymbol.Name = add;
2102 else
2103 op_info->AddSymbol.Value = r_value;
2104 op_info->SubtractSymbol.Present = 1;
2105 if (sub != nullptr)
2106 op_info->SubtractSymbol.Name = sub;
2107 else
2108 op_info->SubtractSymbol.Value = pair_r_value;
2109 op_info->Value = offset;
2110 return 1;
2111 }
2112
2113 op_info->AddSymbol.Present = 1;
2114 op_info->Value = offset;
2115 if (r_type == MachO::ARM_RELOC_HALF) {
2116 if ((r_length & 0x1) == 1)
2117 op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_HI161;
2118 else
2119 op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_LO162;
2120 }
2121 const char *add = GuessSymbolName(value, info->AddrMap);
2122 if (add != nullptr) {
2123 op_info->AddSymbol.Name = add;
2124 return 1;
2125 }
2126 op_info->AddSymbol.Value = value;
2127 return 1;
2128 }
2129 if (Arch == Triple::aarch64) {
2130 if (Offset != 0 || Size != 4)
2131 return 0;
2132 if (info->O->getHeader().filetype != MachO::MH_OBJECT) {
2133 // TODO:
2134 // Search the external relocation entries of a fully linked image
2135 // (if any) for an entry that matches this segment offset.
2136 // uint64_t seg_offset = (Pc + Offset);
2137 return 0;
2138 }
2139 // In MH_OBJECT filetypes search the section's relocation entries (if any)
2140 // for an entry for this section offset.
2141 uint64_t sect_addr = info->S.getAddress();
2142 uint64_t sect_offset = (Pc + Offset) - sect_addr;
2143 auto Reloc =
2144 find_if(info->S.relocations(), [&](const RelocationRef &Reloc) {
2145 uint64_t RelocOffset = Reloc.getOffset();
2146 return RelocOffset == sect_offset;
2147 });
2148
2149 if (Reloc == info->S.relocations().end())
2150 return 0;
2151
2152 DataRefImpl Rel = Reloc->getRawDataRefImpl();
2153 MachO::any_relocation_info RE = info->O->getRelocation(Rel);
2154 uint32_t r_type = info->O->getAnyRelocationType(RE);
2155 if (r_type == MachO::ARM64_RELOC_ADDEND) {
2156 DataRefImpl RelNext = Rel;
2157 info->O->moveRelocationNext(RelNext);
2158 MachO::any_relocation_info RENext = info->O->getRelocation(RelNext);
2159 if (value == 0) {
2160 value = info->O->getPlainRelocationSymbolNum(RENext);
2161 op_info->Value = value;
2162 }
2163 }
2164 // NOTE: Scattered relocations don't exist on arm64.
2165 if (!info->O->getPlainRelocationExternal(RE))
2166 return 0;
2167 Expected<StringRef> SymName = Reloc->getSymbol()->getName();
2168 if (!SymName)
2169 report_error(info->O->getFileName(), SymName.takeError());
2170 const char *name = SymName->data();
2171 op_info->AddSymbol.Present = 1;
2172 op_info->AddSymbol.Name = name;
2173
2174 switch (r_type) {
2175 case MachO::ARM64_RELOC_PAGE21:
2176 /* @page */
2177 op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_PAGE1;
2178 break;
2179 case MachO::ARM64_RELOC_PAGEOFF12:
2180 /* @pageoff */
2181 op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_PAGEOFF2;
2182 break;
2183 case MachO::ARM64_RELOC_GOT_LOAD_PAGE21:
2184 /* @gotpage */
2185 op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_GOTPAGE3;
2186 break;
2187 case MachO::ARM64_RELOC_GOT_LOAD_PAGEOFF12:
2188 /* @gotpageoff */
2189 op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_GOTPAGEOFF4;
2190 break;
2191 case MachO::ARM64_RELOC_TLVP_LOAD_PAGE21:
2192 /* @tvlppage is not implemented in llvm-mc */
2193 op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_TLVP5;
2194 break;
2195 case MachO::ARM64_RELOC_TLVP_LOAD_PAGEOFF12:
2196 /* @tvlppageoff is not implemented in llvm-mc */
2197 op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_TLVOFF6;
2198 break;
2199 default:
2200 case MachO::ARM64_RELOC_BRANCH26:
2201 op_info->VariantKind = LLVMDisassembler_VariantKind_None0;
2202 break;
2203 }
2204 return 1;
2205 }
2206 return 0;
2207}
2208
2209// GuessCstringPointer is passed the address of what might be a pointer to a
2210// literal string in a cstring section. If that address is in a cstring section
2211// it returns a pointer to that string. Else it returns nullptr.
2212static const char *GuessCstringPointer(uint64_t ReferenceValue,
2213 struct DisassembleInfo *info) {
2214 for (const auto &Load : info->O->load_commands()) {
2215 if (Load.C.cmd == MachO::LC_SEGMENT_64) {
2216 MachO::segment_command_64 Seg = info->O->getSegment64LoadCommand(Load);
2217 for (unsigned J = 0; J < Seg.nsects; ++J) {
2218 MachO::section_64 Sec = info->O->getSection64(Load, J);
2219 uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
2220 if (section_type == MachO::S_CSTRING_LITERALS &&
2221 ReferenceValue >= Sec.addr &&
2222 ReferenceValue < Sec.addr + Sec.size) {
2223 uint64_t sect_offset = ReferenceValue - Sec.addr;
2224 uint64_t object_offset = Sec.offset + sect_offset;
2225 StringRef MachOContents = info->O->getData();
2226 uint64_t object_size = MachOContents.size();
2227 const char *object_addr = (const char *)MachOContents.data();
2228 if (object_offset < object_size) {
2229 const char *name = object_addr + object_offset;
2230 return name;
2231 } else {
2232 return nullptr;
2233 }
2234 }
2235 }
2236 } else if (Load.C.cmd == MachO::LC_SEGMENT) {
2237 MachO::segment_command Seg = info->O->getSegmentLoadCommand(Load);
2238 for (unsigned J = 0; J < Seg.nsects; ++J) {
2239 MachO::section Sec = info->O->getSection(Load, J);
2240 uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
2241 if (section_type == MachO::S_CSTRING_LITERALS &&
2242 ReferenceValue >= Sec.addr &&
2243 ReferenceValue < Sec.addr + Sec.size) {
2244 uint64_t sect_offset = ReferenceValue - Sec.addr;
2245 uint64_t object_offset = Sec.offset + sect_offset;
2246 StringRef MachOContents = info->O->getData();
2247 uint64_t object_size = MachOContents.size();
2248 const char *object_addr = (const char *)MachOContents.data();
2249 if (object_offset < object_size) {
2250 const char *name = object_addr + object_offset;
2251 return name;
2252 } else {
2253 return nullptr;
2254 }
2255 }
2256 }
2257 }
2258 }
2259 return nullptr;
2260}
2261
2262// GuessIndirectSymbol returns the name of the indirect symbol for the
2263// ReferenceValue passed in or nullptr. This is used when ReferenceValue maybe
2264// an address of a symbol stub or a lazy or non-lazy pointer to associate the
2265// symbol name being referenced by the stub or pointer.
2266static const char *GuessIndirectSymbol(uint64_t ReferenceValue,
2267 struct DisassembleInfo *info) {
2268 MachO::dysymtab_command Dysymtab = info->O->getDysymtabLoadCommand();
2269 MachO::symtab_command Symtab = info->O->getSymtabLoadCommand();
2270 for (const auto &Load : info->O->load_commands()) {
2271 if (Load.C.cmd == MachO::LC_SEGMENT_64) {
2272 MachO::segment_command_64 Seg = info->O->getSegment64LoadCommand(Load);
2273 for (unsigned J = 0; J < Seg.nsects; ++J) {
2274 MachO::section_64 Sec = info->O->getSection64(Load, J);
2275 uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
2276 if ((section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
2277 section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
2278 section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
2279 section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS ||
2280 section_type == MachO::S_SYMBOL_STUBS) &&
2281 ReferenceValue >= Sec.addr &&
2282 ReferenceValue < Sec.addr + Sec.size) {
2283 uint32_t stride;
2284 if (section_type == MachO::S_SYMBOL_STUBS)
2285 stride = Sec.reserved2;
2286 else
2287 stride = 8;
2288 if (stride == 0)
2289 return nullptr;
2290 uint32_t index = Sec.reserved1 + (ReferenceValue - Sec.addr) / stride;
2291 if (index < Dysymtab.nindirectsyms) {
2292 uint32_t indirect_symbol =
2293 info->O->getIndirectSymbolTableEntry(Dysymtab, index);
2294 if (indirect_symbol < Symtab.nsyms) {
2295 symbol_iterator Sym = info->O->getSymbolByIndex(indirect_symbol);
2296 SymbolRef Symbol = *Sym;
2297 Expected<StringRef> SymName = Symbol.getName();
2298 if (!SymName)
2299 report_error(info->O->getFileName(), SymName.takeError());
2300 const char *name = SymName->data();
2301 return name;
2302 }
2303 }
2304 }
2305 }
2306 } else if (Load.C.cmd == MachO::LC_SEGMENT) {
2307 MachO::segment_command Seg = info->O->getSegmentLoadCommand(Load);
2308 for (unsigned J = 0; J < Seg.nsects; ++J) {
2309 MachO::section Sec = info->O->getSection(Load, J);
2310 uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
2311 if ((section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
2312 section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
2313 section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
2314 section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS ||
2315 section_type == MachO::S_SYMBOL_STUBS) &&
2316 ReferenceValue >= Sec.addr &&
2317 ReferenceValue < Sec.addr + Sec.size) {
2318 uint32_t stride;
2319 if (section_type == MachO::S_SYMBOL_STUBS)
2320 stride = Sec.reserved2;
2321 else
2322 stride = 4;
2323 if (stride == 0)
2324 return nullptr;
2325 uint32_t index = Sec.reserved1 + (ReferenceValue - Sec.addr) / stride;
2326 if (index < Dysymtab.nindirectsyms) {
2327 uint32_t indirect_symbol =
2328 info->O->getIndirectSymbolTableEntry(Dysymtab, index);
2329 if (indirect_symbol < Symtab.nsyms) {
2330 symbol_iterator Sym = info->O->getSymbolByIndex(indirect_symbol);
2331 SymbolRef Symbol = *Sym;
2332 Expected<StringRef> SymName = Symbol.getName();
2333 if (!SymName)
2334 report_error(info->O->getFileName(), SymName.takeError());
2335 const char *name = SymName->data();
2336 return name;
2337 }
2338 }
2339 }
2340 }
2341 }
2342 }
2343 return nullptr;
2344}
2345
2346// method_reference() is called passing it the ReferenceName that might be
2347// a reference it to an Objective-C method call. If so then it allocates and
2348// assembles a method call string with the values last seen and saved in
2349// the DisassembleInfo's class_name and selector_name fields. This is saved
2350// into the method field of the info and any previous string is free'ed.
2351// Then the class_name field in the info is set to nullptr. The method call
2352// string is set into ReferenceName and ReferenceType is set to
2353// LLVMDisassembler_ReferenceType_Out_Objc_Message. If this not a method call
2354// then both ReferenceType and ReferenceName are left unchanged.
2355static void method_reference(struct DisassembleInfo *info,
2356 uint64_t *ReferenceType,
2357 const char **ReferenceName) {
2358 unsigned int Arch = info->O->getArch();
2359 if (*ReferenceName != nullptr) {
2360 if (strcmp(*ReferenceName, "_objc_msgSend") == 0) {
2361 if (info->selector_name != nullptr) {
2362 if (info->method != nullptr)
2363 free(info->method);
2364 if (info->class_name != nullptr) {
2365 info->method = (char *)malloc(5 + strlen(info->class_name) +
2366 strlen(info->selector_name));
2367 if (info->method != nullptr) {
2368 strcpy(info->method, "+[");
2369 strcat(info->method, info->class_name);
2370 strcat(info->method, " ");
2371 strcat(info->method, info->selector_name);
2372 strcat(info->method, "]");
2373 *ReferenceName = info->method;
2374 *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message5;
2375 }
2376 } else {
2377 info->method = (char *)malloc(9 + strlen(info->selector_name));
2378 if (info->method != nullptr) {
2379 if (Arch == Triple::x86_64)
2380 strcpy(info->method, "-[%rdi ");
2381 else if (Arch == Triple::aarch64)
2382 strcpy(info->method, "-[x0 ");
2383 else
2384 strcpy(info->method, "-[r? ");
2385 strcat(info->method, info->selector_name);
2386 strcat(info->method, "]");
2387 *ReferenceName = info->method;
2388 *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message5;
2389 }
2390 }
2391 info->class_name = nullptr;
2392 }
2393 } else if (strcmp(*ReferenceName, "_objc_msgSendSuper2") == 0) {
2394 if (info->selector_name != nullptr) {
2395 if (info->method != nullptr)
2396 free(info->method);
2397 info->method = (char *)malloc(17 + strlen(info->selector_name));
2398 if (info->method != nullptr) {
2399 if (Arch == Triple::x86_64)
2400 strcpy(info->method, "-[[%rdi super] ");
2401 else if (Arch == Triple::aarch64)
2402 strcpy(info->method, "-[[x0 super] ");
2403 else
2404 strcpy(info->method, "-[[r? super] ");
2405 strcat(info->method, info->selector_name);
2406 strcat(info->method, "]");
2407 *ReferenceName = info->method;
2408 *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message5;
2409 }
2410 info->class_name = nullptr;
2411 }
2412 }
2413 }
2414}
2415
2416// GuessPointerPointer() is passed the address of what might be a pointer to
2417// a reference to an Objective-C class, selector, message ref or cfstring.
2418// If so the value of the pointer is returned and one of the booleans are set
2419// to true. If not zero is returned and all the booleans are set to false.
2420static uint64_t GuessPointerPointer(uint64_t ReferenceValue,
2421 struct DisassembleInfo *info,
2422 bool &classref, bool &selref, bool &msgref,
2423 bool &cfstring) {
2424 classref = false;
2425 selref = false;
2426 msgref = false;
2427 cfstring = false;
2428 for (const auto &Load : info->O->load_commands()) {
2429 if (Load.C.cmd == MachO::LC_SEGMENT_64) {
2430 MachO::segment_command_64 Seg = info->O->getSegment64LoadCommand(Load);
2431 for (unsigned J = 0; J < Seg.nsects; ++J) {
2432 MachO::section_64 Sec = info->O->getSection64(Load, J);
2433 if ((strncmp(Sec.sectname, "__objc_selrefs", 16) == 0 ||
2434 strncmp(Sec.sectname, "__objc_classrefs", 16) == 0 ||
2435 strncmp(Sec.sectname, "__objc_superrefs", 16) == 0 ||
2436 strncmp(Sec.sectname, "__objc_msgrefs", 16) == 0 ||
2437 strncmp(Sec.sectname, "__cfstring", 16) == 0) &&
2438 ReferenceValue >= Sec.addr &&
2439 ReferenceValue < Sec.addr + Sec.size) {
2440 uint64_t sect_offset = ReferenceValue - Sec.addr;
2441 uint64_t object_offset = Sec.offset + sect_offset;
2442 StringRef MachOContents = info->O->getData();
2443 uint64_t object_size = MachOContents.size();
2444 const char *object_addr = (const char *)MachOContents.data();
2445 if (object_offset < object_size) {
2446 uint64_t pointer_value;
2447 memcpy(&pointer_value, object_addr + object_offset,
2448 sizeof(uint64_t));
2449 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
2450 sys::swapByteOrder(pointer_value);
2451 if (strncmp(Sec.sectname, "__objc_selrefs", 16) == 0)
2452 selref = true;
2453 else if (strncmp(Sec.sectname, "__objc_classrefs", 16) == 0 ||
2454 strncmp(Sec.sectname, "__objc_superrefs", 16) == 0)
2455 classref = true;
2456 else if (strncmp(Sec.sectname, "__objc_msgrefs", 16) == 0 &&
2457 ReferenceValue + 8 < Sec.addr + Sec.size) {
2458 msgref = true;
2459 memcpy(&pointer_value, object_addr + object_offset + 8,
2460 sizeof(uint64_t));
2461 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
2462 sys::swapByteOrder(pointer_value);
2463 } else if (strncmp(Sec.sectname, "__cfstring", 16) == 0)
2464 cfstring = true;
2465 return pointer_value;
2466 } else {
2467 return 0;
2468 }
2469 }
2470 }
2471 }
2472 // TODO: Look for LC_SEGMENT for 32-bit Mach-O files.
2473 }
2474 return 0;
2475}
2476
2477// get_pointer_64 returns a pointer to the bytes in the object file at the
2478// Address from a section in the Mach-O file. And indirectly returns the
2479// offset into the section, number of bytes left in the section past the offset
2480// and which section is was being referenced. If the Address is not in a
2481// section nullptr is returned.
2482static const char *get_pointer_64(uint64_t Address, uint32_t &offset,
2483 uint32_t &left, SectionRef &S,
2484 DisassembleInfo *info,
2485 bool objc_only = false) {
2486 offset = 0;
2487 left = 0;
2488 S = SectionRef();
2489 for (unsigned SectIdx = 0; SectIdx != info->Sections->size(); SectIdx++) {
2490 uint64_t SectAddress = ((*(info->Sections))[SectIdx]).getAddress();
2491 uint64_t SectSize = ((*(info->Sections))[SectIdx]).getSize();
2492 if (SectSize == 0)
2493 continue;
2494 if (objc_only) {
2495 StringRef SectName;
2496 ((*(info->Sections))[SectIdx]).getName(SectName);
2497 DataRefImpl Ref = ((*(info->Sections))[SectIdx]).getRawDataRefImpl();
2498 StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
2499 if (SegName != "__OBJC" && SectName != "__cstring")
2500 continue;
2501 }
2502 if (Address >= SectAddress && Address < SectAddress + SectSize) {
2503 S = (*(info->Sections))[SectIdx];
2504 offset = Address - SectAddress;
2505 left = SectSize - offset;
2506 StringRef SectContents;
2507 ((*(info->Sections))[SectIdx]).getContents(SectContents);
2508 return SectContents.data() + offset;
2509 }
2510 }
2511 return nullptr;
2512}
2513
2514static const char *get_pointer_32(uint32_t Address, uint32_t &offset,
2515 uint32_t &left, SectionRef &S,
2516 DisassembleInfo *info,
2517 bool objc_only = false) {
2518 return get_pointer_64(Address, offset, left, S, info, objc_only);
2519}
2520
2521// get_symbol_64() returns the name of a symbol (or nullptr) and the address of
2522// the symbol indirectly through n_value. Based on the relocation information
2523// for the specified section offset in the specified section reference.
2524// If no relocation information is found and a non-zero ReferenceValue for the
2525// symbol is passed, look up that address in the info's AddrMap.
2526static const char *get_symbol_64(uint32_t sect_offset, SectionRef S,
2527 DisassembleInfo *info, uint64_t &n_value,
2528 uint64_t ReferenceValue = 0) {
2529 n_value = 0;
2530 if (!info->verbose)
2531 return nullptr;
2532
2533 // See if there is an external relocation entry at the sect_offset.
2534 bool reloc_found = false;
2535 DataRefImpl Rel;
2536 MachO::any_relocation_info RE;
2537 bool isExtern = false;
2538 SymbolRef Symbol;
2539 for (const RelocationRef &Reloc : S.relocations()) {
2540 uint64_t RelocOffset = Reloc.getOffset();
2541 if (RelocOffset == sect_offset) {
2542 Rel = Reloc.getRawDataRefImpl();
2543 RE = info->O->getRelocation(Rel);
2544 if (info->O->isRelocationScattered(RE))
2545 continue;
2546 isExtern = info->O->getPlainRelocationExternal(RE);
2547 if (isExtern) {
2548 symbol_iterator RelocSym = Reloc.getSymbol();
2549 Symbol = *RelocSym;
2550 }
2551 reloc_found = true;
2552 break;
2553 }
2554 }
2555 // If there is an external relocation entry for a symbol in this section
2556 // at this section_offset then use that symbol's value for the n_value
2557 // and return its name.
2558 const char *SymbolName = nullptr;
2559 if (reloc_found && isExtern) {
2560 n_value = Symbol.getValue();
2561 Expected<StringRef> NameOrError = Symbol.getName();
2562 if (!NameOrError)
2563 report_error(info->O->getFileName(), NameOrError.takeError());
2564 StringRef Name = *NameOrError;
2565 if (!Name.empty()) {
2566 SymbolName = Name.data();
2567 return SymbolName;
2568 }
2569 }
2570
2571 // TODO: For fully linked images, look through the external relocation
2572 // entries off the dynamic symtab command. For these the r_offset is from the
2573 // start of the first writeable segment in the Mach-O file. So the offset
2574 // to this section from that segment is passed to this routine by the caller,
2575 // as the database_offset. Which is the difference of the section's starting
2576 // address and the first writable segment.
2577 //
2578 // NOTE: need add passing the database_offset to this routine.
2579
2580 // We did not find an external relocation entry so look up the ReferenceValue
2581 // as an address of a symbol and if found return that symbol's name.
2582 SymbolName = GuessSymbolName(ReferenceValue, info->AddrMap);
2583
2584 return SymbolName;
2585}
2586
2587static const char *get_symbol_32(uint32_t sect_offset, SectionRef S,
2588 DisassembleInfo *info,
2589 uint32_t ReferenceValue) {
2590 uint64_t n_value64;
2591 return get_symbol_64(sect_offset, S, info, n_value64, ReferenceValue);
2592}
2593
2594// These are structs in the Objective-C meta data and read to produce the
2595// comments for disassembly. While these are part of the ABI they are no
2596// public defintions. So the are here not in include/llvm/Support/MachO.h .
2597
2598// The cfstring object in a 64-bit Mach-O file.
2599struct cfstring64_t {
2600 uint64_t isa; // class64_t * (64-bit pointer)
2601 uint64_t flags; // flag bits
2602 uint64_t characters; // char * (64-bit pointer)
2603 uint64_t length; // number of non-NULL characters in above
2604};
2605
2606// The class object in a 64-bit Mach-O file.
2607struct class64_t {
2608 uint64_t isa; // class64_t * (64-bit pointer)
2609 uint64_t superclass; // class64_t * (64-bit pointer)
2610 uint64_t cache; // Cache (64-bit pointer)
2611 uint64_t vtable; // IMP * (64-bit pointer)
2612 uint64_t data; // class_ro64_t * (64-bit pointer)
2613};
2614
2615struct class32_t {
2616 uint32_t isa; /* class32_t * (32-bit pointer) */
2617 uint32_t superclass; /* class32_t * (32-bit pointer) */
2618 uint32_t cache; /* Cache (32-bit pointer) */
2619 uint32_t vtable; /* IMP * (32-bit pointer) */
2620 uint32_t data; /* class_ro32_t * (32-bit pointer) */
2621};
2622
2623struct class_ro64_t {
2624 uint32_t flags;
2625 uint32_t instanceStart;
2626 uint32_t instanceSize;
2627 uint32_t reserved;
2628 uint64_t ivarLayout; // const uint8_t * (64-bit pointer)
2629 uint64_t name; // const char * (64-bit pointer)
2630 uint64_t baseMethods; // const method_list_t * (64-bit pointer)
2631 uint64_t baseProtocols; // const protocol_list_t * (64-bit pointer)
2632 uint64_t ivars; // const ivar_list_t * (64-bit pointer)
2633 uint64_t weakIvarLayout; // const uint8_t * (64-bit pointer)
2634 uint64_t baseProperties; // const struct objc_property_list (64-bit pointer)
2635};
2636
2637struct class_ro32_t {
2638 uint32_t flags;
2639 uint32_t instanceStart;
2640 uint32_t instanceSize;
2641 uint32_t ivarLayout; /* const uint8_t * (32-bit pointer) */
2642 uint32_t name; /* const char * (32-bit pointer) */
2643 uint32_t baseMethods; /* const method_list_t * (32-bit pointer) */
2644 uint32_t baseProtocols; /* const protocol_list_t * (32-bit pointer) */
2645 uint32_t ivars; /* const ivar_list_t * (32-bit pointer) */
2646 uint32_t weakIvarLayout; /* const uint8_t * (32-bit pointer) */
2647 uint32_t baseProperties; /* const struct objc_property_list *
2648 (32-bit pointer) */
2649};
2650
2651/* Values for class_ro{64,32}_t->flags */
2652#define RO_META(1 << 0) (1 << 0)
2653#define RO_ROOT(1 << 1) (1 << 1)
2654#define RO_HAS_CXX_STRUCTORS(1 << 2) (1 << 2)
2655
2656struct method_list64_t {
2657 uint32_t entsize;
2658 uint32_t count;
2659 /* struct method64_t first; These structures follow inline */
2660};
2661
2662struct method_list32_t {
2663 uint32_t entsize;
2664 uint32_t count;
2665 /* struct method32_t first; These structures follow inline */
2666};
2667
2668struct method64_t {
2669 uint64_t name; /* SEL (64-bit pointer) */
2670 uint64_t types; /* const char * (64-bit pointer) */
2671 uint64_t imp; /* IMP (64-bit pointer) */
2672};
2673
2674struct method32_t {
2675 uint32_t name; /* SEL (32-bit pointer) */
2676 uint32_t types; /* const char * (32-bit pointer) */
2677 uint32_t imp; /* IMP (32-bit pointer) */
2678};
2679
2680struct protocol_list64_t {
2681 uint64_t count; /* uintptr_t (a 64-bit value) */
2682 /* struct protocol64_t * list[0]; These pointers follow inline */
2683};
2684
2685struct protocol_list32_t {
2686 uint32_t count; /* uintptr_t (a 32-bit value) */
2687 /* struct protocol32_t * list[0]; These pointers follow inline */
2688};
2689
2690struct protocol64_t {
2691 uint64_t isa; /* id * (64-bit pointer) */
2692 uint64_t name; /* const char * (64-bit pointer) */
2693 uint64_t protocols; /* struct protocol_list64_t *
2694 (64-bit pointer) */
2695 uint64_t instanceMethods; /* method_list_t * (64-bit pointer) */
2696 uint64_t classMethods; /* method_list_t * (64-bit pointer) */
2697 uint64_t optionalInstanceMethods; /* method_list_t * (64-bit pointer) */
2698 uint64_t optionalClassMethods; /* method_list_t * (64-bit pointer) */
2699 uint64_t instanceProperties; /* struct objc_property_list *
2700 (64-bit pointer) */
2701};
2702
2703struct protocol32_t {
2704 uint32_t isa; /* id * (32-bit pointer) */
2705 uint32_t name; /* const char * (32-bit pointer) */
2706 uint32_t protocols; /* struct protocol_list_t *
2707 (32-bit pointer) */
2708 uint32_t instanceMethods; /* method_list_t * (32-bit pointer) */
2709 uint32_t classMethods; /* method_list_t * (32-bit pointer) */
2710 uint32_t optionalInstanceMethods; /* method_list_t * (32-bit pointer) */
2711 uint32_t optionalClassMethods; /* method_list_t * (32-bit pointer) */
2712 uint32_t instanceProperties; /* struct objc_property_list *
2713 (32-bit pointer) */
2714};
2715
2716struct ivar_list64_t {
2717 uint32_t entsize;
2718 uint32_t count;
2719 /* struct ivar64_t first; These structures follow inline */
2720};
2721
2722struct ivar_list32_t {
2723 uint32_t entsize;
2724 uint32_t count;
2725 /* struct ivar32_t first; These structures follow inline */
2726};
2727
2728struct ivar64_t {
2729 uint64_t offset; /* uintptr_t * (64-bit pointer) */
2730 uint64_t name; /* const char * (64-bit pointer) */
2731 uint64_t type; /* const char * (64-bit pointer) */
2732 uint32_t alignment;
2733 uint32_t size;
2734};
2735
2736struct ivar32_t {
2737 uint32_t offset; /* uintptr_t * (32-bit pointer) */
2738 uint32_t name; /* const char * (32-bit pointer) */
2739 uint32_t type; /* const char * (32-bit pointer) */
2740 uint32_t alignment;
2741 uint32_t size;
2742};
2743
2744struct objc_property_list64 {
2745 uint32_t entsize;
2746 uint32_t count;
2747 /* struct objc_property64 first; These structures follow inline */
2748};
2749
2750struct objc_property_list32 {
2751 uint32_t entsize;
2752 uint32_t count;
2753 /* struct objc_property32 first; These structures follow inline */
2754};
2755
2756struct objc_property64 {
2757 uint64_t name; /* const char * (64-bit pointer) */
2758 uint64_t attributes; /* const char * (64-bit pointer) */
2759};
2760
2761struct objc_property32 {
2762 uint32_t name; /* const char * (32-bit pointer) */
2763 uint32_t attributes; /* const char * (32-bit pointer) */
2764};
2765
2766struct category64_t {
2767 uint64_t name; /* const char * (64-bit pointer) */
2768 uint64_t cls; /* struct class_t * (64-bit pointer) */
2769 uint64_t instanceMethods; /* struct method_list_t * (64-bit pointer) */
2770 uint64_t classMethods; /* struct method_list_t * (64-bit pointer) */
2771 uint64_t protocols; /* struct protocol_list_t * (64-bit pointer) */
2772 uint64_t instanceProperties; /* struct objc_property_list *
2773 (64-bit pointer) */
2774};
2775
2776struct category32_t {
2777 uint32_t name; /* const char * (32-bit pointer) */
2778 uint32_t cls; /* struct class_t * (32-bit pointer) */
2779 uint32_t instanceMethods; /* struct method_list_t * (32-bit pointer) */
2780 uint32_t classMethods; /* struct method_list_t * (32-bit pointer) */
2781 uint32_t protocols; /* struct protocol_list_t * (32-bit pointer) */
2782 uint32_t instanceProperties; /* struct objc_property_list *
2783 (32-bit pointer) */
2784};
2785
2786struct objc_image_info64 {
2787 uint32_t version;
2788 uint32_t flags;
2789};
2790struct objc_image_info32 {
2791 uint32_t version;
2792 uint32_t flags;
2793};
2794struct imageInfo_t {
2795 uint32_t version;
2796 uint32_t flags;
2797};
2798/* masks for objc_image_info.flags */
2799#define OBJC_IMAGE_IS_REPLACEMENT(1 << 0) (1 << 0)
2800#define OBJC_IMAGE_SUPPORTS_GC(1 << 1) (1 << 1)
2801
2802struct message_ref64 {
2803 uint64_t imp; /* IMP (64-bit pointer) */
2804 uint64_t sel; /* SEL (64-bit pointer) */
2805};
2806
2807struct message_ref32 {
2808 uint32_t imp; /* IMP (32-bit pointer) */
2809 uint32_t sel; /* SEL (32-bit pointer) */
2810};
2811
2812// Objective-C 1 (32-bit only) meta data structs.
2813
2814struct objc_module_t {
2815 uint32_t version;
2816 uint32_t size;
2817 uint32_t name; /* char * (32-bit pointer) */
2818 uint32_t symtab; /* struct objc_symtab * (32-bit pointer) */
2819};
2820
2821struct objc_symtab_t {
2822 uint32_t sel_ref_cnt;
2823 uint32_t refs; /* SEL * (32-bit pointer) */
2824 uint16_t cls_def_cnt;
2825 uint16_t cat_def_cnt;
2826 // uint32_t defs[1]; /* void * (32-bit pointer) variable size */
2827};
2828
2829struct objc_class_t {
2830 uint32_t isa; /* struct objc_class * (32-bit pointer) */
2831 uint32_t super_class; /* struct objc_class * (32-bit pointer) */
2832 uint32_t name; /* const char * (32-bit pointer) */
2833 int32_t version;
2834 int32_t info;
2835 int32_t instance_size;
2836 uint32_t ivars; /* struct objc_ivar_list * (32-bit pointer) */
2837 uint32_t methodLists; /* struct objc_method_list ** (32-bit pointer) */
2838 uint32_t cache; /* struct objc_cache * (32-bit pointer) */
2839 uint32_t protocols; /* struct objc_protocol_list * (32-bit pointer) */
2840};
2841
2842#define CLS_GETINFO(cls, infomask)((cls)->info & (infomask)) ((cls)->info & (infomask))
2843// class is not a metaclass
2844#define CLS_CLASS0x1 0x1
2845// class is a metaclass
2846#define CLS_META0x2 0x2
2847
2848struct objc_category_t {
2849 uint32_t category_name; /* char * (32-bit pointer) */
2850 uint32_t class_name; /* char * (32-bit pointer) */
2851 uint32_t instance_methods; /* struct objc_method_list * (32-bit pointer) */
2852 uint32_t class_methods; /* struct objc_method_list * (32-bit pointer) */
2853 uint32_t protocols; /* struct objc_protocol_list * (32-bit ptr) */
2854};
2855
2856struct objc_ivar_t {
2857 uint32_t ivar_name; /* char * (32-bit pointer) */
2858 uint32_t ivar_type; /* char * (32-bit pointer) */
2859 int32_t ivar_offset;
2860};
2861
2862struct objc_ivar_list_t {
2863 int32_t ivar_count;
2864 // struct objc_ivar_t ivar_list[1]; /* variable length structure */
2865};
2866
2867struct objc_method_list_t {
2868 uint32_t obsolete; /* struct objc_method_list * (32-bit pointer) */
2869 int32_t method_count;
2870 // struct objc_method_t method_list[1]; /* variable length structure */
2871};
2872
2873struct objc_method_t {
2874 uint32_t method_name; /* SEL, aka struct objc_selector * (32-bit pointer) */
2875 uint32_t method_types; /* char * (32-bit pointer) */
2876 uint32_t method_imp; /* IMP, aka function pointer, (*IMP)(id, SEL, ...)
2877 (32-bit pointer) */
2878};
2879
2880struct objc_protocol_list_t {
2881 uint32_t next; /* struct objc_protocol_list * (32-bit pointer) */
2882 int32_t count;
2883 // uint32_t list[1]; /* Protocol *, aka struct objc_protocol_t *
2884 // (32-bit pointer) */
2885};
2886
2887struct objc_protocol_t {
2888 uint32_t isa; /* struct objc_class * (32-bit pointer) */
2889 uint32_t protocol_name; /* char * (32-bit pointer) */
2890 uint32_t protocol_list; /* struct objc_protocol_list * (32-bit pointer) */
2891 uint32_t instance_methods; /* struct objc_method_description_list *
2892 (32-bit pointer) */
2893 uint32_t class_methods; /* struct objc_method_description_list *
2894 (32-bit pointer) */
2895};
2896
2897struct objc_method_description_list_t {
2898 int32_t count;
2899 // struct objc_method_description_t list[1];
2900};
2901
2902struct objc_method_description_t {
2903 uint32_t name; /* SEL, aka struct objc_selector * (32-bit pointer) */
2904 uint32_t types; /* char * (32-bit pointer) */
2905};
2906
2907inline void swapStruct(struct cfstring64_t &cfs) {
2908 sys::swapByteOrder(cfs.isa);
2909 sys::swapByteOrder(cfs.flags);
2910 sys::swapByteOrder(cfs.characters);
2911 sys::swapByteOrder(cfs.length);
2912}
2913
2914inline void swapStruct(struct class64_t &c) {
2915 sys::swapByteOrder(c.isa);
2916 sys::swapByteOrder(c.superclass);
2917 sys::swapByteOrder(c.cache);
2918 sys::swapByteOrder(c.vtable);
2919 sys::swapByteOrder(c.data);
2920}
2921
2922inline void swapStruct(struct class32_t &c) {
2923 sys::swapByteOrder(c.isa);
2924 sys::swapByteOrder(c.superclass);
2925 sys::swapByteOrder(c.cache);
2926 sys::swapByteOrder(c.vtable);
2927 sys::swapByteOrder(c.data);
2928}
2929
2930inline void swapStruct(struct class_ro64_t &cro) {
2931 sys::swapByteOrder(cro.flags);
2932 sys::swapByteOrder(cro.instanceStart);
2933 sys::swapByteOrder(cro.instanceSize);
2934 sys::swapByteOrder(cro.reserved);
2935 sys::swapByteOrder(cro.ivarLayout);
2936 sys::swapByteOrder(cro.name);
2937 sys::swapByteOrder(cro.baseMethods);
2938 sys::swapByteOrder(cro.baseProtocols);
2939 sys::swapByteOrder(cro.ivars);
2940 sys::swapByteOrder(cro.weakIvarLayout);
2941 sys::swapByteOrder(cro.baseProperties);
2942}
2943
2944inline void swapStruct(struct class_ro32_t &cro) {
2945 sys::swapByteOrder(cro.flags);
2946 sys::swapByteOrder(cro.instanceStart);
2947 sys::swapByteOrder(cro.instanceSize);
2948 sys::swapByteOrder(cro.ivarLayout);
2949 sys::swapByteOrder(cro.name);
2950 sys::swapByteOrder(cro.baseMethods);
2951 sys::swapByteOrder(cro.baseProtocols);
2952 sys::swapByteOrder(cro.ivars);
2953 sys::swapByteOrder(cro.weakIvarLayout);
2954 sys::swapByteOrder(cro.baseProperties);
2955}
2956
2957inline void swapStruct(struct method_list64_t &ml) {
2958 sys::swapByteOrder(ml.entsize);
2959 sys::swapByteOrder(ml.count);
2960}
2961
2962inline void swapStruct(struct method_list32_t &ml) {
2963 sys::swapByteOrder(ml.entsize);
2964 sys::swapByteOrder(ml.count);
2965}
2966
2967inline void swapStruct(struct method64_t &m) {
2968 sys::swapByteOrder(m.name);
2969 sys::swapByteOrder(m.types);
2970 sys::swapByteOrder(m.imp);
2971}
2972
2973inline void swapStruct(struct method32_t &m) {
2974 sys::swapByteOrder(m.name);
2975 sys::swapByteOrder(m.types);
2976 sys::swapByteOrder(m.imp);
2977}
2978
2979inline void swapStruct(struct protocol_list64_t &pl) {
2980 sys::swapByteOrder(pl.count);
2981}
2982
2983inline void swapStruct(struct protocol_list32_t &pl) {
2984 sys::swapByteOrder(pl.count);
2985}
2986
2987inline void swapStruct(struct protocol64_t &p) {
2988 sys::swapByteOrder(p.isa);
2989 sys::swapByteOrder(p.name);
2990 sys::swapByteOrder(p.protocols);
2991 sys::swapByteOrder(p.instanceMethods);
2992 sys::swapByteOrder(p.classMethods);
2993 sys::swapByteOrder(p.optionalInstanceMethods);
2994 sys::swapByteOrder(p.optionalClassMethods);
2995 sys::swapByteOrder(p.instanceProperties);
2996}
2997
2998inline void swapStruct(struct protocol32_t &p) {
2999 sys::swapByteOrder(p.isa);
3000 sys::swapByteOrder(p.name);
3001 sys::swapByteOrder(p.protocols);
3002 sys::swapByteOrder(p.instanceMethods);
3003 sys::swapByteOrder(p.classMethods);
3004 sys::swapByteOrder(p.optionalInstanceMethods);
3005 sys::swapByteOrder(p.optionalClassMethods);
3006 sys::swapByteOrder(p.instanceProperties);
3007}
3008
3009inline void swapStruct(struct ivar_list64_t &il) {
3010 sys::swapByteOrder(il.entsize);
3011 sys::swapByteOrder(il.count);
3012}
3013
3014inline void swapStruct(struct ivar_list32_t &il) {
3015 sys::swapByteOrder(il.entsize);
3016 sys::swapByteOrder(il.count);
3017}
3018
3019inline void swapStruct(struct ivar64_t &i) {
3020 sys::swapByteOrder(i.offset);
3021 sys::swapByteOrder(i.name);
3022 sys::swapByteOrder(i.type);
3023 sys::swapByteOrder(i.alignment);
3024 sys::swapByteOrder(i.size);
3025}
3026
3027inline void swapStruct(struct ivar32_t &i) {
3028 sys::swapByteOrder(i.offset);
3029 sys::swapByteOrder(i.name);
3030 sys::swapByteOrder(i.type);
3031 sys::swapByteOrder(i.alignment);
3032 sys::swapByteOrder(i.size);
3033}
3034
3035inline void swapStruct(struct objc_property_list64 &pl) {
3036 sys::swapByteOrder(pl.entsize);
3037 sys::swapByteOrder(pl.count);
3038}
3039
3040inline void swapStruct(struct objc_property_list32 &pl) {
3041 sys::swapByteOrder(pl.entsize);
3042 sys::swapByteOrder(pl.count);
3043}
3044
3045inline void swapStruct(struct objc_property64 &op) {
3046 sys::swapByteOrder(op.name);
3047 sys::swapByteOrder(op.attributes);
3048}
3049
3050inline void swapStruct(struct objc_property32 &op) {
3051 sys::swapByteOrder(op.name);
3052 sys::swapByteOrder(op.attributes);
3053}
3054
3055inline void swapStruct(struct category64_t &c) {
3056 sys::swapByteOrder(c.name);
3057 sys::swapByteOrder(c.cls);
3058 sys::swapByteOrder(c.instanceMethods);
3059 sys::swapByteOrder(c.classMethods);
3060 sys::swapByteOrder(c.protocols);
3061 sys::swapByteOrder(c.instanceProperties);
3062}
3063
3064inline void swapStruct(struct category32_t &c) {
3065 sys::swapByteOrder(c.name);
3066 sys::swapByteOrder(c.cls);
3067 sys::swapByteOrder(c.instanceMethods);
3068 sys::swapByteOrder(c.classMethods);
3069 sys::swapByteOrder(c.protocols);
3070 sys::swapByteOrder(c.instanceProperties);
3071}
3072
3073inline void swapStruct(struct objc_image_info64 &o) {
3074 sys::swapByteOrder(o.version);
3075 sys::swapByteOrder(o.flags);
3076}
3077
3078inline void swapStruct(struct objc_image_info32 &o) {
3079 sys::swapByteOrder(o.version);
3080 sys::swapByteOrder(o.flags);
3081}
3082
3083inline void swapStruct(struct imageInfo_t &o) {
3084 sys::swapByteOrder(o.version);
3085 sys::swapByteOrder(o.flags);
3086}
3087
3088inline void swapStruct(struct message_ref64 &mr) {
3089 sys::swapByteOrder(mr.imp);
3090 sys::swapByteOrder(mr.sel);
3091}
3092
3093inline void swapStruct(struct message_ref32 &mr) {
3094 sys::swapByteOrder(mr.imp);
3095 sys::swapByteOrder(mr.sel);
3096}
3097
3098inline void swapStruct(struct objc_module_t &module) {
3099 sys::swapByteOrder(module.version);
3100 sys::swapByteOrder(module.size);
3101 sys::swapByteOrder(module.name);
3102 sys::swapByteOrder(module.symtab);
3103}
3104
3105inline void swapStruct(struct objc_symtab_t &symtab) {
3106 sys::swapByteOrder(symtab.sel_ref_cnt);
3107 sys::swapByteOrder(symtab.refs);
3108 sys::swapByteOrder(symtab.cls_def_cnt);
3109 sys::swapByteOrder(symtab.cat_def_cnt);
3110}
3111
3112inline void swapStruct(struct objc_class_t &objc_class) {
3113 sys::swapByteOrder(objc_class.isa);
3114 sys::swapByteOrder(objc_class.super_class);
3115 sys::swapByteOrder(objc_class.name);
3116 sys::swapByteOrder(objc_class.version);
3117 sys::swapByteOrder(objc_class.info);
3118 sys::swapByteOrder(objc_class.instance_size);
3119 sys::swapByteOrder(objc_class.ivars);
3120 sys::swapByteOrder(objc_class.methodLists);
3121 sys::swapByteOrder(objc_class.cache);
3122 sys::swapByteOrder(objc_class.protocols);
3123}
3124
3125inline void swapStruct(struct objc_category_t &objc_category) {
3126 sys::swapByteOrder(objc_category.category_name);
3127 sys::swapByteOrder(objc_category.class_name);
3128 sys::swapByteOrder(objc_category.instance_methods);
3129 sys::swapByteOrder(objc_category.class_methods);
3130 sys::swapByteOrder(objc_category.protocols);
3131}
3132
3133inline void swapStruct(struct objc_ivar_list_t &objc_ivar_list) {
3134 sys::swapByteOrder(objc_ivar_list.ivar_count);
3135}
3136
3137inline void swapStruct(struct objc_ivar_t &objc_ivar) {
3138 sys::swapByteOrder(objc_ivar.ivar_name);
3139 sys::swapByteOrder(objc_ivar.ivar_type);
3140 sys::swapByteOrder(objc_ivar.ivar_offset);
3141}
3142
3143inline void swapStruct(struct objc_method_list_t &method_list) {
3144 sys::swapByteOrder(method_list.obsolete);
3145 sys::swapByteOrder(method_list.method_count);
3146}
3147
3148inline void swapStruct(struct objc_method_t &method) {
3149 sys::swapByteOrder(method.method_name);
3150 sys::swapByteOrder(method.method_types);
3151 sys::swapByteOrder(method.method_imp);
3152}
3153
3154inline void swapStruct(struct objc_protocol_list_t &protocol_list) {
3155 sys::swapByteOrder(protocol_list.next);
3156 sys::swapByteOrder(protocol_list.count);
3157}
3158
3159inline void swapStruct(struct objc_protocol_t &protocol) {
3160 sys::swapByteOrder(protocol.isa);
3161 sys::swapByteOrder(protocol.protocol_name);
3162 sys::swapByteOrder(protocol.protocol_list);
3163 sys::swapByteOrder(protocol.instance_methods);
3164 sys::swapByteOrder(protocol.class_methods);
3165}
3166
3167inline void swapStruct(struct objc_method_description_list_t &mdl) {
3168 sys::swapByteOrder(mdl.count);
3169}
3170
3171inline void swapStruct(struct objc_method_description_t &md) {
3172 sys::swapByteOrder(md.name);
3173 sys::swapByteOrder(md.types);
3174}
3175
3176static const char *get_dyld_bind_info_symbolname(uint64_t ReferenceValue,
3177 struct DisassembleInfo *info);
3178
3179// get_objc2_64bit_class_name() is used for disassembly and is passed a pointer
3180// to an Objective-C class and returns the class name. It is also passed the
3181// address of the pointer, so when the pointer is zero as it can be in an .o
3182// file, that is used to look for an external relocation entry with a symbol
3183// name.
3184static const char *get_objc2_64bit_class_name(uint64_t pointer_value,
3185 uint64_t ReferenceValue,
3186 struct DisassembleInfo *info) {
3187 const char *r;
3188 uint32_t offset, left;
3189 SectionRef S;
3190
3191 // The pointer_value can be 0 in an object file and have a relocation
3192 // entry for the class symbol at the ReferenceValue (the address of the
3193 // pointer).
3194 if (pointer_value == 0) {
3195 r = get_pointer_64(ReferenceValue, offset, left, S, info);
3196 if (r == nullptr || left < sizeof(uint64_t))
3197 return nullptr;
3198 uint64_t n_value;
3199 const char *symbol_name = get_symbol_64(offset, S, info, n_value);
3200 if (symbol_name == nullptr)
3201 return nullptr;
3202 const char *class_name = strrchr(symbol_name, '$');
3203 if (class_name != nullptr && class_name[1] == '_' && class_name[2] != '\0')
3204 return class_name + 2;
3205 else
3206 return nullptr;
3207 }
3208
3209 // The case were the pointer_value is non-zero and points to a class defined
3210 // in this Mach-O file.
3211 r = get_pointer_64(pointer_value, offset, left, S, info);
3212 if (r == nullptr || left < sizeof(struct class64_t))
3213 return nullptr;
3214 struct class64_t c;
3215 memcpy(&c, r, sizeof(struct class64_t));
3216 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3217 swapStruct(c);
3218 if (c.data == 0)
3219 return nullptr;
3220 r = get_pointer_64(c.data, offset, left, S, info);
3221 if (r == nullptr || left < sizeof(struct class_ro64_t))
3222 return nullptr;
3223 struct class_ro64_t cro;
3224 memcpy(&cro, r, sizeof(struct class_ro64_t));
3225 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3226 swapStruct(cro);
3227 if (cro.name == 0)
3228 return nullptr;
3229 const char *name = get_pointer_64(cro.name, offset, left, S, info);
3230 return name;
3231}
3232
3233// get_objc2_64bit_cfstring_name is used for disassembly and is passed a
3234// pointer to a cfstring and returns its name or nullptr.
3235static const char *get_objc2_64bit_cfstring_name(uint64_t ReferenceValue,
3236 struct DisassembleInfo *info) {
3237 const char *r, *name;
3238 uint32_t offset, left;
3239 SectionRef S;
3240 struct cfstring64_t cfs;
3241 uint64_t cfs_characters;
3242
3243 r = get_pointer_64(ReferenceValue, offset, left, S, info);
3244 if (r == nullptr || left < sizeof(struct cfstring64_t))
3245 return nullptr;
3246 memcpy(&cfs, r, sizeof(struct cfstring64_t));
3247 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3248 swapStruct(cfs);
3249 if (cfs.characters == 0) {
3250 uint64_t n_value;
3251 const char *symbol_name = get_symbol_64(
3252 offset + offsetof(struct cfstring64_t, characters)__builtin_offsetof(struct cfstring64_t, characters), S, info, n_value);
3253 if (symbol_name == nullptr)
3254 return nullptr;
3255 cfs_characters = n_value;
3256 } else
3257 cfs_characters = cfs.characters;
3258 name = get_pointer_64(cfs_characters, offset, left, S, info);
3259
3260 return name;
3261}
3262
3263// get_objc2_64bit_selref() is used for disassembly and is passed a the address
3264// of a pointer to an Objective-C selector reference when the pointer value is
3265// zero as in a .o file and is likely to have a external relocation entry with
3266// who's symbol's n_value is the real pointer to the selector name. If that is
3267// the case the real pointer to the selector name is returned else 0 is
3268// returned
3269static uint64_t get_objc2_64bit_selref(uint64_t ReferenceValue,
3270 struct DisassembleInfo *info) {
3271 uint32_t offset, left;
3272 SectionRef S;
3273
3274 const char *r = get_pointer_64(ReferenceValue, offset, left, S, info);
3275 if (r == nullptr || left < sizeof(uint64_t))
3276 return 0;
3277 uint64_t n_value;
3278 const char *symbol_name = get_symbol_64(offset, S, info, n_value);
3279 if (symbol_name == nullptr)
3280 return 0;
3281 return n_value;
3282}
3283
3284static const SectionRef get_section(MachOObjectFile *O, const char *segname,
3285 const char *sectname) {
3286 for (const SectionRef &Section : O->sections()) {
3287 StringRef SectName;
3288 Section.getName(SectName);
3289 DataRefImpl Ref = Section.getRawDataRefImpl();
3290 StringRef SegName = O->getSectionFinalSegmentName(Ref);
3291 if (SegName == segname && SectName == sectname)
3292 return Section;
3293 }
3294 return SectionRef();
3295}
3296
3297static void
3298walk_pointer_list_64(const char *listname, const SectionRef S,
3299 MachOObjectFile *O, struct DisassembleInfo *info,
3300 void (*func)(uint64_t, struct DisassembleInfo *info)) {
3301 if (S == SectionRef())
3302 return;
3303
3304 StringRef SectName;
3305 S.getName(SectName);
3306 DataRefImpl Ref = S.getRawDataRefImpl();
3307 StringRef SegName = O->getSectionFinalSegmentName(Ref);
3308 outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
3309
3310 StringRef BytesStr;
3311 S.getContents(BytesStr);
3312 const char *Contents = reinterpret_cast<const char *>(BytesStr.data());
3313
3314 for (uint32_t i = 0; i < S.getSize(); i += sizeof(uint64_t)) {
3315 uint32_t left = S.getSize() - i;
3316 uint32_t size = left < sizeof(uint64_t) ? left : sizeof(uint64_t);
3317 uint64_t p = 0;
3318 memcpy(&p, Contents + i, size);
3319 if (i + sizeof(uint64_t) > S.getSize())
3320 outs() << listname << " list pointer extends past end of (" << SegName
3321 << "," << SectName << ") section\n";
3322 outs() << format("%016" PRIx64"l" "x", S.getAddress() + i) << " ";
3323
3324 if (O->isLittleEndian() != sys::IsLittleEndianHost)
3325 sys::swapByteOrder(p);
3326
3327 uint64_t n_value = 0;
3328 const char *name = get_symbol_64(i, S, info, n_value, p);
3329 if (name == nullptr)
3330 name = get_dyld_bind_info_symbolname(S.getAddress() + i, info);
3331
3332 if (n_value != 0) {
3333 outs() << format("0x%" PRIx64"l" "x", n_value);
3334 if (p != 0)
3335 outs() << " + " << format("0x%" PRIx64"l" "x", p);
3336 } else
3337 outs() << format("0x%" PRIx64"l" "x", p);
3338 if (name != nullptr)
3339 outs() << " " << name;
3340 outs() << "\n";
3341
3342 p += n_value;
3343 if (func)
3344 func(p, info);
3345 }
3346}
3347
3348static void
3349walk_pointer_list_32(const char *listname, const SectionRef S,
3350 MachOObjectFile *O, struct DisassembleInfo *info,
3351 void (*func)(uint32_t, struct DisassembleInfo *info)) {
3352 if (S == SectionRef())
3353 return;
3354
3355 StringRef SectName;
3356 S.getName(SectName);
3357 DataRefImpl Ref = S.getRawDataRefImpl();
3358 StringRef SegName = O->getSectionFinalSegmentName(Ref);
3359 outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
3360
3361 StringRef BytesStr;
3362 S.getContents(BytesStr);
3363 const char *Contents = reinterpret_cast<const char *>(BytesStr.data());
3364
3365 for (uint32_t i = 0; i < S.getSize(); i += sizeof(uint32_t)) {
3366 uint32_t left = S.getSize() - i;
3367 uint32_t size = left < sizeof(uint32_t) ? left : sizeof(uint32_t);
3368 uint32_t p = 0;
3369 memcpy(&p, Contents + i, size);
3370 if (i + sizeof(uint32_t) > S.getSize())
3371 outs() << listname << " list pointer extends past end of (" << SegName
3372 << "," << SectName << ") section\n";
3373 uint32_t Address = S.getAddress() + i;
3374 outs() << format("%08" PRIx32"x", Address) << " ";
3375
3376 if (O->isLittleEndian() != sys::IsLittleEndianHost)
3377 sys::swapByteOrder(p);
3378 outs() << format("0x%" PRIx32"x", p);
3379
3380 const char *name = get_symbol_32(i, S, info, p);
3381 if (name != nullptr)
3382 outs() << " " << name;
3383 outs() << "\n";
3384
3385 if (func)
3386 func(p, info);
3387 }
3388}
3389
3390static void print_layout_map(const char *layout_map, uint32_t left) {
3391 if (layout_map == nullptr)
3392 return;
3393 outs() << " layout map: ";
3394 do {
3395 outs() << format("0x%02" PRIx32"x", (*layout_map) & 0xff) << " ";
3396 left--;
3397 layout_map++;
3398 } while (*layout_map != '\0' && left != 0);
3399 outs() << "\n";
3400}
3401
3402static void print_layout_map64(uint64_t p, struct DisassembleInfo *info) {
3403 uint32_t offset, left;
3404 SectionRef S;
3405 const char *layout_map;
3406
3407 if (p == 0)
3408 return;
3409 layout_map = get_pointer_64(p, offset, left, S, info);
3410 print_layout_map(layout_map, left);
3411}
3412
3413static void print_layout_map32(uint32_t p, struct DisassembleInfo *info) {
3414 uint32_t offset, left;
3415 SectionRef S;
3416 const char *layout_map;
3417
3418 if (p == 0)
3419 return;
3420 layout_map = get_pointer_32(p, offset, left, S, info);
3421 print_layout_map(layout_map, left);
3422}
3423
3424static void print_method_list64_t(uint64_t p, struct DisassembleInfo *info,
3425 const char *indent) {
3426 struct method_list64_t ml;
3427 struct method64_t m;
3428 const char *r;
3429 uint32_t offset, xoffset, left, i;
3430 SectionRef S, xS;
3431 const char *name, *sym_name;
3432 uint64_t n_value;
3433
3434 r = get_pointer_64(p, offset, left, S, info);
3435 if (r == nullptr)
3436 return;
3437 memset(&ml, '\0', sizeof(struct method_list64_t));
3438 if (left < sizeof(struct method_list64_t)) {
3439 memcpy(&ml, r, left);
3440 outs() << " (method_list_t entends past the end of the section)\n";
3441 } else
3442 memcpy(&ml, r, sizeof(struct method_list64_t));
3443 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3444 swapStruct(ml);
3445 outs() << indent << "\t\t entsize " << ml.entsize << "\n";
3446 outs() << indent << "\t\t count " << ml.count << "\n";
3447
3448 p += sizeof(struct method_list64_t);
3449 offset += sizeof(struct method_list64_t);
3450 for (i = 0; i < ml.count; i++) {
3451 r = get_pointer_64(p, offset, left, S, info);
3452 if (r == nullptr)
3453 return;
3454 memset(&m, '\0', sizeof(struct method64_t));
3455 if (left < sizeof(struct method64_t)) {
3456 memcpy(&m, r, left);
3457 outs() << indent << " (method_t extends past the end of the section)\n";
3458 } else
3459 memcpy(&m, r, sizeof(struct method64_t));
3460 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3461 swapStruct(m);
3462
3463 outs() << indent << "\t\t name ";
3464 sym_name = get_symbol_64(offset + offsetof(struct method64_t, name)__builtin_offsetof(struct method64_t, name), S,
3465 info, n_value, m.name);
3466 if (n_value != 0) {
3467 if (info->verbose && sym_name != nullptr)
3468 outs() << sym_name;
3469 else
3470 outs() << format("0x%" PRIx64"l" "x", n_value);
3471 if (m.name != 0)
3472 outs() << " + " << format("0x%" PRIx64"l" "x", m.name);
3473 } else
3474 outs() << format("0x%" PRIx64"l" "x", m.name);
3475 name = get_pointer_64(m.name + n_value, xoffset, left, xS, info);
3476 if (name != nullptr)
3477 outs() << format(" %.*s", left, name);
3478 outs() << "\n";
3479
3480 outs() << indent << "\t\t types ";
3481 sym_name = get_symbol_64(offset + offsetof(struct method64_t, types)__builtin_offsetof(struct method64_t, types), S,
3482 info, n_value, m.types);
3483 if (n_value != 0) {
3484 if (info->verbose && sym_name != nullptr)
3485 outs() << sym_name;
3486 else
3487 outs() << format("0x%" PRIx64"l" "x", n_value);
3488 if (m.types != 0)
3489 outs() << " + " << format("0x%" PRIx64"l" "x", m.types);
3490 } else
3491 outs() << format("0x%" PRIx64"l" "x", m.types);
3492 name = get_pointer_64(m.types + n_value, xoffset, left, xS, info);
3493 if (name != nullptr)
3494 outs() << format(" %.*s", left, name);
3495 outs() << "\n";
3496
3497 outs() << indent << "\t\t imp ";
3498 name = get_symbol_64(offset + offsetof(struct method64_t, imp)__builtin_offsetof(struct method64_t, imp), S, info,
3499 n_value, m.imp);
3500 if (info->verbose && name == nullptr) {
3501 if (n_value != 0) {
3502 outs() << format("0x%" PRIx64"l" "x", n_value) << " ";
3503 if (m.imp != 0)
3504 outs() << "+ " << format("0x%" PRIx64"l" "x", m.imp) << " ";
3505 } else
3506 outs() << format("0x%" PRIx64"l" "x", m.imp) << " ";
3507 }
3508 if (name != nullptr)
3509 outs() << name;
3510 outs() << "\n";
3511
3512 p += sizeof(struct method64_t);
3513 offset += sizeof(struct method64_t);
3514 }
3515}
3516
3517static void print_method_list32_t(uint64_t p, struct DisassembleInfo *info,
3518 const char *indent) {
3519 struct method_list32_t ml;
3520 struct method32_t m;
3521 const char *r, *name;
3522 uint32_t offset, xoffset, left, i;
3523 SectionRef S, xS;
3524
3525 r = get_pointer_32(p, offset, left, S, info);
3526 if (r == nullptr)
3527 return;
3528 memset(&ml, '\0', sizeof(struct method_list32_t));
3529 if (left < sizeof(struct method_list32_t)) {
3530 memcpy(&ml, r, left);
3531 outs() << " (method_list_t entends past the end of the section)\n";
3532 } else
3533 memcpy(&ml, r, sizeof(struct method_list32_t));
3534 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3535 swapStruct(ml);
3536 outs() << indent << "\t\t entsize " << ml.entsize << "\n";
3537 outs() << indent << "\t\t count " << ml.count << "\n";
3538
3539 p += sizeof(struct method_list32_t);
3540 offset += sizeof(struct method_list32_t);
3541 for (i = 0; i < ml.count; i++) {
3542 r = get_pointer_32(p, offset, left, S, info);
3543 if (r == nullptr)
3544 return;
3545 memset(&m, '\0', sizeof(struct method32_t));
3546 if (left < sizeof(struct method32_t)) {
3547 memcpy(&ml, r, left);
3548 outs() << indent << " (method_t entends past the end of the section)\n";
3549 } else
3550 memcpy(&m, r, sizeof(struct method32_t));
3551 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3552 swapStruct(m);
3553
3554 outs() << indent << "\t\t name " << format("0x%" PRIx32"x", m.name);
3555 name = get_pointer_32(m.name, xoffset, left, xS, info);
3556 if (name != nullptr)
3557 outs() << format(" %.*s", left, name);
3558 outs() << "\n";
3559
3560 outs() << indent << "\t\t types " << format("0x%" PRIx32"x", m.types);
3561 name = get_pointer_32(m.types, xoffset, left, xS, info);
3562 if (name != nullptr)
3563 outs() << format(" %.*s", left, name);
3564 outs() << "\n";
3565
3566 outs() << indent << "\t\t imp " << format("0x%" PRIx32"x", m.imp);
3567 name = get_symbol_32(offset + offsetof(struct method32_t, imp)__builtin_offsetof(struct method32_t, imp), S, info,
3568 m.imp);
3569 if (name != nullptr)
3570 outs() << " " << name;
3571 outs() << "\n";
3572
3573 p += sizeof(struct method32_t);
3574 offset += sizeof(struct method32_t);
3575 }
3576}
3577
3578static bool print_method_list(uint32_t p, struct DisassembleInfo *info) {
3579 uint32_t offset, left, xleft;
3580 SectionRef S;
3581 struct objc_method_list_t method_list;
3582 struct objc_method_t method;
3583 const char *r, *methods, *name, *SymbolName;
3584 int32_t i;
3585
3586 r = get_pointer_32(p, offset, left, S, info, true);
3587 if (r == nullptr)
3588 return true;
3589
3590 outs() << "\n";
3591 if (left > sizeof(struct objc_method_list_t)) {
3592 memcpy(&method_list, r, sizeof(struct objc_method_list_t));
3593 } else {
3594 outs() << "\t\t objc_method_list extends past end of the section\n";
3595 memset(&method_list, '\0', sizeof(struct objc_method_list_t));
3596 memcpy(&method_list, r, left);
3597 }
3598 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3599 swapStruct(method_list);
3600
3601 outs() << "\t\t obsolete "
3602 << format("0x%08" PRIx32"x", method_list.obsolete) << "\n";
3603 outs() << "\t\t method_count " << method_list.method_count << "\n";
3604
3605 methods = r + sizeof(struct objc_method_list_t);
3606 for (i = 0; i < method_list.method_count; i++) {
3607 if ((i + 1) * sizeof(struct objc_method_t) > left) {
3608 outs() << "\t\t remaining method's extend past the of the section\n";
3609 break;
3610 }
3611 memcpy(&method, methods + i * sizeof(struct objc_method_t),
3612 sizeof(struct objc_method_t));
3613 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3614 swapStruct(method);
3615
3616 outs() << "\t\t method_name "
3617 << format("0x%08" PRIx32"x", method.method_name);
3618 if (info->verbose) {
3619 name = get_pointer_32(method.method_name, offset, xleft, S, info, true);
3620 if (name != nullptr)
3621 outs() << format(" %.*s", xleft, name);
3622 else
3623 outs() << " (not in an __OBJC section)";
3624 }
3625 outs() << "\n";
3626
3627 outs() << "\t\t method_types "
3628 << format("0x%08" PRIx32"x", method.method_types);
3629 if (info->verbose) {
3630 name = get_pointer_32(method.method_types, offset, xleft, S, info, true);
3631 if (name != nullptr)
3632 outs() << format(" %.*s", xleft, name);
3633 else
3634 outs() << " (not in an __OBJC section)";
3635 }
3636 outs() << "\n";
3637
3638 outs() << "\t\t method_imp "
3639 << format("0x%08" PRIx32"x", method.method_imp) << " ";
3640 if (info->verbose) {
3641 SymbolName = GuessSymbolName(method.method_imp, info->AddrMap);
3642 if (SymbolName != nullptr)
3643 outs() << SymbolName;
3644 }
3645 outs() << "\n";
3646 }
3647 return false;
3648}
3649
3650static void print_protocol_list64_t(uint64_t p, struct DisassembleInfo *info) {
3651 struct protocol_list64_t pl;
3652 uint64_t q, n_value;
3653 struct protocol64_t pc;
3654 const char *r;
3655 uint32_t offset, xoffset, left, i;
3656 SectionRef S, xS;
3657 const char *name, *sym_name;
3658
3659 r = get_pointer_64(p, offset, left, S, info);
3660 if (r == nullptr)
3661 return;
3662 memset(&pl, '\0', sizeof(struct protocol_list64_t));
3663 if (left < sizeof(struct protocol_list64_t)) {
3664 memcpy(&pl, r, left);
3665 outs() << " (protocol_list_t entends past the end of the section)\n";
3666 } else
3667 memcpy(&pl, r, sizeof(struct protocol_list64_t));
3668 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3669 swapStruct(pl);
3670 outs() << " count " << pl.count << "\n";
3671
3672 p += sizeof(struct protocol_list64_t);
3673 offset += sizeof(struct protocol_list64_t);
3674 for (i = 0; i < pl.count; i++) {
3675 r = get_pointer_64(p, offset, left, S, info);
3676 if (r == nullptr)
3677 return;
3678 q = 0;
3679 if (left < sizeof(uint64_t)) {
3680 memcpy(&q, r, left);
3681 outs() << " (protocol_t * entends past the end of the section)\n";
3682 } else
3683 memcpy(&q, r, sizeof(uint64_t));
3684 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3685 sys::swapByteOrder(q);
3686
3687 outs() << "\t\t list[" << i << "] ";
3688 sym_name = get_symbol_64(offset, S, info, n_value, q);
3689 if (n_value != 0) {
3690 if (info->verbose && sym_name != nullptr)
3691 outs() << sym_name;
3692 else
3693 outs() << format("0x%" PRIx64"l" "x", n_value);
3694 if (q != 0)
3695 outs() << " + " << format("0x%" PRIx64"l" "x", q);
3696 } else
3697 outs() << format("0x%" PRIx64"l" "x", q);
3698 outs() << " (struct protocol_t *)\n";
3699
3700 r = get_pointer_64(q + n_value, offset, left, S, info);
3701 if (r == nullptr)
3702 return;
3703 memset(&pc, '\0', sizeof(struct protocol64_t));
3704 if (left < sizeof(struct protocol64_t)) {
3705 memcpy(&pc, r, left);
3706 outs() << " (protocol_t entends past the end of the section)\n";
3707 } else
3708 memcpy(&pc, r, sizeof(struct protocol64_t));
3709 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3710 swapStruct(pc);
3711
3712 outs() << "\t\t\t isa " << format("0x%" PRIx64"l" "x", pc.isa) << "\n";
3713
3714 outs() << "\t\t\t name ";
3715 sym_name = get_symbol_64(offset + offsetof(struct protocol64_t, name)__builtin_offsetof(struct protocol64_t, name), S,
3716 info, n_value, pc.name);
3717 if (n_value != 0) {
3718 if (info->verbose && sym_name != nullptr)
3719 outs() << sym_name;
3720 else
3721 outs() << format("0x%" PRIx64"l" "x", n_value);
3722 if (pc.name != 0)
3723 outs() << " + " << format("0x%" PRIx64"l" "x", pc.name);
3724 } else
3725 outs() << format("0x%" PRIx64"l" "x", pc.name);
3726 name = get_pointer_64(pc.name + n_value, xoffset, left, xS, info);
3727 if (name != nullptr)
3728 outs() << format(" %.*s", left, name);
3729 outs() << "\n";
3730
3731 outs() << "\t\t\tprotocols " << format("0x%" PRIx64"l" "x", pc.protocols) << "\n";
3732
3733 outs() << "\t\t instanceMethods ";
3734 sym_name =
3735 get_symbol_64(offset + offsetof(struct protocol64_t, instanceMethods)__builtin_offsetof(struct protocol64_t, instanceMethods),
3736 S, info, n_value, pc.instanceMethods);
3737 if (n_value != 0) {
3738 if (info->verbose && sym_name != nullptr)
3739 outs() << sym_name;
3740 else
3741 outs() << format("0x%" PRIx64"l" "x", n_value);
3742 if (pc.instanceMethods != 0)
3743 outs() << " + " << format("0x%" PRIx64"l" "x", pc.instanceMethods);
3744 } else
3745 outs() << format("0x%" PRIx64"l" "x", pc.instanceMethods);
3746 outs() << " (struct method_list_t *)\n";
3747 if (pc.instanceMethods + n_value != 0)
3748 print_method_list64_t(pc.instanceMethods + n_value, info, "\t");
3749
3750 outs() << "\t\t classMethods ";
3751 sym_name =
3752 get_symbol_64(offset + offsetof(struct protocol64_t, classMethods)__builtin_offsetof(struct protocol64_t, classMethods), S,
3753 info, n_value, pc.classMethods);
3754 if (n_value != 0) {
3755 if (info->verbose && sym_name != nullptr)
3756 outs() << sym_name;
3757 else
3758 outs() << format("0x%" PRIx64"l" "x", n_value);
3759 if (pc.classMethods != 0)
3760 outs() << " + " << format("0x%" PRIx64"l" "x", pc.classMethods);
3761 } else
3762 outs() << format("0x%" PRIx64"l" "x", pc.classMethods);
3763 outs() << " (struct method_list_t *)\n";
3764 if (pc.classMethods + n_value != 0)
3765 print_method_list64_t(pc.classMethods + n_value, info, "\t");
3766
3767 outs() << "\t optionalInstanceMethods "
3768 << format("0x%" PRIx64"l" "x", pc.optionalInstanceMethods) << "\n";
3769 outs() << "\t optionalClassMethods "
3770 << format("0x%" PRIx64"l" "x", pc.optionalClassMethods) << "\n";
3771 outs() << "\t instanceProperties "
3772 << format("0x%" PRIx64"l" "x", pc.instanceProperties) << "\n";
3773
3774 p += sizeof(uint64_t);
3775 offset += sizeof(uint64_t);
3776 }
3777}
3778
3779static void print_protocol_list32_t(uint32_t p, struct DisassembleInfo *info) {
3780 struct protocol_list32_t pl;
3781 uint32_t q;
3782 struct protocol32_t pc;
3783 const char *r;
3784 uint32_t offset, xoffset, left, i;
3785 SectionRef S, xS;
3786 const char *name;
3787
3788 r = get_pointer_32(p, offset, left, S, info);
3789 if (r == nullptr)
3790 return;
3791 memset(&pl, '\0', sizeof(struct protocol_list32_t));
3792 if (left < sizeof(struct protocol_list32_t)) {
3793 memcpy(&pl, r, left);
3794 outs() << " (protocol_list_t entends past the end of the section)\n";
3795 } else
3796 memcpy(&pl, r, sizeof(struct protocol_list32_t));
3797 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3798 swapStruct(pl);
3799 outs() << " count " << pl.count << "\n";
3800
3801 p += sizeof(struct protocol_list32_t);
3802 offset += sizeof(struct protocol_list32_t);
3803 for (i = 0; i < pl.count; i++) {
3804 r = get_pointer_32(p, offset, left, S, info);
3805 if (r == nullptr)
3806 return;
3807 q = 0;
3808 if (left < sizeof(uint32_t)) {
3809 memcpy(&q, r, left);
3810 outs() << " (protocol_t * entends past the end of the section)\n";
3811 } else
3812 memcpy(&q, r, sizeof(uint32_t));
3813 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3814 sys::swapByteOrder(q);
3815 outs() << "\t\t list[" << i << "] " << format("0x%" PRIx32"x", q)
3816 << " (struct protocol_t *)\n";
3817 r = get_pointer_32(q, offset, left, S, info);
3818 if (r == nullptr)
3819 return;
3820 memset(&pc, '\0', sizeof(struct protocol32_t));
3821 if (left < sizeof(struct protocol32_t)) {
3822 memcpy(&pc, r, left);
3823 outs() << " (protocol_t entends past the end of the section)\n";
3824 } else
3825 memcpy(&pc, r, sizeof(struct protocol32_t));
3826 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3827 swapStruct(pc);
3828 outs() << "\t\t\t isa " << format("0x%" PRIx32"x", pc.isa) << "\n";
3829 outs() << "\t\t\t name " << format("0x%" PRIx32"x", pc.name);
3830 name = get_pointer_32(pc.name, xoffset, left, xS, info);
3831 if (name != nullptr)
3832 outs() << format(" %.*s", left, name);
3833 outs() << "\n";
3834 outs() << "\t\t\tprotocols " << format("0x%" PRIx32"x", pc.protocols) << "\n";
3835 outs() << "\t\t instanceMethods "
3836 << format("0x%" PRIx32"x", pc.instanceMethods)
3837 << " (struct method_list_t *)\n";
3838 if (pc.instanceMethods != 0)
3839 print_method_list32_t(pc.instanceMethods, info, "\t");
3840 outs() << "\t\t classMethods " << format("0x%" PRIx32"x", pc.classMethods)
3841 << " (struct method_list_t *)\n";
3842 if (pc.classMethods != 0)
3843 print_method_list32_t(pc.classMethods, info, "\t");
3844 outs() << "\t optionalInstanceMethods "
3845 << format("0x%" PRIx32"x", pc.optionalInstanceMethods) << "\n";
3846 outs() << "\t optionalClassMethods "
3847 << format("0x%" PRIx32"x", pc.optionalClassMethods) << "\n";
3848 outs() << "\t instanceProperties "
3849 << format("0x%" PRIx32"x", pc.instanceProperties) << "\n";
3850 p += sizeof(uint32_t);
3851 offset += sizeof(uint32_t);
3852 }
3853}
3854
3855static void print_indent(uint32_t indent) {
3856 for (uint32_t i = 0; i < indent;) {
3857 if (indent - i >= 8) {
3858 outs() << "\t";
3859 i += 8;
3860 } else {
3861 for (uint32_t j = i; j < indent; j++)
3862 outs() << " ";
3863 return;
3864 }
3865 }
3866}
3867
3868static bool print_method_description_list(uint32_t p, uint32_t indent,
3869 struct DisassembleInfo *info) {
3870 uint32_t offset, left, xleft;
3871 SectionRef S;
3872 struct objc_method_description_list_t mdl;
3873 struct objc_method_description_t md;
3874 const char *r, *list, *name;
3875 int32_t i;
3876
3877 r = get_pointer_32(p, offset, left, S, info, true);
3878 if (r == nullptr)
3879 return true;
3880
3881 outs() << "\n";
3882 if (left > sizeof(struct objc_method_description_list_t)) {
3883 memcpy(&mdl, r, sizeof(struct objc_method_description_list_t));
3884 } else {
3885 print_indent(indent);
3886 outs() << " objc_method_description_list extends past end of the section\n";
3887 memset(&mdl, '\0', sizeof(struct objc_method_description_list_t));
3888 memcpy(&mdl, r, left);
3889 }
3890 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3891 swapStruct(mdl);
3892
3893 print_indent(indent);
3894 outs() << " count " << mdl.count << "\n";
3895
3896 list = r + sizeof(struct objc_method_description_list_t);
3897 for (i = 0; i < mdl.count; i++) {
3898 if ((i + 1) * sizeof(struct objc_method_description_t) > left) {
3899 print_indent(indent);
3900 outs() << " remaining list entries extend past the of the section\n";
3901 break;
3902 }
3903 print_indent(indent);
3904 outs() << " list[" << i << "]\n";
3905 memcpy(&md, list + i * sizeof(struct objc_method_description_t),
3906 sizeof(struct objc_method_description_t));
3907 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3908 swapStruct(md);
3909
3910 print_indent(indent);
3911 outs() << " name " << format("0x%08" PRIx32"x", md.name);
3912 if (info->verbose) {
3913 name = get_pointer_32(md.name, offset, xleft, S, info, true);
3914 if (name != nullptr)
3915 outs() << format(" %.*s", xleft, name);
3916 else
3917 outs() << " (not in an __OBJC section)";
3918 }
3919 outs() << "\n";
3920
3921 print_indent(indent);
3922 outs() << " types " << format("0x%08" PRIx32"x", md.types);
3923 if (info->verbose) {
3924 name = get_pointer_32(md.types, offset, xleft, S, info, true);
3925 if (name != nullptr)
3926 outs() << format(" %.*s", xleft, name);
3927 else
3928 outs() << " (not in an __OBJC section)";
3929 }
3930 outs() << "\n";
3931 }
3932 return false;
3933}
3934
3935static bool print_protocol_list(uint32_t p, uint32_t indent,
3936 struct DisassembleInfo *info);
3937
3938static bool print_protocol(uint32_t p, uint32_t indent,
3939 struct DisassembleInfo *info) {
3940 uint32_t offset, left;
3941 SectionRef S;
3942 struct objc_protocol_t protocol;
3943 const char *r, *name;
3944
3945 r = get_pointer_32(p, offset, left, S, info, true);
3946 if (r == nullptr)
3947 return true;
3948
3949 outs() << "\n";
3950 if (left >= sizeof(struct objc_protocol_t)) {
3951 memcpy(&protocol, r, sizeof(struct objc_protocol_t));
3952 } else {
3953 print_indent(indent);
3954 outs() << " Protocol extends past end of the section\n";
3955 memset(&protocol, '\0', sizeof(struct objc_protocol_t));
3956 memcpy(&protocol, r, left);
3957 }
3958 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3959 swapStruct(protocol);
3960
3961 print_indent(indent);
3962 outs() << " isa " << format("0x%08" PRIx32"x", protocol.isa)
3963 << "\n";
3964
3965 print_indent(indent);
3966 outs() << " protocol_name "
3967 << format("0x%08" PRIx32"x", protocol.protocol_name);
3968 if (info->verbose) {
3969 name = get_pointer_32(protocol.protocol_name, offset, left, S, info, true);
3970 if (name != nullptr)
3971 outs() << format(" %.*s", left, name);
3972 else
3973 outs() << " (not in an __OBJC section)";
3974 }
3975 outs() << "\n";
3976
3977 print_indent(indent);
3978 outs() << " protocol_list "
3979 << format("0x%08" PRIx32"x", protocol.protocol_list);
3980 if (print_protocol_list(protocol.protocol_list, indent + 4, info))
3981 outs() << " (not in an __OBJC section)\n";
3982
3983 print_indent(indent);
3984 outs() << " instance_methods "
3985 << format("0x%08" PRIx32"x", protocol.instance_methods);
3986 if (print_method_description_list(protocol.instance_methods, indent, info))
3987 outs() << " (not in an __OBJC section)\n";
3988
3989 print_indent(indent);
3990 outs() << " class_methods "
3991 << format("0x%08" PRIx32"x", protocol.class_methods);
3992 if (print_method_description_list(protocol.class_methods, indent, info))
3993 outs() << " (not in an __OBJC section)\n";
3994
3995 return false;
3996}
3997
3998static bool print_protocol_list(uint32_t p, uint32_t indent,
3999 struct DisassembleInfo *info) {
4000 uint32_t offset, left, l;
4001 SectionRef S;
4002 struct objc_protocol_list_t protocol_list;
4003 const char *r, *list;
4004 int32_t i;
4005
4006 r = get_pointer_32(p, offset, left, S, info, true);
4007 if (r == nullptr)
4008 return true;
4009
4010 outs() << "\n";
4011 if (left > sizeof(struct objc_protocol_list_t)) {
4012 memcpy(&protocol_list, r, sizeof(struct objc_protocol_list_t));
4013 } else {
4014 outs() << "\t\t objc_protocol_list_t extends past end of the section\n";
4015 memset(&protocol_list, '\0', sizeof(struct objc_protocol_list_t));
4016 memcpy(&protocol_list, r, left);
4017 }
4018 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4019 swapStruct(protocol_list);
4020
4021 print_indent(indent);
4022 outs() << " next " << format("0x%08" PRIx32"x", protocol_list.next)
4023 << "\n";
4024 print_indent(indent);
4025 outs() << " count " << protocol_list.count << "\n";
4026
4027 list = r + sizeof(struct objc_protocol_list_t);
4028 for (i = 0; i < protocol_list.count; i++) {
4029 if ((i + 1) * sizeof(uint32_t) > left) {
4030 outs() << "\t\t remaining list entries extend past the of the section\n";
4031 break;
4032 }
4033 memcpy(&l, list + i * sizeof(uint32_t), sizeof(uint32_t));
4034 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4035 sys::swapByteOrder(l);
4036
4037 print_indent(indent);
4038 outs() << " list[" << i << "] " << format("0x%08" PRIx32"x", l);
4039 if (print_protocol(l, indent, info))
4040 outs() << "(not in an __OBJC section)\n";
4041 }
4042 return false;
4043}
4044
4045static void print_ivar_list64_t(uint64_t p, struct DisassembleInfo *info) {
4046 struct ivar_list64_t il;
4047 struct ivar64_t i;
4048 const char *r;
4049 uint32_t offset, xoffset, left, j;
4050 SectionRef S, xS;
4051 const char *name, *sym_name, *ivar_offset_p;
4052 uint64_t ivar_offset, n_value;
4053
4054 r = get_pointer_64(p, offset, left, S, info);
4055 if (r == nullptr)
4056 return;
4057 memset(&il, '\0', sizeof(struct ivar_list64_t));
4058 if (left < sizeof(struct ivar_list64_t)) {
4059 memcpy(&il, r, left);
4060 outs() << " (ivar_list_t entends past the end of the section)\n";
4061 } else
4062 memcpy(&il, r, sizeof(struct ivar_list64_t));
4063 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4064 swapStruct(il);
4065 outs() << " entsize " << il.entsize << "\n";
4066 outs() << " count " << il.count << "\n";
4067
4068 p += sizeof(struct ivar_list64_t);
4069 offset += sizeof(struct ivar_list64_t);
4070 for (j = 0; j < il.count; j++) {
4071 r = get_pointer_64(p, offset, left, S, info);
4072 if (r == nullptr)
4073 return;
4074 memset(&i, '\0', sizeof(struct ivar64_t));
4075 if (left < sizeof(struct ivar64_t)) {
4076 memcpy(&i, r, left);
4077 outs() << " (ivar_t entends past the end of the section)\n";
4078 } else
4079 memcpy(&i, r, sizeof(struct ivar64_t));
4080 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4081 swapStruct(i);
4082
4083 outs() << "\t\t\t offset ";
4084 sym_name = get_symbol_64(offset + offsetof(struct ivar64_t, offset)__builtin_offsetof(struct ivar64_t, offset), S,
4085 info, n_value, i.offset);
4086 if (n_value != 0) {
4087 if (info->verbose && sym_name != nullptr)
4088 outs() << sym_name;
4089 else
4090 outs() << format("0x%" PRIx64"l" "x", n_value);
4091 if (i.offset != 0)
4092 outs() << " + " << format("0x%" PRIx64"l" "x", i.offset);
4093 } else
4094 outs() << format("0x%" PRIx64"l" "x", i.offset);
4095 ivar_offset_p = get_pointer_64(i.offset + n_value, xoffset, left, xS, info);
4096 if (ivar_offset_p != nullptr && left >= sizeof(*ivar_offset_p)) {
4097 memcpy(&ivar_offset, ivar_offset_p, sizeof(ivar_offset));
4098 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4099 sys::swapByteOrder(ivar_offset);
4100 outs() << " " << ivar_offset << "\n";
4101 } else
4102 outs() << "\n";
4103
4104 outs() << "\t\t\t name ";
4105 sym_name = get_symbol_64(offset + offsetof(struct ivar64_t, name)__builtin_offsetof(struct ivar64_t, name), S, info,
4106 n_value, i.name);
4107 if (n_value != 0) {
4108 if (info->verbose && sym_name != nullptr)
4109 outs() << sym_name;
4110 else
4111 outs() << format("0x%" PRIx64"l" "x", n_value);
4112 if (i.name != 0)
4113 outs() << " + " << format("0x%" PRIx64"l" "x", i.name);
4114 } else
4115 outs() << format("0x%" PRIx64"l" "x", i.name);
4116 name = get_pointer_64(i.name + n_value, xoffset, left, xS, info);
4117 if (name != nullptr)
4118 outs() << format(" %.*s", left, name);
4119 outs() << "\n";
4120
4121 outs() << "\t\t\t type ";
4122 sym_name = get_symbol_64(offset + offsetof(struct ivar64_t, type)__builtin_offsetof(struct ivar64_t, type), S, info,
4123 n_value, i.name);
4124 name = get_pointer_64(i.type + n_value, xoffset, left, xS, info);
4125 if (n_value != 0) {
4126 if (info->verbose && sym_name != nullptr)
4127 outs() << sym_name;
4128 else
4129 outs() << format("0x%" PRIx64"l" "x", n_value);
4130 if (i.type != 0)
4131 outs() << " + " << format("0x%" PRIx64"l" "x", i.type);
4132 } else
4133 outs() << format("0x%" PRIx64"l" "x", i.type);
4134 if (name != nullptr)
4135 outs() << format(" %.*s", left, name);
4136 outs() << "\n";
4137
4138 outs() << "\t\t\talignment " << i.alignment << "\n";
4139 outs() << "\t\t\t size " << i.size << "\n";
4140
4141 p += sizeof(struct ivar64_t);
4142 offset += sizeof(struct ivar64_t);
4143 }
4144}
4145
4146static void print_ivar_list32_t(uint32_t p, struct DisassembleInfo *info) {
4147 struct ivar_list32_t il;
4148 struct ivar32_t i;
4149 const char *r;
4150 uint32_t offset, xoffset, left, j;
4151 SectionRef S, xS;
4152 const char *name, *ivar_offset_p;
4153 uint32_t ivar_offset;
4154
4155 r = get_pointer_32(p, offset, left, S, info);
4156 if (r == nullptr)
4157 return;
4158 memset(&il, '\0', sizeof(struct ivar_list32_t));
4159 if (left < sizeof(struct ivar_list32_t)) {
4160 memcpy(&il, r, left);
4161 outs() << " (ivar_list_t entends past the end of the section)\n";
4162 } else
4163 memcpy(&il, r, sizeof(struct ivar_list32_t));
4164 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4165 swapStruct(il);
4166 outs() << " entsize " << il.entsize << "\n";
4167 outs() << " count " << il.count << "\n";
4168
4169 p += sizeof(struct ivar_list32_t);
4170 offset += sizeof(struct ivar_list32_t);
4171 for (j = 0; j < il.count; j++) {
4172 r = get_pointer_32(p, offset, left, S, info);
4173 if (r == nullptr)
4174 return;
4175 memset(&i, '\0', sizeof(struct ivar32_t));
4176 if (left < sizeof(struct ivar32_t)) {
4177 memcpy(&i, r, left);
4178 outs() << " (ivar_t entends past the end of the section)\n";
4179 } else
4180 memcpy(&i, r, sizeof(struct ivar32_t));
4181 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4182 swapStruct(i);
4183
4184 outs() << "\t\t\t offset " << format("0x%" PRIx32"x", i.offset);
4185 ivar_offset_p = get_pointer_32(i.offset, xoffset, left, xS, info);
4186 if (ivar_offset_p != nullptr && left >= sizeof(*ivar_offset_p)) {
4187 memcpy(&ivar_offset, ivar_offset_p, sizeof(ivar_offset));
4188 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4189 sys::swapByteOrder(ivar_offset);
4190 outs() << " " << ivar_offset << "\n";
4191 } else
4192 outs() << "\n";
4193
4194 outs() << "\t\t\t name " << format("0x%" PRIx32"x", i.name);
4195 name = get_pointer_32(i.name, xoffset, left, xS, info);
4196 if (name != nullptr)
4197 outs() << format(" %.*s", left, name);
4198 outs() << "\n";
4199
4200 outs() << "\t\t\t type " << format("0x%" PRIx32"x", i.type);
4201 name = get_pointer_32(i.type, xoffset, left, xS, info);
4202 if (name != nullptr)
4203 outs() << format(" %.*s", left, name);
4204 outs() << "\n";
4205
4206 outs() << "\t\t\talignment " << i.alignment << "\n";
4207 outs() << "\t\t\t size " << i.size << "\n";
4208
4209 p += sizeof(struct ivar32_t);
4210 offset += sizeof(struct ivar32_t);
4211 }
4212}
4213
4214static void print_objc_property_list64(uint64_t p,
4215 struct DisassembleInfo *info) {
4216 struct objc_property_list64 opl;
4217 struct objc_property64 op;
4218 const char *r;
4219 uint32_t offset, xoffset, left, j;
4220 SectionRef S, xS;
4221 const char *name, *sym_name;
4222 uint64_t n_value;
4223
4224 r = get_pointer_64(p, offset, left, S, info);
4225 if (r == nullptr)
4226 return;
4227 memset(&opl, '\0', sizeof(struct objc_property_list64));
4228 if (left < sizeof(struct objc_property_list64)) {
4229 memcpy(&opl, r, left);
4230 outs() << " (objc_property_list entends past the end of the section)\n";
4231 } else
4232 memcpy(&opl, r, sizeof(struct objc_property_list64));
4233 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4234 swapStruct(opl);
4235 outs() << " entsize " << opl.entsize << "\n";
4236 outs() << " count " << opl.count << "\n";
4237
4238 p += sizeof(struct objc_property_list64);
4239 offset += sizeof(struct objc_property_list64);
4240 for (j = 0; j < opl.count; j++) {
4241 r = get_pointer_64(p, offset, left, S, info);
4242 if (r == nullptr)
4243 return;
4244 memset(&op, '\0', sizeof(struct objc_property64));
4245 if (left < sizeof(struct objc_property64)) {
4246 memcpy(&op, r, left);
4247 outs() << " (objc_property entends past the end of the section)\n";
4248 } else
4249 memcpy(&op, r, sizeof(struct objc_property64));
4250 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4251 swapStruct(op);
4252
4253 outs() << "\t\t\t name ";
4254 sym_name = get_symbol_64(offset + offsetof(struct objc_property64, name)__builtin_offsetof(struct objc_property64, name), S,
4255 info, n_value, op.name);
4256 if (n_value != 0) {
4257 if (info->verbose && sym_name != nullptr)
4258 outs() << sym_name;
4259 else
4260 outs() << format("0x%" PRIx64"l" "x", n_value);
4261 if (op.name != 0)
4262 outs() << " + " << format("0x%" PRIx64"l" "x", op.name);
4263 } else
4264 outs() << format("0x%" PRIx64"l" "x", op.name);
4265 name = get_pointer_64(op.name + n_value, xoffset, left, xS, info);
4266 if (name != nullptr)
4267 outs() << format(" %.*s", left, name);
4268 outs() << "\n";
4269
4270 outs() << "\t\t\tattributes ";
4271 sym_name =
4272 get_symbol_64(offset + offsetof(struct objc_property64, attributes)__builtin_offsetof(struct objc_property64, attributes), S,
4273 info, n_value, op.attributes);
4274 if (n_value != 0) {
4275 if (info->verbose && sym_name != nullptr)
4276 outs() << sym_name;
4277 else
4278 outs() << format("0x%" PRIx64"l" "x", n_value);
4279 if (op.attributes != 0)
4280 outs() << " + " << format("0x%" PRIx64"l" "x", op.attributes);
4281 } else
4282 outs() << format("0x%" PRIx64"l" "x", op.attributes);
4283 name = get_pointer_64(op.attributes + n_value, xoffset, left, xS, info);
4284 if (name != nullptr)
4285 outs() << format(" %.*s", left, name);
4286 outs() << "\n";
4287
4288 p += sizeof(struct objc_property64);
4289 offset += sizeof(struct objc_property64);
4290 }
4291}
4292
4293static void print_objc_property_list32(uint32_t p,
4294 struct DisassembleInfo *info) {
4295 struct objc_property_list32 opl;
4296 struct objc_property32 op;
4297 const char *r;
4298 uint32_t offset, xoffset, left, j;
4299 SectionRef S, xS;
4300 const char *name;
4301
4302 r = get_pointer_32(p, offset, left, S, info);
4303 if (r == nullptr)
4304 return;
4305 memset(&opl, '\0', sizeof(struct objc_property_list32));
4306 if (left < sizeof(struct objc_property_list32)) {
4307 memcpy(&opl, r, left);
4308 outs() << " (objc_property_list entends past the end of the section)\n";
4309 } else
4310 memcpy(&opl, r, sizeof(struct objc_property_list32));
4311 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4312 swapStruct(opl);
4313 outs() << " entsize " << opl.entsize << "\n";
4314 outs() << " count " << opl.count << "\n";
4315
4316 p += sizeof(struct objc_property_list32);
4317 offset += sizeof(struct objc_property_list32);
4318 for (j = 0; j < opl.count; j++) {
4319 r = get_pointer_32(p, offset, left, S, info);
4320 if (r == nullptr)
4321 return;
4322 memset(&op, '\0', sizeof(struct objc_property32));
4323 if (left < sizeof(struct objc_property32)) {
4324 memcpy(&op, r, left);
4325 outs() << " (objc_property entends past the end of the section)\n";
4326 } else
4327 memcpy(&op, r, sizeof(struct objc_property32));
4328 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4329 swapStruct(op);
4330
4331 outs() << "\t\t\t name " << format("0x%" PRIx32"x", op.name);
4332 name = get_pointer_32(op.name, xoffset, left, xS, info);
4333 if (name != nullptr)
4334 outs() << format(" %.*s", left, name);
4335 outs() << "\n";
4336
4337 outs() << "\t\t\tattributes " << format("0x%" PRIx32"x", op.attributes);
4338 name = get_pointer_32(op.attributes, xoffset, left, xS, info);
4339 if (name != nullptr)
4340 outs() << format(" %.*s", left, name);
4341 outs() << "\n";
4342
4343 p += sizeof(struct objc_property32);
4344 offset += sizeof(struct objc_property32);
4345 }
4346}
4347
4348static bool print_class_ro64_t(uint64_t p, struct DisassembleInfo *info,
4349 bool &is_meta_class) {
4350 struct class_ro64_t cro;
4351 const char *r;
4352 uint32_t offset, xoffset, left;
4353 SectionRef S, xS;
4354 const char *name, *sym_name;
4355 uint64_t n_value;
4356
4357 r = get_pointer_64(p, offset, left, S, info);
4358 if (r == nullptr || left < sizeof(struct class_ro64_t))
4359 return false;
4360 memcpy(&cro, r, sizeof(struct class_ro64_t));
4361 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4362 swapStruct(cro);
4363 outs() << " flags " << format("0x%" PRIx32"x", cro.flags);
4364 if (cro.flags & RO_META(1 << 0))
4365 outs() << " RO_META";
4366 if (cro.flags & RO_ROOT(1 << 1))
4367 outs() << " RO_ROOT";
4368 if (cro.flags & RO_HAS_CXX_STRUCTORS(1 << 2))
4369 outs() << " RO_HAS_CXX_STRUCTORS";
4370 outs() << "\n";
4371 outs() << " instanceStart " << cro.instanceStart << "\n";
4372 outs() << " instanceSize " << cro.instanceSize << "\n";
4373 outs() << " reserved " << format("0x%" PRIx32"x", cro.reserved)
4374 << "\n";
4375 outs() << " ivarLayout " << format("0x%" PRIx64"l" "x", cro.ivarLayout)
4376 << "\n";
4377 print_layout_map64(cro.ivarLayout, info);
4378
4379 outs() << " name ";
4380 sym_name = get_symbol_64(offset + offsetof(struct class_ro64_t, name)__builtin_offsetof(struct class_ro64_t, name), S,
4381 info, n_value, cro.name);
4382 if (n_value != 0) {
4383 if (info->verbose && sym_name != nullptr)
4384 outs() << sym_name;
4385 else
4386 outs() << format("0x%" PRIx64"l" "x", n_value);
4387 if (cro.name != 0)
4388 outs() << " + " << format("0x%" PRIx64"l" "x", cro.name);
4389 } else
4390 outs() << format("0x%" PRIx64"l" "x", cro.name);
4391 name = get_pointer_64(cro.name + n_value, xoffset, left, xS, info);
4392 if (name != nullptr)
4393 outs() << format(" %.*s", left, name);
4394 outs() << "\n";
4395
4396 outs() << " baseMethods ";
4397 sym_name = get_symbol_64(offset + offsetof(struct class_ro64_t, baseMethods)__builtin_offsetof(struct class_ro64_t, baseMethods),
4398 S, info, n_value, cro.baseMethods);
4399 if (n_value != 0) {
4400 if (info->verbose && sym_name != nullptr)
4401 outs() << sym_name;
4402 else
4403 outs() << format("0x%" PRIx64"l" "x", n_value);
4404 if (cro.baseMethods != 0)
4405 outs() << " + " << format("0x%" PRIx64"l" "x", cro.baseMethods);
4406 } else
4407 outs() << format("0x%" PRIx64"l" "x", cro.baseMethods);
4408 outs() << " (struct method_list_t *)\n";
4409 if (cro.baseMethods + n_value != 0)
4410 print_method_list64_t(cro.baseMethods + n_value, info, "");
4411
4412 outs() << " baseProtocols ";
4413 sym_name =
4414 get_symbol_64(offset + offsetof(struct class_ro64_t, baseProtocols)__builtin_offsetof(struct class_ro64_t, baseProtocols), S,
4415 info, n_value, cro.baseProtocols);
4416 if (n_value != 0) {
4417 if (info->verbose && sym_name != nullptr)
4418 outs() << sym_name;
4419 else
4420 outs() << format("0x%" PRIx64"l" "x", n_value);
4421 if (cro.baseProtocols != 0)
4422 outs() << " + " << format("0x%" PRIx64"l" "x", cro.baseProtocols);
4423 } else
4424 outs() << format("0x%" PRIx64"l" "x", cro.baseProtocols);
4425 outs() << "\n";
4426 if (cro.baseProtocols + n_value != 0)
4427 print_protocol_list64_t(cro.baseProtocols + n_value, info);
4428
4429 outs() << " ivars ";
4430 sym_name = get_symbol_64(offset + offsetof(struct class_ro64_t, ivars)__builtin_offsetof(struct class_ro64_t, ivars), S,
4431 info, n_value, cro.ivars);
4432 if (n_value != 0) {
4433 if (info->verbose && sym_name != nullptr)
4434 outs() << sym_name;
4435 else
4436 outs() << format("0x%" PRIx64"l" "x", n_value);
4437 if (cro.ivars != 0)
4438 outs() << " + " << format("0x%" PRIx64"l" "x", cro.ivars);
4439 } else
4440 outs() << format("0x%" PRIx64"l" "x", cro.ivars);
4441 outs() << "\n";
4442 if (cro.ivars + n_value != 0)
4443 print_ivar_list64_t(cro.ivars + n_value, info);
4444
4445 outs() << " weakIvarLayout ";
4446 sym_name =
4447 get_symbol_64(offset + offsetof(struct class_ro64_t, weakIvarLayout)__builtin_offsetof(struct class_ro64_t, weakIvarLayout), S,
4448 info, n_value, cro.weakIvarLayout);
4449 if (n_value != 0) {
4450 if (info->verbose && sym_name != nullptr)
4451 outs() << sym_name;
4452 else
4453 outs() << format("0x%" PRIx64"l" "x", n_value);
4454 if (cro.weakIvarLayout != 0)
4455 outs() << " + " << format("0x%" PRIx64"l" "x", cro.weakIvarLayout);
4456 } else
4457 outs() << format("0x%" PRIx64"l" "x", cro.weakIvarLayout);
4458 outs() << "\n";
4459 print_layout_map64(cro.weakIvarLayout + n_value, info);
4460
4461 outs() << " baseProperties ";
4462 sym_name =
4463 get_symbol_64(offset + offsetof(struct class_ro64_t, baseProperties)__builtin_offsetof(struct class_ro64_t, baseProperties), S,
4464 info, n_value, cro.baseProperties);
4465 if (n_value != 0) {
4466 if (info->verbose && sym_name != nullptr)
4467 outs() << sym_name;
4468 else
4469 outs() << format("0x%" PRIx64"l" "x", n_value);
4470 if (cro.baseProperties != 0)
4471 outs() << " + " << format("0x%" PRIx64"l" "x", cro.baseProperties);
4472 } else
4473 outs() << format("0x%" PRIx64"l" "x", cro.baseProperties);
4474 outs() << "\n";
4475 if (cro.baseProperties + n_value != 0)
4476 print_objc_property_list64(cro.baseProperties + n_value, info);
4477
4478 is_meta_class = (cro.flags & RO_META(1 << 0)) != 0;
4479 return true;
4480}
4481
4482static bool print_class_ro32_t(uint32_t p, struct DisassembleInfo *info,
4483 bool &is_meta_class) {
4484 struct class_ro32_t cro;
4485 const char *r;
4486 uint32_t offset, xoffset, left;
4487 SectionRef S, xS;
4488 const char *name;
4489
4490 r = get_pointer_32(p, offset, left, S, info);
4491 if (r == nullptr)
4492 return false;
4493 memset(&cro, '\0', sizeof(struct class_ro32_t));
4494 if (left < sizeof(struct class_ro32_t)) {
4495 memcpy(&cro, r, left);
4496 outs() << " (class_ro_t entends past the end of the section)\n";
4497 } else
4498 memcpy(&cro, r, sizeof(struct class_ro32_t));
4499 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4500 swapStruct(cro);
4501 outs() << " flags " << format("0x%" PRIx32"x", cro.flags);
4502 if (cro.flags & RO_META(1 << 0))
4503 outs() << " RO_META";
4504 if (cro.flags & RO_ROOT(1 << 1))
4505 outs() << " RO_ROOT";
4506 if (cro.flags & RO_HAS_CXX_STRUCTORS(1 << 2))
4507 outs() << " RO_HAS_CXX_STRUCTORS";
4508 outs() << "\n";
4509 outs() << " instanceStart " << cro.instanceStart << "\n";
4510 outs() << " instanceSize " << cro.instanceSize << "\n";
4511 outs() << " ivarLayout " << format("0x%" PRIx32"x", cro.ivarLayout)
4512 << "\n";
4513 print_layout_map32(cro.ivarLayout, info);
4514
4515 outs() << " name " << format("0x%" PRIx32"x", cro.name);
4516 name = get_pointer_32(cro.name, xoffset, left, xS, info);
4517 if (name != nullptr)
4518 outs() << format(" %.*s", left, name);
4519 outs() << "\n";
4520
4521 outs() << " baseMethods "
4522 << format("0x%" PRIx32"x", cro.baseMethods)
4523 << " (struct method_list_t *)\n";
4524 if (cro.baseMethods != 0)
4525 print_method_list32_t(cro.baseMethods, info, "");
4526
4527 outs() << " baseProtocols "
4528 << format("0x%" PRIx32"x", cro.baseProtocols) << "\n";
4529 if (cro.baseProtocols != 0)
4530 print_protocol_list32_t(cro.baseProtocols, info);
4531 outs() << " ivars " << format("0x%" PRIx32"x", cro.ivars)
4532 << "\n";
4533 if (cro.ivars != 0)
4534 print_ivar_list32_t(cro.ivars, info);
4535 outs() << " weakIvarLayout "
4536 << format("0x%" PRIx32"x", cro.weakIvarLayout) << "\n";
4537 print_layout_map32(cro.weakIvarLayout, info);
4538 outs() << " baseProperties "
4539 << format("0x%" PRIx32"x", cro.baseProperties) << "\n";
4540 if (cro.baseProperties != 0)
4541 print_objc_property_list32(cro.baseProperties, info);
4542 is_meta_class = (cro.flags & RO_META(1 << 0)) != 0;
4543 return true;
4544}
4545
4546static void print_class64_t(uint64_t p, struct DisassembleInfo *info) {
4547 struct class64_t c;
4548 const char *r;
4549 uint32_t offset, left;
4550 SectionRef S;
4551 const char *name;
4552 uint64_t isa_n_value, n_value;
4553
4554 r = get_pointer_64(p, offset, left, S, info);
4555 if (r == nullptr || left < sizeof(struct class64_t))
4556 return;
4557 memcpy(&c, r, sizeof(struct class64_t));
4558 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4559 swapStruct(c);
4560
4561 outs() << " isa " << format("0x%" PRIx64"l" "x", c.isa);
4562 name = get_symbol_64(offset + offsetof(struct class64_t, isa)__builtin_offsetof(struct class64_t, isa), S, info,
4563 isa_n_value, c.isa);
4564 if (name != nullptr)
4565 outs() << " " << name;
4566 outs() << "\n";
4567
4568 outs() << " superclass " << format("0x%" PRIx64"l" "x", c.superclass);
4569 name = get_symbol_64(offset + offsetof(struct class64_t, superclass)__builtin_offsetof(struct class64_t, superclass), S, info,
4570 n_value, c.superclass);
4571 if (name != nullptr)
4572 outs() << " " << name;
4573 outs() << "\n";
4574
4575 outs() << " cache " << format("0x%" PRIx64"l" "x", c.cache);
4576 name = get_symbol_64(offset + offsetof(struct class64_t, cache)__builtin_offsetof(struct class64_t, cache), S, info,
4577 n_value, c.cache);
4578 if (name != nullptr)
4579 outs() << " " << name;
4580 outs() << "\n";
4581
4582 outs() << " vtable " << format("0x%" PRIx64"l" "x", c.vtable);
4583 name = get_symbol_64(offset + offsetof(struct class64_t, vtable)__builtin_offsetof(struct class64_t, vtable), S, info,
4584 n_value, c.vtable);
4585 if (name != nullptr)
4586 outs() << " " << name;
4587 outs() << "\n";
4588
4589 name = get_symbol_64(offset + offsetof(struct class64_t, data)__builtin_offsetof(struct class64_t, data), S, info,
4590 n_value, c.data);
4591 outs() << " data ";
4592 if (n_value != 0) {
4593 if (info->verbose && name != nullptr)
4594 outs() << name;
4595 else
4596 outs() << format("0x%" PRIx64"l" "x", n_value);
4597 if (c.data != 0)
4598 outs() << " + " << format("0x%" PRIx64"l" "x", c.data);
4599 } else
4600 outs() << format("0x%" PRIx64"l" "x", c.data);
4601 outs() << " (struct class_ro_t *)";
4602
4603 // This is a Swift class if some of the low bits of the pointer are set.
4604 if ((c.data + n_value) & 0x7)
4605 outs() << " Swift class";
4606 outs() << "\n";
4607 bool is_meta_class;
4608 if (!print_class_ro64_t((c.data + n_value) & ~0x7, info, is_meta_class))
4609 return;
4610
4611 if (!is_meta_class &&
4612 c.isa + isa_n_value != p &&
4613 c.isa + isa_n_value != 0 &&
4614 info->depth < 100) {
4615 info->depth++;
4616 outs() << "Meta Class\n";
4617 print_class64_t(c.isa + isa_n_value, info);
4618 }
4619}
4620
4621static void print_class32_t(uint32_t p, struct DisassembleInfo *info) {
4622 struct class32_t c;
4623 const char *r;
4624 uint32_t offset, left;
4625 SectionRef S;
4626 const char *name;
4627
4628 r = get_pointer_32(p, offset, left, S, info);
4629 if (r == nullptr)
4630 return;
4631 memset(&c, '\0', sizeof(struct class32_t));
4632 if (left < sizeof(struct class32_t)) {
4633 memcpy(&c, r, left);
4634 outs() << " (class_t entends past the end of the section)\n";
4635 } else
4636 memcpy(&c, r, sizeof(struct class32_t));
4637 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4638 swapStruct(c);
4639
4640 outs() << " isa " << format("0x%" PRIx32"x", c.isa);
4641 name =
4642 get_symbol_32(offset + offsetof(struct class32_t, isa)__builtin_offsetof(struct class32_t, isa), S, info, c.isa);
4643 if (name != nullptr)
4644 outs() << " " << name;
4645 outs() << "\n";
4646
4647 outs() << " superclass " << format("0x%" PRIx32"x", c.superclass);
4648 name = get_symbol_32(offset + offsetof(struct class32_t, superclass)__builtin_offsetof(struct class32_t, superclass), S, info,
4649 c.superclass);
4650 if (name != nullptr)
4651 outs() << " " << name;
4652 outs() << "\n";
4653
4654 outs() << " cache " << format("0x%" PRIx32"x", c.cache);
4655 name = get_symbol_32(offset + offsetof(struct class32_t, cache)__builtin_offsetof(struct class32_t, cache), S, info,
4656 c.cache);
4657 if (name != nullptr)
4658 outs() << " " << name;
4659 outs() << "\n";
4660
4661 outs() << " vtable " << format("0x%" PRIx32"x", c.vtable);
4662 name = get_symbol_32(offset + offsetof(struct class32_t, vtable)__builtin_offsetof(struct class32_t, vtable), S, info,
4663 c.vtable);
4664 if (name != nullptr)
4665 outs() << " " << name;
4666 outs() << "\n";
4667
4668 name =
4669 get_symbol_32(offset + offsetof(struct class32_t, data)__builtin_offsetof(struct class32_t, data), S, info, c.data);
4670 outs() << " data " << format("0x%" PRIx32"x", c.data)
4671 << " (struct class_ro_t *)";
4672
4673 // This is a Swift class if some of the low bits of the pointer are set.
4674 if (c.data & 0x3)
4675 outs() << " Swift class";
4676 outs() << "\n";
4677 bool is_meta_class;
4678 if (!print_class_ro32_t(c.data & ~0x3, info, is_meta_class))
4679 return;
4680
4681 if (!is_meta_class) {
4682 outs() << "Meta Class\n";
4683 print_class32_t(c.isa, info);
4684 }
4685}
4686
4687static void print_objc_class_t(struct objc_class_t *objc_class,
4688 struct DisassembleInfo *info) {
4689 uint32_t offset, left, xleft;
4690 const char *name, *p, *ivar_list;
4691 SectionRef S;
4692 int32_t i;
4693 struct objc_ivar_list_t objc_ivar_list;
4694 struct objc_ivar_t ivar;
4695
4696 outs() << "\t\t isa " << format("0x%08" PRIx32"x", objc_class->isa);
4697 if (info->verbose && CLS_GETINFO(objc_class, CLS_META)((objc_class)->info & (0x2))) {
4698 name = get_pointer_32(objc_class->isa, offset, left, S, info, true);
4699 if (name != nullptr)
4700 outs() << format(" %.*s", left, name);
4701 else
4702 outs() << " (not in an __OBJC section)";
4703 }
4704 outs() << "\n";
4705
4706 outs() << "\t super_class "
4707 << format("0x%08" PRIx32"x", objc_class->super_class);
4708 if (info->verbose) {
4709 name = get_pointer_32(objc_class->super_class, offset, left, S, info, true);
4710 if (name != nullptr)
4711 outs() << format(" %.*s", left, name);
4712 else
4713 outs() << " (not in an __OBJC section)";
4714 }
4715 outs() << "\n";
4716
4717 outs() << "\t\t name " << format("0x%08" PRIx32"x", objc_class->name);
4718 if (info->verbose) {
4719 name = get_pointer_32(objc_class->name, offset, left, S, info, true);
4720 if (name != nullptr)
4721 outs() << format(" %.*s", left, name);
4722 else
4723 outs() << " (not in an __OBJC section)";
4724 }
4725 outs() << "\n";
4726
4727 outs() << "\t\t version " << format("0x%08" PRIx32"x", objc_class->version)
4728 << "\n";
4729
4730 outs() << "\t\t info " << format("0x%08" PRIx32"x", objc_class->info);
4731 if (info->verbose) {
4732 if (CLS_GETINFO(objc_class, CLS_CLASS)((objc_class)->info & (0x1)))
4733 outs() << " CLS_CLASS";
4734 else if (CLS_GETINFO(objc_class, CLS_META)((objc_class)->info & (0x2)))
4735 outs() << " CLS_META";
4736 }
4737 outs() << "\n";
4738
4739 outs() << "\t instance_size "
4740 << format("0x%08" PRIx32"x", objc_class->instance_size) << "\n";
4741
4742 p = get_pointer_32(objc_class->ivars, offset, left, S, info, true);
4743 outs() << "\t\t ivars " << format("0x%08" PRIx32"x", objc_class->ivars);
4744 if (p != nullptr) {
4745 if (left > sizeof(struct objc_ivar_list_t)) {
4746 outs() << "\n";
4747 memcpy(&objc_ivar_list, p, sizeof(struct objc_ivar_list_t));
4748 } else {
4749 outs() << " (entends past the end of the section)\n";
4750 memset(&objc_ivar_list, '\0', sizeof(struct objc_ivar_list_t));
4751 memcpy(&objc_ivar_list, p, left);
4752 }
4753 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4754 swapStruct(objc_ivar_list);
4755 outs() << "\t\t ivar_count " << objc_ivar_list.ivar_count << "\n";
4756 ivar_list = p + sizeof(struct objc_ivar_list_t);
4757 for (i = 0; i < objc_ivar_list.ivar_count; i++) {
4758 if ((i + 1) * sizeof(struct objc_ivar_t) > left) {
4759 outs() << "\t\t remaining ivar's extend past the of the section\n";
4760 break;
4761 }
4762 memcpy(&ivar, ivar_list + i * sizeof(struct objc_ivar_t),
4763 sizeof(struct objc_ivar_t));
4764 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4765 swapStruct(ivar);
4766
4767 outs() << "\t\t\tivar_name " << format("0x%08" PRIx32"x", ivar.ivar_name);
4768 if (info->verbose) {
4769 name = get_pointer_32(ivar.ivar_name, offset, xleft, S, info, true);
4770 if (name != nullptr)
4771 outs() << format(" %.*s", xleft, name);
4772 else
4773 outs() << " (not in an __OBJC section)";
4774 }
4775 outs() << "\n";
4776
4777 outs() << "\t\t\tivar_type " << format("0x%08" PRIx32"x", ivar.ivar_type);
4778 if (info->verbose) {
4779 name = get_pointer_32(ivar.ivar_type, offset, xleft, S, info, true);
4780 if (name != nullptr)
4781 outs() << format(" %.*s", xleft, name);
4782 else
4783 outs() << " (not in an __OBJC section)";
4784 }
4785 outs() << "\n";
4786
4787 outs() << "\t\t ivar_offset "
4788 << format("0x%08" PRIx32"x", ivar.ivar_offset) << "\n";
4789 }
4790 } else {
4791 outs() << " (not in an __OBJC section)\n";
4792 }
4793
4794 outs() << "\t\t methods " << format("0x%08" PRIx32"x", objc_class->methodLists);
4795 if (print_method_list(objc_class->methodLists, info))
4796 outs() << " (not in an __OBJC section)\n";
4797
4798 outs() << "\t\t cache " << format("0x%08" PRIx32"x", objc_class->cache)
4799 << "\n";
4800
4801 outs() << "\t\tprotocols " << format("0x%08" PRIx32"x", objc_class->protocols);
4802 if (print_protocol_list(objc_class->protocols, 16, info))
4803 outs() << " (not in an __OBJC section)\n";
4804}
4805
4806static void print_objc_objc_category_t(struct objc_category_t *objc_category,
4807 struct DisassembleInfo *info) {
4808 uint32_t offset, left;
4809 const char *name;
4810 SectionRef S;
4811
4812 outs() << "\t category name "
4813 << format("0x%08" PRIx32"x", objc_category->category_name);
4814 if (info->verbose) {
4815 name = get_pointer_32(objc_category->category_name, offset, left, S, info,
4816 true);
4817 if (name != nullptr)
4818 outs() << format(" %.*s", left, name);
4819 else
4820 outs() << " (not in an __OBJC section)";
4821 }
4822 outs() << "\n";
4823
4824 outs() << "\t\t class name "
4825 << format("0x%08" PRIx32"x", objc_category->class_name);
4826 if (info->verbose) {
4827 name =
4828 get_pointer_32(objc_category->class_name, offset, left, S, info, true);
4829 if (name != nullptr)
4830 outs() << format(" %.*s", left, name);
4831 else
4832 outs() << " (not in an __OBJC section)";
4833 }
4834 outs() << "\n";
4835
4836 outs() << "\t instance methods "
4837 << format("0x%08" PRIx32"x", objc_category->instance_methods);
4838 if (print_method_list(objc_category->instance_methods, info))
4839 outs() << " (not in an __OBJC section)\n";
4840
4841 outs() << "\t class methods "
4842 << format("0x%08" PRIx32"x", objc_category->class_methods);
4843 if (print_method_list(objc_category->class_methods, info))
4844 outs() << " (not in an __OBJC section)\n";
4845}
4846
4847static void print_category64_t(uint64_t p, struct DisassembleInfo *info) {
4848 struct category64_t c;
4849 const char *r;
4850 uint32_t offset, xoffset, left;
4851 SectionRef S, xS;
4852 const char *name, *sym_name;
4853 uint64_t n_value;
4854
4855 r = get_pointer_64(p, offset, left, S, info);
4856 if (r == nullptr)
4857 return;
4858 memset(&c, '\0', sizeof(struct category64_t));
4859 if (left < sizeof(struct category64_t)) {
4860 memcpy(&c, r, left);
4861 outs() << " (category_t entends past the end of the section)\n";
4862 } else
4863 memcpy(&c, r, sizeof(struct category64_t));
4864 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4865 swapStruct(c);
4866
4867 outs() << " name ";
4868 sym_name = get_symbol_64(offset + offsetof(struct category64_t, name)__builtin_offsetof(struct category64_t, name), S,
4869 info, n_value, c.name);
4870 if (n_value != 0) {
4871 if (info->verbose && sym_name != nullptr)
4872 outs() << sym_name;
4873 else
4874 outs() << format("0x%" PRIx64"l" "x", n_value);
4875 if (c.name != 0)
4876 outs() << " + " << format("0x%" PRIx64"l" "x", c.name);
4877 } else
4878 outs() << format("0x%" PRIx64"l" "x", c.name);
4879 name = get_pointer_64(c.name + n_value, xoffset, left, xS, info);
4880 if (name != nullptr)
4881 outs() << format(" %.*s", left, name);
4882 outs() << "\n";
4883
4884 outs() << " cls ";
4885 sym_name = get_symbol_64(offset + offsetof(struct category64_t, cls)__builtin_offsetof(struct category64_t, cls), S, info,
4886 n_value, c.cls);
4887 if (n_value != 0) {
4888 if (info->verbose && sym_name != nullptr)
4889 outs() << sym_name;
4890 else
4891 outs() << format("0x%" PRIx64"l" "x", n_value);
4892 if (c.cls != 0)
4893 outs() << " + " << format("0x%" PRIx64"l" "x", c.cls);
4894 } else
4895 outs() << format("0x%" PRIx64"l" "x", c.cls);
4896 outs() << "\n";
4897 if (c.cls + n_value != 0)
4898 print_class64_t(c.cls + n_value, info);
4899
4900 outs() << " instanceMethods ";
4901 sym_name =
4902 get_symbol_64(offset + offsetof(struct category64_t, instanceMethods)__builtin_offsetof(struct category64_t, instanceMethods), S,
4903 info, n_value, c.instanceMethods);
4904 if (n_value != 0) {
4905 if (info->verbose && sym_name != nullptr)
4906 outs() << sym_name;
4907 else
4908 outs() << format("0x%" PRIx64"l" "x", n_value);
4909 if (c.instanceMethods != 0)
4910 outs() << " + " << format("0x%" PRIx64"l" "x", c.instanceMethods);
4911 } else
4912 outs() << format("0x%" PRIx64"l" "x", c.instanceMethods);
4913 outs() << "\n";
4914 if (c.instanceMethods + n_value != 0)
4915 print_method_list64_t(c.instanceMethods + n_value, info, "");
4916
4917 outs() << " classMethods ";
4918 sym_name = get_symbol_64(offset + offsetof(struct category64_t, classMethods)__builtin_offsetof(struct category64_t, classMethods),
4919 S, info, n_value, c.classMethods);
4920 if (n_value != 0) {
4921 if (info->verbose && sym_name != nullptr)
4922 outs() << sym_name;
4923 else
4924 outs() << format("0x%" PRIx64"l" "x", n_value);
4925 if (c.classMethods != 0)
4926 outs() << " + " << format("0x%" PRIx64"l" "x", c.classMethods);
4927 } else
4928 outs() << format("0x%" PRIx64"l" "x", c.classMethods);
4929 outs() << "\n";
4930 if (c.classMethods + n_value != 0)
4931 print_method_list64_t(c.classMethods + n_value, info, "");
4932
4933 outs() << " protocols ";
4934 sym_name = get_symbol_64(offset + offsetof(struct category64_t, protocols)__builtin_offsetof(struct category64_t, protocols), S,
4935 info, n_value, c.protocols);
4936 if (n_value != 0) {
4937 if (info->verbose && sym_name != nullptr)
4938 outs() << sym_name;
4939 else
4940 outs() << format("0x%" PRIx64"l" "x", n_value);
4941 if (c.protocols != 0)
4942 outs() << " + " << format("0x%" PRIx64"l" "x", c.protocols);
4943 } else
4944 outs() << format("0x%" PRIx64"l" "x", c.protocols);
4945 outs() << "\n";
4946 if (c.protocols + n_value != 0)
4947 print_protocol_list64_t(c.protocols + n_value, info);
4948
4949 outs() << "instanceProperties ";
4950 sym_name =
4951 get_symbol_64(offset + offsetof(struct category64_t, instanceProperties)__builtin_offsetof(struct category64_t, instanceProperties),
4952 S, info, n_value, c.instanceProperties);
4953 if (n_value != 0) {
4954 if (info->verbose && sym_name != nullptr)
4955 outs() << sym_name;
4956 else
4957 outs() << format("0x%" PRIx64"l" "x", n_value);
4958 if (c.instanceProperties != 0)
4959 outs() << " + " << format("0x%" PRIx64"l" "x", c.instanceProperties);
4960 } else
4961 outs() << format("0x%" PRIx64"l" "x", c.instanceProperties);
4962 outs() << "\n";
4963 if (c.instanceProperties + n_value != 0)
4964 print_objc_property_list64(c.instanceProperties + n_value, info);
4965}
4966
4967static void print_category32_t(uint32_t p, struct DisassembleInfo *info) {
4968 struct category32_t c;
4969 const char *r;
4970 uint32_t offset, left;
4971 SectionRef S, xS;
4972 const char *name;
4973
4974 r = get_pointer_32(p, offset, left, S, info);
4975 if (r == nullptr)
4976 return;
4977 memset(&c, '\0', sizeof(struct category32_t));
4978 if (left < sizeof(struct category32_t)) {
4979 memcpy(&c, r, left);
4980 outs() << " (category_t entends past the end of the section)\n";
4981 } else
4982 memcpy(&c, r, sizeof(struct category32_t));
4983 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4984 swapStruct(c);
4985
4986 outs() << " name " << format("0x%" PRIx32"x", c.name);
4987 name = get_symbol_32(offset + offsetof(struct category32_t, name)__builtin_offsetof(struct category32_t, name), S, info,
4988 c.name);
4989 if (name)
4990 outs() << " " << name;
4991 outs() << "\n";
4992
4993 outs() << " cls " << format("0x%" PRIx32"x", c.cls) << "\n";
4994 if (c.cls != 0)
4995 print_class32_t(c.cls, info);
4996 outs() << " instanceMethods " << format("0x%" PRIx32"x", c.instanceMethods)
4997 << "\n";
4998 if (c.instanceMethods != 0)
4999 print_method_list32_t(c.instanceMethods, info, "");
5000 outs() << " classMethods " << format("0x%" PRIx32"x", c.classMethods)
5001 << "\n";
5002 if (c.classMethods != 0)
5003 print_method_list32_t(c.classMethods, info, "");
5004 outs() << " protocols " << format("0x%" PRIx32"x", c.protocols) << "\n";
5005 if (c.protocols != 0)
5006 print_protocol_list32_t(c.protocols, info);
5007 outs() << "instanceProperties " << format("0x%" PRIx32"x", c.instanceProperties)
5008 << "\n";
5009 if (c.instanceProperties != 0)
5010 print_objc_property_list32(c.instanceProperties, info);
5011}
5012
5013static void print_message_refs64(SectionRef S, struct DisassembleInfo *info) {
5014 uint32_t i, left, offset, xoffset;
5015 uint64_t p, n_value;
5016 struct message_ref64 mr;
5017 const char *name, *sym_name;
5018 const char *r;
5019 SectionRef xS;
5020
5021 if (S == SectionRef())
5022 return;
5023
5024 StringRef SectName;
5025 S.getName(SectName);
5026 DataRefImpl Ref = S.getRawDataRefImpl();
5027 StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
5028 outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
5029 offset = 0;
5030 for (i = 0; i < S.getSize(); i += sizeof(struct message_ref64)) {
5031 p = S.getAddress() + i;
5032 r = get_pointer_64(p, offset, left, S, info);
5033 if (r == nullptr)
5034 return;
5035 memset(&mr, '\0', sizeof(struct message_ref64));
5036 if (left < sizeof(struct message_ref64)) {
5037 memcpy(&mr, r, left);
5038 outs() << " (message_ref entends past the end of the section)\n";
5039 } else
5040 memcpy(&mr, r, sizeof(struct message_ref64));
5041 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
5042 swapStruct(mr);
5043
5044 outs() << " imp ";
5045 name = get_symbol_64(offset + offsetof(struct message_ref64, imp)__builtin_offsetof(struct message_ref64, imp), S, info,
5046 n_value, mr.imp);
5047 if (n_value != 0) {
5048 outs() << format("0x%" PRIx64"l" "x", n_value) << " ";
5049 if (mr.imp != 0)
5050 outs() << "+ " << format("0x%" PRIx64"l" "x", mr.imp) << " ";
5051 } else
5052 outs() << format("0x%" PRIx64"l" "x", mr.imp) << " ";
5053 if (name != nullptr)
5054 outs() << " " << name;
5055 outs() << "\n";
5056
5057 outs() << " sel ";
5058 sym_name = get_symbol_64(offset + offsetof(struct message_ref64, sel)__builtin_offsetof(struct message_ref64, sel), S,
5059 info, n_value, mr.sel);
5060 if (n_value != 0) {
5061 if (info->verbose && sym_name != nullptr)
5062 outs() << sym_name;
5063 else
5064 outs() << format("0x%" PRIx64"l" "x", n_value);
5065 if (mr.sel != 0)
5066 outs() << " + " << format("0x%" PRIx64"l" "x", mr.sel);
5067 } else
5068 outs() << format("0x%" PRIx64"l" "x", mr.sel);
5069 name = get_pointer_64(mr.sel + n_value, xoffset, left, xS, info);
5070 if (name != nullptr)
5071 outs() << format(" %.*s", left, name);
5072 outs() << "\n";
5073
5074 offset += sizeof(struct message_ref64);
5075 }
5076}
5077
5078static void print_message_refs32(SectionRef S, struct DisassembleInfo *info) {
5079 uint32_t i, left, offset, xoffset, p;
5080 struct message_ref32 mr;
5081 const char *name, *r;
5082 SectionRef xS;
5083
5084 if (S == SectionRef())
5085 return;
5086
5087 StringRef SectName;
5088 S.getName(SectName);
5089 DataRefImpl Ref = S.getRawDataRefImpl();
5090 StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
5091 outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
5092 offset = 0;
5093 for (i = 0; i < S.getSize(); i += sizeof(struct message_ref64)) {
5094 p = S.getAddress() + i;
5095 r = get_pointer_32(p, offset, left, S, info);
5096 if (r == nullptr)
5097 return;
5098 memset(&mr, '\0', sizeof(struct message_ref32));
5099 if (left < sizeof(struct message_ref32)) {
5100 memcpy(&mr, r, left);
5101 outs() << " (message_ref entends past the end of the section)\n";
5102 } else
5103 memcpy(&mr, r, sizeof(struct message_ref32));
5104 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
5105 swapStruct(mr);
5106
5107 outs() << " imp " << format("0x%" PRIx32"x", mr.imp);
5108 name = get_symbol_32(offset + offsetof(struct message_ref32, imp)__builtin_offsetof(struct message_ref32, imp), S, info,
5109 mr.imp);
5110 if (name != nullptr)
5111 outs() << " " << name;
5112 outs() << "\n";
5113
5114 outs() << " sel " << format("0x%" PRIx32"x", mr.sel);
5115 name = get_pointer_32(mr.sel, xoffset, left, xS, info);
5116 if (name != nullptr)
5117 outs() << " " << name;
5118 outs() << "\n";
5119
5120 offset += sizeof(struct message_ref32);
5121 }
5122}
5123
5124static void print_image_info64(SectionRef S, struct DisassembleInfo *info) {
5125 uint32_t left, offset, swift_version;
5126 uint64_t p;
5127 struct objc_image_info64 o;
5128 const char *r;
5129
5130 if (S == SectionRef())
5131 return;
5132
5133 StringRef SectName;
5134 S.getName(SectName);
5135 DataRefImpl Ref = S.getRawDataRefImpl();
5136 StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
5137 outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
5138 p = S.getAddress();
5139 r = get_pointer_64(p, offset, left, S, info);
5140 if (r == nullptr)
5141 return;
5142 memset(&o, '\0', sizeof(struct objc_image_info64));
5143 if (left < sizeof(struct objc_image_info64)) {
5144 memcpy(&o, r, left);
5145 outs() << " (objc_image_info entends past the end of the section)\n";
5146 } else
5147 memcpy(&o, r, sizeof(struct objc_image_info64));
5148 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
5149 swapStruct(o);
5150 outs() << " version " << o.version << "\n";
5151 outs() << " flags " << format("0x%" PRIx32"x", o.flags);
5152 if (o.flags & OBJC_IMAGE_IS_REPLACEMENT(1 << 0))
5153 outs() << " OBJC_IMAGE_IS_REPLACEMENT";
5154 if (o.flags & OBJC_IMAGE_SUPPORTS_GC(1 << 1))
5155 outs() << " OBJC_IMAGE_SUPPORTS_GC";
5156 swift_version = (o.flags >> 8) & 0xff;
5157 if (swift_version != 0) {
5158 if (swift_version == 1)
5159 outs() << " Swift 1.0";
5160 else if (swift_version == 2)
5161 outs() << " Swift 1.1";
5162 else
5163 outs() << " unknown future Swift version (" << swift_version << ")";
5164 }
5165 outs() << "\n";
5166}
5167
5168static void print_image_info32(SectionRef S, struct DisassembleInfo *info) {
5169 uint32_t left, offset, swift_version, p;
5170 struct objc_image_info32 o;
5171 const char *r;
5172
5173 if (S == SectionRef())
5174 return;
5175
5176 StringRef SectName;
5177 S.getName(SectName);
5178 DataRefImpl Ref = S.getRawDataRefImpl();
5179 StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
5180 outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
5181 p = S.getAddress();
5182 r = get_pointer_32(p, offset, left, S, info);
5183 if (r == nullptr)
5184 return;
5185 memset(&o, '\0', sizeof(struct objc_image_info32));
5186 if (left < sizeof(struct objc_image_info32)) {
5187 memcpy(&o, r, left);
5188 outs() << " (objc_image_info entends past the end of the section)\n";
5189 } else
5190 memcpy(&o, r, sizeof(struct objc_image_info32));
5191 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
5192 swapStruct(o);
5193 outs() << " version " << o.version << "\n";
5194 outs() << " flags " << format("0x%" PRIx32"x", o.flags);
5195 if (o.flags & OBJC_IMAGE_IS_REPLACEMENT(1 << 0))
5196 outs() << " OBJC_IMAGE_IS_REPLACEMENT";
5197 if (o.flags & OBJC_IMAGE_SUPPORTS_GC(1 << 1))
5198 outs() << " OBJC_IMAGE_SUPPORTS_GC";
5199 swift_version = (o.flags >> 8) & 0xff;
5200 if (swift_version != 0) {
5201 if (swift_version == 1)
5202 outs() << " Swift 1.0";
5203 else if (swift_version == 2)
5204 outs() << " Swift 1.1";
5205 else
5206 outs() << " unknown future Swift version (" << swift_version << ")";
5207 }
5208 outs() << "\n";
5209}
5210
5211static void print_image_info(SectionRef S, struct DisassembleInfo *info) {
5212 uint32_t left, offset, p;
5213 struct imageInfo_t o;
5214 const char *r;
5215
5216 StringRef SectName;
5217 S.getName(SectName);
5218 DataRefImpl Ref = S.getRawDataRefImpl();
5219 StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
5220 outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
5221 p = S.getAddress();
5222 r = get_pointer_32(p, offset, left, S, info);
5223 if (r == nullptr)
5224 return;
5225 memset(&o, '\0', sizeof(struct imageInfo_t));
5226 if (left < sizeof(struct imageInfo_t)) {
5227 memcpy(&o, r, left);
5228 outs() << " (imageInfo entends past the end of the section)\n";
5229 } else
5230 memcpy(&o, r, sizeof(struct imageInfo_t));
5231 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
5232 swapStruct(o);
5233 outs() << " version " << o.version << "\n";
5234 outs() << " flags " << format("0x%" PRIx32"x", o.flags);
5235 if (o.flags & 0x1)
5236 outs() << " F&C";
5237 if (o.flags & 0x2)
5238 outs() << " GC";
5239 if (o.flags & 0x4)
5240 outs() << " GC-only";
5241 else
5242 outs() << " RR";
5243 outs() << "\n";
5244}
5245
5246static void printObjc2_64bit_MetaData(MachOObjectFile *O, bool verbose) {
5247 SymbolAddressMap AddrMap;
5248 if (verbose)
5249 CreateSymbolAddressMap(O, &AddrMap);
5250
5251 std::vector<SectionRef> Sections;
5252 for (const SectionRef &Section : O->sections()) {
5253 StringRef SectName;
5254 Section.getName(SectName);
5255 Sections.push_back(Section);
5256 }
5257
5258 struct DisassembleInfo info;
5259 // Set up the block of info used by the Symbolizer call backs.
5260 info.verbose = verbose;
5261 info.O = O;
5262 info.AddrMap = &AddrMap;
5263 info.Sections = &Sections;
5264 info.class_name = nullptr;
5265 info.selector_name = nullptr;
5266 info.method = nullptr;
5267 info.demangled_name = nullptr;
5268 info.bindtable = nullptr;
5269 info.adrp_addr = 0;
5270 info.adrp_inst = 0;
5271
5272 info.depth = 0;
5273 SectionRef CL = get_section(O, "__OBJC2", "__class_list");
5274 if (CL == SectionRef())
5275 CL = get_section(O, "__DATA", "__objc_classlist");
5276 info.S = CL;
5277 walk_pointer_list_64("class", CL, O, &info, print_class64_t);
5278
5279 SectionRef CR = get_section(O, "__OBJC2", "__class_refs");
5280 if (CR == SectionRef())
5281 CR = get_section(O, "__DATA", "__objc_classrefs");
5282 info.S = CR;
5283 walk_pointer_list_64("class refs", CR, O, &info, nullptr);
5284
5285 SectionRef SR = get_section(O, "__OBJC2", "__super_refs");
5286 if (SR == SectionRef())
5287 SR = get_section(O, "__DATA", "__objc_superrefs");
5288 info.S = SR;
5289 walk_pointer_list_64("super refs", SR, O, &info, nullptr);
5290
5291 SectionRef CA = get_section(O, "__OBJC2", "__category_list");
5292 if (CA == SectionRef())
5293 CA = get_section(O, "__DATA", "__objc_catlist");
5294 info.S = CA;
5295 walk_pointer_list_64("category", CA, O, &info, print_category64_t);
5296
5297 SectionRef PL = get_section(O, "__OBJC2", "__protocol_list");
5298 if (PL == SectionRef())
5299 PL = get_section(O, "__DATA", "__objc_protolist");
5300 info.S = PL;
5301 walk_pointer_list_64("protocol", PL, O, &info, nullptr);
5302
5303 SectionRef MR = get_section(O, "__OBJC2", "__message_refs");
5304 if (MR == SectionRef())
5305 MR = get_section(O, "__DATA", "__objc_msgrefs");
5306 info.S = MR;
5307 print_message_refs64(MR, &info);
5308
5309 SectionRef II = get_section(O, "__OBJC2", "__image_info");
5310 if (II == SectionRef())
5311 II = get_section(O, "__DATA", "__objc_imageinfo");
5312 info.S = II;
5313 print_image_info64(II, &info);
5314
5315 if (info.bindtable != nullptr)
5316 delete info.bindtable;
5317}
5318
5319static void printObjc2_32bit_MetaData(MachOObjectFile *O, bool verbose) {
5320 SymbolAddressMap AddrMap;
5321 if (verbose)
5322 CreateSymbolAddressMap(O, &AddrMap);
5323
5324 std::vector<SectionRef> Sections;
5325 for (const SectionRef &Section : O->sections()) {
5326 StringRef SectName;
5327 Section.getName(SectName);
5328 Sections.push_back(Section);
5329 }
5330
5331 struct DisassembleInfo info;
5332 // Set up the block of info used by the Symbolizer call backs.
5333 info.verbose = verbose;
5334 info.O = O;
5335 info.AddrMap = &AddrMap;
5336 info.Sections = &Sections;
5337 info.class_name = nullptr;
5338 info.selector_name = nullptr;
5339 info.method = nullptr;
5340 info.demangled_name = nullptr;
5341 info.bindtable = nullptr;
5342 info.adrp_addr = 0;
5343 info.adrp_inst = 0;
5344
5345 const SectionRef CL = get_section(O, "__OBJC2", "__class_list");
5346 if (CL != SectionRef()) {
5347 info.S = CL;
5348 walk_pointer_list_32("class", CL, O, &info, print_class32_t);
5349 } else {
5350 const SectionRef CL = get_section(O, "__DATA", "__objc_classlist");
5351 info.S = CL;
5352 walk_pointer_list_32("class", CL, O, &info, print_class32_t);
5353 }
5354
5355 const SectionRef CR = get_section(O, "__OBJC2", "__class_refs");
5356 if (CR != SectionRef()) {
5357 info.S = CR;
5358 walk_pointer_list_32("class refs", CR, O, &info, nullptr);
5359 } else {
5360 const SectionRef CR = get_section(O, "__DATA", "__objc_classrefs");
5361 info.S = CR;
5362 walk_pointer_list_32("class refs", CR, O, &info, nullptr);
5363 }
5364
5365 const SectionRef SR = get_section(O, "__OBJC2", "__super_refs");
5366 if (SR != SectionRef()) {
5367 info.S = SR;
5368 walk_pointer_list_32("super refs", SR, O, &info, nullptr);
5369 } else {
5370 const SectionRef SR = get_section(O, "__DATA", "__objc_superrefs");
5371 info.S = SR;
5372 walk_pointer_list_32("super refs", SR, O, &info, nullptr);
5373 }
5374
5375 const SectionRef CA = get_section(O, "__OBJC2", "__category_list");
5376 if (CA != SectionRef()) {
5377 info.S = CA;
5378 walk_pointer_list_32("category", CA, O, &info, print_category32_t);
5379 } else {
5380 const SectionRef CA = get_section(O, "__DATA", "__objc_catlist");
5381 info.S = CA;
5382 walk_pointer_list_32("category", CA, O, &info, print_category32_t);
5383 }
5384
5385 const SectionRef PL = get_section(O, "__OBJC2", "__protocol_list");
5386 if (PL != SectionRef()) {
5387 info.S = PL;
5388 walk_pointer_list_32("protocol", PL, O, &info, nullptr);
5389 } else {
5390 const SectionRef PL = get_section(O, "__DATA", "__objc_protolist");
5391 info.S = PL;
5392 walk_pointer_list_32("protocol", PL, O, &info, nullptr);
5393 }
5394
5395 const SectionRef MR = get_section(O, "__OBJC2", "__message_refs");
5396 if (MR != SectionRef()) {
5397 info.S = MR;
5398 print_message_refs32(MR, &info);
5399 } else {
5400 const SectionRef MR = get_section(O, "__DATA", "__objc_msgrefs");
5401 info.S = MR;
5402 print_message_refs32(MR, &info);
5403 }
5404
5405 const SectionRef II = get_section(O, "__OBJC2", "__image_info");
5406 if (II != SectionRef()) {
5407 info.S = II;
5408 print_image_info32(II, &info);
5409 } else {
5410 const SectionRef II = get_section(O, "__DATA", "__objc_imageinfo");
5411 info.S = II;
5412 print_image_info32(II, &info);
5413 }
5414}
5415
5416static bool printObjc1_32bit_MetaData(MachOObjectFile *O, bool verbose) {
5417 uint32_t i, j, p, offset, xoffset, left, defs_left, def;
5418 const char *r, *name, *defs;
5419 struct objc_module_t module;
5420 SectionRef S, xS;
5421 struct objc_symtab_t symtab;
5422 struct objc_class_t objc_class;
5423 struct objc_category_t objc_category;
5424
5425 outs() << "Objective-C segment\n";
5426 S = get_section(O, "__OBJC", "__module_info");
5427 if (S == SectionRef())
5428 return false;
5429
5430 SymbolAddressMap AddrMap;
5431 if (verbose)
5432 CreateSymbolAddressMap(O, &AddrMap);
5433
5434 std::vector<SectionRef> Sections;
5435 for (const SectionRef &Section : O->sections()) {
5436 StringRef SectName;
5437 Section.getName(SectName);
5438 Sections.push_back(Section);
5439 }
5440
5441 struct DisassembleInfo info;
5442 // Set up the block of info used by the Symbolizer call backs.
5443 info.verbose = verbose;
5444 info.O = O;
5445 info.AddrMap = &AddrMap;
5446 info.Sections = &Sections;
5447 info.class_name = nullptr;
5448 info.selector_name = nullptr;
5449 info.method = nullptr;
5450 info.demangled_name = nullptr;
5451 info.bindtable = nullptr;
5452 info.adrp_addr = 0;
5453 info.adrp_inst = 0;
5454
5455 for (i = 0; i < S.getSize(); i += sizeof(struct objc_module_t)) {
5456 p = S.getAddress() + i;
5457 r = get_pointer_32(p, offset, left, S, &info, true);
5458 if (r == nullptr)
5459 return true;
5460 memset(&module, '\0', sizeof(struct objc_module_t));
5461 if (left < sizeof(struct objc_module_t)) {
5462 memcpy(&module, r, left);
5463 outs() << " (module extends past end of __module_info section)\n";
5464 } else
5465 memcpy(&module, r, sizeof(struct objc_module_t));
5466 if (O->isLittleEndian() != sys::IsLittleEndianHost)
5467 swapStruct(module);
5468
5469 outs() << "Module " << format("0x%" PRIx32"x", p) << "\n";
5470 outs() << " version " << module.version << "\n";
5471 outs() << " size " << module.size << "\n";
5472 outs() << " name ";
5473 name = get_pointer_32(module.name, xoffset, left, xS, &info, true);
5474 if (name != nullptr)
5475 outs() << format("%.*s", left, name);
5476 else
5477 outs() << format("0x%08" PRIx32"x", module.name)
5478 << "(not in an __OBJC section)";
5479 outs() << "\n";
5480
5481 r = get_pointer_32(module.symtab, xoffset, left, xS, &info, true);
5482 if (module.symtab == 0 || r == nullptr) {
5483 outs() << " symtab " << format("0x%08" PRIx32"x", module.symtab)
5484 << " (not in an __OBJC section)\n";
5485 continue;
5486 }
5487 outs() << " symtab " << format("0x%08" PRIx32"x", module.symtab) << "\n";
5488 memset(&symtab, '\0', sizeof(struct objc_symtab_t));
5489 defs_left = 0;
5490 defs = nullptr;
5491 if (left < sizeof(struct objc_symtab_t)) {
5492 memcpy(&symtab, r, left);
5493 outs() << "\tsymtab extends past end of an __OBJC section)\n";
5494 } else {
5495 memcpy(&symtab, r, sizeof(struct objc_symtab_t));
5496 if (left > sizeof(struct objc_symtab_t)) {
5497 defs_left = left - sizeof(struct objc_symtab_t);
5498 defs = r + sizeof(struct objc_symtab_t);
5499 }
5500 }
5501 if (O->isLittleEndian() != sys::IsLittleEndianHost)
5502 swapStruct(symtab);
5503
5504 outs() << "\tsel_ref_cnt " << symtab.sel_ref_cnt << "\n";
5505 r = get_pointer_32(symtab.refs, xoffset, left, xS, &info, true);
5506 outs() << "\trefs " << format("0x%08" PRIx32"x", symtab.refs);
5507 if (r == nullptr)
5508 outs() << " (not in an __OBJC section)";
5509 outs() << "\n";
5510 outs() << "\tcls_def_cnt " << symtab.cls_def_cnt << "\n";
5511 outs() << "\tcat_def_cnt " << symtab.cat_def_cnt << "\n";
5512 if (symtab.cls_def_cnt > 0)
5513 outs() << "\tClass Definitions\n";
5514 for (j = 0; j < symtab.cls_def_cnt; j++) {
5515 if ((j + 1) * sizeof(uint32_t) > defs_left) {
5516 outs() << "\t(remaining class defs entries entends past the end of the "
5517 << "section)\n";
5518 break;
5519 }
5520 memcpy(&def, defs + j * sizeof(uint32_t), sizeof(uint32_t));
5521 if (O->isLittleEndian() != sys::IsLittleEndianHost)
5522 sys::swapByteOrder(def);
5523
5524 r = get_pointer_32(def, xoffset, left, xS, &info, true);
5525 outs() << "\tdefs[" << j << "] " << format("0x%08" PRIx32"x", def);
5526 if (r != nullptr) {
5527 if (left > sizeof(struct objc_class_t)) {
5528 outs() << "\n";
5529 memcpy(&objc_class, r, sizeof(struct objc_class_t));
5530 } else {
5531 outs() << " (entends past the end of the section)\n";
5532 memset(&objc_class, '\0', sizeof(struct objc_class_t));
5533 memcpy(&objc_class, r, left);
5534 }
5535 if (O->isLittleEndian() != sys::IsLittleEndianHost)
5536 swapStruct(objc_class);
5537 print_objc_class_t(&objc_class, &info);
5538 } else {
5539 outs() << "(not in an __OBJC section)\n";
5540 }
5541
5542 if (CLS_GETINFO(&objc_class, CLS_CLASS)((&objc_class)->info & (0x1))) {
5543 outs() << "\tMeta Class";
5544 r = get_pointer_32(objc_class.isa, xoffset, left, xS, &info, true);
5545 if (r != nullptr) {
5546 if (left > sizeof(struct objc_class_t)) {
5547 outs() << "\n";
5548 memcpy(&objc_class, r, sizeof(struct objc_class_t));
5549 } else {
5550 outs() << " (entends past the end of the section)\n";
5551 memset(&objc_class, '\0', sizeof(struct objc_class_t));
5552 memcpy(&objc_class, r, left);
5553 }
5554 if (O->isLittleEndian() != sys::IsLittleEndianHost)
5555 swapStruct(objc_class);
5556 print_objc_class_t(&objc_class, &info);
5557 } else {
5558 outs() << "(not in an __OBJC section)\n";
5559 }
5560 }
5561 }
5562 if (symtab.cat_def_cnt > 0)
5563 outs() << "\tCategory Definitions\n";
5564 for (j = 0; j < symtab.cat_def_cnt; j++) {
5565 if ((j + symtab.cls_def_cnt + 1) * sizeof(uint32_t) > defs_left) {
5566 outs() << "\t(remaining category defs entries entends past the end of "
5567 << "the section)\n";
5568 break;
5569 }
5570 memcpy(&def, defs + (j + symtab.cls_def_cnt) * sizeof(uint32_t),
5571 sizeof(uint32_t));
5572 if (O->isLittleEndian() != sys::IsLittleEndianHost)
5573 sys::swapByteOrder(def);
5574
5575 r = get_pointer_32(def, xoffset, left, xS, &info, true);
5576 outs() << "\tdefs[" << j + symtab.cls_def_cnt << "] "
5577 << format("0x%08" PRIx32"x", def);
5578 if (r != nullptr) {
5579 if (left > sizeof(struct objc_category_t)) {
5580 outs() << "\n";
5581 memcpy(&objc_category, r, sizeof(struct objc_category_t));
5582 } else {
5583 outs() << " (entends past the end of the section)\n";
5584 memset(&objc_category, '\0', sizeof(struct objc_category_t));
5585 memcpy(&objc_category, r, left);
5586 }
5587 if (O->isLittleEndian() != sys::IsLittleEndianHost)
5588 swapStruct(objc_category);
5589 print_objc_objc_category_t(&objc_category, &info);
5590 } else {
5591 outs() << "(not in an __OBJC section)\n";
5592 }
5593 }
5594 }
5595 const SectionRef II = get_section(O, "__OBJC", "__image_info");
5596 if (II != SectionRef())
5597 print_image_info(II, &info);
5598
5599 return true;
5600}
5601
5602static void DumpProtocolSection(MachOObjectFile *O, const char *sect,
5603 uint32_t size, uint32_t addr) {
5604 SymbolAddressMap AddrMap;
5605 CreateSymbolAddressMap(O, &AddrMap);
5606
5607 std::vector<SectionRef> Sections;
5608 for (const SectionRef &Section : O->sections()) {
5609 StringRef SectName;
5610 Section.getName(SectName);
5611 Sections.push_back(Section);
5612 }
5613
5614 struct DisassembleInfo info;
5615 // Set up the block of info used by the Symbolizer call backs.
5616 info.verbose = true;
5617 info.O = O;
5618 info.AddrMap = &AddrMap;
5619 info.Sections = &Sections;
5620 info.class_name = nullptr;
5621 info.selector_name = nullptr;
5622 info.method = nullptr;
5623 info.demangled_name = nullptr;
5624 info.bindtable = nullptr;
5625 info.adrp_addr = 0;
5626 info.adrp_inst = 0;
5627
5628 const char *p;
5629 struct objc_protocol_t protocol;
5630 uint32_t left, paddr;
5631 for (p = sect; p < sect + size; p += sizeof(struct objc_protocol_t)) {
5632 memset(&protocol, '\0', sizeof(struct objc_protocol_t));
5633 left = size - (p - sect);
5634 if (left < sizeof(struct objc_protocol_t)) {
5635 outs() << "Protocol extends past end of __protocol section\n";
5636 memcpy(&protocol, p, left);
5637 } else
5638 memcpy(&protocol, p, sizeof(struct objc_protocol_t));
5639 if (O->isLittleEndian() != sys::IsLittleEndianHost)
5640 swapStruct(protocol);
5641 paddr = addr + (p - sect);
5642 outs() << "Protocol " << format("0x%" PRIx32"x", paddr);
5643 if (print_protocol(paddr, 0, &info))
5644 outs() << "(not in an __OBJC section)\n";
5645 }
5646}
5647
5648#ifdef HAVE_LIBXAR
5649inline void swapStruct(struct xar_header &xar) {
5650 sys::swapByteOrder(xar.magic);
5651 sys::swapByteOrder(xar.size);
5652 sys::swapByteOrder(xar.version);
5653 sys::swapByteOrder(xar.toc_length_compressed);
5654 sys::swapByteOrder(xar.toc_length_uncompressed);
5655 sys::swapByteOrder(xar.cksum_alg);
5656}
5657
5658static void PrintModeVerbose(uint32_t mode) {
5659 switch(mode & S_IFMT){
5660 case S_IFDIR:
5661 outs() << "d";
5662 break;
5663 case S_IFCHR:
5664 outs() << "c";
5665 break;
5666 case S_IFBLK:
5667 outs() << "b";
5668 break;
5669 case S_IFREG:
5670 outs() << "-";
5671 break;
5672 case S_IFLNK:
5673 outs() << "l";
5674 break;
5675 case S_IFSOCK:
5676 outs() << "s";
5677 break;
5678 default:
5679 outs() << "?";
5680 break;
5681 }
5682
5683 /* owner permissions */
5684 if(mode & S_IREAD)
5685 outs() << "r";
5686 else
5687 outs() << "-";
5688 if(mode & S_IWRITE)
5689 outs() << "w";
5690 else
5691 outs() << "-";
5692 if(mode & S_ISUID)
5693 outs() << "s";
5694 else if(mode & S_IEXEC)
5695 outs() << "x";
5696 else
5697 outs() << "-";
5698
5699 /* group permissions */
5700 if(mode & (S_IREAD >> 3))
5701 outs() << "r";
5702 else
5703 outs() << "-";
5704 if(mode & (S_IWRITE >> 3))
5705 outs() << "w";
5706 else
5707 outs() << "-";
5708 if(mode & S_ISGID)
5709 outs() << "s";
5710 else if(mode & (S_IEXEC >> 3))
5711 outs() << "x";
5712 else
5713 outs() << "-";
5714
5715 /* other permissions */
5716 if(mode & (S_IREAD >> 6))
5717 outs() << "r";
5718 else
5719 outs() << "-";
5720 if(mode & (S_IWRITE >> 6))
5721 outs() << "w";
5722 else
5723 outs() << "-";
5724 if(mode & S_ISVTX)
5725 outs() << "t";
5726 else if(mode & (S_IEXEC >> 6))
5727 outs() << "x";
5728 else
5729 outs() << "-";
5730}
5731
5732static void PrintXarFilesSummary(const char *XarFilename, xar_t xar) {
5733 xar_iter_t xi;
5734 xar_file_t xf;
5735 xar_iter_t xp;
5736 const char *key, *type, *mode, *user, *group, *size, *mtime, *name, *m;
5737 char *endp;
5738 uint32_t mode_value;
5739
5740 xi = xar_iter_new();
5741 if (!xi) {
5742 errs() << "Can't obtain an xar iterator for xar archive "
5743 << XarFilename << "\n";
5744 return;
5745 }
5746
5747 // Go through the xar's files.
5748 for (xf = xar_file_first(xar, xi); xf; xf = xar_file_next(xi)) {
5749 xp = xar_iter_new();
5750 if(!xp){
5751 errs() << "Can't obtain an xar iterator for xar archive "
5752 << XarFilename << "\n";
5753 return;
5754 }
5755 type = nullptr;
5756 mode = nullptr;
5757 user = nullptr;
5758 group = nullptr;
5759 size = nullptr;
5760 mtime = nullptr;
5761 name = nullptr;
5762 for(key = xar_prop_first(xf, xp); key; key = xar_prop_next(xp)){
5763 const char *val = nullptr;
5764 xar_prop_get(xf, key, &val);
5765#if 0 // Useful for debugging.
5766 outs() << "key: " << key << " value: " << val << "\n";
5767#endif
5768 if(strcmp(key, "type") == 0)
5769 type = val;
5770 if(strcmp(key, "mode") == 0)
5771 mode = val;
5772 if(strcmp(key, "user") == 0)
5773 user = val;
5774 if(strcmp(key, "group") == 0)
5775 group = val;
5776 if(strcmp(key, "data/size") == 0)
5777 size = val;
5778 if(strcmp(key, "mtime") == 0)
5779 mtime = val;
5780 if(strcmp(key, "name") == 0)
5781 name = val;
5782 }
5783 if(mode != nullptr){
5784 mode_value = strtoul(mode, &endp, 8);
5785 if(*endp != '\0')
5786 outs() << "(mode: \"" << mode << "\" contains non-octal chars) ";
5787 if(strcmp(type, "file") == 0)
5788 mode_value |= S_IFREG;
5789 PrintModeVerbose(mode_value);
5790 outs() << " ";
5791 }
5792 if(user != nullptr)
5793 outs() << format("%10s/", user);
5794 if(group != nullptr)
5795 outs() << format("%-10s ", group);
5796 if(size != nullptr)
5797 outs() << format("%7s ", size);
5798 if(mtime != nullptr){
5799 for(m = mtime; *m != 'T' && *m != '\0'; m++)
5800 outs() << *m;
5801 if(*m == 'T')
5802 m++;
5803 outs() << " ";
5804 for( ; *m != 'Z' && *m != '\0'; m++)
5805 outs() << *m;
5806 outs() << " ";
5807 }
5808 if(name != nullptr)
5809 outs() << name;
5810 outs() << "\n";
5811 }
5812}
5813
5814static void DumpBitcodeSection(MachOObjectFile *O, const char *sect,
5815 uint32_t size, bool verbose,
5816 bool PrintXarHeader, bool PrintXarFileHeaders,
5817 std::string XarMemberName) {
5818 if(size < sizeof(struct xar_header)) {
5819 outs() << "size of (__LLVM,__bundle) section too small (smaller than size "
5820 "of struct xar_header)\n";
5821 return;
5822 }
5823 struct xar_header XarHeader;
5824 memcpy(&XarHeader, sect, sizeof(struct xar_header));
5825 if (sys::IsLittleEndianHost)
5826 swapStruct(XarHeader);
5827 if (PrintXarHeader) {
5828 if (!XarMemberName.empty())
5829 outs() << "In xar member " << XarMemberName << ": ";
5830 else
5831 outs() << "For (__LLVM,__bundle) section: ";
5832 outs() << "xar header\n";
5833 if (XarHeader.magic == XAR_HEADER_MAGIC)
5834 outs() << " magic XAR_HEADER_MAGIC\n";
5835 else
5836 outs() << " magic "
5837 << format_hex(XarHeader.magic, 10, true)
5838 << " (not XAR_HEADER_MAGIC)\n";
5839 outs() << " size " << XarHeader.size << "\n";
5840 outs() << " version " << XarHeader.version << "\n";
5841 outs() << " toc_length_compressed " << XarHeader.toc_length_compressed
5842 << "\n";
5843 outs() << "toc_length_uncompressed " << XarHeader.toc_length_uncompressed
5844 << "\n";
5845 outs() << " cksum_alg ";
5846 switch (XarHeader.cksum_alg) {
5847 case XAR_CKSUM_NONE:
5848 outs() << "XAR_CKSUM_NONE\n";
5849 break;
5850 case XAR_CKSUM_SHA1:
5851 outs() << "XAR_CKSUM_SHA1\n";
5852 break;
5853 case XAR_CKSUM_MD5:
5854 outs() << "XAR_CKSUM_MD5\n";
5855 break;
5856#ifdef XAR_CKSUM_SHA256
5857 case XAR_CKSUM_SHA256:
5858 outs() << "XAR_CKSUM_SHA256\n";
5859 break;
5860#endif
5861#ifdef XAR_CKSUM_SHA512
5862 case XAR_CKSUM_SHA512:
5863 outs() << "XAR_CKSUM_SHA512\n";
5864 break;
5865#endif
5866 default:
5867 outs() << XarHeader.cksum_alg << "\n";
5868 }
5869 }
5870
5871 SmallString<128> XarFilename;
5872 int FD;
5873 std::error_code XarEC =
5874 sys::fs::createTemporaryFile("llvm-objdump", "xar", FD, XarFilename);
5875 if (XarEC) {
5876 errs() << XarEC.message() << "\n";
5877 return;
5878 }
5879 tool_output_file XarFile(XarFilename, FD);
5880 raw_fd_ostream &XarOut = XarFile.os();
5881 StringRef XarContents(sect, size);
5882 XarOut << XarContents;
5883 XarOut.close();
5884 if (XarOut.has_error())
5885 return;
5886
5887 xar_t xar = xar_open(XarFilename.c_str(), READ);
5888 if (!xar) {
5889 errs() << "Can't create temporary xar archive " << XarFilename << "\n";
5890 return;
5891 }
5892
5893 SmallString<128> TocFilename;
5894 std::error_code TocEC =
5895 sys::fs::createTemporaryFile("llvm-objdump", "toc", TocFilename);
5896 if (TocEC) {
5897 errs() << TocEC.message() << "\n";
5898 return;
5899 }
5900 xar_serialize(xar, TocFilename.c_str());
5901
5902 if (PrintXarFileHeaders) {
5903 if (!XarMemberName.empty())
5904 outs() << "In xar member " << XarMemberName << ": ";
5905 else
5906 outs() << "For (__LLVM,__bundle) section: ";
5907 outs() << "xar archive files:\n";
5908 PrintXarFilesSummary(XarFilename.c_str(), xar);
5909 }
5910
5911 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
5912 MemoryBuffer::getFileOrSTDIN(TocFilename.c_str());
5913 if (std::error_code EC = FileOrErr.getError()) {
5914 errs() << EC.message() << "\n";
5915 return;
5916 }
5917 std::unique_ptr<MemoryBuffer> &Buffer = FileOrErr.get();
5918
5919 if (!XarMemberName.empty())
5920 outs() << "In xar member " << XarMemberName << ": ";
5921 else
5922 outs() << "For (__LLVM,__bundle) section: ";
5923 outs() << "xar table of contents:\n";
5924 outs() << Buffer->getBuffer() << "\n";
5925
5926 // TODO: Go through the xar's files.
5927 xar_iter_t xi = xar_iter_new();
5928 if(!xi){
5929 errs() << "Can't obtain an xar iterator for xar archive "
5930 << XarFilename.c_str() << "\n";
5931 xar_close(xar);
5932 return;
5933 }
5934 for(xar_file_t xf = xar_file_first(xar, xi); xf; xf = xar_file_next(xi)){
5935 const char *key;
5936 xar_iter_t xp;
5937 const char *member_name, *member_type, *member_size_string;
5938 size_t member_size;
5939
5940 xp = xar_iter_new();
5941 if(!xp){
5942 errs() << "Can't obtain an xar iterator for xar archive "
5943 << XarFilename.c_str() << "\n";
5944 xar_close(xar);
5945 return;
5946 }
5947 member_name = NULL__null;
5948 member_type = NULL__null;
5949 member_size_string = NULL__null;
5950 for(key = xar_prop_first(xf, xp); key; key = xar_prop_next(xp)){
5951 const char *val = nullptr;
5952 xar_prop_get(xf, key, &val);
5953#if 0 // Useful for debugging.
5954 outs() << "key: " << key << " value: " << val << "\n";
5955#endif
5956 if(strcmp(key, "name") == 0)
5957 member_name = val;
5958 if(strcmp(key, "type") == 0)
5959 member_type = val;
5960 if(strcmp(key, "data/size") == 0)
5961 member_size_string = val;
5962 }
5963 /*
5964 * If we find a file with a name, date/size and type properties
5965 * and with the type being "file" see if that is a xar file.
5966 */
5967 if (member_name != NULL__null && member_type != NULL__null &&
5968 strcmp(member_type, "file") == 0 &&
5969 member_size_string != NULL__null){
5970 // Extract the file into a buffer.
5971 char *endptr;
5972 member_size = strtoul(member_size_string, &endptr, 10);
5973 if (*endptr == '\0' && member_size != 0) {
5974 char *buffer = (char *) ::operator new (member_size);
5975 if (xar_extract_tobuffersz(xar, xf, &buffer, &member_size) == 0) {
5976#if 0 // Useful for debugging.
5977 outs() << "xar member: " << member_name << " extracted\n";
5978#endif
5979 // Set the XarMemberName we want to see printed in the header.
5980 std::string OldXarMemberName;
5981 // If XarMemberName is already set this is nested. So
5982 // save the old name and create the nested name.
5983 if (!XarMemberName.empty()) {
5984 OldXarMemberName = XarMemberName;
5985 XarMemberName =
5986 (Twine("[") + XarMemberName + "]" + member_name).str();
5987 } else {
5988 OldXarMemberName = "";
5989 XarMemberName = member_name;
5990 }
5991 // See if this is could be a xar file (nested).
5992 if (member_size >= sizeof(struct xar_header)) {
5993#if 0 // Useful for debugging.
5994 outs() << "could be a xar file: " << member_name << "\n";
5995#endif
5996 memcpy((char *)&XarHeader, buffer, sizeof(struct xar_header));
5997 if (sys::IsLittleEndianHost)
5998 swapStruct(XarHeader);
5999 if(XarHeader.magic == XAR_HEADER_MAGIC)
6000 DumpBitcodeSection(O, buffer, member_size, verbose,
6001 PrintXarHeader, PrintXarFileHeaders,
6002 XarMemberName);
6003 }
6004 XarMemberName = OldXarMemberName;
6005 }
6006 delete buffer;
6007 }
6008 }
6009 xar_iter_free(xp);
6010 }
6011 xar_close(xar);
6012}
6013#endif // defined(HAVE_LIBXAR)
6014
6015static void printObjcMetaData(MachOObjectFile *O, bool verbose) {
6016 if (O->is64Bit())
6017 printObjc2_64bit_MetaData(O, verbose);
6018 else {
6019 MachO::mach_header H;
6020 H = O->getHeader();
6021 if (H.cputype == MachO::CPU_TYPE_ARM)
6022 printObjc2_32bit_MetaData(O, verbose);
6023 else {
6024 // This is the 32-bit non-arm cputype case. Which is normally
6025 // the first Objective-C ABI. But it may be the case of a
6026 // binary for the iOS simulator which is the second Objective-C
6027 // ABI. In that case printObjc1_32bit_MetaData() will determine that
6028 // and return false.
6029 if (!printObjc1_32bit_MetaData(O, verbose))
6030 printObjc2_32bit_MetaData(O, verbose);
6031 }
6032 }
6033}
6034
6035// GuessLiteralPointer returns a string which for the item in the Mach-O file
6036// for the address passed in as ReferenceValue for printing as a comment with
6037// the instruction and also returns the corresponding type of that item
6038// indirectly through ReferenceType.
6039//
6040// If ReferenceValue is an address of literal cstring then a pointer to the
6041// cstring is returned and ReferenceType is set to
6042// LLVMDisassembler_ReferenceType_Out_LitPool_CstrAddr .
6043//
6044// If ReferenceValue is an address of an Objective-C CFString, Selector ref or
6045// Class ref that name is returned and the ReferenceType is set accordingly.
6046//
6047// Lastly, literals which are Symbol address in a literal pool are looked for
6048// and if found the symbol name is returned and ReferenceType is set to
6049// LLVMDisassembler_ReferenceType_Out_LitPool_SymAddr .
6050//
6051// If there is no item in the Mach-O file for the address passed in as
6052// ReferenceValue nullptr is returned and ReferenceType is unchanged.
6053static const char *GuessLiteralPointer(uint64_t ReferenceValue,
6054 uint64_t ReferencePC,
6055 uint64_t *ReferenceType,
6056 struct DisassembleInfo *info) {
6057 // First see if there is an external relocation entry at the ReferencePC.
6058 if (info->O->getHeader().filetype == MachO::MH_OBJECT) {
6059 uint64_t sect_addr = info->S.getAddress();
6060 uint64_t sect_offset = ReferencePC - sect_addr;
6061 bool reloc_found = false;
6062 DataRefImpl Rel;
6063 MachO::any_relocation_info RE;
6064 bool isExtern = false;
6065 SymbolRef Symbol;
6066 for (const RelocationRef &Reloc : info->S.relocations()) {
6067 uint64_t RelocOffset = Reloc.getOffset();
6068 if (RelocOffset == sect_offset) {
6069 Rel = Reloc.getRawDataRefImpl();
6070 RE = info->O->getRelocation(Rel);
6071 if (info->O->isRelocationScattered(RE))
6072 continue;
6073 isExtern = info->O->getPlainRelocationExternal(RE);
6074 if (isExtern) {
6075 symbol_iterator RelocSym = Reloc.getSymbol();
6076 Symbol = *RelocSym;
6077 }
6078 reloc_found = true;
6079 break;
6080 }
6081 }
6082 // If there is an external relocation entry for a symbol in a section
6083 // then used that symbol's value for the value of the reference.
6084 if (reloc_found && isExtern) {
6085 if (info->O->getAnyRelocationPCRel(RE)) {
6086 unsigned Type = info->O->getAnyRelocationType(RE);
6087 if (Type == MachO::X86_64_RELOC_SIGNED) {
6088 ReferenceValue = Symbol.getValue();
6089 }
6090 }
6091 }
6092 }
6093
6094 // Look for literals such as Objective-C CFStrings refs, Selector refs,
6095 // Message refs and Class refs.
6096 bool classref, selref, msgref, cfstring;
6097 uint64_t pointer_value = GuessPointerPointer(ReferenceValue, info, classref,
6098 selref, msgref, cfstring);
6099 if (classref && pointer_value == 0) {
6100 // Note the ReferenceValue is a pointer into the __objc_classrefs section.
6101 // And the pointer_value in that section is typically zero as it will be
6102 // set by dyld as part of the "bind information".
6103 const char *name = get_dyld_bind_info_symbolname(ReferenceValue, info);
6104 if (name != nullptr) {
6105 *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Class_Ref8;
6106 const char *class_name = strrchr(name, '$');
6107 if (class_name != nullptr && class_name[1] == '_' &&
6108 class_name[2] != '\0') {
6109 info->class_name = class_name + 2;
6110 return name;
6111 }
6112 }
6113 }
6114
6115 if (classref) {
6116 *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Class_Ref8;
6117 const char *name =
6118 get_objc2_64bit_class_name(pointer_value, ReferenceValue, info);
6119 if (name != nullptr)
6120 info->class_name = name;
6121 else
6122 name = "bad class ref";
6123 return name;
6124 }
6125
6126 if (cfstring) {
6127 *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_CFString_Ref4;
6128 const char *name = get_objc2_64bit_cfstring_name(ReferenceValue, info);
6129 return name;
6130 }
6131
6132 if (selref && pointer_value == 0)
6133 pointer_value = get_objc2_64bit_selref(ReferenceValue, info);
6134
6135 if (pointer_value != 0)
6136 ReferenceValue = pointer_value;
6137
6138 const char *name = GuessCstringPointer(ReferenceValue, info);
6139 if (name) {
6140 if (pointer_value != 0 && selref) {
6141 *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Selector_Ref7;
6142 info->selector_name = name;
6143 } else if (pointer_value != 0 && msgref) {
6144 info->class_name = nullptr;
6145 *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message_Ref6;
6146 info->selector_name = name;
6147 } else
6148 *ReferenceType = LLVMDisassembler_ReferenceType_Out_LitPool_CstrAddr3;
6149 return name;
6150 }
6151
6152 // Lastly look for an indirect symbol with this ReferenceValue which is in
6153 // a literal pool. If found return that symbol name.
6154 name = GuessIndirectSymbol(ReferenceValue, info);
6155 if (name) {
6156 *ReferenceType = LLVMDisassembler_ReferenceType_Out_LitPool_SymAddr2;
6157 return name;
6158 }
6159
6160 return nullptr;
6161}
6162
6163// SymbolizerSymbolLookUp is the symbol lookup function passed when creating
6164// the Symbolizer. It looks up the ReferenceValue using the info passed via the
6165// pointer to the struct DisassembleInfo that was passed when MCSymbolizer
6166// is created and returns the symbol name that matches the ReferenceValue or
6167// nullptr if none. The ReferenceType is passed in for the IN type of
6168// reference the instruction is making from the values in defined in the header
6169// "llvm-c/Disassembler.h". On return the ReferenceType can set to a specific
6170// Out type and the ReferenceName will also be set which is added as a comment
6171// to the disassembled instruction.
6172//
6173// If the symbol name is a C++ mangled name then the demangled name is
6174// returned through ReferenceName and ReferenceType is set to
6175// LLVMDisassembler_ReferenceType_DeMangled_Name .
6176//
6177// When this is called to get a symbol name for a branch target then the
6178// ReferenceType will be LLVMDisassembler_ReferenceType_In_Branch and then
6179// SymbolValue will be looked for in the indirect symbol table to determine if
6180// it is an address for a symbol stub. If so then the symbol name for that
6181// stub is returned indirectly through ReferenceName and then ReferenceType is
6182// set to LLVMDisassembler_ReferenceType_Out_SymbolStub.
6183//
6184// When this is called with an value loaded via a PC relative load then
6185// ReferenceType will be LLVMDisassembler_ReferenceType_In_PCrel_Load then the
6186// SymbolValue is checked to be an address of literal pointer, symbol pointer,
6187// or an Objective-C meta data reference. If so the output ReferenceType is
6188// set to correspond to that as well as setting the ReferenceName.
6189static const char *SymbolizerSymbolLookUp(void *DisInfo,
6190 uint64_t ReferenceValue,
6191 uint64_t *ReferenceType,
6192 uint64_t ReferencePC,
6193 const char **ReferenceName) {
6194 struct DisassembleInfo *info = (struct DisassembleInfo *)DisInfo;
6195 // If no verbose symbolic information is wanted then just return nullptr.
6196 if (!info->verbose) {
6197 *ReferenceName = nullptr;
6198 *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None0;
6199 return nullptr;
6200 }
6201
6202 const char *SymbolName = GuessSymbolName(ReferenceValue, info->AddrMap);
6203
6204 if (*ReferenceType == LLVMDisassembler_ReferenceType_In_Branch1) {
6205 *ReferenceName = GuessIndirectSymbol(ReferenceValue, info);
6206 if (*ReferenceName != nullptr) {
6207 method_reference(info, ReferenceType, ReferenceName);
6208 if (*ReferenceType != LLVMDisassembler_ReferenceType_Out_Objc_Message5)
6209 *ReferenceType = LLVMDisassembler_ReferenceType_Out_SymbolStub1;
6210 } else if (SymbolName != nullptr && strncmp(SymbolName, "__Z", 3) == 0) {
6211 if (info->demangled_name != nullptr)
6212 free(info->demangled_name);
6213 int status;
6214 info->demangled_name =
6215 itaniumDemangle(SymbolName + 1, nullptr, nullptr, &status);
6216 if (info->demangled_name != nullptr) {
6217 *ReferenceName = info->demangled_name;
6218 *ReferenceType = LLVMDisassembler_ReferenceType_DeMangled_Name9;
6219 } else
6220 *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None0;
6221 } else
6222 *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None0;
6223 } else if (*ReferenceType == LLVMDisassembler_ReferenceType_In_PCrel_Load2) {
6224 *ReferenceName =
6225 GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info);
6226 if (*ReferenceName)
6227 method_reference(info, ReferenceType, ReferenceName);
6228 else
6229 *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None0;
6230 // If this is arm64 and the reference is an adrp instruction save the
6231 // instruction, passed in ReferenceValue and the address of the instruction
6232 // for use later if we see and add immediate instruction.
6233 } else if (info->O->getArch() == Triple::aarch64 &&
6234 *ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_ADRP0x100000001) {
6235 info->adrp_inst = ReferenceValue;
6236 info->adrp_addr = ReferencePC;
6237 SymbolName = nullptr;
6238 *ReferenceName = nullptr;
6239 *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None0;
6240 // If this is arm64 and reference is an add immediate instruction and we
6241 // have
6242 // seen an adrp instruction just before it and the adrp's Xd register
6243 // matches
6244 // this add's Xn register reconstruct the value being referenced and look to
6245 // see if it is a literal pointer. Note the add immediate instruction is
6246 // passed in ReferenceValue.
6247 } else if (info->O->getArch() == Triple::aarch64 &&
6248 *ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_ADDXri0x100000002 &&
6249 ReferencePC - 4 == info->adrp_addr &&
6250 (info->adrp_inst & 0x9f000000) == 0x90000000 &&
6251 (info->adrp_inst & 0x1f) == ((ReferenceValue >> 5) & 0x1f)) {
6252 uint32_t addxri_inst;
6253 uint64_t adrp_imm, addxri_imm;
6254
6255 adrp_imm =
6256 ((info->adrp_inst & 0x00ffffe0) >> 3) | ((info->adrp_inst >> 29) & 0x3);
6257 if (info->adrp_inst & 0x0200000)
6258 adrp_imm |= 0xfffffffffc000000LL;
6259
6260 addxri_inst = ReferenceValue;
6261 addxri_imm = (addxri_inst >> 10) & 0xfff;
6262 if (((addxri_inst >> 22) & 0x3) == 1)
6263 addxri_imm <<= 12;
6264
6265 ReferenceValue = (info->adrp_addr & 0xfffffffffffff000LL) +
6266 (adrp_imm << 12) + addxri_imm;
6267
6268 *ReferenceName =
6269 GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info);
6270 if (*ReferenceName == nullptr)
6271 *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None0;
6272 // If this is arm64 and the reference is a load register instruction and we
6273 // have seen an adrp instruction just before it and the adrp's Xd register
6274 // matches this add's Xn register reconstruct the value being referenced and
6275 // look to see if it is a literal pointer. Note the load register
6276 // instruction is passed in ReferenceValue.
6277 } else if (info->O->getArch() == Triple::aarch64 &&
6278 *ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_LDRXui0x100000003 &&
6279 ReferencePC - 4 == info->adrp_addr &&
6280 (info->adrp_inst & 0x9f000000) == 0x90000000 &&
6281 (info->adrp_inst & 0x1f) == ((ReferenceValue >> 5) & 0x1f)) {
6282 uint32_t ldrxui_inst;
6283 uint64_t adrp_imm, ldrxui_imm;
6284
6285 adrp_imm =
6286 ((info->adrp_inst & 0x00ffffe0) >> 3) | ((info->adrp_inst >> 29) & 0x3);
6287 if (info->adrp_inst & 0x0200000)
6288 adrp_imm |= 0xfffffffffc000000LL;
6289
6290 ldrxui_inst = ReferenceValue;
6291 ldrxui_imm = (ldrxui_inst >> 10) & 0xfff;
6292
6293 ReferenceValue = (info->adrp_addr & 0xfffffffffffff000LL) +
6294 (adrp_imm << 12) + (ldrxui_imm << 3);
6295
6296 *ReferenceName =
6297 GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info);
6298 if (*ReferenceName == nullptr)
6299 *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None0;
6300 }
6301 // If this arm64 and is an load register (PC-relative) instruction the
6302 // ReferenceValue is the PC plus the immediate value.
6303 else if (info->O->getArch() == Triple::aarch64 &&
6304 (*ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_LDRXl0x100000004 ||
6305 *ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_ADR0x100000005)) {
6306 *ReferenceName =
6307 GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info);
6308 if (*ReferenceName == nullptr)
6309 *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None0;
6310 } else if (SymbolName != nullptr && strncmp(SymbolName, "__Z", 3) == 0) {
6311 if (info->demangled_name != nullptr)
6312 free(info->demangled_name);
6313 int status;
6314 info->demangled_name =
6315 itaniumDemangle(SymbolName + 1, nullptr, nullptr, &status);
6316 if (info->demangled_name != nullptr) {
6317 *ReferenceName = info->demangled_name;
6318 *ReferenceType = LLVMDisassembler_ReferenceType_DeMangled_Name9;
6319 }
6320 }
6321 else {
6322 *ReferenceName = nullptr;
6323 *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None0;
6324 }
6325
6326 return SymbolName;
6327}
6328
6329/// \brief Emits the comments that are stored in the CommentStream.
6330/// Each comment in the CommentStream must end with a newline.
6331static void emitComments(raw_svector_ostream &CommentStream,
6332 SmallString<128> &CommentsToEmit,
6333 formatted_raw_ostream &FormattedOS,
6334 const MCAsmInfo &MAI) {
6335 // Flush the stream before taking its content.
6336 StringRef Comments = CommentsToEmit.str();
6337 // Get the default information for printing a comment.
6338 StringRef CommentBegin = MAI.getCommentString();
6339 unsigned CommentColumn = MAI.getCommentColumn();
6340 bool IsFirst = true;
6341 while (!Comments.empty()) {
6342 if (!IsFirst)
6343 FormattedOS << '\n';
6344 // Emit a line of comments.
6345 FormattedOS.PadToColumn(CommentColumn);
6346 size_t Position = Comments.find('\n');
6347 FormattedOS << CommentBegin << ' ' << Comments.substr(0, Position);
6348 // Move after the newline character.
6349 Comments = Comments.substr(Position + 1);
6350 IsFirst = false;
6351 }
6352 FormattedOS.flush();
6353
6354 // Tell the comment stream that the vector changed underneath it.
6355 CommentsToEmit.clear();
6356}
6357
6358static void DisassembleMachO(StringRef Filename, MachOObjectFile *MachOOF,
6359 StringRef DisSegName, StringRef DisSectName) {
6360 const char *McpuDefault = nullptr;
6361 const Target *ThumbTarget = nullptr;
6362 const Target *TheTarget = GetTarget(MachOOF, &McpuDefault, &ThumbTarget);
6363 if (!TheTarget) {
1
Taking false branch
6364 // GetTarget prints out stuff.
6365 return;
6366 }
6367 if (MCPU.empty() && McpuDefault)
2
Assuming the condition is false
6368 MCPU = McpuDefault;
6369
6370 std::unique_ptr<const MCInstrInfo> InstrInfo(TheTarget->createMCInstrInfo());
6371 std::unique_ptr<const MCInstrInfo> ThumbInstrInfo;
6372 if (ThumbTarget)
3
Taking true branch
6373 ThumbInstrInfo.reset(ThumbTarget->createMCInstrInfo());
6374
6375 // Package up features to be passed to target/subtarget
6376 std::string FeaturesStr;
6377 if (MAttrs.size()) {
4
Assuming the condition is false
5
Taking false branch
6378 SubtargetFeatures Features;
6379 for (unsigned i = 0; i != MAttrs.size(); ++i)
6380 Features.AddFeature(MAttrs[i]);
6381 FeaturesStr = Features.getString();
6382 }
6383
6384 // Set up disassembler.
6385 std::unique_ptr<const MCRegisterInfo> MRI(
6386 TheTarget->createMCRegInfo(TripleName));
6387 std::unique_ptr<const MCAsmInfo> AsmInfo(
6388 TheTarget->createMCAsmInfo(*MRI, TripleName));
6389 std::unique_ptr<const MCSubtargetInfo> STI(
6390 TheTarget->createMCSubtargetInfo(TripleName, MCPU, FeaturesStr));
6391 MCContext Ctx(AsmInfo.get(), MRI.get(), nullptr);
6392 std::unique_ptr<MCDisassembler> DisAsm(
6393 TheTarget->createMCDisassembler(*STI, Ctx));
6394 std::unique_ptr<MCSymbolizer> Symbolizer;
6395 struct DisassembleInfo SymbolizerInfo;
6396 std::unique_ptr<MCRelocationInfo> RelInfo(
6397 TheTarget->createMCRelocationInfo(TripleName, Ctx));
6398 if (RelInfo) {
6
Taking true branch
6399 Symbolizer.reset(TheTarget->createMCSymbolizer(
6400 TripleName, SymbolizerGetOpInfo, SymbolizerSymbolLookUp,
6401 &SymbolizerInfo, &Ctx, std::move(RelInfo)));
6402 DisAsm->setSymbolizer(std::move(Symbolizer));
6403 }
6404 int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
6405 std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
6406 Triple(TripleName), AsmPrinterVariant, *AsmInfo, *InstrInfo, *MRI));
6407 // Set the display preference for hex vs. decimal immediates.
6408 IP->setPrintImmHex(PrintImmHex);
6409 // Comment stream and backing vector.
6410 SmallString<128> CommentsToEmit;
6411 raw_svector_ostream CommentStream(CommentsToEmit);
6412 // FIXME: Setting the CommentStream in the InstPrinter is problematic in that
6413 // if it is done then arm64 comments for string literals don't get printed
6414 // and some constant get printed instead and not setting it causes intel
6415 // (32-bit and 64-bit) comments printed with different spacing before the
6416 // comment causing different diffs with the 'C' disassembler library API.
6417 // IP->setCommentStream(CommentStream);
6418
6419 if (!AsmInfo || !STI || !DisAsm || !IP) {
7
Taking false branch
6420 errs() << "error: couldn't initialize disassembler for target "
6421 << TripleName << '\n';
6422 return;
6423 }
6424
6425 // Set up separate thumb disassembler if needed.
6426 std::unique_ptr<const MCRegisterInfo> ThumbMRI;
6427 std::unique_ptr<const MCAsmInfo> ThumbAsmInfo;
6428 std::unique_ptr<const MCSubtargetInfo> ThumbSTI;
6429 std::unique_ptr<MCDisassembler> ThumbDisAsm;
6430 std::unique_ptr<MCInstPrinter> ThumbIP;
6431 std::unique_ptr<MCContext> ThumbCtx;
6432 std::unique_ptr<MCSymbolizer> ThumbSymbolizer;
6433 struct DisassembleInfo ThumbSymbolizerInfo;
6434 std::unique_ptr<MCRelocationInfo> ThumbRelInfo;
6435 if (ThumbTarget) {
8
Taking true branch
6436 ThumbMRI.reset(ThumbTarget->createMCRegInfo(ThumbTripleName));
6437 ThumbAsmInfo.reset(
6438 ThumbTarget->createMCAsmInfo(*ThumbMRI, ThumbTripleName));
6439 ThumbSTI.reset(
6440 ThumbTarget->createMCSubtargetInfo(ThumbTripleName, MCPU, FeaturesStr));
6441 ThumbCtx.reset(new MCContext(ThumbAsmInfo.get(), ThumbMRI.get(), nullptr));
6442 ThumbDisAsm.reset(ThumbTarget->createMCDisassembler(*ThumbSTI, *ThumbCtx));
6443 MCContext *PtrThumbCtx = ThumbCtx.get();
6444 ThumbRelInfo.reset(
6445 ThumbTarget->createMCRelocationInfo(ThumbTripleName, *PtrThumbCtx));
6446 if (ThumbRelInfo) {
9
Taking true branch
6447 ThumbSymbolizer.reset(ThumbTarget->createMCSymbolizer(
6448 ThumbTripleName, SymbolizerGetOpInfo, SymbolizerSymbolLookUp,
6449 &ThumbSymbolizerInfo, PtrThumbCtx, std::move(ThumbRelInfo)));
6450 ThumbDisAsm->setSymbolizer(std::move(ThumbSymbolizer));
6451 }
6452 int ThumbAsmPrinterVariant = ThumbAsmInfo->getAssemblerDialect();
6453 ThumbIP.reset(ThumbTarget->createMCInstPrinter(
6454 Triple(ThumbTripleName), ThumbAsmPrinterVariant, *ThumbAsmInfo,
6455 *ThumbInstrInfo, *ThumbMRI));
6456 // Set the display preference for hex vs. decimal immediates.
6457 ThumbIP->setPrintImmHex(PrintImmHex);
6458 }
6459
6460 if (ThumbTarget && (!ThumbAsmInfo || !ThumbSTI || !ThumbDisAsm || !ThumbIP)) {
10
Taking false branch
6461 errs() << "error: couldn't initialize disassembler for target "
6462 << ThumbTripleName << '\n';
6463 return;
6464 }
6465
6466 MachO::mach_header Header = MachOOF->getHeader();
6467
6468 // FIXME: Using the -cfg command line option, this code used to be able to
6469 // annotate relocations with the referenced symbol's name, and if this was
6470 // inside a __[cf]string section, the data it points to. This is now replaced
6471 // by the upcoming MCSymbolizer, which needs the appropriate setup done above.
6472 std::vector<SectionRef> Sections;
6473 std::vector<SymbolRef> Symbols;
6474 SmallVector<uint64_t, 8> FoundFns;
6475 uint64_t BaseSegmentAddress;
11
'BaseSegmentAddress' declared without an initial value
6476
6477 getSectionsAndSymbols(MachOOF, Sections, Symbols, FoundFns,
12
Calling 'getSectionsAndSymbols'
18
Returning from 'getSectionsAndSymbols'
6478 BaseSegmentAddress);
6479
6480 // Sort the symbols by address, just in case they didn't come in that way.
6481 std::sort(Symbols.begin(), Symbols.end(), SymbolSorter());
6482
6483 // Build a data in code table that is sorted on by the address of each entry.
6484 uint64_t BaseAddress = 0;
6485 if (Header.filetype == MachO::MH_OBJECT)
19
Taking false branch
6486 BaseAddress = Sections[0].getAddress();
6487 else
6488 BaseAddress = BaseSegmentAddress;
20
Assigned value is garbage or undefined
6489 DiceTable Dices;
6490 for (dice_iterator DI = MachOOF->begin_dices(), DE = MachOOF->end_dices();
6491 DI != DE; ++DI) {
6492 uint32_t Offset;
6493 DI->getOffset(Offset);
6494 Dices.push_back(std::make_pair(BaseAddress + Offset, *DI));
6495 }
6496 array_pod_sort(Dices.begin(), Dices.end());
6497
6498#ifndef NDEBUG
6499 raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
6500#else
6501 raw_ostream &DebugOut = nulls();
6502#endif
6503
6504 std::unique_ptr<DIContext> diContext;
6505 ObjectFile *DbgObj = MachOOF;
6506 // Try to find debug info and set up the DIContext for it.
6507 if (UseDbg) {
6508 // A separate DSym file path was specified, parse it as a macho file,
6509 // get the sections and supply it to the section name parsing machinery.
6510 if (!DSYMFile.empty()) {
6511 ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr =
6512 MemoryBuffer::getFileOrSTDIN(DSYMFile);
6513 if (std::error_code EC = BufOrErr.getError()) {
6514 errs() << "llvm-objdump: " << Filename << ": " << EC.message() << '\n';
6515 return;
6516 }
6517 DbgObj =
6518 ObjectFile::createMachOObjectFile(BufOrErr.get()->getMemBufferRef())
6519 .get()
6520 .release();
6521 }
6522
6523 // Setup the DIContext
6524 diContext.reset(new DWARFContextInMemory(*DbgObj));
6525 }
6526
6527 if (FilterSections.size() == 0)
6528 outs() << "(" << DisSegName << "," << DisSectName << ") section\n";
6529
6530 for (unsigned SectIdx = 0; SectIdx != Sections.size(); SectIdx++) {
6531 StringRef SectName;
6532 if (Sections[SectIdx].getName(SectName) || SectName != DisSectName)
6533 continue;
6534
6535 DataRefImpl DR = Sections[SectIdx].getRawDataRefImpl();
6536
6537 StringRef SegmentName = MachOOF->getSectionFinalSegmentName(DR);
6538 if (SegmentName != DisSegName)
6539 continue;
6540
6541 StringRef BytesStr;
6542 Sections[SectIdx].getContents(BytesStr);
6543 ArrayRef<uint8_t> Bytes(reinterpret_cast<const uint8_t *>(BytesStr.data()),
6544 BytesStr.size());
6545 uint64_t SectAddress = Sections[SectIdx].getAddress();
6546
6547 bool symbolTableWorked = false;
6548
6549 // Create a map of symbol addresses to symbol names for use by
6550 // the SymbolizerSymbolLookUp() routine.
6551 SymbolAddressMap AddrMap;
6552 bool DisSymNameFound = false;
6553 for (const SymbolRef &Symbol : MachOOF->symbols()) {
6554 Expected<SymbolRef::Type> STOrErr = Symbol.getType();
6555 if (!STOrErr)
6556 report_error(MachOOF->getFileName(), STOrErr.takeError());
6557 SymbolRef::Type ST = *STOrErr;
6558 if (ST == SymbolRef::ST_Function || ST == SymbolRef::ST_Data ||
6559 ST == SymbolRef::ST_Other) {
6560 uint64_t Address = Symbol.getValue();
6561 Expected<StringRef> SymNameOrErr = Symbol.getName();
6562 if (!SymNameOrErr)
6563 report_error(MachOOF->getFileName(), SymNameOrErr.takeError());
6564 StringRef SymName = *SymNameOrErr;
6565 AddrMap[Address] = SymName;
6566 if (!DisSymName.empty() && DisSymName == SymName)
6567 DisSymNameFound = true;
6568 }
6569 }
6570 if (!DisSymName.empty() && !DisSymNameFound) {
6571 outs() << "Can't find -dis-symname: " << DisSymName << "\n";
6572 return;
6573 }
6574 // Set up the block of info used by the Symbolizer call backs.
6575 SymbolizerInfo.verbose = !NoSymbolicOperands;
6576 SymbolizerInfo.O = MachOOF;
6577 SymbolizerInfo.S = Sections[SectIdx];
6578 SymbolizerInfo.AddrMap = &AddrMap;
6579 SymbolizerInfo.Sections = &Sections;
6580 SymbolizerInfo.class_name = nullptr;
6581 SymbolizerInfo.selector_name = nullptr;
6582 SymbolizerInfo.method = nullptr;
6583 SymbolizerInfo.demangled_name = nullptr;
6584 SymbolizerInfo.bindtable = nullptr;
6585 SymbolizerInfo.adrp_addr = 0;
6586 SymbolizerInfo.adrp_inst = 0;
6587 // Same for the ThumbSymbolizer
6588 ThumbSymbolizerInfo.verbose = !NoSymbolicOperands;
6589 ThumbSymbolizerInfo.O = MachOOF;
6590 ThumbSymbolizerInfo.S = Sections[SectIdx];
6591 ThumbSymbolizerInfo.AddrMap = &AddrMap;
6592 ThumbSymbolizerInfo.Sections = &Sections;
6593 ThumbSymbolizerInfo.class_name = nullptr;
6594 ThumbSymbolizerInfo.selector_name = nullptr;
6595 ThumbSymbolizerInfo.method = nullptr;
6596 ThumbSymbolizerInfo.demangled_name = nullptr;
6597 ThumbSymbolizerInfo.bindtable = nullptr;
6598 ThumbSymbolizerInfo.adrp_addr = 0;
6599 ThumbSymbolizerInfo.adrp_inst = 0;
6600
6601 unsigned int Arch = MachOOF->getArch();
6602
6603 // Skip all symbols if this is a stubs file.
6604 if (Bytes.size() == 0)
6605 return;
6606
6607 // Disassemble symbol by symbol.
6608 for (unsigned SymIdx = 0; SymIdx != Symbols.size(); SymIdx++) {
6609 Expected<StringRef> SymNameOrErr = Symbols[SymIdx].getName();
6610 if (!SymNameOrErr)
6611 report_error(MachOOF->getFileName(), SymNameOrErr.takeError());
6612 StringRef SymName = *SymNameOrErr;
6613
6614 Expected<SymbolRef::Type> STOrErr = Symbols[SymIdx].getType();
6615 if (!STOrErr)
6616 report_error(MachOOF->getFileName(), STOrErr.takeError());
6617 SymbolRef::Type ST = *STOrErr;
6618 if (ST != SymbolRef::ST_Function && ST != SymbolRef::ST_Data)
6619 continue;
6620
6621 // Make sure the symbol is defined in this section.
6622 bool containsSym = Sections[SectIdx].containsSymbol(Symbols[SymIdx]);
6623 if (!containsSym) {
6624 if (!DisSymName.empty() && DisSymName == SymName) {
6625 outs() << "-dis-symname: " << DisSymName << " not in the section\n";
6626 return;
6627 }
6628 continue;
6629 }
6630 // The __mh_execute_header is special and we need to deal with that fact
6631 // this symbol is before the start of the (__TEXT,__text) section and at the
6632 // address of the start of the __TEXT segment. This is because this symbol
6633 // is an N_SECT symbol in the (__TEXT,__text) but its address is before the
6634 // start of the section in a standard MH_EXECUTE filetype.
6635 if (!DisSymName.empty() && DisSymName == "__mh_execute_header") {
6636 outs() << "-dis-symname: __mh_execute_header not in any section\n";
6637 return;
6638 }
6639 // When this code is trying to disassemble a symbol at a time and in the
6640 // case there is only the __mh_execute_header symbol left as in a stripped
6641 // executable, we need to deal with this by ignoring this symbol so the
6642 // whole section is disassembled and this symbol is then not displayed.
6643 if (SymName == "__mh_execute_header" || SymName == "__mh_dylib_header" ||
6644 SymName == "__mh_bundle_header" || SymName == "__mh_object_header" ||
6645 SymName == "__mh_preload_header" || SymName == "__mh_dylinker_header")
6646 continue;
6647
6648 // If we are only disassembling one symbol see if this is that symbol.
6649 if (!DisSymName.empty() && DisSymName != SymName)
6650 continue;
6651
6652 // Start at the address of the symbol relative to the section's address.
6653 uint64_t SectSize = Sections[SectIdx].getSize();
6654 uint64_t Start = Symbols[SymIdx].getValue();
6655 uint64_t SectionAddress = Sections[SectIdx].getAddress();
6656 Start -= SectionAddress;
6657
6658 if (Start > SectSize) {
6659 outs() << "section data ends, " << SymName
6660 << " lies outside valid range\n";
6661 return;
6662 }
6663
6664 // Stop disassembling either at the beginning of the next symbol or at
6665 // the end of the section.
6666 bool containsNextSym = false;
6667 uint64_t NextSym = 0;
6668 uint64_t NextSymIdx = SymIdx + 1;
6669 while (Symbols.size() > NextSymIdx) {
6670 Expected<SymbolRef::Type> STOrErr = Symbols[NextSymIdx].getType();
6671 if (!STOrErr)
6672 report_error(MachOOF->getFileName(), STOrErr.takeError());
6673 SymbolRef::Type NextSymType = *STOrErr;
6674 if (NextSymType == SymbolRef::ST_Function) {
6675 containsNextSym =
6676 Sections[SectIdx].containsSymbol(Symbols[NextSymIdx]);
6677 NextSym = Symbols[NextSymIdx].getValue();
6678 NextSym -= SectionAddress;
6679 break;
6680 }
6681 ++NextSymIdx;
6682 }
6683
6684 uint64_t End = containsNextSym ? std::min(NextSym, SectSize) : SectSize;
6685 uint64_t Size;
6686
6687 symbolTableWorked = true;
6688
6689 DataRefImpl Symb = Symbols[SymIdx].getRawDataRefImpl();
6690 bool IsThumb = MachOOF->getSymbolFlags(Symb) & SymbolRef::SF_Thumb;
6691
6692 // We only need the dedicated Thumb target if there's a real choice
6693 // (i.e. we're not targeting M-class) and the function is Thumb.
6694 bool UseThumbTarget = IsThumb && ThumbTarget;
6695
6696 outs() << SymName << ":\n";
6697 DILineInfo lastLine;
6698 for (uint64_t Index = Start; Index < End; Index += Size) {
6699 MCInst Inst;
6700
6701 uint64_t PC = SectAddress + Index;
6702 if (!NoLeadingAddr) {
6703 if (FullLeadingAddr) {
6704 if (MachOOF->is64Bit())
6705 outs() << format("%016" PRIx64"l" "x", PC);
6706 else
6707 outs() << format("%08" PRIx64"l" "x", PC);
6708 } else {
6709 outs() << format("%8" PRIx64"l" "x" ":", PC);
6710 }
6711 }
6712 if (!NoShowRawInsn || Arch == Triple::arm)
6713 outs() << "\t";
6714
6715 // Check the data in code table here to see if this is data not an
6716 // instruction to be disassembled.
6717 DiceTable Dice;
6718 Dice.push_back(std::make_pair(PC, DiceRef()));
6719 dice_table_iterator DTI =
6720 std::search(Dices.begin(), Dices.end(), Dice.begin(), Dice.end(),
6721 compareDiceTableEntries);
6722 if (DTI != Dices.end()) {
6723 uint16_t Length;
6724 DTI->second.getLength(Length);
6725 uint16_t Kind;
6726 DTI->second.getKind(Kind);
6727 Size = DumpDataInCode(Bytes.data() + Index, Length, Kind);
6728 if ((Kind == MachO::DICE_KIND_JUMP_TABLE8) &&
6729 (PC == (DTI->first + Length - 1)) && (Length & 1))
6730 Size++;
6731 continue;
6732 }
6733
6734 SmallVector<char, 64> AnnotationsBytes;
6735 raw_svector_ostream Annotations(AnnotationsBytes);
6736
6737 bool gotInst;
6738 if (UseThumbTarget)
6739 gotInst = ThumbDisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
6740 PC, DebugOut, Annotations);
6741 else
6742 gotInst = DisAsm->getInstruction(Inst, Size, Bytes.slice(Index), PC,
6743 DebugOut, Annotations);
6744 if (gotInst) {
6745 if (!NoShowRawInsn || Arch == Triple::arm) {
6746 dumpBytes(makeArrayRef(Bytes.data() + Index, Size), outs());
6747 }
6748 formatted_raw_ostream FormattedOS(outs());
6749 StringRef AnnotationsStr = Annotations.str();
6750 if (UseThumbTarget)
6751 ThumbIP->printInst(&Inst, FormattedOS, AnnotationsStr, *ThumbSTI);
6752 else
6753 IP->printInst(&Inst, FormattedOS, AnnotationsStr, *STI);
6754 emitComments(CommentStream, CommentsToEmit, FormattedOS, *AsmInfo);
6755
6756 // Print debug info.
6757 if (diContext) {
6758 DILineInfo dli = diContext->getLineInfoForAddress(PC);
6759 // Print valid line info if it changed.
6760 if (dli != lastLine && dli.Line != 0)
6761 outs() << "\t## " << dli.FileName << ':' << dli.Line << ':'
6762 << dli.Column;
6763 lastLine = dli;
6764 }
6765 outs() << "\n";
6766 } else {
6767 unsigned int Arch = MachOOF->getArch();
6768 if (Arch == Triple::x86_64 || Arch == Triple::x86) {
6769 outs() << format("\t.byte 0x%02x #bad opcode\n",
6770 *(Bytes.data() + Index) & 0xff);
6771 Size = 1; // skip exactly one illegible byte and move on.
6772 } else if (Arch == Triple::aarch64 ||
6773 (Arch == Triple::arm && !IsThumb)) {
6774 uint32_t opcode = (*(Bytes.data() + Index) & 0xff) |
6775 (*(Bytes.data() + Index + 1) & 0xff) << 8 |
6776 (*(Bytes.data() + Index + 2) & 0xff) << 16 |
6777 (*(Bytes.data() + Index + 3) & 0xff) << 24;
6778 outs() << format("\t.long\t0x%08x\n", opcode);
6779 Size = 4;
6780 } else if (Arch == Triple::arm) {
6781 assert(IsThumb && "ARM mode should have been dealt with above")((IsThumb && "ARM mode should have been dealt with above"
) ? static_cast<void> (0) : __assert_fail ("IsThumb && \"ARM mode should have been dealt with above\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/tools/llvm-objdump/MachODump.cpp"
, 6781, __PRETTY_FUNCTION__))
;
6782 uint32_t opcode = (*(Bytes.data() + Index) & 0xff) |
6783 (*(Bytes.data() + Index + 1) & 0xff) << 8;
6784 outs() << format("\t.short\t0x%04x\n", opcode);
6785 Size = 2;
6786 } else{
6787 errs() << "llvm-objdump: warning: invalid instruction encoding\n";
6788 if (Size == 0)
6789 Size = 1; // skip illegible bytes
6790 }
6791 }
6792 }
6793 }
6794 if (!symbolTableWorked) {
6795 // Reading the symbol table didn't work, disassemble the whole section.
6796 uint64_t SectAddress = Sections[SectIdx].getAddress();
6797 uint64_t SectSize = Sections[SectIdx].getSize();
6798 uint64_t InstSize;
6799 for (uint64_t Index = 0; Index < SectSize; Index += InstSize) {
6800 MCInst Inst;
6801
6802 uint64_t PC = SectAddress + Index;
6803 if (DisAsm->getInstruction(Inst, InstSize, Bytes.slice(Index), PC,
6804 DebugOut, nulls())) {
6805 if (!NoLeadingAddr) {
6806 if (FullLeadingAddr) {
6807 if (MachOOF->is64Bit())
6808 outs() << format("%016" PRIx64"l" "x", PC);
6809 else
6810 outs() << format("%08" PRIx64"l" "x", PC);
6811 } else {
6812 outs() << format("%8" PRIx64"l" "x" ":", PC);
6813 }
6814 }
6815 if (!NoShowRawInsn || Arch == Triple::arm) {
6816 outs() << "\t";
6817 dumpBytes(makeArrayRef(Bytes.data() + Index, InstSize), outs());
6818 }
6819 IP->printInst(&Inst, outs(), "", *STI);
6820 outs() << "\n";
6821 } else {
6822 unsigned int Arch = MachOOF->getArch();
6823 if (Arch == Triple::x86_64 || Arch == Triple::x86) {
6824 outs() << format("\t.byte 0x%02x #bad opcode\n",
6825 *(Bytes.data() + Index) & 0xff);
6826 InstSize = 1; // skip exactly one illegible byte and move on.
6827 } else {
6828 errs() << "llvm-objdump: warning: invalid instruction encoding\n";
6829 if (InstSize == 0)
6830 InstSize = 1; // skip illegible bytes
6831 }
6832 }
6833 }
6834 }
6835 // The TripleName's need to be reset if we are called again for a different
6836 // archtecture.
6837 TripleName = "";
6838 ThumbTripleName = "";
6839
6840 if (SymbolizerInfo.method != nullptr)
6841 free(SymbolizerInfo.method);
6842 if (SymbolizerInfo.demangled_name != nullptr)
6843 free(SymbolizerInfo.demangled_name);
6844 if (SymbolizerInfo.bindtable != nullptr)
6845 delete SymbolizerInfo.bindtable;
6846 if (ThumbSymbolizerInfo.method != nullptr)
6847 free(ThumbSymbolizerInfo.method);
6848 if (ThumbSymbolizerInfo.demangled_name != nullptr)
6849 free(ThumbSymbolizerInfo.demangled_name);
6850 if (ThumbSymbolizerInfo.bindtable != nullptr)
6851 delete ThumbSymbolizerInfo.bindtable;
6852 }
6853}
6854
6855//===----------------------------------------------------------------------===//
6856// __compact_unwind section dumping
6857//===----------------------------------------------------------------------===//
6858
6859namespace {
6860
6861template <typename T> static uint64_t readNext(const char *&Buf) {
6862 using llvm::support::little;
6863 using llvm::support::unaligned;
6864
6865 uint64_t Val = support::endian::read<T, little, unaligned>(Buf);
6866 Buf += sizeof(T);
6867 return Val;
6868}
6869
6870struct CompactUnwindEntry {
6871 uint32_t OffsetInSection;
6872
6873 uint64_t FunctionAddr;
6874 uint32_t Length;
6875 uint32_t CompactEncoding;
6876 uint64_t PersonalityAddr;
6877 uint64_t LSDAAddr;
6878
6879 RelocationRef FunctionReloc;
6880 RelocationRef PersonalityReloc;
6881 RelocationRef LSDAReloc;
6882
6883 CompactUnwindEntry(StringRef Contents, unsigned Offset, bool Is64)
6884 : OffsetInSection(Offset) {
6885 if (Is64)
6886 read<uint64_t>(Contents.data() + Offset);
6887 else
6888 read<uint32_t>(Contents.data() + Offset);
6889 }
6890
6891private:
6892 template <typename UIntPtr> void read(const char *Buf) {
6893 FunctionAddr = readNext<UIntPtr>(Buf);
6894 Length = readNext<uint32_t>(Buf);
6895 CompactEncoding = readNext<uint32_t>(Buf);
6896 PersonalityAddr = readNext<UIntPtr>(Buf);
6897 LSDAAddr = readNext<UIntPtr>(Buf);
6898 }
6899};
6900}
6901
6902/// Given a relocation from __compact_unwind, consisting of the RelocationRef
6903/// and data being relocated, determine the best base Name and Addend to use for
6904/// display purposes.
6905///
6906/// 1. An Extern relocation will directly reference a symbol (and the data is
6907/// then already an addend), so use that.
6908/// 2. Otherwise the data is an offset in the object file's layout; try to find
6909// a symbol before it in the same section, and use the offset from there.
6910/// 3. Finally, if all that fails, fall back to an offset from the start of the
6911/// referenced section.
6912static void findUnwindRelocNameAddend(const MachOObjectFile *Obj,
6913 std::map<uint64_t, SymbolRef> &Symbols,
6914 const RelocationRef &Reloc, uint64_t Addr,
6915 StringRef &Name, uint64_t &Addend) {
6916 if (Reloc.getSymbol() != Obj->symbol_end()) {
6917 Expected<StringRef> NameOrErr = Reloc.getSymbol()->getName();
6918 if (!NameOrErr)
6919 report_error(Obj->getFileName(), NameOrErr.takeError());
6920 Name = *NameOrErr;
6921 Addend = Addr;
6922 return;
6923 }
6924
6925 auto RE = Obj->getRelocation(Reloc.getRawDataRefImpl());
6926 SectionRef RelocSection = Obj->getAnyRelocationSection(RE);
6927
6928 uint64_t SectionAddr = RelocSection.getAddress();
6929
6930 auto Sym = Symbols.upper_bound(Addr);
6931 if (Sym == Symbols.begin()) {
6932 // The first symbol in the object is after this reference, the best we can
6933 // do is section-relative notation.
6934 RelocSection.getName(Name);
6935 Addend = Addr - SectionAddr;
6936 return;
6937 }
6938
6939 // Go back one so that SymbolAddress <= Addr.
6940 --Sym;
6941
6942 auto SectOrErr = Sym->second.getSection();
6943 if (!SectOrErr)
6944 report_error(Obj->getFileName(), SectOrErr.takeError());
6945 section_iterator SymSection = *SectOrErr;
6946 if (RelocSection == *SymSection) {
6947 // There's a valid symbol in the same section before this reference.
6948 Expected<StringRef> NameOrErr = Sym->second.getName();
6949 if (!NameOrErr)
6950 report_error(Obj->getFileName(), NameOrErr.takeError());
6951 Name = *NameOrErr;
6952 Addend = Addr - Sym->first;
6953 return;
6954 }
6955
6956 // There is a symbol before this reference, but it's in a different
6957 // section. Probably not helpful to mention it, so use the section name.
6958 RelocSection.getName(Name);
6959 Addend = Addr - SectionAddr;
6960}
6961
6962static void printUnwindRelocDest(const MachOObjectFile *Obj,
6963 std::map<uint64_t, SymbolRef> &Symbols,
6964 const RelocationRef &Reloc, uint64_t Addr) {
6965 StringRef Name;
6966 uint64_t Addend;
6967
6968 if (!Reloc.getObject())
6969 return;
6970
6971 findUnwindRelocNameAddend(Obj, Symbols, Reloc, Addr, Name, Addend);
6972
6973 outs() << Name;
6974 if (Addend)
6975 outs() << " + " << format("0x%" PRIx64"l" "x", Addend);
6976}
6977
6978static void
6979printMachOCompactUnwindSection(const MachOObjectFile *Obj,
6980 std::map<uint64_t, SymbolRef> &Symbols,
6981 const SectionRef &CompactUnwind) {
6982
6983 if (!Obj->isLittleEndian()) {
6984 outs() << "Skipping big-endian __compact_unwind section\n";
6985 return;
6986 }
6987
6988 bool Is64 = Obj->is64Bit();
6989 uint32_t PointerSize = Is64 ? sizeof(uint64_t) : sizeof(uint32_t);
6990 uint32_t EntrySize = 3 * PointerSize + 2 * sizeof(uint32_t);
6991
6992 StringRef Contents;
6993 CompactUnwind.getContents(Contents);
6994
6995 SmallVector<CompactUnwindEntry, 4> CompactUnwinds;
6996
6997 // First populate the initial raw offsets, encodings and so on from the entry.
6998 for (unsigned Offset = 0; Offset < Contents.size(); Offset += EntrySize) {
6999 CompactUnwindEntry Entry(Contents.data(), Offset, Is64);
7000 CompactUnwinds.push_back(Entry);
7001 }
7002
7003 // Next we need to look at the relocations to find out what objects are
7004 // actually being referred to.
7005 for (const RelocationRef &Reloc : CompactUnwind.relocations()) {
7006 uint64_t RelocAddress = Reloc.getOffset();
7007
7008 uint32_t EntryIdx = RelocAddress / EntrySize;
7009 uint32_t OffsetInEntry = RelocAddress - EntryIdx * EntrySize;
7010 CompactUnwindEntry &Entry = CompactUnwinds[EntryIdx];
7011
7012 if (OffsetInEntry == 0)
7013 Entry.FunctionReloc = Reloc;
7014 else if (OffsetInEntry == PointerSize + 2 * sizeof(uint32_t))
7015 Entry.PersonalityReloc = Reloc;
7016 else if (OffsetInEntry == 2 * PointerSize + 2 * sizeof(uint32_t))
7017 Entry.LSDAReloc = Reloc;
7018 else {
7019 outs() << "Invalid relocation in __compact_unwind section\n";
7020 return;
7021 }
7022 }
7023
7024 // Finally, we're ready to print the data we've gathered.
7025 outs() << "Contents of __compact_unwind section:\n";
7026 for (auto &Entry : CompactUnwinds) {
7027 outs() << " Entry at offset "
7028 << format("0x%" PRIx32"x", Entry.OffsetInSection) << ":\n";
7029
7030 // 1. Start of the region this entry applies to.
7031 outs() << " start: " << format("0x%" PRIx64"l" "x",
7032 Entry.FunctionAddr) << ' ';
7033 printUnwindRelocDest(Obj, Symbols, Entry.FunctionReloc, Entry.FunctionAddr);
7034 outs() << '\n';
7035
7036 // 2. Length of the region this entry applies to.
7037 outs() << " length: " << format("0x%" PRIx32"x", Entry.Length)
7038 << '\n';
7039 // 3. The 32-bit compact encoding.
7040 outs() << " compact encoding: "
7041 << format("0x%08" PRIx32"x", Entry.CompactEncoding) << '\n';
7042
7043 // 4. The personality function, if present.
7044 if (Entry.PersonalityReloc.getObject()) {
7045 outs() << " personality function: "
7046 << format("0x%" PRIx64"l" "x", Entry.PersonalityAddr) << ' ';
7047 printUnwindRelocDest(Obj, Symbols, Entry.PersonalityReloc,
7048 Entry.PersonalityAddr);
7049 outs() << '\n';
7050 }
7051
7052 // 5. This entry's language-specific data area.
7053 if (Entry.LSDAReloc.getObject()) {
7054 outs() << " LSDA: " << format("0x%" PRIx64"l" "x",
7055 Entry.LSDAAddr) << ' ';
7056 printUnwindRelocDest(Obj, Symbols, Entry.LSDAReloc, Entry.LSDAAddr);
7057 outs() << '\n';
7058 }
7059 }
7060}
7061
7062//===----------------------------------------------------------------------===//
7063// __unwind_info section dumping
7064//===----------------------------------------------------------------------===//
7065
7066static void printRegularSecondLevelUnwindPage(const char *PageStart) {
7067 const char *Pos = PageStart;
7068 uint32_t Kind = readNext<uint32_t>(Pos);
7069 (void)Kind;
7070 assert(Kind == 2 && "kind for a regular 2nd level index should be 2")((Kind == 2 && "kind for a regular 2nd level index should be 2"
) ? static_cast<void> (0) : __assert_fail ("Kind == 2 && \"kind for a regular 2nd level index should be 2\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/tools/llvm-objdump/MachODump.cpp"
, 7070, __PRETTY_FUNCTION__))
;
7071
7072 uint16_t EntriesStart = readNext<uint16_t>(Pos);
7073 uint16_t NumEntries = readNext<uint16_t>(Pos);
7074
7075 Pos = PageStart + EntriesStart;
7076 for (unsigned i = 0; i < NumEntries; ++i) {
7077 uint32_t FunctionOffset = readNext<uint32_t>(Pos);
7078 uint32_t Encoding = readNext<uint32_t>(Pos);
7079
7080 outs() << " [" << i << "]: "
7081 << "function offset=" << format("0x%08" PRIx32"x", FunctionOffset)
7082 << ", "
7083 << "encoding=" << format("0x%08" PRIx32"x", Encoding) << '\n';
7084 }
7085}
7086
7087static void printCompressedSecondLevelUnwindPage(
7088 const char *PageStart, uint32_t FunctionBase,
7089 const SmallVectorImpl<uint32_t> &CommonEncodings) {
7090 const char *Pos = PageStart;
7091 uint32_t Kind = readNext<uint32_t>(Pos);
7092 (void)Kind;
7093 assert(Kind == 3 && "kind for a compressed 2nd level index should be 3")((Kind == 3 && "kind for a compressed 2nd level index should be 3"
) ? static_cast<void> (0) : __assert_fail ("Kind == 3 && \"kind for a compressed 2nd level index should be 3\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/tools/llvm-objdump/MachODump.cpp"
, 7093, __PRETTY_FUNCTION__))
;
7094
7095 uint16_t EntriesStart = readNext<uint16_t>(Pos);
7096 uint16_t NumEntries = readNext<uint16_t>(Pos);
7097
7098 uint16_t EncodingsStart = readNext<uint16_t>(Pos);
7099 readNext<uint16_t>(Pos);
7100 const auto *PageEncodings = reinterpret_cast<const support::ulittle32_t *>(
7101 PageStart + EncodingsStart);
7102
7103 Pos = PageStart + EntriesStart;
7104 for (unsigned i = 0; i < NumEntries; ++i) {
7105 uint32_t Entry = readNext<uint32_t>(Pos);
7106 uint32_t FunctionOffset = FunctionBase + (Entry & 0xffffff);
7107 uint32_t EncodingIdx = Entry >> 24;
7108
7109 uint32_t Encoding;
7110 if (EncodingIdx < CommonEncodings.size())
7111 Encoding = CommonEncodings[EncodingIdx];
7112 else
7113 Encoding = PageEncodings[EncodingIdx - CommonEncodings.size()];
7114
7115 outs() << " [" << i << "]: "
7116 << "function offset=" << format("0x%08" PRIx32"x", FunctionOffset)
7117 << ", "
7118 << "encoding[" << EncodingIdx
7119 << "]=" << format("0x%08" PRIx32"x", Encoding) << '\n';
7120 }
7121}
7122
7123static void printMachOUnwindInfoSection(const MachOObjectFile *Obj,
7124 std::map<uint64_t, SymbolRef> &Symbols,
7125 const SectionRef &UnwindInfo) {
7126
7127 if (!Obj->isLittleEndian()) {
7128 outs() << "Skipping big-endian __unwind_info section\n";
7129 return;
7130 }
7131
7132 outs() << "Contents of __unwind_info section:\n";
7133
7134 StringRef Contents;
7135 UnwindInfo.getContents(Contents);
7136 const char *Pos = Contents.data();
7137
7138 //===----------------------------------
7139 // Section header
7140 //===----------------------------------
7141
7142 uint32_t Version = readNext<uint32_t>(Pos);
7143 outs() << " Version: "
7144 << format("0x%" PRIx32"x", Version) << '\n';
7145 if (Version != 1) {
7146 outs() << " Skipping section with unknown version\n";
7147 return;
7148 }
7149
7150 uint32_t CommonEncodingsStart = readNext<uint32_t>(Pos);
7151 outs() << " Common encodings array section offset: "
7152 << format("0x%" PRIx32"x", CommonEncodingsStart) << '\n';
7153 uint32_t NumCommonEncodings = readNext<uint32_t>(Pos);
7154 outs() << " Number of common encodings in array: "
7155 << format("0x%" PRIx32"x", NumCommonEncodings) << '\n';
7156
7157 uint32_t PersonalitiesStart = readNext<uint32_t>(Pos);
7158 outs() << " Personality function array section offset: "
7159 << format("0x%" PRIx32"x", PersonalitiesStart) << '\n';
7160 uint32_t NumPersonalities = readNext<uint32_t>(Pos);
7161 outs() << " Number of personality functions in array: "
7162 << format("0x%" PRIx32"x", NumPersonalities) << '\n';
7163
7164 uint32_t IndicesStart = readNext<uint32_t>(Pos);
7165 outs() << " Index array section offset: "
7166 << format("0x%" PRIx32"x", IndicesStart) << '\n';
7167 uint32_t NumIndices = readNext<uint32_t>(Pos);
7168 outs() << " Number of indices in array: "
7169 << format("0x%" PRIx32"x", NumIndices) << '\n';
7170
7171 //===----------------------------------
7172 // A shared list of common encodings
7173 //===----------------------------------
7174
7175 // These occupy indices in the range [0, N] whenever an encoding is referenced
7176 // from a compressed 2nd level index table. In practice the linker only
7177 // creates ~128 of these, so that indices are available to embed encodings in
7178 // the 2nd level index.
7179
7180 SmallVector<uint32_t, 64> CommonEncodings;
7181 outs() << " Common encodings: (count = " << NumCommonEncodings << ")\n";
7182 Pos = Contents.data() + CommonEncodingsStart;
7183 for (unsigned i = 0; i < NumCommonEncodings; ++i) {
7184 uint32_t Encoding = readNext<uint32_t>(Pos);
7185 CommonEncodings.push_back(Encoding);
7186
7187 outs() << " encoding[" << i << "]: " << format("0x%08" PRIx32"x", Encoding)
7188 << '\n';
7189 }
7190
7191 //===----------------------------------
7192 // Personality functions used in this executable
7193 //===----------------------------------
7194
7195 // There should be only a handful of these (one per source language,
7196 // roughly). Particularly since they only get 2 bits in the compact encoding.
7197
7198 outs() << " Personality functions: (count = " << NumPersonalities << ")\n";
7199 Pos = Contents.data() + PersonalitiesStart;
7200 for (unsigned i = 0; i < NumPersonalities; ++i) {
7201 uint32_t PersonalityFn = readNext<uint32_t>(Pos);
7202 outs() << " personality[" << i + 1
7203 << "]: " << format("0x%08" PRIx32"x", PersonalityFn) << '\n';
7204 }
7205
7206 //===----------------------------------
7207 // The level 1 index entries
7208 //===----------------------------------
7209
7210 // These specify an approximate place to start searching for the more detailed
7211 // information, sorted by PC.
7212
7213 struct IndexEntry {
7214 uint32_t FunctionOffset;
7215 uint32_t SecondLevelPageStart;
7216 uint32_t LSDAStart;
7217 };
7218
7219 SmallVector<IndexEntry, 4> IndexEntries;
7220
7221 outs() << " Top level indices: (count = " << NumIndices << ")\n";
7222 Pos = Contents.data() + IndicesStart;
7223 for (unsigned i = 0; i < NumIndices; ++i) {
7224 IndexEntry Entry;
7225
7226 Entry.FunctionOffset = readNext<uint32_t>(Pos);
7227 Entry.SecondLevelPageStart = readNext<uint32_t>(Pos);
7228 Entry.LSDAStart = readNext<uint32_t>(Pos);
7229 IndexEntries.push_back(Entry);
7230
7231 outs() << " [" << i << "]: "
7232 << "function offset=" << format("0x%08" PRIx32"x", Entry.FunctionOffset)
7233 << ", "
7234 << "2nd level page offset="
7235 << format("0x%08" PRIx32"x", Entry.SecondLevelPageStart) << ", "
7236 << "LSDA offset=" << format("0x%08" PRIx32"x", Entry.LSDAStart) << '\n';
7237 }
7238
7239 //===----------------------------------
7240 // Next come the LSDA tables
7241 //===----------------------------------
7242
7243 // The LSDA layout is rather implicit: it's a contiguous array of entries from
7244 // the first top-level index's LSDAOffset to the last (sentinel).
7245
7246 outs() << " LSDA descriptors:\n";
7247 Pos = Contents.data() + IndexEntries[0].LSDAStart;
7248 int NumLSDAs = (IndexEntries.back().LSDAStart - IndexEntries[0].LSDAStart) /
7249 (2 * sizeof(uint32_t));
7250 for (int i = 0; i < NumLSDAs; ++i) {
7251 uint32_t FunctionOffset = readNext<uint32_t>(Pos);
7252 uint32_t LSDAOffset = readNext<uint32_t>(Pos);
7253 outs() << " [" << i << "]: "
7254 << "function offset=" << format("0x%08" PRIx32"x", FunctionOffset)
7255 << ", "
7256 << "LSDA offset=" << format("0x%08" PRIx32"x", LSDAOffset) << '\n';
7257 }
7258
7259 //===----------------------------------
7260 // Finally, the 2nd level indices
7261 //===----------------------------------
7262
7263 // Generally these are 4K in size, and have 2 possible forms:
7264 // + Regular stores up to 511 entries with disparate encodings
7265 // + Compressed stores up to 1021 entries if few enough compact encoding
7266 // values are used.
7267 outs() << " Second level indices:\n";
7268 for (unsigned i = 0; i < IndexEntries.size() - 1; ++i) {
7269 // The final sentinel top-level index has no associated 2nd level page
7270 if (IndexEntries[i].SecondLevelPageStart == 0)
7271 break;
7272
7273 outs() << " Second level index[" << i << "]: "
7274 << "offset in section="
7275 << format("0x%08" PRIx32"x", IndexEntries[i].SecondLevelPageStart)
7276 << ", "
7277 << "base function offset="
7278 << format("0x%08" PRIx32"x", IndexEntries[i].FunctionOffset) << '\n';
7279
7280 Pos = Contents.data() + IndexEntries[i].SecondLevelPageStart;
7281 uint32_t Kind = *reinterpret_cast<const support::ulittle32_t *>(Pos);
7282 if (Kind == 2)
7283 printRegularSecondLevelUnwindPage(Pos);
7284 else if (Kind == 3)
7285 printCompressedSecondLevelUnwindPage(Pos, IndexEntries[i].FunctionOffset,
7286 CommonEncodings);
7287 else
7288 outs() << " Skipping 2nd level page with unknown kind " << Kind
7289 << '\n';
7290 }
7291}
7292
7293void llvm::printMachOUnwindInfo(const MachOObjectFile *Obj) {
7294 std::map<uint64_t, SymbolRef> Symbols;
7295 for (const SymbolRef &SymRef : Obj->symbols()) {
7296 // Discard any undefined or absolute symbols. They're not going to take part
7297 // in the convenience lookup for unwind info and just take up resources.
7298 auto SectOrErr = SymRef.getSection();
7299 if (!SectOrErr) {
7300 // TODO: Actually report errors helpfully.
7301 consumeError(SectOrErr.takeError());
7302 continue;
7303 }
7304 section_iterator Section = *SectOrErr;
7305 if (Section == Obj->section_end())
7306 continue;
7307
7308 uint64_t Addr = SymRef.getValue();
7309 Symbols.insert(std::make_pair(Addr, SymRef));
7310 }
7311
7312 for (const SectionRef &Section : Obj->sections()) {
7313 StringRef SectName;
7314 Section.getName(SectName);
7315 if (SectName == "__compact_unwind")
7316 printMachOCompactUnwindSection(Obj, Symbols, Section);
7317 else if (SectName == "__unwind_info")
7318 printMachOUnwindInfoSection(Obj, Symbols, Section);
7319 }
7320}
7321
7322static void PrintMachHeader(uint32_t magic, uint32_t cputype,
7323 uint32_t cpusubtype, uint32_t filetype,
7324 uint32_t ncmds, uint32_t sizeofcmds, uint32_t flags,
7325 bool verbose) {
7326 outs() << "Mach header\n";
7327 outs() << " magic cputype cpusubtype caps filetype ncmds "
7328 "sizeofcmds flags\n";
7329 if (verbose) {
7330 if (magic == MachO::MH_MAGIC)
7331 outs() << " MH_MAGIC";
7332 else if (magic == MachO::MH_MAGIC_64)
7333 outs() << "MH_MAGIC_64";
7334 else
7335 outs() << format(" 0x%08" PRIx32"x", magic);
7336 switch (cputype) {
7337 case MachO::CPU_TYPE_I386:
7338 outs() << " I386";
7339 switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
7340 case MachO::CPU_SUBTYPE_I386_ALL:
7341 outs() << " ALL";
7342 break;
7343 default:
7344 outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
7345 break;
7346 }
7347 break;
7348 case MachO::CPU_TYPE_X86_64:
7349 outs() << " X86_64";
7350 switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
7351 case MachO::CPU_SUBTYPE_X86_64_ALL:
7352 outs() << " ALL";
7353 break;
7354 case MachO::CPU_SUBTYPE_X86_64_H:
7355 outs() << " Haswell";
7356 break;
7357 default:
7358 outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
7359 break;
7360 }
7361 break;
7362 case MachO::CPU_TYPE_ARM:
7363 outs() << " ARM";
7364 switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
7365 case MachO::CPU_SUBTYPE_ARM_ALL:
7366 outs() << " ALL";
7367 break;
7368 case MachO::CPU_SUBTYPE_ARM_V4T:
7369 outs() << " V4T";
7370 break;
7371 case MachO::CPU_SUBTYPE_ARM_V5TEJ:
7372 outs() << " V5TEJ";
7373 break;
7374 case MachO::CPU_SUBTYPE_ARM_XSCALE:
7375 outs() << " XSCALE";
7376 break;
7377 case MachO::CPU_SUBTYPE_ARM_V6:
7378 outs() << " V6";
7379 break;
7380 case MachO::CPU_SUBTYPE_ARM_V6M:
7381 outs() << " V6M";
7382 break;
7383 case MachO::CPU_SUBTYPE_ARM_V7:
7384 outs() << " V7";
7385 break;
7386 case MachO::CPU_SUBTYPE_ARM_V7EM:
7387 outs() << " V7EM";
7388 break;
7389 case MachO::CPU_SUBTYPE_ARM_V7K:
7390 outs() << " V7K";
7391 break;
7392 case MachO::CPU_SUBTYPE_ARM_V7M:
7393 outs() << " V7M";
7394 break;
7395 case MachO::CPU_SUBTYPE_ARM_V7S:
7396 outs() << " V7S";
7397 break;
7398 default:
7399 outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
7400 break;
7401 }
7402 break;
7403 case MachO::CPU_TYPE_ARM64:
7404 outs() << " ARM64";
7405 switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
7406 case MachO::CPU_SUBTYPE_ARM64_ALL:
7407 outs() << " ALL";
7408 break;
7409 default:
7410 outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
7411 break;
7412 }
7413 break;
7414 case MachO::CPU_TYPE_POWERPC:
7415 outs() << " PPC";
7416 switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
7417 case MachO::CPU_SUBTYPE_POWERPC_ALL:
7418 outs() << " ALL";
7419 break;
7420 default:
7421 outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
7422 break;
7423 }
7424 break;
7425 case MachO::CPU_TYPE_POWERPC64:
7426 outs() << " PPC64";
7427 switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
7428 case MachO::CPU_SUBTYPE_POWERPC_ALL:
7429 outs() << " ALL";
7430 break;
7431 default:
7432 outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
7433 break;
7434 }
7435 break;
7436 default:
7437 outs() << format(" %7d", cputype);
7438 outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
7439 break;
7440 }
7441 if ((cpusubtype & MachO::CPU_SUBTYPE_MASK) == MachO::CPU_SUBTYPE_LIB64) {
7442 outs() << " LIB64";
7443 } else {
7444 outs() << format(" 0x%02" PRIx32"x",
7445 (cpusubtype & MachO::CPU_SUBTYPE_MASK) >> 24);
7446 }
7447 switch (filetype) {
7448 case MachO::MH_OBJECT:
7449 outs() << " OBJECT";
7450 break;
7451 case MachO::MH_EXECUTE:
7452 outs() << " EXECUTE";
7453 break;
7454 case MachO::MH_FVMLIB:
7455 outs() << " FVMLIB";
7456 break;
7457 case MachO::MH_CORE:
7458 outs() << " CORE";
7459 break;
7460 case MachO::MH_PRELOAD:
7461 outs() << " PRELOAD";
7462 break;
7463 case MachO::MH_DYLIB:
7464 outs() << " DYLIB";
7465 break;
7466 case MachO::MH_DYLIB_STUB:
7467 outs() << " DYLIB_STUB";
7468 break;
7469 case MachO::MH_DYLINKER:
7470 outs() << " DYLINKER";
7471 break;
7472 case MachO::MH_BUNDLE:
7473 outs() << " BUNDLE";
7474 break;
7475 case MachO::MH_DSYM:
7476 outs() << " DSYM";
7477 break;
7478 case MachO::MH_KEXT_BUNDLE:
7479 outs() << " KEXTBUNDLE";
7480 break;
7481 default:
7482 outs() << format(" %10u", filetype);
7483 break;
7484 }
7485 outs() << format(" %5u", ncmds);
7486 outs() << format(" %10u", sizeofcmds);
7487 uint32_t f = flags;
7488 if (f & MachO::MH_NOUNDEFS) {
7489 outs() << " NOUNDEFS";
7490 f &= ~MachO::MH_NOUNDEFS;
7491 }
7492 if (f & MachO::MH_INCRLINK) {
7493 outs() << " INCRLINK";
7494 f &= ~MachO::MH_INCRLINK;
7495 }
7496 if (f & MachO::MH_DYLDLINK) {
7497 outs() << " DYLDLINK";
7498 f &= ~MachO::MH_DYLDLINK;
7499 }
7500 if (f & MachO::MH_BINDATLOAD) {
7501 outs() << " BINDATLOAD";
7502 f &= ~MachO::MH_BINDATLOAD;
7503 }
7504 if (f & MachO::MH_PREBOUND) {
7505 outs() << " PREBOUND";
7506 f &= ~MachO::MH_PREBOUND;
7507 }
7508 if (f & MachO::MH_SPLIT_SEGS) {
7509 outs() << " SPLIT_SEGS";
7510 f &= ~MachO::MH_SPLIT_SEGS;
7511 }
7512 if (f & MachO::MH_LAZY_INIT) {
7513 outs() << " LAZY_INIT";
7514 f &= ~MachO::MH_LAZY_INIT;
7515 }
7516 if (f & MachO::MH_TWOLEVEL) {
7517 outs() << " TWOLEVEL";
7518 f &= ~MachO::MH_TWOLEVEL;
7519 }
7520 if (f & MachO::MH_FORCE_FLAT) {
7521 outs() << " FORCE_FLAT";
7522 f &= ~MachO::MH_FORCE_FLAT;
7523 }
7524 if (f & MachO::MH_NOMULTIDEFS) {
7525 outs() << " NOMULTIDEFS";
7526 f &= ~MachO::MH_NOMULTIDEFS;
7527 }
7528 if (f & MachO::MH_NOFIXPREBINDING) {
7529 outs() << " NOFIXPREBINDING";
7530 f &= ~MachO::MH_NOFIXPREBINDING;
7531 }
7532 if (f & MachO::MH_PREBINDABLE) {
7533 outs() << " PREBINDABLE";
7534 f &= ~MachO::MH_PREBINDABLE;
7535 }
7536 if (f & MachO::MH_ALLMODSBOUND) {
7537 outs() << " ALLMODSBOUND";
7538 f &= ~MachO::MH_ALLMODSBOUND;
7539 }
7540 if (f & MachO::MH_SUBSECTIONS_VIA_SYMBOLS) {
7541 outs() << " SUBSECTIONS_VIA_SYMBOLS";
7542 f &= ~MachO::MH_SUBSECTIONS_VIA_SYMBOLS;
7543 }
7544 if (f & MachO::MH_CANONICAL) {
7545 outs() << " CANONICAL";
7546 f &= ~MachO::MH_CANONICAL;
7547 }
7548 if (f & MachO::MH_WEAK_DEFINES) {
7549 outs() << " WEAK_DEFINES";
7550 f &= ~MachO::MH_WEAK_DEFINES;
7551 }
7552 if (f & MachO::MH_BINDS_TO_WEAK) {
7553 outs() << " BINDS_TO_WEAK";
7554 f &= ~MachO::MH_BINDS_TO_WEAK;
7555 }
7556 if (f & MachO::MH_ALLOW_STACK_EXECUTION) {
7557 outs() << " ALLOW_STACK_EXECUTION";
7558 f &= ~MachO::MH_ALLOW_STACK_EXECUTION;
7559 }
7560 if (f & MachO::MH_DEAD_STRIPPABLE_DYLIB) {
7561 outs() << " DEAD_STRIPPABLE_DYLIB";
7562 f &= ~MachO::MH_DEAD_STRIPPABLE_DYLIB;
7563 }
7564 if (f & MachO::MH_PIE) {
7565 outs() << " PIE";
7566 f &= ~MachO::MH_PIE;
7567 }
7568 if (f & MachO::MH_NO_REEXPORTED_DYLIBS) {
7569 outs() << " NO_REEXPORTED_DYLIBS";
7570 f &= ~MachO::MH_NO_REEXPORTED_DYLIBS;
7571 }
7572 if (f & MachO::MH_HAS_TLV_DESCRIPTORS) {
7573 outs() << " MH_HAS_TLV_DESCRIPTORS";
7574 f &= ~MachO::MH_HAS_TLV_DESCRIPTORS;
7575 }
7576 if (f & MachO::MH_NO_HEAP_EXECUTION) {
7577 outs() << " MH_NO_HEAP_EXECUTION";
7578 f &= ~MachO::MH_NO_HEAP_EXECUTION;
7579 }
7580 if (f & MachO::MH_APP_EXTENSION_SAFE) {
7581 outs() << " APP_EXTENSION_SAFE";
7582 f &= ~MachO::MH_APP_EXTENSION_SAFE;
7583 }
7584 if (f != 0 || flags == 0)
7585 outs() << format(" 0x%08" PRIx32"x", f);
7586 } else {
7587 outs() << format(" 0x%08" PRIx32"x", magic);
7588 outs() << format(" %7d", cputype);
7589 outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
7590 outs() << format(" 0x%02" PRIx32"x",
7591 (cpusubtype & MachO::CPU_SUBTYPE_MASK) >> 24);
7592 outs() << format(" %10u", filetype);
7593 outs() << format(" %5u", ncmds);
7594 outs() << format(" %10u", sizeofcmds);
7595 outs() << format(" 0x%08" PRIx32"x", flags);
7596 }
7597 outs() << "\n";
7598}
7599
7600static void PrintSegmentCommand(uint32_t cmd, uint32_t cmdsize,
7601 StringRef SegName, uint64_t vmaddr,
7602 uint64_t vmsize, uint64_t fileoff,
7603 uint64_t filesize, uint32_t maxprot,
7604 uint32_t initprot, uint32_t nsects,
7605 uint32_t flags, uint32_t object_size,
7606 bool verbose) {
7607 uint64_t expected_cmdsize;
7608 if (cmd == MachO::LC_SEGMENT) {
7609 outs() << " cmd LC_SEGMENT\n";
7610 expected_cmdsize = nsects;
7611 expected_cmdsize *= sizeof(struct MachO::section);
7612 expected_cmdsize += sizeof(struct MachO::segment_command);
7613 } else {
7614 outs() << " cmd LC_SEGMENT_64\n";
7615 expected_cmdsize = nsects;
7616 expected_cmdsize *= sizeof(struct MachO::section_64);
7617 expected_cmdsize += sizeof(struct MachO::segment_command_64);
7618 }
7619 outs() << " cmdsize " << cmdsize;
7620 if (cmdsize != expected_cmdsize)
7621 outs() << " Inconsistent size\n";
7622 else
7623 outs() << "\n";
7624 outs() << " segname " << SegName << "\n";
7625 if (cmd == MachO::LC_SEGMENT_64) {
7626 outs() << " vmaddr " << format("0x%016" PRIx64"l" "x", vmaddr) << "\n";
7627 outs() << " vmsize " << format("0x%016" PRIx64"l" "x", vmsize) << "\n";
7628 } else {
7629 outs() << " vmaddr " << format("0x%08" PRIx64"l" "x", vmaddr) << "\n";
7630 outs() << " vmsize " << format("0x%08" PRIx64"l" "x", vmsize) << "\n";
7631 }
7632 outs() << " fileoff " << fileoff;
7633 if (fileoff > object_size)
7634 outs() << " (past end of file)\n";
7635 else
7636 outs() << "\n";
7637 outs() << " filesize " << filesize;
7638 if (fileoff + filesize > object_size)
7639 outs() << " (past end of file)\n";
7640 else
7641 outs() << "\n";
7642 if (verbose) {
7643 if ((maxprot &
7644 ~(MachO::VM_PROT_READ | MachO::VM_PROT_WRITE |
7645 MachO::VM_PROT_EXECUTE)) != 0)
7646 outs() << " maxprot ?" << format("0x%08" PRIx32"x", maxprot) << "\n";
7647 else {
7648 outs() << " maxprot ";
7649 outs() << ((maxprot & MachO::VM_PROT_READ) ? "r" : "-");
7650 outs() << ((maxprot & MachO::VM_PROT_WRITE) ? "w" : "-");
7651 outs() << ((maxprot & MachO::VM_PROT_EXECUTE) ? "x\n" : "-\n");
7652 }
7653 if ((initprot &
7654 ~(MachO::VM_PROT_READ | MachO::VM_PROT_WRITE |
7655 MachO::VM_PROT_EXECUTE)) != 0)
7656 outs() << " initprot ?" << format("0x%08" PRIx32"x", initprot) << "\n";
7657 else {
7658 outs() << " initprot ";
7659 outs() << ((initprot & MachO::VM_PROT_READ) ? "r" : "-");
7660 outs() << ((initprot & MachO::VM_PROT_WRITE) ? "w" : "-");
7661 outs() << ((initprot & MachO::VM_PROT_EXECUTE) ? "x\n" : "-\n");
7662 }
7663 } else {
7664 outs() << " maxprot " << format("0x%08" PRIx32"x", maxprot) << "\n";
7665 outs() << " initprot " << format("0x%08" PRIx32"x", initprot) << "\n";
7666 }
7667 outs() << " nsects " << nsects << "\n";
7668 if (verbose) {
7669 outs() << " flags";
7670 if (flags == 0)
7671 outs() << " (none)\n";
7672 else {
7673 if (flags & MachO::SG_HIGHVM) {
7674 outs() << " HIGHVM";
7675 flags &= ~MachO::SG_HIGHVM;
7676 }
7677 if (flags & MachO::SG_FVMLIB) {
7678 outs() << " FVMLIB";
7679 flags &= ~MachO::SG_FVMLIB;
7680 }
7681 if (flags & MachO::SG_NORELOC) {
7682 outs() << " NORELOC";
7683 flags &= ~MachO::SG_NORELOC;
7684 }
7685 if (flags & MachO::SG_PROTECTED_VERSION_1) {
7686 outs() << " PROTECTED_VERSION_1";
7687 flags &= ~MachO::SG_PROTECTED_VERSION_1;
7688 }
7689 if (flags)
7690 outs() << format(" 0x%08" PRIx32"x", flags) << " (unknown flags)\n";
7691 else
7692 outs() << "\n";
7693 }
7694 } else {
7695 outs() << " flags " << format("0x%" PRIx32"x", flags) << "\n";
7696 }
7697}
7698
7699static void PrintSection(const char *sectname, const char *segname,
7700 uint64_t addr, uint64_t size, uint32_t offset,
7701 uint32_t align, uint32_t reloff, uint32_t nreloc,
7702 uint32_t flags, uint32_t reserved1, uint32_t reserved2,
7703 uint32_t cmd, const char *sg_segname,
7704 uint32_t filetype, uint32_t object_size,
7705 bool verbose) {
7706 outs() << "Section\n";
7707 outs() << " sectname " << format("%.16s\n", sectname);
7708 outs() << " segname " << format("%.16s", segname);
7709 if (filetype != MachO::MH_OBJECT && strncmp(sg_segname, segname, 16) != 0)
7710 outs() << " (does not match segment)\n";
7711 else
7712 outs() << "\n";
7713 if (cmd == MachO::LC_SEGMENT_64) {
7714 outs() << " addr " << format("0x%016" PRIx64"l" "x", addr) << "\n";
7715 outs() << " size " << format("0x%016" PRIx64"l" "x", size);
7716 } else {
7717 outs() << " addr " <