Bug Summary

File:tools/llvm-objdump/MachODump.cpp
Warning:line 2094, column 25
1st function call argument is an uninitialized value

Annotated Source Code

1//===-- MachODump.cpp - Object file dumping utility for llvm --------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the MachO-specific dumper for llvm-objdump.
11//
12//===----------------------------------------------------------------------===//
13
14#include "llvm/Object/MachO.h"
15#include "llvm-objdump.h"
16#include "llvm-c/Disassembler.h"
17#include "llvm/ADT/STLExtras.h"
18#include "llvm/ADT/StringExtras.h"
19#include "llvm/ADT/Triple.h"
20#include "llvm/Config/config.h"
21#include "llvm/DebugInfo/DIContext.h"
22#include "llvm/DebugInfo/DWARF/DWARFContext.h"
23#include "llvm/Demangle/Demangle.h"
24#include "llvm/MC/MCAsmInfo.h"
25#include "llvm/MC/MCContext.h"
26#include "llvm/MC/MCDisassembler/MCDisassembler.h"
27#include "llvm/MC/MCInst.h"
28#include "llvm/MC/MCInstPrinter.h"
29#include "llvm/MC/MCInstrDesc.h"
30#include "llvm/MC/MCInstrInfo.h"
31#include "llvm/MC/MCRegisterInfo.h"
32#include "llvm/MC/MCSubtargetInfo.h"
33#include "llvm/Object/MachOUniversal.h"
34#include "llvm/Support/Casting.h"
35#include "llvm/Support/CommandLine.h"
36#include "llvm/Support/Debug.h"
37#include "llvm/Support/Endian.h"
38#include "llvm/Support/Format.h"
39#include "llvm/Support/FormattedStream.h"
40#include "llvm/Support/GraphWriter.h"
41#include "llvm/Support/LEB128.h"
42#include "llvm/Support/MachO.h"
43#include "llvm/Support/MemoryBuffer.h"
44#include "llvm/Support/TargetRegistry.h"
45#include "llvm/Support/TargetSelect.h"
46#include "llvm/Support/ToolOutputFile.h"
47#include "llvm/Support/raw_ostream.h"
48#include <algorithm>
49#include <cstring>
50#include <system_error>
51
52#ifdef HAVE_LIBXAR
53extern "C" {
54#include <xar/xar.h>
55}
56#endif
57
58using namespace llvm;
59using namespace object;
60
61static cl::opt<bool>
62 UseDbg("g",
63 cl::desc("Print line information from debug info if available"));
64
65static cl::opt<std::string> DSYMFile("dsym",
66 cl::desc("Use .dSYM file for debug info"));
67
68static cl::opt<bool> FullLeadingAddr("full-leading-addr",
69 cl::desc("Print full leading address"));
70
71static cl::opt<bool> NoLeadingHeaders("no-leading-headers",
72 cl::desc("Print no leading headers"));
73
74cl::opt<bool> llvm::UniversalHeaders("universal-headers",
75 cl::desc("Print Mach-O universal headers "
76 "(requires -macho)"));
77
78cl::opt<bool>
79 llvm::ArchiveHeaders("archive-headers",
80 cl::desc("Print archive headers for Mach-O archives "
81 "(requires -macho)"));
82
83cl::opt<bool>
84 ArchiveMemberOffsets("archive-member-offsets",
85 cl::desc("Print the offset to each archive member for "
86 "Mach-O archives (requires -macho and "
87 "-archive-headers)"));
88
89cl::opt<bool>
90 llvm::IndirectSymbols("indirect-symbols",
91 cl::desc("Print indirect symbol table for Mach-O "
92 "objects (requires -macho)"));
93
94cl::opt<bool>
95 llvm::DataInCode("data-in-code",
96 cl::desc("Print the data in code table for Mach-O objects "
97 "(requires -macho)"));
98
99cl::opt<bool>
100 llvm::LinkOptHints("link-opt-hints",
101 cl::desc("Print the linker optimization hints for "
102 "Mach-O objects (requires -macho)"));
103
104cl::opt<bool>
105 llvm::InfoPlist("info-plist",
106 cl::desc("Print the info plist section as strings for "
107 "Mach-O objects (requires -macho)"));
108
109cl::opt<bool>
110 llvm::DylibsUsed("dylibs-used",
111 cl::desc("Print the shared libraries used for linked "
112 "Mach-O files (requires -macho)"));
113
114cl::opt<bool>
115 llvm::DylibId("dylib-id",
116 cl::desc("Print the shared library's id for the dylib Mach-O "
117 "file (requires -macho)"));
118
119cl::opt<bool>
120 llvm::NonVerbose("non-verbose",
121 cl::desc("Print the info for Mach-O objects in "
122 "non-verbose or numeric form (requires -macho)"));
123
124cl::opt<bool>
125 llvm::ObjcMetaData("objc-meta-data",
126 cl::desc("Print the Objective-C runtime meta data for "
127 "Mach-O files (requires -macho)"));
128
129cl::opt<std::string> llvm::DisSymName(
130 "dis-symname",
131 cl::desc("disassemble just this symbol's instructions (requires -macho)"));
132
133static cl::opt<bool> NoSymbolicOperands(
134 "no-symbolic-operands",
135 cl::desc("do not symbolic operands when disassembling (requires -macho)"));
136
137static cl::list<std::string>
138 ArchFlags("arch", cl::desc("architecture(s) from a Mach-O file to dump"),
139 cl::ZeroOrMore);
140
141bool ArchAll = false;
142
143static std::string ThumbTripleName;
144
145static const Target *GetTarget(const MachOObjectFile *MachOObj,
146 const char **McpuDefault,
147 const Target **ThumbTarget) {
148 // Figure out the target triple.
149 llvm::Triple TT(TripleName);
150 if (TripleName.empty()) {
151 TT = MachOObj->getArchTriple(McpuDefault);
152 TripleName = TT.str();
153 }
154
155 if (TT.getArch() == Triple::arm) {
156 // We've inferred a 32-bit ARM target from the object file. All MachO CPUs
157 // that support ARM are also capable of Thumb mode.
158 llvm::Triple ThumbTriple = TT;
159 std::string ThumbName = (Twine("thumb") + TT.getArchName().substr(3)).str();
160 ThumbTriple.setArchName(ThumbName);
161 ThumbTripleName = ThumbTriple.str();
162 }
163
164 // Get the target specific parser.
165 std::string Error;
166 const Target *TheTarget = TargetRegistry::lookupTarget(TripleName, Error);
167 if (TheTarget && ThumbTripleName.empty())
168 return TheTarget;
169
170 *ThumbTarget = TargetRegistry::lookupTarget(ThumbTripleName, Error);
171 if (*ThumbTarget)
172 return TheTarget;
173
174 errs() << "llvm-objdump: error: unable to get target for '";
175 if (!TheTarget)
176 errs() << TripleName;
177 else
178 errs() << ThumbTripleName;
179 errs() << "', see --version and --triple.\n";
180 return nullptr;
181}
182
183struct SymbolSorter {
184 bool operator()(const SymbolRef &A, const SymbolRef &B) {
185 Expected<SymbolRef::Type> ATypeOrErr = A.getType();
186 if (!ATypeOrErr)
187 report_error(A.getObject()->getFileName(), ATypeOrErr.takeError());
188 SymbolRef::Type AType = *ATypeOrErr;
189 Expected<SymbolRef::Type> BTypeOrErr = B.getType();
190 if (!BTypeOrErr)
191 report_error(B.getObject()->getFileName(), BTypeOrErr.takeError());
192 SymbolRef::Type BType = *BTypeOrErr;
193 uint64_t AAddr = (AType != SymbolRef::ST_Function) ? 0 : A.getValue();
194 uint64_t BAddr = (BType != SymbolRef::ST_Function) ? 0 : B.getValue();
195 return AAddr < BAddr;
196 }
197};
198
199// Types for the storted data in code table that is built before disassembly
200// and the predicate function to sort them.
201typedef std::pair<uint64_t, DiceRef> DiceTableEntry;
202typedef std::vector<DiceTableEntry> DiceTable;
203typedef DiceTable::iterator dice_table_iterator;
204
205// This is used to search for a data in code table entry for the PC being
206// disassembled. The j parameter has the PC in j.first. A single data in code
207// table entry can cover many bytes for each of its Kind's. So if the offset,
208// aka the i.first value, of the data in code table entry plus its Length
209// covers the PC being searched for this will return true. If not it will
210// return false.
211static bool compareDiceTableEntries(const DiceTableEntry &i,
212 const DiceTableEntry &j) {
213 uint16_t Length;
214 i.second.getLength(Length);
215
216 return j.first >= i.first && j.first < i.first + Length;
217}
218
219static uint64_t DumpDataInCode(const uint8_t *bytes, uint64_t Length,
220 unsigned short Kind) {
221 uint32_t Value, Size = 1;
222
223 switch (Kind) {
224 default:
225 case MachO::DICE_KIND_DATA:
226 if (Length >= 4) {
227 if (!NoShowRawInsn)
228 dumpBytes(makeArrayRef(bytes, 4), outs());
229 Value = bytes[3] << 24 | bytes[2] << 16 | bytes[1] << 8 | bytes[0];
230 outs() << "\t.long " << Value;
231 Size = 4;
232 } else if (Length >= 2) {
233 if (!NoShowRawInsn)
234 dumpBytes(makeArrayRef(bytes, 2), outs());
235 Value = bytes[1] << 8 | bytes[0];
236 outs() << "\t.short " << Value;
237 Size = 2;
238 } else {
239 if (!NoShowRawInsn)
240 dumpBytes(makeArrayRef(bytes, 2), outs());
241 Value = bytes[0];
242 outs() << "\t.byte " << Value;
243 Size = 1;
244 }
245 if (Kind == MachO::DICE_KIND_DATA)
246 outs() << "\t@ KIND_DATA\n";
247 else
248 outs() << "\t@ data in code kind = " << Kind << "\n";
249 break;
250 case MachO::DICE_KIND_JUMP_TABLE8:
251 if (!NoShowRawInsn)
252 dumpBytes(makeArrayRef(bytes, 1), outs());
253 Value = bytes[0];
254 outs() << "\t.byte " << format("%3u", Value) << "\t@ KIND_JUMP_TABLE8\n";
255 Size = 1;
256 break;
257 case MachO::DICE_KIND_JUMP_TABLE16:
258 if (!NoShowRawInsn)
259 dumpBytes(makeArrayRef(bytes, 2), outs());
260 Value = bytes[1] << 8 | bytes[0];
261 outs() << "\t.short " << format("%5u", Value & 0xffff)
262 << "\t@ KIND_JUMP_TABLE16\n";
263 Size = 2;
264 break;
265 case MachO::DICE_KIND_JUMP_TABLE32:
266 case MachO::DICE_KIND_ABS_JUMP_TABLE32:
267 if (!NoShowRawInsn)
268 dumpBytes(makeArrayRef(bytes, 4), outs());
269 Value = bytes[3] << 24 | bytes[2] << 16 | bytes[1] << 8 | bytes[0];
270 outs() << "\t.long " << Value;
271 if (Kind == MachO::DICE_KIND_JUMP_TABLE32)
272 outs() << "\t@ KIND_JUMP_TABLE32\n";
273 else
274 outs() << "\t@ KIND_ABS_JUMP_TABLE32\n";
275 Size = 4;
276 break;
277 }
278 return Size;
279}
280
281static void getSectionsAndSymbols(MachOObjectFile *MachOObj,
282 std::vector<SectionRef> &Sections,
283 std::vector<SymbolRef> &Symbols,
284 SmallVectorImpl<uint64_t> &FoundFns,
285 uint64_t &BaseSegmentAddress) {
286 for (const SymbolRef &Symbol : MachOObj->symbols()) {
287 Expected<StringRef> SymName = Symbol.getName();
288 if (!SymName)
289 report_error(MachOObj->getFileName(), SymName.takeError());
290 if (!SymName->startswith("ltmp"))
291 Symbols.push_back(Symbol);
292 }
293
294 for (const SectionRef &Section : MachOObj->sections()) {
295 StringRef SectName;
296 Section.getName(SectName);
297 Sections.push_back(Section);
298 }
299
300 bool BaseSegmentAddressSet = false;
301 for (const auto &Command : MachOObj->load_commands()) {
302 if (Command.C.cmd == MachO::LC_FUNCTION_STARTS) {
303 // We found a function starts segment, parse the addresses for later
304 // consumption.
305 MachO::linkedit_data_command LLC =
306 MachOObj->getLinkeditDataLoadCommand(Command);
307
308 MachOObj->ReadULEB128s(LLC.dataoff, FoundFns);
309 } else if (Command.C.cmd == MachO::LC_SEGMENT) {
310 MachO::segment_command SLC = MachOObj->getSegmentLoadCommand(Command);
311 StringRef SegName = SLC.segname;
312 if (!BaseSegmentAddressSet && SegName != "__PAGEZERO") {
313 BaseSegmentAddressSet = true;
314 BaseSegmentAddress = SLC.vmaddr;
315 }
316 }
317 }
318}
319
320static void PrintIndirectSymbolTable(MachOObjectFile *O, bool verbose,
321 uint32_t n, uint32_t count,
322 uint32_t stride, uint64_t addr) {
323 MachO::dysymtab_command Dysymtab = O->getDysymtabLoadCommand();
324 uint32_t nindirectsyms = Dysymtab.nindirectsyms;
325 if (n > nindirectsyms)
326 outs() << " (entries start past the end of the indirect symbol "
327 "table) (reserved1 field greater than the table size)";
328 else if (n + count > nindirectsyms)
329 outs() << " (entries extends past the end of the indirect symbol "
330 "table)";
331 outs() << "\n";
332 uint32_t cputype = O->getHeader().cputype;
333 if (cputype & MachO::CPU_ARCH_ABI64)
334 outs() << "address index";
335 else
336 outs() << "address index";
337 if (verbose)
338 outs() << " name\n";
339 else
340 outs() << "\n";
341 for (uint32_t j = 0; j < count && n + j < nindirectsyms; j++) {
342 if (cputype & MachO::CPU_ARCH_ABI64)
343 outs() << format("0x%016" PRIx64"l" "x", addr + j * stride) << " ";
344 else
345 outs() << format("0x%08" PRIx32"x", (uint32_t)addr + j * stride) << " ";
346 MachO::dysymtab_command Dysymtab = O->getDysymtabLoadCommand();
347 uint32_t indirect_symbol = O->getIndirectSymbolTableEntry(Dysymtab, n + j);
348 if (indirect_symbol == MachO::INDIRECT_SYMBOL_LOCAL) {
349 outs() << "LOCAL\n";
350 continue;
351 }
352 if (indirect_symbol ==
353 (MachO::INDIRECT_SYMBOL_LOCAL | MachO::INDIRECT_SYMBOL_ABS)) {
354 outs() << "LOCAL ABSOLUTE\n";
355 continue;
356 }
357 if (indirect_symbol == MachO::INDIRECT_SYMBOL_ABS) {
358 outs() << "ABSOLUTE\n";
359 continue;
360 }
361 outs() << format("%5u ", indirect_symbol);
362 if (verbose) {
363 MachO::symtab_command Symtab = O->getSymtabLoadCommand();
364 if (indirect_symbol < Symtab.nsyms) {
365 symbol_iterator Sym = O->getSymbolByIndex(indirect_symbol);
366 SymbolRef Symbol = *Sym;
367 Expected<StringRef> SymName = Symbol.getName();
368 if (!SymName)
369 report_error(O->getFileName(), SymName.takeError());
370 outs() << *SymName;
371 } else {
372 outs() << "?";
373 }
374 }
375 outs() << "\n";
376 }
377}
378
379static void PrintIndirectSymbols(MachOObjectFile *O, bool verbose) {
380 for (const auto &Load : O->load_commands()) {
381 if (Load.C.cmd == MachO::LC_SEGMENT_64) {
382 MachO::segment_command_64 Seg = O->getSegment64LoadCommand(Load);
383 for (unsigned J = 0; J < Seg.nsects; ++J) {
384 MachO::section_64 Sec = O->getSection64(Load, J);
385 uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
386 if (section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
387 section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
388 section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
389 section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS ||
390 section_type == MachO::S_SYMBOL_STUBS) {
391 uint32_t stride;
392 if (section_type == MachO::S_SYMBOL_STUBS)
393 stride = Sec.reserved2;
394 else
395 stride = 8;
396 if (stride == 0) {
397 outs() << "Can't print indirect symbols for (" << Sec.segname << ","
398 << Sec.sectname << ") "
399 << "(size of stubs in reserved2 field is zero)\n";
400 continue;
401 }
402 uint32_t count = Sec.size / stride;
403 outs() << "Indirect symbols for (" << Sec.segname << ","
404 << Sec.sectname << ") " << count << " entries";
405 uint32_t n = Sec.reserved1;
406 PrintIndirectSymbolTable(O, verbose, n, count, stride, Sec.addr);
407 }
408 }
409 } else if (Load.C.cmd == MachO::LC_SEGMENT) {
410 MachO::segment_command Seg = O->getSegmentLoadCommand(Load);
411 for (unsigned J = 0; J < Seg.nsects; ++J) {
412 MachO::section Sec = O->getSection(Load, J);
413 uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
414 if (section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
415 section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
416 section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
417 section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS ||
418 section_type == MachO::S_SYMBOL_STUBS) {
419 uint32_t stride;
420 if (section_type == MachO::S_SYMBOL_STUBS)
421 stride = Sec.reserved2;
422 else
423 stride = 4;
424 if (stride == 0) {
425 outs() << "Can't print indirect symbols for (" << Sec.segname << ","
426 << Sec.sectname << ") "
427 << "(size of stubs in reserved2 field is zero)\n";
428 continue;
429 }
430 uint32_t count = Sec.size / stride;
431 outs() << "Indirect symbols for (" << Sec.segname << ","
432 << Sec.sectname << ") " << count << " entries";
433 uint32_t n = Sec.reserved1;
434 PrintIndirectSymbolTable(O, verbose, n, count, stride, Sec.addr);
435 }
436 }
437 }
438 }
439}
440
441static void PrintDataInCodeTable(MachOObjectFile *O, bool verbose) {
442 MachO::linkedit_data_command DIC = O->getDataInCodeLoadCommand();
443 uint32_t nentries = DIC.datasize / sizeof(struct MachO::data_in_code_entry);
444 outs() << "Data in code table (" << nentries << " entries)\n";
445 outs() << "offset length kind\n";
446 for (dice_iterator DI = O->begin_dices(), DE = O->end_dices(); DI != DE;
447 ++DI) {
448 uint32_t Offset;
449 DI->getOffset(Offset);
450 outs() << format("0x%08" PRIx32"x", Offset) << " ";
451 uint16_t Length;
452 DI->getLength(Length);
453 outs() << format("%6u", Length) << " ";
454 uint16_t Kind;
455 DI->getKind(Kind);
456 if (verbose) {
457 switch (Kind) {
458 case MachO::DICE_KIND_DATA:
459 outs() << "DATA";
460 break;
461 case MachO::DICE_KIND_JUMP_TABLE8:
462 outs() << "JUMP_TABLE8";
463 break;
464 case MachO::DICE_KIND_JUMP_TABLE16:
465 outs() << "JUMP_TABLE16";
466 break;
467 case MachO::DICE_KIND_JUMP_TABLE32:
468 outs() << "JUMP_TABLE32";
469 break;
470 case MachO::DICE_KIND_ABS_JUMP_TABLE32:
471 outs() << "ABS_JUMP_TABLE32";
472 break;
473 default:
474 outs() << format("0x%04" PRIx32"x", Kind);
475 break;
476 }
477 } else
478 outs() << format("0x%04" PRIx32"x", Kind);
479 outs() << "\n";
480 }
481}
482
483static void PrintLinkOptHints(MachOObjectFile *O) {
484 MachO::linkedit_data_command LohLC = O->getLinkOptHintsLoadCommand();
485 const char *loh = O->getData().substr(LohLC.dataoff, 1).data();
486 uint32_t nloh = LohLC.datasize;
487 outs() << "Linker optimiztion hints (" << nloh << " total bytes)\n";
488 for (uint32_t i = 0; i < nloh;) {
489 unsigned n;
490 uint64_t identifier = decodeULEB128((const uint8_t *)(loh + i), &n);
491 i += n;
492 outs() << " identifier " << identifier << " ";
493 if (i >= nloh)
494 return;
495 switch (identifier) {
496 case 1:
497 outs() << "AdrpAdrp\n";
498 break;
499 case 2:
500 outs() << "AdrpLdr\n";
501 break;
502 case 3:
503 outs() << "AdrpAddLdr\n";
504 break;
505 case 4:
506 outs() << "AdrpLdrGotLdr\n";
507 break;
508 case 5:
509 outs() << "AdrpAddStr\n";
510 break;
511 case 6:
512 outs() << "AdrpLdrGotStr\n";
513 break;
514 case 7:
515 outs() << "AdrpAdd\n";
516 break;
517 case 8:
518 outs() << "AdrpLdrGot\n";
519 break;
520 default:
521 outs() << "Unknown identifier value\n";
522 break;
523 }
524 uint64_t narguments = decodeULEB128((const uint8_t *)(loh + i), &n);
525 i += n;
526 outs() << " narguments " << narguments << "\n";
527 if (i >= nloh)
528 return;
529
530 for (uint32_t j = 0; j < narguments; j++) {
531 uint64_t value = decodeULEB128((const uint8_t *)(loh + i), &n);
532 i += n;
533 outs() << "\tvalue " << format("0x%" PRIx64"l" "x", value) << "\n";
534 if (i >= nloh)
535 return;
536 }
537 }
538}
539
540static void PrintDylibs(MachOObjectFile *O, bool JustId) {
541 unsigned Index = 0;
542 for (const auto &Load : O->load_commands()) {
543 if ((JustId && Load.C.cmd == MachO::LC_ID_DYLIB) ||
544 (!JustId && (Load.C.cmd == MachO::LC_ID_DYLIB ||
545 Load.C.cmd == MachO::LC_LOAD_DYLIB ||
546 Load.C.cmd == MachO::LC_LOAD_WEAK_DYLIB ||
547 Load.C.cmd == MachO::LC_REEXPORT_DYLIB ||
548 Load.C.cmd == MachO::LC_LAZY_LOAD_DYLIB ||
549 Load.C.cmd == MachO::LC_LOAD_UPWARD_DYLIB))) {
550 MachO::dylib_command dl = O->getDylibIDLoadCommand(Load);
551 if (dl.dylib.name < dl.cmdsize) {
552 const char *p = (const char *)(Load.Ptr) + dl.dylib.name;
553 if (JustId)
554 outs() << p << "\n";
555 else {
556 outs() << "\t" << p;
557 outs() << " (compatibility version "
558 << ((dl.dylib.compatibility_version >> 16) & 0xffff) << "."
559 << ((dl.dylib.compatibility_version >> 8) & 0xff) << "."
560 << (dl.dylib.compatibility_version & 0xff) << ",";
561 outs() << " current version "
562 << ((dl.dylib.current_version >> 16) & 0xffff) << "."
563 << ((dl.dylib.current_version >> 8) & 0xff) << "."
564 << (dl.dylib.current_version & 0xff) << ")\n";
565 }
566 } else {
567 outs() << "\tBad offset (" << dl.dylib.name << ") for name of ";
568 if (Load.C.cmd == MachO::LC_ID_DYLIB)
569 outs() << "LC_ID_DYLIB ";
570 else if (Load.C.cmd == MachO::LC_LOAD_DYLIB)
571 outs() << "LC_LOAD_DYLIB ";
572 else if (Load.C.cmd == MachO::LC_LOAD_WEAK_DYLIB)
573 outs() << "LC_LOAD_WEAK_DYLIB ";
574 else if (Load.C.cmd == MachO::LC_LAZY_LOAD_DYLIB)
575 outs() << "LC_LAZY_LOAD_DYLIB ";
576 else if (Load.C.cmd == MachO::LC_REEXPORT_DYLIB)
577 outs() << "LC_REEXPORT_DYLIB ";
578 else if (Load.C.cmd == MachO::LC_LOAD_UPWARD_DYLIB)
579 outs() << "LC_LOAD_UPWARD_DYLIB ";
580 else
581 outs() << "LC_??? ";
582 outs() << "command " << Index++ << "\n";
583 }
584 }
585 }
586}
587
588typedef DenseMap<uint64_t, StringRef> SymbolAddressMap;
589
590static void CreateSymbolAddressMap(MachOObjectFile *O,
591 SymbolAddressMap *AddrMap) {
592 // Create a map of symbol addresses to symbol names.
593 for (const SymbolRef &Symbol : O->symbols()) {
594 Expected<SymbolRef::Type> STOrErr = Symbol.getType();
595 if (!STOrErr)
596 report_error(O->getFileName(), STOrErr.takeError());
597 SymbolRef::Type ST = *STOrErr;
598 if (ST == SymbolRef::ST_Function || ST == SymbolRef::ST_Data ||
599 ST == SymbolRef::ST_Other) {
600 uint64_t Address = Symbol.getValue();
601 Expected<StringRef> SymNameOrErr = Symbol.getName();
602 if (!SymNameOrErr)
603 report_error(O->getFileName(), SymNameOrErr.takeError());
604 StringRef SymName = *SymNameOrErr;
605 if (!SymName.startswith(".objc"))
606 (*AddrMap)[Address] = SymName;
607 }
608 }
609}
610
611// GuessSymbolName is passed the address of what might be a symbol and a
612// pointer to the SymbolAddressMap. It returns the name of a symbol
613// with that address or nullptr if no symbol is found with that address.
614static const char *GuessSymbolName(uint64_t value, SymbolAddressMap *AddrMap) {
615 const char *SymbolName = nullptr;
616 // A DenseMap can't lookup up some values.
617 if (value != 0xffffffffffffffffULL && value != 0xfffffffffffffffeULL) {
618 StringRef name = AddrMap->lookup(value);
619 if (!name.empty())
620 SymbolName = name.data();
621 }
622 return SymbolName;
623}
624
625static void DumpCstringChar(const char c) {
626 char p[2];
627 p[0] = c;
628 p[1] = '\0';
629 outs().write_escaped(p);
630}
631
632static void DumpCstringSection(MachOObjectFile *O, const char *sect,
633 uint32_t sect_size, uint64_t sect_addr,
634 bool print_addresses) {
635 for (uint32_t i = 0; i < sect_size; i++) {
636 if (print_addresses) {
637 if (O->is64Bit())
638 outs() << format("%016" PRIx64"l" "x", sect_addr + i) << " ";
639 else
640 outs() << format("%08" PRIx64"l" "x", sect_addr + i) << " ";
641 }
642 for (; i < sect_size && sect[i] != '\0'; i++)
643 DumpCstringChar(sect[i]);
644 if (i < sect_size && sect[i] == '\0')
645 outs() << "\n";
646 }
647}
648
649static void DumpLiteral4(uint32_t l, float f) {
650 outs() << format("0x%08" PRIx32"x", l);
651 if ((l & 0x7f800000) != 0x7f800000)
652 outs() << format(" (%.16e)\n", f);
653 else {
654 if (l == 0x7f800000)
655 outs() << " (+Infinity)\n";
656 else if (l == 0xff800000)
657 outs() << " (-Infinity)\n";
658 else if ((l & 0x00400000) == 0x00400000)
659 outs() << " (non-signaling Not-a-Number)\n";
660 else
661 outs() << " (signaling Not-a-Number)\n";
662 }
663}
664
665static void DumpLiteral4Section(MachOObjectFile *O, const char *sect,
666 uint32_t sect_size, uint64_t sect_addr,
667 bool print_addresses) {
668 for (uint32_t i = 0; i < sect_size; i += sizeof(float)) {
669 if (print_addresses) {
670 if (O->is64Bit())
671 outs() << format("%016" PRIx64"l" "x", sect_addr + i) << " ";
672 else
673 outs() << format("%08" PRIx64"l" "x", sect_addr + i) << " ";
674 }
675 float f;
676 memcpy(&f, sect + i, sizeof(float));
677 if (O->isLittleEndian() != sys::IsLittleEndianHost)
678 sys::swapByteOrder(f);
679 uint32_t l;
680 memcpy(&l, sect + i, sizeof(uint32_t));
681 if (O->isLittleEndian() != sys::IsLittleEndianHost)
682 sys::swapByteOrder(l);
683 DumpLiteral4(l, f);
684 }
685}
686
687static void DumpLiteral8(MachOObjectFile *O, uint32_t l0, uint32_t l1,
688 double d) {
689 outs() << format("0x%08" PRIx32"x", l0) << " " << format("0x%08" PRIx32"x", l1);
690 uint32_t Hi, Lo;
691 Hi = (O->isLittleEndian()) ? l1 : l0;
692 Lo = (O->isLittleEndian()) ? l0 : l1;
693
694 // Hi is the high word, so this is equivalent to if(isfinite(d))
695 if ((Hi & 0x7ff00000) != 0x7ff00000)
696 outs() << format(" (%.16e)\n", d);
697 else {
698 if (Hi == 0x7ff00000 && Lo == 0)
699 outs() << " (+Infinity)\n";
700 else if (Hi == 0xfff00000 && Lo == 0)
701 outs() << " (-Infinity)\n";
702 else if ((Hi & 0x00080000) == 0x00080000)
703 outs() << " (non-signaling Not-a-Number)\n";
704 else
705 outs() << " (signaling Not-a-Number)\n";
706 }
707}
708
709static void DumpLiteral8Section(MachOObjectFile *O, const char *sect,
710 uint32_t sect_size, uint64_t sect_addr,
711 bool print_addresses) {
712 for (uint32_t i = 0; i < sect_size; i += sizeof(double)) {
713 if (print_addresses) {
714 if (O->is64Bit())
715 outs() << format("%016" PRIx64"l" "x", sect_addr + i) << " ";
716 else
717 outs() << format("%08" PRIx64"l" "x", sect_addr + i) << " ";
718 }
719 double d;
720 memcpy(&d, sect + i, sizeof(double));
721 if (O->isLittleEndian() != sys::IsLittleEndianHost)
722 sys::swapByteOrder(d);
723 uint32_t l0, l1;
724 memcpy(&l0, sect + i, sizeof(uint32_t));
725 memcpy(&l1, sect + i + sizeof(uint32_t), sizeof(uint32_t));
726 if (O->isLittleEndian() != sys::IsLittleEndianHost) {
727 sys::swapByteOrder(l0);
728 sys::swapByteOrder(l1);
729 }
730 DumpLiteral8(O, l0, l1, d);
731 }
732}
733
734static void DumpLiteral16(uint32_t l0, uint32_t l1, uint32_t l2, uint32_t l3) {
735 outs() << format("0x%08" PRIx32"x", l0) << " ";
736 outs() << format("0x%08" PRIx32"x", l1) << " ";
737 outs() << format("0x%08" PRIx32"x", l2) << " ";
738 outs() << format("0x%08" PRIx32"x", l3) << "\n";
739}
740
741static void DumpLiteral16Section(MachOObjectFile *O, const char *sect,
742 uint32_t sect_size, uint64_t sect_addr,
743 bool print_addresses) {
744 for (uint32_t i = 0; i < sect_size; i += 16) {
745 if (print_addresses) {
746 if (O->is64Bit())
747 outs() << format("%016" PRIx64"l" "x", sect_addr + i) << " ";
748 else
749 outs() << format("%08" PRIx64"l" "x", sect_addr + i) << " ";
750 }
751 uint32_t l0, l1, l2, l3;
752 memcpy(&l0, sect + i, sizeof(uint32_t));
753 memcpy(&l1, sect + i + sizeof(uint32_t), sizeof(uint32_t));
754 memcpy(&l2, sect + i + 2 * sizeof(uint32_t), sizeof(uint32_t));
755 memcpy(&l3, sect + i + 3 * sizeof(uint32_t), sizeof(uint32_t));
756 if (O->isLittleEndian() != sys::IsLittleEndianHost) {
757 sys::swapByteOrder(l0);
758 sys::swapByteOrder(l1);
759 sys::swapByteOrder(l2);
760 sys::swapByteOrder(l3);
761 }
762 DumpLiteral16(l0, l1, l2, l3);
763 }
764}
765
766static void DumpLiteralPointerSection(MachOObjectFile *O,
767 const SectionRef &Section,
768 const char *sect, uint32_t sect_size,
769 uint64_t sect_addr,
770 bool print_addresses) {
771 // Collect the literal sections in this Mach-O file.
772 std::vector<SectionRef> LiteralSections;
773 for (const SectionRef &Section : O->sections()) {
774 DataRefImpl Ref = Section.getRawDataRefImpl();
775 uint32_t section_type;
776 if (O->is64Bit()) {
777 const MachO::section_64 Sec = O->getSection64(Ref);
778 section_type = Sec.flags & MachO::SECTION_TYPE;
779 } else {
780 const MachO::section Sec = O->getSection(Ref);
781 section_type = Sec.flags & MachO::SECTION_TYPE;
782 }
783 if (section_type == MachO::S_CSTRING_LITERALS ||
784 section_type == MachO::S_4BYTE_LITERALS ||
785 section_type == MachO::S_8BYTE_LITERALS ||
786 section_type == MachO::S_16BYTE_LITERALS)
787 LiteralSections.push_back(Section);
788 }
789
790 // Set the size of the literal pointer.
791 uint32_t lp_size = O->is64Bit() ? 8 : 4;
792
793 // Collect the external relocation symbols for the literal pointers.
794 std::vector<std::pair<uint64_t, SymbolRef>> Relocs;
795 for (const RelocationRef &Reloc : Section.relocations()) {
796 DataRefImpl Rel;
797 MachO::any_relocation_info RE;
798 bool isExtern = false;
799 Rel = Reloc.getRawDataRefImpl();
800 RE = O->getRelocation(Rel);
801 isExtern = O->getPlainRelocationExternal(RE);
802 if (isExtern) {
803 uint64_t RelocOffset = Reloc.getOffset();
804 symbol_iterator RelocSym = Reloc.getSymbol();
805 Relocs.push_back(std::make_pair(RelocOffset, *RelocSym));
806 }
807 }
808 array_pod_sort(Relocs.begin(), Relocs.end());
809
810 // Dump each literal pointer.
811 for (uint32_t i = 0; i < sect_size; i += lp_size) {
812 if (print_addresses) {
813 if (O->is64Bit())
814 outs() << format("%016" PRIx64"l" "x", sect_addr + i) << " ";
815 else
816 outs() << format("%08" PRIx64"l" "x", sect_addr + i) << " ";
817 }
818 uint64_t lp;
819 if (O->is64Bit()) {
820 memcpy(&lp, sect + i, sizeof(uint64_t));
821 if (O->isLittleEndian() != sys::IsLittleEndianHost)
822 sys::swapByteOrder(lp);
823 } else {
824 uint32_t li;
825 memcpy(&li, sect + i, sizeof(uint32_t));
826 if (O->isLittleEndian() != sys::IsLittleEndianHost)
827 sys::swapByteOrder(li);
828 lp = li;
829 }
830
831 // First look for an external relocation entry for this literal pointer.
832 auto Reloc = find_if(Relocs, [&](const std::pair<uint64_t, SymbolRef> &P) {
833 return P.first == i;
834 });
835 if (Reloc != Relocs.end()) {
836 symbol_iterator RelocSym = Reloc->second;
837 Expected<StringRef> SymName = RelocSym->getName();
838 if (!SymName)
839 report_error(O->getFileName(), SymName.takeError());
840 outs() << "external relocation entry for symbol:" << *SymName << "\n";
841 continue;
842 }
843
844 // For local references see what the section the literal pointer points to.
845 auto Sect = find_if(LiteralSections, [&](const SectionRef &R) {
846 return lp >= R.getAddress() && lp < R.getAddress() + R.getSize();
847 });
848 if (Sect == LiteralSections.end()) {
849 outs() << format("0x%" PRIx64"l" "x", lp) << " (not in a literal section)\n";
850 continue;
851 }
852
853 uint64_t SectAddress = Sect->getAddress();
854 uint64_t SectSize = Sect->getSize();
855
856 StringRef SectName;
857 Sect->getName(SectName);
858 DataRefImpl Ref = Sect->getRawDataRefImpl();
859 StringRef SegmentName = O->getSectionFinalSegmentName(Ref);
860 outs() << SegmentName << ":" << SectName << ":";
861
862 uint32_t section_type;
863 if (O->is64Bit()) {
864 const MachO::section_64 Sec = O->getSection64(Ref);
865 section_type = Sec.flags & MachO::SECTION_TYPE;
866 } else {
867 const MachO::section Sec = O->getSection(Ref);
868 section_type = Sec.flags & MachO::SECTION_TYPE;
869 }
870
871 StringRef BytesStr;
872 Sect->getContents(BytesStr);
873 const char *Contents = reinterpret_cast<const char *>(BytesStr.data());
874
875 switch (section_type) {
876 case MachO::S_CSTRING_LITERALS:
877 for (uint64_t i = lp - SectAddress; i < SectSize && Contents[i] != '\0';
878 i++) {
879 DumpCstringChar(Contents[i]);
880 }
881 outs() << "\n";
882 break;
883 case MachO::S_4BYTE_LITERALS:
884 float f;
885 memcpy(&f, Contents + (lp - SectAddress), sizeof(float));
886 uint32_t l;
887 memcpy(&l, Contents + (lp - SectAddress), sizeof(uint32_t));
888 if (O->isLittleEndian() != sys::IsLittleEndianHost) {
889 sys::swapByteOrder(f);
890 sys::swapByteOrder(l);
891 }
892 DumpLiteral4(l, f);
893 break;
894 case MachO::S_8BYTE_LITERALS: {
895 double d;
896 memcpy(&d, Contents + (lp - SectAddress), sizeof(double));
897 uint32_t l0, l1;
898 memcpy(&l0, Contents + (lp - SectAddress), sizeof(uint32_t));
899 memcpy(&l1, Contents + (lp - SectAddress) + sizeof(uint32_t),
900 sizeof(uint32_t));
901 if (O->isLittleEndian() != sys::IsLittleEndianHost) {
902 sys::swapByteOrder(f);
903 sys::swapByteOrder(l0);
904 sys::swapByteOrder(l1);
905 }
906 DumpLiteral8(O, l0, l1, d);
907 break;
908 }
909 case MachO::S_16BYTE_LITERALS: {
910 uint32_t l0, l1, l2, l3;
911 memcpy(&l0, Contents + (lp - SectAddress), sizeof(uint32_t));
912 memcpy(&l1, Contents + (lp - SectAddress) + sizeof(uint32_t),
913 sizeof(uint32_t));
914 memcpy(&l2, Contents + (lp - SectAddress) + 2 * sizeof(uint32_t),
915 sizeof(uint32_t));
916 memcpy(&l3, Contents + (lp - SectAddress) + 3 * sizeof(uint32_t),
917 sizeof(uint32_t));
918 if (O->isLittleEndian() != sys::IsLittleEndianHost) {
919 sys::swapByteOrder(l0);
920 sys::swapByteOrder(l1);
921 sys::swapByteOrder(l2);
922 sys::swapByteOrder(l3);
923 }
924 DumpLiteral16(l0, l1, l2, l3);
925 break;
926 }
927 }
928 }
929}
930
931static void DumpInitTermPointerSection(MachOObjectFile *O, const char *sect,
932 uint32_t sect_size, uint64_t sect_addr,
933 SymbolAddressMap *AddrMap,
934 bool verbose) {
935 uint32_t stride;
936 stride = (O->is64Bit()) ? sizeof(uint64_t) : sizeof(uint32_t);
937 for (uint32_t i = 0; i < sect_size; i += stride) {
938 const char *SymbolName = nullptr;
939 if (O->is64Bit()) {
940 outs() << format("0x%016" PRIx64"l" "x", sect_addr + i * stride) << " ";
941 uint64_t pointer_value;
942 memcpy(&pointer_value, sect + i, stride);
943 if (O->isLittleEndian() != sys::IsLittleEndianHost)
944 sys::swapByteOrder(pointer_value);
945 outs() << format("0x%016" PRIx64"l" "x", pointer_value);
946 if (verbose)
947 SymbolName = GuessSymbolName(pointer_value, AddrMap);
948 } else {
949 outs() << format("0x%08" PRIx64"l" "x", sect_addr + i * stride) << " ";
950 uint32_t pointer_value;
951 memcpy(&pointer_value, sect + i, stride);
952 if (O->isLittleEndian() != sys::IsLittleEndianHost)
953 sys::swapByteOrder(pointer_value);
954 outs() << format("0x%08" PRIx32"x", pointer_value);
955 if (verbose)
956 SymbolName = GuessSymbolName(pointer_value, AddrMap);
957 }
958 if (SymbolName)
959 outs() << " " << SymbolName;
960 outs() << "\n";
961 }
962}
963
964static void DumpRawSectionContents(MachOObjectFile *O, const char *sect,
965 uint32_t size, uint64_t addr) {
966 uint32_t cputype = O->getHeader().cputype;
967 if (cputype == MachO::CPU_TYPE_I386 || cputype == MachO::CPU_TYPE_X86_64) {
968 uint32_t j;
969 for (uint32_t i = 0; i < size; i += j, addr += j) {
970 if (O->is64Bit())
971 outs() << format("%016" PRIx64"l" "x", addr) << "\t";
972 else
973 outs() << format("%08" PRIx64"l" "x", addr) << "\t";
974 for (j = 0; j < 16 && i + j < size; j++) {
975 uint8_t byte_word = *(sect + i + j);
976 outs() << format("%02" PRIx32"x", (uint32_t)byte_word) << " ";
977 }
978 outs() << "\n";
979 }
980 } else {
981 uint32_t j;
982 for (uint32_t i = 0; i < size; i += j, addr += j) {
983 if (O->is64Bit())
984 outs() << format("%016" PRIx64"l" "x", addr) << "\t";
985 else
986 outs() << format("%08" PRIx64"l" "x", addr) << "\t";
987 for (j = 0; j < 4 * sizeof(int32_t) && i + j < size;
988 j += sizeof(int32_t)) {
989 if (i + j + sizeof(int32_t) <= size) {
990 uint32_t long_word;
991 memcpy(&long_word, sect + i + j, sizeof(int32_t));
992 if (O->isLittleEndian() != sys::IsLittleEndianHost)
993 sys::swapByteOrder(long_word);
994 outs() << format("%08" PRIx32"x", long_word) << " ";
995 } else {
996 for (uint32_t k = 0; i + j + k < size; k++) {
997 uint8_t byte_word = *(sect + i + j + k);
998 outs() << format("%02" PRIx32"x", (uint32_t)byte_word) << " ";
999 }
1000 }
1001 }
1002 outs() << "\n";
1003 }
1004 }
1005}
1006
1007static void DisassembleMachO(StringRef Filename, MachOObjectFile *MachOOF,
1008 StringRef DisSegName, StringRef DisSectName);
1009static void DumpProtocolSection(MachOObjectFile *O, const char *sect,
1010 uint32_t size, uint32_t addr);
1011#ifdef HAVE_LIBXAR
1012static void DumpBitcodeSection(MachOObjectFile *O, const char *sect,
1013 uint32_t size, bool verbose,
1014 bool PrintXarHeader, bool PrintXarFileHeaders,
1015 std::string XarMemberName);
1016#endif // defined(HAVE_LIBXAR)
1017
1018static void DumpSectionContents(StringRef Filename, MachOObjectFile *O,
1019 bool verbose) {
1020 SymbolAddressMap AddrMap;
1021 if (verbose)
1022 CreateSymbolAddressMap(O, &AddrMap);
1023
1024 for (unsigned i = 0; i < FilterSections.size(); ++i) {
1025 StringRef DumpSection = FilterSections[i];
1026 std::pair<StringRef, StringRef> DumpSegSectName;
1027 DumpSegSectName = DumpSection.split(',');
1028 StringRef DumpSegName, DumpSectName;
1029 if (DumpSegSectName.second.size()) {
1030 DumpSegName = DumpSegSectName.first;
1031 DumpSectName = DumpSegSectName.second;
1032 } else {
1033 DumpSegName = "";
1034 DumpSectName = DumpSegSectName.first;
1035 }
1036 for (const SectionRef &Section : O->sections()) {
1037 StringRef SectName;
1038 Section.getName(SectName);
1039 DataRefImpl Ref = Section.getRawDataRefImpl();
1040 StringRef SegName = O->getSectionFinalSegmentName(Ref);
1041 if ((DumpSegName.empty() || SegName == DumpSegName) &&
1042 (SectName == DumpSectName)) {
1043
1044 uint32_t section_flags;
1045 if (O->is64Bit()) {
1046 const MachO::section_64 Sec = O->getSection64(Ref);
1047 section_flags = Sec.flags;
1048
1049 } else {
1050 const MachO::section Sec = O->getSection(Ref);
1051 section_flags = Sec.flags;
1052 }
1053 uint32_t section_type = section_flags & MachO::SECTION_TYPE;
1054
1055 StringRef BytesStr;
1056 Section.getContents(BytesStr);
1057 const char *sect = reinterpret_cast<const char *>(BytesStr.data());
1058 uint32_t sect_size = BytesStr.size();
1059 uint64_t sect_addr = Section.getAddress();
1060
1061 outs() << "Contents of (" << SegName << "," << SectName
1062 << ") section\n";
1063
1064 if (verbose) {
1065 if ((section_flags & MachO::S_ATTR_PURE_INSTRUCTIONS) ||
1066 (section_flags & MachO::S_ATTR_SOME_INSTRUCTIONS)) {
1067 DisassembleMachO(Filename, O, SegName, SectName);
1068 continue;
1069 }
1070 if (SegName == "__TEXT" && SectName == "__info_plist") {
1071 outs() << sect;
1072 continue;
1073 }
1074 if (SegName == "__OBJC" && SectName == "__protocol") {
1075 DumpProtocolSection(O, sect, sect_size, sect_addr);
1076 continue;
1077 }
1078#ifdef HAVE_LIBXAR
1079 if (SegName == "__LLVM" && SectName == "__bundle") {
1080 DumpBitcodeSection(O, sect, sect_size, verbose, !NoSymbolicOperands,
1081 ArchiveHeaders, "");
1082 continue;
1083 }
1084#endif // defined(HAVE_LIBXAR)
1085 switch (section_type) {
1086 case MachO::S_REGULAR:
1087 DumpRawSectionContents(O, sect, sect_size, sect_addr);
1088 break;
1089 case MachO::S_ZEROFILL:
1090 outs() << "zerofill section and has no contents in the file\n";
1091 break;
1092 case MachO::S_CSTRING_LITERALS:
1093 DumpCstringSection(O, sect, sect_size, sect_addr, !NoLeadingAddr);
1094 break;
1095 case MachO::S_4BYTE_LITERALS:
1096 DumpLiteral4Section(O, sect, sect_size, sect_addr, !NoLeadingAddr);
1097 break;
1098 case MachO::S_8BYTE_LITERALS:
1099 DumpLiteral8Section(O, sect, sect_size, sect_addr, !NoLeadingAddr);
1100 break;
1101 case MachO::S_16BYTE_LITERALS:
1102 DumpLiteral16Section(O, sect, sect_size, sect_addr, !NoLeadingAddr);
1103 break;
1104 case MachO::S_LITERAL_POINTERS:
1105 DumpLiteralPointerSection(O, Section, sect, sect_size, sect_addr,
1106 !NoLeadingAddr);
1107 break;
1108 case MachO::S_MOD_INIT_FUNC_POINTERS:
1109 case MachO::S_MOD_TERM_FUNC_POINTERS:
1110 DumpInitTermPointerSection(O, sect, sect_size, sect_addr, &AddrMap,
1111 verbose);
1112 break;
1113 default:
1114 outs() << "Unknown section type ("
1115 << format("0x%08" PRIx32"x", section_type) << ")\n";
1116 DumpRawSectionContents(O, sect, sect_size, sect_addr);
1117 break;
1118 }
1119 } else {
1120 if (section_type == MachO::S_ZEROFILL)
1121 outs() << "zerofill section and has no contents in the file\n";
1122 else
1123 DumpRawSectionContents(O, sect, sect_size, sect_addr);
1124 }
1125 }
1126 }
1127 }
1128}
1129
1130static void DumpInfoPlistSectionContents(StringRef Filename,
1131 MachOObjectFile *O) {
1132 for (const SectionRef &Section : O->sections()) {
1133 StringRef SectName;
1134 Section.getName(SectName);
1135 DataRefImpl Ref = Section.getRawDataRefImpl();
1136 StringRef SegName = O->getSectionFinalSegmentName(Ref);
1137 if (SegName == "__TEXT" && SectName == "__info_plist") {
1138 outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
1139 StringRef BytesStr;
1140 Section.getContents(BytesStr);
1141 const char *sect = reinterpret_cast<const char *>(BytesStr.data());
1142 outs() << format("%.*s", BytesStr.size(), sect) << "\n";
1143 return;
1144 }
1145 }
1146}
1147
1148// checkMachOAndArchFlags() checks to see if the ObjectFile is a Mach-O file
1149// and if it is and there is a list of architecture flags is specified then
1150// check to make sure this Mach-O file is one of those architectures or all
1151// architectures were specified. If not then an error is generated and this
1152// routine returns false. Else it returns true.
1153static bool checkMachOAndArchFlags(ObjectFile *O, StringRef Filename) {
1154 auto *MachO = dyn_cast<MachOObjectFile>(O);
1155
1156 if (!MachO || ArchAll || ArchFlags.empty())
1157 return true;
1158
1159 MachO::mach_header H;
1160 MachO::mach_header_64 H_64;
1161 Triple T;
1162 const char *McpuDefault, *ArchFlag;
1163 if (MachO->is64Bit()) {
1164 H_64 = MachO->MachOObjectFile::getHeader64();
1165 T = MachOObjectFile::getArchTriple(H_64.cputype, H_64.cpusubtype,
1166 &McpuDefault, &ArchFlag);
1167 } else {
1168 H = MachO->MachOObjectFile::getHeader();
1169 T = MachOObjectFile::getArchTriple(H.cputype, H.cpusubtype,
1170 &McpuDefault, &ArchFlag);
1171 }
1172 const std::string ArchFlagName(ArchFlag);
1173 if (none_of(ArchFlags, [&](const std::string &Name) {
1174 return Name == ArchFlagName;
1175 })) {
1176 errs() << "llvm-objdump: " + Filename + ": No architecture specified.\n";
1177 return false;
1178 }
1179 return true;
1180}
1181
1182static void printObjcMetaData(MachOObjectFile *O, bool verbose);
1183
1184// ProcessMachO() is passed a single opened Mach-O file, which may be an
1185// archive member and or in a slice of a universal file. It prints the
1186// the file name and header info and then processes it according to the
1187// command line options.
1188static void ProcessMachO(StringRef Name, MachOObjectFile *MachOOF,
1189 StringRef ArchiveMemberName = StringRef(),
1190 StringRef ArchitectureName = StringRef()) {
1191 // If we are doing some processing here on the Mach-O file print the header
1192 // info. And don't print it otherwise like in the case of printing the
1193 // UniversalHeaders or ArchiveHeaders.
1194 if (Disassemble || PrivateHeaders || ExportsTrie || Rebase || Bind || SymbolTable ||
1195 LazyBind || WeakBind || IndirectSymbols || DataInCode || LinkOptHints ||
1196 DylibsUsed || DylibId || ObjcMetaData || (FilterSections.size() != 0)) {
1197 if (!NoLeadingHeaders) {
1198 outs() << Name;
1199 if (!ArchiveMemberName.empty())
1200 outs() << '(' << ArchiveMemberName << ')';
1201 if (!ArchitectureName.empty())
1202 outs() << " (architecture " << ArchitectureName << ")";
1203 outs() << ":\n";
1204 }
1205 }
1206 // To use the report_error() form with an ArchiveName and FileName set
1207 // these up based on what is passed for Name and ArchiveMemberName.
1208 StringRef ArchiveName;
1209 StringRef FileName;
1210 if (!ArchiveMemberName.empty()) {
1211 ArchiveName = Name;
1212 FileName = ArchiveMemberName;
1213 } else {
1214 ArchiveName = StringRef();
1215 FileName = Name;
1216 }
1217
1218 // If we need the symbol table to do the operation then check it here to
1219 // produce a good error message as to where the Mach-O file comes from in
1220 // the error message.
1221 if (Disassemble || IndirectSymbols || FilterSections.size() != 0 ||
1222 UnwindInfo)
1223 if (Error Err = MachOOF->checkSymbolTable())
1224 report_error(ArchiveName, FileName, std::move(Err), ArchitectureName);
1225
1226 if (Disassemble)
1227 DisassembleMachO(FileName, MachOOF, "__TEXT", "__text");
1228 if (IndirectSymbols)
1229 PrintIndirectSymbols(MachOOF, !NonVerbose);
1230 if (DataInCode)
1231 PrintDataInCodeTable(MachOOF, !NonVerbose);
1232 if (LinkOptHints)
1233 PrintLinkOptHints(MachOOF);
1234 if (Relocations)
1235 PrintRelocations(MachOOF);
1236 if (SectionHeaders)
1237 PrintSectionHeaders(MachOOF);
1238 if (SectionContents)
1239 PrintSectionContents(MachOOF);
1240 if (FilterSections.size() != 0)
1241 DumpSectionContents(FileName, MachOOF, !NonVerbose);
1242 if (InfoPlist)
1243 DumpInfoPlistSectionContents(FileName, MachOOF);
1244 if (DylibsUsed)
1245 PrintDylibs(MachOOF, false);
1246 if (DylibId)
1247 PrintDylibs(MachOOF, true);
1248 if (SymbolTable)
1249 PrintSymbolTable(MachOOF, ArchiveName, ArchitectureName);
1250 if (UnwindInfo)
1251 printMachOUnwindInfo(MachOOF);
1252 if (PrivateHeaders) {
1253 printMachOFileHeader(MachOOF);
1254 printMachOLoadCommands(MachOOF);
1255 }
1256 if (FirstPrivateHeader)
1257 printMachOFileHeader(MachOOF);
1258 if (ObjcMetaData)
1259 printObjcMetaData(MachOOF, !NonVerbose);
1260 if (ExportsTrie)
1261 printExportsTrie(MachOOF);
1262 if (Rebase)
1263 printRebaseTable(MachOOF);
1264 if (Bind)
1265 printBindTable(MachOOF);
1266 if (LazyBind)
1267 printLazyBindTable(MachOOF);
1268 if (WeakBind)
1269 printWeakBindTable(MachOOF);
1270
1271 if (DwarfDumpType != DIDT_Null) {
1272 std::unique_ptr<DIContext> DICtx(new DWARFContextInMemory(*MachOOF));
1273 // Dump the complete DWARF structure.
1274 DICtx->dump(outs(), DwarfDumpType, true /* DumpEH */);
1275 }
1276}
1277
1278// printUnknownCPUType() helps print_fat_headers for unknown CPU's.
1279static void printUnknownCPUType(uint32_t cputype, uint32_t cpusubtype) {
1280 outs() << " cputype (" << cputype << ")\n";
1281 outs() << " cpusubtype (" << cpusubtype << ")\n";
1282}
1283
1284// printCPUType() helps print_fat_headers by printing the cputype and
1285// pusubtype (symbolically for the one's it knows about).
1286static void printCPUType(uint32_t cputype, uint32_t cpusubtype) {
1287 switch (cputype) {
1288 case MachO::CPU_TYPE_I386:
1289 switch (cpusubtype) {
1290 case MachO::CPU_SUBTYPE_I386_ALL:
1291 outs() << " cputype CPU_TYPE_I386\n";
1292 outs() << " cpusubtype CPU_SUBTYPE_I386_ALL\n";
1293 break;
1294 default:
1295 printUnknownCPUType(cputype, cpusubtype);
1296 break;
1297 }
1298 break;
1299 case MachO::CPU_TYPE_X86_64:
1300 switch (cpusubtype) {
1301 case MachO::CPU_SUBTYPE_X86_64_ALL:
1302 outs() << " cputype CPU_TYPE_X86_64\n";
1303 outs() << " cpusubtype CPU_SUBTYPE_X86_64_ALL\n";
1304 break;
1305 case MachO::CPU_SUBTYPE_X86_64_H:
1306 outs() << " cputype CPU_TYPE_X86_64\n";
1307 outs() << " cpusubtype CPU_SUBTYPE_X86_64_H\n";
1308 break;
1309 default:
1310 printUnknownCPUType(cputype, cpusubtype);
1311 break;
1312 }
1313 break;
1314 case MachO::CPU_TYPE_ARM:
1315 switch (cpusubtype) {
1316 case MachO::CPU_SUBTYPE_ARM_ALL:
1317 outs() << " cputype CPU_TYPE_ARM\n";
1318 outs() << " cpusubtype CPU_SUBTYPE_ARM_ALL\n";
1319 break;
1320 case MachO::CPU_SUBTYPE_ARM_V4T:
1321 outs() << " cputype CPU_TYPE_ARM\n";
1322 outs() << " cpusubtype CPU_SUBTYPE_ARM_V4T\n";
1323 break;
1324 case MachO::CPU_SUBTYPE_ARM_V5TEJ:
1325 outs() << " cputype CPU_TYPE_ARM\n";
1326 outs() << " cpusubtype CPU_SUBTYPE_ARM_V5TEJ\n";
1327 break;
1328 case MachO::CPU_SUBTYPE_ARM_XSCALE:
1329 outs() << " cputype CPU_TYPE_ARM\n";
1330 outs() << " cpusubtype CPU_SUBTYPE_ARM_XSCALE\n";
1331 break;
1332 case MachO::CPU_SUBTYPE_ARM_V6:
1333 outs() << " cputype CPU_TYPE_ARM\n";
1334 outs() << " cpusubtype CPU_SUBTYPE_ARM_V6\n";
1335 break;
1336 case MachO::CPU_SUBTYPE_ARM_V6M:
1337 outs() << " cputype CPU_TYPE_ARM\n";
1338 outs() << " cpusubtype CPU_SUBTYPE_ARM_V6M\n";
1339 break;
1340 case MachO::CPU_SUBTYPE_ARM_V7:
1341 outs() << " cputype CPU_TYPE_ARM\n";
1342 outs() << " cpusubtype CPU_SUBTYPE_ARM_V7\n";
1343 break;
1344 case MachO::CPU_SUBTYPE_ARM_V7EM:
1345 outs() << " cputype CPU_TYPE_ARM\n";
1346 outs() << " cpusubtype CPU_SUBTYPE_ARM_V7EM\n";
1347 break;
1348 case MachO::CPU_SUBTYPE_ARM_V7K:
1349 outs() << " cputype CPU_TYPE_ARM\n";
1350 outs() << " cpusubtype CPU_SUBTYPE_ARM_V7K\n";
1351 break;
1352 case MachO::CPU_SUBTYPE_ARM_V7M:
1353 outs() << " cputype CPU_TYPE_ARM\n";
1354 outs() << " cpusubtype CPU_SUBTYPE_ARM_V7M\n";
1355 break;
1356 case MachO::CPU_SUBTYPE_ARM_V7S:
1357 outs() << " cputype CPU_TYPE_ARM\n";
1358 outs() << " cpusubtype CPU_SUBTYPE_ARM_V7S\n";
1359 break;
1360 default:
1361 printUnknownCPUType(cputype, cpusubtype);
1362 break;
1363 }
1364 break;
1365 case MachO::CPU_TYPE_ARM64:
1366 switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
1367 case MachO::CPU_SUBTYPE_ARM64_ALL:
1368 outs() << " cputype CPU_TYPE_ARM64\n";
1369 outs() << " cpusubtype CPU_SUBTYPE_ARM64_ALL\n";
1370 break;
1371 default:
1372 printUnknownCPUType(cputype, cpusubtype);
1373 break;
1374 }
1375 break;
1376 default:
1377 printUnknownCPUType(cputype, cpusubtype);
1378 break;
1379 }
1380}
1381
1382static void printMachOUniversalHeaders(const object::MachOUniversalBinary *UB,
1383 bool verbose) {
1384 outs() << "Fat headers\n";
1385 if (verbose) {
1386 if (UB->getMagic() == MachO::FAT_MAGIC)
1387 outs() << "fat_magic FAT_MAGIC\n";
1388 else // UB->getMagic() == MachO::FAT_MAGIC_64
1389 outs() << "fat_magic FAT_MAGIC_64\n";
1390 } else
1391 outs() << "fat_magic " << format("0x%" PRIx32"x", MachO::FAT_MAGIC) << "\n";
1392
1393 uint32_t nfat_arch = UB->getNumberOfObjects();
1394 StringRef Buf = UB->getData();
1395 uint64_t size = Buf.size();
1396 uint64_t big_size = sizeof(struct MachO::fat_header) +
1397 nfat_arch * sizeof(struct MachO::fat_arch);
1398 outs() << "nfat_arch " << UB->getNumberOfObjects();
1399 if (nfat_arch == 0)
1400 outs() << " (malformed, contains zero architecture types)\n";
1401 else if (big_size > size)
1402 outs() << " (malformed, architectures past end of file)\n";
1403 else
1404 outs() << "\n";
1405
1406 for (uint32_t i = 0; i < nfat_arch; ++i) {
1407 MachOUniversalBinary::ObjectForArch OFA(UB, i);
1408 uint32_t cputype = OFA.getCPUType();
1409 uint32_t cpusubtype = OFA.getCPUSubType();
1410 outs() << "architecture ";
1411 for (uint32_t j = 0; i != 0 && j <= i - 1; j++) {
1412 MachOUniversalBinary::ObjectForArch other_OFA(UB, j);
1413 uint32_t other_cputype = other_OFA.getCPUType();
1414 uint32_t other_cpusubtype = other_OFA.getCPUSubType();
1415 if (cputype != 0 && cpusubtype != 0 && cputype == other_cputype &&
1416 (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) ==
1417 (other_cpusubtype & ~MachO::CPU_SUBTYPE_MASK)) {
1418 outs() << "(illegal duplicate architecture) ";
1419 break;
1420 }
1421 }
1422 if (verbose) {
1423 outs() << OFA.getArchFlagName() << "\n";
1424 printCPUType(cputype, cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
1425 } else {
1426 outs() << i << "\n";
1427 outs() << " cputype " << cputype << "\n";
1428 outs() << " cpusubtype " << (cpusubtype & ~MachO::CPU_SUBTYPE_MASK)
1429 << "\n";
1430 }
1431 if (verbose &&
1432 (cpusubtype & MachO::CPU_SUBTYPE_MASK) == MachO::CPU_SUBTYPE_LIB64)
1433 outs() << " capabilities CPU_SUBTYPE_LIB64\n";
1434 else
1435 outs() << " capabilities "
1436 << format("0x%" PRIx32"x",
1437 (cpusubtype & MachO::CPU_SUBTYPE_MASK) >> 24) << "\n";
1438 outs() << " offset " << OFA.getOffset();
1439 if (OFA.getOffset() > size)
1440 outs() << " (past end of file)";
1441 if (OFA.getOffset() % (1 << OFA.getAlign()) != 0)
1442 outs() << " (not aligned on it's alignment (2^" << OFA.getAlign() << ")";
1443 outs() << "\n";
1444 outs() << " size " << OFA.getSize();
1445 big_size = OFA.getOffset() + OFA.getSize();
1446 if (big_size > size)
1447 outs() << " (past end of file)";
1448 outs() << "\n";
1449 outs() << " align 2^" << OFA.getAlign() << " (" << (1 << OFA.getAlign())
1450 << ")\n";
1451 }
1452}
1453
1454static void printArchiveChild(StringRef Filename, const Archive::Child &C,
1455 bool verbose, bool print_offset,
1456 StringRef ArchitectureName = StringRef()) {
1457 if (print_offset)
1458 outs() << C.getChildOffset() << "\t";
1459 Expected<sys::fs::perms> ModeOrErr = C.getAccessMode();
1460 if (!ModeOrErr)
1461 report_error(Filename, C, ModeOrErr.takeError(), ArchitectureName);
1462 sys::fs::perms Mode = ModeOrErr.get();
1463 if (verbose) {
1464 // FIXME: this first dash, "-", is for (Mode & S_IFMT) == S_IFREG.
1465 // But there is nothing in sys::fs::perms for S_IFMT or S_IFREG.
1466 outs() << "-";
1467 outs() << ((Mode & sys::fs::owner_read) ? "r" : "-");
1468 outs() << ((Mode & sys::fs::owner_write) ? "w" : "-");
1469 outs() << ((Mode & sys::fs::owner_exe) ? "x" : "-");
1470 outs() << ((Mode & sys::fs::group_read) ? "r" : "-");
1471 outs() << ((Mode & sys::fs::group_write) ? "w" : "-");
1472 outs() << ((Mode & sys::fs::group_exe) ? "x" : "-");
1473 outs() << ((Mode & sys::fs::others_read) ? "r" : "-");
1474 outs() << ((Mode & sys::fs::others_write) ? "w" : "-");
1475 outs() << ((Mode & sys::fs::others_exe) ? "x" : "-");
1476 } else {
1477 outs() << format("0%o ", Mode);
1478 }
1479
1480 Expected<unsigned> UIDOrErr = C.getUID();
1481 if (!UIDOrErr)
1482 report_error(Filename, C, UIDOrErr.takeError(), ArchitectureName);
1483 unsigned UID = UIDOrErr.get();
1484 outs() << format("%3d/", UID);
1485 Expected<unsigned> GIDOrErr = C.getGID();
1486 if (!GIDOrErr)
1487 report_error(Filename, C, GIDOrErr.takeError(), ArchitectureName);
1488 unsigned GID = GIDOrErr.get();
1489 outs() << format("%-3d ", GID);
1490 Expected<uint64_t> Size = C.getRawSize();
1491 if (!Size)
1492 report_error(Filename, C, Size.takeError(), ArchitectureName);
1493 outs() << format("%5" PRId64"l" "d", Size.get()) << " ";
1494
1495 StringRef RawLastModified = C.getRawLastModified();
1496 if (verbose) {
1497 unsigned Seconds;
1498 if (RawLastModified.getAsInteger(10, Seconds))
1499 outs() << "(date: \"" << RawLastModified
1500 << "\" contains non-decimal chars) ";
1501 else {
1502 // Since cime(3) returns a 26 character string of the form:
1503 // "Sun Sep 16 01:03:52 1973\n\0"
1504 // just print 24 characters.
1505 time_t t = Seconds;
1506 outs() << format("%.24s ", ctime(&t));
1507 }
1508 } else {
1509 outs() << RawLastModified << " ";
1510 }
1511
1512 if (verbose) {
1513 Expected<StringRef> NameOrErr = C.getName();
1514 if (!NameOrErr) {
1515 consumeError(NameOrErr.takeError());
1516 Expected<StringRef> NameOrErr = C.getRawName();
1517 if (!NameOrErr)
1518 report_error(Filename, C, NameOrErr.takeError(), ArchitectureName);
1519 StringRef RawName = NameOrErr.get();
1520 outs() << RawName << "\n";
1521 } else {
1522 StringRef Name = NameOrErr.get();
1523 outs() << Name << "\n";
1524 }
1525 } else {
1526 Expected<StringRef> NameOrErr = C.getRawName();
1527 if (!NameOrErr)
1528 report_error(Filename, C, NameOrErr.takeError(), ArchitectureName);
1529 StringRef RawName = NameOrErr.get();
1530 outs() << RawName << "\n";
1531 }
1532}
1533
1534static void printArchiveHeaders(StringRef Filename, Archive *A, bool verbose,
1535 bool print_offset,
1536 StringRef ArchitectureName = StringRef()) {
1537 Error Err = Error::success();
1538 ;
1539 for (const auto &C : A->children(Err, false))
1540 printArchiveChild(Filename, C, verbose, print_offset, ArchitectureName);
1541
1542 if (Err)
1543 report_error(StringRef(), Filename, std::move(Err), ArchitectureName);
1544}
1545
1546// ParseInputMachO() parses the named Mach-O file in Filename and handles the
1547// -arch flags selecting just those slices as specified by them and also parses
1548// archive files. Then for each individual Mach-O file ProcessMachO() is
1549// called to process the file based on the command line options.
1550void llvm::ParseInputMachO(StringRef Filename) {
1551 // Check for -arch all and verifiy the -arch flags are valid.
1552 for (unsigned i = 0; i < ArchFlags.size(); ++i) {
1553 if (ArchFlags[i] == "all") {
1554 ArchAll = true;
1555 } else {
1556 if (!MachOObjectFile::isValidArch(ArchFlags[i])) {
1557 errs() << "llvm-objdump: Unknown architecture named '" + ArchFlags[i] +
1558 "'for the -arch option\n";
1559 return;
1560 }
1561 }
1562 }
1563
1564 // Attempt to open the binary.
1565 Expected<OwningBinary<Binary>> BinaryOrErr = createBinary(Filename);
1566 if (!BinaryOrErr) {
1567 if (auto E = isNotObjectErrorInvalidFileType(BinaryOrErr.takeError()))
1568 report_error(Filename, std::move(E));
1569 else
1570 outs() << Filename << ": is not an object file\n";
1571 return;
1572 }
1573 Binary &Bin = *BinaryOrErr.get().getBinary();
1574
1575 if (Archive *A = dyn_cast<Archive>(&Bin)) {
1576 outs() << "Archive : " << Filename << "\n";
1577 if (ArchiveHeaders)
1578 printArchiveHeaders(Filename, A, !NonVerbose, ArchiveMemberOffsets);
1579
1580 Error Err = Error::success();
1581 for (auto &C : A->children(Err)) {
1582 Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
1583 if (!ChildOrErr) {
1584 if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
1585 report_error(Filename, C, std::move(E));
1586 continue;
1587 }
1588 if (MachOObjectFile *O = dyn_cast<MachOObjectFile>(&*ChildOrErr.get())) {
1589 if (!checkMachOAndArchFlags(O, Filename))
1590 return;
1591 ProcessMachO(Filename, O, O->getFileName());
1592 }
1593 }
1594 if (Err)
1595 report_error(Filename, std::move(Err));
1596 return;
1597 }
1598 if (UniversalHeaders) {
1599 if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Bin))
1600 printMachOUniversalHeaders(UB, !NonVerbose);
1601 }
1602 if (MachOUniversalBinary *UB = dyn_cast<MachOUniversalBinary>(&Bin)) {
1603 // If we have a list of architecture flags specified dump only those.
1604 if (!ArchAll && ArchFlags.size() != 0) {
1605 // Look for a slice in the universal binary that matches each ArchFlag.
1606 bool ArchFound;
1607 for (unsigned i = 0; i < ArchFlags.size(); ++i) {
1608 ArchFound = false;
1609 for (MachOUniversalBinary::object_iterator I = UB->begin_objects(),
1610 E = UB->end_objects();
1611 I != E; ++I) {
1612 if (ArchFlags[i] == I->getArchFlagName()) {
1613 ArchFound = true;
1614 Expected<std::unique_ptr<ObjectFile>> ObjOrErr =
1615 I->getAsObjectFile();
1616 std::string ArchitectureName = "";
1617 if (ArchFlags.size() > 1)
1618 ArchitectureName = I->getArchFlagName();
1619 if (ObjOrErr) {
1620 ObjectFile &O = *ObjOrErr.get();
1621 if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&O))
1622 ProcessMachO(Filename, MachOOF, "", ArchitectureName);
1623 } else if (auto E = isNotObjectErrorInvalidFileType(
1624 ObjOrErr.takeError())) {
1625 report_error(Filename, StringRef(), std::move(E),
1626 ArchitectureName);
1627 continue;
1628 } else if (Expected<std::unique_ptr<Archive>> AOrErr =
1629 I->getAsArchive()) {
1630 std::unique_ptr<Archive> &A = *AOrErr;
1631 outs() << "Archive : " << Filename;
1632 if (!ArchitectureName.empty())
1633 outs() << " (architecture " << ArchitectureName << ")";
1634 outs() << "\n";
1635 if (ArchiveHeaders)
1636 printArchiveHeaders(Filename, A.get(), !NonVerbose,
1637 ArchiveMemberOffsets, ArchitectureName);
1638 Error Err = Error::success();
1639 for (auto &C : A->children(Err)) {
1640 Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
1641 if (!ChildOrErr) {
1642 if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
1643 report_error(Filename, C, std::move(E), ArchitectureName);
1644 continue;
1645 }
1646 if (MachOObjectFile *O =
1647 dyn_cast<MachOObjectFile>(&*ChildOrErr.get()))
1648 ProcessMachO(Filename, O, O->getFileName(), ArchitectureName);
1649 }
1650 if (Err)
1651 report_error(Filename, std::move(Err));
1652 } else {
1653 consumeError(AOrErr.takeError());
1654 error("Mach-O universal file: " + Filename + " for " +
1655 "architecture " + StringRef(I->getArchFlagName()) +
1656 " is not a Mach-O file or an archive file");
1657 }
1658 }
1659 }
1660 if (!ArchFound) {
1661 errs() << "llvm-objdump: file: " + Filename + " does not contain "
1662 << "architecture: " + ArchFlags[i] + "\n";
1663 return;
1664 }
1665 }
1666 return;
1667 }
1668 // No architecture flags were specified so if this contains a slice that
1669 // matches the host architecture dump only that.
1670 if (!ArchAll) {
1671 for (MachOUniversalBinary::object_iterator I = UB->begin_objects(),
1672 E = UB->end_objects();
1673 I != E; ++I) {
1674 if (MachOObjectFile::getHostArch().getArchName() ==
1675 I->getArchFlagName()) {
1676 Expected<std::unique_ptr<ObjectFile>> ObjOrErr = I->getAsObjectFile();
1677 std::string ArchiveName;
1678 ArchiveName.clear();
1679 if (ObjOrErr) {
1680 ObjectFile &O = *ObjOrErr.get();
1681 if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&O))
1682 ProcessMachO(Filename, MachOOF);
1683 } else if (auto E = isNotObjectErrorInvalidFileType(
1684 ObjOrErr.takeError())) {
1685 report_error(Filename, std::move(E));
1686 continue;
1687 } else if (Expected<std::unique_ptr<Archive>> AOrErr =
1688 I->getAsArchive()) {
1689 std::unique_ptr<Archive> &A = *AOrErr;
1690 outs() << "Archive : " << Filename << "\n";
1691 if (ArchiveHeaders)
1692 printArchiveHeaders(Filename, A.get(), !NonVerbose,
1693 ArchiveMemberOffsets);
1694 Error Err = Error::success();
1695 for (auto &C : A->children(Err)) {
1696 Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
1697 if (!ChildOrErr) {
1698 if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
1699 report_error(Filename, C, std::move(E));
1700 continue;
1701 }
1702 if (MachOObjectFile *O =
1703 dyn_cast<MachOObjectFile>(&*ChildOrErr.get()))
1704 ProcessMachO(Filename, O, O->getFileName());
1705 }
1706 if (Err)
1707 report_error(Filename, std::move(Err));
1708 } else {
1709 consumeError(AOrErr.takeError());
1710 error("Mach-O universal file: " + Filename + " for architecture " +
1711 StringRef(I->getArchFlagName()) +
1712 " is not a Mach-O file or an archive file");
1713 }
1714 return;
1715 }
1716 }
1717 }
1718 // Either all architectures have been specified or none have been specified
1719 // and this does not contain the host architecture so dump all the slices.
1720 bool moreThanOneArch = UB->getNumberOfObjects() > 1;
1721 for (MachOUniversalBinary::object_iterator I = UB->begin_objects(),
1722 E = UB->end_objects();
1723 I != E; ++I) {
1724 Expected<std::unique_ptr<ObjectFile>> ObjOrErr = I->getAsObjectFile();
1725 std::string ArchitectureName = "";
1726 if (moreThanOneArch)
1727 ArchitectureName = I->getArchFlagName();
1728 if (ObjOrErr) {
1729 ObjectFile &Obj = *ObjOrErr.get();
1730 if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&Obj))
1731 ProcessMachO(Filename, MachOOF, "", ArchitectureName);
1732 } else if (auto E = isNotObjectErrorInvalidFileType(
1733 ObjOrErr.takeError())) {
1734 report_error(StringRef(), Filename, std::move(E), ArchitectureName);
1735 continue;
1736 } else if (Expected<std::unique_ptr<Archive>> AOrErr =
1737 I->getAsArchive()) {
1738 std::unique_ptr<Archive> &A = *AOrErr;
1739 outs() << "Archive : " << Filename;
1740 if (!ArchitectureName.empty())
1741 outs() << " (architecture " << ArchitectureName << ")";
1742 outs() << "\n";
1743 if (ArchiveHeaders)
1744 printArchiveHeaders(Filename, A.get(), !NonVerbose,
1745 ArchiveMemberOffsets, ArchitectureName);
1746 Error Err = Error::success();
1747 for (auto &C : A->children(Err)) {
1748 Expected<std::unique_ptr<Binary>> ChildOrErr = C.getAsBinary();
1749 if (!ChildOrErr) {
1750 if (auto E = isNotObjectErrorInvalidFileType(ChildOrErr.takeError()))
1751 report_error(Filename, C, std::move(E), ArchitectureName);
1752 continue;
1753 }
1754 if (MachOObjectFile *O =
1755 dyn_cast<MachOObjectFile>(&*ChildOrErr.get())) {
1756 if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(O))
1757 ProcessMachO(Filename, MachOOF, MachOOF->getFileName(),
1758 ArchitectureName);
1759 }
1760 }
1761 if (Err)
1762 report_error(Filename, std::move(Err));
1763 } else {
1764 consumeError(AOrErr.takeError());
1765 error("Mach-O universal file: " + Filename + " for architecture " +
1766 StringRef(I->getArchFlagName()) +
1767 " is not a Mach-O file or an archive file");
1768 }
1769 }
1770 return;
1771 }
1772 if (ObjectFile *O = dyn_cast<ObjectFile>(&Bin)) {
1773 if (!checkMachOAndArchFlags(O, Filename))
1774 return;
1775 if (MachOObjectFile *MachOOF = dyn_cast<MachOObjectFile>(&*O)) {
1776 ProcessMachO(Filename, MachOOF);
1777 } else
1778 errs() << "llvm-objdump: '" << Filename << "': "
1779 << "Object is not a Mach-O file type.\n";
1780 return;
1781 }
1782 llvm_unreachable("Input object can't be invalid at this point")::llvm::llvm_unreachable_internal("Input object can't be invalid at this point"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/llvm-objdump/MachODump.cpp"
, 1782)
;
1783}
1784
1785// The block of info used by the Symbolizer call backs.
1786struct DisassembleInfo {
1787 bool verbose;
1788 MachOObjectFile *O;
1789 SectionRef S;
1790 SymbolAddressMap *AddrMap;
1791 std::vector<SectionRef> *Sections;
1792 const char *class_name;
1793 const char *selector_name;
1794 char *method;
1795 char *demangled_name;
1796 uint64_t adrp_addr;
1797 uint32_t adrp_inst;
1798 std::unique_ptr<SymbolAddressMap> bindtable;
1799 uint32_t depth;
1800};
1801
1802// SymbolizerGetOpInfo() is the operand information call back function.
1803// This is called to get the symbolic information for operand(s) of an
1804// instruction when it is being done. This routine does this from
1805// the relocation information, symbol table, etc. That block of information
1806// is a pointer to the struct DisassembleInfo that was passed when the
1807// disassembler context was created and passed to back to here when
1808// called back by the disassembler for instruction operands that could have
1809// relocation information. The address of the instruction containing operand is
1810// at the Pc parameter. The immediate value the operand has is passed in
1811// op_info->Value and is at Offset past the start of the instruction and has a
1812// byte Size of 1, 2 or 4. The symbolc information is returned in TagBuf is the
1813// LLVMOpInfo1 struct defined in the header "llvm-c/Disassembler.h" as symbol
1814// names and addends of the symbolic expression to add for the operand. The
1815// value of TagType is currently 1 (for the LLVMOpInfo1 struct). If symbolic
1816// information is returned then this function returns 1 else it returns 0.
1817static int SymbolizerGetOpInfo(void *DisInfo, uint64_t Pc, uint64_t Offset,
1818 uint64_t Size, int TagType, void *TagBuf) {
1819 struct DisassembleInfo *info = (struct DisassembleInfo *)DisInfo;
1820 struct LLVMOpInfo1 *op_info = (struct LLVMOpInfo1 *)TagBuf;
1821 uint64_t value = op_info->Value;
1822
1823 // Make sure all fields returned are zero if we don't set them.
1824 memset((void *)op_info, '\0', sizeof(struct LLVMOpInfo1));
1825 op_info->Value = value;
1826
1827 // If the TagType is not the value 1 which it code knows about or if no
1828 // verbose symbolic information is wanted then just return 0, indicating no
1829 // information is being returned.
1830 if (TagType != 1 || !info->verbose)
1
Assuming 'TagType' is equal to 1
2
Assuming the condition is false
3
Taking false branch
1831 return 0;
1832
1833 unsigned int Arch = info->O->getArch();
1834 if (Arch == Triple::x86) {
4
Assuming 'Arch' is not equal to x86
5
Taking false branch
1835 if (Size != 1 && Size != 2 && Size != 4 && Size != 0)
1836 return 0;
1837 if (info->O->getHeader().filetype != MachO::MH_OBJECT) {
1838 // TODO:
1839 // Search the external relocation entries of a fully linked image
1840 // (if any) for an entry that matches this segment offset.
1841 // uint32_t seg_offset = (Pc + Offset);
1842 return 0;
1843 }
1844 // In MH_OBJECT filetypes search the section's relocation entries (if any)
1845 // for an entry for this section offset.
1846 uint32_t sect_addr = info->S.getAddress();
1847 uint32_t sect_offset = (Pc + Offset) - sect_addr;
1848 bool reloc_found = false;
1849 DataRefImpl Rel;
1850 MachO::any_relocation_info RE;
1851 bool isExtern = false;
1852 SymbolRef Symbol;
1853 bool r_scattered = false;
1854 uint32_t r_value, pair_r_value, r_type;
1855 for (const RelocationRef &Reloc : info->S.relocations()) {
1856 uint64_t RelocOffset = Reloc.getOffset();
1857 if (RelocOffset == sect_offset) {
1858 Rel = Reloc.getRawDataRefImpl();
1859 RE = info->O->getRelocation(Rel);
1860 r_type = info->O->getAnyRelocationType(RE);
1861 r_scattered = info->O->isRelocationScattered(RE);
1862 if (r_scattered) {
1863 r_value = info->O->getScatteredRelocationValue(RE);
1864 if (r_type == MachO::GENERIC_RELOC_SECTDIFF ||
1865 r_type == MachO::GENERIC_RELOC_LOCAL_SECTDIFF) {
1866 DataRefImpl RelNext = Rel;
1867 info->O->moveRelocationNext(RelNext);
1868 MachO::any_relocation_info RENext;
1869 RENext = info->O->getRelocation(RelNext);
1870 if (info->O->isRelocationScattered(RENext))
1871 pair_r_value = info->O->getScatteredRelocationValue(RENext);
1872 else
1873 return 0;
1874 }
1875 } else {
1876 isExtern = info->O->getPlainRelocationExternal(RE);
1877 if (isExtern) {
1878 symbol_iterator RelocSym = Reloc.getSymbol();
1879 Symbol = *RelocSym;
1880 }
1881 }
1882 reloc_found = true;
1883 break;
1884 }
1885 }
1886 if (reloc_found && isExtern) {
1887 Expected<StringRef> SymName = Symbol.getName();
1888 if (!SymName)
1889 report_error(info->O->getFileName(), SymName.takeError());
1890 const char *name = SymName->data();
1891 op_info->AddSymbol.Present = 1;
1892 op_info->AddSymbol.Name = name;
1893 // For i386 extern relocation entries the value in the instruction is
1894 // the offset from the symbol, and value is already set in op_info->Value.
1895 return 1;
1896 }
1897 if (reloc_found && (r_type == MachO::GENERIC_RELOC_SECTDIFF ||
1898 r_type == MachO::GENERIC_RELOC_LOCAL_SECTDIFF)) {
1899 const char *add = GuessSymbolName(r_value, info->AddrMap);
1900 const char *sub = GuessSymbolName(pair_r_value, info->AddrMap);
1901 uint32_t offset = value - (r_value - pair_r_value);
1902 op_info->AddSymbol.Present = 1;
1903 if (add != nullptr)
1904 op_info->AddSymbol.Name = add;
1905 else
1906 op_info->AddSymbol.Value = r_value;
1907 op_info->SubtractSymbol.Present = 1;
1908 if (sub != nullptr)
1909 op_info->SubtractSymbol.Name = sub;
1910 else
1911 op_info->SubtractSymbol.Value = pair_r_value;
1912 op_info->Value = offset;
1913 return 1;
1914 }
1915 return 0;
1916 }
1917 if (Arch == Triple::x86_64) {
6
Assuming 'Arch' is not equal to x86_64
7
Taking false branch
1918 if (Size != 1 && Size != 2 && Size != 4 && Size != 0)
1919 return 0;
1920 if (info->O->getHeader().filetype != MachO::MH_OBJECT) {
1921 // TODO:
1922 // Search the external relocation entries of a fully linked image
1923 // (if any) for an entry that matches this segment offset.
1924 // uint64_t seg_offset = (Pc + Offset);
1925 return 0;
1926 }
1927 // In MH_OBJECT filetypes search the section's relocation entries (if any)
1928 // for an entry for this section offset.
1929 uint64_t sect_addr = info->S.getAddress();
1930 uint64_t sect_offset = (Pc + Offset) - sect_addr;
1931 bool reloc_found = false;
1932 DataRefImpl Rel;
1933 MachO::any_relocation_info RE;
1934 bool isExtern = false;
1935 SymbolRef Symbol;
1936 for (const RelocationRef &Reloc : info->S.relocations()) {
1937 uint64_t RelocOffset = Reloc.getOffset();
1938 if (RelocOffset == sect_offset) {
1939 Rel = Reloc.getRawDataRefImpl();
1940 RE = info->O->getRelocation(Rel);
1941 // NOTE: Scattered relocations don't exist on x86_64.
1942 isExtern = info->O->getPlainRelocationExternal(RE);
1943 if (isExtern) {
1944 symbol_iterator RelocSym = Reloc.getSymbol();
1945 Symbol = *RelocSym;
1946 }
1947 reloc_found = true;
1948 break;
1949 }
1950 }
1951 if (reloc_found && isExtern) {
1952 // The Value passed in will be adjusted by the Pc if the instruction
1953 // adds the Pc. But for x86_64 external relocation entries the Value
1954 // is the offset from the external symbol.
1955 if (info->O->getAnyRelocationPCRel(RE))
1956 op_info->Value -= Pc + Offset + Size;
1957 Expected<StringRef> SymName = Symbol.getName();
1958 if (!SymName)
1959 report_error(info->O->getFileName(), SymName.takeError());
1960 const char *name = SymName->data();
1961 unsigned Type = info->O->getAnyRelocationType(RE);
1962 if (Type == MachO::X86_64_RELOC_SUBTRACTOR) {
1963 DataRefImpl RelNext = Rel;
1964 info->O->moveRelocationNext(RelNext);
1965 MachO::any_relocation_info RENext = info->O->getRelocation(RelNext);
1966 unsigned TypeNext = info->O->getAnyRelocationType(RENext);
1967 bool isExternNext = info->O->getPlainRelocationExternal(RENext);
1968 unsigned SymbolNum = info->O->getPlainRelocationSymbolNum(RENext);
1969 if (TypeNext == MachO::X86_64_RELOC_UNSIGNED && isExternNext) {
1970 op_info->SubtractSymbol.Present = 1;
1971 op_info->SubtractSymbol.Name = name;
1972 symbol_iterator RelocSymNext = info->O->getSymbolByIndex(SymbolNum);
1973 Symbol = *RelocSymNext;
1974 Expected<StringRef> SymNameNext = Symbol.getName();
1975 if (!SymNameNext)
1976 report_error(info->O->getFileName(), SymNameNext.takeError());
1977 name = SymNameNext->data();
1978 }
1979 }
1980 // TODO: add the VariantKinds to op_info->VariantKind for relocation types
1981 // like: X86_64_RELOC_TLV, X86_64_RELOC_GOT_LOAD and X86_64_RELOC_GOT.
1982 op_info->AddSymbol.Present = 1;
1983 op_info->AddSymbol.Name = name;
1984 return 1;
1985 }
1986 return 0;
1987 }
1988 if (Arch == Triple::arm) {
8
Assuming 'Arch' is equal to arm
9
Taking true branch
1989 if (Offset != 0 || (Size != 4 && Size != 2))
10
Assuming 'Offset' is equal to 0
11
Assuming 'Size' is equal to 4
1990 return 0;
1991 if (info->O->getHeader().filetype != MachO::MH_OBJECT) {
12
Assuming the condition is false
13
Taking false branch
1992 // TODO:
1993 // Search the external relocation entries of a fully linked image
1994 // (if any) for an entry that matches this segment offset.
1995 // uint32_t seg_offset = (Pc + Offset);
1996 return 0;
1997 }
1998 // In MH_OBJECT filetypes search the section's relocation entries (if any)
1999 // for an entry for this section offset.
2000 uint32_t sect_addr = info->S.getAddress();
2001 uint32_t sect_offset = (Pc + Offset) - sect_addr;
2002 DataRefImpl Rel;
2003 MachO::any_relocation_info RE;
2004 bool isExtern = false;
2005 SymbolRef Symbol;
2006 bool r_scattered = false;
2007 uint32_t r_value, pair_r_value, r_type, r_length, other_half;
14
'r_value' declared without an initial value
2008 auto Reloc =
2009 find_if(info->S.relocations(), [&](const RelocationRef &Reloc) {
2010 uint64_t RelocOffset = Reloc.getOffset();
2011 return RelocOffset == sect_offset;
2012 });
2013
2014 if (Reloc == info->S.relocations().end())
15
Assuming the condition is false
16
Taking false branch
2015 return 0;
2016
2017 Rel = Reloc->getRawDataRefImpl();
2018 RE = info->O->getRelocation(Rel);
2019 r_length = info->O->getAnyRelocationLength(RE);
2020 r_scattered = info->O->isRelocationScattered(RE);
2021 if (r_scattered) {
17
Assuming 'r_scattered' is 0
18
Taking false branch
2022 r_value = info->O->getScatteredRelocationValue(RE);
2023 r_type = info->O->getScatteredRelocationType(RE);
2024 } else {
2025 r_type = info->O->getAnyRelocationType(RE);
2026 isExtern = info->O->getPlainRelocationExternal(RE);
2027 if (isExtern) {
19
Assuming 'isExtern' is 0
20
Taking false branch
2028 symbol_iterator RelocSym = Reloc->getSymbol();
2029 Symbol = *RelocSym;
2030 }
2031 }
2032 if (r_type == MachO::ARM_RELOC_HALF ||
21
Assuming 'r_type' is not equal to ARM_RELOC_HALF
25
Taking true branch
2033 r_type == MachO::ARM_RELOC_SECTDIFF ||
22
Assuming 'r_type' is not equal to ARM_RELOC_SECTDIFF
2034 r_type == MachO::ARM_RELOC_LOCAL_SECTDIFF ||
23
Assuming 'r_type' is not equal to ARM_RELOC_LOCAL_SECTDIFF
2035 r_type == MachO::ARM_RELOC_HALF_SECTDIFF) {
24
Assuming 'r_type' is equal to ARM_RELOC_HALF_SECTDIFF
2036 DataRefImpl RelNext = Rel;
2037 info->O->moveRelocationNext(RelNext);
2038 MachO::any_relocation_info RENext;
2039 RENext = info->O->getRelocation(RelNext);
2040 other_half = info->O->getAnyRelocationAddress(RENext) & 0xffff;
2041 if (info->O->isRelocationScattered(RENext))
26
Assuming the condition is false
27
Taking false branch
2042 pair_r_value = info->O->getScatteredRelocationValue(RENext);
2043 }
2044
2045 if (isExtern) {
28
Taking false branch
2046 Expected<StringRef> SymName = Symbol.getName();
2047 if (!SymName)
2048 report_error(info->O->getFileName(), SymName.takeError());
2049 const char *name = SymName->data();
2050 op_info->AddSymbol.Present = 1;
2051 op_info->AddSymbol.Name = name;
2052 switch (r_type) {
2053 case MachO::ARM_RELOC_HALF:
2054 if ((r_length & 0x1) == 1) {
2055 op_info->Value = value << 16 | other_half;
2056 op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_HI161;
2057 } else {
2058 op_info->Value = other_half << 16 | value;
2059 op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_LO162;
2060 }
2061 break;
2062 default:
2063 break;
2064 }
2065 return 1;
2066 }
2067 // If we have a branch that is not an external relocation entry then
2068 // return 0 so the code in tryAddingSymbolicOperand() can use the
2069 // SymbolLookUp call back with the branch target address to look up the
2070 // symbol and possibility add an annotation for a symbol stub.
2071 if (isExtern == 0 && (r_type == MachO::ARM_RELOC_BR24 ||
29
Taking false branch
2072 r_type == MachO::ARM_THUMB_RELOC_BR22))
2073 return 0;
2074
2075 uint32_t offset = 0;
2076 if (r_type == MachO::ARM_RELOC_HALF ||
30
Taking true branch
2077 r_type == MachO::ARM_RELOC_HALF_SECTDIFF) {
2078 if ((r_length & 0x1) == 1)
31
Assuming the condition is false
32
Taking false branch
2079 value = value << 16 | other_half;
2080 else
2081 value = other_half << 16 | value;
2082 }
2083 if (r_scattered && (r_type != MachO::ARM_RELOC_HALF &&
2084 r_type != MachO::ARM_RELOC_HALF_SECTDIFF)) {
2085 offset = value - r_value;
2086 value = r_value;
2087 }
2088
2089 if (r_type == MachO::ARM_RELOC_HALF_SECTDIFF) {
33
Taking true branch
2090 if ((r_length & 0x1) == 1)
34
Taking false branch
2091 op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_HI161;
2092 else
2093 op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_LO162;
2094 const char *add = GuessSymbolName(r_value, info->AddrMap);
35
1st function call argument is an uninitialized value
2095 const char *sub = GuessSymbolName(pair_r_value, info->AddrMap);
2096 int32_t offset = value - (r_value - pair_r_value);
2097 op_info->AddSymbol.Present = 1;
2098 if (add != nullptr)
2099 op_info->AddSymbol.Name = add;
2100 else
2101 op_info->AddSymbol.Value = r_value;
2102 op_info->SubtractSymbol.Present = 1;
2103 if (sub != nullptr)
2104 op_info->SubtractSymbol.Name = sub;
2105 else
2106 op_info->SubtractSymbol.Value = pair_r_value;
2107 op_info->Value = offset;
2108 return 1;
2109 }
2110
2111 op_info->AddSymbol.Present = 1;
2112 op_info->Value = offset;
2113 if (r_type == MachO::ARM_RELOC_HALF) {
2114 if ((r_length & 0x1) == 1)
2115 op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_HI161;
2116 else
2117 op_info->VariantKind = LLVMDisassembler_VariantKind_ARM_LO162;
2118 }
2119 const char *add = GuessSymbolName(value, info->AddrMap);
2120 if (add != nullptr) {
2121 op_info->AddSymbol.Name = add;
2122 return 1;
2123 }
2124 op_info->AddSymbol.Value = value;
2125 return 1;
2126 }
2127 if (Arch == Triple::aarch64) {
2128 if (Offset != 0 || Size != 4)
2129 return 0;
2130 if (info->O->getHeader().filetype != MachO::MH_OBJECT) {
2131 // TODO:
2132 // Search the external relocation entries of a fully linked image
2133 // (if any) for an entry that matches this segment offset.
2134 // uint64_t seg_offset = (Pc + Offset);
2135 return 0;
2136 }
2137 // In MH_OBJECT filetypes search the section's relocation entries (if any)
2138 // for an entry for this section offset.
2139 uint64_t sect_addr = info->S.getAddress();
2140 uint64_t sect_offset = (Pc + Offset) - sect_addr;
2141 auto Reloc =
2142 find_if(info->S.relocations(), [&](const RelocationRef &Reloc) {
2143 uint64_t RelocOffset = Reloc.getOffset();
2144 return RelocOffset == sect_offset;
2145 });
2146
2147 if (Reloc == info->S.relocations().end())
2148 return 0;
2149
2150 DataRefImpl Rel = Reloc->getRawDataRefImpl();
2151 MachO::any_relocation_info RE = info->O->getRelocation(Rel);
2152 uint32_t r_type = info->O->getAnyRelocationType(RE);
2153 if (r_type == MachO::ARM64_RELOC_ADDEND) {
2154 DataRefImpl RelNext = Rel;
2155 info->O->moveRelocationNext(RelNext);
2156 MachO::any_relocation_info RENext = info->O->getRelocation(RelNext);
2157 if (value == 0) {
2158 value = info->O->getPlainRelocationSymbolNum(RENext);
2159 op_info->Value = value;
2160 }
2161 }
2162 // NOTE: Scattered relocations don't exist on arm64.
2163 if (!info->O->getPlainRelocationExternal(RE))
2164 return 0;
2165 Expected<StringRef> SymName = Reloc->getSymbol()->getName();
2166 if (!SymName)
2167 report_error(info->O->getFileName(), SymName.takeError());
2168 const char *name = SymName->data();
2169 op_info->AddSymbol.Present = 1;
2170 op_info->AddSymbol.Name = name;
2171
2172 switch (r_type) {
2173 case MachO::ARM64_RELOC_PAGE21:
2174 /* @page */
2175 op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_PAGE1;
2176 break;
2177 case MachO::ARM64_RELOC_PAGEOFF12:
2178 /* @pageoff */
2179 op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_PAGEOFF2;
2180 break;
2181 case MachO::ARM64_RELOC_GOT_LOAD_PAGE21:
2182 /* @gotpage */
2183 op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_GOTPAGE3;
2184 break;
2185 case MachO::ARM64_RELOC_GOT_LOAD_PAGEOFF12:
2186 /* @gotpageoff */
2187 op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_GOTPAGEOFF4;
2188 break;
2189 case MachO::ARM64_RELOC_TLVP_LOAD_PAGE21:
2190 /* @tvlppage is not implemented in llvm-mc */
2191 op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_TLVP5;
2192 break;
2193 case MachO::ARM64_RELOC_TLVP_LOAD_PAGEOFF12:
2194 /* @tvlppageoff is not implemented in llvm-mc */
2195 op_info->VariantKind = LLVMDisassembler_VariantKind_ARM64_TLVOFF6;
2196 break;
2197 default:
2198 case MachO::ARM64_RELOC_BRANCH26:
2199 op_info->VariantKind = LLVMDisassembler_VariantKind_None0;
2200 break;
2201 }
2202 return 1;
2203 }
2204 return 0;
2205}
2206
2207// GuessCstringPointer is passed the address of what might be a pointer to a
2208// literal string in a cstring section. If that address is in a cstring section
2209// it returns a pointer to that string. Else it returns nullptr.
2210static const char *GuessCstringPointer(uint64_t ReferenceValue,
2211 struct DisassembleInfo *info) {
2212 for (const auto &Load : info->O->load_commands()) {
2213 if (Load.C.cmd == MachO::LC_SEGMENT_64) {
2214 MachO::segment_command_64 Seg = info->O->getSegment64LoadCommand(Load);
2215 for (unsigned J = 0; J < Seg.nsects; ++J) {
2216 MachO::section_64 Sec = info->O->getSection64(Load, J);
2217 uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
2218 if (section_type == MachO::S_CSTRING_LITERALS &&
2219 ReferenceValue >= Sec.addr &&
2220 ReferenceValue < Sec.addr + Sec.size) {
2221 uint64_t sect_offset = ReferenceValue - Sec.addr;
2222 uint64_t object_offset = Sec.offset + sect_offset;
2223 StringRef MachOContents = info->O->getData();
2224 uint64_t object_size = MachOContents.size();
2225 const char *object_addr = (const char *)MachOContents.data();
2226 if (object_offset < object_size) {
2227 const char *name = object_addr + object_offset;
2228 return name;
2229 } else {
2230 return nullptr;
2231 }
2232 }
2233 }
2234 } else if (Load.C.cmd == MachO::LC_SEGMENT) {
2235 MachO::segment_command Seg = info->O->getSegmentLoadCommand(Load);
2236 for (unsigned J = 0; J < Seg.nsects; ++J) {
2237 MachO::section Sec = info->O->getSection(Load, J);
2238 uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
2239 if (section_type == MachO::S_CSTRING_LITERALS &&
2240 ReferenceValue >= Sec.addr &&
2241 ReferenceValue < Sec.addr + Sec.size) {
2242 uint64_t sect_offset = ReferenceValue - Sec.addr;
2243 uint64_t object_offset = Sec.offset + sect_offset;
2244 StringRef MachOContents = info->O->getData();
2245 uint64_t object_size = MachOContents.size();
2246 const char *object_addr = (const char *)MachOContents.data();
2247 if (object_offset < object_size) {
2248 const char *name = object_addr + object_offset;
2249 return name;
2250 } else {
2251 return nullptr;
2252 }
2253 }
2254 }
2255 }
2256 }
2257 return nullptr;
2258}
2259
2260// GuessIndirectSymbol returns the name of the indirect symbol for the
2261// ReferenceValue passed in or nullptr. This is used when ReferenceValue maybe
2262// an address of a symbol stub or a lazy or non-lazy pointer to associate the
2263// symbol name being referenced by the stub or pointer.
2264static const char *GuessIndirectSymbol(uint64_t ReferenceValue,
2265 struct DisassembleInfo *info) {
2266 MachO::dysymtab_command Dysymtab = info->O->getDysymtabLoadCommand();
2267 MachO::symtab_command Symtab = info->O->getSymtabLoadCommand();
2268 for (const auto &Load : info->O->load_commands()) {
2269 if (Load.C.cmd == MachO::LC_SEGMENT_64) {
2270 MachO::segment_command_64 Seg = info->O->getSegment64LoadCommand(Load);
2271 for (unsigned J = 0; J < Seg.nsects; ++J) {
2272 MachO::section_64 Sec = info->O->getSection64(Load, J);
2273 uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
2274 if ((section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
2275 section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
2276 section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
2277 section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS ||
2278 section_type == MachO::S_SYMBOL_STUBS) &&
2279 ReferenceValue >= Sec.addr &&
2280 ReferenceValue < Sec.addr + Sec.size) {
2281 uint32_t stride;
2282 if (section_type == MachO::S_SYMBOL_STUBS)
2283 stride = Sec.reserved2;
2284 else
2285 stride = 8;
2286 if (stride == 0)
2287 return nullptr;
2288 uint32_t index = Sec.reserved1 + (ReferenceValue - Sec.addr) / stride;
2289 if (index < Dysymtab.nindirectsyms) {
2290 uint32_t indirect_symbol =
2291 info->O->getIndirectSymbolTableEntry(Dysymtab, index);
2292 if (indirect_symbol < Symtab.nsyms) {
2293 symbol_iterator Sym = info->O->getSymbolByIndex(indirect_symbol);
2294 SymbolRef Symbol = *Sym;
2295 Expected<StringRef> SymName = Symbol.getName();
2296 if (!SymName)
2297 report_error(info->O->getFileName(), SymName.takeError());
2298 const char *name = SymName->data();
2299 return name;
2300 }
2301 }
2302 }
2303 }
2304 } else if (Load.C.cmd == MachO::LC_SEGMENT) {
2305 MachO::segment_command Seg = info->O->getSegmentLoadCommand(Load);
2306 for (unsigned J = 0; J < Seg.nsects; ++J) {
2307 MachO::section Sec = info->O->getSection(Load, J);
2308 uint32_t section_type = Sec.flags & MachO::SECTION_TYPE;
2309 if ((section_type == MachO::S_NON_LAZY_SYMBOL_POINTERS ||
2310 section_type == MachO::S_LAZY_SYMBOL_POINTERS ||
2311 section_type == MachO::S_LAZY_DYLIB_SYMBOL_POINTERS ||
2312 section_type == MachO::S_THREAD_LOCAL_VARIABLE_POINTERS ||
2313 section_type == MachO::S_SYMBOL_STUBS) &&
2314 ReferenceValue >= Sec.addr &&
2315 ReferenceValue < Sec.addr + Sec.size) {
2316 uint32_t stride;
2317 if (section_type == MachO::S_SYMBOL_STUBS)
2318 stride = Sec.reserved2;
2319 else
2320 stride = 4;
2321 if (stride == 0)
2322 return nullptr;
2323 uint32_t index = Sec.reserved1 + (ReferenceValue - Sec.addr) / stride;
2324 if (index < Dysymtab.nindirectsyms) {
2325 uint32_t indirect_symbol =
2326 info->O->getIndirectSymbolTableEntry(Dysymtab, index);
2327 if (indirect_symbol < Symtab.nsyms) {
2328 symbol_iterator Sym = info->O->getSymbolByIndex(indirect_symbol);
2329 SymbolRef Symbol = *Sym;
2330 Expected<StringRef> SymName = Symbol.getName();
2331 if (!SymName)
2332 report_error(info->O->getFileName(), SymName.takeError());
2333 const char *name = SymName->data();
2334 return name;
2335 }
2336 }
2337 }
2338 }
2339 }
2340 }
2341 return nullptr;
2342}
2343
2344// method_reference() is called passing it the ReferenceName that might be
2345// a reference it to an Objective-C method call. If so then it allocates and
2346// assembles a method call string with the values last seen and saved in
2347// the DisassembleInfo's class_name and selector_name fields. This is saved
2348// into the method field of the info and any previous string is free'ed.
2349// Then the class_name field in the info is set to nullptr. The method call
2350// string is set into ReferenceName and ReferenceType is set to
2351// LLVMDisassembler_ReferenceType_Out_Objc_Message. If this not a method call
2352// then both ReferenceType and ReferenceName are left unchanged.
2353static void method_reference(struct DisassembleInfo *info,
2354 uint64_t *ReferenceType,
2355 const char **ReferenceName) {
2356 unsigned int Arch = info->O->getArch();
2357 if (*ReferenceName != nullptr) {
2358 if (strcmp(*ReferenceName, "_objc_msgSend") == 0) {
2359 if (info->selector_name != nullptr) {
2360 if (info->method != nullptr)
2361 free(info->method);
2362 if (info->class_name != nullptr) {
2363 info->method = (char *)malloc(5 + strlen(info->class_name) +
2364 strlen(info->selector_name));
2365 if (info->method != nullptr) {
2366 strcpy(info->method, "+[");
2367 strcat(info->method, info->class_name);
2368 strcat(info->method, " ");
2369 strcat(info->method, info->selector_name);
2370 strcat(info->method, "]");
2371 *ReferenceName = info->method;
2372 *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message5;
2373 }
2374 } else {
2375 info->method = (char *)malloc(9 + strlen(info->selector_name));
2376 if (info->method != nullptr) {
2377 if (Arch == Triple::x86_64)
2378 strcpy(info->method, "-[%rdi ");
2379 else if (Arch == Triple::aarch64)
2380 strcpy(info->method, "-[x0 ");
2381 else
2382 strcpy(info->method, "-[r? ");
2383 strcat(info->method, info->selector_name);
2384 strcat(info->method, "]");
2385 *ReferenceName = info->method;
2386 *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message5;
2387 }
2388 }
2389 info->class_name = nullptr;
2390 }
2391 } else if (strcmp(*ReferenceName, "_objc_msgSendSuper2") == 0) {
2392 if (info->selector_name != nullptr) {
2393 if (info->method != nullptr)
2394 free(info->method);
2395 info->method = (char *)malloc(17 + strlen(info->selector_name));
2396 if (info->method != nullptr) {
2397 if (Arch == Triple::x86_64)
2398 strcpy(info->method, "-[[%rdi super] ");
2399 else if (Arch == Triple::aarch64)
2400 strcpy(info->method, "-[[x0 super] ");
2401 else
2402 strcpy(info->method, "-[[r? super] ");
2403 strcat(info->method, info->selector_name);
2404 strcat(info->method, "]");
2405 *ReferenceName = info->method;
2406 *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message5;
2407 }
2408 info->class_name = nullptr;
2409 }
2410 }
2411 }
2412}
2413
2414// GuessPointerPointer() is passed the address of what might be a pointer to
2415// a reference to an Objective-C class, selector, message ref or cfstring.
2416// If so the value of the pointer is returned and one of the booleans are set
2417// to true. If not zero is returned and all the booleans are set to false.
2418static uint64_t GuessPointerPointer(uint64_t ReferenceValue,
2419 struct DisassembleInfo *info,
2420 bool &classref, bool &selref, bool &msgref,
2421 bool &cfstring) {
2422 classref = false;
2423 selref = false;
2424 msgref = false;
2425 cfstring = false;
2426 for (const auto &Load : info->O->load_commands()) {
2427 if (Load.C.cmd == MachO::LC_SEGMENT_64) {
2428 MachO::segment_command_64 Seg = info->O->getSegment64LoadCommand(Load);
2429 for (unsigned J = 0; J < Seg.nsects; ++J) {
2430 MachO::section_64 Sec = info->O->getSection64(Load, J);
2431 if ((strncmp(Sec.sectname, "__objc_selrefs", 16) == 0 ||
2432 strncmp(Sec.sectname, "__objc_classrefs", 16) == 0 ||
2433 strncmp(Sec.sectname, "__objc_superrefs", 16) == 0 ||
2434 strncmp(Sec.sectname, "__objc_msgrefs", 16) == 0 ||
2435 strncmp(Sec.sectname, "__cfstring", 16) == 0) &&
2436 ReferenceValue >= Sec.addr &&
2437 ReferenceValue < Sec.addr + Sec.size) {
2438 uint64_t sect_offset = ReferenceValue - Sec.addr;
2439 uint64_t object_offset = Sec.offset + sect_offset;
2440 StringRef MachOContents = info->O->getData();
2441 uint64_t object_size = MachOContents.size();
2442 const char *object_addr = (const char *)MachOContents.data();
2443 if (object_offset < object_size) {
2444 uint64_t pointer_value;
2445 memcpy(&pointer_value, object_addr + object_offset,
2446 sizeof(uint64_t));
2447 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
2448 sys::swapByteOrder(pointer_value);
2449 if (strncmp(Sec.sectname, "__objc_selrefs", 16) == 0)
2450 selref = true;
2451 else if (strncmp(Sec.sectname, "__objc_classrefs", 16) == 0 ||
2452 strncmp(Sec.sectname, "__objc_superrefs", 16) == 0)
2453 classref = true;
2454 else if (strncmp(Sec.sectname, "__objc_msgrefs", 16) == 0 &&
2455 ReferenceValue + 8 < Sec.addr + Sec.size) {
2456 msgref = true;
2457 memcpy(&pointer_value, object_addr + object_offset + 8,
2458 sizeof(uint64_t));
2459 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
2460 sys::swapByteOrder(pointer_value);
2461 } else if (strncmp(Sec.sectname, "__cfstring", 16) == 0)
2462 cfstring = true;
2463 return pointer_value;
2464 } else {
2465 return 0;
2466 }
2467 }
2468 }
2469 }
2470 // TODO: Look for LC_SEGMENT for 32-bit Mach-O files.
2471 }
2472 return 0;
2473}
2474
2475// get_pointer_64 returns a pointer to the bytes in the object file at the
2476// Address from a section in the Mach-O file. And indirectly returns the
2477// offset into the section, number of bytes left in the section past the offset
2478// and which section is was being referenced. If the Address is not in a
2479// section nullptr is returned.
2480static const char *get_pointer_64(uint64_t Address, uint32_t &offset,
2481 uint32_t &left, SectionRef &S,
2482 DisassembleInfo *info,
2483 bool objc_only = false) {
2484 offset = 0;
2485 left = 0;
2486 S = SectionRef();
2487 for (unsigned SectIdx = 0; SectIdx != info->Sections->size(); SectIdx++) {
2488 uint64_t SectAddress = ((*(info->Sections))[SectIdx]).getAddress();
2489 uint64_t SectSize = ((*(info->Sections))[SectIdx]).getSize();
2490 if (SectSize == 0)
2491 continue;
2492 if (objc_only) {
2493 StringRef SectName;
2494 ((*(info->Sections))[SectIdx]).getName(SectName);
2495 DataRefImpl Ref = ((*(info->Sections))[SectIdx]).getRawDataRefImpl();
2496 StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
2497 if (SegName != "__OBJC" && SectName != "__cstring")
2498 continue;
2499 }
2500 if (Address >= SectAddress && Address < SectAddress + SectSize) {
2501 S = (*(info->Sections))[SectIdx];
2502 offset = Address - SectAddress;
2503 left = SectSize - offset;
2504 StringRef SectContents;
2505 ((*(info->Sections))[SectIdx]).getContents(SectContents);
2506 return SectContents.data() + offset;
2507 }
2508 }
2509 return nullptr;
2510}
2511
2512static const char *get_pointer_32(uint32_t Address, uint32_t &offset,
2513 uint32_t &left, SectionRef &S,
2514 DisassembleInfo *info,
2515 bool objc_only = false) {
2516 return get_pointer_64(Address, offset, left, S, info, objc_only);
2517}
2518
2519// get_symbol_64() returns the name of a symbol (or nullptr) and the address of
2520// the symbol indirectly through n_value. Based on the relocation information
2521// for the specified section offset in the specified section reference.
2522// If no relocation information is found and a non-zero ReferenceValue for the
2523// symbol is passed, look up that address in the info's AddrMap.
2524static const char *get_symbol_64(uint32_t sect_offset, SectionRef S,
2525 DisassembleInfo *info, uint64_t &n_value,
2526 uint64_t ReferenceValue = 0) {
2527 n_value = 0;
2528 if (!info->verbose)
2529 return nullptr;
2530
2531 // See if there is an external relocation entry at the sect_offset.
2532 bool reloc_found = false;
2533 DataRefImpl Rel;
2534 MachO::any_relocation_info RE;
2535 bool isExtern = false;
2536 SymbolRef Symbol;
2537 for (const RelocationRef &Reloc : S.relocations()) {
2538 uint64_t RelocOffset = Reloc.getOffset();
2539 if (RelocOffset == sect_offset) {
2540 Rel = Reloc.getRawDataRefImpl();
2541 RE = info->O->getRelocation(Rel);
2542 if (info->O->isRelocationScattered(RE))
2543 continue;
2544 isExtern = info->O->getPlainRelocationExternal(RE);
2545 if (isExtern) {
2546 symbol_iterator RelocSym = Reloc.getSymbol();
2547 Symbol = *RelocSym;
2548 }
2549 reloc_found = true;
2550 break;
2551 }
2552 }
2553 // If there is an external relocation entry for a symbol in this section
2554 // at this section_offset then use that symbol's value for the n_value
2555 // and return its name.
2556 const char *SymbolName = nullptr;
2557 if (reloc_found && isExtern) {
2558 n_value = Symbol.getValue();
2559 Expected<StringRef> NameOrError = Symbol.getName();
2560 if (!NameOrError)
2561 report_error(info->O->getFileName(), NameOrError.takeError());
2562 StringRef Name = *NameOrError;
2563 if (!Name.empty()) {
2564 SymbolName = Name.data();
2565 return SymbolName;
2566 }
2567 }
2568
2569 // TODO: For fully linked images, look through the external relocation
2570 // entries off the dynamic symtab command. For these the r_offset is from the
2571 // start of the first writeable segment in the Mach-O file. So the offset
2572 // to this section from that segment is passed to this routine by the caller,
2573 // as the database_offset. Which is the difference of the section's starting
2574 // address and the first writable segment.
2575 //
2576 // NOTE: need add passing the database_offset to this routine.
2577
2578 // We did not find an external relocation entry so look up the ReferenceValue
2579 // as an address of a symbol and if found return that symbol's name.
2580 SymbolName = GuessSymbolName(ReferenceValue, info->AddrMap);
2581
2582 return SymbolName;
2583}
2584
2585static const char *get_symbol_32(uint32_t sect_offset, SectionRef S,
2586 DisassembleInfo *info,
2587 uint32_t ReferenceValue) {
2588 uint64_t n_value64;
2589 return get_symbol_64(sect_offset, S, info, n_value64, ReferenceValue);
2590}
2591
2592// These are structs in the Objective-C meta data and read to produce the
2593// comments for disassembly. While these are part of the ABI they are no
2594// public defintions. So the are here not in include/llvm/Support/MachO.h .
2595
2596// The cfstring object in a 64-bit Mach-O file.
2597struct cfstring64_t {
2598 uint64_t isa; // class64_t * (64-bit pointer)
2599 uint64_t flags; // flag bits
2600 uint64_t characters; // char * (64-bit pointer)
2601 uint64_t length; // number of non-NULL characters in above
2602};
2603
2604// The class object in a 64-bit Mach-O file.
2605struct class64_t {
2606 uint64_t isa; // class64_t * (64-bit pointer)
2607 uint64_t superclass; // class64_t * (64-bit pointer)
2608 uint64_t cache; // Cache (64-bit pointer)
2609 uint64_t vtable; // IMP * (64-bit pointer)
2610 uint64_t data; // class_ro64_t * (64-bit pointer)
2611};
2612
2613struct class32_t {
2614 uint32_t isa; /* class32_t * (32-bit pointer) */
2615 uint32_t superclass; /* class32_t * (32-bit pointer) */
2616 uint32_t cache; /* Cache (32-bit pointer) */
2617 uint32_t vtable; /* IMP * (32-bit pointer) */
2618 uint32_t data; /* class_ro32_t * (32-bit pointer) */
2619};
2620
2621struct class_ro64_t {
2622 uint32_t flags;
2623 uint32_t instanceStart;
2624 uint32_t instanceSize;
2625 uint32_t reserved;
2626 uint64_t ivarLayout; // const uint8_t * (64-bit pointer)
2627 uint64_t name; // const char * (64-bit pointer)
2628 uint64_t baseMethods; // const method_list_t * (64-bit pointer)
2629 uint64_t baseProtocols; // const protocol_list_t * (64-bit pointer)
2630 uint64_t ivars; // const ivar_list_t * (64-bit pointer)
2631 uint64_t weakIvarLayout; // const uint8_t * (64-bit pointer)
2632 uint64_t baseProperties; // const struct objc_property_list (64-bit pointer)
2633};
2634
2635struct class_ro32_t {
2636 uint32_t flags;
2637 uint32_t instanceStart;
2638 uint32_t instanceSize;
2639 uint32_t ivarLayout; /* const uint8_t * (32-bit pointer) */
2640 uint32_t name; /* const char * (32-bit pointer) */
2641 uint32_t baseMethods; /* const method_list_t * (32-bit pointer) */
2642 uint32_t baseProtocols; /* const protocol_list_t * (32-bit pointer) */
2643 uint32_t ivars; /* const ivar_list_t * (32-bit pointer) */
2644 uint32_t weakIvarLayout; /* const uint8_t * (32-bit pointer) */
2645 uint32_t baseProperties; /* const struct objc_property_list *
2646 (32-bit pointer) */
2647};
2648
2649/* Values for class_ro{64,32}_t->flags */
2650#define RO_META(1 << 0) (1 << 0)
2651#define RO_ROOT(1 << 1) (1 << 1)
2652#define RO_HAS_CXX_STRUCTORS(1 << 2) (1 << 2)
2653
2654struct method_list64_t {
2655 uint32_t entsize;
2656 uint32_t count;
2657 /* struct method64_t first; These structures follow inline */
2658};
2659
2660struct method_list32_t {
2661 uint32_t entsize;
2662 uint32_t count;
2663 /* struct method32_t first; These structures follow inline */
2664};
2665
2666struct method64_t {
2667 uint64_t name; /* SEL (64-bit pointer) */
2668 uint64_t types; /* const char * (64-bit pointer) */
2669 uint64_t imp; /* IMP (64-bit pointer) */
2670};
2671
2672struct method32_t {
2673 uint32_t name; /* SEL (32-bit pointer) */
2674 uint32_t types; /* const char * (32-bit pointer) */
2675 uint32_t imp; /* IMP (32-bit pointer) */
2676};
2677
2678struct protocol_list64_t {
2679 uint64_t count; /* uintptr_t (a 64-bit value) */
2680 /* struct protocol64_t * list[0]; These pointers follow inline */
2681};
2682
2683struct protocol_list32_t {
2684 uint32_t count; /* uintptr_t (a 32-bit value) */
2685 /* struct protocol32_t * list[0]; These pointers follow inline */
2686};
2687
2688struct protocol64_t {
2689 uint64_t isa; /* id * (64-bit pointer) */
2690 uint64_t name; /* const char * (64-bit pointer) */
2691 uint64_t protocols; /* struct protocol_list64_t *
2692 (64-bit pointer) */
2693 uint64_t instanceMethods; /* method_list_t * (64-bit pointer) */
2694 uint64_t classMethods; /* method_list_t * (64-bit pointer) */
2695 uint64_t optionalInstanceMethods; /* method_list_t * (64-bit pointer) */
2696 uint64_t optionalClassMethods; /* method_list_t * (64-bit pointer) */
2697 uint64_t instanceProperties; /* struct objc_property_list *
2698 (64-bit pointer) */
2699};
2700
2701struct protocol32_t {
2702 uint32_t isa; /* id * (32-bit pointer) */
2703 uint32_t name; /* const char * (32-bit pointer) */
2704 uint32_t protocols; /* struct protocol_list_t *
2705 (32-bit pointer) */
2706 uint32_t instanceMethods; /* method_list_t * (32-bit pointer) */
2707 uint32_t classMethods; /* method_list_t * (32-bit pointer) */
2708 uint32_t optionalInstanceMethods; /* method_list_t * (32-bit pointer) */
2709 uint32_t optionalClassMethods; /* method_list_t * (32-bit pointer) */
2710 uint32_t instanceProperties; /* struct objc_property_list *
2711 (32-bit pointer) */
2712};
2713
2714struct ivar_list64_t {
2715 uint32_t entsize;
2716 uint32_t count;
2717 /* struct ivar64_t first; These structures follow inline */
2718};
2719
2720struct ivar_list32_t {
2721 uint32_t entsize;
2722 uint32_t count;
2723 /* struct ivar32_t first; These structures follow inline */
2724};
2725
2726struct ivar64_t {
2727 uint64_t offset; /* uintptr_t * (64-bit pointer) */
2728 uint64_t name; /* const char * (64-bit pointer) */
2729 uint64_t type; /* const char * (64-bit pointer) */
2730 uint32_t alignment;
2731 uint32_t size;
2732};
2733
2734struct ivar32_t {
2735 uint32_t offset; /* uintptr_t * (32-bit pointer) */
2736 uint32_t name; /* const char * (32-bit pointer) */
2737 uint32_t type; /* const char * (32-bit pointer) */
2738 uint32_t alignment;
2739 uint32_t size;
2740};
2741
2742struct objc_property_list64 {
2743 uint32_t entsize;
2744 uint32_t count;
2745 /* struct objc_property64 first; These structures follow inline */
2746};
2747
2748struct objc_property_list32 {
2749 uint32_t entsize;
2750 uint32_t count;
2751 /* struct objc_property32 first; These structures follow inline */
2752};
2753
2754struct objc_property64 {
2755 uint64_t name; /* const char * (64-bit pointer) */
2756 uint64_t attributes; /* const char * (64-bit pointer) */
2757};
2758
2759struct objc_property32 {
2760 uint32_t name; /* const char * (32-bit pointer) */
2761 uint32_t attributes; /* const char * (32-bit pointer) */
2762};
2763
2764struct category64_t {
2765 uint64_t name; /* const char * (64-bit pointer) */
2766 uint64_t cls; /* struct class_t * (64-bit pointer) */
2767 uint64_t instanceMethods; /* struct method_list_t * (64-bit pointer) */
2768 uint64_t classMethods; /* struct method_list_t * (64-bit pointer) */
2769 uint64_t protocols; /* struct protocol_list_t * (64-bit pointer) */
2770 uint64_t instanceProperties; /* struct objc_property_list *
2771 (64-bit pointer) */
2772};
2773
2774struct category32_t {
2775 uint32_t name; /* const char * (32-bit pointer) */
2776 uint32_t cls; /* struct class_t * (32-bit pointer) */
2777 uint32_t instanceMethods; /* struct method_list_t * (32-bit pointer) */
2778 uint32_t classMethods; /* struct method_list_t * (32-bit pointer) */
2779 uint32_t protocols; /* struct protocol_list_t * (32-bit pointer) */
2780 uint32_t instanceProperties; /* struct objc_property_list *
2781 (32-bit pointer) */
2782};
2783
2784struct objc_image_info64 {
2785 uint32_t version;
2786 uint32_t flags;
2787};
2788struct objc_image_info32 {
2789 uint32_t version;
2790 uint32_t flags;
2791};
2792struct imageInfo_t {
2793 uint32_t version;
2794 uint32_t flags;
2795};
2796/* masks for objc_image_info.flags */
2797#define OBJC_IMAGE_IS_REPLACEMENT(1 << 0) (1 << 0)
2798#define OBJC_IMAGE_SUPPORTS_GC(1 << 1) (1 << 1)
2799
2800struct message_ref64 {
2801 uint64_t imp; /* IMP (64-bit pointer) */
2802 uint64_t sel; /* SEL (64-bit pointer) */
2803};
2804
2805struct message_ref32 {
2806 uint32_t imp; /* IMP (32-bit pointer) */
2807 uint32_t sel; /* SEL (32-bit pointer) */
2808};
2809
2810// Objective-C 1 (32-bit only) meta data structs.
2811
2812struct objc_module_t {
2813 uint32_t version;
2814 uint32_t size;
2815 uint32_t name; /* char * (32-bit pointer) */
2816 uint32_t symtab; /* struct objc_symtab * (32-bit pointer) */
2817};
2818
2819struct objc_symtab_t {
2820 uint32_t sel_ref_cnt;
2821 uint32_t refs; /* SEL * (32-bit pointer) */
2822 uint16_t cls_def_cnt;
2823 uint16_t cat_def_cnt;
2824 // uint32_t defs[1]; /* void * (32-bit pointer) variable size */
2825};
2826
2827struct objc_class_t {
2828 uint32_t isa; /* struct objc_class * (32-bit pointer) */
2829 uint32_t super_class; /* struct objc_class * (32-bit pointer) */
2830 uint32_t name; /* const char * (32-bit pointer) */
2831 int32_t version;
2832 int32_t info;
2833 int32_t instance_size;
2834 uint32_t ivars; /* struct objc_ivar_list * (32-bit pointer) */
2835 uint32_t methodLists; /* struct objc_method_list ** (32-bit pointer) */
2836 uint32_t cache; /* struct objc_cache * (32-bit pointer) */
2837 uint32_t protocols; /* struct objc_protocol_list * (32-bit pointer) */
2838};
2839
2840#define CLS_GETINFO(cls, infomask)((cls)->info & (infomask)) ((cls)->info & (infomask))
2841// class is not a metaclass
2842#define CLS_CLASS0x1 0x1
2843// class is a metaclass
2844#define CLS_META0x2 0x2
2845
2846struct objc_category_t {
2847 uint32_t category_name; /* char * (32-bit pointer) */
2848 uint32_t class_name; /* char * (32-bit pointer) */
2849 uint32_t instance_methods; /* struct objc_method_list * (32-bit pointer) */
2850 uint32_t class_methods; /* struct objc_method_list * (32-bit pointer) */
2851 uint32_t protocols; /* struct objc_protocol_list * (32-bit ptr) */
2852};
2853
2854struct objc_ivar_t {
2855 uint32_t ivar_name; /* char * (32-bit pointer) */
2856 uint32_t ivar_type; /* char * (32-bit pointer) */
2857 int32_t ivar_offset;
2858};
2859
2860struct objc_ivar_list_t {
2861 int32_t ivar_count;
2862 // struct objc_ivar_t ivar_list[1]; /* variable length structure */
2863};
2864
2865struct objc_method_list_t {
2866 uint32_t obsolete; /* struct objc_method_list * (32-bit pointer) */
2867 int32_t method_count;
2868 // struct objc_method_t method_list[1]; /* variable length structure */
2869};
2870
2871struct objc_method_t {
2872 uint32_t method_name; /* SEL, aka struct objc_selector * (32-bit pointer) */
2873 uint32_t method_types; /* char * (32-bit pointer) */
2874 uint32_t method_imp; /* IMP, aka function pointer, (*IMP)(id, SEL, ...)
2875 (32-bit pointer) */
2876};
2877
2878struct objc_protocol_list_t {
2879 uint32_t next; /* struct objc_protocol_list * (32-bit pointer) */
2880 int32_t count;
2881 // uint32_t list[1]; /* Protocol *, aka struct objc_protocol_t *
2882 // (32-bit pointer) */
2883};
2884
2885struct objc_protocol_t {
2886 uint32_t isa; /* struct objc_class * (32-bit pointer) */
2887 uint32_t protocol_name; /* char * (32-bit pointer) */
2888 uint32_t protocol_list; /* struct objc_protocol_list * (32-bit pointer) */
2889 uint32_t instance_methods; /* struct objc_method_description_list *
2890 (32-bit pointer) */
2891 uint32_t class_methods; /* struct objc_method_description_list *
2892 (32-bit pointer) */
2893};
2894
2895struct objc_method_description_list_t {
2896 int32_t count;
2897 // struct objc_method_description_t list[1];
2898};
2899
2900struct objc_method_description_t {
2901 uint32_t name; /* SEL, aka struct objc_selector * (32-bit pointer) */
2902 uint32_t types; /* char * (32-bit pointer) */
2903};
2904
2905inline void swapStruct(struct cfstring64_t &cfs) {
2906 sys::swapByteOrder(cfs.isa);
2907 sys::swapByteOrder(cfs.flags);
2908 sys::swapByteOrder(cfs.characters);
2909 sys::swapByteOrder(cfs.length);
2910}
2911
2912inline void swapStruct(struct class64_t &c) {
2913 sys::swapByteOrder(c.isa);
2914 sys::swapByteOrder(c.superclass);
2915 sys::swapByteOrder(c.cache);
2916 sys::swapByteOrder(c.vtable);
2917 sys::swapByteOrder(c.data);
2918}
2919
2920inline void swapStruct(struct class32_t &c) {
2921 sys::swapByteOrder(c.isa);
2922 sys::swapByteOrder(c.superclass);
2923 sys::swapByteOrder(c.cache);
2924 sys::swapByteOrder(c.vtable);
2925 sys::swapByteOrder(c.data);
2926}
2927
2928inline void swapStruct(struct class_ro64_t &cro) {
2929 sys::swapByteOrder(cro.flags);
2930 sys::swapByteOrder(cro.instanceStart);
2931 sys::swapByteOrder(cro.instanceSize);
2932 sys::swapByteOrder(cro.reserved);
2933 sys::swapByteOrder(cro.ivarLayout);
2934 sys::swapByteOrder(cro.name);
2935 sys::swapByteOrder(cro.baseMethods);
2936 sys::swapByteOrder(cro.baseProtocols);
2937 sys::swapByteOrder(cro.ivars);
2938 sys::swapByteOrder(cro.weakIvarLayout);
2939 sys::swapByteOrder(cro.baseProperties);
2940}
2941
2942inline void swapStruct(struct class_ro32_t &cro) {
2943 sys::swapByteOrder(cro.flags);
2944 sys::swapByteOrder(cro.instanceStart);
2945 sys::swapByteOrder(cro.instanceSize);
2946 sys::swapByteOrder(cro.ivarLayout);
2947 sys::swapByteOrder(cro.name);
2948 sys::swapByteOrder(cro.baseMethods);
2949 sys::swapByteOrder(cro.baseProtocols);
2950 sys::swapByteOrder(cro.ivars);
2951 sys::swapByteOrder(cro.weakIvarLayout);
2952 sys::swapByteOrder(cro.baseProperties);
2953}
2954
2955inline void swapStruct(struct method_list64_t &ml) {
2956 sys::swapByteOrder(ml.entsize);
2957 sys::swapByteOrder(ml.count);
2958}
2959
2960inline void swapStruct(struct method_list32_t &ml) {
2961 sys::swapByteOrder(ml.entsize);
2962 sys::swapByteOrder(ml.count);
2963}
2964
2965inline void swapStruct(struct method64_t &m) {
2966 sys::swapByteOrder(m.name);
2967 sys::swapByteOrder(m.types);
2968 sys::swapByteOrder(m.imp);
2969}
2970
2971inline void swapStruct(struct method32_t &m) {
2972 sys::swapByteOrder(m.name);
2973 sys::swapByteOrder(m.types);
2974 sys::swapByteOrder(m.imp);
2975}
2976
2977inline void swapStruct(struct protocol_list64_t &pl) {
2978 sys::swapByteOrder(pl.count);
2979}
2980
2981inline void swapStruct(struct protocol_list32_t &pl) {
2982 sys::swapByteOrder(pl.count);
2983}
2984
2985inline void swapStruct(struct protocol64_t &p) {
2986 sys::swapByteOrder(p.isa);
2987 sys::swapByteOrder(p.name);
2988 sys::swapByteOrder(p.protocols);
2989 sys::swapByteOrder(p.instanceMethods);
2990 sys::swapByteOrder(p.classMethods);
2991 sys::swapByteOrder(p.optionalInstanceMethods);
2992 sys::swapByteOrder(p.optionalClassMethods);
2993 sys::swapByteOrder(p.instanceProperties);
2994}
2995
2996inline void swapStruct(struct protocol32_t &p) {
2997 sys::swapByteOrder(p.isa);
2998 sys::swapByteOrder(p.name);
2999 sys::swapByteOrder(p.protocols);
3000 sys::swapByteOrder(p.instanceMethods);
3001 sys::swapByteOrder(p.classMethods);
3002 sys::swapByteOrder(p.optionalInstanceMethods);
3003 sys::swapByteOrder(p.optionalClassMethods);
3004 sys::swapByteOrder(p.instanceProperties);
3005}
3006
3007inline void swapStruct(struct ivar_list64_t &il) {
3008 sys::swapByteOrder(il.entsize);
3009 sys::swapByteOrder(il.count);
3010}
3011
3012inline void swapStruct(struct ivar_list32_t &il) {
3013 sys::swapByteOrder(il.entsize);
3014 sys::swapByteOrder(il.count);
3015}
3016
3017inline void swapStruct(struct ivar64_t &i) {
3018 sys::swapByteOrder(i.offset);
3019 sys::swapByteOrder(i.name);
3020 sys::swapByteOrder(i.type);
3021 sys::swapByteOrder(i.alignment);
3022 sys::swapByteOrder(i.size);
3023}
3024
3025inline void swapStruct(struct ivar32_t &i) {
3026 sys::swapByteOrder(i.offset);
3027 sys::swapByteOrder(i.name);
3028 sys::swapByteOrder(i.type);
3029 sys::swapByteOrder(i.alignment);
3030 sys::swapByteOrder(i.size);
3031}
3032
3033inline void swapStruct(struct objc_property_list64 &pl) {
3034 sys::swapByteOrder(pl.entsize);
3035 sys::swapByteOrder(pl.count);
3036}
3037
3038inline void swapStruct(struct objc_property_list32 &pl) {
3039 sys::swapByteOrder(pl.entsize);
3040 sys::swapByteOrder(pl.count);
3041}
3042
3043inline void swapStruct(struct objc_property64 &op) {
3044 sys::swapByteOrder(op.name);
3045 sys::swapByteOrder(op.attributes);
3046}
3047
3048inline void swapStruct(struct objc_property32 &op) {
3049 sys::swapByteOrder(op.name);
3050 sys::swapByteOrder(op.attributes);
3051}
3052
3053inline void swapStruct(struct category64_t &c) {
3054 sys::swapByteOrder(c.name);
3055 sys::swapByteOrder(c.cls);
3056 sys::swapByteOrder(c.instanceMethods);
3057 sys::swapByteOrder(c.classMethods);
3058 sys::swapByteOrder(c.protocols);
3059 sys::swapByteOrder(c.instanceProperties);
3060}
3061
3062inline void swapStruct(struct category32_t &c) {
3063 sys::swapByteOrder(c.name);
3064 sys::swapByteOrder(c.cls);
3065 sys::swapByteOrder(c.instanceMethods);
3066 sys::swapByteOrder(c.classMethods);
3067 sys::swapByteOrder(c.protocols);
3068 sys::swapByteOrder(c.instanceProperties);
3069}
3070
3071inline void swapStruct(struct objc_image_info64 &o) {
3072 sys::swapByteOrder(o.version);
3073 sys::swapByteOrder(o.flags);
3074}
3075
3076inline void swapStruct(struct objc_image_info32 &o) {
3077 sys::swapByteOrder(o.version);
3078 sys::swapByteOrder(o.flags);
3079}
3080
3081inline void swapStruct(struct imageInfo_t &o) {
3082 sys::swapByteOrder(o.version);
3083 sys::swapByteOrder(o.flags);
3084}
3085
3086inline void swapStruct(struct message_ref64 &mr) {
3087 sys::swapByteOrder(mr.imp);
3088 sys::swapByteOrder(mr.sel);
3089}
3090
3091inline void swapStruct(struct message_ref32 &mr) {
3092 sys::swapByteOrder(mr.imp);
3093 sys::swapByteOrder(mr.sel);
3094}
3095
3096inline void swapStruct(struct objc_module_t &module) {
3097 sys::swapByteOrder(module.version);
3098 sys::swapByteOrder(module.size);
3099 sys::swapByteOrder(module.name);
3100 sys::swapByteOrder(module.symtab);
3101}
3102
3103inline void swapStruct(struct objc_symtab_t &symtab) {
3104 sys::swapByteOrder(symtab.sel_ref_cnt);
3105 sys::swapByteOrder(symtab.refs);
3106 sys::swapByteOrder(symtab.cls_def_cnt);
3107 sys::swapByteOrder(symtab.cat_def_cnt);
3108}
3109
3110inline void swapStruct(struct objc_class_t &objc_class) {
3111 sys::swapByteOrder(objc_class.isa);
3112 sys::swapByteOrder(objc_class.super_class);
3113 sys::swapByteOrder(objc_class.name);
3114 sys::swapByteOrder(objc_class.version);
3115 sys::swapByteOrder(objc_class.info);
3116 sys::swapByteOrder(objc_class.instance_size);
3117 sys::swapByteOrder(objc_class.ivars);
3118 sys::swapByteOrder(objc_class.methodLists);
3119 sys::swapByteOrder(objc_class.cache);
3120 sys::swapByteOrder(objc_class.protocols);
3121}
3122
3123inline void swapStruct(struct objc_category_t &objc_category) {
3124 sys::swapByteOrder(objc_category.category_name);
3125 sys::swapByteOrder(objc_category.class_name);
3126 sys::swapByteOrder(objc_category.instance_methods);
3127 sys::swapByteOrder(objc_category.class_methods);
3128 sys::swapByteOrder(objc_category.protocols);
3129}
3130
3131inline void swapStruct(struct objc_ivar_list_t &objc_ivar_list) {
3132 sys::swapByteOrder(objc_ivar_list.ivar_count);
3133}
3134
3135inline void swapStruct(struct objc_ivar_t &objc_ivar) {
3136 sys::swapByteOrder(objc_ivar.ivar_name);
3137 sys::swapByteOrder(objc_ivar.ivar_type);
3138 sys::swapByteOrder(objc_ivar.ivar_offset);
3139}
3140
3141inline void swapStruct(struct objc_method_list_t &method_list) {
3142 sys::swapByteOrder(method_list.obsolete);
3143 sys::swapByteOrder(method_list.method_count);
3144}
3145
3146inline void swapStruct(struct objc_method_t &method) {
3147 sys::swapByteOrder(method.method_name);
3148 sys::swapByteOrder(method.method_types);
3149 sys::swapByteOrder(method.method_imp);
3150}
3151
3152inline void swapStruct(struct objc_protocol_list_t &protocol_list) {
3153 sys::swapByteOrder(protocol_list.next);
3154 sys::swapByteOrder(protocol_list.count);
3155}
3156
3157inline void swapStruct(struct objc_protocol_t &protocol) {
3158 sys::swapByteOrder(protocol.isa);
3159 sys::swapByteOrder(protocol.protocol_name);
3160 sys::swapByteOrder(protocol.protocol_list);
3161 sys::swapByteOrder(protocol.instance_methods);
3162 sys::swapByteOrder(protocol.class_methods);
3163}
3164
3165inline void swapStruct(struct objc_method_description_list_t &mdl) {
3166 sys::swapByteOrder(mdl.count);
3167}
3168
3169inline void swapStruct(struct objc_method_description_t &md) {
3170 sys::swapByteOrder(md.name);
3171 sys::swapByteOrder(md.types);
3172}
3173
3174static const char *get_dyld_bind_info_symbolname(uint64_t ReferenceValue,
3175 struct DisassembleInfo *info);
3176
3177// get_objc2_64bit_class_name() is used for disassembly and is passed a pointer
3178// to an Objective-C class and returns the class name. It is also passed the
3179// address of the pointer, so when the pointer is zero as it can be in an .o
3180// file, that is used to look for an external relocation entry with a symbol
3181// name.
3182static const char *get_objc2_64bit_class_name(uint64_t pointer_value,
3183 uint64_t ReferenceValue,
3184 struct DisassembleInfo *info) {
3185 const char *r;
3186 uint32_t offset, left;
3187 SectionRef S;
3188
3189 // The pointer_value can be 0 in an object file and have a relocation
3190 // entry for the class symbol at the ReferenceValue (the address of the
3191 // pointer).
3192 if (pointer_value == 0) {
3193 r = get_pointer_64(ReferenceValue, offset, left, S, info);
3194 if (r == nullptr || left < sizeof(uint64_t))
3195 return nullptr;
3196 uint64_t n_value;
3197 const char *symbol_name = get_symbol_64(offset, S, info, n_value);
3198 if (symbol_name == nullptr)
3199 return nullptr;
3200 const char *class_name = strrchr(symbol_name, '$');
3201 if (class_name != nullptr && class_name[1] == '_' && class_name[2] != '\0')
3202 return class_name + 2;
3203 else
3204 return nullptr;
3205 }
3206
3207 // The case were the pointer_value is non-zero and points to a class defined
3208 // in this Mach-O file.
3209 r = get_pointer_64(pointer_value, offset, left, S, info);
3210 if (r == nullptr || left < sizeof(struct class64_t))
3211 return nullptr;
3212 struct class64_t c;
3213 memcpy(&c, r, sizeof(struct class64_t));
3214 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3215 swapStruct(c);
3216 if (c.data == 0)
3217 return nullptr;
3218 r = get_pointer_64(c.data, offset, left, S, info);
3219 if (r == nullptr || left < sizeof(struct class_ro64_t))
3220 return nullptr;
3221 struct class_ro64_t cro;
3222 memcpy(&cro, r, sizeof(struct class_ro64_t));
3223 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3224 swapStruct(cro);
3225 if (cro.name == 0)
3226 return nullptr;
3227 const char *name = get_pointer_64(cro.name, offset, left, S, info);
3228 return name;
3229}
3230
3231// get_objc2_64bit_cfstring_name is used for disassembly and is passed a
3232// pointer to a cfstring and returns its name or nullptr.
3233static const char *get_objc2_64bit_cfstring_name(uint64_t ReferenceValue,
3234 struct DisassembleInfo *info) {
3235 const char *r, *name;
3236 uint32_t offset, left;
3237 SectionRef S;
3238 struct cfstring64_t cfs;
3239 uint64_t cfs_characters;
3240
3241 r = get_pointer_64(ReferenceValue, offset, left, S, info);
3242 if (r == nullptr || left < sizeof(struct cfstring64_t))
3243 return nullptr;
3244 memcpy(&cfs, r, sizeof(struct cfstring64_t));
3245 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3246 swapStruct(cfs);
3247 if (cfs.characters == 0) {
3248 uint64_t n_value;
3249 const char *symbol_name = get_symbol_64(
3250 offset + offsetof(struct cfstring64_t, characters)__builtin_offsetof(struct cfstring64_t, characters), S, info, n_value);
3251 if (symbol_name == nullptr)
3252 return nullptr;
3253 cfs_characters = n_value;
3254 } else
3255 cfs_characters = cfs.characters;
3256 name = get_pointer_64(cfs_characters, offset, left, S, info);
3257
3258 return name;
3259}
3260
3261// get_objc2_64bit_selref() is used for disassembly and is passed a the address
3262// of a pointer to an Objective-C selector reference when the pointer value is
3263// zero as in a .o file and is likely to have a external relocation entry with
3264// who's symbol's n_value is the real pointer to the selector name. If that is
3265// the case the real pointer to the selector name is returned else 0 is
3266// returned
3267static uint64_t get_objc2_64bit_selref(uint64_t ReferenceValue,
3268 struct DisassembleInfo *info) {
3269 uint32_t offset, left;
3270 SectionRef S;
3271
3272 const char *r = get_pointer_64(ReferenceValue, offset, left, S, info);
3273 if (r == nullptr || left < sizeof(uint64_t))
3274 return 0;
3275 uint64_t n_value;
3276 const char *symbol_name = get_symbol_64(offset, S, info, n_value);
3277 if (symbol_name == nullptr)
3278 return 0;
3279 return n_value;
3280}
3281
3282static const SectionRef get_section(MachOObjectFile *O, const char *segname,
3283 const char *sectname) {
3284 for (const SectionRef &Section : O->sections()) {
3285 StringRef SectName;
3286 Section.getName(SectName);
3287 DataRefImpl Ref = Section.getRawDataRefImpl();
3288 StringRef SegName = O->getSectionFinalSegmentName(Ref);
3289 if (SegName == segname && SectName == sectname)
3290 return Section;
3291 }
3292 return SectionRef();
3293}
3294
3295static void
3296walk_pointer_list_64(const char *listname, const SectionRef S,
3297 MachOObjectFile *O, struct DisassembleInfo *info,
3298 void (*func)(uint64_t, struct DisassembleInfo *info)) {
3299 if (S == SectionRef())
3300 return;
3301
3302 StringRef SectName;
3303 S.getName(SectName);
3304 DataRefImpl Ref = S.getRawDataRefImpl();
3305 StringRef SegName = O->getSectionFinalSegmentName(Ref);
3306 outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
3307
3308 StringRef BytesStr;
3309 S.getContents(BytesStr);
3310 const char *Contents = reinterpret_cast<const char *>(BytesStr.data());
3311
3312 for (uint32_t i = 0; i < S.getSize(); i += sizeof(uint64_t)) {
3313 uint32_t left = S.getSize() - i;
3314 uint32_t size = left < sizeof(uint64_t) ? left : sizeof(uint64_t);
3315 uint64_t p = 0;
3316 memcpy(&p, Contents + i, size);
3317 if (i + sizeof(uint64_t) > S.getSize())
3318 outs() << listname << " list pointer extends past end of (" << SegName
3319 << "," << SectName << ") section\n";
3320 outs() << format("%016" PRIx64"l" "x", S.getAddress() + i) << " ";
3321
3322 if (O->isLittleEndian() != sys::IsLittleEndianHost)
3323 sys::swapByteOrder(p);
3324
3325 uint64_t n_value = 0;
3326 const char *name = get_symbol_64(i, S, info, n_value, p);
3327 if (name == nullptr)
3328 name = get_dyld_bind_info_symbolname(S.getAddress() + i, info);
3329
3330 if (n_value != 0) {
3331 outs() << format("0x%" PRIx64"l" "x", n_value);
3332 if (p != 0)
3333 outs() << " + " << format("0x%" PRIx64"l" "x", p);
3334 } else
3335 outs() << format("0x%" PRIx64"l" "x", p);
3336 if (name != nullptr)
3337 outs() << " " << name;
3338 outs() << "\n";
3339
3340 p += n_value;
3341 if (func)
3342 func(p, info);
3343 }
3344}
3345
3346static void
3347walk_pointer_list_32(const char *listname, const SectionRef S,
3348 MachOObjectFile *O, struct DisassembleInfo *info,
3349 void (*func)(uint32_t, struct DisassembleInfo *info)) {
3350 if (S == SectionRef())
3351 return;
3352
3353 StringRef SectName;
3354 S.getName(SectName);
3355 DataRefImpl Ref = S.getRawDataRefImpl();
3356 StringRef SegName = O->getSectionFinalSegmentName(Ref);
3357 outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
3358
3359 StringRef BytesStr;
3360 S.getContents(BytesStr);
3361 const char *Contents = reinterpret_cast<const char *>(BytesStr.data());
3362
3363 for (uint32_t i = 0; i < S.getSize(); i += sizeof(uint32_t)) {
3364 uint32_t left = S.getSize() - i;
3365 uint32_t size = left < sizeof(uint32_t) ? left : sizeof(uint32_t);
3366 uint32_t p = 0;
3367 memcpy(&p, Contents + i, size);
3368 if (i + sizeof(uint32_t) > S.getSize())
3369 outs() << listname << " list pointer extends past end of (" << SegName
3370 << "," << SectName << ") section\n";
3371 uint32_t Address = S.getAddress() + i;
3372 outs() << format("%08" PRIx32"x", Address) << " ";
3373
3374 if (O->isLittleEndian() != sys::IsLittleEndianHost)
3375 sys::swapByteOrder(p);
3376 outs() << format("0x%" PRIx32"x", p);
3377
3378 const char *name = get_symbol_32(i, S, info, p);
3379 if (name != nullptr)
3380 outs() << " " << name;
3381 outs() << "\n";
3382
3383 if (func)
3384 func(p, info);
3385 }
3386}
3387
3388static void print_layout_map(const char *layout_map, uint32_t left) {
3389 if (layout_map == nullptr)
3390 return;
3391 outs() << " layout map: ";
3392 do {
3393 outs() << format("0x%02" PRIx32"x", (*layout_map) & 0xff) << " ";
3394 left--;
3395 layout_map++;
3396 } while (*layout_map != '\0' && left != 0);
3397 outs() << "\n";
3398}
3399
3400static void print_layout_map64(uint64_t p, struct DisassembleInfo *info) {
3401 uint32_t offset, left;
3402 SectionRef S;
3403 const char *layout_map;
3404
3405 if (p == 0)
3406 return;
3407 layout_map = get_pointer_64(p, offset, left, S, info);
3408 print_layout_map(layout_map, left);
3409}
3410
3411static void print_layout_map32(uint32_t p, struct DisassembleInfo *info) {
3412 uint32_t offset, left;
3413 SectionRef S;
3414 const char *layout_map;
3415
3416 if (p == 0)
3417 return;
3418 layout_map = get_pointer_32(p, offset, left, S, info);
3419 print_layout_map(layout_map, left);
3420}
3421
3422static void print_method_list64_t(uint64_t p, struct DisassembleInfo *info,
3423 const char *indent) {
3424 struct method_list64_t ml;
3425 struct method64_t m;
3426 const char *r;
3427 uint32_t offset, xoffset, left, i;
3428 SectionRef S, xS;
3429 const char *name, *sym_name;
3430 uint64_t n_value;
3431
3432 r = get_pointer_64(p, offset, left, S, info);
3433 if (r == nullptr)
3434 return;
3435 memset(&ml, '\0', sizeof(struct method_list64_t));
3436 if (left < sizeof(struct method_list64_t)) {
3437 memcpy(&ml, r, left);
3438 outs() << " (method_list_t entends past the end of the section)\n";
3439 } else
3440 memcpy(&ml, r, sizeof(struct method_list64_t));
3441 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3442 swapStruct(ml);
3443 outs() << indent << "\t\t entsize " << ml.entsize << "\n";
3444 outs() << indent << "\t\t count " << ml.count << "\n";
3445
3446 p += sizeof(struct method_list64_t);
3447 offset += sizeof(struct method_list64_t);
3448 for (i = 0; i < ml.count; i++) {
3449 r = get_pointer_64(p, offset, left, S, info);
3450 if (r == nullptr)
3451 return;
3452 memset(&m, '\0', sizeof(struct method64_t));
3453 if (left < sizeof(struct method64_t)) {
3454 memcpy(&m, r, left);
3455 outs() << indent << " (method_t extends past the end of the section)\n";
3456 } else
3457 memcpy(&m, r, sizeof(struct method64_t));
3458 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3459 swapStruct(m);
3460
3461 outs() << indent << "\t\t name ";
3462 sym_name = get_symbol_64(offset + offsetof(struct method64_t, name)__builtin_offsetof(struct method64_t, name), S,
3463 info, n_value, m.name);
3464 if (n_value != 0) {
3465 if (info->verbose && sym_name != nullptr)
3466 outs() << sym_name;
3467 else
3468 outs() << format("0x%" PRIx64"l" "x", n_value);
3469 if (m.name != 0)
3470 outs() << " + " << format("0x%" PRIx64"l" "x", m.name);
3471 } else
3472 outs() << format("0x%" PRIx64"l" "x", m.name);
3473 name = get_pointer_64(m.name + n_value, xoffset, left, xS, info);
3474 if (name != nullptr)
3475 outs() << format(" %.*s", left, name);
3476 outs() << "\n";
3477
3478 outs() << indent << "\t\t types ";
3479 sym_name = get_symbol_64(offset + offsetof(struct method64_t, types)__builtin_offsetof(struct method64_t, types), S,
3480 info, n_value, m.types);
3481 if (n_value != 0) {
3482 if (info->verbose && sym_name != nullptr)
3483 outs() << sym_name;
3484 else
3485 outs() << format("0x%" PRIx64"l" "x", n_value);
3486 if (m.types != 0)
3487 outs() << " + " << format("0x%" PRIx64"l" "x", m.types);
3488 } else
3489 outs() << format("0x%" PRIx64"l" "x", m.types);
3490 name = get_pointer_64(m.types + n_value, xoffset, left, xS, info);
3491 if (name != nullptr)
3492 outs() << format(" %.*s", left, name);
3493 outs() << "\n";
3494
3495 outs() << indent << "\t\t imp ";
3496 name = get_symbol_64(offset + offsetof(struct method64_t, imp)__builtin_offsetof(struct method64_t, imp), S, info,
3497 n_value, m.imp);
3498 if (info->verbose && name == nullptr) {
3499 if (n_value != 0) {
3500 outs() << format("0x%" PRIx64"l" "x", n_value) << " ";
3501 if (m.imp != 0)
3502 outs() << "+ " << format("0x%" PRIx64"l" "x", m.imp) << " ";
3503 } else
3504 outs() << format("0x%" PRIx64"l" "x", m.imp) << " ";
3505 }
3506 if (name != nullptr)
3507 outs() << name;
3508 outs() << "\n";
3509
3510 p += sizeof(struct method64_t);
3511 offset += sizeof(struct method64_t);
3512 }
3513}
3514
3515static void print_method_list32_t(uint64_t p, struct DisassembleInfo *info,
3516 const char *indent) {
3517 struct method_list32_t ml;
3518 struct method32_t m;
3519 const char *r, *name;
3520 uint32_t offset, xoffset, left, i;
3521 SectionRef S, xS;
3522
3523 r = get_pointer_32(p, offset, left, S, info);
3524 if (r == nullptr)
3525 return;
3526 memset(&ml, '\0', sizeof(struct method_list32_t));
3527 if (left < sizeof(struct method_list32_t)) {
3528 memcpy(&ml, r, left);
3529 outs() << " (method_list_t entends past the end of the section)\n";
3530 } else
3531 memcpy(&ml, r, sizeof(struct method_list32_t));
3532 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3533 swapStruct(ml);
3534 outs() << indent << "\t\t entsize " << ml.entsize << "\n";
3535 outs() << indent << "\t\t count " << ml.count << "\n";
3536
3537 p += sizeof(struct method_list32_t);
3538 offset += sizeof(struct method_list32_t);
3539 for (i = 0; i < ml.count; i++) {
3540 r = get_pointer_32(p, offset, left, S, info);
3541 if (r == nullptr)
3542 return;
3543 memset(&m, '\0', sizeof(struct method32_t));
3544 if (left < sizeof(struct method32_t)) {
3545 memcpy(&ml, r, left);
3546 outs() << indent << " (method_t entends past the end of the section)\n";
3547 } else
3548 memcpy(&m, r, sizeof(struct method32_t));
3549 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3550 swapStruct(m);
3551
3552 outs() << indent << "\t\t name " << format("0x%" PRIx32"x", m.name);
3553 name = get_pointer_32(m.name, xoffset, left, xS, info);
3554 if (name != nullptr)
3555 outs() << format(" %.*s", left, name);
3556 outs() << "\n";
3557
3558 outs() << indent << "\t\t types " << format("0x%" PRIx32"x", m.types);
3559 name = get_pointer_32(m.types, xoffset, left, xS, info);
3560 if (name != nullptr)
3561 outs() << format(" %.*s", left, name);
3562 outs() << "\n";
3563
3564 outs() << indent << "\t\t imp " << format("0x%" PRIx32"x", m.imp);
3565 name = get_symbol_32(offset + offsetof(struct method32_t, imp)__builtin_offsetof(struct method32_t, imp), S, info,
3566 m.imp);
3567 if (name != nullptr)
3568 outs() << " " << name;
3569 outs() << "\n";
3570
3571 p += sizeof(struct method32_t);
3572 offset += sizeof(struct method32_t);
3573 }
3574}
3575
3576static bool print_method_list(uint32_t p, struct DisassembleInfo *info) {
3577 uint32_t offset, left, xleft;
3578 SectionRef S;
3579 struct objc_method_list_t method_list;
3580 struct objc_method_t method;
3581 const char *r, *methods, *name, *SymbolName;
3582 int32_t i;
3583
3584 r = get_pointer_32(p, offset, left, S, info, true);
3585 if (r == nullptr)
3586 return true;
3587
3588 outs() << "\n";
3589 if (left > sizeof(struct objc_method_list_t)) {
3590 memcpy(&method_list, r, sizeof(struct objc_method_list_t));
3591 } else {
3592 outs() << "\t\t objc_method_list extends past end of the section\n";
3593 memset(&method_list, '\0', sizeof(struct objc_method_list_t));
3594 memcpy(&method_list, r, left);
3595 }
3596 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3597 swapStruct(method_list);
3598
3599 outs() << "\t\t obsolete "
3600 << format("0x%08" PRIx32"x", method_list.obsolete) << "\n";
3601 outs() << "\t\t method_count " << method_list.method_count << "\n";
3602
3603 methods = r + sizeof(struct objc_method_list_t);
3604 for (i = 0; i < method_list.method_count; i++) {
3605 if ((i + 1) * sizeof(struct objc_method_t) > left) {
3606 outs() << "\t\t remaining method's extend past the of the section\n";
3607 break;
3608 }
3609 memcpy(&method, methods + i * sizeof(struct objc_method_t),
3610 sizeof(struct objc_method_t));
3611 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3612 swapStruct(method);
3613
3614 outs() << "\t\t method_name "
3615 << format("0x%08" PRIx32"x", method.method_name);
3616 if (info->verbose) {
3617 name = get_pointer_32(method.method_name, offset, xleft, S, info, true);
3618 if (name != nullptr)
3619 outs() << format(" %.*s", xleft, name);
3620 else
3621 outs() << " (not in an __OBJC section)";
3622 }
3623 outs() << "\n";
3624
3625 outs() << "\t\t method_types "
3626 << format("0x%08" PRIx32"x", method.method_types);
3627 if (info->verbose) {
3628 name = get_pointer_32(method.method_types, offset, xleft, S, info, true);
3629 if (name != nullptr)
3630 outs() << format(" %.*s", xleft, name);
3631 else
3632 outs() << " (not in an __OBJC section)";
3633 }
3634 outs() << "\n";
3635
3636 outs() << "\t\t method_imp "
3637 << format("0x%08" PRIx32"x", method.method_imp) << " ";
3638 if (info->verbose) {
3639 SymbolName = GuessSymbolName(method.method_imp, info->AddrMap);
3640 if (SymbolName != nullptr)
3641 outs() << SymbolName;
3642 }
3643 outs() << "\n";
3644 }
3645 return false;
3646}
3647
3648static void print_protocol_list64_t(uint64_t p, struct DisassembleInfo *info) {
3649 struct protocol_list64_t pl;
3650 uint64_t q, n_value;
3651 struct protocol64_t pc;
3652 const char *r;
3653 uint32_t offset, xoffset, left, i;
3654 SectionRef S, xS;
3655 const char *name, *sym_name;
3656
3657 r = get_pointer_64(p, offset, left, S, info);
3658 if (r == nullptr)
3659 return;
3660 memset(&pl, '\0', sizeof(struct protocol_list64_t));
3661 if (left < sizeof(struct protocol_list64_t)) {
3662 memcpy(&pl, r, left);
3663 outs() << " (protocol_list_t entends past the end of the section)\n";
3664 } else
3665 memcpy(&pl, r, sizeof(struct protocol_list64_t));
3666 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3667 swapStruct(pl);
3668 outs() << " count " << pl.count << "\n";
3669
3670 p += sizeof(struct protocol_list64_t);
3671 offset += sizeof(struct protocol_list64_t);
3672 for (i = 0; i < pl.count; i++) {
3673 r = get_pointer_64(p, offset, left, S, info);
3674 if (r == nullptr)
3675 return;
3676 q = 0;
3677 if (left < sizeof(uint64_t)) {
3678 memcpy(&q, r, left);
3679 outs() << " (protocol_t * entends past the end of the section)\n";
3680 } else
3681 memcpy(&q, r, sizeof(uint64_t));
3682 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3683 sys::swapByteOrder(q);
3684
3685 outs() << "\t\t list[" << i << "] ";
3686 sym_name = get_symbol_64(offset, S, info, n_value, q);
3687 if (n_value != 0) {
3688 if (info->verbose && sym_name != nullptr)
3689 outs() << sym_name;
3690 else
3691 outs() << format("0x%" PRIx64"l" "x", n_value);
3692 if (q != 0)
3693 outs() << " + " << format("0x%" PRIx64"l" "x", q);
3694 } else
3695 outs() << format("0x%" PRIx64"l" "x", q);
3696 outs() << " (struct protocol_t *)\n";
3697
3698 r = get_pointer_64(q + n_value, offset, left, S, info);
3699 if (r == nullptr)
3700 return;
3701 memset(&pc, '\0', sizeof(struct protocol64_t));
3702 if (left < sizeof(struct protocol64_t)) {
3703 memcpy(&pc, r, left);
3704 outs() << " (protocol_t entends past the end of the section)\n";
3705 } else
3706 memcpy(&pc, r, sizeof(struct protocol64_t));
3707 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3708 swapStruct(pc);
3709
3710 outs() << "\t\t\t isa " << format("0x%" PRIx64"l" "x", pc.isa) << "\n";
3711
3712 outs() << "\t\t\t name ";
3713 sym_name = get_symbol_64(offset + offsetof(struct protocol64_t, name)__builtin_offsetof(struct protocol64_t, name), S,
3714 info, n_value, pc.name);
3715 if (n_value != 0) {
3716 if (info->verbose && sym_name != nullptr)
3717 outs() << sym_name;
3718 else
3719 outs() << format("0x%" PRIx64"l" "x", n_value);
3720 if (pc.name != 0)
3721 outs() << " + " << format("0x%" PRIx64"l" "x", pc.name);
3722 } else
3723 outs() << format("0x%" PRIx64"l" "x", pc.name);
3724 name = get_pointer_64(pc.name + n_value, xoffset, left, xS, info);
3725 if (name != nullptr)
3726 outs() << format(" %.*s", left, name);
3727 outs() << "\n";
3728
3729 outs() << "\t\t\tprotocols " << format("0x%" PRIx64"l" "x", pc.protocols) << "\n";
3730
3731 outs() << "\t\t instanceMethods ";
3732 sym_name =
3733 get_symbol_64(offset + offsetof(struct protocol64_t, instanceMethods)__builtin_offsetof(struct protocol64_t, instanceMethods),
3734 S, info, n_value, pc.instanceMethods);
3735 if (n_value != 0) {
3736 if (info->verbose && sym_name != nullptr)
3737 outs() << sym_name;
3738 else
3739 outs() << format("0x%" PRIx64"l" "x", n_value);
3740 if (pc.instanceMethods != 0)
3741 outs() << " + " << format("0x%" PRIx64"l" "x", pc.instanceMethods);
3742 } else
3743 outs() << format("0x%" PRIx64"l" "x", pc.instanceMethods);
3744 outs() << " (struct method_list_t *)\n";
3745 if (pc.instanceMethods + n_value != 0)
3746 print_method_list64_t(pc.instanceMethods + n_value, info, "\t");
3747
3748 outs() << "\t\t classMethods ";
3749 sym_name =
3750 get_symbol_64(offset + offsetof(struct protocol64_t, classMethods)__builtin_offsetof(struct protocol64_t, classMethods), S,
3751 info, n_value, pc.classMethods);
3752 if (n_value != 0) {
3753 if (info->verbose && sym_name != nullptr)
3754 outs() << sym_name;
3755 else
3756 outs() << format("0x%" PRIx64"l" "x", n_value);
3757 if (pc.classMethods != 0)
3758 outs() << " + " << format("0x%" PRIx64"l" "x", pc.classMethods);
3759 } else
3760 outs() << format("0x%" PRIx64"l" "x", pc.classMethods);
3761 outs() << " (struct method_list_t *)\n";
3762 if (pc.classMethods + n_value != 0)
3763 print_method_list64_t(pc.classMethods + n_value, info, "\t");
3764
3765 outs() << "\t optionalInstanceMethods "
3766 << format("0x%" PRIx64"l" "x", pc.optionalInstanceMethods) << "\n";
3767 outs() << "\t optionalClassMethods "
3768 << format("0x%" PRIx64"l" "x", pc.optionalClassMethods) << "\n";
3769 outs() << "\t instanceProperties "
3770 << format("0x%" PRIx64"l" "x", pc.instanceProperties) << "\n";
3771
3772 p += sizeof(uint64_t);
3773 offset += sizeof(uint64_t);
3774 }
3775}
3776
3777static void print_protocol_list32_t(uint32_t p, struct DisassembleInfo *info) {
3778 struct protocol_list32_t pl;
3779 uint32_t q;
3780 struct protocol32_t pc;
3781 const char *r;
3782 uint32_t offset, xoffset, left, i;
3783 SectionRef S, xS;
3784 const char *name;
3785
3786 r = get_pointer_32(p, offset, left, S, info);
3787 if (r == nullptr)
3788 return;
3789 memset(&pl, '\0', sizeof(struct protocol_list32_t));
3790 if (left < sizeof(struct protocol_list32_t)) {
3791 memcpy(&pl, r, left);
3792 outs() << " (protocol_list_t entends past the end of the section)\n";
3793 } else
3794 memcpy(&pl, r, sizeof(struct protocol_list32_t));
3795 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3796 swapStruct(pl);
3797 outs() << " count " << pl.count << "\n";
3798
3799 p += sizeof(struct protocol_list32_t);
3800 offset += sizeof(struct protocol_list32_t);
3801 for (i = 0; i < pl.count; i++) {
3802 r = get_pointer_32(p, offset, left, S, info);
3803 if (r == nullptr)
3804 return;
3805 q = 0;
3806 if (left < sizeof(uint32_t)) {
3807 memcpy(&q, r, left);
3808 outs() << " (protocol_t * entends past the end of the section)\n";
3809 } else
3810 memcpy(&q, r, sizeof(uint32_t));
3811 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3812 sys::swapByteOrder(q);
3813 outs() << "\t\t list[" << i << "] " << format("0x%" PRIx32"x", q)
3814 << " (struct protocol_t *)\n";
3815 r = get_pointer_32(q, offset, left, S, info);
3816 if (r == nullptr)
3817 return;
3818 memset(&pc, '\0', sizeof(struct protocol32_t));
3819 if (left < sizeof(struct protocol32_t)) {
3820 memcpy(&pc, r, left);
3821 outs() << " (protocol_t entends past the end of the section)\n";
3822 } else
3823 memcpy(&pc, r, sizeof(struct protocol32_t));
3824 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3825 swapStruct(pc);
3826 outs() << "\t\t\t isa " << format("0x%" PRIx32"x", pc.isa) << "\n";
3827 outs() << "\t\t\t name " << format("0x%" PRIx32"x", pc.name);
3828 name = get_pointer_32(pc.name, xoffset, left, xS, info);
3829 if (name != nullptr)
3830 outs() << format(" %.*s", left, name);
3831 outs() << "\n";
3832 outs() << "\t\t\tprotocols " << format("0x%" PRIx32"x", pc.protocols) << "\n";
3833 outs() << "\t\t instanceMethods "
3834 << format("0x%" PRIx32"x", pc.instanceMethods)
3835 << " (struct method_list_t *)\n";
3836 if (pc.instanceMethods != 0)
3837 print_method_list32_t(pc.instanceMethods, info, "\t");
3838 outs() << "\t\t classMethods " << format("0x%" PRIx32"x", pc.classMethods)
3839 << " (struct method_list_t *)\n";
3840 if (pc.classMethods != 0)
3841 print_method_list32_t(pc.classMethods, info, "\t");
3842 outs() << "\t optionalInstanceMethods "
3843 << format("0x%" PRIx32"x", pc.optionalInstanceMethods) << "\n";
3844 outs() << "\t optionalClassMethods "
3845 << format("0x%" PRIx32"x", pc.optionalClassMethods) << "\n";
3846 outs() << "\t instanceProperties "
3847 << format("0x%" PRIx32"x", pc.instanceProperties) << "\n";
3848 p += sizeof(uint32_t);
3849 offset += sizeof(uint32_t);
3850 }
3851}
3852
3853static void print_indent(uint32_t indent) {
3854 for (uint32_t i = 0; i < indent;) {
3855 if (indent - i >= 8) {
3856 outs() << "\t";
3857 i += 8;
3858 } else {
3859 for (uint32_t j = i; j < indent; j++)
3860 outs() << " ";
3861 return;
3862 }
3863 }
3864}
3865
3866static bool print_method_description_list(uint32_t p, uint32_t indent,
3867 struct DisassembleInfo *info) {
3868 uint32_t offset, left, xleft;
3869 SectionRef S;
3870 struct objc_method_description_list_t mdl;
3871 struct objc_method_description_t md;
3872 const char *r, *list, *name;
3873 int32_t i;
3874
3875 r = get_pointer_32(p, offset, left, S, info, true);
3876 if (r == nullptr)
3877 return true;
3878
3879 outs() << "\n";
3880 if (left > sizeof(struct objc_method_description_list_t)) {
3881 memcpy(&mdl, r, sizeof(struct objc_method_description_list_t));
3882 } else {
3883 print_indent(indent);
3884 outs() << " objc_method_description_list extends past end of the section\n";
3885 memset(&mdl, '\0', sizeof(struct objc_method_description_list_t));
3886 memcpy(&mdl, r, left);
3887 }
3888 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3889 swapStruct(mdl);
3890
3891 print_indent(indent);
3892 outs() << " count " << mdl.count << "\n";
3893
3894 list = r + sizeof(struct objc_method_description_list_t);
3895 for (i = 0; i < mdl.count; i++) {
3896 if ((i + 1) * sizeof(struct objc_method_description_t) > left) {
3897 print_indent(indent);
3898 outs() << " remaining list entries extend past the of the section\n";
3899 break;
3900 }
3901 print_indent(indent);
3902 outs() << " list[" << i << "]\n";
3903 memcpy(&md, list + i * sizeof(struct objc_method_description_t),
3904 sizeof(struct objc_method_description_t));
3905 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3906 swapStruct(md);
3907
3908 print_indent(indent);
3909 outs() << " name " << format("0x%08" PRIx32"x", md.name);
3910 if (info->verbose) {
3911 name = get_pointer_32(md.name, offset, xleft, S, info, true);
3912 if (name != nullptr)
3913 outs() << format(" %.*s", xleft, name);
3914 else
3915 outs() << " (not in an __OBJC section)";
3916 }
3917 outs() << "\n";
3918
3919 print_indent(indent);
3920 outs() << " types " << format("0x%08" PRIx32"x", md.types);
3921 if (info->verbose) {
3922 name = get_pointer_32(md.types, offset, xleft, S, info, true);
3923 if (name != nullptr)
3924 outs() << format(" %.*s", xleft, name);
3925 else
3926 outs() << " (not in an __OBJC section)";
3927 }
3928 outs() << "\n";
3929 }
3930 return false;
3931}
3932
3933static bool print_protocol_list(uint32_t p, uint32_t indent,
3934 struct DisassembleInfo *info);
3935
3936static bool print_protocol(uint32_t p, uint32_t indent,
3937 struct DisassembleInfo *info) {
3938 uint32_t offset, left;
3939 SectionRef S;
3940 struct objc_protocol_t protocol;
3941 const char *r, *name;
3942
3943 r = get_pointer_32(p, offset, left, S, info, true);
3944 if (r == nullptr)
3945 return true;
3946
3947 outs() << "\n";
3948 if (left >= sizeof(struct objc_protocol_t)) {
3949 memcpy(&protocol, r, sizeof(struct objc_protocol_t));
3950 } else {
3951 print_indent(indent);
3952 outs() << " Protocol extends past end of the section\n";
3953 memset(&protocol, '\0', sizeof(struct objc_protocol_t));
3954 memcpy(&protocol, r, left);
3955 }
3956 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
3957 swapStruct(protocol);
3958
3959 print_indent(indent);
3960 outs() << " isa " << format("0x%08" PRIx32"x", protocol.isa)
3961 << "\n";
3962
3963 print_indent(indent);
3964 outs() << " protocol_name "
3965 << format("0x%08" PRIx32"x", protocol.protocol_name);
3966 if (info->verbose) {
3967 name = get_pointer_32(protocol.protocol_name, offset, left, S, info, true);
3968 if (name != nullptr)
3969 outs() << format(" %.*s", left, name);
3970 else
3971 outs() << " (not in an __OBJC section)";
3972 }
3973 outs() << "\n";
3974
3975 print_indent(indent);
3976 outs() << " protocol_list "
3977 << format("0x%08" PRIx32"x", protocol.protocol_list);
3978 if (print_protocol_list(protocol.protocol_list, indent + 4, info))
3979 outs() << " (not in an __OBJC section)\n";
3980
3981 print_indent(indent);
3982 outs() << " instance_methods "
3983 << format("0x%08" PRIx32"x", protocol.instance_methods);
3984 if (print_method_description_list(protocol.instance_methods, indent, info))
3985 outs() << " (not in an __OBJC section)\n";
3986
3987 print_indent(indent);
3988 outs() << " class_methods "
3989 << format("0x%08" PRIx32"x", protocol.class_methods);
3990 if (print_method_description_list(protocol.class_methods, indent, info))
3991 outs() << " (not in an __OBJC section)\n";
3992
3993 return false;
3994}
3995
3996static bool print_protocol_list(uint32_t p, uint32_t indent,
3997 struct DisassembleInfo *info) {
3998 uint32_t offset, left, l;
3999 SectionRef S;
4000 struct objc_protocol_list_t protocol_list;
4001 const char *r, *list;
4002 int32_t i;
4003
4004 r = get_pointer_32(p, offset, left, S, info, true);
4005 if (r == nullptr)
4006 return true;
4007
4008 outs() << "\n";
4009 if (left > sizeof(struct objc_protocol_list_t)) {
4010 memcpy(&protocol_list, r, sizeof(struct objc_protocol_list_t));
4011 } else {
4012 outs() << "\t\t objc_protocol_list_t extends past end of the section\n";
4013 memset(&protocol_list, '\0', sizeof(struct objc_protocol_list_t));
4014 memcpy(&protocol_list, r, left);
4015 }
4016 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4017 swapStruct(protocol_list);
4018
4019 print_indent(indent);
4020 outs() << " next " << format("0x%08" PRIx32"x", protocol_list.next)
4021 << "\n";
4022 print_indent(indent);
4023 outs() << " count " << protocol_list.count << "\n";
4024
4025 list = r + sizeof(struct objc_protocol_list_t);
4026 for (i = 0; i < protocol_list.count; i++) {
4027 if ((i + 1) * sizeof(uint32_t) > left) {
4028 outs() << "\t\t remaining list entries extend past the of the section\n";
4029 break;
4030 }
4031 memcpy(&l, list + i * sizeof(uint32_t), sizeof(uint32_t));
4032 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4033 sys::swapByteOrder(l);
4034
4035 print_indent(indent);
4036 outs() << " list[" << i << "] " << format("0x%08" PRIx32"x", l);
4037 if (print_protocol(l, indent, info))
4038 outs() << "(not in an __OBJC section)\n";
4039 }
4040 return false;
4041}
4042
4043static void print_ivar_list64_t(uint64_t p, struct DisassembleInfo *info) {
4044 struct ivar_list64_t il;
4045 struct ivar64_t i;
4046 const char *r;
4047 uint32_t offset, xoffset, left, j;
4048 SectionRef S, xS;
4049 const char *name, *sym_name, *ivar_offset_p;
4050 uint64_t ivar_offset, n_value;
4051
4052 r = get_pointer_64(p, offset, left, S, info);
4053 if (r == nullptr)
4054 return;
4055 memset(&il, '\0', sizeof(struct ivar_list64_t));
4056 if (left < sizeof(struct ivar_list64_t)) {
4057 memcpy(&il, r, left);
4058 outs() << " (ivar_list_t entends past the end of the section)\n";
4059 } else
4060 memcpy(&il, r, sizeof(struct ivar_list64_t));
4061 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4062 swapStruct(il);
4063 outs() << " entsize " << il.entsize << "\n";
4064 outs() << " count " << il.count << "\n";
4065
4066 p += sizeof(struct ivar_list64_t);
4067 offset += sizeof(struct ivar_list64_t);
4068 for (j = 0; j < il.count; j++) {
4069 r = get_pointer_64(p, offset, left, S, info);
4070 if (r == nullptr)
4071 return;
4072 memset(&i, '\0', sizeof(struct ivar64_t));
4073 if (left < sizeof(struct ivar64_t)) {
4074 memcpy(&i, r, left);
4075 outs() << " (ivar_t entends past the end of the section)\n";
4076 } else
4077 memcpy(&i, r, sizeof(struct ivar64_t));
4078 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4079 swapStruct(i);
4080
4081 outs() << "\t\t\t offset ";
4082 sym_name = get_symbol_64(offset + offsetof(struct ivar64_t, offset)__builtin_offsetof(struct ivar64_t, offset), S,
4083 info, n_value, i.offset);
4084 if (n_value != 0) {
4085 if (info->verbose && sym_name != nullptr)
4086 outs() << sym_name;
4087 else
4088 outs() << format("0x%" PRIx64"l" "x", n_value);
4089 if (i.offset != 0)
4090 outs() << " + " << format("0x%" PRIx64"l" "x", i.offset);
4091 } else
4092 outs() << format("0x%" PRIx64"l" "x", i.offset);
4093 ivar_offset_p = get_pointer_64(i.offset + n_value, xoffset, left, xS, info);
4094 if (ivar_offset_p != nullptr && left >= sizeof(*ivar_offset_p)) {
4095 memcpy(&ivar_offset, ivar_offset_p, sizeof(ivar_offset));
4096 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4097 sys::swapByteOrder(ivar_offset);
4098 outs() << " " << ivar_offset << "\n";
4099 } else
4100 outs() << "\n";
4101
4102 outs() << "\t\t\t name ";
4103 sym_name = get_symbol_64(offset + offsetof(struct ivar64_t, name)__builtin_offsetof(struct ivar64_t, name), S, info,
4104 n_value, i.name);
4105 if (n_value != 0) {
4106 if (info->verbose && sym_name != nullptr)
4107 outs() << sym_name;
4108 else
4109 outs() << format("0x%" PRIx64"l" "x", n_value);
4110 if (i.name != 0)
4111 outs() << " + " << format("0x%" PRIx64"l" "x", i.name);
4112 } else
4113 outs() << format("0x%" PRIx64"l" "x", i.name);
4114 name = get_pointer_64(i.name + n_value, xoffset, left, xS, info);
4115 if (name != nullptr)
4116 outs() << format(" %.*s", left, name);
4117 outs() << "\n";
4118
4119 outs() << "\t\t\t type ";
4120 sym_name = get_symbol_64(offset + offsetof(struct ivar64_t, type)__builtin_offsetof(struct ivar64_t, type), S, info,
4121 n_value, i.name);
4122 name = get_pointer_64(i.type + n_value, xoffset, left, xS, info);
4123 if (n_value != 0) {
4124 if (info->verbose && sym_name != nullptr)
4125 outs() << sym_name;
4126 else
4127 outs() << format("0x%" PRIx64"l" "x", n_value);
4128 if (i.type != 0)
4129 outs() << " + " << format("0x%" PRIx64"l" "x", i.type);
4130 } else
4131 outs() << format("0x%" PRIx64"l" "x", i.type);
4132 if (name != nullptr)
4133 outs() << format(" %.*s", left, name);
4134 outs() << "\n";
4135
4136 outs() << "\t\t\talignment " << i.alignment << "\n";
4137 outs() << "\t\t\t size " << i.size << "\n";
4138
4139 p += sizeof(struct ivar64_t);
4140 offset += sizeof(struct ivar64_t);
4141 }
4142}
4143
4144static void print_ivar_list32_t(uint32_t p, struct DisassembleInfo *info) {
4145 struct ivar_list32_t il;
4146 struct ivar32_t i;
4147 const char *r;
4148 uint32_t offset, xoffset, left, j;
4149 SectionRef S, xS;
4150 const char *name, *ivar_offset_p;
4151 uint32_t ivar_offset;
4152
4153 r = get_pointer_32(p, offset, left, S, info);
4154 if (r == nullptr)
4155 return;
4156 memset(&il, '\0', sizeof(struct ivar_list32_t));
4157 if (left < sizeof(struct ivar_list32_t)) {
4158 memcpy(&il, r, left);
4159 outs() << " (ivar_list_t entends past the end of the section)\n";
4160 } else
4161 memcpy(&il, r, sizeof(struct ivar_list32_t));
4162 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4163 swapStruct(il);
4164 outs() << " entsize " << il.entsize << "\n";
4165 outs() << " count " << il.count << "\n";
4166
4167 p += sizeof(struct ivar_list32_t);
4168 offset += sizeof(struct ivar_list32_t);
4169 for (j = 0; j < il.count; j++) {
4170 r = get_pointer_32(p, offset, left, S, info);
4171 if (r == nullptr)
4172 return;
4173 memset(&i, '\0', sizeof(struct ivar32_t));
4174 if (left < sizeof(struct ivar32_t)) {
4175 memcpy(&i, r, left);
4176 outs() << " (ivar_t entends past the end of the section)\n";
4177 } else
4178 memcpy(&i, r, sizeof(struct ivar32_t));
4179 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4180 swapStruct(i);
4181
4182 outs() << "\t\t\t offset " << format("0x%" PRIx32"x", i.offset);
4183 ivar_offset_p = get_pointer_32(i.offset, xoffset, left, xS, info);
4184 if (ivar_offset_p != nullptr && left >= sizeof(*ivar_offset_p)) {
4185 memcpy(&ivar_offset, ivar_offset_p, sizeof(ivar_offset));
4186 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4187 sys::swapByteOrder(ivar_offset);
4188 outs() << " " << ivar_offset << "\n";
4189 } else
4190 outs() << "\n";
4191
4192 outs() << "\t\t\t name " << format("0x%" PRIx32"x", i.name);
4193 name = get_pointer_32(i.name, xoffset, left, xS, info);
4194 if (name != nullptr)
4195 outs() << format(" %.*s", left, name);
4196 outs() << "\n";
4197
4198 outs() << "\t\t\t type " << format("0x%" PRIx32"x", i.type);
4199 name = get_pointer_32(i.type, xoffset, left, xS, info);
4200 if (name != nullptr)
4201 outs() << format(" %.*s", left, name);
4202 outs() << "\n";
4203
4204 outs() << "\t\t\talignment " << i.alignment << "\n";
4205 outs() << "\t\t\t size " << i.size << "\n";
4206
4207 p += sizeof(struct ivar32_t);
4208 offset += sizeof(struct ivar32_t);
4209 }
4210}
4211
4212static void print_objc_property_list64(uint64_t p,
4213 struct DisassembleInfo *info) {
4214 struct objc_property_list64 opl;
4215 struct objc_property64 op;
4216 const char *r;
4217 uint32_t offset, xoffset, left, j;
4218 SectionRef S, xS;
4219 const char *name, *sym_name;
4220 uint64_t n_value;
4221
4222 r = get_pointer_64(p, offset, left, S, info);
4223 if (r == nullptr)
4224 return;
4225 memset(&opl, '\0', sizeof(struct objc_property_list64));
4226 if (left < sizeof(struct objc_property_list64)) {
4227 memcpy(&opl, r, left);
4228 outs() << " (objc_property_list entends past the end of the section)\n";
4229 } else
4230 memcpy(&opl, r, sizeof(struct objc_property_list64));
4231 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4232 swapStruct(opl);
4233 outs() << " entsize " << opl.entsize << "\n";
4234 outs() << " count " << opl.count << "\n";
4235
4236 p += sizeof(struct objc_property_list64);
4237 offset += sizeof(struct objc_property_list64);
4238 for (j = 0; j < opl.count; j++) {
4239 r = get_pointer_64(p, offset, left, S, info);
4240 if (r == nullptr)
4241 return;
4242 memset(&op, '\0', sizeof(struct objc_property64));
4243 if (left < sizeof(struct objc_property64)) {
4244 memcpy(&op, r, left);
4245 outs() << " (objc_property entends past the end of the section)\n";
4246 } else
4247 memcpy(&op, r, sizeof(struct objc_property64));
4248 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4249 swapStruct(op);
4250
4251 outs() << "\t\t\t name ";
4252 sym_name = get_symbol_64(offset + offsetof(struct objc_property64, name)__builtin_offsetof(struct objc_property64, name), S,
4253 info, n_value, op.name);
4254 if (n_value != 0) {
4255 if (info->verbose && sym_name != nullptr)
4256 outs() << sym_name;
4257 else
4258 outs() << format("0x%" PRIx64"l" "x", n_value);
4259 if (op.name != 0)
4260 outs() << " + " << format("0x%" PRIx64"l" "x", op.name);
4261 } else
4262 outs() << format("0x%" PRIx64"l" "x", op.name);
4263 name = get_pointer_64(op.name + n_value, xoffset, left, xS, info);
4264 if (name != nullptr)
4265 outs() << format(" %.*s", left, name);
4266 outs() << "\n";
4267
4268 outs() << "\t\t\tattributes ";
4269 sym_name =
4270 get_symbol_64(offset + offsetof(struct objc_property64, attributes)__builtin_offsetof(struct objc_property64, attributes), S,
4271 info, n_value, op.attributes);
4272 if (n_value != 0) {
4273 if (info->verbose && sym_name != nullptr)
4274 outs() << sym_name;
4275 else
4276 outs() << format("0x%" PRIx64"l" "x", n_value);
4277 if (op.attributes != 0)
4278 outs() << " + " << format("0x%" PRIx64"l" "x", op.attributes);
4279 } else
4280 outs() << format("0x%" PRIx64"l" "x", op.attributes);
4281 name = get_pointer_64(op.attributes + n_value, xoffset, left, xS, info);
4282 if (name != nullptr)
4283 outs() << format(" %.*s", left, name);
4284 outs() << "\n";
4285
4286 p += sizeof(struct objc_property64);
4287 offset += sizeof(struct objc_property64);
4288 }
4289}
4290
4291static void print_objc_property_list32(uint32_t p,
4292 struct DisassembleInfo *info) {
4293 struct objc_property_list32 opl;
4294 struct objc_property32 op;
4295 const char *r;
4296 uint32_t offset, xoffset, left, j;
4297 SectionRef S, xS;
4298 const char *name;
4299
4300 r = get_pointer_32(p, offset, left, S, info);
4301 if (r == nullptr)
4302 return;
4303 memset(&opl, '\0', sizeof(struct objc_property_list32));
4304 if (left < sizeof(struct objc_property_list32)) {
4305 memcpy(&opl, r, left);
4306 outs() << " (objc_property_list entends past the end of the section)\n";
4307 } else
4308 memcpy(&opl, r, sizeof(struct objc_property_list32));
4309 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4310 swapStruct(opl);
4311 outs() << " entsize " << opl.entsize << "\n";
4312 outs() << " count " << opl.count << "\n";
4313
4314 p += sizeof(struct objc_property_list32);
4315 offset += sizeof(struct objc_property_list32);
4316 for (j = 0; j < opl.count; j++) {
4317 r = get_pointer_32(p, offset, left, S, info);
4318 if (r == nullptr)
4319 return;
4320 memset(&op, '\0', sizeof(struct objc_property32));
4321 if (left < sizeof(struct objc_property32)) {
4322 memcpy(&op, r, left);
4323 outs() << " (objc_property entends past the end of the section)\n";
4324 } else
4325 memcpy(&op, r, sizeof(struct objc_property32));
4326 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4327 swapStruct(op);
4328
4329 outs() << "\t\t\t name " << format("0x%" PRIx32"x", op.name);
4330 name = get_pointer_32(op.name, xoffset, left, xS, info);
4331 if (name != nullptr)
4332 outs() << format(" %.*s", left, name);
4333 outs() << "\n";
4334
4335 outs() << "\t\t\tattributes " << format("0x%" PRIx32"x", op.attributes);
4336 name = get_pointer_32(op.attributes, xoffset, left, xS, info);
4337 if (name != nullptr)
4338 outs() << format(" %.*s", left, name);
4339 outs() << "\n";
4340
4341 p += sizeof(struct objc_property32);
4342 offset += sizeof(struct objc_property32);
4343 }
4344}
4345
4346static bool print_class_ro64_t(uint64_t p, struct DisassembleInfo *info,
4347 bool &is_meta_class) {
4348 struct class_ro64_t cro;
4349 const char *r;
4350 uint32_t offset, xoffset, left;
4351 SectionRef S, xS;
4352 const char *name, *sym_name;
4353 uint64_t n_value;
4354
4355 r = get_pointer_64(p, offset, left, S, info);
4356 if (r == nullptr || left < sizeof(struct class_ro64_t))
4357 return false;
4358 memcpy(&cro, r, sizeof(struct class_ro64_t));
4359 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4360 swapStruct(cro);
4361 outs() << " flags " << format("0x%" PRIx32"x", cro.flags);
4362 if (cro.flags & RO_META(1 << 0))
4363 outs() << " RO_META";
4364 if (cro.flags & RO_ROOT(1 << 1))
4365 outs() << " RO_ROOT";
4366 if (cro.flags & RO_HAS_CXX_STRUCTORS(1 << 2))
4367 outs() << " RO_HAS_CXX_STRUCTORS";
4368 outs() << "\n";
4369 outs() << " instanceStart " << cro.instanceStart << "\n";
4370 outs() << " instanceSize " << cro.instanceSize << "\n";
4371 outs() << " reserved " << format("0x%" PRIx32"x", cro.reserved)
4372 << "\n";
4373 outs() << " ivarLayout " << format("0x%" PRIx64"l" "x", cro.ivarLayout)
4374 << "\n";
4375 print_layout_map64(cro.ivarLayout, info);
4376
4377 outs() << " name ";
4378 sym_name = get_symbol_64(offset + offsetof(struct class_ro64_t, name)__builtin_offsetof(struct class_ro64_t, name), S,
4379 info, n_value, cro.name);
4380 if (n_value != 0) {
4381 if (info->verbose && sym_name != nullptr)
4382 outs() << sym_name;
4383 else
4384 outs() << format("0x%" PRIx64"l" "x", n_value);
4385 if (cro.name != 0)
4386 outs() << " + " << format("0x%" PRIx64"l" "x", cro.name);
4387 } else
4388 outs() << format("0x%" PRIx64"l" "x", cro.name);
4389 name = get_pointer_64(cro.name + n_value, xoffset, left, xS, info);
4390 if (name != nullptr)
4391 outs() << format(" %.*s", left, name);
4392 outs() << "\n";
4393
4394 outs() << " baseMethods ";
4395 sym_name = get_symbol_64(offset + offsetof(struct class_ro64_t, baseMethods)__builtin_offsetof(struct class_ro64_t, baseMethods),
4396 S, info, n_value, cro.baseMethods);
4397 if (n_value != 0) {
4398 if (info->verbose && sym_name != nullptr)
4399 outs() << sym_name;
4400 else
4401 outs() << format("0x%" PRIx64"l" "x", n_value);
4402 if (cro.baseMethods != 0)
4403 outs() << " + " << format("0x%" PRIx64"l" "x", cro.baseMethods);
4404 } else
4405 outs() << format("0x%" PRIx64"l" "x", cro.baseMethods);
4406 outs() << " (struct method_list_t *)\n";
4407 if (cro.baseMethods + n_value != 0)
4408 print_method_list64_t(cro.baseMethods + n_value, info, "");
4409
4410 outs() << " baseProtocols ";
4411 sym_name =
4412 get_symbol_64(offset + offsetof(struct class_ro64_t, baseProtocols)__builtin_offsetof(struct class_ro64_t, baseProtocols), S,
4413 info, n_value, cro.baseProtocols);
4414 if (n_value != 0) {
4415 if (info->verbose && sym_name != nullptr)
4416 outs() << sym_name;
4417 else
4418 outs() << format("0x%" PRIx64"l" "x", n_value);
4419 if (cro.baseProtocols != 0)
4420 outs() << " + " << format("0x%" PRIx64"l" "x", cro.baseProtocols);
4421 } else
4422 outs() << format("0x%" PRIx64"l" "x", cro.baseProtocols);
4423 outs() << "\n";
4424 if (cro.baseProtocols + n_value != 0)
4425 print_protocol_list64_t(cro.baseProtocols + n_value, info);
4426
4427 outs() << " ivars ";
4428 sym_name = get_symbol_64(offset + offsetof(struct class_ro64_t, ivars)__builtin_offsetof(struct class_ro64_t, ivars), S,
4429 info, n_value, cro.ivars);
4430 if (n_value != 0) {
4431 if (info->verbose && sym_name != nullptr)
4432 outs() << sym_name;
4433 else
4434 outs() << format("0x%" PRIx64"l" "x", n_value);
4435 if (cro.ivars != 0)
4436 outs() << " + " << format("0x%" PRIx64"l" "x", cro.ivars);
4437 } else
4438 outs() << format("0x%" PRIx64"l" "x", cro.ivars);
4439 outs() << "\n";
4440 if (cro.ivars + n_value != 0)
4441 print_ivar_list64_t(cro.ivars + n_value, info);
4442
4443 outs() << " weakIvarLayout ";
4444 sym_name =
4445 get_symbol_64(offset + offsetof(struct class_ro64_t, weakIvarLayout)__builtin_offsetof(struct class_ro64_t, weakIvarLayout), S,
4446 info, n_value, cro.weakIvarLayout);
4447 if (n_value != 0) {
4448 if (info->verbose && sym_name != nullptr)
4449 outs() << sym_name;
4450 else
4451 outs() << format("0x%" PRIx64"l" "x", n_value);
4452 if (cro.weakIvarLayout != 0)
4453 outs() << " + " << format("0x%" PRIx64"l" "x", cro.weakIvarLayout);
4454 } else
4455 outs() << format("0x%" PRIx64"l" "x", cro.weakIvarLayout);
4456 outs() << "\n";
4457 print_layout_map64(cro.weakIvarLayout + n_value, info);
4458
4459 outs() << " baseProperties ";
4460 sym_name =
4461 get_symbol_64(offset + offsetof(struct class_ro64_t, baseProperties)__builtin_offsetof(struct class_ro64_t, baseProperties), S,
4462 info, n_value, cro.baseProperties);
4463 if (n_value != 0) {
4464 if (info->verbose && sym_name != nullptr)
4465 outs() << sym_name;
4466 else
4467 outs() << format("0x%" PRIx64"l" "x", n_value);
4468 if (cro.baseProperties != 0)
4469 outs() << " + " << format("0x%" PRIx64"l" "x", cro.baseProperties);
4470 } else
4471 outs() << format("0x%" PRIx64"l" "x", cro.baseProperties);
4472 outs() << "\n";
4473 if (cro.baseProperties + n_value != 0)
4474 print_objc_property_list64(cro.baseProperties + n_value, info);
4475
4476 is_meta_class = (cro.flags & RO_META(1 << 0)) != 0;
4477 return true;
4478}
4479
4480static bool print_class_ro32_t(uint32_t p, struct DisassembleInfo *info,
4481 bool &is_meta_class) {
4482 struct class_ro32_t cro;
4483 const char *r;
4484 uint32_t offset, xoffset, left;
4485 SectionRef S, xS;
4486 const char *name;
4487
4488 r = get_pointer_32(p, offset, left, S, info);
4489 if (r == nullptr)
4490 return false;
4491 memset(&cro, '\0', sizeof(struct class_ro32_t));
4492 if (left < sizeof(struct class_ro32_t)) {
4493 memcpy(&cro, r, left);
4494 outs() << " (class_ro_t entends past the end of the section)\n";
4495 } else
4496 memcpy(&cro, r, sizeof(struct class_ro32_t));
4497 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4498 swapStruct(cro);
4499 outs() << " flags " << format("0x%" PRIx32"x", cro.flags);
4500 if (cro.flags & RO_META(1 << 0))
4501 outs() << " RO_META";
4502 if (cro.flags & RO_ROOT(1 << 1))
4503 outs() << " RO_ROOT";
4504 if (cro.flags & RO_HAS_CXX_STRUCTORS(1 << 2))
4505 outs() << " RO_HAS_CXX_STRUCTORS";
4506 outs() << "\n";
4507 outs() << " instanceStart " << cro.instanceStart << "\n";
4508 outs() << " instanceSize " << cro.instanceSize << "\n";
4509 outs() << " ivarLayout " << format("0x%" PRIx32"x", cro.ivarLayout)
4510 << "\n";
4511 print_layout_map32(cro.ivarLayout, info);
4512
4513 outs() << " name " << format("0x%" PRIx32"x", cro.name);
4514 name = get_pointer_32(cro.name, xoffset, left, xS, info);
4515 if (name != nullptr)
4516 outs() << format(" %.*s", left, name);
4517 outs() << "\n";
4518
4519 outs() << " baseMethods "
4520 << format("0x%" PRIx32"x", cro.baseMethods)
4521 << " (struct method_list_t *)\n";
4522 if (cro.baseMethods != 0)
4523 print_method_list32_t(cro.baseMethods, info, "");
4524
4525 outs() << " baseProtocols "
4526 << format("0x%" PRIx32"x", cro.baseProtocols) << "\n";
4527 if (cro.baseProtocols != 0)
4528 print_protocol_list32_t(cro.baseProtocols, info);
4529 outs() << " ivars " << format("0x%" PRIx32"x", cro.ivars)
4530 << "\n";
4531 if (cro.ivars != 0)
4532 print_ivar_list32_t(cro.ivars, info);
4533 outs() << " weakIvarLayout "
4534 << format("0x%" PRIx32"x", cro.weakIvarLayout) << "\n";
4535 print_layout_map32(cro.weakIvarLayout, info);
4536 outs() << " baseProperties "
4537 << format("0x%" PRIx32"x", cro.baseProperties) << "\n";
4538 if (cro.baseProperties != 0)
4539 print_objc_property_list32(cro.baseProperties, info);
4540 is_meta_class = (cro.flags & RO_META(1 << 0)) != 0;
4541 return true;
4542}
4543
4544static void print_class64_t(uint64_t p, struct DisassembleInfo *info) {
4545 struct class64_t c;
4546 const char *r;
4547 uint32_t offset, left;
4548 SectionRef S;
4549 const char *name;
4550 uint64_t isa_n_value, n_value;
4551
4552 r = get_pointer_64(p, offset, left, S, info);
4553 if (r == nullptr || left < sizeof(struct class64_t))
4554 return;
4555 memcpy(&c, r, sizeof(struct class64_t));
4556 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4557 swapStruct(c);
4558
4559 outs() << " isa " << format("0x%" PRIx64"l" "x", c.isa);
4560 name = get_symbol_64(offset + offsetof(struct class64_t, isa)__builtin_offsetof(struct class64_t, isa), S, info,
4561 isa_n_value, c.isa);
4562 if (name != nullptr)
4563 outs() << " " << name;
4564 outs() << "\n";
4565
4566 outs() << " superclass " << format("0x%" PRIx64"l" "x", c.superclass);
4567 name = get_symbol_64(offset + offsetof(struct class64_t, superclass)__builtin_offsetof(struct class64_t, superclass), S, info,
4568 n_value, c.superclass);
4569 if (name != nullptr)
4570 outs() << " " << name;
4571 outs() << "\n";
4572
4573 outs() << " cache " << format("0x%" PRIx64"l" "x", c.cache);
4574 name = get_symbol_64(offset + offsetof(struct class64_t, cache)__builtin_offsetof(struct class64_t, cache), S, info,
4575 n_value, c.cache);
4576 if (name != nullptr)
4577 outs() << " " << name;
4578 outs() << "\n";
4579
4580 outs() << " vtable " << format("0x%" PRIx64"l" "x", c.vtable);
4581 name = get_symbol_64(offset + offsetof(struct class64_t, vtable)__builtin_offsetof(struct class64_t, vtable), S, info,
4582 n_value, c.vtable);
4583 if (name != nullptr)
4584 outs() << " " << name;
4585 outs() << "\n";
4586
4587 name = get_symbol_64(offset + offsetof(struct class64_t, data)__builtin_offsetof(struct class64_t, data), S, info,
4588 n_value, c.data);
4589 outs() << " data ";
4590 if (n_value != 0) {
4591 if (info->verbose && name != nullptr)
4592 outs() << name;
4593 else
4594 outs() << format("0x%" PRIx64"l" "x", n_value);
4595 if (c.data != 0)
4596 outs() << " + " << format("0x%" PRIx64"l" "x", c.data);
4597 } else
4598 outs() << format("0x%" PRIx64"l" "x", c.data);
4599 outs() << " (struct class_ro_t *)";
4600
4601 // This is a Swift class if some of the low bits of the pointer are set.
4602 if ((c.data + n_value) & 0x7)
4603 outs() << " Swift class";
4604 outs() << "\n";
4605 bool is_meta_class;
4606 if (!print_class_ro64_t((c.data + n_value) & ~0x7, info, is_meta_class))
4607 return;
4608
4609 if (!is_meta_class &&
4610 c.isa + isa_n_value != p &&
4611 c.isa + isa_n_value != 0 &&
4612 info->depth < 100) {
4613 info->depth++;
4614 outs() << "Meta Class\n";
4615 print_class64_t(c.isa + isa_n_value, info);
4616 }
4617}
4618
4619static void print_class32_t(uint32_t p, struct DisassembleInfo *info) {
4620 struct class32_t c;
4621 const char *r;
4622 uint32_t offset, left;
4623 SectionRef S;
4624 const char *name;
4625
4626 r = get_pointer_32(p, offset, left, S, info);
4627 if (r == nullptr)
4628 return;
4629 memset(&c, '\0', sizeof(struct class32_t));
4630 if (left < sizeof(struct class32_t)) {
4631 memcpy(&c, r, left);
4632 outs() << " (class_t entends past the end of the section)\n";
4633 } else
4634 memcpy(&c, r, sizeof(struct class32_t));
4635 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4636 swapStruct(c);
4637
4638 outs() << " isa " << format("0x%" PRIx32"x", c.isa);
4639 name =
4640 get_symbol_32(offset + offsetof(struct class32_t, isa)__builtin_offsetof(struct class32_t, isa), S, info, c.isa);
4641 if (name != nullptr)
4642 outs() << " " << name;
4643 outs() << "\n";
4644
4645 outs() << " superclass " << format("0x%" PRIx32"x", c.superclass);
4646 name = get_symbol_32(offset + offsetof(struct class32_t, superclass)__builtin_offsetof(struct class32_t, superclass), S, info,
4647 c.superclass);
4648 if (name != nullptr)
4649 outs() << " " << name;
4650 outs() << "\n";
4651
4652 outs() << " cache " << format("0x%" PRIx32"x", c.cache);
4653 name = get_symbol_32(offset + offsetof(struct class32_t, cache)__builtin_offsetof(struct class32_t, cache), S, info,
4654 c.cache);
4655 if (name != nullptr)
4656 outs() << " " << name;
4657 outs() << "\n";
4658
4659 outs() << " vtable " << format("0x%" PRIx32"x", c.vtable);
4660 name = get_symbol_32(offset + offsetof(struct class32_t, vtable)__builtin_offsetof(struct class32_t, vtable), S, info,
4661 c.vtable);
4662 if (name != nullptr)
4663 outs() << " " << name;
4664 outs() << "\n";
4665
4666 name =
4667 get_symbol_32(offset + offsetof(struct class32_t, data)__builtin_offsetof(struct class32_t, data), S, info, c.data);
4668 outs() << " data " << format("0x%" PRIx32"x", c.data)
4669 << " (struct class_ro_t *)";
4670
4671 // This is a Swift class if some of the low bits of the pointer are set.
4672 if (c.data & 0x3)
4673 outs() << " Swift class";
4674 outs() << "\n";
4675 bool is_meta_class;
4676 if (!print_class_ro32_t(c.data & ~0x3, info, is_meta_class))
4677 return;
4678
4679 if (!is_meta_class) {
4680 outs() << "Meta Class\n";
4681 print_class32_t(c.isa, info);
4682 }
4683}
4684
4685static void print_objc_class_t(struct objc_class_t *objc_class,
4686 struct DisassembleInfo *info) {
4687 uint32_t offset, left, xleft;
4688 const char *name, *p, *ivar_list;
4689 SectionRef S;
4690 int32_t i;
4691 struct objc_ivar_list_t objc_ivar_list;
4692 struct objc_ivar_t ivar;
4693
4694 outs() << "\t\t isa " << format("0x%08" PRIx32"x", objc_class->isa);
4695 if (info->verbose && CLS_GETINFO(objc_class, CLS_META)((objc_class)->info & (0x2))) {
4696 name = get_pointer_32(objc_class->isa, offset, left, S, info, true);
4697 if (name != nullptr)
4698 outs() << format(" %.*s", left, name);
4699 else
4700 outs() << " (not in an __OBJC section)";
4701 }
4702 outs() << "\n";
4703
4704 outs() << "\t super_class "
4705 << format("0x%08" PRIx32"x", objc_class->super_class);
4706 if (info->verbose) {
4707 name = get_pointer_32(objc_class->super_class, offset, left, S, info, true);
4708 if (name != nullptr)
4709 outs() << format(" %.*s", left, name);
4710 else
4711 outs() << " (not in an __OBJC section)";
4712 }
4713 outs() << "\n";
4714
4715 outs() << "\t\t name " << format("0x%08" PRIx32"x", objc_class->name);
4716 if (info->verbose) {
4717 name = get_pointer_32(objc_class->name, offset, left, S, info, true);
4718 if (name != nullptr)
4719 outs() << format(" %.*s", left, name);
4720 else
4721 outs() << " (not in an __OBJC section)";
4722 }
4723 outs() << "\n";
4724
4725 outs() << "\t\t version " << format("0x%08" PRIx32"x", objc_class->version)
4726 << "\n";
4727
4728 outs() << "\t\t info " << format("0x%08" PRIx32"x", objc_class->info);
4729 if (info->verbose) {
4730 if (CLS_GETINFO(objc_class, CLS_CLASS)((objc_class)->info & (0x1)))
4731 outs() << " CLS_CLASS";
4732 else if (CLS_GETINFO(objc_class, CLS_META)((objc_class)->info & (0x2)))
4733 outs() << " CLS_META";
4734 }
4735 outs() << "\n";
4736
4737 outs() << "\t instance_size "
4738 << format("0x%08" PRIx32"x", objc_class->instance_size) << "\n";
4739
4740 p = get_pointer_32(objc_class->ivars, offset, left, S, info, true);
4741 outs() << "\t\t ivars " << format("0x%08" PRIx32"x", objc_class->ivars);
4742 if (p != nullptr) {
4743 if (left > sizeof(struct objc_ivar_list_t)) {
4744 outs() << "\n";
4745 memcpy(&objc_ivar_list, p, sizeof(struct objc_ivar_list_t));
4746 } else {
4747 outs() << " (entends past the end of the section)\n";
4748 memset(&objc_ivar_list, '\0', sizeof(struct objc_ivar_list_t));
4749 memcpy(&objc_ivar_list, p, left);
4750 }
4751 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4752 swapStruct(objc_ivar_list);
4753 outs() << "\t\t ivar_count " << objc_ivar_list.ivar_count << "\n";
4754 ivar_list = p + sizeof(struct objc_ivar_list_t);
4755 for (i = 0; i < objc_ivar_list.ivar_count; i++) {
4756 if ((i + 1) * sizeof(struct objc_ivar_t) > left) {
4757 outs() << "\t\t remaining ivar's extend past the of the section\n";
4758 break;
4759 }
4760 memcpy(&ivar, ivar_list + i * sizeof(struct objc_ivar_t),
4761 sizeof(struct objc_ivar_t));
4762 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4763 swapStruct(ivar);
4764
4765 outs() << "\t\t\tivar_name " << format("0x%08" PRIx32"x", ivar.ivar_name);
4766 if (info->verbose) {
4767 name = get_pointer_32(ivar.ivar_name, offset, xleft, S, info, true);
4768 if (name != nullptr)
4769 outs() << format(" %.*s", xleft, name);
4770 else
4771 outs() << " (not in an __OBJC section)";
4772 }
4773 outs() << "\n";
4774
4775 outs() << "\t\t\tivar_type " << format("0x%08" PRIx32"x", ivar.ivar_type);
4776 if (info->verbose) {
4777 name = get_pointer_32(ivar.ivar_type, offset, xleft, S, info, true);
4778 if (name != nullptr)
4779 outs() << format(" %.*s", xleft, name);
4780 else
4781 outs() << " (not in an __OBJC section)";
4782 }
4783 outs() << "\n";
4784
4785 outs() << "\t\t ivar_offset "
4786 << format("0x%08" PRIx32"x", ivar.ivar_offset) << "\n";
4787 }
4788 } else {
4789 outs() << " (not in an __OBJC section)\n";
4790 }
4791
4792 outs() << "\t\t methods " << format("0x%08" PRIx32"x", objc_class->methodLists);
4793 if (print_method_list(objc_class->methodLists, info))
4794 outs() << " (not in an __OBJC section)\n";
4795
4796 outs() << "\t\t cache " << format("0x%08" PRIx32"x", objc_class->cache)
4797 << "\n";
4798
4799 outs() << "\t\tprotocols " << format("0x%08" PRIx32"x", objc_class->protocols);
4800 if (print_protocol_list(objc_class->protocols, 16, info))
4801 outs() << " (not in an __OBJC section)\n";
4802}
4803
4804static void print_objc_objc_category_t(struct objc_category_t *objc_category,
4805 struct DisassembleInfo *info) {
4806 uint32_t offset, left;
4807 const char *name;
4808 SectionRef S;
4809
4810 outs() << "\t category name "
4811 << format("0x%08" PRIx32"x", objc_category->category_name);
4812 if (info->verbose) {
4813 name = get_pointer_32(objc_category->category_name, offset, left, S, info,
4814 true);
4815 if (name != nullptr)
4816 outs() << format(" %.*s", left, name);
4817 else
4818 outs() << " (not in an __OBJC section)";
4819 }
4820 outs() << "\n";
4821
4822 outs() << "\t\t class name "
4823 << format("0x%08" PRIx32"x", objc_category->class_name);
4824 if (info->verbose) {
4825 name =
4826 get_pointer_32(objc_category->class_name, offset, left, S, info, true);
4827 if (name != nullptr)
4828 outs() << format(" %.*s", left, name);
4829 else
4830 outs() << " (not in an __OBJC section)";
4831 }
4832 outs() << "\n";
4833
4834 outs() << "\t instance methods "
4835 << format("0x%08" PRIx32"x", objc_category->instance_methods);
4836 if (print_method_list(objc_category->instance_methods, info))
4837 outs() << " (not in an __OBJC section)\n";
4838
4839 outs() << "\t class methods "
4840 << format("0x%08" PRIx32"x", objc_category->class_methods);
4841 if (print_method_list(objc_category->class_methods, info))
4842 outs() << " (not in an __OBJC section)\n";
4843}
4844
4845static void print_category64_t(uint64_t p, struct DisassembleInfo *info) {
4846 struct category64_t c;
4847 const char *r;
4848 uint32_t offset, xoffset, left;
4849 SectionRef S, xS;
4850 const char *name, *sym_name;
4851 uint64_t n_value;
4852
4853 r = get_pointer_64(p, offset, left, S, info);
4854 if (r == nullptr)
4855 return;
4856 memset(&c, '\0', sizeof(struct category64_t));
4857 if (left < sizeof(struct category64_t)) {
4858 memcpy(&c, r, left);
4859 outs() << " (category_t entends past the end of the section)\n";
4860 } else
4861 memcpy(&c, r, sizeof(struct category64_t));
4862 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4863 swapStruct(c);
4864
4865 outs() << " name ";
4866 sym_name = get_symbol_64(offset + offsetof(struct category64_t, name)__builtin_offsetof(struct category64_t, name), S,
4867 info, n_value, c.name);
4868 if (n_value != 0) {
4869 if (info->verbose && sym_name != nullptr)
4870 outs() << sym_name;
4871 else
4872 outs() << format("0x%" PRIx64"l" "x", n_value);
4873 if (c.name != 0)
4874 outs() << " + " << format("0x%" PRIx64"l" "x", c.name);
4875 } else
4876 outs() << format("0x%" PRIx64"l" "x", c.name);
4877 name = get_pointer_64(c.name + n_value, xoffset, left, xS, info);
4878 if (name != nullptr)
4879 outs() << format(" %.*s", left, name);
4880 outs() << "\n";
4881
4882 outs() << " cls ";
4883 sym_name = get_symbol_64(offset + offsetof(struct category64_t, cls)__builtin_offsetof(struct category64_t, cls), S, info,
4884 n_value, c.cls);
4885 if (n_value != 0) {
4886 if (info->verbose && sym_name != nullptr)
4887 outs() << sym_name;
4888 else
4889 outs() << format("0x%" PRIx64"l" "x", n_value);
4890 if (c.cls != 0)
4891 outs() << " + " << format("0x%" PRIx64"l" "x", c.cls);
4892 } else
4893 outs() << format("0x%" PRIx64"l" "x", c.cls);
4894 outs() << "\n";
4895 if (c.cls + n_value != 0)
4896 print_class64_t(c.cls + n_value, info);
4897
4898 outs() << " instanceMethods ";
4899 sym_name =
4900 get_symbol_64(offset + offsetof(struct category64_t, instanceMethods)__builtin_offsetof(struct category64_t, instanceMethods), S,
4901 info, n_value, c.instanceMethods);
4902 if (n_value != 0) {
4903 if (info->verbose && sym_name != nullptr)
4904 outs() << sym_name;
4905 else
4906 outs() << format("0x%" PRIx64"l" "x", n_value);
4907 if (c.instanceMethods != 0)
4908 outs() << " + " << format("0x%" PRIx64"l" "x", c.instanceMethods);
4909 } else
4910 outs() << format("0x%" PRIx64"l" "x", c.instanceMethods);
4911 outs() << "\n";
4912 if (c.instanceMethods + n_value != 0)
4913 print_method_list64_t(c.instanceMethods + n_value, info, "");
4914
4915 outs() << " classMethods ";
4916 sym_name = get_symbol_64(offset + offsetof(struct category64_t, classMethods)__builtin_offsetof(struct category64_t, classMethods),
4917 S, info, n_value, c.classMethods);
4918 if (n_value != 0) {
4919 if (info->verbose && sym_name != nullptr)
4920 outs() << sym_name;
4921 else
4922 outs() << format("0x%" PRIx64"l" "x", n_value);
4923 if (c.classMethods != 0)
4924 outs() << " + " << format("0x%" PRIx64"l" "x", c.classMethods);
4925 } else
4926 outs() << format("0x%" PRIx64"l" "x", c.classMethods);
4927 outs() << "\n";
4928 if (c.classMethods + n_value != 0)
4929 print_method_list64_t(c.classMethods + n_value, info, "");
4930
4931 outs() << " protocols ";
4932 sym_name = get_symbol_64(offset + offsetof(struct category64_t, protocols)__builtin_offsetof(struct category64_t, protocols), S,
4933 info, n_value, c.protocols);
4934 if (n_value != 0) {
4935 if (info->verbose && sym_name != nullptr)
4936 outs() << sym_name;
4937 else
4938 outs() << format("0x%" PRIx64"l" "x", n_value);
4939 if (c.protocols != 0)
4940 outs() << " + " << format("0x%" PRIx64"l" "x", c.protocols);
4941 } else
4942 outs() << format("0x%" PRIx64"l" "x", c.protocols);
4943 outs() << "\n";
4944 if (c.protocols + n_value != 0)
4945 print_protocol_list64_t(c.protocols + n_value, info);
4946
4947 outs() << "instanceProperties ";
4948 sym_name =
4949 get_symbol_64(offset + offsetof(struct category64_t, instanceProperties)__builtin_offsetof(struct category64_t, instanceProperties),
4950 S, info, n_value, c.instanceProperties);
4951 if (n_value != 0) {
4952 if (info->verbose && sym_name != nullptr)
4953 outs() << sym_name;
4954 else
4955 outs() << format("0x%" PRIx64"l" "x", n_value);
4956 if (c.instanceProperties != 0)
4957 outs() << " + " << format("0x%" PRIx64"l" "x", c.instanceProperties);
4958 } else
4959 outs() << format("0x%" PRIx64"l" "x", c.instanceProperties);
4960 outs() << "\n";
4961 if (c.instanceProperties + n_value != 0)
4962 print_objc_property_list64(c.instanceProperties + n_value, info);
4963}
4964
4965static void print_category32_t(uint32_t p, struct DisassembleInfo *info) {
4966 struct category32_t c;
4967 const char *r;
4968 uint32_t offset, left;
4969 SectionRef S, xS;
4970 const char *name;
4971
4972 r = get_pointer_32(p, offset, left, S, info);
4973 if (r == nullptr)
4974 return;
4975 memset(&c, '\0', sizeof(struct category32_t));
4976 if (left < sizeof(struct category32_t)) {
4977 memcpy(&c, r, left);
4978 outs() << " (category_t entends past the end of the section)\n";
4979 } else
4980 memcpy(&c, r, sizeof(struct category32_t));
4981 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
4982 swapStruct(c);
4983
4984 outs() << " name " << format("0x%" PRIx32"x", c.name);
4985 name = get_symbol_32(offset + offsetof(struct category32_t, name)__builtin_offsetof(struct category32_t, name), S, info,
4986 c.name);
4987 if (name)
4988 outs() << " " << name;
4989 outs() << "\n";
4990
4991 outs() << " cls " << format("0x%" PRIx32"x", c.cls) << "\n";
4992 if (c.cls != 0)
4993 print_class32_t(c.cls, info);
4994 outs() << " instanceMethods " << format("0x%" PRIx32"x", c.instanceMethods)
4995 << "\n";
4996 if (c.instanceMethods != 0)
4997 print_method_list32_t(c.instanceMethods, info, "");
4998 outs() << " classMethods " << format("0x%" PRIx32"x", c.classMethods)
4999 << "\n";
5000 if (c.classMethods != 0)
5001 print_method_list32_t(c.classMethods, info, "");
5002 outs() << " protocols " << format("0x%" PRIx32"x", c.protocols) << "\n";
5003 if (c.protocols != 0)
5004 print_protocol_list32_t(c.protocols, info);
5005 outs() << "instanceProperties " << format("0x%" PRIx32"x", c.instanceProperties)
5006 << "\n";
5007 if (c.instanceProperties != 0)
5008 print_objc_property_list32(c.instanceProperties, info);
5009}
5010
5011static void print_message_refs64(SectionRef S, struct DisassembleInfo *info) {
5012 uint32_t i, left, offset, xoffset;
5013 uint64_t p, n_value;
5014 struct message_ref64 mr;
5015 const char *name, *sym_name;
5016 const char *r;
5017 SectionRef xS;
5018
5019 if (S == SectionRef())
5020 return;
5021
5022 StringRef SectName;
5023 S.getName(SectName);
5024 DataRefImpl Ref = S.getRawDataRefImpl();
5025 StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
5026 outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
5027 offset = 0;
5028 for (i = 0; i < S.getSize(); i += sizeof(struct message_ref64)) {
5029 p = S.getAddress() + i;
5030 r = get_pointer_64(p, offset, left, S, info);
5031 if (r == nullptr)
5032 return;
5033 memset(&mr, '\0', sizeof(struct message_ref64));
5034 if (left < sizeof(struct message_ref64)) {
5035 memcpy(&mr, r, left);
5036 outs() << " (message_ref entends past the end of the section)\n";
5037 } else
5038 memcpy(&mr, r, sizeof(struct message_ref64));
5039 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
5040 swapStruct(mr);
5041
5042 outs() << " imp ";
5043 name = get_symbol_64(offset + offsetof(struct message_ref64, imp)__builtin_offsetof(struct message_ref64, imp), S, info,
5044 n_value, mr.imp);
5045 if (n_value != 0) {
5046 outs() << format("0x%" PRIx64"l" "x", n_value) << " ";
5047 if (mr.imp != 0)
5048 outs() << "+ " << format("0x%" PRIx64"l" "x", mr.imp) << " ";
5049 } else
5050 outs() << format("0x%" PRIx64"l" "x", mr.imp) << " ";
5051 if (name != nullptr)
5052 outs() << " " << name;
5053 outs() << "\n";
5054
5055 outs() << " sel ";
5056 sym_name = get_symbol_64(offset + offsetof(struct message_ref64, sel)__builtin_offsetof(struct message_ref64, sel), S,
5057 info, n_value, mr.sel);
5058 if (n_value != 0) {
5059 if (info->verbose && sym_name != nullptr)
5060 outs() << sym_name;
5061 else
5062 outs() << format("0x%" PRIx64"l" "x", n_value);
5063 if (mr.sel != 0)
5064 outs() << " + " << format("0x%" PRIx64"l" "x", mr.sel);
5065 } else
5066 outs() << format("0x%" PRIx64"l" "x", mr.sel);
5067 name = get_pointer_64(mr.sel + n_value, xoffset, left, xS, info);
5068 if (name != nullptr)
5069 outs() << format(" %.*s", left, name);
5070 outs() << "\n";
5071
5072 offset += sizeof(struct message_ref64);
5073 }
5074}
5075
5076static void print_message_refs32(SectionRef S, struct DisassembleInfo *info) {
5077 uint32_t i, left, offset, xoffset, p;
5078 struct message_ref32 mr;
5079 const char *name, *r;
5080 SectionRef xS;
5081
5082 if (S == SectionRef())
5083 return;
5084
5085 StringRef SectName;
5086 S.getName(SectName);
5087 DataRefImpl Ref = S.getRawDataRefImpl();
5088 StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
5089 outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
5090 offset = 0;
5091 for (i = 0; i < S.getSize(); i += sizeof(struct message_ref64)) {
5092 p = S.getAddress() + i;
5093 r = get_pointer_32(p, offset, left, S, info);
5094 if (r == nullptr)
5095 return;
5096 memset(&mr, '\0', sizeof(struct message_ref32));
5097 if (left < sizeof(struct message_ref32)) {
5098 memcpy(&mr, r, left);
5099 outs() << " (message_ref entends past the end of the section)\n";
5100 } else
5101 memcpy(&mr, r, sizeof(struct message_ref32));
5102 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
5103 swapStruct(mr);
5104
5105 outs() << " imp " << format("0x%" PRIx32"x", mr.imp);
5106 name = get_symbol_32(offset + offsetof(struct message_ref32, imp)__builtin_offsetof(struct message_ref32, imp), S, info,
5107 mr.imp);
5108 if (name != nullptr)
5109 outs() << " " << name;
5110 outs() << "\n";
5111
5112 outs() << " sel " << format("0x%" PRIx32"x", mr.sel);
5113 name = get_pointer_32(mr.sel, xoffset, left, xS, info);
5114 if (name != nullptr)
5115 outs() << " " << name;
5116 outs() << "\n";
5117
5118 offset += sizeof(struct message_ref32);
5119 }
5120}
5121
5122static void print_image_info64(SectionRef S, struct DisassembleInfo *info) {
5123 uint32_t left, offset, swift_version;
5124 uint64_t p;
5125 struct objc_image_info64 o;
5126 const char *r;
5127
5128 if (S == SectionRef())
5129 return;
5130
5131 StringRef SectName;
5132 S.getName(SectName);
5133 DataRefImpl Ref = S.getRawDataRefImpl();
5134 StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
5135 outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
5136 p = S.getAddress();
5137 r = get_pointer_64(p, offset, left, S, info);
5138 if (r == nullptr)
5139 return;
5140 memset(&o, '\0', sizeof(struct objc_image_info64));
5141 if (left < sizeof(struct objc_image_info64)) {
5142 memcpy(&o, r, left);
5143 outs() << " (objc_image_info entends past the end of the section)\n";
5144 } else
5145 memcpy(&o, r, sizeof(struct objc_image_info64));
5146 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
5147 swapStruct(o);
5148 outs() << " version " << o.version << "\n";
5149 outs() << " flags " << format("0x%" PRIx32"x", o.flags);
5150 if (o.flags & OBJC_IMAGE_IS_REPLACEMENT(1 << 0))
5151 outs() << " OBJC_IMAGE_IS_REPLACEMENT";
5152 if (o.flags & OBJC_IMAGE_SUPPORTS_GC(1 << 1))
5153 outs() << " OBJC_IMAGE_SUPPORTS_GC";
5154 swift_version = (o.flags >> 8) & 0xff;
5155 if (swift_version != 0) {
5156 if (swift_version == 1)
5157 outs() << " Swift 1.0";
5158 else if (swift_version == 2)
5159 outs() << " Swift 1.1";
5160 else
5161 outs() << " unknown future Swift version (" << swift_version << ")";
5162 }
5163 outs() << "\n";
5164}
5165
5166static void print_image_info32(SectionRef S, struct DisassembleInfo *info) {
5167 uint32_t left, offset, swift_version, p;
5168 struct objc_image_info32 o;
5169 const char *r;
5170
5171 if (S == SectionRef())
5172 return;
5173
5174 StringRef SectName;
5175 S.getName(SectName);
5176 DataRefImpl Ref = S.getRawDataRefImpl();
5177 StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
5178 outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
5179 p = S.getAddress();
5180 r = get_pointer_32(p, offset, left, S, info);
5181 if (r == nullptr)
5182 return;
5183 memset(&o, '\0', sizeof(struct objc_image_info32));
5184 if (left < sizeof(struct objc_image_info32)) {
5185 memcpy(&o, r, left);
5186 outs() << " (objc_image_info entends past the end of the section)\n";
5187 } else
5188 memcpy(&o, r, sizeof(struct objc_image_info32));
5189 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
5190 swapStruct(o);
5191 outs() << " version " << o.version << "\n";
5192 outs() << " flags " << format("0x%" PRIx32"x", o.flags);
5193 if (o.flags & OBJC_IMAGE_IS_REPLACEMENT(1 << 0))
5194 outs() << " OBJC_IMAGE_IS_REPLACEMENT";
5195 if (o.flags & OBJC_IMAGE_SUPPORTS_GC(1 << 1))
5196 outs() << " OBJC_IMAGE_SUPPORTS_GC";
5197 swift_version = (o.flags >> 8) & 0xff;
5198 if (swift_version != 0) {
5199 if (swift_version == 1)
5200 outs() << " Swift 1.0";
5201 else if (swift_version == 2)
5202 outs() << " Swift 1.1";
5203 else
5204 outs() << " unknown future Swift version (" << swift_version << ")";
5205 }
5206 outs() << "\n";
5207}
5208
5209static void print_image_info(SectionRef S, struct DisassembleInfo *info) {
5210 uint32_t left, offset, p;
5211 struct imageInfo_t o;
5212 const char *r;
5213
5214 StringRef SectName;
5215 S.getName(SectName);
5216 DataRefImpl Ref = S.getRawDataRefImpl();
5217 StringRef SegName = info->O->getSectionFinalSegmentName(Ref);
5218 outs() << "Contents of (" << SegName << "," << SectName << ") section\n";
5219 p = S.getAddress();
5220 r = get_pointer_32(p, offset, left, S, info);
5221 if (r == nullptr)
5222 return;
5223 memset(&o, '\0', sizeof(struct imageInfo_t));
5224 if (left < sizeof(struct imageInfo_t)) {
5225 memcpy(&o, r, left);
5226 outs() << " (imageInfo entends past the end of the section)\n";
5227 } else
5228 memcpy(&o, r, sizeof(struct imageInfo_t));
5229 if (info->O->isLittleEndian() != sys::IsLittleEndianHost)
5230 swapStruct(o);
5231 outs() << " version " << o.version << "\n";
5232 outs() << " flags " << format("0x%" PRIx32"x", o.flags);
5233 if (o.flags & 0x1)
5234 outs() << " F&C";
5235 if (o.flags & 0x2)
5236 outs() << " GC";
5237 if (o.flags & 0x4)
5238 outs() << " GC-only";
5239 else
5240 outs() << " RR";
5241 outs() << "\n";
5242}
5243
5244static void printObjc2_64bit_MetaData(MachOObjectFile *O, bool verbose) {
5245 SymbolAddressMap AddrMap;
5246 if (verbose)
5247 CreateSymbolAddressMap(O, &AddrMap);
5248
5249 std::vector<SectionRef> Sections;
5250 for (const SectionRef &Section : O->sections()) {
5251 StringRef SectName;
5252 Section.getName(SectName);
5253 Sections.push_back(Section);
5254 }
5255
5256 struct DisassembleInfo info;
5257 // Set up the block of info used by the Symbolizer call backs.
5258 info.verbose = verbose;
5259 info.O = O;
5260 info.AddrMap = &AddrMap;
5261 info.Sections = &Sections;
5262 info.class_name = nullptr;
5263 info.selector_name = nullptr;
5264 info.method = nullptr;
5265 info.demangled_name = nullptr;
5266 info.bindtable = nullptr;
5267 info.adrp_addr = 0;
5268 info.adrp_inst = 0;
5269
5270 info.depth = 0;
5271 SectionRef CL = get_section(O, "__OBJC2", "__class_list");
5272 if (CL == SectionRef())
5273 CL = get_section(O, "__DATA", "__objc_classlist");
5274 if (CL == SectionRef())
5275 CL = get_section(O, "__DATA_CONST", "__objc_classlist");
5276 if (CL == SectionRef())
5277 CL = get_section(O, "__DATA_DIRTY", "__objc_classlist");
5278 info.S = CL;
5279 walk_pointer_list_64("class", CL, O, &info, print_class64_t);
5280
5281 SectionRef CR = get_section(O, "__OBJC2", "__class_refs");
5282 if (CR == SectionRef())
5283 CR = get_section(O, "__DATA", "__objc_classrefs");
5284 if (CR == SectionRef())
5285 CR = get_section(O, "__DATA_CONST", "__objc_classrefs");
5286 if (CR == SectionRef())
5287 CR = get_section(O, "__DATA_DIRTY", "__objc_classrefs");
5288 info.S = CR;
5289 walk_pointer_list_64("class refs", CR, O, &info, nullptr);
5290
5291 SectionRef SR = get_section(O, "__OBJC2", "__super_refs");
5292 if (SR == SectionRef())
5293 SR = get_section(O, "__DATA", "__objc_superrefs");
5294 if (SR == SectionRef())
5295 SR = get_section(O, "__DATA_CONST", "__objc_superrefs");
5296 if (SR == SectionRef())
5297 SR = get_section(O, "__DATA_DIRTY", "__objc_superrefs");
5298 info.S = SR;
5299 walk_pointer_list_64("super refs", SR, O, &info, nullptr);
5300
5301 SectionRef CA = get_section(O, "__OBJC2", "__category_list");
5302 if (CA == SectionRef())
5303 CA = get_section(O, "__DATA", "__objc_catlist");
5304 if (CA == SectionRef())
5305 CA = get_section(O, "__DATA_CONST", "__objc_catlist");
5306 if (CA == SectionRef())
5307 CA = get_section(O, "__DATA_DIRTY", "__objc_catlist");
5308 info.S = CA;
5309 walk_pointer_list_64("category", CA, O, &info, print_category64_t);
5310
5311 SectionRef PL = get_section(O, "__OBJC2", "__protocol_list");
5312 if (PL == SectionRef())
5313 PL = get_section(O, "__DATA", "__objc_protolist");
5314 if (PL == SectionRef())
5315 PL = get_section(O, "__DATA_CONST", "__objc_protolist");
5316 if (PL == SectionRef())
5317 PL = get_section(O, "__DATA_DIRTY", "__objc_protolist");
5318 info.S = PL;
5319 walk_pointer_list_64("protocol", PL, O, &info, nullptr);
5320
5321 SectionRef MR = get_section(O, "__OBJC2", "__message_refs");
5322 if (MR == SectionRef())
5323 MR = get_section(O, "__DATA", "__objc_msgrefs");
5324 if (MR == SectionRef())
5325 MR = get_section(O, "__DATA_CONST", "__objc_msgrefs");
5326 if (MR == SectionRef())
5327 MR = get_section(O, "__DATA_DIRTY", "__objc_msgrefs");
5328 info.S = MR;
5329 print_message_refs64(MR, &info);
5330
5331 SectionRef II = get_section(O, "__OBJC2", "__image_info");
5332 if (II == SectionRef())
5333 II = get_section(O, "__DATA", "__objc_imageinfo");
5334 if (II == SectionRef())
5335 II = get_section(O, "__DATA_CONST", "__objc_imageinfo");
5336 if (II == SectionRef())
5337 II = get_section(O, "__DATA_DIRTY", "__objc_imageinfo");
5338 info.S = II;
5339 print_image_info64(II, &info);
5340}
5341
5342static void printObjc2_32bit_MetaData(MachOObjectFile *O, bool verbose) {
5343 SymbolAddressMap AddrMap;
5344 if (verbose)
5345 CreateSymbolAddressMap(O, &AddrMap);
5346
5347 std::vector<SectionRef> Sections;
5348 for (const SectionRef &Section : O->sections()) {
5349 StringRef SectName;
5350 Section.getName(SectName);
5351 Sections.push_back(Section);
5352 }
5353
5354 struct DisassembleInfo info;
5355 // Set up the block of info used by the Symbolizer call backs.
5356 info.verbose = verbose;
5357 info.O = O;
5358 info.AddrMap = &AddrMap;
5359 info.Sections = &Sections;
5360 info.class_name = nullptr;
5361 info.selector_name = nullptr;
5362 info.method = nullptr;
5363 info.demangled_name = nullptr;
5364 info.bindtable = nullptr;
5365 info.adrp_addr = 0;
5366 info.adrp_inst = 0;
5367
5368 SectionRef CL = get_section(O, "__OBJC2", "__class_list");
5369 if (CL == SectionRef())
5370 CL = get_section(O, "__DATA", "__objc_classlist");
5371 if (CL == SectionRef())
5372 CL = get_section(O, "__DATA_CONST", "__objc_classlist");
5373 if (CL == SectionRef())
5374 CL = get_section(O, "__DATA_DIRTY", "__objc_classlist");
5375 info.S = CL;
5376 walk_pointer_list_32("class", CL, O, &info, print_class32_t);
5377
5378 SectionRef CR = get_section(O, "__OBJC2", "__class_refs");
5379 if (CR == SectionRef())
5380 CR = get_section(O, "__DATA", "__objc_classrefs");
5381 if (CR == SectionRef())
5382 CR = get_section(O, "__DATA_CONST", "__objc_classrefs");
5383 if (CR == SectionRef())
5384 CR = get_section(O, "__DATA_DIRTY", "__objc_classrefs");
5385 info.S = CR;
5386 walk_pointer_list_32("class refs", CR, O, &info, nullptr);
5387
5388 SectionRef SR = get_section(O, "__OBJC2", "__super_refs");
5389 if (SR == SectionRef())
5390 SR = get_section(O, "__DATA", "__objc_superrefs");
5391 if (SR == SectionRef())
5392 SR = get_section(O, "__DATA_CONST", "__objc_superrefs");
5393 if (SR == SectionRef())
5394 SR = get_section(O, "__DATA_DIRTY", "__objc_superrefs");
5395 info.S = SR;
5396 walk_pointer_list_32("super refs", SR, O, &info, nullptr);
5397
5398 SectionRef CA = get_section(O, "__OBJC2", "__category_list");
5399 if (CA == SectionRef())
5400 CA = get_section(O, "__DATA", "__objc_catlist");
5401 if (CA == SectionRef())
5402 CA = get_section(O, "__DATA_CONST", "__objc_catlist");
5403 if (CA == SectionRef())
5404 CA = get_section(O, "__DATA_DIRTY", "__objc_catlist");
5405 info.S = CA;
5406 walk_pointer_list_32("category", CA, O, &info, print_category32_t);
5407
5408 SectionRef PL = get_section(O, "__OBJC2", "__protocol_list");
5409 if (PL == SectionRef())
5410 PL = get_section(O, "__DATA", "__objc_protolist");
5411 if (PL == SectionRef())
5412 PL = get_section(O, "__DATA_CONST", "__objc_protolist");
5413 if (PL == SectionRef())
5414 PL = get_section(O, "__DATA_DIRTY", "__objc_protolist");
5415 info.S = PL;
5416 walk_pointer_list_32("protocol", PL, O, &info, nullptr);
5417
5418 SectionRef MR = get_section(O, "__OBJC2", "__message_refs");
5419 if (MR == SectionRef())
5420 MR = get_section(O, "__DATA", "__objc_msgrefs");
5421 if (MR == SectionRef())
5422 MR = get_section(O, "__DATA_CONST", "__objc_msgrefs");
5423 if (MR == SectionRef())
5424 MR = get_section(O, "__DATA_DIRTY", "__objc_msgrefs");
5425 info.S = MR;
5426 print_message_refs32(MR, &info);
5427
5428 SectionRef II = get_section(O, "__OBJC2", "__image_info");
5429 if (II == SectionRef())
5430 II = get_section(O, "__DATA", "__objc_imageinfo");
5431 if (II == SectionRef())
5432 II = get_section(O, "__DATA_CONST", "__objc_imageinfo");
5433 if (II == SectionRef())
5434 II = get_section(O, "__DATA_DIRTY", "__objc_imageinfo");
5435 info.S = II;
5436 print_image_info32(II, &info);
5437}
5438
5439static bool printObjc1_32bit_MetaData(MachOObjectFile *O, bool verbose) {
5440 uint32_t i, j, p, offset, xoffset, left, defs_left, def;
5441 const char *r, *name, *defs;
5442 struct objc_module_t module;
5443 SectionRef S, xS;
5444 struct objc_symtab_t symtab;
5445 struct objc_class_t objc_class;
5446 struct objc_category_t objc_category;
5447
5448 outs() << "Objective-C segment\n";
5449 S = get_section(O, "__OBJC", "__module_info");
5450 if (S == SectionRef())
5451 return false;
5452
5453 SymbolAddressMap AddrMap;
5454 if (verbose)
5455 CreateSymbolAddressMap(O, &AddrMap);
5456
5457 std::vector<SectionRef> Sections;
5458 for (const SectionRef &Section : O->sections()) {
5459 StringRef SectName;
5460 Section.getName(SectName);
5461 Sections.push_back(Section);
5462 }
5463
5464 struct DisassembleInfo info;
5465 // Set up the block of info used by the Symbolizer call backs.
5466 info.verbose = verbose;
5467 info.O = O;
5468 info.AddrMap = &AddrMap;
5469 info.Sections = &Sections;
5470 info.class_name = nullptr;
5471 info.selector_name = nullptr;
5472 info.method = nullptr;
5473 info.demangled_name = nullptr;
5474 info.bindtable = nullptr;
5475 info.adrp_addr = 0;
5476 info.adrp_inst = 0;
5477
5478 for (i = 0; i < S.getSize(); i += sizeof(struct objc_module_t)) {
5479 p = S.getAddress() + i;
5480 r = get_pointer_32(p, offset, left, S, &info, true);
5481 if (r == nullptr)
5482 return true;
5483 memset(&module, '\0', sizeof(struct objc_module_t));
5484 if (left < sizeof(struct objc_module_t)) {
5485 memcpy(&module, r, left);
5486 outs() << " (module extends past end of __module_info section)\n";
5487 } else
5488 memcpy(&module, r, sizeof(struct objc_module_t));
5489 if (O->isLittleEndian() != sys::IsLittleEndianHost)
5490 swapStruct(module);
5491
5492 outs() << "Module " << format("0x%" PRIx32"x", p) << "\n";
5493 outs() << " version " << module.version << "\n";
5494 outs() << " size " << module.size << "\n";
5495 outs() << " name ";
5496 name = get_pointer_32(module.name, xoffset, left, xS, &info, true);
5497 if (name != nullptr)
5498 outs() << format("%.*s", left, name);
5499 else
5500 outs() << format("0x%08" PRIx32"x", module.name)
5501 << "(not in an __OBJC section)";
5502 outs() << "\n";
5503
5504 r = get_pointer_32(module.symtab, xoffset, left, xS, &info, true);
5505 if (module.symtab == 0 || r == nullptr) {
5506 outs() << " symtab " << format("0x%08" PRIx32"x", module.symtab)
5507 << " (not in an __OBJC section)\n";
5508 continue;
5509 }
5510 outs() << " symtab " << format("0x%08" PRIx32"x", module.symtab) << "\n";
5511 memset(&symtab, '\0', sizeof(struct objc_symtab_t));
5512 defs_left = 0;
5513 defs = nullptr;
5514 if (left < sizeof(struct objc_symtab_t)) {
5515 memcpy(&symtab, r, left);
5516 outs() << "\tsymtab extends past end of an __OBJC section)\n";
5517 } else {
5518 memcpy(&symtab, r, sizeof(struct objc_symtab_t));
5519 if (left > sizeof(struct objc_symtab_t)) {
5520 defs_left = left - sizeof(struct objc_symtab_t);
5521 defs = r + sizeof(struct objc_symtab_t);
5522 }
5523 }
5524 if (O->isLittleEndian() != sys::IsLittleEndianHost)
5525 swapStruct(symtab);
5526
5527 outs() << "\tsel_ref_cnt " << symtab.sel_ref_cnt << "\n";
5528 r = get_pointer_32(symtab.refs, xoffset, left, xS, &info, true);
5529 outs() << "\trefs " << format("0x%08" PRIx32"x", symtab.refs);
5530 if (r == nullptr)
5531 outs() << " (not in an __OBJC section)";
5532 outs() << "\n";
5533 outs() << "\tcls_def_cnt " << symtab.cls_def_cnt << "\n";
5534 outs() << "\tcat_def_cnt " << symtab.cat_def_cnt << "\n";
5535 if (symtab.cls_def_cnt > 0)
5536 outs() << "\tClass Definitions\n";
5537 for (j = 0; j < symtab.cls_def_cnt; j++) {
5538 if ((j + 1) * sizeof(uint32_t) > defs_left) {
5539 outs() << "\t(remaining class defs entries entends past the end of the "
5540 << "section)\n";
5541 break;
5542 }
5543 memcpy(&def, defs + j * sizeof(uint32_t), sizeof(uint32_t));
5544 if (O->isLittleEndian() != sys::IsLittleEndianHost)
5545 sys::swapByteOrder(def);
5546
5547 r = get_pointer_32(def, xoffset, left, xS, &info, true);
5548 outs() << "\tdefs[" << j << "] " << format("0x%08" PRIx32"x", def);
5549 if (r != nullptr) {
5550 if (left > sizeof(struct objc_class_t)) {
5551 outs() << "\n";
5552 memcpy(&objc_class, r, sizeof(struct objc_class_t));
5553 } else {
5554 outs() << " (entends past the end of the section)\n";
5555 memset(&objc_class, '\0', sizeof(struct objc_class_t));
5556 memcpy(&objc_class, r, left);
5557 }
5558 if (O->isLittleEndian() != sys::IsLittleEndianHost)
5559 swapStruct(objc_class);
5560 print_objc_class_t(&objc_class, &info);
5561 } else {
5562 outs() << "(not in an __OBJC section)\n";
5563 }
5564
5565 if (CLS_GETINFO(&objc_class, CLS_CLASS)((&objc_class)->info & (0x1))) {
5566 outs() << "\tMeta Class";
5567 r = get_pointer_32(objc_class.isa, xoffset, left, xS, &info, true);
5568 if (r != nullptr) {
5569 if (left > sizeof(struct objc_class_t)) {
5570 outs() << "\n";
5571 memcpy(&objc_class, r, sizeof(struct objc_class_t));
5572 } else {
5573 outs() << " (entends past the end of the section)\n";
5574 memset(&objc_class, '\0', sizeof(struct objc_class_t));
5575 memcpy(&objc_class, r, left);
5576 }
5577 if (O->isLittleEndian() != sys::IsLittleEndianHost)
5578 swapStruct(objc_class);
5579 print_objc_class_t(&objc_class, &info);
5580 } else {
5581 outs() << "(not in an __OBJC section)\n";
5582 }
5583 }
5584 }
5585 if (symtab.cat_def_cnt > 0)
5586 outs() << "\tCategory Definitions\n";
5587 for (j = 0; j < symtab.cat_def_cnt; j++) {
5588 if ((j + symtab.cls_def_cnt + 1) * sizeof(uint32_t) > defs_left) {
5589 outs() << "\t(remaining category defs entries entends past the end of "
5590 << "the section)\n";
5591 break;
5592 }
5593 memcpy(&def, defs + (j + symtab.cls_def_cnt) * sizeof(uint32_t),
5594 sizeof(uint32_t));
5595 if (O->isLittleEndian() != sys::IsLittleEndianHost)
5596 sys::swapByteOrder(def);
5597
5598 r = get_pointer_32(def, xoffset, left, xS, &info, true);
5599 outs() << "\tdefs[" << j + symtab.cls_def_cnt << "] "
5600 << format("0x%08" PRIx32"x", def);
5601 if (r != nullptr) {
5602 if (left > sizeof(struct objc_category_t)) {
5603 outs() << "\n";
5604 memcpy(&objc_category, r, sizeof(struct objc_category_t));
5605 } else {
5606 outs() << " (entends past the end of the section)\n";
5607 memset(&objc_category, '\0', sizeof(struct objc_category_t));
5608 memcpy(&objc_category, r, left);
5609 }
5610 if (O->isLittleEndian() != sys::IsLittleEndianHost)
5611 swapStruct(objc_category);
5612 print_objc_objc_category_t(&objc_category, &info);
5613 } else {
5614 outs() << "(not in an __OBJC section)\n";
5615 }
5616 }
5617 }
5618 const SectionRef II = get_section(O, "__OBJC", "__image_info");
5619 if (II != SectionRef())
5620 print_image_info(II, &info);
5621
5622 return true;
5623}
5624
5625static void DumpProtocolSection(MachOObjectFile *O, const char *sect,
5626 uint32_t size, uint32_t addr) {
5627 SymbolAddressMap AddrMap;
5628 CreateSymbolAddressMap(O, &AddrMap);
5629
5630 std::vector<SectionRef> Sections;
5631 for (const SectionRef &Section : O->sections()) {
5632 StringRef SectName;
5633 Section.getName(SectName);
5634 Sections.push_back(Section);
5635 }
5636
5637 struct DisassembleInfo info;
5638 // Set up the block of info used by the Symbolizer call backs.
5639 info.verbose = true;
5640 info.O = O;
5641 info.AddrMap = &AddrMap;
5642 info.Sections = &Sections;
5643 info.class_name = nullptr;
5644 info.selector_name = nullptr;
5645 info.method = nullptr;
5646 info.demangled_name = nullptr;
5647 info.bindtable = nullptr;
5648 info.adrp_addr = 0;
5649 info.adrp_inst = 0;
5650
5651 const char *p;
5652 struct objc_protocol_t protocol;
5653 uint32_t left, paddr;
5654 for (p = sect; p < sect + size; p += sizeof(struct objc_protocol_t)) {
5655 memset(&protocol, '\0', sizeof(struct objc_protocol_t));
5656 left = size - (p - sect);
5657 if (left < sizeof(struct objc_protocol_t)) {
5658 outs() << "Protocol extends past end of __protocol section\n";
5659 memcpy(&protocol, p, left);
5660 } else
5661 memcpy(&protocol, p, sizeof(struct objc_protocol_t));
5662 if (O->isLittleEndian() != sys::IsLittleEndianHost)
5663 swapStruct(protocol);
5664 paddr = addr + (p - sect);
5665 outs() << "Protocol " << format("0x%" PRIx32"x", paddr);
5666 if (print_protocol(paddr, 0, &info))
5667 outs() << "(not in an __OBJC section)\n";
5668 }
5669}
5670
5671#ifdef HAVE_LIBXAR
5672inline void swapStruct(struct xar_header &xar) {
5673 sys::swapByteOrder(xar.magic);
5674 sys::swapByteOrder(xar.size);
5675 sys::swapByteOrder(xar.version);
5676 sys::swapByteOrder(xar.toc_length_compressed);
5677 sys::swapByteOrder(xar.toc_length_uncompressed);
5678 sys::swapByteOrder(xar.cksum_alg);
5679}
5680
5681static void PrintModeVerbose(uint32_t mode) {
5682 switch(mode & S_IFMT){
5683 case S_IFDIR:
5684 outs() << "d";
5685 break;
5686 case S_IFCHR:
5687 outs() << "c";
5688 break;
5689 case S_IFBLK:
5690 outs() << "b";
5691 break;
5692 case S_IFREG:
5693 outs() << "-";
5694 break;
5695 case S_IFLNK:
5696 outs() << "l";
5697 break;
5698 case S_IFSOCK:
5699 outs() << "s";
5700 break;
5701 default:
5702 outs() << "?";
5703 break;
5704 }
5705
5706 /* owner permissions */
5707 if(mode & S_IREAD)
5708 outs() << "r";
5709 else
5710 outs() << "-";
5711 if(mode & S_IWRITE)
5712 outs() << "w";
5713 else
5714 outs() << "-";
5715 if(mode & S_ISUID)
5716 outs() << "s";
5717 else if(mode & S_IEXEC)
5718 outs() << "x";
5719 else
5720 outs() << "-";
5721
5722 /* group permissions */
5723 if(mode & (S_IREAD >> 3))
5724 outs() << "r";
5725 else
5726 outs() << "-";
5727 if(mode & (S_IWRITE >> 3))
5728 outs() << "w";
5729 else
5730 outs() << "-";
5731 if(mode & S_ISGID)
5732 outs() << "s";
5733 else if(mode & (S_IEXEC >> 3))
5734 outs() << "x";
5735 else
5736 outs() << "-";
5737
5738 /* other permissions */
5739 if(mode & (S_IREAD >> 6))
5740 outs() << "r";
5741 else
5742 outs() << "-";
5743 if(mode & (S_IWRITE >> 6))
5744 outs() << "w";
5745 else
5746 outs() << "-";
5747 if(mode & S_ISVTX)
5748 outs() << "t";
5749 else if(mode & (S_IEXEC >> 6))
5750 outs() << "x";
5751 else
5752 outs() << "-";
5753}
5754
5755static void PrintXarFilesSummary(const char *XarFilename, xar_t xar) {
5756 xar_iter_t xi;
5757 xar_file_t xf;
5758 xar_iter_t xp;
5759 const char *key, *type, *mode, *user, *group, *size, *mtime, *name, *m;
5760 char *endp;
5761 uint32_t mode_value;
5762
5763 xi = xar_iter_new();
5764 if (!xi) {
5765 errs() << "Can't obtain an xar iterator for xar archive "
5766 << XarFilename << "\n";
5767 return;
5768 }
5769
5770 // Go through the xar's files.
5771 for (xf = xar_file_first(xar, xi); xf; xf = xar_file_next(xi)) {
5772 xp = xar_iter_new();
5773 if(!xp){
5774 errs() << "Can't obtain an xar iterator for xar archive "
5775 << XarFilename << "\n";
5776 return;
5777 }
5778 type = nullptr;
5779 mode = nullptr;
5780 user = nullptr;
5781 group = nullptr;
5782 size = nullptr;
5783 mtime = nullptr;
5784 name = nullptr;
5785 for(key = xar_prop_first(xf, xp); key; key = xar_prop_next(xp)){
5786 const char *val = nullptr;
5787 xar_prop_get(xf, key, &val);
5788#if 0 // Useful for debugging.
5789 outs() << "key: " << key << " value: " << val << "\n";
5790#endif
5791 if(strcmp(key, "type") == 0)
5792 type = val;
5793 if(strcmp(key, "mode") == 0)
5794 mode = val;
5795 if(strcmp(key, "user") == 0)
5796 user = val;
5797 if(strcmp(key, "group") == 0)
5798 group = val;
5799 if(strcmp(key, "data/size") == 0)
5800 size = val;
5801 if(strcmp(key, "mtime") == 0)
5802 mtime = val;
5803 if(strcmp(key, "name") == 0)
5804 name = val;
5805 }
5806 if(mode != nullptr){
5807 mode_value = strtoul(mode, &endp, 8);
5808 if(*endp != '\0')
5809 outs() << "(mode: \"" << mode << "\" contains non-octal chars) ";
5810 if(strcmp(type, "file") == 0)
5811 mode_value |= S_IFREG;
5812 PrintModeVerbose(mode_value);
5813 outs() << " ";
5814 }
5815 if(user != nullptr)
5816 outs() << format("%10s/", user);
5817 if(group != nullptr)
5818 outs() << format("%-10s ", group);
5819 if(size != nullptr)
5820 outs() << format("%7s ", size);
5821 if(mtime != nullptr){
5822 for(m = mtime; *m != 'T' && *m != '\0'; m++)
5823 outs() << *m;
5824 if(*m == 'T')
5825 m++;
5826 outs() << " ";
5827 for( ; *m != 'Z' && *m != '\0'; m++)
5828 outs() << *m;
5829 outs() << " ";
5830 }
5831 if(name != nullptr)
5832 outs() << name;
5833 outs() << "\n";
5834 }
5835}
5836
5837static void DumpBitcodeSection(MachOObjectFile *O, const char *sect,
5838 uint32_t size, bool verbose,
5839 bool PrintXarHeader, bool PrintXarFileHeaders,
5840 std::string XarMemberName) {
5841 if(size < sizeof(struct xar_header)) {
5842 outs() << "size of (__LLVM,__bundle) section too small (smaller than size "
5843 "of struct xar_header)\n";
5844 return;
5845 }
5846 struct xar_header XarHeader;
5847 memcpy(&XarHeader, sect, sizeof(struct xar_header));
5848 if (sys::IsLittleEndianHost)
5849 swapStruct(XarHeader);
5850 if (PrintXarHeader) {
5851 if (!XarMemberName.empty())
5852 outs() << "In xar member " << XarMemberName << ": ";
5853 else
5854 outs() << "For (__LLVM,__bundle) section: ";
5855 outs() << "xar header\n";
5856 if (XarHeader.magic == XAR_HEADER_MAGIC)
5857 outs() << " magic XAR_HEADER_MAGIC\n";
5858 else
5859 outs() << " magic "
5860 << format_hex(XarHeader.magic, 10, true)
5861 << " (not XAR_HEADER_MAGIC)\n";
5862 outs() << " size " << XarHeader.size << "\n";
5863 outs() << " version " << XarHeader.version << "\n";
5864 outs() << " toc_length_compressed " << XarHeader.toc_length_compressed
5865 << "\n";
5866 outs() << "toc_length_uncompressed " << XarHeader.toc_length_uncompressed
5867 << "\n";
5868 outs() << " cksum_alg ";
5869 switch (XarHeader.cksum_alg) {
5870 case XAR_CKSUM_NONE:
5871 outs() << "XAR_CKSUM_NONE\n";
5872 break;
5873 case XAR_CKSUM_SHA1:
5874 outs() << "XAR_CKSUM_SHA1\n";
5875 break;
5876 case XAR_CKSUM_MD5:
5877 outs() << "XAR_CKSUM_MD5\n";
5878 break;
5879#ifdef XAR_CKSUM_SHA256
5880 case XAR_CKSUM_SHA256:
5881 outs() << "XAR_CKSUM_SHA256\n";
5882 break;
5883#endif
5884#ifdef XAR_CKSUM_SHA512
5885 case XAR_CKSUM_SHA512:
5886 outs() << "XAR_CKSUM_SHA512\n";
5887 break;
5888#endif
5889 default:
5890 outs() << XarHeader.cksum_alg << "\n";
5891 }
5892 }
5893
5894 SmallString<128> XarFilename;
5895 int FD;
5896 std::error_code XarEC =
5897 sys::fs::createTemporaryFile("llvm-objdump", "xar", FD, XarFilename);
5898 if (XarEC) {
5899 errs() << XarEC.message() << "\n";
5900 return;
5901 }
5902 tool_output_file XarFile(XarFilename, FD);
5903 raw_fd_ostream &XarOut = XarFile.os();
5904 StringRef XarContents(sect, size);
5905 XarOut << XarContents;
5906 XarOut.close();
5907 if (XarOut.has_error())
5908 return;
5909
5910 xar_t xar = xar_open(XarFilename.c_str(), READ);
5911 if (!xar) {
5912 errs() << "Can't create temporary xar archive " << XarFilename << "\n";
5913 return;
5914 }
5915
5916 SmallString<128> TocFilename;
5917 std::error_code TocEC =
5918 sys::fs::createTemporaryFile("llvm-objdump", "toc", TocFilename);
5919 if (TocEC) {
5920 errs() << TocEC.message() << "\n";
5921 return;
5922 }
5923 xar_serialize(xar, TocFilename.c_str());
5924
5925 if (PrintXarFileHeaders) {
5926 if (!XarMemberName.empty())
5927 outs() << "In xar member " << XarMemberName << ": ";
5928 else
5929 outs() << "For (__LLVM,__bundle) section: ";
5930 outs() << "xar archive files:\n";
5931 PrintXarFilesSummary(XarFilename.c_str(), xar);
5932 }
5933
5934 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
5935 MemoryBuffer::getFileOrSTDIN(TocFilename.c_str());
5936 if (std::error_code EC = FileOrErr.getError()) {
5937 errs() << EC.message() << "\n";
5938 return;
5939 }
5940 std::unique_ptr<MemoryBuffer> &Buffer = FileOrErr.get();
5941
5942 if (!XarMemberName.empty())
5943 outs() << "In xar member " << XarMemberName << ": ";
5944 else
5945 outs() << "For (__LLVM,__bundle) section: ";
5946 outs() << "xar table of contents:\n";
5947 outs() << Buffer->getBuffer() << "\n";
5948
5949 // TODO: Go through the xar's files.
5950 xar_iter_t xi = xar_iter_new();
5951 if(!xi){
5952 errs() << "Can't obtain an xar iterator for xar archive "
5953 << XarFilename.c_str() << "\n";
5954 xar_close(xar);
5955 return;
5956 }
5957 for(xar_file_t xf = xar_file_first(xar, xi); xf; xf = xar_file_next(xi)){
5958 const char *key;
5959 xar_iter_t xp;
5960 const char *member_name, *member_type, *member_size_string;
5961 size_t member_size;
5962
5963 xp = xar_iter_new();
5964 if(!xp){
5965 errs() << "Can't obtain an xar iterator for xar archive "
5966 << XarFilename.c_str() << "\n";
5967 xar_close(xar);
5968 return;
5969 }
5970 member_name = NULL__null;
5971 member_type = NULL__null;
5972 member_size_string = NULL__null;
5973 for(key = xar_prop_first(xf, xp); key; key = xar_prop_next(xp)){
5974 const char *val = nullptr;
5975 xar_prop_get(xf, key, &val);
5976#if 0 // Useful for debugging.
5977 outs() << "key: " << key << " value: " << val << "\n";
5978#endif
5979 if(strcmp(key, "name") == 0)
5980 member_name = val;
5981 if(strcmp(key, "type") == 0)
5982 member_type = val;
5983 if(strcmp(key, "data/size") == 0)
5984 member_size_string = val;
5985 }
5986 /*
5987 * If we find a file with a name, date/size and type properties
5988 * and with the type being "file" see if that is a xar file.
5989 */
5990 if (member_name != NULL__null && member_type != NULL__null &&
5991 strcmp(member_type, "file") == 0 &&
5992 member_size_string != NULL__null){
5993 // Extract the file into a buffer.
5994 char *endptr;
5995 member_size = strtoul(member_size_string, &endptr, 10);
5996 if (*endptr == '\0' && member_size != 0) {
5997 char *buffer = (char *) ::operator new (member_size);
5998 if (xar_extract_tobuffersz(xar, xf, &buffer, &member_size) == 0) {
5999#if 0 // Useful for debugging.
6000 outs() << "xar member: " << member_name << " extracted\n";
6001#endif
6002 // Set the XarMemberName we want to see printed in the header.
6003 std::string OldXarMemberName;
6004 // If XarMemberName is already set this is nested. So
6005 // save the old name and create the nested name.
6006 if (!XarMemberName.empty()) {
6007 OldXarMemberName = XarMemberName;
6008 XarMemberName =
6009 (Twine("[") + XarMemberName + "]" + member_name).str();
6010 } else {
6011 OldXarMemberName = "";
6012 XarMemberName = member_name;
6013 }
6014 // See if this is could be a xar file (nested).
6015 if (member_size >= sizeof(struct xar_header)) {
6016#if 0 // Useful for debugging.
6017 outs() << "could be a xar file: " << member_name << "\n";
6018#endif
6019 memcpy((char *)&XarHeader, buffer, sizeof(struct xar_header));
6020 if (sys::IsLittleEndianHost)
6021 swapStruct(XarHeader);
6022 if(XarHeader.magic == XAR_HEADER_MAGIC)
6023 DumpBitcodeSection(O, buffer, member_size, verbose,
6024 PrintXarHeader, PrintXarFileHeaders,
6025 XarMemberName);
6026 }
6027 XarMemberName = OldXarMemberName;
6028 }
6029 delete buffer;
6030 }
6031 }
6032 xar_iter_free(xp);
6033 }
6034 xar_close(xar);
6035}
6036#endif // defined(HAVE_LIBXAR)
6037
6038static void printObjcMetaData(MachOObjectFile *O, bool verbose) {
6039 if (O->is64Bit())
6040 printObjc2_64bit_MetaData(O, verbose);
6041 else {
6042 MachO::mach_header H;
6043 H = O->getHeader();
6044 if (H.cputype == MachO::CPU_TYPE_ARM)
6045 printObjc2_32bit_MetaData(O, verbose);
6046 else {
6047 // This is the 32-bit non-arm cputype case. Which is normally
6048 // the first Objective-C ABI. But it may be the case of a
6049 // binary for the iOS simulator which is the second Objective-C
6050 // ABI. In that case printObjc1_32bit_MetaData() will determine that
6051 // and return false.
6052 if (!printObjc1_32bit_MetaData(O, verbose))
6053 printObjc2_32bit_MetaData(O, verbose);
6054 }
6055 }
6056}
6057
6058// GuessLiteralPointer returns a string which for the item in the Mach-O file
6059// for the address passed in as ReferenceValue for printing as a comment with
6060// the instruction and also returns the corresponding type of that item
6061// indirectly through ReferenceType.
6062//
6063// If ReferenceValue is an address of literal cstring then a pointer to the
6064// cstring is returned and ReferenceType is set to
6065// LLVMDisassembler_ReferenceType_Out_LitPool_CstrAddr .
6066//
6067// If ReferenceValue is an address of an Objective-C CFString, Selector ref or
6068// Class ref that name is returned and the ReferenceType is set accordingly.
6069//
6070// Lastly, literals which are Symbol address in a literal pool are looked for
6071// and if found the symbol name is returned and ReferenceType is set to
6072// LLVMDisassembler_ReferenceType_Out_LitPool_SymAddr .
6073//
6074// If there is no item in the Mach-O file for the address passed in as
6075// ReferenceValue nullptr is returned and ReferenceType is unchanged.
6076static const char *GuessLiteralPointer(uint64_t ReferenceValue,
6077 uint64_t ReferencePC,
6078 uint64_t *ReferenceType,
6079 struct DisassembleInfo *info) {
6080 // First see if there is an external relocation entry at the ReferencePC.
6081 if (info->O->getHeader().filetype == MachO::MH_OBJECT) {
6082 uint64_t sect_addr = info->S.getAddress();
6083 uint64_t sect_offset = ReferencePC - sect_addr;
6084 bool reloc_found = false;
6085 DataRefImpl Rel;
6086 MachO::any_relocation_info RE;
6087 bool isExtern = false;
6088 SymbolRef Symbol;
6089 for (const RelocationRef &Reloc : info->S.relocations()) {
6090 uint64_t RelocOffset = Reloc.getOffset();
6091 if (RelocOffset == sect_offset) {
6092 Rel = Reloc.getRawDataRefImpl();
6093 RE = info->O->getRelocation(Rel);
6094 if (info->O->isRelocationScattered(RE))
6095 continue;
6096 isExtern = info->O->getPlainRelocationExternal(RE);
6097 if (isExtern) {
6098 symbol_iterator RelocSym = Reloc.getSymbol();
6099 Symbol = *RelocSym;
6100 }
6101 reloc_found = true;
6102 break;
6103 }
6104 }
6105 // If there is an external relocation entry for a symbol in a section
6106 // then used that symbol's value for the value of the reference.
6107 if (reloc_found && isExtern) {
6108 if (info->O->getAnyRelocationPCRel(RE)) {
6109 unsigned Type = info->O->getAnyRelocationType(RE);
6110 if (Type == MachO::X86_64_RELOC_SIGNED) {
6111 ReferenceValue = Symbol.getValue();
6112 }
6113 }
6114 }
6115 }
6116
6117 // Look for literals such as Objective-C CFStrings refs, Selector refs,
6118 // Message refs and Class refs.
6119 bool classref, selref, msgref, cfstring;
6120 uint64_t pointer_value = GuessPointerPointer(ReferenceValue, info, classref,
6121 selref, msgref, cfstring);
6122 if (classref && pointer_value == 0) {
6123 // Note the ReferenceValue is a pointer into the __objc_classrefs section.
6124 // And the pointer_value in that section is typically zero as it will be
6125 // set by dyld as part of the "bind information".
6126 const char *name = get_dyld_bind_info_symbolname(ReferenceValue, info);
6127 if (name != nullptr) {
6128 *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Class_Ref8;
6129 const char *class_name = strrchr(name, '$');
6130 if (class_name != nullptr && class_name[1] == '_' &&
6131 class_name[2] != '\0') {
6132 info->class_name = class_name + 2;
6133 return name;
6134 }
6135 }
6136 }
6137
6138 if (classref) {
6139 *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Class_Ref8;
6140 const char *name =
6141 get_objc2_64bit_class_name(pointer_value, ReferenceValue, info);
6142 if (name != nullptr)
6143 info->class_name = name;
6144 else
6145 name = "bad class ref";
6146 return name;
6147 }
6148
6149 if (cfstring) {
6150 *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_CFString_Ref4;
6151 const char *name = get_objc2_64bit_cfstring_name(ReferenceValue, info);
6152 return name;
6153 }
6154
6155 if (selref && pointer_value == 0)
6156 pointer_value = get_objc2_64bit_selref(ReferenceValue, info);
6157
6158 if (pointer_value != 0)
6159 ReferenceValue = pointer_value;
6160
6161 const char *name = GuessCstringPointer(ReferenceValue, info);
6162 if (name) {
6163 if (pointer_value != 0 && selref) {
6164 *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Selector_Ref7;
6165 info->selector_name = name;
6166 } else if (pointer_value != 0 && msgref) {
6167 info->class_name = nullptr;
6168 *ReferenceType = LLVMDisassembler_ReferenceType_Out_Objc_Message_Ref6;
6169 info->selector_name = name;
6170 } else
6171 *ReferenceType = LLVMDisassembler_ReferenceType_Out_LitPool_CstrAddr3;
6172 return name;
6173 }
6174
6175 // Lastly look for an indirect symbol with this ReferenceValue which is in
6176 // a literal pool. If found return that symbol name.
6177 name = GuessIndirectSymbol(ReferenceValue, info);
6178 if (name) {
6179 *ReferenceType = LLVMDisassembler_ReferenceType_Out_LitPool_SymAddr2;
6180 return name;
6181 }
6182
6183 return nullptr;
6184}
6185
6186// SymbolizerSymbolLookUp is the symbol lookup function passed when creating
6187// the Symbolizer. It looks up the ReferenceValue using the info passed via the
6188// pointer to the struct DisassembleInfo that was passed when MCSymbolizer
6189// is created and returns the symbol name that matches the ReferenceValue or
6190// nullptr if none. The ReferenceType is passed in for the IN type of
6191// reference the instruction is making from the values in defined in the header
6192// "llvm-c/Disassembler.h". On return the ReferenceType can set to a specific
6193// Out type and the ReferenceName will also be set which is added as a comment
6194// to the disassembled instruction.
6195//
6196// If the symbol name is a C++ mangled name then the demangled name is
6197// returned through ReferenceName and ReferenceType is set to
6198// LLVMDisassembler_ReferenceType_DeMangled_Name .
6199//
6200// When this is called to get a symbol name for a branch target then the
6201// ReferenceType will be LLVMDisassembler_ReferenceType_In_Branch and then
6202// SymbolValue will be looked for in the indirect symbol table to determine if
6203// it is an address for a symbol stub. If so then the symbol name for that
6204// stub is returned indirectly through ReferenceName and then ReferenceType is
6205// set to LLVMDisassembler_ReferenceType_Out_SymbolStub.
6206//
6207// When this is called with an value loaded via a PC relative load then
6208// ReferenceType will be LLVMDisassembler_ReferenceType_In_PCrel_Load then the
6209// SymbolValue is checked to be an address of literal pointer, symbol pointer,
6210// or an Objective-C meta data reference. If so the output ReferenceType is
6211// set to correspond to that as well as setting the ReferenceName.
6212static const char *SymbolizerSymbolLookUp(void *DisInfo,
6213 uint64_t ReferenceValue,
6214 uint64_t *ReferenceType,
6215 uint64_t ReferencePC,
6216 const char **ReferenceName) {
6217 struct DisassembleInfo *info = (struct DisassembleInfo *)DisInfo;
6218 // If no verbose symbolic information is wanted then just return nullptr.
6219 if (!info->verbose) {
6220 *ReferenceName = nullptr;
6221 *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None0;
6222 return nullptr;
6223 }
6224
6225 const char *SymbolName = GuessSymbolName(ReferenceValue, info->AddrMap);
6226
6227 if (*ReferenceType == LLVMDisassembler_ReferenceType_In_Branch1) {
6228 *ReferenceName = GuessIndirectSymbol(ReferenceValue, info);
6229 if (*ReferenceName != nullptr) {
6230 method_reference(info, ReferenceType, ReferenceName);
6231 if (*ReferenceType != LLVMDisassembler_ReferenceType_Out_Objc_Message5)
6232 *ReferenceType = LLVMDisassembler_ReferenceType_Out_SymbolStub1;
6233 } else if (SymbolName != nullptr && strncmp(SymbolName, "__Z", 3) == 0) {
6234 if (info->demangled_name != nullptr)
6235 free(info->demangled_name);
6236 int status;
6237 info->demangled_name =
6238 itaniumDemangle(SymbolName + 1, nullptr, nullptr, &status);
6239 if (info->demangled_name != nullptr) {
6240 *ReferenceName = info->demangled_name;
6241 *ReferenceType = LLVMDisassembler_ReferenceType_DeMangled_Name9;
6242 } else
6243 *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None0;
6244 } else
6245 *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None0;
6246 } else if (*ReferenceType == LLVMDisassembler_ReferenceType_In_PCrel_Load2) {
6247 *ReferenceName =
6248 GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info);
6249 if (*ReferenceName)
6250 method_reference(info, ReferenceType, ReferenceName);
6251 else
6252 *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None0;
6253 // If this is arm64 and the reference is an adrp instruction save the
6254 // instruction, passed in ReferenceValue and the address of the instruction
6255 // for use later if we see and add immediate instruction.
6256 } else if (info->O->getArch() == Triple::aarch64 &&
6257 *ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_ADRP0x100000001) {
6258 info->adrp_inst = ReferenceValue;
6259 info->adrp_addr = ReferencePC;
6260 SymbolName = nullptr;
6261 *ReferenceName = nullptr;
6262 *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None0;
6263 // If this is arm64 and reference is an add immediate instruction and we
6264 // have
6265 // seen an adrp instruction just before it and the adrp's Xd register
6266 // matches
6267 // this add's Xn register reconstruct the value being referenced and look to
6268 // see if it is a literal pointer. Note the add immediate instruction is
6269 // passed in ReferenceValue.
6270 } else if (info->O->getArch() == Triple::aarch64 &&
6271 *ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_ADDXri0x100000002 &&
6272 ReferencePC - 4 == info->adrp_addr &&
6273 (info->adrp_inst & 0x9f000000) == 0x90000000 &&
6274 (info->adrp_inst & 0x1f) == ((ReferenceValue >> 5) & 0x1f)) {
6275 uint32_t addxri_inst;
6276 uint64_t adrp_imm, addxri_imm;
6277
6278 adrp_imm =
6279 ((info->adrp_inst & 0x00ffffe0) >> 3) | ((info->adrp_inst >> 29) & 0x3);
6280 if (info->adrp_inst & 0x0200000)
6281 adrp_imm |= 0xfffffffffc000000LL;
6282
6283 addxri_inst = ReferenceValue;
6284 addxri_imm = (addxri_inst >> 10) & 0xfff;
6285 if (((addxri_inst >> 22) & 0x3) == 1)
6286 addxri_imm <<= 12;
6287
6288 ReferenceValue = (info->adrp_addr & 0xfffffffffffff000LL) +
6289 (adrp_imm << 12) + addxri_imm;
6290
6291 *ReferenceName =
6292 GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info);
6293 if (*ReferenceName == nullptr)
6294 *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None0;
6295 // If this is arm64 and the reference is a load register instruction and we
6296 // have seen an adrp instruction just before it and the adrp's Xd register
6297 // matches this add's Xn register reconstruct the value being referenced and
6298 // look to see if it is a literal pointer. Note the load register
6299 // instruction is passed in ReferenceValue.
6300 } else if (info->O->getArch() == Triple::aarch64 &&
6301 *ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_LDRXui0x100000003 &&
6302 ReferencePC - 4 == info->adrp_addr &&
6303 (info->adrp_inst & 0x9f000000) == 0x90000000 &&
6304 (info->adrp_inst & 0x1f) == ((ReferenceValue >> 5) & 0x1f)) {
6305 uint32_t ldrxui_inst;
6306 uint64_t adrp_imm, ldrxui_imm;
6307
6308 adrp_imm =
6309 ((info->adrp_inst & 0x00ffffe0) >> 3) | ((info->adrp_inst >> 29) & 0x3);
6310 if (info->adrp_inst & 0x0200000)
6311 adrp_imm |= 0xfffffffffc000000LL;
6312
6313 ldrxui_inst = ReferenceValue;
6314 ldrxui_imm = (ldrxui_inst >> 10) & 0xfff;
6315
6316 ReferenceValue = (info->adrp_addr & 0xfffffffffffff000LL) +
6317 (adrp_imm << 12) + (ldrxui_imm << 3);
6318
6319 *ReferenceName =
6320 GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info);
6321 if (*ReferenceName == nullptr)
6322 *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None0;
6323 }
6324 // If this arm64 and is an load register (PC-relative) instruction the
6325 // ReferenceValue is the PC plus the immediate value.
6326 else if (info->O->getArch() == Triple::aarch64 &&
6327 (*ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_LDRXl0x100000004 ||
6328 *ReferenceType == LLVMDisassembler_ReferenceType_In_ARM64_ADR0x100000005)) {
6329 *ReferenceName =
6330 GuessLiteralPointer(ReferenceValue, ReferencePC, ReferenceType, info);
6331 if (*ReferenceName == nullptr)
6332 *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None0;
6333 } else if (SymbolName != nullptr && strncmp(SymbolName, "__Z", 3) == 0) {
6334 if (info->demangled_name != nullptr)
6335 free(info->demangled_name);
6336 int status;
6337 info->demangled_name =
6338 itaniumDemangle(SymbolName + 1, nullptr, nullptr, &status);
6339 if (info->demangled_name != nullptr) {
6340 *ReferenceName = info->demangled_name;
6341 *ReferenceType = LLVMDisassembler_ReferenceType_DeMangled_Name9;
6342 }
6343 }
6344 else {
6345 *ReferenceName = nullptr;
6346 *ReferenceType = LLVMDisassembler_ReferenceType_InOut_None0;
6347 }
6348
6349 return SymbolName;
6350}
6351
6352/// \brief Emits the comments that are stored in the CommentStream.
6353/// Each comment in the CommentStream must end with a newline.
6354static void emitComments(raw_svector_ostream &CommentStream,
6355 SmallString<128> &CommentsToEmit,
6356 formatted_raw_ostream &FormattedOS,
6357 const MCAsmInfo &MAI) {
6358 // Flush the stream before taking its content.
6359 StringRef Comments = CommentsToEmit.str();
6360 // Get the default information for printing a comment.
6361 StringRef CommentBegin = MAI.getCommentString();
6362 unsigned CommentColumn = MAI.getCommentColumn();
6363 bool IsFirst = true;
6364 while (!Comments.empty()) {
6365 if (!IsFirst)
6366 FormattedOS << '\n';
6367 // Emit a line of comments.
6368 FormattedOS.PadToColumn(CommentColumn);
6369 size_t Position = Comments.find('\n');
6370 FormattedOS << CommentBegin << ' ' << Comments.substr(0, Position);
6371 // Move after the newline character.
6372 Comments = Comments.substr(Position + 1);
6373 IsFirst = false;
6374 }
6375 FormattedOS.flush();
6376
6377 // Tell the comment stream that the vector changed underneath it.
6378 CommentsToEmit.clear();
6379}
6380
6381static void DisassembleMachO(StringRef Filename, MachOObjectFile *MachOOF,
6382 StringRef DisSegName, StringRef DisSectName) {
6383 const char *McpuDefault = nullptr;
6384 const Target *ThumbTarget = nullptr;
6385 const Target *TheTarget = GetTarget(MachOOF, &McpuDefault, &ThumbTarget);
6386 if (!TheTarget) {
6387 // GetTarget prints out stuff.
6388 return;
6389 }
6390 if (MCPU.empty() && McpuDefault)
6391 MCPU = McpuDefault;
6392
6393 std::unique_ptr<const MCInstrInfo> InstrInfo(TheTarget->createMCInstrInfo());
6394 std::unique_ptr<const MCInstrInfo> ThumbInstrInfo;
6395 if (ThumbTarget)
6396 ThumbInstrInfo.reset(ThumbTarget->createMCInstrInfo());
6397
6398 // Package up features to be passed to target/subtarget
6399 std::string FeaturesStr;
6400 if (MAttrs.size()) {
6401 SubtargetFeatures Features;
6402 for (unsigned i = 0; i != MAttrs.size(); ++i)
6403 Features.AddFeature(MAttrs[i]);
6404 FeaturesStr = Features.getString();
6405 }
6406
6407 // Set up disassembler.
6408 std::unique_ptr<const MCRegisterInfo> MRI(
6409 TheTarget->createMCRegInfo(TripleName));
6410 std::unique_ptr<const MCAsmInfo> AsmInfo(
6411 TheTarget->createMCAsmInfo(*MRI, TripleName));
6412 std::unique_ptr<const MCSubtargetInfo> STI(
6413 TheTarget->createMCSubtargetInfo(TripleName, MCPU, FeaturesStr));
6414 MCContext Ctx(AsmInfo.get(), MRI.get(), nullptr);
6415 std::unique_ptr<MCDisassembler> DisAsm(
6416 TheTarget->createMCDisassembler(*STI, Ctx));
6417 std::unique_ptr<MCSymbolizer> Symbolizer;
6418 struct DisassembleInfo SymbolizerInfo;
6419 std::unique_ptr<MCRelocationInfo> RelInfo(
6420 TheTarget->createMCRelocationInfo(TripleName, Ctx));
6421 if (RelInfo) {
6422 Symbolizer.reset(TheTarget->createMCSymbolizer(
6423 TripleName, SymbolizerGetOpInfo, SymbolizerSymbolLookUp,
6424 &SymbolizerInfo, &Ctx, std::move(RelInfo)));
6425 DisAsm->setSymbolizer(std::move(Symbolizer));
6426 }
6427 int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
6428 std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
6429 Triple(TripleName), AsmPrinterVariant, *AsmInfo, *InstrInfo, *MRI));
6430 // Set the display preference for hex vs. decimal immediates.
6431 IP->setPrintImmHex(PrintImmHex);
6432 // Comment stream and backing vector.
6433 SmallString<128> CommentsToEmit;
6434 raw_svector_ostream CommentStream(CommentsToEmit);
6435 // FIXME: Setting the CommentStream in the InstPrinter is problematic in that
6436 // if it is done then arm64 comments for string literals don't get printed
6437 // and some constant get printed instead and not setting it causes intel
6438 // (32-bit and 64-bit) comments printed with different spacing before the
6439 // comment causing different diffs with the 'C' disassembler library API.
6440 // IP->setCommentStream(CommentStream);
6441
6442 if (!AsmInfo || !STI || !DisAsm || !IP) {
6443 errs() << "error: couldn't initialize disassembler for target "
6444 << TripleName << '\n';
6445 return;
6446 }
6447
6448 // Set up separate thumb disassembler if needed.
6449 std::unique_ptr<const MCRegisterInfo> ThumbMRI;
6450 std::unique_ptr<const MCAsmInfo> ThumbAsmInfo;
6451 std::unique_ptr<const MCSubtargetInfo> ThumbSTI;
6452 std::unique_ptr<MCDisassembler> ThumbDisAsm;
6453 std::unique_ptr<MCInstPrinter> ThumbIP;
6454 std::unique_ptr<MCContext> ThumbCtx;
6455 std::unique_ptr<MCSymbolizer> ThumbSymbolizer;
6456 struct DisassembleInfo ThumbSymbolizerInfo;
6457 std::unique_ptr<MCRelocationInfo> ThumbRelInfo;
6458 if (ThumbTarget) {
6459 ThumbMRI.reset(ThumbTarget->createMCRegInfo(ThumbTripleName));
6460 ThumbAsmInfo.reset(
6461 ThumbTarget->createMCAsmInfo(*ThumbMRI, ThumbTripleName));
6462 ThumbSTI.reset(
6463 ThumbTarget->createMCSubtargetInfo(ThumbTripleName, MCPU, FeaturesStr));
6464 ThumbCtx.reset(new MCContext(ThumbAsmInfo.get(), ThumbMRI.get(), nullptr));
6465 ThumbDisAsm.reset(ThumbTarget->createMCDisassembler(*ThumbSTI, *ThumbCtx));
6466 MCContext *PtrThumbCtx = ThumbCtx.get();
6467 ThumbRelInfo.reset(
6468 ThumbTarget->createMCRelocationInfo(ThumbTripleName, *PtrThumbCtx));
6469 if (ThumbRelInfo) {
6470 ThumbSymbolizer.reset(ThumbTarget->createMCSymbolizer(
6471 ThumbTripleName, SymbolizerGetOpInfo, SymbolizerSymbolLookUp,
6472 &ThumbSymbolizerInfo, PtrThumbCtx, std::move(ThumbRelInfo)));
6473 ThumbDisAsm->setSymbolizer(std::move(ThumbSymbolizer));
6474 }
6475 int ThumbAsmPrinterVariant = ThumbAsmInfo->getAssemblerDialect();
6476 ThumbIP.reset(ThumbTarget->createMCInstPrinter(
6477 Triple(ThumbTripleName), ThumbAsmPrinterVariant, *ThumbAsmInfo,
6478 *ThumbInstrInfo, *ThumbMRI));
6479 // Set the display preference for hex vs. decimal immediates.
6480 ThumbIP->setPrintImmHex(PrintImmHex);
6481 }
6482
6483 if (ThumbTarget && (!ThumbAsmInfo || !ThumbSTI || !ThumbDisAsm || !ThumbIP)) {
6484 errs() << "error: couldn't initialize disassembler for target "
6485 << ThumbTripleName << '\n';
6486 return;
6487 }
6488
6489 MachO::mach_header Header = MachOOF->getHeader();
6490
6491 // FIXME: Using the -cfg command line option, this code used to be able to
6492 // annotate relocations with the referenced symbol's name, and if this was
6493 // inside a __[cf]string section, the data it points to. This is now replaced
6494 // by the upcoming MCSymbolizer, which needs the appropriate setup done above.
6495 std::vector<SectionRef> Sections;
6496 std::vector<SymbolRef> Symbols;
6497 SmallVector<uint64_t, 8> FoundFns;
6498 uint64_t BaseSegmentAddress;
6499
6500 getSectionsAndSymbols(MachOOF, Sections, Symbols, FoundFns,
6501 BaseSegmentAddress);
6502
6503 // Sort the symbols by address, just in case they didn't come in that way.
6504 std::sort(Symbols.begin(), Symbols.end(), SymbolSorter());
6505
6506 // Build a data in code table that is sorted on by the address of each entry.
6507 uint64_t BaseAddress = 0;
6508 if (Header.filetype == MachO::MH_OBJECT)
6509 BaseAddress = Sections[0].getAddress();
6510 else
6511 BaseAddress = BaseSegmentAddress;
6512 DiceTable Dices;
6513 for (dice_iterator DI = MachOOF->begin_dices(), DE = MachOOF->end_dices();
6514 DI != DE; ++DI) {
6515 uint32_t Offset;
6516 DI->getOffset(Offset);
6517 Dices.push_back(std::make_pair(BaseAddress + Offset, *DI));
6518 }
6519 array_pod_sort(Dices.begin(), Dices.end());
6520
6521#ifndef NDEBUG
6522 raw_ostream &DebugOut = DebugFlag ? dbgs() : nulls();
6523#else
6524 raw_ostream &DebugOut = nulls();
6525#endif
6526
6527 std::unique_ptr<DIContext> diContext;
6528 ObjectFile *DbgObj = MachOOF;
6529 // Try to find debug info and set up the DIContext for it.
6530 if (UseDbg) {
6531 // A separate DSym file path was specified, parse it as a macho file,
6532 // get the sections and supply it to the section name parsing machinery.
6533 if (!DSYMFile.empty()) {
6534 ErrorOr<std::unique_ptr<MemoryBuffer>> BufOrErr =
6535 MemoryBuffer::getFileOrSTDIN(DSYMFile);
6536 if (std::error_code EC = BufOrErr.getError()) {
6537 errs() << "llvm-objdump: " << Filename << ": " << EC.message() << '\n';
6538 return;
6539 }
6540 DbgObj =
6541 ObjectFile::createMachOObjectFile(BufOrErr.get()->getMemBufferRef())
6542 .get()
6543 .release();
6544 }
6545
6546 // Setup the DIContext
6547 diContext.reset(new DWARFContextInMemory(*DbgObj));
6548 }
6549
6550 if (FilterSections.size() == 0)
6551 outs() << "(" << DisSegName << "," << DisSectName << ") section\n";
6552
6553 for (unsigned SectIdx = 0; SectIdx != Sections.size(); SectIdx++) {
6554 StringRef SectName;
6555 if (Sections[SectIdx].getName(SectName) || SectName != DisSectName)
6556 continue;
6557
6558 DataRefImpl DR = Sections[SectIdx].getRawDataRefImpl();
6559
6560 StringRef SegmentName = MachOOF->getSectionFinalSegmentName(DR);
6561 if (SegmentName != DisSegName)
6562 continue;
6563
6564 StringRef BytesStr;
6565 Sections[SectIdx].getContents(BytesStr);
6566 ArrayRef<uint8_t> Bytes(reinterpret_cast<const uint8_t *>(BytesStr.data()),
6567 BytesStr.size());
6568 uint64_t SectAddress = Sections[SectIdx].getAddress();
6569
6570 bool symbolTableWorked = false;
6571
6572 // Create a map of symbol addresses to symbol names for use by
6573 // the SymbolizerSymbolLookUp() routine.
6574 SymbolAddressMap AddrMap;
6575 bool DisSymNameFound = false;
6576 for (const SymbolRef &Symbol : MachOOF->symbols()) {
6577 Expected<SymbolRef::Type> STOrErr = Symbol.getType();
6578 if (!STOrErr)
6579 report_error(MachOOF->getFileName(), STOrErr.takeError());
6580 SymbolRef::Type ST = *STOrErr;
6581 if (ST == SymbolRef::ST_Function || ST == SymbolRef::ST_Data ||
6582 ST == SymbolRef::ST_Other) {
6583 uint64_t Address = Symbol.getValue();
6584 Expected<StringRef> SymNameOrErr = Symbol.getName();
6585 if (!SymNameOrErr)
6586 report_error(MachOOF->getFileName(), SymNameOrErr.takeError());
6587 StringRef SymName = *SymNameOrErr;
6588 AddrMap[Address] = SymName;
6589 if (!DisSymName.empty() && DisSymName == SymName)
6590 DisSymNameFound = true;
6591 }
6592 }
6593 if (!DisSymName.empty() && !DisSymNameFound) {
6594 outs() << "Can't find -dis-symname: " << DisSymName << "\n";
6595 return;
6596 }
6597 // Set up the block of info used by the Symbolizer call backs.
6598 SymbolizerInfo.verbose = !NoSymbolicOperands;
6599 SymbolizerInfo.O = MachOOF;
6600 SymbolizerInfo.S = Sections[SectIdx];
6601 SymbolizerInfo.AddrMap = &AddrMap;
6602 SymbolizerInfo.Sections = &Sections;
6603 SymbolizerInfo.class_name = nullptr;
6604 SymbolizerInfo.selector_name = nullptr;
6605 SymbolizerInfo.method = nullptr;
6606 SymbolizerInfo.demangled_name = nullptr;
6607 SymbolizerInfo.bindtable = nullptr;
6608 SymbolizerInfo.adrp_addr = 0;
6609 SymbolizerInfo.adrp_inst = 0;
6610 // Same for the ThumbSymbolizer
6611 ThumbSymbolizerInfo.verbose = !NoSymbolicOperands;
6612 ThumbSymbolizerInfo.O = MachOOF;
6613 ThumbSymbolizerInfo.S = Sections[SectIdx];
6614 ThumbSymbolizerInfo.AddrMap = &AddrMap;
6615 ThumbSymbolizerInfo.Sections = &Sections;
6616 ThumbSymbolizerInfo.class_name = nullptr;
6617 ThumbSymbolizerInfo.selector_name = nullptr;
6618 ThumbSymbolizerInfo.method = nullptr;
6619 ThumbSymbolizerInfo.demangled_name = nullptr;
6620 ThumbSymbolizerInfo.bindtable = nullptr;
6621 ThumbSymbolizerInfo.adrp_addr = 0;
6622 ThumbSymbolizerInfo.adrp_inst = 0;
6623
6624 unsigned int Arch = MachOOF->getArch();
6625
6626 // Skip all symbols if this is a stubs file.
6627 if (Bytes.size() == 0)
6628 return;
6629
6630 // If the section has symbols but no symbol at the start of the section
6631 // these are used to make sure the bytes before the first symbol are
6632 // disassembled.
6633 bool FirstSymbol = true;
6634 bool FirstSymbolAtSectionStart = true;
6635
6636 // Disassemble symbol by symbol.
6637 for (unsigned SymIdx = 0; SymIdx != Symbols.size(); SymIdx++) {
6638 Expected<StringRef> SymNameOrErr = Symbols[SymIdx].getName();
6639 if (!SymNameOrErr)
6640 report_error(MachOOF->getFileName(), SymNameOrErr.takeError());
6641 StringRef SymName = *SymNameOrErr;
6642
6643 Expected<SymbolRef::Type> STOrErr = Symbols[SymIdx].getType();
6644 if (!STOrErr)
6645 report_error(MachOOF->getFileName(), STOrErr.takeError());
6646 SymbolRef::Type ST = *STOrErr;
6647 if (ST != SymbolRef::ST_Function && ST != SymbolRef::ST_Data)
6648 continue;
6649
6650 // Make sure the symbol is defined in this section.
6651 bool containsSym = Sections[SectIdx].containsSymbol(Symbols[SymIdx]);
6652 if (!containsSym) {
6653 if (!DisSymName.empty() && DisSymName == SymName) {
6654 outs() << "-dis-symname: " << DisSymName << " not in the section\n";
6655 return;
6656 }
6657 continue;
6658 }
6659 // The __mh_execute_header is special and we need to deal with that fact
6660 // this symbol is before the start of the (__TEXT,__text) section and at the
6661 // address of the start of the __TEXT segment. This is because this symbol
6662 // is an N_SECT symbol in the (__TEXT,__text) but its address is before the
6663 // start of the section in a standard MH_EXECUTE filetype.
6664 if (!DisSymName.empty() && DisSymName == "__mh_execute_header") {
6665 outs() << "-dis-symname: __mh_execute_header not in any section\n";
6666 return;
6667 }
6668 // When this code is trying to disassemble a symbol at a time and in the
6669 // case there is only the __mh_execute_header symbol left as in a stripped
6670 // executable, we need to deal with this by ignoring this symbol so the
6671 // whole section is disassembled and this symbol is then not displayed.
6672 if (SymName == "__mh_execute_header" || SymName == "__mh_dylib_header" ||
6673 SymName == "__mh_bundle_header" || SymName == "__mh_object_header" ||
6674 SymName == "__mh_preload_header" || SymName == "__mh_dylinker_header")
6675 continue;
6676
6677 // If we are only disassembling one symbol see if this is that symbol.
6678 if (!DisSymName.empty() && DisSymName != SymName)
6679 continue;
6680
6681 // Start at the address of the symbol relative to the section's address.
6682 uint64_t SectSize = Sections[SectIdx].getSize();
6683 uint64_t Start = Symbols[SymIdx].getValue();
6684 uint64_t SectionAddress = Sections[SectIdx].getAddress();
6685 Start -= SectionAddress;
6686
6687 if (Start > SectSize) {
6688 outs() << "section data ends, " << SymName
6689 << " lies outside valid range\n";
6690 return;
6691 }
6692
6693 // Stop disassembling either at the beginning of the next symbol or at
6694 // the end of the section.
6695 bool containsNextSym = false;
6696 uint64_t NextSym = 0;
6697 uint64_t NextSymIdx = SymIdx + 1;
6698 while (Symbols.size() > NextSymIdx) {
6699 Expected<SymbolRef::Type> STOrErr = Symbols[NextSymIdx].getType();
6700 if (!STOrErr)
6701 report_error(MachOOF->getFileName(), STOrErr.takeError());
6702 SymbolRef::Type NextSymType = *STOrErr;
6703 if (NextSymType == SymbolRef::ST_Function) {
6704 containsNextSym =
6705 Sections[SectIdx].containsSymbol(Symbols[NextSymIdx]);
6706 NextSym = Symbols[NextSymIdx].getValue();
6707 NextSym -= SectionAddress;
6708 break;
6709 }
6710 ++NextSymIdx;
6711 }
6712
6713 uint64_t End = containsNextSym ? std::min(NextSym, SectSize) : SectSize;
6714 uint64_t Size;
6715
6716 symbolTableWorked = true;
6717
6718 DataRefImpl Symb = Symbols[SymIdx].getRawDataRefImpl();
6719 bool IsThumb = MachOOF->getSymbolFlags(Symb) & SymbolRef::SF_Thumb;
6720
6721 // We only need the dedicated Thumb target if there's a real choice
6722 // (i.e. we're not targeting M-class) and the function is Thumb.
6723 bool UseThumbTarget = IsThumb && ThumbTarget;
6724
6725 // If we are not specifying a symbol to start disassembly with and this
6726 // is the first symbol in the section but not at the start of the section
6727 // then move the disassembly index to the start of the section and
6728 // don't print the symbol name just yet. This is so the bytes before the
6729 // first symbol are disassembled.
6730 uint64_t SymbolStart = Start;
6731 if (DisSymName.empty() && FirstSymbol && Start != 0) {
6732 FirstSymbolAtSectionStart = false;
6733 Start = 0;
6734 }
6735 else
6736 outs() << SymName << ":\n";
6737
6738 DILineInfo lastLine;
6739 for (uint64_t Index = Start; Index < End; Index += Size) {
6740 MCInst Inst;
6741
6742 // If this is the first symbol in the section and it was not at the
6743 // start of the section, see if we are at its Index now and if so print
6744 // the symbol name.
6745 if (FirstSymbol && !FirstSymbolAtSectionStart && Index == SymbolStart)
6746 outs() << SymName << ":\n";
6747
6748 uint64_t PC = SectAddress + Index;
6749 if (!NoLeadingAddr) {
6750 if (FullLeadingAddr) {
6751 if (MachOOF->is64Bit())
6752 outs() << format("%016" PRIx64"l" "x", PC);
6753 else
6754 outs() << format("%08" PRIx64"l" "x", PC);
6755 } else {
6756 outs() << format("%8" PRIx64"l" "x" ":", PC);
6757 }
6758 }
6759 if (!NoShowRawInsn || Arch == Triple::arm)
6760 outs() << "\t";
6761
6762 // Check the data in code table here to see if this is data not an
6763 // instruction to be disassembled.
6764 DiceTable Dice;
6765 Dice.push_back(std::make_pair(PC, DiceRef()));
6766 dice_table_iterator DTI =
6767 std::search(Dices.begin(), Dices.end(), Dice.begin(), Dice.end(),
6768 compareDiceTableEntries);
6769 if (DTI != Dices.end()) {
6770 uint16_t Length;
6771 DTI->second.getLength(Length);
6772 uint16_t Kind;
6773 DTI->second.getKind(Kind);
6774 Size = DumpDataInCode(Bytes.data() + Index, Length, Kind);
6775 if ((Kind == MachO::DICE_KIND_JUMP_TABLE8) &&
6776 (PC == (DTI->first + Length - 1)) && (Length & 1))
6777 Size++;
6778 continue;
6779 }
6780
6781 SmallVector<char, 64> AnnotationsBytes;
6782 raw_svector_ostream Annotations(AnnotationsBytes);
6783
6784 bool gotInst;
6785 if (UseThumbTarget)
6786 gotInst = ThumbDisAsm->getInstruction(Inst, Size, Bytes.slice(Index),
6787 PC, DebugOut, Annotations);
6788 else
6789 gotInst = DisAsm->getInstruction(Inst, Size, Bytes.slice(Index), PC,
6790 DebugOut, Annotations);
6791 if (gotInst) {
6792 if (!NoShowRawInsn || Arch == Triple::arm) {
6793 dumpBytes(makeArrayRef(Bytes.data() + Index, Size), outs());
6794 }
6795 formatted_raw_ostream FormattedOS(outs());
6796 StringRef AnnotationsStr = Annotations.str();
6797 if (UseThumbTarget)
6798 ThumbIP->printInst(&Inst, FormattedOS, AnnotationsStr, *ThumbSTI);
6799 else
6800 IP->printInst(&Inst, FormattedOS, AnnotationsStr, *STI);
6801 emitComments(CommentStream, CommentsToEmit, FormattedOS, *AsmInfo);
6802
6803 // Print debug info.
6804 if (diContext) {
6805 DILineInfo dli = diContext->getLineInfoForAddress(PC);
6806 // Print valid line info if it changed.
6807 if (dli != lastLine && dli.Line != 0)
6808 outs() << "\t## " << dli.FileName << ':' << dli.Line << ':'
6809 << dli.Column;
6810 lastLine = dli;
6811 }
6812 outs() << "\n";
6813 } else {
6814 unsigned int Arch = MachOOF->getArch();
6815 if (Arch == Triple::x86_64 || Arch == Triple::x86) {
6816 outs() << format("\t.byte 0x%02x #bad opcode\n",
6817 *(Bytes.data() + Index) & 0xff);
6818 Size = 1; // skip exactly one illegible byte and move on.
6819 } else if (Arch == Triple::aarch64 ||
6820 (Arch == Triple::arm && !IsThumb)) {
6821 uint32_t opcode = (*(Bytes.data() + Index) & 0xff) |
6822 (*(Bytes.data() + Index + 1) & 0xff) << 8 |
6823 (*(Bytes.data() + Index + 2) & 0xff) << 16 |
6824 (*(Bytes.data() + Index + 3) & 0xff) << 24;
6825 outs() << format("\t.long\t0x%08x\n", opcode);
6826 Size = 4;
6827 } else if (Arch == Triple::arm) {
6828 assert(IsThumb && "ARM mode should have been dealt with above")((IsThumb && "ARM mode should have been dealt with above"
) ? static_cast<void> (0) : __assert_fail ("IsThumb && \"ARM mode should have been dealt with above\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/llvm-objdump/MachODump.cpp"
, 6828, __PRETTY_FUNCTION__))
;
6829 uint32_t opcode = (*(Bytes.data() + Index) & 0xff) |
6830 (*(Bytes.data() + Index + 1) & 0xff) << 8;
6831 outs() << format("\t.short\t0x%04x\n", opcode);
6832 Size = 2;
6833 } else{
6834 errs() << "llvm-objdump: warning: invalid instruction encoding\n";
6835 if (Size == 0)
6836 Size = 1; // skip illegible bytes
6837 }
6838 }
6839 }
6840 // Now that we are done disassembled the first symbol set the bool that
6841 // were doing this to false.
6842 FirstSymbol = false;
6843 }
6844 if (!symbolTableWorked) {
6845 // Reading the symbol table didn't work, disassemble the whole section.
6846 uint64_t SectAddress = Sections[SectIdx].getAddress();
6847 uint64_t SectSize = Sections[SectIdx].getSize();
6848 uint64_t InstSize;
6849 for (uint64_t Index = 0; Index < SectSize; Index += InstSize) {
6850 MCInst Inst;
6851
6852 uint64_t PC = SectAddress + Index;
6853 SmallVector<char, 64> AnnotationsBytes;
6854 raw_svector_ostream Annotations(AnnotationsBytes);
6855 if (DisAsm->getInstruction(Inst, InstSize, Bytes.slice(Index), PC,
6856 DebugOut, Annotations)) {
6857 if (!NoLeadingAddr) {
6858 if (FullLeadingAddr) {
6859 if (MachOOF->is64Bit())
6860 outs() << format("%016" PRIx64"l" "x", PC);
6861 else
6862 outs() << format("%08" PRIx64"l" "x", PC);
6863 } else {
6864 outs() << format("%8" PRIx64"l" "x" ":", PC);
6865 }
6866 }
6867 if (!NoShowRawInsn || Arch == Triple::arm) {
6868 outs() << "\t";
6869 dumpBytes(makeArrayRef(Bytes.data() + Index, InstSize), outs());
6870 }
6871 StringRef AnnotationsStr = Annotations.str();
6872 IP->printInst(&Inst, outs(), AnnotationsStr, *STI);
6873 outs() << "\n";
6874 } else {
6875 unsigned int Arch = MachOOF->getArch();
6876 if (Arch == Triple::x86_64 || Arch == Triple::x86) {
6877 outs() << format("\t.byte 0x%02x #bad opcode\n",
6878 *(Bytes.data() + Index) & 0xff);
6879 InstSize = 1; // skip exactly one illegible byte and move on.
6880 } else {
6881 errs() << "llvm-objdump: warning: invalid instruction encoding\n";
6882 if (InstSize == 0)
6883 InstSize = 1; // skip illegible bytes
6884 }
6885 }
6886 }
6887 }
6888 // The TripleName's need to be reset if we are called again for a different
6889 // archtecture.
6890 TripleName = "";
6891 ThumbTripleName = "";
6892
6893 if (SymbolizerInfo.method != nullptr)
6894 free(SymbolizerInfo.method);
6895 if (SymbolizerInfo.demangled_name != nullptr)
6896 free(SymbolizerInfo.demangled_name);
6897 if (ThumbSymbolizerInfo.method != nullptr)
6898 free(ThumbSymbolizerInfo.method);
6899 if (ThumbSymbolizerInfo.demangled_name != nullptr)
6900 free(ThumbSymbolizerInfo.demangled_name);
6901 }
6902}
6903
6904//===----------------------------------------------------------------------===//
6905// __compact_unwind section dumping
6906//===----------------------------------------------------------------------===//
6907
6908namespace {
6909
6910template <typename T> static uint64_t readNext(const char *&Buf) {
6911 using llvm::support::little;
6912 using llvm::support::unaligned;
6913
6914 uint64_t Val = support::endian::read<T, little, unaligned>(Buf);
6915 Buf += sizeof(T);
6916 return Val;
6917}
6918
6919struct CompactUnwindEntry {
6920 uint32_t OffsetInSection;
6921
6922 uint64_t FunctionAddr;
6923 uint32_t Length;
6924 uint32_t CompactEncoding;
6925 uint64_t PersonalityAddr;
6926 uint64_t LSDAAddr;
6927
6928 RelocationRef FunctionReloc;
6929 RelocationRef PersonalityReloc;
6930 RelocationRef LSDAReloc;
6931
6932 CompactUnwindEntry(StringRef Contents, unsigned Offset, bool Is64)
6933 : OffsetInSection(Offset) {
6934 if (Is64)
6935 read<uint64_t>(Contents.data() + Offset);
6936 else
6937 read<uint32_t>(Contents.data() + Offset);
6938 }
6939
6940private:
6941 template <typename UIntPtr> void read(const char *Buf) {
6942 FunctionAddr = readNext<UIntPtr>(Buf);
6943 Length = readNext<uint32_t>(Buf);
6944 CompactEncoding = readNext<uint32_t>(Buf);
6945 PersonalityAddr = readNext<UIntPtr>(Buf);
6946 LSDAAddr = readNext<UIntPtr>(Buf);
6947 }
6948};
6949}
6950
6951/// Given a relocation from __compact_unwind, consisting of the RelocationRef
6952/// and data being relocated, determine the best base Name and Addend to use for
6953/// display purposes.
6954///
6955/// 1. An Extern relocation will directly reference a symbol (and the data is
6956/// then already an addend), so use that.
6957/// 2. Otherwise the data is an offset in the object file's layout; try to find
6958// a symbol before it in the same section, and use the offset from there.
6959/// 3. Finally, if all that fails, fall back to an offset from the start of the
6960/// referenced section.
6961static void findUnwindRelocNameAddend(const MachOObjectFile *Obj,
6962 std::map<uint64_t, SymbolRef> &Symbols,
6963 const RelocationRef &Reloc, uint64_t Addr,
6964 StringRef &Name, uint64_t &Addend) {
6965 if (Reloc.getSymbol() != Obj->symbol_end()) {
6966 Expected<StringRef> NameOrErr = Reloc.getSymbol()->getName();
6967 if (!NameOrErr)
6968 report_error(Obj->getFileName(), NameOrErr.takeError());
6969 Name = *NameOrErr;
6970 Addend = Addr;
6971 return;
6972 }
6973
6974 auto RE = Obj->getRelocation(Reloc.getRawDataRefImpl());
6975 SectionRef RelocSection = Obj->getAnyRelocationSection(RE);
6976
6977 uint64_t SectionAddr = RelocSection.getAddress();
6978
6979 auto Sym = Symbols.upper_bound(Addr);
6980 if (Sym == Symbols.begin()) {
6981 // The first symbol in the object is after this reference, the best we can
6982 // do is section-relative notation.
6983 RelocSection.getName(Name);
6984 Addend = Addr - SectionAddr;
6985 return;
6986 }
6987
6988 // Go back one so that SymbolAddress <= Addr.
6989 --Sym;
6990
6991 auto SectOrErr = Sym->second.getSection();
6992 if (!SectOrErr)
6993 report_error(Obj->getFileName(), SectOrErr.takeError());
6994 section_iterator SymSection = *SectOrErr;
6995 if (RelocSection == *SymSection) {
6996 // There's a valid symbol in the same section before this reference.
6997 Expected<StringRef> NameOrErr = Sym->second.getName();
6998 if (!NameOrErr)
6999 report_error(Obj->getFileName(), NameOrErr.takeError());
7000 Name = *NameOrErr;
7001 Addend = Addr - Sym->first;
7002 return;
7003 }
7004
7005 // There is a symbol before this reference, but it's in a different
7006 // section. Probably not helpful to mention it, so use the section name.
7007 RelocSection.getName(Name);
7008 Addend = Addr - SectionAddr;
7009}
7010
7011static void printUnwindRelocDest(const MachOObjectFile *Obj,
7012 std::map<uint64_t, SymbolRef> &Symbols,
7013 const RelocationRef &Reloc, uint64_t Addr) {
7014 StringRef Name;
7015 uint64_t Addend;
7016
7017 if (!Reloc.getObject())
7018 return;
7019
7020 findUnwindRelocNameAddend(Obj, Symbols, Reloc, Addr, Name, Addend);
7021
7022 outs() << Name;
7023 if (Addend)
7024 outs() << " + " << format("0x%" PRIx64"l" "x", Addend);
7025}
7026
7027static void
7028printMachOCompactUnwindSection(const MachOObjectFile *Obj,
7029 std::map<uint64_t, SymbolRef> &Symbols,
7030 const SectionRef &CompactUnwind) {
7031
7032 if (!Obj->isLittleEndian()) {
7033 outs() << "Skipping big-endian __compact_unwind section\n";
7034 return;
7035 }
7036
7037 bool Is64 = Obj->is64Bit();
7038 uint32_t PointerSize = Is64 ? sizeof(uint64_t) : sizeof(uint32_t);
7039 uint32_t EntrySize = 3 * PointerSize + 2 * sizeof(uint32_t);
7040
7041 StringRef Contents;
7042 CompactUnwind.getContents(Contents);
7043
7044 SmallVector<CompactUnwindEntry, 4> CompactUnwinds;
7045
7046 // First populate the initial raw offsets, encodings and so on from the entry.
7047 for (unsigned Offset = 0; Offset < Contents.size(); Offset += EntrySize) {
7048 CompactUnwindEntry Entry(Contents.data(), Offset, Is64);
7049 CompactUnwinds.push_back(Entry);
7050 }
7051
7052 // Next we need to look at the relocations to find out what objects are
7053 // actually being referred to.
7054 for (const RelocationRef &Reloc : CompactUnwind.relocations()) {
7055 uint64_t RelocAddress = Reloc.getOffset();
7056
7057 uint32_t EntryIdx = RelocAddress / EntrySize;
7058 uint32_t OffsetInEntry = RelocAddress - EntryIdx * EntrySize;
7059 CompactUnwindEntry &Entry = CompactUnwinds[EntryIdx];
7060
7061 if (OffsetInEntry == 0)
7062 Entry.FunctionReloc = Reloc;
7063 else if (OffsetInEntry == PointerSize + 2 * sizeof(uint32_t))
7064 Entry.PersonalityReloc = Reloc;
7065 else if (OffsetInEntry == 2 * PointerSize + 2 * sizeof(uint32_t))
7066 Entry.LSDAReloc = Reloc;
7067 else {
7068 outs() << "Invalid relocation in __compact_unwind section\n";
7069 return;
7070 }
7071 }
7072
7073 // Finally, we're ready to print the data we've gathered.
7074 outs() << "Contents of __compact_unwind section:\n";
7075 for (auto &Entry : CompactUnwinds) {
7076 outs() << " Entry at offset "
7077 << format("0x%" PRIx32"x", Entry.OffsetInSection) << ":\n";
7078
7079 // 1. Start of the region this entry applies to.
7080 outs() << " start: " << format("0x%" PRIx64"l" "x",
7081 Entry.FunctionAddr) << ' ';
7082 printUnwindRelocDest(Obj, Symbols, Entry.FunctionReloc, Entry.FunctionAddr);
7083 outs() << '\n';
7084
7085 // 2. Length of the region this entry applies to.
7086 outs() << " length: " << format("0x%" PRIx32"x", Entry.Length)
7087 << '\n';
7088 // 3. The 32-bit compact encoding.
7089 outs() << " compact encoding: "
7090 << format("0x%08" PRIx32"x", Entry.CompactEncoding) << '\n';
7091
7092 // 4. The personality function, if present.
7093 if (Entry.PersonalityReloc.getObject()) {
7094 outs() << " personality function: "
7095 << format("0x%" PRIx64"l" "x", Entry.PersonalityAddr) << ' ';
7096 printUnwindRelocDest(Obj, Symbols, Entry.PersonalityReloc,
7097 Entry.PersonalityAddr);
7098 outs() << '\n';
7099 }
7100
7101 // 5. This entry's language-specific data area.
7102 if (Entry.LSDAReloc.getObject()) {
7103 outs() << " LSDA: " << format("0x%" PRIx64"l" "x",
7104 Entry.LSDAAddr) << ' ';
7105 printUnwindRelocDest(Obj, Symbols, Entry.LSDAReloc, Entry.LSDAAddr);
7106 outs() << '\n';
7107 }
7108 }
7109}
7110
7111//===----------------------------------------------------------------------===//
7112// __unwind_info section dumping
7113//===----------------------------------------------------------------------===//
7114
7115static void printRegularSecondLevelUnwindPage(const char *PageStart) {
7116 const char *Pos = PageStart;
7117 uint32_t Kind = readNext<uint32_t>(Pos);
7118 (void)Kind;
7119 assert(Kind == 2 && "kind for a regular 2nd level index should be 2")((Kind == 2 && "kind for a regular 2nd level index should be 2"
) ? static_cast<void> (0) : __assert_fail ("Kind == 2 && \"kind for a regular 2nd level index should be 2\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/llvm-objdump/MachODump.cpp"
, 7119, __PRETTY_FUNCTION__))
;
7120
7121 uint16_t EntriesStart = readNext<uint16_t>(Pos);
7122 uint16_t NumEntries = readNext<uint16_t>(Pos);
7123
7124 Pos = PageStart + EntriesStart;
7125 for (unsigned i = 0; i < NumEntries; ++i) {
7126 uint32_t FunctionOffset = readNext<uint32_t>(Pos);
7127 uint32_t Encoding = readNext<uint32_t>(Pos);
7128
7129 outs() << " [" << i << "]: "
7130 << "function offset=" << format("0x%08" PRIx32"x", FunctionOffset)
7131 << ", "
7132 << "encoding=" << format("0x%08" PRIx32"x", Encoding) << '\n';
7133 }
7134}
7135
7136static void printCompressedSecondLevelUnwindPage(
7137 const char *PageStart, uint32_t FunctionBase,
7138 const SmallVectorImpl<uint32_t> &CommonEncodings) {
7139 const char *Pos = PageStart;
7140 uint32_t Kind = readNext<uint32_t>(Pos);
7141 (void)Kind;
7142 assert(Kind == 3 && "kind for a compressed 2nd level index should be 3")((Kind == 3 && "kind for a compressed 2nd level index should be 3"
) ? static_cast<void> (0) : __assert_fail ("Kind == 3 && \"kind for a compressed 2nd level index should be 3\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/llvm-objdump/MachODump.cpp"
, 7142, __PRETTY_FUNCTION__))
;
7143
7144 uint16_t EntriesStart = readNext<uint16_t>(Pos);
7145 uint16_t NumEntries = readNext<uint16_t>(Pos);
7146
7147 uint16_t EncodingsStart = readNext<uint16_t>(Pos);
7148 readNext<uint16_t>(Pos);
7149 const auto *PageEncodings = reinterpret_cast<const support::ulittle32_t *>(
7150 PageStart + EncodingsStart);
7151
7152 Pos = PageStart + EntriesStart;
7153 for (unsigned i = 0; i < NumEntries; ++i) {
7154 uint32_t Entry = readNext<uint32_t>(Pos);
7155 uint32_t FunctionOffset = FunctionBase + (Entry & 0xffffff);
7156 uint32_t EncodingIdx = Entry >> 24;
7157
7158 uint32_t Encoding;
7159 if (EncodingIdx < CommonEncodings.size())
7160 Encoding = CommonEncodings[EncodingIdx];
7161 else
7162 Encoding = PageEncodings[EncodingIdx - CommonEncodings.size()];
7163
7164 outs() << " [" << i << "]: "
7165 << "function offset=" << format("0x%08" PRIx32"x", FunctionOffset)
7166 << ", "
7167 << "encoding[" << EncodingIdx
7168 << "]=" << format("0x%08" PRIx32"x", Encoding) << '\n';
7169 }
7170}
7171
7172static void printMachOUnwindInfoSection(const MachOObjectFile *Obj,
7173 std::map<uint64_t, SymbolRef> &Symbols,
7174 const SectionRef &UnwindInfo) {
7175
7176 if (!Obj->isLittleEndian()) {
7177 outs() << "Skipping big-endian __unwind_info section\n";
7178 return;
7179 }
7180
7181 outs() << "Contents of __unwind_info section:\n";
7182
7183 StringRef Contents;
7184 UnwindInfo.getContents(Contents);
7185 const char *Pos = Contents.data();
7186
7187 //===----------------------------------
7188 // Section header
7189 //===----------------------------------
7190
7191 uint32_t Version = readNext<uint32_t>(Pos);
7192 outs() << " Version: "
7193 << format("0x%" PRIx32"x", Version) << '\n';
7194 if (Version != 1) {
7195 outs() << " Skipping section with unknown version\n";
7196 return;
7197 }
7198
7199 uint32_t CommonEncodingsStart = readNext<uint32_t>(Pos);
7200 outs() << " Common encodings array section offset: "
7201 << format("0x%" PRIx32"x", CommonEncodingsStart) << '\n';
7202 uint32_t NumCommonEncodings = readNext<uint32_t>(Pos);
7203 outs() << " Number of common encodings in array: "
7204 << format("0x%" PRIx32"x", NumCommonEncodings) << '\n';
7205
7206 uint32_t PersonalitiesStart = readNext<uint32_t>(Pos);
7207 outs() << " Personality function array section offset: "
7208 << format("0x%" PRIx32"x", PersonalitiesStart) << '\n';
7209 uint32_t NumPersonalities = readNext<uint32_t>(Pos);
7210 outs() << " Number of personality functions in array: "
7211 << format("0x%" PRIx32"x", NumPersonalities) << '\n';
7212
7213 uint32_t IndicesStart = readNext<uint32_t>(Pos);
7214 outs() << " Index array section offset: "
7215 << format("0x%" PRIx32"x", IndicesStart) << '\n';
7216 uint32_t NumIndices = readNext<uint32_t>(Pos);
7217 outs() << " Number of indices in array: "
7218 << format("0x%" PRIx32"x", NumIndices) << '\n';
7219
7220 //===----------------------------------
7221 // A shared list of common encodings
7222 //===----------------------------------
7223
7224 // These occupy indices in the range [0, N] whenever an encoding is referenced
7225 // from a compressed 2nd level index table. In practice the linker only
7226 // creates ~128 of these, so that indices are available to embed encodings in
7227 // the 2nd level index.
7228
7229 SmallVector<uint32_t, 64> CommonEncodings;
7230 outs() << " Common encodings: (count = " << NumCommonEncodings << ")\n";
7231 Pos = Contents.data() + CommonEncodingsStart;
7232 for (unsigned i = 0; i < NumCommonEncodings; ++i) {
7233 uint32_t Encoding = readNext<uint32_t>(Pos);
7234 CommonEncodings.push_back(Encoding);
7235
7236 outs() << " encoding[" << i << "]: " << format("0x%08" PRIx32"x", Encoding)
7237 << '\n';
7238 }
7239
7240 //===----------------------------------
7241 // Personality functions used in this executable
7242 //===----------------------------------
7243
7244 // There should be only a handful of these (one per source language,
7245 // roughly). Particularly since they only get 2 bits in the compact encoding.
7246
7247 outs() << " Personality functions: (count = " << NumPersonalities << ")\n";
7248 Pos = Contents.data() + PersonalitiesStart;
7249 for (unsigned i = 0; i < NumPersonalities; ++i) {
7250 uint32_t PersonalityFn = readNext<uint32_t>(Pos);
7251 outs() << " personality[" << i + 1
7252 << "]: " << format("0x%08" PRIx32"x", PersonalityFn) << '\n';
7253 }
7254
7255 //===----------------------------------
7256 // The level 1 index entries
7257 //===----------------------------------
7258
7259 // These specify an approximate place to start searching for the more detailed
7260 // information, sorted by PC.
7261
7262 struct IndexEntry {
7263 uint32_t FunctionOffset;
7264 uint32_t SecondLevelPageStart;
7265 uint32_t LSDAStart;
7266 };
7267
7268 SmallVector<IndexEntry, 4> IndexEntries;
7269
7270 outs() << " Top level indices: (count = " << NumIndices << ")\n";
7271 Pos = Contents.data() + IndicesStart;
7272 for (unsigned i = 0; i < NumIndices; ++i) {
7273 IndexEntry Entry;
7274
7275 Entry.FunctionOffset = readNext<uint32_t>(Pos);
7276 Entry.SecondLevelPageStart = readNext<uint32_t>(Pos);
7277 Entry.LSDAStart = readNext<uint32_t>(Pos);
7278 IndexEntries.push_back(Entry);
7279
7280 outs() << " [" << i << "]: "
7281 << "function offset=" << format("0x%08" PRIx32"x", Entry.FunctionOffset)
7282 << ", "
7283 << "2nd level page offset="
7284 << format("0x%08" PRIx32"x", Entry.SecondLevelPageStart) << ", "
7285 << "LSDA offset=" << format("0x%08" PRIx32"x", Entry.LSDAStart) << '\n';
7286 }
7287
7288 //===----------------------------------
7289 // Next come the LSDA tables
7290 //===----------------------------------
7291
7292 // The LSDA layout is rather implicit: it's a contiguous array of entries from
7293 // the first top-level index's LSDAOffset to the last (sentinel).
7294
7295 outs() << " LSDA descriptors:\n";
7296 Pos = Contents.data() + IndexEntries[0].LSDAStart;
7297 int NumLSDAs = (IndexEntries.back().LSDAStart - IndexEntries[0].LSDAStart) /
7298 (2 * sizeof(uint32_t));
7299 for (int i = 0; i < NumLSDAs; ++i) {
7300 uint32_t FunctionOffset = readNext<uint32_t>(Pos);
7301 uint32_t LSDAOffset = readNext<uint32_t>(Pos);
7302 outs() << " [" << i << "]: "
7303 << "function offset=" << format("0x%08" PRIx32"x", FunctionOffset)
7304 << ", "
7305 << "LSDA offset=" << format("0x%08" PRIx32"x", LSDAOffset) << '\n';
7306 }
7307
7308 //===----------------------------------
7309 // Finally, the 2nd level indices
7310 //===----------------------------------
7311
7312 // Generally these are 4K in size, and have 2 possible forms:
7313 // + Regular stores up to 511 entries with disparate encodings
7314 // + Compressed stores up to 1021 entries if few enough compact encoding
7315 // values are used.
7316 outs() << " Second level indices:\n";
7317 for (unsigned i = 0; i < IndexEntries.size() - 1; ++i) {
7318 // The final sentinel top-level index has no associated 2nd level page
7319 if (IndexEntries[i].SecondLevelPageStart == 0)
7320 break;
7321
7322 outs() << " Second level index[" << i << "]: "
7323 << "offset in section="
7324 << format("0x%08" PRIx32"x", IndexEntries[i].SecondLevelPageStart)
7325 << ", "
7326 << "base function offset="
7327 << format("0x%08" PRIx32"x", IndexEntries[i].FunctionOffset) << '\n';
7328
7329 Pos = Contents.data() + IndexEntries[i].SecondLevelPageStart;
7330 uint32_t Kind = *reinterpret_cast<const support::ulittle32_t *>(Pos);
7331 if (Kind == 2)
7332 printRegularSecondLevelUnwindPage(Pos);
7333 else if (Kind == 3)
7334 printCompressedSecondLevelUnwindPage(Pos, IndexEntries[i].FunctionOffset,
7335 CommonEncodings);
7336 else
7337 outs() << " Skipping 2nd level page with unknown kind " << Kind
7338 << '\n';
7339 }
7340}
7341
7342void llvm::printMachOUnwindInfo(const MachOObjectFile *Obj) {
7343 std::map<uint64_t, SymbolRef> Symbols;
7344 for (const SymbolRef &SymRef : Obj->symbols()) {
7345 // Discard any undefined or absolute symbols. They're not going to take part
7346 // in the convenience lookup for unwind info and just take up resources.
7347 auto SectOrErr = SymRef.getSection();
7348 if (!SectOrErr) {
7349 // TODO: Actually report errors helpfully.
7350 consumeError(SectOrErr.takeError());
7351 continue;
7352 }
7353 section_iterator Section = *SectOrErr;
7354 if (Section == Obj->section_end())
7355 continue;
7356
7357 uint64_t Addr = SymRef.getValue();
7358 Symbols.insert(std::make_pair(Addr, SymRef));
7359 }
7360
7361 for (const SectionRef &Section : Obj->sections()) {
7362 StringRef SectName;
7363 Section.getName(SectName);
7364 if (SectName == "__compact_unwind")
7365 printMachOCompactUnwindSection(Obj, Symbols, Section);
7366 else if (SectName == "__unwind_info")
7367 printMachOUnwindInfoSection(Obj, Symbols, Section);
7368 }
7369}
7370
7371static void PrintMachHeader(uint32_t magic, uint32_t cputype,
7372 uint32_t cpusubtype, uint32_t filetype,
7373 uint32_t ncmds, uint32_t sizeofcmds, uint32_t flags,
7374 bool verbose) {
7375 outs() << "Mach header\n";
7376 outs() << " magic cputype cpusubtype caps filetype ncmds "
7377 "sizeofcmds flags\n";
7378 if (verbose) {
7379 if (magic == MachO::MH_MAGIC)
7380 outs() << " MH_MAGIC";
7381 else if (magic == MachO::MH_MAGIC_64)
7382 outs() << "MH_MAGIC_64";
7383 else
7384 outs() << format(" 0x%08" PRIx32"x", magic);
7385 switch (cputype) {
7386 case MachO::CPU_TYPE_I386:
7387 outs() << " I386";
7388 switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
7389 case MachO::CPU_SUBTYPE_I386_ALL:
7390 outs() << " ALL";
7391 break;
7392 default:
7393 outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
7394 break;
7395 }
7396 break;
7397 case MachO::CPU_TYPE_X86_64:
7398 outs() << " X86_64";
7399 switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
7400 case MachO::CPU_SUBTYPE_X86_64_ALL:
7401 outs() << " ALL";
7402 break;
7403 case MachO::CPU_SUBTYPE_X86_64_H:
7404 outs() << " Haswell";
7405 break;
7406 default:
7407 outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
7408 break;
7409 }
7410 break;
7411 case MachO::CPU_TYPE_ARM:
7412 outs() << " ARM";
7413 switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
7414 case MachO::CPU_SUBTYPE_ARM_ALL:
7415 outs() << " ALL";
7416 break;
7417 case MachO::CPU_SUBTYPE_ARM_V4T:
7418 outs() << " V4T";
7419 break;
7420 case MachO::CPU_SUBTYPE_ARM_V5TEJ:
7421 outs() << " V5TEJ";
7422 break;
7423 case MachO::CPU_SUBTYPE_ARM_XSCALE:
7424 outs() << " XSCALE";
7425 break;
7426 case MachO::CPU_SUBTYPE_ARM_V6:
7427 outs() << " V6";
7428 break;
7429 case MachO::CPU_SUBTYPE_ARM_V6M:
7430 outs() << " V6M";
7431 break;
7432 case MachO::CPU_SUBTYPE_ARM_V7:
7433 outs() << " V7";
7434 break;
7435 case MachO::CPU_SUBTYPE_ARM_V7EM:
7436 outs() << " V7EM";
7437 break;
7438 case MachO::CPU_SUBTYPE_ARM_V7K:
7439 outs() << " V7K";
7440 break;
7441 case MachO::CPU_SUBTYPE_ARM_V7M:
7442 outs() << " V7M";
7443 break;
7444 case MachO::CPU_SUBTYPE_ARM_V7S:
7445 outs() << " V7S";
7446 break;
7447 default:
7448 outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
7449 break;
7450 }
7451 break;
7452 case MachO::CPU_TYPE_ARM64:
7453 outs() << " ARM64";
7454 switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
7455 case MachO::CPU_SUBTYPE_ARM64_ALL:
7456 outs() << " ALL";
7457 break;
7458 default:
7459 outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
7460 break;
7461 }
7462 break;
7463 case MachO::CPU_TYPE_POWERPC:
7464 outs() << " PPC";
7465 switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
7466 case MachO::CPU_SUBTYPE_POWERPC_ALL:
7467 outs() << " ALL";
7468 break;
7469 default:
7470 outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
7471 break;
7472 }
7473 break;
7474 case MachO::CPU_TYPE_POWERPC64:
7475 outs() << " PPC64";
7476 switch (cpusubtype & ~MachO::CPU_SUBTYPE_MASK) {
7477 case MachO::CPU_SUBTYPE_POWERPC_ALL:
7478 outs() << " ALL";
7479 break;
7480 default:
7481 outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
7482 break;
7483 }
7484 break;
7485 default:
7486 outs() << format(" %7d", cputype);
7487 outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
7488 break;
7489 }
7490 if ((cpusubtype & MachO::CPU_SUBTYPE_MASK) == MachO::CPU_SUBTYPE_LIB64) {
7491 outs() << " LIB64";
7492 } else {
7493 outs() << format(" 0x%02" PRIx32"x",
7494 (cpusubtype & MachO::CPU_SUBTYPE_MASK) >> 24);
7495 }
7496 switch (filetype) {
7497 case MachO::MH_OBJECT:
7498 outs() << " OBJECT";
7499 break;
7500 case MachO::MH_EXECUTE:
7501 outs() << " EXECUTE";
7502 break;
7503 case MachO::MH_FVMLIB:
7504 outs() << " FVMLIB";
7505 break;
7506 case MachO::MH_CORE:
7507 outs() << " CORE";
7508 break;
7509 case MachO::MH_PRELOAD:
7510 outs() << " PRELOAD";
7511 break;
7512 case MachO::MH_DYLIB:
7513 outs() << " DYLIB";
7514 break;
7515 case MachO::MH_DYLIB_STUB:
7516 outs() << " DYLIB_STUB";
7517 break;
7518 case MachO::MH_DYLINKER:
7519 outs() << " DYLINKER";
7520 break;
7521 case MachO::MH_BUNDLE:
7522 outs() << " BUNDLE";
7523 break;
7524 case MachO::MH_DSYM:
7525 outs() << " DSYM";
7526 break;
7527 case MachO::MH_KEXT_BUNDLE:
7528 outs() << " KEXTBUNDLE";
7529 break;
7530 default:
7531 outs() << format(" %10u", filetype);
7532 break;
7533 }
7534 outs() << format(" %5u", ncmds);
7535 outs() << format(" %10u", sizeofcmds);
7536 uint32_t f = flags;
7537 if (f & MachO::MH_NOUNDEFS) {
7538 outs() << " NOUNDEFS";
7539 f &= ~MachO::MH_NOUNDEFS;
7540 }
7541 if (f & MachO::MH_INCRLINK) {
7542 outs() << " INCRLINK";
7543 f &= ~MachO::MH_INCRLINK;
7544 }
7545 if (f & MachO::MH_DYLDLINK) {
7546 outs() << " DYLDLINK";
7547 f &= ~MachO::MH_DYLDLINK;
7548 }
7549 if (f & MachO::MH_BINDATLOAD) {
7550 outs() << " BINDATLOAD";
7551 f &= ~MachO::MH_BINDATLOAD;
7552 }
7553 if (f & MachO::MH_PREBOUND) {
7554 outs() << " PREBOUND";
7555 f &= ~MachO::MH_PREBOUND;
7556 }
7557 if (f & MachO::MH_SPLIT_SEGS) {
7558 outs() << " SPLIT_SEGS";
7559 f &= ~MachO::MH_SPLIT_SEGS;
7560 }
7561 if (f & MachO::MH_LAZY_INIT) {
7562 outs() << " LAZY_INIT";
7563 f &= ~MachO::MH_LAZY_INIT;
7564 }
7565 if (f & MachO::MH_TWOLEVEL) {
7566 outs() << " TWOLEVEL";
7567 f &= ~MachO::MH_TWOLEVEL;
7568 }
7569 if (f & MachO::MH_FORCE_FLAT) {
7570 outs() << " FORCE_FLAT";
7571 f &= ~MachO::MH_FORCE_FLAT;
7572 }
7573 if (f & MachO::MH_NOMULTIDEFS) {
7574 outs() << " NOMULTIDEFS";
7575 f &= ~MachO::MH_NOMULTIDEFS;
7576 }
7577 if (f & MachO::MH_NOFIXPREBINDING) {
7578 outs() << " NOFIXPREBINDING";
7579 f &= ~MachO::MH_NOFIXPREBINDING;
7580 }
7581 if (f & MachO::MH_PREBINDABLE) {
7582 outs() << " PREBINDABLE";
7583 f &= ~MachO::MH_PREBINDABLE;
7584 }
7585 if (f & MachO::MH_ALLMODSBOUND) {
7586 outs() << " ALLMODSBOUND";
7587 f &= ~MachO::MH_ALLMODSBOUND;
7588 }
7589 if (f & MachO::MH_SUBSECTIONS_VIA_SYMBOLS) {
7590 outs() << " SUBSECTIONS_VIA_SYMBOLS";
7591 f &= ~MachO::MH_SUBSECTIONS_VIA_SYMBOLS;
7592 }
7593 if (f & MachO::MH_CANONICAL) {
7594 outs() << " CANONICAL";
7595 f &= ~MachO::MH_CANONICAL;
7596 }
7597 if (f & MachO::MH_WEAK_DEFINES) {
7598 outs() << " WEAK_DEFINES";
7599 f &= ~MachO::MH_WEAK_DEFINES;
7600 }
7601 if (f & MachO::MH_BINDS_TO_WEAK) {
7602 outs() << " BINDS_TO_WEAK";
7603 f &= ~MachO::MH_BINDS_TO_WEAK;
7604 }
7605 if (f & MachO::MH_ALLOW_STACK_EXECUTION) {
7606 outs() << " ALLOW_STACK_EXECUTION";
7607 f &= ~MachO::MH_ALLOW_STACK_EXECUTION;
7608 }
7609 if (f & MachO::MH_DEAD_STRIPPABLE_DYLIB) {
7610 outs() << " DEAD_STRIPPABLE_DYLIB";
7611 f &= ~MachO::MH_DEAD_STRIPPABLE_DYLIB;
7612 }
7613 if (f & MachO::MH_PIE) {
7614 outs() << " PIE";
7615 f &= ~MachO::MH_PIE;
7616 }
7617 if (f & MachO::MH_NO_REEXPORTED_DYLIBS) {
7618 outs() << " NO_REEXPORTED_DYLIBS";
7619 f &= ~MachO::MH_NO_REEXPORTED_DYLIBS;
7620 }
7621 if (f & MachO::MH_HAS_TLV_DESCRIPTORS) {
7622 outs() << " MH_HAS_TLV_DESCRIPTORS";
7623 f &= ~MachO::MH_HAS_TLV_DESCRIPTORS;
7624 }
7625 if (f & MachO::MH_NO_HEAP_EXECUTION) {
7626 outs() << " MH_NO_HEAP_EXECUTION";
7627 f &= ~MachO::MH_NO_HEAP_EXECUTION;
7628 }
7629 if (f & MachO::MH_APP_EXTENSION_SAFE) {
7630 outs() << " APP_EXTENSION_SAFE";
7631 f &= ~MachO::MH_APP_EXTENSION_SAFE;
7632 }
7633 if (f != 0 || flags == 0)
7634 outs() << format(" 0x%08" PRIx32"x", f);
7635 } else {
7636 outs() << format(" 0x%08" PRIx32"x", magic);
7637 outs() << format(" %7d", cputype);
7638 outs() << format(" %10d", cpusubtype & ~MachO::CPU_SUBTYPE_MASK);
7639 outs() << format(" 0x%02" PRIx32"x",
7640 (cpusubtype & MachO::CPU_SUBTYPE_MASK) >> 24);
7641 outs() << format(" %10u", filetype);
7642 outs() << format(" %5u", ncmds);
7643 outs() << format(" %10u", sizeofcmds);
7644 outs() << format(" 0x%08" PRIx32"x", flags);
7645 }
7646 outs() << "\n";
7647}
7648
7649static void PrintSegmentCommand(uint32_t cmd, uint32_t cmdsize,
7650 StringRef SegName, uint64_t vmaddr,
7651 uint64_t vmsize, uint64_t fileoff,
7652 uint64_t filesize, uint32_t maxprot,
7653 uint32_t initprot, uint32_t nsects,
7654 uint32_t flags, uint32_t object_size,
7655 bool verbose) {
7656 uint64_t expected_cmdsize;
7657 if (cmd == MachO::LC_SEGMENT) {
7658 outs() << " cmd LC_SEGMENT\n";
7659 expected_cmdsize = nsects;
7660 expected_cmdsize *= sizeof(struct MachO::section);
7661 expected_cmdsize += sizeof(struct MachO::segment_command);
7662 } else {
7663 outs() << " cmd LC_SEGMENT_64\n";
7664 expected_cmdsize = nsects;
7665 expected_cmdsize *= sizeof(struct MachO::section_64);
7666 expected_cmdsize += sizeof(struct MachO::segment_command_64);
7667 }
7668 outs() <<