Bug Summary

File:lib/CodeGen/MachineDominators.cpp
Warning:line 140, column 1
Potential leak of memory pointed to by 'IsNewIDom.X'

Annotated Source Code

[?] Use j/k keys for keyboard navigation

/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MachineDominators.cpp

1//===- MachineDominators.cpp - Machine Dominator Calculation --------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements simple dominator construction algorithms for finding
11// forward dominators on machine functions.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/CodeGen/MachineDominators.h"
16#include "llvm/ADT/SmallBitVector.h"
17#include "llvm/CodeGen/Passes.h"
18#include "llvm/Support/CommandLine.h"
19
20using namespace llvm;
21
22// Always verify dominfo if expensive checking is enabled.
23#ifdef EXPENSIVE_CHECKS
24static bool VerifyMachineDomInfo = true;
25#else
26static bool VerifyMachineDomInfo = false;
27#endif
28static cl::opt<bool, true> VerifyMachineDomInfoX(
29 "verify-machine-dom-info", cl::location(VerifyMachineDomInfo), cl::Hidden,
30 cl::desc("Verify machine dominator info (time consuming)"));
31
32namespace llvm {
33template class DomTreeNodeBase<MachineBasicBlock>;
34template class DominatorTreeBase<MachineBasicBlock, false>; // DomTreeBase
35}
36
37char MachineDominatorTree::ID = 0;
38
39INITIALIZE_PASS(MachineDominatorTree, "machinedomtree",static void *initializeMachineDominatorTreePassOnce(PassRegistry
&Registry) { PassInfo *PI = new PassInfo( "MachineDominator Tree Construction"
, "machinedomtree", &MachineDominatorTree::ID, PassInfo::
NormalCtor_t(callDefaultCtor<MachineDominatorTree>), true
, true); Registry.registerPass(*PI, true); return PI; } static
llvm::once_flag InitializeMachineDominatorTreePassFlag; void
llvm::initializeMachineDominatorTreePass(PassRegistry &Registry
) { llvm::call_once(InitializeMachineDominatorTreePassFlag, initializeMachineDominatorTreePassOnce
, std::ref(Registry)); }
40 "MachineDominator Tree Construction", true, true)static void *initializeMachineDominatorTreePassOnce(PassRegistry
&Registry) { PassInfo *PI = new PassInfo( "MachineDominator Tree Construction"
, "machinedomtree", &MachineDominatorTree::ID, PassInfo::
NormalCtor_t(callDefaultCtor<MachineDominatorTree>), true
, true); Registry.registerPass(*PI, true); return PI; } static
llvm::once_flag InitializeMachineDominatorTreePassFlag; void
llvm::initializeMachineDominatorTreePass(PassRegistry &Registry
) { llvm::call_once(InitializeMachineDominatorTreePassFlag, initializeMachineDominatorTreePassOnce
, std::ref(Registry)); }
41
42char &llvm::MachineDominatorsID = MachineDominatorTree::ID;
43
44void MachineDominatorTree::getAnalysisUsage(AnalysisUsage &AU) const {
45 AU.setPreservesAll();
46 MachineFunctionPass::getAnalysisUsage(AU);
47}
48
49bool MachineDominatorTree::runOnMachineFunction(MachineFunction &F) {
50 CriticalEdgesToSplit.clear();
51 NewBBs.clear();
52 DT.reset(new DomTreeBase<MachineBasicBlock>());
53 DT->recalculate(F);
54 return false;
55}
56
57MachineDominatorTree::MachineDominatorTree()
58 : MachineFunctionPass(ID) {
59 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
60}
61
62void MachineDominatorTree::releaseMemory() {
63 CriticalEdgesToSplit.clear();
64 DT.reset(nullptr);
65}
66
67void MachineDominatorTree::verifyAnalysis() const {
68 if (DT && VerifyMachineDomInfo)
1
Assuming 'VerifyMachineDomInfo' is not equal to 0
2
Taking true branch
69 verifyDomTree();
3
Calling 'MachineDominatorTree::verifyDomTree'
70}
71
72void MachineDominatorTree::print(raw_ostream &OS, const Module*) const {
73 if (DT)
74 DT->print(OS);
75}
76
77void MachineDominatorTree::applySplitCriticalEdges() const {
78 // Bail out early if there is nothing to do.
79 if (CriticalEdgesToSplit.empty())
7
Taking false branch
80 return;
81
82 // For each element in CriticalEdgesToSplit, remember whether or not element
83 // is the new immediate domminator of its successor. The mapping is done by
84 // index, i.e., the information for the ith element of CriticalEdgesToSplit is
85 // the ith element of IsNewIDom.
86 SmallBitVector IsNewIDom(CriticalEdgesToSplit.size(), true);
8
Calling constructor for 'SmallBitVector'
12
Returning from constructor for 'SmallBitVector'
87 size_t Idx = 0;
88
89 // Collect all the dominance properties info, before invalidating
90 // the underlying DT.
91 for (CriticalEdge &Edge : CriticalEdgesToSplit) {
13
Assuming '__begin' is equal to '__end'
92 // Update dominator information.
93 MachineBasicBlock *Succ = Edge.ToBB;
94 MachineDomTreeNode *SuccDTNode = DT->getNode(Succ);
95
96 for (MachineBasicBlock *PredBB : Succ->predecessors()) {
97 if (PredBB == Edge.NewBB)
98 continue;
99 // If we are in this situation:
100 // FromBB1 FromBB2
101 // + +
102 // + + + +
103 // + + + +
104 // ... Split1 Split2 ...
105 // + +
106 // + +
107 // +
108 // Succ
109 // Instead of checking the domiance property with Split2, we check it with
110 // FromBB2 since Split2 is still unknown of the underlying DT structure.
111 if (NewBBs.count(PredBB)) {
112 assert(PredBB->pred_size() == 1 && "A basic block resulting from a "(static_cast <bool> (PredBB->pred_size() == 1 &&
"A basic block resulting from a " "critical edge split has more "
"than one predecessor!") ? void (0) : __assert_fail ("PredBB->pred_size() == 1 && \"A basic block resulting from a \" \"critical edge split has more \" \"than one predecessor!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MachineDominators.cpp"
, 114, __extension__ __PRETTY_FUNCTION__))
113 "critical edge split has more "(static_cast <bool> (PredBB->pred_size() == 1 &&
"A basic block resulting from a " "critical edge split has more "
"than one predecessor!") ? void (0) : __assert_fail ("PredBB->pred_size() == 1 && \"A basic block resulting from a \" \"critical edge split has more \" \"than one predecessor!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MachineDominators.cpp"
, 114, __extension__ __PRETTY_FUNCTION__))
114 "than one predecessor!")(static_cast <bool> (PredBB->pred_size() == 1 &&
"A basic block resulting from a " "critical edge split has more "
"than one predecessor!") ? void (0) : __assert_fail ("PredBB->pred_size() == 1 && \"A basic block resulting from a \" \"critical edge split has more \" \"than one predecessor!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/lib/CodeGen/MachineDominators.cpp"
, 114, __extension__ __PRETTY_FUNCTION__))
;
115 PredBB = *PredBB->pred_begin();
116 }
117 if (!DT->dominates(SuccDTNode, DT->getNode(PredBB))) {
118 IsNewIDom[Idx] = false;
119 break;
120 }
121 }
122 ++Idx;
123 }
124
125 // Now, update DT with the collected dominance properties info.
126 Idx = 0;
127 for (CriticalEdge &Edge : CriticalEdgesToSplit) {
14
Assuming '__begin' is equal to '__end'
128 // We know FromBB dominates NewBB.
129 MachineDomTreeNode *NewDTNode = DT->addNewBlock(Edge.NewBB, Edge.FromBB);
130
131 // If all the other predecessors of "Succ" are dominated by "Succ" itself
132 // then the new block is the new immediate dominator of "Succ". Otherwise,
133 // the new block doesn't dominate anything.
134 if (IsNewIDom[Idx])
135 DT->changeImmediateDominator(DT->getNode(Edge.ToBB), NewDTNode);
136 ++Idx;
137 }
138 NewBBs.clear();
139 CriticalEdgesToSplit.clear();
140}
15
Potential leak of memory pointed to by 'IsNewIDom.X'
141
142void MachineDominatorTree::verifyDomTree() const {
143 if (!DT)
4
Taking false branch
144 return;
145 MachineFunction &F = *getRoot()->getParent();
5
Calling 'MachineDominatorTree::getRoot'
146
147 DomTreeBase<MachineBasicBlock> OtherDT;
148 OtherDT.recalculate(F);
149 if (getRootNode()->getBlock() != OtherDT.getRootNode()->getBlock() ||
150 DT->compare(OtherDT)) {
151 errs() << "MachineDominatorTree for function " << F.getName()
152 << " is not up to date!\nComputed:\n";
153 DT->print(errs());
154 errs() << "\nActual:\n";
155 OtherDT.print(errs());
156 abort();
157 }
158}

/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/CodeGen/MachineDominators.h

1//==- llvm/CodeGen/MachineDominators.h - Machine Dom Calculation -*- C++ -*-==//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines classes mirroring those in llvm/Analysis/Dominators.h,
11// but for target-specific code rather than target-independent IR.
12//
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_CODEGEN_MACHINEDOMINATORS_H
16#define LLVM_CODEGEN_MACHINEDOMINATORS_H
17
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/ADT/SmallVector.h"
20#include "llvm/CodeGen/MachineBasicBlock.h"
21#include "llvm/CodeGen/MachineFunctionPass.h"
22#include "llvm/CodeGen/MachineInstr.h"
23#include "llvm/Support/GenericDomTree.h"
24#include "llvm/Support/GenericDomTreeConstruction.h"
25#include <cassert>
26#include <memory>
27#include <vector>
28
29namespace llvm {
30
31template <>
32inline void DominatorTreeBase<MachineBasicBlock, false>::addRoot(
33 MachineBasicBlock *MBB) {
34 this->Roots.push_back(MBB);
35}
36
37extern template class DomTreeNodeBase<MachineBasicBlock>;
38extern template class DominatorTreeBase<MachineBasicBlock, false>; // DomTree
39extern template class DominatorTreeBase<MachineBasicBlock, true>; // PostDomTree
40
41using MachineDomTreeNode = DomTreeNodeBase<MachineBasicBlock>;
42
43//===-------------------------------------
44/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
45/// compute a normal dominator tree.
46///
47class MachineDominatorTree : public MachineFunctionPass {
48 /// \brief Helper structure used to hold all the basic blocks
49 /// involved in the split of a critical edge.
50 struct CriticalEdge {
51 MachineBasicBlock *FromBB;
52 MachineBasicBlock *ToBB;
53 MachineBasicBlock *NewBB;
54 };
55
56 /// \brief Pile up all the critical edges to be split.
57 /// The splitting of a critical edge is local and thus, it is possible
58 /// to apply several of those changes at the same time.
59 mutable SmallVector<CriticalEdge, 32> CriticalEdgesToSplit;
60
61 /// \brief Remember all the basic blocks that are inserted during
62 /// edge splitting.
63 /// Invariant: NewBBs == all the basic blocks contained in the NewBB
64 /// field of all the elements of CriticalEdgesToSplit.
65 /// I.e., forall elt in CriticalEdgesToSplit, it exists BB in NewBBs
66 /// such as BB == elt.NewBB.
67 mutable SmallSet<MachineBasicBlock *, 32> NewBBs;
68
69 /// The DominatorTreeBase that is used to compute a normal dominator tree
70 std::unique_ptr<DomTreeBase<MachineBasicBlock>> DT;
71
72 /// \brief Apply all the recorded critical edges to the DT.
73 /// This updates the underlying DT information in a way that uses
74 /// the fast query path of DT as much as possible.
75 ///
76 /// \post CriticalEdgesToSplit.empty().
77 void applySplitCriticalEdges() const;
78
79public:
80 static char ID; // Pass ID, replacement for typeid
81
82 MachineDominatorTree();
83
84 DomTreeBase<MachineBasicBlock> &getBase() {
85 if (!DT) DT.reset(new DomTreeBase<MachineBasicBlock>());
86 applySplitCriticalEdges();
87 return *DT;
88 }
89
90 void getAnalysisUsage(AnalysisUsage &AU) const override;
91
92 /// getRoots - Return the root blocks of the current CFG. This may include
93 /// multiple blocks if we are computing post dominators. For forward
94 /// dominators, this will always be a single block (the entry node).
95 ///
96 inline const SmallVectorImpl<MachineBasicBlock*> &getRoots() const {
97 applySplitCriticalEdges();
98 return DT->getRoots();
99 }
100
101 inline MachineBasicBlock *getRoot() const {
102 applySplitCriticalEdges();
6
Calling 'MachineDominatorTree::applySplitCriticalEdges'
103 return DT->getRoot();
104 }
105
106 inline MachineDomTreeNode *getRootNode() const {
107 applySplitCriticalEdges();
108 return DT->getRootNode();
109 }
110
111 bool runOnMachineFunction(MachineFunction &F) override;
112
113 inline bool dominates(const MachineDomTreeNode* A,
114 const MachineDomTreeNode* B) const {
115 applySplitCriticalEdges();
116 return DT->dominates(A, B);
117 }
118
119 inline bool dominates(const MachineBasicBlock* A,
120 const MachineBasicBlock* B) const {
121 applySplitCriticalEdges();
122 return DT->dominates(A, B);
123 }
124
125 // dominates - Return true if A dominates B. This performs the
126 // special checks necessary if A and B are in the same basic block.
127 bool dominates(const MachineInstr *A, const MachineInstr *B) const {
128 applySplitCriticalEdges();
129 const MachineBasicBlock *BBA = A->getParent(), *BBB = B->getParent();
130 if (BBA != BBB) return DT->dominates(BBA, BBB);
131
132 // Loop through the basic block until we find A or B.
133 MachineBasicBlock::const_iterator I = BBA->begin();
134 for (; &*I != A && &*I != B; ++I)
135 /*empty*/ ;
136
137 //if(!DT.IsPostDominators) {
138 // A dominates B if it is found first in the basic block.
139 return &*I == A;
140 //} else {
141 // // A post-dominates B if B is found first in the basic block.
142 // return &*I == B;
143 //}
144 }
145
146 inline bool properlyDominates(const MachineDomTreeNode* A,
147 const MachineDomTreeNode* B) const {
148 applySplitCriticalEdges();
149 return DT->properlyDominates(A, B);
150 }
151
152 inline bool properlyDominates(const MachineBasicBlock* A,
153 const MachineBasicBlock* B) const {
154 applySplitCriticalEdges();
155 return DT->properlyDominates(A, B);
156 }
157
158 /// findNearestCommonDominator - Find nearest common dominator basic block
159 /// for basic block A and B. If there is no such block then return NULL.
160 inline MachineBasicBlock *findNearestCommonDominator(MachineBasicBlock *A,
161 MachineBasicBlock *B) {
162 applySplitCriticalEdges();
163 return DT->findNearestCommonDominator(A, B);
164 }
165
166 inline MachineDomTreeNode *operator[](MachineBasicBlock *BB) const {
167 applySplitCriticalEdges();
168 return DT->getNode(BB);
169 }
170
171 /// getNode - return the (Post)DominatorTree node for the specified basic
172 /// block. This is the same as using operator[] on this class.
173 ///
174 inline MachineDomTreeNode *getNode(MachineBasicBlock *BB) const {
175 applySplitCriticalEdges();
176 return DT->getNode(BB);
177 }
178
179 /// addNewBlock - Add a new node to the dominator tree information. This
180 /// creates a new node as a child of DomBB dominator node,linking it into
181 /// the children list of the immediate dominator.
182 inline MachineDomTreeNode *addNewBlock(MachineBasicBlock *BB,
183 MachineBasicBlock *DomBB) {
184 applySplitCriticalEdges();
185 return DT->addNewBlock(BB, DomBB);
186 }
187
188 /// changeImmediateDominator - This method is used to update the dominator
189 /// tree information when a node's immediate dominator changes.
190 ///
191 inline void changeImmediateDominator(MachineBasicBlock *N,
192 MachineBasicBlock* NewIDom) {
193 applySplitCriticalEdges();
194 DT->changeImmediateDominator(N, NewIDom);
195 }
196
197 inline void changeImmediateDominator(MachineDomTreeNode *N,
198 MachineDomTreeNode* NewIDom) {
199 applySplitCriticalEdges();
200 DT->changeImmediateDominator(N, NewIDom);
201 }
202
203 /// eraseNode - Removes a node from the dominator tree. Block must not
204 /// dominate any other blocks. Removes node from its immediate dominator's
205 /// children list. Deletes dominator node associated with basic block BB.
206 inline void eraseNode(MachineBasicBlock *BB) {
207 applySplitCriticalEdges();
208 DT->eraseNode(BB);
209 }
210
211 /// splitBlock - BB is split and now it has one successor. Update dominator
212 /// tree to reflect this change.
213 inline void splitBlock(MachineBasicBlock* NewBB) {
214 applySplitCriticalEdges();
215 DT->splitBlock(NewBB);
216 }
217
218 /// isReachableFromEntry - Return true if A is dominated by the entry
219 /// block of the function containing it.
220 bool isReachableFromEntry(const MachineBasicBlock *A) {
221 applySplitCriticalEdges();
222 return DT->isReachableFromEntry(A);
223 }
224
225 void releaseMemory() override;
226
227 void verifyAnalysis() const override;
228
229 void print(raw_ostream &OS, const Module*) const override;
230
231 /// \brief Record that the critical edge (FromBB, ToBB) has been
232 /// split with NewBB.
233 /// This is best to use this method instead of directly update the
234 /// underlying information, because this helps mitigating the
235 /// number of time the DT information is invalidated.
236 ///
237 /// \note Do not use this method with regular edges.
238 ///
239 /// \note To benefit from the compile time improvement incurred by this
240 /// method, the users of this method have to limit the queries to the DT
241 /// interface between two edges splitting. In other words, they have to
242 /// pack the splitting of critical edges as much as possible.
243 void recordSplitCriticalEdge(MachineBasicBlock *FromBB,
244 MachineBasicBlock *ToBB,
245 MachineBasicBlock *NewBB) {
246 bool Inserted = NewBBs.insert(NewBB).second;
247 (void)Inserted;
248 assert(Inserted &&(static_cast <bool> (Inserted && "A basic block inserted via edge splitting cannot appear twice"
) ? void (0) : __assert_fail ("Inserted && \"A basic block inserted via edge splitting cannot appear twice\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/CodeGen/MachineDominators.h"
, 249, __extension__ __PRETTY_FUNCTION__))
249 "A basic block inserted via edge splitting cannot appear twice")(static_cast <bool> (Inserted && "A basic block inserted via edge splitting cannot appear twice"
) ? void (0) : __assert_fail ("Inserted && \"A basic block inserted via edge splitting cannot appear twice\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/CodeGen/MachineDominators.h"
, 249, __extension__ __PRETTY_FUNCTION__))
;
250 CriticalEdgesToSplit.push_back({FromBB, ToBB, NewBB});
251 }
252
253 /// \brief Verify the correctness of the domtree by re-computing it.
254 ///
255 /// This should only be used for debugging as it aborts the program if the
256 /// verification fails.
257 void verifyDomTree() const;
258};
259
260//===-------------------------------------
261/// DominatorTree GraphTraits specialization so the DominatorTree can be
262/// iterable by generic graph iterators.
263///
264
265template <class Node, class ChildIterator>
266struct MachineDomTreeGraphTraitsBase {
267 using NodeRef = Node *;
268 using ChildIteratorType = ChildIterator;
269
270 static NodeRef getEntryNode(NodeRef N) { return N; }
271 static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
272 static ChildIteratorType child_end(NodeRef N) { return N->end(); }
273};
274
275template <class T> struct GraphTraits;
276
277template <>
278struct GraphTraits<MachineDomTreeNode *>
279 : public MachineDomTreeGraphTraitsBase<MachineDomTreeNode,
280 MachineDomTreeNode::iterator> {};
281
282template <>
283struct GraphTraits<const MachineDomTreeNode *>
284 : public MachineDomTreeGraphTraitsBase<const MachineDomTreeNode,
285 MachineDomTreeNode::const_iterator> {
286};
287
288template <> struct GraphTraits<MachineDominatorTree*>
289 : public GraphTraits<MachineDomTreeNode *> {
290 static NodeRef getEntryNode(MachineDominatorTree *DT) {
291 return DT->getRootNode();
292 }
293};
294
295} // end namespace llvm
296
297#endif // LLVM_CODEGEN_MACHINEDOMINATORS_H

/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/SmallBitVector.h

1//===- llvm/ADT/SmallBitVector.h - 'Normally small' bit vectors -*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the SmallBitVector class.
11//
12//===----------------------------------------------------------------------===//
13
14#ifndef LLVM_ADT_SMALLBITVECTOR_H
15#define LLVM_ADT_SMALLBITVECTOR_H
16
17#include "llvm/ADT/BitVector.h"
18#include "llvm/ADT/iterator_range.h"
19#include "llvm/Support/MathExtras.h"
20#include <algorithm>
21#include <cassert>
22#include <climits>
23#include <cstddef>
24#include <cstdint>
25#include <limits>
26#include <utility>
27
28namespace llvm {
29
30/// This is a 'bitvector' (really, a variable-sized bit array), optimized for
31/// the case when the array is small. It contains one pointer-sized field, which
32/// is directly used as a plain collection of bits when possible, or as a
33/// pointer to a larger heap-allocated array when necessary. This allows normal
34/// "small" cases to be fast without losing generality for large inputs.
35class SmallBitVector {
36 // TODO: In "large" mode, a pointer to a BitVector is used, leading to an
37 // unnecessary level of indirection. It would be more efficient to use a
38 // pointer to memory containing size, allocation size, and the array of bits.
39 uintptr_t X = 1;
40
41 enum {
42 // The number of bits in this class.
43 NumBaseBits = sizeof(uintptr_t) * CHAR_BIT8,
44
45 // One bit is used to discriminate between small and large mode. The
46 // remaining bits are used for the small-mode representation.
47 SmallNumRawBits = NumBaseBits - 1,
48
49 // A few more bits are used to store the size of the bit set in small mode.
50 // Theoretically this is a ceil-log2. These bits are encoded in the most
51 // significant bits of the raw bits.
52 SmallNumSizeBits = (NumBaseBits == 32 ? 5 :
53 NumBaseBits == 64 ? 6 :
54 SmallNumRawBits),
55
56 // The remaining bits are used to store the actual set in small mode.
57 SmallNumDataBits = SmallNumRawBits - SmallNumSizeBits
58 };
59
60 static_assert(NumBaseBits == 64 || NumBaseBits == 32,
61 "Unsupported word size");
62
63public:
64 using size_type = unsigned;
65
66 // Encapsulation of a single bit.
67 class reference {
68 SmallBitVector &TheVector;
69 unsigned BitPos;
70
71 public:
72 reference(SmallBitVector &b, unsigned Idx) : TheVector(b), BitPos(Idx) {}
73
74 reference(const reference&) = default;
75
76 reference& operator=(reference t) {
77 *this = bool(t);
78 return *this;
79 }
80
81 reference& operator=(bool t) {
82 if (t)
83 TheVector.set(BitPos);
84 else
85 TheVector.reset(BitPos);
86 return *this;
87 }
88
89 operator bool() const {
90 return const_cast<const SmallBitVector &>(TheVector).operator[](BitPos);
91 }
92 };
93
94private:
95 bool isSmall() const {
96 return X & uintptr_t(1);
97 }
98
99 BitVector *getPointer() const {
100 assert(!isSmall())(static_cast <bool> (!isSmall()) ? void (0) : __assert_fail
("!isSmall()", "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/SmallBitVector.h"
, 100, __extension__ __PRETTY_FUNCTION__))
;
101 return reinterpret_cast<BitVector *>(X);
102 }
103
104 void switchToSmall(uintptr_t NewSmallBits, size_t NewSize) {
105 X = 1;
106 setSmallSize(NewSize);
107 setSmallBits(NewSmallBits);
108 }
109
110 void switchToLarge(BitVector *BV) {
111 X = reinterpret_cast<uintptr_t>(BV);
112 assert(!isSmall() && "Tried to use an unaligned pointer")(static_cast <bool> (!isSmall() && "Tried to use an unaligned pointer"
) ? void (0) : __assert_fail ("!isSmall() && \"Tried to use an unaligned pointer\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/SmallBitVector.h"
, 112, __extension__ __PRETTY_FUNCTION__))
;
113 }
114
115 // Return all the bits used for the "small" representation; this includes
116 // bits for the size as well as the element bits.
117 uintptr_t getSmallRawBits() const {
118 assert(isSmall())(static_cast <bool> (isSmall()) ? void (0) : __assert_fail
("isSmall()", "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/SmallBitVector.h"
, 118, __extension__ __PRETTY_FUNCTION__))
;
119 return X >> 1;
120 }
121
122 void setSmallRawBits(uintptr_t NewRawBits) {
123 assert(isSmall())(static_cast <bool> (isSmall()) ? void (0) : __assert_fail
("isSmall()", "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/SmallBitVector.h"
, 123, __extension__ __PRETTY_FUNCTION__))
;
124 X = (NewRawBits << 1) | uintptr_t(1);
125 }
126
127 // Return the size.
128 size_t getSmallSize() const { return getSmallRawBits() >> SmallNumDataBits; }
129
130 void setSmallSize(size_t Size) {
131 setSmallRawBits(getSmallBits() | (Size << SmallNumDataBits));
132 }
133
134 // Return the element bits.
135 uintptr_t getSmallBits() const {
136 return getSmallRawBits() & ~(~uintptr_t(0) << getSmallSize());
137 }
138
139 void setSmallBits(uintptr_t NewBits) {
140 setSmallRawBits((NewBits & ~(~uintptr_t(0) << getSmallSize())) |
141 (getSmallSize() << SmallNumDataBits));
142 }
143
144public:
145 /// Creates an empty bitvector.
146 SmallBitVector() = default;
147
148 /// Creates a bitvector of specified number of bits. All bits are initialized
149 /// to the specified value.
150 explicit SmallBitVector(unsigned s, bool t = false) {
151 if (s <= SmallNumDataBits)
9
Assuming 's' is > SmallNumDataBits
10
Taking false branch
152 switchToSmall(t ? ~uintptr_t(0) : 0, s);
153 else
154 switchToLarge(new BitVector(s, t));
11
Memory is allocated
155 }
156
157 /// SmallBitVector copy ctor.
158 SmallBitVector(const SmallBitVector &RHS) {
159 if (RHS.isSmall())
160 X = RHS.X;
161 else
162 switchToLarge(new BitVector(*RHS.getPointer()));
163 }
164
165 SmallBitVector(SmallBitVector &&RHS) : X(RHS.X) {
166 RHS.X = 1;
167 }
168
169 ~SmallBitVector() {
170 if (!isSmall())
171 delete getPointer();
172 }
173
174 using const_set_bits_iterator = const_set_bits_iterator_impl<SmallBitVector>;
175 using set_iterator = const_set_bits_iterator;
176
177 const_set_bits_iterator set_bits_begin() const {
178 return const_set_bits_iterator(*this);
179 }
180
181 const_set_bits_iterator set_bits_end() const {
182 return const_set_bits_iterator(*this, -1);
183 }
184
185 iterator_range<const_set_bits_iterator> set_bits() const {
186 return make_range(set_bits_begin(), set_bits_end());
187 }
188
189 /// Tests whether there are no bits in this bitvector.
190 bool empty() const {
191 return isSmall() ? getSmallSize() == 0 : getPointer()->empty();
192 }
193
194 /// Returns the number of bits in this bitvector.
195 size_t size() const {
196 return isSmall() ? getSmallSize() : getPointer()->size();
197 }
198
199 /// Returns the number of bits which are set.
200 size_type count() const {
201 if (isSmall()) {
202 uintptr_t Bits = getSmallBits();
203 return countPopulation(Bits);
204 }
205 return getPointer()->count();
206 }
207
208 /// Returns true if any bit is set.
209 bool any() const {
210 if (isSmall())
211 return getSmallBits() != 0;
212 return getPointer()->any();
213 }
214
215 /// Returns true if all bits are set.
216 bool all() const {
217 if (isSmall())
218 return getSmallBits() == (uintptr_t(1) << getSmallSize()) - 1;
219 return getPointer()->all();
220 }
221
222 /// Returns true if none of the bits are set.
223 bool none() const {
224 if (isSmall())
225 return getSmallBits() == 0;
226 return getPointer()->none();
227 }
228
229 /// Returns the index of the first set bit, -1 if none of the bits are set.
230 int find_first() const {
231 if (isSmall()) {
232 uintptr_t Bits = getSmallBits();
233 if (Bits == 0)
234 return -1;
235 return countTrailingZeros(Bits);
236 }
237 return getPointer()->find_first();
238 }
239
240 int find_last() const {
241 if (isSmall()) {
242 uintptr_t Bits = getSmallBits();
243 if (Bits == 0)
244 return -1;
245 return NumBaseBits - countLeadingZeros(Bits);
246 }
247 return getPointer()->find_last();
248 }
249
250 /// Returns the index of the first unset bit, -1 if all of the bits are set.
251 int find_first_unset() const {
252 if (isSmall()) {
253 if (count() == getSmallSize())
254 return -1;
255
256 uintptr_t Bits = getSmallBits();
257 return countTrailingOnes(Bits);
258 }
259 return getPointer()->find_first_unset();
260 }
261
262 int find_last_unset() const {
263 if (isSmall()) {
264 if (count() == getSmallSize())
265 return -1;
266
267 uintptr_t Bits = getSmallBits();
268 return NumBaseBits - countLeadingOnes(Bits);
269 }
270 return getPointer()->find_last_unset();
271 }
272
273 /// Returns the index of the next set bit following the "Prev" bit.
274 /// Returns -1 if the next set bit is not found.
275 int find_next(unsigned Prev) const {
276 if (isSmall()) {
277 uintptr_t Bits = getSmallBits();
278 // Mask off previous bits.
279 Bits &= ~uintptr_t(0) << (Prev + 1);
280 if (Bits == 0 || Prev + 1 >= getSmallSize())
281 return -1;
282 return countTrailingZeros(Bits);
283 }
284 return getPointer()->find_next(Prev);
285 }
286
287 /// Returns the index of the next unset bit following the "Prev" bit.
288 /// Returns -1 if the next unset bit is not found.
289 int find_next_unset(unsigned Prev) const {
290 if (isSmall()) {
291 ++Prev;
292 uintptr_t Bits = getSmallBits();
293 // Mask in previous bits.
294 uintptr_t Mask = (1 << Prev) - 1;
295 Bits |= Mask;
296
297 if (Bits == ~uintptr_t(0) || Prev + 1 >= getSmallSize())
298 return -1;
299 return countTrailingOnes(Bits);
300 }
301 return getPointer()->find_next_unset(Prev);
302 }
303
304 /// find_prev - Returns the index of the first set bit that precedes the
305 /// the bit at \p PriorTo. Returns -1 if all previous bits are unset.
306 int find_prev(unsigned PriorTo) const {
307 if (isSmall()) {
308 if (PriorTo == 0)
309 return -1;
310
311 --PriorTo;
312 uintptr_t Bits = getSmallBits();
313 Bits &= maskTrailingOnes<uintptr_t>(PriorTo + 1);
314 if (Bits == 0)
315 return -1;
316
317 return NumBaseBits - countLeadingZeros(Bits) - 1;
318 }
319 return getPointer()->find_prev(PriorTo);
320 }
321
322 /// Clear all bits.
323 void clear() {
324 if (!isSmall())
325 delete getPointer();
326 switchToSmall(0, 0);
327 }
328
329 /// Grow or shrink the bitvector.
330 void resize(unsigned N, bool t = false) {
331 if (!isSmall()) {
332 getPointer()->resize(N, t);
333 } else if (SmallNumDataBits >= N) {
334 uintptr_t NewBits = t ? ~uintptr_t(0) << getSmallSize() : 0;
335 setSmallSize(N);
336 setSmallBits(NewBits | getSmallBits());
337 } else {
338 BitVector *BV = new BitVector(N, t);
339 uintptr_t OldBits = getSmallBits();
340 for (size_t i = 0, e = getSmallSize(); i != e; ++i)
341 (*BV)[i] = (OldBits >> i) & 1;
342 switchToLarge(BV);
343 }
344 }
345
346 void reserve(unsigned N) {
347 if (isSmall()) {
348 if (N > SmallNumDataBits) {
349 uintptr_t OldBits = getSmallRawBits();
350 size_t SmallSize = getSmallSize();
351 BitVector *BV = new BitVector(SmallSize);
352 for (size_t i = 0; i < SmallSize; ++i)
353 if ((OldBits >> i) & 1)
354 BV->set(i);
355 BV->reserve(N);
356 switchToLarge(BV);
357 }
358 } else {
359 getPointer()->reserve(N);
360 }
361 }
362
363 // Set, reset, flip
364 SmallBitVector &set() {
365 if (isSmall())
366 setSmallBits(~uintptr_t(0));
367 else
368 getPointer()->set();
369 return *this;
370 }
371
372 SmallBitVector &set(unsigned Idx) {
373 if (isSmall()) {
374 assert(Idx <= static_cast<unsigned>((static_cast <bool> (Idx <= static_cast<unsigned>
( std::numeric_limits<uintptr_t>::digits) && "undefined behavior"
) ? void (0) : __assert_fail ("Idx <= static_cast<unsigned>( std::numeric_limits<uintptr_t>::digits) && \"undefined behavior\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/SmallBitVector.h"
, 376, __extension__ __PRETTY_FUNCTION__))
375 std::numeric_limits<uintptr_t>::digits) &&(static_cast <bool> (Idx <= static_cast<unsigned>
( std::numeric_limits<uintptr_t>::digits) && "undefined behavior"
) ? void (0) : __assert_fail ("Idx <= static_cast<unsigned>( std::numeric_limits<uintptr_t>::digits) && \"undefined behavior\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/SmallBitVector.h"
, 376, __extension__ __PRETTY_FUNCTION__))
376 "undefined behavior")(static_cast <bool> (Idx <= static_cast<unsigned>
( std::numeric_limits<uintptr_t>::digits) && "undefined behavior"
) ? void (0) : __assert_fail ("Idx <= static_cast<unsigned>( std::numeric_limits<uintptr_t>::digits) && \"undefined behavior\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/SmallBitVector.h"
, 376, __extension__ __PRETTY_FUNCTION__))
;
377 setSmallBits(getSmallBits() | (uintptr_t(1) << Idx));
378 }
379 else
380 getPointer()->set(Idx);
381 return *this;
382 }
383
384 /// Efficiently set a range of bits in [I, E)
385 SmallBitVector &set(unsigned I, unsigned E) {
386 assert(I <= E && "Attempted to set backwards range!")(static_cast <bool> (I <= E && "Attempted to set backwards range!"
) ? void (0) : __assert_fail ("I <= E && \"Attempted to set backwards range!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/SmallBitVector.h"
, 386, __extension__ __PRETTY_FUNCTION__))
;
387 assert(E <= size() && "Attempted to set out-of-bounds range!")(static_cast <bool> (E <= size() && "Attempted to set out-of-bounds range!"
) ? void (0) : __assert_fail ("E <= size() && \"Attempted to set out-of-bounds range!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/SmallBitVector.h"
, 387, __extension__ __PRETTY_FUNCTION__))
;
388 if (I == E) return *this;
389 if (isSmall()) {
390 uintptr_t EMask = ((uintptr_t)1) << E;
391 uintptr_t IMask = ((uintptr_t)1) << I;
392 uintptr_t Mask = EMask - IMask;
393 setSmallBits(getSmallBits() | Mask);
394 } else
395 getPointer()->set(I, E);
396 return *this;
397 }
398
399 SmallBitVector &reset() {
400 if (isSmall())
401 setSmallBits(0);
402 else
403 getPointer()->reset();
404 return *this;
405 }
406
407 SmallBitVector &reset(unsigned Idx) {
408 if (isSmall())
409 setSmallBits(getSmallBits() & ~(uintptr_t(1) << Idx));
410 else
411 getPointer()->reset(Idx);
412 return *this;
413 }
414
415 /// Efficiently reset a range of bits in [I, E)
416 SmallBitVector &reset(unsigned I, unsigned E) {
417 assert(I <= E && "Attempted to reset backwards range!")(static_cast <bool> (I <= E && "Attempted to reset backwards range!"
) ? void (0) : __assert_fail ("I <= E && \"Attempted to reset backwards range!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/SmallBitVector.h"
, 417, __extension__ __PRETTY_FUNCTION__))
;
418 assert(E <= size() && "Attempted to reset out-of-bounds range!")(static_cast <bool> (E <= size() && "Attempted to reset out-of-bounds range!"
) ? void (0) : __assert_fail ("E <= size() && \"Attempted to reset out-of-bounds range!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/SmallBitVector.h"
, 418, __extension__ __PRETTY_FUNCTION__))
;
419 if (I == E) return *this;
420 if (isSmall()) {
421 uintptr_t EMask = ((uintptr_t)1) << E;
422 uintptr_t IMask = ((uintptr_t)1) << I;
423 uintptr_t Mask = EMask - IMask;
424 setSmallBits(getSmallBits() & ~Mask);
425 } else
426 getPointer()->reset(I, E);
427 return *this;
428 }
429
430 SmallBitVector &flip() {
431 if (isSmall())
432 setSmallBits(~getSmallBits());
433 else
434 getPointer()->flip();
435 return *this;
436 }
437
438 SmallBitVector &flip(unsigned Idx) {
439 if (isSmall())
440 setSmallBits(getSmallBits() ^ (uintptr_t(1) << Idx));
441 else
442 getPointer()->flip(Idx);
443 return *this;
444 }
445
446 // No argument flip.
447 SmallBitVector operator~() const {
448 return SmallBitVector(*this).flip();
449 }
450
451 // Indexing.
452 reference operator[](unsigned Idx) {
453 assert(Idx < size() && "Out-of-bounds Bit access.")(static_cast <bool> (Idx < size() && "Out-of-bounds Bit access."
) ? void (0) : __assert_fail ("Idx < size() && \"Out-of-bounds Bit access.\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/SmallBitVector.h"
, 453, __extension__ __PRETTY_FUNCTION__))
;
454 return reference(*this, Idx);
455 }
456
457 bool operator[](unsigned Idx) const {
458 assert(Idx < size() && "Out-of-bounds Bit access.")(static_cast <bool> (Idx < size() && "Out-of-bounds Bit access."
) ? void (0) : __assert_fail ("Idx < size() && \"Out-of-bounds Bit access.\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/SmallBitVector.h"
, 458, __extension__ __PRETTY_FUNCTION__))
;
459 if (isSmall())
460 return ((getSmallBits() >> Idx) & 1) != 0;
461 return getPointer()->operator[](Idx);
462 }
463
464 bool test(unsigned Idx) const {
465 return (*this)[Idx];
466 }
467
468 /// Test if any common bits are set.
469 bool anyCommon(const SmallBitVector &RHS) const {
470 if (isSmall() && RHS.isSmall())
471 return (getSmallBits() & RHS.getSmallBits()) != 0;
472 if (!isSmall() && !RHS.isSmall())
473 return getPointer()->anyCommon(*RHS.getPointer());
474
475 for (unsigned i = 0, e = std::min(size(), RHS.size()); i != e; ++i)
476 if (test(i) && RHS.test(i))
477 return true;
478 return false;
479 }
480
481 // Comparison operators.
482 bool operator==(const SmallBitVector &RHS) const {
483 if (size() != RHS.size())
484 return false;
485 if (isSmall())
486 return getSmallBits() == RHS.getSmallBits();
487 else
488 return *getPointer() == *RHS.getPointer();
489 }
490
491 bool operator!=(const SmallBitVector &RHS) const {
492 return !(*this == RHS);
493 }
494
495 // Intersection, union, disjoint union.
496 SmallBitVector &operator&=(const SmallBitVector &RHS) {
497 resize(std::max(size(), RHS.size()));
498 if (isSmall())
499 setSmallBits(getSmallBits() & RHS.getSmallBits());
500 else if (!RHS.isSmall())
501 getPointer()->operator&=(*RHS.getPointer());
502 else {
503 SmallBitVector Copy = RHS;
504 Copy.resize(size());
505 getPointer()->operator&=(*Copy.getPointer());
506 }
507 return *this;
508 }
509
510 /// Reset bits that are set in RHS. Same as *this &= ~RHS.
511 SmallBitVector &reset(const SmallBitVector &RHS) {
512 if (isSmall() && RHS.isSmall())
513 setSmallBits(getSmallBits() & ~RHS.getSmallBits());
514 else if (!isSmall() && !RHS.isSmall())
515 getPointer()->reset(*RHS.getPointer());
516 else
517 for (unsigned i = 0, e = std::min(size(), RHS.size()); i != e; ++i)
518 if (RHS.test(i))
519 reset(i);
520
521 return *this;
522 }
523
524 /// Check if (This - RHS) is zero. This is the same as reset(RHS) and any().
525 bool test(const SmallBitVector &RHS) const {
526 if (isSmall() && RHS.isSmall())
527 return (getSmallBits() & ~RHS.getSmallBits()) != 0;
528 if (!isSmall() && !RHS.isSmall())
529 return getPointer()->test(*RHS.getPointer());
530
531 unsigned i, e;
532 for (i = 0, e = std::min(size(), RHS.size()); i != e; ++i)
533 if (test(i) && !RHS.test(i))
534 return true;
535
536 for (e = size(); i != e; ++i)
537 if (test(i))
538 return true;
539
540 return false;
541 }
542
543 SmallBitVector &operator|=(const SmallBitVector &RHS) {
544 resize(std::max(size(), RHS.size()));
545 if (isSmall())
546 setSmallBits(getSmallBits() | RHS.getSmallBits());
547 else if (!RHS.isSmall())
548 getPointer()->operator|=(*RHS.getPointer());
549 else {
550 SmallBitVector Copy = RHS;
551 Copy.resize(size());
552 getPointer()->operator|=(*Copy.getPointer());
553 }
554 return *this;
555 }
556
557 SmallBitVector &operator^=(const SmallBitVector &RHS) {
558 resize(std::max(size(), RHS.size()));
559 if (isSmall())
560 setSmallBits(getSmallBits() ^ RHS.getSmallBits());
561 else if (!RHS.isSmall())
562 getPointer()->operator^=(*RHS.getPointer());
563 else {
564 SmallBitVector Copy = RHS;
565 Copy.resize(size());
566 getPointer()->operator^=(*Copy.getPointer());
567 }
568 return *this;
569 }
570
571 SmallBitVector &operator<<=(unsigned N) {
572 if (isSmall())
573 setSmallBits(getSmallBits() << N);
574 else
575 getPointer()->operator<<=(N);
576 return *this;
577 }
578
579 SmallBitVector &operator>>=(unsigned N) {
580 if (isSmall())
581 setSmallBits(getSmallBits() >> N);
582 else
583 getPointer()->operator>>=(N);
584 return *this;
585 }
586
587 // Assignment operator.
588 const SmallBitVector &operator=(const SmallBitVector &RHS) {
589 if (isSmall()) {
590 if (RHS.isSmall())
591 X = RHS.X;
592 else
593 switchToLarge(new BitVector(*RHS.getPointer()));
594 } else {
595 if (!RHS.isSmall())
596 *getPointer() = *RHS.getPointer();
597 else {
598 delete getPointer();
599 X = RHS.X;
600 }
601 }
602 return *this;
603 }
604
605 const SmallBitVector &operator=(SmallBitVector &&RHS) {
606 if (this != &RHS) {
607 clear();
608 swap(RHS);
609 }
610 return *this;
611 }
612
613 void swap(SmallBitVector &RHS) {
614 std::swap(X, RHS.X);
615 }
616
617 /// Add '1' bits from Mask to this vector. Don't resize.
618 /// This computes "*this |= Mask".
619 void setBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
620 if (isSmall())
621 applyMask<true, false>(Mask, MaskWords);
622 else
623 getPointer()->setBitsInMask(Mask, MaskWords);
624 }
625
626 /// Clear any bits in this vector that are set in Mask. Don't resize.
627 /// This computes "*this &= ~Mask".
628 void clearBitsInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
629 if (isSmall())
630 applyMask<false, false>(Mask, MaskWords);
631 else
632 getPointer()->clearBitsInMask(Mask, MaskWords);
633 }
634
635 /// Add a bit to this vector for every '0' bit in Mask. Don't resize.
636 /// This computes "*this |= ~Mask".
637 void setBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
638 if (isSmall())
639 applyMask<true, true>(Mask, MaskWords);
640 else
641 getPointer()->setBitsNotInMask(Mask, MaskWords);
642 }
643
644 /// Clear a bit in this vector for every '0' bit in Mask. Don't resize.
645 /// This computes "*this &= Mask".
646 void clearBitsNotInMask(const uint32_t *Mask, unsigned MaskWords = ~0u) {
647 if (isSmall())
648 applyMask<false, true>(Mask, MaskWords);
649 else
650 getPointer()->clearBitsNotInMask(Mask, MaskWords);
651 }
652
653private:
654 template <bool AddBits, bool InvertMask>
655 void applyMask(const uint32_t *Mask, unsigned MaskWords) {
656 assert(MaskWords <= sizeof(uintptr_t) && "Mask is larger than base!")(static_cast <bool> (MaskWords <= sizeof(uintptr_t) &&
"Mask is larger than base!") ? void (0) : __assert_fail ("MaskWords <= sizeof(uintptr_t) && \"Mask is larger than base!\""
, "/build/llvm-toolchain-snapshot-6.0~svn321639/include/llvm/ADT/SmallBitVector.h"
, 656, __extension__ __PRETTY_FUNCTION__))
;
657 uintptr_t M = Mask[0];
658 if (NumBaseBits == 64)
659 M |= uint64_t(Mask[1]) << 32;
660 if (InvertMask)
661 M = ~M;
662 if (AddBits)
663 setSmallBits(getSmallBits() | M);
664 else
665 setSmallBits(getSmallBits() & ~M);
666 }
667};
668
669inline SmallBitVector
670operator&(const SmallBitVector &LHS, const SmallBitVector &RHS) {
671 SmallBitVector Result(LHS);
672 Result &= RHS;
673 return Result;
674}
675
676inline SmallBitVector
677operator|(const SmallBitVector &LHS, const SmallBitVector &RHS) {
678 SmallBitVector Result(LHS);
679 Result |= RHS;
680 return Result;
681}
682
683inline SmallBitVector
684operator^(const SmallBitVector &LHS, const SmallBitVector &RHS) {
685 SmallBitVector Result(LHS);
686 Result ^= RHS;
687 return Result;
688}
689
690} // end namespace llvm
691
692namespace std {
693
694/// Implement std::swap in terms of BitVector swap.
695inline void
696swap(llvm::SmallBitVector &LHS, llvm::SmallBitVector &RHS) {
697 LHS.swap(RHS);
698}
699
700} // end namespace std
701
702#endif // LLVM_ADT_SMALLBITVECTOR_H