Bug Summary

File:lib/CodeGen/MachinePipeliner.cpp
Warning:line 2665, column 11
Value stored to 'NewReg' is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name MachinePipeliner.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn326551/build-llvm/lib/CodeGen -I /build/llvm-toolchain-snapshot-7~svn326551/lib/CodeGen -I /build/llvm-toolchain-snapshot-7~svn326551/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn326551/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn326551/build-llvm/lib/CodeGen -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-checker optin.performance.Padding -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-03-02-155150-1477-1 -x c++ /build/llvm-toolchain-snapshot-7~svn326551/lib/CodeGen/MachinePipeliner.cpp
1//===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
11//
12// Software pipelining (SWP) is an instruction scheduling technique for loops
13// that overlap loop iterations and explioits ILP via a compiler transformation.
14//
15// Swing Modulo Scheduling is an implementation of software pipelining
16// that generates schedules that are near optimal in terms of initiation
17// interval, register requirements, and stage count. See the papers:
18//
19// "Swing Modulo Scheduling: A Lifetime-Sensitive Approach", by J. Llosa,
20// A. Gonzalez, E. Ayguade, and M. Valero. In PACT '96 Processings of the 1996
21// Conference on Parallel Architectures and Compilation Techiniques.
22//
23// "Lifetime-Sensitive Modulo Scheduling in a Production Environment", by J.
24// Llosa, E. Ayguade, A. Gonzalez, M. Valero, and J. Eckhardt. In IEEE
25// Transactions on Computers, Vol. 50, No. 3, 2001.
26//
27// "An Implementation of Swing Modulo Scheduling With Extensions for
28// Superblocks", by T. Lattner, Master's Thesis, University of Illinois at
29// Urbana-Chambpain, 2005.
30//
31//
32// The SMS algorithm consists of three main steps after computing the minimal
33// initiation interval (MII).
34// 1) Analyze the dependence graph and compute information about each
35// instruction in the graph.
36// 2) Order the nodes (instructions) by priority based upon the heuristics
37// described in the algorithm.
38// 3) Attempt to schedule the nodes in the specified order using the MII.
39//
40// This SMS implementation is a target-independent back-end pass. When enabled,
41// the pass runs just prior to the register allocation pass, while the machine
42// IR is in SSA form. If software pipelining is successful, then the original
43// loop is replaced by the optimized loop. The optimized loop contains one or
44// more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
45// the instructions cannot be scheduled in a given MII, we increase the MII by
46// one and try again.
47//
48// The SMS implementation is an extension of the ScheduleDAGInstrs class. We
49// represent loop carried dependences in the DAG as order edges to the Phi
50// nodes. We also perform several passes over the DAG to eliminate unnecessary
51// edges that inhibit the ability to pipeline. The implementation uses the
52// DFAPacketizer class to compute the minimum initiation interval and the check
53// where an instruction may be inserted in the pipelined schedule.
54//
55// In order for the SMS pass to work, several target specific hooks need to be
56// implemented to get information about the loop structure and to rewrite
57// instructions.
58//
59//===----------------------------------------------------------------------===//
60
61#include "llvm/ADT/ArrayRef.h"
62#include "llvm/ADT/BitVector.h"
63#include "llvm/ADT/DenseMap.h"
64#include "llvm/ADT/MapVector.h"
65#include "llvm/ADT/PriorityQueue.h"
66#include "llvm/ADT/SetVector.h"
67#include "llvm/ADT/SmallPtrSet.h"
68#include "llvm/ADT/SmallSet.h"
69#include "llvm/ADT/SmallVector.h"
70#include "llvm/ADT/Statistic.h"
71#include "llvm/ADT/iterator_range.h"
72#include "llvm/Analysis/AliasAnalysis.h"
73#include "llvm/Analysis/MemoryLocation.h"
74#include "llvm/Analysis/ValueTracking.h"
75#include "llvm/CodeGen/DFAPacketizer.h"
76#include "llvm/CodeGen/LiveIntervals.h"
77#include "llvm/CodeGen/MachineBasicBlock.h"
78#include "llvm/CodeGen/MachineDominators.h"
79#include "llvm/CodeGen/MachineFunction.h"
80#include "llvm/CodeGen/MachineFunctionPass.h"
81#include "llvm/CodeGen/MachineInstr.h"
82#include "llvm/CodeGen/MachineInstrBuilder.h"
83#include "llvm/CodeGen/MachineLoopInfo.h"
84#include "llvm/CodeGen/MachineMemOperand.h"
85#include "llvm/CodeGen/MachineOperand.h"
86#include "llvm/CodeGen/MachineRegisterInfo.h"
87#include "llvm/CodeGen/RegisterClassInfo.h"
88#include "llvm/CodeGen/RegisterPressure.h"
89#include "llvm/CodeGen/ScheduleDAG.h"
90#include "llvm/CodeGen/ScheduleDAGInstrs.h"
91#include "llvm/CodeGen/ScheduleDAGMutation.h"
92#include "llvm/CodeGen/TargetInstrInfo.h"
93#include "llvm/CodeGen/TargetOpcodes.h"
94#include "llvm/CodeGen/TargetRegisterInfo.h"
95#include "llvm/CodeGen/TargetSubtargetInfo.h"
96#include "llvm/IR/Attributes.h"
97#include "llvm/IR/DebugLoc.h"
98#include "llvm/IR/Function.h"
99#include "llvm/MC/LaneBitmask.h"
100#include "llvm/MC/MCInstrDesc.h"
101#include "llvm/MC/MCInstrItineraries.h"
102#include "llvm/MC/MCRegisterInfo.h"
103#include "llvm/Pass.h"
104#include "llvm/Support/CommandLine.h"
105#include "llvm/Support/Compiler.h"
106#include "llvm/Support/Debug.h"
107#include "llvm/Support/MathExtras.h"
108#include "llvm/Support/raw_ostream.h"
109#include <algorithm>
110#include <cassert>
111#include <climits>
112#include <cstdint>
113#include <deque>
114#include <functional>
115#include <iterator>
116#include <map>
117#include <memory>
118#include <tuple>
119#include <utility>
120#include <vector>
121
122using namespace llvm;
123
124#define DEBUG_TYPE"pipeliner" "pipeliner"
125
126STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline")static llvm::Statistic NumTrytoPipeline = {"pipeliner", "NumTrytoPipeline"
, "Number of loops that we attempt to pipeline", {0}, {false}
}
;
127STATISTIC(NumPipelined, "Number of loops software pipelined")static llvm::Statistic NumPipelined = {"pipeliner", "NumPipelined"
, "Number of loops software pipelined", {0}, {false}}
;
128
129/// A command line option to turn software pipelining on or off.
130static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
131 cl::ZeroOrMore,
132 cl::desc("Enable Software Pipelining"));
133
134/// A command line option to enable SWP at -Os.
135static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
136 cl::desc("Enable SWP at Os."), cl::Hidden,
137 cl::init(false));
138
139/// A command line argument to limit minimum initial interval for pipelining.
140static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
141 cl::desc("Size limit for the MII."),
142 cl::Hidden, cl::init(27));
143
144/// A command line argument to limit the number of stages in the pipeline.
145static cl::opt<int>
146 SwpMaxStages("pipeliner-max-stages",
147 cl::desc("Maximum stages allowed in the generated scheduled."),
148 cl::Hidden, cl::init(3));
149
150/// A command line option to disable the pruning of chain dependences due to
151/// an unrelated Phi.
152static cl::opt<bool>
153 SwpPruneDeps("pipeliner-prune-deps",
154 cl::desc("Prune dependences between unrelated Phi nodes."),
155 cl::Hidden, cl::init(true));
156
157/// A command line option to disable the pruning of loop carried order
158/// dependences.
159static cl::opt<bool>
160 SwpPruneLoopCarried("pipeliner-prune-loop-carried",
161 cl::desc("Prune loop carried order dependences."),
162 cl::Hidden, cl::init(true));
163
164#ifndef NDEBUG
165static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
166#endif
167
168static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
169 cl::ReallyHidden, cl::init(false),
170 cl::ZeroOrMore, cl::desc("Ignore RecMII"));
171
172namespace {
173
174class NodeSet;
175class SMSchedule;
176
177/// The main class in the implementation of the target independent
178/// software pipeliner pass.
179class MachinePipeliner : public MachineFunctionPass {
180public:
181 MachineFunction *MF = nullptr;
182 const MachineLoopInfo *MLI = nullptr;
183 const MachineDominatorTree *MDT = nullptr;
184 const InstrItineraryData *InstrItins;
185 const TargetInstrInfo *TII = nullptr;
186 RegisterClassInfo RegClassInfo;
187
188#ifndef NDEBUG
189 static int NumTries;
190#endif
191
192 /// Cache the target analysis information about the loop.
193 struct LoopInfo {
194 MachineBasicBlock *TBB = nullptr;
195 MachineBasicBlock *FBB = nullptr;
196 SmallVector<MachineOperand, 4> BrCond;
197 MachineInstr *LoopInductionVar = nullptr;
198 MachineInstr *LoopCompare = nullptr;
199 };
200 LoopInfo LI;
201
202 static char ID;
203
204 MachinePipeliner() : MachineFunctionPass(ID) {
205 initializeMachinePipelinerPass(*PassRegistry::getPassRegistry());
206 }
207
208 bool runOnMachineFunction(MachineFunction &MF) override;
209
210 void getAnalysisUsage(AnalysisUsage &AU) const override {
211 AU.addRequired<AAResultsWrapperPass>();
212 AU.addPreserved<AAResultsWrapperPass>();
213 AU.addRequired<MachineLoopInfo>();
214 AU.addRequired<MachineDominatorTree>();
215 AU.addRequired<LiveIntervals>();
216 MachineFunctionPass::getAnalysisUsage(AU);
217 }
218
219private:
220 bool canPipelineLoop(MachineLoop &L);
221 bool scheduleLoop(MachineLoop &L);
222 bool swingModuloScheduler(MachineLoop &L);
223};
224
225/// This class builds the dependence graph for the instructions in a loop,
226/// and attempts to schedule the instructions using the SMS algorithm.
227class SwingSchedulerDAG : public ScheduleDAGInstrs {
228 MachinePipeliner &Pass;
229 /// The minimum initiation interval between iterations for this schedule.
230 unsigned MII = 0;
231 /// Set to true if a valid pipelined schedule is found for the loop.
232 bool Scheduled = false;
233 MachineLoop &Loop;
234 LiveIntervals &LIS;
235 const RegisterClassInfo &RegClassInfo;
236
237 /// A toplogical ordering of the SUnits, which is needed for changing
238 /// dependences and iterating over the SUnits.
239 ScheduleDAGTopologicalSort Topo;
240
241 struct NodeInfo {
242 int ASAP = 0;
243 int ALAP = 0;
244
245 NodeInfo() = default;
246 };
247 /// Computed properties for each node in the graph.
248 std::vector<NodeInfo> ScheduleInfo;
249
250 enum OrderKind { BottomUp = 0, TopDown = 1 };
251 /// Computed node ordering for scheduling.
252 SetVector<SUnit *> NodeOrder;
253
254 using NodeSetType = SmallVector<NodeSet, 8>;
255 using ValueMapTy = DenseMap<unsigned, unsigned>;
256 using MBBVectorTy = SmallVectorImpl<MachineBasicBlock *>;
257 using InstrMapTy = DenseMap<MachineInstr *, MachineInstr *>;
258
259 /// Instructions to change when emitting the final schedule.
260 DenseMap<SUnit *, std::pair<unsigned, int64_t>> InstrChanges;
261
262 /// We may create a new instruction, so remember it because it
263 /// must be deleted when the pass is finished.
264 SmallPtrSet<MachineInstr *, 4> NewMIs;
265
266 /// Ordered list of DAG postprocessing steps.
267 std::vector<std::unique_ptr<ScheduleDAGMutation>> Mutations;
268
269 /// Helper class to implement Johnson's circuit finding algorithm.
270 class Circuits {
271 std::vector<SUnit> &SUnits;
272 SetVector<SUnit *> Stack;
273 BitVector Blocked;
274 SmallVector<SmallPtrSet<SUnit *, 4>, 10> B;
275 SmallVector<SmallVector<int, 4>, 16> AdjK;
276 unsigned NumPaths;
277 static unsigned MaxPaths;
278
279 public:
280 Circuits(std::vector<SUnit> &SUs)
281 : SUnits(SUs), Blocked(SUs.size()), B(SUs.size()), AdjK(SUs.size()) {}
282
283 /// Reset the data structures used in the circuit algorithm.
284 void reset() {
285 Stack.clear();
286 Blocked.reset();
287 B.assign(SUnits.size(), SmallPtrSet<SUnit *, 4>());
288 NumPaths = 0;
289 }
290
291 void createAdjacencyStructure(SwingSchedulerDAG *DAG);
292 bool circuit(int V, int S, NodeSetType &NodeSets, bool HasBackedge = false);
293 void unblock(int U);
294 };
295
296public:
297 SwingSchedulerDAG(MachinePipeliner &P, MachineLoop &L, LiveIntervals &lis,
298 const RegisterClassInfo &rci)
299 : ScheduleDAGInstrs(*P.MF, P.MLI, false), Pass(P), Loop(L), LIS(lis),
300 RegClassInfo(rci), Topo(SUnits, &ExitSU) {
301 P.MF->getSubtarget().getSMSMutations(Mutations);
302 }
303
304 void schedule() override;
305 void finishBlock() override;
306
307 /// Return true if the loop kernel has been scheduled.
308 bool hasNewSchedule() { return Scheduled; }
309
310 /// Return the earliest time an instruction may be scheduled.
311 int getASAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ASAP; }
312
313 /// Return the latest time an instruction my be scheduled.
314 int getALAP(SUnit *Node) { return ScheduleInfo[Node->NodeNum].ALAP; }
315
316 /// The mobility function, which the number of slots in which
317 /// an instruction may be scheduled.
318 int getMOV(SUnit *Node) { return getALAP(Node) - getASAP(Node); }
319
320 /// The depth, in the dependence graph, for a node.
321 int getDepth(SUnit *Node) { return Node->getDepth(); }
322
323 /// The height, in the dependence graph, for a node.
324 int getHeight(SUnit *Node) { return Node->getHeight(); }
325
326 /// Return true if the dependence is a back-edge in the data dependence graph.
327 /// Since the DAG doesn't contain cycles, we represent a cycle in the graph
328 /// using an anti dependence from a Phi to an instruction.
329 bool isBackedge(SUnit *Source, const SDep &Dep) {
330 if (Dep.getKind() != SDep::Anti)
331 return false;
332 return Source->getInstr()->isPHI() || Dep.getSUnit()->getInstr()->isPHI();
333 }
334
335 /// Return true if the dependence is an order dependence between non-Phis.
336 static bool isOrder(SUnit *Source, const SDep &Dep) {
337 if (Dep.getKind() != SDep::Order)
338 return false;
339 return (!Source->getInstr()->isPHI() &&
340 !Dep.getSUnit()->getInstr()->isPHI());
341 }
342
343 bool isLoopCarriedOrder(SUnit *Source, const SDep &Dep, bool isSucc = true);
344
345 /// The latency of the dependence.
346 unsigned getLatency(SUnit *Source, const SDep &Dep) {
347 // Anti dependences represent recurrences, so use the latency of the
348 // instruction on the back-edge.
349 if (Dep.getKind() == SDep::Anti) {
350 if (Source->getInstr()->isPHI())
351 return Dep.getSUnit()->Latency;
352 if (Dep.getSUnit()->getInstr()->isPHI())
353 return Source->Latency;
354 return Dep.getLatency();
355 }
356 return Dep.getLatency();
357 }
358
359 /// The distance function, which indicates that operation V of iteration I
360 /// depends on operations U of iteration I-distance.
361 unsigned getDistance(SUnit *U, SUnit *V, const SDep &Dep) {
362 // Instructions that feed a Phi have a distance of 1. Computing larger
363 // values for arrays requires data dependence information.
364 if (V->getInstr()->isPHI() && Dep.getKind() == SDep::Anti)
365 return 1;
366 return 0;
367 }
368
369 /// Set the Minimum Initiation Interval for this schedule attempt.
370 void setMII(unsigned mii) { MII = mii; }
371
372 void applyInstrChange(MachineInstr *MI, SMSchedule &Schedule);
373
374 void fixupRegisterOverlaps(std::deque<SUnit *> &Instrs);
375
376 /// Return the new base register that was stored away for the changed
377 /// instruction.
378 unsigned getInstrBaseReg(SUnit *SU) {
379 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
380 InstrChanges.find(SU);
381 if (It != InstrChanges.end())
382 return It->second.first;
383 return 0;
384 }
385
386 void addMutation(std::unique_ptr<ScheduleDAGMutation> Mutation) {
387 Mutations.push_back(std::move(Mutation));
388 }
389
390private:
391 void addLoopCarriedDependences(AliasAnalysis *AA);
392 void updatePhiDependences();
393 void changeDependences();
394 unsigned calculateResMII();
395 unsigned calculateRecMII(NodeSetType &RecNodeSets);
396 void findCircuits(NodeSetType &NodeSets);
397 void fuseRecs(NodeSetType &NodeSets);
398 void removeDuplicateNodes(NodeSetType &NodeSets);
399 void computeNodeFunctions(NodeSetType &NodeSets);
400 void registerPressureFilter(NodeSetType &NodeSets);
401 void colocateNodeSets(NodeSetType &NodeSets);
402 void checkNodeSets(NodeSetType &NodeSets);
403 void groupRemainingNodes(NodeSetType &NodeSets);
404 void addConnectedNodes(SUnit *SU, NodeSet &NewSet,
405 SetVector<SUnit *> &NodesAdded);
406 void computeNodeOrder(NodeSetType &NodeSets);
407 bool schedulePipeline(SMSchedule &Schedule);
408 void generatePipelinedLoop(SMSchedule &Schedule);
409 void generateProlog(SMSchedule &Schedule, unsigned LastStage,
410 MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
411 MBBVectorTy &PrologBBs);
412 void generateEpilog(SMSchedule &Schedule, unsigned LastStage,
413 MachineBasicBlock *KernelBB, ValueMapTy *VRMap,
414 MBBVectorTy &EpilogBBs, MBBVectorTy &PrologBBs);
415 void generateExistingPhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
416 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
417 SMSchedule &Schedule, ValueMapTy *VRMap,
418 InstrMapTy &InstrMap, unsigned LastStageNum,
419 unsigned CurStageNum, bool IsLast);
420 void generatePhis(MachineBasicBlock *NewBB, MachineBasicBlock *BB1,
421 MachineBasicBlock *BB2, MachineBasicBlock *KernelBB,
422 SMSchedule &Schedule, ValueMapTy *VRMap,
423 InstrMapTy &InstrMap, unsigned LastStageNum,
424 unsigned CurStageNum, bool IsLast);
425 void removeDeadInstructions(MachineBasicBlock *KernelBB,
426 MBBVectorTy &EpilogBBs);
427 void splitLifetimes(MachineBasicBlock *KernelBB, MBBVectorTy &EpilogBBs,
428 SMSchedule &Schedule);
429 void addBranches(MBBVectorTy &PrologBBs, MachineBasicBlock *KernelBB,
430 MBBVectorTy &EpilogBBs, SMSchedule &Schedule,
431 ValueMapTy *VRMap);
432 bool computeDelta(MachineInstr &MI, unsigned &Delta);
433 void updateMemOperands(MachineInstr &NewMI, MachineInstr &OldMI,
434 unsigned Num);
435 MachineInstr *cloneInstr(MachineInstr *OldMI, unsigned CurStageNum,
436 unsigned InstStageNum);
437 MachineInstr *cloneAndChangeInstr(MachineInstr *OldMI, unsigned CurStageNum,
438 unsigned InstStageNum,
439 SMSchedule &Schedule);
440 void updateInstruction(MachineInstr *NewMI, bool LastDef,
441 unsigned CurStageNum, unsigned InstStageNum,
442 SMSchedule &Schedule, ValueMapTy *VRMap);
443 MachineInstr *findDefInLoop(unsigned Reg);
444 unsigned getPrevMapVal(unsigned StageNum, unsigned PhiStage, unsigned LoopVal,
445 unsigned LoopStage, ValueMapTy *VRMap,
446 MachineBasicBlock *BB);
447 void rewritePhiValues(MachineBasicBlock *NewBB, unsigned StageNum,
448 SMSchedule &Schedule, ValueMapTy *VRMap,
449 InstrMapTy &InstrMap);
450 void rewriteScheduledInstr(MachineBasicBlock *BB, SMSchedule &Schedule,
451 InstrMapTy &InstrMap, unsigned CurStageNum,
452 unsigned PhiNum, MachineInstr *Phi,
453 unsigned OldReg, unsigned NewReg,
454 unsigned PrevReg = 0);
455 bool canUseLastOffsetValue(MachineInstr *MI, unsigned &BasePos,
456 unsigned &OffsetPos, unsigned &NewBase,
457 int64_t &NewOffset);
458 void postprocessDAG();
459};
460
461/// A NodeSet contains a set of SUnit DAG nodes with additional information
462/// that assigns a priority to the set.
463class NodeSet {
464 SetVector<SUnit *> Nodes;
465 bool HasRecurrence = false;
466 unsigned RecMII = 0;
467 int MaxMOV = 0;
468 int MaxDepth = 0;
469 unsigned Colocate = 0;
470 SUnit *ExceedPressure = nullptr;
471
472public:
473 using iterator = SetVector<SUnit *>::const_iterator;
474
475 NodeSet() = default;
476 NodeSet(iterator S, iterator E) : Nodes(S, E), HasRecurrence(true) {}
477
478 bool insert(SUnit *SU) { return Nodes.insert(SU); }
479
480 void insert(iterator S, iterator E) { Nodes.insert(S, E); }
481
482 template <typename UnaryPredicate> bool remove_if(UnaryPredicate P) {
483 return Nodes.remove_if(P);
484 }
485
486 unsigned count(SUnit *SU) const { return Nodes.count(SU); }
487
488 bool hasRecurrence() { return HasRecurrence; };
489
490 unsigned size() const { return Nodes.size(); }
491
492 bool empty() const { return Nodes.empty(); }
493
494 SUnit *getNode(unsigned i) const { return Nodes[i]; };
495
496 void setRecMII(unsigned mii) { RecMII = mii; };
497
498 void setColocate(unsigned c) { Colocate = c; };
499
500 void setExceedPressure(SUnit *SU) { ExceedPressure = SU; }
501
502 bool isExceedSU(SUnit *SU) { return ExceedPressure == SU; }
503
504 int compareRecMII(NodeSet &RHS) { return RecMII - RHS.RecMII; }
505
506 int getRecMII() { return RecMII; }
507
508 /// Summarize node functions for the entire node set.
509 void computeNodeSetInfo(SwingSchedulerDAG *SSD) {
510 for (SUnit *SU : *this) {
511 MaxMOV = std::max(MaxMOV, SSD->getMOV(SU));
512 MaxDepth = std::max(MaxDepth, SSD->getDepth(SU));
513 }
514 }
515
516 void clear() {
517 Nodes.clear();
518 RecMII = 0;
519 HasRecurrence = false;
520 MaxMOV = 0;
521 MaxDepth = 0;
522 Colocate = 0;
523 ExceedPressure = nullptr;
524 }
525
526 operator SetVector<SUnit *> &() { return Nodes; }
527
528 /// Sort the node sets by importance. First, rank them by recurrence MII,
529 /// then by mobility (least mobile done first), and finally by depth.
530 /// Each node set may contain a colocate value which is used as the first
531 /// tie breaker, if it's set.
532 bool operator>(const NodeSet &RHS) const {
533 if (RecMII == RHS.RecMII) {
534 if (Colocate != 0 && RHS.Colocate != 0 && Colocate != RHS.Colocate)
535 return Colocate < RHS.Colocate;
536 if (MaxMOV == RHS.MaxMOV)
537 return MaxDepth > RHS.MaxDepth;
538 return MaxMOV < RHS.MaxMOV;
539 }
540 return RecMII > RHS.RecMII;
541 }
542
543 bool operator==(const NodeSet &RHS) const {
544 return RecMII == RHS.RecMII && MaxMOV == RHS.MaxMOV &&
545 MaxDepth == RHS.MaxDepth;
546 }
547
548 bool operator!=(const NodeSet &RHS) const { return !operator==(RHS); }
549
550 iterator begin() { return Nodes.begin(); }
551 iterator end() { return Nodes.end(); }
552
553 void print(raw_ostream &os) const {
554 os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
555 << " depth " << MaxDepth << " col " << Colocate << "\n";
556 for (const auto &I : Nodes)
557 os << " SU(" << I->NodeNum << ") " << *(I->getInstr());
558 os << "\n";
559 }
560
561#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
562 LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void dump() const { print(dbgs()); }
563#endif
564};
565
566/// This class repesents the scheduled code. The main data structure is a
567/// map from scheduled cycle to instructions. During scheduling, the
568/// data structure explicitly represents all stages/iterations. When
569/// the algorithm finshes, the schedule is collapsed into a single stage,
570/// which represents instructions from different loop iterations.
571///
572/// The SMS algorithm allows negative values for cycles, so the first cycle
573/// in the schedule is the smallest cycle value.
574class SMSchedule {
575private:
576 /// Map from execution cycle to instructions.
577 DenseMap<int, std::deque<SUnit *>> ScheduledInstrs;
578
579 /// Map from instruction to execution cycle.
580 std::map<SUnit *, int> InstrToCycle;
581
582 /// Map for each register and the max difference between its uses and def.
583 /// The first element in the pair is the max difference in stages. The
584 /// second is true if the register defines a Phi value and loop value is
585 /// scheduled before the Phi.
586 std::map<unsigned, std::pair<unsigned, bool>> RegToStageDiff;
587
588 /// Keep track of the first cycle value in the schedule. It starts
589 /// as zero, but the algorithm allows negative values.
590 int FirstCycle = 0;
591
592 /// Keep track of the last cycle value in the schedule.
593 int LastCycle = 0;
594
595 /// The initiation interval (II) for the schedule.
596 int InitiationInterval = 0;
597
598 /// Target machine information.
599 const TargetSubtargetInfo &ST;
600
601 /// Virtual register information.
602 MachineRegisterInfo &MRI;
603
604 std::unique_ptr<DFAPacketizer> Resources;
605
606public:
607 SMSchedule(MachineFunction *mf)
608 : ST(mf->getSubtarget()), MRI(mf->getRegInfo()),
609 Resources(ST.getInstrInfo()->CreateTargetScheduleState(ST)) {}
610
611 void reset() {
612 ScheduledInstrs.clear();
613 InstrToCycle.clear();
614 RegToStageDiff.clear();
615 FirstCycle = 0;
616 LastCycle = 0;
617 InitiationInterval = 0;
618 }
619
620 /// Set the initiation interval for this schedule.
621 void setInitiationInterval(int ii) { InitiationInterval = ii; }
622
623 /// Return the first cycle in the completed schedule. This
624 /// can be a negative value.
625 int getFirstCycle() const { return FirstCycle; }
626
627 /// Return the last cycle in the finalized schedule.
628 int getFinalCycle() const { return FirstCycle + InitiationInterval - 1; }
629
630 /// Return the cycle of the earliest scheduled instruction in the dependence
631 /// chain.
632 int earliestCycleInChain(const SDep &Dep);
633
634 /// Return the cycle of the latest scheduled instruction in the dependence
635 /// chain.
636 int latestCycleInChain(const SDep &Dep);
637
638 void computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
639 int *MinEnd, int *MaxStart, int II, SwingSchedulerDAG *DAG);
640 bool insert(SUnit *SU, int StartCycle, int EndCycle, int II);
641
642 /// Iterators for the cycle to instruction map.
643 using sched_iterator = DenseMap<int, std::deque<SUnit *>>::iterator;
644 using const_sched_iterator =
645 DenseMap<int, std::deque<SUnit *>>::const_iterator;
646
647 /// Return true if the instruction is scheduled at the specified stage.
648 bool isScheduledAtStage(SUnit *SU, unsigned StageNum) {
649 return (stageScheduled(SU) == (int)StageNum);
650 }
651
652 /// Return the stage for a scheduled instruction. Return -1 if
653 /// the instruction has not been scheduled.
654 int stageScheduled(SUnit *SU) const {
655 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
656 if (it == InstrToCycle.end())
657 return -1;
658 return (it->second - FirstCycle) / InitiationInterval;
659 }
660
661 /// Return the cycle for a scheduled instruction. This function normalizes
662 /// the first cycle to be 0.
663 unsigned cycleScheduled(SUnit *SU) const {
664 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SU);
665 assert(it != InstrToCycle.end() && "Instruction hasn't been scheduled.")(static_cast <bool> (it != InstrToCycle.end() &&
"Instruction hasn't been scheduled.") ? void (0) : __assert_fail
("it != InstrToCycle.end() && \"Instruction hasn't been scheduled.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/lib/CodeGen/MachinePipeliner.cpp"
, 665, __extension__ __PRETTY_FUNCTION__))
;
666 return (it->second - FirstCycle) % InitiationInterval;
667 }
668
669 /// Return the maximum stage count needed for this schedule.
670 unsigned getMaxStageCount() {
671 return (LastCycle - FirstCycle) / InitiationInterval;
672 }
673
674 /// Return the max. number of stages/iterations that can occur between a
675 /// register definition and its uses.
676 unsigned getStagesForReg(int Reg, unsigned CurStage) {
677 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
678 if (CurStage > getMaxStageCount() && Stages.first == 0 && Stages.second)
679 return 1;
680 return Stages.first;
681 }
682
683 /// The number of stages for a Phi is a little different than other
684 /// instructions. The minimum value computed in RegToStageDiff is 1
685 /// because we assume the Phi is needed for at least 1 iteration.
686 /// This is not the case if the loop value is scheduled prior to the
687 /// Phi in the same stage. This function returns the number of stages
688 /// or iterations needed between the Phi definition and any uses.
689 unsigned getStagesForPhi(int Reg) {
690 std::pair<unsigned, bool> Stages = RegToStageDiff[Reg];
691 if (Stages.second)
692 return Stages.first;
693 return Stages.first - 1;
694 }
695
696 /// Return the instructions that are scheduled at the specified cycle.
697 std::deque<SUnit *> &getInstructions(int cycle) {
698 return ScheduledInstrs[cycle];
699 }
700
701 bool isValidSchedule(SwingSchedulerDAG *SSD);
702 void finalizeSchedule(SwingSchedulerDAG *SSD);
703 bool orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
704 std::deque<SUnit *> &Insts);
705 bool isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi);
706 bool isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, MachineInstr *Inst,
707 MachineOperand &MO);
708 void print(raw_ostream &os) const;
709 void dump() const;
710};
711
712} // end anonymous namespace
713
714unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
715char MachinePipeliner::ID = 0;
716#ifndef NDEBUG
717int MachinePipeliner::NumTries = 0;
718#endif
719char &llvm::MachinePipelinerID = MachinePipeliner::ID;
720
721INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE,static void *initializeMachinePipelinerPassOnce(PassRegistry &
Registry) {
722 "Modulo Software Pipelining", false, false)static void *initializeMachinePipelinerPassOnce(PassRegistry &
Registry) {
723INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)initializeAAResultsWrapperPassPass(Registry);
724INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)initializeMachineLoopInfoPass(Registry);
725INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)initializeMachineDominatorTreePass(Registry);
726INITIALIZE_PASS_DEPENDENCY(LiveIntervals)initializeLiveIntervalsPass(Registry);
727INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE,PassInfo *PI = new PassInfo( "Modulo Software Pipelining", "pipeliner"
, &MachinePipeliner::ID, PassInfo::NormalCtor_t(callDefaultCtor
<MachinePipeliner>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeMachinePipelinerPassFlag
; void llvm::initializeMachinePipelinerPass(PassRegistry &
Registry) { llvm::call_once(InitializeMachinePipelinerPassFlag
, initializeMachinePipelinerPassOnce, std::ref(Registry)); }
728 "Modulo Software Pipelining", false, false)PassInfo *PI = new PassInfo( "Modulo Software Pipelining", "pipeliner"
, &MachinePipeliner::ID, PassInfo::NormalCtor_t(callDefaultCtor
<MachinePipeliner>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeMachinePipelinerPassFlag
; void llvm::initializeMachinePipelinerPass(PassRegistry &
Registry) { llvm::call_once(InitializeMachinePipelinerPassFlag
, initializeMachinePipelinerPassOnce, std::ref(Registry)); }
729
730/// The "main" function for implementing Swing Modulo Scheduling.
731bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
732 if (skipFunction(mf.getFunction()))
733 return false;
734
735 if (!EnableSWP)
736 return false;
737
738 if (mf.getFunction().getAttributes().hasAttribute(
739 AttributeList::FunctionIndex, Attribute::OptimizeForSize) &&
740 !EnableSWPOptSize.getPosition())
741 return false;
742
743 MF = &mf;
744 MLI = &getAnalysis<MachineLoopInfo>();
745 MDT = &getAnalysis<MachineDominatorTree>();
746 TII = MF->getSubtarget().getInstrInfo();
747 RegClassInfo.runOnMachineFunction(*MF);
748
749 for (auto &L : *MLI)
750 scheduleLoop(*L);
751
752 return false;
753}
754
755/// Attempt to perform the SMS algorithm on the specified loop. This function is
756/// the main entry point for the algorithm. The function identifies candidate
757/// loops, calculates the minimum initiation interval, and attempts to schedule
758/// the loop.
759bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
760 bool Changed = false;
761 for (auto &InnerLoop : L)
762 Changed |= scheduleLoop(*InnerLoop);
763
764#ifndef NDEBUG
765 // Stop trying after reaching the limit (if any).
766 int Limit = SwpLoopLimit;
767 if (Limit >= 0) {
768 if (NumTries >= SwpLoopLimit)
769 return Changed;
770 NumTries++;
771 }
772#endif
773
774 if (!canPipelineLoop(L))
775 return Changed;
776
777 ++NumTrytoPipeline;
778
779 Changed = swingModuloScheduler(L);
780
781 return Changed;
782}
783
784/// Return true if the loop can be software pipelined. The algorithm is
785/// restricted to loops with a single basic block. Make sure that the
786/// branch in the loop can be analyzed.
787bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
788 if (L.getNumBlocks() != 1)
789 return false;
790
791 // Check if the branch can't be understood because we can't do pipelining
792 // if that's the case.
793 LI.TBB = nullptr;
794 LI.FBB = nullptr;
795 LI.BrCond.clear();
796 if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond))
797 return false;
798
799 LI.LoopInductionVar = nullptr;
800 LI.LoopCompare = nullptr;
801 if (TII->analyzeLoop(L, LI.LoopInductionVar, LI.LoopCompare))
802 return false;
803
804 if (!L.getLoopPreheader())
805 return false;
806
807 // If any of the Phis contain subregs, then we can't pipeline
808 // because we don't know how to maintain subreg information in the
809 // VMap structure.
810 MachineBasicBlock *MBB = L.getHeader();
811 for (auto &PHI : MBB->phis())
812 for (unsigned i = 1; i != PHI.getNumOperands(); i += 2)
813 if (PHI.getOperand(i).getSubReg() != 0)
814 return false;
815
816 return true;
817}
818
819/// The SMS algorithm consists of the following main steps:
820/// 1. Computation and analysis of the dependence graph.
821/// 2. Ordering of the nodes (instructions).
822/// 3. Attempt to Schedule the loop.
823bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
824 assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.")(static_cast <bool> (L.getBlocks().size() == 1 &&
"SMS works on single blocks only.") ? void (0) : __assert_fail
("L.getBlocks().size() == 1 && \"SMS works on single blocks only.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/lib/CodeGen/MachinePipeliner.cpp"
, 824, __extension__ __PRETTY_FUNCTION__))
;
825
826 SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo);
827
828 MachineBasicBlock *MBB = L.getHeader();
829 // The kernel should not include any terminator instructions. These
830 // will be added back later.
831 SMS.startBlock(MBB);
832
833 // Compute the number of 'real' instructions in the basic block by
834 // ignoring terminators.
835 unsigned size = MBB->size();
836 for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
837 E = MBB->instr_end();
838 I != E; ++I, --size)
839 ;
840
841 SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
842 SMS.schedule();
843 SMS.exitRegion();
844
845 SMS.finishBlock();
846 return SMS.hasNewSchedule();
847}
848
849/// We override the schedule function in ScheduleDAGInstrs to implement the
850/// scheduling part of the Swing Modulo Scheduling algorithm.
851void SwingSchedulerDAG::schedule() {
852 AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
853 buildSchedGraph(AA);
854 addLoopCarriedDependences(AA);
855 updatePhiDependences();
856 Topo.InitDAGTopologicalSorting();
857 postprocessDAG();
858 changeDependences();
859 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (unsigned su = 0, e = SUnits.size(); su
!= e; ++su) SUnits[su].dumpAll(this); }; } } while (false)
860 for (unsigned su = 0, e = SUnits.size(); su != e; ++su)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (unsigned su = 0, e = SUnits.size(); su
!= e; ++su) SUnits[su].dumpAll(this); }; } } while (false)
861 SUnits[su].dumpAll(this);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (unsigned su = 0, e = SUnits.size(); su
!= e; ++su) SUnits[su].dumpAll(this); }; } } while (false)
862 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (unsigned su = 0, e = SUnits.size(); su
!= e; ++su) SUnits[su].dumpAll(this); }; } } while (false)
;
863
864 NodeSetType NodeSets;
865 findCircuits(NodeSets);
866
867 // Calculate the MII.
868 unsigned ResMII = calculateResMII();
869 unsigned RecMII = calculateRecMII(NodeSets);
870
871 fuseRecs(NodeSets);
872
873 // This flag is used for testing and can cause correctness problems.
874 if (SwpIgnoreRecMII)
875 RecMII = 0;
876
877 MII = std::max(ResMII, RecMII);
878 DEBUG(dbgs() << "MII = " << MII << " (rec=" << RecMII << ", res=" << ResMIIdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "MII = " << MII <<
" (rec=" << RecMII << ", res=" << ResMII <<
")\n"; } } while (false)
879 << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "MII = " << MII <<
" (rec=" << RecMII << ", res=" << ResMII <<
")\n"; } } while (false)
;
880
881 // Can't schedule a loop without a valid MII.
882 if (MII == 0)
883 return;
884
885 // Don't pipeline large loops.
886 if (SwpMaxMii != -1 && (int)MII > SwpMaxMii)
887 return;
888
889 computeNodeFunctions(NodeSets);
890
891 registerPressureFilter(NodeSets);
892
893 colocateNodeSets(NodeSets);
894
895 checkNodeSets(NodeSets);
896
897 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (auto &I : NodeSets) { dbgs() <<
" Rec NodeSet "; I.dump(); } }; } } while (false)
898 for (auto &I : NodeSets) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (auto &I : NodeSets) { dbgs() <<
" Rec NodeSet "; I.dump(); } }; } } while (false)
899 dbgs() << " Rec NodeSet ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (auto &I : NodeSets) { dbgs() <<
" Rec NodeSet "; I.dump(); } }; } } while (false)
900 I.dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (auto &I : NodeSets) { dbgs() <<
" Rec NodeSet "; I.dump(); } }; } } while (false)
901 }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (auto &I : NodeSets) { dbgs() <<
" Rec NodeSet "; I.dump(); } }; } } while (false)
902 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (auto &I : NodeSets) { dbgs() <<
" Rec NodeSet "; I.dump(); } }; } } while (false)
;
903
904 std::sort(NodeSets.begin(), NodeSets.end(), std::greater<NodeSet>());
905
906 groupRemainingNodes(NodeSets);
907
908 removeDuplicateNodes(NodeSets);
909
910 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (auto &I : NodeSets) { dbgs() <<
" NodeSet "; I.dump(); } }; } } while (false)
911 for (auto &I : NodeSets) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (auto &I : NodeSets) { dbgs() <<
" NodeSet "; I.dump(); } }; } } while (false)
912 dbgs() << " NodeSet ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (auto &I : NodeSets) { dbgs() <<
" NodeSet "; I.dump(); } }; } } while (false)
913 I.dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (auto &I : NodeSets) { dbgs() <<
" NodeSet "; I.dump(); } }; } } while (false)
914 }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (auto &I : NodeSets) { dbgs() <<
" NodeSet "; I.dump(); } }; } } while (false)
915 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (auto &I : NodeSets) { dbgs() <<
" NodeSet "; I.dump(); } }; } } while (false)
;
916
917 computeNodeOrder(NodeSets);
918
919 SMSchedule Schedule(Pass.MF);
920 Scheduled = schedulePipeline(Schedule);
921
922 if (!Scheduled)
923 return;
924
925 unsigned numStages = Schedule.getMaxStageCount();
926 // No need to generate pipeline if there are no overlapped iterations.
927 if (numStages == 0)
928 return;
929
930 // Check that the maximum stage count is less than user-defined limit.
931 if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages)
932 return;
933
934 generatePipelinedLoop(Schedule);
935 ++NumPipelined;
936}
937
938/// Clean up after the software pipeliner runs.
939void SwingSchedulerDAG::finishBlock() {
940 for (MachineInstr *I : NewMIs)
941 MF.DeleteMachineInstr(I);
942 NewMIs.clear();
943
944 // Call the superclass.
945 ScheduleDAGInstrs::finishBlock();
946}
947
948/// Return the register values for the operands of a Phi instruction.
949/// This function assume the instruction is a Phi.
950static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
951 unsigned &InitVal, unsigned &LoopVal) {
952 assert(Phi.isPHI() && "Expecting a Phi.")(static_cast <bool> (Phi.isPHI() && "Expecting a Phi."
) ? void (0) : __assert_fail ("Phi.isPHI() && \"Expecting a Phi.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/lib/CodeGen/MachinePipeliner.cpp"
, 952, __extension__ __PRETTY_FUNCTION__))
;
953
954 InitVal = 0;
955 LoopVal = 0;
956 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
957 if (Phi.getOperand(i + 1).getMBB() != Loop)
958 InitVal = Phi.getOperand(i).getReg();
959 else
960 LoopVal = Phi.getOperand(i).getReg();
961
962 assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.")(static_cast <bool> (InitVal != 0 && LoopVal !=
0 && "Unexpected Phi structure.") ? void (0) : __assert_fail
("InitVal != 0 && LoopVal != 0 && \"Unexpected Phi structure.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/lib/CodeGen/MachinePipeliner.cpp"
, 962, __extension__ __PRETTY_FUNCTION__))
;
963}
964
965/// Return the Phi register value that comes from the incoming block.
966static unsigned getInitPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
967 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
968 if (Phi.getOperand(i + 1).getMBB() != LoopBB)
969 return Phi.getOperand(i).getReg();
970 return 0;
971}
972
973/// Return the Phi register value that comes the loop block.
974static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
975 for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
976 if (Phi.getOperand(i + 1).getMBB() == LoopBB)
977 return Phi.getOperand(i).getReg();
978 return 0;
979}
980
981/// Return true if SUb can be reached from SUa following the chain edges.
982static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
983 SmallPtrSet<SUnit *, 8> Visited;
984 SmallVector<SUnit *, 8> Worklist;
985 Worklist.push_back(SUa);
986 while (!Worklist.empty()) {
987 const SUnit *SU = Worklist.pop_back_val();
988 for (auto &SI : SU->Succs) {
989 SUnit *SuccSU = SI.getSUnit();
990 if (SI.getKind() == SDep::Order) {
991 if (Visited.count(SuccSU))
992 continue;
993 if (SuccSU == SUb)
994 return true;
995 Worklist.push_back(SuccSU);
996 Visited.insert(SuccSU);
997 }
998 }
999 }
1000 return false;
1001}
1002
1003/// Return true if the instruction causes a chain between memory
1004/// references before and after it.
1005static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) {
1006 return MI.isCall() || MI.hasUnmodeledSideEffects() ||
1007 (MI.hasOrderedMemoryRef() &&
1008 (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA)));
1009}
1010
1011/// Return the underlying objects for the memory references of an instruction.
1012/// This function calls the code in ValueTracking, but first checks that the
1013/// instruction has a memory operand.
1014static void getUnderlyingObjects(MachineInstr *MI,
1015 SmallVectorImpl<Value *> &Objs,
1016 const DataLayout &DL) {
1017 if (!MI->hasOneMemOperand())
1018 return;
1019 MachineMemOperand *MM = *MI->memoperands_begin();
1020 if (!MM->getValue())
1021 return;
1022 GetUnderlyingObjects(const_cast<Value *>(MM->getValue()), Objs, DL);
1023}
1024
1025/// Add a chain edge between a load and store if the store can be an
1026/// alias of the load on a subsequent iteration, i.e., a loop carried
1027/// dependence. This code is very similar to the code in ScheduleDAGInstrs
1028/// but that code doesn't create loop carried dependences.
1029void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
1030 MapVector<Value *, SmallVector<SUnit *, 4>> PendingLoads;
1031 for (auto &SU : SUnits) {
1032 MachineInstr &MI = *SU.getInstr();
1033 if (isDependenceBarrier(MI, AA))
1034 PendingLoads.clear();
1035 else if (MI.mayLoad()) {
1036 SmallVector<Value *, 4> Objs;
1037 getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
1038 for (auto V : Objs) {
1039 SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
1040 SUs.push_back(&SU);
1041 }
1042 } else if (MI.mayStore()) {
1043 SmallVector<Value *, 4> Objs;
1044 getUnderlyingObjects(&MI, Objs, MF.getDataLayout());
1045 for (auto V : Objs) {
1046 MapVector<Value *, SmallVector<SUnit *, 4>>::iterator I =
1047 PendingLoads.find(V);
1048 if (I == PendingLoads.end())
1049 continue;
1050 for (auto Load : I->second) {
1051 if (isSuccOrder(Load, &SU))
1052 continue;
1053 MachineInstr &LdMI = *Load->getInstr();
1054 // First, perform the cheaper check that compares the base register.
1055 // If they are the same and the load offset is less than the store
1056 // offset, then mark the dependence as loop carried potentially.
1057 unsigned BaseReg1, BaseReg2;
1058 int64_t Offset1, Offset2;
1059 if (!TII->getMemOpBaseRegImmOfs(LdMI, BaseReg1, Offset1, TRI) ||
1060 !TII->getMemOpBaseRegImmOfs(MI, BaseReg2, Offset2, TRI)) {
1061 SU.addPred(SDep(Load, SDep::Barrier));
1062 continue;
1063 }
1064 if (BaseReg1 == BaseReg2 && (int)Offset1 < (int)Offset2) {
1065 assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) &&(static_cast <bool> (TII->areMemAccessesTriviallyDisjoint
(LdMI, MI, AA) && "What happened to the chain edge?")
? void (0) : __assert_fail ("TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) && \"What happened to the chain edge?\""
, "/build/llvm-toolchain-snapshot-7~svn326551/lib/CodeGen/MachinePipeliner.cpp"
, 1066, __extension__ __PRETTY_FUNCTION__))
1066 "What happened to the chain edge?")(static_cast <bool> (TII->areMemAccessesTriviallyDisjoint
(LdMI, MI, AA) && "What happened to the chain edge?")
? void (0) : __assert_fail ("TII->areMemAccessesTriviallyDisjoint(LdMI, MI, AA) && \"What happened to the chain edge?\""
, "/build/llvm-toolchain-snapshot-7~svn326551/lib/CodeGen/MachinePipeliner.cpp"
, 1066, __extension__ __PRETTY_FUNCTION__))
;
1067 SU.addPred(SDep(Load, SDep::Barrier));
1068 continue;
1069 }
1070 // Second, the more expensive check that uses alias analysis on the
1071 // base registers. If they alias, and the load offset is less than
1072 // the store offset, the mark the dependence as loop carried.
1073 if (!AA) {
1074 SU.addPred(SDep(Load, SDep::Barrier));
1075 continue;
1076 }
1077 MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
1078 MachineMemOperand *MMO2 = *MI.memoperands_begin();
1079 if (!MMO1->getValue() || !MMO2->getValue()) {
1080 SU.addPred(SDep(Load, SDep::Barrier));
1081 continue;
1082 }
1083 if (MMO1->getValue() == MMO2->getValue() &&
1084 MMO1->getOffset() <= MMO2->getOffset()) {
1085 SU.addPred(SDep(Load, SDep::Barrier));
1086 continue;
1087 }
1088 AliasResult AAResult = AA->alias(
1089 MemoryLocation(MMO1->getValue(), MemoryLocation::UnknownSize,
1090 MMO1->getAAInfo()),
1091 MemoryLocation(MMO2->getValue(), MemoryLocation::UnknownSize,
1092 MMO2->getAAInfo()));
1093
1094 if (AAResult != NoAlias)
1095 SU.addPred(SDep(Load, SDep::Barrier));
1096 }
1097 }
1098 }
1099 }
1100}
1101
1102/// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
1103/// processes dependences for PHIs. This function adds true dependences
1104/// from a PHI to a use, and a loop carried dependence from the use to the
1105/// PHI. The loop carried dependence is represented as an anti dependence
1106/// edge. This function also removes chain dependences between unrelated
1107/// PHIs.
1108void SwingSchedulerDAG::updatePhiDependences() {
1109 SmallVector<SDep, 4> RemoveDeps;
1110 const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
1111
1112 // Iterate over each DAG node.
1113 for (SUnit &I : SUnits) {
1114 RemoveDeps.clear();
1115 // Set to true if the instruction has an operand defined by a Phi.
1116 unsigned HasPhiUse = 0;
1117 unsigned HasPhiDef = 0;
1118 MachineInstr *MI = I.getInstr();
1119 // Iterate over each operand, and we process the definitions.
1120 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
1121 MOE = MI->operands_end();
1122 MOI != MOE; ++MOI) {
1123 if (!MOI->isReg())
1124 continue;
1125 unsigned Reg = MOI->getReg();
1126 if (MOI->isDef()) {
1127 // If the register is used by a Phi, then create an anti dependence.
1128 for (MachineRegisterInfo::use_instr_iterator
1129 UI = MRI.use_instr_begin(Reg),
1130 UE = MRI.use_instr_end();
1131 UI != UE; ++UI) {
1132 MachineInstr *UseMI = &*UI;
1133 SUnit *SU = getSUnit(UseMI);
1134 if (SU != nullptr && UseMI->isPHI()) {
1135 if (!MI->isPHI()) {
1136 SDep Dep(SU, SDep::Anti, Reg);
1137 I.addPred(Dep);
1138 } else {
1139 HasPhiDef = Reg;
1140 // Add a chain edge to a dependent Phi that isn't an existing
1141 // predecessor.
1142 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
1143 I.addPred(SDep(SU, SDep::Barrier));
1144 }
1145 }
1146 }
1147 } else if (MOI->isUse()) {
1148 // If the register is defined by a Phi, then create a true dependence.
1149 MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
1150 if (DefMI == nullptr)
1151 continue;
1152 SUnit *SU = getSUnit(DefMI);
1153 if (SU != nullptr && DefMI->isPHI()) {
1154 if (!MI->isPHI()) {
1155 SDep Dep(SU, SDep::Data, Reg);
1156 Dep.setLatency(0);
1157 ST.adjustSchedDependency(SU, &I, Dep);
1158 I.addPred(Dep);
1159 } else {
1160 HasPhiUse = Reg;
1161 // Add a chain edge to a dependent Phi that isn't an existing
1162 // predecessor.
1163 if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
1164 I.addPred(SDep(SU, SDep::Barrier));
1165 }
1166 }
1167 }
1168 }
1169 // Remove order dependences from an unrelated Phi.
1170 if (!SwpPruneDeps)
1171 continue;
1172 for (auto &PI : I.Preds) {
1173 MachineInstr *PMI = PI.getSUnit()->getInstr();
1174 if (PMI->isPHI() && PI.getKind() == SDep::Order) {
1175 if (I.getInstr()->isPHI()) {
1176 if (PMI->getOperand(0).getReg() == HasPhiUse)
1177 continue;
1178 if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
1179 continue;
1180 }
1181 RemoveDeps.push_back(PI);
1182 }
1183 }
1184 for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
1185 I.removePred(RemoveDeps[i]);
1186 }
1187}
1188
1189/// Iterate over each DAG node and see if we can change any dependences
1190/// in order to reduce the recurrence MII.
1191void SwingSchedulerDAG::changeDependences() {
1192 // See if an instruction can use a value from the previous iteration.
1193 // If so, we update the base and offset of the instruction and change
1194 // the dependences.
1195 for (SUnit &I : SUnits) {
1196 unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
1197 int64_t NewOffset = 0;
1198 if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
1199 NewOffset))
1200 continue;
1201
1202 // Get the MI and SUnit for the instruction that defines the original base.
1203 unsigned OrigBase = I.getInstr()->getOperand(BasePos).getReg();
1204 MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
1205 if (!DefMI)
1206 continue;
1207 SUnit *DefSU = getSUnit(DefMI);
1208 if (!DefSU)
1209 continue;
1210 // Get the MI and SUnit for the instruction that defins the new base.
1211 MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
1212 if (!LastMI)
1213 continue;
1214 SUnit *LastSU = getSUnit(LastMI);
1215 if (!LastSU)
1216 continue;
1217
1218 if (Topo.IsReachable(&I, LastSU))
1219 continue;
1220
1221 // Remove the dependence. The value now depends on a prior iteration.
1222 SmallVector<SDep, 4> Deps;
1223 for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E;
1224 ++P)
1225 if (P->getSUnit() == DefSU)
1226 Deps.push_back(*P);
1227 for (int i = 0, e = Deps.size(); i != e; i++) {
1228 Topo.RemovePred(&I, Deps[i].getSUnit());
1229 I.removePred(Deps[i]);
1230 }
1231 // Remove the chain dependence between the instructions.
1232 Deps.clear();
1233 for (auto &P : LastSU->Preds)
1234 if (P.getSUnit() == &I && P.getKind() == SDep::Order)
1235 Deps.push_back(P);
1236 for (int i = 0, e = Deps.size(); i != e; i++) {
1237 Topo.RemovePred(LastSU, Deps[i].getSUnit());
1238 LastSU->removePred(Deps[i]);
1239 }
1240
1241 // Add a dependence between the new instruction and the instruction
1242 // that defines the new base.
1243 SDep Dep(&I, SDep::Anti, NewBase);
1244 LastSU->addPred(Dep);
1245
1246 // Remember the base and offset information so that we can update the
1247 // instruction during code generation.
1248 InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
1249 }
1250}
1251
1252namespace {
1253
1254// FuncUnitSorter - Comparison operator used to sort instructions by
1255// the number of functional unit choices.
1256struct FuncUnitSorter {
1257 const InstrItineraryData *InstrItins;
1258 DenseMap<unsigned, unsigned> Resources;
1259
1260 FuncUnitSorter(const InstrItineraryData *IID) : InstrItins(IID) {}
1261
1262 // Compute the number of functional unit alternatives needed
1263 // at each stage, and take the minimum value. We prioritize the
1264 // instructions by the least number of choices first.
1265 unsigned minFuncUnits(const MachineInstr *Inst, unsigned &F) const {
1266 unsigned schedClass = Inst->getDesc().getSchedClass();
1267 unsigned min = UINT_MAX(2147483647 *2U +1U);
1268 for (const InstrStage *IS = InstrItins->beginStage(schedClass),
1269 *IE = InstrItins->endStage(schedClass);
1270 IS != IE; ++IS) {
1271 unsigned funcUnits = IS->getUnits();
1272 unsigned numAlternatives = countPopulation(funcUnits);
1273 if (numAlternatives < min) {
1274 min = numAlternatives;
1275 F = funcUnits;
1276 }
1277 }
1278 return min;
1279 }
1280
1281 // Compute the critical resources needed by the instruction. This
1282 // function records the functional units needed by instructions that
1283 // must use only one functional unit. We use this as a tie breaker
1284 // for computing the resource MII. The instrutions that require
1285 // the same, highly used, functional unit have high priority.
1286 void calcCriticalResources(MachineInstr &MI) {
1287 unsigned SchedClass = MI.getDesc().getSchedClass();
1288 for (const InstrStage *IS = InstrItins->beginStage(SchedClass),
1289 *IE = InstrItins->endStage(SchedClass);
1290 IS != IE; ++IS) {
1291 unsigned FuncUnits = IS->getUnits();
1292 if (countPopulation(FuncUnits) == 1)
1293 Resources[FuncUnits]++;
1294 }
1295 }
1296
1297 /// Return true if IS1 has less priority than IS2.
1298 bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
1299 unsigned F1 = 0, F2 = 0;
1300 unsigned MFUs1 = minFuncUnits(IS1, F1);
1301 unsigned MFUs2 = minFuncUnits(IS2, F2);
1302 if (MFUs1 == 1 && MFUs2 == 1)
1303 return Resources.lookup(F1) < Resources.lookup(F2);
1304 return MFUs1 > MFUs2;
1305 }
1306};
1307
1308} // end anonymous namespace
1309
1310/// Calculate the resource constrained minimum initiation interval for the
1311/// specified loop. We use the DFA to model the resources needed for
1312/// each instruction, and we ignore dependences. A different DFA is created
1313/// for each cycle that is required. When adding a new instruction, we attempt
1314/// to add it to each existing DFA, until a legal space is found. If the
1315/// instruction cannot be reserved in an existing DFA, we create a new one.
1316unsigned SwingSchedulerDAG::calculateResMII() {
1317 SmallVector<DFAPacketizer *, 8> Resources;
1318 MachineBasicBlock *MBB = Loop.getHeader();
1319 Resources.push_back(TII->CreateTargetScheduleState(MF.getSubtarget()));
1320
1321 // Sort the instructions by the number of available choices for scheduling,
1322 // least to most. Use the number of critical resources as the tie breaker.
1323 FuncUnitSorter FUS =
1324 FuncUnitSorter(MF.getSubtarget().getInstrItineraryData());
1325 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
1326 E = MBB->getFirstTerminator();
1327 I != E; ++I)
1328 FUS.calcCriticalResources(*I);
1329 PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
1330 FuncUnitOrder(FUS);
1331
1332 for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
1333 E = MBB->getFirstTerminator();
1334 I != E; ++I)
1335 FuncUnitOrder.push(&*I);
1336
1337 while (!FuncUnitOrder.empty()) {
1338 MachineInstr *MI = FuncUnitOrder.top();
1339 FuncUnitOrder.pop();
1340 if (TII->isZeroCost(MI->getOpcode()))
1341 continue;
1342 // Attempt to reserve the instruction in an existing DFA. At least one
1343 // DFA is needed for each cycle.
1344 unsigned NumCycles = getSUnit(MI)->Latency;
1345 unsigned ReservedCycles = 0;
1346 SmallVectorImpl<DFAPacketizer *>::iterator RI = Resources.begin();
1347 SmallVectorImpl<DFAPacketizer *>::iterator RE = Resources.end();
1348 for (unsigned C = 0; C < NumCycles; ++C)
1349 while (RI != RE) {
1350 if ((*RI++)->canReserveResources(*MI)) {
1351 ++ReservedCycles;
1352 break;
1353 }
1354 }
1355 // Start reserving resources using existing DFAs.
1356 for (unsigned C = 0; C < ReservedCycles; ++C) {
1357 --RI;
1358 (*RI)->reserveResources(*MI);
1359 }
1360 // Add new DFAs, if needed, to reserve resources.
1361 for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
1362 DFAPacketizer *NewResource =
1363 TII->CreateTargetScheduleState(MF.getSubtarget());
1364 assert(NewResource->canReserveResources(*MI) && "Reserve error.")(static_cast <bool> (NewResource->canReserveResources
(*MI) && "Reserve error.") ? void (0) : __assert_fail
("NewResource->canReserveResources(*MI) && \"Reserve error.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/lib/CodeGen/MachinePipeliner.cpp"
, 1364, __extension__ __PRETTY_FUNCTION__))
;
1365 NewResource->reserveResources(*MI);
1366 Resources.push_back(NewResource);
1367 }
1368 }
1369 int Resmii = Resources.size();
1370 // Delete the memory for each of the DFAs that were created earlier.
1371 for (DFAPacketizer *RI : Resources) {
1372 DFAPacketizer *D = RI;
1373 delete D;
1374 }
1375 Resources.clear();
1376 return Resmii;
1377}
1378
1379/// Calculate the recurrence-constrainted minimum initiation interval.
1380/// Iterate over each circuit. Compute the delay(c) and distance(c)
1381/// for each circuit. The II needs to satisfy the inequality
1382/// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
1383/// II that satistifies the inequality, and the RecMII is the maximum
1384/// of those values.
1385unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
1386 unsigned RecMII = 0;
1387
1388 for (NodeSet &Nodes : NodeSets) {
1389 if (Nodes.empty())
1390 continue;
1391
1392 unsigned Delay = Nodes.size() - 1;
1393 unsigned Distance = 1;
1394
1395 // ii = ceil(delay / distance)
1396 unsigned CurMII = (Delay + Distance - 1) / Distance;
1397 Nodes.setRecMII(CurMII);
1398 if (CurMII > RecMII)
1399 RecMII = CurMII;
1400 }
1401
1402 return RecMII;
1403}
1404
1405/// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1406/// but we do this to find the circuits, and then change them back.
1407static void swapAntiDependences(std::vector<SUnit> &SUnits) {
1408 SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
1409 for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
1410 SUnit *SU = &SUnits[i];
1411 for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end();
1412 IP != EP; ++IP) {
1413 if (IP->getKind() != SDep::Anti)
1414 continue;
1415 DepsAdded.push_back(std::make_pair(SU, *IP));
1416 }
1417 }
1418 for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(),
1419 E = DepsAdded.end();
1420 I != E; ++I) {
1421 // Remove this anti dependency and add one in the reverse direction.
1422 SUnit *SU = I->first;
1423 SDep &D = I->second;
1424 SUnit *TargetSU = D.getSUnit();
1425 unsigned Reg = D.getReg();
1426 unsigned Lat = D.getLatency();
1427 SU->removePred(D);
1428 SDep Dep(SU, SDep::Anti, Reg);
1429 Dep.setLatency(Lat);
1430 TargetSU->addPred(Dep);
1431 }
1432}
1433
1434/// Create the adjacency structure of the nodes in the graph.
1435void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
1436 SwingSchedulerDAG *DAG) {
1437 BitVector Added(SUnits.size());
1438 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1439 Added.reset();
1440 // Add any successor to the adjacency matrix and exclude duplicates.
1441 for (auto &SI : SUnits[i].Succs) {
1442 // Do not process a boundary node and a back-edge is processed only
1443 // if it goes to a Phi.
1444 if (SI.getSUnit()->isBoundaryNode() ||
1445 (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
1446 continue;
1447 int N = SI.getSUnit()->NodeNum;
1448 if (!Added.test(N)) {
1449 AdjK[i].push_back(N);
1450 Added.set(N);
1451 }
1452 }
1453 // A chain edge between a store and a load is treated as a back-edge in the
1454 // adjacency matrix.
1455 for (auto &PI : SUnits[i].Preds) {
1456 if (!SUnits[i].getInstr()->mayStore() ||
1457 !DAG->isLoopCarriedOrder(&SUnits[i], PI, false))
1458 continue;
1459 if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
1460 int N = PI.getSUnit()->NodeNum;
1461 if (!Added.test(N)) {
1462 AdjK[i].push_back(N);
1463 Added.set(N);
1464 }
1465 }
1466 }
1467 }
1468}
1469
1470/// Identify an elementary circuit in the dependence graph starting at the
1471/// specified node.
1472bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
1473 bool HasBackedge) {
1474 SUnit *SV = &SUnits[V];
1475 bool F = false;
1476 Stack.insert(SV);
1477 Blocked.set(V);
1478
1479 for (auto W : AdjK[V]) {
1480 if (NumPaths > MaxPaths)
1481 break;
1482 if (W < S)
1483 continue;
1484 if (W == S) {
1485 if (!HasBackedge)
1486 NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
1487 F = true;
1488 ++NumPaths;
1489 break;
1490 } else if (!Blocked.test(W)) {
1491 if (circuit(W, S, NodeSets, W < V ? true : HasBackedge))
1492 F = true;
1493 }
1494 }
1495
1496 if (F)
1497 unblock(V);
1498 else {
1499 for (auto W : AdjK[V]) {
1500 if (W < S)
1501 continue;
1502 if (B[W].count(SV) == 0)
1503 B[W].insert(SV);
1504 }
1505 }
1506 Stack.pop_back();
1507 return F;
1508}
1509
1510/// Unblock a node in the circuit finding algorithm.
1511void SwingSchedulerDAG::Circuits::unblock(int U) {
1512 Blocked.reset(U);
1513 SmallPtrSet<SUnit *, 4> &BU = B[U];
1514 while (!BU.empty()) {
1515 SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
1516 assert(SI != BU.end() && "Invalid B set.")(static_cast <bool> (SI != BU.end() && "Invalid B set."
) ? void (0) : __assert_fail ("SI != BU.end() && \"Invalid B set.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/lib/CodeGen/MachinePipeliner.cpp"
, 1516, __extension__ __PRETTY_FUNCTION__))
;
1517 SUnit *W = *SI;
1518 BU.erase(W);
1519 if (Blocked.test(W->NodeNum))
1520 unblock(W->NodeNum);
1521 }
1522}
1523
1524/// Identify all the elementary circuits in the dependence graph using
1525/// Johnson's circuit algorithm.
1526void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
1527 // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
1528 // but we do this to find the circuits, and then change them back.
1529 swapAntiDependences(SUnits);
1530
1531 Circuits Cir(SUnits);
1532 // Create the adjacency structure.
1533 Cir.createAdjacencyStructure(this);
1534 for (int i = 0, e = SUnits.size(); i != e; ++i) {
1535 Cir.reset();
1536 Cir.circuit(i, i, NodeSets);
1537 }
1538
1539 // Change the dependences back so that we've created a DAG again.
1540 swapAntiDependences(SUnits);
1541}
1542
1543/// Return true for DAG nodes that we ignore when computing the cost functions.
1544/// We ignore the back-edge recurrence in order to avoid unbounded recurison
1545/// in the calculation of the ASAP, ALAP, etc functions.
1546static bool ignoreDependence(const SDep &D, bool isPred) {
1547 if (D.isArtificial())
1548 return true;
1549 return D.getKind() == SDep::Anti && isPred;
1550}
1551
1552/// Compute several functions need to order the nodes for scheduling.
1553/// ASAP - Earliest time to schedule a node.
1554/// ALAP - Latest time to schedule a node.
1555/// MOV - Mobility function, difference between ALAP and ASAP.
1556/// D - Depth of each node.
1557/// H - Height of each node.
1558void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
1559 ScheduleInfo.resize(SUnits.size());
1560
1561 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (ScheduleDAGTopologicalSort::const_iterator
I = Topo.begin(), E = Topo.end(); I != E; ++I) { SUnit *SU =
&SUnits[*I]; SU->dump(this); } }; } } while (false)
1562 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (ScheduleDAGTopologicalSort::const_iterator
I = Topo.begin(), E = Topo.end(); I != E; ++I) { SUnit *SU =
&SUnits[*I]; SU->dump(this); } }; } } while (false)
1563 E = Topo.end();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (ScheduleDAGTopologicalSort::const_iterator
I = Topo.begin(), E = Topo.end(); I != E; ++I) { SUnit *SU =
&SUnits[*I]; SU->dump(this); } }; } } while (false)
1564 I != E; ++I) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (ScheduleDAGTopologicalSort::const_iterator
I = Topo.begin(), E = Topo.end(); I != E; ++I) { SUnit *SU =
&SUnits[*I]; SU->dump(this); } }; } } while (false)
1565 SUnit *SU = &SUnits[*I];do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (ScheduleDAGTopologicalSort::const_iterator
I = Topo.begin(), E = Topo.end(); I != E; ++I) { SUnit *SU =
&SUnits[*I]; SU->dump(this); } }; } } while (false)
1566 SU->dump(this);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (ScheduleDAGTopologicalSort::const_iterator
I = Topo.begin(), E = Topo.end(); I != E; ++I) { SUnit *SU =
&SUnits[*I]; SU->dump(this); } }; } } while (false)
1567 }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (ScheduleDAGTopologicalSort::const_iterator
I = Topo.begin(), E = Topo.end(); I != E; ++I) { SUnit *SU =
&SUnits[*I]; SU->dump(this); } }; } } while (false)
1568 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (ScheduleDAGTopologicalSort::const_iterator
I = Topo.begin(), E = Topo.end(); I != E; ++I) { SUnit *SU =
&SUnits[*I]; SU->dump(this); } }; } } while (false)
;
1569
1570 int maxASAP = 0;
1571 // Compute ASAP.
1572 for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
1573 E = Topo.end();
1574 I != E; ++I) {
1575 int asap = 0;
1576 SUnit *SU = &SUnits[*I];
1577 for (SUnit::const_pred_iterator IP = SU->Preds.begin(),
1578 EP = SU->Preds.end();
1579 IP != EP; ++IP) {
1580 if (ignoreDependence(*IP, true))
1581 continue;
1582 SUnit *pred = IP->getSUnit();
1583 asap = std::max(asap, (int)(getASAP(pred) + getLatency(SU, *IP) -
1584 getDistance(pred, SU, *IP) * MII));
1585 }
1586 maxASAP = std::max(maxASAP, asap);
1587 ScheduleInfo[*I].ASAP = asap;
1588 }
1589
1590 // Compute ALAP and MOV.
1591 for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(),
1592 E = Topo.rend();
1593 I != E; ++I) {
1594 int alap = maxASAP;
1595 SUnit *SU = &SUnits[*I];
1596 for (SUnit::const_succ_iterator IS = SU->Succs.begin(),
1597 ES = SU->Succs.end();
1598 IS != ES; ++IS) {
1599 if (ignoreDependence(*IS, true))
1600 continue;
1601 SUnit *succ = IS->getSUnit();
1602 alap = std::min(alap, (int)(getALAP(succ) - getLatency(SU, *IS) +
1603 getDistance(SU, succ, *IS) * MII));
1604 }
1605
1606 ScheduleInfo[*I].ALAP = alap;
1607 }
1608
1609 // After computing the node functions, compute the summary for each node set.
1610 for (NodeSet &I : NodeSets)
1611 I.computeNodeSetInfo(this);
1612
1613 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (unsigned i = 0; i < SUnits.size();
i++) { dbgs() << "\tNode " << i << ":\n"; dbgs
() << "\t ASAP = " << getASAP(&SUnits[i]) <<
"\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits
[i]) << "\n"; dbgs() << "\t MOV = " << getMOV
(&SUnits[i]) << "\n"; dbgs() << "\t D = "
<< getDepth(&SUnits[i]) << "\n"; dbgs() <<
"\t H = " << getHeight(&SUnits[i]) << "\n"
; } }; } } while (false)
1614 for (unsigned i = 0; i < SUnits.size(); i++) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (unsigned i = 0; i < SUnits.size();
i++) { dbgs() << "\tNode " << i << ":\n"; dbgs
() << "\t ASAP = " << getASAP(&SUnits[i]) <<
"\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits
[i]) << "\n"; dbgs() << "\t MOV = " << getMOV
(&SUnits[i]) << "\n"; dbgs() << "\t D = "
<< getDepth(&SUnits[i]) << "\n"; dbgs() <<
"\t H = " << getHeight(&SUnits[i]) << "\n"
; } }; } } while (false)
1615 dbgs() << "\tNode " << i << ":\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (unsigned i = 0; i < SUnits.size();
i++) { dbgs() << "\tNode " << i << ":\n"; dbgs
() << "\t ASAP = " << getASAP(&SUnits[i]) <<
"\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits
[i]) << "\n"; dbgs() << "\t MOV = " << getMOV
(&SUnits[i]) << "\n"; dbgs() << "\t D = "
<< getDepth(&SUnits[i]) << "\n"; dbgs() <<
"\t H = " << getHeight(&SUnits[i]) << "\n"
; } }; } } while (false)
1616 dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (unsigned i = 0; i < SUnits.size();
i++) { dbgs() << "\tNode " << i << ":\n"; dbgs
() << "\t ASAP = " << getASAP(&SUnits[i]) <<
"\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits
[i]) << "\n"; dbgs() << "\t MOV = " << getMOV
(&SUnits[i]) << "\n"; dbgs() << "\t D = "
<< getDepth(&SUnits[i]) << "\n"; dbgs() <<
"\t H = " << getHeight(&SUnits[i]) << "\n"
; } }; } } while (false)
1617 dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (unsigned i = 0; i < SUnits.size();
i++) { dbgs() << "\tNode " << i << ":\n"; dbgs
() << "\t ASAP = " << getASAP(&SUnits[i]) <<
"\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits
[i]) << "\n"; dbgs() << "\t MOV = " << getMOV
(&SUnits[i]) << "\n"; dbgs() << "\t D = "
<< getDepth(&SUnits[i]) << "\n"; dbgs() <<
"\t H = " << getHeight(&SUnits[i]) << "\n"
; } }; } } while (false)
1618 dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (unsigned i = 0; i < SUnits.size();
i++) { dbgs() << "\tNode " << i << ":\n"; dbgs
() << "\t ASAP = " << getASAP(&SUnits[i]) <<
"\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits
[i]) << "\n"; dbgs() << "\t MOV = " << getMOV
(&SUnits[i]) << "\n"; dbgs() << "\t D = "
<< getDepth(&SUnits[i]) << "\n"; dbgs() <<
"\t H = " << getHeight(&SUnits[i]) << "\n"
; } }; } } while (false)
1619 dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (unsigned i = 0; i < SUnits.size();
i++) { dbgs() << "\tNode " << i << ":\n"; dbgs
() << "\t ASAP = " << getASAP(&SUnits[i]) <<
"\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits
[i]) << "\n"; dbgs() << "\t MOV = " << getMOV
(&SUnits[i]) << "\n"; dbgs() << "\t D = "
<< getDepth(&SUnits[i]) << "\n"; dbgs() <<
"\t H = " << getHeight(&SUnits[i]) << "\n"
; } }; } } while (false)
1620 dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (unsigned i = 0; i < SUnits.size();
i++) { dbgs() << "\tNode " << i << ":\n"; dbgs
() << "\t ASAP = " << getASAP(&SUnits[i]) <<
"\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits
[i]) << "\n"; dbgs() << "\t MOV = " << getMOV
(&SUnits[i]) << "\n"; dbgs() << "\t D = "
<< getDepth(&SUnits[i]) << "\n"; dbgs() <<
"\t H = " << getHeight(&SUnits[i]) << "\n"
; } }; } } while (false)
1621 }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (unsigned i = 0; i < SUnits.size();
i++) { dbgs() << "\tNode " << i << ":\n"; dbgs
() << "\t ASAP = " << getASAP(&SUnits[i]) <<
"\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits
[i]) << "\n"; dbgs() << "\t MOV = " << getMOV
(&SUnits[i]) << "\n"; dbgs() << "\t D = "
<< getDepth(&SUnits[i]) << "\n"; dbgs() <<
"\t H = " << getHeight(&SUnits[i]) << "\n"
; } }; } } while (false)
1622 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { for (unsigned i = 0; i < SUnits.size();
i++) { dbgs() << "\tNode " << i << ":\n"; dbgs
() << "\t ASAP = " << getASAP(&SUnits[i]) <<
"\n"; dbgs() << "\t ALAP = " << getALAP(&SUnits
[i]) << "\n"; dbgs() << "\t MOV = " << getMOV
(&SUnits[i]) << "\n"; dbgs() << "\t D = "
<< getDepth(&SUnits[i]) << "\n"; dbgs() <<
"\t H = " << getHeight(&SUnits[i]) << "\n"
; } }; } } while (false)
;
1623}
1624
1625/// Compute the Pred_L(O) set, as defined in the paper. The set is defined
1626/// as the predecessors of the elements of NodeOrder that are not also in
1627/// NodeOrder.
1628static bool pred_L(SetVector<SUnit *> &NodeOrder,
1629 SmallSetVector<SUnit *, 8> &Preds,
1630 const NodeSet *S = nullptr) {
1631 Preds.clear();
1632 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1633 I != E; ++I) {
1634 for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end();
1635 PI != PE; ++PI) {
1636 if (S && S->count(PI->getSUnit()) == 0)
1637 continue;
1638 if (ignoreDependence(*PI, true))
1639 continue;
1640 if (NodeOrder.count(PI->getSUnit()) == 0)
1641 Preds.insert(PI->getSUnit());
1642 }
1643 // Back-edges are predecessors with an anti-dependence.
1644 for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(),
1645 ES = (*I)->Succs.end();
1646 IS != ES; ++IS) {
1647 if (IS->getKind() != SDep::Anti)
1648 continue;
1649 if (S && S->count(IS->getSUnit()) == 0)
1650 continue;
1651 if (NodeOrder.count(IS->getSUnit()) == 0)
1652 Preds.insert(IS->getSUnit());
1653 }
1654 }
1655 return !Preds.empty();
1656}
1657
1658/// Compute the Succ_L(O) set, as defined in the paper. The set is defined
1659/// as the successors of the elements of NodeOrder that are not also in
1660/// NodeOrder.
1661static bool succ_L(SetVector<SUnit *> &NodeOrder,
1662 SmallSetVector<SUnit *, 8> &Succs,
1663 const NodeSet *S = nullptr) {
1664 Succs.clear();
1665 for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
1666 I != E; ++I) {
1667 for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end();
1668 SI != SE; ++SI) {
1669 if (S && S->count(SI->getSUnit()) == 0)
1670 continue;
1671 if (ignoreDependence(*SI, false))
1672 continue;
1673 if (NodeOrder.count(SI->getSUnit()) == 0)
1674 Succs.insert(SI->getSUnit());
1675 }
1676 for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(),
1677 PE = (*I)->Preds.end();
1678 PI != PE; ++PI) {
1679 if (PI->getKind() != SDep::Anti)
1680 continue;
1681 if (S && S->count(PI->getSUnit()) == 0)
1682 continue;
1683 if (NodeOrder.count(PI->getSUnit()) == 0)
1684 Succs.insert(PI->getSUnit());
1685 }
1686 }
1687 return !Succs.empty();
1688}
1689
1690/// Return true if there is a path from the specified node to any of the nodes
1691/// in DestNodes. Keep track and return the nodes in any path.
1692static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
1693 SetVector<SUnit *> &DestNodes,
1694 SetVector<SUnit *> &Exclude,
1695 SmallPtrSet<SUnit *, 8> &Visited) {
1696 if (Cur->isBoundaryNode())
1697 return false;
1698 if (Exclude.count(Cur) != 0)
1699 return false;
1700 if (DestNodes.count(Cur) != 0)
1701 return true;
1702 if (!Visited.insert(Cur).second)
1703 return Path.count(Cur) != 0;
1704 bool FoundPath = false;
1705 for (auto &SI : Cur->Succs)
1706 FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
1707 for (auto &PI : Cur->Preds)
1708 if (PI.getKind() == SDep::Anti)
1709 FoundPath |=
1710 computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
1711 if (FoundPath)
1712 Path.insert(Cur);
1713 return FoundPath;
1714}
1715
1716/// Return true if Set1 is a subset of Set2.
1717template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) {
1718 for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I)
1719 if (Set2.count(*I) == 0)
1720 return false;
1721 return true;
1722}
1723
1724/// Compute the live-out registers for the instructions in a node-set.
1725/// The live-out registers are those that are defined in the node-set,
1726/// but not used. Except for use operands of Phis.
1727static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
1728 NodeSet &NS) {
1729 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1730 MachineRegisterInfo &MRI = MF.getRegInfo();
1731 SmallVector<RegisterMaskPair, 8> LiveOutRegs;
1732 SmallSet<unsigned, 4> Uses;
1733 for (SUnit *SU : NS) {
1734 const MachineInstr *MI = SU->getInstr();
1735 if (MI->isPHI())
1736 continue;
1737 for (const MachineOperand &MO : MI->operands())
1738 if (MO.isReg() && MO.isUse()) {
1739 unsigned Reg = MO.getReg();
1740 if (TargetRegisterInfo::isVirtualRegister(Reg))
1741 Uses.insert(Reg);
1742 else if (MRI.isAllocatable(Reg))
1743 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1744 Uses.insert(*Units);
1745 }
1746 }
1747 for (SUnit *SU : NS)
1748 for (const MachineOperand &MO : SU->getInstr()->operands())
1749 if (MO.isReg() && MO.isDef() && !MO.isDead()) {
1750 unsigned Reg = MO.getReg();
1751 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1752 if (!Uses.count(Reg))
1753 LiveOutRegs.push_back(RegisterMaskPair(Reg,
1754 LaneBitmask::getNone()));
1755 } else if (MRI.isAllocatable(Reg)) {
1756 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units)
1757 if (!Uses.count(*Units))
1758 LiveOutRegs.push_back(RegisterMaskPair(*Units,
1759 LaneBitmask::getNone()));
1760 }
1761 }
1762 RPTracker.addLiveRegs(LiveOutRegs);
1763}
1764
1765/// A heuristic to filter nodes in recurrent node-sets if the register
1766/// pressure of a set is too high.
1767void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
1768 for (auto &NS : NodeSets) {
1769 // Skip small node-sets since they won't cause register pressure problems.
1770 if (NS.size() <= 2)
1771 continue;
1772 IntervalPressure RecRegPressure;
1773 RegPressureTracker RecRPTracker(RecRegPressure);
1774 RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
1775 computeLiveOuts(MF, RecRPTracker, NS);
1776 RecRPTracker.closeBottom();
1777
1778 std::vector<SUnit *> SUnits(NS.begin(), NS.end());
1779 std::sort(SUnits.begin(), SUnits.end(), [](const SUnit *A, const SUnit *B) {
1780 return A->NodeNum > B->NodeNum;
1781 });
1782
1783 for (auto &SU : SUnits) {
1784 // Since we're computing the register pressure for a subset of the
1785 // instructions in a block, we need to set the tracker for each
1786 // instruction in the node-set. The tracker is set to the instruction
1787 // just after the one we're interested in.
1788 MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
1789 RecRPTracker.setPos(std::next(CurInstI));
1790
1791 RegPressureDelta RPDelta;
1792 ArrayRef<PressureChange> CriticalPSets;
1793 RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
1794 CriticalPSets,
1795 RecRegPressure.MaxSetPressure);
1796 if (RPDelta.Excess.isValid()) {
1797 DEBUG(dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "Excess register pressure: SU("
<< SU->NodeNum << ") " << TRI->getRegPressureSetName
(RPDelta.Excess.getPSet()) << ":" << RPDelta.Excess
.getUnitInc(); } } while (false)
1798 << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "Excess register pressure: SU("
<< SU->NodeNum << ") " << TRI->getRegPressureSetName
(RPDelta.Excess.getPSet()) << ":" << RPDelta.Excess
.getUnitInc(); } } while (false)
1799 << ":" << RPDelta.Excess.getUnitInc())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "Excess register pressure: SU("
<< SU->NodeNum << ") " << TRI->getRegPressureSetName
(RPDelta.Excess.getPSet()) << ":" << RPDelta.Excess
.getUnitInc(); } } while (false)
;
1800 NS.setExceedPressure(SU);
1801 break;
1802 }
1803 RecRPTracker.recede();
1804 }
1805 }
1806}
1807
1808/// A heuristic to colocate node sets that have the same set of
1809/// successors.
1810void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
1811 unsigned Colocate = 0;
1812 for (int i = 0, e = NodeSets.size(); i < e; ++i) {
1813 NodeSet &N1 = NodeSets[i];
1814 SmallSetVector<SUnit *, 8> S1;
1815 if (N1.empty() || !succ_L(N1, S1))
1816 continue;
1817 for (int j = i + 1; j < e; ++j) {
1818 NodeSet &N2 = NodeSets[j];
1819 if (N1.compareRecMII(N2) != 0)
1820 continue;
1821 SmallSetVector<SUnit *, 8> S2;
1822 if (N2.empty() || !succ_L(N2, S2))
1823 continue;
1824 if (isSubset(S1, S2) && S1.size() == S2.size()) {
1825 N1.setColocate(++Colocate);
1826 N2.setColocate(Colocate);
1827 break;
1828 }
1829 }
1830 }
1831}
1832
1833/// Check if the existing node-sets are profitable. If not, then ignore the
1834/// recurrent node-sets, and attempt to schedule all nodes together. This is
1835/// a heuristic. If the MII is large and there is a non-recurrent node with
1836/// a large depth compared to the MII, then it's best to try and schedule
1837/// all instruction together instead of starting with the recurrent node-sets.
1838void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
1839 // Look for loops with a large MII.
1840 if (MII <= 20)
1841 return;
1842 // Check if the node-set contains only a simple add recurrence.
1843 for (auto &NS : NodeSets)
1844 if (NS.size() > 2)
1845 return;
1846 // If the depth of any instruction is significantly larger than the MII, then
1847 // ignore the recurrent node-sets and treat all instructions equally.
1848 for (auto &SU : SUnits)
1849 if (SU.getDepth() > MII * 1.5) {
1850 NodeSets.clear();
1851 DEBUG(dbgs() << "Clear recurrence node-sets\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "Clear recurrence node-sets\n"
; } } while (false)
;
1852 return;
1853 }
1854}
1855
1856/// Add the nodes that do not belong to a recurrence set into groups
1857/// based upon connected componenets.
1858void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
1859 SetVector<SUnit *> NodesAdded;
1860 SmallPtrSet<SUnit *, 8> Visited;
1861 // Add the nodes that are on a path between the previous node sets and
1862 // the current node set.
1863 for (NodeSet &I : NodeSets) {
1864 SmallSetVector<SUnit *, 8> N;
1865 // Add the nodes from the current node set to the previous node set.
1866 if (succ_L(I, N)) {
1867 SetVector<SUnit *> Path;
1868 for (SUnit *NI : N) {
1869 Visited.clear();
1870 computePath(NI, Path, NodesAdded, I, Visited);
1871 }
1872 if (!Path.empty())
1873 I.insert(Path.begin(), Path.end());
1874 }
1875 // Add the nodes from the previous node set to the current node set.
1876 N.clear();
1877 if (succ_L(NodesAdded, N)) {
1878 SetVector<SUnit *> Path;
1879 for (SUnit *NI : N) {
1880 Visited.clear();
1881 computePath(NI, Path, I, NodesAdded, Visited);
1882 }
1883 if (!Path.empty())
1884 I.insert(Path.begin(), Path.end());
1885 }
1886 NodesAdded.insert(I.begin(), I.end());
1887 }
1888
1889 // Create a new node set with the connected nodes of any successor of a node
1890 // in a recurrent set.
1891 NodeSet NewSet;
1892 SmallSetVector<SUnit *, 8> N;
1893 if (succ_L(NodesAdded, N))
1894 for (SUnit *I : N)
1895 addConnectedNodes(I, NewSet, NodesAdded);
1896 if (!NewSet.empty())
1897 NodeSets.push_back(NewSet);
1898
1899 // Create a new node set with the connected nodes of any predecessor of a node
1900 // in a recurrent set.
1901 NewSet.clear();
1902 if (pred_L(NodesAdded, N))
1903 for (SUnit *I : N)
1904 addConnectedNodes(I, NewSet, NodesAdded);
1905 if (!NewSet.empty())
1906 NodeSets.push_back(NewSet);
1907
1908 // Create new nodes sets with the connected nodes any any remaining node that
1909 // has no predecessor.
1910 for (unsigned i = 0; i < SUnits.size(); ++i) {
1911 SUnit *SU = &SUnits[i];
1912 if (NodesAdded.count(SU) == 0) {
1913 NewSet.clear();
1914 addConnectedNodes(SU, NewSet, NodesAdded);
1915 if (!NewSet.empty())
1916 NodeSets.push_back(NewSet);
1917 }
1918 }
1919}
1920
1921/// Add the node to the set, and add all is its connected nodes to the set.
1922void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
1923 SetVector<SUnit *> &NodesAdded) {
1924 NewSet.insert(SU);
1925 NodesAdded.insert(SU);
1926 for (auto &SI : SU->Succs) {
1927 SUnit *Successor = SI.getSUnit();
1928 if (!SI.isArtificial() && NodesAdded.count(Successor) == 0)
1929 addConnectedNodes(Successor, NewSet, NodesAdded);
1930 }
1931 for (auto &PI : SU->Preds) {
1932 SUnit *Predecessor = PI.getSUnit();
1933 if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
1934 addConnectedNodes(Predecessor, NewSet, NodesAdded);
1935 }
1936}
1937
1938/// Return true if Set1 contains elements in Set2. The elements in common
1939/// are returned in a different container.
1940static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
1941 SmallSetVector<SUnit *, 8> &Result) {
1942 Result.clear();
1943 for (unsigned i = 0, e = Set1.size(); i != e; ++i) {
1944 SUnit *SU = Set1[i];
1945 if (Set2.count(SU) != 0)
1946 Result.insert(SU);
1947 }
1948 return !Result.empty();
1949}
1950
1951/// Merge the recurrence node sets that have the same initial node.
1952void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
1953 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1954 ++I) {
1955 NodeSet &NI = *I;
1956 for (NodeSetType::iterator J = I + 1; J != E;) {
1957 NodeSet &NJ = *J;
1958 if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
1959 if (NJ.compareRecMII(NI) > 0)
1960 NI.setRecMII(NJ.getRecMII());
1961 for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI;
1962 ++NII)
1963 I->insert(*NII);
1964 NodeSets.erase(J);
1965 E = NodeSets.end();
1966 } else {
1967 ++J;
1968 }
1969 }
1970 }
1971}
1972
1973/// Remove nodes that have been scheduled in previous NodeSets.
1974void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
1975 for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
1976 ++I)
1977 for (NodeSetType::iterator J = I + 1; J != E;) {
1978 J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
1979
1980 if (J->empty()) {
1981 NodeSets.erase(J);
1982 E = NodeSets.end();
1983 } else {
1984 ++J;
1985 }
1986 }
1987}
1988
1989/// Return true if Inst1 defines a value that is used in Inst2.
1990static bool hasDataDependence(SUnit *Inst1, SUnit *Inst2) {
1991 for (auto &SI : Inst1->Succs)
1992 if (SI.getSUnit() == Inst2 && SI.getKind() == SDep::Data)
1993 return true;
1994 return false;
1995}
1996
1997/// Compute an ordered list of the dependence graph nodes, which
1998/// indicates the order that the nodes will be scheduled. This is a
1999/// two-level algorithm. First, a partial order is created, which
2000/// consists of a list of sets ordered from highest to lowest priority.
2001void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
2002 SmallSetVector<SUnit *, 8> R;
2003 NodeOrder.clear();
2004
2005 for (auto &Nodes : NodeSets) {
2006 DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "NodeSet size " << Nodes
.size() << "\n"; } } while (false)
;
2007 OrderKind Order;
2008 SmallSetVector<SUnit *, 8> N;
2009 if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) {
2010 R.insert(N.begin(), N.end());
2011 Order = BottomUp;
2012 DEBUG(dbgs() << " Bottom up (preds) ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << " Bottom up (preds) "; } } while
(false)
;
2013 } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) {
2014 R.insert(N.begin(), N.end());
2015 Order = TopDown;
2016 DEBUG(dbgs() << " Top down (succs) ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << " Top down (succs) "; } } while
(false)
;
2017 } else if (isIntersect(N, Nodes, R)) {
2018 // If some of the successors are in the existing node-set, then use the
2019 // top-down ordering.
2020 Order = TopDown;
2021 DEBUG(dbgs() << " Top down (intersect) ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << " Top down (intersect) "; }
} while (false)
;
2022 } else if (NodeSets.size() == 1) {
2023 for (auto &N : Nodes)
2024 if (N->Succs.size() == 0)
2025 R.insert(N);
2026 Order = BottomUp;
2027 DEBUG(dbgs() << " Bottom up (all) ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << " Bottom up (all) "; } } while
(false)
;
2028 } else {
2029 // Find the node with the highest ASAP.
2030 SUnit *maxASAP = nullptr;
2031 for (SUnit *SU : Nodes) {
2032 if (maxASAP == nullptr || getASAP(SU) >= getASAP(maxASAP))
2033 maxASAP = SU;
2034 }
2035 R.insert(maxASAP);
2036 Order = BottomUp;
2037 DEBUG(dbgs() << " Bottom up (default) ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << " Bottom up (default) "; } }
while (false)
;
2038 }
2039
2040 while (!R.empty()) {
2041 if (Order == TopDown) {
2042 // Choose the node with the maximum height. If more than one, choose
2043 // the node with the lowest MOV. If still more than one, check if there
2044 // is a dependence between the instructions.
2045 while (!R.empty()) {
2046 SUnit *maxHeight = nullptr;
2047 for (SUnit *I : R) {
2048 if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
2049 maxHeight = I;
2050 else if (getHeight(I) == getHeight(maxHeight) &&
2051 getMOV(I) < getMOV(maxHeight) &&
2052 !hasDataDependence(maxHeight, I))
2053 maxHeight = I;
2054 else if (hasDataDependence(I, maxHeight))
2055 maxHeight = I;
2056 }
2057 NodeOrder.insert(maxHeight);
2058 DEBUG(dbgs() << maxHeight->NodeNum << " ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << maxHeight->NodeNum <<
" "; } } while (false)
;
2059 R.remove(maxHeight);
2060 for (const auto &I : maxHeight->Succs) {
2061 if (Nodes.count(I.getSUnit()) == 0)
2062 continue;
2063 if (NodeOrder.count(I.getSUnit()) != 0)
2064 continue;
2065 if (ignoreDependence(I, false))
2066 continue;
2067 R.insert(I.getSUnit());
2068 }
2069 // Back-edges are predecessors with an anti-dependence.
2070 for (const auto &I : maxHeight->Preds) {
2071 if (I.getKind() != SDep::Anti)
2072 continue;
2073 if (Nodes.count(I.getSUnit()) == 0)
2074 continue;
2075 if (NodeOrder.count(I.getSUnit()) != 0)
2076 continue;
2077 R.insert(I.getSUnit());
2078 }
2079 }
2080 Order = BottomUp;
2081 DEBUG(dbgs() << "\n Switching order to bottom up ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "\n Switching order to bottom up "
; } } while (false)
;
2082 SmallSetVector<SUnit *, 8> N;
2083 if (pred_L(NodeOrder, N, &Nodes))
2084 R.insert(N.begin(), N.end());
2085 } else {
2086 // Choose the node with the maximum depth. If more than one, choose
2087 // the node with the lowest MOV. If there is still more than one, check
2088 // for a dependence between the instructions.
2089 while (!R.empty()) {
2090 SUnit *maxDepth = nullptr;
2091 for (SUnit *I : R) {
2092 if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
2093 maxDepth = I;
2094 else if (getDepth(I) == getDepth(maxDepth) &&
2095 getMOV(I) < getMOV(maxDepth) &&
2096 !hasDataDependence(I, maxDepth))
2097 maxDepth = I;
2098 else if (hasDataDependence(maxDepth, I))
2099 maxDepth = I;
2100 }
2101 NodeOrder.insert(maxDepth);
2102 DEBUG(dbgs() << maxDepth->NodeNum << " ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << maxDepth->NodeNum <<
" "; } } while (false)
;
2103 R.remove(maxDepth);
2104 if (Nodes.isExceedSU(maxDepth)) {
2105 Order = TopDown;
2106 R.clear();
2107 R.insert(Nodes.getNode(0));
2108 break;
2109 }
2110 for (const auto &I : maxDepth->Preds) {
2111 if (Nodes.count(I.getSUnit()) == 0)
2112 continue;
2113 if (NodeOrder.count(I.getSUnit()) != 0)
2114 continue;
2115 if (I.getKind() == SDep::Anti)
2116 continue;
2117 R.insert(I.getSUnit());
2118 }
2119 // Back-edges are predecessors with an anti-dependence.
2120 for (const auto &I : maxDepth->Succs) {
2121 if (I.getKind() != SDep::Anti)
2122 continue;
2123 if (Nodes.count(I.getSUnit()) == 0)
2124 continue;
2125 if (NodeOrder.count(I.getSUnit()) != 0)
2126 continue;
2127 R.insert(I.getSUnit());
2128 }
2129 }
2130 Order = TopDown;
2131 DEBUG(dbgs() << "\n Switching order to top down ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "\n Switching order to top down "
; } } while (false)
;
2132 SmallSetVector<SUnit *, 8> N;
2133 if (succ_L(NodeOrder, N, &Nodes))
2134 R.insert(N.begin(), N.end());
2135 }
2136 }
2137 DEBUG(dbgs() << "\nDone with Nodeset\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "\nDone with Nodeset\n"; } }
while (false)
;
2138 }
2139
2140 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "Node order: "; for (SUnit
*I : NodeOrder) dbgs() << " " << I->NodeNum <<
" "; dbgs() << "\n"; }; } } while (false)
2141 dbgs() << "Node order: ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "Node order: "; for (SUnit
*I : NodeOrder) dbgs() << " " << I->NodeNum <<
" "; dbgs() << "\n"; }; } } while (false)
2142 for (SUnit *I : NodeOrder)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "Node order: "; for (SUnit
*I : NodeOrder) dbgs() << " " << I->NodeNum <<
" "; dbgs() << "\n"; }; } } while (false)
2143 dbgs() << " " << I->NodeNum << " ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "Node order: "; for (SUnit
*I : NodeOrder) dbgs() << " " << I->NodeNum <<
" "; dbgs() << "\n"; }; } } while (false)
2144 dbgs() << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "Node order: "; for (SUnit
*I : NodeOrder) dbgs() << " " << I->NodeNum <<
" "; dbgs() << "\n"; }; } } while (false)
2145 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "Node order: "; for (SUnit
*I : NodeOrder) dbgs() << " " << I->NodeNum <<
" "; dbgs() << "\n"; }; } } while (false)
;
2146}
2147
2148/// Process the nodes in the computed order and create the pipelined schedule
2149/// of the instructions, if possible. Return true if a schedule is found.
2150bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
2151 if (NodeOrder.empty())
2152 return false;
2153
2154 bool scheduleFound = false;
2155 // Keep increasing II until a valid schedule is found.
2156 for (unsigned II = MII; II < MII + 10 && !scheduleFound; ++II) {
2157 Schedule.reset();
2158 Schedule.setInitiationInterval(II);
2159 DEBUG(dbgs() << "Try to schedule with " << II << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "Try to schedule with " <<
II << "\n"; } } while (false)
;
2160
2161 SetVector<SUnit *>::iterator NI = NodeOrder.begin();
2162 SetVector<SUnit *>::iterator NE = NodeOrder.end();
2163 do {
2164 SUnit *SU = *NI;
2165
2166 // Compute the schedule time for the instruction, which is based
2167 // upon the scheduled time for any predecessors/successors.
2168 int EarlyStart = INT_MIN(-2147483647 -1);
2169 int LateStart = INT_MAX2147483647;
2170 // These values are set when the size of the schedule window is limited
2171 // due to chain dependences.
2172 int SchedEnd = INT_MAX2147483647;
2173 int SchedStart = INT_MIN(-2147483647 -1);
2174 Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
2175 II, this);
2176 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "Inst (" << SU->NodeNum
<< ") "; SU->getInstr()->dump(); dbgs() <<
"\n"; }; } } while (false)
2177 dbgs() << "Inst (" << SU->NodeNum << ") ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "Inst (" << SU->NodeNum
<< ") "; SU->getInstr()->dump(); dbgs() <<
"\n"; }; } } while (false)
2178 SU->getInstr()->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "Inst (" << SU->NodeNum
<< ") "; SU->getInstr()->dump(); dbgs() <<
"\n"; }; } } while (false)
2179 dbgs() << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "Inst (" << SU->NodeNum
<< ") "; SU->getInstr()->dump(); dbgs() <<
"\n"; }; } } while (false)
2180 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "Inst (" << SU->NodeNum
<< ") "; SU->getInstr()->dump(); dbgs() <<
"\n"; }; } } while (false)
;
2181 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "\tes: " << EarlyStart
<< " ls: " << LateStart << " me: " <<
SchedEnd << " ms: " << SchedStart << "\n";
}; } } while (false)
2182 dbgs() << "\tes: " << EarlyStart << " ls: " << LateStartdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "\tes: " << EarlyStart
<< " ls: " << LateStart << " me: " <<
SchedEnd << " ms: " << SchedStart << "\n";
}; } } while (false)
2183 << " me: " << SchedEnd << " ms: " << SchedStart << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "\tes: " << EarlyStart
<< " ls: " << LateStart << " me: " <<
SchedEnd << " ms: " << SchedStart << "\n";
}; } } while (false)
2184 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "\tes: " << EarlyStart
<< " ls: " << LateStart << " me: " <<
SchedEnd << " ms: " << SchedStart << "\n";
}; } } while (false)
;
2185
2186 if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
2187 SchedStart > LateStart)
2188 scheduleFound = false;
2189 else if (EarlyStart != INT_MIN(-2147483647 -1) && LateStart == INT_MAX2147483647) {
2190 SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
2191 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2192 } else if (EarlyStart == INT_MIN(-2147483647 -1) && LateStart != INT_MAX2147483647) {
2193 SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
2194 scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
2195 } else if (EarlyStart != INT_MIN(-2147483647 -1) && LateStart != INT_MAX2147483647) {
2196 SchedEnd =
2197 std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
2198 // When scheduling a Phi it is better to start at the late cycle and go
2199 // backwards. The default order may insert the Phi too far away from
2200 // its first dependence.
2201 if (SU->getInstr()->isPHI())
2202 scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
2203 else
2204 scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
2205 } else {
2206 int FirstCycle = Schedule.getFirstCycle();
2207 scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
2208 FirstCycle + getASAP(SU) + II - 1, II);
2209 }
2210 // Even if we find a schedule, make sure the schedule doesn't exceed the
2211 // allowable number of stages. We keep trying if this happens.
2212 if (scheduleFound)
2213 if (SwpMaxStages > -1 &&
2214 Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
2215 scheduleFound = false;
2216
2217 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (!scheduleFound) dbgs() << "\tCan't schedule\n"
; }; } } while (false)
2218 if (!scheduleFound)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (!scheduleFound) dbgs() << "\tCan't schedule\n"
; }; } } while (false)
2219 dbgs() << "\tCan't schedule\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (!scheduleFound) dbgs() << "\tCan't schedule\n"
; }; } } while (false)
2220 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { if (!scheduleFound) dbgs() << "\tCan't schedule\n"
; }; } } while (false)
;
2221 } while (++NI != NE && scheduleFound);
2222
2223 // If a schedule is found, check if it is a valid schedule too.
2224 if (scheduleFound)
2225 scheduleFound = Schedule.isValidSchedule(this);
2226 }
2227
2228 DEBUG(dbgs() << "Schedule Found? " << scheduleFound << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "Schedule Found? " << scheduleFound
<< "\n"; } } while (false)
;
2229
2230 if (scheduleFound)
2231 Schedule.finalizeSchedule(this);
2232 else
2233 Schedule.reset();
2234
2235 return scheduleFound && Schedule.getMaxStageCount() > 0;
2236}
2237
2238/// Given a schedule for the loop, generate a new version of the loop,
2239/// and replace the old version. This function generates a prolog
2240/// that contains the initial iterations in the pipeline, and kernel
2241/// loop, and the epilogue that contains the code for the final
2242/// iterations.
2243void SwingSchedulerDAG::generatePipelinedLoop(SMSchedule &Schedule) {
2244 // Create a new basic block for the kernel and add it to the CFG.
2245 MachineBasicBlock *KernelBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
2246
2247 unsigned MaxStageCount = Schedule.getMaxStageCount();
2248
2249 // Remember the registers that are used in different stages. The index is
2250 // the iteration, or stage, that the instruction is scheduled in. This is
2251 // a map between register names in the orignal block and the names created
2252 // in each stage of the pipelined loop.
2253 ValueMapTy *VRMap = new ValueMapTy[(MaxStageCount + 1) * 2];
2254 InstrMapTy InstrMap;
2255
2256 SmallVector<MachineBasicBlock *, 4> PrologBBs;
2257 // Generate the prolog instructions that set up the pipeline.
2258 generateProlog(Schedule, MaxStageCount, KernelBB, VRMap, PrologBBs);
2259 MF.insert(BB->getIterator(), KernelBB);
2260
2261 // Rearrange the instructions to generate the new, pipelined loop,
2262 // and update register names as needed.
2263 for (int Cycle = Schedule.getFirstCycle(),
2264 LastCycle = Schedule.getFinalCycle();
2265 Cycle <= LastCycle; ++Cycle) {
2266 std::deque<SUnit *> &CycleInstrs = Schedule.getInstructions(Cycle);
2267 // This inner loop schedules each instruction in the cycle.
2268 for (SUnit *CI : CycleInstrs) {
2269 if (CI->getInstr()->isPHI())
2270 continue;
2271 unsigned StageNum = Schedule.stageScheduled(getSUnit(CI->getInstr()));
2272 MachineInstr *NewMI = cloneInstr(CI->getInstr(), MaxStageCount, StageNum);
2273 updateInstruction(NewMI, false, MaxStageCount, StageNum, Schedule, VRMap);
2274 KernelBB->push_back(NewMI);
2275 InstrMap[NewMI] = CI->getInstr();
2276 }
2277 }
2278
2279 // Copy any terminator instructions to the new kernel, and update
2280 // names as needed.
2281 for (MachineBasicBlock::iterator I = BB->getFirstTerminator(),
2282 E = BB->instr_end();
2283 I != E; ++I) {
2284 MachineInstr *NewMI = MF.CloneMachineInstr(&*I);
2285 updateInstruction(NewMI, false, MaxStageCount, 0, Schedule, VRMap);
2286 KernelBB->push_back(NewMI);
2287 InstrMap[NewMI] = &*I;
2288 }
2289
2290 KernelBB->transferSuccessors(BB);
2291 KernelBB->replaceSuccessor(BB, KernelBB);
2292
2293 generateExistingPhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule,
2294 VRMap, InstrMap, MaxStageCount, MaxStageCount, false);
2295 generatePhis(KernelBB, PrologBBs.back(), KernelBB, KernelBB, Schedule, VRMap,
2296 InstrMap, MaxStageCount, MaxStageCount, false);
2297
2298 DEBUG(dbgs() << "New block\n"; KernelBB->dump();)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dbgs() << "New block\n"; KernelBB->
dump();; } } while (false)
;
2299
2300 SmallVector<MachineBasicBlock *, 4> EpilogBBs;
2301 // Generate the epilog instructions to complete the pipeline.
2302 generateEpilog(Schedule, MaxStageCount, KernelBB, VRMap, EpilogBBs,
2303 PrologBBs);
2304
2305 // We need this step because the register allocation doesn't handle some
2306 // situations well, so we insert copies to help out.
2307 splitLifetimes(KernelBB, EpilogBBs, Schedule);
2308
2309 // Remove dead instructions due to loop induction variables.
2310 removeDeadInstructions(KernelBB, EpilogBBs);
2311
2312 // Add branches between prolog and epilog blocks.
2313 addBranches(PrologBBs, KernelBB, EpilogBBs, Schedule, VRMap);
2314
2315 // Remove the original loop since it's no longer referenced.
2316 BB->clear();
2317 BB->eraseFromParent();
2318
2319 delete[] VRMap;
2320}
2321
2322/// Generate the pipeline prolog code.
2323void SwingSchedulerDAG::generateProlog(SMSchedule &Schedule, unsigned LastStage,
2324 MachineBasicBlock *KernelBB,
2325 ValueMapTy *VRMap,
2326 MBBVectorTy &PrologBBs) {
2327 MachineBasicBlock *PreheaderBB = MLI->getLoopFor(BB)->getLoopPreheader();
2328 assert(PreheaderBB != nullptr &&(static_cast <bool> (PreheaderBB != nullptr && "Need to add code to handle loops w/o preheader"
) ? void (0) : __assert_fail ("PreheaderBB != nullptr && \"Need to add code to handle loops w/o preheader\""
, "/build/llvm-toolchain-snapshot-7~svn326551/lib/CodeGen/MachinePipeliner.cpp"
, 2329, __extension__ __PRETTY_FUNCTION__))
2329 "Need to add code to handle loops w/o preheader")(static_cast <bool> (PreheaderBB != nullptr && "Need to add code to handle loops w/o preheader"
) ? void (0) : __assert_fail ("PreheaderBB != nullptr && \"Need to add code to handle loops w/o preheader\""
, "/build/llvm-toolchain-snapshot-7~svn326551/lib/CodeGen/MachinePipeliner.cpp"
, 2329, __extension__ __PRETTY_FUNCTION__))
;
2330 MachineBasicBlock *PredBB = PreheaderBB;
2331 InstrMapTy InstrMap;
2332
2333 // Generate a basic block for each stage, not including the last stage,
2334 // which will be generated in the kernel. Each basic block may contain
2335 // instructions from multiple stages/iterations.
2336 for (unsigned i = 0; i < LastStage; ++i) {
2337 // Create and insert the prolog basic block prior to the original loop
2338 // basic block. The original loop is removed later.
2339 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock(BB->getBasicBlock());
2340 PrologBBs.push_back(NewBB);
2341 MF.insert(BB->getIterator(), NewBB);
2342 NewBB->transferSuccessors(PredBB);
2343 PredBB->addSuccessor(NewBB);
2344 PredBB = NewBB;
2345
2346 // Generate instructions for each appropriate stage. Process instructions
2347 // in original program order.
2348 for (int StageNum = i; StageNum >= 0; --StageNum) {
2349 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
2350 BBE = BB->getFirstTerminator();
2351 BBI != BBE; ++BBI) {
2352 if (Schedule.isScheduledAtStage(getSUnit(&*BBI), (unsigned)StageNum)) {
2353 if (BBI->isPHI())
2354 continue;
2355 MachineInstr *NewMI =
2356 cloneAndChangeInstr(&*BBI, i, (unsigned)StageNum, Schedule);
2357 updateInstruction(NewMI, false, i, (unsigned)StageNum, Schedule,
2358 VRMap);
2359 NewBB->push_back(NewMI);
2360 InstrMap[NewMI] = &*BBI;
2361 }
2362 }
2363 }
2364 rewritePhiValues(NewBB, i, Schedule, VRMap, InstrMap);
2365 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "prolog:\n"; NewBB->dump
(); }; } } while (false)
2366 dbgs() << "prolog:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "prolog:\n"; NewBB->dump
(); }; } } while (false)
2367 NewBB->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "prolog:\n"; NewBB->dump
(); }; } } while (false)
2368 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "prolog:\n"; NewBB->dump
(); }; } } while (false)
;
2369 }
2370
2371 PredBB->replaceSuccessor(BB, KernelBB);
2372
2373 // Check if we need to remove the branch from the preheader to the original
2374 // loop, and replace it with a branch to the new loop.
2375 unsigned numBranches = TII->removeBranch(*PreheaderBB);
2376 if (numBranches) {
2377 SmallVector<MachineOperand, 0> Cond;
2378 TII->insertBranch(*PreheaderBB, PrologBBs[0], nullptr, Cond, DebugLoc());
2379 }
2380}
2381
2382/// Generate the pipeline epilog code. The epilog code finishes the iterations
2383/// that were started in either the prolog or the kernel. We create a basic
2384/// block for each stage that needs to complete.
2385void SwingSchedulerDAG::generateEpilog(SMSchedule &Schedule, unsigned LastStage,
2386 MachineBasicBlock *KernelBB,
2387 ValueMapTy *VRMap,
2388 MBBVectorTy &EpilogBBs,
2389 MBBVectorTy &PrologBBs) {
2390 // We need to change the branch from the kernel to the first epilog block, so
2391 // this call to analyze branch uses the kernel rather than the original BB.
2392 MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
2393 SmallVector<MachineOperand, 4> Cond;
2394 bool checkBranch = TII->analyzeBranch(*KernelBB, TBB, FBB, Cond);
2395 assert(!checkBranch && "generateEpilog must be able to analyze the branch")(static_cast <bool> (!checkBranch && "generateEpilog must be able to analyze the branch"
) ? void (0) : __assert_fail ("!checkBranch && \"generateEpilog must be able to analyze the branch\""
, "/build/llvm-toolchain-snapshot-7~svn326551/lib/CodeGen/MachinePipeliner.cpp"
, 2395, __extension__ __PRETTY_FUNCTION__))
;
2396 if (checkBranch)
2397 return;
2398
2399 MachineBasicBlock::succ_iterator LoopExitI = KernelBB->succ_begin();
2400 if (*LoopExitI == KernelBB)
2401 ++LoopExitI;
2402 assert(LoopExitI != KernelBB->succ_end() && "Expecting a successor")(static_cast <bool> (LoopExitI != KernelBB->succ_end
() && "Expecting a successor") ? void (0) : __assert_fail
("LoopExitI != KernelBB->succ_end() && \"Expecting a successor\""
, "/build/llvm-toolchain-snapshot-7~svn326551/lib/CodeGen/MachinePipeliner.cpp"
, 2402, __extension__ __PRETTY_FUNCTION__))
;
2403 MachineBasicBlock *LoopExitBB = *LoopExitI;
2404
2405 MachineBasicBlock *PredBB = KernelBB;
2406 MachineBasicBlock *EpilogStart = LoopExitBB;
2407 InstrMapTy InstrMap;
2408
2409 // Generate a basic block for each stage, not including the last stage,
2410 // which was generated for the kernel. Each basic block may contain
2411 // instructions from multiple stages/iterations.
2412 int EpilogStage = LastStage + 1;
2413 for (unsigned i = LastStage; i >= 1; --i, ++EpilogStage) {
2414 MachineBasicBlock *NewBB = MF.CreateMachineBasicBlock();
2415 EpilogBBs.push_back(NewBB);
2416 MF.insert(BB->getIterator(), NewBB);
2417
2418 PredBB->replaceSuccessor(LoopExitBB, NewBB);
2419 NewBB->addSuccessor(LoopExitBB);
2420
2421 if (EpilogStart == LoopExitBB)
2422 EpilogStart = NewBB;
2423
2424 // Add instructions to the epilog depending on the current block.
2425 // Process instructions in original program order.
2426 for (unsigned StageNum = i; StageNum <= LastStage; ++StageNum) {
2427 for (auto &BBI : *BB) {
2428 if (BBI.isPHI())
2429 continue;
2430 MachineInstr *In = &BBI;
2431 if (Schedule.isScheduledAtStage(getSUnit(In), StageNum)) {
2432 MachineInstr *NewMI = cloneInstr(In, EpilogStage - LastStage, 0);
2433 updateInstruction(NewMI, i == 1, EpilogStage, 0, Schedule, VRMap);
2434 NewBB->push_back(NewMI);
2435 InstrMap[NewMI] = In;
2436 }
2437 }
2438 }
2439 generateExistingPhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule,
2440 VRMap, InstrMap, LastStage, EpilogStage, i == 1);
2441 generatePhis(NewBB, PrologBBs[i - 1], PredBB, KernelBB, Schedule, VRMap,
2442 InstrMap, LastStage, EpilogStage, i == 1);
2443 PredBB = NewBB;
2444
2445 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "epilog:\n"; NewBB->dump
(); }; } } while (false)
2446 dbgs() << "epilog:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "epilog:\n"; NewBB->dump
(); }; } } while (false)
2447 NewBB->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "epilog:\n"; NewBB->dump
(); }; } } while (false)
2448 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "epilog:\n"; NewBB->dump
(); }; } } while (false)
;
2449 }
2450
2451 // Fix any Phi nodes in the loop exit block.
2452 for (MachineInstr &MI : *LoopExitBB) {
2453 if (!MI.isPHI())
2454 break;
2455 for (unsigned i = 2, e = MI.getNumOperands() + 1; i != e; i += 2) {
2456 MachineOperand &MO = MI.getOperand(i);
2457 if (MO.getMBB() == BB)
2458 MO.setMBB(PredBB);
2459 }
2460 }
2461
2462 // Create a branch to the new epilog from the kernel.
2463 // Remove the original branch and add a new branch to the epilog.
2464 TII->removeBranch(*KernelBB);
2465 TII->insertBranch(*KernelBB, KernelBB, EpilogStart, Cond, DebugLoc());
2466 // Add a branch to the loop exit.
2467 if (EpilogBBs.size() > 0) {
2468 MachineBasicBlock *LastEpilogBB = EpilogBBs.back();
2469 SmallVector<MachineOperand, 4> Cond1;
2470 TII->insertBranch(*LastEpilogBB, LoopExitBB, nullptr, Cond1, DebugLoc());
2471 }
2472}
2473
2474/// Replace all uses of FromReg that appear outside the specified
2475/// basic block with ToReg.
2476static void replaceRegUsesAfterLoop(unsigned FromReg, unsigned ToReg,
2477 MachineBasicBlock *MBB,
2478 MachineRegisterInfo &MRI,
2479 LiveIntervals &LIS) {
2480 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(FromReg),
2481 E = MRI.use_end();
2482 I != E;) {
2483 MachineOperand &O = *I;
2484 ++I;
2485 if (O.getParent()->getParent() != MBB)
2486 O.setReg(ToReg);
2487 }
2488 if (!LIS.hasInterval(ToReg))
2489 LIS.createEmptyInterval(ToReg);
2490}
2491
2492/// Return true if the register has a use that occurs outside the
2493/// specified loop.
2494static bool hasUseAfterLoop(unsigned Reg, MachineBasicBlock *BB,
2495 MachineRegisterInfo &MRI) {
2496 for (MachineRegisterInfo::use_iterator I = MRI.use_begin(Reg),
2497 E = MRI.use_end();
2498 I != E; ++I)
2499 if (I->getParent()->getParent() != BB)
2500 return true;
2501 return false;
2502}
2503
2504/// Generate Phis for the specific block in the generated pipelined code.
2505/// This function looks at the Phis from the original code to guide the
2506/// creation of new Phis.
2507void SwingSchedulerDAG::generateExistingPhis(
2508 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
2509 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
2510 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
2511 bool IsLast) {
2512 // Compute the stage number for the initial value of the Phi, which
2513 // comes from the prolog. The prolog to use depends on to which kernel/
2514 // epilog that we're adding the Phi.
2515 unsigned PrologStage = 0;
2516 unsigned PrevStage = 0;
2517 bool InKernel = (LastStageNum == CurStageNum);
2518 if (InKernel) {
2519 PrologStage = LastStageNum - 1;
2520 PrevStage = CurStageNum;
2521 } else {
2522 PrologStage = LastStageNum - (CurStageNum - LastStageNum);
2523 PrevStage = LastStageNum + (CurStageNum - LastStageNum) - 1;
2524 }
2525
2526 for (MachineBasicBlock::iterator BBI = BB->instr_begin(),
2527 BBE = BB->getFirstNonPHI();
2528 BBI != BBE; ++BBI) {
2529 unsigned Def = BBI->getOperand(0).getReg();
2530
2531 unsigned InitVal = 0;
2532 unsigned LoopVal = 0;
2533 getPhiRegs(*BBI, BB, InitVal, LoopVal);
2534
2535 unsigned PhiOp1 = 0;
2536 // The Phi value from the loop body typically is defined in the loop, but
2537 // not always. So, we need to check if the value is defined in the loop.
2538 unsigned PhiOp2 = LoopVal;
2539 if (VRMap[LastStageNum].count(LoopVal))
2540 PhiOp2 = VRMap[LastStageNum][LoopVal];
2541
2542 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
2543 int LoopValStage =
2544 Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
2545 unsigned NumStages = Schedule.getStagesForReg(Def, CurStageNum);
2546 if (NumStages == 0) {
2547 // We don't need to generate a Phi anymore, but we need to rename any uses
2548 // of the Phi value.
2549 unsigned NewReg = VRMap[PrevStage][LoopVal];
2550 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, 0, &*BBI,
2551 Def, NewReg);
2552 if (VRMap[CurStageNum].count(LoopVal))
2553 VRMap[CurStageNum][Def] = VRMap[CurStageNum][LoopVal];
2554 }
2555 // Adjust the number of Phis needed depending on the number of prologs left,
2556 // and the distance from where the Phi is first scheduled.
2557 unsigned NumPhis = NumStages;
2558 if (!InKernel && (int)PrologStage < LoopValStage)
2559 // The NumPhis is the maximum number of new Phis needed during the steady
2560 // state. If the Phi has not been scheduled in current prolog, then we
2561 // need to generate less Phis.
2562 NumPhis = std::max((int)NumPhis - (int)(LoopValStage - PrologStage), 1);
2563 // The number of Phis cannot exceed the number of prolog stages. Each
2564 // stage can potentially define two values.
2565 NumPhis = std::min(NumPhis, PrologStage + 2);
2566
2567 unsigned NewReg = 0;
2568
2569 unsigned AccessStage = (LoopValStage != -1) ? LoopValStage : StageScheduled;
2570 // In the epilog, we may need to look back one stage to get the correct
2571 // Phi name because the epilog and prolog blocks execute the same stage.
2572 // The correct name is from the previous block only when the Phi has
2573 // been completely scheduled prior to the epilog, and Phi value is not
2574 // needed in multiple stages.
2575 int StageDiff = 0;
2576 if (!InKernel && StageScheduled >= LoopValStage && AccessStage == 0 &&
2577 NumPhis == 1)
2578 StageDiff = 1;
2579 // Adjust the computations below when the phi and the loop definition
2580 // are scheduled in different stages.
2581 if (InKernel && LoopValStage != -1 && StageScheduled > LoopValStage)
2582 StageDiff = StageScheduled - LoopValStage;
2583 for (unsigned np = 0; np < NumPhis; ++np) {
2584 // If the Phi hasn't been scheduled, then use the initial Phi operand
2585 // value. Otherwise, use the scheduled version of the instruction. This
2586 // is a little complicated when a Phi references another Phi.
2587 if (np > PrologStage || StageScheduled >= (int)LastStageNum)
2588 PhiOp1 = InitVal;
2589 // Check if the Phi has already been scheduled in a prolog stage.
2590 else if (PrologStage >= AccessStage + StageDiff + np &&
2591 VRMap[PrologStage - StageDiff - np].count(LoopVal) != 0)
2592 PhiOp1 = VRMap[PrologStage - StageDiff - np][LoopVal];
2593 // Check if the Phi has already been scheduled, but the loop intruction
2594 // is either another Phi, or doesn't occur in the loop.
2595 else if (PrologStage >= AccessStage + StageDiff + np) {
2596 // If the Phi references another Phi, we need to examine the other
2597 // Phi to get the correct value.
2598 PhiOp1 = LoopVal;
2599 MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1);
2600 int Indirects = 1;
2601 while (InstOp1 && InstOp1->isPHI() && InstOp1->getParent() == BB) {
2602 int PhiStage = Schedule.stageScheduled(getSUnit(InstOp1));
2603 if ((int)(PrologStage - StageDiff - np) < PhiStage + Indirects)
2604 PhiOp1 = getInitPhiReg(*InstOp1, BB);
2605 else
2606 PhiOp1 = getLoopPhiReg(*InstOp1, BB);
2607 InstOp1 = MRI.getVRegDef(PhiOp1);
2608 int PhiOpStage = Schedule.stageScheduled(getSUnit(InstOp1));
2609 int StageAdj = (PhiOpStage != -1 ? PhiStage - PhiOpStage : 0);
2610 if (PhiOpStage != -1 && PrologStage - StageAdj >= Indirects + np &&
2611 VRMap[PrologStage - StageAdj - Indirects - np].count(PhiOp1)) {
2612 PhiOp1 = VRMap[PrologStage - StageAdj - Indirects - np][PhiOp1];
2613 break;
2614 }
2615 ++Indirects;
2616 }
2617 } else
2618 PhiOp1 = InitVal;
2619 // If this references a generated Phi in the kernel, get the Phi operand
2620 // from the incoming block.
2621 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1))
2622 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
2623 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
2624
2625 MachineInstr *PhiInst = MRI.getVRegDef(LoopVal);
2626 bool LoopDefIsPhi = PhiInst && PhiInst->isPHI();
2627 // In the epilog, a map lookup is needed to get the value from the kernel,
2628 // or previous epilog block. How is does this depends on if the
2629 // instruction is scheduled in the previous block.
2630 if (!InKernel) {
2631 int StageDiffAdj = 0;
2632 if (LoopValStage != -1 && StageScheduled > LoopValStage)
2633 StageDiffAdj = StageScheduled - LoopValStage;
2634 // Use the loop value defined in the kernel, unless the kernel
2635 // contains the last definition of the Phi.
2636 if (np == 0 && PrevStage == LastStageNum &&
2637 (StageScheduled != 0 || LoopValStage != 0) &&
2638 VRMap[PrevStage - StageDiffAdj].count(LoopVal))
2639 PhiOp2 = VRMap[PrevStage - StageDiffAdj][LoopVal];
2640 // Use the value defined by the Phi. We add one because we switch
2641 // from looking at the loop value to the Phi definition.
2642 else if (np > 0 && PrevStage == LastStageNum &&
2643 VRMap[PrevStage - np + 1].count(Def))
2644 PhiOp2 = VRMap[PrevStage - np + 1][Def];
2645 // Use the loop value defined in the kernel.
2646 else if ((unsigned)LoopValStage + StageDiffAdj > PrologStage + 1 &&
2647 VRMap[PrevStage - StageDiffAdj - np].count(LoopVal))
2648 PhiOp2 = VRMap[PrevStage - StageDiffAdj - np][LoopVal];
2649 // Use the value defined by the Phi, unless we're generating the first
2650 // epilog and the Phi refers to a Phi in a different stage.
2651 else if (VRMap[PrevStage - np].count(Def) &&
2652 (!LoopDefIsPhi || PrevStage != LastStageNum))
2653 PhiOp2 = VRMap[PrevStage - np][Def];
2654 }
2655
2656 // Check if we can reuse an existing Phi. This occurs when a Phi
2657 // references another Phi, and the other Phi is scheduled in an
2658 // earlier stage. We can try to reuse an existing Phi up until the last
2659 // stage of the current Phi.
2660 if (LoopDefIsPhi && (int)PrologStage >= StageScheduled) {
2661 int LVNumStages = Schedule.getStagesForPhi(LoopVal);
2662 int StageDiff = (StageScheduled - LoopValStage);
2663 LVNumStages -= StageDiff;
2664 if (LVNumStages > (int)np) {
2665 NewReg = PhiOp2;
Value stored to 'NewReg' is never read
2666 unsigned ReuseStage = CurStageNum;
2667 if (Schedule.isLoopCarried(this, *PhiInst))
2668 ReuseStage -= LVNumStages;
2669 // Check if the Phi to reuse has been generated yet. If not, then
2670 // there is nothing to reuse.
2671 if (VRMap[ReuseStage].count(LoopVal)) {
2672 NewReg = VRMap[ReuseStage][LoopVal];
2673
2674 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2675 &*BBI, Def, NewReg);
2676 // Update the map with the new Phi name.
2677 VRMap[CurStageNum - np][Def] = NewReg;
2678 PhiOp2 = NewReg;
2679 if (VRMap[LastStageNum - np - 1].count(LoopVal))
2680 PhiOp2 = VRMap[LastStageNum - np - 1][LoopVal];
2681
2682 if (IsLast && np == NumPhis - 1)
2683 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2684 continue;
2685 }
2686 } else if (InKernel && StageDiff > 0 &&
2687 VRMap[CurStageNum - StageDiff - np].count(LoopVal))
2688 PhiOp2 = VRMap[CurStageNum - StageDiff - np][LoopVal];
2689 }
2690
2691 const TargetRegisterClass *RC = MRI.getRegClass(Def);
2692 NewReg = MRI.createVirtualRegister(RC);
2693
2694 MachineInstrBuilder NewPhi =
2695 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
2696 TII->get(TargetOpcode::PHI), NewReg);
2697 NewPhi.addReg(PhiOp1).addMBB(BB1);
2698 NewPhi.addReg(PhiOp2).addMBB(BB2);
2699 if (np == 0)
2700 InstrMap[NewPhi] = &*BBI;
2701
2702 // We define the Phis after creating the new pipelined code, so
2703 // we need to rename the Phi values in scheduled instructions.
2704
2705 unsigned PrevReg = 0;
2706 if (InKernel && VRMap[PrevStage - np].count(LoopVal))
2707 PrevReg = VRMap[PrevStage - np][LoopVal];
2708 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
2709 Def, NewReg, PrevReg);
2710 // If the Phi has been scheduled, use the new name for rewriting.
2711 if (VRMap[CurStageNum - np].count(Def)) {
2712 unsigned R = VRMap[CurStageNum - np][Def];
2713 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np, &*BBI,
2714 R, NewReg);
2715 }
2716
2717 // Check if we need to rename any uses that occurs after the loop. The
2718 // register to replace depends on whether the Phi is scheduled in the
2719 // epilog.
2720 if (IsLast && np == NumPhis - 1)
2721 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2722
2723 // In the kernel, a dependent Phi uses the value from this Phi.
2724 if (InKernel)
2725 PhiOp2 = NewReg;
2726
2727 // Update the map with the new Phi name.
2728 VRMap[CurStageNum - np][Def] = NewReg;
2729 }
2730
2731 while (NumPhis++ < NumStages) {
2732 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, NumPhis,
2733 &*BBI, Def, NewReg, 0);
2734 }
2735
2736 // Check if we need to rename a Phi that has been eliminated due to
2737 // scheduling.
2738 if (NumStages == 0 && IsLast && VRMap[CurStageNum].count(LoopVal))
2739 replaceRegUsesAfterLoop(Def, VRMap[CurStageNum][LoopVal], BB, MRI, LIS);
2740 }
2741}
2742
2743/// Generate Phis for the specified block in the generated pipelined code.
2744/// These are new Phis needed because the definition is scheduled after the
2745/// use in the pipelened sequence.
2746void SwingSchedulerDAG::generatePhis(
2747 MachineBasicBlock *NewBB, MachineBasicBlock *BB1, MachineBasicBlock *BB2,
2748 MachineBasicBlock *KernelBB, SMSchedule &Schedule, ValueMapTy *VRMap,
2749 InstrMapTy &InstrMap, unsigned LastStageNum, unsigned CurStageNum,
2750 bool IsLast) {
2751 // Compute the stage number that contains the initial Phi value, and
2752 // the Phi from the previous stage.
2753 unsigned PrologStage = 0;
2754 unsigned PrevStage = 0;
2755 unsigned StageDiff = CurStageNum - LastStageNum;
2756 bool InKernel = (StageDiff == 0);
2757 if (InKernel) {
2758 PrologStage = LastStageNum - 1;
2759 PrevStage = CurStageNum;
2760 } else {
2761 PrologStage = LastStageNum - StageDiff;
2762 PrevStage = LastStageNum + StageDiff - 1;
2763 }
2764
2765 for (MachineBasicBlock::iterator BBI = BB->getFirstNonPHI(),
2766 BBE = BB->instr_end();
2767 BBI != BBE; ++BBI) {
2768 for (unsigned i = 0, e = BBI->getNumOperands(); i != e; ++i) {
2769 MachineOperand &MO = BBI->getOperand(i);
2770 if (!MO.isReg() || !MO.isDef() ||
2771 !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
2772 continue;
2773
2774 int StageScheduled = Schedule.stageScheduled(getSUnit(&*BBI));
2775 assert(StageScheduled != -1 && "Expecting scheduled instruction.")(static_cast <bool> (StageScheduled != -1 && "Expecting scheduled instruction."
) ? void (0) : __assert_fail ("StageScheduled != -1 && \"Expecting scheduled instruction.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/lib/CodeGen/MachinePipeliner.cpp"
, 2775, __extension__ __PRETTY_FUNCTION__))
;
2776 unsigned Def = MO.getReg();
2777 unsigned NumPhis = Schedule.getStagesForReg(Def, CurStageNum);
2778 // An instruction scheduled in stage 0 and is used after the loop
2779 // requires a phi in the epilog for the last definition from either
2780 // the kernel or prolog.
2781 if (!InKernel && NumPhis == 0 && StageScheduled == 0 &&
2782 hasUseAfterLoop(Def, BB, MRI))
2783 NumPhis = 1;
2784 if (!InKernel && (unsigned)StageScheduled > PrologStage)
2785 continue;
2786
2787 unsigned PhiOp2 = VRMap[PrevStage][Def];
2788 if (MachineInstr *InstOp2 = MRI.getVRegDef(PhiOp2))
2789 if (InstOp2->isPHI() && InstOp2->getParent() == NewBB)
2790 PhiOp2 = getLoopPhiReg(*InstOp2, BB2);
2791 // The number of Phis can't exceed the number of prolog stages. The
2792 // prolog stage number is zero based.
2793 if (NumPhis > PrologStage + 1 - StageScheduled)
2794 NumPhis = PrologStage + 1 - StageScheduled;
2795 for (unsigned np = 0; np < NumPhis; ++np) {
2796 unsigned PhiOp1 = VRMap[PrologStage][Def];
2797 if (np <= PrologStage)
2798 PhiOp1 = VRMap[PrologStage - np][Def];
2799 if (MachineInstr *InstOp1 = MRI.getVRegDef(PhiOp1)) {
2800 if (InstOp1->isPHI() && InstOp1->getParent() == KernelBB)
2801 PhiOp1 = getInitPhiReg(*InstOp1, KernelBB);
2802 if (InstOp1->isPHI() && InstOp1->getParent() == NewBB)
2803 PhiOp1 = getInitPhiReg(*InstOp1, NewBB);
2804 }
2805 if (!InKernel)
2806 PhiOp2 = VRMap[PrevStage - np][Def];
2807
2808 const TargetRegisterClass *RC = MRI.getRegClass(Def);
2809 unsigned NewReg = MRI.createVirtualRegister(RC);
2810
2811 MachineInstrBuilder NewPhi =
2812 BuildMI(*NewBB, NewBB->getFirstNonPHI(), DebugLoc(),
2813 TII->get(TargetOpcode::PHI), NewReg);
2814 NewPhi.addReg(PhiOp1).addMBB(BB1);
2815 NewPhi.addReg(PhiOp2).addMBB(BB2);
2816 if (np == 0)
2817 InstrMap[NewPhi] = &*BBI;
2818
2819 // Rewrite uses and update the map. The actions depend upon whether
2820 // we generating code for the kernel or epilog blocks.
2821 if (InKernel) {
2822 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2823 &*BBI, PhiOp1, NewReg);
2824 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2825 &*BBI, PhiOp2, NewReg);
2826
2827 PhiOp2 = NewReg;
2828 VRMap[PrevStage - np - 1][Def] = NewReg;
2829 } else {
2830 VRMap[CurStageNum - np][Def] = NewReg;
2831 if (np == NumPhis - 1)
2832 rewriteScheduledInstr(NewBB, Schedule, InstrMap, CurStageNum, np,
2833 &*BBI, Def, NewReg);
2834 }
2835 if (IsLast && np == NumPhis - 1)
2836 replaceRegUsesAfterLoop(Def, NewReg, BB, MRI, LIS);
2837 }
2838 }
2839 }
2840}
2841
2842/// Remove instructions that generate values with no uses.
2843/// Typically, these are induction variable operations that generate values
2844/// used in the loop itself. A dead instruction has a definition with
2845/// no uses, or uses that occur in the original loop only.
2846void SwingSchedulerDAG::removeDeadInstructions(MachineBasicBlock *KernelBB,
2847 MBBVectorTy &EpilogBBs) {
2848 // For each epilog block, check that the value defined by each instruction
2849 // is used. If not, delete it.
2850 for (MBBVectorTy::reverse_iterator MBB = EpilogBBs.rbegin(),
2851 MBE = EpilogBBs.rend();
2852 MBB != MBE; ++MBB)
2853 for (MachineBasicBlock::reverse_instr_iterator MI = (*MBB)->instr_rbegin(),
2854 ME = (*MBB)->instr_rend();
2855 MI != ME;) {
2856 // From DeadMachineInstructionElem. Don't delete inline assembly.
2857 if (MI->isInlineAsm()) {
2858 ++MI;
2859 continue;
2860 }
2861 bool SawStore = false;
2862 // Check if it's safe to remove the instruction due to side effects.
2863 // We can, and want to, remove Phis here.
2864 if (!MI->isSafeToMove(nullptr, SawStore) && !MI->isPHI()) {
2865 ++MI;
2866 continue;
2867 }
2868 bool used = true;
2869 for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
2870 MOE = MI->operands_end();
2871 MOI != MOE; ++MOI) {
2872 if (!MOI->isReg() || !MOI->isDef())
2873 continue;
2874 unsigned reg = MOI->getReg();
2875 unsigned realUses = 0;
2876 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(reg),
2877 EI = MRI.use_end();
2878 UI != EI; ++UI) {
2879 // Check if there are any uses that occur only in the original
2880 // loop. If so, that's not a real use.
2881 if (UI->getParent()->getParent() != BB) {
2882 realUses++;
2883 used = true;
2884 break;
2885 }
2886 }
2887 if (realUses > 0)
2888 break;
2889 used = false;
2890 }
2891 if (!used) {
2892 MI++->eraseFromParent();
2893 continue;
2894 }
2895 ++MI;
2896 }
2897 // In the kernel block, check if we can remove a Phi that generates a value
2898 // used in an instruction removed in the epilog block.
2899 for (MachineBasicBlock::iterator BBI = KernelBB->instr_begin(),
2900 BBE = KernelBB->getFirstNonPHI();
2901 BBI != BBE;) {
2902 MachineInstr *MI = &*BBI;
2903 ++BBI;
2904 unsigned reg = MI->getOperand(0).getReg();
2905 if (MRI.use_begin(reg) == MRI.use_end()) {
2906 MI->eraseFromParent();
2907 }
2908 }
2909}
2910
2911/// For loop carried definitions, we split the lifetime of a virtual register
2912/// that has uses past the definition in the next iteration. A copy with a new
2913/// virtual register is inserted before the definition, which helps with
2914/// generating a better register assignment.
2915///
2916/// v1 = phi(a, v2) v1 = phi(a, v2)
2917/// v2 = phi(b, v3) v2 = phi(b, v3)
2918/// v3 = .. v4 = copy v1
2919/// .. = V1 v3 = ..
2920/// .. = v4
2921void SwingSchedulerDAG::splitLifetimes(MachineBasicBlock *KernelBB,
2922 MBBVectorTy &EpilogBBs,
2923 SMSchedule &Schedule) {
2924 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2925 for (auto &PHI : KernelBB->phis()) {
2926 unsigned Def = PHI.getOperand(0).getReg();
2927 // Check for any Phi definition that used as an operand of another Phi
2928 // in the same block.
2929 for (MachineRegisterInfo::use_instr_iterator I = MRI.use_instr_begin(Def),
2930 E = MRI.use_instr_end();
2931 I != E; ++I) {
2932 if (I->isPHI() && I->getParent() == KernelBB) {
2933 // Get the loop carried definition.
2934 unsigned LCDef = getLoopPhiReg(PHI, KernelBB);
2935 if (!LCDef)
2936 continue;
2937 MachineInstr *MI = MRI.getVRegDef(LCDef);
2938 if (!MI || MI->getParent() != KernelBB || MI->isPHI())
2939 continue;
2940 // Search through the rest of the block looking for uses of the Phi
2941 // definition. If one occurs, then split the lifetime.
2942 unsigned SplitReg = 0;
2943 for (auto &BBJ : make_range(MachineBasicBlock::instr_iterator(MI),
2944 KernelBB->instr_end()))
2945 if (BBJ.readsRegister(Def)) {
2946 // We split the lifetime when we find the first use.
2947 if (SplitReg == 0) {
2948 SplitReg = MRI.createVirtualRegister(MRI.getRegClass(Def));
2949 BuildMI(*KernelBB, MI, MI->getDebugLoc(),
2950 TII->get(TargetOpcode::COPY), SplitReg)
2951 .addReg(Def);
2952 }
2953 BBJ.substituteRegister(Def, SplitReg, 0, *TRI);
2954 }
2955 if (!SplitReg)
2956 continue;
2957 // Search through each of the epilog blocks for any uses to be renamed.
2958 for (auto &Epilog : EpilogBBs)
2959 for (auto &I : *Epilog)
2960 if (I.readsRegister(Def))
2961 I.substituteRegister(Def, SplitReg, 0, *TRI);
2962 break;
2963 }
2964 }
2965 }
2966}
2967
2968/// Remove the incoming block from the Phis in a basic block.
2969static void removePhis(MachineBasicBlock *BB, MachineBasicBlock *Incoming) {
2970 for (MachineInstr &MI : *BB) {
2971 if (!MI.isPHI())
2972 break;
2973 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2)
2974 if (MI.getOperand(i + 1).getMBB() == Incoming) {
2975 MI.RemoveOperand(i + 1);
2976 MI.RemoveOperand(i);
2977 break;
2978 }
2979 }
2980}
2981
2982/// Create branches from each prolog basic block to the appropriate epilog
2983/// block. These edges are needed if the loop ends before reaching the
2984/// kernel.
2985void SwingSchedulerDAG::addBranches(MBBVectorTy &PrologBBs,
2986 MachineBasicBlock *KernelBB,
2987 MBBVectorTy &EpilogBBs,
2988 SMSchedule &Schedule, ValueMapTy *VRMap) {
2989 assert(PrologBBs.size() == EpilogBBs.size() && "Prolog/Epilog mismatch")(static_cast <bool> (PrologBBs.size() == EpilogBBs.size
() && "Prolog/Epilog mismatch") ? void (0) : __assert_fail
("PrologBBs.size() == EpilogBBs.size() && \"Prolog/Epilog mismatch\""
, "/build/llvm-toolchain-snapshot-7~svn326551/lib/CodeGen/MachinePipeliner.cpp"
, 2989, __extension__ __PRETTY_FUNCTION__))
;
2990 MachineInstr *IndVar = Pass.LI.LoopInductionVar;
2991 MachineInstr *Cmp = Pass.LI.LoopCompare;
2992 MachineBasicBlock *LastPro = KernelBB;
2993 MachineBasicBlock *LastEpi = KernelBB;
2994
2995 // Start from the blocks connected to the kernel and work "out"
2996 // to the first prolog and the last epilog blocks.
2997 SmallVector<MachineInstr *, 4> PrevInsts;
2998 unsigned MaxIter = PrologBBs.size() - 1;
2999 unsigned LC = UINT_MAX(2147483647 *2U +1U);
3000 unsigned LCMin = UINT_MAX(2147483647 *2U +1U);
3001 for (unsigned i = 0, j = MaxIter; i <= MaxIter; ++i, --j) {
3002 // Add branches to the prolog that go to the corresponding
3003 // epilog, and the fall-thru prolog/kernel block.
3004 MachineBasicBlock *Prolog = PrologBBs[j];
3005 MachineBasicBlock *Epilog = EpilogBBs[i];
3006 // We've executed one iteration, so decrement the loop count and check for
3007 // the loop end.
3008 SmallVector<MachineOperand, 4> Cond;
3009 // Check if the LOOP0 has already been removed. If so, then there is no need
3010 // to reduce the trip count.
3011 if (LC != 0)
3012 LC = TII->reduceLoopCount(*Prolog, IndVar, *Cmp, Cond, PrevInsts, j,
3013 MaxIter);
3014
3015 // Record the value of the first trip count, which is used to determine if
3016 // branches and blocks can be removed for constant trip counts.
3017 if (LCMin == UINT_MAX(2147483647 *2U +1U))
3018 LCMin = LC;
3019
3020 unsigned numAdded = 0;
3021 if (TargetRegisterInfo::isVirtualRegister(LC)) {
3022 Prolog->addSuccessor(Epilog);
3023 numAdded = TII->insertBranch(*Prolog, Epilog, LastPro, Cond, DebugLoc());
3024 } else if (j >= LCMin) {
3025 Prolog->addSuccessor(Epilog);
3026 Prolog->removeSuccessor(LastPro);
3027 LastEpi->removeSuccessor(Epilog);
3028 numAdded = TII->insertBranch(*Prolog, Epilog, nullptr, Cond, DebugLoc());
3029 removePhis(Epilog, LastEpi);
3030 // Remove the blocks that are no longer referenced.
3031 if (LastPro != LastEpi) {
3032 LastEpi->clear();
3033 LastEpi->eraseFromParent();
3034 }
3035 LastPro->clear();
3036 LastPro->eraseFromParent();
3037 } else {
3038 numAdded = TII->insertBranch(*Prolog, LastPro, nullptr, Cond, DebugLoc());
3039 removePhis(Epilog, Prolog);
3040 }
3041 LastPro = Prolog;
3042 LastEpi = Epilog;
3043 for (MachineBasicBlock::reverse_instr_iterator I = Prolog->instr_rbegin(),
3044 E = Prolog->instr_rend();
3045 I != E && numAdded > 0; ++I, --numAdded)
3046 updateInstruction(&*I, false, j, 0, Schedule, VRMap);
3047 }
3048}
3049
3050/// Return true if we can compute the amount the instruction changes
3051/// during each iteration. Set Delta to the amount of the change.
3052bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
3053 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3054 unsigned BaseReg;
3055 int64_t Offset;
3056 if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI))
3057 return false;
3058
3059 MachineRegisterInfo &MRI = MF.getRegInfo();
3060 // Check if there is a Phi. If so, get the definition in the loop.
3061 MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
3062 if (BaseDef && BaseDef->isPHI()) {
3063 BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
3064 BaseDef = MRI.getVRegDef(BaseReg);
3065 }
3066 if (!BaseDef)
3067 return false;
3068
3069 int D = 0;
3070 if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
3071 return false;
3072
3073 Delta = D;
3074 return true;
3075}
3076
3077/// Update the memory operand with a new offset when the pipeliner
3078/// generates a new copy of the instruction that refers to a
3079/// different memory location.
3080void SwingSchedulerDAG::updateMemOperands(MachineInstr &NewMI,
3081 MachineInstr &OldMI, unsigned Num) {
3082 if (Num == 0)
3083 return;
3084 // If the instruction has memory operands, then adjust the offset
3085 // when the instruction appears in different stages.
3086 unsigned NumRefs = NewMI.memoperands_end() - NewMI.memoperands_begin();
3087 if (NumRefs == 0)
3088 return;
3089 MachineInstr::mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NumRefs);
3090 unsigned Refs = 0;
3091 for (MachineMemOperand *MMO : NewMI.memoperands()) {
3092 if (MMO->isVolatile() || (MMO->isInvariant() && MMO->isDereferenceable()) ||
3093 (!MMO->getValue())) {
3094 NewMemRefs[Refs++] = MMO;
3095 continue;
3096 }
3097 unsigned Delta;
3098 if (computeDelta(OldMI, Delta)) {
3099 int64_t AdjOffset = Delta * Num;
3100 NewMemRefs[Refs++] =
3101 MF.getMachineMemOperand(MMO, AdjOffset, MMO->getSize());
3102 } else {
3103 NewMI.dropMemRefs();
3104 return;
3105 }
3106 }
3107 NewMI.setMemRefs(NewMemRefs, NewMemRefs + NumRefs);
3108}
3109
3110/// Clone the instruction for the new pipelined loop and update the
3111/// memory operands, if needed.
3112MachineInstr *SwingSchedulerDAG::cloneInstr(MachineInstr *OldMI,
3113 unsigned CurStageNum,
3114 unsigned InstStageNum) {
3115 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
3116 // Check for tied operands in inline asm instructions. This should be handled
3117 // elsewhere, but I'm not sure of the best solution.
3118 if (OldMI->isInlineAsm())
3119 for (unsigned i = 0, e = OldMI->getNumOperands(); i != e; ++i) {
3120 const auto &MO = OldMI->getOperand(i);
3121 if (MO.isReg() && MO.isUse())
3122 break;
3123 unsigned UseIdx;
3124 if (OldMI->isRegTiedToUseOperand(i, &UseIdx))
3125 NewMI->tieOperands(i, UseIdx);
3126 }
3127 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
3128 return NewMI;
3129}
3130
3131/// Clone the instruction for the new pipelined loop. If needed, this
3132/// function updates the instruction using the values saved in the
3133/// InstrChanges structure.
3134MachineInstr *SwingSchedulerDAG::cloneAndChangeInstr(MachineInstr *OldMI,
3135 unsigned CurStageNum,
3136 unsigned InstStageNum,
3137 SMSchedule &Schedule) {
3138 MachineInstr *NewMI = MF.CloneMachineInstr(OldMI);
3139 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
3140 InstrChanges.find(getSUnit(OldMI));
3141 if (It != InstrChanges.end()) {
3142 std::pair<unsigned, int64_t> RegAndOffset = It->second;
3143 unsigned BasePos, OffsetPos;
3144 if (!TII->getBaseAndOffsetPosition(*OldMI, BasePos, OffsetPos))
3145 return nullptr;
3146 int64_t NewOffset = OldMI->getOperand(OffsetPos).getImm();
3147 MachineInstr *LoopDef = findDefInLoop(RegAndOffset.first);
3148 if (Schedule.stageScheduled(getSUnit(LoopDef)) > (signed)InstStageNum)
3149 NewOffset += RegAndOffset.second * (CurStageNum - InstStageNum);
3150 NewMI->getOperand(OffsetPos).setImm(NewOffset);
3151 }
3152 updateMemOperands(*NewMI, *OldMI, CurStageNum - InstStageNum);
3153 return NewMI;
3154}
3155
3156/// Update the machine instruction with new virtual registers. This
3157/// function may change the defintions and/or uses.
3158void SwingSchedulerDAG::updateInstruction(MachineInstr *NewMI, bool LastDef,
3159 unsigned CurStageNum,
3160 unsigned InstrStageNum,
3161 SMSchedule &Schedule,
3162 ValueMapTy *VRMap) {
3163 for (unsigned i = 0, e = NewMI->getNumOperands(); i != e; ++i) {
3164 MachineOperand &MO = NewMI->getOperand(i);
3165 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
3166 continue;
3167 unsigned reg = MO.getReg();
3168 if (MO.isDef()) {
3169 // Create a new virtual register for the definition.
3170 const TargetRegisterClass *RC = MRI.getRegClass(reg);
3171 unsigned NewReg = MRI.createVirtualRegister(RC);
3172 MO.setReg(NewReg);
3173 VRMap[CurStageNum][reg] = NewReg;
3174 if (LastDef)
3175 replaceRegUsesAfterLoop(reg, NewReg, BB, MRI, LIS);
3176 } else if (MO.isUse()) {
3177 MachineInstr *Def = MRI.getVRegDef(reg);
3178 // Compute the stage that contains the last definition for instruction.
3179 int DefStageNum = Schedule.stageScheduled(getSUnit(Def));
3180 unsigned StageNum = CurStageNum;
3181 if (DefStageNum != -1 && (int)InstrStageNum > DefStageNum) {
3182 // Compute the difference in stages between the defintion and the use.
3183 unsigned StageDiff = (InstrStageNum - DefStageNum);
3184 // Make an adjustment to get the last definition.
3185 StageNum -= StageDiff;
3186 }
3187 if (VRMap[StageNum].count(reg))
3188 MO.setReg(VRMap[StageNum][reg]);
3189 }
3190 }
3191}
3192
3193/// Return the instruction in the loop that defines the register.
3194/// If the definition is a Phi, then follow the Phi operand to
3195/// the instruction in the loop.
3196MachineInstr *SwingSchedulerDAG::findDefInLoop(unsigned Reg) {
3197 SmallPtrSet<MachineInstr *, 8> Visited;
3198 MachineInstr *Def = MRI.getVRegDef(Reg);
3199 while (Def->isPHI()) {
3200 if (!Visited.insert(Def).second)
3201 break;
3202 for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
3203 if (Def->getOperand(i + 1).getMBB() == BB) {
3204 Def = MRI.getVRegDef(Def->getOperand(i).getReg());
3205 break;
3206 }
3207 }
3208 return Def;
3209}
3210
3211/// Return the new name for the value from the previous stage.
3212unsigned SwingSchedulerDAG::getPrevMapVal(unsigned StageNum, unsigned PhiStage,
3213 unsigned LoopVal, unsigned LoopStage,
3214 ValueMapTy *VRMap,
3215 MachineBasicBlock *BB) {
3216 unsigned PrevVal = 0;
3217 if (StageNum > PhiStage) {
3218 MachineInstr *LoopInst = MRI.getVRegDef(LoopVal);
3219 if (PhiStage == LoopStage && VRMap[StageNum - 1].count(LoopVal))
3220 // The name is defined in the previous stage.
3221 PrevVal = VRMap[StageNum - 1][LoopVal];
3222 else if (VRMap[StageNum].count(LoopVal))
3223 // The previous name is defined in the current stage when the instruction
3224 // order is swapped.
3225 PrevVal = VRMap[StageNum][LoopVal];
3226 else if (!LoopInst->isPHI() || LoopInst->getParent() != BB)
3227 // The loop value hasn't yet been scheduled.
3228 PrevVal = LoopVal;
3229 else if (StageNum == PhiStage + 1)
3230 // The loop value is another phi, which has not been scheduled.
3231 PrevVal = getInitPhiReg(*LoopInst, BB);
3232 else if (StageNum > PhiStage + 1 && LoopInst->getParent() == BB)
3233 // The loop value is another phi, which has been scheduled.
3234 PrevVal =
3235 getPrevMapVal(StageNum - 1, PhiStage, getLoopPhiReg(*LoopInst, BB),
3236 LoopStage, VRMap, BB);
3237 }
3238 return PrevVal;
3239}
3240
3241/// Rewrite the Phi values in the specified block to use the mappings
3242/// from the initial operand. Once the Phi is scheduled, we switch
3243/// to using the loop value instead of the Phi value, so those names
3244/// do not need to be rewritten.
3245void SwingSchedulerDAG::rewritePhiValues(MachineBasicBlock *NewBB,
3246 unsigned StageNum,
3247 SMSchedule &Schedule,
3248 ValueMapTy *VRMap,
3249 InstrMapTy &InstrMap) {
3250 for (auto &PHI : BB->phis()) {
3251 unsigned InitVal = 0;
3252 unsigned LoopVal = 0;
3253 getPhiRegs(PHI, BB, InitVal, LoopVal);
3254 unsigned PhiDef = PHI.getOperand(0).getReg();
3255
3256 unsigned PhiStage =
3257 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(PhiDef)));
3258 unsigned LoopStage =
3259 (unsigned)Schedule.stageScheduled(getSUnit(MRI.getVRegDef(LoopVal)));
3260 unsigned NumPhis = Schedule.getStagesForPhi(PhiDef);
3261 if (NumPhis > StageNum)
3262 NumPhis = StageNum;
3263 for (unsigned np = 0; np <= NumPhis; ++np) {
3264 unsigned NewVal =
3265 getPrevMapVal(StageNum - np, PhiStage, LoopVal, LoopStage, VRMap, BB);
3266 if (!NewVal)
3267 NewVal = InitVal;
3268 rewriteScheduledInstr(NewBB, Schedule, InstrMap, StageNum - np, np, &PHI,
3269 PhiDef, NewVal);
3270 }
3271 }
3272}
3273
3274/// Rewrite a previously scheduled instruction to use the register value
3275/// from the new instruction. Make sure the instruction occurs in the
3276/// basic block, and we don't change the uses in the new instruction.
3277void SwingSchedulerDAG::rewriteScheduledInstr(
3278 MachineBasicBlock *BB, SMSchedule &Schedule, InstrMapTy &InstrMap,
3279 unsigned CurStageNum, unsigned PhiNum, MachineInstr *Phi, unsigned OldReg,
3280 unsigned NewReg, unsigned PrevReg) {
3281 bool InProlog = (CurStageNum < Schedule.getMaxStageCount());
3282 int StagePhi = Schedule.stageScheduled(getSUnit(Phi)) + PhiNum;
3283 // Rewrite uses that have been scheduled already to use the new
3284 // Phi register.
3285 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(OldReg),
3286 EI = MRI.use_end();
3287 UI != EI;) {
3288 MachineOperand &UseOp = *UI;
3289 MachineInstr *UseMI = UseOp.getParent();
3290 ++UI;
3291 if (UseMI->getParent() != BB)
3292 continue;
3293 if (UseMI->isPHI()) {
3294 if (!Phi->isPHI() && UseMI->getOperand(0).getReg() == NewReg)
3295 continue;
3296 if (getLoopPhiReg(*UseMI, BB) != OldReg)
3297 continue;
3298 }
3299 InstrMapTy::iterator OrigInstr = InstrMap.find(UseMI);
3300 assert(OrigInstr != InstrMap.end() && "Instruction not scheduled.")(static_cast <bool> (OrigInstr != InstrMap.end() &&
"Instruction not scheduled.") ? void (0) : __assert_fail ("OrigInstr != InstrMap.end() && \"Instruction not scheduled.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/lib/CodeGen/MachinePipeliner.cpp"
, 3300, __extension__ __PRETTY_FUNCTION__))
;
3301 SUnit *OrigMISU = getSUnit(OrigInstr->second);
3302 int StageSched = Schedule.stageScheduled(OrigMISU);
3303 int CycleSched = Schedule.cycleScheduled(OrigMISU);
3304 unsigned ReplaceReg = 0;
3305 // This is the stage for the scheduled instruction.
3306 if (StagePhi == StageSched && Phi->isPHI()) {
3307 int CyclePhi = Schedule.cycleScheduled(getSUnit(Phi));
3308 if (PrevReg && InProlog)
3309 ReplaceReg = PrevReg;
3310 else if (PrevReg && !Schedule.isLoopCarried(this, *Phi) &&
3311 (CyclePhi <= CycleSched || OrigMISU->getInstr()->isPHI()))
3312 ReplaceReg = PrevReg;
3313 else
3314 ReplaceReg = NewReg;
3315 }
3316 // The scheduled instruction occurs before the scheduled Phi, and the
3317 // Phi is not loop carried.
3318 if (!InProlog && StagePhi + 1 == StageSched &&
3319 !Schedule.isLoopCarried(this, *Phi))
3320 ReplaceReg = NewReg;
3321 if (StagePhi > StageSched && Phi->isPHI())
3322 ReplaceReg = NewReg;
3323 if (!InProlog && !Phi->isPHI() && StagePhi < StageSched)
3324 ReplaceReg = NewReg;
3325 if (ReplaceReg) {
3326 MRI.constrainRegClass(ReplaceReg, MRI.getRegClass(OldReg));
3327 UseOp.setReg(ReplaceReg);
3328 }
3329 }
3330}
3331
3332/// Check if we can change the instruction to use an offset value from the
3333/// previous iteration. If so, return true and set the base and offset values
3334/// so that we can rewrite the load, if necessary.
3335/// v1 = Phi(v0, v3)
3336/// v2 = load v1, 0
3337/// v3 = post_store v1, 4, x
3338/// This function enables the load to be rewritten as v2 = load v3, 4.
3339bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
3340 unsigned &BasePos,
3341 unsigned &OffsetPos,
3342 unsigned &NewBase,
3343 int64_t &Offset) {
3344 // Get the load instruction.
3345 if (TII->isPostIncrement(*MI))
3346 return false;
3347 unsigned BasePosLd, OffsetPosLd;
3348 if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
3349 return false;
3350 unsigned BaseReg = MI->getOperand(BasePosLd).getReg();
3351
3352 // Look for the Phi instruction.
3353 MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
3354 MachineInstr *Phi = MRI.getVRegDef(BaseReg);
3355 if (!Phi || !Phi->isPHI())
3356 return false;
3357 // Get the register defined in the loop block.
3358 unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
3359 if (!PrevReg)
3360 return false;
3361
3362 // Check for the post-increment load/store instruction.
3363 MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
3364 if (!PrevDef || PrevDef == MI)
3365 return false;
3366
3367 if (!TII->isPostIncrement(*PrevDef))
3368 return false;
3369
3370 unsigned BasePos1 = 0, OffsetPos1 = 0;
3371 if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
3372 return false;
3373
3374 // Make sure offset values are both positive or both negative.
3375 int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
3376 int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
3377 if ((LoadOffset >= 0) != (StoreOffset >= 0))
3378 return false;
3379
3380 // Set the return value once we determine that we return true.
3381 BasePos = BasePosLd;
3382 OffsetPos = OffsetPosLd;
3383 NewBase = PrevReg;
3384 Offset = StoreOffset;
3385 return true;
3386}
3387
3388/// Apply changes to the instruction if needed. The changes are need
3389/// to improve the scheduling and depend up on the final schedule.
3390void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
3391 SMSchedule &Schedule) {
3392 SUnit *SU = getSUnit(MI);
3393 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
3394 InstrChanges.find(SU);
3395 if (It != InstrChanges.end()) {
3396 std::pair<unsigned, int64_t> RegAndOffset = It->second;
3397 unsigned BasePos, OffsetPos;
3398 if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
3399 return;
3400 unsigned BaseReg = MI->getOperand(BasePos).getReg();
3401 MachineInstr *LoopDef = findDefInLoop(BaseReg);
3402 int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
3403 int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
3404 int BaseStageNum = Schedule.stageScheduled(SU);
3405 int BaseCycleNum = Schedule.cycleScheduled(SU);
3406 if (BaseStageNum < DefStageNum) {
3407 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
3408 int OffsetDiff = DefStageNum - BaseStageNum;
3409 if (DefCycleNum < BaseCycleNum) {
3410 NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
3411 if (OffsetDiff > 0)
3412 --OffsetDiff;
3413 }
3414 int64_t NewOffset =
3415 MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
3416 NewMI->getOperand(OffsetPos).setImm(NewOffset);
3417 SU->setInstr(NewMI);
3418 MISUnitMap[NewMI] = SU;
3419 NewMIs.insert(NewMI);
3420 }
3421 }
3422}
3423
3424/// Return true for an order dependence that is loop carried potentially.
3425/// An order dependence is loop carried if the destination defines a value
3426/// that may be used by the source in a subsequent iteration.
3427bool SwingSchedulerDAG::isLoopCarriedOrder(SUnit *Source, const SDep &Dep,
3428 bool isSucc) {
3429 if (!isOrder(Source, Dep) || Dep.isArtificial())
3430 return false;
3431
3432 if (!SwpPruneLoopCarried)
3433 return true;
3434
3435 MachineInstr *SI = Source->getInstr();
3436 MachineInstr *DI = Dep.getSUnit()->getInstr();
3437 if (!isSucc)
3438 std::swap(SI, DI);
3439 assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.")(static_cast <bool> (SI != nullptr && DI != nullptr
&& "Expecting SUnit with an MI.") ? void (0) : __assert_fail
("SI != nullptr && DI != nullptr && \"Expecting SUnit with an MI.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/lib/CodeGen/MachinePipeliner.cpp"
, 3439, __extension__ __PRETTY_FUNCTION__))
;
3440
3441 // Assume ordered loads and stores may have a loop carried dependence.
3442 if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
3443 SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
3444 return true;
3445
3446 // Only chain dependences between a load and store can be loop carried.
3447 if (!DI->mayStore() || !SI->mayLoad())
3448 return false;
3449
3450 unsigned DeltaS, DeltaD;
3451 if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
3452 return true;
3453
3454 unsigned BaseRegS, BaseRegD;
3455 int64_t OffsetS, OffsetD;
3456 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
3457 if (!TII->getMemOpBaseRegImmOfs(*SI, BaseRegS, OffsetS, TRI) ||
3458 !TII->getMemOpBaseRegImmOfs(*DI, BaseRegD, OffsetD, TRI))
3459 return true;
3460
3461 if (BaseRegS != BaseRegD)
3462 return true;
3463
3464 uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
3465 uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
3466
3467 // This is the main test, which checks the offset values and the loop
3468 // increment value to determine if the accesses may be loop carried.
3469 if (OffsetS >= OffsetD)
3470 return OffsetS + AccessSizeS > DeltaS;
3471 else
3472 return OffsetD + AccessSizeD > DeltaD;
3473
3474 return true;
3475}
3476
3477void SwingSchedulerDAG::postprocessDAG() {
3478 for (auto &M : Mutations)
3479 M->apply(this);
3480}
3481
3482/// Try to schedule the node at the specified StartCycle and continue
3483/// until the node is schedule or the EndCycle is reached. This function
3484/// returns true if the node is scheduled. This routine may search either
3485/// forward or backward for a place to insert the instruction based upon
3486/// the relative values of StartCycle and EndCycle.
3487bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
3488 bool forward = true;
3489 if (StartCycle > EndCycle)
3490 forward = false;
3491
3492 // The terminating condition depends on the direction.
3493 int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
3494 for (int curCycle = StartCycle; curCycle != termCycle;
3495 forward ? ++curCycle : --curCycle) {
3496
3497 // Add the already scheduled instructions at the specified cycle to the DFA.
3498 Resources->clearResources();
3499 for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II);
3500 checkCycle <= LastCycle; checkCycle += II) {
3501 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle];
3502
3503 for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(),
3504 E = cycleInstrs.end();
3505 I != E; ++I) {
3506 if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode()))
3507 continue;
3508 assert(Resources->canReserveResources(*(*I)->getInstr()) &&(static_cast <bool> (Resources->canReserveResources(
*(*I)->getInstr()) && "These instructions have already been scheduled."
) ? void (0) : __assert_fail ("Resources->canReserveResources(*(*I)->getInstr()) && \"These instructions have already been scheduled.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/lib/CodeGen/MachinePipeliner.cpp"
, 3509, __extension__ __PRETTY_FUNCTION__))
3509 "These instructions have already been scheduled.")(static_cast <bool> (Resources->canReserveResources(
*(*I)->getInstr()) && "These instructions have already been scheduled."
) ? void (0) : __assert_fail ("Resources->canReserveResources(*(*I)->getInstr()) && \"These instructions have already been scheduled.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/lib/CodeGen/MachinePipeliner.cpp"
, 3509, __extension__ __PRETTY_FUNCTION__))
;
3510 Resources->reserveResources(*(*I)->getInstr());
3511 }
3512 }
3513 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
3514 Resources->canReserveResources(*SU->getInstr())) {
3515 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "\tinsert at cycle " <<
curCycle << " "; SU->getInstr()->dump(); }; } } while
(false)
3516 dbgs() << "\tinsert at cycle " << curCycle << " ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "\tinsert at cycle " <<
curCycle << " "; SU->getInstr()->dump(); }; } } while
(false)
3517 SU->getInstr()->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "\tinsert at cycle " <<
curCycle << " "; SU->getInstr()->dump(); }; } } while
(false)
3518 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "\tinsert at cycle " <<
curCycle << " "; SU->getInstr()->dump(); }; } } while
(false)
;
3519
3520 ScheduledInstrs[curCycle].push_back(SU);
3521 InstrToCycle.insert(std::make_pair(SU, curCycle));
3522 if (curCycle > LastCycle)
3523 LastCycle = curCycle;
3524 if (curCycle < FirstCycle)
3525 FirstCycle = curCycle;
3526 return true;
3527 }
3528 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "\tfailed to insert at cycle "
<< curCycle << " "; SU->getInstr()->dump()
; }; } } while (false)
3529 dbgs() << "\tfailed to insert at cycle " << curCycle << " ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "\tfailed to insert at cycle "
<< curCycle << " "; SU->getInstr()->dump()
; }; } } while (false)
3530 SU->getInstr()->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "\tfailed to insert at cycle "
<< curCycle << " "; SU->getInstr()->dump()
; }; } } while (false)
3531 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { { dbgs() << "\tfailed to insert at cycle "
<< curCycle << " "; SU->getInstr()->dump()
; }; } } while (false)
;
3532 }
3533 return false;
3534}
3535
3536// Return the cycle of the earliest scheduled instruction in the chain.
3537int SMSchedule::earliestCycleInChain(const SDep &Dep) {
3538 SmallPtrSet<SUnit *, 8> Visited;
3539 SmallVector<SDep, 8> Worklist;
3540 Worklist.push_back(Dep);
3541 int EarlyCycle = INT_MAX2147483647;
3542 while (!Worklist.empty()) {
3543 const SDep &Cur = Worklist.pop_back_val();
3544 SUnit *PrevSU = Cur.getSUnit();
3545 if (Visited.count(PrevSU))
3546 continue;
3547 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
3548 if (it == InstrToCycle.end())
3549 continue;
3550 EarlyCycle = std::min(EarlyCycle, it->second);
3551 for (const auto &PI : PrevSU->Preds)
3552 if (SwingSchedulerDAG::isOrder(PrevSU, PI))
3553 Worklist.push_back(PI);
3554 Visited.insert(PrevSU);
3555 }
3556 return EarlyCycle;
3557}
3558
3559// Return the cycle of the latest scheduled instruction in the chain.
3560int SMSchedule::latestCycleInChain(const SDep &Dep) {
3561 SmallPtrSet<SUnit *, 8> Visited;
3562 SmallVector<SDep, 8> Worklist;
3563 Worklist.push_back(Dep);
3564 int LateCycle = INT_MIN(-2147483647 -1);
3565 while (!Worklist.empty()) {
3566 const SDep &Cur = Worklist.pop_back_val();
3567 SUnit *SuccSU = Cur.getSUnit();
3568 if (Visited.count(SuccSU))
3569 continue;
3570 std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
3571 if (it == InstrToCycle.end())
3572 continue;
3573 LateCycle = std::max(LateCycle, it->second);
3574 for (const auto &SI : SuccSU->Succs)
3575 if (SwingSchedulerDAG::isOrder(SuccSU, SI))
3576 Worklist.push_back(SI);
3577 Visited.insert(SuccSU);
3578 }
3579 return LateCycle;
3580}
3581
3582/// If an instruction has a use that spans multiple iterations, then
3583/// return true. These instructions are characterized by having a back-ege
3584/// to a Phi, which contains a reference to another Phi.
3585static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
3586 for (auto &P : SU->Preds)
3587 if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
3588 for (auto &S : P.getSUnit()->Succs)
3589 if (S.getKind() == SDep::Order && S.getSUnit()->getInstr()->isPHI())
3590 return P.getSUnit();
3591 return nullptr;
3592}
3593
3594/// Compute the scheduling start slot for the instruction. The start slot
3595/// depends on any predecessor or successor nodes scheduled already.
3596void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
3597 int *MinEnd, int *MaxStart, int II,
3598 SwingSchedulerDAG *DAG) {
3599 // Iterate over each instruction that has been scheduled already. The start
3600 // slot computuation depends on whether the previously scheduled instruction
3601 // is a predecessor or successor of the specified instruction.
3602 for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
3603
3604 // Iterate over each instruction in the current cycle.
3605 for (SUnit *I : getInstructions(cycle)) {
3606 // Because we're processing a DAG for the dependences, we recognize
3607 // the back-edge in recurrences by anti dependences.
3608 for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
3609 const SDep &Dep = SU->Preds[i];
3610 if (Dep.getSUnit() == I) {
3611 if (!DAG->isBackedge(SU, Dep)) {
3612 int EarlyStart = cycle + DAG->getLatency(SU, Dep) -
3613 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
3614 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
3615 if (DAG->isLoopCarriedOrder(SU, Dep, false)) {
3616 int End = earliestCycleInChain(Dep) + (II - 1);
3617 *MinEnd = std::min(*MinEnd, End);
3618 }
3619 } else {
3620 int LateStart = cycle - DAG->getLatency(SU, Dep) +
3621 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
3622 *MinLateStart = std::min(*MinLateStart, LateStart);
3623 }
3624 }
3625 // For instruction that requires multiple iterations, make sure that
3626 // the dependent instruction is not scheduled past the definition.
3627 SUnit *BE = multipleIterations(I, DAG);
3628 if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
3629 !SU->isPred(I))
3630 *MinLateStart = std::min(*MinLateStart, cycle);
3631 }
3632 for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i)
3633 if (SU->Succs[i].getSUnit() == I) {
3634 const SDep &Dep = SU->Succs[i];
3635 if (!DAG->isBackedge(SU, Dep)) {
3636 int LateStart = cycle - DAG->getLatency(SU, Dep) +
3637 DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
3638 *MinLateStart = std::min(*MinLateStart, LateStart);
3639 if (DAG->isLoopCarriedOrder(SU, Dep)) {
3640 int Start = latestCycleInChain(Dep) + 1 - II;
3641 *MaxStart = std::max(*MaxStart, Start);
3642 }
3643 } else {
3644 int EarlyStart = cycle + DAG->getLatency(SU, Dep) -
3645 DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
3646 *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
3647 }
3648 }
3649 }
3650 }
3651}
3652
3653/// Order the instructions within a cycle so that the definitions occur
3654/// before the uses. Returns true if the instruction is added to the start
3655/// of the list, or false if added to the end.
3656bool SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
3657 std::deque<SUnit *> &Insts) {
3658 MachineInstr *MI = SU->getInstr();
3659 bool OrderBeforeUse = false;
3660 bool OrderAfterDef = false;
3661 bool OrderBeforeDef = false;
3662 unsigned MoveDef = 0;
3663 unsigned MoveUse = 0;
3664 int StageInst1 = stageScheduled(SU);
3665
3666 unsigned Pos = 0;
3667 for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
3668 ++I, ++Pos) {
3669 // Relative order of Phis does not matter.
3670 if (MI->isPHI() && (*I)->getInstr()->isPHI())
3671 continue;
3672 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
3673 MachineOperand &MO = MI->getOperand(i);
3674 if (!MO.isReg() || !TargetRegisterInfo::isVirtualRegister(MO.getReg()))
3675 continue;
3676 unsigned Reg = MO.getReg();
3677 unsigned BasePos, OffsetPos;
3678 if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
3679 if (MI->getOperand(BasePos).getReg() == Reg)
3680 if (unsigned NewReg = SSD->getInstrBaseReg(SU))
3681 Reg = NewReg;
3682 bool Reads, Writes;
3683 std::tie(Reads, Writes) =
3684 (*I)->getInstr()->readsWritesVirtualRegister(Reg);
3685 if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
3686 OrderBeforeUse = true;
3687 MoveUse = Pos;
3688 } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
3689 // Add the instruction after the scheduled instruction.
3690 OrderAfterDef = true;
3691 MoveDef = Pos;
3692 } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
3693 if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
3694 OrderBeforeUse = true;
3695 MoveUse = Pos;
3696 } else {
3697 OrderAfterDef = true;
3698 MoveDef = Pos;
3699 }
3700 } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
3701 OrderBeforeUse = true;
3702 MoveUse = Pos;
3703 if (MoveUse != 0) {
3704 OrderAfterDef = true;
3705 MoveDef = Pos - 1;
3706 }
3707 } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
3708 // Add the instruction before the scheduled instruction.
3709 OrderBeforeUse = true;
3710 MoveUse = Pos;
3711 } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
3712 isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
3713 OrderBeforeDef = true;
3714 MoveUse = Pos;
3715 }
3716 }
3717 // Check for order dependences between instructions. Make sure the source
3718 // is ordered before the destination.
3719 for (auto &S : SU->Succs)
3720 if (S.getKind() == SDep::Order) {
3721 if (S.getSUnit() == *I && stageScheduled(*I) == StageInst1) {
3722 OrderBeforeUse = true;
3723 MoveUse = Pos;
3724 }
3725 } else if (TargetRegisterInfo::isPhysicalRegister(S.getReg())) {
3726 if (cycleScheduled(SU) != cycleScheduled(S.getSUnit())) {
3727 if (S.isAssignedRegDep()) {
3728 OrderAfterDef = true;
3729 MoveDef = Pos;
3730 }
3731 } else {
3732 OrderBeforeUse = true;
3733 MoveUse = Pos;
3734 }
3735 }
3736 for (auto &P : SU->Preds)
3737 if (P.getKind() == SDep::Order) {
3738 if (P.getSUnit() == *I && stageScheduled(*I) == StageInst1) {
3739 OrderAfterDef = true;
3740 MoveDef = Pos;
3741 }
3742 } else if (TargetRegisterInfo::isPhysicalRegister(P.getReg())) {
3743 if (cycleScheduled(SU) != cycleScheduled(P.getSUnit())) {
3744 if (P.isAssignedRegDep()) {
3745 OrderBeforeUse = true;
3746 MoveUse = Pos;
3747 }
3748 } else {
3749 OrderAfterDef = true;
3750 MoveDef = Pos;
3751 }
3752 }
3753 }
3754
3755 // A circular dependence.
3756 if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
3757 OrderBeforeUse = false;
3758
3759 // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
3760 // to a loop-carried dependence.
3761 if (OrderBeforeDef)
3762 OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
3763
3764 // The uncommon case when the instruction order needs to be updated because
3765 // there is both a use and def.
3766 if (OrderBeforeUse && OrderAfterDef) {
3767 SUnit *UseSU = Insts.at(MoveUse);
3768 SUnit *DefSU = Insts.at(MoveDef);
3769 if (MoveUse > MoveDef) {
3770 Insts.erase(Insts.begin() + MoveUse);
3771 Insts.erase(Insts.begin() + MoveDef);
3772 } else {
3773 Insts.erase(Insts.begin() + MoveDef);
3774 Insts.erase(Insts.begin() + MoveUse);
3775 }
3776 if (orderDependence(SSD, UseSU, Insts)) {
3777 Insts.push_front(SU);
3778 orderDependence(SSD, DefSU, Insts);
3779 return true;
3780 }
3781 Insts.pop_back();
3782 Insts.push_back(SU);
3783 Insts.push_back(UseSU);
3784 orderDependence(SSD, DefSU, Insts);
3785 return false;
3786 }
3787 // Put the new instruction first if there is a use in the list. Otherwise,
3788 // put it at the end of the list.
3789 if (OrderBeforeUse)
3790 Insts.push_front(SU);
3791 else
3792 Insts.push_back(SU);
3793 return OrderBeforeUse;
3794}
3795
3796/// Return true if the scheduled Phi has a loop carried operand.
3797bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
3798 if (!Phi.isPHI())
3799 return false;
3800 assert(Phi.isPHI() && "Expecing a Phi.")(static_cast <bool> (Phi.isPHI() && "Expecing a Phi."
) ? void (0) : __assert_fail ("Phi.isPHI() && \"Expecing a Phi.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/lib/CodeGen/MachinePipeliner.cpp"
, 3800, __extension__ __PRETTY_FUNCTION__))
;
3801 SUnit *DefSU = SSD->getSUnit(&Phi);
3802 unsigned DefCycle = cycleScheduled(DefSU);
3803 int DefStage = stageScheduled(DefSU);
3804
3805 unsigned InitVal = 0;
3806 unsigned LoopVal = 0;
3807 getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
3808 SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
3809 if (!UseSU)
3810 return true;
3811 if (UseSU->getInstr()->isPHI())
3812 return true;
3813 unsigned LoopCycle = cycleScheduled(UseSU);
3814 int LoopStage = stageScheduled(UseSU);
3815 return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
3816}
3817
3818/// Return true if the instruction is a definition that is loop carried
3819/// and defines the use on the next iteration.
3820/// v1 = phi(v2, v3)
3821/// (Def) v3 = op v1
3822/// (MO) = v1
3823/// If MO appears before Def, then then v1 and v3 may get assigned to the same
3824/// register.
3825bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
3826 MachineInstr *Def, MachineOperand &MO) {
3827 if (!MO.isReg())
3828 return false;
3829 if (Def->isPHI())
3830 return false;
3831 MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
3832 if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
3833 return false;
3834 if (!isLoopCarried(SSD, *Phi))
3835 return false;
3836 unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
3837 for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
3838 MachineOperand &DMO = Def->getOperand(i);
3839 if (!DMO.isReg() || !DMO.isDef())
3840 continue;
3841 if (DMO.getReg() == LoopReg)
3842 return true;
3843 }
3844 return false;
3845}
3846
3847// Check if the generated schedule is valid. This function checks if
3848// an instruction that uses a physical register is scheduled in a
3849// different stage than the definition. The pipeliner does not handle
3850// physical register values that may cross a basic block boundary.
3851bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
3852 for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) {
3853 SUnit &SU = SSD->SUnits[i];
3854 if (!SU.hasPhysRegDefs)
3855 continue;
3856 int StageDef = stageScheduled(&SU);
3857 assert(StageDef != -1 && "Instruction should have been scheduled.")(static_cast <bool> (StageDef != -1 && "Instruction should have been scheduled."
) ? void (0) : __assert_fail ("StageDef != -1 && \"Instruction should have been scheduled.\""
, "/build/llvm-toolchain-snapshot-7~svn326551/lib/CodeGen/MachinePipeliner.cpp"
, 3857, __extension__ __PRETTY_FUNCTION__))
;
3858 for (auto &SI : SU.Succs)
3859 if (SI.isAssignedRegDep())
3860 if (ST.getRegisterInfo()->isPhysicalRegister(SI.getReg()))
3861 if (stageScheduled(SI.getSUnit()) != StageDef)
3862 return false;
3863 }
3864 return true;
3865}
3866
3867/// Attempt to fix the degenerate cases when the instruction serialization
3868/// causes the register lifetimes to overlap. For example,
3869/// p' = store_pi(p, b)
3870/// = load p, offset
3871/// In this case p and p' overlap, which means that two registers are needed.
3872/// Instead, this function changes the load to use p' and updates the offset.
3873void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) {
3874 unsigned OverlapReg = 0;
3875 unsigned NewBaseReg = 0;
3876 for (SUnit *SU : Instrs) {
3877 MachineInstr *MI = SU->getInstr();
3878 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
3879 const MachineOperand &MO = MI->getOperand(i);
3880 // Look for an instruction that uses p. The instruction occurs in the
3881 // same cycle but occurs later in the serialized order.
3882 if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) {
3883 // Check that the instruction appears in the InstrChanges structure,
3884 // which contains instructions that can have the offset updated.
3885 DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
3886 InstrChanges.find(SU);
3887 if (It != InstrChanges.end()) {
3888 unsigned BasePos, OffsetPos;
3889 // Update the base register and adjust the offset.
3890 if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) {
3891 MachineInstr *NewMI = MF.CloneMachineInstr(MI);
3892 NewMI->getOperand(BasePos).setReg(NewBaseReg);
3893 int64_t NewOffset =
3894 MI->getOperand(OffsetPos).getImm() - It->second.second;
3895 NewMI->getOperand(OffsetPos).setImm(NewOffset);
3896 SU->setInstr(NewMI);
3897 MISUnitMap[NewMI] = SU;
3898 NewMIs.insert(NewMI);
3899 }
3900 }
3901 OverlapReg = 0;
3902 NewBaseReg = 0;
3903 break;
3904 }
3905 // Look for an instruction of the form p' = op(p), which uses and defines
3906 // two virtual registers that get allocated to the same physical register.
3907 unsigned TiedUseIdx = 0;
3908 if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) {
3909 // OverlapReg is p in the example above.
3910 OverlapReg = MI->getOperand(TiedUseIdx).getReg();
3911 // NewBaseReg is p' in the example above.
3912 NewBaseReg = MI->getOperand(i).getReg();
3913 break;
3914 }
3915 }
3916 }
3917}
3918
3919/// After the schedule has been formed, call this function to combine
3920/// the instructions from the different stages/cycles. That is, this
3921/// function creates a schedule that represents a single iteration.
3922void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
3923 // Move all instructions to the first stage from later stages.
3924 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
3925 for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
3926 ++stage) {
3927 std::deque<SUnit *> &cycleInstrs =
3928 ScheduledInstrs[cycle + (stage * InitiationInterval)];
3929 for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(),
3930 E = cycleInstrs.rend();
3931 I != E; ++I)
3932 ScheduledInstrs[cycle].push_front(*I);
3933 }
3934 }
3935 // Iterate over the definitions in each instruction, and compute the
3936 // stage difference for each use. Keep the maximum value.
3937 for (auto &I : InstrToCycle) {
3938 int DefStage = stageScheduled(I.first);
3939 MachineInstr *MI = I.first->getInstr();
3940 for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
3941 MachineOperand &Op = MI->getOperand(i);
3942 if (!Op.isReg() || !Op.isDef())
3943 continue;
3944
3945 unsigned Reg = Op.getReg();
3946 unsigned MaxDiff = 0;
3947 bool PhiIsSwapped = false;
3948 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(Reg),
3949 EI = MRI.use_end();
3950 UI != EI; ++UI) {
3951 MachineOperand &UseOp = *UI;
3952 MachineInstr *UseMI = UseOp.getParent();
3953 SUnit *SUnitUse = SSD->getSUnit(UseMI);
3954 int UseStage = stageScheduled(SUnitUse);
3955 unsigned Diff = 0;
3956 if (UseStage != -1 && UseStage >= DefStage)
3957 Diff = UseStage - DefStage;
3958 if (MI->isPHI()) {
3959 if (isLoopCarried(SSD, *MI))
3960 ++Diff;
3961 else
3962 PhiIsSwapped = true;
3963 }
3964 MaxDiff = std::max(Diff, MaxDiff);
3965 }
3966 RegToStageDiff[Reg] = std::make_pair(MaxDiff, PhiIsSwapped);
3967 }
3968 }
3969
3970 // Erase all the elements in the later stages. Only one iteration should
3971 // remain in the scheduled list, and it contains all the instructions.
3972 for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
3973 ScheduledInstrs.erase(cycle);
3974
3975 // Change the registers in instruction as specified in the InstrChanges
3976 // map. We need to use the new registers to create the correct order.
3977 for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) {
3978 SUnit *SU = &SSD->SUnits[i];
3979 SSD->applyInstrChange(SU->getInstr(), *this);
3980 }
3981
3982 // Reorder the instructions in each cycle to fix and improve the
3983 // generated code.
3984 for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
3985 std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
3986 std::deque<SUnit *> newOrderZC;
3987 // Put the zero-cost, pseudo instructions at the start of the cycle.
3988 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
3989 SUnit *SU = cycleInstrs[i];
3990 if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()))
3991 orderDependence(SSD, SU, newOrderZC);
3992 }
3993 std::deque<SUnit *> newOrderI;
3994 // Then, add the regular instructions back.
3995 for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
3996 SUnit *SU = cycleInstrs[i];
3997 if (!ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()))
3998 orderDependence(SSD, SU, newOrderI);
3999 }
4000 // Replace the old order with the new order.
4001 cycleInstrs.swap(newOrderZC);
4002 cycleInstrs.insert(cycleInstrs.end(), newOrderI.begin(), newOrderI.end());
4003 SSD->fixupRegisterOverlaps(cycleInstrs);
4004 }
4005
4006 DEBUG(dump();)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("pipeliner")) { dump();; } } while (false)
;
4007}
4008
4009#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
4010/// Print the schedule information to the given output.
4011void SMSchedule::print(raw_ostream &os) const {
4012 // Iterate over each cycle.
4013 for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
4014 // Iterate over each instruction in the cycle.
4015 const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
4016 for (SUnit *CI : cycleInstrs->second) {
4017 os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
4018 os << "(" << CI->NodeNum << ") ";
4019 CI->getInstr()->print(os);
4020 os << "\n";
4021 }
4022 }
4023}
4024
4025/// Utility function used for debugging to print the schedule.
4026LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__)) void SMSchedule::dump() const { print(dbgs()); }
4027#endif