Bug Summary

File:lib/Analysis/MemoryDependenceAnalysis.cpp
Location:line 1148, column 9
Description:Value stored to 'NumSortedEntries' is never read

Annotated Source Code

1//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements an analysis that determines, for a given memory
11// operation, what preceding memory operations it depends on. It builds on
12// alias analysis information, and tries to provide a lazy, caching interface to
13// a common kind of alias information query.
14//
15//===----------------------------------------------------------------------===//
16
17#include "llvm/Analysis/MemoryDependenceAnalysis.h"
18#include "llvm/ADT/STLExtras.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/AssumptionTracker.h"
22#include "llvm/Analysis/InstructionSimplify.h"
23#include "llvm/Analysis/MemoryBuiltins.h"
24#include "llvm/Analysis/PHITransAddr.h"
25#include "llvm/Analysis/ValueTracking.h"
26#include "llvm/IR/DataLayout.h"
27#include "llvm/IR/Dominators.h"
28#include "llvm/IR/Function.h"
29#include "llvm/IR/Instructions.h"
30#include "llvm/IR/IntrinsicInst.h"
31#include "llvm/IR/LLVMContext.h"
32#include "llvm/IR/PredIteratorCache.h"
33#include "llvm/Support/Debug.h"
34using namespace llvm;
35
36#define DEBUG_TYPE"memdep" "memdep"
37
38STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses")static llvm::Statistic NumCacheNonLocal = { "memdep", "Number of fully cached non-local responses"
, 0, 0 }
;
39STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses")static llvm::Statistic NumCacheDirtyNonLocal = { "memdep", "Number of dirty cached non-local responses"
, 0, 0 }
;
40STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses")static llvm::Statistic NumUncacheNonLocal = { "memdep", "Number of uncached non-local responses"
, 0, 0 }
;
41
42STATISTIC(NumCacheNonLocalPtr,static llvm::Statistic NumCacheNonLocalPtr = { "memdep", "Number of fully cached non-local ptr responses"
, 0, 0 }
43 "Number of fully cached non-local ptr responses")static llvm::Statistic NumCacheNonLocalPtr = { "memdep", "Number of fully cached non-local ptr responses"
, 0, 0 }
;
44STATISTIC(NumCacheDirtyNonLocalPtr,static llvm::Statistic NumCacheDirtyNonLocalPtr = { "memdep",
"Number of cached, but dirty, non-local ptr responses", 0, 0
}
45 "Number of cached, but dirty, non-local ptr responses")static llvm::Statistic NumCacheDirtyNonLocalPtr = { "memdep",
"Number of cached, but dirty, non-local ptr responses", 0, 0
}
;
46STATISTIC(NumUncacheNonLocalPtr,static llvm::Statistic NumUncacheNonLocalPtr = { "memdep", "Number of uncached non-local ptr responses"
, 0, 0 }
47 "Number of uncached non-local ptr responses")static llvm::Statistic NumUncacheNonLocalPtr = { "memdep", "Number of uncached non-local ptr responses"
, 0, 0 }
;
48STATISTIC(NumCacheCompleteNonLocalPtr,static llvm::Statistic NumCacheCompleteNonLocalPtr = { "memdep"
, "Number of block queries that were completely cached", 0, 0
}
49 "Number of block queries that were completely cached")static llvm::Statistic NumCacheCompleteNonLocalPtr = { "memdep"
, "Number of block queries that were completely cached", 0, 0
}
;
50
51// Limit for the number of instructions to scan in a block.
52static const unsigned int BlockScanLimit = 100;
53
54// Limit on the number of memdep results to process.
55static const unsigned int NumResultsLimit = 100;
56
57char MemoryDependenceAnalysis::ID = 0;
58
59// Register this pass...
60INITIALIZE_PASS_BEGIN(MemoryDependenceAnalysis, "memdep",static void* initializeMemoryDependenceAnalysisPassOnce(PassRegistry
&Registry) {
61 "Memory Dependence Analysis", false, true)static void* initializeMemoryDependenceAnalysisPassOnce(PassRegistry
&Registry) {
62INITIALIZE_PASS_DEPENDENCY(AssumptionTracker)initializeAssumptionTrackerPass(Registry);
63INITIALIZE_AG_DEPENDENCY(AliasAnalysis)initializeAliasAnalysisAnalysisGroup(Registry);
64INITIALIZE_PASS_END(MemoryDependenceAnalysis, "memdep",PassInfo *PI = new PassInfo("Memory Dependence Analysis", "memdep"
, & MemoryDependenceAnalysis ::ID, PassInfo::NormalCtor_t
(callDefaultCtor< MemoryDependenceAnalysis >), false, true
); Registry.registerPass(*PI, true); return PI; } void llvm::
initializeMemoryDependenceAnalysisPass(PassRegistry &Registry
) { static volatile sys::cas_flag initialized = 0; sys::cas_flag
old_val = sys::CompareAndSwap(&initialized, 1, 0); if (old_val
== 0) { initializeMemoryDependenceAnalysisPassOnce(Registry)
; sys::MemoryFence(); AnnotateIgnoreWritesBegin("/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 65); AnnotateHappensBefore("/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 65, &initialized); initialized = 2; AnnotateIgnoreWritesEnd
("/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 65); } else { sys::cas_flag tmp = initialized; sys::MemoryFence
(); while (tmp != 2) { tmp = initialized; sys::MemoryFence();
} } AnnotateHappensAfter("/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 65, &initialized); }
65 "Memory Dependence Analysis", false, true)PassInfo *PI = new PassInfo("Memory Dependence Analysis", "memdep"
, & MemoryDependenceAnalysis ::ID, PassInfo::NormalCtor_t
(callDefaultCtor< MemoryDependenceAnalysis >), false, true
); Registry.registerPass(*PI, true); return PI; } void llvm::
initializeMemoryDependenceAnalysisPass(PassRegistry &Registry
) { static volatile sys::cas_flag initialized = 0; sys::cas_flag
old_val = sys::CompareAndSwap(&initialized, 1, 0); if (old_val
== 0) { initializeMemoryDependenceAnalysisPassOnce(Registry)
; sys::MemoryFence(); AnnotateIgnoreWritesBegin("/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 65); AnnotateHappensBefore("/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 65, &initialized); initialized = 2; AnnotateIgnoreWritesEnd
("/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 65); } else { sys::cas_flag tmp = initialized; sys::MemoryFence
(); while (tmp != 2) { tmp = initialized; sys::MemoryFence();
} } AnnotateHappensAfter("/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 65, &initialized); }
66
67MemoryDependenceAnalysis::MemoryDependenceAnalysis()
68 : FunctionPass(ID), PredCache() {
69 initializeMemoryDependenceAnalysisPass(*PassRegistry::getPassRegistry());
70}
71MemoryDependenceAnalysis::~MemoryDependenceAnalysis() {
72}
73
74/// Clean up memory in between runs
75void MemoryDependenceAnalysis::releaseMemory() {
76 LocalDeps.clear();
77 NonLocalDeps.clear();
78 NonLocalPointerDeps.clear();
79 ReverseLocalDeps.clear();
80 ReverseNonLocalDeps.clear();
81 ReverseNonLocalPtrDeps.clear();
82 PredCache->clear();
83}
84
85
86
87/// getAnalysisUsage - Does not modify anything. It uses Alias Analysis.
88///
89void MemoryDependenceAnalysis::getAnalysisUsage(AnalysisUsage &AU) const {
90 AU.setPreservesAll();
91 AU.addRequired<AssumptionTracker>();
92 AU.addRequiredTransitive<AliasAnalysis>();
93}
94
95bool MemoryDependenceAnalysis::runOnFunction(Function &) {
96 AA = &getAnalysis<AliasAnalysis>();
97 AT = &getAnalysis<AssumptionTracker>();
98 DataLayoutPass *DLP = getAnalysisIfAvailable<DataLayoutPass>();
99 DL = DLP ? &DLP->getDataLayout() : nullptr;
100 DominatorTreeWrapperPass *DTWP =
101 getAnalysisIfAvailable<DominatorTreeWrapperPass>();
102 DT = DTWP ? &DTWP->getDomTree() : nullptr;
103 if (!PredCache)
104 PredCache.reset(new PredIteratorCache());
105 return false;
106}
107
108/// RemoveFromReverseMap - This is a helper function that removes Val from
109/// 'Inst's set in ReverseMap. If the set becomes empty, remove Inst's entry.
110template <typename KeyTy>
111static void RemoveFromReverseMap(DenseMap<Instruction*,
112 SmallPtrSet<KeyTy, 4> > &ReverseMap,
113 Instruction *Inst, KeyTy Val) {
114 typename DenseMap<Instruction*, SmallPtrSet<KeyTy, 4> >::iterator
115 InstIt = ReverseMap.find(Inst);
116 assert(InstIt != ReverseMap.end() && "Reverse map out of sync?")((InstIt != ReverseMap.end() && "Reverse map out of sync?"
) ? static_cast<void> (0) : __assert_fail ("InstIt != ReverseMap.end() && \"Reverse map out of sync?\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 116, __PRETTY_FUNCTION__))
;
117 bool Found = InstIt->second.erase(Val);
118 assert(Found && "Invalid reverse map!")((Found && "Invalid reverse map!") ? static_cast<void
> (0) : __assert_fail ("Found && \"Invalid reverse map!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 118, __PRETTY_FUNCTION__))
; (void)Found;
119 if (InstIt->second.empty())
120 ReverseMap.erase(InstIt);
121}
122
123/// GetLocation - If the given instruction references a specific memory
124/// location, fill in Loc with the details, otherwise set Loc.Ptr to null.
125/// Return a ModRefInfo value describing the general behavior of the
126/// instruction.
127static
128AliasAnalysis::ModRefResult GetLocation(const Instruction *Inst,
129 AliasAnalysis::Location &Loc,
130 AliasAnalysis *AA) {
131 if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
132 if (LI->isUnordered()) {
133 Loc = AA->getLocation(LI);
134 return AliasAnalysis::Ref;
135 }
136 if (LI->getOrdering() == Monotonic) {
137 Loc = AA->getLocation(LI);
138 return AliasAnalysis::ModRef;
139 }
140 Loc = AliasAnalysis::Location();
141 return AliasAnalysis::ModRef;
142 }
143
144 if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
145 if (SI->isUnordered()) {
146 Loc = AA->getLocation(SI);
147 return AliasAnalysis::Mod;
148 }
149 if (SI->getOrdering() == Monotonic) {
150 Loc = AA->getLocation(SI);
151 return AliasAnalysis::ModRef;
152 }
153 Loc = AliasAnalysis::Location();
154 return AliasAnalysis::ModRef;
155 }
156
157 if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
158 Loc = AA->getLocation(V);
159 return AliasAnalysis::ModRef;
160 }
161
162 if (const CallInst *CI = isFreeCall(Inst, AA->getTargetLibraryInfo())) {
163 // calls to free() deallocate the entire structure
164 Loc = AliasAnalysis::Location(CI->getArgOperand(0));
165 return AliasAnalysis::Mod;
166 }
167
168 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
169 AAMDNodes AAInfo;
170
171 switch (II->getIntrinsicID()) {
172 case Intrinsic::lifetime_start:
173 case Intrinsic::lifetime_end:
174 case Intrinsic::invariant_start:
175 II->getAAMetadata(AAInfo);
176 Loc = AliasAnalysis::Location(II->getArgOperand(1),
177 cast<ConstantInt>(II->getArgOperand(0))
178 ->getZExtValue(), AAInfo);
179 // These intrinsics don't really modify the memory, but returning Mod
180 // will allow them to be handled conservatively.
181 return AliasAnalysis::Mod;
182 case Intrinsic::invariant_end:
183 II->getAAMetadata(AAInfo);
184 Loc = AliasAnalysis::Location(II->getArgOperand(2),
185 cast<ConstantInt>(II->getArgOperand(1))
186 ->getZExtValue(), AAInfo);
187 // These intrinsics don't really modify the memory, but returning Mod
188 // will allow them to be handled conservatively.
189 return AliasAnalysis::Mod;
190 default:
191 break;
192 }
193 }
194
195 // Otherwise, just do the coarse-grained thing that always works.
196 if (Inst->mayWriteToMemory())
197 return AliasAnalysis::ModRef;
198 if (Inst->mayReadFromMemory())
199 return AliasAnalysis::Ref;
200 return AliasAnalysis::NoModRef;
201}
202
203/// getCallSiteDependencyFrom - Private helper for finding the local
204/// dependencies of a call site.
205MemDepResult MemoryDependenceAnalysis::
206getCallSiteDependencyFrom(CallSite CS, bool isReadOnlyCall,
207 BasicBlock::iterator ScanIt, BasicBlock *BB) {
208 unsigned Limit = BlockScanLimit;
209
210 // Walk backwards through the block, looking for dependencies
211 while (ScanIt != BB->begin()) {
212 // Limit the amount of scanning we do so we don't end up with quadratic
213 // running time on extreme testcases.
214 --Limit;
215 if (!Limit)
216 return MemDepResult::getUnknown();
217
218 Instruction *Inst = --ScanIt;
219
220 // If this inst is a memory op, get the pointer it accessed
221 AliasAnalysis::Location Loc;
222 AliasAnalysis::ModRefResult MR = GetLocation(Inst, Loc, AA);
223 if (Loc.Ptr) {
224 // A simple instruction.
225 if (AA->getModRefInfo(CS, Loc) != AliasAnalysis::NoModRef)
226 return MemDepResult::getClobber(Inst);
227 continue;
228 }
229
230 if (CallSite InstCS = cast<Value>(Inst)) {
231 // Debug intrinsics don't cause dependences.
232 if (isa<DbgInfoIntrinsic>(Inst)) continue;
233 // If these two calls do not interfere, look past it.
234 switch (AA->getModRefInfo(CS, InstCS)) {
235 case AliasAnalysis::NoModRef:
236 // If the two calls are the same, return InstCS as a Def, so that
237 // CS can be found redundant and eliminated.
238 if (isReadOnlyCall && !(MR & AliasAnalysis::Mod) &&
239 CS.getInstruction()->isIdenticalToWhenDefined(Inst))
240 return MemDepResult::getDef(Inst);
241
242 // Otherwise if the two calls don't interact (e.g. InstCS is readnone)
243 // keep scanning.
244 continue;
245 default:
246 return MemDepResult::getClobber(Inst);
247 }
248 }
249
250 // If we could not obtain a pointer for the instruction and the instruction
251 // touches memory then assume that this is a dependency.
252 if (MR != AliasAnalysis::NoModRef)
253 return MemDepResult::getClobber(Inst);
254 }
255
256 // No dependence found. If this is the entry block of the function, it is
257 // unknown, otherwise it is non-local.
258 if (BB != &BB->getParent()->getEntryBlock())
259 return MemDepResult::getNonLocal();
260 return MemDepResult::getNonFuncLocal();
261}
262
263/// isLoadLoadClobberIfExtendedToFullWidth - Return true if LI is a load that
264/// would fully overlap MemLoc if done as a wider legal integer load.
265///
266/// MemLocBase, MemLocOffset are lazily computed here the first time the
267/// base/offs of memloc is needed.
268static bool
269isLoadLoadClobberIfExtendedToFullWidth(const AliasAnalysis::Location &MemLoc,
270 const Value *&MemLocBase,
271 int64_t &MemLocOffs,
272 const LoadInst *LI,
273 const DataLayout *DL) {
274 // If we have no target data, we can't do this.
275 if (!DL) return false;
276
277 // If we haven't already computed the base/offset of MemLoc, do so now.
278 if (!MemLocBase)
279 MemLocBase = GetPointerBaseWithConstantOffset(MemLoc.Ptr, MemLocOffs, DL);
280
281 unsigned Size = MemoryDependenceAnalysis::
282 getLoadLoadClobberFullWidthSize(MemLocBase, MemLocOffs, MemLoc.Size,
283 LI, *DL);
284 return Size != 0;
285}
286
287/// getLoadLoadClobberFullWidthSize - This is a little bit of analysis that
288/// looks at a memory location for a load (specified by MemLocBase, Offs,
289/// and Size) and compares it against a load. If the specified load could
290/// be safely widened to a larger integer load that is 1) still efficient,
291/// 2) safe for the target, and 3) would provide the specified memory
292/// location value, then this function returns the size in bytes of the
293/// load width to use. If not, this returns zero.
294unsigned MemoryDependenceAnalysis::
295getLoadLoadClobberFullWidthSize(const Value *MemLocBase, int64_t MemLocOffs,
296 unsigned MemLocSize, const LoadInst *LI,
297 const DataLayout &DL) {
298 // We can only extend simple integer loads.
299 if (!isa<IntegerType>(LI->getType()) || !LI->isSimple()) return 0;
300
301 // Load widening is hostile to ThreadSanitizer: it may cause false positives
302 // or make the reports more cryptic (access sizes are wrong).
303 if (LI->getParent()->getParent()->getAttributes().
304 hasAttribute(AttributeSet::FunctionIndex, Attribute::SanitizeThread))
305 return 0;
306
307 // Get the base of this load.
308 int64_t LIOffs = 0;
309 const Value *LIBase =
310 GetPointerBaseWithConstantOffset(LI->getPointerOperand(), LIOffs, &DL);
311
312 // If the two pointers are not based on the same pointer, we can't tell that
313 // they are related.
314 if (LIBase != MemLocBase) return 0;
315
316 // Okay, the two values are based on the same pointer, but returned as
317 // no-alias. This happens when we have things like two byte loads at "P+1"
318 // and "P+3". Check to see if increasing the size of the "LI" load up to its
319 // alignment (or the largest native integer type) will allow us to load all
320 // the bits required by MemLoc.
321
322 // If MemLoc is before LI, then no widening of LI will help us out.
323 if (MemLocOffs < LIOffs) return 0;
324
325 // Get the alignment of the load in bytes. We assume that it is safe to load
326 // any legal integer up to this size without a problem. For example, if we're
327 // looking at an i8 load on x86-32 that is known 1024 byte aligned, we can
328 // widen it up to an i32 load. If it is known 2-byte aligned, we can widen it
329 // to i16.
330 unsigned LoadAlign = LI->getAlignment();
331
332 int64_t MemLocEnd = MemLocOffs+MemLocSize;
333
334 // If no amount of rounding up will let MemLoc fit into LI, then bail out.
335 if (LIOffs+LoadAlign < MemLocEnd) return 0;
336
337 // This is the size of the load to try. Start with the next larger power of
338 // two.
339 unsigned NewLoadByteSize = LI->getType()->getPrimitiveSizeInBits()/8U;
340 NewLoadByteSize = NextPowerOf2(NewLoadByteSize);
341
342 while (1) {
343 // If this load size is bigger than our known alignment or would not fit
344 // into a native integer register, then we fail.
345 if (NewLoadByteSize > LoadAlign ||
346 !DL.fitsInLegalInteger(NewLoadByteSize*8))
347 return 0;
348
349 if (LIOffs+NewLoadByteSize > MemLocEnd &&
350 LI->getParent()->getParent()->getAttributes().
351 hasAttribute(AttributeSet::FunctionIndex, Attribute::SanitizeAddress))
352 // We will be reading past the location accessed by the original program.
353 // While this is safe in a regular build, Address Safety analysis tools
354 // may start reporting false warnings. So, don't do widening.
355 return 0;
356
357 // If a load of this width would include all of MemLoc, then we succeed.
358 if (LIOffs+NewLoadByteSize >= MemLocEnd)
359 return NewLoadByteSize;
360
361 NewLoadByteSize <<= 1;
362 }
363}
364
365/// getPointerDependencyFrom - Return the instruction on which a memory
366/// location depends. If isLoad is true, this routine ignores may-aliases with
367/// read-only operations. If isLoad is false, this routine ignores may-aliases
368/// with reads from read-only locations. If possible, pass the query
369/// instruction as well; this function may take advantage of the metadata
370/// annotated to the query instruction to refine the result.
371MemDepResult MemoryDependenceAnalysis::
372getPointerDependencyFrom(const AliasAnalysis::Location &MemLoc, bool isLoad,
373 BasicBlock::iterator ScanIt, BasicBlock *BB,
374 Instruction *QueryInst) {
375
376 const Value *MemLocBase = nullptr;
377 int64_t MemLocOffset = 0;
378 unsigned Limit = BlockScanLimit;
379 bool isInvariantLoad = false;
380
381 // We must be careful with atomic accesses, as they may allow another thread
382 // to touch this location, cloberring it. We are conservative: if the
383 // QueryInst is not a simple (non-atomic) memory access, we automatically
384 // return getClobber.
385 // If it is simple, we know based on the results of
386 // "Compiler testing via a theory of sound optimisations in the C11/C++11
387 // memory model" in PLDI 2013, that a non-atomic location can only be
388 // clobbered between a pair of a release and an acquire action, with no
389 // access to the location in between.
390 // Here is an example for giving the general intuition behind this rule.
391 // In the following code:
392 // store x 0;
393 // release action; [1]
394 // acquire action; [4]
395 // %val = load x;
396 // It is unsafe to replace %val by 0 because another thread may be running:
397 // acquire action; [2]
398 // store x 42;
399 // release action; [3]
400 // with synchronization from 1 to 2 and from 3 to 4, resulting in %val
401 // being 42. A key property of this program however is that if either
402 // 1 or 4 were missing, there would be a race between the store of 42
403 // either the store of 0 or the load (making the whole progam racy).
404 // The paper mentionned above shows that the same property is respected
405 // by every program that can detect any optimisation of that kind: either
406 // it is racy (undefined) or there is a release followed by an acquire
407 // between the pair of accesses under consideration.
408 bool HasSeenAcquire = false;
409
410 if (isLoad && QueryInst) {
411 LoadInst *LI = dyn_cast<LoadInst>(QueryInst);
412 if (LI && LI->getMetadata(LLVMContext::MD_invariant_load) != nullptr)
413 isInvariantLoad = true;
414 }
415
416 // Walk backwards through the basic block, looking for dependencies.
417 while (ScanIt != BB->begin()) {
418 Instruction *Inst = --ScanIt;
419
420 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
421 // Debug intrinsics don't (and can't) cause dependencies.
422 if (isa<DbgInfoIntrinsic>(II)) continue;
423
424 // Limit the amount of scanning we do so we don't end up with quadratic
425 // running time on extreme testcases.
426 --Limit;
427 if (!Limit)
428 return MemDepResult::getUnknown();
429
430 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
431 // If we reach a lifetime begin or end marker, then the query ends here
432 // because the value is undefined.
433 if (II->getIntrinsicID() == Intrinsic::lifetime_start) {
434 // FIXME: This only considers queries directly on the invariant-tagged
435 // pointer, not on query pointers that are indexed off of them. It'd
436 // be nice to handle that at some point (the right approach is to use
437 // GetPointerBaseWithConstantOffset).
438 if (AA->isMustAlias(AliasAnalysis::Location(II->getArgOperand(1)),
439 MemLoc))
440 return MemDepResult::getDef(II);
441 continue;
442 }
443 }
444
445 // Values depend on loads if the pointers are must aliased. This means that
446 // a load depends on another must aliased load from the same value.
447 // One exception is atomic loads: a value can depend on an atomic load that it
448 // does not alias with when this atomic load indicates that another thread may
449 // be accessing the location.
450 if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
451 // Atomic loads have complications involved.
452 // A Monotonic (or higher) load is OK if the query inst is itself not atomic.
453 // An Acquire (or higher) load sets the HasSeenAcquire flag, so that any
454 // release store will know to return getClobber.
455 // FIXME: This is overly conservative.
456 if (!LI->isUnordered()) {
457 if (!QueryInst)
458 return MemDepResult::getClobber(LI);
459 if (auto *QueryLI = dyn_cast<LoadInst>(QueryInst)) {
460 if (!QueryLI->isSimple())
461 return MemDepResult::getClobber(LI);
462 } else if (auto *QuerySI = dyn_cast<StoreInst>(QueryInst)) {
463 if (!QuerySI->isSimple())
464 return MemDepResult::getClobber(LI);
465 } else if (QueryInst->mayReadOrWriteMemory()) {
466 return MemDepResult::getClobber(LI);
467 }
468
469 if (isAtLeastAcquire(LI->getOrdering()))
470 HasSeenAcquire = true;
471 }
472
473 // FIXME: this is overly conservative.
474 // While volatile access cannot be eliminated, they do not have to clobber
475 // non-aliasing locations, as normal accesses can for example be reordered
476 // with volatile accesses.
477 if (LI->isVolatile())
478 return MemDepResult::getClobber(LI);
479
480 AliasAnalysis::Location LoadLoc = AA->getLocation(LI);
481
482 // If we found a pointer, check if it could be the same as our pointer.
483 AliasAnalysis::AliasResult R = AA->alias(LoadLoc, MemLoc);
484
485 if (isLoad) {
486 if (R == AliasAnalysis::NoAlias) {
487 // If this is an over-aligned integer load (for example,
488 // "load i8* %P, align 4") see if it would obviously overlap with the
489 // queried location if widened to a larger load (e.g. if the queried
490 // location is 1 byte at P+1). If so, return it as a load/load
491 // clobber result, allowing the client to decide to widen the load if
492 // it wants to.
493 if (IntegerType *ITy = dyn_cast<IntegerType>(LI->getType()))
494 if (LI->getAlignment()*8 > ITy->getPrimitiveSizeInBits() &&
495 isLoadLoadClobberIfExtendedToFullWidth(MemLoc, MemLocBase,
496 MemLocOffset, LI, DL))
497 return MemDepResult::getClobber(Inst);
498
499 continue;
500 }
501
502 // Must aliased loads are defs of each other.
503 if (R == AliasAnalysis::MustAlias)
504 return MemDepResult::getDef(Inst);
505
506#if 0 // FIXME: Temporarily disabled. GVN is cleverly rewriting loads
507 // in terms of clobbering loads, but since it does this by looking
508 // at the clobbering load directly, it doesn't know about any
509 // phi translation that may have happened along the way.
510
511 // If we have a partial alias, then return this as a clobber for the
512 // client to handle.
513 if (R == AliasAnalysis::PartialAlias)
514 return MemDepResult::getClobber(Inst);
515#endif
516
517 // Random may-alias loads don't depend on each other without a
518 // dependence.
519 continue;
520 }
521
522 // Stores don't depend on other no-aliased accesses.
523 if (R == AliasAnalysis::NoAlias)
524 continue;
525
526 // Stores don't alias loads from read-only memory.
527 if (AA->pointsToConstantMemory(LoadLoc))
528 continue;
529
530 // Stores depend on may/must aliased loads.
531 return MemDepResult::getDef(Inst);
532 }
533
534 if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
535 // Atomic stores have complications involved.
536 // A Monotonic store is OK if the query inst is itself not atomic.
537 // A Release (or higher) store further requires that no acquire load
538 // has been seen.
539 // FIXME: This is overly conservative.
540 if (!SI->isUnordered()) {
541 if (!QueryInst)
542 return MemDepResult::getClobber(SI);
543 if (auto *QueryLI = dyn_cast<LoadInst>(QueryInst)) {
544 if (!QueryLI->isSimple())
545 return MemDepResult::getClobber(SI);
546 } else if (auto *QuerySI = dyn_cast<StoreInst>(QueryInst)) {
547 if (!QuerySI->isSimple())
548 return MemDepResult::getClobber(SI);
549 } else if (QueryInst->mayReadOrWriteMemory()) {
550 return MemDepResult::getClobber(SI);
551 }
552
553 if (HasSeenAcquire && isAtLeastRelease(SI->getOrdering()))
554 return MemDepResult::getClobber(SI);
555 }
556
557 // FIXME: this is overly conservative.
558 // While volatile access cannot be eliminated, they do not have to clobber
559 // non-aliasing locations, as normal accesses can for example be reordered
560 // with volatile accesses.
561 if (SI->isVolatile())
562 return MemDepResult::getClobber(SI);
563
564 // If alias analysis can tell that this store is guaranteed to not modify
565 // the query pointer, ignore it. Use getModRefInfo to handle cases where
566 // the query pointer points to constant memory etc.
567 if (AA->getModRefInfo(SI, MemLoc) == AliasAnalysis::NoModRef)
568 continue;
569
570 // Ok, this store might clobber the query pointer. Check to see if it is
571 // a must alias: in this case, we want to return this as a def.
572 AliasAnalysis::Location StoreLoc = AA->getLocation(SI);
573
574 // If we found a pointer, check if it could be the same as our pointer.
575 AliasAnalysis::AliasResult R = AA->alias(StoreLoc, MemLoc);
576
577 if (R == AliasAnalysis::NoAlias)
578 continue;
579 if (R == AliasAnalysis::MustAlias)
580 return MemDepResult::getDef(Inst);
581 if (isInvariantLoad)
582 continue;
583 return MemDepResult::getClobber(Inst);
584 }
585
586 // If this is an allocation, and if we know that the accessed pointer is to
587 // the allocation, return Def. This means that there is no dependence and
588 // the access can be optimized based on that. For example, a load could
589 // turn into undef.
590 // Note: Only determine this to be a malloc if Inst is the malloc call, not
591 // a subsequent bitcast of the malloc call result. There can be stores to
592 // the malloced memory between the malloc call and its bitcast uses, and we
593 // need to continue scanning until the malloc call.
594 const TargetLibraryInfo *TLI = AA->getTargetLibraryInfo();
595 if (isa<AllocaInst>(Inst) || isNoAliasFn(Inst, TLI)) {
596 const Value *AccessPtr = GetUnderlyingObject(MemLoc.Ptr, DL);
597
598 if (AccessPtr == Inst || AA->isMustAlias(Inst, AccessPtr))
599 return MemDepResult::getDef(Inst);
600 // Be conservative if the accessed pointer may alias the allocation.
601 if (AA->alias(Inst, AccessPtr) != AliasAnalysis::NoAlias)
602 return MemDepResult::getClobber(Inst);
603 // If the allocation is not aliased and does not read memory (like
604 // strdup), it is safe to ignore.
605 if (isa<AllocaInst>(Inst) ||
606 isMallocLikeFn(Inst, TLI) || isCallocLikeFn(Inst, TLI))
607 continue;
608 }
609
610 // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
611 AliasAnalysis::ModRefResult MR = AA->getModRefInfo(Inst, MemLoc);
612 // If necessary, perform additional analysis.
613 if (MR == AliasAnalysis::ModRef)
614 MR = AA->callCapturesBefore(Inst, MemLoc, DT);
615 switch (MR) {
616 case AliasAnalysis::NoModRef:
617 // If the call has no effect on the queried pointer, just ignore it.
618 continue;
619 case AliasAnalysis::Mod:
620 return MemDepResult::getClobber(Inst);
621 case AliasAnalysis::Ref:
622 // If the call is known to never store to the pointer, and if this is a
623 // load query, we can safely ignore it (scan past it).
624 if (isLoad)
625 continue;
626 default:
627 // Otherwise, there is a potential dependence. Return a clobber.
628 return MemDepResult::getClobber(Inst);
629 }
630 }
631
632 // No dependence found. If this is the entry block of the function, it is
633 // unknown, otherwise it is non-local.
634 if (BB != &BB->getParent()->getEntryBlock())
635 return MemDepResult::getNonLocal();
636 return MemDepResult::getNonFuncLocal();
637}
638
639/// getDependency - Return the instruction on which a memory operation
640/// depends.
641MemDepResult MemoryDependenceAnalysis::getDependency(Instruction *QueryInst) {
642 Instruction *ScanPos = QueryInst;
643
644 // Check for a cached result
645 MemDepResult &LocalCache = LocalDeps[QueryInst];
646
647 // If the cached entry is non-dirty, just return it. Note that this depends
648 // on MemDepResult's default constructing to 'dirty'.
649 if (!LocalCache.isDirty())
650 return LocalCache;
651
652 // Otherwise, if we have a dirty entry, we know we can start the scan at that
653 // instruction, which may save us some work.
654 if (Instruction *Inst = LocalCache.getInst()) {
655 ScanPos = Inst;
656
657 RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
658 }
659
660 BasicBlock *QueryParent = QueryInst->getParent();
661
662 // Do the scan.
663 if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
664 // No dependence found. If this is the entry block of the function, it is
665 // unknown, otherwise it is non-local.
666 if (QueryParent != &QueryParent->getParent()->getEntryBlock())
667 LocalCache = MemDepResult::getNonLocal();
668 else
669 LocalCache = MemDepResult::getNonFuncLocal();
670 } else {
671 AliasAnalysis::Location MemLoc;
672 AliasAnalysis::ModRefResult MR = GetLocation(QueryInst, MemLoc, AA);
673 if (MemLoc.Ptr) {
674 // If we can do a pointer scan, make it happen.
675 bool isLoad = !(MR & AliasAnalysis::Mod);
676 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(QueryInst))
677 isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
678
679 LocalCache = getPointerDependencyFrom(MemLoc, isLoad, ScanPos,
680 QueryParent, QueryInst);
681 } else if (isa<CallInst>(QueryInst) || isa<InvokeInst>(QueryInst)) {
682 CallSite QueryCS(QueryInst);
683 bool isReadOnly = AA->onlyReadsMemory(QueryCS);
684 LocalCache = getCallSiteDependencyFrom(QueryCS, isReadOnly, ScanPos,
685 QueryParent);
686 } else
687 // Non-memory instruction.
688 LocalCache = MemDepResult::getUnknown();
689 }
690
691 // Remember the result!
692 if (Instruction *I = LocalCache.getInst())
693 ReverseLocalDeps[I].insert(QueryInst);
694
695 return LocalCache;
696}
697
698#ifndef NDEBUG
699/// AssertSorted - This method is used when -debug is specified to verify that
700/// cache arrays are properly kept sorted.
701static void AssertSorted(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
702 int Count = -1) {
703 if (Count == -1) Count = Cache.size();
704 if (Count == 0) return;
705
706 for (unsigned i = 1; i != unsigned(Count); ++i)
707 assert(!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!")((!(Cache[i] < Cache[i-1]) && "Cache isn't sorted!"
) ? static_cast<void> (0) : __assert_fail ("!(Cache[i] < Cache[i-1]) && \"Cache isn't sorted!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 707, __PRETTY_FUNCTION__))
;
708}
709#endif
710
711/// getNonLocalCallDependency - Perform a full dependency query for the
712/// specified call, returning the set of blocks that the value is
713/// potentially live across. The returned set of results will include a
714/// "NonLocal" result for all blocks where the value is live across.
715///
716/// This method assumes the instruction returns a "NonLocal" dependency
717/// within its own block.
718///
719/// This returns a reference to an internal data structure that may be
720/// invalidated on the next non-local query or when an instruction is
721/// removed. Clients must copy this data if they want it around longer than
722/// that.
723const MemoryDependenceAnalysis::NonLocalDepInfo &
724MemoryDependenceAnalysis::getNonLocalCallDependency(CallSite QueryCS) {
725 assert(getDependency(QueryCS.getInstruction()).isNonLocal() &&((getDependency(QueryCS.getInstruction()).isNonLocal() &&
"getNonLocalCallDependency should only be used on calls with non-local deps!"
) ? static_cast<void> (0) : __assert_fail ("getDependency(QueryCS.getInstruction()).isNonLocal() && \"getNonLocalCallDependency should only be used on calls with non-local deps!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 726, __PRETTY_FUNCTION__))
726 "getNonLocalCallDependency should only be used on calls with non-local deps!")((getDependency(QueryCS.getInstruction()).isNonLocal() &&
"getNonLocalCallDependency should only be used on calls with non-local deps!"
) ? static_cast<void> (0) : __assert_fail ("getDependency(QueryCS.getInstruction()).isNonLocal() && \"getNonLocalCallDependency should only be used on calls with non-local deps!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 726, __PRETTY_FUNCTION__))
;
727 PerInstNLInfo &CacheP = NonLocalDeps[QueryCS.getInstruction()];
728 NonLocalDepInfo &Cache = CacheP.first;
729
730 /// DirtyBlocks - This is the set of blocks that need to be recomputed. In
731 /// the cached case, this can happen due to instructions being deleted etc. In
732 /// the uncached case, this starts out as the set of predecessors we care
733 /// about.
734 SmallVector<BasicBlock*, 32> DirtyBlocks;
735
736 if (!Cache.empty()) {
737 // Okay, we have a cache entry. If we know it is not dirty, just return it
738 // with no computation.
739 if (!CacheP.second) {
740 ++NumCacheNonLocal;
741 return Cache;
742 }
743
744 // If we already have a partially computed set of results, scan them to
745 // determine what is dirty, seeding our initial DirtyBlocks worklist.
746 for (NonLocalDepInfo::iterator I = Cache.begin(), E = Cache.end();
747 I != E; ++I)
748 if (I->getResult().isDirty())
749 DirtyBlocks.push_back(I->getBB());
750
751 // Sort the cache so that we can do fast binary search lookups below.
752 std::sort(Cache.begin(), Cache.end());
753
754 ++NumCacheDirtyNonLocal;
755 //cerr << "CACHED CASE: " << DirtyBlocks.size() << " dirty: "
756 // << Cache.size() << " cached: " << *QueryInst;
757 } else {
758 // Seed DirtyBlocks with each of the preds of QueryInst's block.
759 BasicBlock *QueryBB = QueryCS.getInstruction()->getParent();
760 for (BasicBlock **PI = PredCache->GetPreds(QueryBB); *PI; ++PI)
761 DirtyBlocks.push_back(*PI);
762 ++NumUncacheNonLocal;
763 }
764
765 // isReadonlyCall - If this is a read-only call, we can be more aggressive.
766 bool isReadonlyCall = AA->onlyReadsMemory(QueryCS);
767
768 SmallPtrSet<BasicBlock*, 64> Visited;
769
770 unsigned NumSortedEntries = Cache.size();
771 DEBUG(AssertSorted(Cache))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("memdep")) { AssertSorted(Cache); } } while (0)
;
772
773 // Iterate while we still have blocks to update.
774 while (!DirtyBlocks.empty()) {
775 BasicBlock *DirtyBB = DirtyBlocks.back();
776 DirtyBlocks.pop_back();
777
778 // Already processed this block?
779 if (!Visited.insert(DirtyBB).second)
780 continue;
781
782 // Do a binary search to see if we already have an entry for this block in
783 // the cache set. If so, find it.
784 DEBUG(AssertSorted(Cache, NumSortedEntries))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("memdep")) { AssertSorted(Cache, NumSortedEntries); } } while
(0)
;
785 NonLocalDepInfo::iterator Entry =
786 std::upper_bound(Cache.begin(), Cache.begin()+NumSortedEntries,
787 NonLocalDepEntry(DirtyBB));
788 if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB)
789 --Entry;
790
791 NonLocalDepEntry *ExistingResult = nullptr;
792 if (Entry != Cache.begin()+NumSortedEntries &&
793 Entry->getBB() == DirtyBB) {
794 // If we already have an entry, and if it isn't already dirty, the block
795 // is done.
796 if (!Entry->getResult().isDirty())
797 continue;
798
799 // Otherwise, remember this slot so we can update the value.
800 ExistingResult = &*Entry;
801 }
802
803 // If the dirty entry has a pointer, start scanning from it so we don't have
804 // to rescan the entire block.
805 BasicBlock::iterator ScanPos = DirtyBB->end();
806 if (ExistingResult) {
807 if (Instruction *Inst = ExistingResult->getResult().getInst()) {
808 ScanPos = Inst;
809 // We're removing QueryInst's use of Inst.
810 RemoveFromReverseMap(ReverseNonLocalDeps, Inst,
811 QueryCS.getInstruction());
812 }
813 }
814
815 // Find out if this block has a local dependency for QueryInst.
816 MemDepResult Dep;
817
818 if (ScanPos != DirtyBB->begin()) {
819 Dep = getCallSiteDependencyFrom(QueryCS, isReadonlyCall,ScanPos, DirtyBB);
820 } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
821 // No dependence found. If this is the entry block of the function, it is
822 // a clobber, otherwise it is unknown.
823 Dep = MemDepResult::getNonLocal();
824 } else {
825 Dep = MemDepResult::getNonFuncLocal();
826 }
827
828 // If we had a dirty entry for the block, update it. Otherwise, just add
829 // a new entry.
830 if (ExistingResult)
831 ExistingResult->setResult(Dep);
832 else
833 Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
834
835 // If the block has a dependency (i.e. it isn't completely transparent to
836 // the value), remember the association!
837 if (!Dep.isNonLocal()) {
838 // Keep the ReverseNonLocalDeps map up to date so we can efficiently
839 // update this when we remove instructions.
840 if (Instruction *Inst = Dep.getInst())
841 ReverseNonLocalDeps[Inst].insert(QueryCS.getInstruction());
842 } else {
843
844 // If the block *is* completely transparent to the load, we need to check
845 // the predecessors of this block. Add them to our worklist.
846 for (BasicBlock **PI = PredCache->GetPreds(DirtyBB); *PI; ++PI)
847 DirtyBlocks.push_back(*PI);
848 }
849 }
850
851 return Cache;
852}
853
854/// getNonLocalPointerDependency - Perform a full dependency query for an
855/// access to the specified (non-volatile) memory location, returning the
856/// set of instructions that either define or clobber the value.
857///
858/// This method assumes the pointer has a "NonLocal" dependency within its
859/// own block.
860///
861void MemoryDependenceAnalysis::
862getNonLocalPointerDependency(const AliasAnalysis::Location &Loc, bool isLoad,
863 BasicBlock *FromBB,
864 SmallVectorImpl<NonLocalDepResult> &Result) {
865 assert(Loc.Ptr->getType()->isPointerTy() &&((Loc.Ptr->getType()->isPointerTy() && "Can't get pointer deps of a non-pointer!"
) ? static_cast<void> (0) : __assert_fail ("Loc.Ptr->getType()->isPointerTy() && \"Can't get pointer deps of a non-pointer!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 866, __PRETTY_FUNCTION__))
866 "Can't get pointer deps of a non-pointer!")((Loc.Ptr->getType()->isPointerTy() && "Can't get pointer deps of a non-pointer!"
) ? static_cast<void> (0) : __assert_fail ("Loc.Ptr->getType()->isPointerTy() && \"Can't get pointer deps of a non-pointer!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 866, __PRETTY_FUNCTION__))
;
867 Result.clear();
868
869 PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, AT);
870
871 // This is the set of blocks we've inspected, and the pointer we consider in
872 // each block. Because of critical edges, we currently bail out if querying
873 // a block with multiple different pointers. This can happen during PHI
874 // translation.
875 DenseMap<BasicBlock*, Value*> Visited;
876 if (!getNonLocalPointerDepFromBB(Address, Loc, isLoad, FromBB,
877 Result, Visited, true))
878 return;
879 Result.clear();
880 Result.push_back(NonLocalDepResult(FromBB,
881 MemDepResult::getUnknown(),
882 const_cast<Value *>(Loc.Ptr)));
883}
884
885/// GetNonLocalInfoForBlock - Compute the memdep value for BB with
886/// Pointer/PointeeSize using either cached information in Cache or by doing a
887/// lookup (which may use dirty cache info if available). If we do a lookup,
888/// add the result to the cache.
889MemDepResult MemoryDependenceAnalysis::
890GetNonLocalInfoForBlock(const AliasAnalysis::Location &Loc,
891 bool isLoad, BasicBlock *BB,
892 NonLocalDepInfo *Cache, unsigned NumSortedEntries) {
893
894 // Do a binary search to see if we already have an entry for this block in
895 // the cache set. If so, find it.
896 NonLocalDepInfo::iterator Entry =
897 std::upper_bound(Cache->begin(), Cache->begin()+NumSortedEntries,
898 NonLocalDepEntry(BB));
899 if (Entry != Cache->begin() && (Entry-1)->getBB() == BB)
900 --Entry;
901
902 NonLocalDepEntry *ExistingResult = nullptr;
903 if (Entry != Cache->begin()+NumSortedEntries && Entry->getBB() == BB)
904 ExistingResult = &*Entry;
905
906 // If we have a cached entry, and it is non-dirty, use it as the value for
907 // this dependency.
908 if (ExistingResult && !ExistingResult->getResult().isDirty()) {
909 ++NumCacheNonLocalPtr;
910 return ExistingResult->getResult();
911 }
912
913 // Otherwise, we have to scan for the value. If we have a dirty cache
914 // entry, start scanning from its position, otherwise we scan from the end
915 // of the block.
916 BasicBlock::iterator ScanPos = BB->end();
917 if (ExistingResult && ExistingResult->getResult().getInst()) {
918 assert(ExistingResult->getResult().getInst()->getParent() == BB &&((ExistingResult->getResult().getInst()->getParent() ==
BB && "Instruction invalidated?") ? static_cast<void
> (0) : __assert_fail ("ExistingResult->getResult().getInst()->getParent() == BB && \"Instruction invalidated?\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 919, __PRETTY_FUNCTION__))
919 "Instruction invalidated?")((ExistingResult->getResult().getInst()->getParent() ==
BB && "Instruction invalidated?") ? static_cast<void
> (0) : __assert_fail ("ExistingResult->getResult().getInst()->getParent() == BB && \"Instruction invalidated?\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 919, __PRETTY_FUNCTION__))
;
920 ++NumCacheDirtyNonLocalPtr;
921 ScanPos = ExistingResult->getResult().getInst();
922
923 // Eliminating the dirty entry from 'Cache', so update the reverse info.
924 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
925 RemoveFromReverseMap(ReverseNonLocalPtrDeps, ScanPos, CacheKey);
926 } else {
927 ++NumUncacheNonLocalPtr;
928 }
929
930 // Scan the block for the dependency.
931 MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB);
932
933 // If we had a dirty entry for the block, update it. Otherwise, just add
934 // a new entry.
935 if (ExistingResult)
936 ExistingResult->setResult(Dep);
937 else
938 Cache->push_back(NonLocalDepEntry(BB, Dep));
939
940 // If the block has a dependency (i.e. it isn't completely transparent to
941 // the value), remember the reverse association because we just added it
942 // to Cache!
943 if (!Dep.isDef() && !Dep.isClobber())
944 return Dep;
945
946 // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
947 // update MemDep when we remove instructions.
948 Instruction *Inst = Dep.getInst();
949 assert(Inst && "Didn't depend on anything?")((Inst && "Didn't depend on anything?") ? static_cast
<void> (0) : __assert_fail ("Inst && \"Didn't depend on anything?\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 949, __PRETTY_FUNCTION__))
;
950 ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
951 ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
952 return Dep;
953}
954
955/// SortNonLocalDepInfoCache - Sort the NonLocalDepInfo cache, given a certain
956/// number of elements in the array that are already properly ordered. This is
957/// optimized for the case when only a few entries are added.
958static void
959SortNonLocalDepInfoCache(MemoryDependenceAnalysis::NonLocalDepInfo &Cache,
960 unsigned NumSortedEntries) {
961 switch (Cache.size() - NumSortedEntries) {
962 case 0:
963 // done, no new entries.
964 break;
965 case 2: {
966 // Two new entries, insert the last one into place.
967 NonLocalDepEntry Val = Cache.back();
968 Cache.pop_back();
969 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
970 std::upper_bound(Cache.begin(), Cache.end()-1, Val);
971 Cache.insert(Entry, Val);
972 // FALL THROUGH.
973 }
974 case 1:
975 // One new entry, Just insert the new value at the appropriate position.
976 if (Cache.size() != 1) {
977 NonLocalDepEntry Val = Cache.back();
978 Cache.pop_back();
979 MemoryDependenceAnalysis::NonLocalDepInfo::iterator Entry =
980 std::upper_bound(Cache.begin(), Cache.end(), Val);
981 Cache.insert(Entry, Val);
982 }
983 break;
984 default:
985 // Added many values, do a full scale sort.
986 std::sort(Cache.begin(), Cache.end());
987 break;
988 }
989}
990
991/// getNonLocalPointerDepFromBB - Perform a dependency query based on
992/// pointer/pointeesize starting at the end of StartBB. Add any clobber/def
993/// results to the results vector and keep track of which blocks are visited in
994/// 'Visited'.
995///
996/// This has special behavior for the first block queries (when SkipFirstBlock
997/// is true). In this special case, it ignores the contents of the specified
998/// block and starts returning dependence info for its predecessors.
999///
1000/// This function returns false on success, or true to indicate that it could
1001/// not compute dependence information for some reason. This should be treated
1002/// as a clobber dependence on the first instruction in the predecessor block.
1003bool MemoryDependenceAnalysis::
1004getNonLocalPointerDepFromBB(const PHITransAddr &Pointer,
1005 const AliasAnalysis::Location &Loc,
1006 bool isLoad, BasicBlock *StartBB,
1007 SmallVectorImpl<NonLocalDepResult> &Result,
1008 DenseMap<BasicBlock*, Value*> &Visited,
1009 bool SkipFirstBlock) {
1010 // Look up the cached info for Pointer.
1011 ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
1012
1013 // Set up a temporary NLPI value. If the map doesn't yet have an entry for
1014 // CacheKey, this value will be inserted as the associated value. Otherwise,
1015 // it'll be ignored, and we'll have to check to see if the cached size and
1016 // aa tags are consistent with the current query.
1017 NonLocalPointerInfo InitialNLPI;
1018 InitialNLPI.Size = Loc.Size;
1019 InitialNLPI.AATags = Loc.AATags;
1020
1021 // Get the NLPI for CacheKey, inserting one into the map if it doesn't
1022 // already have one.
1023 std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
1024 NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
1025 NonLocalPointerInfo *CacheInfo = &Pair.first->second;
1026
1027 // If we already have a cache entry for this CacheKey, we may need to do some
1028 // work to reconcile the cache entry and the current query.
1029 if (!Pair.second) {
1030 if (CacheInfo->Size < Loc.Size) {
1031 // The query's Size is greater than the cached one. Throw out the
1032 // cached data and proceed with the query at the greater size.
1033 CacheInfo->Pair = BBSkipFirstBlockPair();
1034 CacheInfo->Size = Loc.Size;
1035 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
1036 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
1037 if (Instruction *Inst = DI->getResult().getInst())
1038 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1039 CacheInfo->NonLocalDeps.clear();
1040 } else if (CacheInfo->Size > Loc.Size) {
1041 // This query's Size is less than the cached one. Conservatively restart
1042 // the query using the greater size.
1043 return getNonLocalPointerDepFromBB(Pointer,
1044 Loc.getWithNewSize(CacheInfo->Size),
1045 isLoad, StartBB, Result, Visited,
1046 SkipFirstBlock);
1047 }
1048
1049 // If the query's AATags are inconsistent with the cached one,
1050 // conservatively throw out the cached data and restart the query with
1051 // no tag if needed.
1052 if (CacheInfo->AATags != Loc.AATags) {
1053 if (CacheInfo->AATags) {
1054 CacheInfo->Pair = BBSkipFirstBlockPair();
1055 CacheInfo->AATags = AAMDNodes();
1056 for (NonLocalDepInfo::iterator DI = CacheInfo->NonLocalDeps.begin(),
1057 DE = CacheInfo->NonLocalDeps.end(); DI != DE; ++DI)
1058 if (Instruction *Inst = DI->getResult().getInst())
1059 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1060 CacheInfo->NonLocalDeps.clear();
1061 }
1062 if (Loc.AATags)
1063 return getNonLocalPointerDepFromBB(Pointer, Loc.getWithoutAATags(),
1064 isLoad, StartBB, Result, Visited,
1065 SkipFirstBlock);
1066 }
1067 }
1068
1069 NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
1070
1071 // If we have valid cached information for exactly the block we are
1072 // investigating, just return it with no recomputation.
1073 if (CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
1074 // We have a fully cached result for this query then we can just return the
1075 // cached results and populate the visited set. However, we have to verify
1076 // that we don't already have conflicting results for these blocks. Check
1077 // to ensure that if a block in the results set is in the visited set that
1078 // it was for the same pointer query.
1079 if (!Visited.empty()) {
1080 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
1081 I != E; ++I) {
1082 DenseMap<BasicBlock*, Value*>::iterator VI = Visited.find(I->getBB());
1083 if (VI == Visited.end() || VI->second == Pointer.getAddr())
1084 continue;
1085
1086 // We have a pointer mismatch in a block. Just return clobber, saying
1087 // that something was clobbered in this result. We could also do a
1088 // non-fully cached query, but there is little point in doing this.
1089 return true;
1090 }
1091 }
1092
1093 Value *Addr = Pointer.getAddr();
1094 for (NonLocalDepInfo::iterator I = Cache->begin(), E = Cache->end();
1095 I != E; ++I) {
1096 Visited.insert(std::make_pair(I->getBB(), Addr));
1097 if (I->getResult().isNonLocal()) {
1098 continue;
1099 }
1100
1101 if (!DT) {
1102 Result.push_back(NonLocalDepResult(I->getBB(),
1103 MemDepResult::getUnknown(),
1104 Addr));
1105 } else if (DT->isReachableFromEntry(I->getBB())) {
1106 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(), Addr));
1107 }
1108 }
1109 ++NumCacheCompleteNonLocalPtr;
1110 return false;
1111 }
1112
1113 // Otherwise, either this is a new block, a block with an invalid cache
1114 // pointer or one that we're about to invalidate by putting more info into it
1115 // than its valid cache info. If empty, the result will be valid cache info,
1116 // otherwise it isn't.
1117 if (Cache->empty())
1118 CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
1119 else
1120 CacheInfo->Pair = BBSkipFirstBlockPair();
1121
1122 SmallVector<BasicBlock*, 32> Worklist;
1123 Worklist.push_back(StartBB);
1124
1125 // PredList used inside loop.
1126 SmallVector<std::pair<BasicBlock*, PHITransAddr>, 16> PredList;
1127
1128 // Keep track of the entries that we know are sorted. Previously cached
1129 // entries will all be sorted. The entries we add we only sort on demand (we
1130 // don't insert every element into its sorted position). We know that we
1131 // won't get any reuse from currently inserted values, because we don't
1132 // revisit blocks after we insert info for them.
1133 unsigned NumSortedEntries = Cache->size();
1134 DEBUG(AssertSorted(*Cache))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("memdep")) { AssertSorted(*Cache); } } while (0)
;
1135
1136 while (!Worklist.empty()) {
1137 BasicBlock *BB = Worklist.pop_back_val();
1138
1139 // If we do process a large number of blocks it becomes very expensive and
1140 // likely it isn't worth worrying about
1141 if (Result.size() > NumResultsLimit) {
1142 Worklist.clear();
1143 // Sort it now (if needed) so that recursive invocations of
1144 // getNonLocalPointerDepFromBB and other routines that could reuse the
1145 // cache value will only see properly sorted cache arrays.
1146 if (Cache && NumSortedEntries != Cache->size()) {
1147 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1148 NumSortedEntries = Cache->size();
Value stored to 'NumSortedEntries' is never read
1149 }
1150 // Since we bail out, the "Cache" set won't contain all of the
1151 // results for the query. This is ok (we can still use it to accelerate
1152 // specific block queries) but we can't do the fastpath "return all
1153 // results from the set". Clear out the indicator for this.
1154 CacheInfo->Pair = BBSkipFirstBlockPair();
1155 return true;
1156 }
1157
1158 // Skip the first block if we have it.
1159 if (!SkipFirstBlock) {
1160 // Analyze the dependency of *Pointer in FromBB. See if we already have
1161 // been here.
1162 assert(Visited.count(BB) && "Should check 'visited' before adding to WL")((Visited.count(BB) && "Should check 'visited' before adding to WL"
) ? static_cast<void> (0) : __assert_fail ("Visited.count(BB) && \"Should check 'visited' before adding to WL\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 1162, __PRETTY_FUNCTION__))
;
1163
1164 // Get the dependency info for Pointer in BB. If we have cached
1165 // information, we will use it, otherwise we compute it.
1166 DEBUG(AssertSorted(*Cache, NumSortedEntries))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("memdep")) { AssertSorted(*Cache, NumSortedEntries); } } while
(0)
;
1167 MemDepResult Dep = GetNonLocalInfoForBlock(Loc, isLoad, BB, Cache,
1168 NumSortedEntries);
1169
1170 // If we got a Def or Clobber, add this to the list of results.
1171 if (!Dep.isNonLocal()) {
1172 if (!DT) {
1173 Result.push_back(NonLocalDepResult(BB,
1174 MemDepResult::getUnknown(),
1175 Pointer.getAddr()));
1176 continue;
1177 } else if (DT->isReachableFromEntry(BB)) {
1178 Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
1179 continue;
1180 }
1181 }
1182 }
1183
1184 // If 'Pointer' is an instruction defined in this block, then we need to do
1185 // phi translation to change it into a value live in the predecessor block.
1186 // If not, we just add the predecessors to the worklist and scan them with
1187 // the same Pointer.
1188 if (!Pointer.NeedsPHITranslationFromBlock(BB)) {
1189 SkipFirstBlock = false;
1190 SmallVector<BasicBlock*, 16> NewBlocks;
1191 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
1192 // Verify that we haven't looked at this block yet.
1193 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
1194 InsertRes = Visited.insert(std::make_pair(*PI, Pointer.getAddr()));
1195 if (InsertRes.second) {
1196 // First time we've looked at *PI.
1197 NewBlocks.push_back(*PI);
1198 continue;
1199 }
1200
1201 // If we have seen this block before, but it was with a different
1202 // pointer then we have a phi translation failure and we have to treat
1203 // this as a clobber.
1204 if (InsertRes.first->second != Pointer.getAddr()) {
1205 // Make sure to clean up the Visited map before continuing on to
1206 // PredTranslationFailure.
1207 for (unsigned i = 0; i < NewBlocks.size(); i++)
1208 Visited.erase(NewBlocks[i]);
1209 goto PredTranslationFailure;
1210 }
1211 }
1212 Worklist.append(NewBlocks.begin(), NewBlocks.end());
1213 continue;
1214 }
1215
1216 // We do need to do phi translation, if we know ahead of time we can't phi
1217 // translate this value, don't even try.
1218 if (!Pointer.IsPotentiallyPHITranslatable())
1219 goto PredTranslationFailure;
1220
1221 // We may have added values to the cache list before this PHI translation.
1222 // If so, we haven't done anything to ensure that the cache remains sorted.
1223 // Sort it now (if needed) so that recursive invocations of
1224 // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1225 // value will only see properly sorted cache arrays.
1226 if (Cache && NumSortedEntries != Cache->size()) {
1227 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1228 NumSortedEntries = Cache->size();
1229 }
1230 Cache = nullptr;
1231
1232 PredList.clear();
1233 for (BasicBlock **PI = PredCache->GetPreds(BB); *PI; ++PI) {
1234 BasicBlock *Pred = *PI;
1235 PredList.push_back(std::make_pair(Pred, Pointer));
1236
1237 // Get the PHI translated pointer in this predecessor. This can fail if
1238 // not translatable, in which case the getAddr() returns null.
1239 PHITransAddr &PredPointer = PredList.back().second;
1240 PredPointer.PHITranslateValue(BB, Pred, nullptr);
1241
1242 Value *PredPtrVal = PredPointer.getAddr();
1243
1244 // Check to see if we have already visited this pred block with another
1245 // pointer. If so, we can't do this lookup. This failure can occur
1246 // with PHI translation when a critical edge exists and the PHI node in
1247 // the successor translates to a pointer value different than the
1248 // pointer the block was first analyzed with.
1249 std::pair<DenseMap<BasicBlock*,Value*>::iterator, bool>
1250 InsertRes = Visited.insert(std::make_pair(Pred, PredPtrVal));
1251
1252 if (!InsertRes.second) {
1253 // We found the pred; take it off the list of preds to visit.
1254 PredList.pop_back();
1255
1256 // If the predecessor was visited with PredPtr, then we already did
1257 // the analysis and can ignore it.
1258 if (InsertRes.first->second == PredPtrVal)
1259 continue;
1260
1261 // Otherwise, the block was previously analyzed with a different
1262 // pointer. We can't represent the result of this case, so we just
1263 // treat this as a phi translation failure.
1264
1265 // Make sure to clean up the Visited map before continuing on to
1266 // PredTranslationFailure.
1267 for (unsigned i = 0, n = PredList.size(); i < n; ++i)
1268 Visited.erase(PredList[i].first);
1269
1270 goto PredTranslationFailure;
1271 }
1272 }
1273
1274 // Actually process results here; this need to be a separate loop to avoid
1275 // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1276 // any results for. (getNonLocalPointerDepFromBB will modify our
1277 // datastructures in ways the code after the PredTranslationFailure label
1278 // doesn't expect.)
1279 for (unsigned i = 0, n = PredList.size(); i < n; ++i) {
1280 BasicBlock *Pred = PredList[i].first;
1281 PHITransAddr &PredPointer = PredList[i].second;
1282 Value *PredPtrVal = PredPointer.getAddr();
1283
1284 bool CanTranslate = true;
1285 // If PHI translation was unable to find an available pointer in this
1286 // predecessor, then we have to assume that the pointer is clobbered in
1287 // that predecessor. We can still do PRE of the load, which would insert
1288 // a computation of the pointer in this predecessor.
1289 if (!PredPtrVal)
1290 CanTranslate = false;
1291
1292 // FIXME: it is entirely possible that PHI translating will end up with
1293 // the same value. Consider PHI translating something like:
1294 // X = phi [x, bb1], [y, bb2]. PHI translating for bb1 doesn't *need*
1295 // to recurse here, pedantically speaking.
1296
1297 // If getNonLocalPointerDepFromBB fails here, that means the cached
1298 // result conflicted with the Visited list; we have to conservatively
1299 // assume it is unknown, but this also does not block PRE of the load.
1300 if (!CanTranslate ||
1301 getNonLocalPointerDepFromBB(PredPointer,
1302 Loc.getWithNewPtr(PredPtrVal),
1303 isLoad, Pred,
1304 Result, Visited)) {
1305 // Add the entry to the Result list.
1306 NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
1307 Result.push_back(Entry);
1308
1309 // Since we had a phi translation failure, the cache for CacheKey won't
1310 // include all of the entries that we need to immediately satisfy future
1311 // queries. Mark this in NonLocalPointerDeps by setting the
1312 // BBSkipFirstBlockPair pointer to null. This requires reuse of the
1313 // cached value to do more work but not miss the phi trans failure.
1314 NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
1315 NLPI.Pair = BBSkipFirstBlockPair();
1316 continue;
1317 }
1318 }
1319
1320 // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1321 CacheInfo = &NonLocalPointerDeps[CacheKey];
1322 Cache = &CacheInfo->NonLocalDeps;
1323 NumSortedEntries = Cache->size();
1324
1325 // Since we did phi translation, the "Cache" set won't contain all of the
1326 // results for the query. This is ok (we can still use it to accelerate
1327 // specific block queries) but we can't do the fastpath "return all
1328 // results from the set" Clear out the indicator for this.
1329 CacheInfo->Pair = BBSkipFirstBlockPair();
1330 SkipFirstBlock = false;
1331 continue;
1332
1333 PredTranslationFailure:
1334 // The following code is "failure"; we can't produce a sane translation
1335 // for the given block. It assumes that we haven't modified any of
1336 // our datastructures while processing the current block.
1337
1338 if (!Cache) {
1339 // Refresh the CacheInfo/Cache pointer if it got invalidated.
1340 CacheInfo = &NonLocalPointerDeps[CacheKey];
1341 Cache = &CacheInfo->NonLocalDeps;
1342 NumSortedEntries = Cache->size();
1343 }
1344
1345 // Since we failed phi translation, the "Cache" set won't contain all of the
1346 // results for the query. This is ok (we can still use it to accelerate
1347 // specific block queries) but we can't do the fastpath "return all
1348 // results from the set". Clear out the indicator for this.
1349 CacheInfo->Pair = BBSkipFirstBlockPair();
1350
1351 // If *nothing* works, mark the pointer as unknown.
1352 //
1353 // If this is the magic first block, return this as a clobber of the whole
1354 // incoming value. Since we can't phi translate to one of the predecessors,
1355 // we have to bail out.
1356 if (SkipFirstBlock)
1357 return true;
1358
1359 for (NonLocalDepInfo::reverse_iterator I = Cache->rbegin(); ; ++I) {
1360 assert(I != Cache->rend() && "Didn't find current block??")((I != Cache->rend() && "Didn't find current block??"
) ? static_cast<void> (0) : __assert_fail ("I != Cache->rend() && \"Didn't find current block??\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 1360, __PRETTY_FUNCTION__))
;
1361 if (I->getBB() != BB)
1362 continue;
1363
1364 assert((I->getResult().isNonLocal() || !DT->isReachableFromEntry(BB)) &&(((I->getResult().isNonLocal() || !DT->isReachableFromEntry
(BB)) && "Should only be here with transparent block"
) ? static_cast<void> (0) : __assert_fail ("(I->getResult().isNonLocal() || !DT->isReachableFromEntry(BB)) && \"Should only be here with transparent block\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 1365, __PRETTY_FUNCTION__))
1365 "Should only be here with transparent block")(((I->getResult().isNonLocal() || !DT->isReachableFromEntry
(BB)) && "Should only be here with transparent block"
) ? static_cast<void> (0) : __assert_fail ("(I->getResult().isNonLocal() || !DT->isReachableFromEntry(BB)) && \"Should only be here with transparent block\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 1365, __PRETTY_FUNCTION__))
;
1366 I->setResult(MemDepResult::getUnknown());
1367 Result.push_back(NonLocalDepResult(I->getBB(), I->getResult(),
1368 Pointer.getAddr()));
1369 break;
1370 }
1371 }
1372
1373 // Okay, we're done now. If we added new values to the cache, re-sort it.
1374 SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1375 DEBUG(AssertSorted(*Cache))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("memdep")) { AssertSorted(*Cache); } } while (0)
;
1376 return false;
1377}
1378
1379/// RemoveCachedNonLocalPointerDependencies - If P exists in
1380/// CachedNonLocalPointerInfo, remove it.
1381void MemoryDependenceAnalysis::
1382RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair P) {
1383 CachedNonLocalPointerInfo::iterator It =
1384 NonLocalPointerDeps.find(P);
1385 if (It == NonLocalPointerDeps.end()) return;
1386
1387 // Remove all of the entries in the BB->val map. This involves removing
1388 // instructions from the reverse map.
1389 NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1390
1391 for (unsigned i = 0, e = PInfo.size(); i != e; ++i) {
1392 Instruction *Target = PInfo[i].getResult().getInst();
1393 if (!Target) continue; // Ignore non-local dep results.
1394 assert(Target->getParent() == PInfo[i].getBB())((Target->getParent() == PInfo[i].getBB()) ? static_cast<
void> (0) : __assert_fail ("Target->getParent() == PInfo[i].getBB()"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 1394, __PRETTY_FUNCTION__))
;
1395
1396 // Eliminating the dirty entry from 'Cache', so update the reverse info.
1397 RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1398 }
1399
1400 // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1401 NonLocalPointerDeps.erase(It);
1402}
1403
1404
1405/// invalidateCachedPointerInfo - This method is used to invalidate cached
1406/// information about the specified pointer, because it may be too
1407/// conservative in memdep. This is an optional call that can be used when
1408/// the client detects an equivalence between the pointer and some other
1409/// value and replaces the other value with ptr. This can make Ptr available
1410/// in more places that cached info does not necessarily keep.
1411void MemoryDependenceAnalysis::invalidateCachedPointerInfo(Value *Ptr) {
1412 // If Ptr isn't really a pointer, just ignore it.
1413 if (!Ptr->getType()->isPointerTy()) return;
1414 // Flush store info for the pointer.
1415 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1416 // Flush load info for the pointer.
1417 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1418}
1419
1420/// invalidateCachedPredecessors - Clear the PredIteratorCache info.
1421/// This needs to be done when the CFG changes, e.g., due to splitting
1422/// critical edges.
1423void MemoryDependenceAnalysis::invalidateCachedPredecessors() {
1424 PredCache->clear();
1425}
1426
1427/// removeInstruction - Remove an instruction from the dependence analysis,
1428/// updating the dependence of instructions that previously depended on it.
1429/// This method attempts to keep the cache coherent using the reverse map.
1430void MemoryDependenceAnalysis::removeInstruction(Instruction *RemInst) {
1431 // Walk through the Non-local dependencies, removing this one as the value
1432 // for any cached queries.
1433 NonLocalDepMapType::iterator NLDI = NonLocalDeps.find(RemInst);
1434 if (NLDI != NonLocalDeps.end()) {
1435 NonLocalDepInfo &BlockMap = NLDI->second.first;
1436 for (NonLocalDepInfo::iterator DI = BlockMap.begin(), DE = BlockMap.end();
1437 DI != DE; ++DI)
1438 if (Instruction *Inst = DI->getResult().getInst())
1439 RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1440 NonLocalDeps.erase(NLDI);
1441 }
1442
1443 // If we have a cached local dependence query for this instruction, remove it.
1444 //
1445 LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1446 if (LocalDepEntry != LocalDeps.end()) {
1447 // Remove us from DepInst's reverse set now that the local dep info is gone.
1448 if (Instruction *Inst = LocalDepEntry->second.getInst())
1449 RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1450
1451 // Remove this local dependency info.
1452 LocalDeps.erase(LocalDepEntry);
1453 }
1454
1455 // If we have any cached pointer dependencies on this instruction, remove
1456 // them. If the instruction has non-pointer type, then it can't be a pointer
1457 // base.
1458
1459 // Remove it from both the load info and the store info. The instruction
1460 // can't be in either of these maps if it is non-pointer.
1461 if (RemInst->getType()->isPointerTy()) {
1462 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1463 RemoveCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1464 }
1465
1466 // Loop over all of the things that depend on the instruction we're removing.
1467 //
1468 SmallVector<std::pair<Instruction*, Instruction*>, 8> ReverseDepsToAdd;
1469
1470 // If we find RemInst as a clobber or Def in any of the maps for other values,
1471 // we need to replace its entry with a dirty version of the instruction after
1472 // it. If RemInst is a terminator, we use a null dirty value.
1473 //
1474 // Using a dirty version of the instruction after RemInst saves having to scan
1475 // the entire block to get to this point.
1476 MemDepResult NewDirtyVal;
1477 if (!RemInst->isTerminator())
1478 NewDirtyVal = MemDepResult::getDirty(++BasicBlock::iterator(RemInst));
1479
1480 ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1481 if (ReverseDepIt != ReverseLocalDeps.end()) {
1482 // RemInst can't be the terminator if it has local stuff depending on it.
1483 assert(!ReverseDepIt->second.empty() && !isa<TerminatorInst>(RemInst) &&((!ReverseDepIt->second.empty() && !isa<TerminatorInst
>(RemInst) && "Nothing can locally depend on a terminator"
) ? static_cast<void> (0) : __assert_fail ("!ReverseDepIt->second.empty() && !isa<TerminatorInst>(RemInst) && \"Nothing can locally depend on a terminator\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 1484, __PRETTY_FUNCTION__))
1484 "Nothing can locally depend on a terminator")((!ReverseDepIt->second.empty() && !isa<TerminatorInst
>(RemInst) && "Nothing can locally depend on a terminator"
) ? static_cast<void> (0) : __assert_fail ("!ReverseDepIt->second.empty() && !isa<TerminatorInst>(RemInst) && \"Nothing can locally depend on a terminator\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 1484, __PRETTY_FUNCTION__))
;
1485
1486 for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) {
1487 assert(InstDependingOnRemInst != RemInst &&((InstDependingOnRemInst != RemInst && "Already removed our local dep info"
) ? static_cast<void> (0) : __assert_fail ("InstDependingOnRemInst != RemInst && \"Already removed our local dep info\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 1488, __PRETTY_FUNCTION__))
1488 "Already removed our local dep info")((InstDependingOnRemInst != RemInst && "Already removed our local dep info"
) ? static_cast<void> (0) : __assert_fail ("InstDependingOnRemInst != RemInst && \"Already removed our local dep info\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 1488, __PRETTY_FUNCTION__))
;
1489
1490 LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1491
1492 // Make sure to remember that new things depend on NewDepInst.
1493 assert(NewDirtyVal.getInst() && "There is no way something else can have "((NewDirtyVal.getInst() && "There is no way something else can have "
"a local dep on this if it is a terminator!") ? static_cast<
void> (0) : __assert_fail ("NewDirtyVal.getInst() && \"There is no way something else can have \" \"a local dep on this if it is a terminator!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 1494, __PRETTY_FUNCTION__))
1494 "a local dep on this if it is a terminator!")((NewDirtyVal.getInst() && "There is no way something else can have "
"a local dep on this if it is a terminator!") ? static_cast<
void> (0) : __assert_fail ("NewDirtyVal.getInst() && \"There is no way something else can have \" \"a local dep on this if it is a terminator!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 1494, __PRETTY_FUNCTION__))
;
1495 ReverseDepsToAdd.push_back(std::make_pair(NewDirtyVal.getInst(),
1496 InstDependingOnRemInst));
1497 }
1498
1499 ReverseLocalDeps.erase(ReverseDepIt);
1500
1501 // Add new reverse deps after scanning the set, to avoid invalidating the
1502 // 'ReverseDeps' reference.
1503 while (!ReverseDepsToAdd.empty()) {
1504 ReverseLocalDeps[ReverseDepsToAdd.back().first]
1505 .insert(ReverseDepsToAdd.back().second);
1506 ReverseDepsToAdd.pop_back();
1507 }
1508 }
1509
1510 ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1511 if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1512 for (Instruction *I : ReverseDepIt->second) {
1513 assert(I != RemInst && "Already removed NonLocalDep info for RemInst")((I != RemInst && "Already removed NonLocalDep info for RemInst"
) ? static_cast<void> (0) : __assert_fail ("I != RemInst && \"Already removed NonLocalDep info for RemInst\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 1513, __PRETTY_FUNCTION__))
;
1514
1515 PerInstNLInfo &INLD = NonLocalDeps[I];
1516 // The information is now dirty!
1517 INLD.second = true;
1518
1519 for (NonLocalDepInfo::iterator DI = INLD.first.begin(),
1520 DE = INLD.first.end(); DI != DE; ++DI) {
1521 if (DI->getResult().getInst() != RemInst) continue;
1522
1523 // Convert to a dirty entry for the subsequent instruction.
1524 DI->setResult(NewDirtyVal);
1525
1526 if (Instruction *NextI = NewDirtyVal.getInst())
1527 ReverseDepsToAdd.push_back(std::make_pair(NextI, I));
1528 }
1529 }
1530
1531 ReverseNonLocalDeps.erase(ReverseDepIt);
1532
1533 // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1534 while (!ReverseDepsToAdd.empty()) {
1535 ReverseNonLocalDeps[ReverseDepsToAdd.back().first]
1536 .insert(ReverseDepsToAdd.back().second);
1537 ReverseDepsToAdd.pop_back();
1538 }
1539 }
1540
1541 // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1542 // value in the NonLocalPointerDeps info.
1543 ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1544 ReverseNonLocalPtrDeps.find(RemInst);
1545 if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1546 SmallVector<std::pair<Instruction*, ValueIsLoadPair>,8> ReversePtrDepsToAdd;
1547
1548 for (ValueIsLoadPair P : ReversePtrDepIt->second) {
1549 assert(P.getPointer() != RemInst &&((P.getPointer() != RemInst && "Already removed NonLocalPointerDeps info for RemInst"
) ? static_cast<void> (0) : __assert_fail ("P.getPointer() != RemInst && \"Already removed NonLocalPointerDeps info for RemInst\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 1550, __PRETTY_FUNCTION__))
1550 "Already removed NonLocalPointerDeps info for RemInst")((P.getPointer() != RemInst && "Already removed NonLocalPointerDeps info for RemInst"
) ? static_cast<void> (0) : __assert_fail ("P.getPointer() != RemInst && \"Already removed NonLocalPointerDeps info for RemInst\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 1550, __PRETTY_FUNCTION__))
;
1551
1552 NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1553
1554 // The cache is not valid for any specific block anymore.
1555 NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1556
1557 // Update any entries for RemInst to use the instruction after it.
1558 for (NonLocalDepInfo::iterator DI = NLPDI.begin(), DE = NLPDI.end();
1559 DI != DE; ++DI) {
1560 if (DI->getResult().getInst() != RemInst) continue;
1561
1562 // Convert to a dirty entry for the subsequent instruction.
1563 DI->setResult(NewDirtyVal);
1564
1565 if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1566 ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1567 }
1568
1569 // Re-sort the NonLocalDepInfo. Changing the dirty entry to its
1570 // subsequent value may invalidate the sortedness.
1571 std::sort(NLPDI.begin(), NLPDI.end());
1572 }
1573
1574 ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1575
1576 while (!ReversePtrDepsToAdd.empty()) {
1577 ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first]
1578 .insert(ReversePtrDepsToAdd.back().second);
1579 ReversePtrDepsToAdd.pop_back();
1580 }
1581 }
1582
1583
1584 assert(!NonLocalDeps.count(RemInst) && "RemInst got reinserted?")((!NonLocalDeps.count(RemInst) && "RemInst got reinserted?"
) ? static_cast<void> (0) : __assert_fail ("!NonLocalDeps.count(RemInst) && \"RemInst got reinserted?\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 1584, __PRETTY_FUNCTION__))
;
1585 AA->deleteValue(RemInst);
1586 DEBUG(verifyRemoved(RemInst))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("memdep")) { verifyRemoved(RemInst); } } while (0)
;
1587}
1588/// verifyRemoved - Verify that the specified instruction does not occur
1589/// in our internal data structures. This function verifies by asserting in
1590/// debug builds.
1591void MemoryDependenceAnalysis::verifyRemoved(Instruction *D) const {
1592#ifndef NDEBUG
1593 for (LocalDepMapType::const_iterator I = LocalDeps.begin(),
1594 E = LocalDeps.end(); I != E; ++I) {
1595 assert(I->first != D && "Inst occurs in data structures")((I->first != D && "Inst occurs in data structures"
) ? static_cast<void> (0) : __assert_fail ("I->first != D && \"Inst occurs in data structures\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 1595, __PRETTY_FUNCTION__))
;
1596 assert(I->second.getInst() != D &&((I->second.getInst() != D && "Inst occurs in data structures"
) ? static_cast<void> (0) : __assert_fail ("I->second.getInst() != D && \"Inst occurs in data structures\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 1597, __PRETTY_FUNCTION__))
1597 "Inst occurs in data structures")((I->second.getInst() != D && "Inst occurs in data structures"
) ? static_cast<void> (0) : __assert_fail ("I->second.getInst() != D && \"Inst occurs in data structures\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 1597, __PRETTY_FUNCTION__))
;
1598 }
1599
1600 for (CachedNonLocalPointerInfo::const_iterator I =NonLocalPointerDeps.begin(),
1601 E = NonLocalPointerDeps.end(); I != E; ++I) {
1602 assert(I->first.getPointer() != D && "Inst occurs in NLPD map key")((I->first.getPointer() != D && "Inst occurs in NLPD map key"
) ? static_cast<void> (0) : __assert_fail ("I->first.getPointer() != D && \"Inst occurs in NLPD map key\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 1602, __PRETTY_FUNCTION__))
;
1603 const NonLocalDepInfo &Val = I->second.NonLocalDeps;
1604 for (NonLocalDepInfo::const_iterator II = Val.begin(), E = Val.end();
1605 II != E; ++II)
1606 assert(II->getResult().getInst() != D && "Inst occurs as NLPD value")((II->getResult().getInst() != D && "Inst occurs as NLPD value"
) ? static_cast<void> (0) : __assert_fail ("II->getResult().getInst() != D && \"Inst occurs as NLPD value\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 1606, __PRETTY_FUNCTION__))
;
1607 }
1608
1609 for (NonLocalDepMapType::const_iterator I = NonLocalDeps.begin(),
1610 E = NonLocalDeps.end(); I != E; ++I) {
1611 assert(I->first != D && "Inst occurs in data structures")((I->first != D && "Inst occurs in data structures"
) ? static_cast<void> (0) : __assert_fail ("I->first != D && \"Inst occurs in data structures\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 1611, __PRETTY_FUNCTION__))
;
1612 const PerInstNLInfo &INLD = I->second;
1613 for (NonLocalDepInfo::const_iterator II = INLD.first.begin(),
1614 EE = INLD.first.end(); II != EE; ++II)
1615 assert(II->getResult().getInst() != D && "Inst occurs in data structures")((II->getResult().getInst() != D && "Inst occurs in data structures"
) ? static_cast<void> (0) : __assert_fail ("II->getResult().getInst() != D && \"Inst occurs in data structures\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 1615, __PRETTY_FUNCTION__))
;
1616 }
1617
1618 for (ReverseDepMapType::const_iterator I = ReverseLocalDeps.begin(),
1619 E = ReverseLocalDeps.end(); I != E; ++I) {
1620 assert(I->first != D && "Inst occurs in data structures")((I->first != D && "Inst occurs in data structures"
) ? static_cast<void> (0) : __assert_fail ("I->first != D && \"Inst occurs in data structures\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 1620, __PRETTY_FUNCTION__))
;
1621 for (Instruction *Inst : I->second)
1622 assert(Inst != D && "Inst occurs in data structures")((Inst != D && "Inst occurs in data structures") ? static_cast
<void> (0) : __assert_fail ("Inst != D && \"Inst occurs in data structures\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 1622, __PRETTY_FUNCTION__))
;
1623 }
1624
1625 for (ReverseDepMapType::const_iterator I = ReverseNonLocalDeps.begin(),
1626 E = ReverseNonLocalDeps.end();
1627 I != E; ++I) {
1628 assert(I->first != D && "Inst occurs in data structures")((I->first != D && "Inst occurs in data structures"
) ? static_cast<void> (0) : __assert_fail ("I->first != D && \"Inst occurs in data structures\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 1628, __PRETTY_FUNCTION__))
;
1629 for (Instruction *Inst : I->second)
1630 assert(Inst != D && "Inst occurs in data structures")((Inst != D && "Inst occurs in data structures") ? static_cast
<void> (0) : __assert_fail ("Inst != D && \"Inst occurs in data structures\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 1630, __PRETTY_FUNCTION__))
;
1631 }
1632
1633 for (ReverseNonLocalPtrDepTy::const_iterator
1634 I = ReverseNonLocalPtrDeps.begin(),
1635 E = ReverseNonLocalPtrDeps.end(); I != E; ++I) {
1636 assert(I->first != D && "Inst occurs in rev NLPD map")((I->first != D && "Inst occurs in rev NLPD map") ?
static_cast<void> (0) : __assert_fail ("I->first != D && \"Inst occurs in rev NLPD map\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 1636, __PRETTY_FUNCTION__))
;
1637
1638 for (ValueIsLoadPair P : I->second)
1639 assert(P != ValueIsLoadPair(D, false) &&((P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair
(D, true) && "Inst occurs in ReverseNonLocalPtrDeps map"
) ? static_cast<void> (0) : __assert_fail ("P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) && \"Inst occurs in ReverseNonLocalPtrDeps map\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 1641, __PRETTY_FUNCTION__))
1640 P != ValueIsLoadPair(D, true) &&((P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair
(D, true) && "Inst occurs in ReverseNonLocalPtrDeps map"
) ? static_cast<void> (0) : __assert_fail ("P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) && \"Inst occurs in ReverseNonLocalPtrDeps map\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 1641, __PRETTY_FUNCTION__))
1641 "Inst occurs in ReverseNonLocalPtrDeps map")((P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair
(D, true) && "Inst occurs in ReverseNonLocalPtrDeps map"
) ? static_cast<void> (0) : __assert_fail ("P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) && \"Inst occurs in ReverseNonLocalPtrDeps map\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224456/lib/Analysis/MemoryDependenceAnalysis.cpp"
, 1641, __PRETTY_FUNCTION__))
;
1642 }
1643#endif
1644}