Bug Summary

File:lib/Target/Mips/MipsSEISelDAGToDAG.cpp
Warning:line 1060, column 15
1st function call argument is an uninitialized value

Annotated Source Code

1//===-- MipsSEISelDAGToDAG.cpp - A Dag to Dag Inst Selector for MipsSE ----===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Subclass of MipsDAGToDAGISel specialized for mips32/64.
11//
12//===----------------------------------------------------------------------===//
13
14#include "MipsSEISelDAGToDAG.h"
15#include "MCTargetDesc/MipsBaseInfo.h"
16#include "Mips.h"
17#include "MipsAnalyzeImmediate.h"
18#include "MipsMachineFunction.h"
19#include "MipsRegisterInfo.h"
20#include "llvm/CodeGen/MachineConstantPool.h"
21#include "llvm/CodeGen/MachineFrameInfo.h"
22#include "llvm/CodeGen/MachineFunction.h"
23#include "llvm/CodeGen/MachineInstrBuilder.h"
24#include "llvm/CodeGen/MachineRegisterInfo.h"
25#include "llvm/CodeGen/SelectionDAGNodes.h"
26#include "llvm/IR/CFG.h"
27#include "llvm/IR/GlobalValue.h"
28#include "llvm/IR/Instructions.h"
29#include "llvm/IR/Intrinsics.h"
30#include "llvm/IR/Type.h"
31#include "llvm/IR/Dominators.h"
32#include "llvm/Support/Debug.h"
33#include "llvm/Support/ErrorHandling.h"
34#include "llvm/Support/raw_ostream.h"
35#include "llvm/Target/TargetMachine.h"
36using namespace llvm;
37
38#define DEBUG_TYPE"mips-isel" "mips-isel"
39
40bool MipsSEDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
41 Subtarget = &static_cast<const MipsSubtarget &>(MF.getSubtarget());
42 if (Subtarget->inMips16Mode())
43 return false;
44 return MipsDAGToDAGISel::runOnMachineFunction(MF);
45}
46
47void MipsSEDAGToDAGISel::getAnalysisUsage(AnalysisUsage &AU) const {
48 AU.addRequired<DominatorTreeWrapperPass>();
49 SelectionDAGISel::getAnalysisUsage(AU);
50}
51
52void MipsSEDAGToDAGISel::addDSPCtrlRegOperands(bool IsDef, MachineInstr &MI,
53 MachineFunction &MF) {
54 MachineInstrBuilder MIB(MF, &MI);
55 unsigned Mask = MI.getOperand(1).getImm();
56 unsigned Flag =
57 IsDef ? RegState::ImplicitDefine : RegState::Implicit | RegState::Undef;
58
59 if (Mask & 1)
60 MIB.addReg(Mips::DSPPos, Flag);
61
62 if (Mask & 2)
63 MIB.addReg(Mips::DSPSCount, Flag);
64
65 if (Mask & 4)
66 MIB.addReg(Mips::DSPCarry, Flag);
67
68 if (Mask & 8)
69 MIB.addReg(Mips::DSPOutFlag, Flag);
70
71 if (Mask & 16)
72 MIB.addReg(Mips::DSPCCond, Flag);
73
74 if (Mask & 32)
75 MIB.addReg(Mips::DSPEFI, Flag);
76}
77
78unsigned MipsSEDAGToDAGISel::getMSACtrlReg(const SDValue RegIdx) const {
79 switch (cast<ConstantSDNode>(RegIdx)->getZExtValue()) {
80 default:
81 llvm_unreachable("Could not map int to register")::llvm::llvm_unreachable_internal("Could not map int to register"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Target/Mips/MipsSEISelDAGToDAG.cpp"
, 81)
;
82 case 0: return Mips::MSAIR;
83 case 1: return Mips::MSACSR;
84 case 2: return Mips::MSAAccess;
85 case 3: return Mips::MSASave;
86 case 4: return Mips::MSAModify;
87 case 5: return Mips::MSARequest;
88 case 6: return Mips::MSAMap;
89 case 7: return Mips::MSAUnmap;
90 }
91}
92
93bool MipsSEDAGToDAGISel::replaceUsesWithZeroReg(MachineRegisterInfo *MRI,
94 const MachineInstr& MI) {
95 unsigned DstReg = 0, ZeroReg = 0;
96
97 // Check if MI is "addiu $dst, $zero, 0" or "daddiu $dst, $zero, 0".
98 if ((MI.getOpcode() == Mips::ADDiu) &&
99 (MI.getOperand(1).getReg() == Mips::ZERO) &&
100 (MI.getOperand(2).isImm()) &&
101 (MI.getOperand(2).getImm() == 0)) {
102 DstReg = MI.getOperand(0).getReg();
103 ZeroReg = Mips::ZERO;
104 } else if ((MI.getOpcode() == Mips::DADDiu) &&
105 (MI.getOperand(1).getReg() == Mips::ZERO_64) &&
106 (MI.getOperand(2).isImm()) &&
107 (MI.getOperand(2).getImm() == 0)) {
108 DstReg = MI.getOperand(0).getReg();
109 ZeroReg = Mips::ZERO_64;
110 }
111
112 if (!DstReg)
113 return false;
114
115 // Replace uses with ZeroReg.
116 for (MachineRegisterInfo::use_iterator U = MRI->use_begin(DstReg),
117 E = MRI->use_end(); U != E;) {
118 MachineOperand &MO = *U;
119 unsigned OpNo = U.getOperandNo();
120 MachineInstr *MI = MO.getParent();
121 ++U;
122
123 // Do not replace if it is a phi's operand or is tied to def operand.
124 if (MI->isPHI() || MI->isRegTiedToDefOperand(OpNo) || MI->isPseudo())
125 continue;
126
127 // Also, we have to check that the register class of the operand
128 // contains the zero register.
129 if (!MRI->getRegClass(MO.getReg())->contains(ZeroReg))
130 continue;
131
132 MO.setReg(ZeroReg);
133 }
134
135 return true;
136}
137
138void MipsSEDAGToDAGISel::initGlobalBaseReg(MachineFunction &MF) {
139 MipsFunctionInfo *MipsFI = MF.getInfo<MipsFunctionInfo>();
140
141 if (!MipsFI->globalBaseRegSet())
142 return;
143
144 MachineBasicBlock &MBB = MF.front();
145 MachineBasicBlock::iterator I = MBB.begin();
146 MachineRegisterInfo &RegInfo = MF.getRegInfo();
147 const TargetInstrInfo &TII = *Subtarget->getInstrInfo();
148 DebugLoc DL;
149 unsigned V0, V1, GlobalBaseReg = MipsFI->getGlobalBaseReg();
150 const TargetRegisterClass *RC;
151 const MipsABIInfo &ABI = static_cast<const MipsTargetMachine &>(TM).getABI();
152 RC = (ABI.IsN64()) ? &Mips::GPR64RegClass : &Mips::GPR32RegClass;
153
154 V0 = RegInfo.createVirtualRegister(RC);
155 V1 = RegInfo.createVirtualRegister(RC);
156
157 if (ABI.IsN64()) {
158 MF.getRegInfo().addLiveIn(Mips::T9_64);
159 MBB.addLiveIn(Mips::T9_64);
160
161 // lui $v0, %hi(%neg(%gp_rel(fname)))
162 // daddu $v1, $v0, $t9
163 // daddiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname)))
164 const GlobalValue *FName = MF.getFunction();
165 BuildMI(MBB, I, DL, TII.get(Mips::LUi64), V0)
166 .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI);
167 BuildMI(MBB, I, DL, TII.get(Mips::DADDu), V1).addReg(V0)
168 .addReg(Mips::T9_64);
169 BuildMI(MBB, I, DL, TII.get(Mips::DADDiu), GlobalBaseReg).addReg(V1)
170 .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO);
171 return;
172 }
173
174 if (!MF.getTarget().isPositionIndependent()) {
175 // Set global register to __gnu_local_gp.
176 //
177 // lui $v0, %hi(__gnu_local_gp)
178 // addiu $globalbasereg, $v0, %lo(__gnu_local_gp)
179 BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0)
180 .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_HI);
181 BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V0)
182 .addExternalSymbol("__gnu_local_gp", MipsII::MO_ABS_LO);
183 return;
184 }
185
186 MF.getRegInfo().addLiveIn(Mips::T9);
187 MBB.addLiveIn(Mips::T9);
188
189 if (ABI.IsN32()) {
190 // lui $v0, %hi(%neg(%gp_rel(fname)))
191 // addu $v1, $v0, $t9
192 // addiu $globalbasereg, $v1, %lo(%neg(%gp_rel(fname)))
193 const GlobalValue *FName = MF.getFunction();
194 BuildMI(MBB, I, DL, TII.get(Mips::LUi), V0)
195 .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_HI);
196 BuildMI(MBB, I, DL, TII.get(Mips::ADDu), V1).addReg(V0).addReg(Mips::T9);
197 BuildMI(MBB, I, DL, TII.get(Mips::ADDiu), GlobalBaseReg).addReg(V1)
198 .addGlobalAddress(FName, 0, MipsII::MO_GPOFF_LO);
199 return;
200 }
201
202 assert(ABI.IsO32())((ABI.IsO32()) ? static_cast<void> (0) : __assert_fail (
"ABI.IsO32()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Target/Mips/MipsSEISelDAGToDAG.cpp"
, 202, __PRETTY_FUNCTION__))
;
203
204 // For O32 ABI, the following instruction sequence is emitted to initialize
205 // the global base register:
206 //
207 // 0. lui $2, %hi(_gp_disp)
208 // 1. addiu $2, $2, %lo(_gp_disp)
209 // 2. addu $globalbasereg, $2, $t9
210 //
211 // We emit only the last instruction here.
212 //
213 // GNU linker requires that the first two instructions appear at the beginning
214 // of a function and no instructions be inserted before or between them.
215 // The two instructions are emitted during lowering to MC layer in order to
216 // avoid any reordering.
217 //
218 // Register $2 (Mips::V0) is added to the list of live-in registers to ensure
219 // the value instruction 1 (addiu) defines is valid when instruction 2 (addu)
220 // reads it.
221 MF.getRegInfo().addLiveIn(Mips::V0);
222 MBB.addLiveIn(Mips::V0);
223 BuildMI(MBB, I, DL, TII.get(Mips::ADDu), GlobalBaseReg)
224 .addReg(Mips::V0).addReg(Mips::T9);
225}
226
227void MipsSEDAGToDAGISel::processFunctionAfterISel(MachineFunction &MF) {
228 initGlobalBaseReg(MF);
229
230 MachineRegisterInfo *MRI = &MF.getRegInfo();
231
232 for (auto &MBB: MF) {
233 for (auto &MI: MBB) {
234 switch (MI.getOpcode()) {
235 case Mips::RDDSP:
236 addDSPCtrlRegOperands(false, MI, MF);
237 break;
238 case Mips::WRDSP:
239 addDSPCtrlRegOperands(true, MI, MF);
240 break;
241 default:
242 replaceUsesWithZeroReg(MRI, MI);
243 }
244 }
245 }
246}
247
248void MipsSEDAGToDAGISel::selectAddESubE(unsigned MOp, SDValue InFlag,
249 SDValue CmpLHS, const SDLoc &DL,
250 SDNode *Node) const {
251 unsigned Opc = InFlag.getOpcode(); (void)Opc;
252
253 assert(((Opc == ISD::ADDC || Opc == ISD::ADDE) ||((((Opc == ISD::ADDC || Opc == ISD::ADDE) || (Opc == ISD::SUBC
|| Opc == ISD::SUBE)) && "(ADD|SUB)E flag operand must come from (ADD|SUB)C/E insn"
) ? static_cast<void> (0) : __assert_fail ("((Opc == ISD::ADDC || Opc == ISD::ADDE) || (Opc == ISD::SUBC || Opc == ISD::SUBE)) && \"(ADD|SUB)E flag operand must come from (ADD|SUB)C/E insn\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Target/Mips/MipsSEISelDAGToDAG.cpp"
, 255, __PRETTY_FUNCTION__))
254 (Opc == ISD::SUBC || Opc == ISD::SUBE)) &&((((Opc == ISD::ADDC || Opc == ISD::ADDE) || (Opc == ISD::SUBC
|| Opc == ISD::SUBE)) && "(ADD|SUB)E flag operand must come from (ADD|SUB)C/E insn"
) ? static_cast<void> (0) : __assert_fail ("((Opc == ISD::ADDC || Opc == ISD::ADDE) || (Opc == ISD::SUBC || Opc == ISD::SUBE)) && \"(ADD|SUB)E flag operand must come from (ADD|SUB)C/E insn\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Target/Mips/MipsSEISelDAGToDAG.cpp"
, 255, __PRETTY_FUNCTION__))
255 "(ADD|SUB)E flag operand must come from (ADD|SUB)C/E insn")((((Opc == ISD::ADDC || Opc == ISD::ADDE) || (Opc == ISD::SUBC
|| Opc == ISD::SUBE)) && "(ADD|SUB)E flag operand must come from (ADD|SUB)C/E insn"
) ? static_cast<void> (0) : __assert_fail ("((Opc == ISD::ADDC || Opc == ISD::ADDE) || (Opc == ISD::SUBC || Opc == ISD::SUBE)) && \"(ADD|SUB)E flag operand must come from (ADD|SUB)C/E insn\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Target/Mips/MipsSEISelDAGToDAG.cpp"
, 255, __PRETTY_FUNCTION__))
;
256
257 unsigned SLTuOp = Mips::SLTu, ADDuOp = Mips::ADDu;
258 if (Subtarget->isGP64bit()) {
259 SLTuOp = Mips::SLTu64;
260 ADDuOp = Mips::DADDu;
261 }
262
263 SDValue Ops[] = { CmpLHS, InFlag.getOperand(1) };
264 SDValue LHS = Node->getOperand(0), RHS = Node->getOperand(1);
265 EVT VT = LHS.getValueType();
266
267 SDNode *Carry = CurDAG->getMachineNode(SLTuOp, DL, VT, Ops);
268
269 if (Subtarget->isGP64bit()) {
270 // On 64-bit targets, sltu produces an i64 but our backend currently says
271 // that SLTu64 produces an i32. We need to fix this in the long run but for
272 // now, just make the DAG type-correct by asserting the upper bits are zero.
273 Carry = CurDAG->getMachineNode(Mips::SUBREG_TO_REG, DL, VT,
274 CurDAG->getTargetConstant(0, DL, VT),
275 SDValue(Carry, 0),
276 CurDAG->getTargetConstant(Mips::sub_32, DL,
277 VT));
278 }
279
280 // Generate a second addition only if we know that RHS is not a
281 // constant-zero node.
282 SDNode *AddCarry = Carry;
283 ConstantSDNode *C = dyn_cast<ConstantSDNode>(RHS);
284 if (!C || C->getZExtValue())
285 AddCarry = CurDAG->getMachineNode(ADDuOp, DL, VT, SDValue(Carry, 0), RHS);
286
287 CurDAG->SelectNodeTo(Node, MOp, VT, MVT::Glue, LHS, SDValue(AddCarry, 0));
288}
289
290/// Match frameindex
291bool MipsSEDAGToDAGISel::selectAddrFrameIndex(SDValue Addr, SDValue &Base,
292 SDValue &Offset) const {
293 if (FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(Addr)) {
294 EVT ValTy = Addr.getValueType();
295
296 Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
297 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), ValTy);
298 return true;
299 }
300 return false;
301}
302
303/// Match frameindex+offset and frameindex|offset
304bool MipsSEDAGToDAGISel::selectAddrFrameIndexOffset(
305 SDValue Addr, SDValue &Base, SDValue &Offset, unsigned OffsetBits,
306 unsigned ShiftAmount = 0) const {
307 if (CurDAG->isBaseWithConstantOffset(Addr)) {
308 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Addr.getOperand(1));
309 if (isIntN(OffsetBits + ShiftAmount, CN->getSExtValue())) {
310 EVT ValTy = Addr.getValueType();
311
312 // If the first operand is a FI, get the TargetFI Node
313 if (FrameIndexSDNode *FIN =
314 dyn_cast<FrameIndexSDNode>(Addr.getOperand(0)))
315 Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), ValTy);
316 else {
317 Base = Addr.getOperand(0);
318 // If base is a FI, additional offset calculation is done in
319 // eliminateFrameIndex, otherwise we need to check the alignment
320 if (OffsetToAlignment(CN->getZExtValue(), 1ull << ShiftAmount) != 0)
321 return false;
322 }
323
324 Offset = CurDAG->getTargetConstant(CN->getZExtValue(), SDLoc(Addr),
325 ValTy);
326 return true;
327 }
328 }
329 return false;
330}
331
332/// ComplexPattern used on MipsInstrInfo
333/// Used on Mips Load/Store instructions
334bool MipsSEDAGToDAGISel::selectAddrRegImm(SDValue Addr, SDValue &Base,
335 SDValue &Offset) const {
336 // if Address is FI, get the TargetFrameIndex.
337 if (selectAddrFrameIndex(Addr, Base, Offset))
338 return true;
339
340 // on PIC code Load GA
341 if (Addr.getOpcode() == MipsISD::Wrapper) {
342 Base = Addr.getOperand(0);
343 Offset = Addr.getOperand(1);
344 return true;
345 }
346
347 if (!TM.isPositionIndependent()) {
348 if ((Addr.getOpcode() == ISD::TargetExternalSymbol ||
349 Addr.getOpcode() == ISD::TargetGlobalAddress))
350 return false;
351 }
352
353 // Addresses of the form FI+const or FI|const
354 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16))
355 return true;
356
357 // Operand is a result from an ADD.
358 if (Addr.getOpcode() == ISD::ADD) {
359 // When loading from constant pools, load the lower address part in
360 // the instruction itself. Example, instead of:
361 // lui $2, %hi($CPI1_0)
362 // addiu $2, $2, %lo($CPI1_0)
363 // lwc1 $f0, 0($2)
364 // Generate:
365 // lui $2, %hi($CPI1_0)
366 // lwc1 $f0, %lo($CPI1_0)($2)
367 if (Addr.getOperand(1).getOpcode() == MipsISD::Lo ||
368 Addr.getOperand(1).getOpcode() == MipsISD::GPRel) {
369 SDValue Opnd0 = Addr.getOperand(1).getOperand(0);
370 if (isa<ConstantPoolSDNode>(Opnd0) || isa<GlobalAddressSDNode>(Opnd0) ||
371 isa<JumpTableSDNode>(Opnd0)) {
372 Base = Addr.getOperand(0);
373 Offset = Opnd0;
374 return true;
375 }
376 }
377 }
378
379 return false;
380}
381
382/// ComplexPattern used on MipsInstrInfo
383/// Used on Mips Load/Store instructions
384bool MipsSEDAGToDAGISel::selectAddrDefault(SDValue Addr, SDValue &Base,
385 SDValue &Offset) const {
386 Base = Addr;
387 Offset = CurDAG->getTargetConstant(0, SDLoc(Addr), Addr.getValueType());
388 return true;
389}
390
391bool MipsSEDAGToDAGISel::selectIntAddr(SDValue Addr, SDValue &Base,
392 SDValue &Offset) const {
393 return selectAddrRegImm(Addr, Base, Offset) ||
394 selectAddrDefault(Addr, Base, Offset);
395}
396
397bool MipsSEDAGToDAGISel::selectAddrRegImm9(SDValue Addr, SDValue &Base,
398 SDValue &Offset) const {
399 if (selectAddrFrameIndex(Addr, Base, Offset))
400 return true;
401
402 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 9))
403 return true;
404
405 return false;
406}
407
408/// Used on microMIPS LWC2, LDC2, SWC2 and SDC2 instructions (11-bit offset)
409bool MipsSEDAGToDAGISel::selectAddrRegImm11(SDValue Addr, SDValue &Base,
410 SDValue &Offset) const {
411 if (selectAddrFrameIndex(Addr, Base, Offset))
412 return true;
413
414 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 11))
415 return true;
416
417 return false;
418}
419
420/// Used on microMIPS Load/Store unaligned instructions (12-bit offset)
421bool MipsSEDAGToDAGISel::selectAddrRegImm12(SDValue Addr, SDValue &Base,
422 SDValue &Offset) const {
423 if (selectAddrFrameIndex(Addr, Base, Offset))
424 return true;
425
426 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 12))
427 return true;
428
429 return false;
430}
431
432bool MipsSEDAGToDAGISel::selectAddrRegImm16(SDValue Addr, SDValue &Base,
433 SDValue &Offset) const {
434 if (selectAddrFrameIndex(Addr, Base, Offset))
435 return true;
436
437 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 16))
438 return true;
439
440 return false;
441}
442
443bool MipsSEDAGToDAGISel::selectIntAddr11MM(SDValue Addr, SDValue &Base,
444 SDValue &Offset) const {
445 return selectAddrRegImm11(Addr, Base, Offset) ||
446 selectAddrDefault(Addr, Base, Offset);
447}
448
449bool MipsSEDAGToDAGISel::selectIntAddr12MM(SDValue Addr, SDValue &Base,
450 SDValue &Offset) const {
451 return selectAddrRegImm12(Addr, Base, Offset) ||
452 selectAddrDefault(Addr, Base, Offset);
453}
454
455bool MipsSEDAGToDAGISel::selectIntAddr16MM(SDValue Addr, SDValue &Base,
456 SDValue &Offset) const {
457 return selectAddrRegImm16(Addr, Base, Offset) ||
458 selectAddrDefault(Addr, Base, Offset);
459}
460
461bool MipsSEDAGToDAGISel::selectIntAddrLSL2MM(SDValue Addr, SDValue &Base,
462 SDValue &Offset) const {
463 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 7)) {
464 if (isa<FrameIndexSDNode>(Base))
465 return false;
466
467 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Offset)) {
468 unsigned CnstOff = CN->getZExtValue();
469 return (CnstOff == (CnstOff & 0x3c));
470 }
471
472 return false;
473 }
474
475 // For all other cases where "lw" would be selected, don't select "lw16"
476 // because it would result in additional instructions to prepare operands.
477 if (selectAddrRegImm(Addr, Base, Offset))
478 return false;
479
480 return selectAddrDefault(Addr, Base, Offset);
481}
482
483bool MipsSEDAGToDAGISel::selectIntAddrSImm10(SDValue Addr, SDValue &Base,
484 SDValue &Offset) const {
485
486 if (selectAddrFrameIndex(Addr, Base, Offset))
487 return true;
488
489 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10))
490 return true;
491
492 return selectAddrDefault(Addr, Base, Offset);
493}
494
495bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl1(SDValue Addr, SDValue &Base,
496 SDValue &Offset) const {
497 if (selectAddrFrameIndex(Addr, Base, Offset))
498 return true;
499
500 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 1))
501 return true;
502
503 return selectAddrDefault(Addr, Base, Offset);
504}
505
506bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl2(SDValue Addr, SDValue &Base,
507 SDValue &Offset) const {
508 if (selectAddrFrameIndex(Addr, Base, Offset))
509 return true;
510
511 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 2))
512 return true;
513
514 return selectAddrDefault(Addr, Base, Offset);
515}
516
517bool MipsSEDAGToDAGISel::selectIntAddrSImm10Lsl3(SDValue Addr, SDValue &Base,
518 SDValue &Offset) const {
519 if (selectAddrFrameIndex(Addr, Base, Offset))
520 return true;
521
522 if (selectAddrFrameIndexOffset(Addr, Base, Offset, 10, 3))
523 return true;
524
525 return selectAddrDefault(Addr, Base, Offset);
526}
527
528// Select constant vector splats.
529//
530// Returns true and sets Imm if:
531// * MSA is enabled
532// * N is a ISD::BUILD_VECTOR representing a constant splat
533bool MipsSEDAGToDAGISel::selectVSplat(SDNode *N, APInt &Imm,
534 unsigned MinSizeInBits) const {
535 if (!Subtarget->hasMSA())
536 return false;
537
538 BuildVectorSDNode *Node = dyn_cast<BuildVectorSDNode>(N);
539
540 if (!Node)
541 return false;
542
543 APInt SplatValue, SplatUndef;
544 unsigned SplatBitSize;
545 bool HasAnyUndefs;
546
547 if (!Node->isConstantSplat(SplatValue, SplatUndef, SplatBitSize, HasAnyUndefs,
548 MinSizeInBits, !Subtarget->isLittle()))
549 return false;
550
551 Imm = SplatValue;
552
553 return true;
554}
555
556// Select constant vector splats.
557//
558// In addition to the requirements of selectVSplat(), this function returns
559// true and sets Imm if:
560// * The splat value is the same width as the elements of the vector
561// * The splat value fits in an integer with the specified signed-ness and
562// width.
563//
564// This function looks through ISD::BITCAST nodes.
565// TODO: This might not be appropriate for big-endian MSA since BITCAST is
566// sometimes a shuffle in big-endian mode.
567//
568// It's worth noting that this function is not used as part of the selection
569// of ldi.[bhwd] since it does not permit using the wrong-typed ldi.[bhwd]
570// instruction to achieve the desired bit pattern. ldi.[bhwd] is selected in
571// MipsSEDAGToDAGISel::selectNode.
572bool MipsSEDAGToDAGISel::
573selectVSplatCommon(SDValue N, SDValue &Imm, bool Signed,
574 unsigned ImmBitSize) const {
575 APInt ImmValue;
576 EVT EltTy = N->getValueType(0).getVectorElementType();
577
578 if (N->getOpcode() == ISD::BITCAST)
579 N = N->getOperand(0);
580
581 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
582 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
583
584 if (( Signed && ImmValue.isSignedIntN(ImmBitSize)) ||
585 (!Signed && ImmValue.isIntN(ImmBitSize))) {
586 Imm = CurDAG->getTargetConstant(ImmValue, SDLoc(N), EltTy);
587 return true;
588 }
589 }
590
591 return false;
592}
593
594// Select constant vector splats.
595bool MipsSEDAGToDAGISel::
596selectVSplatUimm1(SDValue N, SDValue &Imm) const {
597 return selectVSplatCommon(N, Imm, false, 1);
598}
599
600bool MipsSEDAGToDAGISel::
601selectVSplatUimm2(SDValue N, SDValue &Imm) const {
602 return selectVSplatCommon(N, Imm, false, 2);
603}
604
605bool MipsSEDAGToDAGISel::
606selectVSplatUimm3(SDValue N, SDValue &Imm) const {
607 return selectVSplatCommon(N, Imm, false, 3);
608}
609
610// Select constant vector splats.
611bool MipsSEDAGToDAGISel::
612selectVSplatUimm4(SDValue N, SDValue &Imm) const {
613 return selectVSplatCommon(N, Imm, false, 4);
614}
615
616// Select constant vector splats.
617bool MipsSEDAGToDAGISel::
618selectVSplatUimm5(SDValue N, SDValue &Imm) const {
619 return selectVSplatCommon(N, Imm, false, 5);
620}
621
622// Select constant vector splats.
623bool MipsSEDAGToDAGISel::
624selectVSplatUimm6(SDValue N, SDValue &Imm) const {
625 return selectVSplatCommon(N, Imm, false, 6);
626}
627
628// Select constant vector splats.
629bool MipsSEDAGToDAGISel::
630selectVSplatUimm8(SDValue N, SDValue &Imm) const {
631 return selectVSplatCommon(N, Imm, false, 8);
632}
633
634// Select constant vector splats.
635bool MipsSEDAGToDAGISel::
636selectVSplatSimm5(SDValue N, SDValue &Imm) const {
637 return selectVSplatCommon(N, Imm, true, 5);
638}
639
640// Select constant vector splats whose value is a power of 2.
641//
642// In addition to the requirements of selectVSplat(), this function returns
643// true and sets Imm if:
644// * The splat value is the same width as the elements of the vector
645// * The splat value is a power of two.
646//
647// This function looks through ISD::BITCAST nodes.
648// TODO: This might not be appropriate for big-endian MSA since BITCAST is
649// sometimes a shuffle in big-endian mode.
650bool MipsSEDAGToDAGISel::selectVSplatUimmPow2(SDValue N, SDValue &Imm) const {
651 APInt ImmValue;
652 EVT EltTy = N->getValueType(0).getVectorElementType();
653
654 if (N->getOpcode() == ISD::BITCAST)
655 N = N->getOperand(0);
656
657 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
658 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
659 int32_t Log2 = ImmValue.exactLogBase2();
660
661 if (Log2 != -1) {
662 Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy);
663 return true;
664 }
665 }
666
667 return false;
668}
669
670// Select constant vector splats whose value only has a consecutive sequence
671// of left-most bits set (e.g. 0b11...1100...00).
672//
673// In addition to the requirements of selectVSplat(), this function returns
674// true and sets Imm if:
675// * The splat value is the same width as the elements of the vector
676// * The splat value is a consecutive sequence of left-most bits.
677//
678// This function looks through ISD::BITCAST nodes.
679// TODO: This might not be appropriate for big-endian MSA since BITCAST is
680// sometimes a shuffle in big-endian mode.
681bool MipsSEDAGToDAGISel::selectVSplatMaskL(SDValue N, SDValue &Imm) const {
682 APInt ImmValue;
683 EVT EltTy = N->getValueType(0).getVectorElementType();
684
685 if (N->getOpcode() == ISD::BITCAST)
686 N = N->getOperand(0);
687
688 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
689 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
690 // Extract the run of set bits starting with bit zero from the bitwise
691 // inverse of ImmValue, and test that the inverse of this is the same
692 // as the original value.
693 if (ImmValue == ~(~ImmValue & ~(~ImmValue + 1))) {
694
695 Imm = CurDAG->getTargetConstant(ImmValue.countPopulation() - 1, SDLoc(N),
696 EltTy);
697 return true;
698 }
699 }
700
701 return false;
702}
703
704// Select constant vector splats whose value only has a consecutive sequence
705// of right-most bits set (e.g. 0b00...0011...11).
706//
707// In addition to the requirements of selectVSplat(), this function returns
708// true and sets Imm if:
709// * The splat value is the same width as the elements of the vector
710// * The splat value is a consecutive sequence of right-most bits.
711//
712// This function looks through ISD::BITCAST nodes.
713// TODO: This might not be appropriate for big-endian MSA since BITCAST is
714// sometimes a shuffle in big-endian mode.
715bool MipsSEDAGToDAGISel::selectVSplatMaskR(SDValue N, SDValue &Imm) const {
716 APInt ImmValue;
717 EVT EltTy = N->getValueType(0).getVectorElementType();
718
719 if (N->getOpcode() == ISD::BITCAST)
720 N = N->getOperand(0);
721
722 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
723 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
724 // Extract the run of set bits starting with bit zero, and test that the
725 // result is the same as the original value
726 if (ImmValue == (ImmValue & ~(ImmValue + 1))) {
727 Imm = CurDAG->getTargetConstant(ImmValue.countPopulation() - 1, SDLoc(N),
728 EltTy);
729 return true;
730 }
731 }
732
733 return false;
734}
735
736bool MipsSEDAGToDAGISel::selectVSplatUimmInvPow2(SDValue N,
737 SDValue &Imm) const {
738 APInt ImmValue;
739 EVT EltTy = N->getValueType(0).getVectorElementType();
740
741 if (N->getOpcode() == ISD::BITCAST)
742 N = N->getOperand(0);
743
744 if (selectVSplat(N.getNode(), ImmValue, EltTy.getSizeInBits()) &&
745 ImmValue.getBitWidth() == EltTy.getSizeInBits()) {
746 int32_t Log2 = (~ImmValue).exactLogBase2();
747
748 if (Log2 != -1) {
749 Imm = CurDAG->getTargetConstant(Log2, SDLoc(N), EltTy);
750 return true;
751 }
752 }
753
754 return false;
755}
756
757bool MipsSEDAGToDAGISel::trySelect(SDNode *Node) {
758 unsigned Opcode = Node->getOpcode();
759 SDLoc DL(Node);
760
761 ///
762 // Instruction Selection not handled by the auto-generated
763 // tablegen selection should be handled here.
764 ///
765 switch(Opcode) {
1
Control jumps to 'case BUILD_VECTOR:' at line 924
766 default: break;
767
768 case ISD::SUBE: {
769 SDValue InFlag = Node->getOperand(2);
770 unsigned Opc = Subtarget->isGP64bit() ? Mips::DSUBu : Mips::SUBu;
771 selectAddESubE(Opc, InFlag, InFlag.getOperand(0), DL, Node);
772 return true;
773 }
774
775 case ISD::ADDE: {
776 if (Subtarget->hasDSP()) // Select DSP instructions, ADDSC and ADDWC.
777 break;
778 SDValue InFlag = Node->getOperand(2);
779 unsigned Opc = Subtarget->isGP64bit() ? Mips::DADDu : Mips::ADDu;
780 selectAddESubE(Opc, InFlag, InFlag.getValue(0), DL, Node);
781 return true;
782 }
783
784 case ISD::ConstantFP: {
785 ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(Node);
786 if (Node->getValueType(0) == MVT::f64 && CN->isExactlyValue(+0.0)) {
787 if (Subtarget->isGP64bit()) {
788 SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
789 Mips::ZERO_64, MVT::i64);
790 ReplaceNode(Node,
791 CurDAG->getMachineNode(Mips::DMTC1, DL, MVT::f64, Zero));
792 } else if (Subtarget->isFP64bit()) {
793 SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
794 Mips::ZERO, MVT::i32);
795 ReplaceNode(Node, CurDAG->getMachineNode(Mips::BuildPairF64_64, DL,
796 MVT::f64, Zero, Zero));
797 } else {
798 SDValue Zero = CurDAG->getCopyFromReg(CurDAG->getEntryNode(), DL,
799 Mips::ZERO, MVT::i32);
800 ReplaceNode(Node, CurDAG->getMachineNode(Mips::BuildPairF64, DL,
801 MVT::f64, Zero, Zero));
802 }
803 return true;
804 }
805 break;
806 }
807
808 case ISD::Constant: {
809 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Node);
810 int64_t Imm = CN->getSExtValue();
811 unsigned Size = CN->getValueSizeInBits(0);
812
813 if (isInt<32>(Imm))
814 break;
815
816 MipsAnalyzeImmediate AnalyzeImm;
817
818 const MipsAnalyzeImmediate::InstSeq &Seq =
819 AnalyzeImm.Analyze(Imm, Size, false);
820
821 MipsAnalyzeImmediate::InstSeq::const_iterator Inst = Seq.begin();
822 SDLoc DL(CN);
823 SDNode *RegOpnd;
824 SDValue ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd),
825 DL, MVT::i64);
826
827 // The first instruction can be a LUi which is different from other
828 // instructions (ADDiu, ORI and SLL) in that it does not have a register
829 // operand.
830 if (Inst->Opc == Mips::LUi64)
831 RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64, ImmOpnd);
832 else
833 RegOpnd =
834 CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
835 CurDAG->getRegister(Mips::ZERO_64, MVT::i64),
836 ImmOpnd);
837
838 // The remaining instructions in the sequence are handled here.
839 for (++Inst; Inst != Seq.end(); ++Inst) {
840 ImmOpnd = CurDAG->getTargetConstant(SignExtend64<16>(Inst->ImmOpnd), DL,
841 MVT::i64);
842 RegOpnd = CurDAG->getMachineNode(Inst->Opc, DL, MVT::i64,
843 SDValue(RegOpnd, 0), ImmOpnd);
844 }
845
846 ReplaceNode(Node, RegOpnd);
847 return true;
848 }
849
850 case ISD::INTRINSIC_W_CHAIN: {
851 switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
852 default:
853 break;
854
855 case Intrinsic::mips_cfcmsa: {
856 SDValue ChainIn = Node->getOperand(0);
857 SDValue RegIdx = Node->getOperand(2);
858 SDValue Reg = CurDAG->getCopyFromReg(ChainIn, DL,
859 getMSACtrlReg(RegIdx), MVT::i32);
860 ReplaceNode(Node, Reg.getNode());
861 return true;
862 }
863 }
864 break;
865 }
866
867 case ISD::INTRINSIC_WO_CHAIN: {
868 switch (cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue()) {
869 default:
870 break;
871
872 case Intrinsic::mips_move_v:
873 // Like an assignment but will always produce a move.v even if
874 // unnecessary.
875 ReplaceNode(Node, CurDAG->getMachineNode(Mips::MOVE_V, DL,
876 Node->getValueType(0),
877 Node->getOperand(1)));
878 return true;
879 }
880 break;
881 }
882
883 case ISD::INTRINSIC_VOID: {
884 switch (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
885 default:
886 break;
887
888 case Intrinsic::mips_ctcmsa: {
889 SDValue ChainIn = Node->getOperand(0);
890 SDValue RegIdx = Node->getOperand(2);
891 SDValue Value = Node->getOperand(3);
892 SDValue ChainOut = CurDAG->getCopyToReg(ChainIn, DL,
893 getMSACtrlReg(RegIdx), Value);
894 ReplaceNode(Node, ChainOut.getNode());
895 return true;
896 }
897 }
898 break;
899 }
900
901 case MipsISD::ThreadPointer: {
902 EVT PtrVT = getTargetLowering()->getPointerTy(CurDAG->getDataLayout());
903 unsigned RdhwrOpc, DestReg;
904
905 if (PtrVT == MVT::i32) {
906 RdhwrOpc = Mips::RDHWR;
907 DestReg = Mips::V1;
908 } else {
909 RdhwrOpc = Mips::RDHWR64;
910 DestReg = Mips::V1_64;
911 }
912
913 SDNode *Rdhwr =
914 CurDAG->getMachineNode(RdhwrOpc, DL,
915 Node->getValueType(0),
916 CurDAG->getRegister(Mips::HWR29, MVT::i32));
917 SDValue Chain = CurDAG->getCopyToReg(CurDAG->getEntryNode(), DL, DestReg,
918 SDValue(Rdhwr, 0));
919 SDValue ResNode = CurDAG->getCopyFromReg(Chain, DL, DestReg, PtrVT);
920 ReplaceNode(Node, ResNode.getNode());
921 return true;
922 }
923
924 case ISD::BUILD_VECTOR: {
925 // Select appropriate ldi.[bhwd] instructions for constant splats of
926 // 128-bit when MSA is enabled. Fixup any register class mismatches that
927 // occur as a result.
928 //
929 // This allows the compiler to use a wider range of immediates than would
930 // otherwise be allowed. If, for example, v4i32 could only use ldi.h then
931 // it would not be possible to load { 0x01010101, 0x01010101, 0x01010101,
932 // 0x01010101 } without using a constant pool. This would be sub-optimal
933 // when // 'ldi.b wd, 1' is capable of producing that bit-pattern in the
934 // same set/ of registers. Similarly, ldi.h isn't capable of producing {
935 // 0x00000000, 0x00000001, 0x00000000, 0x00000001 } but 'ldi.d wd, 1' can.
936
937 const MipsABIInfo &ABI =
938 static_cast<const MipsTargetMachine &>(TM).getABI();
939
940 BuildVectorSDNode *BVN = cast<BuildVectorSDNode>(Node);
941 APInt SplatValue, SplatUndef;
942 unsigned SplatBitSize;
943 bool HasAnyUndefs;
944 unsigned LdiOp;
945 EVT ResVecTy = BVN->getValueType(0);
946 EVT ViaVecTy;
947
948 if (!Subtarget->hasMSA() || !BVN->getValueType(0).is128BitVector())
2
Assuming the condition is false
3
Assuming the condition is false
4
Taking false branch
949 return false;
950
951 if (!BVN->isConstantSplat(SplatValue, SplatUndef, SplatBitSize,
6
Assuming the condition is false
7
Taking false branch
952 HasAnyUndefs, 8,
953 !Subtarget->isLittle()))
5
Assuming the condition is false
954 return false;
955
956 switch (SplatBitSize) {
8
Control jumps to 'case 64:' at line 971
957 default:
958 return false;
959 case 8:
960 LdiOp = Mips::LDI_B;
961 ViaVecTy = MVT::v16i8;
962 break;
963 case 16:
964 LdiOp = Mips::LDI_H;
965 ViaVecTy = MVT::v8i16;
966 break;
967 case 32:
968 LdiOp = Mips::LDI_W;
969 ViaVecTy = MVT::v4i32;
970 break;
971 case 64:
972 LdiOp = Mips::LDI_D;
973 ViaVecTy = MVT::v2i64;
974 break;
9
Execution continues on line 977
975 }
976
977 SDNode *Res;
10
'Res' declared without an initial value
978
979 // If we have a signed 10 bit integer, we can splat it directly.
980 //
981 // If we have something bigger we can synthesize the value into a GPR and
982 // splat from there.
983 if (SplatValue.isSignedIntN(10)) {
11
Taking false branch
984 SDValue Imm = CurDAG->getTargetConstant(SplatValue, DL,
985 ViaVecTy.getVectorElementType());
986
987 Res = CurDAG->getMachineNode(LdiOp, DL, ViaVecTy, Imm);
988 } else if (SplatValue.isSignedIntN(16) &&
989 ((ABI.IsO32() && SplatBitSize < 64) ||
990 (ABI.IsN32() || ABI.IsN64()))) {
991 // Only handle signed 16 bit values when the element size is GPR width.
992 // MIPS64 can handle all the cases but MIPS32 would need to handle
993 // negative cases specifically here. Instead, handle those cases as
994 // 64bit values.
995
996 bool Is32BitSplat = ABI.IsO32() || SplatBitSize < 64;
997 const unsigned ADDiuOp = Is32BitSplat ? Mips::ADDiu : Mips::DADDiu;
998 const MVT SplatMVT = Is32BitSplat ? MVT::i32 : MVT::i64;
999 SDValue ZeroVal = CurDAG->getRegister(
1000 Is32BitSplat ? Mips::ZERO : Mips::ZERO_64, SplatMVT);
1001
1002 const unsigned FILLOp =
1003 SplatBitSize == 16
1004 ? Mips::FILL_H
1005 : (SplatBitSize == 32 ? Mips::FILL_W
1006 : (SplatBitSize == 64 ? Mips::FILL_D : 0));
1007
1008 assert(FILLOp != 0 && "Unknown FILL Op for splat synthesis!")((FILLOp != 0 && "Unknown FILL Op for splat synthesis!"
) ? static_cast<void> (0) : __assert_fail ("FILLOp != 0 && \"Unknown FILL Op for splat synthesis!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Target/Mips/MipsSEISelDAGToDAG.cpp"
, 1008, __PRETTY_FUNCTION__))
;
1009 assert((!ABI.IsO32() || (FILLOp != Mips::FILL_D)) &&(((!ABI.IsO32() || (FILLOp != Mips::FILL_D)) && "Attempting to use fill.d on MIPS32!"
) ? static_cast<void> (0) : __assert_fail ("(!ABI.IsO32() || (FILLOp != Mips::FILL_D)) && \"Attempting to use fill.d on MIPS32!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Target/Mips/MipsSEISelDAGToDAG.cpp"
, 1010, __PRETTY_FUNCTION__))
1010 "Attempting to use fill.d on MIPS32!")(((!ABI.IsO32() || (FILLOp != Mips::FILL_D)) && "Attempting to use fill.d on MIPS32!"
) ? static_cast<void> (0) : __assert_fail ("(!ABI.IsO32() || (FILLOp != Mips::FILL_D)) && \"Attempting to use fill.d on MIPS32!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Target/Mips/MipsSEISelDAGToDAG.cpp"
, 1010, __PRETTY_FUNCTION__))
;
1011
1012 const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
1013 SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, SplatMVT);
1014
1015 Res = CurDAG->getMachineNode(ADDiuOp, DL, SplatMVT, ZeroVal, LoVal);
1016 Res = CurDAG->getMachineNode(FILLOp, DL, ViaVecTy, SDValue(Res, 0));
1017
1018 } else if (SplatValue.isSignedIntN(32) && SplatBitSize == 32) {
1019 // Only handle the cases where the splat size agrees with the size
1020 // of the SplatValue here.
1021 const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
1022 const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue();
1023 SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32);
1024
1025 SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32);
1026 SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32);
1027
1028 if (Hi)
1029 Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal);
1030
1031 if (Lo)
1032 Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
1033 Hi ? SDValue(Res, 0) : ZeroVal, LoVal);
1034
1035 assert((Hi || Lo) && "Zero case reached 32 bit case splat synthesis!")(((Hi || Lo) && "Zero case reached 32 bit case splat synthesis!"
) ? static_cast<void> (0) : __assert_fail ("(Hi || Lo) && \"Zero case reached 32 bit case splat synthesis!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Target/Mips/MipsSEISelDAGToDAG.cpp"
, 1035, __PRETTY_FUNCTION__))
;
1036 Res = CurDAG->getMachineNode(Mips::FILL_W, DL, MVT::v4i32, SDValue(Res, 0));
1037
1038 } else if (SplatValue.isSignedIntN(32) && SplatBitSize == 64 &&
1039 (ABI.IsN32() || ABI.IsN64())) {
1040 // N32 and N64 can perform some tricks that O32 can't for signed 32 bit
1041 // integers due to having 64bit registers. lui will cause the necessary
1042 // zero/sign extension.
1043 const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
1044 const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue();
1045 SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32);
1046
1047 SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32);
1048 SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32);
1049
1050 if (Hi)
12
Assuming 'Hi' is 0
13
Taking false branch
1051 Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal);
1052
1053 if (Lo)
14
Assuming 'Lo' is 0
15
Taking false branch
1054 Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
1055 Hi ? SDValue(Res, 0) : ZeroVal, LoVal);
1056
1057 Res = CurDAG->getMachineNode(
1058 Mips::SUBREG_TO_REG, DL, MVT::i64,
1059 CurDAG->getTargetConstant(((Hi >> 15) & 0x1), DL, MVT::i64),
1060 SDValue(Res, 0),
16
1st function call argument is an uninitialized value
1061 CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64));
1062
1063 Res =
1064 CurDAG->getMachineNode(Mips::FILL_D, DL, MVT::v2i64, SDValue(Res, 0));
1065
1066 } else if (SplatValue.isSignedIntN(64)) {
1067 // If we have a 64 bit Splat value, we perform a similar sequence to the
1068 // above:
1069 //
1070 // MIPS32: MIPS64:
1071 // lui $res, %highest(val) lui $res, %highest(val)
1072 // ori $res, $res, %higher(val) ori $res, $res, %higher(val)
1073 // lui $res2, %hi(val) lui $res2, %hi(val)
1074 // ori $res2, %res2, %lo(val) ori $res2, %res2, %lo(val)
1075 // $res3 = fill $res2 dinsu $res, $res2, 0, 32
1076 // $res4 = insert.w $res3[1], $res fill.d $res
1077 // splat.d $res4, 0
1078 //
1079 // The ability to use dinsu is guaranteed as MSA requires MIPSR5. This saves
1080 // having to materialize the value by shifts and ors.
1081 //
1082 // FIXME: Implement the preferred sequence for MIPS64R6:
1083 //
1084 // MIPS64R6:
1085 // ori $res, $zero, %lo(val)
1086 // daui $res, $res, %hi(val)
1087 // dahi $res, $res, %higher(val)
1088 // dati $res, $res, %highest(cal)
1089 // fill.d $res
1090 //
1091
1092 const unsigned Lo = SplatValue.getLoBits(16).getZExtValue();
1093 const unsigned Hi = SplatValue.lshr(16).getLoBits(16).getZExtValue();
1094 const unsigned Higher = SplatValue.lshr(32).getLoBits(16).getZExtValue();
1095 const unsigned Highest = SplatValue.lshr(48).getLoBits(16).getZExtValue();
1096
1097 SDValue LoVal = CurDAG->getTargetConstant(Lo, DL, MVT::i32);
1098 SDValue HiVal = CurDAG->getTargetConstant(Hi, DL, MVT::i32);
1099 SDValue HigherVal = CurDAG->getTargetConstant(Higher, DL, MVT::i32);
1100 SDValue HighestVal = CurDAG->getTargetConstant(Highest, DL, MVT::i32);
1101 SDValue ZeroVal = CurDAG->getRegister(Mips::ZERO, MVT::i32);
1102
1103 // Independent of whether we're targeting MIPS64 or not, the basic
1104 // operations are the same. Also, directly use the $zero register if
1105 // the 16 bit chunk is zero.
1106 //
1107 // For optimization purposes we always synthesize the splat value as
1108 // an i32 value, then if we're targetting MIPS64, use SUBREG_TO_REG
1109 // just before combining the values with dinsu to produce an i64. This
1110 // enables SelectionDAG to aggressively share components of splat values
1111 // where possible.
1112 //
1113 // FIXME: This is the general constant synthesis problem. This code
1114 // should be factored out into a class shared between all the
1115 // classes that need it. Specifically, for a splat size of 64
1116 // bits that's a negative number we can do better than LUi/ORi
1117 // for the upper 32bits.
1118
1119 if (Hi)
1120 Res = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HiVal);
1121
1122 if (Lo)
1123 Res = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
1124 Hi ? SDValue(Res, 0) : ZeroVal, LoVal);
1125
1126 SDNode *HiRes;
1127 if (Highest)
1128 HiRes = CurDAG->getMachineNode(Mips::LUi, DL, MVT::i32, HighestVal);
1129
1130 if (Higher)
1131 HiRes = CurDAG->getMachineNode(Mips::ORi, DL, MVT::i32,
1132 Highest ? SDValue(HiRes, 0) : ZeroVal,
1133 HigherVal);
1134
1135
1136 if (ABI.IsO32()) {
1137 Res = CurDAG->getMachineNode(Mips::FILL_W, DL, MVT::v4i32,
1138 (Hi || Lo) ? SDValue(Res, 0) : ZeroVal);
1139
1140 Res = CurDAG->getMachineNode(
1141 Mips::INSERT_W, DL, MVT::v4i32, SDValue(Res, 0),
1142 (Highest || Higher) ? SDValue(HiRes, 0) : ZeroVal,
1143 CurDAG->getTargetConstant(1, DL, MVT::i32));
1144
1145 const TargetLowering *TLI = getTargetLowering();
1146 const TargetRegisterClass *RC =
1147 TLI->getRegClassFor(ViaVecTy.getSimpleVT());
1148
1149 Res = CurDAG->getMachineNode(
1150 Mips::COPY_TO_REGCLASS, DL, ViaVecTy, SDValue(Res, 0),
1151 CurDAG->getTargetConstant(RC->getID(), DL, MVT::i32));
1152
1153 Res = CurDAG->getMachineNode(
1154 Mips::SPLATI_D, DL, MVT::v2i64, SDValue(Res, 0),
1155 CurDAG->getTargetConstant(0, DL, MVT::i32));
1156 } else if (ABI.IsN64() || ABI.IsN32()) {
1157
1158 SDValue Zero64Val = CurDAG->getRegister(Mips::ZERO_64, MVT::i64);
1159 const bool HiResNonZero = Highest || Higher;
1160 const bool ResNonZero = Hi || Lo;
1161
1162 if (HiResNonZero)
1163 HiRes = CurDAG->getMachineNode(
1164 Mips::SUBREG_TO_REG, DL, MVT::i64,
1165 CurDAG->getTargetConstant(((Highest >> 15) & 0x1), DL, MVT::i64),
1166 SDValue(HiRes, 0),
1167 CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64));
1168
1169 if (ResNonZero)
1170 Res = CurDAG->getMachineNode(
1171 Mips::SUBREG_TO_REG, DL, MVT::i64,
1172 CurDAG->getTargetConstant(((Hi >> 15) & 0x1), DL, MVT::i64),
1173 SDValue(Res, 0),
1174 CurDAG->getTargetConstant(Mips::sub_32, DL, MVT::i64));
1175
1176 // We have 3 cases:
1177 // The HiRes is nonzero but Res is $zero => dsll32 HiRes, 0
1178 // The Res is nonzero but HiRes is $zero => dinsu Res, $zero, 32, 32
1179 // Both are non zero => dinsu Res, HiRes, 32, 32
1180 //
1181 // The obvious "missing" case is when both are zero, but that case is
1182 // handled by the ldi case.
1183 if (ResNonZero) {
1184 SDValue Ops[4] = {HiResNonZero ? SDValue(HiRes, 0) : Zero64Val,
1185 CurDAG->getTargetConstant(64, DL, MVT::i32),
1186 CurDAG->getTargetConstant(32, DL, MVT::i32),
1187 SDValue(Res, 0)};
1188
1189 Res = CurDAG->getMachineNode(Mips::DINSU, DL, MVT::i64, Ops);
1190 } else if (HiResNonZero) {
1191 Res = CurDAG->getMachineNode(
1192 Mips::DSLL32, DL, MVT::i64, SDValue(HiRes, 0),
1193 CurDAG->getTargetConstant(0, DL, MVT::i32));
1194 } else
1195 llvm_unreachable(::llvm::llvm_unreachable_internal("Zero splat value handled by non-zero 64bit splat synthesis!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Target/Mips/MipsSEISelDAGToDAG.cpp"
, 1196)
1196 "Zero splat value handled by non-zero 64bit splat synthesis!")::llvm::llvm_unreachable_internal("Zero splat value handled by non-zero 64bit splat synthesis!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Target/Mips/MipsSEISelDAGToDAG.cpp"
, 1196)
;
1197
1198 Res = CurDAG->getMachineNode(Mips::FILL_D, DL, MVT::v2i64, SDValue(Res, 0));
1199 } else
1200 llvm_unreachable("Unknown ABI in MipsISelDAGToDAG!")::llvm::llvm_unreachable_internal("Unknown ABI in MipsISelDAGToDAG!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Target/Mips/MipsSEISelDAGToDAG.cpp"
, 1200)
;
1201
1202 } else
1203 return false;
1204
1205 if (ResVecTy != ViaVecTy) {
1206 // If LdiOp is writing to a different register class to ResVecTy, then
1207 // fix it up here. This COPY_TO_REGCLASS should never cause a move.v
1208 // since the source and destination register sets contain the same
1209 // registers.
1210 const TargetLowering *TLI = getTargetLowering();
1211 MVT ResVecTySimple = ResVecTy.getSimpleVT();
1212 const TargetRegisterClass *RC = TLI->getRegClassFor(ResVecTySimple);
1213 Res = CurDAG->getMachineNode(Mips::COPY_TO_REGCLASS, DL,
1214 ResVecTy, SDValue(Res, 0),
1215 CurDAG->getTargetConstant(RC->getID(), DL,
1216 MVT::i32));
1217 }
1218
1219 ReplaceNode(Node, Res);
1220 return true;
1221 }
1222
1223 }
1224
1225 return false;
1226}
1227
1228bool MipsSEDAGToDAGISel::
1229SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintID,
1230 std::vector<SDValue> &OutOps) {
1231 SDValue Base, Offset;
1232
1233 switch(ConstraintID) {
1234 default:
1235 llvm_unreachable("Unexpected asm memory constraint")::llvm::llvm_unreachable_internal("Unexpected asm memory constraint"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Target/Mips/MipsSEISelDAGToDAG.cpp"
, 1235)
;
1236 // All memory constraints can at least accept raw pointers.
1237 case InlineAsm::Constraint_i:
1238 OutOps.push_back(Op);
1239 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
1240 return false;
1241 case InlineAsm::Constraint_m:
1242 if (selectAddrRegImm16(Op, Base, Offset)) {
1243 OutOps.push_back(Base);
1244 OutOps.push_back(Offset);
1245 return false;
1246 }
1247 OutOps.push_back(Op);
1248 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
1249 return false;
1250 case InlineAsm::Constraint_R:
1251 // The 'R' constraint is supposed to be much more complicated than this.
1252 // However, it's becoming less useful due to architectural changes and
1253 // ought to be replaced by other constraints such as 'ZC'.
1254 // For now, support 9-bit signed offsets which is supportable by all
1255 // subtargets for all instructions.
1256 if (selectAddrRegImm9(Op, Base, Offset)) {
1257 OutOps.push_back(Base);
1258 OutOps.push_back(Offset);
1259 return false;
1260 }
1261 OutOps.push_back(Op);
1262 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
1263 return false;
1264 case InlineAsm::Constraint_ZC:
1265 // ZC matches whatever the pref, ll, and sc instructions can handle for the
1266 // given subtarget.
1267 if (Subtarget->inMicroMipsMode()) {
1268 // On microMIPS, they can handle 12-bit offsets.
1269 if (selectAddrRegImm12(Op, Base, Offset)) {
1270 OutOps.push_back(Base);
1271 OutOps.push_back(Offset);
1272 return false;
1273 }
1274 } else if (Subtarget->hasMips32r6()) {
1275 // On MIPS32r6/MIPS64r6, they can only handle 9-bit offsets.
1276 if (selectAddrRegImm9(Op, Base, Offset)) {
1277 OutOps.push_back(Base);
1278 OutOps.push_back(Offset);
1279 return false;
1280 }
1281 } else if (selectAddrRegImm16(Op, Base, Offset)) {
1282 // Prior to MIPS32r6/MIPS64r6, they can handle 16-bit offsets.
1283 OutOps.push_back(Base);
1284 OutOps.push_back(Offset);
1285 return false;
1286 }
1287 // In all cases, 0-bit offsets are acceptable.
1288 OutOps.push_back(Op);
1289 OutOps.push_back(CurDAG->getTargetConstant(0, SDLoc(Op), MVT::i32));
1290 return false;
1291 }
1292 return true;
1293}
1294
1295FunctionPass *llvm::createMipsSEISelDag(MipsTargetMachine &TM,
1296 CodeGenOpt::Level OptLevel) {
1297 return new MipsSEDAGToDAGISel(TM, OptLevel);
1298}