Bug Summary

File:lib/Target/NVPTX/NVPTXISelLowering.cpp
Warning:line 1849, column 13
Called C++ object pointer is null

Annotated Source Code

1//===-- NVPTXISelLowering.cpp - NVPTX DAG Lowering Implementation ---------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the interfaces that NVPTX uses to lower LLVM code into a
11// selection DAG.
12//
13//===----------------------------------------------------------------------===//
14
15#include "MCTargetDesc/NVPTXBaseInfo.h"
16#include "NVPTX.h"
17#include "NVPTXISelLowering.h"
18#include "NVPTXSection.h"
19#include "NVPTXSubtarget.h"
20#include "NVPTXTargetMachine.h"
21#include "NVPTXTargetObjectFile.h"
22#include "NVPTXUtilities.h"
23#include "llvm/ADT/APInt.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/StringRef.h"
26#include "llvm/CodeGen/Analysis.h"
27#include "llvm/CodeGen/MachineFunction.h"
28#include "llvm/CodeGen/MachineMemOperand.h"
29#include "llvm/CodeGen/MachineValueType.h"
30#include "llvm/CodeGen/SelectionDAG.h"
31#include "llvm/CodeGen/SelectionDAGNodes.h"
32#include "llvm/CodeGen/ValueTypes.h"
33#include "llvm/IR/Argument.h"
34#include "llvm/IR/Attributes.h"
35#include "llvm/IR/CallSite.h"
36#include "llvm/IR/Constants.h"
37#include "llvm/IR/DataLayout.h"
38#include "llvm/IR/DerivedTypes.h"
39#include "llvm/IR/Function.h"
40#include "llvm/IR/GlobalValue.h"
41#include "llvm/IR/Instruction.h"
42#include "llvm/IR/Instructions.h"
43#include "llvm/IR/Module.h"
44#include "llvm/IR/Type.h"
45#include "llvm/IR/Value.h"
46#include "llvm/Support/Casting.h"
47#include "llvm/Support/CodeGen.h"
48#include "llvm/Support/CommandLine.h"
49#include "llvm/Support/ErrorHandling.h"
50#include "llvm/Support/MathExtras.h"
51#include "llvm/Support/raw_ostream.h"
52#include "llvm/Target/TargetCallingConv.h"
53#include "llvm/Target/TargetLowering.h"
54#include "llvm/Target/TargetMachine.h"
55#include "llvm/Target/TargetOptions.h"
56#include <algorithm>
57#include <cassert>
58#include <cstdint>
59#include <iterator>
60#include <sstream>
61#include <string>
62#include <utility>
63#include <vector>
64
65#undef DEBUG_TYPE"nvptx-lower"
66#define DEBUG_TYPE"nvptx-lower" "nvptx-lower"
67
68using namespace llvm;
69
70static unsigned int uniqueCallSite = 0;
71
72static cl::opt<bool> sched4reg(
73 "nvptx-sched4reg",
74 cl::desc("NVPTX Specific: schedule for register pressue"), cl::init(false));
75
76static cl::opt<unsigned>
77FMAContractLevelOpt("nvptx-fma-level", cl::ZeroOrMore, cl::Hidden,
78 cl::desc("NVPTX Specific: FMA contraction (0: don't do it"
79 " 1: do it 2: do it aggressively"),
80 cl::init(2));
81
82static cl::opt<int> UsePrecDivF32(
83 "nvptx-prec-divf32", cl::ZeroOrMore, cl::Hidden,
84 cl::desc("NVPTX Specifies: 0 use div.approx, 1 use div.full, 2 use"
85 " IEEE Compliant F32 div.rnd if available."),
86 cl::init(2));
87
88static cl::opt<bool> UsePrecSqrtF32(
89 "nvptx-prec-sqrtf32", cl::Hidden,
90 cl::desc("NVPTX Specific: 0 use sqrt.approx, 1 use sqrt.rn."),
91 cl::init(true));
92
93static cl::opt<bool> FtzEnabled(
94 "nvptx-f32ftz", cl::ZeroOrMore, cl::Hidden,
95 cl::desc("NVPTX Specific: Flush f32 subnormals to sign-preserving zero."),
96 cl::init(false));
97
98int NVPTXTargetLowering::getDivF32Level() const {
99 if (UsePrecDivF32.getNumOccurrences() > 0) {
100 // If nvptx-prec-div32=N is used on the command-line, always honor it
101 return UsePrecDivF32;
102 } else {
103 // Otherwise, use div.approx if fast math is enabled
104 if (getTargetMachine().Options.UnsafeFPMath)
105 return 0;
106 else
107 return 2;
108 }
109}
110
111bool NVPTXTargetLowering::usePrecSqrtF32() const {
112 if (UsePrecSqrtF32.getNumOccurrences() > 0) {
113 // If nvptx-prec-sqrtf32 is used on the command-line, always honor it
114 return UsePrecSqrtF32;
115 } else {
116 // Otherwise, use sqrt.approx if fast math is enabled
117 return !getTargetMachine().Options.UnsafeFPMath;
118 }
119}
120
121bool NVPTXTargetLowering::useF32FTZ(const MachineFunction &MF) const {
122 // TODO: Get rid of this flag; there can be only one way to do this.
123 if (FtzEnabled.getNumOccurrences() > 0) {
124 // If nvptx-f32ftz is used on the command-line, always honor it
125 return FtzEnabled;
126 } else {
127 const Function *F = MF.getFunction();
128 // Otherwise, check for an nvptx-f32ftz attribute on the function
129 if (F->hasFnAttribute("nvptx-f32ftz"))
130 return F->getFnAttribute("nvptx-f32ftz").getValueAsString() == "true";
131 else
132 return false;
133 }
134}
135
136static bool IsPTXVectorType(MVT VT) {
137 switch (VT.SimpleTy) {
138 default:
139 return false;
140 case MVT::v2i1:
141 case MVT::v4i1:
142 case MVT::v2i8:
143 case MVT::v4i8:
144 case MVT::v2i16:
145 case MVT::v4i16:
146 case MVT::v2i32:
147 case MVT::v4i32:
148 case MVT::v2i64:
149 case MVT::v2f32:
150 case MVT::v4f32:
151 case MVT::v2f64:
152 return true;
153 }
154}
155
156/// ComputePTXValueVTs - For the given Type \p Ty, returns the set of primitive
157/// EVTs that compose it. Unlike ComputeValueVTs, this will break apart vectors
158/// into their primitive components.
159/// NOTE: This is a band-aid for code that expects ComputeValueVTs to return the
160/// same number of types as the Ins/Outs arrays in LowerFormalArguments,
161/// LowerCall, and LowerReturn.
162static void ComputePTXValueVTs(const TargetLowering &TLI, const DataLayout &DL,
163 Type *Ty, SmallVectorImpl<EVT> &ValueVTs,
164 SmallVectorImpl<uint64_t> *Offsets = nullptr,
165 uint64_t StartingOffset = 0) {
166 SmallVector<EVT, 16> TempVTs;
167 SmallVector<uint64_t, 16> TempOffsets;
168
169 ComputeValueVTs(TLI, DL, Ty, TempVTs, &TempOffsets, StartingOffset);
170 for (unsigned i = 0, e = TempVTs.size(); i != e; ++i) {
171 EVT VT = TempVTs[i];
172 uint64_t Off = TempOffsets[i];
173 if (VT.isVector())
174 for (unsigned j = 0, je = VT.getVectorNumElements(); j != je; ++j) {
175 ValueVTs.push_back(VT.getVectorElementType());
176 if (Offsets)
177 Offsets->push_back(Off+j*VT.getVectorElementType().getStoreSize());
178 }
179 else {
180 ValueVTs.push_back(VT);
181 if (Offsets)
182 Offsets->push_back(Off);
183 }
184 }
185}
186
187// NVPTXTargetLowering Constructor.
188NVPTXTargetLowering::NVPTXTargetLowering(const NVPTXTargetMachine &TM,
189 const NVPTXSubtarget &STI)
190 : TargetLowering(TM), nvTM(&TM), STI(STI) {
191 // always lower memset, memcpy, and memmove intrinsics to load/store
192 // instructions, rather
193 // then generating calls to memset, mempcy or memmove.
194 MaxStoresPerMemset = (unsigned) 0xFFFFFFFF;
195 MaxStoresPerMemcpy = (unsigned) 0xFFFFFFFF;
196 MaxStoresPerMemmove = (unsigned) 0xFFFFFFFF;
197
198 setBooleanContents(ZeroOrNegativeOneBooleanContent);
199 setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
200
201 // Jump is Expensive. Don't create extra control flow for 'and', 'or'
202 // condition branches.
203 setJumpIsExpensive(true);
204
205 // Wide divides are _very_ slow. Try to reduce the width of the divide if
206 // possible.
207 addBypassSlowDiv(64, 32);
208
209 // By default, use the Source scheduling
210 if (sched4reg)
211 setSchedulingPreference(Sched::RegPressure);
212 else
213 setSchedulingPreference(Sched::Source);
214
215 addRegisterClass(MVT::i1, &NVPTX::Int1RegsRegClass);
216 addRegisterClass(MVT::i16, &NVPTX::Int16RegsRegClass);
217 addRegisterClass(MVT::i32, &NVPTX::Int32RegsRegClass);
218 addRegisterClass(MVT::i64, &NVPTX::Int64RegsRegClass);
219 addRegisterClass(MVT::f32, &NVPTX::Float32RegsRegClass);
220 addRegisterClass(MVT::f64, &NVPTX::Float64RegsRegClass);
221 addRegisterClass(MVT::f16, &NVPTX::Float16RegsRegClass);
222
223 setOperationAction(ISD::SETCC, MVT::f16,
224 STI.allowFP16Math() ? Legal : Promote);
225
226 // Operations not directly supported by NVPTX.
227 setOperationAction(ISD::SELECT_CC, MVT::f16,
228 STI.allowFP16Math() ? Expand : Promote);
229 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
230 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
231 setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
232 setOperationAction(ISD::SELECT_CC, MVT::i8, Expand);
233 setOperationAction(ISD::SELECT_CC, MVT::i16, Expand);
234 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
235 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
236 setOperationAction(ISD::BR_CC, MVT::f16,
237 STI.allowFP16Math() ? Expand : Promote);
238 setOperationAction(ISD::BR_CC, MVT::f32, Expand);
239 setOperationAction(ISD::BR_CC, MVT::f64, Expand);
240 setOperationAction(ISD::BR_CC, MVT::i1, Expand);
241 setOperationAction(ISD::BR_CC, MVT::i8, Expand);
242 setOperationAction(ISD::BR_CC, MVT::i16, Expand);
243 setOperationAction(ISD::BR_CC, MVT::i32, Expand);
244 setOperationAction(ISD::BR_CC, MVT::i64, Expand);
245 // Some SIGN_EXTEND_INREG can be done using cvt instruction.
246 // For others we will expand to a SHL/SRA pair.
247 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i64, Legal);
248 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
249 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal);
250 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8 , Legal);
251 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
252
253 setOperationAction(ISD::SHL_PARTS, MVT::i32 , Custom);
254 setOperationAction(ISD::SRA_PARTS, MVT::i32 , Custom);
255 setOperationAction(ISD::SRL_PARTS, MVT::i32 , Custom);
256 setOperationAction(ISD::SHL_PARTS, MVT::i64 , Custom);
257 setOperationAction(ISD::SRA_PARTS, MVT::i64 , Custom);
258 setOperationAction(ISD::SRL_PARTS, MVT::i64 , Custom);
259
260 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
261 setOperationAction(ISD::BITREVERSE, MVT::i64, Legal);
262
263 if (STI.hasROT64()) {
264 setOperationAction(ISD::ROTL, MVT::i64, Legal);
265 setOperationAction(ISD::ROTR, MVT::i64, Legal);
266 } else {
267 setOperationAction(ISD::ROTL, MVT::i64, Expand);
268 setOperationAction(ISD::ROTR, MVT::i64, Expand);
269 }
270 if (STI.hasROT32()) {
271 setOperationAction(ISD::ROTL, MVT::i32, Legal);
272 setOperationAction(ISD::ROTR, MVT::i32, Legal);
273 } else {
274 setOperationAction(ISD::ROTL, MVT::i32, Expand);
275 setOperationAction(ISD::ROTR, MVT::i32, Expand);
276 }
277
278 setOperationAction(ISD::ROTL, MVT::i16, Expand);
279 setOperationAction(ISD::ROTR, MVT::i16, Expand);
280 setOperationAction(ISD::ROTL, MVT::i8, Expand);
281 setOperationAction(ISD::ROTR, MVT::i8, Expand);
282 setOperationAction(ISD::BSWAP, MVT::i16, Expand);
283 setOperationAction(ISD::BSWAP, MVT::i32, Expand);
284 setOperationAction(ISD::BSWAP, MVT::i64, Expand);
285
286 // Indirect branch is not supported.
287 // This also disables Jump Table creation.
288 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
289 setOperationAction(ISD::BRIND, MVT::Other, Expand);
290
291 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
292 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
293
294 // We want to legalize constant related memmove and memcopy
295 // intrinsics.
296 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
297
298 // Turn FP extload into load/fpextend
299 setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
300 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
301 setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f32, Expand);
302 setLoadExtAction(ISD::EXTLOAD, MVT::v2f32, MVT::v2f16, Expand);
303 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
304 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
305 setLoadExtAction(ISD::EXTLOAD, MVT::v4f32, MVT::v4f16, Expand);
306 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f16, Expand);
307 setLoadExtAction(ISD::EXTLOAD, MVT::v4f64, MVT::v4f32, Expand);
308 // Turn FP truncstore into trunc + store.
309 // FIXME: vector types should also be expanded
310 setTruncStoreAction(MVT::f32, MVT::f16, Expand);
311 setTruncStoreAction(MVT::f64, MVT::f16, Expand);
312 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
313
314 // PTX does not support load / store predicate registers
315 setOperationAction(ISD::LOAD, MVT::i1, Custom);
316 setOperationAction(ISD::STORE, MVT::i1, Custom);
317
318 for (MVT VT : MVT::integer_valuetypes()) {
319 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
320 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
321 setTruncStoreAction(VT, MVT::i1, Expand);
322 }
323
324 // This is legal in NVPTX
325 setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
326 setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
327 setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
328
329 // TRAP can be lowered to PTX trap
330 setOperationAction(ISD::TRAP, MVT::Other, Legal);
331
332 setOperationAction(ISD::ADDC, MVT::i64, Expand);
333 setOperationAction(ISD::ADDE, MVT::i64, Expand);
334
335 // Register custom handling for vector loads/stores
336 for (MVT VT : MVT::vector_valuetypes()) {
337 if (IsPTXVectorType(VT)) {
338 setOperationAction(ISD::LOAD, VT, Custom);
339 setOperationAction(ISD::STORE, VT, Custom);
340 setOperationAction(ISD::INTRINSIC_W_CHAIN, VT, Custom);
341 }
342 }
343
344 // Custom handling for i8 intrinsics
345 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
346
347 for (const auto& Ty : {MVT::i16, MVT::i32, MVT::i64}) {
348 setOperationAction(ISD::SMIN, Ty, Legal);
349 setOperationAction(ISD::SMAX, Ty, Legal);
350 setOperationAction(ISD::UMIN, Ty, Legal);
351 setOperationAction(ISD::UMAX, Ty, Legal);
352
353 setOperationAction(ISD::CTPOP, Ty, Legal);
354 setOperationAction(ISD::CTLZ, Ty, Legal);
355 }
356
357 setOperationAction(ISD::CTTZ, MVT::i16, Expand);
358 setOperationAction(ISD::CTTZ, MVT::i32, Expand);
359 setOperationAction(ISD::CTTZ, MVT::i64, Expand);
360
361 // PTX does not directly support SELP of i1, so promote to i32 first
362 setOperationAction(ISD::SELECT, MVT::i1, Custom);
363
364 // PTX cannot multiply two i64s in a single instruction.
365 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
366 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
367
368 // We have some custom DAG combine patterns for these nodes
369 setTargetDAGCombine(ISD::ADD);
370 setTargetDAGCombine(ISD::AND);
371 setTargetDAGCombine(ISD::FADD);
372 setTargetDAGCombine(ISD::MUL);
373 setTargetDAGCombine(ISD::SHL);
374 setTargetDAGCombine(ISD::SREM);
375 setTargetDAGCombine(ISD::UREM);
376
377 if (!STI.allowFP16Math()) {
378 // Promote fp16 arithmetic if fp16 hardware isn't available or the
379 // user passed --nvptx-no-fp16-math. The flag is useful because,
380 // although sm_53+ GPUs have some sort of FP16 support in
381 // hardware, only sm_53 and sm_60 have full implementation. Others
382 // only have token amount of hardware and are likely to run faster
383 // by using fp32 units instead.
384 setOperationAction(ISD::FADD, MVT::f16, Promote);
385 setOperationAction(ISD::FMUL, MVT::f16, Promote);
386 setOperationAction(ISD::FSUB, MVT::f16, Promote);
387 setOperationAction(ISD::FMA, MVT::f16, Promote);
388 }
389 // There's no neg.f16 instruction.
390 setOperationAction(ISD::FNEG, MVT::f16, Expand);
391
392 // Library functions. These default to Expand, but we have instructions
393 // for them.
394 setOperationAction(ISD::FCEIL, MVT::f16, Legal);
395 setOperationAction(ISD::FCEIL, MVT::f32, Legal);
396 setOperationAction(ISD::FCEIL, MVT::f64, Legal);
397 setOperationAction(ISD::FFLOOR, MVT::f16, Legal);
398 setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
399 setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
400 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
401 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
402 setOperationAction(ISD::FRINT, MVT::f16, Legal);
403 setOperationAction(ISD::FRINT, MVT::f32, Legal);
404 setOperationAction(ISD::FRINT, MVT::f64, Legal);
405 setOperationAction(ISD::FROUND, MVT::f16, Legal);
406 setOperationAction(ISD::FROUND, MVT::f32, Legal);
407 setOperationAction(ISD::FROUND, MVT::f64, Legal);
408 setOperationAction(ISD::FTRUNC, MVT::f16, Legal);
409 setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
410 setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
411 setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
412 setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
413 setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
414 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
415
416 // 'Expand' implements FCOPYSIGN without calling an external library.
417 setOperationAction(ISD::FCOPYSIGN, MVT::f16, Expand);
418 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
419 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
420
421 // FP16 does not support these nodes in hardware, but we can perform
422 // these ops using single-precision hardware.
423 setOperationAction(ISD::FDIV, MVT::f16, Promote);
424 setOperationAction(ISD::FREM, MVT::f16, Promote);
425 setOperationAction(ISD::FSQRT, MVT::f16, Promote);
426 setOperationAction(ISD::FSIN, MVT::f16, Promote);
427 setOperationAction(ISD::FCOS, MVT::f16, Promote);
428 setOperationAction(ISD::FABS, MVT::f16, Promote);
429 setOperationAction(ISD::FMINNUM, MVT::f16, Promote);
430 setOperationAction(ISD::FMAXNUM, MVT::f16, Promote);
431 setOperationAction(ISD::FMINNAN, MVT::f16, Promote);
432 setOperationAction(ISD::FMAXNAN, MVT::f16, Promote);
433
434 // No FEXP2, FLOG2. The PTX ex2 and log2 functions are always approximate.
435 // No FPOW or FREM in PTX.
436
437 // Now deduce the information based on the above mentioned
438 // actions
439 computeRegisterProperties(STI.getRegisterInfo());
440}
441
442const char *NVPTXTargetLowering::getTargetNodeName(unsigned Opcode) const {
443 switch ((NVPTXISD::NodeType)Opcode) {
444 case NVPTXISD::FIRST_NUMBER:
445 break;
446 case NVPTXISD::CALL:
447 return "NVPTXISD::CALL";
448 case NVPTXISD::RET_FLAG:
449 return "NVPTXISD::RET_FLAG";
450 case NVPTXISD::LOAD_PARAM:
451 return "NVPTXISD::LOAD_PARAM";
452 case NVPTXISD::Wrapper:
453 return "NVPTXISD::Wrapper";
454 case NVPTXISD::DeclareParam:
455 return "NVPTXISD::DeclareParam";
456 case NVPTXISD::DeclareScalarParam:
457 return "NVPTXISD::DeclareScalarParam";
458 case NVPTXISD::DeclareRet:
459 return "NVPTXISD::DeclareRet";
460 case NVPTXISD::DeclareScalarRet:
461 return "NVPTXISD::DeclareScalarRet";
462 case NVPTXISD::DeclareRetParam:
463 return "NVPTXISD::DeclareRetParam";
464 case NVPTXISD::PrintCall:
465 return "NVPTXISD::PrintCall";
466 case NVPTXISD::PrintConvergentCall:
467 return "NVPTXISD::PrintConvergentCall";
468 case NVPTXISD::PrintCallUni:
469 return "NVPTXISD::PrintCallUni";
470 case NVPTXISD::PrintConvergentCallUni:
471 return "NVPTXISD::PrintConvergentCallUni";
472 case NVPTXISD::LoadParam:
473 return "NVPTXISD::LoadParam";
474 case NVPTXISD::LoadParamV2:
475 return "NVPTXISD::LoadParamV2";
476 case NVPTXISD::LoadParamV4:
477 return "NVPTXISD::LoadParamV4";
478 case NVPTXISD::StoreParam:
479 return "NVPTXISD::StoreParam";
480 case NVPTXISD::StoreParamV2:
481 return "NVPTXISD::StoreParamV2";
482 case NVPTXISD::StoreParamV4:
483 return "NVPTXISD::StoreParamV4";
484 case NVPTXISD::StoreParamS32:
485 return "NVPTXISD::StoreParamS32";
486 case NVPTXISD::StoreParamU32:
487 return "NVPTXISD::StoreParamU32";
488 case NVPTXISD::CallArgBegin:
489 return "NVPTXISD::CallArgBegin";
490 case NVPTXISD::CallArg:
491 return "NVPTXISD::CallArg";
492 case NVPTXISD::LastCallArg:
493 return "NVPTXISD::LastCallArg";
494 case NVPTXISD::CallArgEnd:
495 return "NVPTXISD::CallArgEnd";
496 case NVPTXISD::CallVoid:
497 return "NVPTXISD::CallVoid";
498 case NVPTXISD::CallVal:
499 return "NVPTXISD::CallVal";
500 case NVPTXISD::CallSymbol:
501 return "NVPTXISD::CallSymbol";
502 case NVPTXISD::Prototype:
503 return "NVPTXISD::Prototype";
504 case NVPTXISD::MoveParam:
505 return "NVPTXISD::MoveParam";
506 case NVPTXISD::StoreRetval:
507 return "NVPTXISD::StoreRetval";
508 case NVPTXISD::StoreRetvalV2:
509 return "NVPTXISD::StoreRetvalV2";
510 case NVPTXISD::StoreRetvalV4:
511 return "NVPTXISD::StoreRetvalV4";
512 case NVPTXISD::PseudoUseParam:
513 return "NVPTXISD::PseudoUseParam";
514 case NVPTXISD::RETURN:
515 return "NVPTXISD::RETURN";
516 case NVPTXISD::CallSeqBegin:
517 return "NVPTXISD::CallSeqBegin";
518 case NVPTXISD::CallSeqEnd:
519 return "NVPTXISD::CallSeqEnd";
520 case NVPTXISD::CallPrototype:
521 return "NVPTXISD::CallPrototype";
522 case NVPTXISD::LoadV2:
523 return "NVPTXISD::LoadV2";
524 case NVPTXISD::LoadV4:
525 return "NVPTXISD::LoadV4";
526 case NVPTXISD::LDGV2:
527 return "NVPTXISD::LDGV2";
528 case NVPTXISD::LDGV4:
529 return "NVPTXISD::LDGV4";
530 case NVPTXISD::LDUV2:
531 return "NVPTXISD::LDUV2";
532 case NVPTXISD::LDUV4:
533 return "NVPTXISD::LDUV4";
534 case NVPTXISD::StoreV2:
535 return "NVPTXISD::StoreV2";
536 case NVPTXISD::StoreV4:
537 return "NVPTXISD::StoreV4";
538 case NVPTXISD::FUN_SHFL_CLAMP:
539 return "NVPTXISD::FUN_SHFL_CLAMP";
540 case NVPTXISD::FUN_SHFR_CLAMP:
541 return "NVPTXISD::FUN_SHFR_CLAMP";
542 case NVPTXISD::IMAD:
543 return "NVPTXISD::IMAD";
544 case NVPTXISD::Dummy:
545 return "NVPTXISD::Dummy";
546 case NVPTXISD::MUL_WIDE_SIGNED:
547 return "NVPTXISD::MUL_WIDE_SIGNED";
548 case NVPTXISD::MUL_WIDE_UNSIGNED:
549 return "NVPTXISD::MUL_WIDE_UNSIGNED";
550 case NVPTXISD::Tex1DFloatS32: return "NVPTXISD::Tex1DFloatS32";
551 case NVPTXISD::Tex1DFloatFloat: return "NVPTXISD::Tex1DFloatFloat";
552 case NVPTXISD::Tex1DFloatFloatLevel:
553 return "NVPTXISD::Tex1DFloatFloatLevel";
554 case NVPTXISD::Tex1DFloatFloatGrad:
555 return "NVPTXISD::Tex1DFloatFloatGrad";
556 case NVPTXISD::Tex1DS32S32: return "NVPTXISD::Tex1DS32S32";
557 case NVPTXISD::Tex1DS32Float: return "NVPTXISD::Tex1DS32Float";
558 case NVPTXISD::Tex1DS32FloatLevel:
559 return "NVPTXISD::Tex1DS32FloatLevel";
560 case NVPTXISD::Tex1DS32FloatGrad:
561 return "NVPTXISD::Tex1DS32FloatGrad";
562 case NVPTXISD::Tex1DU32S32: return "NVPTXISD::Tex1DU32S32";
563 case NVPTXISD::Tex1DU32Float: return "NVPTXISD::Tex1DU32Float";
564 case NVPTXISD::Tex1DU32FloatLevel:
565 return "NVPTXISD::Tex1DU32FloatLevel";
566 case NVPTXISD::Tex1DU32FloatGrad:
567 return "NVPTXISD::Tex1DU32FloatGrad";
568 case NVPTXISD::Tex1DArrayFloatS32: return "NVPTXISD::Tex1DArrayFloatS32";
569 case NVPTXISD::Tex1DArrayFloatFloat: return "NVPTXISD::Tex1DArrayFloatFloat";
570 case NVPTXISD::Tex1DArrayFloatFloatLevel:
571 return "NVPTXISD::Tex1DArrayFloatFloatLevel";
572 case NVPTXISD::Tex1DArrayFloatFloatGrad:
573 return "NVPTXISD::Tex1DArrayFloatFloatGrad";
574 case NVPTXISD::Tex1DArrayS32S32: return "NVPTXISD::Tex1DArrayS32S32";
575 case NVPTXISD::Tex1DArrayS32Float: return "NVPTXISD::Tex1DArrayS32Float";
576 case NVPTXISD::Tex1DArrayS32FloatLevel:
577 return "NVPTXISD::Tex1DArrayS32FloatLevel";
578 case NVPTXISD::Tex1DArrayS32FloatGrad:
579 return "NVPTXISD::Tex1DArrayS32FloatGrad";
580 case NVPTXISD::Tex1DArrayU32S32: return "NVPTXISD::Tex1DArrayU32S32";
581 case NVPTXISD::Tex1DArrayU32Float: return "NVPTXISD::Tex1DArrayU32Float";
582 case NVPTXISD::Tex1DArrayU32FloatLevel:
583 return "NVPTXISD::Tex1DArrayU32FloatLevel";
584 case NVPTXISD::Tex1DArrayU32FloatGrad:
585 return "NVPTXISD::Tex1DArrayU32FloatGrad";
586 case NVPTXISD::Tex2DFloatS32: return "NVPTXISD::Tex2DFloatS32";
587 case NVPTXISD::Tex2DFloatFloat: return "NVPTXISD::Tex2DFloatFloat";
588 case NVPTXISD::Tex2DFloatFloatLevel:
589 return "NVPTXISD::Tex2DFloatFloatLevel";
590 case NVPTXISD::Tex2DFloatFloatGrad:
591 return "NVPTXISD::Tex2DFloatFloatGrad";
592 case NVPTXISD::Tex2DS32S32: return "NVPTXISD::Tex2DS32S32";
593 case NVPTXISD::Tex2DS32Float: return "NVPTXISD::Tex2DS32Float";
594 case NVPTXISD::Tex2DS32FloatLevel:
595 return "NVPTXISD::Tex2DS32FloatLevel";
596 case NVPTXISD::Tex2DS32FloatGrad:
597 return "NVPTXISD::Tex2DS32FloatGrad";
598 case NVPTXISD::Tex2DU32S32: return "NVPTXISD::Tex2DU32S32";
599 case NVPTXISD::Tex2DU32Float: return "NVPTXISD::Tex2DU32Float";
600 case NVPTXISD::Tex2DU32FloatLevel:
601 return "NVPTXISD::Tex2DU32FloatLevel";
602 case NVPTXISD::Tex2DU32FloatGrad:
603 return "NVPTXISD::Tex2DU32FloatGrad";
604 case NVPTXISD::Tex2DArrayFloatS32: return "NVPTXISD::Tex2DArrayFloatS32";
605 case NVPTXISD::Tex2DArrayFloatFloat: return "NVPTXISD::Tex2DArrayFloatFloat";
606 case NVPTXISD::Tex2DArrayFloatFloatLevel:
607 return "NVPTXISD::Tex2DArrayFloatFloatLevel";
608 case NVPTXISD::Tex2DArrayFloatFloatGrad:
609 return "NVPTXISD::Tex2DArrayFloatFloatGrad";
610 case NVPTXISD::Tex2DArrayS32S32: return "NVPTXISD::Tex2DArrayS32S32";
611 case NVPTXISD::Tex2DArrayS32Float: return "NVPTXISD::Tex2DArrayS32Float";
612 case NVPTXISD::Tex2DArrayS32FloatLevel:
613 return "NVPTXISD::Tex2DArrayS32FloatLevel";
614 case NVPTXISD::Tex2DArrayS32FloatGrad:
615 return "NVPTXISD::Tex2DArrayS32FloatGrad";
616 case NVPTXISD::Tex2DArrayU32S32: return "NVPTXISD::Tex2DArrayU32S32";
617 case NVPTXISD::Tex2DArrayU32Float: return "NVPTXISD::Tex2DArrayU32Float";
618 case NVPTXISD::Tex2DArrayU32FloatLevel:
619 return "NVPTXISD::Tex2DArrayU32FloatLevel";
620 case NVPTXISD::Tex2DArrayU32FloatGrad:
621 return "NVPTXISD::Tex2DArrayU32FloatGrad";
622 case NVPTXISD::Tex3DFloatS32: return "NVPTXISD::Tex3DFloatS32";
623 case NVPTXISD::Tex3DFloatFloat: return "NVPTXISD::Tex3DFloatFloat";
624 case NVPTXISD::Tex3DFloatFloatLevel:
625 return "NVPTXISD::Tex3DFloatFloatLevel";
626 case NVPTXISD::Tex3DFloatFloatGrad:
627 return "NVPTXISD::Tex3DFloatFloatGrad";
628 case NVPTXISD::Tex3DS32S32: return "NVPTXISD::Tex3DS32S32";
629 case NVPTXISD::Tex3DS32Float: return "NVPTXISD::Tex3DS32Float";
630 case NVPTXISD::Tex3DS32FloatLevel:
631 return "NVPTXISD::Tex3DS32FloatLevel";
632 case NVPTXISD::Tex3DS32FloatGrad:
633 return "NVPTXISD::Tex3DS32FloatGrad";
634 case NVPTXISD::Tex3DU32S32: return "NVPTXISD::Tex3DU32S32";
635 case NVPTXISD::Tex3DU32Float: return "NVPTXISD::Tex3DU32Float";
636 case NVPTXISD::Tex3DU32FloatLevel:
637 return "NVPTXISD::Tex3DU32FloatLevel";
638 case NVPTXISD::Tex3DU32FloatGrad:
639 return "NVPTXISD::Tex3DU32FloatGrad";
640 case NVPTXISD::TexCubeFloatFloat: return "NVPTXISD::TexCubeFloatFloat";
641 case NVPTXISD::TexCubeFloatFloatLevel:
642 return "NVPTXISD::TexCubeFloatFloatLevel";
643 case NVPTXISD::TexCubeS32Float: return "NVPTXISD::TexCubeS32Float";
644 case NVPTXISD::TexCubeS32FloatLevel:
645 return "NVPTXISD::TexCubeS32FloatLevel";
646 case NVPTXISD::TexCubeU32Float: return "NVPTXISD::TexCubeU32Float";
647 case NVPTXISD::TexCubeU32FloatLevel:
648 return "NVPTXISD::TexCubeU32FloatLevel";
649 case NVPTXISD::TexCubeArrayFloatFloat:
650 return "NVPTXISD::TexCubeArrayFloatFloat";
651 case NVPTXISD::TexCubeArrayFloatFloatLevel:
652 return "NVPTXISD::TexCubeArrayFloatFloatLevel";
653 case NVPTXISD::TexCubeArrayS32Float:
654 return "NVPTXISD::TexCubeArrayS32Float";
655 case NVPTXISD::TexCubeArrayS32FloatLevel:
656 return "NVPTXISD::TexCubeArrayS32FloatLevel";
657 case NVPTXISD::TexCubeArrayU32Float:
658 return "NVPTXISD::TexCubeArrayU32Float";
659 case NVPTXISD::TexCubeArrayU32FloatLevel:
660 return "NVPTXISD::TexCubeArrayU32FloatLevel";
661 case NVPTXISD::Tld4R2DFloatFloat:
662 return "NVPTXISD::Tld4R2DFloatFloat";
663 case NVPTXISD::Tld4G2DFloatFloat:
664 return "NVPTXISD::Tld4G2DFloatFloat";
665 case NVPTXISD::Tld4B2DFloatFloat:
666 return "NVPTXISD::Tld4B2DFloatFloat";
667 case NVPTXISD::Tld4A2DFloatFloat:
668 return "NVPTXISD::Tld4A2DFloatFloat";
669 case NVPTXISD::Tld4R2DS64Float:
670 return "NVPTXISD::Tld4R2DS64Float";
671 case NVPTXISD::Tld4G2DS64Float:
672 return "NVPTXISD::Tld4G2DS64Float";
673 case NVPTXISD::Tld4B2DS64Float:
674 return "NVPTXISD::Tld4B2DS64Float";
675 case NVPTXISD::Tld4A2DS64Float:
676 return "NVPTXISD::Tld4A2DS64Float";
677 case NVPTXISD::Tld4R2DU64Float:
678 return "NVPTXISD::Tld4R2DU64Float";
679 case NVPTXISD::Tld4G2DU64Float:
680 return "NVPTXISD::Tld4G2DU64Float";
681 case NVPTXISD::Tld4B2DU64Float:
682 return "NVPTXISD::Tld4B2DU64Float";
683 case NVPTXISD::Tld4A2DU64Float:
684 return "NVPTXISD::Tld4A2DU64Float";
685
686 case NVPTXISD::TexUnified1DFloatS32:
687 return "NVPTXISD::TexUnified1DFloatS32";
688 case NVPTXISD::TexUnified1DFloatFloat:
689 return "NVPTXISD::TexUnified1DFloatFloat";
690 case NVPTXISD::TexUnified1DFloatFloatLevel:
691 return "NVPTXISD::TexUnified1DFloatFloatLevel";
692 case NVPTXISD::TexUnified1DFloatFloatGrad:
693 return "NVPTXISD::TexUnified1DFloatFloatGrad";
694 case NVPTXISD::TexUnified1DS32S32:
695 return "NVPTXISD::TexUnified1DS32S32";
696 case NVPTXISD::TexUnified1DS32Float:
697 return "NVPTXISD::TexUnified1DS32Float";
698 case NVPTXISD::TexUnified1DS32FloatLevel:
699 return "NVPTXISD::TexUnified1DS32FloatLevel";
700 case NVPTXISD::TexUnified1DS32FloatGrad:
701 return "NVPTXISD::TexUnified1DS32FloatGrad";
702 case NVPTXISD::TexUnified1DU32S32:
703 return "NVPTXISD::TexUnified1DU32S32";
704 case NVPTXISD::TexUnified1DU32Float:
705 return "NVPTXISD::TexUnified1DU32Float";
706 case NVPTXISD::TexUnified1DU32FloatLevel:
707 return "NVPTXISD::TexUnified1DU32FloatLevel";
708 case NVPTXISD::TexUnified1DU32FloatGrad:
709 return "NVPTXISD::TexUnified1DU32FloatGrad";
710 case NVPTXISD::TexUnified1DArrayFloatS32:
711 return "NVPTXISD::TexUnified1DArrayFloatS32";
712 case NVPTXISD::TexUnified1DArrayFloatFloat:
713 return "NVPTXISD::TexUnified1DArrayFloatFloat";
714 case NVPTXISD::TexUnified1DArrayFloatFloatLevel:
715 return "NVPTXISD::TexUnified1DArrayFloatFloatLevel";
716 case NVPTXISD::TexUnified1DArrayFloatFloatGrad:
717 return "NVPTXISD::TexUnified1DArrayFloatFloatGrad";
718 case NVPTXISD::TexUnified1DArrayS32S32:
719 return "NVPTXISD::TexUnified1DArrayS32S32";
720 case NVPTXISD::TexUnified1DArrayS32Float:
721 return "NVPTXISD::TexUnified1DArrayS32Float";
722 case NVPTXISD::TexUnified1DArrayS32FloatLevel:
723 return "NVPTXISD::TexUnified1DArrayS32FloatLevel";
724 case NVPTXISD::TexUnified1DArrayS32FloatGrad:
725 return "NVPTXISD::TexUnified1DArrayS32FloatGrad";
726 case NVPTXISD::TexUnified1DArrayU32S32:
727 return "NVPTXISD::TexUnified1DArrayU32S32";
728 case NVPTXISD::TexUnified1DArrayU32Float:
729 return "NVPTXISD::TexUnified1DArrayU32Float";
730 case NVPTXISD::TexUnified1DArrayU32FloatLevel:
731 return "NVPTXISD::TexUnified1DArrayU32FloatLevel";
732 case NVPTXISD::TexUnified1DArrayU32FloatGrad:
733 return "NVPTXISD::TexUnified1DArrayU32FloatGrad";
734 case NVPTXISD::TexUnified2DFloatS32:
735 return "NVPTXISD::TexUnified2DFloatS32";
736 case NVPTXISD::TexUnified2DFloatFloat:
737 return "NVPTXISD::TexUnified2DFloatFloat";
738 case NVPTXISD::TexUnified2DFloatFloatLevel:
739 return "NVPTXISD::TexUnified2DFloatFloatLevel";
740 case NVPTXISD::TexUnified2DFloatFloatGrad:
741 return "NVPTXISD::TexUnified2DFloatFloatGrad";
742 case NVPTXISD::TexUnified2DS32S32:
743 return "NVPTXISD::TexUnified2DS32S32";
744 case NVPTXISD::TexUnified2DS32Float:
745 return "NVPTXISD::TexUnified2DS32Float";
746 case NVPTXISD::TexUnified2DS32FloatLevel:
747 return "NVPTXISD::TexUnified2DS32FloatLevel";
748 case NVPTXISD::TexUnified2DS32FloatGrad:
749 return "NVPTXISD::TexUnified2DS32FloatGrad";
750 case NVPTXISD::TexUnified2DU32S32:
751 return "NVPTXISD::TexUnified2DU32S32";
752 case NVPTXISD::TexUnified2DU32Float:
753 return "NVPTXISD::TexUnified2DU32Float";
754 case NVPTXISD::TexUnified2DU32FloatLevel:
755 return "NVPTXISD::TexUnified2DU32FloatLevel";
756 case NVPTXISD::TexUnified2DU32FloatGrad:
757 return "NVPTXISD::TexUnified2DU32FloatGrad";
758 case NVPTXISD::TexUnified2DArrayFloatS32:
759 return "NVPTXISD::TexUnified2DArrayFloatS32";
760 case NVPTXISD::TexUnified2DArrayFloatFloat:
761 return "NVPTXISD::TexUnified2DArrayFloatFloat";
762 case NVPTXISD::TexUnified2DArrayFloatFloatLevel:
763 return "NVPTXISD::TexUnified2DArrayFloatFloatLevel";
764 case NVPTXISD::TexUnified2DArrayFloatFloatGrad:
765 return "NVPTXISD::TexUnified2DArrayFloatFloatGrad";
766 case NVPTXISD::TexUnified2DArrayS32S32:
767 return "NVPTXISD::TexUnified2DArrayS32S32";
768 case NVPTXISD::TexUnified2DArrayS32Float:
769 return "NVPTXISD::TexUnified2DArrayS32Float";
770 case NVPTXISD::TexUnified2DArrayS32FloatLevel:
771 return "NVPTXISD::TexUnified2DArrayS32FloatLevel";
772 case NVPTXISD::TexUnified2DArrayS32FloatGrad:
773 return "NVPTXISD::TexUnified2DArrayS32FloatGrad";
774 case NVPTXISD::TexUnified2DArrayU32S32:
775 return "NVPTXISD::TexUnified2DArrayU32S32";
776 case NVPTXISD::TexUnified2DArrayU32Float:
777 return "NVPTXISD::TexUnified2DArrayU32Float";
778 case NVPTXISD::TexUnified2DArrayU32FloatLevel:
779 return "NVPTXISD::TexUnified2DArrayU32FloatLevel";
780 case NVPTXISD::TexUnified2DArrayU32FloatGrad:
781 return "NVPTXISD::TexUnified2DArrayU32FloatGrad";
782 case NVPTXISD::TexUnified3DFloatS32:
783 return "NVPTXISD::TexUnified3DFloatS32";
784 case NVPTXISD::TexUnified3DFloatFloat:
785 return "NVPTXISD::TexUnified3DFloatFloat";
786 case NVPTXISD::TexUnified3DFloatFloatLevel:
787 return "NVPTXISD::TexUnified3DFloatFloatLevel";
788 case NVPTXISD::TexUnified3DFloatFloatGrad:
789 return "NVPTXISD::TexUnified3DFloatFloatGrad";
790 case NVPTXISD::TexUnified3DS32S32:
791 return "NVPTXISD::TexUnified3DS32S32";
792 case NVPTXISD::TexUnified3DS32Float:
793 return "NVPTXISD::TexUnified3DS32Float";
794 case NVPTXISD::TexUnified3DS32FloatLevel:
795 return "NVPTXISD::TexUnified3DS32FloatLevel";
796 case NVPTXISD::TexUnified3DS32FloatGrad:
797 return "NVPTXISD::TexUnified3DS32FloatGrad";
798 case NVPTXISD::TexUnified3DU32S32:
799 return "NVPTXISD::TexUnified3DU32S32";
800 case NVPTXISD::TexUnified3DU32Float:
801 return "NVPTXISD::TexUnified3DU32Float";
802 case NVPTXISD::TexUnified3DU32FloatLevel:
803 return "NVPTXISD::TexUnified3DU32FloatLevel";
804 case NVPTXISD::TexUnified3DU32FloatGrad:
805 return "NVPTXISD::TexUnified3DU32FloatGrad";
806 case NVPTXISD::TexUnifiedCubeFloatFloat:
807 return "NVPTXISD::TexUnifiedCubeFloatFloat";
808 case NVPTXISD::TexUnifiedCubeFloatFloatLevel:
809 return "NVPTXISD::TexUnifiedCubeFloatFloatLevel";
810 case NVPTXISD::TexUnifiedCubeS32Float:
811 return "NVPTXISD::TexUnifiedCubeS32Float";
812 case NVPTXISD::TexUnifiedCubeS32FloatLevel:
813 return "NVPTXISD::TexUnifiedCubeS32FloatLevel";
814 case NVPTXISD::TexUnifiedCubeU32Float:
815 return "NVPTXISD::TexUnifiedCubeU32Float";
816 case NVPTXISD::TexUnifiedCubeU32FloatLevel:
817 return "NVPTXISD::TexUnifiedCubeU32FloatLevel";
818 case NVPTXISD::TexUnifiedCubeArrayFloatFloat:
819 return "NVPTXISD::TexUnifiedCubeArrayFloatFloat";
820 case NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel:
821 return "NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel";
822 case NVPTXISD::TexUnifiedCubeArrayS32Float:
823 return "NVPTXISD::TexUnifiedCubeArrayS32Float";
824 case NVPTXISD::TexUnifiedCubeArrayS32FloatLevel:
825 return "NVPTXISD::TexUnifiedCubeArrayS32FloatLevel";
826 case NVPTXISD::TexUnifiedCubeArrayU32Float:
827 return "NVPTXISD::TexUnifiedCubeArrayU32Float";
828 case NVPTXISD::TexUnifiedCubeArrayU32FloatLevel:
829 return "NVPTXISD::TexUnifiedCubeArrayU32FloatLevel";
830 case NVPTXISD::Tld4UnifiedR2DFloatFloat:
831 return "NVPTXISD::Tld4UnifiedR2DFloatFloat";
832 case NVPTXISD::Tld4UnifiedG2DFloatFloat:
833 return "NVPTXISD::Tld4UnifiedG2DFloatFloat";
834 case NVPTXISD::Tld4UnifiedB2DFloatFloat:
835 return "NVPTXISD::Tld4UnifiedB2DFloatFloat";
836 case NVPTXISD::Tld4UnifiedA2DFloatFloat:
837 return "NVPTXISD::Tld4UnifiedA2DFloatFloat";
838 case NVPTXISD::Tld4UnifiedR2DS64Float:
839 return "NVPTXISD::Tld4UnifiedR2DS64Float";
840 case NVPTXISD::Tld4UnifiedG2DS64Float:
841 return "NVPTXISD::Tld4UnifiedG2DS64Float";
842 case NVPTXISD::Tld4UnifiedB2DS64Float:
843 return "NVPTXISD::Tld4UnifiedB2DS64Float";
844 case NVPTXISD::Tld4UnifiedA2DS64Float:
845 return "NVPTXISD::Tld4UnifiedA2DS64Float";
846 case NVPTXISD::Tld4UnifiedR2DU64Float:
847 return "NVPTXISD::Tld4UnifiedR2DU64Float";
848 case NVPTXISD::Tld4UnifiedG2DU64Float:
849 return "NVPTXISD::Tld4UnifiedG2DU64Float";
850 case NVPTXISD::Tld4UnifiedB2DU64Float:
851 return "NVPTXISD::Tld4UnifiedB2DU64Float";
852 case NVPTXISD::Tld4UnifiedA2DU64Float:
853 return "NVPTXISD::Tld4UnifiedA2DU64Float";
854
855 case NVPTXISD::Suld1DI8Clamp: return "NVPTXISD::Suld1DI8Clamp";
856 case NVPTXISD::Suld1DI16Clamp: return "NVPTXISD::Suld1DI16Clamp";
857 case NVPTXISD::Suld1DI32Clamp: return "NVPTXISD::Suld1DI32Clamp";
858 case NVPTXISD::Suld1DI64Clamp: return "NVPTXISD::Suld1DI64Clamp";
859 case NVPTXISD::Suld1DV2I8Clamp: return "NVPTXISD::Suld1DV2I8Clamp";
860 case NVPTXISD::Suld1DV2I16Clamp: return "NVPTXISD::Suld1DV2I16Clamp";
861 case NVPTXISD::Suld1DV2I32Clamp: return "NVPTXISD::Suld1DV2I32Clamp";
862 case NVPTXISD::Suld1DV2I64Clamp: return "NVPTXISD::Suld1DV2I64Clamp";
863 case NVPTXISD::Suld1DV4I8Clamp: return "NVPTXISD::Suld1DV4I8Clamp";
864 case NVPTXISD::Suld1DV4I16Clamp: return "NVPTXISD::Suld1DV4I16Clamp";
865 case NVPTXISD::Suld1DV4I32Clamp: return "NVPTXISD::Suld1DV4I32Clamp";
866
867 case NVPTXISD::Suld1DArrayI8Clamp: return "NVPTXISD::Suld1DArrayI8Clamp";
868 case NVPTXISD::Suld1DArrayI16Clamp: return "NVPTXISD::Suld1DArrayI16Clamp";
869 case NVPTXISD::Suld1DArrayI32Clamp: return "NVPTXISD::Suld1DArrayI32Clamp";
870 case NVPTXISD::Suld1DArrayI64Clamp: return "NVPTXISD::Suld1DArrayI64Clamp";
871 case NVPTXISD::Suld1DArrayV2I8Clamp: return "NVPTXISD::Suld1DArrayV2I8Clamp";
872 case NVPTXISD::Suld1DArrayV2I16Clamp:return "NVPTXISD::Suld1DArrayV2I16Clamp";
873 case NVPTXISD::Suld1DArrayV2I32Clamp:return "NVPTXISD::Suld1DArrayV2I32Clamp";
874 case NVPTXISD::Suld1DArrayV2I64Clamp:return "NVPTXISD::Suld1DArrayV2I64Clamp";
875 case NVPTXISD::Suld1DArrayV4I8Clamp: return "NVPTXISD::Suld1DArrayV4I8Clamp";
876 case NVPTXISD::Suld1DArrayV4I16Clamp:return "NVPTXISD::Suld1DArrayV4I16Clamp";
877 case NVPTXISD::Suld1DArrayV4I32Clamp:return "NVPTXISD::Suld1DArrayV4I32Clamp";
878
879 case NVPTXISD::Suld2DI8Clamp: return "NVPTXISD::Suld2DI8Clamp";
880 case NVPTXISD::Suld2DI16Clamp: return "NVPTXISD::Suld2DI16Clamp";
881 case NVPTXISD::Suld2DI32Clamp: return "NVPTXISD::Suld2DI32Clamp";
882 case NVPTXISD::Suld2DI64Clamp: return "NVPTXISD::Suld2DI64Clamp";
883 case NVPTXISD::Suld2DV2I8Clamp: return "NVPTXISD::Suld2DV2I8Clamp";
884 case NVPTXISD::Suld2DV2I16Clamp: return "NVPTXISD::Suld2DV2I16Clamp";
885 case NVPTXISD::Suld2DV2I32Clamp: return "NVPTXISD::Suld2DV2I32Clamp";
886 case NVPTXISD::Suld2DV2I64Clamp: return "NVPTXISD::Suld2DV2I64Clamp";
887 case NVPTXISD::Suld2DV4I8Clamp: return "NVPTXISD::Suld2DV4I8Clamp";
888 case NVPTXISD::Suld2DV4I16Clamp: return "NVPTXISD::Suld2DV4I16Clamp";
889 case NVPTXISD::Suld2DV4I32Clamp: return "NVPTXISD::Suld2DV4I32Clamp";
890
891 case NVPTXISD::Suld2DArrayI8Clamp: return "NVPTXISD::Suld2DArrayI8Clamp";
892 case NVPTXISD::Suld2DArrayI16Clamp: return "NVPTXISD::Suld2DArrayI16Clamp";
893 case NVPTXISD::Suld2DArrayI32Clamp: return "NVPTXISD::Suld2DArrayI32Clamp";
894 case NVPTXISD::Suld2DArrayI64Clamp: return "NVPTXISD::Suld2DArrayI64Clamp";
895 case NVPTXISD::Suld2DArrayV2I8Clamp: return "NVPTXISD::Suld2DArrayV2I8Clamp";
896 case NVPTXISD::Suld2DArrayV2I16Clamp:return "NVPTXISD::Suld2DArrayV2I16Clamp";
897 case NVPTXISD::Suld2DArrayV2I32Clamp:return "NVPTXISD::Suld2DArrayV2I32Clamp";
898 case NVPTXISD::Suld2DArrayV2I64Clamp:return "NVPTXISD::Suld2DArrayV2I64Clamp";
899 case NVPTXISD::Suld2DArrayV4I8Clamp: return "NVPTXISD::Suld2DArrayV4I8Clamp";
900 case NVPTXISD::Suld2DArrayV4I16Clamp:return "NVPTXISD::Suld2DArrayV4I16Clamp";
901 case NVPTXISD::Suld2DArrayV4I32Clamp:return "NVPTXISD::Suld2DArrayV4I32Clamp";
902
903 case NVPTXISD::Suld3DI8Clamp: return "NVPTXISD::Suld3DI8Clamp";
904 case NVPTXISD::Suld3DI16Clamp: return "NVPTXISD::Suld3DI16Clamp";
905 case NVPTXISD::Suld3DI32Clamp: return "NVPTXISD::Suld3DI32Clamp";
906 case NVPTXISD::Suld3DI64Clamp: return "NVPTXISD::Suld3DI64Clamp";
907 case NVPTXISD::Suld3DV2I8Clamp: return "NVPTXISD::Suld3DV2I8Clamp";
908 case NVPTXISD::Suld3DV2I16Clamp: return "NVPTXISD::Suld3DV2I16Clamp";
909 case NVPTXISD::Suld3DV2I32Clamp: return "NVPTXISD::Suld3DV2I32Clamp";
910 case NVPTXISD::Suld3DV2I64Clamp: return "NVPTXISD::Suld3DV2I64Clamp";
911 case NVPTXISD::Suld3DV4I8Clamp: return "NVPTXISD::Suld3DV4I8Clamp";
912 case NVPTXISD::Suld3DV4I16Clamp: return "NVPTXISD::Suld3DV4I16Clamp";
913 case NVPTXISD::Suld3DV4I32Clamp: return "NVPTXISD::Suld3DV4I32Clamp";
914
915 case NVPTXISD::Suld1DI8Trap: return "NVPTXISD::Suld1DI8Trap";
916 case NVPTXISD::Suld1DI16Trap: return "NVPTXISD::Suld1DI16Trap";
917 case NVPTXISD::Suld1DI32Trap: return "NVPTXISD::Suld1DI32Trap";
918 case NVPTXISD::Suld1DI64Trap: return "NVPTXISD::Suld1DI64Trap";
919 case NVPTXISD::Suld1DV2I8Trap: return "NVPTXISD::Suld1DV2I8Trap";
920 case NVPTXISD::Suld1DV2I16Trap: return "NVPTXISD::Suld1DV2I16Trap";
921 case NVPTXISD::Suld1DV2I32Trap: return "NVPTXISD::Suld1DV2I32Trap";
922 case NVPTXISD::Suld1DV2I64Trap: return "NVPTXISD::Suld1DV2I64Trap";
923 case NVPTXISD::Suld1DV4I8Trap: return "NVPTXISD::Suld1DV4I8Trap";
924 case NVPTXISD::Suld1DV4I16Trap: return "NVPTXISD::Suld1DV4I16Trap";
925 case NVPTXISD::Suld1DV4I32Trap: return "NVPTXISD::Suld1DV4I32Trap";
926
927 case NVPTXISD::Suld1DArrayI8Trap: return "NVPTXISD::Suld1DArrayI8Trap";
928 case NVPTXISD::Suld1DArrayI16Trap: return "NVPTXISD::Suld1DArrayI16Trap";
929 case NVPTXISD::Suld1DArrayI32Trap: return "NVPTXISD::Suld1DArrayI32Trap";
930 case NVPTXISD::Suld1DArrayI64Trap: return "NVPTXISD::Suld1DArrayI64Trap";
931 case NVPTXISD::Suld1DArrayV2I8Trap: return "NVPTXISD::Suld1DArrayV2I8Trap";
932 case NVPTXISD::Suld1DArrayV2I16Trap: return "NVPTXISD::Suld1DArrayV2I16Trap";
933 case NVPTXISD::Suld1DArrayV2I32Trap: return "NVPTXISD::Suld1DArrayV2I32Trap";
934 case NVPTXISD::Suld1DArrayV2I64Trap: return "NVPTXISD::Suld1DArrayV2I64Trap";
935 case NVPTXISD::Suld1DArrayV4I8Trap: return "NVPTXISD::Suld1DArrayV4I8Trap";
936 case NVPTXISD::Suld1DArrayV4I16Trap: return "NVPTXISD::Suld1DArrayV4I16Trap";
937 case NVPTXISD::Suld1DArrayV4I32Trap: return "NVPTXISD::Suld1DArrayV4I32Trap";
938
939 case NVPTXISD::Suld2DI8Trap: return "NVPTXISD::Suld2DI8Trap";
940 case NVPTXISD::Suld2DI16Trap: return "NVPTXISD::Suld2DI16Trap";
941 case NVPTXISD::Suld2DI32Trap: return "NVPTXISD::Suld2DI32Trap";
942 case NVPTXISD::Suld2DI64Trap: return "NVPTXISD::Suld2DI64Trap";
943 case NVPTXISD::Suld2DV2I8Trap: return "NVPTXISD::Suld2DV2I8Trap";
944 case NVPTXISD::Suld2DV2I16Trap: return "NVPTXISD::Suld2DV2I16Trap";
945 case NVPTXISD::Suld2DV2I32Trap: return "NVPTXISD::Suld2DV2I32Trap";
946 case NVPTXISD::Suld2DV2I64Trap: return "NVPTXISD::Suld2DV2I64Trap";
947 case NVPTXISD::Suld2DV4I8Trap: return "NVPTXISD::Suld2DV4I8Trap";
948 case NVPTXISD::Suld2DV4I16Trap: return "NVPTXISD::Suld2DV4I16Trap";
949 case NVPTXISD::Suld2DV4I32Trap: return "NVPTXISD::Suld2DV4I32Trap";
950
951 case NVPTXISD::Suld2DArrayI8Trap: return "NVPTXISD::Suld2DArrayI8Trap";
952 case NVPTXISD::Suld2DArrayI16Trap: return "NVPTXISD::Suld2DArrayI16Trap";
953 case NVPTXISD::Suld2DArrayI32Trap: return "NVPTXISD::Suld2DArrayI32Trap";
954 case NVPTXISD::Suld2DArrayI64Trap: return "NVPTXISD::Suld2DArrayI64Trap";
955 case NVPTXISD::Suld2DArrayV2I8Trap: return "NVPTXISD::Suld2DArrayV2I8Trap";
956 case NVPTXISD::Suld2DArrayV2I16Trap: return "NVPTXISD::Suld2DArrayV2I16Trap";
957 case NVPTXISD::Suld2DArrayV2I32Trap: return "NVPTXISD::Suld2DArrayV2I32Trap";
958 case NVPTXISD::Suld2DArrayV2I64Trap: return "NVPTXISD::Suld2DArrayV2I64Trap";
959 case NVPTXISD::Suld2DArrayV4I8Trap: return "NVPTXISD::Suld2DArrayV4I8Trap";
960 case NVPTXISD::Suld2DArrayV4I16Trap: return "NVPTXISD::Suld2DArrayV4I16Trap";
961 case NVPTXISD::Suld2DArrayV4I32Trap: return "NVPTXISD::Suld2DArrayV4I32Trap";
962
963 case NVPTXISD::Suld3DI8Trap: return "NVPTXISD::Suld3DI8Trap";
964 case NVPTXISD::Suld3DI16Trap: return "NVPTXISD::Suld3DI16Trap";
965 case NVPTXISD::Suld3DI32Trap: return "NVPTXISD::Suld3DI32Trap";
966 case NVPTXISD::Suld3DI64Trap: return "NVPTXISD::Suld3DI64Trap";
967 case NVPTXISD::Suld3DV2I8Trap: return "NVPTXISD::Suld3DV2I8Trap";
968 case NVPTXISD::Suld3DV2I16Trap: return "NVPTXISD::Suld3DV2I16Trap";
969 case NVPTXISD::Suld3DV2I32Trap: return "NVPTXISD::Suld3DV2I32Trap";
970 case NVPTXISD::Suld3DV2I64Trap: return "NVPTXISD::Suld3DV2I64Trap";
971 case NVPTXISD::Suld3DV4I8Trap: return "NVPTXISD::Suld3DV4I8Trap";
972 case NVPTXISD::Suld3DV4I16Trap: return "NVPTXISD::Suld3DV4I16Trap";
973 case NVPTXISD::Suld3DV4I32Trap: return "NVPTXISD::Suld3DV4I32Trap";
974
975 case NVPTXISD::Suld1DI8Zero: return "NVPTXISD::Suld1DI8Zero";
976 case NVPTXISD::Suld1DI16Zero: return "NVPTXISD::Suld1DI16Zero";
977 case NVPTXISD::Suld1DI32Zero: return "NVPTXISD::Suld1DI32Zero";
978 case NVPTXISD::Suld1DI64Zero: return "NVPTXISD::Suld1DI64Zero";
979 case NVPTXISD::Suld1DV2I8Zero: return "NVPTXISD::Suld1DV2I8Zero";
980 case NVPTXISD::Suld1DV2I16Zero: return "NVPTXISD::Suld1DV2I16Zero";
981 case NVPTXISD::Suld1DV2I32Zero: return "NVPTXISD::Suld1DV2I32Zero";
982 case NVPTXISD::Suld1DV2I64Zero: return "NVPTXISD::Suld1DV2I64Zero";
983 case NVPTXISD::Suld1DV4I8Zero: return "NVPTXISD::Suld1DV4I8Zero";
984 case NVPTXISD::Suld1DV4I16Zero: return "NVPTXISD::Suld1DV4I16Zero";
985 case NVPTXISD::Suld1DV4I32Zero: return "NVPTXISD::Suld1DV4I32Zero";
986
987 case NVPTXISD::Suld1DArrayI8Zero: return "NVPTXISD::Suld1DArrayI8Zero";
988 case NVPTXISD::Suld1DArrayI16Zero: return "NVPTXISD::Suld1DArrayI16Zero";
989 case NVPTXISD::Suld1DArrayI32Zero: return "NVPTXISD::Suld1DArrayI32Zero";
990 case NVPTXISD::Suld1DArrayI64Zero: return "NVPTXISD::Suld1DArrayI64Zero";
991 case NVPTXISD::Suld1DArrayV2I8Zero: return "NVPTXISD::Suld1DArrayV2I8Zero";
992 case NVPTXISD::Suld1DArrayV2I16Zero: return "NVPTXISD::Suld1DArrayV2I16Zero";
993 case NVPTXISD::Suld1DArrayV2I32Zero: return "NVPTXISD::Suld1DArrayV2I32Zero";
994 case NVPTXISD::Suld1DArrayV2I64Zero: return "NVPTXISD::Suld1DArrayV2I64Zero";
995 case NVPTXISD::Suld1DArrayV4I8Zero: return "NVPTXISD::Suld1DArrayV4I8Zero";
996 case NVPTXISD::Suld1DArrayV4I16Zero: return "NVPTXISD::Suld1DArrayV4I16Zero";
997 case NVPTXISD::Suld1DArrayV4I32Zero: return "NVPTXISD::Suld1DArrayV4I32Zero";
998
999 case NVPTXISD::Suld2DI8Zero: return "NVPTXISD::Suld2DI8Zero";
1000 case NVPTXISD::Suld2DI16Zero: return "NVPTXISD::Suld2DI16Zero";
1001 case NVPTXISD::Suld2DI32Zero: return "NVPTXISD::Suld2DI32Zero";
1002 case NVPTXISD::Suld2DI64Zero: return "NVPTXISD::Suld2DI64Zero";
1003 case NVPTXISD::Suld2DV2I8Zero: return "NVPTXISD::Suld2DV2I8Zero";
1004 case NVPTXISD::Suld2DV2I16Zero: return "NVPTXISD::Suld2DV2I16Zero";
1005 case NVPTXISD::Suld2DV2I32Zero: return "NVPTXISD::Suld2DV2I32Zero";
1006 case NVPTXISD::Suld2DV2I64Zero: return "NVPTXISD::Suld2DV2I64Zero";
1007 case NVPTXISD::Suld2DV4I8Zero: return "NVPTXISD::Suld2DV4I8Zero";
1008 case NVPTXISD::Suld2DV4I16Zero: return "NVPTXISD::Suld2DV4I16Zero";
1009 case NVPTXISD::Suld2DV4I32Zero: return "NVPTXISD::Suld2DV4I32Zero";
1010
1011 case NVPTXISD::Suld2DArrayI8Zero: return "NVPTXISD::Suld2DArrayI8Zero";
1012 case NVPTXISD::Suld2DArrayI16Zero: return "NVPTXISD::Suld2DArrayI16Zero";
1013 case NVPTXISD::Suld2DArrayI32Zero: return "NVPTXISD::Suld2DArrayI32Zero";
1014 case NVPTXISD::Suld2DArrayI64Zero: return "NVPTXISD::Suld2DArrayI64Zero";
1015 case NVPTXISD::Suld2DArrayV2I8Zero: return "NVPTXISD::Suld2DArrayV2I8Zero";
1016 case NVPTXISD::Suld2DArrayV2I16Zero: return "NVPTXISD::Suld2DArrayV2I16Zero";
1017 case NVPTXISD::Suld2DArrayV2I32Zero: return "NVPTXISD::Suld2DArrayV2I32Zero";
1018 case NVPTXISD::Suld2DArrayV2I64Zero: return "NVPTXISD::Suld2DArrayV2I64Zero";
1019 case NVPTXISD::Suld2DArrayV4I8Zero: return "NVPTXISD::Suld2DArrayV4I8Zero";
1020 case NVPTXISD::Suld2DArrayV4I16Zero: return "NVPTXISD::Suld2DArrayV4I16Zero";
1021 case NVPTXISD::Suld2DArrayV4I32Zero: return "NVPTXISD::Suld2DArrayV4I32Zero";
1022
1023 case NVPTXISD::Suld3DI8Zero: return "NVPTXISD::Suld3DI8Zero";
1024 case NVPTXISD::Suld3DI16Zero: return "NVPTXISD::Suld3DI16Zero";
1025 case NVPTXISD::Suld3DI32Zero: return "NVPTXISD::Suld3DI32Zero";
1026 case NVPTXISD::Suld3DI64Zero: return "NVPTXISD::Suld3DI64Zero";
1027 case NVPTXISD::Suld3DV2I8Zero: return "NVPTXISD::Suld3DV2I8Zero";
1028 case NVPTXISD::Suld3DV2I16Zero: return "NVPTXISD::Suld3DV2I16Zero";
1029 case NVPTXISD::Suld3DV2I32Zero: return "NVPTXISD::Suld3DV2I32Zero";
1030 case NVPTXISD::Suld3DV2I64Zero: return "NVPTXISD::Suld3DV2I64Zero";
1031 case NVPTXISD::Suld3DV4I8Zero: return "NVPTXISD::Suld3DV4I8Zero";
1032 case NVPTXISD::Suld3DV4I16Zero: return "NVPTXISD::Suld3DV4I16Zero";
1033 case NVPTXISD::Suld3DV4I32Zero: return "NVPTXISD::Suld3DV4I32Zero";
1034 }
1035 return nullptr;
1036}
1037
1038TargetLoweringBase::LegalizeTypeAction
1039NVPTXTargetLowering::getPreferredVectorAction(EVT VT) const {
1040 if (VT.getVectorNumElements() != 1 && VT.getScalarType() == MVT::i1)
1041 return TypeSplitVector;
1042
1043 return TargetLoweringBase::getPreferredVectorAction(VT);
1044}
1045
1046SDValue NVPTXTargetLowering::getSqrtEstimate(SDValue Operand, SelectionDAG &DAG,
1047 int Enabled, int &ExtraSteps,
1048 bool &UseOneConst,
1049 bool Reciprocal) const {
1050 if (!(Enabled == ReciprocalEstimate::Enabled ||
1051 (Enabled == ReciprocalEstimate::Unspecified && !usePrecSqrtF32())))
1052 return SDValue();
1053
1054 if (ExtraSteps == ReciprocalEstimate::Unspecified)
1055 ExtraSteps = 0;
1056
1057 SDLoc DL(Operand);
1058 EVT VT = Operand.getValueType();
1059 bool Ftz = useF32FTZ(DAG.getMachineFunction());
1060
1061 auto MakeIntrinsicCall = [&](Intrinsic::ID IID) {
1062 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DL, VT,
1063 DAG.getConstant(IID, DL, MVT::i32), Operand);
1064 };
1065
1066 // The sqrt and rsqrt refinement processes assume we always start out with an
1067 // approximation of the rsqrt. Therefore, if we're going to do any refinement
1068 // (i.e. ExtraSteps > 0), we must return an rsqrt. But if we're *not* doing
1069 // any refinement, we must return a regular sqrt.
1070 if (Reciprocal || ExtraSteps > 0) {
1071 if (VT == MVT::f32)
1072 return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_rsqrt_approx_ftz_f
1073 : Intrinsic::nvvm_rsqrt_approx_f);
1074 else if (VT == MVT::f64)
1075 return MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d);
1076 else
1077 return SDValue();
1078 } else {
1079 if (VT == MVT::f32)
1080 return MakeIntrinsicCall(Ftz ? Intrinsic::nvvm_sqrt_approx_ftz_f
1081 : Intrinsic::nvvm_sqrt_approx_f);
1082 else {
1083 // There's no sqrt.approx.f64 instruction, so we emit
1084 // reciprocal(rsqrt(x)). This is faster than
1085 // select(x == 0, 0, x * rsqrt(x)). (In fact, it's faster than plain
1086 // x * rsqrt(x).)
1087 return DAG.getNode(
1088 ISD::INTRINSIC_WO_CHAIN, DL, VT,
1089 DAG.getConstant(Intrinsic::nvvm_rcp_approx_ftz_d, DL, MVT::i32),
1090 MakeIntrinsicCall(Intrinsic::nvvm_rsqrt_approx_d));
1091 }
1092 }
1093}
1094
1095SDValue
1096NVPTXTargetLowering::LowerGlobalAddress(SDValue Op, SelectionDAG &DAG) const {
1097 SDLoc dl(Op);
1098 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1099 auto PtrVT = getPointerTy(DAG.getDataLayout());
1100 Op = DAG.getTargetGlobalAddress(GV, dl, PtrVT);
1101 return DAG.getNode(NVPTXISD::Wrapper, dl, PtrVT, Op);
1102}
1103
1104std::string NVPTXTargetLowering::getPrototype(
1105 const DataLayout &DL, Type *retTy, const ArgListTy &Args,
1106 const SmallVectorImpl<ISD::OutputArg> &Outs, unsigned retAlignment,
1107 const ImmutableCallSite *CS) const {
1108 auto PtrVT = getPointerTy(DL);
1109
1110 bool isABI = (STI.getSmVersion() >= 20);
1111 assert(isABI && "Non-ABI compilation is not supported")((isABI && "Non-ABI compilation is not supported") ? static_cast
<void> (0) : __assert_fail ("isABI && \"Non-ABI compilation is not supported\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 1111, __PRETTY_FUNCTION__))
;
1112 if (!isABI)
1113 return "";
1114
1115 std::stringstream O;
1116 O << "prototype_" << uniqueCallSite << " : .callprototype ";
1117
1118 if (retTy->getTypeID() == Type::VoidTyID) {
1119 O << "()";
1120 } else {
1121 O << "(";
1122 if (retTy->isFloatingPointTy() || retTy->isIntegerTy()) {
1123 unsigned size = 0;
1124 if (auto *ITy = dyn_cast<IntegerType>(retTy)) {
1125 size = ITy->getBitWidth();
1126 } else {
1127 assert(retTy->isFloatingPointTy() &&((retTy->isFloatingPointTy() && "Floating point type expected here"
) ? static_cast<void> (0) : __assert_fail ("retTy->isFloatingPointTy() && \"Floating point type expected here\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 1128, __PRETTY_FUNCTION__))
1128 "Floating point type expected here")((retTy->isFloatingPointTy() && "Floating point type expected here"
) ? static_cast<void> (0) : __assert_fail ("retTy->isFloatingPointTy() && \"Floating point type expected here\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 1128, __PRETTY_FUNCTION__))
;
1129 size = retTy->getPrimitiveSizeInBits();
1130 }
1131 // PTX ABI requires all scalar return values to be at least 32
1132 // bits in size. fp16 normally uses .b16 as its storage type in
1133 // PTX, so its size must be adjusted here, too.
1134 if (size < 32)
1135 size = 32;
1136
1137 O << ".param .b" << size << " _";
1138 } else if (isa<PointerType>(retTy)) {
1139 O << ".param .b" << PtrVT.getSizeInBits() << " _";
1140 } else if (retTy->isAggregateType() || retTy->isVectorTy()) {
1141 auto &DL = CS->getCalledFunction()->getParent()->getDataLayout();
1142 O << ".param .align " << retAlignment << " .b8 _["
1143 << DL.getTypeAllocSize(retTy) << "]";
1144 } else {
1145 llvm_unreachable("Unknown return type")::llvm::llvm_unreachable_internal("Unknown return type", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 1145)
;
1146 }
1147 O << ") ";
1148 }
1149 O << "_ (";
1150
1151 bool first = true;
1152
1153 unsigned OIdx = 0;
1154 for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) {
1155 Type *Ty = Args[i].Ty;
1156 if (!first) {
1157 O << ", ";
1158 }
1159 first = false;
1160
1161 if (!Outs[OIdx].Flags.isByVal()) {
1162 if (Ty->isAggregateType() || Ty->isVectorTy()) {
1163 unsigned align = 0;
1164 const CallInst *CallI = cast<CallInst>(CS->getInstruction());
1165 // +1 because index 0 is reserved for return type alignment
1166 if (!getAlign(*CallI, i + 1, align))
1167 align = DL.getABITypeAlignment(Ty);
1168 unsigned sz = DL.getTypeAllocSize(Ty);
1169 O << ".param .align " << align << " .b8 ";
1170 O << "_";
1171 O << "[" << sz << "]";
1172 // update the index for Outs
1173 SmallVector<EVT, 16> vtparts;
1174 ComputeValueVTs(*this, DL, Ty, vtparts);
1175 if (unsigned len = vtparts.size())
1176 OIdx += len - 1;
1177 continue;
1178 }
1179 // i8 types in IR will be i16 types in SDAG
1180 assert((getValueType(DL, Ty) == Outs[OIdx].VT ||(((getValueType(DL, Ty) == Outs[OIdx].VT || (getValueType(DL,
Ty) == MVT::i8 && Outs[OIdx].VT == MVT::i16)) &&
"type mismatch between callee prototype and arguments") ? static_cast
<void> (0) : __assert_fail ("(getValueType(DL, Ty) == Outs[OIdx].VT || (getValueType(DL, Ty) == MVT::i8 && Outs[OIdx].VT == MVT::i16)) && \"type mismatch between callee prototype and arguments\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 1182, __PRETTY_FUNCTION__))
1181 (getValueType(DL, Ty) == MVT::i8 && Outs[OIdx].VT == MVT::i16)) &&(((getValueType(DL, Ty) == Outs[OIdx].VT || (getValueType(DL,
Ty) == MVT::i8 && Outs[OIdx].VT == MVT::i16)) &&
"type mismatch between callee prototype and arguments") ? static_cast
<void> (0) : __assert_fail ("(getValueType(DL, Ty) == Outs[OIdx].VT || (getValueType(DL, Ty) == MVT::i8 && Outs[OIdx].VT == MVT::i16)) && \"type mismatch between callee prototype and arguments\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 1182, __PRETTY_FUNCTION__))
1182 "type mismatch between callee prototype and arguments")(((getValueType(DL, Ty) == Outs[OIdx].VT || (getValueType(DL,
Ty) == MVT::i8 && Outs[OIdx].VT == MVT::i16)) &&
"type mismatch between callee prototype and arguments") ? static_cast
<void> (0) : __assert_fail ("(getValueType(DL, Ty) == Outs[OIdx].VT || (getValueType(DL, Ty) == MVT::i8 && Outs[OIdx].VT == MVT::i16)) && \"type mismatch between callee prototype and arguments\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 1182, __PRETTY_FUNCTION__))
;
1183 // scalar type
1184 unsigned sz = 0;
1185 if (isa<IntegerType>(Ty)) {
1186 sz = cast<IntegerType>(Ty)->getBitWidth();
1187 if (sz < 32)
1188 sz = 32;
1189 } else if (isa<PointerType>(Ty)) {
1190 sz = PtrVT.getSizeInBits();
1191 } else if (Ty->isHalfTy())
1192 // PTX ABI requires all scalar parameters to be at least 32
1193 // bits in size. fp16 normally uses .b16 as its storage type
1194 // in PTX, so its size must be adjusted here, too.
1195 sz = 32;
1196 else
1197 sz = Ty->getPrimitiveSizeInBits();
1198 O << ".param .b" << sz << " ";
1199 O << "_";
1200 continue;
1201 }
1202 auto *PTy = dyn_cast<PointerType>(Ty);
1203 assert(PTy && "Param with byval attribute should be a pointer type")((PTy && "Param with byval attribute should be a pointer type"
) ? static_cast<void> (0) : __assert_fail ("PTy && \"Param with byval attribute should be a pointer type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 1203, __PRETTY_FUNCTION__))
;
1204 Type *ETy = PTy->getElementType();
1205
1206 unsigned align = Outs[OIdx].Flags.getByValAlign();
1207 unsigned sz = DL.getTypeAllocSize(ETy);
1208 O << ".param .align " << align << " .b8 ";
1209 O << "_";
1210 O << "[" << sz << "]";
1211 }
1212 O << ");";
1213 return O.str();
1214}
1215
1216unsigned NVPTXTargetLowering::getArgumentAlignment(SDValue Callee,
1217 const ImmutableCallSite *CS,
1218 Type *Ty, unsigned Idx,
1219 const DataLayout &DL) const {
1220 if (!CS) {
1221 // CallSite is zero, fallback to ABI type alignment
1222 return DL.getABITypeAlignment(Ty);
1223 }
1224
1225 unsigned Align = 0;
1226 const Value *DirectCallee = CS->getCalledFunction();
1227
1228 if (!DirectCallee) {
1229 // We don't have a direct function symbol, but that may be because of
1230 // constant cast instructions in the call.
1231 const Instruction *CalleeI = CS->getInstruction();
1232 assert(CalleeI && "Call target is not a function or derived value?")((CalleeI && "Call target is not a function or derived value?"
) ? static_cast<void> (0) : __assert_fail ("CalleeI && \"Call target is not a function or derived value?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 1232, __PRETTY_FUNCTION__))
;
1233
1234 // With bitcast'd call targets, the instruction will be the call
1235 if (isa<CallInst>(CalleeI)) {
1236 // Check if we have call alignment metadata
1237 if (getAlign(*cast<CallInst>(CalleeI), Idx, Align))
1238 return Align;
1239
1240 const Value *CalleeV = cast<CallInst>(CalleeI)->getCalledValue();
1241 // Ignore any bitcast instructions
1242 while (isa<ConstantExpr>(CalleeV)) {
1243 const ConstantExpr *CE = cast<ConstantExpr>(CalleeV);
1244 if (!CE->isCast())
1245 break;
1246 // Look through the bitcast
1247 CalleeV = cast<ConstantExpr>(CalleeV)->getOperand(0);
1248 }
1249
1250 // We have now looked past all of the bitcasts. Do we finally have a
1251 // Function?
1252 if (isa<Function>(CalleeV))
1253 DirectCallee = CalleeV;
1254 }
1255 }
1256
1257 // Check for function alignment information if we found that the
1258 // ultimate target is a Function
1259 if (DirectCallee)
1260 if (getAlign(*cast<Function>(DirectCallee), Idx, Align))
1261 return Align;
1262
1263 // Call is indirect or alignment information is not available, fall back to
1264 // the ABI type alignment
1265 return DL.getABITypeAlignment(Ty);
1266}
1267
1268SDValue NVPTXTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
1269 SmallVectorImpl<SDValue> &InVals) const {
1270 SelectionDAG &DAG = CLI.DAG;
1271 SDLoc dl = CLI.DL;
1272 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
1273 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
1274 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
1275 SDValue Chain = CLI.Chain;
1276 SDValue Callee = CLI.Callee;
1277 bool &isTailCall = CLI.IsTailCall;
1278 ArgListTy &Args = CLI.getArgs();
1279 Type *retTy = CLI.RetTy;
1
'retTy' initialized here
1280 ImmutableCallSite *CS = CLI.CS;
1281
1282 bool isABI = (STI.getSmVersion() >= 20);
2
Assuming the condition is true
1283 assert(isABI && "Non-ABI compilation is not supported")((isABI && "Non-ABI compilation is not supported") ? static_cast
<void> (0) : __assert_fail ("isABI && \"Non-ABI compilation is not supported\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 1283, __PRETTY_FUNCTION__))
;
1284 if (!isABI)
3
Taking false branch
1285 return Chain;
1286 MachineFunction &MF = DAG.getMachineFunction();
1287 const Function *F = MF.getFunction();
1288 auto &DL = MF.getDataLayout();
1289
1290 SDValue tempChain = Chain;
1291 Chain = DAG.getCALLSEQ_START(Chain,
1292 DAG.getIntPtrConstant(uniqueCallSite, dl, true),
1293 dl);
1294 SDValue InFlag = Chain.getValue(1);
1295
1296 unsigned paramCount = 0;
1297 // Args.size() and Outs.size() need not match.
1298 // Outs.size() will be larger
1299 // * if there is an aggregate argument with multiple fields (each field
1300 // showing up separately in Outs)
1301 // * if there is a vector argument with more than typical vector-length
1302 // elements (generally if more than 4) where each vector element is
1303 // individually present in Outs.
1304 // So a different index should be used for indexing into Outs/OutVals.
1305 // See similar issue in LowerFormalArguments.
1306 unsigned OIdx = 0;
1307 // Declare the .params or .reg need to pass values
1308 // to the function
1309 for (unsigned i = 0, e = Args.size(); i != e; ++i, ++OIdx) {
4
Assuming 'i' is equal to 'e'
5
Loop condition is false. Execution continues on line 1598
1310 EVT VT = Outs[OIdx].VT;
1311 Type *Ty = Args[i].Ty;
1312
1313 if (!Outs[OIdx].Flags.isByVal()) {
1314 if (Ty->isAggregateType()) {
1315 // aggregate
1316 SmallVector<EVT, 16> vtparts;
1317 SmallVector<uint64_t, 16> Offsets;
1318 ComputePTXValueVTs(*this, DAG.getDataLayout(), Ty, vtparts, &Offsets,
1319 0);
1320
1321 unsigned align =
1322 getArgumentAlignment(Callee, CS, Ty, paramCount + 1, DL);
1323 // declare .param .align <align> .b8 .param<n>[<size>];
1324 unsigned sz = DL.getTypeAllocSize(Ty);
1325 SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1326 SDValue DeclareParamOps[] = { Chain, DAG.getConstant(align, dl,
1327 MVT::i32),
1328 DAG.getConstant(paramCount, dl, MVT::i32),
1329 DAG.getConstant(sz, dl, MVT::i32),
1330 InFlag };
1331 Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
1332 DeclareParamOps);
1333 InFlag = Chain.getValue(1);
1334 for (unsigned j = 0, je = vtparts.size(); j != je; ++j) {
1335 EVT elemtype = vtparts[j];
1336 unsigned ArgAlign = GreatestCommonDivisor64(align, Offsets[j]);
1337 if (elemtype.isInteger() && (sz < 8))
1338 sz = 8;
1339 SDValue StVal = OutVals[OIdx];
1340 if (elemtype.getSizeInBits() < 16) {
1341 StVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, StVal);
1342 }
1343 SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1344 SDValue CopyParamOps[] = { Chain,
1345 DAG.getConstant(paramCount, dl, MVT::i32),
1346 DAG.getConstant(Offsets[j], dl, MVT::i32),
1347 StVal, InFlag };
1348 Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreParam, dl,
1349 CopyParamVTs, CopyParamOps,
1350 elemtype, MachinePointerInfo(),
1351 ArgAlign);
1352 InFlag = Chain.getValue(1);
1353 ++OIdx;
1354 }
1355 if (vtparts.size() > 0)
1356 --OIdx;
1357 ++paramCount;
1358 continue;
1359 }
1360 if (Ty->isVectorTy()) {
1361 EVT ObjectVT = getValueType(DL, Ty);
1362 unsigned align =
1363 getArgumentAlignment(Callee, CS, Ty, paramCount + 1, DL);
1364 // declare .param .align <align> .b8 .param<n>[<size>];
1365 unsigned sz = DL.getTypeAllocSize(Ty);
1366 SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1367 SDValue DeclareParamOps[] = { Chain,
1368 DAG.getConstant(align, dl, MVT::i32),
1369 DAG.getConstant(paramCount, dl, MVT::i32),
1370 DAG.getConstant(sz, dl, MVT::i32),
1371 InFlag };
1372 Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
1373 DeclareParamOps);
1374 InFlag = Chain.getValue(1);
1375 unsigned NumElts = ObjectVT.getVectorNumElements();
1376 EVT EltVT = ObjectVT.getVectorElementType();
1377 EVT MemVT = EltVT;
1378 bool NeedExtend = false;
1379 if (EltVT.getSizeInBits() < 16) {
1380 NeedExtend = true;
1381 EltVT = MVT::i16;
1382 }
1383
1384 // V1 store
1385 if (NumElts == 1) {
1386 SDValue Elt = OutVals[OIdx++];
1387 if (NeedExtend)
1388 Elt = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Elt);
1389
1390 SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1391 SDValue CopyParamOps[] = { Chain,
1392 DAG.getConstant(paramCount, dl, MVT::i32),
1393 DAG.getConstant(0, dl, MVT::i32), Elt,
1394 InFlag };
1395 Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreParam, dl,
1396 CopyParamVTs, CopyParamOps,
1397 MemVT, MachinePointerInfo());
1398 InFlag = Chain.getValue(1);
1399 } else if (NumElts == 2) {
1400 SDValue Elt0 = OutVals[OIdx++];
1401 SDValue Elt1 = OutVals[OIdx++];
1402 if (NeedExtend) {
1403 Elt0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Elt0);
1404 Elt1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Elt1);
1405 }
1406
1407 SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1408 SDValue CopyParamOps[] = { Chain,
1409 DAG.getConstant(paramCount, dl, MVT::i32),
1410 DAG.getConstant(0, dl, MVT::i32), Elt0,
1411 Elt1, InFlag };
1412 Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreParamV2, dl,
1413 CopyParamVTs, CopyParamOps,
1414 MemVT, MachinePointerInfo());
1415 InFlag = Chain.getValue(1);
1416 } else {
1417 unsigned curOffset = 0;
1418 // V4 stores
1419 // We have at least 4 elements (<3 x Ty> expands to 4 elements) and
1420 // the
1421 // vector will be expanded to a power of 2 elements, so we know we can
1422 // always round up to the next multiple of 4 when creating the vector
1423 // stores.
1424 // e.g. 4 elem => 1 st.v4
1425 // 6 elem => 2 st.v4
1426 // 8 elem => 2 st.v4
1427 // 11 elem => 3 st.v4
1428 unsigned VecSize = 4;
1429 if (EltVT.getSizeInBits() == 64)
1430 VecSize = 2;
1431
1432 // This is potentially only part of a vector, so assume all elements
1433 // are packed together.
1434 unsigned PerStoreOffset = MemVT.getStoreSizeInBits() / 8 * VecSize;
1435
1436 for (unsigned i = 0; i < NumElts; i += VecSize) {
1437 // Get values
1438 SDValue StoreVal;
1439 SmallVector<SDValue, 8> Ops;
1440 Ops.push_back(Chain);
1441 Ops.push_back(DAG.getConstant(paramCount, dl, MVT::i32));
1442 Ops.push_back(DAG.getConstant(curOffset, dl, MVT::i32));
1443
1444 unsigned Opc = NVPTXISD::StoreParamV2;
1445
1446 StoreVal = OutVals[OIdx++];
1447 if (NeedExtend)
1448 StoreVal = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal);
1449 Ops.push_back(StoreVal);
1450
1451 if (i + 1 < NumElts) {
1452 StoreVal = OutVals[OIdx++];
1453 if (NeedExtend)
1454 StoreVal =
1455 DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal);
1456 } else {
1457 StoreVal = DAG.getUNDEF(EltVT);
1458 }
1459 Ops.push_back(StoreVal);
1460
1461 if (VecSize == 4) {
1462 Opc = NVPTXISD::StoreParamV4;
1463 if (i + 2 < NumElts) {
1464 StoreVal = OutVals[OIdx++];
1465 if (NeedExtend)
1466 StoreVal =
1467 DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal);
1468 } else {
1469 StoreVal = DAG.getUNDEF(EltVT);
1470 }
1471 Ops.push_back(StoreVal);
1472
1473 if (i + 3 < NumElts) {
1474 StoreVal = OutVals[OIdx++];
1475 if (NeedExtend)
1476 StoreVal =
1477 DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal);
1478 } else {
1479 StoreVal = DAG.getUNDEF(EltVT);
1480 }
1481 Ops.push_back(StoreVal);
1482 }
1483
1484 Ops.push_back(InFlag);
1485
1486 SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1487 Chain = DAG.getMemIntrinsicNode(Opc, dl, CopyParamVTs, Ops,
1488 MemVT, MachinePointerInfo());
1489 InFlag = Chain.getValue(1);
1490 curOffset += PerStoreOffset;
1491 }
1492 }
1493 ++paramCount;
1494 --OIdx;
1495 continue;
1496 }
1497 // Plain scalar
1498 // for ABI, declare .param .b<size> .param<n>;
1499 unsigned sz = VT.getSizeInBits();
1500 bool needExtend = false;
1501 if (VT.isInteger()) {
1502 if (sz < 16)
1503 needExtend = true;
1504 if (sz < 32)
1505 sz = 32;
1506 } else if (VT.isFloatingPoint() && sz < 32)
1507 // PTX ABI requires all scalar parameters to be at least 32
1508 // bits in size. fp16 normally uses .b16 as its storage type
1509 // in PTX, so its size must be adjusted here, too.
1510 sz = 32;
1511 SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1512 SDValue DeclareParamOps[] = { Chain,
1513 DAG.getConstant(paramCount, dl, MVT::i32),
1514 DAG.getConstant(sz, dl, MVT::i32),
1515 DAG.getConstant(0, dl, MVT::i32), InFlag };
1516 Chain = DAG.getNode(NVPTXISD::DeclareScalarParam, dl, DeclareParamVTs,
1517 DeclareParamOps);
1518 InFlag = Chain.getValue(1);
1519 SDValue OutV = OutVals[OIdx];
1520 if (needExtend) {
1521 // zext/sext i1 to i16
1522 unsigned opc = ISD::ZERO_EXTEND;
1523 if (Outs[OIdx].Flags.isSExt())
1524 opc = ISD::SIGN_EXTEND;
1525 OutV = DAG.getNode(opc, dl, MVT::i16, OutV);
1526 }
1527 SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1528 SDValue CopyParamOps[] = { Chain,
1529 DAG.getConstant(paramCount, dl, MVT::i32),
1530 DAG.getConstant(0, dl, MVT::i32), OutV,
1531 InFlag };
1532
1533 unsigned opcode = NVPTXISD::StoreParam;
1534 if (Outs[OIdx].Flags.isZExt() && VT.getSizeInBits() < 32)
1535 opcode = NVPTXISD::StoreParamU32;
1536 else if (Outs[OIdx].Flags.isSExt() && VT.getSizeInBits() < 32)
1537 opcode = NVPTXISD::StoreParamS32;
1538 Chain = DAG.getMemIntrinsicNode(opcode, dl, CopyParamVTs, CopyParamOps,
1539 VT, MachinePointerInfo());
1540
1541 InFlag = Chain.getValue(1);
1542 ++paramCount;
1543 continue;
1544 }
1545 // struct or vector
1546 SmallVector<EVT, 16> vtparts;
1547 SmallVector<uint64_t, 16> Offsets;
1548 auto *PTy = dyn_cast<PointerType>(Args[i].Ty);
1549 assert(PTy && "Type of a byval parameter should be pointer")((PTy && "Type of a byval parameter should be pointer"
) ? static_cast<void> (0) : __assert_fail ("PTy && \"Type of a byval parameter should be pointer\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 1549, __PRETTY_FUNCTION__))
;
1550 ComputePTXValueVTs(*this, DAG.getDataLayout(), PTy->getElementType(),
1551 vtparts, &Offsets, 0);
1552
1553 // declare .param .align <align> .b8 .param<n>[<size>];
1554 unsigned sz = Outs[OIdx].Flags.getByValSize();
1555 SDVTList DeclareParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1556 unsigned ArgAlign = Outs[OIdx].Flags.getByValAlign();
1557 // The ByValAlign in the Outs[OIdx].Flags is alway set at this point,
1558 // so we don't need to worry about natural alignment or not.
1559 // See TargetLowering::LowerCallTo().
1560
1561 // Enforce minumum alignment of 4 to work around ptxas miscompile
1562 // for sm_50+. See corresponding alignment adjustment in
1563 // emitFunctionParamList() for details.
1564 if (ArgAlign < 4)
1565 ArgAlign = 4;
1566 SDValue DeclareParamOps[] = {Chain, DAG.getConstant(ArgAlign, dl, MVT::i32),
1567 DAG.getConstant(paramCount, dl, MVT::i32),
1568 DAG.getConstant(sz, dl, MVT::i32), InFlag};
1569 Chain = DAG.getNode(NVPTXISD::DeclareParam, dl, DeclareParamVTs,
1570 DeclareParamOps);
1571 InFlag = Chain.getValue(1);
1572 for (unsigned j = 0, je = vtparts.size(); j != je; ++j) {
1573 EVT elemtype = vtparts[j];
1574 int curOffset = Offsets[j];
1575 unsigned PartAlign = GreatestCommonDivisor64(ArgAlign, curOffset);
1576 auto PtrVT = getPointerTy(DAG.getDataLayout());
1577 SDValue srcAddr = DAG.getNode(ISD::ADD, dl, PtrVT, OutVals[OIdx],
1578 DAG.getConstant(curOffset, dl, PtrVT));
1579 SDValue theVal = DAG.getLoad(elemtype, dl, tempChain, srcAddr,
1580 MachinePointerInfo(), PartAlign);
1581 if (elemtype.getSizeInBits() < 16) {
1582 theVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, theVal);
1583 }
1584 SDVTList CopyParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1585 SDValue CopyParamOps[] = { Chain,
1586 DAG.getConstant(paramCount, dl, MVT::i32),
1587 DAG.getConstant(curOffset, dl, MVT::i32),
1588 theVal, InFlag };
1589 Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreParam, dl, CopyParamVTs,
1590 CopyParamOps, elemtype,
1591 MachinePointerInfo());
1592
1593 InFlag = Chain.getValue(1);
1594 }
1595 ++paramCount;
1596 }
1597
1598 GlobalAddressSDNode *Func = dyn_cast<GlobalAddressSDNode>(Callee.getNode());
1599 unsigned retAlignment = 0;
1600
1601 // Handle Result
1602 if (Ins.size() > 0) {
6
Assuming the condition is false
7
Taking false branch
1603 SmallVector<EVT, 16> resvtparts;
1604 ComputeValueVTs(*this, DL, retTy, resvtparts);
1605
1606 // Declare
1607 // .param .align 16 .b8 retval0[<size-in-bytes>], or
1608 // .param .b<size-in-bits> retval0
1609 unsigned resultsz = DL.getTypeAllocSizeInBits(retTy);
1610 // Emit ".param .b<size-in-bits> retval0" instead of byte arrays only for
1611 // these three types to match the logic in
1612 // NVPTXAsmPrinter::printReturnValStr and NVPTXTargetLowering::getPrototype.
1613 // Plus, this behavior is consistent with nvcc's.
1614 if (retTy->isFloatingPointTy() || retTy->isIntegerTy() ||
1615 retTy->isPointerTy()) {
1616 // Scalar needs to be at least 32bit wide
1617 if (resultsz < 32)
1618 resultsz = 32;
1619 SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1620 SDValue DeclareRetOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32),
1621 DAG.getConstant(resultsz, dl, MVT::i32),
1622 DAG.getConstant(0, dl, MVT::i32), InFlag };
1623 Chain = DAG.getNode(NVPTXISD::DeclareRet, dl, DeclareRetVTs,
1624 DeclareRetOps);
1625 InFlag = Chain.getValue(1);
1626 } else {
1627 retAlignment = getArgumentAlignment(Callee, CS, retTy, 0, DL);
1628 SDVTList DeclareRetVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1629 SDValue DeclareRetOps[] = { Chain,
1630 DAG.getConstant(retAlignment, dl, MVT::i32),
1631 DAG.getConstant(resultsz / 8, dl, MVT::i32),
1632 DAG.getConstant(0, dl, MVT::i32), InFlag };
1633 Chain = DAG.getNode(NVPTXISD::DeclareRetParam, dl, DeclareRetVTs,
1634 DeclareRetOps);
1635 InFlag = Chain.getValue(1);
1636 }
1637 }
1638
1639 if (!Func) {
8
Taking true branch
1640 // This is indirect function call case : PTX requires a prototype of the
1641 // form
1642 // proto_0 : .callprototype(.param .b32 _) _ (.param .b32 _);
1643 // to be emitted, and the label has to used as the last arg of call
1644 // instruction.
1645 // The prototype is embedded in a string and put as the operand for a
1646 // CallPrototype SDNode which will print out to the value of the string.
1647 SDVTList ProtoVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1648 std::string Proto =
1649 getPrototype(DAG.getDataLayout(), retTy, Args, Outs, retAlignment, CS);
1650 const char *ProtoStr =
1651 nvTM->getManagedStrPool()->getManagedString(Proto.c_str())->c_str();
1652 SDValue ProtoOps[] = {
1653 Chain, DAG.getTargetExternalSymbol(ProtoStr, MVT::i32), InFlag,
1654 };
1655 Chain = DAG.getNode(NVPTXISD::CallPrototype, dl, ProtoVTs, ProtoOps);
1656 InFlag = Chain.getValue(1);
1657 }
1658 // Op to just print "call"
1659 SDVTList PrintCallVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1660 SDValue PrintCallOps[] = {
1661 Chain, DAG.getConstant((Ins.size() == 0) ? 0 : 1, dl, MVT::i32), InFlag
9
Assuming the condition is false
10
'?' condition is false
1662 };
1663 // We model convergent calls as separate opcodes.
1664 unsigned Opcode = Func ? NVPTXISD::PrintCallUni : NVPTXISD::PrintCall;
11
'?' condition is false
1665 if (CLI.IsConvergent)
12
Assuming the condition is false
13
Taking false branch
1666 Opcode = Opcode == NVPTXISD::PrintCallUni ? NVPTXISD::PrintConvergentCallUni
1667 : NVPTXISD::PrintConvergentCall;
1668 Chain = DAG.getNode(Opcode, dl, PrintCallVTs, PrintCallOps);
1669 InFlag = Chain.getValue(1);
1670
1671 // Ops to print out the function name
1672 SDVTList CallVoidVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1673 SDValue CallVoidOps[] = { Chain, Callee, InFlag };
1674 Chain = DAG.getNode(NVPTXISD::CallVoid, dl, CallVoidVTs, CallVoidOps);
1675 InFlag = Chain.getValue(1);
1676
1677 // Ops to print out the param list
1678 SDVTList CallArgBeginVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1679 SDValue CallArgBeginOps[] = { Chain, InFlag };
1680 Chain = DAG.getNode(NVPTXISD::CallArgBegin, dl, CallArgBeginVTs,
1681 CallArgBeginOps);
1682 InFlag = Chain.getValue(1);
1683
1684 for (unsigned i = 0, e = paramCount; i != e; ++i) {
14
Loop condition is false. Execution continues on line 1696
1685 unsigned opcode;
1686 if (i == (e - 1))
1687 opcode = NVPTXISD::LastCallArg;
1688 else
1689 opcode = NVPTXISD::CallArg;
1690 SDVTList CallArgVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1691 SDValue CallArgOps[] = { Chain, DAG.getConstant(1, dl, MVT::i32),
1692 DAG.getConstant(i, dl, MVT::i32), InFlag };
1693 Chain = DAG.getNode(opcode, dl, CallArgVTs, CallArgOps);
1694 InFlag = Chain.getValue(1);
1695 }
1696 SDVTList CallArgEndVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1697 SDValue CallArgEndOps[] = { Chain,
1698 DAG.getConstant(Func ? 1 : 0, dl, MVT::i32),
15
'?' condition is false
1699 InFlag };
1700 Chain = DAG.getNode(NVPTXISD::CallArgEnd, dl, CallArgEndVTs, CallArgEndOps);
1701 InFlag = Chain.getValue(1);
1702
1703 if (!Func) {
16
Taking true branch
1704 SDVTList PrototypeVTs = DAG.getVTList(MVT::Other, MVT::Glue);
1705 SDValue PrototypeOps[] = { Chain,
1706 DAG.getConstant(uniqueCallSite, dl, MVT::i32),
1707 InFlag };
1708 Chain = DAG.getNode(NVPTXISD::Prototype, dl, PrototypeVTs, PrototypeOps);
1709 InFlag = Chain.getValue(1);
1710 }
1711
1712 // Generate loads from param memory/moves from registers for result
1713 if (Ins.size() > 0) {
17
Assuming the condition is true
18
Taking true branch
1714 if (retTy && retTy->isVectorTy()) {
19
Assuming 'retTy' is null
1715 EVT ObjectVT = getValueType(DL, retTy);
1716 unsigned NumElts = ObjectVT.getVectorNumElements();
1717 EVT EltVT = ObjectVT.getVectorElementType();
1718 assert(STI.getTargetLowering()->getNumRegisters(F->getContext(),((STI.getTargetLowering()->getNumRegisters(F->getContext
(), ObjectVT) == NumElts && "Vector was not scalarized"
) ? static_cast<void> (0) : __assert_fail ("STI.getTargetLowering()->getNumRegisters(F->getContext(), ObjectVT) == NumElts && \"Vector was not scalarized\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 1720, __PRETTY_FUNCTION__))
1719 ObjectVT) == NumElts &&((STI.getTargetLowering()->getNumRegisters(F->getContext
(), ObjectVT) == NumElts && "Vector was not scalarized"
) ? static_cast<void> (0) : __assert_fail ("STI.getTargetLowering()->getNumRegisters(F->getContext(), ObjectVT) == NumElts && \"Vector was not scalarized\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 1720, __PRETTY_FUNCTION__))
1720 "Vector was not scalarized")((STI.getTargetLowering()->getNumRegisters(F->getContext
(), ObjectVT) == NumElts && "Vector was not scalarized"
) ? static_cast<void> (0) : __assert_fail ("STI.getTargetLowering()->getNumRegisters(F->getContext(), ObjectVT) == NumElts && \"Vector was not scalarized\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 1720, __PRETTY_FUNCTION__))
;
1721 unsigned sz = EltVT.getSizeInBits();
1722 bool needTruncate = sz < 8;
1723
1724 if (NumElts == 1) {
1725 // Just a simple load
1726 SmallVector<EVT, 4> LoadRetVTs;
1727 if (EltVT == MVT::i1 || EltVT == MVT::i8) {
1728 // If loading i1/i8 result, generate
1729 // load.b8 i16
1730 // if i1
1731 // trunc i16 to i1
1732 LoadRetVTs.push_back(MVT::i16);
1733 } else
1734 LoadRetVTs.push_back(EltVT);
1735 LoadRetVTs.push_back(MVT::Other);
1736 LoadRetVTs.push_back(MVT::Glue);
1737 SDValue LoadRetOps[] = {Chain, DAG.getConstant(1, dl, MVT::i32),
1738 DAG.getConstant(0, dl, MVT::i32), InFlag};
1739 SDValue retval = DAG.getMemIntrinsicNode(
1740 NVPTXISD::LoadParam, dl,
1741 DAG.getVTList(LoadRetVTs), LoadRetOps, EltVT, MachinePointerInfo());
1742 Chain = retval.getValue(1);
1743 InFlag = retval.getValue(2);
1744 SDValue Ret0 = retval;
1745 if (needTruncate)
1746 Ret0 = DAG.getNode(ISD::TRUNCATE, dl, EltVT, Ret0);
1747 InVals.push_back(Ret0);
1748 } else if (NumElts == 2) {
1749 // LoadV2
1750 SmallVector<EVT, 4> LoadRetVTs;
1751 if (EltVT == MVT::i1 || EltVT == MVT::i8) {
1752 // If loading i1/i8 result, generate
1753 // load.b8 i16
1754 // if i1
1755 // trunc i16 to i1
1756 LoadRetVTs.push_back(MVT::i16);
1757 LoadRetVTs.push_back(MVT::i16);
1758 } else {
1759 LoadRetVTs.push_back(EltVT);
1760 LoadRetVTs.push_back(EltVT);
1761 }
1762 LoadRetVTs.push_back(MVT::Other);
1763 LoadRetVTs.push_back(MVT::Glue);
1764 SDValue LoadRetOps[] = {Chain, DAG.getConstant(1, dl, MVT::i32),
1765 DAG.getConstant(0, dl, MVT::i32), InFlag};
1766 SDValue retval = DAG.getMemIntrinsicNode(
1767 NVPTXISD::LoadParamV2, dl,
1768 DAG.getVTList(LoadRetVTs), LoadRetOps, EltVT, MachinePointerInfo());
1769 Chain = retval.getValue(2);
1770 InFlag = retval.getValue(3);
1771 SDValue Ret0 = retval.getValue(0);
1772 SDValue Ret1 = retval.getValue(1);
1773 if (needTruncate) {
1774 Ret0 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ret0);
1775 InVals.push_back(Ret0);
1776 Ret1 = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, Ret1);
1777 InVals.push_back(Ret1);
1778 } else {
1779 InVals.push_back(Ret0);
1780 InVals.push_back(Ret1);
1781 }
1782 } else {
1783 // Split into N LoadV4
1784 unsigned Ofst = 0;
1785 unsigned VecSize = 4;
1786 unsigned Opc = NVPTXISD::LoadParamV4;
1787 if (EltVT.getSizeInBits() == 64) {
1788 VecSize = 2;
1789 Opc = NVPTXISD::LoadParamV2;
1790 }
1791 EVT VecVT = EVT::getVectorVT(F->getContext(), EltVT, VecSize);
1792 for (unsigned i = 0; i < NumElts; i += VecSize) {
1793 SmallVector<EVT, 8> LoadRetVTs;
1794 if (EltVT == MVT::i1 || EltVT == MVT::i8) {
1795 // If loading i1/i8 result, generate
1796 // load.b8 i16
1797 // if i1
1798 // trunc i16 to i1
1799 for (unsigned j = 0; j < VecSize; ++j)
1800 LoadRetVTs.push_back(MVT::i16);
1801 } else {
1802 for (unsigned j = 0; j < VecSize; ++j)
1803 LoadRetVTs.push_back(EltVT);
1804 }
1805 LoadRetVTs.push_back(MVT::Other);
1806 LoadRetVTs.push_back(MVT::Glue);
1807 SDValue LoadRetOps[] = {Chain, DAG.getConstant(1, dl, MVT::i32),
1808 DAG.getConstant(Ofst, dl, MVT::i32), InFlag};
1809 SDValue retval = DAG.getMemIntrinsicNode(
1810 Opc, dl, DAG.getVTList(LoadRetVTs),
1811 LoadRetOps, EltVT, MachinePointerInfo());
1812 if (VecSize == 2) {
1813 Chain = retval.getValue(2);
1814 InFlag = retval.getValue(3);
1815 } else {
1816 Chain = retval.getValue(4);
1817 InFlag = retval.getValue(5);
1818 }
1819
1820 for (unsigned j = 0; j < VecSize; ++j) {
1821 if (i + j >= NumElts)
1822 break;
1823 SDValue Elt = retval.getValue(j);
1824 if (needTruncate)
1825 Elt = DAG.getNode(ISD::TRUNCATE, dl, EltVT, Elt);
1826 InVals.push_back(Elt);
1827 }
1828 Ofst += DL.getTypeAllocSize(VecVT.getTypeForEVT(F->getContext()));
1829 }
1830 }
1831 } else {
1832 SmallVector<EVT, 16> VTs;
1833 SmallVector<uint64_t, 16> Offsets;
1834 auto &DL = DAG.getDataLayout();
1835 ComputePTXValueVTs(*this, DL, retTy, VTs, &Offsets, 0);
1836 assert(VTs.size() == Ins.size() && "Bad value decomposition")((VTs.size() == Ins.size() && "Bad value decomposition"
) ? static_cast<void> (0) : __assert_fail ("VTs.size() == Ins.size() && \"Bad value decomposition\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 1836, __PRETTY_FUNCTION__))
;
1837 unsigned RetAlign = getArgumentAlignment(Callee, CS, retTy, 0, DL);
1838 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
20
Assuming 'i' is not equal to 'e'
21
Loop condition is true. Entering loop body
1839 unsigned sz = VTs[i].getSizeInBits();
1840 unsigned AlignI = GreatestCommonDivisor64(RetAlign, Offsets[i]);
1841 bool needTruncate = false;
1842 if (VTs[i].isInteger() && sz < 8) {
22
Assuming the condition is false
1843 sz = 8;
1844 needTruncate = true;
1845 }
1846
1847 SmallVector<EVT, 4> LoadRetVTs;
1848 EVT TheLoadType = VTs[i];
1849 if (retTy->isIntegerTy() && DL.getTypeAllocSizeInBits(retTy) < 32) {
23
Called C++ object pointer is null
1850 // This is for integer types only, and specifically not for
1851 // aggregates.
1852 LoadRetVTs.push_back(MVT::i32);
1853 TheLoadType = MVT::i32;
1854 needTruncate = true;
1855 } else if (sz < 16) {
1856 // If loading i1/i8 result, generate
1857 // load i8 (-> i16)
1858 // trunc i16 to i1/i8
1859
1860 // FIXME: Do we need to set needTruncate to true here, too? We could
1861 // not figure out what this branch is for in D17872, so we left it
1862 // alone. The comment above about loading i1/i8 may be wrong, as the
1863 // branch above seems to cover integers of size < 32.
1864 LoadRetVTs.push_back(MVT::i16);
1865 } else
1866 LoadRetVTs.push_back(Ins[i].VT);
1867 LoadRetVTs.push_back(MVT::Other);
1868 LoadRetVTs.push_back(MVT::Glue);
1869
1870 SDValue LoadRetOps[] = {Chain, DAG.getConstant(1, dl, MVT::i32),
1871 DAG.getConstant(Offsets[i], dl, MVT::i32),
1872 InFlag};
1873 SDValue retval = DAG.getMemIntrinsicNode(
1874 NVPTXISD::LoadParam, dl,
1875 DAG.getVTList(LoadRetVTs), LoadRetOps,
1876 TheLoadType, MachinePointerInfo(), AlignI);
1877 Chain = retval.getValue(1);
1878 InFlag = retval.getValue(2);
1879 SDValue Ret0 = retval.getValue(0);
1880 if (needTruncate)
1881 Ret0 = DAG.getNode(ISD::TRUNCATE, dl, Ins[i].VT, Ret0);
1882 InVals.push_back(Ret0);
1883 }
1884 }
1885 }
1886
1887 Chain = DAG.getCALLSEQ_END(Chain,
1888 DAG.getIntPtrConstant(uniqueCallSite, dl, true),
1889 DAG.getIntPtrConstant(uniqueCallSite + 1, dl,
1890 true),
1891 InFlag, dl);
1892 uniqueCallSite++;
1893
1894 // set isTailCall to false for now, until we figure out how to express
1895 // tail call optimization in PTX
1896 isTailCall = false;
1897 return Chain;
1898}
1899
1900// By default CONCAT_VECTORS is lowered by ExpandVectorBuildThroughStack()
1901// (see LegalizeDAG.cpp). This is slow and uses local memory.
1902// We use extract/insert/build vector just as what LegalizeOp() does in llvm 2.5
1903SDValue
1904NVPTXTargetLowering::LowerCONCAT_VECTORS(SDValue Op, SelectionDAG &DAG) const {
1905 SDNode *Node = Op.getNode();
1906 SDLoc dl(Node);
1907 SmallVector<SDValue, 8> Ops;
1908 unsigned NumOperands = Node->getNumOperands();
1909 for (unsigned i = 0; i < NumOperands; ++i) {
1910 SDValue SubOp = Node->getOperand(i);
1911 EVT VVT = SubOp.getNode()->getValueType(0);
1912 EVT EltVT = VVT.getVectorElementType();
1913 unsigned NumSubElem = VVT.getVectorNumElements();
1914 for (unsigned j = 0; j < NumSubElem; ++j) {
1915 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, SubOp,
1916 DAG.getIntPtrConstant(j, dl)));
1917 }
1918 }
1919 return DAG.getBuildVector(Node->getValueType(0), dl, Ops);
1920}
1921
1922/// LowerShiftRightParts - Lower SRL_PARTS, SRA_PARTS, which
1923/// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
1924/// amount, or
1925/// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
1926/// amount.
1927SDValue NVPTXTargetLowering::LowerShiftRightParts(SDValue Op,
1928 SelectionDAG &DAG) const {
1929 assert(Op.getNumOperands() == 3 && "Not a double-shift!")((Op.getNumOperands() == 3 && "Not a double-shift!") ?
static_cast<void> (0) : __assert_fail ("Op.getNumOperands() == 3 && \"Not a double-shift!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 1929, __PRETTY_FUNCTION__))
;
1930 assert(Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS)((Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::
SRL_PARTS) ? static_cast<void> (0) : __assert_fail ("Op.getOpcode() == ISD::SRA_PARTS || Op.getOpcode() == ISD::SRL_PARTS"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 1930, __PRETTY_FUNCTION__))
;
1931
1932 EVT VT = Op.getValueType();
1933 unsigned VTBits = VT.getSizeInBits();
1934 SDLoc dl(Op);
1935 SDValue ShOpLo = Op.getOperand(0);
1936 SDValue ShOpHi = Op.getOperand(1);
1937 SDValue ShAmt = Op.getOperand(2);
1938 unsigned Opc = (Op.getOpcode() == ISD::SRA_PARTS) ? ISD::SRA : ISD::SRL;
1939
1940 if (VTBits == 32 && STI.getSmVersion() >= 35) {
1941 // For 32bit and sm35, we can use the funnel shift 'shf' instruction.
1942 // {dHi, dLo} = {aHi, aLo} >> Amt
1943 // dHi = aHi >> Amt
1944 // dLo = shf.r.clamp aLo, aHi, Amt
1945
1946 SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
1947 SDValue Lo = DAG.getNode(NVPTXISD::FUN_SHFR_CLAMP, dl, VT, ShOpLo, ShOpHi,
1948 ShAmt);
1949
1950 SDValue Ops[2] = { Lo, Hi };
1951 return DAG.getMergeValues(Ops, dl);
1952 }
1953 else {
1954 // {dHi, dLo} = {aHi, aLo} >> Amt
1955 // - if (Amt>=size) then
1956 // dLo = aHi >> (Amt-size)
1957 // dHi = aHi >> Amt (this is either all 0 or all 1)
1958 // else
1959 // dLo = (aLo >>logic Amt) | (aHi << (size-Amt))
1960 // dHi = aHi >> Amt
1961
1962 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
1963 DAG.getConstant(VTBits, dl, MVT::i32),
1964 ShAmt);
1965 SDValue Tmp1 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, ShAmt);
1966 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
1967 DAG.getConstant(VTBits, dl, MVT::i32));
1968 SDValue Tmp2 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, RevShAmt);
1969 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
1970 SDValue TrueVal = DAG.getNode(Opc, dl, VT, ShOpHi, ExtraShAmt);
1971
1972 SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
1973 DAG.getConstant(VTBits, dl, MVT::i32),
1974 ISD::SETGE);
1975 SDValue Hi = DAG.getNode(Opc, dl, VT, ShOpHi, ShAmt);
1976 SDValue Lo = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
1977
1978 SDValue Ops[2] = { Lo, Hi };
1979 return DAG.getMergeValues(Ops, dl);
1980 }
1981}
1982
1983/// LowerShiftLeftParts - Lower SHL_PARTS, which
1984/// 1) returns two i32 values and take a 2 x i32 value to shift plus a shift
1985/// amount, or
1986/// 2) returns two i64 values and take a 2 x i64 value to shift plus a shift
1987/// amount.
1988SDValue NVPTXTargetLowering::LowerShiftLeftParts(SDValue Op,
1989 SelectionDAG &DAG) const {
1990 assert(Op.getNumOperands() == 3 && "Not a double-shift!")((Op.getNumOperands() == 3 && "Not a double-shift!") ?
static_cast<void> (0) : __assert_fail ("Op.getNumOperands() == 3 && \"Not a double-shift!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 1990, __PRETTY_FUNCTION__))
;
1991 assert(Op.getOpcode() == ISD::SHL_PARTS)((Op.getOpcode() == ISD::SHL_PARTS) ? static_cast<void>
(0) : __assert_fail ("Op.getOpcode() == ISD::SHL_PARTS", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 1991, __PRETTY_FUNCTION__))
;
1992
1993 EVT VT = Op.getValueType();
1994 unsigned VTBits = VT.getSizeInBits();
1995 SDLoc dl(Op);
1996 SDValue ShOpLo = Op.getOperand(0);
1997 SDValue ShOpHi = Op.getOperand(1);
1998 SDValue ShAmt = Op.getOperand(2);
1999
2000 if (VTBits == 32 && STI.getSmVersion() >= 35) {
2001 // For 32bit and sm35, we can use the funnel shift 'shf' instruction.
2002 // {dHi, dLo} = {aHi, aLo} << Amt
2003 // dHi = shf.l.clamp aLo, aHi, Amt
2004 // dLo = aLo << Amt
2005
2006 SDValue Hi = DAG.getNode(NVPTXISD::FUN_SHFL_CLAMP, dl, VT, ShOpLo, ShOpHi,
2007 ShAmt);
2008 SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2009
2010 SDValue Ops[2] = { Lo, Hi };
2011 return DAG.getMergeValues(Ops, dl);
2012 }
2013 else {
2014 // {dHi, dLo} = {aHi, aLo} << Amt
2015 // - if (Amt>=size) then
2016 // dLo = aLo << Amt (all 0)
2017 // dLo = aLo << (Amt-size)
2018 // else
2019 // dLo = aLo << Amt
2020 // dHi = (aHi << Amt) | (aLo >> (size-Amt))
2021
2022 SDValue RevShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32,
2023 DAG.getConstant(VTBits, dl, MVT::i32),
2024 ShAmt);
2025 SDValue Tmp1 = DAG.getNode(ISD::SHL, dl, VT, ShOpHi, ShAmt);
2026 SDValue ExtraShAmt = DAG.getNode(ISD::SUB, dl, MVT::i32, ShAmt,
2027 DAG.getConstant(VTBits, dl, MVT::i32));
2028 SDValue Tmp2 = DAG.getNode(ISD::SRL, dl, VT, ShOpLo, RevShAmt);
2029 SDValue FalseVal = DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2030 SDValue TrueVal = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ExtraShAmt);
2031
2032 SDValue Cmp = DAG.getSetCC(dl, MVT::i1, ShAmt,
2033 DAG.getConstant(VTBits, dl, MVT::i32),
2034 ISD::SETGE);
2035 SDValue Lo = DAG.getNode(ISD::SHL, dl, VT, ShOpLo, ShAmt);
2036 SDValue Hi = DAG.getNode(ISD::SELECT, dl, VT, Cmp, TrueVal, FalseVal);
2037
2038 SDValue Ops[2] = { Lo, Hi };
2039 return DAG.getMergeValues(Ops, dl);
2040 }
2041}
2042
2043SDValue
2044NVPTXTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
2045 switch (Op.getOpcode()) {
2046 case ISD::RETURNADDR:
2047 return SDValue();
2048 case ISD::FRAMEADDR:
2049 return SDValue();
2050 case ISD::GlobalAddress:
2051 return LowerGlobalAddress(Op, DAG);
2052 case ISD::INTRINSIC_W_CHAIN:
2053 return Op;
2054 case ISD::BUILD_VECTOR:
2055 case ISD::EXTRACT_SUBVECTOR:
2056 return Op;
2057 case ISD::CONCAT_VECTORS:
2058 return LowerCONCAT_VECTORS(Op, DAG);
2059 case ISD::STORE:
2060 return LowerSTORE(Op, DAG);
2061 case ISD::LOAD:
2062 return LowerLOAD(Op, DAG);
2063 case ISD::SHL_PARTS:
2064 return LowerShiftLeftParts(Op, DAG);
2065 case ISD::SRA_PARTS:
2066 case ISD::SRL_PARTS:
2067 return LowerShiftRightParts(Op, DAG);
2068 case ISD::SELECT:
2069 return LowerSelect(Op, DAG);
2070 default:
2071 llvm_unreachable("Custom lowering not defined for operation")::llvm::llvm_unreachable_internal("Custom lowering not defined for operation"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 2071)
;
2072 }
2073}
2074
2075SDValue NVPTXTargetLowering::LowerSelect(SDValue Op, SelectionDAG &DAG) const {
2076 SDValue Op0 = Op->getOperand(0);
2077 SDValue Op1 = Op->getOperand(1);
2078 SDValue Op2 = Op->getOperand(2);
2079 SDLoc DL(Op.getNode());
2080
2081 assert(Op.getValueType() == MVT::i1 && "Custom lowering enabled only for i1")((Op.getValueType() == MVT::i1 && "Custom lowering enabled only for i1"
) ? static_cast<void> (0) : __assert_fail ("Op.getValueType() == MVT::i1 && \"Custom lowering enabled only for i1\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 2081, __PRETTY_FUNCTION__))
;
2082
2083 Op1 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op1);
2084 Op2 = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i32, Op2);
2085 SDValue Select = DAG.getNode(ISD::SELECT, DL, MVT::i32, Op0, Op1, Op2);
2086 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i1, Select);
2087
2088 return Trunc;
2089}
2090
2091SDValue NVPTXTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2092 if (Op.getValueType() == MVT::i1)
2093 return LowerLOADi1(Op, DAG);
2094 else
2095 return SDValue();
2096}
2097
2098// v = ld i1* addr
2099// =>
2100// v1 = ld i8* addr (-> i16)
2101// v = trunc i16 to i1
2102SDValue NVPTXTargetLowering::LowerLOADi1(SDValue Op, SelectionDAG &DAG) const {
2103 SDNode *Node = Op.getNode();
2104 LoadSDNode *LD = cast<LoadSDNode>(Node);
2105 SDLoc dl(Node);
2106 assert(LD->getExtensionType() == ISD::NON_EXTLOAD)((LD->getExtensionType() == ISD::NON_EXTLOAD) ? static_cast
<void> (0) : __assert_fail ("LD->getExtensionType() == ISD::NON_EXTLOAD"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 2106, __PRETTY_FUNCTION__))
;
2107 assert(Node->getValueType(0) == MVT::i1 &&((Node->getValueType(0) == MVT::i1 && "Custom lowering for i1 load only"
) ? static_cast<void> (0) : __assert_fail ("Node->getValueType(0) == MVT::i1 && \"Custom lowering for i1 load only\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 2108, __PRETTY_FUNCTION__))
2108 "Custom lowering for i1 load only")((Node->getValueType(0) == MVT::i1 && "Custom lowering for i1 load only"
) ? static_cast<void> (0) : __assert_fail ("Node->getValueType(0) == MVT::i1 && \"Custom lowering for i1 load only\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 2108, __PRETTY_FUNCTION__))
;
2109 SDValue newLD = DAG.getLoad(MVT::i16, dl, LD->getChain(), LD->getBasePtr(),
2110 LD->getPointerInfo(), LD->getAlignment(),
2111 LD->getMemOperand()->getFlags());
2112 SDValue result = DAG.getNode(ISD::TRUNCATE, dl, MVT::i1, newLD);
2113 // The legalizer (the caller) is expecting two values from the legalized
2114 // load, so we build a MergeValues node for it. See ExpandUnalignedLoad()
2115 // in LegalizeDAG.cpp which also uses MergeValues.
2116 SDValue Ops[] = { result, LD->getChain() };
2117 return DAG.getMergeValues(Ops, dl);
2118}
2119
2120SDValue NVPTXTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2121 EVT ValVT = Op.getOperand(1).getValueType();
2122 switch (ValVT.getSimpleVT().SimpleTy) {
2123 case MVT::i1:
2124 return LowerSTOREi1(Op, DAG);
2125 default:
2126 if (ValVT.isVector())
2127 return LowerSTOREVector(Op, DAG);
2128 else
2129 return SDValue();
2130 }
2131}
2132
2133SDValue
2134NVPTXTargetLowering::LowerSTOREVector(SDValue Op, SelectionDAG &DAG) const {
2135 SDNode *N = Op.getNode();
2136 SDValue Val = N->getOperand(1);
2137 SDLoc DL(N);
2138 EVT ValVT = Val.getValueType();
2139
2140 if (ValVT.isVector()) {
2141 // We only handle "native" vector sizes for now, e.g. <4 x double> is not
2142 // legal. We can (and should) split that into 2 stores of <2 x double> here
2143 // but I'm leaving that as a TODO for now.
2144 if (!ValVT.isSimple())
2145 return SDValue();
2146 switch (ValVT.getSimpleVT().SimpleTy) {
2147 default:
2148 return SDValue();
2149 case MVT::v2i8:
2150 case MVT::v2i16:
2151 case MVT::v2i32:
2152 case MVT::v2i64:
2153 case MVT::v2f32:
2154 case MVT::v2f64:
2155 case MVT::v4i8:
2156 case MVT::v4i16:
2157 case MVT::v4i32:
2158 case MVT::v4f32:
2159 // This is a "native" vector type
2160 break;
2161 }
2162
2163 MemSDNode *MemSD = cast<MemSDNode>(N);
2164 const DataLayout &TD = DAG.getDataLayout();
2165
2166 unsigned Align = MemSD->getAlignment();
2167 unsigned PrefAlign =
2168 TD.getPrefTypeAlignment(ValVT.getTypeForEVT(*DAG.getContext()));
2169 if (Align < PrefAlign) {
2170 // This store is not sufficiently aligned, so bail out and let this vector
2171 // store be scalarized. Note that we may still be able to emit smaller
2172 // vector stores. For example, if we are storing a <4 x float> with an
2173 // alignment of 8, this check will fail but the legalizer will try again
2174 // with 2 x <2 x float>, which will succeed with an alignment of 8.
2175 return SDValue();
2176 }
2177
2178 unsigned Opcode = 0;
2179 EVT EltVT = ValVT.getVectorElementType();
2180 unsigned NumElts = ValVT.getVectorNumElements();
2181
2182 // Since StoreV2 is a target node, we cannot rely on DAG type legalization.
2183 // Therefore, we must ensure the type is legal. For i1 and i8, we set the
2184 // stored type to i16 and propagate the "real" type as the memory type.
2185 bool NeedExt = false;
2186 if (EltVT.getSizeInBits() < 16)
2187 NeedExt = true;
2188
2189 switch (NumElts) {
2190 default:
2191 return SDValue();
2192 case 2:
2193 Opcode = NVPTXISD::StoreV2;
2194 break;
2195 case 4:
2196 Opcode = NVPTXISD::StoreV4;
2197 break;
2198 }
2199
2200 SmallVector<SDValue, 8> Ops;
2201
2202 // First is the chain
2203 Ops.push_back(N->getOperand(0));
2204
2205 // Then the split values
2206 for (unsigned i = 0; i < NumElts; ++i) {
2207 SDValue ExtVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Val,
2208 DAG.getIntPtrConstant(i, DL));
2209 if (NeedExt)
2210 ExtVal = DAG.getNode(ISD::ANY_EXTEND, DL, MVT::i16, ExtVal);
2211 Ops.push_back(ExtVal);
2212 }
2213
2214 // Then any remaining arguments
2215 Ops.append(N->op_begin() + 2, N->op_end());
2216
2217 SDValue NewSt = DAG.getMemIntrinsicNode(
2218 Opcode, DL, DAG.getVTList(MVT::Other), Ops,
2219 MemSD->getMemoryVT(), MemSD->getMemOperand());
2220
2221 //return DCI.CombineTo(N, NewSt, true);
2222 return NewSt;
2223 }
2224
2225 return SDValue();
2226}
2227
2228// st i1 v, addr
2229// =>
2230// v1 = zxt v to i16
2231// st.u8 i16, addr
2232SDValue NVPTXTargetLowering::LowerSTOREi1(SDValue Op, SelectionDAG &DAG) const {
2233 SDNode *Node = Op.getNode();
2234 SDLoc dl(Node);
2235 StoreSDNode *ST = cast<StoreSDNode>(Node);
2236 SDValue Tmp1 = ST->getChain();
2237 SDValue Tmp2 = ST->getBasePtr();
2238 SDValue Tmp3 = ST->getValue();
2239 assert(Tmp3.getValueType() == MVT::i1 && "Custom lowering for i1 store only")((Tmp3.getValueType() == MVT::i1 && "Custom lowering for i1 store only"
) ? static_cast<void> (0) : __assert_fail ("Tmp3.getValueType() == MVT::i1 && \"Custom lowering for i1 store only\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 2239, __PRETTY_FUNCTION__))
;
2240 Tmp3 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, Tmp3);
2241 SDValue Result =
2242 DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(), MVT::i8,
2243 ST->getAlignment(), ST->getMemOperand()->getFlags());
2244 return Result;
2245}
2246
2247SDValue
2248NVPTXTargetLowering::getParamSymbol(SelectionDAG &DAG, int idx, EVT v) const {
2249 std::string ParamSym;
2250 raw_string_ostream ParamStr(ParamSym);
2251
2252 ParamStr << DAG.getMachineFunction().getName() << "_param_" << idx;
2253 ParamStr.flush();
2254
2255 std::string *SavedStr =
2256 nvTM->getManagedStrPool()->getManagedString(ParamSym.c_str());
2257 return DAG.getTargetExternalSymbol(SavedStr->c_str(), v);
2258}
2259
2260// Check to see if the kernel argument is image*_t or sampler_t
2261
2262static bool isImageOrSamplerVal(const Value *arg, const Module *context) {
2263 static const char *const specialTypes[] = { "struct._image2d_t",
2264 "struct._image3d_t",
2265 "struct._sampler_t" };
2266
2267 Type *Ty = arg->getType();
2268 auto *PTy = dyn_cast<PointerType>(Ty);
2269
2270 if (!PTy)
2271 return false;
2272
2273 if (!context)
2274 return false;
2275
2276 auto *STy = dyn_cast<StructType>(PTy->getElementType());
2277 if (!STy || STy->isLiteral())
2278 return false;
2279
2280 return std::find(std::begin(specialTypes), std::end(specialTypes),
2281 STy->getName()) != std::end(specialTypes);
2282}
2283
2284SDValue NVPTXTargetLowering::LowerFormalArguments(
2285 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2286 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &dl,
2287 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2288 MachineFunction &MF = DAG.getMachineFunction();
2289 const DataLayout &DL = DAG.getDataLayout();
2290 auto PtrVT = getPointerTy(DAG.getDataLayout());
2291
2292 const Function *F = MF.getFunction();
2293 const AttributeSet &PAL = F->getAttributes();
2294 const TargetLowering *TLI = STI.getTargetLowering();
2295
2296 SDValue Root = DAG.getRoot();
2297 std::vector<SDValue> OutChains;
2298
2299 bool isABI = (STI.getSmVersion() >= 20);
2300 assert(isABI && "Non-ABI compilation is not supported")((isABI && "Non-ABI compilation is not supported") ? static_cast
<void> (0) : __assert_fail ("isABI && \"Non-ABI compilation is not supported\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 2300, __PRETTY_FUNCTION__))
;
2301 if (!isABI)
2302 return Chain;
2303
2304 std::vector<Type *> argTypes;
2305 std::vector<const Argument *> theArgs;
2306 for (const Argument &I : F->args()) {
2307 theArgs.push_back(&I);
2308 argTypes.push_back(I.getType());
2309 }
2310 // argTypes.size() (or theArgs.size()) and Ins.size() need not match.
2311 // Ins.size() will be larger
2312 // * if there is an aggregate argument with multiple fields (each field
2313 // showing up separately in Ins)
2314 // * if there is a vector argument with more than typical vector-length
2315 // elements (generally if more than 4) where each vector element is
2316 // individually present in Ins.
2317 // So a different index should be used for indexing into Ins.
2318 // See similar issue in LowerCall.
2319 unsigned InsIdx = 0;
2320
2321 int idx = 0;
2322 for (unsigned i = 0, e = theArgs.size(); i != e; ++i, ++idx, ++InsIdx) {
2323 Type *Ty = argTypes[i];
2324
2325 // If the kernel argument is image*_t or sampler_t, convert it to
2326 // a i32 constant holding the parameter position. This can later
2327 // matched in the AsmPrinter to output the correct mangled name.
2328 if (isImageOrSamplerVal(
2329 theArgs[i],
2330 (theArgs[i]->getParent() ? theArgs[i]->getParent()->getParent()
2331 : nullptr))) {
2332 assert(isKernelFunction(*F) &&((isKernelFunction(*F) && "Only kernels can have image/sampler params"
) ? static_cast<void> (0) : __assert_fail ("isKernelFunction(*F) && \"Only kernels can have image/sampler params\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 2333, __PRETTY_FUNCTION__))
2333 "Only kernels can have image/sampler params")((isKernelFunction(*F) && "Only kernels can have image/sampler params"
) ? static_cast<void> (0) : __assert_fail ("isKernelFunction(*F) && \"Only kernels can have image/sampler params\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 2333, __PRETTY_FUNCTION__))
;
2334 InVals.push_back(DAG.getConstant(i + 1, dl, MVT::i32));
2335 continue;
2336 }
2337
2338 if (theArgs[i]->use_empty()) {
2339 // argument is dead
2340 if (Ty->isAggregateType()) {
2341 SmallVector<EVT, 16> vtparts;
2342
2343 ComputePTXValueVTs(*this, DAG.getDataLayout(), Ty, vtparts);
2344 assert(vtparts.size() > 0 && "empty aggregate type not expected")((vtparts.size() > 0 && "empty aggregate type not expected"
) ? static_cast<void> (0) : __assert_fail ("vtparts.size() > 0 && \"empty aggregate type not expected\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 2344, __PRETTY_FUNCTION__))
;
2345 for (unsigned parti = 0, parte = vtparts.size(); parti != parte;
2346 ++parti) {
2347 InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
2348 ++InsIdx;
2349 }
2350 if (vtparts.size() > 0)
2351 --InsIdx;
2352 continue;
2353 }
2354 if (Ty->isVectorTy()) {
2355 EVT ObjectVT = getValueType(DL, Ty);
2356 unsigned NumRegs = TLI->getNumRegisters(F->getContext(), ObjectVT);
2357 for (unsigned parti = 0; parti < NumRegs; ++parti) {
2358 InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
2359 ++InsIdx;
2360 }
2361 if (NumRegs > 0)
2362 --InsIdx;
2363 continue;
2364 }
2365 InVals.push_back(DAG.getNode(ISD::UNDEF, dl, Ins[InsIdx].VT));
2366 continue;
2367 }
2368
2369 // In the following cases, assign a node order of "idx+1"
2370 // to newly created nodes. The SDNodes for params have to
2371 // appear in the same order as their order of appearance
2372 // in the original function. "idx+1" holds that order.
2373 if (!PAL.hasAttribute(i + 1, Attribute::ByVal)) {
2374 if (Ty->isAggregateType()) {
2375 SmallVector<EVT, 16> vtparts;
2376 SmallVector<uint64_t, 16> offsets;
2377
2378 // NOTE: Here, we lose the ability to issue vector loads for vectors
2379 // that are a part of a struct. This should be investigated in the
2380 // future.
2381 ComputePTXValueVTs(*this, DAG.getDataLayout(), Ty, vtparts, &offsets,
2382 0);
2383 assert(vtparts.size() > 0 && "empty aggregate type not expected")((vtparts.size() > 0 && "empty aggregate type not expected"
) ? static_cast<void> (0) : __assert_fail ("vtparts.size() > 0 && \"empty aggregate type not expected\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 2383, __PRETTY_FUNCTION__))
;
2384 bool aggregateIsPacked = false;
2385 if (StructType *STy = dyn_cast<StructType>(Ty))
2386 aggregateIsPacked = STy->isPacked();
2387
2388 SDValue Arg = getParamSymbol(DAG, idx, PtrVT);
2389 for (unsigned parti = 0, parte = vtparts.size(); parti != parte;
2390 ++parti) {
2391 EVT partVT = vtparts[parti];
2392 Value *srcValue = Constant::getNullValue(
2393 PointerType::get(partVT.getTypeForEVT(F->getContext()),
2394 ADDRESS_SPACE_PARAM));
2395 SDValue srcAddr =
2396 DAG.getNode(ISD::ADD, dl, PtrVT, Arg,
2397 DAG.getConstant(offsets[parti], dl, PtrVT));
2398 unsigned partAlign = aggregateIsPacked
2399 ? 1
2400 : DL.getABITypeAlignment(
2401 partVT.getTypeForEVT(F->getContext()));
2402 SDValue p;
2403 if (Ins[InsIdx].VT.getSizeInBits() > partVT.getSizeInBits()) {
2404 ISD::LoadExtType ExtOp = Ins[InsIdx].Flags.isSExt() ?
2405 ISD::SEXTLOAD : ISD::ZEXTLOAD;
2406 p = DAG.getExtLoad(ExtOp, dl, Ins[InsIdx].VT, Root, srcAddr,
2407 MachinePointerInfo(srcValue), partVT, partAlign);
2408 } else {
2409 p = DAG.getLoad(partVT, dl, Root, srcAddr,
2410 MachinePointerInfo(srcValue), partAlign);
2411 }
2412 if (p.getNode())
2413 p.getNode()->setIROrder(idx + 1);
2414 InVals.push_back(p);
2415 ++InsIdx;
2416 }
2417 if (vtparts.size() > 0)
2418 --InsIdx;
2419 continue;
2420 }
2421 if (Ty->isVectorTy()) {
2422 EVT ObjectVT = getValueType(DL, Ty);
2423 SDValue Arg = getParamSymbol(DAG, idx, PtrVT);
2424 unsigned NumElts = ObjectVT.getVectorNumElements();
2425 assert(TLI->getNumRegisters(F->getContext(), ObjectVT) == NumElts &&((TLI->getNumRegisters(F->getContext(), ObjectVT) == NumElts
&& "Vector was not scalarized") ? static_cast<void
> (0) : __assert_fail ("TLI->getNumRegisters(F->getContext(), ObjectVT) == NumElts && \"Vector was not scalarized\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 2426, __PRETTY_FUNCTION__))
2426 "Vector was not scalarized")((TLI->getNumRegisters(F->getContext(), ObjectVT) == NumElts
&& "Vector was not scalarized") ? static_cast<void
> (0) : __assert_fail ("TLI->getNumRegisters(F->getContext(), ObjectVT) == NumElts && \"Vector was not scalarized\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 2426, __PRETTY_FUNCTION__))
;
2427 EVT EltVT = ObjectVT.getVectorElementType();
2428
2429 // V1 load
2430 // f32 = load ...
2431 if (NumElts == 1) {
2432 // We only have one element, so just directly load it
2433 Value *SrcValue = Constant::getNullValue(PointerType::get(
2434 EltVT.getTypeForEVT(F->getContext()), ADDRESS_SPACE_PARAM));
2435 SDValue P = DAG.getLoad(
2436 EltVT, dl, Root, Arg, MachinePointerInfo(SrcValue),
2437 DL.getABITypeAlignment(EltVT.getTypeForEVT(F->getContext())),
2438 MachineMemOperand::MODereferenceable |
2439 MachineMemOperand::MOInvariant);
2440 if (P.getNode())
2441 P.getNode()->setIROrder(idx + 1);
2442
2443 if (Ins[InsIdx].VT.getSizeInBits() > EltVT.getSizeInBits())
2444 P = DAG.getNode(ISD::ANY_EXTEND, dl, Ins[InsIdx].VT, P);
2445 InVals.push_back(P);
2446 ++InsIdx;
2447 } else if (NumElts == 2) {
2448 // V2 load
2449 // f32,f32 = load ...
2450 EVT VecVT = EVT::getVectorVT(F->getContext(), EltVT, 2);
2451 Value *SrcValue = Constant::getNullValue(PointerType::get(
2452 VecVT.getTypeForEVT(F->getContext()), ADDRESS_SPACE_PARAM));
2453 SDValue P = DAG.getLoad(
2454 VecVT, dl, Root, Arg, MachinePointerInfo(SrcValue),
2455 DL.getABITypeAlignment(VecVT.getTypeForEVT(F->getContext())),
2456 MachineMemOperand::MODereferenceable |
2457 MachineMemOperand::MOInvariant);
2458 if (P.getNode())
2459 P.getNode()->setIROrder(idx + 1);
2460
2461 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, P,
2462 DAG.getIntPtrConstant(0, dl));
2463 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, P,
2464 DAG.getIntPtrConstant(1, dl));
2465
2466 if (Ins[InsIdx].VT.getSizeInBits() > EltVT.getSizeInBits()) {
2467 Elt0 = DAG.getNode(ISD::ANY_EXTEND, dl, Ins[InsIdx].VT, Elt0);
2468 Elt1 = DAG.getNode(ISD::ANY_EXTEND, dl, Ins[InsIdx].VT, Elt1);
2469 }
2470
2471 InVals.push_back(Elt0);
2472 InVals.push_back(Elt1);
2473 InsIdx += 2;
2474 } else {
2475 // V4 loads
2476 // We have at least 4 elements (<3 x Ty> expands to 4 elements) and
2477 // the vector will be expanded to a power of 2 elements, so we know we
2478 // can always round up to the next multiple of 4 when creating the
2479 // vector loads.
2480 // e.g. 4 elem => 1 ld.v4
2481 // 6 elem => 2 ld.v4
2482 // 8 elem => 2 ld.v4
2483 // 11 elem => 3 ld.v4
2484 unsigned VecSize = 4;
2485 if (EltVT.getSizeInBits() == 64) {
2486 VecSize = 2;
2487 }
2488 EVT VecVT = EVT::getVectorVT(F->getContext(), EltVT, VecSize);
2489 unsigned Ofst = 0;
2490 for (unsigned i = 0; i < NumElts; i += VecSize) {
2491 Value *SrcValue = Constant::getNullValue(
2492 PointerType::get(VecVT.getTypeForEVT(F->getContext()),
2493 ADDRESS_SPACE_PARAM));
2494 SDValue SrcAddr = DAG.getNode(ISD::ADD, dl, PtrVT, Arg,
2495 DAG.getConstant(Ofst, dl, PtrVT));
2496 SDValue P = DAG.getLoad(
2497 VecVT, dl, Root, SrcAddr, MachinePointerInfo(SrcValue),
2498 DL.getABITypeAlignment(VecVT.getTypeForEVT(F->getContext())),
2499 MachineMemOperand::MODereferenceable |
2500 MachineMemOperand::MOInvariant);
2501 if (P.getNode())
2502 P.getNode()->setIROrder(idx + 1);
2503
2504 for (unsigned j = 0; j < VecSize; ++j) {
2505 if (i + j >= NumElts)
2506 break;
2507 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT, P,
2508 DAG.getIntPtrConstant(j, dl));
2509 if (Ins[InsIdx].VT.getSizeInBits() > EltVT.getSizeInBits())
2510 Elt = DAG.getNode(ISD::ANY_EXTEND, dl, Ins[InsIdx].VT, Elt);
2511 InVals.push_back(Elt);
2512 }
2513 Ofst += DL.getTypeAllocSize(VecVT.getTypeForEVT(F->getContext()));
2514 }
2515 InsIdx += NumElts;
2516 }
2517
2518 if (NumElts > 0)
2519 --InsIdx;
2520 continue;
2521 }
2522 // A plain scalar.
2523 EVT ObjectVT = getValueType(DL, Ty);
2524 // If ABI, load from the param symbol
2525 SDValue Arg = getParamSymbol(DAG, idx, PtrVT);
2526 Value *srcValue = Constant::getNullValue(PointerType::get(
2527 ObjectVT.getTypeForEVT(F->getContext()), ADDRESS_SPACE_PARAM));
2528 SDValue p;
2529 if (ObjectVT.getSizeInBits() < Ins[InsIdx].VT.getSizeInBits()) {
2530 ISD::LoadExtType ExtOp = Ins[InsIdx].Flags.isSExt() ?
2531 ISD::SEXTLOAD : ISD::ZEXTLOAD;
2532 p = DAG.getExtLoad(
2533 ExtOp, dl, Ins[InsIdx].VT, Root, Arg, MachinePointerInfo(srcValue),
2534 ObjectVT,
2535 DL.getABITypeAlignment(ObjectVT.getTypeForEVT(F->getContext())));
2536 } else {
2537 p = DAG.getLoad(
2538 Ins[InsIdx].VT, dl, Root, Arg, MachinePointerInfo(srcValue),
2539 DL.getABITypeAlignment(ObjectVT.getTypeForEVT(F->getContext())));
2540 }
2541 if (p.getNode())
2542 p.getNode()->setIROrder(idx + 1);
2543 InVals.push_back(p);
2544 continue;
2545 }
2546
2547 // Param has ByVal attribute
2548 // Return MoveParam(param symbol).
2549 // Ideally, the param symbol can be returned directly,
2550 // but when SDNode builder decides to use it in a CopyToReg(),
2551 // machine instruction fails because TargetExternalSymbol
2552 // (not lowered) is target dependent, and CopyToReg assumes
2553 // the source is lowered.
2554 EVT ObjectVT = getValueType(DL, Ty);
2555 assert(ObjectVT == Ins[InsIdx].VT &&((ObjectVT == Ins[InsIdx].VT && "Ins type did not match function type"
) ? static_cast<void> (0) : __assert_fail ("ObjectVT == Ins[InsIdx].VT && \"Ins type did not match function type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 2556, __PRETTY_FUNCTION__))
2556 "Ins type did not match function type")((ObjectVT == Ins[InsIdx].VT && "Ins type did not match function type"
) ? static_cast<void> (0) : __assert_fail ("ObjectVT == Ins[InsIdx].VT && \"Ins type did not match function type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 2556, __PRETTY_FUNCTION__))
;
2557 SDValue Arg = getParamSymbol(DAG, idx, PtrVT);
2558 SDValue p = DAG.getNode(NVPTXISD::MoveParam, dl, ObjectVT, Arg);
2559 if (p.getNode())
2560 p.getNode()->setIROrder(idx + 1);
2561 InVals.push_back(p);
2562 }
2563
2564 // Clang will check explicit VarArg and issue error if any. However, Clang
2565 // will let code with
2566 // implicit var arg like f() pass. See bug 617733.
2567 // We treat this case as if the arg list is empty.
2568 // if (F.isVarArg()) {
2569 // assert(0 && "VarArg not supported yet!");
2570 //}
2571
2572 if (!OutChains.empty())
2573 DAG.setRoot(DAG.getNode(ISD::TokenFactor, dl, MVT::Other, OutChains));
2574
2575 return Chain;
2576}
2577
2578SDValue
2579NVPTXTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2580 bool isVarArg,
2581 const SmallVectorImpl<ISD::OutputArg> &Outs,
2582 const SmallVectorImpl<SDValue> &OutVals,
2583 const SDLoc &dl, SelectionDAG &DAG) const {
2584 MachineFunction &MF = DAG.getMachineFunction();
2585 const Function *F = MF.getFunction();
2586 Type *RetTy = F->getReturnType();
2587 const DataLayout &TD = DAG.getDataLayout();
2588
2589 bool isABI = (STI.getSmVersion() >= 20);
2590 assert(isABI && "Non-ABI compilation is not supported")((isABI && "Non-ABI compilation is not supported") ? static_cast
<void> (0) : __assert_fail ("isABI && \"Non-ABI compilation is not supported\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 2590, __PRETTY_FUNCTION__))
;
2591 if (!isABI)
2592 return Chain;
2593
2594 if (VectorType *VTy = dyn_cast<VectorType>(RetTy)) {
2595 // If we have a vector type, the OutVals array will be the scalarized
2596 // components and we have combine them into 1 or more vector stores.
2597 unsigned NumElts = VTy->getNumElements();
2598 assert(NumElts == Outs.size() && "Bad scalarization of return value")((NumElts == Outs.size() && "Bad scalarization of return value"
) ? static_cast<void> (0) : __assert_fail ("NumElts == Outs.size() && \"Bad scalarization of return value\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 2598, __PRETTY_FUNCTION__))
;
2599
2600 // const_cast can be removed in later LLVM versions
2601 EVT EltVT = getValueType(TD, RetTy).getVectorElementType();
2602 bool NeedExtend = false;
2603 if (EltVT.getSizeInBits() < 16)
2604 NeedExtend = true;
2605
2606 // V1 store
2607 if (NumElts == 1) {
2608 SDValue StoreVal = OutVals[0];
2609 // We only have one element, so just directly store it
2610 if (NeedExtend)
2611 StoreVal = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal);
2612 SDValue Ops[] = { Chain, DAG.getConstant(0, dl, MVT::i32), StoreVal };
2613 Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreRetval, dl,
2614 DAG.getVTList(MVT::Other), Ops,
2615 EltVT, MachinePointerInfo());
2616 } else if (NumElts == 2) {
2617 // V2 store
2618 SDValue StoreVal0 = OutVals[0];
2619 SDValue StoreVal1 = OutVals[1];
2620
2621 if (NeedExtend) {
2622 StoreVal0 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal0);
2623 StoreVal1 = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i16, StoreVal1);
2624 }
2625
2626 SDValue Ops[] = { Chain, DAG.getConstant(0, dl, MVT::i32), StoreVal0,
2627 StoreVal1 };
2628 Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreRetvalV2, dl,
2629 DAG.getVTList(MVT::Other), Ops,
2630 EltVT, MachinePointerInfo());
2631 } else {
2632 // V4 stores
2633 // We have at least 4 elements (<3 x Ty> expands to 4 elements) and the
2634 // vector will be expanded to a power of 2 elements, so we know we can
2635 // always round up to the next multiple of 4 when creating the vector
2636 // stores.
2637 // e.g. 4 elem => 1 st.v4
2638 // 6 elem => 2 st.v4
2639 // 8 elem => 2 st.v4
2640 // 11 elem => 3 st.v4
2641
2642 unsigned VecSize = 4;
2643 if (OutVals[0].getValueSizeInBits() == 64)
2644 VecSize = 2;
2645
2646 unsigned Offset = 0;
2647
2648 EVT VecVT =
2649 EVT::getVectorVT(F->getContext(), EltVT, VecSize);
2650 unsigned PerStoreOffset =
2651 TD.getTypeAllocSize(VecVT.getTypeForEVT(F->getContext()));
2652
2653 for (unsigned i = 0; i < NumElts; i += VecSize) {
2654 // Get values
2655 SDValue StoreVal;
2656 SmallVector<SDValue, 8> Ops;
2657 Ops.push_back(Chain);
2658 Ops.push_back(DAG.getConstant(Offset, dl, MVT::i32));
2659 unsigned Opc = NVPTXISD::StoreRetvalV2;
2660 EVT ExtendedVT = (NeedExtend) ? MVT::i16 : OutVals[0].getValueType();
2661
2662 StoreVal = OutVals[i];
2663 if (NeedExtend)
2664 StoreVal = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtendedVT, StoreVal);
2665 Ops.push_back(StoreVal);
2666
2667 if (i + 1 < NumElts) {
2668 StoreVal = OutVals[i + 1];
2669 if (NeedExtend)
2670 StoreVal = DAG.getNode(ISD::ZERO_EXTEND, dl, ExtendedVT, StoreVal);
2671 } else {
2672 StoreVal = DAG.getUNDEF(ExtendedVT);
2673 }
2674 Ops.push_back(StoreVal);
2675
2676 if (VecSize == 4) {
2677 Opc = NVPTXISD::StoreRetvalV4;
2678 if (i + 2 < NumElts) {
2679 StoreVal = OutVals[i + 2];
2680 if (NeedExtend)
2681 StoreVal =
2682 DAG.getNode(ISD::ZERO_EXTEND, dl, ExtendedVT, StoreVal);
2683 } else {
2684 StoreVal = DAG.getUNDEF(ExtendedVT);
2685 }
2686 Ops.push_back(StoreVal);
2687
2688 if (i + 3 < NumElts) {
2689 StoreVal = OutVals[i + 3];
2690 if (NeedExtend)
2691 StoreVal =
2692 DAG.getNode(ISD::ZERO_EXTEND, dl, ExtendedVT, StoreVal);
2693 } else {
2694 StoreVal = DAG.getUNDEF(ExtendedVT);
2695 }
2696 Ops.push_back(StoreVal);
2697 }
2698
2699 // Chain = DAG.getNode(Opc, dl, MVT::Other, &Ops[0], Ops.size());
2700 Chain =
2701 DAG.getMemIntrinsicNode(Opc, dl, DAG.getVTList(MVT::Other), Ops,
2702 EltVT, MachinePointerInfo());
2703 Offset += PerStoreOffset;
2704 }
2705 }
2706 } else {
2707 SmallVector<EVT, 16> ValVTs;
2708 SmallVector<uint64_t, 16> Offsets;
2709 ComputePTXValueVTs(*this, DAG.getDataLayout(), RetTy, ValVTs, &Offsets, 0);
2710 assert(ValVTs.size() == OutVals.size() && "Bad return value decomposition")((ValVTs.size() == OutVals.size() && "Bad return value decomposition"
) ? static_cast<void> (0) : __assert_fail ("ValVTs.size() == OutVals.size() && \"Bad return value decomposition\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 2710, __PRETTY_FUNCTION__))
;
2711
2712 for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
2713 SDValue theVal = OutVals[i];
2714 EVT TheValType = theVal.getValueType();
2715 unsigned numElems = 1;
2716 if (TheValType.isVector())
2717 numElems = TheValType.getVectorNumElements();
2718 for (unsigned j = 0, je = numElems; j != je; ++j) {
2719 SDValue TmpVal = theVal;
2720 if (TheValType.isVector())
2721 TmpVal = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
2722 TheValType.getVectorElementType(), TmpVal,
2723 DAG.getIntPtrConstant(j, dl));
2724 EVT TheStoreType = ValVTs[i];
2725 if (RetTy->isIntegerTy() && TD.getTypeAllocSizeInBits(RetTy) < 32) {
2726 // The following zero-extension is for integer types only, and
2727 // specifically not for aggregates.
2728 TmpVal = DAG.getNode(ISD::ZERO_EXTEND, dl, MVT::i32, TmpVal);
2729 TheStoreType = MVT::i32;
2730 } else if (RetTy->isHalfTy()) {
2731 TheStoreType = MVT::f16;
2732 } else if (TmpVal.getValueSizeInBits() < 16)
2733 TmpVal = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i16, TmpVal);
2734
2735 SDValue Ops[] = {
2736 Chain,
2737 DAG.getConstant(Offsets[i], dl, MVT::i32),
2738 TmpVal };
2739 Chain = DAG.getMemIntrinsicNode(NVPTXISD::StoreRetval, dl,
2740 DAG.getVTList(MVT::Other), Ops,
2741 TheStoreType,
2742 MachinePointerInfo());
2743 }
2744 }
2745 }
2746
2747 return DAG.getNode(NVPTXISD::RET_FLAG, dl, MVT::Other, Chain);
2748}
2749
2750void NVPTXTargetLowering::LowerAsmOperandForConstraint(
2751 SDValue Op, std::string &Constraint, std::vector<SDValue> &Ops,
2752 SelectionDAG &DAG) const {
2753 if (Constraint.length() > 1)
2754 return;
2755 else
2756 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
2757}
2758
2759static unsigned getOpcForTextureInstr(unsigned Intrinsic) {
2760 switch (Intrinsic) {
2761 default:
2762 return 0;
2763
2764 case Intrinsic::nvvm_tex_1d_v4f32_s32:
2765 return NVPTXISD::Tex1DFloatS32;
2766 case Intrinsic::nvvm_tex_1d_v4f32_f32:
2767 return NVPTXISD::Tex1DFloatFloat;
2768 case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
2769 return NVPTXISD::Tex1DFloatFloatLevel;
2770 case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
2771 return NVPTXISD::Tex1DFloatFloatGrad;
2772 case Intrinsic::nvvm_tex_1d_v4s32_s32:
2773 return NVPTXISD::Tex1DS32S32;
2774 case Intrinsic::nvvm_tex_1d_v4s32_f32:
2775 return NVPTXISD::Tex1DS32Float;
2776 case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
2777 return NVPTXISD::Tex1DS32FloatLevel;
2778 case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
2779 return NVPTXISD::Tex1DS32FloatGrad;
2780 case Intrinsic::nvvm_tex_1d_v4u32_s32:
2781 return NVPTXISD::Tex1DU32S32;
2782 case Intrinsic::nvvm_tex_1d_v4u32_f32:
2783 return NVPTXISD::Tex1DU32Float;
2784 case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
2785 return NVPTXISD::Tex1DU32FloatLevel;
2786 case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
2787 return NVPTXISD::Tex1DU32FloatGrad;
2788
2789 case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
2790 return NVPTXISD::Tex1DArrayFloatS32;
2791 case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
2792 return NVPTXISD::Tex1DArrayFloatFloat;
2793 case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
2794 return NVPTXISD::Tex1DArrayFloatFloatLevel;
2795 case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
2796 return NVPTXISD::Tex1DArrayFloatFloatGrad;
2797 case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
2798 return NVPTXISD::Tex1DArrayS32S32;
2799 case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
2800 return NVPTXISD::Tex1DArrayS32Float;
2801 case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
2802 return NVPTXISD::Tex1DArrayS32FloatLevel;
2803 case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
2804 return NVPTXISD::Tex1DArrayS32FloatGrad;
2805 case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
2806 return NVPTXISD::Tex1DArrayU32S32;
2807 case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
2808 return NVPTXISD::Tex1DArrayU32Float;
2809 case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
2810 return NVPTXISD::Tex1DArrayU32FloatLevel;
2811 case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
2812 return NVPTXISD::Tex1DArrayU32FloatGrad;
2813
2814 case Intrinsic::nvvm_tex_2d_v4f32_s32:
2815 return NVPTXISD::Tex2DFloatS32;
2816 case Intrinsic::nvvm_tex_2d_v4f32_f32:
2817 return NVPTXISD::Tex2DFloatFloat;
2818 case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
2819 return NVPTXISD::Tex2DFloatFloatLevel;
2820 case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
2821 return NVPTXISD::Tex2DFloatFloatGrad;
2822 case Intrinsic::nvvm_tex_2d_v4s32_s32:
2823 return NVPTXISD::Tex2DS32S32;
2824 case Intrinsic::nvvm_tex_2d_v4s32_f32:
2825 return NVPTXISD::Tex2DS32Float;
2826 case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
2827 return NVPTXISD::Tex2DS32FloatLevel;
2828 case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
2829 return NVPTXISD::Tex2DS32FloatGrad;
2830 case Intrinsic::nvvm_tex_2d_v4u32_s32:
2831 return NVPTXISD::Tex2DU32S32;
2832 case Intrinsic::nvvm_tex_2d_v4u32_f32:
2833 return NVPTXISD::Tex2DU32Float;
2834 case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
2835 return NVPTXISD::Tex2DU32FloatLevel;
2836 case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
2837 return NVPTXISD::Tex2DU32FloatGrad;
2838
2839 case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
2840 return NVPTXISD::Tex2DArrayFloatS32;
2841 case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
2842 return NVPTXISD::Tex2DArrayFloatFloat;
2843 case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
2844 return NVPTXISD::Tex2DArrayFloatFloatLevel;
2845 case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
2846 return NVPTXISD::Tex2DArrayFloatFloatGrad;
2847 case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
2848 return NVPTXISD::Tex2DArrayS32S32;
2849 case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
2850 return NVPTXISD::Tex2DArrayS32Float;
2851 case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
2852 return NVPTXISD::Tex2DArrayS32FloatLevel;
2853 case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
2854 return NVPTXISD::Tex2DArrayS32FloatGrad;
2855 case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
2856 return NVPTXISD::Tex2DArrayU32S32;
2857 case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
2858 return NVPTXISD::Tex2DArrayU32Float;
2859 case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
2860 return NVPTXISD::Tex2DArrayU32FloatLevel;
2861 case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
2862 return NVPTXISD::Tex2DArrayU32FloatGrad;
2863
2864 case Intrinsic::nvvm_tex_3d_v4f32_s32:
2865 return NVPTXISD::Tex3DFloatS32;
2866 case Intrinsic::nvvm_tex_3d_v4f32_f32:
2867 return NVPTXISD::Tex3DFloatFloat;
2868 case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
2869 return NVPTXISD::Tex3DFloatFloatLevel;
2870 case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
2871 return NVPTXISD::Tex3DFloatFloatGrad;
2872 case Intrinsic::nvvm_tex_3d_v4s32_s32:
2873 return NVPTXISD::Tex3DS32S32;
2874 case Intrinsic::nvvm_tex_3d_v4s32_f32:
2875 return NVPTXISD::Tex3DS32Float;
2876 case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
2877 return NVPTXISD::Tex3DS32FloatLevel;
2878 case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
2879 return NVPTXISD::Tex3DS32FloatGrad;
2880 case Intrinsic::nvvm_tex_3d_v4u32_s32:
2881 return NVPTXISD::Tex3DU32S32;
2882 case Intrinsic::nvvm_tex_3d_v4u32_f32:
2883 return NVPTXISD::Tex3DU32Float;
2884 case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
2885 return NVPTXISD::Tex3DU32FloatLevel;
2886 case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
2887 return NVPTXISD::Tex3DU32FloatGrad;
2888
2889 case Intrinsic::nvvm_tex_cube_v4f32_f32:
2890 return NVPTXISD::TexCubeFloatFloat;
2891 case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
2892 return NVPTXISD::TexCubeFloatFloatLevel;
2893 case Intrinsic::nvvm_tex_cube_v4s32_f32:
2894 return NVPTXISD::TexCubeS32Float;
2895 case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
2896 return NVPTXISD::TexCubeS32FloatLevel;
2897 case Intrinsic::nvvm_tex_cube_v4u32_f32:
2898 return NVPTXISD::TexCubeU32Float;
2899 case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
2900 return NVPTXISD::TexCubeU32FloatLevel;
2901
2902 case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
2903 return NVPTXISD::TexCubeArrayFloatFloat;
2904 case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
2905 return NVPTXISD::TexCubeArrayFloatFloatLevel;
2906 case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
2907 return NVPTXISD::TexCubeArrayS32Float;
2908 case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
2909 return NVPTXISD::TexCubeArrayS32FloatLevel;
2910 case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
2911 return NVPTXISD::TexCubeArrayU32Float;
2912 case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
2913 return NVPTXISD::TexCubeArrayU32FloatLevel;
2914
2915 case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
2916 return NVPTXISD::Tld4R2DFloatFloat;
2917 case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
2918 return NVPTXISD::Tld4G2DFloatFloat;
2919 case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
2920 return NVPTXISD::Tld4B2DFloatFloat;
2921 case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
2922 return NVPTXISD::Tld4A2DFloatFloat;
2923 case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
2924 return NVPTXISD::Tld4R2DS64Float;
2925 case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
2926 return NVPTXISD::Tld4G2DS64Float;
2927 case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
2928 return NVPTXISD::Tld4B2DS64Float;
2929 case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
2930 return NVPTXISD::Tld4A2DS64Float;
2931 case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
2932 return NVPTXISD::Tld4R2DU64Float;
2933 case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
2934 return NVPTXISD::Tld4G2DU64Float;
2935 case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
2936 return NVPTXISD::Tld4B2DU64Float;
2937 case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
2938 return NVPTXISD::Tld4A2DU64Float;
2939
2940 case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
2941 return NVPTXISD::TexUnified1DFloatS32;
2942 case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
2943 return NVPTXISD::TexUnified1DFloatFloat;
2944 case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
2945 return NVPTXISD::TexUnified1DFloatFloatLevel;
2946 case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
2947 return NVPTXISD::TexUnified1DFloatFloatGrad;
2948 case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
2949 return NVPTXISD::TexUnified1DS32S32;
2950 case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
2951 return NVPTXISD::TexUnified1DS32Float;
2952 case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
2953 return NVPTXISD::TexUnified1DS32FloatLevel;
2954 case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
2955 return NVPTXISD::TexUnified1DS32FloatGrad;
2956 case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
2957 return NVPTXISD::TexUnified1DU32S32;
2958 case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
2959 return NVPTXISD::TexUnified1DU32Float;
2960 case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
2961 return NVPTXISD::TexUnified1DU32FloatLevel;
2962 case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
2963 return NVPTXISD::TexUnified1DU32FloatGrad;
2964
2965 case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
2966 return NVPTXISD::TexUnified1DArrayFloatS32;
2967 case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
2968 return NVPTXISD::TexUnified1DArrayFloatFloat;
2969 case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
2970 return NVPTXISD::TexUnified1DArrayFloatFloatLevel;
2971 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
2972 return NVPTXISD::TexUnified1DArrayFloatFloatGrad;
2973 case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
2974 return NVPTXISD::TexUnified1DArrayS32S32;
2975 case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
2976 return NVPTXISD::TexUnified1DArrayS32Float;
2977 case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
2978 return NVPTXISD::TexUnified1DArrayS32FloatLevel;
2979 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
2980 return NVPTXISD::TexUnified1DArrayS32FloatGrad;
2981 case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
2982 return NVPTXISD::TexUnified1DArrayU32S32;
2983 case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
2984 return NVPTXISD::TexUnified1DArrayU32Float;
2985 case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
2986 return NVPTXISD::TexUnified1DArrayU32FloatLevel;
2987 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
2988 return NVPTXISD::TexUnified1DArrayU32FloatGrad;
2989
2990 case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
2991 return NVPTXISD::TexUnified2DFloatS32;
2992 case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
2993 return NVPTXISD::TexUnified2DFloatFloat;
2994 case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
2995 return NVPTXISD::TexUnified2DFloatFloatLevel;
2996 case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
2997 return NVPTXISD::TexUnified2DFloatFloatGrad;
2998 case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
2999 return NVPTXISD::TexUnified2DS32S32;
3000 case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
3001 return NVPTXISD::TexUnified2DS32Float;
3002 case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
3003 return NVPTXISD::TexUnified2DS32FloatLevel;
3004 case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
3005 return NVPTXISD::TexUnified2DS32FloatGrad;
3006 case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
3007 return NVPTXISD::TexUnified2DU32S32;
3008 case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
3009 return NVPTXISD::TexUnified2DU32Float;
3010 case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
3011 return NVPTXISD::TexUnified2DU32FloatLevel;
3012 case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
3013 return NVPTXISD::TexUnified2DU32FloatGrad;
3014
3015 case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
3016 return NVPTXISD::TexUnified2DArrayFloatS32;
3017 case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
3018 return NVPTXISD::TexUnified2DArrayFloatFloat;
3019 case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
3020 return NVPTXISD::TexUnified2DArrayFloatFloatLevel;
3021 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
3022 return NVPTXISD::TexUnified2DArrayFloatFloatGrad;
3023 case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
3024 return NVPTXISD::TexUnified2DArrayS32S32;
3025 case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
3026 return NVPTXISD::TexUnified2DArrayS32Float;
3027 case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
3028 return NVPTXISD::TexUnified2DArrayS32FloatLevel;
3029 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
3030 return NVPTXISD::TexUnified2DArrayS32FloatGrad;
3031 case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
3032 return NVPTXISD::TexUnified2DArrayU32S32;
3033 case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
3034 return NVPTXISD::TexUnified2DArrayU32Float;
3035 case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
3036 return NVPTXISD::TexUnified2DArrayU32FloatLevel;
3037 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
3038 return NVPTXISD::TexUnified2DArrayU32FloatGrad;
3039
3040 case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
3041 return NVPTXISD::TexUnified3DFloatS32;
3042 case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
3043 return NVPTXISD::TexUnified3DFloatFloat;
3044 case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
3045 return NVPTXISD::TexUnified3DFloatFloatLevel;
3046 case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
3047 return NVPTXISD::TexUnified3DFloatFloatGrad;
3048 case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
3049 return NVPTXISD::TexUnified3DS32S32;
3050 case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
3051 return NVPTXISD::TexUnified3DS32Float;
3052 case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
3053 return NVPTXISD::TexUnified3DS32FloatLevel;
3054 case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
3055 return NVPTXISD::TexUnified3DS32FloatGrad;
3056 case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
3057 return NVPTXISD::TexUnified3DU32S32;
3058 case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
3059 return NVPTXISD::TexUnified3DU32Float;
3060 case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
3061 return NVPTXISD::TexUnified3DU32FloatLevel;
3062 case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
3063 return NVPTXISD::TexUnified3DU32FloatGrad;
3064
3065 case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
3066 return NVPTXISD::TexUnifiedCubeFloatFloat;
3067 case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
3068 return NVPTXISD::TexUnifiedCubeFloatFloatLevel;
3069 case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
3070 return NVPTXISD::TexUnifiedCubeS32Float;
3071 case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
3072 return NVPTXISD::TexUnifiedCubeS32FloatLevel;
3073 case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
3074 return NVPTXISD::TexUnifiedCubeU32Float;
3075 case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
3076 return NVPTXISD::TexUnifiedCubeU32FloatLevel;
3077
3078 case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
3079 return NVPTXISD::TexUnifiedCubeArrayFloatFloat;
3080 case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
3081 return NVPTXISD::TexUnifiedCubeArrayFloatFloatLevel;
3082 case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
3083 return NVPTXISD::TexUnifiedCubeArrayS32Float;
3084 case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
3085 return NVPTXISD::TexUnifiedCubeArrayS32FloatLevel;
3086 case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
3087 return NVPTXISD::TexUnifiedCubeArrayU32Float;
3088 case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
3089 return NVPTXISD::TexUnifiedCubeArrayU32FloatLevel;
3090
3091 case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
3092 return NVPTXISD::Tld4UnifiedR2DFloatFloat;
3093 case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
3094 return NVPTXISD::Tld4UnifiedG2DFloatFloat;
3095 case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
3096 return NVPTXISD::Tld4UnifiedB2DFloatFloat;
3097 case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32:
3098 return NVPTXISD::Tld4UnifiedA2DFloatFloat;
3099 case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
3100 return NVPTXISD::Tld4UnifiedR2DS64Float;
3101 case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
3102 return NVPTXISD::Tld4UnifiedG2DS64Float;
3103 case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
3104 return NVPTXISD::Tld4UnifiedB2DS64Float;
3105 case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
3106 return NVPTXISD::Tld4UnifiedA2DS64Float;
3107 case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
3108 return NVPTXISD::Tld4UnifiedR2DU64Float;
3109 case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
3110 return NVPTXISD::Tld4UnifiedG2DU64Float;
3111 case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
3112 return NVPTXISD::Tld4UnifiedB2DU64Float;
3113 case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32:
3114 return NVPTXISD::Tld4UnifiedA2DU64Float;
3115 }
3116}
3117
3118static unsigned getOpcForSurfaceInstr(unsigned Intrinsic) {
3119 switch (Intrinsic) {
3120 default:
3121 return 0;
3122 case Intrinsic::nvvm_suld_1d_i8_clamp:
3123 return NVPTXISD::Suld1DI8Clamp;
3124 case Intrinsic::nvvm_suld_1d_i16_clamp:
3125 return NVPTXISD::Suld1DI16Clamp;
3126 case Intrinsic::nvvm_suld_1d_i32_clamp:
3127 return NVPTXISD::Suld1DI32Clamp;
3128 case Intrinsic::nvvm_suld_1d_i64_clamp:
3129 return NVPTXISD::Suld1DI64Clamp;
3130 case Intrinsic::nvvm_suld_1d_v2i8_clamp:
3131 return NVPTXISD::Suld1DV2I8Clamp;
3132 case Intrinsic::nvvm_suld_1d_v2i16_clamp:
3133 return NVPTXISD::Suld1DV2I16Clamp;
3134 case Intrinsic::nvvm_suld_1d_v2i32_clamp:
3135 return NVPTXISD::Suld1DV2I32Clamp;
3136 case Intrinsic::nvvm_suld_1d_v2i64_clamp:
3137 return NVPTXISD::Suld1DV2I64Clamp;
3138 case Intrinsic::nvvm_suld_1d_v4i8_clamp:
3139 return NVPTXISD::Suld1DV4I8Clamp;
3140 case Intrinsic::nvvm_suld_1d_v4i16_clamp:
3141 return NVPTXISD::Suld1DV4I16Clamp;
3142 case Intrinsic::nvvm_suld_1d_v4i32_clamp:
3143 return NVPTXISD::Suld1DV4I32Clamp;
3144 case Intrinsic::nvvm_suld_1d_array_i8_clamp:
3145 return NVPTXISD::Suld1DArrayI8Clamp;
3146 case Intrinsic::nvvm_suld_1d_array_i16_clamp:
3147 return NVPTXISD::Suld1DArrayI16Clamp;
3148 case Intrinsic::nvvm_suld_1d_array_i32_clamp:
3149 return NVPTXISD::Suld1DArrayI32Clamp;
3150 case Intrinsic::nvvm_suld_1d_array_i64_clamp:
3151 return NVPTXISD::Suld1DArrayI64Clamp;
3152 case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
3153 return NVPTXISD::Suld1DArrayV2I8Clamp;
3154 case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
3155 return NVPTXISD::Suld1DArrayV2I16Clamp;
3156 case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
3157 return NVPTXISD::Suld1DArrayV2I32Clamp;
3158 case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
3159 return NVPTXISD::Suld1DArrayV2I64Clamp;
3160 case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
3161 return NVPTXISD::Suld1DArrayV4I8Clamp;
3162 case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
3163 return NVPTXISD::Suld1DArrayV4I16Clamp;
3164 case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
3165 return NVPTXISD::Suld1DArrayV4I32Clamp;
3166 case Intrinsic::nvvm_suld_2d_i8_clamp:
3167 return NVPTXISD::Suld2DI8Clamp;
3168 case Intrinsic::nvvm_suld_2d_i16_clamp:
3169 return NVPTXISD::Suld2DI16Clamp;
3170 case Intrinsic::nvvm_suld_2d_i32_clamp:
3171 return NVPTXISD::Suld2DI32Clamp;
3172 case Intrinsic::nvvm_suld_2d_i64_clamp:
3173 return NVPTXISD::Suld2DI64Clamp;
3174 case Intrinsic::nvvm_suld_2d_v2i8_clamp:
3175 return NVPTXISD::Suld2DV2I8Clamp;
3176 case Intrinsic::nvvm_suld_2d_v2i16_clamp:
3177 return NVPTXISD::Suld2DV2I16Clamp;
3178 case Intrinsic::nvvm_suld_2d_v2i32_clamp:
3179 return NVPTXISD::Suld2DV2I32Clamp;
3180 case Intrinsic::nvvm_suld_2d_v2i64_clamp:
3181 return NVPTXISD::Suld2DV2I64Clamp;
3182 case Intrinsic::nvvm_suld_2d_v4i8_clamp:
3183 return NVPTXISD::Suld2DV4I8Clamp;
3184 case Intrinsic::nvvm_suld_2d_v4i16_clamp:
3185 return NVPTXISD::Suld2DV4I16Clamp;
3186 case Intrinsic::nvvm_suld_2d_v4i32_clamp:
3187 return NVPTXISD::Suld2DV4I32Clamp;
3188 case Intrinsic::nvvm_suld_2d_array_i8_clamp:
3189 return NVPTXISD::Suld2DArrayI8Clamp;
3190 case Intrinsic::nvvm_suld_2d_array_i16_clamp:
3191 return NVPTXISD::Suld2DArrayI16Clamp;
3192 case Intrinsic::nvvm_suld_2d_array_i32_clamp:
3193 return NVPTXISD::Suld2DArrayI32Clamp;
3194 case Intrinsic::nvvm_suld_2d_array_i64_clamp:
3195 return NVPTXISD::Suld2DArrayI64Clamp;
3196 case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
3197 return NVPTXISD::Suld2DArrayV2I8Clamp;
3198 case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
3199 return NVPTXISD::Suld2DArrayV2I16Clamp;
3200 case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
3201 return NVPTXISD::Suld2DArrayV2I32Clamp;
3202 case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
3203 return NVPTXISD::Suld2DArrayV2I64Clamp;
3204 case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
3205 return NVPTXISD::Suld2DArrayV4I8Clamp;
3206 case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
3207 return NVPTXISD::Suld2DArrayV4I16Clamp;
3208 case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
3209 return NVPTXISD::Suld2DArrayV4I32Clamp;
3210 case Intrinsic::nvvm_suld_3d_i8_clamp:
3211 return NVPTXISD::Suld3DI8Clamp;
3212 case Intrinsic::nvvm_suld_3d_i16_clamp:
3213 return NVPTXISD::Suld3DI16Clamp;
3214 case Intrinsic::nvvm_suld_3d_i32_clamp:
3215 return NVPTXISD::Suld3DI32Clamp;
3216 case Intrinsic::nvvm_suld_3d_i64_clamp:
3217 return NVPTXISD::Suld3DI64Clamp;
3218 case Intrinsic::nvvm_suld_3d_v2i8_clamp:
3219 return NVPTXISD::Suld3DV2I8Clamp;
3220 case Intrinsic::nvvm_suld_3d_v2i16_clamp:
3221 return NVPTXISD::Suld3DV2I16Clamp;
3222 case Intrinsic::nvvm_suld_3d_v2i32_clamp:
3223 return NVPTXISD::Suld3DV2I32Clamp;
3224 case Intrinsic::nvvm_suld_3d_v2i64_clamp:
3225 return NVPTXISD::Suld3DV2I64Clamp;
3226 case Intrinsic::nvvm_suld_3d_v4i8_clamp:
3227 return NVPTXISD::Suld3DV4I8Clamp;
3228 case Intrinsic::nvvm_suld_3d_v4i16_clamp:
3229 return NVPTXISD::Suld3DV4I16Clamp;
3230 case Intrinsic::nvvm_suld_3d_v4i32_clamp:
3231 return NVPTXISD::Suld3DV4I32Clamp;
3232 case Intrinsic::nvvm_suld_1d_i8_trap:
3233 return NVPTXISD::Suld1DI8Trap;
3234 case Intrinsic::nvvm_suld_1d_i16_trap:
3235 return NVPTXISD::Suld1DI16Trap;
3236 case Intrinsic::nvvm_suld_1d_i32_trap:
3237 return NVPTXISD::Suld1DI32Trap;
3238 case Intrinsic::nvvm_suld_1d_i64_trap:
3239 return NVPTXISD::Suld1DI64Trap;
3240 case Intrinsic::nvvm_suld_1d_v2i8_trap:
3241 return NVPTXISD::Suld1DV2I8Trap;
3242 case Intrinsic::nvvm_suld_1d_v2i16_trap:
3243 return NVPTXISD::Suld1DV2I16Trap;
3244 case Intrinsic::nvvm_suld_1d_v2i32_trap:
3245 return NVPTXISD::Suld1DV2I32Trap;
3246 case Intrinsic::nvvm_suld_1d_v2i64_trap:
3247 return NVPTXISD::Suld1DV2I64Trap;
3248 case Intrinsic::nvvm_suld_1d_v4i8_trap:
3249 return NVPTXISD::Suld1DV4I8Trap;
3250 case Intrinsic::nvvm_suld_1d_v4i16_trap:
3251 return NVPTXISD::Suld1DV4I16Trap;
3252 case Intrinsic::nvvm_suld_1d_v4i32_trap:
3253 return NVPTXISD::Suld1DV4I32Trap;
3254 case Intrinsic::nvvm_suld_1d_array_i8_trap:
3255 return NVPTXISD::Suld1DArrayI8Trap;
3256 case Intrinsic::nvvm_suld_1d_array_i16_trap:
3257 return NVPTXISD::Suld1DArrayI16Trap;
3258 case Intrinsic::nvvm_suld_1d_array_i32_trap:
3259 return NVPTXISD::Suld1DArrayI32Trap;
3260 case Intrinsic::nvvm_suld_1d_array_i64_trap:
3261 return NVPTXISD::Suld1DArrayI64Trap;
3262 case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
3263 return NVPTXISD::Suld1DArrayV2I8Trap;
3264 case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
3265 return NVPTXISD::Suld1DArrayV2I16Trap;
3266 case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
3267 return NVPTXISD::Suld1DArrayV2I32Trap;
3268 case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
3269 return NVPTXISD::Suld1DArrayV2I64Trap;
3270 case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
3271 return NVPTXISD::Suld1DArrayV4I8Trap;
3272 case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
3273 return NVPTXISD::Suld1DArrayV4I16Trap;
3274 case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
3275 return NVPTXISD::Suld1DArrayV4I32Trap;
3276 case Intrinsic::nvvm_suld_2d_i8_trap:
3277 return NVPTXISD::Suld2DI8Trap;
3278 case Intrinsic::nvvm_suld_2d_i16_trap:
3279 return NVPTXISD::Suld2DI16Trap;
3280 case Intrinsic::nvvm_suld_2d_i32_trap:
3281 return NVPTXISD::Suld2DI32Trap;
3282 case Intrinsic::nvvm_suld_2d_i64_trap:
3283 return NVPTXISD::Suld2DI64Trap;
3284 case Intrinsic::nvvm_suld_2d_v2i8_trap:
3285 return NVPTXISD::Suld2DV2I8Trap;
3286 case Intrinsic::nvvm_suld_2d_v2i16_trap:
3287 return NVPTXISD::Suld2DV2I16Trap;
3288 case Intrinsic::nvvm_suld_2d_v2i32_trap:
3289 return NVPTXISD::Suld2DV2I32Trap;
3290 case Intrinsic::nvvm_suld_2d_v2i64_trap:
3291 return NVPTXISD::Suld2DV2I64Trap;
3292 case Intrinsic::nvvm_suld_2d_v4i8_trap:
3293 return NVPTXISD::Suld2DV4I8Trap;
3294 case Intrinsic::nvvm_suld_2d_v4i16_trap:
3295 return NVPTXISD::Suld2DV4I16Trap;
3296 case Intrinsic::nvvm_suld_2d_v4i32_trap:
3297 return NVPTXISD::Suld2DV4I32Trap;
3298 case Intrinsic::nvvm_suld_2d_array_i8_trap:
3299 return NVPTXISD::Suld2DArrayI8Trap;
3300 case Intrinsic::nvvm_suld_2d_array_i16_trap:
3301 return NVPTXISD::Suld2DArrayI16Trap;
3302 case Intrinsic::nvvm_suld_2d_array_i32_trap:
3303 return NVPTXISD::Suld2DArrayI32Trap;
3304 case Intrinsic::nvvm_suld_2d_array_i64_trap:
3305 return NVPTXISD::Suld2DArrayI64Trap;
3306 case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
3307 return NVPTXISD::Suld2DArrayV2I8Trap;
3308 case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
3309 return NVPTXISD::Suld2DArrayV2I16Trap;
3310 case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
3311 return NVPTXISD::Suld2DArrayV2I32Trap;
3312 case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
3313 return NVPTXISD::Suld2DArrayV2I64Trap;
3314 case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
3315 return NVPTXISD::Suld2DArrayV4I8Trap;
3316 case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
3317 return NVPTXISD::Suld2DArrayV4I16Trap;
3318 case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
3319 return NVPTXISD::Suld2DArrayV4I32Trap;
3320 case Intrinsic::nvvm_suld_3d_i8_trap:
3321 return NVPTXISD::Suld3DI8Trap;
3322 case Intrinsic::nvvm_suld_3d_i16_trap:
3323 return NVPTXISD::Suld3DI16Trap;
3324 case Intrinsic::nvvm_suld_3d_i32_trap:
3325 return NVPTXISD::Suld3DI32Trap;
3326 case Intrinsic::nvvm_suld_3d_i64_trap:
3327 return NVPTXISD::Suld3DI64Trap;
3328 case Intrinsic::nvvm_suld_3d_v2i8_trap:
3329 return NVPTXISD::Suld3DV2I8Trap;
3330 case Intrinsic::nvvm_suld_3d_v2i16_trap:
3331 return NVPTXISD::Suld3DV2I16Trap;
3332 case Intrinsic::nvvm_suld_3d_v2i32_trap:
3333 return NVPTXISD::Suld3DV2I32Trap;
3334 case Intrinsic::nvvm_suld_3d_v2i64_trap:
3335 return NVPTXISD::Suld3DV2I64Trap;
3336 case Intrinsic::nvvm_suld_3d_v4i8_trap:
3337 return NVPTXISD::Suld3DV4I8Trap;
3338 case Intrinsic::nvvm_suld_3d_v4i16_trap:
3339 return NVPTXISD::Suld3DV4I16Trap;
3340 case Intrinsic::nvvm_suld_3d_v4i32_trap:
3341 return NVPTXISD::Suld3DV4I32Trap;
3342 case Intrinsic::nvvm_suld_1d_i8_zero:
3343 return NVPTXISD::Suld1DI8Zero;
3344 case Intrinsic::nvvm_suld_1d_i16_zero:
3345 return NVPTXISD::Suld1DI16Zero;
3346 case Intrinsic::nvvm_suld_1d_i32_zero:
3347 return NVPTXISD::Suld1DI32Zero;
3348 case Intrinsic::nvvm_suld_1d_i64_zero:
3349 return NVPTXISD::Suld1DI64Zero;
3350 case Intrinsic::nvvm_suld_1d_v2i8_zero:
3351 return NVPTXISD::Suld1DV2I8Zero;
3352 case Intrinsic::nvvm_suld_1d_v2i16_zero:
3353 return NVPTXISD::Suld1DV2I16Zero;
3354 case Intrinsic::nvvm_suld_1d_v2i32_zero:
3355 return NVPTXISD::Suld1DV2I32Zero;
3356 case Intrinsic::nvvm_suld_1d_v2i64_zero:
3357 return NVPTXISD::Suld1DV2I64Zero;
3358 case Intrinsic::nvvm_suld_1d_v4i8_zero:
3359 return NVPTXISD::Suld1DV4I8Zero;
3360 case Intrinsic::nvvm_suld_1d_v4i16_zero:
3361 return NVPTXISD::Suld1DV4I16Zero;
3362 case Intrinsic::nvvm_suld_1d_v4i32_zero:
3363 return NVPTXISD::Suld1DV4I32Zero;
3364 case Intrinsic::nvvm_suld_1d_array_i8_zero:
3365 return NVPTXISD::Suld1DArrayI8Zero;
3366 case Intrinsic::nvvm_suld_1d_array_i16_zero:
3367 return NVPTXISD::Suld1DArrayI16Zero;
3368 case Intrinsic::nvvm_suld_1d_array_i32_zero:
3369 return NVPTXISD::Suld1DArrayI32Zero;
3370 case Intrinsic::nvvm_suld_1d_array_i64_zero:
3371 return NVPTXISD::Suld1DArrayI64Zero;
3372 case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
3373 return NVPTXISD::Suld1DArrayV2I8Zero;
3374 case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
3375 return NVPTXISD::Suld1DArrayV2I16Zero;
3376 case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
3377 return NVPTXISD::Suld1DArrayV2I32Zero;
3378 case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
3379 return NVPTXISD::Suld1DArrayV2I64Zero;
3380 case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
3381 return NVPTXISD::Suld1DArrayV4I8Zero;
3382 case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
3383 return NVPTXISD::Suld1DArrayV4I16Zero;
3384 case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
3385 return NVPTXISD::Suld1DArrayV4I32Zero;
3386 case Intrinsic::nvvm_suld_2d_i8_zero:
3387 return NVPTXISD::Suld2DI8Zero;
3388 case Intrinsic::nvvm_suld_2d_i16_zero:
3389 return NVPTXISD::Suld2DI16Zero;
3390 case Intrinsic::nvvm_suld_2d_i32_zero:
3391 return NVPTXISD::Suld2DI32Zero;
3392 case Intrinsic::nvvm_suld_2d_i64_zero:
3393 return NVPTXISD::Suld2DI64Zero;
3394 case Intrinsic::nvvm_suld_2d_v2i8_zero:
3395 return NVPTXISD::Suld2DV2I8Zero;
3396 case Intrinsic::nvvm_suld_2d_v2i16_zero:
3397 return NVPTXISD::Suld2DV2I16Zero;
3398 case Intrinsic::nvvm_suld_2d_v2i32_zero:
3399 return NVPTXISD::Suld2DV2I32Zero;
3400 case Intrinsic::nvvm_suld_2d_v2i64_zero:
3401 return NVPTXISD::Suld2DV2I64Zero;
3402 case Intrinsic::nvvm_suld_2d_v4i8_zero:
3403 return NVPTXISD::Suld2DV4I8Zero;
3404 case Intrinsic::nvvm_suld_2d_v4i16_zero:
3405 return NVPTXISD::Suld2DV4I16Zero;
3406 case Intrinsic::nvvm_suld_2d_v4i32_zero:
3407 return NVPTXISD::Suld2DV4I32Zero;
3408 case Intrinsic::nvvm_suld_2d_array_i8_zero:
3409 return NVPTXISD::Suld2DArrayI8Zero;
3410 case Intrinsic::nvvm_suld_2d_array_i16_zero:
3411 return NVPTXISD::Suld2DArrayI16Zero;
3412 case Intrinsic::nvvm_suld_2d_array_i32_zero:
3413 return NVPTXISD::Suld2DArrayI32Zero;
3414 case Intrinsic::nvvm_suld_2d_array_i64_zero:
3415 return NVPTXISD::Suld2DArrayI64Zero;
3416 case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
3417 return NVPTXISD::Suld2DArrayV2I8Zero;
3418 case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
3419 return NVPTXISD::Suld2DArrayV2I16Zero;
3420 case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
3421 return NVPTXISD::Suld2DArrayV2I32Zero;
3422 case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
3423 return NVPTXISD::Suld2DArrayV2I64Zero;
3424 case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
3425 return NVPTXISD::Suld2DArrayV4I8Zero;
3426 case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
3427 return NVPTXISD::Suld2DArrayV4I16Zero;
3428 case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
3429 return NVPTXISD::Suld2DArrayV4I32Zero;
3430 case Intrinsic::nvvm_suld_3d_i8_zero:
3431 return NVPTXISD::Suld3DI8Zero;
3432 case Intrinsic::nvvm_suld_3d_i16_zero:
3433 return NVPTXISD::Suld3DI16Zero;
3434 case Intrinsic::nvvm_suld_3d_i32_zero:
3435 return NVPTXISD::Suld3DI32Zero;
3436 case Intrinsic::nvvm_suld_3d_i64_zero:
3437 return NVPTXISD::Suld3DI64Zero;
3438 case Intrinsic::nvvm_suld_3d_v2i8_zero:
3439 return NVPTXISD::Suld3DV2I8Zero;
3440 case Intrinsic::nvvm_suld_3d_v2i16_zero:
3441 return NVPTXISD::Suld3DV2I16Zero;
3442 case Intrinsic::nvvm_suld_3d_v2i32_zero:
3443 return NVPTXISD::Suld3DV2I32Zero;
3444 case Intrinsic::nvvm_suld_3d_v2i64_zero:
3445 return NVPTXISD::Suld3DV2I64Zero;
3446 case Intrinsic::nvvm_suld_3d_v4i8_zero:
3447 return NVPTXISD::Suld3DV4I8Zero;
3448 case Intrinsic::nvvm_suld_3d_v4i16_zero:
3449 return NVPTXISD::Suld3DV4I16Zero;
3450 case Intrinsic::nvvm_suld_3d_v4i32_zero:
3451 return NVPTXISD::Suld3DV4I32Zero;
3452 }
3453}
3454
3455// llvm.ptx.memcpy.const and llvm.ptx.memmove.const need to be modeled as
3456// TgtMemIntrinsic
3457// because we need the information that is only available in the "Value" type
3458// of destination
3459// pointer. In particular, the address space information.
3460bool NVPTXTargetLowering::getTgtMemIntrinsic(
3461 IntrinsicInfo &Info, const CallInst &I, unsigned Intrinsic) const {
3462 switch (Intrinsic) {
3463 default:
3464 return false;
3465
3466 case Intrinsic::nvvm_atomic_load_add_f32:
3467 case Intrinsic::nvvm_atomic_load_inc_32:
3468 case Intrinsic::nvvm_atomic_load_dec_32:
3469
3470 case Intrinsic::nvvm_atomic_add_gen_f_cta:
3471 case Intrinsic::nvvm_atomic_add_gen_f_sys:
3472 case Intrinsic::nvvm_atomic_add_gen_i_cta:
3473 case Intrinsic::nvvm_atomic_add_gen_i_sys:
3474 case Intrinsic::nvvm_atomic_and_gen_i_cta:
3475 case Intrinsic::nvvm_atomic_and_gen_i_sys:
3476 case Intrinsic::nvvm_atomic_cas_gen_i_cta:
3477 case Intrinsic::nvvm_atomic_cas_gen_i_sys:
3478 case Intrinsic::nvvm_atomic_dec_gen_i_cta:
3479 case Intrinsic::nvvm_atomic_dec_gen_i_sys:
3480 case Intrinsic::nvvm_atomic_inc_gen_i_cta:
3481 case Intrinsic::nvvm_atomic_inc_gen_i_sys:
3482 case Intrinsic::nvvm_atomic_max_gen_i_cta:
3483 case Intrinsic::nvvm_atomic_max_gen_i_sys:
3484 case Intrinsic::nvvm_atomic_min_gen_i_cta:
3485 case Intrinsic::nvvm_atomic_min_gen_i_sys:
3486 case Intrinsic::nvvm_atomic_or_gen_i_cta:
3487 case Intrinsic::nvvm_atomic_or_gen_i_sys:
3488 case Intrinsic::nvvm_atomic_exch_gen_i_cta:
3489 case Intrinsic::nvvm_atomic_exch_gen_i_sys:
3490 case Intrinsic::nvvm_atomic_xor_gen_i_cta:
3491 case Intrinsic::nvvm_atomic_xor_gen_i_sys: {
3492 auto &DL = I.getModule()->getDataLayout();
3493 Info.opc = ISD::INTRINSIC_W_CHAIN;
3494 Info.memVT = getValueType(DL, I.getType());
3495 Info.ptrVal = I.getArgOperand(0);
3496 Info.offset = 0;
3497 Info.vol = false;
3498 Info.readMem = true;
3499 Info.writeMem = true;
3500 Info.align = 0;
3501 return true;
3502 }
3503
3504 case Intrinsic::nvvm_ldu_global_i:
3505 case Intrinsic::nvvm_ldu_global_f:
3506 case Intrinsic::nvvm_ldu_global_p: {
3507 auto &DL = I.getModule()->getDataLayout();
3508 Info.opc = ISD::INTRINSIC_W_CHAIN;
3509 if (Intrinsic == Intrinsic::nvvm_ldu_global_i)
3510 Info.memVT = getValueType(DL, I.getType());
3511 else if(Intrinsic == Intrinsic::nvvm_ldu_global_p)
3512 Info.memVT = getPointerTy(DL);
3513 else
3514 Info.memVT = getValueType(DL, I.getType());
3515 Info.ptrVal = I.getArgOperand(0);
3516 Info.offset = 0;
3517 Info.vol = false;
3518 Info.readMem = true;
3519 Info.writeMem = false;
3520 Info.align = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
3521
3522 return true;
3523 }
3524 case Intrinsic::nvvm_ldg_global_i:
3525 case Intrinsic::nvvm_ldg_global_f:
3526 case Intrinsic::nvvm_ldg_global_p: {
3527 auto &DL = I.getModule()->getDataLayout();
3528
3529 Info.opc = ISD::INTRINSIC_W_CHAIN;
3530 if (Intrinsic == Intrinsic::nvvm_ldg_global_i)
3531 Info.memVT = getValueType(DL, I.getType());
3532 else if(Intrinsic == Intrinsic::nvvm_ldg_global_p)
3533 Info.memVT = getPointerTy(DL);
3534 else
3535 Info.memVT = getValueType(DL, I.getType());
3536 Info.ptrVal = I.getArgOperand(0);
3537 Info.offset = 0;
3538 Info.vol = false;
3539 Info.readMem = true;
3540 Info.writeMem = false;
3541 Info.align = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
3542
3543 return true;
3544 }
3545
3546 case Intrinsic::nvvm_tex_1d_v4f32_s32:
3547 case Intrinsic::nvvm_tex_1d_v4f32_f32:
3548 case Intrinsic::nvvm_tex_1d_level_v4f32_f32:
3549 case Intrinsic::nvvm_tex_1d_grad_v4f32_f32:
3550 case Intrinsic::nvvm_tex_1d_array_v4f32_s32:
3551 case Intrinsic::nvvm_tex_1d_array_v4f32_f32:
3552 case Intrinsic::nvvm_tex_1d_array_level_v4f32_f32:
3553 case Intrinsic::nvvm_tex_1d_array_grad_v4f32_f32:
3554 case Intrinsic::nvvm_tex_2d_v4f32_s32:
3555 case Intrinsic::nvvm_tex_2d_v4f32_f32:
3556 case Intrinsic::nvvm_tex_2d_level_v4f32_f32:
3557 case Intrinsic::nvvm_tex_2d_grad_v4f32_f32:
3558 case Intrinsic::nvvm_tex_2d_array_v4f32_s32:
3559 case Intrinsic::nvvm_tex_2d_array_v4f32_f32:
3560 case Intrinsic::nvvm_tex_2d_array_level_v4f32_f32:
3561 case Intrinsic::nvvm_tex_2d_array_grad_v4f32_f32:
3562 case Intrinsic::nvvm_tex_3d_v4f32_s32:
3563 case Intrinsic::nvvm_tex_3d_v4f32_f32:
3564 case Intrinsic::nvvm_tex_3d_level_v4f32_f32:
3565 case Intrinsic::nvvm_tex_3d_grad_v4f32_f32:
3566 case Intrinsic::nvvm_tex_cube_v4f32_f32:
3567 case Intrinsic::nvvm_tex_cube_level_v4f32_f32:
3568 case Intrinsic::nvvm_tex_cube_array_v4f32_f32:
3569 case Intrinsic::nvvm_tex_cube_array_level_v4f32_f32:
3570 case Intrinsic::nvvm_tld4_r_2d_v4f32_f32:
3571 case Intrinsic::nvvm_tld4_g_2d_v4f32_f32:
3572 case Intrinsic::nvvm_tld4_b_2d_v4f32_f32:
3573 case Intrinsic::nvvm_tld4_a_2d_v4f32_f32:
3574 case Intrinsic::nvvm_tex_unified_1d_v4f32_s32:
3575 case Intrinsic::nvvm_tex_unified_1d_v4f32_f32:
3576 case Intrinsic::nvvm_tex_unified_1d_level_v4f32_f32:
3577 case Intrinsic::nvvm_tex_unified_1d_grad_v4f32_f32:
3578 case Intrinsic::nvvm_tex_unified_1d_array_v4f32_s32:
3579 case Intrinsic::nvvm_tex_unified_1d_array_v4f32_f32:
3580 case Intrinsic::nvvm_tex_unified_1d_array_level_v4f32_f32:
3581 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4f32_f32:
3582 case Intrinsic::nvvm_tex_unified_2d_v4f32_s32:
3583 case Intrinsic::nvvm_tex_unified_2d_v4f32_f32:
3584 case Intrinsic::nvvm_tex_unified_2d_level_v4f32_f32:
3585 case Intrinsic::nvvm_tex_unified_2d_grad_v4f32_f32:
3586 case Intrinsic::nvvm_tex_unified_2d_array_v4f32_s32:
3587 case Intrinsic::nvvm_tex_unified_2d_array_v4f32_f32:
3588 case Intrinsic::nvvm_tex_unified_2d_array_level_v4f32_f32:
3589 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4f32_f32:
3590 case Intrinsic::nvvm_tex_unified_3d_v4f32_s32:
3591 case Intrinsic::nvvm_tex_unified_3d_v4f32_f32:
3592 case Intrinsic::nvvm_tex_unified_3d_level_v4f32_f32:
3593 case Intrinsic::nvvm_tex_unified_3d_grad_v4f32_f32:
3594 case Intrinsic::nvvm_tex_unified_cube_v4f32_f32:
3595 case Intrinsic::nvvm_tex_unified_cube_level_v4f32_f32:
3596 case Intrinsic::nvvm_tex_unified_cube_array_v4f32_f32:
3597 case Intrinsic::nvvm_tex_unified_cube_array_level_v4f32_f32:
3598 case Intrinsic::nvvm_tld4_unified_r_2d_v4f32_f32:
3599 case Intrinsic::nvvm_tld4_unified_g_2d_v4f32_f32:
3600 case Intrinsic::nvvm_tld4_unified_b_2d_v4f32_f32:
3601 case Intrinsic::nvvm_tld4_unified_a_2d_v4f32_f32:
3602 Info.opc = getOpcForTextureInstr(Intrinsic);
3603 Info.memVT = MVT::v4f32;
3604 Info.ptrVal = nullptr;
3605 Info.offset = 0;
3606 Info.vol = false;
3607 Info.readMem = true;
3608 Info.writeMem = false;
3609 Info.align = 16;
3610 return true;
3611
3612 case Intrinsic::nvvm_tex_1d_v4s32_s32:
3613 case Intrinsic::nvvm_tex_1d_v4s32_f32:
3614 case Intrinsic::nvvm_tex_1d_level_v4s32_f32:
3615 case Intrinsic::nvvm_tex_1d_grad_v4s32_f32:
3616 case Intrinsic::nvvm_tex_1d_array_v4s32_s32:
3617 case Intrinsic::nvvm_tex_1d_array_v4s32_f32:
3618 case Intrinsic::nvvm_tex_1d_array_level_v4s32_f32:
3619 case Intrinsic::nvvm_tex_1d_array_grad_v4s32_f32:
3620 case Intrinsic::nvvm_tex_2d_v4s32_s32:
3621 case Intrinsic::nvvm_tex_2d_v4s32_f32:
3622 case Intrinsic::nvvm_tex_2d_level_v4s32_f32:
3623 case Intrinsic::nvvm_tex_2d_grad_v4s32_f32:
3624 case Intrinsic::nvvm_tex_2d_array_v4s32_s32:
3625 case Intrinsic::nvvm_tex_2d_array_v4s32_f32:
3626 case Intrinsic::nvvm_tex_2d_array_level_v4s32_f32:
3627 case Intrinsic::nvvm_tex_2d_array_grad_v4s32_f32:
3628 case Intrinsic::nvvm_tex_3d_v4s32_s32:
3629 case Intrinsic::nvvm_tex_3d_v4s32_f32:
3630 case Intrinsic::nvvm_tex_3d_level_v4s32_f32:
3631 case Intrinsic::nvvm_tex_3d_grad_v4s32_f32:
3632 case Intrinsic::nvvm_tex_cube_v4s32_f32:
3633 case Intrinsic::nvvm_tex_cube_level_v4s32_f32:
3634 case Intrinsic::nvvm_tex_cube_array_v4s32_f32:
3635 case Intrinsic::nvvm_tex_cube_array_level_v4s32_f32:
3636 case Intrinsic::nvvm_tex_cube_v4u32_f32:
3637 case Intrinsic::nvvm_tex_cube_level_v4u32_f32:
3638 case Intrinsic::nvvm_tex_cube_array_v4u32_f32:
3639 case Intrinsic::nvvm_tex_cube_array_level_v4u32_f32:
3640 case Intrinsic::nvvm_tex_1d_v4u32_s32:
3641 case Intrinsic::nvvm_tex_1d_v4u32_f32:
3642 case Intrinsic::nvvm_tex_1d_level_v4u32_f32:
3643 case Intrinsic::nvvm_tex_1d_grad_v4u32_f32:
3644 case Intrinsic::nvvm_tex_1d_array_v4u32_s32:
3645 case Intrinsic::nvvm_tex_1d_array_v4u32_f32:
3646 case Intrinsic::nvvm_tex_1d_array_level_v4u32_f32:
3647 case Intrinsic::nvvm_tex_1d_array_grad_v4u32_f32:
3648 case Intrinsic::nvvm_tex_2d_v4u32_s32:
3649 case Intrinsic::nvvm_tex_2d_v4u32_f32:
3650 case Intrinsic::nvvm_tex_2d_level_v4u32_f32:
3651 case Intrinsic::nvvm_tex_2d_grad_v4u32_f32:
3652 case Intrinsic::nvvm_tex_2d_array_v4u32_s32:
3653 case Intrinsic::nvvm_tex_2d_array_v4u32_f32:
3654 case Intrinsic::nvvm_tex_2d_array_level_v4u32_f32:
3655 case Intrinsic::nvvm_tex_2d_array_grad_v4u32_f32:
3656 case Intrinsic::nvvm_tex_3d_v4u32_s32:
3657 case Intrinsic::nvvm_tex_3d_v4u32_f32:
3658 case Intrinsic::nvvm_tex_3d_level_v4u32_f32:
3659 case Intrinsic::nvvm_tex_3d_grad_v4u32_f32:
3660 case Intrinsic::nvvm_tld4_r_2d_v4s32_f32:
3661 case Intrinsic::nvvm_tld4_g_2d_v4s32_f32:
3662 case Intrinsic::nvvm_tld4_b_2d_v4s32_f32:
3663 case Intrinsic::nvvm_tld4_a_2d_v4s32_f32:
3664 case Intrinsic::nvvm_tld4_r_2d_v4u32_f32:
3665 case Intrinsic::nvvm_tld4_g_2d_v4u32_f32:
3666 case Intrinsic::nvvm_tld4_b_2d_v4u32_f32:
3667 case Intrinsic::nvvm_tld4_a_2d_v4u32_f32:
3668 case Intrinsic::nvvm_tex_unified_1d_v4s32_s32:
3669 case Intrinsic::nvvm_tex_unified_1d_v4s32_f32:
3670 case Intrinsic::nvvm_tex_unified_1d_level_v4s32_f32:
3671 case Intrinsic::nvvm_tex_unified_1d_grad_v4s32_f32:
3672 case Intrinsic::nvvm_tex_unified_1d_array_v4s32_s32:
3673 case Intrinsic::nvvm_tex_unified_1d_array_v4s32_f32:
3674 case Intrinsic::nvvm_tex_unified_1d_array_level_v4s32_f32:
3675 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4s32_f32:
3676 case Intrinsic::nvvm_tex_unified_2d_v4s32_s32:
3677 case Intrinsic::nvvm_tex_unified_2d_v4s32_f32:
3678 case Intrinsic::nvvm_tex_unified_2d_level_v4s32_f32:
3679 case Intrinsic::nvvm_tex_unified_2d_grad_v4s32_f32:
3680 case Intrinsic::nvvm_tex_unified_2d_array_v4s32_s32:
3681 case Intrinsic::nvvm_tex_unified_2d_array_v4s32_f32:
3682 case Intrinsic::nvvm_tex_unified_2d_array_level_v4s32_f32:
3683 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4s32_f32:
3684 case Intrinsic::nvvm_tex_unified_3d_v4s32_s32:
3685 case Intrinsic::nvvm_tex_unified_3d_v4s32_f32:
3686 case Intrinsic::nvvm_tex_unified_3d_level_v4s32_f32:
3687 case Intrinsic::nvvm_tex_unified_3d_grad_v4s32_f32:
3688 case Intrinsic::nvvm_tex_unified_1d_v4u32_s32:
3689 case Intrinsic::nvvm_tex_unified_1d_v4u32_f32:
3690 case Intrinsic::nvvm_tex_unified_1d_level_v4u32_f32:
3691 case Intrinsic::nvvm_tex_unified_1d_grad_v4u32_f32:
3692 case Intrinsic::nvvm_tex_unified_1d_array_v4u32_s32:
3693 case Intrinsic::nvvm_tex_unified_1d_array_v4u32_f32:
3694 case Intrinsic::nvvm_tex_unified_1d_array_level_v4u32_f32:
3695 case Intrinsic::nvvm_tex_unified_1d_array_grad_v4u32_f32:
3696 case Intrinsic::nvvm_tex_unified_2d_v4u32_s32:
3697 case Intrinsic::nvvm_tex_unified_2d_v4u32_f32:
3698 case Intrinsic::nvvm_tex_unified_2d_level_v4u32_f32:
3699 case Intrinsic::nvvm_tex_unified_2d_grad_v4u32_f32:
3700 case Intrinsic::nvvm_tex_unified_2d_array_v4u32_s32:
3701 case Intrinsic::nvvm_tex_unified_2d_array_v4u32_f32:
3702 case Intrinsic::nvvm_tex_unified_2d_array_level_v4u32_f32:
3703 case Intrinsic::nvvm_tex_unified_2d_array_grad_v4u32_f32:
3704 case Intrinsic::nvvm_tex_unified_3d_v4u32_s32:
3705 case Intrinsic::nvvm_tex_unified_3d_v4u32_f32:
3706 case Intrinsic::nvvm_tex_unified_3d_level_v4u32_f32:
3707 case Intrinsic::nvvm_tex_unified_3d_grad_v4u32_f32:
3708 case Intrinsic::nvvm_tex_unified_cube_v4s32_f32:
3709 case Intrinsic::nvvm_tex_unified_cube_level_v4s32_f32:
3710 case Intrinsic::nvvm_tex_unified_cube_array_v4s32_f32:
3711 case Intrinsic::nvvm_tex_unified_cube_array_level_v4s32_f32:
3712 case Intrinsic::nvvm_tex_unified_cube_v4u32_f32:
3713 case Intrinsic::nvvm_tex_unified_cube_level_v4u32_f32:
3714 case Intrinsic::nvvm_tex_unified_cube_array_v4u32_f32:
3715 case Intrinsic::nvvm_tex_unified_cube_array_level_v4u32_f32:
3716 case Intrinsic::nvvm_tld4_unified_r_2d_v4s32_f32:
3717 case Intrinsic::nvvm_tld4_unified_g_2d_v4s32_f32:
3718 case Intrinsic::nvvm_tld4_unified_b_2d_v4s32_f32:
3719 case Intrinsic::nvvm_tld4_unified_a_2d_v4s32_f32:
3720 case Intrinsic::nvvm_tld4_unified_r_2d_v4u32_f32:
3721 case Intrinsic::nvvm_tld4_unified_g_2d_v4u32_f32:
3722 case Intrinsic::nvvm_tld4_unified_b_2d_v4u32_f32:
3723 case Intrinsic::nvvm_tld4_unified_a_2d_v4u32_f32:
3724 Info.opc = getOpcForTextureInstr(Intrinsic);
3725 Info.memVT = MVT::v4i32;
3726 Info.ptrVal = nullptr;
3727 Info.offset = 0;
3728 Info.vol = false;
3729 Info.readMem = true;
3730 Info.writeMem = false;
3731 Info.align = 16;
3732 return true;
3733
3734 case Intrinsic::nvvm_suld_1d_i8_clamp:
3735 case Intrinsic::nvvm_suld_1d_v2i8_clamp:
3736 case Intrinsic::nvvm_suld_1d_v4i8_clamp:
3737 case Intrinsic::nvvm_suld_1d_array_i8_clamp:
3738 case Intrinsic::nvvm_suld_1d_array_v2i8_clamp:
3739 case Intrinsic::nvvm_suld_1d_array_v4i8_clamp:
3740 case Intrinsic::nvvm_suld_2d_i8_clamp:
3741 case Intrinsic::nvvm_suld_2d_v2i8_clamp:
3742 case Intrinsic::nvvm_suld_2d_v4i8_clamp:
3743 case Intrinsic::nvvm_suld_2d_array_i8_clamp:
3744 case Intrinsic::nvvm_suld_2d_array_v2i8_clamp:
3745 case Intrinsic::nvvm_suld_2d_array_v4i8_clamp:
3746 case Intrinsic::nvvm_suld_3d_i8_clamp:
3747 case Intrinsic::nvvm_suld_3d_v2i8_clamp:
3748 case Intrinsic::nvvm_suld_3d_v4i8_clamp:
3749 case Intrinsic::nvvm_suld_1d_i8_trap:
3750 case Intrinsic::nvvm_suld_1d_v2i8_trap:
3751 case Intrinsic::nvvm_suld_1d_v4i8_trap:
3752 case Intrinsic::nvvm_suld_1d_array_i8_trap:
3753 case Intrinsic::nvvm_suld_1d_array_v2i8_trap:
3754 case Intrinsic::nvvm_suld_1d_array_v4i8_trap:
3755 case Intrinsic::nvvm_suld_2d_i8_trap:
3756 case Intrinsic::nvvm_suld_2d_v2i8_trap:
3757 case Intrinsic::nvvm_suld_2d_v4i8_trap:
3758 case Intrinsic::nvvm_suld_2d_array_i8_trap:
3759 case Intrinsic::nvvm_suld_2d_array_v2i8_trap:
3760 case Intrinsic::nvvm_suld_2d_array_v4i8_trap:
3761 case Intrinsic::nvvm_suld_3d_i8_trap:
3762 case Intrinsic::nvvm_suld_3d_v2i8_trap:
3763 case Intrinsic::nvvm_suld_3d_v4i8_trap:
3764 case Intrinsic::nvvm_suld_1d_i8_zero:
3765 case Intrinsic::nvvm_suld_1d_v2i8_zero:
3766 case Intrinsic::nvvm_suld_1d_v4i8_zero:
3767 case Intrinsic::nvvm_suld_1d_array_i8_zero:
3768 case Intrinsic::nvvm_suld_1d_array_v2i8_zero:
3769 case Intrinsic::nvvm_suld_1d_array_v4i8_zero:
3770 case Intrinsic::nvvm_suld_2d_i8_zero:
3771 case Intrinsic::nvvm_suld_2d_v2i8_zero:
3772 case Intrinsic::nvvm_suld_2d_v4i8_zero:
3773 case Intrinsic::nvvm_suld_2d_array_i8_zero:
3774 case Intrinsic::nvvm_suld_2d_array_v2i8_zero:
3775 case Intrinsic::nvvm_suld_2d_array_v4i8_zero:
3776 case Intrinsic::nvvm_suld_3d_i8_zero:
3777 case Intrinsic::nvvm_suld_3d_v2i8_zero:
3778 case Intrinsic::nvvm_suld_3d_v4i8_zero:
3779 Info.opc = getOpcForSurfaceInstr(Intrinsic);
3780 Info.memVT = MVT::i8;
3781 Info.ptrVal = nullptr;
3782 Info.offset = 0;
3783 Info.vol = false;
3784 Info.readMem = true;
3785 Info.writeMem = false;
3786 Info.align = 16;
3787 return true;
3788
3789 case Intrinsic::nvvm_suld_1d_i16_clamp:
3790 case Intrinsic::nvvm_suld_1d_v2i16_clamp:
3791 case Intrinsic::nvvm_suld_1d_v4i16_clamp:
3792 case Intrinsic::nvvm_suld_1d_array_i16_clamp:
3793 case Intrinsic::nvvm_suld_1d_array_v2i16_clamp:
3794 case Intrinsic::nvvm_suld_1d_array_v4i16_clamp:
3795 case Intrinsic::nvvm_suld_2d_i16_clamp:
3796 case Intrinsic::nvvm_suld_2d_v2i16_clamp:
3797 case Intrinsic::nvvm_suld_2d_v4i16_clamp:
3798 case Intrinsic::nvvm_suld_2d_array_i16_clamp:
3799 case Intrinsic::nvvm_suld_2d_array_v2i16_clamp:
3800 case Intrinsic::nvvm_suld_2d_array_v4i16_clamp:
3801 case Intrinsic::nvvm_suld_3d_i16_clamp:
3802 case Intrinsic::nvvm_suld_3d_v2i16_clamp:
3803 case Intrinsic::nvvm_suld_3d_v4i16_clamp:
3804 case Intrinsic::nvvm_suld_1d_i16_trap:
3805 case Intrinsic::nvvm_suld_1d_v2i16_trap:
3806 case Intrinsic::nvvm_suld_1d_v4i16_trap:
3807 case Intrinsic::nvvm_suld_1d_array_i16_trap:
3808 case Intrinsic::nvvm_suld_1d_array_v2i16_trap:
3809 case Intrinsic::nvvm_suld_1d_array_v4i16_trap:
3810 case Intrinsic::nvvm_suld_2d_i16_trap:
3811 case Intrinsic::nvvm_suld_2d_v2i16_trap:
3812 case Intrinsic::nvvm_suld_2d_v4i16_trap:
3813 case Intrinsic::nvvm_suld_2d_array_i16_trap:
3814 case Intrinsic::nvvm_suld_2d_array_v2i16_trap:
3815 case Intrinsic::nvvm_suld_2d_array_v4i16_trap:
3816 case Intrinsic::nvvm_suld_3d_i16_trap:
3817 case Intrinsic::nvvm_suld_3d_v2i16_trap:
3818 case Intrinsic::nvvm_suld_3d_v4i16_trap:
3819 case Intrinsic::nvvm_suld_1d_i16_zero:
3820 case Intrinsic::nvvm_suld_1d_v2i16_zero:
3821 case Intrinsic::nvvm_suld_1d_v4i16_zero:
3822 case Intrinsic::nvvm_suld_1d_array_i16_zero:
3823 case Intrinsic::nvvm_suld_1d_array_v2i16_zero:
3824 case Intrinsic::nvvm_suld_1d_array_v4i16_zero:
3825 case Intrinsic::nvvm_suld_2d_i16_zero:
3826 case Intrinsic::nvvm_suld_2d_v2i16_zero:
3827 case Intrinsic::nvvm_suld_2d_v4i16_zero:
3828 case Intrinsic::nvvm_suld_2d_array_i16_zero:
3829 case Intrinsic::nvvm_suld_2d_array_v2i16_zero:
3830 case Intrinsic::nvvm_suld_2d_array_v4i16_zero:
3831 case Intrinsic::nvvm_suld_3d_i16_zero:
3832 case Intrinsic::nvvm_suld_3d_v2i16_zero:
3833 case Intrinsic::nvvm_suld_3d_v4i16_zero:
3834 Info.opc = getOpcForSurfaceInstr(Intrinsic);
3835 Info.memVT = MVT::i16;
3836 Info.ptrVal = nullptr;
3837 Info.offset = 0;
3838 Info.vol = false;
3839 Info.readMem = true;
3840 Info.writeMem = false;
3841 Info.align = 16;
3842 return true;
3843
3844 case Intrinsic::nvvm_suld_1d_i32_clamp:
3845 case Intrinsic::nvvm_suld_1d_v2i32_clamp:
3846 case Intrinsic::nvvm_suld_1d_v4i32_clamp:
3847 case Intrinsic::nvvm_suld_1d_array_i32_clamp:
3848 case Intrinsic::nvvm_suld_1d_array_v2i32_clamp:
3849 case Intrinsic::nvvm_suld_1d_array_v4i32_clamp:
3850 case Intrinsic::nvvm_suld_2d_i32_clamp:
3851 case Intrinsic::nvvm_suld_2d_v2i32_clamp:
3852 case Intrinsic::nvvm_suld_2d_v4i32_clamp:
3853 case Intrinsic::nvvm_suld_2d_array_i32_clamp:
3854 case Intrinsic::nvvm_suld_2d_array_v2i32_clamp:
3855 case Intrinsic::nvvm_suld_2d_array_v4i32_clamp:
3856 case Intrinsic::nvvm_suld_3d_i32_clamp:
3857 case Intrinsic::nvvm_suld_3d_v2i32_clamp:
3858 case Intrinsic::nvvm_suld_3d_v4i32_clamp:
3859 case Intrinsic::nvvm_suld_1d_i32_trap:
3860 case Intrinsic::nvvm_suld_1d_v2i32_trap:
3861 case Intrinsic::nvvm_suld_1d_v4i32_trap:
3862 case Intrinsic::nvvm_suld_1d_array_i32_trap:
3863 case Intrinsic::nvvm_suld_1d_array_v2i32_trap:
3864 case Intrinsic::nvvm_suld_1d_array_v4i32_trap:
3865 case Intrinsic::nvvm_suld_2d_i32_trap:
3866 case Intrinsic::nvvm_suld_2d_v2i32_trap:
3867 case Intrinsic::nvvm_suld_2d_v4i32_trap:
3868 case Intrinsic::nvvm_suld_2d_array_i32_trap:
3869 case Intrinsic::nvvm_suld_2d_array_v2i32_trap:
3870 case Intrinsic::nvvm_suld_2d_array_v4i32_trap:
3871 case Intrinsic::nvvm_suld_3d_i32_trap:
3872 case Intrinsic::nvvm_suld_3d_v2i32_trap:
3873 case Intrinsic::nvvm_suld_3d_v4i32_trap:
3874 case Intrinsic::nvvm_suld_1d_i32_zero:
3875 case Intrinsic::nvvm_suld_1d_v2i32_zero:
3876 case Intrinsic::nvvm_suld_1d_v4i32_zero:
3877 case Intrinsic::nvvm_suld_1d_array_i32_zero:
3878 case Intrinsic::nvvm_suld_1d_array_v2i32_zero:
3879 case Intrinsic::nvvm_suld_1d_array_v4i32_zero:
3880 case Intrinsic::nvvm_suld_2d_i32_zero:
3881 case Intrinsic::nvvm_suld_2d_v2i32_zero:
3882 case Intrinsic::nvvm_suld_2d_v4i32_zero:
3883 case Intrinsic::nvvm_suld_2d_array_i32_zero:
3884 case Intrinsic::nvvm_suld_2d_array_v2i32_zero:
3885 case Intrinsic::nvvm_suld_2d_array_v4i32_zero:
3886 case Intrinsic::nvvm_suld_3d_i32_zero:
3887 case Intrinsic::nvvm_suld_3d_v2i32_zero:
3888 case Intrinsic::nvvm_suld_3d_v4i32_zero:
3889 Info.opc = getOpcForSurfaceInstr(Intrinsic);
3890 Info.memVT = MVT::i32;
3891 Info.ptrVal = nullptr;
3892 Info.offset = 0;
3893 Info.vol = false;
3894 Info.readMem = true;
3895 Info.writeMem = false;
3896 Info.align = 16;
3897 return true;
3898
3899 case Intrinsic::nvvm_suld_1d_i64_clamp:
3900 case Intrinsic::nvvm_suld_1d_v2i64_clamp:
3901 case Intrinsic::nvvm_suld_1d_array_i64_clamp:
3902 case Intrinsic::nvvm_suld_1d_array_v2i64_clamp:
3903 case Intrinsic::nvvm_suld_2d_i64_clamp:
3904 case Intrinsic::nvvm_suld_2d_v2i64_clamp:
3905 case Intrinsic::nvvm_suld_2d_array_i64_clamp:
3906 case Intrinsic::nvvm_suld_2d_array_v2i64_clamp:
3907 case Intrinsic::nvvm_suld_3d_i64_clamp:
3908 case Intrinsic::nvvm_suld_3d_v2i64_clamp:
3909 case Intrinsic::nvvm_suld_1d_i64_trap:
3910 case Intrinsic::nvvm_suld_1d_v2i64_trap:
3911 case Intrinsic::nvvm_suld_1d_array_i64_trap:
3912 case Intrinsic::nvvm_suld_1d_array_v2i64_trap:
3913 case Intrinsic::nvvm_suld_2d_i64_trap:
3914 case Intrinsic::nvvm_suld_2d_v2i64_trap:
3915 case Intrinsic::nvvm_suld_2d_array_i64_trap:
3916 case Intrinsic::nvvm_suld_2d_array_v2i64_trap:
3917 case Intrinsic::nvvm_suld_3d_i64_trap:
3918 case Intrinsic::nvvm_suld_3d_v2i64_trap:
3919 case Intrinsic::nvvm_suld_1d_i64_zero:
3920 case Intrinsic::nvvm_suld_1d_v2i64_zero:
3921 case Intrinsic::nvvm_suld_1d_array_i64_zero:
3922 case Intrinsic::nvvm_suld_1d_array_v2i64_zero:
3923 case Intrinsic::nvvm_suld_2d_i64_zero:
3924 case Intrinsic::nvvm_suld_2d_v2i64_zero:
3925 case Intrinsic::nvvm_suld_2d_array_i64_zero:
3926 case Intrinsic::nvvm_suld_2d_array_v2i64_zero:
3927 case Intrinsic::nvvm_suld_3d_i64_zero:
3928 case Intrinsic::nvvm_suld_3d_v2i64_zero:
3929 Info.opc = getOpcForSurfaceInstr(Intrinsic);
3930 Info.memVT = MVT::i64;
3931 Info.ptrVal = nullptr;
3932 Info.offset = 0;
3933 Info.vol = false;
3934 Info.readMem = true;
3935 Info.writeMem = false;
3936 Info.align = 16;
3937 return true;
3938 }
3939 return false;
3940}
3941
3942/// isLegalAddressingMode - Return true if the addressing mode represented
3943/// by AM is legal for this target, for a load/store of the specified type.
3944/// Used to guide target specific optimizations, like loop strength reduction
3945/// (LoopStrengthReduce.cpp) and memory optimization for address mode
3946/// (CodeGenPrepare.cpp)
3947bool NVPTXTargetLowering::isLegalAddressingMode(const DataLayout &DL,
3948 const AddrMode &AM, Type *Ty,
3949 unsigned AS) const {
3950 // AddrMode - This represents an addressing mode of:
3951 // BaseGV + BaseOffs + BaseReg + Scale*ScaleReg
3952 //
3953 // The legal address modes are
3954 // - [avar]
3955 // - [areg]
3956 // - [areg+immoff]
3957 // - [immAddr]
3958
3959 if (AM.BaseGV) {
3960 return !AM.BaseOffs && !AM.HasBaseReg && !AM.Scale;
3961 }
3962
3963 switch (AM.Scale) {
3964 case 0: // "r", "r+i" or "i" is allowed
3965 break;
3966 case 1:
3967 if (AM.HasBaseReg) // "r+r+i" or "r+r" is not allowed.
3968 return false;
3969 // Otherwise we have r+i.
3970 break;
3971 default:
3972 // No scale > 1 is allowed
3973 return false;
3974 }
3975 return true;
3976}
3977
3978//===----------------------------------------------------------------------===//
3979// NVPTX Inline Assembly Support
3980//===----------------------------------------------------------------------===//
3981
3982/// getConstraintType - Given a constraint letter, return the type of
3983/// constraint it is for this target.
3984NVPTXTargetLowering::ConstraintType
3985NVPTXTargetLowering::getConstraintType(StringRef Constraint) const {
3986 if (Constraint.size() == 1) {
3987 switch (Constraint[0]) {
3988 default:
3989 break;
3990 case 'b':
3991 case 'r':
3992 case 'h':
3993 case 'c':
3994 case 'l':
3995 case 'f':
3996 case 'd':
3997 case '0':
3998 case 'N':
3999 return C_RegisterClass;
4000 }
4001 }
4002 return TargetLowering::getConstraintType(Constraint);
4003}
4004
4005std::pair<unsigned, const TargetRegisterClass *>
4006NVPTXTargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
4007 StringRef Constraint,
4008 MVT VT) const {
4009 if (Constraint.size() == 1) {
4010 switch (Constraint[0]) {
4011 case 'b':
4012 return std::make_pair(0U, &NVPTX::Int1RegsRegClass);
4013 case 'c':
4014 return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
4015 case 'h':
4016 return std::make_pair(0U, &NVPTX::Int16RegsRegClass);
4017 case 'r':
4018 return std::make_pair(0U, &NVPTX::Int32RegsRegClass);
4019 case 'l':
4020 case 'N':
4021 return std::make_pair(0U, &NVPTX::Int64RegsRegClass);
4022 case 'f':
4023 return std::make_pair(0U, &NVPTX::Float32RegsRegClass);
4024 case 'd':
4025 return std::make_pair(0U, &NVPTX::Float64RegsRegClass);
4026 }
4027 }
4028 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
4029}
4030
4031//===----------------------------------------------------------------------===//
4032// NVPTX DAG Combining
4033//===----------------------------------------------------------------------===//
4034
4035bool NVPTXTargetLowering::allowFMA(MachineFunction &MF,
4036 CodeGenOpt::Level OptLevel) const {
4037 // Always honor command-line argument
4038 if (FMAContractLevelOpt.getNumOccurrences() > 0)
4039 return FMAContractLevelOpt > 0;
4040
4041 // Do not contract if we're not optimizing the code.
4042 if (OptLevel == 0)
4043 return false;
4044
4045 // Honor TargetOptions flags that explicitly say fusion is okay.
4046 if (MF.getTarget().Options.AllowFPOpFusion == FPOpFusion::Fast)
4047 return true;
4048
4049 return allowUnsafeFPMath(MF);
4050}
4051
4052bool NVPTXTargetLowering::allowUnsafeFPMath(MachineFunction &MF) const {
4053 // Honor TargetOptions flags that explicitly say unsafe math is okay.
4054 if (MF.getTarget().Options.UnsafeFPMath)
4055 return true;
4056
4057 // Allow unsafe math if unsafe-fp-math attribute explicitly says so.
4058 const Function *F = MF.getFunction();
4059 if (F->hasFnAttribute("unsafe-fp-math")) {
4060 Attribute Attr = F->getFnAttribute("unsafe-fp-math");
4061 StringRef Val = Attr.getValueAsString();
4062 if (Val == "true")
4063 return true;
4064 }
4065
4066 return false;
4067}
4068
4069/// PerformADDCombineWithOperands - Try DAG combinations for an ADD with
4070/// operands N0 and N1. This is a helper for PerformADDCombine that is
4071/// called with the default operands, and if that fails, with commuted
4072/// operands.
4073static SDValue PerformADDCombineWithOperands(SDNode *N, SDValue N0, SDValue N1,
4074 TargetLowering::DAGCombinerInfo &DCI,
4075 const NVPTXSubtarget &Subtarget,
4076 CodeGenOpt::Level OptLevel) {
4077 SelectionDAG &DAG = DCI.DAG;
4078 // Skip non-integer, non-scalar case
4079 EVT VT=N0.getValueType();
4080 if (VT.isVector())
4081 return SDValue();
4082
4083 // fold (add (mul a, b), c) -> (mad a, b, c)
4084 //
4085 if (N0.getOpcode() == ISD::MUL) {
4086 assert (VT.isInteger())((VT.isInteger()) ? static_cast<void> (0) : __assert_fail
("VT.isInteger()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 4086, __PRETTY_FUNCTION__))
;
4087 // For integer:
4088 // Since integer multiply-add costs the same as integer multiply
4089 // but is more costly than integer add, do the fusion only when
4090 // the mul is only used in the add.
4091 if (OptLevel==CodeGenOpt::None || VT != MVT::i32 ||
4092 !N0.getNode()->hasOneUse())
4093 return SDValue();
4094
4095 // Do the folding
4096 return DAG.getNode(NVPTXISD::IMAD, SDLoc(N), VT,
4097 N0.getOperand(0), N0.getOperand(1), N1);
4098 }
4099 else if (N0.getOpcode() == ISD::FMUL) {
4100 if (VT == MVT::f32 || VT == MVT::f64) {
4101 const auto *TLI = static_cast<const NVPTXTargetLowering *>(
4102 &DAG.getTargetLoweringInfo());
4103 if (!TLI->allowFMA(DAG.getMachineFunction(), OptLevel))
4104 return SDValue();
4105
4106 // For floating point:
4107 // Do the fusion only when the mul has less than 5 uses and all
4108 // are add.
4109 // The heuristic is that if a use is not an add, then that use
4110 // cannot be fused into fma, therefore mul is still needed anyway.
4111 // If there are more than 4 uses, even if they are all add, fusing
4112 // them will increase register pressue.
4113 //
4114 int numUses = 0;
4115 int nonAddCount = 0;
4116 for (SDNode::use_iterator UI = N0.getNode()->use_begin(),
4117 UE = N0.getNode()->use_end();
4118 UI != UE; ++UI) {
4119 numUses++;
4120 SDNode *User = *UI;
4121 if (User->getOpcode() != ISD::FADD)
4122 ++nonAddCount;
4123 }
4124 if (numUses >= 5)
4125 return SDValue();
4126 if (nonAddCount) {
4127 int orderNo = N->getIROrder();
4128 int orderNo2 = N0.getNode()->getIROrder();
4129 // simple heuristics here for considering potential register
4130 // pressure, the logics here is that the differnce are used
4131 // to measure the distance between def and use, the longer distance
4132 // more likely cause register pressure.
4133 if (orderNo - orderNo2 < 500)
4134 return SDValue();
4135
4136 // Now, check if at least one of the FMUL's operands is live beyond the node N,
4137 // which guarantees that the FMA will not increase register pressure at node N.
4138 bool opIsLive = false;
4139 const SDNode *left = N0.getOperand(0).getNode();
4140 const SDNode *right = N0.getOperand(1).getNode();
4141
4142 if (isa<ConstantSDNode>(left) || isa<ConstantSDNode>(right))
4143 opIsLive = true;
4144
4145 if (!opIsLive)
4146 for (SDNode::use_iterator UI = left->use_begin(), UE = left->use_end(); UI != UE; ++UI) {
4147 SDNode *User = *UI;
4148 int orderNo3 = User->getIROrder();
4149 if (orderNo3 > orderNo) {
4150 opIsLive = true;
4151 break;
4152 }
4153 }
4154
4155 if (!opIsLive)
4156 for (SDNode::use_iterator UI = right->use_begin(), UE = right->use_end(); UI != UE; ++UI) {
4157 SDNode *User = *UI;
4158 int orderNo3 = User->getIROrder();
4159 if (orderNo3 > orderNo) {
4160 opIsLive = true;
4161 break;
4162 }
4163 }
4164
4165 if (!opIsLive)
4166 return SDValue();
4167 }
4168
4169 return DAG.getNode(ISD::FMA, SDLoc(N), VT,
4170 N0.getOperand(0), N0.getOperand(1), N1);
4171 }
4172 }
4173
4174 return SDValue();
4175}
4176
4177/// PerformADDCombine - Target-specific dag combine xforms for ISD::ADD.
4178///
4179static SDValue PerformADDCombine(SDNode *N,
4180 TargetLowering::DAGCombinerInfo &DCI,
4181 const NVPTXSubtarget &Subtarget,
4182 CodeGenOpt::Level OptLevel) {
4183 SDValue N0 = N->getOperand(0);
4184 SDValue N1 = N->getOperand(1);
4185
4186 // First try with the default operand order.
4187 if (SDValue Result =
4188 PerformADDCombineWithOperands(N, N0, N1, DCI, Subtarget, OptLevel))
4189 return Result;
4190
4191 // If that didn't work, try again with the operands commuted.
4192 return PerformADDCombineWithOperands(N, N1, N0, DCI, Subtarget, OptLevel);
4193}
4194
4195static SDValue PerformANDCombine(SDNode *N,
4196 TargetLowering::DAGCombinerInfo &DCI) {
4197 // The type legalizer turns a vector load of i8 values into a zextload to i16
4198 // registers, optionally ANY_EXTENDs it (if target type is integer),
4199 // and ANDs off the high 8 bits. Since we turn this load into a
4200 // target-specific DAG node, the DAG combiner fails to eliminate these AND
4201 // nodes. Do that here.
4202 SDValue Val = N->getOperand(0);
4203 SDValue Mask = N->getOperand(1);
4204
4205 if (isa<ConstantSDNode>(Val)) {
4206 std::swap(Val, Mask);
4207 }
4208
4209 SDValue AExt;
4210 // Generally, we will see zextload -> IMOV16rr -> ANY_EXTEND -> and
4211 if (Val.getOpcode() == ISD::ANY_EXTEND) {
4212 AExt = Val;
4213 Val = Val->getOperand(0);
4214 }
4215
4216 if (Val->isMachineOpcode() && Val->getMachineOpcode() == NVPTX::IMOV16rr) {
4217 Val = Val->getOperand(0);
4218 }
4219
4220 if (Val->getOpcode() == NVPTXISD::LoadV2 ||
4221 Val->getOpcode() == NVPTXISD::LoadV4) {
4222 ConstantSDNode *MaskCnst = dyn_cast<ConstantSDNode>(Mask);
4223 if (!MaskCnst) {
4224 // Not an AND with a constant
4225 return SDValue();
4226 }
4227
4228 uint64_t MaskVal = MaskCnst->getZExtValue();
4229 if (MaskVal != 0xff) {
4230 // Not an AND that chops off top 8 bits
4231 return SDValue();
4232 }
4233
4234 MemSDNode *Mem = dyn_cast<MemSDNode>(Val);
4235 if (!Mem) {
4236 // Not a MemSDNode?!?
4237 return SDValue();
4238 }
4239
4240 EVT MemVT = Mem->getMemoryVT();
4241 if (MemVT != MVT::v2i8 && MemVT != MVT::v4i8) {
4242 // We only handle the i8 case
4243 return SDValue();
4244 }
4245
4246 unsigned ExtType =
4247 cast<ConstantSDNode>(Val->getOperand(Val->getNumOperands()-1))->
4248 getZExtValue();
4249 if (ExtType == ISD::SEXTLOAD) {
4250 // If for some reason the load is a sextload, the and is needed to zero
4251 // out the high 8 bits
4252 return SDValue();
4253 }
4254
4255 bool AddTo = false;
4256 if (AExt.getNode() != nullptr) {
4257 // Re-insert the ext as a zext.
4258 Val = DCI.DAG.getNode(ISD::ZERO_EXTEND, SDLoc(N),
4259 AExt.getValueType(), Val);
4260 AddTo = true;
4261 }
4262
4263 // If we get here, the AND is unnecessary. Just replace it with the load
4264 DCI.CombineTo(N, Val, AddTo);
4265 }
4266
4267 return SDValue();
4268}
4269
4270static SDValue PerformREMCombine(SDNode *N,
4271 TargetLowering::DAGCombinerInfo &DCI,
4272 CodeGenOpt::Level OptLevel) {
4273 assert(N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM)((N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::
UREM) ? static_cast<void> (0) : __assert_fail ("N->getOpcode() == ISD::SREM || N->getOpcode() == ISD::UREM"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 4273, __PRETTY_FUNCTION__))
;
4274
4275 // Don't do anything at less than -O2.
4276 if (OptLevel < CodeGenOpt::Default)
4277 return SDValue();
4278
4279 SelectionDAG &DAG = DCI.DAG;
4280 SDLoc DL(N);
4281 EVT VT = N->getValueType(0);
4282 bool IsSigned = N->getOpcode() == ISD::SREM;
4283 unsigned DivOpc = IsSigned ? ISD::SDIV : ISD::UDIV;
4284
4285 const SDValue &Num = N->getOperand(0);
4286 const SDValue &Den = N->getOperand(1);
4287
4288 for (const SDNode *U : Num->uses()) {
4289 if (U->getOpcode() == DivOpc && U->getOperand(0) == Num &&
4290 U->getOperand(1) == Den) {
4291 // Num % Den -> Num - (Num / Den) * Den
4292 return DAG.getNode(ISD::SUB, DL, VT, Num,
4293 DAG.getNode(ISD::MUL, DL, VT,
4294 DAG.getNode(DivOpc, DL, VT, Num, Den),
4295 Den));
4296 }
4297 }
4298 return SDValue();
4299}
4300
4301enum OperandSignedness {
4302 Signed = 0,
4303 Unsigned,
4304 Unknown
4305};
4306
4307/// IsMulWideOperandDemotable - Checks if the provided DAG node is an operand
4308/// that can be demoted to \p OptSize bits without loss of information. The
4309/// signedness of the operand, if determinable, is placed in \p S.
4310static bool IsMulWideOperandDemotable(SDValue Op,
4311 unsigned OptSize,
4312 OperandSignedness &S) {
4313 S = Unknown;
4314
4315 if (Op.getOpcode() == ISD::SIGN_EXTEND ||
4316 Op.getOpcode() == ISD::SIGN_EXTEND_INREG) {
4317 EVT OrigVT = Op.getOperand(0).getValueType();
4318 if (OrigVT.getSizeInBits() <= OptSize) {
4319 S = Signed;
4320 return true;
4321 }
4322 } else if (Op.getOpcode() == ISD::ZERO_EXTEND) {
4323 EVT OrigVT = Op.getOperand(0).getValueType();
4324 if (OrigVT.getSizeInBits() <= OptSize) {
4325 S = Unsigned;
4326 return true;
4327 }
4328 }
4329
4330 return false;
4331}
4332
4333/// AreMulWideOperandsDemotable - Checks if the given LHS and RHS operands can
4334/// be demoted to \p OptSize bits without loss of information. If the operands
4335/// contain a constant, it should appear as the RHS operand. The signedness of
4336/// the operands is placed in \p IsSigned.
4337static bool AreMulWideOperandsDemotable(SDValue LHS, SDValue RHS,
4338 unsigned OptSize,
4339 bool &IsSigned) {
4340 OperandSignedness LHSSign;
4341
4342 // The LHS operand must be a demotable op
4343 if (!IsMulWideOperandDemotable(LHS, OptSize, LHSSign))
4344 return false;
4345
4346 // We should have been able to determine the signedness from the LHS
4347 if (LHSSign == Unknown)
4348 return false;
4349
4350 IsSigned = (LHSSign == Signed);
4351
4352 // The RHS can be a demotable op or a constant
4353 if (ConstantSDNode *CI = dyn_cast<ConstantSDNode>(RHS)) {
4354 const APInt &Val = CI->getAPIntValue();
4355 if (LHSSign == Unsigned) {
4356 return Val.isIntN(OptSize);
4357 } else {
4358 return Val.isSignedIntN(OptSize);
4359 }
4360 } else {
4361 OperandSignedness RHSSign;
4362 if (!IsMulWideOperandDemotable(RHS, OptSize, RHSSign))
4363 return false;
4364
4365 return LHSSign == RHSSign;
4366 }
4367}
4368
4369/// TryMULWIDECombine - Attempt to replace a multiply of M bits with a multiply
4370/// of M/2 bits that produces an M-bit result (i.e. mul.wide). This transform
4371/// works on both multiply DAG nodes and SHL DAG nodes with a constant shift
4372/// amount.
4373static SDValue TryMULWIDECombine(SDNode *N,
4374 TargetLowering::DAGCombinerInfo &DCI) {
4375 EVT MulType = N->getValueType(0);
4376 if (MulType != MVT::i32 && MulType != MVT::i64) {
4377 return SDValue();
4378 }
4379
4380 SDLoc DL(N);
4381 unsigned OptSize = MulType.getSizeInBits() >> 1;
4382 SDValue LHS = N->getOperand(0);
4383 SDValue RHS = N->getOperand(1);
4384
4385 // Canonicalize the multiply so the constant (if any) is on the right
4386 if (N->getOpcode() == ISD::MUL) {
4387 if (isa<ConstantSDNode>(LHS)) {
4388 std::swap(LHS, RHS);
4389 }
4390 }
4391
4392 // If we have a SHL, determine the actual multiply amount
4393 if (N->getOpcode() == ISD::SHL) {
4394 ConstantSDNode *ShlRHS = dyn_cast<ConstantSDNode>(RHS);
4395 if (!ShlRHS) {
4396 return SDValue();
4397 }
4398
4399 APInt ShiftAmt = ShlRHS->getAPIntValue();
4400 unsigned BitWidth = MulType.getSizeInBits();
4401 if (ShiftAmt.sge(0) && ShiftAmt.slt(BitWidth)) {
4402 APInt MulVal = APInt(BitWidth, 1) << ShiftAmt;
4403 RHS = DCI.DAG.getConstant(MulVal, DL, MulType);
4404 } else {
4405 return SDValue();
4406 }
4407 }
4408
4409 bool Signed;
4410 // Verify that our operands are demotable
4411 if (!AreMulWideOperandsDemotable(LHS, RHS, OptSize, Signed)) {
4412 return SDValue();
4413 }
4414
4415 EVT DemotedVT;
4416 if (MulType == MVT::i32) {
4417 DemotedVT = MVT::i16;
4418 } else {
4419 DemotedVT = MVT::i32;
4420 }
4421
4422 // Truncate the operands to the correct size. Note that these are just for
4423 // type consistency and will (likely) be eliminated in later phases.
4424 SDValue TruncLHS =
4425 DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, LHS);
4426 SDValue TruncRHS =
4427 DCI.DAG.getNode(ISD::TRUNCATE, DL, DemotedVT, RHS);
4428
4429 unsigned Opc;
4430 if (Signed) {
4431 Opc = NVPTXISD::MUL_WIDE_SIGNED;
4432 } else {
4433 Opc = NVPTXISD::MUL_WIDE_UNSIGNED;
4434 }
4435
4436 return DCI.DAG.getNode(Opc, DL, MulType, TruncLHS, TruncRHS);
4437}
4438
4439/// PerformMULCombine - Runs PTX-specific DAG combine patterns on MUL nodes.
4440static SDValue PerformMULCombine(SDNode *N,
4441 TargetLowering::DAGCombinerInfo &DCI,
4442 CodeGenOpt::Level OptLevel) {
4443 if (OptLevel > 0) {
4444 // Try mul.wide combining at OptLevel > 0
4445 if (SDValue Ret = TryMULWIDECombine(N, DCI))
4446 return Ret;
4447 }
4448
4449 return SDValue();
4450}
4451
4452/// PerformSHLCombine - Runs PTX-specific DAG combine patterns on SHL nodes.
4453static SDValue PerformSHLCombine(SDNode *N,
4454 TargetLowering::DAGCombinerInfo &DCI,
4455 CodeGenOpt::Level OptLevel) {
4456 if (OptLevel > 0) {
4457 // Try mul.wide combining at OptLevel > 0
4458 if (SDValue Ret = TryMULWIDECombine(N, DCI))
4459 return Ret;
4460 }
4461
4462 return SDValue();
4463}
4464
4465SDValue NVPTXTargetLowering::PerformDAGCombine(SDNode *N,
4466 DAGCombinerInfo &DCI) const {
4467 CodeGenOpt::Level OptLevel = getTargetMachine().getOptLevel();
4468 switch (N->getOpcode()) {
4469 default: break;
4470 case ISD::ADD:
4471 case ISD::FADD:
4472 return PerformADDCombine(N, DCI, STI, OptLevel);
4473 case ISD::MUL:
4474 return PerformMULCombine(N, DCI, OptLevel);
4475 case ISD::SHL:
4476 return PerformSHLCombine(N, DCI, OptLevel);
4477 case ISD::AND:
4478 return PerformANDCombine(N, DCI);
4479 case ISD::UREM:
4480 case ISD::SREM:
4481 return PerformREMCombine(N, DCI, OptLevel);
4482 }
4483 return SDValue();
4484}
4485
4486/// ReplaceVectorLoad - Convert vector loads into multi-output scalar loads.
4487static void ReplaceLoadVector(SDNode *N, SelectionDAG &DAG,
4488 SmallVectorImpl<SDValue> &Results) {
4489 EVT ResVT = N->getValueType(0);
4490 SDLoc DL(N);
4491
4492 assert(ResVT.isVector() && "Vector load must have vector type")((ResVT.isVector() && "Vector load must have vector type"
) ? static_cast<void> (0) : __assert_fail ("ResVT.isVector() && \"Vector load must have vector type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 4492, __PRETTY_FUNCTION__))
;
4493
4494 // We only handle "native" vector sizes for now, e.g. <4 x double> is not
4495 // legal. We can (and should) split that into 2 loads of <2 x double> here
4496 // but I'm leaving that as a TODO for now.
4497 assert(ResVT.isSimple() && "Can only handle simple types")((ResVT.isSimple() && "Can only handle simple types")
? static_cast<void> (0) : __assert_fail ("ResVT.isSimple() && \"Can only handle simple types\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 4497, __PRETTY_FUNCTION__))
;
4498 switch (ResVT.getSimpleVT().SimpleTy) {
4499 default:
4500 return;
4501 case MVT::v2i8:
4502 case MVT::v2i16:
4503 case MVT::v2i32:
4504 case MVT::v2i64:
4505 case MVT::v2f32:
4506 case MVT::v2f64:
4507 case MVT::v4i8:
4508 case MVT::v4i16:
4509 case MVT::v4i32:
4510 case MVT::v4f32:
4511 // This is a "native" vector type
4512 break;
4513 }
4514
4515 LoadSDNode *LD = cast<LoadSDNode>(N);
4516
4517 unsigned Align = LD->getAlignment();
4518 auto &TD = DAG.getDataLayout();
4519 unsigned PrefAlign =
4520 TD.getPrefTypeAlignment(ResVT.getTypeForEVT(*DAG.getContext()));
4521 if (Align < PrefAlign) {
4522 // This load is not sufficiently aligned, so bail out and let this vector
4523 // load be scalarized. Note that we may still be able to emit smaller
4524 // vector loads. For example, if we are loading a <4 x float> with an
4525 // alignment of 8, this check will fail but the legalizer will try again
4526 // with 2 x <2 x float>, which will succeed with an alignment of 8.
4527 return;
4528 }
4529
4530 EVT EltVT = ResVT.getVectorElementType();
4531 unsigned NumElts = ResVT.getVectorNumElements();
4532
4533 // Since LoadV2 is a target node, we cannot rely on DAG type legalization.
4534 // Therefore, we must ensure the type is legal. For i1 and i8, we set the
4535 // loaded type to i16 and propagate the "real" type as the memory type.
4536 bool NeedTrunc = false;
4537 if (EltVT.getSizeInBits() < 16) {
4538 EltVT = MVT::i16;
4539 NeedTrunc = true;
4540 }
4541
4542 unsigned Opcode = 0;
4543 SDVTList LdResVTs;
4544
4545 switch (NumElts) {
4546 default:
4547 return;
4548 case 2:
4549 Opcode = NVPTXISD::LoadV2;
4550 LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
4551 break;
4552 case 4: {
4553 Opcode = NVPTXISD::LoadV4;
4554 EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
4555 LdResVTs = DAG.getVTList(ListVTs);
4556 break;
4557 }
4558 }
4559
4560 // Copy regular operands
4561 SmallVector<SDValue, 8> OtherOps(N->op_begin(), N->op_end());
4562
4563 // The select routine does not have access to the LoadSDNode instance, so
4564 // pass along the extension information
4565 OtherOps.push_back(DAG.getIntPtrConstant(LD->getExtensionType(), DL));
4566
4567 SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
4568 LD->getMemoryVT(),
4569 LD->getMemOperand());
4570
4571 SmallVector<SDValue, 4> ScalarRes;
4572
4573 for (unsigned i = 0; i < NumElts; ++i) {
4574 SDValue Res = NewLD.getValue(i);
4575 if (NeedTrunc)
4576 Res = DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
4577 ScalarRes.push_back(Res);
4578 }
4579
4580 SDValue LoadChain = NewLD.getValue(NumElts);
4581
4582 SDValue BuildVec = DAG.getBuildVector(ResVT, DL, ScalarRes);
4583
4584 Results.push_back(BuildVec);
4585 Results.push_back(LoadChain);
4586}
4587
4588static void ReplaceINTRINSIC_W_CHAIN(SDNode *N, SelectionDAG &DAG,
4589 SmallVectorImpl<SDValue> &Results) {
4590 SDValue Chain = N->getOperand(0);
4591 SDValue Intrin = N->getOperand(1);
4592 SDLoc DL(N);
4593
4594 // Get the intrinsic ID
4595 unsigned IntrinNo = cast<ConstantSDNode>(Intrin.getNode())->getZExtValue();
4596 switch (IntrinNo) {
4597 default:
4598 return;
4599 case Intrinsic::nvvm_ldg_global_i:
4600 case Intrinsic::nvvm_ldg_global_f:
4601 case Intrinsic::nvvm_ldg_global_p:
4602 case Intrinsic::nvvm_ldu_global_i:
4603 case Intrinsic::nvvm_ldu_global_f:
4604 case Intrinsic::nvvm_ldu_global_p: {
4605 EVT ResVT = N->getValueType(0);
4606
4607 if (ResVT.isVector()) {
4608 // Vector LDG/LDU
4609
4610 unsigned NumElts = ResVT.getVectorNumElements();
4611 EVT EltVT = ResVT.getVectorElementType();
4612
4613 // Since LDU/LDG are target nodes, we cannot rely on DAG type
4614 // legalization.
4615 // Therefore, we must ensure the type is legal. For i1 and i8, we set the
4616 // loaded type to i16 and propagate the "real" type as the memory type.
4617 bool NeedTrunc = false;
4618 if (EltVT.getSizeInBits() < 16) {
4619 EltVT = MVT::i16;
4620 NeedTrunc = true;
4621 }
4622
4623 unsigned Opcode = 0;
4624 SDVTList LdResVTs;
4625
4626 switch (NumElts) {
4627 default:
4628 return;
4629 case 2:
4630 switch (IntrinNo) {
4631 default:
4632 return;
4633 case Intrinsic::nvvm_ldg_global_i:
4634 case Intrinsic::nvvm_ldg_global_f:
4635 case Intrinsic::nvvm_ldg_global_p:
4636 Opcode = NVPTXISD::LDGV2;
4637 break;
4638 case Intrinsic::nvvm_ldu_global_i:
4639 case Intrinsic::nvvm_ldu_global_f:
4640 case Intrinsic::nvvm_ldu_global_p:
4641 Opcode = NVPTXISD::LDUV2;
4642 break;
4643 }
4644 LdResVTs = DAG.getVTList(EltVT, EltVT, MVT::Other);
4645 break;
4646 case 4: {
4647 switch (IntrinNo) {
4648 default:
4649 return;
4650 case Intrinsic::nvvm_ldg_global_i:
4651 case Intrinsic::nvvm_ldg_global_f:
4652 case Intrinsic::nvvm_ldg_global_p:
4653 Opcode = NVPTXISD::LDGV4;
4654 break;
4655 case Intrinsic::nvvm_ldu_global_i:
4656 case Intrinsic::nvvm_ldu_global_f:
4657 case Intrinsic::nvvm_ldu_global_p:
4658 Opcode = NVPTXISD::LDUV4;
4659 break;
4660 }
4661 EVT ListVTs[] = { EltVT, EltVT, EltVT, EltVT, MVT::Other };
4662 LdResVTs = DAG.getVTList(ListVTs);
4663 break;
4664 }
4665 }
4666
4667 SmallVector<SDValue, 8> OtherOps;
4668
4669 // Copy regular operands
4670
4671 OtherOps.push_back(Chain); // Chain
4672 // Skip operand 1 (intrinsic ID)
4673 // Others
4674 OtherOps.append(N->op_begin() + 2, N->op_end());
4675
4676 MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
4677
4678 SDValue NewLD = DAG.getMemIntrinsicNode(Opcode, DL, LdResVTs, OtherOps,
4679 MemSD->getMemoryVT(),
4680 MemSD->getMemOperand());
4681
4682 SmallVector<SDValue, 4> ScalarRes;
4683
4684 for (unsigned i = 0; i < NumElts; ++i) {
4685 SDValue Res = NewLD.getValue(i);
4686 if (NeedTrunc)
4687 Res =
4688 DAG.getNode(ISD::TRUNCATE, DL, ResVT.getVectorElementType(), Res);
4689 ScalarRes.push_back(Res);
4690 }
4691
4692 SDValue LoadChain = NewLD.getValue(NumElts);
4693
4694 SDValue BuildVec =
4695 DAG.getBuildVector(ResVT, DL, ScalarRes);
4696
4697 Results.push_back(BuildVec);
4698 Results.push_back(LoadChain);
4699 } else {
4700 // i8 LDG/LDU
4701 assert(ResVT.isSimple() && ResVT.getSimpleVT().SimpleTy == MVT::i8 &&((ResVT.isSimple() && ResVT.getSimpleVT().SimpleTy ==
MVT::i8 && "Custom handling of non-i8 ldu/ldg?") ? static_cast
<void> (0) : __assert_fail ("ResVT.isSimple() && ResVT.getSimpleVT().SimpleTy == MVT::i8 && \"Custom handling of non-i8 ldu/ldg?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 4702, __PRETTY_FUNCTION__))
4702 "Custom handling of non-i8 ldu/ldg?")((ResVT.isSimple() && ResVT.getSimpleVT().SimpleTy ==
MVT::i8 && "Custom handling of non-i8 ldu/ldg?") ? static_cast
<void> (0) : __assert_fail ("ResVT.isSimple() && ResVT.getSimpleVT().SimpleTy == MVT::i8 && \"Custom handling of non-i8 ldu/ldg?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn295712/lib/Target/NVPTX/NVPTXISelLowering.cpp"
, 4702, __PRETTY_FUNCTION__))
;
4703
4704 // Just copy all operands as-is
4705 SmallVector<SDValue, 4> Ops(N->op_begin(), N->op_end());
4706
4707 // Force output to i16
4708 SDVTList LdResVTs = DAG.getVTList(MVT::i16, MVT::Other);
4709
4710 MemIntrinsicSDNode *MemSD = cast<MemIntrinsicSDNode>(N);
4711
4712 // We make sure the memory type is i8, which will be used during isel
4713 // to select the proper instruction.
4714 SDValue NewLD =
4715 DAG.getMemIntrinsicNode(ISD::INTRINSIC_W_CHAIN, DL, LdResVTs, Ops,
4716 MVT::i8, MemSD->getMemOperand());
4717
4718 Results.push_back(DAG.getNode(ISD::TRUNCATE, DL, MVT::i8,
4719 NewLD.getValue(0)));
4720 Results.push_back(NewLD.getValue(1));
4721 }
4722 }
4723 }
4724}
4725
4726void NVPTXTargetLowering::ReplaceNodeResults(
4727 SDNode *N, SmallVectorImpl<SDValue> &Results, SelectionDAG &DAG) const {
4728 switch (N->getOpcode()) {
4729 default:
4730 report_fatal_error("Unhandled custom legalization");
4731 case ISD::LOAD:
4732 ReplaceLoadVector(N, DAG, Results);
4733 return;
4734 case ISD::INTRINSIC_W_CHAIN:
4735 ReplaceINTRINSIC_W_CHAIN(N, DAG, Results);
4736 return;
4737 }
4738}
4739
4740// Pin NVPTXSection's and NVPTXTargetObjectFile's vtables to this file.
4741void NVPTXSection::anchor() {}
4742
4743NVPTXTargetObjectFile::~NVPTXTargetObjectFile() {
4744 delete static_cast<NVPTXSection *>(TextSection);
4745 delete static_cast<NVPTXSection *>(DataSection);
4746 delete static_cast<NVPTXSection *>(BSSSection);
4747 delete static_cast<NVPTXSection *>(ReadOnlySection);
4748
4749 delete static_cast<NVPTXSection *>(StaticCtorSection);
4750 delete static_cast<NVPTXSection *>(StaticDtorSection);
4751 delete static_cast<NVPTXSection *>(LSDASection);
4752 delete static_cast<NVPTXSection *>(EHFrameSection);
4753 delete static_cast<NVPTXSection *>(DwarfAbbrevSection);
4754 delete static_cast<NVPTXSection *>(DwarfInfoSection);
4755 delete static_cast<NVPTXSection *>(DwarfLineSection);
4756 delete static_cast<NVPTXSection *>(DwarfFrameSection);
4757 delete static_cast<NVPTXSection *>(DwarfPubTypesSection);
4758 delete static_cast<const NVPTXSection *>(DwarfDebugInlineSection);
4759 delete static_cast<NVPTXSection *>(DwarfStrSection);
4760 delete static_cast<NVPTXSection *>(DwarfLocSection);
4761 delete static_cast<NVPTXSection *>(DwarfARangesSection);
4762 delete static_cast<NVPTXSection *>(DwarfRangesSection);
4763 delete static_cast<NVPTXSection *>(DwarfMacinfoSection);
4764}
4765
4766MCSection *NVPTXTargetObjectFile::SelectSectionForGlobal(
4767 const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
4768 return getDataSection();
4769}