Bug Summary

File:lib/Transforms/Scalar/NewGVN.cpp
Warning:line 1179, column 9
Called C++ object pointer is null

Annotated Source Code

1//===---- NewGVN.cpp - Global Value Numbering Pass --------------*- C++ -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file implements the new LLVM's Global Value Numbering pass.
11/// GVN partitions values computed by a function into congruence classes.
12/// Values ending up in the same congruence class are guaranteed to be the same
13/// for every execution of the program. In that respect, congruency is a
14/// compile-time approximation of equivalence of values at runtime.
15/// The algorithm implemented here uses a sparse formulation and it's based
16/// on the ideas described in the paper:
17/// "A Sparse Algorithm for Predicated Global Value Numbering" from
18/// Karthik Gargi.
19///
20/// A brief overview of the algorithm: The algorithm is essentially the same as
21/// the standard RPO value numbering algorithm (a good reference is the paper
22/// "SCC based value numbering" by L. Taylor Simpson) with one major difference:
23/// The RPO algorithm proceeds, on every iteration, to process every reachable
24/// block and every instruction in that block. This is because the standard RPO
25/// algorithm does not track what things have the same value number, it only
26/// tracks what the value number of a given operation is (the mapping is
27/// operation -> value number). Thus, when a value number of an operation
28/// changes, it must reprocess everything to ensure all uses of a value number
29/// get updated properly. In constrast, the sparse algorithm we use *also*
30/// tracks what operations have a given value number (IE it also tracks the
31/// reverse mapping from value number -> operations with that value number), so
32/// that it only needs to reprocess the instructions that are affected when
33/// something's value number changes. The rest of the algorithm is devoted to
34/// performing symbolic evaluation, forward propagation, and simplification of
35/// operations based on the value numbers deduced so far.
36///
37/// We also do not perform elimination by using any published algorithm. All
38/// published algorithms are O(Instructions). Instead, we use a technique that
39/// is O(number of operations with the same value number), enabling us to skip
40/// trying to eliminate things that have unique value numbers.
41//===----------------------------------------------------------------------===//
42
43#include "llvm/Transforms/Scalar/NewGVN.h"
44#include "llvm/ADT/BitVector.h"
45#include "llvm/ADT/DenseMap.h"
46#include "llvm/ADT/DenseSet.h"
47#include "llvm/ADT/DepthFirstIterator.h"
48#include "llvm/ADT/Hashing.h"
49#include "llvm/ADT/MapVector.h"
50#include "llvm/ADT/PostOrderIterator.h"
51#include "llvm/ADT/STLExtras.h"
52#include "llvm/ADT/SmallPtrSet.h"
53#include "llvm/ADT/SmallSet.h"
54#include "llvm/ADT/SparseBitVector.h"
55#include "llvm/ADT/Statistic.h"
56#include "llvm/ADT/TinyPtrVector.h"
57#include "llvm/Analysis/AliasAnalysis.h"
58#include "llvm/Analysis/AssumptionCache.h"
59#include "llvm/Analysis/CFG.h"
60#include "llvm/Analysis/CFGPrinter.h"
61#include "llvm/Analysis/ConstantFolding.h"
62#include "llvm/Analysis/GlobalsModRef.h"
63#include "llvm/Analysis/InstructionSimplify.h"
64#include "llvm/Analysis/MemoryBuiltins.h"
65#include "llvm/Analysis/MemoryLocation.h"
66#include "llvm/Analysis/MemorySSA.h"
67#include "llvm/Analysis/TargetLibraryInfo.h"
68#include "llvm/IR/DataLayout.h"
69#include "llvm/IR/Dominators.h"
70#include "llvm/IR/GlobalVariable.h"
71#include "llvm/IR/IRBuilder.h"
72#include "llvm/IR/IntrinsicInst.h"
73#include "llvm/IR/LLVMContext.h"
74#include "llvm/IR/Metadata.h"
75#include "llvm/IR/PatternMatch.h"
76#include "llvm/IR/Type.h"
77#include "llvm/Support/Allocator.h"
78#include "llvm/Support/CommandLine.h"
79#include "llvm/Support/Debug.h"
80#include "llvm/Support/DebugCounter.h"
81#include "llvm/Transforms/Scalar.h"
82#include "llvm/Transforms/Scalar/GVNExpression.h"
83#include "llvm/Transforms/Utils/BasicBlockUtils.h"
84#include "llvm/Transforms/Utils/Local.h"
85#include "llvm/Transforms/Utils/PredicateInfo.h"
86#include "llvm/Transforms/Utils/VNCoercion.h"
87#include <numeric>
88#include <unordered_map>
89#include <utility>
90#include <vector>
91using namespace llvm;
92using namespace PatternMatch;
93using namespace llvm::GVNExpression;
94using namespace llvm::VNCoercion;
95#define DEBUG_TYPE"newgvn" "newgvn"
96
97STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted")static llvm::Statistic NumGVNInstrDeleted = {"newgvn", "NumGVNInstrDeleted"
, "Number of instructions deleted", {0}, false}
;
98STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted")static llvm::Statistic NumGVNBlocksDeleted = {"newgvn", "NumGVNBlocksDeleted"
, "Number of blocks deleted", {0}, false}
;
99STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified")static llvm::Statistic NumGVNOpsSimplified = {"newgvn", "NumGVNOpsSimplified"
, "Number of Expressions simplified", {0}, false}
;
100STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same")static llvm::Statistic NumGVNPhisAllSame = {"newgvn", "NumGVNPhisAllSame"
, "Number of PHIs whos arguments are all the same", {0}, false
}
;
101STATISTIC(NumGVNMaxIterations,static llvm::Statistic NumGVNMaxIterations = {"newgvn", "NumGVNMaxIterations"
, "Maximum Number of iterations it took to converge GVN", {0}
, false}
102 "Maximum Number of iterations it took to converge GVN")static llvm::Statistic NumGVNMaxIterations = {"newgvn", "NumGVNMaxIterations"
, "Maximum Number of iterations it took to converge GVN", {0}
, false}
;
103STATISTIC(NumGVNLeaderChanges, "Number of leader changes")static llvm::Statistic NumGVNLeaderChanges = {"newgvn", "NumGVNLeaderChanges"
, "Number of leader changes", {0}, false}
;
104STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes")static llvm::Statistic NumGVNSortedLeaderChanges = {"newgvn",
"NumGVNSortedLeaderChanges", "Number of sorted leader changes"
, {0}, false}
;
105STATISTIC(NumGVNAvoidedSortedLeaderChanges,static llvm::Statistic NumGVNAvoidedSortedLeaderChanges = {"newgvn"
, "NumGVNAvoidedSortedLeaderChanges", "Number of avoided sorted leader changes"
, {0}, false}
106 "Number of avoided sorted leader changes")static llvm::Statistic NumGVNAvoidedSortedLeaderChanges = {"newgvn"
, "NumGVNAvoidedSortedLeaderChanges", "Number of avoided sorted leader changes"
, {0}, false}
;
107STATISTIC(NumGVNNotMostDominatingLeader,static llvm::Statistic NumGVNNotMostDominatingLeader = {"newgvn"
, "NumGVNNotMostDominatingLeader", "Number of times a member dominated it's new classes' leader"
, {0}, false}
108 "Number of times a member dominated it's new classes' leader")static llvm::Statistic NumGVNNotMostDominatingLeader = {"newgvn"
, "NumGVNNotMostDominatingLeader", "Number of times a member dominated it's new classes' leader"
, {0}, false}
;
109STATISTIC(NumGVNDeadStores, "Number of redundant/dead stores eliminated")static llvm::Statistic NumGVNDeadStores = {"newgvn", "NumGVNDeadStores"
, "Number of redundant/dead stores eliminated", {0}, false}
;
110DEBUG_COUNTER(VNCounter, "newgvn-vn",static const unsigned VNCounter = DebugCounter::registerCounter
("newgvn-vn", "Controls which instructions are value numbered"
);
111 "Controls which instructions are value numbered")static const unsigned VNCounter = DebugCounter::registerCounter
("newgvn-vn", "Controls which instructions are value numbered"
);
112
113// Currently store defining access refinement is too slow due to basicaa being
114// egregiously slow. This flag lets us keep it working while we work on this
115// issue.
116static cl::opt<bool> EnableStoreRefinement("enable-store-refinement",
117 cl::init(false), cl::Hidden);
118
119//===----------------------------------------------------------------------===//
120// GVN Pass
121//===----------------------------------------------------------------------===//
122
123// Anchor methods.
124namespace llvm {
125namespace GVNExpression {
126Expression::~Expression() = default;
127BasicExpression::~BasicExpression() = default;
128CallExpression::~CallExpression() = default;
129LoadExpression::~LoadExpression() = default;
130StoreExpression::~StoreExpression() = default;
131AggregateValueExpression::~AggregateValueExpression() = default;
132PHIExpression::~PHIExpression() = default;
133}
134}
135
136// Tarjan's SCC finding algorithm with Nuutila's improvements
137// SCCIterator is actually fairly complex for the simple thing we want.
138// It also wants to hand us SCC's that are unrelated to the phi node we ask
139// about, and have us process them there or risk redoing work.
140// Graph traits over a filter iterator also doesn't work that well here.
141// This SCC finder is specialized to walk use-def chains, and only follows
142// instructions,
143// not generic values (arguments, etc).
144struct TarjanSCC {
145
146 TarjanSCC() : Components(1) {}
147
148 void Start(const Instruction *Start) {
149 if (Root.lookup(Start) == 0)
150 FindSCC(Start);
151 }
152
153 const SmallPtrSetImpl<const Value *> &getComponentFor(const Value *V) const {
154 unsigned ComponentID = ValueToComponent.lookup(V);
155
156 assert(ComponentID > 0 &&((ComponentID > 0 && "Asking for a component for a value we never processed"
) ? static_cast<void> (0) : __assert_fail ("ComponentID > 0 && \"Asking for a component for a value we never processed\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 157, __PRETTY_FUNCTION__))
157 "Asking for a component for a value we never processed")((ComponentID > 0 && "Asking for a component for a value we never processed"
) ? static_cast<void> (0) : __assert_fail ("ComponentID > 0 && \"Asking for a component for a value we never processed\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 157, __PRETTY_FUNCTION__))
;
158 return Components[ComponentID];
159 }
160
161private:
162 void FindSCC(const Instruction *I) {
163 Root[I] = ++DFSNum;
164 // Store the DFS Number we had before it possibly gets incremented.
165 unsigned int OurDFS = DFSNum;
166 for (auto &Op : I->operands()) {
167 if (auto *InstOp = dyn_cast<Instruction>(Op)) {
168 if (Root.lookup(Op) == 0)
169 FindSCC(InstOp);
170 if (!InComponent.count(Op))
171 Root[I] = std::min(Root.lookup(I), Root.lookup(Op));
172 }
173 }
174 // See if we really were the root of a component, by seeing if we still have
175 // our DFSNumber.
176 // If we do, we are the root of the component, and we have completed a
177 // component. If we do not,
178 // we are not the root of a component, and belong on the component stack.
179 if (Root.lookup(I) == OurDFS) {
180 unsigned ComponentID = Components.size();
181 Components.resize(Components.size() + 1);
182 auto &Component = Components.back();
183 Component.insert(I);
184 DEBUG(dbgs() << "Component root is " << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Component root is " << *
I << "\n"; } } while (false)
;
185 InComponent.insert(I);
186 ValueToComponent[I] = ComponentID;
187 // Pop a component off the stack and label it.
188 while (!Stack.empty() && Root.lookup(Stack.back()) >= OurDFS) {
189 auto *Member = Stack.back();
190 DEBUG(dbgs() << "Component member is " << *Member << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Component member is " <<
*Member << "\n"; } } while (false)
;
191 Component.insert(Member);
192 InComponent.insert(Member);
193 ValueToComponent[Member] = ComponentID;
194 Stack.pop_back();
195 }
196 } else {
197 // Part of a component, push to stack
198 Stack.push_back(I);
199 }
200 }
201 unsigned int DFSNum = 1;
202 SmallPtrSet<const Value *, 8> InComponent;
203 DenseMap<const Value *, unsigned int> Root;
204 SmallVector<const Value *, 8> Stack;
205 // Store the components as vector of ptr sets, because we need the topo order
206 // of SCC's, but not individual member order
207 SmallVector<SmallPtrSet<const Value *, 8>, 8> Components;
208 DenseMap<const Value *, unsigned> ValueToComponent;
209};
210// Congruence classes represent the set of expressions/instructions
211// that are all the same *during some scope in the function*.
212// That is, because of the way we perform equality propagation, and
213// because of memory value numbering, it is not correct to assume
214// you can willy-nilly replace any member with any other at any
215// point in the function.
216//
217// For any Value in the Member set, it is valid to replace any dominated member
218// with that Value.
219//
220// Every congruence class has a leader, and the leader is used to symbolize
221// instructions in a canonical way (IE every operand of an instruction that is a
222// member of the same congruence class will always be replaced with leader
223// during symbolization). To simplify symbolization, we keep the leader as a
224// constant if class can be proved to be a constant value. Otherwise, the
225// leader is the member of the value set with the smallest DFS number. Each
226// congruence class also has a defining expression, though the expression may be
227// null. If it exists, it can be used for forward propagation and reassociation
228// of values.
229
230// For memory, we also track a representative MemoryAccess, and a set of memory
231// members for MemoryPhis (which have no real instructions). Note that for
232// memory, it seems tempting to try to split the memory members into a
233// MemoryCongruenceClass or something. Unfortunately, this does not work
234// easily. The value numbering of a given memory expression depends on the
235// leader of the memory congruence class, and the leader of memory congruence
236// class depends on the value numbering of a given memory expression. This
237// leads to wasted propagation, and in some cases, missed optimization. For
238// example: If we had value numbered two stores together before, but now do not,
239// we move them to a new value congruence class. This in turn will move at one
240// of the memorydefs to a new memory congruence class. Which in turn, affects
241// the value numbering of the stores we just value numbered (because the memory
242// congruence class is part of the value number). So while theoretically
243// possible to split them up, it turns out to be *incredibly* complicated to get
244// it to work right, because of the interdependency. While structurally
245// slightly messier, it is algorithmically much simpler and faster to do what we
246// do here, and track them both at once in the same class.
247// Note: The default iterators for this class iterate over values
248class CongruenceClass {
249public:
250 using MemberType = Value;
251 using MemberSet = SmallPtrSet<MemberType *, 4>;
252 using MemoryMemberType = MemoryPhi;
253 using MemoryMemberSet = SmallPtrSet<const MemoryMemberType *, 2>;
254
255 explicit CongruenceClass(unsigned ID) : ID(ID) {}
256 CongruenceClass(unsigned ID, Value *Leader, const Expression *E)
257 : ID(ID), RepLeader(Leader), DefiningExpr(E) {}
258 unsigned getID() const { return ID; }
259 // True if this class has no members left. This is mainly used for assertion
260 // purposes, and for skipping empty classes.
261 bool isDead() const {
262 // If it's both dead from a value perspective, and dead from a memory
263 // perspective, it's really dead.
264 return empty() && memory_empty();
265 }
266 // Leader functions
267 Value *getLeader() const { return RepLeader; }
268 void setLeader(Value *Leader) { RepLeader = Leader; }
269 const std::pair<Value *, unsigned int> &getNextLeader() const {
270 return NextLeader;
271 }
272 void resetNextLeader() { NextLeader = {nullptr, ~0}; }
273
274 void addPossibleNextLeader(std::pair<Value *, unsigned int> LeaderPair) {
275 if (LeaderPair.second < NextLeader.second)
276 NextLeader = LeaderPair;
277 }
278
279 Value *getStoredValue() const { return RepStoredValue; }
280 void setStoredValue(Value *Leader) { RepStoredValue = Leader; }
281 const MemoryAccess *getMemoryLeader() const { return RepMemoryAccess; }
282 void setMemoryLeader(const MemoryAccess *Leader) { RepMemoryAccess = Leader; }
283
284 // Forward propagation info
285 const Expression *getDefiningExpr() const { return DefiningExpr; }
286
287 // Value member set
288 bool empty() const { return Members.empty(); }
289 unsigned size() const { return Members.size(); }
290 MemberSet::const_iterator begin() const { return Members.begin(); }
291 MemberSet::const_iterator end() const { return Members.end(); }
292 void insert(MemberType *M) { Members.insert(M); }
293 void erase(MemberType *M) { Members.erase(M); }
294 void swap(MemberSet &Other) { Members.swap(Other); }
295
296 // Memory member set
297 bool memory_empty() const { return MemoryMembers.empty(); }
298 unsigned memory_size() const { return MemoryMembers.size(); }
299 MemoryMemberSet::const_iterator memory_begin() const {
300 return MemoryMembers.begin();
301 }
302 MemoryMemberSet::const_iterator memory_end() const {
303 return MemoryMembers.end();
304 }
305 iterator_range<MemoryMemberSet::const_iterator> memory() const {
306 return make_range(memory_begin(), memory_end());
307 }
308 void memory_insert(const MemoryMemberType *M) { MemoryMembers.insert(M); }
309 void memory_erase(const MemoryMemberType *M) { MemoryMembers.erase(M); }
310
311 // Store count
312 unsigned getStoreCount() const { return StoreCount; }
313 void incStoreCount() { ++StoreCount; }
314 void decStoreCount() {
315 assert(StoreCount != 0 && "Store count went negative")((StoreCount != 0 && "Store count went negative") ? static_cast
<void> (0) : __assert_fail ("StoreCount != 0 && \"Store count went negative\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 315, __PRETTY_FUNCTION__))
;
316 --StoreCount;
317 }
318
319 // True if this class has no memory members.
320 bool definesNoMemory() const { return StoreCount == 0 && memory_empty(); }
321
322 // Return true if two congruence classes are equivalent to each other. This
323 // means
324 // that every field but the ID number and the dead field are equivalent.
325 bool isEquivalentTo(const CongruenceClass *Other) const {
326 if (!Other)
327 return false;
328 if (this == Other)
329 return true;
330
331 if (std::tie(StoreCount, RepLeader, RepStoredValue, RepMemoryAccess) !=
332 std::tie(Other->StoreCount, Other->RepLeader, Other->RepStoredValue,
333 Other->RepMemoryAccess))
334 return false;
335 if (DefiningExpr != Other->DefiningExpr)
336 if (!DefiningExpr || !Other->DefiningExpr ||
337 *DefiningExpr != *Other->DefiningExpr)
338 return false;
339 // We need some ordered set
340 std::set<Value *> AMembers(Members.begin(), Members.end());
341 std::set<Value *> BMembers(Members.begin(), Members.end());
342 return AMembers == BMembers;
343 }
344
345private:
346 unsigned ID;
347 // Representative leader.
348 Value *RepLeader = nullptr;
349 // The most dominating leader after our current leader, because the member set
350 // is not sorted and is expensive to keep sorted all the time.
351 std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U};
352 // If this is represented by a store, the value of the store.
353 Value *RepStoredValue = nullptr;
354 // If this class contains MemoryDefs or MemoryPhis, this is the leading memory
355 // access.
356 const MemoryAccess *RepMemoryAccess = nullptr;
357 // Defining Expression.
358 const Expression *DefiningExpr = nullptr;
359 // Actual members of this class.
360 MemberSet Members;
361 // This is the set of MemoryPhis that exist in the class. MemoryDefs and
362 // MemoryUses have real instructions representing them, so we only need to
363 // track MemoryPhis here.
364 MemoryMemberSet MemoryMembers;
365 // Number of stores in this congruence class.
366 // This is used so we can detect store equivalence changes properly.
367 int StoreCount = 0;
368};
369
370namespace llvm {
371template <> struct DenseMapInfo<const Expression *> {
372 static const Expression *getEmptyKey() {
373 auto Val = static_cast<uintptr_t>(-1);
374 Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
375 return reinterpret_cast<const Expression *>(Val);
376 }
377 static const Expression *getTombstoneKey() {
378 auto Val = static_cast<uintptr_t>(~1U);
379 Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable;
380 return reinterpret_cast<const Expression *>(Val);
381 }
382 static unsigned getHashValue(const Expression *V) {
383 return static_cast<unsigned>(V->getHashValue());
384 }
385 static bool isEqual(const Expression *LHS, const Expression *RHS) {
386 if (LHS == RHS)
387 return true;
388 if (LHS == getTombstoneKey() || RHS == getTombstoneKey() ||
389 LHS == getEmptyKey() || RHS == getEmptyKey())
390 return false;
391 return *LHS == *RHS;
392 }
393};
394} // end namespace llvm
395
396namespace {
397class NewGVN {
398 Function &F;
399 DominatorTree *DT;
400 const TargetLibraryInfo *TLI;
401 AliasAnalysis *AA;
402 MemorySSA *MSSA;
403 MemorySSAWalker *MSSAWalker;
404 const DataLayout &DL;
405 std::unique_ptr<PredicateInfo> PredInfo;
406
407 // These are the only two things the create* functions should have
408 // side-effects on due to allocating memory.
409 mutable BumpPtrAllocator ExpressionAllocator;
410 mutable ArrayRecycler<Value *> ArgRecycler;
411 mutable TarjanSCC SCCFinder;
412 const SimplifyQuery SQ;
413
414 // Number of function arguments, used by ranking
415 unsigned int NumFuncArgs;
416
417 // RPOOrdering of basic blocks
418 DenseMap<const DomTreeNode *, unsigned> RPOOrdering;
419
420 // Congruence class info.
421
422 // This class is called INITIAL in the paper. It is the class everything
423 // startsout in, and represents any value. Being an optimistic analysis,
424 // anything in the TOP class has the value TOP, which is indeterminate and
425 // equivalent to everything.
426 CongruenceClass *TOPClass;
427 std::vector<CongruenceClass *> CongruenceClasses;
428 unsigned NextCongruenceNum;
429
430 // Value Mappings.
431 DenseMap<Value *, CongruenceClass *> ValueToClass;
432 DenseMap<Value *, const Expression *> ValueToExpression;
433
434 // Mapping from predicate info we used to the instructions we used it with.
435 // In order to correctly ensure propagation, we must keep track of what
436 // comparisons we used, so that when the values of the comparisons change, we
437 // propagate the information to the places we used the comparison.
438 mutable DenseMap<const Value *, SmallPtrSet<Instruction *, 2>>
439 PredicateToUsers;
440 // the same reasoning as PredicateToUsers. When we skip MemoryAccesses for
441 // stores, we no longer can rely solely on the def-use chains of MemorySSA.
442 mutable DenseMap<const MemoryAccess *, SmallPtrSet<MemoryAccess *, 2>>
443 MemoryToUsers;
444
445 // A table storing which memorydefs/phis represent a memory state provably
446 // equivalent to another memory state.
447 // We could use the congruence class machinery, but the MemoryAccess's are
448 // abstract memory states, so they can only ever be equivalent to each other,
449 // and not to constants, etc.
450 DenseMap<const MemoryAccess *, CongruenceClass *> MemoryAccessToClass;
451
452 // We could, if we wanted, build MemoryPhiExpressions and
453 // MemoryVariableExpressions, etc, and value number them the same way we value
454 // number phi expressions. For the moment, this seems like overkill. They
455 // can only exist in one of three states: they can be TOP (equal to
456 // everything), Equivalent to something else, or unique. Because we do not
457 // create expressions for them, we need to simulate leader change not just
458 // when they change class, but when they change state. Note: We can do the
459 // same thing for phis, and avoid having phi expressions if we wanted, We
460 // should eventually unify in one direction or the other, so this is a little
461 // bit of an experiment in which turns out easier to maintain.
462 enum MemoryPhiState { MPS_Invalid, MPS_TOP, MPS_Equivalent, MPS_Unique };
463 DenseMap<const MemoryPhi *, MemoryPhiState> MemoryPhiState;
464
465 enum PhiCycleState { PCS_Unknown, PCS_CycleFree, PCS_Cycle };
466 mutable DenseMap<const PHINode *, PhiCycleState> PhiCycleState;
467 // Expression to class mapping.
468 using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>;
469 ExpressionClassMap ExpressionToClass;
470
471 // Which values have changed as a result of leader changes.
472 SmallPtrSet<Value *, 8> LeaderChanges;
473
474 // Reachability info.
475 using BlockEdge = BasicBlockEdge;
476 DenseSet<BlockEdge> ReachableEdges;
477 SmallPtrSet<const BasicBlock *, 8> ReachableBlocks;
478
479 // This is a bitvector because, on larger functions, we may have
480 // thousands of touched instructions at once (entire blocks,
481 // instructions with hundreds of uses, etc). Even with optimization
482 // for when we mark whole blocks as touched, when this was a
483 // SmallPtrSet or DenseSet, for some functions, we spent >20% of all
484 // the time in GVN just managing this list. The bitvector, on the
485 // other hand, efficiently supports test/set/clear of both
486 // individual and ranges, as well as "find next element" This
487 // enables us to use it as a worklist with essentially 0 cost.
488 BitVector TouchedInstructions;
489
490 DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange;
491
492#ifndef NDEBUG
493 // Debugging for how many times each block and instruction got processed.
494 DenseMap<const Value *, unsigned> ProcessedCount;
495#endif
496
497 // DFS info.
498 // This contains a mapping from Instructions to DFS numbers.
499 // The numbering starts at 1. An instruction with DFS number zero
500 // means that the instruction is dead.
501 DenseMap<const Value *, unsigned> InstrDFS;
502
503 // This contains the mapping DFS numbers to instructions.
504 SmallVector<Value *, 32> DFSToInstr;
505
506 // Deletion info.
507 SmallPtrSet<Instruction *, 8> InstructionsToErase;
508
509public:
510 NewGVN(Function &F, DominatorTree *DT, AssumptionCache *AC,
511 TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA,
512 const DataLayout &DL)
513 : F(F), DT(DT), TLI(TLI), AA(AA), MSSA(MSSA), DL(DL),
514 PredInfo(make_unique<PredicateInfo>(F, *DT, *AC)), SQ(DL, TLI, DT, AC) {
515 }
516 bool runGVN();
517
518private:
519 // Expression handling.
520 const Expression *createExpression(Instruction *) const;
521 const Expression *createBinaryExpression(unsigned, Type *, Value *,
522 Value *) const;
523 PHIExpression *createPHIExpression(Instruction *, bool &HasBackEdge,
524 bool &AllConstant) const;
525 const VariableExpression *createVariableExpression(Value *) const;
526 const ConstantExpression *createConstantExpression(Constant *) const;
527 const Expression *createVariableOrConstant(Value *V) const;
528 const UnknownExpression *createUnknownExpression(Instruction *) const;
529 const StoreExpression *createStoreExpression(StoreInst *,
530 const MemoryAccess *) const;
531 LoadExpression *createLoadExpression(Type *, Value *, LoadInst *,
532 const MemoryAccess *) const;
533 const CallExpression *createCallExpression(CallInst *,
534 const MemoryAccess *) const;
535 const AggregateValueExpression *
536 createAggregateValueExpression(Instruction *) const;
537 bool setBasicExpressionInfo(Instruction *, BasicExpression *) const;
538
539 // Congruence class handling.
540 CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) {
541 auto *result = new CongruenceClass(NextCongruenceNum++, Leader, E);
542 CongruenceClasses.emplace_back(result);
543 return result;
544 }
545
546 CongruenceClass *createMemoryClass(MemoryAccess *MA) {
547 auto *CC = createCongruenceClass(nullptr, nullptr);
548 CC->setMemoryLeader(MA);
549 return CC;
550 }
551 CongruenceClass *ensureLeaderOfMemoryClass(MemoryAccess *MA) {
552 auto *CC = getMemoryClass(MA);
553 if (CC->getMemoryLeader() != MA)
554 CC = createMemoryClass(MA);
555 return CC;
556 }
557
558 CongruenceClass *createSingletonCongruenceClass(Value *Member) {
559 CongruenceClass *CClass = createCongruenceClass(Member, nullptr);
560 CClass->insert(Member);
561 ValueToClass[Member] = CClass;
562 return CClass;
563 }
564 void initializeCongruenceClasses(Function &F);
565
566 // Value number an Instruction or MemoryPhi.
567 void valueNumberMemoryPhi(MemoryPhi *);
568 void valueNumberInstruction(Instruction *);
569
570 // Symbolic evaluation.
571 const Expression *checkSimplificationResults(Expression *, Instruction *,
572 Value *) const;
573 const Expression *performSymbolicEvaluation(Value *) const;
574 const Expression *performSymbolicLoadCoercion(Type *, Value *, LoadInst *,
575 Instruction *,
576 MemoryAccess *) const;
577 const Expression *performSymbolicLoadEvaluation(Instruction *) const;
578 const Expression *performSymbolicStoreEvaluation(Instruction *) const;
579 const Expression *performSymbolicCallEvaluation(Instruction *) const;
580 const Expression *performSymbolicPHIEvaluation(Instruction *) const;
581 const Expression *performSymbolicAggrValueEvaluation(Instruction *) const;
582 const Expression *performSymbolicCmpEvaluation(Instruction *) const;
583 const Expression *performSymbolicPredicateInfoEvaluation(Instruction *) const;
584
585 // Congruence finding.
586 bool someEquivalentDominates(const Instruction *, const Instruction *) const;
587 Value *lookupOperandLeader(Value *) const;
588 void performCongruenceFinding(Instruction *, const Expression *);
589 void moveValueToNewCongruenceClass(Instruction *, const Expression *,
590 CongruenceClass *, CongruenceClass *);
591 void moveMemoryToNewCongruenceClass(Instruction *, MemoryAccess *,
592 CongruenceClass *, CongruenceClass *);
593 Value *getNextValueLeader(CongruenceClass *) const;
594 const MemoryAccess *getNextMemoryLeader(CongruenceClass *) const;
595 bool setMemoryClass(const MemoryAccess *From, CongruenceClass *To);
596 CongruenceClass *getMemoryClass(const MemoryAccess *MA) const;
597 const MemoryAccess *lookupMemoryLeader(const MemoryAccess *) const;
598 bool isMemoryAccessTop(const MemoryAccess *) const;
599
600 // Ranking
601 unsigned int getRank(const Value *) const;
602 bool shouldSwapOperands(const Value *, const Value *) const;
603
604 // Reachability handling.
605 void updateReachableEdge(BasicBlock *, BasicBlock *);
606 void processOutgoingEdges(TerminatorInst *, BasicBlock *);
607 Value *findConditionEquivalence(Value *) const;
608
609 // Elimination.
610 struct ValueDFS;
611 void convertClassToDFSOrdered(const CongruenceClass &,
612 SmallVectorImpl<ValueDFS> &,
613 DenseMap<const Value *, unsigned int> &,
614 SmallPtrSetImpl<Instruction *> &) const;
615 void convertClassToLoadsAndStores(const CongruenceClass &,
616 SmallVectorImpl<ValueDFS> &) const;
617
618 bool eliminateInstructions(Function &);
619 void replaceInstruction(Instruction *, Value *);
620 void markInstructionForDeletion(Instruction *);
621 void deleteInstructionsInBlock(BasicBlock *);
622
623 // New instruction creation.
624 void handleNewInstruction(Instruction *){};
625
626 // Various instruction touch utilities
627 void markUsersTouched(Value *);
628 void markMemoryUsersTouched(const MemoryAccess *);
629 void markMemoryDefTouched(const MemoryAccess *);
630 void markPredicateUsersTouched(Instruction *);
631 void markValueLeaderChangeTouched(CongruenceClass *CC);
632 void markMemoryLeaderChangeTouched(CongruenceClass *CC);
633 void addPredicateUsers(const PredicateBase *, Instruction *) const;
634 void addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const;
635
636 // Main loop of value numbering
637 void iterateTouchedInstructions();
638
639 // Utilities.
640 void cleanupTables();
641 std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned);
642 void updateProcessedCount(Value *V);
643 void verifyMemoryCongruency() const;
644 void verifyIterationSettled(Function &F);
645 void verifyStoreExpressions() const;
646 bool singleReachablePHIPath(const MemoryAccess *, const MemoryAccess *) const;
647 BasicBlock *getBlockForValue(Value *V) const;
648 void deleteExpression(const Expression *E) const;
649 unsigned InstrToDFSNum(const Value *V) const {
650 assert(isa<Instruction>(V) && "This should not be used for MemoryAccesses")((isa<Instruction>(V) && "This should not be used for MemoryAccesses"
) ? static_cast<void> (0) : __assert_fail ("isa<Instruction>(V) && \"This should not be used for MemoryAccesses\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 650, __PRETTY_FUNCTION__))
;
651 return InstrDFS.lookup(V);
652 }
653
654 unsigned InstrToDFSNum(const MemoryAccess *MA) const {
655 return MemoryToDFSNum(MA);
656 }
657 Value *InstrFromDFSNum(unsigned DFSNum) { return DFSToInstr[DFSNum]; }
658 // Given a MemoryAccess, return the relevant instruction DFS number. Note:
659 // This deliberately takes a value so it can be used with Use's, which will
660 // auto-convert to Value's but not to MemoryAccess's.
661 unsigned MemoryToDFSNum(const Value *MA) const {
662 assert(isa<MemoryAccess>(MA) &&((isa<MemoryAccess>(MA) && "This should not be used with instructions"
) ? static_cast<void> (0) : __assert_fail ("isa<MemoryAccess>(MA) && \"This should not be used with instructions\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 663, __PRETTY_FUNCTION__))
663 "This should not be used with instructions")((isa<MemoryAccess>(MA) && "This should not be used with instructions"
) ? static_cast<void> (0) : __assert_fail ("isa<MemoryAccess>(MA) && \"This should not be used with instructions\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 663, __PRETTY_FUNCTION__))
;
664 return isa<MemoryUseOrDef>(MA)
665 ? InstrToDFSNum(cast<MemoryUseOrDef>(MA)->getMemoryInst())
666 : InstrDFS.lookup(MA);
667 }
668 bool isCycleFree(const PHINode *PN) const;
669 template <class T, class Range> T *getMinDFSOfRange(const Range &) const;
670 // Debug counter info. When verifying, we have to reset the value numbering
671 // debug counter to the same state it started in to get the same results.
672 std::pair<int, int> StartingVNCounter;
673};
674} // end anonymous namespace
675
676template <typename T>
677static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) {
678 if (!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS))
679 return false;
680 return LHS.MemoryExpression::equals(RHS);
681}
682
683bool LoadExpression::equals(const Expression &Other) const {
684 return equalsLoadStoreHelper(*this, Other);
685}
686
687bool StoreExpression::equals(const Expression &Other) const {
688 if (!equalsLoadStoreHelper(*this, Other))
689 return false;
690 // Make sure that store vs store includes the value operand.
691 if (const auto *S = dyn_cast<StoreExpression>(&Other))
692 if (getStoredValue() != S->getStoredValue())
693 return false;
694 return true;
695}
696
697#ifndef NDEBUG
698static std::string getBlockName(const BasicBlock *B) {
699 return DOTGraphTraits<const Function *>::getSimpleNodeLabel(B, nullptr);
700}
701#endif
702
703// Get the basic block from an instruction/memory value.
704BasicBlock *NewGVN::getBlockForValue(Value *V) const {
705 if (auto *I = dyn_cast<Instruction>(V))
706 return I->getParent();
707 else if (auto *MP = dyn_cast<MemoryPhi>(V))
708 return MP->getBlock();
709 llvm_unreachable("Should have been able to figure out a block for our value")::llvm::llvm_unreachable_internal("Should have been able to figure out a block for our value"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 709)
;
710 return nullptr;
711}
712
713// Delete a definitely dead expression, so it can be reused by the expression
714// allocator. Some of these are not in creation functions, so we have to accept
715// const versions.
716void NewGVN::deleteExpression(const Expression *E) const {
717 assert(isa<BasicExpression>(E))((isa<BasicExpression>(E)) ? static_cast<void> (0
) : __assert_fail ("isa<BasicExpression>(E)", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 717, __PRETTY_FUNCTION__))
;
718 auto *BE = cast<BasicExpression>(E);
719 const_cast<BasicExpression *>(BE)->deallocateOperands(ArgRecycler);
720 ExpressionAllocator.Deallocate(E);
721}
722
723PHIExpression *NewGVN::createPHIExpression(Instruction *I, bool &HasBackedge,
724 bool &AllConstant) const {
725 BasicBlock *PHIBlock = I->getParent();
726 auto *PN = cast<PHINode>(I);
727 auto *E =
728 new (ExpressionAllocator) PHIExpression(PN->getNumOperands(), PHIBlock);
729
730 E->allocateOperands(ArgRecycler, ExpressionAllocator);
731 E->setType(I->getType());
732 E->setOpcode(I->getOpcode());
733
734 unsigned PHIRPO = RPOOrdering.lookup(DT->getNode(PHIBlock));
735
736 // NewGVN assumes the operands of a PHI node are in a consistent order across
737 // PHIs. LLVM doesn't seem to always guarantee this. While we need to fix
738 // this in LLVM at some point we don't want GVN to find wrong congruences.
739 // Therefore, here we sort uses in predecessor order.
740 // We're sorting the values by pointer. In theory this might be cause of
741 // non-determinism, but here we don't rely on the ordering for anything
742 // significant, e.g. we don't create new instructions based on it so we're
743 // fine.
744 SmallVector<const Use *, 4> PHIOperands;
745 for (const Use &U : PN->operands())
746 PHIOperands.push_back(&U);
747 std::sort(PHIOperands.begin(), PHIOperands.end(),
748 [&](const Use *U1, const Use *U2) {
749 return PN->getIncomingBlock(*U1) < PN->getIncomingBlock(*U2);
750 });
751
752 // Filter out unreachable phi operands.
753 auto Filtered = make_filter_range(PHIOperands, [&](const Use *U) {
754 return ReachableEdges.count({PN->getIncomingBlock(*U), PHIBlock});
755 });
756
757 std::transform(Filtered.begin(), Filtered.end(), op_inserter(E),
758 [&](const Use *U) -> Value * {
759 auto *BB = PN->getIncomingBlock(*U);
760 auto *DTN = DT->getNode(BB);
761 if (RPOOrdering.lookup(DTN) >= PHIRPO)
762 HasBackedge = true;
763 AllConstant &= isa<UndefValue>(*U) || isa<Constant>(*U);
764
765 // Don't try to transform self-defined phis.
766 if (*U == PN)
767 return PN;
768 return lookupOperandLeader(*U);
769 });
770 return E;
771}
772
773// Set basic expression info (Arguments, type, opcode) for Expression
774// E from Instruction I in block B.
775bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E) const {
776 bool AllConstant = true;
777 if (auto *GEP = dyn_cast<GetElementPtrInst>(I))
778 E->setType(GEP->getSourceElementType());
779 else
780 E->setType(I->getType());
781 E->setOpcode(I->getOpcode());
782 E->allocateOperands(ArgRecycler, ExpressionAllocator);
783
784 // Transform the operand array into an operand leader array, and keep track of
785 // whether all members are constant.
786 std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) {
787 auto Operand = lookupOperandLeader(O);
788 AllConstant &= isa<Constant>(Operand);
789 return Operand;
790 });
791
792 return AllConstant;
793}
794
795const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T,
796 Value *Arg1,
797 Value *Arg2) const {
798 auto *E = new (ExpressionAllocator) BasicExpression(2);
799
800 E->setType(T);
801 E->setOpcode(Opcode);
802 E->allocateOperands(ArgRecycler, ExpressionAllocator);
803 if (Instruction::isCommutative(Opcode)) {
804 // Ensure that commutative instructions that only differ by a permutation
805 // of their operands get the same value number by sorting the operand value
806 // numbers. Since all commutative instructions have two operands it is more
807 // efficient to sort by hand rather than using, say, std::sort.
808 if (shouldSwapOperands(Arg1, Arg2))
809 std::swap(Arg1, Arg2);
810 }
811 E->op_push_back(lookupOperandLeader(Arg1));
812 E->op_push_back(lookupOperandLeader(Arg2));
813
814 Value *V = SimplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), SQ);
815 if (const Expression *SimplifiedE = checkSimplificationResults(E, nullptr, V))
816 return SimplifiedE;
817 return E;
818}
819
820// Take a Value returned by simplification of Expression E/Instruction
821// I, and see if it resulted in a simpler expression. If so, return
822// that expression.
823// TODO: Once finished, this should not take an Instruction, we only
824// use it for printing.
825const Expression *NewGVN::checkSimplificationResults(Expression *E,
826 Instruction *I,
827 Value *V) const {
828 if (!V)
829 return nullptr;
830 if (auto *C = dyn_cast<Constant>(V)) {
831 if (I)
832 DEBUG(dbgs() << "Simplified " << *I << " to "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Simplified " << *I <<
" to " << " constant " << *C << "\n"; } } while
(false)
833 << " constant " << *C << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Simplified " << *I <<
" to " << " constant " << *C << "\n"; } } while
(false)
;
834 NumGVNOpsSimplified++;
835 assert(isa<BasicExpression>(E) &&((isa<BasicExpression>(E) && "We should always have had a basic expression here"
) ? static_cast<void> (0) : __assert_fail ("isa<BasicExpression>(E) && \"We should always have had a basic expression here\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 836, __PRETTY_FUNCTION__))
836 "We should always have had a basic expression here")((isa<BasicExpression>(E) && "We should always have had a basic expression here"
) ? static_cast<void> (0) : __assert_fail ("isa<BasicExpression>(E) && \"We should always have had a basic expression here\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 836, __PRETTY_FUNCTION__))
;
837 deleteExpression(E);
838 return createConstantExpression(C);
839 } else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
840 if (I)
841 DEBUG(dbgs() << "Simplified " << *I << " to "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Simplified " << *I <<
" to " << " variable " << *V << "\n"; } } while
(false)
842 << " variable " << *V << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Simplified " << *I <<
" to " << " variable " << *V << "\n"; } } while
(false)
;
843 deleteExpression(E);
844 return createVariableExpression(V);
845 }
846
847 CongruenceClass *CC = ValueToClass.lookup(V);
848 if (CC && CC->getDefiningExpr()) {
849 if (I)
850 DEBUG(dbgs() << "Simplified " << *I << " to "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Simplified " << *I <<
" to " << " expression " << *V << "\n"; } }
while (false)
851 << " expression " << *V << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Simplified " << *I <<
" to " << " expression " << *V << "\n"; } }
while (false)
;
852 NumGVNOpsSimplified++;
853 deleteExpression(E);
854 return CC->getDefiningExpr();
855 }
856 return nullptr;
857}
858
859const Expression *NewGVN::createExpression(Instruction *I) const {
860 auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands());
861
862 bool AllConstant = setBasicExpressionInfo(I, E);
863
864 if (I->isCommutative()) {
865 // Ensure that commutative instructions that only differ by a permutation
866 // of their operands get the same value number by sorting the operand value
867 // numbers. Since all commutative instructions have two operands it is more
868 // efficient to sort by hand rather than using, say, std::sort.
869 assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!")((I->getNumOperands() == 2 && "Unsupported commutative instruction!"
) ? static_cast<void> (0) : __assert_fail ("I->getNumOperands() == 2 && \"Unsupported commutative instruction!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 869, __PRETTY_FUNCTION__))
;
870 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1)))
871 E->swapOperands(0, 1);
872 }
873
874 // Perform simplificaiton
875 // TODO: Right now we only check to see if we get a constant result.
876 // We may get a less than constant, but still better, result for
877 // some operations.
878 // IE
879 // add 0, x -> x
880 // and x, x -> x
881 // We should handle this by simply rewriting the expression.
882 if (auto *CI = dyn_cast<CmpInst>(I)) {
883 // Sort the operand value numbers so x<y and y>x get the same value
884 // number.
885 CmpInst::Predicate Predicate = CI->getPredicate();
886 if (shouldSwapOperands(E->getOperand(0), E->getOperand(1))) {
887 E->swapOperands(0, 1);
888 Predicate = CmpInst::getSwappedPredicate(Predicate);
889 }
890 E->setOpcode((CI->getOpcode() << 8) | Predicate);
891 // TODO: 25% of our time is spent in SimplifyCmpInst with pointer operands
892 assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() &&((I->getOperand(0)->getType() == I->getOperand(1)->
getType() && "Wrong types on cmp instruction") ? static_cast
<void> (0) : __assert_fail ("I->getOperand(0)->getType() == I->getOperand(1)->getType() && \"Wrong types on cmp instruction\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 893, __PRETTY_FUNCTION__))
893 "Wrong types on cmp instruction")((I->getOperand(0)->getType() == I->getOperand(1)->
getType() && "Wrong types on cmp instruction") ? static_cast
<void> (0) : __assert_fail ("I->getOperand(0)->getType() == I->getOperand(1)->getType() && \"Wrong types on cmp instruction\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 893, __PRETTY_FUNCTION__))
;
894 assert((E->getOperand(0)->getType() == I->getOperand(0)->getType() &&(((E->getOperand(0)->getType() == I->getOperand(0)->
getType() && E->getOperand(1)->getType() == I->
getOperand(1)->getType())) ? static_cast<void> (0) :
__assert_fail ("(E->getOperand(0)->getType() == I->getOperand(0)->getType() && E->getOperand(1)->getType() == I->getOperand(1)->getType())"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 895, __PRETTY_FUNCTION__))
895 E->getOperand(1)->getType() == I->getOperand(1)->getType()))(((E->getOperand(0)->getType() == I->getOperand(0)->
getType() && E->getOperand(1)->getType() == I->
getOperand(1)->getType())) ? static_cast<void> (0) :
__assert_fail ("(E->getOperand(0)->getType() == I->getOperand(0)->getType() && E->getOperand(1)->getType() == I->getOperand(1)->getType())"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 895, __PRETTY_FUNCTION__))
;
896 Value *V =
897 SimplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1), SQ);
898 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
899 return SimplifiedE;
900 } else if (isa<SelectInst>(I)) {
901 if (isa<Constant>(E->getOperand(0)) ||
902 E->getOperand(0) == E->getOperand(1)) {
903 assert(E->getOperand(1)->getType() == I->getOperand(1)->getType() &&((E->getOperand(1)->getType() == I->getOperand(1)->
getType() && E->getOperand(2)->getType() == I->
getOperand(2)->getType()) ? static_cast<void> (0) : __assert_fail
("E->getOperand(1)->getType() == I->getOperand(1)->getType() && E->getOperand(2)->getType() == I->getOperand(2)->getType()"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 904, __PRETTY_FUNCTION__))
904 E->getOperand(2)->getType() == I->getOperand(2)->getType())((E->getOperand(1)->getType() == I->getOperand(1)->
getType() && E->getOperand(2)->getType() == I->
getOperand(2)->getType()) ? static_cast<void> (0) : __assert_fail
("E->getOperand(1)->getType() == I->getOperand(1)->getType() && E->getOperand(2)->getType() == I->getOperand(2)->getType()"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 904, __PRETTY_FUNCTION__))
;
905 Value *V = SimplifySelectInst(E->getOperand(0), E->getOperand(1),
906 E->getOperand(2), SQ);
907 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
908 return SimplifiedE;
909 }
910 } else if (I->isBinaryOp()) {
911 Value *V =
912 SimplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1), SQ);
913 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
914 return SimplifiedE;
915 } else if (auto *BI = dyn_cast<BitCastInst>(I)) {
916 Value *V =
917 SimplifyCastInst(BI->getOpcode(), BI->getOperand(0), BI->getType(), SQ);
918 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
919 return SimplifiedE;
920 } else if (isa<GetElementPtrInst>(I)) {
921 Value *V = SimplifyGEPInst(
922 E->getType(), ArrayRef<Value *>(E->op_begin(), E->op_end()), SQ);
923 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
924 return SimplifiedE;
925 } else if (AllConstant) {
926 // We don't bother trying to simplify unless all of the operands
927 // were constant.
928 // TODO: There are a lot of Simplify*'s we could call here, if we
929 // wanted to. The original motivating case for this code was a
930 // zext i1 false to i8, which we don't have an interface to
931 // simplify (IE there is no SimplifyZExt).
932
933 SmallVector<Constant *, 8> C;
934 for (Value *Arg : E->operands())
935 C.emplace_back(cast<Constant>(Arg));
936
937 if (Value *V = ConstantFoldInstOperands(I, C, DL, TLI))
938 if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V))
939 return SimplifiedE;
940 }
941 return E;
942}
943
944const AggregateValueExpression *
945NewGVN::createAggregateValueExpression(Instruction *I) const {
946 if (auto *II = dyn_cast<InsertValueInst>(I)) {
947 auto *E = new (ExpressionAllocator)
948 AggregateValueExpression(I->getNumOperands(), II->getNumIndices());
949 setBasicExpressionInfo(I, E);
950 E->allocateIntOperands(ExpressionAllocator);
951 std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E));
952 return E;
953 } else if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
954 auto *E = new (ExpressionAllocator)
955 AggregateValueExpression(I->getNumOperands(), EI->getNumIndices());
956 setBasicExpressionInfo(EI, E);
957 E->allocateIntOperands(ExpressionAllocator);
958 std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E));
959 return E;
960 }
961 llvm_unreachable("Unhandled type of aggregate value operation")::llvm::llvm_unreachable_internal("Unhandled type of aggregate value operation"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 961)
;
962}
963
964const VariableExpression *NewGVN::createVariableExpression(Value *V) const {
965 auto *E = new (ExpressionAllocator) VariableExpression(V);
966 E->setOpcode(V->getValueID());
967 return E;
968}
969
970const Expression *NewGVN::createVariableOrConstant(Value *V) const {
971 if (auto *C = dyn_cast<Constant>(V))
972 return createConstantExpression(C);
973 return createVariableExpression(V);
974}
975
976const ConstantExpression *NewGVN::createConstantExpression(Constant *C) const {
977 auto *E = new (ExpressionAllocator) ConstantExpression(C);
978 E->setOpcode(C->getValueID());
979 return E;
980}
981
982const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) const {
983 auto *E = new (ExpressionAllocator) UnknownExpression(I);
984 E->setOpcode(I->getOpcode());
985 return E;
986}
987
988const CallExpression *
989NewGVN::createCallExpression(CallInst *CI, const MemoryAccess *MA) const {
990 // FIXME: Add operand bundles for calls.
991 auto *E =
992 new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, MA);
993 setBasicExpressionInfo(CI, E);
994 return E;
995}
996
997// Return true if some equivalent of instruction Inst dominates instruction U.
998bool NewGVN::someEquivalentDominates(const Instruction *Inst,
999 const Instruction *U) const {
1000 auto *CC = ValueToClass.lookup(Inst);
1001 // This must be an instruction because we are only called from phi nodes
1002 // in the case that the value it needs to check against is an instruction.
1003
1004 // The most likely candiates for dominance are the leader and the next leader.
1005 // The leader or nextleader will dominate in all cases where there is an
1006 // equivalent that is higher up in the dom tree.
1007 // We can't *only* check them, however, because the
1008 // dominator tree could have an infinite number of non-dominating siblings
1009 // with instructions that are in the right congruence class.
1010 // A
1011 // B C D E F G
1012 // |
1013 // H
1014 // Instruction U could be in H, with equivalents in every other sibling.
1015 // Depending on the rpo order picked, the leader could be the equivalent in
1016 // any of these siblings.
1017 if (!CC)
1018 return false;
1019 if (DT->dominates(cast<Instruction>(CC->getLeader()), U))
1020 return true;
1021 if (CC->getNextLeader().first &&
1022 DT->dominates(cast<Instruction>(CC->getNextLeader().first), U))
1023 return true;
1024 return llvm::any_of(*CC, [&](const Value *Member) {
1025 return Member != CC->getLeader() &&
1026 DT->dominates(cast<Instruction>(Member), U);
1027 });
1028}
1029
1030// See if we have a congruence class and leader for this operand, and if so,
1031// return it. Otherwise, return the operand itself.
1032Value *NewGVN::lookupOperandLeader(Value *V) const {
1033 CongruenceClass *CC = ValueToClass.lookup(V);
1034 if (CC) {
1035 // Everything in TOP is represneted by undef, as it can be any value.
1036 // We do have to make sure we get the type right though, so we can't set the
1037 // RepLeader to undef.
1038 if (CC == TOPClass)
1039 return UndefValue::get(V->getType());
1040 return CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
1041 }
1042
1043 return V;
1044}
1045
1046const MemoryAccess *NewGVN::lookupMemoryLeader(const MemoryAccess *MA) const {
1047 auto *CC = getMemoryClass(MA);
1048 assert(CC->getMemoryLeader() &&((CC->getMemoryLeader() && "Every MemoryAccess should be mapped to a congruence class with a "
"representative memory access") ? static_cast<void> (0
) : __assert_fail ("CC->getMemoryLeader() && \"Every MemoryAccess should be mapped to a congruence class with a \" \"representative memory access\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 1050, __PRETTY_FUNCTION__))
1049 "Every MemoryAccess should be mapped to a congruence class with a "((CC->getMemoryLeader() && "Every MemoryAccess should be mapped to a congruence class with a "
"representative memory access") ? static_cast<void> (0
) : __assert_fail ("CC->getMemoryLeader() && \"Every MemoryAccess should be mapped to a congruence class with a \" \"representative memory access\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 1050, __PRETTY_FUNCTION__))
1050 "representative memory access")((CC->getMemoryLeader() && "Every MemoryAccess should be mapped to a congruence class with a "
"representative memory access") ? static_cast<void> (0
) : __assert_fail ("CC->getMemoryLeader() && \"Every MemoryAccess should be mapped to a congruence class with a \" \"representative memory access\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 1050, __PRETTY_FUNCTION__))
;
1051 return CC->getMemoryLeader();
1052}
1053
1054// Return true if the MemoryAccess is really equivalent to everything. This is
1055// equivalent to the lattice value "TOP" in most lattices. This is the initial
1056// state of all MemoryAccesses.
1057bool NewGVN::isMemoryAccessTop(const MemoryAccess *MA) const {
1058 return getMemoryClass(MA) == TOPClass;
1059}
1060
1061LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp,
1062 LoadInst *LI,
1063 const MemoryAccess *MA) const {
1064 auto *E =
1065 new (ExpressionAllocator) LoadExpression(1, LI, lookupMemoryLeader(MA));
1066 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1067 E->setType(LoadType);
1068
1069 // Give store and loads same opcode so they value number together.
1070 E->setOpcode(0);
1071 E->op_push_back(PointerOp);
1072 if (LI)
1073 E->setAlignment(LI->getAlignment());
1074
1075 // TODO: Value number heap versions. We may be able to discover
1076 // things alias analysis can't on it's own (IE that a store and a
1077 // load have the same value, and thus, it isn't clobbering the load).
1078 return E;
1079}
1080
1081const StoreExpression *
1082NewGVN::createStoreExpression(StoreInst *SI, const MemoryAccess *MA) const {
1083 auto *StoredValueLeader = lookupOperandLeader(SI->getValueOperand());
1084 auto *E = new (ExpressionAllocator)
1085 StoreExpression(SI->getNumOperands(), SI, StoredValueLeader, MA);
1086 E->allocateOperands(ArgRecycler, ExpressionAllocator);
1087 E->setType(SI->getValueOperand()->getType());
1088
1089 // Give store and loads same opcode so they value number together.
1090 E->setOpcode(0);
1091 E->op_push_back(lookupOperandLeader(SI->getPointerOperand()));
1092
1093 // TODO: Value number heap versions. We may be able to discover
1094 // things alias analysis can't on it's own (IE that a store and a
1095 // load have the same value, and thus, it isn't clobbering the load).
1096 return E;
1097}
1098
1099const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I) const {
1100 // Unlike loads, we never try to eliminate stores, so we do not check if they
1101 // are simple and avoid value numbering them.
1102 auto *SI = cast<StoreInst>(I);
1103 auto *StoreAccess = MSSA->getMemoryAccess(SI);
1104 // Get the expression, if any, for the RHS of the MemoryDef.
1105 const MemoryAccess *StoreRHS = StoreAccess->getDefiningAccess();
1106 if (EnableStoreRefinement)
1107 StoreRHS = MSSAWalker->getClobberingMemoryAccess(StoreAccess);
1108 // If we bypassed the use-def chains, make sure we add a use.
1109 if (StoreRHS != StoreAccess->getDefiningAccess())
1110 addMemoryUsers(StoreRHS, StoreAccess);
1111
1112 StoreRHS = lookupMemoryLeader(StoreRHS);
1113 // If we are defined by ourselves, use the live on entry def.
1114 if (StoreRHS == StoreAccess)
1115 StoreRHS = MSSA->getLiveOnEntryDef();
1116
1117 if (SI->isSimple()) {
1118 // See if we are defined by a previous store expression, it already has a
1119 // value, and it's the same value as our current store. FIXME: Right now, we
1120 // only do this for simple stores, we should expand to cover memcpys, etc.
1121 const auto *LastStore = createStoreExpression(SI, StoreRHS);
1122 const auto *LastCC = ExpressionToClass.lookup(LastStore);
1123 // Basically, check if the congruence class the store is in is defined by a
1124 // store that isn't us, and has the same value. MemorySSA takes care of
1125 // ensuring the store has the same memory state as us already.
1126 // The RepStoredValue gets nulled if all the stores disappear in a class, so
1127 // we don't need to check if the class contains a store besides us.
1128 if (LastCC &&
1129 LastCC->getStoredValue() == lookupOperandLeader(SI->getValueOperand()))
1130 return LastStore;
1131 deleteExpression(LastStore);
1132 // Also check if our value operand is defined by a load of the same memory
1133 // location, and the memory state is the same as it was then (otherwise, it
1134 // could have been overwritten later. See test32 in
1135 // transforms/DeadStoreElimination/simple.ll).
1136 if (auto *LI =
1137 dyn_cast<LoadInst>(lookupOperandLeader(SI->getValueOperand()))) {
1138 if ((lookupOperandLeader(LI->getPointerOperand()) ==
1139 lookupOperandLeader(SI->getPointerOperand())) &&
1140 (lookupMemoryLeader(MSSA->getMemoryAccess(LI)->getDefiningAccess()) ==
1141 StoreRHS))
1142 return createVariableExpression(LI);
1143 }
1144 }
1145
1146 // If the store is not equivalent to anything, value number it as a store that
1147 // produces a unique memory state (instead of using it's MemoryUse, we use
1148 // it's MemoryDef).
1149 return createStoreExpression(SI, StoreAccess);
1150}
1151
1152// See if we can extract the value of a loaded pointer from a load, a store, or
1153// a memory instruction.
1154const Expression *
1155NewGVN::performSymbolicLoadCoercion(Type *LoadType, Value *LoadPtr,
1156 LoadInst *LI, Instruction *DepInst,
1157 MemoryAccess *DefiningAccess) const {
1158 assert((!LI || LI->isSimple()) && "Not a simple load")(((!LI || LI->isSimple()) && "Not a simple load") ?
static_cast<void> (0) : __assert_fail ("(!LI || LI->isSimple()) && \"Not a simple load\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 1158, __PRETTY_FUNCTION__))
;
1
Within the expansion of the macro 'assert':
a
Assuming 'LI' is null
1159 if (auto *DepSI = dyn_cast<StoreInst>(DepInst)) {
2
Taking false branch
1160 // Can't forward from non-atomic to atomic without violating memory model.
1161 // Also don't need to coerce if they are the same type, we will just
1162 // propogate..
1163 if (LI->isAtomic() > DepSI->isAtomic() ||
1164 LoadType == DepSI->getValueOperand()->getType())
1165 return nullptr;
1166 int Offset = analyzeLoadFromClobberingStore(LoadType, LoadPtr, DepSI, DL);
1167 if (Offset >= 0) {
1168 if (auto *C = dyn_cast<Constant>(
1169 lookupOperandLeader(DepSI->getValueOperand()))) {
1170 DEBUG(dbgs() << "Coercing load from store " << *DepSI << " to constant "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Coercing load from store " <<
*DepSI << " to constant " << *C << "\n"; }
} while (false)
1171 << *C << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Coercing load from store " <<
*DepSI << " to constant " << *C << "\n"; }
} while (false)
;
1172 return createConstantExpression(
1173 getConstantStoreValueForLoad(C, Offset, LoadType, DL));
1174 }
1175 }
1176
1177 } else if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) {
3
Assuming 'DepLI' is non-null
4
Taking true branch
1178 // Can't forward from non-atomic to atomic without violating memory model.
1179 if (LI->isAtomic() > DepLI->isAtomic())
5
Called C++ object pointer is null
1180 return nullptr;
1181 int Offset = analyzeLoadFromClobberingLoad(LoadType, LoadPtr, DepLI, DL);
1182 if (Offset >= 0) {
1183 // We can coerce a constant load into a load
1184 if (auto *C = dyn_cast<Constant>(lookupOperandLeader(DepLI)))
1185 if (auto *PossibleConstant =
1186 getConstantLoadValueForLoad(C, Offset, LoadType, DL)) {
1187 DEBUG(dbgs() << "Coercing load from load " << *LI << " to constant "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Coercing load from load " <<
*LI << " to constant " << *PossibleConstant <<
"\n"; } } while (false)
1188 << *PossibleConstant << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Coercing load from load " <<
*LI << " to constant " << *PossibleConstant <<
"\n"; } } while (false)
;
1189 return createConstantExpression(PossibleConstant);
1190 }
1191 }
1192
1193 } else if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInst)) {
1194 int Offset = analyzeLoadFromClobberingMemInst(LoadType, LoadPtr, DepMI, DL);
1195 if (Offset >= 0) {
1196 if (auto *PossibleConstant =
1197 getConstantMemInstValueForLoad(DepMI, Offset, LoadType, DL)) {
1198 DEBUG(dbgs() << "Coercing load from meminst " << *DepMIdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Coercing load from meminst " <<
*DepMI << " to constant " << *PossibleConstant <<
"\n"; } } while (false)
1199 << " to constant " << *PossibleConstant << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Coercing load from meminst " <<
*DepMI << " to constant " << *PossibleConstant <<
"\n"; } } while (false)
;
1200 return createConstantExpression(PossibleConstant);
1201 }
1202 }
1203 }
1204
1205 // All of the below are only true if the loaded pointer is produced
1206 // by the dependent instruction.
1207 if (LoadPtr != lookupOperandLeader(DepInst) &&
1208 !AA->isMustAlias(LoadPtr, DepInst))
1209 return nullptr;
1210 // If this load really doesn't depend on anything, then we must be loading an
1211 // undef value. This can happen when loading for a fresh allocation with no
1212 // intervening stores, for example. Note that this is only true in the case
1213 // that the result of the allocation is pointer equal to the load ptr.
1214 if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI)) {
1215 return createConstantExpression(UndefValue::get(LoadType));
1216 }
1217 // If this load occurs either right after a lifetime begin,
1218 // then the loaded value is undefined.
1219 else if (auto *II = dyn_cast<IntrinsicInst>(DepInst)) {
1220 if (II->getIntrinsicID() == Intrinsic::lifetime_start)
1221 return createConstantExpression(UndefValue::get(LoadType));
1222 }
1223 // If this load follows a calloc (which zero initializes memory),
1224 // then the loaded value is zero
1225 else if (isCallocLikeFn(DepInst, TLI)) {
1226 return createConstantExpression(Constant::getNullValue(LoadType));
1227 }
1228
1229 return nullptr;
1230}
1231
1232const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I) const {
1233 auto *LI = cast<LoadInst>(I);
1234
1235 // We can eliminate in favor of non-simple loads, but we won't be able to
1236 // eliminate the loads themselves.
1237 if (!LI->isSimple())
1238 return nullptr;
1239
1240 Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand());
1241 // Load of undef is undef.
1242 if (isa<UndefValue>(LoadAddressLeader))
1243 return createConstantExpression(UndefValue::get(LI->getType()));
1244
1245 MemoryAccess *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(I);
1246
1247 if (!MSSA->isLiveOnEntryDef(DefiningAccess)) {
1248 if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) {
1249 Instruction *DefiningInst = MD->getMemoryInst();
1250 // If the defining instruction is not reachable, replace with undef.
1251 if (!ReachableBlocks.count(DefiningInst->getParent()))
1252 return createConstantExpression(UndefValue::get(LI->getType()));
1253 // This will handle stores and memory insts. We only do if it the
1254 // defining access has a different type, or it is a pointer produced by
1255 // certain memory operations that cause the memory to have a fixed value
1256 // (IE things like calloc).
1257 if (const auto *CoercionResult =
1258 performSymbolicLoadCoercion(LI->getType(), LoadAddressLeader, LI,
1259 DefiningInst, DefiningAccess))
1260 return CoercionResult;
1261 }
1262 }
1263
1264 const Expression *E = createLoadExpression(LI->getType(), LoadAddressLeader,
1265 LI, DefiningAccess);
1266 return E;
1267}
1268
1269const Expression *
1270NewGVN::performSymbolicPredicateInfoEvaluation(Instruction *I) const {
1271 auto *PI = PredInfo->getPredicateInfoFor(I);
1272 if (!PI)
1273 return nullptr;
1274
1275 DEBUG(dbgs() << "Found predicate info from instruction !\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Found predicate info from instruction !\n"
; } } while (false)
;
1276
1277 auto *PWC = dyn_cast<PredicateWithCondition>(PI);
1278 if (!PWC)
1279 return nullptr;
1280
1281 auto *CopyOf = I->getOperand(0);
1282 auto *Cond = PWC->Condition;
1283
1284 // If this a copy of the condition, it must be either true or false depending
1285 // on the predicate info type and edge
1286 if (CopyOf == Cond) {
1287 // We should not need to add predicate users because the predicate info is
1288 // already a use of this operand.
1289 if (isa<PredicateAssume>(PI))
1290 return createConstantExpression(ConstantInt::getTrue(Cond->getType()));
1291 if (auto *PBranch = dyn_cast<PredicateBranch>(PI)) {
1292 if (PBranch->TrueEdge)
1293 return createConstantExpression(ConstantInt::getTrue(Cond->getType()));
1294 return createConstantExpression(ConstantInt::getFalse(Cond->getType()));
1295 }
1296 if (auto *PSwitch = dyn_cast<PredicateSwitch>(PI))
1297 return createConstantExpression(cast<Constant>(PSwitch->CaseValue));
1298 }
1299
1300 // Not a copy of the condition, so see what the predicates tell us about this
1301 // value. First, though, we check to make sure the value is actually a copy
1302 // of one of the condition operands. It's possible, in certain cases, for it
1303 // to be a copy of a predicateinfo copy. In particular, if two branch
1304 // operations use the same condition, and one branch dominates the other, we
1305 // will end up with a copy of a copy. This is currently a small deficiency in
1306 // predicateinfo. What will end up happening here is that we will value
1307 // number both copies the same anyway.
1308
1309 // Everything below relies on the condition being a comparison.
1310 auto *Cmp = dyn_cast<CmpInst>(Cond);
1311 if (!Cmp)
1312 return nullptr;
1313
1314 if (CopyOf != Cmp->getOperand(0) && CopyOf != Cmp->getOperand(1)) {
1315 DEBUG(dbgs() << "Copy is not of any condition operands!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Copy is not of any condition operands!\n"
; } } while (false)
;
1316 return nullptr;
1317 }
1318 Value *FirstOp = lookupOperandLeader(Cmp->getOperand(0));
1319 Value *SecondOp = lookupOperandLeader(Cmp->getOperand(1));
1320 bool SwappedOps = false;
1321 // Sort the ops
1322 if (shouldSwapOperands(FirstOp, SecondOp)) {
1323 std::swap(FirstOp, SecondOp);
1324 SwappedOps = true;
1325 }
1326 CmpInst::Predicate Predicate =
1327 SwappedOps ? Cmp->getSwappedPredicate() : Cmp->getPredicate();
1328
1329 if (isa<PredicateAssume>(PI)) {
1330 // If the comparison is true when the operands are equal, then we know the
1331 // operands are equal, because assumes must always be true.
1332 if (CmpInst::isTrueWhenEqual(Predicate)) {
1333 addPredicateUsers(PI, I);
1334 return createVariableOrConstant(FirstOp);
1335 }
1336 }
1337 if (const auto *PBranch = dyn_cast<PredicateBranch>(PI)) {
1338 // If we are *not* a copy of the comparison, we may equal to the other
1339 // operand when the predicate implies something about equality of
1340 // operations. In particular, if the comparison is true/false when the
1341 // operands are equal, and we are on the right edge, we know this operation
1342 // is equal to something.
1343 if ((PBranch->TrueEdge && Predicate == CmpInst::ICMP_EQ) ||
1344 (!PBranch->TrueEdge && Predicate == CmpInst::ICMP_NE)) {
1345 addPredicateUsers(PI, I);
1346 return createVariableOrConstant(FirstOp);
1347 }
1348 // Handle the special case of floating point.
1349 if (((PBranch->TrueEdge && Predicate == CmpInst::FCMP_OEQ) ||
1350 (!PBranch->TrueEdge && Predicate == CmpInst::FCMP_UNE)) &&
1351 isa<ConstantFP>(FirstOp) && !cast<ConstantFP>(FirstOp)->isZero()) {
1352 addPredicateUsers(PI, I);
1353 return createConstantExpression(cast<Constant>(FirstOp));
1354 }
1355 }
1356 return nullptr;
1357}
1358
1359// Evaluate read only and pure calls, and create an expression result.
1360const Expression *NewGVN::performSymbolicCallEvaluation(Instruction *I) const {
1361 auto *CI = cast<CallInst>(I);
1362 if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1363 // Instrinsics with the returned attribute are copies of arguments.
1364 if (auto *ReturnedValue = II->getReturnedArgOperand()) {
1365 if (II->getIntrinsicID() == Intrinsic::ssa_copy)
1366 if (const auto *Result = performSymbolicPredicateInfoEvaluation(I))
1367 return Result;
1368 return createVariableOrConstant(ReturnedValue);
1369 }
1370 }
1371 if (AA->doesNotAccessMemory(CI)) {
1372 return createCallExpression(CI, TOPClass->getMemoryLeader());
1373 } else if (AA->onlyReadsMemory(CI)) {
1374 MemoryAccess *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(CI);
1375 return createCallExpression(CI, DefiningAccess);
1376 }
1377 return nullptr;
1378}
1379
1380// Retrieve the memory class for a given MemoryAccess.
1381CongruenceClass *NewGVN::getMemoryClass(const MemoryAccess *MA) const {
1382
1383 auto *Result = MemoryAccessToClass.lookup(MA);
1384 assert(Result && "Should have found memory class")((Result && "Should have found memory class") ? static_cast
<void> (0) : __assert_fail ("Result && \"Should have found memory class\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 1384, __PRETTY_FUNCTION__))
;
1385 return Result;
1386}
1387
1388// Update the MemoryAccess equivalence table to say that From is equal to To,
1389// and return true if this is different from what already existed in the table.
1390bool NewGVN::setMemoryClass(const MemoryAccess *From,
1391 CongruenceClass *NewClass) {
1392 assert(NewClass &&((NewClass && "Every MemoryAccess should be getting mapped to a non-null class"
) ? static_cast<void> (0) : __assert_fail ("NewClass && \"Every MemoryAccess should be getting mapped to a non-null class\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 1393, __PRETTY_FUNCTION__))
1393 "Every MemoryAccess should be getting mapped to a non-null class")((NewClass && "Every MemoryAccess should be getting mapped to a non-null class"
) ? static_cast<void> (0) : __assert_fail ("NewClass && \"Every MemoryAccess should be getting mapped to a non-null class\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 1393, __PRETTY_FUNCTION__))
;
1394 DEBUG(dbgs() << "Setting " << *From)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Setting " << *From; } } while
(false)
;
1395 DEBUG(dbgs() << " equivalent to congruence class ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << " equivalent to congruence class "
; } } while (false)
;
1396 DEBUG(dbgs() << NewClass->getID() << " with current MemoryAccess leader ")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << NewClass->getID() << " with current MemoryAccess leader "
; } } while (false)
;
1397 DEBUG(dbgs() << *NewClass->getMemoryLeader() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << *NewClass->getMemoryLeader()
<< "\n"; } } while (false)
;
1398
1399 auto LookupResult = MemoryAccessToClass.find(From);
1400 bool Changed = false;
1401 // If it's already in the table, see if the value changed.
1402 if (LookupResult != MemoryAccessToClass.end()) {
1403 auto *OldClass = LookupResult->second;
1404 if (OldClass != NewClass) {
1405 // If this is a phi, we have to handle memory member updates.
1406 if (auto *MP = dyn_cast<MemoryPhi>(From)) {
1407 OldClass->memory_erase(MP);
1408 NewClass->memory_insert(MP);
1409 // This may have killed the class if it had no non-memory members
1410 if (OldClass->getMemoryLeader() == From) {
1411 if (OldClass->definesNoMemory()) {
1412 OldClass->setMemoryLeader(nullptr);
1413 } else {
1414 OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
1415 DEBUG(dbgs() << "Memory class leader change for class "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Memory class leader change for class "
<< OldClass->getID() << " to " << *OldClass
->getMemoryLeader() << " due to removal of a memory member "
<< *From << "\n"; } } while (false)
1416 << OldClass->getID() << " to "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Memory class leader change for class "
<< OldClass->getID() << " to " << *OldClass
->getMemoryLeader() << " due to removal of a memory member "
<< *From << "\n"; } } while (false)
1417 << *OldClass->getMemoryLeader()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Memory class leader change for class "
<< OldClass->getID() << " to " << *OldClass
->getMemoryLeader() << " due to removal of a memory member "
<< *From << "\n"; } } while (false)
1418 << " due to removal of a memory member " << *Fromdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Memory class leader change for class "
<< OldClass->getID() << " to " << *OldClass
->getMemoryLeader() << " due to removal of a memory member "
<< *From << "\n"; } } while (false)
1419 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Memory class leader change for class "
<< OldClass->getID() << " to " << *OldClass
->getMemoryLeader() << " due to removal of a memory member "
<< *From << "\n"; } } while (false)
;
1420 markMemoryLeaderChangeTouched(OldClass);
1421 }
1422 }
1423 }
1424 // It wasn't equivalent before, and now it is.
1425 LookupResult->second = NewClass;
1426 Changed = true;
1427 }
1428 }
1429
1430 return Changed;
1431}
1432
1433// Determine if a phi is cycle-free. That means the values in the phi don't
1434// depend on any expressions that can change value as a result of the phi.
1435// For example, a non-cycle free phi would be v = phi(0, v+1).
1436bool NewGVN::isCycleFree(const PHINode *PN) const {
1437 // In order to compute cycle-freeness, we do SCC finding on the phi, and see
1438 // what kind of SCC it ends up in. If it is a singleton, it is cycle-free.
1439 // If it is not in a singleton, it is only cycle free if the other members are
1440 // all phi nodes (as they do not compute anything, they are copies). TODO:
1441 // There are likely a few other intrinsics or expressions that could be
1442 // included here, but this happens so infrequently already that it is not
1443 // likely to be worth it.
1444 auto PCS = PhiCycleState.lookup(PN);
1445 if (PCS == PCS_Unknown) {
1446 SCCFinder.Start(PN);
1447 auto &SCC = SCCFinder.getComponentFor(PN);
1448 // It's cycle free if it's size 1 or or the SCC is *only* phi nodes.
1449 if (SCC.size() == 1)
1450 PhiCycleState.insert({PN, PCS_CycleFree});
1451 else {
1452 bool AllPhis =
1453 llvm::all_of(SCC, [](const Value *V) { return isa<PHINode>(V); });
1454 PCS = AllPhis ? PCS_CycleFree : PCS_Cycle;
1455 for (auto *Member : SCC)
1456 if (auto *MemberPhi = dyn_cast<PHINode>(Member))
1457 PhiCycleState.insert({MemberPhi, PCS});
1458 }
1459 }
1460 if (PCS == PCS_Cycle)
1461 return false;
1462 return true;
1463}
1464
1465// Evaluate PHI nodes symbolically, and create an expression result.
1466const Expression *NewGVN::performSymbolicPHIEvaluation(Instruction *I) const {
1467 // True if one of the incoming phi edges is a backedge.
1468 bool HasBackedge = false;
1469 // All constant tracks the state of whether all the *original* phi operands
1470 // were constant. This is really shorthand for "this phi cannot cycle due
1471 // to forward propagation", as any change in value of the phi is guaranteed
1472 // not to later change the value of the phi.
1473 // IE it can't be v = phi(undef, v+1)
1474 bool AllConstant = true;
1475 auto *E =
1476 cast<PHIExpression>(createPHIExpression(I, HasBackedge, AllConstant));
1477 // We match the semantics of SimplifyPhiNode from InstructionSimplify here.
1478 // See if all arguments are the same.
1479 // We track if any were undef because they need special handling.
1480 bool HasUndef = false;
1481 auto Filtered = make_filter_range(E->operands(), [&](const Value *Arg) {
1482 if (Arg == I)
1483 return false;
1484 if (isa<UndefValue>(Arg)) {
1485 HasUndef = true;
1486 return false;
1487 }
1488 return true;
1489 });
1490 // If we are left with no operands, it's undef
1491 if (Filtered.begin() == Filtered.end()) {
1492 DEBUG(dbgs() << "Simplified PHI node " << *I << " to undef"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Simplified PHI node " <<
*I << " to undef" << "\n"; } } while (false)
1493 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Simplified PHI node " <<
*I << " to undef" << "\n"; } } while (false)
;
1494 deleteExpression(E);
1495 return createConstantExpression(UndefValue::get(I->getType()));
1496 }
1497 unsigned NumOps = 0;
1498 Value *AllSameValue = *(Filtered.begin());
1499 ++Filtered.begin();
1500 // Can't use std::equal here, sadly, because filter.begin moves.
1501 if (llvm::all_of(Filtered, [AllSameValue, &NumOps](const Value *V) {
1502 ++NumOps;
1503 return V == AllSameValue;
1504 })) {
1505 // In LLVM's non-standard representation of phi nodes, it's possible to have
1506 // phi nodes with cycles (IE dependent on other phis that are .... dependent
1507 // on the original phi node), especially in weird CFG's where some arguments
1508 // are unreachable, or uninitialized along certain paths. This can cause
1509 // infinite loops during evaluation. We work around this by not trying to
1510 // really evaluate them independently, but instead using a variable
1511 // expression to say if one is equivalent to the other.
1512 // We also special case undef, so that if we have an undef, we can't use the
1513 // common value unless it dominates the phi block.
1514 if (HasUndef) {
1515 // If we have undef and at least one other value, this is really a
1516 // multivalued phi, and we need to know if it's cycle free in order to
1517 // evaluate whether we can ignore the undef. The other parts of this are
1518 // just shortcuts. If there is no backedge, or all operands are
1519 // constants, or all operands are ignored but the undef, it also must be
1520 // cycle free.
1521 if (!AllConstant && HasBackedge && NumOps > 0 &&
1522 !isa<UndefValue>(AllSameValue) && !isCycleFree(cast<PHINode>(I)))
1523 return E;
1524
1525 // Only have to check for instructions
1526 if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue))
1527 if (!someEquivalentDominates(AllSameInst, I))
1528 return E;
1529 }
1530
1531 NumGVNPhisAllSame++;
1532 DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValuedo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Simplified PHI node " <<
*I << " to " << *AllSameValue << "\n"; } }
while (false)
1533 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Simplified PHI node " <<
*I << " to " << *AllSameValue << "\n"; } }
while (false)
;
1534 deleteExpression(E);
1535 return createVariableOrConstant(AllSameValue);
1536 }
1537 return E;
1538}
1539
1540const Expression *
1541NewGVN::performSymbolicAggrValueEvaluation(Instruction *I) const {
1542 if (auto *EI = dyn_cast<ExtractValueInst>(I)) {
1543 auto *II = dyn_cast<IntrinsicInst>(EI->getAggregateOperand());
1544 if (II && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) {
1545 unsigned Opcode = 0;
1546 // EI might be an extract from one of our recognised intrinsics. If it
1547 // is we'll synthesize a semantically equivalent expression instead on
1548 // an extract value expression.
1549 switch (II->getIntrinsicID()) {
1550 case Intrinsic::sadd_with_overflow:
1551 case Intrinsic::uadd_with_overflow:
1552 Opcode = Instruction::Add;
1553 break;
1554 case Intrinsic::ssub_with_overflow:
1555 case Intrinsic::usub_with_overflow:
1556 Opcode = Instruction::Sub;
1557 break;
1558 case Intrinsic::smul_with_overflow:
1559 case Intrinsic::umul_with_overflow:
1560 Opcode = Instruction::Mul;
1561 break;
1562 default:
1563 break;
1564 }
1565
1566 if (Opcode != 0) {
1567 // Intrinsic recognized. Grab its args to finish building the
1568 // expression.
1569 assert(II->getNumArgOperands() == 2 &&((II->getNumArgOperands() == 2 && "Expect two args for recognised intrinsics."
) ? static_cast<void> (0) : __assert_fail ("II->getNumArgOperands() == 2 && \"Expect two args for recognised intrinsics.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 1570, __PRETTY_FUNCTION__))
1570 "Expect two args for recognised intrinsics.")((II->getNumArgOperands() == 2 && "Expect two args for recognised intrinsics."
) ? static_cast<void> (0) : __assert_fail ("II->getNumArgOperands() == 2 && \"Expect two args for recognised intrinsics.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 1570, __PRETTY_FUNCTION__))
;
1571 return createBinaryExpression(
1572 Opcode, EI->getType(), II->getArgOperand(0), II->getArgOperand(1));
1573 }
1574 }
1575 }
1576
1577 return createAggregateValueExpression(I);
1578}
1579const Expression *NewGVN::performSymbolicCmpEvaluation(Instruction *I) const {
1580 auto *CI = dyn_cast<CmpInst>(I);
1581 // See if our operands are equal to those of a previous predicate, and if so,
1582 // if it implies true or false.
1583 auto Op0 = lookupOperandLeader(CI->getOperand(0));
1584 auto Op1 = lookupOperandLeader(CI->getOperand(1));
1585 auto OurPredicate = CI->getPredicate();
1586 if (shouldSwapOperands(Op0, Op1)) {
1587 std::swap(Op0, Op1);
1588 OurPredicate = CI->getSwappedPredicate();
1589 }
1590
1591 // Avoid processing the same info twice
1592 const PredicateBase *LastPredInfo = nullptr;
1593 // See if we know something about the comparison itself, like it is the target
1594 // of an assume.
1595 auto *CmpPI = PredInfo->getPredicateInfoFor(I);
1596 if (dyn_cast_or_null<PredicateAssume>(CmpPI))
1597 return createConstantExpression(ConstantInt::getTrue(CI->getType()));
1598
1599 if (Op0 == Op1) {
1600 // This condition does not depend on predicates, no need to add users
1601 if (CI->isTrueWhenEqual())
1602 return createConstantExpression(ConstantInt::getTrue(CI->getType()));
1603 else if (CI->isFalseWhenEqual())
1604 return createConstantExpression(ConstantInt::getFalse(CI->getType()));
1605 }
1606
1607 // NOTE: Because we are comparing both operands here and below, and using
1608 // previous comparisons, we rely on fact that predicateinfo knows to mark
1609 // comparisons that use renamed operands as users of the earlier comparisons.
1610 // It is *not* enough to just mark predicateinfo renamed operands as users of
1611 // the earlier comparisons, because the *other* operand may have changed in a
1612 // previous iteration.
1613 // Example:
1614 // icmp slt %a, %b
1615 // %b.0 = ssa.copy(%b)
1616 // false branch:
1617 // icmp slt %c, %b.0
1618
1619 // %c and %a may start out equal, and thus, the code below will say the second
1620 // %icmp is false. c may become equal to something else, and in that case the
1621 // %second icmp *must* be reexamined, but would not if only the renamed
1622 // %operands are considered users of the icmp.
1623
1624 // *Currently* we only check one level of comparisons back, and only mark one
1625 // level back as touched when changes appen . If you modify this code to look
1626 // back farther through comparisons, you *must* mark the appropriate
1627 // comparisons as users in PredicateInfo.cpp, or you will cause bugs. See if
1628 // we know something just from the operands themselves
1629
1630 // See if our operands have predicate info, so that we may be able to derive
1631 // something from a previous comparison.
1632 for (const auto &Op : CI->operands()) {
1633 auto *PI = PredInfo->getPredicateInfoFor(Op);
1634 if (const auto *PBranch = dyn_cast_or_null<PredicateBranch>(PI)) {
1635 if (PI == LastPredInfo)
1636 continue;
1637 LastPredInfo = PI;
1638
1639 // TODO: Along the false edge, we may know more things too, like icmp of
1640 // same operands is false.
1641 // TODO: We only handle actual comparison conditions below, not and/or.
1642 auto *BranchCond = dyn_cast<CmpInst>(PBranch->Condition);
1643 if (!BranchCond)
1644 continue;
1645 auto *BranchOp0 = lookupOperandLeader(BranchCond->getOperand(0));
1646 auto *BranchOp1 = lookupOperandLeader(BranchCond->getOperand(1));
1647 auto BranchPredicate = BranchCond->getPredicate();
1648 if (shouldSwapOperands(BranchOp0, BranchOp1)) {
1649 std::swap(BranchOp0, BranchOp1);
1650 BranchPredicate = BranchCond->getSwappedPredicate();
1651 }
1652 if (BranchOp0 == Op0 && BranchOp1 == Op1) {
1653 if (PBranch->TrueEdge) {
1654 // If we know the previous predicate is true and we are in the true
1655 // edge then we may be implied true or false.
1656 if (CmpInst::isImpliedTrueByMatchingCmp(BranchPredicate,
1657 OurPredicate)) {
1658 addPredicateUsers(PI, I);
1659 return createConstantExpression(
1660 ConstantInt::getTrue(CI->getType()));
1661 }
1662
1663 if (CmpInst::isImpliedFalseByMatchingCmp(BranchPredicate,
1664 OurPredicate)) {
1665 addPredicateUsers(PI, I);
1666 return createConstantExpression(
1667 ConstantInt::getFalse(CI->getType()));
1668 }
1669
1670 } else {
1671 // Just handle the ne and eq cases, where if we have the same
1672 // operands, we may know something.
1673 if (BranchPredicate == OurPredicate) {
1674 addPredicateUsers(PI, I);
1675 // Same predicate, same ops,we know it was false, so this is false.
1676 return createConstantExpression(
1677 ConstantInt::getFalse(CI->getType()));
1678 } else if (BranchPredicate ==
1679 CmpInst::getInversePredicate(OurPredicate)) {
1680 addPredicateUsers(PI, I);
1681 // Inverse predicate, we know the other was false, so this is true.
1682 return createConstantExpression(
1683 ConstantInt::getTrue(CI->getType()));
1684 }
1685 }
1686 }
1687 }
1688 }
1689 // Create expression will take care of simplifyCmpInst
1690 return createExpression(I);
1691}
1692
1693// Substitute and symbolize the value before value numbering.
1694const Expression *NewGVN::performSymbolicEvaluation(Value *V) const {
1695 const Expression *E = nullptr;
1696 if (auto *C = dyn_cast<Constant>(V))
1697 E = createConstantExpression(C);
1698 else if (isa<Argument>(V) || isa<GlobalVariable>(V)) {
1699 E = createVariableExpression(V);
1700 } else {
1701 // TODO: memory intrinsics.
1702 // TODO: Some day, we should do the forward propagation and reassociation
1703 // parts of the algorithm.
1704 auto *I = cast<Instruction>(V);
1705 switch (I->getOpcode()) {
1706 case Instruction::ExtractValue:
1707 case Instruction::InsertValue:
1708 E = performSymbolicAggrValueEvaluation(I);
1709 break;
1710 case Instruction::PHI:
1711 E = performSymbolicPHIEvaluation(I);
1712 break;
1713 case Instruction::Call:
1714 E = performSymbolicCallEvaluation(I);
1715 break;
1716 case Instruction::Store:
1717 E = performSymbolicStoreEvaluation(I);
1718 break;
1719 case Instruction::Load:
1720 E = performSymbolicLoadEvaluation(I);
1721 break;
1722 case Instruction::BitCast: {
1723 E = createExpression(I);
1724 } break;
1725 case Instruction::ICmp:
1726 case Instruction::FCmp: {
1727 E = performSymbolicCmpEvaluation(I);
1728 } break;
1729 case Instruction::Add:
1730 case Instruction::FAdd:
1731 case Instruction::Sub:
1732 case Instruction::FSub:
1733 case Instruction::Mul:
1734 case Instruction::FMul:
1735 case Instruction::UDiv:
1736 case Instruction::SDiv:
1737 case Instruction::FDiv:
1738 case Instruction::URem:
1739 case Instruction::SRem:
1740 case Instruction::FRem:
1741 case Instruction::Shl:
1742 case Instruction::LShr:
1743 case Instruction::AShr:
1744 case Instruction::And:
1745 case Instruction::Or:
1746 case Instruction::Xor:
1747 case Instruction::Trunc:
1748 case Instruction::ZExt:
1749 case Instruction::SExt:
1750 case Instruction::FPToUI:
1751 case Instruction::FPToSI:
1752 case Instruction::UIToFP:
1753 case Instruction::SIToFP:
1754 case Instruction::FPTrunc:
1755 case Instruction::FPExt:
1756 case Instruction::PtrToInt:
1757 case Instruction::IntToPtr:
1758 case Instruction::Select:
1759 case Instruction::ExtractElement:
1760 case Instruction::InsertElement:
1761 case Instruction::ShuffleVector:
1762 case Instruction::GetElementPtr:
1763 E = createExpression(I);
1764 break;
1765 default:
1766 return nullptr;
1767 }
1768 }
1769 return E;
1770}
1771
1772void NewGVN::markUsersTouched(Value *V) {
1773 // Now mark the users as touched.
1774 for (auto *User : V->users()) {
1775 assert(isa<Instruction>(User) && "Use of value not within an instruction?")((isa<Instruction>(User) && "Use of value not within an instruction?"
) ? static_cast<void> (0) : __assert_fail ("isa<Instruction>(User) && \"Use of value not within an instruction?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 1775, __PRETTY_FUNCTION__))
;
1776 TouchedInstructions.set(InstrToDFSNum(User));
1777 }
1778}
1779
1780void NewGVN::addMemoryUsers(const MemoryAccess *To, MemoryAccess *U) const {
1781 DEBUG(dbgs() << "Adding memory user " << *U << " to " << *To << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Adding memory user " << *
U << " to " << *To << "\n"; } } while (false
)
;
1782 MemoryToUsers[To].insert(U);
1783}
1784
1785void NewGVN::markMemoryDefTouched(const MemoryAccess *MA) {
1786 TouchedInstructions.set(MemoryToDFSNum(MA));
1787}
1788
1789void NewGVN::markMemoryUsersTouched(const MemoryAccess *MA) {
1790 if (isa<MemoryUse>(MA))
1791 return;
1792 for (auto U : MA->users())
1793 TouchedInstructions.set(MemoryToDFSNum(U));
1794 const auto Result = MemoryToUsers.find(MA);
1795 if (Result != MemoryToUsers.end()) {
1796 for (auto *User : Result->second)
1797 TouchedInstructions.set(MemoryToDFSNum(User));
1798 MemoryToUsers.erase(Result);
1799 }
1800}
1801
1802// Add I to the set of users of a given predicate.
1803void NewGVN::addPredicateUsers(const PredicateBase *PB, Instruction *I) const {
1804 if (auto *PBranch = dyn_cast<PredicateBranch>(PB))
1805 PredicateToUsers[PBranch->Condition].insert(I);
1806 else if (auto *PAssume = dyn_cast<PredicateBranch>(PB))
1807 PredicateToUsers[PAssume->Condition].insert(I);
1808}
1809
1810// Touch all the predicates that depend on this instruction.
1811void NewGVN::markPredicateUsersTouched(Instruction *I) {
1812 const auto Result = PredicateToUsers.find(I);
1813 if (Result != PredicateToUsers.end()) {
1814 for (auto *User : Result->second)
1815 TouchedInstructions.set(InstrToDFSNum(User));
1816 PredicateToUsers.erase(Result);
1817 }
1818}
1819
1820// Mark users affected by a memory leader change.
1821void NewGVN::markMemoryLeaderChangeTouched(CongruenceClass *CC) {
1822 for (auto M : CC->memory())
1823 markMemoryDefTouched(M);
1824}
1825
1826// Touch the instructions that need to be updated after a congruence class has a
1827// leader change, and mark changed values.
1828void NewGVN::markValueLeaderChangeTouched(CongruenceClass *CC) {
1829 for (auto M : *CC) {
1830 if (auto *I = dyn_cast<Instruction>(M))
1831 TouchedInstructions.set(InstrToDFSNum(I));
1832 LeaderChanges.insert(M);
1833 }
1834}
1835
1836// Give a range of things that have instruction DFS numbers, this will return
1837// the member of the range with the smallest dfs number.
1838template <class T, class Range>
1839T *NewGVN::getMinDFSOfRange(const Range &R) const {
1840 std::pair<T *, unsigned> MinDFS = {nullptr, ~0U};
1841 for (const auto X : R) {
1842 auto DFSNum = InstrToDFSNum(X);
1843 if (DFSNum < MinDFS.second)
1844 MinDFS = {X, DFSNum};
1845 }
1846 return MinDFS.first;
1847}
1848
1849// This function returns the MemoryAccess that should be the next leader of
1850// congruence class CC, under the assumption that the current leader is going to
1851// disappear.
1852const MemoryAccess *NewGVN::getNextMemoryLeader(CongruenceClass *CC) const {
1853 // TODO: If this ends up to slow, we can maintain a next memory leader like we
1854 // do for regular leaders.
1855 // Make sure there will be a leader to find
1856 assert(!CC->definesNoMemory() && "Can't get next leader if there is none")((!CC->definesNoMemory() && "Can't get next leader if there is none"
) ? static_cast<void> (0) : __assert_fail ("!CC->definesNoMemory() && \"Can't get next leader if there is none\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 1856, __PRETTY_FUNCTION__))
;
1857 if (CC->getStoreCount() > 0) {
1858 if (auto *NL = dyn_cast_or_null<StoreInst>(CC->getNextLeader().first))
1859 return MSSA->getMemoryAccess(NL);
1860 // Find the store with the minimum DFS number.
1861 auto *V = getMinDFSOfRange<Value>(make_filter_range(
1862 *CC, [&](const Value *V) { return isa<StoreInst>(V); }));
1863 return MSSA->getMemoryAccess(cast<StoreInst>(V));
1864 }
1865 assert(CC->getStoreCount() == 0)((CC->getStoreCount() == 0) ? static_cast<void> (0) :
__assert_fail ("CC->getStoreCount() == 0", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 1865, __PRETTY_FUNCTION__))
;
1866
1867 // Given our assertion, hitting this part must mean
1868 // !OldClass->memory_empty()
1869 if (CC->memory_size() == 1)
1870 return *CC->memory_begin();
1871 return getMinDFSOfRange<const MemoryPhi>(CC->memory());
1872}
1873
1874// This function returns the next value leader of a congruence class, under the
1875// assumption that the current leader is going away. This should end up being
1876// the next most dominating member.
1877Value *NewGVN::getNextValueLeader(CongruenceClass *CC) const {
1878 // We don't need to sort members if there is only 1, and we don't care about
1879 // sorting the TOP class because everything either gets out of it or is
1880 // unreachable.
1881
1882 if (CC->size() == 1 || CC == TOPClass) {
1883 return *(CC->begin());
1884 } else if (CC->getNextLeader().first) {
1885 ++NumGVNAvoidedSortedLeaderChanges;
1886 return CC->getNextLeader().first;
1887 } else {
1888 ++NumGVNSortedLeaderChanges;
1889 // NOTE: If this ends up to slow, we can maintain a dual structure for
1890 // member testing/insertion, or keep things mostly sorted, and sort only
1891 // here, or use SparseBitVector or ....
1892 return getMinDFSOfRange<Value>(*CC);
1893 }
1894}
1895
1896// Move a MemoryAccess, currently in OldClass, to NewClass, including updates to
1897// the memory members, etc for the move.
1898//
1899// The invariants of this function are:
1900//
1901// I must be moving to NewClass from OldClass The StoreCount of OldClass and
1902// NewClass is expected to have been updated for I already if it is is a store.
1903// The OldClass memory leader has not been updated yet if I was the leader.
1904void NewGVN::moveMemoryToNewCongruenceClass(Instruction *I,
1905 MemoryAccess *InstMA,
1906 CongruenceClass *OldClass,
1907 CongruenceClass *NewClass) {
1908 // If the leader is I, and we had a represenative MemoryAccess, it should
1909 // be the MemoryAccess of OldClass.
1910 assert((!InstMA || !OldClass->getMemoryLeader() ||(((!InstMA || !OldClass->getMemoryLeader() || OldClass->
getLeader() != I || OldClass->getMemoryLeader() == InstMA)
&& "Representative MemoryAccess mismatch") ? static_cast
<void> (0) : __assert_fail ("(!InstMA || !OldClass->getMemoryLeader() || OldClass->getLeader() != I || OldClass->getMemoryLeader() == InstMA) && \"Representative MemoryAccess mismatch\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 1913, __PRETTY_FUNCTION__))
1911 OldClass->getLeader() != I ||(((!InstMA || !OldClass->getMemoryLeader() || OldClass->
getLeader() != I || OldClass->getMemoryLeader() == InstMA)
&& "Representative MemoryAccess mismatch") ? static_cast
<void> (0) : __assert_fail ("(!InstMA || !OldClass->getMemoryLeader() || OldClass->getLeader() != I || OldClass->getMemoryLeader() == InstMA) && \"Representative MemoryAccess mismatch\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 1913, __PRETTY_FUNCTION__))
1912 OldClass->getMemoryLeader() == InstMA) &&(((!InstMA || !OldClass->getMemoryLeader() || OldClass->
getLeader() != I || OldClass->getMemoryLeader() == InstMA)
&& "Representative MemoryAccess mismatch") ? static_cast
<void> (0) : __assert_fail ("(!InstMA || !OldClass->getMemoryLeader() || OldClass->getLeader() != I || OldClass->getMemoryLeader() == InstMA) && \"Representative MemoryAccess mismatch\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 1913, __PRETTY_FUNCTION__))
1913 "Representative MemoryAccess mismatch")(((!InstMA || !OldClass->getMemoryLeader() || OldClass->
getLeader() != I || OldClass->getMemoryLeader() == InstMA)
&& "Representative MemoryAccess mismatch") ? static_cast
<void> (0) : __assert_fail ("(!InstMA || !OldClass->getMemoryLeader() || OldClass->getLeader() != I || OldClass->getMemoryLeader() == InstMA) && \"Representative MemoryAccess mismatch\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 1913, __PRETTY_FUNCTION__))
;
1914 // First, see what happens to the new class
1915 if (!NewClass->getMemoryLeader()) {
1916 // Should be a new class, or a store becoming a leader of a new class.
1917 assert(NewClass->size() == 1 ||((NewClass->size() == 1 || (isa<StoreInst>(I) &&
NewClass->getStoreCount() == 1)) ? static_cast<void>
(0) : __assert_fail ("NewClass->size() == 1 || (isa<StoreInst>(I) && NewClass->getStoreCount() == 1)"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 1918, __PRETTY_FUNCTION__))
1918 (isa<StoreInst>(I) && NewClass->getStoreCount() == 1))((NewClass->size() == 1 || (isa<StoreInst>(I) &&
NewClass->getStoreCount() == 1)) ? static_cast<void>
(0) : __assert_fail ("NewClass->size() == 1 || (isa<StoreInst>(I) && NewClass->getStoreCount() == 1)"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 1918, __PRETTY_FUNCTION__))
;
1919 NewClass->setMemoryLeader(InstMA);
1920 // Mark it touched if we didn't just create a singleton
1921 DEBUG(dbgs() << "Memory class leader change for class " << NewClass->getID()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Memory class leader change for class "
<< NewClass->getID() << " due to new memory instruction becoming leader\n"
; } } while (false)
1922 << " due to new memory instruction becoming leader\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Memory class leader change for class "
<< NewClass->getID() << " due to new memory instruction becoming leader\n"
; } } while (false)
;
1923 markMemoryLeaderChangeTouched(NewClass);
1924 }
1925 setMemoryClass(InstMA, NewClass);
1926 // Now, fixup the old class if necessary
1927 if (OldClass->getMemoryLeader() == InstMA) {
1928 if (!OldClass->definesNoMemory()) {
1929 OldClass->setMemoryLeader(getNextMemoryLeader(OldClass));
1930 DEBUG(dbgs() << "Memory class leader change for class "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Memory class leader change for class "
<< OldClass->getID() << " to " << *OldClass
->getMemoryLeader() << " due to removal of old leader "
<< *InstMA << "\n"; } } while (false)
1931 << OldClass->getID() << " to "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Memory class leader change for class "
<< OldClass->getID() << " to " << *OldClass
->getMemoryLeader() << " due to removal of old leader "
<< *InstMA << "\n"; } } while (false)
1932 << *OldClass->getMemoryLeader()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Memory class leader change for class "
<< OldClass->getID() << " to " << *OldClass
->getMemoryLeader() << " due to removal of old leader "
<< *InstMA << "\n"; } } while (false)
1933 << " due to removal of old leader " << *InstMA << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Memory class leader change for class "
<< OldClass->getID() << " to " << *OldClass
->getMemoryLeader() << " due to removal of old leader "
<< *InstMA << "\n"; } } while (false)
;
1934 markMemoryLeaderChangeTouched(OldClass);
1935 } else
1936 OldClass->setMemoryLeader(nullptr);
1937 }
1938}
1939
1940// Move a value, currently in OldClass, to be part of NewClass
1941// Update OldClass and NewClass for the move (including changing leaders, etc).
1942void NewGVN::moveValueToNewCongruenceClass(Instruction *I, const Expression *E,
1943 CongruenceClass *OldClass,
1944 CongruenceClass *NewClass) {
1945 if (I == OldClass->getNextLeader().first)
1946 OldClass->resetNextLeader();
1947
1948 // It's possible, though unlikely, for us to discover equivalences such
1949 // that the current leader does not dominate the old one.
1950 // This statistic tracks how often this happens.
1951 // We assert on phi nodes when this happens, currently, for debugging, because
1952 // we want to make sure we name phi node cycles properly.
1953 if (isa<Instruction>(NewClass->getLeader()) && NewClass->getLeader() &&
1954 I != NewClass->getLeader()) {
1955 auto *IBB = I->getParent();
1956 auto *NCBB = cast<Instruction>(NewClass->getLeader())->getParent();
1957 bool Dominated =
1958 IBB == NCBB && InstrToDFSNum(I) < InstrToDFSNum(NewClass->getLeader());
1959 Dominated = Dominated || DT->properlyDominates(IBB, NCBB);
1960 if (Dominated) {
1961 ++NumGVNNotMostDominatingLeader;
1962 assert(((!isa<PHINode>(I) && "New class for instruction should not be dominated by instruction"
) ? static_cast<void> (0) : __assert_fail ("!isa<PHINode>(I) && \"New class for instruction should not be dominated by instruction\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 1964, __PRETTY_FUNCTION__))
1963 !isa<PHINode>(I) &&((!isa<PHINode>(I) && "New class for instruction should not be dominated by instruction"
) ? static_cast<void> (0) : __assert_fail ("!isa<PHINode>(I) && \"New class for instruction should not be dominated by instruction\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 1964, __PRETTY_FUNCTION__))
1964 "New class for instruction should not be dominated by instruction")((!isa<PHINode>(I) && "New class for instruction should not be dominated by instruction"
) ? static_cast<void> (0) : __assert_fail ("!isa<PHINode>(I) && \"New class for instruction should not be dominated by instruction\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 1964, __PRETTY_FUNCTION__))
;
1965 }
1966 }
1967
1968 if (NewClass->getLeader() != I)
1969 NewClass->addPossibleNextLeader({I, InstrToDFSNum(I)});
1970
1971 OldClass->erase(I);
1972 NewClass->insert(I);
1973 // Handle our special casing of stores.
1974 if (auto *SI = dyn_cast<StoreInst>(I)) {
1975 OldClass->decStoreCount();
1976 // Okay, so when do we want to make a store a leader of a class?
1977 // If we have a store defined by an earlier load, we want the earlier load
1978 // to lead the class.
1979 // If we have a store defined by something else, we want the store to lead
1980 // the class so everything else gets the "something else" as a value.
1981 // If we have a store as the single member of the class, we want the store
1982 // as the leader
1983 if (NewClass->getStoreCount() == 0 && !NewClass->getStoredValue()) {
1984 // If it's a store expression we are using, it means we are not equivalent
1985 // to something earlier.
1986 if (auto *SE = dyn_cast<StoreExpression>(E)) {
1987 assert(SE->getStoredValue() != NewClass->getLeader())((SE->getStoredValue() != NewClass->getLeader()) ? static_cast
<void> (0) : __assert_fail ("SE->getStoredValue() != NewClass->getLeader()"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 1987, __PRETTY_FUNCTION__))
;
1988 NewClass->setStoredValue(SE->getStoredValue());
1989 markValueLeaderChangeTouched(NewClass);
1990 // Shift the new class leader to be the store
1991 DEBUG(dbgs() << "Changing leader of congruence class "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Changing leader of congruence class "
<< NewClass->getID() << " from " << *NewClass
->getLeader() << " to " << *SI << " because store joined class\n"
; } } while (false)
1992 << NewClass->getID() << " from " << *NewClass->getLeader()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Changing leader of congruence class "
<< NewClass->getID() << " from " << *NewClass
->getLeader() << " to " << *SI << " because store joined class\n"
; } } while (false)
1993 << " to " << *SI << " because store joined class\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Changing leader of congruence class "
<< NewClass->getID() << " from " << *NewClass
->getLeader() << " to " << *SI << " because store joined class\n"
; } } while (false)
;
1994 // If we changed the leader, we have to mark it changed because we don't
1995 // know what it will do to symbolic evlauation.
1996 NewClass->setLeader(SI);
1997 }
1998 // We rely on the code below handling the MemoryAccess change.
1999 }
2000 NewClass->incStoreCount();
2001 }
2002 // True if there is no memory instructions left in a class that had memory
2003 // instructions before.
2004
2005 // If it's not a memory use, set the MemoryAccess equivalence
2006 auto *InstMA = dyn_cast_or_null<MemoryDef>(MSSA->getMemoryAccess(I));
2007 if (InstMA)
2008 moveMemoryToNewCongruenceClass(I, InstMA, OldClass, NewClass);
2009 ValueToClass[I] = NewClass;
2010 // See if we destroyed the class or need to swap leaders.
2011 if (OldClass->empty() && OldClass != TOPClass) {
2012 if (OldClass->getDefiningExpr()) {
2013 DEBUG(dbgs() << "Erasing expression " << *OldClass->getDefiningExpr()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Erasing expression " << *
OldClass->getDefiningExpr() << " from table\n"; } } while
(false)
2014 << " from table\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Erasing expression " << *
OldClass->getDefiningExpr() << " from table\n"; } } while
(false)
;
2015 ExpressionToClass.erase(OldClass->getDefiningExpr());
2016 }
2017 } else if (OldClass->getLeader() == I) {
2018 // When the leader changes, the value numbering of
2019 // everything may change due to symbolization changes, so we need to
2020 // reprocess.
2021 DEBUG(dbgs() << "Value class leader change for class " << OldClass->getID()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Value class leader change for class "
<< OldClass->getID() << "\n"; } } while (false
)
2022 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Value class leader change for class "
<< OldClass->getID() << "\n"; } } while (false
)
;
2023 ++NumGVNLeaderChanges;
2024 // Destroy the stored value if there are no more stores to represent it.
2025 // Note that this is basically clean up for the expression removal that
2026 // happens below. If we remove stores from a class, we may leave it as a
2027 // class of equivalent memory phis.
2028 if (OldClass->getStoreCount() == 0) {
2029 if (OldClass->getStoredValue())
2030 OldClass->setStoredValue(nullptr);
2031 }
2032 OldClass->setLeader(getNextValueLeader(OldClass));
2033 OldClass->resetNextLeader();
2034 markValueLeaderChangeTouched(OldClass);
2035 }
2036}
2037
2038// Perform congruence finding on a given value numbering expression.
2039void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) {
2040 // This is guaranteed to return something, since it will at least find
2041 // TOP.
2042
2043 CongruenceClass *IClass = ValueToClass[I];
2044 assert(IClass && "Should have found a IClass")((IClass && "Should have found a IClass") ? static_cast
<void> (0) : __assert_fail ("IClass && \"Should have found a IClass\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2044, __PRETTY_FUNCTION__))
;
2045 // Dead classes should have been eliminated from the mapping.
2046 assert(!IClass->isDead() && "Found a dead class")((!IClass->isDead() && "Found a dead class") ? static_cast
<void> (0) : __assert_fail ("!IClass->isDead() && \"Found a dead class\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2046, __PRETTY_FUNCTION__))
;
2047
2048 CongruenceClass *EClass;
2049 if (const auto *VE = dyn_cast<VariableExpression>(E)) {
2050 EClass = ValueToClass[VE->getVariableValue()];
2051 } else {
2052 auto lookupResult = ExpressionToClass.insert({E, nullptr});
2053
2054 // If it's not in the value table, create a new congruence class.
2055 if (lookupResult.second) {
2056 CongruenceClass *NewClass = createCongruenceClass(nullptr, E);
2057 auto place = lookupResult.first;
2058 place->second = NewClass;
2059
2060 // Constants and variables should always be made the leader.
2061 if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
2062 NewClass->setLeader(CE->getConstantValue());
2063 } else if (const auto *SE = dyn_cast<StoreExpression>(E)) {
2064 StoreInst *SI = SE->getStoreInst();
2065 NewClass->setLeader(SI);
2066 NewClass->setStoredValue(SE->getStoredValue());
2067 // The RepMemoryAccess field will be filled in properly by the
2068 // moveValueToNewCongruenceClass call.
2069 } else {
2070 NewClass->setLeader(I);
2071 }
2072 assert(!isa<VariableExpression>(E) &&((!isa<VariableExpression>(E) && "VariableExpression should have been handled already"
) ? static_cast<void> (0) : __assert_fail ("!isa<VariableExpression>(E) && \"VariableExpression should have been handled already\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2073, __PRETTY_FUNCTION__))
2073 "VariableExpression should have been handled already")((!isa<VariableExpression>(E) && "VariableExpression should have been handled already"
) ? static_cast<void> (0) : __assert_fail ("!isa<VariableExpression>(E) && \"VariableExpression should have been handled already\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2073, __PRETTY_FUNCTION__))
;
2074
2075 EClass = NewClass;
2076 DEBUG(dbgs() << "Created new congruence class for " << *Ido { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Created new congruence class for "
<< *I << " using expression " << *E <<
" at " << NewClass->getID() << " and leader "
<< *(NewClass->getLeader()); } } while (false)
2077 << " using expression " << *E << " at " << NewClass->getID()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Created new congruence class for "
<< *I << " using expression " << *E <<
" at " << NewClass->getID() << " and leader "
<< *(NewClass->getLeader()); } } while (false)
2078 << " and leader " << *(NewClass->getLeader()))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Created new congruence class for "
<< *I << " using expression " << *E <<
" at " << NewClass->getID() << " and leader "
<< *(NewClass->getLeader()); } } while (false)
;
2079 if (NewClass->getStoredValue())
2080 DEBUG(dbgs() << " and stored value " << *(NewClass->getStoredValue()))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << " and stored value " << *
(NewClass->getStoredValue()); } } while (false)
;
2081 DEBUG(dbgs() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "\n"; } } while (false)
;
2082 } else {
2083 EClass = lookupResult.first->second;
2084 if (isa<ConstantExpression>(E))
2085 assert((isa<Constant>(EClass->getLeader()) ||(((isa<Constant>(EClass->getLeader()) || (EClass->
getStoredValue() && isa<Constant>(EClass->getStoredValue
()))) && "Any class with a constant expression should have a "
"constant leader") ? static_cast<void> (0) : __assert_fail
("(isa<Constant>(EClass->getLeader()) || (EClass->getStoredValue() && isa<Constant>(EClass->getStoredValue()))) && \"Any class with a constant expression should have a \" \"constant leader\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2089, __PRETTY_FUNCTION__))
2086 (EClass->getStoredValue() &&(((isa<Constant>(EClass->getLeader()) || (EClass->
getStoredValue() && isa<Constant>(EClass->getStoredValue
()))) && "Any class with a constant expression should have a "
"constant leader") ? static_cast<void> (0) : __assert_fail
("(isa<Constant>(EClass->getLeader()) || (EClass->getStoredValue() && isa<Constant>(EClass->getStoredValue()))) && \"Any class with a constant expression should have a \" \"constant leader\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2089, __PRETTY_FUNCTION__))
2087 isa<Constant>(EClass->getStoredValue()))) &&(((isa<Constant>(EClass->getLeader()) || (EClass->
getStoredValue() && isa<Constant>(EClass->getStoredValue
()))) && "Any class with a constant expression should have a "
"constant leader") ? static_cast<void> (0) : __assert_fail
("(isa<Constant>(EClass->getLeader()) || (EClass->getStoredValue() && isa<Constant>(EClass->getStoredValue()))) && \"Any class with a constant expression should have a \" \"constant leader\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2089, __PRETTY_FUNCTION__))
2088 "Any class with a constant expression should have a "(((isa<Constant>(EClass->getLeader()) || (EClass->
getStoredValue() && isa<Constant>(EClass->getStoredValue
()))) && "Any class with a constant expression should have a "
"constant leader") ? static_cast<void> (0) : __assert_fail
("(isa<Constant>(EClass->getLeader()) || (EClass->getStoredValue() && isa<Constant>(EClass->getStoredValue()))) && \"Any class with a constant expression should have a \" \"constant leader\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2089, __PRETTY_FUNCTION__))
2089 "constant leader")(((isa<Constant>(EClass->getLeader()) || (EClass->
getStoredValue() && isa<Constant>(EClass->getStoredValue
()))) && "Any class with a constant expression should have a "
"constant leader") ? static_cast<void> (0) : __assert_fail
("(isa<Constant>(EClass->getLeader()) || (EClass->getStoredValue() && isa<Constant>(EClass->getStoredValue()))) && \"Any class with a constant expression should have a \" \"constant leader\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2089, __PRETTY_FUNCTION__))
;
2090
2091 assert(EClass && "Somehow don't have an eclass")((EClass && "Somehow don't have an eclass") ? static_cast
<void> (0) : __assert_fail ("EClass && \"Somehow don't have an eclass\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2091, __PRETTY_FUNCTION__))
;
2092
2093 assert(!EClass->isDead() && "We accidentally looked up a dead class")((!EClass->isDead() && "We accidentally looked up a dead class"
) ? static_cast<void> (0) : __assert_fail ("!EClass->isDead() && \"We accidentally looked up a dead class\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2093, __PRETTY_FUNCTION__))
;
2094 }
2095 }
2096 bool ClassChanged = IClass != EClass;
2097 bool LeaderChanged = LeaderChanges.erase(I);
2098 if (ClassChanged || LeaderChanged) {
2099 DEBUG(dbgs() << "New class " << EClass->getID() << " for expression " << *Edo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "New class " << EClass->
getID() << " for expression " << *E << "\n"
; } } while (false)
2100 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "New class " << EClass->
getID() << " for expression " << *E << "\n"
; } } while (false)
;
2101 if (ClassChanged)
2102 moveValueToNewCongruenceClass(I, E, IClass, EClass);
2103 markUsersTouched(I);
2104 if (MemoryAccess *MA = MSSA->getMemoryAccess(I))
2105 markMemoryUsersTouched(MA);
2106 if (auto *CI = dyn_cast<CmpInst>(I))
2107 markPredicateUsersTouched(CI);
2108 }
2109 // If we changed the class of the store, we want to ensure nothing finds the
2110 // old store expression. In particular, loads do not compare against stored
2111 // value, so they will find old store expressions (and associated class
2112 // mappings) if we leave them in the table.
2113 if (ClassChanged && isa<StoreExpression>(E)) {
2114 auto *OldE = ValueToExpression.lookup(I);
2115 // It could just be that the old class died. We don't want to erase it if we
2116 // just moved classes.
2117 if (OldE && isa<StoreExpression>(OldE) && !OldE->equals(*E))
2118 ExpressionToClass.erase(OldE);
2119 }
2120 ValueToExpression[I] = E;
2121}
2122
2123// Process the fact that Edge (from, to) is reachable, including marking
2124// any newly reachable blocks and instructions for processing.
2125void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) {
2126 // Check if the Edge was reachable before.
2127 if (ReachableEdges.insert({From, To}).second) {
2128 // If this block wasn't reachable before, all instructions are touched.
2129 if (ReachableBlocks.insert(To).second) {
2130 DEBUG(dbgs() << "Block " << getBlockName(To) << " marked reachable\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Block " << getBlockName(
To) << " marked reachable\n"; } } while (false)
;
2131 const auto &InstRange = BlockInstRange.lookup(To);
2132 TouchedInstructions.set(InstRange.first, InstRange.second);
2133 } else {
2134 DEBUG(dbgs() << "Block " << getBlockName(To)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Block " << getBlockName(
To) << " was reachable, but new edge {" << getBlockName
(From) << "," << getBlockName(To) << "} to it found\n"
; } } while (false)
2135 << " was reachable, but new edge {" << getBlockName(From)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Block " << getBlockName(
To) << " was reachable, but new edge {" << getBlockName
(From) << "," << getBlockName(To) << "} to it found\n"
; } } while (false)
2136 << "," << getBlockName(To) << "} to it found\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Block " << getBlockName(
To) << " was reachable, but new edge {" << getBlockName
(From) << "," << getBlockName(To) << "} to it found\n"
; } } while (false)
;
2137
2138 // We've made an edge reachable to an existing block, which may
2139 // impact predicates. Otherwise, only mark the phi nodes as touched, as
2140 // they are the only thing that depend on new edges. Anything using their
2141 // values will get propagated to if necessary.
2142 if (MemoryAccess *MemPhi = MSSA->getMemoryAccess(To))
2143 TouchedInstructions.set(InstrToDFSNum(MemPhi));
2144
2145 auto BI = To->begin();
2146 while (isa<PHINode>(BI)) {
2147 TouchedInstructions.set(InstrToDFSNum(&*BI));
2148 ++BI;
2149 }
2150 }
2151 }
2152}
2153
2154// Given a predicate condition (from a switch, cmp, or whatever) and a block,
2155// see if we know some constant value for it already.
2156Value *NewGVN::findConditionEquivalence(Value *Cond) const {
2157 auto Result = lookupOperandLeader(Cond);
2158 if (isa<Constant>(Result))
2159 return Result;
2160 return nullptr;
2161}
2162
2163// Process the outgoing edges of a block for reachability.
2164void NewGVN::processOutgoingEdges(TerminatorInst *TI, BasicBlock *B) {
2165 // Evaluate reachability of terminator instruction.
2166 BranchInst *BR;
2167 if ((BR = dyn_cast<BranchInst>(TI)) && BR->isConditional()) {
2168 Value *Cond = BR->getCondition();
2169 Value *CondEvaluated = findConditionEquivalence(Cond);
2170 if (!CondEvaluated) {
2171 if (auto *I = dyn_cast<Instruction>(Cond)) {
2172 const Expression *E = createExpression(I);
2173 if (const auto *CE = dyn_cast<ConstantExpression>(E)) {
2174 CondEvaluated = CE->getConstantValue();
2175 }
2176 } else if (isa<ConstantInt>(Cond)) {
2177 CondEvaluated = Cond;
2178 }
2179 }
2180 ConstantInt *CI;
2181 BasicBlock *TrueSucc = BR->getSuccessor(0);
2182 BasicBlock *FalseSucc = BR->getSuccessor(1);
2183 if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) {
2184 if (CI->isOne()) {
2185 DEBUG(dbgs() << "Condition for Terminator " << *TIdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Condition for Terminator " <<
*TI << " evaluated to true\n"; } } while (false)
2186 << " evaluated to true\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Condition for Terminator " <<
*TI << " evaluated to true\n"; } } while (false)
;
2187 updateReachableEdge(B, TrueSucc);
2188 } else if (CI->isZero()) {
2189 DEBUG(dbgs() << "Condition for Terminator " << *TIdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Condition for Terminator " <<
*TI << " evaluated to false\n"; } } while (false)
2190 << " evaluated to false\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Condition for Terminator " <<
*TI << " evaluated to false\n"; } } while (false)
;
2191 updateReachableEdge(B, FalseSucc);
2192 }
2193 } else {
2194 updateReachableEdge(B, TrueSucc);
2195 updateReachableEdge(B, FalseSucc);
2196 }
2197 } else if (auto *SI = dyn_cast<SwitchInst>(TI)) {
2198 // For switches, propagate the case values into the case
2199 // destinations.
2200
2201 // Remember how many outgoing edges there are to every successor.
2202 SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges;
2203
2204 Value *SwitchCond = SI->getCondition();
2205 Value *CondEvaluated = findConditionEquivalence(SwitchCond);
2206 // See if we were able to turn this switch statement into a constant.
2207 if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) {
2208 auto *CondVal = cast<ConstantInt>(CondEvaluated);
2209 // We should be able to get case value for this.
2210 auto Case = *SI->findCaseValue(CondVal);
2211 if (Case.getCaseSuccessor() == SI->getDefaultDest()) {
2212 // We proved the value is outside of the range of the case.
2213 // We can't do anything other than mark the default dest as reachable,
2214 // and go home.
2215 updateReachableEdge(B, SI->getDefaultDest());
2216 return;
2217 }
2218 // Now get where it goes and mark it reachable.
2219 BasicBlock *TargetBlock = Case.getCaseSuccessor();
2220 updateReachableEdge(B, TargetBlock);
2221 } else {
2222 for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) {
2223 BasicBlock *TargetBlock = SI->getSuccessor(i);
2224 ++SwitchEdges[TargetBlock];
2225 updateReachableEdge(B, TargetBlock);
2226 }
2227 }
2228 } else {
2229 // Otherwise this is either unconditional, or a type we have no
2230 // idea about. Just mark successors as reachable.
2231 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
2232 BasicBlock *TargetBlock = TI->getSuccessor(i);
2233 updateReachableEdge(B, TargetBlock);
2234 }
2235
2236 // This also may be a memory defining terminator, in which case, set it
2237 // equivalent only to itself.
2238 //
2239 auto *MA = MSSA->getMemoryAccess(TI);
2240 if (MA && !isa<MemoryUse>(MA)) {
2241 auto *CC = ensureLeaderOfMemoryClass(MA);
2242 if (setMemoryClass(MA, CC))
2243 markMemoryUsersTouched(MA);
2244 }
2245 }
2246}
2247
2248// The algorithm initially places the values of the routine in the TOP
2249// congruence class. The leader of TOP is the undetermined value `undef`.
2250// When the algorithm has finished, values still in TOP are unreachable.
2251void NewGVN::initializeCongruenceClasses(Function &F) {
2252 NextCongruenceNum = 0;
2253
2254 // Note that even though we use the live on entry def as a representative
2255 // MemoryAccess, it is *not* the same as the actual live on entry def. We
2256 // have no real equivalemnt to undef for MemoryAccesses, and so we really
2257 // should be checking whether the MemoryAccess is top if we want to know if it
2258 // is equivalent to everything. Otherwise, what this really signifies is that
2259 // the access "it reaches all the way back to the beginning of the function"
2260
2261 // Initialize all other instructions to be in TOP class.
2262 TOPClass = createCongruenceClass(nullptr, nullptr);
2263 TOPClass->setMemoryLeader(MSSA->getLiveOnEntryDef());
2264 // The live on entry def gets put into it's own class
2265 MemoryAccessToClass[MSSA->getLiveOnEntryDef()] =
2266 createMemoryClass(MSSA->getLiveOnEntryDef());
2267
2268 for (auto DTN : nodes(DT)) {
2269 BasicBlock *BB = DTN->getBlock();
2270 // All MemoryAccesses are equivalent to live on entry to start. They must
2271 // be initialized to something so that initial changes are noticed. For
2272 // the maximal answer, we initialize them all to be the same as
2273 // liveOnEntry.
2274 auto *MemoryBlockDefs = MSSA->getBlockDefs(BB);
2275 if (MemoryBlockDefs)
2276 for (const auto &Def : *MemoryBlockDefs) {
2277 MemoryAccessToClass[&Def] = TOPClass;
2278 auto *MD = dyn_cast<MemoryDef>(&Def);
2279 // Insert the memory phis into the member list.
2280 if (!MD) {
2281 const MemoryPhi *MP = cast<MemoryPhi>(&Def);
2282 TOPClass->memory_insert(MP);
2283 MemoryPhiState.insert({MP, MPS_TOP});
2284 }
2285
2286 if (MD && isa<StoreInst>(MD->getMemoryInst()))
2287 TOPClass->incStoreCount();
2288 }
2289 for (auto &I : *BB) {
2290 // Don't insert void terminators into the class. We don't value number
2291 // them, and they just end up sitting in TOP.
2292 if (isa<TerminatorInst>(I) && I.getType()->isVoidTy())
2293 continue;
2294 TOPClass->insert(&I);
2295 ValueToClass[&I] = TOPClass;
2296 }
2297 }
2298
2299 // Initialize arguments to be in their own unique congruence classes
2300 for (auto &FA : F.args())
2301 createSingletonCongruenceClass(&FA);
2302}
2303
2304void NewGVN::cleanupTables() {
2305 for (unsigned i = 0, e = CongruenceClasses.size(); i != e; ++i) {
2306 DEBUG(dbgs() << "Congruence class " << CongruenceClasses[i]->getID()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Congruence class " << CongruenceClasses
[i]->getID() << " has " << CongruenceClasses[i
]->size() << " members\n"; } } while (false)
2307 << " has " << CongruenceClasses[i]->size() << " members\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Congruence class " << CongruenceClasses
[i]->getID() << " has " << CongruenceClasses[i
]->size() << " members\n"; } } while (false)
;
2308 // Make sure we delete the congruence class (probably worth switching to
2309 // a unique_ptr at some point.
2310 delete CongruenceClasses[i];
2311 CongruenceClasses[i] = nullptr;
2312 }
2313
2314 ValueToClass.clear();
2315 ArgRecycler.clear(ExpressionAllocator);
2316 ExpressionAllocator.Reset();
2317 CongruenceClasses.clear();
2318 ExpressionToClass.clear();
2319 ValueToExpression.clear();
2320 ReachableBlocks.clear();
2321 ReachableEdges.clear();
2322#ifndef NDEBUG
2323 ProcessedCount.clear();
2324#endif
2325 InstrDFS.clear();
2326 InstructionsToErase.clear();
2327 DFSToInstr.clear();
2328 BlockInstRange.clear();
2329 TouchedInstructions.clear();
2330 MemoryAccessToClass.clear();
2331 PredicateToUsers.clear();
2332 MemoryToUsers.clear();
2333}
2334
2335std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B,
2336 unsigned Start) {
2337 unsigned End = Start;
2338 if (MemoryAccess *MemPhi = MSSA->getMemoryAccess(B)) {
2339 InstrDFS[MemPhi] = End++;
2340 DFSToInstr.emplace_back(MemPhi);
2341 }
2342
2343 for (auto &I : *B) {
2344 // There's no need to call isInstructionTriviallyDead more than once on
2345 // an instruction. Therefore, once we know that an instruction is dead
2346 // we change its DFS number so that it doesn't get value numbered.
2347 if (isInstructionTriviallyDead(&I, TLI)) {
2348 InstrDFS[&I] = 0;
2349 DEBUG(dbgs() << "Skipping trivially dead instruction " << I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Skipping trivially dead instruction "
<< I << "\n"; } } while (false)
;
2350 markInstructionForDeletion(&I);
2351 continue;
2352 }
2353
2354 InstrDFS[&I] = End++;
2355 DFSToInstr.emplace_back(&I);
2356 }
2357
2358 // All of the range functions taken half-open ranges (open on the end side).
2359 // So we do not subtract one from count, because at this point it is one
2360 // greater than the last instruction.
2361 return std::make_pair(Start, End);
2362}
2363
2364void NewGVN::updateProcessedCount(Value *V) {
2365#ifndef NDEBUG
2366 if (ProcessedCount.count(V) == 0) {
2367 ProcessedCount.insert({V, 1});
2368 } else {
2369 ++ProcessedCount[V];
2370 assert(ProcessedCount[V] < 100 &&((ProcessedCount[V] < 100 && "Seem to have processed the same Value a lot"
) ? static_cast<void> (0) : __assert_fail ("ProcessedCount[V] < 100 && \"Seem to have processed the same Value a lot\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2371, __PRETTY_FUNCTION__))
2371 "Seem to have processed the same Value a lot")((ProcessedCount[V] < 100 && "Seem to have processed the same Value a lot"
) ? static_cast<void> (0) : __assert_fail ("ProcessedCount[V] < 100 && \"Seem to have processed the same Value a lot\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2371, __PRETTY_FUNCTION__))
;
2372 }
2373#endif
2374}
2375// Evaluate MemoryPhi nodes symbolically, just like PHI nodes
2376void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) {
2377 // If all the arguments are the same, the MemoryPhi has the same value as the
2378 // argument.
2379 // Filter out unreachable blocks and self phis from our operands.
2380 const BasicBlock *PHIBlock = MP->getBlock();
2381 auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) {
2382 return lookupMemoryLeader(cast<MemoryAccess>(U)) != MP &&
2383 !isMemoryAccessTop(cast<MemoryAccess>(U)) &&
2384 ReachableEdges.count({MP->getIncomingBlock(U), PHIBlock});
2385 });
2386 // If all that is left is nothing, our memoryphi is undef. We keep it as
2387 // InitialClass. Note: The only case this should happen is if we have at
2388 // least one self-argument.
2389 if (Filtered.begin() == Filtered.end()) {
2390 if (setMemoryClass(MP, TOPClass))
2391 markMemoryUsersTouched(MP);
2392 return;
2393 }
2394
2395 // Transform the remaining operands into operand leaders.
2396 // FIXME: mapped_iterator should have a range version.
2397 auto LookupFunc = [&](const Use &U) {
2398 return lookupMemoryLeader(cast<MemoryAccess>(U));
2399 };
2400 auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc);
2401 auto MappedEnd = map_iterator(Filtered.end(), LookupFunc);
2402
2403 // and now check if all the elements are equal.
2404 // Sadly, we can't use std::equals since these are random access iterators.
2405 const auto *AllSameValue = *MappedBegin;
2406 ++MappedBegin;
2407 bool AllEqual = std::all_of(
2408 MappedBegin, MappedEnd,
2409 [&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; });
2410
2411 if (AllEqual)
2412 DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Memory Phi value numbered to "
<< *AllSameValue << "\n"; } } while (false)
;
2413 else
2414 DEBUG(dbgs() << "Memory Phi value numbered to itself\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Memory Phi value numbered to itself\n"
; } } while (false)
;
2415 // If it's equal to something, it's in that class. Otherwise, it has to be in
2416 // a class where it is the leader (other things may be equivalent to it, but
2417 // it needs to start off in its own class, which means it must have been the
2418 // leader, and it can't have stopped being the leader because it was never
2419 // removed).
2420 CongruenceClass *CC =
2421 AllEqual ? getMemoryClass(AllSameValue) : ensureLeaderOfMemoryClass(MP);
2422 auto OldState = MemoryPhiState.lookup(MP);
2423 assert(OldState != MPS_Invalid && "Invalid memory phi state")((OldState != MPS_Invalid && "Invalid memory phi state"
) ? static_cast<void> (0) : __assert_fail ("OldState != MPS_Invalid && \"Invalid memory phi state\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2423, __PRETTY_FUNCTION__))
;
2424 auto NewState = AllEqual ? MPS_Equivalent : MPS_Unique;
2425 MemoryPhiState[MP] = NewState;
2426 if (setMemoryClass(MP, CC) || OldState != NewState)
2427 markMemoryUsersTouched(MP);
2428}
2429
2430// Value number a single instruction, symbolically evaluating, performing
2431// congruence finding, and updating mappings.
2432void NewGVN::valueNumberInstruction(Instruction *I) {
2433 DEBUG(dbgs() << "Processing instruction " << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Processing instruction " <<
*I << "\n"; } } while (false)
;
2434 if (!I->isTerminator()) {
2435 const Expression *Symbolized = nullptr;
2436 if (DebugCounter::shouldExecute(VNCounter)) {
2437 Symbolized = performSymbolicEvaluation(I);
2438 } else {
2439 // Mark the instruction as unused so we don't value number it again.
2440 InstrDFS[I] = 0;
2441 }
2442 // If we couldn't come up with a symbolic expression, use the unknown
2443 // expression
2444 if (Symbolized == nullptr) {
2445 Symbolized = createUnknownExpression(I);
2446 }
2447
2448 performCongruenceFinding(I, Symbolized);
2449 } else {
2450 // Handle terminators that return values. All of them produce values we
2451 // don't currently understand. We don't place non-value producing
2452 // terminators in a class.
2453 if (!I->getType()->isVoidTy()) {
2454 auto *Symbolized = createUnknownExpression(I);
2455 performCongruenceFinding(I, Symbolized);
2456 }
2457 processOutgoingEdges(dyn_cast<TerminatorInst>(I), I->getParent());
2458 }
2459}
2460
2461// Check if there is a path, using single or equal argument phi nodes, from
2462// First to Second.
2463bool NewGVN::singleReachablePHIPath(const MemoryAccess *First,
2464 const MemoryAccess *Second) const {
2465 if (First == Second)
2466 return true;
2467 if (MSSA->isLiveOnEntryDef(First))
2468 return false;
2469
2470 const auto *EndDef = First;
2471 for (auto *ChainDef : optimized_def_chain(First)) {
2472 if (ChainDef == Second)
2473 return true;
2474 if (MSSA->isLiveOnEntryDef(ChainDef))
2475 return false;
2476 EndDef = ChainDef;
2477 }
2478 auto *MP = cast<MemoryPhi>(EndDef);
2479 auto ReachableOperandPred = [&](const Use &U) {
2480 return ReachableEdges.count({MP->getIncomingBlock(U), MP->getBlock()});
2481 };
2482 auto FilteredPhiArgs =
2483 make_filter_range(MP->operands(), ReachableOperandPred);
2484 SmallVector<const Value *, 32> OperandList;
2485 std::copy(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
2486 std::back_inserter(OperandList));
2487 bool Okay = OperandList.size() == 1;
2488 if (!Okay)
2489 Okay =
2490 std::equal(OperandList.begin(), OperandList.end(), OperandList.begin());
2491 if (Okay)
2492 return singleReachablePHIPath(cast<MemoryAccess>(OperandList[0]), Second);
2493 return false;
2494}
2495
2496// Verify the that the memory equivalence table makes sense relative to the
2497// congruence classes. Note that this checking is not perfect, and is currently
2498// subject to very rare false negatives. It is only useful for
2499// testing/debugging.
2500void NewGVN::verifyMemoryCongruency() const {
2501#ifndef NDEBUG
2502 // Verify that the memory table equivalence and memory member set match
2503 for (const auto *CC : CongruenceClasses) {
2504 if (CC == TOPClass || CC->isDead())
2505 continue;
2506 if (CC->getStoreCount() != 0) {
2507 assert((CC->getStoredValue() || !isa<StoreInst>(CC->getLeader())) &&(((CC->getStoredValue() || !isa<StoreInst>(CC->getLeader
())) && "Any class with a store as a leader should have a "
"representative stored value") ? static_cast<void> (0)
: __assert_fail ("(CC->getStoredValue() || !isa<StoreInst>(CC->getLeader())) && \"Any class with a store as a leader should have a \" \"representative stored value\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2509, __PRETTY_FUNCTION__))
2508 "Any class with a store as a leader should have a "(((CC->getStoredValue() || !isa<StoreInst>(CC->getLeader
())) && "Any class with a store as a leader should have a "
"representative stored value") ? static_cast<void> (0)
: __assert_fail ("(CC->getStoredValue() || !isa<StoreInst>(CC->getLeader())) && \"Any class with a store as a leader should have a \" \"representative stored value\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2509, __PRETTY_FUNCTION__))
2509 "representative stored value")(((CC->getStoredValue() || !isa<StoreInst>(CC->getLeader
())) && "Any class with a store as a leader should have a "
"representative stored value") ? static_cast<void> (0)
: __assert_fail ("(CC->getStoredValue() || !isa<StoreInst>(CC->getLeader())) && \"Any class with a store as a leader should have a \" \"representative stored value\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2509, __PRETTY_FUNCTION__))
;
2510 assert(CC->getMemoryLeader() &&((CC->getMemoryLeader() && "Any congruence class with a store should have a "
"representative access") ? static_cast<void> (0) : __assert_fail
("CC->getMemoryLeader() && \"Any congruence class with a store should have a \" \"representative access\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2512, __PRETTY_FUNCTION__))
2511 "Any congruence class with a store should have a "((CC->getMemoryLeader() && "Any congruence class with a store should have a "
"representative access") ? static_cast<void> (0) : __assert_fail
("CC->getMemoryLeader() && \"Any congruence class with a store should have a \" \"representative access\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2512, __PRETTY_FUNCTION__))
2512 "representative access")((CC->getMemoryLeader() && "Any congruence class with a store should have a "
"representative access") ? static_cast<void> (0) : __assert_fail
("CC->getMemoryLeader() && \"Any congruence class with a store should have a \" \"representative access\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2512, __PRETTY_FUNCTION__))
;
2513 }
2514
2515 if (CC->getMemoryLeader())
2516 assert(MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC &&((MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC &&
"Representative MemoryAccess does not appear to be reverse "
"mapped properly") ? static_cast<void> (0) : __assert_fail
("MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC && \"Representative MemoryAccess does not appear to be reverse \" \"mapped properly\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2518, __PRETTY_FUNCTION__))
2517 "Representative MemoryAccess does not appear to be reverse "((MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC &&
"Representative MemoryAccess does not appear to be reverse "
"mapped properly") ? static_cast<void> (0) : __assert_fail
("MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC && \"Representative MemoryAccess does not appear to be reverse \" \"mapped properly\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2518, __PRETTY_FUNCTION__))
2518 "mapped properly")((MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC &&
"Representative MemoryAccess does not appear to be reverse "
"mapped properly") ? static_cast<void> (0) : __assert_fail
("MemoryAccessToClass.lookup(CC->getMemoryLeader()) == CC && \"Representative MemoryAccess does not appear to be reverse \" \"mapped properly\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2518, __PRETTY_FUNCTION__))
;
2519 for (auto M : CC->memory())
2520 assert(MemoryAccessToClass.lookup(M) == CC &&((MemoryAccessToClass.lookup(M) == CC && "Memory member does not appear to be reverse mapped properly"
) ? static_cast<void> (0) : __assert_fail ("MemoryAccessToClass.lookup(M) == CC && \"Memory member does not appear to be reverse mapped properly\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2521, __PRETTY_FUNCTION__))
2521 "Memory member does not appear to be reverse mapped properly")((MemoryAccessToClass.lookup(M) == CC && "Memory member does not appear to be reverse mapped properly"
) ? static_cast<void> (0) : __assert_fail ("MemoryAccessToClass.lookup(M) == CC && \"Memory member does not appear to be reverse mapped properly\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2521, __PRETTY_FUNCTION__))
;
2522 }
2523
2524 // Anything equivalent in the MemoryAccess table should be in the same
2525 // congruence class.
2526
2527 // Filter out the unreachable and trivially dead entries, because they may
2528 // never have been updated if the instructions were not processed.
2529 auto ReachableAccessPred =
2530 [&](const std::pair<const MemoryAccess *, CongruenceClass *> Pair) {
2531 bool Result = ReachableBlocks.count(Pair.first->getBlock());
2532 if (!Result || MSSA->isLiveOnEntryDef(Pair.first) ||
2533 MemoryToDFSNum(Pair.first) == 0)
2534 return false;
2535 if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first))
2536 return !isInstructionTriviallyDead(MemDef->getMemoryInst());
2537
2538 // We could have phi nodes which operands are all trivially dead,
2539 // so we don't process them.
2540 if (auto *MemPHI = dyn_cast<MemoryPhi>(Pair.first)) {
2541 for (auto &U : MemPHI->incoming_values()) {
2542 if (Instruction *I = dyn_cast<Instruction>(U.get())) {
2543 if (!isInstructionTriviallyDead(I))
2544 return true;
2545 }
2546 }
2547 return false;
2548 }
2549
2550 return true;
2551 };
2552
2553 auto Filtered = make_filter_range(MemoryAccessToClass, ReachableAccessPred);
2554 for (auto KV : Filtered) {
2555 assert(KV.second != TOPClass &&((KV.second != TOPClass && "Memory not unreachable but ended up in TOP"
) ? static_cast<void> (0) : __assert_fail ("KV.second != TOPClass && \"Memory not unreachable but ended up in TOP\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2556, __PRETTY_FUNCTION__))
2556 "Memory not unreachable but ended up in TOP")((KV.second != TOPClass && "Memory not unreachable but ended up in TOP"
) ? static_cast<void> (0) : __assert_fail ("KV.second != TOPClass && \"Memory not unreachable but ended up in TOP\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2556, __PRETTY_FUNCTION__))
;
2557 if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) {
2558 auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second->getMemoryLeader());
2559 if (FirstMUD && SecondMUD)
2560 assert((singleReachablePHIPath(FirstMUD, SecondMUD) ||(((singleReachablePHIPath(FirstMUD, SecondMUD) || ValueToClass
.lookup(FirstMUD->getMemoryInst()) == ValueToClass.lookup(
SecondMUD->getMemoryInst())) && "The instructions for these memory operations should have "
"been in the same congruence class or reachable through" "a single argument phi"
) ? static_cast<void> (0) : __assert_fail ("(singleReachablePHIPath(FirstMUD, SecondMUD) || ValueToClass.lookup(FirstMUD->getMemoryInst()) == ValueToClass.lookup(SecondMUD->getMemoryInst())) && \"The instructions for these memory operations should have \" \"been in the same congruence class or reachable through\" \"a single argument phi\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2565, __PRETTY_FUNCTION__))
2561 ValueToClass.lookup(FirstMUD->getMemoryInst()) ==(((singleReachablePHIPath(FirstMUD, SecondMUD) || ValueToClass
.lookup(FirstMUD->getMemoryInst()) == ValueToClass.lookup(
SecondMUD->getMemoryInst())) && "The instructions for these memory operations should have "
"been in the same congruence class or reachable through" "a single argument phi"
) ? static_cast<void> (0) : __assert_fail ("(singleReachablePHIPath(FirstMUD, SecondMUD) || ValueToClass.lookup(FirstMUD->getMemoryInst()) == ValueToClass.lookup(SecondMUD->getMemoryInst())) && \"The instructions for these memory operations should have \" \"been in the same congruence class or reachable through\" \"a single argument phi\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2565, __PRETTY_FUNCTION__))
2562 ValueToClass.lookup(SecondMUD->getMemoryInst())) &&(((singleReachablePHIPath(FirstMUD, SecondMUD) || ValueToClass
.lookup(FirstMUD->getMemoryInst()) == ValueToClass.lookup(
SecondMUD->getMemoryInst())) && "The instructions for these memory operations should have "
"been in the same congruence class or reachable through" "a single argument phi"
) ? static_cast<void> (0) : __assert_fail ("(singleReachablePHIPath(FirstMUD, SecondMUD) || ValueToClass.lookup(FirstMUD->getMemoryInst()) == ValueToClass.lookup(SecondMUD->getMemoryInst())) && \"The instructions for these memory operations should have \" \"been in the same congruence class or reachable through\" \"a single argument phi\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2565, __PRETTY_FUNCTION__))
2563 "The instructions for these memory operations should have "(((singleReachablePHIPath(FirstMUD, SecondMUD) || ValueToClass
.lookup(FirstMUD->getMemoryInst()) == ValueToClass.lookup(
SecondMUD->getMemoryInst())) && "The instructions for these memory operations should have "
"been in the same congruence class or reachable through" "a single argument phi"
) ? static_cast<void> (0) : __assert_fail ("(singleReachablePHIPath(FirstMUD, SecondMUD) || ValueToClass.lookup(FirstMUD->getMemoryInst()) == ValueToClass.lookup(SecondMUD->getMemoryInst())) && \"The instructions for these memory operations should have \" \"been in the same congruence class or reachable through\" \"a single argument phi\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2565, __PRETTY_FUNCTION__))
2564 "been in the same congruence class or reachable through"(((singleReachablePHIPath(FirstMUD, SecondMUD) || ValueToClass
.lookup(FirstMUD->getMemoryInst()) == ValueToClass.lookup(
SecondMUD->getMemoryInst())) && "The instructions for these memory operations should have "
"been in the same congruence class or reachable through" "a single argument phi"
) ? static_cast<void> (0) : __assert_fail ("(singleReachablePHIPath(FirstMUD, SecondMUD) || ValueToClass.lookup(FirstMUD->getMemoryInst()) == ValueToClass.lookup(SecondMUD->getMemoryInst())) && \"The instructions for these memory operations should have \" \"been in the same congruence class or reachable through\" \"a single argument phi\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2565, __PRETTY_FUNCTION__))
2565 "a single argument phi")(((singleReachablePHIPath(FirstMUD, SecondMUD) || ValueToClass
.lookup(FirstMUD->getMemoryInst()) == ValueToClass.lookup(
SecondMUD->getMemoryInst())) && "The instructions for these memory operations should have "
"been in the same congruence class or reachable through" "a single argument phi"
) ? static_cast<void> (0) : __assert_fail ("(singleReachablePHIPath(FirstMUD, SecondMUD) || ValueToClass.lookup(FirstMUD->getMemoryInst()) == ValueToClass.lookup(SecondMUD->getMemoryInst())) && \"The instructions for these memory operations should have \" \"been in the same congruence class or reachable through\" \"a single argument phi\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2565, __PRETTY_FUNCTION__))
;
2566 } else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) {
2567 // We can only sanely verify that MemoryDefs in the operand list all have
2568 // the same class.
2569 auto ReachableOperandPred = [&](const Use &U) {
2570 return ReachableEdges.count(
2571 {FirstMP->getIncomingBlock(U), FirstMP->getBlock()}) &&
2572 isa<MemoryDef>(U);
2573
2574 };
2575 // All arguments should in the same class, ignoring unreachable arguments
2576 auto FilteredPhiArgs =
2577 make_filter_range(FirstMP->operands(), ReachableOperandPred);
2578 SmallVector<const CongruenceClass *, 16> PhiOpClasses;
2579 std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(),
2580 std::back_inserter(PhiOpClasses), [&](const Use &U) {
2581 const MemoryDef *MD = cast<MemoryDef>(U);
2582 return ValueToClass.lookup(MD->getMemoryInst());
2583 });
2584 assert(std::equal(PhiOpClasses.begin(), PhiOpClasses.end(),((std::equal(PhiOpClasses.begin(), PhiOpClasses.end(), PhiOpClasses
.begin()) && "All MemoryPhi arguments should be in the same class"
) ? static_cast<void> (0) : __assert_fail ("std::equal(PhiOpClasses.begin(), PhiOpClasses.end(), PhiOpClasses.begin()) && \"All MemoryPhi arguments should be in the same class\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2586, __PRETTY_FUNCTION__))
2585 PhiOpClasses.begin()) &&((std::equal(PhiOpClasses.begin(), PhiOpClasses.end(), PhiOpClasses
.begin()) && "All MemoryPhi arguments should be in the same class"
) ? static_cast<void> (0) : __assert_fail ("std::equal(PhiOpClasses.begin(), PhiOpClasses.end(), PhiOpClasses.begin()) && \"All MemoryPhi arguments should be in the same class\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2586, __PRETTY_FUNCTION__))
2586 "All MemoryPhi arguments should be in the same class")((std::equal(PhiOpClasses.begin(), PhiOpClasses.end(), PhiOpClasses
.begin()) && "All MemoryPhi arguments should be in the same class"
) ? static_cast<void> (0) : __assert_fail ("std::equal(PhiOpClasses.begin(), PhiOpClasses.end(), PhiOpClasses.begin()) && \"All MemoryPhi arguments should be in the same class\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2586, __PRETTY_FUNCTION__))
;
2587 }
2588 }
2589#endif
2590}
2591
2592// Verify that the sparse propagation we did actually found the maximal fixpoint
2593// We do this by storing the value to class mapping, touching all instructions,
2594// and redoing the iteration to see if anything changed.
2595void NewGVN::verifyIterationSettled(Function &F) {
2596#ifndef NDEBUG
2597 DEBUG(dbgs() << "Beginning iteration verification\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Beginning iteration verification\n"
; } } while (false)
;
2598 if (DebugCounter::isCounterSet(VNCounter))
2599 DebugCounter::setCounterValue(VNCounter, StartingVNCounter);
2600
2601 // Note that we have to store the actual classes, as we may change existing
2602 // classes during iteration. This is because our memory iteration propagation
2603 // is not perfect, and so may waste a little work. But it should generate
2604 // exactly the same congruence classes we have now, with different IDs.
2605 std::map<const Value *, CongruenceClass> BeforeIteration;
2606
2607 for (auto &KV : ValueToClass) {
2608 if (auto *I = dyn_cast<Instruction>(KV.first))
2609 // Skip unused/dead instructions.
2610 if (InstrToDFSNum(I) == 0)
2611 continue;
2612 BeforeIteration.insert({KV.first, *KV.second});
2613 }
2614
2615 TouchedInstructions.set();
2616 TouchedInstructions.reset(0);
2617 iterateTouchedInstructions();
2618 DenseSet<std::pair<const CongruenceClass *, const CongruenceClass *>>
2619 EqualClasses;
2620 for (const auto &KV : ValueToClass) {
2621 if (auto *I = dyn_cast<Instruction>(KV.first))
2622 // Skip unused/dead instructions.
2623 if (InstrToDFSNum(I) == 0)
2624 continue;
2625 // We could sink these uses, but i think this adds a bit of clarity here as
2626 // to what we are comparing.
2627 auto *BeforeCC = &BeforeIteration.find(KV.first)->second;
2628 auto *AfterCC = KV.second;
2629 // Note that the classes can't change at this point, so we memoize the set
2630 // that are equal.
2631 if (!EqualClasses.count({BeforeCC, AfterCC})) {
2632 assert(BeforeCC->isEquivalentTo(AfterCC) &&((BeforeCC->isEquivalentTo(AfterCC) && "Value number changed after main loop completed!"
) ? static_cast<void> (0) : __assert_fail ("BeforeCC->isEquivalentTo(AfterCC) && \"Value number changed after main loop completed!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2633, __PRETTY_FUNCTION__))
2633 "Value number changed after main loop completed!")((BeforeCC->isEquivalentTo(AfterCC) && "Value number changed after main loop completed!"
) ? static_cast<void> (0) : __assert_fail ("BeforeCC->isEquivalentTo(AfterCC) && \"Value number changed after main loop completed!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2633, __PRETTY_FUNCTION__))
;
2634 EqualClasses.insert({BeforeCC, AfterCC});
2635 }
2636 }
2637#endif
2638}
2639
2640// Verify that for each store expression in the expression to class mapping,
2641// only the latest appears, and multiple ones do not appear.
2642// Because loads do not use the stored value when doing equality with stores,
2643// if we don't erase the old store expressions from the table, a load can find
2644// a no-longer valid StoreExpression.
2645void NewGVN::verifyStoreExpressions() const {
2646#ifndef NDEBUG
2647 DenseSet<std::pair<const Value *, const Value *>> StoreExpressionSet;
2648 for (const auto &KV : ExpressionToClass) {
2649 if (auto *SE = dyn_cast<StoreExpression>(KV.first)) {
2650 // Make sure a version that will conflict with loads is not already there
2651 auto Res =
2652 StoreExpressionSet.insert({SE->getOperand(0), SE->getMemoryLeader()});
2653 assert(Res.second &&((Res.second && "Stored expression conflict exists in expression table"
) ? static_cast<void> (0) : __assert_fail ("Res.second && \"Stored expression conflict exists in expression table\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2654, __PRETTY_FUNCTION__))
2654 "Stored expression conflict exists in expression table")((Res.second && "Stored expression conflict exists in expression table"
) ? static_cast<void> (0) : __assert_fail ("Res.second && \"Stored expression conflict exists in expression table\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2654, __PRETTY_FUNCTION__))
;
2655 auto *ValueExpr = ValueToExpression.lookup(SE->getStoreInst());
2656 assert(ValueExpr && ValueExpr->equals(*SE) &&((ValueExpr && ValueExpr->equals(*SE) && "StoreExpression in ExpressionToClass is not latest "
"StoreExpression for value") ? static_cast<void> (0) :
__assert_fail ("ValueExpr && ValueExpr->equals(*SE) && \"StoreExpression in ExpressionToClass is not latest \" \"StoreExpression for value\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2658, __PRETTY_FUNCTION__))
2657 "StoreExpression in ExpressionToClass is not latest "((ValueExpr && ValueExpr->equals(*SE) && "StoreExpression in ExpressionToClass is not latest "
"StoreExpression for value") ? static_cast<void> (0) :
__assert_fail ("ValueExpr && ValueExpr->equals(*SE) && \"StoreExpression in ExpressionToClass is not latest \" \"StoreExpression for value\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2658, __PRETTY_FUNCTION__))
2658 "StoreExpression for value")((ValueExpr && ValueExpr->equals(*SE) && "StoreExpression in ExpressionToClass is not latest "
"StoreExpression for value") ? static_cast<void> (0) :
__assert_fail ("ValueExpr && ValueExpr->equals(*SE) && \"StoreExpression in ExpressionToClass is not latest \" \"StoreExpression for value\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2658, __PRETTY_FUNCTION__))
;
2659 }
2660 }
2661#endif
2662}
2663
2664// This is the main value numbering loop, it iterates over the initial touched
2665// instruction set, propagating value numbers, marking things touched, etc,
2666// until the set of touched instructions is completely empty.
2667void NewGVN::iterateTouchedInstructions() {
2668 unsigned int Iterations = 0;
2669 // Figure out where touchedinstructions starts
2670 int FirstInstr = TouchedInstructions.find_first();
2671 // Nothing set, nothing to iterate, just return.
2672 if (FirstInstr == -1)
2673 return;
2674 BasicBlock *LastBlock = getBlockForValue(InstrFromDFSNum(FirstInstr));
2675 while (TouchedInstructions.any()) {
2676 ++Iterations;
2677 // Walk through all the instructions in all the blocks in RPO.
2678 // TODO: As we hit a new block, we should push and pop equalities into a
2679 // table lookupOperandLeader can use, to catch things PredicateInfo
2680 // might miss, like edge-only equivalences.
2681 for (unsigned InstrNum : TouchedInstructions.set_bits()) {
2682
2683 // This instruction was found to be dead. We don't bother looking
2684 // at it again.
2685 if (InstrNum == 0) {
2686 TouchedInstructions.reset(InstrNum);
2687 continue;
2688 }
2689
2690 Value *V = InstrFromDFSNum(InstrNum);
2691 BasicBlock *CurrBlock = getBlockForValue(V);
2692
2693 // If we hit a new block, do reachability processing.
2694 if (CurrBlock != LastBlock) {
2695 LastBlock = CurrBlock;
2696 bool BlockReachable = ReachableBlocks.count(CurrBlock);
2697 const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock);
2698
2699 // If it's not reachable, erase any touched instructions and move on.
2700 if (!BlockReachable) {
2701 TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second);
2702 DEBUG(dbgs() << "Skipping instructions in block "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Skipping instructions in block "
<< getBlockName(CurrBlock) << " because it is unreachable\n"
; } } while (false)
2703 << getBlockName(CurrBlock)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Skipping instructions in block "
<< getBlockName(CurrBlock) << " because it is unreachable\n"
; } } while (false)
2704 << " because it is unreachable\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Skipping instructions in block "
<< getBlockName(CurrBlock) << " because it is unreachable\n"
; } } while (false)
;
2705 continue;
2706 }
2707 updateProcessedCount(CurrBlock);
2708 }
2709
2710 if (auto *MP = dyn_cast<MemoryPhi>(V)) {
2711 DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Processing MemoryPhi " <<
*MP << "\n"; } } while (false)
;
2712 valueNumberMemoryPhi(MP);
2713 } else if (auto *I = dyn_cast<Instruction>(V)) {
2714 valueNumberInstruction(I);
2715 } else {
2716 llvm_unreachable("Should have been a MemoryPhi or Instruction")::llvm::llvm_unreachable_internal("Should have been a MemoryPhi or Instruction"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2716)
;
2717 }
2718 updateProcessedCount(V);
2719 // Reset after processing (because we may mark ourselves as touched when
2720 // we propagate equalities).
2721 TouchedInstructions.reset(InstrNum);
2722 }
2723 }
2724 NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations);
2725}
2726
2727// This is the main transformation entry point.
2728bool NewGVN::runGVN() {
2729 if (DebugCounter::isCounterSet(VNCounter))
2730 StartingVNCounter = DebugCounter::getCounterValue(VNCounter);
2731 bool Changed = false;
2732 NumFuncArgs = F.arg_size();
2733 MSSAWalker = MSSA->getWalker();
2734
2735 // Count number of instructions for sizing of hash tables, and come
2736 // up with a global dfs numbering for instructions.
2737 unsigned ICount = 1;
2738 // Add an empty instruction to account for the fact that we start at 1
2739 DFSToInstr.emplace_back(nullptr);
2740 // Note: We want ideal RPO traversal of the blocks, which is not quite the
2741 // same as dominator tree order, particularly with regard whether backedges
2742 // get visited first or second, given a block with multiple successors.
2743 // If we visit in the wrong order, we will end up performing N times as many
2744 // iterations.
2745 // The dominator tree does guarantee that, for a given dom tree node, it's
2746 // parent must occur before it in the RPO ordering. Thus, we only need to sort
2747 // the siblings.
2748 ReversePostOrderTraversal<Function *> RPOT(&F);
2749 unsigned Counter = 0;
2750 for (auto &B : RPOT) {
2751 auto *Node = DT->getNode(B);
2752 assert(Node && "RPO and Dominator tree should have same reachability")((Node && "RPO and Dominator tree should have same reachability"
) ? static_cast<void> (0) : __assert_fail ("Node && \"RPO and Dominator tree should have same reachability\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2752, __PRETTY_FUNCTION__))
;
2753 RPOOrdering[Node] = ++Counter;
2754 }
2755 // Sort dominator tree children arrays into RPO.
2756 for (auto &B : RPOT) {
2757 auto *Node = DT->getNode(B);
2758 if (Node->getChildren().size() > 1)
2759 std::sort(Node->begin(), Node->end(),
2760 [&](const DomTreeNode *A, const DomTreeNode *B) {
2761 return RPOOrdering[A] < RPOOrdering[B];
2762 });
2763 }
2764
2765 // Now a standard depth first ordering of the domtree is equivalent to RPO.
2766 for (auto DTN : depth_first(DT->getRootNode())) {
2767 BasicBlock *B = DTN->getBlock();
2768 const auto &BlockRange = assignDFSNumbers(B, ICount);
2769 BlockInstRange.insert({B, BlockRange});
2770 ICount += BlockRange.second - BlockRange.first;
2771 }
2772
2773 TouchedInstructions.resize(ICount);
2774 // Ensure we don't end up resizing the expressionToClass map, as
2775 // that can be quite expensive. At most, we have one expression per
2776 // instruction.
2777 ExpressionToClass.reserve(ICount);
2778
2779 // Initialize the touched instructions to include the entry block.
2780 const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock());
2781 TouchedInstructions.set(InstRange.first, InstRange.second);
2782 ReachableBlocks.insert(&F.getEntryBlock());
2783
2784 initializeCongruenceClasses(F);
2785 iterateTouchedInstructions();
2786 verifyMemoryCongruency();
2787 verifyIterationSettled(F);
2788 verifyStoreExpressions();
2789
2790 Changed |= eliminateInstructions(F);
2791
2792 // Delete all instructions marked for deletion.
2793 for (Instruction *ToErase : InstructionsToErase) {
2794 if (!ToErase->use_empty())
2795 ToErase->replaceAllUsesWith(UndefValue::get(ToErase->getType()));
2796
2797 ToErase->eraseFromParent();
2798 }
2799
2800 // Delete all unreachable blocks.
2801 auto UnreachableBlockPred = [&](const BasicBlock &BB) {
2802 return !ReachableBlocks.count(&BB);
2803 };
2804
2805 for (auto &BB : make_filter_range(F, UnreachableBlockPred)) {
2806 DEBUG(dbgs() << "We believe block " << getBlockName(&BB)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "We believe block " << getBlockName
(&BB) << " is unreachable\n"; } } while (false)
2807 << " is unreachable\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "We believe block " << getBlockName
(&BB) << " is unreachable\n"; } } while (false)
;
2808 deleteInstructionsInBlock(&BB);
2809 Changed = true;
2810 }
2811
2812 cleanupTables();
2813 return Changed;
2814}
2815
2816// Return true if V is a value that will always be available (IE can
2817// be placed anywhere) in the function. We don't do globals here
2818// because they are often worse to put in place.
2819// TODO: Separate cost from availability
2820static bool alwaysAvailable(Value *V) {
2821 return isa<Constant>(V) || isa<Argument>(V);
2822}
2823
2824struct NewGVN::ValueDFS {
2825 int DFSIn = 0;
2826 int DFSOut = 0;
2827 int LocalNum = 0;
2828 // Only one of Def and U will be set.
2829 // The bool in the Def tells us whether the Def is the stored value of a
2830 // store.
2831 PointerIntPair<Value *, 1, bool> Def;
2832 Use *U = nullptr;
2833 bool operator<(const ValueDFS &Other) const {
2834 // It's not enough that any given field be less than - we have sets
2835 // of fields that need to be evaluated together to give a proper ordering.
2836 // For example, if you have;
2837 // DFS (1, 3)
2838 // Val 0
2839 // DFS (1, 2)
2840 // Val 50
2841 // We want the second to be less than the first, but if we just go field
2842 // by field, we will get to Val 0 < Val 50 and say the first is less than
2843 // the second. We only want it to be less than if the DFS orders are equal.
2844 //
2845 // Each LLVM instruction only produces one value, and thus the lowest-level
2846 // differentiator that really matters for the stack (and what we use as as a
2847 // replacement) is the local dfs number.
2848 // Everything else in the structure is instruction level, and only affects
2849 // the order in which we will replace operands of a given instruction.
2850 //
2851 // For a given instruction (IE things with equal dfsin, dfsout, localnum),
2852 // the order of replacement of uses does not matter.
2853 // IE given,
2854 // a = 5
2855 // b = a + a
2856 // When you hit b, you will have two valuedfs with the same dfsin, out, and
2857 // localnum.
2858 // The .val will be the same as well.
2859 // The .u's will be different.
2860 // You will replace both, and it does not matter what order you replace them
2861 // in (IE whether you replace operand 2, then operand 1, or operand 1, then
2862 // operand 2).
2863 // Similarly for the case of same dfsin, dfsout, localnum, but different
2864 // .val's
2865 // a = 5
2866 // b = 6
2867 // c = a + b
2868 // in c, we will a valuedfs for a, and one for b,with everything the same
2869 // but .val and .u.
2870 // It does not matter what order we replace these operands in.
2871 // You will always end up with the same IR, and this is guaranteed.
2872 return std::tie(DFSIn, DFSOut, LocalNum, Def, U) <
2873 std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Def,
2874 Other.U);
2875 }
2876};
2877
2878// This function converts the set of members for a congruence class from values,
2879// to sets of defs and uses with associated DFS info. The total number of
2880// reachable uses for each value is stored in UseCount, and instructions that
2881// seem
2882// dead (have no non-dead uses) are stored in ProbablyDead.
2883void NewGVN::convertClassToDFSOrdered(
2884 const CongruenceClass &Dense, SmallVectorImpl<ValueDFS> &DFSOrderedSet,
2885 DenseMap<const Value *, unsigned int> &UseCounts,
2886 SmallPtrSetImpl<Instruction *> &ProbablyDead) const {
2887 for (auto D : Dense) {
2888 // First add the value.
2889 BasicBlock *BB = getBlockForValue(D);
2890 // Constants are handled prior to ever calling this function, so
2891 // we should only be left with instructions as members.
2892 assert(BB && "Should have figured out a basic block for value")((BB && "Should have figured out a basic block for value"
) ? static_cast<void> (0) : __assert_fail ("BB && \"Should have figured out a basic block for value\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2892, __PRETTY_FUNCTION__))
;
2893 ValueDFS VDDef;
2894 DomTreeNode *DomNode = DT->getNode(BB);
2895 VDDef.DFSIn = DomNode->getDFSNumIn();
2896 VDDef.DFSOut = DomNode->getDFSNumOut();
2897 // If it's a store, use the leader of the value operand, if it's always
2898 // available, or the value operand. TODO: We could do dominance checks to
2899 // find a dominating leader, but not worth it ATM.
2900 if (auto *SI = dyn_cast<StoreInst>(D)) {
2901 auto Leader = lookupOperandLeader(SI->getValueOperand());
2902 if (alwaysAvailable(Leader)) {
2903 VDDef.Def.setPointer(Leader);
2904 } else {
2905 VDDef.Def.setPointer(SI->getValueOperand());
2906 VDDef.Def.setInt(true);
2907 }
2908 } else {
2909 VDDef.Def.setPointer(D);
2910 }
2911 assert(isa<Instruction>(D) &&((isa<Instruction>(D) && "The dense set member should always be an instruction"
) ? static_cast<void> (0) : __assert_fail ("isa<Instruction>(D) && \"The dense set member should always be an instruction\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2912, __PRETTY_FUNCTION__))
2912 "The dense set member should always be an instruction")((isa<Instruction>(D) && "The dense set member should always be an instruction"
) ? static_cast<void> (0) : __assert_fail ("isa<Instruction>(D) && \"The dense set member should always be an instruction\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2912, __PRETTY_FUNCTION__))
;
2913 VDDef.LocalNum = InstrToDFSNum(D);
2914 DFSOrderedSet.emplace_back(VDDef);
2915 Instruction *Def = cast<Instruction>(D);
2916 unsigned int UseCount = 0;
2917 // Now add the uses.
2918 for (auto &U : Def->uses()) {
2919 if (auto *I = dyn_cast<Instruction>(U.getUser())) {
2920 // Don't try to replace into dead uses
2921 if (InstructionsToErase.count(I))
2922 continue;
2923 ValueDFS VDUse;
2924 // Put the phi node uses in the incoming block.
2925 BasicBlock *IBlock;
2926 if (auto *P = dyn_cast<PHINode>(I)) {
2927 IBlock = P->getIncomingBlock(U);
2928 // Make phi node users appear last in the incoming block
2929 // they are from.
2930 VDUse.LocalNum = InstrDFS.size() + 1;
2931 } else {
2932 IBlock = I->getParent();
2933 VDUse.LocalNum = InstrToDFSNum(I);
2934 }
2935
2936 // Skip uses in unreachable blocks, as we're going
2937 // to delete them.
2938 if (ReachableBlocks.count(IBlock) == 0)
2939 continue;
2940
2941 DomTreeNode *DomNode = DT->getNode(IBlock);
2942 VDUse.DFSIn = DomNode->getDFSNumIn();
2943 VDUse.DFSOut = DomNode->getDFSNumOut();
2944 VDUse.U = &U;
2945 ++UseCount;
2946 DFSOrderedSet.emplace_back(VDUse);
2947 }
2948 }
2949
2950 // If there are no uses, it's probably dead (but it may have side-effects,
2951 // so not definitely dead. Otherwise, store the number of uses so we can
2952 // track if it becomes dead later).
2953 if (UseCount == 0)
2954 ProbablyDead.insert(Def);
2955 else
2956 UseCounts[Def] = UseCount;
2957 }
2958}
2959
2960// This function converts the set of members for a congruence class from values,
2961// to the set of defs for loads and stores, with associated DFS info.
2962void NewGVN::convertClassToLoadsAndStores(
2963 const CongruenceClass &Dense,
2964 SmallVectorImpl<ValueDFS> &LoadsAndStores) const {
2965 for (auto D : Dense) {
2966 if (!isa<LoadInst>(D) && !isa<StoreInst>(D))
2967 continue;
2968
2969 BasicBlock *BB = getBlockForValue(D);
2970 ValueDFS VD;
2971 DomTreeNode *DomNode = DT->getNode(BB);
2972 VD.DFSIn = DomNode->getDFSNumIn();
2973 VD.DFSOut = DomNode->getDFSNumOut();
2974 VD.Def.setPointer(D);
2975
2976 // If it's an instruction, use the real local dfs number.
2977 if (auto *I = dyn_cast<Instruction>(D))
2978 VD.LocalNum = InstrToDFSNum(I);
2979 else
2980 llvm_unreachable("Should have been an instruction")::llvm::llvm_unreachable_internal("Should have been an instruction"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 2980)
;
2981
2982 LoadsAndStores.emplace_back(VD);
2983 }
2984}
2985
2986static void patchReplacementInstruction(Instruction *I, Value *Repl) {
2987 auto *ReplInst = dyn_cast<Instruction>(Repl);
2988 if (!ReplInst)
2989 return;
2990
2991 // Patch the replacement so that it is not more restrictive than the value
2992 // being replaced.
2993 // Note that if 'I' is a load being replaced by some operation,
2994 // for example, by an arithmetic operation, then andIRFlags()
2995 // would just erase all math flags from the original arithmetic
2996 // operation, which is clearly not wanted and not needed.
2997 if (!isa<LoadInst>(I))
2998 ReplInst->andIRFlags(I);
2999
3000 // FIXME: If both the original and replacement value are part of the
3001 // same control-flow region (meaning that the execution of one
3002 // guarantees the execution of the other), then we can combine the
3003 // noalias scopes here and do better than the general conservative
3004 // answer used in combineMetadata().
3005
3006 // In general, GVN unifies expressions over different control-flow
3007 // regions, and so we need a conservative combination of the noalias
3008 // scopes.
3009 static const unsigned KnownIDs[] = {
3010 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope,
3011 LLVMContext::MD_noalias, LLVMContext::MD_range,
3012 LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load,
3013 LLVMContext::MD_invariant_group};
3014 combineMetadata(ReplInst, I, KnownIDs);
3015}
3016
3017static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) {
3018 patchReplacementInstruction(I, Repl);
3019 I->replaceAllUsesWith(Repl);
3020}
3021
3022void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) {
3023 DEBUG(dbgs() << " BasicBlock Dead:" << *BB)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << " BasicBlock Dead:" << *
BB; } } while (false)
;
3024 ++NumGVNBlocksDeleted;
3025
3026 // Delete the instructions backwards, as it has a reduced likelihood of having
3027 // to update as many def-use and use-def chains. Start after the terminator.
3028 auto StartPoint = BB->rbegin();
3029 ++StartPoint;
3030 // Note that we explicitly recalculate BB->rend() on each iteration,
3031 // as it may change when we remove the first instruction.
3032 for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) {
3033 Instruction &Inst = *I++;
3034 if (!Inst.use_empty())
3035 Inst.replaceAllUsesWith(UndefValue::get(Inst.getType()));
3036 if (isa<LandingPadInst>(Inst))
3037 continue;
3038
3039 Inst.eraseFromParent();
3040 ++NumGVNInstrDeleted;
3041 }
3042 // Now insert something that simplifycfg will turn into an unreachable.
3043 Type *Int8Ty = Type::getInt8Ty(BB->getContext());
3044 new StoreInst(UndefValue::get(Int8Ty),
3045 Constant::getNullValue(Int8Ty->getPointerTo()),
3046 BB->getTerminator());
3047}
3048
3049void NewGVN::markInstructionForDeletion(Instruction *I) {
3050 DEBUG(dbgs() << "Marking " << *I << " for deletion\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Marking " << *I <<
" for deletion\n"; } } while (false)
;
3051 InstructionsToErase.insert(I);
3052}
3053
3054void NewGVN::replaceInstruction(Instruction *I, Value *V) {
3055
3056 DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Replacing " << *I <<
" with " << *V << "\n"; } } while (false)
;
3057 patchAndReplaceAllUsesWith(I, V);
3058 // We save the actual erasing to avoid invalidating memory
3059 // dependencies until we are done with everything.
3060 markInstructionForDeletion(I);
3061}
3062
3063namespace {
3064
3065// This is a stack that contains both the value and dfs info of where
3066// that value is valid.
3067class ValueDFSStack {
3068public:
3069 Value *back() const { return ValueStack.back(); }
3070 std::pair<int, int> dfs_back() const { return DFSStack.back(); }
3071
3072 void push_back(Value *V, int DFSIn, int DFSOut) {
3073 ValueStack.emplace_back(V);
3074 DFSStack.emplace_back(DFSIn, DFSOut);
3075 }
3076 bool empty() const { return DFSStack.empty(); }
3077 bool isInScope(int DFSIn, int DFSOut) const {
3078 if (empty())
3079 return false;
3080 return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second;
3081 }
3082
3083 void popUntilDFSScope(int DFSIn, int DFSOut) {
3084
3085 // These two should always be in sync at this point.
3086 assert(ValueStack.size() == DFSStack.size() &&((ValueStack.size() == DFSStack.size() && "Mismatch between ValueStack and DFSStack"
) ? static_cast<void> (0) : __assert_fail ("ValueStack.size() == DFSStack.size() && \"Mismatch between ValueStack and DFSStack\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 3087, __PRETTY_FUNCTION__))
3087 "Mismatch between ValueStack and DFSStack")((ValueStack.size() == DFSStack.size() && "Mismatch between ValueStack and DFSStack"
) ? static_cast<void> (0) : __assert_fail ("ValueStack.size() == DFSStack.size() && \"Mismatch between ValueStack and DFSStack\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 3087, __PRETTY_FUNCTION__))
;
3088 while (
3089 !DFSStack.empty() &&
3090 !(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) {
3091 DFSStack.pop_back();
3092 ValueStack.pop_back();
3093 }
3094 }
3095
3096private:
3097 SmallVector<Value *, 8> ValueStack;
3098 SmallVector<std::pair<int, int>, 8> DFSStack;
3099};
3100}
3101
3102bool NewGVN::eliminateInstructions(Function &F) {
3103 // This is a non-standard eliminator. The normal way to eliminate is
3104 // to walk the dominator tree in order, keeping track of available
3105 // values, and eliminating them. However, this is mildly
3106 // pointless. It requires doing lookups on every instruction,
3107 // regardless of whether we will ever eliminate it. For
3108 // instructions part of most singleton congruence classes, we know we
3109 // will never eliminate them.
3110
3111 // Instead, this eliminator looks at the congruence classes directly, sorts
3112 // them into a DFS ordering of the dominator tree, and then we just
3113 // perform elimination straight on the sets by walking the congruence
3114 // class member uses in order, and eliminate the ones dominated by the
3115 // last member. This is worst case O(E log E) where E = number of
3116 // instructions in a single congruence class. In theory, this is all
3117 // instructions. In practice, it is much faster, as most instructions are
3118 // either in singleton congruence classes or can't possibly be eliminated
3119 // anyway (if there are no overlapping DFS ranges in class).
3120 // When we find something not dominated, it becomes the new leader
3121 // for elimination purposes.
3122 // TODO: If we wanted to be faster, We could remove any members with no
3123 // overlapping ranges while sorting, as we will never eliminate anything
3124 // with those members, as they don't dominate anything else in our set.
3125
3126 bool AnythingReplaced = false;
3127
3128 // Since we are going to walk the domtree anyway, and we can't guarantee the
3129 // DFS numbers are updated, we compute some ourselves.
3130 DT->updateDFSNumbers();
3131
3132 for (auto &B : F) {
3133 if (!ReachableBlocks.count(&B)) {
3134 for (const auto S : successors(&B)) {
3135 for (auto II = S->begin(); isa<PHINode>(II); ++II) {
3136 auto &Phi = cast<PHINode>(*II);
3137 DEBUG(dbgs() << "Replacing incoming value of " << *II << " for block "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Replacing incoming value of " <<
*II << " for block " << getBlockName(&B) <<
" with undef due to it being unreachable\n"; } } while (false
)
3138 << getBlockName(&B)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Replacing incoming value of " <<
*II << " for block " << getBlockName(&B) <<
" with undef due to it being unreachable\n"; } } while (false
)
3139 << " with undef due to it being unreachable\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Replacing incoming value of " <<
*II << " for block " << getBlockName(&B) <<
" with undef due to it being unreachable\n"; } } while (false
)
;
3140 for (auto &Operand : Phi.incoming_values())
3141 if (Phi.getIncomingBlock(Operand) == &B)
3142 Operand.set(UndefValue::get(Phi.getType()));
3143 }
3144 }
3145 }
3146 }
3147
3148 // Map to store the use counts
3149 DenseMap<const Value *, unsigned int> UseCounts;
3150 for (CongruenceClass *CC : reverse(CongruenceClasses)) {
3151 // Track the equivalent store info so we can decide whether to try
3152 // dead store elimination.
3153 SmallVector<ValueDFS, 8> PossibleDeadStores;
3154 SmallPtrSet<Instruction *, 8> ProbablyDead;
3155 if (CC->isDead() || CC->empty())
3156 continue;
3157 // Everything still in the TOP class is unreachable or dead.
3158 if (CC == TOPClass) {
3159#ifndef NDEBUG
3160 for (auto M : *CC)
3161 assert((!ReachableBlocks.count(cast<Instruction>(M)->getParent()) ||(((!ReachableBlocks.count(cast<Instruction>(M)->getParent
()) || InstructionsToErase.count(cast<Instruction>(M)))
&& "Everything in TOP should be unreachable or dead at this "
"point") ? static_cast<void> (0) : __assert_fail ("(!ReachableBlocks.count(cast<Instruction>(M)->getParent()) || InstructionsToErase.count(cast<Instruction>(M))) && \"Everything in TOP should be unreachable or dead at this \" \"point\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 3164, __PRETTY_FUNCTION__))
3162 InstructionsToErase.count(cast<Instruction>(M))) &&(((!ReachableBlocks.count(cast<Instruction>(M)->getParent
()) || InstructionsToErase.count(cast<Instruction>(M)))
&& "Everything in TOP should be unreachable or dead at this "
"point") ? static_cast<void> (0) : __assert_fail ("(!ReachableBlocks.count(cast<Instruction>(M)->getParent()) || InstructionsToErase.count(cast<Instruction>(M))) && \"Everything in TOP should be unreachable or dead at this \" \"point\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 3164, __PRETTY_FUNCTION__))
3163 "Everything in TOP should be unreachable or dead at this "(((!ReachableBlocks.count(cast<Instruction>(M)->getParent
()) || InstructionsToErase.count(cast<Instruction>(M)))
&& "Everything in TOP should be unreachable or dead at this "
"point") ? static_cast<void> (0) : __assert_fail ("(!ReachableBlocks.count(cast<Instruction>(M)->getParent()) || InstructionsToErase.count(cast<Instruction>(M))) && \"Everything in TOP should be unreachable or dead at this \" \"point\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 3164, __PRETTY_FUNCTION__))
3164 "point")(((!ReachableBlocks.count(cast<Instruction>(M)->getParent
()) || InstructionsToErase.count(cast<Instruction>(M)))
&& "Everything in TOP should be unreachable or dead at this "
"point") ? static_cast<void> (0) : __assert_fail ("(!ReachableBlocks.count(cast<Instruction>(M)->getParent()) || InstructionsToErase.count(cast<Instruction>(M))) && \"Everything in TOP should be unreachable or dead at this \" \"point\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 3164, __PRETTY_FUNCTION__))
;
3165#endif
3166 continue;
3167 }
3168
3169 assert(CC->getLeader() && "We should have had a leader")((CC->getLeader() && "We should have had a leader"
) ? static_cast<void> (0) : __assert_fail ("CC->getLeader() && \"We should have had a leader\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 3169, __PRETTY_FUNCTION__))
;
3170 // If this is a leader that is always available, and it's a
3171 // constant or has no equivalences, just replace everything with
3172 // it. We then update the congruence class with whatever members
3173 // are left.
3174 Value *Leader =
3175 CC->getStoredValue() ? CC->getStoredValue() : CC->getLeader();
3176 if (alwaysAvailable(Leader)) {
3177 CongruenceClass::MemberSet MembersLeft;
3178 for (auto M : *CC) {
3179 Value *Member = M;
3180 // Void things have no uses we can replace.
3181 if (Member == Leader || !isa<Instruction>(Member) ||
3182 Member->getType()->isVoidTy()) {
3183 MembersLeft.insert(Member);
3184 continue;
3185 }
3186 DEBUG(dbgs() << "Found replacement " << *(Leader) << " for " << *Memberdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Found replacement " << *
(Leader) << " for " << *Member << "\n"; } }
while (false)
3187 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Found replacement " << *
(Leader) << " for " << *Member << "\n"; } }
while (false)
;
3188 auto *I = cast<Instruction>(Member);
3189 assert(Leader != I && "About to accidentally remove our leader")((Leader != I && "About to accidentally remove our leader"
) ? static_cast<void> (0) : __assert_fail ("Leader != I && \"About to accidentally remove our leader\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 3189, __PRETTY_FUNCTION__))
;
3190 replaceInstruction(I, Leader);
3191 AnythingReplaced = true;
3192 }
3193 CC->swap(MembersLeft);
3194 } else {
3195 DEBUG(dbgs() << "Eliminating in congruence class " << CC->getID()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Eliminating in congruence class "
<< CC->getID() << "\n"; } } while (false)
3196 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Eliminating in congruence class "
<< CC->getID() << "\n"; } } while (false)
;
3197 // If this is a singleton, we can skip it.
3198 if (CC->size() != 1) {
3199 // This is a stack because equality replacement/etc may place
3200 // constants in the middle of the member list, and we want to use
3201 // those constant values in preference to the current leader, over
3202 // the scope of those constants.
3203 ValueDFSStack EliminationStack;
3204
3205 // Convert the members to DFS ordered sets and then merge them.
3206 SmallVector<ValueDFS, 8> DFSOrderedSet;
3207 convertClassToDFSOrdered(*CC, DFSOrderedSet, UseCounts, ProbablyDead);
3208
3209 // Sort the whole thing.
3210 std::sort(DFSOrderedSet.begin(), DFSOrderedSet.end());
3211 for (auto &VD : DFSOrderedSet) {
3212 int MemberDFSIn = VD.DFSIn;
3213 int MemberDFSOut = VD.DFSOut;
3214 Value *Def = VD.Def.getPointer();
3215 bool FromStore = VD.Def.getInt();
3216 Use *U = VD.U;
3217 // We ignore void things because we can't get a value from them.
3218 if (Def && Def->getType()->isVoidTy())
3219 continue;
3220
3221 if (EliminationStack.empty()) {
3222 DEBUG(dbgs() << "Elimination Stack is empty\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Elimination Stack is empty\n";
} } while (false)
;
3223 } else {
3224 DEBUG(dbgs() << "Elimination Stack Top DFS numbers are ("do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Elimination Stack Top DFS numbers are ("
<< EliminationStack.dfs_back().first << "," <<
EliminationStack.dfs_back().second << ")\n"; } } while
(false)
3225 << EliminationStack.dfs_back().first << ","do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Elimination Stack Top DFS numbers are ("
<< EliminationStack.dfs_back().first << "," <<
EliminationStack.dfs_back().second << ")\n"; } } while
(false)
3226 << EliminationStack.dfs_back().second << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Elimination Stack Top DFS numbers are ("
<< EliminationStack.dfs_back().first << "," <<
EliminationStack.dfs_back().second << ")\n"; } } while
(false)
;
3227 }
3228
3229 DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << ","do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Current DFS numbers are (" <<
MemberDFSIn << "," << MemberDFSOut << ")\n"
; } } while (false)
3230 << MemberDFSOut << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Current DFS numbers are (" <<
MemberDFSIn << "," << MemberDFSOut << ")\n"
; } } while (false)
;
3231 // First, we see if we are out of scope or empty. If so,
3232 // and there equivalences, we try to replace the top of
3233 // stack with equivalences (if it's on the stack, it must
3234 // not have been eliminated yet).
3235 // Then we synchronize to our current scope, by
3236 // popping until we are back within a DFS scope that
3237 // dominates the current member.
3238 // Then, what happens depends on a few factors
3239 // If the stack is now empty, we need to push
3240 // If we have a constant or a local equivalence we want to
3241 // start using, we also push.
3242 // Otherwise, we walk along, processing members who are
3243 // dominated by this scope, and eliminate them.
3244 bool ShouldPush = Def && EliminationStack.empty();
3245 bool OutOfScope =
3246 !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut);
3247
3248 if (OutOfScope || ShouldPush) {
3249 // Sync to our current scope.
3250 EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
3251 bool ShouldPush = Def && EliminationStack.empty();
3252 if (ShouldPush) {
3253 EliminationStack.push_back(Def, MemberDFSIn, MemberDFSOut);
3254 }
3255 }
3256
3257 // Skip the Def's, we only want to eliminate on their uses. But mark
3258 // dominated defs as dead.
3259 if (Def) {
3260 // For anything in this case, what and how we value number
3261 // guarantees that any side-effets that would have occurred (ie
3262 // throwing, etc) can be proven to either still occur (because it's
3263 // dominated by something that has the same side-effects), or never
3264 // occur. Otherwise, we would not have been able to prove it value
3265 // equivalent to something else. For these things, we can just mark
3266 // it all dead. Note that this is different from the "ProbablyDead"
3267 // set, which may not be dominated by anything, and thus, are only
3268 // easy to prove dead if they are also side-effect free. Note that
3269 // because stores are put in terms of the stored value, we skip
3270 // stored values here. If the stored value is really dead, it will
3271 // still be marked for deletion when we process it in its own class.
3272 if (!EliminationStack.empty() && Def != EliminationStack.back() &&
3273 isa<Instruction>(Def) && !FromStore)
3274 markInstructionForDeletion(cast<Instruction>(Def));
3275 continue;
3276 }
3277 // At this point, we know it is a Use we are trying to possibly
3278 // replace.
3279
3280 assert(isa<Instruction>(U->get()) &&((isa<Instruction>(U->get()) && "Current def should have been an instruction"
) ? static_cast<void> (0) : __assert_fail ("isa<Instruction>(U->get()) && \"Current def should have been an instruction\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 3281, __PRETTY_FUNCTION__))
3281 "Current def should have been an instruction")((isa<Instruction>(U->get()) && "Current def should have been an instruction"
) ? static_cast<void> (0) : __assert_fail ("isa<Instruction>(U->get()) && \"Current def should have been an instruction\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 3281, __PRETTY_FUNCTION__))
;
3282 assert(isa<Instruction>(U->getUser()) &&((isa<Instruction>(U->getUser()) && "Current user should have been an instruction"
) ? static_cast<void> (0) : __assert_fail ("isa<Instruction>(U->getUser()) && \"Current user should have been an instruction\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 3283, __PRETTY_FUNCTION__))
3283 "Current user should have been an instruction")((isa<Instruction>(U->getUser()) && "Current user should have been an instruction"
) ? static_cast<void> (0) : __assert_fail ("isa<Instruction>(U->getUser()) && \"Current user should have been an instruction\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 3283, __PRETTY_FUNCTION__))
;
3284
3285 // If the thing we are replacing into is already marked to be dead,
3286 // this use is dead. Note that this is true regardless of whether
3287 // we have anything dominating the use or not. We do this here
3288 // because we are already walking all the uses anyway.
3289 Instruction *InstUse = cast<Instruction>(U->getUser());
3290 if (InstructionsToErase.count(InstUse)) {
3291 auto &UseCount = UseCounts[U->get()];
3292 if (--UseCount == 0) {
3293 ProbablyDead.insert(cast<Instruction>(U->get()));
3294 }
3295 }
3296
3297 // If we get to this point, and the stack is empty we must have a use
3298 // with nothing we can use to eliminate this use, so just skip it.
3299 if (EliminationStack.empty())
3300 continue;
3301
3302 Value *DominatingLeader = EliminationStack.back();
3303
3304 // Don't replace our existing users with ourselves.
3305 if (U->get() == DominatingLeader)
3306 continue;
3307 DEBUG(dbgs() << "Found replacement " << *DominatingLeader << " for "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Found replacement " << *
DominatingLeader << " for " << *U->get() <<
" in " << *(U->getUser()) << "\n"; } } while (
false)
3308 << *U->get() << " in " << *(U->getUser()) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Found replacement " << *
DominatingLeader << " for " << *U->get() <<
" in " << *(U->getUser()) << "\n"; } } while (
false)
;
3309
3310 // If we replaced something in an instruction, handle the patching of
3311 // metadata. Skip this if we are replacing predicateinfo with its
3312 // original operand, as we already know we can just drop it.
3313 auto *ReplacedInst = cast<Instruction>(U->get());
3314 auto *PI = PredInfo->getPredicateInfoFor(ReplacedInst);
3315 if (!PI || DominatingLeader != PI->OriginalOp)
3316 patchReplacementInstruction(ReplacedInst, DominatingLeader);
3317 U->set(DominatingLeader);
3318 // This is now a use of the dominating leader, which means if the
3319 // dominating leader was dead, it's now live!
3320 auto &LeaderUseCount = UseCounts[DominatingLeader];
3321 // It's about to be alive again.
3322 if (LeaderUseCount == 0 && isa<Instruction>(DominatingLeader))
3323 ProbablyDead.erase(cast<Instruction>(DominatingLeader));
3324 ++LeaderUseCount;
3325 AnythingReplaced = true;
3326 }
3327 }
3328 }
3329
3330 // At this point, anything still in the ProbablyDead set is actually dead if
3331 // would be trivially dead.
3332 for (auto *I : ProbablyDead)
3333 if (wouldInstructionBeTriviallyDead(I))
3334 markInstructionForDeletion(I);
3335
3336 // Cleanup the congruence class.
3337 CongruenceClass::MemberSet MembersLeft;
3338 for (auto *Member : *CC)
3339 if (!isa<Instruction>(Member) ||
3340 !InstructionsToErase.count(cast<Instruction>(Member)))
3341 MembersLeft.insert(Member);
3342 CC->swap(MembersLeft);
3343
3344 // If we have possible dead stores to look at, try to eliminate them.
3345 if (CC->getStoreCount() > 0) {
3346 convertClassToLoadsAndStores(*CC, PossibleDeadStores);
3347 std::sort(PossibleDeadStores.begin(), PossibleDeadStores.end());
3348 ValueDFSStack EliminationStack;
3349 for (auto &VD : PossibleDeadStores) {
3350 int MemberDFSIn = VD.DFSIn;
3351 int MemberDFSOut = VD.DFSOut;
3352 Instruction *Member = cast<Instruction>(VD.Def.getPointer());
3353 if (EliminationStack.empty() ||
3354 !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut)) {
3355 // Sync to our current scope.
3356 EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut);
3357 if (EliminationStack.empty()) {
3358 EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut);
3359 continue;
3360 }
3361 }
3362 // We already did load elimination, so nothing to do here.
3363 if (isa<LoadInst>(Member))
3364 continue;
3365 assert(!EliminationStack.empty())((!EliminationStack.empty()) ? static_cast<void> (0) : __assert_fail
("!EliminationStack.empty()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 3365, __PRETTY_FUNCTION__))
;
3366 Instruction *Leader = cast<Instruction>(EliminationStack.back());
3367 (void)Leader;
3368 assert(DT->dominates(Leader->getParent(), Member->getParent()))((DT->dominates(Leader->getParent(), Member->getParent
())) ? static_cast<void> (0) : __assert_fail ("DT->dominates(Leader->getParent(), Member->getParent())"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn303373/lib/Transforms/Scalar/NewGVN.cpp"
, 3368, __PRETTY_FUNCTION__))
;
3369 // Member is dominater by Leader, and thus dead
3370 DEBUG(dbgs() << "Marking dead store " << *Memberdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Marking dead store " << *
Member << " that is dominated by " << *Leader <<
"\n"; } } while (false)
3371 << " that is dominated by " << *Leader << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("newgvn")) { dbgs() << "Marking dead store " << *
Member << " that is dominated by " << *Leader <<
"\n"; } } while (false)
;
3372 markInstructionForDeletion(Member);
3373 CC->erase(Member);
3374 ++NumGVNDeadStores;
3375 }
3376 }
3377 }
3378
3379 return AnythingReplaced;
3380}
3381
3382// This function provides global ranking of operations so that we can place them
3383// in a canonical order. Note that rank alone is not necessarily enough for a
3384// complete ordering, as constants all have the same rank. However, generally,
3385// we will simplify an operation with all constants so that it doesn't matter
3386// what order they appear in.
3387unsigned int NewGVN::getRank(const Value *V) const {
3388 // Prefer undef to anything else
3389 if (isa<UndefValue>(V))
3390 return 0;
3391 if (isa<Constant>(V))
3392 return 1;
3393 else if (auto *A = dyn_cast<Argument>(V))
3394 return 2 + A->getArgNo();
3395
3396 // Need to shift the instruction DFS by number of arguments + 3 to account for
3397 // the constant and argument ranking above.
3398 unsigned Result = InstrToDFSNum(V);
3399 if (Result > 0)
3400 return 3 + NumFuncArgs + Result;
3401 // Unreachable or something else, just return a really large number.
3402 return ~0;
3403}
3404
3405// This is a function that says whether two commutative operations should
3406// have their order swapped when canonicalizing.
3407bool NewGVN::shouldSwapOperands(const Value *A, const Value *B) const {
3408 // Because we only care about a total ordering, and don't rewrite expressions
3409 // in this order, we order by rank, which will give a strict weak ordering to
3410 // everything but constants, and then we order by pointer address.
3411 return std::make_pair(getRank(A), A) > std::make_pair(getRank(B), B);
3412}
3413
3414class NewGVNLegacyPass : public FunctionPass {
3415public:
3416 static char ID; // Pass identification, replacement for typeid.
3417 NewGVNLegacyPass() : FunctionPass(ID) {
3418 initializeNewGVNLegacyPassPass(*PassRegistry::getPassRegistry());
3419 }
3420 bool runOnFunction(Function &F) override;
3421
3422private:
3423 void getAnalysisUsage(AnalysisUsage &AU) const override {
3424 AU.addRequired<AssumptionCacheTracker>();
3425 AU.addRequired<DominatorTreeWrapperPass>();
3426 AU.addRequired<TargetLibraryInfoWrapperPass>();
3427 AU.addRequired<MemorySSAWrapperPass>();
3428 AU.addRequired<AAResultsWrapperPass>();
3429 AU.addPreserved<DominatorTreeWrapperPass>();
3430 AU.addPreserved<GlobalsAAWrapperPass>();
3431 }
3432};
3433
3434bool NewGVNLegacyPass::runOnFunction(Function &F) {
3435 if (skipFunction(F))
3436 return false;
3437 return NewGVN(F, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
3438 &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
3439 &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
3440 &getAnalysis<AAResultsWrapperPass>().getAAResults(),
3441 &getAnalysis<MemorySSAWrapperPass>().getMSSA(),
3442 F.getParent()->getDataLayout())
3443 .runGVN();
3444}
3445
3446INITIALIZE_PASS_BEGIN(NewGVNLegacyPass, "newgvn", "Global Value Numbering",static void *initializeNewGVNLegacyPassPassOnce(PassRegistry &
Registry) {
3447 false, false)static void *initializeNewGVNLegacyPassPassOnce(PassRegistry &
Registry) {
3448INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)initializeAssumptionCacheTrackerPass(Registry);
3449INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)initializeMemorySSAWrapperPassPass(Registry);
3450INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)initializeDominatorTreeWrapperPassPass(Registry);
3451INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry);
3452INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)initializeAAResultsWrapperPassPass(Registry);
3453INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)initializeGlobalsAAWrapperPassPass(Registry);
3454INITIALIZE_PASS_END(NewGVNLegacyPass, "newgvn", "Global Value Numbering", false,PassInfo *PI = new PassInfo( "Global Value Numbering", "newgvn"
, &NewGVNLegacyPass::ID, PassInfo::NormalCtor_t(callDefaultCtor
<NewGVNLegacyPass>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeNewGVNLegacyPassPassFlag
; void llvm::initializeNewGVNLegacyPassPass(PassRegistry &
Registry) { llvm::call_once(InitializeNewGVNLegacyPassPassFlag
, initializeNewGVNLegacyPassPassOnce, std::ref(Registry)); }
3455 false)PassInfo *PI = new PassInfo( "Global Value Numbering", "newgvn"
, &NewGVNLegacyPass::ID, PassInfo::NormalCtor_t(callDefaultCtor
<NewGVNLegacyPass>), false, false); Registry.registerPass
(*PI, true); return PI; } static llvm::once_flag InitializeNewGVNLegacyPassPassFlag
; void llvm::initializeNewGVNLegacyPassPass(PassRegistry &
Registry) { llvm::call_once(InitializeNewGVNLegacyPassPassFlag
, initializeNewGVNLegacyPassPassOnce, std::ref(Registry)); }
3456
3457char NewGVNLegacyPass::ID = 0;
3458
3459// createGVNPass - The public interface to this file.
3460FunctionPass *llvm::createNewGVNPass() { return new NewGVNLegacyPass(); }
3461
3462PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) {
3463 // Apparently the order in which we get these results matter for
3464 // the old GVN (see Chandler's comment in GVN.cpp). I'll keep
3465 // the same order here, just in case.
3466 auto &AC = AM.getResult<AssumptionAnalysis>(F);
3467 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
3468 auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
3469 auto &AA = AM.getResult<AAManager>(F);
3470 auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA();
3471 bool Changed =
3472 NewGVN(F, &DT, &AC, &TLI, &AA, &MSSA, F.getParent()->getDataLayout())
3473 .runGVN();
3474 if (!Changed)
3475 return PreservedAnalyses::all();
3476 PreservedAnalyses PA;
3477 PA.preserve<DominatorTreeAnalysis>();
3478 PA.preserve<GlobalsAA>();
3479 return PA;
3480}