Bug Summary

File:llvm/lib/Frontend/OpenMP/OMPContext.cpp
Warning:line 357, column 11
Forming reference to null pointer

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name OMPContext.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-12/lib/clang/12.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/build-llvm/lib/Frontend/OpenMP -I /build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Frontend/OpenMP -I /build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/build-llvm/include -I /build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-12/lib/clang/12.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/build-llvm/lib/Frontend/OpenMP -fdebug-prefix-map=/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-09-17-195756-12974-1 -x c++ /build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Frontend/OpenMP/OMPContext.cpp

/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Frontend/OpenMP/OMPContext.cpp

1//===- OMPContext.cpp ------ Collection of helpers for OpenMP contexts ----===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8/// \file
9///
10/// This file implements helper functions and classes to deal with OpenMP
11/// contexts as used by `[begin/end] declare variant` and `metadirective`.
12///
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Frontend/OpenMP/OMPContext.h"
16#include "llvm/ADT/SetOperations.h"
17#include "llvm/ADT/StringSwitch.h"
18#include "llvm/Support/Debug.h"
19#include "llvm/Support/raw_ostream.h"
20
21#define DEBUG_TYPE"openmp-ir-builder" "openmp-ir-builder"
22
23using namespace llvm;
24using namespace omp;
25
26OMPContext::OMPContext(bool IsDeviceCompilation, Triple TargetTriple) {
27 // Add the appropriate device kind trait based on the triple and the
28 // IsDeviceCompilation flag.
29 ActiveTraits.set(unsigned(IsDeviceCompilation
30 ? TraitProperty::device_kind_nohost
31 : TraitProperty::device_kind_host));
32 switch (TargetTriple.getArch()) {
33 case Triple::arm:
34 case Triple::armeb:
35 case Triple::aarch64:
36 case Triple::aarch64_be:
37 case Triple::aarch64_32:
38 case Triple::mips:
39 case Triple::mipsel:
40 case Triple::mips64:
41 case Triple::mips64el:
42 case Triple::ppc:
43 case Triple::ppc64:
44 case Triple::ppc64le:
45 case Triple::x86:
46 case Triple::x86_64:
47 ActiveTraits.set(unsigned(TraitProperty::device_kind_cpu));
48 break;
49 case Triple::amdgcn:
50 case Triple::nvptx:
51 case Triple::nvptx64:
52 ActiveTraits.set(unsigned(TraitProperty::device_kind_gpu));
53 break;
54 default:
55 break;
56 }
57
58 // Add the appropriate device architecture trait based on the triple.
59#define OMP_TRAIT_PROPERTY(Enum, TraitSetEnum, TraitSelectorEnum, Str) \
60 if (TraitSelector::TraitSelectorEnum == TraitSelector::device_arch) \
61 if (TargetTriple.getArch() == TargetTriple.getArchTypeForLLVMName(Str)) \
62 ActiveTraits.set(unsigned(TraitProperty::Enum));
63#include "llvm/Frontend/OpenMP/OMPKinds.def"
64
65 // TODO: What exactly do we want to see as device ISA trait?
66 // The discussion on the list did not seem to have come to an agreed
67 // upon solution.
68
69 // LLVM is the "OpenMP vendor" but we could also interpret vendor as the
70 // target vendor.
71 ActiveTraits.set(unsigned(TraitProperty::implementation_vendor_llvm));
72
73 // The user condition true is accepted but not false.
74 ActiveTraits.set(unsigned(TraitProperty::user_condition_true));
75
76 // This is for sure some device.
77 ActiveTraits.set(unsigned(TraitProperty::device_kind_any));
78
79 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { dbgs() << "[" << "openmp-ir-builder"
<< "] New OpenMP context with the following properties:\n"
; for (unsigned Bit : ActiveTraits.set_bits()) { TraitProperty
Property = TraitProperty(Bit); dbgs() << "\t " <<
getOpenMPContextTraitPropertyFullName(Property) << "\n"
; } }; } } while (false)
80 dbgs() << "[" << DEBUG_TYPEdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { dbgs() << "[" << "openmp-ir-builder"
<< "] New OpenMP context with the following properties:\n"
; for (unsigned Bit : ActiveTraits.set_bits()) { TraitProperty
Property = TraitProperty(Bit); dbgs() << "\t " <<
getOpenMPContextTraitPropertyFullName(Property) << "\n"
; } }; } } while (false)
81 << "] New OpenMP context with the following properties:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { dbgs() << "[" << "openmp-ir-builder"
<< "] New OpenMP context with the following properties:\n"
; for (unsigned Bit : ActiveTraits.set_bits()) { TraitProperty
Property = TraitProperty(Bit); dbgs() << "\t " <<
getOpenMPContextTraitPropertyFullName(Property) << "\n"
; } }; } } while (false)
82 for (unsigned Bit : ActiveTraits.set_bits()) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { dbgs() << "[" << "openmp-ir-builder"
<< "] New OpenMP context with the following properties:\n"
; for (unsigned Bit : ActiveTraits.set_bits()) { TraitProperty
Property = TraitProperty(Bit); dbgs() << "\t " <<
getOpenMPContextTraitPropertyFullName(Property) << "\n"
; } }; } } while (false)
83 TraitProperty Property = TraitProperty(Bit);do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { dbgs() << "[" << "openmp-ir-builder"
<< "] New OpenMP context with the following properties:\n"
; for (unsigned Bit : ActiveTraits.set_bits()) { TraitProperty
Property = TraitProperty(Bit); dbgs() << "\t " <<
getOpenMPContextTraitPropertyFullName(Property) << "\n"
; } }; } } while (false)
84 dbgs() << "\t " << getOpenMPContextTraitPropertyFullName(Property)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { dbgs() << "[" << "openmp-ir-builder"
<< "] New OpenMP context with the following properties:\n"
; for (unsigned Bit : ActiveTraits.set_bits()) { TraitProperty
Property = TraitProperty(Bit); dbgs() << "\t " <<
getOpenMPContextTraitPropertyFullName(Property) << "\n"
; } }; } } while (false)
85 << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { dbgs() << "[" << "openmp-ir-builder"
<< "] New OpenMP context with the following properties:\n"
; for (unsigned Bit : ActiveTraits.set_bits()) { TraitProperty
Property = TraitProperty(Bit); dbgs() << "\t " <<
getOpenMPContextTraitPropertyFullName(Property) << "\n"
; } }; } } while (false)
86 }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { dbgs() << "[" << "openmp-ir-builder"
<< "] New OpenMP context with the following properties:\n"
; for (unsigned Bit : ActiveTraits.set_bits()) { TraitProperty
Property = TraitProperty(Bit); dbgs() << "\t " <<
getOpenMPContextTraitPropertyFullName(Property) << "\n"
; } }; } } while (false)
87 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { dbgs() << "[" << "openmp-ir-builder"
<< "] New OpenMP context with the following properties:\n"
; for (unsigned Bit : ActiveTraits.set_bits()) { TraitProperty
Property = TraitProperty(Bit); dbgs() << "\t " <<
getOpenMPContextTraitPropertyFullName(Property) << "\n"
; } }; } } while (false)
;
88}
89
90/// Return true if \p C0 is a subset of \p C1. Note that both arrays are
91/// expected to be sorted.
92template <typename T> static bool isSubset(ArrayRef<T> C0, ArrayRef<T> C1) {
93#ifdef EXPENSIVE_CHECKS
94 assert(llvm::is_sorted(C0) && llvm::is_sorted(C1) &&((llvm::is_sorted(C0) && llvm::is_sorted(C1) &&
"Expected sorted arrays!") ? static_cast<void> (0) : __assert_fail
("llvm::is_sorted(C0) && llvm::is_sorted(C1) && \"Expected sorted arrays!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 95, __PRETTY_FUNCTION__))
95 "Expected sorted arrays!")((llvm::is_sorted(C0) && llvm::is_sorted(C1) &&
"Expected sorted arrays!") ? static_cast<void> (0) : __assert_fail
("llvm::is_sorted(C0) && llvm::is_sorted(C1) && \"Expected sorted arrays!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 95, __PRETTY_FUNCTION__))
;
96#endif
97 if (C0.size() > C1.size())
98 return false;
99 auto It0 = C0.begin(), End0 = C0.end();
100 auto It1 = C1.begin(), End1 = C1.end();
101 while (It0 != End0) {
102 if (It1 == End1)
103 return false;
104 if (*It0 == *It1) {
105 ++It0;
106 ++It1;
107 continue;
108 }
109 ++It0;
110 }
111 return true;
112}
113
114/// Return true if \p C0 is a strict subset of \p C1. Note that both arrays are
115/// expected to be sorted.
116template <typename T>
117static bool isStrictSubset(ArrayRef<T> C0, ArrayRef<T> C1) {
118 if (C0.size() >= C1.size())
119 return false;
120 return isSubset<T>(C0, C1);
121}
122
123static bool isStrictSubset(const VariantMatchInfo &VMI0,
124 const VariantMatchInfo &VMI1) {
125 // If all required traits are a strict subset and the ordered vectors storing
126 // the construct traits, we say it is a strict subset. Note that the latter
127 // relation is not required to be strict.
128 if (VMI0.RequiredTraits.count() >= VMI1.RequiredTraits.count())
129 return false;
130 for (unsigned Bit : VMI0.RequiredTraits.set_bits())
131 if (!VMI1.RequiredTraits.test(Bit))
132 return false;
133 if (!isSubset<TraitProperty>(VMI0.ConstructTraits, VMI1.ConstructTraits))
134 return false;
135 return true;
136}
137
138static int isVariantApplicableInContextHelper(
139 const VariantMatchInfo &VMI, const OMPContext &Ctx,
140 SmallVectorImpl<unsigned> *ConstructMatches, bool DeviceSetOnly) {
141
142 // The match kind determines if we need to match all traits, any of the
143 // traits, or none of the traits for it to be an applicable context.
144 enum MatchKind { MK_ALL, MK_ANY, MK_NONE };
145
146 MatchKind MK = MK_ALL;
147 // Determine the match kind the user wants, "all" is the default and provided
148 // to the user only for completeness.
149 if (VMI.RequiredTraits.test(
5
Taking false branch
150 unsigned(TraitProperty::implementation_extension_match_any)))
151 MK = MK_ANY;
152 if (VMI.RequiredTraits.test(
6
Taking false branch
153 unsigned(TraitProperty::implementation_extension_match_none)))
154 MK = MK_NONE;
155
156 // Helper to deal with a single property that was (not) found in the OpenMP
157 // context based on the match kind selected by the user via
158 // `implementation={extensions(match_[all,any,none])}'
159 auto HandleTrait = [MK](TraitProperty Property,
160 bool WasFound) -> Optional<bool> /* Result */ {
161 // For kind "any" a single match is enough but we ignore non-matched
162 // properties.
163 if (MK == MK_ANY) {
164 if (WasFound)
165 return true;
166 return None;
167 }
168
169 // In "all" or "none" mode we accept a matching or non-matching property
170 // respectively and move on. We are not done yet!
171 if ((WasFound && MK == MK_ALL) || (!WasFound && MK == MK_NONE))
172 return None;
173
174 // We missed a property, provide some debug output and indicate failure.
175 LLVM_DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { if (MK == MK_ALL) dbgs() << "["
<< "openmp-ir-builder" << "] Property " <<
getOpenMPContextTraitPropertyName(Property, "") << " was not in the OpenMP context but match kind is all.\n"
; if (MK == MK_NONE) dbgs() << "[" << "openmp-ir-builder"
<< "] Property " << getOpenMPContextTraitPropertyName
(Property, "") << " was in the OpenMP context but match kind is none.\n"
; }; } } while (false)
176 if (MK == MK_ALL)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { if (MK == MK_ALL) dbgs() << "["
<< "openmp-ir-builder" << "] Property " <<
getOpenMPContextTraitPropertyName(Property, "") << " was not in the OpenMP context but match kind is all.\n"
; if (MK == MK_NONE) dbgs() << "[" << "openmp-ir-builder"
<< "] Property " << getOpenMPContextTraitPropertyName
(Property, "") << " was in the OpenMP context but match kind is none.\n"
; }; } } while (false)
177 dbgs() << "[" << DEBUG_TYPE << "] Property "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { if (MK == MK_ALL) dbgs() << "["
<< "openmp-ir-builder" << "] Property " <<
getOpenMPContextTraitPropertyName(Property, "") << " was not in the OpenMP context but match kind is all.\n"
; if (MK == MK_NONE) dbgs() << "[" << "openmp-ir-builder"
<< "] Property " << getOpenMPContextTraitPropertyName
(Property, "") << " was in the OpenMP context but match kind is none.\n"
; }; } } while (false)
178 << getOpenMPContextTraitPropertyName(Property, "")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { if (MK == MK_ALL) dbgs() << "["
<< "openmp-ir-builder" << "] Property " <<
getOpenMPContextTraitPropertyName(Property, "") << " was not in the OpenMP context but match kind is all.\n"
; if (MK == MK_NONE) dbgs() << "[" << "openmp-ir-builder"
<< "] Property " << getOpenMPContextTraitPropertyName
(Property, "") << " was in the OpenMP context but match kind is none.\n"
; }; } } while (false)
179 << " was not in the OpenMP context but match kind is all.\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { if (MK == MK_ALL) dbgs() << "["
<< "openmp-ir-builder" << "] Property " <<
getOpenMPContextTraitPropertyName(Property, "") << " was not in the OpenMP context but match kind is all.\n"
; if (MK == MK_NONE) dbgs() << "[" << "openmp-ir-builder"
<< "] Property " << getOpenMPContextTraitPropertyName
(Property, "") << " was in the OpenMP context but match kind is none.\n"
; }; } } while (false)
180 if (MK == MK_NONE)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { if (MK == MK_ALL) dbgs() << "["
<< "openmp-ir-builder" << "] Property " <<
getOpenMPContextTraitPropertyName(Property, "") << " was not in the OpenMP context but match kind is all.\n"
; if (MK == MK_NONE) dbgs() << "[" << "openmp-ir-builder"
<< "] Property " << getOpenMPContextTraitPropertyName
(Property, "") << " was in the OpenMP context but match kind is none.\n"
; }; } } while (false)
181 dbgs() << "[" << DEBUG_TYPE << "] Property "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { if (MK == MK_ALL) dbgs() << "["
<< "openmp-ir-builder" << "] Property " <<
getOpenMPContextTraitPropertyName(Property, "") << " was not in the OpenMP context but match kind is all.\n"
; if (MK == MK_NONE) dbgs() << "[" << "openmp-ir-builder"
<< "] Property " << getOpenMPContextTraitPropertyName
(Property, "") << " was in the OpenMP context but match kind is none.\n"
; }; } } while (false)
182 << getOpenMPContextTraitPropertyName(Property, "")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { if (MK == MK_ALL) dbgs() << "["
<< "openmp-ir-builder" << "] Property " <<
getOpenMPContextTraitPropertyName(Property, "") << " was not in the OpenMP context but match kind is all.\n"
; if (MK == MK_NONE) dbgs() << "[" << "openmp-ir-builder"
<< "] Property " << getOpenMPContextTraitPropertyName
(Property, "") << " was in the OpenMP context but match kind is none.\n"
; }; } } while (false)
183 << " was in the OpenMP context but match kind is none.\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { if (MK == MK_ALL) dbgs() << "["
<< "openmp-ir-builder" << "] Property " <<
getOpenMPContextTraitPropertyName(Property, "") << " was not in the OpenMP context but match kind is all.\n"
; if (MK == MK_NONE) dbgs() << "[" << "openmp-ir-builder"
<< "] Property " << getOpenMPContextTraitPropertyName
(Property, "") << " was in the OpenMP context but match kind is none.\n"
; }; } } while (false)
184 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { { if (MK == MK_ALL) dbgs() << "["
<< "openmp-ir-builder" << "] Property " <<
getOpenMPContextTraitPropertyName(Property, "") << " was not in the OpenMP context but match kind is all.\n"
; if (MK == MK_NONE) dbgs() << "[" << "openmp-ir-builder"
<< "] Property " << getOpenMPContextTraitPropertyName
(Property, "") << " was in the OpenMP context but match kind is none.\n"
; }; } } while (false)
;
185 return false;
186 };
187
188 for (unsigned Bit : VMI.RequiredTraits.set_bits()) {
189 TraitProperty Property = TraitProperty(Bit);
190 if (DeviceSetOnly &&
191 getOpenMPContextTraitSetForProperty(Property) != TraitSet::device)
192 continue;
193
194 // So far all extensions are handled elsewhere, we skip them here as they
195 // are not part of the OpenMP context.
196 if (getOpenMPContextTraitSelectorForProperty(Property) ==
197 TraitSelector::implementation_extension)
198 continue;
199
200 bool IsActiveTrait = Ctx.ActiveTraits.test(unsigned(Property));
201
202 // We overwrite the isa trait as it is actually up to the OMPContext hook to
203 // check the raw string(s).
204 if (Property == TraitProperty::device_isa___ANY)
205 IsActiveTrait = llvm::all_of(VMI.ISATraits, [&](StringRef RawString) {
206 return Ctx.matchesISATrait(RawString);
207 });
208
209 Optional<bool> Result = HandleTrait(Property, IsActiveTrait);
210 if (Result.hasValue())
211 return Result.getValue();
212 }
213
214 if (!DeviceSetOnly
6.1
'DeviceSetOnly' is false
6.1
'DeviceSetOnly' is false
) {
7
Taking true branch
215 // We could use isSubset here but we also want to record the match
216 // locations.
217 unsigned ConstructIdx = 0, NoConstructTraits = Ctx.ConstructTraits.size();
218 for (TraitProperty Property : VMI.ConstructTraits) {
8
Assuming '__begin2' is equal to '__end2'
219 assert(getOpenMPContextTraitSetForProperty(Property) ==((getOpenMPContextTraitSetForProperty(Property) == TraitSet::
construct && "Variant context is ill-formed!") ? static_cast
<void> (0) : __assert_fail ("getOpenMPContextTraitSetForProperty(Property) == TraitSet::construct && \"Variant context is ill-formed!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 221, __PRETTY_FUNCTION__))
220 TraitSet::construct &&((getOpenMPContextTraitSetForProperty(Property) == TraitSet::
construct && "Variant context is ill-formed!") ? static_cast
<void> (0) : __assert_fail ("getOpenMPContextTraitSetForProperty(Property) == TraitSet::construct && \"Variant context is ill-formed!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 221, __PRETTY_FUNCTION__))
221 "Variant context is ill-formed!")((getOpenMPContextTraitSetForProperty(Property) == TraitSet::
construct && "Variant context is ill-formed!") ? static_cast
<void> (0) : __assert_fail ("getOpenMPContextTraitSetForProperty(Property) == TraitSet::construct && \"Variant context is ill-formed!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 221, __PRETTY_FUNCTION__))
;
222
223 // Verify the nesting.
224 bool FoundInOrder = false;
225 while (!FoundInOrder && ConstructIdx != NoConstructTraits)
226 FoundInOrder = (Ctx.ConstructTraits[ConstructIdx++] == Property);
227 if (ConstructMatches)
228 ConstructMatches->push_back(ConstructIdx - 1);
229
230 Optional<bool> Result = HandleTrait(Property, FoundInOrder);
231 if (Result.hasValue())
232 return Result.getValue();
233
234 if (!FoundInOrder) {
235 LLVM_DEBUG(dbgs() << "[" << DEBUG_TYPE << "] Construct property "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { dbgs() << "[" << "openmp-ir-builder"
<< "] Construct property " << getOpenMPContextTraitPropertyName
(Property, "") << " was not nested properly.\n"; } } while
(false)
236 << getOpenMPContextTraitPropertyName(Property, "")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { dbgs() << "[" << "openmp-ir-builder"
<< "] Construct property " << getOpenMPContextTraitPropertyName
(Property, "") << " was not nested properly.\n"; } } while
(false)
237 << " was not nested properly.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { dbgs() << "[" << "openmp-ir-builder"
<< "] Construct property " << getOpenMPContextTraitPropertyName
(Property, "") << " was not nested properly.\n"; } } while
(false)
;
238 return false;
239 }
240
241 // TODO: Verify SIMD
242 }
243
244 assert(isSubset<TraitProperty>(VMI.ConstructTraits, Ctx.ConstructTraits) &&((isSubset<TraitProperty>(VMI.ConstructTraits, Ctx.ConstructTraits
) && "Broken invariant!") ? static_cast<void> (
0) : __assert_fail ("isSubset<TraitProperty>(VMI.ConstructTraits, Ctx.ConstructTraits) && \"Broken invariant!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 245, __PRETTY_FUNCTION__))
9
'?' condition is true
245 "Broken invariant!")((isSubset<TraitProperty>(VMI.ConstructTraits, Ctx.ConstructTraits
) && "Broken invariant!") ? static_cast<void> (
0) : __assert_fail ("isSubset<TraitProperty>(VMI.ConstructTraits, Ctx.ConstructTraits) && \"Broken invariant!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 245, __PRETTY_FUNCTION__))
;
246 }
247
248 if (MK
9.1
'MK' is not equal to MK_ANY
9.1
'MK' is not equal to MK_ANY
== MK_ANY) {
10
Taking false branch
249 LLVM_DEBUG(dbgs() << "[" << DEBUG_TYPEdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { dbgs() << "[" << "openmp-ir-builder"
<< "] None of the properties was in the OpenMP context "
"but match kind is any.\n"; } } while (false)
250 << "] None of the properties was in the OpenMP context "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { dbgs() << "[" << "openmp-ir-builder"
<< "] None of the properties was in the OpenMP context "
"but match kind is any.\n"; } } while (false)
251 "but match kind is any.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { dbgs() << "[" << "openmp-ir-builder"
<< "] None of the properties was in the OpenMP context "
"but match kind is any.\n"; } } while (false)
;
252 return false;
253 }
254
255 return true;
11
Returning the value 1, which participates in a condition later
256}
257
258bool llvm::omp::isVariantApplicableInContext(const VariantMatchInfo &VMI,
259 const OMPContext &Ctx,
260 bool DeviceSetOnly) {
261 return isVariantApplicableInContextHelper(
262 VMI, Ctx, /* ConstructMatches */ nullptr, DeviceSetOnly);
263}
264
265static APInt getVariantMatchScore(const VariantMatchInfo &VMI,
266 const OMPContext &Ctx,
267 SmallVectorImpl<unsigned> &ConstructMatches) {
268 APInt Score(64, 1);
269
270 unsigned NoConstructTraits = VMI.ConstructTraits.size();
271 for (unsigned Bit : VMI.RequiredTraits.set_bits()) {
272 TraitProperty Property = TraitProperty(Bit);
273 // If there is a user score attached, use it.
274 if (VMI.ScoreMap.count(Property)) {
275 const APInt &UserScore = VMI.ScoreMap.lookup(Property);
276 assert(UserScore.uge(0) && "Expect non-negative user scores!")((UserScore.uge(0) && "Expect non-negative user scores!"
) ? static_cast<void> (0) : __assert_fail ("UserScore.uge(0) && \"Expect non-negative user scores!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 276, __PRETTY_FUNCTION__))
;
277 Score += UserScore.getZExtValue();
278 continue;
279 }
280
281 switch (getOpenMPContextTraitSetForProperty(Property)) {
282 case TraitSet::construct:
283 // We handle the construct traits later via the VMI.ConstructTraits
284 // container.
285 continue;
286 case TraitSet::implementation:
287 // No effect on the score (implementation defined).
288 continue;
289 case TraitSet::user:
290 // No effect on the score.
291 continue;
292 case TraitSet::device:
293 // Handled separately below.
294 break;
295 case TraitSet::invalid:
296 llvm_unreachable("Unknown trait set is not to be used!")::llvm::llvm_unreachable_internal("Unknown trait set is not to be used!"
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 296)
;
297 }
298
299 // device={kind(any)} is "as if" no kind selector was specified.
300 if (Property == TraitProperty::device_kind_any)
301 continue;
302
303 switch (getOpenMPContextTraitSelectorForProperty(Property)) {
304 case TraitSelector::device_kind:
305 Score += (1ULL << (NoConstructTraits + 0));
306 continue;
307 case TraitSelector::device_arch:
308 Score += (1ULL << (NoConstructTraits + 1));
309 continue;
310 case TraitSelector::device_isa:
311 Score += (1ULL << (NoConstructTraits + 2));
312 continue;
313 default:
314 continue;
315 }
316 }
317
318 unsigned ConstructIdx = 0;
319 assert(NoConstructTraits == ConstructMatches.size() &&((NoConstructTraits == ConstructMatches.size() && "Mismatch in the construct traits!"
) ? static_cast<void> (0) : __assert_fail ("NoConstructTraits == ConstructMatches.size() && \"Mismatch in the construct traits!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 320, __PRETTY_FUNCTION__))
320 "Mismatch in the construct traits!")((NoConstructTraits == ConstructMatches.size() && "Mismatch in the construct traits!"
) ? static_cast<void> (0) : __assert_fail ("NoConstructTraits == ConstructMatches.size() && \"Mismatch in the construct traits!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 320, __PRETTY_FUNCTION__))
;
321 for (TraitProperty Property : VMI.ConstructTraits) {
322 assert(getOpenMPContextTraitSetForProperty(Property) ==((getOpenMPContextTraitSetForProperty(Property) == TraitSet::
construct && "Ill-formed variant match info!") ? static_cast
<void> (0) : __assert_fail ("getOpenMPContextTraitSetForProperty(Property) == TraitSet::construct && \"Ill-formed variant match info!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 324, __PRETTY_FUNCTION__))
323 TraitSet::construct &&((getOpenMPContextTraitSetForProperty(Property) == TraitSet::
construct && "Ill-formed variant match info!") ? static_cast
<void> (0) : __assert_fail ("getOpenMPContextTraitSetForProperty(Property) == TraitSet::construct && \"Ill-formed variant match info!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 324, __PRETTY_FUNCTION__))
324 "Ill-formed variant match info!")((getOpenMPContextTraitSetForProperty(Property) == TraitSet::
construct && "Ill-formed variant match info!") ? static_cast
<void> (0) : __assert_fail ("getOpenMPContextTraitSetForProperty(Property) == TraitSet::construct && \"Ill-formed variant match info!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 324, __PRETTY_FUNCTION__))
;
325 (void)Property;
326 // ConstructMatches is the position p - 1 and we need 2^(p-1).
327 Score += (1ULL << ConstructMatches[ConstructIdx++]);
328 }
329
330 LLVM_DEBUG(dbgs() << "[" << DEBUG_TYPE << "] Variant has a score of " << Scoredo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { dbgs() << "[" << "openmp-ir-builder"
<< "] Variant has a score of " << Score <<
"\n"; } } while (false)
331 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("openmp-ir-builder")) { dbgs() << "[" << "openmp-ir-builder"
<< "] Variant has a score of " << Score <<
"\n"; } } while (false)
;
332 return Score;
333}
334
335int llvm::omp::getBestVariantMatchForContext(
336 const SmallVectorImpl<VariantMatchInfo> &VMIs, const OMPContext &Ctx) {
337
338 APInt BestScore(64, 0);
339 int BestVMIIdx = -1;
340 const VariantMatchInfo *BestVMI = nullptr;
1
'BestVMI' initialized to a null pointer value
341
342 for (unsigned u = 0, e = VMIs.size(); u < e; ++u) {
2
Assuming 'u' is < 'e'
3
Loop condition is true. Entering loop body
343 const VariantMatchInfo &VMI = VMIs[u];
344
345 SmallVector<unsigned, 8> ConstructMatches;
346 // If the variant is not applicable its not the best.
347 if (!isVariantApplicableInContextHelper(VMI, Ctx, &ConstructMatches,
4
Calling 'isVariantApplicableInContextHelper'
12
Returning from 'isVariantApplicableInContextHelper'
13
Taking false branch
348 /* DeviceSetOnly */ false))
349 continue;
350 // Check if its clearly not the best.
351 APInt Score = getVariantMatchScore(VMI, Ctx, ConstructMatches);
352 if (Score.ult(BestScore))
14
Calling 'APInt::ult'
17
Returning from 'APInt::ult'
18
Taking false branch
353 continue;
354 // Equal score need subset checks.
355 if (Score.eq(BestScore)) {
19
Calling 'APInt::eq'
30
Returning from 'APInt::eq'
31
Taking true branch
356 // Strict subset are never best.
357 if (isStrictSubset(VMI, *BestVMI))
32
Forming reference to null pointer
358 continue;
359 // Same score and the current best is no strict subset so we keep it.
360 if (!isStrictSubset(*BestVMI, VMI))
361 continue;
362 }
363 // New best found.
364 BestVMI = &VMI;
365 BestVMIIdx = u;
366 BestScore = Score;
367 }
368
369 return BestVMIIdx;
370}
371
372TraitSet llvm::omp::getOpenMPContextTraitSetKind(StringRef S) {
373 return StringSwitch<TraitSet>(S)
374#define OMP_TRAIT_SET(Enum, Str) .Case(Str, TraitSet::Enum)
375#include "llvm/Frontend/OpenMP/OMPKinds.def"
376 .Default(TraitSet::invalid);
377}
378
379TraitSet
380llvm::omp::getOpenMPContextTraitSetForSelector(TraitSelector Selector) {
381 switch (Selector) {
382#define OMP_TRAIT_SELECTOR(Enum, TraitSetEnum, Str, ReqProp) \
383 case TraitSelector::Enum: \
384 return TraitSet::TraitSetEnum;
385#include "llvm/Frontend/OpenMP/OMPKinds.def"
386 }
387 llvm_unreachable("Unknown trait selector!")::llvm::llvm_unreachable_internal("Unknown trait selector!", "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 387)
;
388}
389TraitSet
390llvm::omp::getOpenMPContextTraitSetForProperty(TraitProperty Property) {
391 switch (Property) {
392#define OMP_TRAIT_PROPERTY(Enum, TraitSetEnum, TraitSelectorEnum, Str) \
393 case TraitProperty::Enum: \
394 return TraitSet::TraitSetEnum;
395#include "llvm/Frontend/OpenMP/OMPKinds.def"
396 }
397 llvm_unreachable("Unknown trait set!")::llvm::llvm_unreachable_internal("Unknown trait set!", "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 397)
;
398}
399StringRef llvm::omp::getOpenMPContextTraitSetName(TraitSet Kind) {
400 switch (Kind) {
401#define OMP_TRAIT_SET(Enum, Str) \
402 case TraitSet::Enum: \
403 return Str;
404#include "llvm/Frontend/OpenMP/OMPKinds.def"
405 }
406 llvm_unreachable("Unknown trait set!")::llvm::llvm_unreachable_internal("Unknown trait set!", "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 406)
;
407}
408
409TraitSelector llvm::omp::getOpenMPContextTraitSelectorKind(StringRef S) {
410 return StringSwitch<TraitSelector>(S)
411#define OMP_TRAIT_SELECTOR(Enum, TraitSetEnum, Str, ReqProp) \
412 .Case(Str, TraitSelector::Enum)
413#include "llvm/Frontend/OpenMP/OMPKinds.def"
414 .Default(TraitSelector::invalid);
415}
416TraitSelector
417llvm::omp::getOpenMPContextTraitSelectorForProperty(TraitProperty Property) {
418 switch (Property) {
419#define OMP_TRAIT_PROPERTY(Enum, TraitSetEnum, TraitSelectorEnum, Str) \
420 case TraitProperty::Enum: \
421 return TraitSelector::TraitSelectorEnum;
422#include "llvm/Frontend/OpenMP/OMPKinds.def"
423 }
424 llvm_unreachable("Unknown trait set!")::llvm::llvm_unreachable_internal("Unknown trait set!", "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 424)
;
425}
426StringRef llvm::omp::getOpenMPContextTraitSelectorName(TraitSelector Kind) {
427 switch (Kind) {
428#define OMP_TRAIT_SELECTOR(Enum, TraitSetEnum, Str, ReqProp) \
429 case TraitSelector::Enum: \
430 return Str;
431#include "llvm/Frontend/OpenMP/OMPKinds.def"
432 }
433 llvm_unreachable("Unknown trait selector!")::llvm::llvm_unreachable_internal("Unknown trait selector!", "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 433)
;
434}
435
436TraitProperty llvm::omp::getOpenMPContextTraitPropertyKind(
437 TraitSet Set, TraitSelector Selector, StringRef S) {
438 // Special handling for `device={isa(...)}` as we accept anything here. It is
439 // up to the target to decide if the feature is available.
440 if (Set == TraitSet::device && Selector == TraitSelector::device_isa)
441 return TraitProperty::device_isa___ANY;
442#define OMP_TRAIT_PROPERTY(Enum, TraitSetEnum, TraitSelectorEnum, Str) \
443 if (Set == TraitSet::TraitSetEnum && Str == S) \
444 return TraitProperty::Enum;
445#include "llvm/Frontend/OpenMP/OMPKinds.def"
446 return TraitProperty::invalid;
447}
448TraitProperty
449llvm::omp::getOpenMPContextTraitPropertyForSelector(TraitSelector Selector) {
450 return StringSwitch<TraitProperty>(
451 getOpenMPContextTraitSelectorName(Selector))
452#define OMP_TRAIT_PROPERTY(Enum, TraitSetEnum, TraitSelectorEnum, Str) \
453 .Case(Str, Selector == TraitSelector::TraitSelectorEnum \
454 ? TraitProperty::Enum \
455 : TraitProperty::invalid)
456#include "llvm/Frontend/OpenMP/OMPKinds.def"
457 .Default(TraitProperty::invalid);
458}
459StringRef llvm::omp::getOpenMPContextTraitPropertyName(TraitProperty Kind,
460 StringRef RawString) {
461 if (Kind == TraitProperty::device_isa___ANY)
462 return RawString;
463 switch (Kind) {
464#define OMP_TRAIT_PROPERTY(Enum, TraitSetEnum, TraitSelectorEnum, Str) \
465 case TraitProperty::Enum: \
466 return Str;
467#include "llvm/Frontend/OpenMP/OMPKinds.def"
468 }
469 llvm_unreachable("Unknown trait property!")::llvm::llvm_unreachable_internal("Unknown trait property!", "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 469)
;
470}
471StringRef llvm::omp::getOpenMPContextTraitPropertyFullName(TraitProperty Kind) {
472 switch (Kind) {
473#define OMP_TRAIT_PROPERTY(Enum, TraitSetEnum, TraitSelectorEnum, Str) \
474 case TraitProperty::Enum: \
475 return "(" #TraitSetEnum "," #TraitSelectorEnum "," Str ")";
476#include "llvm/Frontend/OpenMP/OMPKinds.def"
477 }
478 llvm_unreachable("Unknown trait property!")::llvm::llvm_unreachable_internal("Unknown trait property!", "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 478)
;
479}
480
481bool llvm::omp::isValidTraitSelectorForTraitSet(TraitSelector Selector,
482 TraitSet Set,
483 bool &AllowsTraitScore,
484 bool &RequiresProperty) {
485 AllowsTraitScore = Set != TraitSet::construct && Set != TraitSet::device;
486 switch (Selector) {
487#define OMP_TRAIT_SELECTOR(Enum, TraitSetEnum, Str, ReqProp) \
488 case TraitSelector::Enum: \
489 RequiresProperty = ReqProp; \
490 return Set == TraitSet::TraitSetEnum;
491#include "llvm/Frontend/OpenMP/OMPKinds.def"
492 }
493 llvm_unreachable("Unknown trait selector!")::llvm::llvm_unreachable_internal("Unknown trait selector!", "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 493)
;
494}
495
496bool llvm::omp::isValidTraitPropertyForTraitSetAndSelector(
497 TraitProperty Property, TraitSelector Selector, TraitSet Set) {
498 switch (Property) {
499#define OMP_TRAIT_PROPERTY(Enum, TraitSetEnum, TraitSelectorEnum, Str) \
500 case TraitProperty::Enum: \
501 return Set == TraitSet::TraitSetEnum && \
502 Selector == TraitSelector::TraitSelectorEnum;
503#include "llvm/Frontend/OpenMP/OMPKinds.def"
504 }
505 llvm_unreachable("Unknown trait property!")::llvm::llvm_unreachable_internal("Unknown trait property!", "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/lib/Frontend/OpenMP/OMPContext.cpp"
, 505)
;
506}
507
508std::string llvm::omp::listOpenMPContextTraitSets() {
509 std::string S;
510#define OMP_TRAIT_SET(Enum, Str) \
511 if (StringRef(Str) != "invalid") \
512 S.append("'").append(Str).append("'").append(" ");
513#include "llvm/Frontend/OpenMP/OMPKinds.def"
514 S.pop_back();
515 return S;
516}
517
518std::string llvm::omp::listOpenMPContextTraitSelectors(TraitSet Set) {
519 std::string S;
520#define OMP_TRAIT_SELECTOR(Enum, TraitSetEnum, Str, ReqProp) \
521 if (TraitSet::TraitSetEnum == Set && StringRef(Str) != "Invalid") \
522 S.append("'").append(Str).append("'").append(" ");
523#include "llvm/Frontend/OpenMP/OMPKinds.def"
524 S.pop_back();
525 return S;
526}
527
528std::string
529llvm::omp::listOpenMPContextTraitProperties(TraitSet Set,
530 TraitSelector Selector) {
531 std::string S;
532#define OMP_TRAIT_PROPERTY(Enum, TraitSetEnum, TraitSelectorEnum, Str) \
533 if (TraitSet::TraitSetEnum == Set && \
534 TraitSelector::TraitSelectorEnum == Selector && \
535 StringRef(Str) != "invalid") \
536 S.append("'").append(Str).append("'").append(" ");
537#include "llvm/Frontend/OpenMP/OMPKinds.def"
538 if (S.empty())
539 return "<none>";
540 S.pop_back();
541 return S;
542}

/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/ADT/APInt.h

1//===-- llvm/ADT/APInt.h - For Arbitrary Precision Integer -----*- C++ -*--===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file implements a class to represent arbitrary precision
11/// integral constant values and operations on them.
12///
13//===----------------------------------------------------------------------===//
14
15#ifndef LLVM_ADT_APINT_H
16#define LLVM_ADT_APINT_H
17
18#include "llvm/Support/Compiler.h"
19#include "llvm/Support/MathExtras.h"
20#include <cassert>
21#include <climits>
22#include <cstring>
23#include <string>
24
25namespace llvm {
26class FoldingSetNodeID;
27class StringRef;
28class hash_code;
29class raw_ostream;
30
31template <typename T> class SmallVectorImpl;
32template <typename T> class ArrayRef;
33template <typename T> class Optional;
34template <typename T> struct DenseMapInfo;
35
36class APInt;
37
38inline APInt operator-(APInt);
39
40//===----------------------------------------------------------------------===//
41// APInt Class
42//===----------------------------------------------------------------------===//
43
44/// Class for arbitrary precision integers.
45///
46/// APInt is a functional replacement for common case unsigned integer type like
47/// "unsigned", "unsigned long" or "uint64_t", but also allows non-byte-width
48/// integer sizes and large integer value types such as 3-bits, 15-bits, or more
49/// than 64-bits of precision. APInt provides a variety of arithmetic operators
50/// and methods to manipulate integer values of any bit-width. It supports both
51/// the typical integer arithmetic and comparison operations as well as bitwise
52/// manipulation.
53///
54/// The class has several invariants worth noting:
55/// * All bit, byte, and word positions are zero-based.
56/// * Once the bit width is set, it doesn't change except by the Truncate,
57/// SignExtend, or ZeroExtend operations.
58/// * All binary operators must be on APInt instances of the same bit width.
59/// Attempting to use these operators on instances with different bit
60/// widths will yield an assertion.
61/// * The value is stored canonically as an unsigned value. For operations
62/// where it makes a difference, there are both signed and unsigned variants
63/// of the operation. For example, sdiv and udiv. However, because the bit
64/// widths must be the same, operations such as Mul and Add produce the same
65/// results regardless of whether the values are interpreted as signed or
66/// not.
67/// * In general, the class tries to follow the style of computation that LLVM
68/// uses in its IR. This simplifies its use for LLVM.
69///
70class LLVM_NODISCARD[[clang::warn_unused_result]] APInt {
71public:
72 typedef uint64_t WordType;
73
74 /// This enum is used to hold the constants we needed for APInt.
75 enum : unsigned {
76 /// Byte size of a word.
77 APINT_WORD_SIZE = sizeof(WordType),
78 /// Bits in a word.
79 APINT_BITS_PER_WORD = APINT_WORD_SIZE * CHAR_BIT8
80 };
81
82 enum class Rounding {
83 DOWN,
84 TOWARD_ZERO,
85 UP,
86 };
87
88 static constexpr WordType WORDTYPE_MAX = ~WordType(0);
89
90private:
91 /// This union is used to store the integer value. When the
92 /// integer bit-width <= 64, it uses VAL, otherwise it uses pVal.
93 union {
94 uint64_t VAL; ///< Used to store the <= 64 bits integer value.
95 uint64_t *pVal; ///< Used to store the >64 bits integer value.
96 } U;
97
98 unsigned BitWidth; ///< The number of bits in this APInt.
99
100 friend struct DenseMapInfo<APInt>;
101
102 friend class APSInt;
103
104 /// Fast internal constructor
105 ///
106 /// This constructor is used only internally for speed of construction of
107 /// temporaries. It is unsafe for general use so it is not public.
108 APInt(uint64_t *val, unsigned bits) : BitWidth(bits) {
109 U.pVal = val;
110 }
111
112 /// Determine if this APInt just has one word to store value.
113 ///
114 /// \returns true if the number of bits <= 64, false otherwise.
115 bool isSingleWord() const { return BitWidth <= APINT_BITS_PER_WORD; }
23
Returning the value 1, which participates in a condition later
116
117 /// Determine which word a bit is in.
118 ///
119 /// \returns the word position for the specified bit position.
120 static unsigned whichWord(unsigned bitPosition) {
121 return bitPosition / APINT_BITS_PER_WORD;
122 }
123
124 /// Determine which bit in a word a bit is in.
125 ///
126 /// \returns the bit position in a word for the specified bit position
127 /// in the APInt.
128 static unsigned whichBit(unsigned bitPosition) {
129 return bitPosition % APINT_BITS_PER_WORD;
130 }
131
132 /// Get a single bit mask.
133 ///
134 /// \returns a uint64_t with only bit at "whichBit(bitPosition)" set
135 /// This method generates and returns a uint64_t (word) mask for a single
136 /// bit at a specific bit position. This is used to mask the bit in the
137 /// corresponding word.
138 static uint64_t maskBit(unsigned bitPosition) {
139 return 1ULL << whichBit(bitPosition);
140 }
141
142 /// Clear unused high order bits
143 ///
144 /// This method is used internally to clear the top "N" bits in the high order
145 /// word that are not used by the APInt. This is needed after the most
146 /// significant word is assigned a value to ensure that those bits are
147 /// zero'd out.
148 APInt &clearUnusedBits() {
149 // Compute how many bits are used in the final word
150 unsigned WordBits = ((BitWidth-1) % APINT_BITS_PER_WORD) + 1;
151
152 // Mask out the high bits.
153 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - WordBits);
154 if (isSingleWord())
155 U.VAL &= mask;
156 else
157 U.pVal[getNumWords() - 1] &= mask;
158 return *this;
159 }
160
161 /// Get the word corresponding to a bit position
162 /// \returns the corresponding word for the specified bit position.
163 uint64_t getWord(unsigned bitPosition) const {
164 return isSingleWord() ? U.VAL : U.pVal[whichWord(bitPosition)];
165 }
166
167 /// Utility method to change the bit width of this APInt to new bit width,
168 /// allocating and/or deallocating as necessary. There is no guarantee on the
169 /// value of any bits upon return. Caller should populate the bits after.
170 void reallocate(unsigned NewBitWidth);
171
172 /// Convert a char array into an APInt
173 ///
174 /// \param radix 2, 8, 10, 16, or 36
175 /// Converts a string into a number. The string must be non-empty
176 /// and well-formed as a number of the given base. The bit-width
177 /// must be sufficient to hold the result.
178 ///
179 /// This is used by the constructors that take string arguments.
180 ///
181 /// StringRef::getAsInteger is superficially similar but (1) does
182 /// not assume that the string is well-formed and (2) grows the
183 /// result to hold the input.
184 void fromString(unsigned numBits, StringRef str, uint8_t radix);
185
186 /// An internal division function for dividing APInts.
187 ///
188 /// This is used by the toString method to divide by the radix. It simply
189 /// provides a more convenient form of divide for internal use since KnuthDiv
190 /// has specific constraints on its inputs. If those constraints are not met
191 /// then it provides a simpler form of divide.
192 static void divide(const WordType *LHS, unsigned lhsWords,
193 const WordType *RHS, unsigned rhsWords, WordType *Quotient,
194 WordType *Remainder);
195
196 /// out-of-line slow case for inline constructor
197 void initSlowCase(uint64_t val, bool isSigned);
198
199 /// shared code between two array constructors
200 void initFromArray(ArrayRef<uint64_t> array);
201
202 /// out-of-line slow case for inline copy constructor
203 void initSlowCase(const APInt &that);
204
205 /// out-of-line slow case for shl
206 void shlSlowCase(unsigned ShiftAmt);
207
208 /// out-of-line slow case for lshr.
209 void lshrSlowCase(unsigned ShiftAmt);
210
211 /// out-of-line slow case for ashr.
212 void ashrSlowCase(unsigned ShiftAmt);
213
214 /// out-of-line slow case for operator=
215 void AssignSlowCase(const APInt &RHS);
216
217 /// out-of-line slow case for operator==
218 bool EqualSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
219
220 /// out-of-line slow case for countLeadingZeros
221 unsigned countLeadingZerosSlowCase() const LLVM_READONLY__attribute__((__pure__));
222
223 /// out-of-line slow case for countLeadingOnes.
224 unsigned countLeadingOnesSlowCase() const LLVM_READONLY__attribute__((__pure__));
225
226 /// out-of-line slow case for countTrailingZeros.
227 unsigned countTrailingZerosSlowCase() const LLVM_READONLY__attribute__((__pure__));
228
229 /// out-of-line slow case for countTrailingOnes
230 unsigned countTrailingOnesSlowCase() const LLVM_READONLY__attribute__((__pure__));
231
232 /// out-of-line slow case for countPopulation
233 unsigned countPopulationSlowCase() const LLVM_READONLY__attribute__((__pure__));
234
235 /// out-of-line slow case for intersects.
236 bool intersectsSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
237
238 /// out-of-line slow case for isSubsetOf.
239 bool isSubsetOfSlowCase(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
240
241 /// out-of-line slow case for setBits.
242 void setBitsSlowCase(unsigned loBit, unsigned hiBit);
243
244 /// out-of-line slow case for flipAllBits.
245 void flipAllBitsSlowCase();
246
247 /// out-of-line slow case for operator&=.
248 void AndAssignSlowCase(const APInt& RHS);
249
250 /// out-of-line slow case for operator|=.
251 void OrAssignSlowCase(const APInt& RHS);
252
253 /// out-of-line slow case for operator^=.
254 void XorAssignSlowCase(const APInt& RHS);
255
256 /// Unsigned comparison. Returns -1, 0, or 1 if this APInt is less than, equal
257 /// to, or greater than RHS.
258 int compare(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
259
260 /// Signed comparison. Returns -1, 0, or 1 if this APInt is less than, equal
261 /// to, or greater than RHS.
262 int compareSigned(const APInt &RHS) const LLVM_READONLY__attribute__((__pure__));
263
264public:
265 /// \name Constructors
266 /// @{
267
268 /// Create a new APInt of numBits width, initialized as val.
269 ///
270 /// If isSigned is true then val is treated as if it were a signed value
271 /// (i.e. as an int64_t) and the appropriate sign extension to the bit width
272 /// will be done. Otherwise, no sign extension occurs (high order bits beyond
273 /// the range of val are zero filled).
274 ///
275 /// \param numBits the bit width of the constructed APInt
276 /// \param val the initial value of the APInt
277 /// \param isSigned how to treat signedness of val
278 APInt(unsigned numBits, uint64_t val, bool isSigned = false)
279 : BitWidth(numBits) {
280 assert(BitWidth && "bitwidth too small")((BitWidth && "bitwidth too small") ? static_cast<
void> (0) : __assert_fail ("BitWidth && \"bitwidth too small\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/ADT/APInt.h"
, 280, __PRETTY_FUNCTION__))
;
281 if (isSingleWord()) {
282 U.VAL = val;
283 clearUnusedBits();
284 } else {
285 initSlowCase(val, isSigned);
286 }
287 }
288
289 /// Construct an APInt of numBits width, initialized as bigVal[].
290 ///
291 /// Note that bigVal.size() can be smaller or larger than the corresponding
292 /// bit width but any extraneous bits will be dropped.
293 ///
294 /// \param numBits the bit width of the constructed APInt
295 /// \param bigVal a sequence of words to form the initial value of the APInt
296 APInt(unsigned numBits, ArrayRef<uint64_t> bigVal);
297
298 /// Equivalent to APInt(numBits, ArrayRef<uint64_t>(bigVal, numWords)), but
299 /// deprecated because this constructor is prone to ambiguity with the
300 /// APInt(unsigned, uint64_t, bool) constructor.
301 ///
302 /// If this overload is ever deleted, care should be taken to prevent calls
303 /// from being incorrectly captured by the APInt(unsigned, uint64_t, bool)
304 /// constructor.
305 APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[]);
306
307 /// Construct an APInt from a string representation.
308 ///
309 /// This constructor interprets the string \p str in the given radix. The
310 /// interpretation stops when the first character that is not suitable for the
311 /// radix is encountered, or the end of the string. Acceptable radix values
312 /// are 2, 8, 10, 16, and 36. It is an error for the value implied by the
313 /// string to require more bits than numBits.
314 ///
315 /// \param numBits the bit width of the constructed APInt
316 /// \param str the string to be interpreted
317 /// \param radix the radix to use for the conversion
318 APInt(unsigned numBits, StringRef str, uint8_t radix);
319
320 /// Simply makes *this a copy of that.
321 /// Copy Constructor.
322 APInt(const APInt &that) : BitWidth(that.BitWidth) {
323 if (isSingleWord())
324 U.VAL = that.U.VAL;
325 else
326 initSlowCase(that);
327 }
328
329 /// Move Constructor.
330 APInt(APInt &&that) : BitWidth(that.BitWidth) {
331 memcpy(&U, &that.U, sizeof(U));
332 that.BitWidth = 0;
333 }
334
335 /// Destructor.
336 ~APInt() {
337 if (needsCleanup())
338 delete[] U.pVal;
339 }
340
341 /// Default constructor that creates an uninteresting APInt
342 /// representing a 1-bit zero value.
343 ///
344 /// This is useful for object deserialization (pair this with the static
345 /// method Read).
346 explicit APInt() : BitWidth(1) { U.VAL = 0; }
347
348 /// Returns whether this instance allocated memory.
349 bool needsCleanup() const { return !isSingleWord(); }
350
351 /// Used to insert APInt objects, or objects that contain APInt objects, into
352 /// FoldingSets.
353 void Profile(FoldingSetNodeID &id) const;
354
355 /// @}
356 /// \name Value Tests
357 /// @{
358
359 /// Determine sign of this APInt.
360 ///
361 /// This tests the high bit of this APInt to determine if it is set.
362 ///
363 /// \returns true if this APInt is negative, false otherwise
364 bool isNegative() const { return (*this)[BitWidth - 1]; }
365
366 /// Determine if this APInt Value is non-negative (>= 0)
367 ///
368 /// This tests the high bit of the APInt to determine if it is unset.
369 bool isNonNegative() const { return !isNegative(); }
370
371 /// Determine if sign bit of this APInt is set.
372 ///
373 /// This tests the high bit of this APInt to determine if it is set.
374 ///
375 /// \returns true if this APInt has its sign bit set, false otherwise.
376 bool isSignBitSet() const { return (*this)[BitWidth-1]; }
377
378 /// Determine if sign bit of this APInt is clear.
379 ///
380 /// This tests the high bit of this APInt to determine if it is clear.
381 ///
382 /// \returns true if this APInt has its sign bit clear, false otherwise.
383 bool isSignBitClear() const { return !isSignBitSet(); }
384
385 /// Determine if this APInt Value is positive.
386 ///
387 /// This tests if the value of this APInt is positive (> 0). Note
388 /// that 0 is not a positive value.
389 ///
390 /// \returns true if this APInt is positive.
391 bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); }
392
393 /// Determine if this APInt Value is non-positive (<= 0).
394 ///
395 /// \returns true if this APInt is non-positive.
396 bool isNonPositive() const { return !isStrictlyPositive(); }
397
398 /// Determine if all bits are set
399 ///
400 /// This checks to see if the value has all bits of the APInt are set or not.
401 bool isAllOnesValue() const {
402 if (isSingleWord())
403 return U.VAL == WORDTYPE_MAX >> (APINT_BITS_PER_WORD - BitWidth);
404 return countTrailingOnesSlowCase() == BitWidth;
405 }
406
407 /// Determine if all bits are clear
408 ///
409 /// This checks to see if the value has all bits of the APInt are clear or
410 /// not.
411 bool isNullValue() const { return !*this; }
412
413 /// Determine if this is a value of 1.
414 ///
415 /// This checks to see if the value of this APInt is one.
416 bool isOneValue() const {
417 if (isSingleWord())
418 return U.VAL == 1;
419 return countLeadingZerosSlowCase() == BitWidth - 1;
420 }
421
422 /// Determine if this is the largest unsigned value.
423 ///
424 /// This checks to see if the value of this APInt is the maximum unsigned
425 /// value for the APInt's bit width.
426 bool isMaxValue() const { return isAllOnesValue(); }
427
428 /// Determine if this is the largest signed value.
429 ///
430 /// This checks to see if the value of this APInt is the maximum signed
431 /// value for the APInt's bit width.
432 bool isMaxSignedValue() const {
433 if (isSingleWord())
434 return U.VAL == ((WordType(1) << (BitWidth - 1)) - 1);
435 return !isNegative() && countTrailingOnesSlowCase() == BitWidth - 1;
436 }
437
438 /// Determine if this is the smallest unsigned value.
439 ///
440 /// This checks to see if the value of this APInt is the minimum unsigned
441 /// value for the APInt's bit width.
442 bool isMinValue() const { return isNullValue(); }
443
444 /// Determine if this is the smallest signed value.
445 ///
446 /// This checks to see if the value of this APInt is the minimum signed
447 /// value for the APInt's bit width.
448 bool isMinSignedValue() const {
449 if (isSingleWord())
450 return U.VAL == (WordType(1) << (BitWidth - 1));
451 return isNegative() && countTrailingZerosSlowCase() == BitWidth - 1;
452 }
453
454 /// Check if this APInt has an N-bits unsigned integer value.
455 bool isIntN(unsigned N) const {
456 assert(N && "N == 0 ???")((N && "N == 0 ???") ? static_cast<void> (0) : __assert_fail
("N && \"N == 0 ???\"", "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/ADT/APInt.h"
, 456, __PRETTY_FUNCTION__))
;
457 return getActiveBits() <= N;
458 }
459
460 /// Check if this APInt has an N-bits signed integer value.
461 bool isSignedIntN(unsigned N) const {
462 assert(N && "N == 0 ???")((N && "N == 0 ???") ? static_cast<void> (0) : __assert_fail
("N && \"N == 0 ???\"", "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/ADT/APInt.h"
, 462, __PRETTY_FUNCTION__))
;
463 return getMinSignedBits() <= N;
464 }
465
466 /// Check if this APInt's value is a power of two greater than zero.
467 ///
468 /// \returns true if the argument APInt value is a power of two > 0.
469 bool isPowerOf2() const {
470 if (isSingleWord())
471 return isPowerOf2_64(U.VAL);
472 return countPopulationSlowCase() == 1;
473 }
474
475 /// Check if the APInt's value is returned by getSignMask.
476 ///
477 /// \returns true if this is the value returned by getSignMask.
478 bool isSignMask() const { return isMinSignedValue(); }
479
480 /// Convert APInt to a boolean value.
481 ///
482 /// This converts the APInt to a boolean value as a test against zero.
483 bool getBoolValue() const { return !!*this; }
484
485 /// If this value is smaller than the specified limit, return it, otherwise
486 /// return the limit value. This causes the value to saturate to the limit.
487 uint64_t getLimitedValue(uint64_t Limit = UINT64_MAX(18446744073709551615UL)) const {
488 return ugt(Limit) ? Limit : getZExtValue();
489 }
490
491 /// Check if the APInt consists of a repeated bit pattern.
492 ///
493 /// e.g. 0x01010101 satisfies isSplat(8).
494 /// \param SplatSizeInBits The size of the pattern in bits. Must divide bit
495 /// width without remainder.
496 bool isSplat(unsigned SplatSizeInBits) const;
497
498 /// \returns true if this APInt value is a sequence of \param numBits ones
499 /// starting at the least significant bit with the remainder zero.
500 bool isMask(unsigned numBits) const {
501 assert(numBits != 0 && "numBits must be non-zero")((numBits != 0 && "numBits must be non-zero") ? static_cast
<void> (0) : __assert_fail ("numBits != 0 && \"numBits must be non-zero\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/ADT/APInt.h"
, 501, __PRETTY_FUNCTION__))
;
502 assert(numBits <= BitWidth && "numBits out of range")((numBits <= BitWidth && "numBits out of range") ?
static_cast<void> (0) : __assert_fail ("numBits <= BitWidth && \"numBits out of range\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/ADT/APInt.h"
, 502, __PRETTY_FUNCTION__))
;
503 if (isSingleWord())
504 return U.VAL == (WORDTYPE_MAX >> (APINT_BITS_PER_WORD - numBits));
505 unsigned Ones = countTrailingOnesSlowCase();
506 return (numBits == Ones) &&
507 ((Ones + countLeadingZerosSlowCase()) == BitWidth);
508 }
509
510 /// \returns true if this APInt is a non-empty sequence of ones starting at
511 /// the least significant bit with the remainder zero.
512 /// Ex. isMask(0x0000FFFFU) == true.
513 bool isMask() const {
514 if (isSingleWord())
515 return isMask_64(U.VAL);
516 unsigned Ones = countTrailingOnesSlowCase();
517 return (Ones > 0) && ((Ones + countLeadingZerosSlowCase()) == BitWidth);
518 }
519
520 /// Return true if this APInt value contains a sequence of ones with
521 /// the remainder zero.
522 bool isShiftedMask() const {
523 if (isSingleWord())
524 return isShiftedMask_64(U.VAL);
525 unsigned Ones = countPopulationSlowCase();
526 unsigned LeadZ = countLeadingZerosSlowCase();
527 return (Ones + LeadZ + countTrailingZeros()) == BitWidth;
528 }
529
530 /// @}
531 /// \name Value Generators
532 /// @{
533
534 /// Gets maximum unsigned value of APInt for specific bit width.
535 static APInt getMaxValue(unsigned numBits) {
536 return getAllOnesValue(numBits);
537 }
538
539 /// Gets maximum signed value of APInt for a specific bit width.
540 static APInt getSignedMaxValue(unsigned numBits) {
541 APInt API = getAllOnesValue(numBits);
542 API.clearBit(numBits - 1);
543 return API;
544 }
545
546 /// Gets minimum unsigned value of APInt for a specific bit width.
547 static APInt getMinValue(unsigned numBits) { return APInt(numBits, 0); }
548
549 /// Gets minimum signed value of APInt for a specific bit width.
550 static APInt getSignedMinValue(unsigned numBits) {
551 APInt API(numBits, 0);
552 API.setBit(numBits - 1);
553 return API;
554 }
555
556 /// Get the SignMask for a specific bit width.
557 ///
558 /// This is just a wrapper function of getSignedMinValue(), and it helps code
559 /// readability when we want to get a SignMask.
560 static APInt getSignMask(unsigned BitWidth) {
561 return getSignedMinValue(BitWidth);
562 }
563
564 /// Get the all-ones value.
565 ///
566 /// \returns the all-ones value for an APInt of the specified bit-width.
567 static APInt getAllOnesValue(unsigned numBits) {
568 return APInt(numBits, WORDTYPE_MAX, true);
569 }
570
571 /// Get the '0' value.
572 ///
573 /// \returns the '0' value for an APInt of the specified bit-width.
574 static APInt getNullValue(unsigned numBits) { return APInt(numBits, 0); }
575
576 /// Compute an APInt containing numBits highbits from this APInt.
577 ///
578 /// Get an APInt with the same BitWidth as this APInt, just zero mask
579 /// the low bits and right shift to the least significant bit.
580 ///
581 /// \returns the high "numBits" bits of this APInt.
582 APInt getHiBits(unsigned numBits) const;
583
584 /// Compute an APInt containing numBits lowbits from this APInt.
585 ///
586 /// Get an APInt with the same BitWidth as this APInt, just zero mask
587 /// the high bits.
588 ///
589 /// \returns the low "numBits" bits of this APInt.
590 APInt getLoBits(unsigned numBits) const;
591
592 /// Return an APInt with exactly one bit set in the result.
593 static APInt getOneBitSet(unsigned numBits, unsigned BitNo) {
594 APInt Res(numBits, 0);
595 Res.setBit(BitNo);
596 return Res;
597 }
598
599 /// Get a value with a block of bits set.
600 ///
601 /// Constructs an APInt value that has a contiguous range of bits set. The
602 /// bits from loBit (inclusive) to hiBit (exclusive) will be set. All other
603 /// bits will be zero. For example, with parameters(32, 0, 16) you would get
604 /// 0x0000FFFF. Please call getBitsSetWithWrap if \p loBit may be greater than
605 /// \p hiBit.
606 ///
607 /// \param numBits the intended bit width of the result
608 /// \param loBit the index of the lowest bit set.
609 /// \param hiBit the index of the highest bit set.
610 ///
611 /// \returns An APInt value with the requested bits set.
612 static APInt getBitsSet(unsigned numBits, unsigned loBit, unsigned hiBit) {
613 assert(loBit <= hiBit && "loBit greater than hiBit")((loBit <= hiBit && "loBit greater than hiBit") ? static_cast
<void> (0) : __assert_fail ("loBit <= hiBit && \"loBit greater than hiBit\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/ADT/APInt.h"
, 613, __PRETTY_FUNCTION__))
;
614 APInt Res(numBits, 0);
615 Res.setBits(loBit, hiBit);
616 return Res;
617 }
618
619 /// Wrap version of getBitsSet.
620 /// If \p hiBit is bigger than \p loBit, this is same with getBitsSet.
621 /// If \p hiBit is not bigger than \p loBit, the set bits "wrap". For example,
622 /// with parameters (32, 28, 4), you would get 0xF000000F.
623 /// If \p hiBit is equal to \p loBit, you would get a result with all bits
624 /// set.
625 static APInt getBitsSetWithWrap(unsigned numBits, unsigned loBit,
626 unsigned hiBit) {
627 APInt Res(numBits, 0);
628 Res.setBitsWithWrap(loBit, hiBit);
629 return Res;
630 }
631
632 /// Get a value with upper bits starting at loBit set.
633 ///
634 /// Constructs an APInt value that has a contiguous range of bits set. The
635 /// bits from loBit (inclusive) to numBits (exclusive) will be set. All other
636 /// bits will be zero. For example, with parameters(32, 12) you would get
637 /// 0xFFFFF000.
638 ///
639 /// \param numBits the intended bit width of the result
640 /// \param loBit the index of the lowest bit to set.
641 ///
642 /// \returns An APInt value with the requested bits set.
643 static APInt getBitsSetFrom(unsigned numBits, unsigned loBit) {
644 APInt Res(numBits, 0);
645 Res.setBitsFrom(loBit);
646 return Res;
647 }
648
649 /// Get a value with high bits set
650 ///
651 /// Constructs an APInt value that has the top hiBitsSet bits set.
652 ///
653 /// \param numBits the bitwidth of the result
654 /// \param hiBitsSet the number of high-order bits set in the result.
655 static APInt getHighBitsSet(unsigned numBits, unsigned hiBitsSet) {
656 APInt Res(numBits, 0);
657 Res.setHighBits(hiBitsSet);
658 return Res;
659 }
660
661 /// Get a value with low bits set
662 ///
663 /// Constructs an APInt value that has the bottom loBitsSet bits set.
664 ///
665 /// \param numBits the bitwidth of the result
666 /// \param loBitsSet the number of low-order bits set in the result.
667 static APInt getLowBitsSet(unsigned numBits, unsigned loBitsSet) {
668 APInt Res(numBits, 0);
669 Res.setLowBits(loBitsSet);
670 return Res;
671 }
672
673 /// Return a value containing V broadcasted over NewLen bits.
674 static APInt getSplat(unsigned NewLen, const APInt &V);
675
676 /// Determine if two APInts have the same value, after zero-extending
677 /// one of them (if needed!) to ensure that the bit-widths match.
678 static bool isSameValue(const APInt &I1, const APInt &I2) {
679 if (I1.getBitWidth() == I2.getBitWidth())
680 return I1 == I2;
681
682 if (I1.getBitWidth() > I2.getBitWidth())
683 return I1 == I2.zext(I1.getBitWidth());
684
685 return I1.zext(I2.getBitWidth()) == I2;
686 }
687
688 /// Overload to compute a hash_code for an APInt value.
689 friend hash_code hash_value(const APInt &Arg);
690
691 /// This function returns a pointer to the internal storage of the APInt.
692 /// This is useful for writing out the APInt in binary form without any
693 /// conversions.
694 const uint64_t *getRawData() const {
695 if (isSingleWord())
696 return &U.VAL;
697 return &U.pVal[0];
698 }
699
700 /// @}
701 /// \name Unary Operators
702 /// @{
703
704 /// Postfix increment operator.
705 ///
706 /// Increments *this by 1.
707 ///
708 /// \returns a new APInt value representing the original value of *this.
709 const APInt operator++(int) {
710 APInt API(*this);
711 ++(*this);
712 return API;
713 }
714
715 /// Prefix increment operator.
716 ///
717 /// \returns *this incremented by one
718 APInt &operator++();
719
720 /// Postfix decrement operator.
721 ///
722 /// Decrements *this by 1.
723 ///
724 /// \returns a new APInt value representing the original value of *this.
725 const APInt operator--(int) {
726 APInt API(*this);
727 --(*this);
728 return API;
729 }
730
731 /// Prefix decrement operator.
732 ///
733 /// \returns *this decremented by one.
734 APInt &operator--();
735
736 /// Logical negation operator.
737 ///
738 /// Performs logical negation operation on this APInt.
739 ///
740 /// \returns true if *this is zero, false otherwise.
741 bool operator!() const {
742 if (isSingleWord())
743 return U.VAL == 0;
744 return countLeadingZerosSlowCase() == BitWidth;
745 }
746
747 /// @}
748 /// \name Assignment Operators
749 /// @{
750
751 /// Copy assignment operator.
752 ///
753 /// \returns *this after assignment of RHS.
754 APInt &operator=(const APInt &RHS) {
755 // If the bitwidths are the same, we can avoid mucking with memory
756 if (isSingleWord() && RHS.isSingleWord()) {
757 U.VAL = RHS.U.VAL;
758 BitWidth = RHS.BitWidth;
759 return clearUnusedBits();
760 }
761
762 AssignSlowCase(RHS);
763 return *this;
764 }
765
766 /// Move assignment operator.
767 APInt &operator=(APInt &&that) {
768#ifdef EXPENSIVE_CHECKS
769 // Some std::shuffle implementations still do self-assignment.
770 if (this == &that)
771 return *this;
772#endif
773 assert(this != &that && "Self-move not supported")((this != &that && "Self-move not supported") ? static_cast
<void> (0) : __assert_fail ("this != &that && \"Self-move not supported\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/ADT/APInt.h"
, 773, __PRETTY_FUNCTION__))
;
774 if (!isSingleWord())
775 delete[] U.pVal;
776
777 // Use memcpy so that type based alias analysis sees both VAL and pVal
778 // as modified.
779 memcpy(&U, &that.U, sizeof(U));
780
781 BitWidth = that.BitWidth;
782 that.BitWidth = 0;
783
784 return *this;
785 }
786
787 /// Assignment operator.
788 ///
789 /// The RHS value is assigned to *this. If the significant bits in RHS exceed
790 /// the bit width, the excess bits are truncated. If the bit width is larger
791 /// than 64, the value is zero filled in the unspecified high order bits.
792 ///
793 /// \returns *this after assignment of RHS value.
794 APInt &operator=(uint64_t RHS) {
795 if (isSingleWord()) {
796 U.VAL = RHS;
797 return clearUnusedBits();
798 }
799 U.pVal[0] = RHS;
800 memset(U.pVal + 1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
801 return *this;
802 }
803
804 /// Bitwise AND assignment operator.
805 ///
806 /// Performs a bitwise AND operation on this APInt and RHS. The result is
807 /// assigned to *this.
808 ///
809 /// \returns *this after ANDing with RHS.
810 APInt &operator&=(const APInt &RHS) {
811 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((BitWidth == RHS.BitWidth && "Bit widths must be the same"
) ? static_cast<void> (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/ADT/APInt.h"
, 811, __PRETTY_FUNCTION__))
;
812 if (isSingleWord())
813 U.VAL &= RHS.U.VAL;
814 else
815 AndAssignSlowCase(RHS);
816 return *this;
817 }
818
819 /// Bitwise AND assignment operator.
820 ///
821 /// Performs a bitwise AND operation on this APInt and RHS. RHS is
822 /// logically zero-extended or truncated to match the bit-width of
823 /// the LHS.
824 APInt &operator&=(uint64_t RHS) {
825 if (isSingleWord()) {
826 U.VAL &= RHS;
827 return *this;
828 }
829 U.pVal[0] &= RHS;
830 memset(U.pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
831 return *this;
832 }
833
834 /// Bitwise OR assignment operator.
835 ///
836 /// Performs a bitwise OR operation on this APInt and RHS. The result is
837 /// assigned *this;
838 ///
839 /// \returns *this after ORing with RHS.
840 APInt &operator|=(const APInt &RHS) {
841 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((BitWidth == RHS.BitWidth && "Bit widths must be the same"
) ? static_cast<void> (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/ADT/APInt.h"
, 841, __PRETTY_FUNCTION__))
;
842 if (isSingleWord())
843 U.VAL |= RHS.U.VAL;
844 else
845 OrAssignSlowCase(RHS);
846 return *this;
847 }
848
849 /// Bitwise OR assignment operator.
850 ///
851 /// Performs a bitwise OR operation on this APInt and RHS. RHS is
852 /// logically zero-extended or truncated to match the bit-width of
853 /// the LHS.
854 APInt &operator|=(uint64_t RHS) {
855 if (isSingleWord()) {
856 U.VAL |= RHS;
857 return clearUnusedBits();
858 }
859 U.pVal[0] |= RHS;
860 return *this;
861 }
862
863 /// Bitwise XOR assignment operator.
864 ///
865 /// Performs a bitwise XOR operation on this APInt and RHS. The result is
866 /// assigned to *this.
867 ///
868 /// \returns *this after XORing with RHS.
869 APInt &operator^=(const APInt &RHS) {
870 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((BitWidth == RHS.BitWidth && "Bit widths must be the same"
) ? static_cast<void> (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/ADT/APInt.h"
, 870, __PRETTY_FUNCTION__))
;
871 if (isSingleWord())
872 U.VAL ^= RHS.U.VAL;
873 else
874 XorAssignSlowCase(RHS);
875 return *this;
876 }
877
878 /// Bitwise XOR assignment operator.
879 ///
880 /// Performs a bitwise XOR operation on this APInt and RHS. RHS is
881 /// logically zero-extended or truncated to match the bit-width of
882 /// the LHS.
883 APInt &operator^=(uint64_t RHS) {
884 if (isSingleWord()) {
885 U.VAL ^= RHS;
886 return clearUnusedBits();
887 }
888 U.pVal[0] ^= RHS;
889 return *this;
890 }
891
892 /// Multiplication assignment operator.
893 ///
894 /// Multiplies this APInt by RHS and assigns the result to *this.
895 ///
896 /// \returns *this
897 APInt &operator*=(const APInt &RHS);
898 APInt &operator*=(uint64_t RHS);
899
900 /// Addition assignment operator.
901 ///
902 /// Adds RHS to *this and assigns the result to *this.
903 ///
904 /// \returns *this
905 APInt &operator+=(const APInt &RHS);
906 APInt &operator+=(uint64_t RHS);
907
908 /// Subtraction assignment operator.
909 ///
910 /// Subtracts RHS from *this and assigns the result to *this.
911 ///
912 /// \returns *this
913 APInt &operator-=(const APInt &RHS);
914 APInt &operator-=(uint64_t RHS);
915
916 /// Left-shift assignment function.
917 ///
918 /// Shifts *this left by shiftAmt and assigns the result to *this.
919 ///
920 /// \returns *this after shifting left by ShiftAmt
921 APInt &operator<<=(unsigned ShiftAmt) {
922 assert(ShiftAmt <= BitWidth && "Invalid shift amount")((ShiftAmt <= BitWidth && "Invalid shift amount") ?
static_cast<void> (0) : __assert_fail ("ShiftAmt <= BitWidth && \"Invalid shift amount\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/ADT/APInt.h"
, 922, __PRETTY_FUNCTION__))
;
923 if (isSingleWord()) {
924 if (ShiftAmt == BitWidth)
925 U.VAL = 0;
926 else
927 U.VAL <<= ShiftAmt;
928 return clearUnusedBits();
929 }
930 shlSlowCase(ShiftAmt);
931 return *this;
932 }
933
934 /// Left-shift assignment function.
935 ///
936 /// Shifts *this left by shiftAmt and assigns the result to *this.
937 ///
938 /// \returns *this after shifting left by ShiftAmt
939 APInt &operator<<=(const APInt &ShiftAmt);
940
941 /// @}
942 /// \name Binary Operators
943 /// @{
944
945 /// Multiplication operator.
946 ///
947 /// Multiplies this APInt by RHS and returns the result.
948 APInt operator*(const APInt &RHS) const;
949
950 /// Left logical shift operator.
951 ///
952 /// Shifts this APInt left by \p Bits and returns the result.
953 APInt operator<<(unsigned Bits) const { return shl(Bits); }
954
955 /// Left logical shift operator.
956 ///
957 /// Shifts this APInt left by \p Bits and returns the result.
958 APInt operator<<(const APInt &Bits) const { return shl(Bits); }
959
960 /// Arithmetic right-shift function.
961 ///
962 /// Arithmetic right-shift this APInt by shiftAmt.
963 APInt ashr(unsigned ShiftAmt) const {
964 APInt R(*this);
965 R.ashrInPlace(ShiftAmt);
966 return R;
967 }
968
969 /// Arithmetic right-shift this APInt by ShiftAmt in place.
970 void ashrInPlace(unsigned ShiftAmt) {
971 assert(ShiftAmt <= BitWidth && "Invalid shift amount")((ShiftAmt <= BitWidth && "Invalid shift amount") ?
static_cast<void> (0) : __assert_fail ("ShiftAmt <= BitWidth && \"Invalid shift amount\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/ADT/APInt.h"
, 971, __PRETTY_FUNCTION__))
;
972 if (isSingleWord()) {
973 int64_t SExtVAL = SignExtend64(U.VAL, BitWidth);
974 if (ShiftAmt == BitWidth)
975 U.VAL = SExtVAL >> (APINT_BITS_PER_WORD - 1); // Fill with sign bit.
976 else
977 U.VAL = SExtVAL >> ShiftAmt;
978 clearUnusedBits();
979 return;
980 }
981 ashrSlowCase(ShiftAmt);
982 }
983
984 /// Logical right-shift function.
985 ///
986 /// Logical right-shift this APInt by shiftAmt.
987 APInt lshr(unsigned shiftAmt) const {
988 APInt R(*this);
989 R.lshrInPlace(shiftAmt);
990 return R;
991 }
992
993 /// Logical right-shift this APInt by ShiftAmt in place.
994 void lshrInPlace(unsigned ShiftAmt) {
995 assert(ShiftAmt <= BitWidth && "Invalid shift amount")((ShiftAmt <= BitWidth && "Invalid shift amount") ?
static_cast<void> (0) : __assert_fail ("ShiftAmt <= BitWidth && \"Invalid shift amount\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/ADT/APInt.h"
, 995, __PRETTY_FUNCTION__))
;
996 if (isSingleWord()) {
997 if (ShiftAmt == BitWidth)
998 U.VAL = 0;
999 else
1000 U.VAL >>= ShiftAmt;
1001 return;
1002 }
1003 lshrSlowCase(ShiftAmt);
1004 }
1005
1006 /// Left-shift function.
1007 ///
1008 /// Left-shift this APInt by shiftAmt.
1009 APInt shl(unsigned shiftAmt) const {
1010 APInt R(*this);
1011 R <<= shiftAmt;
1012 return R;
1013 }
1014
1015 /// Rotate left by rotateAmt.
1016 APInt rotl(unsigned rotateAmt) const;
1017
1018 /// Rotate right by rotateAmt.
1019 APInt rotr(unsigned rotateAmt) const;
1020
1021 /// Arithmetic right-shift function.
1022 ///
1023 /// Arithmetic right-shift this APInt by shiftAmt.
1024 APInt ashr(const APInt &ShiftAmt) const {
1025 APInt R(*this);
1026 R.ashrInPlace(ShiftAmt);
1027 return R;
1028 }
1029
1030 /// Arithmetic right-shift this APInt by shiftAmt in place.
1031 void ashrInPlace(const APInt &shiftAmt);
1032
1033 /// Logical right-shift function.
1034 ///
1035 /// Logical right-shift this APInt by shiftAmt.
1036 APInt lshr(const APInt &ShiftAmt) const {
1037 APInt R(*this);
1038 R.lshrInPlace(ShiftAmt);
1039 return R;
1040 }
1041
1042 /// Logical right-shift this APInt by ShiftAmt in place.
1043 void lshrInPlace(const APInt &ShiftAmt);
1044
1045 /// Left-shift function.
1046 ///
1047 /// Left-shift this APInt by shiftAmt.
1048 APInt shl(const APInt &ShiftAmt) const {
1049 APInt R(*this);
1050 R <<= ShiftAmt;
1051 return R;
1052 }
1053
1054 /// Rotate left by rotateAmt.
1055 APInt rotl(const APInt &rotateAmt) const;
1056
1057 /// Rotate right by rotateAmt.
1058 APInt rotr(const APInt &rotateAmt) const;
1059
1060 /// Unsigned division operation.
1061 ///
1062 /// Perform an unsigned divide operation on this APInt by RHS. Both this and
1063 /// RHS are treated as unsigned quantities for purposes of this division.
1064 ///
1065 /// \returns a new APInt value containing the division result, rounded towards
1066 /// zero.
1067 APInt udiv(const APInt &RHS) const;
1068 APInt udiv(uint64_t RHS) const;
1069
1070 /// Signed division function for APInt.
1071 ///
1072 /// Signed divide this APInt by APInt RHS.
1073 ///
1074 /// The result is rounded towards zero.
1075 APInt sdiv(const APInt &RHS) const;
1076 APInt sdiv(int64_t RHS) const;
1077
1078 /// Unsigned remainder operation.
1079 ///
1080 /// Perform an unsigned remainder operation on this APInt with RHS being the
1081 /// divisor. Both this and RHS are treated as unsigned quantities for purposes
1082 /// of this operation. Note that this is a true remainder operation and not a
1083 /// modulo operation because the sign follows the sign of the dividend which
1084 /// is *this.
1085 ///
1086 /// \returns a new APInt value containing the remainder result
1087 APInt urem(const APInt &RHS) const;
1088 uint64_t urem(uint64_t RHS) const;
1089
1090 /// Function for signed remainder operation.
1091 ///
1092 /// Signed remainder operation on APInt.
1093 APInt srem(const APInt &RHS) const;
1094 int64_t srem(int64_t RHS) const;
1095
1096 /// Dual division/remainder interface.
1097 ///
1098 /// Sometimes it is convenient to divide two APInt values and obtain both the
1099 /// quotient and remainder. This function does both operations in the same
1100 /// computation making it a little more efficient. The pair of input arguments
1101 /// may overlap with the pair of output arguments. It is safe to call
1102 /// udivrem(X, Y, X, Y), for example.
1103 static void udivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1104 APInt &Remainder);
1105 static void udivrem(const APInt &LHS, uint64_t RHS, APInt &Quotient,
1106 uint64_t &Remainder);
1107
1108 static void sdivrem(const APInt &LHS, const APInt &RHS, APInt &Quotient,
1109 APInt &Remainder);
1110 static void sdivrem(const APInt &LHS, int64_t RHS, APInt &Quotient,
1111 int64_t &Remainder);
1112
1113 // Operations that return overflow indicators.
1114 APInt sadd_ov(const APInt &RHS, bool &Overflow) const;
1115 APInt uadd_ov(const APInt &RHS, bool &Overflow) const;
1116 APInt ssub_ov(const APInt &RHS, bool &Overflow) const;
1117 APInt usub_ov(const APInt &RHS, bool &Overflow) const;
1118 APInt sdiv_ov(const APInt &RHS, bool &Overflow) const;
1119 APInt smul_ov(const APInt &RHS, bool &Overflow) const;
1120 APInt umul_ov(const APInt &RHS, bool &Overflow) const;
1121 APInt sshl_ov(const APInt &Amt, bool &Overflow) const;
1122 APInt ushl_ov(const APInt &Amt, bool &Overflow) const;
1123
1124 // Operations that saturate
1125 APInt sadd_sat(const APInt &RHS) const;
1126 APInt uadd_sat(const APInt &RHS) const;
1127 APInt ssub_sat(const APInt &RHS) const;
1128 APInt usub_sat(const APInt &RHS) const;
1129 APInt smul_sat(const APInt &RHS) const;
1130 APInt umul_sat(const APInt &RHS) const;
1131 APInt sshl_sat(const APInt &RHS) const;
1132 APInt ushl_sat(const APInt &RHS) const;
1133
1134 /// Array-indexing support.
1135 ///
1136 /// \returns the bit value at bitPosition
1137 bool operator[](unsigned bitPosition) const {
1138 assert(bitPosition < getBitWidth() && "Bit position out of bounds!")((bitPosition < getBitWidth() && "Bit position out of bounds!"
) ? static_cast<void> (0) : __assert_fail ("bitPosition < getBitWidth() && \"Bit position out of bounds!\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/ADT/APInt.h"
, 1138, __PRETTY_FUNCTION__))
;
1139 return (maskBit(bitPosition) & getWord(bitPosition)) != 0;
1140 }
1141
1142 /// @}
1143 /// \name Comparison Operators
1144 /// @{
1145
1146 /// Equality operator.
1147 ///
1148 /// Compares this APInt with RHS for the validity of the equality
1149 /// relationship.
1150 bool operator==(const APInt &RHS) const {
1151 assert(BitWidth == RHS.BitWidth && "Comparison requires equal bit widths")((BitWidth == RHS.BitWidth && "Comparison requires equal bit widths"
) ? static_cast<void> (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Comparison requires equal bit widths\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/ADT/APInt.h"
, 1151, __PRETTY_FUNCTION__))
;
21
'?' condition is true
1152 if (isSingleWord())
22
Calling 'APInt::isSingleWord'
24
Returning from 'APInt::isSingleWord'
25
Taking true branch
1153 return U.VAL == RHS.U.VAL;
26
Assuming 'U.VAL' is equal to 'RHS.U.VAL'
27
Returning the value 1, which participates in a condition later
1154 return EqualSlowCase(RHS);
1155 }
1156
1157 /// Equality operator.
1158 ///
1159 /// Compares this APInt with a uint64_t for the validity of the equality
1160 /// relationship.
1161 ///
1162 /// \returns true if *this == Val
1163 bool operator==(uint64_t Val) const {
1164 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() == Val;
1165 }
1166
1167 /// Equality comparison.
1168 ///
1169 /// Compares this APInt with RHS for the validity of the equality
1170 /// relationship.
1171 ///
1172 /// \returns true if *this == Val
1173 bool eq(const APInt &RHS) const { return (*this) == RHS; }
20
Calling 'APInt::operator=='
28
Returning from 'APInt::operator=='
29
Returning the value 1, which participates in a condition later
1174
1175 /// Inequality operator.
1176 ///
1177 /// Compares this APInt with RHS for the validity of the inequality
1178 /// relationship.
1179 ///
1180 /// \returns true if *this != Val
1181 bool operator!=(const APInt &RHS) const { return !((*this) == RHS); }
1182
1183 /// Inequality operator.
1184 ///
1185 /// Compares this APInt with a uint64_t for the validity of the inequality
1186 /// relationship.
1187 ///
1188 /// \returns true if *this != Val
1189 bool operator!=(uint64_t Val) const { return !((*this) == Val); }
1190
1191 /// Inequality comparison
1192 ///
1193 /// Compares this APInt with RHS for the validity of the inequality
1194 /// relationship.
1195 ///
1196 /// \returns true if *this != Val
1197 bool ne(const APInt &RHS) const { return !((*this) == RHS); }
1198
1199 /// Unsigned less than comparison
1200 ///
1201 /// Regards both *this and RHS as unsigned quantities and compares them for
1202 /// the validity of the less-than relationship.
1203 ///
1204 /// \returns true if *this < RHS when both are considered unsigned.
1205 bool ult(const APInt &RHS) const { return compare(RHS) < 0; }
15
Assuming the condition is false
16
Returning zero, which participates in a condition later
1206
1207 /// Unsigned less than comparison
1208 ///
1209 /// Regards both *this as an unsigned quantity and compares it with RHS for
1210 /// the validity of the less-than relationship.
1211 ///
1212 /// \returns true if *this < RHS when considered unsigned.
1213 bool ult(uint64_t RHS) const {
1214 // Only need to check active bits if not a single word.
1215 return (isSingleWord() || getActiveBits() <= 64) && getZExtValue() < RHS;
1216 }
1217
1218 /// Signed less than comparison
1219 ///
1220 /// Regards both *this and RHS as signed quantities and compares them for
1221 /// validity of the less-than relationship.
1222 ///
1223 /// \returns true if *this < RHS when both are considered signed.
1224 bool slt(const APInt &RHS) const { return compareSigned(RHS) < 0; }
1225
1226 /// Signed less than comparison
1227 ///
1228 /// Regards both *this as a signed quantity and compares it with RHS for
1229 /// the validity of the less-than relationship.
1230 ///
1231 /// \returns true if *this < RHS when considered signed.
1232 bool slt(int64_t RHS) const {
1233 return (!isSingleWord() && getMinSignedBits() > 64) ? isNegative()
1234 : getSExtValue() < RHS;
1235 }
1236
1237 /// Unsigned less or equal comparison
1238 ///
1239 /// Regards both *this and RHS as unsigned quantities and compares them for
1240 /// validity of the less-or-equal relationship.
1241 ///
1242 /// \returns true if *this <= RHS when both are considered unsigned.
1243 bool ule(const APInt &RHS) const { return compare(RHS) <= 0; }
1244
1245 /// Unsigned less or equal comparison
1246 ///
1247 /// Regards both *this as an unsigned quantity and compares it with RHS for
1248 /// the validity of the less-or-equal relationship.
1249 ///
1250 /// \returns true if *this <= RHS when considered unsigned.
1251 bool ule(uint64_t RHS) const { return !ugt(RHS); }
1252
1253 /// Signed less or equal comparison
1254 ///
1255 /// Regards both *this and RHS as signed quantities and compares them for
1256 /// validity of the less-or-equal relationship.
1257 ///
1258 /// \returns true if *this <= RHS when both are considered signed.
1259 bool sle(const APInt &RHS) const { return compareSigned(RHS) <= 0; }
1260
1261 /// Signed less or equal comparison
1262 ///
1263 /// Regards both *this as a signed quantity and compares it with RHS for the
1264 /// validity of the less-or-equal relationship.
1265 ///
1266 /// \returns true if *this <= RHS when considered signed.
1267 bool sle(uint64_t RHS) const { return !sgt(RHS); }
1268
1269 /// Unsigned greater than comparison
1270 ///
1271 /// Regards both *this and RHS as unsigned quantities and compares them for
1272 /// the validity of the greater-than relationship.
1273 ///
1274 /// \returns true if *this > RHS when both are considered unsigned.
1275 bool ugt(const APInt &RHS) const { return !ule(RHS); }
1276
1277 /// Unsigned greater than comparison
1278 ///
1279 /// Regards both *this as an unsigned quantity and compares it with RHS for
1280 /// the validity of the greater-than relationship.
1281 ///
1282 /// \returns true if *this > RHS when considered unsigned.
1283 bool ugt(uint64_t RHS) const {
1284 // Only need to check active bits if not a single word.
1285 return (!isSingleWord() && getActiveBits() > 64) || getZExtValue() > RHS;
1286 }
1287
1288 /// Signed greater than comparison
1289 ///
1290 /// Regards both *this and RHS as signed quantities and compares them for the
1291 /// validity of the greater-than relationship.
1292 ///
1293 /// \returns true if *this > RHS when both are considered signed.
1294 bool sgt(const APInt &RHS) const { return !sle(RHS); }
1295
1296 /// Signed greater than comparison
1297 ///
1298 /// Regards both *this as a signed quantity and compares it with RHS for
1299 /// the validity of the greater-than relationship.
1300 ///
1301 /// \returns true if *this > RHS when considered signed.
1302 bool sgt(int64_t RHS) const {
1303 return (!isSingleWord() && getMinSignedBits() > 64) ? !isNegative()
1304 : getSExtValue() > RHS;
1305 }
1306
1307 /// Unsigned greater or equal comparison
1308 ///
1309 /// Regards both *this and RHS as unsigned quantities and compares them for
1310 /// validity of the greater-or-equal relationship.
1311 ///
1312 /// \returns true if *this >= RHS when both are considered unsigned.
1313 bool uge(const APInt &RHS) const { return !ult(RHS); }
1314
1315 /// Unsigned greater or equal comparison
1316 ///
1317 /// Regards both *this as an unsigned quantity and compares it with RHS for
1318 /// the validity of the greater-or-equal relationship.
1319 ///
1320 /// \returns true if *this >= RHS when considered unsigned.
1321 bool uge(uint64_t RHS) const { return !ult(RHS); }
1322
1323 /// Signed greater or equal comparison
1324 ///
1325 /// Regards both *this and RHS as signed quantities and compares them for
1326 /// validity of the greater-or-equal relationship.
1327 ///
1328 /// \returns true if *this >= RHS when both are considered signed.
1329 bool sge(const APInt &RHS) const { return !slt(RHS); }
1330
1331 /// Signed greater or equal comparison
1332 ///
1333 /// Regards both *this as a signed quantity and compares it with RHS for
1334 /// the validity of the greater-or-equal relationship.
1335 ///
1336 /// \returns true if *this >= RHS when considered signed.
1337 bool sge(int64_t RHS) const { return !slt(RHS); }
1338
1339 /// This operation tests if there are any pairs of corresponding bits
1340 /// between this APInt and RHS that are both set.
1341 bool intersects(const APInt &RHS) const {
1342 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((BitWidth == RHS.BitWidth && "Bit widths must be the same"
) ? static_cast<void> (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/ADT/APInt.h"
, 1342, __PRETTY_FUNCTION__))
;
1343 if (isSingleWord())
1344 return (U.VAL & RHS.U.VAL) != 0;
1345 return intersectsSlowCase(RHS);
1346 }
1347
1348 /// This operation checks that all bits set in this APInt are also set in RHS.
1349 bool isSubsetOf(const APInt &RHS) const {
1350 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same")((BitWidth == RHS.BitWidth && "Bit widths must be the same"
) ? static_cast<void> (0) : __assert_fail ("BitWidth == RHS.BitWidth && \"Bit widths must be the same\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/ADT/APInt.h"
, 1350, __PRETTY_FUNCTION__))
;
1351 if (isSingleWord())
1352 return (U.VAL & ~RHS.U.VAL) == 0;
1353 return isSubsetOfSlowCase(RHS);
1354 }
1355
1356 /// @}
1357 /// \name Resizing Operators
1358 /// @{
1359
1360 /// Truncate to new width.
1361 ///
1362 /// Truncate the APInt to a specified width. It is an error to specify a width
1363 /// that is greater than or equal to the current width.
1364 APInt trunc(unsigned width) const;
1365
1366 /// Truncate to new width with unsigned saturation.
1367 ///
1368 /// If the APInt, treated as unsigned integer, can be losslessly truncated to
1369 /// the new bitwidth, then return truncated APInt. Else, return max value.
1370 APInt truncUSat(unsigned width) const;
1371
1372 /// Truncate to new width with signed saturation.
1373 ///
1374 /// If this APInt, treated as signed integer, can be losslessly truncated to
1375 /// the new bitwidth, then return truncated APInt. Else, return either
1376 /// signed min value if the APInt was negative, or signed max value.
1377 APInt truncSSat(unsigned width) const;
1378
1379 /// Sign extend to a new width.
1380 ///
1381 /// This operation sign extends the APInt to a new width. If the high order
1382 /// bit is set, the fill on the left will be done with 1 bits, otherwise zero.
1383 /// It is an error to specify a width that is less than or equal to the
1384 /// current width.
1385 APInt sext(unsigned width) const;
1386
1387 /// Zero extend to a new width.
1388 ///
1389 /// This operation zero extends the APInt to a new width. The high order bits
1390 /// are filled with 0 bits. It is an error to specify a width that is less
1391 /// than or equal to the current width.
1392 APInt zext(unsigned width) const;
1393
1394 /// Sign extend or truncate to width
1395 ///
1396 /// Make this APInt have the bit width given by \p width. The value is sign
1397 /// extended, truncated, or left alone to make it that width.
1398 APInt sextOrTrunc(unsigned width) const;
1399
1400 /// Zero extend or truncate to width
1401 ///
1402 /// Make this APInt have the bit width given by \p width. The value is zero
1403 /// extended, truncated, or left alone to make it that width.
1404 APInt zextOrTrunc(unsigned width) const;
1405
1406 /// Sign extend or truncate to width
1407 ///
1408 /// Make this APInt have the bit width given by \p width. The value is sign
1409 /// extended, or left alone to make it that width.
1410 APInt sextOrSelf(unsigned width) const;
1411
1412 /// Zero extend or truncate to width
1413 ///
1414 /// Make this APInt have the bit width given by \p width. The value is zero
1415 /// extended, or left alone to make it that width.
1416 APInt zextOrSelf(unsigned width) const;
1417
1418 /// @}
1419 /// \name Bit Manipulation Operators
1420 /// @{
1421
1422 /// Set every bit to 1.
1423 void setAllBits() {
1424 if (isSingleWord())
1425 U.VAL = WORDTYPE_MAX;
1426 else
1427 // Set all the bits in all the words.
1428 memset(U.pVal, -1, getNumWords() * APINT_WORD_SIZE);
1429 // Clear the unused ones
1430 clearUnusedBits();
1431 }
1432
1433 /// Set a given bit to 1.
1434 ///
1435 /// Set the given bit to 1 whose position is given as "bitPosition".
1436 void setBit(unsigned BitPosition) {
1437 assert(BitPosition < BitWidth && "BitPosition out of range")((BitPosition < BitWidth && "BitPosition out of range"
) ? static_cast<void> (0) : __assert_fail ("BitPosition < BitWidth && \"BitPosition out of range\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/ADT/APInt.h"
, 1437, __PRETTY_FUNCTION__))
;
1438 WordType Mask = maskBit(BitPosition);
1439 if (isSingleWord())
1440 U.VAL |= Mask;
1441 else
1442 U.pVal[whichWord(BitPosition)] |= Mask;
1443 }
1444
1445 /// Set the sign bit to 1.
1446 void setSignBit() {
1447 setBit(BitWidth - 1);
1448 }
1449
1450 /// Set a given bit to a given value.
1451 void setBitVal(unsigned BitPosition, bool BitValue) {
1452 if (BitValue)
1453 setBit(BitPosition);
1454 else
1455 clearBit(BitPosition);
1456 }
1457
1458 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1459 /// This function handles "wrap" case when \p loBit >= \p hiBit, and calls
1460 /// setBits when \p loBit < \p hiBit.
1461 /// For \p loBit == \p hiBit wrap case, set every bit to 1.
1462 void setBitsWithWrap(unsigned loBit, unsigned hiBit) {
1463 assert(hiBit <= BitWidth && "hiBit out of range")((hiBit <= BitWidth && "hiBit out of range") ? static_cast
<void> (0) : __assert_fail ("hiBit <= BitWidth && \"hiBit out of range\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/ADT/APInt.h"
, 1463, __PRETTY_FUNCTION__))
;
1464 assert(loBit <= BitWidth && "loBit out of range")((loBit <= BitWidth && "loBit out of range") ? static_cast
<void> (0) : __assert_fail ("loBit <= BitWidth && \"loBit out of range\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/ADT/APInt.h"
, 1464, __PRETTY_FUNCTION__))
;
1465 if (loBit < hiBit) {
1466 setBits(loBit, hiBit);
1467 return;
1468 }
1469 setLowBits(hiBit);
1470 setHighBits(BitWidth - loBit);
1471 }
1472
1473 /// Set the bits from loBit (inclusive) to hiBit (exclusive) to 1.
1474 /// This function handles case when \p loBit <= \p hiBit.
1475 void setBits(unsigned loBit, unsigned hiBit) {
1476 assert(hiBit <= BitWidth && "hiBit out of range")((hiBit <= BitWidth && "hiBit out of range") ? static_cast
<void> (0) : __assert_fail ("hiBit <= BitWidth && \"hiBit out of range\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/ADT/APInt.h"
, 1476, __PRETTY_FUNCTION__))
;
1477 assert(loBit <= BitWidth && "loBit out of range")((loBit <= BitWidth && "loBit out of range") ? static_cast
<void> (0) : __assert_fail ("loBit <= BitWidth && \"loBit out of range\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/ADT/APInt.h"
, 1477, __PRETTY_FUNCTION__))
;
1478 assert(loBit <= hiBit && "loBit greater than hiBit")((loBit <= hiBit && "loBit greater than hiBit") ? static_cast
<void> (0) : __assert_fail ("loBit <= hiBit && \"loBit greater than hiBit\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/ADT/APInt.h"
, 1478, __PRETTY_FUNCTION__))
;
1479 if (loBit == hiBit)
1480 return;
1481 if (loBit < APINT_BITS_PER_WORD && hiBit <= APINT_BITS_PER_WORD) {
1482 uint64_t mask = WORDTYPE_MAX >> (APINT_BITS_PER_WORD - (hiBit - loBit));
1483 mask <<= loBit;
1484 if (isSingleWord())
1485 U.VAL |= mask;
1486 else
1487 U.pVal[0] |= mask;
1488 } else {
1489 setBitsSlowCase(loBit, hiBit);
1490 }
1491 }
1492
1493 /// Set the top bits starting from loBit.
1494 void setBitsFrom(unsigned loBit) {
1495 return setBits(loBit, BitWidth);
1496 }
1497
1498 /// Set the bottom loBits bits.
1499 void setLowBits(unsigned loBits) {
1500 return setBits(0, loBits);
1501 }
1502
1503 /// Set the top hiBits bits.
1504 void setHighBits(unsigned hiBits) {
1505 return setBits(BitWidth - hiBits, BitWidth);
1506 }
1507
1508 /// Set every bit to 0.
1509 void clearAllBits() {
1510 if (isSingleWord())
1511 U.VAL = 0;
1512 else
1513 memset(U.pVal, 0, getNumWords() * APINT_WORD_SIZE);
1514 }
1515
1516 /// Set a given bit to 0.
1517 ///
1518 /// Set the given bit to 0 whose position is given as "bitPosition".
1519 void clearBit(unsigned BitPosition) {
1520 assert(BitPosition < BitWidth && "BitPosition out of range")((BitPosition < BitWidth && "BitPosition out of range"
) ? static_cast<void> (0) : __assert_fail ("BitPosition < BitWidth && \"BitPosition out of range\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/ADT/APInt.h"
, 1520, __PRETTY_FUNCTION__))
;
1521 WordType Mask = ~maskBit(BitPosition);
1522 if (isSingleWord())
1523 U.VAL &= Mask;
1524 else
1525 U.pVal[whichWord(BitPosition)] &= Mask;
1526 }
1527
1528 /// Set bottom loBits bits to 0.
1529 void clearLowBits(unsigned loBits) {
1530 assert(loBits <= BitWidth && "More bits than bitwidth")((loBits <= BitWidth && "More bits than bitwidth")
? static_cast<void> (0) : __assert_fail ("loBits <= BitWidth && \"More bits than bitwidth\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/ADT/APInt.h"
, 1530, __PRETTY_FUNCTION__))
;
1531 APInt Keep = getHighBitsSet(BitWidth, BitWidth - loBits);
1532 *this &= Keep;
1533 }
1534
1535 /// Set the sign bit to 0.
1536 void clearSignBit() {
1537 clearBit(BitWidth - 1);
1538 }
1539
1540 /// Toggle every bit to its opposite value.
1541 void flipAllBits() {
1542 if (isSingleWord()) {
1543 U.VAL ^= WORDTYPE_MAX;
1544 clearUnusedBits();
1545 } else {
1546 flipAllBitsSlowCase();
1547 }
1548 }
1549
1550 /// Toggles a given bit to its opposite value.
1551 ///
1552 /// Toggle a given bit to its opposite value whose position is given
1553 /// as "bitPosition".
1554 void flipBit(unsigned bitPosition);
1555
1556 /// Negate this APInt in place.
1557 void negate() {
1558 flipAllBits();
1559 ++(*this);
1560 }
1561
1562 /// Insert the bits from a smaller APInt starting at bitPosition.
1563 void insertBits(const APInt &SubBits, unsigned bitPosition);
1564 void insertBits(uint64_t SubBits, unsigned bitPosition, unsigned numBits);
1565
1566 /// Return an APInt with the extracted bits [bitPosition,bitPosition+numBits).
1567 APInt extractBits(unsigned numBits, unsigned bitPosition) const;
1568 uint64_t extractBitsAsZExtValue(unsigned numBits, unsigned bitPosition) const;
1569
1570 /// @}
1571 /// \name Value Characterization Functions
1572 /// @{
1573
1574 /// Return the number of bits in the APInt.
1575 unsigned getBitWidth() const { return BitWidth; }
1576
1577 /// Get the number of words.
1578 ///
1579 /// Here one word's bitwidth equals to that of uint64_t.
1580 ///
1581 /// \returns the number of words to hold the integer value of this APInt.
1582 unsigned getNumWords() const { return getNumWords(BitWidth); }
1583
1584 /// Get the number of words.
1585 ///
1586 /// *NOTE* Here one word's bitwidth equals to that of uint64_t.
1587 ///
1588 /// \returns the number of words to hold the integer value with a given bit
1589 /// width.
1590 static unsigned getNumWords(unsigned BitWidth) {
1591 return ((uint64_t)BitWidth + APINT_BITS_PER_WORD - 1) / APINT_BITS_PER_WORD;
1592 }
1593
1594 /// Compute the number of active bits in the value
1595 ///
1596 /// This function returns the number of active bits which is defined as the
1597 /// bit width minus the number of leading zeros. This is used in several
1598 /// computations to see how "wide" the value is.
1599 unsigned getActiveBits() const { return BitWidth - countLeadingZeros(); }
1600
1601 /// Compute the number of active words in the value of this APInt.
1602 ///
1603 /// This is used in conjunction with getActiveData to extract the raw value of
1604 /// the APInt.
1605 unsigned getActiveWords() const {
1606 unsigned numActiveBits = getActiveBits();
1607 return numActiveBits ? whichWord(numActiveBits - 1) + 1 : 1;
1608 }
1609
1610 /// Get the minimum bit size for this signed APInt
1611 ///
1612 /// Computes the minimum bit width for this APInt while considering it to be a
1613 /// signed (and probably negative) value. If the value is not negative, this
1614 /// function returns the same value as getActiveBits()+1. Otherwise, it
1615 /// returns the smallest bit width that will retain the negative value. For
1616 /// example, -1 can be written as 0b1 or 0xFFFFFFFFFF. 0b1 is shorter and so
1617 /// for -1, this function will always return 1.
1618 unsigned getMinSignedBits() const {
1619 if (isNegative())
1620 return BitWidth - countLeadingOnes() + 1;
1621 return getActiveBits() + 1;
1622 }
1623
1624 /// Get zero extended value
1625 ///
1626 /// This method attempts to return the value of this APInt as a zero extended
1627 /// uint64_t. The bitwidth must be <= 64 or the value must fit within a
1628 /// uint64_t. Otherwise an assertion will result.
1629 uint64_t getZExtValue() const {
1630 if (isSingleWord())
1631 return U.VAL;
1632 assert(getActiveBits() <= 64 && "Too many bits for uint64_t")((getActiveBits() <= 64 && "Too many bits for uint64_t"
) ? static_cast<void> (0) : __assert_fail ("getActiveBits() <= 64 && \"Too many bits for uint64_t\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/ADT/APInt.h"
, 1632, __PRETTY_FUNCTION__))
;
1633 return U.pVal[0];
1634 }
1635
1636 /// Get sign extended value
1637 ///
1638 /// This method attempts to return the value of this APInt as a sign extended
1639 /// int64_t. The bit width must be <= 64 or the value must fit within an
1640 /// int64_t. Otherwise an assertion will result.
1641 int64_t getSExtValue() const {
1642 if (isSingleWord())
1643 return SignExtend64(U.VAL, BitWidth);
1644 assert(getMinSignedBits() <= 64 && "Too many bits for int64_t")((getMinSignedBits() <= 64 && "Too many bits for int64_t"
) ? static_cast<void> (0) : __assert_fail ("getMinSignedBits() <= 64 && \"Too many bits for int64_t\""
, "/build/llvm-toolchain-snapshot-12~++20200917111122+b03c2b8395b/llvm/include/llvm/ADT/APInt.h"
, 1644, __PRETTY_FUNCTION__))
;
1645 return int64_t(U.pVal[0]);
1646 }
1647
1648 /// Get bits required for string value.
1649 ///
1650 /// This method determines how many bits are required to hold the APInt
1651 /// equivalent of the string given by \p str.
1652 static unsigned getBitsNeeded(StringRef str, uint8_t radix);
1653
1654 /// The APInt version of the countLeadingZeros functions in
1655 /// MathExtras.h.
1656 ///
1657 /// It counts the number of zeros from the most significant bit to the first
1658 /// one bit.
1659 ///
1660 /// \returns BitWidth if the value is zero, otherwise returns the number of
1661 /// zeros from the most significant bit to the first one bits.
1662 unsigned countLeadingZeros() const {
1663 if (isSingleWord()) {
1664 unsigned unusedBits = APINT_BITS_PER_WORD - BitWidth;
1665 return llvm::countLeadingZeros(U.VAL) - unusedBits;
1666 }
1667 return countLeadingZerosSlowCase();
1668 }
1669
1670 /// Count the number of leading one bits.
1671 ///
1672 /// This function is an APInt version of the countLeadingOnes
1673 /// functions in MathExtras.h. It counts the number of ones from the most
1674 /// significant bit to the first zero bit.
1675 ///
1676 /// \returns 0 if the high order bit is not set, otherwise returns the number
1677 /// of 1 bits from the most significant to the least
1678 unsigned countLeadingOnes() const {
1679 if (isSingleWord())
1680 return llvm::countLeadingOnes(U.VAL << (APINT_BITS_PER_WORD - BitWidth));
1681 return countLeadingOnesSlowCase();
1682 }
1683
1684 /// Computes the number of leading bits of this APInt that are equal to its
1685 /// sign bit.
1686 unsigned getNumSignBits() const {
1687 return isNegative() ? countLeadingOnes() : countLeadingZeros();
1688 }
1689
1690 /// Count the number of trailing zero bits.
1691 ///
1692 /// This function is an APInt version of the countTrailingZeros
1693 /// functions in MathExtras.h. It counts the number of zeros from the least
1694 /// significant bit to the first set bit.
1695 ///
1696 /// \returns BitWidth if the value is zero, otherwise returns the number of
1697 /// zeros from the least significant bit to the first one bit.
1698 unsigned countTrailingZeros() const {
1699 if (isSingleWord())
1700 return std::min(unsigned(llvm::countTrailingZeros(U.VAL)), BitWidth);
1701 return countTrailingZerosSlowCase();
1702 }
1703
1704 /// Count the number of trailing one bits.
1705 ///
1706 /// This function is an APInt version of the countTrailingOnes
1707 /// functions in MathExtras.h. It counts the number of ones from the least
1708 /// significant bit to the first zero bit.
1709 ///
1710 /// \returns BitWidth if the value is all ones, otherwise returns the number
1711 /// of ones from the least significant bit to the first zero bit.
1712 unsigned countTrailingOnes() const {
1713 if (isSingleWord())
1714 return llvm::countTrailingOnes(U.VAL);
1715 return countTrailingOnesSlowCase();
1716 }
1717
1718 /// Count the number of bits set.
1719 ///
1720 /// This function is an APInt version of the countPopulation functions
1721 /// in MathExtras.h. It counts the number of 1 bits in the APInt value.
1722 ///
1723 /// \returns 0 if the value is zero, otherwise returns the number of set bits.
1724 unsigned countPopulation() const {
1725 if (isSingleWord())
1726 return llvm::countPopulation(U.VAL);
1727 return countPopulationSlowCase();
1728 }
1729
1730 /// @}
1731 /// \name Conversion Functions
1732 /// @{
1733 void print(raw_ostream &OS, bool isSigned) const;
1734
1735 /// Converts an APInt to a string and append it to Str. Str is commonly a
1736 /// SmallString.
1737 void toString(SmallVectorImpl<char> &Str, unsigned Radix, bool Signed,
1738 bool formatAsCLiteral = false) const;
1739
1740 /// Considers the APInt to be unsigned and converts it into a string in the
1741 /// radix given. The radix can be 2, 8, 10 16, or 36.
1742 void toStringUnsigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1743 toString(Str, Radix, false, false);
1744 }
1745
1746 /// Considers the APInt to be signed and converts it into a string in the
1747 /// radix given. The radix can be 2, 8, 10, 16, or 36.
1748 void toStringSigned(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
1749 toString(Str, Radix, true, false);
1750 }
1751
1752 /// Return the APInt as a std::string.
1753 ///
1754 /// Note that this is an inefficient method. It is better to pass in a
1755 /// SmallVector/SmallString to the methods above to avoid thrashing the heap
1756 /// for the string.
1757 std::string toString(unsigned Radix, bool Signed) const;
1758
1759 /// \returns a byte-swapped representation of this APInt Value.
1760 APInt byteSwap() const;
1761
1762 /// \returns the value with the bit representation reversed of this APInt
1763 /// Value.
1764 APInt reverseBits() const;
1765
1766 /// Converts this APInt to a double value.
1767 double roundToDouble(bool isSigned) const;
1768
1769 /// Converts this unsigned APInt to a double value.
1770 double roundToDouble() const { return roundToDouble(false); }
1771
1772 /// Converts this signed APInt to a double value.
1773 double signedRoundToDouble() const { return roundToDouble(true); }
1774
1775 /// Converts APInt bits to a double
1776 ///
1777 /// The conversion does not do a translation from integer to double, it just
1778 /// re-interprets the bits as a double. Note that it is valid to do this on
1779 /// any bit width. Exactly 64 bits will be translated.
1780 double bitsToDouble() const {
1781 return BitsToDouble(getWord(0));
1782 }
1783
1784 /// Converts APInt bits to a float
1785 ///
1786 /// The conversion does not do a translation from integer to float, it just
1787 /// re-interprets the bits as a float. Note that it is valid to do this on
1788 /// any bit width. Exactly 32 bits will be translated.
1789 float bitsToFloat() const {
1790 return BitsToFloat(static_cast<uint32_t>(getWord(0)));
1791 }
1792
1793 /// Converts a double to APInt bits.
1794 ///
1795 /// The conversion does not do a translation from double to integer, it just
1796 /// re-interprets the bits of the double.
1797 static APInt doubleToBits(double V) {
1798 return APInt(sizeof(double) * CHAR_BIT8, DoubleToBits(V));
1799 }
1800
1801 /// Converts a float to APInt bits.
1802 ///
1803 /// The conversion does not do a translation from float to integer, it just
1804 /// re-interprets the bits of the float.
1805 static APInt floatToBits(float V) {
1806 return APInt(sizeof(float) * CHAR_BIT8, FloatToBits(V));
1807 }
1808
1809 /// @}
1810 /// \name Mathematics Operations
1811 /// @{
1812
1813 /// \returns the floor log base 2 of this APInt.
1814 unsigned logBase2() const { return getActiveBits() - 1; }
1815
1816 /// \returns the ceil log base 2 of this APInt.
1817 unsigned ceilLogBase2() const {
1818 APInt temp(*this);
1819 --temp;
1820 return temp.getActiveBits();
1821 }
1822
1823 /// \returns the nearest log base 2 of this APInt. Ties round up.
1824 ///
1825 /// NOTE: When we have a BitWidth of 1, we define:
1826 ///
1827 /// log2(0) = UINT32_MAX
1828 /// log2(1) = 0
1829 ///
1830 /// to get around any mathematical concerns resulting from
1831 /// referencing 2 in a space where 2 does no exist.
1832 unsigned nearestLogBase2() const {
1833 // Special case when we have a bitwidth of 1. If VAL is 1, then we
1834 // get 0. If VAL is 0, we get WORDTYPE_MAX which gets truncated to
1835 // UINT32_MAX.
1836 if (BitWidth == 1)
1837 return U.VAL - 1;
1838
1839 // Handle the zero case.
1840 if (isNullValue())
1841 return UINT32_MAX(4294967295U);
1842
1843 // The non-zero case is handled by computing:
1844 //
1845 // nearestLogBase2(x) = logBase2(x) + x[logBase2(x)-1].
1846 //
1847 // where x[i] is referring to the value of the ith bit of x.
1848 unsigned lg = logBase2();
1849 return lg + unsigned((*this)[lg - 1]);
1850 }
1851
1852 /// \returns the log base 2 of this APInt if its an exact power of two, -1
1853 /// otherwise
1854 int32_t exactLogBase2() const {
1855 if (!isPowerOf2())
1856 return -1;
1857 return logBase2();
1858 }
1859
1860 /// Compute the square root
1861 APInt sqrt() const;
1862
1863 /// Get the absolute value;
1864 ///
1865 /// If *this is < 0 then return -(*this), otherwise *this;
1866 APInt abs() const {
1867 if (isNegative())
1868 return -(*this);
1869 return *this;
1870 }
1871
1872 /// \returns the multiplicative inverse for a given modulo.
1873 APInt multiplicativeInverse(const APInt &modulo) const;
1874
1875 /// @}
1876 /// \name Support for division by constant
1877 /// @{
1878
1879 /// Calculate the magic number for signed division by a constant.
1880 struct ms;
1881 ms magic() const;
1882
1883 /// Calculate the magic number for unsigned division by a constant.
1884 struct mu;
1885 mu magicu(unsigned LeadingZeros = 0) const;
1886
1887 /// @}
1888 /// \name Building-block Operations for APInt and APFloat
1889 /// @{
1890
1891 // These building block operations operate on a representation of arbitrary
1892 // precision, two's-complement, bignum integer values. They should be
1893 // sufficient to implement APInt and APFloat bignum requirements. Inputs are
1894 // generally a pointer to the base of an array of integer parts, representing
1895 // an unsigned bignum, and a count of how many parts there are.
1896
1897 /// Sets the least significant part of a bignum to the input value, and zeroes
1898 /// out higher parts.
1899 static void tcSet(WordType *, WordType, unsigned);
1900
1901 /// Assign one bignum to another.
1902 static void tcAssign(WordType *, const WordType *, unsigned);
1903
1904 /// Returns true if a bignum is zero, false otherwise.
1905 static bool tcIsZero(const WordType *, unsigned);
1906
1907 /// Extract the given bit of a bignum; returns 0 or 1. Zero-based.
1908 static int tcExtractBit(const WordType *, unsigned bit);
1909
1910 /// Copy the bit vector of width srcBITS from SRC, starting at bit srcLSB, to
1911 /// DST, of dstCOUNT parts, such that the bit srcLSB becomes the least
1912 /// significant bit of DST. All high bits above srcBITS in DST are
1913 /// zero-filled.
1914 static void tcExtract(WordType *, unsigned dstCount,
1915 const WordType *, unsigned srcBits,
1916 unsigned srcLSB);
1917
1918 /// Set the given bit of a bignum. Zero-based.
1919 static void tcSetBit(WordType *, unsigned bit);
1920
1921 /// Clear the given bit of a bignum. Zero-based.
1922 static void tcClearBit(WordType *, unsigned bit);
1923
1924 /// Returns the bit number of the least or most significant set bit of a
1925 /// number. If the input number has no bits set -1U is returned.
1926 static unsigned tcLSB(const WordType *, unsigned n);
1927 static unsigned tcMSB(const WordType *parts, unsigned n);
1928
1929 /// Negate a bignum in-place.
1930 static void tcNegate(WordType *, unsigned);
1931
1932 /// DST += RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1933 static WordType tcAdd(WordType *, const WordType *,
1934 WordType carry, unsigned);
1935 /// DST += RHS. Returns the carry flag.
1936 static WordType tcAddPart(WordType *, WordType, unsigned);
1937
1938 /// DST -= RHS + CARRY where CARRY is zero or one. Returns the carry flag.
1939 static WordType tcSubtract(WordType *, const WordType *,
1940 WordType carry, unsigned);
1941 /// DST -= RHS. Returns the carry flag.
1942 static WordType tcSubtractPart(WordType *, WordType, unsigned);
1943
1944 /// DST += SRC * MULTIPLIER + PART if add is true
1945 /// DST = SRC * MULTIPLIER + PART if add is false
1946 ///
1947 /// Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC they must
1948 /// start at the same point, i.e. DST == SRC.
1949 ///
1950 /// If DSTPARTS == SRC_PARTS + 1 no overflow occurs and zero is returned.
1951 /// Otherwise DST is filled with the least significant DSTPARTS parts of the
1952 /// result, and if all of the omitted higher parts were zero return zero,
1953 /// otherwise overflow occurred and return one.
1954 static int tcMultiplyPart(WordType *dst, const WordType *src,
1955 WordType multiplier, WordType carry,
1956 unsigned srcParts, unsigned dstParts,
1957 bool add);
1958
1959 /// DST = LHS * RHS, where DST has the same width as the operands and is
1960 /// filled with the least significant parts of the result. Returns one if
1961 /// overflow occurred, otherwise zero. DST must be disjoint from both
1962 /// operands.
1963 static int tcMultiply(WordType *, const WordType *, const WordType *,
1964 unsigned);
1965
1966 /// DST = LHS * RHS, where DST has width the sum of the widths of the
1967 /// operands. No overflow occurs. DST must be disjoint from both operands.
1968 static void tcFullMultiply(WordType *, const WordType *,
1969 const WordType *, unsigned, unsigned);
1970
1971 /// If RHS is zero LHS and REMAINDER are left unchanged, return one.
1972 /// Otherwise set LHS to LHS / RHS with the fractional part discarded, set
1973 /// REMAINDER to the remainder, return zero. i.e.
1974 ///
1975 /// OLD_LHS = RHS * LHS + REMAINDER
1976 ///
1977 /// SCRATCH is a bignum of the same size as the operands and result for use by
1978 /// the routine; its contents need not be initialized and are destroyed. LHS,
1979 /// REMAINDER and SCRATCH must be distinct.
1980 static int tcDivide(WordType *lhs, const WordType *rhs,
1981 WordType *remainder, WordType *scratch,
1982 unsigned parts);
1983
1984 /// Shift a bignum left Count bits. Shifted in bits are zero. There are no
1985 /// restrictions on Count.
1986 static void tcShiftLeft(WordType *, unsigned Words, unsigned Count);
1987
1988 /// Shift a bignum right Count bits. Shifted in bits are zero. There are no
1989 /// restrictions on Count.
1990 static void tcShiftRight(WordType *, unsigned Words, unsigned Count);
1991
1992 /// The obvious AND, OR and XOR and complement operations.
1993 static void tcAnd(WordType *, const WordType *, unsigned);
1994 static void tcOr(WordType *, const WordType *, unsigned);
1995 static void tcXor(WordType *, const WordType *, unsigned);
1996 static void tcComplement(WordType *, unsigned);
1997
1998 /// Comparison (unsigned) of two bignums.
1999 static int tcCompare(const WordType *, const WordType *, unsigned);
2000
2001 /// Increment a bignum in-place. Return the carry flag.
2002 static WordType tcIncrement(WordType *dst, unsigned parts) {
2003 return tcAddPart(dst, 1, parts);
2004 }
2005
2006 /// Decrement a bignum in-place. Return the borrow flag.
2007 static WordType tcDecrement(WordType *dst, unsigned parts) {
2008 return tcSubtractPart(dst, 1, parts);
2009 }
2010
2011 /// Set the least significant BITS and clear the rest.
2012 static void tcSetLeastSignificantBits(WordType *, unsigned, unsigned bits);
2013
2014 /// debug method
2015 void dump() const;
2016
2017 /// @}
2018};
2019
2020/// Magic data for optimising signed division by a constant.
2021struct APInt::ms {
2022 APInt m; ///< magic number
2023 unsigned s; ///< shift amount
2024};
2025
2026/// Magic data for optimising unsigned division by a constant.
2027struct APInt::mu {
2028 APInt m; ///< magic number
2029 bool a; ///< add indicator
2030 unsigned s; ///< shift amount
2031};
2032
2033inline bool operator==(uint64_t V1, const APInt &V2) { return V2 == V1; }
2034
2035inline bool operator!=(uint64_t V1, const APInt &V2) { return V2 != V1; }
2036
2037/// Unary bitwise complement operator.
2038///
2039/// \returns an APInt that is the bitwise complement of \p v.
2040inline APInt operator~(APInt v) {
2041 v.flipAllBits();
2042 return v;
2043}
2044
2045inline APInt operator&(APInt a, const APInt &b) {
2046 a &= b;
2047 return a;
2048}
2049
2050inline APInt operator&(const APInt &a, APInt &&b) {
2051 b &= a;
2052 return std::move(b);
2053}
2054
2055inline APInt operator&(APInt a, uint64_t RHS) {
2056 a &= RHS;
2057 return a;
2058}
2059
2060inline APInt operator&(uint64_t LHS, APInt b) {
2061 b &= LHS;
2062 return b;
2063}
2064
2065inline APInt operator|(APInt a, const APInt &b) {
2066 a |= b;
2067 return a;
2068}
2069
2070inline APInt operator|(const APInt &a, APInt &&b) {
2071 b |= a;
2072 return std::move(b);
2073}
2074
2075inline APInt operator|(APInt a, uint64_t RHS) {
2076 a |= RHS;
2077 return a;
2078}
2079
2080inline APInt operator|(uint64_t LHS, APInt b) {
2081 b |= LHS;
2082 return b;
2083}
2084
2085inline APInt operator^(APInt a, const APInt &b) {
2086 a ^= b;
2087 return a;
2088}
2089
2090inline APInt operator^(const APInt &a, APInt &&b) {
2091 b ^= a;
2092 return std::move(b);
2093}
2094
2095inline APInt operator^(APInt a, uint64_t RHS) {
2096 a ^= RHS;
2097 return a;
2098}
2099
2100inline APInt operator^(uint64_t LHS, APInt b) {
2101 b ^= LHS;
2102 return b;
2103}
2104
2105inline raw_ostream &operator<<(raw_ostream &OS, const APInt &I) {
2106 I.print(OS, true);
2107 return OS;
2108}
2109
2110inline APInt operator-(APInt v) {
2111 v.negate();
2112 return v;
2113}
2114
2115inline APInt operator+(APInt a, const APInt &b) {
2116 a += b;
2117 return a;
2118}
2119
2120inline APInt operator+(const APInt &a, APInt &&b) {
2121 b += a;
2122 return std::move(b);
2123}
2124
2125inline APInt operator+(APInt a, uint64_t RHS) {
2126 a += RHS;
2127 return a;
2128}
2129
2130inline APInt operator+(uint64_t LHS, APInt b) {
2131 b += LHS;
2132 return b;
2133}
2134
2135inline APInt operator-(APInt a, const APInt &b) {
2136 a -= b;
2137 return a;
2138}
2139
2140inline APInt operator-(const APInt &a, APInt &&b) {
2141 b.negate();
2142 b += a;
2143 return std::move(b);
2144}
2145
2146inline APInt operator-(APInt a, uint64_t RHS) {
2147 a -= RHS;
2148 return a;
2149}
2150
2151inline APInt operator-(uint64_t LHS, APInt b) {
2152 b.negate();
2153 b += LHS;
2154 return b;
2155}
2156
2157inline APInt operator*(APInt a, uint64_t RHS) {
2158 a *= RHS;
2159 return a;
2160}
2161
2162inline APInt operator*(uint64_t LHS, APInt b) {
2163 b *= LHS;
2164 return b;
2165}
2166
2167
2168namespace APIntOps {
2169
2170/// Determine the smaller of two APInts considered to be signed.
2171inline const APInt &smin(const APInt &A, const APInt &B) {
2172 return A.slt(B) ? A : B;
2173}
2174
2175/// Determine the larger of two APInts considered to be signed.
2176inline const APInt &smax(const APInt &A, const APInt &B) {
2177 return A.sgt(B) ? A : B;
2178}
2179
2180/// Determine the smaller of two APInts considered to be signed.
2181inline const APInt &umin(const APInt &A, const APInt &B) {
2182 return A.ult(B) ? A : B;
2183}
2184
2185/// Determine the larger of two APInts considered to be unsigned.
2186inline const APInt &umax(const APInt &A, const APInt &B) {
2187 return A.ugt(B) ? A : B;
2188}
2189
2190/// Compute GCD of two unsigned APInt values.
2191///
2192/// This function returns the greatest common divisor of the two APInt values
2193/// using Stein's algorithm.
2194///
2195/// \returns the greatest common divisor of A and B.
2196APInt GreatestCommonDivisor(APInt A, APInt B);
2197
2198/// Converts the given APInt to a double value.
2199///
2200/// Treats the APInt as an unsigned value for conversion purposes.
2201inline double RoundAPIntToDouble(const APInt &APIVal) {
2202 return APIVal.roundToDouble();
2203}
2204
2205/// Converts the given APInt to a double value.
2206///
2207/// Treats the APInt as a signed value for conversion purposes.
2208inline double RoundSignedAPIntToDouble(const APInt &APIVal) {
2209 return APIVal.signedRoundToDouble();
2210}
2211
2212/// Converts the given APInt to a float vlalue.
2213inline float RoundAPIntToFloat(const APInt &APIVal) {
2214 return float(RoundAPIntToDouble(APIVal));
2215}
2216
2217/// Converts the given APInt to a float value.
2218///
2219/// Treats the APInt as a signed value for conversion purposes.
2220inline float RoundSignedAPIntToFloat(const APInt &APIVal) {
2221 return float(APIVal.signedRoundToDouble());
2222}
2223
2224/// Converts the given double value into a APInt.
2225///
2226/// This function convert a double value to an APInt value.
2227APInt RoundDoubleToAPInt(double Double, unsigned width);
2228
2229/// Converts a float value into a APInt.
2230///
2231/// Converts a float value into an APInt value.
2232inline APInt RoundFloatToAPInt(float Float, unsigned width) {
2233 return RoundDoubleToAPInt(double(Float), width);
2234}
2235
2236/// Return A unsign-divided by B, rounded by the given rounding mode.
2237APInt RoundingUDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2238
2239/// Return A sign-divided by B, rounded by the given rounding mode.
2240APInt RoundingSDiv(const APInt &A, const APInt &B, APInt::Rounding RM);
2241
2242/// Let q(n) = An^2 + Bn + C, and BW = bit width of the value range
2243/// (e.g. 32 for i32).
2244/// This function finds the smallest number n, such that
2245/// (a) n >= 0 and q(n) = 0, or
2246/// (b) n >= 1 and q(n-1) and q(n), when evaluated in the set of all
2247/// integers, belong to two different intervals [Rk, Rk+R),
2248/// where R = 2^BW, and k is an integer.
2249/// The idea here is to find when q(n) "overflows" 2^BW, while at the
2250/// same time "allowing" subtraction. In unsigned modulo arithmetic a
2251/// subtraction (treated as addition of negated numbers) would always
2252/// count as an overflow, but here we want to allow values to decrease
2253/// and increase as long as they are within the same interval.
2254/// Specifically, adding of two negative numbers should not cause an
2255/// overflow (as long as the magnitude does not exceed the bit width).
2256/// On the other hand, given a positive number, adding a negative
2257/// number to it can give a negative result, which would cause the
2258/// value to go from [-2^BW, 0) to [0, 2^BW). In that sense, zero is
2259/// treated as a special case of an overflow.
2260///
2261/// This function returns None if after finding k that minimizes the
2262/// positive solution to q(n) = kR, both solutions are contained between
2263/// two consecutive integers.
2264///
2265/// There are cases where q(n) > T, and q(n+1) < T (assuming evaluation
2266/// in arithmetic modulo 2^BW, and treating the values as signed) by the
2267/// virtue of *signed* overflow. This function will *not* find such an n,
2268/// however it may find a value of n satisfying the inequalities due to
2269/// an *unsigned* overflow (if the values are treated as unsigned).
2270/// To find a solution for a signed overflow, treat it as a problem of
2271/// finding an unsigned overflow with a range with of BW-1.
2272///
2273/// The returned value may have a different bit width from the input
2274/// coefficients.
2275Optional<APInt> SolveQuadraticEquationWrap(APInt A, APInt B, APInt C,
2276 unsigned RangeWidth);
2277
2278/// Compare two values, and if they are different, return the position of the
2279/// most significant bit that is different in the values.
2280Optional<unsigned> GetMostSignificantDifferentBit(const APInt &A,
2281 const APInt &B);
2282
2283} // End of APIntOps namespace
2284
2285// See friend declaration above. This additional declaration is required in
2286// order to compile LLVM with IBM xlC compiler.
2287hash_code hash_value(const APInt &Arg);
2288
2289/// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
2290/// with the integer held in IntVal.
2291void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst, unsigned StoreBytes);
2292
2293/// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
2294/// from Src into IntVal, which is assumed to be wide enough and to hold zero.
2295void LoadIntFromMemory(APInt &IntVal, const uint8_t *Src, unsigned LoadBytes);
2296
2297} // namespace llvm
2298
2299#endif