Bug Summary

File:clang/lib/ARCMigrate/ObjCMT.cpp
Warning:line 1375, column 7
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name ObjCMT.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -masm-verbose -mconstructor-aliases -munwind-tables -target-cpu x86-64 -dwarf-column-info -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-10/lib/clang/10.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/build-llvm/tools/clang/lib/ARCMigrate -I /build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/lib/ARCMigrate -I /build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include -I /build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/build-llvm/include -I /build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-10/lib/clang/10.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/build-llvm/tools/clang/lib/ARCMigrate -fdebug-prefix-map=/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2020-01-11-115256-23437-1 -x c++ /build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/lib/ARCMigrate/ObjCMT.cpp

/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/lib/ARCMigrate/ObjCMT.cpp

1//===--- ObjCMT.cpp - ObjC Migrate Tool -----------------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8
9#include "Transforms.h"
10#include "clang/Analysis/RetainSummaryManager.h"
11#include "clang/ARCMigrate/ARCMT.h"
12#include "clang/ARCMigrate/ARCMTActions.h"
13#include "clang/AST/ASTConsumer.h"
14#include "clang/AST/ASTContext.h"
15#include "clang/AST/Attr.h"
16#include "clang/AST/NSAPI.h"
17#include "clang/AST/ParentMap.h"
18#include "clang/AST/RecursiveASTVisitor.h"
19#include "clang/Analysis/DomainSpecific/CocoaConventions.h"
20#include "clang/Basic/FileManager.h"
21#include "clang/Edit/Commit.h"
22#include "clang/Edit/EditedSource.h"
23#include "clang/Edit/EditsReceiver.h"
24#include "clang/Edit/Rewriters.h"
25#include "clang/Frontend/CompilerInstance.h"
26#include "clang/Frontend/MultiplexConsumer.h"
27#include "clang/Lex/PPConditionalDirectiveRecord.h"
28#include "clang/Lex/Preprocessor.h"
29#include "clang/Rewrite/Core/Rewriter.h"
30#include "llvm/ADT/SmallString.h"
31#include "llvm/ADT/StringSet.h"
32#include "llvm/Support/Path.h"
33#include "llvm/Support/SourceMgr.h"
34#include "llvm/Support/YAMLParser.h"
35
36using namespace clang;
37using namespace arcmt;
38using namespace ento;
39
40namespace {
41
42class ObjCMigrateASTConsumer : public ASTConsumer {
43 enum CF_BRIDGING_KIND {
44 CF_BRIDGING_NONE,
45 CF_BRIDGING_ENABLE,
46 CF_BRIDGING_MAY_INCLUDE
47 };
48
49 void migrateDecl(Decl *D);
50 void migrateObjCContainerDecl(ASTContext &Ctx, ObjCContainerDecl *D);
51 void migrateProtocolConformance(ASTContext &Ctx,
52 const ObjCImplementationDecl *ImpDecl);
53 void CacheObjCNSIntegerTypedefed(const TypedefDecl *TypedefDcl);
54 bool migrateNSEnumDecl(ASTContext &Ctx, const EnumDecl *EnumDcl,
55 const TypedefDecl *TypedefDcl);
56 void migrateAllMethodInstaceType(ASTContext &Ctx, ObjCContainerDecl *CDecl);
57 void migrateMethodInstanceType(ASTContext &Ctx, ObjCContainerDecl *CDecl,
58 ObjCMethodDecl *OM);
59 bool migrateProperty(ASTContext &Ctx, ObjCContainerDecl *D, ObjCMethodDecl *OM);
60 void migrateNsReturnsInnerPointer(ASTContext &Ctx, ObjCMethodDecl *OM);
61 void migratePropertyNsReturnsInnerPointer(ASTContext &Ctx, ObjCPropertyDecl *P);
62 void migrateFactoryMethod(ASTContext &Ctx, ObjCContainerDecl *CDecl,
63 ObjCMethodDecl *OM,
64 ObjCInstanceTypeFamily OIT_Family = OIT_None);
65
66 void migrateCFAnnotation(ASTContext &Ctx, const Decl *Decl);
67 void AddCFAnnotations(ASTContext &Ctx,
68 const RetainSummary *RS,
69 const FunctionDecl *FuncDecl, bool ResultAnnotated);
70 void AddCFAnnotations(ASTContext &Ctx,
71 const RetainSummary *RS,
72 const ObjCMethodDecl *MethodDecl, bool ResultAnnotated);
73
74 void AnnotateImplicitBridging(ASTContext &Ctx);
75
76 CF_BRIDGING_KIND migrateAddFunctionAnnotation(ASTContext &Ctx,
77 const FunctionDecl *FuncDecl);
78
79 void migrateARCSafeAnnotation(ASTContext &Ctx, ObjCContainerDecl *CDecl);
80
81 void migrateAddMethodAnnotation(ASTContext &Ctx,
82 const ObjCMethodDecl *MethodDecl);
83
84 void inferDesignatedInitializers(ASTContext &Ctx,
85 const ObjCImplementationDecl *ImplD);
86
87 bool InsertFoundation(ASTContext &Ctx, SourceLocation Loc);
88
89 std::unique_ptr<RetainSummaryManager> Summaries;
90
91public:
92 std::string MigrateDir;
93 unsigned ASTMigrateActions;
94 FileID FileId;
95 const TypedefDecl *NSIntegerTypedefed;
96 const TypedefDecl *NSUIntegerTypedefed;
97 std::unique_ptr<NSAPI> NSAPIObj;
98 std::unique_ptr<edit::EditedSource> Editor;
99 FileRemapper &Remapper;
100 FileManager &FileMgr;
101 const PPConditionalDirectiveRecord *PPRec;
102 Preprocessor &PP;
103 bool IsOutputFile;
104 bool FoundationIncluded;
105 llvm::SmallPtrSet<ObjCProtocolDecl *, 32> ObjCProtocolDecls;
106 llvm::SmallVector<const Decl *, 8> CFFunctionIBCandidates;
107 llvm::StringSet<> WhiteListFilenames;
108
109 RetainSummaryManager &getSummaryManager(ASTContext &Ctx) {
110 if (!Summaries)
111 Summaries.reset(new RetainSummaryManager(Ctx,
112 /*TrackNSCFObjects=*/true,
113 /*trackOSObjects=*/false));
114 return *Summaries;
115 }
116
117 ObjCMigrateASTConsumer(StringRef migrateDir,
118 unsigned astMigrateActions,
119 FileRemapper &remapper,
120 FileManager &fileMgr,
121 const PPConditionalDirectiveRecord *PPRec,
122 Preprocessor &PP,
123 bool isOutputFile,
124 ArrayRef<std::string> WhiteList)
125 : MigrateDir(migrateDir),
126 ASTMigrateActions(astMigrateActions),
127 NSIntegerTypedefed(nullptr), NSUIntegerTypedefed(nullptr),
128 Remapper(remapper), FileMgr(fileMgr), PPRec(PPRec), PP(PP),
129 IsOutputFile(isOutputFile),
130 FoundationIncluded(false){
131
132 // FIXME: StringSet should have insert(iter, iter) to use here.
133 for (const std::string &Val : WhiteList)
134 WhiteListFilenames.insert(Val);
135 }
136
137protected:
138 void Initialize(ASTContext &Context) override {
139 NSAPIObj.reset(new NSAPI(Context));
140 Editor.reset(new edit::EditedSource(Context.getSourceManager(),
141 Context.getLangOpts(),
142 PPRec));
143 }
144
145 bool HandleTopLevelDecl(DeclGroupRef DG) override {
146 for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
147 migrateDecl(*I);
148 return true;
149 }
150 void HandleInterestingDecl(DeclGroupRef DG) override {
151 // Ignore decls from the PCH.
152 }
153 void HandleTopLevelDeclInObjCContainer(DeclGroupRef DG) override {
154 ObjCMigrateASTConsumer::HandleTopLevelDecl(DG);
155 }
156
157 void HandleTranslationUnit(ASTContext &Ctx) override;
158
159 bool canModifyFile(StringRef Path) {
160 if (WhiteListFilenames.empty())
161 return true;
162 return WhiteListFilenames.find(llvm::sys::path::filename(Path))
163 != WhiteListFilenames.end();
164 }
165 bool canModifyFile(const FileEntry *FE) {
166 if (!FE)
167 return false;
168 return canModifyFile(FE->getName());
169 }
170 bool canModifyFile(FileID FID) {
171 if (FID.isInvalid())
172 return false;
173 return canModifyFile(PP.getSourceManager().getFileEntryForID(FID));
174 }
175
176 bool canModify(const Decl *D) {
177 if (!D)
178 return false;
179 if (const ObjCCategoryImplDecl *CatImpl = dyn_cast<ObjCCategoryImplDecl>(D))
180 return canModify(CatImpl->getCategoryDecl());
181 if (const ObjCImplementationDecl *Impl = dyn_cast<ObjCImplementationDecl>(D))
182 return canModify(Impl->getClassInterface());
183 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
184 return canModify(cast<Decl>(MD->getDeclContext()));
185
186 FileID FID = PP.getSourceManager().getFileID(D->getLocation());
187 return canModifyFile(FID);
188 }
189};
190
191} // end anonymous namespace
192
193ObjCMigrateAction::ObjCMigrateAction(
194 std::unique_ptr<FrontendAction> WrappedAction,
195 StringRef migrateDir,
196 unsigned migrateAction)
197 : WrapperFrontendAction(std::move(WrappedAction)), MigrateDir(migrateDir),
198 ObjCMigAction(migrateAction),
199 CompInst(nullptr) {
200 if (MigrateDir.empty())
201 MigrateDir = "."; // user current directory if none is given.
202}
203
204std::unique_ptr<ASTConsumer>
205ObjCMigrateAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) {
206 PPConditionalDirectiveRecord *
207 PPRec = new PPConditionalDirectiveRecord(CompInst->getSourceManager());
208 CI.getPreprocessor().addPPCallbacks(std::unique_ptr<PPCallbacks>(PPRec));
209 std::vector<std::unique_ptr<ASTConsumer>> Consumers;
210 Consumers.push_back(WrapperFrontendAction::CreateASTConsumer(CI, InFile));
211 Consumers.push_back(std::make_unique<ObjCMigrateASTConsumer>(
212 MigrateDir, ObjCMigAction, Remapper, CompInst->getFileManager(), PPRec,
213 CompInst->getPreprocessor(), false, None));
214 return std::make_unique<MultiplexConsumer>(std::move(Consumers));
215}
216
217bool ObjCMigrateAction::BeginInvocation(CompilerInstance &CI) {
218 Remapper.initFromDisk(MigrateDir, CI.getDiagnostics(),
219 /*ignoreIfFilesChanged=*/true);
220 CompInst = &CI;
221 CI.getDiagnostics().setIgnoreAllWarnings(true);
222 return true;
223}
224
225namespace {
226 // FIXME. This duplicates one in RewriteObjCFoundationAPI.cpp
227 bool subscriptOperatorNeedsParens(const Expr *FullExpr) {
228 const Expr* Expr = FullExpr->IgnoreImpCasts();
229 return !(isa<ArraySubscriptExpr>(Expr) || isa<CallExpr>(Expr) ||
230 isa<DeclRefExpr>(Expr) || isa<CXXNamedCastExpr>(Expr) ||
231 isa<CXXConstructExpr>(Expr) || isa<CXXThisExpr>(Expr) ||
232 isa<CXXTypeidExpr>(Expr) ||
233 isa<CXXUnresolvedConstructExpr>(Expr) ||
234 isa<ObjCMessageExpr>(Expr) || isa<ObjCPropertyRefExpr>(Expr) ||
235 isa<ObjCProtocolExpr>(Expr) || isa<MemberExpr>(Expr) ||
236 isa<ObjCIvarRefExpr>(Expr) || isa<ParenExpr>(FullExpr) ||
237 isa<ParenListExpr>(Expr) || isa<SizeOfPackExpr>(Expr));
238 }
239
240 /// - Rewrite message expression for Objective-C setter and getters into
241 /// property-dot syntax.
242 bool rewriteToPropertyDotSyntax(const ObjCMessageExpr *Msg,
243 Preprocessor &PP,
244 const NSAPI &NS, edit::Commit &commit,
245 const ParentMap *PMap) {
246 if (!Msg || Msg->isImplicit() ||
247 (Msg->getReceiverKind() != ObjCMessageExpr::Instance &&
248 Msg->getReceiverKind() != ObjCMessageExpr::SuperInstance))
249 return false;
250 if (const Expr *Receiver = Msg->getInstanceReceiver())
251 if (Receiver->getType()->isObjCBuiltinType())
252 return false;
253
254 const ObjCMethodDecl *Method = Msg->getMethodDecl();
255 if (!Method)
256 return false;
257 if (!Method->isPropertyAccessor())
258 return false;
259
260 const ObjCPropertyDecl *Prop = Method->findPropertyDecl();
261 if (!Prop)
262 return false;
263
264 SourceRange MsgRange = Msg->getSourceRange();
265 bool ReceiverIsSuper =
266 (Msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
267 // for 'super' receiver is nullptr.
268 const Expr *receiver = Msg->getInstanceReceiver();
269 bool NeedsParen =
270 ReceiverIsSuper ? false : subscriptOperatorNeedsParens(receiver);
271 bool IsGetter = (Msg->getNumArgs() == 0);
272 if (IsGetter) {
273 // Find space location range between receiver expression and getter method.
274 SourceLocation BegLoc =
275 ReceiverIsSuper ? Msg->getSuperLoc() : receiver->getEndLoc();
276 BegLoc = PP.getLocForEndOfToken(BegLoc);
277 SourceLocation EndLoc = Msg->getSelectorLoc(0);
278 SourceRange SpaceRange(BegLoc, EndLoc);
279 std::string PropertyDotString;
280 // rewrite getter method expression into: receiver.property or
281 // (receiver).property
282 if (NeedsParen) {
283 commit.insertBefore(receiver->getBeginLoc(), "(");
284 PropertyDotString = ").";
285 }
286 else
287 PropertyDotString = ".";
288 PropertyDotString += Prop->getName();
289 commit.replace(SpaceRange, PropertyDotString);
290
291 // remove '[' ']'
292 commit.replace(SourceRange(MsgRange.getBegin(), MsgRange.getBegin()), "");
293 commit.replace(SourceRange(MsgRange.getEnd(), MsgRange.getEnd()), "");
294 } else {
295 if (NeedsParen)
296 commit.insertWrap("(", receiver->getSourceRange(), ")");
297 std::string PropertyDotString = ".";
298 PropertyDotString += Prop->getName();
299 PropertyDotString += " =";
300 const Expr*const* Args = Msg->getArgs();
301 const Expr *RHS = Args[0];
302 if (!RHS)
303 return false;
304 SourceLocation BegLoc =
305 ReceiverIsSuper ? Msg->getSuperLoc() : receiver->getEndLoc();
306 BegLoc = PP.getLocForEndOfToken(BegLoc);
307 SourceLocation EndLoc = RHS->getBeginLoc();
308 EndLoc = EndLoc.getLocWithOffset(-1);
309 const char *colon = PP.getSourceManager().getCharacterData(EndLoc);
310 // Add a space after '=' if there is no space between RHS and '='
311 if (colon && colon[0] == ':')
312 PropertyDotString += " ";
313 SourceRange Range(BegLoc, EndLoc);
314 commit.replace(Range, PropertyDotString);
315 // remove '[' ']'
316 commit.replace(SourceRange(MsgRange.getBegin(), MsgRange.getBegin()), "");
317 commit.replace(SourceRange(MsgRange.getEnd(), MsgRange.getEnd()), "");
318 }
319 return true;
320 }
321
322class ObjCMigrator : public RecursiveASTVisitor<ObjCMigrator> {
323 ObjCMigrateASTConsumer &Consumer;
324 ParentMap &PMap;
325
326public:
327 ObjCMigrator(ObjCMigrateASTConsumer &consumer, ParentMap &PMap)
328 : Consumer(consumer), PMap(PMap) { }
329
330 bool shouldVisitTemplateInstantiations() const { return false; }
331 bool shouldWalkTypesOfTypeLocs() const { return false; }
332
333 bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
334 if (Consumer.ASTMigrateActions & FrontendOptions::ObjCMT_Literals) {
335 edit::Commit commit(*Consumer.Editor);
336 edit::rewriteToObjCLiteralSyntax(E, *Consumer.NSAPIObj, commit, &PMap);
337 Consumer.Editor->commit(commit);
338 }
339
340 if (Consumer.ASTMigrateActions & FrontendOptions::ObjCMT_Subscripting) {
341 edit::Commit commit(*Consumer.Editor);
342 edit::rewriteToObjCSubscriptSyntax(E, *Consumer.NSAPIObj, commit);
343 Consumer.Editor->commit(commit);
344 }
345
346 if (Consumer.ASTMigrateActions & FrontendOptions::ObjCMT_PropertyDotSyntax) {
347 edit::Commit commit(*Consumer.Editor);
348 rewriteToPropertyDotSyntax(E, Consumer.PP, *Consumer.NSAPIObj,
349 commit, &PMap);
350 Consumer.Editor->commit(commit);
351 }
352
353 return true;
354 }
355
356 bool TraverseObjCMessageExpr(ObjCMessageExpr *E) {
357 // Do depth first; we want to rewrite the subexpressions first so that if
358 // we have to move expressions we will move them already rewritten.
359 for (Stmt *SubStmt : E->children())
360 if (!TraverseStmt(SubStmt))
361 return false;
362
363 return WalkUpFromObjCMessageExpr(E);
364 }
365};
366
367class BodyMigrator : public RecursiveASTVisitor<BodyMigrator> {
368 ObjCMigrateASTConsumer &Consumer;
369 std::unique_ptr<ParentMap> PMap;
370
371public:
372 BodyMigrator(ObjCMigrateASTConsumer &consumer) : Consumer(consumer) { }
373
374 bool shouldVisitTemplateInstantiations() const { return false; }
375 bool shouldWalkTypesOfTypeLocs() const { return false; }
376
377 bool TraverseStmt(Stmt *S) {
378 PMap.reset(new ParentMap(S));
379 ObjCMigrator(Consumer, *PMap).TraverseStmt(S);
380 return true;
381 }
382};
383} // end anonymous namespace
384
385void ObjCMigrateASTConsumer::migrateDecl(Decl *D) {
386 if (!D)
387 return;
388 if (isa<ObjCMethodDecl>(D))
389 return; // Wait for the ObjC container declaration.
390
391 BodyMigrator(*this).TraverseDecl(D);
392}
393
394static void append_attr(std::string &PropertyString, const char *attr,
395 bool &LParenAdded) {
396 if (!LParenAdded) {
397 PropertyString += "(";
398 LParenAdded = true;
399 }
400 else
401 PropertyString += ", ";
402 PropertyString += attr;
403}
404
405static
406void MigrateBlockOrFunctionPointerTypeVariable(std::string & PropertyString,
407 const std::string& TypeString,
408 const char *name) {
409 const char *argPtr = TypeString.c_str();
410 int paren = 0;
411 while (*argPtr) {
412 switch (*argPtr) {
413 case '(':
414 PropertyString += *argPtr;
415 paren++;
416 break;
417 case ')':
418 PropertyString += *argPtr;
419 paren--;
420 break;
421 case '^':
422 case '*':
423 PropertyString += (*argPtr);
424 if (paren == 1) {
425 PropertyString += name;
426 name = "";
427 }
428 break;
429 default:
430 PropertyString += *argPtr;
431 break;
432 }
433 argPtr++;
434 }
435}
436
437static const char *PropertyMemoryAttribute(ASTContext &Context, QualType ArgType) {
438 Qualifiers::ObjCLifetime propertyLifetime = ArgType.getObjCLifetime();
439 bool RetainableObject = ArgType->isObjCRetainableType();
440 if (RetainableObject &&
441 (propertyLifetime == Qualifiers::OCL_Strong
442 || propertyLifetime == Qualifiers::OCL_None)) {
443 if (const ObjCObjectPointerType *ObjPtrTy =
444 ArgType->getAs<ObjCObjectPointerType>()) {
445 ObjCInterfaceDecl *IDecl = ObjPtrTy->getObjectType()->getInterface();
446 if (IDecl &&
447 IDecl->lookupNestedProtocol(&Context.Idents.get("NSCopying")))
448 return "copy";
449 else
450 return "strong";
451 }
452 else if (ArgType->isBlockPointerType())
453 return "copy";
454 } else if (propertyLifetime == Qualifiers::OCL_Weak)
455 // TODO. More precise determination of 'weak' attribute requires
456 // looking into setter's implementation for backing weak ivar.
457 return "weak";
458 else if (RetainableObject)
459 return ArgType->isBlockPointerType() ? "copy" : "strong";
460 return nullptr;
461}
462
463static void rewriteToObjCProperty(const ObjCMethodDecl *Getter,
464 const ObjCMethodDecl *Setter,
465 const NSAPI &NS, edit::Commit &commit,
466 unsigned LengthOfPrefix,
467 bool Atomic, bool UseNsIosOnlyMacro,
468 bool AvailabilityArgsMatch) {
469 ASTContext &Context = NS.getASTContext();
470 bool LParenAdded = false;
471 std::string PropertyString = "@property ";
472 if (UseNsIosOnlyMacro && NS.isMacroDefined("NS_NONATOMIC_IOSONLY")) {
473 PropertyString += "(NS_NONATOMIC_IOSONLY";
474 LParenAdded = true;
475 } else if (!Atomic) {
476 PropertyString += "(nonatomic";
477 LParenAdded = true;
478 }
479
480 std::string PropertyNameString = Getter->getNameAsString();
481 StringRef PropertyName(PropertyNameString);
482 if (LengthOfPrefix > 0) {
483 if (!LParenAdded) {
484 PropertyString += "(getter=";
485 LParenAdded = true;
486 }
487 else
488 PropertyString += ", getter=";
489 PropertyString += PropertyNameString;
490 }
491 // Property with no setter may be suggested as a 'readonly' property.
492 if (!Setter)
493 append_attr(PropertyString, "readonly", LParenAdded);
494
495
496 // Short circuit 'delegate' properties that contain the name "delegate" or
497 // "dataSource", or have exact name "target" to have 'assign' attribute.
498 if (PropertyName.equals("target") ||
499 (PropertyName.find("delegate") != StringRef::npos) ||
500 (PropertyName.find("dataSource") != StringRef::npos)) {
501 QualType QT = Getter->getReturnType();
502 if (!QT->isRealType())
503 append_attr(PropertyString, "assign", LParenAdded);
504 } else if (!Setter) {
505 QualType ResType = Context.getCanonicalType(Getter->getReturnType());
506 if (const char *MemoryManagementAttr = PropertyMemoryAttribute(Context, ResType))
507 append_attr(PropertyString, MemoryManagementAttr, LParenAdded);
508 } else {
509 const ParmVarDecl *argDecl = *Setter->param_begin();
510 QualType ArgType = Context.getCanonicalType(argDecl->getType());
511 if (const char *MemoryManagementAttr = PropertyMemoryAttribute(Context, ArgType))
512 append_attr(PropertyString, MemoryManagementAttr, LParenAdded);
513 }
514 if (LParenAdded)
515 PropertyString += ')';
516 QualType RT = Getter->getReturnType();
517 if (!isa<TypedefType>(RT)) {
518 // strip off any ARC lifetime qualifier.
519 QualType CanResultTy = Context.getCanonicalType(RT);
520 if (CanResultTy.getQualifiers().hasObjCLifetime()) {
521 Qualifiers Qs = CanResultTy.getQualifiers();
522 Qs.removeObjCLifetime();
523 RT = Context.getQualifiedType(CanResultTy.getUnqualifiedType(), Qs);
524 }
525 }
526 PropertyString += " ";
527 PrintingPolicy SubPolicy(Context.getPrintingPolicy());
528 SubPolicy.SuppressStrongLifetime = true;
529 SubPolicy.SuppressLifetimeQualifiers = true;
530 std::string TypeString = RT.getAsString(SubPolicy);
531 if (LengthOfPrefix > 0) {
532 // property name must strip off "is" and lower case the first character
533 // after that; e.g. isContinuous will become continuous.
534 StringRef PropertyNameStringRef(PropertyNameString);
535 PropertyNameStringRef = PropertyNameStringRef.drop_front(LengthOfPrefix);
536 PropertyNameString = PropertyNameStringRef;
537 bool NoLowering = (isUppercase(PropertyNameString[0]) &&
538 PropertyNameString.size() > 1 &&
539 isUppercase(PropertyNameString[1]));
540 if (!NoLowering)
541 PropertyNameString[0] = toLowercase(PropertyNameString[0]);
542 }
543 if (RT->isBlockPointerType() || RT->isFunctionPointerType())
544 MigrateBlockOrFunctionPointerTypeVariable(PropertyString,
545 TypeString,
546 PropertyNameString.c_str());
547 else {
548 char LastChar = TypeString[TypeString.size()-1];
549 PropertyString += TypeString;
550 if (LastChar != '*')
551 PropertyString += ' ';
552 PropertyString += PropertyNameString;
553 }
554 SourceLocation StartGetterSelectorLoc = Getter->getSelectorStartLoc();
555 Selector GetterSelector = Getter->getSelector();
556
557 SourceLocation EndGetterSelectorLoc =
558 StartGetterSelectorLoc.getLocWithOffset(GetterSelector.getNameForSlot(0).size());
559 commit.replace(CharSourceRange::getCharRange(Getter->getBeginLoc(),
560 EndGetterSelectorLoc),
561 PropertyString);
562 if (Setter && AvailabilityArgsMatch) {
563 SourceLocation EndLoc = Setter->getDeclaratorEndLoc();
564 // Get location past ';'
565 EndLoc = EndLoc.getLocWithOffset(1);
566 SourceLocation BeginOfSetterDclLoc = Setter->getBeginLoc();
567 // FIXME. This assumes that setter decl; is immediately preceded by eoln.
568 // It is trying to remove the setter method decl. line entirely.
569 BeginOfSetterDclLoc = BeginOfSetterDclLoc.getLocWithOffset(-1);
570 commit.remove(SourceRange(BeginOfSetterDclLoc, EndLoc));
571 }
572}
573
574static bool IsCategoryNameWithDeprecatedSuffix(ObjCContainerDecl *D) {
575 if (ObjCCategoryDecl *CatDecl = dyn_cast<ObjCCategoryDecl>(D)) {
576 StringRef Name = CatDecl->getName();
577 return Name.endswith("Deprecated");
578 }
579 return false;
580}
581
582void ObjCMigrateASTConsumer::migrateObjCContainerDecl(ASTContext &Ctx,
583 ObjCContainerDecl *D) {
584 if (D->isDeprecated() || IsCategoryNameWithDeprecatedSuffix(D))
585 return;
586
587 for (auto *Method : D->methods()) {
588 if (Method->isDeprecated())
589 continue;
590 bool PropertyInferred = migrateProperty(Ctx, D, Method);
591 // If a property is inferred, do not attempt to attach NS_RETURNS_INNER_POINTER to
592 // the getter method as it ends up on the property itself which we don't want
593 // to do unless -objcmt-returns-innerpointer-property option is on.
594 if (!PropertyInferred ||
595 (ASTMigrateActions & FrontendOptions::ObjCMT_ReturnsInnerPointerProperty))
596 if (ASTMigrateActions & FrontendOptions::ObjCMT_Annotation)
597 migrateNsReturnsInnerPointer(Ctx, Method);
598 }
599 if (!(ASTMigrateActions & FrontendOptions::ObjCMT_ReturnsInnerPointerProperty))
600 return;
601
602 for (auto *Prop : D->instance_properties()) {
603 if ((ASTMigrateActions & FrontendOptions::ObjCMT_Annotation) &&
604 !Prop->isDeprecated())
605 migratePropertyNsReturnsInnerPointer(Ctx, Prop);
606 }
607}
608
609static bool
610ClassImplementsAllMethodsAndProperties(ASTContext &Ctx,
611 const ObjCImplementationDecl *ImpDecl,
612 const ObjCInterfaceDecl *IDecl,
613 ObjCProtocolDecl *Protocol) {
614 // In auto-synthesis, protocol properties are not synthesized. So,
615 // a conforming protocol must have its required properties declared
616 // in class interface.
617 bool HasAtleastOneRequiredProperty = false;
618 if (const ObjCProtocolDecl *PDecl = Protocol->getDefinition())
619 for (const auto *Property : PDecl->instance_properties()) {
620 if (Property->getPropertyImplementation() == ObjCPropertyDecl::Optional)
621 continue;
622 HasAtleastOneRequiredProperty = true;
623 DeclContext::lookup_result R = IDecl->lookup(Property->getDeclName());
624 if (R.size() == 0) {
625 // Relax the rule and look into class's implementation for a synthesize
626 // or dynamic declaration. Class is implementing a property coming from
627 // another protocol. This still makes the target protocol as conforming.
628 if (!ImpDecl->FindPropertyImplDecl(
629 Property->getDeclName().getAsIdentifierInfo(),
630 Property->getQueryKind()))
631 return false;
632 }
633 else if (ObjCPropertyDecl *ClassProperty = dyn_cast<ObjCPropertyDecl>(R[0])) {
634 if ((ClassProperty->getPropertyAttributes()
635 != Property->getPropertyAttributes()) ||
636 !Ctx.hasSameType(ClassProperty->getType(), Property->getType()))
637 return false;
638 }
639 else
640 return false;
641 }
642
643 // At this point, all required properties in this protocol conform to those
644 // declared in the class.
645 // Check that class implements the required methods of the protocol too.
646 bool HasAtleastOneRequiredMethod = false;
647 if (const ObjCProtocolDecl *PDecl = Protocol->getDefinition()) {
648 if (PDecl->meth_begin() == PDecl->meth_end())
649 return HasAtleastOneRequiredProperty;
650 for (const auto *MD : PDecl->methods()) {
651 if (MD->isImplicit())
652 continue;
653 if (MD->getImplementationControl() == ObjCMethodDecl::Optional)
654 continue;
655 DeclContext::lookup_result R = ImpDecl->lookup(MD->getDeclName());
656 if (R.size() == 0)
657 return false;
658 bool match = false;
659 HasAtleastOneRequiredMethod = true;
660 for (unsigned I = 0, N = R.size(); I != N; ++I)
661 if (ObjCMethodDecl *ImpMD = dyn_cast<ObjCMethodDecl>(R[0]))
662 if (Ctx.ObjCMethodsAreEqual(MD, ImpMD)) {
663 match = true;
664 break;
665 }
666 if (!match)
667 return false;
668 }
669 }
670 return HasAtleastOneRequiredProperty || HasAtleastOneRequiredMethod;
671}
672
673static bool rewriteToObjCInterfaceDecl(const ObjCInterfaceDecl *IDecl,
674 llvm::SmallVectorImpl<ObjCProtocolDecl*> &ConformingProtocols,
675 const NSAPI &NS, edit::Commit &commit) {
676 const ObjCList<ObjCProtocolDecl> &Protocols = IDecl->getReferencedProtocols();
677 std::string ClassString;
678 SourceLocation EndLoc =
679 IDecl->getSuperClass() ? IDecl->getSuperClassLoc() : IDecl->getLocation();
680
681 if (Protocols.empty()) {
682 ClassString = '<';
683 for (unsigned i = 0, e = ConformingProtocols.size(); i != e; i++) {
684 ClassString += ConformingProtocols[i]->getNameAsString();
685 if (i != (e-1))
686 ClassString += ", ";
687 }
688 ClassString += "> ";
689 }
690 else {
691 ClassString = ", ";
692 for (unsigned i = 0, e = ConformingProtocols.size(); i != e; i++) {
693 ClassString += ConformingProtocols[i]->getNameAsString();
694 if (i != (e-1))
695 ClassString += ", ";
696 }
697 ObjCInterfaceDecl::protocol_loc_iterator PL = IDecl->protocol_loc_end() - 1;
698 EndLoc = *PL;
699 }
700
701 commit.insertAfterToken(EndLoc, ClassString);
702 return true;
703}
704
705static StringRef GetUnsignedName(StringRef NSIntegerName) {
706 StringRef UnsignedName = llvm::StringSwitch<StringRef>(NSIntegerName)
707 .Case("int8_t", "uint8_t")
708 .Case("int16_t", "uint16_t")
709 .Case("int32_t", "uint32_t")
710 .Case("NSInteger", "NSUInteger")
711 .Case("int64_t", "uint64_t")
712 .Default(NSIntegerName);
713 return UnsignedName;
714}
715
716static bool rewriteToNSEnumDecl(const EnumDecl *EnumDcl,
717 const TypedefDecl *TypedefDcl,
718 const NSAPI &NS, edit::Commit &commit,
719 StringRef NSIntegerName,
720 bool NSOptions) {
721 std::string ClassString;
722 if (NSOptions) {
723 ClassString = "typedef NS_OPTIONS(";
724 ClassString += GetUnsignedName(NSIntegerName);
725 }
726 else {
727 ClassString = "typedef NS_ENUM(";
728 ClassString += NSIntegerName;
729 }
730 ClassString += ", ";
731
732 ClassString += TypedefDcl->getIdentifier()->getName();
733 ClassString += ')';
734 SourceRange R(EnumDcl->getBeginLoc(), EnumDcl->getBeginLoc());
735 commit.replace(R, ClassString);
736 SourceLocation EndOfEnumDclLoc = EnumDcl->getEndLoc();
737 EndOfEnumDclLoc = trans::findSemiAfterLocation(EndOfEnumDclLoc,
738 NS.getASTContext(), /*IsDecl*/true);
739 if (EndOfEnumDclLoc.isValid()) {
740 SourceRange EnumDclRange(EnumDcl->getBeginLoc(), EndOfEnumDclLoc);
741 commit.insertFromRange(TypedefDcl->getBeginLoc(), EnumDclRange);
742 }
743 else
744 return false;
745
746 SourceLocation EndTypedefDclLoc = TypedefDcl->getEndLoc();
747 EndTypedefDclLoc = trans::findSemiAfterLocation(EndTypedefDclLoc,
748 NS.getASTContext(), /*IsDecl*/true);
749 if (EndTypedefDclLoc.isValid()) {
750 SourceRange TDRange(TypedefDcl->getBeginLoc(), EndTypedefDclLoc);
751 commit.remove(TDRange);
752 }
753 else
754 return false;
755
756 EndOfEnumDclLoc =
757 trans::findLocationAfterSemi(EnumDcl->getEndLoc(), NS.getASTContext(),
758 /*IsDecl*/ true);
759 if (EndOfEnumDclLoc.isValid()) {
760 SourceLocation BeginOfEnumDclLoc = EnumDcl->getBeginLoc();
761 // FIXME. This assumes that enum decl; is immediately preceded by eoln.
762 // It is trying to remove the enum decl. lines entirely.
763 BeginOfEnumDclLoc = BeginOfEnumDclLoc.getLocWithOffset(-1);
764 commit.remove(SourceRange(BeginOfEnumDclLoc, EndOfEnumDclLoc));
765 return true;
766 }
767 return false;
768}
769
770static void rewriteToNSMacroDecl(ASTContext &Ctx,
771 const EnumDecl *EnumDcl,
772 const TypedefDecl *TypedefDcl,
773 const NSAPI &NS, edit::Commit &commit,
774 bool IsNSIntegerType) {
775 QualType DesignatedEnumType = EnumDcl->getIntegerType();
776 assert(!DesignatedEnumType.isNull()((!DesignatedEnumType.isNull() && "rewriteToNSMacroDecl - underlying enum type is null"
) ? static_cast<void> (0) : __assert_fail ("!DesignatedEnumType.isNull() && \"rewriteToNSMacroDecl - underlying enum type is null\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/lib/ARCMigrate/ObjCMT.cpp"
, 777, __PRETTY_FUNCTION__))
777 && "rewriteToNSMacroDecl - underlying enum type is null")((!DesignatedEnumType.isNull() && "rewriteToNSMacroDecl - underlying enum type is null"
) ? static_cast<void> (0) : __assert_fail ("!DesignatedEnumType.isNull() && \"rewriteToNSMacroDecl - underlying enum type is null\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/lib/ARCMigrate/ObjCMT.cpp"
, 777, __PRETTY_FUNCTION__))
;
778
779 PrintingPolicy Policy(Ctx.getPrintingPolicy());
780 std::string TypeString = DesignatedEnumType.getAsString(Policy);
781 std::string ClassString = IsNSIntegerType ? "NS_ENUM(" : "NS_OPTIONS(";
782 ClassString += TypeString;
783 ClassString += ", ";
784
785 ClassString += TypedefDcl->getIdentifier()->getName();
786 ClassString += ") ";
787 SourceLocation EndLoc = EnumDcl->getBraceRange().getBegin();
788 if (EndLoc.isInvalid())
789 return;
790 CharSourceRange R =
791 CharSourceRange::getCharRange(EnumDcl->getBeginLoc(), EndLoc);
792 commit.replace(R, ClassString);
793 // This is to remove spaces between '}' and typedef name.
794 SourceLocation StartTypedefLoc = EnumDcl->getEndLoc();
795 StartTypedefLoc = StartTypedefLoc.getLocWithOffset(+1);
796 SourceLocation EndTypedefLoc = TypedefDcl->getEndLoc();
797
798 commit.remove(SourceRange(StartTypedefLoc, EndTypedefLoc));
799}
800
801static bool UseNSOptionsMacro(Preprocessor &PP, ASTContext &Ctx,
802 const EnumDecl *EnumDcl) {
803 bool PowerOfTwo = true;
804 bool AllHexdecimalEnumerator = true;
805 uint64_t MaxPowerOfTwoVal = 0;
806 for (auto Enumerator : EnumDcl->enumerators()) {
807 const Expr *InitExpr = Enumerator->getInitExpr();
808 if (!InitExpr) {
809 PowerOfTwo = false;
810 AllHexdecimalEnumerator = false;
811 continue;
812 }
813 InitExpr = InitExpr->IgnoreParenCasts();
814 if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr))
815 if (BO->isShiftOp() || BO->isBitwiseOp())
816 return true;
817
818 uint64_t EnumVal = Enumerator->getInitVal().getZExtValue();
819 if (PowerOfTwo && EnumVal) {
820 if (!llvm::isPowerOf2_64(EnumVal))
821 PowerOfTwo = false;
822 else if (EnumVal > MaxPowerOfTwoVal)
823 MaxPowerOfTwoVal = EnumVal;
824 }
825 if (AllHexdecimalEnumerator && EnumVal) {
826 bool FoundHexdecimalEnumerator = false;
827 SourceLocation EndLoc = Enumerator->getEndLoc();
828 Token Tok;
829 if (!PP.getRawToken(EndLoc, Tok, /*IgnoreWhiteSpace=*/true))
830 if (Tok.isLiteral() && Tok.getLength() > 2) {
831 if (const char *StringLit = Tok.getLiteralData())
832 FoundHexdecimalEnumerator =
833 (StringLit[0] == '0' && (toLowercase(StringLit[1]) == 'x'));
834 }
835 if (!FoundHexdecimalEnumerator)
836 AllHexdecimalEnumerator = false;
837 }
838 }
839 return AllHexdecimalEnumerator || (PowerOfTwo && (MaxPowerOfTwoVal > 2));
840}
841
842void ObjCMigrateASTConsumer::migrateProtocolConformance(ASTContext &Ctx,
843 const ObjCImplementationDecl *ImpDecl) {
844 const ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface();
845 if (!IDecl || ObjCProtocolDecls.empty() || IDecl->isDeprecated())
846 return;
847 // Find all implicit conforming protocols for this class
848 // and make them explicit.
849 llvm::SmallPtrSet<ObjCProtocolDecl *, 8> ExplicitProtocols;
850 Ctx.CollectInheritedProtocols(IDecl, ExplicitProtocols);
851 llvm::SmallVector<ObjCProtocolDecl *, 8> PotentialImplicitProtocols;
852
853 for (ObjCProtocolDecl *ProtDecl : ObjCProtocolDecls)
854 if (!ExplicitProtocols.count(ProtDecl))
855 PotentialImplicitProtocols.push_back(ProtDecl);
856
857 if (PotentialImplicitProtocols.empty())
858 return;
859
860 // go through list of non-optional methods and properties in each protocol
861 // in the PotentialImplicitProtocols list. If class implements every one of the
862 // methods and properties, then this class conforms to this protocol.
863 llvm::SmallVector<ObjCProtocolDecl*, 8> ConformingProtocols;
864 for (unsigned i = 0, e = PotentialImplicitProtocols.size(); i != e; i++)
865 if (ClassImplementsAllMethodsAndProperties(Ctx, ImpDecl, IDecl,
866 PotentialImplicitProtocols[i]))
867 ConformingProtocols.push_back(PotentialImplicitProtocols[i]);
868
869 if (ConformingProtocols.empty())
870 return;
871
872 // Further reduce number of conforming protocols. If protocol P1 is in the list
873 // protocol P2 (P2<P1>), No need to include P1.
874 llvm::SmallVector<ObjCProtocolDecl*, 8> MinimalConformingProtocols;
875 for (unsigned i = 0, e = ConformingProtocols.size(); i != e; i++) {
876 bool DropIt = false;
877 ObjCProtocolDecl *TargetPDecl = ConformingProtocols[i];
878 for (unsigned i1 = 0, e1 = ConformingProtocols.size(); i1 != e1; i1++) {
879 ObjCProtocolDecl *PDecl = ConformingProtocols[i1];
880 if (PDecl == TargetPDecl)
881 continue;
882 if (PDecl->lookupProtocolNamed(
883 TargetPDecl->getDeclName().getAsIdentifierInfo())) {
884 DropIt = true;
885 break;
886 }
887 }
888 if (!DropIt)
889 MinimalConformingProtocols.push_back(TargetPDecl);
890 }
891 if (MinimalConformingProtocols.empty())
892 return;
893 edit::Commit commit(*Editor);
894 rewriteToObjCInterfaceDecl(IDecl, MinimalConformingProtocols,
895 *NSAPIObj, commit);
896 Editor->commit(commit);
897}
898
899void ObjCMigrateASTConsumer::CacheObjCNSIntegerTypedefed(
900 const TypedefDecl *TypedefDcl) {
901
902 QualType qt = TypedefDcl->getTypeSourceInfo()->getType();
903 if (NSAPIObj->isObjCNSIntegerType(qt))
904 NSIntegerTypedefed = TypedefDcl;
905 else if (NSAPIObj->isObjCNSUIntegerType(qt))
906 NSUIntegerTypedefed = TypedefDcl;
907}
908
909bool ObjCMigrateASTConsumer::migrateNSEnumDecl(ASTContext &Ctx,
910 const EnumDecl *EnumDcl,
911 const TypedefDecl *TypedefDcl) {
912 if (!EnumDcl->isCompleteDefinition() || EnumDcl->getIdentifier() ||
913 EnumDcl->isDeprecated())
914 return false;
915 if (!TypedefDcl) {
916 if (NSIntegerTypedefed) {
917 TypedefDcl = NSIntegerTypedefed;
918 NSIntegerTypedefed = nullptr;
919 }
920 else if (NSUIntegerTypedefed) {
921 TypedefDcl = NSUIntegerTypedefed;
922 NSUIntegerTypedefed = nullptr;
923 }
924 else
925 return false;
926 FileID FileIdOfTypedefDcl =
927 PP.getSourceManager().getFileID(TypedefDcl->getLocation());
928 FileID FileIdOfEnumDcl =
929 PP.getSourceManager().getFileID(EnumDcl->getLocation());
930 if (FileIdOfTypedefDcl != FileIdOfEnumDcl)
931 return false;
932 }
933 if (TypedefDcl->isDeprecated())
934 return false;
935
936 QualType qt = TypedefDcl->getTypeSourceInfo()->getType();
937 StringRef NSIntegerName = NSAPIObj->GetNSIntegralKind(qt);
938
939 if (NSIntegerName.empty()) {
940 // Also check for typedef enum {...} TD;
941 if (const EnumType *EnumTy = qt->getAs<EnumType>()) {
942 if (EnumTy->getDecl() == EnumDcl) {
943 bool NSOptions = UseNSOptionsMacro(PP, Ctx, EnumDcl);
944 if (!InsertFoundation(Ctx, TypedefDcl->getBeginLoc()))
945 return false;
946 edit::Commit commit(*Editor);
947 rewriteToNSMacroDecl(Ctx, EnumDcl, TypedefDcl, *NSAPIObj, commit, !NSOptions);
948 Editor->commit(commit);
949 return true;
950 }
951 }
952 return false;
953 }
954
955 // We may still use NS_OPTIONS based on what we find in the enumertor list.
956 bool NSOptions = UseNSOptionsMacro(PP, Ctx, EnumDcl);
957 if (!InsertFoundation(Ctx, TypedefDcl->getBeginLoc()))
958 return false;
959 edit::Commit commit(*Editor);
960 bool Res = rewriteToNSEnumDecl(EnumDcl, TypedefDcl, *NSAPIObj,
961 commit, NSIntegerName, NSOptions);
962 Editor->commit(commit);
963 return Res;
964}
965
966static void ReplaceWithInstancetype(ASTContext &Ctx,
967 const ObjCMigrateASTConsumer &ASTC,
968 ObjCMethodDecl *OM) {
969 if (OM->getReturnType() == Ctx.getObjCInstanceType())
970 return; // already has instancetype.
971
972 SourceRange R;
973 std::string ClassString;
974 if (TypeSourceInfo *TSInfo = OM->getReturnTypeSourceInfo()) {
975 TypeLoc TL = TSInfo->getTypeLoc();
976 R = SourceRange(TL.getBeginLoc(), TL.getEndLoc());
977 ClassString = "instancetype";
978 }
979 else {
980 R = SourceRange(OM->getBeginLoc(), OM->getBeginLoc());
981 ClassString = OM->isInstanceMethod() ? '-' : '+';
982 ClassString += " (instancetype)";
983 }
984 edit::Commit commit(*ASTC.Editor);
985 commit.replace(R, ClassString);
986 ASTC.Editor->commit(commit);
987}
988
989static void ReplaceWithClasstype(const ObjCMigrateASTConsumer &ASTC,
990 ObjCMethodDecl *OM) {
991 ObjCInterfaceDecl *IDecl = OM->getClassInterface();
992 SourceRange R;
993 std::string ClassString;
994 if (TypeSourceInfo *TSInfo = OM->getReturnTypeSourceInfo()) {
995 TypeLoc TL = TSInfo->getTypeLoc();
996 R = SourceRange(TL.getBeginLoc(), TL.getEndLoc()); {
997 ClassString = IDecl->getName();
998 ClassString += "*";
999 }
1000 }
1001 else {
1002 R = SourceRange(OM->getBeginLoc(), OM->getBeginLoc());
1003 ClassString = "+ (";
1004 ClassString += IDecl->getName(); ClassString += "*)";
1005 }
1006 edit::Commit commit(*ASTC.Editor);
1007 commit.replace(R, ClassString);
1008 ASTC.Editor->commit(commit);
1009}
1010
1011void ObjCMigrateASTConsumer::migrateMethodInstanceType(ASTContext &Ctx,
1012 ObjCContainerDecl *CDecl,
1013 ObjCMethodDecl *OM) {
1014 ObjCInstanceTypeFamily OIT_Family =
1015 Selector::getInstTypeMethodFamily(OM->getSelector());
1016
1017 std::string ClassName;
1018 switch (OIT_Family) {
1019 case OIT_None:
1020 migrateFactoryMethod(Ctx, CDecl, OM);
1021 return;
1022 case OIT_Array:
1023 ClassName = "NSArray";
1024 break;
1025 case OIT_Dictionary:
1026 ClassName = "NSDictionary";
1027 break;
1028 case OIT_Singleton:
1029 migrateFactoryMethod(Ctx, CDecl, OM, OIT_Singleton);
1030 return;
1031 case OIT_Init:
1032 if (OM->getReturnType()->isObjCIdType())
1033 ReplaceWithInstancetype(Ctx, *this, OM);
1034 return;
1035 case OIT_ReturnsSelf:
1036 migrateFactoryMethod(Ctx, CDecl, OM, OIT_ReturnsSelf);
1037 return;
1038 }
1039 if (!OM->getReturnType()->isObjCIdType())
1040 return;
1041
1042 ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl);
1043 if (!IDecl) {
1044 if (ObjCCategoryDecl *CatDecl = dyn_cast<ObjCCategoryDecl>(CDecl))
1045 IDecl = CatDecl->getClassInterface();
1046 else if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(CDecl))
1047 IDecl = ImpDecl->getClassInterface();
1048 }
1049 if (!IDecl ||
1050 !IDecl->lookupInheritedClass(&Ctx.Idents.get(ClassName))) {
1051 migrateFactoryMethod(Ctx, CDecl, OM);
1052 return;
1053 }
1054 ReplaceWithInstancetype(Ctx, *this, OM);
1055}
1056
1057static bool TypeIsInnerPointer(QualType T) {
1058 if (!T->isAnyPointerType())
1059 return false;
1060 if (T->isObjCObjectPointerType() || T->isObjCBuiltinType() ||
1061 T->isBlockPointerType() || T->isFunctionPointerType() ||
1062 ento::coreFoundation::isCFObjectRef(T))
1063 return false;
1064 // Also, typedef-of-pointer-to-incomplete-struct is something that we assume
1065 // is not an innter pointer type.
1066 QualType OrigT = T;
1067 while (const TypedefType *TD = dyn_cast<TypedefType>(T.getTypePtr()))
1068 T = TD->getDecl()->getUnderlyingType();
1069 if (OrigT == T || !T->isPointerType())
1070 return true;
1071 const PointerType* PT = T->getAs<PointerType>();
1072 QualType UPointeeT = PT->getPointeeType().getUnqualifiedType();
1073 if (UPointeeT->isRecordType()) {
1074 const RecordType *RecordTy = UPointeeT->getAs<RecordType>();
1075 if (!RecordTy->getDecl()->isCompleteDefinition())
1076 return false;
1077 }
1078 return true;
1079}
1080
1081/// Check whether the two versions match.
1082static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y) {
1083 return (X == Y);
1084}
1085
1086/// AvailabilityAttrsMatch - This routine checks that if comparing two
1087/// availability attributes, all their components match. It returns
1088/// true, if not dealing with availability or when all components of
1089/// availability attributes match. This routine is only called when
1090/// the attributes are of the same kind.
1091static bool AvailabilityAttrsMatch(Attr *At1, Attr *At2) {
1092 const AvailabilityAttr *AA1 = dyn_cast<AvailabilityAttr>(At1);
1093 if (!AA1)
1094 return true;
1095 const AvailabilityAttr *AA2 = dyn_cast<AvailabilityAttr>(At2);
1096
1097 VersionTuple Introduced1 = AA1->getIntroduced();
1098 VersionTuple Deprecated1 = AA1->getDeprecated();
1099 VersionTuple Obsoleted1 = AA1->getObsoleted();
1100 bool IsUnavailable1 = AA1->getUnavailable();
1101 VersionTuple Introduced2 = AA2->getIntroduced();
1102 VersionTuple Deprecated2 = AA2->getDeprecated();
1103 VersionTuple Obsoleted2 = AA2->getObsoleted();
1104 bool IsUnavailable2 = AA2->getUnavailable();
1105 return (versionsMatch(Introduced1, Introduced2) &&
1106 versionsMatch(Deprecated1, Deprecated2) &&
1107 versionsMatch(Obsoleted1, Obsoleted2) &&
1108 IsUnavailable1 == IsUnavailable2);
1109}
1110
1111static bool MatchTwoAttributeLists(const AttrVec &Attrs1, const AttrVec &Attrs2,
1112 bool &AvailabilityArgsMatch) {
1113 // This list is very small, so this need not be optimized.
1114 for (unsigned i = 0, e = Attrs1.size(); i != e; i++) {
1115 bool match = false;
1116 for (unsigned j = 0, f = Attrs2.size(); j != f; j++) {
1117 // Matching attribute kind only. Except for Availability attributes,
1118 // we are not getting into details of the attributes. For all practical purposes
1119 // this is sufficient.
1120 if (Attrs1[i]->getKind() == Attrs2[j]->getKind()) {
1121 if (AvailabilityArgsMatch)
1122 AvailabilityArgsMatch = AvailabilityAttrsMatch(Attrs1[i], Attrs2[j]);
1123 match = true;
1124 break;
1125 }
1126 }
1127 if (!match)
1128 return false;
1129 }
1130 return true;
1131}
1132
1133/// AttributesMatch - This routine checks list of attributes for two
1134/// decls. It returns false, if there is a mismatch in kind of
1135/// attributes seen in the decls. It returns true if the two decls
1136/// have list of same kind of attributes. Furthermore, when there
1137/// are availability attributes in the two decls, it sets the
1138/// AvailabilityArgsMatch to false if availability attributes have
1139/// different versions, etc.
1140static bool AttributesMatch(const Decl *Decl1, const Decl *Decl2,
1141 bool &AvailabilityArgsMatch) {
1142 if (!Decl1->hasAttrs() || !Decl2->hasAttrs()) {
1143 AvailabilityArgsMatch = (Decl1->hasAttrs() == Decl2->hasAttrs());
1144 return true;
1145 }
1146 AvailabilityArgsMatch = true;
1147 const AttrVec &Attrs1 = Decl1->getAttrs();
1148 const AttrVec &Attrs2 = Decl2->getAttrs();
1149 bool match = MatchTwoAttributeLists(Attrs1, Attrs2, AvailabilityArgsMatch);
1150 if (match && (Attrs2.size() > Attrs1.size()))
1151 return MatchTwoAttributeLists(Attrs2, Attrs1, AvailabilityArgsMatch);
1152 return match;
1153}
1154
1155static bool IsValidIdentifier(ASTContext &Ctx,
1156 const char *Name) {
1157 if (!isIdentifierHead(Name[0]))
1158 return false;
1159 std::string NameString = Name;
1160 NameString[0] = toLowercase(NameString[0]);
1161 IdentifierInfo *II = &Ctx.Idents.get(NameString);
1162 return II->getTokenID() == tok::identifier;
1163}
1164
1165bool ObjCMigrateASTConsumer::migrateProperty(ASTContext &Ctx,
1166 ObjCContainerDecl *D,
1167 ObjCMethodDecl *Method) {
1168 if (Method->isPropertyAccessor() || !Method->isInstanceMethod() ||
1169 Method->param_size() != 0)
1170 return false;
1171 // Is this method candidate to be a getter?
1172 QualType GRT = Method->getReturnType();
1173 if (GRT->isVoidType())
1174 return false;
1175
1176 Selector GetterSelector = Method->getSelector();
1177 ObjCInstanceTypeFamily OIT_Family =
1178 Selector::getInstTypeMethodFamily(GetterSelector);
1179
1180 if (OIT_Family != OIT_None)
1181 return false;
1182
1183 IdentifierInfo *getterName = GetterSelector.getIdentifierInfoForSlot(0);
1184 Selector SetterSelector =
1185 SelectorTable::constructSetterSelector(PP.getIdentifierTable(),
1186 PP.getSelectorTable(),
1187 getterName);
1188 ObjCMethodDecl *SetterMethod = D->getInstanceMethod(SetterSelector);
1189 unsigned LengthOfPrefix = 0;
1190 if (!SetterMethod) {
1191 // try a different naming convention for getter: isXxxxx
1192 StringRef getterNameString = getterName->getName();
1193 bool IsPrefix = getterNameString.startswith("is");
1194 // Note that we don't want to change an isXXX method of retainable object
1195 // type to property (readonly or otherwise).
1196 if (IsPrefix && GRT->isObjCRetainableType())
1197 return false;
1198 if (IsPrefix || getterNameString.startswith("get")) {
1199 LengthOfPrefix = (IsPrefix ? 2 : 3);
1200 const char *CGetterName = getterNameString.data() + LengthOfPrefix;
1201 // Make sure that first character after "is" or "get" prefix can
1202 // start an identifier.
1203 if (!IsValidIdentifier(Ctx, CGetterName))
1204 return false;
1205 if (CGetterName[0] && isUppercase(CGetterName[0])) {
1206 getterName = &Ctx.Idents.get(CGetterName);
1207 SetterSelector =
1208 SelectorTable::constructSetterSelector(PP.getIdentifierTable(),
1209 PP.getSelectorTable(),
1210 getterName);
1211 SetterMethod = D->getInstanceMethod(SetterSelector);
1212 }
1213 }
1214 }
1215
1216 if (SetterMethod) {
1217 if ((ASTMigrateActions & FrontendOptions::ObjCMT_ReadwriteProperty) == 0)
1218 return false;
1219 bool AvailabilityArgsMatch;
1220 if (SetterMethod->isDeprecated() ||
1221 !AttributesMatch(Method, SetterMethod, AvailabilityArgsMatch))
1222 return false;
1223
1224 // Is this a valid setter, matching the target getter?
1225 QualType SRT = SetterMethod->getReturnType();
1226 if (!SRT->isVoidType())
1227 return false;
1228 const ParmVarDecl *argDecl = *SetterMethod->param_begin();
1229 QualType ArgType = argDecl->getType();
1230 if (!Ctx.hasSameUnqualifiedType(ArgType, GRT))
1231 return false;
1232 edit::Commit commit(*Editor);
1233 rewriteToObjCProperty(Method, SetterMethod, *NSAPIObj, commit,
1234 LengthOfPrefix,
1235 (ASTMigrateActions &
1236 FrontendOptions::ObjCMT_AtomicProperty) != 0,
1237 (ASTMigrateActions &
1238 FrontendOptions::ObjCMT_NsAtomicIOSOnlyProperty) != 0,
1239 AvailabilityArgsMatch);
1240 Editor->commit(commit);
1241 return true;
1242 }
1243 else if (ASTMigrateActions & FrontendOptions::ObjCMT_ReadonlyProperty) {
1244 // Try a non-void method with no argument (and no setter or property of same name
1245 // as a 'readonly' property.
1246 edit::Commit commit(*Editor);
1247 rewriteToObjCProperty(Method, nullptr /*SetterMethod*/, *NSAPIObj, commit,
1248 LengthOfPrefix,
1249 (ASTMigrateActions &
1250 FrontendOptions::ObjCMT_AtomicProperty) != 0,
1251 (ASTMigrateActions &
1252 FrontendOptions::ObjCMT_NsAtomicIOSOnlyProperty) != 0,
1253 /*AvailabilityArgsMatch*/false);
1254 Editor->commit(commit);
1255 return true;
1256 }
1257 return false;
1258}
1259
1260void ObjCMigrateASTConsumer::migrateNsReturnsInnerPointer(ASTContext &Ctx,
1261 ObjCMethodDecl *OM) {
1262 if (OM->isImplicit() ||
1263 !OM->isInstanceMethod() ||
1264 OM->hasAttr<ObjCReturnsInnerPointerAttr>())
1265 return;
1266
1267 QualType RT = OM->getReturnType();
1268 if (!TypeIsInnerPointer(RT) ||
1269 !NSAPIObj->isMacroDefined("NS_RETURNS_INNER_POINTER"))
1270 return;
1271
1272 edit::Commit commit(*Editor);
1273 commit.insertBefore(OM->getEndLoc(), " NS_RETURNS_INNER_POINTER");
1274 Editor->commit(commit);
1275}
1276
1277void ObjCMigrateASTConsumer::migratePropertyNsReturnsInnerPointer(ASTContext &Ctx,
1278 ObjCPropertyDecl *P) {
1279 QualType T = P->getType();
1280
1281 if (!TypeIsInnerPointer(T) ||
1282 !NSAPIObj->isMacroDefined("NS_RETURNS_INNER_POINTER"))
1283 return;
1284 edit::Commit commit(*Editor);
1285 commit.insertBefore(P->getEndLoc(), " NS_RETURNS_INNER_POINTER ");
1286 Editor->commit(commit);
1287}
1288
1289void ObjCMigrateASTConsumer::migrateAllMethodInstaceType(ASTContext &Ctx,
1290 ObjCContainerDecl *CDecl) {
1291 if (CDecl->isDeprecated() || IsCategoryNameWithDeprecatedSuffix(CDecl))
1292 return;
1293
1294 // migrate methods which can have instancetype as their result type.
1295 for (auto *Method : CDecl->methods()) {
1296 if (Method->isDeprecated())
1297 continue;
1298 migrateMethodInstanceType(Ctx, CDecl, Method);
1299 }
1300}
1301
1302void ObjCMigrateASTConsumer::migrateFactoryMethod(ASTContext &Ctx,
1303 ObjCContainerDecl *CDecl,
1304 ObjCMethodDecl *OM,
1305 ObjCInstanceTypeFamily OIT_Family) {
1306 if (OM->isInstanceMethod() ||
1307 OM->getReturnType() == Ctx.getObjCInstanceType() ||
1308 !OM->getReturnType()->isObjCIdType())
1309 return;
1310
1311 // Candidate factory methods are + (id) NaMeXXX : ... which belong to a class
1312 // NSYYYNamE with matching names be at least 3 characters long.
1313 ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl);
1314 if (!IDecl) {
1315 if (ObjCCategoryDecl *CatDecl = dyn_cast<ObjCCategoryDecl>(CDecl))
1316 IDecl = CatDecl->getClassInterface();
1317 else if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(CDecl))
1318 IDecl = ImpDecl->getClassInterface();
1319 }
1320 if (!IDecl)
1321 return;
1322
1323 std::string StringClassName = IDecl->getName();
1324 StringRef LoweredClassName(StringClassName);
1325 std::string StringLoweredClassName = LoweredClassName.lower();
1326 LoweredClassName = StringLoweredClassName;
1327
1328 IdentifierInfo *MethodIdName = OM->getSelector().getIdentifierInfoForSlot(0);
1329 // Handle method with no name at its first selector slot; e.g. + (id):(int)x.
1330 if (!MethodIdName)
1331 return;
1332
1333 std::string MethodName = MethodIdName->getName();
1334 if (OIT_Family == OIT_Singleton || OIT_Family == OIT_ReturnsSelf) {
1335 StringRef STRefMethodName(MethodName);
1336 size_t len = 0;
1337 if (STRefMethodName.startswith("standard"))
1338 len = strlen("standard");
1339 else if (STRefMethodName.startswith("shared"))
1340 len = strlen("shared");
1341 else if (STRefMethodName.startswith("default"))
1342 len = strlen("default");
1343 else
1344 return;
1345 MethodName = STRefMethodName.substr(len);
1346 }
1347 std::string MethodNameSubStr = MethodName.substr(0, 3);
1348 StringRef MethodNamePrefix(MethodNameSubStr);
1349 std::string StringLoweredMethodNamePrefix = MethodNamePrefix.lower();
1350 MethodNamePrefix = StringLoweredMethodNamePrefix;
1351 size_t Ix = LoweredClassName.rfind(MethodNamePrefix);
1352 if (Ix == StringRef::npos)
1353 return;
1354 std::string ClassNamePostfix = LoweredClassName.substr(Ix);
1355 StringRef LoweredMethodName(MethodName);
1356 std::string StringLoweredMethodName = LoweredMethodName.lower();
1357 LoweredMethodName = StringLoweredMethodName;
1358 if (!LoweredMethodName.startswith(ClassNamePostfix))
1359 return;
1360 if (OIT_Family == OIT_ReturnsSelf)
1361 ReplaceWithClasstype(*this, OM);
1362 else
1363 ReplaceWithInstancetype(Ctx, *this, OM);
1364}
1365
1366static bool IsVoidStarType(QualType Ty) {
1367 if (!Ty->isPointerType())
21
Calling 'Type::isPointerType'
24
Returning from 'Type::isPointerType'
25
Taking false branch
1368 return false;
1369
1370 while (const TypedefType *TD = dyn_cast<TypedefType>(Ty.getTypePtr()))
26
Assuming the object is not a 'TypedefType'
27
Loop condition is false. Execution continues on line 1374
1371 Ty = TD->getDecl()->getUnderlyingType();
1372
1373 // Is the type void*?
1374 const PointerType* PT = Ty->getAs<PointerType>();
28
Assuming the object is not a 'PointerType'
29
'PT' initialized to a null pointer value
1375 if (PT->getPointeeType().getUnqualifiedType()->isVoidType())
30
Called C++ object pointer is null
1376 return true;
1377 return IsVoidStarType(PT->getPointeeType());
1378}
1379
1380/// AuditedType - This routine audits the type AT and returns false if it is one of known
1381/// CF object types or of the "void *" variety. It returns true if we don't care about the type
1382/// such as a non-pointer or pointers which have no ownership issues (such as "int *").
1383static bool AuditedType (QualType AT) {
1384 if (!AT->isAnyPointerType() && !AT->isBlockPointerType())
1385 return true;
1386 // FIXME. There isn't much we can say about CF pointer type; or is there?
1387 if (ento::coreFoundation::isCFObjectRef(AT) ||
19
Assuming the condition is false
1388 IsVoidStarType(AT) ||
20
Calling 'IsVoidStarType'
1389 // If an ObjC object is type, assuming that it is not a CF function and
1390 // that it is an un-audited function.
1391 AT->isObjCObjectPointerType() || AT->isObjCBuiltinType())
1392 return false;
1393 // All other pointers are assumed audited as harmless.
1394 return true;
1395}
1396
1397void ObjCMigrateASTConsumer::AnnotateImplicitBridging(ASTContext &Ctx) {
1398 if (CFFunctionIBCandidates.empty())
1399 return;
1400 if (!NSAPIObj->isMacroDefined("CF_IMPLICIT_BRIDGING_ENABLED")) {
1401 CFFunctionIBCandidates.clear();
1402 FileId = FileID();
1403 return;
1404 }
1405 // Insert CF_IMPLICIT_BRIDGING_ENABLE/CF_IMPLICIT_BRIDGING_DISABLED
1406 const Decl *FirstFD = CFFunctionIBCandidates[0];
1407 const Decl *LastFD =
1408 CFFunctionIBCandidates[CFFunctionIBCandidates.size()-1];
1409 const char *PragmaString = "\nCF_IMPLICIT_BRIDGING_ENABLED\n\n";
1410 edit::Commit commit(*Editor);
1411 commit.insertBefore(FirstFD->getBeginLoc(), PragmaString);
1412 PragmaString = "\n\nCF_IMPLICIT_BRIDGING_DISABLED\n";
1413 SourceLocation EndLoc = LastFD->getEndLoc();
1414 // get location just past end of function location.
1415 EndLoc = PP.getLocForEndOfToken(EndLoc);
1416 if (isa<FunctionDecl>(LastFD)) {
1417 // For Methods, EndLoc points to the ending semcolon. So,
1418 // not of these extra work is needed.
1419 Token Tok;
1420 // get locaiton of token that comes after end of function.
1421 bool Failed = PP.getRawToken(EndLoc, Tok, /*IgnoreWhiteSpace=*/true);
1422 if (!Failed)
1423 EndLoc = Tok.getLocation();
1424 }
1425 commit.insertAfterToken(EndLoc, PragmaString);
1426 Editor->commit(commit);
1427 FileId = FileID();
1428 CFFunctionIBCandidates.clear();
1429}
1430
1431void ObjCMigrateASTConsumer::migrateCFAnnotation(ASTContext &Ctx, const Decl *Decl) {
1432 if (Decl->isDeprecated())
4
Taking false branch
1433 return;
1434
1435 if (Decl->hasAttr<CFAuditedTransferAttr>()) {
5
Taking false branch
1436 assert(CFFunctionIBCandidates.empty() &&((CFFunctionIBCandidates.empty() && "Cannot have audited functions/methods inside user "
"provided CF_IMPLICIT_BRIDGING_ENABLE") ? static_cast<void
> (0) : __assert_fail ("CFFunctionIBCandidates.empty() && \"Cannot have audited functions/methods inside user \" \"provided CF_IMPLICIT_BRIDGING_ENABLE\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/lib/ARCMigrate/ObjCMT.cpp"
, 1438, __PRETTY_FUNCTION__))
1437 "Cannot have audited functions/methods inside user "((CFFunctionIBCandidates.empty() && "Cannot have audited functions/methods inside user "
"provided CF_IMPLICIT_BRIDGING_ENABLE") ? static_cast<void
> (0) : __assert_fail ("CFFunctionIBCandidates.empty() && \"Cannot have audited functions/methods inside user \" \"provided CF_IMPLICIT_BRIDGING_ENABLE\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/lib/ARCMigrate/ObjCMT.cpp"
, 1438, __PRETTY_FUNCTION__))
1438 "provided CF_IMPLICIT_BRIDGING_ENABLE")((CFFunctionIBCandidates.empty() && "Cannot have audited functions/methods inside user "
"provided CF_IMPLICIT_BRIDGING_ENABLE") ? static_cast<void
> (0) : __assert_fail ("CFFunctionIBCandidates.empty() && \"Cannot have audited functions/methods inside user \" \"provided CF_IMPLICIT_BRIDGING_ENABLE\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/lib/ARCMigrate/ObjCMT.cpp"
, 1438, __PRETTY_FUNCTION__))
;
1439 return;
1440 }
1441
1442 // Finction must be annotated first.
1443 if (const FunctionDecl *FuncDecl
6.1
'FuncDecl' is null
6.1
'FuncDecl' is null
= dyn_cast<FunctionDecl>(Decl)) {
6
Assuming 'Decl' is not a 'FunctionDecl'
7
Taking false branch
1444 CF_BRIDGING_KIND AuditKind = migrateAddFunctionAnnotation(Ctx, FuncDecl);
1445 if (AuditKind == CF_BRIDGING_ENABLE) {
1446 CFFunctionIBCandidates.push_back(Decl);
1447 if (FileId.isInvalid())
1448 FileId = PP.getSourceManager().getFileID(Decl->getLocation());
1449 }
1450 else if (AuditKind == CF_BRIDGING_MAY_INCLUDE) {
1451 if (!CFFunctionIBCandidates.empty()) {
1452 CFFunctionIBCandidates.push_back(Decl);
1453 if (FileId.isInvalid())
1454 FileId = PP.getSourceManager().getFileID(Decl->getLocation());
1455 }
1456 }
1457 else
1458 AnnotateImplicitBridging(Ctx);
1459 }
1460 else {
1461 migrateAddMethodAnnotation(Ctx, cast<ObjCMethodDecl>(Decl));
8
'Decl' is a 'ObjCMethodDecl'
9
Calling 'ObjCMigrateASTConsumer::migrateAddMethodAnnotation'
1462 AnnotateImplicitBridging(Ctx);
1463 }
1464}
1465
1466void ObjCMigrateASTConsumer::AddCFAnnotations(ASTContext &Ctx,
1467 const RetainSummary *RS,
1468 const FunctionDecl *FuncDecl,
1469 bool ResultAnnotated) {
1470 // Annotate function.
1471 if (!ResultAnnotated) {
1472 RetEffect Ret = RS->getRetEffect();
1473 const char *AnnotationString = nullptr;
1474 if (Ret.getObjKind() == ObjKind::CF) {
1475 if (Ret.isOwned() && NSAPIObj->isMacroDefined("CF_RETURNS_RETAINED"))
1476 AnnotationString = " CF_RETURNS_RETAINED";
1477 else if (Ret.notOwned() &&
1478 NSAPIObj->isMacroDefined("CF_RETURNS_NOT_RETAINED"))
1479 AnnotationString = " CF_RETURNS_NOT_RETAINED";
1480 }
1481 else if (Ret.getObjKind() == ObjKind::ObjC) {
1482 if (Ret.isOwned() && NSAPIObj->isMacroDefined("NS_RETURNS_RETAINED"))
1483 AnnotationString = " NS_RETURNS_RETAINED";
1484 }
1485
1486 if (AnnotationString) {
1487 edit::Commit commit(*Editor);
1488 commit.insertAfterToken(FuncDecl->getEndLoc(), AnnotationString);
1489 Editor->commit(commit);
1490 }
1491 }
1492 unsigned i = 0;
1493 for (FunctionDecl::param_const_iterator pi = FuncDecl->param_begin(),
1494 pe = FuncDecl->param_end(); pi != pe; ++pi, ++i) {
1495 const ParmVarDecl *pd = *pi;
1496 ArgEffect AE = RS->getArg(i);
1497 if (AE.getKind() == DecRef && AE.getObjKind() == ObjKind::CF &&
1498 !pd->hasAttr<CFConsumedAttr>() &&
1499 NSAPIObj->isMacroDefined("CF_CONSUMED")) {
1500 edit::Commit commit(*Editor);
1501 commit.insertBefore(pd->getLocation(), "CF_CONSUMED ");
1502 Editor->commit(commit);
1503 } else if (AE.getKind() == DecRef && AE.getObjKind() == ObjKind::ObjC &&
1504 !pd->hasAttr<NSConsumedAttr>() &&
1505 NSAPIObj->isMacroDefined("NS_CONSUMED")) {
1506 edit::Commit commit(*Editor);
1507 commit.insertBefore(pd->getLocation(), "NS_CONSUMED ");
1508 Editor->commit(commit);
1509 }
1510 }
1511}
1512
1513ObjCMigrateASTConsumer::CF_BRIDGING_KIND
1514 ObjCMigrateASTConsumer::migrateAddFunctionAnnotation(
1515 ASTContext &Ctx,
1516 const FunctionDecl *FuncDecl) {
1517 if (FuncDecl->hasBody())
1518 return CF_BRIDGING_NONE;
1519
1520 const RetainSummary *RS =
1521 getSummaryManager(Ctx).getSummary(AnyCall(FuncDecl));
1522 bool FuncIsReturnAnnotated = (FuncDecl->hasAttr<CFReturnsRetainedAttr>() ||
1523 FuncDecl->hasAttr<CFReturnsNotRetainedAttr>() ||
1524 FuncDecl->hasAttr<NSReturnsRetainedAttr>() ||
1525 FuncDecl->hasAttr<NSReturnsNotRetainedAttr>() ||
1526 FuncDecl->hasAttr<NSReturnsAutoreleasedAttr>());
1527
1528 // Trivial case of when function is annotated and has no argument.
1529 if (FuncIsReturnAnnotated && FuncDecl->getNumParams() == 0)
1530 return CF_BRIDGING_NONE;
1531
1532 bool ReturnCFAudited = false;
1533 if (!FuncIsReturnAnnotated) {
1534 RetEffect Ret = RS->getRetEffect();
1535 if (Ret.getObjKind() == ObjKind::CF &&
1536 (Ret.isOwned() || Ret.notOwned()))
1537 ReturnCFAudited = true;
1538 else if (!AuditedType(FuncDecl->getReturnType()))
1539 return CF_BRIDGING_NONE;
1540 }
1541
1542 // At this point result type is audited for potential inclusion.
1543 unsigned i = 0;
1544 bool ArgCFAudited = false;
1545 for (FunctionDecl::param_const_iterator pi = FuncDecl->param_begin(),
1546 pe = FuncDecl->param_end(); pi != pe; ++pi, ++i) {
1547 const ParmVarDecl *pd = *pi;
1548 ArgEffect AE = RS->getArg(i);
1549 if ((AE.getKind() == DecRef /*CFConsumed annotated*/ ||
1550 AE.getKind() == IncRef) && AE.getObjKind() == ObjKind::CF) {
1551 if (AE.getKind() == DecRef && !pd->hasAttr<CFConsumedAttr>())
1552 ArgCFAudited = true;
1553 else if (AE.getKind() == IncRef)
1554 ArgCFAudited = true;
1555 } else {
1556 QualType AT = pd->getType();
1557 if (!AuditedType(AT)) {
1558 AddCFAnnotations(Ctx, RS, FuncDecl, FuncIsReturnAnnotated);
1559 return CF_BRIDGING_NONE;
1560 }
1561 }
1562 }
1563 if (ReturnCFAudited || ArgCFAudited)
1564 return CF_BRIDGING_ENABLE;
1565
1566 return CF_BRIDGING_MAY_INCLUDE;
1567}
1568
1569void ObjCMigrateASTConsumer::migrateARCSafeAnnotation(ASTContext &Ctx,
1570 ObjCContainerDecl *CDecl) {
1571 if (!isa<ObjCInterfaceDecl>(CDecl) || CDecl->isDeprecated())
1
Assuming 'CDecl' is a 'ObjCInterfaceDecl'
2
Taking false branch
1572 return;
1573
1574 // migrate methods which can have instancetype as their result type.
1575 for (const auto *Method : CDecl->methods())
1576 migrateCFAnnotation(Ctx, Method);
3
Calling 'ObjCMigrateASTConsumer::migrateCFAnnotation'
1577}
1578
1579void ObjCMigrateASTConsumer::AddCFAnnotations(ASTContext &Ctx,
1580 const RetainSummary *RS,
1581 const ObjCMethodDecl *MethodDecl,
1582 bool ResultAnnotated) {
1583 // Annotate function.
1584 if (!ResultAnnotated) {
1585 RetEffect Ret = RS->getRetEffect();
1586 const char *AnnotationString = nullptr;
1587 if (Ret.getObjKind() == ObjKind::CF) {
1588 if (Ret.isOwned() && NSAPIObj->isMacroDefined("CF_RETURNS_RETAINED"))
1589 AnnotationString = " CF_RETURNS_RETAINED";
1590 else if (Ret.notOwned() &&
1591 NSAPIObj->isMacroDefined("CF_RETURNS_NOT_RETAINED"))
1592 AnnotationString = " CF_RETURNS_NOT_RETAINED";
1593 }
1594 else if (Ret.getObjKind() == ObjKind::ObjC) {
1595 ObjCMethodFamily OMF = MethodDecl->getMethodFamily();
1596 switch (OMF) {
1597 case clang::OMF_alloc:
1598 case clang::OMF_new:
1599 case clang::OMF_copy:
1600 case clang::OMF_init:
1601 case clang::OMF_mutableCopy:
1602 break;
1603
1604 default:
1605 if (Ret.isOwned() && NSAPIObj->isMacroDefined("NS_RETURNS_RETAINED"))
1606 AnnotationString = " NS_RETURNS_RETAINED";
1607 break;
1608 }
1609 }
1610
1611 if (AnnotationString) {
1612 edit::Commit commit(*Editor);
1613 commit.insertBefore(MethodDecl->getEndLoc(), AnnotationString);
1614 Editor->commit(commit);
1615 }
1616 }
1617 unsigned i = 0;
1618 for (ObjCMethodDecl::param_const_iterator pi = MethodDecl->param_begin(),
1619 pe = MethodDecl->param_end(); pi != pe; ++pi, ++i) {
1620 const ParmVarDecl *pd = *pi;
1621 ArgEffect AE = RS->getArg(i);
1622 if (AE.getKind() == DecRef
1623 && AE.getObjKind() == ObjKind::CF
1624 && !pd->hasAttr<CFConsumedAttr>() &&
1625 NSAPIObj->isMacroDefined("CF_CONSUMED")) {
1626 edit::Commit commit(*Editor);
1627 commit.insertBefore(pd->getLocation(), "CF_CONSUMED ");
1628 Editor->commit(commit);
1629 }
1630 }
1631}
1632
1633void ObjCMigrateASTConsumer::migrateAddMethodAnnotation(
1634 ASTContext &Ctx,
1635 const ObjCMethodDecl *MethodDecl) {
1636 if (MethodDecl->hasBody() || MethodDecl->isImplicit())
10
Assuming the condition is false
11
Assuming the condition is false
12
Taking false branch
1637 return;
1638
1639 const RetainSummary *RS =
1640 getSummaryManager(Ctx).getSummary(AnyCall(MethodDecl));
1641
1642 bool MethodIsReturnAnnotated =
1643 (MethodDecl->hasAttr<CFReturnsRetainedAttr>() ||
1644 MethodDecl->hasAttr<CFReturnsNotRetainedAttr>() ||
1645 MethodDecl->hasAttr<NSReturnsRetainedAttr>() ||
1646 MethodDecl->hasAttr<NSReturnsNotRetainedAttr>() ||
1647 MethodDecl->hasAttr<NSReturnsAutoreleasedAttr>());
1648
1649 if (RS->getReceiverEffect().getKind() == DecRef &&
13
Assuming the condition is false
14
Taking false branch
1650 !MethodDecl->hasAttr<NSConsumesSelfAttr>() &&
1651 MethodDecl->getMethodFamily() != OMF_init &&
1652 MethodDecl->getMethodFamily() != OMF_release &&
1653 NSAPIObj->isMacroDefined("NS_CONSUMES_SELF")) {
1654 edit::Commit commit(*Editor);
1655 commit.insertBefore(MethodDecl->getEndLoc(), " NS_CONSUMES_SELF");
1656 Editor->commit(commit);
1657 }
1658
1659 // Trivial case of when function is annotated and has no argument.
1660 if (MethodIsReturnAnnotated
14.1
'MethodIsReturnAnnotated' is false
14.1
'MethodIsReturnAnnotated' is false
&&
1661 (MethodDecl->param_begin() == MethodDecl->param_end()))
1662 return;
1663
1664 if (!MethodIsReturnAnnotated
14.2
'MethodIsReturnAnnotated' is false
14.2
'MethodIsReturnAnnotated' is false
) {
15
Taking true branch
1665 RetEffect Ret = RS->getRetEffect();
1666 if ((Ret.getObjKind() == ObjKind::CF ||
16
Assuming the condition is false
1667 Ret.getObjKind() == ObjKind::ObjC) &&
17
Assuming the condition is false
1668 (Ret.isOwned() || Ret.notOwned())) {
1669 AddCFAnnotations(Ctx, RS, MethodDecl, false);
1670 return;
1671 } else if (!AuditedType(MethodDecl->getReturnType()))
18
Calling 'AuditedType'
1672 return;
1673 }
1674
1675 // At this point result type is either annotated or audited.
1676 unsigned i = 0;
1677 for (ObjCMethodDecl::param_const_iterator pi = MethodDecl->param_begin(),
1678 pe = MethodDecl->param_end(); pi != pe; ++pi, ++i) {
1679 const ParmVarDecl *pd = *pi;
1680 ArgEffect AE = RS->getArg(i);
1681 if ((AE.getKind() == DecRef && !pd->hasAttr<CFConsumedAttr>()) ||
1682 AE.getKind() == IncRef || !AuditedType(pd->getType())) {
1683 AddCFAnnotations(Ctx, RS, MethodDecl, MethodIsReturnAnnotated);
1684 return;
1685 }
1686 }
1687}
1688
1689namespace {
1690class SuperInitChecker : public RecursiveASTVisitor<SuperInitChecker> {
1691public:
1692 bool shouldVisitTemplateInstantiations() const { return false; }
1693 bool shouldWalkTypesOfTypeLocs() const { return false; }
1694
1695 bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
1696 if (E->getReceiverKind() == ObjCMessageExpr::SuperInstance) {
1697 if (E->getMethodFamily() == OMF_init)
1698 return false;
1699 }
1700 return true;
1701 }
1702};
1703} // end anonymous namespace
1704
1705static bool hasSuperInitCall(const ObjCMethodDecl *MD) {
1706 return !SuperInitChecker().TraverseStmt(MD->getBody());
1707}
1708
1709void ObjCMigrateASTConsumer::inferDesignatedInitializers(
1710 ASTContext &Ctx,
1711 const ObjCImplementationDecl *ImplD) {
1712
1713 const ObjCInterfaceDecl *IFace = ImplD->getClassInterface();
1714 if (!IFace || IFace->hasDesignatedInitializers())
1715 return;
1716 if (!NSAPIObj->isMacroDefined("NS_DESIGNATED_INITIALIZER"))
1717 return;
1718
1719 for (const auto *MD : ImplD->instance_methods()) {
1720 if (MD->isDeprecated() ||
1721 MD->getMethodFamily() != OMF_init ||
1722 MD->isDesignatedInitializerForTheInterface())
1723 continue;
1724 const ObjCMethodDecl *IFaceM = IFace->getMethod(MD->getSelector(),
1725 /*isInstance=*/true);
1726 if (!IFaceM)
1727 continue;
1728 if (hasSuperInitCall(MD)) {
1729 edit::Commit commit(*Editor);
1730 commit.insert(IFaceM->getEndLoc(), " NS_DESIGNATED_INITIALIZER");
1731 Editor->commit(commit);
1732 }
1733 }
1734}
1735
1736bool ObjCMigrateASTConsumer::InsertFoundation(ASTContext &Ctx,
1737 SourceLocation Loc) {
1738 if (FoundationIncluded)
1739 return true;
1740 if (Loc.isInvalid())
1741 return false;
1742 auto *nsEnumId = &Ctx.Idents.get("NS_ENUM");
1743 if (PP.getMacroDefinitionAtLoc(nsEnumId, Loc)) {
1744 FoundationIncluded = true;
1745 return true;
1746 }
1747 edit::Commit commit(*Editor);
1748 if (Ctx.getLangOpts().Modules)
1749 commit.insert(Loc, "#ifndef NS_ENUM\n@import Foundation;\n#endif\n");
1750 else
1751 commit.insert(Loc, "#ifndef NS_ENUM\n#import <Foundation/Foundation.h>\n#endif\n");
1752 Editor->commit(commit);
1753 FoundationIncluded = true;
1754 return true;
1755}
1756
1757namespace {
1758
1759class RewritesReceiver : public edit::EditsReceiver {
1760 Rewriter &Rewrite;
1761
1762public:
1763 RewritesReceiver(Rewriter &Rewrite) : Rewrite(Rewrite) { }
1764
1765 void insert(SourceLocation loc, StringRef text) override {
1766 Rewrite.InsertText(loc, text);
1767 }
1768 void replace(CharSourceRange range, StringRef text) override {
1769 Rewrite.ReplaceText(range.getBegin(), Rewrite.getRangeSize(range), text);
1770 }
1771};
1772
1773class JSONEditWriter : public edit::EditsReceiver {
1774 SourceManager &SourceMgr;
1775 llvm::raw_ostream &OS;
1776
1777public:
1778 JSONEditWriter(SourceManager &SM, llvm::raw_ostream &OS)
1779 : SourceMgr(SM), OS(OS) {
1780 OS << "[\n";
1781 }
1782 ~JSONEditWriter() override { OS << "]\n"; }
1783
1784private:
1785 struct EntryWriter {
1786 SourceManager &SourceMgr;
1787 llvm::raw_ostream &OS;
1788
1789 EntryWriter(SourceManager &SM, llvm::raw_ostream &OS)
1790 : SourceMgr(SM), OS(OS) {
1791 OS << " {\n";
1792 }
1793 ~EntryWriter() {
1794 OS << " },\n";
1795 }
1796
1797 void writeLoc(SourceLocation Loc) {
1798 FileID FID;
1799 unsigned Offset;
1800 std::tie(FID, Offset) = SourceMgr.getDecomposedLoc(Loc);
1801 assert(FID.isValid())((FID.isValid()) ? static_cast<void> (0) : __assert_fail
("FID.isValid()", "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/lib/ARCMigrate/ObjCMT.cpp"
, 1801, __PRETTY_FUNCTION__))
;
1802 SmallString<200> Path =
1803 StringRef(SourceMgr.getFileEntryForID(FID)->getName());
1804 llvm::sys::fs::make_absolute(Path);
1805 OS << " \"file\": \"";
1806 OS.write_escaped(Path.str()) << "\",\n";
1807 OS << " \"offset\": " << Offset << ",\n";
1808 }
1809
1810 void writeRemove(CharSourceRange Range) {
1811 assert(Range.isCharRange())((Range.isCharRange()) ? static_cast<void> (0) : __assert_fail
("Range.isCharRange()", "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/lib/ARCMigrate/ObjCMT.cpp"
, 1811, __PRETTY_FUNCTION__))
;
1812 std::pair<FileID, unsigned> Begin =
1813 SourceMgr.getDecomposedLoc(Range.getBegin());
1814 std::pair<FileID, unsigned> End =
1815 SourceMgr.getDecomposedLoc(Range.getEnd());
1816 assert(Begin.first == End.first)((Begin.first == End.first) ? static_cast<void> (0) : __assert_fail
("Begin.first == End.first", "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/lib/ARCMigrate/ObjCMT.cpp"
, 1816, __PRETTY_FUNCTION__))
;
1817 assert(Begin.second <= End.second)((Begin.second <= End.second) ? static_cast<void> (0
) : __assert_fail ("Begin.second <= End.second", "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/lib/ARCMigrate/ObjCMT.cpp"
, 1817, __PRETTY_FUNCTION__))
;
1818 unsigned Length = End.second - Begin.second;
1819
1820 OS << " \"remove\": " << Length << ",\n";
1821 }
1822
1823 void writeText(StringRef Text) {
1824 OS << " \"text\": \"";
1825 OS.write_escaped(Text) << "\",\n";
1826 }
1827 };
1828
1829 void insert(SourceLocation Loc, StringRef Text) override {
1830 EntryWriter Writer(SourceMgr, OS);
1831 Writer.writeLoc(Loc);
1832 Writer.writeText(Text);
1833 }
1834
1835 void replace(CharSourceRange Range, StringRef Text) override {
1836 EntryWriter Writer(SourceMgr, OS);
1837 Writer.writeLoc(Range.getBegin());
1838 Writer.writeRemove(Range);
1839 Writer.writeText(Text);
1840 }
1841
1842 void remove(CharSourceRange Range) override {
1843 EntryWriter Writer(SourceMgr, OS);
1844 Writer.writeLoc(Range.getBegin());
1845 Writer.writeRemove(Range);
1846 }
1847};
1848
1849} // end anonymous namespace
1850
1851void ObjCMigrateASTConsumer::HandleTranslationUnit(ASTContext &Ctx) {
1852
1853 TranslationUnitDecl *TU = Ctx.getTranslationUnitDecl();
1854 if (ASTMigrateActions & FrontendOptions::ObjCMT_MigrateDecls) {
1855 for (DeclContext::decl_iterator D = TU->decls_begin(), DEnd = TU->decls_end();
1856 D != DEnd; ++D) {
1857 FileID FID = PP.getSourceManager().getFileID((*D)->getLocation());
1858 if (FID.isValid())
1859 if (FileId.isValid() && FileId != FID) {
1860 if (ASTMigrateActions & FrontendOptions::ObjCMT_Annotation)
1861 AnnotateImplicitBridging(Ctx);
1862 }
1863
1864 if (ObjCInterfaceDecl *CDecl = dyn_cast<ObjCInterfaceDecl>(*D))
1865 if (canModify(CDecl))
1866 migrateObjCContainerDecl(Ctx, CDecl);
1867 if (ObjCCategoryDecl *CatDecl = dyn_cast<ObjCCategoryDecl>(*D)) {
1868 if (canModify(CatDecl))
1869 migrateObjCContainerDecl(Ctx, CatDecl);
1870 }
1871 else if (ObjCProtocolDecl *PDecl = dyn_cast<ObjCProtocolDecl>(*D)) {
1872 ObjCProtocolDecls.insert(PDecl->getCanonicalDecl());
1873 if (canModify(PDecl))
1874 migrateObjCContainerDecl(Ctx, PDecl);
1875 }
1876 else if (const ObjCImplementationDecl *ImpDecl =
1877 dyn_cast<ObjCImplementationDecl>(*D)) {
1878 if ((ASTMigrateActions & FrontendOptions::ObjCMT_ProtocolConformance) &&
1879 canModify(ImpDecl))
1880 migrateProtocolConformance(Ctx, ImpDecl);
1881 }
1882 else if (const EnumDecl *ED = dyn_cast<EnumDecl>(*D)) {
1883 if (!(ASTMigrateActions & FrontendOptions::ObjCMT_NsMacros))
1884 continue;
1885 if (!canModify(ED))
1886 continue;
1887 DeclContext::decl_iterator N = D;
1888 if (++N != DEnd) {
1889 const TypedefDecl *TD = dyn_cast<TypedefDecl>(*N);
1890 if (migrateNSEnumDecl(Ctx, ED, TD) && TD)
1891 D++;
1892 }
1893 else
1894 migrateNSEnumDecl(Ctx, ED, /*TypedefDecl */nullptr);
1895 }
1896 else if (const TypedefDecl *TD = dyn_cast<TypedefDecl>(*D)) {
1897 if (!(ASTMigrateActions & FrontendOptions::ObjCMT_NsMacros))
1898 continue;
1899 if (!canModify(TD))
1900 continue;
1901 DeclContext::decl_iterator N = D;
1902 if (++N == DEnd)
1903 continue;
1904 if (const EnumDecl *ED = dyn_cast<EnumDecl>(*N)) {
1905 if (canModify(ED)) {
1906 if (++N != DEnd)
1907 if (const TypedefDecl *TDF = dyn_cast<TypedefDecl>(*N)) {
1908 // prefer typedef-follows-enum to enum-follows-typedef pattern.
1909 if (migrateNSEnumDecl(Ctx, ED, TDF)) {
1910 ++D; ++D;
1911 CacheObjCNSIntegerTypedefed(TD);
1912 continue;
1913 }
1914 }
1915 if (migrateNSEnumDecl(Ctx, ED, TD)) {
1916 ++D;
1917 continue;
1918 }
1919 }
1920 }
1921 CacheObjCNSIntegerTypedefed(TD);
1922 }
1923 else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(*D)) {
1924 if ((ASTMigrateActions & FrontendOptions::ObjCMT_Annotation) &&
1925 canModify(FD))
1926 migrateCFAnnotation(Ctx, FD);
1927 }
1928
1929 if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(*D)) {
1930 bool CanModify = canModify(CDecl);
1931 // migrate methods which can have instancetype as their result type.
1932 if ((ASTMigrateActions & FrontendOptions::ObjCMT_Instancetype) &&
1933 CanModify)
1934 migrateAllMethodInstaceType(Ctx, CDecl);
1935 // annotate methods with CF annotations.
1936 if ((ASTMigrateActions & FrontendOptions::ObjCMT_Annotation) &&
1937 CanModify)
1938 migrateARCSafeAnnotation(Ctx, CDecl);
1939 }
1940
1941 if (const ObjCImplementationDecl *
1942 ImplD = dyn_cast<ObjCImplementationDecl>(*D)) {
1943 if ((ASTMigrateActions & FrontendOptions::ObjCMT_DesignatedInitializer) &&
1944 canModify(ImplD))
1945 inferDesignatedInitializers(Ctx, ImplD);
1946 }
1947 }
1948 if (ASTMigrateActions & FrontendOptions::ObjCMT_Annotation)
1949 AnnotateImplicitBridging(Ctx);
1950 }
1951
1952 if (IsOutputFile) {
1953 std::error_code EC;
1954 llvm::raw_fd_ostream OS(MigrateDir, EC, llvm::sys::fs::OF_None);
1955 if (EC) {
1956 DiagnosticsEngine &Diags = Ctx.getDiagnostics();
1957 Diags.Report(Diags.getCustomDiagID(DiagnosticsEngine::Error, "%0"))
1958 << EC.message();
1959 return;
1960 }
1961
1962 JSONEditWriter Writer(Ctx.getSourceManager(), OS);
1963 Editor->applyRewrites(Writer);
1964 return;
1965 }
1966
1967 Rewriter rewriter(Ctx.getSourceManager(), Ctx.getLangOpts());
1968 RewritesReceiver Rec(rewriter);
1969 Editor->applyRewrites(Rec);
1970
1971 for (Rewriter::buffer_iterator
1972 I = rewriter.buffer_begin(), E = rewriter.buffer_end(); I != E; ++I) {
1973 FileID FID = I->first;
1974 RewriteBuffer &buf = I->second;
1975 const FileEntry *file = Ctx.getSourceManager().getFileEntryForID(FID);
1976 assert(file)((file) ? static_cast<void> (0) : __assert_fail ("file"
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/lib/ARCMigrate/ObjCMT.cpp"
, 1976, __PRETTY_FUNCTION__))
;
1977 SmallString<512> newText;
1978 llvm::raw_svector_ostream vecOS(newText);
1979 buf.write(vecOS);
1980 std::unique_ptr<llvm::MemoryBuffer> memBuf(
1981 llvm::MemoryBuffer::getMemBufferCopy(
1982 StringRef(newText.data(), newText.size()), file->getName()));
1983 SmallString<64> filePath(file->getName());
1984 FileMgr.FixupRelativePath(filePath);
1985 Remapper.remap(filePath.str(), std::move(memBuf));
1986 }
1987
1988 if (IsOutputFile) {
1989 Remapper.flushToFile(MigrateDir, Ctx.getDiagnostics());
1990 } else {
1991 Remapper.flushToDisk(MigrateDir, Ctx.getDiagnostics());
1992 }
1993}
1994
1995bool MigrateSourceAction::BeginInvocation(CompilerInstance &CI) {
1996 CI.getDiagnostics().setIgnoreAllWarnings(true);
1997 return true;
1998}
1999
2000static std::vector<std::string> getWhiteListFilenames(StringRef DirPath) {
2001 using namespace llvm::sys::fs;
2002 using namespace llvm::sys::path;
2003
2004 std::vector<std::string> Filenames;
2005 if (DirPath.empty() || !is_directory(DirPath))
2006 return Filenames;
2007
2008 std::error_code EC;
2009 directory_iterator DI = directory_iterator(DirPath, EC);
2010 directory_iterator DE;
2011 for (; !EC && DI != DE; DI = DI.increment(EC)) {
2012 if (is_regular_file(DI->path()))
2013 Filenames.push_back(filename(DI->path()));
2014 }
2015
2016 return Filenames;
2017}
2018
2019std::unique_ptr<ASTConsumer>
2020MigrateSourceAction::CreateASTConsumer(CompilerInstance &CI, StringRef InFile) {
2021 PPConditionalDirectiveRecord *
2022 PPRec = new PPConditionalDirectiveRecord(CI.getSourceManager());
2023 unsigned ObjCMTAction = CI.getFrontendOpts().ObjCMTAction;
2024 unsigned ObjCMTOpts = ObjCMTAction;
2025 // These are companion flags, they do not enable transformations.
2026 ObjCMTOpts &= ~(FrontendOptions::ObjCMT_AtomicProperty |
2027 FrontendOptions::ObjCMT_NsAtomicIOSOnlyProperty);
2028 if (ObjCMTOpts == FrontendOptions::ObjCMT_None) {
2029 // If no specific option was given, enable literals+subscripting transforms
2030 // by default.
2031 ObjCMTAction |= FrontendOptions::ObjCMT_Literals |
2032 FrontendOptions::ObjCMT_Subscripting;
2033 }
2034 CI.getPreprocessor().addPPCallbacks(std::unique_ptr<PPCallbacks>(PPRec));
2035 std::vector<std::string> WhiteList =
2036 getWhiteListFilenames(CI.getFrontendOpts().ObjCMTWhiteListPath);
2037 return std::make_unique<ObjCMigrateASTConsumer>(
2038 CI.getFrontendOpts().OutputFile, ObjCMTAction, Remapper,
2039 CI.getFileManager(), PPRec, CI.getPreprocessor(),
2040 /*isOutputFile=*/true, WhiteList);
2041}
2042
2043namespace {
2044struct EditEntry {
2045 const FileEntry *File;
2046 unsigned Offset;
2047 unsigned RemoveLen;
2048 std::string Text;
2049
2050 EditEntry() : File(), Offset(), RemoveLen() {}
2051};
2052} // end anonymous namespace
2053
2054namespace llvm {
2055template<> struct DenseMapInfo<EditEntry> {
2056 static inline EditEntry getEmptyKey() {
2057 EditEntry Entry;
2058 Entry.Offset = unsigned(-1);
2059 return Entry;
2060 }
2061 static inline EditEntry getTombstoneKey() {
2062 EditEntry Entry;
2063 Entry.Offset = unsigned(-2);
2064 return Entry;
2065 }
2066 static unsigned getHashValue(const EditEntry& Val) {
2067 llvm::FoldingSetNodeID ID;
2068 ID.AddPointer(Val.File);
2069 ID.AddInteger(Val.Offset);
2070 ID.AddInteger(Val.RemoveLen);
2071 ID.AddString(Val.Text);
2072 return ID.ComputeHash();
2073 }
2074 static bool isEqual(const EditEntry &LHS, const EditEntry &RHS) {
2075 return LHS.File == RHS.File &&
2076 LHS.Offset == RHS.Offset &&
2077 LHS.RemoveLen == RHS.RemoveLen &&
2078 LHS.Text == RHS.Text;
2079 }
2080};
2081} // end namespace llvm
2082
2083namespace {
2084class RemapFileParser {
2085 FileManager &FileMgr;
2086
2087public:
2088 RemapFileParser(FileManager &FileMgr) : FileMgr(FileMgr) { }
2089
2090 bool parse(StringRef File, SmallVectorImpl<EditEntry> &Entries) {
2091 using namespace llvm::yaml;
2092
2093 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> FileBufOrErr =
2094 llvm::MemoryBuffer::getFile(File);
2095 if (!FileBufOrErr)
2096 return true;
2097
2098 llvm::SourceMgr SM;
2099 Stream YAMLStream(FileBufOrErr.get()->getMemBufferRef(), SM);
2100 document_iterator I = YAMLStream.begin();
2101 if (I == YAMLStream.end())
2102 return true;
2103 Node *Root = I->getRoot();
2104 if (!Root)
2105 return true;
2106
2107 SequenceNode *SeqNode = dyn_cast<SequenceNode>(Root);
2108 if (!SeqNode)
2109 return true;
2110
2111 for (SequenceNode::iterator
2112 AI = SeqNode->begin(), AE = SeqNode->end(); AI != AE; ++AI) {
2113 MappingNode *MapNode = dyn_cast<MappingNode>(&*AI);
2114 if (!MapNode)
2115 continue;
2116 parseEdit(MapNode, Entries);
2117 }
2118
2119 return false;
2120 }
2121
2122private:
2123 void parseEdit(llvm::yaml::MappingNode *Node,
2124 SmallVectorImpl<EditEntry> &Entries) {
2125 using namespace llvm::yaml;
2126 EditEntry Entry;
2127 bool Ignore = false;
2128
2129 for (MappingNode::iterator
2130 KVI = Node->begin(), KVE = Node->end(); KVI != KVE; ++KVI) {
2131 ScalarNode *KeyString = dyn_cast<ScalarNode>((*KVI).getKey());
2132 if (!KeyString)
2133 continue;
2134 SmallString<10> KeyStorage;
2135 StringRef Key = KeyString->getValue(KeyStorage);
2136
2137 ScalarNode *ValueString = dyn_cast<ScalarNode>((*KVI).getValue());
2138 if (!ValueString)
2139 continue;
2140 SmallString<64> ValueStorage;
2141 StringRef Val = ValueString->getValue(ValueStorage);
2142
2143 if (Key == "file") {
2144 auto FE = FileMgr.getFile(Val);
2145 if (FE)
2146 Entry.File = *FE;
2147 else
2148 Ignore = true;
2149 } else if (Key == "offset") {
2150 if (Val.getAsInteger(10, Entry.Offset))
2151 Ignore = true;
2152 } else if (Key == "remove") {
2153 if (Val.getAsInteger(10, Entry.RemoveLen))
2154 Ignore = true;
2155 } else if (Key == "text") {
2156 Entry.Text = Val;
2157 }
2158 }
2159
2160 if (!Ignore)
2161 Entries.push_back(Entry);
2162 }
2163};
2164} // end anonymous namespace
2165
2166static bool reportDiag(const Twine &Err, DiagnosticsEngine &Diag) {
2167 Diag.Report(Diag.getCustomDiagID(DiagnosticsEngine::Error, "%0"))
2168 << Err.str();
2169 return true;
2170}
2171
2172static std::string applyEditsToTemp(const FileEntry *FE,
2173 ArrayRef<EditEntry> Edits,
2174 FileManager &FileMgr,
2175 DiagnosticsEngine &Diag) {
2176 using namespace llvm::sys;
2177
2178 SourceManager SM(Diag, FileMgr);
2179 FileID FID = SM.createFileID(FE, SourceLocation(), SrcMgr::C_User);
2180 LangOptions LangOpts;
2181 edit::EditedSource Editor(SM, LangOpts);
2182 for (ArrayRef<EditEntry>::iterator
2183 I = Edits.begin(), E = Edits.end(); I != E; ++I) {
2184 const EditEntry &Entry = *I;
2185 assert(Entry.File == FE)((Entry.File == FE) ? static_cast<void> (0) : __assert_fail
("Entry.File == FE", "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/lib/ARCMigrate/ObjCMT.cpp"
, 2185, __PRETTY_FUNCTION__))
;
2186 SourceLocation Loc =
2187 SM.getLocForStartOfFile(FID).getLocWithOffset(Entry.Offset);
2188 CharSourceRange Range;
2189 if (Entry.RemoveLen != 0) {
2190 Range = CharSourceRange::getCharRange(Loc,
2191 Loc.getLocWithOffset(Entry.RemoveLen));
2192 }
2193
2194 edit::Commit commit(Editor);
2195 if (Range.isInvalid()) {
2196 commit.insert(Loc, Entry.Text);
2197 } else if (Entry.Text.empty()) {
2198 commit.remove(Range);
2199 } else {
2200 commit.replace(Range, Entry.Text);
2201 }
2202 Editor.commit(commit);
2203 }
2204
2205 Rewriter rewriter(SM, LangOpts);
2206 RewritesReceiver Rec(rewriter);
2207 Editor.applyRewrites(Rec, /*adjustRemovals=*/false);
2208
2209 const RewriteBuffer *Buf = rewriter.getRewriteBufferFor(FID);
2210 SmallString<512> NewText;
2211 llvm::raw_svector_ostream OS(NewText);
2212 Buf->write(OS);
2213
2214 SmallString<64> TempPath;
2215 int FD;
2216 if (fs::createTemporaryFile(path::filename(FE->getName()),
2217 path::extension(FE->getName()).drop_front(), FD,
2218 TempPath)) {
2219 reportDiag("Could not create file: " + TempPath.str(), Diag);
2220 return std::string();
2221 }
2222
2223 llvm::raw_fd_ostream TmpOut(FD, /*shouldClose=*/true);
2224 TmpOut.write(NewText.data(), NewText.size());
2225 TmpOut.close();
2226
2227 return TempPath.str();
2228}
2229
2230bool arcmt::getFileRemappingsFromFileList(
2231 std::vector<std::pair<std::string,std::string> > &remap,
2232 ArrayRef<StringRef> remapFiles,
2233 DiagnosticConsumer *DiagClient) {
2234 bool hasErrorOccurred = false;
2235
2236 FileSystemOptions FSOpts;
2237 FileManager FileMgr(FSOpts);
2238 RemapFileParser Parser(FileMgr);
2239
2240 IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs());
2241 IntrusiveRefCntPtr<DiagnosticsEngine> Diags(
2242 new DiagnosticsEngine(DiagID, new DiagnosticOptions,
2243 DiagClient, /*ShouldOwnClient=*/false));
2244
2245 typedef llvm::DenseMap<const FileEntry *, std::vector<EditEntry> >
2246 FileEditEntriesTy;
2247 FileEditEntriesTy FileEditEntries;
2248
2249 llvm::DenseSet<EditEntry> EntriesSet;
2250
2251 for (ArrayRef<StringRef>::iterator
2252 I = remapFiles.begin(), E = remapFiles.end(); I != E; ++I) {
2253 SmallVector<EditEntry, 16> Entries;
2254 if (Parser.parse(*I, Entries))
2255 continue;
2256
2257 for (SmallVectorImpl<EditEntry>::iterator
2258 EI = Entries.begin(), EE = Entries.end(); EI != EE; ++EI) {
2259 EditEntry &Entry = *EI;
2260 if (!Entry.File)
2261 continue;
2262 std::pair<llvm::DenseSet<EditEntry>::iterator, bool>
2263 Insert = EntriesSet.insert(Entry);
2264 if (!Insert.second)
2265 continue;
2266
2267 FileEditEntries[Entry.File].push_back(Entry);
2268 }
2269 }
2270
2271 for (FileEditEntriesTy::iterator
2272 I = FileEditEntries.begin(), E = FileEditEntries.end(); I != E; ++I) {
2273 std::string TempFile = applyEditsToTemp(I->first, I->second,
2274 FileMgr, *Diags);
2275 if (TempFile.empty()) {
2276 hasErrorOccurred = true;
2277 continue;
2278 }
2279
2280 remap.emplace_back(I->first->getName(), TempFile);
2281 }
2282
2283 return hasErrorOccurred;
2284}

/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h

1//===- Type.h - C Language Family Type Representation -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// C Language Family Type Representation
11///
12/// This file defines the clang::Type interface and subclasses, used to
13/// represent types for languages in the C family.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_CLANG_AST_TYPE_H
18#define LLVM_CLANG_AST_TYPE_H
19
20#include "clang/AST/NestedNameSpecifier.h"
21#include "clang/AST/TemplateName.h"
22#include "clang/Basic/AddressSpaces.h"
23#include "clang/Basic/AttrKinds.h"
24#include "clang/Basic/Diagnostic.h"
25#include "clang/Basic/ExceptionSpecificationType.h"
26#include "clang/Basic/LLVM.h"
27#include "clang/Basic/Linkage.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/SourceLocation.h"
30#include "clang/Basic/Specifiers.h"
31#include "clang/Basic/Visibility.h"
32#include "llvm/ADT/APInt.h"
33#include "llvm/ADT/APSInt.h"
34#include "llvm/ADT/ArrayRef.h"
35#include "llvm/ADT/FoldingSet.h"
36#include "llvm/ADT/None.h"
37#include "llvm/ADT/Optional.h"
38#include "llvm/ADT/PointerIntPair.h"
39#include "llvm/ADT/PointerUnion.h"
40#include "llvm/ADT/StringRef.h"
41#include "llvm/ADT/Twine.h"
42#include "llvm/ADT/iterator_range.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/Compiler.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/Support/PointerLikeTypeTraits.h"
47#include "llvm/Support/type_traits.h"
48#include "llvm/Support/TrailingObjects.h"
49#include <cassert>
50#include <cstddef>
51#include <cstdint>
52#include <cstring>
53#include <string>
54#include <type_traits>
55#include <utility>
56
57namespace clang {
58
59class ExtQuals;
60class QualType;
61class TagDecl;
62class Type;
63
64enum {
65 TypeAlignmentInBits = 4,
66 TypeAlignment = 1 << TypeAlignmentInBits
67};
68
69namespace serialization {
70 template <class T> class AbstractTypeReader;
71 template <class T> class AbstractTypeWriter;
72}
73
74} // namespace clang
75
76namespace llvm {
77
78 template <typename T>
79 struct PointerLikeTypeTraits;
80 template<>
81 struct PointerLikeTypeTraits< ::clang::Type*> {
82 static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
83
84 static inline ::clang::Type *getFromVoidPointer(void *P) {
85 return static_cast< ::clang::Type*>(P);
86 }
87
88 enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
89 };
90
91 template<>
92 struct PointerLikeTypeTraits< ::clang::ExtQuals*> {
93 static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
94
95 static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
96 return static_cast< ::clang::ExtQuals*>(P);
97 }
98
99 enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
100 };
101
102} // namespace llvm
103
104namespace clang {
105
106class ASTContext;
107template <typename> class CanQual;
108class CXXRecordDecl;
109class DeclContext;
110class EnumDecl;
111class Expr;
112class ExtQualsTypeCommonBase;
113class FunctionDecl;
114class IdentifierInfo;
115class NamedDecl;
116class ObjCInterfaceDecl;
117class ObjCProtocolDecl;
118class ObjCTypeParamDecl;
119struct PrintingPolicy;
120class RecordDecl;
121class Stmt;
122class TagDecl;
123class TemplateArgument;
124class TemplateArgumentListInfo;
125class TemplateArgumentLoc;
126class TemplateTypeParmDecl;
127class TypedefNameDecl;
128class UnresolvedUsingTypenameDecl;
129
130using CanQualType = CanQual<Type>;
131
132// Provide forward declarations for all of the *Type classes.
133#define TYPE(Class, Base) class Class##Type;
134#include "clang/AST/TypeNodes.inc"
135
136/// The collection of all-type qualifiers we support.
137/// Clang supports five independent qualifiers:
138/// * C99: const, volatile, and restrict
139/// * MS: __unaligned
140/// * Embedded C (TR18037): address spaces
141/// * Objective C: the GC attributes (none, weak, or strong)
142class Qualifiers {
143public:
144 enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
145 Const = 0x1,
146 Restrict = 0x2,
147 Volatile = 0x4,
148 CVRMask = Const | Volatile | Restrict
149 };
150
151 enum GC {
152 GCNone = 0,
153 Weak,
154 Strong
155 };
156
157 enum ObjCLifetime {
158 /// There is no lifetime qualification on this type.
159 OCL_None,
160
161 /// This object can be modified without requiring retains or
162 /// releases.
163 OCL_ExplicitNone,
164
165 /// Assigning into this object requires the old value to be
166 /// released and the new value to be retained. The timing of the
167 /// release of the old value is inexact: it may be moved to
168 /// immediately after the last known point where the value is
169 /// live.
170 OCL_Strong,
171
172 /// Reading or writing from this object requires a barrier call.
173 OCL_Weak,
174
175 /// Assigning into this object requires a lifetime extension.
176 OCL_Autoreleasing
177 };
178
179 enum {
180 /// The maximum supported address space number.
181 /// 23 bits should be enough for anyone.
182 MaxAddressSpace = 0x7fffffu,
183
184 /// The width of the "fast" qualifier mask.
185 FastWidth = 3,
186
187 /// The fast qualifier mask.
188 FastMask = (1 << FastWidth) - 1
189 };
190
191 /// Returns the common set of qualifiers while removing them from
192 /// the given sets.
193 static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
194 // If both are only CVR-qualified, bit operations are sufficient.
195 if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
196 Qualifiers Q;
197 Q.Mask = L.Mask & R.Mask;
198 L.Mask &= ~Q.Mask;
199 R.Mask &= ~Q.Mask;
200 return Q;
201 }
202
203 Qualifiers Q;
204 unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
205 Q.addCVRQualifiers(CommonCRV);
206 L.removeCVRQualifiers(CommonCRV);
207 R.removeCVRQualifiers(CommonCRV);
208
209 if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
210 Q.setObjCGCAttr(L.getObjCGCAttr());
211 L.removeObjCGCAttr();
212 R.removeObjCGCAttr();
213 }
214
215 if (L.getObjCLifetime() == R.getObjCLifetime()) {
216 Q.setObjCLifetime(L.getObjCLifetime());
217 L.removeObjCLifetime();
218 R.removeObjCLifetime();
219 }
220
221 if (L.getAddressSpace() == R.getAddressSpace()) {
222 Q.setAddressSpace(L.getAddressSpace());
223 L.removeAddressSpace();
224 R.removeAddressSpace();
225 }
226 return Q;
227 }
228
229 static Qualifiers fromFastMask(unsigned Mask) {
230 Qualifiers Qs;
231 Qs.addFastQualifiers(Mask);
232 return Qs;
233 }
234
235 static Qualifiers fromCVRMask(unsigned CVR) {
236 Qualifiers Qs;
237 Qs.addCVRQualifiers(CVR);
238 return Qs;
239 }
240
241 static Qualifiers fromCVRUMask(unsigned CVRU) {
242 Qualifiers Qs;
243 Qs.addCVRUQualifiers(CVRU);
244 return Qs;
245 }
246
247 // Deserialize qualifiers from an opaque representation.
248 static Qualifiers fromOpaqueValue(unsigned opaque) {
249 Qualifiers Qs;
250 Qs.Mask = opaque;
251 return Qs;
252 }
253
254 // Serialize these qualifiers into an opaque representation.
255 unsigned getAsOpaqueValue() const {
256 return Mask;
257 }
258
259 bool hasConst() const { return Mask & Const; }
260 bool hasOnlyConst() const { return Mask == Const; }
261 void removeConst() { Mask &= ~Const; }
262 void addConst() { Mask |= Const; }
263
264 bool hasVolatile() const { return Mask & Volatile; }
265 bool hasOnlyVolatile() const { return Mask == Volatile; }
266 void removeVolatile() { Mask &= ~Volatile; }
267 void addVolatile() { Mask |= Volatile; }
268
269 bool hasRestrict() const { return Mask & Restrict; }
270 bool hasOnlyRestrict() const { return Mask == Restrict; }
271 void removeRestrict() { Mask &= ~Restrict; }
272 void addRestrict() { Mask |= Restrict; }
273
274 bool hasCVRQualifiers() const { return getCVRQualifiers(); }
275 unsigned getCVRQualifiers() const { return Mask & CVRMask; }
276 unsigned getCVRUQualifiers() const { return Mask & (CVRMask | UMask); }
277
278 void setCVRQualifiers(unsigned mask) {
279 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 279, __PRETTY_FUNCTION__))
;
280 Mask = (Mask & ~CVRMask) | mask;
281 }
282 void removeCVRQualifiers(unsigned mask) {
283 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 283, __PRETTY_FUNCTION__))
;
284 Mask &= ~mask;
285 }
286 void removeCVRQualifiers() {
287 removeCVRQualifiers(CVRMask);
288 }
289 void addCVRQualifiers(unsigned mask) {
290 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 290, __PRETTY_FUNCTION__))
;
291 Mask |= mask;
292 }
293 void addCVRUQualifiers(unsigned mask) {
294 assert(!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits")((!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask & ~UMask) && \"bitmask contains non-CVRU bits\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 294, __PRETTY_FUNCTION__))
;
295 Mask |= mask;
296 }
297
298 bool hasUnaligned() const { return Mask & UMask; }
299 void setUnaligned(bool flag) {
300 Mask = (Mask & ~UMask) | (flag ? UMask : 0);
301 }
302 void removeUnaligned() { Mask &= ~UMask; }
303 void addUnaligned() { Mask |= UMask; }
304
305 bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
306 GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
307 void setObjCGCAttr(GC type) {
308 Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
309 }
310 void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
311 void addObjCGCAttr(GC type) {
312 assert(type)((type) ? static_cast<void> (0) : __assert_fail ("type"
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 312, __PRETTY_FUNCTION__))
;
313 setObjCGCAttr(type);
314 }
315 Qualifiers withoutObjCGCAttr() const {
316 Qualifiers qs = *this;
317 qs.removeObjCGCAttr();
318 return qs;
319 }
320 Qualifiers withoutObjCLifetime() const {
321 Qualifiers qs = *this;
322 qs.removeObjCLifetime();
323 return qs;
324 }
325 Qualifiers withoutAddressSpace() const {
326 Qualifiers qs = *this;
327 qs.removeAddressSpace();
328 return qs;
329 }
330
331 bool hasObjCLifetime() const { return Mask & LifetimeMask; }
332 ObjCLifetime getObjCLifetime() const {
333 return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
334 }
335 void setObjCLifetime(ObjCLifetime type) {
336 Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
337 }
338 void removeObjCLifetime() { setObjCLifetime(OCL_None); }
339 void addObjCLifetime(ObjCLifetime type) {
340 assert(type)((type) ? static_cast<void> (0) : __assert_fail ("type"
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 340, __PRETTY_FUNCTION__))
;
341 assert(!hasObjCLifetime())((!hasObjCLifetime()) ? static_cast<void> (0) : __assert_fail
("!hasObjCLifetime()", "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 341, __PRETTY_FUNCTION__))
;
342 Mask |= (type << LifetimeShift);
343 }
344
345 /// True if the lifetime is neither None or ExplicitNone.
346 bool hasNonTrivialObjCLifetime() const {
347 ObjCLifetime lifetime = getObjCLifetime();
348 return (lifetime > OCL_ExplicitNone);
349 }
350
351 /// True if the lifetime is either strong or weak.
352 bool hasStrongOrWeakObjCLifetime() const {
353 ObjCLifetime lifetime = getObjCLifetime();
354 return (lifetime == OCL_Strong || lifetime == OCL_Weak);
355 }
356
357 bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
358 LangAS getAddressSpace() const {
359 return static_cast<LangAS>(Mask >> AddressSpaceShift);
360 }
361 bool hasTargetSpecificAddressSpace() const {
362 return isTargetAddressSpace(getAddressSpace());
363 }
364 /// Get the address space attribute value to be printed by diagnostics.
365 unsigned getAddressSpaceAttributePrintValue() const {
366 auto Addr = getAddressSpace();
367 // This function is not supposed to be used with language specific
368 // address spaces. If that happens, the diagnostic message should consider
369 // printing the QualType instead of the address space value.
370 assert(Addr == LangAS::Default || hasTargetSpecificAddressSpace())((Addr == LangAS::Default || hasTargetSpecificAddressSpace())
? static_cast<void> (0) : __assert_fail ("Addr == LangAS::Default || hasTargetSpecificAddressSpace()"
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 370, __PRETTY_FUNCTION__))
;
371 if (Addr != LangAS::Default)
372 return toTargetAddressSpace(Addr);
373 // TODO: The diagnostic messages where Addr may be 0 should be fixed
374 // since it cannot differentiate the situation where 0 denotes the default
375 // address space or user specified __attribute__((address_space(0))).
376 return 0;
377 }
378 void setAddressSpace(LangAS space) {
379 assert((unsigned)space <= MaxAddressSpace)(((unsigned)space <= MaxAddressSpace) ? static_cast<void
> (0) : __assert_fail ("(unsigned)space <= MaxAddressSpace"
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 379, __PRETTY_FUNCTION__))
;
380 Mask = (Mask & ~AddressSpaceMask)
381 | (((uint32_t) space) << AddressSpaceShift);
382 }
383 void removeAddressSpace() { setAddressSpace(LangAS::Default); }
384 void addAddressSpace(LangAS space) {
385 assert(space != LangAS::Default)((space != LangAS::Default) ? static_cast<void> (0) : __assert_fail
("space != LangAS::Default", "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 385, __PRETTY_FUNCTION__))
;
386 setAddressSpace(space);
387 }
388
389 // Fast qualifiers are those that can be allocated directly
390 // on a QualType object.
391 bool hasFastQualifiers() const { return getFastQualifiers(); }
392 unsigned getFastQualifiers() const { return Mask & FastMask; }
393 void setFastQualifiers(unsigned mask) {
394 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 394, __PRETTY_FUNCTION__))
;
395 Mask = (Mask & ~FastMask) | mask;
396 }
397 void removeFastQualifiers(unsigned mask) {
398 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 398, __PRETTY_FUNCTION__))
;
399 Mask &= ~mask;
400 }
401 void removeFastQualifiers() {
402 removeFastQualifiers(FastMask);
403 }
404 void addFastQualifiers(unsigned mask) {
405 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 405, __PRETTY_FUNCTION__))
;
406 Mask |= mask;
407 }
408
409 /// Return true if the set contains any qualifiers which require an ExtQuals
410 /// node to be allocated.
411 bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
412 Qualifiers getNonFastQualifiers() const {
413 Qualifiers Quals = *this;
414 Quals.setFastQualifiers(0);
415 return Quals;
416 }
417
418 /// Return true if the set contains any qualifiers.
419 bool hasQualifiers() const { return Mask; }
420 bool empty() const { return !Mask; }
421
422 /// Add the qualifiers from the given set to this set.
423 void addQualifiers(Qualifiers Q) {
424 // If the other set doesn't have any non-boolean qualifiers, just
425 // bit-or it in.
426 if (!(Q.Mask & ~CVRMask))
427 Mask |= Q.Mask;
428 else {
429 Mask |= (Q.Mask & CVRMask);
430 if (Q.hasAddressSpace())
431 addAddressSpace(Q.getAddressSpace());
432 if (Q.hasObjCGCAttr())
433 addObjCGCAttr(Q.getObjCGCAttr());
434 if (Q.hasObjCLifetime())
435 addObjCLifetime(Q.getObjCLifetime());
436 }
437 }
438
439 /// Remove the qualifiers from the given set from this set.
440 void removeQualifiers(Qualifiers Q) {
441 // If the other set doesn't have any non-boolean qualifiers, just
442 // bit-and the inverse in.
443 if (!(Q.Mask & ~CVRMask))
444 Mask &= ~Q.Mask;
445 else {
446 Mask &= ~(Q.Mask & CVRMask);
447 if (getObjCGCAttr() == Q.getObjCGCAttr())
448 removeObjCGCAttr();
449 if (getObjCLifetime() == Q.getObjCLifetime())
450 removeObjCLifetime();
451 if (getAddressSpace() == Q.getAddressSpace())
452 removeAddressSpace();
453 }
454 }
455
456 /// Add the qualifiers from the given set to this set, given that
457 /// they don't conflict.
458 void addConsistentQualifiers(Qualifiers qs) {
459 assert(getAddressSpace() == qs.getAddressSpace() ||((getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace
() || !qs.hasAddressSpace()) ? static_cast<void> (0) : __assert_fail
("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 460, __PRETTY_FUNCTION__))
460 !hasAddressSpace() || !qs.hasAddressSpace())((getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace
() || !qs.hasAddressSpace()) ? static_cast<void> (0) : __assert_fail
("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 460, __PRETTY_FUNCTION__))
;
461 assert(getObjCGCAttr() == qs.getObjCGCAttr() ||((getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() ||
!qs.hasObjCGCAttr()) ? static_cast<void> (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 462, __PRETTY_FUNCTION__))
462 !hasObjCGCAttr() || !qs.hasObjCGCAttr())((getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() ||
!qs.hasObjCGCAttr()) ? static_cast<void> (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 462, __PRETTY_FUNCTION__))
;
463 assert(getObjCLifetime() == qs.getObjCLifetime() ||((getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime
() || !qs.hasObjCLifetime()) ? static_cast<void> (0) : __assert_fail
("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 464, __PRETTY_FUNCTION__))
464 !hasObjCLifetime() || !qs.hasObjCLifetime())((getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime
() || !qs.hasObjCLifetime()) ? static_cast<void> (0) : __assert_fail
("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 464, __PRETTY_FUNCTION__))
;
465 Mask |= qs.Mask;
466 }
467
468 /// Returns true if address space A is equal to or a superset of B.
469 /// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of
470 /// overlapping address spaces.
471 /// CL1.1 or CL1.2:
472 /// every address space is a superset of itself.
473 /// CL2.0 adds:
474 /// __generic is a superset of any address space except for __constant.
475 static bool isAddressSpaceSupersetOf(LangAS A, LangAS B) {
476 // Address spaces must match exactly.
477 return A == B ||
478 // Otherwise in OpenCLC v2.0 s6.5.5: every address space except
479 // for __constant can be used as __generic.
480 (A == LangAS::opencl_generic && B != LangAS::opencl_constant) ||
481 // Consider pointer size address spaces to be equivalent to default.
482 ((isPtrSizeAddressSpace(A) || A == LangAS::Default) &&
483 (isPtrSizeAddressSpace(B) || B == LangAS::Default));
484 }
485
486 /// Returns true if the address space in these qualifiers is equal to or
487 /// a superset of the address space in the argument qualifiers.
488 bool isAddressSpaceSupersetOf(Qualifiers other) const {
489 return isAddressSpaceSupersetOf(getAddressSpace(), other.getAddressSpace());
490 }
491
492 /// Determines if these qualifiers compatibly include another set.
493 /// Generally this answers the question of whether an object with the other
494 /// qualifiers can be safely used as an object with these qualifiers.
495 bool compatiblyIncludes(Qualifiers other) const {
496 return isAddressSpaceSupersetOf(other) &&
497 // ObjC GC qualifiers can match, be added, or be removed, but can't
498 // be changed.
499 (getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() ||
500 !other.hasObjCGCAttr()) &&
501 // ObjC lifetime qualifiers must match exactly.
502 getObjCLifetime() == other.getObjCLifetime() &&
503 // CVR qualifiers may subset.
504 (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask)) &&
505 // U qualifier may superset.
506 (!other.hasUnaligned() || hasUnaligned());
507 }
508
509 /// Determines if these qualifiers compatibly include another set of
510 /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
511 ///
512 /// One set of Objective-C lifetime qualifiers compatibly includes the other
513 /// if the lifetime qualifiers match, or if both are non-__weak and the
514 /// including set also contains the 'const' qualifier, or both are non-__weak
515 /// and one is None (which can only happen in non-ARC modes).
516 bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
517 if (getObjCLifetime() == other.getObjCLifetime())
518 return true;
519
520 if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
521 return false;
522
523 if (getObjCLifetime() == OCL_None || other.getObjCLifetime() == OCL_None)
524 return true;
525
526 return hasConst();
527 }
528
529 /// Determine whether this set of qualifiers is a strict superset of
530 /// another set of qualifiers, not considering qualifier compatibility.
531 bool isStrictSupersetOf(Qualifiers Other) const;
532
533 bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
534 bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
535
536 explicit operator bool() const { return hasQualifiers(); }
537
538 Qualifiers &operator+=(Qualifiers R) {
539 addQualifiers(R);
540 return *this;
541 }
542
543 // Union two qualifier sets. If an enumerated qualifier appears
544 // in both sets, use the one from the right.
545 friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
546 L += R;
547 return L;
548 }
549
550 Qualifiers &operator-=(Qualifiers R) {
551 removeQualifiers(R);
552 return *this;
553 }
554
555 /// Compute the difference between two qualifier sets.
556 friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
557 L -= R;
558 return L;
559 }
560
561 std::string getAsString() const;
562 std::string getAsString(const PrintingPolicy &Policy) const;
563
564 static std::string getAddrSpaceAsString(LangAS AS);
565
566 bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
567 void print(raw_ostream &OS, const PrintingPolicy &Policy,
568 bool appendSpaceIfNonEmpty = false) const;
569
570 void Profile(llvm::FoldingSetNodeID &ID) const {
571 ID.AddInteger(Mask);
572 }
573
574private:
575 // bits: |0 1 2|3|4 .. 5|6 .. 8|9 ... 31|
576 // |C R V|U|GCAttr|Lifetime|AddressSpace|
577 uint32_t Mask = 0;
578
579 static const uint32_t UMask = 0x8;
580 static const uint32_t UShift = 3;
581 static const uint32_t GCAttrMask = 0x30;
582 static const uint32_t GCAttrShift = 4;
583 static const uint32_t LifetimeMask = 0x1C0;
584 static const uint32_t LifetimeShift = 6;
585 static const uint32_t AddressSpaceMask =
586 ~(CVRMask | UMask | GCAttrMask | LifetimeMask);
587 static const uint32_t AddressSpaceShift = 9;
588};
589
590/// A std::pair-like structure for storing a qualified type split
591/// into its local qualifiers and its locally-unqualified type.
592struct SplitQualType {
593 /// The locally-unqualified type.
594 const Type *Ty = nullptr;
595
596 /// The local qualifiers.
597 Qualifiers Quals;
598
599 SplitQualType() = default;
600 SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
601
602 SplitQualType getSingleStepDesugaredType() const; // end of this file
603
604 // Make std::tie work.
605 std::pair<const Type *,Qualifiers> asPair() const {
606 return std::pair<const Type *, Qualifiers>(Ty, Quals);
607 }
608
609 friend bool operator==(SplitQualType a, SplitQualType b) {
610 return a.Ty == b.Ty && a.Quals == b.Quals;
611 }
612 friend bool operator!=(SplitQualType a, SplitQualType b) {
613 return a.Ty != b.Ty || a.Quals != b.Quals;
614 }
615};
616
617/// The kind of type we are substituting Objective-C type arguments into.
618///
619/// The kind of substitution affects the replacement of type parameters when
620/// no concrete type information is provided, e.g., when dealing with an
621/// unspecialized type.
622enum class ObjCSubstitutionContext {
623 /// An ordinary type.
624 Ordinary,
625
626 /// The result type of a method or function.
627 Result,
628
629 /// The parameter type of a method or function.
630 Parameter,
631
632 /// The type of a property.
633 Property,
634
635 /// The superclass of a type.
636 Superclass,
637};
638
639/// A (possibly-)qualified type.
640///
641/// For efficiency, we don't store CV-qualified types as nodes on their
642/// own: instead each reference to a type stores the qualifiers. This
643/// greatly reduces the number of nodes we need to allocate for types (for
644/// example we only need one for 'int', 'const int', 'volatile int',
645/// 'const volatile int', etc).
646///
647/// As an added efficiency bonus, instead of making this a pair, we
648/// just store the two bits we care about in the low bits of the
649/// pointer. To handle the packing/unpacking, we make QualType be a
650/// simple wrapper class that acts like a smart pointer. A third bit
651/// indicates whether there are extended qualifiers present, in which
652/// case the pointer points to a special structure.
653class QualType {
654 friend class QualifierCollector;
655
656 // Thankfully, these are efficiently composable.
657 llvm::PointerIntPair<llvm::PointerUnion<const Type *, const ExtQuals *>,
658 Qualifiers::FastWidth> Value;
659
660 const ExtQuals *getExtQualsUnsafe() const {
661 return Value.getPointer().get<const ExtQuals*>();
662 }
663
664 const Type *getTypePtrUnsafe() const {
665 return Value.getPointer().get<const Type*>();
666 }
667
668 const ExtQualsTypeCommonBase *getCommonPtr() const {
669 assert(!isNull() && "Cannot retrieve a NULL type pointer")((!isNull() && "Cannot retrieve a NULL type pointer")
? static_cast<void> (0) : __assert_fail ("!isNull() && \"Cannot retrieve a NULL type pointer\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 669, __PRETTY_FUNCTION__))
;
670 auto CommonPtrVal = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
671 CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
672 return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
673 }
674
675public:
676 QualType() = default;
677 QualType(const Type *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
678 QualType(const ExtQuals *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
679
680 unsigned getLocalFastQualifiers() const { return Value.getInt(); }
681 void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
682
683 /// Retrieves a pointer to the underlying (unqualified) type.
684 ///
685 /// This function requires that the type not be NULL. If the type might be
686 /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
687 const Type *getTypePtr() const;
688
689 const Type *getTypePtrOrNull() const;
690
691 /// Retrieves a pointer to the name of the base type.
692 const IdentifierInfo *getBaseTypeIdentifier() const;
693
694 /// Divides a QualType into its unqualified type and a set of local
695 /// qualifiers.
696 SplitQualType split() const;
697
698 void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
699
700 static QualType getFromOpaquePtr(const void *Ptr) {
701 QualType T;
702 T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
703 return T;
704 }
705
706 const Type &operator*() const {
707 return *getTypePtr();
708 }
709
710 const Type *operator->() const {
711 return getTypePtr();
712 }
713
714 bool isCanonical() const;
715 bool isCanonicalAsParam() const;
716
717 /// Return true if this QualType doesn't point to a type yet.
718 bool isNull() const {
719 return Value.getPointer().isNull();
720 }
721
722 /// Determine whether this particular QualType instance has the
723 /// "const" qualifier set, without looking through typedefs that may have
724 /// added "const" at a different level.
725 bool isLocalConstQualified() const {
726 return (getLocalFastQualifiers() & Qualifiers::Const);
727 }
728
729 /// Determine whether this type is const-qualified.
730 bool isConstQualified() const;
731
732 /// Determine whether this particular QualType instance has the
733 /// "restrict" qualifier set, without looking through typedefs that may have
734 /// added "restrict" at a different level.
735 bool isLocalRestrictQualified() const {
736 return (getLocalFastQualifiers() & Qualifiers::Restrict);
737 }
738
739 /// Determine whether this type is restrict-qualified.
740 bool isRestrictQualified() const;
741
742 /// Determine whether this particular QualType instance has the
743 /// "volatile" qualifier set, without looking through typedefs that may have
744 /// added "volatile" at a different level.
745 bool isLocalVolatileQualified() const {
746 return (getLocalFastQualifiers() & Qualifiers::Volatile);
747 }
748
749 /// Determine whether this type is volatile-qualified.
750 bool isVolatileQualified() const;
751
752 /// Determine whether this particular QualType instance has any
753 /// qualifiers, without looking through any typedefs that might add
754 /// qualifiers at a different level.
755 bool hasLocalQualifiers() const {
756 return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
757 }
758
759 /// Determine whether this type has any qualifiers.
760 bool hasQualifiers() const;
761
762 /// Determine whether this particular QualType instance has any
763 /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
764 /// instance.
765 bool hasLocalNonFastQualifiers() const {
766 return Value.getPointer().is<const ExtQuals*>();
767 }
768
769 /// Retrieve the set of qualifiers local to this particular QualType
770 /// instance, not including any qualifiers acquired through typedefs or
771 /// other sugar.
772 Qualifiers getLocalQualifiers() const;
773
774 /// Retrieve the set of qualifiers applied to this type.
775 Qualifiers getQualifiers() const;
776
777 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
778 /// local to this particular QualType instance, not including any qualifiers
779 /// acquired through typedefs or other sugar.
780 unsigned getLocalCVRQualifiers() const {
781 return getLocalFastQualifiers();
782 }
783
784 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
785 /// applied to this type.
786 unsigned getCVRQualifiers() const;
787
788 bool isConstant(const ASTContext& Ctx) const {
789 return QualType::isConstant(*this, Ctx);
790 }
791
792 /// Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
793 bool isPODType(const ASTContext &Context) const;
794
795 /// Return true if this is a POD type according to the rules of the C++98
796 /// standard, regardless of the current compilation's language.
797 bool isCXX98PODType(const ASTContext &Context) const;
798
799 /// Return true if this is a POD type according to the more relaxed rules
800 /// of the C++11 standard, regardless of the current compilation's language.
801 /// (C++0x [basic.types]p9). Note that, unlike
802 /// CXXRecordDecl::isCXX11StandardLayout, this takes DRs into account.
803 bool isCXX11PODType(const ASTContext &Context) const;
804
805 /// Return true if this is a trivial type per (C++0x [basic.types]p9)
806 bool isTrivialType(const ASTContext &Context) const;
807
808 /// Return true if this is a trivially copyable type (C++0x [basic.types]p9)
809 bool isTriviallyCopyableType(const ASTContext &Context) const;
810
811
812 /// Returns true if it is a class and it might be dynamic.
813 bool mayBeDynamicClass() const;
814
815 /// Returns true if it is not a class or if the class might not be dynamic.
816 bool mayBeNotDynamicClass() const;
817
818 // Don't promise in the API that anything besides 'const' can be
819 // easily added.
820
821 /// Add the `const` type qualifier to this QualType.
822 void addConst() {
823 addFastQualifiers(Qualifiers::Const);
824 }
825 QualType withConst() const {
826 return withFastQualifiers(Qualifiers::Const);
827 }
828
829 /// Add the `volatile` type qualifier to this QualType.
830 void addVolatile() {
831 addFastQualifiers(Qualifiers::Volatile);
832 }
833 QualType withVolatile() const {
834 return withFastQualifiers(Qualifiers::Volatile);
835 }
836
837 /// Add the `restrict` qualifier to this QualType.
838 void addRestrict() {
839 addFastQualifiers(Qualifiers::Restrict);
840 }
841 QualType withRestrict() const {
842 return withFastQualifiers(Qualifiers::Restrict);
843 }
844
845 QualType withCVRQualifiers(unsigned CVR) const {
846 return withFastQualifiers(CVR);
847 }
848
849 void addFastQualifiers(unsigned TQs) {
850 assert(!(TQs & ~Qualifiers::FastMask)((!(TQs & ~Qualifiers::FastMask) && "non-fast qualifier bits set in mask!"
) ? static_cast<void> (0) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 851, __PRETTY_FUNCTION__))
851 && "non-fast qualifier bits set in mask!")((!(TQs & ~Qualifiers::FastMask) && "non-fast qualifier bits set in mask!"
) ? static_cast<void> (0) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 851, __PRETTY_FUNCTION__))
;
852 Value.setInt(Value.getInt() | TQs);
853 }
854
855 void removeLocalConst();
856 void removeLocalVolatile();
857 void removeLocalRestrict();
858 void removeLocalCVRQualifiers(unsigned Mask);
859
860 void removeLocalFastQualifiers() { Value.setInt(0); }
861 void removeLocalFastQualifiers(unsigned Mask) {
862 assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers")((!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!(Mask & ~Qualifiers::FastMask) && \"mask has non-fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 862, __PRETTY_FUNCTION__))
;
863 Value.setInt(Value.getInt() & ~Mask);
864 }
865
866 // Creates a type with the given qualifiers in addition to any
867 // qualifiers already on this type.
868 QualType withFastQualifiers(unsigned TQs) const {
869 QualType T = *this;
870 T.addFastQualifiers(TQs);
871 return T;
872 }
873
874 // Creates a type with exactly the given fast qualifiers, removing
875 // any existing fast qualifiers.
876 QualType withExactLocalFastQualifiers(unsigned TQs) const {
877 return withoutLocalFastQualifiers().withFastQualifiers(TQs);
878 }
879
880 // Removes fast qualifiers, but leaves any extended qualifiers in place.
881 QualType withoutLocalFastQualifiers() const {
882 QualType T = *this;
883 T.removeLocalFastQualifiers();
884 return T;
885 }
886
887 QualType getCanonicalType() const;
888
889 /// Return this type with all of the instance-specific qualifiers
890 /// removed, but without removing any qualifiers that may have been applied
891 /// through typedefs.
892 QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
893
894 /// Retrieve the unqualified variant of the given type,
895 /// removing as little sugar as possible.
896 ///
897 /// This routine looks through various kinds of sugar to find the
898 /// least-desugared type that is unqualified. For example, given:
899 ///
900 /// \code
901 /// typedef int Integer;
902 /// typedef const Integer CInteger;
903 /// typedef CInteger DifferenceType;
904 /// \endcode
905 ///
906 /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
907 /// desugar until we hit the type \c Integer, which has no qualifiers on it.
908 ///
909 /// The resulting type might still be qualified if it's sugar for an array
910 /// type. To strip qualifiers even from within a sugared array type, use
911 /// ASTContext::getUnqualifiedArrayType.
912 inline QualType getUnqualifiedType() const;
913
914 /// Retrieve the unqualified variant of the given type, removing as little
915 /// sugar as possible.
916 ///
917 /// Like getUnqualifiedType(), but also returns the set of
918 /// qualifiers that were built up.
919 ///
920 /// The resulting type might still be qualified if it's sugar for an array
921 /// type. To strip qualifiers even from within a sugared array type, use
922 /// ASTContext::getUnqualifiedArrayType.
923 inline SplitQualType getSplitUnqualifiedType() const;
924
925 /// Determine whether this type is more qualified than the other
926 /// given type, requiring exact equality for non-CVR qualifiers.
927 bool isMoreQualifiedThan(QualType Other) const;
928
929 /// Determine whether this type is at least as qualified as the other
930 /// given type, requiring exact equality for non-CVR qualifiers.
931 bool isAtLeastAsQualifiedAs(QualType Other) const;
932
933 QualType getNonReferenceType() const;
934
935 /// Determine the type of a (typically non-lvalue) expression with the
936 /// specified result type.
937 ///
938 /// This routine should be used for expressions for which the return type is
939 /// explicitly specified (e.g., in a cast or call) and isn't necessarily
940 /// an lvalue. It removes a top-level reference (since there are no
941 /// expressions of reference type) and deletes top-level cvr-qualifiers
942 /// from non-class types (in C++) or all types (in C).
943 QualType getNonLValueExprType(const ASTContext &Context) const;
944
945 /// Return the specified type with any "sugar" removed from
946 /// the type. This takes off typedefs, typeof's etc. If the outer level of
947 /// the type is already concrete, it returns it unmodified. This is similar
948 /// to getting the canonical type, but it doesn't remove *all* typedefs. For
949 /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
950 /// concrete.
951 ///
952 /// Qualifiers are left in place.
953 QualType getDesugaredType(const ASTContext &Context) const {
954 return getDesugaredType(*this, Context);
955 }
956
957 SplitQualType getSplitDesugaredType() const {
958 return getSplitDesugaredType(*this);
959 }
960
961 /// Return the specified type with one level of "sugar" removed from
962 /// the type.
963 ///
964 /// This routine takes off the first typedef, typeof, etc. If the outer level
965 /// of the type is already concrete, it returns it unmodified.
966 QualType getSingleStepDesugaredType(const ASTContext &Context) const {
967 return getSingleStepDesugaredTypeImpl(*this, Context);
968 }
969
970 /// Returns the specified type after dropping any
971 /// outer-level parentheses.
972 QualType IgnoreParens() const {
973 if (isa<ParenType>(*this))
974 return QualType::IgnoreParens(*this);
975 return *this;
976 }
977
978 /// Indicate whether the specified types and qualifiers are identical.
979 friend bool operator==(const QualType &LHS, const QualType &RHS) {
980 return LHS.Value == RHS.Value;
981 }
982 friend bool operator!=(const QualType &LHS, const QualType &RHS) {
983 return LHS.Value != RHS.Value;
984 }
985 friend bool operator<(const QualType &LHS, const QualType &RHS) {
986 return LHS.Value < RHS.Value;
987 }
988
989 static std::string getAsString(SplitQualType split,
990 const PrintingPolicy &Policy) {
991 return getAsString(split.Ty, split.Quals, Policy);
992 }
993 static std::string getAsString(const Type *ty, Qualifiers qs,
994 const PrintingPolicy &Policy);
995
996 std::string getAsString() const;
997 std::string getAsString(const PrintingPolicy &Policy) const;
998
999 void print(raw_ostream &OS, const PrintingPolicy &Policy,
1000 const Twine &PlaceHolder = Twine(),
1001 unsigned Indentation = 0) const;
1002
1003 static void print(SplitQualType split, raw_ostream &OS,
1004 const PrintingPolicy &policy, const Twine &PlaceHolder,
1005 unsigned Indentation = 0) {
1006 return print(split.Ty, split.Quals, OS, policy, PlaceHolder, Indentation);
1007 }
1008
1009 static void print(const Type *ty, Qualifiers qs,
1010 raw_ostream &OS, const PrintingPolicy &policy,
1011 const Twine &PlaceHolder,
1012 unsigned Indentation = 0);
1013
1014 void getAsStringInternal(std::string &Str,
1015 const PrintingPolicy &Policy) const;
1016
1017 static void getAsStringInternal(SplitQualType split, std::string &out,
1018 const PrintingPolicy &policy) {
1019 return getAsStringInternal(split.Ty, split.Quals, out, policy);
1020 }
1021
1022 static void getAsStringInternal(const Type *ty, Qualifiers qs,
1023 std::string &out,
1024 const PrintingPolicy &policy);
1025
1026 class StreamedQualTypeHelper {
1027 const QualType &T;
1028 const PrintingPolicy &Policy;
1029 const Twine &PlaceHolder;
1030 unsigned Indentation;
1031
1032 public:
1033 StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
1034 const Twine &PlaceHolder, unsigned Indentation)
1035 : T(T), Policy(Policy), PlaceHolder(PlaceHolder),
1036 Indentation(Indentation) {}
1037
1038 friend raw_ostream &operator<<(raw_ostream &OS,
1039 const StreamedQualTypeHelper &SQT) {
1040 SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder, SQT.Indentation);
1041 return OS;
1042 }
1043 };
1044
1045 StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
1046 const Twine &PlaceHolder = Twine(),
1047 unsigned Indentation = 0) const {
1048 return StreamedQualTypeHelper(*this, Policy, PlaceHolder, Indentation);
1049 }
1050
1051 void dump(const char *s) const;
1052 void dump() const;
1053 void dump(llvm::raw_ostream &OS) const;
1054
1055 void Profile(llvm::FoldingSetNodeID &ID) const {
1056 ID.AddPointer(getAsOpaquePtr());
1057 }
1058
1059 /// Check if this type has any address space qualifier.
1060 inline bool hasAddressSpace() const;
1061
1062 /// Return the address space of this type.
1063 inline LangAS getAddressSpace() const;
1064
1065 /// Returns gc attribute of this type.
1066 inline Qualifiers::GC getObjCGCAttr() const;
1067
1068 /// true when Type is objc's weak.
1069 bool isObjCGCWeak() const {
1070 return getObjCGCAttr() == Qualifiers::Weak;
1071 }
1072
1073 /// true when Type is objc's strong.
1074 bool isObjCGCStrong() const {
1075 return getObjCGCAttr() == Qualifiers::Strong;
1076 }
1077
1078 /// Returns lifetime attribute of this type.
1079 Qualifiers::ObjCLifetime getObjCLifetime() const {
1080 return getQualifiers().getObjCLifetime();
1081 }
1082
1083 bool hasNonTrivialObjCLifetime() const {
1084 return getQualifiers().hasNonTrivialObjCLifetime();
1085 }
1086
1087 bool hasStrongOrWeakObjCLifetime() const {
1088 return getQualifiers().hasStrongOrWeakObjCLifetime();
1089 }
1090
1091 // true when Type is objc's weak and weak is enabled but ARC isn't.
1092 bool isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const;
1093
1094 enum PrimitiveDefaultInitializeKind {
1095 /// The type does not fall into any of the following categories. Note that
1096 /// this case is zero-valued so that values of this enum can be used as a
1097 /// boolean condition for non-triviality.
1098 PDIK_Trivial,
1099
1100 /// The type is an Objective-C retainable pointer type that is qualified
1101 /// with the ARC __strong qualifier.
1102 PDIK_ARCStrong,
1103
1104 /// The type is an Objective-C retainable pointer type that is qualified
1105 /// with the ARC __weak qualifier.
1106 PDIK_ARCWeak,
1107
1108 /// The type is a struct containing a field whose type is not PCK_Trivial.
1109 PDIK_Struct
1110 };
1111
1112 /// Functions to query basic properties of non-trivial C struct types.
1113
1114 /// Check if this is a non-trivial type that would cause a C struct
1115 /// transitively containing this type to be non-trivial to default initialize
1116 /// and return the kind.
1117 PrimitiveDefaultInitializeKind
1118 isNonTrivialToPrimitiveDefaultInitialize() const;
1119
1120 enum PrimitiveCopyKind {
1121 /// The type does not fall into any of the following categories. Note that
1122 /// this case is zero-valued so that values of this enum can be used as a
1123 /// boolean condition for non-triviality.
1124 PCK_Trivial,
1125
1126 /// The type would be trivial except that it is volatile-qualified. Types
1127 /// that fall into one of the other non-trivial cases may additionally be
1128 /// volatile-qualified.
1129 PCK_VolatileTrivial,
1130
1131 /// The type is an Objective-C retainable pointer type that is qualified
1132 /// with the ARC __strong qualifier.
1133 PCK_ARCStrong,
1134
1135 /// The type is an Objective-C retainable pointer type that is qualified
1136 /// with the ARC __weak qualifier.
1137 PCK_ARCWeak,
1138
1139 /// The type is a struct containing a field whose type is neither
1140 /// PCK_Trivial nor PCK_VolatileTrivial.
1141 /// Note that a C++ struct type does not necessarily match this; C++ copying
1142 /// semantics are too complex to express here, in part because they depend
1143 /// on the exact constructor or assignment operator that is chosen by
1144 /// overload resolution to do the copy.
1145 PCK_Struct
1146 };
1147
1148 /// Check if this is a non-trivial type that would cause a C struct
1149 /// transitively containing this type to be non-trivial to copy and return the
1150 /// kind.
1151 PrimitiveCopyKind isNonTrivialToPrimitiveCopy() const;
1152
1153 /// Check if this is a non-trivial type that would cause a C struct
1154 /// transitively containing this type to be non-trivial to destructively
1155 /// move and return the kind. Destructive move in this context is a C++-style
1156 /// move in which the source object is placed in a valid but unspecified state
1157 /// after it is moved, as opposed to a truly destructive move in which the
1158 /// source object is placed in an uninitialized state.
1159 PrimitiveCopyKind isNonTrivialToPrimitiveDestructiveMove() const;
1160
1161 enum DestructionKind {
1162 DK_none,
1163 DK_cxx_destructor,
1164 DK_objc_strong_lifetime,
1165 DK_objc_weak_lifetime,
1166 DK_nontrivial_c_struct
1167 };
1168
1169 /// Returns a nonzero value if objects of this type require
1170 /// non-trivial work to clean up after. Non-zero because it's
1171 /// conceivable that qualifiers (objc_gc(weak)?) could make
1172 /// something require destruction.
1173 DestructionKind isDestructedType() const {
1174 return isDestructedTypeImpl(*this);
1175 }
1176
1177 /// Check if this is or contains a C union that is non-trivial to
1178 /// default-initialize, which is a union that has a member that is non-trivial
1179 /// to default-initialize. If this returns true,
1180 /// isNonTrivialToPrimitiveDefaultInitialize returns PDIK_Struct.
1181 bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const;
1182
1183 /// Check if this is or contains a C union that is non-trivial to destruct,
1184 /// which is a union that has a member that is non-trivial to destruct. If
1185 /// this returns true, isDestructedType returns DK_nontrivial_c_struct.
1186 bool hasNonTrivialToPrimitiveDestructCUnion() const;
1187
1188 /// Check if this is or contains a C union that is non-trivial to copy, which
1189 /// is a union that has a member that is non-trivial to copy. If this returns
1190 /// true, isNonTrivialToPrimitiveCopy returns PCK_Struct.
1191 bool hasNonTrivialToPrimitiveCopyCUnion() const;
1192
1193 /// Determine whether expressions of the given type are forbidden
1194 /// from being lvalues in C.
1195 ///
1196 /// The expression types that are forbidden to be lvalues are:
1197 /// - 'void', but not qualified void
1198 /// - function types
1199 ///
1200 /// The exact rule here is C99 6.3.2.1:
1201 /// An lvalue is an expression with an object type or an incomplete
1202 /// type other than void.
1203 bool isCForbiddenLValueType() const;
1204
1205 /// Substitute type arguments for the Objective-C type parameters used in the
1206 /// subject type.
1207 ///
1208 /// \param ctx ASTContext in which the type exists.
1209 ///
1210 /// \param typeArgs The type arguments that will be substituted for the
1211 /// Objective-C type parameters in the subject type, which are generally
1212 /// computed via \c Type::getObjCSubstitutions. If empty, the type
1213 /// parameters will be replaced with their bounds or id/Class, as appropriate
1214 /// for the context.
1215 ///
1216 /// \param context The context in which the subject type was written.
1217 ///
1218 /// \returns the resulting type.
1219 QualType substObjCTypeArgs(ASTContext &ctx,
1220 ArrayRef<QualType> typeArgs,
1221 ObjCSubstitutionContext context) const;
1222
1223 /// Substitute type arguments from an object type for the Objective-C type
1224 /// parameters used in the subject type.
1225 ///
1226 /// This operation combines the computation of type arguments for
1227 /// substitution (\c Type::getObjCSubstitutions) with the actual process of
1228 /// substitution (\c QualType::substObjCTypeArgs) for the convenience of
1229 /// callers that need to perform a single substitution in isolation.
1230 ///
1231 /// \param objectType The type of the object whose member type we're
1232 /// substituting into. For example, this might be the receiver of a message
1233 /// or the base of a property access.
1234 ///
1235 /// \param dc The declaration context from which the subject type was
1236 /// retrieved, which indicates (for example) which type parameters should
1237 /// be substituted.
1238 ///
1239 /// \param context The context in which the subject type was written.
1240 ///
1241 /// \returns the subject type after replacing all of the Objective-C type
1242 /// parameters with their corresponding arguments.
1243 QualType substObjCMemberType(QualType objectType,
1244 const DeclContext *dc,
1245 ObjCSubstitutionContext context) const;
1246
1247 /// Strip Objective-C "__kindof" types from the given type.
1248 QualType stripObjCKindOfType(const ASTContext &ctx) const;
1249
1250 /// Remove all qualifiers including _Atomic.
1251 QualType getAtomicUnqualifiedType() const;
1252
1253private:
1254 // These methods are implemented in a separate translation unit;
1255 // "static"-ize them to avoid creating temporary QualTypes in the
1256 // caller.
1257 static bool isConstant(QualType T, const ASTContext& Ctx);
1258 static QualType getDesugaredType(QualType T, const ASTContext &Context);
1259 static SplitQualType getSplitDesugaredType(QualType T);
1260 static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
1261 static QualType getSingleStepDesugaredTypeImpl(QualType type,
1262 const ASTContext &C);
1263 static QualType IgnoreParens(QualType T);
1264 static DestructionKind isDestructedTypeImpl(QualType type);
1265
1266 /// Check if \param RD is or contains a non-trivial C union.
1267 static bool hasNonTrivialToPrimitiveDefaultInitializeCUnion(const RecordDecl *RD);
1268 static bool hasNonTrivialToPrimitiveDestructCUnion(const RecordDecl *RD);
1269 static bool hasNonTrivialToPrimitiveCopyCUnion(const RecordDecl *RD);
1270};
1271
1272} // namespace clang
1273
1274namespace llvm {
1275
1276/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
1277/// to a specific Type class.
1278template<> struct simplify_type< ::clang::QualType> {
1279 using SimpleType = const ::clang::Type *;
1280
1281 static SimpleType getSimplifiedValue(::clang::QualType Val) {
1282 return Val.getTypePtr();
1283 }
1284};
1285
1286// Teach SmallPtrSet that QualType is "basically a pointer".
1287template<>
1288struct PointerLikeTypeTraits<clang::QualType> {
1289 static inline void *getAsVoidPointer(clang::QualType P) {
1290 return P.getAsOpaquePtr();
1291 }
1292
1293 static inline clang::QualType getFromVoidPointer(void *P) {
1294 return clang::QualType::getFromOpaquePtr(P);
1295 }
1296
1297 // Various qualifiers go in low bits.
1298 enum { NumLowBitsAvailable = 0 };
1299};
1300
1301} // namespace llvm
1302
1303namespace clang {
1304
1305/// Base class that is common to both the \c ExtQuals and \c Type
1306/// classes, which allows \c QualType to access the common fields between the
1307/// two.
1308class ExtQualsTypeCommonBase {
1309 friend class ExtQuals;
1310 friend class QualType;
1311 friend class Type;
1312
1313 /// The "base" type of an extended qualifiers type (\c ExtQuals) or
1314 /// a self-referential pointer (for \c Type).
1315 ///
1316 /// This pointer allows an efficient mapping from a QualType to its
1317 /// underlying type pointer.
1318 const Type *const BaseType;
1319
1320 /// The canonical type of this type. A QualType.
1321 QualType CanonicalType;
1322
1323 ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
1324 : BaseType(baseType), CanonicalType(canon) {}
1325};
1326
1327/// We can encode up to four bits in the low bits of a
1328/// type pointer, but there are many more type qualifiers that we want
1329/// to be able to apply to an arbitrary type. Therefore we have this
1330/// struct, intended to be heap-allocated and used by QualType to
1331/// store qualifiers.
1332///
1333/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
1334/// in three low bits on the QualType pointer; a fourth bit records whether
1335/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
1336/// Objective-C GC attributes) are much more rare.
1337class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
1338 // NOTE: changing the fast qualifiers should be straightforward as
1339 // long as you don't make 'const' non-fast.
1340 // 1. Qualifiers:
1341 // a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
1342 // Fast qualifiers must occupy the low-order bits.
1343 // b) Update Qualifiers::FastWidth and FastMask.
1344 // 2. QualType:
1345 // a) Update is{Volatile,Restrict}Qualified(), defined inline.
1346 // b) Update remove{Volatile,Restrict}, defined near the end of
1347 // this header.
1348 // 3. ASTContext:
1349 // a) Update get{Volatile,Restrict}Type.
1350
1351 /// The immutable set of qualifiers applied by this node. Always contains
1352 /// extended qualifiers.
1353 Qualifiers Quals;
1354
1355 ExtQuals *this_() { return this; }
1356
1357public:
1358 ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
1359 : ExtQualsTypeCommonBase(baseType,
1360 canon.isNull() ? QualType(this_(), 0) : canon),
1361 Quals(quals) {
1362 assert(Quals.hasNonFastQualifiers()((Quals.hasNonFastQualifiers() && "ExtQuals created with no fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("Quals.hasNonFastQualifiers() && \"ExtQuals created with no fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 1363, __PRETTY_FUNCTION__))
1363 && "ExtQuals created with no fast qualifiers")((Quals.hasNonFastQualifiers() && "ExtQuals created with no fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("Quals.hasNonFastQualifiers() && \"ExtQuals created with no fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 1363, __PRETTY_FUNCTION__))
;
1364 assert(!Quals.hasFastQualifiers()((!Quals.hasFastQualifiers() && "ExtQuals created with fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasFastQualifiers() && \"ExtQuals created with fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 1365, __PRETTY_FUNCTION__))
1365 && "ExtQuals created with fast qualifiers")((!Quals.hasFastQualifiers() && "ExtQuals created with fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasFastQualifiers() && \"ExtQuals created with fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 1365, __PRETTY_FUNCTION__))
;
1366 }
1367
1368 Qualifiers getQualifiers() const { return Quals; }
1369
1370 bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
1371 Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
1372
1373 bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
1374 Qualifiers::ObjCLifetime getObjCLifetime() const {
1375 return Quals.getObjCLifetime();
1376 }
1377
1378 bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
1379 LangAS getAddressSpace() const { return Quals.getAddressSpace(); }
1380
1381 const Type *getBaseType() const { return BaseType; }
1382
1383public:
1384 void Profile(llvm::FoldingSetNodeID &ID) const {
1385 Profile(ID, getBaseType(), Quals);
1386 }
1387
1388 static void Profile(llvm::FoldingSetNodeID &ID,
1389 const Type *BaseType,
1390 Qualifiers Quals) {
1391 assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!")((!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasFastQualifiers() && \"fast qualifiers in ExtQuals hash!\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 1391, __PRETTY_FUNCTION__))
;
1392 ID.AddPointer(BaseType);
1393 Quals.Profile(ID);
1394 }
1395};
1396
1397/// The kind of C++11 ref-qualifier associated with a function type.
1398/// This determines whether a member function's "this" object can be an
1399/// lvalue, rvalue, or neither.
1400enum RefQualifierKind {
1401 /// No ref-qualifier was provided.
1402 RQ_None = 0,
1403
1404 /// An lvalue ref-qualifier was provided (\c &).
1405 RQ_LValue,
1406
1407 /// An rvalue ref-qualifier was provided (\c &&).
1408 RQ_RValue
1409};
1410
1411/// Which keyword(s) were used to create an AutoType.
1412enum class AutoTypeKeyword {
1413 /// auto
1414 Auto,
1415
1416 /// decltype(auto)
1417 DecltypeAuto,
1418
1419 /// __auto_type (GNU extension)
1420 GNUAutoType
1421};
1422
1423/// The base class of the type hierarchy.
1424///
1425/// A central concept with types is that each type always has a canonical
1426/// type. A canonical type is the type with any typedef names stripped out
1427/// of it or the types it references. For example, consider:
1428///
1429/// typedef int foo;
1430/// typedef foo* bar;
1431/// 'int *' 'foo *' 'bar'
1432///
1433/// There will be a Type object created for 'int'. Since int is canonical, its
1434/// CanonicalType pointer points to itself. There is also a Type for 'foo' (a
1435/// TypedefType). Its CanonicalType pointer points to the 'int' Type. Next
1436/// there is a PointerType that represents 'int*', which, like 'int', is
1437/// canonical. Finally, there is a PointerType type for 'foo*' whose canonical
1438/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1439/// is also 'int*'.
1440///
1441/// Non-canonical types are useful for emitting diagnostics, without losing
1442/// information about typedefs being used. Canonical types are useful for type
1443/// comparisons (they allow by-pointer equality tests) and useful for reasoning
1444/// about whether something has a particular form (e.g. is a function type),
1445/// because they implicitly, recursively, strip all typedefs out of a type.
1446///
1447/// Types, once created, are immutable.
1448///
1449class alignas(8) Type : public ExtQualsTypeCommonBase {
1450public:
1451 enum TypeClass {
1452#define TYPE(Class, Base) Class,
1453#define LAST_TYPE(Class) TypeLast = Class
1454#define ABSTRACT_TYPE(Class, Base)
1455#include "clang/AST/TypeNodes.inc"
1456 };
1457
1458private:
1459 /// Bitfields required by the Type class.
1460 class TypeBitfields {
1461 friend class Type;
1462 template <class T> friend class TypePropertyCache;
1463
1464 /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1465 unsigned TC : 8;
1466
1467 /// Whether this type is a dependent type (C++ [temp.dep.type]).
1468 unsigned Dependent : 1;
1469
1470 /// Whether this type somehow involves a template parameter, even
1471 /// if the resolution of the type does not depend on a template parameter.
1472 unsigned InstantiationDependent : 1;
1473
1474 /// Whether this type is a variably-modified type (C99 6.7.5).
1475 unsigned VariablyModified : 1;
1476
1477 /// Whether this type contains an unexpanded parameter pack
1478 /// (for C++11 variadic templates).
1479 unsigned ContainsUnexpandedParameterPack : 1;
1480
1481 /// True if the cache (i.e. the bitfields here starting with
1482 /// 'Cache') is valid.
1483 mutable unsigned CacheValid : 1;
1484
1485 /// Linkage of this type.
1486 mutable unsigned CachedLinkage : 3;
1487
1488 /// Whether this type involves and local or unnamed types.
1489 mutable unsigned CachedLocalOrUnnamed : 1;
1490
1491 /// Whether this type comes from an AST file.
1492 mutable unsigned FromAST : 1;
1493
1494 bool isCacheValid() const {
1495 return CacheValid;
1496 }
1497
1498 Linkage getLinkage() const {
1499 assert(isCacheValid() && "getting linkage from invalid cache")((isCacheValid() && "getting linkage from invalid cache"
) ? static_cast<void> (0) : __assert_fail ("isCacheValid() && \"getting linkage from invalid cache\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 1499, __PRETTY_FUNCTION__))
;
1500 return static_cast<Linkage>(CachedLinkage);
1501 }
1502
1503 bool hasLocalOrUnnamedType() const {
1504 assert(isCacheValid() && "getting linkage from invalid cache")((isCacheValid() && "getting linkage from invalid cache"
) ? static_cast<void> (0) : __assert_fail ("isCacheValid() && \"getting linkage from invalid cache\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 1504, __PRETTY_FUNCTION__))
;
1505 return CachedLocalOrUnnamed;
1506 }
1507 };
1508 enum { NumTypeBits = 18 };
1509
1510protected:
1511 // These classes allow subclasses to somewhat cleanly pack bitfields
1512 // into Type.
1513
1514 class ArrayTypeBitfields {
1515 friend class ArrayType;
1516
1517 unsigned : NumTypeBits;
1518
1519 /// CVR qualifiers from declarations like
1520 /// 'int X[static restrict 4]'. For function parameters only.
1521 unsigned IndexTypeQuals : 3;
1522
1523 /// Storage class qualifiers from declarations like
1524 /// 'int X[static restrict 4]'. For function parameters only.
1525 /// Actually an ArrayType::ArraySizeModifier.
1526 unsigned SizeModifier : 3;
1527 };
1528
1529 class ConstantArrayTypeBitfields {
1530 friend class ConstantArrayType;
1531
1532 unsigned : NumTypeBits + 3 + 3;
1533
1534 /// Whether we have a stored size expression.
1535 unsigned HasStoredSizeExpr : 1;
1536 };
1537
1538 class BuiltinTypeBitfields {
1539 friend class BuiltinType;
1540
1541 unsigned : NumTypeBits;
1542
1543 /// The kind (BuiltinType::Kind) of builtin type this is.
1544 unsigned Kind : 8;
1545 };
1546
1547 /// FunctionTypeBitfields store various bits belonging to FunctionProtoType.
1548 /// Only common bits are stored here. Additional uncommon bits are stored
1549 /// in a trailing object after FunctionProtoType.
1550 class FunctionTypeBitfields {
1551 friend class FunctionProtoType;
1552 friend class FunctionType;
1553
1554 unsigned : NumTypeBits;
1555
1556 /// Extra information which affects how the function is called, like
1557 /// regparm and the calling convention.
1558 unsigned ExtInfo : 12;
1559
1560 /// The ref-qualifier associated with a \c FunctionProtoType.
1561 ///
1562 /// This is a value of type \c RefQualifierKind.
1563 unsigned RefQualifier : 2;
1564
1565 /// Used only by FunctionProtoType, put here to pack with the
1566 /// other bitfields.
1567 /// The qualifiers are part of FunctionProtoType because...
1568 ///
1569 /// C++ 8.3.5p4: The return type, the parameter type list and the
1570 /// cv-qualifier-seq, [...], are part of the function type.
1571 unsigned FastTypeQuals : Qualifiers::FastWidth;
1572 /// Whether this function has extended Qualifiers.
1573 unsigned HasExtQuals : 1;
1574
1575 /// The number of parameters this function has, not counting '...'.
1576 /// According to [implimits] 8 bits should be enough here but this is
1577 /// somewhat easy to exceed with metaprogramming and so we would like to
1578 /// keep NumParams as wide as reasonably possible.
1579 unsigned NumParams : 16;
1580
1581 /// The type of exception specification this function has.
1582 unsigned ExceptionSpecType : 4;
1583
1584 /// Whether this function has extended parameter information.
1585 unsigned HasExtParameterInfos : 1;
1586
1587 /// Whether the function is variadic.
1588 unsigned Variadic : 1;
1589
1590 /// Whether this function has a trailing return type.
1591 unsigned HasTrailingReturn : 1;
1592 };
1593
1594 class ObjCObjectTypeBitfields {
1595 friend class ObjCObjectType;
1596
1597 unsigned : NumTypeBits;
1598
1599 /// The number of type arguments stored directly on this object type.
1600 unsigned NumTypeArgs : 7;
1601
1602 /// The number of protocols stored directly on this object type.
1603 unsigned NumProtocols : 6;
1604
1605 /// Whether this is a "kindof" type.
1606 unsigned IsKindOf : 1;
1607 };
1608
1609 class ReferenceTypeBitfields {
1610 friend class ReferenceType;
1611
1612 unsigned : NumTypeBits;
1613
1614 /// True if the type was originally spelled with an lvalue sigil.
1615 /// This is never true of rvalue references but can also be false
1616 /// on lvalue references because of C++0x [dcl.typedef]p9,
1617 /// as follows:
1618 ///
1619 /// typedef int &ref; // lvalue, spelled lvalue
1620 /// typedef int &&rvref; // rvalue
1621 /// ref &a; // lvalue, inner ref, spelled lvalue
1622 /// ref &&a; // lvalue, inner ref
1623 /// rvref &a; // lvalue, inner ref, spelled lvalue
1624 /// rvref &&a; // rvalue, inner ref
1625 unsigned SpelledAsLValue : 1;
1626
1627 /// True if the inner type is a reference type. This only happens
1628 /// in non-canonical forms.
1629 unsigned InnerRef : 1;
1630 };
1631
1632 class TypeWithKeywordBitfields {
1633 friend class TypeWithKeyword;
1634
1635 unsigned : NumTypeBits;
1636
1637 /// An ElaboratedTypeKeyword. 8 bits for efficient access.
1638 unsigned Keyword : 8;
1639 };
1640
1641 enum { NumTypeWithKeywordBits = 8 };
1642
1643 class ElaboratedTypeBitfields {
1644 friend class ElaboratedType;
1645
1646 unsigned : NumTypeBits;
1647 unsigned : NumTypeWithKeywordBits;
1648
1649 /// Whether the ElaboratedType has a trailing OwnedTagDecl.
1650 unsigned HasOwnedTagDecl : 1;
1651 };
1652
1653 class VectorTypeBitfields {
1654 friend class VectorType;
1655 friend class DependentVectorType;
1656
1657 unsigned : NumTypeBits;
1658
1659 /// The kind of vector, either a generic vector type or some
1660 /// target-specific vector type such as for AltiVec or Neon.
1661 unsigned VecKind : 3;
1662
1663 /// The number of elements in the vector.
1664 unsigned NumElements : 29 - NumTypeBits;
1665
1666 enum { MaxNumElements = (1 << (29 - NumTypeBits)) - 1 };
1667 };
1668
1669 class AttributedTypeBitfields {
1670 friend class AttributedType;
1671
1672 unsigned : NumTypeBits;
1673
1674 /// An AttributedType::Kind
1675 unsigned AttrKind : 32 - NumTypeBits;
1676 };
1677
1678 class AutoTypeBitfields {
1679 friend class AutoType;
1680
1681 unsigned : NumTypeBits;
1682
1683 /// Was this placeholder type spelled as 'auto', 'decltype(auto)',
1684 /// or '__auto_type'? AutoTypeKeyword value.
1685 unsigned Keyword : 2;
1686 };
1687
1688 class SubstTemplateTypeParmPackTypeBitfields {
1689 friend class SubstTemplateTypeParmPackType;
1690
1691 unsigned : NumTypeBits;
1692
1693 /// The number of template arguments in \c Arguments, which is
1694 /// expected to be able to hold at least 1024 according to [implimits].
1695 /// However as this limit is somewhat easy to hit with template
1696 /// metaprogramming we'd prefer to keep it as large as possible.
1697 /// At the moment it has been left as a non-bitfield since this type
1698 /// safely fits in 64 bits as an unsigned, so there is no reason to
1699 /// introduce the performance impact of a bitfield.
1700 unsigned NumArgs;
1701 };
1702
1703 class TemplateSpecializationTypeBitfields {
1704 friend class TemplateSpecializationType;
1705
1706 unsigned : NumTypeBits;
1707
1708 /// Whether this template specialization type is a substituted type alias.
1709 unsigned TypeAlias : 1;
1710
1711 /// The number of template arguments named in this class template
1712 /// specialization, which is expected to be able to hold at least 1024
1713 /// according to [implimits]. However, as this limit is somewhat easy to
1714 /// hit with template metaprogramming we'd prefer to keep it as large
1715 /// as possible. At the moment it has been left as a non-bitfield since
1716 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1717 /// to introduce the performance impact of a bitfield.
1718 unsigned NumArgs;
1719 };
1720
1721 class DependentTemplateSpecializationTypeBitfields {
1722 friend class DependentTemplateSpecializationType;
1723
1724 unsigned : NumTypeBits;
1725 unsigned : NumTypeWithKeywordBits;
1726
1727 /// The number of template arguments named in this class template
1728 /// specialization, which is expected to be able to hold at least 1024
1729 /// according to [implimits]. However, as this limit is somewhat easy to
1730 /// hit with template metaprogramming we'd prefer to keep it as large
1731 /// as possible. At the moment it has been left as a non-bitfield since
1732 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1733 /// to introduce the performance impact of a bitfield.
1734 unsigned NumArgs;
1735 };
1736
1737 class PackExpansionTypeBitfields {
1738 friend class PackExpansionType;
1739
1740 unsigned : NumTypeBits;
1741
1742 /// The number of expansions that this pack expansion will
1743 /// generate when substituted (+1), which is expected to be able to
1744 /// hold at least 1024 according to [implimits]. However, as this limit
1745 /// is somewhat easy to hit with template metaprogramming we'd prefer to
1746 /// keep it as large as possible. At the moment it has been left as a
1747 /// non-bitfield since this type safely fits in 64 bits as an unsigned, so
1748 /// there is no reason to introduce the performance impact of a bitfield.
1749 ///
1750 /// This field will only have a non-zero value when some of the parameter
1751 /// packs that occur within the pattern have been substituted but others
1752 /// have not.
1753 unsigned NumExpansions;
1754 };
1755
1756 union {
1757 TypeBitfields TypeBits;
1758 ArrayTypeBitfields ArrayTypeBits;
1759 ConstantArrayTypeBitfields ConstantArrayTypeBits;
1760 AttributedTypeBitfields AttributedTypeBits;
1761 AutoTypeBitfields AutoTypeBits;
1762 BuiltinTypeBitfields BuiltinTypeBits;
1763 FunctionTypeBitfields FunctionTypeBits;
1764 ObjCObjectTypeBitfields ObjCObjectTypeBits;
1765 ReferenceTypeBitfields ReferenceTypeBits;
1766 TypeWithKeywordBitfields TypeWithKeywordBits;
1767 ElaboratedTypeBitfields ElaboratedTypeBits;
1768 VectorTypeBitfields VectorTypeBits;
1769 SubstTemplateTypeParmPackTypeBitfields SubstTemplateTypeParmPackTypeBits;
1770 TemplateSpecializationTypeBitfields TemplateSpecializationTypeBits;
1771 DependentTemplateSpecializationTypeBitfields
1772 DependentTemplateSpecializationTypeBits;
1773 PackExpansionTypeBitfields PackExpansionTypeBits;
1774
1775 static_assert(sizeof(TypeBitfields) <= 8,
1776 "TypeBitfields is larger than 8 bytes!");
1777 static_assert(sizeof(ArrayTypeBitfields) <= 8,
1778 "ArrayTypeBitfields is larger than 8 bytes!");
1779 static_assert(sizeof(AttributedTypeBitfields) <= 8,
1780 "AttributedTypeBitfields is larger than 8 bytes!");
1781 static_assert(sizeof(AutoTypeBitfields) <= 8,
1782 "AutoTypeBitfields is larger than 8 bytes!");
1783 static_assert(sizeof(BuiltinTypeBitfields) <= 8,
1784 "BuiltinTypeBitfields is larger than 8 bytes!");
1785 static_assert(sizeof(FunctionTypeBitfields) <= 8,
1786 "FunctionTypeBitfields is larger than 8 bytes!");
1787 static_assert(sizeof(ObjCObjectTypeBitfields) <= 8,
1788 "ObjCObjectTypeBitfields is larger than 8 bytes!");
1789 static_assert(sizeof(ReferenceTypeBitfields) <= 8,
1790 "ReferenceTypeBitfields is larger than 8 bytes!");
1791 static_assert(sizeof(TypeWithKeywordBitfields) <= 8,
1792 "TypeWithKeywordBitfields is larger than 8 bytes!");
1793 static_assert(sizeof(ElaboratedTypeBitfields) <= 8,
1794 "ElaboratedTypeBitfields is larger than 8 bytes!");
1795 static_assert(sizeof(VectorTypeBitfields) <= 8,
1796 "VectorTypeBitfields is larger than 8 bytes!");
1797 static_assert(sizeof(SubstTemplateTypeParmPackTypeBitfields) <= 8,
1798 "SubstTemplateTypeParmPackTypeBitfields is larger"
1799 " than 8 bytes!");
1800 static_assert(sizeof(TemplateSpecializationTypeBitfields) <= 8,
1801 "TemplateSpecializationTypeBitfields is larger"
1802 " than 8 bytes!");
1803 static_assert(sizeof(DependentTemplateSpecializationTypeBitfields) <= 8,
1804 "DependentTemplateSpecializationTypeBitfields is larger"
1805 " than 8 bytes!");
1806 static_assert(sizeof(PackExpansionTypeBitfields) <= 8,
1807 "PackExpansionTypeBitfields is larger than 8 bytes");
1808 };
1809
1810private:
1811 template <class T> friend class TypePropertyCache;
1812
1813 /// Set whether this type comes from an AST file.
1814 void setFromAST(bool V = true) const {
1815 TypeBits.FromAST = V;
1816 }
1817
1818protected:
1819 friend class ASTContext;
1820
1821 Type(TypeClass tc, QualType canon, bool Dependent,
1822 bool InstantiationDependent, bool VariablyModified,
1823 bool ContainsUnexpandedParameterPack)
1824 : ExtQualsTypeCommonBase(this,
1825 canon.isNull() ? QualType(this_(), 0) : canon) {
1826 TypeBits.TC = tc;
1827 TypeBits.Dependent = Dependent;
1828 TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
1829 TypeBits.VariablyModified = VariablyModified;
1830 TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1831 TypeBits.CacheValid = false;
1832 TypeBits.CachedLocalOrUnnamed = false;
1833 TypeBits.CachedLinkage = NoLinkage;
1834 TypeBits.FromAST = false;
1835 }
1836
1837 // silence VC++ warning C4355: 'this' : used in base member initializer list
1838 Type *this_() { return this; }
1839
1840 void setDependent(bool D = true) {
1841 TypeBits.Dependent = D;
1842 if (D)
1843 TypeBits.InstantiationDependent = true;
1844 }
1845
1846 void setInstantiationDependent(bool D = true) {
1847 TypeBits.InstantiationDependent = D; }
1848
1849 void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM; }
1850
1851 void setContainsUnexpandedParameterPack(bool PP = true) {
1852 TypeBits.ContainsUnexpandedParameterPack = PP;
1853 }
1854
1855public:
1856 friend class ASTReader;
1857 friend class ASTWriter;
1858 template <class T> friend class serialization::AbstractTypeReader;
1859 template <class T> friend class serialization::AbstractTypeWriter;
1860
1861 Type(const Type &) = delete;
1862 Type(Type &&) = delete;
1863 Type &operator=(const Type &) = delete;
1864 Type &operator=(Type &&) = delete;
1865
1866 TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1867
1868 /// Whether this type comes from an AST file.
1869 bool isFromAST() const { return TypeBits.FromAST; }
1870
1871 /// Whether this type is or contains an unexpanded parameter
1872 /// pack, used to support C++0x variadic templates.
1873 ///
1874 /// A type that contains a parameter pack shall be expanded by the
1875 /// ellipsis operator at some point. For example, the typedef in the
1876 /// following example contains an unexpanded parameter pack 'T':
1877 ///
1878 /// \code
1879 /// template<typename ...T>
1880 /// struct X {
1881 /// typedef T* pointer_types; // ill-formed; T is a parameter pack.
1882 /// };
1883 /// \endcode
1884 ///
1885 /// Note that this routine does not specify which
1886 bool containsUnexpandedParameterPack() const {
1887 return TypeBits.ContainsUnexpandedParameterPack;
1888 }
1889
1890 /// Determines if this type would be canonical if it had no further
1891 /// qualification.
1892 bool isCanonicalUnqualified() const {
1893 return CanonicalType == QualType(this, 0);
1894 }
1895
1896 /// Pull a single level of sugar off of this locally-unqualified type.
1897 /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
1898 /// or QualType::getSingleStepDesugaredType(const ASTContext&).
1899 QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
1900
1901 /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1902 /// object types, function types, and incomplete types.
1903
1904 /// Return true if this is an incomplete type.
1905 /// A type that can describe objects, but which lacks information needed to
1906 /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1907 /// routine will need to determine if the size is actually required.
1908 ///
1909 /// Def If non-null, and the type refers to some kind of declaration
1910 /// that can be completed (such as a C struct, C++ class, or Objective-C
1911 /// class), will be set to the declaration.
1912 bool isIncompleteType(NamedDecl **Def = nullptr) const;
1913
1914 /// Return true if this is an incomplete or object
1915 /// type, in other words, not a function type.
1916 bool isIncompleteOrObjectType() const {
1917 return !isFunctionType();
1918 }
1919
1920 /// Determine whether this type is an object type.
1921 bool isObjectType() const {
1922 // C++ [basic.types]p8:
1923 // An object type is a (possibly cv-qualified) type that is not a
1924 // function type, not a reference type, and not a void type.
1925 return !isReferenceType() && !isFunctionType() && !isVoidType();
1926 }
1927
1928 /// Return true if this is a literal type
1929 /// (C++11 [basic.types]p10)
1930 bool isLiteralType(const ASTContext &Ctx) const;
1931
1932 /// Test if this type is a standard-layout type.
1933 /// (C++0x [basic.type]p9)
1934 bool isStandardLayoutType() const;
1935
1936 /// Helper methods to distinguish type categories. All type predicates
1937 /// operate on the canonical type, ignoring typedefs and qualifiers.
1938
1939 /// Returns true if the type is a builtin type.
1940 bool isBuiltinType() const;
1941
1942 /// Test for a particular builtin type.
1943 bool isSpecificBuiltinType(unsigned K) const;
1944
1945 /// Test for a type which does not represent an actual type-system type but
1946 /// is instead used as a placeholder for various convenient purposes within
1947 /// Clang. All such types are BuiltinTypes.
1948 bool isPlaceholderType() const;
1949 const BuiltinType *getAsPlaceholderType() const;
1950
1951 /// Test for a specific placeholder type.
1952 bool isSpecificPlaceholderType(unsigned K) const;
1953
1954 /// Test for a placeholder type other than Overload; see
1955 /// BuiltinType::isNonOverloadPlaceholderType.
1956 bool isNonOverloadPlaceholderType() const;
1957
1958 /// isIntegerType() does *not* include complex integers (a GCC extension).
1959 /// isComplexIntegerType() can be used to test for complex integers.
1960 bool isIntegerType() const; // C99 6.2.5p17 (int, char, bool, enum)
1961 bool isEnumeralType() const;
1962
1963 /// Determine whether this type is a scoped enumeration type.
1964 bool isScopedEnumeralType() const;
1965 bool isBooleanType() const;
1966 bool isCharType() const;
1967 bool isWideCharType() const;
1968 bool isChar8Type() const;
1969 bool isChar16Type() const;
1970 bool isChar32Type() const;
1971 bool isAnyCharacterType() const;
1972 bool isIntegralType(const ASTContext &Ctx) const;
1973
1974 /// Determine whether this type is an integral or enumeration type.
1975 bool isIntegralOrEnumerationType() const;
1976
1977 /// Determine whether this type is an integral or unscoped enumeration type.
1978 bool isIntegralOrUnscopedEnumerationType() const;
1979 bool isUnscopedEnumerationType() const;
1980
1981 /// Floating point categories.
1982 bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1983 /// isComplexType() does *not* include complex integers (a GCC extension).
1984 /// isComplexIntegerType() can be used to test for complex integers.
1985 bool isComplexType() const; // C99 6.2.5p11 (complex)
1986 bool isAnyComplexType() const; // C99 6.2.5p11 (complex) + Complex Int.
1987 bool isFloatingType() const; // C99 6.2.5p11 (real floating + complex)
1988 bool isHalfType() const; // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
1989 bool isFloat16Type() const; // C11 extension ISO/IEC TS 18661
1990 bool isFloat128Type() const;
1991 bool isRealType() const; // C99 6.2.5p17 (real floating + integer)
1992 bool isArithmeticType() const; // C99 6.2.5p18 (integer + floating)
1993 bool isVoidType() const; // C99 6.2.5p19
1994 bool isScalarType() const; // C99 6.2.5p21 (arithmetic + pointers)
1995 bool isAggregateType() const;
1996 bool isFundamentalType() const;
1997 bool isCompoundType() const;
1998
1999 // Type Predicates: Check to see if this type is structurally the specified
2000 // type, ignoring typedefs and qualifiers.
2001 bool isFunctionType() const;
2002 bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
2003 bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
2004 bool isPointerType() const;
2005 bool isAnyPointerType() const; // Any C pointer or ObjC object pointer
2006 bool isBlockPointerType() const;
2007 bool isVoidPointerType() const;
2008 bool isReferenceType() const;
2009 bool isLValueReferenceType() const;
2010 bool isRValueReferenceType() const;
2011 bool isObjectPointerType() const;
2012 bool isFunctionPointerType() const;
2013 bool isFunctionReferenceType() const;
2014 bool isMemberPointerType() const;
2015 bool isMemberFunctionPointerType() const;
2016 bool isMemberDataPointerType() const;
2017 bool isArrayType() const;
2018 bool isConstantArrayType() const;
2019 bool isIncompleteArrayType() const;
2020 bool isVariableArrayType() const;
2021 bool isDependentSizedArrayType() const;
2022 bool isRecordType() const;
2023 bool isClassType() const;
2024 bool isStructureType() const;
2025 bool isObjCBoxableRecordType() const;
2026 bool isInterfaceType() const;
2027 bool isStructureOrClassType() const;
2028 bool isUnionType() const;
2029 bool isComplexIntegerType() const; // GCC _Complex integer type.
2030 bool isVectorType() const; // GCC vector type.
2031 bool isExtVectorType() const; // Extended vector type.
2032 bool isDependentAddressSpaceType() const; // value-dependent address space qualifier
2033 bool isObjCObjectPointerType() const; // pointer to ObjC object
2034 bool isObjCRetainableType() const; // ObjC object or block pointer
2035 bool isObjCLifetimeType() const; // (array of)* retainable type
2036 bool isObjCIndirectLifetimeType() const; // (pointer to)* lifetime type
2037 bool isObjCNSObjectType() const; // __attribute__((NSObject))
2038 bool isObjCIndependentClassType() const; // __attribute__((objc_independent_class))
2039 // FIXME: change this to 'raw' interface type, so we can used 'interface' type
2040 // for the common case.
2041 bool isObjCObjectType() const; // NSString or typeof(*(id)0)
2042 bool isObjCQualifiedInterfaceType() const; // NSString<foo>
2043 bool isObjCQualifiedIdType() const; // id<foo>
2044 bool isObjCQualifiedClassType() const; // Class<foo>
2045 bool isObjCObjectOrInterfaceType() const;
2046 bool isObjCIdType() const; // id
2047 bool isDecltypeType() const;
2048 /// Was this type written with the special inert-in-ARC __unsafe_unretained
2049 /// qualifier?
2050 ///
2051 /// This approximates the answer to the following question: if this
2052 /// translation unit were compiled in ARC, would this type be qualified
2053 /// with __unsafe_unretained?
2054 bool isObjCInertUnsafeUnretainedType() const {
2055 return hasAttr(attr::ObjCInertUnsafeUnretained);
2056 }
2057
2058 /// Whether the type is Objective-C 'id' or a __kindof type of an
2059 /// object type, e.g., __kindof NSView * or __kindof id
2060 /// <NSCopying>.
2061 ///
2062 /// \param bound Will be set to the bound on non-id subtype types,
2063 /// which will be (possibly specialized) Objective-C class type, or
2064 /// null for 'id.
2065 bool isObjCIdOrObjectKindOfType(const ASTContext &ctx,
2066 const ObjCObjectType *&bound) const;
2067
2068 bool isObjCClassType() const; // Class
2069
2070 /// Whether the type is Objective-C 'Class' or a __kindof type of an
2071 /// Class type, e.g., __kindof Class <NSCopying>.
2072 ///
2073 /// Unlike \c isObjCIdOrObjectKindOfType, there is no relevant bound
2074 /// here because Objective-C's type system cannot express "a class
2075 /// object for a subclass of NSFoo".
2076 bool isObjCClassOrClassKindOfType() const;
2077
2078 bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const;
2079 bool isObjCSelType() const; // Class
2080 bool isObjCBuiltinType() const; // 'id' or 'Class'
2081 bool isObjCARCBridgableType() const;
2082 bool isCARCBridgableType() const;
2083 bool isTemplateTypeParmType() const; // C++ template type parameter
2084 bool isNullPtrType() const; // C++11 std::nullptr_t
2085 bool isNothrowT() const; // C++ std::nothrow_t
2086 bool isAlignValT() const; // C++17 std::align_val_t
2087 bool isStdByteType() const; // C++17 std::byte
2088 bool isAtomicType() const; // C11 _Atomic()
2089 bool isUndeducedAutoType() const; // C++11 auto or
2090 // C++14 decltype(auto)
2091
2092#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2093 bool is##Id##Type() const;
2094#include "clang/Basic/OpenCLImageTypes.def"
2095
2096 bool isImageType() const; // Any OpenCL image type
2097
2098 bool isSamplerT() const; // OpenCL sampler_t
2099 bool isEventT() const; // OpenCL event_t
2100 bool isClkEventT() const; // OpenCL clk_event_t
2101 bool isQueueT() const; // OpenCL queue_t
2102 bool isReserveIDT() const; // OpenCL reserve_id_t
2103
2104#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2105 bool is##Id##Type() const;
2106#include "clang/Basic/OpenCLExtensionTypes.def"
2107 // Type defined in cl_intel_device_side_avc_motion_estimation OpenCL extension
2108 bool isOCLIntelSubgroupAVCType() const;
2109 bool isOCLExtOpaqueType() const; // Any OpenCL extension type
2110
2111 bool isPipeType() const; // OpenCL pipe type
2112 bool isOpenCLSpecificType() const; // Any OpenCL specific type
2113
2114 /// Determines if this type, which must satisfy
2115 /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
2116 /// than implicitly __strong.
2117 bool isObjCARCImplicitlyUnretainedType() const;
2118
2119 /// Return the implicit lifetime for this type, which must not be dependent.
2120 Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
2121
2122 enum ScalarTypeKind {
2123 STK_CPointer,
2124 STK_BlockPointer,
2125 STK_ObjCObjectPointer,
2126 STK_MemberPointer,
2127 STK_Bool,
2128 STK_Integral,
2129 STK_Floating,
2130 STK_IntegralComplex,
2131 STK_FloatingComplex,
2132 STK_FixedPoint
2133 };
2134
2135 /// Given that this is a scalar type, classify it.
2136 ScalarTypeKind getScalarTypeKind() const;
2137
2138 /// Whether this type is a dependent type, meaning that its definition
2139 /// somehow depends on a template parameter (C++ [temp.dep.type]).
2140 bool isDependentType() const { return TypeBits.Dependent; }
2141
2142 /// Determine whether this type is an instantiation-dependent type,
2143 /// meaning that the type involves a template parameter (even if the
2144 /// definition does not actually depend on the type substituted for that
2145 /// template parameter).
2146 bool isInstantiationDependentType() const {
2147 return TypeBits.InstantiationDependent;
2148 }
2149
2150 /// Determine whether this type is an undeduced type, meaning that
2151 /// it somehow involves a C++11 'auto' type or similar which has not yet been
2152 /// deduced.
2153 bool isUndeducedType() const;
2154
2155 /// Whether this type is a variably-modified type (C99 6.7.5).
2156 bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
2157
2158 /// Whether this type involves a variable-length array type
2159 /// with a definite size.
2160 bool hasSizedVLAType() const;
2161
2162 /// Whether this type is or contains a local or unnamed type.
2163 bool hasUnnamedOrLocalType() const;
2164
2165 bool isOverloadableType() const;
2166
2167 /// Determine wither this type is a C++ elaborated-type-specifier.
2168 bool isElaboratedTypeSpecifier() const;
2169
2170 bool canDecayToPointerType() const;
2171
2172 /// Whether this type is represented natively as a pointer. This includes
2173 /// pointers, references, block pointers, and Objective-C interface,
2174 /// qualified id, and qualified interface types, as well as nullptr_t.
2175 bool hasPointerRepresentation() const;
2176
2177 /// Whether this type can represent an objective pointer type for the
2178 /// purpose of GC'ability
2179 bool hasObjCPointerRepresentation() const;
2180
2181 /// Determine whether this type has an integer representation
2182 /// of some sort, e.g., it is an integer type or a vector.
2183 bool hasIntegerRepresentation() const;
2184
2185 /// Determine whether this type has an signed integer representation
2186 /// of some sort, e.g., it is an signed integer type or a vector.
2187 bool hasSignedIntegerRepresentation() const;
2188
2189 /// Determine whether this type has an unsigned integer representation
2190 /// of some sort, e.g., it is an unsigned integer type or a vector.
2191 bool hasUnsignedIntegerRepresentation() const;
2192
2193 /// Determine whether this type has a floating-point representation
2194 /// of some sort, e.g., it is a floating-point type or a vector thereof.
2195 bool hasFloatingRepresentation() const;
2196
2197 // Type Checking Functions: Check to see if this type is structurally the
2198 // specified type, ignoring typedefs and qualifiers, and return a pointer to
2199 // the best type we can.
2200 const RecordType *getAsStructureType() const;
2201 /// NOTE: getAs*ArrayType are methods on ASTContext.
2202 const RecordType *getAsUnionType() const;
2203 const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
2204 const ObjCObjectType *getAsObjCInterfaceType() const;
2205
2206 // The following is a convenience method that returns an ObjCObjectPointerType
2207 // for object declared using an interface.
2208 const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
2209 const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
2210 const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
2211 const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
2212
2213 /// Retrieves the CXXRecordDecl that this type refers to, either
2214 /// because the type is a RecordType or because it is the injected-class-name
2215 /// type of a class template or class template partial specialization.
2216 CXXRecordDecl *getAsCXXRecordDecl() const;
2217
2218 /// Retrieves the RecordDecl this type refers to.
2219 RecordDecl *getAsRecordDecl() const;
2220
2221 /// Retrieves the TagDecl that this type refers to, either
2222 /// because the type is a TagType or because it is the injected-class-name
2223 /// type of a class template or class template partial specialization.
2224 TagDecl *getAsTagDecl() const;
2225
2226 /// If this is a pointer or reference to a RecordType, return the
2227 /// CXXRecordDecl that the type refers to.
2228 ///
2229 /// If this is not a pointer or reference, or the type being pointed to does
2230 /// not refer to a CXXRecordDecl, returns NULL.
2231 const CXXRecordDecl *getPointeeCXXRecordDecl() const;
2232
2233 /// Get the DeducedType whose type will be deduced for a variable with
2234 /// an initializer of this type. This looks through declarators like pointer
2235 /// types, but not through decltype or typedefs.
2236 DeducedType *getContainedDeducedType() const;
2237
2238 /// Get the AutoType whose type will be deduced for a variable with
2239 /// an initializer of this type. This looks through declarators like pointer
2240 /// types, but not through decltype or typedefs.
2241 AutoType *getContainedAutoType() const {
2242 return dyn_cast_or_null<AutoType>(getContainedDeducedType());
2243 }
2244
2245 /// Determine whether this type was written with a leading 'auto'
2246 /// corresponding to a trailing return type (possibly for a nested
2247 /// function type within a pointer to function type or similar).
2248 bool hasAutoForTrailingReturnType() const;
2249
2250 /// Member-template getAs<specific type>'. Look through sugar for
2251 /// an instance of \<specific type>. This scheme will eventually
2252 /// replace the specific getAsXXXX methods above.
2253 ///
2254 /// There are some specializations of this member template listed
2255 /// immediately following this class.
2256 template <typename T> const T *getAs() const;
2257
2258 /// Member-template getAsAdjusted<specific type>. Look through specific kinds
2259 /// of sugar (parens, attributes, etc) for an instance of \<specific type>.
2260 /// This is used when you need to walk over sugar nodes that represent some
2261 /// kind of type adjustment from a type that was written as a \<specific type>
2262 /// to another type that is still canonically a \<specific type>.
2263 template <typename T> const T *getAsAdjusted() const;
2264
2265 /// A variant of getAs<> for array types which silently discards
2266 /// qualifiers from the outermost type.
2267 const ArrayType *getAsArrayTypeUnsafe() const;
2268
2269 /// Member-template castAs<specific type>. Look through sugar for
2270 /// the underlying instance of \<specific type>.
2271 ///
2272 /// This method has the same relationship to getAs<T> as cast<T> has
2273 /// to dyn_cast<T>; which is to say, the underlying type *must*
2274 /// have the intended type, and this method will never return null.
2275 template <typename T> const T *castAs() const;
2276
2277 /// A variant of castAs<> for array type which silently discards
2278 /// qualifiers from the outermost type.
2279 const ArrayType *castAsArrayTypeUnsafe() const;
2280
2281 /// Determine whether this type had the specified attribute applied to it
2282 /// (looking through top-level type sugar).
2283 bool hasAttr(attr::Kind AK) const;
2284
2285 /// Get the base element type of this type, potentially discarding type
2286 /// qualifiers. This should never be used when type qualifiers
2287 /// are meaningful.
2288 const Type *getBaseElementTypeUnsafe() const;
2289
2290 /// If this is an array type, return the element type of the array,
2291 /// potentially with type qualifiers missing.
2292 /// This should never be used when type qualifiers are meaningful.
2293 const Type *getArrayElementTypeNoTypeQual() const;
2294
2295 /// If this is a pointer type, return the pointee type.
2296 /// If this is an array type, return the array element type.
2297 /// This should never be used when type qualifiers are meaningful.
2298 const Type *getPointeeOrArrayElementType() const;
2299
2300 /// If this is a pointer, ObjC object pointer, or block
2301 /// pointer, this returns the respective pointee.
2302 QualType getPointeeType() const;
2303
2304 /// Return the specified type with any "sugar" removed from the type,
2305 /// removing any typedefs, typeofs, etc., as well as any qualifiers.
2306 const Type *getUnqualifiedDesugaredType() const;
2307
2308 /// More type predicates useful for type checking/promotion
2309 bool isPromotableIntegerType() const; // C99 6.3.1.1p2
2310
2311 /// Return true if this is an integer type that is
2312 /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
2313 /// or an enum decl which has a signed representation.
2314 bool isSignedIntegerType() const;
2315
2316 /// Return true if this is an integer type that is
2317 /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
2318 /// or an enum decl which has an unsigned representation.
2319 bool isUnsignedIntegerType() const;
2320
2321 /// Determines whether this is an integer type that is signed or an
2322 /// enumeration types whose underlying type is a signed integer type.
2323 bool isSignedIntegerOrEnumerationType() const;
2324
2325 /// Determines whether this is an integer type that is unsigned or an
2326 /// enumeration types whose underlying type is a unsigned integer type.
2327 bool isUnsignedIntegerOrEnumerationType() const;
2328
2329 /// Return true if this is a fixed point type according to
2330 /// ISO/IEC JTC1 SC22 WG14 N1169.
2331 bool isFixedPointType() const;
2332
2333 /// Return true if this is a fixed point or integer type.
2334 bool isFixedPointOrIntegerType() const;
2335
2336 /// Return true if this is a saturated fixed point type according to
2337 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2338 bool isSaturatedFixedPointType() const;
2339
2340 /// Return true if this is a saturated fixed point type according to
2341 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2342 bool isUnsaturatedFixedPointType() const;
2343
2344 /// Return true if this is a fixed point type that is signed according
2345 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2346 bool isSignedFixedPointType() const;
2347
2348 /// Return true if this is a fixed point type that is unsigned according
2349 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2350 bool isUnsignedFixedPointType() const;
2351
2352 /// Return true if this is not a variable sized type,
2353 /// according to the rules of C99 6.7.5p3. It is not legal to call this on
2354 /// incomplete types.
2355 bool isConstantSizeType() const;
2356
2357 /// Returns true if this type can be represented by some
2358 /// set of type specifiers.
2359 bool isSpecifierType() const;
2360
2361 /// Determine the linkage of this type.
2362 Linkage getLinkage() const;
2363
2364 /// Determine the visibility of this type.
2365 Visibility getVisibility() const {
2366 return getLinkageAndVisibility().getVisibility();
2367 }
2368
2369 /// Return true if the visibility was explicitly set is the code.
2370 bool isVisibilityExplicit() const {
2371 return getLinkageAndVisibility().isVisibilityExplicit();
2372 }
2373
2374 /// Determine the linkage and visibility of this type.
2375 LinkageInfo getLinkageAndVisibility() const;
2376
2377 /// True if the computed linkage is valid. Used for consistency
2378 /// checking. Should always return true.
2379 bool isLinkageValid() const;
2380
2381 /// Determine the nullability of the given type.
2382 ///
2383 /// Note that nullability is only captured as sugar within the type
2384 /// system, not as part of the canonical type, so nullability will
2385 /// be lost by canonicalization and desugaring.
2386 Optional<NullabilityKind> getNullability(const ASTContext &context) const;
2387
2388 /// Determine whether the given type can have a nullability
2389 /// specifier applied to it, i.e., if it is any kind of pointer type.
2390 ///
2391 /// \param ResultIfUnknown The value to return if we don't yet know whether
2392 /// this type can have nullability because it is dependent.
2393 bool canHaveNullability(bool ResultIfUnknown = true) const;
2394
2395 /// Retrieve the set of substitutions required when accessing a member
2396 /// of the Objective-C receiver type that is declared in the given context.
2397 ///
2398 /// \c *this is the type of the object we're operating on, e.g., the
2399 /// receiver for a message send or the base of a property access, and is
2400 /// expected to be of some object or object pointer type.
2401 ///
2402 /// \param dc The declaration context for which we are building up a
2403 /// substitution mapping, which should be an Objective-C class, extension,
2404 /// category, or method within.
2405 ///
2406 /// \returns an array of type arguments that can be substituted for
2407 /// the type parameters of the given declaration context in any type described
2408 /// within that context, or an empty optional to indicate that no
2409 /// substitution is required.
2410 Optional<ArrayRef<QualType>>
2411 getObjCSubstitutions(const DeclContext *dc) const;
2412
2413 /// Determines if this is an ObjC interface type that may accept type
2414 /// parameters.
2415 bool acceptsObjCTypeParams() const;
2416
2417 const char *getTypeClassName() const;
2418
2419 QualType getCanonicalTypeInternal() const {
2420 return CanonicalType;
2421 }
2422
2423 CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
2424 void dump() const;
2425 void dump(llvm::raw_ostream &OS) const;
2426};
2427
2428/// This will check for a TypedefType by removing any existing sugar
2429/// until it reaches a TypedefType or a non-sugared type.
2430template <> const TypedefType *Type::getAs() const;
2431
2432/// This will check for a TemplateSpecializationType by removing any
2433/// existing sugar until it reaches a TemplateSpecializationType or a
2434/// non-sugared type.
2435template <> const TemplateSpecializationType *Type::getAs() const;
2436
2437/// This will check for an AttributedType by removing any existing sugar
2438/// until it reaches an AttributedType or a non-sugared type.
2439template <> const AttributedType *Type::getAs() const;
2440
2441// We can do canonical leaf types faster, because we don't have to
2442// worry about preserving child type decoration.
2443#define TYPE(Class, Base)
2444#define LEAF_TYPE(Class) \
2445template <> inline const Class##Type *Type::getAs() const { \
2446 return dyn_cast<Class##Type>(CanonicalType); \
2447} \
2448template <> inline const Class##Type *Type::castAs() const { \
2449 return cast<Class##Type>(CanonicalType); \
2450}
2451#include "clang/AST/TypeNodes.inc"
2452
2453/// This class is used for builtin types like 'int'. Builtin
2454/// types are always canonical and have a literal name field.
2455class BuiltinType : public Type {
2456public:
2457 enum Kind {
2458// OpenCL image types
2459#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) Id,
2460#include "clang/Basic/OpenCLImageTypes.def"
2461// OpenCL extension types
2462#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) Id,
2463#include "clang/Basic/OpenCLExtensionTypes.def"
2464// SVE Types
2465#define SVE_TYPE(Name, Id, SingletonId) Id,
2466#include "clang/Basic/AArch64SVEACLETypes.def"
2467// All other builtin types
2468#define BUILTIN_TYPE(Id, SingletonId) Id,
2469#define LAST_BUILTIN_TYPE(Id) LastKind = Id
2470#include "clang/AST/BuiltinTypes.def"
2471 };
2472
2473private:
2474 friend class ASTContext; // ASTContext creates these.
2475
2476 BuiltinType(Kind K)
2477 : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
2478 /*InstantiationDependent=*/(K == Dependent),
2479 /*VariablyModified=*/false,
2480 /*Unexpanded parameter pack=*/false) {
2481 BuiltinTypeBits.Kind = K;
2482 }
2483
2484public:
2485 Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
2486 StringRef getName(const PrintingPolicy &Policy) const;
2487
2488 const char *getNameAsCString(const PrintingPolicy &Policy) const {
2489 // The StringRef is null-terminated.
2490 StringRef str = getName(Policy);
2491 assert(!str.empty() && str.data()[str.size()] == '\0')((!str.empty() && str.data()[str.size()] == '\0') ? static_cast
<void> (0) : __assert_fail ("!str.empty() && str.data()[str.size()] == '\\0'"
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 2491, __PRETTY_FUNCTION__))
;
2492 return str.data();
2493 }
2494
2495 bool isSugared() const { return false; }
2496 QualType desugar() const { return QualType(this, 0); }
2497
2498 bool isInteger() const {
2499 return getKind() >= Bool && getKind() <= Int128;
2500 }
2501
2502 bool isSignedInteger() const {
2503 return getKind() >= Char_S && getKind() <= Int128;
2504 }
2505
2506 bool isUnsignedInteger() const {
2507 return getKind() >= Bool && getKind() <= UInt128;
2508 }
2509
2510 bool isFloatingPoint() const {
2511 return getKind() >= Half && getKind() <= Float128;
2512 }
2513
2514 /// Determines whether the given kind corresponds to a placeholder type.
2515 static bool isPlaceholderTypeKind(Kind K) {
2516 return K >= Overload;
2517 }
2518
2519 /// Determines whether this type is a placeholder type, i.e. a type
2520 /// which cannot appear in arbitrary positions in a fully-formed
2521 /// expression.
2522 bool isPlaceholderType() const {
2523 return isPlaceholderTypeKind(getKind());
2524 }
2525
2526 /// Determines whether this type is a placeholder type other than
2527 /// Overload. Most placeholder types require only syntactic
2528 /// information about their context in order to be resolved (e.g.
2529 /// whether it is a call expression), which means they can (and
2530 /// should) be resolved in an earlier "phase" of analysis.
2531 /// Overload expressions sometimes pick up further information
2532 /// from their context, like whether the context expects a
2533 /// specific function-pointer type, and so frequently need
2534 /// special treatment.
2535 bool isNonOverloadPlaceholderType() const {
2536 return getKind() > Overload;
2537 }
2538
2539 static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
2540};
2541
2542/// Complex values, per C99 6.2.5p11. This supports the C99 complex
2543/// types (_Complex float etc) as well as the GCC integer complex extensions.
2544class ComplexType : public Type, public llvm::FoldingSetNode {
2545 friend class ASTContext; // ASTContext creates these.
2546
2547 QualType ElementType;
2548
2549 ComplexType(QualType Element, QualType CanonicalPtr)
2550 : Type(Complex, CanonicalPtr, Element->isDependentType(),
2551 Element->isInstantiationDependentType(),
2552 Element->isVariablyModifiedType(),
2553 Element->containsUnexpandedParameterPack()),
2554 ElementType(Element) {}
2555
2556public:
2557 QualType getElementType() const { return ElementType; }
2558
2559 bool isSugared() const { return false; }
2560 QualType desugar() const { return QualType(this, 0); }
2561
2562 void Profile(llvm::FoldingSetNodeID &ID) {
2563 Profile(ID, getElementType());
2564 }
2565
2566 static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
2567 ID.AddPointer(Element.getAsOpaquePtr());
2568 }
2569
2570 static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
2571};
2572
2573/// Sugar for parentheses used when specifying types.
2574class ParenType : public Type, public llvm::FoldingSetNode {
2575 friend class ASTContext; // ASTContext creates these.
2576
2577 QualType Inner;
2578
2579 ParenType(QualType InnerType, QualType CanonType)
2580 : Type(Paren, CanonType, InnerType->isDependentType(),
2581 InnerType->isInstantiationDependentType(),
2582 InnerType->isVariablyModifiedType(),
2583 InnerType->containsUnexpandedParameterPack()),
2584 Inner(InnerType) {}
2585
2586public:
2587 QualType getInnerType() const { return Inner; }
2588
2589 bool isSugared() const { return true; }
2590 QualType desugar() const { return getInnerType(); }
2591
2592 void Profile(llvm::FoldingSetNodeID &ID) {
2593 Profile(ID, getInnerType());
2594 }
2595
2596 static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
2597 Inner.Profile(ID);
2598 }
2599
2600 static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
2601};
2602
2603/// PointerType - C99 6.7.5.1 - Pointer Declarators.
2604class PointerType : public Type, public llvm::FoldingSetNode {
2605 friend class ASTContext; // ASTContext creates these.
2606
2607 QualType PointeeType;
2608
2609 PointerType(QualType Pointee, QualType CanonicalPtr)
2610 : Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
2611 Pointee->isInstantiationDependentType(),
2612 Pointee->isVariablyModifiedType(),
2613 Pointee->containsUnexpandedParameterPack()),
2614 PointeeType(Pointee) {}
2615
2616public:
2617 QualType getPointeeType() const { return PointeeType; }
2618
2619 /// Returns true if address spaces of pointers overlap.
2620 /// OpenCL v2.0 defines conversion rules for pointers to different
2621 /// address spaces (OpenCLC v2.0 s6.5.5) and notion of overlapping
2622 /// address spaces.
2623 /// CL1.1 or CL1.2:
2624 /// address spaces overlap iff they are they same.
2625 /// CL2.0 adds:
2626 /// __generic overlaps with any address space except for __constant.
2627 bool isAddressSpaceOverlapping(const PointerType &other) const {
2628 Qualifiers thisQuals = PointeeType.getQualifiers();
2629 Qualifiers otherQuals = other.getPointeeType().getQualifiers();
2630 // Address spaces overlap if at least one of them is a superset of another
2631 return thisQuals.isAddressSpaceSupersetOf(otherQuals) ||
2632 otherQuals.isAddressSpaceSupersetOf(thisQuals);
2633 }
2634
2635 bool isSugared() const { return false; }
2636 QualType desugar() const { return QualType(this, 0); }
2637
2638 void Profile(llvm::FoldingSetNodeID &ID) {
2639 Profile(ID, getPointeeType());
2640 }
2641
2642 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2643 ID.AddPointer(Pointee.getAsOpaquePtr());
2644 }
2645
2646 static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
2647};
2648
2649/// Represents a type which was implicitly adjusted by the semantic
2650/// engine for arbitrary reasons. For example, array and function types can
2651/// decay, and function types can have their calling conventions adjusted.
2652class AdjustedType : public Type, public llvm::FoldingSetNode {
2653 QualType OriginalTy;
2654 QualType AdjustedTy;
2655
2656protected:
2657 friend class ASTContext; // ASTContext creates these.
2658
2659 AdjustedType(TypeClass TC, QualType OriginalTy, QualType AdjustedTy,
2660 QualType CanonicalPtr)
2661 : Type(TC, CanonicalPtr, OriginalTy->isDependentType(),
2662 OriginalTy->isInstantiationDependentType(),
2663 OriginalTy->isVariablyModifiedType(),
2664 OriginalTy->containsUnexpandedParameterPack()),
2665 OriginalTy(OriginalTy), AdjustedTy(AdjustedTy) {}
2666
2667public:
2668 QualType getOriginalType() const { return OriginalTy; }
2669 QualType getAdjustedType() const { return AdjustedTy; }
2670
2671 bool isSugared() const { return true; }
2672 QualType desugar() const { return AdjustedTy; }
2673
2674 void Profile(llvm::FoldingSetNodeID &ID) {
2675 Profile(ID, OriginalTy, AdjustedTy);
2676 }
2677
2678 static void Profile(llvm::FoldingSetNodeID &ID, QualType Orig, QualType New) {
2679 ID.AddPointer(Orig.getAsOpaquePtr());
2680 ID.AddPointer(New.getAsOpaquePtr());
2681 }
2682
2683 static bool classof(const Type *T) {
2684 return T->getTypeClass() == Adjusted || T->getTypeClass() == Decayed;
2685 }
2686};
2687
2688/// Represents a pointer type decayed from an array or function type.
2689class DecayedType : public AdjustedType {
2690 friend class ASTContext; // ASTContext creates these.
2691
2692 inline
2693 DecayedType(QualType OriginalType, QualType Decayed, QualType Canonical);
2694
2695public:
2696 QualType getDecayedType() const { return getAdjustedType(); }
2697
2698 inline QualType getPointeeType() const;
2699
2700 static bool classof(const Type *T) { return T->getTypeClass() == Decayed; }
2701};
2702
2703/// Pointer to a block type.
2704/// This type is to represent types syntactically represented as
2705/// "void (^)(int)", etc. Pointee is required to always be a function type.
2706class BlockPointerType : public Type, public llvm::FoldingSetNode {
2707 friend class ASTContext; // ASTContext creates these.
2708
2709 // Block is some kind of pointer type
2710 QualType PointeeType;
2711
2712 BlockPointerType(QualType Pointee, QualType CanonicalCls)
2713 : Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
2714 Pointee->isInstantiationDependentType(),
2715 Pointee->isVariablyModifiedType(),
2716 Pointee->containsUnexpandedParameterPack()),
2717 PointeeType(Pointee) {}
2718
2719public:
2720 // Get the pointee type. Pointee is required to always be a function type.
2721 QualType getPointeeType() const { return PointeeType; }
2722
2723 bool isSugared() const { return false; }
2724 QualType desugar() const { return QualType(this, 0); }
2725
2726 void Profile(llvm::FoldingSetNodeID &ID) {
2727 Profile(ID, getPointeeType());
2728 }
2729
2730 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2731 ID.AddPointer(Pointee.getAsOpaquePtr());
2732 }
2733
2734 static bool classof(const Type *T) {
2735 return T->getTypeClass() == BlockPointer;
2736 }
2737};
2738
2739/// Base for LValueReferenceType and RValueReferenceType
2740class ReferenceType : public Type, public llvm::FoldingSetNode {
2741 QualType PointeeType;
2742
2743protected:
2744 ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
2745 bool SpelledAsLValue)
2746 : Type(tc, CanonicalRef, Referencee->isDependentType(),
2747 Referencee->isInstantiationDependentType(),
2748 Referencee->isVariablyModifiedType(),
2749 Referencee->containsUnexpandedParameterPack()),
2750 PointeeType(Referencee) {
2751 ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
2752 ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
2753 }
2754
2755public:
2756 bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
2757 bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
2758
2759 QualType getPointeeTypeAsWritten() const { return PointeeType; }
2760
2761 QualType getPointeeType() const {
2762 // FIXME: this might strip inner qualifiers; okay?
2763 const ReferenceType *T = this;
2764 while (T->isInnerRef())
2765 T = T->PointeeType->castAs<ReferenceType>();
2766 return T->PointeeType;
2767 }
2768
2769 void Profile(llvm::FoldingSetNodeID &ID) {
2770 Profile(ID, PointeeType, isSpelledAsLValue());
2771 }
2772
2773 static void Profile(llvm::FoldingSetNodeID &ID,
2774 QualType Referencee,
2775 bool SpelledAsLValue) {
2776 ID.AddPointer(Referencee.getAsOpaquePtr());
2777 ID.AddBoolean(SpelledAsLValue);
2778 }
2779
2780 static bool classof(const Type *T) {
2781 return T->getTypeClass() == LValueReference ||
2782 T->getTypeClass() == RValueReference;
2783 }
2784};
2785
2786/// An lvalue reference type, per C++11 [dcl.ref].
2787class LValueReferenceType : public ReferenceType {
2788 friend class ASTContext; // ASTContext creates these
2789
2790 LValueReferenceType(QualType Referencee, QualType CanonicalRef,
2791 bool SpelledAsLValue)
2792 : ReferenceType(LValueReference, Referencee, CanonicalRef,
2793 SpelledAsLValue) {}
2794
2795public:
2796 bool isSugared() const { return false; }
2797 QualType desugar() const { return QualType(this, 0); }
2798
2799 static bool classof(const Type *T) {
2800 return T->getTypeClass() == LValueReference;
2801 }
2802};
2803
2804/// An rvalue reference type, per C++11 [dcl.ref].
2805class RValueReferenceType : public ReferenceType {
2806 friend class ASTContext; // ASTContext creates these
2807
2808 RValueReferenceType(QualType Referencee, QualType CanonicalRef)
2809 : ReferenceType(RValueReference, Referencee, CanonicalRef, false) {}
2810
2811public:
2812 bool isSugared() const { return false; }
2813 QualType desugar() const { return QualType(this, 0); }
2814
2815 static bool classof(const Type *T) {
2816 return T->getTypeClass() == RValueReference;
2817 }
2818};
2819
2820/// A pointer to member type per C++ 8.3.3 - Pointers to members.
2821///
2822/// This includes both pointers to data members and pointer to member functions.
2823class MemberPointerType : public Type, public llvm::FoldingSetNode {
2824 friend class ASTContext; // ASTContext creates these.
2825
2826 QualType PointeeType;
2827
2828 /// The class of which the pointee is a member. Must ultimately be a
2829 /// RecordType, but could be a typedef or a template parameter too.
2830 const Type *Class;
2831
2832 MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr)
2833 : Type(MemberPointer, CanonicalPtr,
2834 Cls->isDependentType() || Pointee->isDependentType(),
2835 (Cls->isInstantiationDependentType() ||
2836 Pointee->isInstantiationDependentType()),
2837 Pointee->isVariablyModifiedType(),
2838 (Cls->containsUnexpandedParameterPack() ||
2839 Pointee->containsUnexpandedParameterPack())),
2840 PointeeType(Pointee), Class(Cls) {}
2841
2842public:
2843 QualType getPointeeType() const { return PointeeType; }
2844
2845 /// Returns true if the member type (i.e. the pointee type) is a
2846 /// function type rather than a data-member type.
2847 bool isMemberFunctionPointer() const {
2848 return PointeeType->isFunctionProtoType();
2849 }
2850
2851 /// Returns true if the member type (i.e. the pointee type) is a
2852 /// data type rather than a function type.
2853 bool isMemberDataPointer() const {
2854 return !PointeeType->isFunctionProtoType();
2855 }
2856
2857 const Type *getClass() const { return Class; }
2858 CXXRecordDecl *getMostRecentCXXRecordDecl() const;
2859
2860 bool isSugared() const { return false; }
2861 QualType desugar() const { return QualType(this, 0); }
2862
2863 void Profile(llvm::FoldingSetNodeID &ID) {
2864 Profile(ID, getPointeeType(), getClass());
2865 }
2866
2867 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
2868 const Type *Class) {
2869 ID.AddPointer(Pointee.getAsOpaquePtr());
2870 ID.AddPointer(Class);
2871 }
2872
2873 static bool classof(const Type *T) {
2874 return T->getTypeClass() == MemberPointer;
2875 }
2876};
2877
2878/// Represents an array type, per C99 6.7.5.2 - Array Declarators.
2879class ArrayType : public Type, public llvm::FoldingSetNode {
2880public:
2881 /// Capture whether this is a normal array (e.g. int X[4])
2882 /// an array with a static size (e.g. int X[static 4]), or an array
2883 /// with a star size (e.g. int X[*]).
2884 /// 'static' is only allowed on function parameters.
2885 enum ArraySizeModifier {
2886 Normal, Static, Star
2887 };
2888
2889private:
2890 /// The element type of the array.
2891 QualType ElementType;
2892
2893protected:
2894 friend class ASTContext; // ASTContext creates these.
2895
2896 ArrayType(TypeClass tc, QualType et, QualType can, ArraySizeModifier sm,
2897 unsigned tq, const Expr *sz = nullptr);
2898
2899public:
2900 QualType getElementType() const { return ElementType; }
2901
2902 ArraySizeModifier getSizeModifier() const {
2903 return ArraySizeModifier(ArrayTypeBits.SizeModifier);
2904 }
2905
2906 Qualifiers getIndexTypeQualifiers() const {
2907 return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
2908 }
2909
2910 unsigned getIndexTypeCVRQualifiers() const {
2911 return ArrayTypeBits.IndexTypeQuals;
2912 }
2913
2914 static bool classof(const Type *T) {
2915 return T->getTypeClass() == ConstantArray ||
2916 T->getTypeClass() == VariableArray ||
2917 T->getTypeClass() == IncompleteArray ||
2918 T->getTypeClass() == DependentSizedArray;
2919 }
2920};
2921
2922/// Represents the canonical version of C arrays with a specified constant size.
2923/// For example, the canonical type for 'int A[4 + 4*100]' is a
2924/// ConstantArrayType where the element type is 'int' and the size is 404.
2925class ConstantArrayType final
2926 : public ArrayType,
2927 private llvm::TrailingObjects<ConstantArrayType, const Expr *> {
2928 friend class ASTContext; // ASTContext creates these.
2929 friend TrailingObjects;
2930
2931 llvm::APInt Size; // Allows us to unique the type.
2932
2933 ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
2934 const Expr *sz, ArraySizeModifier sm, unsigned tq)
2935 : ArrayType(ConstantArray, et, can, sm, tq, sz), Size(size) {
2936 ConstantArrayTypeBits.HasStoredSizeExpr = sz != nullptr;
2937 if (ConstantArrayTypeBits.HasStoredSizeExpr) {
2938 assert(!can.isNull() && "canonical constant array should not have size")((!can.isNull() && "canonical constant array should not have size"
) ? static_cast<void> (0) : __assert_fail ("!can.isNull() && \"canonical constant array should not have size\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 2938, __PRETTY_FUNCTION__))
;
2939 *getTrailingObjects<const Expr*>() = sz;
2940 }
2941 }
2942
2943 unsigned numTrailingObjects(OverloadToken<const Expr*>) const {
2944 return ConstantArrayTypeBits.HasStoredSizeExpr;
2945 }
2946
2947public:
2948 const llvm::APInt &getSize() const { return Size; }
2949 const Expr *getSizeExpr() const {
2950 return ConstantArrayTypeBits.HasStoredSizeExpr
2951 ? *getTrailingObjects<const Expr *>()
2952 : nullptr;
2953 }
2954 bool isSugared() const { return false; }
2955 QualType desugar() const { return QualType(this, 0); }
2956
2957 /// Determine the number of bits required to address a member of
2958 // an array with the given element type and number of elements.
2959 static unsigned getNumAddressingBits(const ASTContext &Context,
2960 QualType ElementType,
2961 const llvm::APInt &NumElements);
2962
2963 /// Determine the maximum number of active bits that an array's size
2964 /// can require, which limits the maximum size of the array.
2965 static unsigned getMaxSizeBits(const ASTContext &Context);
2966
2967 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
2968 Profile(ID, Ctx, getElementType(), getSize(), getSizeExpr(),
2969 getSizeModifier(), getIndexTypeCVRQualifiers());
2970 }
2971
2972 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx,
2973 QualType ET, const llvm::APInt &ArraySize,
2974 const Expr *SizeExpr, ArraySizeModifier SizeMod,
2975 unsigned TypeQuals);
2976
2977 static bool classof(const Type *T) {
2978 return T->getTypeClass() == ConstantArray;
2979 }
2980};
2981
2982/// Represents a C array with an unspecified size. For example 'int A[]' has
2983/// an IncompleteArrayType where the element type is 'int' and the size is
2984/// unspecified.
2985class IncompleteArrayType : public ArrayType {
2986 friend class ASTContext; // ASTContext creates these.
2987
2988 IncompleteArrayType(QualType et, QualType can,
2989 ArraySizeModifier sm, unsigned tq)
2990 : ArrayType(IncompleteArray, et, can, sm, tq) {}
2991
2992public:
2993 friend class StmtIteratorBase;
2994
2995 bool isSugared() const { return false; }
2996 QualType desugar() const { return QualType(this, 0); }
2997
2998 static bool classof(const Type *T) {
2999 return T->getTypeClass() == IncompleteArray;
3000 }
3001
3002 void Profile(llvm::FoldingSetNodeID &ID) {
3003 Profile(ID, getElementType(), getSizeModifier(),
3004 getIndexTypeCVRQualifiers());
3005 }
3006
3007 static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
3008 ArraySizeModifier SizeMod, unsigned TypeQuals) {
3009 ID.AddPointer(ET.getAsOpaquePtr());
3010 ID.AddInteger(SizeMod);
3011 ID.AddInteger(TypeQuals);
3012 }
3013};
3014
3015/// Represents a C array with a specified size that is not an
3016/// integer-constant-expression. For example, 'int s[x+foo()]'.
3017/// Since the size expression is an arbitrary expression, we store it as such.
3018///
3019/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
3020/// should not be: two lexically equivalent variable array types could mean
3021/// different things, for example, these variables do not have the same type
3022/// dynamically:
3023///
3024/// void foo(int x) {
3025/// int Y[x];
3026/// ++x;
3027/// int Z[x];
3028/// }
3029class VariableArrayType : public ArrayType {
3030 friend class ASTContext; // ASTContext creates these.
3031
3032 /// An assignment-expression. VLA's are only permitted within
3033 /// a function block.
3034 Stmt *SizeExpr;
3035
3036 /// The range spanned by the left and right array brackets.
3037 SourceRange Brackets;
3038
3039 VariableArrayType(QualType et, QualType can, Expr *e,
3040 ArraySizeModifier sm, unsigned tq,
3041 SourceRange brackets)
3042 : ArrayType(VariableArray, et, can, sm, tq, e),
3043 SizeExpr((Stmt*) e), Brackets(brackets) {}
3044
3045public:
3046 friend class StmtIteratorBase;
3047
3048 Expr *getSizeExpr() const {
3049 // We use C-style casts instead of cast<> here because we do not wish
3050 // to have a dependency of Type.h on Stmt.h/Expr.h.
3051 return (Expr*) SizeExpr;
3052 }
3053
3054 SourceRange getBracketsRange() const { return Brackets; }
3055 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3056 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3057
3058 bool isSugared() const { return false; }
3059 QualType desugar() const { return QualType(this, 0); }
3060
3061 static bool classof(const Type *T) {
3062 return T->getTypeClass() == VariableArray;
3063 }
3064
3065 void Profile(llvm::FoldingSetNodeID &ID) {
3066 llvm_unreachable("Cannot unique VariableArrayTypes.")::llvm::llvm_unreachable_internal("Cannot unique VariableArrayTypes."
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 3066)
;
3067 }
3068};
3069
3070/// Represents an array type in C++ whose size is a value-dependent expression.
3071///
3072/// For example:
3073/// \code
3074/// template<typename T, int Size>
3075/// class array {
3076/// T data[Size];
3077/// };
3078/// \endcode
3079///
3080/// For these types, we won't actually know what the array bound is
3081/// until template instantiation occurs, at which point this will
3082/// become either a ConstantArrayType or a VariableArrayType.
3083class DependentSizedArrayType : public ArrayType {
3084 friend class ASTContext; // ASTContext creates these.
3085
3086 const ASTContext &Context;
3087
3088 /// An assignment expression that will instantiate to the
3089 /// size of the array.
3090 ///
3091 /// The expression itself might be null, in which case the array
3092 /// type will have its size deduced from an initializer.
3093 Stmt *SizeExpr;
3094
3095 /// The range spanned by the left and right array brackets.
3096 SourceRange Brackets;
3097
3098 DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
3099 Expr *e, ArraySizeModifier sm, unsigned tq,
3100 SourceRange brackets);
3101
3102public:
3103 friend class StmtIteratorBase;
3104
3105 Expr *getSizeExpr() const {
3106 // We use C-style casts instead of cast<> here because we do not wish
3107 // to have a dependency of Type.h on Stmt.h/Expr.h.
3108 return (Expr*) SizeExpr;
3109 }
3110
3111 SourceRange getBracketsRange() const { return Brackets; }
3112 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3113 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3114
3115 bool isSugared() const { return false; }
3116 QualType desugar() const { return QualType(this, 0); }
3117
3118 static bool classof(const Type *T) {
3119 return T->getTypeClass() == DependentSizedArray;
3120 }
3121
3122 void Profile(llvm::FoldingSetNodeID &ID) {
3123 Profile(ID, Context, getElementType(),
3124 getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
3125 }
3126
3127 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3128 QualType ET, ArraySizeModifier SizeMod,
3129 unsigned TypeQuals, Expr *E);
3130};
3131
3132/// Represents an extended address space qualifier where the input address space
3133/// value is dependent. Non-dependent address spaces are not represented with a
3134/// special Type subclass; they are stored on an ExtQuals node as part of a QualType.
3135///
3136/// For example:
3137/// \code
3138/// template<typename T, int AddrSpace>
3139/// class AddressSpace {
3140/// typedef T __attribute__((address_space(AddrSpace))) type;
3141/// }
3142/// \endcode
3143class DependentAddressSpaceType : public Type, public llvm::FoldingSetNode {
3144 friend class ASTContext;
3145
3146 const ASTContext &Context;
3147 Expr *AddrSpaceExpr;
3148 QualType PointeeType;
3149 SourceLocation loc;
3150
3151 DependentAddressSpaceType(const ASTContext &Context, QualType PointeeType,
3152 QualType can, Expr *AddrSpaceExpr,
3153 SourceLocation loc);
3154
3155public:
3156 Expr *getAddrSpaceExpr() const { return AddrSpaceExpr; }
3157 QualType getPointeeType() const { return PointeeType; }
3158 SourceLocation getAttributeLoc() const { return loc; }
3159
3160 bool isSugared() const { return false; }
3161 QualType desugar() const { return QualType(this, 0); }
3162
3163 static bool classof(const Type *T) {
3164 return T->getTypeClass() == DependentAddressSpace;
3165 }
3166
3167 void Profile(llvm::FoldingSetNodeID &ID) {
3168 Profile(ID, Context, getPointeeType(), getAddrSpaceExpr());
3169 }
3170
3171 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3172 QualType PointeeType, Expr *AddrSpaceExpr);
3173};
3174
3175/// Represents an extended vector type where either the type or size is
3176/// dependent.
3177///
3178/// For example:
3179/// \code
3180/// template<typename T, int Size>
3181/// class vector {
3182/// typedef T __attribute__((ext_vector_type(Size))) type;
3183/// }
3184/// \endcode
3185class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
3186 friend class ASTContext;
3187
3188 const ASTContext &Context;
3189 Expr *SizeExpr;
3190
3191 /// The element type of the array.
3192 QualType ElementType;
3193
3194 SourceLocation loc;
3195
3196 DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
3197 QualType can, Expr *SizeExpr, SourceLocation loc);
3198
3199public:
3200 Expr *getSizeExpr() const { return SizeExpr; }
3201 QualType getElementType() const { return ElementType; }
3202 SourceLocation getAttributeLoc() const { return loc; }
3203
3204 bool isSugared() const { return false; }
3205 QualType desugar() const { return QualType(this, 0); }
3206
3207 static bool classof(const Type *T) {
3208 return T->getTypeClass() == DependentSizedExtVector;
3209 }
3210
3211 void Profile(llvm::FoldingSetNodeID &ID) {
3212 Profile(ID, Context, getElementType(), getSizeExpr());
3213 }
3214
3215 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3216 QualType ElementType, Expr *SizeExpr);
3217};
3218
3219
3220/// Represents a GCC generic vector type. This type is created using
3221/// __attribute__((vector_size(n)), where "n" specifies the vector size in
3222/// bytes; or from an Altivec __vector or vector declaration.
3223/// Since the constructor takes the number of vector elements, the
3224/// client is responsible for converting the size into the number of elements.
3225class VectorType : public Type, public llvm::FoldingSetNode {
3226public:
3227 enum VectorKind {
3228 /// not a target-specific vector type
3229 GenericVector,
3230
3231 /// is AltiVec vector
3232 AltiVecVector,
3233
3234 /// is AltiVec 'vector Pixel'
3235 AltiVecPixel,
3236
3237 /// is AltiVec 'vector bool ...'
3238 AltiVecBool,
3239
3240 /// is ARM Neon vector
3241 NeonVector,
3242
3243 /// is ARM Neon polynomial vector
3244 NeonPolyVector
3245 };
3246
3247protected:
3248 friend class ASTContext; // ASTContext creates these.
3249
3250 /// The element type of the vector.
3251 QualType ElementType;
3252
3253 VectorType(QualType vecType, unsigned nElements, QualType canonType,
3254 VectorKind vecKind);
3255
3256 VectorType(TypeClass tc, QualType vecType, unsigned nElements,
3257 QualType canonType, VectorKind vecKind);
3258
3259public:
3260 QualType getElementType() const { return ElementType; }
3261 unsigned getNumElements() const { return VectorTypeBits.NumElements; }
3262
3263 static bool isVectorSizeTooLarge(unsigned NumElements) {
3264 return NumElements > VectorTypeBitfields::MaxNumElements;
3265 }
3266
3267 bool isSugared() const { return false; }
3268 QualType desugar() const { return QualType(this, 0); }
3269
3270 VectorKind getVectorKind() const {
3271 return VectorKind(VectorTypeBits.VecKind);
3272 }
3273
3274 void Profile(llvm::FoldingSetNodeID &ID) {
3275 Profile(ID, getElementType(), getNumElements(),
3276 getTypeClass(), getVectorKind());
3277 }
3278
3279 static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
3280 unsigned NumElements, TypeClass TypeClass,
3281 VectorKind VecKind) {
3282 ID.AddPointer(ElementType.getAsOpaquePtr());
3283 ID.AddInteger(NumElements);
3284 ID.AddInteger(TypeClass);
3285 ID.AddInteger(VecKind);
3286 }
3287
3288 static bool classof(const Type *T) {
3289 return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
3290 }
3291};
3292
3293/// Represents a vector type where either the type or size is dependent.
3294////
3295/// For example:
3296/// \code
3297/// template<typename T, int Size>
3298/// class vector {
3299/// typedef T __attribute__((vector_size(Size))) type;
3300/// }
3301/// \endcode
3302class DependentVectorType : public Type, public llvm::FoldingSetNode {
3303 friend class ASTContext;
3304
3305 const ASTContext &Context;
3306 QualType ElementType;
3307 Expr *SizeExpr;
3308 SourceLocation Loc;
3309
3310 DependentVectorType(const ASTContext &Context, QualType ElementType,
3311 QualType CanonType, Expr *SizeExpr,
3312 SourceLocation Loc, VectorType::VectorKind vecKind);
3313
3314public:
3315 Expr *getSizeExpr() const { return SizeExpr; }
3316 QualType getElementType() const { return ElementType; }
3317 SourceLocation getAttributeLoc() const { return Loc; }
3318 VectorType::VectorKind getVectorKind() const {
3319 return VectorType::VectorKind(VectorTypeBits.VecKind);
3320 }
3321
3322 bool isSugared() const { return false; }
3323 QualType desugar() const { return QualType(this, 0); }
3324
3325 static bool classof(const Type *T) {
3326 return T->getTypeClass() == DependentVector;
3327 }
3328
3329 void Profile(llvm::FoldingSetNodeID &ID) {
3330 Profile(ID, Context, getElementType(), getSizeExpr(), getVectorKind());
3331 }
3332
3333 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3334 QualType ElementType, const Expr *SizeExpr,
3335 VectorType::VectorKind VecKind);
3336};
3337
3338/// ExtVectorType - Extended vector type. This type is created using
3339/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
3340/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
3341/// class enables syntactic extensions, like Vector Components for accessing
3342/// points (as .xyzw), colors (as .rgba), and textures (modeled after OpenGL
3343/// Shading Language).
3344class ExtVectorType : public VectorType {
3345 friend class ASTContext; // ASTContext creates these.
3346
3347 ExtVectorType(QualType vecType, unsigned nElements, QualType canonType)
3348 : VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
3349
3350public:
3351 static int getPointAccessorIdx(char c) {
3352 switch (c) {
3353 default: return -1;
3354 case 'x': case 'r': return 0;
3355 case 'y': case 'g': return 1;
3356 case 'z': case 'b': return 2;
3357 case 'w': case 'a': return 3;
3358 }
3359 }
3360
3361 static int getNumericAccessorIdx(char c) {
3362 switch (c) {
3363 default: return -1;
3364 case '0': return 0;
3365 case '1': return 1;
3366 case '2': return 2;
3367 case '3': return 3;
3368 case '4': return 4;
3369 case '5': return 5;
3370 case '6': return 6;
3371 case '7': return 7;
3372 case '8': return 8;
3373 case '9': return 9;
3374 case 'A':
3375 case 'a': return 10;
3376 case 'B':
3377 case 'b': return 11;
3378 case 'C':
3379 case 'c': return 12;
3380 case 'D':
3381 case 'd': return 13;
3382 case 'E':
3383 case 'e': return 14;
3384 case 'F':
3385 case 'f': return 15;
3386 }
3387 }
3388
3389 static int getAccessorIdx(char c, bool isNumericAccessor) {
3390 if (isNumericAccessor)
3391 return getNumericAccessorIdx(c);
3392 else
3393 return getPointAccessorIdx(c);
3394 }
3395
3396 bool isAccessorWithinNumElements(char c, bool isNumericAccessor) const {
3397 if (int idx = getAccessorIdx(c, isNumericAccessor)+1)
3398 return unsigned(idx-1) < getNumElements();
3399 return false;
3400 }
3401
3402 bool isSugared() const { return false; }
3403 QualType desugar() const { return QualType(this, 0); }
3404
3405 static bool classof(const Type *T) {
3406 return T->getTypeClass() == ExtVector;
3407 }
3408};
3409
3410/// FunctionType - C99 6.7.5.3 - Function Declarators. This is the common base
3411/// class of FunctionNoProtoType and FunctionProtoType.
3412class FunctionType : public Type {
3413 // The type returned by the function.
3414 QualType ResultType;
3415
3416public:
3417 /// Interesting information about a specific parameter that can't simply
3418 /// be reflected in parameter's type. This is only used by FunctionProtoType
3419 /// but is in FunctionType to make this class available during the
3420 /// specification of the bases of FunctionProtoType.
3421 ///
3422 /// It makes sense to model language features this way when there's some
3423 /// sort of parameter-specific override (such as an attribute) that
3424 /// affects how the function is called. For example, the ARC ns_consumed
3425 /// attribute changes whether a parameter is passed at +0 (the default)
3426 /// or +1 (ns_consumed). This must be reflected in the function type,
3427 /// but isn't really a change to the parameter type.
3428 ///
3429 /// One serious disadvantage of modelling language features this way is
3430 /// that they generally do not work with language features that attempt
3431 /// to destructure types. For example, template argument deduction will
3432 /// not be able to match a parameter declared as
3433 /// T (*)(U)
3434 /// against an argument of type
3435 /// void (*)(__attribute__((ns_consumed)) id)
3436 /// because the substitution of T=void, U=id into the former will
3437 /// not produce the latter.
3438 class ExtParameterInfo {
3439 enum {
3440 ABIMask = 0x0F,
3441 IsConsumed = 0x10,
3442 HasPassObjSize = 0x20,
3443 IsNoEscape = 0x40,
3444 };
3445 unsigned char Data = 0;
3446
3447 public:
3448 ExtParameterInfo() = default;
3449
3450 /// Return the ABI treatment of this parameter.
3451 ParameterABI getABI() const { return ParameterABI(Data & ABIMask); }
3452 ExtParameterInfo withABI(ParameterABI kind) const {
3453 ExtParameterInfo copy = *this;
3454 copy.Data = (copy.Data & ~ABIMask) | unsigned(kind);
3455 return copy;
3456 }
3457
3458 /// Is this parameter considered "consumed" by Objective-C ARC?
3459 /// Consumed parameters must have retainable object type.
3460 bool isConsumed() const { return (Data & IsConsumed); }
3461 ExtParameterInfo withIsConsumed(bool consumed) const {
3462 ExtParameterInfo copy = *this;
3463 if (consumed)
3464 copy.Data |= IsConsumed;
3465 else
3466 copy.Data &= ~IsConsumed;
3467 return copy;
3468 }
3469
3470 bool hasPassObjectSize() const { return Data & HasPassObjSize; }
3471 ExtParameterInfo withHasPassObjectSize() const {
3472 ExtParameterInfo Copy = *this;
3473 Copy.Data |= HasPassObjSize;
3474 return Copy;
3475 }
3476
3477 bool isNoEscape() const { return Data & IsNoEscape; }
3478 ExtParameterInfo withIsNoEscape(bool NoEscape) const {
3479 ExtParameterInfo Copy = *this;
3480 if (NoEscape)
3481 Copy.Data |= IsNoEscape;
3482 else
3483 Copy.Data &= ~IsNoEscape;
3484 return Copy;
3485 }
3486
3487 unsigned char getOpaqueValue() const { return Data; }
3488 static ExtParameterInfo getFromOpaqueValue(unsigned char data) {
3489 ExtParameterInfo result;
3490 result.Data = data;
3491 return result;
3492 }
3493
3494 friend bool operator==(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3495 return lhs.Data == rhs.Data;
3496 }
3497
3498 friend bool operator!=(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3499 return lhs.Data != rhs.Data;
3500 }
3501 };
3502
3503 /// A class which abstracts out some details necessary for
3504 /// making a call.
3505 ///
3506 /// It is not actually used directly for storing this information in
3507 /// a FunctionType, although FunctionType does currently use the
3508 /// same bit-pattern.
3509 ///
3510 // If you add a field (say Foo), other than the obvious places (both,
3511 // constructors, compile failures), what you need to update is
3512 // * Operator==
3513 // * getFoo
3514 // * withFoo
3515 // * functionType. Add Foo, getFoo.
3516 // * ASTContext::getFooType
3517 // * ASTContext::mergeFunctionTypes
3518 // * FunctionNoProtoType::Profile
3519 // * FunctionProtoType::Profile
3520 // * TypePrinter::PrintFunctionProto
3521 // * AST read and write
3522 // * Codegen
3523 class ExtInfo {
3524 friend class FunctionType;
3525
3526 // Feel free to rearrange or add bits, but if you go over 12,
3527 // you'll need to adjust both the Bits field below and
3528 // Type::FunctionTypeBitfields.
3529
3530 // | CC |noreturn|produces|nocallersavedregs|regparm|nocfcheck|
3531 // |0 .. 4| 5 | 6 | 7 |8 .. 10| 11 |
3532 //
3533 // regparm is either 0 (no regparm attribute) or the regparm value+1.
3534 enum { CallConvMask = 0x1F };
3535 enum { NoReturnMask = 0x20 };
3536 enum { ProducesResultMask = 0x40 };
3537 enum { NoCallerSavedRegsMask = 0x80 };
3538 enum { NoCfCheckMask = 0x800 };
3539 enum {
3540 RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask |
3541 NoCallerSavedRegsMask | NoCfCheckMask),
3542 RegParmOffset = 8
3543 }; // Assumed to be the last field
3544 uint16_t Bits = CC_C;
3545
3546 ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
3547
3548 public:
3549 // Constructor with no defaults. Use this when you know that you
3550 // have all the elements (when reading an AST file for example).
3551 ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
3552 bool producesResult, bool noCallerSavedRegs, bool NoCfCheck) {
3553 assert((!hasRegParm || regParm < 7) && "Invalid regparm value")(((!hasRegParm || regParm < 7) && "Invalid regparm value"
) ? static_cast<void> (0) : __assert_fail ("(!hasRegParm || regParm < 7) && \"Invalid regparm value\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 3553, __PRETTY_FUNCTION__))
;
3554 Bits = ((unsigned)cc) | (noReturn ? NoReturnMask : 0) |
3555 (producesResult ? ProducesResultMask : 0) |
3556 (noCallerSavedRegs ? NoCallerSavedRegsMask : 0) |
3557 (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0) |
3558 (NoCfCheck ? NoCfCheckMask : 0);
3559 }
3560
3561 // Constructor with all defaults. Use when for example creating a
3562 // function known to use defaults.
3563 ExtInfo() = default;
3564
3565 // Constructor with just the calling convention, which is an important part
3566 // of the canonical type.
3567 ExtInfo(CallingConv CC) : Bits(CC) {}
3568
3569 bool getNoReturn() const { return Bits & NoReturnMask; }
3570 bool getProducesResult() const { return Bits & ProducesResultMask; }
3571 bool getNoCallerSavedRegs() const { return Bits & NoCallerSavedRegsMask; }
3572 bool getNoCfCheck() const { return Bits & NoCfCheckMask; }
3573 bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; }
3574
3575 unsigned getRegParm() const {
3576 unsigned RegParm = (Bits & RegParmMask) >> RegParmOffset;
3577 if (RegParm > 0)
3578 --RegParm;
3579 return RegParm;
3580 }
3581
3582 CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
3583
3584 bool operator==(ExtInfo Other) const {
3585 return Bits == Other.Bits;
3586 }
3587 bool operator!=(ExtInfo Other) const {
3588 return Bits != Other.Bits;
3589 }
3590
3591 // Note that we don't have setters. That is by design, use
3592 // the following with methods instead of mutating these objects.
3593
3594 ExtInfo withNoReturn(bool noReturn) const {
3595 if (noReturn)
3596 return ExtInfo(Bits | NoReturnMask);
3597 else
3598 return ExtInfo(Bits & ~NoReturnMask);
3599 }
3600
3601 ExtInfo withProducesResult(bool producesResult) const {
3602 if (producesResult)
3603 return ExtInfo(Bits | ProducesResultMask);
3604 else
3605 return ExtInfo(Bits & ~ProducesResultMask);
3606 }
3607
3608 ExtInfo withNoCallerSavedRegs(bool noCallerSavedRegs) const {
3609 if (noCallerSavedRegs)
3610 return ExtInfo(Bits | NoCallerSavedRegsMask);
3611 else
3612 return ExtInfo(Bits & ~NoCallerSavedRegsMask);
3613 }
3614
3615 ExtInfo withNoCfCheck(bool noCfCheck) const {
3616 if (noCfCheck)
3617 return ExtInfo(Bits | NoCfCheckMask);
3618 else
3619 return ExtInfo(Bits & ~NoCfCheckMask);
3620 }
3621
3622 ExtInfo withRegParm(unsigned RegParm) const {
3623 assert(RegParm < 7 && "Invalid regparm value")((RegParm < 7 && "Invalid regparm value") ? static_cast
<void> (0) : __assert_fail ("RegParm < 7 && \"Invalid regparm value\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 3623, __PRETTY_FUNCTION__))
;
3624 return ExtInfo((Bits & ~RegParmMask) |
3625 ((RegParm + 1) << RegParmOffset));
3626 }
3627
3628 ExtInfo withCallingConv(CallingConv cc) const {
3629 return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
3630 }
3631
3632 void Profile(llvm::FoldingSetNodeID &ID) const {
3633 ID.AddInteger(Bits);
3634 }
3635 };
3636
3637 /// A simple holder for a QualType representing a type in an
3638 /// exception specification. Unfortunately needed by FunctionProtoType
3639 /// because TrailingObjects cannot handle repeated types.
3640 struct ExceptionType { QualType Type; };
3641
3642 /// A simple holder for various uncommon bits which do not fit in
3643 /// FunctionTypeBitfields. Aligned to alignof(void *) to maintain the
3644 /// alignment of subsequent objects in TrailingObjects. You must update
3645 /// hasExtraBitfields in FunctionProtoType after adding extra data here.
3646 struct alignas(void *) FunctionTypeExtraBitfields {
3647 /// The number of types in the exception specification.
3648 /// A whole unsigned is not needed here and according to
3649 /// [implimits] 8 bits would be enough here.
3650 unsigned NumExceptionType;
3651 };
3652
3653protected:
3654 FunctionType(TypeClass tc, QualType res,
3655 QualType Canonical, bool Dependent,
3656 bool InstantiationDependent,
3657 bool VariablyModified, bool ContainsUnexpandedParameterPack,
3658 ExtInfo Info)
3659 : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
3660 ContainsUnexpandedParameterPack),
3661 ResultType(res) {
3662 FunctionTypeBits.ExtInfo = Info.Bits;
3663 }
3664
3665 Qualifiers getFastTypeQuals() const {
3666 return Qualifiers::fromFastMask(FunctionTypeBits.FastTypeQuals);
3667 }
3668
3669public:
3670 QualType getReturnType() const { return ResultType; }
3671
3672 bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
3673 unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
3674
3675 /// Determine whether this function type includes the GNU noreturn
3676 /// attribute. The C++11 [[noreturn]] attribute does not affect the function
3677 /// type.
3678 bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
3679
3680 CallingConv getCallConv() const { return getExtInfo().getCC(); }
3681 ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
3682
3683 static_assert((~Qualifiers::FastMask & Qualifiers::CVRMask) == 0,
3684 "Const, volatile and restrict are assumed to be a subset of "
3685 "the fast qualifiers.");
3686
3687 bool isConst() const { return getFastTypeQuals().hasConst(); }
3688 bool isVolatile() const { return getFastTypeQuals().hasVolatile(); }
3689 bool isRestrict() const { return getFastTypeQuals().hasRestrict(); }
3690
3691 /// Determine the type of an expression that calls a function of
3692 /// this type.
3693 QualType getCallResultType(const ASTContext &Context) const {
3694 return getReturnType().getNonLValueExprType(Context);
3695 }
3696
3697 static StringRef getNameForCallConv(CallingConv CC);
3698
3699 static bool classof(const Type *T) {
3700 return T->getTypeClass() == FunctionNoProto ||
3701 T->getTypeClass() == FunctionProto;
3702 }
3703};
3704
3705/// Represents a K&R-style 'int foo()' function, which has
3706/// no information available about its arguments.
3707class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
3708 friend class ASTContext; // ASTContext creates these.
3709
3710 FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
3711 : FunctionType(FunctionNoProto, Result, Canonical,
3712 /*Dependent=*/false, /*InstantiationDependent=*/false,
3713 Result->isVariablyModifiedType(),
3714 /*ContainsUnexpandedParameterPack=*/false, Info) {}
3715
3716public:
3717 // No additional state past what FunctionType provides.
3718
3719 bool isSugared() const { return false; }
3720 QualType desugar() const { return QualType(this, 0); }
3721
3722 void Profile(llvm::FoldingSetNodeID &ID) {
3723 Profile(ID, getReturnType(), getExtInfo());
3724 }
3725
3726 static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
3727 ExtInfo Info) {
3728 Info.Profile(ID);
3729 ID.AddPointer(ResultType.getAsOpaquePtr());
3730 }
3731
3732 static bool classof(const Type *T) {
3733 return T->getTypeClass() == FunctionNoProto;
3734 }
3735};
3736
3737/// Represents a prototype with parameter type info, e.g.
3738/// 'int foo(int)' or 'int foo(void)'. 'void' is represented as having no
3739/// parameters, not as having a single void parameter. Such a type can have
3740/// an exception specification, but this specification is not part of the
3741/// canonical type. FunctionProtoType has several trailing objects, some of
3742/// which optional. For more information about the trailing objects see
3743/// the first comment inside FunctionProtoType.
3744class FunctionProtoType final
3745 : public FunctionType,
3746 public llvm::FoldingSetNode,
3747 private llvm::TrailingObjects<
3748 FunctionProtoType, QualType, SourceLocation,
3749 FunctionType::FunctionTypeExtraBitfields, FunctionType::ExceptionType,
3750 Expr *, FunctionDecl *, FunctionType::ExtParameterInfo, Qualifiers> {
3751 friend class ASTContext; // ASTContext creates these.
3752 friend TrailingObjects;
3753
3754 // FunctionProtoType is followed by several trailing objects, some of
3755 // which optional. They are in order:
3756 //
3757 // * An array of getNumParams() QualType holding the parameter types.
3758 // Always present. Note that for the vast majority of FunctionProtoType,
3759 // these will be the only trailing objects.
3760 //
3761 // * Optionally if the function is variadic, the SourceLocation of the
3762 // ellipsis.
3763 //
3764 // * Optionally if some extra data is stored in FunctionTypeExtraBitfields
3765 // (see FunctionTypeExtraBitfields and FunctionTypeBitfields):
3766 // a single FunctionTypeExtraBitfields. Present if and only if
3767 // hasExtraBitfields() is true.
3768 //
3769 // * Optionally exactly one of:
3770 // * an array of getNumExceptions() ExceptionType,
3771 // * a single Expr *,
3772 // * a pair of FunctionDecl *,
3773 // * a single FunctionDecl *
3774 // used to store information about the various types of exception
3775 // specification. See getExceptionSpecSize for the details.
3776 //
3777 // * Optionally an array of getNumParams() ExtParameterInfo holding
3778 // an ExtParameterInfo for each of the parameters. Present if and
3779 // only if hasExtParameterInfos() is true.
3780 //
3781 // * Optionally a Qualifiers object to represent extra qualifiers that can't
3782 // be represented by FunctionTypeBitfields.FastTypeQuals. Present if and only
3783 // if hasExtQualifiers() is true.
3784 //
3785 // The optional FunctionTypeExtraBitfields has to be before the data
3786 // related to the exception specification since it contains the number
3787 // of exception types.
3788 //
3789 // We put the ExtParameterInfos last. If all were equal, it would make
3790 // more sense to put these before the exception specification, because
3791 // it's much easier to skip past them compared to the elaborate switch
3792 // required to skip the exception specification. However, all is not
3793 // equal; ExtParameterInfos are used to model very uncommon features,
3794 // and it's better not to burden the more common paths.
3795
3796public:
3797 /// Holds information about the various types of exception specification.
3798 /// ExceptionSpecInfo is not stored as such in FunctionProtoType but is
3799 /// used to group together the various bits of information about the
3800 /// exception specification.
3801 struct ExceptionSpecInfo {
3802 /// The kind of exception specification this is.
3803 ExceptionSpecificationType Type = EST_None;
3804
3805 /// Explicitly-specified list of exception types.
3806 ArrayRef<QualType> Exceptions;
3807
3808 /// Noexcept expression, if this is a computed noexcept specification.
3809 Expr *NoexceptExpr = nullptr;
3810
3811 /// The function whose exception specification this is, for
3812 /// EST_Unevaluated and EST_Uninstantiated.
3813 FunctionDecl *SourceDecl = nullptr;
3814
3815 /// The function template whose exception specification this is instantiated
3816 /// from, for EST_Uninstantiated.
3817 FunctionDecl *SourceTemplate = nullptr;
3818
3819 ExceptionSpecInfo() = default;
3820
3821 ExceptionSpecInfo(ExceptionSpecificationType EST) : Type(EST) {}
3822 };
3823
3824 /// Extra information about a function prototype. ExtProtoInfo is not
3825 /// stored as such in FunctionProtoType but is used to group together
3826 /// the various bits of extra information about a function prototype.
3827 struct ExtProtoInfo {
3828 FunctionType::ExtInfo ExtInfo;
3829 bool Variadic : 1;
3830 bool HasTrailingReturn : 1;
3831 Qualifiers TypeQuals;
3832 RefQualifierKind RefQualifier = RQ_None;
3833 ExceptionSpecInfo ExceptionSpec;
3834 const ExtParameterInfo *ExtParameterInfos = nullptr;
3835 SourceLocation EllipsisLoc;
3836
3837 ExtProtoInfo() : Variadic(false), HasTrailingReturn(false) {}
3838
3839 ExtProtoInfo(CallingConv CC)
3840 : ExtInfo(CC), Variadic(false), HasTrailingReturn(false) {}
3841
3842 ExtProtoInfo withExceptionSpec(const ExceptionSpecInfo &ESI) {
3843 ExtProtoInfo Result(*this);
3844 Result.ExceptionSpec = ESI;
3845 return Result;
3846 }
3847 };
3848
3849private:
3850 unsigned numTrailingObjects(OverloadToken<QualType>) const {
3851 return getNumParams();
3852 }
3853
3854 unsigned numTrailingObjects(OverloadToken<SourceLocation>) const {
3855 return isVariadic();
3856 }
3857
3858 unsigned numTrailingObjects(OverloadToken<FunctionTypeExtraBitfields>) const {
3859 return hasExtraBitfields();
3860 }
3861
3862 unsigned numTrailingObjects(OverloadToken<ExceptionType>) const {
3863 return getExceptionSpecSize().NumExceptionType;
3864 }
3865
3866 unsigned numTrailingObjects(OverloadToken<Expr *>) const {
3867 return getExceptionSpecSize().NumExprPtr;
3868 }
3869
3870 unsigned numTrailingObjects(OverloadToken<FunctionDecl *>) const {
3871 return getExceptionSpecSize().NumFunctionDeclPtr;
3872 }
3873
3874 unsigned numTrailingObjects(OverloadToken<ExtParameterInfo>) const {
3875 return hasExtParameterInfos() ? getNumParams() : 0;
3876 }
3877
3878 /// Determine whether there are any argument types that
3879 /// contain an unexpanded parameter pack.
3880 static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
3881 unsigned numArgs) {
3882 for (unsigned Idx = 0; Idx < numArgs; ++Idx)
3883 if (ArgArray[Idx]->containsUnexpandedParameterPack())
3884 return true;
3885
3886 return false;
3887 }
3888
3889 FunctionProtoType(QualType result, ArrayRef<QualType> params,
3890 QualType canonical, const ExtProtoInfo &epi);
3891
3892 /// This struct is returned by getExceptionSpecSize and is used to
3893 /// translate an ExceptionSpecificationType to the number and kind
3894 /// of trailing objects related to the exception specification.
3895 struct ExceptionSpecSizeHolder {
3896 unsigned NumExceptionType;
3897 unsigned NumExprPtr;
3898 unsigned NumFunctionDeclPtr;
3899 };
3900
3901 /// Return the number and kind of trailing objects
3902 /// related to the exception specification.
3903 static ExceptionSpecSizeHolder
3904 getExceptionSpecSize(ExceptionSpecificationType EST, unsigned NumExceptions) {
3905 switch (EST) {
3906 case EST_None:
3907 case EST_DynamicNone:
3908 case EST_MSAny:
3909 case EST_BasicNoexcept:
3910 case EST_Unparsed:
3911 case EST_NoThrow:
3912 return {0, 0, 0};
3913
3914 case EST_Dynamic:
3915 return {NumExceptions, 0, 0};
3916
3917 case EST_DependentNoexcept:
3918 case EST_NoexceptFalse:
3919 case EST_NoexceptTrue:
3920 return {0, 1, 0};
3921
3922 case EST_Uninstantiated:
3923 return {0, 0, 2};
3924
3925 case EST_Unevaluated:
3926 return {0, 0, 1};
3927 }
3928 llvm_unreachable("bad exception specification kind")::llvm::llvm_unreachable_internal("bad exception specification kind"
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 3928)
;
3929 }
3930
3931 /// Return the number and kind of trailing objects
3932 /// related to the exception specification.
3933 ExceptionSpecSizeHolder getExceptionSpecSize() const {
3934 return getExceptionSpecSize(getExceptionSpecType(), getNumExceptions());
3935 }
3936
3937 /// Whether the trailing FunctionTypeExtraBitfields is present.
3938 static bool hasExtraBitfields(ExceptionSpecificationType EST) {
3939 // If the exception spec type is EST_Dynamic then we have > 0 exception
3940 // types and the exact number is stored in FunctionTypeExtraBitfields.
3941 return EST == EST_Dynamic;
3942 }
3943
3944 /// Whether the trailing FunctionTypeExtraBitfields is present.
3945 bool hasExtraBitfields() const {
3946 return hasExtraBitfields(getExceptionSpecType());
3947 }
3948
3949 bool hasExtQualifiers() const {
3950 return FunctionTypeBits.HasExtQuals;
3951 }
3952
3953public:
3954 unsigned getNumParams() const { return FunctionTypeBits.NumParams; }
3955
3956 QualType getParamType(unsigned i) const {
3957 assert(i < getNumParams() && "invalid parameter index")((i < getNumParams() && "invalid parameter index")
? static_cast<void> (0) : __assert_fail ("i < getNumParams() && \"invalid parameter index\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 3957, __PRETTY_FUNCTION__))
;
3958 return param_type_begin()[i];
3959 }
3960
3961 ArrayRef<QualType> getParamTypes() const {
3962 return llvm::makeArrayRef(param_type_begin(), param_type_end());
3963 }
3964
3965 ExtProtoInfo getExtProtoInfo() const {
3966 ExtProtoInfo EPI;
3967 EPI.ExtInfo = getExtInfo();
3968 EPI.Variadic = isVariadic();
3969 EPI.EllipsisLoc = getEllipsisLoc();
3970 EPI.HasTrailingReturn = hasTrailingReturn();
3971 EPI.ExceptionSpec = getExceptionSpecInfo();
3972 EPI.TypeQuals = getMethodQuals();
3973 EPI.RefQualifier = getRefQualifier();
3974 EPI.ExtParameterInfos = getExtParameterInfosOrNull();
3975 return EPI;
3976 }
3977
3978 /// Get the kind of exception specification on this function.
3979 ExceptionSpecificationType getExceptionSpecType() const {
3980 return static_cast<ExceptionSpecificationType>(
3981 FunctionTypeBits.ExceptionSpecType);
3982 }
3983
3984 /// Return whether this function has any kind of exception spec.
3985 bool hasExceptionSpec() const { return getExceptionSpecType() != EST_None; }
3986
3987 /// Return whether this function has a dynamic (throw) exception spec.
3988 bool hasDynamicExceptionSpec() const {
3989 return isDynamicExceptionSpec(getExceptionSpecType());
3990 }
3991
3992 /// Return whether this function has a noexcept exception spec.
3993 bool hasNoexceptExceptionSpec() const {
3994 return isNoexceptExceptionSpec(getExceptionSpecType());
3995 }
3996
3997 /// Return whether this function has a dependent exception spec.
3998 bool hasDependentExceptionSpec() const;
3999
4000 /// Return whether this function has an instantiation-dependent exception
4001 /// spec.
4002 bool hasInstantiationDependentExceptionSpec() const;
4003
4004 /// Return all the available information about this type's exception spec.
4005 ExceptionSpecInfo getExceptionSpecInfo() const {
4006 ExceptionSpecInfo Result;
4007 Result.Type = getExceptionSpecType();
4008 if (Result.Type == EST_Dynamic) {
4009 Result.Exceptions = exceptions();
4010 } else if (isComputedNoexcept(Result.Type)) {
4011 Result.NoexceptExpr = getNoexceptExpr();
4012 } else if (Result.Type == EST_Uninstantiated) {
4013 Result.SourceDecl = getExceptionSpecDecl();
4014 Result.SourceTemplate = getExceptionSpecTemplate();
4015 } else if (Result.Type == EST_Unevaluated) {
4016 Result.SourceDecl = getExceptionSpecDecl();
4017 }
4018 return Result;
4019 }
4020
4021 /// Return the number of types in the exception specification.
4022 unsigned getNumExceptions() const {
4023 return getExceptionSpecType() == EST_Dynamic
4024 ? getTrailingObjects<FunctionTypeExtraBitfields>()
4025 ->NumExceptionType
4026 : 0;
4027 }
4028
4029 /// Return the ith exception type, where 0 <= i < getNumExceptions().
4030 QualType getExceptionType(unsigned i) const {
4031 assert(i < getNumExceptions() && "Invalid exception number!")((i < getNumExceptions() && "Invalid exception number!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumExceptions() && \"Invalid exception number!\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 4031, __PRETTY_FUNCTION__))
;
4032 return exception_begin()[i];
4033 }
4034
4035 /// Return the expression inside noexcept(expression), or a null pointer
4036 /// if there is none (because the exception spec is not of this form).
4037 Expr *getNoexceptExpr() const {
4038 if (!isComputedNoexcept(getExceptionSpecType()))
4039 return nullptr;
4040 return *getTrailingObjects<Expr *>();
4041 }
4042
4043 /// If this function type has an exception specification which hasn't
4044 /// been determined yet (either because it has not been evaluated or because
4045 /// it has not been instantiated), this is the function whose exception
4046 /// specification is represented by this type.
4047 FunctionDecl *getExceptionSpecDecl() const {
4048 if (getExceptionSpecType() != EST_Uninstantiated &&
4049 getExceptionSpecType() != EST_Unevaluated)
4050 return nullptr;
4051 return getTrailingObjects<FunctionDecl *>()[0];
4052 }
4053
4054 /// If this function type has an uninstantiated exception
4055 /// specification, this is the function whose exception specification
4056 /// should be instantiated to find the exception specification for
4057 /// this type.
4058 FunctionDecl *getExceptionSpecTemplate() const {
4059 if (getExceptionSpecType() != EST_Uninstantiated)
4060 return nullptr;
4061 return getTrailingObjects<FunctionDecl *>()[1];
4062 }
4063
4064 /// Determine whether this function type has a non-throwing exception
4065 /// specification.
4066 CanThrowResult canThrow() const;
4067
4068 /// Determine whether this function type has a non-throwing exception
4069 /// specification. If this depends on template arguments, returns
4070 /// \c ResultIfDependent.
4071 bool isNothrow(bool ResultIfDependent = false) const {
4072 return ResultIfDependent ? canThrow() != CT_Can : canThrow() == CT_Cannot;
4073 }
4074
4075 /// Whether this function prototype is variadic.
4076 bool isVariadic() const { return FunctionTypeBits.Variadic; }
4077
4078 SourceLocation getEllipsisLoc() const {
4079 return isVariadic() ? *getTrailingObjects<SourceLocation>()
4080 : SourceLocation();
4081 }
4082
4083 /// Determines whether this function prototype contains a
4084 /// parameter pack at the end.
4085 ///
4086 /// A function template whose last parameter is a parameter pack can be
4087 /// called with an arbitrary number of arguments, much like a variadic
4088 /// function.
4089 bool isTemplateVariadic() const;
4090
4091 /// Whether this function prototype has a trailing return type.
4092 bool hasTrailingReturn() const { return FunctionTypeBits.HasTrailingReturn; }
4093
4094 Qualifiers getMethodQuals() const {
4095 if (hasExtQualifiers())
4096 return *getTrailingObjects<Qualifiers>();
4097 else
4098 return getFastTypeQuals();
4099 }
4100
4101 /// Retrieve the ref-qualifier associated with this function type.
4102 RefQualifierKind getRefQualifier() const {
4103 return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
4104 }
4105
4106 using param_type_iterator = const QualType *;
4107 using param_type_range = llvm::iterator_range<param_type_iterator>;
4108
4109 param_type_range param_types() const {
4110 return param_type_range(param_type_begin(), param_type_end());
4111 }
4112
4113 param_type_iterator param_type_begin() const {
4114 return getTrailingObjects<QualType>();
4115 }
4116
4117 param_type_iterator param_type_end() const {
4118 return param_type_begin() + getNumParams();
4119 }
4120
4121 using exception_iterator = const QualType *;
4122
4123 ArrayRef<QualType> exceptions() const {
4124 return llvm::makeArrayRef(exception_begin(), exception_end());
4125 }
4126
4127 exception_iterator exception_begin() const {
4128 return reinterpret_cast<exception_iterator>(
4129 getTrailingObjects<ExceptionType>());
4130 }
4131
4132 exception_iterator exception_end() const {
4133 return exception_begin() + getNumExceptions();
4134 }
4135
4136 /// Is there any interesting extra information for any of the parameters
4137 /// of this function type?
4138 bool hasExtParameterInfos() const {
4139 return FunctionTypeBits.HasExtParameterInfos;
4140 }
4141
4142 ArrayRef<ExtParameterInfo> getExtParameterInfos() const {
4143 assert(hasExtParameterInfos())((hasExtParameterInfos()) ? static_cast<void> (0) : __assert_fail
("hasExtParameterInfos()", "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 4143, __PRETTY_FUNCTION__))
;
4144 return ArrayRef<ExtParameterInfo>(getTrailingObjects<ExtParameterInfo>(),
4145 getNumParams());
4146 }
4147
4148 /// Return a pointer to the beginning of the array of extra parameter
4149 /// information, if present, or else null if none of the parameters
4150 /// carry it. This is equivalent to getExtProtoInfo().ExtParameterInfos.
4151 const ExtParameterInfo *getExtParameterInfosOrNull() const {
4152 if (!hasExtParameterInfos())
4153 return nullptr;
4154 return getTrailingObjects<ExtParameterInfo>();
4155 }
4156
4157 ExtParameterInfo getExtParameterInfo(unsigned I) const {
4158 assert(I < getNumParams() && "parameter index out of range")((I < getNumParams() && "parameter index out of range"
) ? static_cast<void> (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 4158, __PRETTY_FUNCTION__))
;
4159 if (hasExtParameterInfos())
4160 return getTrailingObjects<ExtParameterInfo>()[I];
4161 return ExtParameterInfo();
4162 }
4163
4164 ParameterABI getParameterABI(unsigned I) const {
4165 assert(I < getNumParams() && "parameter index out of range")((I < getNumParams() && "parameter index out of range"
) ? static_cast<void> (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 4165, __PRETTY_FUNCTION__))
;
4166 if (hasExtParameterInfos())
4167 return getTrailingObjects<ExtParameterInfo>()[I].getABI();
4168 return ParameterABI::Ordinary;
4169 }
4170
4171 bool isParamConsumed(unsigned I) const {
4172 assert(I < getNumParams() && "parameter index out of range")((I < getNumParams() && "parameter index out of range"
) ? static_cast<void> (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 4172, __PRETTY_FUNCTION__))
;
4173 if (hasExtParameterInfos())
4174 return getTrailingObjects<ExtParameterInfo>()[I].isConsumed();
4175 return false;
4176 }
4177
4178 bool isSugared() const { return false; }
4179 QualType desugar() const { return QualType(this, 0); }
4180
4181 void printExceptionSpecification(raw_ostream &OS,
4182 const PrintingPolicy &Policy) const;
4183
4184 static bool classof(const Type *T) {
4185 return T->getTypeClass() == FunctionProto;
4186 }
4187
4188 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
4189 static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
4190 param_type_iterator ArgTys, unsigned NumArgs,
4191 const ExtProtoInfo &EPI, const ASTContext &Context,
4192 bool Canonical);
4193};
4194
4195/// Represents the dependent type named by a dependently-scoped
4196/// typename using declaration, e.g.
4197/// using typename Base<T>::foo;
4198///
4199/// Template instantiation turns these into the underlying type.
4200class UnresolvedUsingType : public Type {
4201 friend class ASTContext; // ASTContext creates these.
4202
4203 UnresolvedUsingTypenameDecl *Decl;
4204
4205 UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
4206 : Type(UnresolvedUsing, QualType(), true, true, false,
4207 /*ContainsUnexpandedParameterPack=*/false),
4208 Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
4209
4210public:
4211 UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
4212
4213 bool isSugared() const { return false; }
4214 QualType desugar() const { return QualType(this, 0); }
4215
4216 static bool classof(const Type *T) {
4217 return T->getTypeClass() == UnresolvedUsing;
4218 }
4219
4220 void Profile(llvm::FoldingSetNodeID &ID) {
4221 return Profile(ID, Decl);
4222 }
4223
4224 static void Profile(llvm::FoldingSetNodeID &ID,
4225 UnresolvedUsingTypenameDecl *D) {
4226 ID.AddPointer(D);
4227 }
4228};
4229
4230class TypedefType : public Type {
4231 TypedefNameDecl *Decl;
4232
4233protected:
4234 friend class ASTContext; // ASTContext creates these.
4235
4236 TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
4237 : Type(tc, can, can->isDependentType(),
4238 can->isInstantiationDependentType(),
4239 can->isVariablyModifiedType(),
4240 /*ContainsUnexpandedParameterPack=*/false),
4241 Decl(const_cast<TypedefNameDecl*>(D)) {
4242 assert(!isa<TypedefType>(can) && "Invalid canonical type")((!isa<TypedefType>(can) && "Invalid canonical type"
) ? static_cast<void> (0) : __assert_fail ("!isa<TypedefType>(can) && \"Invalid canonical type\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 4242, __PRETTY_FUNCTION__))
;
4243 }
4244
4245public:
4246 TypedefNameDecl *getDecl() const { return Decl; }
4247
4248 bool isSugared() const { return true; }
4249 QualType desugar() const;
4250
4251 static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
4252};
4253
4254/// Sugar type that represents a type that was qualified by a qualifier written
4255/// as a macro invocation.
4256class MacroQualifiedType : public Type {
4257 friend class ASTContext; // ASTContext creates these.
4258
4259 QualType UnderlyingTy;
4260 const IdentifierInfo *MacroII;
4261
4262 MacroQualifiedType(QualType UnderlyingTy, QualType CanonTy,
4263 const IdentifierInfo *MacroII)
4264 : Type(MacroQualified, CanonTy, UnderlyingTy->isDependentType(),
4265 UnderlyingTy->isInstantiationDependentType(),
4266 UnderlyingTy->isVariablyModifiedType(),
4267 UnderlyingTy->containsUnexpandedParameterPack()),
4268 UnderlyingTy(UnderlyingTy), MacroII(MacroII) {
4269 assert(isa<AttributedType>(UnderlyingTy) &&((isa<AttributedType>(UnderlyingTy) && "Expected a macro qualified type to only wrap attributed types."
) ? static_cast<void> (0) : __assert_fail ("isa<AttributedType>(UnderlyingTy) && \"Expected a macro qualified type to only wrap attributed types.\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 4270, __PRETTY_FUNCTION__))
4270 "Expected a macro qualified type to only wrap attributed types.")((isa<AttributedType>(UnderlyingTy) && "Expected a macro qualified type to only wrap attributed types."
) ? static_cast<void> (0) : __assert_fail ("isa<AttributedType>(UnderlyingTy) && \"Expected a macro qualified type to only wrap attributed types.\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 4270, __PRETTY_FUNCTION__))
;
4271 }
4272
4273public:
4274 const IdentifierInfo *getMacroIdentifier() const { return MacroII; }
4275 QualType getUnderlyingType() const { return UnderlyingTy; }
4276
4277 /// Return this attributed type's modified type with no qualifiers attached to
4278 /// it.
4279 QualType getModifiedType() const;
4280
4281 bool isSugared() const { return true; }
4282 QualType desugar() const;
4283
4284 static bool classof(const Type *T) {
4285 return T->getTypeClass() == MacroQualified;
4286 }
4287};
4288
4289/// Represents a `typeof` (or __typeof__) expression (a GCC extension).
4290class TypeOfExprType : public Type {
4291 Expr *TOExpr;
4292
4293protected:
4294 friend class ASTContext; // ASTContext creates these.
4295
4296 TypeOfExprType(Expr *E, QualType can = QualType());
4297
4298public:
4299 Expr *getUnderlyingExpr() const { return TOExpr; }
4300
4301 /// Remove a single level of sugar.
4302 QualType desugar() const;
4303
4304 /// Returns whether this type directly provides sugar.
4305 bool isSugared() const;
4306
4307 static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
4308};
4309
4310/// Internal representation of canonical, dependent
4311/// `typeof(expr)` types.
4312///
4313/// This class is used internally by the ASTContext to manage
4314/// canonical, dependent types, only. Clients will only see instances
4315/// of this class via TypeOfExprType nodes.
4316class DependentTypeOfExprType
4317 : public TypeOfExprType, public llvm::FoldingSetNode {
4318 const ASTContext &Context;
4319
4320public:
4321 DependentTypeOfExprType(const ASTContext &Context, Expr *E)
4322 : TypeOfExprType(E), Context(Context) {}
4323
4324 void Profile(llvm::FoldingSetNodeID &ID) {
4325 Profile(ID, Context, getUnderlyingExpr());
4326 }
4327
4328 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4329 Expr *E);
4330};
4331
4332/// Represents `typeof(type)`, a GCC extension.
4333class TypeOfType : public Type {
4334 friend class ASTContext; // ASTContext creates these.
4335
4336 QualType TOType;
4337
4338 TypeOfType(QualType T, QualType can)
4339 : Type(TypeOf, can, T->isDependentType(),
4340 T->isInstantiationDependentType(),
4341 T->isVariablyModifiedType(),
4342 T->containsUnexpandedParameterPack()),
4343 TOType(T) {
4344 assert(!isa<TypedefType>(can) && "Invalid canonical type")((!isa<TypedefType>(can) && "Invalid canonical type"
) ? static_cast<void> (0) : __assert_fail ("!isa<TypedefType>(can) && \"Invalid canonical type\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 4344, __PRETTY_FUNCTION__))
;
4345 }
4346
4347public:
4348 QualType getUnderlyingType() const { return TOType; }
4349
4350 /// Remove a single level of sugar.
4351 QualType desugar() const { return getUnderlyingType(); }
4352
4353 /// Returns whether this type directly provides sugar.
4354 bool isSugared() const { return true; }
4355
4356 static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
4357};
4358
4359/// Represents the type `decltype(expr)` (C++11).
4360class DecltypeType : public Type {
4361 Expr *E;
4362 QualType UnderlyingType;
4363
4364protected:
4365 friend class ASTContext; // ASTContext creates these.
4366
4367 DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
4368
4369public:
4370 Expr *getUnderlyingExpr() const { return E; }
4371 QualType getUnderlyingType() const { return UnderlyingType; }
4372
4373 /// Remove a single level of sugar.
4374 QualType desugar() const;
4375
4376 /// Returns whether this type directly provides sugar.
4377 bool isSugared() const;
4378
4379 static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
4380};
4381
4382/// Internal representation of canonical, dependent
4383/// decltype(expr) types.
4384///
4385/// This class is used internally by the ASTContext to manage
4386/// canonical, dependent types, only. Clients will only see instances
4387/// of this class via DecltypeType nodes.
4388class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
4389 const ASTContext &Context;
4390
4391public:
4392 DependentDecltypeType(const ASTContext &Context, Expr *E);
4393
4394 void Profile(llvm::FoldingSetNodeID &ID) {
4395 Profile(ID, Context, getUnderlyingExpr());
4396 }
4397
4398 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4399 Expr *E);
4400};
4401
4402/// A unary type transform, which is a type constructed from another.
4403class UnaryTransformType : public Type {
4404public:
4405 enum UTTKind {
4406 EnumUnderlyingType
4407 };
4408
4409private:
4410 /// The untransformed type.
4411 QualType BaseType;
4412
4413 /// The transformed type if not dependent, otherwise the same as BaseType.
4414 QualType UnderlyingType;
4415
4416 UTTKind UKind;
4417
4418protected:
4419 friend class ASTContext;
4420
4421 UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
4422 QualType CanonicalTy);
4423
4424public:
4425 bool isSugared() const { return !isDependentType(); }
4426 QualType desugar() const { return UnderlyingType; }
4427
4428 QualType getUnderlyingType() const { return UnderlyingType; }
4429 QualType getBaseType() const { return BaseType; }
4430
4431 UTTKind getUTTKind() const { return UKind; }
4432
4433 static bool classof(const Type *T) {
4434 return T->getTypeClass() == UnaryTransform;
4435 }
4436};
4437
4438/// Internal representation of canonical, dependent
4439/// __underlying_type(type) types.
4440///
4441/// This class is used internally by the ASTContext to manage
4442/// canonical, dependent types, only. Clients will only see instances
4443/// of this class via UnaryTransformType nodes.
4444class DependentUnaryTransformType : public UnaryTransformType,
4445 public llvm::FoldingSetNode {
4446public:
4447 DependentUnaryTransformType(const ASTContext &C, QualType BaseType,
4448 UTTKind UKind);
4449
4450 void Profile(llvm::FoldingSetNodeID &ID) {
4451 Profile(ID, getBaseType(), getUTTKind());
4452 }
4453
4454 static void Profile(llvm::FoldingSetNodeID &ID, QualType BaseType,
4455 UTTKind UKind) {
4456 ID.AddPointer(BaseType.getAsOpaquePtr());
4457 ID.AddInteger((unsigned)UKind);
4458 }
4459};
4460
4461class TagType : public Type {
4462 friend class ASTReader;
4463 template <class T> friend class serialization::AbstractTypeReader;
4464
4465 /// Stores the TagDecl associated with this type. The decl may point to any
4466 /// TagDecl that declares the entity.
4467 TagDecl *decl;
4468
4469protected:
4470 TagType(TypeClass TC, const TagDecl *D, QualType can);
4471
4472public:
4473 TagDecl *getDecl() const;
4474
4475 /// Determines whether this type is in the process of being defined.
4476 bool isBeingDefined() const;
4477
4478 static bool classof(const Type *T) {
4479 return T->getTypeClass() == Enum || T->getTypeClass() == Record;
4480 }
4481};
4482
4483/// A helper class that allows the use of isa/cast/dyncast
4484/// to detect TagType objects of structs/unions/classes.
4485class RecordType : public TagType {
4486protected:
4487 friend class ASTContext; // ASTContext creates these.
4488
4489 explicit RecordType(const RecordDecl *D)
4490 : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4491 explicit RecordType(TypeClass TC, RecordDecl *D)
4492 : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4493
4494public:
4495 RecordDecl *getDecl() const {
4496 return reinterpret_cast<RecordDecl*>(TagType::getDecl());
4497 }
4498
4499 /// Recursively check all fields in the record for const-ness. If any field
4500 /// is declared const, return true. Otherwise, return false.
4501 bool hasConstFields() const;
4502
4503 bool isSugared() const { return false; }
4504 QualType desugar() const { return QualType(this, 0); }
4505
4506 static bool classof(const Type *T) { return T->getTypeClass() == Record; }
4507};
4508
4509/// A helper class that allows the use of isa/cast/dyncast
4510/// to detect TagType objects of enums.
4511class EnumType : public TagType {
4512 friend class ASTContext; // ASTContext creates these.
4513
4514 explicit EnumType(const EnumDecl *D)
4515 : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4516
4517public:
4518 EnumDecl *getDecl() const {
4519 return reinterpret_cast<EnumDecl*>(TagType::getDecl());
4520 }
4521
4522 bool isSugared() const { return false; }
4523 QualType desugar() const { return QualType(this, 0); }
4524
4525 static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
4526};
4527
4528/// An attributed type is a type to which a type attribute has been applied.
4529///
4530/// The "modified type" is the fully-sugared type to which the attributed
4531/// type was applied; generally it is not canonically equivalent to the
4532/// attributed type. The "equivalent type" is the minimally-desugared type
4533/// which the type is canonically equivalent to.
4534///
4535/// For example, in the following attributed type:
4536/// int32_t __attribute__((vector_size(16)))
4537/// - the modified type is the TypedefType for int32_t
4538/// - the equivalent type is VectorType(16, int32_t)
4539/// - the canonical type is VectorType(16, int)
4540class AttributedType : public Type, public llvm::FoldingSetNode {
4541public:
4542 using Kind = attr::Kind;
4543
4544private:
4545 friend class ASTContext; // ASTContext creates these
4546
4547 QualType ModifiedType;
4548 QualType EquivalentType;
4549
4550 AttributedType(QualType canon, attr::Kind attrKind, QualType modified,
4551 QualType equivalent)
4552 : Type(Attributed, canon, equivalent->isDependentType(),
4553 equivalent->isInstantiationDependentType(),
4554 equivalent->isVariablyModifiedType(),
4555 equivalent->containsUnexpandedParameterPack()),
4556 ModifiedType(modified), EquivalentType(equivalent) {
4557 AttributedTypeBits.AttrKind = attrKind;
4558 }
4559
4560public:
4561 Kind getAttrKind() const {
4562 return static_cast<Kind>(AttributedTypeBits.AttrKind);
4563 }
4564
4565 QualType getModifiedType() const { return ModifiedType; }
4566 QualType getEquivalentType() const { return EquivalentType; }
4567
4568 bool isSugared() const { return true; }
4569 QualType desugar() const { return getEquivalentType(); }
4570
4571 /// Does this attribute behave like a type qualifier?
4572 ///
4573 /// A type qualifier adjusts a type to provide specialized rules for
4574 /// a specific object, like the standard const and volatile qualifiers.
4575 /// This includes attributes controlling things like nullability,
4576 /// address spaces, and ARC ownership. The value of the object is still
4577 /// largely described by the modified type.
4578 ///
4579 /// In contrast, many type attributes "rewrite" their modified type to
4580 /// produce a fundamentally different type, not necessarily related in any
4581 /// formalizable way to the original type. For example, calling convention
4582 /// and vector attributes are not simple type qualifiers.
4583 ///
4584 /// Type qualifiers are often, but not always, reflected in the canonical
4585 /// type.
4586 bool isQualifier() const;
4587
4588 bool isMSTypeSpec() const;
4589
4590 bool isCallingConv() const;
4591
4592 llvm::Optional<NullabilityKind> getImmediateNullability() const;
4593
4594 /// Retrieve the attribute kind corresponding to the given
4595 /// nullability kind.
4596 static Kind getNullabilityAttrKind(NullabilityKind kind) {
4597 switch (kind) {
4598 case NullabilityKind::NonNull:
4599 return attr::TypeNonNull;
4600
4601 case NullabilityKind::Nullable:
4602 return attr::TypeNullable;
4603
4604 case NullabilityKind::Unspecified:
4605 return attr::TypeNullUnspecified;
4606 }
4607 llvm_unreachable("Unknown nullability kind.")::llvm::llvm_unreachable_internal("Unknown nullability kind."
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 4607)
;
4608 }
4609
4610 /// Strip off the top-level nullability annotation on the given
4611 /// type, if it's there.
4612 ///
4613 /// \param T The type to strip. If the type is exactly an
4614 /// AttributedType specifying nullability (without looking through
4615 /// type sugar), the nullability is returned and this type changed
4616 /// to the underlying modified type.
4617 ///
4618 /// \returns the top-level nullability, if present.
4619 static Optional<NullabilityKind> stripOuterNullability(QualType &T);
4620
4621 void Profile(llvm::FoldingSetNodeID &ID) {
4622 Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
4623 }
4624
4625 static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
4626 QualType modified, QualType equivalent) {
4627 ID.AddInteger(attrKind);
4628 ID.AddPointer(modified.getAsOpaquePtr());
4629 ID.AddPointer(equivalent.getAsOpaquePtr());
4630 }
4631
4632 static bool classof(const Type *T) {
4633 return T->getTypeClass() == Attributed;
4634 }
4635};
4636
4637class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
4638 friend class ASTContext; // ASTContext creates these
4639
4640 // Helper data collector for canonical types.
4641 struct CanonicalTTPTInfo {
4642 unsigned Depth : 15;
4643 unsigned ParameterPack : 1;
4644 unsigned Index : 16;
4645 };
4646
4647 union {
4648 // Info for the canonical type.
4649 CanonicalTTPTInfo CanTTPTInfo;
4650
4651 // Info for the non-canonical type.
4652 TemplateTypeParmDecl *TTPDecl;
4653 };
4654
4655 /// Build a non-canonical type.
4656 TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
4657 : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
4658 /*InstantiationDependent=*/true,
4659 /*VariablyModified=*/false,
4660 Canon->containsUnexpandedParameterPack()),
4661 TTPDecl(TTPDecl) {}
4662
4663 /// Build the canonical type.
4664 TemplateTypeParmType(unsigned D, unsigned I, bool PP)
4665 : Type(TemplateTypeParm, QualType(this, 0),
4666 /*Dependent=*/true,
4667 /*InstantiationDependent=*/true,
4668 /*VariablyModified=*/false, PP) {
4669 CanTTPTInfo.Depth = D;
4670 CanTTPTInfo.Index = I;
4671 CanTTPTInfo.ParameterPack = PP;
4672 }
4673
4674 const CanonicalTTPTInfo& getCanTTPTInfo() const {
4675 QualType Can = getCanonicalTypeInternal();
4676 return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
4677 }
4678
4679public:
4680 unsigned getDepth() const { return getCanTTPTInfo().Depth; }
4681 unsigned getIndex() const { return getCanTTPTInfo().Index; }
4682 bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
4683
4684 TemplateTypeParmDecl *getDecl() const {
4685 return isCanonicalUnqualified() ? nullptr : TTPDecl;
4686 }
4687
4688 IdentifierInfo *getIdentifier() const;
4689
4690 bool isSugared() const { return false; }
4691 QualType desugar() const { return QualType(this, 0); }
4692
4693 void Profile(llvm::FoldingSetNodeID &ID) {
4694 Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
4695 }
4696
4697 static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
4698 unsigned Index, bool ParameterPack,
4699 TemplateTypeParmDecl *TTPDecl) {
4700 ID.AddInteger(Depth);
4701 ID.AddInteger(Index);
4702 ID.AddBoolean(ParameterPack);
4703 ID.AddPointer(TTPDecl);
4704 }
4705
4706 static bool classof(const Type *T) {
4707 return T->getTypeClass() == TemplateTypeParm;
4708 }
4709};
4710
4711/// Represents the result of substituting a type for a template
4712/// type parameter.
4713///
4714/// Within an instantiated template, all template type parameters have
4715/// been replaced with these. They are used solely to record that a
4716/// type was originally written as a template type parameter;
4717/// therefore they are never canonical.
4718class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
4719 friend class ASTContext;
4720
4721 // The original type parameter.
4722 const TemplateTypeParmType *Replaced;
4723
4724 SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
4725 : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
4726 Canon->isInstantiationDependentType(),
4727 Canon->isVariablyModifiedType(),
4728 Canon->containsUnexpandedParameterPack()),
4729 Replaced(Param) {}
4730
4731public:
4732 /// Gets the template parameter that was substituted for.
4733 const TemplateTypeParmType *getReplacedParameter() const {
4734 return Replaced;
4735 }
4736
4737 /// Gets the type that was substituted for the template
4738 /// parameter.
4739 QualType getReplacementType() const {
4740 return getCanonicalTypeInternal();
4741 }
4742
4743 bool isSugared() const { return true; }
4744 QualType desugar() const { return getReplacementType(); }
4745
4746 void Profile(llvm::FoldingSetNodeID &ID) {
4747 Profile(ID, getReplacedParameter(), getReplacementType());
4748 }
4749
4750 static void Profile(llvm::FoldingSetNodeID &ID,
4751 const TemplateTypeParmType *Replaced,
4752 QualType Replacement) {
4753 ID.AddPointer(Replaced);
4754 ID.AddPointer(Replacement.getAsOpaquePtr());
4755 }
4756
4757 static bool classof(const Type *T) {
4758 return T->getTypeClass() == SubstTemplateTypeParm;
4759 }
4760};
4761
4762/// Represents the result of substituting a set of types for a template
4763/// type parameter pack.
4764///
4765/// When a pack expansion in the source code contains multiple parameter packs
4766/// and those parameter packs correspond to different levels of template
4767/// parameter lists, this type node is used to represent a template type
4768/// parameter pack from an outer level, which has already had its argument pack
4769/// substituted but that still lives within a pack expansion that itself
4770/// could not be instantiated. When actually performing a substitution into
4771/// that pack expansion (e.g., when all template parameters have corresponding
4772/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
4773/// at the current pack substitution index.
4774class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
4775 friend class ASTContext;
4776
4777 /// The original type parameter.
4778 const TemplateTypeParmType *Replaced;
4779
4780 /// A pointer to the set of template arguments that this
4781 /// parameter pack is instantiated with.
4782 const TemplateArgument *Arguments;
4783
4784 SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
4785 QualType Canon,
4786 const TemplateArgument &ArgPack);
4787
4788public:
4789 IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
4790
4791 /// Gets the template parameter that was substituted for.
4792 const TemplateTypeParmType *getReplacedParameter() const {
4793 return Replaced;
4794 }
4795
4796 unsigned getNumArgs() const {
4797 return SubstTemplateTypeParmPackTypeBits.NumArgs;
4798 }
4799
4800 bool isSugared() const { return false; }
4801 QualType desugar() const { return QualType(this, 0); }
4802
4803 TemplateArgument getArgumentPack() const;
4804
4805 void Profile(llvm::FoldingSetNodeID &ID);
4806 static void Profile(llvm::FoldingSetNodeID &ID,
4807 const TemplateTypeParmType *Replaced,
4808 const TemplateArgument &ArgPack);
4809
4810 static bool classof(const Type *T) {
4811 return T->getTypeClass() == SubstTemplateTypeParmPack;
4812 }
4813};
4814
4815/// Common base class for placeholders for types that get replaced by
4816/// placeholder type deduction: C++11 auto, C++14 decltype(auto), C++17 deduced
4817/// class template types, and (eventually) constrained type names from the C++
4818/// Concepts TS.
4819///
4820/// These types are usually a placeholder for a deduced type. However, before
4821/// the initializer is attached, or (usually) if the initializer is
4822/// type-dependent, there is no deduced type and the type is canonical. In
4823/// the latter case, it is also a dependent type.
4824class DeducedType : public Type {
4825protected:
4826 DeducedType(TypeClass TC, QualType DeducedAsType, bool IsDependent,
4827 bool IsInstantiationDependent, bool ContainsParameterPack)
4828 : Type(TC,
4829 // FIXME: Retain the sugared deduced type?
4830 DeducedAsType.isNull() ? QualType(this, 0)
4831 : DeducedAsType.getCanonicalType(),
4832 IsDependent, IsInstantiationDependent,
4833 /*VariablyModified=*/false, ContainsParameterPack) {
4834 if (!DeducedAsType.isNull()) {
4835 if (DeducedAsType->isDependentType())
4836 setDependent();
4837 if (DeducedAsType->isInstantiationDependentType())
4838 setInstantiationDependent();
4839 if (DeducedAsType->containsUnexpandedParameterPack())
4840 setContainsUnexpandedParameterPack();
4841 }
4842 }
4843
4844public:
4845 bool isSugared() const { return !isCanonicalUnqualified(); }
4846 QualType desugar() const { return getCanonicalTypeInternal(); }
4847
4848 /// Get the type deduced for this placeholder type, or null if it's
4849 /// either not been deduced or was deduced to a dependent type.
4850 QualType getDeducedType() const {
4851 return !isCanonicalUnqualified() ? getCanonicalTypeInternal() : QualType();
4852 }
4853 bool isDeduced() const {
4854 return !isCanonicalUnqualified() || isDependentType();
4855 }
4856
4857 static bool classof(const Type *T) {
4858 return T->getTypeClass() == Auto ||
4859 T->getTypeClass() == DeducedTemplateSpecialization;
4860 }
4861};
4862
4863/// Represents a C++11 auto or C++14 decltype(auto) type.
4864class AutoType : public DeducedType, public llvm::FoldingSetNode {
4865 friend class ASTContext; // ASTContext creates these
4866
4867 AutoType(QualType DeducedAsType, AutoTypeKeyword Keyword,
4868 bool IsDeducedAsDependent, bool IsDeducedAsPack)
4869 : DeducedType(Auto, DeducedAsType, IsDeducedAsDependent,
4870 IsDeducedAsDependent, IsDeducedAsPack) {
4871 AutoTypeBits.Keyword = (unsigned)Keyword;
4872 }
4873
4874public:
4875 bool isDecltypeAuto() const {
4876 return getKeyword() == AutoTypeKeyword::DecltypeAuto;
4877 }
4878
4879 AutoTypeKeyword getKeyword() const {
4880 return (AutoTypeKeyword)AutoTypeBits.Keyword;
4881 }
4882
4883 void Profile(llvm::FoldingSetNodeID &ID) {
4884 Profile(ID, getDeducedType(), getKeyword(), isDependentType(),
4885 containsUnexpandedParameterPack());
4886 }
4887
4888 static void Profile(llvm::FoldingSetNodeID &ID, QualType Deduced,
4889 AutoTypeKeyword Keyword, bool IsDependent, bool IsPack) {
4890 ID.AddPointer(Deduced.getAsOpaquePtr());
4891 ID.AddInteger((unsigned)Keyword);
4892 ID.AddBoolean(IsDependent);
4893 ID.AddBoolean(IsPack);
4894 }
4895
4896 static bool classof(const Type *T) {
4897 return T->getTypeClass() == Auto;
4898 }
4899};
4900
4901/// Represents a C++17 deduced template specialization type.
4902class DeducedTemplateSpecializationType : public DeducedType,
4903 public llvm::FoldingSetNode {
4904 friend class ASTContext; // ASTContext creates these
4905
4906 /// The name of the template whose arguments will be deduced.
4907 TemplateName Template;
4908
4909 DeducedTemplateSpecializationType(TemplateName Template,
4910 QualType DeducedAsType,
4911 bool IsDeducedAsDependent)
4912 : DeducedType(DeducedTemplateSpecialization, DeducedAsType,
4913 IsDeducedAsDependent || Template.isDependent(),
4914 IsDeducedAsDependent || Template.isInstantiationDependent(),
4915 Template.containsUnexpandedParameterPack()),
4916 Template(Template) {}
4917
4918public:
4919 /// Retrieve the name of the template that we are deducing.
4920 TemplateName getTemplateName() const { return Template;}
4921
4922 void Profile(llvm::FoldingSetNodeID &ID) {
4923 Profile(ID, getTemplateName(), getDeducedType(), isDependentType());
4924 }
4925
4926 static void Profile(llvm::FoldingSetNodeID &ID, TemplateName Template,
4927 QualType Deduced, bool IsDependent) {
4928 Template.Profile(ID);
4929 ID.AddPointer(Deduced.getAsOpaquePtr());
4930 ID.AddBoolean(IsDependent);
4931 }
4932
4933 static bool classof(const Type *T) {
4934 return T->getTypeClass() == DeducedTemplateSpecialization;
4935 }
4936};
4937
4938/// Represents a type template specialization; the template
4939/// must be a class template, a type alias template, or a template
4940/// template parameter. A template which cannot be resolved to one of
4941/// these, e.g. because it is written with a dependent scope
4942/// specifier, is instead represented as a
4943/// @c DependentTemplateSpecializationType.
4944///
4945/// A non-dependent template specialization type is always "sugar",
4946/// typically for a \c RecordType. For example, a class template
4947/// specialization type of \c vector<int> will refer to a tag type for
4948/// the instantiation \c std::vector<int, std::allocator<int>>
4949///
4950/// Template specializations are dependent if either the template or
4951/// any of the template arguments are dependent, in which case the
4952/// type may also be canonical.
4953///
4954/// Instances of this type are allocated with a trailing array of
4955/// TemplateArguments, followed by a QualType representing the
4956/// non-canonical aliased type when the template is a type alias
4957/// template.
4958class alignas(8) TemplateSpecializationType
4959 : public Type,
4960 public llvm::FoldingSetNode {
4961 friend class ASTContext; // ASTContext creates these
4962
4963 /// The name of the template being specialized. This is
4964 /// either a TemplateName::Template (in which case it is a
4965 /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
4966 /// TypeAliasTemplateDecl*), a
4967 /// TemplateName::SubstTemplateTemplateParmPack, or a
4968 /// TemplateName::SubstTemplateTemplateParm (in which case the
4969 /// replacement must, recursively, be one of these).
4970 TemplateName Template;
4971
4972 TemplateSpecializationType(TemplateName T,
4973 ArrayRef<TemplateArgument> Args,
4974 QualType Canon,
4975 QualType Aliased);
4976
4977public:
4978 /// Determine whether any of the given template arguments are dependent.
4979 static bool anyDependentTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,
4980 bool &InstantiationDependent);
4981
4982 static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &,
4983 bool &InstantiationDependent);
4984
4985 /// True if this template specialization type matches a current
4986 /// instantiation in the context in which it is found.
4987 bool isCurrentInstantiation() const {
4988 return isa<InjectedClassNameType>(getCanonicalTypeInternal());
4989 }
4990
4991 /// Determine if this template specialization type is for a type alias
4992 /// template that has been substituted.
4993 ///
4994 /// Nearly every template specialization type whose template is an alias
4995 /// template will be substituted. However, this is not the case when
4996 /// the specialization contains a pack expansion but the template alias
4997 /// does not have a corresponding parameter pack, e.g.,
4998 ///
4999 /// \code
5000 /// template<typename T, typename U, typename V> struct S;
5001 /// template<typename T, typename U> using A = S<T, int, U>;
5002 /// template<typename... Ts> struct X {
5003 /// typedef A<Ts...> type; // not a type alias
5004 /// };
5005 /// \endcode
5006 bool isTypeAlias() const { return TemplateSpecializationTypeBits.TypeAlias; }
5007
5008 /// Get the aliased type, if this is a specialization of a type alias
5009 /// template.
5010 QualType getAliasedType() const {
5011 assert(isTypeAlias() && "not a type alias template specialization")((isTypeAlias() && "not a type alias template specialization"
) ? static_cast<void> (0) : __assert_fail ("isTypeAlias() && \"not a type alias template specialization\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 5011, __PRETTY_FUNCTION__))
;
5012 return *reinterpret_cast<const QualType*>(end());
5013 }
5014
5015 using iterator = const TemplateArgument *;
5016
5017 iterator begin() const { return getArgs(); }
5018 iterator end() const; // defined inline in TemplateBase.h
5019
5020 /// Retrieve the name of the template that we are specializing.
5021 TemplateName getTemplateName() const { return Template; }
5022
5023 /// Retrieve the template arguments.
5024 const TemplateArgument *getArgs() const {
5025 return reinterpret_cast<const TemplateArgument *>(this + 1);
5026 }
5027
5028 /// Retrieve the number of template arguments.
5029 unsigned getNumArgs() const {
5030 return TemplateSpecializationTypeBits.NumArgs;
5031 }
5032
5033 /// Retrieve a specific template argument as a type.
5034 /// \pre \c isArgType(Arg)
5035 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
5036
5037 ArrayRef<TemplateArgument> template_arguments() const {
5038 return {getArgs(), getNumArgs()};
5039 }
5040
5041 bool isSugared() const {
5042 return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
5043 }
5044
5045 QualType desugar() const {
5046 return isTypeAlias() ? getAliasedType() : getCanonicalTypeInternal();
5047 }
5048
5049 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
5050 Profile(ID, Template, template_arguments(), Ctx);
5051 if (isTypeAlias())
5052 getAliasedType().Profile(ID);
5053 }
5054
5055 static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
5056 ArrayRef<TemplateArgument> Args,
5057 const ASTContext &Context);
5058
5059 static bool classof(const Type *T) {
5060 return T->getTypeClass() == TemplateSpecialization;
5061 }
5062};
5063
5064/// Print a template argument list, including the '<' and '>'
5065/// enclosing the template arguments.
5066void printTemplateArgumentList(raw_ostream &OS,
5067 ArrayRef<TemplateArgument> Args,
5068 const PrintingPolicy &Policy);
5069
5070void printTemplateArgumentList(raw_ostream &OS,
5071 ArrayRef<TemplateArgumentLoc> Args,
5072 const PrintingPolicy &Policy);
5073
5074void printTemplateArgumentList(raw_ostream &OS,
5075 const TemplateArgumentListInfo &Args,
5076 const PrintingPolicy &Policy);
5077
5078/// The injected class name of a C++ class template or class
5079/// template partial specialization. Used to record that a type was
5080/// spelled with a bare identifier rather than as a template-id; the
5081/// equivalent for non-templated classes is just RecordType.
5082///
5083/// Injected class name types are always dependent. Template
5084/// instantiation turns these into RecordTypes.
5085///
5086/// Injected class name types are always canonical. This works
5087/// because it is impossible to compare an injected class name type
5088/// with the corresponding non-injected template type, for the same
5089/// reason that it is impossible to directly compare template
5090/// parameters from different dependent contexts: injected class name
5091/// types can only occur within the scope of a particular templated
5092/// declaration, and within that scope every template specialization
5093/// will canonicalize to the injected class name (when appropriate
5094/// according to the rules of the language).
5095class InjectedClassNameType : public Type {
5096 friend class ASTContext; // ASTContext creates these.
5097 friend class ASTNodeImporter;
5098 friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
5099 // currently suitable for AST reading, too much
5100 // interdependencies.
5101 template <class T> friend class serialization::AbstractTypeReader;
5102
5103 CXXRecordDecl *Decl;
5104
5105 /// The template specialization which this type represents.
5106 /// For example, in
5107 /// template <class T> class A { ... };
5108 /// this is A<T>, whereas in
5109 /// template <class X, class Y> class A<B<X,Y> > { ... };
5110 /// this is A<B<X,Y> >.
5111 ///
5112 /// It is always unqualified, always a template specialization type,
5113 /// and always dependent.
5114 QualType InjectedType;
5115
5116 InjectedClassNameType(CXXRecordDecl *D, QualType TST)
5117 : Type(InjectedClassName, QualType(), /*Dependent=*/true,
5118 /*InstantiationDependent=*/true,
5119 /*VariablyModified=*/false,
5120 /*ContainsUnexpandedParameterPack=*/false),
5121 Decl(D), InjectedType(TST) {
5122 assert(isa<TemplateSpecializationType>(TST))((isa<TemplateSpecializationType>(TST)) ? static_cast<
void> (0) : __assert_fail ("isa<TemplateSpecializationType>(TST)"
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 5122, __PRETTY_FUNCTION__))
;
5123 assert(!TST.hasQualifiers())((!TST.hasQualifiers()) ? static_cast<void> (0) : __assert_fail
("!TST.hasQualifiers()", "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 5123, __PRETTY_FUNCTION__))
;
5124 assert(TST->isDependentType())((TST->isDependentType()) ? static_cast<void> (0) : __assert_fail
("TST->isDependentType()", "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 5124, __PRETTY_FUNCTION__))
;
5125 }
5126
5127public:
5128 QualType getInjectedSpecializationType() const { return InjectedType; }
5129
5130 const TemplateSpecializationType *getInjectedTST() const {
5131 return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
5132 }
5133
5134 TemplateName getTemplateName() const {
5135 return getInjectedTST()->getTemplateName();
5136 }
5137
5138 CXXRecordDecl *getDecl() const;
5139
5140 bool isSugared() const { return false; }
5141 QualType desugar() const { return QualType(this, 0); }
5142
5143 static bool classof(const Type *T) {
5144 return T->getTypeClass() == InjectedClassName;
5145 }
5146};
5147
5148/// The kind of a tag type.
5149enum TagTypeKind {
5150 /// The "struct" keyword.
5151 TTK_Struct,
5152
5153 /// The "__interface" keyword.
5154 TTK_Interface,
5155
5156 /// The "union" keyword.
5157 TTK_Union,
5158
5159 /// The "class" keyword.
5160 TTK_Class,
5161
5162 /// The "enum" keyword.
5163 TTK_Enum
5164};
5165
5166/// The elaboration keyword that precedes a qualified type name or
5167/// introduces an elaborated-type-specifier.
5168enum ElaboratedTypeKeyword {
5169 /// The "struct" keyword introduces the elaborated-type-specifier.
5170 ETK_Struct,
5171
5172 /// The "__interface" keyword introduces the elaborated-type-specifier.
5173 ETK_Interface,
5174
5175 /// The "union" keyword introduces the elaborated-type-specifier.
5176 ETK_Union,
5177
5178 /// The "class" keyword introduces the elaborated-type-specifier.
5179 ETK_Class,
5180
5181 /// The "enum" keyword introduces the elaborated-type-specifier.
5182 ETK_Enum,
5183
5184 /// The "typename" keyword precedes the qualified type name, e.g.,
5185 /// \c typename T::type.
5186 ETK_Typename,
5187
5188 /// No keyword precedes the qualified type name.
5189 ETK_None
5190};
5191
5192/// A helper class for Type nodes having an ElaboratedTypeKeyword.
5193/// The keyword in stored in the free bits of the base class.
5194/// Also provides a few static helpers for converting and printing
5195/// elaborated type keyword and tag type kind enumerations.
5196class TypeWithKeyword : public Type {
5197protected:
5198 TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
5199 QualType Canonical, bool Dependent,
5200 bool InstantiationDependent, bool VariablyModified,
5201 bool ContainsUnexpandedParameterPack)
5202 : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
5203 ContainsUnexpandedParameterPack) {
5204 TypeWithKeywordBits.Keyword = Keyword;
5205 }
5206
5207public:
5208 ElaboratedTypeKeyword getKeyword() const {
5209 return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
5210 }
5211
5212 /// Converts a type specifier (DeclSpec::TST) into an elaborated type keyword.
5213 static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
5214
5215 /// Converts a type specifier (DeclSpec::TST) into a tag type kind.
5216 /// It is an error to provide a type specifier which *isn't* a tag kind here.
5217 static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
5218
5219 /// Converts a TagTypeKind into an elaborated type keyword.
5220 static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
5221
5222 /// Converts an elaborated type keyword into a TagTypeKind.
5223 /// It is an error to provide an elaborated type keyword
5224 /// which *isn't* a tag kind here.
5225 static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
5226
5227 static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
5228
5229 static StringRef getKeywordName(ElaboratedTypeKeyword Keyword);
5230
5231 static StringRef getTagTypeKindName(TagTypeKind Kind) {
5232 return getKeywordName(getKeywordForTagTypeKind(Kind));
5233 }
5234
5235 class CannotCastToThisType {};
5236 static CannotCastToThisType classof(const Type *);
5237};
5238
5239/// Represents a type that was referred to using an elaborated type
5240/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
5241/// or both.
5242///
5243/// This type is used to keep track of a type name as written in the
5244/// source code, including tag keywords and any nested-name-specifiers.
5245/// The type itself is always "sugar", used to express what was written
5246/// in the source code but containing no additional semantic information.
5247class ElaboratedType final
5248 : public TypeWithKeyword,
5249 public llvm::FoldingSetNode,
5250 private llvm::TrailingObjects<ElaboratedType, TagDecl *> {
5251 friend class ASTContext; // ASTContext creates these
5252 friend TrailingObjects;
5253
5254 /// The nested name specifier containing the qualifier.
5255 NestedNameSpecifier *NNS;
5256
5257 /// The type that this qualified name refers to.
5258 QualType NamedType;
5259
5260 /// The (re)declaration of this tag type owned by this occurrence is stored
5261 /// as a trailing object if there is one. Use getOwnedTagDecl to obtain
5262 /// it, or obtain a null pointer if there is none.
5263
5264 ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5265 QualType NamedType, QualType CanonType, TagDecl *OwnedTagDecl)
5266 : TypeWithKeyword(Keyword, Elaborated, CanonType,
5267 NamedType->isDependentType(),
5268 NamedType->isInstantiationDependentType(),
5269 NamedType->isVariablyModifiedType(),
5270 NamedType->containsUnexpandedParameterPack()),
5271 NNS(NNS), NamedType(NamedType) {
5272 ElaboratedTypeBits.HasOwnedTagDecl = false;
5273 if (OwnedTagDecl) {
5274 ElaboratedTypeBits.HasOwnedTagDecl = true;
5275 *getTrailingObjects<TagDecl *>() = OwnedTagDecl;
5276 }
5277 assert(!(Keyword == ETK_None && NNS == nullptr) &&((!(Keyword == ETK_None && NNS == nullptr) &&
"ElaboratedType cannot have elaborated type keyword " "and name qualifier both null."
) ? static_cast<void> (0) : __assert_fail ("!(Keyword == ETK_None && NNS == nullptr) && \"ElaboratedType cannot have elaborated type keyword \" \"and name qualifier both null.\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 5279, __PRETTY_FUNCTION__))
5278 "ElaboratedType cannot have elaborated type keyword "((!(Keyword == ETK_None && NNS == nullptr) &&
"ElaboratedType cannot have elaborated type keyword " "and name qualifier both null."
) ? static_cast<void> (0) : __assert_fail ("!(Keyword == ETK_None && NNS == nullptr) && \"ElaboratedType cannot have elaborated type keyword \" \"and name qualifier both null.\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 5279, __PRETTY_FUNCTION__))
5279 "and name qualifier both null.")((!(Keyword == ETK_None && NNS == nullptr) &&
"ElaboratedType cannot have elaborated type keyword " "and name qualifier both null."
) ? static_cast<void> (0) : __assert_fail ("!(Keyword == ETK_None && NNS == nullptr) && \"ElaboratedType cannot have elaborated type keyword \" \"and name qualifier both null.\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 5279, __PRETTY_FUNCTION__))
;
5280 }
5281
5282public:
5283 /// Retrieve the qualification on this type.
5284 NestedNameSpecifier *getQualifier() const { return NNS; }
5285
5286 /// Retrieve the type named by the qualified-id.
5287 QualType getNamedType() const { return NamedType; }
5288
5289 /// Remove a single level of sugar.
5290 QualType desugar() const { return getNamedType(); }
5291
5292 /// Returns whether this type directly provides sugar.
5293 bool isSugared() const { return true; }
5294
5295 /// Return the (re)declaration of this type owned by this occurrence of this
5296 /// type, or nullptr if there is none.
5297 TagDecl *getOwnedTagDecl() const {
5298 return ElaboratedTypeBits.HasOwnedTagDecl ? *getTrailingObjects<TagDecl *>()
5299 : nullptr;
5300 }
5301
5302 void Profile(llvm::FoldingSetNodeID &ID) {
5303 Profile(ID, getKeyword(), NNS, NamedType, getOwnedTagDecl());
5304 }
5305
5306 static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
5307 NestedNameSpecifier *NNS, QualType NamedType,
5308 TagDecl *OwnedTagDecl) {
5309 ID.AddInteger(Keyword);
5310 ID.AddPointer(NNS);
5311 NamedType.Profile(ID);
5312 ID.AddPointer(OwnedTagDecl);
5313 }
5314
5315 static bool classof(const Type *T) { return T->getTypeClass() == Elaborated; }
5316};
5317
5318/// Represents a qualified type name for which the type name is
5319/// dependent.
5320///
5321/// DependentNameType represents a class of dependent types that involve a
5322/// possibly dependent nested-name-specifier (e.g., "T::") followed by a
5323/// name of a type. The DependentNameType may start with a "typename" (for a
5324/// typename-specifier), "class", "struct", "union", or "enum" (for a
5325/// dependent elaborated-type-specifier), or nothing (in contexts where we
5326/// know that we must be referring to a type, e.g., in a base class specifier).
5327/// Typically the nested-name-specifier is dependent, but in MSVC compatibility
5328/// mode, this type is used with non-dependent names to delay name lookup until
5329/// instantiation.
5330class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
5331 friend class ASTContext; // ASTContext creates these
5332
5333 /// The nested name specifier containing the qualifier.
5334 NestedNameSpecifier *NNS;
5335
5336 /// The type that this typename specifier refers to.
5337 const IdentifierInfo *Name;
5338
5339 DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5340 const IdentifierInfo *Name, QualType CanonType)
5341 : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
5342 /*InstantiationDependent=*/true,
5343 /*VariablyModified=*/false,
5344 NNS->containsUnexpandedParameterPack()),
5345 NNS(NNS), Name(Name) {}
5346
5347public:
5348 /// Retrieve the qualification on this type.
5349 NestedNameSpecifier *getQualifier() const { return NNS; }
5350
5351 /// Retrieve the type named by the typename specifier as an identifier.
5352 ///
5353 /// This routine will return a non-NULL identifier pointer when the
5354 /// form of the original typename was terminated by an identifier,
5355 /// e.g., "typename T::type".
5356 const IdentifierInfo *getIdentifier() const {
5357 return Name;
5358 }
5359
5360 bool isSugared() const { return false; }
5361 QualType desugar() const { return QualType(this, 0); }
5362
5363 void Profile(llvm::FoldingSetNodeID &ID) {
5364 Profile(ID, getKeyword(), NNS, Name);
5365 }
5366
5367 static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
5368 NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
5369 ID.AddInteger(Keyword);
5370 ID.AddPointer(NNS);
5371 ID.AddPointer(Name);
5372 }
5373
5374 static bool classof(const Type *T) {
5375 return T->getTypeClass() == DependentName;
5376 }
5377};
5378
5379/// Represents a template specialization type whose template cannot be
5380/// resolved, e.g.
5381/// A<T>::template B<T>
5382class alignas(8) DependentTemplateSpecializationType
5383 : public TypeWithKeyword,
5384 public llvm::FoldingSetNode {
5385 friend class ASTContext; // ASTContext creates these
5386
5387 /// The nested name specifier containing the qualifier.
5388 NestedNameSpecifier *NNS;
5389
5390 /// The identifier of the template.
5391 const IdentifierInfo *Name;
5392
5393 DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
5394 NestedNameSpecifier *NNS,
5395 const IdentifierInfo *Name,
5396 ArrayRef<TemplateArgument> Args,
5397 QualType Canon);
5398
5399 const TemplateArgument *getArgBuffer() const {
5400 return reinterpret_cast<const TemplateArgument*>(this+1);
5401 }
5402
5403 TemplateArgument *getArgBuffer() {
5404 return reinterpret_cast<TemplateArgument*>(this+1);
5405 }
5406
5407public:
5408 NestedNameSpecifier *getQualifier() const { return NNS; }
5409 const IdentifierInfo *getIdentifier() const { return Name; }
5410
5411 /// Retrieve the template arguments.
5412 const TemplateArgument *getArgs() const {
5413 return getArgBuffer();
5414 }
5415
5416 /// Retrieve the number of template arguments.
5417 unsigned getNumArgs() const {
5418 return DependentTemplateSpecializationTypeBits.NumArgs;
5419 }
5420
5421 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
5422
5423 ArrayRef<TemplateArgument> template_arguments() const {
5424 return {getArgs(), getNumArgs()};
5425 }
5426
5427 using iterator = const TemplateArgument *;
5428
5429 iterator begin() const { return getArgs(); }
5430 iterator end() const; // inline in TemplateBase.h
5431
5432 bool isSugared() const { return false; }
5433 QualType desugar() const { return QualType(this, 0); }
5434
5435 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
5436 Profile(ID, Context, getKeyword(), NNS, Name, {getArgs(), getNumArgs()});
5437 }
5438
5439 static void Profile(llvm::FoldingSetNodeID &ID,
5440 const ASTContext &Context,
5441 ElaboratedTypeKeyword Keyword,
5442 NestedNameSpecifier *Qualifier,
5443 const IdentifierInfo *Name,
5444 ArrayRef<TemplateArgument> Args);
5445
5446 static bool classof(const Type *T) {
5447 return T->getTypeClass() == DependentTemplateSpecialization;
5448 }
5449};
5450
5451/// Represents a pack expansion of types.
5452///
5453/// Pack expansions are part of C++11 variadic templates. A pack
5454/// expansion contains a pattern, which itself contains one or more
5455/// "unexpanded" parameter packs. When instantiated, a pack expansion
5456/// produces a series of types, each instantiated from the pattern of
5457/// the expansion, where the Ith instantiation of the pattern uses the
5458/// Ith arguments bound to each of the unexpanded parameter packs. The
5459/// pack expansion is considered to "expand" these unexpanded
5460/// parameter packs.
5461///
5462/// \code
5463/// template<typename ...Types> struct tuple;
5464///
5465/// template<typename ...Types>
5466/// struct tuple_of_references {
5467/// typedef tuple<Types&...> type;
5468/// };
5469/// \endcode
5470///
5471/// Here, the pack expansion \c Types&... is represented via a
5472/// PackExpansionType whose pattern is Types&.
5473class PackExpansionType : public Type, public llvm::FoldingSetNode {
5474 friend class ASTContext; // ASTContext creates these
5475
5476 /// The pattern of the pack expansion.
5477 QualType Pattern;
5478
5479 PackExpansionType(QualType Pattern, QualType Canon,
5480 Optional<unsigned> NumExpansions)
5481 : Type(PackExpansion, Canon, /*Dependent=*/Pattern->isDependentType(),
5482 /*InstantiationDependent=*/true,
5483 /*VariablyModified=*/Pattern->isVariablyModifiedType(),
5484 /*ContainsUnexpandedParameterPack=*/false),
5485 Pattern(Pattern) {
5486 PackExpansionTypeBits.NumExpansions =
5487 NumExpansions ? *NumExpansions + 1 : 0;
5488 }
5489
5490public:
5491 /// Retrieve the pattern of this pack expansion, which is the
5492 /// type that will be repeatedly instantiated when instantiating the
5493 /// pack expansion itself.
5494 QualType getPattern() const { return Pattern; }
5495
5496 /// Retrieve the number of expansions that this pack expansion will
5497 /// generate, if known.
5498 Optional<unsigned> getNumExpansions() const {
5499 if (PackExpansionTypeBits.NumExpansions)
5500 return PackExpansionTypeBits.NumExpansions - 1;
5501 return None;
5502 }
5503
5504 bool isSugared() const { return !Pattern->isDependentType(); }
5505 QualType desugar() const { return isSugared() ? Pattern : QualType(this, 0); }
5506
5507 void Profile(llvm::FoldingSetNodeID &ID) {
5508 Profile(ID, getPattern(), getNumExpansions());
5509 }
5510
5511 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
5512 Optional<unsigned> NumExpansions) {
5513 ID.AddPointer(Pattern.getAsOpaquePtr());
5514 ID.AddBoolean(NumExpansions.hasValue());
5515 if (NumExpansions)
5516 ID.AddInteger(*NumExpansions);
5517 }
5518
5519 static bool classof(const Type *T) {
5520 return T->getTypeClass() == PackExpansion;
5521 }
5522};
5523
5524/// This class wraps the list of protocol qualifiers. For types that can
5525/// take ObjC protocol qualifers, they can subclass this class.
5526template <class T>
5527class ObjCProtocolQualifiers {
5528protected:
5529 ObjCProtocolQualifiers() = default;
5530
5531 ObjCProtocolDecl * const *getProtocolStorage() const {
5532 return const_cast<ObjCProtocolQualifiers*>(this)->getProtocolStorage();
5533 }
5534
5535 ObjCProtocolDecl **getProtocolStorage() {
5536 return static_cast<T*>(this)->getProtocolStorageImpl();
5537 }
5538
5539 void setNumProtocols(unsigned N) {
5540 static_cast<T*>(this)->setNumProtocolsImpl(N);
5541 }
5542
5543 void initialize(ArrayRef<ObjCProtocolDecl *> protocols) {
5544 setNumProtocols(protocols.size());
5545 assert(getNumProtocols() == protocols.size() &&((getNumProtocols() == protocols.size() && "bitfield overflow in protocol count"
) ? static_cast<void> (0) : __assert_fail ("getNumProtocols() == protocols.size() && \"bitfield overflow in protocol count\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 5546, __PRETTY_FUNCTION__))
5546 "bitfield overflow in protocol count")((getNumProtocols() == protocols.size() && "bitfield overflow in protocol count"
) ? static_cast<void> (0) : __assert_fail ("getNumProtocols() == protocols.size() && \"bitfield overflow in protocol count\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 5546, __PRETTY_FUNCTION__))
;
5547 if (!protocols.empty())
5548 memcpy(getProtocolStorage(), protocols.data(),
5549 protocols.size() * sizeof(ObjCProtocolDecl*));
5550 }
5551
5552public:
5553 using qual_iterator = ObjCProtocolDecl * const *;
5554 using qual_range = llvm::iterator_range<qual_iterator>;
5555
5556 qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
5557 qual_iterator qual_begin() const { return getProtocolStorage(); }
5558 qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
5559
5560 bool qual_empty() const { return getNumProtocols() == 0; }
5561
5562 /// Return the number of qualifying protocols in this type, or 0 if
5563 /// there are none.
5564 unsigned getNumProtocols() const {
5565 return static_cast<const T*>(this)->getNumProtocolsImpl();
5566 }
5567
5568 /// Fetch a protocol by index.
5569 ObjCProtocolDecl *getProtocol(unsigned I) const {
5570 assert(I < getNumProtocols() && "Out-of-range protocol access")((I < getNumProtocols() && "Out-of-range protocol access"
) ? static_cast<void> (0) : __assert_fail ("I < getNumProtocols() && \"Out-of-range protocol access\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 5570, __PRETTY_FUNCTION__))
;
5571 return qual_begin()[I];
5572 }
5573
5574 /// Retrieve all of the protocol qualifiers.
5575 ArrayRef<ObjCProtocolDecl *> getProtocols() const {
5576 return ArrayRef<ObjCProtocolDecl *>(qual_begin(), getNumProtocols());
5577 }
5578};
5579
5580/// Represents a type parameter type in Objective C. It can take
5581/// a list of protocols.
5582class ObjCTypeParamType : public Type,
5583 public ObjCProtocolQualifiers<ObjCTypeParamType>,
5584 public llvm::FoldingSetNode {
5585 friend class ASTContext;
5586 friend class ObjCProtocolQualifiers<ObjCTypeParamType>;
5587
5588 /// The number of protocols stored on this type.
5589 unsigned NumProtocols : 6;
5590
5591 ObjCTypeParamDecl *OTPDecl;
5592
5593 /// The protocols are stored after the ObjCTypeParamType node. In the
5594 /// canonical type, the list of protocols are sorted alphabetically
5595 /// and uniqued.
5596 ObjCProtocolDecl **getProtocolStorageImpl();
5597
5598 /// Return the number of qualifying protocols in this interface type,
5599 /// or 0 if there are none.
5600 unsigned getNumProtocolsImpl() const {
5601 return NumProtocols;
5602 }
5603
5604 void setNumProtocolsImpl(unsigned N) {
5605 NumProtocols = N;
5606 }
5607
5608 ObjCTypeParamType(const ObjCTypeParamDecl *D,
5609 QualType can,
5610 ArrayRef<ObjCProtocolDecl *> protocols);
5611
5612public:
5613 bool isSugared() const { return true; }
5614 QualType desugar() const { return getCanonicalTypeInternal(); }
5615
5616 static bool classof(const Type *T) {
5617 return T->getTypeClass() == ObjCTypeParam;
5618 }
5619
5620 void Profile(llvm::FoldingSetNodeID &ID);
5621 static void Profile(llvm::FoldingSetNodeID &ID,
5622 const ObjCTypeParamDecl *OTPDecl,
5623 ArrayRef<ObjCProtocolDecl *> protocols);
5624
5625 ObjCTypeParamDecl *getDecl() const { return OTPDecl; }
5626};
5627
5628/// Represents a class type in Objective C.
5629///
5630/// Every Objective C type is a combination of a base type, a set of
5631/// type arguments (optional, for parameterized classes) and a list of
5632/// protocols.
5633///
5634/// Given the following declarations:
5635/// \code
5636/// \@class C<T>;
5637/// \@protocol P;
5638/// \endcode
5639///
5640/// 'C' is an ObjCInterfaceType C. It is sugar for an ObjCObjectType
5641/// with base C and no protocols.
5642///
5643/// 'C<P>' is an unspecialized ObjCObjectType with base C and protocol list [P].
5644/// 'C<C*>' is a specialized ObjCObjectType with type arguments 'C*' and no
5645/// protocol list.
5646/// 'C<C*><P>' is a specialized ObjCObjectType with base C, type arguments 'C*',
5647/// and protocol list [P].
5648///
5649/// 'id' is a TypedefType which is sugar for an ObjCObjectPointerType whose
5650/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
5651/// and no protocols.
5652///
5653/// 'id<P>' is an ObjCObjectPointerType whose pointee is an ObjCObjectType
5654/// with base BuiltinType::ObjCIdType and protocol list [P]. Eventually
5655/// this should get its own sugar class to better represent the source.
5656class ObjCObjectType : public Type,
5657 public ObjCProtocolQualifiers<ObjCObjectType> {
5658 friend class ObjCProtocolQualifiers<ObjCObjectType>;
5659
5660 // ObjCObjectType.NumTypeArgs - the number of type arguments stored
5661 // after the ObjCObjectPointerType node.
5662 // ObjCObjectType.NumProtocols - the number of protocols stored
5663 // after the type arguments of ObjCObjectPointerType node.
5664 //
5665 // These protocols are those written directly on the type. If
5666 // protocol qualifiers ever become additive, the iterators will need
5667 // to get kindof complicated.
5668 //
5669 // In the canonical object type, these are sorted alphabetically
5670 // and uniqued.
5671
5672 /// Either a BuiltinType or an InterfaceType or sugar for either.
5673 QualType BaseType;
5674
5675 /// Cached superclass type.
5676 mutable llvm::PointerIntPair<const ObjCObjectType *, 1, bool>
5677 CachedSuperClassType;
5678
5679 QualType *getTypeArgStorage();
5680 const QualType *getTypeArgStorage() const {
5681 return const_cast<ObjCObjectType *>(this)->getTypeArgStorage();
5682 }
5683
5684 ObjCProtocolDecl **getProtocolStorageImpl();
5685 /// Return the number of qualifying protocols in this interface type,
5686 /// or 0 if there are none.
5687 unsigned getNumProtocolsImpl() const {
5688 return ObjCObjectTypeBits.NumProtocols;
5689 }
5690 void setNumProtocolsImpl(unsigned N) {
5691 ObjCObjectTypeBits.NumProtocols = N;
5692 }
5693
5694protected:
5695 enum Nonce_ObjCInterface { Nonce_ObjCInterface };
5696
5697 ObjCObjectType(QualType Canonical, QualType Base,
5698 ArrayRef<QualType> typeArgs,
5699 ArrayRef<ObjCProtocolDecl *> protocols,
5700 bool isKindOf);
5701
5702 ObjCObjectType(enum Nonce_ObjCInterface)
5703 : Type(ObjCInterface, QualType(), false, false, false, false),
5704 BaseType(QualType(this_(), 0)) {
5705 ObjCObjectTypeBits.NumProtocols = 0;
5706 ObjCObjectTypeBits.NumTypeArgs = 0;
5707 ObjCObjectTypeBits.IsKindOf = 0;
5708 }
5709
5710 void computeSuperClassTypeSlow() const;
5711
5712public:
5713 /// Gets the base type of this object type. This is always (possibly
5714 /// sugar for) one of:
5715 /// - the 'id' builtin type (as opposed to the 'id' type visible to the
5716 /// user, which is a typedef for an ObjCObjectPointerType)
5717 /// - the 'Class' builtin type (same caveat)
5718 /// - an ObjCObjectType (currently always an ObjCInterfaceType)
5719 QualType getBaseType() const { return BaseType; }
5720
5721 bool isObjCId() const {
5722 return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
5723 }
5724
5725 bool isObjCClass() const {
5726 return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
5727 }
5728
5729 bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
5730 bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
5731 bool isObjCUnqualifiedIdOrClass() const {
5732 if (!qual_empty()) return false;
5733 if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
5734 return T->getKind() == BuiltinType::ObjCId ||
5735 T->getKind() == BuiltinType::ObjCClass;
5736 return false;
5737 }
5738 bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
5739 bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
5740
5741 /// Gets the interface declaration for this object type, if the base type
5742 /// really is an interface.
5743 ObjCInterfaceDecl *getInterface() const;
5744
5745 /// Determine whether this object type is "specialized", meaning
5746 /// that it has type arguments.
5747 bool isSpecialized() const;
5748
5749 /// Determine whether this object type was written with type arguments.
5750 bool isSpecializedAsWritten() const {
5751 return ObjCObjectTypeBits.NumTypeArgs > 0;
5752 }
5753
5754 /// Determine whether this object type is "unspecialized", meaning
5755 /// that it has no type arguments.
5756 bool isUnspecialized() const { return !isSpecialized(); }
5757
5758 /// Determine whether this object type is "unspecialized" as
5759 /// written, meaning that it has no type arguments.
5760 bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
5761
5762 /// Retrieve the type arguments of this object type (semantically).
5763 ArrayRef<QualType> getTypeArgs() const;
5764
5765 /// Retrieve the type arguments of this object type as they were
5766 /// written.
5767 ArrayRef<QualType> getTypeArgsAsWritten() const {
5768 return llvm::makeArrayRef(getTypeArgStorage(),
5769 ObjCObjectTypeBits.NumTypeArgs);
5770 }
5771
5772 /// Whether this is a "__kindof" type as written.
5773 bool isKindOfTypeAsWritten() const { return ObjCObjectTypeBits.IsKindOf; }
5774
5775 /// Whether this ia a "__kindof" type (semantically).
5776 bool isKindOfType() const;
5777
5778 /// Retrieve the type of the superclass of this object type.
5779 ///
5780 /// This operation substitutes any type arguments into the
5781 /// superclass of the current class type, potentially producing a
5782 /// specialization of the superclass type. Produces a null type if
5783 /// there is no superclass.
5784 QualType getSuperClassType() const {
5785 if (!CachedSuperClassType.getInt())
5786 computeSuperClassTypeSlow();
5787
5788 assert(CachedSuperClassType.getInt() && "Superclass not set?")((CachedSuperClassType.getInt() && "Superclass not set?"
) ? static_cast<void> (0) : __assert_fail ("CachedSuperClassType.getInt() && \"Superclass not set?\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 5788, __PRETTY_FUNCTION__))
;
5789 return QualType(CachedSuperClassType.getPointer(), 0);
5790 }
5791
5792 /// Strip off the Objective-C "kindof" type and (with it) any
5793 /// protocol qualifiers.
5794 QualType stripObjCKindOfTypeAndQuals(const ASTContext &ctx) const;
5795
5796 bool isSugared() const { return false; }
5797 QualType desugar() const { return QualType(this, 0); }
5798
5799 static bool classof(const Type *T) {
5800 return T->getTypeClass() == ObjCObject ||
5801 T->getTypeClass() == ObjCInterface;
5802 }
5803};
5804
5805/// A class providing a concrete implementation
5806/// of ObjCObjectType, so as to not increase the footprint of
5807/// ObjCInterfaceType. Code outside of ASTContext and the core type
5808/// system should not reference this type.
5809class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
5810 friend class ASTContext;
5811
5812 // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
5813 // will need to be modified.
5814
5815 ObjCObjectTypeImpl(QualType Canonical, QualType Base,
5816 ArrayRef<QualType> typeArgs,
5817 ArrayRef<ObjCProtocolDecl *> protocols,
5818 bool isKindOf)
5819 : ObjCObjectType(Canonical, Base, typeArgs, protocols, isKindOf) {}
5820
5821public:
5822 void Profile(llvm::FoldingSetNodeID &ID);
5823 static void Profile(llvm::FoldingSetNodeID &ID,
5824 QualType Base,
5825 ArrayRef<QualType> typeArgs,
5826 ArrayRef<ObjCProtocolDecl *> protocols,
5827 bool isKindOf);
5828};
5829
5830inline QualType *ObjCObjectType::getTypeArgStorage() {
5831 return reinterpret_cast<QualType *>(static_cast<ObjCObjectTypeImpl*>(this)+1);
5832}
5833
5834inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorageImpl() {
5835 return reinterpret_cast<ObjCProtocolDecl**>(
5836 getTypeArgStorage() + ObjCObjectTypeBits.NumTypeArgs);
5837}
5838
5839inline ObjCProtocolDecl **ObjCTypeParamType::getProtocolStorageImpl() {
5840 return reinterpret_cast<ObjCProtocolDecl**>(
5841 static_cast<ObjCTypeParamType*>(this)+1);
5842}
5843
5844/// Interfaces are the core concept in Objective-C for object oriented design.
5845/// They basically correspond to C++ classes. There are two kinds of interface
5846/// types: normal interfaces like `NSString`, and qualified interfaces, which
5847/// are qualified with a protocol list like `NSString<NSCopyable, NSAmazing>`.
5848///
5849/// ObjCInterfaceType guarantees the following properties when considered
5850/// as a subtype of its superclass, ObjCObjectType:
5851/// - There are no protocol qualifiers. To reinforce this, code which
5852/// tries to invoke the protocol methods via an ObjCInterfaceType will
5853/// fail to compile.
5854/// - It is its own base type. That is, if T is an ObjCInterfaceType*,
5855/// T->getBaseType() == QualType(T, 0).
5856class ObjCInterfaceType : public ObjCObjectType {
5857 friend class ASTContext; // ASTContext creates these.
5858 friend class ASTReader;
5859 friend class ObjCInterfaceDecl;
5860 template <class T> friend class serialization::AbstractTypeReader;
5861
5862 mutable ObjCInterfaceDecl *Decl;
5863
5864 ObjCInterfaceType(const ObjCInterfaceDecl *D)
5865 : ObjCObjectType(Nonce_ObjCInterface),
5866 Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
5867
5868public:
5869 /// Get the declaration of this interface.
5870 ObjCInterfaceDecl *getDecl() const { return Decl; }
5871
5872 bool isSugared() const { return false; }
5873 QualType desugar() const { return QualType(this, 0); }
5874
5875 static bool classof(const Type *T) {
5876 return T->getTypeClass() == ObjCInterface;
5877 }
5878
5879 // Nonsense to "hide" certain members of ObjCObjectType within this
5880 // class. People asking for protocols on an ObjCInterfaceType are
5881 // not going to get what they want: ObjCInterfaceTypes are
5882 // guaranteed to have no protocols.
5883 enum {
5884 qual_iterator,
5885 qual_begin,
5886 qual_end,
5887 getNumProtocols,
5888 getProtocol
5889 };
5890};
5891
5892inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
5893 QualType baseType = getBaseType();
5894 while (const auto *ObjT = baseType->getAs<ObjCObjectType>()) {
5895 if (const auto *T = dyn_cast<ObjCInterfaceType>(ObjT))
5896 return T->getDecl();
5897
5898 baseType = ObjT->getBaseType();
5899 }
5900
5901 return nullptr;
5902}
5903
5904/// Represents a pointer to an Objective C object.
5905///
5906/// These are constructed from pointer declarators when the pointee type is
5907/// an ObjCObjectType (or sugar for one). In addition, the 'id' and 'Class'
5908/// types are typedefs for these, and the protocol-qualified types 'id<P>'
5909/// and 'Class<P>' are translated into these.
5910///
5911/// Pointers to pointers to Objective C objects are still PointerTypes;
5912/// only the first level of pointer gets it own type implementation.
5913class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
5914 friend class ASTContext; // ASTContext creates these.
5915
5916 QualType PointeeType;
5917
5918 ObjCObjectPointerType(QualType Canonical, QualType Pointee)
5919 : Type(ObjCObjectPointer, Canonical,
5920 Pointee->isDependentType(),
5921 Pointee->isInstantiationDependentType(),
5922 Pointee->isVariablyModifiedType(),
5923 Pointee->containsUnexpandedParameterPack()),
5924 PointeeType(Pointee) {}
5925
5926public:
5927 /// Gets the type pointed to by this ObjC pointer.
5928 /// The result will always be an ObjCObjectType or sugar thereof.
5929 QualType getPointeeType() const { return PointeeType; }
5930
5931 /// Gets the type pointed to by this ObjC pointer. Always returns non-null.
5932 ///
5933 /// This method is equivalent to getPointeeType() except that
5934 /// it discards any typedefs (or other sugar) between this
5935 /// type and the "outermost" object type. So for:
5936 /// \code
5937 /// \@class A; \@protocol P; \@protocol Q;
5938 /// typedef A<P> AP;
5939 /// typedef A A1;
5940 /// typedef A1<P> A1P;
5941 /// typedef A1P<Q> A1PQ;
5942 /// \endcode
5943 /// For 'A*', getObjectType() will return 'A'.
5944 /// For 'A<P>*', getObjectType() will return 'A<P>'.
5945 /// For 'AP*', getObjectType() will return 'A<P>'.
5946 /// For 'A1*', getObjectType() will return 'A'.
5947 /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
5948 /// For 'A1P*', getObjectType() will return 'A1<P>'.
5949 /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
5950 /// adding protocols to a protocol-qualified base discards the
5951 /// old qualifiers (for now). But if it didn't, getObjectType()
5952 /// would return 'A1P<Q>' (and we'd have to make iterating over
5953 /// qualifiers more complicated).
5954 const ObjCObjectType *getObjectType() const {
5955 return PointeeType->castAs<ObjCObjectType>();
5956 }
5957
5958 /// If this pointer points to an Objective C
5959 /// \@interface type, gets the type for that interface. Any protocol
5960 /// qualifiers on the interface are ignored.
5961 ///
5962 /// \return null if the base type for this pointer is 'id' or 'Class'
5963 const ObjCInterfaceType *getInterfaceType() const;
5964
5965 /// If this pointer points to an Objective \@interface
5966 /// type, gets the declaration for that interface.
5967 ///
5968 /// \return null if the base type for this pointer is 'id' or 'Class'
5969 ObjCInterfaceDecl *getInterfaceDecl() const {
5970 return getObjectType()->getInterface();
5971 }
5972
5973 /// True if this is equivalent to the 'id' type, i.e. if
5974 /// its object type is the primitive 'id' type with no protocols.
5975 bool isObjCIdType() const {
5976 return getObjectType()->isObjCUnqualifiedId();
5977 }
5978
5979 /// True if this is equivalent to the 'Class' type,
5980 /// i.e. if its object tive is the primitive 'Class' type with no protocols.
5981 bool isObjCClassType() const {
5982 return getObjectType()->isObjCUnqualifiedClass();
5983 }
5984
5985 /// True if this is equivalent to the 'id' or 'Class' type,
5986 bool isObjCIdOrClassType() const {
5987 return getObjectType()->isObjCUnqualifiedIdOrClass();
5988 }
5989
5990 /// True if this is equivalent to 'id<P>' for some non-empty set of
5991 /// protocols.
5992 bool isObjCQualifiedIdType() const {
5993 return getObjectType()->isObjCQualifiedId();
5994 }
5995
5996 /// True if this is equivalent to 'Class<P>' for some non-empty set of
5997 /// protocols.
5998 bool isObjCQualifiedClassType() const {
5999 return getObjectType()->isObjCQualifiedClass();
6000 }
6001
6002 /// Whether this is a "__kindof" type.
6003 bool isKindOfType() const { return getObjectType()->isKindOfType(); }
6004
6005 /// Whether this type is specialized, meaning that it has type arguments.
6006 bool isSpecialized() const { return getObjectType()->isSpecialized(); }
6007
6008 /// Whether this type is specialized, meaning that it has type arguments.
6009 bool isSpecializedAsWritten() const {
6010 return getObjectType()->isSpecializedAsWritten();
6011 }
6012
6013 /// Whether this type is unspecialized, meaning that is has no type arguments.
6014 bool isUnspecialized() const { return getObjectType()->isUnspecialized(); }
6015
6016 /// Determine whether this object type is "unspecialized" as
6017 /// written, meaning that it has no type arguments.
6018 bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
6019
6020 /// Retrieve the type arguments for this type.
6021 ArrayRef<QualType> getTypeArgs() const {
6022 return getObjectType()->getTypeArgs();
6023 }
6024
6025 /// Retrieve the type arguments for this type.
6026 ArrayRef<QualType> getTypeArgsAsWritten() const {
6027 return getObjectType()->getTypeArgsAsWritten();
6028 }
6029
6030 /// An iterator over the qualifiers on the object type. Provided
6031 /// for convenience. This will always iterate over the full set of
6032 /// protocols on a type, not just those provided directly.
6033 using qual_iterator = ObjCObjectType::qual_iterator;
6034 using qual_range = llvm::iterator_range<qual_iterator>;
6035
6036 qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
6037
6038 qual_iterator qual_begin() const {
6039 return getObjectType()->qual_begin();
6040 }
6041
6042 qual_iterator qual_end() const {
6043 return getObjectType()->qual_end();
6044 }
6045
6046 bool qual_empty() const { return getObjectType()->qual_empty(); }
6047
6048 /// Return the number of qualifying protocols on the object type.
6049 unsigned getNumProtocols() const {
6050 return getObjectType()->getNumProtocols();
6051 }
6052
6053 /// Retrieve a qualifying protocol by index on the object type.
6054 ObjCProtocolDecl *getProtocol(unsigned I) const {
6055 return getObjectType()->getProtocol(I);
6056 }
6057
6058 bool isSugared() const { return false; }
6059 QualType desugar() const { return QualType(this, 0); }
6060
6061 /// Retrieve the type of the superclass of this object pointer type.
6062 ///
6063 /// This operation substitutes any type arguments into the
6064 /// superclass of the current class type, potentially producing a
6065 /// pointer to a specialization of the superclass type. Produces a
6066 /// null type if there is no superclass.
6067 QualType getSuperClassType() const;
6068
6069 /// Strip off the Objective-C "kindof" type and (with it) any
6070 /// protocol qualifiers.
6071 const ObjCObjectPointerType *stripObjCKindOfTypeAndQuals(
6072 const ASTContext &ctx) const;
6073
6074 void Profile(llvm::FoldingSetNodeID &ID) {
6075 Profile(ID, getPointeeType());
6076 }
6077
6078 static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
6079 ID.AddPointer(T.getAsOpaquePtr());
6080 }
6081
6082 static bool classof(const Type *T) {
6083 return T->getTypeClass() == ObjCObjectPointer;
6084 }
6085};
6086
6087class AtomicType : public Type, public llvm::FoldingSetNode {
6088 friend class ASTContext; // ASTContext creates these.
6089
6090 QualType ValueType;
6091
6092 AtomicType(QualType ValTy, QualType Canonical)
6093 : Type(Atomic, Canonical, ValTy->isDependentType(),
6094 ValTy->isInstantiationDependentType(),
6095 ValTy->isVariablyModifiedType(),
6096 ValTy->containsUnexpandedParameterPack()),
6097 ValueType(ValTy) {}
6098
6099public:
6100 /// Gets the type contained by this atomic type, i.e.
6101 /// the type returned by performing an atomic load of this atomic type.
6102 QualType getValueType() const { return ValueType; }
6103
6104 bool isSugared() const { return false; }
6105 QualType desugar() const { return QualType(this, 0); }
6106
6107 void Profile(llvm::FoldingSetNodeID &ID) {
6108 Profile(ID, getValueType());
6109 }
6110
6111 static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
6112 ID.AddPointer(T.getAsOpaquePtr());
6113 }
6114
6115 static bool classof(const Type *T) {
6116 return T->getTypeClass() == Atomic;
6117 }
6118};
6119
6120/// PipeType - OpenCL20.
6121class PipeType : public Type, public llvm::FoldingSetNode {
6122 friend class ASTContext; // ASTContext creates these.
6123
6124 QualType ElementType;
6125 bool isRead;
6126
6127 PipeType(QualType elemType, QualType CanonicalPtr, bool isRead)
6128 : Type(Pipe, CanonicalPtr, elemType->isDependentType(),
6129 elemType->isInstantiationDependentType(),
6130 elemType->isVariablyModifiedType(),
6131 elemType->containsUnexpandedParameterPack()),
6132 ElementType(elemType), isRead(isRead) {}
6133
6134public:
6135 QualType getElementType() const { return ElementType; }
6136
6137 bool isSugared() const { return false; }
6138
6139 QualType desugar() const { return QualType(this, 0); }
6140
6141 void Profile(llvm::FoldingSetNodeID &ID) {
6142 Profile(ID, getElementType(), isReadOnly());
6143 }
6144
6145 static void Profile(llvm::FoldingSetNodeID &ID, QualType T, bool isRead) {
6146 ID.AddPointer(T.getAsOpaquePtr());
6147 ID.AddBoolean(isRead);
6148 }
6149
6150 static bool classof(const Type *T) {
6151 return T->getTypeClass() == Pipe;
6152 }
6153
6154 bool isReadOnly() const { return isRead; }
6155};
6156
6157/// A qualifier set is used to build a set of qualifiers.
6158class QualifierCollector : public Qualifiers {
6159public:
6160 QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
6161
6162 /// Collect any qualifiers on the given type and return an
6163 /// unqualified type. The qualifiers are assumed to be consistent
6164 /// with those already in the type.
6165 const Type *strip(QualType type) {
6166 addFastQualifiers(type.getLocalFastQualifiers());
6167 if (!type.hasLocalNonFastQualifiers())
6168 return type.getTypePtrUnsafe();
6169
6170 const ExtQuals *extQuals = type.getExtQualsUnsafe();
6171 addConsistentQualifiers(extQuals->getQualifiers());
6172 return extQuals->getBaseType();
6173 }
6174
6175 /// Apply the collected qualifiers to the given type.
6176 QualType apply(const ASTContext &Context, QualType QT) const;
6177
6178 /// Apply the collected qualifiers to the given type.
6179 QualType apply(const ASTContext &Context, const Type* T) const;
6180};
6181
6182/// A container of type source information.
6183///
6184/// A client can read the relevant info using TypeLoc wrappers, e.g:
6185/// @code
6186/// TypeLoc TL = TypeSourceInfo->getTypeLoc();
6187/// TL.getBeginLoc().print(OS, SrcMgr);
6188/// @endcode
6189class alignas(8) TypeSourceInfo {
6190 // Contains a memory block after the class, used for type source information,
6191 // allocated by ASTContext.
6192 friend class ASTContext;
6193
6194 QualType Ty;
6195
6196 TypeSourceInfo(QualType ty) : Ty(ty) {}
6197
6198public:
6199 /// Return the type wrapped by this type source info.
6200 QualType getType() const { return Ty; }
6201
6202 /// Return the TypeLoc wrapper for the type source info.
6203 TypeLoc getTypeLoc() const; // implemented in TypeLoc.h
6204
6205 /// Override the type stored in this TypeSourceInfo. Use with caution!
6206 void overrideType(QualType T) { Ty = T; }
6207};
6208
6209// Inline function definitions.
6210
6211inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
6212 SplitQualType desugar =
6213 Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
6214 desugar.Quals.addConsistentQualifiers(Quals);
6215 return desugar;
6216}
6217
6218inline const Type *QualType::getTypePtr() const {
6219 return getCommonPtr()->BaseType;
6220}
6221
6222inline const Type *QualType::getTypePtrOrNull() const {
6223 return (isNull() ? nullptr : getCommonPtr()->BaseType);
6224}
6225
6226inline SplitQualType QualType::split() const {
6227 if (!hasLocalNonFastQualifiers())
6228 return SplitQualType(getTypePtrUnsafe(),
6229 Qualifiers::fromFastMask(getLocalFastQualifiers()));
6230
6231 const ExtQuals *eq = getExtQualsUnsafe();
6232 Qualifiers qs = eq->getQualifiers();
6233 qs.addFastQualifiers(getLocalFastQualifiers());
6234 return SplitQualType(eq->getBaseType(), qs);
6235}
6236
6237inline Qualifiers QualType::getLocalQualifiers() const {
6238 Qualifiers Quals;
6239 if (hasLocalNonFastQualifiers())
6240 Quals = getExtQualsUnsafe()->getQualifiers();
6241 Quals.addFastQualifiers(getLocalFastQualifiers());
6242 return Quals;
6243}
6244
6245inline Qualifiers QualType::getQualifiers() const {
6246 Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
6247 quals.addFastQualifiers(getLocalFastQualifiers());
6248 return quals;
6249}
6250
6251inline unsigned QualType::getCVRQualifiers() const {
6252 unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
6253 cvr |= getLocalCVRQualifiers();
6254 return cvr;
6255}
6256
6257inline QualType QualType::getCanonicalType() const {
6258 QualType canon = getCommonPtr()->CanonicalType;
6259 return canon.withFastQualifiers(getLocalFastQualifiers());
6260}
6261
6262inline bool QualType::isCanonical() const {
6263 return getTypePtr()->isCanonicalUnqualified();
6264}
6265
6266inline bool QualType::isCanonicalAsParam() const {
6267 if (!isCanonical()) return false;
6268 if (hasLocalQualifiers()) return false;
6269
6270 const Type *T = getTypePtr();
6271 if (T->isVariablyModifiedType() && T->hasSizedVLAType())
6272 return false;
6273
6274 return !isa<FunctionType>(T) && !isa<ArrayType>(T);
6275}
6276
6277inline bool QualType::isConstQualified() const {
6278 return isLocalConstQualified() ||
6279 getCommonPtr()->CanonicalType.isLocalConstQualified();
6280}
6281
6282inline bool QualType::isRestrictQualified() const {
6283 return isLocalRestrictQualified() ||
6284 getCommonPtr()->CanonicalType.isLocalRestrictQualified();
6285}
6286
6287
6288inline bool QualType::isVolatileQualified() const {
6289 return isLocalVolatileQualified() ||
6290 getCommonPtr()->CanonicalType.isLocalVolatileQualified();
6291}
6292
6293inline bool QualType::hasQualifiers() const {
6294 return hasLocalQualifiers() ||
6295 getCommonPtr()->CanonicalType.hasLocalQualifiers();
6296}
6297
6298inline QualType QualType::getUnqualifiedType() const {
6299 if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
6300 return QualType(getTypePtr(), 0);
6301
6302 return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
6303}
6304
6305inline SplitQualType QualType::getSplitUnqualifiedType() const {
6306 if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
6307 return split();
6308
6309 return getSplitUnqualifiedTypeImpl(*this);
6310}
6311
6312inline void QualType::removeLocalConst() {
6313 removeLocalFastQualifiers(Qualifiers::Const);
6314}
6315
6316inline void QualType::removeLocalRestrict() {
6317 removeLocalFastQualifiers(Qualifiers::Restrict);
6318}
6319
6320inline void QualType::removeLocalVolatile() {
6321 removeLocalFastQualifiers(Qualifiers::Volatile);
6322}
6323
6324inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
6325 assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits")((!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(Mask & ~Qualifiers::CVRMask) && \"mask has non-CVR bits\""
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 6325, __PRETTY_FUNCTION__))
;
6326 static_assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask,
6327 "Fast bits differ from CVR bits!");
6328
6329 // Fast path: we don't need to touch the slow qualifiers.
6330 removeLocalFastQualifiers(Mask);
6331}
6332
6333/// Check if this type has any address space qualifier.
6334inline bool QualType::hasAddressSpace() const {
6335 return getQualifiers().hasAddressSpace();
6336}
6337
6338/// Return the address space of this type.
6339inline LangAS QualType::getAddressSpace() const {
6340 return getQualifiers().getAddressSpace();
6341}
6342
6343/// Return the gc attribute of this type.
6344inline Qualifiers::GC QualType::getObjCGCAttr() const {
6345 return getQualifiers().getObjCGCAttr();
6346}
6347
6348inline bool QualType::hasNonTrivialToPrimitiveDefaultInitializeCUnion() const {
6349 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6350 return hasNonTrivialToPrimitiveDefaultInitializeCUnion(RD);
6351 return false;
6352}
6353
6354inline bool QualType::hasNonTrivialToPrimitiveDestructCUnion() const {
6355 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6356 return hasNonTrivialToPrimitiveDestructCUnion(RD);
6357 return false;
6358}
6359
6360inline bool QualType::hasNonTrivialToPrimitiveCopyCUnion() const {
6361 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6362 return hasNonTrivialToPrimitiveCopyCUnion(RD);
6363 return false;
6364}
6365
6366inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
6367 if (const auto *PT = t.getAs<PointerType>()) {
6368 if (const auto *FT = PT->getPointeeType()->getAs<FunctionType>())
6369 return FT->getExtInfo();
6370 } else if (const auto *FT = t.getAs<FunctionType>())
6371 return FT->getExtInfo();
6372
6373 return FunctionType::ExtInfo();
6374}
6375
6376inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
6377 return getFunctionExtInfo(*t);
6378}
6379
6380/// Determine whether this type is more
6381/// qualified than the Other type. For example, "const volatile int"
6382/// is more qualified than "const int", "volatile int", and
6383/// "int". However, it is not more qualified than "const volatile
6384/// int".
6385inline bool QualType::isMoreQualifiedThan(QualType other) const {
6386 Qualifiers MyQuals = getQualifiers();
6387 Qualifiers OtherQuals = other.getQualifiers();
6388 return (MyQuals != OtherQuals && MyQuals.compatiblyIncludes(OtherQuals));
6389}
6390
6391/// Determine whether this type is at last
6392/// as qualified as the Other type. For example, "const volatile
6393/// int" is at least as qualified as "const int", "volatile int",
6394/// "int", and "const volatile int".
6395inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
6396 Qualifiers OtherQuals = other.getQualifiers();
6397
6398 // Ignore __unaligned qualifier if this type is a void.
6399 if (getUnqualifiedType()->isVoidType())
6400 OtherQuals.removeUnaligned();
6401
6402 return getQualifiers().compatiblyIncludes(OtherQuals);
6403}
6404
6405/// If Type is a reference type (e.g., const
6406/// int&), returns the type that the reference refers to ("const
6407/// int"). Otherwise, returns the type itself. This routine is used
6408/// throughout Sema to implement C++ 5p6:
6409///
6410/// If an expression initially has the type "reference to T" (8.3.2,
6411/// 8.5.3), the type is adjusted to "T" prior to any further
6412/// analysis, the expression designates the object or function
6413/// denoted by the reference, and the expression is an lvalue.
6414inline QualType QualType::getNonReferenceType() const {
6415 if (const auto *RefType = (*this)->getAs<ReferenceType>())
6416 return RefType->getPointeeType();
6417 else
6418 return *this;
6419}
6420
6421inline bool QualType::isCForbiddenLValueType() const {
6422 return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
6423 getTypePtr()->isFunctionType());
6424}
6425
6426/// Tests whether the type is categorized as a fundamental type.
6427///
6428/// \returns True for types specified in C++0x [basic.fundamental].
6429inline bool Type::isFundamentalType() const {
6430 return isVoidType() ||
6431 isNullPtrType() ||
6432 // FIXME: It's really annoying that we don't have an
6433 // 'isArithmeticType()' which agrees with the standard definition.
6434 (isArithmeticType() && !isEnumeralType());
6435}
6436
6437/// Tests whether the type is categorized as a compound type.
6438///
6439/// \returns True for types specified in C++0x [basic.compound].
6440inline bool Type::isCompoundType() const {
6441 // C++0x [basic.compound]p1:
6442 // Compound types can be constructed in the following ways:
6443 // -- arrays of objects of a given type [...];
6444 return isArrayType() ||
6445 // -- functions, which have parameters of given types [...];
6446 isFunctionType() ||
6447 // -- pointers to void or objects or functions [...];
6448 isPointerType() ||
6449 // -- references to objects or functions of a given type. [...]
6450 isReferenceType() ||
6451 // -- classes containing a sequence of objects of various types, [...];
6452 isRecordType() ||
6453 // -- unions, which are classes capable of containing objects of different
6454 // types at different times;
6455 isUnionType() ||
6456 // -- enumerations, which comprise a set of named constant values. [...];
6457 isEnumeralType() ||
6458 // -- pointers to non-static class members, [...].
6459 isMemberPointerType();
6460}
6461
6462inline bool Type::isFunctionType() const {
6463 return isa<FunctionType>(CanonicalType);
6464}
6465
6466inline bool Type::isPointerType() const {
6467 return isa<PointerType>(CanonicalType);
22
Assuming field 'CanonicalType' is a 'PointerType'
23
Returning the value 1, which participates in a condition later
6468}
6469
6470inline bool Type::isAnyPointerType() const {
6471 return isPointerType() || isObjCObjectPointerType();
6472}
6473
6474inline bool Type::isBlockPointerType() const {
6475 return isa<BlockPointerType>(CanonicalType);
6476}
6477
6478inline bool Type::isReferenceType() const {
6479 return isa<ReferenceType>(CanonicalType);
6480}
6481
6482inline bool Type::isLValueReferenceType() const {
6483 return isa<LValueReferenceType>(CanonicalType);
6484}
6485
6486inline bool Type::isRValueReferenceType() const {
6487 return isa<RValueReferenceType>(CanonicalType);
6488}
6489
6490inline bool Type::isObjectPointerType() const {
6491 // Note: an "object pointer type" is not the same thing as a pointer to an
6492 // object type; rather, it is a pointer to an object type or a pointer to cv
6493 // void.
6494 if (const auto *T = getAs<PointerType>())
6495 return !T->getPointeeType()->isFunctionType();
6496 else
6497 return false;
6498}
6499
6500inline bool Type::isFunctionPointerType() const {
6501 if (const auto *T = getAs<PointerType>())
6502 return T->getPointeeType()->isFunctionType();
6503 else
6504 return false;
6505}
6506
6507inline bool Type::isFunctionReferenceType() const {
6508 if (const auto *T = getAs<ReferenceType>())
6509 return T->getPointeeType()->isFunctionType();
6510 else
6511 return false;
6512}
6513
6514inline bool Type::isMemberPointerType() const {
6515 return isa<MemberPointerType>(CanonicalType);
6516}
6517
6518inline bool Type::isMemberFunctionPointerType() const {
6519 if (const auto *T = getAs<MemberPointerType>())
6520 return T->isMemberFunctionPointer();
6521 else
6522 return false;
6523}
6524
6525inline bool Type::isMemberDataPointerType() const {
6526 if (const auto *T = getAs<MemberPointerType>())
6527 return T->isMemberDataPointer();
6528 else
6529 return false;
6530}
6531
6532inline bool Type::isArrayType() const {
6533 return isa<ArrayType>(CanonicalType);
6534}
6535
6536inline bool Type::isConstantArrayType() const {
6537 return isa<ConstantArrayType>(CanonicalType);
6538}
6539
6540inline bool Type::isIncompleteArrayType() const {
6541 return isa<IncompleteArrayType>(CanonicalType);
6542}
6543
6544inline bool Type::isVariableArrayType() const {
6545 return isa<VariableArrayType>(CanonicalType);
6546}
6547
6548inline bool Type::isDependentSizedArrayType() const {
6549 return isa<DependentSizedArrayType>(CanonicalType);
6550}
6551
6552inline bool Type::isBuiltinType() const {
6553 return isa<BuiltinType>(CanonicalType);
6554}
6555
6556inline bool Type::isRecordType() const {
6557 return isa<RecordType>(CanonicalType);
6558}
6559
6560inline bool Type::isEnumeralType() const {
6561 return isa<EnumType>(CanonicalType);
6562}
6563
6564inline bool Type::isAnyComplexType() const {
6565 return isa<ComplexType>(CanonicalType);
6566}
6567
6568inline bool Type::isVectorType() const {
6569 return isa<VectorType>(CanonicalType);
6570}
6571
6572inline bool Type::isExtVectorType() const {
6573 return isa<ExtVectorType>(CanonicalType);
6574}
6575
6576inline bool Type::isDependentAddressSpaceType() const {
6577 return isa<DependentAddressSpaceType>(CanonicalType);
6578}
6579
6580inline bool Type::isObjCObjectPointerType() const {
6581 return isa<ObjCObjectPointerType>(CanonicalType);
6582}
6583
6584inline bool Type::isObjCObjectType() const {
6585 return isa<ObjCObjectType>(CanonicalType);
6586}
6587
6588inline bool Type::isObjCObjectOrInterfaceType() const {
6589 return isa<ObjCInterfaceType>(CanonicalType) ||
6590 isa<ObjCObjectType>(CanonicalType);
6591}
6592
6593inline bool Type::isAtomicType() const {
6594 return isa<AtomicType>(CanonicalType);
6595}
6596
6597inline bool Type::isUndeducedAutoType() const {
6598 return isa<AutoType>(CanonicalType);
6599}
6600
6601inline bool Type::isObjCQualifiedIdType() const {
6602 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6603 return OPT->isObjCQualifiedIdType();
6604 return false;
6605}
6606
6607inline bool Type::isObjCQualifiedClassType() const {
6608 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6609 return OPT->isObjCQualifiedClassType();
6610 return false;
6611}
6612
6613inline bool Type::isObjCIdType() const {
6614 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6615 return OPT->isObjCIdType();
6616 return false;
6617}
6618
6619inline bool Type::isObjCClassType() const {
6620 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6621 return OPT->isObjCClassType();
6622 return false;
6623}
6624
6625inline bool Type::isObjCSelType() const {
6626 if (const auto *OPT = getAs<PointerType>())
6627 return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
6628 return false;
6629}
6630
6631inline bool Type::isObjCBuiltinType() const {
6632 return isObjCIdType() || isObjCClassType() || isObjCSelType();
6633}
6634
6635inline bool Type::isDecltypeType() const {
6636 return isa<DecltypeType>(this);
6637}
6638
6639#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6640 inline bool Type::is##Id##Type() const { \
6641 return isSpecificBuiltinType(BuiltinType::Id); \
6642 }
6643#include "clang/Basic/OpenCLImageTypes.def"
6644
6645inline bool Type::isSamplerT() const {
6646 return isSpecificBuiltinType(BuiltinType::OCLSampler);
6647}
6648
6649inline bool Type::isEventT() const {
6650 return isSpecificBuiltinType(BuiltinType::OCLEvent);
6651}
6652
6653inline bool Type::isClkEventT() const {
6654 return isSpecificBuiltinType(BuiltinType::OCLClkEvent);
6655}
6656
6657inline bool Type::isQueueT() const {
6658 return isSpecificBuiltinType(BuiltinType::OCLQueue);
6659}
6660
6661inline bool Type::isReserveIDT() const {
6662 return isSpecificBuiltinType(BuiltinType::OCLReserveID);
6663}
6664
6665inline bool Type::isImageType() const {
6666#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) is##Id##Type() ||
6667 return
6668#include "clang/Basic/OpenCLImageTypes.def"
6669 false; // end boolean or operation
6670}
6671
6672inline bool Type::isPipeType() const {
6673 return isa<PipeType>(CanonicalType);
6674}
6675
6676#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6677 inline bool Type::is##Id##Type() const { \
6678 return isSpecificBuiltinType(BuiltinType::Id); \
6679 }
6680#include "clang/Basic/OpenCLExtensionTypes.def"
6681
6682inline bool Type::isOCLIntelSubgroupAVCType() const {
6683#define INTEL_SUBGROUP_AVC_TYPE(ExtType, Id) \
6684 isOCLIntelSubgroupAVC##Id##Type() ||
6685 return
6686#include "clang/Basic/OpenCLExtensionTypes.def"
6687 false; // end of boolean or operation
6688}
6689
6690inline bool Type::isOCLExtOpaqueType() const {
6691#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) is##Id##Type() ||
6692 return
6693#include "clang/Basic/OpenCLExtensionTypes.def"
6694 false; // end of boolean or operation
6695}
6696
6697inline bool Type::isOpenCLSpecificType() const {
6698 return isSamplerT() || isEventT() || isImageType() || isClkEventT() ||
6699 isQueueT() || isReserveIDT() || isPipeType() || isOCLExtOpaqueType();
6700}
6701
6702inline bool Type::isTemplateTypeParmType() const {
6703 return isa<TemplateTypeParmType>(CanonicalType);
6704}
6705
6706inline bool Type::isSpecificBuiltinType(unsigned K) const {
6707 if (const BuiltinType *BT = getAs<BuiltinType>())
6708 if (BT->getKind() == (BuiltinType::Kind) K)
6709 return true;
6710 return false;
6711}
6712
6713inline bool Type::isPlaceholderType() const {
6714 if (const auto *BT = dyn_cast<BuiltinType>(this))
6715 return BT->isPlaceholderType();
6716 return false;
6717}
6718
6719inline const BuiltinType *Type::getAsPlaceholderType() const {
6720 if (const auto *BT = dyn_cast<BuiltinType>(this))
6721 if (BT->isPlaceholderType())
6722 return BT;
6723 return nullptr;
6724}
6725
6726inline bool Type::isSpecificPlaceholderType(unsigned K) const {
6727 assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K))((BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K)) ?
static_cast<void> (0) : __assert_fail ("BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K)"
, "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 6727, __PRETTY_FUNCTION__))
;
6728 if (const auto *BT = dyn_cast<BuiltinType>(this))
6729 return (BT->getKind() == (BuiltinType::Kind) K);
6730 return false;
6731}
6732
6733inline bool Type::isNonOverloadPlaceholderType() const {
6734 if (const auto *BT = dyn_cast<BuiltinType>(this))
6735 return BT->isNonOverloadPlaceholderType();
6736 return false;
6737}
6738
6739inline bool Type::isVoidType() const {
6740 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6741 return BT->getKind() == BuiltinType::Void;
6742 return false;
6743}
6744
6745inline bool Type::isHalfType() const {
6746 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6747 return BT->getKind() == BuiltinType::Half;
6748 // FIXME: Should we allow complex __fp16? Probably not.
6749 return false;
6750}
6751
6752inline bool Type::isFloat16Type() const {
6753 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6754 return BT->getKind() == BuiltinType::Float16;
6755 return false;
6756}
6757
6758inline bool Type::isFloat128Type() const {
6759 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6760 return BT->getKind() == BuiltinType::Float128;
6761 return false;
6762}
6763
6764inline bool Type::isNullPtrType() const {
6765 if (const auto *BT = getAs<BuiltinType>())
6766 return BT->getKind() == BuiltinType::NullPtr;
6767 return false;
6768}
6769
6770bool IsEnumDeclComplete(EnumDecl *);
6771bool IsEnumDeclScoped(EnumDecl *);
6772
6773inline bool Type::isIntegerType() const {
6774 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6775 return BT->getKind() >= BuiltinType::Bool &&
6776 BT->getKind() <= BuiltinType::Int128;
6777 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
6778 // Incomplete enum types are not treated as integer types.
6779 // FIXME: In C++, enum types are never integer types.
6780 return IsEnumDeclComplete(ET->getDecl()) &&
6781 !IsEnumDeclScoped(ET->getDecl());
6782 }
6783 return false;
6784}
6785
6786inline bool Type::isFixedPointType() const {
6787 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
6788 return BT->getKind() >= BuiltinType::ShortAccum &&
6789 BT->getKind() <= BuiltinType::SatULongFract;
6790 }
6791 return false;
6792}
6793
6794inline bool Type::isFixedPointOrIntegerType() const {
6795 return isFixedPointType() || isIntegerType();
6796}
6797
6798inline bool Type::isSaturatedFixedPointType() const {
6799 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
6800 return BT->getKind() >= BuiltinType::SatShortAccum &&
6801 BT->getKind() <= BuiltinType::SatULongFract;
6802 }
6803 return false;
6804}
6805
6806inline bool Type::isUnsaturatedFixedPointType() const {
6807 return isFixedPointType() && !isSaturatedFixedPointType();
6808}
6809
6810inline bool Type::isSignedFixedPointType() const {
6811 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
6812 return ((BT->getKind() >= BuiltinType::ShortAccum &&
6813 BT->getKind() <= BuiltinType::LongAccum) ||
6814 (BT->getKind() >= BuiltinType::ShortFract &&
6815 BT->getKind() <= BuiltinType::LongFract) ||
6816 (BT->getKind() >= BuiltinType::SatShortAccum &&
6817 BT->getKind() <= BuiltinType::SatLongAccum) ||
6818 (BT->getKind() >= BuiltinType::SatShortFract &&
6819 BT->getKind() <= BuiltinType::SatLongFract));
6820 }
6821 return false;
6822}
6823
6824inline bool Type::isUnsignedFixedPointType() const {
6825 return isFixedPointType() && !isSignedFixedPointType();
6826}
6827
6828inline bool Type::isScalarType() const {
6829 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6830 return BT->getKind() > BuiltinType::Void &&
6831 BT->getKind() <= BuiltinType::NullPtr;
6832 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
6833 // Enums are scalar types, but only if they are defined. Incomplete enums
6834 // are not treated as scalar types.
6835 return IsEnumDeclComplete(ET->getDecl());
6836 return isa<PointerType>(CanonicalType) ||
6837 isa<BlockPointerType>(CanonicalType) ||
6838 isa<MemberPointerType>(CanonicalType) ||
6839 isa<ComplexType>(CanonicalType) ||
6840 isa<ObjCObjectPointerType>(CanonicalType);
6841}
6842
6843inline bool Type::isIntegralOrEnumerationType() const {
6844 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6845 return BT->getKind() >= BuiltinType::Bool &&
6846 BT->getKind() <= BuiltinType::Int128;
6847
6848 // Check for a complete enum type; incomplete enum types are not properly an
6849 // enumeration type in the sense required here.
6850 if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
6851 return IsEnumDeclComplete(ET->getDecl());
6852
6853 return false;
6854}
6855
6856inline bool Type::isBooleanType() const {
6857 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6858 return BT->getKind() == BuiltinType::Bool;
6859 return false;
6860}
6861
6862inline bool Type::isUndeducedType() const {
6863 auto *DT = getContainedDeducedType();
6864 return DT && !DT->isDeduced();
6865}
6866
6867/// Determines whether this is a type for which one can define
6868/// an overloaded operator.
6869inline bool Type::isOverloadableType() const {
6870 return isDependentType() || isRecordType() || isEnumeralType();
6871}
6872
6873/// Determines whether this type can decay to a pointer type.
6874inline bool Type::canDecayToPointerType() const {
6875 return isFunctionType() || isArrayType();
6876}
6877
6878inline bool Type::hasPointerRepresentation() const {
6879 return (isPointerType() || isReferenceType() || isBlockPointerType() ||
6880 isObjCObjectPointerType() || isNullPtrType());
6881}
6882
6883inline bool Type::hasObjCPointerRepresentation() const {
6884 return isObjCObjectPointerType();
6885}
6886
6887inline const Type *Type::getBaseElementTypeUnsafe() const {
6888 const Type *type = this;
6889 while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
6890 type = arrayType->getElementType().getTypePtr();
6891 return type;
6892}
6893
6894inline const Type *Type::getPointeeOrArrayElementType() const {
6895 const Type *type = this;
6896 if (type->isAnyPointerType())
6897 return type->getPointeeType().getTypePtr();
6898 else if (type->isArrayType())
6899 return type->getBaseElementTypeUnsafe();
6900 return type;
6901}
6902/// Insertion operator for diagnostics. This allows sending address spaces into
6903/// a diagnostic with <<.
6904inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
6905 LangAS AS) {
6906 DB.AddTaggedVal(static_cast<std::underlying_type_t<LangAS>>(AS),
6907 DiagnosticsEngine::ArgumentKind::ak_addrspace);
6908 return DB;
6909}
6910
6911/// Insertion operator for partial diagnostics. This allows sending adress
6912/// spaces into a diagnostic with <<.
6913inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
6914 LangAS AS) {
6915 PD.AddTaggedVal(static_cast<std::underlying_type_t<LangAS>>(AS),
6916 DiagnosticsEngine::ArgumentKind::ak_addrspace);
6917 return PD;
6918}
6919
6920/// Insertion operator for diagnostics. This allows sending Qualifiers into a
6921/// diagnostic with <<.
6922inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
6923 Qualifiers Q) {
6924 DB.AddTaggedVal(Q.getAsOpaqueValue(),
6925 DiagnosticsEngine::ArgumentKind::ak_qual);
6926 return DB;
6927}
6928
6929/// Insertion operator for partial diagnostics. This allows sending Qualifiers
6930/// into a diagnostic with <<.
6931inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
6932 Qualifiers Q) {
6933 PD.AddTaggedVal(Q.getAsOpaqueValue(),
6934 DiagnosticsEngine::ArgumentKind::ak_qual);
6935 return PD;
6936}
6937
6938/// Insertion operator for diagnostics. This allows sending QualType's into a
6939/// diagnostic with <<.
6940inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
6941 QualType T) {
6942 DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
6943 DiagnosticsEngine::ak_qualtype);
6944 return DB;
6945}
6946
6947/// Insertion operator for partial diagnostics. This allows sending QualType's
6948/// into a diagnostic with <<.
6949inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
6950 QualType T) {
6951 PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
6952 DiagnosticsEngine::ak_qualtype);
6953 return PD;
6954}
6955
6956// Helper class template that is used by Type::getAs to ensure that one does
6957// not try to look through a qualified type to get to an array type.
6958template <typename T>
6959using TypeIsArrayType =
6960 std::integral_constant<bool, std::is_same<T, ArrayType>::value ||
6961 std::is_base_of<ArrayType, T>::value>;
6962
6963// Member-template getAs<specific type>'.
6964template <typename T> const T *Type::getAs() const {
6965 static_assert(!TypeIsArrayType<T>::value,
6966 "ArrayType cannot be used with getAs!");
6967
6968 // If this is directly a T type, return it.
6969 if (const auto *Ty = dyn_cast<T>(this))
6970 return Ty;
6971
6972 // If the canonical form of this type isn't the right kind, reject it.
6973 if (!isa<T>(CanonicalType))
6974 return nullptr;
6975
6976 // If this is a typedef for the type, strip the typedef off without
6977 // losing all typedef information.
6978 return cast<T>(getUnqualifiedDesugaredType());
6979}
6980
6981template <typename T> const T *Type::getAsAdjusted() const {
6982 static_assert(!TypeIsArrayType<T>::value, "ArrayType cannot be used with getAsAdjusted!");
6983
6984 // If this is directly a T type, return it.
6985 if (const auto *Ty = dyn_cast<T>(this))
6986 return Ty;
6987
6988 // If the canonical form of this type isn't the right kind, reject it.
6989 if (!isa<T>(CanonicalType))
6990 return nullptr;
6991
6992 // Strip off type adjustments that do not modify the underlying nature of the
6993 // type.
6994 const Type *Ty = this;
6995 while (Ty) {
6996 if (const auto *A = dyn_cast<AttributedType>(Ty))
6997 Ty = A->getModifiedType().getTypePtr();
6998 else if (const auto *E = dyn_cast<ElaboratedType>(Ty))
6999 Ty = E->desugar().getTypePtr();
7000 else if (const auto *P = dyn_cast<ParenType>(Ty))
7001 Ty = P->desugar().getTypePtr();
7002 else if (const auto *A = dyn_cast<AdjustedType>(Ty))
7003 Ty = A->desugar().getTypePtr();
7004 else if (const auto *M = dyn_cast<MacroQualifiedType>(Ty))
7005 Ty = M->desugar().getTypePtr();
7006 else
7007 break;
7008 }
7009
7010 // Just because the canonical type is correct does not mean we can use cast<>,
7011 // since we may not have stripped off all the sugar down to the base type.
7012 return dyn_cast<T>(Ty);
7013}
7014
7015inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
7016 // If this is directly an array type, return it.
7017 if (const auto *arr = dyn_cast<ArrayType>(this))
7018 return arr;
7019
7020 // If the canonical form of this type isn't the right kind, reject it.
7021 if (!isa<ArrayType>(CanonicalType))
7022 return nullptr;
7023
7024 // If this is a typedef for the type, strip the typedef off without
7025 // losing all typedef information.
7026 return cast<ArrayType>(getUnqualifiedDesugaredType());
7027}
7028
7029template <typename T> const T *Type::castAs() const {
7030 static_assert(!TypeIsArrayType<T>::value,
7031 "ArrayType cannot be used with castAs!");
7032
7033 if (const auto *ty = dyn_cast<T>(this)) return ty;
7034 assert(isa<T>(CanonicalType))((isa<T>(CanonicalType)) ? static_cast<void> (0) :
__assert_fail ("isa<T>(CanonicalType)", "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 7034, __PRETTY_FUNCTION__))
;
7035 return cast<T>(getUnqualifiedDesugaredType());
7036}
7037
7038inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
7039 assert(isa<ArrayType>(CanonicalType))((isa<ArrayType>(CanonicalType)) ? static_cast<void>
(0) : __assert_fail ("isa<ArrayType>(CanonicalType)", "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 7039, __PRETTY_FUNCTION__))
;
7040 if (const auto *arr = dyn_cast<ArrayType>(this)) return arr;
7041 return cast<ArrayType>(getUnqualifiedDesugaredType());
7042}
7043
7044DecayedType::DecayedType(QualType OriginalType, QualType DecayedPtr,
7045 QualType CanonicalPtr)
7046 : AdjustedType(Decayed, OriginalType, DecayedPtr, CanonicalPtr) {
7047#ifndef NDEBUG
7048 QualType Adjusted = getAdjustedType();
7049 (void)AttributedType::stripOuterNullability(Adjusted);
7050 assert(isa<PointerType>(Adjusted))((isa<PointerType>(Adjusted)) ? static_cast<void>
(0) : __assert_fail ("isa<PointerType>(Adjusted)", "/build/llvm-toolchain-snapshot-10~++20200110111110+a1cc19b5814/clang/include/clang/AST/Type.h"
, 7050, __PRETTY_FUNCTION__))
;
7051#endif
7052}
7053
7054QualType DecayedType::getPointeeType() const {
7055 QualType Decayed = getDecayedType();
7056 (void)AttributedType::stripOuterNullability(Decayed);
7057 return cast<PointerType>(Decayed)->getPointeeType();
7058}
7059
7060// Get the decimal string representation of a fixed point type, represented
7061// as a scaled integer.
7062// TODO: At some point, we should change the arguments to instead just accept an
7063// APFixedPoint instead of APSInt and scale.
7064void FixedPointValueToString(SmallVectorImpl<char> &Str, llvm::APSInt Val,
7065 unsigned Scale);
7066
7067} // namespace clang
7068
7069#endif // LLVM_CLANG_AST_TYPE_H