Bug Summary

File:lib/Target/AMDGPU/SIISelLowering.cpp
Location:line 1359, column 5
Description:Value stored to 'BR' is never read

Annotated Source Code

1//===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10/// \file
11/// \brief Custom DAG lowering for SI
12//
13//===----------------------------------------------------------------------===//
14
15#ifdef _MSC_VER
16// Provide M_PI.
17#define _USE_MATH_DEFINES
18#include <cmath>
19#endif
20
21#include "AMDGPU.h"
22#include "AMDGPUIntrinsicInfo.h"
23#include "AMDGPUSubtarget.h"
24#include "SIISelLowering.h"
25#include "SIInstrInfo.h"
26#include "SIMachineFunctionInfo.h"
27#include "SIRegisterInfo.h"
28#include "llvm/ADT/BitVector.h"
29#include "llvm/ADT/StringSwitch.h"
30#include "llvm/CodeGen/CallingConvLower.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineRegisterInfo.h"
33#include "llvm/CodeGen/SelectionDAG.h"
34#include "llvm/IR/DiagnosticInfo.h"
35#include "llvm/IR/Function.h"
36
37using namespace llvm;
38
39static unsigned findFirstFreeSGPR(CCState &CCInfo) {
40 unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
41 for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
42 if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
43 return AMDGPU::SGPR0 + Reg;
44 }
45 }
46 llvm_unreachable("Cannot allocate sgpr")::llvm::llvm_unreachable_internal("Cannot allocate sgpr", "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/Target/AMDGPU/SIISelLowering.cpp"
, 46)
;
47}
48
49SITargetLowering::SITargetLowering(TargetMachine &TM,
50 const AMDGPUSubtarget &STI)
51 : AMDGPUTargetLowering(TM, STI) {
52 addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
53 addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
54
55 addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass);
56 addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
57
58 addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
59 addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
60 addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
61
62 addRegisterClass(MVT::v2i64, &AMDGPU::SReg_128RegClass);
63 addRegisterClass(MVT::v2f64, &AMDGPU::SReg_128RegClass);
64
65 addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass);
66 addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
67
68 addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass);
69 addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
70
71 addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass);
72 addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
73
74 computeRegisterProperties(STI.getRegisterInfo());
75
76 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
77 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
78 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
79 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
80
81 setOperationAction(ISD::ADD, MVT::i32, Legal);
82 setOperationAction(ISD::ADDC, MVT::i32, Legal);
83 setOperationAction(ISD::ADDE, MVT::i32, Legal);
84 setOperationAction(ISD::SUBC, MVT::i32, Legal);
85 setOperationAction(ISD::SUBE, MVT::i32, Legal);
86
87 setOperationAction(ISD::FSIN, MVT::f32, Custom);
88 setOperationAction(ISD::FCOS, MVT::f32, Custom);
89
90 setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
91 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
92
93 // We need to custom lower vector stores from local memory
94 setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
95 setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
96 setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
97
98 setOperationAction(ISD::STORE, MVT::v8i32, Custom);
99 setOperationAction(ISD::STORE, MVT::v16i32, Custom);
100
101 setOperationAction(ISD::STORE, MVT::i1, Custom);
102 setOperationAction(ISD::STORE, MVT::v4i32, Custom);
103
104 setOperationAction(ISD::SELECT, MVT::i64, Custom);
105 setOperationAction(ISD::SELECT, MVT::f64, Promote);
106 AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
107
108 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
109 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
110 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
111 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
112
113 setOperationAction(ISD::SETCC, MVT::i1, Promote);
114 setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
115 setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
116
117 setOperationAction(ISD::BSWAP, MVT::i32, Legal);
118 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
119
120 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Legal);
121 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
122 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
123
124 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Legal);
125 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
126 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
127
128 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal);
129 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
130 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
131
132 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal);
133 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
134
135 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
136 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
137 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v16i8, Custom);
138 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
139
140 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
141
142 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
143 setOperationAction(ISD::BRCOND, MVT::Other, Custom);
144 setOperationAction(ISD::BR_CC, MVT::i32, Expand);
145 setOperationAction(ISD::BR_CC, MVT::i64, Expand);
146 setOperationAction(ISD::BR_CC, MVT::f32, Expand);
147 setOperationAction(ISD::BR_CC, MVT::f64, Expand);
148
149 // On SI this is s_memtime and s_memrealtime on VI.
150 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
151
152 for (MVT VT : MVT::integer_valuetypes()) {
153 if (VT == MVT::i64)
154 continue;
155
156 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote);
157 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal);
158 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal);
159 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand);
160
161 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote);
162 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal);
163 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal);
164 setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand);
165
166 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote);
167 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal);
168 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal);
169 setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand);
170 }
171
172 for (MVT VT : MVT::integer_vector_valuetypes()) {
173 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v8i16, Expand);
174 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v16i16, Expand);
175 }
176
177 for (MVT VT : MVT::fp_valuetypes())
178 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
179
180 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f16, Expand);
181 setLoadExtAction(ISD::EXTLOAD, MVT::v2f64, MVT::v2f32, Expand);
182
183 setTruncStoreAction(MVT::i64, MVT::i32, Expand);
184 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
185 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
186 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
187
188
189 setTruncStoreAction(MVT::v2i64, MVT::v2i32, Expand);
190
191 setTruncStoreAction(MVT::v2f64, MVT::v2f32, Expand);
192 setTruncStoreAction(MVT::v2f64, MVT::v2f16, Expand);
193
194 setOperationAction(ISD::LOAD, MVT::i1, Custom);
195
196 setOperationAction(ISD::LOAD, MVT::v2i64, Promote);
197 AddPromotedToType(ISD::LOAD, MVT::v2i64, MVT::v4i32);
198
199 setOperationAction(ISD::STORE, MVT::v2i64, Promote);
200 AddPromotedToType(ISD::STORE, MVT::v2i64, MVT::v4i32);
201
202 setOperationAction(ISD::ConstantPool, MVT::v2i64, Expand);
203
204 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
205 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
206 setOperationAction(ISD::FrameIndex, MVT::i32, Custom);
207
208 // These should use UDIVREM, so set them to expand
209 setOperationAction(ISD::UDIV, MVT::i64, Expand);
210 setOperationAction(ISD::UREM, MVT::i64, Expand);
211
212 setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
213 setOperationAction(ISD::SELECT, MVT::i1, Promote);
214
215 setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand);
216
217
218 setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
219
220 // We only support LOAD/STORE and vector manipulation ops for vectors
221 // with > 4 elements.
222 for (MVT VT : {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32, MVT::v2i64, MVT::v2f64}) {
223 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
224 switch(Op) {
225 case ISD::LOAD:
226 case ISD::STORE:
227 case ISD::BUILD_VECTOR:
228 case ISD::BITCAST:
229 case ISD::EXTRACT_VECTOR_ELT:
230 case ISD::INSERT_VECTOR_ELT:
231 case ISD::INSERT_SUBVECTOR:
232 case ISD::EXTRACT_SUBVECTOR:
233 case ISD::SCALAR_TO_VECTOR:
234 break;
235 case ISD::CONCAT_VECTORS:
236 setOperationAction(Op, VT, Custom);
237 break;
238 default:
239 setOperationAction(Op, VT, Expand);
240 break;
241 }
242 }
243 }
244
245 // Most operations are naturally 32-bit vector operations. We only support
246 // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
247 for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
248 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
249 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
250
251 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
252 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
253
254 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
255 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
256
257 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
258 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
259 }
260
261 if (Subtarget->getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) {
262 setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
263 setOperationAction(ISD::FCEIL, MVT::f64, Legal);
264 setOperationAction(ISD::FRINT, MVT::f64, Legal);
265 }
266
267 setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
268 setOperationAction(ISD::FDIV, MVT::f32, Custom);
269 setOperationAction(ISD::FDIV, MVT::f64, Custom);
270
271 // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
272 // and output demarshalling
273 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
274 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
275
276 // We can't return success/failure, only the old value,
277 // let LLVM add the comparison
278 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand);
279 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand);
280
281 setTargetDAGCombine(ISD::FADD);
282 setTargetDAGCombine(ISD::FSUB);
283 setTargetDAGCombine(ISD::FMINNUM);
284 setTargetDAGCombine(ISD::FMAXNUM);
285 setTargetDAGCombine(ISD::SMIN);
286 setTargetDAGCombine(ISD::SMAX);
287 setTargetDAGCombine(ISD::UMIN);
288 setTargetDAGCombine(ISD::UMAX);
289 setTargetDAGCombine(ISD::SETCC);
290 setTargetDAGCombine(ISD::AND);
291 setTargetDAGCombine(ISD::OR);
292 setTargetDAGCombine(ISD::UINT_TO_FP);
293 setTargetDAGCombine(ISD::FCANONICALIZE);
294
295 // All memory operations. Some folding on the pointer operand is done to help
296 // matching the constant offsets in the addressing modes.
297 setTargetDAGCombine(ISD::LOAD);
298 setTargetDAGCombine(ISD::STORE);
299 setTargetDAGCombine(ISD::ATOMIC_LOAD);
300 setTargetDAGCombine(ISD::ATOMIC_STORE);
301 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
302 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
303 setTargetDAGCombine(ISD::ATOMIC_SWAP);
304 setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
305 setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
306 setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
307 setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
308 setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
309 setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
310 setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
311 setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
312 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
313 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
314
315 setSchedulingPreference(Sched::RegPressure);
316}
317
318//===----------------------------------------------------------------------===//
319// TargetLowering queries
320//===----------------------------------------------------------------------===//
321
322bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
323 const CallInst &CI,
324 unsigned IntrID) const {
325 switch (IntrID) {
326 case Intrinsic::amdgcn_atomic_inc:
327 case Intrinsic::amdgcn_atomic_dec:
328 Info.opc = ISD::INTRINSIC_W_CHAIN;
329 Info.memVT = MVT::getVT(CI.getType());
330 Info.ptrVal = CI.getOperand(0);
331 Info.align = 0;
332 Info.vol = false;
333 Info.readMem = true;
334 Info.writeMem = true;
335 return true;
336 default:
337 return false;
338 }
339}
340
341bool SITargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &,
342 EVT) const {
343 // SI has some legal vector types, but no legal vector operations. Say no
344 // shuffles are legal in order to prefer scalarizing some vector operations.
345 return false;
346}
347
348bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
349 // Flat instructions do not have offsets, and only have the register
350 // address.
351 return AM.BaseOffs == 0 && (AM.Scale == 0 || AM.Scale == 1);
352}
353
354bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
355 // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
356 // additionally can do r + r + i with addr64. 32-bit has more addressing
357 // mode options. Depending on the resource constant, it can also do
358 // (i64 r0) + (i32 r1) * (i14 i).
359 //
360 // Private arrays end up using a scratch buffer most of the time, so also
361 // assume those use MUBUF instructions. Scratch loads / stores are currently
362 // implemented as mubuf instructions with offen bit set, so slightly
363 // different than the normal addr64.
364 if (!isUInt<12>(AM.BaseOffs))
365 return false;
366
367 // FIXME: Since we can split immediate into soffset and immediate offset,
368 // would it make sense to allow any immediate?
369
370 switch (AM.Scale) {
371 case 0: // r + i or just i, depending on HasBaseReg.
372 return true;
373 case 1:
374 return true; // We have r + r or r + i.
375 case 2:
376 if (AM.HasBaseReg) {
377 // Reject 2 * r + r.
378 return false;
379 }
380
381 // Allow 2 * r as r + r
382 // Or 2 * r + i is allowed as r + r + i.
383 return true;
384 default: // Don't allow n * r
385 return false;
386 }
387}
388
389bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
390 const AddrMode &AM, Type *Ty,
391 unsigned AS) const {
392 // No global is ever allowed as a base.
393 if (AM.BaseGV)
394 return false;
395
396 switch (AS) {
397 case AMDGPUAS::GLOBAL_ADDRESS: {
398 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
399 // Assume the we will use FLAT for all global memory accesses
400 // on VI.
401 // FIXME: This assumption is currently wrong. On VI we still use
402 // MUBUF instructions for the r + i addressing mode. As currently
403 // implemented, the MUBUF instructions only work on buffer < 4GB.
404 // It may be possible to support > 4GB buffers with MUBUF instructions,
405 // by setting the stride value in the resource descriptor which would
406 // increase the size limit to (stride * 4GB). However, this is risky,
407 // because it has never been validated.
408 return isLegalFlatAddressingMode(AM);
409 }
410
411 return isLegalMUBUFAddressingMode(AM);
412 }
413 case AMDGPUAS::CONSTANT_ADDRESS: {
414 // If the offset isn't a multiple of 4, it probably isn't going to be
415 // correctly aligned.
416 if (AM.BaseOffs % 4 != 0)
417 return isLegalMUBUFAddressingMode(AM);
418
419 // There are no SMRD extloads, so if we have to do a small type access we
420 // will use a MUBUF load.
421 // FIXME?: We also need to do this if unaligned, but we don't know the
422 // alignment here.
423 if (DL.getTypeStoreSize(Ty) < 4)
424 return isLegalMUBUFAddressingMode(AM);
425
426 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
427 // SMRD instructions have an 8-bit, dword offset on SI.
428 if (!isUInt<8>(AM.BaseOffs / 4))
429 return false;
430 } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) {
431 // On CI+, this can also be a 32-bit literal constant offset. If it fits
432 // in 8-bits, it can use a smaller encoding.
433 if (!isUInt<32>(AM.BaseOffs / 4))
434 return false;
435 } else if (Subtarget->getGeneration() == AMDGPUSubtarget::VOLCANIC_ISLANDS) {
436 // On VI, these use the SMEM format and the offset is 20-bit in bytes.
437 if (!isUInt<20>(AM.BaseOffs))
438 return false;
439 } else
440 llvm_unreachable("unhandled generation")::llvm::llvm_unreachable_internal("unhandled generation", "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/Target/AMDGPU/SIISelLowering.cpp"
, 440)
;
441
442 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
443 return true;
444
445 if (AM.Scale == 1 && AM.HasBaseReg)
446 return true;
447
448 return false;
449 }
450
451 case AMDGPUAS::PRIVATE_ADDRESS:
452 case AMDGPUAS::UNKNOWN_ADDRESS_SPACE:
453 return isLegalMUBUFAddressingMode(AM);
454
455 case AMDGPUAS::LOCAL_ADDRESS:
456 case AMDGPUAS::REGION_ADDRESS: {
457 // Basic, single offset DS instructions allow a 16-bit unsigned immediate
458 // field.
459 // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
460 // an 8-bit dword offset but we don't know the alignment here.
461 if (!isUInt<16>(AM.BaseOffs))
462 return false;
463
464 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
465 return true;
466
467 if (AM.Scale == 1 && AM.HasBaseReg)
468 return true;
469
470 return false;
471 }
472 case AMDGPUAS::FLAT_ADDRESS:
473 return isLegalFlatAddressingMode(AM);
474
475 default:
476 llvm_unreachable("unhandled address space")::llvm::llvm_unreachable_internal("unhandled address space", "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/Target/AMDGPU/SIISelLowering.cpp"
, 476)
;
477 }
478}
479
480bool SITargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
481 unsigned AddrSpace,
482 unsigned Align,
483 bool *IsFast) const {
484 if (IsFast)
485 *IsFast = false;
486
487 // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
488 // which isn't a simple VT.
489 if (!VT.isSimple() || VT == MVT::Other)
490 return false;
491
492 // TODO - CI+ supports unaligned memory accesses, but this requires driver
493 // support.
494
495 // XXX - The only mention I see of this in the ISA manual is for LDS direct
496 // reads the "byte address and must be dword aligned". Is it also true for the
497 // normal loads and stores?
498 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS) {
499 // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
500 // aligned, 8 byte access in a single operation using ds_read2/write2_b32
501 // with adjacent offsets.
502 bool AlignedBy4 = (Align % 4 == 0);
503 if (IsFast)
504 *IsFast = AlignedBy4;
505 return AlignedBy4;
506 }
507
508 // Smaller than dword value must be aligned.
509 // FIXME: This should be allowed on CI+
510 if (VT.bitsLT(MVT::i32))
511 return false;
512
513 // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
514 // byte-address are ignored, thus forcing Dword alignment.
515 // This applies to private, global, and constant memory.
516 if (IsFast)
517 *IsFast = true;
518
519 return VT.bitsGT(MVT::i32) && Align % 4 == 0;
520}
521
522EVT SITargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
523 unsigned SrcAlign, bool IsMemset,
524 bool ZeroMemset,
525 bool MemcpyStrSrc,
526 MachineFunction &MF) const {
527 // FIXME: Should account for address space here.
528
529 // The default fallback uses the private pointer size as a guess for a type to
530 // use. Make sure we switch these to 64-bit accesses.
531
532 if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global
533 return MVT::v4i32;
534
535 if (Size >= 8 && DstAlign >= 4)
536 return MVT::v2i32;
537
538 // Use the default.
539 return MVT::Other;
540}
541
542static bool isFlatGlobalAddrSpace(unsigned AS) {
543 return AS == AMDGPUAS::GLOBAL_ADDRESS ||
544 AS == AMDGPUAS::FLAT_ADDRESS ||
545 AS == AMDGPUAS::CONSTANT_ADDRESS;
546}
547
548bool SITargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
549 unsigned DestAS) const {
550 return isFlatGlobalAddrSpace(SrcAS) && isFlatGlobalAddrSpace(DestAS);
551}
552
553
554bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
555 const MemSDNode *MemNode = cast<MemSDNode>(N);
556 const Value *Ptr = MemNode->getMemOperand()->getValue();
557
558 // UndefValue means this is a load of a kernel input. These are uniform.
559 // Sometimes LDS instructions have constant pointers
560 if (isa<UndefValue>(Ptr) || isa<Argument>(Ptr) || isa<Constant>(Ptr) ||
561 isa<GlobalValue>(Ptr))
562 return true;
563
564 const Instruction *I = dyn_cast_or_null<Instruction>(Ptr);
565 return I && I->getMetadata("amdgpu.uniform");
566}
567
568TargetLoweringBase::LegalizeTypeAction
569SITargetLowering::getPreferredVectorAction(EVT VT) const {
570 if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16))
571 return TypeSplitVector;
572
573 return TargetLoweringBase::getPreferredVectorAction(VT);
574}
575
576bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
577 Type *Ty) const {
578 const SIInstrInfo *TII =
579 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
580 return TII->isInlineConstant(Imm);
581}
582
583bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
584
585 // SimplifySetCC uses this function to determine whether or not it should
586 // create setcc with i1 operands. We don't have instructions for i1 setcc.
587 if (VT == MVT::i1 && Op == ISD::SETCC)
588 return false;
589
590 return TargetLowering::isTypeDesirableForOp(Op, VT);
591}
592
593SDValue SITargetLowering::LowerParameter(SelectionDAG &DAG, EVT VT, EVT MemVT,
594 SDLoc SL, SDValue Chain,
595 unsigned Offset, bool Signed) const {
596 const DataLayout &DL = DAG.getDataLayout();
597 MachineFunction &MF = DAG.getMachineFunction();
598 const SIRegisterInfo *TRI =
599 static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
600 unsigned InputPtrReg = TRI->getPreloadedValue(MF, SIRegisterInfo::KERNARG_SEGMENT_PTR);
601
602 Type *Ty = VT.getTypeForEVT(*DAG.getContext());
603
604 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
605 MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
606 PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
607 SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
608 MRI.getLiveInVirtReg(InputPtrReg), PtrVT);
609 SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
610 DAG.getConstant(Offset, SL, PtrVT));
611 SDValue PtrOffset = DAG.getUNDEF(PtrVT);
612 MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
613
614 unsigned Align = DL.getABITypeAlignment(Ty);
615
616 ISD::LoadExtType ExtTy = Signed ? ISD::SEXTLOAD : ISD::ZEXTLOAD;
617 if (MemVT.isFloatingPoint())
618 ExtTy = ISD::EXTLOAD;
619
620 return DAG.getLoad(ISD::UNINDEXED, ExtTy,
621 VT, SL, Chain, Ptr, PtrOffset, PtrInfo, MemVT,
622 false, // isVolatile
623 true, // isNonTemporal
624 true, // isInvariant
625 Align); // Alignment
626}
627
628SDValue SITargetLowering::LowerFormalArguments(
629 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
630 const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG,
631 SmallVectorImpl<SDValue> &InVals) const {
632 const SIRegisterInfo *TRI =
633 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
634
635 MachineFunction &MF = DAG.getMachineFunction();
636 FunctionType *FType = MF.getFunction()->getFunctionType();
637 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
638 const AMDGPUSubtarget &ST = MF.getSubtarget<AMDGPUSubtarget>();
639
640 if (Subtarget->isAmdHsaOS() && AMDGPU::isShader(CallConv)) {
641 const Function *Fn = MF.getFunction();
642 DiagnosticInfoUnsupported NoGraphicsHSA(
643 *Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
644 DAG.getContext()->diagnose(NoGraphicsHSA);
645 return SDValue();
646 }
647
648 SmallVector<ISD::InputArg, 16> Splits;
649 BitVector Skipped(Ins.size());
650
651 for (unsigned i = 0, e = Ins.size(), PSInputNum = 0; i != e; ++i) {
652 const ISD::InputArg &Arg = Ins[i];
653
654 // First check if it's a PS input addr
655 if (CallConv == CallingConv::AMDGPU_PS && !Arg.Flags.isInReg() &&
656 !Arg.Flags.isByVal() && PSInputNum <= 15) {
657
658 if (!Arg.Used && !Info->isPSInputAllocated(PSInputNum)) {
659 // We can safely skip PS inputs
660 Skipped.set(i);
661 ++PSInputNum;
662 continue;
663 }
664
665 Info->markPSInputAllocated(PSInputNum);
666 if (Arg.Used)
667 Info->PSInputEna |= 1 << PSInputNum;
668
669 ++PSInputNum;
670 }
671
672 // Second split vertices into their elements
673 if (AMDGPU::isShader(CallConv) &&
674 Arg.VT.isVector()) {
675 ISD::InputArg NewArg = Arg;
676 NewArg.Flags.setSplit();
677 NewArg.VT = Arg.VT.getVectorElementType();
678
679 // We REALLY want the ORIGINAL number of vertex elements here, e.g. a
680 // three or five element vertex only needs three or five registers,
681 // NOT four or eight.
682 Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
683 unsigned NumElements = ParamType->getVectorNumElements();
684
685 for (unsigned j = 0; j != NumElements; ++j) {
686 Splits.push_back(NewArg);
687 NewArg.PartOffset += NewArg.VT.getStoreSize();
688 }
689
690 } else if (AMDGPU::isShader(CallConv)) {
691 Splits.push_back(Arg);
692 }
693 }
694
695 SmallVector<CCValAssign, 16> ArgLocs;
696 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
697 *DAG.getContext());
698
699 // At least one interpolation mode must be enabled or else the GPU will hang.
700 //
701 // Check PSInputAddr instead of PSInputEna. The idea is that if the user set
702 // PSInputAddr, the user wants to enable some bits after the compilation
703 // based on run-time states. Since we can't know what the final PSInputEna
704 // will look like, so we shouldn't do anything here and the user should take
705 // responsibility for the correct programming.
706 //
707 // Otherwise, the following restrictions apply:
708 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
709 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
710 // enabled too.
711 if (CallConv == CallingConv::AMDGPU_PS &&
712 ((Info->getPSInputAddr() & 0x7F) == 0 ||
713 ((Info->getPSInputAddr() & 0xF) == 0 &&
714 Info->isPSInputAllocated(11)))) {
715 CCInfo.AllocateReg(AMDGPU::VGPR0);
716 CCInfo.AllocateReg(AMDGPU::VGPR1);
717 Info->markPSInputAllocated(0);
718 Info->PSInputEna |= 1;
719 }
720
721 if (!AMDGPU::isShader(CallConv)) {
722 getOriginalFunctionArgs(DAG, DAG.getMachineFunction().getFunction(), Ins,
723 Splits);
724
725 assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX())((Info->hasWorkGroupIDX() && Info->hasWorkItemIDX
()) ? static_cast<void> (0) : __assert_fail ("Info->hasWorkGroupIDX() && Info->hasWorkItemIDX()"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/Target/AMDGPU/SIISelLowering.cpp"
, 725, __PRETTY_FUNCTION__))
;
726 } else {
727 assert(!Info->hasPrivateSegmentBuffer() && !Info->hasDispatchPtr() &&((!Info->hasPrivateSegmentBuffer() && !Info->hasDispatchPtr
() && !Info->hasKernargSegmentPtr() && !Info
->hasFlatScratchInit() && !Info->hasWorkGroupIDX
() && !Info->hasWorkGroupIDY() && !Info->
hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
!Info->hasWorkItemIDX() && !Info->hasWorkItemIDY
() && !Info->hasWorkItemIDZ()) ? static_cast<void
> (0) : __assert_fail ("!Info->hasPrivateSegmentBuffer() && !Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() && !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/Target/AMDGPU/SIISelLowering.cpp"
, 732, __PRETTY_FUNCTION__))
728 !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() &&((!Info->hasPrivateSegmentBuffer() && !Info->hasDispatchPtr
() && !Info->hasKernargSegmentPtr() && !Info
->hasFlatScratchInit() && !Info->hasWorkGroupIDX
() && !Info->hasWorkGroupIDY() && !Info->
hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
!Info->hasWorkItemIDX() && !Info->hasWorkItemIDY
() && !Info->hasWorkItemIDZ()) ? static_cast<void
> (0) : __assert_fail ("!Info->hasPrivateSegmentBuffer() && !Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() && !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/Target/AMDGPU/SIISelLowering.cpp"
, 732, __PRETTY_FUNCTION__))
729 !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&((!Info->hasPrivateSegmentBuffer() && !Info->hasDispatchPtr
() && !Info->hasKernargSegmentPtr() && !Info
->hasFlatScratchInit() && !Info->hasWorkGroupIDX
() && !Info->hasWorkGroupIDY() && !Info->
hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
!Info->hasWorkItemIDX() && !Info->hasWorkItemIDY
() && !Info->hasWorkItemIDZ()) ? static_cast<void
> (0) : __assert_fail ("!Info->hasPrivateSegmentBuffer() && !Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() && !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/Target/AMDGPU/SIISelLowering.cpp"
, 732, __PRETTY_FUNCTION__))
730 !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&((!Info->hasPrivateSegmentBuffer() && !Info->hasDispatchPtr
() && !Info->hasKernargSegmentPtr() && !Info
->hasFlatScratchInit() && !Info->hasWorkGroupIDX
() && !Info->hasWorkGroupIDY() && !Info->
hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
!Info->hasWorkItemIDX() && !Info->hasWorkItemIDY
() && !Info->hasWorkItemIDZ()) ? static_cast<void
> (0) : __assert_fail ("!Info->hasPrivateSegmentBuffer() && !Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() && !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/Target/AMDGPU/SIISelLowering.cpp"
, 732, __PRETTY_FUNCTION__))
731 !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() &&((!Info->hasPrivateSegmentBuffer() && !Info->hasDispatchPtr
() && !Info->hasKernargSegmentPtr() && !Info
->hasFlatScratchInit() && !Info->hasWorkGroupIDX
() && !Info->hasWorkGroupIDY() && !Info->
hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
!Info->hasWorkItemIDX() && !Info->hasWorkItemIDY
() && !Info->hasWorkItemIDZ()) ? static_cast<void
> (0) : __assert_fail ("!Info->hasPrivateSegmentBuffer() && !Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() && !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/Target/AMDGPU/SIISelLowering.cpp"
, 732, __PRETTY_FUNCTION__))
732 !Info->hasWorkItemIDZ())((!Info->hasPrivateSegmentBuffer() && !Info->hasDispatchPtr
() && !Info->hasKernargSegmentPtr() && !Info
->hasFlatScratchInit() && !Info->hasWorkGroupIDX
() && !Info->hasWorkGroupIDY() && !Info->
hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
!Info->hasWorkItemIDX() && !Info->hasWorkItemIDY
() && !Info->hasWorkItemIDZ()) ? static_cast<void
> (0) : __assert_fail ("!Info->hasPrivateSegmentBuffer() && !Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() && !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/Target/AMDGPU/SIISelLowering.cpp"
, 732, __PRETTY_FUNCTION__))
;
733 }
734
735 // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
736 if (Info->hasPrivateSegmentBuffer()) {
737 unsigned PrivateSegmentBufferReg = Info->addPrivateSegmentBuffer(*TRI);
738 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SReg_128RegClass);
739 CCInfo.AllocateReg(PrivateSegmentBufferReg);
740 }
741
742 if (Info->hasDispatchPtr()) {
743 unsigned DispatchPtrReg = Info->addDispatchPtr(*TRI);
744 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SReg_64RegClass);
745 CCInfo.AllocateReg(DispatchPtrReg);
746 }
747
748 if (Info->hasKernargSegmentPtr()) {
749 unsigned InputPtrReg = Info->addKernargSegmentPtr(*TRI);
750 MF.addLiveIn(InputPtrReg, &AMDGPU::SReg_64RegClass);
751 CCInfo.AllocateReg(InputPtrReg);
752 }
753
754 if (Info->hasFlatScratchInit()) {
755 unsigned FlatScratchInitReg = Info->addFlatScratchInit(*TRI);
756 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SReg_64RegClass);
757 CCInfo.AllocateReg(FlatScratchInitReg);
758 }
759
760 AnalyzeFormalArguments(CCInfo, Splits);
761
762 SmallVector<SDValue, 16> Chains;
763
764 for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
765
766 const ISD::InputArg &Arg = Ins[i];
767 if (Skipped[i]) {
768 InVals.push_back(DAG.getUNDEF(Arg.VT));
769 continue;
770 }
771
772 CCValAssign &VA = ArgLocs[ArgIdx++];
773 MVT VT = VA.getLocVT();
774
775 if (VA.isMemLoc()) {
776 VT = Ins[i].VT;
777 EVT MemVT = Splits[i].VT;
778 const unsigned Offset = Subtarget->getExplicitKernelArgOffset() +
779 VA.getLocMemOffset();
780 // The first 36 bytes of the input buffer contains information about
781 // thread group and global sizes.
782 SDValue Arg = LowerParameter(DAG, VT, MemVT, DL, Chain,
783 Offset, Ins[i].Flags.isSExt());
784 Chains.push_back(Arg.getValue(1));
785
786 auto *ParamTy =
787 dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
788 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
789 ParamTy && ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
790 // On SI local pointers are just offsets into LDS, so they are always
791 // less than 16-bits. On CI and newer they could potentially be
792 // real pointers, so we can't guarantee their size.
793 Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
794 DAG.getValueType(MVT::i16));
795 }
796
797 InVals.push_back(Arg);
798 Info->ABIArgOffset = Offset + MemVT.getStoreSize();
799 continue;
800 }
801 assert(VA.isRegLoc() && "Parameter must be in a register!")((VA.isRegLoc() && "Parameter must be in a register!"
) ? static_cast<void> (0) : __assert_fail ("VA.isRegLoc() && \"Parameter must be in a register!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/Target/AMDGPU/SIISelLowering.cpp"
, 801, __PRETTY_FUNCTION__))
;
802
803 unsigned Reg = VA.getLocReg();
804
805 if (VT == MVT::i64) {
806 // For now assume it is a pointer
807 Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0,
808 &AMDGPU::SReg_64RegClass);
809 Reg = MF.addLiveIn(Reg, &AMDGPU::SReg_64RegClass);
810 SDValue Copy = DAG.getCopyFromReg(Chain, DL, Reg, VT);
811 InVals.push_back(Copy);
812 continue;
813 }
814
815 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
816
817 Reg = MF.addLiveIn(Reg, RC);
818 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
819
820 if (Arg.VT.isVector()) {
821
822 // Build a vector from the registers
823 Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
824 unsigned NumElements = ParamType->getVectorNumElements();
825
826 SmallVector<SDValue, 4> Regs;
827 Regs.push_back(Val);
828 for (unsigned j = 1; j != NumElements; ++j) {
829 Reg = ArgLocs[ArgIdx++].getLocReg();
830 Reg = MF.addLiveIn(Reg, RC);
831
832 SDValue Copy = DAG.getCopyFromReg(Chain, DL, Reg, VT);
833 Regs.push_back(Copy);
834 }
835
836 // Fill up the missing vector elements
837 NumElements = Arg.VT.getVectorNumElements() - NumElements;
838 Regs.append(NumElements, DAG.getUNDEF(VT));
839
840 InVals.push_back(DAG.getNode(ISD::BUILD_VECTOR, DL, Arg.VT, Regs));
841 continue;
842 }
843
844 InVals.push_back(Val);
845 }
846
847 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
848 // these from the dispatch pointer.
849
850 // Start adding system SGPRs.
851 if (Info->hasWorkGroupIDX()) {
852 unsigned Reg = Info->addWorkGroupIDX();
853 MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass);
854 CCInfo.AllocateReg(Reg);
855 }
856
857 if (Info->hasWorkGroupIDY()) {
858 unsigned Reg = Info->addWorkGroupIDY();
859 MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass);
860 CCInfo.AllocateReg(Reg);
861 }
862
863 if (Info->hasWorkGroupIDZ()) {
864 unsigned Reg = Info->addWorkGroupIDZ();
865 MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass);
866 CCInfo.AllocateReg(Reg);
867 }
868
869 if (Info->hasWorkGroupInfo()) {
870 unsigned Reg = Info->addWorkGroupInfo();
871 MF.addLiveIn(Reg, &AMDGPU::SReg_32RegClass);
872 CCInfo.AllocateReg(Reg);
873 }
874
875 if (Info->hasPrivateSegmentWaveByteOffset()) {
876 // Scratch wave offset passed in system SGPR.
877 unsigned PrivateSegmentWaveByteOffsetReg;
878
879 if (AMDGPU::isShader(CallConv)) {
880 PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
881 Info->setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
882 } else
883 PrivateSegmentWaveByteOffsetReg = Info->addPrivateSegmentWaveByteOffset();
884
885 MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
886 CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
887 }
888
889 // Now that we've figured out where the scratch register inputs are, see if
890 // should reserve the arguments and use them directly.
891 bool HasStackObjects = MF.getFrameInfo()->hasStackObjects();
892 // Record that we know we have non-spill stack objects so we don't need to
893 // check all stack objects later.
894 if (HasStackObjects)
895 Info->setHasNonSpillStackObjects(true);
896
897 if (ST.isAmdHsaOS()) {
898 // TODO: Assume we will spill without optimizations.
899 if (HasStackObjects) {
900 // If we have stack objects, we unquestionably need the private buffer
901 // resource. For the HSA ABI, this will be the first 4 user SGPR
902 // inputs. We can reserve those and use them directly.
903
904 unsigned PrivateSegmentBufferReg = TRI->getPreloadedValue(
905 MF, SIRegisterInfo::PRIVATE_SEGMENT_BUFFER);
906 Info->setScratchRSrcReg(PrivateSegmentBufferReg);
907
908 unsigned PrivateSegmentWaveByteOffsetReg = TRI->getPreloadedValue(
909 MF, SIRegisterInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
910 Info->setScratchWaveOffsetReg(PrivateSegmentWaveByteOffsetReg);
911 } else {
912 unsigned ReservedBufferReg
913 = TRI->reservedPrivateSegmentBufferReg(MF);
914 unsigned ReservedOffsetReg
915 = TRI->reservedPrivateSegmentWaveByteOffsetReg(MF);
916
917 // We tentatively reserve the last registers (skipping the last two
918 // which may contain VCC). After register allocation, we'll replace
919 // these with the ones immediately after those which were really
920 // allocated. In the prologue copies will be inserted from the argument
921 // to these reserved registers.
922 Info->setScratchRSrcReg(ReservedBufferReg);
923 Info->setScratchWaveOffsetReg(ReservedOffsetReg);
924 }
925 } else {
926 unsigned ReservedBufferReg = TRI->reservedPrivateSegmentBufferReg(MF);
927
928 // Without HSA, relocations are used for the scratch pointer and the
929 // buffer resource setup is always inserted in the prologue. Scratch wave
930 // offset is still in an input SGPR.
931 Info->setScratchRSrcReg(ReservedBufferReg);
932
933 if (HasStackObjects) {
934 unsigned ScratchWaveOffsetReg = TRI->getPreloadedValue(
935 MF, SIRegisterInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
936 Info->setScratchWaveOffsetReg(ScratchWaveOffsetReg);
937 } else {
938 unsigned ReservedOffsetReg
939 = TRI->reservedPrivateSegmentWaveByteOffsetReg(MF);
940 Info->setScratchWaveOffsetReg(ReservedOffsetReg);
941 }
942 }
943
944 if (Info->hasWorkItemIDX()) {
945 unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_X);
946 MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
947 CCInfo.AllocateReg(Reg);
948 }
949
950 if (Info->hasWorkItemIDY()) {
951 unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Y);
952 MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
953 CCInfo.AllocateReg(Reg);
954 }
955
956 if (Info->hasWorkItemIDZ()) {
957 unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Z);
958 MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
959 CCInfo.AllocateReg(Reg);
960 }
961
962 if (Chains.empty())
963 return Chain;
964
965 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
966}
967
968SDValue SITargetLowering::LowerReturn(SDValue Chain,
969 CallingConv::ID CallConv,
970 bool isVarArg,
971 const SmallVectorImpl<ISD::OutputArg> &Outs,
972 const SmallVectorImpl<SDValue> &OutVals,
973 SDLoc DL, SelectionDAG &DAG) const {
974 MachineFunction &MF = DAG.getMachineFunction();
975 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
976
977 if (!AMDGPU::isShader(CallConv))
978 return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
979 OutVals, DL, DAG);
980
981 Info->setIfReturnsVoid(Outs.size() == 0);
982
983 SmallVector<ISD::OutputArg, 48> Splits;
984 SmallVector<SDValue, 48> SplitVals;
985
986 // Split vectors into their elements.
987 for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
988 const ISD::OutputArg &Out = Outs[i];
989
990 if (Out.VT.isVector()) {
991 MVT VT = Out.VT.getVectorElementType();
992 ISD::OutputArg NewOut = Out;
993 NewOut.Flags.setSplit();
994 NewOut.VT = VT;
995
996 // We want the original number of vector elements here, e.g.
997 // three or five, not four or eight.
998 unsigned NumElements = Out.ArgVT.getVectorNumElements();
999
1000 for (unsigned j = 0; j != NumElements; ++j) {
1001 SDValue Elem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, OutVals[i],
1002 DAG.getConstant(j, DL, MVT::i32));
1003 SplitVals.push_back(Elem);
1004 Splits.push_back(NewOut);
1005 NewOut.PartOffset += NewOut.VT.getStoreSize();
1006 }
1007 } else {
1008 SplitVals.push_back(OutVals[i]);
1009 Splits.push_back(Out);
1010 }
1011 }
1012
1013 // CCValAssign - represent the assignment of the return value to a location.
1014 SmallVector<CCValAssign, 48> RVLocs;
1015
1016 // CCState - Info about the registers and stack slots.
1017 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1018 *DAG.getContext());
1019
1020 // Analyze outgoing return values.
1021 AnalyzeReturn(CCInfo, Splits);
1022
1023 SDValue Flag;
1024 SmallVector<SDValue, 48> RetOps;
1025 RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1026
1027 // Copy the result values into the output registers.
1028 for (unsigned i = 0, realRVLocIdx = 0;
1029 i != RVLocs.size();
1030 ++i, ++realRVLocIdx) {
1031 CCValAssign &VA = RVLocs[i];
1032 assert(VA.isRegLoc() && "Can only return in registers!")((VA.isRegLoc() && "Can only return in registers!") ?
static_cast<void> (0) : __assert_fail ("VA.isRegLoc() && \"Can only return in registers!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1032, __PRETTY_FUNCTION__))
;
1033
1034 SDValue Arg = SplitVals[realRVLocIdx];
1035
1036 // Copied from other backends.
1037 switch (VA.getLocInfo()) {
1038 default: llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1038)
;
1039 case CCValAssign::Full:
1040 break;
1041 case CCValAssign::BCvt:
1042 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
1043 break;
1044 }
1045
1046 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
1047 Flag = Chain.getValue(1);
1048 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1049 }
1050
1051 // Update chain and glue.
1052 RetOps[0] = Chain;
1053 if (Flag.getNode())
1054 RetOps.push_back(Flag);
1055
1056 return DAG.getNode(AMDGPUISD::RET_FLAG, DL, MVT::Other, RetOps);
1057}
1058
1059unsigned SITargetLowering::getRegisterByName(const char* RegName, EVT VT,
1060 SelectionDAG &DAG) const {
1061 unsigned Reg = StringSwitch<unsigned>(RegName)
1062 .Case("m0", AMDGPU::M0)
1063 .Case("exec", AMDGPU::EXEC)
1064 .Case("exec_lo", AMDGPU::EXEC_LO)
1065 .Case("exec_hi", AMDGPU::EXEC_HI)
1066 .Case("flat_scratch", AMDGPU::FLAT_SCR)
1067 .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
1068 .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
1069 .Default(AMDGPU::NoRegister);
1070
1071 if (Reg == AMDGPU::NoRegister) {
1072 report_fatal_error(Twine("invalid register name \""
1073 + StringRef(RegName) + "\"."));
1074
1075 }
1076
1077 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
1078 Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
1079 report_fatal_error(Twine("invalid register \""
1080 + StringRef(RegName) + "\" for subtarget."));
1081 }
1082
1083 switch (Reg) {
1084 case AMDGPU::M0:
1085 case AMDGPU::EXEC_LO:
1086 case AMDGPU::EXEC_HI:
1087 case AMDGPU::FLAT_SCR_LO:
1088 case AMDGPU::FLAT_SCR_HI:
1089 if (VT.getSizeInBits() == 32)
1090 return Reg;
1091 break;
1092 case AMDGPU::EXEC:
1093 case AMDGPU::FLAT_SCR:
1094 if (VT.getSizeInBits() == 64)
1095 return Reg;
1096 break;
1097 default:
1098 llvm_unreachable("missing register type checking")::llvm::llvm_unreachable_internal("missing register type checking"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1098)
;
1099 }
1100
1101 report_fatal_error(Twine("invalid type for register \""
1102 + StringRef(RegName) + "\"."));
1103}
1104
1105MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
1106 MachineInstr *MI, MachineBasicBlock *BB) const {
1107 switch (MI->getOpcode()) {
1108 case AMDGPU::SI_INIT_M0: {
1109 const SIInstrInfo *TII =
1110 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
1111 BuildMI(*BB, MI->getIterator(), MI->getDebugLoc(),
1112 TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
1113 .addOperand(MI->getOperand(0));
1114 MI->eraseFromParent();
1115 break;
1116 }
1117 case AMDGPU::BRANCH:
1118 return BB;
1119 case AMDGPU::GET_GROUPSTATICSIZE: {
1120 const SIInstrInfo *TII =
1121 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
1122 MachineFunction *MF = BB->getParent();
1123 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
1124 DebugLoc DL = MI->getDebugLoc();
1125 BuildMI (*BB, MI, DL, TII->get(AMDGPU::S_MOVK_I32))
1126 .addOperand(MI->getOperand(0))
1127 .addImm(MFI->LDSSize);
1128 MI->eraseFromParent();
1129 return BB;
1130 }
1131 default:
1132 return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
1133 }
1134 return BB;
1135}
1136
1137bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1138 // This currently forces unfolding various combinations of fsub into fma with
1139 // free fneg'd operands. As long as we have fast FMA (controlled by
1140 // isFMAFasterThanFMulAndFAdd), we should perform these.
1141
1142 // When fma is quarter rate, for f64 where add / sub are at best half rate,
1143 // most of these combines appear to be cycle neutral but save on instruction
1144 // count / code size.
1145 return true;
1146}
1147
1148EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
1149 EVT VT) const {
1150 if (!VT.isVector()) {
1151 return MVT::i1;
1152 }
1153 return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
1154}
1155
1156MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT) const {
1157 return MVT::i32;
1158}
1159
1160// Answering this is somewhat tricky and depends on the specific device which
1161// have different rates for fma or all f64 operations.
1162//
1163// v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
1164// regardless of which device (although the number of cycles differs between
1165// devices), so it is always profitable for f64.
1166//
1167// v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
1168// only on full rate devices. Normally, we should prefer selecting v_mad_f32
1169// which we can always do even without fused FP ops since it returns the same
1170// result as the separate operations and since it is always full
1171// rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
1172// however does not support denormals, so we do report fma as faster if we have
1173// a fast fma device and require denormals.
1174//
1175bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
1176 VT = VT.getScalarType();
1177
1178 if (!VT.isSimple())
1179 return false;
1180
1181 switch (VT.getSimpleVT().SimpleTy) {
1182 case MVT::f32:
1183 // This is as fast on some subtargets. However, we always have full rate f32
1184 // mad available which returns the same result as the separate operations
1185 // which we should prefer over fma. We can't use this if we want to support
1186 // denormals, so only report this in these cases.
1187 return Subtarget->hasFP32Denormals() && Subtarget->hasFastFMAF32();
1188 case MVT::f64:
1189 return true;
1190 default:
1191 break;
1192 }
1193
1194 return false;
1195}
1196
1197//===----------------------------------------------------------------------===//
1198// Custom DAG Lowering Operations
1199//===----------------------------------------------------------------------===//
1200
1201SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
1202 switch (Op.getOpcode()) {
1203 default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
1204 case ISD::FrameIndex: return LowerFrameIndex(Op, DAG);
1205 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
1206 case ISD::LOAD: {
1207 SDValue Result = LowerLOAD(Op, DAG);
1208 assert((!Result.getNode() ||(((!Result.getNode() || Result.getNode()->getNumValues() ==
2) && "Load should return a value and a chain") ? static_cast
<void> (0) : __assert_fail ("(!Result.getNode() || Result.getNode()->getNumValues() == 2) && \"Load should return a value and a chain\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1210, __PRETTY_FUNCTION__))
1209 Result.getNode()->getNumValues() == 2) &&(((!Result.getNode() || Result.getNode()->getNumValues() ==
2) && "Load should return a value and a chain") ? static_cast
<void> (0) : __assert_fail ("(!Result.getNode() || Result.getNode()->getNumValues() == 2) && \"Load should return a value and a chain\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1210, __PRETTY_FUNCTION__))
1210 "Load should return a value and a chain")(((!Result.getNode() || Result.getNode()->getNumValues() ==
2) && "Load should return a value and a chain") ? static_cast
<void> (0) : __assert_fail ("(!Result.getNode() || Result.getNode()->getNumValues() == 2) && \"Load should return a value and a chain\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1210, __PRETTY_FUNCTION__))
;
1211 return Result;
1212 }
1213
1214 case ISD::FSIN:
1215 case ISD::FCOS:
1216 return LowerTrig(Op, DAG);
1217 case ISD::SELECT: return LowerSELECT(Op, DAG);
1218 case ISD::FDIV: return LowerFDIV(Op, DAG);
1219 case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
1220 case ISD::STORE: return LowerSTORE(Op, DAG);
1221 case ISD::GlobalAddress: {
1222 MachineFunction &MF = DAG.getMachineFunction();
1223 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1224 return LowerGlobalAddress(MFI, Op, DAG);
1225 }
1226 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
1227 case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
1228 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
1229 }
1230 return SDValue();
1231}
1232
1233/// \brief Helper function for LowerBRCOND
1234static SDNode *findUser(SDValue Value, unsigned Opcode) {
1235
1236 SDNode *Parent = Value.getNode();
1237 for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
1238 I != E; ++I) {
1239
1240 if (I.getUse().get() != Value)
1241 continue;
1242
1243 if (I->getOpcode() == Opcode)
1244 return *I;
1245 }
1246 return nullptr;
1247}
1248
1249SDValue SITargetLowering::LowerFrameIndex(SDValue Op, SelectionDAG &DAG) const {
1250
1251 SDLoc SL(Op);
1252 FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Op);
1253 unsigned FrameIndex = FINode->getIndex();
1254
1255 // A FrameIndex node represents a 32-bit offset into scratch memory. If the
1256 // high bit of a frame index offset were to be set, this would mean that it
1257 // represented an offset of ~2GB * 64 = ~128GB from the start of the scratch
1258 // buffer, with 64 being the number of threads per wave.
1259 //
1260 // The maximum private allocation for the entire GPU is 4G, and we are
1261 // concerned with the largest the index could ever be for an individual
1262 // workitem. This will occur with the minmum dispatch size. If a program
1263 // requires more, the dispatch size will be reduced.
1264 //
1265 // With this limit, we can mark the high bit of the FrameIndex node as known
1266 // zero, which is important, because it means in most situations we can prove
1267 // that values derived from FrameIndex nodes are non-negative. This enables us
1268 // to take advantage of more addressing modes when accessing scratch buffers,
1269 // since for scratch reads/writes, the register offset must always be
1270 // positive.
1271
1272 uint64_t MaxGPUAlloc = UINT64_C(4)4UL * 1024 * 1024 * 1024;
1273
1274 // XXX - It is unclear if partial dispatch works. Assume it works at half wave
1275 // granularity. It is probably a full wave.
1276 uint64_t MinGranularity = 32;
1277
1278 unsigned KnownBits = Log2_64(MaxGPUAlloc / MinGranularity);
1279 EVT ExtVT = EVT::getIntegerVT(*DAG.getContext(), KnownBits);
1280
1281 SDValue TFI = DAG.getTargetFrameIndex(FrameIndex, MVT::i32);
1282 return DAG.getNode(ISD::AssertZext, SL, MVT::i32, TFI,
1283 DAG.getValueType(ExtVT));
1284}
1285
1286bool SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
1287 if (Intr->getOpcode() != ISD::INTRINSIC_W_CHAIN)
1288 return false;
1289
1290 switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) {
1291 default: return false;
1292 case AMDGPUIntrinsic::amdgcn_if:
1293 case AMDGPUIntrinsic::amdgcn_else:
1294 case AMDGPUIntrinsic::amdgcn_break:
1295 case AMDGPUIntrinsic::amdgcn_if_break:
1296 case AMDGPUIntrinsic::amdgcn_else_break:
1297 case AMDGPUIntrinsic::amdgcn_loop:
1298 case AMDGPUIntrinsic::amdgcn_end_cf:
1299 return true;
1300 }
1301}
1302
1303/// This transforms the control flow intrinsics to get the branch destination as
1304/// last parameter, also switches branch target with BR if the need arise
1305SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
1306 SelectionDAG &DAG) const {
1307
1308 SDLoc DL(BRCOND);
1309
1310 SDNode *Intr = BRCOND.getOperand(1).getNode();
1311 SDValue Target = BRCOND.getOperand(2);
1312 SDNode *BR = nullptr;
1313 SDNode *SetCC = nullptr;
1314
1315 if (Intr->getOpcode() == ISD::SETCC) {
1316 // As long as we negate the condition everything is fine
1317 SetCC = Intr;
1318 Intr = SetCC->getOperand(0).getNode();
1319
1320 } else {
1321 // Get the target from BR if we don't negate the condition
1322 BR = findUser(BRCOND, ISD::BR);
1323 Target = BR->getOperand(1);
1324 }
1325
1326 if (Intr->getOpcode() != ISD::INTRINSIC_W_CHAIN) {
1327 // This is a uniform branch so we don't need to legalize.
1328 return BRCOND;
1329 }
1330
1331 assert(!SetCC ||((!SetCC || (SetCC->getConstantOperandVal(1) == 1 &&
isCFIntrinsic(Intr) && cast<CondCodeSDNode>(SetCC
->getOperand(2).getNode())->get() == ISD::SETNE)) ? static_cast
<void> (0) : __assert_fail ("!SetCC || (SetCC->getConstantOperandVal(1) == 1 && isCFIntrinsic(Intr) && cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == ISD::SETNE)"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1335, __PRETTY_FUNCTION__))
1332 (SetCC->getConstantOperandVal(1) == 1 &&((!SetCC || (SetCC->getConstantOperandVal(1) == 1 &&
isCFIntrinsic(Intr) && cast<CondCodeSDNode>(SetCC
->getOperand(2).getNode())->get() == ISD::SETNE)) ? static_cast
<void> (0) : __assert_fail ("!SetCC || (SetCC->getConstantOperandVal(1) == 1 && isCFIntrinsic(Intr) && cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == ISD::SETNE)"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1335, __PRETTY_FUNCTION__))
1333 isCFIntrinsic(Intr) &&((!SetCC || (SetCC->getConstantOperandVal(1) == 1 &&
isCFIntrinsic(Intr) && cast<CondCodeSDNode>(SetCC
->getOperand(2).getNode())->get() == ISD::SETNE)) ? static_cast
<void> (0) : __assert_fail ("!SetCC || (SetCC->getConstantOperandVal(1) == 1 && isCFIntrinsic(Intr) && cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == ISD::SETNE)"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1335, __PRETTY_FUNCTION__))
1334 cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==((!SetCC || (SetCC->getConstantOperandVal(1) == 1 &&
isCFIntrinsic(Intr) && cast<CondCodeSDNode>(SetCC
->getOperand(2).getNode())->get() == ISD::SETNE)) ? static_cast
<void> (0) : __assert_fail ("!SetCC || (SetCC->getConstantOperandVal(1) == 1 && isCFIntrinsic(Intr) && cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == ISD::SETNE)"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1335, __PRETTY_FUNCTION__))
1335 ISD::SETNE))((!SetCC || (SetCC->getConstantOperandVal(1) == 1 &&
isCFIntrinsic(Intr) && cast<CondCodeSDNode>(SetCC
->getOperand(2).getNode())->get() == ISD::SETNE)) ? static_cast
<void> (0) : __assert_fail ("!SetCC || (SetCC->getConstantOperandVal(1) == 1 && isCFIntrinsic(Intr) && cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == ISD::SETNE)"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1335, __PRETTY_FUNCTION__))
;
1336
1337 // Build the result and
1338 ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
1339
1340 // operands of the new intrinsic call
1341 SmallVector<SDValue, 4> Ops;
1342 Ops.push_back(BRCOND.getOperand(0));
1343 Ops.append(Intr->op_begin() + 1, Intr->op_end());
1344 Ops.push_back(Target);
1345
1346 // build the new intrinsic call
1347 SDNode *Result = DAG.getNode(
1348 Res.size() > 1 ? ISD::INTRINSIC_W_CHAIN : ISD::INTRINSIC_VOID, DL,
1349 DAG.getVTList(Res), Ops).getNode();
1350
1351 if (BR) {
1352 // Give the branch instruction our target
1353 SDValue Ops[] = {
1354 BR->getOperand(0),
1355 BRCOND.getOperand(2)
1356 };
1357 SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
1358 DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
1359 BR = NewBR.getNode();
Value stored to 'BR' is never read
1360 }
1361
1362 SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
1363
1364 // Copy the intrinsic results to registers
1365 for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
1366 SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
1367 if (!CopyToReg)
1368 continue;
1369
1370 Chain = DAG.getCopyToReg(
1371 Chain, DL,
1372 CopyToReg->getOperand(1),
1373 SDValue(Result, i - 1),
1374 SDValue());
1375
1376 DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
1377 }
1378
1379 // Remove the old intrinsic from the chain
1380 DAG.ReplaceAllUsesOfValueWith(
1381 SDValue(Intr, Intr->getNumValues() - 1),
1382 Intr->getOperand(0));
1383
1384 return Chain;
1385}
1386
1387SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
1388 SDValue Op,
1389 SelectionDAG &DAG) const {
1390 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
1391
1392 if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS)
1393 return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
1394
1395 SDLoc DL(GSD);
1396 const GlobalValue *GV = GSD->getGlobal();
1397 MVT PtrVT = getPointerTy(DAG.getDataLayout(), GSD->getAddressSpace());
1398
1399 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32);
1400 return DAG.getNode(AMDGPUISD::CONST_DATA_PTR, DL, PtrVT, GA);
1401}
1402
1403SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain, SDLoc DL,
1404 SDValue V) const {
1405 // We can't use S_MOV_B32 directly, because there is no way to specify m0 as
1406 // the destination register.
1407 //
1408 // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
1409 // so we will end up with redundant moves to m0.
1410 //
1411 // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
1412
1413 // A Null SDValue creates a glue result.
1414 SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
1415 V, Chain);
1416 return SDValue(M0, 0);
1417}
1418
1419SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
1420 SDValue Op,
1421 MVT VT,
1422 unsigned Offset) const {
1423 SDLoc SL(Op);
1424 SDValue Param = LowerParameter(DAG, MVT::i32, MVT::i32, SL,
1425 DAG.getEntryNode(), Offset, false);
1426 // The local size values will have the hi 16-bits as zero.
1427 return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
1428 DAG.getValueType(VT));
1429}
1430
1431static SDValue emitNonHSAIntrinsicError(SelectionDAG& DAG, EVT VT) {
1432 DiagnosticInfoUnsupported BadIntrin(*DAG.getMachineFunction().getFunction(),
1433 "non-hsa intrinsic with hsa target");
1434 DAG.getContext()->diagnose(BadIntrin);
1435 return DAG.getUNDEF(VT);
1436}
1437
1438SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
1439 SelectionDAG &DAG) const {
1440 MachineFunction &MF = DAG.getMachineFunction();
1441 auto MFI = MF.getInfo<SIMachineFunctionInfo>();
1442 const SIRegisterInfo *TRI =
1443 static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo());
1444
1445 EVT VT = Op.getValueType();
1446 SDLoc DL(Op);
1447 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
1448
1449 // TODO: Should this propagate fast-math-flags?
1450
1451 switch (IntrinsicID) {
1452 case Intrinsic::amdgcn_dispatch_ptr:
1453 if (!Subtarget->isAmdHsaOS()) {
1454 DiagnosticInfoUnsupported BadIntrin(
1455 *MF.getFunction(), "unsupported hsa intrinsic without hsa target",
1456 DL.getDebugLoc());
1457 DAG.getContext()->diagnose(BadIntrin);
1458 return DAG.getUNDEF(VT);
1459 }
1460
1461 return CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass,
1462 TRI->getPreloadedValue(MF, SIRegisterInfo::DISPATCH_PTR), VT);
1463 case Intrinsic::amdgcn_rcp:
1464 return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
1465 case Intrinsic::amdgcn_rsq:
1466 case AMDGPUIntrinsic::AMDGPU_rsq: // Legacy name
1467 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
1468 case Intrinsic::amdgcn_rsq_clamp:
1469 case AMDGPUIntrinsic::AMDGPU_rsq_clamped: { // Legacy name
1470 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
1471 return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
1472
1473 Type *Type = VT.getTypeForEVT(*DAG.getContext());
1474 APFloat Max = APFloat::getLargest(Type->getFltSemantics());
1475 APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
1476
1477 SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
1478 SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
1479 DAG.getConstantFP(Max, DL, VT));
1480 return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
1481 DAG.getConstantFP(Min, DL, VT));
1482 }
1483 case Intrinsic::r600_read_ngroups_x:
1484 if (Subtarget->isAmdHsaOS())
1485 return emitNonHSAIntrinsicError(DAG, VT);
1486
1487 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
1488 SI::KernelInputOffsets::NGROUPS_X, false);
1489 case Intrinsic::r600_read_ngroups_y:
1490 if (Subtarget->isAmdHsaOS())
1491 return emitNonHSAIntrinsicError(DAG, VT);
1492
1493 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
1494 SI::KernelInputOffsets::NGROUPS_Y, false);
1495 case Intrinsic::r600_read_ngroups_z:
1496 if (Subtarget->isAmdHsaOS())
1497 return emitNonHSAIntrinsicError(DAG, VT);
1498
1499 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
1500 SI::KernelInputOffsets::NGROUPS_Z, false);
1501 case Intrinsic::r600_read_global_size_x:
1502 if (Subtarget->isAmdHsaOS())
1503 return emitNonHSAIntrinsicError(DAG, VT);
1504
1505 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
1506 SI::KernelInputOffsets::GLOBAL_SIZE_X, false);
1507 case Intrinsic::r600_read_global_size_y:
1508 if (Subtarget->isAmdHsaOS())
1509 return emitNonHSAIntrinsicError(DAG, VT);
1510
1511 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
1512 SI::KernelInputOffsets::GLOBAL_SIZE_Y, false);
1513 case Intrinsic::r600_read_global_size_z:
1514 if (Subtarget->isAmdHsaOS())
1515 return emitNonHSAIntrinsicError(DAG, VT);
1516
1517 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
1518 SI::KernelInputOffsets::GLOBAL_SIZE_Z, false);
1519 case Intrinsic::r600_read_local_size_x:
1520 if (Subtarget->isAmdHsaOS())
1521 return emitNonHSAIntrinsicError(DAG, VT);
1522
1523 return lowerImplicitZextParam(DAG, Op, MVT::i16,
1524 SI::KernelInputOffsets::LOCAL_SIZE_X);
1525 case Intrinsic::r600_read_local_size_y:
1526 if (Subtarget->isAmdHsaOS())
1527 return emitNonHSAIntrinsicError(DAG, VT);
1528
1529 return lowerImplicitZextParam(DAG, Op, MVT::i16,
1530 SI::KernelInputOffsets::LOCAL_SIZE_Y);
1531 case Intrinsic::r600_read_local_size_z:
1532 if (Subtarget->isAmdHsaOS())
1533 return emitNonHSAIntrinsicError(DAG, VT);
1534
1535 return lowerImplicitZextParam(DAG, Op, MVT::i16,
1536 SI::KernelInputOffsets::LOCAL_SIZE_Z);
1537 case Intrinsic::amdgcn_read_workdim:
1538 case AMDGPUIntrinsic::AMDGPU_read_workdim: // Legacy name.
1539 // Really only 2 bits.
1540 return lowerImplicitZextParam(DAG, Op, MVT::i8,
1541 getImplicitParameterOffset(MFI, GRID_DIM));
1542 case Intrinsic::amdgcn_workgroup_id_x:
1543 case Intrinsic::r600_read_tgid_x:
1544 return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
1545 TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_X), VT);
1546 case Intrinsic::amdgcn_workgroup_id_y:
1547 case Intrinsic::r600_read_tgid_y:
1548 return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
1549 TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_Y), VT);
1550 case Intrinsic::amdgcn_workgroup_id_z:
1551 case Intrinsic::r600_read_tgid_z:
1552 return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass,
1553 TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_Z), VT);
1554 case Intrinsic::amdgcn_workitem_id_x:
1555 case Intrinsic::r600_read_tidig_x:
1556 return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
1557 TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_X), VT);
1558 case Intrinsic::amdgcn_workitem_id_y:
1559 case Intrinsic::r600_read_tidig_y:
1560 return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
1561 TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Y), VT);
1562 case Intrinsic::amdgcn_workitem_id_z:
1563 case Intrinsic::r600_read_tidig_z:
1564 return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
1565 TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Z), VT);
1566 case AMDGPUIntrinsic::SI_load_const: {
1567 SDValue Ops[] = {
1568 Op.getOperand(1),
1569 Op.getOperand(2)
1570 };
1571
1572 MachineMemOperand *MMO = MF.getMachineMemOperand(
1573 MachinePointerInfo(),
1574 MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant,
1575 VT.getStoreSize(), 4);
1576 return DAG.getMemIntrinsicNode(AMDGPUISD::LOAD_CONSTANT, DL,
1577 Op->getVTList(), Ops, VT, MMO);
1578 }
1579 case AMDGPUIntrinsic::SI_vs_load_input:
1580 return DAG.getNode(AMDGPUISD::LOAD_INPUT, DL, VT,
1581 Op.getOperand(1),
1582 Op.getOperand(2),
1583 Op.getOperand(3));
1584
1585 case AMDGPUIntrinsic::SI_fs_constant: {
1586 SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(3));
1587 SDValue Glue = M0.getValue(1);
1588 return DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32,
1589 DAG.getConstant(2, DL, MVT::i32), // P0
1590 Op.getOperand(1), Op.getOperand(2), Glue);
1591 }
1592 case AMDGPUIntrinsic::SI_packf16:
1593 if (Op.getOperand(1).isUndef() && Op.getOperand(2).isUndef())
1594 return DAG.getUNDEF(MVT::i32);
1595 return Op;
1596 case AMDGPUIntrinsic::SI_fs_interp: {
1597 SDValue IJ = Op.getOperand(4);
1598 SDValue I = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, IJ,
1599 DAG.getConstant(0, DL, MVT::i32));
1600 SDValue J = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, IJ,
1601 DAG.getConstant(1, DL, MVT::i32));
1602 SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(3));
1603 SDValue Glue = M0.getValue(1);
1604 SDValue P1 = DAG.getNode(AMDGPUISD::INTERP_P1, DL,
1605 DAG.getVTList(MVT::f32, MVT::Glue),
1606 I, Op.getOperand(1), Op.getOperand(2), Glue);
1607 Glue = SDValue(P1.getNode(), 1);
1608 return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, P1, J,
1609 Op.getOperand(1), Op.getOperand(2), Glue);
1610 }
1611 case Intrinsic::amdgcn_interp_p1: {
1612 SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4));
1613 SDValue Glue = M0.getValue(1);
1614 return DAG.getNode(AMDGPUISD::INTERP_P1, DL, MVT::f32, Op.getOperand(1),
1615 Op.getOperand(2), Op.getOperand(3), Glue);
1616 }
1617 case Intrinsic::amdgcn_interp_p2: {
1618 SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(5));
1619 SDValue Glue = SDValue(M0.getNode(), 1);
1620 return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, Op.getOperand(1),
1621 Op.getOperand(2), Op.getOperand(3), Op.getOperand(4),
1622 Glue);
1623 }
1624 case Intrinsic::amdgcn_sin:
1625 return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
1626
1627 case Intrinsic::amdgcn_cos:
1628 return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
1629
1630 case Intrinsic::amdgcn_log_clamp: {
1631 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
1632 return SDValue();
1633
1634 DiagnosticInfoUnsupported BadIntrin(
1635 *MF.getFunction(), "intrinsic not supported on subtarget",
1636 DL.getDebugLoc());
1637 DAG.getContext()->diagnose(BadIntrin);
1638 return DAG.getUNDEF(VT);
1639 }
1640 case Intrinsic::amdgcn_ldexp:
1641 return DAG.getNode(AMDGPUISD::LDEXP, DL, VT,
1642 Op.getOperand(1), Op.getOperand(2));
1643 case Intrinsic::amdgcn_class:
1644 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
1645 Op.getOperand(1), Op.getOperand(2));
1646 case Intrinsic::amdgcn_div_fmas:
1647 return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
1648 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
1649 Op.getOperand(4));
1650
1651 case Intrinsic::amdgcn_div_fixup:
1652 return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
1653 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
1654
1655 case Intrinsic::amdgcn_trig_preop:
1656 return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT,
1657 Op.getOperand(1), Op.getOperand(2));
1658 case Intrinsic::amdgcn_div_scale: {
1659 // 3rd parameter required to be a constant.
1660 const ConstantSDNode *Param = dyn_cast<ConstantSDNode>(Op.getOperand(3));
1661 if (!Param)
1662 return DAG.getUNDEF(VT);
1663
1664 // Translate to the operands expected by the machine instruction. The
1665 // first parameter must be the same as the first instruction.
1666 SDValue Numerator = Op.getOperand(1);
1667 SDValue Denominator = Op.getOperand(2);
1668
1669 // Note this order is opposite of the machine instruction's operations,
1670 // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
1671 // intrinsic has the numerator as the first operand to match a normal
1672 // division operation.
1673
1674 SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
1675
1676 return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
1677 Denominator, Numerator);
1678 }
1679 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte0:
1680 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Op.getOperand(1));
1681 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte1:
1682 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE1, DL, VT, Op.getOperand(1));
1683 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte2:
1684 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE2, DL, VT, Op.getOperand(1));
1685 case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte3:
1686 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE3, DL, VT, Op.getOperand(1));
1687 default:
1688 return AMDGPUTargetLowering::LowerOperation(Op, DAG);
1689 }
1690}
1691
1692SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
1693 SelectionDAG &DAG) const {
1694 unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1695 switch (IntrID) {
1696 case Intrinsic::amdgcn_atomic_inc:
1697 case Intrinsic::amdgcn_atomic_dec: {
1698 MemSDNode *M = cast<MemSDNode>(Op);
1699 unsigned Opc = (IntrID == Intrinsic::amdgcn_atomic_inc) ?
1700 AMDGPUISD::ATOMIC_INC : AMDGPUISD::ATOMIC_DEC;
1701 SDValue Ops[] = {
1702 M->getOperand(0), // Chain
1703 M->getOperand(2), // Ptr
1704 M->getOperand(3) // Value
1705 };
1706
1707 return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
1708 M->getMemoryVT(), M->getMemOperand());
1709 }
1710 default:
1711 return SDValue();
1712 }
1713}
1714
1715SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
1716 SelectionDAG &DAG) const {
1717 MachineFunction &MF = DAG.getMachineFunction();
1718 SDLoc DL(Op);
1719 SDValue Chain = Op.getOperand(0);
1720 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
1721
1722 switch (IntrinsicID) {
1723 case AMDGPUIntrinsic::SI_sendmsg: {
1724 Chain = copyToM0(DAG, Chain, DL, Op.getOperand(3));
1725 SDValue Glue = Chain.getValue(1);
1726 return DAG.getNode(AMDGPUISD::SENDMSG, DL, MVT::Other, Chain,
1727 Op.getOperand(2), Glue);
1728 }
1729 case AMDGPUIntrinsic::SI_tbuffer_store: {
1730 SDValue Ops[] = {
1731 Chain,
1732 Op.getOperand(2),
1733 Op.getOperand(3),
1734 Op.getOperand(4),
1735 Op.getOperand(5),
1736 Op.getOperand(6),
1737 Op.getOperand(7),
1738 Op.getOperand(8),
1739 Op.getOperand(9),
1740 Op.getOperand(10),
1741 Op.getOperand(11),
1742 Op.getOperand(12),
1743 Op.getOperand(13),
1744 Op.getOperand(14)
1745 };
1746
1747 EVT VT = Op.getOperand(3).getValueType();
1748
1749 MachineMemOperand *MMO = MF.getMachineMemOperand(
1750 MachinePointerInfo(),
1751 MachineMemOperand::MOStore,
1752 VT.getStoreSize(), 4);
1753 return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_STORE_FORMAT, DL,
1754 Op->getVTList(), Ops, VT, MMO);
1755 }
1756 default:
1757 return SDValue();
1758 }
1759}
1760
1761SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1762 SDLoc DL(Op);
1763 LoadSDNode *Load = cast<LoadSDNode>(Op);
1764 ISD::LoadExtType ExtType = Load->getExtensionType();
1765 EVT MemVT = Load->getMemoryVT();
1766
1767 if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
1768 assert(MemVT == MVT::i1 && "Only i1 non-extloads expected")((MemVT == MVT::i1 && "Only i1 non-extloads expected"
) ? static_cast<void> (0) : __assert_fail ("MemVT == MVT::i1 && \"Only i1 non-extloads expected\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1768, __PRETTY_FUNCTION__))
;
1769 // FIXME: Copied from PPC
1770 // First, load into 32 bits, then truncate to 1 bit.
1771
1772 SDValue Chain = Load->getChain();
1773 SDValue BasePtr = Load->getBasePtr();
1774 MachineMemOperand *MMO = Load->getMemOperand();
1775
1776 SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
1777 BasePtr, MVT::i8, MMO);
1778
1779 SDValue Ops[] = {
1780 DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
1781 NewLD.getValue(1)
1782 };
1783
1784 return DAG.getMergeValues(Ops, DL);
1785 }
1786
1787 if (!MemVT.isVector())
1788 return SDValue();
1789
1790 assert(Op.getValueType().getVectorElementType() == MVT::i32 &&((Op.getValueType().getVectorElementType() == MVT::i32 &&
"Custom lowering for non-i32 vectors hasn't been implemented."
) ? static_cast<void> (0) : __assert_fail ("Op.getValueType().getVectorElementType() == MVT::i32 && \"Custom lowering for non-i32 vectors hasn't been implemented.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1791, __PRETTY_FUNCTION__))
1791 "Custom lowering for non-i32 vectors hasn't been implemented.")((Op.getValueType().getVectorElementType() == MVT::i32 &&
"Custom lowering for non-i32 vectors hasn't been implemented."
) ? static_cast<void> (0) : __assert_fail ("Op.getValueType().getVectorElementType() == MVT::i32 && \"Custom lowering for non-i32 vectors hasn't been implemented.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1791, __PRETTY_FUNCTION__))
;
1792 unsigned NumElements = MemVT.getVectorNumElements();
1793 assert(NumElements != 2 && "v2 loads are supported for all address spaces.")((NumElements != 2 && "v2 loads are supported for all address spaces."
) ? static_cast<void> (0) : __assert_fail ("NumElements != 2 && \"v2 loads are supported for all address spaces.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1793, __PRETTY_FUNCTION__))
;
1794
1795 switch (Load->getAddressSpace()) {
1796 case AMDGPUAS::CONSTANT_ADDRESS:
1797 if (isMemOpUniform(Load))
1798 return SDValue();
1799 // Non-uniform loads will be selected to MUBUF instructions, so they
1800 // have the same legalization requires ments as global and private
1801 // loads.
1802 //
1803 // Fall-through
1804 case AMDGPUAS::GLOBAL_ADDRESS:
1805 case AMDGPUAS::FLAT_ADDRESS:
1806 if (NumElements > 4)
1807 return SplitVectorLoad(Op, DAG);
1808 // v4 loads are supported for private and global memory.
1809 return SDValue();
1810 case AMDGPUAS::PRIVATE_ADDRESS: {
1811 // Depending on the setting of the private_element_size field in the
1812 // resource descriptor, we can only make private accesses up to a certain
1813 // size.
1814 switch (Subtarget->getMaxPrivateElementSize()) {
1815 case 4:
1816 return scalarizeVectorLoad(Load, DAG);
1817 case 8:
1818 if (NumElements > 2)
1819 return SplitVectorLoad(Op, DAG);
1820 return SDValue();
1821 case 16:
1822 // Same as global/flat
1823 if (NumElements > 4)
1824 return SplitVectorLoad(Op, DAG);
1825 return SDValue();
1826 default:
1827 llvm_unreachable("unsupported private_element_size")::llvm::llvm_unreachable_internal("unsupported private_element_size"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1827)
;
1828 }
1829 }
1830 case AMDGPUAS::LOCAL_ADDRESS:
1831 // If properly aligned, if we split we might be able to use ds_read_b64.
1832 return SplitVectorLoad(Op, DAG);
1833 default:
1834 return SDValue();
1835 }
1836}
1837
1838SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
1839 if (Op.getValueType() != MVT::i64)
1840 return SDValue();
1841
1842 SDLoc DL(Op);
1843 SDValue Cond = Op.getOperand(0);
1844
1845 SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
1846 SDValue One = DAG.getConstant(1, DL, MVT::i32);
1847
1848 SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
1849 SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
1850
1851 SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
1852 SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
1853
1854 SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
1855
1856 SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
1857 SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
1858
1859 SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
1860
1861 SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i32, Lo, Hi);
1862 return DAG.getNode(ISD::BITCAST, DL, MVT::i64, Res);
1863}
1864
1865// Catch division cases where we can use shortcuts with rcp and rsq
1866// instructions.
1867SDValue SITargetLowering::LowerFastFDIV(SDValue Op, SelectionDAG &DAG) const {
1868 SDLoc SL(Op);
1869 SDValue LHS = Op.getOperand(0);
1870 SDValue RHS = Op.getOperand(1);
1871 EVT VT = Op.getValueType();
1872 bool Unsafe = DAG.getTarget().Options.UnsafeFPMath;
1873
1874 if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
1875 if ((Unsafe || (VT == MVT::f32 && !Subtarget->hasFP32Denormals())) &&
1876 CLHS->isExactlyValue(1.0)) {
1877 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
1878 // the CI documentation has a worst case error of 1 ulp.
1879 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
1880 // use it as long as we aren't trying to use denormals.
1881
1882 // 1.0 / sqrt(x) -> rsq(x)
1883 //
1884 // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
1885 // error seems really high at 2^29 ULP.
1886 if (RHS.getOpcode() == ISD::FSQRT)
1887 return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
1888
1889 // 1.0 / x -> rcp(x)
1890 return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
1891 }
1892 }
1893
1894 if (Unsafe) {
1895 // Turn into multiply by the reciprocal.
1896 // x / y -> x * (1.0 / y)
1897 SDNodeFlags Flags;
1898 Flags.setUnsafeAlgebra(true);
1899 SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
1900 return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, &Flags);
1901 }
1902
1903 return SDValue();
1904}
1905
1906SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
1907 if (SDValue FastLowered = LowerFastFDIV(Op, DAG))
1908 return FastLowered;
1909
1910 // This uses v_rcp_f32 which does not handle denormals. Let this hit a
1911 // selection error for now rather than do something incorrect.
1912 if (Subtarget->hasFP32Denormals())
1913 return SDValue();
1914
1915 SDLoc SL(Op);
1916 SDValue LHS = Op.getOperand(0);
1917 SDValue RHS = Op.getOperand(1);
1918
1919 SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
1920
1921 const APFloat K0Val(BitsToFloat(0x6f800000));
1922 const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
1923
1924 const APFloat K1Val(BitsToFloat(0x2f800000));
1925 const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
1926
1927 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
1928
1929 EVT SetCCVT =
1930 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
1931
1932 SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
1933
1934 SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
1935
1936 // TODO: Should this propagate fast-math-flags?
1937
1938 r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
1939
1940 SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
1941
1942 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
1943
1944 return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
1945}
1946
1947SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
1948 if (DAG.getTarget().Options.UnsafeFPMath)
1949 return LowerFastFDIV(Op, DAG);
1950
1951 SDLoc SL(Op);
1952 SDValue X = Op.getOperand(0);
1953 SDValue Y = Op.getOperand(1);
1954
1955 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
1956
1957 SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
1958
1959 SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
1960
1961 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
1962
1963 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
1964
1965 SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
1966
1967 SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
1968
1969 SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
1970
1971 SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
1972
1973 SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
1974 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
1975
1976 SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
1977 NegDivScale0, Mul, DivScale1);
1978
1979 SDValue Scale;
1980
1981 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
1982 // Workaround a hardware bug on SI where the condition output from div_scale
1983 // is not usable.
1984
1985 const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
1986
1987 // Figure out if the scale to use for div_fmas.
1988 SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
1989 SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
1990 SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
1991 SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
1992
1993 SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
1994 SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
1995
1996 SDValue Scale0Hi
1997 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
1998 SDValue Scale1Hi
1999 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
2000
2001 SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
2002 SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
2003 Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
2004 } else {
2005 Scale = DivScale1.getValue(1);
2006 }
2007
2008 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
2009 Fma4, Fma3, Mul, Scale);
2010
2011 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
2012}
2013
2014SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
2015 EVT VT = Op.getValueType();
2016
2017 if (VT == MVT::f32)
2018 return LowerFDIV32(Op, DAG);
2019
2020 if (VT == MVT::f64)
2021 return LowerFDIV64(Op, DAG);
2022
2023 llvm_unreachable("Unexpected type for fdiv")::llvm::llvm_unreachable_internal("Unexpected type for fdiv",
"/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2023)
;
2024}
2025
2026SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
2027 SDLoc DL(Op);
2028 StoreSDNode *Store = cast<StoreSDNode>(Op);
2029 EVT VT = Store->getMemoryVT();
2030
2031 if (VT == MVT::i1) {
2032 return DAG.getTruncStore(Store->getChain(), DL,
2033 DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
2034 Store->getBasePtr(), MVT::i1, Store->getMemOperand());
2035 }
2036
2037 assert(Store->getValue().getValueType().getScalarType() == MVT::i32)((Store->getValue().getValueType().getScalarType() == MVT::
i32) ? static_cast<void> (0) : __assert_fail ("Store->getValue().getValueType().getScalarType() == MVT::i32"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2037, __PRETTY_FUNCTION__))
;
2038
2039 unsigned NumElements = VT.getVectorNumElements();
2040 switch (Store->getAddressSpace()) {
2041 case AMDGPUAS::GLOBAL_ADDRESS:
2042 case AMDGPUAS::FLAT_ADDRESS:
2043 if (NumElements > 4)
2044 return SplitVectorStore(Op, DAG);
2045 return SDValue();
2046 case AMDGPUAS::PRIVATE_ADDRESS: {
2047 switch (Subtarget->getMaxPrivateElementSize()) {
2048 case 4:
2049 return scalarizeVectorStore(Store, DAG);
2050 case 8:
2051 if (NumElements > 2)
2052 return SplitVectorStore(Op, DAG);
2053 return SDValue();
2054 case 16:
2055 if (NumElements > 4)
2056 return SplitVectorStore(Op, DAG);
2057 return SDValue();
2058 default:
2059 llvm_unreachable("unsupported private_element_size")::llvm::llvm_unreachable_internal("unsupported private_element_size"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2059)
;
2060 }
2061 }
2062 case AMDGPUAS::LOCAL_ADDRESS:
2063 // If properly aligned, if we split we might be able to use ds_write_b64.
2064 return SplitVectorStore(Op, DAG);
2065 default:
2066 llvm_unreachable("unhandled address space")::llvm::llvm_unreachable_internal("unhandled address space", "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2066)
;
2067 }
2068}
2069
2070SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
2071 SDLoc DL(Op);
2072 EVT VT = Op.getValueType();
2073 SDValue Arg = Op.getOperand(0);
2074 // TODO: Should this propagate fast-math-flags?
2075 SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT,
2076 DAG.getNode(ISD::FMUL, DL, VT, Arg,
2077 DAG.getConstantFP(0.5/M_PI3.14159265358979323846, DL,
2078 VT)));
2079
2080 switch (Op.getOpcode()) {
2081 case ISD::FCOS:
2082 return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, FractPart);
2083 case ISD::FSIN:
2084 return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, FractPart);
2085 default:
2086 llvm_unreachable("Wrong trig opcode")::llvm::llvm_unreachable_internal("Wrong trig opcode", "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2086)
;
2087 }
2088}
2089
2090SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
2091 AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
2092 assert(AtomicNode->isCompareAndSwap())((AtomicNode->isCompareAndSwap()) ? static_cast<void>
(0) : __assert_fail ("AtomicNode->isCompareAndSwap()", "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2092, __PRETTY_FUNCTION__))
;
2093 unsigned AS = AtomicNode->getAddressSpace();
2094
2095 // No custom lowering required for local address space
2096 if (!isFlatGlobalAddrSpace(AS))
2097 return Op;
2098
2099 // Non-local address space requires custom lowering for atomic compare
2100 // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
2101 SDLoc DL(Op);
2102 SDValue ChainIn = Op.getOperand(0);
2103 SDValue Addr = Op.getOperand(1);
2104 SDValue Old = Op.getOperand(2);
2105 SDValue New = Op.getOperand(3);
2106 EVT VT = Op.getValueType();
2107 MVT SimpleVT = VT.getSimpleVT();
2108 MVT VecType = MVT::getVectorVT(SimpleVT, 2);
2109
2110 SDValue NewOld = DAG.getNode(ISD::BUILD_VECTOR, DL, VecType,
2111 New, Old);
2112 SDValue Ops[] = { ChainIn, Addr, NewOld };
2113 SDVTList VTList = DAG.getVTList(VT, MVT::Other);
2114 return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL,
2115 VTList, Ops, VT, AtomicNode->getMemOperand());
2116}
2117
2118//===----------------------------------------------------------------------===//
2119// Custom DAG optimizations
2120//===----------------------------------------------------------------------===//
2121
2122SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
2123 DAGCombinerInfo &DCI) const {
2124 EVT VT = N->getValueType(0);
2125 EVT ScalarVT = VT.getScalarType();
2126 if (ScalarVT != MVT::f32)
2127 return SDValue();
2128
2129 SelectionDAG &DAG = DCI.DAG;
2130 SDLoc DL(N);
2131
2132 SDValue Src = N->getOperand(0);
2133 EVT SrcVT = Src.getValueType();
2134
2135 // TODO: We could try to match extracting the higher bytes, which would be
2136 // easier if i8 vectors weren't promoted to i32 vectors, particularly after
2137 // types are legalized. v4i8 -> v4f32 is probably the only case to worry
2138 // about in practice.
2139 if (DCI.isAfterLegalizeVectorOps() && SrcVT == MVT::i32) {
2140 if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
2141 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src);
2142 DCI.AddToWorklist(Cvt.getNode());
2143 return Cvt;
2144 }
2145 }
2146
2147 // We are primarily trying to catch operations on illegal vector types
2148 // before they are expanded.
2149 // For scalars, we can use the more flexible method of checking masked bits
2150 // after legalization.
2151 if (!DCI.isBeforeLegalize() ||
2152 !SrcVT.isVector() ||
2153 SrcVT.getVectorElementType() != MVT::i8) {
2154 return SDValue();
2155 }
2156
2157 assert(DCI.isBeforeLegalize() && "Unexpected legal type")((DCI.isBeforeLegalize() && "Unexpected legal type") ?
static_cast<void> (0) : __assert_fail ("DCI.isBeforeLegalize() && \"Unexpected legal type\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2157, __PRETTY_FUNCTION__))
;
2158
2159 // Weird sized vectors are a pain to handle, but we know 3 is really the same
2160 // size as 4.
2161 unsigned NElts = SrcVT.getVectorNumElements();
2162 if (!SrcVT.isSimple() && NElts != 3)
2163 return SDValue();
2164
2165 // Handle v4i8 -> v4f32 extload. Replace the v4i8 with a legal i32 load to
2166 // prevent a mess from expanding to v4i32 and repacking.
2167 if (ISD::isNormalLoad(Src.getNode()) && Src.hasOneUse()) {
2168 EVT LoadVT = getEquivalentMemType(*DAG.getContext(), SrcVT);
2169 EVT RegVT = getEquivalentLoadRegType(*DAG.getContext(), SrcVT);
2170 EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f32, NElts);
2171 LoadSDNode *Load = cast<LoadSDNode>(Src);
2172
2173 unsigned AS = Load->getAddressSpace();
2174 unsigned Align = Load->getAlignment();
2175 Type *Ty = LoadVT.getTypeForEVT(*DAG.getContext());
2176 unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty);
2177
2178 // Don't try to replace the load if we have to expand it due to alignment
2179 // problems. Otherwise we will end up scalarizing the load, and trying to
2180 // repack into the vector for no real reason.
2181 if (Align < ABIAlignment &&
2182 !allowsMisalignedMemoryAccesses(LoadVT, AS, Align, nullptr)) {
2183 return SDValue();
2184 }
2185
2186 SDValue NewLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegVT,
2187 Load->getChain(),
2188 Load->getBasePtr(),
2189 LoadVT,
2190 Load->getMemOperand());
2191
2192 // Make sure successors of the original load stay after it by updating
2193 // them to use the new Chain.
2194 DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), NewLoad.getValue(1));
2195
2196 SmallVector<SDValue, 4> Elts;
2197 if (RegVT.isVector())
2198 DAG.ExtractVectorElements(NewLoad, Elts);
2199 else
2200 Elts.push_back(NewLoad);
2201
2202 SmallVector<SDValue, 4> Ops;
2203
2204 unsigned EltIdx = 0;
2205 for (SDValue Elt : Elts) {
2206 unsigned ComponentsInElt = std::min(4u, NElts - 4 * EltIdx);
2207 for (unsigned I = 0; I < ComponentsInElt; ++I) {
2208 unsigned Opc = AMDGPUISD::CVT_F32_UBYTE0 + I;
2209 SDValue Cvt = DAG.getNode(Opc, DL, MVT::f32, Elt);
2210 DCI.AddToWorklist(Cvt.getNode());
2211 Ops.push_back(Cvt);
2212 }
2213
2214 ++EltIdx;
2215 }
2216
2217 assert(Ops.size() == NElts)((Ops.size() == NElts) ? static_cast<void> (0) : __assert_fail
("Ops.size() == NElts", "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2217, __PRETTY_FUNCTION__))
;
2218
2219 return DAG.getNode(ISD::BUILD_VECTOR, DL, FloatVT, Ops);
2220 }
2221
2222 return SDValue();
2223}
2224
2225/// \brief Return true if the given offset Size in bytes can be folded into
2226/// the immediate offsets of a memory instruction for the given address space.
2227static bool canFoldOffset(unsigned OffsetSize, unsigned AS,
2228 const AMDGPUSubtarget &STI) {
2229 switch (AS) {
2230 case AMDGPUAS::GLOBAL_ADDRESS: {
2231 // MUBUF instructions a 12-bit offset in bytes.
2232 return isUInt<12>(OffsetSize);
2233 }
2234 case AMDGPUAS::CONSTANT_ADDRESS: {
2235 // SMRD instructions have an 8-bit offset in dwords on SI and
2236 // a 20-bit offset in bytes on VI.
2237 if (STI.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
2238 return isUInt<20>(OffsetSize);
2239 else
2240 return (OffsetSize % 4 == 0) && isUInt<8>(OffsetSize / 4);
2241 }
2242 case AMDGPUAS::LOCAL_ADDRESS:
2243 case AMDGPUAS::REGION_ADDRESS: {
2244 // The single offset versions have a 16-bit offset in bytes.
2245 return isUInt<16>(OffsetSize);
2246 }
2247 case AMDGPUAS::PRIVATE_ADDRESS:
2248 // Indirect register addressing does not use any offsets.
2249 default:
2250 return 0;
2251 }
2252}
2253
2254// (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
2255
2256// This is a variant of
2257// (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
2258//
2259// The normal DAG combiner will do this, but only if the add has one use since
2260// that would increase the number of instructions.
2261//
2262// This prevents us from seeing a constant offset that can be folded into a
2263// memory instruction's addressing mode. If we know the resulting add offset of
2264// a pointer can be folded into an addressing offset, we can replace the pointer
2265// operand with the add of new constant offset. This eliminates one of the uses,
2266// and may allow the remaining use to also be simplified.
2267//
2268SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
2269 unsigned AddrSpace,
2270 DAGCombinerInfo &DCI) const {
2271 SDValue N0 = N->getOperand(0);
2272 SDValue N1 = N->getOperand(1);
2273
2274 if (N0.getOpcode() != ISD::ADD)
2275 return SDValue();
2276
2277 const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
2278 if (!CN1)
2279 return SDValue();
2280
2281 const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
2282 if (!CAdd)
2283 return SDValue();
2284
2285 // If the resulting offset is too large, we can't fold it into the addressing
2286 // mode offset.
2287 APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
2288 if (!canFoldOffset(Offset.getZExtValue(), AddrSpace, *Subtarget))
2289 return SDValue();
2290
2291 SelectionDAG &DAG = DCI.DAG;
2292 SDLoc SL(N);
2293 EVT VT = N->getValueType(0);
2294
2295 SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
2296 SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32);
2297
2298 return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset);
2299}
2300
2301SDValue SITargetLowering::performAndCombine(SDNode *N,
2302 DAGCombinerInfo &DCI) const {
2303 if (DCI.isBeforeLegalize())
2304 return SDValue();
2305
2306 if (SDValue Base = AMDGPUTargetLowering::performAndCombine(N, DCI))
2307 return Base;
2308
2309 SelectionDAG &DAG = DCI.DAG;
2310
2311 // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
2312 // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
2313 SDValue LHS = N->getOperand(0);
2314 SDValue RHS = N->getOperand(1);
2315
2316 if (LHS.getOpcode() == ISD::SETCC &&
2317 RHS.getOpcode() == ISD::SETCC) {
2318 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
2319 ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
2320
2321 SDValue X = LHS.getOperand(0);
2322 SDValue Y = RHS.getOperand(0);
2323 if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
2324 return SDValue();
2325
2326 if (LCC == ISD::SETO) {
2327 if (X != LHS.getOperand(1))
2328 return SDValue();
2329
2330 if (RCC == ISD::SETUNE) {
2331 const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
2332 if (!C1 || !C1->isInfinity() || C1->isNegative())
2333 return SDValue();
2334
2335 const uint32_t Mask = SIInstrFlags::N_NORMAL |
2336 SIInstrFlags::N_SUBNORMAL |
2337 SIInstrFlags::N_ZERO |
2338 SIInstrFlags::P_ZERO |
2339 SIInstrFlags::P_SUBNORMAL |
2340 SIInstrFlags::P_NORMAL;
2341
2342 static_assert(((~(SIInstrFlags::S_NAN |
2343 SIInstrFlags::Q_NAN |
2344 SIInstrFlags::N_INFINITY |
2345 SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
2346 "mask not equal");
2347
2348 SDLoc DL(N);
2349 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
2350 X, DAG.getConstant(Mask, DL, MVT::i32));
2351 }
2352 }
2353 }
2354
2355 return SDValue();
2356}
2357
2358SDValue SITargetLowering::performOrCombine(SDNode *N,
2359 DAGCombinerInfo &DCI) const {
2360 SelectionDAG &DAG = DCI.DAG;
2361 SDValue LHS = N->getOperand(0);
2362 SDValue RHS = N->getOperand(1);
2363
2364 EVT VT = N->getValueType(0);
2365 if (VT == MVT::i64) {
2366 // TODO: This could be a generic combine with a predicate for extracting the
2367 // high half of an integer being free.
2368
2369 // (or i64:x, (zero_extend i32:y)) ->
2370 // i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
2371 if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
2372 RHS.getOpcode() != ISD::ZERO_EXTEND)
2373 std::swap(LHS, RHS);
2374
2375 if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
2376 SDValue ExtSrc = RHS.getOperand(0);
2377 EVT SrcVT = ExtSrc.getValueType();
2378 if (SrcVT == MVT::i32) {
2379 SDLoc SL(N);
2380 SDValue LowLHS, HiBits;
2381 std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
2382 SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
2383
2384 DCI.AddToWorklist(LowOr.getNode());
2385 DCI.AddToWorklist(HiBits.getNode());
2386
2387 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
2388 LowOr, HiBits);
2389 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
2390 }
2391 }
2392 }
2393
2394 // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
2395 if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
2396 RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
2397 SDValue Src = LHS.getOperand(0);
2398 if (Src != RHS.getOperand(0))
2399 return SDValue();
2400
2401 const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
2402 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
2403 if (!CLHS || !CRHS)
2404 return SDValue();
2405
2406 // Only 10 bits are used.
2407 static const uint32_t MaxMask = 0x3ff;
2408
2409 uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
2410 SDLoc DL(N);
2411 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
2412 Src, DAG.getConstant(NewMask, DL, MVT::i32));
2413 }
2414
2415 return SDValue();
2416}
2417
2418SDValue SITargetLowering::performClassCombine(SDNode *N,
2419 DAGCombinerInfo &DCI) const {
2420 SelectionDAG &DAG = DCI.DAG;
2421 SDValue Mask = N->getOperand(1);
2422
2423 // fp_class x, 0 -> false
2424 if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
2425 if (CMask->isNullValue())
2426 return DAG.getConstant(0, SDLoc(N), MVT::i1);
2427 }
2428
2429 return SDValue();
2430}
2431
2432// Constant fold canonicalize.
2433SDValue SITargetLowering::performFCanonicalizeCombine(
2434 SDNode *N,
2435 DAGCombinerInfo &DCI) const {
2436 ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
2437 if (!CFP)
2438 return SDValue();
2439
2440 SelectionDAG &DAG = DCI.DAG;
2441 const APFloat &C = CFP->getValueAPF();
2442
2443 // Flush denormals to 0 if not enabled.
2444 if (C.isDenormal()) {
2445 EVT VT = N->getValueType(0);
2446 if (VT == MVT::f32 && !Subtarget->hasFP32Denormals())
2447 return DAG.getConstantFP(0.0, SDLoc(N), VT);
2448
2449 if (VT == MVT::f64 && !Subtarget->hasFP64Denormals())
2450 return DAG.getConstantFP(0.0, SDLoc(N), VT);
2451 }
2452
2453 if (C.isNaN()) {
2454 EVT VT = N->getValueType(0);
2455 APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
2456 if (C.isSignaling()) {
2457 // Quiet a signaling NaN.
2458 return DAG.getConstantFP(CanonicalQNaN, SDLoc(N), VT);
2459 }
2460
2461 // Make sure it is the canonical NaN bitpattern.
2462 //
2463 // TODO: Can we use -1 as the canonical NaN value since it's an inline
2464 // immediate?
2465 if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
2466 return DAG.getConstantFP(CanonicalQNaN, SDLoc(N), VT);
2467 }
2468
2469 return SDValue(CFP, 0);
2470}
2471
2472static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
2473 switch (Opc) {
2474 case ISD::FMAXNUM:
2475 return AMDGPUISD::FMAX3;
2476 case ISD::SMAX:
2477 return AMDGPUISD::SMAX3;
2478 case ISD::UMAX:
2479 return AMDGPUISD::UMAX3;
2480 case ISD::FMINNUM:
2481 return AMDGPUISD::FMIN3;
2482 case ISD::SMIN:
2483 return AMDGPUISD::SMIN3;
2484 case ISD::UMIN:
2485 return AMDGPUISD::UMIN3;
2486 default:
2487 llvm_unreachable("Not a min/max opcode")::llvm::llvm_unreachable_internal("Not a min/max opcode", "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2487)
;
2488 }
2489}
2490
2491static SDValue performIntMed3ImmCombine(SelectionDAG &DAG,
2492 SDLoc SL,
2493 SDValue Op0,
2494 SDValue Op1,
2495 bool Signed) {
2496 ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1);
2497 if (!K1)
2498 return SDValue();
2499
2500 ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
2501 if (!K0)
2502 return SDValue();
2503
2504
2505 if (Signed) {
2506 if (K0->getAPIntValue().sge(K1->getAPIntValue()))
2507 return SDValue();
2508 } else {
2509 if (K0->getAPIntValue().uge(K1->getAPIntValue()))
2510 return SDValue();
2511 }
2512
2513 EVT VT = K0->getValueType(0);
2514 return DAG.getNode(Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3, SL, VT,
2515 Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0));
2516}
2517
2518static bool isKnownNeverSNan(SelectionDAG &DAG, SDValue Op) {
2519 if (!DAG.getTargetLoweringInfo().hasFloatingPointExceptions())
2520 return true;
2521
2522 return DAG.isKnownNeverNaN(Op);
2523}
2524
2525static SDValue performFPMed3ImmCombine(SelectionDAG &DAG,
2526 SDLoc SL,
2527 SDValue Op0,
2528 SDValue Op1) {
2529 ConstantFPSDNode *K1 = dyn_cast<ConstantFPSDNode>(Op1);
2530 if (!K1)
2531 return SDValue();
2532
2533 ConstantFPSDNode *K0 = dyn_cast<ConstantFPSDNode>(Op0.getOperand(1));
2534 if (!K0)
2535 return SDValue();
2536
2537 // Ordered >= (although NaN inputs should have folded away by now).
2538 APFloat::cmpResult Cmp = K0->getValueAPF().compare(K1->getValueAPF());
2539 if (Cmp == APFloat::cmpGreaterThan)
2540 return SDValue();
2541
2542 // This isn't safe with signaling NaNs because in IEEE mode, min/max on a
2543 // signaling NaN gives a quiet NaN. The quiet NaN input to the min would then
2544 // give the other result, which is different from med3 with a NaN input.
2545 SDValue Var = Op0.getOperand(0);
2546 if (!isKnownNeverSNan(DAG, Var))
2547 return SDValue();
2548
2549 return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
2550 Var, SDValue(K0, 0), SDValue(K1, 0));
2551}
2552
2553SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
2554 DAGCombinerInfo &DCI) const {
2555 SelectionDAG &DAG = DCI.DAG;
2556
2557 unsigned Opc = N->getOpcode();
2558 SDValue Op0 = N->getOperand(0);
2559 SDValue Op1 = N->getOperand(1);
2560
2561 // Only do this if the inner op has one use since this will just increases
2562 // register pressure for no benefit.
2563
2564 if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY) {
2565 // max(max(a, b), c) -> max3(a, b, c)
2566 // min(min(a, b), c) -> min3(a, b, c)
2567 if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
2568 SDLoc DL(N);
2569 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
2570 DL,
2571 N->getValueType(0),
2572 Op0.getOperand(0),
2573 Op0.getOperand(1),
2574 Op1);
2575 }
2576
2577 // Try commuted.
2578 // max(a, max(b, c)) -> max3(a, b, c)
2579 // min(a, min(b, c)) -> min3(a, b, c)
2580 if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
2581 SDLoc DL(N);
2582 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
2583 DL,
2584 N->getValueType(0),
2585 Op0,
2586 Op1.getOperand(0),
2587 Op1.getOperand(1));
2588 }
2589 }
2590
2591 // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
2592 if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
2593 if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true))
2594 return Med3;
2595 }
2596
2597 if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
2598 if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false))
2599 return Med3;
2600 }
2601
2602 // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
2603 if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
2604 (Opc == AMDGPUISD::FMIN_LEGACY &&
2605 Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
2606 N->getValueType(0) == MVT::f32 && Op0.hasOneUse()) {
2607 if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
2608 return Res;
2609 }
2610
2611 return SDValue();
2612}
2613
2614SDValue SITargetLowering::performSetCCCombine(SDNode *N,
2615 DAGCombinerInfo &DCI) const {
2616 SelectionDAG &DAG = DCI.DAG;
2617 SDLoc SL(N);
2618
2619 SDValue LHS = N->getOperand(0);
2620 SDValue RHS = N->getOperand(1);
2621 EVT VT = LHS.getValueType();
2622
2623 if (VT != MVT::f32 && VT != MVT::f64)
2624 return SDValue();
2625
2626 // Match isinf pattern
2627 // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
2628 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
2629 if (CC == ISD::SETOEQ && LHS.getOpcode() == ISD::FABS) {
2630 const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
2631 if (!CRHS)
2632 return SDValue();
2633
2634 const APFloat &APF = CRHS->getValueAPF();
2635 if (APF.isInfinity() && !APF.isNegative()) {
2636 unsigned Mask = SIInstrFlags::P_INFINITY | SIInstrFlags::N_INFINITY;
2637 return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
2638 DAG.getConstant(Mask, SL, MVT::i32));
2639 }
2640 }
2641
2642 return SDValue();
2643}
2644
2645SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
2646 DAGCombinerInfo &DCI) const {
2647 SelectionDAG &DAG = DCI.DAG;
2648 SDLoc DL(N);
2649
2650 switch (N->getOpcode()) {
2651 default:
2652 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
2653 case ISD::SETCC:
2654 return performSetCCCombine(N, DCI);
2655 case ISD::FMAXNUM:
2656 case ISD::FMINNUM:
2657 case ISD::SMAX:
2658 case ISD::SMIN:
2659 case ISD::UMAX:
2660 case ISD::UMIN:
2661 case AMDGPUISD::FMIN_LEGACY:
2662 case AMDGPUISD::FMAX_LEGACY: {
2663 if (DCI.getDAGCombineLevel() >= AfterLegalizeDAG &&
2664 N->getValueType(0) != MVT::f64 &&
2665 getTargetMachine().getOptLevel() > CodeGenOpt::None)
2666 return performMinMaxCombine(N, DCI);
2667 break;
2668 }
2669
2670 case AMDGPUISD::CVT_F32_UBYTE0:
2671 case AMDGPUISD::CVT_F32_UBYTE1:
2672 case AMDGPUISD::CVT_F32_UBYTE2:
2673 case AMDGPUISD::CVT_F32_UBYTE3: {
2674 unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
2675
2676 SDValue Src = N->getOperand(0);
2677 APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
2678
2679 APInt KnownZero, KnownOne;
2680 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2681 !DCI.isBeforeLegalizeOps());
2682 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2683 if (TLO.ShrinkDemandedConstant(Src, Demanded) ||
2684 TLI.SimplifyDemandedBits(Src, Demanded, KnownZero, KnownOne, TLO)) {
2685 DCI.CommitTargetLoweringOpt(TLO);
2686 }
2687
2688 break;
2689 }
2690
2691 case ISD::UINT_TO_FP: {
2692 return performUCharToFloatCombine(N, DCI);
2693 }
2694 case ISD::FADD: {
2695 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
2696 break;
2697
2698 EVT VT = N->getValueType(0);
2699 if (VT != MVT::f32)
2700 break;
2701
2702 // Only do this if we are not trying to support denormals. v_mad_f32 does
2703 // not support denormals ever.
2704 if (Subtarget->hasFP32Denormals())
2705 break;
2706
2707 SDValue LHS = N->getOperand(0);
2708 SDValue RHS = N->getOperand(1);
2709
2710 // These should really be instruction patterns, but writing patterns with
2711 // source modiifiers is a pain.
2712
2713 // fadd (fadd (a, a), b) -> mad 2.0, a, b
2714 if (LHS.getOpcode() == ISD::FADD) {
2715 SDValue A = LHS.getOperand(0);
2716 if (A == LHS.getOperand(1)) {
2717 const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32);
2718 return DAG.getNode(ISD::FMAD, DL, VT, Two, A, RHS);
2719 }
2720 }
2721
2722 // fadd (b, fadd (a, a)) -> mad 2.0, a, b
2723 if (RHS.getOpcode() == ISD::FADD) {
2724 SDValue A = RHS.getOperand(0);
2725 if (A == RHS.getOperand(1)) {
2726 const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32);
2727 return DAG.getNode(ISD::FMAD, DL, VT, Two, A, LHS);
2728 }
2729 }
2730
2731 return SDValue();
2732 }
2733 case ISD::FSUB: {
2734 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
2735 break;
2736
2737 EVT VT = N->getValueType(0);
2738
2739 // Try to get the fneg to fold into the source modifier. This undoes generic
2740 // DAG combines and folds them into the mad.
2741 //
2742 // Only do this if we are not trying to support denormals. v_mad_f32 does
2743 // not support denormals ever.
2744 if (VT == MVT::f32 &&
2745 !Subtarget->hasFP32Denormals()) {
2746 SDValue LHS = N->getOperand(0);
2747 SDValue RHS = N->getOperand(1);
2748 if (LHS.getOpcode() == ISD::FADD) {
2749 // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
2750
2751 SDValue A = LHS.getOperand(0);
2752 if (A == LHS.getOperand(1)) {
2753 const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32);
2754 SDValue NegRHS = DAG.getNode(ISD::FNEG, DL, VT, RHS);
2755
2756 return DAG.getNode(ISD::FMAD, DL, VT, Two, A, NegRHS);
2757 }
2758 }
2759
2760 if (RHS.getOpcode() == ISD::FADD) {
2761 // (fsub c, (fadd a, a)) -> mad -2.0, a, c
2762
2763 SDValue A = RHS.getOperand(0);
2764 if (A == RHS.getOperand(1)) {
2765 const SDValue NegTwo = DAG.getConstantFP(-2.0, DL, MVT::f32);
2766 return DAG.getNode(ISD::FMAD, DL, VT, NegTwo, A, LHS);
2767 }
2768 }
2769
2770 return SDValue();
2771 }
2772
2773 break;
2774 }
2775 case ISD::LOAD:
2776 case ISD::STORE:
2777 case ISD::ATOMIC_LOAD:
2778 case ISD::ATOMIC_STORE:
2779 case ISD::ATOMIC_CMP_SWAP:
2780 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
2781 case ISD::ATOMIC_SWAP:
2782 case ISD::ATOMIC_LOAD_ADD:
2783 case ISD::ATOMIC_LOAD_SUB:
2784 case ISD::ATOMIC_LOAD_AND:
2785 case ISD::ATOMIC_LOAD_OR:
2786 case ISD::ATOMIC_LOAD_XOR:
2787 case ISD::ATOMIC_LOAD_NAND:
2788 case ISD::ATOMIC_LOAD_MIN:
2789 case ISD::ATOMIC_LOAD_MAX:
2790 case ISD::ATOMIC_LOAD_UMIN:
2791 case ISD::ATOMIC_LOAD_UMAX:
2792 case AMDGPUISD::ATOMIC_INC:
2793 case AMDGPUISD::ATOMIC_DEC: { // TODO: Target mem intrinsics.
2794 if (DCI.isBeforeLegalize())
2795 break;
2796
2797 MemSDNode *MemNode = cast<MemSDNode>(N);
2798 SDValue Ptr = MemNode->getBasePtr();
2799
2800 // TODO: We could also do this for multiplies.
2801 unsigned AS = MemNode->getAddressSpace();
2802 if (Ptr.getOpcode() == ISD::SHL && AS != AMDGPUAS::PRIVATE_ADDRESS) {
2803 SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), AS, DCI);
2804 if (NewPtr) {
2805 SmallVector<SDValue, 8> NewOps(MemNode->op_begin(), MemNode->op_end());
2806
2807 NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr;
2808 return SDValue(DAG.UpdateNodeOperands(MemNode, NewOps), 0);
2809 }
2810 }
2811 break;
2812 }
2813 case ISD::AND:
2814 return performAndCombine(N, DCI);
2815 case ISD::OR:
2816 return performOrCombine(N, DCI);
2817 case AMDGPUISD::FP_CLASS:
2818 return performClassCombine(N, DCI);
2819 case ISD::FCANONICALIZE:
2820 return performFCanonicalizeCombine(N, DCI);
2821 }
2822 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
2823}
2824
2825/// \brief Analyze the possible immediate value Op
2826///
2827/// Returns -1 if it isn't an immediate, 0 if it's and inline immediate
2828/// and the immediate value if it's a literal immediate
2829int32_t SITargetLowering::analyzeImmediate(const SDNode *N) const {
2830
2831 const SIInstrInfo *TII =
2832 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
2833
2834 if (const ConstantSDNode *Node = dyn_cast<ConstantSDNode>(N)) {
2835 if (TII->isInlineConstant(Node->getAPIntValue()))
2836 return 0;
2837
2838 uint64_t Val = Node->getZExtValue();
2839 return isUInt<32>(Val) ? Val : -1;
2840 }
2841
2842 if (const ConstantFPSDNode *Node = dyn_cast<ConstantFPSDNode>(N)) {
2843 if (TII->isInlineConstant(Node->getValueAPF().bitcastToAPInt()))
2844 return 0;
2845
2846 if (Node->getValueType(0) == MVT::f32)
2847 return FloatToBits(Node->getValueAPF().convertToFloat());
2848
2849 return -1;
2850 }
2851
2852 return -1;
2853}
2854
2855/// \brief Helper function for adjustWritemask
2856static unsigned SubIdx2Lane(unsigned Idx) {
2857 switch (Idx) {
2858 default: return 0;
2859 case AMDGPU::sub0: return 0;
2860 case AMDGPU::sub1: return 1;
2861 case AMDGPU::sub2: return 2;
2862 case AMDGPU::sub3: return 3;
2863 }
2864}
2865
2866/// \brief Adjust the writemask of MIMG instructions
2867void SITargetLowering::adjustWritemask(MachineSDNode *&Node,
2868 SelectionDAG &DAG) const {
2869 SDNode *Users[4] = { };
2870 unsigned Lane = 0;
2871 unsigned DmaskIdx = (Node->getNumOperands() - Node->getNumValues() == 9) ? 2 : 3;
2872 unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
2873 unsigned NewDmask = 0;
2874
2875 // Try to figure out the used register components
2876 for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
2877 I != E; ++I) {
2878
2879 // Abort if we can't understand the usage
2880 if (!I->isMachineOpcode() ||
2881 I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
2882 return;
2883
2884 // Lane means which subreg of %VGPRa_VGPRb_VGPRc_VGPRd is used.
2885 // Note that subregs are packed, i.e. Lane==0 is the first bit set
2886 // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
2887 // set, etc.
2888 Lane = SubIdx2Lane(I->getConstantOperandVal(1));
2889
2890 // Set which texture component corresponds to the lane.
2891 unsigned Comp;
2892 for (unsigned i = 0, Dmask = OldDmask; i <= Lane; i++) {
2893 assert(Dmask)((Dmask) ? static_cast<void> (0) : __assert_fail ("Dmask"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn267387/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2893, __PRETTY_FUNCTION__))
;
2894 Comp = countTrailingZeros(Dmask);
2895 Dmask &= ~(1 << Comp);
2896 }
2897
2898 // Abort if we have more than one user per component
2899 if (Users[Lane])
2900 return;
2901
2902 Users[Lane] = *I;
2903 NewDmask |= 1 << Comp;
2904 }
2905
2906 // Abort if there's no change
2907 if (NewDmask == OldDmask)
2908 return;
2909
2910 // Adjust the writemask in the node
2911 std::vector<SDValue> Ops;
2912 Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
2913 Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
2914 Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
2915 Node = (MachineSDNode*)DAG.UpdateNodeOperands(Node, Ops);
2916
2917 // If we only got one lane, replace it with a copy
2918 // (if NewDmask has only one bit set...)
2919 if (NewDmask && (NewDmask & (NewDmask-1)) == 0) {
2920 SDValue RC = DAG.getTargetConstant(AMDGPU::VGPR_32RegClassID, SDLoc(),
2921 MVT::i32);
2922 SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
2923 SDLoc(), Users[Lane]->getValueType(0),
2924 SDValue(Node, 0), RC);
2925 DAG.ReplaceAllUsesWith(Users[Lane], Copy);
2926 return;
2927 }
2928
2929 // Update the users of the node with the new indices
2930 for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) {
2931
2932 SDNode *User = Users[i];
2933 if (!User)
2934 continue;
2935
2936 SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
2937 DAG.UpdateNodeOperands(User, User->getOperand(0), Op);
2938
2939 switch (Idx) {
2940 default: break;
2941 case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
2942 case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
2943 case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
2944 }
2945 }
2946}
2947
2948static bool isFrameIndexOp(SDValue Op) {
2949 if (Op.getOpcode() == ISD::AssertZext)
2950 Op = Op.getOperand(0);
2951
2952 return isa<FrameIndexSDNode>(Op);
2953}
2954
2955/// \brief Legalize target independent instructions (e.g. INSERT_SUBREG)
2956/// with frame index operands.
2957/// LLVM assumes that inputs are to these instructions are registers.
2958void SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
2959 SelectionDAG &DAG) const {
2960
2961 SmallVector<SDValue, 8> Ops;
2962 for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
2963 if (!isFrameIndexOp(Node->getOperand(i))) {
2964 Ops.push_back(Node->getOperand(i));
2965 continue;
2966 }
2967
2968 SDLoc DL(Node);
2969 Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
2970 Node->getOperand(i).getValueType(),
2971 Node->getOperand(i)), 0));
2972 }
2973
2974 DAG.UpdateNodeOperands(Node, Ops);
2975}
2976
2977/// \brief Fold the instructions after selecting them.
2978SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
2979 SelectionDAG &DAG) const {
2980 const SIInstrInfo *TII =
2981 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
2982 unsigned Opcode = Node->getMachineOpcode();
2983
2984 if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore())
2985 adjustWritemask(Node, DAG);
2986
2987 if (Opcode == AMDGPU::INSERT_SUBREG ||
2988 Opcode == AMDGPU::REG_SEQUENCE) {
2989 legalizeTargetIndependentNode(Node, DAG);
2990 return Node;
2991 }
2992 return Node;
2993}
2994
2995/// \brief Assign the register class depending on the number of
2996/// bits set in the writemask
2997void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI,
2998 SDNode *Node) const {
2999 const SIInstrInfo *TII =
3000 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
3001
3002 MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
3003
3004 if (TII->isVOP3(MI->getOpcode())) {
3005 // Make sure constant bus requirements are respected.
3006 TII->legalizeOperandsVOP3(MRI, MI);
3007 return;
3008 }
3009
3010 if (TII->isMIMG(*MI)) {
3011 unsigned VReg = MI->getOperand(0).getReg();
3012 unsigned DmaskIdx = MI->getNumOperands() == 12 ? 3 : 4;
3013 unsigned Writemask = MI->getOperand(DmaskIdx).getImm();
3014 unsigned BitsSet = 0;
3015 for (unsigned i = 0; i < 4; ++i)
3016 BitsSet += Writemask & (1 << i) ? 1 : 0;
3017
3018 const TargetRegisterClass *RC;
3019 switch (BitsSet) {
3020 default: return;
3021 case 1: RC = &AMDGPU::VGPR_32RegClass; break;
3022 case 2: RC = &AMDGPU::VReg_64RegClass; break;
3023 case 3: RC = &AMDGPU::VReg_96RegClass; break;
3024 }
3025
3026 unsigned NewOpcode = TII->getMaskedMIMGOp(MI->getOpcode(), BitsSet);
3027 MI->setDesc(TII->get(NewOpcode));
3028 MRI.setRegClass(VReg, RC);
3029 return;
3030 }
3031
3032 // Replace unused atomics with the no return version.
3033 int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI->getOpcode());
3034 if (NoRetAtomicOp != -1) {
3035 if (!Node->hasAnyUseOfValue(0)) {
3036 MI->setDesc(TII->get(NoRetAtomicOp));
3037 MI->RemoveOperand(0);
3038 return;
3039 }
3040
3041 // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg
3042 // instruction, because the return type of these instructions is a vec2 of
3043 // the memory type, so it can be tied to the input operand.
3044 // This means these instructions always have a use, so we need to add a
3045 // special case to check if the atomic has only one extract_subreg use,
3046 // which itself has no uses.
3047 if ((Node->hasNUsesOfValue(1, 0) &&
3048 Node->use_begin()->isMachineOpcode() &&
3049 Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG &&
3050 !Node->use_begin()->hasAnyUseOfValue(0))) {
3051 unsigned Def = MI->getOperand(0).getReg();
3052
3053 // Change this into a noret atomic.
3054 MI->setDesc(TII->get(NoRetAtomicOp));
3055 MI->RemoveOperand(0);
3056
3057 // If we only remove the def operand from the atomic instruction, the
3058 // extract_subreg will be left with a use of a vreg without a def.
3059 // So we need to insert an implicit_def to avoid machine verifier
3060 // errors.
3061 BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
3062 TII->get(AMDGPU::IMPLICIT_DEF), Def);
3063 }
3064 return;
3065 }
3066}
3067
3068static SDValue buildSMovImm32(SelectionDAG &DAG, SDLoc DL, uint64_t Val) {
3069 SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
3070 return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
3071}
3072
3073MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
3074 SDLoc DL,
3075 SDValue Ptr) const {
3076 const SIInstrInfo *TII =
3077 static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo());
3078
3079 // Build the half of the subregister with the constants before building the
3080 // full 128-bit register. If we are building multiple resource descriptors,
3081 // this will allow CSEing of the 2-component register.
3082 const SDValue Ops0[] = {
3083 DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
3084 buildSMovImm32(DAG, DL, 0),
3085 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
3086 buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
3087 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
3088 };
3089
3090 SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
3091 MVT::v2i32, Ops0), 0);
3092
3093 // Combine the constants and the pointer.
3094 const SDValue Ops1[] = {
3095 DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
3096 Ptr,
3097 DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
3098 SubRegHi,
3099 DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
3100 };
3101
3102 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
3103}
3104
3105/// \brief Return a resource descriptor with the 'Add TID' bit enabled
3106/// The TID (Thread ID) is multiplied by the stride value (bits [61:48]
3107/// of the resource descriptor) to create an offset, which is added to
3108/// the resource pointer.
3109MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG,
3110 SDLoc DL,
3111 SDValue Ptr,
3112 uint32_t RsrcDword1,
3113 uint64_t RsrcDword2And3) const {
3114 SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
3115 SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
3116 if (RsrcDword1) {
3117 PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
3118 DAG.getConstant(RsrcDword1, DL, MVT::i32)),
3119 0);
3120 }
3121
3122 SDValue DataLo = buildSMovImm32(DAG, DL,
3123 RsrcDword2And3 & UINT64_C(0xFFFFFFFF)0xFFFFFFFFUL);
3124 SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
3125
3126 const SDValue Ops[] = {
3127 DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
3128 PtrLo,
3129 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
3130 PtrHi,
3131 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
3132 DataLo,
3133 DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
3134 DataHi,
3135 DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
3136 };
3137
3138 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
3139}
3140
3141SDValue SITargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
3142 const TargetRegisterClass *RC,
3143 unsigned Reg, EVT VT) const {
3144 SDValue VReg = AMDGPUTargetLowering::CreateLiveInRegister(DAG, RC, Reg, VT);
3145
3146 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(DAG.getEntryNode()),
3147 cast<RegisterSDNode>(VReg)->getReg(), VT);
3148}
3149
3150//===----------------------------------------------------------------------===//
3151// SI Inline Assembly Support
3152//===----------------------------------------------------------------------===//
3153
3154std::pair<unsigned, const TargetRegisterClass *>
3155SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
3156 StringRef Constraint,
3157 MVT VT) const {
3158
3159 if (Constraint.size() == 1) {
3160 switch (Constraint[0]) {
3161 case 's':
3162 case 'r':
3163 switch (VT.getSizeInBits()) {
3164 default:
3165 return std::make_pair(0U, nullptr);
3166 case 32:
3167 return std::make_pair(0U, &AMDGPU::SGPR_32RegClass);
3168 case 64:
3169 return std::make_pair(0U, &AMDGPU::SGPR_64RegClass);
3170 case 128:
3171 return std::make_pair(0U, &AMDGPU::SReg_128RegClass);
3172 case 256:
3173 return std::make_pair(0U, &AMDGPU::SReg_256RegClass);
3174 }
3175
3176 case 'v':
3177 switch (VT.getSizeInBits()) {
3178 default:
3179 return std::make_pair(0U, nullptr);
3180 case 32:
3181 return std::make_pair(0U, &AMDGPU::VGPR_32RegClass);
3182 case 64:
3183 return std::make_pair(0U, &AMDGPU::VReg_64RegClass);
3184 case 96:
3185 return std::make_pair(0U, &AMDGPU::VReg_96RegClass);
3186 case 128:
3187 return std::make_pair(0U, &AMDGPU::VReg_128RegClass);
3188 case 256:
3189 return std::make_pair(0U, &AMDGPU::VReg_256RegClass);
3190 case 512:
3191 return std::make_pair(0U, &AMDGPU::VReg_512RegClass);
3192 }
3193 }
3194 }
3195
3196 if (Constraint.size() > 1) {
3197 const TargetRegisterClass *RC = nullptr;
3198 if (Constraint[1] == 'v') {
3199 RC = &AMDGPU::VGPR_32RegClass;
3200 } else if (Constraint[1] == 's') {
3201 RC = &AMDGPU::SGPR_32RegClass;
3202 }
3203
3204 if (RC) {
3205 uint32_t Idx;
3206 bool Failed = Constraint.substr(2).getAsInteger(10, Idx);
3207 if (!Failed && Idx < RC->getNumRegs())
3208 return std::make_pair(RC->getRegister(Idx), RC);
3209 }
3210 }
3211 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
3212}
3213
3214SITargetLowering::ConstraintType
3215SITargetLowering::getConstraintType(StringRef Constraint) const {
3216 if (Constraint.size() == 1) {
3217 switch (Constraint[0]) {
3218 default: break;
3219 case 's':
3220 case 'v':
3221 return C_RegisterClass;
3222 }
3223 }
3224 return TargetLowering::getConstraintType(Constraint);
3225}