Bug Summary

File:lib/Target/AMDGPU/SIISelLowering.cpp
Warning:line 2059, column 5
Value stored to 'BR' is never read

Annotated Source Code

1//===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10/// \file
11/// \brief Custom DAG lowering for SI
12//
13//===----------------------------------------------------------------------===//
14
15#ifdef _MSC_VER
16// Provide M_PI.
17#define _USE_MATH_DEFINES
18#include <cmath>
19#endif
20
21#include "AMDGPU.h"
22#include "AMDGPUIntrinsicInfo.h"
23#include "AMDGPUSubtarget.h"
24#include "SIDefines.h"
25#include "SIISelLowering.h"
26#include "SIInstrInfo.h"
27#include "SIMachineFunctionInfo.h"
28#include "SIRegisterInfo.h"
29#include "llvm/ADT/BitVector.h"
30#include "llvm/ADT/StringSwitch.h"
31#include "llvm/CodeGen/CallingConvLower.h"
32#include "llvm/CodeGen/MachineInstrBuilder.h"
33#include "llvm/CodeGen/MachineRegisterInfo.h"
34#include "llvm/CodeGen/SelectionDAG.h"
35#include "llvm/CodeGen/Analysis.h"
36#include "llvm/IR/DiagnosticInfo.h"
37#include "llvm/IR/Function.h"
38
39using namespace llvm;
40
41static cl::opt<bool> EnableVGPRIndexMode(
42 "amdgpu-vgpr-index-mode",
43 cl::desc("Use GPR indexing mode instead of movrel for vector indexing"),
44 cl::init(false));
45
46
47static unsigned findFirstFreeSGPR(CCState &CCInfo) {
48 unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
49 for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
50 if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
51 return AMDGPU::SGPR0 + Reg;
52 }
53 }
54 llvm_unreachable("Cannot allocate sgpr")::llvm::llvm_unreachable_internal("Cannot allocate sgpr", "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 54)
;
55}
56
57SITargetLowering::SITargetLowering(const TargetMachine &TM,
58 const SISubtarget &STI)
59 : AMDGPUTargetLowering(TM, STI) {
60 addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
61 addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
62
63 addRegisterClass(MVT::i32, &AMDGPU::SReg_32_XM0RegClass);
64 addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
65
66 addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
67 addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
68 addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
69
70 addRegisterClass(MVT::v2i64, &AMDGPU::SReg_128RegClass);
71 addRegisterClass(MVT::v2f64, &AMDGPU::SReg_128RegClass);
72
73 addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass);
74 addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
75
76 addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass);
77 addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
78
79 addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass);
80 addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
81
82 if (Subtarget->has16BitInsts()) {
83 addRegisterClass(MVT::i16, &AMDGPU::SReg_32_XM0RegClass);
84 addRegisterClass(MVT::f16, &AMDGPU::SReg_32_XM0RegClass);
85 }
86
87 computeRegisterProperties(STI.getRegisterInfo());
88
89 // We need to custom lower vector stores from local memory
90 setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
91 setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
92 setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
93 setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
94 setOperationAction(ISD::LOAD, MVT::i1, Custom);
95
96 setOperationAction(ISD::STORE, MVT::v2i32, Custom);
97 setOperationAction(ISD::STORE, MVT::v4i32, Custom);
98 setOperationAction(ISD::STORE, MVT::v8i32, Custom);
99 setOperationAction(ISD::STORE, MVT::v16i32, Custom);
100 setOperationAction(ISD::STORE, MVT::i1, Custom);
101
102 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
103 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
104 setOperationAction(ISD::ConstantPool, MVT::v2i64, Expand);
105
106 setOperationAction(ISD::SELECT, MVT::i1, Promote);
107 setOperationAction(ISD::SELECT, MVT::i64, Custom);
108 setOperationAction(ISD::SELECT, MVT::f64, Promote);
109 AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
110
111 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
112 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
113 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
114 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
115 setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
116
117 setOperationAction(ISD::SETCC, MVT::i1, Promote);
118 setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
119 setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
120 AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
121
122 setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand);
123 setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
124
125 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
126 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
127 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
128 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
129 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
130 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
131 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
132
133 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
134 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
135 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
136
137 setOperationAction(ISD::BRCOND, MVT::Other, Custom);
138 setOperationAction(ISD::BR_CC, MVT::i1, Expand);
139 setOperationAction(ISD::BR_CC, MVT::i32, Expand);
140 setOperationAction(ISD::BR_CC, MVT::i64, Expand);
141 setOperationAction(ISD::BR_CC, MVT::f32, Expand);
142 setOperationAction(ISD::BR_CC, MVT::f64, Expand);
143
144 // We only support LOAD/STORE and vector manipulation ops for vectors
145 // with > 4 elements.
146 for (MVT VT : {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32, MVT::v2i64, MVT::v2f64}) {
147 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
148 switch (Op) {
149 case ISD::LOAD:
150 case ISD::STORE:
151 case ISD::BUILD_VECTOR:
152 case ISD::BITCAST:
153 case ISD::EXTRACT_VECTOR_ELT:
154 case ISD::INSERT_VECTOR_ELT:
155 case ISD::INSERT_SUBVECTOR:
156 case ISD::EXTRACT_SUBVECTOR:
157 case ISD::SCALAR_TO_VECTOR:
158 break;
159 case ISD::CONCAT_VECTORS:
160 setOperationAction(Op, VT, Custom);
161 break;
162 default:
163 setOperationAction(Op, VT, Expand);
164 break;
165 }
166 }
167 }
168
169 // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that
170 // is expanded to avoid having two separate loops in case the index is a VGPR.
171
172 // Most operations are naturally 32-bit vector operations. We only support
173 // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
174 for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
175 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
176 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
177
178 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
179 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
180
181 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
182 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
183
184 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
185 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
186 }
187
188 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
189 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
190 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
191 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
192
193 // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
194 // and output demarshalling
195 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
196 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
197
198 // We can't return success/failure, only the old value,
199 // let LLVM add the comparison
200 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand);
201 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand);
202
203 if (getSubtarget()->hasFlatAddressSpace()) {
204 setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
205 setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom);
206 }
207
208 setOperationAction(ISD::BSWAP, MVT::i32, Legal);
209 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
210
211 // On SI this is s_memtime and s_memrealtime on VI.
212 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
213 setOperationAction(ISD::TRAP, MVT::Other, Custom);
214
215 setOperationAction(ISD::FMINNUM, MVT::f64, Legal);
216 setOperationAction(ISD::FMAXNUM, MVT::f64, Legal);
217
218 if (Subtarget->getGeneration() >= SISubtarget::SEA_ISLANDS) {
219 setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
220 setOperationAction(ISD::FCEIL, MVT::f64, Legal);
221 setOperationAction(ISD::FRINT, MVT::f64, Legal);
222 }
223
224 setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
225
226 setOperationAction(ISD::FSIN, MVT::f32, Custom);
227 setOperationAction(ISD::FCOS, MVT::f32, Custom);
228 setOperationAction(ISD::FDIV, MVT::f32, Custom);
229 setOperationAction(ISD::FDIV, MVT::f64, Custom);
230
231 if (Subtarget->has16BitInsts()) {
232 setOperationAction(ISD::Constant, MVT::i16, Legal);
233
234 setOperationAction(ISD::SMIN, MVT::i16, Legal);
235 setOperationAction(ISD::SMAX, MVT::i16, Legal);
236
237 setOperationAction(ISD::UMIN, MVT::i16, Legal);
238 setOperationAction(ISD::UMAX, MVT::i16, Legal);
239
240 setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote);
241 AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32);
242
243 setOperationAction(ISD::ROTR, MVT::i16, Promote);
244 setOperationAction(ISD::ROTL, MVT::i16, Promote);
245
246 setOperationAction(ISD::SDIV, MVT::i16, Promote);
247 setOperationAction(ISD::UDIV, MVT::i16, Promote);
248 setOperationAction(ISD::SREM, MVT::i16, Promote);
249 setOperationAction(ISD::UREM, MVT::i16, Promote);
250
251 setOperationAction(ISD::BSWAP, MVT::i16, Promote);
252 setOperationAction(ISD::BITREVERSE, MVT::i16, Promote);
253
254 setOperationAction(ISD::CTTZ, MVT::i16, Promote);
255 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote);
256 setOperationAction(ISD::CTLZ, MVT::i16, Promote);
257 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote);
258
259 setOperationAction(ISD::SELECT_CC, MVT::i16, Expand);
260
261 setOperationAction(ISD::BR_CC, MVT::i16, Expand);
262
263 setOperationAction(ISD::LOAD, MVT::i16, Custom);
264
265 setTruncStoreAction(MVT::i64, MVT::i16, Expand);
266
267 setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote);
268 AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32);
269 setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote);
270 AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32);
271
272 setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
273 setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
274 setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
275 setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
276
277 // F16 - Constant Actions.
278 setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
279
280 // F16 - Load/Store Actions.
281 setOperationAction(ISD::LOAD, MVT::f16, Promote);
282 AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16);
283 setOperationAction(ISD::STORE, MVT::f16, Promote);
284 AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16);
285
286 // F16 - VOP1 Actions.
287 setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
288 setOperationAction(ISD::FCOS, MVT::f16, Promote);
289 setOperationAction(ISD::FSIN, MVT::f16, Promote);
290 setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote);
291 setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote);
292 setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote);
293 setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote);
294
295 // F16 - VOP2 Actions.
296 setOperationAction(ISD::BR_CC, MVT::f16, Expand);
297 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
298 setOperationAction(ISD::FMAXNUM, MVT::f16, Legal);
299 setOperationAction(ISD::FMINNUM, MVT::f16, Legal);
300 setOperationAction(ISD::FDIV, MVT::f16, Custom);
301
302 // F16 - VOP3 Actions.
303 setOperationAction(ISD::FMA, MVT::f16, Legal);
304 if (!Subtarget->hasFP16Denormals())
305 setOperationAction(ISD::FMAD, MVT::f16, Legal);
306 }
307
308 setTargetDAGCombine(ISD::FADD);
309 setTargetDAGCombine(ISD::FSUB);
310 setTargetDAGCombine(ISD::FMINNUM);
311 setTargetDAGCombine(ISD::FMAXNUM);
312 setTargetDAGCombine(ISD::SMIN);
313 setTargetDAGCombine(ISD::SMAX);
314 setTargetDAGCombine(ISD::UMIN);
315 setTargetDAGCombine(ISD::UMAX);
316 setTargetDAGCombine(ISD::SETCC);
317 setTargetDAGCombine(ISD::AND);
318 setTargetDAGCombine(ISD::OR);
319 setTargetDAGCombine(ISD::XOR);
320 setTargetDAGCombine(ISD::SINT_TO_FP);
321 setTargetDAGCombine(ISD::UINT_TO_FP);
322 setTargetDAGCombine(ISD::FCANONICALIZE);
323
324 // All memory operations. Some folding on the pointer operand is done to help
325 // matching the constant offsets in the addressing modes.
326 setTargetDAGCombine(ISD::LOAD);
327 setTargetDAGCombine(ISD::STORE);
328 setTargetDAGCombine(ISD::ATOMIC_LOAD);
329 setTargetDAGCombine(ISD::ATOMIC_STORE);
330 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
331 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
332 setTargetDAGCombine(ISD::ATOMIC_SWAP);
333 setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
334 setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
335 setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
336 setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
337 setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
338 setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
339 setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
340 setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
341 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
342 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
343
344 setSchedulingPreference(Sched::RegPressure);
345}
346
347const SISubtarget *SITargetLowering::getSubtarget() const {
348 return static_cast<const SISubtarget *>(Subtarget);
349}
350
351//===----------------------------------------------------------------------===//
352// TargetLowering queries
353//===----------------------------------------------------------------------===//
354
355bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
356 const CallInst &CI,
357 unsigned IntrID) const {
358 switch (IntrID) {
359 case Intrinsic::amdgcn_atomic_inc:
360 case Intrinsic::amdgcn_atomic_dec:
361 Info.opc = ISD::INTRINSIC_W_CHAIN;
362 Info.memVT = MVT::getVT(CI.getType());
363 Info.ptrVal = CI.getOperand(0);
364 Info.align = 0;
365 Info.vol = false;
366 Info.readMem = true;
367 Info.writeMem = true;
368 return true;
369 default:
370 return false;
371 }
372}
373
374bool SITargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &,
375 EVT) const {
376 // SI has some legal vector types, but no legal vector operations. Say no
377 // shuffles are legal in order to prefer scalarizing some vector operations.
378 return false;
379}
380
381bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
382 // Flat instructions do not have offsets, and only have the register
383 // address.
384 return AM.BaseOffs == 0 && (AM.Scale == 0 || AM.Scale == 1);
385}
386
387bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
388 // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
389 // additionally can do r + r + i with addr64. 32-bit has more addressing
390 // mode options. Depending on the resource constant, it can also do
391 // (i64 r0) + (i32 r1) * (i14 i).
392 //
393 // Private arrays end up using a scratch buffer most of the time, so also
394 // assume those use MUBUF instructions. Scratch loads / stores are currently
395 // implemented as mubuf instructions with offen bit set, so slightly
396 // different than the normal addr64.
397 if (!isUInt<12>(AM.BaseOffs))
398 return false;
399
400 // FIXME: Since we can split immediate into soffset and immediate offset,
401 // would it make sense to allow any immediate?
402
403 switch (AM.Scale) {
404 case 0: // r + i or just i, depending on HasBaseReg.
405 return true;
406 case 1:
407 return true; // We have r + r or r + i.
408 case 2:
409 if (AM.HasBaseReg) {
410 // Reject 2 * r + r.
411 return false;
412 }
413
414 // Allow 2 * r as r + r
415 // Or 2 * r + i is allowed as r + r + i.
416 return true;
417 default: // Don't allow n * r
418 return false;
419 }
420}
421
422bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
423 const AddrMode &AM, Type *Ty,
424 unsigned AS) const {
425 // No global is ever allowed as a base.
426 if (AM.BaseGV)
427 return false;
428
429 switch (AS) {
430 case AMDGPUAS::GLOBAL_ADDRESS: {
431 if (Subtarget->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS) {
432 // Assume the we will use FLAT for all global memory accesses
433 // on VI.
434 // FIXME: This assumption is currently wrong. On VI we still use
435 // MUBUF instructions for the r + i addressing mode. As currently
436 // implemented, the MUBUF instructions only work on buffer < 4GB.
437 // It may be possible to support > 4GB buffers with MUBUF instructions,
438 // by setting the stride value in the resource descriptor which would
439 // increase the size limit to (stride * 4GB). However, this is risky,
440 // because it has never been validated.
441 return isLegalFlatAddressingMode(AM);
442 }
443
444 return isLegalMUBUFAddressingMode(AM);
445 }
446 case AMDGPUAS::CONSTANT_ADDRESS: {
447 // If the offset isn't a multiple of 4, it probably isn't going to be
448 // correctly aligned.
449 // FIXME: Can we get the real alignment here?
450 if (AM.BaseOffs % 4 != 0)
451 return isLegalMUBUFAddressingMode(AM);
452
453 // There are no SMRD extloads, so if we have to do a small type access we
454 // will use a MUBUF load.
455 // FIXME?: We also need to do this if unaligned, but we don't know the
456 // alignment here.
457 if (DL.getTypeStoreSize(Ty) < 4)
458 return isLegalMUBUFAddressingMode(AM);
459
460 if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS) {
461 // SMRD instructions have an 8-bit, dword offset on SI.
462 if (!isUInt<8>(AM.BaseOffs / 4))
463 return false;
464 } else if (Subtarget->getGeneration() == SISubtarget::SEA_ISLANDS) {
465 // On CI+, this can also be a 32-bit literal constant offset. If it fits
466 // in 8-bits, it can use a smaller encoding.
467 if (!isUInt<32>(AM.BaseOffs / 4))
468 return false;
469 } else if (Subtarget->getGeneration() == SISubtarget::VOLCANIC_ISLANDS) {
470 // On VI, these use the SMEM format and the offset is 20-bit in bytes.
471 if (!isUInt<20>(AM.BaseOffs))
472 return false;
473 } else
474 llvm_unreachable("unhandled generation")::llvm::llvm_unreachable_internal("unhandled generation", "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 474)
;
475
476 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
477 return true;
478
479 if (AM.Scale == 1 && AM.HasBaseReg)
480 return true;
481
482 return false;
483 }
484
485 case AMDGPUAS::PRIVATE_ADDRESS:
486 return isLegalMUBUFAddressingMode(AM);
487
488 case AMDGPUAS::LOCAL_ADDRESS:
489 case AMDGPUAS::REGION_ADDRESS: {
490 // Basic, single offset DS instructions allow a 16-bit unsigned immediate
491 // field.
492 // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
493 // an 8-bit dword offset but we don't know the alignment here.
494 if (!isUInt<16>(AM.BaseOffs))
495 return false;
496
497 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
498 return true;
499
500 if (AM.Scale == 1 && AM.HasBaseReg)
501 return true;
502
503 return false;
504 }
505 case AMDGPUAS::FLAT_ADDRESS:
506 case AMDGPUAS::UNKNOWN_ADDRESS_SPACE:
507 // For an unknown address space, this usually means that this is for some
508 // reason being used for pure arithmetic, and not based on some addressing
509 // computation. We don't have instructions that compute pointers with any
510 // addressing modes, so treat them as having no offset like flat
511 // instructions.
512 return isLegalFlatAddressingMode(AM);
513
514 default:
515 llvm_unreachable("unhandled address space")::llvm::llvm_unreachable_internal("unhandled address space", "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 515)
;
516 }
517}
518
519bool SITargetLowering::allowsMisalignedMemoryAccesses(EVT VT,
520 unsigned AddrSpace,
521 unsigned Align,
522 bool *IsFast) const {
523 if (IsFast)
524 *IsFast = false;
525
526 // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
527 // which isn't a simple VT.
528 // Until MVT is extended to handle this, simply check for the size and
529 // rely on the condition below: allow accesses if the size is a multiple of 4.
530 if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 &&
531 VT.getStoreSize() > 16)) {
532 return false;
533 }
534
535 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
536 AddrSpace == AMDGPUAS::REGION_ADDRESS) {
537 // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
538 // aligned, 8 byte access in a single operation using ds_read2/write2_b32
539 // with adjacent offsets.
540 bool AlignedBy4 = (Align % 4 == 0);
541 if (IsFast)
542 *IsFast = AlignedBy4;
543
544 return AlignedBy4;
545 }
546
547 // FIXME: We have to be conservative here and assume that flat operations
548 // will access scratch. If we had access to the IR function, then we
549 // could determine if any private memory was used in the function.
550 if (!Subtarget->hasUnalignedScratchAccess() &&
551 (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS ||
552 AddrSpace == AMDGPUAS::FLAT_ADDRESS)) {
553 return false;
554 }
555
556 if (Subtarget->hasUnalignedBufferAccess()) {
557 // If we have an uniform constant load, it still requires using a slow
558 // buffer instruction if unaligned.
559 if (IsFast) {
560 *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS) ?
561 (Align % 4 == 0) : true;
562 }
563
564 return true;
565 }
566
567 // Smaller than dword value must be aligned.
568 if (VT.bitsLT(MVT::i32))
569 return false;
570
571 // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
572 // byte-address are ignored, thus forcing Dword alignment.
573 // This applies to private, global, and constant memory.
574 if (IsFast)
575 *IsFast = true;
576
577 return VT.bitsGT(MVT::i32) && Align % 4 == 0;
578}
579
580EVT SITargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign,
581 unsigned SrcAlign, bool IsMemset,
582 bool ZeroMemset,
583 bool MemcpyStrSrc,
584 MachineFunction &MF) const {
585 // FIXME: Should account for address space here.
586
587 // The default fallback uses the private pointer size as a guess for a type to
588 // use. Make sure we switch these to 64-bit accesses.
589
590 if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global
591 return MVT::v4i32;
592
593 if (Size >= 8 && DstAlign >= 4)
594 return MVT::v2i32;
595
596 // Use the default.
597 return MVT::Other;
598}
599
600static bool isFlatGlobalAddrSpace(unsigned AS) {
601 return AS == AMDGPUAS::GLOBAL_ADDRESS ||
602 AS == AMDGPUAS::FLAT_ADDRESS ||
603 AS == AMDGPUAS::CONSTANT_ADDRESS;
604}
605
606bool SITargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
607 unsigned DestAS) const {
608 return isFlatGlobalAddrSpace(SrcAS) && isFlatGlobalAddrSpace(DestAS);
609}
610
611bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const {
612 const MemSDNode *MemNode = cast<MemSDNode>(N);
613 const Value *Ptr = MemNode->getMemOperand()->getValue();
614 const Instruction *I = dyn_cast<Instruction>(Ptr);
615 return I && I->getMetadata("amdgpu.noclobber");
616}
617
618bool SITargetLowering::isCheapAddrSpaceCast(unsigned SrcAS,
619 unsigned DestAS) const {
620 // Flat -> private/local is a simple truncate.
621 // Flat -> global is no-op
622 if (SrcAS == AMDGPUAS::FLAT_ADDRESS)
623 return true;
624
625 return isNoopAddrSpaceCast(SrcAS, DestAS);
626}
627
628bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
629 const MemSDNode *MemNode = cast<MemSDNode>(N);
630 const Value *Ptr = MemNode->getMemOperand()->getValue();
631
632 // UndefValue means this is a load of a kernel input. These are uniform.
633 // Sometimes LDS instructions have constant pointers.
634 // If Ptr is null, then that means this mem operand contains a
635 // PseudoSourceValue like GOT.
636 if (!Ptr || isa<UndefValue>(Ptr) || isa<Argument>(Ptr) ||
637 isa<Constant>(Ptr) || isa<GlobalValue>(Ptr))
638 return true;
639
640 const Instruction *I = dyn_cast<Instruction>(Ptr);
641 return I && I->getMetadata("amdgpu.uniform");
642}
643
644TargetLoweringBase::LegalizeTypeAction
645SITargetLowering::getPreferredVectorAction(EVT VT) const {
646 if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16))
647 return TypeSplitVector;
648
649 return TargetLoweringBase::getPreferredVectorAction(VT);
650}
651
652bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
653 Type *Ty) const {
654 // FIXME: Could be smarter if called for vector constants.
655 return true;
656}
657
658bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
659 if (Subtarget->has16BitInsts() && VT == MVT::i16) {
660 switch (Op) {
661 case ISD::LOAD:
662 case ISD::STORE:
663
664 // These operations are done with 32-bit instructions anyway.
665 case ISD::AND:
666 case ISD::OR:
667 case ISD::XOR:
668 case ISD::SELECT:
669 // TODO: Extensions?
670 return true;
671 default:
672 return false;
673 }
674 }
675
676 // SimplifySetCC uses this function to determine whether or not it should
677 // create setcc with i1 operands. We don't have instructions for i1 setcc.
678 if (VT == MVT::i1 && Op == ISD::SETCC)
679 return false;
680
681 return TargetLowering::isTypeDesirableForOp(Op, VT);
682}
683
684SDValue SITargetLowering::LowerParameterPtr(SelectionDAG &DAG,
685 const SDLoc &SL, SDValue Chain,
686 unsigned Offset) const {
687 const DataLayout &DL = DAG.getDataLayout();
688 MachineFunction &MF = DAG.getMachineFunction();
689 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
690 unsigned InputPtrReg = TRI->getPreloadedValue(MF, SIRegisterInfo::KERNARG_SEGMENT_PTR);
691
692 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
693 MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
694 SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
695 MRI.getLiveInVirtReg(InputPtrReg), PtrVT);
696 return DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
697 DAG.getConstant(Offset, SL, PtrVT));
698}
699
700SDValue SITargetLowering::LowerParameter(SelectionDAG &DAG, EVT VT, EVT MemVT,
701 const SDLoc &SL, SDValue Chain,
702 unsigned Offset, bool Signed) const {
703 const DataLayout &DL = DAG.getDataLayout();
704 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
705 PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
706 MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
707
708 unsigned Align = DL.getABITypeAlignment(Ty);
709
710 SDValue Ptr = LowerParameterPtr(DAG, SL, Chain, Offset);
711 SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Align,
712 MachineMemOperand::MONonTemporal |
713 MachineMemOperand::MODereferenceable |
714 MachineMemOperand::MOInvariant);
715
716 SDValue Val;
717 if (MemVT.isFloatingPoint())
718 Val = getFPExtOrFPTrunc(DAG, Load, SL, VT);
719 else if (Signed)
720 Val = DAG.getSExtOrTrunc(Load, SL, VT);
721 else
722 Val = DAG.getZExtOrTrunc(Load, SL, VT);
723
724 SDValue Ops[] = {
725 Val,
726 Load.getValue(1)
727 };
728
729 return DAG.getMergeValues(Ops, SL);
730}
731
732SDValue SITargetLowering::LowerFormalArguments(
733 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
734 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
735 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
736 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
737
738 MachineFunction &MF = DAG.getMachineFunction();
739 FunctionType *FType = MF.getFunction()->getFunctionType();
740 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
741 const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
742
743 if (Subtarget->isAmdHsaOS() && AMDGPU::isShader(CallConv)) {
744 const Function *Fn = MF.getFunction();
745 DiagnosticInfoUnsupported NoGraphicsHSA(
746 *Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
747 DAG.getContext()->diagnose(NoGraphicsHSA);
748 return DAG.getEntryNode();
749 }
750
751 // Create stack objects that are used for emitting debugger prologue if
752 // "amdgpu-debugger-emit-prologue" attribute was specified.
753 if (ST.debuggerEmitPrologue())
754 createDebuggerPrologueStackObjects(MF);
755
756 SmallVector<ISD::InputArg, 16> Splits;
757 BitVector Skipped(Ins.size());
758
759 for (unsigned i = 0, e = Ins.size(), PSInputNum = 0; i != e; ++i) {
760 const ISD::InputArg &Arg = Ins[i];
761
762 // First check if it's a PS input addr
763 if (CallConv == CallingConv::AMDGPU_PS && !Arg.Flags.isInReg() &&
764 !Arg.Flags.isByVal() && PSInputNum <= 15) {
765
766 if (!Arg.Used && !Info->isPSInputAllocated(PSInputNum)) {
767 // We can safely skip PS inputs
768 Skipped.set(i);
769 ++PSInputNum;
770 continue;
771 }
772
773 Info->markPSInputAllocated(PSInputNum);
774 if (Arg.Used)
775 Info->PSInputEna |= 1 << PSInputNum;
776
777 ++PSInputNum;
778 }
779
780 if (AMDGPU::isShader(CallConv)) {
781 // Second split vertices into their elements
782 if (Arg.VT.isVector()) {
783 ISD::InputArg NewArg = Arg;
784 NewArg.Flags.setSplit();
785 NewArg.VT = Arg.VT.getVectorElementType();
786
787 // We REALLY want the ORIGINAL number of vertex elements here, e.g. a
788 // three or five element vertex only needs three or five registers,
789 // NOT four or eight.
790 Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
791 unsigned NumElements = ParamType->getVectorNumElements();
792
793 for (unsigned j = 0; j != NumElements; ++j) {
794 Splits.push_back(NewArg);
795 NewArg.PartOffset += NewArg.VT.getStoreSize();
796 }
797 } else {
798 Splits.push_back(Arg);
799 }
800 }
801 }
802
803 SmallVector<CCValAssign, 16> ArgLocs;
804 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
805 *DAG.getContext());
806
807 // At least one interpolation mode must be enabled or else the GPU will hang.
808 //
809 // Check PSInputAddr instead of PSInputEna. The idea is that if the user set
810 // PSInputAddr, the user wants to enable some bits after the compilation
811 // based on run-time states. Since we can't know what the final PSInputEna
812 // will look like, so we shouldn't do anything here and the user should take
813 // responsibility for the correct programming.
814 //
815 // Otherwise, the following restrictions apply:
816 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
817 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
818 // enabled too.
819 if (CallConv == CallingConv::AMDGPU_PS &&
820 ((Info->getPSInputAddr() & 0x7F) == 0 ||
821 ((Info->getPSInputAddr() & 0xF) == 0 && Info->isPSInputAllocated(11)))) {
822 CCInfo.AllocateReg(AMDGPU::VGPR0);
823 CCInfo.AllocateReg(AMDGPU::VGPR1);
824 Info->markPSInputAllocated(0);
825 Info->PSInputEna |= 1;
826 }
827
828 if (!AMDGPU::isShader(CallConv)) {
829 assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX())((Info->hasWorkGroupIDX() && Info->hasWorkItemIDX
()) ? static_cast<void> (0) : __assert_fail ("Info->hasWorkGroupIDX() && Info->hasWorkItemIDX()"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 829, __PRETTY_FUNCTION__))
;
830 } else {
831 assert(!Info->hasPrivateSegmentBuffer() && !Info->hasDispatchPtr() &&((!Info->hasPrivateSegmentBuffer() && !Info->hasDispatchPtr
() && !Info->hasKernargSegmentPtr() && !Info
->hasFlatScratchInit() && !Info->hasWorkGroupIDX
() && !Info->hasWorkGroupIDY() && !Info->
hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
!Info->hasWorkItemIDX() && !Info->hasWorkItemIDY
() && !Info->hasWorkItemIDZ()) ? static_cast<void
> (0) : __assert_fail ("!Info->hasPrivateSegmentBuffer() && !Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() && !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 836, __PRETTY_FUNCTION__))
832 !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() &&((!Info->hasPrivateSegmentBuffer() && !Info->hasDispatchPtr
() && !Info->hasKernargSegmentPtr() && !Info
->hasFlatScratchInit() && !Info->hasWorkGroupIDX
() && !Info->hasWorkGroupIDY() && !Info->
hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
!Info->hasWorkItemIDX() && !Info->hasWorkItemIDY
() && !Info->hasWorkItemIDZ()) ? static_cast<void
> (0) : __assert_fail ("!Info->hasPrivateSegmentBuffer() && !Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() && !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 836, __PRETTY_FUNCTION__))
833 !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&((!Info->hasPrivateSegmentBuffer() && !Info->hasDispatchPtr
() && !Info->hasKernargSegmentPtr() && !Info
->hasFlatScratchInit() && !Info->hasWorkGroupIDX
() && !Info->hasWorkGroupIDY() && !Info->
hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
!Info->hasWorkItemIDX() && !Info->hasWorkItemIDY
() && !Info->hasWorkItemIDZ()) ? static_cast<void
> (0) : __assert_fail ("!Info->hasPrivateSegmentBuffer() && !Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() && !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 836, __PRETTY_FUNCTION__))
834 !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&((!Info->hasPrivateSegmentBuffer() && !Info->hasDispatchPtr
() && !Info->hasKernargSegmentPtr() && !Info
->hasFlatScratchInit() && !Info->hasWorkGroupIDX
() && !Info->hasWorkGroupIDY() && !Info->
hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
!Info->hasWorkItemIDX() && !Info->hasWorkItemIDY
() && !Info->hasWorkItemIDZ()) ? static_cast<void
> (0) : __assert_fail ("!Info->hasPrivateSegmentBuffer() && !Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() && !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 836, __PRETTY_FUNCTION__))
835 !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() &&((!Info->hasPrivateSegmentBuffer() && !Info->hasDispatchPtr
() && !Info->hasKernargSegmentPtr() && !Info
->hasFlatScratchInit() && !Info->hasWorkGroupIDX
() && !Info->hasWorkGroupIDY() && !Info->
hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
!Info->hasWorkItemIDX() && !Info->hasWorkItemIDY
() && !Info->hasWorkItemIDZ()) ? static_cast<void
> (0) : __assert_fail ("!Info->hasPrivateSegmentBuffer() && !Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() && !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 836, __PRETTY_FUNCTION__))
836 !Info->hasWorkItemIDZ())((!Info->hasPrivateSegmentBuffer() && !Info->hasDispatchPtr
() && !Info->hasKernargSegmentPtr() && !Info
->hasFlatScratchInit() && !Info->hasWorkGroupIDX
() && !Info->hasWorkGroupIDY() && !Info->
hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&
!Info->hasWorkItemIDX() && !Info->hasWorkItemIDY
() && !Info->hasWorkItemIDZ()) ? static_cast<void
> (0) : __assert_fail ("!Info->hasPrivateSegmentBuffer() && !Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() && !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 836, __PRETTY_FUNCTION__))
;
837 }
838
839 // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
840 if (Info->hasPrivateSegmentBuffer()) {
841 unsigned PrivateSegmentBufferReg = Info->addPrivateSegmentBuffer(*TRI);
842 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SReg_128RegClass);
843 CCInfo.AllocateReg(PrivateSegmentBufferReg);
844 }
845
846 if (Info->hasDispatchPtr()) {
847 unsigned DispatchPtrReg = Info->addDispatchPtr(*TRI);
848 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
849 CCInfo.AllocateReg(DispatchPtrReg);
850 }
851
852 if (Info->hasQueuePtr()) {
853 unsigned QueuePtrReg = Info->addQueuePtr(*TRI);
854 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
855 CCInfo.AllocateReg(QueuePtrReg);
856 }
857
858 if (Info->hasKernargSegmentPtr()) {
859 unsigned InputPtrReg = Info->addKernargSegmentPtr(*TRI);
860 MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass);
861 CCInfo.AllocateReg(InputPtrReg);
862 }
863
864 if (Info->hasDispatchID()) {
865 unsigned DispatchIDReg = Info->addDispatchID(*TRI);
866 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
867 CCInfo.AllocateReg(DispatchIDReg);
868 }
869
870 if (Info->hasFlatScratchInit()) {
871 unsigned FlatScratchInitReg = Info->addFlatScratchInit(*TRI);
872 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
873 CCInfo.AllocateReg(FlatScratchInitReg);
874 }
875
876 if (!AMDGPU::isShader(CallConv))
877 analyzeFormalArgumentsCompute(CCInfo, Ins);
878 else
879 AnalyzeFormalArguments(CCInfo, Splits);
880
881 SmallVector<SDValue, 16> Chains;
882
883 for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
884
885 const ISD::InputArg &Arg = Ins[i];
886 if (Skipped[i]) {
887 InVals.push_back(DAG.getUNDEF(Arg.VT));
888 continue;
889 }
890
891 CCValAssign &VA = ArgLocs[ArgIdx++];
892 MVT VT = VA.getLocVT();
893
894 if (VA.isMemLoc()) {
895 VT = Ins[i].VT;
896 EVT MemVT = VA.getLocVT();
897 const unsigned Offset = Subtarget->getExplicitKernelArgOffset() +
898 VA.getLocMemOffset();
899 // The first 36 bytes of the input buffer contains information about
900 // thread group and global sizes.
901 SDValue Arg = LowerParameter(DAG, VT, MemVT, DL, Chain,
902 Offset, Ins[i].Flags.isSExt());
903 Chains.push_back(Arg.getValue(1));
904
905 auto *ParamTy =
906 dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
907 if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS &&
908 ParamTy && ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
909 // On SI local pointers are just offsets into LDS, so they are always
910 // less than 16-bits. On CI and newer they could potentially be
911 // real pointers, so we can't guarantee their size.
912 Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
913 DAG.getValueType(MVT::i16));
914 }
915
916 InVals.push_back(Arg);
917 Info->setABIArgOffset(Offset + MemVT.getStoreSize());
918 continue;
919 }
920 assert(VA.isRegLoc() && "Parameter must be in a register!")((VA.isRegLoc() && "Parameter must be in a register!"
) ? static_cast<void> (0) : __assert_fail ("VA.isRegLoc() && \"Parameter must be in a register!\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 920, __PRETTY_FUNCTION__))
;
921
922 unsigned Reg = VA.getLocReg();
923
924 if (VT == MVT::i64) {
925 // For now assume it is a pointer
926 Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0,
927 &AMDGPU::SGPR_64RegClass);
928 Reg = MF.addLiveIn(Reg, &AMDGPU::SGPR_64RegClass);
929 SDValue Copy = DAG.getCopyFromReg(Chain, DL, Reg, VT);
930 InVals.push_back(Copy);
931 continue;
932 }
933
934 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
935
936 Reg = MF.addLiveIn(Reg, RC);
937 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
938
939 if (Arg.VT.isVector()) {
940
941 // Build a vector from the registers
942 Type *ParamType = FType->getParamType(Arg.getOrigArgIndex());
943 unsigned NumElements = ParamType->getVectorNumElements();
944
945 SmallVector<SDValue, 4> Regs;
946 Regs.push_back(Val);
947 for (unsigned j = 1; j != NumElements; ++j) {
948 Reg = ArgLocs[ArgIdx++].getLocReg();
949 Reg = MF.addLiveIn(Reg, RC);
950
951 SDValue Copy = DAG.getCopyFromReg(Chain, DL, Reg, VT);
952 Regs.push_back(Copy);
953 }
954
955 // Fill up the missing vector elements
956 NumElements = Arg.VT.getVectorNumElements() - NumElements;
957 Regs.append(NumElements, DAG.getUNDEF(VT));
958
959 InVals.push_back(DAG.getBuildVector(Arg.VT, DL, Regs));
960 continue;
961 }
962
963 InVals.push_back(Val);
964 }
965
966 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
967 // these from the dispatch pointer.
968
969 // Start adding system SGPRs.
970 if (Info->hasWorkGroupIDX()) {
971 unsigned Reg = Info->addWorkGroupIDX();
972 MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
973 CCInfo.AllocateReg(Reg);
974 }
975
976 if (Info->hasWorkGroupIDY()) {
977 unsigned Reg = Info->addWorkGroupIDY();
978 MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
979 CCInfo.AllocateReg(Reg);
980 }
981
982 if (Info->hasWorkGroupIDZ()) {
983 unsigned Reg = Info->addWorkGroupIDZ();
984 MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
985 CCInfo.AllocateReg(Reg);
986 }
987
988 if (Info->hasWorkGroupInfo()) {
989 unsigned Reg = Info->addWorkGroupInfo();
990 MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
991 CCInfo.AllocateReg(Reg);
992 }
993
994 if (Info->hasPrivateSegmentWaveByteOffset()) {
995 // Scratch wave offset passed in system SGPR.
996 unsigned PrivateSegmentWaveByteOffsetReg;
997
998 if (AMDGPU::isShader(CallConv)) {
999 PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
1000 Info->setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
1001 } else
1002 PrivateSegmentWaveByteOffsetReg = Info->addPrivateSegmentWaveByteOffset();
1003
1004 MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
1005 CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
1006 }
1007
1008 // Now that we've figured out where the scratch register inputs are, see if
1009 // should reserve the arguments and use them directly.
1010 bool HasStackObjects = MF.getFrameInfo().hasStackObjects();
1011 // Record that we know we have non-spill stack objects so we don't need to
1012 // check all stack objects later.
1013 if (HasStackObjects)
1014 Info->setHasNonSpillStackObjects(true);
1015
1016 // Everything live out of a block is spilled with fast regalloc, so it's
1017 // almost certain that spilling will be required.
1018 if (getTargetMachine().getOptLevel() == CodeGenOpt::None)
1019 HasStackObjects = true;
1020
1021 if (ST.isAmdCodeObjectV2()) {
1022 if (HasStackObjects) {
1023 // If we have stack objects, we unquestionably need the private buffer
1024 // resource. For the Code Object V2 ABI, this will be the first 4 user
1025 // SGPR inputs. We can reserve those and use them directly.
1026
1027 unsigned PrivateSegmentBufferReg = TRI->getPreloadedValue(
1028 MF, SIRegisterInfo::PRIVATE_SEGMENT_BUFFER);
1029 Info->setScratchRSrcReg(PrivateSegmentBufferReg);
1030
1031 unsigned PrivateSegmentWaveByteOffsetReg = TRI->getPreloadedValue(
1032 MF, SIRegisterInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
1033 Info->setScratchWaveOffsetReg(PrivateSegmentWaveByteOffsetReg);
1034 } else {
1035 unsigned ReservedBufferReg
1036 = TRI->reservedPrivateSegmentBufferReg(MF);
1037 unsigned ReservedOffsetReg
1038 = TRI->reservedPrivateSegmentWaveByteOffsetReg(MF);
1039
1040 // We tentatively reserve the last registers (skipping the last two
1041 // which may contain VCC). After register allocation, we'll replace
1042 // these with the ones immediately after those which were really
1043 // allocated. In the prologue copies will be inserted from the argument
1044 // to these reserved registers.
1045 Info->setScratchRSrcReg(ReservedBufferReg);
1046 Info->setScratchWaveOffsetReg(ReservedOffsetReg);
1047 }
1048 } else {
1049 unsigned ReservedBufferReg = TRI->reservedPrivateSegmentBufferReg(MF);
1050
1051 // Without HSA, relocations are used for the scratch pointer and the
1052 // buffer resource setup is always inserted in the prologue. Scratch wave
1053 // offset is still in an input SGPR.
1054 Info->setScratchRSrcReg(ReservedBufferReg);
1055
1056 if (HasStackObjects) {
1057 unsigned ScratchWaveOffsetReg = TRI->getPreloadedValue(
1058 MF, SIRegisterInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
1059 Info->setScratchWaveOffsetReg(ScratchWaveOffsetReg);
1060 } else {
1061 unsigned ReservedOffsetReg
1062 = TRI->reservedPrivateSegmentWaveByteOffsetReg(MF);
1063 Info->setScratchWaveOffsetReg(ReservedOffsetReg);
1064 }
1065 }
1066
1067 if (Info->hasWorkItemIDX()) {
1068 unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_X);
1069 MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1070 CCInfo.AllocateReg(Reg);
1071 }
1072
1073 if (Info->hasWorkItemIDY()) {
1074 unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Y);
1075 MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1076 CCInfo.AllocateReg(Reg);
1077 }
1078
1079 if (Info->hasWorkItemIDZ()) {
1080 unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Z);
1081 MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1082 CCInfo.AllocateReg(Reg);
1083 }
1084
1085 if (Chains.empty())
1086 return Chain;
1087
1088 return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
1089}
1090
1091SDValue
1092SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
1093 bool isVarArg,
1094 const SmallVectorImpl<ISD::OutputArg> &Outs,
1095 const SmallVectorImpl<SDValue> &OutVals,
1096 const SDLoc &DL, SelectionDAG &DAG) const {
1097 MachineFunction &MF = DAG.getMachineFunction();
1098 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1099
1100 if (!AMDGPU::isShader(CallConv))
1101 return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
1102 OutVals, DL, DAG);
1103
1104 Info->setIfReturnsVoid(Outs.size() == 0);
1105
1106 SmallVector<ISD::OutputArg, 48> Splits;
1107 SmallVector<SDValue, 48> SplitVals;
1108
1109 // Split vectors into their elements.
1110 for (unsigned i = 0, e = Outs.size(); i != e; ++i) {
1111 const ISD::OutputArg &Out = Outs[i];
1112
1113 if (Out.VT.isVector()) {
1114 MVT VT = Out.VT.getVectorElementType();
1115 ISD::OutputArg NewOut = Out;
1116 NewOut.Flags.setSplit();
1117 NewOut.VT = VT;
1118
1119 // We want the original number of vector elements here, e.g.
1120 // three or five, not four or eight.
1121 unsigned NumElements = Out.ArgVT.getVectorNumElements();
1122
1123 for (unsigned j = 0; j != NumElements; ++j) {
1124 SDValue Elem = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, OutVals[i],
1125 DAG.getConstant(j, DL, MVT::i32));
1126 SplitVals.push_back(Elem);
1127 Splits.push_back(NewOut);
1128 NewOut.PartOffset += NewOut.VT.getStoreSize();
1129 }
1130 } else {
1131 SplitVals.push_back(OutVals[i]);
1132 Splits.push_back(Out);
1133 }
1134 }
1135
1136 // CCValAssign - represent the assignment of the return value to a location.
1137 SmallVector<CCValAssign, 48> RVLocs;
1138
1139 // CCState - Info about the registers and stack slots.
1140 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
1141 *DAG.getContext());
1142
1143 // Analyze outgoing return values.
1144 AnalyzeReturn(CCInfo, Splits);
1145
1146 SDValue Flag;
1147 SmallVector<SDValue, 48> RetOps;
1148 RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
1149
1150 // Copy the result values into the output registers.
1151 for (unsigned i = 0, realRVLocIdx = 0;
1152 i != RVLocs.size();
1153 ++i, ++realRVLocIdx) {
1154 CCValAssign &VA = RVLocs[i];
1155 assert(VA.isRegLoc() && "Can only return in registers!")((VA.isRegLoc() && "Can only return in registers!") ?
static_cast<void> (0) : __assert_fail ("VA.isRegLoc() && \"Can only return in registers!\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1155, __PRETTY_FUNCTION__))
;
1156
1157 SDValue Arg = SplitVals[realRVLocIdx];
1158
1159 // Copied from other backends.
1160 switch (VA.getLocInfo()) {
1161 default: llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1161)
;
1162 case CCValAssign::Full:
1163 break;
1164 case CCValAssign::BCvt:
1165 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
1166 break;
1167 }
1168
1169 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
1170 Flag = Chain.getValue(1);
1171 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
1172 }
1173
1174 // Update chain and glue.
1175 RetOps[0] = Chain;
1176 if (Flag.getNode())
1177 RetOps.push_back(Flag);
1178
1179 unsigned Opc = Info->returnsVoid() ? AMDGPUISD::ENDPGM : AMDGPUISD::RETURN;
1180 return DAG.getNode(Opc, DL, MVT::Other, RetOps);
1181}
1182
1183unsigned SITargetLowering::getRegisterByName(const char* RegName, EVT VT,
1184 SelectionDAG &DAG) const {
1185 unsigned Reg = StringSwitch<unsigned>(RegName)
1186 .Case("m0", AMDGPU::M0)
1187 .Case("exec", AMDGPU::EXEC)
1188 .Case("exec_lo", AMDGPU::EXEC_LO)
1189 .Case("exec_hi", AMDGPU::EXEC_HI)
1190 .Case("flat_scratch", AMDGPU::FLAT_SCR)
1191 .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
1192 .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
1193 .Default(AMDGPU::NoRegister);
1194
1195 if (Reg == AMDGPU::NoRegister) {
1196 report_fatal_error(Twine("invalid register name \""
1197 + StringRef(RegName) + "\"."));
1198
1199 }
1200
1201 if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS &&
1202 Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
1203 report_fatal_error(Twine("invalid register \""
1204 + StringRef(RegName) + "\" for subtarget."));
1205 }
1206
1207 switch (Reg) {
1208 case AMDGPU::M0:
1209 case AMDGPU::EXEC_LO:
1210 case AMDGPU::EXEC_HI:
1211 case AMDGPU::FLAT_SCR_LO:
1212 case AMDGPU::FLAT_SCR_HI:
1213 if (VT.getSizeInBits() == 32)
1214 return Reg;
1215 break;
1216 case AMDGPU::EXEC:
1217 case AMDGPU::FLAT_SCR:
1218 if (VT.getSizeInBits() == 64)
1219 return Reg;
1220 break;
1221 default:
1222 llvm_unreachable("missing register type checking")::llvm::llvm_unreachable_internal("missing register type checking"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1222)
;
1223 }
1224
1225 report_fatal_error(Twine("invalid type for register \""
1226 + StringRef(RegName) + "\"."));
1227}
1228
1229// If kill is not the last instruction, split the block so kill is always a
1230// proper terminator.
1231MachineBasicBlock *SITargetLowering::splitKillBlock(MachineInstr &MI,
1232 MachineBasicBlock *BB) const {
1233 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
1234
1235 MachineBasicBlock::iterator SplitPoint(&MI);
1236 ++SplitPoint;
1237
1238 if (SplitPoint == BB->end()) {
1239 // Don't bother with a new block.
1240 MI.setDesc(TII->get(AMDGPU::SI_KILL_TERMINATOR));
1241 return BB;
1242 }
1243
1244 MachineFunction *MF = BB->getParent();
1245 MachineBasicBlock *SplitBB
1246 = MF->CreateMachineBasicBlock(BB->getBasicBlock());
1247
1248 MF->insert(++MachineFunction::iterator(BB), SplitBB);
1249 SplitBB->splice(SplitBB->begin(), BB, SplitPoint, BB->end());
1250
1251 SplitBB->transferSuccessorsAndUpdatePHIs(BB);
1252 BB->addSuccessor(SplitBB);
1253
1254 MI.setDesc(TII->get(AMDGPU::SI_KILL_TERMINATOR));
1255 return SplitBB;
1256}
1257
1258// Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the
1259// wavefront. If the value is uniform and just happens to be in a VGPR, this
1260// will only do one iteration. In the worst case, this will loop 64 times.
1261//
1262// TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value.
1263static MachineBasicBlock::iterator emitLoadM0FromVGPRLoop(
1264 const SIInstrInfo *TII,
1265 MachineRegisterInfo &MRI,
1266 MachineBasicBlock &OrigBB,
1267 MachineBasicBlock &LoopBB,
1268 const DebugLoc &DL,
1269 const MachineOperand &IdxReg,
1270 unsigned InitReg,
1271 unsigned ResultReg,
1272 unsigned PhiReg,
1273 unsigned InitSaveExecReg,
1274 int Offset,
1275 bool UseGPRIdxMode) {
1276 MachineBasicBlock::iterator I = LoopBB.begin();
1277
1278 unsigned PhiExec = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
1279 unsigned NewExec = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
1280 unsigned CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
1281 unsigned CondReg = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
1282
1283 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg)
1284 .addReg(InitReg)
1285 .addMBB(&OrigBB)
1286 .addReg(ResultReg)
1287 .addMBB(&LoopBB);
1288
1289 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec)
1290 .addReg(InitSaveExecReg)
1291 .addMBB(&OrigBB)
1292 .addReg(NewExec)
1293 .addMBB(&LoopBB);
1294
1295 // Read the next variant <- also loop target.
1296 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
1297 .addReg(IdxReg.getReg(), getUndefRegState(IdxReg.isUndef()));
1298
1299 // Compare the just read M0 value to all possible Idx values.
1300 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
1301 .addReg(CurrentIdxReg)
1302 .addReg(IdxReg.getReg(), 0, IdxReg.getSubReg());
1303
1304 if (UseGPRIdxMode) {
1305 unsigned IdxReg;
1306 if (Offset == 0) {
1307 IdxReg = CurrentIdxReg;
1308 } else {
1309 IdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
1310 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), IdxReg)
1311 .addReg(CurrentIdxReg, RegState::Kill)
1312 .addImm(Offset);
1313 }
1314
1315 MachineInstr *SetIdx =
1316 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_IDX))
1317 .addReg(IdxReg, RegState::Kill);
1318 SetIdx->getOperand(2).setIsUndef();
1319 } else {
1320 // Move index from VCC into M0
1321 if (Offset == 0) {
1322 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
1323 .addReg(CurrentIdxReg, RegState::Kill);
1324 } else {
1325 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
1326 .addReg(CurrentIdxReg, RegState::Kill)
1327 .addImm(Offset);
1328 }
1329 }
1330
1331 // Update EXEC, save the original EXEC value to VCC.
1332 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_AND_SAVEEXEC_B64), NewExec)
1333 .addReg(CondReg, RegState::Kill);
1334
1335 MRI.setSimpleHint(NewExec, CondReg);
1336
1337 // Update EXEC, switch all done bits to 0 and all todo bits to 1.
1338 MachineInstr *InsertPt =
1339 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_XOR_B64), AMDGPU::EXEC)
1340 .addReg(AMDGPU::EXEC)
1341 .addReg(NewExec);
1342
1343 // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
1344 // s_cbranch_scc0?
1345
1346 // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
1347 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
1348 .addMBB(&LoopBB);
1349
1350 return InsertPt->getIterator();
1351}
1352
1353// This has slightly sub-optimal regalloc when the source vector is killed by
1354// the read. The register allocator does not understand that the kill is
1355// per-workitem, so is kept alive for the whole loop so we end up not re-using a
1356// subregister from it, using 1 more VGPR than necessary. This was saved when
1357// this was expanded after register allocation.
1358static MachineBasicBlock::iterator loadM0FromVGPR(const SIInstrInfo *TII,
1359 MachineBasicBlock &MBB,
1360 MachineInstr &MI,
1361 unsigned InitResultReg,
1362 unsigned PhiReg,
1363 int Offset,
1364 bool UseGPRIdxMode) {
1365 MachineFunction *MF = MBB.getParent();
1366 MachineRegisterInfo &MRI = MF->getRegInfo();
1367 const DebugLoc &DL = MI.getDebugLoc();
1368 MachineBasicBlock::iterator I(&MI);
1369
1370 unsigned DstReg = MI.getOperand(0).getReg();
1371 unsigned SaveExec = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
1372 unsigned TmpExec = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass);
1373
1374 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec);
1375
1376 // Save the EXEC mask
1377 BuildMI(MBB, I, DL, TII->get(AMDGPU::S_MOV_B64), SaveExec)
1378 .addReg(AMDGPU::EXEC);
1379
1380 // To insert the loop we need to split the block. Move everything after this
1381 // point to a new block, and insert a new empty block between the two.
1382 MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
1383 MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
1384 MachineFunction::iterator MBBI(MBB);
1385 ++MBBI;
1386
1387 MF->insert(MBBI, LoopBB);
1388 MF->insert(MBBI, RemainderBB);
1389
1390 LoopBB->addSuccessor(LoopBB);
1391 LoopBB->addSuccessor(RemainderBB);
1392
1393 // Move the rest of the block into a new block.
1394 RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
1395 RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());
1396
1397 MBB.addSuccessor(LoopBB);
1398
1399 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
1400
1401 auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx,
1402 InitResultReg, DstReg, PhiReg, TmpExec,
1403 Offset, UseGPRIdxMode);
1404
1405 MachineBasicBlock::iterator First = RemainderBB->begin();
1406 BuildMI(*RemainderBB, First, DL, TII->get(AMDGPU::S_MOV_B64), AMDGPU::EXEC)
1407 .addReg(SaveExec);
1408
1409 return InsPt;
1410}
1411
1412// Returns subreg index, offset
1413static std::pair<unsigned, int>
1414computeIndirectRegAndOffset(const SIRegisterInfo &TRI,
1415 const TargetRegisterClass *SuperRC,
1416 unsigned VecReg,
1417 int Offset) {
1418 int NumElts = SuperRC->getSize() / 4;
1419
1420 // Skip out of bounds offsets, or else we would end up using an undefined
1421 // register.
1422 if (Offset >= NumElts || Offset < 0)
1423 return std::make_pair(AMDGPU::sub0, Offset);
1424
1425 return std::make_pair(AMDGPU::sub0 + Offset, 0);
1426}
1427
1428// Return true if the index is an SGPR and was set.
1429static bool setM0ToIndexFromSGPR(const SIInstrInfo *TII,
1430 MachineRegisterInfo &MRI,
1431 MachineInstr &MI,
1432 int Offset,
1433 bool UseGPRIdxMode,
1434 bool IsIndirectSrc) {
1435 MachineBasicBlock *MBB = MI.getParent();
1436 const DebugLoc &DL = MI.getDebugLoc();
1437 MachineBasicBlock::iterator I(&MI);
1438
1439 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
1440 const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
1441
1442 assert(Idx->getReg() != AMDGPU::NoRegister)((Idx->getReg() != AMDGPU::NoRegister) ? static_cast<void
> (0) : __assert_fail ("Idx->getReg() != AMDGPU::NoRegister"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1442, __PRETTY_FUNCTION__))
;
1443
1444 if (!TII->getRegisterInfo().isSGPRClass(IdxRC))
1445 return false;
1446
1447 if (UseGPRIdxMode) {
1448 unsigned IdxMode = IsIndirectSrc ?
1449 VGPRIndexMode::SRC0_ENABLE : VGPRIndexMode::DST_ENABLE;
1450 if (Offset == 0) {
1451 MachineInstr *SetOn =
1452 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
1453 .addOperand(*Idx)
1454 .addImm(IdxMode);
1455
1456 SetOn->getOperand(3).setIsUndef();
1457 } else {
1458 unsigned Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
1459 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp)
1460 .addOperand(*Idx)
1461 .addImm(Offset);
1462 MachineInstr *SetOn =
1463 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
1464 .addReg(Tmp, RegState::Kill)
1465 .addImm(IdxMode);
1466
1467 SetOn->getOperand(3).setIsUndef();
1468 }
1469
1470 return true;
1471 }
1472
1473 if (Offset == 0) {
1474 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
1475 .addOperand(*Idx);
1476 } else {
1477 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
1478 .addOperand(*Idx)
1479 .addImm(Offset);
1480 }
1481
1482 return true;
1483}
1484
1485// Control flow needs to be inserted if indexing with a VGPR.
1486static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI,
1487 MachineBasicBlock &MBB,
1488 const SISubtarget &ST) {
1489 const SIInstrInfo *TII = ST.getInstrInfo();
1490 const SIRegisterInfo &TRI = TII->getRegisterInfo();
1491 MachineFunction *MF = MBB.getParent();
1492 MachineRegisterInfo &MRI = MF->getRegInfo();
1493
1494 unsigned Dst = MI.getOperand(0).getReg();
1495 unsigned SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg();
1496 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
1497
1498 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg);
1499
1500 unsigned SubReg;
1501 std::tie(SubReg, Offset)
1502 = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset);
1503
1504 bool UseGPRIdxMode = ST.hasVGPRIndexMode() && EnableVGPRIndexMode;
1505
1506 if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, true)) {
1507 MachineBasicBlock::iterator I(&MI);
1508 const DebugLoc &DL = MI.getDebugLoc();
1509
1510 if (UseGPRIdxMode) {
1511 // TODO: Look at the uses to avoid the copy. This may require rescheduling
1512 // to avoid interfering with other uses, so probably requires a new
1513 // optimization pass.
1514 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
1515 .addReg(SrcReg, RegState::Undef, SubReg)
1516 .addReg(SrcReg, RegState::Implicit)
1517 .addReg(AMDGPU::M0, RegState::Implicit);
1518 BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
1519 } else {
1520 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
1521 .addReg(SrcReg, RegState::Undef, SubReg)
1522 .addReg(SrcReg, RegState::Implicit);
1523 }
1524
1525 MI.eraseFromParent();
1526
1527 return &MBB;
1528 }
1529
1530
1531 const DebugLoc &DL = MI.getDebugLoc();
1532 MachineBasicBlock::iterator I(&MI);
1533
1534 unsigned PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
1535 unsigned InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
1536
1537 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg);
1538
1539 if (UseGPRIdxMode) {
1540 MachineInstr *SetOn = BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
1541 .addImm(0) // Reset inside loop.
1542 .addImm(VGPRIndexMode::SRC0_ENABLE);
1543 SetOn->getOperand(3).setIsUndef();
1544
1545 // Disable again after the loop.
1546 BuildMI(MBB, std::next(I), DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
1547 }
1548
1549 auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg, Offset, UseGPRIdxMode);
1550 MachineBasicBlock *LoopBB = InsPt->getParent();
1551
1552 if (UseGPRIdxMode) {
1553 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
1554 .addReg(SrcReg, RegState::Undef, SubReg)
1555 .addReg(SrcReg, RegState::Implicit)
1556 .addReg(AMDGPU::M0, RegState::Implicit);
1557 } else {
1558 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
1559 .addReg(SrcReg, RegState::Undef, SubReg)
1560 .addReg(SrcReg, RegState::Implicit);
1561 }
1562
1563 MI.eraseFromParent();
1564
1565 return LoopBB;
1566}
1567
1568static unsigned getMOVRELDPseudo(const TargetRegisterClass *VecRC) {
1569 switch (VecRC->getSize()) {
1570 case 4:
1571 return AMDGPU::V_MOVRELD_B32_V1;
1572 case 8:
1573 return AMDGPU::V_MOVRELD_B32_V2;
1574 case 16:
1575 return AMDGPU::V_MOVRELD_B32_V4;
1576 case 32:
1577 return AMDGPU::V_MOVRELD_B32_V8;
1578 case 64:
1579 return AMDGPU::V_MOVRELD_B32_V16;
1580 default:
1581 llvm_unreachable("unsupported size for MOVRELD pseudos")::llvm::llvm_unreachable_internal("unsupported size for MOVRELD pseudos"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1581)
;
1582 }
1583}
1584
1585static MachineBasicBlock *emitIndirectDst(MachineInstr &MI,
1586 MachineBasicBlock &MBB,
1587 const SISubtarget &ST) {
1588 const SIInstrInfo *TII = ST.getInstrInfo();
1589 const SIRegisterInfo &TRI = TII->getRegisterInfo();
1590 MachineFunction *MF = MBB.getParent();
1591 MachineRegisterInfo &MRI = MF->getRegInfo();
1592
1593 unsigned Dst = MI.getOperand(0).getReg();
1594 const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
1595 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
1596 const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
1597 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
1598 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());
1599
1600 // This can be an immediate, but will be folded later.
1601 assert(Val->getReg())((Val->getReg()) ? static_cast<void> (0) : __assert_fail
("Val->getReg()", "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1601, __PRETTY_FUNCTION__))
;
1602
1603 unsigned SubReg;
1604 std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC,
1605 SrcVec->getReg(),
1606 Offset);
1607 bool UseGPRIdxMode = ST.hasVGPRIndexMode() && EnableVGPRIndexMode;
1608
1609 if (Idx->getReg() == AMDGPU::NoRegister) {
1610 MachineBasicBlock::iterator I(&MI);
1611 const DebugLoc &DL = MI.getDebugLoc();
1612
1613 assert(Offset == 0)((Offset == 0) ? static_cast<void> (0) : __assert_fail (
"Offset == 0", "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1613, __PRETTY_FUNCTION__))
;
1614
1615 BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst)
1616 .addOperand(*SrcVec)
1617 .addOperand(*Val)
1618 .addImm(SubReg);
1619
1620 MI.eraseFromParent();
1621 return &MBB;
1622 }
1623
1624 if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, false)) {
1625 MachineBasicBlock::iterator I(&MI);
1626 const DebugLoc &DL = MI.getDebugLoc();
1627
1628 if (UseGPRIdxMode) {
1629 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_indirect))
1630 .addReg(SrcVec->getReg(), RegState::Undef, SubReg) // vdst
1631 .addOperand(*Val)
1632 .addReg(Dst, RegState::ImplicitDefine)
1633 .addReg(SrcVec->getReg(), RegState::Implicit)
1634 .addReg(AMDGPU::M0, RegState::Implicit);
1635
1636 BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
1637 } else {
1638 const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(VecRC));
1639
1640 BuildMI(MBB, I, DL, MovRelDesc)
1641 .addReg(Dst, RegState::Define)
1642 .addReg(SrcVec->getReg())
1643 .addOperand(*Val)
1644 .addImm(SubReg - AMDGPU::sub0);
1645 }
1646
1647 MI.eraseFromParent();
1648 return &MBB;
1649 }
1650
1651 if (Val->isReg())
1652 MRI.clearKillFlags(Val->getReg());
1653
1654 const DebugLoc &DL = MI.getDebugLoc();
1655
1656 if (UseGPRIdxMode) {
1657 MachineBasicBlock::iterator I(&MI);
1658
1659 MachineInstr *SetOn = BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
1660 .addImm(0) // Reset inside loop.
1661 .addImm(VGPRIndexMode::DST_ENABLE);
1662 SetOn->getOperand(3).setIsUndef();
1663
1664 // Disable again after the loop.
1665 BuildMI(MBB, std::next(I), DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
1666 }
1667
1668 unsigned PhiReg = MRI.createVirtualRegister(VecRC);
1669
1670 auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg,
1671 Offset, UseGPRIdxMode);
1672 MachineBasicBlock *LoopBB = InsPt->getParent();
1673
1674 if (UseGPRIdxMode) {
1675 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_indirect))
1676 .addReg(PhiReg, RegState::Undef, SubReg) // vdst
1677 .addOperand(*Val) // src0
1678 .addReg(Dst, RegState::ImplicitDefine)
1679 .addReg(PhiReg, RegState::Implicit)
1680 .addReg(AMDGPU::M0, RegState::Implicit);
1681 } else {
1682 const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(VecRC));
1683
1684 BuildMI(*LoopBB, InsPt, DL, MovRelDesc)
1685 .addReg(Dst, RegState::Define)
1686 .addReg(PhiReg)
1687 .addOperand(*Val)
1688 .addImm(SubReg - AMDGPU::sub0);
1689 }
1690
1691 MI.eraseFromParent();
1692
1693 return LoopBB;
1694}
1695
1696MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
1697 MachineInstr &MI, MachineBasicBlock *BB) const {
1698
1699 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
1700 MachineFunction *MF = BB->getParent();
1701 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
1702
1703 if (TII->isMIMG(MI)) {
1704 if (!MI.memoperands_empty())
1705 return BB;
1706 // Add a memoperand for mimg instructions so that they aren't assumed to
1707 // be ordered memory instuctions.
1708
1709 MachinePointerInfo PtrInfo(MFI->getImagePSV());
1710 MachineMemOperand::Flags Flags = MachineMemOperand::MODereferenceable;
1711 if (MI.mayStore())
1712 Flags |= MachineMemOperand::MOStore;
1713
1714 if (MI.mayLoad())
1715 Flags |= MachineMemOperand::MOLoad;
1716
1717 auto MMO = MF->getMachineMemOperand(PtrInfo, Flags, 0, 0);
1718 MI.addMemOperand(*MF, MMO);
1719 return BB;
1720 }
1721
1722 switch (MI.getOpcode()) {
1723 case AMDGPU::SI_INIT_M0: {
1724 BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
1725 TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
1726 .addOperand(MI.getOperand(0));
1727 MI.eraseFromParent();
1728 return BB;
1729 }
1730 case AMDGPU::GET_GROUPSTATICSIZE: {
1731 DebugLoc DL = MI.getDebugLoc();
1732 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
1733 .addOperand(MI.getOperand(0))
1734 .addImm(MFI->getLDSSize());
1735 MI.eraseFromParent();
1736 return BB;
1737 }
1738 case AMDGPU::SI_INDIRECT_SRC_V1:
1739 case AMDGPU::SI_INDIRECT_SRC_V2:
1740 case AMDGPU::SI_INDIRECT_SRC_V4:
1741 case AMDGPU::SI_INDIRECT_SRC_V8:
1742 case AMDGPU::SI_INDIRECT_SRC_V16:
1743 return emitIndirectSrc(MI, *BB, *getSubtarget());
1744 case AMDGPU::SI_INDIRECT_DST_V1:
1745 case AMDGPU::SI_INDIRECT_DST_V2:
1746 case AMDGPU::SI_INDIRECT_DST_V4:
1747 case AMDGPU::SI_INDIRECT_DST_V8:
1748 case AMDGPU::SI_INDIRECT_DST_V16:
1749 return emitIndirectDst(MI, *BB, *getSubtarget());
1750 case AMDGPU::SI_KILL:
1751 return splitKillBlock(MI, BB);
1752 case AMDGPU::V_CNDMASK_B64_PSEUDO: {
1753 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
1754
1755 unsigned Dst = MI.getOperand(0).getReg();
1756 unsigned Src0 = MI.getOperand(1).getReg();
1757 unsigned Src1 = MI.getOperand(2).getReg();
1758 const DebugLoc &DL = MI.getDebugLoc();
1759 unsigned SrcCond = MI.getOperand(3).getReg();
1760
1761 unsigned DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
1762 unsigned DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
1763
1764 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
1765 .addReg(Src0, 0, AMDGPU::sub0)
1766 .addReg(Src1, 0, AMDGPU::sub0)
1767 .addReg(SrcCond);
1768 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
1769 .addReg(Src0, 0, AMDGPU::sub1)
1770 .addReg(Src1, 0, AMDGPU::sub1)
1771 .addReg(SrcCond);
1772
1773 BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst)
1774 .addReg(DstLo)
1775 .addImm(AMDGPU::sub0)
1776 .addReg(DstHi)
1777 .addImm(AMDGPU::sub1);
1778 MI.eraseFromParent();
1779 return BB;
1780 }
1781 case AMDGPU::SI_BR_UNDEF: {
1782 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
1783 const DebugLoc &DL = MI.getDebugLoc();
1784 MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
1785 .addOperand(MI.getOperand(0));
1786 Br->getOperand(1).setIsUndef(true); // read undef SCC
1787 MI.eraseFromParent();
1788 return BB;
1789 }
1790 default:
1791 return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
1792 }
1793}
1794
1795bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
1796 // This currently forces unfolding various combinations of fsub into fma with
1797 // free fneg'd operands. As long as we have fast FMA (controlled by
1798 // isFMAFasterThanFMulAndFAdd), we should perform these.
1799
1800 // When fma is quarter rate, for f64 where add / sub are at best half rate,
1801 // most of these combines appear to be cycle neutral but save on instruction
1802 // count / code size.
1803 return true;
1804}
1805
1806EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
1807 EVT VT) const {
1808 if (!VT.isVector()) {
1809 return MVT::i1;
1810 }
1811 return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
1812}
1813
1814MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const {
1815 // TODO: Should i16 be used always if legal? For now it would force VALU
1816 // shifts.
1817 return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
1818}
1819
1820// Answering this is somewhat tricky and depends on the specific device which
1821// have different rates for fma or all f64 operations.
1822//
1823// v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
1824// regardless of which device (although the number of cycles differs between
1825// devices), so it is always profitable for f64.
1826//
1827// v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
1828// only on full rate devices. Normally, we should prefer selecting v_mad_f32
1829// which we can always do even without fused FP ops since it returns the same
1830// result as the separate operations and since it is always full
1831// rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
1832// however does not support denormals, so we do report fma as faster if we have
1833// a fast fma device and require denormals.
1834//
1835bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
1836 VT = VT.getScalarType();
1837
1838 if (!VT.isSimple())
1839 return false;
1840
1841 switch (VT.getSimpleVT().SimpleTy) {
1842 case MVT::f32:
1843 // This is as fast on some subtargets. However, we always have full rate f32
1844 // mad available which returns the same result as the separate operations
1845 // which we should prefer over fma. We can't use this if we want to support
1846 // denormals, so only report this in these cases.
1847 return Subtarget->hasFP32Denormals() && Subtarget->hasFastFMAF32();
1848 case MVT::f64:
1849 return true;
1850 case MVT::f16:
1851 return Subtarget->has16BitInsts() && Subtarget->hasFP16Denormals();
1852 default:
1853 break;
1854 }
1855
1856 return false;
1857}
1858
1859//===----------------------------------------------------------------------===//
1860// Custom DAG Lowering Operations
1861//===----------------------------------------------------------------------===//
1862
1863SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
1864 switch (Op.getOpcode()) {
1865 default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
1866 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
1867 case ISD::LOAD: {
1868 SDValue Result = LowerLOAD(Op, DAG);
1869 assert((!Result.getNode() ||(((!Result.getNode() || Result.getNode()->getNumValues() ==
2) && "Load should return a value and a chain") ? static_cast
<void> (0) : __assert_fail ("(!Result.getNode() || Result.getNode()->getNumValues() == 2) && \"Load should return a value and a chain\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1871, __PRETTY_FUNCTION__))
1870 Result.getNode()->getNumValues() == 2) &&(((!Result.getNode() || Result.getNode()->getNumValues() ==
2) && "Load should return a value and a chain") ? static_cast
<void> (0) : __assert_fail ("(!Result.getNode() || Result.getNode()->getNumValues() == 2) && \"Load should return a value and a chain\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1871, __PRETTY_FUNCTION__))
1871 "Load should return a value and a chain")(((!Result.getNode() || Result.getNode()->getNumValues() ==
2) && "Load should return a value and a chain") ? static_cast
<void> (0) : __assert_fail ("(!Result.getNode() || Result.getNode()->getNumValues() == 2) && \"Load should return a value and a chain\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1871, __PRETTY_FUNCTION__))
;
1872 return Result;
1873 }
1874
1875 case ISD::FSIN:
1876 case ISD::FCOS:
1877 return LowerTrig(Op, DAG);
1878 case ISD::SELECT: return LowerSELECT(Op, DAG);
1879 case ISD::FDIV: return LowerFDIV(Op, DAG);
1880 case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
1881 case ISD::STORE: return LowerSTORE(Op, DAG);
1882 case ISD::GlobalAddress: {
1883 MachineFunction &MF = DAG.getMachineFunction();
1884 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1885 return LowerGlobalAddress(MFI, Op, DAG);
1886 }
1887 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
1888 case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
1889 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
1890 case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
1891 case ISD::TRAP: return lowerTRAP(Op, DAG);
1892 case ISD::FP_ROUND:
1893 return lowerFP_ROUND(Op, DAG);
1894 }
1895 return SDValue();
1896}
1897
1898/// \brief Helper function for LowerBRCOND
1899static SDNode *findUser(SDValue Value, unsigned Opcode) {
1900
1901 SDNode *Parent = Value.getNode();
1902 for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
1903 I != E; ++I) {
1904
1905 if (I.getUse().get() != Value)
1906 continue;
1907
1908 if (I->getOpcode() == Opcode)
1909 return *I;
1910 }
1911 return nullptr;
1912}
1913
1914bool SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
1915 if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
1916 switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) {
1917 case AMDGPUIntrinsic::amdgcn_if:
1918 case AMDGPUIntrinsic::amdgcn_else:
1919 case AMDGPUIntrinsic::amdgcn_end_cf:
1920 case AMDGPUIntrinsic::amdgcn_loop:
1921 return true;
1922 default:
1923 return false;
1924 }
1925 }
1926
1927 if (Intr->getOpcode() == ISD::INTRINSIC_WO_CHAIN) {
1928 switch (cast<ConstantSDNode>(Intr->getOperand(0))->getZExtValue()) {
1929 case AMDGPUIntrinsic::amdgcn_break:
1930 case AMDGPUIntrinsic::amdgcn_if_break:
1931 case AMDGPUIntrinsic::amdgcn_else_break:
1932 return true;
1933 default:
1934 return false;
1935 }
1936 }
1937
1938 return false;
1939}
1940
1941void SITargetLowering::createDebuggerPrologueStackObjects(
1942 MachineFunction &MF) const {
1943 // Create stack objects that are used for emitting debugger prologue.
1944 //
1945 // Debugger prologue writes work group IDs and work item IDs to scratch memory
1946 // at fixed location in the following format:
1947 // offset 0: work group ID x
1948 // offset 4: work group ID y
1949 // offset 8: work group ID z
1950 // offset 16: work item ID x
1951 // offset 20: work item ID y
1952 // offset 24: work item ID z
1953 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1954 int ObjectIdx = 0;
1955
1956 // For each dimension:
1957 for (unsigned i = 0; i < 3; ++i) {
1958 // Create fixed stack object for work group ID.
1959 ObjectIdx = MF.getFrameInfo().CreateFixedObject(4, i * 4, true);
1960 Info->setDebuggerWorkGroupIDStackObjectIndex(i, ObjectIdx);
1961 // Create fixed stack object for work item ID.
1962 ObjectIdx = MF.getFrameInfo().CreateFixedObject(4, i * 4 + 16, true);
1963 Info->setDebuggerWorkItemIDStackObjectIndex(i, ObjectIdx);
1964 }
1965}
1966
1967bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const {
1968 const Triple &TT = getTargetMachine().getTargetTriple();
1969 return GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS &&
1970 AMDGPU::shouldEmitConstantsToTextSection(TT);
1971}
1972
1973bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const {
1974 return (GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
1975 GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS) &&
1976 !shouldEmitFixup(GV) &&
1977 !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
1978}
1979
1980bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const {
1981 return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV);
1982}
1983
1984/// This transforms the control flow intrinsics to get the branch destination as
1985/// last parameter, also switches branch target with BR if the need arise
1986SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
1987 SelectionDAG &DAG) const {
1988
1989 SDLoc DL(BRCOND);
1990
1991 SDNode *Intr = BRCOND.getOperand(1).getNode();
1992 SDValue Target = BRCOND.getOperand(2);
1993 SDNode *BR = nullptr;
1994 SDNode *SetCC = nullptr;
1995
1996 if (Intr->getOpcode() == ISD::SETCC) {
1997 // As long as we negate the condition everything is fine
1998 SetCC = Intr;
1999 Intr = SetCC->getOperand(0).getNode();
2000
2001 } else {
2002 // Get the target from BR if we don't negate the condition
2003 BR = findUser(BRCOND, ISD::BR);
2004 Target = BR->getOperand(1);
2005 }
2006
2007 // FIXME: This changes the types of the intrinsics instead of introducing new
2008 // nodes with the correct types.
2009 // e.g. llvm.amdgcn.loop
2010
2011 // eg: i1,ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3
2012 // => t9: ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3, BasicBlock:ch<bb1 0x7fee5286d088>
2013
2014 if (!isCFIntrinsic(Intr)) {
2015 // This is a uniform branch so we don't need to legalize.
2016 return BRCOND;
2017 }
2018
2019 bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID ||
2020 Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN;
2021
2022 assert(!SetCC ||((!SetCC || (SetCC->getConstantOperandVal(1) == 1 &&
cast<CondCodeSDNode>(SetCC->getOperand(2).getNode()
)->get() == ISD::SETNE)) ? static_cast<void> (0) : __assert_fail
("!SetCC || (SetCC->getConstantOperandVal(1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == ISD::SETNE)"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2025, __PRETTY_FUNCTION__))
2023 (SetCC->getConstantOperandVal(1) == 1 &&((!SetCC || (SetCC->getConstantOperandVal(1) == 1 &&
cast<CondCodeSDNode>(SetCC->getOperand(2).getNode()
)->get() == ISD::SETNE)) ? static_cast<void> (0) : __assert_fail
("!SetCC || (SetCC->getConstantOperandVal(1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == ISD::SETNE)"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2025, __PRETTY_FUNCTION__))
2024 cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==((!SetCC || (SetCC->getConstantOperandVal(1) == 1 &&
cast<CondCodeSDNode>(SetCC->getOperand(2).getNode()
)->get() == ISD::SETNE)) ? static_cast<void> (0) : __assert_fail
("!SetCC || (SetCC->getConstantOperandVal(1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == ISD::SETNE)"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2025, __PRETTY_FUNCTION__))
2025 ISD::SETNE))((!SetCC || (SetCC->getConstantOperandVal(1) == 1 &&
cast<CondCodeSDNode>(SetCC->getOperand(2).getNode()
)->get() == ISD::SETNE)) ? static_cast<void> (0) : __assert_fail
("!SetCC || (SetCC->getConstantOperandVal(1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == ISD::SETNE)"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2025, __PRETTY_FUNCTION__))
;
2026
2027 // operands of the new intrinsic call
2028 SmallVector<SDValue, 4> Ops;
2029 if (HaveChain)
2030 Ops.push_back(BRCOND.getOperand(0));
2031
2032 Ops.append(Intr->op_begin() + (HaveChain ? 1 : 0), Intr->op_end());
2033 Ops.push_back(Target);
2034
2035 ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
2036
2037 // build the new intrinsic call
2038 SDNode *Result = DAG.getNode(
2039 Res.size() > 1 ? ISD::INTRINSIC_W_CHAIN : ISD::INTRINSIC_VOID, DL,
2040 DAG.getVTList(Res), Ops).getNode();
2041
2042 if (!HaveChain) {
2043 SDValue Ops[] = {
2044 SDValue(Result, 0),
2045 BRCOND.getOperand(0)
2046 };
2047
2048 Result = DAG.getMergeValues(Ops, DL).getNode();
2049 }
2050
2051 if (BR) {
2052 // Give the branch instruction our target
2053 SDValue Ops[] = {
2054 BR->getOperand(0),
2055 BRCOND.getOperand(2)
2056 };
2057 SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
2058 DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
2059 BR = NewBR.getNode();
Value stored to 'BR' is never read
2060 }
2061
2062 SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
2063
2064 // Copy the intrinsic results to registers
2065 for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
2066 SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
2067 if (!CopyToReg)
2068 continue;
2069
2070 Chain = DAG.getCopyToReg(
2071 Chain, DL,
2072 CopyToReg->getOperand(1),
2073 SDValue(Result, i - 1),
2074 SDValue());
2075
2076 DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
2077 }
2078
2079 // Remove the old intrinsic from the chain
2080 DAG.ReplaceAllUsesOfValueWith(
2081 SDValue(Intr, Intr->getNumValues() - 1),
2082 Intr->getOperand(0));
2083
2084 return Chain;
2085}
2086
2087SDValue SITargetLowering::getFPExtOrFPTrunc(SelectionDAG &DAG,
2088 SDValue Op,
2089 const SDLoc &DL,
2090 EVT VT) const {
2091 return Op.getValueType().bitsLE(VT) ?
2092 DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) :
2093 DAG.getNode(ISD::FTRUNC, DL, VT, Op);
2094}
2095
2096SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
2097 assert(Op.getValueType() == MVT::f16 &&((Op.getValueType() == MVT::f16 && "Do not know how to custom lower FP_ROUND for non-f16 type"
) ? static_cast<void> (0) : __assert_fail ("Op.getValueType() == MVT::f16 && \"Do not know how to custom lower FP_ROUND for non-f16 type\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2098, __PRETTY_FUNCTION__))
2098 "Do not know how to custom lower FP_ROUND for non-f16 type")((Op.getValueType() == MVT::f16 && "Do not know how to custom lower FP_ROUND for non-f16 type"
) ? static_cast<void> (0) : __assert_fail ("Op.getValueType() == MVT::f16 && \"Do not know how to custom lower FP_ROUND for non-f16 type\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2098, __PRETTY_FUNCTION__))
;
2099
2100 SDValue Src = Op.getOperand(0);
2101 EVT SrcVT = Src.getValueType();
2102 if (SrcVT != MVT::f64)
2103 return Op;
2104
2105 SDLoc DL(Op);
2106
2107 SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src);
2108 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16);
2109 return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc);;
2110}
2111
2112SDValue SITargetLowering::getSegmentAperture(unsigned AS,
2113 SelectionDAG &DAG) const {
2114 SDLoc SL;
2115 MachineFunction &MF = DAG.getMachineFunction();
2116 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2117 unsigned UserSGPR = Info->getQueuePtrUserSGPR();
2118 assert(UserSGPR != AMDGPU::NoRegister)((UserSGPR != AMDGPU::NoRegister) ? static_cast<void> (
0) : __assert_fail ("UserSGPR != AMDGPU::NoRegister", "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2118, __PRETTY_FUNCTION__))
;
2119
2120 SDValue QueuePtr = CreateLiveInRegister(
2121 DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
2122
2123 // Offset into amd_queue_t for group_segment_aperture_base_hi /
2124 // private_segment_aperture_base_hi.
2125 uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
2126
2127 SDValue Ptr = DAG.getNode(ISD::ADD, SL, MVT::i64, QueuePtr,
2128 DAG.getConstant(StructOffset, SL, MVT::i64));
2129
2130 // TODO: Use custom target PseudoSourceValue.
2131 // TODO: We should use the value from the IR intrinsic call, but it might not
2132 // be available and how do we get it?
2133 Value *V = UndefValue::get(PointerType::get(Type::getInt8Ty(*DAG.getContext()),
2134 AMDGPUAS::CONSTANT_ADDRESS));
2135
2136 MachinePointerInfo PtrInfo(V, StructOffset);
2137 return DAG.getLoad(MVT::i32, SL, QueuePtr.getValue(1), Ptr, PtrInfo,
2138 MinAlign(64, StructOffset),
2139 MachineMemOperand::MODereferenceable |
2140 MachineMemOperand::MOInvariant);
2141}
2142
2143SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
2144 SelectionDAG &DAG) const {
2145 SDLoc SL(Op);
2146 const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
2147
2148 SDValue Src = ASC->getOperand(0);
2149
2150 // FIXME: Really support non-0 null pointers.
2151 SDValue SegmentNullPtr = DAG.getConstant(-1, SL, MVT::i32);
2152 SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
2153
2154 // flat -> local/private
2155 if (ASC->getSrcAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
2156 if (ASC->getDestAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
2157 ASC->getDestAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
2158 SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
2159 SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
2160
2161 return DAG.getNode(ISD::SELECT, SL, MVT::i32,
2162 NonNull, Ptr, SegmentNullPtr);
2163 }
2164 }
2165
2166 // local/private -> flat
2167 if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
2168 if (ASC->getSrcAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
2169 ASC->getSrcAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) {
2170 SDValue NonNull
2171 = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
2172
2173 SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), DAG);
2174 SDValue CvtPtr
2175 = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
2176
2177 return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull,
2178 DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr),
2179 FlatNullPtr);
2180 }
2181 }
2182
2183 // global <-> flat are no-ops and never emitted.
2184
2185 const MachineFunction &MF = DAG.getMachineFunction();
2186 DiagnosticInfoUnsupported InvalidAddrSpaceCast(
2187 *MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
2188 DAG.getContext()->diagnose(InvalidAddrSpaceCast);
2189
2190 return DAG.getUNDEF(ASC->getValueType(0));
2191}
2192
2193bool
2194SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
2195 // We can fold offsets for anything that doesn't require a GOT relocation.
2196 return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
2197 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS) &&
2198 !shouldEmitGOTReloc(GA->getGlobal());
2199}
2200
2201static SDValue buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
2202 SDLoc DL, unsigned Offset, EVT PtrVT,
2203 unsigned GAFlags = SIInstrInfo::MO_NONE) {
2204 // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
2205 // lowered to the following code sequence:
2206 //
2207 // For constant address space:
2208 // s_getpc_b64 s[0:1]
2209 // s_add_u32 s0, s0, $symbol
2210 // s_addc_u32 s1, s1, 0
2211 //
2212 // s_getpc_b64 returns the address of the s_add_u32 instruction and then
2213 // a fixup or relocation is emitted to replace $symbol with a literal
2214 // constant, which is a pc-relative offset from the encoding of the $symbol
2215 // operand to the global variable.
2216 //
2217 // For global address space:
2218 // s_getpc_b64 s[0:1]
2219 // s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
2220 // s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
2221 //
2222 // s_getpc_b64 returns the address of the s_add_u32 instruction and then
2223 // fixups or relocations are emitted to replace $symbol@*@lo and
2224 // $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
2225 // which is a 64-bit pc-relative offset from the encoding of the $symbol
2226 // operand to the global variable.
2227 //
2228 // What we want here is an offset from the value returned by s_getpc
2229 // (which is the address of the s_add_u32 instruction) to the global
2230 // variable, but since the encoding of $symbol starts 4 bytes after the start
2231 // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
2232 // small. This requires us to add 4 to the global variable offset in order to
2233 // compute the correct address.
2234 SDValue PtrLo = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4,
2235 GAFlags);
2236 SDValue PtrHi = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4,
2237 GAFlags == SIInstrInfo::MO_NONE ?
2238 GAFlags : GAFlags + 1);
2239 return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi);
2240}
2241
2242SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
2243 SDValue Op,
2244 SelectionDAG &DAG) const {
2245 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
2246
2247 if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS &&
2248 GSD->getAddressSpace() != AMDGPUAS::GLOBAL_ADDRESS)
2249 return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
2250
2251 SDLoc DL(GSD);
2252 const GlobalValue *GV = GSD->getGlobal();
2253 EVT PtrVT = Op.getValueType();
2254
2255 if (shouldEmitFixup(GV))
2256 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
2257 else if (shouldEmitPCReloc(GV))
2258 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT,
2259 SIInstrInfo::MO_REL32);
2260
2261 SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
2262 SIInstrInfo::MO_GOTPCREL32);
2263
2264 Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
2265 PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
2266 const DataLayout &DataLayout = DAG.getDataLayout();
2267 unsigned Align = DataLayout.getABITypeAlignment(PtrTy);
2268 // FIXME: Use a PseudoSourceValue once those can be assigned an address space.
2269 MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
2270
2271 return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Align,
2272 MachineMemOperand::MODereferenceable |
2273 MachineMemOperand::MOInvariant);
2274}
2275
2276SDValue SITargetLowering::lowerTRAP(SDValue Op,
2277 SelectionDAG &DAG) const {
2278 const MachineFunction &MF = DAG.getMachineFunction();
2279 DiagnosticInfoUnsupported NoTrap(*MF.getFunction(),
2280 "trap handler not supported",
2281 Op.getDebugLoc(),
2282 DS_Warning);
2283 DAG.getContext()->diagnose(NoTrap);
2284
2285 // Emit s_endpgm.
2286
2287 // FIXME: This should really be selected to s_trap, but that requires
2288 // setting up the trap handler for it o do anything.
2289 return DAG.getNode(AMDGPUISD::ENDPGM, SDLoc(Op), MVT::Other,
2290 Op.getOperand(0));
2291}
2292
2293SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
2294 const SDLoc &DL, SDValue V) const {
2295 // We can't use S_MOV_B32 directly, because there is no way to specify m0 as
2296 // the destination register.
2297 //
2298 // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
2299 // so we will end up with redundant moves to m0.
2300 //
2301 // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
2302
2303 // A Null SDValue creates a glue result.
2304 SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
2305 V, Chain);
2306 return SDValue(M0, 0);
2307}
2308
2309SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
2310 SDValue Op,
2311 MVT VT,
2312 unsigned Offset) const {
2313 SDLoc SL(Op);
2314 SDValue Param = LowerParameter(DAG, MVT::i32, MVT::i32, SL,
2315 DAG.getEntryNode(), Offset, false);
2316 // The local size values will have the hi 16-bits as zero.
2317 return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
2318 DAG.getValueType(VT));
2319}
2320
2321static SDValue emitNonHSAIntrinsicError(SelectionDAG& DAG, SDLoc DL, EVT VT) {
2322 DiagnosticInfoUnsupported BadIntrin(*DAG.getMachineFunction().getFunction(),
2323 "non-hsa intrinsic with hsa target",
2324 DL.getDebugLoc());
2325 DAG.getContext()->diagnose(BadIntrin);
2326 return DAG.getUNDEF(VT);
2327}
2328
2329static SDValue emitRemovedIntrinsicError(SelectionDAG& DAG, SDLoc DL, EVT VT) {
2330 DiagnosticInfoUnsupported BadIntrin(*DAG.getMachineFunction().getFunction(),
2331 "intrinsic not supported on subtarget",
2332 DL.getDebugLoc());
2333 DAG.getContext()->diagnose(BadIntrin);
2334 return DAG.getUNDEF(VT);
2335}
2336
2337SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
2338 SelectionDAG &DAG) const {
2339 MachineFunction &MF = DAG.getMachineFunction();
2340 auto MFI = MF.getInfo<SIMachineFunctionInfo>();
2341 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2342
2343 EVT VT = Op.getValueType();
2344 SDLoc DL(Op);
2345 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
2346
2347 // TODO: Should this propagate fast-math-flags?
2348
2349 switch (IntrinsicID) {
2350 case Intrinsic::amdgcn_dispatch_ptr:
2351 case Intrinsic::amdgcn_queue_ptr: {
2352 if (!Subtarget->isAmdCodeObjectV2()) {
2353 DiagnosticInfoUnsupported BadIntrin(
2354 *MF.getFunction(), "unsupported hsa intrinsic without hsa target",
2355 DL.getDebugLoc());
2356 DAG.getContext()->diagnose(BadIntrin);
2357 return DAG.getUNDEF(VT);
2358 }
2359
2360 auto Reg = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
2361 SIRegisterInfo::DISPATCH_PTR : SIRegisterInfo::QUEUE_PTR;
2362 return CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass,
2363 TRI->getPreloadedValue(MF, Reg), VT);
2364 }
2365 case Intrinsic::amdgcn_implicitarg_ptr: {
2366 unsigned offset = getImplicitParameterOffset(MFI, FIRST_IMPLICIT);
2367 return LowerParameterPtr(DAG, DL, DAG.getEntryNode(), offset);
2368 }
2369 case Intrinsic::amdgcn_kernarg_segment_ptr: {
2370 unsigned Reg
2371 = TRI->getPreloadedValue(MF, SIRegisterInfo::KERNARG_SEGMENT_PTR);
2372 return CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass, Reg, VT);
2373 }
2374 case Intrinsic::amdgcn_dispatch_id: {
2375 unsigned Reg = TRI->getPreloadedValue(MF, SIRegisterInfo::DISPATCH_ID);
2376 return CreateLiveInRegister(DAG, &AMDGPU::SReg_64RegClass, Reg, VT);
2377 }
2378 case Intrinsic::amdgcn_rcp:
2379 return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
2380 case Intrinsic::amdgcn_rsq:
2381 case AMDGPUIntrinsic::AMDGPU_rsq: // Legacy name
2382 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
2383 case Intrinsic::amdgcn_rsq_legacy: {
2384 if (Subtarget->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS)
2385 return emitRemovedIntrinsicError(DAG, DL, VT);
2386
2387 return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1));
2388 }
2389 case Intrinsic::amdgcn_rcp_legacy: {
2390 if (Subtarget->getGeneration() >= SISubtarget::VOLCANIC_ISLANDS)
2391 return emitRemovedIntrinsicError(DAG, DL, VT);
2392 return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1));
2393 }
2394 case Intrinsic::amdgcn_rsq_clamp: {
2395 if (Subtarget->getGeneration() < SISubtarget::VOLCANIC_ISLANDS)
2396 return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
2397
2398 Type *Type = VT.getTypeForEVT(*DAG.getContext());
2399 APFloat Max = APFloat::getLargest(Type->getFltSemantics());
2400 APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
2401
2402 SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
2403 SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
2404 DAG.getConstantFP(Max, DL, VT));
2405 return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
2406 DAG.getConstantFP(Min, DL, VT));
2407 }
2408 case Intrinsic::r600_read_ngroups_x:
2409 if (Subtarget->isAmdHsaOS())
2410 return emitNonHSAIntrinsicError(DAG, DL, VT);
2411
2412 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
2413 SI::KernelInputOffsets::NGROUPS_X, false);
2414 case Intrinsic::r600_read_ngroups_y:
2415 if (Subtarget->isAmdHsaOS())
2416 return emitNonHSAIntrinsicError(DAG, DL, VT);
2417
2418 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
2419 SI::KernelInputOffsets::NGROUPS_Y, false);
2420 case Intrinsic::r600_read_ngroups_z:
2421 if (Subtarget->isAmdHsaOS())
2422 return emitNonHSAIntrinsicError(DAG, DL, VT);
2423
2424 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
2425 SI::KernelInputOffsets::NGROUPS_Z, false);
2426 case Intrinsic::r600_read_global_size_x:
2427 if (Subtarget->isAmdHsaOS())
2428 return emitNonHSAIntrinsicError(DAG, DL, VT);
2429
2430 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
2431 SI::KernelInputOffsets::GLOBAL_SIZE_X, false);
2432 case Intrinsic::r600_read_global_size_y:
2433 if (Subtarget->isAmdHsaOS())
2434 return emitNonHSAIntrinsicError(DAG, DL, VT);
2435
2436 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
2437 SI::KernelInputOffsets::GLOBAL_SIZE_Y, false);
2438 case Intrinsic::r600_read_global_size_z:
2439 if (Subtarget->isAmdHsaOS())
2440 return emitNonHSAIntrinsicError(DAG, DL, VT);
2441
2442 return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
2443 SI::KernelInputOffsets::GLOBAL_SIZE_Z, false);
2444 case Intrinsic::r600_read_local_size_x:
2445 if (Subtarget->isAmdHsaOS())
2446 return emitNonHSAIntrinsicError(DAG, DL, VT);
2447
2448 return lowerImplicitZextParam(DAG, Op, MVT::i16,
2449 SI::KernelInputOffsets::LOCAL_SIZE_X);
2450 case Intrinsic::r600_read_local_size_y:
2451 if (Subtarget->isAmdHsaOS())
2452 return emitNonHSAIntrinsicError(DAG, DL, VT);
2453
2454 return lowerImplicitZextParam(DAG, Op, MVT::i16,
2455 SI::KernelInputOffsets::LOCAL_SIZE_Y);
2456 case Intrinsic::r600_read_local_size_z:
2457 if (Subtarget->isAmdHsaOS())
2458 return emitNonHSAIntrinsicError(DAG, DL, VT);
2459
2460 return lowerImplicitZextParam(DAG, Op, MVT::i16,
2461 SI::KernelInputOffsets::LOCAL_SIZE_Z);
2462 case Intrinsic::amdgcn_workgroup_id_x:
2463 case Intrinsic::r600_read_tgid_x:
2464 return CreateLiveInRegister(DAG, &AMDGPU::SReg_32_XM0RegClass,
2465 TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_X), VT);
2466 case Intrinsic::amdgcn_workgroup_id_y:
2467 case Intrinsic::r600_read_tgid_y:
2468 return CreateLiveInRegister(DAG, &AMDGPU::SReg_32_XM0RegClass,
2469 TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_Y), VT);
2470 case Intrinsic::amdgcn_workgroup_id_z:
2471 case Intrinsic::r600_read_tgid_z:
2472 return CreateLiveInRegister(DAG, &AMDGPU::SReg_32_XM0RegClass,
2473 TRI->getPreloadedValue(MF, SIRegisterInfo::WORKGROUP_ID_Z), VT);
2474 case Intrinsic::amdgcn_workitem_id_x:
2475 case Intrinsic::r600_read_tidig_x:
2476 return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
2477 TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_X), VT);
2478 case Intrinsic::amdgcn_workitem_id_y:
2479 case Intrinsic::r600_read_tidig_y:
2480 return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
2481 TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Y), VT);
2482 case Intrinsic::amdgcn_workitem_id_z:
2483 case Intrinsic::r600_read_tidig_z:
2484 return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass,
2485 TRI->getPreloadedValue(MF, SIRegisterInfo::WORKITEM_ID_Z), VT);
2486 case AMDGPUIntrinsic::SI_load_const: {
2487 SDValue Ops[] = {
2488 Op.getOperand(1),
2489 Op.getOperand(2)
2490 };
2491
2492 MachineMemOperand *MMO = MF.getMachineMemOperand(
2493 MachinePointerInfo(),
2494 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
2495 MachineMemOperand::MOInvariant,
2496 VT.getStoreSize(), 4);
2497 return DAG.getMemIntrinsicNode(AMDGPUISD::LOAD_CONSTANT, DL,
2498 Op->getVTList(), Ops, VT, MMO);
2499 }
2500 case AMDGPUIntrinsic::amdgcn_fdiv_fast: {
2501 return lowerFDIV_FAST(Op, DAG);
2502 }
2503 case AMDGPUIntrinsic::SI_vs_load_input:
2504 return DAG.getNode(AMDGPUISD::LOAD_INPUT, DL, VT,
2505 Op.getOperand(1),
2506 Op.getOperand(2),
2507 Op.getOperand(3));
2508
2509 case AMDGPUIntrinsic::SI_fs_constant: {
2510 SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(3));
2511 SDValue Glue = M0.getValue(1);
2512 return DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32,
2513 DAG.getConstant(2, DL, MVT::i32), // P0
2514 Op.getOperand(1), Op.getOperand(2), Glue);
2515 }
2516 case AMDGPUIntrinsic::SI_packf16:
2517 if (Op.getOperand(1).isUndef() && Op.getOperand(2).isUndef())
2518 return DAG.getUNDEF(MVT::i32);
2519 return Op;
2520 case AMDGPUIntrinsic::SI_fs_interp: {
2521 SDValue IJ = Op.getOperand(4);
2522 SDValue I = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, IJ,
2523 DAG.getConstant(0, DL, MVT::i32));
2524 SDValue J = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, IJ,
2525 DAG.getConstant(1, DL, MVT::i32));
2526 I = DAG.getNode(ISD::BITCAST, DL, MVT::f32, I);
2527 J = DAG.getNode(ISD::BITCAST, DL, MVT::f32, J);
2528 SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(3));
2529 SDValue Glue = M0.getValue(1);
2530 SDValue P1 = DAG.getNode(AMDGPUISD::INTERP_P1, DL,
2531 DAG.getVTList(MVT::f32, MVT::Glue),
2532 I, Op.getOperand(1), Op.getOperand(2), Glue);
2533 Glue = SDValue(P1.getNode(), 1);
2534 return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, P1, J,
2535 Op.getOperand(1), Op.getOperand(2), Glue);
2536 }
2537 case Intrinsic::amdgcn_interp_mov: {
2538 SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4));
2539 SDValue Glue = M0.getValue(1);
2540 return DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32, Op.getOperand(1),
2541 Op.getOperand(2), Op.getOperand(3), Glue);
2542 }
2543 case Intrinsic::amdgcn_interp_p1: {
2544 SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4));
2545 SDValue Glue = M0.getValue(1);
2546 return DAG.getNode(AMDGPUISD::INTERP_P1, DL, MVT::f32, Op.getOperand(1),
2547 Op.getOperand(2), Op.getOperand(3), Glue);
2548 }
2549 case Intrinsic::amdgcn_interp_p2: {
2550 SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(5));
2551 SDValue Glue = SDValue(M0.getNode(), 1);
2552 return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, Op.getOperand(1),
2553 Op.getOperand(2), Op.getOperand(3), Op.getOperand(4),
2554 Glue);
2555 }
2556 case Intrinsic::amdgcn_sin:
2557 return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
2558
2559 case Intrinsic::amdgcn_cos:
2560 return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
2561
2562 case Intrinsic::amdgcn_log_clamp: {
2563 if (Subtarget->getGeneration() < SISubtarget::VOLCANIC_ISLANDS)
2564 return SDValue();
2565
2566 DiagnosticInfoUnsupported BadIntrin(
2567 *MF.getFunction(), "intrinsic not supported on subtarget",
2568 DL.getDebugLoc());
2569 DAG.getContext()->diagnose(BadIntrin);
2570 return DAG.getUNDEF(VT);
2571 }
2572 case Intrinsic::amdgcn_ldexp:
2573 return DAG.getNode(AMDGPUISD::LDEXP, DL, VT,
2574 Op.getOperand(1), Op.getOperand(2));
2575
2576 case Intrinsic::amdgcn_fract:
2577 return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
2578
2579 case Intrinsic::amdgcn_class:
2580 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
2581 Op.getOperand(1), Op.getOperand(2));
2582 case Intrinsic::amdgcn_div_fmas:
2583 return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
2584 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
2585 Op.getOperand(4));
2586
2587 case Intrinsic::amdgcn_div_fixup:
2588 return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
2589 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
2590
2591 case Intrinsic::amdgcn_trig_preop:
2592 return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT,
2593 Op.getOperand(1), Op.getOperand(2));
2594 case Intrinsic::amdgcn_div_scale: {
2595 // 3rd parameter required to be a constant.
2596 const ConstantSDNode *Param = dyn_cast<ConstantSDNode>(Op.getOperand(3));
2597 if (!Param)
2598 return DAG.getUNDEF(VT);
2599
2600 // Translate to the operands expected by the machine instruction. The
2601 // first parameter must be the same as the first instruction.
2602 SDValue Numerator = Op.getOperand(1);
2603 SDValue Denominator = Op.getOperand(2);
2604
2605 // Note this order is opposite of the machine instruction's operations,
2606 // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
2607 // intrinsic has the numerator as the first operand to match a normal
2608 // division operation.
2609
2610 SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
2611
2612 return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
2613 Denominator, Numerator);
2614 }
2615 case Intrinsic::amdgcn_icmp: {
2616 const auto *CD = dyn_cast<ConstantSDNode>(Op.getOperand(3));
2617 int CondCode = CD->getSExtValue();
2618
2619 if (CondCode < ICmpInst::Predicate::FIRST_ICMP_PREDICATE ||
2620 CondCode >= ICmpInst::Predicate::BAD_ICMP_PREDICATE)
2621 return DAG.getUNDEF(VT);
2622
2623 ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode);
2624 ISD::CondCode CCOpcode = getICmpCondCode(IcInput);
2625 return DAG.getNode(AMDGPUISD::SETCC, DL, VT, Op.getOperand(1),
2626 Op.getOperand(2), DAG.getCondCode(CCOpcode));
2627 }
2628 case Intrinsic::amdgcn_fcmp: {
2629 const auto *CD = dyn_cast<ConstantSDNode>(Op.getOperand(3));
2630 int CondCode = CD->getSExtValue();
2631
2632 if (CondCode <= FCmpInst::Predicate::FCMP_FALSE ||
2633 CondCode >= FCmpInst::Predicate::FCMP_TRUE)
2634 return DAG.getUNDEF(VT);
2635
2636 FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode);
2637 ISD::CondCode CCOpcode = getFCmpCondCode(IcInput);
2638 return DAG.getNode(AMDGPUISD::SETCC, DL, VT, Op.getOperand(1),
2639 Op.getOperand(2), DAG.getCondCode(CCOpcode));
2640 }
2641 case Intrinsic::amdgcn_fmul_legacy:
2642 return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT,
2643 Op.getOperand(1), Op.getOperand(2));
2644 case Intrinsic::amdgcn_sffbh:
2645 case AMDGPUIntrinsic::AMDGPU_flbit_i32: // Legacy name.
2646 return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1));
2647 default:
2648 return AMDGPUTargetLowering::LowerOperation(Op, DAG);
2649 }
2650}
2651
2652SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
2653 SelectionDAG &DAG) const {
2654 unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
2655 SDLoc DL(Op);
2656 switch (IntrID) {
2657 case Intrinsic::amdgcn_atomic_inc:
2658 case Intrinsic::amdgcn_atomic_dec: {
2659 MemSDNode *M = cast<MemSDNode>(Op);
2660 unsigned Opc = (IntrID == Intrinsic::amdgcn_atomic_inc) ?
2661 AMDGPUISD::ATOMIC_INC : AMDGPUISD::ATOMIC_DEC;
2662 SDValue Ops[] = {
2663 M->getOperand(0), // Chain
2664 M->getOperand(2), // Ptr
2665 M->getOperand(3) // Value
2666 };
2667
2668 return DAG.getMemIntrinsicNode(Opc, SDLoc(Op), M->getVTList(), Ops,
2669 M->getMemoryVT(), M->getMemOperand());
2670 }
2671 case Intrinsic::amdgcn_buffer_load:
2672 case Intrinsic::amdgcn_buffer_load_format: {
2673 SDValue Ops[] = {
2674 Op.getOperand(0), // Chain
2675 Op.getOperand(2), // rsrc
2676 Op.getOperand(3), // vindex
2677 Op.getOperand(4), // offset
2678 Op.getOperand(5), // glc
2679 Op.getOperand(6) // slc
2680 };
2681 MachineFunction &MF = DAG.getMachineFunction();
2682 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
2683
2684 unsigned Opc = (IntrID == Intrinsic::amdgcn_buffer_load) ?
2685 AMDGPUISD::BUFFER_LOAD : AMDGPUISD::BUFFER_LOAD_FORMAT;
2686 EVT VT = Op.getValueType();
2687 EVT IntVT = VT.changeTypeToInteger();
2688
2689 MachineMemOperand *MMO = MF.getMachineMemOperand(
2690 MachinePointerInfo(MFI->getBufferPSV()),
2691 MachineMemOperand::MOLoad,
2692 VT.getStoreSize(), VT.getStoreSize());
2693
2694 return DAG.getMemIntrinsicNode(Opc, DL, Op->getVTList(), Ops, IntVT, MMO);
2695 }
2696 default:
2697 return SDValue();
2698 }
2699}
2700
2701SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op,
2702 SelectionDAG &DAG) const {
2703 MachineFunction &MF = DAG.getMachineFunction();
2704 SDLoc DL(Op);
2705 SDValue Chain = Op.getOperand(0);
2706 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
2707
2708 switch (IntrinsicID) {
2709 case AMDGPUIntrinsic::SI_sendmsg: {
2710 Chain = copyToM0(DAG, Chain, DL, Op.getOperand(3));
2711 SDValue Glue = Chain.getValue(1);
2712 return DAG.getNode(AMDGPUISD::SENDMSG, DL, MVT::Other, Chain,
2713 Op.getOperand(2), Glue);
2714 }
2715 case AMDGPUIntrinsic::SI_tbuffer_store: {
2716 SDValue Ops[] = {
2717 Chain,
2718 Op.getOperand(2),
2719 Op.getOperand(3),
2720 Op.getOperand(4),
2721 Op.getOperand(5),
2722 Op.getOperand(6),
2723 Op.getOperand(7),
2724 Op.getOperand(8),
2725 Op.getOperand(9),
2726 Op.getOperand(10),
2727 Op.getOperand(11),
2728 Op.getOperand(12),
2729 Op.getOperand(13),
2730 Op.getOperand(14)
2731 };
2732
2733 EVT VT = Op.getOperand(3).getValueType();
2734
2735 MachineMemOperand *MMO = MF.getMachineMemOperand(
2736 MachinePointerInfo(),
2737 MachineMemOperand::MOStore,
2738 VT.getStoreSize(), 4);
2739 return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_STORE_FORMAT, DL,
2740 Op->getVTList(), Ops, VT, MMO);
2741 }
2742 case AMDGPUIntrinsic::AMDGPU_kill: {
2743 SDValue Src = Op.getOperand(2);
2744 if (const ConstantFPSDNode *K = dyn_cast<ConstantFPSDNode>(Src)) {
2745 if (!K->isNegative())
2746 return Chain;
2747
2748 SDValue NegOne = DAG.getTargetConstant(FloatToBits(-1.0f), DL, MVT::i32);
2749 return DAG.getNode(AMDGPUISD::KILL, DL, MVT::Other, Chain, NegOne);
2750 }
2751
2752 SDValue Cast = DAG.getNode(ISD::BITCAST, DL, MVT::i32, Src);
2753 return DAG.getNode(AMDGPUISD::KILL, DL, MVT::Other, Chain, Cast);
2754 }
2755 case AMDGPUIntrinsic::SI_export: {
2756 const ConstantSDNode *En = cast<ConstantSDNode>(Op.getOperand(2));
2757 const ConstantSDNode *VM = cast<ConstantSDNode>(Op.getOperand(3));
2758 const ConstantSDNode *Done = cast<ConstantSDNode>(Op.getOperand(4));
2759 const ConstantSDNode *Tgt = cast<ConstantSDNode>(Op.getOperand(5));
2760 const ConstantSDNode *Compr = cast<ConstantSDNode>(Op.getOperand(6));
2761
2762 const SDValue Ops[] = {
2763 Chain,
2764 DAG.getTargetConstant(En->getZExtValue(), DL, MVT::i8),
2765 DAG.getTargetConstant(VM->getZExtValue(), DL, MVT::i1),
2766 DAG.getTargetConstant(Tgt->getZExtValue(), DL, MVT::i8),
2767 DAG.getTargetConstant(Compr->getZExtValue(), DL, MVT::i1),
2768 Op.getOperand(7), // src0
2769 Op.getOperand(8), // src1
2770 Op.getOperand(9), // src2
2771 Op.getOperand(10) // src3
2772 };
2773
2774 unsigned Opc = Done->isNullValue() ?
2775 AMDGPUISD::EXPORT : AMDGPUISD::EXPORT_DONE;
2776 return DAG.getNode(Opc, DL, Op->getVTList(), Ops);
2777 }
2778 default:
2779 return SDValue();
2780 }
2781}
2782
2783SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
2784 SDLoc DL(Op);
2785 LoadSDNode *Load = cast<LoadSDNode>(Op);
2786 ISD::LoadExtType ExtType = Load->getExtensionType();
2787 EVT MemVT = Load->getMemoryVT();
2788
2789 if (ExtType == ISD::NON_EXTLOAD && MemVT.getSizeInBits() < 32) {
2790 // FIXME: Copied from PPC
2791 // First, load into 32 bits, then truncate to 1 bit.
2792
2793 SDValue Chain = Load->getChain();
2794 SDValue BasePtr = Load->getBasePtr();
2795 MachineMemOperand *MMO = Load->getMemOperand();
2796
2797 EVT RealMemVT = (MemVT == MVT::i1) ? MVT::i8 : MVT::i16;
2798
2799 SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
2800 BasePtr, RealMemVT, MMO);
2801
2802 SDValue Ops[] = {
2803 DAG.getNode(ISD::TRUNCATE, DL, MemVT, NewLD),
2804 NewLD.getValue(1)
2805 };
2806
2807 return DAG.getMergeValues(Ops, DL);
2808 }
2809
2810 if (!MemVT.isVector())
2811 return SDValue();
2812
2813 assert(Op.getValueType().getVectorElementType() == MVT::i32 &&((Op.getValueType().getVectorElementType() == MVT::i32 &&
"Custom lowering for non-i32 vectors hasn't been implemented."
) ? static_cast<void> (0) : __assert_fail ("Op.getValueType().getVectorElementType() == MVT::i32 && \"Custom lowering for non-i32 vectors hasn't been implemented.\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2814, __PRETTY_FUNCTION__))
2814 "Custom lowering for non-i32 vectors hasn't been implemented.")((Op.getValueType().getVectorElementType() == MVT::i32 &&
"Custom lowering for non-i32 vectors hasn't been implemented."
) ? static_cast<void> (0) : __assert_fail ("Op.getValueType().getVectorElementType() == MVT::i32 && \"Custom lowering for non-i32 vectors hasn't been implemented.\""
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2814, __PRETTY_FUNCTION__))
;
2815
2816 unsigned AS = Load->getAddressSpace();
2817 if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), MemVT,
2818 AS, Load->getAlignment())) {
2819 SDValue Ops[2];
2820 std::tie(Ops[0], Ops[1]) = expandUnalignedLoad(Load, DAG);
2821 return DAG.getMergeValues(Ops, DL);
2822 }
2823
2824 MachineFunction &MF = DAG.getMachineFunction();
2825 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
2826 // If there is a possibilty that flat instruction access scratch memory
2827 // then we need to use the same legalization rules we use for private.
2828 if (AS == AMDGPUAS::FLAT_ADDRESS)
2829 AS = MFI->hasFlatScratchInit() ?
2830 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
2831
2832 unsigned NumElements = MemVT.getVectorNumElements();
2833 switch (AS) {
2834 case AMDGPUAS::CONSTANT_ADDRESS:
2835 if (isMemOpUniform(Load))
2836 return SDValue();
2837 // Non-uniform loads will be selected to MUBUF instructions, so they
2838 // have the same legalization requirements as global and private
2839 // loads.
2840 //
2841 LLVM_FALLTHROUGH[[clang::fallthrough]];
2842 case AMDGPUAS::GLOBAL_ADDRESS: {
2843 if (Subtarget->getScalarizeGlobalBehavior() && isMemOpUniform(Load) &&
2844 isMemOpHasNoClobberedMemOperand(Load))
2845 return SDValue();
2846 // Non-uniform loads will be selected to MUBUF instructions, so they
2847 // have the same legalization requirements as global and private
2848 // loads.
2849 //
2850 }
2851 LLVM_FALLTHROUGH[[clang::fallthrough]];
2852 case AMDGPUAS::FLAT_ADDRESS:
2853 if (NumElements > 4)
2854 return SplitVectorLoad(Op, DAG);
2855 // v4 loads are supported for private and global memory.
2856 return SDValue();
2857 case AMDGPUAS::PRIVATE_ADDRESS: {
2858 // Depending on the setting of the private_element_size field in the
2859 // resource descriptor, we can only make private accesses up to a certain
2860 // size.
2861 switch (Subtarget->getMaxPrivateElementSize()) {
2862 case 4:
2863 return scalarizeVectorLoad(Load, DAG);
2864 case 8:
2865 if (NumElements > 2)
2866 return SplitVectorLoad(Op, DAG);
2867 return SDValue();
2868 case 16:
2869 // Same as global/flat
2870 if (NumElements > 4)
2871 return SplitVectorLoad(Op, DAG);
2872 return SDValue();
2873 default:
2874 llvm_unreachable("unsupported private_element_size")::llvm::llvm_unreachable_internal("unsupported private_element_size"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2874)
;
2875 }
2876 }
2877 case AMDGPUAS::LOCAL_ADDRESS: {
2878 if (NumElements > 2)
2879 return SplitVectorLoad(Op, DAG);
2880
2881 if (NumElements == 2)
2882 return SDValue();
2883
2884 // If properly aligned, if we split we might be able to use ds_read_b64.
2885 return SplitVectorLoad(Op, DAG);
2886 }
2887 default:
2888 return SDValue();
2889 }
2890}
2891
2892SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const {
2893 if (Op.getValueType() != MVT::i64)
2894 return SDValue();
2895
2896 SDLoc DL(Op);
2897 SDValue Cond = Op.getOperand(0);
2898
2899 SDValue Zero = DAG.getConstant(0, DL, MVT::i32);
2900 SDValue One = DAG.getConstant(1, DL, MVT::i32);
2901
2902 SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1));
2903 SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2));
2904
2905 SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero);
2906 SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero);
2907
2908 SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1);
2909
2910 SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One);
2911 SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One);
2912
2913 SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1);
2914
2915 SDValue Res = DAG.getBuildVector(MVT::v2i32, DL, {Lo, Hi});
2916 return DAG.getNode(ISD::BITCAST, DL, MVT::i64, Res);
2917}
2918
2919// Catch division cases where we can use shortcuts with rcp and rsq
2920// instructions.
2921SDValue SITargetLowering::lowerFastUnsafeFDIV(SDValue Op,
2922 SelectionDAG &DAG) const {
2923 SDLoc SL(Op);
2924 SDValue LHS = Op.getOperand(0);
2925 SDValue RHS = Op.getOperand(1);
2926 EVT VT = Op.getValueType();
2927 bool Unsafe = DAG.getTarget().Options.UnsafeFPMath;
2928
2929 if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) {
2930 if (Unsafe || (VT == MVT::f32 && !Subtarget->hasFP32Denormals()) ||
2931 VT == MVT::f16) {
2932 if (CLHS->isExactlyValue(1.0)) {
2933 // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to
2934 // the CI documentation has a worst case error of 1 ulp.
2935 // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to
2936 // use it as long as we aren't trying to use denormals.
2937 //
2938 // v_rcp_f16 and v_rsq_f16 DO support denormals.
2939
2940 // 1.0 / sqrt(x) -> rsq(x)
2941
2942 // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP
2943 // error seems really high at 2^29 ULP.
2944 if (RHS.getOpcode() == ISD::FSQRT)
2945 return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0));
2946
2947 // 1.0 / x -> rcp(x)
2948 return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
2949 }
2950
2951 // Same as for 1.0, but expand the sign out of the constant.
2952 if (CLHS->isExactlyValue(-1.0)) {
2953 // -1.0 / x -> rcp (fneg x)
2954 SDValue FNegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
2955 return DAG.getNode(AMDGPUISD::RCP, SL, VT, FNegRHS);
2956 }
2957 }
2958 }
2959
2960 const SDNodeFlags *Flags = Op->getFlags();
2961
2962 if (Unsafe || Flags->hasAllowReciprocal()) {
2963 // Turn into multiply by the reciprocal.
2964 // x / y -> x * (1.0 / y)
2965 SDNodeFlags Flags;
2966 Flags.setUnsafeAlgebra(true);
2967 SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS);
2968 return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip, &Flags);
2969 }
2970
2971 return SDValue();
2972}
2973
2974static SDValue getFPBinOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
2975 EVT VT, SDValue A, SDValue B, SDValue GlueChain) {
2976 if (GlueChain->getNumValues() <= 1) {
2977 return DAG.getNode(Opcode, SL, VT, A, B);
2978 }
2979
2980 assert(GlueChain->getNumValues() == 3)((GlueChain->getNumValues() == 3) ? static_cast<void>
(0) : __assert_fail ("GlueChain->getNumValues() == 3", "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2980, __PRETTY_FUNCTION__))
;
2981
2982 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
2983 switch (Opcode) {
2984 default: llvm_unreachable("no chain equivalent for opcode")::llvm::llvm_unreachable_internal("no chain equivalent for opcode"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2984)
;
2985 case ISD::FMUL:
2986 Opcode = AMDGPUISD::FMUL_W_CHAIN;
2987 break;
2988 }
2989
2990 return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B,
2991 GlueChain.getValue(2));
2992}
2993
2994static SDValue getFPTernOp(SelectionDAG &DAG, unsigned Opcode, const SDLoc &SL,
2995 EVT VT, SDValue A, SDValue B, SDValue C,
2996 SDValue GlueChain) {
2997 if (GlueChain->getNumValues() <= 1) {
2998 return DAG.getNode(Opcode, SL, VT, A, B, C);
2999 }
3000
3001 assert(GlueChain->getNumValues() == 3)((GlueChain->getNumValues() == 3) ? static_cast<void>
(0) : __assert_fail ("GlueChain->getNumValues() == 3", "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3001, __PRETTY_FUNCTION__))
;
3002
3003 SDVTList VTList = DAG.getVTList(VT, MVT::Other, MVT::Glue);
3004 switch (Opcode) {
3005 default: llvm_unreachable("no chain equivalent for opcode")::llvm::llvm_unreachable_internal("no chain equivalent for opcode"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3005)
;
3006 case ISD::FMA:
3007 Opcode = AMDGPUISD::FMA_W_CHAIN;
3008 break;
3009 }
3010
3011 return DAG.getNode(Opcode, SL, VTList, GlueChain.getValue(1), A, B, C,
3012 GlueChain.getValue(2));
3013}
3014
3015SDValue SITargetLowering::LowerFDIV16(SDValue Op, SelectionDAG &DAG) const {
3016 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
3017 return FastLowered;
3018
3019 SDLoc SL(Op);
3020 SDValue Src0 = Op.getOperand(0);
3021 SDValue Src1 = Op.getOperand(1);
3022
3023 SDValue CvtSrc0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
3024 SDValue CvtSrc1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
3025
3026 SDValue RcpSrc1 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, CvtSrc1);
3027 SDValue Quot = DAG.getNode(ISD::FMUL, SL, MVT::f32, CvtSrc0, RcpSrc1);
3028
3029 SDValue FPRoundFlag = DAG.getTargetConstant(0, SL, MVT::i32);
3030 SDValue BestQuot = DAG.getNode(ISD::FP_ROUND, SL, MVT::f16, Quot, FPRoundFlag);
3031
3032 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f16, BestQuot, Src1, Src0);
3033}
3034
3035// Faster 2.5 ULP division that does not support denormals.
3036SDValue SITargetLowering::lowerFDIV_FAST(SDValue Op, SelectionDAG &DAG) const {
3037 SDLoc SL(Op);
3038 SDValue LHS = Op.getOperand(1);
3039 SDValue RHS = Op.getOperand(2);
3040
3041 SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS);
3042
3043 const APFloat K0Val(BitsToFloat(0x6f800000));
3044 const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32);
3045
3046 const APFloat K1Val(BitsToFloat(0x2f800000));
3047 const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32);
3048
3049 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
3050
3051 EVT SetCCVT =
3052 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32);
3053
3054 SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT);
3055
3056 SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One);
3057
3058 // TODO: Should this propagate fast-math-flags?
3059 r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3);
3060
3061 // rcp does not support denormals.
3062 SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1);
3063
3064 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0);
3065
3066 return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul);
3067}
3068
3069SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const {
3070 if (SDValue FastLowered = lowerFastUnsafeFDIV(Op, DAG))
3071 return FastLowered;
3072
3073 SDLoc SL(Op);
3074 SDValue LHS = Op.getOperand(0);
3075 SDValue RHS = Op.getOperand(1);
3076
3077 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32);
3078
3079 SDVTList ScaleVT = DAG.getVTList(MVT::f32, MVT::i1);
3080
3081 SDValue DenominatorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
3082 RHS, RHS, LHS);
3083 SDValue NumeratorScaled = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT,
3084 LHS, RHS, LHS);
3085
3086 // Denominator is scaled to not be denormal, so using rcp is ok.
3087 SDValue ApproxRcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32,
3088 DenominatorScaled);
3089 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f32,
3090 DenominatorScaled);
3091
3092 const unsigned Denorm32Reg = AMDGPU::Hwreg::ID_MODE |
3093 (4 << AMDGPU::Hwreg::OFFSET_SHIFT_) |
3094 (1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_);
3095
3096 const SDValue BitField = DAG.getTargetConstant(Denorm32Reg, SL, MVT::i16);
3097
3098 if (!Subtarget->hasFP32Denormals()) {
3099 SDVTList BindParamVTs = DAG.getVTList(MVT::Other, MVT::Glue);
3100 const SDValue EnableDenormValue = DAG.getConstant(FP_DENORM_FLUSH_NONE3,
3101 SL, MVT::i32);
3102 SDValue EnableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, BindParamVTs,
3103 DAG.getEntryNode(),
3104 EnableDenormValue, BitField);
3105 SDValue Ops[3] = {
3106 NegDivScale0,
3107 EnableDenorm.getValue(0),
3108 EnableDenorm.getValue(1)
3109 };
3110
3111 NegDivScale0 = DAG.getMergeValues(Ops, SL);
3112 }
3113
3114 SDValue Fma0 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0,
3115 ApproxRcp, One, NegDivScale0);
3116
3117 SDValue Fma1 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, Fma0, ApproxRcp,
3118 ApproxRcp, Fma0);
3119
3120 SDValue Mul = getFPBinOp(DAG, ISD::FMUL, SL, MVT::f32, NumeratorScaled,
3121 Fma1, Fma1);
3122
3123 SDValue Fma2 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Mul,
3124 NumeratorScaled, Mul);
3125
3126 SDValue Fma3 = getFPTernOp(DAG, ISD::FMA,SL, MVT::f32, Fma2, Fma1, Mul, Fma2);
3127
3128 SDValue Fma4 = getFPTernOp(DAG, ISD::FMA, SL, MVT::f32, NegDivScale0, Fma3,
3129 NumeratorScaled, Fma3);
3130
3131 if (!Subtarget->hasFP32Denormals()) {
3132 const SDValue DisableDenormValue =
3133 DAG.getConstant(FP_DENORM_FLUSH_IN_FLUSH_OUT0, SL, MVT::i32);
3134 SDValue DisableDenorm = DAG.getNode(AMDGPUISD::SETREG, SL, MVT::Other,
3135 Fma4.getValue(1),
3136 DisableDenormValue,
3137 BitField,
3138 Fma4.getValue(2));
3139
3140 SDValue OutputChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
3141 DisableDenorm, DAG.getRoot());
3142 DAG.setRoot(OutputChain);
3143 }
3144
3145 SDValue Scale = NumeratorScaled.getValue(1);
3146 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f32,
3147 Fma4, Fma1, Fma3, Scale);
3148
3149 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f32, Fmas, RHS, LHS);
3150}
3151
3152SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const {
3153 if (DAG.getTarget().Options.UnsafeFPMath)
3154 return lowerFastUnsafeFDIV(Op, DAG);
3155
3156 SDLoc SL(Op);
3157 SDValue X = Op.getOperand(0);
3158 SDValue Y = Op.getOperand(1);
3159
3160 const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64);
3161
3162 SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1);
3163
3164 SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X);
3165
3166 SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0);
3167
3168 SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0);
3169
3170 SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One);
3171
3172 SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp);
3173
3174 SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One);
3175
3176 SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X);
3177
3178 SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1);
3179 SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3);
3180
3181 SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64,
3182 NegDivScale0, Mul, DivScale1);
3183
3184 SDValue Scale;
3185
3186 if (Subtarget->getGeneration() == SISubtarget::SOUTHERN_ISLANDS) {
3187 // Workaround a hardware bug on SI where the condition output from div_scale
3188 // is not usable.
3189
3190 const SDValue Hi = DAG.getConstant(1, SL, MVT::i32);
3191
3192 // Figure out if the scale to use for div_fmas.
3193 SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
3194 SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y);
3195 SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0);
3196 SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1);
3197
3198 SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi);
3199 SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi);
3200
3201 SDValue Scale0Hi
3202 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi);
3203 SDValue Scale1Hi
3204 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi);
3205
3206 SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ);
3207 SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ);
3208 Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen);
3209 } else {
3210 Scale = DivScale1.getValue(1);
3211 }
3212
3213 SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64,
3214 Fma4, Fma3, Mul, Scale);
3215
3216 return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X);
3217}
3218
3219SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const {
3220 EVT VT = Op.getValueType();
3221
3222 if (VT == MVT::f32)
3223 return LowerFDIV32(Op, DAG);
3224
3225 if (VT == MVT::f64)
3226 return LowerFDIV64(Op, DAG);
3227
3228 if (VT == MVT::f16)
3229 return LowerFDIV16(Op, DAG);
3230
3231 llvm_unreachable("Unexpected type for fdiv")::llvm::llvm_unreachable_internal("Unexpected type for fdiv",
"/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3231)
;
3232}
3233
3234SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
3235 SDLoc DL(Op);
3236 StoreSDNode *Store = cast<StoreSDNode>(Op);
3237 EVT VT = Store->getMemoryVT();
3238
3239 if (VT == MVT::i1) {
3240 return DAG.getTruncStore(Store->getChain(), DL,
3241 DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32),
3242 Store->getBasePtr(), MVT::i1, Store->getMemOperand());
3243 }
3244
3245 assert(VT.isVector() &&((VT.isVector() && Store->getValue().getValueType(
).getScalarType() == MVT::i32) ? static_cast<void> (0) :
__assert_fail ("VT.isVector() && Store->getValue().getValueType().getScalarType() == MVT::i32"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3246, __PRETTY_FUNCTION__))
3246 Store->getValue().getValueType().getScalarType() == MVT::i32)((VT.isVector() && Store->getValue().getValueType(
).getScalarType() == MVT::i32) ? static_cast<void> (0) :
__assert_fail ("VT.isVector() && Store->getValue().getValueType().getScalarType() == MVT::i32"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3246, __PRETTY_FUNCTION__))
;
3247
3248 unsigned AS = Store->getAddressSpace();
3249 if (!allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), VT,
3250 AS, Store->getAlignment())) {
3251 return expandUnalignedStore(Store, DAG);
3252 }
3253
3254 MachineFunction &MF = DAG.getMachineFunction();
3255 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
3256 // If there is a possibilty that flat instruction access scratch memory
3257 // then we need to use the same legalization rules we use for private.
3258 if (AS == AMDGPUAS::FLAT_ADDRESS)
3259 AS = MFI->hasFlatScratchInit() ?
3260 AMDGPUAS::PRIVATE_ADDRESS : AMDGPUAS::GLOBAL_ADDRESS;
3261
3262 unsigned NumElements = VT.getVectorNumElements();
3263 switch (AS) {
3264 case AMDGPUAS::GLOBAL_ADDRESS:
3265 case AMDGPUAS::FLAT_ADDRESS:
3266 if (NumElements > 4)
3267 return SplitVectorStore(Op, DAG);
3268 return SDValue();
3269 case AMDGPUAS::PRIVATE_ADDRESS: {
3270 switch (Subtarget->getMaxPrivateElementSize()) {
3271 case 4:
3272 return scalarizeVectorStore(Store, DAG);
3273 case 8:
3274 if (NumElements > 2)
3275 return SplitVectorStore(Op, DAG);
3276 return SDValue();
3277 case 16:
3278 if (NumElements > 4)
3279 return SplitVectorStore(Op, DAG);
3280 return SDValue();
3281 default:
3282 llvm_unreachable("unsupported private_element_size")::llvm::llvm_unreachable_internal("unsupported private_element_size"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3282)
;
3283 }
3284 }
3285 case AMDGPUAS::LOCAL_ADDRESS: {
3286 if (NumElements > 2)
3287 return SplitVectorStore(Op, DAG);
3288
3289 if (NumElements == 2)
3290 return Op;
3291
3292 // If properly aligned, if we split we might be able to use ds_write_b64.
3293 return SplitVectorStore(Op, DAG);
3294 }
3295 default:
3296 llvm_unreachable("unhandled address space")::llvm::llvm_unreachable_internal("unhandled address space", "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3296)
;
3297 }
3298}
3299
3300SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const {
3301 SDLoc DL(Op);
3302 EVT VT = Op.getValueType();
3303 SDValue Arg = Op.getOperand(0);
3304 // TODO: Should this propagate fast-math-flags?
3305 SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT,
3306 DAG.getNode(ISD::FMUL, DL, VT, Arg,
3307 DAG.getConstantFP(0.5/M_PI3.14159265358979323846, DL,
3308 VT)));
3309
3310 switch (Op.getOpcode()) {
3311 case ISD::FCOS:
3312 return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, FractPart);
3313 case ISD::FSIN:
3314 return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, FractPart);
3315 default:
3316 llvm_unreachable("Wrong trig opcode")::llvm::llvm_unreachable_internal("Wrong trig opcode", "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3316)
;
3317 }
3318}
3319
3320SDValue SITargetLowering::LowerATOMIC_CMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
3321 AtomicSDNode *AtomicNode = cast<AtomicSDNode>(Op);
3322 assert(AtomicNode->isCompareAndSwap())((AtomicNode->isCompareAndSwap()) ? static_cast<void>
(0) : __assert_fail ("AtomicNode->isCompareAndSwap()", "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3322, __PRETTY_FUNCTION__))
;
3323 unsigned AS = AtomicNode->getAddressSpace();
3324
3325 // No custom lowering required for local address space
3326 if (!isFlatGlobalAddrSpace(AS))
3327 return Op;
3328
3329 // Non-local address space requires custom lowering for atomic compare
3330 // and swap; cmp and swap should be in a v2i32 or v2i64 in case of _X2
3331 SDLoc DL(Op);
3332 SDValue ChainIn = Op.getOperand(0);
3333 SDValue Addr = Op.getOperand(1);
3334 SDValue Old = Op.getOperand(2);
3335 SDValue New = Op.getOperand(3);
3336 EVT VT = Op.getValueType();
3337 MVT SimpleVT = VT.getSimpleVT();
3338 MVT VecType = MVT::getVectorVT(SimpleVT, 2);
3339
3340 SDValue NewOld = DAG.getBuildVector(VecType, DL, {New, Old});
3341 SDValue Ops[] = { ChainIn, Addr, NewOld };
3342
3343 return DAG.getMemIntrinsicNode(AMDGPUISD::ATOMIC_CMP_SWAP, DL, Op->getVTList(),
3344 Ops, VT, AtomicNode->getMemOperand());
3345}
3346
3347//===----------------------------------------------------------------------===//
3348// Custom DAG optimizations
3349//===----------------------------------------------------------------------===//
3350
3351SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N,
3352 DAGCombinerInfo &DCI) const {
3353 EVT VT = N->getValueType(0);
3354 EVT ScalarVT = VT.getScalarType();
3355 if (ScalarVT != MVT::f32)
3356 return SDValue();
3357
3358 SelectionDAG &DAG = DCI.DAG;
3359 SDLoc DL(N);
3360
3361 SDValue Src = N->getOperand(0);
3362 EVT SrcVT = Src.getValueType();
3363
3364 // TODO: We could try to match extracting the higher bytes, which would be
3365 // easier if i8 vectors weren't promoted to i32 vectors, particularly after
3366 // types are legalized. v4i8 -> v4f32 is probably the only case to worry
3367 // about in practice.
3368 if (DCI.isAfterLegalizeVectorOps() && SrcVT == MVT::i32) {
3369 if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) {
3370 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src);
3371 DCI.AddToWorklist(Cvt.getNode());
3372 return Cvt;
3373 }
3374 }
3375
3376 return SDValue();
3377}
3378
3379/// \brief Return true if the given offset Size in bytes can be folded into
3380/// the immediate offsets of a memory instruction for the given address space.
3381static bool canFoldOffset(unsigned OffsetSize, unsigned AS,
3382 const SISubtarget &STI) {
3383 switch (AS) {
3384 case AMDGPUAS::GLOBAL_ADDRESS: {
3385 // MUBUF instructions a 12-bit offset in bytes.
3386 return isUInt<12>(OffsetSize);
3387 }
3388 case AMDGPUAS::CONSTANT_ADDRESS: {
3389 // SMRD instructions have an 8-bit offset in dwords on SI and
3390 // a 20-bit offset in bytes on VI.
3391 if (STI.getGeneration() >= SISubtarget::VOLCANIC_ISLANDS)
3392 return isUInt<20>(OffsetSize);
3393 else
3394 return (OffsetSize % 4 == 0) && isUInt<8>(OffsetSize / 4);
3395 }
3396 case AMDGPUAS::LOCAL_ADDRESS:
3397 case AMDGPUAS::REGION_ADDRESS: {
3398 // The single offset versions have a 16-bit offset in bytes.
3399 return isUInt<16>(OffsetSize);
3400 }
3401 case AMDGPUAS::PRIVATE_ADDRESS:
3402 // Indirect register addressing does not use any offsets.
3403 default:
3404 return 0;
3405 }
3406}
3407
3408// (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2)
3409
3410// This is a variant of
3411// (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2),
3412//
3413// The normal DAG combiner will do this, but only if the add has one use since
3414// that would increase the number of instructions.
3415//
3416// This prevents us from seeing a constant offset that can be folded into a
3417// memory instruction's addressing mode. If we know the resulting add offset of
3418// a pointer can be folded into an addressing offset, we can replace the pointer
3419// operand with the add of new constant offset. This eliminates one of the uses,
3420// and may allow the remaining use to also be simplified.
3421//
3422SDValue SITargetLowering::performSHLPtrCombine(SDNode *N,
3423 unsigned AddrSpace,
3424 DAGCombinerInfo &DCI) const {
3425 SDValue N0 = N->getOperand(0);
3426 SDValue N1 = N->getOperand(1);
3427
3428 if (N0.getOpcode() != ISD::ADD)
3429 return SDValue();
3430
3431 const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1);
3432 if (!CN1)
3433 return SDValue();
3434
3435 const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1));
3436 if (!CAdd)
3437 return SDValue();
3438
3439 // If the resulting offset is too large, we can't fold it into the addressing
3440 // mode offset.
3441 APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue();
3442 if (!canFoldOffset(Offset.getZExtValue(), AddrSpace, *getSubtarget()))
3443 return SDValue();
3444
3445 SelectionDAG &DAG = DCI.DAG;
3446 SDLoc SL(N);
3447 EVT VT = N->getValueType(0);
3448
3449 SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1);
3450 SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32);
3451
3452 return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset);
3453}
3454
3455SDValue SITargetLowering::performMemSDNodeCombine(MemSDNode *N,
3456 DAGCombinerInfo &DCI) const {
3457 SDValue Ptr = N->getBasePtr();
3458 SelectionDAG &DAG = DCI.DAG;
3459 SDLoc SL(N);
3460
3461 // TODO: We could also do this for multiplies.
3462 unsigned AS = N->getAddressSpace();
3463 if (Ptr.getOpcode() == ISD::SHL && AS != AMDGPUAS::PRIVATE_ADDRESS) {
3464 SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), AS, DCI);
3465 if (NewPtr) {
3466 SmallVector<SDValue, 8> NewOps(N->op_begin(), N->op_end());
3467
3468 NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr;
3469 return SDValue(DAG.UpdateNodeOperands(N, NewOps), 0);
3470 }
3471 }
3472
3473 return SDValue();
3474}
3475
3476static bool bitOpWithConstantIsReducible(unsigned Opc, uint32_t Val) {
3477 return (Opc == ISD::AND && (Val == 0 || Val == 0xffffffff)) ||
3478 (Opc == ISD::OR && (Val == 0xffffffff || Val == 0)) ||
3479 (Opc == ISD::XOR && Val == 0);
3480}
3481
3482// Break up 64-bit bit operation of a constant into two 32-bit and/or/xor. This
3483// will typically happen anyway for a VALU 64-bit and. This exposes other 32-bit
3484// integer combine opportunities since most 64-bit operations are decomposed
3485// this way. TODO: We won't want this for SALU especially if it is an inline
3486// immediate.
3487SDValue SITargetLowering::splitBinaryBitConstantOp(
3488 DAGCombinerInfo &DCI,
3489 const SDLoc &SL,
3490 unsigned Opc, SDValue LHS,
3491 const ConstantSDNode *CRHS) const {
3492 uint64_t Val = CRHS->getZExtValue();
3493 uint32_t ValLo = Lo_32(Val);
3494 uint32_t ValHi = Hi_32(Val);
3495 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3496
3497 if ((bitOpWithConstantIsReducible(Opc, ValLo) ||
3498 bitOpWithConstantIsReducible(Opc, ValHi)) ||
3499 (CRHS->hasOneUse() && !TII->isInlineConstant(CRHS->getAPIntValue()))) {
3500 // If we need to materialize a 64-bit immediate, it will be split up later
3501 // anyway. Avoid creating the harder to understand 64-bit immediate
3502 // materialization.
3503 return splitBinaryBitConstantOpImpl(DCI, SL, Opc, LHS, ValLo, ValHi);
3504 }
3505
3506 return SDValue();
3507}
3508
3509SDValue SITargetLowering::performAndCombine(SDNode *N,
3510 DAGCombinerInfo &DCI) const {
3511 if (DCI.isBeforeLegalize())
3512 return SDValue();
3513
3514 SelectionDAG &DAG = DCI.DAG;
3515 EVT VT = N->getValueType(0);
3516 SDValue LHS = N->getOperand(0);
3517 SDValue RHS = N->getOperand(1);
3518
3519
3520 if (VT == MVT::i64) {
3521 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
3522 if (CRHS) {
3523 if (SDValue Split
3524 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::AND, LHS, CRHS))
3525 return Split;
3526 }
3527 }
3528
3529 // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) ->
3530 // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity)
3531 if (LHS.getOpcode() == ISD::SETCC && RHS.getOpcode() == ISD::SETCC) {
3532 ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get();
3533 ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get();
3534
3535 SDValue X = LHS.getOperand(0);
3536 SDValue Y = RHS.getOperand(0);
3537 if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X)
3538 return SDValue();
3539
3540 if (LCC == ISD::SETO) {
3541 if (X != LHS.getOperand(1))
3542 return SDValue();
3543
3544 if (RCC == ISD::SETUNE) {
3545 const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1));
3546 if (!C1 || !C1->isInfinity() || C1->isNegative())
3547 return SDValue();
3548
3549 const uint32_t Mask = SIInstrFlags::N_NORMAL |
3550 SIInstrFlags::N_SUBNORMAL |
3551 SIInstrFlags::N_ZERO |
3552 SIInstrFlags::P_ZERO |
3553 SIInstrFlags::P_SUBNORMAL |
3554 SIInstrFlags::P_NORMAL;
3555
3556 static_assert(((~(SIInstrFlags::S_NAN |
3557 SIInstrFlags::Q_NAN |
3558 SIInstrFlags::N_INFINITY |
3559 SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask,
3560 "mask not equal");
3561
3562 SDLoc DL(N);
3563 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
3564 X, DAG.getConstant(Mask, DL, MVT::i32));
3565 }
3566 }
3567 }
3568
3569 return SDValue();
3570}
3571
3572SDValue SITargetLowering::performOrCombine(SDNode *N,
3573 DAGCombinerInfo &DCI) const {
3574 SelectionDAG &DAG = DCI.DAG;
3575 SDValue LHS = N->getOperand(0);
3576 SDValue RHS = N->getOperand(1);
3577
3578 EVT VT = N->getValueType(0);
3579 if (VT == MVT::i1) {
3580 // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2)
3581 if (LHS.getOpcode() == AMDGPUISD::FP_CLASS &&
3582 RHS.getOpcode() == AMDGPUISD::FP_CLASS) {
3583 SDValue Src = LHS.getOperand(0);
3584 if (Src != RHS.getOperand(0))
3585 return SDValue();
3586
3587 const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1));
3588 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1));
3589 if (!CLHS || !CRHS)
3590 return SDValue();
3591
3592 // Only 10 bits are used.
3593 static const uint32_t MaxMask = 0x3ff;
3594
3595 uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask;
3596 SDLoc DL(N);
3597 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1,
3598 Src, DAG.getConstant(NewMask, DL, MVT::i32));
3599 }
3600
3601 return SDValue();
3602 }
3603
3604 if (VT != MVT::i64)
3605 return SDValue();
3606
3607 // TODO: This could be a generic combine with a predicate for extracting the
3608 // high half of an integer being free.
3609
3610 // (or i64:x, (zero_extend i32:y)) ->
3611 // i64 (bitcast (v2i32 build_vector (or i32:y, lo_32(x)), hi_32(x)))
3612 if (LHS.getOpcode() == ISD::ZERO_EXTEND &&
3613 RHS.getOpcode() != ISD::ZERO_EXTEND)
3614 std::swap(LHS, RHS);
3615
3616 if (RHS.getOpcode() == ISD::ZERO_EXTEND) {
3617 SDValue ExtSrc = RHS.getOperand(0);
3618 EVT SrcVT = ExtSrc.getValueType();
3619 if (SrcVT == MVT::i32) {
3620 SDLoc SL(N);
3621 SDValue LowLHS, HiBits;
3622 std::tie(LowLHS, HiBits) = split64BitValue(LHS, DAG);
3623 SDValue LowOr = DAG.getNode(ISD::OR, SL, MVT::i32, LowLHS, ExtSrc);
3624
3625 DCI.AddToWorklist(LowOr.getNode());
3626 DCI.AddToWorklist(HiBits.getNode());
3627
3628 SDValue Vec = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
3629 LowOr, HiBits);
3630 return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Vec);
3631 }
3632 }
3633
3634 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(N->getOperand(1));
3635 if (CRHS) {
3636 if (SDValue Split
3637 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::OR, LHS, CRHS))
3638 return Split;
3639 }
3640
3641 return SDValue();
3642}
3643
3644SDValue SITargetLowering::performXorCombine(SDNode *N,
3645 DAGCombinerInfo &DCI) const {
3646 EVT VT = N->getValueType(0);
3647 if (VT != MVT::i64)
3648 return SDValue();
3649
3650 SDValue LHS = N->getOperand(0);
3651 SDValue RHS = N->getOperand(1);
3652
3653 const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS);
3654 if (CRHS) {
3655 if (SDValue Split
3656 = splitBinaryBitConstantOp(DCI, SDLoc(N), ISD::XOR, LHS, CRHS))
3657 return Split;
3658 }
3659
3660 return SDValue();
3661}
3662
3663SDValue SITargetLowering::performClassCombine(SDNode *N,
3664 DAGCombinerInfo &DCI) const {
3665 SelectionDAG &DAG = DCI.DAG;
3666 SDValue Mask = N->getOperand(1);
3667
3668 // fp_class x, 0 -> false
3669 if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) {
3670 if (CMask->isNullValue())
3671 return DAG.getConstant(0, SDLoc(N), MVT::i1);
3672 }
3673
3674 if (N->getOperand(0).isUndef())
3675 return DAG.getUNDEF(MVT::i1);
3676
3677 return SDValue();
3678}
3679
3680// Constant fold canonicalize.
3681SDValue SITargetLowering::performFCanonicalizeCombine(
3682 SDNode *N,
3683 DAGCombinerInfo &DCI) const {
3684 ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0));
3685 if (!CFP)
3686 return SDValue();
3687
3688 SelectionDAG &DAG = DCI.DAG;
3689 const APFloat &C = CFP->getValueAPF();
3690
3691 // Flush denormals to 0 if not enabled.
3692 if (C.isDenormal()) {
3693 EVT VT = N->getValueType(0);
3694 if (VT == MVT::f32 && !Subtarget->hasFP32Denormals())
3695 return DAG.getConstantFP(0.0, SDLoc(N), VT);
3696
3697 if (VT == MVT::f64 && !Subtarget->hasFP64Denormals())
3698 return DAG.getConstantFP(0.0, SDLoc(N), VT);
3699
3700 if (VT == MVT::f16 && !Subtarget->hasFP16Denormals())
3701 return DAG.getConstantFP(0.0, SDLoc(N), VT);
3702 }
3703
3704 if (C.isNaN()) {
3705 EVT VT = N->getValueType(0);
3706 APFloat CanonicalQNaN = APFloat::getQNaN(C.getSemantics());
3707 if (C.isSignaling()) {
3708 // Quiet a signaling NaN.
3709 return DAG.getConstantFP(CanonicalQNaN, SDLoc(N), VT);
3710 }
3711
3712 // Make sure it is the canonical NaN bitpattern.
3713 //
3714 // TODO: Can we use -1 as the canonical NaN value since it's an inline
3715 // immediate?
3716 if (C.bitcastToAPInt() != CanonicalQNaN.bitcastToAPInt())
3717 return DAG.getConstantFP(CanonicalQNaN, SDLoc(N), VT);
3718 }
3719
3720 return SDValue(CFP, 0);
3721}
3722
3723static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) {
3724 switch (Opc) {
3725 case ISD::FMAXNUM:
3726 return AMDGPUISD::FMAX3;
3727 case ISD::SMAX:
3728 return AMDGPUISD::SMAX3;
3729 case ISD::UMAX:
3730 return AMDGPUISD::UMAX3;
3731 case ISD::FMINNUM:
3732 return AMDGPUISD::FMIN3;
3733 case ISD::SMIN:
3734 return AMDGPUISD::SMIN3;
3735 case ISD::UMIN:
3736 return AMDGPUISD::UMIN3;
3737 default:
3738 llvm_unreachable("Not a min/max opcode")::llvm::llvm_unreachable_internal("Not a min/max opcode", "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3738)
;
3739 }
3740}
3741
3742static SDValue performIntMed3ImmCombine(SelectionDAG &DAG, const SDLoc &SL,
3743 SDValue Op0, SDValue Op1, bool Signed) {
3744 ConstantSDNode *K1 = dyn_cast<ConstantSDNode>(Op1);
3745 if (!K1)
3746 return SDValue();
3747
3748 ConstantSDNode *K0 = dyn_cast<ConstantSDNode>(Op0.getOperand(1));
3749 if (!K0)
3750 return SDValue();
3751
3752 if (Signed) {
3753 if (K0->getAPIntValue().sge(K1->getAPIntValue()))
3754 return SDValue();
3755 } else {
3756 if (K0->getAPIntValue().uge(K1->getAPIntValue()))
3757 return SDValue();
3758 }
3759
3760 EVT VT = K0->getValueType(0);
3761
3762 MVT NVT = MVT::i32;
3763 unsigned ExtOp = Signed ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3764
3765 SDValue Tmp1, Tmp2, Tmp3;
3766 Tmp1 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(0));
3767 Tmp2 = DAG.getNode(ExtOp, SL, NVT, Op0->getOperand(1));
3768 Tmp3 = DAG.getNode(ExtOp, SL, NVT, Op1);
3769
3770 if (VT == MVT::i16) {
3771 Tmp1 = DAG.getNode(Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3, SL, NVT,
3772 Tmp1, Tmp2, Tmp3);
3773
3774 return DAG.getNode(ISD::TRUNCATE, SL, VT, Tmp1);
3775 } else
3776 return DAG.getNode(Signed ? AMDGPUISD::SMED3 : AMDGPUISD::UMED3, SL, VT,
3777 Op0.getOperand(0), SDValue(K0, 0), SDValue(K1, 0));
3778}
3779
3780static bool isKnownNeverSNan(SelectionDAG &DAG, SDValue Op) {
3781 if (!DAG.getTargetLoweringInfo().hasFloatingPointExceptions())
3782 return true;
3783
3784 return DAG.isKnownNeverNaN(Op);
3785}
3786
3787static SDValue performFPMed3ImmCombine(SelectionDAG &DAG, const SDLoc &SL,
3788 SDValue Op0, SDValue Op1) {
3789 ConstantFPSDNode *K1 = dyn_cast<ConstantFPSDNode>(Op1);
3790 if (!K1)
3791 return SDValue();
3792
3793 ConstantFPSDNode *K0 = dyn_cast<ConstantFPSDNode>(Op0.getOperand(1));
3794 if (!K0)
3795 return SDValue();
3796
3797 // Ordered >= (although NaN inputs should have folded away by now).
3798 APFloat::cmpResult Cmp = K0->getValueAPF().compare(K1->getValueAPF());
3799 if (Cmp == APFloat::cmpGreaterThan)
3800 return SDValue();
3801
3802 // This isn't safe with signaling NaNs because in IEEE mode, min/max on a
3803 // signaling NaN gives a quiet NaN. The quiet NaN input to the min would then
3804 // give the other result, which is different from med3 with a NaN input.
3805 SDValue Var = Op0.getOperand(0);
3806 if (!isKnownNeverSNan(DAG, Var))
3807 return SDValue();
3808
3809 return DAG.getNode(AMDGPUISD::FMED3, SL, K0->getValueType(0),
3810 Var, SDValue(K0, 0), SDValue(K1, 0));
3811}
3812
3813SDValue SITargetLowering::performMinMaxCombine(SDNode *N,
3814 DAGCombinerInfo &DCI) const {
3815 SelectionDAG &DAG = DCI.DAG;
3816
3817 unsigned Opc = N->getOpcode();
3818 SDValue Op0 = N->getOperand(0);
3819 SDValue Op1 = N->getOperand(1);
3820
3821 // Only do this if the inner op has one use since this will just increases
3822 // register pressure for no benefit.
3823
3824 if (Opc != AMDGPUISD::FMIN_LEGACY && Opc != AMDGPUISD::FMAX_LEGACY) {
3825 // max(max(a, b), c) -> max3(a, b, c)
3826 // min(min(a, b), c) -> min3(a, b, c)
3827 if (Op0.getOpcode() == Opc && Op0.hasOneUse()) {
3828 SDLoc DL(N);
3829 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
3830 DL,
3831 N->getValueType(0),
3832 Op0.getOperand(0),
3833 Op0.getOperand(1),
3834 Op1);
3835 }
3836
3837 // Try commuted.
3838 // max(a, max(b, c)) -> max3(a, b, c)
3839 // min(a, min(b, c)) -> min3(a, b, c)
3840 if (Op1.getOpcode() == Opc && Op1.hasOneUse()) {
3841 SDLoc DL(N);
3842 return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc),
3843 DL,
3844 N->getValueType(0),
3845 Op0,
3846 Op1.getOperand(0),
3847 Op1.getOperand(1));
3848 }
3849 }
3850
3851 // min(max(x, K0), K1), K0 < K1 -> med3(x, K0, K1)
3852 if (Opc == ISD::SMIN && Op0.getOpcode() == ISD::SMAX && Op0.hasOneUse()) {
3853 if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, true))
3854 return Med3;
3855 }
3856
3857 if (Opc == ISD::UMIN && Op0.getOpcode() == ISD::UMAX && Op0.hasOneUse()) {
3858 if (SDValue Med3 = performIntMed3ImmCombine(DAG, SDLoc(N), Op0, Op1, false))
3859 return Med3;
3860 }
3861
3862 // fminnum(fmaxnum(x, K0), K1), K0 < K1 && !is_snan(x) -> fmed3(x, K0, K1)
3863 if (((Opc == ISD::FMINNUM && Op0.getOpcode() == ISD::FMAXNUM) ||
3864 (Opc == AMDGPUISD::FMIN_LEGACY &&
3865 Op0.getOpcode() == AMDGPUISD::FMAX_LEGACY)) &&
3866 N->getValueType(0) == MVT::f32 && Op0.hasOneUse()) {
3867 if (SDValue Res = performFPMed3ImmCombine(DAG, SDLoc(N), Op0, Op1))
3868 return Res;
3869 }
3870
3871 return SDValue();
3872}
3873
3874unsigned SITargetLowering::getFusedOpcode(const SelectionDAG &DAG,
3875 const SDNode *N0,
3876 const SDNode *N1) const {
3877 EVT VT = N0->getValueType(0);
3878
3879 // Only do this if we are not trying to support denormals. v_mad_f32 does not
3880 // support denormals ever.
3881 if ((VT == MVT::f32 && !Subtarget->hasFP32Denormals()) ||
3882 (VT == MVT::f16 && !Subtarget->hasFP16Denormals()))
3883 return ISD::FMAD;
3884
3885 const TargetOptions &Options = DAG.getTarget().Options;
3886 if ((Options.AllowFPOpFusion == FPOpFusion::Fast ||
3887 Options.UnsafeFPMath ||
3888 (cast<BinaryWithFlagsSDNode>(N0)->Flags.hasUnsafeAlgebra() &&
3889 cast<BinaryWithFlagsSDNode>(N1)->Flags.hasUnsafeAlgebra())) &&
3890 isFMAFasterThanFMulAndFAdd(VT)) {
3891 return ISD::FMA;
3892 }
3893
3894 return 0;
3895}
3896
3897SDValue SITargetLowering::performFAddCombine(SDNode *N,
3898 DAGCombinerInfo &DCI) const {
3899 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3900 return SDValue();
3901
3902 SelectionDAG &DAG = DCI.DAG;
3903 EVT VT = N->getValueType(0);
3904 assert(!VT.isVector())((!VT.isVector()) ? static_cast<void> (0) : __assert_fail
("!VT.isVector()", "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3904, __PRETTY_FUNCTION__))
;
3905
3906 SDLoc SL(N);
3907 SDValue LHS = N->getOperand(0);
3908 SDValue RHS = N->getOperand(1);
3909
3910 // These should really be instruction patterns, but writing patterns with
3911 // source modiifiers is a pain.
3912
3913 // fadd (fadd (a, a), b) -> mad 2.0, a, b
3914 if (LHS.getOpcode() == ISD::FADD) {
3915 SDValue A = LHS.getOperand(0);
3916 if (A == LHS.getOperand(1)) {
3917 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
3918 if (FusedOp != 0) {
3919 const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
3920 return DAG.getNode(FusedOp, SL, VT, A, Two, RHS);
3921 }
3922 }
3923 }
3924
3925 // fadd (b, fadd (a, a)) -> mad 2.0, a, b
3926 if (RHS.getOpcode() == ISD::FADD) {
3927 SDValue A = RHS.getOperand(0);
3928 if (A == RHS.getOperand(1)) {
3929 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
3930 if (FusedOp != 0) {
3931 const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
3932 return DAG.getNode(FusedOp, SL, VT, A, Two, LHS);
3933 }
3934 }
3935 }
3936
3937 return SDValue();
3938}
3939
3940SDValue SITargetLowering::performFSubCombine(SDNode *N,
3941 DAGCombinerInfo &DCI) const {
3942 if (DCI.getDAGCombineLevel() < AfterLegalizeDAG)
3943 return SDValue();
3944
3945 SelectionDAG &DAG = DCI.DAG;
3946 SDLoc SL(N);
3947 EVT VT = N->getValueType(0);
3948 assert(!VT.isVector())((!VT.isVector()) ? static_cast<void> (0) : __assert_fail
("!VT.isVector()", "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3948, __PRETTY_FUNCTION__))
;
3949
3950 // Try to get the fneg to fold into the source modifier. This undoes generic
3951 // DAG combines and folds them into the mad.
3952 //
3953 // Only do this if we are not trying to support denormals. v_mad_f32 does
3954 // not support denormals ever.
3955 SDValue LHS = N->getOperand(0);
3956 SDValue RHS = N->getOperand(1);
3957 if (LHS.getOpcode() == ISD::FADD) {
3958 // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c)
3959 SDValue A = LHS.getOperand(0);
3960 if (A == LHS.getOperand(1)) {
3961 unsigned FusedOp = getFusedOpcode(DAG, N, LHS.getNode());
3962 if (FusedOp != 0){
3963 const SDValue Two = DAG.getConstantFP(2.0, SL, VT);
3964 SDValue NegRHS = DAG.getNode(ISD::FNEG, SL, VT, RHS);
3965
3966 return DAG.getNode(FusedOp, SL, VT, A, Two, NegRHS);
3967 }
3968 }
3969 }
3970
3971 if (RHS.getOpcode() == ISD::FADD) {
3972 // (fsub c, (fadd a, a)) -> mad -2.0, a, c
3973
3974 SDValue A = RHS.getOperand(0);
3975 if (A == RHS.getOperand(1)) {
3976 unsigned FusedOp = getFusedOpcode(DAG, N, RHS.getNode());
3977 if (FusedOp != 0){
3978 const SDValue NegTwo = DAG.getConstantFP(-2.0, SL, VT);
3979 return DAG.getNode(FusedOp, SL, VT, A, NegTwo, LHS);
3980 }
3981 }
3982 }
3983
3984 return SDValue();
3985}
3986
3987SDValue SITargetLowering::performSetCCCombine(SDNode *N,
3988 DAGCombinerInfo &DCI) const {
3989 SelectionDAG &DAG = DCI.DAG;
3990 SDLoc SL(N);
3991
3992 SDValue LHS = N->getOperand(0);
3993 SDValue RHS = N->getOperand(1);
3994 EVT VT = LHS.getValueType();
3995
3996 if (VT != MVT::f32 && VT != MVT::f64 && (Subtarget->has16BitInsts() &&
3997 VT != MVT::f16))
3998 return SDValue();
3999
4000 // Match isinf pattern
4001 // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity))
4002 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
4003 if (CC == ISD::SETOEQ && LHS.getOpcode() == ISD::FABS) {
4004 const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS);
4005 if (!CRHS)
4006 return SDValue();
4007
4008 const APFloat &APF = CRHS->getValueAPF();
4009 if (APF.isInfinity() && !APF.isNegative()) {
4010 unsigned Mask = SIInstrFlags::P_INFINITY | SIInstrFlags::N_INFINITY;
4011 return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0),
4012 DAG.getConstant(Mask, SL, MVT::i32));
4013 }
4014 }
4015
4016 return SDValue();
4017}
4018
4019SDValue SITargetLowering::performCvtF32UByteNCombine(SDNode *N,
4020 DAGCombinerInfo &DCI) const {
4021 SelectionDAG &DAG = DCI.DAG;
4022 SDLoc SL(N);
4023 unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0;
4024
4025 SDValue Src = N->getOperand(0);
4026 SDValue Srl = N->getOperand(0);
4027 if (Srl.getOpcode() == ISD::ZERO_EXTEND)
4028 Srl = Srl.getOperand(0);
4029
4030 // TODO: Handle (or x, (srl y, 8)) pattern when known bits are zero.
4031 if (Srl.getOpcode() == ISD::SRL) {
4032 // cvt_f32_ubyte0 (srl x, 16) -> cvt_f32_ubyte2 x
4033 // cvt_f32_ubyte1 (srl x, 16) -> cvt_f32_ubyte3 x
4034 // cvt_f32_ubyte0 (srl x, 8) -> cvt_f32_ubyte1 x
4035
4036 if (const ConstantSDNode *C =
4037 dyn_cast<ConstantSDNode>(Srl.getOperand(1))) {
4038 Srl = DAG.getZExtOrTrunc(Srl.getOperand(0), SDLoc(Srl.getOperand(0)),
4039 EVT(MVT::i32));
4040
4041 unsigned SrcOffset = C->getZExtValue() + 8 * Offset;
4042 if (SrcOffset < 32 && SrcOffset % 8 == 0) {
4043 return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0 + SrcOffset / 8, SL,
4044 MVT::f32, Srl);
4045 }
4046 }
4047 }
4048
4049 APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8);
4050
4051 APInt KnownZero, KnownOne;
4052 TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
4053 !DCI.isBeforeLegalizeOps());
4054 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4055 if (TLO.ShrinkDemandedConstant(Src, Demanded) ||
4056 TLI.SimplifyDemandedBits(Src, Demanded, KnownZero, KnownOne, TLO)) {
4057 DCI.CommitTargetLoweringOpt(TLO);
4058 }
4059
4060 return SDValue();
4061}
4062
4063SDValue SITargetLowering::PerformDAGCombine(SDNode *N,
4064 DAGCombinerInfo &DCI) const {
4065 switch (N->getOpcode()) {
4066 default:
4067 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
4068 case ISD::FADD:
4069 return performFAddCombine(N, DCI);
4070 case ISD::FSUB:
4071 return performFSubCombine(N, DCI);
4072 case ISD::SETCC:
4073 return performSetCCCombine(N, DCI);
4074 case ISD::FMAXNUM:
4075 case ISD::FMINNUM:
4076 case ISD::SMAX:
4077 case ISD::SMIN:
4078 case ISD::UMAX:
4079 case ISD::UMIN:
4080 case AMDGPUISD::FMIN_LEGACY:
4081 case AMDGPUISD::FMAX_LEGACY: {
4082 if (DCI.getDAGCombineLevel() >= AfterLegalizeDAG &&
4083 N->getValueType(0) != MVT::f64 &&
4084 getTargetMachine().getOptLevel() > CodeGenOpt::None)
4085 return performMinMaxCombine(N, DCI);
4086 break;
4087 }
4088 case ISD::LOAD:
4089 case ISD::STORE:
4090 case ISD::ATOMIC_LOAD:
4091 case ISD::ATOMIC_STORE:
4092 case ISD::ATOMIC_CMP_SWAP:
4093 case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS:
4094 case ISD::ATOMIC_SWAP:
4095 case ISD::ATOMIC_LOAD_ADD:
4096 case ISD::ATOMIC_LOAD_SUB:
4097 case ISD::ATOMIC_LOAD_AND:
4098 case ISD::ATOMIC_LOAD_OR:
4099 case ISD::ATOMIC_LOAD_XOR:
4100 case ISD::ATOMIC_LOAD_NAND:
4101 case ISD::ATOMIC_LOAD_MIN:
4102 case ISD::ATOMIC_LOAD_MAX:
4103 case ISD::ATOMIC_LOAD_UMIN:
4104 case ISD::ATOMIC_LOAD_UMAX:
4105 case AMDGPUISD::ATOMIC_INC:
4106 case AMDGPUISD::ATOMIC_DEC: { // TODO: Target mem intrinsics.
4107 if (DCI.isBeforeLegalize())
4108 break;
4109 return performMemSDNodeCombine(cast<MemSDNode>(N), DCI);
4110 }
4111 case ISD::AND:
4112 return performAndCombine(N, DCI);
4113 case ISD::OR:
4114 return performOrCombine(N, DCI);
4115 case ISD::XOR:
4116 return performXorCombine(N, DCI);
4117 case AMDGPUISD::FP_CLASS:
4118 return performClassCombine(N, DCI);
4119 case ISD::FCANONICALIZE:
4120 return performFCanonicalizeCombine(N, DCI);
4121 case AMDGPUISD::FRACT:
4122 case AMDGPUISD::RCP:
4123 case AMDGPUISD::RSQ:
4124 case AMDGPUISD::RCP_LEGACY:
4125 case AMDGPUISD::RSQ_LEGACY:
4126 case AMDGPUISD::RSQ_CLAMP:
4127 case AMDGPUISD::LDEXP: {
4128 SDValue Src = N->getOperand(0);
4129 if (Src.isUndef())
4130 return Src;
4131 break;
4132 }
4133 case ISD::SINT_TO_FP:
4134 case ISD::UINT_TO_FP:
4135 return performUCharToFloatCombine(N, DCI);
4136 case AMDGPUISD::CVT_F32_UBYTE0:
4137 case AMDGPUISD::CVT_F32_UBYTE1:
4138 case AMDGPUISD::CVT_F32_UBYTE2:
4139 case AMDGPUISD::CVT_F32_UBYTE3:
4140 return performCvtF32UByteNCombine(N, DCI);
4141 }
4142 return AMDGPUTargetLowering::PerformDAGCombine(N, DCI);
4143}
4144
4145/// \brief Helper function for adjustWritemask
4146static unsigned SubIdx2Lane(unsigned Idx) {
4147 switch (Idx) {
4148 default: return 0;
4149 case AMDGPU::sub0: return 0;
4150 case AMDGPU::sub1: return 1;
4151 case AMDGPU::sub2: return 2;
4152 case AMDGPU::sub3: return 3;
4153 }
4154}
4155
4156/// \brief Adjust the writemask of MIMG instructions
4157void SITargetLowering::adjustWritemask(MachineSDNode *&Node,
4158 SelectionDAG &DAG) const {
4159 SDNode *Users[4] = { };
4160 unsigned Lane = 0;
4161 unsigned DmaskIdx = (Node->getNumOperands() - Node->getNumValues() == 9) ? 2 : 3;
4162 unsigned OldDmask = Node->getConstantOperandVal(DmaskIdx);
4163 unsigned NewDmask = 0;
4164
4165 // Try to figure out the used register components
4166 for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end();
4167 I != E; ++I) {
4168
4169 // Abort if we can't understand the usage
4170 if (!I->isMachineOpcode() ||
4171 I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG)
4172 return;
4173
4174 // Lane means which subreg of %VGPRa_VGPRb_VGPRc_VGPRd is used.
4175 // Note that subregs are packed, i.e. Lane==0 is the first bit set
4176 // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit
4177 // set, etc.
4178 Lane = SubIdx2Lane(I->getConstantOperandVal(1));
4179
4180 // Set which texture component corresponds to the lane.
4181 unsigned Comp;
4182 for (unsigned i = 0, Dmask = OldDmask; i <= Lane; i++) {
4183 assert(Dmask)((Dmask) ? static_cast<void> (0) : __assert_fail ("Dmask"
, "/tmp/buildd/llvm-toolchain-snapshot-4.0~svn290870/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4183, __PRETTY_FUNCTION__))
;
4184 Comp = countTrailingZeros(Dmask);
4185 Dmask &= ~(1 << Comp);
4186 }
4187
4188 // Abort if we have more than one user per component
4189 if (Users[Lane])
4190 return;
4191
4192 Users[Lane] = *I;
4193 NewDmask |= 1 << Comp;
4194 }
4195
4196 // Abort if there's no change
4197 if (NewDmask == OldDmask)
4198 return;
4199
4200 // Adjust the writemask in the node
4201 std::vector<SDValue> Ops;
4202 Ops.insert(Ops.end(), Node->op_begin(), Node->op_begin() + DmaskIdx);
4203 Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32));
4204 Ops.insert(Ops.end(), Node->op_begin() + DmaskIdx + 1, Node->op_end());
4205 Node = (MachineSDNode*)DAG.UpdateNodeOperands(Node, Ops);
4206
4207 // If we only got one lane, replace it with a copy
4208 // (if NewDmask has only one bit set...)
4209 if (NewDmask && (NewDmask & (NewDmask-1)) == 0) {
4210 SDValue RC = DAG.getTargetConstant(AMDGPU::VGPR_32RegClassID, SDLoc(),
4211 MVT::i32);
4212 SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS,
4213 SDLoc(), Users[Lane]->getValueType(0),
4214 SDValue(Node, 0), RC);
4215 DAG.ReplaceAllUsesWith(Users[Lane], Copy);
4216 return;
4217 }
4218
4219 // Update the users of the node with the new indices
4220 for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) {
4221
4222 SDNode *User = Users[i];
4223 if (!User)
4224 continue;
4225
4226 SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32);
4227 DAG.UpdateNodeOperands(User, User->getOperand(0), Op);
4228
4229 switch (Idx) {
4230 default: break;
4231 case AMDGPU::sub0: Idx = AMDGPU::sub1; break;
4232 case AMDGPU::sub1: Idx = AMDGPU::sub2; break;
4233 case AMDGPU::sub2: Idx = AMDGPU::sub3; break;
4234 }
4235 }
4236}
4237
4238static bool isFrameIndexOp(SDValue Op) {
4239 if (Op.getOpcode() == ISD::AssertZext)
4240 Op = Op.getOperand(0);
4241
4242 return isa<FrameIndexSDNode>(Op);
4243}
4244
4245/// \brief Legalize target independent instructions (e.g. INSERT_SUBREG)
4246/// with frame index operands.
4247/// LLVM assumes that inputs are to these instructions are registers.
4248void SITargetLowering::legalizeTargetIndependentNode(SDNode *Node,
4249 SelectionDAG &DAG) const {
4250
4251 SmallVector<SDValue, 8> Ops;
4252 for (unsigned i = 0; i < Node->getNumOperands(); ++i) {
4253 if (!isFrameIndexOp(Node->getOperand(i))) {
4254 Ops.push_back(Node->getOperand(i));
4255 continue;
4256 }
4257
4258 SDLoc DL(Node);
4259 Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL,
4260 Node->getOperand(i).getValueType(),
4261 Node->getOperand(i)), 0));
4262 }
4263
4264 DAG.UpdateNodeOperands(Node, Ops);
4265}
4266
4267/// \brief Fold the instructions after selecting them.
4268SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node,
4269 SelectionDAG &DAG) const {
4270 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4271 unsigned Opcode = Node->getMachineOpcode();
4272
4273 if (TII->isMIMG(Opcode) && !TII->get(Opcode).mayStore() &&
4274 !TII->isGather4(Opcode))
4275 adjustWritemask(Node, DAG);
4276
4277 if (Opcode == AMDGPU::INSERT_SUBREG ||
4278 Opcode == AMDGPU::REG_SEQUENCE) {
4279 legalizeTargetIndependentNode(Node, DAG);
4280 return Node;
4281 }
4282 return Node;
4283}
4284
4285/// \brief Assign the register class depending on the number of
4286/// bits set in the writemask
4287void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr &MI,
4288 SDNode *Node) const {
4289 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4290
4291 MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo();
4292
4293 if (TII->isVOP3(MI.getOpcode())) {
4294 // Make sure constant bus requirements are respected.
4295 TII->legalizeOperandsVOP3(MRI, MI);
4296 return;
4297 }
4298
4299 if (TII->isMIMG(MI)) {
4300 unsigned VReg = MI.getOperand(0).getReg();
4301 const TargetRegisterClass *RC = MRI.getRegClass(VReg);
4302 // TODO: Need mapping tables to handle other cases (register classes).
4303 if (RC != &AMDGPU::VReg_128RegClass)
4304 return;
4305
4306 unsigned DmaskIdx = MI.getNumOperands() == 12 ? 3 : 4;
4307 unsigned Writemask = MI.getOperand(DmaskIdx).getImm();
4308 unsigned BitsSet = 0;
4309 for (unsigned i = 0; i < 4; ++i)
4310 BitsSet += Writemask & (1 << i) ? 1 : 0;
4311 switch (BitsSet) {
4312 default: return;
4313 case 1: RC = &AMDGPU::VGPR_32RegClass; break;
4314 case 2: RC = &AMDGPU::VReg_64RegClass; break;
4315 case 3: RC = &AMDGPU::VReg_96RegClass; break;
4316 }
4317
4318 unsigned NewOpcode = TII->getMaskedMIMGOp(MI.getOpcode(), BitsSet);
4319 MI.setDesc(TII->get(NewOpcode));
4320 MRI.setRegClass(VReg, RC);
4321 return;
4322 }
4323
4324 // Replace unused atomics with the no return version.
4325 int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI.getOpcode());
4326 if (NoRetAtomicOp != -1) {
4327 if (!Node->hasAnyUseOfValue(0)) {
4328 MI.setDesc(TII->get(NoRetAtomicOp));
4329 MI.RemoveOperand(0);
4330 return;
4331 }
4332
4333 // For mubuf_atomic_cmpswap, we need to have tablegen use an extract_subreg
4334 // instruction, because the return type of these instructions is a vec2 of
4335 // the memory type, so it can be tied to the input operand.
4336 // This means these instructions always have a use, so we need to add a
4337 // special case to check if the atomic has only one extract_subreg use,
4338 // which itself has no uses.
4339 if ((Node->hasNUsesOfValue(1, 0) &&
4340 Node->use_begin()->isMachineOpcode() &&
4341 Node->use_begin()->getMachineOpcode() == AMDGPU::EXTRACT_SUBREG &&
4342 !Node->use_begin()->hasAnyUseOfValue(0))) {
4343 unsigned Def = MI.getOperand(0).getReg();
4344
4345 // Change this into a noret atomic.
4346 MI.setDesc(TII->get(NoRetAtomicOp));
4347 MI.RemoveOperand(0);
4348
4349 // If we only remove the def operand from the atomic instruction, the
4350 // extract_subreg will be left with a use of a vreg without a def.
4351 // So we need to insert an implicit_def to avoid machine verifier
4352 // errors.
4353 BuildMI(*MI.getParent(), MI, MI.getDebugLoc(),
4354 TII->get(AMDGPU::IMPLICIT_DEF), Def);
4355 }
4356 return;
4357 }
4358}
4359
4360static SDValue buildSMovImm32(SelectionDAG &DAG, const SDLoc &DL,
4361 uint64_t Val) {
4362 SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32);
4363 return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0);
4364}
4365
4366MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG,
4367 const SDLoc &DL,
4368 SDValue Ptr) const {
4369 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
4370
4371 // Build the half of the subregister with the constants before building the
4372 // full 128-bit register. If we are building multiple resource descriptors,
4373 // this will allow CSEing of the 2-component register.
4374 const SDValue Ops0[] = {
4375 DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32),
4376 buildSMovImm32(DAG, DL, 0),
4377 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
4378 buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32),
4379 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32)
4380 };
4381
4382 SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL,
4383 MVT::v2i32, Ops0), 0);
4384
4385 // Combine the constants and the pointer.
4386 const SDValue Ops1[] = {
4387 DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
4388 Ptr,
4389 DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32),
4390 SubRegHi,
4391 DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32)
4392 };
4393
4394 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1);
4395}
4396
4397/// \brief Return a resource descriptor with the 'Add TID' bit enabled
4398/// The TID (Thread ID) is multiplied by the stride value (bits [61:48]
4399/// of the resource descriptor) to create an offset, which is added to
4400/// the resource pointer.
4401MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, const SDLoc &DL,
4402 SDValue Ptr, uint32_t RsrcDword1,
4403 uint64_t RsrcDword2And3) const {
4404 SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr);
4405 SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr);
4406 if (RsrcDword1) {
4407 PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi,
4408 DAG.getConstant(RsrcDword1, DL, MVT::i32)),
4409 0);
4410 }
4411
4412 SDValue DataLo = buildSMovImm32(DAG, DL,
4413 RsrcDword2And3 & UINT64_C(0xFFFFFFFF)0xFFFFFFFFUL);
4414 SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32);
4415
4416 const SDValue Ops[] = {
4417 DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32),
4418 PtrLo,
4419 DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32),
4420 PtrHi,
4421 DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32),
4422 DataLo,
4423 DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32),
4424 DataHi,
4425 DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32)
4426 };
4427
4428 return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops);
4429}
4430
4431SDValue SITargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
4432 const TargetRegisterClass *RC,
4433 unsigned Reg, EVT VT) const {
4434 SDValue VReg = AMDGPUTargetLowering::CreateLiveInRegister(DAG, RC, Reg, VT);
4435
4436 return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(DAG.getEntryNode()),
4437 cast<RegisterSDNode>(VReg)->getReg(), VT);
4438}
4439
4440//===----------------------------------------------------------------------===//
4441// SI Inline Assembly Support
4442//===----------------------------------------------------------------------===//
4443
4444std::pair<unsigned, const TargetRegisterClass *>
4445SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI,
4446 StringRef Constraint,
4447 MVT VT) const {
4448 if (!isTypeLegal(VT))
4449 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
4450
4451 if (Constraint.size() == 1) {
4452 switch (Constraint[0]) {
4453 case 's':
4454 case 'r':
4455 switch (VT.getSizeInBits()) {
4456 default:
4457 return std::make_pair(0U, nullptr);
4458 case 32:
4459 case 16:
4460 return std::make_pair(0U, &AMDGPU::SReg_32_XM0RegClass);
4461 case 64:
4462 return std::make_pair(0U, &AMDGPU::SGPR_64RegClass);
4463 case 128:
4464 return std::make_pair(0U, &AMDGPU::SReg_128RegClass);
4465 case 256:
4466 return std::make_pair(0U, &AMDGPU::SReg_256RegClass);
4467 }
4468
4469 case 'v':
4470 switch (VT.getSizeInBits()) {
4471 default:
4472 return std::make_pair(0U, nullptr);
4473 case 32:
4474 case 16:
4475 return std::make_pair(0U, &AMDGPU::VGPR_32RegClass);
4476 case 64:
4477 return std::make_pair(0U, &AMDGPU::VReg_64RegClass);
4478 case 96:
4479 return std::make_pair(0U, &AMDGPU::VReg_96RegClass);
4480 case 128:
4481 return std::make_pair(0U, &AMDGPU::VReg_128RegClass);
4482 case 256:
4483 return std::make_pair(0U, &AMDGPU::VReg_256RegClass);
4484 case 512:
4485 return std::make_pair(0U, &AMDGPU::VReg_512RegClass);
4486 }
4487 }
4488 }
4489
4490 if (Constraint.size() > 1) {
4491 const TargetRegisterClass *RC = nullptr;
4492 if (Constraint[1] == 'v') {
4493 RC = &AMDGPU::VGPR_32RegClass;
4494 } else if (Constraint[1] == 's') {
4495 RC = &AMDGPU::SGPR_32RegClass;
4496 }
4497
4498 if (RC) {
4499 uint32_t Idx;
4500 bool Failed = Constraint.substr(2).getAsInteger(10, Idx);
4501 if (!Failed && Idx < RC->getNumRegs())
4502 return std::make_pair(RC->getRegister(Idx), RC);
4503 }
4504 }
4505 return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT);
4506}
4507
4508SITargetLowering::ConstraintType
4509SITargetLowering::getConstraintType(StringRef Constraint) const {
4510 if (Constraint.size() == 1) {
4511 switch (Constraint[0]) {
4512 default: break;
4513 case 's':
4514 case 'v':
4515 return C_RegisterClass;
4516 }
4517 }
4518 return TargetLowering::getConstraintType(Constraint);
4519}