Bug Summary

File:include/llvm/CodeGen/SelectionDAGNodes.h
Warning:line 1163, column 10
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SIISelLowering.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-10/lib/clang/10.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-10~svn374814/build-llvm/lib/Target/AMDGPU -I /build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU -I /build/llvm-toolchain-snapshot-10~svn374814/build-llvm/include -I /build/llvm-toolchain-snapshot-10~svn374814/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-10/lib/clang/10.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-10~svn374814/build-llvm/lib/Target/AMDGPU -fdebug-prefix-map=/build/llvm-toolchain-snapshot-10~svn374814=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2019-10-15-035155-28452-1 -x c++ /build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp

/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp

1//===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// Custom DAG lowering for SI
11//
12//===----------------------------------------------------------------------===//
13
14#if defined(_MSC_VER) || defined(__MINGW32__)
15// Provide M_PI.
16#define _USE_MATH_DEFINES
17#endif
18
19#include "SIISelLowering.h"
20#include "AMDGPU.h"
21#include "AMDGPUSubtarget.h"
22#include "AMDGPUTargetMachine.h"
23#include "SIDefines.h"
24#include "SIInstrInfo.h"
25#include "SIMachineFunctionInfo.h"
26#include "SIRegisterInfo.h"
27#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
28#include "Utils/AMDGPUBaseInfo.h"
29#include "llvm/ADT/APFloat.h"
30#include "llvm/ADT/APInt.h"
31#include "llvm/ADT/ArrayRef.h"
32#include "llvm/ADT/BitVector.h"
33#include "llvm/ADT/SmallVector.h"
34#include "llvm/ADT/Statistic.h"
35#include "llvm/ADT/StringRef.h"
36#include "llvm/ADT/StringSwitch.h"
37#include "llvm/ADT/Twine.h"
38#include "llvm/CodeGen/Analysis.h"
39#include "llvm/CodeGen/CallingConvLower.h"
40#include "llvm/CodeGen/DAGCombine.h"
41#include "llvm/CodeGen/ISDOpcodes.h"
42#include "llvm/CodeGen/MachineBasicBlock.h"
43#include "llvm/CodeGen/MachineFrameInfo.h"
44#include "llvm/CodeGen/MachineFunction.h"
45#include "llvm/CodeGen/MachineInstr.h"
46#include "llvm/CodeGen/MachineInstrBuilder.h"
47#include "llvm/CodeGen/MachineMemOperand.h"
48#include "llvm/CodeGen/MachineModuleInfo.h"
49#include "llvm/CodeGen/MachineOperand.h"
50#include "llvm/CodeGen/MachineRegisterInfo.h"
51#include "llvm/CodeGen/SelectionDAG.h"
52#include "llvm/CodeGen/SelectionDAGNodes.h"
53#include "llvm/CodeGen/TargetCallingConv.h"
54#include "llvm/CodeGen/TargetRegisterInfo.h"
55#include "llvm/CodeGen/ValueTypes.h"
56#include "llvm/IR/Constants.h"
57#include "llvm/IR/DataLayout.h"
58#include "llvm/IR/DebugLoc.h"
59#include "llvm/IR/DerivedTypes.h"
60#include "llvm/IR/DiagnosticInfo.h"
61#include "llvm/IR/Function.h"
62#include "llvm/IR/GlobalValue.h"
63#include "llvm/IR/InstrTypes.h"
64#include "llvm/IR/Instruction.h"
65#include "llvm/IR/Instructions.h"
66#include "llvm/IR/IntrinsicInst.h"
67#include "llvm/IR/Type.h"
68#include "llvm/Support/Casting.h"
69#include "llvm/Support/CodeGen.h"
70#include "llvm/Support/CommandLine.h"
71#include "llvm/Support/Compiler.h"
72#include "llvm/Support/ErrorHandling.h"
73#include "llvm/Support/KnownBits.h"
74#include "llvm/Support/MachineValueType.h"
75#include "llvm/Support/MathExtras.h"
76#include "llvm/Target/TargetOptions.h"
77#include <cassert>
78#include <cmath>
79#include <cstdint>
80#include <iterator>
81#include <tuple>
82#include <utility>
83#include <vector>
84
85using namespace llvm;
86
87#define DEBUG_TYPE"si-lower" "si-lower"
88
89STATISTIC(NumTailCalls, "Number of tail calls")static llvm::Statistic NumTailCalls = {"si-lower", "NumTailCalls"
, "Number of tail calls"}
;
90
91static cl::opt<bool> EnableVGPRIndexMode(
92 "amdgpu-vgpr-index-mode",
93 cl::desc("Use GPR indexing mode instead of movrel for vector indexing"),
94 cl::init(false));
95
96static cl::opt<bool> DisableLoopAlignment(
97 "amdgpu-disable-loop-alignment",
98 cl::desc("Do not align and prefetch loops"),
99 cl::init(false));
100
101static unsigned findFirstFreeSGPR(CCState &CCInfo) {
102 unsigned NumSGPRs = AMDGPU::SGPR_32RegClass.getNumRegs();
103 for (unsigned Reg = 0; Reg < NumSGPRs; ++Reg) {
104 if (!CCInfo.isAllocated(AMDGPU::SGPR0 + Reg)) {
105 return AMDGPU::SGPR0 + Reg;
106 }
107 }
108 llvm_unreachable("Cannot allocate sgpr")::llvm::llvm_unreachable_internal("Cannot allocate sgpr", "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 108)
;
109}
110
111SITargetLowering::SITargetLowering(const TargetMachine &TM,
112 const GCNSubtarget &STI)
113 : AMDGPUTargetLowering(TM, STI),
114 Subtarget(&STI) {
115 addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass);
116 addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass);
117
118 addRegisterClass(MVT::i32, &AMDGPU::SReg_32_XM0RegClass);
119 addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass);
120
121 addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass);
122 addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass);
123 addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass);
124
125 addRegisterClass(MVT::v3i32, &AMDGPU::SGPR_96RegClass);
126 addRegisterClass(MVT::v3f32, &AMDGPU::VReg_96RegClass);
127
128 addRegisterClass(MVT::v2i64, &AMDGPU::SGPR_128RegClass);
129 addRegisterClass(MVT::v2f64, &AMDGPU::SGPR_128RegClass);
130
131 addRegisterClass(MVT::v4i32, &AMDGPU::SGPR_128RegClass);
132 addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass);
133
134 addRegisterClass(MVT::v5i32, &AMDGPU::SGPR_160RegClass);
135 addRegisterClass(MVT::v5f32, &AMDGPU::VReg_160RegClass);
136
137 addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass);
138 addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass);
139
140 addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass);
141 addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass);
142
143 if (Subtarget->has16BitInsts()) {
144 addRegisterClass(MVT::i16, &AMDGPU::SReg_32_XM0RegClass);
145 addRegisterClass(MVT::f16, &AMDGPU::SReg_32_XM0RegClass);
146
147 // Unless there are also VOP3P operations, not operations are really legal.
148 addRegisterClass(MVT::v2i16, &AMDGPU::SReg_32_XM0RegClass);
149 addRegisterClass(MVT::v2f16, &AMDGPU::SReg_32_XM0RegClass);
150 addRegisterClass(MVT::v4i16, &AMDGPU::SReg_64RegClass);
151 addRegisterClass(MVT::v4f16, &AMDGPU::SReg_64RegClass);
152 }
153
154 if (Subtarget->hasMAIInsts()) {
155 addRegisterClass(MVT::v32i32, &AMDGPU::VReg_1024RegClass);
156 addRegisterClass(MVT::v32f32, &AMDGPU::VReg_1024RegClass);
157 }
158
159 computeRegisterProperties(Subtarget->getRegisterInfo());
160
161 // We need to custom lower vector stores from local memory
162 setOperationAction(ISD::LOAD, MVT::v2i32, Custom);
163 setOperationAction(ISD::LOAD, MVT::v3i32, Custom);
164 setOperationAction(ISD::LOAD, MVT::v4i32, Custom);
165 setOperationAction(ISD::LOAD, MVT::v5i32, Custom);
166 setOperationAction(ISD::LOAD, MVT::v8i32, Custom);
167 setOperationAction(ISD::LOAD, MVT::v16i32, Custom);
168 setOperationAction(ISD::LOAD, MVT::i1, Custom);
169 setOperationAction(ISD::LOAD, MVT::v32i32, Custom);
170
171 setOperationAction(ISD::STORE, MVT::v2i32, Custom);
172 setOperationAction(ISD::STORE, MVT::v3i32, Custom);
173 setOperationAction(ISD::STORE, MVT::v4i32, Custom);
174 setOperationAction(ISD::STORE, MVT::v5i32, Custom);
175 setOperationAction(ISD::STORE, MVT::v8i32, Custom);
176 setOperationAction(ISD::STORE, MVT::v16i32, Custom);
177 setOperationAction(ISD::STORE, MVT::i1, Custom);
178 setOperationAction(ISD::STORE, MVT::v32i32, Custom);
179
180 setTruncStoreAction(MVT::v2i32, MVT::v2i16, Expand);
181 setTruncStoreAction(MVT::v3i32, MVT::v3i16, Expand);
182 setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
183 setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand);
184 setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand);
185 setTruncStoreAction(MVT::v32i32, MVT::v32i16, Expand);
186 setTruncStoreAction(MVT::v2i32, MVT::v2i8, Expand);
187 setTruncStoreAction(MVT::v4i32, MVT::v4i8, Expand);
188 setTruncStoreAction(MVT::v8i32, MVT::v8i8, Expand);
189 setTruncStoreAction(MVT::v16i32, MVT::v16i8, Expand);
190 setTruncStoreAction(MVT::v32i32, MVT::v32i8, Expand);
191
192 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
193 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
194
195 setOperationAction(ISD::SELECT, MVT::i1, Promote);
196 setOperationAction(ISD::SELECT, MVT::i64, Custom);
197 setOperationAction(ISD::SELECT, MVT::f64, Promote);
198 AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64);
199
200 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
201 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
202 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
203 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
204 setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
205
206 setOperationAction(ISD::SETCC, MVT::i1, Promote);
207 setOperationAction(ISD::SETCC, MVT::v2i1, Expand);
208 setOperationAction(ISD::SETCC, MVT::v4i1, Expand);
209 AddPromotedToType(ISD::SETCC, MVT::i1, MVT::i32);
210
211 setOperationAction(ISD::TRUNCATE, MVT::v2i32, Expand);
212 setOperationAction(ISD::FP_ROUND, MVT::v2f32, Expand);
213
214 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom);
215 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom);
216 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom);
217 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom);
218 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom);
219 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v3i16, Custom);
220 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom);
221 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom);
222
223 setOperationAction(ISD::BRCOND, MVT::Other, Custom);
224 setOperationAction(ISD::BR_CC, MVT::i1, Expand);
225 setOperationAction(ISD::BR_CC, MVT::i32, Expand);
226 setOperationAction(ISD::BR_CC, MVT::i64, Expand);
227 setOperationAction(ISD::BR_CC, MVT::f32, Expand);
228 setOperationAction(ISD::BR_CC, MVT::f64, Expand);
229
230 setOperationAction(ISD::UADDO, MVT::i32, Legal);
231 setOperationAction(ISD::USUBO, MVT::i32, Legal);
232
233 setOperationAction(ISD::ADDCARRY, MVT::i32, Legal);
234 setOperationAction(ISD::SUBCARRY, MVT::i32, Legal);
235
236 setOperationAction(ISD::SHL_PARTS, MVT::i64, Expand);
237 setOperationAction(ISD::SRA_PARTS, MVT::i64, Expand);
238 setOperationAction(ISD::SRL_PARTS, MVT::i64, Expand);
239
240#if 0
241 setOperationAction(ISD::ADDCARRY, MVT::i64, Legal);
242 setOperationAction(ISD::SUBCARRY, MVT::i64, Legal);
243#endif
244
245 // We only support LOAD/STORE and vector manipulation ops for vectors
246 // with > 4 elements.
247 for (MVT VT : { MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32,
248 MVT::v2i64, MVT::v2f64, MVT::v4i16, MVT::v4f16,
249 MVT::v32i32, MVT::v32f32 }) {
250 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
251 switch (Op) {
252 case ISD::LOAD:
253 case ISD::STORE:
254 case ISD::BUILD_VECTOR:
255 case ISD::BITCAST:
256 case ISD::EXTRACT_VECTOR_ELT:
257 case ISD::INSERT_VECTOR_ELT:
258 case ISD::INSERT_SUBVECTOR:
259 case ISD::EXTRACT_SUBVECTOR:
260 case ISD::SCALAR_TO_VECTOR:
261 break;
262 case ISD::CONCAT_VECTORS:
263 setOperationAction(Op, VT, Custom);
264 break;
265 default:
266 setOperationAction(Op, VT, Expand);
267 break;
268 }
269 }
270 }
271
272 setOperationAction(ISD::FP_EXTEND, MVT::v4f32, Expand);
273
274 // TODO: For dynamic 64-bit vector inserts/extracts, should emit a pseudo that
275 // is expanded to avoid having two separate loops in case the index is a VGPR.
276
277 // Most operations are naturally 32-bit vector operations. We only support
278 // load and store of i64 vectors, so promote v2i64 vector operations to v4i32.
279 for (MVT Vec64 : { MVT::v2i64, MVT::v2f64 }) {
280 setOperationAction(ISD::BUILD_VECTOR, Vec64, Promote);
281 AddPromotedToType(ISD::BUILD_VECTOR, Vec64, MVT::v4i32);
282
283 setOperationAction(ISD::EXTRACT_VECTOR_ELT, Vec64, Promote);
284 AddPromotedToType(ISD::EXTRACT_VECTOR_ELT, Vec64, MVT::v4i32);
285
286 setOperationAction(ISD::INSERT_VECTOR_ELT, Vec64, Promote);
287 AddPromotedToType(ISD::INSERT_VECTOR_ELT, Vec64, MVT::v4i32);
288
289 setOperationAction(ISD::SCALAR_TO_VECTOR, Vec64, Promote);
290 AddPromotedToType(ISD::SCALAR_TO_VECTOR, Vec64, MVT::v4i32);
291 }
292
293 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand);
294 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand);
295 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand);
296 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand);
297
298 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f16, Custom);
299 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i16, Custom);
300
301 // Avoid stack access for these.
302 // TODO: Generalize to more vector types.
303 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i16, Custom);
304 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2f16, Custom);
305 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
306 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
307
308 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
309 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
310 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i8, Custom);
311 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i8, Custom);
312 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v8i8, Custom);
313
314 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v2i8, Custom);
315 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i8, Custom);
316 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v8i8, Custom);
317
318 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4i16, Custom);
319 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v4f16, Custom);
320 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4i16, Custom);
321 setOperationAction(ISD::INSERT_VECTOR_ELT, MVT::v4f16, Custom);
322
323 // Deal with vec3 vector operations when widened to vec4.
324 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3i32, Custom);
325 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v3f32, Custom);
326 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4i32, Custom);
327 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v4f32, Custom);
328
329 // Deal with vec5 vector operations when widened to vec8.
330 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5i32, Custom);
331 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v5f32, Custom);
332 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8i32, Custom);
333 setOperationAction(ISD::INSERT_SUBVECTOR, MVT::v8f32, Custom);
334
335 // BUFFER/FLAT_ATOMIC_CMP_SWAP on GCN GPUs needs input marshalling,
336 // and output demarshalling
337 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i32, Custom);
338 setOperationAction(ISD::ATOMIC_CMP_SWAP, MVT::i64, Custom);
339
340 // We can't return success/failure, only the old value,
341 // let LLVM add the comparison
342 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i32, Expand);
343 setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, MVT::i64, Expand);
344
345 if (Subtarget->hasFlatAddressSpace()) {
346 setOperationAction(ISD::ADDRSPACECAST, MVT::i32, Custom);
347 setOperationAction(ISD::ADDRSPACECAST, MVT::i64, Custom);
348 }
349
350 setOperationAction(ISD::BSWAP, MVT::i32, Legal);
351 setOperationAction(ISD::BITREVERSE, MVT::i32, Legal);
352
353 // On SI this is s_memtime and s_memrealtime on VI.
354 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
355 setOperationAction(ISD::TRAP, MVT::Other, Custom);
356 setOperationAction(ISD::DEBUGTRAP, MVT::Other, Custom);
357
358 if (Subtarget->has16BitInsts()) {
359 setOperationAction(ISD::FLOG, MVT::f16, Custom);
360 setOperationAction(ISD::FEXP, MVT::f16, Custom);
361 setOperationAction(ISD::FLOG10, MVT::f16, Custom);
362 }
363
364 // v_mad_f32 does not support denormals according to some sources.
365 if (!Subtarget->hasFP32Denormals())
366 setOperationAction(ISD::FMAD, MVT::f32, Legal);
367
368 if (!Subtarget->hasBFI()) {
369 // fcopysign can be done in a single instruction with BFI.
370 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
371 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
372 }
373
374 if (!Subtarget->hasBCNT(32))
375 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
376
377 if (!Subtarget->hasBCNT(64))
378 setOperationAction(ISD::CTPOP, MVT::i64, Expand);
379
380 if (Subtarget->hasFFBH())
381 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Custom);
382
383 if (Subtarget->hasFFBL())
384 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Custom);
385
386 // We only really have 32-bit BFE instructions (and 16-bit on VI).
387 //
388 // On SI+ there are 64-bit BFEs, but they are scalar only and there isn't any
389 // effort to match them now. We want this to be false for i64 cases when the
390 // extraction isn't restricted to the upper or lower half. Ideally we would
391 // have some pass reduce 64-bit extracts to 32-bit if possible. Extracts that
392 // span the midpoint are probably relatively rare, so don't worry about them
393 // for now.
394 if (Subtarget->hasBFE())
395 setHasExtractBitsInsn(true);
396
397 setOperationAction(ISD::FMINNUM, MVT::f32, Custom);
398 setOperationAction(ISD::FMAXNUM, MVT::f32, Custom);
399 setOperationAction(ISD::FMINNUM, MVT::f64, Custom);
400 setOperationAction(ISD::FMAXNUM, MVT::f64, Custom);
401
402
403 // These are really only legal for ieee_mode functions. We should be avoiding
404 // them for functions that don't have ieee_mode enabled, so just say they are
405 // legal.
406 setOperationAction(ISD::FMINNUM_IEEE, MVT::f32, Legal);
407 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f32, Legal);
408 setOperationAction(ISD::FMINNUM_IEEE, MVT::f64, Legal);
409 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f64, Legal);
410
411
412 if (Subtarget->haveRoundOpsF64()) {
413 setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
414 setOperationAction(ISD::FCEIL, MVT::f64, Legal);
415 setOperationAction(ISD::FRINT, MVT::f64, Legal);
416 } else {
417 setOperationAction(ISD::FCEIL, MVT::f64, Custom);
418 setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
419 setOperationAction(ISD::FRINT, MVT::f64, Custom);
420 setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
421 }
422
423 setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
424
425 setOperationAction(ISD::FSIN, MVT::f32, Custom);
426 setOperationAction(ISD::FCOS, MVT::f32, Custom);
427 setOperationAction(ISD::FDIV, MVT::f32, Custom);
428 setOperationAction(ISD::FDIV, MVT::f64, Custom);
429
430 if (Subtarget->has16BitInsts()) {
431 setOperationAction(ISD::Constant, MVT::i16, Legal);
432
433 setOperationAction(ISD::SMIN, MVT::i16, Legal);
434 setOperationAction(ISD::SMAX, MVT::i16, Legal);
435
436 setOperationAction(ISD::UMIN, MVT::i16, Legal);
437 setOperationAction(ISD::UMAX, MVT::i16, Legal);
438
439 setOperationAction(ISD::SIGN_EXTEND, MVT::i16, Promote);
440 AddPromotedToType(ISD::SIGN_EXTEND, MVT::i16, MVT::i32);
441
442 setOperationAction(ISD::ROTR, MVT::i16, Promote);
443 setOperationAction(ISD::ROTL, MVT::i16, Promote);
444
445 setOperationAction(ISD::SDIV, MVT::i16, Promote);
446 setOperationAction(ISD::UDIV, MVT::i16, Promote);
447 setOperationAction(ISD::SREM, MVT::i16, Promote);
448 setOperationAction(ISD::UREM, MVT::i16, Promote);
449
450 setOperationAction(ISD::BSWAP, MVT::i16, Promote);
451 setOperationAction(ISD::BITREVERSE, MVT::i16, Promote);
452
453 setOperationAction(ISD::CTTZ, MVT::i16, Promote);
454 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i16, Promote);
455 setOperationAction(ISD::CTLZ, MVT::i16, Promote);
456 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i16, Promote);
457 setOperationAction(ISD::CTPOP, MVT::i16, Promote);
458
459 setOperationAction(ISD::SELECT_CC, MVT::i16, Expand);
460
461 setOperationAction(ISD::BR_CC, MVT::i16, Expand);
462
463 setOperationAction(ISD::LOAD, MVT::i16, Custom);
464
465 setTruncStoreAction(MVT::i64, MVT::i16, Expand);
466
467 setOperationAction(ISD::FP16_TO_FP, MVT::i16, Promote);
468 AddPromotedToType(ISD::FP16_TO_FP, MVT::i16, MVT::i32);
469 setOperationAction(ISD::FP_TO_FP16, MVT::i16, Promote);
470 AddPromotedToType(ISD::FP_TO_FP16, MVT::i16, MVT::i32);
471
472 setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
473 setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
474 setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
475 setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
476
477 // F16 - Constant Actions.
478 setOperationAction(ISD::ConstantFP, MVT::f16, Legal);
479
480 // F16 - Load/Store Actions.
481 setOperationAction(ISD::LOAD, MVT::f16, Promote);
482 AddPromotedToType(ISD::LOAD, MVT::f16, MVT::i16);
483 setOperationAction(ISD::STORE, MVT::f16, Promote);
484 AddPromotedToType(ISD::STORE, MVT::f16, MVT::i16);
485
486 // F16 - VOP1 Actions.
487 setOperationAction(ISD::FP_ROUND, MVT::f16, Custom);
488 setOperationAction(ISD::FCOS, MVT::f16, Promote);
489 setOperationAction(ISD::FSIN, MVT::f16, Promote);
490 setOperationAction(ISD::FP_TO_SINT, MVT::f16, Promote);
491 setOperationAction(ISD::FP_TO_UINT, MVT::f16, Promote);
492 setOperationAction(ISD::SINT_TO_FP, MVT::f16, Promote);
493 setOperationAction(ISD::UINT_TO_FP, MVT::f16, Promote);
494 setOperationAction(ISD::FROUND, MVT::f16, Custom);
495
496 // F16 - VOP2 Actions.
497 setOperationAction(ISD::BR_CC, MVT::f16, Expand);
498 setOperationAction(ISD::SELECT_CC, MVT::f16, Expand);
499
500 setOperationAction(ISD::FDIV, MVT::f16, Custom);
501
502 // F16 - VOP3 Actions.
503 setOperationAction(ISD::FMA, MVT::f16, Legal);
504 if (!Subtarget->hasFP16Denormals() && STI.hasMadF16())
505 setOperationAction(ISD::FMAD, MVT::f16, Legal);
506
507 for (MVT VT : {MVT::v2i16, MVT::v2f16, MVT::v4i16, MVT::v4f16}) {
508 for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) {
509 switch (Op) {
510 case ISD::LOAD:
511 case ISD::STORE:
512 case ISD::BUILD_VECTOR:
513 case ISD::BITCAST:
514 case ISD::EXTRACT_VECTOR_ELT:
515 case ISD::INSERT_VECTOR_ELT:
516 case ISD::INSERT_SUBVECTOR:
517 case ISD::EXTRACT_SUBVECTOR:
518 case ISD::SCALAR_TO_VECTOR:
519 break;
520 case ISD::CONCAT_VECTORS:
521 setOperationAction(Op, VT, Custom);
522 break;
523 default:
524 setOperationAction(Op, VT, Expand);
525 break;
526 }
527 }
528 }
529
530 // XXX - Do these do anything? Vector constants turn into build_vector.
531 setOperationAction(ISD::Constant, MVT::v2i16, Legal);
532 setOperationAction(ISD::ConstantFP, MVT::v2f16, Legal);
533
534 setOperationAction(ISD::UNDEF, MVT::v2i16, Legal);
535 setOperationAction(ISD::UNDEF, MVT::v2f16, Legal);
536
537 setOperationAction(ISD::STORE, MVT::v2i16, Promote);
538 AddPromotedToType(ISD::STORE, MVT::v2i16, MVT::i32);
539 setOperationAction(ISD::STORE, MVT::v2f16, Promote);
540 AddPromotedToType(ISD::STORE, MVT::v2f16, MVT::i32);
541
542 setOperationAction(ISD::LOAD, MVT::v2i16, Promote);
543 AddPromotedToType(ISD::LOAD, MVT::v2i16, MVT::i32);
544 setOperationAction(ISD::LOAD, MVT::v2f16, Promote);
545 AddPromotedToType(ISD::LOAD, MVT::v2f16, MVT::i32);
546
547 setOperationAction(ISD::AND, MVT::v2i16, Promote);
548 AddPromotedToType(ISD::AND, MVT::v2i16, MVT::i32);
549 setOperationAction(ISD::OR, MVT::v2i16, Promote);
550 AddPromotedToType(ISD::OR, MVT::v2i16, MVT::i32);
551 setOperationAction(ISD::XOR, MVT::v2i16, Promote);
552 AddPromotedToType(ISD::XOR, MVT::v2i16, MVT::i32);
553
554 setOperationAction(ISD::LOAD, MVT::v4i16, Promote);
555 AddPromotedToType(ISD::LOAD, MVT::v4i16, MVT::v2i32);
556 setOperationAction(ISD::LOAD, MVT::v4f16, Promote);
557 AddPromotedToType(ISD::LOAD, MVT::v4f16, MVT::v2i32);
558
559 setOperationAction(ISD::STORE, MVT::v4i16, Promote);
560 AddPromotedToType(ISD::STORE, MVT::v4i16, MVT::v2i32);
561 setOperationAction(ISD::STORE, MVT::v4f16, Promote);
562 AddPromotedToType(ISD::STORE, MVT::v4f16, MVT::v2i32);
563
564 setOperationAction(ISD::ANY_EXTEND, MVT::v2i32, Expand);
565 setOperationAction(ISD::ZERO_EXTEND, MVT::v2i32, Expand);
566 setOperationAction(ISD::SIGN_EXTEND, MVT::v2i32, Expand);
567 setOperationAction(ISD::FP_EXTEND, MVT::v2f32, Expand);
568
569 setOperationAction(ISD::ANY_EXTEND, MVT::v4i32, Expand);
570 setOperationAction(ISD::ZERO_EXTEND, MVT::v4i32, Expand);
571 setOperationAction(ISD::SIGN_EXTEND, MVT::v4i32, Expand);
572
573 if (!Subtarget->hasVOP3PInsts()) {
574 setOperationAction(ISD::BUILD_VECTOR, MVT::v2i16, Custom);
575 setOperationAction(ISD::BUILD_VECTOR, MVT::v2f16, Custom);
576 }
577
578 setOperationAction(ISD::FNEG, MVT::v2f16, Legal);
579 // This isn't really legal, but this avoids the legalizer unrolling it (and
580 // allows matching fneg (fabs x) patterns)
581 setOperationAction(ISD::FABS, MVT::v2f16, Legal);
582
583 setOperationAction(ISD::FMAXNUM, MVT::f16, Custom);
584 setOperationAction(ISD::FMINNUM, MVT::f16, Custom);
585 setOperationAction(ISD::FMAXNUM_IEEE, MVT::f16, Legal);
586 setOperationAction(ISD::FMINNUM_IEEE, MVT::f16, Legal);
587
588 setOperationAction(ISD::FMINNUM_IEEE, MVT::v4f16, Custom);
589 setOperationAction(ISD::FMAXNUM_IEEE, MVT::v4f16, Custom);
590
591 setOperationAction(ISD::FMINNUM, MVT::v4f16, Expand);
592 setOperationAction(ISD::FMAXNUM, MVT::v4f16, Expand);
593 }
594
595 if (Subtarget->hasVOP3PInsts()) {
596 setOperationAction(ISD::ADD, MVT::v2i16, Legal);
597 setOperationAction(ISD::SUB, MVT::v2i16, Legal);
598 setOperationAction(ISD::MUL, MVT::v2i16, Legal);
599 setOperationAction(ISD::SHL, MVT::v2i16, Legal);
600 setOperationAction(ISD::SRL, MVT::v2i16, Legal);
601 setOperationAction(ISD::SRA, MVT::v2i16, Legal);
602 setOperationAction(ISD::SMIN, MVT::v2i16, Legal);
603 setOperationAction(ISD::UMIN, MVT::v2i16, Legal);
604 setOperationAction(ISD::SMAX, MVT::v2i16, Legal);
605 setOperationAction(ISD::UMAX, MVT::v2i16, Legal);
606
607 setOperationAction(ISD::FADD, MVT::v2f16, Legal);
608 setOperationAction(ISD::FMUL, MVT::v2f16, Legal);
609 setOperationAction(ISD::FMA, MVT::v2f16, Legal);
610
611 setOperationAction(ISD::FMINNUM_IEEE, MVT::v2f16, Legal);
612 setOperationAction(ISD::FMAXNUM_IEEE, MVT::v2f16, Legal);
613
614 setOperationAction(ISD::FCANONICALIZE, MVT::v2f16, Legal);
615
616 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2i16, Custom);
617 setOperationAction(ISD::EXTRACT_VECTOR_ELT, MVT::v2f16, Custom);
618
619 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4f16, Custom);
620 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v4i16, Custom);
621
622 setOperationAction(ISD::SHL, MVT::v4i16, Custom);
623 setOperationAction(ISD::SRA, MVT::v4i16, Custom);
624 setOperationAction(ISD::SRL, MVT::v4i16, Custom);
625 setOperationAction(ISD::ADD, MVT::v4i16, Custom);
626 setOperationAction(ISD::SUB, MVT::v4i16, Custom);
627 setOperationAction(ISD::MUL, MVT::v4i16, Custom);
628
629 setOperationAction(ISD::SMIN, MVT::v4i16, Custom);
630 setOperationAction(ISD::SMAX, MVT::v4i16, Custom);
631 setOperationAction(ISD::UMIN, MVT::v4i16, Custom);
632 setOperationAction(ISD::UMAX, MVT::v4i16, Custom);
633
634 setOperationAction(ISD::FADD, MVT::v4f16, Custom);
635 setOperationAction(ISD::FMUL, MVT::v4f16, Custom);
636 setOperationAction(ISD::FMA, MVT::v4f16, Custom);
637
638 setOperationAction(ISD::FMAXNUM, MVT::v2f16, Custom);
639 setOperationAction(ISD::FMINNUM, MVT::v2f16, Custom);
640
641 setOperationAction(ISD::FMINNUM, MVT::v4f16, Custom);
642 setOperationAction(ISD::FMAXNUM, MVT::v4f16, Custom);
643 setOperationAction(ISD::FCANONICALIZE, MVT::v4f16, Custom);
644
645 setOperationAction(ISD::FEXP, MVT::v2f16, Custom);
646 setOperationAction(ISD::SELECT, MVT::v4i16, Custom);
647 setOperationAction(ISD::SELECT, MVT::v4f16, Custom);
648 }
649
650 setOperationAction(ISD::FNEG, MVT::v4f16, Custom);
651 setOperationAction(ISD::FABS, MVT::v4f16, Custom);
652
653 if (Subtarget->has16BitInsts()) {
654 setOperationAction(ISD::SELECT, MVT::v2i16, Promote);
655 AddPromotedToType(ISD::SELECT, MVT::v2i16, MVT::i32);
656 setOperationAction(ISD::SELECT, MVT::v2f16, Promote);
657 AddPromotedToType(ISD::SELECT, MVT::v2f16, MVT::i32);
658 } else {
659 // Legalization hack.
660 setOperationAction(ISD::SELECT, MVT::v2i16, Custom);
661 setOperationAction(ISD::SELECT, MVT::v2f16, Custom);
662
663 setOperationAction(ISD::FNEG, MVT::v2f16, Custom);
664 setOperationAction(ISD::FABS, MVT::v2f16, Custom);
665 }
666
667 for (MVT VT : { MVT::v4i16, MVT::v4f16, MVT::v2i8, MVT::v4i8, MVT::v8i8 }) {
668 setOperationAction(ISD::SELECT, VT, Custom);
669 }
670
671 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
672 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom);
673 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom);
674 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::i16, Custom);
675 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f16, Custom);
676 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2i16, Custom);
677 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v2f16, Custom);
678
679 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2f16, Custom);
680 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v2i16, Custom);
681 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4f16, Custom);
682 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v4i16, Custom);
683 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::v8f16, Custom);
684 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::Other, Custom);
685 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::f16, Custom);
686 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i16, Custom);
687 setOperationAction(ISD::INTRINSIC_W_CHAIN, MVT::i8, Custom);
688
689 setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom);
690 setOperationAction(ISD::INTRINSIC_VOID, MVT::v2i16, Custom);
691 setOperationAction(ISD::INTRINSIC_VOID, MVT::v2f16, Custom);
692 setOperationAction(ISD::INTRINSIC_VOID, MVT::v4f16, Custom);
693 setOperationAction(ISD::INTRINSIC_VOID, MVT::v4i16, Custom);
694 setOperationAction(ISD::INTRINSIC_VOID, MVT::f16, Custom);
695 setOperationAction(ISD::INTRINSIC_VOID, MVT::i16, Custom);
696 setOperationAction(ISD::INTRINSIC_VOID, MVT::i8, Custom);
697
698 setTargetDAGCombine(ISD::ADD);
699 setTargetDAGCombine(ISD::ADDCARRY);
700 setTargetDAGCombine(ISD::SUB);
701 setTargetDAGCombine(ISD::SUBCARRY);
702 setTargetDAGCombine(ISD::FADD);
703 setTargetDAGCombine(ISD::FSUB);
704 setTargetDAGCombine(ISD::FMINNUM);
705 setTargetDAGCombine(ISD::FMAXNUM);
706 setTargetDAGCombine(ISD::FMINNUM_IEEE);
707 setTargetDAGCombine(ISD::FMAXNUM_IEEE);
708 setTargetDAGCombine(ISD::FMA);
709 setTargetDAGCombine(ISD::SMIN);
710 setTargetDAGCombine(ISD::SMAX);
711 setTargetDAGCombine(ISD::UMIN);
712 setTargetDAGCombine(ISD::UMAX);
713 setTargetDAGCombine(ISD::SETCC);
714 setTargetDAGCombine(ISD::AND);
715 setTargetDAGCombine(ISD::OR);
716 setTargetDAGCombine(ISD::XOR);
717 setTargetDAGCombine(ISD::SINT_TO_FP);
718 setTargetDAGCombine(ISD::UINT_TO_FP);
719 setTargetDAGCombine(ISD::FCANONICALIZE);
720 setTargetDAGCombine(ISD::SCALAR_TO_VECTOR);
721 setTargetDAGCombine(ISD::ZERO_EXTEND);
722 setTargetDAGCombine(ISD::SIGN_EXTEND_INREG);
723 setTargetDAGCombine(ISD::EXTRACT_VECTOR_ELT);
724 setTargetDAGCombine(ISD::INSERT_VECTOR_ELT);
725
726 // All memory operations. Some folding on the pointer operand is done to help
727 // matching the constant offsets in the addressing modes.
728 setTargetDAGCombine(ISD::LOAD);
729 setTargetDAGCombine(ISD::STORE);
730 setTargetDAGCombine(ISD::ATOMIC_LOAD);
731 setTargetDAGCombine(ISD::ATOMIC_STORE);
732 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP);
733 setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS);
734 setTargetDAGCombine(ISD::ATOMIC_SWAP);
735 setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD);
736 setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB);
737 setTargetDAGCombine(ISD::ATOMIC_LOAD_AND);
738 setTargetDAGCombine(ISD::ATOMIC_LOAD_OR);
739 setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR);
740 setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND);
741 setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN);
742 setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX);
743 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN);
744 setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX);
745 setTargetDAGCombine(ISD::ATOMIC_LOAD_FADD);
746
747 setSchedulingPreference(Sched::RegPressure);
748}
749
750const GCNSubtarget *SITargetLowering::getSubtarget() const {
751 return Subtarget;
752}
753
754//===----------------------------------------------------------------------===//
755// TargetLowering queries
756//===----------------------------------------------------------------------===//
757
758// v_mad_mix* support a conversion from f16 to f32.
759//
760// There is only one special case when denormals are enabled we don't currently,
761// where this is OK to use.
762bool SITargetLowering::isFPExtFoldable(unsigned Opcode,
763 EVT DestVT, EVT SrcVT) const {
764 return ((Opcode == ISD::FMAD && Subtarget->hasMadMixInsts()) ||
765 (Opcode == ISD::FMA && Subtarget->hasFmaMixInsts())) &&
766 DestVT.getScalarType() == MVT::f32 && !Subtarget->hasFP32Denormals() &&
767 SrcVT.getScalarType() == MVT::f16;
768}
769
770bool SITargetLowering::isShuffleMaskLegal(ArrayRef<int>, EVT) const {
771 // SI has some legal vector types, but no legal vector operations. Say no
772 // shuffles are legal in order to prefer scalarizing some vector operations.
773 return false;
774}
775
776MVT SITargetLowering::getRegisterTypeForCallingConv(LLVMContext &Context,
777 CallingConv::ID CC,
778 EVT VT) const {
779 if (CC == CallingConv::AMDGPU_KERNEL)
780 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
781
782 if (VT.isVector()) {
783 EVT ScalarVT = VT.getScalarType();
784 unsigned Size = ScalarVT.getSizeInBits();
785 if (Size == 32)
786 return ScalarVT.getSimpleVT();
787
788 if (Size > 32)
789 return MVT::i32;
790
791 if (Size == 16 && Subtarget->has16BitInsts())
792 return VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
793 } else if (VT.getSizeInBits() > 32)
794 return MVT::i32;
795
796 return TargetLowering::getRegisterTypeForCallingConv(Context, CC, VT);
797}
798
799unsigned SITargetLowering::getNumRegistersForCallingConv(LLVMContext &Context,
800 CallingConv::ID CC,
801 EVT VT) const {
802 if (CC == CallingConv::AMDGPU_KERNEL)
803 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
804
805 if (VT.isVector()) {
806 unsigned NumElts = VT.getVectorNumElements();
807 EVT ScalarVT = VT.getScalarType();
808 unsigned Size = ScalarVT.getSizeInBits();
809
810 if (Size == 32)
811 return NumElts;
812
813 if (Size > 32)
814 return NumElts * ((Size + 31) / 32);
815
816 if (Size == 16 && Subtarget->has16BitInsts())
817 return (NumElts + 1) / 2;
818 } else if (VT.getSizeInBits() > 32)
819 return (VT.getSizeInBits() + 31) / 32;
820
821 return TargetLowering::getNumRegistersForCallingConv(Context, CC, VT);
822}
823
824unsigned SITargetLowering::getVectorTypeBreakdownForCallingConv(
825 LLVMContext &Context, CallingConv::ID CC,
826 EVT VT, EVT &IntermediateVT,
827 unsigned &NumIntermediates, MVT &RegisterVT) const {
828 if (CC != CallingConv::AMDGPU_KERNEL && VT.isVector()) {
829 unsigned NumElts = VT.getVectorNumElements();
830 EVT ScalarVT = VT.getScalarType();
831 unsigned Size = ScalarVT.getSizeInBits();
832 if (Size == 32) {
833 RegisterVT = ScalarVT.getSimpleVT();
834 IntermediateVT = RegisterVT;
835 NumIntermediates = NumElts;
836 return NumIntermediates;
837 }
838
839 if (Size > 32) {
840 RegisterVT = MVT::i32;
841 IntermediateVT = RegisterVT;
842 NumIntermediates = NumElts * ((Size + 31) / 32);
843 return NumIntermediates;
844 }
845
846 // FIXME: We should fix the ABI to be the same on targets without 16-bit
847 // support, but unless we can properly handle 3-vectors, it will be still be
848 // inconsistent.
849 if (Size == 16 && Subtarget->has16BitInsts()) {
850 RegisterVT = VT.isInteger() ? MVT::v2i16 : MVT::v2f16;
851 IntermediateVT = RegisterVT;
852 NumIntermediates = (NumElts + 1) / 2;
853 return NumIntermediates;
854 }
855 }
856
857 return TargetLowering::getVectorTypeBreakdownForCallingConv(
858 Context, CC, VT, IntermediateVT, NumIntermediates, RegisterVT);
859}
860
861static MVT memVTFromAggregate(Type *Ty) {
862 // Only limited forms of aggregate type currently expected.
863 assert(Ty->isStructTy() && "Expected struct type")((Ty->isStructTy() && "Expected struct type") ? static_cast
<void> (0) : __assert_fail ("Ty->isStructTy() && \"Expected struct type\""
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 863, __PRETTY_FUNCTION__))
;
864
865
866 Type *ElementType = nullptr;
867 unsigned NumElts;
868 if (Ty->getContainedType(0)->isVectorTy()) {
869 VectorType *VecComponent = cast<VectorType>(Ty->getContainedType(0));
870 ElementType = VecComponent->getElementType();
871 NumElts = VecComponent->getNumElements();
872 } else {
873 ElementType = Ty->getContainedType(0);
874 NumElts = 1;
875 }
876
877 assert((Ty->getContainedType(1) && Ty->getContainedType(1)->isIntegerTy(32)) && "Expected int32 type")(((Ty->getContainedType(1) && Ty->getContainedType
(1)->isIntegerTy(32)) && "Expected int32 type") ? static_cast
<void> (0) : __assert_fail ("(Ty->getContainedType(1) && Ty->getContainedType(1)->isIntegerTy(32)) && \"Expected int32 type\""
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 877, __PRETTY_FUNCTION__))
;
878
879 // Calculate the size of the memVT type from the aggregate
880 unsigned Pow2Elts = 0;
881 unsigned ElementSize;
882 switch (ElementType->getTypeID()) {
883 default:
884 llvm_unreachable("Unknown type!")::llvm::llvm_unreachable_internal("Unknown type!", "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 884)
;
885 case Type::IntegerTyID:
886 ElementSize = cast<IntegerType>(ElementType)->getBitWidth();
887 break;
888 case Type::HalfTyID:
889 ElementSize = 16;
890 break;
891 case Type::FloatTyID:
892 ElementSize = 32;
893 break;
894 }
895 unsigned AdditionalElts = ElementSize == 16 ? 2 : 1;
896 Pow2Elts = 1 << Log2_32_Ceil(NumElts + AdditionalElts);
897
898 return MVT::getVectorVT(MVT::getVT(ElementType, false),
899 Pow2Elts);
900}
901
902bool SITargetLowering::getTgtMemIntrinsic(IntrinsicInfo &Info,
903 const CallInst &CI,
904 MachineFunction &MF,
905 unsigned IntrID) const {
906 if (const AMDGPU::RsrcIntrinsic *RsrcIntr =
907 AMDGPU::lookupRsrcIntrinsic(IntrID)) {
908 AttributeList Attr = Intrinsic::getAttributes(CI.getContext(),
909 (Intrinsic::ID)IntrID);
910 if (Attr.hasFnAttribute(Attribute::ReadNone))
911 return false;
912
913 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
914
915 if (RsrcIntr->IsImage) {
916 Info.ptrVal = MFI->getImagePSV(
917 *MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
918 CI.getArgOperand(RsrcIntr->RsrcArg));
919 Info.align.reset();
920 } else {
921 Info.ptrVal = MFI->getBufferPSV(
922 *MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
923 CI.getArgOperand(RsrcIntr->RsrcArg));
924 }
925
926 Info.flags = MachineMemOperand::MODereferenceable;
927 if (Attr.hasFnAttribute(Attribute::ReadOnly)) {
928 Info.opc = ISD::INTRINSIC_W_CHAIN;
929 Info.memVT = MVT::getVT(CI.getType(), true);
930 if (Info.memVT == MVT::Other) {
931 // Some intrinsics return an aggregate type - special case to work out
932 // the correct memVT
933 Info.memVT = memVTFromAggregate(CI.getType());
934 }
935 Info.flags |= MachineMemOperand::MOLoad;
936 } else if (Attr.hasFnAttribute(Attribute::WriteOnly)) {
937 Info.opc = ISD::INTRINSIC_VOID;
938 Info.memVT = MVT::getVT(CI.getArgOperand(0)->getType());
939 Info.flags |= MachineMemOperand::MOStore;
940 } else {
941 // Atomic
942 Info.opc = ISD::INTRINSIC_W_CHAIN;
943 Info.memVT = MVT::getVT(CI.getType());
944 Info.flags = MachineMemOperand::MOLoad |
945 MachineMemOperand::MOStore |
946 MachineMemOperand::MODereferenceable;
947
948 // XXX - Should this be volatile without known ordering?
949 Info.flags |= MachineMemOperand::MOVolatile;
950 }
951 return true;
952 }
953
954 switch (IntrID) {
955 case Intrinsic::amdgcn_atomic_inc:
956 case Intrinsic::amdgcn_atomic_dec:
957 case Intrinsic::amdgcn_ds_ordered_add:
958 case Intrinsic::amdgcn_ds_ordered_swap:
959 case Intrinsic::amdgcn_ds_fadd:
960 case Intrinsic::amdgcn_ds_fmin:
961 case Intrinsic::amdgcn_ds_fmax: {
962 Info.opc = ISD::INTRINSIC_W_CHAIN;
963 Info.memVT = MVT::getVT(CI.getType());
964 Info.ptrVal = CI.getOperand(0);
965 Info.align.reset();
966 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
967
968 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(4));
969 if (!Vol->isZero())
970 Info.flags |= MachineMemOperand::MOVolatile;
971
972 return true;
973 }
974 case Intrinsic::amdgcn_buffer_atomic_fadd: {
975 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
976
977 Info.opc = ISD::INTRINSIC_VOID;
978 Info.memVT = MVT::getVT(CI.getOperand(0)->getType());
979 Info.ptrVal = MFI->getBufferPSV(
980 *MF.getSubtarget<GCNSubtarget>().getInstrInfo(),
981 CI.getArgOperand(1));
982 Info.align.reset();
983 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
984
985 const ConstantInt *Vol = dyn_cast<ConstantInt>(CI.getOperand(4));
986 if (!Vol || !Vol->isZero())
987 Info.flags |= MachineMemOperand::MOVolatile;
988
989 return true;
990 }
991 case Intrinsic::amdgcn_global_atomic_fadd: {
992 Info.opc = ISD::INTRINSIC_VOID;
993 Info.memVT = MVT::getVT(CI.getOperand(0)->getType()
994 ->getPointerElementType());
995 Info.ptrVal = CI.getOperand(0);
996 Info.align.reset();
997 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
998
999 return true;
1000 }
1001 case Intrinsic::amdgcn_ds_append:
1002 case Intrinsic::amdgcn_ds_consume: {
1003 Info.opc = ISD::INTRINSIC_W_CHAIN;
1004 Info.memVT = MVT::getVT(CI.getType());
1005 Info.ptrVal = CI.getOperand(0);
1006 Info.align.reset();
1007 Info.flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
1008
1009 const ConstantInt *Vol = cast<ConstantInt>(CI.getOperand(1));
1010 if (!Vol->isZero())
1011 Info.flags |= MachineMemOperand::MOVolatile;
1012
1013 return true;
1014 }
1015 case Intrinsic::amdgcn_ds_gws_init:
1016 case Intrinsic::amdgcn_ds_gws_barrier:
1017 case Intrinsic::amdgcn_ds_gws_sema_v:
1018 case Intrinsic::amdgcn_ds_gws_sema_br:
1019 case Intrinsic::amdgcn_ds_gws_sema_p:
1020 case Intrinsic::amdgcn_ds_gws_sema_release_all: {
1021 Info.opc = ISD::INTRINSIC_VOID;
1022
1023 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
1024 Info.ptrVal =
1025 MFI->getGWSPSV(*MF.getSubtarget<GCNSubtarget>().getInstrInfo());
1026
1027 // This is an abstract access, but we need to specify a type and size.
1028 Info.memVT = MVT::i32;
1029 Info.size = 4;
1030 Info.align = Align(4);
1031
1032 Info.flags = MachineMemOperand::MOStore;
1033 if (IntrID == Intrinsic::amdgcn_ds_gws_barrier)
1034 Info.flags = MachineMemOperand::MOLoad;
1035 return true;
1036 }
1037 default:
1038 return false;
1039 }
1040}
1041
1042bool SITargetLowering::getAddrModeArguments(IntrinsicInst *II,
1043 SmallVectorImpl<Value*> &Ops,
1044 Type *&AccessTy) const {
1045 switch (II->getIntrinsicID()) {
1046 case Intrinsic::amdgcn_atomic_inc:
1047 case Intrinsic::amdgcn_atomic_dec:
1048 case Intrinsic::amdgcn_ds_ordered_add:
1049 case Intrinsic::amdgcn_ds_ordered_swap:
1050 case Intrinsic::amdgcn_ds_fadd:
1051 case Intrinsic::amdgcn_ds_fmin:
1052 case Intrinsic::amdgcn_ds_fmax: {
1053 Value *Ptr = II->getArgOperand(0);
1054 AccessTy = II->getType();
1055 Ops.push_back(Ptr);
1056 return true;
1057 }
1058 default:
1059 return false;
1060 }
1061}
1062
1063bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const {
1064 if (!Subtarget->hasFlatInstOffsets()) {
1065 // Flat instructions do not have offsets, and only have the register
1066 // address.
1067 return AM.BaseOffs == 0 && AM.Scale == 0;
1068 }
1069
1070 // GFX9 added a 13-bit signed offset. When using regular flat instructions,
1071 // the sign bit is ignored and is treated as a 12-bit unsigned offset.
1072
1073 // GFX10 shrinked signed offset to 12 bits. When using regular flat
1074 // instructions, the sign bit is also ignored and is treated as 11-bit
1075 // unsigned offset.
1076
1077 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10)
1078 return isUInt<11>(AM.BaseOffs) && AM.Scale == 0;
1079
1080 // Just r + i
1081 return isUInt<12>(AM.BaseOffs) && AM.Scale == 0;
1082}
1083
1084bool SITargetLowering::isLegalGlobalAddressingMode(const AddrMode &AM) const {
1085 if (Subtarget->hasFlatGlobalInsts())
1086 return isInt<13>(AM.BaseOffs) && AM.Scale == 0;
1087
1088 if (!Subtarget->hasAddr64() || Subtarget->useFlatForGlobal()) {
1089 // Assume the we will use FLAT for all global memory accesses
1090 // on VI.
1091 // FIXME: This assumption is currently wrong. On VI we still use
1092 // MUBUF instructions for the r + i addressing mode. As currently
1093 // implemented, the MUBUF instructions only work on buffer < 4GB.
1094 // It may be possible to support > 4GB buffers with MUBUF instructions,
1095 // by setting the stride value in the resource descriptor which would
1096 // increase the size limit to (stride * 4GB). However, this is risky,
1097 // because it has never been validated.
1098 return isLegalFlatAddressingMode(AM);
1099 }
1100
1101 return isLegalMUBUFAddressingMode(AM);
1102}
1103
1104bool SITargetLowering::isLegalMUBUFAddressingMode(const AddrMode &AM) const {
1105 // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and
1106 // additionally can do r + r + i with addr64. 32-bit has more addressing
1107 // mode options. Depending on the resource constant, it can also do
1108 // (i64 r0) + (i32 r1) * (i14 i).
1109 //
1110 // Private arrays end up using a scratch buffer most of the time, so also
1111 // assume those use MUBUF instructions. Scratch loads / stores are currently
1112 // implemented as mubuf instructions with offen bit set, so slightly
1113 // different than the normal addr64.
1114 if (!isUInt<12>(AM.BaseOffs))
1115 return false;
1116
1117 // FIXME: Since we can split immediate into soffset and immediate offset,
1118 // would it make sense to allow any immediate?
1119
1120 switch (AM.Scale) {
1121 case 0: // r + i or just i, depending on HasBaseReg.
1122 return true;
1123 case 1:
1124 return true; // We have r + r or r + i.
1125 case 2:
1126 if (AM.HasBaseReg) {
1127 // Reject 2 * r + r.
1128 return false;
1129 }
1130
1131 // Allow 2 * r as r + r
1132 // Or 2 * r + i is allowed as r + r + i.
1133 return true;
1134 default: // Don't allow n * r
1135 return false;
1136 }
1137}
1138
1139bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL,
1140 const AddrMode &AM, Type *Ty,
1141 unsigned AS, Instruction *I) const {
1142 // No global is ever allowed as a base.
1143 if (AM.BaseGV)
1144 return false;
1145
1146 if (AS == AMDGPUAS::GLOBAL_ADDRESS)
1147 return isLegalGlobalAddressingMode(AM);
1148
1149 if (AS == AMDGPUAS::CONSTANT_ADDRESS ||
1150 AS == AMDGPUAS::CONSTANT_ADDRESS_32BIT ||
1151 AS == AMDGPUAS::BUFFER_FAT_POINTER) {
1152 // If the offset isn't a multiple of 4, it probably isn't going to be
1153 // correctly aligned.
1154 // FIXME: Can we get the real alignment here?
1155 if (AM.BaseOffs % 4 != 0)
1156 return isLegalMUBUFAddressingMode(AM);
1157
1158 // There are no SMRD extloads, so if we have to do a small type access we
1159 // will use a MUBUF load.
1160 // FIXME?: We also need to do this if unaligned, but we don't know the
1161 // alignment here.
1162 if (Ty->isSized() && DL.getTypeStoreSize(Ty) < 4)
1163 return isLegalGlobalAddressingMode(AM);
1164
1165 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) {
1166 // SMRD instructions have an 8-bit, dword offset on SI.
1167 if (!isUInt<8>(AM.BaseOffs / 4))
1168 return false;
1169 } else if (Subtarget->getGeneration() == AMDGPUSubtarget::SEA_ISLANDS) {
1170 // On CI+, this can also be a 32-bit literal constant offset. If it fits
1171 // in 8-bits, it can use a smaller encoding.
1172 if (!isUInt<32>(AM.BaseOffs / 4))
1173 return false;
1174 } else if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
1175 // On VI, these use the SMEM format and the offset is 20-bit in bytes.
1176 if (!isUInt<20>(AM.BaseOffs))
1177 return false;
1178 } else
1179 llvm_unreachable("unhandled generation")::llvm::llvm_unreachable_internal("unhandled generation", "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1179)
;
1180
1181 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1182 return true;
1183
1184 if (AM.Scale == 1 && AM.HasBaseReg)
1185 return true;
1186
1187 return false;
1188
1189 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1190 return isLegalMUBUFAddressingMode(AM);
1191 } else if (AS == AMDGPUAS::LOCAL_ADDRESS ||
1192 AS == AMDGPUAS::REGION_ADDRESS) {
1193 // Basic, single offset DS instructions allow a 16-bit unsigned immediate
1194 // field.
1195 // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have
1196 // an 8-bit dword offset but we don't know the alignment here.
1197 if (!isUInt<16>(AM.BaseOffs))
1198 return false;
1199
1200 if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg.
1201 return true;
1202
1203 if (AM.Scale == 1 && AM.HasBaseReg)
1204 return true;
1205
1206 return false;
1207 } else if (AS == AMDGPUAS::FLAT_ADDRESS ||
1208 AS == AMDGPUAS::UNKNOWN_ADDRESS_SPACE) {
1209 // For an unknown address space, this usually means that this is for some
1210 // reason being used for pure arithmetic, and not based on some addressing
1211 // computation. We don't have instructions that compute pointers with any
1212 // addressing modes, so treat them as having no offset like flat
1213 // instructions.
1214 return isLegalFlatAddressingMode(AM);
1215 } else {
1216 llvm_unreachable("unhandled address space")::llvm::llvm_unreachable_internal("unhandled address space", "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1216)
;
1217 }
1218}
1219
1220bool SITargetLowering::canMergeStoresTo(unsigned AS, EVT MemVT,
1221 const SelectionDAG &DAG) const {
1222 if (AS == AMDGPUAS::GLOBAL_ADDRESS || AS == AMDGPUAS::FLAT_ADDRESS) {
1223 return (MemVT.getSizeInBits() <= 4 * 32);
1224 } else if (AS == AMDGPUAS::PRIVATE_ADDRESS) {
1225 unsigned MaxPrivateBits = 8 * getSubtarget()->getMaxPrivateElementSize();
1226 return (MemVT.getSizeInBits() <= MaxPrivateBits);
1227 } else if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
1228 return (MemVT.getSizeInBits() <= 2 * 32);
1229 }
1230 return true;
1231}
1232
1233bool SITargetLowering::allowsMisalignedMemoryAccessesImpl(
1234 unsigned Size, unsigned AddrSpace, unsigned Align,
1235 MachineMemOperand::Flags Flags, bool *IsFast) const {
1236 if (IsFast)
1237 *IsFast = false;
1238
1239 if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS ||
1240 AddrSpace == AMDGPUAS::REGION_ADDRESS) {
1241 // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte
1242 // aligned, 8 byte access in a single operation using ds_read2/write2_b32
1243 // with adjacent offsets.
1244 bool AlignedBy4 = (Align % 4 == 0);
1245 if (IsFast)
1246 *IsFast = AlignedBy4;
1247
1248 return AlignedBy4;
1249 }
1250
1251 // FIXME: We have to be conservative here and assume that flat operations
1252 // will access scratch. If we had access to the IR function, then we
1253 // could determine if any private memory was used in the function.
1254 if (!Subtarget->hasUnalignedScratchAccess() &&
1255 (AddrSpace == AMDGPUAS::PRIVATE_ADDRESS ||
1256 AddrSpace == AMDGPUAS::FLAT_ADDRESS)) {
1257 bool AlignedBy4 = Align >= 4;
1258 if (IsFast)
1259 *IsFast = AlignedBy4;
1260
1261 return AlignedBy4;
1262 }
1263
1264 if (Subtarget->hasUnalignedBufferAccess()) {
1265 // If we have an uniform constant load, it still requires using a slow
1266 // buffer instruction if unaligned.
1267 if (IsFast) {
1268 *IsFast = (AddrSpace == AMDGPUAS::CONSTANT_ADDRESS ||
1269 AddrSpace == AMDGPUAS::CONSTANT_ADDRESS_32BIT) ?
1270 (Align % 4 == 0) : true;
1271 }
1272
1273 return true;
1274 }
1275
1276 // Smaller than dword value must be aligned.
1277 if (Size < 32)
1278 return false;
1279
1280 // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the
1281 // byte-address are ignored, thus forcing Dword alignment.
1282 // This applies to private, global, and constant memory.
1283 if (IsFast)
1284 *IsFast = true;
1285
1286 return Size >= 32 && Align >= 4;
1287}
1288
1289bool SITargetLowering::allowsMisalignedMemoryAccesses(
1290 EVT VT, unsigned AddrSpace, unsigned Align, MachineMemOperand::Flags Flags,
1291 bool *IsFast) const {
1292 if (IsFast)
1293 *IsFast = false;
1294
1295 // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96,
1296 // which isn't a simple VT.
1297 // Until MVT is extended to handle this, simply check for the size and
1298 // rely on the condition below: allow accesses if the size is a multiple of 4.
1299 if (VT == MVT::Other || (VT != MVT::Other && VT.getSizeInBits() > 1024 &&
1300 VT.getStoreSize() > 16)) {
1301 return false;
1302 }
1303
1304 return allowsMisalignedMemoryAccessesImpl(VT.getSizeInBits(), AddrSpace,
1305 Align, Flags, IsFast);
1306}
1307
1308EVT SITargetLowering::getOptimalMemOpType(
1309 uint64_t Size, unsigned DstAlign, unsigned SrcAlign, bool IsMemset,
1310 bool ZeroMemset, bool MemcpyStrSrc,
1311 const AttributeList &FuncAttributes) const {
1312 // FIXME: Should account for address space here.
1313
1314 // The default fallback uses the private pointer size as a guess for a type to
1315 // use. Make sure we switch these to 64-bit accesses.
1316
1317 if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global
1318 return MVT::v4i32;
1319
1320 if (Size >= 8 && DstAlign >= 4)
1321 return MVT::v2i32;
1322
1323 // Use the default.
1324 return MVT::Other;
1325}
1326
1327static bool isFlatGlobalAddrSpace(unsigned AS) {
1328 return AS == AMDGPUAS::GLOBAL_ADDRESS ||
1329 AS == AMDGPUAS::FLAT_ADDRESS ||
1330 AS == AMDGPUAS::CONSTANT_ADDRESS ||
1331 AS > AMDGPUAS::MAX_AMDGPU_ADDRESS;
1332}
1333
1334bool SITargetLowering::isNoopAddrSpaceCast(unsigned SrcAS,
1335 unsigned DestAS) const {
1336 return isFlatGlobalAddrSpace(SrcAS) && isFlatGlobalAddrSpace(DestAS);
1337}
1338
1339bool SITargetLowering::isMemOpHasNoClobberedMemOperand(const SDNode *N) const {
1340 const MemSDNode *MemNode = cast<MemSDNode>(N);
1341 const Value *Ptr = MemNode->getMemOperand()->getValue();
1342 const Instruction *I = dyn_cast_or_null<Instruction>(Ptr);
1343 return I && I->getMetadata("amdgpu.noclobber");
1344}
1345
1346bool SITargetLowering::isFreeAddrSpaceCast(unsigned SrcAS,
1347 unsigned DestAS) const {
1348 // Flat -> private/local is a simple truncate.
1349 // Flat -> global is no-op
1350 if (SrcAS == AMDGPUAS::FLAT_ADDRESS)
1351 return true;
1352
1353 return isNoopAddrSpaceCast(SrcAS, DestAS);
1354}
1355
1356bool SITargetLowering::isMemOpUniform(const SDNode *N) const {
1357 const MemSDNode *MemNode = cast<MemSDNode>(N);
1358
1359 return AMDGPUInstrInfo::isUniformMMO(MemNode->getMemOperand());
1360}
1361
1362TargetLoweringBase::LegalizeTypeAction
1363SITargetLowering::getPreferredVectorAction(MVT VT) const {
1364 int NumElts = VT.getVectorNumElements();
1365 if (NumElts != 1 && VT.getScalarType().bitsLE(MVT::i16))
1366 return VT.isPow2VectorType() ? TypeSplitVector : TypeWidenVector;
1367 return TargetLoweringBase::getPreferredVectorAction(VT);
1368}
1369
1370bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm,
1371 Type *Ty) const {
1372 // FIXME: Could be smarter if called for vector constants.
1373 return true;
1374}
1375
1376bool SITargetLowering::isTypeDesirableForOp(unsigned Op, EVT VT) const {
1377 if (Subtarget->has16BitInsts() && VT == MVT::i16) {
1378 switch (Op) {
1379 case ISD::LOAD:
1380 case ISD::STORE:
1381
1382 // These operations are done with 32-bit instructions anyway.
1383 case ISD::AND:
1384 case ISD::OR:
1385 case ISD::XOR:
1386 case ISD::SELECT:
1387 // TODO: Extensions?
1388 return true;
1389 default:
1390 return false;
1391 }
1392 }
1393
1394 // SimplifySetCC uses this function to determine whether or not it should
1395 // create setcc with i1 operands. We don't have instructions for i1 setcc.
1396 if (VT == MVT::i1 && Op == ISD::SETCC)
1397 return false;
1398
1399 return TargetLowering::isTypeDesirableForOp(Op, VT);
1400}
1401
1402SDValue SITargetLowering::lowerKernArgParameterPtr(SelectionDAG &DAG,
1403 const SDLoc &SL,
1404 SDValue Chain,
1405 uint64_t Offset) const {
1406 const DataLayout &DL = DAG.getDataLayout();
1407 MachineFunction &MF = DAG.getMachineFunction();
1408 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
1409
1410 const ArgDescriptor *InputPtrReg;
1411 const TargetRegisterClass *RC;
1412
1413 std::tie(InputPtrReg, RC)
1414 = Info->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
1415
1416 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1417 MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS);
1418 SDValue BasePtr = DAG.getCopyFromReg(Chain, SL,
1419 MRI.getLiveInVirtReg(InputPtrReg->getRegister()), PtrVT);
1420
1421 return DAG.getObjectPtrOffset(SL, BasePtr, Offset);
1422}
1423
1424SDValue SITargetLowering::getImplicitArgPtr(SelectionDAG &DAG,
1425 const SDLoc &SL) const {
1426 uint64_t Offset = getImplicitParameterOffset(DAG.getMachineFunction(),
1427 FIRST_IMPLICIT);
1428 return lowerKernArgParameterPtr(DAG, SL, DAG.getEntryNode(), Offset);
1429}
1430
1431SDValue SITargetLowering::convertArgType(SelectionDAG &DAG, EVT VT, EVT MemVT,
1432 const SDLoc &SL, SDValue Val,
1433 bool Signed,
1434 const ISD::InputArg *Arg) const {
1435 // First, if it is a widened vector, narrow it.
1436 if (VT.isVector() &&
1437 VT.getVectorNumElements() != MemVT.getVectorNumElements()) {
1438 EVT NarrowedVT =
1439 EVT::getVectorVT(*DAG.getContext(), MemVT.getVectorElementType(),
1440 VT.getVectorNumElements());
1441 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL, NarrowedVT, Val,
1442 DAG.getConstant(0, SL, MVT::i32));
1443 }
1444
1445 // Then convert the vector elements or scalar value.
1446 if (Arg && (Arg->Flags.isSExt() || Arg->Flags.isZExt()) &&
1447 VT.bitsLT(MemVT)) {
1448 unsigned Opc = Arg->Flags.isZExt() ? ISD::AssertZext : ISD::AssertSext;
1449 Val = DAG.getNode(Opc, SL, MemVT, Val, DAG.getValueType(VT));
1450 }
1451
1452 if (MemVT.isFloatingPoint())
1453 Val = getFPExtOrFPTrunc(DAG, Val, SL, VT);
1454 else if (Signed)
1455 Val = DAG.getSExtOrTrunc(Val, SL, VT);
1456 else
1457 Val = DAG.getZExtOrTrunc(Val, SL, VT);
1458
1459 return Val;
1460}
1461
1462SDValue SITargetLowering::lowerKernargMemParameter(
1463 SelectionDAG &DAG, EVT VT, EVT MemVT,
1464 const SDLoc &SL, SDValue Chain,
1465 uint64_t Offset, unsigned Align, bool Signed,
1466 const ISD::InputArg *Arg) const {
1467 Type *Ty = MemVT.getTypeForEVT(*DAG.getContext());
1468 PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
1469 MachinePointerInfo PtrInfo(UndefValue::get(PtrTy));
1470
1471 // Try to avoid using an extload by loading earlier than the argument address,
1472 // and extracting the relevant bits. The load should hopefully be merged with
1473 // the previous argument.
1474 if (MemVT.getStoreSize() < 4 && Align < 4) {
1475 // TODO: Handle align < 4 and size >= 4 (can happen with packed structs).
1476 int64_t AlignDownOffset = alignDown(Offset, 4);
1477 int64_t OffsetDiff = Offset - AlignDownOffset;
1478
1479 EVT IntVT = MemVT.changeTypeToInteger();
1480
1481 // TODO: If we passed in the base kernel offset we could have a better
1482 // alignment than 4, but we don't really need it.
1483 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, AlignDownOffset);
1484 SDValue Load = DAG.getLoad(MVT::i32, SL, Chain, Ptr, PtrInfo, 4,
1485 MachineMemOperand::MODereferenceable |
1486 MachineMemOperand::MOInvariant);
1487
1488 SDValue ShiftAmt = DAG.getConstant(OffsetDiff * 8, SL, MVT::i32);
1489 SDValue Extract = DAG.getNode(ISD::SRL, SL, MVT::i32, Load, ShiftAmt);
1490
1491 SDValue ArgVal = DAG.getNode(ISD::TRUNCATE, SL, IntVT, Extract);
1492 ArgVal = DAG.getNode(ISD::BITCAST, SL, MemVT, ArgVal);
1493 ArgVal = convertArgType(DAG, VT, MemVT, SL, ArgVal, Signed, Arg);
1494
1495
1496 return DAG.getMergeValues({ ArgVal, Load.getValue(1) }, SL);
1497 }
1498
1499 SDValue Ptr = lowerKernArgParameterPtr(DAG, SL, Chain, Offset);
1500 SDValue Load = DAG.getLoad(MemVT, SL, Chain, Ptr, PtrInfo, Align,
1501 MachineMemOperand::MODereferenceable |
1502 MachineMemOperand::MOInvariant);
1503
1504 SDValue Val = convertArgType(DAG, VT, MemVT, SL, Load, Signed, Arg);
1505 return DAG.getMergeValues({ Val, Load.getValue(1) }, SL);
1506}
1507
1508SDValue SITargetLowering::lowerStackParameter(SelectionDAG &DAG, CCValAssign &VA,
1509 const SDLoc &SL, SDValue Chain,
1510 const ISD::InputArg &Arg) const {
1511 MachineFunction &MF = DAG.getMachineFunction();
1512 MachineFrameInfo &MFI = MF.getFrameInfo();
1513
1514 if (Arg.Flags.isByVal()) {
1515 unsigned Size = Arg.Flags.getByValSize();
1516 int FrameIdx = MFI.CreateFixedObject(Size, VA.getLocMemOffset(), false);
1517 return DAG.getFrameIndex(FrameIdx, MVT::i32);
1518 }
1519
1520 unsigned ArgOffset = VA.getLocMemOffset();
1521 unsigned ArgSize = VA.getValVT().getStoreSize();
1522
1523 int FI = MFI.CreateFixedObject(ArgSize, ArgOffset, true);
1524
1525 // Create load nodes to retrieve arguments from the stack.
1526 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
1527 SDValue ArgValue;
1528
1529 // For NON_EXTLOAD, generic code in getLoad assert(ValVT == MemVT)
1530 ISD::LoadExtType ExtType = ISD::NON_EXTLOAD;
1531 MVT MemVT = VA.getValVT();
1532
1533 switch (VA.getLocInfo()) {
1534 default:
1535 break;
1536 case CCValAssign::BCvt:
1537 MemVT = VA.getLocVT();
1538 break;
1539 case CCValAssign::SExt:
1540 ExtType = ISD::SEXTLOAD;
1541 break;
1542 case CCValAssign::ZExt:
1543 ExtType = ISD::ZEXTLOAD;
1544 break;
1545 case CCValAssign::AExt:
1546 ExtType = ISD::EXTLOAD;
1547 break;
1548 }
1549
1550 ArgValue = DAG.getExtLoad(
1551 ExtType, SL, VA.getLocVT(), Chain, FIN,
1552 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
1553 MemVT);
1554 return ArgValue;
1555}
1556
1557SDValue SITargetLowering::getPreloadedValue(SelectionDAG &DAG,
1558 const SIMachineFunctionInfo &MFI,
1559 EVT VT,
1560 AMDGPUFunctionArgInfo::PreloadedValue PVID) const {
1561 const ArgDescriptor *Reg;
1562 const TargetRegisterClass *RC;
1563
1564 std::tie(Reg, RC) = MFI.getPreloadedValue(PVID);
1565 return CreateLiveInRegister(DAG, RC, Reg->getRegister(), VT);
1566}
1567
1568static void processShaderInputArgs(SmallVectorImpl<ISD::InputArg> &Splits,
1569 CallingConv::ID CallConv,
1570 ArrayRef<ISD::InputArg> Ins,
1571 BitVector &Skipped,
1572 FunctionType *FType,
1573 SIMachineFunctionInfo *Info) {
1574 for (unsigned I = 0, E = Ins.size(), PSInputNum = 0; I != E; ++I) {
1575 const ISD::InputArg *Arg = &Ins[I];
1576
1577 assert((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) &&(((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits()
== 16) && "vector type argument should have been split"
) ? static_cast<void> (0) : __assert_fail ("(!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && \"vector type argument should have been split\""
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1578, __PRETTY_FUNCTION__))
1578 "vector type argument should have been split")(((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits()
== 16) && "vector type argument should have been split"
) ? static_cast<void> (0) : __assert_fail ("(!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && \"vector type argument should have been split\""
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1578, __PRETTY_FUNCTION__))
;
1579
1580 // First check if it's a PS input addr.
1581 if (CallConv == CallingConv::AMDGPU_PS &&
1582 !Arg->Flags.isInReg() && PSInputNum <= 15) {
1583 bool SkipArg = !Arg->Used && !Info->isPSInputAllocated(PSInputNum);
1584
1585 // Inconveniently only the first part of the split is marked as isSplit,
1586 // so skip to the end. We only want to increment PSInputNum once for the
1587 // entire split argument.
1588 if (Arg->Flags.isSplit()) {
1589 while (!Arg->Flags.isSplitEnd()) {
1590 assert((!Arg->VT.isVector() ||(((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits()
== 16) && "unexpected vector split in ps argument type"
) ? static_cast<void> (0) : __assert_fail ("(!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && \"unexpected vector split in ps argument type\""
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1592, __PRETTY_FUNCTION__))
1591 Arg->VT.getScalarSizeInBits() == 16) &&(((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits()
== 16) && "unexpected vector split in ps argument type"
) ? static_cast<void> (0) : __assert_fail ("(!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && \"unexpected vector split in ps argument type\""
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1592, __PRETTY_FUNCTION__))
1592 "unexpected vector split in ps argument type")(((!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits()
== 16) && "unexpected vector split in ps argument type"
) ? static_cast<void> (0) : __assert_fail ("(!Arg->VT.isVector() || Arg->VT.getScalarSizeInBits() == 16) && \"unexpected vector split in ps argument type\""
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1592, __PRETTY_FUNCTION__))
;
1593 if (!SkipArg)
1594 Splits.push_back(*Arg);
1595 Arg = &Ins[++I];
1596 }
1597 }
1598
1599 if (SkipArg) {
1600 // We can safely skip PS inputs.
1601 Skipped.set(Arg->getOrigArgIndex());
1602 ++PSInputNum;
1603 continue;
1604 }
1605
1606 Info->markPSInputAllocated(PSInputNum);
1607 if (Arg->Used)
1608 Info->markPSInputEnabled(PSInputNum);
1609
1610 ++PSInputNum;
1611 }
1612
1613 Splits.push_back(*Arg);
1614 }
1615}
1616
1617// Allocate special inputs passed in VGPRs.
1618void SITargetLowering::allocateSpecialEntryInputVGPRs(CCState &CCInfo,
1619 MachineFunction &MF,
1620 const SIRegisterInfo &TRI,
1621 SIMachineFunctionInfo &Info) const {
1622 const LLT S32 = LLT::scalar(32);
1623 MachineRegisterInfo &MRI = MF.getRegInfo();
1624
1625 if (Info.hasWorkItemIDX()) {
1626 Register Reg = AMDGPU::VGPR0;
1627 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1628
1629 CCInfo.AllocateReg(Reg);
1630 Info.setWorkItemIDX(ArgDescriptor::createRegister(Reg));
1631 }
1632
1633 if (Info.hasWorkItemIDY()) {
1634 Register Reg = AMDGPU::VGPR1;
1635 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1636
1637 CCInfo.AllocateReg(Reg);
1638 Info.setWorkItemIDY(ArgDescriptor::createRegister(Reg));
1639 }
1640
1641 if (Info.hasWorkItemIDZ()) {
1642 Register Reg = AMDGPU::VGPR2;
1643 MRI.setType(MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass), S32);
1644
1645 CCInfo.AllocateReg(Reg);
1646 Info.setWorkItemIDZ(ArgDescriptor::createRegister(Reg));
1647 }
1648}
1649
1650// Try to allocate a VGPR at the end of the argument list, or if no argument
1651// VGPRs are left allocating a stack slot.
1652// If \p Mask is is given it indicates bitfield position in the register.
1653// If \p Arg is given use it with new ]p Mask instead of allocating new.
1654static ArgDescriptor allocateVGPR32Input(CCState &CCInfo, unsigned Mask = ~0u,
1655 ArgDescriptor Arg = ArgDescriptor()) {
1656 if (Arg.isSet())
1657 return ArgDescriptor::createArg(Arg, Mask);
1658
1659 ArrayRef<MCPhysReg> ArgVGPRs
1660 = makeArrayRef(AMDGPU::VGPR_32RegClass.begin(), 32);
1661 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgVGPRs);
1662 if (RegIdx == ArgVGPRs.size()) {
1663 // Spill to stack required.
1664 int64_t Offset = CCInfo.AllocateStack(4, 4);
1665
1666 return ArgDescriptor::createStack(Offset, Mask);
1667 }
1668
1669 unsigned Reg = ArgVGPRs[RegIdx];
1670 Reg = CCInfo.AllocateReg(Reg);
1671 assert(Reg != AMDGPU::NoRegister)((Reg != AMDGPU::NoRegister) ? static_cast<void> (0) : __assert_fail
("Reg != AMDGPU::NoRegister", "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1671, __PRETTY_FUNCTION__))
;
1672
1673 MachineFunction &MF = CCInfo.getMachineFunction();
1674 Register LiveInVReg = MF.addLiveIn(Reg, &AMDGPU::VGPR_32RegClass);
1675 MF.getRegInfo().setType(LiveInVReg, LLT::scalar(32));
1676 return ArgDescriptor::createRegister(Reg, Mask);
1677}
1678
1679static ArgDescriptor allocateSGPR32InputImpl(CCState &CCInfo,
1680 const TargetRegisterClass *RC,
1681 unsigned NumArgRegs) {
1682 ArrayRef<MCPhysReg> ArgSGPRs = makeArrayRef(RC->begin(), 32);
1683 unsigned RegIdx = CCInfo.getFirstUnallocated(ArgSGPRs);
1684 if (RegIdx == ArgSGPRs.size())
1685 report_fatal_error("ran out of SGPRs for arguments");
1686
1687 unsigned Reg = ArgSGPRs[RegIdx];
1688 Reg = CCInfo.AllocateReg(Reg);
1689 assert(Reg != AMDGPU::NoRegister)((Reg != AMDGPU::NoRegister) ? static_cast<void> (0) : __assert_fail
("Reg != AMDGPU::NoRegister", "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1689, __PRETTY_FUNCTION__))
;
1690
1691 MachineFunction &MF = CCInfo.getMachineFunction();
1692 MF.addLiveIn(Reg, RC);
1693 return ArgDescriptor::createRegister(Reg);
1694}
1695
1696static ArgDescriptor allocateSGPR32Input(CCState &CCInfo) {
1697 return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_32RegClass, 32);
1698}
1699
1700static ArgDescriptor allocateSGPR64Input(CCState &CCInfo) {
1701 return allocateSGPR32InputImpl(CCInfo, &AMDGPU::SGPR_64RegClass, 16);
1702}
1703
1704void SITargetLowering::allocateSpecialInputVGPRs(CCState &CCInfo,
1705 MachineFunction &MF,
1706 const SIRegisterInfo &TRI,
1707 SIMachineFunctionInfo &Info) const {
1708 const unsigned Mask = 0x3ff;
1709 ArgDescriptor Arg;
1710
1711 if (Info.hasWorkItemIDX()) {
1712 Arg = allocateVGPR32Input(CCInfo, Mask);
1713 Info.setWorkItemIDX(Arg);
1714 }
1715
1716 if (Info.hasWorkItemIDY()) {
1717 Arg = allocateVGPR32Input(CCInfo, Mask << 10, Arg);
1718 Info.setWorkItemIDY(Arg);
1719 }
1720
1721 if (Info.hasWorkItemIDZ())
1722 Info.setWorkItemIDZ(allocateVGPR32Input(CCInfo, Mask << 20, Arg));
1723}
1724
1725void SITargetLowering::allocateSpecialInputSGPRs(
1726 CCState &CCInfo,
1727 MachineFunction &MF,
1728 const SIRegisterInfo &TRI,
1729 SIMachineFunctionInfo &Info) const {
1730 auto &ArgInfo = Info.getArgInfo();
1731
1732 // TODO: Unify handling with private memory pointers.
1733
1734 if (Info.hasDispatchPtr())
1735 ArgInfo.DispatchPtr = allocateSGPR64Input(CCInfo);
1736
1737 if (Info.hasQueuePtr())
1738 ArgInfo.QueuePtr = allocateSGPR64Input(CCInfo);
1739
1740 if (Info.hasKernargSegmentPtr())
1741 ArgInfo.KernargSegmentPtr = allocateSGPR64Input(CCInfo);
1742
1743 if (Info.hasDispatchID())
1744 ArgInfo.DispatchID = allocateSGPR64Input(CCInfo);
1745
1746 // flat_scratch_init is not applicable for non-kernel functions.
1747
1748 if (Info.hasWorkGroupIDX())
1749 ArgInfo.WorkGroupIDX = allocateSGPR32Input(CCInfo);
1750
1751 if (Info.hasWorkGroupIDY())
1752 ArgInfo.WorkGroupIDY = allocateSGPR32Input(CCInfo);
1753
1754 if (Info.hasWorkGroupIDZ())
1755 ArgInfo.WorkGroupIDZ = allocateSGPR32Input(CCInfo);
1756
1757 if (Info.hasImplicitArgPtr())
1758 ArgInfo.ImplicitArgPtr = allocateSGPR64Input(CCInfo);
1759}
1760
1761// Allocate special inputs passed in user SGPRs.
1762void SITargetLowering::allocateHSAUserSGPRs(CCState &CCInfo,
1763 MachineFunction &MF,
1764 const SIRegisterInfo &TRI,
1765 SIMachineFunctionInfo &Info) const {
1766 if (Info.hasImplicitBufferPtr()) {
1767 unsigned ImplicitBufferPtrReg = Info.addImplicitBufferPtr(TRI);
1768 MF.addLiveIn(ImplicitBufferPtrReg, &AMDGPU::SGPR_64RegClass);
1769 CCInfo.AllocateReg(ImplicitBufferPtrReg);
1770 }
1771
1772 // FIXME: How should these inputs interact with inreg / custom SGPR inputs?
1773 if (Info.hasPrivateSegmentBuffer()) {
1774 unsigned PrivateSegmentBufferReg = Info.addPrivateSegmentBuffer(TRI);
1775 MF.addLiveIn(PrivateSegmentBufferReg, &AMDGPU::SGPR_128RegClass);
1776 CCInfo.AllocateReg(PrivateSegmentBufferReg);
1777 }
1778
1779 if (Info.hasDispatchPtr()) {
1780 unsigned DispatchPtrReg = Info.addDispatchPtr(TRI);
1781 MF.addLiveIn(DispatchPtrReg, &AMDGPU::SGPR_64RegClass);
1782 CCInfo.AllocateReg(DispatchPtrReg);
1783 }
1784
1785 if (Info.hasQueuePtr()) {
1786 unsigned QueuePtrReg = Info.addQueuePtr(TRI);
1787 MF.addLiveIn(QueuePtrReg, &AMDGPU::SGPR_64RegClass);
1788 CCInfo.AllocateReg(QueuePtrReg);
1789 }
1790
1791 if (Info.hasKernargSegmentPtr()) {
1792 MachineRegisterInfo &MRI = MF.getRegInfo();
1793 Register InputPtrReg = Info.addKernargSegmentPtr(TRI);
1794 CCInfo.AllocateReg(InputPtrReg);
1795
1796 Register VReg = MF.addLiveIn(InputPtrReg, &AMDGPU::SGPR_64RegClass);
1797 MRI.setType(VReg, LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
1798 }
1799
1800 if (Info.hasDispatchID()) {
1801 unsigned DispatchIDReg = Info.addDispatchID(TRI);
1802 MF.addLiveIn(DispatchIDReg, &AMDGPU::SGPR_64RegClass);
1803 CCInfo.AllocateReg(DispatchIDReg);
1804 }
1805
1806 if (Info.hasFlatScratchInit()) {
1807 unsigned FlatScratchInitReg = Info.addFlatScratchInit(TRI);
1808 MF.addLiveIn(FlatScratchInitReg, &AMDGPU::SGPR_64RegClass);
1809 CCInfo.AllocateReg(FlatScratchInitReg);
1810 }
1811
1812 // TODO: Add GridWorkGroupCount user SGPRs when used. For now with HSA we read
1813 // these from the dispatch pointer.
1814}
1815
1816// Allocate special input registers that are initialized per-wave.
1817void SITargetLowering::allocateSystemSGPRs(CCState &CCInfo,
1818 MachineFunction &MF,
1819 SIMachineFunctionInfo &Info,
1820 CallingConv::ID CallConv,
1821 bool IsShader) const {
1822 if (Info.hasWorkGroupIDX()) {
1823 unsigned Reg = Info.addWorkGroupIDX();
1824 MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
1825 CCInfo.AllocateReg(Reg);
1826 }
1827
1828 if (Info.hasWorkGroupIDY()) {
1829 unsigned Reg = Info.addWorkGroupIDY();
1830 MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
1831 CCInfo.AllocateReg(Reg);
1832 }
1833
1834 if (Info.hasWorkGroupIDZ()) {
1835 unsigned Reg = Info.addWorkGroupIDZ();
1836 MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
1837 CCInfo.AllocateReg(Reg);
1838 }
1839
1840 if (Info.hasWorkGroupInfo()) {
1841 unsigned Reg = Info.addWorkGroupInfo();
1842 MF.addLiveIn(Reg, &AMDGPU::SReg_32_XM0RegClass);
1843 CCInfo.AllocateReg(Reg);
1844 }
1845
1846 if (Info.hasPrivateSegmentWaveByteOffset()) {
1847 // Scratch wave offset passed in system SGPR.
1848 unsigned PrivateSegmentWaveByteOffsetReg;
1849
1850 if (IsShader) {
1851 PrivateSegmentWaveByteOffsetReg =
1852 Info.getPrivateSegmentWaveByteOffsetSystemSGPR();
1853
1854 // This is true if the scratch wave byte offset doesn't have a fixed
1855 // location.
1856 if (PrivateSegmentWaveByteOffsetReg == AMDGPU::NoRegister) {
1857 PrivateSegmentWaveByteOffsetReg = findFirstFreeSGPR(CCInfo);
1858 Info.setPrivateSegmentWaveByteOffset(PrivateSegmentWaveByteOffsetReg);
1859 }
1860 } else
1861 PrivateSegmentWaveByteOffsetReg = Info.addPrivateSegmentWaveByteOffset();
1862
1863 MF.addLiveIn(PrivateSegmentWaveByteOffsetReg, &AMDGPU::SGPR_32RegClass);
1864 CCInfo.AllocateReg(PrivateSegmentWaveByteOffsetReg);
1865 }
1866}
1867
1868static void reservePrivateMemoryRegs(const TargetMachine &TM,
1869 MachineFunction &MF,
1870 const SIRegisterInfo &TRI,
1871 SIMachineFunctionInfo &Info) {
1872 // Now that we've figured out where the scratch register inputs are, see if
1873 // should reserve the arguments and use them directly.
1874 MachineFrameInfo &MFI = MF.getFrameInfo();
1875 bool HasStackObjects = MFI.hasStackObjects();
1876 const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
1877
1878 // Record that we know we have non-spill stack objects so we don't need to
1879 // check all stack objects later.
1880 if (HasStackObjects)
1881 Info.setHasNonSpillStackObjects(true);
1882
1883 // Everything live out of a block is spilled with fast regalloc, so it's
1884 // almost certain that spilling will be required.
1885 if (TM.getOptLevel() == CodeGenOpt::None)
1886 HasStackObjects = true;
1887
1888 // For now assume stack access is needed in any callee functions, so we need
1889 // the scratch registers to pass in.
1890 bool RequiresStackAccess = HasStackObjects || MFI.hasCalls();
1891
1892 if (RequiresStackAccess && ST.isAmdHsaOrMesa(MF.getFunction())) {
1893 // If we have stack objects, we unquestionably need the private buffer
1894 // resource. For the Code Object V2 ABI, this will be the first 4 user
1895 // SGPR inputs. We can reserve those and use them directly.
1896
1897 Register PrivateSegmentBufferReg =
1898 Info.getPreloadedReg(AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_BUFFER);
1899 Info.setScratchRSrcReg(PrivateSegmentBufferReg);
1900 } else {
1901 unsigned ReservedBufferReg = TRI.reservedPrivateSegmentBufferReg(MF);
1902 // We tentatively reserve the last registers (skipping the last registers
1903 // which may contain VCC, FLAT_SCR, and XNACK). After register allocation,
1904 // we'll replace these with the ones immediately after those which were
1905 // really allocated. In the prologue copies will be inserted from the
1906 // argument to these reserved registers.
1907
1908 // Without HSA, relocations are used for the scratch pointer and the
1909 // buffer resource setup is always inserted in the prologue. Scratch wave
1910 // offset is still in an input SGPR.
1911 Info.setScratchRSrcReg(ReservedBufferReg);
1912 }
1913
1914 // hasFP should be accurate for kernels even before the frame is finalized.
1915 if (ST.getFrameLowering()->hasFP(MF)) {
1916 MachineRegisterInfo &MRI = MF.getRegInfo();
1917
1918 // Try to use s32 as the SP, but move it if it would interfere with input
1919 // arguments. This won't work with calls though.
1920 //
1921 // FIXME: Move SP to avoid any possible inputs, or find a way to spill input
1922 // registers.
1923 if (!MRI.isLiveIn(AMDGPU::SGPR32)) {
1924 Info.setStackPtrOffsetReg(AMDGPU::SGPR32);
1925 } else {
1926 assert(AMDGPU::isShader(MF.getFunction().getCallingConv()))((AMDGPU::isShader(MF.getFunction().getCallingConv())) ? static_cast
<void> (0) : __assert_fail ("AMDGPU::isShader(MF.getFunction().getCallingConv())"
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1926, __PRETTY_FUNCTION__))
;
1927
1928 if (MFI.hasCalls())
1929 report_fatal_error("call in graphics shader with too many input SGPRs");
1930
1931 for (unsigned Reg : AMDGPU::SGPR_32RegClass) {
1932 if (!MRI.isLiveIn(Reg)) {
1933 Info.setStackPtrOffsetReg(Reg);
1934 break;
1935 }
1936 }
1937
1938 if (Info.getStackPtrOffsetReg() == AMDGPU::SP_REG)
1939 report_fatal_error("failed to find register for SP");
1940 }
1941
1942 if (MFI.hasCalls()) {
1943 Info.setScratchWaveOffsetReg(AMDGPU::SGPR33);
1944 Info.setFrameOffsetReg(AMDGPU::SGPR33);
1945 } else {
1946 unsigned ReservedOffsetReg =
1947 TRI.reservedPrivateSegmentWaveByteOffsetReg(MF);
1948 Info.setScratchWaveOffsetReg(ReservedOffsetReg);
1949 Info.setFrameOffsetReg(ReservedOffsetReg);
1950 }
1951 } else if (RequiresStackAccess) {
1952 assert(!MFI.hasCalls())((!MFI.hasCalls()) ? static_cast<void> (0) : __assert_fail
("!MFI.hasCalls()", "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1952, __PRETTY_FUNCTION__))
;
1953 // We know there are accesses and they will be done relative to SP, so just
1954 // pin it to the input.
1955 //
1956 // FIXME: Should not do this if inline asm is reading/writing these
1957 // registers.
1958 Register PreloadedSP = Info.getPreloadedReg(
1959 AMDGPUFunctionArgInfo::PRIVATE_SEGMENT_WAVE_BYTE_OFFSET);
1960
1961 Info.setStackPtrOffsetReg(PreloadedSP);
1962 Info.setScratchWaveOffsetReg(PreloadedSP);
1963 Info.setFrameOffsetReg(PreloadedSP);
1964 } else {
1965 assert(!MFI.hasCalls())((!MFI.hasCalls()) ? static_cast<void> (0) : __assert_fail
("!MFI.hasCalls()", "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 1965, __PRETTY_FUNCTION__))
;
1966
1967 // There may not be stack access at all. There may still be spills, or
1968 // access of a constant pointer (in which cases an extra copy will be
1969 // emitted in the prolog).
1970 unsigned ReservedOffsetReg
1971 = TRI.reservedPrivateSegmentWaveByteOffsetReg(MF);
1972 Info.setStackPtrOffsetReg(ReservedOffsetReg);
1973 Info.setScratchWaveOffsetReg(ReservedOffsetReg);
1974 Info.setFrameOffsetReg(ReservedOffsetReg);
1975 }
1976}
1977
1978bool SITargetLowering::supportSplitCSR(MachineFunction *MF) const {
1979 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
1980 return !Info->isEntryFunction();
1981}
1982
1983void SITargetLowering::initializeSplitCSR(MachineBasicBlock *Entry) const {
1984
1985}
1986
1987void SITargetLowering::insertCopiesSplitCSR(
1988 MachineBasicBlock *Entry,
1989 const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
1990 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
1991
1992 const MCPhysReg *IStart = TRI->getCalleeSavedRegsViaCopy(Entry->getParent());
1993 if (!IStart)
1994 return;
1995
1996 const TargetInstrInfo *TII = Subtarget->getInstrInfo();
1997 MachineRegisterInfo *MRI = &Entry->getParent()->getRegInfo();
1998 MachineBasicBlock::iterator MBBI = Entry->begin();
1999 for (const MCPhysReg *I = IStart; *I; ++I) {
2000 const TargetRegisterClass *RC = nullptr;
2001 if (AMDGPU::SReg_64RegClass.contains(*I))
2002 RC = &AMDGPU::SGPR_64RegClass;
2003 else if (AMDGPU::SReg_32RegClass.contains(*I))
2004 RC = &AMDGPU::SGPR_32RegClass;
2005 else
2006 llvm_unreachable("Unexpected register class in CSRsViaCopy!")::llvm::llvm_unreachable_internal("Unexpected register class in CSRsViaCopy!"
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2006)
;
2007
2008 Register NewVR = MRI->createVirtualRegister(RC);
2009 // Create copy from CSR to a virtual register.
2010 Entry->addLiveIn(*I);
2011 BuildMI(*Entry, MBBI, DebugLoc(), TII->get(TargetOpcode::COPY), NewVR)
2012 .addReg(*I);
2013
2014 // Insert the copy-back instructions right before the terminator.
2015 for (auto *Exit : Exits)
2016 BuildMI(*Exit, Exit->getFirstTerminator(), DebugLoc(),
2017 TII->get(TargetOpcode::COPY), *I)
2018 .addReg(NewVR);
2019 }
2020}
2021
2022SDValue SITargetLowering::LowerFormalArguments(
2023 SDValue Chain, CallingConv::ID CallConv, bool isVarArg,
2024 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2025 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const {
2026 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2027
2028 MachineFunction &MF = DAG.getMachineFunction();
2029 const Function &Fn = MF.getFunction();
2030 FunctionType *FType = MF.getFunction().getFunctionType();
2031 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2032
2033 if (Subtarget->isAmdHsaOS() && AMDGPU::isShader(CallConv)) {
2034 DiagnosticInfoUnsupported NoGraphicsHSA(
2035 Fn, "unsupported non-compute shaders with HSA", DL.getDebugLoc());
2036 DAG.getContext()->diagnose(NoGraphicsHSA);
2037 return DAG.getEntryNode();
2038 }
2039
2040 SmallVector<ISD::InputArg, 16> Splits;
2041 SmallVector<CCValAssign, 16> ArgLocs;
2042 BitVector Skipped(Ins.size());
2043 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
2044 *DAG.getContext());
2045
2046 bool IsShader = AMDGPU::isShader(CallConv);
2047 bool IsKernel = AMDGPU::isKernel(CallConv);
2048 bool IsEntryFunc = AMDGPU::isEntryFunctionCC(CallConv);
2049
2050 if (IsShader) {
2051 processShaderInputArgs(Splits, CallConv, Ins, Skipped, FType, Info);
2052
2053 // At least one interpolation mode must be enabled or else the GPU will
2054 // hang.
2055 //
2056 // Check PSInputAddr instead of PSInputEnable. The idea is that if the user
2057 // set PSInputAddr, the user wants to enable some bits after the compilation
2058 // based on run-time states. Since we can't know what the final PSInputEna
2059 // will look like, so we shouldn't do anything here and the user should take
2060 // responsibility for the correct programming.
2061 //
2062 // Otherwise, the following restrictions apply:
2063 // - At least one of PERSP_* (0xF) or LINEAR_* (0x70) must be enabled.
2064 // - If POS_W_FLOAT (11) is enabled, at least one of PERSP_* must be
2065 // enabled too.
2066 if (CallConv == CallingConv::AMDGPU_PS) {
2067 if ((Info->getPSInputAddr() & 0x7F) == 0 ||
2068 ((Info->getPSInputAddr() & 0xF) == 0 &&
2069 Info->isPSInputAllocated(11))) {
2070 CCInfo.AllocateReg(AMDGPU::VGPR0);
2071 CCInfo.AllocateReg(AMDGPU::VGPR1);
2072 Info->markPSInputAllocated(0);
2073 Info->markPSInputEnabled(0);
2074 }
2075 if (Subtarget->isAmdPalOS()) {
2076 // For isAmdPalOS, the user does not enable some bits after compilation
2077 // based on run-time states; the register values being generated here are
2078 // the final ones set in hardware. Therefore we need to apply the
2079 // workaround to PSInputAddr and PSInputEnable together. (The case where
2080 // a bit is set in PSInputAddr but not PSInputEnable is where the
2081 // frontend set up an input arg for a particular interpolation mode, but
2082 // nothing uses that input arg. Really we should have an earlier pass
2083 // that removes such an arg.)
2084 unsigned PsInputBits = Info->getPSInputAddr() & Info->getPSInputEnable();
2085 if ((PsInputBits & 0x7F) == 0 ||
2086 ((PsInputBits & 0xF) == 0 &&
2087 (PsInputBits >> 11 & 1)))
2088 Info->markPSInputEnabled(
2089 countTrailingZeros(Info->getPSInputAddr(), ZB_Undefined));
2090 }
2091 }
2092
2093 assert(!Info->hasDispatchPtr() &&((!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr
() && !Info->hasFlatScratchInit() && !Info
->hasWorkGroupIDX() && !Info->hasWorkGroupIDY()
&& !Info->hasWorkGroupIDZ() && !Info->
hasWorkGroupInfo() && !Info->hasWorkItemIDX() &&
!Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ
()) ? static_cast<void> (0) : __assert_fail ("!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() && !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()"
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2098, __PRETTY_FUNCTION__))
2094 !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() &&((!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr
() && !Info->hasFlatScratchInit() && !Info
->hasWorkGroupIDX() && !Info->hasWorkGroupIDY()
&& !Info->hasWorkGroupIDZ() && !Info->
hasWorkGroupInfo() && !Info->hasWorkItemIDX() &&
!Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ
()) ? static_cast<void> (0) : __assert_fail ("!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() && !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()"
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2098, __PRETTY_FUNCTION__))
2095 !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() &&((!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr
() && !Info->hasFlatScratchInit() && !Info
->hasWorkGroupIDX() && !Info->hasWorkGroupIDY()
&& !Info->hasWorkGroupIDZ() && !Info->
hasWorkGroupInfo() && !Info->hasWorkItemIDX() &&
!Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ
()) ? static_cast<void> (0) : __assert_fail ("!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() && !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()"
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2098, __PRETTY_FUNCTION__))
2096 !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() &&((!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr
() && !Info->hasFlatScratchInit() && !Info
->hasWorkGroupIDX() && !Info->hasWorkGroupIDY()
&& !Info->hasWorkGroupIDZ() && !Info->
hasWorkGroupInfo() && !Info->hasWorkItemIDX() &&
!Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ
()) ? static_cast<void> (0) : __assert_fail ("!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() && !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()"
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2098, __PRETTY_FUNCTION__))
2097 !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() &&((!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr
() && !Info->hasFlatScratchInit() && !Info
->hasWorkGroupIDX() && !Info->hasWorkGroupIDY()
&& !Info->hasWorkGroupIDZ() && !Info->
hasWorkGroupInfo() && !Info->hasWorkItemIDX() &&
!Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ
()) ? static_cast<void> (0) : __assert_fail ("!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() && !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()"
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2098, __PRETTY_FUNCTION__))
2098 !Info->hasWorkItemIDZ())((!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr
() && !Info->hasFlatScratchInit() && !Info
->hasWorkGroupIDX() && !Info->hasWorkGroupIDY()
&& !Info->hasWorkGroupIDZ() && !Info->
hasWorkGroupInfo() && !Info->hasWorkItemIDX() &&
!Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ
()) ? static_cast<void> (0) : __assert_fail ("!Info->hasDispatchPtr() && !Info->hasKernargSegmentPtr() && !Info->hasFlatScratchInit() && !Info->hasWorkGroupIDX() && !Info->hasWorkGroupIDY() && !Info->hasWorkGroupIDZ() && !Info->hasWorkGroupInfo() && !Info->hasWorkItemIDX() && !Info->hasWorkItemIDY() && !Info->hasWorkItemIDZ()"
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2098, __PRETTY_FUNCTION__))
;
2099 } else if (IsKernel) {
2100 assert(Info->hasWorkGroupIDX() && Info->hasWorkItemIDX())((Info->hasWorkGroupIDX() && Info->hasWorkItemIDX
()) ? static_cast<void> (0) : __assert_fail ("Info->hasWorkGroupIDX() && Info->hasWorkItemIDX()"
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2100, __PRETTY_FUNCTION__))
;
2101 } else {
2102 Splits.append(Ins.begin(), Ins.end());
2103 }
2104
2105 if (IsEntryFunc) {
2106 allocateSpecialEntryInputVGPRs(CCInfo, MF, *TRI, *Info);
2107 allocateHSAUserSGPRs(CCInfo, MF, *TRI, *Info);
2108 }
2109
2110 if (IsKernel) {
2111 analyzeFormalArgumentsCompute(CCInfo, Ins);
2112 } else {
2113 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, isVarArg);
2114 CCInfo.AnalyzeFormalArguments(Splits, AssignFn);
2115 }
2116
2117 SmallVector<SDValue, 16> Chains;
2118
2119 // FIXME: This is the minimum kernel argument alignment. We should improve
2120 // this to the maximum alignment of the arguments.
2121 //
2122 // FIXME: Alignment of explicit arguments totally broken with non-0 explicit
2123 // kern arg offset.
2124 const unsigned KernelArgBaseAlign = 16;
2125
2126 for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) {
2127 const ISD::InputArg &Arg = Ins[i];
2128 if (Arg.isOrigArg() && Skipped[Arg.getOrigArgIndex()]) {
2129 InVals.push_back(DAG.getUNDEF(Arg.VT));
2130 continue;
2131 }
2132
2133 CCValAssign &VA = ArgLocs[ArgIdx++];
2134 MVT VT = VA.getLocVT();
2135
2136 if (IsEntryFunc && VA.isMemLoc()) {
2137 VT = Ins[i].VT;
2138 EVT MemVT = VA.getLocVT();
2139
2140 const uint64_t Offset = VA.getLocMemOffset();
2141 unsigned Align = MinAlign(KernelArgBaseAlign, Offset);
2142
2143 SDValue Arg = lowerKernargMemParameter(
2144 DAG, VT, MemVT, DL, Chain, Offset, Align, Ins[i].Flags.isSExt(), &Ins[i]);
2145 Chains.push_back(Arg.getValue(1));
2146
2147 auto *ParamTy =
2148 dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex()));
2149 if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS &&
2150 ParamTy && (ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
2151 ParamTy->getAddressSpace() == AMDGPUAS::REGION_ADDRESS)) {
2152 // On SI local pointers are just offsets into LDS, so they are always
2153 // less than 16-bits. On CI and newer they could potentially be
2154 // real pointers, so we can't guarantee their size.
2155 Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg,
2156 DAG.getValueType(MVT::i16));
2157 }
2158
2159 InVals.push_back(Arg);
2160 continue;
2161 } else if (!IsEntryFunc && VA.isMemLoc()) {
2162 SDValue Val = lowerStackParameter(DAG, VA, DL, Chain, Arg);
2163 InVals.push_back(Val);
2164 if (!Arg.Flags.isByVal())
2165 Chains.push_back(Val.getValue(1));
2166 continue;
2167 }
2168
2169 assert(VA.isRegLoc() && "Parameter must be in a register!")((VA.isRegLoc() && "Parameter must be in a register!"
) ? static_cast<void> (0) : __assert_fail ("VA.isRegLoc() && \"Parameter must be in a register!\""
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2169, __PRETTY_FUNCTION__))
;
2170
2171 Register Reg = VA.getLocReg();
2172 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT);
2173 EVT ValVT = VA.getValVT();
2174
2175 Reg = MF.addLiveIn(Reg, RC);
2176 SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT);
2177
2178 if (Arg.Flags.isSRet()) {
2179 // The return object should be reasonably addressable.
2180
2181 // FIXME: This helps when the return is a real sret. If it is a
2182 // automatically inserted sret (i.e. CanLowerReturn returns false), an
2183 // extra copy is inserted in SelectionDAGBuilder which obscures this.
2184 unsigned NumBits
2185 = 32 - getSubtarget()->getKnownHighZeroBitsForFrameIndex();
2186 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2187 DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), NumBits)));
2188 }
2189
2190 // If this is an 8 or 16-bit value, it is really passed promoted
2191 // to 32 bits. Insert an assert[sz]ext to capture this, then
2192 // truncate to the right size.
2193 switch (VA.getLocInfo()) {
2194 case CCValAssign::Full:
2195 break;
2196 case CCValAssign::BCvt:
2197 Val = DAG.getNode(ISD::BITCAST, DL, ValVT, Val);
2198 break;
2199 case CCValAssign::SExt:
2200 Val = DAG.getNode(ISD::AssertSext, DL, VT, Val,
2201 DAG.getValueType(ValVT));
2202 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2203 break;
2204 case CCValAssign::ZExt:
2205 Val = DAG.getNode(ISD::AssertZext, DL, VT, Val,
2206 DAG.getValueType(ValVT));
2207 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2208 break;
2209 case CCValAssign::AExt:
2210 Val = DAG.getNode(ISD::TRUNCATE, DL, ValVT, Val);
2211 break;
2212 default:
2213 llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2213)
;
2214 }
2215
2216 InVals.push_back(Val);
2217 }
2218
2219 if (!IsEntryFunc) {
2220 // Special inputs come after user arguments.
2221 allocateSpecialInputVGPRs(CCInfo, MF, *TRI, *Info);
2222 }
2223
2224 // Start adding system SGPRs.
2225 if (IsEntryFunc) {
2226 allocateSystemSGPRs(CCInfo, MF, *Info, CallConv, IsShader);
2227 } else {
2228 CCInfo.AllocateReg(Info->getScratchRSrcReg());
2229 CCInfo.AllocateReg(Info->getScratchWaveOffsetReg());
2230 CCInfo.AllocateReg(Info->getFrameOffsetReg());
2231 allocateSpecialInputSGPRs(CCInfo, MF, *TRI, *Info);
2232 }
2233
2234 auto &ArgUsageInfo =
2235 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2236 ArgUsageInfo.setFuncArgInfo(Fn, Info->getArgInfo());
2237
2238 unsigned StackArgSize = CCInfo.getNextStackOffset();
2239 Info->setBytesInStackArgArea(StackArgSize);
2240
2241 return Chains.empty() ? Chain :
2242 DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
2243}
2244
2245// TODO: If return values can't fit in registers, we should return as many as
2246// possible in registers before passing on stack.
2247bool SITargetLowering::CanLowerReturn(
2248 CallingConv::ID CallConv,
2249 MachineFunction &MF, bool IsVarArg,
2250 const SmallVectorImpl<ISD::OutputArg> &Outs,
2251 LLVMContext &Context) const {
2252 // Replacing returns with sret/stack usage doesn't make sense for shaders.
2253 // FIXME: Also sort of a workaround for custom vector splitting in LowerReturn
2254 // for shaders. Vector types should be explicitly handled by CC.
2255 if (AMDGPU::isEntryFunctionCC(CallConv))
2256 return true;
2257
2258 SmallVector<CCValAssign, 16> RVLocs;
2259 CCState CCInfo(CallConv, IsVarArg, MF, RVLocs, Context);
2260 return CCInfo.CheckReturn(Outs, CCAssignFnForReturn(CallConv, IsVarArg));
2261}
2262
2263SDValue
2264SITargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv,
2265 bool isVarArg,
2266 const SmallVectorImpl<ISD::OutputArg> &Outs,
2267 const SmallVectorImpl<SDValue> &OutVals,
2268 const SDLoc &DL, SelectionDAG &DAG) const {
2269 MachineFunction &MF = DAG.getMachineFunction();
2270 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2271
2272 if (AMDGPU::isKernel(CallConv)) {
2273 return AMDGPUTargetLowering::LowerReturn(Chain, CallConv, isVarArg, Outs,
2274 OutVals, DL, DAG);
2275 }
2276
2277 bool IsShader = AMDGPU::isShader(CallConv);
2278
2279 Info->setIfReturnsVoid(Outs.empty());
2280 bool IsWaveEnd = Info->returnsVoid() && IsShader;
2281
2282 // CCValAssign - represent the assignment of the return value to a location.
2283 SmallVector<CCValAssign, 48> RVLocs;
2284 SmallVector<ISD::OutputArg, 48> Splits;
2285
2286 // CCState - Info about the registers and stack slots.
2287 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
2288 *DAG.getContext());
2289
2290 // Analyze outgoing return values.
2291 CCInfo.AnalyzeReturn(Outs, CCAssignFnForReturn(CallConv, isVarArg));
2292
2293 SDValue Flag;
2294 SmallVector<SDValue, 48> RetOps;
2295 RetOps.push_back(Chain); // Operand #0 = Chain (updated below)
2296
2297 // Add return address for callable functions.
2298 if (!Info->isEntryFunction()) {
2299 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2300 SDValue ReturnAddrReg = CreateLiveInRegister(
2301 DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
2302
2303 SDValue ReturnAddrVirtualReg = DAG.getRegister(
2304 MF.getRegInfo().createVirtualRegister(&AMDGPU::CCR_SGPR_64RegClass),
2305 MVT::i64);
2306 Chain =
2307 DAG.getCopyToReg(Chain, DL, ReturnAddrVirtualReg, ReturnAddrReg, Flag);
2308 Flag = Chain.getValue(1);
2309 RetOps.push_back(ReturnAddrVirtualReg);
2310 }
2311
2312 // Copy the result values into the output registers.
2313 for (unsigned I = 0, RealRVLocIdx = 0, E = RVLocs.size(); I != E;
2314 ++I, ++RealRVLocIdx) {
2315 CCValAssign &VA = RVLocs[I];
2316 assert(VA.isRegLoc() && "Can only return in registers!")((VA.isRegLoc() && "Can only return in registers!") ?
static_cast<void> (0) : __assert_fail ("VA.isRegLoc() && \"Can only return in registers!\""
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2316, __PRETTY_FUNCTION__))
;
2317 // TODO: Partially return in registers if return values don't fit.
2318 SDValue Arg = OutVals[RealRVLocIdx];
2319
2320 // Copied from other backends.
2321 switch (VA.getLocInfo()) {
2322 case CCValAssign::Full:
2323 break;
2324 case CCValAssign::BCvt:
2325 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2326 break;
2327 case CCValAssign::SExt:
2328 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2329 break;
2330 case CCValAssign::ZExt:
2331 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2332 break;
2333 case CCValAssign::AExt:
2334 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2335 break;
2336 default:
2337 llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2337)
;
2338 }
2339
2340 Chain = DAG.getCopyToReg(Chain, DL, VA.getLocReg(), Arg, Flag);
2341 Flag = Chain.getValue(1);
2342 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
2343 }
2344
2345 // FIXME: Does sret work properly?
2346 if (!Info->isEntryFunction()) {
2347 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2348 const MCPhysReg *I =
2349 TRI->getCalleeSavedRegsViaCopy(&DAG.getMachineFunction());
2350 if (I) {
2351 for (; *I; ++I) {
2352 if (AMDGPU::SReg_64RegClass.contains(*I))
2353 RetOps.push_back(DAG.getRegister(*I, MVT::i64));
2354 else if (AMDGPU::SReg_32RegClass.contains(*I))
2355 RetOps.push_back(DAG.getRegister(*I, MVT::i32));
2356 else
2357 llvm_unreachable("Unexpected register class in CSRsViaCopy!")::llvm::llvm_unreachable_internal("Unexpected register class in CSRsViaCopy!"
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2357)
;
2358 }
2359 }
2360 }
2361
2362 // Update chain and glue.
2363 RetOps[0] = Chain;
2364 if (Flag.getNode())
2365 RetOps.push_back(Flag);
2366
2367 unsigned Opc = AMDGPUISD::ENDPGM;
2368 if (!IsWaveEnd)
2369 Opc = IsShader ? AMDGPUISD::RETURN_TO_EPILOG : AMDGPUISD::RET_FLAG;
2370 return DAG.getNode(Opc, DL, MVT::Other, RetOps);
2371}
2372
2373SDValue SITargetLowering::LowerCallResult(
2374 SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool IsVarArg,
2375 const SmallVectorImpl<ISD::InputArg> &Ins, const SDLoc &DL,
2376 SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, bool IsThisReturn,
2377 SDValue ThisVal) const {
2378 CCAssignFn *RetCC = CCAssignFnForReturn(CallConv, IsVarArg);
2379
2380 // Assign locations to each value returned by this call.
2381 SmallVector<CCValAssign, 16> RVLocs;
2382 CCState CCInfo(CallConv, IsVarArg, DAG.getMachineFunction(), RVLocs,
2383 *DAG.getContext());
2384 CCInfo.AnalyzeCallResult(Ins, RetCC);
2385
2386 // Copy all of the result registers out of their specified physreg.
2387 for (unsigned i = 0; i != RVLocs.size(); ++i) {
2388 CCValAssign VA = RVLocs[i];
2389 SDValue Val;
2390
2391 if (VA.isRegLoc()) {
2392 Val = DAG.getCopyFromReg(Chain, DL, VA.getLocReg(), VA.getLocVT(), InFlag);
2393 Chain = Val.getValue(1);
2394 InFlag = Val.getValue(2);
2395 } else if (VA.isMemLoc()) {
2396 report_fatal_error("TODO: return values in memory");
2397 } else
2398 llvm_unreachable("unknown argument location type")::llvm::llvm_unreachable_internal("unknown argument location type"
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2398)
;
2399
2400 switch (VA.getLocInfo()) {
2401 case CCValAssign::Full:
2402 break;
2403 case CCValAssign::BCvt:
2404 Val = DAG.getNode(ISD::BITCAST, DL, VA.getValVT(), Val);
2405 break;
2406 case CCValAssign::ZExt:
2407 Val = DAG.getNode(ISD::AssertZext, DL, VA.getLocVT(), Val,
2408 DAG.getValueType(VA.getValVT()));
2409 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2410 break;
2411 case CCValAssign::SExt:
2412 Val = DAG.getNode(ISD::AssertSext, DL, VA.getLocVT(), Val,
2413 DAG.getValueType(VA.getValVT()));
2414 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2415 break;
2416 case CCValAssign::AExt:
2417 Val = DAG.getNode(ISD::TRUNCATE, DL, VA.getValVT(), Val);
2418 break;
2419 default:
2420 llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2420)
;
2421 }
2422
2423 InVals.push_back(Val);
2424 }
2425
2426 return Chain;
2427}
2428
2429// Add code to pass special inputs required depending on used features separate
2430// from the explicit user arguments present in the IR.
2431void SITargetLowering::passSpecialInputs(
2432 CallLoweringInfo &CLI,
2433 CCState &CCInfo,
2434 const SIMachineFunctionInfo &Info,
2435 SmallVectorImpl<std::pair<unsigned, SDValue>> &RegsToPass,
2436 SmallVectorImpl<SDValue> &MemOpChains,
2437 SDValue Chain) const {
2438 // If we don't have a call site, this was a call inserted by
2439 // legalization. These can never use special inputs.
2440 if (!CLI.CS)
2441 return;
2442
2443 const Function *CalleeFunc = CLI.CS.getCalledFunction();
2444 assert(CalleeFunc)((CalleeFunc) ? static_cast<void> (0) : __assert_fail (
"CalleeFunc", "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2444, __PRETTY_FUNCTION__))
;
2445
2446 SelectionDAG &DAG = CLI.DAG;
2447 const SDLoc &DL = CLI.DL;
2448
2449 const SIRegisterInfo *TRI = Subtarget->getRegisterInfo();
2450
2451 auto &ArgUsageInfo =
2452 DAG.getPass()->getAnalysis<AMDGPUArgumentUsageInfo>();
2453 const AMDGPUFunctionArgInfo &CalleeArgInfo
2454 = ArgUsageInfo.lookupFuncArgInfo(*CalleeFunc);
2455
2456 const AMDGPUFunctionArgInfo &CallerArgInfo = Info.getArgInfo();
2457
2458 // TODO: Unify with private memory register handling. This is complicated by
2459 // the fact that at least in kernels, the input argument is not necessarily
2460 // in the same location as the input.
2461 AMDGPUFunctionArgInfo::PreloadedValue InputRegs[] = {
2462 AMDGPUFunctionArgInfo::DISPATCH_PTR,
2463 AMDGPUFunctionArgInfo::QUEUE_PTR,
2464 AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR,
2465 AMDGPUFunctionArgInfo::DISPATCH_ID,
2466 AMDGPUFunctionArgInfo::WORKGROUP_ID_X,
2467 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y,
2468 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z,
2469 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR
2470 };
2471
2472 for (auto InputID : InputRegs) {
2473 const ArgDescriptor *OutgoingArg;
2474 const TargetRegisterClass *ArgRC;
2475
2476 std::tie(OutgoingArg, ArgRC) = CalleeArgInfo.getPreloadedValue(InputID);
2477 if (!OutgoingArg)
2478 continue;
2479
2480 const ArgDescriptor *IncomingArg;
2481 const TargetRegisterClass *IncomingArgRC;
2482 std::tie(IncomingArg, IncomingArgRC)
2483 = CallerArgInfo.getPreloadedValue(InputID);
2484 assert(IncomingArgRC == ArgRC)((IncomingArgRC == ArgRC) ? static_cast<void> (0) : __assert_fail
("IncomingArgRC == ArgRC", "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2484, __PRETTY_FUNCTION__))
;
2485
2486 // All special arguments are ints for now.
2487 EVT ArgVT = TRI->getSpillSize(*ArgRC) == 8 ? MVT::i64 : MVT::i32;
2488 SDValue InputReg;
2489
2490 if (IncomingArg) {
2491 InputReg = loadInputValue(DAG, ArgRC, ArgVT, DL, *IncomingArg);
2492 } else {
2493 // The implicit arg ptr is special because it doesn't have a corresponding
2494 // input for kernels, and is computed from the kernarg segment pointer.
2495 assert(InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR)((InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR) ? static_cast
<void> (0) : __assert_fail ("InputID == AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR"
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2495, __PRETTY_FUNCTION__))
;
2496 InputReg = getImplicitArgPtr(DAG, DL);
2497 }
2498
2499 if (OutgoingArg->isRegister()) {
2500 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2501 } else {
2502 unsigned SpecialArgOffset = CCInfo.AllocateStack(ArgVT.getStoreSize(), 4);
2503 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2504 SpecialArgOffset);
2505 MemOpChains.push_back(ArgStore);
2506 }
2507 }
2508
2509 // Pack workitem IDs into a single register or pass it as is if already
2510 // packed.
2511 const ArgDescriptor *OutgoingArg;
2512 const TargetRegisterClass *ArgRC;
2513
2514 std::tie(OutgoingArg, ArgRC) =
2515 CalleeArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X);
2516 if (!OutgoingArg)
2517 std::tie(OutgoingArg, ArgRC) =
2518 CalleeArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
2519 if (!OutgoingArg)
2520 std::tie(OutgoingArg, ArgRC) =
2521 CalleeArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
2522 if (!OutgoingArg)
2523 return;
2524
2525 const ArgDescriptor *IncomingArgX
2526 = CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_X).first;
2527 const ArgDescriptor *IncomingArgY
2528 = CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Y).first;
2529 const ArgDescriptor *IncomingArgZ
2530 = CallerArgInfo.getPreloadedValue(AMDGPUFunctionArgInfo::WORKITEM_ID_Z).first;
2531
2532 SDValue InputReg;
2533 SDLoc SL;
2534
2535 // If incoming ids are not packed we need to pack them.
2536 if (IncomingArgX && !IncomingArgX->isMasked() && CalleeArgInfo.WorkItemIDX)
2537 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgX);
2538
2539 if (IncomingArgY && !IncomingArgY->isMasked() && CalleeArgInfo.WorkItemIDY) {
2540 SDValue Y = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgY);
2541 Y = DAG.getNode(ISD::SHL, SL, MVT::i32, Y,
2542 DAG.getShiftAmountConstant(10, MVT::i32, SL));
2543 InputReg = InputReg.getNode() ?
2544 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Y) : Y;
2545 }
2546
2547 if (IncomingArgZ && !IncomingArgZ->isMasked() && CalleeArgInfo.WorkItemIDZ) {
2548 SDValue Z = loadInputValue(DAG, ArgRC, MVT::i32, DL, *IncomingArgZ);
2549 Z = DAG.getNode(ISD::SHL, SL, MVT::i32, Z,
2550 DAG.getShiftAmountConstant(20, MVT::i32, SL));
2551 InputReg = InputReg.getNode() ?
2552 DAG.getNode(ISD::OR, SL, MVT::i32, InputReg, Z) : Z;
2553 }
2554
2555 if (!InputReg.getNode()) {
2556 // Workitem ids are already packed, any of present incoming arguments
2557 // will carry all required fields.
2558 ArgDescriptor IncomingArg = ArgDescriptor::createArg(
2559 IncomingArgX ? *IncomingArgX :
2560 IncomingArgY ? *IncomingArgY :
2561 *IncomingArgZ, ~0u);
2562 InputReg = loadInputValue(DAG, ArgRC, MVT::i32, DL, IncomingArg);
2563 }
2564
2565 if (OutgoingArg->isRegister()) {
2566 RegsToPass.emplace_back(OutgoingArg->getRegister(), InputReg);
2567 } else {
2568 unsigned SpecialArgOffset = CCInfo.AllocateStack(4, 4);
2569 SDValue ArgStore = storeStackInputValue(DAG, DL, Chain, InputReg,
2570 SpecialArgOffset);
2571 MemOpChains.push_back(ArgStore);
2572 }
2573}
2574
2575static bool canGuaranteeTCO(CallingConv::ID CC) {
2576 return CC == CallingConv::Fast;
2577}
2578
2579/// Return true if we might ever do TCO for calls with this calling convention.
2580static bool mayTailCallThisCC(CallingConv::ID CC) {
2581 switch (CC) {
2582 case CallingConv::C:
2583 return true;
2584 default:
2585 return canGuaranteeTCO(CC);
2586 }
2587}
2588
2589bool SITargetLowering::isEligibleForTailCallOptimization(
2590 SDValue Callee, CallingConv::ID CalleeCC, bool IsVarArg,
2591 const SmallVectorImpl<ISD::OutputArg> &Outs,
2592 const SmallVectorImpl<SDValue> &OutVals,
2593 const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG &DAG) const {
2594 if (!mayTailCallThisCC(CalleeCC))
2595 return false;
2596
2597 MachineFunction &MF = DAG.getMachineFunction();
2598 const Function &CallerF = MF.getFunction();
2599 CallingConv::ID CallerCC = CallerF.getCallingConv();
2600 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2601 const uint32_t *CallerPreserved = TRI->getCallPreservedMask(MF, CallerCC);
2602
2603 // Kernels aren't callable, and don't have a live in return address so it
2604 // doesn't make sense to do a tail call with entry functions.
2605 if (!CallerPreserved)
2606 return false;
2607
2608 bool CCMatch = CallerCC == CalleeCC;
2609
2610 if (DAG.getTarget().Options.GuaranteedTailCallOpt) {
2611 if (canGuaranteeTCO(CalleeCC) && CCMatch)
2612 return true;
2613 return false;
2614 }
2615
2616 // TODO: Can we handle var args?
2617 if (IsVarArg)
2618 return false;
2619
2620 for (const Argument &Arg : CallerF.args()) {
2621 if (Arg.hasByValAttr())
2622 return false;
2623 }
2624
2625 LLVMContext &Ctx = *DAG.getContext();
2626
2627 // Check that the call results are passed in the same way.
2628 if (!CCState::resultsCompatible(CalleeCC, CallerCC, MF, Ctx, Ins,
2629 CCAssignFnForCall(CalleeCC, IsVarArg),
2630 CCAssignFnForCall(CallerCC, IsVarArg)))
2631 return false;
2632
2633 // The callee has to preserve all registers the caller needs to preserve.
2634 if (!CCMatch) {
2635 const uint32_t *CalleePreserved = TRI->getCallPreservedMask(MF, CalleeCC);
2636 if (!TRI->regmaskSubsetEqual(CallerPreserved, CalleePreserved))
2637 return false;
2638 }
2639
2640 // Nothing more to check if the callee is taking no arguments.
2641 if (Outs.empty())
2642 return true;
2643
2644 SmallVector<CCValAssign, 16> ArgLocs;
2645 CCState CCInfo(CalleeCC, IsVarArg, MF, ArgLocs, Ctx);
2646
2647 CCInfo.AnalyzeCallOperands(Outs, CCAssignFnForCall(CalleeCC, IsVarArg));
2648
2649 const SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
2650 // If the stack arguments for this call do not fit into our own save area then
2651 // the call cannot be made tail.
2652 // TODO: Is this really necessary?
2653 if (CCInfo.getNextStackOffset() > FuncInfo->getBytesInStackArgArea())
2654 return false;
2655
2656 const MachineRegisterInfo &MRI = MF.getRegInfo();
2657 return parametersInCSRMatch(MRI, CallerPreserved, ArgLocs, OutVals);
2658}
2659
2660bool SITargetLowering::mayBeEmittedAsTailCall(const CallInst *CI) const {
2661 if (!CI->isTailCall())
2662 return false;
2663
2664 const Function *ParentFn = CI->getParent()->getParent();
2665 if (AMDGPU::isEntryFunctionCC(ParentFn->getCallingConv()))
2666 return false;
2667
2668 auto Attr = ParentFn->getFnAttribute("disable-tail-calls");
2669 return (Attr.getValueAsString() != "true");
2670}
2671
2672// The wave scratch offset register is used as the global base pointer.
2673SDValue SITargetLowering::LowerCall(CallLoweringInfo &CLI,
2674 SmallVectorImpl<SDValue> &InVals) const {
2675 SelectionDAG &DAG = CLI.DAG;
2676 const SDLoc &DL = CLI.DL;
2677 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
2678 SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
2679 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
2680 SDValue Chain = CLI.Chain;
2681 SDValue Callee = CLI.Callee;
2682 bool &IsTailCall = CLI.IsTailCall;
2683 CallingConv::ID CallConv = CLI.CallConv;
2684 bool IsVarArg = CLI.IsVarArg;
2685 bool IsSibCall = false;
2686 bool IsThisReturn = false;
2687 MachineFunction &MF = DAG.getMachineFunction();
2688
2689 if (IsVarArg) {
2690 return lowerUnhandledCall(CLI, InVals,
2691 "unsupported call to variadic function ");
2692 }
2693
2694 if (!CLI.CS.getInstruction())
2695 report_fatal_error("unsupported libcall legalization");
2696
2697 if (!CLI.CS.getCalledFunction()) {
2698 return lowerUnhandledCall(CLI, InVals,
2699 "unsupported indirect call to function ");
2700 }
2701
2702 if (IsTailCall && MF.getTarget().Options.GuaranteedTailCallOpt) {
2703 return lowerUnhandledCall(CLI, InVals,
2704 "unsupported required tail call to function ");
2705 }
2706
2707 if (AMDGPU::isShader(MF.getFunction().getCallingConv())) {
2708 // Note the issue is with the CC of the calling function, not of the call
2709 // itself.
2710 return lowerUnhandledCall(CLI, InVals,
2711 "unsupported call from graphics shader of function ");
2712 }
2713
2714 if (IsTailCall) {
2715 IsTailCall = isEligibleForTailCallOptimization(
2716 Callee, CallConv, IsVarArg, Outs, OutVals, Ins, DAG);
2717 if (!IsTailCall && CLI.CS && CLI.CS.isMustTailCall()) {
2718 report_fatal_error("failed to perform tail call elimination on a call "
2719 "site marked musttail");
2720 }
2721
2722 bool TailCallOpt = MF.getTarget().Options.GuaranteedTailCallOpt;
2723
2724 // A sibling call is one where we're under the usual C ABI and not planning
2725 // to change that but can still do a tail call:
2726 if (!TailCallOpt && IsTailCall)
2727 IsSibCall = true;
2728
2729 if (IsTailCall)
2730 ++NumTailCalls;
2731 }
2732
2733 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
2734
2735 // Analyze operands of the call, assigning locations to each operand.
2736 SmallVector<CCValAssign, 16> ArgLocs;
2737 CCState CCInfo(CallConv, IsVarArg, MF, ArgLocs, *DAG.getContext());
2738 CCAssignFn *AssignFn = CCAssignFnForCall(CallConv, IsVarArg);
2739
2740 CCInfo.AnalyzeCallOperands(Outs, AssignFn);
2741
2742 // Get a count of how many bytes are to be pushed on the stack.
2743 unsigned NumBytes = CCInfo.getNextStackOffset();
2744
2745 if (IsSibCall) {
2746 // Since we're not changing the ABI to make this a tail call, the memory
2747 // operands are already available in the caller's incoming argument space.
2748 NumBytes = 0;
2749 }
2750
2751 // FPDiff is the byte offset of the call's argument area from the callee's.
2752 // Stores to callee stack arguments will be placed in FixedStackSlots offset
2753 // by this amount for a tail call. In a sibling call it must be 0 because the
2754 // caller will deallocate the entire stack and the callee still expects its
2755 // arguments to begin at SP+0. Completely unused for non-tail calls.
2756 int32_t FPDiff = 0;
2757 MachineFrameInfo &MFI = MF.getFrameInfo();
2758 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2759
2760 // Adjust the stack pointer for the new arguments...
2761 // These operations are automatically eliminated by the prolog/epilog pass
2762 if (!IsSibCall) {
2763 Chain = DAG.getCALLSEQ_START(Chain, 0, 0, DL);
2764
2765 SmallVector<SDValue, 4> CopyFromChains;
2766
2767 // In the HSA case, this should be an identity copy.
2768 SDValue ScratchRSrcReg
2769 = DAG.getCopyFromReg(Chain, DL, Info->getScratchRSrcReg(), MVT::v4i32);
2770 RegsToPass.emplace_back(AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3, ScratchRSrcReg);
2771 CopyFromChains.push_back(ScratchRSrcReg.getValue(1));
2772 Chain = DAG.getTokenFactor(DL, CopyFromChains);
2773 }
2774
2775 SmallVector<SDValue, 8> MemOpChains;
2776 MVT PtrVT = MVT::i32;
2777
2778 // Walk the register/memloc assignments, inserting copies/loads.
2779 for (unsigned i = 0, realArgIdx = 0, e = ArgLocs.size(); i != e;
2780 ++i, ++realArgIdx) {
2781 CCValAssign &VA = ArgLocs[i];
2782 SDValue Arg = OutVals[realArgIdx];
2783
2784 // Promote the value if needed.
2785 switch (VA.getLocInfo()) {
2786 case CCValAssign::Full:
2787 break;
2788 case CCValAssign::BCvt:
2789 Arg = DAG.getNode(ISD::BITCAST, DL, VA.getLocVT(), Arg);
2790 break;
2791 case CCValAssign::ZExt:
2792 Arg = DAG.getNode(ISD::ZERO_EXTEND, DL, VA.getLocVT(), Arg);
2793 break;
2794 case CCValAssign::SExt:
2795 Arg = DAG.getNode(ISD::SIGN_EXTEND, DL, VA.getLocVT(), Arg);
2796 break;
2797 case CCValAssign::AExt:
2798 Arg = DAG.getNode(ISD::ANY_EXTEND, DL, VA.getLocVT(), Arg);
2799 break;
2800 case CCValAssign::FPExt:
2801 Arg = DAG.getNode(ISD::FP_EXTEND, DL, VA.getLocVT(), Arg);
2802 break;
2803 default:
2804 llvm_unreachable("Unknown loc info!")::llvm::llvm_unreachable_internal("Unknown loc info!", "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2804)
;
2805 }
2806
2807 if (VA.isRegLoc()) {
2808 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
2809 } else {
2810 assert(VA.isMemLoc())((VA.isMemLoc()) ? static_cast<void> (0) : __assert_fail
("VA.isMemLoc()", "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2810, __PRETTY_FUNCTION__))
;
2811
2812 SDValue DstAddr;
2813 MachinePointerInfo DstInfo;
2814
2815 unsigned LocMemOffset = VA.getLocMemOffset();
2816 int32_t Offset = LocMemOffset;
2817
2818 SDValue PtrOff = DAG.getConstant(Offset, DL, PtrVT);
2819 unsigned Align = 0;
2820
2821 if (IsTailCall) {
2822 ISD::ArgFlagsTy Flags = Outs[realArgIdx].Flags;
2823 unsigned OpSize = Flags.isByVal() ?
2824 Flags.getByValSize() : VA.getValVT().getStoreSize();
2825
2826 // FIXME: We can have better than the minimum byval required alignment.
2827 Align = Flags.isByVal() ? Flags.getByValAlign() :
2828 MinAlign(Subtarget->getStackAlignment(), Offset);
2829
2830 Offset = Offset + FPDiff;
2831 int FI = MFI.CreateFixedObject(OpSize, Offset, true);
2832
2833 DstAddr = DAG.getFrameIndex(FI, PtrVT);
2834 DstInfo = MachinePointerInfo::getFixedStack(MF, FI);
2835
2836 // Make sure any stack arguments overlapping with where we're storing
2837 // are loaded before this eventual operation. Otherwise they'll be
2838 // clobbered.
2839
2840 // FIXME: Why is this really necessary? This seems to just result in a
2841 // lot of code to copy the stack and write them back to the same
2842 // locations, which are supposed to be immutable?
2843 Chain = addTokenForArgument(Chain, DAG, MFI, FI);
2844 } else {
2845 DstAddr = PtrOff;
2846 DstInfo = MachinePointerInfo::getStack(MF, LocMemOffset);
2847 Align = MinAlign(Subtarget->getStackAlignment(), LocMemOffset);
2848 }
2849
2850 if (Outs[i].Flags.isByVal()) {
2851 SDValue SizeNode =
2852 DAG.getConstant(Outs[i].Flags.getByValSize(), DL, MVT::i32);
2853 SDValue Cpy = DAG.getMemcpy(
2854 Chain, DL, DstAddr, Arg, SizeNode, Outs[i].Flags.getByValAlign(),
2855 /*isVol = */ false, /*AlwaysInline = */ true,
2856 /*isTailCall = */ false, DstInfo,
2857 MachinePointerInfo(UndefValue::get(Type::getInt8PtrTy(
2858 *DAG.getContext(), AMDGPUAS::PRIVATE_ADDRESS))));
2859
2860 MemOpChains.push_back(Cpy);
2861 } else {
2862 SDValue Store = DAG.getStore(Chain, DL, Arg, DstAddr, DstInfo, Align);
2863 MemOpChains.push_back(Store);
2864 }
2865 }
2866 }
2867
2868 // Copy special input registers after user input arguments.
2869 passSpecialInputs(CLI, CCInfo, *Info, RegsToPass, MemOpChains, Chain);
2870
2871 if (!MemOpChains.empty())
2872 Chain = DAG.getNode(ISD::TokenFactor, DL, MVT::Other, MemOpChains);
2873
2874 // Build a sequence of copy-to-reg nodes chained together with token chain
2875 // and flag operands which copy the outgoing args into the appropriate regs.
2876 SDValue InFlag;
2877 for (auto &RegToPass : RegsToPass) {
2878 Chain = DAG.getCopyToReg(Chain, DL, RegToPass.first,
2879 RegToPass.second, InFlag);
2880 InFlag = Chain.getValue(1);
2881 }
2882
2883
2884 SDValue PhysReturnAddrReg;
2885 if (IsTailCall) {
2886 // Since the return is being combined with the call, we need to pass on the
2887 // return address.
2888
2889 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
2890 SDValue ReturnAddrReg = CreateLiveInRegister(
2891 DAG, &AMDGPU::SReg_64RegClass, TRI->getReturnAddressReg(MF), MVT::i64);
2892
2893 PhysReturnAddrReg = DAG.getRegister(TRI->getReturnAddressReg(MF),
2894 MVT::i64);
2895 Chain = DAG.getCopyToReg(Chain, DL, PhysReturnAddrReg, ReturnAddrReg, InFlag);
2896 InFlag = Chain.getValue(1);
2897 }
2898
2899 // We don't usually want to end the call-sequence here because we would tidy
2900 // the frame up *after* the call, however in the ABI-changing tail-call case
2901 // we've carefully laid out the parameters so that when sp is reset they'll be
2902 // in the correct location.
2903 if (IsTailCall && !IsSibCall) {
2904 Chain = DAG.getCALLSEQ_END(Chain,
2905 DAG.getTargetConstant(NumBytes, DL, MVT::i32),
2906 DAG.getTargetConstant(0, DL, MVT::i32),
2907 InFlag, DL);
2908 InFlag = Chain.getValue(1);
2909 }
2910
2911 std::vector<SDValue> Ops;
2912 Ops.push_back(Chain);
2913 Ops.push_back(Callee);
2914 // Add a redundant copy of the callee global which will not be legalized, as
2915 // we need direct access to the callee later.
2916 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Callee);
2917 const GlobalValue *GV = GSD->getGlobal();
2918 Ops.push_back(DAG.getTargetGlobalAddress(GV, DL, MVT::i64));
2919
2920 if (IsTailCall) {
2921 // Each tail call may have to adjust the stack by a different amount, so
2922 // this information must travel along with the operation for eventual
2923 // consumption by emitEpilogue.
2924 Ops.push_back(DAG.getTargetConstant(FPDiff, DL, MVT::i32));
2925
2926 Ops.push_back(PhysReturnAddrReg);
2927 }
2928
2929 // Add argument registers to the end of the list so that they are known live
2930 // into the call.
2931 for (auto &RegToPass : RegsToPass) {
2932 Ops.push_back(DAG.getRegister(RegToPass.first,
2933 RegToPass.second.getValueType()));
2934 }
2935
2936 // Add a register mask operand representing the call-preserved registers.
2937
2938 auto *TRI = static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo());
2939 const uint32_t *Mask = TRI->getCallPreservedMask(MF, CallConv);
2940 assert(Mask && "Missing call preserved mask for calling convention")((Mask && "Missing call preserved mask for calling convention"
) ? static_cast<void> (0) : __assert_fail ("Mask && \"Missing call preserved mask for calling convention\""
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 2940, __PRETTY_FUNCTION__))
;
2941 Ops.push_back(DAG.getRegisterMask(Mask));
2942
2943 if (InFlag.getNode())
2944 Ops.push_back(InFlag);
2945
2946 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
2947
2948 // If we're doing a tall call, use a TC_RETURN here rather than an
2949 // actual call instruction.
2950 if (IsTailCall) {
2951 MFI.setHasTailCall();
2952 return DAG.getNode(AMDGPUISD::TC_RETURN, DL, NodeTys, Ops);
2953 }
2954
2955 // Returns a chain and a flag for retval copy to use.
2956 SDValue Call = DAG.getNode(AMDGPUISD::CALL, DL, NodeTys, Ops);
2957 Chain = Call.getValue(0);
2958 InFlag = Call.getValue(1);
2959
2960 uint64_t CalleePopBytes = NumBytes;
2961 Chain = DAG.getCALLSEQ_END(Chain, DAG.getTargetConstant(0, DL, MVT::i32),
2962 DAG.getTargetConstant(CalleePopBytes, DL, MVT::i32),
2963 InFlag, DL);
2964 if (!Ins.empty())
2965 InFlag = Chain.getValue(1);
2966
2967 // Handle result values, copying them out of physregs into vregs that we
2968 // return.
2969 return LowerCallResult(Chain, InFlag, CallConv, IsVarArg, Ins, DL, DAG,
2970 InVals, IsThisReturn,
2971 IsThisReturn ? OutVals[0] : SDValue());
2972}
2973
2974Register SITargetLowering::getRegisterByName(const char* RegName, EVT VT,
2975 const MachineFunction &MF) const {
2976 Register Reg = StringSwitch<Register>(RegName)
2977 .Case("m0", AMDGPU::M0)
2978 .Case("exec", AMDGPU::EXEC)
2979 .Case("exec_lo", AMDGPU::EXEC_LO)
2980 .Case("exec_hi", AMDGPU::EXEC_HI)
2981 .Case("flat_scratch", AMDGPU::FLAT_SCR)
2982 .Case("flat_scratch_lo", AMDGPU::FLAT_SCR_LO)
2983 .Case("flat_scratch_hi", AMDGPU::FLAT_SCR_HI)
2984 .Default(Register());
2985
2986 if (Reg == AMDGPU::NoRegister) {
2987 report_fatal_error(Twine("invalid register name \""
2988 + StringRef(RegName) + "\"."));
2989
2990 }
2991
2992 if (!Subtarget->hasFlatScrRegister() &&
2993 Subtarget->getRegisterInfo()->regsOverlap(Reg, AMDGPU::FLAT_SCR)) {
2994 report_fatal_error(Twine("invalid register \""
2995 + StringRef(RegName) + "\" for subtarget."));
2996 }
2997
2998 switch (Reg) {
2999 case AMDGPU::M0:
3000 case AMDGPU::EXEC_LO:
3001 case AMDGPU::EXEC_HI:
3002 case AMDGPU::FLAT_SCR_LO:
3003 case AMDGPU::FLAT_SCR_HI:
3004 if (VT.getSizeInBits() == 32)
3005 return Reg;
3006 break;
3007 case AMDGPU::EXEC:
3008 case AMDGPU::FLAT_SCR:
3009 if (VT.getSizeInBits() == 64)
3010 return Reg;
3011 break;
3012 default:
3013 llvm_unreachable("missing register type checking")::llvm::llvm_unreachable_internal("missing register type checking"
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3013)
;
3014 }
3015
3016 report_fatal_error(Twine("invalid type for register \""
3017 + StringRef(RegName) + "\"."));
3018}
3019
3020// If kill is not the last instruction, split the block so kill is always a
3021// proper terminator.
3022MachineBasicBlock *SITargetLowering::splitKillBlock(MachineInstr &MI,
3023 MachineBasicBlock *BB) const {
3024 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3025
3026 MachineBasicBlock::iterator SplitPoint(&MI);
3027 ++SplitPoint;
3028
3029 if (SplitPoint == BB->end()) {
3030 // Don't bother with a new block.
3031 MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
3032 return BB;
3033 }
3034
3035 MachineFunction *MF = BB->getParent();
3036 MachineBasicBlock *SplitBB
3037 = MF->CreateMachineBasicBlock(BB->getBasicBlock());
3038
3039 MF->insert(++MachineFunction::iterator(BB), SplitBB);
3040 SplitBB->splice(SplitBB->begin(), BB, SplitPoint, BB->end());
3041
3042 SplitBB->transferSuccessorsAndUpdatePHIs(BB);
3043 BB->addSuccessor(SplitBB);
3044
3045 MI.setDesc(TII->getKillTerminatorFromPseudo(MI.getOpcode()));
3046 return SplitBB;
3047}
3048
3049// Split block \p MBB at \p MI, as to insert a loop. If \p InstInLoop is true,
3050// \p MI will be the only instruction in the loop body block. Otherwise, it will
3051// be the first instruction in the remainder block.
3052//
3053/// \returns { LoopBody, Remainder }
3054static std::pair<MachineBasicBlock *, MachineBasicBlock *>
3055splitBlockForLoop(MachineInstr &MI, MachineBasicBlock &MBB, bool InstInLoop) {
3056 MachineFunction *MF = MBB.getParent();
3057 MachineBasicBlock::iterator I(&MI);
3058
3059 // To insert the loop we need to split the block. Move everything after this
3060 // point to a new block, and insert a new empty block between the two.
3061 MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
3062 MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
3063 MachineFunction::iterator MBBI(MBB);
3064 ++MBBI;
3065
3066 MF->insert(MBBI, LoopBB);
3067 MF->insert(MBBI, RemainderBB);
3068
3069 LoopBB->addSuccessor(LoopBB);
3070 LoopBB->addSuccessor(RemainderBB);
3071
3072 // Move the rest of the block into a new block.
3073 RemainderBB->transferSuccessorsAndUpdatePHIs(&MBB);
3074
3075 if (InstInLoop) {
3076 auto Next = std::next(I);
3077
3078 // Move instruction to loop body.
3079 LoopBB->splice(LoopBB->begin(), &MBB, I, Next);
3080
3081 // Move the rest of the block.
3082 RemainderBB->splice(RemainderBB->begin(), &MBB, Next, MBB.end());
3083 } else {
3084 RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());
3085 }
3086
3087 MBB.addSuccessor(LoopBB);
3088
3089 return std::make_pair(LoopBB, RemainderBB);
3090}
3091
3092/// Insert \p MI into a BUNDLE with an S_WAITCNT 0 immediately following it.
3093void SITargetLowering::bundleInstWithWaitcnt(MachineInstr &MI) const {
3094 MachineBasicBlock *MBB = MI.getParent();
3095 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3096 auto I = MI.getIterator();
3097 auto E = std::next(I);
3098
3099 BuildMI(*MBB, E, MI.getDebugLoc(), TII->get(AMDGPU::S_WAITCNT))
3100 .addImm(0);
3101
3102 MIBundleBuilder Bundler(*MBB, I, E);
3103 finalizeBundle(*MBB, Bundler.begin());
3104}
3105
3106MachineBasicBlock *
3107SITargetLowering::emitGWSMemViolTestLoop(MachineInstr &MI,
3108 MachineBasicBlock *BB) const {
3109 const DebugLoc &DL = MI.getDebugLoc();
3110
3111 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3112
3113 MachineBasicBlock *LoopBB;
3114 MachineBasicBlock *RemainderBB;
3115 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3116
3117 // Apparently kill flags are only valid if the def is in the same block?
3118 if (MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::data0))
3119 Src->setIsKill(false);
3120
3121 std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, *BB, true);
3122
3123 MachineBasicBlock::iterator I = LoopBB->end();
3124
3125 const unsigned EncodedReg = AMDGPU::Hwreg::encodeHwreg(
3126 AMDGPU::Hwreg::ID_TRAPSTS, AMDGPU::Hwreg::OFFSET_MEM_VIOL, 1);
3127
3128 // Clear TRAP_STS.MEM_VIOL
3129 BuildMI(*LoopBB, LoopBB->begin(), DL, TII->get(AMDGPU::S_SETREG_IMM32_B32))
3130 .addImm(0)
3131 .addImm(EncodedReg);
3132
3133 bundleInstWithWaitcnt(MI);
3134
3135 Register Reg = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3136
3137 // Load and check TRAP_STS.MEM_VIOL
3138 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_GETREG_B32), Reg)
3139 .addImm(EncodedReg);
3140
3141 // FIXME: Do we need to use an isel pseudo that may clobber scc?
3142 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CMP_LG_U32))
3143 .addReg(Reg, RegState::Kill)
3144 .addImm(0);
3145 BuildMI(*LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
3146 .addMBB(LoopBB);
3147
3148 return RemainderBB;
3149}
3150
3151// Do a v_movrels_b32 or v_movreld_b32 for each unique value of \p IdxReg in the
3152// wavefront. If the value is uniform and just happens to be in a VGPR, this
3153// will only do one iteration. In the worst case, this will loop 64 times.
3154//
3155// TODO: Just use v_readlane_b32 if we know the VGPR has a uniform value.
3156static MachineBasicBlock::iterator emitLoadM0FromVGPRLoop(
3157 const SIInstrInfo *TII,
3158 MachineRegisterInfo &MRI,
3159 MachineBasicBlock &OrigBB,
3160 MachineBasicBlock &LoopBB,
3161 const DebugLoc &DL,
3162 const MachineOperand &IdxReg,
3163 unsigned InitReg,
3164 unsigned ResultReg,
3165 unsigned PhiReg,
3166 unsigned InitSaveExecReg,
3167 int Offset,
3168 bool UseGPRIdxMode,
3169 bool IsIndirectSrc) {
3170 MachineFunction *MF = OrigBB.getParent();
3171 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3172 const SIRegisterInfo *TRI = ST.getRegisterInfo();
3173 MachineBasicBlock::iterator I = LoopBB.begin();
3174
3175 const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3176 Register PhiExec = MRI.createVirtualRegister(BoolRC);
3177 Register NewExec = MRI.createVirtualRegister(BoolRC);
3178 Register CurrentIdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3179 Register CondReg = MRI.createVirtualRegister(BoolRC);
3180
3181 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiReg)
3182 .addReg(InitReg)
3183 .addMBB(&OrigBB)
3184 .addReg(ResultReg)
3185 .addMBB(&LoopBB);
3186
3187 BuildMI(LoopBB, I, DL, TII->get(TargetOpcode::PHI), PhiExec)
3188 .addReg(InitSaveExecReg)
3189 .addMBB(&OrigBB)
3190 .addReg(NewExec)
3191 .addMBB(&LoopBB);
3192
3193 // Read the next variant <- also loop target.
3194 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), CurrentIdxReg)
3195 .addReg(IdxReg.getReg(), getUndefRegState(IdxReg.isUndef()));
3196
3197 // Compare the just read M0 value to all possible Idx values.
3198 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e64), CondReg)
3199 .addReg(CurrentIdxReg)
3200 .addReg(IdxReg.getReg(), 0, IdxReg.getSubReg());
3201
3202 // Update EXEC, save the original EXEC value to VCC.
3203 BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_AND_SAVEEXEC_B32
3204 : AMDGPU::S_AND_SAVEEXEC_B64),
3205 NewExec)
3206 .addReg(CondReg, RegState::Kill);
3207
3208 MRI.setSimpleHint(NewExec, CondReg);
3209
3210 if (UseGPRIdxMode) {
3211 unsigned IdxReg;
3212 if (Offset == 0) {
3213 IdxReg = CurrentIdxReg;
3214 } else {
3215 IdxReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3216 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), IdxReg)
3217 .addReg(CurrentIdxReg, RegState::Kill)
3218 .addImm(Offset);
3219 }
3220 unsigned IdxMode = IsIndirectSrc ?
3221 AMDGPU::VGPRIndexMode::SRC0_ENABLE : AMDGPU::VGPRIndexMode::DST_ENABLE;
3222 MachineInstr *SetOn =
3223 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
3224 .addReg(IdxReg, RegState::Kill)
3225 .addImm(IdxMode);
3226 SetOn->getOperand(3).setIsUndef();
3227 } else {
3228 // Move index from VCC into M0
3229 if (Offset == 0) {
3230 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3231 .addReg(CurrentIdxReg, RegState::Kill);
3232 } else {
3233 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3234 .addReg(CurrentIdxReg, RegState::Kill)
3235 .addImm(Offset);
3236 }
3237 }
3238
3239 // Update EXEC, switch all done bits to 0 and all todo bits to 1.
3240 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3241 MachineInstr *InsertPt =
3242 BuildMI(LoopBB, I, DL, TII->get(ST.isWave32() ? AMDGPU::S_XOR_B32_term
3243 : AMDGPU::S_XOR_B64_term), Exec)
3244 .addReg(Exec)
3245 .addReg(NewExec);
3246
3247 // XXX - s_xor_b64 sets scc to 1 if the result is nonzero, so can we use
3248 // s_cbranch_scc0?
3249
3250 // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover.
3251 BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
3252 .addMBB(&LoopBB);
3253
3254 return InsertPt->getIterator();
3255}
3256
3257// This has slightly sub-optimal regalloc when the source vector is killed by
3258// the read. The register allocator does not understand that the kill is
3259// per-workitem, so is kept alive for the whole loop so we end up not re-using a
3260// subregister from it, using 1 more VGPR than necessary. This was saved when
3261// this was expanded after register allocation.
3262static MachineBasicBlock::iterator loadM0FromVGPR(const SIInstrInfo *TII,
3263 MachineBasicBlock &MBB,
3264 MachineInstr &MI,
3265 unsigned InitResultReg,
3266 unsigned PhiReg,
3267 int Offset,
3268 bool UseGPRIdxMode,
3269 bool IsIndirectSrc) {
3270 MachineFunction *MF = MBB.getParent();
3271 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3272 const SIRegisterInfo *TRI = ST.getRegisterInfo();
3273 MachineRegisterInfo &MRI = MF->getRegInfo();
3274 const DebugLoc &DL = MI.getDebugLoc();
3275 MachineBasicBlock::iterator I(&MI);
3276
3277 const auto *BoolXExecRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
3278 Register DstReg = MI.getOperand(0).getReg();
3279 Register SaveExec = MRI.createVirtualRegister(BoolXExecRC);
3280 Register TmpExec = MRI.createVirtualRegister(BoolXExecRC);
3281 unsigned Exec = ST.isWave32() ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3282 unsigned MovExecOpc = ST.isWave32() ? AMDGPU::S_MOV_B32 : AMDGPU::S_MOV_B64;
3283
3284 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), TmpExec);
3285
3286 // Save the EXEC mask
3287 BuildMI(MBB, I, DL, TII->get(MovExecOpc), SaveExec)
3288 .addReg(Exec);
3289
3290 MachineBasicBlock *LoopBB;
3291 MachineBasicBlock *RemainderBB;
3292 std::tie(LoopBB, RemainderBB) = splitBlockForLoop(MI, MBB, false);
3293
3294 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3295
3296 auto InsPt = emitLoadM0FromVGPRLoop(TII, MRI, MBB, *LoopBB, DL, *Idx,
3297 InitResultReg, DstReg, PhiReg, TmpExec,
3298 Offset, UseGPRIdxMode, IsIndirectSrc);
3299
3300 MachineBasicBlock::iterator First = RemainderBB->begin();
3301 BuildMI(*RemainderBB, First, DL, TII->get(MovExecOpc), Exec)
3302 .addReg(SaveExec);
3303
3304 return InsPt;
3305}
3306
3307// Returns subreg index, offset
3308static std::pair<unsigned, int>
3309computeIndirectRegAndOffset(const SIRegisterInfo &TRI,
3310 const TargetRegisterClass *SuperRC,
3311 unsigned VecReg,
3312 int Offset) {
3313 int NumElts = TRI.getRegSizeInBits(*SuperRC) / 32;
3314
3315 // Skip out of bounds offsets, or else we would end up using an undefined
3316 // register.
3317 if (Offset >= NumElts || Offset < 0)
3318 return std::make_pair(AMDGPU::sub0, Offset);
3319
3320 return std::make_pair(AMDGPU::sub0 + Offset, 0);
3321}
3322
3323// Return true if the index is an SGPR and was set.
3324static bool setM0ToIndexFromSGPR(const SIInstrInfo *TII,
3325 MachineRegisterInfo &MRI,
3326 MachineInstr &MI,
3327 int Offset,
3328 bool UseGPRIdxMode,
3329 bool IsIndirectSrc) {
3330 MachineBasicBlock *MBB = MI.getParent();
3331 const DebugLoc &DL = MI.getDebugLoc();
3332 MachineBasicBlock::iterator I(&MI);
3333
3334 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3335 const TargetRegisterClass *IdxRC = MRI.getRegClass(Idx->getReg());
3336
3337 assert(Idx->getReg() != AMDGPU::NoRegister)((Idx->getReg() != AMDGPU::NoRegister) ? static_cast<void
> (0) : __assert_fail ("Idx->getReg() != AMDGPU::NoRegister"
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3337, __PRETTY_FUNCTION__))
;
3338
3339 if (!TII->getRegisterInfo().isSGPRClass(IdxRC))
3340 return false;
3341
3342 if (UseGPRIdxMode) {
3343 unsigned IdxMode = IsIndirectSrc ?
3344 AMDGPU::VGPRIndexMode::SRC0_ENABLE : AMDGPU::VGPRIndexMode::DST_ENABLE;
3345 if (Offset == 0) {
3346 MachineInstr *SetOn =
3347 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
3348 .add(*Idx)
3349 .addImm(IdxMode);
3350
3351 SetOn->getOperand(3).setIsUndef();
3352 } else {
3353 Register Tmp = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3354 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), Tmp)
3355 .add(*Idx)
3356 .addImm(Offset);
3357 MachineInstr *SetOn =
3358 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_ON))
3359 .addReg(Tmp, RegState::Kill)
3360 .addImm(IdxMode);
3361
3362 SetOn->getOperand(3).setIsUndef();
3363 }
3364
3365 return true;
3366 }
3367
3368 if (Offset == 0) {
3369 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3370 .add(*Idx);
3371 } else {
3372 BuildMI(*MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
3373 .add(*Idx)
3374 .addImm(Offset);
3375 }
3376
3377 return true;
3378}
3379
3380// Control flow needs to be inserted if indexing with a VGPR.
3381static MachineBasicBlock *emitIndirectSrc(MachineInstr &MI,
3382 MachineBasicBlock &MBB,
3383 const GCNSubtarget &ST) {
3384 const SIInstrInfo *TII = ST.getInstrInfo();
3385 const SIRegisterInfo &TRI = TII->getRegisterInfo();
3386 MachineFunction *MF = MBB.getParent();
3387 MachineRegisterInfo &MRI = MF->getRegInfo();
3388
3389 Register Dst = MI.getOperand(0).getReg();
3390 Register SrcReg = TII->getNamedOperand(MI, AMDGPU::OpName::src)->getReg();
3391 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3392
3393 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcReg);
3394
3395 unsigned SubReg;
3396 std::tie(SubReg, Offset)
3397 = computeIndirectRegAndOffset(TRI, VecRC, SrcReg, Offset);
3398
3399 bool UseGPRIdxMode = ST.useVGPRIndexMode(EnableVGPRIndexMode);
3400
3401 if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, true)) {
3402 MachineBasicBlock::iterator I(&MI);
3403 const DebugLoc &DL = MI.getDebugLoc();
3404
3405 if (UseGPRIdxMode) {
3406 // TODO: Look at the uses to avoid the copy. This may require rescheduling
3407 // to avoid interfering with other uses, so probably requires a new
3408 // optimization pass.
3409 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
3410 .addReg(SrcReg, RegState::Undef, SubReg)
3411 .addReg(SrcReg, RegState::Implicit)
3412 .addReg(AMDGPU::M0, RegState::Implicit);
3413 BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
3414 } else {
3415 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3416 .addReg(SrcReg, RegState::Undef, SubReg)
3417 .addReg(SrcReg, RegState::Implicit);
3418 }
3419
3420 MI.eraseFromParent();
3421
3422 return &MBB;
3423 }
3424
3425 const DebugLoc &DL = MI.getDebugLoc();
3426 MachineBasicBlock::iterator I(&MI);
3427
3428 Register PhiReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3429 Register InitReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3430
3431 BuildMI(MBB, I, DL, TII->get(TargetOpcode::IMPLICIT_DEF), InitReg);
3432
3433 auto InsPt = loadM0FromVGPR(TII, MBB, MI, InitReg, PhiReg,
3434 Offset, UseGPRIdxMode, true);
3435 MachineBasicBlock *LoopBB = InsPt->getParent();
3436
3437 if (UseGPRIdxMode) {
3438 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
3439 .addReg(SrcReg, RegState::Undef, SubReg)
3440 .addReg(SrcReg, RegState::Implicit)
3441 .addReg(AMDGPU::M0, RegState::Implicit);
3442 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
3443 } else {
3444 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
3445 .addReg(SrcReg, RegState::Undef, SubReg)
3446 .addReg(SrcReg, RegState::Implicit);
3447 }
3448
3449 MI.eraseFromParent();
3450
3451 return LoopBB;
3452}
3453
3454static unsigned getMOVRELDPseudo(const SIRegisterInfo &TRI,
3455 const TargetRegisterClass *VecRC) {
3456 switch (TRI.getRegSizeInBits(*VecRC)) {
3457 case 32: // 4 bytes
3458 return AMDGPU::V_MOVRELD_B32_V1;
3459 case 64: // 8 bytes
3460 return AMDGPU::V_MOVRELD_B32_V2;
3461 case 128: // 16 bytes
3462 return AMDGPU::V_MOVRELD_B32_V4;
3463 case 256: // 32 bytes
3464 return AMDGPU::V_MOVRELD_B32_V8;
3465 case 512: // 64 bytes
3466 return AMDGPU::V_MOVRELD_B32_V16;
3467 default:
3468 llvm_unreachable("unsupported size for MOVRELD pseudos")::llvm::llvm_unreachable_internal("unsupported size for MOVRELD pseudos"
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3468)
;
3469 }
3470}
3471
3472static MachineBasicBlock *emitIndirectDst(MachineInstr &MI,
3473 MachineBasicBlock &MBB,
3474 const GCNSubtarget &ST) {
3475 const SIInstrInfo *TII = ST.getInstrInfo();
3476 const SIRegisterInfo &TRI = TII->getRegisterInfo();
3477 MachineFunction *MF = MBB.getParent();
3478 MachineRegisterInfo &MRI = MF->getRegInfo();
3479
3480 Register Dst = MI.getOperand(0).getReg();
3481 const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
3482 const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
3483 const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
3484 int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
3485 const TargetRegisterClass *VecRC = MRI.getRegClass(SrcVec->getReg());
3486
3487 // This can be an immediate, but will be folded later.
3488 assert(Val->getReg())((Val->getReg()) ? static_cast<void> (0) : __assert_fail
("Val->getReg()", "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3488, __PRETTY_FUNCTION__))
;
3489
3490 unsigned SubReg;
3491 std::tie(SubReg, Offset) = computeIndirectRegAndOffset(TRI, VecRC,
3492 SrcVec->getReg(),
3493 Offset);
3494 bool UseGPRIdxMode = ST.useVGPRIndexMode(EnableVGPRIndexMode);
3495
3496 if (Idx->getReg() == AMDGPU::NoRegister) {
3497 MachineBasicBlock::iterator I(&MI);
3498 const DebugLoc &DL = MI.getDebugLoc();
3499
3500 assert(Offset == 0)((Offset == 0) ? static_cast<void> (0) : __assert_fail (
"Offset == 0", "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3500, __PRETTY_FUNCTION__))
;
3501
3502 BuildMI(MBB, I, DL, TII->get(TargetOpcode::INSERT_SUBREG), Dst)
3503 .add(*SrcVec)
3504 .add(*Val)
3505 .addImm(SubReg);
3506
3507 MI.eraseFromParent();
3508 return &MBB;
3509 }
3510
3511 if (setM0ToIndexFromSGPR(TII, MRI, MI, Offset, UseGPRIdxMode, false)) {
3512 MachineBasicBlock::iterator I(&MI);
3513 const DebugLoc &DL = MI.getDebugLoc();
3514
3515 if (UseGPRIdxMode) {
3516 BuildMI(MBB, I, DL, TII->get(AMDGPU::V_MOV_B32_indirect))
3517 .addReg(SrcVec->getReg(), RegState::Undef, SubReg) // vdst
3518 .add(*Val)
3519 .addReg(Dst, RegState::ImplicitDefine)
3520 .addReg(SrcVec->getReg(), RegState::Implicit)
3521 .addReg(AMDGPU::M0, RegState::Implicit);
3522
3523 BuildMI(MBB, I, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
3524 } else {
3525 const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC));
3526
3527 BuildMI(MBB, I, DL, MovRelDesc)
3528 .addReg(Dst, RegState::Define)
3529 .addReg(SrcVec->getReg())
3530 .add(*Val)
3531 .addImm(SubReg - AMDGPU::sub0);
3532 }
3533
3534 MI.eraseFromParent();
3535 return &MBB;
3536 }
3537
3538 if (Val->isReg())
3539 MRI.clearKillFlags(Val->getReg());
3540
3541 const DebugLoc &DL = MI.getDebugLoc();
3542
3543 Register PhiReg = MRI.createVirtualRegister(VecRC);
3544
3545 auto InsPt = loadM0FromVGPR(TII, MBB, MI, SrcVec->getReg(), PhiReg,
3546 Offset, UseGPRIdxMode, false);
3547 MachineBasicBlock *LoopBB = InsPt->getParent();
3548
3549 if (UseGPRIdxMode) {
3550 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::V_MOV_B32_indirect))
3551 .addReg(PhiReg, RegState::Undef, SubReg) // vdst
3552 .add(*Val) // src0
3553 .addReg(Dst, RegState::ImplicitDefine)
3554 .addReg(PhiReg, RegState::Implicit)
3555 .addReg(AMDGPU::M0, RegState::Implicit);
3556 BuildMI(*LoopBB, InsPt, DL, TII->get(AMDGPU::S_SET_GPR_IDX_OFF));
3557 } else {
3558 const MCInstrDesc &MovRelDesc = TII->get(getMOVRELDPseudo(TRI, VecRC));
3559
3560 BuildMI(*LoopBB, InsPt, DL, MovRelDesc)
3561 .addReg(Dst, RegState::Define)
3562 .addReg(PhiReg)
3563 .add(*Val)
3564 .addImm(SubReg - AMDGPU::sub0);
3565 }
3566
3567 MI.eraseFromParent();
3568
3569 return LoopBB;
3570}
3571
3572MachineBasicBlock *SITargetLowering::EmitInstrWithCustomInserter(
3573 MachineInstr &MI, MachineBasicBlock *BB) const {
3574
3575 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3576 MachineFunction *MF = BB->getParent();
3577 SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
3578
3579 if (TII->isMIMG(MI)) {
3580 if (MI.memoperands_empty() && MI.mayLoadOrStore()) {
3581 report_fatal_error("missing mem operand from MIMG instruction");
3582 }
3583 // Add a memoperand for mimg instructions so that they aren't assumed to
3584 // be ordered memory instuctions.
3585
3586 return BB;
3587 }
3588
3589 switch (MI.getOpcode()) {
3590 case AMDGPU::S_ADD_U64_PSEUDO:
3591 case AMDGPU::S_SUB_U64_PSEUDO: {
3592 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3593 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3594 const SIRegisterInfo *TRI = ST.getRegisterInfo();
3595 const TargetRegisterClass *BoolRC = TRI->getBoolRC();
3596 const DebugLoc &DL = MI.getDebugLoc();
3597
3598 MachineOperand &Dest = MI.getOperand(0);
3599 MachineOperand &Src0 = MI.getOperand(1);
3600 MachineOperand &Src1 = MI.getOperand(2);
3601
3602 Register DestSub0 = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3603 Register DestSub1 = MRI.createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);
3604
3605 MachineOperand Src0Sub0 = TII->buildExtractSubRegOrImm(MI, MRI,
3606 Src0, BoolRC, AMDGPU::sub0,
3607 &AMDGPU::SReg_32_XM0RegClass);
3608 MachineOperand Src0Sub1 = TII->buildExtractSubRegOrImm(MI, MRI,
3609 Src0, BoolRC, AMDGPU::sub1,
3610 &AMDGPU::SReg_32_XM0RegClass);
3611
3612 MachineOperand Src1Sub0 = TII->buildExtractSubRegOrImm(MI, MRI,
3613 Src1, BoolRC, AMDGPU::sub0,
3614 &AMDGPU::SReg_32_XM0RegClass);
3615 MachineOperand Src1Sub1 = TII->buildExtractSubRegOrImm(MI, MRI,
3616 Src1, BoolRC, AMDGPU::sub1,
3617 &AMDGPU::SReg_32_XM0RegClass);
3618
3619 bool IsAdd = (MI.getOpcode() == AMDGPU::S_ADD_U64_PSEUDO);
3620
3621 unsigned LoOpc = IsAdd ? AMDGPU::S_ADD_U32 : AMDGPU::S_SUB_U32;
3622 unsigned HiOpc = IsAdd ? AMDGPU::S_ADDC_U32 : AMDGPU::S_SUBB_U32;
3623 BuildMI(*BB, MI, DL, TII->get(LoOpc), DestSub0)
3624 .add(Src0Sub0)
3625 .add(Src1Sub0);
3626 BuildMI(*BB, MI, DL, TII->get(HiOpc), DestSub1)
3627 .add(Src0Sub1)
3628 .add(Src1Sub1);
3629 BuildMI(*BB, MI, DL, TII->get(TargetOpcode::REG_SEQUENCE), Dest.getReg())
3630 .addReg(DestSub0)
3631 .addImm(AMDGPU::sub0)
3632 .addReg(DestSub1)
3633 .addImm(AMDGPU::sub1);
3634 MI.eraseFromParent();
3635 return BB;
3636 }
3637 case AMDGPU::SI_INIT_M0: {
3638 BuildMI(*BB, MI.getIterator(), MI.getDebugLoc(),
3639 TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
3640 .add(MI.getOperand(0));
3641 MI.eraseFromParent();
3642 return BB;
3643 }
3644 case AMDGPU::SI_INIT_EXEC:
3645 // This should be before all vector instructions.
3646 BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64),
3647 AMDGPU::EXEC)
3648 .addImm(MI.getOperand(0).getImm());
3649 MI.eraseFromParent();
3650 return BB;
3651
3652 case AMDGPU::SI_INIT_EXEC_LO:
3653 // This should be before all vector instructions.
3654 BuildMI(*BB, &*BB->begin(), MI.getDebugLoc(), TII->get(AMDGPU::S_MOV_B32),
3655 AMDGPU::EXEC_LO)
3656 .addImm(MI.getOperand(0).getImm());
3657 MI.eraseFromParent();
3658 return BB;
3659
3660 case AMDGPU::SI_INIT_EXEC_FROM_INPUT: {
3661 // Extract the thread count from an SGPR input and set EXEC accordingly.
3662 // Since BFM can't shift by 64, handle that case with CMP + CMOV.
3663 //
3664 // S_BFE_U32 count, input, {shift, 7}
3665 // S_BFM_B64 exec, count, 0
3666 // S_CMP_EQ_U32 count, 64
3667 // S_CMOV_B64 exec, -1
3668 MachineInstr *FirstMI = &*BB->begin();
3669 MachineRegisterInfo &MRI = MF->getRegInfo();
3670 Register InputReg = MI.getOperand(0).getReg();
3671 Register CountReg = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass);
3672 bool Found = false;
3673
3674 // Move the COPY of the input reg to the beginning, so that we can use it.
3675 for (auto I = BB->begin(); I != &MI; I++) {
3676 if (I->getOpcode() != TargetOpcode::COPY ||
3677 I->getOperand(0).getReg() != InputReg)
3678 continue;
3679
3680 if (I == FirstMI) {
3681 FirstMI = &*++BB->begin();
3682 } else {
3683 I->removeFromParent();
3684 BB->insert(FirstMI, &*I);
3685 }
3686 Found = true;
3687 break;
3688 }
3689 assert(Found)((Found) ? static_cast<void> (0) : __assert_fail ("Found"
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3689, __PRETTY_FUNCTION__))
;
3690 (void)Found;
3691
3692 // This should be before all vector instructions.
3693 unsigned Mask = (getSubtarget()->getWavefrontSize() << 1) - 1;
3694 bool isWave32 = getSubtarget()->isWave32();
3695 unsigned Exec = isWave32 ? AMDGPU::EXEC_LO : AMDGPU::EXEC;
3696 BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_BFE_U32), CountReg)
3697 .addReg(InputReg)
3698 .addImm((MI.getOperand(1).getImm() & Mask) | 0x70000);
3699 BuildMI(*BB, FirstMI, DebugLoc(),
3700 TII->get(isWave32 ? AMDGPU::S_BFM_B32 : AMDGPU::S_BFM_B64),
3701 Exec)
3702 .addReg(CountReg)
3703 .addImm(0);
3704 BuildMI(*BB, FirstMI, DebugLoc(), TII->get(AMDGPU::S_CMP_EQ_U32))
3705 .addReg(CountReg, RegState::Kill)
3706 .addImm(getSubtarget()->getWavefrontSize());
3707 BuildMI(*BB, FirstMI, DebugLoc(),
3708 TII->get(isWave32 ? AMDGPU::S_CMOV_B32 : AMDGPU::S_CMOV_B64),
3709 Exec)
3710 .addImm(-1);
3711 MI.eraseFromParent();
3712 return BB;
3713 }
3714
3715 case AMDGPU::GET_GROUPSTATICSIZE: {
3716 assert(getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA ||((getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA
|| getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL
) ? static_cast<void> (0) : __assert_fail ("getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA || getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL"
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3717, __PRETTY_FUNCTION__))
3717 getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL)((getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA
|| getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL
) ? static_cast<void> (0) : __assert_fail ("getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA || getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL"
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3717, __PRETTY_FUNCTION__))
;
3718 DebugLoc DL = MI.getDebugLoc();
3719 BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_MOV_B32))
3720 .add(MI.getOperand(0))
3721 .addImm(MFI->getLDSSize());
3722 MI.eraseFromParent();
3723 return BB;
3724 }
3725 case AMDGPU::SI_INDIRECT_SRC_V1:
3726 case AMDGPU::SI_INDIRECT_SRC_V2:
3727 case AMDGPU::SI_INDIRECT_SRC_V4:
3728 case AMDGPU::SI_INDIRECT_SRC_V8:
3729 case AMDGPU::SI_INDIRECT_SRC_V16:
3730 return emitIndirectSrc(MI, *BB, *getSubtarget());
3731 case AMDGPU::SI_INDIRECT_DST_V1:
3732 case AMDGPU::SI_INDIRECT_DST_V2:
3733 case AMDGPU::SI_INDIRECT_DST_V4:
3734 case AMDGPU::SI_INDIRECT_DST_V8:
3735 case AMDGPU::SI_INDIRECT_DST_V16:
3736 return emitIndirectDst(MI, *BB, *getSubtarget());
3737 case AMDGPU::SI_KILL_F32_COND_IMM_PSEUDO:
3738 case AMDGPU::SI_KILL_I1_PSEUDO:
3739 return splitKillBlock(MI, BB);
3740 case AMDGPU::V_CNDMASK_B64_PSEUDO: {
3741 MachineRegisterInfo &MRI = BB->getParent()->getRegInfo();
3742 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3743 const SIRegisterInfo *TRI = ST.getRegisterInfo();
3744
3745 Register Dst = MI.getOperand(0).getReg();
3746 Register Src0 = MI.getOperand(1).getReg();
3747 Register Src1 = MI.getOperand(2).getReg();
3748 const DebugLoc &DL = MI.getDebugLoc();
3749 Register SrcCond = MI.getOperand(3).getReg();
3750
3751 Register DstLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3752 Register DstHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
3753 const auto *CondRC = TRI->getRegClass(AMDGPU::SReg_1_XEXECRegClassID);
3754 Register SrcCondCopy = MRI.createVirtualRegister(CondRC);
3755
3756 BuildMI(*BB, MI, DL, TII->get(AMDGPU::COPY), SrcCondCopy)
3757 .addReg(SrcCond);
3758 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstLo)
3759 .addImm(0)
3760 .addReg(Src0, 0, AMDGPU::sub0)
3761 .addImm(0)
3762 .addReg(Src1, 0, AMDGPU::sub0)
3763 .addReg(SrcCondCopy);
3764 BuildMI(*BB, MI, DL, TII->get(AMDGPU::V_CNDMASK_B32_e64), DstHi)
3765 .addImm(0)
3766 .addReg(Src0, 0, AMDGPU::sub1)
3767 .addImm(0)
3768 .addReg(Src1, 0, AMDGPU::sub1)
3769 .addReg(SrcCondCopy);
3770
3771 BuildMI(*BB, MI, DL, TII->get(AMDGPU::REG_SEQUENCE), Dst)
3772 .addReg(DstLo)
3773 .addImm(AMDGPU::sub0)
3774 .addReg(DstHi)
3775 .addImm(AMDGPU::sub1);
3776 MI.eraseFromParent();
3777 return BB;
3778 }
3779 case AMDGPU::SI_BR_UNDEF: {
3780 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3781 const DebugLoc &DL = MI.getDebugLoc();
3782 MachineInstr *Br = BuildMI(*BB, MI, DL, TII->get(AMDGPU::S_CBRANCH_SCC1))
3783 .add(MI.getOperand(0));
3784 Br->getOperand(1).setIsUndef(true); // read undef SCC
3785 MI.eraseFromParent();
3786 return BB;
3787 }
3788 case AMDGPU::ADJCALLSTACKUP:
3789 case AMDGPU::ADJCALLSTACKDOWN: {
3790 const SIMachineFunctionInfo *Info = MF->getInfo<SIMachineFunctionInfo>();
3791 MachineInstrBuilder MIB(*MF, &MI);
3792
3793 // Add an implicit use of the frame offset reg to prevent the restore copy
3794 // inserted after the call from being reorderd after stack operations in the
3795 // the caller's frame.
3796 MIB.addReg(Info->getStackPtrOffsetReg(), RegState::ImplicitDefine)
3797 .addReg(Info->getStackPtrOffsetReg(), RegState::Implicit)
3798 .addReg(Info->getFrameOffsetReg(), RegState::Implicit);
3799 return BB;
3800 }
3801 case AMDGPU::SI_CALL_ISEL: {
3802 const SIInstrInfo *TII = getSubtarget()->getInstrInfo();
3803 const DebugLoc &DL = MI.getDebugLoc();
3804
3805 unsigned ReturnAddrReg = TII->getRegisterInfo().getReturnAddressReg(*MF);
3806
3807 MachineInstrBuilder MIB;
3808 MIB = BuildMI(*BB, MI, DL, TII->get(AMDGPU::SI_CALL), ReturnAddrReg);
3809
3810 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I)
3811 MIB.add(MI.getOperand(I));
3812
3813 MIB.cloneMemRefs(MI);
3814 MI.eraseFromParent();
3815 return BB;
3816 }
3817 case AMDGPU::V_ADD_I32_e32:
3818 case AMDGPU::V_SUB_I32_e32:
3819 case AMDGPU::V_SUBREV_I32_e32: {
3820 // TODO: Define distinct V_*_I32_Pseudo instructions instead.
3821 const DebugLoc &DL = MI.getDebugLoc();
3822 unsigned Opc = MI.getOpcode();
3823
3824 bool NeedClampOperand = false;
3825 if (TII->pseudoToMCOpcode(Opc) == -1) {
3826 Opc = AMDGPU::getVOPe64(Opc);
3827 NeedClampOperand = true;
3828 }
3829
3830 auto I = BuildMI(*BB, MI, DL, TII->get(Opc), MI.getOperand(0).getReg());
3831 if (TII->isVOP3(*I)) {
3832 const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
3833 const SIRegisterInfo *TRI = ST.getRegisterInfo();
3834 I.addReg(TRI->getVCC(), RegState::Define);
3835 }
3836 I.add(MI.getOperand(1))
3837 .add(MI.getOperand(2));
3838 if (NeedClampOperand)
3839 I.addImm(0); // clamp bit for e64 encoding
3840
3841 TII->legalizeOperands(*I);
3842
3843 MI.eraseFromParent();
3844 return BB;
3845 }
3846 case AMDGPU::DS_GWS_INIT:
3847 case AMDGPU::DS_GWS_SEMA_V:
3848 case AMDGPU::DS_GWS_SEMA_BR:
3849 case AMDGPU::DS_GWS_SEMA_P:
3850 case AMDGPU::DS_GWS_SEMA_RELEASE_ALL:
3851 case AMDGPU::DS_GWS_BARRIER:
3852 // A s_waitcnt 0 is required to be the instruction immediately following.
3853 if (getSubtarget()->hasGWSAutoReplay()) {
3854 bundleInstWithWaitcnt(MI);
3855 return BB;
3856 }
3857
3858 return emitGWSMemViolTestLoop(MI, BB);
3859 default:
3860 return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB);
3861 }
3862}
3863
3864bool SITargetLowering::hasBitPreservingFPLogic(EVT VT) const {
3865 return isTypeLegal(VT.getScalarType());
3866}
3867
3868bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const {
3869 // This currently forces unfolding various combinations of fsub into fma with
3870 // free fneg'd operands. As long as we have fast FMA (controlled by
3871 // isFMAFasterThanFMulAndFAdd), we should perform these.
3872
3873 // When fma is quarter rate, for f64 where add / sub are at best half rate,
3874 // most of these combines appear to be cycle neutral but save on instruction
3875 // count / code size.
3876 return true;
3877}
3878
3879EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx,
3880 EVT VT) const {
3881 if (!VT.isVector()) {
3882 return MVT::i1;
3883 }
3884 return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements());
3885}
3886
3887MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT VT) const {
3888 // TODO: Should i16 be used always if legal? For now it would force VALU
3889 // shifts.
3890 return (VT == MVT::i16) ? MVT::i16 : MVT::i32;
3891}
3892
3893// Answering this is somewhat tricky and depends on the specific device which
3894// have different rates for fma or all f64 operations.
3895//
3896// v_fma_f64 and v_mul_f64 always take the same number of cycles as each other
3897// regardless of which device (although the number of cycles differs between
3898// devices), so it is always profitable for f64.
3899//
3900// v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable
3901// only on full rate devices. Normally, we should prefer selecting v_mad_f32
3902// which we can always do even without fused FP ops since it returns the same
3903// result as the separate operations and since it is always full
3904// rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32
3905// however does not support denormals, so we do report fma as faster if we have
3906// a fast fma device and require denormals.
3907//
3908bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const {
3909 VT = VT.getScalarType();
3910
3911 switch (VT.getSimpleVT().SimpleTy) {
3912 case MVT::f32: {
3913 // This is as fast on some subtargets. However, we always have full rate f32
3914 // mad available which returns the same result as the separate operations
3915 // which we should prefer over fma. We can't use this if we want to support
3916 // denormals, so only report this in these cases.
3917 if (Subtarget->hasFP32Denormals())
3918 return Subtarget->hasFastFMAF32() || Subtarget->hasDLInsts();
3919
3920 // If the subtarget has v_fmac_f32, that's just as good as v_mac_f32.
3921 return Subtarget->hasFastFMAF32() && Subtarget->hasDLInsts();
3922 }
3923 case MVT::f64:
3924 return true;
3925 case MVT::f16:
3926 return Subtarget->has16BitInsts() && Subtarget->hasFP16Denormals();
3927 default:
3928 break;
3929 }
3930
3931 return false;
3932}
3933
3934//===----------------------------------------------------------------------===//
3935// Custom DAG Lowering Operations
3936//===----------------------------------------------------------------------===//
3937
3938// Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
3939// wider vector type is legal.
3940SDValue SITargetLowering::splitUnaryVectorOp(SDValue Op,
3941 SelectionDAG &DAG) const {
3942 unsigned Opc = Op.getOpcode();
3943 EVT VT = Op.getValueType();
3944 assert(VT == MVT::v4f16)((VT == MVT::v4f16) ? static_cast<void> (0) : __assert_fail
("VT == MVT::v4f16", "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3944, __PRETTY_FUNCTION__))
;
3945
3946 SDValue Lo, Hi;
3947 std::tie(Lo, Hi) = DAG.SplitVectorOperand(Op.getNode(), 0);
3948
3949 SDLoc SL(Op);
3950 SDValue OpLo = DAG.getNode(Opc, SL, Lo.getValueType(), Lo,
3951 Op->getFlags());
3952 SDValue OpHi = DAG.getNode(Opc, SL, Hi.getValueType(), Hi,
3953 Op->getFlags());
3954
3955 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
3956}
3957
3958// Work around LegalizeDAG doing the wrong thing and fully scalarizing if the
3959// wider vector type is legal.
3960SDValue SITargetLowering::splitBinaryVectorOp(SDValue Op,
3961 SelectionDAG &DAG) const {
3962 unsigned Opc = Op.getOpcode();
3963 EVT VT = Op.getValueType();
3964 assert(VT == MVT::v4i16 || VT == MVT::v4f16)((VT == MVT::v4i16 || VT == MVT::v4f16) ? static_cast<void
> (0) : __assert_fail ("VT == MVT::v4i16 || VT == MVT::v4f16"
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3964, __PRETTY_FUNCTION__))
;
3965
3966 SDValue Lo0, Hi0;
3967 std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
3968 SDValue Lo1, Hi1;
3969 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
3970
3971 SDLoc SL(Op);
3972
3973 SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1,
3974 Op->getFlags());
3975 SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1,
3976 Op->getFlags());
3977
3978 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
3979}
3980
3981SDValue SITargetLowering::splitTernaryVectorOp(SDValue Op,
3982 SelectionDAG &DAG) const {
3983 unsigned Opc = Op.getOpcode();
3984 EVT VT = Op.getValueType();
3985 assert(VT == MVT::v4i16 || VT == MVT::v4f16)((VT == MVT::v4i16 || VT == MVT::v4f16) ? static_cast<void
> (0) : __assert_fail ("VT == MVT::v4i16 || VT == MVT::v4f16"
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 3985, __PRETTY_FUNCTION__))
;
3986
3987 SDValue Lo0, Hi0;
3988 std::tie(Lo0, Hi0) = DAG.SplitVectorOperand(Op.getNode(), 0);
3989 SDValue Lo1, Hi1;
3990 std::tie(Lo1, Hi1) = DAG.SplitVectorOperand(Op.getNode(), 1);
3991 SDValue Lo2, Hi2;
3992 std::tie(Lo2, Hi2) = DAG.SplitVectorOperand(Op.getNode(), 2);
3993
3994 SDLoc SL(Op);
3995
3996 SDValue OpLo = DAG.getNode(Opc, SL, Lo0.getValueType(), Lo0, Lo1, Lo2,
3997 Op->getFlags());
3998 SDValue OpHi = DAG.getNode(Opc, SL, Hi0.getValueType(), Hi0, Hi1, Hi2,
3999 Op->getFlags());
4000
4001 return DAG.getNode(ISD::CONCAT_VECTORS, SDLoc(Op), VT, OpLo, OpHi);
4002}
4003
4004
4005SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4006 switch (Op.getOpcode()) {
4007 default: return AMDGPUTargetLowering::LowerOperation(Op, DAG);
4008 case ISD::BRCOND: return LowerBRCOND(Op, DAG);
4009 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
4010 case ISD::LOAD: {
4011 SDValue Result = LowerLOAD(Op, DAG);
4012 assert((!Result.getNode() ||(((!Result.getNode() || Result.getNode()->getNumValues() ==
2) && "Load should return a value and a chain") ? static_cast
<void> (0) : __assert_fail ("(!Result.getNode() || Result.getNode()->getNumValues() == 2) && \"Load should return a value and a chain\""
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4014, __PRETTY_FUNCTION__))
4013 Result.getNode()->getNumValues() == 2) &&(((!Result.getNode() || Result.getNode()->getNumValues() ==
2) && "Load should return a value and a chain") ? static_cast
<void> (0) : __assert_fail ("(!Result.getNode() || Result.getNode()->getNumValues() == 2) && \"Load should return a value and a chain\""
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4014, __PRETTY_FUNCTION__))
4014 "Load should return a value and a chain")(((!Result.getNode() || Result.getNode()->getNumValues() ==
2) && "Load should return a value and a chain") ? static_cast
<void> (0) : __assert_fail ("(!Result.getNode() || Result.getNode()->getNumValues() == 2) && \"Load should return a value and a chain\""
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4014, __PRETTY_FUNCTION__))
;
4015 return Result;
4016 }
4017
4018 case ISD::FSIN:
4019 case ISD::FCOS:
4020 return LowerTrig(Op, DAG);
4021 case ISD::SELECT: return LowerSELECT(Op, DAG);
4022 case ISD::FDIV: return LowerFDIV(Op, DAG);
4023 case ISD::ATOMIC_CMP_SWAP: return LowerATOMIC_CMP_SWAP(Op, DAG);
4024 case ISD::STORE: return LowerSTORE(Op, DAG);
4025 case ISD::GlobalAddress: {
4026 MachineFunction &MF = DAG.getMachineFunction();
4027 SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
4028 return LowerGlobalAddress(MFI, Op, DAG);
4029 }
4030 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4031 case ISD::INTRINSIC_W_CHAIN: return LowerINTRINSIC_W_CHAIN(Op, DAG);
4032 case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG);
4033 case ISD::ADDRSPACECAST: return lowerADDRSPACECAST(Op, DAG);
4034 case ISD::INSERT_SUBVECTOR:
4035 return lowerINSERT_SUBVECTOR(Op, DAG);
4036 case ISD::INSERT_VECTOR_ELT:
4037 return lowerINSERT_VECTOR_ELT(Op, DAG);
4038 case ISD::EXTRACT_VECTOR_ELT:
4039 return lowerEXTRACT_VECTOR_ELT(Op, DAG);
4040 case ISD::VECTOR_SHUFFLE:
4041 return lowerVECTOR_SHUFFLE(Op, DAG);
4042 case ISD::BUILD_VECTOR:
4043 return lowerBUILD_VECTOR(Op, DAG);
4044 case ISD::FP_ROUND:
4045 return lowerFP_ROUND(Op, DAG);
4046 case ISD::TRAP:
4047 return lowerTRAP(Op, DAG);
4048 case ISD::DEBUGTRAP:
4049 return lowerDEBUGTRAP(Op, DAG);
4050 case ISD::FABS:
4051 case ISD::FNEG:
4052 case ISD::FCANONICALIZE:
4053 return splitUnaryVectorOp(Op, DAG);
4054 case ISD::FMINNUM:
4055 case ISD::FMAXNUM:
4056 return lowerFMINNUM_FMAXNUM(Op, DAG);
4057 case ISD::FMA:
4058 return splitTernaryVectorOp(Op, DAG);
4059 case ISD::SHL:
4060 case ISD::SRA:
4061 case ISD::SRL:
4062 case ISD::ADD:
4063 case ISD::SUB:
4064 case ISD::MUL:
4065 case ISD::SMIN:
4066 case ISD::SMAX:
4067 case ISD::UMIN:
4068 case ISD::UMAX:
4069 case ISD::FADD:
4070 case ISD::FMUL:
4071 case ISD::FMINNUM_IEEE:
4072 case ISD::FMAXNUM_IEEE:
4073 return splitBinaryVectorOp(Op, DAG);
4074 }
4075 return SDValue();
4076}
4077
4078static SDValue adjustLoadValueTypeImpl(SDValue Result, EVT LoadVT,
4079 const SDLoc &DL,
4080 SelectionDAG &DAG, bool Unpacked) {
4081 if (!LoadVT.isVector())
4082 return Result;
4083
4084 if (Unpacked) { // From v2i32/v4i32 back to v2f16/v4f16.
4085 // Truncate to v2i16/v4i16.
4086 EVT IntLoadVT = LoadVT.changeTypeToInteger();
4087
4088 // Workaround legalizer not scalarizing truncate after vector op
4089 // legalization byt not creating intermediate vector trunc.
4090 SmallVector<SDValue, 4> Elts;
4091 DAG.ExtractVectorElements(Result, Elts);
4092 for (SDValue &Elt : Elts)
4093 Elt = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, Elt);
4094
4095 Result = DAG.getBuildVector(IntLoadVT, DL, Elts);
4096
4097 // Bitcast to original type (v2f16/v4f16).
4098 return DAG.getNode(ISD::BITCAST, DL, LoadVT, Result);
4099 }
4100
4101 // Cast back to the original packed type.
4102 return DAG.getNode(ISD::BITCAST, DL, LoadVT, Result);
4103}
4104
4105SDValue SITargetLowering::adjustLoadValueType(unsigned Opcode,
4106 MemSDNode *M,
4107 SelectionDAG &DAG,
4108 ArrayRef<SDValue> Ops,
4109 bool IsIntrinsic) const {
4110 SDLoc DL(M);
4111
4112 bool Unpacked = Subtarget->hasUnpackedD16VMem();
4113 EVT LoadVT = M->getValueType(0);
4114
4115 EVT EquivLoadVT = LoadVT;
4116 if (Unpacked && LoadVT.isVector()) {
4117 EquivLoadVT = LoadVT.isVector() ?
4118 EVT::getVectorVT(*DAG.getContext(), MVT::i32,
4119 LoadVT.getVectorNumElements()) : LoadVT;
4120 }
4121
4122 // Change from v4f16/v2f16 to EquivLoadVT.
4123 SDVTList VTList = DAG.getVTList(EquivLoadVT, MVT::Other);
4124
4125 SDValue Load
4126 = DAG.getMemIntrinsicNode(
4127 IsIntrinsic ? (unsigned)ISD::INTRINSIC_W_CHAIN : Opcode, DL,
4128 VTList, Ops, M->getMemoryVT(),
4129 M->getMemOperand());
4130 if (!Unpacked) // Just adjusted the opcode.
4131 return Load;
4132
4133 SDValue Adjusted = adjustLoadValueTypeImpl(Load, LoadVT, DL, DAG, Unpacked);
4134
4135 return DAG.getMergeValues({ Adjusted, Load.getValue(1) }, DL);
4136}
4137
4138SDValue SITargetLowering::lowerIntrinsicLoad(MemSDNode *M, bool IsFormat,
4139 SelectionDAG &DAG,
4140 ArrayRef<SDValue> Ops) const {
4141 SDLoc DL(M);
4142 EVT LoadVT = M->getValueType(0);
4143 EVT EltType = LoadVT.getScalarType();
4144 EVT IntVT = LoadVT.changeTypeToInteger();
4145
4146 bool IsD16 = IsFormat && (EltType.getSizeInBits() == 16);
4147
4148 unsigned Opc =
4149 IsFormat ? AMDGPUISD::BUFFER_LOAD_FORMAT : AMDGPUISD::BUFFER_LOAD;
4150
4151 if (IsD16) {
4152 return adjustLoadValueType(AMDGPUISD::BUFFER_LOAD_FORMAT_D16, M, DAG, Ops);
4153 }
4154
4155 // Handle BUFFER_LOAD_BYTE/UBYTE/SHORT/USHORT overloaded intrinsics
4156 if (!IsD16 && !LoadVT.isVector() && EltType.getSizeInBits() < 32)
4157 return handleByteShortBufferLoads(DAG, LoadVT, DL, Ops, M);
4158
4159 if (isTypeLegal(LoadVT)) {
4160 return getMemIntrinsicNode(Opc, DL, M->getVTList(), Ops, IntVT,
4161 M->getMemOperand(), DAG);
4162 }
4163
4164 EVT CastVT = getEquivalentMemType(*DAG.getContext(), LoadVT);
4165 SDVTList VTList = DAG.getVTList(CastVT, MVT::Other);
4166 SDValue MemNode = getMemIntrinsicNode(Opc, DL, VTList, Ops, CastVT,
4167 M->getMemOperand(), DAG);
4168 return DAG.getMergeValues(
4169 {DAG.getNode(ISD::BITCAST, DL, LoadVT, MemNode), MemNode.getValue(1)},
4170 DL);
4171}
4172
4173static SDValue lowerICMPIntrinsic(const SITargetLowering &TLI,
4174 SDNode *N, SelectionDAG &DAG) {
4175 EVT VT = N->getValueType(0);
4176 const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4177 int CondCode = CD->getSExtValue();
4178 if (CondCode < ICmpInst::Predicate::FIRST_ICMP_PREDICATE ||
4179 CondCode > ICmpInst::Predicate::LAST_ICMP_PREDICATE)
4180 return DAG.getUNDEF(VT);
4181
4182 ICmpInst::Predicate IcInput = static_cast<ICmpInst::Predicate>(CondCode);
4183
4184 SDValue LHS = N->getOperand(1);
4185 SDValue RHS = N->getOperand(2);
4186
4187 SDLoc DL(N);
4188
4189 EVT CmpVT = LHS.getValueType();
4190 if (CmpVT == MVT::i16 && !TLI.isTypeLegal(MVT::i16)) {
4191 unsigned PromoteOp = ICmpInst::isSigned(IcInput) ?
4192 ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4193 LHS = DAG.getNode(PromoteOp, DL, MVT::i32, LHS);
4194 RHS = DAG.getNode(PromoteOp, DL, MVT::i32, RHS);
4195 }
4196
4197 ISD::CondCode CCOpcode = getICmpCondCode(IcInput);
4198
4199 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4200 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4201
4202 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, DL, CCVT, LHS, RHS,
4203 DAG.getCondCode(CCOpcode));
4204 if (VT.bitsEq(CCVT))
4205 return SetCC;
4206 return DAG.getZExtOrTrunc(SetCC, DL, VT);
4207}
4208
4209static SDValue lowerFCMPIntrinsic(const SITargetLowering &TLI,
4210 SDNode *N, SelectionDAG &DAG) {
4211 EVT VT = N->getValueType(0);
4212 const auto *CD = cast<ConstantSDNode>(N->getOperand(3));
4213
4214 int CondCode = CD->getSExtValue();
4215 if (CondCode < FCmpInst::Predicate::FIRST_FCMP_PREDICATE ||
4216 CondCode > FCmpInst::Predicate::LAST_FCMP_PREDICATE) {
4217 return DAG.getUNDEF(VT);
4218 }
4219
4220 SDValue Src0 = N->getOperand(1);
4221 SDValue Src1 = N->getOperand(2);
4222 EVT CmpVT = Src0.getValueType();
4223 SDLoc SL(N);
4224
4225 if (CmpVT == MVT::f16 && !TLI.isTypeLegal(CmpVT)) {
4226 Src0 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src0);
4227 Src1 = DAG.getNode(ISD::FP_EXTEND, SL, MVT::f32, Src1);
4228 }
4229
4230 FCmpInst::Predicate IcInput = static_cast<FCmpInst::Predicate>(CondCode);
4231 ISD::CondCode CCOpcode = getFCmpCondCode(IcInput);
4232 unsigned WavefrontSize = TLI.getSubtarget()->getWavefrontSize();
4233 EVT CCVT = EVT::getIntegerVT(*DAG.getContext(), WavefrontSize);
4234 SDValue SetCC = DAG.getNode(AMDGPUISD::SETCC, SL, CCVT, Src0,
4235 Src1, DAG.getCondCode(CCOpcode));
4236 if (VT.bitsEq(CCVT))
4237 return SetCC;
4238 return DAG.getZExtOrTrunc(SetCC, SL, VT);
4239}
4240
4241void SITargetLowering::ReplaceNodeResults(SDNode *N,
4242 SmallVectorImpl<SDValue> &Results,
4243 SelectionDAG &DAG) const {
4244 switch (N->getOpcode()) {
4245 case ISD::INSERT_VECTOR_ELT: {
4246 if (SDValue Res = lowerINSERT_VECTOR_ELT(SDValue(N, 0), DAG))
4247 Results.push_back(Res);
4248 return;
4249 }
4250 case ISD::EXTRACT_VECTOR_ELT: {
4251 if (SDValue Res = lowerEXTRACT_VECTOR_ELT(SDValue(N, 0), DAG))
4252 Results.push_back(Res);
4253 return;
4254 }
4255 case ISD::INTRINSIC_WO_CHAIN: {
4256 unsigned IID = cast<ConstantSDNode>(N->getOperand(0))->getZExtValue();
4257 switch (IID) {
4258 case Intrinsic::amdgcn_cvt_pkrtz: {
4259 SDValue Src0 = N->getOperand(1);
4260 SDValue Src1 = N->getOperand(2);
4261 SDLoc SL(N);
4262 SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_PKRTZ_F16_F32, SL, MVT::i32,
4263 Src0, Src1);
4264 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Cvt));
4265 return;
4266 }
4267 case Intrinsic::amdgcn_cvt_pknorm_i16:
4268 case Intrinsic::amdgcn_cvt_pknorm_u16:
4269 case Intrinsic::amdgcn_cvt_pk_i16:
4270 case Intrinsic::amdgcn_cvt_pk_u16: {
4271 SDValue Src0 = N->getOperand(1);
4272 SDValue Src1 = N->getOperand(2);
4273 SDLoc SL(N);
4274 unsigned Opcode;
4275
4276 if (IID == Intrinsic::amdgcn_cvt_pknorm_i16)
4277 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
4278 else if (IID == Intrinsic::amdgcn_cvt_pknorm_u16)
4279 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
4280 else if (IID == Intrinsic::amdgcn_cvt_pk_i16)
4281 Opcode = AMDGPUISD::CVT_PK_I16_I32;
4282 else
4283 Opcode = AMDGPUISD::CVT_PK_U16_U32;
4284
4285 EVT VT = N->getValueType(0);
4286 if (isTypeLegal(VT))
4287 Results.push_back(DAG.getNode(Opcode, SL, VT, Src0, Src1));
4288 else {
4289 SDValue Cvt = DAG.getNode(Opcode, SL, MVT::i32, Src0, Src1);
4290 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, Cvt));
4291 }
4292 return;
4293 }
4294 }
4295 break;
4296 }
4297 case ISD::INTRINSIC_W_CHAIN: {
4298 if (SDValue Res = LowerINTRINSIC_W_CHAIN(SDValue(N, 0), DAG)) {
4299 if (Res.getOpcode() == ISD::MERGE_VALUES) {
4300 // FIXME: Hacky
4301 Results.push_back(Res.getOperand(0));
4302 Results.push_back(Res.getOperand(1));
4303 } else {
4304 Results.push_back(Res);
4305 Results.push_back(Res.getValue(1));
4306 }
4307 return;
4308 }
4309
4310 break;
4311 }
4312 case ISD::SELECT: {
4313 SDLoc SL(N);
4314 EVT VT = N->getValueType(0);
4315 EVT NewVT = getEquivalentMemType(*DAG.getContext(), VT);
4316 SDValue LHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(1));
4317 SDValue RHS = DAG.getNode(ISD::BITCAST, SL, NewVT, N->getOperand(2));
4318
4319 EVT SelectVT = NewVT;
4320 if (NewVT.bitsLT(MVT::i32)) {
4321 LHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, LHS);
4322 RHS = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, RHS);
4323 SelectVT = MVT::i32;
4324 }
4325
4326 SDValue NewSelect = DAG.getNode(ISD::SELECT, SL, SelectVT,
4327 N->getOperand(0), LHS, RHS);
4328
4329 if (NewVT != SelectVT)
4330 NewSelect = DAG.getNode(ISD::TRUNCATE, SL, NewVT, NewSelect);
4331 Results.push_back(DAG.getNode(ISD::BITCAST, SL, VT, NewSelect));
4332 return;
4333 }
4334 case ISD::FNEG: {
4335 if (N->getValueType(0) != MVT::v2f16)
4336 break;
4337
4338 SDLoc SL(N);
4339 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
4340
4341 SDValue Op = DAG.getNode(ISD::XOR, SL, MVT::i32,
4342 BC,
4343 DAG.getConstant(0x80008000, SL, MVT::i32));
4344 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
4345 return;
4346 }
4347 case ISD::FABS: {
4348 if (N->getValueType(0) != MVT::v2f16)
4349 break;
4350
4351 SDLoc SL(N);
4352 SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::i32, N->getOperand(0));
4353
4354 SDValue Op = DAG.getNode(ISD::AND, SL, MVT::i32,
4355 BC,
4356 DAG.getConstant(0x7fff7fff, SL, MVT::i32));
4357 Results.push_back(DAG.getNode(ISD::BITCAST, SL, MVT::v2f16, Op));
4358 return;
4359 }
4360 default:
4361 break;
4362 }
4363}
4364
4365/// Helper function for LowerBRCOND
4366static SDNode *findUser(SDValue Value, unsigned Opcode) {
4367
4368 SDNode *Parent = Value.getNode();
4369 for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end();
4370 I != E; ++I) {
4371
4372 if (I.getUse().get() != Value)
4373 continue;
4374
4375 if (I->getOpcode() == Opcode)
4376 return *I;
4377 }
4378 return nullptr;
4379}
4380
4381unsigned SITargetLowering::isCFIntrinsic(const SDNode *Intr) const {
4382 if (Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN) {
4383 switch (cast<ConstantSDNode>(Intr->getOperand(1))->getZExtValue()) {
4384 case Intrinsic::amdgcn_if:
4385 return AMDGPUISD::IF;
4386 case Intrinsic::amdgcn_else:
4387 return AMDGPUISD::ELSE;
4388 case Intrinsic::amdgcn_loop:
4389 return AMDGPUISD::LOOP;
4390 case Intrinsic::amdgcn_end_cf:
4391 llvm_unreachable("should not occur")::llvm::llvm_unreachable_internal("should not occur", "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4391)
;
4392 default:
4393 return 0;
4394 }
4395 }
4396
4397 // break, if_break, else_break are all only used as inputs to loop, not
4398 // directly as branch conditions.
4399 return 0;
4400}
4401
4402bool SITargetLowering::shouldEmitFixup(const GlobalValue *GV) const {
4403 const Triple &TT = getTargetMachine().getTargetTriple();
4404 return (GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
4405 GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
4406 AMDGPU::shouldEmitConstantsToTextSection(TT);
4407}
4408
4409bool SITargetLowering::shouldEmitGOTReloc(const GlobalValue *GV) const {
4410 // FIXME: Either avoid relying on address space here or change the default
4411 // address space for functions to avoid the explicit check.
4412 return (GV->getValueType()->isFunctionTy() ||
4413 GV->getType()->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
4414 GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
4415 GV->getType()->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
4416 !shouldEmitFixup(GV) &&
4417 !getTargetMachine().shouldAssumeDSOLocal(*GV->getParent(), GV);
4418}
4419
4420bool SITargetLowering::shouldEmitPCReloc(const GlobalValue *GV) const {
4421 return !shouldEmitFixup(GV) && !shouldEmitGOTReloc(GV);
4422}
4423
4424/// This transforms the control flow intrinsics to get the branch destination as
4425/// last parameter, also switches branch target with BR if the need arise
4426SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND,
4427 SelectionDAG &DAG) const {
4428 SDLoc DL(BRCOND);
4429
4430 SDNode *Intr = BRCOND.getOperand(1).getNode();
4431 SDValue Target = BRCOND.getOperand(2);
4432 SDNode *BR = nullptr;
4433 SDNode *SetCC = nullptr;
4434
4435 if (Intr->getOpcode() == ISD::SETCC) {
4436 // As long as we negate the condition everything is fine
4437 SetCC = Intr;
4438 Intr = SetCC->getOperand(0).getNode();
4439
4440 } else {
4441 // Get the target from BR if we don't negate the condition
4442 BR = findUser(BRCOND, ISD::BR);
4443 Target = BR->getOperand(1);
4444 }
4445
4446 // FIXME: This changes the types of the intrinsics instead of introducing new
4447 // nodes with the correct types.
4448 // e.g. llvm.amdgcn.loop
4449
4450 // eg: i1,ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3
4451 // => t9: ch = llvm.amdgcn.loop t0, TargetConstant:i32<6271>, t3, BasicBlock:ch<bb1 0x7fee5286d088>
4452
4453 unsigned CFNode = isCFIntrinsic(Intr);
4454 if (CFNode == 0) {
4455 // This is a uniform branch so we don't need to legalize.
4456 return BRCOND;
4457 }
4458
4459 bool HaveChain = Intr->getOpcode() == ISD::INTRINSIC_VOID ||
4460 Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN;
4461
4462 assert(!SetCC ||((!SetCC || (SetCC->getConstantOperandVal(1) == 1 &&
cast<CondCodeSDNode>(SetCC->getOperand(2).getNode()
)->get() == ISD::SETNE)) ? static_cast<void> (0) : __assert_fail
("!SetCC || (SetCC->getConstantOperandVal(1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == ISD::SETNE)"
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4465, __PRETTY_FUNCTION__))
4463 (SetCC->getConstantOperandVal(1) == 1 &&((!SetCC || (SetCC->getConstantOperandVal(1) == 1 &&
cast<CondCodeSDNode>(SetCC->getOperand(2).getNode()
)->get() == ISD::SETNE)) ? static_cast<void> (0) : __assert_fail
("!SetCC || (SetCC->getConstantOperandVal(1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == ISD::SETNE)"
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4465, __PRETTY_FUNCTION__))
4464 cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() ==((!SetCC || (SetCC->getConstantOperandVal(1) == 1 &&
cast<CondCodeSDNode>(SetCC->getOperand(2).getNode()
)->get() == ISD::SETNE)) ? static_cast<void> (0) : __assert_fail
("!SetCC || (SetCC->getConstantOperandVal(1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == ISD::SETNE)"
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4465, __PRETTY_FUNCTION__))
4465 ISD::SETNE))((!SetCC || (SetCC->getConstantOperandVal(1) == 1 &&
cast<CondCodeSDNode>(SetCC->getOperand(2).getNode()
)->get() == ISD::SETNE)) ? static_cast<void> (0) : __assert_fail
("!SetCC || (SetCC->getConstantOperandVal(1) == 1 && cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == ISD::SETNE)"
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4465, __PRETTY_FUNCTION__))
;
4466
4467 // operands of the new intrinsic call
4468 SmallVector<SDValue, 4> Ops;
4469 if (HaveChain)
4470 Ops.push_back(BRCOND.getOperand(0));
4471
4472 Ops.append(Intr->op_begin() + (HaveChain ? 2 : 1), Intr->op_end());
4473 Ops.push_back(Target);
4474
4475 ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end());
4476
4477 // build the new intrinsic call
4478 SDNode *Result = DAG.getNode(CFNode, DL, DAG.getVTList(Res), Ops).getNode();
4479
4480 if (!HaveChain) {
4481 SDValue Ops[] = {
4482 SDValue(Result, 0),
4483 BRCOND.getOperand(0)
4484 };
4485
4486 Result = DAG.getMergeValues(Ops, DL).getNode();
4487 }
4488
4489 if (BR) {
4490 // Give the branch instruction our target
4491 SDValue Ops[] = {
4492 BR->getOperand(0),
4493 BRCOND.getOperand(2)
4494 };
4495 SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops);
4496 DAG.ReplaceAllUsesWith(BR, NewBR.getNode());
4497 BR = NewBR.getNode();
4498 }
4499
4500 SDValue Chain = SDValue(Result, Result->getNumValues() - 1);
4501
4502 // Copy the intrinsic results to registers
4503 for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) {
4504 SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg);
4505 if (!CopyToReg)
4506 continue;
4507
4508 Chain = DAG.getCopyToReg(
4509 Chain, DL,
4510 CopyToReg->getOperand(1),
4511 SDValue(Result, i - 1),
4512 SDValue());
4513
4514 DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0));
4515 }
4516
4517 // Remove the old intrinsic from the chain
4518 DAG.ReplaceAllUsesOfValueWith(
4519 SDValue(Intr, Intr->getNumValues() - 1),
4520 Intr->getOperand(0));
4521
4522 return Chain;
4523}
4524
4525SDValue SITargetLowering::LowerRETURNADDR(SDValue Op,
4526 SelectionDAG &DAG) const {
4527 MVT VT = Op.getSimpleValueType();
4528 SDLoc DL(Op);
4529 // Checking the depth
4530 if (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue() != 0)
4531 return DAG.getConstant(0, DL, VT);
4532
4533 MachineFunction &MF = DAG.getMachineFunction();
4534 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4535 // Check for kernel and shader functions
4536 if (Info->isEntryFunction())
4537 return DAG.getConstant(0, DL, VT);
4538
4539 MachineFrameInfo &MFI = MF.getFrameInfo();
4540 // There is a call to @llvm.returnaddress in this function
4541 MFI.setReturnAddressIsTaken(true);
4542
4543 const SIRegisterInfo *TRI = getSubtarget()->getRegisterInfo();
4544 // Get the return address reg and mark it as an implicit live-in
4545 unsigned Reg = MF.addLiveIn(TRI->getReturnAddressReg(MF), getRegClassFor(VT, Op.getNode()->isDivergent()));
4546
4547 return DAG.getCopyFromReg(DAG.getEntryNode(), DL, Reg, VT);
4548}
4549
4550SDValue SITargetLowering::getFPExtOrFPTrunc(SelectionDAG &DAG,
4551 SDValue Op,
4552 const SDLoc &DL,
4553 EVT VT) const {
4554 return Op.getValueType().bitsLE(VT) ?
4555 DAG.getNode(ISD::FP_EXTEND, DL, VT, Op) :
4556 DAG.getNode(ISD::FTRUNC, DL, VT, Op);
4557}
4558
4559SDValue SITargetLowering::lowerFP_ROUND(SDValue Op, SelectionDAG &DAG) const {
4560 assert(Op.getValueType() == MVT::f16 &&((Op.getValueType() == MVT::f16 && "Do not know how to custom lower FP_ROUND for non-f16 type"
) ? static_cast<void> (0) : __assert_fail ("Op.getValueType() == MVT::f16 && \"Do not know how to custom lower FP_ROUND for non-f16 type\""
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4561, __PRETTY_FUNCTION__))
4561 "Do not know how to custom lower FP_ROUND for non-f16 type")((Op.getValueType() == MVT::f16 && "Do not know how to custom lower FP_ROUND for non-f16 type"
) ? static_cast<void> (0) : __assert_fail ("Op.getValueType() == MVT::f16 && \"Do not know how to custom lower FP_ROUND for non-f16 type\""
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4561, __PRETTY_FUNCTION__))
;
4562
4563 SDValue Src = Op.getOperand(0);
4564 EVT SrcVT = Src.getValueType();
4565 if (SrcVT != MVT::f64)
4566 return Op;
4567
4568 SDLoc DL(Op);
4569
4570 SDValue FpToFp16 = DAG.getNode(ISD::FP_TO_FP16, DL, MVT::i32, Src);
4571 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, DL, MVT::i16, FpToFp16);
4572 return DAG.getNode(ISD::BITCAST, DL, MVT::f16, Trunc);
4573}
4574
4575SDValue SITargetLowering::lowerFMINNUM_FMAXNUM(SDValue Op,
4576 SelectionDAG &DAG) const {
4577 EVT VT = Op.getValueType();
4578 const MachineFunction &MF = DAG.getMachineFunction();
4579 const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4580 bool IsIEEEMode = Info->getMode().IEEE;
4581
4582 // FIXME: Assert during eslection that this is only selected for
4583 // ieee_mode. Currently a combine can produce the ieee version for non-ieee
4584 // mode functions, but this happens to be OK since it's only done in cases
4585 // where there is known no sNaN.
4586 if (IsIEEEMode)
4587 return expandFMINNUM_FMAXNUM(Op.getNode(), DAG);
4588
4589 if (VT == MVT::v4f16)
4590 return splitBinaryVectorOp(Op, DAG);
4591 return Op;
4592}
4593
4594SDValue SITargetLowering::lowerTRAP(SDValue Op, SelectionDAG &DAG) const {
4595 SDLoc SL(Op);
4596 SDValue Chain = Op.getOperand(0);
4597
4598 if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa ||
4599 !Subtarget->isTrapHandlerEnabled())
4600 return DAG.getNode(AMDGPUISD::ENDPGM, SL, MVT::Other, Chain);
4601
4602 MachineFunction &MF = DAG.getMachineFunction();
4603 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4604 unsigned UserSGPR = Info->getQueuePtrUserSGPR();
4605 assert(UserSGPR != AMDGPU::NoRegister)((UserSGPR != AMDGPU::NoRegister) ? static_cast<void> (
0) : __assert_fail ("UserSGPR != AMDGPU::NoRegister", "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4605, __PRETTY_FUNCTION__))
;
4606 SDValue QueuePtr = CreateLiveInRegister(
4607 DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
4608 SDValue SGPR01 = DAG.getRegister(AMDGPU::SGPR0_SGPR1, MVT::i64);
4609 SDValue ToReg = DAG.getCopyToReg(Chain, SL, SGPR01,
4610 QueuePtr, SDValue());
4611 SDValue Ops[] = {
4612 ToReg,
4613 DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMTrap, SL, MVT::i16),
4614 SGPR01,
4615 ToReg.getValue(1)
4616 };
4617 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
4618}
4619
4620SDValue SITargetLowering::lowerDEBUGTRAP(SDValue Op, SelectionDAG &DAG) const {
4621 SDLoc SL(Op);
4622 SDValue Chain = Op.getOperand(0);
4623 MachineFunction &MF = DAG.getMachineFunction();
4624
4625 if (Subtarget->getTrapHandlerAbi() != GCNSubtarget::TrapHandlerAbiHsa ||
4626 !Subtarget->isTrapHandlerEnabled()) {
4627 DiagnosticInfoUnsupported NoTrap(MF.getFunction(),
4628 "debugtrap handler not supported",
4629 Op.getDebugLoc(),
4630 DS_Warning);
4631 LLVMContext &Ctx = MF.getFunction().getContext();
4632 Ctx.diagnose(NoTrap);
4633 return Chain;
4634 }
4635
4636 SDValue Ops[] = {
4637 Chain,
4638 DAG.getTargetConstant(GCNSubtarget::TrapIDLLVMDebugTrap, SL, MVT::i16)
4639 };
4640 return DAG.getNode(AMDGPUISD::TRAP, SL, MVT::Other, Ops);
4641}
4642
4643SDValue SITargetLowering::getSegmentAperture(unsigned AS, const SDLoc &DL,
4644 SelectionDAG &DAG) const {
4645 // FIXME: Use inline constants (src_{shared, private}_base) instead.
4646 if (Subtarget->hasApertureRegs()) {
4647 unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ?
4648 AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
4649 AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
4650 unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ?
4651 AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
4652 AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
4653 unsigned Encoding =
4654 AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
4655 Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
4656 WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;
4657
4658 SDValue EncodingImm = DAG.getTargetConstant(Encoding, DL, MVT::i16);
4659 SDValue ApertureReg = SDValue(
4660 DAG.getMachineNode(AMDGPU::S_GETREG_B32, DL, MVT::i32, EncodingImm), 0);
4661 SDValue ShiftAmount = DAG.getTargetConstant(WidthM1 + 1, DL, MVT::i32);
4662 return DAG.getNode(ISD::SHL, DL, MVT::i32, ApertureReg, ShiftAmount);
4663 }
4664
4665 MachineFunction &MF = DAG.getMachineFunction();
4666 SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
4667 unsigned UserSGPR = Info->getQueuePtrUserSGPR();
4668 assert(UserSGPR != AMDGPU::NoRegister)((UserSGPR != AMDGPU::NoRegister) ? static_cast<void> (
0) : __assert_fail ("UserSGPR != AMDGPU::NoRegister", "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4668, __PRETTY_FUNCTION__))
;
4669
4670 SDValue QueuePtr = CreateLiveInRegister(
4671 DAG, &AMDGPU::SReg_64RegClass, UserSGPR, MVT::i64);
4672
4673 // Offset into amd_queue_t for group_segment_aperture_base_hi /
4674 // private_segment_aperture_base_hi.
4675 uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
4676
4677 SDValue Ptr = DAG.getObjectPtrOffset(DL, QueuePtr, StructOffset);
4678
4679 // TODO: Use custom target PseudoSourceValue.
4680 // TODO: We should use the value from the IR intrinsic call, but it might not
4681 // be available and how do we get it?
4682 Value *V = UndefValue::get(PointerType::get(Type::getInt8Ty(*DAG.getContext()),
4683 AMDGPUAS::CONSTANT_ADDRESS));
4684
4685 MachinePointerInfo PtrInfo(V, StructOffset);
4686 return DAG.getLoad(MVT::i32, DL, QueuePtr.getValue(1), Ptr, PtrInfo,
4687 MinAlign(64, StructOffset),
4688 MachineMemOperand::MODereferenceable |
4689 MachineMemOperand::MOInvariant);
4690}
4691
4692SDValue SITargetLowering::lowerADDRSPACECAST(SDValue Op,
4693 SelectionDAG &DAG) const {
4694 SDLoc SL(Op);
4695 const AddrSpaceCastSDNode *ASC = cast<AddrSpaceCastSDNode>(Op);
4696
4697 SDValue Src = ASC->getOperand(0);
4698 SDValue FlatNullPtr = DAG.getConstant(0, SL, MVT::i64);
4699
4700 const AMDGPUTargetMachine &TM =
4701 static_cast<const AMDGPUTargetMachine &>(getTargetMachine());
4702
4703 // flat -> local/private
4704 if (ASC->getSrcAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
4705 unsigned DestAS = ASC->getDestAddressSpace();
4706
4707 if (DestAS == AMDGPUAS::LOCAL_ADDRESS ||
4708 DestAS == AMDGPUAS::PRIVATE_ADDRESS) {
4709 unsigned NullVal = TM.getNullPointerValue(DestAS);
4710 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
4711 SDValue NonNull = DAG.getSetCC(SL, MVT::i1, Src, FlatNullPtr, ISD::SETNE);
4712 SDValue Ptr = DAG.getNode(ISD::TRUNCATE, SL, MVT::i32, Src);
4713
4714 return DAG.getNode(ISD::SELECT, SL, MVT::i32,
4715 NonNull, Ptr, SegmentNullPtr);
4716 }
4717 }
4718
4719 // local/private -> flat
4720 if (ASC->getDestAddressSpace() == AMDGPUAS::FLAT_ADDRESS) {
4721 unsigned SrcAS = ASC->getSrcAddressSpace();
4722
4723 if (SrcAS == AMDGPUAS::LOCAL_ADDRESS ||
4724 SrcAS == AMDGPUAS::PRIVATE_ADDRESS) {
4725 unsigned NullVal = TM.getNullPointerValue(SrcAS);
4726 SDValue SegmentNullPtr = DAG.getConstant(NullVal, SL, MVT::i32);
4727
4728 SDValue NonNull
4729 = DAG.getSetCC(SL, MVT::i1, Src, SegmentNullPtr, ISD::SETNE);
4730
4731 SDValue Aperture = getSegmentAperture(ASC->getSrcAddressSpace(), SL, DAG);
4732 SDValue CvtPtr
4733 = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Src, Aperture);
4734
4735 return DAG.getNode(ISD::SELECT, SL, MVT::i64, NonNull,
4736 DAG.getNode(ISD::BITCAST, SL, MVT::i64, CvtPtr),
4737 FlatNullPtr);
4738 }
4739 }
4740
4741 // global <-> flat are no-ops and never emitted.
4742
4743 const MachineFunction &MF = DAG.getMachineFunction();
4744 DiagnosticInfoUnsupported InvalidAddrSpaceCast(
4745 MF.getFunction(), "invalid addrspacecast", SL.getDebugLoc());
4746 DAG.getContext()->diagnose(InvalidAddrSpaceCast);
4747
4748 return DAG.getUNDEF(ASC->getValueType(0));
4749}
4750
4751// This lowers an INSERT_SUBVECTOR by extracting the individual elements from
4752// the small vector and inserting them into the big vector. That is better than
4753// the default expansion of doing it via a stack slot. Even though the use of
4754// the stack slot would be optimized away afterwards, the stack slot itself
4755// remains.
4756SDValue SITargetLowering::lowerINSERT_SUBVECTOR(SDValue Op,
4757 SelectionDAG &DAG) const {
4758 SDValue Vec = Op.getOperand(0);
4759 SDValue Ins = Op.getOperand(1);
4760 SDValue Idx = Op.getOperand(2);
4761 EVT VecVT = Vec.getValueType();
4762 EVT InsVT = Ins.getValueType();
4763 EVT EltVT = VecVT.getVectorElementType();
4764 unsigned InsNumElts = InsVT.getVectorNumElements();
4765 unsigned IdxVal = cast<ConstantSDNode>(Idx)->getZExtValue();
4766 SDLoc SL(Op);
4767
4768 for (unsigned I = 0; I != InsNumElts; ++I) {
4769 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT, Ins,
4770 DAG.getConstant(I, SL, MVT::i32));
4771 Vec = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, VecVT, Vec, Elt,
4772 DAG.getConstant(IdxVal + I, SL, MVT::i32));
4773 }
4774 return Vec;
4775}
4776
4777SDValue SITargetLowering::lowerINSERT_VECTOR_ELT(SDValue Op,
4778 SelectionDAG &DAG) const {
4779 SDValue Vec = Op.getOperand(0);
4780 SDValue InsVal = Op.getOperand(1);
4781 SDValue Idx = Op.getOperand(2);
4782 EVT VecVT = Vec.getValueType();
4783 EVT EltVT = VecVT.getVectorElementType();
4784 unsigned VecSize = VecVT.getSizeInBits();
4785 unsigned EltSize = EltVT.getSizeInBits();
4786
4787
4788 assert(VecSize <= 64)((VecSize <= 64) ? static_cast<void> (0) : __assert_fail
("VecSize <= 64", "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4788, __PRETTY_FUNCTION__))
;
4789
4790 unsigned NumElts = VecVT.getVectorNumElements();
4791 SDLoc SL(Op);
4792 auto KIdx = dyn_cast<ConstantSDNode>(Idx);
4793
4794 if (NumElts == 4 && EltSize == 16 && KIdx) {
4795 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Vec);
4796
4797 SDValue LoHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
4798 DAG.getConstant(0, SL, MVT::i32));
4799 SDValue HiHalf = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BCVec,
4800 DAG.getConstant(1, SL, MVT::i32));
4801
4802 SDValue LoVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, LoHalf);
4803 SDValue HiVec = DAG.getNode(ISD::BITCAST, SL, MVT::v2i16, HiHalf);
4804
4805 unsigned Idx = KIdx->getZExtValue();
4806 bool InsertLo = Idx < 2;
4807 SDValue InsHalf = DAG.getNode(ISD::INSERT_VECTOR_ELT, SL, MVT::v2i16,
4808 InsertLo ? LoVec : HiVec,
4809 DAG.getNode(ISD::BITCAST, SL, MVT::i16, InsVal),
4810 DAG.getConstant(InsertLo ? Idx : (Idx - 2), SL, MVT::i32));
4811
4812 InsHalf = DAG.getNode(ISD::BITCAST, SL, MVT::i32, InsHalf);
4813
4814 SDValue Concat = InsertLo ?
4815 DAG.getBuildVector(MVT::v2i32, SL, { InsHalf, HiHalf }) :
4816 DAG.getBuildVector(MVT::v2i32, SL, { LoHalf, InsHalf });
4817
4818 return DAG.getNode(ISD::BITCAST, SL, VecVT, Concat);
4819 }
4820
4821 if (isa<ConstantSDNode>(Idx))
4822 return SDValue();
4823
4824 MVT IntVT = MVT::getIntegerVT(VecSize);
4825
4826 // Avoid stack access for dynamic indexing.
4827 // v_bfi_b32 (v_bfm_b32 16, (shl idx, 16)), val, vec
4828
4829 // Create a congruent vector with the target value in each element so that
4830 // the required element can be masked and ORed into the target vector.
4831 SDValue ExtVal = DAG.getNode(ISD::BITCAST, SL, IntVT,
4832 DAG.getSplatBuildVector(VecVT, SL, InsVal));
4833
4834 assert(isPowerOf2_32(EltSize))((isPowerOf2_32(EltSize)) ? static_cast<void> (0) : __assert_fail
("isPowerOf2_32(EltSize)", "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4834, __PRETTY_FUNCTION__))
;
4835 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
4836
4837 // Convert vector index to bit-index.
4838 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
4839
4840 SDValue BCVec = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
4841 SDValue BFM = DAG.getNode(ISD::SHL, SL, IntVT,
4842 DAG.getConstant(0xffff, SL, IntVT),
4843 ScaledIdx);
4844
4845 SDValue LHS = DAG.getNode(ISD::AND, SL, IntVT, BFM, ExtVal);
4846 SDValue RHS = DAG.getNode(ISD::AND, SL, IntVT,
4847 DAG.getNOT(SL, BFM, IntVT), BCVec);
4848
4849 SDValue BFI = DAG.getNode(ISD::OR, SL, IntVT, LHS, RHS);
4850 return DAG.getNode(ISD::BITCAST, SL, VecVT, BFI);
4851}
4852
4853SDValue SITargetLowering::lowerEXTRACT_VECTOR_ELT(SDValue Op,
4854 SelectionDAG &DAG) const {
4855 SDLoc SL(Op);
4856
4857 EVT ResultVT = Op.getValueType();
4858 SDValue Vec = Op.getOperand(0);
4859 SDValue Idx = Op.getOperand(1);
4860 EVT VecVT = Vec.getValueType();
4861 unsigned VecSize = VecVT.getSizeInBits();
4862 EVT EltVT = VecVT.getVectorElementType();
4863 assert(VecSize <= 64)((VecSize <= 64) ? static_cast<void> (0) : __assert_fail
("VecSize <= 64", "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4863, __PRETTY_FUNCTION__))
;
4864
4865 DAGCombinerInfo DCI(DAG, AfterLegalizeVectorOps, true, nullptr);
4866
4867 // Make sure we do any optimizations that will make it easier to fold
4868 // source modifiers before obscuring it with bit operations.
4869
4870 // XXX - Why doesn't this get called when vector_shuffle is expanded?
4871 if (SDValue Combined = performExtractVectorEltCombine(Op.getNode(), DCI))
4872 return Combined;
4873
4874 unsigned EltSize = EltVT.getSizeInBits();
4875 assert(isPowerOf2_32(EltSize))((isPowerOf2_32(EltSize)) ? static_cast<void> (0) : __assert_fail
("isPowerOf2_32(EltSize)", "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4875, __PRETTY_FUNCTION__))
;
4876
4877 MVT IntVT = MVT::getIntegerVT(VecSize);
4878 SDValue ScaleFactor = DAG.getConstant(Log2_32(EltSize), SL, MVT::i32);
4879
4880 // Convert vector index to bit-index (* EltSize)
4881 SDValue ScaledIdx = DAG.getNode(ISD::SHL, SL, MVT::i32, Idx, ScaleFactor);
4882
4883 SDValue BC = DAG.getNode(ISD::BITCAST, SL, IntVT, Vec);
4884 SDValue Elt = DAG.getNode(ISD::SRL, SL, IntVT, BC, ScaledIdx);
4885
4886 if (ResultVT == MVT::f16) {
4887 SDValue Result = DAG.getNode(ISD::TRUNCATE, SL, MVT::i16, Elt);
4888 return DAG.getNode(ISD::BITCAST, SL, ResultVT, Result);
4889 }
4890
4891 return DAG.getAnyExtOrTrunc(Elt, SL, ResultVT);
4892}
4893
4894static bool elementPairIsContiguous(ArrayRef<int> Mask, int Elt) {
4895 assert(Elt % 2 == 0)((Elt % 2 == 0) ? static_cast<void> (0) : __assert_fail
("Elt % 2 == 0", "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4895, __PRETTY_FUNCTION__))
;
4896 return Mask[Elt + 1] == Mask[Elt] + 1 && (Mask[Elt] % 2 == 0);
4897}
4898
4899SDValue SITargetLowering::lowerVECTOR_SHUFFLE(SDValue Op,
4900 SelectionDAG &DAG) const {
4901 SDLoc SL(Op);
4902 EVT ResultVT = Op.getValueType();
4903 ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(Op);
4904
4905 EVT PackVT = ResultVT.isInteger() ? MVT::v2i16 : MVT::v2f16;
4906 EVT EltVT = PackVT.getVectorElementType();
4907 int SrcNumElts = Op.getOperand(0).getValueType().getVectorNumElements();
4908
4909 // vector_shuffle <0,1,6,7> lhs, rhs
4910 // -> concat_vectors (extract_subvector lhs, 0), (extract_subvector rhs, 2)
4911 //
4912 // vector_shuffle <6,7,2,3> lhs, rhs
4913 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 2)
4914 //
4915 // vector_shuffle <6,7,0,1> lhs, rhs
4916 // -> concat_vectors (extract_subvector rhs, 2), (extract_subvector lhs, 0)
4917
4918 // Avoid scalarizing when both halves are reading from consecutive elements.
4919 SmallVector<SDValue, 4> Pieces;
4920 for (int I = 0, N = ResultVT.getVectorNumElements(); I != N; I += 2) {
4921 if (elementPairIsContiguous(SVN->getMask(), I)) {
4922 const int Idx = SVN->getMaskElt(I);
4923 int VecIdx = Idx < SrcNumElts ? 0 : 1;
4924 int EltIdx = Idx < SrcNumElts ? Idx : Idx - SrcNumElts;
4925 SDValue SubVec = DAG.getNode(ISD::EXTRACT_SUBVECTOR, SL,
4926 PackVT, SVN->getOperand(VecIdx),
4927 DAG.getConstant(EltIdx, SL, MVT::i32));
4928 Pieces.push_back(SubVec);
4929 } else {
4930 const int Idx0 = SVN->getMaskElt(I);
4931 const int Idx1 = SVN->getMaskElt(I + 1);
4932 int VecIdx0 = Idx0 < SrcNumElts ? 0 : 1;
4933 int VecIdx1 = Idx1 < SrcNumElts ? 0 : 1;
4934 int EltIdx0 = Idx0 < SrcNumElts ? Idx0 : Idx0 - SrcNumElts;
4935 int EltIdx1 = Idx1 < SrcNumElts ? Idx1 : Idx1 - SrcNumElts;
4936
4937 SDValue Vec0 = SVN->getOperand(VecIdx0);
4938 SDValue Elt0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
4939 Vec0, DAG.getConstant(EltIdx0, SL, MVT::i32));
4940
4941 SDValue Vec1 = SVN->getOperand(VecIdx1);
4942 SDValue Elt1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
4943 Vec1, DAG.getConstant(EltIdx1, SL, MVT::i32));
4944 Pieces.push_back(DAG.getBuildVector(PackVT, SL, { Elt0, Elt1 }));
4945 }
4946 }
4947
4948 return DAG.getNode(ISD::CONCAT_VECTORS, SL, ResultVT, Pieces);
4949}
4950
4951SDValue SITargetLowering::lowerBUILD_VECTOR(SDValue Op,
4952 SelectionDAG &DAG) const {
4953 SDLoc SL(Op);
4954 EVT VT = Op.getValueType();
4955
4956 if (VT == MVT::v4i16 || VT == MVT::v4f16) {
4957 EVT HalfVT = MVT::getVectorVT(VT.getVectorElementType().getSimpleVT(), 2);
4958
4959 // Turn into pair of packed build_vectors.
4960 // TODO: Special case for constants that can be materialized with s_mov_b64.
4961 SDValue Lo = DAG.getBuildVector(HalfVT, SL,
4962 { Op.getOperand(0), Op.getOperand(1) });
4963 SDValue Hi = DAG.getBuildVector(HalfVT, SL,
4964 { Op.getOperand(2), Op.getOperand(3) });
4965
4966 SDValue CastLo = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Lo);
4967 SDValue CastHi = DAG.getNode(ISD::BITCAST, SL, MVT::i32, Hi);
4968
4969 SDValue Blend = DAG.getBuildVector(MVT::v2i32, SL, { CastLo, CastHi });
4970 return DAG.getNode(ISD::BITCAST, SL, VT, Blend);
4971 }
4972
4973 assert(VT == MVT::v2f16 || VT == MVT::v2i16)((VT == MVT::v2f16 || VT == MVT::v2i16) ? static_cast<void
> (0) : __assert_fail ("VT == MVT::v2f16 || VT == MVT::v2i16"
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4973, __PRETTY_FUNCTION__))
;
4974 assert(!Subtarget->hasVOP3PInsts() && "this should be legal")((!Subtarget->hasVOP3PInsts() && "this should be legal"
) ? static_cast<void> (0) : __assert_fail ("!Subtarget->hasVOP3PInsts() && \"this should be legal\""
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 4974, __PRETTY_FUNCTION__))
;
4975
4976 SDValue Lo = Op.getOperand(0);
4977 SDValue Hi = Op.getOperand(1);
4978
4979 // Avoid adding defined bits with the zero_extend.
4980 if (Hi.isUndef()) {
4981 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
4982 SDValue ExtLo = DAG.getNode(ISD::ANY_EXTEND, SL, MVT::i32, Lo);
4983 return DAG.getNode(ISD::BITCAST, SL, VT, ExtLo);
4984 }
4985
4986 Hi = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Hi);
4987 Hi = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Hi);
4988
4989 SDValue ShlHi = DAG.getNode(ISD::SHL, SL, MVT::i32, Hi,
4990 DAG.getConstant(16, SL, MVT::i32));
4991 if (Lo.isUndef())
4992 return DAG.getNode(ISD::BITCAST, SL, VT, ShlHi);
4993
4994 Lo = DAG.getNode(ISD::BITCAST, SL, MVT::i16, Lo);
4995 Lo = DAG.getNode(ISD::ZERO_EXTEND, SL, MVT::i32, Lo);
4996
4997 SDValue Or = DAG.getNode(ISD::OR, SL, MVT::i32, Lo, ShlHi);
4998 return DAG.getNode(ISD::BITCAST, SL, VT, Or);
4999}
5000
5001bool
5002SITargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5003 // We can fold offsets for anything that doesn't require a GOT relocation.
5004 return (GA->getAddressSpace() == AMDGPUAS::GLOBAL_ADDRESS ||
5005 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS ||
5006 GA->getAddressSpace() == AMDGPUAS::CONSTANT_ADDRESS_32BIT) &&
5007 !shouldEmitGOTReloc(GA->getGlobal());
5008}
5009
5010static SDValue
5011buildPCRelGlobalAddress(SelectionDAG &DAG, const GlobalValue *GV,
5012 const SDLoc &DL, unsigned Offset, EVT PtrVT,
5013 unsigned GAFlags = SIInstrInfo::MO_NONE) {
5014 // In order to support pc-relative addressing, the PC_ADD_REL_OFFSET SDNode is
5015 // lowered to the following code sequence:
5016 //
5017 // For constant address space:
5018 // s_getpc_b64 s[0:1]
5019 // s_add_u32 s0, s0, $symbol
5020 // s_addc_u32 s1, s1, 0
5021 //
5022 // s_getpc_b64 returns the address of the s_add_u32 instruction and then
5023 // a fixup or relocation is emitted to replace $symbol with a literal
5024 // constant, which is a pc-relative offset from the encoding of the $symbol
5025 // operand to the global variable.
5026 //
5027 // For global address space:
5028 // s_getpc_b64 s[0:1]
5029 // s_add_u32 s0, s0, $symbol@{gotpc}rel32@lo
5030 // s_addc_u32 s1, s1, $symbol@{gotpc}rel32@hi
5031 //
5032 // s_getpc_b64 returns the address of the s_add_u32 instruction and then
5033 // fixups or relocations are emitted to replace $symbol@*@lo and
5034 // $symbol@*@hi with lower 32 bits and higher 32 bits of a literal constant,
5035 // which is a 64-bit pc-relative offset from the encoding of the $symbol
5036 // operand to the global variable.
5037 //
5038 // What we want here is an offset from the value returned by s_getpc
5039 // (which is the address of the s_add_u32 instruction) to the global
5040 // variable, but since the encoding of $symbol starts 4 bytes after the start
5041 // of the s_add_u32 instruction, we end up with an offset that is 4 bytes too
5042 // small. This requires us to add 4 to the global variable offset in order to
5043 // compute the correct address.
5044 SDValue PtrLo =
5045 DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags);
5046 SDValue PtrHi;
5047 if (GAFlags == SIInstrInfo::MO_NONE) {
5048 PtrHi = DAG.getTargetConstant(0, DL, MVT::i32);
5049 } else {
5050 PtrHi =
5051 DAG.getTargetGlobalAddress(GV, DL, MVT::i32, Offset + 4, GAFlags + 1);
5052 }
5053 return DAG.getNode(AMDGPUISD::PC_ADD_REL_OFFSET, DL, PtrVT, PtrLo, PtrHi);
5054}
5055
5056SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI,
5057 SDValue Op,
5058 SelectionDAG &DAG) const {
5059 GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op);
5060 const GlobalValue *GV = GSD->getGlobal();
5061 if ((GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS &&
5062 (!GV->hasExternalLinkage() ||
5063 getTargetMachine().getTargetTriple().getOS() == Triple::AMDHSA ||
5064 getTargetMachine().getTargetTriple().getOS() == Triple::AMDPAL)) ||
5065 GSD->getAddressSpace() == AMDGPUAS::REGION_ADDRESS ||
5066 GSD->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS)
5067 return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG);
5068
5069 SDLoc DL(GSD);
5070 EVT PtrVT = Op.getValueType();
5071
5072 if (GSD->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) {
5073 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, GSD->getOffset(),
5074 SIInstrInfo::MO_ABS32_LO);
5075 return DAG.getNode(AMDGPUISD::LDS, DL, MVT::i32, GA);
5076 }
5077
5078 if (shouldEmitFixup(GV))
5079 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT);
5080 else if (shouldEmitPCReloc(GV))
5081 return buildPCRelGlobalAddress(DAG, GV, DL, GSD->getOffset(), PtrVT,
5082 SIInstrInfo::MO_REL32);
5083
5084 SDValue GOTAddr = buildPCRelGlobalAddress(DAG, GV, DL, 0, PtrVT,
5085 SIInstrInfo::MO_GOTPCREL32);
5086
5087 Type *Ty = PtrVT.getTypeForEVT(*DAG.getContext());
5088 PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS);
5089 const DataLayout &DataLayout = DAG.getDataLayout();
5090 unsigned Align = DataLayout.getABITypeAlignment(PtrTy);
5091 MachinePointerInfo PtrInfo
5092 = MachinePointerInfo::getGOT(DAG.getMachineFunction());
5093
5094 return DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), GOTAddr, PtrInfo, Align,
5095 MachineMemOperand::MODereferenceable |
5096 MachineMemOperand::MOInvariant);
5097}
5098
5099SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain,
5100 const SDLoc &DL, SDValue V) const {
5101 // We can't use S_MOV_B32 directly, because there is no way to specify m0 as
5102 // the destination register.
5103 //
5104 // We can't use CopyToReg, because MachineCSE won't combine COPY instructions,
5105 // so we will end up with redundant moves to m0.
5106 //
5107 // We use a pseudo to ensure we emit s_mov_b32 with m0 as the direct result.
5108
5109 // A Null SDValue creates a glue result.
5110 SDNode *M0 = DAG.getMachineNode(AMDGPU::SI_INIT_M0, DL, MVT::Other, MVT::Glue,
5111 V, Chain);
5112 return SDValue(M0, 0);
5113}
5114
5115SDValue SITargetLowering::lowerImplicitZextParam(SelectionDAG &DAG,
5116 SDValue Op,
5117 MVT VT,
5118 unsigned Offset) const {
5119 SDLoc SL(Op);
5120 SDValue Param = lowerKernargMemParameter(DAG, MVT::i32, MVT::i32, SL,
5121 DAG.getEntryNode(), Offset, 4, false);
5122 // The local size values will have the hi 16-bits as zero.
5123 return DAG.getNode(ISD::AssertZext, SL, MVT::i32, Param,
5124 DAG.getValueType(VT));
5125}
5126
5127static SDValue emitNonHSAIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
5128 EVT VT) {
5129 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
5130 "non-hsa intrinsic with hsa target",
5131 DL.getDebugLoc());
5132 DAG.getContext()->diagnose(BadIntrin);
5133 return DAG.getUNDEF(VT);
5134}
5135
5136static SDValue emitRemovedIntrinsicError(SelectionDAG &DAG, const SDLoc &DL,
5137 EVT VT) {
5138 DiagnosticInfoUnsupported BadIntrin(DAG.getMachineFunction().getFunction(),
5139 "intrinsic not supported on subtarget",
5140 DL.getDebugLoc());
5141 DAG.getContext()->diagnose(BadIntrin);
5142 return DAG.getUNDEF(VT);
5143}
5144
5145static SDValue getBuildDwordsVector(SelectionDAG &DAG, SDLoc DL,
5146 ArrayRef<SDValue> Elts) {
5147 assert(!Elts.empty())((!Elts.empty()) ? static_cast<void> (0) : __assert_fail
("!Elts.empty()", "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5147, __PRETTY_FUNCTION__))
;
5148 MVT Type;
5149 unsigned NumElts;
5150
5151 if (Elts.size() == 1) {
5152 Type = MVT::f32;
5153 NumElts = 1;
5154 } else if (Elts.size() == 2) {
5155 Type = MVT::v2f32;
5156 NumElts = 2;
5157 } else if (Elts.size() <= 4) {
5158 Type = MVT::v4f32;
5159 NumElts = 4;
5160 } else if (Elts.size() <= 8) {
5161 Type = MVT::v8f32;
5162 NumElts = 8;
5163 } else {
5164 assert(Elts.size() <= 16)((Elts.size() <= 16) ? static_cast<void> (0) : __assert_fail
("Elts.size() <= 16", "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5164, __PRETTY_FUNCTION__))
;
5165 Type = MVT::v16f32;
5166 NumElts = 16;
5167 }
5168
5169 SmallVector<SDValue, 16> VecElts(NumElts);
5170 for (unsigned i = 0; i < Elts.size(); ++i) {
5171 SDValue Elt = Elts[i];
5172 if (Elt.getValueType() != MVT::f32)
5173 Elt = DAG.getBitcast(MVT::f32, Elt);
5174 VecElts[i] = Elt;
5175 }
5176 for (unsigned i = Elts.size(); i < NumElts; ++i)
5177 VecElts[i] = DAG.getUNDEF(MVT::f32);
5178
5179 if (NumElts == 1)
5180 return VecElts[0];
5181 return DAG.getBuildVector(Type, DL, VecElts);
5182}
5183
5184static bool parseCachePolicy(SDValue CachePolicy, SelectionDAG &DAG,
5185 SDValue *GLC, SDValue *SLC, SDValue *DLC) {
5186 auto CachePolicyConst = cast<ConstantSDNode>(CachePolicy.getNode());
5187
5188 uint64_t Value = CachePolicyConst->getZExtValue();
5189 SDLoc DL(CachePolicy);
5190 if (GLC) {
5191 *GLC = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
5192 Value &= ~(uint64_t)0x1;
5193 }
5194 if (SLC) {
5195 *SLC = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
5196 Value &= ~(uint64_t)0x2;
5197 }
5198 if (DLC) {
5199 *DLC = DAG.getTargetConstant((Value & 0x4) ? 1 : 0, DL, MVT::i32);
5200 Value &= ~(uint64_t)0x4;
5201 }
5202
5203 return Value == 0;
5204}
5205
5206// Re-construct the required return value for a image load intrinsic.
5207// This is more complicated due to the optional use TexFailCtrl which means the required
5208// return type is an aggregate
5209static SDValue constructRetValue(SelectionDAG &DAG,
5210 MachineSDNode *Result,
5211 ArrayRef<EVT> ResultTypes,
5212 bool IsTexFail, bool Unpacked, bool IsD16,
5213 int DMaskPop, int NumVDataDwords,
5214 const SDLoc &DL, LLVMContext &Context) {
5215 // Determine the required return type. This is the same regardless of IsTexFail flag
5216 EVT ReqRetVT = ResultTypes[0];
5217 EVT ReqRetEltVT = ReqRetVT.isVector() ? ReqRetVT.getVectorElementType() : ReqRetVT;
5218 int ReqRetNumElts = ReqRetVT.isVector() ? ReqRetVT.getVectorNumElements() : 1;
5219 EVT AdjEltVT = Unpacked && IsD16 ? MVT::i32 : ReqRetEltVT;
5220 EVT AdjVT = Unpacked ? ReqRetNumElts > 1 ? EVT::getVectorVT(Context, AdjEltVT, ReqRetNumElts)
5221 : AdjEltVT
5222 : ReqRetVT;
5223
5224 // Extract data part of the result
5225 // Bitcast the result to the same type as the required return type
5226 int NumElts;
5227 if (IsD16 && !Unpacked)
5228 NumElts = NumVDataDwords << 1;
5229 else
5230 NumElts = NumVDataDwords;
5231
5232 EVT CastVT = NumElts > 1 ? EVT::getVectorVT(Context, AdjEltVT, NumElts)
5233 : AdjEltVT;
5234
5235 // Special case for v6f16. Rather than add support for this, use v3i32 to
5236 // extract the data elements
5237 bool V6F16Special = false;
5238 if (NumElts == 6) {
5239 CastVT = EVT::getVectorVT(Context, MVT::i32, NumElts / 2);
5240 DMaskPop >>= 1;
5241 ReqRetNumElts >>= 1;
5242 V6F16Special = true;
5243 AdjVT = MVT::v2i32;
5244 }
5245
5246 SDValue N = SDValue(Result, 0);
5247 SDValue CastRes = DAG.getNode(ISD::BITCAST, DL, CastVT, N);
5248
5249 // Iterate over the result
5250 SmallVector<SDValue, 4> BVElts;
5251
5252 if (CastVT.isVector()) {
5253 DAG.ExtractVectorElements(CastRes, BVElts, 0, DMaskPop);
5254 } else {
5255 BVElts.push_back(CastRes);
5256 }
5257 int ExtraElts = ReqRetNumElts - DMaskPop;
5258 while(ExtraElts--)
5259 BVElts.push_back(DAG.getUNDEF(AdjEltVT));
5260
5261 SDValue PreTFCRes;
5262 if (ReqRetNumElts > 1) {
5263 SDValue NewVec = DAG.getBuildVector(AdjVT, DL, BVElts);
5264 if (IsD16 && Unpacked)
5265 PreTFCRes = adjustLoadValueTypeImpl(NewVec, ReqRetVT, DL, DAG, Unpacked);
5266 else
5267 PreTFCRes = NewVec;
5268 } else {
5269 PreTFCRes = BVElts[0];
5270 }
5271
5272 if (V6F16Special)
5273 PreTFCRes = DAG.getNode(ISD::BITCAST, DL, MVT::v4f16, PreTFCRes);
5274
5275 if (!IsTexFail) {
5276 if (Result->getNumValues() > 1)
5277 return DAG.getMergeValues({PreTFCRes, SDValue(Result, 1)}, DL);
5278 else
5279 return PreTFCRes;
5280 }
5281
5282 // Extract the TexFail result and insert into aggregate return
5283 SmallVector<SDValue, 1> TFCElt;
5284 DAG.ExtractVectorElements(N, TFCElt, DMaskPop, 1);
5285 SDValue TFCRes = DAG.getNode(ISD::BITCAST, DL, ResultTypes[1], TFCElt[0]);
5286 return DAG.getMergeValues({PreTFCRes, TFCRes, SDValue(Result, 1)}, DL);
5287}
5288
5289static bool parseTexFail(SDValue TexFailCtrl, SelectionDAG &DAG, SDValue *TFE,
5290 SDValue *LWE, bool &IsTexFail) {
5291 auto TexFailCtrlConst = cast<ConstantSDNode>(TexFailCtrl.getNode());
5292
5293 uint64_t Value = TexFailCtrlConst->getZExtValue();
5294 if (Value) {
5295 IsTexFail = true;
5296 }
5297
5298 SDLoc DL(TexFailCtrlConst);
5299 *TFE = DAG.getTargetConstant((Value & 0x1) ? 1 : 0, DL, MVT::i32);
5300 Value &= ~(uint64_t)0x1;
5301 *LWE = DAG.getTargetConstant((Value & 0x2) ? 1 : 0, DL, MVT::i32);
5302 Value &= ~(uint64_t)0x2;
5303
5304 return Value == 0;
5305}
5306
5307SDValue SITargetLowering::lowerImage(SDValue Op,
5308 const AMDGPU::ImageDimIntrinsicInfo *Intr,
5309 SelectionDAG &DAG) const {
5310 SDLoc DL(Op);
5311 MachineFunction &MF = DAG.getMachineFunction();
5312 const GCNSubtarget* ST = &MF.getSubtarget<GCNSubtarget>();
5313 const AMDGPU::MIMGBaseOpcodeInfo *BaseOpcode =
5314 AMDGPU::getMIMGBaseOpcodeInfo(Intr->BaseOpcode);
5315 const AMDGPU::MIMGDimInfo *DimInfo = AMDGPU::getMIMGDimInfo(Intr->Dim);
5316 const AMDGPU::MIMGLZMappingInfo *LZMappingInfo =
5317 AMDGPU::getMIMGLZMappingInfo(Intr->BaseOpcode);
5318 const AMDGPU::MIMGMIPMappingInfo *MIPMappingInfo =
5319 AMDGPU::getMIMGMIPMappingInfo(Intr->BaseOpcode);
5320 unsigned IntrOpcode = Intr->BaseOpcode;
5321 bool IsGFX10 = Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10;
1
Assuming the condition is false
5322
5323 SmallVector<EVT, 3> ResultTypes(Op->value_begin(), Op->value_end());
5324 SmallVector<EVT, 3> OrigResultTypes(Op->value_begin(), Op->value_end());
5325 bool IsD16 = false;
5326 bool IsA16 = false;
5327 SDValue VData;
5328 int NumVDataDwords;
5329 bool AdjustRetType = false;
5330
5331 unsigned AddrIdx; // Index of first address argument
5332 unsigned DMask;
5333 unsigned DMaskLanes = 0;
5334
5335 if (BaseOpcode->Atomic) {
2
Assuming field 'Atomic' is false
3
Taking false branch
5336 VData = Op.getOperand(2);
5337
5338 bool Is64Bit = VData.getValueType() == MVT::i64;
5339 if (BaseOpcode->AtomicX2) {
5340 SDValue VData2 = Op.getOperand(3);
5341 VData = DAG.getBuildVector(Is64Bit ? MVT::v2i64 : MVT::v2i32, DL,
5342 {VData, VData2});
5343 if (Is64Bit)
5344 VData = DAG.getBitcast(MVT::v4i32, VData);
5345
5346 ResultTypes[0] = Is64Bit ? MVT::v2i64 : MVT::v2i32;
5347 DMask = Is64Bit ? 0xf : 0x3;
5348 NumVDataDwords = Is64Bit ? 4 : 2;
5349 AddrIdx = 4;
5350 } else {
5351 DMask = Is64Bit ? 0x3 : 0x1;
5352 NumVDataDwords = Is64Bit ? 2 : 1;
5353 AddrIdx = 3;
5354 }
5355 } else {
5356 unsigned DMaskIdx = BaseOpcode->Store ? 3 : isa<MemSDNode>(Op) ? 2 : 1;
4
Assuming field 'Store' is false
5
'?' condition is false
6
Assuming 'Op' is not a 'MemSDNode'
7
'?' condition is false
5357 auto DMaskConst = cast<ConstantSDNode>(Op.getOperand(DMaskIdx));
5358 DMask = DMaskConst->getZExtValue();
5359 DMaskLanes = BaseOpcode->Gather4 ? 4 : countPopulation(DMask);
8
Assuming field 'Gather4' is false
9
'?' condition is false
5360
5361 if (BaseOpcode->Store
9.1
Field 'Store' is false
9.1
Field 'Store' is false
) {
10
Taking false branch
5362 VData = Op.getOperand(2);
5363
5364 MVT StoreVT = VData.getSimpleValueType();
5365 if (StoreVT.getScalarType() == MVT::f16) {
5366 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
5367 return Op; // D16 is unsupported for this instruction
5368
5369 IsD16 = true;
5370 VData = handleD16VData(VData, DAG);
5371 }
5372
5373 NumVDataDwords = (VData.getValueType().getSizeInBits() + 31) / 32;
5374 } else {
5375 // Work out the num dwords based on the dmask popcount and underlying type
5376 // and whether packing is supported.
5377 MVT LoadVT = ResultTypes[0].getSimpleVT();
5378 if (LoadVT.getScalarType() == MVT::f16) {
11
Taking false branch
5379 if (!Subtarget->hasD16Images() || !BaseOpcode->HasD16)
5380 return Op; // D16 is unsupported for this instruction
5381
5382 IsD16 = true;
5383 }
5384
5385 // Confirm that the return type is large enough for the dmask specified
5386 if ((LoadVT.isVector() && LoadVT.getVectorNumElements() < DMaskLanes) ||
13
Taking false branch
5387 (!LoadVT.isVector() && DMaskLanes > 1))
12
Assuming 'DMaskLanes' is <= 1
5388 return Op;
5389
5390 if (IsD16
13.1
'IsD16' is false
13.1
'IsD16' is false
&& !Subtarget->hasUnpackedD16VMem())
5391 NumVDataDwords = (DMaskLanes + 1) / 2;
5392 else
5393 NumVDataDwords = DMaskLanes;
5394
5395 AdjustRetType = true;
5396 }
5397
5398 AddrIdx = DMaskIdx + 1;
5399 }
5400
5401 unsigned NumGradients = BaseOpcode->Gradients ? DimInfo->NumGradients : 0;
14
Assuming field 'Gradients' is false
15
'?' condition is false
5402 unsigned NumCoords = BaseOpcode->Coordinates ? DimInfo->NumCoords : 0;
16
Assuming field 'Coordinates' is false
17
'?' condition is false
5403 unsigned NumLCM = BaseOpcode->LodOrClampOrMip ? 1 : 0;
18
Assuming field 'LodOrClampOrMip' is true
19
'?' condition is true
5404 unsigned NumVAddrs = BaseOpcode->NumExtraArgs + NumGradients +
5405 NumCoords + NumLCM;
5406 unsigned NumMIVAddrs = NumVAddrs;
5407
5408 SmallVector<SDValue, 4> VAddrs;
5409
5410 // Optimize _L to _LZ when _L is zero
5411 if (LZMappingInfo) {
20
Assuming 'LZMappingInfo' is null
21
Taking false branch
5412 if (auto ConstantLod =
5413 dyn_cast<ConstantFPSDNode>(Op.getOperand(AddrIdx+NumVAddrs-1))) {
5414 if (ConstantLod->isZero() || ConstantLod->isNegative()) {
5415 IntrOpcode = LZMappingInfo->LZ; // set new opcode to _lz variant of _l
5416 NumMIVAddrs--; // remove 'lod'
5417 }
5418 }
5419 }
5420
5421 // Optimize _mip away, when 'lod' is zero
5422 if (MIPMappingInfo) {
22
Assuming 'MIPMappingInfo' is non-null
23
Taking true branch
5423 if (auto ConstantLod =
24
Assuming 'ConstantLod' is null
25
Taking false branch
5424 dyn_cast<ConstantSDNode>(Op.getOperand(AddrIdx+NumVAddrs-1))) {
5425 if (ConstantLod->isNullValue()) {
5426 IntrOpcode = MIPMappingInfo->NONMIP; // set new opcode to variant without _mip
5427 NumMIVAddrs--; // remove 'lod'
5428 }
5429 }
5430 }
5431
5432 // Check for 16 bit addresses and pack if true.
5433 unsigned DimIdx = AddrIdx + BaseOpcode->NumExtraArgs;
5434 MVT VAddrVT = Op.getOperand(DimIdx).getSimpleValueType();
26
Calling 'SDValue::getSimpleValueType'
5435 const MVT VAddrScalarVT = VAddrVT.getScalarType();
5436 if (((VAddrScalarVT == MVT::f16) || (VAddrScalarVT == MVT::i16)) &&
5437 ST->hasFeature(AMDGPU::FeatureR128A16)) {
5438 IsA16 = true;
5439 const MVT VectorVT = VAddrScalarVT == MVT::f16 ? MVT::v2f16 : MVT::v2i16;
5440 for (unsigned i = AddrIdx; i < (AddrIdx + NumMIVAddrs); ++i) {
5441 SDValue AddrLo, AddrHi;
5442 // Push back extra arguments.
5443 if (i < DimIdx) {
5444 AddrLo = Op.getOperand(i);
5445 } else {
5446 AddrLo = Op.getOperand(i);
5447 // Dz/dh, dz/dv and the last odd coord are packed with undef. Also,
5448 // in 1D, derivatives dx/dh and dx/dv are packed with undef.
5449 if (((i + 1) >= (AddrIdx + NumMIVAddrs)) ||
5450 ((NumGradients / 2) % 2 == 1 &&
5451 (i == DimIdx + (NumGradients / 2) - 1 ||
5452 i == DimIdx + NumGradients - 1))) {
5453 AddrHi = DAG.getUNDEF(MVT::f16);
5454 } else {
5455 AddrHi = Op.getOperand(i + 1);
5456 i++;
5457 }
5458 AddrLo = DAG.getNode(ISD::SCALAR_TO_VECTOR, DL, VectorVT,
5459 {AddrLo, AddrHi});
5460 AddrLo = DAG.getBitcast(MVT::i32, AddrLo);
5461 }
5462 VAddrs.push_back(AddrLo);
5463 }
5464 } else {
5465 for (unsigned i = 0; i < NumMIVAddrs; ++i)
5466 VAddrs.push_back(Op.getOperand(AddrIdx + i));
5467 }
5468
5469 // If the register allocator cannot place the address registers contiguously
5470 // without introducing moves, then using the non-sequential address encoding
5471 // is always preferable, since it saves VALU instructions and is usually a
5472 // wash in terms of code size or even better.
5473 //
5474 // However, we currently have no way of hinting to the register allocator that
5475 // MIMG addresses should be placed contiguously when it is possible to do so,
5476 // so force non-NSA for the common 2-address case as a heuristic.
5477 //
5478 // SIShrinkInstructions will convert NSA encodings to non-NSA after register
5479 // allocation when possible.
5480 bool UseNSA =
5481 ST->hasFeature(AMDGPU::FeatureNSAEncoding) && VAddrs.size() >= 3;
5482 SDValue VAddr;
5483 if (!UseNSA)
5484 VAddr = getBuildDwordsVector(DAG, DL, VAddrs);
5485
5486 SDValue True = DAG.getTargetConstant(1, DL, MVT::i1);
5487 SDValue False = DAG.getTargetConstant(0, DL, MVT::i1);
5488 unsigned CtrlIdx; // Index of texfailctrl argument
5489 SDValue Unorm;
5490 if (!BaseOpcode->Sampler) {
5491 Unorm = True;
5492 CtrlIdx = AddrIdx + NumVAddrs + 1;
5493 } else {
5494 auto UnormConst =
5495 cast<ConstantSDNode>(Op.getOperand(AddrIdx + NumVAddrs + 2));
5496
5497 Unorm = UnormConst->getZExtValue() ? True : False;
5498 CtrlIdx = AddrIdx + NumVAddrs + 3;
5499 }
5500
5501 SDValue TFE;
5502 SDValue LWE;
5503 SDValue TexFail = Op.getOperand(CtrlIdx);
5504 bool IsTexFail = false;
5505 if (!parseTexFail(TexFail, DAG, &TFE, &LWE, IsTexFail))
5506 return Op;
5507
5508 if (IsTexFail) {
5509 if (!DMaskLanes) {
5510 // Expecting to get an error flag since TFC is on - and dmask is 0
5511 // Force dmask to be at least 1 otherwise the instruction will fail
5512 DMask = 0x1;
5513 DMaskLanes = 1;
5514 NumVDataDwords = 1;
5515 }
5516 NumVDataDwords += 1;
5517 AdjustRetType = true;
5518 }
5519
5520 // Has something earlier tagged that the return type needs adjusting
5521 // This happens if the instruction is a load or has set TexFailCtrl flags
5522 if (AdjustRetType) {
5523 // NumVDataDwords reflects the true number of dwords required in the return type
5524 if (DMaskLanes == 0 && !BaseOpcode->Store) {
5525 // This is a no-op load. This can be eliminated
5526 SDValue Undef = DAG.getUNDEF(Op.getValueType());
5527 if (isa<MemSDNode>(Op))
5528 return DAG.getMergeValues({Undef, Op.getOperand(0)}, DL);
5529 return Undef;
5530 }
5531
5532 EVT NewVT = NumVDataDwords > 1 ?
5533 EVT::getVectorVT(*DAG.getContext(), MVT::f32, NumVDataDwords)
5534 : MVT::f32;
5535
5536 ResultTypes[0] = NewVT;
5537 if (ResultTypes.size() == 3) {
5538 // Original result was aggregate type used for TexFailCtrl results
5539 // The actual instruction returns as a vector type which has now been
5540 // created. Remove the aggregate result.
5541 ResultTypes.erase(&ResultTypes[1]);
5542 }
5543 }
5544
5545 SDValue GLC;
5546 SDValue SLC;
5547 SDValue DLC;
5548 if (BaseOpcode->Atomic) {
5549 GLC = True; // TODO no-return optimization
5550 if (!parseCachePolicy(Op.getOperand(CtrlIdx + 1), DAG, nullptr, &SLC,
5551 IsGFX10 ? &DLC : nullptr))
5552 return Op;
5553 } else {
5554 if (!parseCachePolicy(Op.getOperand(CtrlIdx + 1), DAG, &GLC, &SLC,
5555 IsGFX10 ? &DLC : nullptr))
5556 return Op;
5557 }
5558
5559 SmallVector<SDValue, 26> Ops;
5560 if (BaseOpcode->Store || BaseOpcode->Atomic)
5561 Ops.push_back(VData); // vdata
5562 if (UseNSA) {
5563 for (const SDValue &Addr : VAddrs)
5564 Ops.push_back(Addr);
5565 } else {
5566 Ops.push_back(VAddr);
5567 }
5568 Ops.push_back(Op.getOperand(AddrIdx + NumVAddrs)); // rsrc
5569 if (BaseOpcode->Sampler)
5570 Ops.push_back(Op.getOperand(AddrIdx + NumVAddrs + 1)); // sampler
5571 Ops.push_back(DAG.getTargetConstant(DMask, DL, MVT::i32));
5572 if (IsGFX10)
5573 Ops.push_back(DAG.getTargetConstant(DimInfo->Encoding, DL, MVT::i32));
5574 Ops.push_back(Unorm);
5575 if (IsGFX10)
5576 Ops.push_back(DLC);
5577 Ops.push_back(GLC);
5578 Ops.push_back(SLC);
5579 Ops.push_back(IsA16 && // a16 or r128
5580 ST->hasFeature(AMDGPU::FeatureR128A16) ? True : False);
5581 Ops.push_back(TFE); // tfe
5582 Ops.push_back(LWE); // lwe
5583 if (!IsGFX10)
5584 Ops.push_back(DimInfo->DA ? True : False);
5585 if (BaseOpcode->HasD16)
5586 Ops.push_back(IsD16 ? True : False);
5587 if (isa<MemSDNode>(Op))
5588 Ops.push_back(Op.getOperand(0)); // chain
5589
5590 int NumVAddrDwords =
5591 UseNSA ? VAddrs.size() : VAddr.getValueType().getSizeInBits() / 32;
5592 int Opcode = -1;
5593
5594 if (IsGFX10) {
5595 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode,
5596 UseNSA ? AMDGPU::MIMGEncGfx10NSA
5597 : AMDGPU::MIMGEncGfx10Default,
5598 NumVDataDwords, NumVAddrDwords);
5599 } else {
5600 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
5601 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx8,
5602 NumVDataDwords, NumVAddrDwords);
5603 if (Opcode == -1)
5604 Opcode = AMDGPU::getMIMGOpcode(IntrOpcode, AMDGPU::MIMGEncGfx6,
5605 NumVDataDwords, NumVAddrDwords);
5606 }
5607 assert(Opcode != -1)((Opcode != -1) ? static_cast<void> (0) : __assert_fail
("Opcode != -1", "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5607, __PRETTY_FUNCTION__))
;
5608
5609 MachineSDNode *NewNode = DAG.getMachineNode(Opcode, DL, ResultTypes, Ops);
5610 if (auto MemOp = dyn_cast<MemSDNode>(Op)) {
5611 MachineMemOperand *MemRef = MemOp->getMemOperand();
5612 DAG.setNodeMemRefs(NewNode, {MemRef});
5613 }
5614
5615 if (BaseOpcode->AtomicX2) {
5616 SmallVector<SDValue, 1> Elt;
5617 DAG.ExtractVectorElements(SDValue(NewNode, 0), Elt, 0, 1);
5618 return DAG.getMergeValues({Elt[0], SDValue(NewNode, 1)}, DL);
5619 } else if (!BaseOpcode->Store) {
5620 return constructRetValue(DAG, NewNode,
5621 OrigResultTypes, IsTexFail,
5622 Subtarget->hasUnpackedD16VMem(), IsD16,
5623 DMaskLanes, NumVDataDwords, DL,
5624 *DAG.getContext());
5625 }
5626
5627 return SDValue(NewNode, 0);
5628}
5629
5630SDValue SITargetLowering::lowerSBuffer(EVT VT, SDLoc DL, SDValue Rsrc,
5631 SDValue Offset, SDValue GLC, SDValue DLC,
5632 SelectionDAG &DAG) const {
5633 MachineFunction &MF = DAG.getMachineFunction();
5634 MachineMemOperand *MMO = MF.getMachineMemOperand(
5635 MachinePointerInfo(),
5636 MachineMemOperand::MOLoad | MachineMemOperand::MODereferenceable |
5637 MachineMemOperand::MOInvariant,
5638 VT.getStoreSize(), VT.getStoreSize());
5639
5640 if (!Offset->isDivergent()) {
5641 SDValue Ops[] = {
5642 Rsrc,
5643 Offset, // Offset
5644 GLC,
5645 DLC,
5646 };
5647 return DAG.getMemIntrinsicNode(AMDGPUISD::SBUFFER_LOAD, DL,
5648 DAG.getVTList(VT), Ops, VT, MMO);
5649 }
5650
5651 // We have a divergent offset. Emit a MUBUF buffer load instead. We can
5652 // assume that the buffer is unswizzled.
5653 SmallVector<SDValue, 4> Loads;
5654 unsigned NumLoads = 1;
5655 MVT LoadVT = VT.getSimpleVT();
5656 unsigned NumElts = LoadVT.isVector() ? LoadVT.getVectorNumElements() : 1;
5657 assert((LoadVT.getScalarType() == MVT::i32 ||(((LoadVT.getScalarType() == MVT::i32 || LoadVT.getScalarType
() == MVT::f32) && isPowerOf2_32(NumElts)) ? static_cast
<void> (0) : __assert_fail ("(LoadVT.getScalarType() == MVT::i32 || LoadVT.getScalarType() == MVT::f32) && isPowerOf2_32(NumElts)"
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5659, __PRETTY_FUNCTION__))
5658 LoadVT.getScalarType() == MVT::f32) &&(((LoadVT.getScalarType() == MVT::i32 || LoadVT.getScalarType
() == MVT::f32) && isPowerOf2_32(NumElts)) ? static_cast
<void> (0) : __assert_fail ("(LoadVT.getScalarType() == MVT::i32 || LoadVT.getScalarType() == MVT::f32) && isPowerOf2_32(NumElts)"
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5659, __PRETTY_FUNCTION__))
5659 isPowerOf2_32(NumElts))(((LoadVT.getScalarType() == MVT::i32 || LoadVT.getScalarType
() == MVT::f32) && isPowerOf2_32(NumElts)) ? static_cast
<void> (0) : __assert_fail ("(LoadVT.getScalarType() == MVT::i32 || LoadVT.getScalarType() == MVT::f32) && isPowerOf2_32(NumElts)"
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Target/AMDGPU/SIISelLowering.cpp"
, 5659, __PRETTY_FUNCTION__))
;
5660
5661 if (NumElts == 8 || NumElts == 16) {
5662 NumLoads = NumElts == 16 ? 4 : 2;
5663 LoadVT = MVT::v4i32;
5664 }
5665
5666 SDVTList VTList = DAG.getVTList({LoadVT, MVT::Glue});
5667 unsigned CachePolicy = cast<ConstantSDNode>(GLC)->getZExtValue();
5668 SDValue Ops[] = {
5669 DAG.getEntryNode(), // Chain
5670 Rsrc, // rsrc
5671 DAG.getConstant(0, DL, MVT::i32), // vindex
5672 {}, // voffset
5673 {}, // soffset
5674 {}, // offset
5675 DAG.getTargetConstant(CachePolicy, DL, MVT::i32), // cachepolicy
5676 DAG.getTargetConstant(0, DL, MVT::i1), // idxen
5677 };
5678
5679 // Use the alignment to ensure that the required offsets will fit into the
5680 // immediate offsets.
5681 setBufferOffsets(Offset, DAG, &Ops[3], NumLoads > 1 ? 16 * NumLoads : 4);
5682
5683 uint64_t InstOffset = cast<ConstantSDNode>(Ops[5])->getZExtValue();
5684 for (unsigned i = 0; i < NumLoads; ++i) {
5685 Ops[5] = DAG.getTargetConstant(InstOffset + 16 * i, DL, MVT::i32);
5686 Loads.push_back(DAG.getMemIntrinsicNode(AMDGPUISD::BUFFER_LOAD, DL, VTList,
5687 Ops, LoadVT, MMO));
5688 }
5689
5690 if (VT == MVT::v8i32 || VT == MVT::v16i32)
5691 return DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, Loads);
5692
5693 return Loads[0];
5694}
5695
5696SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
5697 SelectionDAG &DAG) const {
5698 MachineFunction &MF = DAG.getMachineFunction();
5699 auto MFI = MF.getInfo<SIMachineFunctionInfo>();
5700
5701 EVT VT = Op.getValueType();
5702 SDLoc DL(Op);
5703 unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5704
5705 // TODO: Should this propagate fast-math-flags?
5706
5707 switch (IntrinsicID) {
5708 case Intrinsic::amdgcn_implicit_buffer_ptr: {
5709 if (getSubtarget()->isAmdHsaOrMesa(MF.getFunction()))
5710 return emitNonHSAIntrinsicError(DAG, DL, VT);
5711 return getPreloadedValue(DAG, *MFI, VT,
5712 AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
5713 }
5714 case Intrinsic::amdgcn_dispatch_ptr:
5715 case Intrinsic::amdgcn_queue_ptr: {
5716 if (!Subtarget->isAmdHsaOrMesa(MF.getFunction())) {
5717 DiagnosticInfoUnsupported BadIntrin(
5718 MF.getFunction(), "unsupported hsa intrinsic without hsa target",
5719 DL.getDebugLoc());
5720 DAG.getContext()->diagnose(BadIntrin);
5721 return DAG.getUNDEF(VT);
5722 }
5723
5724 auto RegID = IntrinsicID == Intrinsic::amdgcn_dispatch_ptr ?
5725 AMDGPUFunctionArgInfo::DISPATCH_PTR : AMDGPUFunctionArgInfo::QUEUE_PTR;
5726 return getPreloadedValue(DAG, *MFI, VT, RegID);
5727 }
5728 case Intrinsic::amdgcn_implicitarg_ptr: {
5729 if (MFI->isEntryFunction())
5730 return getImplicitArgPtr(DAG, DL);
5731 return getPreloadedValue(DAG, *MFI, VT,
5732 AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
5733 }
5734 case Intrinsic::amdgcn_kernarg_segment_ptr: {
5735 return getPreloadedValue(DAG, *MFI, VT,
5736 AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
5737 }
5738 case Intrinsic::amdgcn_dispatch_id: {
5739 return getPreloadedValue(DAG, *MFI, VT, AMDGPUFunctionArgInfo::DISPATCH_ID);
5740 }
5741 case Intrinsic::amdgcn_rcp:
5742 return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
5743 case Intrinsic::amdgcn_rsq:
5744 return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
5745 case Intrinsic::amdgcn_rsq_legacy:
5746 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
5747 return emitRemovedIntrinsicError(DAG, DL, VT);
5748
5749 return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1));
5750 case Intrinsic::amdgcn_rcp_legacy:
5751 if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
5752 return emitRemovedIntrinsicError(DAG, DL, VT);
5753 return DAG.getNode(AMDGPUISD::RCP_LEGACY, DL, VT, Op.getOperand(1));
5754 case Intrinsic::amdgcn_rsq_clamp: {
5755 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
5756 return DAG.getNode(AMDGPUISD::RSQ_CLAMP, DL, VT, Op.getOperand(1));
5757
5758 Type *Type = VT.getTypeForEVT(*DAG.getContext());
5759 APFloat Max = APFloat::getLargest(Type->getFltSemantics());
5760 APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
5761
5762 SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
5763 SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
5764 DAG.getConstantFP(Max, DL, VT));
5765 return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
5766 DAG.getConstantFP(Min, DL, VT));
5767 }
5768 case Intrinsic::r600_read_ngroups_x:
5769 if (Subtarget->isAmdHsaOS())
5770 return emitNonHSAIntrinsicError(DAG, DL, VT);
5771
5772 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5773 SI::KernelInputOffsets::NGROUPS_X, 4, false);
5774 case Intrinsic::r600_read_ngroups_y:
5775 if (Subtarget->isAmdHsaOS())
5776 return emitNonHSAIntrinsicError(DAG, DL, VT);
5777
5778 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5779 SI::KernelInputOffsets::NGROUPS_Y, 4, false);
5780 case Intrinsic::r600_read_ngroups_z:
5781 if (Subtarget->isAmdHsaOS())
5782 return emitNonHSAIntrinsicError(DAG, DL, VT);
5783
5784 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5785 SI::KernelInputOffsets::NGROUPS_Z, 4, false);
5786 case Intrinsic::r600_read_global_size_x:
5787 if (Subtarget->isAmdHsaOS())
5788 return emitNonHSAIntrinsicError(DAG, DL, VT);
5789
5790 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5791 SI::KernelInputOffsets::GLOBAL_SIZE_X, 4, false);
5792 case Intrinsic::r600_read_global_size_y:
5793 if (Subtarget->isAmdHsaOS())
5794 return emitNonHSAIntrinsicError(DAG, DL, VT);
5795
5796 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5797 SI::KernelInputOffsets::GLOBAL_SIZE_Y, 4, false);
5798 case Intrinsic::r600_read_global_size_z:
5799 if (Subtarget->isAmdHsaOS())
5800 return emitNonHSAIntrinsicError(DAG, DL, VT);
5801
5802 return lowerKernargMemParameter(DAG, VT, VT, DL, DAG.getEntryNode(),
5803 SI::KernelInputOffsets::GLOBAL_SIZE_Z, 4, false);
5804 case Intrinsic::r600_read_local_size_x:
5805 if (Subtarget->isAmdHsaOS())
5806 return emitNonHSAIntrinsicError(DAG, DL, VT);
5807
5808 return lowerImplicitZextParam(DAG, Op, MVT::i16,
5809 SI::KernelInputOffsets::LOCAL_SIZE_X);
5810 case Intrinsic::r600_read_local_size_y:
5811 if (Subtarget->isAmdHsaOS())
5812 return emitNonHSAIntrinsicError(DAG, DL, VT);
5813
5814 return lowerImplicitZextParam(DAG, Op, MVT::i16,
5815 SI::KernelInputOffsets::LOCAL_SIZE_Y);
5816 case Intrinsic::r600_read_local_size_z:
5817 if (Subtarget->isAmdHsaOS())
5818 return emitNonHSAIntrinsicError(DAG, DL, VT);
5819
5820 return lowerImplicitZextParam(DAG, Op, MVT::i16,
5821 SI::KernelInputOffsets::LOCAL_SIZE_Z);
5822 case Intrinsic::amdgcn_workgroup_id_x:
5823 case Intrinsic::r600_read_tgid_x:
5824 return getPreloadedValue(DAG, *MFI, VT,
5825 AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
5826 case Intrinsic::amdgcn_workgroup_id_y:
5827 case Intrinsic::r600_read_tgid_y:
5828 return getPreloadedValue(DAG, *MFI, VT,
5829 AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
5830 case Intrinsic::amdgcn_workgroup_id_z:
5831 case Intrinsic::r600_read_tgid_z:
5832 return getPreloadedValue(DAG, *MFI, VT,
5833 AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
5834 case Intrinsic::amdgcn_workitem_id_x:
5835 case Intrinsic::r600_read_tidig_x:
5836 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
5837 SDLoc(DAG.getEntryNode()),
5838 MFI->getArgInfo().WorkItemIDX);
5839 case Intrinsic::amdgcn_workitem_id_y:
5840 case Intrinsic::r600_read_tidig_y:
5841 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
5842 SDLoc(DAG.getEntryNode()),
5843 MFI->getArgInfo().WorkItemIDY);
5844 case Intrinsic::amdgcn_workitem_id_z:
5845 case Intrinsic::r600_read_tidig_z:
5846 return loadInputValue(DAG, &AMDGPU::VGPR_32RegClass, MVT::i32,
5847 SDLoc(DAG.getEntryNode()),
5848 MFI->getArgInfo().WorkItemIDZ);
5849 case Intrinsic::amdgcn_wavefrontsize:
5850 return DAG.getConstant(MF.getSubtarget<GCNSubtarget>().getWavefrontSize(),
5851 SDLoc(Op), MVT::i32);
5852 case Intrinsic::amdgcn_s_buffer_load: {
5853 bool IsGFX10 = Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10;
5854 SDValue GLC;
5855 SDValue DLC = DAG.getTargetConstant(0, DL, MVT::i1);
5856 if (!parseCachePolicy(Op.getOperand(3), DAG, &GLC, nullptr,
5857 IsGFX10 ? &DLC : nullptr))
5858 return Op;
5859 return lowerSBuffer(VT, DL, Op.getOperand(1), Op.getOperand(2), GLC, DLC,
5860 DAG);
5861 }
5862 case Intrinsic::amdgcn_fdiv_fast:
5863 return lowerFDIV_FAST(Op, DAG);
5864 case Intrinsic::amdgcn_interp_mov: {
5865 SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4));
5866 SDValue Glue = M0.getValue(1);
5867 return DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32, Op.getOperand(1),
5868 Op.getOperand(2), Op.getOperand(3), Glue);
5869 }
5870 case Intrinsic::amdgcn_interp_p1: {
5871 SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(4));
5872 SDValue Glue = M0.getValue(1);
5873 return DAG.getNode(AMDGPUISD::INTERP_P1, DL, MVT::f32, Op.getOperand(1),
5874 Op.getOperand(2), Op.getOperand(3), Glue);
5875 }
5876 case Intrinsic::amdgcn_interp_p2: {
5877 SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(5));
5878 SDValue Glue = SDValue(M0.getNode(), 1);
5879 return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, Op.getOperand(1),
5880 Op.getOperand(2), Op.getOperand(3), Op.getOperand(4),
5881 Glue);
5882 }
5883 case Intrinsic::amdgcn_interp_p1_f16: {
5884 SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(5));
5885 SDValue Glue = M0.getValue(1);
5886 if (getSubtarget()->getLDSBankCount() == 16) {
5887 // 16 bank LDS
5888 SDValue S = DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32,
5889 DAG.getConstant(2, DL, MVT::i32), // P0
5890 Op.getOperand(2), // Attrchan
5891 Op.getOperand(3), // Attr
5892 Glue);
5893 SDValue Ops[] = {
5894 Op.getOperand(1), // Src0
5895 Op.getOperand(2), // Attrchan
5896 Op.getOperand(3), // Attr
5897 DAG.getTargetConstant(0, DL, MVT::i32), // $src0_modifiers
5898 S, // Src2 - holds two f16 values selected by high
5899 DAG.getTargetConstant(0, DL, MVT::i32), // $src2_modifiers
5900 Op.getOperand(4), // high
5901 DAG.getTargetConstant(0, DL, MVT::i1), // $clamp
5902 DAG.getTargetConstant(0, DL, MVT::i32) // $omod
5903 };
5904 return DAG.getNode(AMDGPUISD::INTERP_P1LV_F16, DL, MVT::f32, Ops);
5905 } else {
5906 // 32 bank LDS
5907 SDValue Ops[] = {
5908 Op.getOperand(1), // Src0
5909 Op.getOperand(2), // Attrchan
5910 Op.getOperand(3), // Attr
5911 DAG.getTargetConstant(0, DL, MVT::i32), // $src0_modifiers
5912 Op.getOperand(4), // high
5913 DAG.getTargetConstant(0, DL, MVT::i1), // $clamp
5914 DAG.getTargetConstant(0, DL, MVT::i32), // $omod
5915 Glue
5916 };
5917 return DAG.getNode(AMDGPUISD::INTERP_P1LL_F16, DL, MVT::f32, Ops);
5918 }
5919 }
5920 case Intrinsic::amdgcn_interp_p2_f16: {
5921 SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(6));
5922 SDValue Glue = SDValue(M0.getNode(), 1);
5923 SDValue Ops[] = {
5924 Op.getOperand(2), // Src0
5925 Op.getOperand(3), // Attrchan
5926 Op.getOperand(4), // Attr
5927 DAG.getTargetConstant(0, DL, MVT::i32), // $src0_modifiers
5928 Op.getOperand(1), // Src2
5929 DAG.getTargetConstant(0, DL, MVT::i32), // $src2_modifiers
5930 Op.getOperand(5), // high
5931 DAG.getTargetConstant(0, DL, MVT::i1), // $clamp
5932 Glue
5933 };
5934 return DAG.getNode(AMDGPUISD::INTERP_P2_F16, DL, MVT::f16, Ops);
5935 }
5936 case Intrinsic::amdgcn_sin:
5937 return DAG.getNode(AMDGPUISD::SIN_HW, DL, VT, Op.getOperand(1));
5938
5939 case Intrinsic::amdgcn_cos:
5940 return DAG.getNode(AMDGPUISD::COS_HW, DL, VT, Op.getOperand(1));
5941
5942 case Intrinsic::amdgcn_mul_u24:
5943 return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT, Op.getOperand(1), Op.getOperand(2));
5944 case Intrinsic::amdgcn_mul_i24:
5945 return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT, Op.getOperand(1), Op.getOperand(2));
5946
5947 case Intrinsic::amdgcn_log_clamp: {
5948 if (Subtarget->getGeneration() < AMDGPUSubtarget::VOLCANIC_ISLANDS)
5949 return SDValue();
5950
5951 DiagnosticInfoUnsupported BadIntrin(
5952 MF.getFunction(), "intrinsic not supported on subtarget",
5953 DL.getDebugLoc());
5954 DAG.getContext()->diagnose(BadIntrin);
5955 return DAG.getUNDEF(VT);
5956 }
5957 case Intrinsic::amdgcn_ldexp:
5958 return DAG.getNode(AMDGPUISD::LDEXP, DL, VT,
5959 Op.getOperand(1), Op.getOperand(2));
5960
5961 case Intrinsic::amdgcn_fract:
5962 return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
5963
5964 case Intrinsic::amdgcn_class:
5965 return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
5966 Op.getOperand(1), Op.getOperand(2));
5967 case Intrinsic::amdgcn_div_fmas:
5968 return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
5969 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
5970 Op.getOperand(4));
5971
5972 case Intrinsic::amdgcn_div_fixup:
5973 return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
5974 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
5975
5976 case Intrinsic::amdgcn_trig_preop:
5977 return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT,
5978 Op.getOperand(1), Op.getOperand(2));
5979 case Intrinsic::amdgcn_div_scale: {
5980 const ConstantSDNode *Param = cast<ConstantSDNode>(Op.getOperand(3));
5981
5982 // Translate to the operands expected by the machine instruction. The
5983 // first parameter must be the same as the first instruction.
5984 SDValue Numerator = Op.getOperand(1);
5985 SDValue Denominator = Op.getOperand(2);
5986
5987 // Note this order is opposite of the machine instruction's operations,
5988 // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
5989 // intrinsic has the numerator as the first operand to match a normal
5990 // division operation.
5991
5992 SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
5993
5994 return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
5995 Denominator, Numerator);
5996 }
5997 case Intrinsic::amdgcn_icmp: {
5998 // There is a Pat that handles this variant, so return it as-is.
5999 if (Op.getOperand(1).getValueType() == MVT::i1 &&
6000 Op.getConstantOperandVal(2) == 0 &&
6001 Op.getConstantOperandVal(3) == ICmpInst::Predicate::ICMP_NE)
6002 return Op;
6003 return lowerICMPIntrinsic(*this, Op.getNode(), DAG);
6004 }
6005 case Intrinsic::amdgcn_fcmp: {
6006 return lowerFCMPIntrinsic(*this, Op.getNode(), DAG);
6007 }
6008 case Intrinsic::amdgcn_fmed3:
6009 return DAG.getNode(AMDGPUISD::FMED3, DL, VT,
6010 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6011 case Intrinsic::amdgcn_fdot2:
6012 return DAG.getNode(AMDGPUISD::FDOT2, DL, VT,
6013 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
6014 Op.getOperand(4));
6015 case Intrinsic::amdgcn_fmul_legacy:
6016 return DAG.getNode(AMDGPUISD::FMUL_LEGACY, DL, VT,
6017 Op.getOperand(1), Op.getOperand(2));
6018 case Intrinsic::amdgcn_sffbh:
6019 return DAG.getNode(AMDGPUISD::FFBH_I32, DL, VT, Op.getOperand(1));
6020 case Intrinsic::amdgcn_sbfe:
6021 return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
6022 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6023 case Intrinsic::amdgcn_ubfe:
6024 return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
6025 Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
6026 case Intrinsic::amdgcn_cvt_pkrtz:
6027 case Intrinsic::amdgcn_cvt_pknorm_i16:
6028 case Intrinsic::amdgcn_cvt_pknorm_u16:
6029 case Intrinsic::amdgcn_cvt_pk_i16:
6030 case Intrinsic::amdgcn_cvt_pk_u16: {
6031 // FIXME: Stop adding cast if v2f16/v2i16 are legal.
6032 EVT VT = Op.getValueType();
6033 unsigned Opcode;
6034
6035 if (IntrinsicID == Intrinsic::amdgcn_cvt_pkrtz)
6036 Opcode = AMDGPUISD::CVT_PKRTZ_F16_F32;
6037 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_i16)
6038 Opcode = AMDGPUISD::CVT_PKNORM_I16_F32;
6039 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pknorm_u16)
6040 Opcode = AMDGPUISD::CVT_PKNORM_U16_F32;
6041 else if (IntrinsicID == Intrinsic::amdgcn_cvt_pk_i16)
6042 Opcode = AMDGPUISD::CVT_PK_I16_I32;
6043 else
6044 Opcode = AMDGPUISD::CVT_PK_U16_U32;
6045
6046 if (isTypeLegal(VT))
6047 return DAG.getNode(Opcode, DL, VT, Op.getOperand(1), Op.getOperand(2));
6048
6049 SDValue Node = DAG.getNode(Opcode, DL, MVT::i32,
6050 Op.getOperand(1), Op.getOperand(2));
6051 return DAG.getNode(ISD::BITCAST, DL, VT, Node);
6052 }
6053 case Intrinsic::amdgcn_fmad_ftz:
6054 return DAG.getNode(AMDGPUISD::FMAD_FTZ, DL, VT, Op.getOperand(1),
6055 Op.getOperand(2), Op.getOperand(3));
6056
6057 case Intrinsic::amdgcn_if_break:
6058 return SDValue(DAG.getMachineNode(AMDGPU::SI_IF_BREAK, DL, VT,
6059 Op->getOperand(1), Op->getOperand(2)), 0);
6060
6061 case Intrinsic::amdgcn_groupstaticsize: {
6062 Triple::OSType OS = getTargetMachine().getTargetTriple().getOS();
6063 if (OS == Triple::AMDHSA || OS == Triple::AMDPAL)
6064 return Op;
6065
6066 const Module *M = MF.getFunction().getParent();
6067 const GlobalValue *GV =
6068 M->getNamedValue(Intrinsic::getName(Intrinsic::amdgcn_groupstaticsize));
6069 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32, 0,
6070 SIInstrInfo::MO_ABS32_LO);
6071 return {DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, GA), 0};
6072 }
6073 case Intrinsic::amdgcn_is_shared:
6074 case Intrinsic::amdgcn_is_private: {
6075 SDLoc SL(Op);
6076 unsigned AS = (IntrinsicID == Intrinsic::amdgcn_is_shared) ?
6077 AMDGPUAS::LOCAL_ADDRESS : AMDGPUAS::PRIVATE_ADDRESS;
6078 SDValue Aperture = getSegmentAperture(AS, SL, DAG);
6079 SDValue SrcVec = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32,
6080 Op.getOperand(1));
6081
6082 SDValue SrcHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, SrcVec,
6083 DAG.getConstant(1, SL, MVT::i32));
6084 return DAG.getSetCC(SL, MVT::i1, SrcHi, Aperture, ISD::SETEQ);
6085 }
6086 default:
6087 if (const AMDGPU::ImageDimIntrinsicInfo *ImageDimIntr =
6088 AMDGPU::getImageDimIntrinsicInfo(IntrinsicID))
6089 return lowerImage(Op, ImageDimIntr, DAG);
6090
6091 return Op;
6092 }
6093}
6094
6095// This function computes an appropriate offset to pass to
6096// MachineMemOperand::setOffset() based on the offset inputs to
6097// an intrinsic. If any of the offsets are non-contstant or
6098// if VIndex is non-zero then this function returns 0. Otherwise,
6099// it returns the sum of VOffset, SOffset, and Offset.
6100static unsigned getBufferOffsetForMMO(SDValue VOffset,
6101 SDValue SOffset,
6102 SDValue Offset,
6103 SDValue VIndex = SDValue()) {
6104
6105 if (!isa<ConstantSDNode>(VOffset) || !isa<ConstantSDNode>(SOffset) ||
6106 !isa<ConstantSDNode>(Offset))
6107 return 0;
6108
6109 if (VIndex) {
6110 if (!isa<ConstantSDNode>(VIndex) || !cast<ConstantSDNode>(VIndex)->isNullValue())
6111 return 0;
6112 }
6113
6114 return cast<ConstantSDNode>(VOffset)->getSExtValue() +
6115 cast<ConstantSDNode>(SOffset)->getSExtValue() +
6116 cast<ConstantSDNode>(Offset)->getSExtValue();
6117}
6118
6119SDValue SITargetLowering::LowerINTRINSIC_W_CHAIN(SDValue Op,
6120 SelectionDAG &DAG) const {
6121 unsigned IntrID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
6122 SDLoc DL(Op);
6123
6124 switch (IntrID) {
6125 case Intrinsic::amdgcn_ds_ordered_add:
6126 case Intrinsic::amdgcn_ds_ordered_swap: {
6127 MemSDNode *M = cast<MemSDNode>(Op);
6128 SDValue Chain = M->getOperand(0);
6129 SDValue M0 = M->getOperand(2);
6130 SDValue Value = M->getOperand(3);
6131 unsigned IndexOperand = M->getConstantOperandVal(7);
6132 unsigned WaveRelease = M->getConstantOperandVal(8);
6133 unsigned WaveDone = M->getConstantOperandVal(9);
6134 unsigned ShaderType;
6135 unsigned Instruction;
6136
6137 unsigned OrderedCountIndex = IndexOperand & 0x3f;
6138 IndexOperand &= ~0x3f;
6139 unsigned CountDw = 0;
6140
6141 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10) {
6142 CountDw = (IndexOperand >> 24) & 0xf;
6143 IndexOperand &= ~(0xf << 24);
6144
6145 if (CountDw < 1 || CountDw > 4) {
6146 report_fatal_error(
6147 "ds_ordered_count: dword count must be between 1 and 4");
6148 }
6149 }
6150
6151 if (IndexOperand)
6152 report_fatal_error("ds_ordered_count: bad index operand");
6153
6154 switch (IntrID) {
6155 case Intrinsic::amdgcn_ds_ordered_add:
6156 Instruction = 0;
6157 break;
6158 case Intrinsic::amdgcn_ds_ordered_swap:
6159 Instruction = 1;
6160 break;
6161 }
6162
6163 if (WaveDone && !WaveRelease)
6164 report_fatal_error("ds_ordered_count: wave_done requires wave_release");
6165
6166 switch (DAG.getMachineFunction().getFunction().getCallingConv()) {
6167 case CallingConv::AMDGPU_CS:
6168 case CallingConv::AMDGPU_KERNEL:
6169 ShaderType = 0;
6170 break;
6171 case CallingConv::AMDGPU_PS:
6172 ShaderType = 1;
6173 break;
6174 case CallingConv::AMDGPU_VS:
6175 ShaderType = 2;
6176 break;
6177 case CallingConv::AMDGPU_GS:
6178 ShaderType = 3;
6179 break;
6180 default:
6181 report_fatal_error("ds_ordered_count unsupported for this calling conv");
6182 }
6183
6184 unsigned Offset0 = OrderedCountIndex << 2;
6185 unsigned Offset1 = WaveRelease | (WaveDone << 1) | (ShaderType << 2) |
6186 (Instruction << 4);
6187
6188 if (Subtarget->getGeneration() >= AMDGPUSubtarget::GFX10)
6189 Offset1 |= (CountDw - 1) << 6;
6190
6191 unsigned Offset = Offset0 | (Offset1 << 8);
6192
6193 SDValue Ops[] = {
6194 Chain,
6195 Value,
6196 DAG.getTargetConstant(Offset, DL, MVT::i16),
6197 copyToM0(DAG, Chain, DL, M0).getValue(1), // Glue
6198 };
6199 return DAG.getMemIntrinsicNode(AMDGPUISD::DS_ORDERED_COUNT, DL,
6200 M->getVTList(), Ops, M->getMemoryVT(),
6201 M->getMemOperand());
6202 }
6203 case Intrinsic::amdgcn_ds_fadd: {
6204 MemSDNode *M = cast<MemSDNode>(Op);
6205 unsigned Opc;
6206 switch (IntrID) {
6207 case Intrinsic::amdgcn_ds_fadd:
6208 Opc = ISD::ATOMIC_LOAD_FADD;
6209 break;