Bug Summary

File:lib/Transforms/Vectorize/SLPVectorizer.cpp
Warning:line 2382, column 32
Called C++ object pointer is null

Annotated Source Code

1//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9// This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10// stores that can be put together into vector-stores. Next, it attempts to
11// construct vectorizable tree using the use-def chains. If a profitable tree
12// was found, the SLP vectorizer performs vectorization on the tree.
13//
14// The pass is inspired by the work described in the paper:
15// "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16//
17//===----------------------------------------------------------------------===//
18#include "llvm/Transforms/Vectorize/SLPVectorizer.h"
19#include "llvm/ADT/Optional.h"
20#include "llvm/ADT/PostOrderIterator.h"
21#include "llvm/ADT/SetVector.h"
22#include "llvm/ADT/Statistic.h"
23#include "llvm/Analysis/CodeMetrics.h"
24#include "llvm/Analysis/GlobalsModRef.h"
25#include "llvm/Analysis/LoopAccessAnalysis.h"
26#include "llvm/Analysis/ScalarEvolutionExpressions.h"
27#include "llvm/Analysis/ValueTracking.h"
28#include "llvm/Analysis/VectorUtils.h"
29#include "llvm/IR/DataLayout.h"
30#include "llvm/IR/Dominators.h"
31#include "llvm/IR/IRBuilder.h"
32#include "llvm/IR/Instructions.h"
33#include "llvm/IR/IntrinsicInst.h"
34#include "llvm/IR/Module.h"
35#include "llvm/IR/NoFolder.h"
36#include "llvm/IR/Type.h"
37#include "llvm/IR/Value.h"
38#include "llvm/IR/Verifier.h"
39#include "llvm/Pass.h"
40#include "llvm/Support/CommandLine.h"
41#include "llvm/Support/Debug.h"
42#include "llvm/Support/GraphWriter.h"
43#include "llvm/Support/KnownBits.h"
44#include "llvm/Support/raw_ostream.h"
45#include "llvm/Transforms/Utils/LoopUtils.h"
46#include "llvm/Transforms/Vectorize.h"
47#include <algorithm>
48#include <memory>
49
50using namespace llvm;
51using namespace slpvectorizer;
52
53#define SV_NAME"slp-vectorizer" "slp-vectorizer"
54#define DEBUG_TYPE"SLP" "SLP"
55
56STATISTIC(NumVectorInstructions, "Number of vector instructions generated")static llvm::Statistic NumVectorInstructions = {"SLP", "NumVectorInstructions"
, "Number of vector instructions generated", {0}, false}
;
57
58static cl::opt<int>
59 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
60 cl::desc("Only vectorize if you gain more than this "
61 "number "));
62
63static cl::opt<bool>
64ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
65 cl::desc("Attempt to vectorize horizontal reductions"));
66
67static cl::opt<bool> ShouldStartVectorizeHorAtStore(
68 "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
69 cl::desc(
70 "Attempt to vectorize horizontal reductions feeding into a store"));
71
72static cl::opt<int>
73MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
74 cl::desc("Attempt to vectorize for this register size in bits"));
75
76/// Limits the size of scheduling regions in a block.
77/// It avoid long compile times for _very_ large blocks where vector
78/// instructions are spread over a wide range.
79/// This limit is way higher than needed by real-world functions.
80static cl::opt<int>
81ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
82 cl::desc("Limit the size of the SLP scheduling region per block"));
83
84static cl::opt<int> MinVectorRegSizeOption(
85 "slp-min-reg-size", cl::init(128), cl::Hidden,
86 cl::desc("Attempt to vectorize for this register size in bits"));
87
88static cl::opt<unsigned> RecursionMaxDepth(
89 "slp-recursion-max-depth", cl::init(12), cl::Hidden,
90 cl::desc("Limit the recursion depth when building a vectorizable tree"));
91
92static cl::opt<unsigned> MinTreeSize(
93 "slp-min-tree-size", cl::init(3), cl::Hidden,
94 cl::desc("Only vectorize small trees if they are fully vectorizable"));
95
96static cl::opt<bool>
97 ViewSLPTree("view-slp-tree", cl::Hidden,
98 cl::desc("Display the SLP trees with Graphviz"));
99
100// Limit the number of alias checks. The limit is chosen so that
101// it has no negative effect on the llvm benchmarks.
102static const unsigned AliasedCheckLimit = 10;
103
104// Another limit for the alias checks: The maximum distance between load/store
105// instructions where alias checks are done.
106// This limit is useful for very large basic blocks.
107static const unsigned MaxMemDepDistance = 160;
108
109/// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
110/// regions to be handled.
111static const int MinScheduleRegionSize = 16;
112
113/// \brief Predicate for the element types that the SLP vectorizer supports.
114///
115/// The most important thing to filter here are types which are invalid in LLVM
116/// vectors. We also filter target specific types which have absolutely no
117/// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
118/// avoids spending time checking the cost model and realizing that they will
119/// be inevitably scalarized.
120static bool isValidElementType(Type *Ty) {
121 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
122 !Ty->isPPC_FP128Ty();
123}
124
125/// \returns true if all of the instructions in \p VL are in the same block or
126/// false otherwise.
127static bool allSameBlock(ArrayRef<Value *> VL) {
128 Instruction *I0 = dyn_cast<Instruction>(VL[0]);
129 if (!I0)
130 return false;
131 BasicBlock *BB = I0->getParent();
132 for (int i = 1, e = VL.size(); i < e; i++) {
133 Instruction *I = dyn_cast<Instruction>(VL[i]);
134 if (!I)
135 return false;
136
137 if (BB != I->getParent())
138 return false;
139 }
140 return true;
141}
142
143/// \returns True if all of the values in \p VL are constants.
144static bool allConstant(ArrayRef<Value *> VL) {
145 for (Value *i : VL)
146 if (!isa<Constant>(i))
147 return false;
148 return true;
149}
150
151/// \returns True if all of the values in \p VL are identical.
152static bool isSplat(ArrayRef<Value *> VL) {
153 for (unsigned i = 1, e = VL.size(); i < e; ++i)
154 if (VL[i] != VL[0])
155 return false;
156 return true;
157}
158
159///\returns Opcode that can be clubbed with \p Op to create an alternate
160/// sequence which can later be merged as a ShuffleVector instruction.
161static unsigned getAltOpcode(unsigned Op) {
162 switch (Op) {
163 case Instruction::FAdd:
164 return Instruction::FSub;
165 case Instruction::FSub:
166 return Instruction::FAdd;
167 case Instruction::Add:
168 return Instruction::Sub;
169 case Instruction::Sub:
170 return Instruction::Add;
171 default:
172 return 0;
173 }
174}
175
176///\returns bool representing if Opcode \p Op can be part
177/// of an alternate sequence which can later be merged as
178/// a ShuffleVector instruction.
179static bool canCombineAsAltInst(unsigned Op) {
180 return Op == Instruction::FAdd || Op == Instruction::FSub ||
181 Op == Instruction::Sub || Op == Instruction::Add;
182}
183
184/// \returns ShuffleVector instruction if instructions in \p VL have
185/// alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence.
186/// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...)
187static unsigned isAltInst(ArrayRef<Value *> VL) {
188 Instruction *I0 = dyn_cast<Instruction>(VL[0]);
189 unsigned Opcode = I0->getOpcode();
190 unsigned AltOpcode = getAltOpcode(Opcode);
191 for (int i = 1, e = VL.size(); i < e; i++) {
192 Instruction *I = dyn_cast<Instruction>(VL[i]);
193 if (!I || I->getOpcode() != ((i & 1) ? AltOpcode : Opcode))
194 return 0;
195 }
196 return Instruction::ShuffleVector;
197}
198
199/// \returns The opcode if all of the Instructions in \p VL have the same
200/// opcode, or zero.
201static unsigned getSameOpcode(ArrayRef<Value *> VL) {
202 Instruction *I0 = dyn_cast<Instruction>(VL[0]);
203 if (!I0)
204 return 0;
205 unsigned Opcode = I0->getOpcode();
206 for (int i = 1, e = VL.size(); i < e; i++) {
207 Instruction *I = dyn_cast<Instruction>(VL[i]);
208 if (!I || Opcode != I->getOpcode()) {
209 if (canCombineAsAltInst(Opcode) && i == 1)
210 return isAltInst(VL);
211 return 0;
212 }
213 }
214 return Opcode;
215}
216
217/// \returns true if all of the values in \p VL have the same type or false
218/// otherwise.
219static bool allSameType(ArrayRef<Value *> VL) {
220 Type *Ty = VL[0]->getType();
221 for (int i = 1, e = VL.size(); i < e; i++)
222 if (VL[i]->getType() != Ty)
223 return false;
224
225 return true;
226}
227
228/// \returns True if Extract{Value,Element} instruction extracts element Idx.
229static bool matchExtractIndex(Instruction *E, unsigned Idx, unsigned Opcode) {
230 assert(Opcode == Instruction::ExtractElement ||((Opcode == Instruction::ExtractElement || Opcode == Instruction
::ExtractValue) ? static_cast<void> (0) : __assert_fail
("Opcode == Instruction::ExtractElement || Opcode == Instruction::ExtractValue"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 231, __PRETTY_FUNCTION__))
231 Opcode == Instruction::ExtractValue)((Opcode == Instruction::ExtractElement || Opcode == Instruction
::ExtractValue) ? static_cast<void> (0) : __assert_fail
("Opcode == Instruction::ExtractElement || Opcode == Instruction::ExtractValue"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 231, __PRETTY_FUNCTION__))
;
232 if (Opcode == Instruction::ExtractElement) {
233 ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1));
234 return CI && CI->getZExtValue() == Idx;
235 } else {
236 ExtractValueInst *EI = cast<ExtractValueInst>(E);
237 return EI->getNumIndices() == 1 && *EI->idx_begin() == Idx;
238 }
239}
240
241/// \returns True if in-tree use also needs extract. This refers to
242/// possible scalar operand in vectorized instruction.
243static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
244 TargetLibraryInfo *TLI) {
245
246 unsigned Opcode = UserInst->getOpcode();
247 switch (Opcode) {
248 case Instruction::Load: {
249 LoadInst *LI = cast<LoadInst>(UserInst);
250 return (LI->getPointerOperand() == Scalar);
251 }
252 case Instruction::Store: {
253 StoreInst *SI = cast<StoreInst>(UserInst);
254 return (SI->getPointerOperand() == Scalar);
255 }
256 case Instruction::Call: {
257 CallInst *CI = cast<CallInst>(UserInst);
258 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
259 if (hasVectorInstrinsicScalarOpd(ID, 1)) {
260 return (CI->getArgOperand(1) == Scalar);
261 }
262 LLVM_FALLTHROUGH[[clang::fallthrough]];
263 }
264 default:
265 return false;
266 }
267}
268
269/// \returns the AA location that is being access by the instruction.
270static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) {
271 if (StoreInst *SI = dyn_cast<StoreInst>(I))
272 return MemoryLocation::get(SI);
273 if (LoadInst *LI = dyn_cast<LoadInst>(I))
274 return MemoryLocation::get(LI);
275 return MemoryLocation();
276}
277
278/// \returns True if the instruction is not a volatile or atomic load/store.
279static bool isSimple(Instruction *I) {
280 if (LoadInst *LI = dyn_cast<LoadInst>(I))
281 return LI->isSimple();
282 if (StoreInst *SI = dyn_cast<StoreInst>(I))
283 return SI->isSimple();
284 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
285 return !MI->isVolatile();
286 return true;
287}
288
289namespace llvm {
290namespace slpvectorizer {
291/// Bottom Up SLP Vectorizer.
292class BoUpSLP {
293public:
294 typedef SmallVector<Value *, 8> ValueList;
295 typedef SmallVector<Instruction *, 16> InstrList;
296 typedef SmallPtrSet<Value *, 16> ValueSet;
297 typedef SmallVector<StoreInst *, 8> StoreList;
298 typedef MapVector<Value *, SmallVector<Instruction *, 2>>
299 ExtraValueToDebugLocsMap;
300
301 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
302 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li,
303 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
304 const DataLayout *DL, OptimizationRemarkEmitter *ORE)
305 : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), F(Func),
306 SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC), DB(DB),
307 DL(DL), ORE(ORE), Builder(Se->getContext()) {
308 CodeMetrics::collectEphemeralValues(F, AC, EphValues);
309 // Use the vector register size specified by the target unless overridden
310 // by a command-line option.
311 // TODO: It would be better to limit the vectorization factor based on
312 // data type rather than just register size. For example, x86 AVX has
313 // 256-bit registers, but it does not support integer operations
314 // at that width (that requires AVX2).
315 if (MaxVectorRegSizeOption.getNumOccurrences())
316 MaxVecRegSize = MaxVectorRegSizeOption;
317 else
318 MaxVecRegSize = TTI->getRegisterBitWidth(true);
319
320 if (MinVectorRegSizeOption.getNumOccurrences())
321 MinVecRegSize = MinVectorRegSizeOption;
322 else
323 MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
324 }
325
326 /// \brief Vectorize the tree that starts with the elements in \p VL.
327 /// Returns the vectorized root.
328 Value *vectorizeTree();
329 /// Vectorize the tree but with the list of externally used values \p
330 /// ExternallyUsedValues. Values in this MapVector can be replaced but the
331 /// generated extractvalue instructions.
332 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
333
334 /// \returns the cost incurred by unwanted spills and fills, caused by
335 /// holding live values over call sites.
336 int getSpillCost();
337
338 /// \returns the vectorization cost of the subtree that starts at \p VL.
339 /// A negative number means that this is profitable.
340 int getTreeCost();
341
342 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
343 /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
344 void buildTree(ArrayRef<Value *> Roots,
345 ArrayRef<Value *> UserIgnoreLst = None);
346 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
347 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking
348 /// into account (anf updating it, if required) list of externally used
349 /// values stored in \p ExternallyUsedValues.
350 void buildTree(ArrayRef<Value *> Roots,
351 ExtraValueToDebugLocsMap &ExternallyUsedValues,
352 ArrayRef<Value *> UserIgnoreLst = None);
353
354 /// Clear the internal data structures that are created by 'buildTree'.
355 void deleteTree() {
356 VectorizableTree.clear();
357 ScalarToTreeEntry.clear();
358 MustGather.clear();
359 ExternalUses.clear();
360 NumLoadsWantToKeepOrder = 0;
361 NumLoadsWantToChangeOrder = 0;
362 for (auto &Iter : BlocksSchedules) {
363 BlockScheduling *BS = Iter.second.get();
364 BS->clear();
365 }
366 MinBWs.clear();
367 }
368
369 unsigned getTreeSize() const { return VectorizableTree.size(); }
370
371 /// \brief Perform LICM and CSE on the newly generated gather sequences.
372 void optimizeGatherSequence();
373
374 /// \returns true if it is beneficial to reverse the vector order.
375 bool shouldReorder() const {
376 return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder;
377 }
378
379 /// \return The vector element size in bits to use when vectorizing the
380 /// expression tree ending at \p V. If V is a store, the size is the width of
381 /// the stored value. Otherwise, the size is the width of the largest loaded
382 /// value reaching V. This method is used by the vectorizer to calculate
383 /// vectorization factors.
384 unsigned getVectorElementSize(Value *V);
385
386 /// Compute the minimum type sizes required to represent the entries in a
387 /// vectorizable tree.
388 void computeMinimumValueSizes();
389
390 // \returns maximum vector register size as set by TTI or overridden by cl::opt.
391 unsigned getMaxVecRegSize() const {
392 return MaxVecRegSize;
393 }
394
395 // \returns minimum vector register size as set by cl::opt.
396 unsigned getMinVecRegSize() const {
397 return MinVecRegSize;
398 }
399
400 /// \brief Check if ArrayType or StructType is isomorphic to some VectorType.
401 ///
402 /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
403 unsigned canMapToVector(Type *T, const DataLayout &DL) const;
404
405 /// \returns True if the VectorizableTree is both tiny and not fully
406 /// vectorizable. We do not vectorize such trees.
407 bool isTreeTinyAndNotFullyVectorizable();
408
409 OptimizationRemarkEmitter *getORE() { return ORE; }
410
411private:
412 struct TreeEntry;
413
414 /// \returns the cost of the vectorizable entry.
415 int getEntryCost(TreeEntry *E);
416
417 /// This is the recursive part of buildTree.
418 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth, int);
419
420 /// \returns True if the ExtractElement/ExtractValue instructions in VL can
421 /// be vectorized to use the original vector (or aggregate "bitcast" to a vector).
422 bool canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const;
423
424 /// Vectorize a single entry in the tree.
425 Value *vectorizeTree(TreeEntry *E);
426
427 /// Vectorize a single entry in the tree, starting in \p VL.
428 Value *vectorizeTree(ArrayRef<Value *> VL);
429
430 /// \returns the pointer to the vectorized value if \p VL is already
431 /// vectorized, or NULL. They may happen in cycles.
432 Value *alreadyVectorized(ArrayRef<Value *> VL) const;
433
434 /// \returns the scalarization cost for this type. Scalarization in this
435 /// context means the creation of vectors from a group of scalars.
436 int getGatherCost(Type *Ty);
437
438 /// \returns the scalarization cost for this list of values. Assuming that
439 /// this subtree gets vectorized, we may need to extract the values from the
440 /// roots. This method calculates the cost of extracting the values.
441 int getGatherCost(ArrayRef<Value *> VL);
442
443 /// \brief Set the Builder insert point to one after the last instruction in
444 /// the bundle
445 void setInsertPointAfterBundle(ArrayRef<Value *> VL);
446
447 /// \returns a vector from a collection of scalars in \p VL.
448 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
449
450 /// \returns whether the VectorizableTree is fully vectorizable and will
451 /// be beneficial even the tree height is tiny.
452 bool isFullyVectorizableTinyTree();
453
454 /// \reorder commutative operands in alt shuffle if they result in
455 /// vectorized code.
456 void reorderAltShuffleOperands(ArrayRef<Value *> VL,
457 SmallVectorImpl<Value *> &Left,
458 SmallVectorImpl<Value *> &Right);
459 /// \reorder commutative operands to get better probability of
460 /// generating vectorized code.
461 void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
462 SmallVectorImpl<Value *> &Left,
463 SmallVectorImpl<Value *> &Right);
464 struct TreeEntry {
465 TreeEntry(std::vector<TreeEntry> &Container)
466 : Scalars(), VectorizedValue(nullptr), NeedToGather(0),
467 Container(Container) {}
468
469 /// \returns true if the scalars in VL are equal to this entry.
470 bool isSame(ArrayRef<Value *> VL) const {
471 assert(VL.size() == Scalars.size() && "Invalid size")((VL.size() == Scalars.size() && "Invalid size") ? static_cast
<void> (0) : __assert_fail ("VL.size() == Scalars.size() && \"Invalid size\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 471, __PRETTY_FUNCTION__))
;
472 return std::equal(VL.begin(), VL.end(), Scalars.begin());
473 }
474
475 /// A vector of scalars.
476 ValueList Scalars;
477
478 /// The Scalars are vectorized into this value. It is initialized to Null.
479 Value *VectorizedValue;
480
481 /// Do we need to gather this sequence ?
482 bool NeedToGather;
483
484 /// Points back to the VectorizableTree.
485 ///
486 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has
487 /// to be a pointer and needs to be able to initialize the child iterator.
488 /// Thus we need a reference back to the container to translate the indices
489 /// to entries.
490 std::vector<TreeEntry> &Container;
491
492 /// The TreeEntry index containing the user of this entry. We can actually
493 /// have multiple users so the data structure is not truly a tree.
494 SmallVector<int, 1> UserTreeIndices;
495 };
496
497 /// Create a new VectorizableTree entry.
498 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized,
499 int &UserTreeIdx) {
500 VectorizableTree.emplace_back(VectorizableTree);
501 int idx = VectorizableTree.size() - 1;
502 TreeEntry *Last = &VectorizableTree[idx];
503 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
504 Last->NeedToGather = !Vectorized;
505 if (Vectorized) {
506 for (int i = 0, e = VL.size(); i != e; ++i) {
507 assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!")((!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!"
) ? static_cast<void> (0) : __assert_fail ("!ScalarToTreeEntry.count(VL[i]) && \"Scalar already in tree!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 507, __PRETTY_FUNCTION__))
;
508 ScalarToTreeEntry[VL[i]] = idx;
509 }
510 } else {
511 MustGather.insert(VL.begin(), VL.end());
512 }
513
514 if (UserTreeIdx >= 0)
515 Last->UserTreeIndices.push_back(UserTreeIdx);
516 UserTreeIdx = idx;
517 return Last;
518 }
519
520 /// -- Vectorization State --
521 /// Holds all of the tree entries.
522 std::vector<TreeEntry> VectorizableTree;
523
524 /// Maps a specific scalar to its tree entry.
525 SmallDenseMap<Value*, int> ScalarToTreeEntry;
526
527 /// A list of scalars that we found that we need to keep as scalars.
528 ValueSet MustGather;
529
530 /// This POD struct describes one external user in the vectorized tree.
531 struct ExternalUser {
532 ExternalUser (Value *S, llvm::User *U, int L) :
533 Scalar(S), User(U), Lane(L){}
534 // Which scalar in our function.
535 Value *Scalar;
536 // Which user that uses the scalar.
537 llvm::User *User;
538 // Which lane does the scalar belong to.
539 int Lane;
540 };
541 typedef SmallVector<ExternalUser, 16> UserList;
542
543 /// Checks if two instructions may access the same memory.
544 ///
545 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
546 /// is invariant in the calling loop.
547 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
548 Instruction *Inst2) {
549
550 // First check if the result is already in the cache.
551 AliasCacheKey key = std::make_pair(Inst1, Inst2);
552 Optional<bool> &result = AliasCache[key];
553 if (result.hasValue()) {
554 return result.getValue();
555 }
556 MemoryLocation Loc2 = getLocation(Inst2, AA);
557 bool aliased = true;
558 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
559 // Do the alias check.
560 aliased = AA->alias(Loc1, Loc2);
561 }
562 // Store the result in the cache.
563 result = aliased;
564 return aliased;
565 }
566
567 typedef std::pair<Instruction *, Instruction *> AliasCacheKey;
568
569 /// Cache for alias results.
570 /// TODO: consider moving this to the AliasAnalysis itself.
571 DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
572
573 /// Removes an instruction from its block and eventually deletes it.
574 /// It's like Instruction::eraseFromParent() except that the actual deletion
575 /// is delayed until BoUpSLP is destructed.
576 /// This is required to ensure that there are no incorrect collisions in the
577 /// AliasCache, which can happen if a new instruction is allocated at the
578 /// same address as a previously deleted instruction.
579 void eraseInstruction(Instruction *I) {
580 I->removeFromParent();
581 I->dropAllReferences();
582 DeletedInstructions.emplace_back(I);
583 }
584
585 /// Temporary store for deleted instructions. Instructions will be deleted
586 /// eventually when the BoUpSLP is destructed.
587 SmallVector<unique_value, 8> DeletedInstructions;
588
589 /// A list of values that need to extracted out of the tree.
590 /// This list holds pairs of (Internal Scalar : External User). External User
591 /// can be nullptr, it means that this Internal Scalar will be used later,
592 /// after vectorization.
593 UserList ExternalUses;
594
595 /// Values used only by @llvm.assume calls.
596 SmallPtrSet<const Value *, 32> EphValues;
597
598 /// Holds all of the instructions that we gathered.
599 SetVector<Instruction *> GatherSeq;
600 /// A list of blocks that we are going to CSE.
601 SetVector<BasicBlock *> CSEBlocks;
602
603 /// Contains all scheduling relevant data for an instruction.
604 /// A ScheduleData either represents a single instruction or a member of an
605 /// instruction bundle (= a group of instructions which is combined into a
606 /// vector instruction).
607 struct ScheduleData {
608
609 // The initial value for the dependency counters. It means that the
610 // dependencies are not calculated yet.
611 enum { InvalidDeps = -1 };
612
613 ScheduleData()
614 : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr),
615 NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0),
616 Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps),
617 UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {}
618
619 void init(int BlockSchedulingRegionID) {
620 FirstInBundle = this;
621 NextInBundle = nullptr;
622 NextLoadStore = nullptr;
623 IsScheduled = false;
624 SchedulingRegionID = BlockSchedulingRegionID;
625 UnscheduledDepsInBundle = UnscheduledDeps;
626 clearDependencies();
627 }
628
629 /// Returns true if the dependency information has been calculated.
630 bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
631
632 /// Returns true for single instructions and for bundle representatives
633 /// (= the head of a bundle).
634 bool isSchedulingEntity() const { return FirstInBundle == this; }
635
636 /// Returns true if it represents an instruction bundle and not only a
637 /// single instruction.
638 bool isPartOfBundle() const {
639 return NextInBundle != nullptr || FirstInBundle != this;
640 }
641
642 /// Returns true if it is ready for scheduling, i.e. it has no more
643 /// unscheduled depending instructions/bundles.
644 bool isReady() const {
645 assert(isSchedulingEntity() &&((isSchedulingEntity() && "can't consider non-scheduling entity for ready list"
) ? static_cast<void> (0) : __assert_fail ("isSchedulingEntity() && \"can't consider non-scheduling entity for ready list\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 646, __PRETTY_FUNCTION__))
646 "can't consider non-scheduling entity for ready list")((isSchedulingEntity() && "can't consider non-scheduling entity for ready list"
) ? static_cast<void> (0) : __assert_fail ("isSchedulingEntity() && \"can't consider non-scheduling entity for ready list\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 646, __PRETTY_FUNCTION__))
;
647 return UnscheduledDepsInBundle == 0 && !IsScheduled;
648 }
649
650 /// Modifies the number of unscheduled dependencies, also updating it for
651 /// the whole bundle.
652 int incrementUnscheduledDeps(int Incr) {
653 UnscheduledDeps += Incr;
654 return FirstInBundle->UnscheduledDepsInBundle += Incr;
655 }
656
657 /// Sets the number of unscheduled dependencies to the number of
658 /// dependencies.
659 void resetUnscheduledDeps() {
660 incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
661 }
662
663 /// Clears all dependency information.
664 void clearDependencies() {
665 Dependencies = InvalidDeps;
666 resetUnscheduledDeps();
667 MemoryDependencies.clear();
668 }
669
670 void dump(raw_ostream &os) const {
671 if (!isSchedulingEntity()) {
672 os << "/ " << *Inst;
673 } else if (NextInBundle) {
674 os << '[' << *Inst;
675 ScheduleData *SD = NextInBundle;
676 while (SD) {
677 os << ';' << *SD->Inst;
678 SD = SD->NextInBundle;
679 }
680 os << ']';
681 } else {
682 os << *Inst;
683 }
684 }
685
686 Instruction *Inst;
687
688 /// Points to the head in an instruction bundle (and always to this for
689 /// single instructions).
690 ScheduleData *FirstInBundle;
691
692 /// Single linked list of all instructions in a bundle. Null if it is a
693 /// single instruction.
694 ScheduleData *NextInBundle;
695
696 /// Single linked list of all memory instructions (e.g. load, store, call)
697 /// in the block - until the end of the scheduling region.
698 ScheduleData *NextLoadStore;
699
700 /// The dependent memory instructions.
701 /// This list is derived on demand in calculateDependencies().
702 SmallVector<ScheduleData *, 4> MemoryDependencies;
703
704 /// This ScheduleData is in the current scheduling region if this matches
705 /// the current SchedulingRegionID of BlockScheduling.
706 int SchedulingRegionID;
707
708 /// Used for getting a "good" final ordering of instructions.
709 int SchedulingPriority;
710
711 /// The number of dependencies. Constitutes of the number of users of the
712 /// instruction plus the number of dependent memory instructions (if any).
713 /// This value is calculated on demand.
714 /// If InvalidDeps, the number of dependencies is not calculated yet.
715 ///
716 int Dependencies;
717
718 /// The number of dependencies minus the number of dependencies of scheduled
719 /// instructions. As soon as this is zero, the instruction/bundle gets ready
720 /// for scheduling.
721 /// Note that this is negative as long as Dependencies is not calculated.
722 int UnscheduledDeps;
723
724 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
725 /// single instructions.
726 int UnscheduledDepsInBundle;
727
728 /// True if this instruction is scheduled (or considered as scheduled in the
729 /// dry-run).
730 bool IsScheduled;
731 };
732
733#ifndef NDEBUG
734 friend inline raw_ostream &operator<<(raw_ostream &os,
735 const BoUpSLP::ScheduleData &SD) {
736 SD.dump(os);
737 return os;
738 }
739#endif
740 friend struct GraphTraits<BoUpSLP *>;
741 friend struct DOTGraphTraits<BoUpSLP *>;
742
743 /// Contains all scheduling data for a basic block.
744 ///
745 struct BlockScheduling {
746
747 BlockScheduling(BasicBlock *BB)
748 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize),
749 ScheduleStart(nullptr), ScheduleEnd(nullptr),
750 FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr),
751 ScheduleRegionSize(0),
752 ScheduleRegionSizeLimit(ScheduleRegionSizeBudget),
753 // Make sure that the initial SchedulingRegionID is greater than the
754 // initial SchedulingRegionID in ScheduleData (which is 0).
755 SchedulingRegionID(1) {}
756
757 void clear() {
758 ReadyInsts.clear();
759 ScheduleStart = nullptr;
760 ScheduleEnd = nullptr;
761 FirstLoadStoreInRegion = nullptr;
762 LastLoadStoreInRegion = nullptr;
763
764 // Reduce the maximum schedule region size by the size of the
765 // previous scheduling run.
766 ScheduleRegionSizeLimit -= ScheduleRegionSize;
767 if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
768 ScheduleRegionSizeLimit = MinScheduleRegionSize;
769 ScheduleRegionSize = 0;
770
771 // Make a new scheduling region, i.e. all existing ScheduleData is not
772 // in the new region yet.
773 ++SchedulingRegionID;
774 }
775
776 ScheduleData *getScheduleData(Value *V) {
777 ScheduleData *SD = ScheduleDataMap[V];
778 if (SD && SD->SchedulingRegionID == SchedulingRegionID)
779 return SD;
780 return nullptr;
781 }
782
783 bool isInSchedulingRegion(ScheduleData *SD) {
784 return SD->SchedulingRegionID == SchedulingRegionID;
785 }
786
787 /// Marks an instruction as scheduled and puts all dependent ready
788 /// instructions into the ready-list.
789 template <typename ReadyListType>
790 void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
791 SD->IsScheduled = true;
792 DEBUG(dbgs() << "SLP: schedule " << *SD << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: schedule " << *SD <<
"\n"; } } while (false)
;
793
794 ScheduleData *BundleMember = SD;
795 while (BundleMember) {
796 // Handle the def-use chain dependencies.
797 for (Use &U : BundleMember->Inst->operands()) {
798 ScheduleData *OpDef = getScheduleData(U.get());
799 if (OpDef && OpDef->hasValidDependencies() &&
800 OpDef->incrementUnscheduledDeps(-1) == 0) {
801 // There are no more unscheduled dependencies after decrementing,
802 // so we can put the dependent instruction into the ready list.
803 ScheduleData *DepBundle = OpDef->FirstInBundle;
804 assert(!DepBundle->IsScheduled &&((!DepBundle->IsScheduled && "already scheduled bundle gets ready"
) ? static_cast<void> (0) : __assert_fail ("!DepBundle->IsScheduled && \"already scheduled bundle gets ready\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 805, __PRETTY_FUNCTION__))
805 "already scheduled bundle gets ready")((!DepBundle->IsScheduled && "already scheduled bundle gets ready"
) ? static_cast<void> (0) : __assert_fail ("!DepBundle->IsScheduled && \"already scheduled bundle gets ready\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 805, __PRETTY_FUNCTION__))
;
806 ReadyList.insert(DepBundle);
807 DEBUG(dbgs() << "SLP: gets ready (def): " << *DepBundle << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready (def): " <<
*DepBundle << "\n"; } } while (false)
;
808 }
809 }
810 // Handle the memory dependencies.
811 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
812 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
813 // There are no more unscheduled dependencies after decrementing,
814 // so we can put the dependent instruction into the ready list.
815 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
816 assert(!DepBundle->IsScheduled &&((!DepBundle->IsScheduled && "already scheduled bundle gets ready"
) ? static_cast<void> (0) : __assert_fail ("!DepBundle->IsScheduled && \"already scheduled bundle gets ready\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 817, __PRETTY_FUNCTION__))
817 "already scheduled bundle gets ready")((!DepBundle->IsScheduled && "already scheduled bundle gets ready"
) ? static_cast<void> (0) : __assert_fail ("!DepBundle->IsScheduled && \"already scheduled bundle gets ready\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 817, __PRETTY_FUNCTION__))
;
818 ReadyList.insert(DepBundle);
819 DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready (mem): " <<
*DepBundle << "\n"; } } while (false)
;
820 }
821 }
822 BundleMember = BundleMember->NextInBundle;
823 }
824 }
825
826 /// Put all instructions into the ReadyList which are ready for scheduling.
827 template <typename ReadyListType>
828 void initialFillReadyList(ReadyListType &ReadyList) {
829 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
830 ScheduleData *SD = getScheduleData(I);
831 if (SD->isSchedulingEntity() && SD->isReady()) {
832 ReadyList.insert(SD);
833 DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: initially in ready list: "
<< *I << "\n"; } } while (false)
;
834 }
835 }
836 }
837
838 /// Checks if a bundle of instructions can be scheduled, i.e. has no
839 /// cyclic dependencies. This is only a dry-run, no instructions are
840 /// actually moved at this stage.
841 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP);
842
843 /// Un-bundles a group of instructions.
844 void cancelScheduling(ArrayRef<Value *> VL);
845
846 /// Extends the scheduling region so that V is inside the region.
847 /// \returns true if the region size is within the limit.
848 bool extendSchedulingRegion(Value *V);
849
850 /// Initialize the ScheduleData structures for new instructions in the
851 /// scheduling region.
852 void initScheduleData(Instruction *FromI, Instruction *ToI,
853 ScheduleData *PrevLoadStore,
854 ScheduleData *NextLoadStore);
855
856 /// Updates the dependency information of a bundle and of all instructions/
857 /// bundles which depend on the original bundle.
858 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
859 BoUpSLP *SLP);
860
861 /// Sets all instruction in the scheduling region to un-scheduled.
862 void resetSchedule();
863
864 BasicBlock *BB;
865
866 /// Simple memory allocation for ScheduleData.
867 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
868
869 /// The size of a ScheduleData array in ScheduleDataChunks.
870 int ChunkSize;
871
872 /// The allocator position in the current chunk, which is the last entry
873 /// of ScheduleDataChunks.
874 int ChunkPos;
875
876 /// Attaches ScheduleData to Instruction.
877 /// Note that the mapping survives during all vectorization iterations, i.e.
878 /// ScheduleData structures are recycled.
879 DenseMap<Value *, ScheduleData *> ScheduleDataMap;
880
881 struct ReadyList : SmallVector<ScheduleData *, 8> {
882 void insert(ScheduleData *SD) { push_back(SD); }
883 };
884
885 /// The ready-list for scheduling (only used for the dry-run).
886 ReadyList ReadyInsts;
887
888 /// The first instruction of the scheduling region.
889 Instruction *ScheduleStart;
890
891 /// The first instruction _after_ the scheduling region.
892 Instruction *ScheduleEnd;
893
894 /// The first memory accessing instruction in the scheduling region
895 /// (can be null).
896 ScheduleData *FirstLoadStoreInRegion;
897
898 /// The last memory accessing instruction in the scheduling region
899 /// (can be null).
900 ScheduleData *LastLoadStoreInRegion;
901
902 /// The current size of the scheduling region.
903 int ScheduleRegionSize;
904
905 /// The maximum size allowed for the scheduling region.
906 int ScheduleRegionSizeLimit;
907
908 /// The ID of the scheduling region. For a new vectorization iteration this
909 /// is incremented which "removes" all ScheduleData from the region.
910 int SchedulingRegionID;
911 };
912
913 /// Attaches the BlockScheduling structures to basic blocks.
914 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
915
916 /// Performs the "real" scheduling. Done before vectorization is actually
917 /// performed in a basic block.
918 void scheduleBlock(BlockScheduling *BS);
919
920 /// List of users to ignore during scheduling and that don't need extracting.
921 ArrayRef<Value *> UserIgnoreList;
922
923 // Number of load bundles that contain consecutive loads.
924 int NumLoadsWantToKeepOrder;
925
926 // Number of load bundles that contain consecutive loads in reversed order.
927 int NumLoadsWantToChangeOrder;
928
929 // Analysis and block reference.
930 Function *F;
931 ScalarEvolution *SE;
932 TargetTransformInfo *TTI;
933 TargetLibraryInfo *TLI;
934 AliasAnalysis *AA;
935 LoopInfo *LI;
936 DominatorTree *DT;
937 AssumptionCache *AC;
938 DemandedBits *DB;
939 const DataLayout *DL;
940 OptimizationRemarkEmitter *ORE;
941
942 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
943 unsigned MinVecRegSize; // Set by cl::opt (default: 128).
944 /// Instruction builder to construct the vectorized tree.
945 IRBuilder<> Builder;
946
947 /// A map of scalar integer values to the smallest bit width with which they
948 /// can legally be represented. The values map to (width, signed) pairs,
949 /// where "width" indicates the minimum bit width and "signed" is True if the
950 /// value must be signed-extended, rather than zero-extended, back to its
951 /// original width.
952 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
953};
954} // end namespace slpvectorizer
955
956template <> struct GraphTraits<BoUpSLP *> {
957 typedef BoUpSLP::TreeEntry TreeEntry;
958
959 /// NodeRef has to be a pointer per the GraphWriter.
960 typedef TreeEntry *NodeRef;
961
962 /// \brief Add the VectorizableTree to the index iterator to be able to return
963 /// TreeEntry pointers.
964 struct ChildIteratorType
965 : public iterator_adaptor_base<ChildIteratorType,
966 SmallVector<int, 1>::iterator> {
967
968 std::vector<TreeEntry> &VectorizableTree;
969
970 ChildIteratorType(SmallVector<int, 1>::iterator W,
971 std::vector<TreeEntry> &VT)
972 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
973
974 NodeRef operator*() { return &VectorizableTree[*I]; }
975 };
976
977 static NodeRef getEntryNode(BoUpSLP &R) { return &R.VectorizableTree[0]; }
978
979 static ChildIteratorType child_begin(NodeRef N) {
980 return {N->UserTreeIndices.begin(), N->Container};
981 }
982 static ChildIteratorType child_end(NodeRef N) {
983 return {N->UserTreeIndices.end(), N->Container};
984 }
985
986 /// For the node iterator we just need to turn the TreeEntry iterator into a
987 /// TreeEntry* iterator so that it dereferences to NodeRef.
988 typedef pointer_iterator<std::vector<TreeEntry>::iterator> nodes_iterator;
989
990 static nodes_iterator nodes_begin(BoUpSLP *R) {
991 return nodes_iterator(R->VectorizableTree.begin());
992 }
993 static nodes_iterator nodes_end(BoUpSLP *R) {
994 return nodes_iterator(R->VectorizableTree.end());
995 }
996
997 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
998};
999
1000template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
1001 typedef BoUpSLP::TreeEntry TreeEntry;
1002
1003 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
1004
1005 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
1006 std::string Str;
1007 raw_string_ostream OS(Str);
1008 if (isSplat(Entry->Scalars)) {
1009 OS << "<splat> " << *Entry->Scalars[0];
1010 return Str;
1011 }
1012 for (auto V : Entry->Scalars) {
1013 OS << *V;
1014 if (std::any_of(
1015 R->ExternalUses.begin(), R->ExternalUses.end(),
1016 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; }))
1017 OS << " <extract>";
1018 OS << "\n";
1019 }
1020 return Str;
1021 }
1022
1023 static std::string getNodeAttributes(const TreeEntry *Entry,
1024 const BoUpSLP *) {
1025 if (Entry->NeedToGather)
1026 return "color=red";
1027 return "";
1028 }
1029};
1030
1031} // end namespace llvm
1032
1033void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
1034 ArrayRef<Value *> UserIgnoreLst) {
1035 ExtraValueToDebugLocsMap ExternallyUsedValues;
1036 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst);
1037}
1038void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
1039 ExtraValueToDebugLocsMap &ExternallyUsedValues,
1040 ArrayRef<Value *> UserIgnoreLst) {
1041 deleteTree();
1042 UserIgnoreList = UserIgnoreLst;
1043 if (!allSameType(Roots))
1044 return;
1045 buildTree_rec(Roots, 0, -1);
1046
1047 // Collect the values that we need to extract from the tree.
1048 for (TreeEntry &EIdx : VectorizableTree) {
1049 TreeEntry *Entry = &EIdx;
1050
1051 // For each lane:
1052 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
1053 Value *Scalar = Entry->Scalars[Lane];
1054
1055 // No need to handle users of gathered values.
1056 if (Entry->NeedToGather)
1057 continue;
1058
1059 // Check if the scalar is externally used as an extra arg.
1060 auto ExtI = ExternallyUsedValues.find(Scalar);
1061 if (ExtI != ExternallyUsedValues.end()) {
1062 DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane " <<do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to extract: Extra arg from lane "
<< Lane << " from " << *Scalar << ".\n"
; } } while (false)
1063 Lane << " from " << *Scalar << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to extract: Extra arg from lane "
<< Lane << " from " << *Scalar << ".\n"
; } } while (false)
;
1064 ExternalUses.emplace_back(Scalar, nullptr, Lane);
1065 continue;
1066 }
1067 for (User *U : Scalar->users()) {
1068 DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Checking user:" << *U <<
".\n"; } } while (false)
;
1069
1070 Instruction *UserInst = dyn_cast<Instruction>(U);
1071 if (!UserInst)
1072 continue;
1073
1074 // Skip in-tree scalars that become vectors
1075 if (ScalarToTreeEntry.count(U)) {
1076 int Idx = ScalarToTreeEntry[U];
1077 TreeEntry *UseEntry = &VectorizableTree[Idx];
1078 Value *UseScalar = UseEntry->Scalars[0];
1079 // Some in-tree scalars will remain as scalar in vectorized
1080 // instructions. If that is the case, the one in Lane 0 will
1081 // be used.
1082 if (UseScalar != U ||
1083 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
1084 DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *Udo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tInternal user will be removed:"
<< *U << ".\n"; } } while (false)
1085 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tInternal user will be removed:"
<< *U << ".\n"; } } while (false)
;
1086 assert(!VectorizableTree[Idx].NeedToGather && "Bad state")((!VectorizableTree[Idx].NeedToGather && "Bad state")
? static_cast<void> (0) : __assert_fail ("!VectorizableTree[Idx].NeedToGather && \"Bad state\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1086, __PRETTY_FUNCTION__))
;
1087 continue;
1088 }
1089 }
1090
1091 // Ignore users in the user ignore list.
1092 if (is_contained(UserIgnoreList, UserInst))
1093 continue;
1094
1095 DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " <<do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to extract:" << *
U << " from lane " << Lane << " from " <<
*Scalar << ".\n"; } } while (false)
1096 Lane << " from " << *Scalar << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to extract:" << *
U << " from lane " << Lane << " from " <<
*Scalar << ".\n"; } } while (false)
;
1097 ExternalUses.push_back(ExternalUser(Scalar, U, Lane));
1098 }
1099 }
1100 }
1101}
1102
1103void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
1104 int UserTreeIdx) {
1105 bool isAltShuffle = false;
1106 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!")(((allConstant(VL) || allSameType(VL)) && "Invalid types!"
) ? static_cast<void> (0) : __assert_fail ("(allConstant(VL) || allSameType(VL)) && \"Invalid types!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1106, __PRETTY_FUNCTION__))
;
1107
1108 if (Depth == RecursionMaxDepth) {
1109 DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to max recursion depth.\n"
; } } while (false)
;
1110 newTreeEntry(VL, false, UserTreeIdx);
1111 return;
1112 }
1113
1114 // Don't handle vectors.
1115 if (VL[0]->getType()->isVectorTy()) {
1116 DEBUG(dbgs() << "SLP: Gathering due to vector type.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to vector type.\n"
; } } while (false)
;
1117 newTreeEntry(VL, false, UserTreeIdx);
1118 return;
1119 }
1120
1121 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
1122 if (SI->getValueOperand()->getType()->isVectorTy()) {
1123 DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to store vector type.\n"
; } } while (false)
;
1124 newTreeEntry(VL, false, UserTreeIdx);
1125 return;
1126 }
1127 unsigned Opcode = getSameOpcode(VL);
1128
1129 // Check that this shuffle vector refers to the alternate
1130 // sequence of opcodes.
1131 if (Opcode == Instruction::ShuffleVector) {
1132 Instruction *I0 = dyn_cast<Instruction>(VL[0]);
1133 unsigned Op = I0->getOpcode();
1134 if (Op != Instruction::ShuffleVector)
1135 isAltShuffle = true;
1136 }
1137
1138 // If all of the operands are identical or constant we have a simple solution.
1139 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !Opcode) {
1140 DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to C,S,B,O. \n"
; } } while (false)
;
1141 newTreeEntry(VL, false, UserTreeIdx);
1142 return;
1143 }
1144
1145 // We now know that this is a vector of instructions of the same type from
1146 // the same block.
1147
1148 // Don't vectorize ephemeral values.
1149 for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1150 if (EphValues.count(VL[i])) {
1151 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: The instruction (" << *
VL[i] << ") is ephemeral.\n"; } } while (false)
1152 ") is ephemeral.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: The instruction (" << *
VL[i] << ") is ephemeral.\n"; } } while (false)
;
1153 newTreeEntry(VL, false, UserTreeIdx);
1154 return;
1155 }
1156 }
1157
1158 // Check if this is a duplicate of another entry.
1159 if (ScalarToTreeEntry.count(VL[0])) {
1160 int Idx = ScalarToTreeEntry[VL[0]];
1161 TreeEntry *E = &VectorizableTree[Idx];
1162 for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1163 DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tChecking bundle: " <<
*VL[i] << ".\n"; } } while (false)
;
1164 if (E->Scalars[i] != VL[i]) {
1165 DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to partial overlap.\n"
; } } while (false)
;
1166 newTreeEntry(VL, false, UserTreeIdx);
1167 return;
1168 }
1169 }
1170 // Record the reuse of the tree node. FIXME, currently this is only used to
1171 // properly draw the graph rather than for the actual vectorization.
1172 E->UserTreeIndices.push_back(UserTreeIdx);
1173 DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Perfect diamond merge at " <<
*VL[0] << ".\n"; } } while (false)
;
1174 return;
1175 }
1176
1177 // Check that none of the instructions in the bundle are already in the tree.
1178 for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1179 if (ScalarToTreeEntry.count(VL[i])) {
1180 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: The instruction (" << *
VL[i] << ") is already in tree.\n"; } } while (false)
1181 ") is already in tree.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: The instruction (" << *
VL[i] << ") is already in tree.\n"; } } while (false)
;
1182 newTreeEntry(VL, false, UserTreeIdx);
1183 return;
1184 }
1185 }
1186
1187 // If any of the scalars is marked as a value that needs to stay scalar then
1188 // we need to gather the scalars.
1189 for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1190 if (MustGather.count(VL[i])) {
1191 DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to gathered scalar.\n"
; } } while (false)
;
1192 newTreeEntry(VL, false, UserTreeIdx);
1193 return;
1194 }
1195 }
1196
1197 // Check that all of the users of the scalars that we want to vectorize are
1198 // schedulable.
1199 Instruction *VL0 = cast<Instruction>(VL[0]);
1200 BasicBlock *BB = cast<Instruction>(VL0)->getParent();
1201
1202 if (!DT->isReachableFromEntry(BB)) {
1203 // Don't go into unreachable blocks. They may contain instructions with
1204 // dependency cycles which confuse the final scheduling.
1205 DEBUG(dbgs() << "SLP: bundle in unreachable block.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: bundle in unreachable block.\n"
; } } while (false)
;
1206 newTreeEntry(VL, false, UserTreeIdx);
1207 return;
1208 }
1209
1210 // Check that every instructions appears once in this bundle.
1211 for (unsigned i = 0, e = VL.size(); i < e; ++i)
1212 for (unsigned j = i+1; j < e; ++j)
1213 if (VL[i] == VL[j]) {
1214 DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Scalar used twice in bundle.\n"
; } } while (false)
;
1215 newTreeEntry(VL, false, UserTreeIdx);
1216 return;
1217 }
1218
1219 auto &BSRef = BlocksSchedules[BB];
1220 if (!BSRef) {
1221 BSRef = llvm::make_unique<BlockScheduling>(BB);
1222 }
1223 BlockScheduling &BS = *BSRef.get();
1224
1225 if (!BS.tryScheduleBundle(VL, this)) {
1226 DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: We are not able to schedule this bundle!\n"
; } } while (false)
;
1227 assert((!BS.getScheduleData(VL[0]) ||(((!BS.getScheduleData(VL[0]) || !BS.getScheduleData(VL[0])->
isPartOfBundle()) && "tryScheduleBundle should cancelScheduling on failure"
) ? static_cast<void> (0) : __assert_fail ("(!BS.getScheduleData(VL[0]) || !BS.getScheduleData(VL[0])->isPartOfBundle()) && \"tryScheduleBundle should cancelScheduling on failure\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1229, __PRETTY_FUNCTION__))
1228 !BS.getScheduleData(VL[0])->isPartOfBundle()) &&(((!BS.getScheduleData(VL[0]) || !BS.getScheduleData(VL[0])->
isPartOfBundle()) && "tryScheduleBundle should cancelScheduling on failure"
) ? static_cast<void> (0) : __assert_fail ("(!BS.getScheduleData(VL[0]) || !BS.getScheduleData(VL[0])->isPartOfBundle()) && \"tryScheduleBundle should cancelScheduling on failure\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1229, __PRETTY_FUNCTION__))
1229 "tryScheduleBundle should cancelScheduling on failure")(((!BS.getScheduleData(VL[0]) || !BS.getScheduleData(VL[0])->
isPartOfBundle()) && "tryScheduleBundle should cancelScheduling on failure"
) ? static_cast<void> (0) : __assert_fail ("(!BS.getScheduleData(VL[0]) || !BS.getScheduleData(VL[0])->isPartOfBundle()) && \"tryScheduleBundle should cancelScheduling on failure\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1229, __PRETTY_FUNCTION__))
;
1230 newTreeEntry(VL, false, UserTreeIdx);
1231 return;
1232 }
1233 DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: We are able to schedule this bundle.\n"
; } } while (false)
;
1234
1235 switch (Opcode) {
1236 case Instruction::PHI: {
1237 PHINode *PH = dyn_cast<PHINode>(VL0);
1238
1239 // Check for terminator values (e.g. invoke).
1240 for (unsigned j = 0; j < VL.size(); ++j)
1241 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
1242 TerminatorInst *Term = dyn_cast<TerminatorInst>(
1243 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i)));
1244 if (Term) {
1245 DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"
; } } while (false)
;
1246 BS.cancelScheduling(VL);
1247 newTreeEntry(VL, false, UserTreeIdx);
1248 return;
1249 }
1250 }
1251
1252 newTreeEntry(VL, true, UserTreeIdx);
1253 DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of PHINodes.\n"
; } } while (false)
;
1254
1255 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
1256 ValueList Operands;
1257 // Prepare the operand vector.
1258 for (Value *j : VL)
1259 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock(
1260 PH->getIncomingBlock(i)));
1261
1262 buildTree_rec(Operands, Depth + 1, UserTreeIdx);
1263 }
1264 return;
1265 }
1266 case Instruction::ExtractValue:
1267 case Instruction::ExtractElement: {
1268 bool Reuse = canReuseExtract(VL, Opcode);
1269 if (Reuse) {
1270 DEBUG(dbgs() << "SLP: Reusing extract sequence.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Reusing extract sequence.\n"
; } } while (false)
;
1271 } else {
1272 BS.cancelScheduling(VL);
1273 }
1274 newTreeEntry(VL, Reuse, UserTreeIdx);
1275 return;
1276 }
1277 case Instruction::Load: {
1278 // Check that a vectorized load would load the same memory as a scalar
1279 // load.
1280 // For example we don't want vectorize loads that are smaller than 8 bit.
1281 // Even though we have a packed struct {<i2, i2, i2, i2>} LLVM treats
1282 // loading/storing it as an i8 struct. If we vectorize loads/stores from
1283 // such a struct we read/write packed bits disagreeing with the
1284 // unvectorized version.
1285 Type *ScalarTy = VL[0]->getType();
1286
1287 if (DL->getTypeSizeInBits(ScalarTy) !=
1288 DL->getTypeAllocSizeInBits(ScalarTy)) {
1289 BS.cancelScheduling(VL);
1290 newTreeEntry(VL, false, UserTreeIdx);
1291 DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering loads of non-packed type.\n"
; } } while (false)
;
1292 return;
1293 }
1294
1295 // Make sure all loads in the bundle are simple - we can't vectorize
1296 // atomic or volatile loads.
1297 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) {
1298 LoadInst *L = cast<LoadInst>(VL[i]);
1299 if (!L->isSimple()) {
1300 BS.cancelScheduling(VL);
1301 newTreeEntry(VL, false, UserTreeIdx);
1302 DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering non-simple loads.\n"
; } } while (false)
;
1303 return;
1304 }
1305 }
1306
1307 // Check if the loads are consecutive, reversed, or neither.
1308 // TODO: What we really want is to sort the loads, but for now, check
1309 // the two likely directions.
1310 bool Consecutive = true;
1311 bool ReverseConsecutive = true;
1312 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) {
1313 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) {
1314 Consecutive = false;
1315 break;
1316 } else {
1317 ReverseConsecutive = false;
1318 }
1319 }
1320
1321 if (Consecutive) {
1322 ++NumLoadsWantToKeepOrder;
1323 newTreeEntry(VL, true, UserTreeIdx);
1324 DEBUG(dbgs() << "SLP: added a vector of loads.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of loads.\n";
} } while (false)
;
1325 return;
1326 }
1327
1328 // If none of the load pairs were consecutive when checked in order,
1329 // check the reverse order.
1330 if (ReverseConsecutive)
1331 for (unsigned i = VL.size() - 1; i > 0; --i)
1332 if (!isConsecutiveAccess(VL[i], VL[i - 1], *DL, *SE)) {
1333 ReverseConsecutive = false;
1334 break;
1335 }
1336
1337 BS.cancelScheduling(VL);
1338 newTreeEntry(VL, false, UserTreeIdx);
1339
1340 if (ReverseConsecutive) {
1341 ++NumLoadsWantToChangeOrder;
1342 DEBUG(dbgs() << "SLP: Gathering reversed loads.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering reversed loads.\n"
; } } while (false)
;
1343 } else {
1344 DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering non-consecutive loads.\n"
; } } while (false)
;
1345 }
1346 return;
1347 }
1348 case Instruction::ZExt:
1349 case Instruction::SExt:
1350 case Instruction::FPToUI:
1351 case Instruction::FPToSI:
1352 case Instruction::FPExt:
1353 case Instruction::PtrToInt:
1354 case Instruction::IntToPtr:
1355 case Instruction::SIToFP:
1356 case Instruction::UIToFP:
1357 case Instruction::Trunc:
1358 case Instruction::FPTrunc:
1359 case Instruction::BitCast: {
1360 Type *SrcTy = VL0->getOperand(0)->getType();
1361 for (unsigned i = 0; i < VL.size(); ++i) {
1362 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
1363 if (Ty != SrcTy || !isValidElementType(Ty)) {
1364 BS.cancelScheduling(VL);
1365 newTreeEntry(VL, false, UserTreeIdx);
1366 DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering casts with different src types.\n"
; } } while (false)
;
1367 return;
1368 }
1369 }
1370 newTreeEntry(VL, true, UserTreeIdx);
1371 DEBUG(dbgs() << "SLP: added a vector of casts.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of casts.\n";
} } while (false)
;
1372
1373 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1374 ValueList Operands;
1375 // Prepare the operand vector.
1376 for (Value *j : VL)
1377 Operands.push_back(cast<Instruction>(j)->getOperand(i));
1378
1379 buildTree_rec(Operands, Depth + 1, UserTreeIdx);
1380 }
1381 return;
1382 }
1383 case Instruction::ICmp:
1384 case Instruction::FCmp: {
1385 // Check that all of the compares have the same predicate.
1386 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
1387 Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType();
1388 for (unsigned i = 1, e = VL.size(); i < e; ++i) {
1389 CmpInst *Cmp = cast<CmpInst>(VL[i]);
1390 if (Cmp->getPredicate() != P0 ||
1391 Cmp->getOperand(0)->getType() != ComparedTy) {
1392 BS.cancelScheduling(VL);
1393 newTreeEntry(VL, false, UserTreeIdx);
1394 DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering cmp with different predicate.\n"
; } } while (false)
;
1395 return;
1396 }
1397 }
1398
1399 newTreeEntry(VL, true, UserTreeIdx);
1400 DEBUG(dbgs() << "SLP: added a vector of compares.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of compares.\n"
; } } while (false)
;
1401
1402 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1403 ValueList Operands;
1404 // Prepare the operand vector.
1405 for (Value *j : VL)
1406 Operands.push_back(cast<Instruction>(j)->getOperand(i));
1407
1408 buildTree_rec(Operands, Depth + 1, UserTreeIdx);
1409 }
1410 return;
1411 }
1412 case Instruction::Select:
1413 case Instruction::Add:
1414 case Instruction::FAdd:
1415 case Instruction::Sub:
1416 case Instruction::FSub:
1417 case Instruction::Mul:
1418 case Instruction::FMul:
1419 case Instruction::UDiv:
1420 case Instruction::SDiv:
1421 case Instruction::FDiv:
1422 case Instruction::URem:
1423 case Instruction::SRem:
1424 case Instruction::FRem:
1425 case Instruction::Shl:
1426 case Instruction::LShr:
1427 case Instruction::AShr:
1428 case Instruction::And:
1429 case Instruction::Or:
1430 case Instruction::Xor: {
1431 newTreeEntry(VL, true, UserTreeIdx);
1432 DEBUG(dbgs() << "SLP: added a vector of bin op.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of bin op.\n"
; } } while (false)
;
1433
1434 // Sort operands of the instructions so that each side is more likely to
1435 // have the same opcode.
1436 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
1437 ValueList Left, Right;
1438 reorderInputsAccordingToOpcode(VL, Left, Right);
1439 buildTree_rec(Left, Depth + 1, UserTreeIdx);
1440 buildTree_rec(Right, Depth + 1, UserTreeIdx);
1441 return;
1442 }
1443
1444 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1445 ValueList Operands;
1446 // Prepare the operand vector.
1447 for (Value *j : VL)
1448 Operands.push_back(cast<Instruction>(j)->getOperand(i));
1449
1450 buildTree_rec(Operands, Depth + 1, UserTreeIdx);
1451 }
1452 return;
1453 }
1454 case Instruction::GetElementPtr: {
1455 // We don't combine GEPs with complicated (nested) indexing.
1456 for (unsigned j = 0; j < VL.size(); ++j) {
1457 if (cast<Instruction>(VL[j])->getNumOperands() != 2) {
1458 DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"
; } } while (false)
;
1459 BS.cancelScheduling(VL);
1460 newTreeEntry(VL, false, UserTreeIdx);
1461 return;
1462 }
1463 }
1464
1465 // We can't combine several GEPs into one vector if they operate on
1466 // different types.
1467 Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType();
1468 for (unsigned j = 0; j < VL.size(); ++j) {
1469 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType();
1470 if (Ty0 != CurTy) {
1471 DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (different types).\n"
; } } while (false)
;
1472 BS.cancelScheduling(VL);
1473 newTreeEntry(VL, false, UserTreeIdx);
1474 return;
1475 }
1476 }
1477
1478 // We don't combine GEPs with non-constant indexes.
1479 for (unsigned j = 0; j < VL.size(); ++j) {
1480 auto Op = cast<Instruction>(VL[j])->getOperand(1);
1481 if (!isa<ConstantInt>(Op)) {
1482 DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"
; } } while (false)
1483 dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"
; } } while (false)
;
1484 BS.cancelScheduling(VL);
1485 newTreeEntry(VL, false, UserTreeIdx);
1486 return;
1487 }
1488 }
1489
1490 newTreeEntry(VL, true, UserTreeIdx);
1491 DEBUG(dbgs() << "SLP: added a vector of GEPs.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of GEPs.\n"; }
} while (false)
;
1492 for (unsigned i = 0, e = 2; i < e; ++i) {
1493 ValueList Operands;
1494 // Prepare the operand vector.
1495 for (Value *j : VL)
1496 Operands.push_back(cast<Instruction>(j)->getOperand(i));
1497
1498 buildTree_rec(Operands, Depth + 1, UserTreeIdx);
1499 }
1500 return;
1501 }
1502 case Instruction::Store: {
1503 // Check if the stores are consecutive or of we need to swizzle them.
1504 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
1505 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) {
1506 BS.cancelScheduling(VL);
1507 newTreeEntry(VL, false, UserTreeIdx);
1508 DEBUG(dbgs() << "SLP: Non-consecutive store.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Non-consecutive store.\n"; }
} while (false)
;
1509 return;
1510 }
1511
1512 newTreeEntry(VL, true, UserTreeIdx);
1513 DEBUG(dbgs() << "SLP: added a vector of stores.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of stores.\n"
; } } while (false)
;
1514
1515 ValueList Operands;
1516 for (Value *j : VL)
1517 Operands.push_back(cast<Instruction>(j)->getOperand(0));
1518
1519 buildTree_rec(Operands, Depth + 1, UserTreeIdx);
1520 return;
1521 }
1522 case Instruction::Call: {
1523 // Check if the calls are all to the same vectorizable intrinsic.
1524 CallInst *CI = cast<CallInst>(VL[0]);
1525 // Check if this is an Intrinsic call or something that can be
1526 // represented by an intrinsic call
1527 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
1528 if (!isTriviallyVectorizable(ID)) {
1529 BS.cancelScheduling(VL);
1530 newTreeEntry(VL, false, UserTreeIdx);
1531 DEBUG(dbgs() << "SLP: Non-vectorizable call.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Non-vectorizable call.\n"; }
} while (false)
;
1532 return;
1533 }
1534 Function *Int = CI->getCalledFunction();
1535 Value *A1I = nullptr;
1536 if (hasVectorInstrinsicScalarOpd(ID, 1))
1537 A1I = CI->getArgOperand(1);
1538 for (unsigned i = 1, e = VL.size(); i != e; ++i) {
1539 CallInst *CI2 = dyn_cast<CallInst>(VL[i]);
1540 if (!CI2 || CI2->getCalledFunction() != Int ||
1541 getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
1542 !CI->hasIdenticalOperandBundleSchema(*CI2)) {
1543 BS.cancelScheduling(VL);
1544 newTreeEntry(VL, false, UserTreeIdx);
1545 DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i]do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched calls:" << *
CI << "!=" << *VL[i] << "\n"; } } while (false
)
1546 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched calls:" << *
CI << "!=" << *VL[i] << "\n"; } } while (false
)
;
1547 return;
1548 }
1549 // ctlz,cttz and powi are special intrinsics whose second argument
1550 // should be same in order for them to be vectorized.
1551 if (hasVectorInstrinsicScalarOpd(ID, 1)) {
1552 Value *A1J = CI2->getArgOperand(1);
1553 if (A1I != A1J) {
1554 BS.cancelScheduling(VL);
1555 newTreeEntry(VL, false, UserTreeIdx);
1556 DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CIdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched arguments in call:"
<< *CI << " argument "<< A1I<<"!=" <<
A1J << "\n"; } } while (false)
1557 << " argument "<< A1I<<"!=" << A1Jdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched arguments in call:"
<< *CI << " argument "<< A1I<<"!=" <<
A1J << "\n"; } } while (false)
1558 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched arguments in call:"
<< *CI << " argument "<< A1I<<"!=" <<
A1J << "\n"; } } while (false)
;
1559 return;
1560 }
1561 }
1562 // Verify that the bundle operands are identical between the two calls.
1563 if (CI->hasOperandBundles() &&
1564 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
1565 CI->op_begin() + CI->getBundleOperandsEndIndex(),
1566 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
1567 BS.cancelScheduling(VL);
1568 newTreeEntry(VL, false, UserTreeIdx);
1569 DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:" << *CI << "!="do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched bundle operands in calls:"
<< *CI << "!=" << *VL[i] << '\n'; } }
while (false)
1570 << *VL[i] << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched bundle operands in calls:"
<< *CI << "!=" << *VL[i] << '\n'; } }
while (false)
;
1571 return;
1572 }
1573 }
1574
1575 newTreeEntry(VL, true, UserTreeIdx);
1576 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
1577 ValueList Operands;
1578 // Prepare the operand vector.
1579 for (Value *j : VL) {
1580 CallInst *CI2 = dyn_cast<CallInst>(j);
1581 Operands.push_back(CI2->getArgOperand(i));
1582 }
1583 buildTree_rec(Operands, Depth + 1, UserTreeIdx);
1584 }
1585 return;
1586 }
1587 case Instruction::ShuffleVector: {
1588 // If this is not an alternate sequence of opcode like add-sub
1589 // then do not vectorize this instruction.
1590 if (!isAltShuffle) {
1591 BS.cancelScheduling(VL);
1592 newTreeEntry(VL, false, UserTreeIdx);
1593 DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: ShuffleVector are not vectorized.\n"
; } } while (false)
;
1594 return;
1595 }
1596 newTreeEntry(VL, true, UserTreeIdx);
1597 DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a ShuffleVector op.\n"
; } } while (false)
;
1598
1599 // Reorder operands if reordering would enable vectorization.
1600 if (isa<BinaryOperator>(VL0)) {
1601 ValueList Left, Right;
1602 reorderAltShuffleOperands(VL, Left, Right);
1603 buildTree_rec(Left, Depth + 1, UserTreeIdx);
1604 buildTree_rec(Right, Depth + 1, UserTreeIdx);
1605 return;
1606 }
1607
1608 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1609 ValueList Operands;
1610 // Prepare the operand vector.
1611 for (Value *j : VL)
1612 Operands.push_back(cast<Instruction>(j)->getOperand(i));
1613
1614 buildTree_rec(Operands, Depth + 1, UserTreeIdx);
1615 }
1616 return;
1617 }
1618 default:
1619 BS.cancelScheduling(VL);
1620 newTreeEntry(VL, false, UserTreeIdx);
1621 DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering unknown instruction.\n"
; } } while (false)
;
1622 return;
1623 }
1624}
1625
1626unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
1627 unsigned N;
1628 Type *EltTy;
1629 auto *ST = dyn_cast<StructType>(T);
1630 if (ST) {
1631 N = ST->getNumElements();
1632 EltTy = *ST->element_begin();
1633 } else {
1634 N = cast<ArrayType>(T)->getNumElements();
1635 EltTy = cast<ArrayType>(T)->getElementType();
1636 }
1637 if (!isValidElementType(EltTy))
1638 return 0;
1639 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N));
1640 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
1641 return 0;
1642 if (ST) {
1643 // Check that struct is homogeneous.
1644 for (const auto *Ty : ST->elements())
1645 if (Ty != EltTy)
1646 return 0;
1647 }
1648 return N;
1649}
1650
1651bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, unsigned Opcode) const {
1652 assert(Opcode == Instruction::ExtractElement ||((Opcode == Instruction::ExtractElement || Opcode == Instruction
::ExtractValue) ? static_cast<void> (0) : __assert_fail
("Opcode == Instruction::ExtractElement || Opcode == Instruction::ExtractValue"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1653, __PRETTY_FUNCTION__))
1653 Opcode == Instruction::ExtractValue)((Opcode == Instruction::ExtractElement || Opcode == Instruction
::ExtractValue) ? static_cast<void> (0) : __assert_fail
("Opcode == Instruction::ExtractElement || Opcode == Instruction::ExtractValue"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1653, __PRETTY_FUNCTION__))
;
1654 assert(Opcode == getSameOpcode(VL) && "Invalid opcode")((Opcode == getSameOpcode(VL) && "Invalid opcode") ? static_cast
<void> (0) : __assert_fail ("Opcode == getSameOpcode(VL) && \"Invalid opcode\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1654, __PRETTY_FUNCTION__))
;
1655 // Check if all of the extracts come from the same vector and from the
1656 // correct offset.
1657 Value *VL0 = VL[0];
1658 Instruction *E0 = cast<Instruction>(VL0);
1659 Value *Vec = E0->getOperand(0);
1660
1661 // We have to extract from a vector/aggregate with the same number of elements.
1662 unsigned NElts;
1663 if (Opcode == Instruction::ExtractValue) {
1664 const DataLayout &DL = E0->getModule()->getDataLayout();
1665 NElts = canMapToVector(Vec->getType(), DL);
1666 if (!NElts)
1667 return false;
1668 // Check if load can be rewritten as load of vector.
1669 LoadInst *LI = dyn_cast<LoadInst>(Vec);
1670 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
1671 return false;
1672 } else {
1673 NElts = Vec->getType()->getVectorNumElements();
1674 }
1675
1676 if (NElts != VL.size())
1677 return false;
1678
1679 // Check that all of the indices extract from the correct offset.
1680 if (!matchExtractIndex(E0, 0, Opcode))
1681 return false;
1682
1683 for (unsigned i = 1, e = VL.size(); i < e; ++i) {
1684 Instruction *E = cast<Instruction>(VL[i]);
1685 if (!matchExtractIndex(E, i, Opcode))
1686 return false;
1687 if (E->getOperand(0) != Vec)
1688 return false;
1689 }
1690
1691 return true;
1692}
1693
1694int BoUpSLP::getEntryCost(TreeEntry *E) {
1695 ArrayRef<Value*> VL = E->Scalars;
1696
1697 Type *ScalarTy = VL[0]->getType();
1698 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
1699 ScalarTy = SI->getValueOperand()->getType();
1700 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
1701 ScalarTy = CI->getOperand(0)->getType();
1702 VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
1703
1704 // If we have computed a smaller type for the expression, update VecTy so
1705 // that the costs will be accurate.
1706 if (MinBWs.count(VL[0]))
1707 VecTy = VectorType::get(
1708 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
1709
1710 if (E->NeedToGather) {
1711 if (allConstant(VL))
1712 return 0;
1713 if (isSplat(VL)) {
1714 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
1715 }
1716 return getGatherCost(E->Scalars);
1717 }
1718 unsigned Opcode = getSameOpcode(VL);
1719 assert(Opcode && allSameType(VL) && allSameBlock(VL) && "Invalid VL")((Opcode && allSameType(VL) && allSameBlock(VL
) && "Invalid VL") ? static_cast<void> (0) : __assert_fail
("Opcode && allSameType(VL) && allSameBlock(VL) && \"Invalid VL\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1719, __PRETTY_FUNCTION__))
;
1720 Instruction *VL0 = cast<Instruction>(VL[0]);
1721 switch (Opcode) {
1722 case Instruction::PHI: {
1723 return 0;
1724 }
1725 case Instruction::ExtractValue:
1726 case Instruction::ExtractElement: {
1727 if (canReuseExtract(VL, Opcode)) {
1728 int DeadCost = 0;
1729 for (unsigned i = 0, e = VL.size(); i < e; ++i) {
1730 Instruction *E = cast<Instruction>(VL[i]);
1731 // If all users are going to be vectorized, instruction can be
1732 // considered as dead.
1733 // The same, if have only one user, it will be vectorized for sure.
1734 if (E->hasOneUse() ||
1735 std::all_of(E->user_begin(), E->user_end(), [this](User *U) {
1736 return ScalarToTreeEntry.count(U) > 0;
1737 }))
1738 // Take credit for instruction that will become dead.
1739 DeadCost +=
1740 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);
1741 }
1742 return -DeadCost;
1743 }
1744 return getGatherCost(VecTy);
1745 }
1746 case Instruction::ZExt:
1747 case Instruction::SExt:
1748 case Instruction::FPToUI:
1749 case Instruction::FPToSI:
1750 case Instruction::FPExt:
1751 case Instruction::PtrToInt:
1752 case Instruction::IntToPtr:
1753 case Instruction::SIToFP:
1754 case Instruction::UIToFP:
1755 case Instruction::Trunc:
1756 case Instruction::FPTrunc:
1757 case Instruction::BitCast: {
1758 Type *SrcTy = VL0->getOperand(0)->getType();
1759
1760 // Calculate the cost of this instruction.
1761 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(),
1762 VL0->getType(), SrcTy, VL0);
1763
1764 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
1765 int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy, VL0);
1766 return VecCost - ScalarCost;
1767 }
1768 case Instruction::FCmp:
1769 case Instruction::ICmp:
1770 case Instruction::Select: {
1771 // Calculate the cost of this instruction.
1772 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
1773 int ScalarCost = VecTy->getNumElements() *
1774 TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty(), VL0);
1775 int VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy, VL0);
1776 return VecCost - ScalarCost;
1777 }
1778 case Instruction::Add:
1779 case Instruction::FAdd:
1780 case Instruction::Sub:
1781 case Instruction::FSub:
1782 case Instruction::Mul:
1783 case Instruction::FMul:
1784 case Instruction::UDiv:
1785 case Instruction::SDiv:
1786 case Instruction::FDiv:
1787 case Instruction::URem:
1788 case Instruction::SRem:
1789 case Instruction::FRem:
1790 case Instruction::Shl:
1791 case Instruction::LShr:
1792 case Instruction::AShr:
1793 case Instruction::And:
1794 case Instruction::Or:
1795 case Instruction::Xor: {
1796 // Certain instructions can be cheaper to vectorize if they have a
1797 // constant second vector operand.
1798 TargetTransformInfo::OperandValueKind Op1VK =
1799 TargetTransformInfo::OK_AnyValue;
1800 TargetTransformInfo::OperandValueKind Op2VK =
1801 TargetTransformInfo::OK_UniformConstantValue;
1802 TargetTransformInfo::OperandValueProperties Op1VP =
1803 TargetTransformInfo::OP_None;
1804 TargetTransformInfo::OperandValueProperties Op2VP =
1805 TargetTransformInfo::OP_None;
1806
1807 // If all operands are exactly the same ConstantInt then set the
1808 // operand kind to OK_UniformConstantValue.
1809 // If instead not all operands are constants, then set the operand kind
1810 // to OK_AnyValue. If all operands are constants but not the same,
1811 // then set the operand kind to OK_NonUniformConstantValue.
1812 ConstantInt *CInt = nullptr;
1813 for (unsigned i = 0; i < VL.size(); ++i) {
1814 const Instruction *I = cast<Instruction>(VL[i]);
1815 if (!isa<ConstantInt>(I->getOperand(1))) {
1816 Op2VK = TargetTransformInfo::OK_AnyValue;
1817 break;
1818 }
1819 if (i == 0) {
1820 CInt = cast<ConstantInt>(I->getOperand(1));
1821 continue;
1822 }
1823 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue &&
1824 CInt != cast<ConstantInt>(I->getOperand(1)))
1825 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
1826 }
1827 // FIXME: Currently cost of model modification for division by power of
1828 // 2 is handled for X86 and AArch64. Add support for other targets.
1829 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt &&
1830 CInt->getValue().isPowerOf2())
1831 Op2VP = TargetTransformInfo::OP_PowerOf2;
1832
1833 SmallVector<const Value *, 4> Operands(VL0->operand_values());
1834 int ScalarCost =
1835 VecTy->getNumElements() *
1836 TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK, Op1VP,
1837 Op2VP, Operands);
1838 int VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK,
1839 Op1VP, Op2VP, Operands);
1840 return VecCost - ScalarCost;
1841 }
1842 case Instruction::GetElementPtr: {
1843 TargetTransformInfo::OperandValueKind Op1VK =
1844 TargetTransformInfo::OK_AnyValue;
1845 TargetTransformInfo::OperandValueKind Op2VK =
1846 TargetTransformInfo::OK_UniformConstantValue;
1847
1848 int ScalarCost =
1849 VecTy->getNumElements() *
1850 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK);
1851 int VecCost =
1852 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK);
1853
1854 return VecCost - ScalarCost;
1855 }
1856 case Instruction::Load: {
1857 // Cost of wide load - cost of scalar loads.
1858 unsigned alignment = dyn_cast<LoadInst>(VL0)->getAlignment();
1859 int ScalarLdCost = VecTy->getNumElements() *
1860 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0);
1861 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load,
1862 VecTy, alignment, 0, VL0);
1863 return VecLdCost - ScalarLdCost;
1864 }
1865 case Instruction::Store: {
1866 // We know that we can merge the stores. Calculate the cost.
1867 unsigned alignment = dyn_cast<StoreInst>(VL0)->getAlignment();
1868 int ScalarStCost = VecTy->getNumElements() *
1869 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0);
1870 int VecStCost = TTI->getMemoryOpCost(Instruction::Store,
1871 VecTy, alignment, 0, VL0);
1872 return VecStCost - ScalarStCost;
1873 }
1874 case Instruction::Call: {
1875 CallInst *CI = cast<CallInst>(VL0);
1876 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
1877
1878 // Calculate the cost of the scalar and vector calls.
1879 SmallVector<Type*, 4> ScalarTys;
1880 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op)
1881 ScalarTys.push_back(CI->getArgOperand(op)->getType());
1882
1883 FastMathFlags FMF;
1884 if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
1885 FMF = FPMO->getFastMathFlags();
1886
1887 int ScalarCallCost = VecTy->getNumElements() *
1888 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF);
1889
1890 SmallVector<Value *, 4> Args(CI->arg_operands());
1891 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF,
1892 VecTy->getNumElements());
1893
1894 DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCostdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Call cost "<< VecCallCost
- ScalarCallCost << " (" << VecCallCost <<
"-" << ScalarCallCost << ")" << " for " <<
*CI << "\n"; } } while (false)
1895 << " (" << VecCallCost << "-" << ScalarCallCost << ")"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Call cost "<< VecCallCost
- ScalarCallCost << " (" << VecCallCost <<
"-" << ScalarCallCost << ")" << " for " <<
*CI << "\n"; } } while (false)
1896 << " for " << *CI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Call cost "<< VecCallCost
- ScalarCallCost << " (" << VecCallCost <<
"-" << ScalarCallCost << ")" << " for " <<
*CI << "\n"; } } while (false)
;
1897
1898 return VecCallCost - ScalarCallCost;
1899 }
1900 case Instruction::ShuffleVector: {
1901 TargetTransformInfo::OperandValueKind Op1VK =
1902 TargetTransformInfo::OK_AnyValue;
1903 TargetTransformInfo::OperandValueKind Op2VK =
1904 TargetTransformInfo::OK_AnyValue;
1905 int ScalarCost = 0;
1906 int VecCost = 0;
1907 for (Value *i : VL) {
1908 Instruction *I = cast<Instruction>(i);
1909 if (!I)
1910 break;
1911 ScalarCost +=
1912 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK);
1913 }
1914 // VecCost is equal to sum of the cost of creating 2 vectors
1915 // and the cost of creating shuffle.
1916 Instruction *I0 = cast<Instruction>(VL[0]);
1917 VecCost =
1918 TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK);
1919 Instruction *I1 = cast<Instruction>(VL[1]);
1920 VecCost +=
1921 TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK);
1922 VecCost +=
1923 TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0);
1924 return VecCost - ScalarCost;
1925 }
1926 default:
1927 llvm_unreachable("Unknown instruction")::llvm::llvm_unreachable_internal("Unknown instruction", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1927)
;
1928 }
1929}
1930
1931bool BoUpSLP::isFullyVectorizableTinyTree() {
1932 DEBUG(dbgs() << "SLP: Check whether the tree with height " <<do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Check whether the tree with height "
<< VectorizableTree.size() << " is fully vectorizable .\n"
; } } while (false)
1933 VectorizableTree.size() << " is fully vectorizable .\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Check whether the tree with height "
<< VectorizableTree.size() << " is fully vectorizable .\n"
; } } while (false)
;
1934
1935 // We only handle trees of heights 1 and 2.
1936 if (VectorizableTree.size() == 1 && !VectorizableTree[0].NeedToGather)
1937 return true;
1938
1939 if (VectorizableTree.size() != 2)
1940 return false;
1941
1942 // Handle splat and all-constants stores.
1943 if (!VectorizableTree[0].NeedToGather &&
1944 (allConstant(VectorizableTree[1].Scalars) ||
1945 isSplat(VectorizableTree[1].Scalars)))
1946 return true;
1947
1948 // Gathering cost would be too much for tiny trees.
1949 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather)
1950 return false;
1951
1952 return true;
1953}
1954
1955bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() {
1956
1957 // We can vectorize the tree if its size is greater than or equal to the
1958 // minimum size specified by the MinTreeSize command line option.
1959 if (VectorizableTree.size() >= MinTreeSize)
1960 return false;
1961
1962 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
1963 // can vectorize it if we can prove it fully vectorizable.
1964 if (isFullyVectorizableTinyTree())
1965 return false;
1966
1967 assert(VectorizableTree.empty()((VectorizableTree.empty() ? ExternalUses.empty() : true &&
"We shouldn't have any external users") ? static_cast<void
> (0) : __assert_fail ("VectorizableTree.empty() ? ExternalUses.empty() : true && \"We shouldn't have any external users\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1969, __PRETTY_FUNCTION__))
1968 ? ExternalUses.empty()((VectorizableTree.empty() ? ExternalUses.empty() : true &&
"We shouldn't have any external users") ? static_cast<void
> (0) : __assert_fail ("VectorizableTree.empty() ? ExternalUses.empty() : true && \"We shouldn't have any external users\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1969, __PRETTY_FUNCTION__))
1969 : true && "We shouldn't have any external users")((VectorizableTree.empty() ? ExternalUses.empty() : true &&
"We shouldn't have any external users") ? static_cast<void
> (0) : __assert_fail ("VectorizableTree.empty() ? ExternalUses.empty() : true && \"We shouldn't have any external users\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1969, __PRETTY_FUNCTION__))
;
1970
1971 // Otherwise, we can't vectorize the tree. It is both tiny and not fully
1972 // vectorizable.
1973 return true;
1974}
1975
1976int BoUpSLP::getSpillCost() {
1977 // Walk from the bottom of the tree to the top, tracking which values are
1978 // live. When we see a call instruction that is not part of our tree,
1979 // query TTI to see if there is a cost to keeping values live over it
1980 // (for example, if spills and fills are required).
1981 unsigned BundleWidth = VectorizableTree.front().Scalars.size();
1982 int Cost = 0;
1983
1984 SmallPtrSet<Instruction*, 4> LiveValues;
1985 Instruction *PrevInst = nullptr;
1986
1987 for (const auto &N : VectorizableTree) {
1988 Instruction *Inst = dyn_cast<Instruction>(N.Scalars[0]);
1989 if (!Inst)
1990 continue;
1991
1992 if (!PrevInst) {
1993 PrevInst = Inst;
1994 continue;
1995 }
1996
1997 // Update LiveValues.
1998 LiveValues.erase(PrevInst);
1999 for (auto &J : PrevInst->operands()) {
2000 if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J))
2001 LiveValues.insert(cast<Instruction>(&*J));
2002 }
2003
2004 DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: #LV: " << LiveValues.size
(); for (auto *X : LiveValues) dbgs() << " " << X
->getName(); dbgs() << ", Looking at "; Inst->dump
();; } } while (false)
2005 dbgs() << "SLP: #LV: " << LiveValues.size();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: #LV: " << LiveValues.size
(); for (auto *X : LiveValues) dbgs() << " " << X
->getName(); dbgs() << ", Looking at "; Inst->dump
();; } } while (false)
2006 for (auto *X : LiveValues)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: #LV: " << LiveValues.size
(); for (auto *X : LiveValues) dbgs() << " " << X
->getName(); dbgs() << ", Looking at "; Inst->dump
();; } } while (false)
2007 dbgs() << " " << X->getName();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: #LV: " << LiveValues.size
(); for (auto *X : LiveValues) dbgs() << " " << X
->getName(); dbgs() << ", Looking at "; Inst->dump
();; } } while (false)
2008 dbgs() << ", Looking at ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: #LV: " << LiveValues.size
(); for (auto *X : LiveValues) dbgs() << " " << X
->getName(); dbgs() << ", Looking at "; Inst->dump
();; } } while (false)
2009 Inst->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: #LV: " << LiveValues.size
(); for (auto *X : LiveValues) dbgs() << " " << X
->getName(); dbgs() << ", Looking at "; Inst->dump
();; } } while (false)
2010 )do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: #LV: " << LiveValues.size
(); for (auto *X : LiveValues) dbgs() << " " << X
->getName(); dbgs() << ", Looking at "; Inst->dump
();; } } while (false)
;
2011
2012 // Now find the sequence of instructions between PrevInst and Inst.
2013 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
2014 PrevInstIt =
2015 PrevInst->getIterator().getReverse();
2016 while (InstIt != PrevInstIt) {
2017 if (PrevInstIt == PrevInst->getParent()->rend()) {
2018 PrevInstIt = Inst->getParent()->rbegin();
2019 continue;
2020 }
2021
2022 if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) {
2023 SmallVector<Type*, 4> V;
2024 for (auto *II : LiveValues)
2025 V.push_back(VectorType::get(II->getType(), BundleWidth));
2026 Cost += TTI->getCostOfKeepingLiveOverCall(V);
2027 }
2028
2029 ++PrevInstIt;
2030 }
2031
2032 PrevInst = Inst;
2033 }
2034
2035 return Cost;
2036}
2037
2038int BoUpSLP::getTreeCost() {
2039 int Cost = 0;
2040 DEBUG(dbgs() << "SLP: Calculating cost for tree of size " <<do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Calculating cost for tree of size "
<< VectorizableTree.size() << ".\n"; } } while (
false)
2041 VectorizableTree.size() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Calculating cost for tree of size "
<< VectorizableTree.size() << ".\n"; } } while (
false)
;
2042
2043 unsigned BundleWidth = VectorizableTree[0].Scalars.size();
2044
2045 for (TreeEntry &TE : VectorizableTree) {
2046 int C = getEntryCost(&TE);
2047 DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for bundle that starts with " << *TE.Scalars[0] <<
".\n"; } } while (false)
2048 << *TE.Scalars[0] << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for bundle that starts with " << *TE.Scalars[0] <<
".\n"; } } while (false)
;
2049 Cost += C;
2050 }
2051
2052 SmallSet<Value *, 16> ExtractCostCalculated;
2053 int ExtractCost = 0;
2054 for (ExternalUser &EU : ExternalUses) {
2055 // We only add extract cost once for the same scalar.
2056 if (!ExtractCostCalculated.insert(EU.Scalar).second)
2057 continue;
2058
2059 // Uses by ephemeral values are free (because the ephemeral value will be
2060 // removed prior to code generation, and so the extraction will be
2061 // removed as well).
2062 if (EphValues.count(EU.User))
2063 continue;
2064
2065 // If we plan to rewrite the tree in a smaller type, we will need to sign
2066 // extend the extracted value back to the original type. Here, we account
2067 // for the extract and the added cost of the sign extend if needed.
2068 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth);
2069 auto *ScalarRoot = VectorizableTree[0].Scalars[0];
2070 if (MinBWs.count(ScalarRoot)) {
2071 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
2072 auto Extend =
2073 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
2074 VecTy = VectorType::get(MinTy, BundleWidth);
2075 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
2076 VecTy, EU.Lane);
2077 } else {
2078 ExtractCost +=
2079 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
2080 }
2081 }
2082
2083 int SpillCost = getSpillCost();
2084 Cost += SpillCost + ExtractCost;
2085
2086 std::string Str;
2087 {
2088 raw_string_ostream OS(Str);
2089 OS << "SLP: Spill Cost = " << SpillCost << ".\n"
2090 << "SLP: Extract Cost = " << ExtractCost << ".\n"
2091 << "SLP: Total Cost = " << Cost << ".\n";
2092 }
2093 DEBUG(dbgs() << Str)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << Str; } } while (false)
;
2094
2095 if (ViewSLPTree)
2096 ViewGraph(this, "SLP" + F->getName(), false, Str);
2097
2098 return Cost;
2099}
2100
2101int BoUpSLP::getGatherCost(Type *Ty) {
2102 int Cost = 0;
2103 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
2104 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
2105 return Cost;
2106}
2107
2108int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) {
2109 // Find the type of the operands in VL.
2110 Type *ScalarTy = VL[0]->getType();
2111 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
2112 ScalarTy = SI->getValueOperand()->getType();
2113 VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
2114 // Find the cost of inserting/extracting values from the vector.
2115 return getGatherCost(VecTy);
2116}
2117
2118// Reorder commutative operations in alternate shuffle if the resulting vectors
2119// are consecutive loads. This would allow us to vectorize the tree.
2120// If we have something like-
2121// load a[0] - load b[0]
2122// load b[1] + load a[1]
2123// load a[2] - load b[2]
2124// load a[3] + load b[3]
2125// Reordering the second load b[1] load a[1] would allow us to vectorize this
2126// code.
2127void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL,
2128 SmallVectorImpl<Value *> &Left,
2129 SmallVectorImpl<Value *> &Right) {
2130 // Push left and right operands of binary operation into Left and Right
2131 for (Value *i : VL) {
2132 Left.push_back(cast<Instruction>(i)->getOperand(0));
2133 Right.push_back(cast<Instruction>(i)->getOperand(1));
2134 }
2135
2136 // Reorder if we have a commutative operation and consecutive access
2137 // are on either side of the alternate instructions.
2138 for (unsigned j = 0; j < VL.size() - 1; ++j) {
2139 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) {
2140 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
2141 Instruction *VL1 = cast<Instruction>(VL[j]);
2142 Instruction *VL2 = cast<Instruction>(VL[j + 1]);
2143 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) {
2144 std::swap(Left[j], Right[j]);
2145 continue;
2146 } else if (VL2->isCommutative() &&
2147 isConsecutiveAccess(L, L1, *DL, *SE)) {
2148 std::swap(Left[j + 1], Right[j + 1]);
2149 continue;
2150 }
2151 // else unchanged
2152 }
2153 }
2154 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) {
2155 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
2156 Instruction *VL1 = cast<Instruction>(VL[j]);
2157 Instruction *VL2 = cast<Instruction>(VL[j + 1]);
2158 if (VL1->isCommutative() && isConsecutiveAccess(L, L1, *DL, *SE)) {
2159 std::swap(Left[j], Right[j]);
2160 continue;
2161 } else if (VL2->isCommutative() &&
2162 isConsecutiveAccess(L, L1, *DL, *SE)) {
2163 std::swap(Left[j + 1], Right[j + 1]);
2164 continue;
2165 }
2166 // else unchanged
2167 }
2168 }
2169 }
2170}
2171
2172// Return true if I should be commuted before adding it's left and right
2173// operands to the arrays Left and Right.
2174//
2175// The vectorizer is trying to either have all elements one side being
2176// instruction with the same opcode to enable further vectorization, or having
2177// a splat to lower the vectorizing cost.
2178static bool shouldReorderOperands(int i, Instruction &I,
2179 SmallVectorImpl<Value *> &Left,
2180 SmallVectorImpl<Value *> &Right,
2181 bool AllSameOpcodeLeft,
2182 bool AllSameOpcodeRight, bool SplatLeft,
2183 bool SplatRight) {
2184 Value *VLeft = I.getOperand(0);
2185 Value *VRight = I.getOperand(1);
2186 // If we have "SplatRight", try to see if commuting is needed to preserve it.
2187 if (SplatRight) {
2188 if (VRight == Right[i - 1])
2189 // Preserve SplatRight
2190 return false;
2191 if (VLeft == Right[i - 1]) {
2192 // Commuting would preserve SplatRight, but we don't want to break
2193 // SplatLeft either, i.e. preserve the original order if possible.
2194 // (FIXME: why do we care?)
2195 if (SplatLeft && VLeft == Left[i - 1])
2196 return false;
2197 return true;
2198 }
2199 }
2200 // Symmetrically handle Right side.
2201 if (SplatLeft) {
2202 if (VLeft == Left[i - 1])
2203 // Preserve SplatLeft
2204 return false;
2205 if (VRight == Left[i - 1])
2206 return true;
2207 }
2208
2209 Instruction *ILeft = dyn_cast<Instruction>(VLeft);
2210 Instruction *IRight = dyn_cast<Instruction>(VRight);
2211
2212 // If we have "AllSameOpcodeRight", try to see if the left operands preserves
2213 // it and not the right, in this case we want to commute.
2214 if (AllSameOpcodeRight) {
2215 unsigned RightPrevOpcode = cast<Instruction>(Right[i - 1])->getOpcode();
2216 if (IRight && RightPrevOpcode == IRight->getOpcode())
2217 // Do not commute, a match on the right preserves AllSameOpcodeRight
2218 return false;
2219 if (ILeft && RightPrevOpcode == ILeft->getOpcode()) {
2220 // We have a match and may want to commute, but first check if there is
2221 // not also a match on the existing operands on the Left to preserve
2222 // AllSameOpcodeLeft, i.e. preserve the original order if possible.
2223 // (FIXME: why do we care?)
2224 if (AllSameOpcodeLeft && ILeft &&
2225 cast<Instruction>(Left[i - 1])->getOpcode() == ILeft->getOpcode())
2226 return false;
2227 return true;
2228 }
2229 }
2230 // Symmetrically handle Left side.
2231 if (AllSameOpcodeLeft) {
2232 unsigned LeftPrevOpcode = cast<Instruction>(Left[i - 1])->getOpcode();
2233 if (ILeft && LeftPrevOpcode == ILeft->getOpcode())
2234 return false;
2235 if (IRight && LeftPrevOpcode == IRight->getOpcode())
2236 return true;
2237 }
2238 return false;
2239}
2240
2241void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
2242 SmallVectorImpl<Value *> &Left,
2243 SmallVectorImpl<Value *> &Right) {
2244
2245 if (VL.size()) {
2246 // Peel the first iteration out of the loop since there's nothing
2247 // interesting to do anyway and it simplifies the checks in the loop.
2248 auto VLeft = cast<Instruction>(VL[0])->getOperand(0);
2249 auto VRight = cast<Instruction>(VL[0])->getOperand(1);
2250 if (!isa<Instruction>(VRight) && isa<Instruction>(VLeft))
2251 // Favor having instruction to the right. FIXME: why?
2252 std::swap(VLeft, VRight);
2253 Left.push_back(VLeft);
2254 Right.push_back(VRight);
2255 }
2256
2257 // Keep track if we have instructions with all the same opcode on one side.
2258 bool AllSameOpcodeLeft = isa<Instruction>(Left[0]);
2259 bool AllSameOpcodeRight = isa<Instruction>(Right[0]);
2260 // Keep track if we have one side with all the same value (broadcast).
2261 bool SplatLeft = true;
2262 bool SplatRight = true;
2263
2264 for (unsigned i = 1, e = VL.size(); i != e; ++i) {
2265 Instruction *I = cast<Instruction>(VL[i]);
2266 assert(I->isCommutative() && "Can only process commutative instruction")((I->isCommutative() && "Can only process commutative instruction"
) ? static_cast<void> (0) : __assert_fail ("I->isCommutative() && \"Can only process commutative instruction\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2266, __PRETTY_FUNCTION__))
;
2267 // Commute to favor either a splat or maximizing having the same opcodes on
2268 // one side.
2269 if (shouldReorderOperands(i, *I, Left, Right, AllSameOpcodeLeft,
2270 AllSameOpcodeRight, SplatLeft, SplatRight)) {
2271 Left.push_back(I->getOperand(1));
2272 Right.push_back(I->getOperand(0));
2273 } else {
2274 Left.push_back(I->getOperand(0));
2275 Right.push_back(I->getOperand(1));
2276 }
2277 // Update Splat* and AllSameOpcode* after the insertion.
2278 SplatRight = SplatRight && (Right[i - 1] == Right[i]);
2279 SplatLeft = SplatLeft && (Left[i - 1] == Left[i]);
2280 AllSameOpcodeLeft = AllSameOpcodeLeft && isa<Instruction>(Left[i]) &&
2281 (cast<Instruction>(Left[i - 1])->getOpcode() ==
2282 cast<Instruction>(Left[i])->getOpcode());
2283 AllSameOpcodeRight = AllSameOpcodeRight && isa<Instruction>(Right[i]) &&
2284 (cast<Instruction>(Right[i - 1])->getOpcode() ==
2285 cast<Instruction>(Right[i])->getOpcode());
2286 }
2287
2288 // If one operand end up being broadcast, return this operand order.
2289 if (SplatRight || SplatLeft)
2290 return;
2291
2292 // Finally check if we can get longer vectorizable chain by reordering
2293 // without breaking the good operand order detected above.
2294 // E.g. If we have something like-
2295 // load a[0] load b[0]
2296 // load b[1] load a[1]
2297 // load a[2] load b[2]
2298 // load a[3] load b[3]
2299 // Reordering the second load b[1] load a[1] would allow us to vectorize
2300 // this code and we still retain AllSameOpcode property.
2301 // FIXME: This load reordering might break AllSameOpcode in some rare cases
2302 // such as-
2303 // add a[0],c[0] load b[0]
2304 // add a[1],c[2] load b[1]
2305 // b[2] load b[2]
2306 // add a[3],c[3] load b[3]
2307 for (unsigned j = 0; j < VL.size() - 1; ++j) {
2308 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) {
2309 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
2310 if (isConsecutiveAccess(L, L1, *DL, *SE)) {
2311 std::swap(Left[j + 1], Right[j + 1]);
2312 continue;
2313 }
2314 }
2315 }
2316 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) {
2317 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
2318 if (isConsecutiveAccess(L, L1, *DL, *SE)) {
2319 std::swap(Left[j + 1], Right[j + 1]);
2320 continue;
2321 }
2322 }
2323 }
2324 // else unchanged
2325 }
2326}
2327
2328void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) {
2329
2330 // Get the basic block this bundle is in. All instructions in the bundle
2331 // should be in this block.
2332 auto *Front = cast<Instruction>(VL.front());
2333 auto *BB = Front->getParent();
2334 assert(all_of(make_range(VL.begin(), VL.end()), [&](Value *V) -> bool {((all_of(make_range(VL.begin(), VL.end()), [&](Value *V) ->
bool { return cast<Instruction>(V)->getParent() == BB
; })) ? static_cast<void> (0) : __assert_fail ("all_of(make_range(VL.begin(), VL.end()), [&](Value *V) -> bool { return cast<Instruction>(V)->getParent() == BB; })"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2336, __PRETTY_FUNCTION__))
2335 return cast<Instruction>(V)->getParent() == BB;((all_of(make_range(VL.begin(), VL.end()), [&](Value *V) ->
bool { return cast<Instruction>(V)->getParent() == BB
; })) ? static_cast<void> (0) : __assert_fail ("all_of(make_range(VL.begin(), VL.end()), [&](Value *V) -> bool { return cast<Instruction>(V)->getParent() == BB; })"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2336, __PRETTY_FUNCTION__))
2336 }))((all_of(make_range(VL.begin(), VL.end()), [&](Value *V) ->
bool { return cast<Instruction>(V)->getParent() == BB
; })) ? static_cast<void> (0) : __assert_fail ("all_of(make_range(VL.begin(), VL.end()), [&](Value *V) -> bool { return cast<Instruction>(V)->getParent() == BB; })"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2336, __PRETTY_FUNCTION__))
;
2337
2338 // The last instruction in the bundle in program order.
2339 Instruction *LastInst = nullptr;
8
'LastInst' initialized to a null pointer value
2340
2341 // Find the last instruction. The common case should be that BB has been
2342 // scheduled, and the last instruction is VL.back(). So we start with
2343 // VL.back() and iterate over schedule data until we reach the end of the
2344 // bundle. The end of the bundle is marked by null ScheduleData.
2345 if (BlocksSchedules.count(BB)) {
9
Assuming the condition is false
10
Taking false branch
2346 auto *Bundle = BlocksSchedules[BB]->getScheduleData(VL.back());
2347 if (Bundle && Bundle->isPartOfBundle())
2348 for (; Bundle; Bundle = Bundle->NextInBundle)
2349 LastInst = Bundle->Inst;
2350 }
2351
2352 // LastInst can still be null at this point if there's either not an entry
2353 // for BB in BlocksSchedules or there's no ScheduleData available for
2354 // VL.back(). This can be the case if buildTree_rec aborts for various
2355 // reasons (e.g., the maximum recursion depth is reached, the maximum region
2356 // size is reached, etc.). ScheduleData is initialized in the scheduling
2357 // "dry-run".
2358 //
2359 // If this happens, we can still find the last instruction by brute force. We
2360 // iterate forwards from Front (inclusive) until we either see all
2361 // instructions in the bundle or reach the end of the block. If Front is the
2362 // last instruction in program order, LastInst will be set to Front, and we
2363 // will visit all the remaining instructions in the block.
2364 //
2365 // One of the reasons we exit early from buildTree_rec is to place an upper
2366 // bound on compile-time. Thus, taking an additional compile-time hit here is
2367 // not ideal. However, this should be exceedingly rare since it requires that
2368 // we both exit early from buildTree_rec and that the bundle be out-of-order
2369 // (causing us to iterate all the way to the end of the block).
2370 if (!LastInst) {
11
Taking true branch
2371 SmallPtrSet<Value *, 16> Bundle(VL.begin(), VL.end());
2372 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
2373 if (Bundle.erase(&I))
2374 LastInst = &I;
2375 if (Bundle.empty())
2376 break;
2377 }
2378 }
2379
2380 // Set the insertion point after the last instruction in the bundle. Set the
2381 // debug location to Front.
2382 Builder.SetInsertPoint(BB, ++LastInst->getIterator());
12
Called C++ object pointer is null
2383 Builder.SetCurrentDebugLocation(Front->getDebugLoc());
2384}
2385
2386Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
2387 Value *Vec = UndefValue::get(Ty);
2388 // Generate the 'InsertElement' instruction.
2389 for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
2390 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
2391 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
2392 GatherSeq.insert(Insrt);
2393 CSEBlocks.insert(Insrt->getParent());
2394
2395 // Add to our 'need-to-extract' list.
2396 if (ScalarToTreeEntry.count(VL[i])) {
2397 int Idx = ScalarToTreeEntry[VL[i]];
2398 TreeEntry *E = &VectorizableTree[Idx];
2399 // Find which lane we need to extract.
2400 int FoundLane = -1;
2401 for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) {
2402 // Is this the lane of the scalar that we are looking for ?
2403 if (E->Scalars[Lane] == VL[i]) {
2404 FoundLane = Lane;
2405 break;
2406 }
2407 }
2408 assert(FoundLane >= 0 && "Could not find the correct lane")((FoundLane >= 0 && "Could not find the correct lane"
) ? static_cast<void> (0) : __assert_fail ("FoundLane >= 0 && \"Could not find the correct lane\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2408, __PRETTY_FUNCTION__))
;
2409 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
2410 }
2411 }
2412 }
2413
2414 return Vec;
2415}
2416
2417Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const {
2418 SmallDenseMap<Value*, int>::const_iterator Entry
2419 = ScalarToTreeEntry.find(VL[0]);
2420 if (Entry != ScalarToTreeEntry.end()) {
2421 int Idx = Entry->second;
2422 const TreeEntry *En = &VectorizableTree[Idx];
2423 if (En->isSame(VL) && En->VectorizedValue)
2424 return En->VectorizedValue;
2425 }
2426 return nullptr;
2427}
2428
2429Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
2430 if (ScalarToTreeEntry.count(VL[0])) {
2431 int Idx = ScalarToTreeEntry[VL[0]];
2432 TreeEntry *E = &VectorizableTree[Idx];
2433 if (E->isSame(VL))
2434 return vectorizeTree(E);
2435 }
2436
2437 Type *ScalarTy = VL[0]->getType();
2438 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
2439 ScalarTy = SI->getValueOperand()->getType();
2440 VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
2441
2442 return Gather(VL, VecTy);
2443}
2444
2445Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
2446 IRBuilder<>::InsertPointGuard Guard(Builder);
2447
2448 if (E->VectorizedValue) {
1
Assuming the condition is false
2
Taking false branch
2449 DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*E->Scalars[0] << ".\n"; } } while (false)
;
2450 return E->VectorizedValue;
2451 }
2452
2453 Instruction *VL0 = cast<Instruction>(E->Scalars[0]);
2454 Type *ScalarTy = VL0->getType();
2455 if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
3
Taking false branch
2456 ScalarTy = SI->getValueOperand()->getType();
2457 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
2458
2459 if (E->NeedToGather) {
4
Assuming the condition is false
5
Taking false branch
2460 setInsertPointAfterBundle(E->Scalars);
2461 auto *V = Gather(E->Scalars, VecTy);
2462 E->VectorizedValue = V;
2463 return V;
2464 }
2465
2466 unsigned Opcode = getSameOpcode(E->Scalars);
2467
2468 switch (Opcode) {
6
Control jumps to 'case ShuffleVector:' at line 2794
2469 case Instruction::PHI: {
2470 PHINode *PH = dyn_cast<PHINode>(VL0);
2471 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
2472 Builder.SetCurrentDebugLocation(PH->getDebugLoc());
2473 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
2474 E->VectorizedValue = NewPhi;
2475
2476 // PHINodes may have multiple entries from the same block. We want to
2477 // visit every block once.
2478 SmallSet<BasicBlock*, 4> VisitedBBs;
2479
2480 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
2481 ValueList Operands;
2482 BasicBlock *IBB = PH->getIncomingBlock(i);
2483
2484 if (!VisitedBBs.insert(IBB).second) {
2485 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
2486 continue;
2487 }
2488
2489 // Prepare the operand vector.
2490 for (Value *V : E->Scalars)
2491 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB));
2492
2493 Builder.SetInsertPoint(IBB->getTerminator());
2494 Builder.SetCurrentDebugLocation(PH->getDebugLoc());
2495 Value *Vec = vectorizeTree(Operands);
2496 NewPhi->addIncoming(Vec, IBB);
2497 }
2498
2499 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&((NewPhi->getNumIncomingValues() == PH->getNumIncomingValues
() && "Invalid number of incoming values") ? static_cast
<void> (0) : __assert_fail ("NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && \"Invalid number of incoming values\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2500, __PRETTY_FUNCTION__))
2500 "Invalid number of incoming values")((NewPhi->getNumIncomingValues() == PH->getNumIncomingValues
() && "Invalid number of incoming values") ? static_cast
<void> (0) : __assert_fail ("NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && \"Invalid number of incoming values\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2500, __PRETTY_FUNCTION__))
;
2501 return NewPhi;
2502 }
2503
2504 case Instruction::ExtractElement: {
2505 if (canReuseExtract(E->Scalars, Instruction::ExtractElement)) {
2506 Value *V = VL0->getOperand(0);
2507 E->VectorizedValue = V;
2508 return V;
2509 }
2510 setInsertPointAfterBundle(E->Scalars);
2511 auto *V = Gather(E->Scalars, VecTy);
2512 E->VectorizedValue = V;
2513 return V;
2514 }
2515 case Instruction::ExtractValue: {
2516 if (canReuseExtract(E->Scalars, Instruction::ExtractValue)) {
2517 LoadInst *LI = cast<LoadInst>(VL0->getOperand(0));
2518 Builder.SetInsertPoint(LI);
2519 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
2520 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
2521 LoadInst *V = Builder.CreateAlignedLoad(Ptr, LI->getAlignment());
2522 E->VectorizedValue = V;
2523 return propagateMetadata(V, E->Scalars);
2524 }
2525 setInsertPointAfterBundle(E->Scalars);
2526 auto *V = Gather(E->Scalars, VecTy);
2527 E->VectorizedValue = V;
2528 return V;
2529 }
2530 case Instruction::ZExt:
2531 case Instruction::SExt:
2532 case Instruction::FPToUI:
2533 case Instruction::FPToSI:
2534 case Instruction::FPExt:
2535 case Instruction::PtrToInt:
2536 case Instruction::IntToPtr:
2537 case Instruction::SIToFP:
2538 case Instruction::UIToFP:
2539 case Instruction::Trunc:
2540 case Instruction::FPTrunc:
2541 case Instruction::BitCast: {
2542 ValueList INVL;
2543 for (Value *V : E->Scalars)
2544 INVL.push_back(cast<Instruction>(V)->getOperand(0));
2545
2546 setInsertPointAfterBundle(E->Scalars);
2547
2548 Value *InVec = vectorizeTree(INVL);
2549
2550 if (Value *V = alreadyVectorized(E->Scalars))
2551 return V;
2552
2553 CastInst *CI = dyn_cast<CastInst>(VL0);
2554 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
2555 E->VectorizedValue = V;
2556 ++NumVectorInstructions;
2557 return V;
2558 }
2559 case Instruction::FCmp:
2560 case Instruction::ICmp: {
2561 ValueList LHSV, RHSV;
2562 for (Value *V : E->Scalars) {
2563 LHSV.push_back(cast<Instruction>(V)->getOperand(0));
2564 RHSV.push_back(cast<Instruction>(V)->getOperand(1));
2565 }
2566
2567 setInsertPointAfterBundle(E->Scalars);
2568
2569 Value *L = vectorizeTree(LHSV);
2570 Value *R = vectorizeTree(RHSV);
2571
2572 if (Value *V = alreadyVectorized(E->Scalars))
2573 return V;
2574
2575 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
2576 Value *V;
2577 if (Opcode == Instruction::FCmp)
2578 V = Builder.CreateFCmp(P0, L, R);
2579 else
2580 V = Builder.CreateICmp(P0, L, R);
2581
2582 E->VectorizedValue = V;
2583 propagateIRFlags(E->VectorizedValue, E->Scalars);
2584 ++NumVectorInstructions;
2585 return V;
2586 }
2587 case Instruction::Select: {
2588 ValueList TrueVec, FalseVec, CondVec;
2589 for (Value *V : E->Scalars) {
2590 CondVec.push_back(cast<Instruction>(V)->getOperand(0));
2591 TrueVec.push_back(cast<Instruction>(V)->getOperand(1));
2592 FalseVec.push_back(cast<Instruction>(V)->getOperand(2));
2593 }
2594
2595 setInsertPointAfterBundle(E->Scalars);
2596
2597 Value *Cond = vectorizeTree(CondVec);
2598 Value *True = vectorizeTree(TrueVec);
2599 Value *False = vectorizeTree(FalseVec);
2600
2601 if (Value *V = alreadyVectorized(E->Scalars))
2602 return V;
2603
2604 Value *V = Builder.CreateSelect(Cond, True, False);
2605 E->VectorizedValue = V;
2606 ++NumVectorInstructions;
2607 return V;
2608 }
2609 case Instruction::Add:
2610 case Instruction::FAdd:
2611 case Instruction::Sub:
2612 case Instruction::FSub:
2613 case Instruction::Mul:
2614 case Instruction::FMul:
2615 case Instruction::UDiv:
2616 case Instruction::SDiv:
2617 case Instruction::FDiv:
2618 case Instruction::URem:
2619 case Instruction::SRem:
2620 case Instruction::FRem:
2621 case Instruction::Shl:
2622 case Instruction::LShr:
2623 case Instruction::AShr:
2624 case Instruction::And:
2625 case Instruction::Or:
2626 case Instruction::Xor: {
2627 ValueList LHSVL, RHSVL;
2628 if (isa<BinaryOperator>(VL0) && VL0->isCommutative())
2629 reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL);
2630 else
2631 for (Value *V : E->Scalars) {
2632 LHSVL.push_back(cast<Instruction>(V)->getOperand(0));
2633 RHSVL.push_back(cast<Instruction>(V)->getOperand(1));
2634 }
2635
2636 setInsertPointAfterBundle(E->Scalars);
2637
2638 Value *LHS = vectorizeTree(LHSVL);
2639 Value *RHS = vectorizeTree(RHSVL);
2640
2641 if (Value *V = alreadyVectorized(E->Scalars))
2642 return V;
2643
2644 BinaryOperator *BinOp = cast<BinaryOperator>(VL0);
2645 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS);
2646 E->VectorizedValue = V;
2647 propagateIRFlags(E->VectorizedValue, E->Scalars);
2648 ++NumVectorInstructions;
2649
2650 if (Instruction *I = dyn_cast<Instruction>(V))
2651 return propagateMetadata(I, E->Scalars);
2652
2653 return V;
2654 }
2655 case Instruction::Load: {
2656 // Loads are inserted at the head of the tree because we don't want to
2657 // sink them all the way down past store instructions.
2658 setInsertPointAfterBundle(E->Scalars);
2659
2660 LoadInst *LI = cast<LoadInst>(VL0);
2661 Type *ScalarLoadTy = LI->getType();
2662 unsigned AS = LI->getPointerAddressSpace();
2663
2664 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
2665 VecTy->getPointerTo(AS));
2666
2667 // The pointer operand uses an in-tree scalar so we add the new BitCast to
2668 // ExternalUses list to make sure that an extract will be generated in the
2669 // future.
2670 if (ScalarToTreeEntry.count(LI->getPointerOperand()))
2671 ExternalUses.push_back(
2672 ExternalUser(LI->getPointerOperand(), cast<User>(VecPtr), 0));
2673
2674 unsigned Alignment = LI->getAlignment();
2675 LI = Builder.CreateLoad(VecPtr);
2676 if (!Alignment) {
2677 Alignment = DL->getABITypeAlignment(ScalarLoadTy);
2678 }
2679 LI->setAlignment(Alignment);
2680 E->VectorizedValue = LI;
2681 ++NumVectorInstructions;
2682 return propagateMetadata(LI, E->Scalars);
2683 }
2684 case Instruction::Store: {
2685 StoreInst *SI = cast<StoreInst>(VL0);
2686 unsigned Alignment = SI->getAlignment();
2687 unsigned AS = SI->getPointerAddressSpace();
2688
2689 ValueList ValueOp;
2690 for (Value *V : E->Scalars)
2691 ValueOp.push_back(cast<StoreInst>(V)->getValueOperand());
2692
2693 setInsertPointAfterBundle(E->Scalars);
2694
2695 Value *VecValue = vectorizeTree(ValueOp);
2696 Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(),
2697 VecTy->getPointerTo(AS));
2698 StoreInst *S = Builder.CreateStore(VecValue, VecPtr);
2699
2700 // The pointer operand uses an in-tree scalar so we add the new BitCast to
2701 // ExternalUses list to make sure that an extract will be generated in the
2702 // future.
2703 if (ScalarToTreeEntry.count(SI->getPointerOperand()))
2704 ExternalUses.push_back(
2705 ExternalUser(SI->getPointerOperand(), cast<User>(VecPtr), 0));
2706
2707 if (!Alignment) {
2708 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType());
2709 }
2710 S->setAlignment(Alignment);
2711 E->VectorizedValue = S;
2712 ++NumVectorInstructions;
2713 return propagateMetadata(S, E->Scalars);
2714 }
2715 case Instruction::GetElementPtr: {
2716 setInsertPointAfterBundle(E->Scalars);
2717
2718 ValueList Op0VL;
2719 for (Value *V : E->Scalars)
2720 Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0));
2721
2722 Value *Op0 = vectorizeTree(Op0VL);
2723
2724 std::vector<Value *> OpVecs;
2725 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
2726 ++j) {
2727 ValueList OpVL;
2728 for (Value *V : E->Scalars)
2729 OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j));
2730
2731 Value *OpVec = vectorizeTree(OpVL);
2732 OpVecs.push_back(OpVec);
2733 }
2734
2735 Value *V = Builder.CreateGEP(
2736 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
2737 E->VectorizedValue = V;
2738 ++NumVectorInstructions;
2739
2740 if (Instruction *I = dyn_cast<Instruction>(V))
2741 return propagateMetadata(I, E->Scalars);
2742
2743 return V;
2744 }
2745 case Instruction::Call: {
2746 CallInst *CI = cast<CallInst>(VL0);
2747 setInsertPointAfterBundle(E->Scalars);
2748 Function *FI;
2749 Intrinsic::ID IID = Intrinsic::not_intrinsic;
2750 Value *ScalarArg = nullptr;
2751 if (CI && (FI = CI->getCalledFunction())) {
2752 IID = FI->getIntrinsicID();
2753 }
2754 std::vector<Value *> OpVecs;
2755 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
2756 ValueList OpVL;
2757 // ctlz,cttz and powi are special intrinsics whose second argument is
2758 // a scalar. This argument should not be vectorized.
2759 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) {
2760 CallInst *CEI = cast<CallInst>(E->Scalars[0]);
2761 ScalarArg = CEI->getArgOperand(j);
2762 OpVecs.push_back(CEI->getArgOperand(j));
2763 continue;
2764 }
2765 for (Value *V : E->Scalars) {
2766 CallInst *CEI = cast<CallInst>(V);
2767 OpVL.push_back(CEI->getArgOperand(j));
2768 }
2769
2770 Value *OpVec = vectorizeTree(OpVL);
2771 DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: OpVec[" << j << "]: "
<< *OpVec << "\n"; } } while (false)
;
2772 OpVecs.push_back(OpVec);
2773 }
2774
2775 Module *M = F->getParent();
2776 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
2777 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) };
2778 Function *CF = Intrinsic::getDeclaration(M, ID, Tys);
2779 SmallVector<OperandBundleDef, 1> OpBundles;
2780 CI->getOperandBundlesAsDefs(OpBundles);
2781 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
2782
2783 // The scalar argument uses an in-tree scalar so we add the new vectorized
2784 // call to ExternalUses list to make sure that an extract will be
2785 // generated in the future.
2786 if (ScalarArg && ScalarToTreeEntry.count(ScalarArg))
2787 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
2788
2789 E->VectorizedValue = V;
2790 propagateIRFlags(E->VectorizedValue, E->Scalars);
2791 ++NumVectorInstructions;
2792 return V;
2793 }
2794 case Instruction::ShuffleVector: {
2795 ValueList LHSVL, RHSVL;
2796 assert(isa<BinaryOperator>(VL0) && "Invalid Shuffle Vector Operand")((isa<BinaryOperator>(VL0) && "Invalid Shuffle Vector Operand"
) ? static_cast<void> (0) : __assert_fail ("isa<BinaryOperator>(VL0) && \"Invalid Shuffle Vector Operand\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2796, __PRETTY_FUNCTION__))
;
2797 reorderAltShuffleOperands(E->Scalars, LHSVL, RHSVL);
2798 setInsertPointAfterBundle(E->Scalars);
7
Calling 'BoUpSLP::setInsertPointAfterBundle'
2799
2800 Value *LHS = vectorizeTree(LHSVL);
2801 Value *RHS = vectorizeTree(RHSVL);
2802
2803 if (Value *V = alreadyVectorized(E->Scalars))
2804 return V;
2805
2806 // Create a vector of LHS op1 RHS
2807 BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0);
2808 Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS);
2809
2810 // Create a vector of LHS op2 RHS
2811 Instruction *VL1 = cast<Instruction>(E->Scalars[1]);
2812 BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1);
2813 Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS);
2814
2815 // Create shuffle to take alternate operations from the vector.
2816 // Also, gather up odd and even scalar ops to propagate IR flags to
2817 // each vector operation.
2818 ValueList OddScalars, EvenScalars;
2819 unsigned e = E->Scalars.size();
2820 SmallVector<Constant *, 8> Mask(e);
2821 for (unsigned i = 0; i < e; ++i) {
2822 if (i & 1) {
2823 Mask[i] = Builder.getInt32(e + i);
2824 OddScalars.push_back(E->Scalars[i]);
2825 } else {
2826 Mask[i] = Builder.getInt32(i);
2827 EvenScalars.push_back(E->Scalars[i]);
2828 }
2829 }
2830
2831 Value *ShuffleMask = ConstantVector::get(Mask);
2832 propagateIRFlags(V0, EvenScalars);
2833 propagateIRFlags(V1, OddScalars);
2834
2835 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask);
2836 E->VectorizedValue = V;
2837 ++NumVectorInstructions;
2838 if (Instruction *I = dyn_cast<Instruction>(V))
2839 return propagateMetadata(I, E->Scalars);
2840
2841 return V;
2842 }
2843 default:
2844 llvm_unreachable("unknown inst")::llvm::llvm_unreachable_internal("unknown inst", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2844)
;
2845 }
2846 return nullptr;
2847}
2848
2849Value *BoUpSLP::vectorizeTree() {
2850 ExtraValueToDebugLocsMap ExternallyUsedValues;
2851 return vectorizeTree(ExternallyUsedValues);
2852}
2853
2854Value *
2855BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
2856
2857 // All blocks must be scheduled before any instructions are inserted.
2858 for (auto &BSIter : BlocksSchedules) {
2859 scheduleBlock(BSIter.second.get());
2860 }
2861
2862 Builder.SetInsertPoint(&F->getEntryBlock().front());
2863 auto *VectorRoot = vectorizeTree(&VectorizableTree[0]);
2864
2865 // If the vectorized tree can be rewritten in a smaller type, we truncate the
2866 // vectorized root. InstCombine will then rewrite the entire expression. We
2867 // sign extend the extracted values below.
2868 auto *ScalarRoot = VectorizableTree[0].Scalars[0];
2869 if (MinBWs.count(ScalarRoot)) {
2870 if (auto *I = dyn_cast<Instruction>(VectorRoot))
2871 Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
2872 auto BundleWidth = VectorizableTree[0].Scalars.size();
2873 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
2874 auto *VecTy = VectorType::get(MinTy, BundleWidth);
2875 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
2876 VectorizableTree[0].VectorizedValue = Trunc;
2877 }
2878
2879 DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Extracting " << ExternalUses
.size() << " values .\n"; } } while (false)
;
2880
2881 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type
2882 // specified by ScalarType.
2883 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) {
2884 if (!MinBWs.count(ScalarRoot))
2885 return Ex;
2886 if (MinBWs[ScalarRoot].second)
2887 return Builder.CreateSExt(Ex, ScalarType);
2888 return Builder.CreateZExt(Ex, ScalarType);
2889 };
2890
2891 // Extract all of the elements with the external uses.
2892 for (const auto &ExternalUse : ExternalUses) {
2893 Value *Scalar = ExternalUse.Scalar;
2894 llvm::User *User = ExternalUse.User;
2895
2896 // Skip users that we already RAUW. This happens when one instruction
2897 // has multiple uses of the same value.
2898 if (User && !is_contained(Scalar->users(), User))
2899 continue;
2900 assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar")((ScalarToTreeEntry.count(Scalar) && "Invalid scalar"
) ? static_cast<void> (0) : __assert_fail ("ScalarToTreeEntry.count(Scalar) && \"Invalid scalar\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2900, __PRETTY_FUNCTION__))
;
2901
2902 int Idx = ScalarToTreeEntry[Scalar];
2903 TreeEntry *E = &VectorizableTree[Idx];
2904 assert(!E->NeedToGather && "Extracting from a gather list")((!E->NeedToGather && "Extracting from a gather list"
) ? static_cast<void> (0) : __assert_fail ("!E->NeedToGather && \"Extracting from a gather list\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2904, __PRETTY_FUNCTION__))
;
2905
2906 Value *Vec = E->VectorizedValue;
2907 assert(Vec && "Can't find vectorizable value")((Vec && "Can't find vectorizable value") ? static_cast
<void> (0) : __assert_fail ("Vec && \"Can't find vectorizable value\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2907, __PRETTY_FUNCTION__))
;
2908
2909 Value *Lane = Builder.getInt32(ExternalUse.Lane);
2910 // If User == nullptr, the Scalar is used as extra arg. Generate
2911 // ExtractElement instruction and update the record for this scalar in
2912 // ExternallyUsedValues.
2913 if (!User) {
2914 assert(ExternallyUsedValues.count(Scalar) &&((ExternallyUsedValues.count(Scalar) && "Scalar with nullptr as an external user must be registered in "
"ExternallyUsedValues map") ? static_cast<void> (0) : __assert_fail
("ExternallyUsedValues.count(Scalar) && \"Scalar with nullptr as an external user must be registered in \" \"ExternallyUsedValues map\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2916, __PRETTY_FUNCTION__))
2915 "Scalar with nullptr as an external user must be registered in "((ExternallyUsedValues.count(Scalar) && "Scalar with nullptr as an external user must be registered in "
"ExternallyUsedValues map") ? static_cast<void> (0) : __assert_fail
("ExternallyUsedValues.count(Scalar) && \"Scalar with nullptr as an external user must be registered in \" \"ExternallyUsedValues map\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2916, __PRETTY_FUNCTION__))
2916 "ExternallyUsedValues map")((ExternallyUsedValues.count(Scalar) && "Scalar with nullptr as an external user must be registered in "
"ExternallyUsedValues map") ? static_cast<void> (0) : __assert_fail
("ExternallyUsedValues.count(Scalar) && \"Scalar with nullptr as an external user must be registered in \" \"ExternallyUsedValues map\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2916, __PRETTY_FUNCTION__))
;
2917 if (auto *VecI = dyn_cast<Instruction>(Vec)) {
2918 Builder.SetInsertPoint(VecI->getParent(),
2919 std::next(VecI->getIterator()));
2920 } else {
2921 Builder.SetInsertPoint(&F->getEntryBlock().front());
2922 }
2923 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
2924 Ex = extend(ScalarRoot, Ex, Scalar->getType());
2925 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
2926 auto &Locs = ExternallyUsedValues[Scalar];
2927 ExternallyUsedValues.insert({Ex, Locs});
2928 ExternallyUsedValues.erase(Scalar);
2929 continue;
2930 }
2931
2932 // Generate extracts for out-of-tree users.
2933 // Find the insertion point for the extractelement lane.
2934 if (auto *VecI = dyn_cast<Instruction>(Vec)) {
2935 if (PHINode *PH = dyn_cast<PHINode>(User)) {
2936 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
2937 if (PH->getIncomingValue(i) == Scalar) {
2938 TerminatorInst *IncomingTerminator =
2939 PH->getIncomingBlock(i)->getTerminator();
2940 if (isa<CatchSwitchInst>(IncomingTerminator)) {
2941 Builder.SetInsertPoint(VecI->getParent(),
2942 std::next(VecI->getIterator()));
2943 } else {
2944 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
2945 }
2946 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
2947 Ex = extend(ScalarRoot, Ex, Scalar->getType());
2948 CSEBlocks.insert(PH->getIncomingBlock(i));
2949 PH->setOperand(i, Ex);
2950 }
2951 }
2952 } else {
2953 Builder.SetInsertPoint(cast<Instruction>(User));
2954 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
2955 Ex = extend(ScalarRoot, Ex, Scalar->getType());
2956 CSEBlocks.insert(cast<Instruction>(User)->getParent());
2957 User->replaceUsesOfWith(Scalar, Ex);
2958 }
2959 } else {
2960 Builder.SetInsertPoint(&F->getEntryBlock().front());
2961 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
2962 Ex = extend(ScalarRoot, Ex, Scalar->getType());
2963 CSEBlocks.insert(&F->getEntryBlock());
2964 User->replaceUsesOfWith(Scalar, Ex);
2965 }
2966
2967 DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Replaced:" << *User <<
".\n"; } } while (false)
;
2968 }
2969
2970 // For each vectorized value:
2971 for (TreeEntry &EIdx : VectorizableTree) {
2972 TreeEntry *Entry = &EIdx;
2973
2974 // For each lane:
2975 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
2976 Value *Scalar = Entry->Scalars[Lane];
2977 // No need to handle users of gathered values.
2978 if (Entry->NeedToGather)
2979 continue;
2980
2981 assert(Entry->VectorizedValue && "Can't find vectorizable value")((Entry->VectorizedValue && "Can't find vectorizable value"
) ? static_cast<void> (0) : __assert_fail ("Entry->VectorizedValue && \"Can't find vectorizable value\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2981, __PRETTY_FUNCTION__))
;
2982
2983 Type *Ty = Scalar->getType();
2984 if (!Ty->isVoidTy()) {
2985#ifndef NDEBUG
2986 for (User *U : Scalar->users()) {
2987 DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tvalidating user:" <<
*U << ".\n"; } } while (false)
;
2988
2989 assert((ScalarToTreeEntry.count(U) ||(((ScalarToTreeEntry.count(U) || is_contained(UserIgnoreList,
U)) && "Replacing out-of-tree value with undef") ? static_cast
<void> (0) : __assert_fail ("(ScalarToTreeEntry.count(U) || is_contained(UserIgnoreList, U)) && \"Replacing out-of-tree value with undef\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2992, __PRETTY_FUNCTION__))
2990 // It is legal to replace users in the ignorelist by undef.(((ScalarToTreeEntry.count(U) || is_contained(UserIgnoreList,
U)) && "Replacing out-of-tree value with undef") ? static_cast
<void> (0) : __assert_fail ("(ScalarToTreeEntry.count(U) || is_contained(UserIgnoreList, U)) && \"Replacing out-of-tree value with undef\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2992, __PRETTY_FUNCTION__))
2991 is_contained(UserIgnoreList, U)) &&(((ScalarToTreeEntry.count(U) || is_contained(UserIgnoreList,
U)) && "Replacing out-of-tree value with undef") ? static_cast
<void> (0) : __assert_fail ("(ScalarToTreeEntry.count(U) || is_contained(UserIgnoreList, U)) && \"Replacing out-of-tree value with undef\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2992, __PRETTY_FUNCTION__))
2992 "Replacing out-of-tree value with undef")(((ScalarToTreeEntry.count(U) || is_contained(UserIgnoreList,
U)) && "Replacing out-of-tree value with undef") ? static_cast
<void> (0) : __assert_fail ("(ScalarToTreeEntry.count(U) || is_contained(UserIgnoreList, U)) && \"Replacing out-of-tree value with undef\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2992, __PRETTY_FUNCTION__))
;
2993 }
2994#endif
2995 Value *Undef = UndefValue::get(Ty);
2996 Scalar->replaceAllUsesWith(Undef);
2997 }
2998 DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tErasing scalar:" << *
Scalar << ".\n"; } } while (false)
;
2999 eraseInstruction(cast<Instruction>(Scalar));
3000 }
3001 }
3002
3003 Builder.ClearInsertionPoint();
3004
3005 return VectorizableTree[0].VectorizedValue;
3006}
3007
3008void BoUpSLP::optimizeGatherSequence() {
3009 DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Optimizing " << GatherSeq
.size() << " gather sequences instructions.\n"; } } while
(false)
3010 << " gather sequences instructions.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Optimizing " << GatherSeq
.size() << " gather sequences instructions.\n"; } } while
(false)
;
3011 // LICM InsertElementInst sequences.
3012 for (Instruction *it : GatherSeq) {
3013 InsertElementInst *Insert = dyn_cast<InsertElementInst>(it);
3014
3015 if (!Insert)
3016 continue;
3017
3018 // Check if this block is inside a loop.
3019 Loop *L = LI->getLoopFor(Insert->getParent());
3020 if (!L)
3021 continue;
3022
3023 // Check if it has a preheader.
3024 BasicBlock *PreHeader = L->getLoopPreheader();
3025 if (!PreHeader)
3026 continue;
3027
3028 // If the vector or the element that we insert into it are
3029 // instructions that are defined in this basic block then we can't
3030 // hoist this instruction.
3031 Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0));
3032 Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1));
3033 if (CurrVec && L->contains(CurrVec))
3034 continue;
3035 if (NewElem && L->contains(NewElem))
3036 continue;
3037
3038 // We can hoist this instruction. Move it to the pre-header.
3039 Insert->moveBefore(PreHeader->getTerminator());
3040 }
3041
3042 // Make a list of all reachable blocks in our CSE queue.
3043 SmallVector<const DomTreeNode *, 8> CSEWorkList;
3044 CSEWorkList.reserve(CSEBlocks.size());
3045 for (BasicBlock *BB : CSEBlocks)
3046 if (DomTreeNode *N = DT->getNode(BB)) {
3047 assert(DT->isReachableFromEntry(N))((DT->isReachableFromEntry(N)) ? static_cast<void> (
0) : __assert_fail ("DT->isReachableFromEntry(N)", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3047, __PRETTY_FUNCTION__))
;
3048 CSEWorkList.push_back(N);
3049 }
3050
3051 // Sort blocks by domination. This ensures we visit a block after all blocks
3052 // dominating it are visited.
3053 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(),
3054 [this](const DomTreeNode *A, const DomTreeNode *B) {
3055 return DT->properlyDominates(A, B);
3056 });
3057
3058 // Perform O(N^2) search over the gather sequences and merge identical
3059 // instructions. TODO: We can further optimize this scan if we split the
3060 // instructions into different buckets based on the insert lane.
3061 SmallVector<Instruction *, 16> Visited;
3062 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
3063 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&(((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev
(I))) && "Worklist not sorted properly!") ? static_cast
<void> (0) : __assert_fail ("(I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && \"Worklist not sorted properly!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3064, __PRETTY_FUNCTION__))
3064 "Worklist not sorted properly!")(((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev
(I))) && "Worklist not sorted properly!") ? static_cast
<void> (0) : __assert_fail ("(I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && \"Worklist not sorted properly!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3064, __PRETTY_FUNCTION__))
;
3065 BasicBlock *BB = (*I)->getBlock();
3066 // For all instructions in blocks containing gather sequences:
3067 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
3068 Instruction *In = &*it++;
3069 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
3070 continue;
3071
3072 // Check if we can replace this instruction with any of the
3073 // visited instructions.
3074 for (Instruction *v : Visited) {
3075 if (In->isIdenticalTo(v) &&
3076 DT->dominates(v->getParent(), In->getParent())) {
3077 In->replaceAllUsesWith(v);
3078 eraseInstruction(In);
3079 In = nullptr;
3080 break;
3081 }
3082 }
3083 if (In) {
3084 assert(!is_contained(Visited, In))((!is_contained(Visited, In)) ? static_cast<void> (0) :
__assert_fail ("!is_contained(Visited, In)", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3084, __PRETTY_FUNCTION__))
;
3085 Visited.push_back(In);
3086 }
3087 }
3088 }
3089 CSEBlocks.clear();
3090 GatherSeq.clear();
3091}
3092
3093// Groups the instructions to a bundle (which is then a single scheduling entity)
3094// and schedules instructions until the bundle gets ready.
3095bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL,
3096 BoUpSLP *SLP) {
3097 if (isa<PHINode>(VL[0]))
3098 return true;
3099
3100 // Initialize the instruction bundle.
3101 Instruction *OldScheduleEnd = ScheduleEnd;
3102 ScheduleData *PrevInBundle = nullptr;
3103 ScheduleData *Bundle = nullptr;
3104 bool ReSchedule = false;
3105 DEBUG(dbgs() << "SLP: bundle: " << *VL[0] << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: bundle: " << *VL[0] <<
"\n"; } } while (false)
;
3106
3107 // Make sure that the scheduling region contains all
3108 // instructions of the bundle.
3109 for (Value *V : VL) {
3110 if (!extendSchedulingRegion(V))
3111 return false;
3112 }
3113
3114 for (Value *V : VL) {
3115 ScheduleData *BundleMember = getScheduleData(V);
3116 assert(BundleMember &&((BundleMember && "no ScheduleData for bundle member (maybe not in same basic block)"
) ? static_cast<void> (0) : __assert_fail ("BundleMember && \"no ScheduleData for bundle member (maybe not in same basic block)\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3117, __PRETTY_FUNCTION__))
3117 "no ScheduleData for bundle member (maybe not in same basic block)")((BundleMember && "no ScheduleData for bundle member (maybe not in same basic block)"
) ? static_cast<void> (0) : __assert_fail ("BundleMember && \"no ScheduleData for bundle member (maybe not in same basic block)\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3117, __PRETTY_FUNCTION__))
;
3118 if (BundleMember->IsScheduled) {
3119 // A bundle member was scheduled as single instruction before and now
3120 // needs to be scheduled as part of the bundle. We just get rid of the
3121 // existing schedule.
3122 DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMemberdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: reset schedule because " <<
*BundleMember << " was already scheduled\n"; } } while
(false)
3123 << " was already scheduled\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: reset schedule because " <<
*BundleMember << " was already scheduled\n"; } } while
(false)
;
3124 ReSchedule = true;
3125 }
3126 assert(BundleMember->isSchedulingEntity() &&((BundleMember->isSchedulingEntity() && "bundle member already part of other bundle"
) ? static_cast<void> (0) : __assert_fail ("BundleMember->isSchedulingEntity() && \"bundle member already part of other bundle\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3127, __PRETTY_FUNCTION__))
3127 "bundle member already part of other bundle")((BundleMember->isSchedulingEntity() && "bundle member already part of other bundle"
) ? static_cast<void> (0) : __assert_fail ("BundleMember->isSchedulingEntity() && \"bundle member already part of other bundle\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3127, __PRETTY_FUNCTION__))
;
3128 if (PrevInBundle) {
3129 PrevInBundle->NextInBundle = BundleMember;
3130 } else {
3131 Bundle = BundleMember;
3132 }
3133 BundleMember->UnscheduledDepsInBundle = 0;
3134 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
3135
3136 // Group the instructions to a bundle.
3137 BundleMember->FirstInBundle = Bundle;
3138 PrevInBundle = BundleMember;
3139 }
3140 if (ScheduleEnd != OldScheduleEnd) {
3141 // The scheduling region got new instructions at the lower end (or it is a
3142 // new region for the first bundle). This makes it necessary to
3143 // recalculate all dependencies.
3144 // It is seldom that this needs to be done a second time after adding the
3145 // initial bundle to the region.
3146 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
3147 ScheduleData *SD = getScheduleData(I);
3148 SD->clearDependencies();
3149 }
3150 ReSchedule = true;
3151 }
3152 if (ReSchedule) {
3153 resetSchedule();
3154 initialFillReadyList(ReadyInsts);
3155 }
3156
3157 DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: try schedule bundle " <<
*Bundle << " in block " << BB->getName() <<
"\n"; } } while (false)
3158 << BB->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: try schedule bundle " <<
*Bundle << " in block " << BB->getName() <<
"\n"; } } while (false)
;
3159
3160 calculateDependencies(Bundle, true, SLP);
3161
3162 // Now try to schedule the new bundle. As soon as the bundle is "ready" it
3163 // means that there are no cyclic dependencies and we can schedule it.
3164 // Note that's important that we don't "schedule" the bundle yet (see
3165 // cancelScheduling).
3166 while (!Bundle->isReady() && !ReadyInsts.empty()) {
3167
3168 ScheduleData *pickedSD = ReadyInsts.back();
3169 ReadyInsts.pop_back();
3170
3171 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) {
3172 schedule(pickedSD, ReadyInsts);
3173 }
3174 }
3175 if (!Bundle->isReady()) {
3176 cancelScheduling(VL);
3177 return false;
3178 }
3179 return true;
3180}
3181
3182void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL) {
3183 if (isa<PHINode>(VL[0]))
3184 return;
3185
3186 ScheduleData *Bundle = getScheduleData(VL[0]);
3187 DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: cancel scheduling of " <<
*Bundle << "\n"; } } while (false)
;
3188 assert(!Bundle->IsScheduled &&((!Bundle->IsScheduled && "Can't cancel bundle which is already scheduled"
) ? static_cast<void> (0) : __assert_fail ("!Bundle->IsScheduled && \"Can't cancel bundle which is already scheduled\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3189, __PRETTY_FUNCTION__))
3189 "Can't cancel bundle which is already scheduled")((!Bundle->IsScheduled && "Can't cancel bundle which is already scheduled"
) ? static_cast<void> (0) : __assert_fail ("!Bundle->IsScheduled && \"Can't cancel bundle which is already scheduled\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3189, __PRETTY_FUNCTION__))
;
3190 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&((Bundle->isSchedulingEntity() && Bundle->isPartOfBundle
() && "tried to unbundle something which is not a bundle"
) ? static_cast<void> (0) : __assert_fail ("Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && \"tried to unbundle something which is not a bundle\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3191, __PRETTY_FUNCTION__))
3191 "tried to unbundle something which is not a bundle")((Bundle->isSchedulingEntity() && Bundle->isPartOfBundle
() && "tried to unbundle something which is not a bundle"
) ? static_cast<void> (0) : __assert_fail ("Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && \"tried to unbundle something which is not a bundle\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3191, __PRETTY_FUNCTION__))
;
3192
3193 // Un-bundle: make single instructions out of the bundle.
3194 ScheduleData *BundleMember = Bundle;
3195 while (BundleMember) {
3196 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links")((BundleMember->FirstInBundle == Bundle && "corrupt bundle links"
) ? static_cast<void> (0) : __assert_fail ("BundleMember->FirstInBundle == Bundle && \"corrupt bundle links\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3196, __PRETTY_FUNCTION__))
;
3197 BundleMember->FirstInBundle = BundleMember;
3198 ScheduleData *Next = BundleMember->NextInBundle;
3199 BundleMember->NextInBundle = nullptr;
3200 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
3201 if (BundleMember->UnscheduledDepsInBundle == 0) {
3202 ReadyInsts.insert(BundleMember);
3203 }
3204 BundleMember = Next;
3205 }
3206}
3207
3208bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) {
3209 if (getScheduleData(V))
3210 return true;
3211 Instruction *I = dyn_cast<Instruction>(V);
3212 assert(I && "bundle member must be an instruction")((I && "bundle member must be an instruction") ? static_cast
<void> (0) : __assert_fail ("I && \"bundle member must be an instruction\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3212, __PRETTY_FUNCTION__))
;
3213 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled")((!isa<PHINode>(I) && "phi nodes don't need to be scheduled"
) ? static_cast<void> (0) : __assert_fail ("!isa<PHINode>(I) && \"phi nodes don't need to be scheduled\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3213, __PRETTY_FUNCTION__))
;
3214 if (!ScheduleStart) {
3215 // It's the first instruction in the new region.
3216 initScheduleData(I, I->getNextNode(), nullptr, nullptr);
3217 ScheduleStart = I;
3218 ScheduleEnd = I->getNextNode();
3219 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?")((ScheduleEnd && "tried to vectorize a TerminatorInst?"
) ? static_cast<void> (0) : __assert_fail ("ScheduleEnd && \"tried to vectorize a TerminatorInst?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3219, __PRETTY_FUNCTION__))
;
3220 DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: initialize schedule region to "
<< *I << "\n"; } } while (false)
;
3221 return true;
3222 }
3223 // Search up and down at the same time, because we don't know if the new
3224 // instruction is above or below the existing scheduling region.
3225 BasicBlock::reverse_iterator UpIter =
3226 ++ScheduleStart->getIterator().getReverse();
3227 BasicBlock::reverse_iterator UpperEnd = BB->rend();
3228 BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
3229 BasicBlock::iterator LowerEnd = BB->end();
3230 for (;;) {
3231 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
3232 DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: exceeded schedule region size limit\n"
; } } while (false)
;
3233 return false;
3234 }
3235
3236 if (UpIter != UpperEnd) {
3237 if (&*UpIter == I) {
3238 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
3239 ScheduleStart = I;
3240 DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: extend schedule region start to "
<< *I << "\n"; } } while (false)
;
3241 return true;
3242 }
3243 UpIter++;
3244 }
3245 if (DownIter != LowerEnd) {
3246 if (&*DownIter == I) {
3247 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
3248 nullptr);
3249 ScheduleEnd = I->getNextNode();
3250 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?")((ScheduleEnd && "tried to vectorize a TerminatorInst?"
) ? static_cast<void> (0) : __assert_fail ("ScheduleEnd && \"tried to vectorize a TerminatorInst?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3250, __PRETTY_FUNCTION__))
;
3251 DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: extend schedule region end to "
<< *I << "\n"; } } while (false)
;
3252 return true;
3253 }
3254 DownIter++;
3255 }
3256 assert((UpIter != UpperEnd || DownIter != LowerEnd) &&(((UpIter != UpperEnd || DownIter != LowerEnd) && "instruction not found in block"
) ? static_cast<void> (0) : __assert_fail ("(UpIter != UpperEnd || DownIter != LowerEnd) && \"instruction not found in block\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3257, __PRETTY_FUNCTION__))
3257 "instruction not found in block")(((UpIter != UpperEnd || DownIter != LowerEnd) && "instruction not found in block"
) ? static_cast<void> (0) : __assert_fail ("(UpIter != UpperEnd || DownIter != LowerEnd) && \"instruction not found in block\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3257, __PRETTY_FUNCTION__))
;
3258 }
3259 return true;
3260}
3261
3262void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
3263 Instruction *ToI,
3264 ScheduleData *PrevLoadStore,
3265 ScheduleData *NextLoadStore) {
3266 ScheduleData *CurrentLoadStore = PrevLoadStore;
3267 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
3268 ScheduleData *SD = ScheduleDataMap[I];
3269 if (!SD) {
3270 // Allocate a new ScheduleData for the instruction.
3271 if (ChunkPos >= ChunkSize) {
3272 ScheduleDataChunks.push_back(
3273 llvm::make_unique<ScheduleData[]>(ChunkSize));
3274 ChunkPos = 0;
3275 }
3276 SD = &(ScheduleDataChunks.back()[ChunkPos++]);
3277 ScheduleDataMap[I] = SD;
3278 SD->Inst = I;
3279 }
3280 assert(!isInSchedulingRegion(SD) &&((!isInSchedulingRegion(SD) && "new ScheduleData already in scheduling region"
) ? static_cast<void> (0) : __assert_fail ("!isInSchedulingRegion(SD) && \"new ScheduleData already in scheduling region\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3281, __PRETTY_FUNCTION__))
3281 "new ScheduleData already in scheduling region")((!isInSchedulingRegion(SD) && "new ScheduleData already in scheduling region"
) ? static_cast<void> (0) : __assert_fail ("!isInSchedulingRegion(SD) && \"new ScheduleData already in scheduling region\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3281, __PRETTY_FUNCTION__))
;
3282 SD->init(SchedulingRegionID);
3283
3284 if (I->mayReadOrWriteMemory()) {
3285 // Update the linked list of memory accessing instructions.
3286 if (CurrentLoadStore) {
3287 CurrentLoadStore->NextLoadStore = SD;
3288 } else {
3289 FirstLoadStoreInRegion = SD;
3290 }
3291 CurrentLoadStore = SD;
3292 }
3293 }
3294 if (NextLoadStore) {
3295 if (CurrentLoadStore)
3296 CurrentLoadStore->NextLoadStore = NextLoadStore;
3297 } else {
3298 LastLoadStoreInRegion = CurrentLoadStore;
3299 }
3300}
3301
3302void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
3303 bool InsertInReadyList,
3304 BoUpSLP *SLP) {
3305 assert(SD->isSchedulingEntity())((SD->isSchedulingEntity()) ? static_cast<void> (0) :
__assert_fail ("SD->isSchedulingEntity()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3305, __PRETTY_FUNCTION__))
;
3306
3307 SmallVector<ScheduleData *, 10> WorkList;
3308 WorkList.push_back(SD);
3309
3310 while (!WorkList.empty()) {
3311 ScheduleData *SD = WorkList.back();
3312 WorkList.pop_back();
3313
3314 ScheduleData *BundleMember = SD;
3315 while (BundleMember) {
3316 assert(isInSchedulingRegion(BundleMember))((isInSchedulingRegion(BundleMember)) ? static_cast<void>
(0) : __assert_fail ("isInSchedulingRegion(BundleMember)", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3316, __PRETTY_FUNCTION__))
;
3317 if (!BundleMember->hasValidDependencies()) {
3318
3319 DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: update deps of " <<
*BundleMember << "\n"; } } while (false)
;
3320 BundleMember->Dependencies = 0;
3321 BundleMember->resetUnscheduledDeps();
3322
3323 // Handle def-use chain dependencies.
3324 for (User *U : BundleMember->Inst->users()) {
3325 if (isa<Instruction>(U)) {
3326 ScheduleData *UseSD = getScheduleData(U);
3327 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
3328 BundleMember->Dependencies++;
3329 ScheduleData *DestBundle = UseSD->FirstInBundle;
3330 if (!DestBundle->IsScheduled)
3331 BundleMember->incrementUnscheduledDeps(1);
3332 if (!DestBundle->hasValidDependencies())
3333 WorkList.push_back(DestBundle);
3334 }
3335 } else {
3336 // I'm not sure if this can ever happen. But we need to be safe.
3337 // This lets the instruction/bundle never be scheduled and
3338 // eventually disable vectorization.
3339 BundleMember->Dependencies++;
3340 BundleMember->incrementUnscheduledDeps(1);
3341 }
3342 }
3343
3344 // Handle the memory dependencies.
3345 ScheduleData *DepDest = BundleMember->NextLoadStore;
3346 if (DepDest) {
3347 Instruction *SrcInst = BundleMember->Inst;
3348 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
3349 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
3350 unsigned numAliased = 0;
3351 unsigned DistToSrc = 1;
3352
3353 while (DepDest) {
3354 assert(isInSchedulingRegion(DepDest))((isInSchedulingRegion(DepDest)) ? static_cast<void> (0
) : __assert_fail ("isInSchedulingRegion(DepDest)", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3354, __PRETTY_FUNCTION__))
;
3355
3356 // We have two limits to reduce the complexity:
3357 // 1) AliasedCheckLimit: It's a small limit to reduce calls to
3358 // SLP->isAliased (which is the expensive part in this loop).
3359 // 2) MaxMemDepDistance: It's for very large blocks and it aborts
3360 // the whole loop (even if the loop is fast, it's quadratic).
3361 // It's important for the loop break condition (see below) to
3362 // check this limit even between two read-only instructions.
3363 if (DistToSrc >= MaxMemDepDistance ||
3364 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
3365 (numAliased >= AliasedCheckLimit ||
3366 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
3367
3368 // We increment the counter only if the locations are aliased
3369 // (instead of counting all alias checks). This gives a better
3370 // balance between reduced runtime and accurate dependencies.
3371 numAliased++;
3372
3373 DepDest->MemoryDependencies.push_back(BundleMember);
3374 BundleMember->Dependencies++;
3375 ScheduleData *DestBundle = DepDest->FirstInBundle;
3376 if (!DestBundle->IsScheduled) {
3377 BundleMember->incrementUnscheduledDeps(1);
3378 }
3379 if (!DestBundle->hasValidDependencies()) {
3380 WorkList.push_back(DestBundle);
3381 }
3382 }
3383 DepDest = DepDest->NextLoadStore;
3384
3385 // Example, explaining the loop break condition: Let's assume our
3386 // starting instruction is i0 and MaxMemDepDistance = 3.
3387 //
3388 // +--------v--v--v
3389 // i0,i1,i2,i3,i4,i5,i6,i7,i8
3390 // +--------^--^--^
3391 //
3392 // MaxMemDepDistance let us stop alias-checking at i3 and we add
3393 // dependencies from i0 to i3,i4,.. (even if they are not aliased).
3394 // Previously we already added dependencies from i3 to i6,i7,i8
3395 // (because of MaxMemDepDistance). As we added a dependency from
3396 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
3397 // and we can abort this loop at i6.
3398 if (DistToSrc >= 2 * MaxMemDepDistance)
3399 break;
3400 DistToSrc++;
3401 }
3402 }
3403 }
3404 BundleMember = BundleMember->NextInBundle;
3405 }
3406 if (InsertInReadyList && SD->isReady()) {
3407 ReadyInsts.push_back(SD);
3408 DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready on update: " <<
*SD->Inst << "\n"; } } while (false)
;
3409 }
3410 }
3411}
3412
3413void BoUpSLP::BlockScheduling::resetSchedule() {
3414 assert(ScheduleStart &&((ScheduleStart && "tried to reset schedule on block which has not been scheduled"
) ? static_cast<void> (0) : __assert_fail ("ScheduleStart && \"tried to reset schedule on block which has not been scheduled\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3415, __PRETTY_FUNCTION__))
3415 "tried to reset schedule on block which has not been scheduled")((ScheduleStart && "tried to reset schedule on block which has not been scheduled"
) ? static_cast<void> (0) : __assert_fail ("ScheduleStart && \"tried to reset schedule on block which has not been scheduled\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3415, __PRETTY_FUNCTION__))
;
3416 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
3417 ScheduleData *SD = getScheduleData(I);
3418 assert(isInSchedulingRegion(SD))((isInSchedulingRegion(SD)) ? static_cast<void> (0) : __assert_fail
("isInSchedulingRegion(SD)", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3418, __PRETTY_FUNCTION__))
;
3419 SD->IsScheduled = false;
3420 SD->resetUnscheduledDeps();
3421 }
3422 ReadyInsts.clear();
3423}
3424
3425void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
3426
3427 if (!BS->ScheduleStart)
3428 return;
3429
3430 DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: schedule block " << BS
->BB->getName() << "\n"; } } while (false)
;
3431
3432 BS->resetSchedule();
3433
3434 // For the real scheduling we use a more sophisticated ready-list: it is
3435 // sorted by the original instruction location. This lets the final schedule
3436 // be as close as possible to the original instruction order.
3437 struct ScheduleDataCompare {
3438 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
3439 return SD2->SchedulingPriority < SD1->SchedulingPriority;
3440 }
3441 };
3442 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
3443
3444 // Ensure that all dependency data is updated and fill the ready-list with
3445 // initial instructions.
3446 int Idx = 0;
3447 int NumToSchedule = 0;
3448 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
3449 I = I->getNextNode()) {
3450 ScheduleData *SD = BS->getScheduleData(I);
3451 assert(((SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->
Inst) != 0) && "scheduler and vectorizer have different opinion on what is a bundle"
) ? static_cast<void> (0) : __assert_fail ("SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) && \"scheduler and vectorizer have different opinion on what is a bundle\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3453, __PRETTY_FUNCTION__))
3452 SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) &&((SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->
Inst) != 0) && "scheduler and vectorizer have different opinion on what is a bundle"
) ? static_cast<void> (0) : __assert_fail ("SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) && \"scheduler and vectorizer have different opinion on what is a bundle\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3453, __PRETTY_FUNCTION__))
3453 "scheduler and vectorizer have different opinion on what is a bundle")((SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->
Inst) != 0) && "scheduler and vectorizer have different opinion on what is a bundle"
) ? static_cast<void> (0) : __assert_fail ("SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) && \"scheduler and vectorizer have different opinion on what is a bundle\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3453, __PRETTY_FUNCTION__))
;
3454 SD->FirstInBundle->SchedulingPriority = Idx++;
3455 if (SD->isSchedulingEntity()) {
3456 BS->calculateDependencies(SD, false, this);
3457 NumToSchedule++;
3458 }
3459 }
3460 BS->initialFillReadyList(ReadyInsts);
3461
3462 Instruction *LastScheduledInst = BS->ScheduleEnd;
3463
3464 // Do the "real" scheduling.
3465 while (!ReadyInsts.empty()) {
3466 ScheduleData *picked = *ReadyInsts.begin();
3467 ReadyInsts.erase(ReadyInsts.begin());
3468
3469 // Move the scheduled instruction(s) to their dedicated places, if not
3470 // there yet.
3471 ScheduleData *BundleMember = picked;
3472 while (BundleMember) {
3473 Instruction *pickedInst = BundleMember->Inst;
3474 if (LastScheduledInst->getNextNode() != pickedInst) {
3475 BS->BB->getInstList().remove(pickedInst);
3476 BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
3477 pickedInst);
3478 }
3479 LastScheduledInst = pickedInst;
3480 BundleMember = BundleMember->NextInBundle;
3481 }
3482
3483 BS->schedule(picked, ReadyInsts);
3484 NumToSchedule--;
3485 }
3486 assert(NumToSchedule == 0 && "could not schedule all instructions")((NumToSchedule == 0 && "could not schedule all instructions"
) ? static_cast<void> (0) : __assert_fail ("NumToSchedule == 0 && \"could not schedule all instructions\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3486, __PRETTY_FUNCTION__))
;
3487
3488 // Avoid duplicate scheduling of the block.
3489 BS->ScheduleStart = nullptr;
3490}
3491
3492unsigned BoUpSLP::getVectorElementSize(Value *V) {
3493 // If V is a store, just return the width of the stored value without
3494 // traversing the expression tree. This is the common case.
3495 if (auto *Store = dyn_cast<StoreInst>(V))
3496 return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
3497
3498 // If V is not a store, we can traverse the expression tree to find loads
3499 // that feed it. The type of the loaded value may indicate a more suitable
3500 // width than V's type. We want to base the vector element size on the width
3501 // of memory operations where possible.
3502 SmallVector<Instruction *, 16> Worklist;
3503 SmallPtrSet<Instruction *, 16> Visited;
3504 if (auto *I = dyn_cast<Instruction>(V))
3505 Worklist.push_back(I);
3506
3507 // Traverse the expression tree in bottom-up order looking for loads. If we
3508 // encounter an instruciton we don't yet handle, we give up.
3509 auto MaxWidth = 0u;
3510 auto FoundUnknownInst = false;
3511 while (!Worklist.empty() && !FoundUnknownInst) {
3512 auto *I = Worklist.pop_back_val();
3513 Visited.insert(I);
3514
3515 // We should only be looking at scalar instructions here. If the current
3516 // instruction has a vector type, give up.
3517 auto *Ty = I->getType();
3518 if (isa<VectorType>(Ty))
3519 FoundUnknownInst = true;
3520
3521 // If the current instruction is a load, update MaxWidth to reflect the
3522 // width of the loaded value.
3523 else if (isa<LoadInst>(I))
3524 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty));
3525
3526 // Otherwise, we need to visit the operands of the instruction. We only
3527 // handle the interesting cases from buildTree here. If an operand is an
3528 // instruction we haven't yet visited, we add it to the worklist.
3529 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
3530 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) {
3531 for (Use &U : I->operands())
3532 if (auto *J = dyn_cast<Instruction>(U.get()))
3533 if (!Visited.count(J))
3534 Worklist.push_back(J);
3535 }
3536
3537 // If we don't yet handle the instruction, give up.
3538 else
3539 FoundUnknownInst = true;
3540 }
3541
3542 // If we didn't encounter a memory access in the expression tree, or if we
3543 // gave up for some reason, just return the width of V.
3544 if (!MaxWidth || FoundUnknownInst)
3545 return DL->getTypeSizeInBits(V->getType());
3546
3547 // Otherwise, return the maximum width we found.
3548 return MaxWidth;
3549}
3550
3551// Determine if a value V in a vectorizable expression Expr can be demoted to a
3552// smaller type with a truncation. We collect the values that will be demoted
3553// in ToDemote and additional roots that require investigating in Roots.
3554static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
3555 SmallVectorImpl<Value *> &ToDemote,
3556 SmallVectorImpl<Value *> &Roots) {
3557
3558 // We can always demote constants.
3559 if (isa<Constant>(V)) {
3560 ToDemote.push_back(V);
3561 return true;
3562 }
3563
3564 // If the value is not an instruction in the expression with only one use, it
3565 // cannot be demoted.
3566 auto *I = dyn_cast<Instruction>(V);
3567 if (!I || !I->hasOneUse() || !Expr.count(I))
3568 return false;
3569
3570 switch (I->getOpcode()) {
3571
3572 // We can always demote truncations and extensions. Since truncations can
3573 // seed additional demotion, we save the truncated value.
3574 case Instruction::Trunc:
3575 Roots.push_back(I->getOperand(0));
3576 case Instruction::ZExt:
3577 case Instruction::SExt:
3578 break;
3579
3580 // We can demote certain binary operations if we can demote both of their
3581 // operands.
3582 case Instruction::Add:
3583 case Instruction::Sub:
3584 case Instruction::Mul:
3585 case Instruction::And:
3586 case Instruction::Or:
3587 case Instruction::Xor:
3588 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
3589 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
3590 return false;
3591 break;
3592
3593 // We can demote selects if we can demote their true and false values.
3594 case Instruction::Select: {
3595 SelectInst *SI = cast<SelectInst>(I);
3596 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
3597 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
3598 return false;
3599 break;
3600 }
3601
3602 // We can demote phis if we can demote all their incoming operands. Note that
3603 // we don't need to worry about cycles since we ensure single use above.
3604 case Instruction::PHI: {
3605 PHINode *PN = cast<PHINode>(I);
3606 for (Value *IncValue : PN->incoming_values())
3607 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
3608 return false;
3609 break;
3610 }
3611
3612 // Otherwise, conservatively give up.
3613 default:
3614 return false;
3615 }
3616
3617 // Record the value that we can demote.
3618 ToDemote.push_back(V);
3619 return true;
3620}
3621
3622void BoUpSLP::computeMinimumValueSizes() {
3623 // If there are no external uses, the expression tree must be rooted by a
3624 // store. We can't demote in-memory values, so there is nothing to do here.
3625 if (ExternalUses.empty())
3626 return;
3627
3628 // We only attempt to truncate integer expressions.
3629 auto &TreeRoot = VectorizableTree[0].Scalars;
3630 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
3631 if (!TreeRootIT)
3632 return;
3633
3634 // If the expression is not rooted by a store, these roots should have
3635 // external uses. We will rely on InstCombine to rewrite the expression in
3636 // the narrower type. However, InstCombine only rewrites single-use values.
3637 // This means that if a tree entry other than a root is used externally, it
3638 // must have multiple uses and InstCombine will not rewrite it. The code
3639 // below ensures that only the roots are used externally.
3640 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
3641 for (auto &EU : ExternalUses)
3642 if (!Expr.erase(EU.Scalar))
3643 return;
3644 if (!Expr.empty())
3645 return;
3646
3647 // Collect the scalar values of the vectorizable expression. We will use this
3648 // context to determine which values can be demoted. If we see a truncation,
3649 // we mark it as seeding another demotion.
3650 for (auto &Entry : VectorizableTree)
3651 Expr.insert(Entry.Scalars.begin(), Entry.Scalars.end());
3652
3653 // Ensure the roots of the vectorizable tree don't form a cycle. They must
3654 // have a single external user that is not in the vectorizable tree.
3655 for (auto *Root : TreeRoot)
3656 if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
3657 return;
3658
3659 // Conservatively determine if we can actually truncate the roots of the
3660 // expression. Collect the values that can be demoted in ToDemote and
3661 // additional roots that require investigating in Roots.
3662 SmallVector<Value *, 32> ToDemote;
3663 SmallVector<Value *, 4> Roots;
3664 for (auto *Root : TreeRoot)
3665 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
3666 return;
3667
3668 // The maximum bit width required to represent all the values that can be
3669 // demoted without loss of precision. It would be safe to truncate the roots
3670 // of the expression to this width.
3671 auto MaxBitWidth = 8u;
3672
3673 // We first check if all the bits of the roots are demanded. If they're not,
3674 // we can truncate the roots to this narrower type.
3675 for (auto *Root : TreeRoot) {
3676 auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
3677 MaxBitWidth = std::max<unsigned>(
3678 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
3679 }
3680
3681 // True if the roots can be zero-extended back to their original type, rather
3682 // than sign-extended. We know that if the leading bits are not demanded, we
3683 // can safely zero-extend. So we initialize IsKnownPositive to True.
3684 bool IsKnownPositive = true;
3685
3686 // If all the bits of the roots are demanded, we can try a little harder to
3687 // compute a narrower type. This can happen, for example, if the roots are
3688 // getelementptr indices. InstCombine promotes these indices to the pointer
3689 // width. Thus, all their bits are technically demanded even though the
3690 // address computation might be vectorized in a smaller type.
3691 //
3692 // We start by looking at each entry that can be demoted. We compute the
3693 // maximum bit width required to store the scalar by using ValueTracking to
3694 // compute the number of high-order bits we can truncate.
3695 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType())) {
3696 MaxBitWidth = 8u;
3697
3698 // Determine if the sign bit of all the roots is known to be zero. If not,
3699 // IsKnownPositive is set to False.
3700 IsKnownPositive = all_of(TreeRoot, [&](Value *R) {
3701 KnownBits Known = computeKnownBits(R, *DL);
3702 return Known.isNonNegative();
3703 });
3704
3705 // Determine the maximum number of bits required to store the scalar
3706 // values.
3707 for (auto *Scalar : ToDemote) {
3708 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, 0, DT);
3709 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
3710 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
3711 }
3712
3713 // If we can't prove that the sign bit is zero, we must add one to the
3714 // maximum bit width to account for the unknown sign bit. This preserves
3715 // the existing sign bit so we can safely sign-extend the root back to the
3716 // original type. Otherwise, if we know the sign bit is zero, we will
3717 // zero-extend the root instead.
3718 //
3719 // FIXME: This is somewhat suboptimal, as there will be cases where adding
3720 // one to the maximum bit width will yield a larger-than-necessary
3721 // type. In general, we need to add an extra bit only if we can't
3722 // prove that the upper bit of the original type is equal to the
3723 // upper bit of the proposed smaller type. If these two bits are the
3724 // same (either zero or one) we know that sign-extending from the
3725 // smaller type will result in the same value. Here, since we can't
3726 // yet prove this, we are just making the proposed smaller type
3727 // larger to ensure correctness.
3728 if (!IsKnownPositive)
3729 ++MaxBitWidth;
3730 }
3731
3732 // Round MaxBitWidth up to the next power-of-two.
3733 if (!isPowerOf2_64(MaxBitWidth))
3734 MaxBitWidth = NextPowerOf2(MaxBitWidth);
3735
3736 // If the maximum bit width we compute is less than the with of the roots'
3737 // type, we can proceed with the narrowing. Otherwise, do nothing.
3738 if (MaxBitWidth >= TreeRootIT->getBitWidth())
3739 return;
3740
3741 // If we can truncate the root, we must collect additional values that might
3742 // be demoted as a result. That is, those seeded by truncations we will
3743 // modify.
3744 while (!Roots.empty())
3745 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
3746
3747 // Finally, map the values we can demote to the maximum bit with we computed.
3748 for (auto *Scalar : ToDemote)
3749 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
3750}
3751
3752namespace {
3753/// The SLPVectorizer Pass.
3754struct SLPVectorizer : public FunctionPass {
3755 SLPVectorizerPass Impl;
3756
3757 /// Pass identification, replacement for typeid
3758 static char ID;
3759
3760 explicit SLPVectorizer() : FunctionPass(ID) {
3761 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
3762 }
3763
3764
3765 bool doInitialization(Module &M) override {
3766 return false;
3767 }
3768
3769 bool runOnFunction(Function &F) override {
3770 if (skipFunction(F))
3771 return false;
3772
3773 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
3774 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
3775 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
3776 auto *TLI = TLIP ? &TLIP->getTLI() : nullptr;
3777 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
3778 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
3779 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3780 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3781 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
3782 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
3783
3784 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
3785 }
3786
3787 void getAnalysisUsage(AnalysisUsage &AU) const override {
3788 FunctionPass::getAnalysisUsage(AU);
3789 AU.addRequired<AssumptionCacheTracker>();
3790 AU.addRequired<ScalarEvolutionWrapperPass>();
3791 AU.addRequired<AAResultsWrapperPass>();
3792 AU.addRequired<TargetTransformInfoWrapperPass>();
3793 AU.addRequired<LoopInfoWrapperPass>();
3794 AU.addRequired<DominatorTreeWrapperPass>();
3795 AU.addRequired<DemandedBitsWrapperPass>();
3796 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
3797 AU.addPreserved<LoopInfoWrapperPass>();
3798 AU.addPreserved<DominatorTreeWrapperPass>();
3799 AU.addPreserved<AAResultsWrapperPass>();
3800 AU.addPreserved<GlobalsAAWrapperPass>();
3801 AU.setPreservesCFG();
3802 }
3803};
3804} // end anonymous namespace
3805
3806PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
3807 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
3808 auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
3809 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
3810 auto *AA = &AM.getResult<AAManager>(F);
3811 auto *LI = &AM.getResult<LoopAnalysis>(F);
3812 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
3813 auto *AC = &AM.getResult<AssumptionAnalysis>(F);
3814 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
3815 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
3816
3817 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
3818 if (!Changed)
3819 return PreservedAnalyses::all();
3820
3821 PreservedAnalyses PA;
3822 PA.preserveSet<CFGAnalyses>();
3823 PA.preserve<AAManager>();
3824 PA.preserve<GlobalsAA>();
3825 return PA;
3826}
3827
3828bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
3829 TargetTransformInfo *TTI_,
3830 TargetLibraryInfo *TLI_, AliasAnalysis *AA_,
3831 LoopInfo *LI_, DominatorTree *DT_,
3832 AssumptionCache *AC_, DemandedBits *DB_,
3833 OptimizationRemarkEmitter *ORE_) {
3834 SE = SE_;
3835 TTI = TTI_;
3836 TLI = TLI_;
3837 AA = AA_;
3838 LI = LI_;
3839 DT = DT_;
3840 AC = AC_;
3841 DB = DB_;
3842 DL = &F.getParent()->getDataLayout();
3843
3844 Stores.clear();
3845 GEPs.clear();
3846 bool Changed = false;
3847
3848 // If the target claims to have no vector registers don't attempt
3849 // vectorization.
3850 if (!TTI->getNumberOfRegisters(true))
3851 return false;
3852
3853 // Don't vectorize when the attribute NoImplicitFloat is used.
3854 if (F.hasFnAttribute(Attribute::NoImplicitFloat))
3855 return false;
3856
3857 DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing blocks in " <<
F.getName() << ".\n"; } } while (false)
;
3858
3859 // Use the bottom up slp vectorizer to construct chains that start with
3860 // store instructions.
3861 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
3862
3863 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
3864 // delete instructions.
3865
3866 // Scan the blocks in the function in post order.
3867 for (auto BB : post_order(&F.getEntryBlock())) {
3868 collectSeedInstructions(BB);
3869
3870 // Vectorize trees that end at stores.
3871 if (!Stores.empty()) {
3872 DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found stores for " << Stores
.size() << " underlying objects.\n"; } } while (false)
3873 << " underlying objects.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found stores for " << Stores
.size() << " underlying objects.\n"; } } while (false)
;
3874 Changed |= vectorizeStoreChains(R);
3875 }
3876
3877 // Vectorize trees that end at reductions.
3878 Changed |= vectorizeChainsInBlock(BB, R);
3879
3880 // Vectorize the index computations of getelementptr instructions. This
3881 // is primarily intended to catch gather-like idioms ending at
3882 // non-consecutive loads.
3883 if (!GEPs.empty()) {
3884 DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found GEPs for " << GEPs
.size() << " underlying objects.\n"; } } while (false)
3885 << " underlying objects.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found GEPs for " << GEPs
.size() << " underlying objects.\n"; } } while (false)
;
3886 Changed |= vectorizeGEPIndices(BB, R);
3887 }
3888 }
3889
3890 if (Changed) {
3891 R.optimizeGatherSequence();
3892 DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: vectorized \"" << F.getName
() << "\"\n"; } } while (false)
;
3893 DEBUG(verifyFunction(F))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { verifyFunction(F); } } while (false)
;
3894 }
3895 return Changed;
3896}
3897
3898/// \brief Check that the Values in the slice in VL array are still existent in
3899/// the WeakTrackingVH array.
3900/// Vectorization of part of the VL array may cause later values in the VL array
3901/// to become invalid. We track when this has happened in the WeakTrackingVH
3902/// array.
3903static bool hasValueBeenRAUWed(ArrayRef<Value *> VL,
3904 ArrayRef<WeakTrackingVH> VH, unsigned SliceBegin,
3905 unsigned SliceSize) {
3906 VL = VL.slice(SliceBegin, SliceSize);
3907 VH = VH.slice(SliceBegin, SliceSize);
3908 return !std::equal(VL.begin(), VL.end(), VH.begin());
3909}
3910
3911bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
3912 unsigned VecRegSize) {
3913 unsigned ChainLen = Chain.size();
3914 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLendo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a store chain of length "
<< ChainLen << "\n"; } } while (false)
3915 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a store chain of length "
<< ChainLen << "\n"; } } while (false)
;
3916 unsigned Sz = R.getVectorElementSize(Chain[0]);
3917 unsigned VF = VecRegSize / Sz;
3918
3919 if (!isPowerOf2_32(Sz) || VF < 2)
3920 return false;
3921
3922 // Keep track of values that were deleted by vectorizing in the loop below.
3923 SmallVector<WeakTrackingVH, 8> TrackValues(Chain.begin(), Chain.end());
3924
3925 bool Changed = false;
3926 // Look for profitable vectorizable trees at all offsets, starting at zero.
3927 for (unsigned i = 0, e = ChainLen; i < e; ++i) {
3928 if (i + VF > e)
3929 break;
3930
3931 // Check that a previous iteration of this loop did not delete the Value.
3932 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF))
3933 continue;
3934
3935 DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << ido { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing " << VF <<
" stores at offset " << i << "\n"; } } while (false
)
3936 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing " << VF <<
" stores at offset " << i << "\n"; } } while (false
)
;
3937 ArrayRef<Value *> Operands = Chain.slice(i, VF);
3938
3939 R.buildTree(Operands);
3940 if (R.isTreeTinyAndNotFullyVectorizable())
3941 continue;
3942
3943 R.computeMinimumValueSizes();
3944
3945 int Cost = R.getTreeCost();
3946
3947 DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found cost=" << Cost <<
" for VF=" << VF << "\n"; } } while (false)
;
3948 if (Cost < -SLPCostThreshold) {
3949 DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Decided to vectorize cost=" <<
Cost << "\n"; } } while (false)
;
3950 using namespace ore;
3951 R.getORE()->emit(OptimizationRemark(SV_NAME"slp-vectorizer", "StoresVectorized",
3952 cast<StoreInst>(Chain[i]))
3953 << "Stores SLP vectorized with cost " << NV("Cost", Cost)
3954 << " and with tree size "
3955 << NV("TreeSize", R.getTreeSize()));
3956
3957 R.vectorizeTree();
3958
3959 // Move to the next bundle.
3960 i += VF - 1;
3961 Changed = true;
3962 }
3963 }
3964
3965 return Changed;
3966}
3967
3968bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
3969 BoUpSLP &R) {
3970 SetVector<StoreInst *> Heads, Tails;
3971 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
3972
3973 // We may run into multiple chains that merge into a single chain. We mark the
3974 // stores that we vectorized so that we don't visit the same store twice.
3975 BoUpSLP::ValueSet VectorizedStores;
3976 bool Changed = false;
3977
3978 // Do a quadratic search on all of the given stores and find
3979 // all of the pairs of stores that follow each other.
3980 SmallVector<unsigned, 16> IndexQueue;
3981 for (unsigned i = 0, e = Stores.size(); i < e; ++i) {
3982 IndexQueue.clear();
3983 // If a store has multiple consecutive store candidates, search Stores
3984 // array according to the sequence: from i+1 to e, then from i-1 to 0.
3985 // This is because usually pairing with immediate succeeding or preceding
3986 // candidate create the best chance to find slp vectorization opportunity.
3987 unsigned j = 0;
3988 for (j = i + 1; j < e; ++j)
3989 IndexQueue.push_back(j);
3990 for (j = i; j > 0; --j)
3991 IndexQueue.push_back(j - 1);
3992
3993 for (auto &k : IndexQueue) {
3994 if (isConsecutiveAccess(Stores[i], Stores[k], *DL, *SE)) {
3995 Tails.insert(Stores[k]);
3996 Heads.insert(Stores[i]);
3997 ConsecutiveChain[Stores[i]] = Stores[k];
3998 break;
3999 }
4000 }
4001 }
4002
4003 // For stores that start but don't end a link in the chain:
4004 for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
4005 it != e; ++it) {
4006 if (Tails.count(*it))
4007 continue;
4008
4009 // We found a store instr that starts a chain. Now follow the chain and try
4010 // to vectorize it.
4011 BoUpSLP::ValueList Operands;
4012 StoreInst *I = *it;
4013 // Collect the chain into a list.
4014 while (Tails.count(I) || Heads.count(I)) {
4015 if (VectorizedStores.count(I))
4016 break;
4017 Operands.push_back(I);
4018 // Move to the next value in the chain.
4019 I = ConsecutiveChain[I];
4020 }
4021
4022 // FIXME: Is division-by-2 the correct step? Should we assert that the
4023 // register size is a power-of-2?
4024 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize();
4025 Size /= 2) {
4026 if (vectorizeStoreChain(Operands, R, Size)) {
4027 // Mark the vectorized stores so that we don't vectorize them again.
4028 VectorizedStores.insert(Operands.begin(), Operands.end());
4029 Changed = true;
4030 break;
4031 }
4032 }
4033 }
4034
4035 return Changed;
4036}
4037
4038void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
4039
4040 // Initialize the collections. We will make a single pass over the block.
4041 Stores.clear();
4042 GEPs.clear();
4043
4044 // Visit the store and getelementptr instructions in BB and organize them in
4045 // Stores and GEPs according to the underlying objects of their pointer
4046 // operands.
4047 for (Instruction &I : *BB) {
4048
4049 // Ignore store instructions that are volatile or have a pointer operand
4050 // that doesn't point to a scalar type.
4051 if (auto *SI = dyn_cast<StoreInst>(&I)) {
4052 if (!SI->isSimple())
4053 continue;
4054 if (!isValidElementType(SI->getValueOperand()->getType()))
4055 continue;
4056 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI);
4057 }
4058
4059 // Ignore getelementptr instructions that have more than one index, a
4060 // constant index, or a pointer operand that doesn't point to a scalar
4061 // type.
4062 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
4063 auto Idx = GEP->idx_begin()->get();
4064 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
4065 continue;
4066 if (!isValidElementType(Idx->getType()))
4067 continue;
4068 if (GEP->getType()->isVectorTy())
4069 continue;
4070 GEPs[GetUnderlyingObject(GEP->getPointerOperand(), *DL)].push_back(GEP);
4071 }
4072 }
4073}
4074
4075bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
4076 if (!A || !B)
4077 return false;
4078 Value *VL[] = { A, B };
4079 return tryToVectorizeList(VL, R, None, true);
4080}
4081
4082bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
4083 ArrayRef<Value *> BuildVector,
4084 bool AllowReorder) {
4085 if (VL.size() < 2)
4086 return false;
4087
4088 DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = " << VL.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Trying to vectorize a list of length = "
<< VL.size() << ".\n"; } } while (false)
4089 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Trying to vectorize a list of length = "
<< VL.size() << ".\n"; } } while (false)
;
4090
4091 // Check that all of the parts are scalar instructions of the same type.
4092 Instruction *I0 = dyn_cast<Instruction>(VL[0]);
4093 if (!I0)
4094 return false;
4095
4096 unsigned Opcode0 = I0->getOpcode();
4097
4098 unsigned Sz = R.getVectorElementSize(I0);
4099 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz);
4100 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
4101 if (MaxVF < 2)
4102 return false;
4103
4104 for (Value *V : VL) {
4105 Type *Ty = V->getType();
4106 if (!isValidElementType(Ty))
4107 return false;
4108 Instruction *Inst = dyn_cast<Instruction>(V);
4109 if (!Inst || Inst->getOpcode() != Opcode0)
4110 return false;
4111 }
4112
4113 bool Changed = false;
4114
4115 // Keep track of values that were deleted by vectorizing in the loop below.
4116 SmallVector<WeakTrackingVH, 8> TrackValues(VL.begin(), VL.end());
4117
4118 unsigned NextInst = 0, MaxInst = VL.size();
4119 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF;
4120 VF /= 2) {
4121 // No actual vectorization should happen, if number of parts is the same as
4122 // provided vectorization factor (i.e. the scalar type is used for vector
4123 // code during codegen).
4124 auto *VecTy = VectorType::get(VL[0]->getType(), VF);
4125 if (TTI->getNumberOfParts(VecTy) == VF)
4126 continue;
4127 for (unsigned I = NextInst; I < MaxInst; ++I) {
4128 unsigned OpsWidth = 0;
4129
4130 if (I + VF > MaxInst)
4131 OpsWidth = MaxInst - I;
4132 else
4133 OpsWidth = VF;
4134
4135 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
4136 break;
4137
4138 // Check that a previous iteration of this loop did not delete the Value.
4139 if (hasValueBeenRAUWed(VL, TrackValues, I, OpsWidth))
4140 continue;
4141
4142 DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing " << OpsWidth
<< " operations " << "\n"; } } while (false)
4143 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing " << OpsWidth
<< " operations " << "\n"; } } while (false)
;
4144 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
4145
4146 ArrayRef<Value *> BuildVectorSlice;
4147 if (!BuildVector.empty())
4148 BuildVectorSlice = BuildVector.slice(I, OpsWidth);
4149
4150 R.buildTree(Ops, BuildVectorSlice);
4151 // TODO: check if we can allow reordering for more cases.
4152 if (AllowReorder && R.shouldReorder()) {
4153 // Conceptually, there is nothing actually preventing us from trying to
4154 // reorder a larger list. In fact, we do exactly this when vectorizing
4155 // reductions. However, at this point, we only expect to get here when
4156 // there are exactly two operations.
4157 assert(Ops.size() == 2)((Ops.size() == 2) ? static_cast<void> (0) : __assert_fail
("Ops.size() == 2", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4157, __PRETTY_FUNCTION__))
;
4158 assert(BuildVectorSlice.empty())((BuildVectorSlice.empty()) ? static_cast<void> (0) : __assert_fail
("BuildVectorSlice.empty()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4158, __PRETTY_FUNCTION__))
;
4159 Value *ReorderedOps[] = {Ops[1], Ops[0]};
4160 R.buildTree(ReorderedOps, None);
4161 }
4162 if (R.isTreeTinyAndNotFullyVectorizable())
4163 continue;
4164
4165 R.computeMinimumValueSizes();
4166 int Cost = R.getTreeCost();
4167
4168 if (Cost < -SLPCostThreshold) {
4169 DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Vectorizing list at cost:" <<
Cost << ".\n"; } } while (false)
;
4170 R.getORE()->emit(OptimizationRemark(SV_NAME"slp-vectorizer", "VectorizedList",
4171 cast<Instruction>(Ops[0]))
4172 << "SLP vectorized with cost " << ore::NV("Cost", Cost)
4173 << " and with tree size "
4174 << ore::NV("TreeSize", R.getTreeSize()));
4175
4176 Value *VectorizedRoot = R.vectorizeTree();
4177
4178 // Reconstruct the build vector by extracting the vectorized root. This
4179 // way we handle the case where some elements of the vector are
4180 // undefined.
4181 // (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2))
4182 if (!BuildVectorSlice.empty()) {
4183 // The insert point is the last build vector instruction. The
4184 // vectorized root will precede it. This guarantees that we get an
4185 // instruction. The vectorized tree could have been constant folded.
4186 Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back());
4187 unsigned VecIdx = 0;
4188 for (auto &V : BuildVectorSlice) {
4189 IRBuilder<NoFolder> Builder(InsertAfter->getParent(),
4190 ++BasicBlock::iterator(InsertAfter));
4191 Instruction *I = cast<Instruction>(V);
4192 assert(isa<InsertElementInst>(I) || isa<InsertValueInst>(I))((isa<InsertElementInst>(I) || isa<InsertValueInst>
(I)) ? static_cast<void> (0) : __assert_fail ("isa<InsertElementInst>(I) || isa<InsertValueInst>(I)"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4192, __PRETTY_FUNCTION__))
;
4193 Instruction *Extract =
4194 cast<Instruction>(Builder.CreateExtractElement(
4195 VectorizedRoot, Builder.getInt32(VecIdx++)));
4196 I->setOperand(1, Extract);
4197 I->removeFromParent();
4198 I->insertAfter(Extract);
4199 InsertAfter = I;
4200 }
4201 }
4202 // Move to the next bundle.
4203 I += VF - 1;
4204 NextInst = I + 1;
4205 Changed = true;
4206 }
4207 }
4208 }
4209
4210 return Changed;
4211}
4212
4213bool SLPVectorizerPass::tryToVectorize(BinaryOperator *V, BoUpSLP &R) {
4214 if (!V)
4215 return false;
4216
4217 Value *P = V->getParent();
4218
4219 // Vectorize in current basic block only.
4220 auto *Op0 = dyn_cast<Instruction>(V->getOperand(0));
4221 auto *Op1 = dyn_cast<Instruction>(V->getOperand(1));
4222 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
4223 return false;
4224
4225 // Try to vectorize V.
4226 if (tryToVectorizePair(Op0, Op1, R))
4227 return true;
4228
4229 auto *A = dyn_cast<BinaryOperator>(Op0);
4230 auto *B = dyn_cast<BinaryOperator>(Op1);
4231 // Try to skip B.
4232 if (B && B->hasOneUse()) {
4233 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
4234 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
4235 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
4236 return true;
4237 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
4238 return true;
4239 }
4240
4241 // Try to skip A.
4242 if (A && A->hasOneUse()) {
4243 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
4244 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
4245 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
4246 return true;
4247 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
4248 return true;
4249 }
4250 return false;
4251}
4252
4253/// \brief Generate a shuffle mask to be used in a reduction tree.
4254///
4255/// \param VecLen The length of the vector to be reduced.
4256/// \param NumEltsToRdx The number of elements that should be reduced in the
4257/// vector.
4258/// \param IsPairwise Whether the reduction is a pairwise or splitting
4259/// reduction. A pairwise reduction will generate a mask of
4260/// <0,2,...> or <1,3,..> while a splitting reduction will generate
4261/// <2,3, undef,undef> for a vector of 4 and NumElts = 2.
4262/// \param IsLeft True will generate a mask of even elements, odd otherwise.
4263static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
4264 bool IsPairwise, bool IsLeft,
4265 IRBuilder<> &Builder) {
4266 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask")(((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"
) ? static_cast<void> (0) : __assert_fail ("(IsPairwise || !IsLeft) && \"Don't support a <0,1,undef,...> mask\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4266, __PRETTY_FUNCTION__))
;
4267
4268 SmallVector<Constant *, 32> ShuffleMask(
4269 VecLen, UndefValue::get(Builder.getInt32Ty()));
4270
4271 if (IsPairwise)
4272 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
4273 for (unsigned i = 0; i != NumEltsToRdx; ++i)
4274 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
4275 else
4276 // Move the upper half of the vector to the lower half.
4277 for (unsigned i = 0; i != NumEltsToRdx; ++i)
4278 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
4279
4280 return ConstantVector::get(ShuffleMask);
4281}
4282
4283namespace {
4284/// Model horizontal reductions.
4285///
4286/// A horizontal reduction is a tree of reduction operations (currently add and
4287/// fadd) that has operations that can be put into a vector as its leaf.
4288/// For example, this tree:
4289///
4290/// mul mul mul mul
4291/// \ / \ /
4292/// + +
4293/// \ /
4294/// +
4295/// This tree has "mul" as its reduced values and "+" as its reduction
4296/// operations. A reduction might be feeding into a store or a binary operation
4297/// feeding a phi.
4298/// ...
4299/// \ /
4300/// +
4301/// |
4302/// phi +=
4303///
4304/// Or:
4305/// ...
4306/// \ /
4307/// +
4308/// |
4309/// *p =
4310///
4311class HorizontalReduction {
4312 SmallVector<Value *, 16> ReductionOps;
4313 SmallVector<Value *, 32> ReducedVals;
4314 // Use map vector to make stable output.
4315 MapVector<Instruction *, Value *> ExtraArgs;
4316
4317 BinaryOperator *ReductionRoot = nullptr;
4318
4319 /// The opcode of the reduction.
4320 Instruction::BinaryOps ReductionOpcode = Instruction::BinaryOpsEnd;
4321 /// The opcode of the values we perform a reduction on.
4322 unsigned ReducedValueOpcode = 0;
4323 /// Should we model this reduction as a pairwise reduction tree or a tree that
4324 /// splits the vector in halves and adds those halves.
4325 bool IsPairwiseReduction = false;
4326
4327 /// Checks if the ParentStackElem.first should be marked as a reduction
4328 /// operation with an extra argument or as extra argument itself.
4329 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
4330 Value *ExtraArg) {
4331 if (ExtraArgs.count(ParentStackElem.first)) {
4332 ExtraArgs[ParentStackElem.first] = nullptr;
4333 // We ran into something like:
4334 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
4335 // The whole ParentStackElem.first should be considered as an extra value
4336 // in this case.
4337 // Do not perform analysis of remaining operands of ParentStackElem.first
4338 // instruction, this whole instruction is an extra argument.
4339 ParentStackElem.second = ParentStackElem.first->getNumOperands();
4340 } else {
4341 // We ran into something like:
4342 // ParentStackElem.first += ... + ExtraArg + ...
4343 ExtraArgs[ParentStackElem.first] = ExtraArg;
4344 }
4345 }
4346
4347public:
4348 HorizontalReduction() = default;
4349
4350 /// \brief Try to find a reduction tree.
4351 bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B) {
4352 assert((!Phi || is_contained(Phi->operands(), B)) &&(((!Phi || is_contained(Phi->operands(), B)) && "Thi phi needs to use the binary operator"
) ? static_cast<void> (0) : __assert_fail ("(!Phi || is_contained(Phi->operands(), B)) && \"Thi phi needs to use the binary operator\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4353, __PRETTY_FUNCTION__))
4353 "Thi phi needs to use the binary operator")(((!Phi || is_contained(Phi->operands(), B)) && "Thi phi needs to use the binary operator"
) ? static_cast<void> (0) : __assert_fail ("(!Phi || is_contained(Phi->operands(), B)) && \"Thi phi needs to use the binary operator\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4353, __PRETTY_FUNCTION__))
;
4354
4355 // We could have a initial reductions that is not an add.
4356 // r *= v1 + v2 + v3 + v4
4357 // In such a case start looking for a tree rooted in the first '+'.
4358 if (Phi) {
4359 if (B->getOperand(0) == Phi) {
4360 Phi = nullptr;
4361 B = dyn_cast<BinaryOperator>(B->getOperand(1));
4362 } else if (B->getOperand(1) == Phi) {
4363 Phi = nullptr;
4364 B = dyn_cast<BinaryOperator>(B->getOperand(0));
4365 }
4366 }
4367
4368 if (!B)
4369 return false;
4370
4371 Type *Ty = B->getType();
4372 if (!isValidElementType(Ty))
4373 return false;
4374
4375 ReductionOpcode = B->getOpcode();
4376 ReducedValueOpcode = 0;
4377 ReductionRoot = B;
4378
4379 // We currently only support adds.
4380 if ((ReductionOpcode != Instruction::Add &&
4381 ReductionOpcode != Instruction::FAdd) ||
4382 !B->isAssociative())
4383 return false;
4384
4385 // Post order traverse the reduction tree starting at B. We only handle true
4386 // trees containing only binary operators or selects.
4387 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
4388 Stack.push_back(std::make_pair(B, 0));
4389 while (!Stack.empty()) {
4390 Instruction *TreeN = Stack.back().first;
4391 unsigned EdgeToVist = Stack.back().second++;
4392 bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode;
4393
4394 // Postorder vist.
4395 if (EdgeToVist == 2 || IsReducedValue) {
4396 if (IsReducedValue)
4397 ReducedVals.push_back(TreeN);
4398 else {
4399 auto I = ExtraArgs.find(TreeN);
4400 if (I != ExtraArgs.end() && !I->second) {
4401 // Check if TreeN is an extra argument of its parent operation.
4402 if (Stack.size() <= 1) {
4403 // TreeN can't be an extra argument as it is a root reduction
4404 // operation.
4405 return false;
4406 }
4407 // Yes, TreeN is an extra argument, do not add it to a list of
4408 // reduction operations.
4409 // Stack[Stack.size() - 2] always points to the parent operation.
4410 markExtraArg(Stack[Stack.size() - 2], TreeN);
4411 ExtraArgs.erase(TreeN);
4412 } else
4413 ReductionOps.push_back(TreeN);
4414 }
4415 // Retract.
4416 Stack.pop_back();
4417 continue;
4418 }
4419
4420 // Visit left or right.
4421 Value *NextV = TreeN->getOperand(EdgeToVist);
4422 if (NextV != Phi) {
4423 auto *I = dyn_cast<Instruction>(NextV);
4424 // Continue analysis if the next operand is a reduction operation or
4425 // (possibly) a reduced value. If the reduced value opcode is not set,
4426 // the first met operation != reduction operation is considered as the
4427 // reduced value class.
4428 if (I && (!ReducedValueOpcode || I->getOpcode() == ReducedValueOpcode ||
4429 I->getOpcode() == ReductionOpcode)) {
4430 // Only handle trees in the current basic block.
4431 if (I->getParent() != B->getParent()) {
4432 // I is an extra argument for TreeN (its parent operation).
4433 markExtraArg(Stack.back(), I);
4434 continue;
4435 }
4436
4437 // Each tree node needs to have one user except for the ultimate
4438 // reduction.
4439 if (!I->hasOneUse() && I != B) {
4440 // I is an extra argument for TreeN (its parent operation).
4441 markExtraArg(Stack.back(), I);
4442 continue;
4443 }
4444
4445 if (I->getOpcode() == ReductionOpcode) {
4446 // We need to be able to reassociate the reduction operations.
4447 if (!I->isAssociative()) {
4448 // I is an extra argument for TreeN (its parent operation).
4449 markExtraArg(Stack.back(), I);
4450 continue;
4451 }
4452 } else if (ReducedValueOpcode &&
4453 ReducedValueOpcode != I->getOpcode()) {
4454 // Make sure that the opcodes of the operations that we are going to
4455 // reduce match.
4456 // I is an extra argument for TreeN (its parent operation).
4457 markExtraArg(Stack.back(), I);
4458 continue;
4459 } else if (!ReducedValueOpcode)
4460 ReducedValueOpcode = I->getOpcode();
4461
4462 Stack.push_back(std::make_pair(I, 0));
4463 continue;
4464 }
4465 }
4466 // NextV is an extra argument for TreeN (its parent operation).
4467 markExtraArg(Stack.back(), NextV);
4468 }
4469 return true;
4470 }
4471
4472 /// \brief Attempt to vectorize the tree found by
4473 /// matchAssociativeReduction.
4474 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
4475 if (ReducedVals.empty())
4476 return false;
4477
4478 // If there is a sufficient number of reduction values, reduce
4479 // to a nearby power-of-2. Can safely generate oversized
4480 // vectors and rely on the backend to split them to legal sizes.
4481 unsigned NumReducedVals = ReducedVals.size();
4482 if (NumReducedVals < 4)
4483 return false;
4484
4485 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);
4486
4487 Value *VectorizedTree = nullptr;
4488 IRBuilder<> Builder(ReductionRoot);
4489 FastMathFlags Unsafe;
4490 Unsafe.setUnsafeAlgebra();
4491 Builder.setFastMathFlags(Unsafe);
4492 unsigned i = 0;
4493
4494 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
4495 // The same extra argument may be used several time, so log each attempt
4496 // to use it.
4497 for (auto &Pair : ExtraArgs)
4498 ExternallyUsedValues[Pair.second].push_back(Pair.first);
4499 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
4500 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth);
4501 V.buildTree(VL, ExternallyUsedValues, ReductionOps);
4502 if (V.shouldReorder()) {
4503 SmallVector<Value *, 8> Reversed(VL.rbegin(), VL.rend());
4504 V.buildTree(Reversed, ExternallyUsedValues, ReductionOps);
4505 }
4506 if (V.isTreeTinyAndNotFullyVectorizable())
4507 break;
4508
4509 V.computeMinimumValueSizes();
4510
4511 // Estimate cost.
4512 int Cost =
4513 V.getTreeCost() + getReductionCost(TTI, ReducedVals[i], ReduxWidth);
4514 if (Cost >= -SLPCostThreshold)
4515 break;
4516
4517 DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Costdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
<< Cost << ". (HorRdx)\n"; } } while (false)
4518 << ". (HorRdx)\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
<< Cost << ". (HorRdx)\n"; } } while (false)
;
4519 auto *I0 = cast<Instruction>(VL[0]);
4520 V.getORE()->emit(
4521 OptimizationRemark(SV_NAME"slp-vectorizer", "VectorizedHorizontalReduction", I0)
4522 << "Vectorized horizontal reduction with cost "
4523 << ore::NV("Cost", Cost) << " and with tree size "
4524 << ore::NV("TreeSize", V.getTreeSize()));
4525
4526 // Vectorize a tree.
4527 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
4528 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);
4529
4530 // Emit a reduction.
4531 Value *ReducedSubTree =
4532 emitReduction(VectorizedRoot, Builder, ReduxWidth, ReductionOps, TTI);
4533 if (VectorizedTree) {
4534 Builder.SetCurrentDebugLocation(Loc);
4535 VectorizedTree = Builder.CreateBinOp(ReductionOpcode, VectorizedTree,
4536 ReducedSubTree, "bin.rdx");
4537 propagateIRFlags(VectorizedTree, ReductionOps);
4538 } else
4539 VectorizedTree = ReducedSubTree;
4540 i += ReduxWidth;
4541 ReduxWidth = PowerOf2Floor(NumReducedVals - i);
4542 }
4543
4544 if (VectorizedTree) {
4545 // Finish the reduction.
4546 for (; i < NumReducedVals; ++i) {
4547 auto *I = cast<Instruction>(ReducedVals[i]);
4548 Builder.SetCurrentDebugLocation(I->getDebugLoc());
4549 VectorizedTree =
4550 Builder.CreateBinOp(ReductionOpcode, VectorizedTree, I);
4551 propagateIRFlags(VectorizedTree, ReductionOps);
4552 }
4553 for (auto &Pair : ExternallyUsedValues) {
4554 assert(!Pair.second.empty() &&((!Pair.second.empty() && "At least one DebugLoc must be inserted"
) ? static_cast<void> (0) : __assert_fail ("!Pair.second.empty() && \"At least one DebugLoc must be inserted\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4555, __PRETTY_FUNCTION__))
4555 "At least one DebugLoc must be inserted")((!Pair.second.empty() && "At least one DebugLoc must be inserted"
) ? static_cast<void> (0) : __assert_fail ("!Pair.second.empty() && \"At least one DebugLoc must be inserted\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4555, __PRETTY_FUNCTION__))
;
4556 // Add each externally used value to the final reduction.
4557 for (auto *I : Pair.second) {
4558 Builder.SetCurrentDebugLocation(I->getDebugLoc());
4559 VectorizedTree = Builder.CreateBinOp(ReductionOpcode, VectorizedTree,
4560 Pair.first, "bin.extra");
4561 propagateIRFlags(VectorizedTree, I);
4562 }
4563 }
4564 // Update users.
4565 ReductionRoot->replaceAllUsesWith(VectorizedTree);
4566 }
4567 return VectorizedTree != nullptr;
4568 }
4569
4570 unsigned numReductionValues() const {
4571 return ReducedVals.size();
4572 }
4573
4574private:
4575 /// \brief Calculate the cost of a reduction.
4576 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal,
4577 unsigned ReduxWidth) {
4578 Type *ScalarTy = FirstReducedVal->getType();
4579 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
4580
4581 int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true);
4582 int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false);
4583
4584 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
4585 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
4586
4587 int ScalarReduxCost =
4588 (ReduxWidth - 1) *
4589 TTI->getArithmeticInstrCost(ReductionOpcode, ScalarTy);
4590
4591 DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCostdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << VecReduxCost
- ScalarReduxCost << " for reduction that starts with "
<< *FirstReducedVal << " (It is a " << (IsPairwiseReduction
? "pairwise" : "splitting") << " reduction)\n"; } } while
(false)
4592 << " for reduction that starts with " << *FirstReducedValdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << VecReduxCost
- ScalarReduxCost << " for reduction that starts with "
<< *FirstReducedVal << " (It is a " << (IsPairwiseReduction
? "pairwise" : "splitting") << " reduction)\n"; } } while
(false)
4593 << " (It is a "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << VecReduxCost
- ScalarReduxCost << " for reduction that starts with "
<< *FirstReducedVal << " (It is a " << (IsPairwiseReduction
? "pairwise" : "splitting") << " reduction)\n"; } } while
(false)
4594 << (IsPairwiseReduction ? "pairwise" : "splitting")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << VecReduxCost
- ScalarReduxCost << " for reduction that starts with "
<< *FirstReducedVal << " (It is a " << (IsPairwiseReduction
? "pairwise" : "splitting") << " reduction)\n"; } } while
(false)
4595 << " reduction)\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << VecReduxCost
- ScalarReduxCost << " for reduction that starts with "
<< *FirstReducedVal << " (It is a " << (IsPairwiseReduction
? "pairwise" : "splitting") << " reduction)\n"; } } while
(false)
;
4596
4597 return VecReduxCost - ScalarReduxCost;
4598 }
4599
4600 /// \brief Emit a horizontal reduction of the vectorized value.
4601 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
4602 unsigned ReduxWidth, ArrayRef<Value *> RedOps,
4603 const TargetTransformInfo *TTI) {
4604 assert(VectorizedValue && "Need to have a vectorized tree node")((VectorizedValue && "Need to have a vectorized tree node"
) ? static_cast<void> (0) : __assert_fail ("VectorizedValue && \"Need to have a vectorized tree node\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4604, __PRETTY_FUNCTION__))
;
4605 assert(isPowerOf2_32(ReduxWidth) &&((isPowerOf2_32(ReduxWidth) && "We only handle power-of-two reductions for now"
) ? static_cast<void> (0) : __assert_fail ("isPowerOf2_32(ReduxWidth) && \"We only handle power-of-two reductions for now\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4606, __PRETTY_FUNCTION__))
4606 "We only handle power-of-two reductions for now")((isPowerOf2_32(ReduxWidth) && "We only handle power-of-two reductions for now"
) ? static_cast<void> (0) : __assert_fail ("isPowerOf2_32(ReduxWidth) && \"We only handle power-of-two reductions for now\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 4606, __PRETTY_FUNCTION__))
;
4607
4608 if (!IsPairwiseReduction)
4609 return createSimpleTargetReduction(
4610 Builder, TTI, ReductionOpcode, VectorizedValue,
4611 TargetTransformInfo::ReductionFlags(), RedOps);
4612
4613 Value *TmpVec = VectorizedValue;
4614 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
4615 Value *LeftMask =
4616 createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
4617 Value *RightMask =
4618 createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
4619
4620 Value *LeftShuf = Builder.CreateShuffleVector(
4621 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
4622 Value *RightShuf = Builder.CreateShuffleVector(
4623 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
4624 "rdx.shuf.r");
4625 TmpVec =
4626 Builder.CreateBinOp(ReductionOpcode, LeftShuf, RightShuf, "bin.rdx");
4627 propagateIRFlags(TmpVec, RedOps);
4628 }
4629
4630 // The result is in the first element of the vector.
4631 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
4632 }
4633};
4634} // end anonymous namespace
4635
4636/// \brief Recognize construction of vectors like
4637/// %ra = insertelement <4 x float> undef, float %s0, i32 0
4638/// %rb = insertelement <4 x float> %ra, float %s1, i32 1
4639/// %rc = insertelement <4 x float> %rb, float %s2, i32 2
4640/// %rd = insertelement <4 x float> %rc, float %s3, i32 3
4641///
4642/// Returns true if it matches
4643///
4644static bool findBuildVector(InsertElementInst *FirstInsertElem,
4645 SmallVectorImpl<Value *> &BuildVector,
4646 SmallVectorImpl<Value *> &BuildVectorOpds) {
4647 if (!isa<UndefValue>(FirstInsertElem->getOperand(0)))
4648 return false;
4649
4650 InsertElementInst *IE = FirstInsertElem;
4651 while (true) {
4652 BuildVector.push_back(IE);
4653 BuildVectorOpds.push_back(IE->getOperand(1));
4654
4655 if (IE->use_empty())
4656 return false;
4657
4658 InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back());
4659 if (!NextUse)
4660 return true;
4661
4662 // If this isn't the final use, make sure the next insertelement is the only
4663 // use. It's OK if the final constructed vector is used multiple times
4664 if (!IE->hasOneUse())
4665 return false;
4666
4667 IE = NextUse;
4668 }
4669
4670 return false;
4671}
4672
4673/// \brief Like findBuildVector, but looks backwards for construction of aggregate.
4674///
4675/// \return true if it matches.
4676static bool findBuildAggregate(InsertValueInst *IV,
4677 SmallVectorImpl<Value *> &BuildVector,
4678 SmallVectorImpl<Value *> &BuildVectorOpds) {
4679 Value *V;
4680 do {
4681 BuildVector.push_back(IV);
4682 BuildVectorOpds.push_back(IV->getInsertedValueOperand());
4683 V = IV->getAggregateOperand();
4684 if (isa<UndefValue>(V))
4685 break;
4686 IV = dyn_cast<InsertValueInst>(V);
4687 if (!IV || !IV->hasOneUse())
4688 return false;
4689 } while (true);
4690 std::reverse(BuildVector.begin(), BuildVector.end());
4691 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end());
4692 return true;
4693}
4694
4695static bool PhiTypeSorterFunc(Value *V, Value *V2) {
4696 return V->getType() < V2->getType();
4697}
4698
4699/// \brief Try and get a reduction value from a phi node.
4700///
4701/// Given a phi node \p P in a block \p ParentBB, consider possible reductions
4702/// if they come from either \p ParentBB or a containing loop latch.
4703///
4704/// \returns A candidate reduction value if possible, or \code nullptr \endcode
4705/// if not possible.
4706static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
4707 BasicBlock *ParentBB, LoopInfo *LI) {
4708 // There are situations where the reduction value is not dominated by the
4709 // reduction phi. Vectorizing such cases has been reported to cause
4710 // miscompiles. See PR25787.
4711 auto DominatedReduxValue = [&](Value *R) {
4712 return (
4713 dyn_cast<Instruction>(R) &&
4714 DT->dominates(P->getParent(), dyn_cast<Instruction>(R)->getParent()));
4715 };
4716
4717 Value *Rdx = nullptr;
4718
4719 // Return the incoming value if it comes from the same BB as the phi node.
4720 if (P->getIncomingBlock(0) == ParentBB) {
4721 Rdx = P->getIncomingValue(0);
4722 } else if (P->getIncomingBlock(1) == ParentBB) {
4723 Rdx = P->getIncomingValue(1);
4724 }
4725
4726 if (Rdx && DominatedReduxValue(Rdx))
4727 return Rdx;
4728
4729 // Otherwise, check whether we have a loop latch to look at.
4730 Loop *BBL = LI->getLoopFor(ParentBB);
4731 if (!BBL)
4732 return nullptr;
4733 BasicBlock *BBLatch = BBL->getLoopLatch();
4734 if (!BBLatch)
4735 return nullptr;
4736
4737 // There is a loop latch, return the incoming value if it comes from
4738 // that. This reduction pattern occasionally turns up.
4739 if (P->getIncomingBlock(0) == BBLatch) {
4740 Rdx = P->getIncomingValue(0);
4741 } else if (P->getIncomingBlock(1) == BBLatch) {
4742 Rdx = P->getIncomingValue(1);
4743 }
4744
4745 if (Rdx && DominatedReduxValue(Rdx))
4746 return Rdx;
4747
4748 return nullptr;
4749}
4750
4751/// Attempt to reduce a horizontal reduction.
4752/// If it is legal to match a horizontal reduction feeding the phi node \a P
4753/// with reduction operators \a Root (or one of its operands) in a basic block
4754/// \a BB, then check if it can be done. If horizontal reduction is not found
4755/// and root instruction is a binary operation, vectorization of the operands is
4756/// attempted.
4757/// \returns true if a horizontal reduction was matched and reduced or operands
4758/// of one of the binary instruction were vectorized.
4759/// \returns false if a horizontal reduction was not matched (or not possible)
4760/// or no vectorization of any binary operation feeding \a Root instruction was
4761/// performed.
4762static bool tryToVectorizeHorReductionOrInstOperands(
4763 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
4764 TargetTransformInfo *TTI,
4765 const function_ref<bool(BinaryOperator *, BoUpSLP &)> Vectorize) {
4766 if (!ShouldVectorizeHor)
4767 return false;
4768
4769 if (!Root)
4770 return false;
4771
4772 if (Root->getParent() != BB)
4773 return false;
4774 // Start analysis starting from Root instruction. If horizontal reduction is
4775 // found, try to vectorize it. If it is not a horizontal reduction or
4776 // vectorization is not possible or not effective, and currently analyzed
4777 // instruction is a binary operation, try to vectorize the operands, using
4778 // pre-order DFS traversal order. If the operands were not vectorized, repeat
4779 // the same procedure considering each operand as a possible root of the
4780 // horizontal reduction.
4781 // Interrupt the process if the Root instruction itself was vectorized or all
4782 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
4783 SmallVector<std::pair<WeakTrackingVH, unsigned>, 8> Stack(1, {Root, 0});
4784 SmallSet<Value *, 8> VisitedInstrs;
4785 bool Res = false;
4786 while (!Stack.empty()) {
4787 Value *V;
4788 unsigned Level;
4789 std::tie(V, Level) = Stack.pop_back_val();
4790 if (!V)
4791 continue;
4792 auto *Inst = dyn_cast<Instruction>(V);
4793 if (!Inst || isa<PHINode>(Inst))
4794 continue;
4795 if (auto *BI = dyn_cast<BinaryOperator>(Inst)) {
4796 HorizontalReduction HorRdx;
4797 if (HorRdx.matchAssociativeReduction(P, BI)) {
4798 if (HorRdx.tryToReduce(R, TTI)) {
4799 Res = true;
4800 // Set P to nullptr to avoid re-analysis of phi node in
4801 // matchAssociativeReduction function unless this is the root node.
4802 P = nullptr;
4803 continue;
4804 }
4805 }
4806 if (P) {
4807 Inst = dyn_cast<Instruction>(BI->getOperand(0));
4808 if (Inst == P)
4809 Inst = dyn_cast<Instruction>(BI->getOperand(1));
4810 if (!Inst) {
4811 // Set P to nullptr to avoid re-analysis of phi node in
4812 // matchAssociativeReduction function unless this is the root node.
4813 P = nullptr;
4814 continue;
4815 }
4816 }
4817 }
4818 // Set P to nullptr to avoid re-analysis of phi node in
4819 // matchAssociativeReduction function unless this is the root node.
4820 P = nullptr;
4821 if (Vectorize(dyn_cast<BinaryOperator>(Inst), R)) {
4822 Res = true;
4823 continue;
4824 }
4825
4826 // Try to vectorize operands.
4827 if (++Level < RecursionMaxDepth)
4828 for (auto *Op : Inst->operand_values())
4829 Stack.emplace_back(Op, Level);
4830 }
4831 return Res;
4832}
4833
4834bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
4835 BasicBlock *BB, BoUpSLP &R,
4836 TargetTransformInfo *TTI) {
4837 if (!V)
4838 return false;
4839 auto *I = dyn_cast<Instruction>(V);
4840 if (!I)
4841 return false;
4842
4843 if (!isa<BinaryOperator>(I))
4844 P = nullptr;
4845 // Try to match and vectorize a horizontal reduction.
4846 return tryToVectorizeHorReductionOrInstOperands(
4847 P, I, BB, R, TTI, [this](BinaryOperator *BI, BoUpSLP &R) -> bool {
4848 return tryToVectorize(BI, R);
4849 });
4850}
4851
4852bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
4853 bool Changed = false;
4854 SmallVector<Value *, 4> Incoming;
4855 SmallSet<Value *, 16> VisitedInstrs;
4856
4857 bool HaveVectorizedPhiNodes = true;
4858 while (HaveVectorizedPhiNodes) {
4859 HaveVectorizedPhiNodes = false;
4860
4861 // Collect the incoming values from the PHIs.
4862 Incoming.clear();
4863 for (Instruction &I : *BB) {
4864 PHINode *P = dyn_cast<PHINode>(&I);
4865 if (!P)
4866 break;
4867
4868 if (!VisitedInstrs.count(P))
4869 Incoming.push_back(P);
4870 }
4871
4872 // Sort by type.
4873 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc);
4874
4875 // Try to vectorize elements base on their type.
4876 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
4877 E = Incoming.end();
4878 IncIt != E;) {
4879
4880 // Look for the next elements with the same type.
4881 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
4882 while (SameTypeIt != E &&
4883 (*SameTypeIt)->getType() == (*IncIt)->getType()) {
4884 VisitedInstrs.insert(*SameTypeIt);
4885 ++SameTypeIt;
4886 }
4887
4888 // Try to vectorize them.
4889 unsigned NumElts = (SameTypeIt - IncIt);
4890 DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { errs() << "SLP: Trying to vectorize starting at PHIs ("
<< NumElts << ")\n"; } } while (false)
;
4891 // The order in which the phi nodes appear in the program does not matter.
4892 // So allow tryToVectorizeList to reorder them if it is beneficial. This
4893 // is done when there are exactly two elements since tryToVectorizeList
4894 // asserts that there are only two values when AllowReorder is true.
4895 bool AllowReorder = NumElts == 2;
4896 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R,
4897 None, AllowReorder)) {
4898 // Success start over because instructions might have been changed.
4899 HaveVectorizedPhiNodes = true;
4900 Changed = true;
4901 break;
4902 }
4903
4904 // Start over at the next instruction of a different type (or the end).
4905 IncIt = SameTypeIt;
4906 }
4907 }
4908
4909 VisitedInstrs.clear();
4910
4911 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) {
4912 // We may go through BB multiple times so skip the one we have checked.
4913 if (!VisitedInstrs.insert(&*it).second)
4914 continue;
4915
4916 if (isa<DbgInfoIntrinsic>(it))
4917 continue;
4918
4919 // Try to vectorize reductions that use PHINodes.
4920 if (PHINode *P = dyn_cast<PHINode>(it)) {
4921 // Check that the PHI is a reduction PHI.
4922 if (P->getNumIncomingValues() != 2)
4923 return Changed;
4924
4925 // Try to match and vectorize a horizontal reduction.
4926 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
4927 TTI)) {
4928 Changed = true;
4929 it = BB->begin();
4930 e = BB->end();
4931 continue;
4932 }
4933 continue;
4934 }
4935
4936 if (ShouldStartVectorizeHorAtStore) {
4937 if (StoreInst *SI = dyn_cast<StoreInst>(it)) {
4938 // Try to match and vectorize a horizontal reduction.
4939 if (vectorizeRootInstruction(nullptr, SI->getValueOperand(), BB, R,
4940 TTI)) {
4941 Changed = true;
4942 it = BB->begin();
4943 e = BB->end();
4944 continue;
4945 }
4946 }
4947 }
4948
4949 // Try to vectorize horizontal reductions feeding into a return.
4950 if (ReturnInst *RI = dyn_cast<ReturnInst>(it)) {
4951 if (RI->getNumOperands() != 0) {
4952 // Try to match and vectorize a horizontal reduction.
4953 if (vectorizeRootInstruction(nullptr, RI->getOperand(0), BB, R, TTI)) {
4954 Changed = true;
4955 it = BB->begin();
4956 e = BB->end();
4957 continue;
4958 }
4959 }
4960 }
4961
4962 // Try to vectorize trees that start at compare instructions.
4963 if (CmpInst *CI = dyn_cast<CmpInst>(it)) {
4964 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) {
4965 Changed = true;
4966 // We would like to start over since some instructions are deleted
4967 // and the iterator may become invalid value.
4968 it = BB->begin();
4969 e = BB->end();
4970 continue;
4971 }
4972
4973 for (int I = 0; I < 2; ++I) {
4974 if (vectorizeRootInstruction(nullptr, CI->getOperand(I), BB, R, TTI)) {
4975 Changed = true;
4976 // We would like to start over since some instructions are deleted
4977 // and the iterator may become invalid value.
4978 it = BB->begin();
4979 e = BB->end();
4980 break;
4981 }
4982 }
4983 continue;
4984 }
4985
4986 // Try to vectorize trees that start at insertelement instructions.
4987 if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) {
4988 SmallVector<Value *, 16> BuildVector;
4989 SmallVector<Value *, 16> BuildVectorOpds;
4990 if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds))
4991 continue;
4992
4993 // Vectorize starting with the build vector operands ignoring the
4994 // BuildVector instructions for the purpose of scheduling and user
4995 // extraction.
4996 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) {
4997 Changed = true;
4998 it = BB->begin();
4999 e = BB->end();
5000 }
5001
5002 continue;
5003 }
5004
5005 // Try to vectorize trees that start at insertvalue instructions feeding into
5006 // a store.
5007 if (StoreInst *SI = dyn_cast<StoreInst>(it)) {
5008 if (InsertValueInst *LastInsertValue = dyn_cast<InsertValueInst>(SI->getValueOperand())) {
5009 const DataLayout &DL = BB->getModule()->getDataLayout();
5010 if (R.canMapToVector(SI->getValueOperand()->getType(), DL)) {
5011 SmallVector<Value *, 16> BuildVector;
5012 SmallVector<Value *, 16> BuildVectorOpds;
5013 if (!findBuildAggregate(LastInsertValue, BuildVector, BuildVectorOpds))
5014 continue;
5015
5016 DEBUG(dbgs() << "SLP: store of array mappable to vector: " << *SI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: store of array mappable to vector: "
<< *SI << "\n"; } } while (false)
;
5017 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector, false)) {
5018 Changed = true;
5019 it = BB->begin();
5020 e = BB->end();
5021 }
5022 continue;
5023 }
5024 }
5025 }
5026 }
5027
5028 return Changed;
5029}
5030
5031bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
5032 auto Changed = false;
5033 for (auto &Entry : GEPs) {
5034
5035 // If the getelementptr list has fewer than two elements, there's nothing
5036 // to do.
5037 if (Entry.second.size() < 2)
5038 continue;
5039
5040 DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a getelementptr list of length "
<< Entry.second.size() << ".\n"; } } while (false
)
5041 << Entry.second.size() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a getelementptr list of length "
<< Entry.second.size() << ".\n"; } } while (false
)
;
5042
5043 // We process the getelementptr list in chunks of 16 (like we do for
5044 // stores) to minimize compile-time.
5045 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) {
5046 auto Len = std::min<unsigned>(BE - BI, 16);
5047 auto GEPList = makeArrayRef(&Entry.second[BI], Len);
5048
5049 // Initialize a set a candidate getelementptrs. Note that we use a
5050 // SetVector here to preserve program order. If the index computations
5051 // are vectorizable and begin with loads, we want to minimize the chance
5052 // of having to reorder them later.
5053 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
5054
5055 // Some of the candidates may have already been vectorized after we
5056 // initially collected them. If so, the WeakTrackingVHs will have
5057 // nullified the
5058 // values, so remove them from the set of candidates.
5059 Candidates.remove(nullptr);
5060
5061 // Remove from the set of candidates all pairs of getelementptrs with
5062 // constant differences. Such getelementptrs are likely not good
5063 // candidates for vectorization in a bottom-up phase since one can be
5064 // computed from the other. We also ensure all candidate getelementptr
5065 // indices are unique.
5066 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
5067 auto *GEPI = cast<GetElementPtrInst>(GEPList[I]);
5068 if (!Candidates.count(GEPI))
5069 continue;
5070 auto *SCEVI = SE->getSCEV(GEPList[I]);
5071 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
5072 auto *GEPJ = cast<GetElementPtrInst>(GEPList[J]);
5073 auto *SCEVJ = SE->getSCEV(GEPList[J]);
5074 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
5075 Candidates.remove(GEPList[I]);
5076 Candidates.remove(GEPList[J]);
5077 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
5078 Candidates.remove(GEPList[J]);
5079 }
5080 }
5081 }
5082
5083 // We break out of the above computation as soon as we know there are
5084 // fewer than two candidates remaining.
5085 if (Candidates.size() < 2)
5086 continue;
5087
5088 // Add the single, non-constant index of each candidate to the bundle. We
5089 // ensured the indices met these constraints when we originally collected
5090 // the getelementptrs.
5091 SmallVector<Value *, 16> Bundle(Candidates.size());
5092 auto BundleIndex = 0u;
5093 for (auto *V : Candidates) {
5094 auto *GEP = cast<GetElementPtrInst>(V);
5095 auto *GEPIdx = GEP->idx_begin()->get();
5096 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx))((GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx
)) ? static_cast<void> (0) : __assert_fail ("GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx)"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 5096, __PRETTY_FUNCTION__))
;
5097 Bundle[BundleIndex++] = GEPIdx;
5098 }
5099
5100 // Try and vectorize the indices. We are currently only interested in
5101 // gather-like cases of the form:
5102 //
5103 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
5104 //
5105 // where the loads of "a", the loads of "b", and the subtractions can be
5106 // performed in parallel. It's likely that detecting this pattern in a
5107 // bottom-up phase will be simpler and less costly than building a
5108 // full-blown top-down phase beginning at the consecutive loads.
5109 Changed |= tryToVectorizeList(Bundle, R);
5110 }
5111 }
5112 return Changed;
5113}
5114
5115bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
5116 bool Changed = false;
5117 // Attempt to sort and vectorize each of the store-groups.
5118 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e;
5119 ++it) {
5120 if (it->second.size() < 2)
5121 continue;
5122
5123 DEBUG(dbgs() << "SLP: Analyzing a store chain of length "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a store chain of length "
<< it->second.size() << ".\n"; } } while (false
)
5124 << it->second.size() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a store chain of length "
<< it->second.size() << ".\n"; } } while (false
)
;
5125
5126 // Process the stores in chunks of 16.
5127 // TODO: The limit of 16 inhibits greater vectorization factors.
5128 // For example, AVX2 supports v32i8. Increasing this limit, however,
5129 // may cause a significant compile-time increase.
5130 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) {
5131 unsigned Len = std::min<unsigned>(CE - CI, 16);
5132 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R);
5133 }
5134 }
5135 return Changed;
5136}
5137
5138char SLPVectorizer::ID = 0;
5139static const char lv_name[] = "SLP Vectorizer";
5140INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)static void *initializeSLPVectorizerPassOnce(PassRegistry &
Registry) {
5141INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)initializeAAResultsWrapperPassPass(Registry);
5142INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)initializeTargetTransformInfoWrapperPassPass(Registry);
5143INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)initializeAssumptionCacheTrackerPass(Registry);
5144INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)initializeScalarEvolutionWrapperPassPass(Registry);
5145INITIALIZE_PASS_DEPENDENCY(LoopSimplify)initializeLoopSimplifyPass(Registry);
5146INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)initializeDemandedBitsWrapperPassPass(Registry);
5147INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)initializeOptimizationRemarkEmitterWrapperPassPass(Registry);
5148INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)PassInfo *PI = new PassInfo( lv_name, "slp-vectorizer", &
SLPVectorizer::ID, PassInfo::NormalCtor_t(callDefaultCtor<
SLPVectorizer>), false, false); Registry.registerPass(*PI,
true); return PI; } static llvm::once_flag InitializeSLPVectorizerPassFlag
; void llvm::initializeSLPVectorizerPass(PassRegistry &Registry
) { llvm::call_once(InitializeSLPVectorizerPassFlag, initializeSLPVectorizerPassOnce
, std::ref(Registry)); }
5149
5150namespace llvm {
5151Pass *createSLPVectorizerPass() { return new SLPVectorizer(); }
5152}