Bug Summary

File:lib/Transforms/Vectorize/SLPVectorizer.cpp
Location:line 2742, column 11
Description:Called C++ object pointer is null

Annotated Source Code

1//===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9// This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10// stores that can be put together into vector-stores. Next, it attempts to
11// construct vectorizable tree using the use-def chains. If a profitable tree
12// was found, the SLP vectorizer performs vectorization on the tree.
13//
14// The pass is inspired by the work described in the paper:
15// "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
16//
17//===----------------------------------------------------------------------===//
18#include "llvm/Transforms/Vectorize.h"
19#include "llvm/ADT/MapVector.h"
20#include "llvm/ADT/Optional.h"
21#include "llvm/ADT/PostOrderIterator.h"
22#include "llvm/ADT/SetVector.h"
23#include "llvm/ADT/Statistic.h"
24#include "llvm/Analysis/AliasAnalysis.h"
25#include "llvm/Analysis/AssumptionCache.h"
26#include "llvm/Analysis/CodeMetrics.h"
27#include "llvm/Analysis/LoopInfo.h"
28#include "llvm/Analysis/ScalarEvolution.h"
29#include "llvm/Analysis/ScalarEvolutionExpressions.h"
30#include "llvm/Analysis/TargetTransformInfo.h"
31#include "llvm/Analysis/ValueTracking.h"
32#include "llvm/IR/DataLayout.h"
33#include "llvm/IR/Dominators.h"
34#include "llvm/IR/IRBuilder.h"
35#include "llvm/IR/Instructions.h"
36#include "llvm/IR/IntrinsicInst.h"
37#include "llvm/IR/Module.h"
38#include "llvm/IR/NoFolder.h"
39#include "llvm/IR/Type.h"
40#include "llvm/IR/Value.h"
41#include "llvm/IR/Verifier.h"
42#include "llvm/Pass.h"
43#include "llvm/Support/CommandLine.h"
44#include "llvm/Support/Debug.h"
45#include "llvm/Support/raw_ostream.h"
46#include "llvm/Analysis/VectorUtils.h"
47#include <algorithm>
48#include <map>
49#include <memory>
50
51using namespace llvm;
52
53#define SV_NAME"slp-vectorizer" "slp-vectorizer"
54#define DEBUG_TYPE"SLP" "SLP"
55
56STATISTIC(NumVectorInstructions, "Number of vector instructions generated")static llvm::Statistic NumVectorInstructions = { "SLP", "Number of vector instructions generated"
, 0, 0 }
;
57
58static cl::opt<int>
59 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
60 cl::desc("Only vectorize if you gain more than this "
61 "number "));
62
63static cl::opt<bool>
64ShouldVectorizeHor("slp-vectorize-hor", cl::init(false), cl::Hidden,
65 cl::desc("Attempt to vectorize horizontal reductions"));
66
67static cl::opt<bool> ShouldStartVectorizeHorAtStore(
68 "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
69 cl::desc(
70 "Attempt to vectorize horizontal reductions feeding into a store"));
71
72static cl::opt<int>
73MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
74 cl::desc("Attempt to vectorize for this register size in bits"));
75
76namespace {
77
78// FIXME: Set this via cl::opt to allow overriding.
79static const unsigned MinVecRegSize = 128;
80
81static const unsigned RecursionMaxDepth = 12;
82
83// Limit the number of alias checks. The limit is chosen so that
84// it has no negative effect on the llvm benchmarks.
85static const unsigned AliasedCheckLimit = 10;
86
87// Another limit for the alias checks: The maximum distance between load/store
88// instructions where alias checks are done.
89// This limit is useful for very large basic blocks.
90static const unsigned MaxMemDepDistance = 160;
91
92/// \brief Predicate for the element types that the SLP vectorizer supports.
93///
94/// The most important thing to filter here are types which are invalid in LLVM
95/// vectors. We also filter target specific types which have absolutely no
96/// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
97/// avoids spending time checking the cost model and realizing that they will
98/// be inevitably scalarized.
99static bool isValidElementType(Type *Ty) {
100 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
101 !Ty->isPPC_FP128Ty();
102}
103
104/// \returns the parent basic block if all of the instructions in \p VL
105/// are in the same block or null otherwise.
106static BasicBlock *getSameBlock(ArrayRef<Value *> VL) {
107 Instruction *I0 = dyn_cast<Instruction>(VL[0]);
108 if (!I0)
109 return nullptr;
110 BasicBlock *BB = I0->getParent();
111 for (int i = 1, e = VL.size(); i < e; i++) {
112 Instruction *I = dyn_cast<Instruction>(VL[i]);
113 if (!I)
114 return nullptr;
115
116 if (BB != I->getParent())
117 return nullptr;
118 }
119 return BB;
120}
121
122/// \returns True if all of the values in \p VL are constants.
123static bool allConstant(ArrayRef<Value *> VL) {
124 for (unsigned i = 0, e = VL.size(); i < e; ++i)
125 if (!isa<Constant>(VL[i]))
126 return false;
127 return true;
128}
129
130/// \returns True if all of the values in \p VL are identical.
131static bool isSplat(ArrayRef<Value *> VL) {
132 for (unsigned i = 1, e = VL.size(); i < e; ++i)
133 if (VL[i] != VL[0])
134 return false;
135 return true;
136}
137
138///\returns Opcode that can be clubbed with \p Op to create an alternate
139/// sequence which can later be merged as a ShuffleVector instruction.
140static unsigned getAltOpcode(unsigned Op) {
141 switch (Op) {
142 case Instruction::FAdd:
143 return Instruction::FSub;
144 case Instruction::FSub:
145 return Instruction::FAdd;
146 case Instruction::Add:
147 return Instruction::Sub;
148 case Instruction::Sub:
149 return Instruction::Add;
150 default:
151 return 0;
152 }
153}
154
155///\returns bool representing if Opcode \p Op can be part
156/// of an alternate sequence which can later be merged as
157/// a ShuffleVector instruction.
158static bool canCombineAsAltInst(unsigned Op) {
159 if (Op == Instruction::FAdd || Op == Instruction::FSub ||
160 Op == Instruction::Sub || Op == Instruction::Add)
161 return true;
162 return false;
163}
164
165/// \returns ShuffleVector instruction if instructions in \p VL have
166/// alternate fadd,fsub / fsub,fadd/add,sub/sub,add sequence.
167/// (i.e. e.g. opcodes of fadd,fsub,fadd,fsub...)
168static unsigned isAltInst(ArrayRef<Value *> VL) {
169 Instruction *I0 = dyn_cast<Instruction>(VL[0]);
170 unsigned Opcode = I0->getOpcode();
171 unsigned AltOpcode = getAltOpcode(Opcode);
172 for (int i = 1, e = VL.size(); i < e; i++) {
173 Instruction *I = dyn_cast<Instruction>(VL[i]);
174 if (!I || I->getOpcode() != ((i & 1) ? AltOpcode : Opcode))
175 return 0;
176 }
177 return Instruction::ShuffleVector;
178}
179
180/// \returns The opcode if all of the Instructions in \p VL have the same
181/// opcode, or zero.
182static unsigned getSameOpcode(ArrayRef<Value *> VL) {
183 Instruction *I0 = dyn_cast<Instruction>(VL[0]);
184 if (!I0)
185 return 0;
186 unsigned Opcode = I0->getOpcode();
187 for (int i = 1, e = VL.size(); i < e; i++) {
188 Instruction *I = dyn_cast<Instruction>(VL[i]);
189 if (!I || Opcode != I->getOpcode()) {
190 if (canCombineAsAltInst(Opcode) && i == 1)
191 return isAltInst(VL);
192 return 0;
193 }
194 }
195 return Opcode;
196}
197
198/// Get the intersection (logical and) of all of the potential IR flags
199/// of each scalar operation (VL) that will be converted into a vector (I).
200/// Flag set: NSW, NUW, exact, and all of fast-math.
201static void propagateIRFlags(Value *I, ArrayRef<Value *> VL) {
202 if (auto *VecOp = dyn_cast<BinaryOperator>(I)) {
203 if (auto *Intersection = dyn_cast<BinaryOperator>(VL[0])) {
204 // Intersection is initialized to the 0th scalar,
205 // so start counting from index '1'.
206 for (int i = 1, e = VL.size(); i < e; ++i) {
207 if (auto *Scalar = dyn_cast<BinaryOperator>(VL[i]))
208 Intersection->andIRFlags(Scalar);
209 }
210 VecOp->copyIRFlags(Intersection);
211 }
212 }
213}
214
215/// \returns \p I after propagating metadata from \p VL.
216static Instruction *propagateMetadata(Instruction *I, ArrayRef<Value *> VL) {
217 Instruction *I0 = cast<Instruction>(VL[0]);
218 SmallVector<std::pair<unsigned, MDNode *>, 4> Metadata;
219 I0->getAllMetadataOtherThanDebugLoc(Metadata);
220
221 for (unsigned i = 0, n = Metadata.size(); i != n; ++i) {
222 unsigned Kind = Metadata[i].first;
223 MDNode *MD = Metadata[i].second;
224
225 for (int i = 1, e = VL.size(); MD && i != e; i++) {
226 Instruction *I = cast<Instruction>(VL[i]);
227 MDNode *IMD = I->getMetadata(Kind);
228
229 switch (Kind) {
230 default:
231 MD = nullptr; // Remove unknown metadata
232 break;
233 case LLVMContext::MD_tbaa:
234 MD = MDNode::getMostGenericTBAA(MD, IMD);
235 break;
236 case LLVMContext::MD_alias_scope:
237 MD = MDNode::getMostGenericAliasScope(MD, IMD);
238 break;
239 case LLVMContext::MD_noalias:
240 MD = MDNode::intersect(MD, IMD);
241 break;
242 case LLVMContext::MD_fpmath:
243 MD = MDNode::getMostGenericFPMath(MD, IMD);
244 break;
245 case LLVMContext::MD_nontemporal:
246 MD = MDNode::intersect(MD, IMD);
247 break;
248 }
249 }
250 I->setMetadata(Kind, MD);
251 }
252 return I;
253}
254
255/// \returns The type that all of the values in \p VL have or null if there
256/// are different types.
257static Type* getSameType(ArrayRef<Value *> VL) {
258 Type *Ty = VL[0]->getType();
259 for (int i = 1, e = VL.size(); i < e; i++)
260 if (VL[i]->getType() != Ty)
261 return nullptr;
262
263 return Ty;
264}
265
266/// \returns True if the ExtractElement instructions in VL can be vectorized
267/// to use the original vector.
268static bool CanReuseExtract(ArrayRef<Value *> VL) {
269 assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode")((Instruction::ExtractElement == getSameOpcode(VL) &&
"Invalid opcode") ? static_cast<void> (0) : __assert_fail
("Instruction::ExtractElement == getSameOpcode(VL) && \"Invalid opcode\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 269, __PRETTY_FUNCTION__))
;
270 // Check if all of the extracts come from the same vector and from the
271 // correct offset.
272 Value *VL0 = VL[0];
273 ExtractElementInst *E0 = cast<ExtractElementInst>(VL0);
274 Value *Vec = E0->getOperand(0);
275
276 // We have to extract from the same vector type.
277 unsigned NElts = Vec->getType()->getVectorNumElements();
278
279 if (NElts != VL.size())
280 return false;
281
282 // Check that all of the indices extract from the correct offset.
283 ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1));
284 if (!CI || CI->getZExtValue())
285 return false;
286
287 for (unsigned i = 1, e = VL.size(); i < e; ++i) {
288 ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
289 ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1));
290
291 if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec)
292 return false;
293 }
294
295 return true;
296}
297
298/// \returns True if in-tree use also needs extract. This refers to
299/// possible scalar operand in vectorized instruction.
300static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
301 TargetLibraryInfo *TLI) {
302
303 unsigned Opcode = UserInst->getOpcode();
304 switch (Opcode) {
305 case Instruction::Load: {
306 LoadInst *LI = cast<LoadInst>(UserInst);
307 return (LI->getPointerOperand() == Scalar);
308 }
309 case Instruction::Store: {
310 StoreInst *SI = cast<StoreInst>(UserInst);
311 return (SI->getPointerOperand() == Scalar);
312 }
313 case Instruction::Call: {
314 CallInst *CI = cast<CallInst>(UserInst);
315 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
316 if (hasVectorInstrinsicScalarOpd(ID, 1)) {
317 return (CI->getArgOperand(1) == Scalar);
318 }
319 }
320 default:
321 return false;
322 }
323}
324
325/// \returns the AA location that is being access by the instruction.
326static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) {
327 if (StoreInst *SI = dyn_cast<StoreInst>(I))
328 return MemoryLocation::get(SI);
329 if (LoadInst *LI = dyn_cast<LoadInst>(I))
330 return MemoryLocation::get(LI);
331 return MemoryLocation();
332}
333
334/// \returns True if the instruction is not a volatile or atomic load/store.
335static bool isSimple(Instruction *I) {
336 if (LoadInst *LI = dyn_cast<LoadInst>(I))
337 return LI->isSimple();
338 if (StoreInst *SI = dyn_cast<StoreInst>(I))
339 return SI->isSimple();
340 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
341 return !MI->isVolatile();
342 return true;
343}
344
345/// Bottom Up SLP Vectorizer.
346class BoUpSLP {
347public:
348 typedef SmallVector<Value *, 8> ValueList;
349 typedef SmallVector<Instruction *, 16> InstrList;
350 typedef SmallPtrSet<Value *, 16> ValueSet;
351 typedef SmallVector<StoreInst *, 8> StoreList;
352
353 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
354 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li,
355 DominatorTree *Dt, AssumptionCache *AC)
356 : NumLoadsWantToKeepOrder(0), NumLoadsWantToChangeOrder(0), F(Func),
357 SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt),
358 Builder(Se->getContext()) {
359 CodeMetrics::collectEphemeralValues(F, AC, EphValues);
360 }
361
362 /// \brief Vectorize the tree that starts with the elements in \p VL.
363 /// Returns the vectorized root.
364 Value *vectorizeTree();
365
366 /// \returns the cost incurred by unwanted spills and fills, caused by
367 /// holding live values over call sites.
368 int getSpillCost();
369
370 /// \returns the vectorization cost of the subtree that starts at \p VL.
371 /// A negative number means that this is profitable.
372 int getTreeCost();
373
374 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
375 /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
376 void buildTree(ArrayRef<Value *> Roots,
377 ArrayRef<Value *> UserIgnoreLst = None);
378
379 /// Clear the internal data structures that are created by 'buildTree'.
380 void deleteTree() {
381 VectorizableTree.clear();
382 ScalarToTreeEntry.clear();
383 MustGather.clear();
384 ExternalUses.clear();
385 NumLoadsWantToKeepOrder = 0;
386 NumLoadsWantToChangeOrder = 0;
387 for (auto &Iter : BlocksSchedules) {
388 BlockScheduling *BS = Iter.second.get();
389 BS->clear();
390 }
391 }
392
393 /// \returns true if the memory operations A and B are consecutive.
394 bool isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL);
395
396 /// \brief Perform LICM and CSE on the newly generated gather sequences.
397 void optimizeGatherSequence();
398
399 /// \returns true if it is beneficial to reverse the vector order.
400 bool shouldReorder() const {
401 return NumLoadsWantToChangeOrder > NumLoadsWantToKeepOrder;
402 }
403
404private:
405 struct TreeEntry;
406
407 /// \returns the cost of the vectorizable entry.
408 int getEntryCost(TreeEntry *E);
409
410 /// This is the recursive part of buildTree.
411 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth);
412
413 /// Vectorize a single entry in the tree.
414 Value *vectorizeTree(TreeEntry *E);
415
416 /// Vectorize a single entry in the tree, starting in \p VL.
417 Value *vectorizeTree(ArrayRef<Value *> VL);
418
419 /// \returns the pointer to the vectorized value if \p VL is already
420 /// vectorized, or NULL. They may happen in cycles.
421 Value *alreadyVectorized(ArrayRef<Value *> VL) const;
422
423 /// \brief Take the pointer operand from the Load/Store instruction.
424 /// \returns NULL if this is not a valid Load/Store instruction.
425 static Value *getPointerOperand(Value *I);
426
427 /// \brief Take the address space operand from the Load/Store instruction.
428 /// \returns -1 if this is not a valid Load/Store instruction.
429 static unsigned getAddressSpaceOperand(Value *I);
430
431 /// \returns the scalarization cost for this type. Scalarization in this
432 /// context means the creation of vectors from a group of scalars.
433 int getGatherCost(Type *Ty);
434
435 /// \returns the scalarization cost for this list of values. Assuming that
436 /// this subtree gets vectorized, we may need to extract the values from the
437 /// roots. This method calculates the cost of extracting the values.
438 int getGatherCost(ArrayRef<Value *> VL);
439
440 /// \brief Set the Builder insert point to one after the last instruction in
441 /// the bundle
442 void setInsertPointAfterBundle(ArrayRef<Value *> VL);
443
444 /// \returns a vector from a collection of scalars in \p VL.
445 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
446
447 /// \returns whether the VectorizableTree is fully vectorizable and will
448 /// be beneficial even the tree height is tiny.
449 bool isFullyVectorizableTinyTree();
450
451 /// \reorder commutative operands in alt shuffle if they result in
452 /// vectorized code.
453 void reorderAltShuffleOperands(ArrayRef<Value *> VL,
454 SmallVectorImpl<Value *> &Left,
455 SmallVectorImpl<Value *> &Right);
456 /// \reorder commutative operands to get better probability of
457 /// generating vectorized code.
458 void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
459 SmallVectorImpl<Value *> &Left,
460 SmallVectorImpl<Value *> &Right);
461 struct TreeEntry {
462 TreeEntry() : Scalars(), VectorizedValue(nullptr),
463 NeedToGather(0) {}
464
465 /// \returns true if the scalars in VL are equal to this entry.
466 bool isSame(ArrayRef<Value *> VL) const {
467 assert(VL.size() == Scalars.size() && "Invalid size")((VL.size() == Scalars.size() && "Invalid size") ? static_cast
<void> (0) : __assert_fail ("VL.size() == Scalars.size() && \"Invalid size\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 467, __PRETTY_FUNCTION__))
;
468 return std::equal(VL.begin(), VL.end(), Scalars.begin());
469 }
470
471 /// A vector of scalars.
472 ValueList Scalars;
473
474 /// The Scalars are vectorized into this value. It is initialized to Null.
475 Value *VectorizedValue;
476
477 /// Do we need to gather this sequence ?
478 bool NeedToGather;
479 };
480
481 /// Create a new VectorizableTree entry.
482 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) {
483 VectorizableTree.emplace_back();
484 int idx = VectorizableTree.size() - 1;
485 TreeEntry *Last = &VectorizableTree[idx];
486 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
487 Last->NeedToGather = !Vectorized;
488 if (Vectorized) {
489 for (int i = 0, e = VL.size(); i != e; ++i) {
490 assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!")((!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!"
) ? static_cast<void> (0) : __assert_fail ("!ScalarToTreeEntry.count(VL[i]) && \"Scalar already in tree!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 490, __PRETTY_FUNCTION__))
;
491 ScalarToTreeEntry[VL[i]] = idx;
492 }
493 } else {
494 MustGather.insert(VL.begin(), VL.end());
495 }
496 return Last;
497 }
498
499 /// -- Vectorization State --
500 /// Holds all of the tree entries.
501 std::vector<TreeEntry> VectorizableTree;
502
503 /// Maps a specific scalar to its tree entry.
504 SmallDenseMap<Value*, int> ScalarToTreeEntry;
505
506 /// A list of scalars that we found that we need to keep as scalars.
507 ValueSet MustGather;
508
509 /// This POD struct describes one external user in the vectorized tree.
510 struct ExternalUser {
511 ExternalUser (Value *S, llvm::User *U, int L) :
512 Scalar(S), User(U), Lane(L){}
513 // Which scalar in our function.
514 Value *Scalar;
515 // Which user that uses the scalar.
516 llvm::User *User;
517 // Which lane does the scalar belong to.
518 int Lane;
519 };
520 typedef SmallVector<ExternalUser, 16> UserList;
521
522 /// Checks if two instructions may access the same memory.
523 ///
524 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
525 /// is invariant in the calling loop.
526 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
527 Instruction *Inst2) {
528
529 // First check if the result is already in the cache.
530 AliasCacheKey key = std::make_pair(Inst1, Inst2);
531 Optional<bool> &result = AliasCache[key];
532 if (result.hasValue()) {
533 return result.getValue();
534 }
535 MemoryLocation Loc2 = getLocation(Inst2, AA);
536 bool aliased = true;
537 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
538 // Do the alias check.
539 aliased = AA->alias(Loc1, Loc2);
540 }
541 // Store the result in the cache.
542 result = aliased;
543 return aliased;
544 }
545
546 typedef std::pair<Instruction *, Instruction *> AliasCacheKey;
547
548 /// Cache for alias results.
549 /// TODO: consider moving this to the AliasAnalysis itself.
550 DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
551
552 /// Removes an instruction from its block and eventually deletes it.
553 /// It's like Instruction::eraseFromParent() except that the actual deletion
554 /// is delayed until BoUpSLP is destructed.
555 /// This is required to ensure that there are no incorrect collisions in the
556 /// AliasCache, which can happen if a new instruction is allocated at the
557 /// same address as a previously deleted instruction.
558 void eraseInstruction(Instruction *I) {
559 I->removeFromParent();
560 I->dropAllReferences();
561 DeletedInstructions.push_back(std::unique_ptr<Instruction>(I));
562 }
563
564 /// Temporary store for deleted instructions. Instructions will be deleted
565 /// eventually when the BoUpSLP is destructed.
566 SmallVector<std::unique_ptr<Instruction>, 8> DeletedInstructions;
567
568 /// A list of values that need to extracted out of the tree.
569 /// This list holds pairs of (Internal Scalar : External User).
570 UserList ExternalUses;
571
572 /// Values used only by @llvm.assume calls.
573 SmallPtrSet<const Value *, 32> EphValues;
574
575 /// Holds all of the instructions that we gathered.
576 SetVector<Instruction *> GatherSeq;
577 /// A list of blocks that we are going to CSE.
578 SetVector<BasicBlock *> CSEBlocks;
579
580 /// Contains all scheduling relevant data for an instruction.
581 /// A ScheduleData either represents a single instruction or a member of an
582 /// instruction bundle (= a group of instructions which is combined into a
583 /// vector instruction).
584 struct ScheduleData {
585
586 // The initial value for the dependency counters. It means that the
587 // dependencies are not calculated yet.
588 enum { InvalidDeps = -1 };
589
590 ScheduleData()
591 : Inst(nullptr), FirstInBundle(nullptr), NextInBundle(nullptr),
592 NextLoadStore(nullptr), SchedulingRegionID(0), SchedulingPriority(0),
593 Dependencies(InvalidDeps), UnscheduledDeps(InvalidDeps),
594 UnscheduledDepsInBundle(InvalidDeps), IsScheduled(false) {}
595
596 void init(int BlockSchedulingRegionID) {
597 FirstInBundle = this;
598 NextInBundle = nullptr;
599 NextLoadStore = nullptr;
600 IsScheduled = false;
601 SchedulingRegionID = BlockSchedulingRegionID;
602 UnscheduledDepsInBundle = UnscheduledDeps;
603 clearDependencies();
604 }
605
606 /// Returns true if the dependency information has been calculated.
607 bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
608
609 /// Returns true for single instructions and for bundle representatives
610 /// (= the head of a bundle).
611 bool isSchedulingEntity() const { return FirstInBundle == this; }
612
613 /// Returns true if it represents an instruction bundle and not only a
614 /// single instruction.
615 bool isPartOfBundle() const {
616 return NextInBundle != nullptr || FirstInBundle != this;
617 }
618
619 /// Returns true if it is ready for scheduling, i.e. it has no more
620 /// unscheduled depending instructions/bundles.
621 bool isReady() const {
622 assert(isSchedulingEntity() &&((isSchedulingEntity() && "can't consider non-scheduling entity for ready list"
) ? static_cast<void> (0) : __assert_fail ("isSchedulingEntity() && \"can't consider non-scheduling entity for ready list\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 623, __PRETTY_FUNCTION__))
623 "can't consider non-scheduling entity for ready list")((isSchedulingEntity() && "can't consider non-scheduling entity for ready list"
) ? static_cast<void> (0) : __assert_fail ("isSchedulingEntity() && \"can't consider non-scheduling entity for ready list\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 623, __PRETTY_FUNCTION__))
;
624 return UnscheduledDepsInBundle == 0 && !IsScheduled;
625 }
626
627 /// Modifies the number of unscheduled dependencies, also updating it for
628 /// the whole bundle.
629 int incrementUnscheduledDeps(int Incr) {
630 UnscheduledDeps += Incr;
631 return FirstInBundle->UnscheduledDepsInBundle += Incr;
632 }
633
634 /// Sets the number of unscheduled dependencies to the number of
635 /// dependencies.
636 void resetUnscheduledDeps() {
637 incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
638 }
639
640 /// Clears all dependency information.
641 void clearDependencies() {
642 Dependencies = InvalidDeps;
643 resetUnscheduledDeps();
644 MemoryDependencies.clear();
645 }
646
647 void dump(raw_ostream &os) const {
648 if (!isSchedulingEntity()) {
649 os << "/ " << *Inst;
650 } else if (NextInBundle) {
651 os << '[' << *Inst;
652 ScheduleData *SD = NextInBundle;
653 while (SD) {
654 os << ';' << *SD->Inst;
655 SD = SD->NextInBundle;
656 }
657 os << ']';
658 } else {
659 os << *Inst;
660 }
661 }
662
663 Instruction *Inst;
664
665 /// Points to the head in an instruction bundle (and always to this for
666 /// single instructions).
667 ScheduleData *FirstInBundle;
668
669 /// Single linked list of all instructions in a bundle. Null if it is a
670 /// single instruction.
671 ScheduleData *NextInBundle;
672
673 /// Single linked list of all memory instructions (e.g. load, store, call)
674 /// in the block - until the end of the scheduling region.
675 ScheduleData *NextLoadStore;
676
677 /// The dependent memory instructions.
678 /// This list is derived on demand in calculateDependencies().
679 SmallVector<ScheduleData *, 4> MemoryDependencies;
680
681 /// This ScheduleData is in the current scheduling region if this matches
682 /// the current SchedulingRegionID of BlockScheduling.
683 int SchedulingRegionID;
684
685 /// Used for getting a "good" final ordering of instructions.
686 int SchedulingPriority;
687
688 /// The number of dependencies. Constitutes of the number of users of the
689 /// instruction plus the number of dependent memory instructions (if any).
690 /// This value is calculated on demand.
691 /// If InvalidDeps, the number of dependencies is not calculated yet.
692 ///
693 int Dependencies;
694
695 /// The number of dependencies minus the number of dependencies of scheduled
696 /// instructions. As soon as this is zero, the instruction/bundle gets ready
697 /// for scheduling.
698 /// Note that this is negative as long as Dependencies is not calculated.
699 int UnscheduledDeps;
700
701 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
702 /// single instructions.
703 int UnscheduledDepsInBundle;
704
705 /// True if this instruction is scheduled (or considered as scheduled in the
706 /// dry-run).
707 bool IsScheduled;
708 };
709
710#ifndef NDEBUG
711 friend raw_ostream &operator<<(raw_ostream &os,
712 const BoUpSLP::ScheduleData &SD);
713#endif
714
715 /// Contains all scheduling data for a basic block.
716 ///
717 struct BlockScheduling {
718
719 BlockScheduling(BasicBlock *BB)
720 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize),
721 ScheduleStart(nullptr), ScheduleEnd(nullptr),
722 FirstLoadStoreInRegion(nullptr), LastLoadStoreInRegion(nullptr),
723 // Make sure that the initial SchedulingRegionID is greater than the
724 // initial SchedulingRegionID in ScheduleData (which is 0).
725 SchedulingRegionID(1) {}
726
727 void clear() {
728 ReadyInsts.clear();
729 ScheduleStart = nullptr;
730 ScheduleEnd = nullptr;
731 FirstLoadStoreInRegion = nullptr;
732 LastLoadStoreInRegion = nullptr;
733
734 // Make a new scheduling region, i.e. all existing ScheduleData is not
735 // in the new region yet.
736 ++SchedulingRegionID;
737 }
738
739 ScheduleData *getScheduleData(Value *V) {
740 ScheduleData *SD = ScheduleDataMap[V];
741 if (SD && SD->SchedulingRegionID == SchedulingRegionID)
742 return SD;
743 return nullptr;
744 }
745
746 bool isInSchedulingRegion(ScheduleData *SD) {
747 return SD->SchedulingRegionID == SchedulingRegionID;
748 }
749
750 /// Marks an instruction as scheduled and puts all dependent ready
751 /// instructions into the ready-list.
752 template <typename ReadyListType>
753 void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
754 SD->IsScheduled = true;
755 DEBUG(dbgs() << "SLP: schedule " << *SD << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: schedule " << *SD <<
"\n"; } } while (0)
;
756
757 ScheduleData *BundleMember = SD;
758 while (BundleMember) {
759 // Handle the def-use chain dependencies.
760 for (Use &U : BundleMember->Inst->operands()) {
761 ScheduleData *OpDef = getScheduleData(U.get());
762 if (OpDef && OpDef->hasValidDependencies() &&
763 OpDef->incrementUnscheduledDeps(-1) == 0) {
764 // There are no more unscheduled dependencies after decrementing,
765 // so we can put the dependent instruction into the ready list.
766 ScheduleData *DepBundle = OpDef->FirstInBundle;
767 assert(!DepBundle->IsScheduled &&((!DepBundle->IsScheduled && "already scheduled bundle gets ready"
) ? static_cast<void> (0) : __assert_fail ("!DepBundle->IsScheduled && \"already scheduled bundle gets ready\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 768, __PRETTY_FUNCTION__))
768 "already scheduled bundle gets ready")((!DepBundle->IsScheduled && "already scheduled bundle gets ready"
) ? static_cast<void> (0) : __assert_fail ("!DepBundle->IsScheduled && \"already scheduled bundle gets ready\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 768, __PRETTY_FUNCTION__))
;
769 ReadyList.insert(DepBundle);
770 DEBUG(dbgs() << "SLP: gets ready (def): " << *DepBundle << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready (def): " <<
*DepBundle << "\n"; } } while (0)
;
771 }
772 }
773 // Handle the memory dependencies.
774 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
775 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
776 // There are no more unscheduled dependencies after decrementing,
777 // so we can put the dependent instruction into the ready list.
778 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
779 assert(!DepBundle->IsScheduled &&((!DepBundle->IsScheduled && "already scheduled bundle gets ready"
) ? static_cast<void> (0) : __assert_fail ("!DepBundle->IsScheduled && \"already scheduled bundle gets ready\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 780, __PRETTY_FUNCTION__))
780 "already scheduled bundle gets ready")((!DepBundle->IsScheduled && "already scheduled bundle gets ready"
) ? static_cast<void> (0) : __assert_fail ("!DepBundle->IsScheduled && \"already scheduled bundle gets ready\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 780, __PRETTY_FUNCTION__))
;
781 ReadyList.insert(DepBundle);
782 DEBUG(dbgs() << "SLP: gets ready (mem): " << *DepBundle << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready (mem): " <<
*DepBundle << "\n"; } } while (0)
;
783 }
784 }
785 BundleMember = BundleMember->NextInBundle;
786 }
787 }
788
789 /// Put all instructions into the ReadyList which are ready for scheduling.
790 template <typename ReadyListType>
791 void initialFillReadyList(ReadyListType &ReadyList) {
792 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
793 ScheduleData *SD = getScheduleData(I);
794 if (SD->isSchedulingEntity() && SD->isReady()) {
795 ReadyList.insert(SD);
796 DEBUG(dbgs() << "SLP: initially in ready list: " << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: initially in ready list: "
<< *I << "\n"; } } while (0)
;
797 }
798 }
799 }
800
801 /// Checks if a bundle of instructions can be scheduled, i.e. has no
802 /// cyclic dependencies. This is only a dry-run, no instructions are
803 /// actually moved at this stage.
804 bool tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP);
805
806 /// Un-bundles a group of instructions.
807 void cancelScheduling(ArrayRef<Value *> VL);
808
809 /// Extends the scheduling region so that V is inside the region.
810 void extendSchedulingRegion(Value *V);
811
812 /// Initialize the ScheduleData structures for new instructions in the
813 /// scheduling region.
814 void initScheduleData(Instruction *FromI, Instruction *ToI,
815 ScheduleData *PrevLoadStore,
816 ScheduleData *NextLoadStore);
817
818 /// Updates the dependency information of a bundle and of all instructions/
819 /// bundles which depend on the original bundle.
820 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
821 BoUpSLP *SLP);
822
823 /// Sets all instruction in the scheduling region to un-scheduled.
824 void resetSchedule();
825
826 BasicBlock *BB;
827
828 /// Simple memory allocation for ScheduleData.
829 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
830
831 /// The size of a ScheduleData array in ScheduleDataChunks.
832 int ChunkSize;
833
834 /// The allocator position in the current chunk, which is the last entry
835 /// of ScheduleDataChunks.
836 int ChunkPos;
837
838 /// Attaches ScheduleData to Instruction.
839 /// Note that the mapping survives during all vectorization iterations, i.e.
840 /// ScheduleData structures are recycled.
841 DenseMap<Value *, ScheduleData *> ScheduleDataMap;
842
843 struct ReadyList : SmallVector<ScheduleData *, 8> {
844 void insert(ScheduleData *SD) { push_back(SD); }
845 };
846
847 /// The ready-list for scheduling (only used for the dry-run).
848 ReadyList ReadyInsts;
849
850 /// The first instruction of the scheduling region.
851 Instruction *ScheduleStart;
852
853 /// The first instruction _after_ the scheduling region.
854 Instruction *ScheduleEnd;
855
856 /// The first memory accessing instruction in the scheduling region
857 /// (can be null).
858 ScheduleData *FirstLoadStoreInRegion;
859
860 /// The last memory accessing instruction in the scheduling region
861 /// (can be null).
862 ScheduleData *LastLoadStoreInRegion;
863
864 /// The ID of the scheduling region. For a new vectorization iteration this
865 /// is incremented which "removes" all ScheduleData from the region.
866 int SchedulingRegionID;
867 };
868
869 /// Attaches the BlockScheduling structures to basic blocks.
870 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
871
872 /// Performs the "real" scheduling. Done before vectorization is actually
873 /// performed in a basic block.
874 void scheduleBlock(BlockScheduling *BS);
875
876 /// List of users to ignore during scheduling and that don't need extracting.
877 ArrayRef<Value *> UserIgnoreList;
878
879 // Number of load-bundles, which contain consecutive loads.
880 int NumLoadsWantToKeepOrder;
881
882 // Number of load-bundles of size 2, which are consecutive loads if reversed.
883 int NumLoadsWantToChangeOrder;
884
885 // Analysis and block reference.
886 Function *F;
887 ScalarEvolution *SE;
888 TargetTransformInfo *TTI;
889 TargetLibraryInfo *TLI;
890 AliasAnalysis *AA;
891 LoopInfo *LI;
892 DominatorTree *DT;
893 /// Instruction builder to construct the vectorized tree.
894 IRBuilder<> Builder;
895};
896
897#ifndef NDEBUG
898raw_ostream &operator<<(raw_ostream &os, const BoUpSLP::ScheduleData &SD) {
899 SD.dump(os);
900 return os;
901}
902#endif
903
904void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
905 ArrayRef<Value *> UserIgnoreLst) {
906 deleteTree();
907 UserIgnoreList = UserIgnoreLst;
908 if (!getSameType(Roots))
909 return;
910 buildTree_rec(Roots, 0);
911
912 // Collect the values that we need to extract from the tree.
913 for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
914 TreeEntry *Entry = &VectorizableTree[EIdx];
915
916 // For each lane:
917 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
918 Value *Scalar = Entry->Scalars[Lane];
919
920 // No need to handle users of gathered values.
921 if (Entry->NeedToGather)
922 continue;
923
924 for (User *U : Scalar->users()) {
925 DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Checking user:" << *U <<
".\n"; } } while (0)
;
926
927 Instruction *UserInst = dyn_cast<Instruction>(U);
928 if (!UserInst)
929 continue;
930
931 // Skip in-tree scalars that become vectors
932 if (ScalarToTreeEntry.count(U)) {
933 int Idx = ScalarToTreeEntry[U];
934 TreeEntry *UseEntry = &VectorizableTree[Idx];
935 Value *UseScalar = UseEntry->Scalars[0];
936 // Some in-tree scalars will remain as scalar in vectorized
937 // instructions. If that is the case, the one in Lane 0 will
938 // be used.
939 if (UseScalar != U ||
940 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
941 DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *Udo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tInternal user will be removed:"
<< *U << ".\n"; } } while (0)
942 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tInternal user will be removed:"
<< *U << ".\n"; } } while (0)
;
943 assert(!VectorizableTree[Idx].NeedToGather && "Bad state")((!VectorizableTree[Idx].NeedToGather && "Bad state")
? static_cast<void> (0) : __assert_fail ("!VectorizableTree[Idx].NeedToGather && \"Bad state\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 943, __PRETTY_FUNCTION__))
;
944 continue;
945 }
946 }
947
948 // Ignore users in the user ignore list.
949 if (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), UserInst) !=
950 UserIgnoreList.end())
951 continue;
952
953 DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane " <<do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to extract:" << *
U << " from lane " << Lane << " from " <<
*Scalar << ".\n"; } } while (0)
954 Lane << " from " << *Scalar << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to extract:" << *
U << " from lane " << Lane << " from " <<
*Scalar << ".\n"; } } while (0)
;
955 ExternalUses.push_back(ExternalUser(Scalar, U, Lane));
956 }
957 }
958 }
959}
960
961
962void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
963 bool SameTy = getSameType(VL); (void)SameTy;
964 bool isAltShuffle = false;
965 assert(SameTy && "Invalid types!")((SameTy && "Invalid types!") ? static_cast<void>
(0) : __assert_fail ("SameTy && \"Invalid types!\"",
"/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 965, __PRETTY_FUNCTION__))
;
966
967 if (Depth == RecursionMaxDepth) {
968 DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to max recursion depth.\n"
; } } while (0)
;
969 newTreeEntry(VL, false);
970 return;
971 }
972
973 // Don't handle vectors.
974 if (VL[0]->getType()->isVectorTy()) {
975 DEBUG(dbgs() << "SLP: Gathering due to vector type.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to vector type.\n"
; } } while (0)
;
976 newTreeEntry(VL, false);
977 return;
978 }
979
980 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
981 if (SI->getValueOperand()->getType()->isVectorTy()) {
982 DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to store vector type.\n"
; } } while (0)
;
983 newTreeEntry(VL, false);
984 return;
985 }
986 unsigned Opcode = getSameOpcode(VL);
987
988 // Check that this shuffle vector refers to the alternate
989 // sequence of opcodes.
990 if (Opcode == Instruction::ShuffleVector) {
991 Instruction *I0 = dyn_cast<Instruction>(VL[0]);
992 unsigned Op = I0->getOpcode();
993 if (Op != Instruction::ShuffleVector)
994 isAltShuffle = true;
995 }
996
997 // If all of the operands are identical or constant we have a simple solution.
998 if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) || !Opcode) {
999 DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to C,S,B,O. \n"
; } } while (0)
;
1000 newTreeEntry(VL, false);
1001 return;
1002 }
1003
1004 // We now know that this is a vector of instructions of the same type from
1005 // the same block.
1006
1007 // Don't vectorize ephemeral values.
1008 for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1009 if (EphValues.count(VL[i])) {
1010 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: The instruction (" << *
VL[i] << ") is ephemeral.\n"; } } while (0)
1011 ") is ephemeral.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: The instruction (" << *
VL[i] << ") is ephemeral.\n"; } } while (0)
;
1012 newTreeEntry(VL, false);
1013 return;
1014 }
1015 }
1016
1017 // Check if this is a duplicate of another entry.
1018 if (ScalarToTreeEntry.count(VL[0])) {
1019 int Idx = ScalarToTreeEntry[VL[0]];
1020 TreeEntry *E = &VectorizableTree[Idx];
1021 for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1022 DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tChecking bundle: " <<
*VL[i] << ".\n"; } } while (0)
;
1023 if (E->Scalars[i] != VL[i]) {
1024 DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to partial overlap.\n"
; } } while (0)
;
1025 newTreeEntry(VL, false);
1026 return;
1027 }
1028 }
1029 DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Perfect diamond merge at " <<
*VL[0] << ".\n"; } } while (0)
;
1030 return;
1031 }
1032
1033 // Check that none of the instructions in the bundle are already in the tree.
1034 for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1035 if (ScalarToTreeEntry.count(VL[i])) {
1036 DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: The instruction (" << *
VL[i] << ") is already in tree.\n"; } } while (0)
1037 ") is already in tree.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: The instruction (" << *
VL[i] << ") is already in tree.\n"; } } while (0)
;
1038 newTreeEntry(VL, false);
1039 return;
1040 }
1041 }
1042
1043 // If any of the scalars is marked as a value that needs to stay scalar then
1044 // we need to gather the scalars.
1045 for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1046 if (MustGather.count(VL[i])) {
1047 DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering due to gathered scalar.\n"
; } } while (0)
;
1048 newTreeEntry(VL, false);
1049 return;
1050 }
1051 }
1052
1053 // Check that all of the users of the scalars that we want to vectorize are
1054 // schedulable.
1055 Instruction *VL0 = cast<Instruction>(VL[0]);
1056 BasicBlock *BB = cast<Instruction>(VL0)->getParent();
1057
1058 if (!DT->isReachableFromEntry(BB)) {
1059 // Don't go into unreachable blocks. They may contain instructions with
1060 // dependency cycles which confuse the final scheduling.
1061 DEBUG(dbgs() << "SLP: bundle in unreachable block.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: bundle in unreachable block.\n"
; } } while (0)
;
1062 newTreeEntry(VL, false);
1063 return;
1064 }
1065
1066 // Check that every instructions appears once in this bundle.
1067 for (unsigned i = 0, e = VL.size(); i < e; ++i)
1068 for (unsigned j = i+1; j < e; ++j)
1069 if (VL[i] == VL[j]) {
1070 DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Scalar used twice in bundle.\n"
; } } while (0)
;
1071 newTreeEntry(VL, false);
1072 return;
1073 }
1074
1075 auto &BSRef = BlocksSchedules[BB];
1076 if (!BSRef) {
1077 BSRef = llvm::make_unique<BlockScheduling>(BB);
1078 }
1079 BlockScheduling &BS = *BSRef.get();
1080
1081 if (!BS.tryScheduleBundle(VL, this)) {
1082 DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: We are not able to schedule this bundle!\n"
; } } while (0)
;
1083 BS.cancelScheduling(VL);
1084 newTreeEntry(VL, false);
1085 return;
1086 }
1087 DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: We are able to schedule this bundle.\n"
; } } while (0)
;
1088
1089 switch (Opcode) {
1090 case Instruction::PHI: {
1091 PHINode *PH = dyn_cast<PHINode>(VL0);
1092
1093 // Check for terminator values (e.g. invoke).
1094 for (unsigned j = 0; j < VL.size(); ++j)
1095 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
1096 TerminatorInst *Term = dyn_cast<TerminatorInst>(
1097 cast<PHINode>(VL[j])->getIncomingValueForBlock(PH->getIncomingBlock(i)));
1098 if (Term) {
1099 DEBUG(dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Need to swizzle PHINodes (TerminatorInst use).\n"
; } } while (0)
;
1100 BS.cancelScheduling(VL);
1101 newTreeEntry(VL, false);
1102 return;
1103 }
1104 }
1105
1106 newTreeEntry(VL, true);
1107 DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of PHINodes.\n"
; } } while (0)
;
1108
1109 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
1110 ValueList Operands;
1111 // Prepare the operand vector.
1112 for (unsigned j = 0; j < VL.size(); ++j)
1113 Operands.push_back(cast<PHINode>(VL[j])->getIncomingValueForBlock(
1114 PH->getIncomingBlock(i)));
1115
1116 buildTree_rec(Operands, Depth + 1);
1117 }
1118 return;
1119 }
1120 case Instruction::ExtractElement: {
1121 bool Reuse = CanReuseExtract(VL);
1122 if (Reuse) {
1123 DEBUG(dbgs() << "SLP: Reusing extract sequence.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Reusing extract sequence.\n"
; } } while (0)
;
1124 } else {
1125 BS.cancelScheduling(VL);
1126 }
1127 newTreeEntry(VL, Reuse);
1128 return;
1129 }
1130 case Instruction::Load: {
1131 // Check if the loads are consecutive or of we need to swizzle them.
1132 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i) {
1133 LoadInst *L = cast<LoadInst>(VL[i]);
1134 if (!L->isSimple()) {
1135 BS.cancelScheduling(VL);
1136 newTreeEntry(VL, false);
1137 DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering non-simple loads.\n"
; } } while (0)
;
1138 return;
1139 }
1140 const DataLayout &DL = F->getParent()->getDataLayout();
1141 if (!isConsecutiveAccess(VL[i], VL[i + 1], DL)) {
1142 if (VL.size() == 2 && isConsecutiveAccess(VL[1], VL[0], DL)) {
1143 ++NumLoadsWantToChangeOrder;
1144 }
1145 BS.cancelScheduling(VL);
1146 newTreeEntry(VL, false);
1147 DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering non-consecutive loads.\n"
; } } while (0)
;
1148 return;
1149 }
1150 }
1151 ++NumLoadsWantToKeepOrder;
1152 newTreeEntry(VL, true);
1153 DEBUG(dbgs() << "SLP: added a vector of loads.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of loads.\n";
} } while (0)
;
1154 return;
1155 }
1156 case Instruction::ZExt:
1157 case Instruction::SExt:
1158 case Instruction::FPToUI:
1159 case Instruction::FPToSI:
1160 case Instruction::FPExt:
1161 case Instruction::PtrToInt:
1162 case Instruction::IntToPtr:
1163 case Instruction::SIToFP:
1164 case Instruction::UIToFP:
1165 case Instruction::Trunc:
1166 case Instruction::FPTrunc:
1167 case Instruction::BitCast: {
1168 Type *SrcTy = VL0->getOperand(0)->getType();
1169 for (unsigned i = 0; i < VL.size(); ++i) {
1170 Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
1171 if (Ty != SrcTy || !isValidElementType(Ty)) {
1172 BS.cancelScheduling(VL);
1173 newTreeEntry(VL, false);
1174 DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering casts with different src types.\n"
; } } while (0)
;
1175 return;
1176 }
1177 }
1178 newTreeEntry(VL, true);
1179 DEBUG(dbgs() << "SLP: added a vector of casts.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of casts.\n";
} } while (0)
;
1180
1181 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1182 ValueList Operands;
1183 // Prepare the operand vector.
1184 for (unsigned j = 0; j < VL.size(); ++j)
1185 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
1186
1187 buildTree_rec(Operands, Depth+1);
1188 }
1189 return;
1190 }
1191 case Instruction::ICmp:
1192 case Instruction::FCmp: {
1193 // Check that all of the compares have the same predicate.
1194 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
1195 Type *ComparedTy = cast<Instruction>(VL[0])->getOperand(0)->getType();
1196 for (unsigned i = 1, e = VL.size(); i < e; ++i) {
1197 CmpInst *Cmp = cast<CmpInst>(VL[i]);
1198 if (Cmp->getPredicate() != P0 ||
1199 Cmp->getOperand(0)->getType() != ComparedTy) {
1200 BS.cancelScheduling(VL);
1201 newTreeEntry(VL, false);
1202 DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering cmp with different predicate.\n"
; } } while (0)
;
1203 return;
1204 }
1205 }
1206
1207 newTreeEntry(VL, true);
1208 DEBUG(dbgs() << "SLP: added a vector of compares.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of compares.\n"
; } } while (0)
;
1209
1210 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1211 ValueList Operands;
1212 // Prepare the operand vector.
1213 for (unsigned j = 0; j < VL.size(); ++j)
1214 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
1215
1216 buildTree_rec(Operands, Depth+1);
1217 }
1218 return;
1219 }
1220 case Instruction::Select:
1221 case Instruction::Add:
1222 case Instruction::FAdd:
1223 case Instruction::Sub:
1224 case Instruction::FSub:
1225 case Instruction::Mul:
1226 case Instruction::FMul:
1227 case Instruction::UDiv:
1228 case Instruction::SDiv:
1229 case Instruction::FDiv:
1230 case Instruction::URem:
1231 case Instruction::SRem:
1232 case Instruction::FRem:
1233 case Instruction::Shl:
1234 case Instruction::LShr:
1235 case Instruction::AShr:
1236 case Instruction::And:
1237 case Instruction::Or:
1238 case Instruction::Xor: {
1239 newTreeEntry(VL, true);
1240 DEBUG(dbgs() << "SLP: added a vector of bin op.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of bin op.\n"
; } } while (0)
;
1241
1242 // Sort operands of the instructions so that each side is more likely to
1243 // have the same opcode.
1244 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
1245 ValueList Left, Right;
1246 reorderInputsAccordingToOpcode(VL, Left, Right);
1247 buildTree_rec(Left, Depth + 1);
1248 buildTree_rec(Right, Depth + 1);
1249 return;
1250 }
1251
1252 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1253 ValueList Operands;
1254 // Prepare the operand vector.
1255 for (unsigned j = 0; j < VL.size(); ++j)
1256 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
1257
1258 buildTree_rec(Operands, Depth+1);
1259 }
1260 return;
1261 }
1262 case Instruction::GetElementPtr: {
1263 // We don't combine GEPs with complicated (nested) indexing.
1264 for (unsigned j = 0; j < VL.size(); ++j) {
1265 if (cast<Instruction>(VL[j])->getNumOperands() != 2) {
1266 DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n"
; } } while (0)
;
1267 BS.cancelScheduling(VL);
1268 newTreeEntry(VL, false);
1269 return;
1270 }
1271 }
1272
1273 // We can't combine several GEPs into one vector if they operate on
1274 // different types.
1275 Type *Ty0 = cast<Instruction>(VL0)->getOperand(0)->getType();
1276 for (unsigned j = 0; j < VL.size(); ++j) {
1277 Type *CurTy = cast<Instruction>(VL[j])->getOperand(0)->getType();
1278 if (Ty0 != CurTy) {
1279 DEBUG(dbgs() << "SLP: not-vectorizable GEP (different types).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (different types).\n"
; } } while (0)
;
1280 BS.cancelScheduling(VL);
1281 newTreeEntry(VL, false);
1282 return;
1283 }
1284 }
1285
1286 // We don't combine GEPs with non-constant indexes.
1287 for (unsigned j = 0; j < VL.size(); ++j) {
1288 auto Op = cast<Instruction>(VL[j])->getOperand(1);
1289 if (!isa<ConstantInt>(Op)) {
1290 DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"
; } } while (0)
1291 dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: not-vectorizable GEP (non-constant indexes).\n"
; } } while (0)
;
1292 BS.cancelScheduling(VL);
1293 newTreeEntry(VL, false);
1294 return;
1295 }
1296 }
1297
1298 newTreeEntry(VL, true);
1299 DEBUG(dbgs() << "SLP: added a vector of GEPs.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of GEPs.\n"; }
} while (0)
;
1300 for (unsigned i = 0, e = 2; i < e; ++i) {
1301 ValueList Operands;
1302 // Prepare the operand vector.
1303 for (unsigned j = 0; j < VL.size(); ++j)
1304 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
1305
1306 buildTree_rec(Operands, Depth + 1);
1307 }
1308 return;
1309 }
1310 case Instruction::Store: {
1311 const DataLayout &DL = F->getParent()->getDataLayout();
1312 // Check if the stores are consecutive or of we need to swizzle them.
1313 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
1314 if (!isConsecutiveAccess(VL[i], VL[i + 1], DL)) {
1315 BS.cancelScheduling(VL);
1316 newTreeEntry(VL, false);
1317 DEBUG(dbgs() << "SLP: Non-consecutive store.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Non-consecutive store.\n"; }
} while (0)
;
1318 return;
1319 }
1320
1321 newTreeEntry(VL, true);
1322 DEBUG(dbgs() << "SLP: added a vector of stores.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a vector of stores.\n"
; } } while (0)
;
1323
1324 ValueList Operands;
1325 for (unsigned j = 0; j < VL.size(); ++j)
1326 Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
1327
1328 buildTree_rec(Operands, Depth + 1);
1329 return;
1330 }
1331 case Instruction::Call: {
1332 // Check if the calls are all to the same vectorizable intrinsic.
1333 CallInst *CI = cast<CallInst>(VL[0]);
1334 // Check if this is an Intrinsic call or something that can be
1335 // represented by an intrinsic call
1336 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
1337 if (!isTriviallyVectorizable(ID)) {
1338 BS.cancelScheduling(VL);
1339 newTreeEntry(VL, false);
1340 DEBUG(dbgs() << "SLP: Non-vectorizable call.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Non-vectorizable call.\n"; }
} while (0)
;
1341 return;
1342 }
1343 Function *Int = CI->getCalledFunction();
1344 Value *A1I = nullptr;
1345 if (hasVectorInstrinsicScalarOpd(ID, 1))
1346 A1I = CI->getArgOperand(1);
1347 for (unsigned i = 1, e = VL.size(); i != e; ++i) {
1348 CallInst *CI2 = dyn_cast<CallInst>(VL[i]);
1349 if (!CI2 || CI2->getCalledFunction() != Int ||
1350 getIntrinsicIDForCall(CI2, TLI) != ID) {
1351 BS.cancelScheduling(VL);
1352 newTreeEntry(VL, false);
1353 DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *VL[i]do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched calls:" << *
CI << "!=" << *VL[i] << "\n"; } } while (0)
1354 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched calls:" << *
CI << "!=" << *VL[i] << "\n"; } } while (0)
;
1355 return;
1356 }
1357 // ctlz,cttz and powi are special intrinsics whose second argument
1358 // should be same in order for them to be vectorized.
1359 if (hasVectorInstrinsicScalarOpd(ID, 1)) {
1360 Value *A1J = CI2->getArgOperand(1);
1361 if (A1I != A1J) {
1362 BS.cancelScheduling(VL);
1363 newTreeEntry(VL, false);
1364 DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CIdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched arguments in call:"
<< *CI << " argument "<< A1I<<"!=" <<
A1J << "\n"; } } while (0)
1365 << " argument "<< A1I<<"!=" << A1Jdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched arguments in call:"
<< *CI << " argument "<< A1I<<"!=" <<
A1J << "\n"; } } while (0)
1366 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: mismatched arguments in call:"
<< *CI << " argument "<< A1I<<"!=" <<
A1J << "\n"; } } while (0)
;
1367 return;
1368 }
1369 }
1370 }
1371
1372 newTreeEntry(VL, true);
1373 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
1374 ValueList Operands;
1375 // Prepare the operand vector.
1376 for (unsigned j = 0; j < VL.size(); ++j) {
1377 CallInst *CI2 = dyn_cast<CallInst>(VL[j]);
1378 Operands.push_back(CI2->getArgOperand(i));
1379 }
1380 buildTree_rec(Operands, Depth + 1);
1381 }
1382 return;
1383 }
1384 case Instruction::ShuffleVector: {
1385 // If this is not an alternate sequence of opcode like add-sub
1386 // then do not vectorize this instruction.
1387 if (!isAltShuffle) {
1388 BS.cancelScheduling(VL);
1389 newTreeEntry(VL, false);
1390 DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: ShuffleVector are not vectorized.\n"
; } } while (0)
;
1391 return;
1392 }
1393 newTreeEntry(VL, true);
1394 DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: added a ShuffleVector op.\n"
; } } while (0)
;
1395
1396 // Reorder operands if reordering would enable vectorization.
1397 if (isa<BinaryOperator>(VL0)) {
1398 ValueList Left, Right;
1399 reorderAltShuffleOperands(VL, Left, Right);
1400 buildTree_rec(Left, Depth + 1);
1401 buildTree_rec(Right, Depth + 1);
1402 return;
1403 }
1404
1405 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
1406 ValueList Operands;
1407 // Prepare the operand vector.
1408 for (unsigned j = 0; j < VL.size(); ++j)
1409 Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
1410
1411 buildTree_rec(Operands, Depth + 1);
1412 }
1413 return;
1414 }
1415 default:
1416 BS.cancelScheduling(VL);
1417 newTreeEntry(VL, false);
1418 DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Gathering unknown instruction.\n"
; } } while (0)
;
1419 return;
1420 }
1421}
1422
1423int BoUpSLP::getEntryCost(TreeEntry *E) {
1424 ArrayRef<Value*> VL = E->Scalars;
1425
1426 Type *ScalarTy = VL[0]->getType();
1427 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
1428 ScalarTy = SI->getValueOperand()->getType();
1429 VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
1430
1431 if (E->NeedToGather) {
1432 if (allConstant(VL))
1433 return 0;
1434 if (isSplat(VL)) {
1435 return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
1436 }
1437 return getGatherCost(E->Scalars);
1438 }
1439 unsigned Opcode = getSameOpcode(VL);
1440 assert(Opcode && getSameType(VL) && getSameBlock(VL) && "Invalid VL")((Opcode && getSameType(VL) && getSameBlock(VL
) && "Invalid VL") ? static_cast<void> (0) : __assert_fail
("Opcode && getSameType(VL) && getSameBlock(VL) && \"Invalid VL\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1440, __PRETTY_FUNCTION__))
;
1441 Instruction *VL0 = cast<Instruction>(VL[0]);
1442 switch (Opcode) {
1443 case Instruction::PHI: {
1444 return 0;
1445 }
1446 case Instruction::ExtractElement: {
1447 if (CanReuseExtract(VL)) {
1448 int DeadCost = 0;
1449 for (unsigned i = 0, e = VL.size(); i < e; ++i) {
1450 ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
1451 if (E->hasOneUse())
1452 // Take credit for instruction that will become dead.
1453 DeadCost +=
1454 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);
1455 }
1456 return -DeadCost;
1457 }
1458 return getGatherCost(VecTy);
1459 }
1460 case Instruction::ZExt:
1461 case Instruction::SExt:
1462 case Instruction::FPToUI:
1463 case Instruction::FPToSI:
1464 case Instruction::FPExt:
1465 case Instruction::PtrToInt:
1466 case Instruction::IntToPtr:
1467 case Instruction::SIToFP:
1468 case Instruction::UIToFP:
1469 case Instruction::Trunc:
1470 case Instruction::FPTrunc:
1471 case Instruction::BitCast: {
1472 Type *SrcTy = VL0->getOperand(0)->getType();
1473
1474 // Calculate the cost of this instruction.
1475 int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(),
1476 VL0->getType(), SrcTy);
1477
1478 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
1479 int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy);
1480 return VecCost - ScalarCost;
1481 }
1482 case Instruction::FCmp:
1483 case Instruction::ICmp:
1484 case Instruction::Select:
1485 case Instruction::Add:
1486 case Instruction::FAdd:
1487 case Instruction::Sub:
1488 case Instruction::FSub:
1489 case Instruction::Mul:
1490 case Instruction::FMul:
1491 case Instruction::UDiv:
1492 case Instruction::SDiv:
1493 case Instruction::FDiv:
1494 case Instruction::URem:
1495 case Instruction::SRem:
1496 case Instruction::FRem:
1497 case Instruction::Shl:
1498 case Instruction::LShr:
1499 case Instruction::AShr:
1500 case Instruction::And:
1501 case Instruction::Or:
1502 case Instruction::Xor: {
1503 // Calculate the cost of this instruction.
1504 int ScalarCost = 0;
1505 int VecCost = 0;
1506 if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp ||
1507 Opcode == Instruction::Select) {
1508 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
1509 ScalarCost = VecTy->getNumElements() *
1510 TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty());
1511 VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy);
1512 } else {
1513 // Certain instructions can be cheaper to vectorize if they have a
1514 // constant second vector operand.
1515 TargetTransformInfo::OperandValueKind Op1VK =
1516 TargetTransformInfo::OK_AnyValue;
1517 TargetTransformInfo::OperandValueKind Op2VK =
1518 TargetTransformInfo::OK_UniformConstantValue;
1519 TargetTransformInfo::OperandValueProperties Op1VP =
1520 TargetTransformInfo::OP_None;
1521 TargetTransformInfo::OperandValueProperties Op2VP =
1522 TargetTransformInfo::OP_None;
1523
1524 // If all operands are exactly the same ConstantInt then set the
1525 // operand kind to OK_UniformConstantValue.
1526 // If instead not all operands are constants, then set the operand kind
1527 // to OK_AnyValue. If all operands are constants but not the same,
1528 // then set the operand kind to OK_NonUniformConstantValue.
1529 ConstantInt *CInt = nullptr;
1530 for (unsigned i = 0; i < VL.size(); ++i) {
1531 const Instruction *I = cast<Instruction>(VL[i]);
1532 if (!isa<ConstantInt>(I->getOperand(1))) {
1533 Op2VK = TargetTransformInfo::OK_AnyValue;
1534 break;
1535 }
1536 if (i == 0) {
1537 CInt = cast<ConstantInt>(I->getOperand(1));
1538 continue;
1539 }
1540 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue &&
1541 CInt != cast<ConstantInt>(I->getOperand(1)))
1542 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
1543 }
1544 // FIXME: Currently cost of model modification for division by
1545 // power of 2 is handled only for X86. Add support for other targets.
1546 if (Op2VK == TargetTransformInfo::OK_UniformConstantValue && CInt &&
1547 CInt->getValue().isPowerOf2())
1548 Op2VP = TargetTransformInfo::OP_PowerOf2;
1549
1550 ScalarCost = VecTy->getNumElements() *
1551 TTI->getArithmeticInstrCost(Opcode, ScalarTy, Op1VK, Op2VK,
1552 Op1VP, Op2VP);
1553 VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy, Op1VK, Op2VK,
1554 Op1VP, Op2VP);
1555 }
1556 return VecCost - ScalarCost;
1557 }
1558 case Instruction::GetElementPtr: {
1559 TargetTransformInfo::OperandValueKind Op1VK =
1560 TargetTransformInfo::OK_AnyValue;
1561 TargetTransformInfo::OperandValueKind Op2VK =
1562 TargetTransformInfo::OK_UniformConstantValue;
1563
1564 int ScalarCost =
1565 VecTy->getNumElements() *
1566 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK);
1567 int VecCost =
1568 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK);
1569
1570 return VecCost - ScalarCost;
1571 }
1572 case Instruction::Load: {
1573 // Cost of wide load - cost of scalar loads.
1574 int ScalarLdCost = VecTy->getNumElements() *
1575 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
1576 int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, VecTy, 1, 0);
1577 return VecLdCost - ScalarLdCost;
1578 }
1579 case Instruction::Store: {
1580 // We know that we can merge the stores. Calculate the cost.
1581 int ScalarStCost = VecTy->getNumElements() *
1582 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0);
1583 int VecStCost = TTI->getMemoryOpCost(Instruction::Store, VecTy, 1, 0);
1584 return VecStCost - ScalarStCost;
1585 }
1586 case Instruction::Call: {
1587 CallInst *CI = cast<CallInst>(VL0);
1588 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
1589
1590 // Calculate the cost of the scalar and vector calls.
1591 SmallVector<Type*, 4> ScalarTys, VecTys;
1592 for (unsigned op = 0, opc = CI->getNumArgOperands(); op!= opc; ++op) {
1593 ScalarTys.push_back(CI->getArgOperand(op)->getType());
1594 VecTys.push_back(VectorType::get(CI->getArgOperand(op)->getType(),
1595 VecTy->getNumElements()));
1596 }
1597
1598 int ScalarCallCost = VecTy->getNumElements() *
1599 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys);
1600
1601 int VecCallCost = TTI->getIntrinsicInstrCost(ID, VecTy, VecTys);
1602
1603 DEBUG(dbgs() << "SLP: Call cost "<< VecCallCost - ScalarCallCostdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Call cost "<< VecCallCost
- ScalarCallCost << " (" << VecCallCost <<
"-" << ScalarCallCost << ")" << " for " <<
*CI << "\n"; } } while (0)
1604 << " (" << VecCallCost << "-" << ScalarCallCost << ")"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Call cost "<< VecCallCost
- ScalarCallCost << " (" << VecCallCost <<
"-" << ScalarCallCost << ")" << " for " <<
*CI << "\n"; } } while (0)
1605 << " for " << *CI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Call cost "<< VecCallCost
- ScalarCallCost << " (" << VecCallCost <<
"-" << ScalarCallCost << ")" << " for " <<
*CI << "\n"; } } while (0)
;
1606
1607 return VecCallCost - ScalarCallCost;
1608 }
1609 case Instruction::ShuffleVector: {
1610 TargetTransformInfo::OperandValueKind Op1VK =
1611 TargetTransformInfo::OK_AnyValue;
1612 TargetTransformInfo::OperandValueKind Op2VK =
1613 TargetTransformInfo::OK_AnyValue;
1614 int ScalarCost = 0;
1615 int VecCost = 0;
1616 for (unsigned i = 0; i < VL.size(); ++i) {
1617 Instruction *I = cast<Instruction>(VL[i]);
1618 if (!I)
1619 break;
1620 ScalarCost +=
1621 TTI->getArithmeticInstrCost(I->getOpcode(), ScalarTy, Op1VK, Op2VK);
1622 }
1623 // VecCost is equal to sum of the cost of creating 2 vectors
1624 // and the cost of creating shuffle.
1625 Instruction *I0 = cast<Instruction>(VL[0]);
1626 VecCost =
1627 TTI->getArithmeticInstrCost(I0->getOpcode(), VecTy, Op1VK, Op2VK);
1628 Instruction *I1 = cast<Instruction>(VL[1]);
1629 VecCost +=
1630 TTI->getArithmeticInstrCost(I1->getOpcode(), VecTy, Op1VK, Op2VK);
1631 VecCost +=
1632 TTI->getShuffleCost(TargetTransformInfo::SK_Alternate, VecTy, 0);
1633 return VecCost - ScalarCost;
1634 }
1635 default:
1636 llvm_unreachable("Unknown instruction")::llvm::llvm_unreachable_internal("Unknown instruction", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1636)
;
1637 }
1638}
1639
1640bool BoUpSLP::isFullyVectorizableTinyTree() {
1641 DEBUG(dbgs() << "SLP: Check whether the tree with height " <<do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Check whether the tree with height "
<< VectorizableTree.size() << " is fully vectorizable .\n"
; } } while (0)
1642 VectorizableTree.size() << " is fully vectorizable .\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Check whether the tree with height "
<< VectorizableTree.size() << " is fully vectorizable .\n"
; } } while (0)
;
1643
1644 // We only handle trees of height 2.
1645 if (VectorizableTree.size() != 2)
1646 return false;
1647
1648 // Handle splat and all-constants stores.
1649 if (!VectorizableTree[0].NeedToGather &&
1650 (allConstant(VectorizableTree[1].Scalars) ||
1651 isSplat(VectorizableTree[1].Scalars)))
1652 return true;
1653
1654 // Gathering cost would be too much for tiny trees.
1655 if (VectorizableTree[0].NeedToGather || VectorizableTree[1].NeedToGather)
1656 return false;
1657
1658 return true;
1659}
1660
1661int BoUpSLP::getSpillCost() {
1662 // Walk from the bottom of the tree to the top, tracking which values are
1663 // live. When we see a call instruction that is not part of our tree,
1664 // query TTI to see if there is a cost to keeping values live over it
1665 // (for example, if spills and fills are required).
1666 unsigned BundleWidth = VectorizableTree.front().Scalars.size();
1667 int Cost = 0;
1668
1669 SmallPtrSet<Instruction*, 4> LiveValues;
1670 Instruction *PrevInst = nullptr;
1671
1672 for (unsigned N = 0; N < VectorizableTree.size(); ++N) {
1673 Instruction *Inst = dyn_cast<Instruction>(VectorizableTree[N].Scalars[0]);
1674 if (!Inst)
1675 continue;
1676
1677 if (!PrevInst) {
1678 PrevInst = Inst;
1679 continue;
1680 }
1681
1682 DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: #LV: " << LiveValues.size
(); for (auto *X : LiveValues) dbgs() << " " << X
->getName(); dbgs() << ", Looking at "; Inst->dump
();; } } while (0)
1683 dbgs() << "SLP: #LV: " << LiveValues.size();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: #LV: " << LiveValues.size
(); for (auto *X : LiveValues) dbgs() << " " << X
->getName(); dbgs() << ", Looking at "; Inst->dump
();; } } while (0)
1684 for (auto *X : LiveValues)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: #LV: " << LiveValues.size
(); for (auto *X : LiveValues) dbgs() << " " << X
->getName(); dbgs() << ", Looking at "; Inst->dump
();; } } while (0)
1685 dbgs() << " " << X->getName();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: #LV: " << LiveValues.size
(); for (auto *X : LiveValues) dbgs() << " " << X
->getName(); dbgs() << ", Looking at "; Inst->dump
();; } } while (0)
1686 dbgs() << ", Looking at ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: #LV: " << LiveValues.size
(); for (auto *X : LiveValues) dbgs() << " " << X
->getName(); dbgs() << ", Looking at "; Inst->dump
();; } } while (0)
1687 Inst->dump();do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: #LV: " << LiveValues.size
(); for (auto *X : LiveValues) dbgs() << " " << X
->getName(); dbgs() << ", Looking at "; Inst->dump
();; } } while (0)
1688 )do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: #LV: " << LiveValues.size
(); for (auto *X : LiveValues) dbgs() << " " << X
->getName(); dbgs() << ", Looking at "; Inst->dump
();; } } while (0)
;
1689
1690 // Update LiveValues.
1691 LiveValues.erase(PrevInst);
1692 for (auto &J : PrevInst->operands()) {
1693 if (isa<Instruction>(&*J) && ScalarToTreeEntry.count(&*J))
1694 LiveValues.insert(cast<Instruction>(&*J));
1695 }
1696
1697 // Now find the sequence of instructions between PrevInst and Inst.
1698 BasicBlock::reverse_iterator InstIt(Inst), PrevInstIt(PrevInst);
1699 --PrevInstIt;
1700 while (InstIt != PrevInstIt) {
1701 if (PrevInstIt == PrevInst->getParent()->rend()) {
1702 PrevInstIt = Inst->getParent()->rbegin();
1703 continue;
1704 }
1705
1706 if (isa<CallInst>(&*PrevInstIt) && &*PrevInstIt != PrevInst) {
1707 SmallVector<Type*, 4> V;
1708 for (auto *II : LiveValues)
1709 V.push_back(VectorType::get(II->getType(), BundleWidth));
1710 Cost += TTI->getCostOfKeepingLiveOverCall(V);
1711 }
1712
1713 ++PrevInstIt;
1714 }
1715
1716 PrevInst = Inst;
1717 }
1718
1719 DEBUG(dbgs() << "SLP: SpillCost=" << Cost << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: SpillCost=" << Cost <<
"\n"; } } while (0)
;
1720 return Cost;
1721}
1722
1723int BoUpSLP::getTreeCost() {
1724 int Cost = 0;
1725 DEBUG(dbgs() << "SLP: Calculating cost for tree of size " <<do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Calculating cost for tree of size "
<< VectorizableTree.size() << ".\n"; } } while (
0)
1726 VectorizableTree.size() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Calculating cost for tree of size "
<< VectorizableTree.size() << ".\n"; } } while (
0)
;
1727
1728 // We only vectorize tiny trees if it is fully vectorizable.
1729 if (VectorizableTree.size() < 3 && !isFullyVectorizableTinyTree()) {
1730 if (VectorizableTree.empty()) {
1731 assert(!ExternalUses.size() && "We should not have any external users")((!ExternalUses.size() && "We should not have any external users"
) ? static_cast<void> (0) : __assert_fail ("!ExternalUses.size() && \"We should not have any external users\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 1731, __PRETTY_FUNCTION__))
;
1732 }
1733 return INT_MAX2147483647;
1734 }
1735
1736 unsigned BundleWidth = VectorizableTree[0].Scalars.size();
1737
1738 for (unsigned i = 0, e = VectorizableTree.size(); i != e; ++i) {
1739 int C = getEntryCost(&VectorizableTree[i]);
1740 DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for bundle that starts with " << *VectorizableTree[i
].Scalars[0] << " .\n"; } } while (0)
1741 << *VectorizableTree[i].Scalars[0] << " .\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << C <<
" for bundle that starts with " << *VectorizableTree[i
].Scalars[0] << " .\n"; } } while (0)
;
1742 Cost += C;
1743 }
1744
1745 SmallSet<Value *, 16> ExtractCostCalculated;
1746 int ExtractCost = 0;
1747 for (UserList::iterator I = ExternalUses.begin(), E = ExternalUses.end();
1748 I != E; ++I) {
1749 // We only add extract cost once for the same scalar.
1750 if (!ExtractCostCalculated.insert(I->Scalar).second)
1751 continue;
1752
1753 // Uses by ephemeral values are free (because the ephemeral value will be
1754 // removed prior to code generation, and so the extraction will be
1755 // removed as well).
1756 if (EphValues.count(I->User))
1757 continue;
1758
1759 VectorType *VecTy = VectorType::get(I->Scalar->getType(), BundleWidth);
1760 ExtractCost += TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
1761 I->Lane);
1762 }
1763
1764 Cost += getSpillCost();
1765
1766 DEBUG(dbgs() << "SLP: Total Cost " << Cost + ExtractCost<< ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Total Cost " << Cost +
ExtractCost<< ".\n"; } } while (0)
;
1767 return Cost + ExtractCost;
1768}
1769
1770int BoUpSLP::getGatherCost(Type *Ty) {
1771 int Cost = 0;
1772 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
1773 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
1774 return Cost;
1775}
1776
1777int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) {
1778 // Find the type of the operands in VL.
1779 Type *ScalarTy = VL[0]->getType();
1780 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
1781 ScalarTy = SI->getValueOperand()->getType();
1782 VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
1783 // Find the cost of inserting/extracting values from the vector.
1784 return getGatherCost(VecTy);
1785}
1786
1787Value *BoUpSLP::getPointerOperand(Value *I) {
1788 if (LoadInst *LI = dyn_cast<LoadInst>(I))
1789 return LI->getPointerOperand();
1790 if (StoreInst *SI = dyn_cast<StoreInst>(I))
1791 return SI->getPointerOperand();
1792 return nullptr;
1793}
1794
1795unsigned BoUpSLP::getAddressSpaceOperand(Value *I) {
1796 if (LoadInst *L = dyn_cast<LoadInst>(I))
1797 return L->getPointerAddressSpace();
1798 if (StoreInst *S = dyn_cast<StoreInst>(I))
1799 return S->getPointerAddressSpace();
1800 return -1;
1801}
1802
1803bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B, const DataLayout &DL) {
1804 Value *PtrA = getPointerOperand(A);
1805 Value *PtrB = getPointerOperand(B);
1806 unsigned ASA = getAddressSpaceOperand(A);
1807 unsigned ASB = getAddressSpaceOperand(B);
1808
1809 // Check that the address spaces match and that the pointers are valid.
1810 if (!PtrA || !PtrB || (ASA != ASB))
1811 return false;
1812
1813 // Make sure that A and B are different pointers of the same type.
1814 if (PtrA == PtrB || PtrA->getType() != PtrB->getType())
1815 return false;
1816
1817 unsigned PtrBitWidth = DL.getPointerSizeInBits(ASA);
1818 Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
1819 APInt Size(PtrBitWidth, DL.getTypeStoreSize(Ty));
1820
1821 APInt OffsetA(PtrBitWidth, 0), OffsetB(PtrBitWidth, 0);
1822 PtrA = PtrA->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetA);
1823 PtrB = PtrB->stripAndAccumulateInBoundsConstantOffsets(DL, OffsetB);
1824
1825 APInt OffsetDelta = OffsetB - OffsetA;
1826
1827 // Check if they are based on the same pointer. That makes the offsets
1828 // sufficient.
1829 if (PtrA == PtrB)
1830 return OffsetDelta == Size;
1831
1832 // Compute the necessary base pointer delta to have the necessary final delta
1833 // equal to the size.
1834 APInt BaseDelta = Size - OffsetDelta;
1835
1836 // Otherwise compute the distance with SCEV between the base pointers.
1837 const SCEV *PtrSCEVA = SE->getSCEV(PtrA);
1838 const SCEV *PtrSCEVB = SE->getSCEV(PtrB);
1839 const SCEV *C = SE->getConstant(BaseDelta);
1840 const SCEV *X = SE->getAddExpr(PtrSCEVA, C);
1841 return X == PtrSCEVB;
1842}
1843
1844// Reorder commutative operations in alternate shuffle if the resulting vectors
1845// are consecutive loads. This would allow us to vectorize the tree.
1846// If we have something like-
1847// load a[0] - load b[0]
1848// load b[1] + load a[1]
1849// load a[2] - load b[2]
1850// load a[3] + load b[3]
1851// Reordering the second load b[1] load a[1] would allow us to vectorize this
1852// code.
1853void BoUpSLP::reorderAltShuffleOperands(ArrayRef<Value *> VL,
1854 SmallVectorImpl<Value *> &Left,
1855 SmallVectorImpl<Value *> &Right) {
1856 const DataLayout &DL = F->getParent()->getDataLayout();
1857
1858 // Push left and right operands of binary operation into Left and Right
1859 for (unsigned i = 0, e = VL.size(); i < e; ++i) {
1860 Left.push_back(cast<Instruction>(VL[i])->getOperand(0));
1861 Right.push_back(cast<Instruction>(VL[i])->getOperand(1));
1862 }
1863
1864 // Reorder if we have a commutative operation and consecutive access
1865 // are on either side of the alternate instructions.
1866 for (unsigned j = 0; j < VL.size() - 1; ++j) {
1867 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) {
1868 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
1869 Instruction *VL1 = cast<Instruction>(VL[j]);
1870 Instruction *VL2 = cast<Instruction>(VL[j + 1]);
1871 if (isConsecutiveAccess(L, L1, DL) && VL1->isCommutative()) {
1872 std::swap(Left[j], Right[j]);
1873 continue;
1874 } else if (isConsecutiveAccess(L, L1, DL) && VL2->isCommutative()) {
1875 std::swap(Left[j + 1], Right[j + 1]);
1876 continue;
1877 }
1878 // else unchanged
1879 }
1880 }
1881 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) {
1882 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
1883 Instruction *VL1 = cast<Instruction>(VL[j]);
1884 Instruction *VL2 = cast<Instruction>(VL[j + 1]);
1885 if (isConsecutiveAccess(L, L1, DL) && VL1->isCommutative()) {
1886 std::swap(Left[j], Right[j]);
1887 continue;
1888 } else if (isConsecutiveAccess(L, L1, DL) && VL2->isCommutative()) {
1889 std::swap(Left[j + 1], Right[j + 1]);
1890 continue;
1891 }
1892 // else unchanged
1893 }
1894 }
1895 }
1896}
1897
1898void BoUpSLP::reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
1899 SmallVectorImpl<Value *> &Left,
1900 SmallVectorImpl<Value *> &Right) {
1901
1902 SmallVector<Value *, 16> OrigLeft, OrigRight;
1903
1904 bool AllSameOpcodeLeft = true;
1905 bool AllSameOpcodeRight = true;
1906 for (unsigned i = 0, e = VL.size(); i != e; ++i) {
1907 Instruction *I = cast<Instruction>(VL[i]);
1908 Value *VLeft = I->getOperand(0);
1909 Value *VRight = I->getOperand(1);
1910
1911 OrigLeft.push_back(VLeft);
1912 OrigRight.push_back(VRight);
1913
1914 Instruction *ILeft = dyn_cast<Instruction>(VLeft);
1915 Instruction *IRight = dyn_cast<Instruction>(VRight);
1916
1917 // Check whether all operands on one side have the same opcode. In this case
1918 // we want to preserve the original order and not make things worse by
1919 // reordering.
1920 if (i && AllSameOpcodeLeft && ILeft) {
1921 if (Instruction *PLeft = dyn_cast<Instruction>(OrigLeft[i - 1])) {
1922 if (PLeft->getOpcode() != ILeft->getOpcode())
1923 AllSameOpcodeLeft = false;
1924 } else
1925 AllSameOpcodeLeft = false;
1926 }
1927 if (i && AllSameOpcodeRight && IRight) {
1928 if (Instruction *PRight = dyn_cast<Instruction>(OrigRight[i - 1])) {
1929 if (PRight->getOpcode() != IRight->getOpcode())
1930 AllSameOpcodeRight = false;
1931 } else
1932 AllSameOpcodeRight = false;
1933 }
1934
1935 // Sort two opcodes. In the code below we try to preserve the ability to use
1936 // broadcast of values instead of individual inserts.
1937 // vl1 = load
1938 // vl2 = phi
1939 // vr1 = load
1940 // vr2 = vr2
1941 // = vl1 x vr1
1942 // = vl2 x vr2
1943 // If we just sorted according to opcode we would leave the first line in
1944 // tact but we would swap vl2 with vr2 because opcode(phi) > opcode(load).
1945 // = vl1 x vr1
1946 // = vr2 x vl2
1947 // Because vr2 and vr1 are from the same load we loose the opportunity of a
1948 // broadcast for the packed right side in the backend: we have [vr1, vl2]
1949 // instead of [vr1, vr2=vr1].
1950 if (ILeft && IRight) {
1951 if (!i && ILeft->getOpcode() > IRight->getOpcode()) {
1952 Left.push_back(IRight);
1953 Right.push_back(ILeft);
1954 } else if (i && ILeft->getOpcode() > IRight->getOpcode() &&
1955 Right[i - 1] != IRight) {
1956 // Try not to destroy a broad cast for no apparent benefit.
1957 Left.push_back(IRight);
1958 Right.push_back(ILeft);
1959 } else if (i && ILeft->getOpcode() == IRight->getOpcode() &&
1960 Right[i - 1] == ILeft) {
1961 // Try preserve broadcasts.
1962 Left.push_back(IRight);
1963 Right.push_back(ILeft);
1964 } else if (i && ILeft->getOpcode() == IRight->getOpcode() &&
1965 Left[i - 1] == IRight) {
1966 // Try preserve broadcasts.
1967 Left.push_back(IRight);
1968 Right.push_back(ILeft);
1969 } else {
1970 Left.push_back(ILeft);
1971 Right.push_back(IRight);
1972 }
1973 continue;
1974 }
1975 // One opcode, put the instruction on the right.
1976 if (ILeft) {
1977 Left.push_back(VRight);
1978 Right.push_back(ILeft);
1979 continue;
1980 }
1981 Left.push_back(VLeft);
1982 Right.push_back(VRight);
1983 }
1984
1985 bool LeftBroadcast = isSplat(Left);
1986 bool RightBroadcast = isSplat(Right);
1987
1988 // If operands end up being broadcast return this operand order.
1989 if (LeftBroadcast || RightBroadcast)
1990 return;
1991
1992 // Don't reorder if the operands where good to begin.
1993 if (AllSameOpcodeRight || AllSameOpcodeLeft) {
1994 Left = OrigLeft;
1995 Right = OrigRight;
1996 }
1997
1998 const DataLayout &DL = F->getParent()->getDataLayout();
1999
2000 // Finally check if we can get longer vectorizable chain by reordering
2001 // without breaking the good operand order detected above.
2002 // E.g. If we have something like-
2003 // load a[0] load b[0]
2004 // load b[1] load a[1]
2005 // load a[2] load b[2]
2006 // load a[3] load b[3]
2007 // Reordering the second load b[1] load a[1] would allow us to vectorize
2008 // this code and we still retain AllSameOpcode property.
2009 // FIXME: This load reordering might break AllSameOpcode in some rare cases
2010 // such as-
2011 // add a[0],c[0] load b[0]
2012 // add a[1],c[2] load b[1]
2013 // b[2] load b[2]
2014 // add a[3],c[3] load b[3]
2015 for (unsigned j = 0; j < VL.size() - 1; ++j) {
2016 if (LoadInst *L = dyn_cast<LoadInst>(Left[j])) {
2017 if (LoadInst *L1 = dyn_cast<LoadInst>(Right[j + 1])) {
2018 if (isConsecutiveAccess(L, L1, DL)) {
2019 std::swap(Left[j + 1], Right[j + 1]);
2020 continue;
2021 }
2022 }
2023 }
2024 if (LoadInst *L = dyn_cast<LoadInst>(Right[j])) {
2025 if (LoadInst *L1 = dyn_cast<LoadInst>(Left[j + 1])) {
2026 if (isConsecutiveAccess(L, L1, DL)) {
2027 std::swap(Left[j + 1], Right[j + 1]);
2028 continue;
2029 }
2030 }
2031 }
2032 // else unchanged
2033 }
2034}
2035
2036void BoUpSLP::setInsertPointAfterBundle(ArrayRef<Value *> VL) {
2037 Instruction *VL0 = cast<Instruction>(VL[0]);
2038 BasicBlock::iterator NextInst = VL0;
2039 ++NextInst;
2040 Builder.SetInsertPoint(VL0->getParent(), NextInst);
2041 Builder.SetCurrentDebugLocation(VL0->getDebugLoc());
2042}
2043
2044Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
2045 Value *Vec = UndefValue::get(Ty);
2046 // Generate the 'InsertElement' instruction.
2047 for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
2048 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
2049 if (Instruction *Insrt = dyn_cast<Instruction>(Vec)) {
2050 GatherSeq.insert(Insrt);
2051 CSEBlocks.insert(Insrt->getParent());
2052
2053 // Add to our 'need-to-extract' list.
2054 if (ScalarToTreeEntry.count(VL[i])) {
2055 int Idx = ScalarToTreeEntry[VL[i]];
2056 TreeEntry *E = &VectorizableTree[Idx];
2057 // Find which lane we need to extract.
2058 int FoundLane = -1;
2059 for (unsigned Lane = 0, LE = VL.size(); Lane != LE; ++Lane) {
2060 // Is this the lane of the scalar that we are looking for ?
2061 if (E->Scalars[Lane] == VL[i]) {
2062 FoundLane = Lane;
2063 break;
2064 }
2065 }
2066 assert(FoundLane >= 0 && "Could not find the correct lane")((FoundLane >= 0 && "Could not find the correct lane"
) ? static_cast<void> (0) : __assert_fail ("FoundLane >= 0 && \"Could not find the correct lane\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2066, __PRETTY_FUNCTION__))
;
2067 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
2068 }
2069 }
2070 }
2071
2072 return Vec;
2073}
2074
2075Value *BoUpSLP::alreadyVectorized(ArrayRef<Value *> VL) const {
2076 SmallDenseMap<Value*, int>::const_iterator Entry
2077 = ScalarToTreeEntry.find(VL[0]);
2078 if (Entry != ScalarToTreeEntry.end()) {
2079 int Idx = Entry->second;
2080 const TreeEntry *En = &VectorizableTree[Idx];
2081 if (En->isSame(VL) && En->VectorizedValue)
2082 return En->VectorizedValue;
2083 }
2084 return nullptr;
2085}
2086
2087Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
2088 if (ScalarToTreeEntry.count(VL[0])) {
2089 int Idx = ScalarToTreeEntry[VL[0]];
2090 TreeEntry *E = &VectorizableTree[Idx];
2091 if (E->isSame(VL))
2092 return vectorizeTree(E);
2093 }
2094
2095 Type *ScalarTy = VL[0]->getType();
2096 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
2097 ScalarTy = SI->getValueOperand()->getType();
2098 VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
2099
2100 return Gather(VL, VecTy);
2101}
2102
2103Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
2104 IRBuilder<>::InsertPointGuard Guard(Builder);
2105
2106 if (E->VectorizedValue) {
2107 DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Diamond merged for " <<
*E->Scalars[0] << ".\n"; } } while (0)
;
2108 return E->VectorizedValue;
2109 }
2110
2111 Instruction *VL0 = cast<Instruction>(E->Scalars[0]);
2112 Type *ScalarTy = VL0->getType();
2113 if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
2114 ScalarTy = SI->getValueOperand()->getType();
2115 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
2116
2117 if (E->NeedToGather) {
2118 setInsertPointAfterBundle(E->Scalars);
2119 return Gather(E->Scalars, VecTy);
2120 }
2121
2122 const DataLayout &DL = F->getParent()->getDataLayout();
2123 unsigned Opcode = getSameOpcode(E->Scalars);
2124
2125 switch (Opcode) {
2126 case Instruction::PHI: {
2127 PHINode *PH = dyn_cast<PHINode>(VL0);
2128 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
2129 Builder.SetCurrentDebugLocation(PH->getDebugLoc());
2130 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
2131 E->VectorizedValue = NewPhi;
2132
2133 // PHINodes may have multiple entries from the same block. We want to
2134 // visit every block once.
2135 SmallSet<BasicBlock*, 4> VisitedBBs;
2136
2137 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
2138 ValueList Operands;
2139 BasicBlock *IBB = PH->getIncomingBlock(i);
2140
2141 if (!VisitedBBs.insert(IBB).second) {
2142 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
2143 continue;
2144 }
2145
2146 // Prepare the operand vector.
2147 for (Value *V : E->Scalars)
2148 Operands.push_back(cast<PHINode>(V)->getIncomingValueForBlock(IBB));
2149
2150 Builder.SetInsertPoint(IBB->getTerminator());
2151 Builder.SetCurrentDebugLocation(PH->getDebugLoc());
2152 Value *Vec = vectorizeTree(Operands);
2153 NewPhi->addIncoming(Vec, IBB);
2154 }
2155
2156 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&((NewPhi->getNumIncomingValues() == PH->getNumIncomingValues
() && "Invalid number of incoming values") ? static_cast
<void> (0) : __assert_fail ("NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && \"Invalid number of incoming values\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2157, __PRETTY_FUNCTION__))
2157 "Invalid number of incoming values")((NewPhi->getNumIncomingValues() == PH->getNumIncomingValues
() && "Invalid number of incoming values") ? static_cast
<void> (0) : __assert_fail ("NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() && \"Invalid number of incoming values\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2157, __PRETTY_FUNCTION__))
;
2158 return NewPhi;
2159 }
2160
2161 case Instruction::ExtractElement: {
2162 if (CanReuseExtract(E->Scalars)) {
2163 Value *V = VL0->getOperand(0);
2164 E->VectorizedValue = V;
2165 return V;
2166 }
2167 return Gather(E->Scalars, VecTy);
2168 }
2169 case Instruction::ZExt:
2170 case Instruction::SExt:
2171 case Instruction::FPToUI:
2172 case Instruction::FPToSI:
2173 case Instruction::FPExt:
2174 case Instruction::PtrToInt:
2175 case Instruction::IntToPtr:
2176 case Instruction::SIToFP:
2177 case Instruction::UIToFP:
2178 case Instruction::Trunc:
2179 case Instruction::FPTrunc:
2180 case Instruction::BitCast: {
2181 ValueList INVL;
2182 for (Value *V : E->Scalars)
2183 INVL.push_back(cast<Instruction>(V)->getOperand(0));
2184
2185 setInsertPointAfterBundle(E->Scalars);
2186
2187 Value *InVec = vectorizeTree(INVL);
2188
2189 if (Value *V = alreadyVectorized(E->Scalars))
2190 return V;
2191
2192 CastInst *CI = dyn_cast<CastInst>(VL0);
2193 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
2194 E->VectorizedValue = V;
2195 ++NumVectorInstructions;
2196 return V;
2197 }
2198 case Instruction::FCmp:
2199 case Instruction::ICmp: {
2200 ValueList LHSV, RHSV;
2201 for (Value *V : E->Scalars) {
2202 LHSV.push_back(cast<Instruction>(V)->getOperand(0));
2203 RHSV.push_back(cast<Instruction>(V)->getOperand(1));
2204 }
2205
2206 setInsertPointAfterBundle(E->Scalars);
2207
2208 Value *L = vectorizeTree(LHSV);
2209 Value *R = vectorizeTree(RHSV);
2210
2211 if (Value *V = alreadyVectorized(E->Scalars))
2212 return V;
2213
2214 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
2215 Value *V;
2216 if (Opcode == Instruction::FCmp)
2217 V = Builder.CreateFCmp(P0, L, R);
2218 else
2219 V = Builder.CreateICmp(P0, L, R);
2220
2221 E->VectorizedValue = V;
2222 ++NumVectorInstructions;
2223 return V;
2224 }
2225 case Instruction::Select: {
2226 ValueList TrueVec, FalseVec, CondVec;
2227 for (Value *V : E->Scalars) {
2228 CondVec.push_back(cast<Instruction>(V)->getOperand(0));
2229 TrueVec.push_back(cast<Instruction>(V)->getOperand(1));
2230 FalseVec.push_back(cast<Instruction>(V)->getOperand(2));
2231 }
2232
2233 setInsertPointAfterBundle(E->Scalars);
2234
2235 Value *Cond = vectorizeTree(CondVec);
2236 Value *True = vectorizeTree(TrueVec);
2237 Value *False = vectorizeTree(FalseVec);
2238
2239 if (Value *V = alreadyVectorized(E->Scalars))
2240 return V;
2241
2242 Value *V = Builder.CreateSelect(Cond, True, False);
2243 E->VectorizedValue = V;
2244 ++NumVectorInstructions;
2245 return V;
2246 }
2247 case Instruction::Add:
2248 case Instruction::FAdd:
2249 case Instruction::Sub:
2250 case Instruction::FSub:
2251 case Instruction::Mul:
2252 case Instruction::FMul:
2253 case Instruction::UDiv:
2254 case Instruction::SDiv:
2255 case Instruction::FDiv:
2256 case Instruction::URem:
2257 case Instruction::SRem:
2258 case Instruction::FRem:
2259 case Instruction::Shl:
2260 case Instruction::LShr:
2261 case Instruction::AShr:
2262 case Instruction::And:
2263 case Instruction::Or:
2264 case Instruction::Xor: {
2265 ValueList LHSVL, RHSVL;
2266 if (isa<BinaryOperator>(VL0) && VL0->isCommutative())
2267 reorderInputsAccordingToOpcode(E->Scalars, LHSVL, RHSVL);
2268 else
2269 for (Value *V : E->Scalars) {
2270 LHSVL.push_back(cast<Instruction>(V)->getOperand(0));
2271 RHSVL.push_back(cast<Instruction>(V)->getOperand(1));
2272 }
2273
2274 setInsertPointAfterBundle(E->Scalars);
2275
2276 Value *LHS = vectorizeTree(LHSVL);
2277 Value *RHS = vectorizeTree(RHSVL);
2278
2279 if (LHS == RHS && isa<Instruction>(LHS)) {
2280 assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order")(((VL0->getOperand(0) == VL0->getOperand(1)) &&
"Invalid order") ? static_cast<void> (0) : __assert_fail
("(VL0->getOperand(0) == VL0->getOperand(1)) && \"Invalid order\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2280, __PRETTY_FUNCTION__))
;
2281 }
2282
2283 if (Value *V = alreadyVectorized(E->Scalars))
2284 return V;
2285
2286 BinaryOperator *BinOp = cast<BinaryOperator>(VL0);
2287 Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS);
2288 E->VectorizedValue = V;
2289 propagateIRFlags(E->VectorizedValue, E->Scalars);
2290 ++NumVectorInstructions;
2291
2292 if (Instruction *I = dyn_cast<Instruction>(V))
2293 return propagateMetadata(I, E->Scalars);
2294
2295 return V;
2296 }
2297 case Instruction::Load: {
2298 // Loads are inserted at the head of the tree because we don't want to
2299 // sink them all the way down past store instructions.
2300 setInsertPointAfterBundle(E->Scalars);
2301
2302 LoadInst *LI = cast<LoadInst>(VL0);
2303 Type *ScalarLoadTy = LI->getType();
2304 unsigned AS = LI->getPointerAddressSpace();
2305
2306 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
2307 VecTy->getPointerTo(AS));
2308
2309 // The pointer operand uses an in-tree scalar so we add the new BitCast to
2310 // ExternalUses list to make sure that an extract will be generated in the
2311 // future.
2312 if (ScalarToTreeEntry.count(LI->getPointerOperand()))
2313 ExternalUses.push_back(
2314 ExternalUser(LI->getPointerOperand(), cast<User>(VecPtr), 0));
2315
2316 unsigned Alignment = LI->getAlignment();
2317 LI = Builder.CreateLoad(VecPtr);
2318 if (!Alignment) {
2319 Alignment = DL.getABITypeAlignment(ScalarLoadTy);
2320 }
2321 LI->setAlignment(Alignment);
2322 E->VectorizedValue = LI;
2323 ++NumVectorInstructions;
2324 return propagateMetadata(LI, E->Scalars);
2325 }
2326 case Instruction::Store: {
2327 StoreInst *SI = cast<StoreInst>(VL0);
2328 unsigned Alignment = SI->getAlignment();
2329 unsigned AS = SI->getPointerAddressSpace();
2330
2331 ValueList ValueOp;
2332 for (Value *V : E->Scalars)
2333 ValueOp.push_back(cast<StoreInst>(V)->getValueOperand());
2334
2335 setInsertPointAfterBundle(E->Scalars);
2336
2337 Value *VecValue = vectorizeTree(ValueOp);
2338 Value *VecPtr = Builder.CreateBitCast(SI->getPointerOperand(),
2339 VecTy->getPointerTo(AS));
2340 StoreInst *S = Builder.CreateStore(VecValue, VecPtr);
2341
2342 // The pointer operand uses an in-tree scalar so we add the new BitCast to
2343 // ExternalUses list to make sure that an extract will be generated in the
2344 // future.
2345 if (ScalarToTreeEntry.count(SI->getPointerOperand()))
2346 ExternalUses.push_back(
2347 ExternalUser(SI->getPointerOperand(), cast<User>(VecPtr), 0));
2348
2349 if (!Alignment) {
2350 Alignment = DL.getABITypeAlignment(SI->getValueOperand()->getType());
2351 }
2352 S->setAlignment(Alignment);
2353 E->VectorizedValue = S;
2354 ++NumVectorInstructions;
2355 return propagateMetadata(S, E->Scalars);
2356 }
2357 case Instruction::GetElementPtr: {
2358 setInsertPointAfterBundle(E->Scalars);
2359
2360 ValueList Op0VL;
2361 for (Value *V : E->Scalars)
2362 Op0VL.push_back(cast<GetElementPtrInst>(V)->getOperand(0));
2363
2364 Value *Op0 = vectorizeTree(Op0VL);
2365
2366 std::vector<Value *> OpVecs;
2367 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
2368 ++j) {
2369 ValueList OpVL;
2370 for (Value *V : E->Scalars)
2371 OpVL.push_back(cast<GetElementPtrInst>(V)->getOperand(j));
2372
2373 Value *OpVec = vectorizeTree(OpVL);
2374 OpVecs.push_back(OpVec);
2375 }
2376
2377 Value *V = Builder.CreateGEP(
2378 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
2379 E->VectorizedValue = V;
2380 ++NumVectorInstructions;
2381
2382 if (Instruction *I = dyn_cast<Instruction>(V))
2383 return propagateMetadata(I, E->Scalars);
2384
2385 return V;
2386 }
2387 case Instruction::Call: {
2388 CallInst *CI = cast<CallInst>(VL0);
2389 setInsertPointAfterBundle(E->Scalars);
2390 Function *FI;
2391 Intrinsic::ID IID = Intrinsic::not_intrinsic;
2392 Value *ScalarArg = nullptr;
2393 if (CI && (FI = CI->getCalledFunction())) {
2394 IID = FI->getIntrinsicID();
2395 }
2396 std::vector<Value *> OpVecs;
2397 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
2398 ValueList OpVL;
2399 // ctlz,cttz and powi are special intrinsics whose second argument is
2400 // a scalar. This argument should not be vectorized.
2401 if (hasVectorInstrinsicScalarOpd(IID, 1) && j == 1) {
2402 CallInst *CEI = cast<CallInst>(E->Scalars[0]);
2403 ScalarArg = CEI->getArgOperand(j);
2404 OpVecs.push_back(CEI->getArgOperand(j));
2405 continue;
2406 }
2407 for (Value *V : E->Scalars) {
2408 CallInst *CEI = cast<CallInst>(V);
2409 OpVL.push_back(CEI->getArgOperand(j));
2410 }
2411
2412 Value *OpVec = vectorizeTree(OpVL);
2413 DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: OpVec[" << j << "]: "
<< *OpVec << "\n"; } } while (0)
;
2414 OpVecs.push_back(OpVec);
2415 }
2416
2417 Module *M = F->getParent();
2418 Intrinsic::ID ID = getIntrinsicIDForCall(CI, TLI);
2419 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) };
2420 Function *CF = Intrinsic::getDeclaration(M, ID, Tys);
2421 Value *V = Builder.CreateCall(CF, OpVecs);
2422
2423 // The scalar argument uses an in-tree scalar so we add the new vectorized
2424 // call to ExternalUses list to make sure that an extract will be
2425 // generated in the future.
2426 if (ScalarArg && ScalarToTreeEntry.count(ScalarArg))
2427 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
2428
2429 E->VectorizedValue = V;
2430 ++NumVectorInstructions;
2431 return V;
2432 }
2433 case Instruction::ShuffleVector: {
2434 ValueList LHSVL, RHSVL;
2435 assert(isa<BinaryOperator>(VL0) && "Invalid Shuffle Vector Operand")((isa<BinaryOperator>(VL0) && "Invalid Shuffle Vector Operand"
) ? static_cast<void> (0) : __assert_fail ("isa<BinaryOperator>(VL0) && \"Invalid Shuffle Vector Operand\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2435, __PRETTY_FUNCTION__))
;
2436 reorderAltShuffleOperands(E->Scalars, LHSVL, RHSVL);
2437 setInsertPointAfterBundle(E->Scalars);
2438
2439 Value *LHS = vectorizeTree(LHSVL);
2440 Value *RHS = vectorizeTree(RHSVL);
2441
2442 if (Value *V = alreadyVectorized(E->Scalars))
2443 return V;
2444
2445 // Create a vector of LHS op1 RHS
2446 BinaryOperator *BinOp0 = cast<BinaryOperator>(VL0);
2447 Value *V0 = Builder.CreateBinOp(BinOp0->getOpcode(), LHS, RHS);
2448
2449 // Create a vector of LHS op2 RHS
2450 Instruction *VL1 = cast<Instruction>(E->Scalars[1]);
2451 BinaryOperator *BinOp1 = cast<BinaryOperator>(VL1);
2452 Value *V1 = Builder.CreateBinOp(BinOp1->getOpcode(), LHS, RHS);
2453
2454 // Create shuffle to take alternate operations from the vector.
2455 // Also, gather up odd and even scalar ops to propagate IR flags to
2456 // each vector operation.
2457 ValueList OddScalars, EvenScalars;
2458 unsigned e = E->Scalars.size();
2459 SmallVector<Constant *, 8> Mask(e);
2460 for (unsigned i = 0; i < e; ++i) {
2461 if (i & 1) {
2462 Mask[i] = Builder.getInt32(e + i);
2463 OddScalars.push_back(E->Scalars[i]);
2464 } else {
2465 Mask[i] = Builder.getInt32(i);
2466 EvenScalars.push_back(E->Scalars[i]);
2467 }
2468 }
2469
2470 Value *ShuffleMask = ConstantVector::get(Mask);
2471 propagateIRFlags(V0, EvenScalars);
2472 propagateIRFlags(V1, OddScalars);
2473
2474 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask);
2475 E->VectorizedValue = V;
2476 ++NumVectorInstructions;
2477 if (Instruction *I = dyn_cast<Instruction>(V))
2478 return propagateMetadata(I, E->Scalars);
2479
2480 return V;
2481 }
2482 default:
2483 llvm_unreachable("unknown inst")::llvm::llvm_unreachable_internal("unknown inst", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2483)
;
2484 }
2485 return nullptr;
2486}
2487
2488Value *BoUpSLP::vectorizeTree() {
2489
2490 // All blocks must be scheduled before any instructions are inserted.
2491 for (auto &BSIter : BlocksSchedules) {
2492 scheduleBlock(BSIter.second.get());
2493 }
2494
2495 Builder.SetInsertPoint(F->getEntryBlock().begin());
2496 vectorizeTree(&VectorizableTree[0]);
2497
2498 DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size() << " values .\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Extracting " << ExternalUses
.size() << " values .\n"; } } while (0)
;
2499
2500 // Extract all of the elements with the external uses.
2501 for (UserList::iterator it = ExternalUses.begin(), e = ExternalUses.end();
2502 it != e; ++it) {
2503 Value *Scalar = it->Scalar;
2504 llvm::User *User = it->User;
2505
2506 // Skip users that we already RAUW. This happens when one instruction
2507 // has multiple uses of the same value.
2508 if (std::find(Scalar->user_begin(), Scalar->user_end(), User) ==
2509 Scalar->user_end())
2510 continue;
2511 assert(ScalarToTreeEntry.count(Scalar) && "Invalid scalar")((ScalarToTreeEntry.count(Scalar) && "Invalid scalar"
) ? static_cast<void> (0) : __assert_fail ("ScalarToTreeEntry.count(Scalar) && \"Invalid scalar\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2511, __PRETTY_FUNCTION__))
;
2512
2513 int Idx = ScalarToTreeEntry[Scalar];
2514 TreeEntry *E = &VectorizableTree[Idx];
2515 assert(!E->NeedToGather && "Extracting from a gather list")((!E->NeedToGather && "Extracting from a gather list"
) ? static_cast<void> (0) : __assert_fail ("!E->NeedToGather && \"Extracting from a gather list\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2515, __PRETTY_FUNCTION__))
;
2516
2517 Value *Vec = E->VectorizedValue;
2518 assert(Vec && "Can't find vectorizable value")((Vec && "Can't find vectorizable value") ? static_cast
<void> (0) : __assert_fail ("Vec && \"Can't find vectorizable value\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2518, __PRETTY_FUNCTION__))
;
2519
2520 Value *Lane = Builder.getInt32(it->Lane);
2521 // Generate extracts for out-of-tree users.
2522 // Find the insertion point for the extractelement lane.
2523 if (isa<Instruction>(Vec)){
2524 if (PHINode *PH = dyn_cast<PHINode>(User)) {
2525 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
2526 if (PH->getIncomingValue(i) == Scalar) {
2527 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
2528 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
2529 CSEBlocks.insert(PH->getIncomingBlock(i));
2530 PH->setOperand(i, Ex);
2531 }
2532 }
2533 } else {
2534 Builder.SetInsertPoint(cast<Instruction>(User));
2535 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
2536 CSEBlocks.insert(cast<Instruction>(User)->getParent());
2537 User->replaceUsesOfWith(Scalar, Ex);
2538 }
2539 } else {
2540 Builder.SetInsertPoint(F->getEntryBlock().begin());
2541 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
2542 CSEBlocks.insert(&F->getEntryBlock());
2543 User->replaceUsesOfWith(Scalar, Ex);
2544 }
2545
2546 DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Replaced:" << *User <<
".\n"; } } while (0)
;
2547 }
2548
2549 // For each vectorized value:
2550 for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
2551 TreeEntry *Entry = &VectorizableTree[EIdx];
2552
2553 // For each lane:
2554 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
2555 Value *Scalar = Entry->Scalars[Lane];
2556 // No need to handle users of gathered values.
2557 if (Entry->NeedToGather)
2558 continue;
2559
2560 assert(Entry->VectorizedValue && "Can't find vectorizable value")((Entry->VectorizedValue && "Can't find vectorizable value"
) ? static_cast<void> (0) : __assert_fail ("Entry->VectorizedValue && \"Can't find vectorizable value\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2560, __PRETTY_FUNCTION__))
;
2561
2562 Type *Ty = Scalar->getType();
2563 if (!Ty->isVoidTy()) {
2564#ifndef NDEBUG
2565 for (User *U : Scalar->users()) {
2566 DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tvalidating user:" <<
*U << ".\n"; } } while (0)
;
2567
2568 assert((ScalarToTreeEntry.count(U) ||(((ScalarToTreeEntry.count(U) || (std::find(UserIgnoreList.begin
(), UserIgnoreList.end(), U) != UserIgnoreList.end())) &&
"Replacing out-of-tree value with undef") ? static_cast<void
> (0) : __assert_fail ("(ScalarToTreeEntry.count(U) || (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), U) != UserIgnoreList.end())) && \"Replacing out-of-tree value with undef\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2572, __PRETTY_FUNCTION__))
2569 // It is legal to replace users in the ignorelist by undef.(((ScalarToTreeEntry.count(U) || (std::find(UserIgnoreList.begin
(), UserIgnoreList.end(), U) != UserIgnoreList.end())) &&
"Replacing out-of-tree value with undef") ? static_cast<void
> (0) : __assert_fail ("(ScalarToTreeEntry.count(U) || (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), U) != UserIgnoreList.end())) && \"Replacing out-of-tree value with undef\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2572, __PRETTY_FUNCTION__))
2570 (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), U) !=(((ScalarToTreeEntry.count(U) || (std::find(UserIgnoreList.begin
(), UserIgnoreList.end(), U) != UserIgnoreList.end())) &&
"Replacing out-of-tree value with undef") ? static_cast<void
> (0) : __assert_fail ("(ScalarToTreeEntry.count(U) || (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), U) != UserIgnoreList.end())) && \"Replacing out-of-tree value with undef\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2572, __PRETTY_FUNCTION__))
2571 UserIgnoreList.end())) &&(((ScalarToTreeEntry.count(U) || (std::find(UserIgnoreList.begin
(), UserIgnoreList.end(), U) != UserIgnoreList.end())) &&
"Replacing out-of-tree value with undef") ? static_cast<void
> (0) : __assert_fail ("(ScalarToTreeEntry.count(U) || (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), U) != UserIgnoreList.end())) && \"Replacing out-of-tree value with undef\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2572, __PRETTY_FUNCTION__))
2572 "Replacing out-of-tree value with undef")(((ScalarToTreeEntry.count(U) || (std::find(UserIgnoreList.begin
(), UserIgnoreList.end(), U) != UserIgnoreList.end())) &&
"Replacing out-of-tree value with undef") ? static_cast<void
> (0) : __assert_fail ("(ScalarToTreeEntry.count(U) || (std::find(UserIgnoreList.begin(), UserIgnoreList.end(), U) != UserIgnoreList.end())) && \"Replacing out-of-tree value with undef\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2572, __PRETTY_FUNCTION__))
;
2573 }
2574#endif
2575 Value *Undef = UndefValue::get(Ty);
2576 Scalar->replaceAllUsesWith(Undef);
2577 }
2578 DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: \tErasing scalar:" << *
Scalar << ".\n"; } } while (0)
;
2579 eraseInstruction(cast<Instruction>(Scalar));
2580 }
2581 }
2582
2583 Builder.ClearInsertionPoint();
2584
2585 return VectorizableTree[0].VectorizedValue;
2586}
2587
2588void BoUpSLP::optimizeGatherSequence() {
2589 DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Optimizing " << GatherSeq
.size() << " gather sequences instructions.\n"; } } while
(0)
2590 << " gather sequences instructions.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Optimizing " << GatherSeq
.size() << " gather sequences instructions.\n"; } } while
(0)
;
2591 // LICM InsertElementInst sequences.
2592 for (SetVector<Instruction *>::iterator it = GatherSeq.begin(),
2593 e = GatherSeq.end(); it != e; ++it) {
2594 InsertElementInst *Insert = dyn_cast<InsertElementInst>(*it);
2595
2596 if (!Insert)
2597 continue;
2598
2599 // Check if this block is inside a loop.
2600 Loop *L = LI->getLoopFor(Insert->getParent());
2601 if (!L)
2602 continue;
2603
2604 // Check if it has a preheader.
2605 BasicBlock *PreHeader = L->getLoopPreheader();
2606 if (!PreHeader)
2607 continue;
2608
2609 // If the vector or the element that we insert into it are
2610 // instructions that are defined in this basic block then we can't
2611 // hoist this instruction.
2612 Instruction *CurrVec = dyn_cast<Instruction>(Insert->getOperand(0));
2613 Instruction *NewElem = dyn_cast<Instruction>(Insert->getOperand(1));
2614 if (CurrVec && L->contains(CurrVec))
2615 continue;
2616 if (NewElem && L->contains(NewElem))
2617 continue;
2618
2619 // We can hoist this instruction. Move it to the pre-header.
2620 Insert->moveBefore(PreHeader->getTerminator());
2621 }
2622
2623 // Make a list of all reachable blocks in our CSE queue.
2624 SmallVector<const DomTreeNode *, 8> CSEWorkList;
2625 CSEWorkList.reserve(CSEBlocks.size());
2626 for (BasicBlock *BB : CSEBlocks)
2627 if (DomTreeNode *N = DT->getNode(BB)) {
2628 assert(DT->isReachableFromEntry(N))((DT->isReachableFromEntry(N)) ? static_cast<void> (
0) : __assert_fail ("DT->isReachableFromEntry(N)", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2628, __PRETTY_FUNCTION__))
;
2629 CSEWorkList.push_back(N);
2630 }
2631
2632 // Sort blocks by domination. This ensures we visit a block after all blocks
2633 // dominating it are visited.
2634 std::stable_sort(CSEWorkList.begin(), CSEWorkList.end(),
2635 [this](const DomTreeNode *A, const DomTreeNode *B) {
2636 return DT->properlyDominates(A, B);
2637 });
2638
2639 // Perform O(N^2) search over the gather sequences and merge identical
2640 // instructions. TODO: We can further optimize this scan if we split the
2641 // instructions into different buckets based on the insert lane.
2642 SmallVector<Instruction *, 16> Visited;
2643 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
2644 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&(((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev
(I))) && "Worklist not sorted properly!") ? static_cast
<void> (0) : __assert_fail ("(I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && \"Worklist not sorted properly!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2645, __PRETTY_FUNCTION__))
2645 "Worklist not sorted properly!")(((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev
(I))) && "Worklist not sorted properly!") ? static_cast
<void> (0) : __assert_fail ("(I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) && \"Worklist not sorted properly!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2645, __PRETTY_FUNCTION__))
;
2646 BasicBlock *BB = (*I)->getBlock();
2647 // For all instructions in blocks containing gather sequences:
2648 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
2649 Instruction *In = it++;
2650 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
2651 continue;
2652
2653 // Check if we can replace this instruction with any of the
2654 // visited instructions.
2655 for (SmallVectorImpl<Instruction *>::iterator v = Visited.begin(),
2656 ve = Visited.end();
2657 v != ve; ++v) {
2658 if (In->isIdenticalTo(*v) &&
2659 DT->dominates((*v)->getParent(), In->getParent())) {
2660 In->replaceAllUsesWith(*v);
2661 eraseInstruction(In);
2662 In = nullptr;
2663 break;
2664 }
2665 }
2666 if (In) {
2667 assert(std::find(Visited.begin(), Visited.end(), In) == Visited.end())((std::find(Visited.begin(), Visited.end(), In) == Visited.end
()) ? static_cast<void> (0) : __assert_fail ("std::find(Visited.begin(), Visited.end(), In) == Visited.end()"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2667, __PRETTY_FUNCTION__))
;
2668 Visited.push_back(In);
2669 }
2670 }
2671 }
2672 CSEBlocks.clear();
2673 GatherSeq.clear();
2674}
2675
2676// Groups the instructions to a bundle (which is then a single scheduling entity)
2677// and schedules instructions until the bundle gets ready.
2678bool BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL,
2679 BoUpSLP *SLP) {
2680 if (isa<PHINode>(VL[0]))
1
Taking false branch
2681 return true;
2682
2683 // Initialize the instruction bundle.
2684 Instruction *OldScheduleEnd = ScheduleEnd;
2685 ScheduleData *PrevInBundle = nullptr;
2686 ScheduleData *Bundle = nullptr;
2
'Bundle' initialized to a null pointer value
2687 bool ReSchedule = false;
2688 DEBUG(dbgs() << "SLP: bundle: " << *VL[0] << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: bundle: " << *VL[0] <<
"\n"; } } while (0)
;
2689 for (Value *V : VL) {
3
Assuming '__begin' is equal to '__end'
2690 extendSchedulingRegion(V);
2691 ScheduleData *BundleMember = getScheduleData(V);
2692 assert(BundleMember &&((BundleMember && "no ScheduleData for bundle member (maybe not in same basic block)"
) ? static_cast<void> (0) : __assert_fail ("BundleMember && \"no ScheduleData for bundle member (maybe not in same basic block)\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2693, __PRETTY_FUNCTION__))
2693 "no ScheduleData for bundle member (maybe not in same basic block)")((BundleMember && "no ScheduleData for bundle member (maybe not in same basic block)"
) ? static_cast<void> (0) : __assert_fail ("BundleMember && \"no ScheduleData for bundle member (maybe not in same basic block)\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2693, __PRETTY_FUNCTION__))
;
2694 if (BundleMember->IsScheduled) {
2695 // A bundle member was scheduled as single instruction before and now
2696 // needs to be scheduled as part of the bundle. We just get rid of the
2697 // existing schedule.
2698 DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMemberdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: reset schedule because " <<
*BundleMember << " was already scheduled\n"; } } while
(0)
2699 << " was already scheduled\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: reset schedule because " <<
*BundleMember << " was already scheduled\n"; } } while
(0)
;
2700 ReSchedule = true;
2701 }
2702 assert(BundleMember->isSchedulingEntity() &&((BundleMember->isSchedulingEntity() && "bundle member already part of other bundle"
) ? static_cast<void> (0) : __assert_fail ("BundleMember->isSchedulingEntity() && \"bundle member already part of other bundle\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2703, __PRETTY_FUNCTION__))
2703 "bundle member already part of other bundle")((BundleMember->isSchedulingEntity() && "bundle member already part of other bundle"
) ? static_cast<void> (0) : __assert_fail ("BundleMember->isSchedulingEntity() && \"bundle member already part of other bundle\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2703, __PRETTY_FUNCTION__))
;
2704 if (PrevInBundle) {
2705 PrevInBundle->NextInBundle = BundleMember;
2706 } else {
2707 Bundle = BundleMember;
2708 }
2709 BundleMember->UnscheduledDepsInBundle = 0;
2710 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
2711
2712 // Group the instructions to a bundle.
2713 BundleMember->FirstInBundle = Bundle;
2714 PrevInBundle = BundleMember;
2715 }
2716 if (ScheduleEnd != OldScheduleEnd) {
4
Taking false branch
2717 // The scheduling region got new instructions at the lower end (or it is a
2718 // new region for the first bundle). This makes it necessary to
2719 // recalculate all dependencies.
2720 // It is seldom that this needs to be done a second time after adding the
2721 // initial bundle to the region.
2722 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
2723 ScheduleData *SD = getScheduleData(I);
2724 SD->clearDependencies();
2725 }
2726 ReSchedule = true;
2727 }
2728 if (ReSchedule) {
5
Taking false branch
2729 resetSchedule();
2730 initialFillReadyList(ReadyInsts);
2731 }
2732
2733 DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: try schedule bundle " <<
*Bundle << " in block " << BB->getName() <<
"\n"; } } while (0)
2734 << BB->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: try schedule bundle " <<
*Bundle << " in block " << BB->getName() <<
"\n"; } } while (0)
;
2735
2736 calculateDependencies(Bundle, true, SLP);
2737
2738 // Now try to schedule the new bundle. As soon as the bundle is "ready" it
2739 // means that there are no cyclic dependencies and we can schedule it.
2740 // Note that's important that we don't "schedule" the bundle yet (see
2741 // cancelScheduling).
2742 while (!Bundle->isReady() && !ReadyInsts.empty()) {
6
Called C++ object pointer is null
2743
2744 ScheduleData *pickedSD = ReadyInsts.back();
2745 ReadyInsts.pop_back();
2746
2747 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) {
2748 schedule(pickedSD, ReadyInsts);
2749 }
2750 }
2751 return Bundle->isReady();
2752}
2753
2754void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL) {
2755 if (isa<PHINode>(VL[0]))
2756 return;
2757
2758 ScheduleData *Bundle = getScheduleData(VL[0]);
2759 DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: cancel scheduling of " <<
*Bundle << "\n"; } } while (0)
;
2760 assert(!Bundle->IsScheduled &&((!Bundle->IsScheduled && "Can't cancel bundle which is already scheduled"
) ? static_cast<void> (0) : __assert_fail ("!Bundle->IsScheduled && \"Can't cancel bundle which is already scheduled\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2761, __PRETTY_FUNCTION__))
2761 "Can't cancel bundle which is already scheduled")((!Bundle->IsScheduled && "Can't cancel bundle which is already scheduled"
) ? static_cast<void> (0) : __assert_fail ("!Bundle->IsScheduled && \"Can't cancel bundle which is already scheduled\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2761, __PRETTY_FUNCTION__))
;
2762 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&((Bundle->isSchedulingEntity() && Bundle->isPartOfBundle
() && "tried to unbundle something which is not a bundle"
) ? static_cast<void> (0) : __assert_fail ("Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && \"tried to unbundle something which is not a bundle\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2763, __PRETTY_FUNCTION__))
2763 "tried to unbundle something which is not a bundle")((Bundle->isSchedulingEntity() && Bundle->isPartOfBundle
() && "tried to unbundle something which is not a bundle"
) ? static_cast<void> (0) : __assert_fail ("Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() && \"tried to unbundle something which is not a bundle\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2763, __PRETTY_FUNCTION__))
;
2764
2765 // Un-bundle: make single instructions out of the bundle.
2766 ScheduleData *BundleMember = Bundle;
2767 while (BundleMember) {
2768 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links")((BundleMember->FirstInBundle == Bundle && "corrupt bundle links"
) ? static_cast<void> (0) : __assert_fail ("BundleMember->FirstInBundle == Bundle && \"corrupt bundle links\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2768, __PRETTY_FUNCTION__))
;
2769 BundleMember->FirstInBundle = BundleMember;
2770 ScheduleData *Next = BundleMember->NextInBundle;
2771 BundleMember->NextInBundle = nullptr;
2772 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
2773 if (BundleMember->UnscheduledDepsInBundle == 0) {
2774 ReadyInsts.insert(BundleMember);
2775 }
2776 BundleMember = Next;
2777 }
2778}
2779
2780void BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V) {
2781 if (getScheduleData(V))
2782 return;
2783 Instruction *I = dyn_cast<Instruction>(V);
2784 assert(I && "bundle member must be an instruction")((I && "bundle member must be an instruction") ? static_cast
<void> (0) : __assert_fail ("I && \"bundle member must be an instruction\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2784, __PRETTY_FUNCTION__))
;
2785 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled")((!isa<PHINode>(I) && "phi nodes don't need to be scheduled"
) ? static_cast<void> (0) : __assert_fail ("!isa<PHINode>(I) && \"phi nodes don't need to be scheduled\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2785, __PRETTY_FUNCTION__))
;
2786 if (!ScheduleStart) {
2787 // It's the first instruction in the new region.
2788 initScheduleData(I, I->getNextNode(), nullptr, nullptr);
2789 ScheduleStart = I;
2790 ScheduleEnd = I->getNextNode();
2791 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?")((ScheduleEnd && "tried to vectorize a TerminatorInst?"
) ? static_cast<void> (0) : __assert_fail ("ScheduleEnd && \"tried to vectorize a TerminatorInst?\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2791, __PRETTY_FUNCTION__))
;
2792 DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: initialize schedule region to "
<< *I << "\n"; } } while (0)
;
2793 return;
2794 }
2795 // Search up and down at the same time, because we don't know if the new
2796 // instruction is above or below the existing scheduling region.
2797 BasicBlock::reverse_iterator UpIter(ScheduleStart);
2798 BasicBlock::reverse_iterator UpperEnd = BB->rend();
2799 BasicBlock::iterator DownIter(ScheduleEnd);
2800 BasicBlock::iterator LowerEnd = BB->end();
2801 for (;;) {
2802 if (UpIter != UpperEnd) {
2803 if (&*UpIter == I) {
2804 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
2805 ScheduleStart = I;
2806 DEBUG(dbgs() << "SLP: extend schedule region start to " << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: extend schedule region start to "
<< *I << "\n"; } } while (0)
;
2807 return;
2808 }
2809 UpIter++;
2810 }
2811 if (DownIter != LowerEnd) {
2812 if (&*DownIter == I) {
2813 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
2814 nullptr);
2815 ScheduleEnd = I->getNextNode();
2816 assert(ScheduleEnd && "tried to vectorize a TerminatorInst?")((ScheduleEnd && "tried to vectorize a TerminatorInst?"
) ? static_cast<void> (0) : __assert_fail ("ScheduleEnd && \"tried to vectorize a TerminatorInst?\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2816, __PRETTY_FUNCTION__))
;
2817 DEBUG(dbgs() << "SLP: extend schedule region end to " << *I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: extend schedule region end to "
<< *I << "\n"; } } while (0)
;
2818 return;
2819 }
2820 DownIter++;
2821 }
2822 assert((UpIter != UpperEnd || DownIter != LowerEnd) &&(((UpIter != UpperEnd || DownIter != LowerEnd) && "instruction not found in block"
) ? static_cast<void> (0) : __assert_fail ("(UpIter != UpperEnd || DownIter != LowerEnd) && \"instruction not found in block\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2823, __PRETTY_FUNCTION__))
2823 "instruction not found in block")(((UpIter != UpperEnd || DownIter != LowerEnd) && "instruction not found in block"
) ? static_cast<void> (0) : __assert_fail ("(UpIter != UpperEnd || DownIter != LowerEnd) && \"instruction not found in block\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2823, __PRETTY_FUNCTION__))
;
2824 }
2825}
2826
2827void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
2828 Instruction *ToI,
2829 ScheduleData *PrevLoadStore,
2830 ScheduleData *NextLoadStore) {
2831 ScheduleData *CurrentLoadStore = PrevLoadStore;
2832 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
2833 ScheduleData *SD = ScheduleDataMap[I];
2834 if (!SD) {
2835 // Allocate a new ScheduleData for the instruction.
2836 if (ChunkPos >= ChunkSize) {
2837 ScheduleDataChunks.push_back(
2838 llvm::make_unique<ScheduleData[]>(ChunkSize));
2839 ChunkPos = 0;
2840 }
2841 SD = &(ScheduleDataChunks.back()[ChunkPos++]);
2842 ScheduleDataMap[I] = SD;
2843 SD->Inst = I;
2844 }
2845 assert(!isInSchedulingRegion(SD) &&((!isInSchedulingRegion(SD) && "new ScheduleData already in scheduling region"
) ? static_cast<void> (0) : __assert_fail ("!isInSchedulingRegion(SD) && \"new ScheduleData already in scheduling region\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2846, __PRETTY_FUNCTION__))
2846 "new ScheduleData already in scheduling region")((!isInSchedulingRegion(SD) && "new ScheduleData already in scheduling region"
) ? static_cast<void> (0) : __assert_fail ("!isInSchedulingRegion(SD) && \"new ScheduleData already in scheduling region\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2846, __PRETTY_FUNCTION__))
;
2847 SD->init(SchedulingRegionID);
2848
2849 if (I->mayReadOrWriteMemory()) {
2850 // Update the linked list of memory accessing instructions.
2851 if (CurrentLoadStore) {
2852 CurrentLoadStore->NextLoadStore = SD;
2853 } else {
2854 FirstLoadStoreInRegion = SD;
2855 }
2856 CurrentLoadStore = SD;
2857 }
2858 }
2859 if (NextLoadStore) {
2860 if (CurrentLoadStore)
2861 CurrentLoadStore->NextLoadStore = NextLoadStore;
2862 } else {
2863 LastLoadStoreInRegion = CurrentLoadStore;
2864 }
2865}
2866
2867void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
2868 bool InsertInReadyList,
2869 BoUpSLP *SLP) {
2870 assert(SD->isSchedulingEntity())((SD->isSchedulingEntity()) ? static_cast<void> (0) :
__assert_fail ("SD->isSchedulingEntity()", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2870, __PRETTY_FUNCTION__))
;
2871
2872 SmallVector<ScheduleData *, 10> WorkList;
2873 WorkList.push_back(SD);
2874
2875 while (!WorkList.empty()) {
2876 ScheduleData *SD = WorkList.back();
2877 WorkList.pop_back();
2878
2879 ScheduleData *BundleMember = SD;
2880 while (BundleMember) {
2881 assert(isInSchedulingRegion(BundleMember))((isInSchedulingRegion(BundleMember)) ? static_cast<void>
(0) : __assert_fail ("isInSchedulingRegion(BundleMember)", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2881, __PRETTY_FUNCTION__))
;
2882 if (!BundleMember->hasValidDependencies()) {
2883
2884 DEBUG(dbgs() << "SLP: update deps of " << *BundleMember << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: update deps of " <<
*BundleMember << "\n"; } } while (0)
;
2885 BundleMember->Dependencies = 0;
2886 BundleMember->resetUnscheduledDeps();
2887
2888 // Handle def-use chain dependencies.
2889 for (User *U : BundleMember->Inst->users()) {
2890 if (isa<Instruction>(U)) {
2891 ScheduleData *UseSD = getScheduleData(U);
2892 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
2893 BundleMember->Dependencies++;
2894 ScheduleData *DestBundle = UseSD->FirstInBundle;
2895 if (!DestBundle->IsScheduled) {
2896 BundleMember->incrementUnscheduledDeps(1);
2897 }
2898 if (!DestBundle->hasValidDependencies()) {
2899 WorkList.push_back(DestBundle);
2900 }
2901 }
2902 } else {
2903 // I'm not sure if this can ever happen. But we need to be safe.
2904 // This lets the instruction/bundle never be scheduled and
2905 // eventually disable vectorization.
2906 BundleMember->Dependencies++;
2907 BundleMember->incrementUnscheduledDeps(1);
2908 }
2909 }
2910
2911 // Handle the memory dependencies.
2912 ScheduleData *DepDest = BundleMember->NextLoadStore;
2913 if (DepDest) {
2914 Instruction *SrcInst = BundleMember->Inst;
2915 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
2916 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
2917 unsigned numAliased = 0;
2918 unsigned DistToSrc = 1;
2919
2920 while (DepDest) {
2921 assert(isInSchedulingRegion(DepDest))((isInSchedulingRegion(DepDest)) ? static_cast<void> (0
) : __assert_fail ("isInSchedulingRegion(DepDest)", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2921, __PRETTY_FUNCTION__))
;
2922
2923 // We have two limits to reduce the complexity:
2924 // 1) AliasedCheckLimit: It's a small limit to reduce calls to
2925 // SLP->isAliased (which is the expensive part in this loop).
2926 // 2) MaxMemDepDistance: It's for very large blocks and it aborts
2927 // the whole loop (even if the loop is fast, it's quadratic).
2928 // It's important for the loop break condition (see below) to
2929 // check this limit even between two read-only instructions.
2930 if (DistToSrc >= MaxMemDepDistance ||
2931 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
2932 (numAliased >= AliasedCheckLimit ||
2933 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
2934
2935 // We increment the counter only if the locations are aliased
2936 // (instead of counting all alias checks). This gives a better
2937 // balance between reduced runtime and accurate dependencies.
2938 numAliased++;
2939
2940 DepDest->MemoryDependencies.push_back(BundleMember);
2941 BundleMember->Dependencies++;
2942 ScheduleData *DestBundle = DepDest->FirstInBundle;
2943 if (!DestBundle->IsScheduled) {
2944 BundleMember->incrementUnscheduledDeps(1);
2945 }
2946 if (!DestBundle->hasValidDependencies()) {
2947 WorkList.push_back(DestBundle);
2948 }
2949 }
2950 DepDest = DepDest->NextLoadStore;
2951
2952 // Example, explaining the loop break condition: Let's assume our
2953 // starting instruction is i0 and MaxMemDepDistance = 3.
2954 //
2955 // +--------v--v--v
2956 // i0,i1,i2,i3,i4,i5,i6,i7,i8
2957 // +--------^--^--^
2958 //
2959 // MaxMemDepDistance let us stop alias-checking at i3 and we add
2960 // dependencies from i0 to i3,i4,.. (even if they are not aliased).
2961 // Previously we already added dependencies from i3 to i6,i7,i8
2962 // (because of MaxMemDepDistance). As we added a dependency from
2963 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
2964 // and we can abort this loop at i6.
2965 if (DistToSrc >= 2 * MaxMemDepDistance)
2966 break;
2967 DistToSrc++;
2968 }
2969 }
2970 }
2971 BundleMember = BundleMember->NextInBundle;
2972 }
2973 if (InsertInReadyList && SD->isReady()) {
2974 ReadyInsts.push_back(SD);
2975 DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: gets ready on update: " <<
*SD->Inst << "\n"; } } while (0)
;
2976 }
2977 }
2978}
2979
2980void BoUpSLP::BlockScheduling::resetSchedule() {
2981 assert(ScheduleStart &&((ScheduleStart && "tried to reset schedule on block which has not been scheduled"
) ? static_cast<void> (0) : __assert_fail ("ScheduleStart && \"tried to reset schedule on block which has not been scheduled\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2982, __PRETTY_FUNCTION__))
2982 "tried to reset schedule on block which has not been scheduled")((ScheduleStart && "tried to reset schedule on block which has not been scheduled"
) ? static_cast<void> (0) : __assert_fail ("ScheduleStart && \"tried to reset schedule on block which has not been scheduled\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2982, __PRETTY_FUNCTION__))
;
2983 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
2984 ScheduleData *SD = getScheduleData(I);
2985 assert(isInSchedulingRegion(SD))((isInSchedulingRegion(SD)) ? static_cast<void> (0) : __assert_fail
("isInSchedulingRegion(SD)", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 2985, __PRETTY_FUNCTION__))
;
2986 SD->IsScheduled = false;
2987 SD->resetUnscheduledDeps();
2988 }
2989 ReadyInsts.clear();
2990}
2991
2992void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
2993
2994 if (!BS->ScheduleStart)
2995 return;
2996
2997 DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: schedule block " << BS
->BB->getName() << "\n"; } } while (0)
;
2998
2999 BS->resetSchedule();
3000
3001 // For the real scheduling we use a more sophisticated ready-list: it is
3002 // sorted by the original instruction location. This lets the final schedule
3003 // be as close as possible to the original instruction order.
3004 struct ScheduleDataCompare {
3005 bool operator()(ScheduleData *SD1, ScheduleData *SD2) {
3006 return SD2->SchedulingPriority < SD1->SchedulingPriority;
3007 }
3008 };
3009 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
3010
3011 // Ensure that all dependency data is updated and fill the ready-list with
3012 // initial instructions.
3013 int Idx = 0;
3014 int NumToSchedule = 0;
3015 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
3016 I = I->getNextNode()) {
3017 ScheduleData *SD = BS->getScheduleData(I);
3018 assert(((SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->
Inst) != 0) && "scheduler and vectorizer have different opinion on what is a bundle"
) ? static_cast<void> (0) : __assert_fail ("SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) && \"scheduler and vectorizer have different opinion on what is a bundle\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3020, __PRETTY_FUNCTION__))
3019 SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) &&((SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->
Inst) != 0) && "scheduler and vectorizer have different opinion on what is a bundle"
) ? static_cast<void> (0) : __assert_fail ("SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) && \"scheduler and vectorizer have different opinion on what is a bundle\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3020, __PRETTY_FUNCTION__))
3020 "scheduler and vectorizer have different opinion on what is a bundle")((SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->
Inst) != 0) && "scheduler and vectorizer have different opinion on what is a bundle"
) ? static_cast<void> (0) : __assert_fail ("SD->isPartOfBundle() == (ScalarToTreeEntry.count(SD->Inst) != 0) && \"scheduler and vectorizer have different opinion on what is a bundle\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3020, __PRETTY_FUNCTION__))
;
3021 SD->FirstInBundle->SchedulingPriority = Idx++;
3022 if (SD->isSchedulingEntity()) {
3023 BS->calculateDependencies(SD, false, this);
3024 NumToSchedule++;
3025 }
3026 }
3027 BS->initialFillReadyList(ReadyInsts);
3028
3029 Instruction *LastScheduledInst = BS->ScheduleEnd;
3030
3031 // Do the "real" scheduling.
3032 while (!ReadyInsts.empty()) {
3033 ScheduleData *picked = *ReadyInsts.begin();
3034 ReadyInsts.erase(ReadyInsts.begin());
3035
3036 // Move the scheduled instruction(s) to their dedicated places, if not
3037 // there yet.
3038 ScheduleData *BundleMember = picked;
3039 while (BundleMember) {
3040 Instruction *pickedInst = BundleMember->Inst;
3041 if (LastScheduledInst->getNextNode() != pickedInst) {
3042 BS->BB->getInstList().remove(pickedInst);
3043 BS->BB->getInstList().insert(LastScheduledInst, pickedInst);
3044 }
3045 LastScheduledInst = pickedInst;
3046 BundleMember = BundleMember->NextInBundle;
3047 }
3048
3049 BS->schedule(picked, ReadyInsts);
3050 NumToSchedule--;
3051 }
3052 assert(NumToSchedule == 0 && "could not schedule all instructions")((NumToSchedule == 0 && "could not schedule all instructions"
) ? static_cast<void> (0) : __assert_fail ("NumToSchedule == 0 && \"could not schedule all instructions\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3052, __PRETTY_FUNCTION__))
;
3053
3054 // Avoid duplicate scheduling of the block.
3055 BS->ScheduleStart = nullptr;
3056}
3057
3058/// The SLPVectorizer Pass.
3059struct SLPVectorizer : public FunctionPass {
3060 typedef SmallVector<StoreInst *, 8> StoreList;
3061 typedef MapVector<Value *, StoreList> StoreListMap;
3062
3063 /// Pass identification, replacement for typeid
3064 static char ID;
3065
3066 explicit SLPVectorizer() : FunctionPass(ID) {
3067 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
3068 }
3069
3070 ScalarEvolution *SE;
3071 TargetTransformInfo *TTI;
3072 TargetLibraryInfo *TLI;
3073 AliasAnalysis *AA;
3074 LoopInfo *LI;
3075 DominatorTree *DT;
3076 AssumptionCache *AC;
3077
3078 bool runOnFunction(Function &F) override {
3079 if (skipOptnoneFunction(F))
3080 return false;
3081
3082 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
3083 TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
3084 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
3085 TLI = TLIP ? &TLIP->getTLI() : nullptr;
3086 AA = &getAnalysis<AliasAnalysis>();
3087 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
3088 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3089 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
3090
3091 StoreRefs.clear();
3092 bool Changed = false;
3093
3094 // If the target claims to have no vector registers don't attempt
3095 // vectorization.
3096 if (!TTI->getNumberOfRegisters(true))
3097 return false;
3098
3099 // Use the vector register size specified by the target unless overridden
3100 // by a command-line option.
3101 // TODO: It would be better to limit the vectorization factor based on
3102 // data type rather than just register size. For example, x86 AVX has
3103 // 256-bit registers, but it does not support integer operations
3104 // at that width (that requires AVX2).
3105 if (MaxVectorRegSizeOption.getNumOccurrences())
3106 MaxVecRegSize = MaxVectorRegSizeOption;
3107 else
3108 MaxVecRegSize = TTI->getRegisterBitWidth(true);
3109
3110 // Don't vectorize when the attribute NoImplicitFloat is used.
3111 if (F.hasFnAttribute(Attribute::NoImplicitFloat))
3112 return false;
3113
3114 DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing blocks in " <<
F.getName() << ".\n"; } } while (0)
;
3115
3116 // Use the bottom up slp vectorizer to construct chains that start with
3117 // store instructions.
3118 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC);
3119
3120 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
3121 // delete instructions.
3122
3123 // Scan the blocks in the function in post order.
3124 for (auto BB : post_order(&F.getEntryBlock())) {
3125 // Vectorize trees that end at stores.
3126 if (unsigned count = collectStores(BB, R)) {
3127 (void)count;
3128 DEBUG(dbgs() << "SLP: Found " << count << " stores to vectorize.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found " << count <<
" stores to vectorize.\n"; } } while (0)
;
3129 Changed |= vectorizeStoreChains(R);
3130 }
3131
3132 // Vectorize trees that end at reductions.
3133 Changed |= vectorizeChainsInBlock(BB, R);
3134 }
3135
3136 if (Changed) {
3137 R.optimizeGatherSequence();
3138 DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: vectorized \"" << F.getName
() << "\"\n"; } } while (0)
;
3139 DEBUG(verifyFunction(F))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { verifyFunction(F); } } while (0)
;
3140 }
3141 return Changed;
3142 }
3143
3144 void getAnalysisUsage(AnalysisUsage &AU) const override {
3145 FunctionPass::getAnalysisUsage(AU);
3146 AU.addRequired<AssumptionCacheTracker>();
3147 AU.addRequired<ScalarEvolutionWrapperPass>();
3148 AU.addRequired<AliasAnalysis>();
3149 AU.addRequired<TargetTransformInfoWrapperPass>();
3150 AU.addRequired<LoopInfoWrapperPass>();
3151 AU.addRequired<DominatorTreeWrapperPass>();
3152 AU.addPreserved<LoopInfoWrapperPass>();
3153 AU.addPreserved<DominatorTreeWrapperPass>();
3154 AU.setPreservesCFG();
3155 }
3156
3157private:
3158
3159 /// \brief Collect memory references and sort them according to their base
3160 /// object. We sort the stores to their base objects to reduce the cost of the
3161 /// quadratic search on the stores. TODO: We can further reduce this cost
3162 /// if we flush the chain creation every time we run into a memory barrier.
3163 unsigned collectStores(BasicBlock *BB, BoUpSLP &R);
3164
3165 /// \brief Try to vectorize a chain that starts at two arithmetic instrs.
3166 bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R);
3167
3168 /// \brief Try to vectorize a list of operands.
3169 /// \@param BuildVector A list of users to ignore for the purpose of
3170 /// scheduling and that don't need extracting.
3171 /// \returns true if a value was vectorized.
3172 bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
3173 ArrayRef<Value *> BuildVector = None,
3174 bool allowReorder = false);
3175
3176 /// \brief Try to vectorize a chain that may start at the operands of \V;
3177 bool tryToVectorize(BinaryOperator *V, BoUpSLP &R);
3178
3179 /// \brief Vectorize the stores that were collected in StoreRefs.
3180 bool vectorizeStoreChains(BoUpSLP &R);
3181
3182 /// \brief Scan the basic block and look for patterns that are likely to start
3183 /// a vectorization chain.
3184 bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R);
3185
3186 bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold,
3187 BoUpSLP &R, unsigned VecRegSize);
3188
3189 bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold,
3190 BoUpSLP &R);
3191private:
3192 StoreListMap StoreRefs;
3193 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
3194};
3195
3196/// \brief Check that the Values in the slice in VL array are still existent in
3197/// the WeakVH array.
3198/// Vectorization of part of the VL array may cause later values in the VL array
3199/// to become invalid. We track when this has happened in the WeakVH array.
3200static bool hasValueBeenRAUWed(ArrayRef<Value *> VL, ArrayRef<WeakVH> VH,
3201 unsigned SliceBegin, unsigned SliceSize) {
3202 VL = VL.slice(SliceBegin, SliceSize);
3203 VH = VH.slice(SliceBegin, SliceSize);
3204 return !std::equal(VL.begin(), VL.end(), VH.begin());
3205}
3206
3207bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain,
3208 int CostThreshold, BoUpSLP &R,
3209 unsigned VecRegSize) {
3210 unsigned ChainLen = Chain.size();
3211 DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLendo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a store chain of length "
<< ChainLen << "\n"; } } while (0)
3212 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a store chain of length "
<< ChainLen << "\n"; } } while (0)
;
3213 Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType();
3214 auto &DL = cast<StoreInst>(Chain[0])->getModule()->getDataLayout();
3215 unsigned Sz = DL.getTypeSizeInBits(StoreTy);
3216 unsigned VF = VecRegSize / Sz;
3217
3218 if (!isPowerOf2_32(Sz) || VF < 2)
3219 return false;
3220
3221 // Keep track of values that were deleted by vectorizing in the loop below.
3222 SmallVector<WeakVH, 8> TrackValues(Chain.begin(), Chain.end());
3223
3224 bool Changed = false;
3225 // Look for profitable vectorizable trees at all offsets, starting at zero.
3226 for (unsigned i = 0, e = ChainLen; i < e; ++i) {
3227 if (i + VF > e)
3228 break;
3229
3230 // Check that a previous iteration of this loop did not delete the Value.
3231 if (hasValueBeenRAUWed(Chain, TrackValues, i, VF))
3232 continue;
3233
3234 DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << ido { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing " << VF <<
" stores at offset " << i << "\n"; } } while (0)
3235 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing " << VF <<
" stores at offset " << i << "\n"; } } while (0)
;
3236 ArrayRef<Value *> Operands = Chain.slice(i, VF);
3237
3238 R.buildTree(Operands);
3239
3240 int Cost = R.getTreeCost();
3241
3242 DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found cost=" << Cost <<
" for VF=" << VF << "\n"; } } while (0)
;
3243 if (Cost < CostThreshold) {
3244 DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Decided to vectorize cost=" <<
Cost << "\n"; } } while (0)
;
3245 R.vectorizeTree();
3246
3247 // Move to the next bundle.
3248 i += VF - 1;
3249 Changed = true;
3250 }
3251 }
3252
3253 return Changed;
3254}
3255
3256bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores,
3257 int costThreshold, BoUpSLP &R) {
3258 SetVector<StoreInst *> Heads, Tails;
3259 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
3260
3261 // We may run into multiple chains that merge into a single chain. We mark the
3262 // stores that we vectorized so that we don't visit the same store twice.
3263 BoUpSLP::ValueSet VectorizedStores;
3264 bool Changed = false;
3265
3266 // Do a quadratic search on all of the given stores and find
3267 // all of the pairs of stores that follow each other.
3268 SmallVector<unsigned, 16> IndexQueue;
3269 for (unsigned i = 0, e = Stores.size(); i < e; ++i) {
3270 const DataLayout &DL = Stores[i]->getModule()->getDataLayout();
3271 IndexQueue.clear();
3272 // If a store has multiple consecutive store candidates, search Stores
3273 // array according to the sequence: from i+1 to e, then from i-1 to 0.
3274 // This is because usually pairing with immediate succeeding or preceding
3275 // candidate create the best chance to find slp vectorization opportunity.
3276 unsigned j = 0;
3277 for (j = i + 1; j < e; ++j)
3278 IndexQueue.push_back(j);
3279 for (j = i; j > 0; --j)
3280 IndexQueue.push_back(j - 1);
3281
3282 for (auto &k : IndexQueue) {
3283 if (R.isConsecutiveAccess(Stores[i], Stores[k], DL)) {
3284 Tails.insert(Stores[k]);
3285 Heads.insert(Stores[i]);
3286 ConsecutiveChain[Stores[i]] = Stores[k];
3287 break;
3288 }
3289 }
3290 }
3291
3292 // For stores that start but don't end a link in the chain:
3293 for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
3294 it != e; ++it) {
3295 if (Tails.count(*it))
3296 continue;
3297
3298 // We found a store instr that starts a chain. Now follow the chain and try
3299 // to vectorize it.
3300 BoUpSLP::ValueList Operands;
3301 StoreInst *I = *it;
3302 // Collect the chain into a list.
3303 while (Tails.count(I) || Heads.count(I)) {
3304 if (VectorizedStores.count(I))
3305 break;
3306 Operands.push_back(I);
3307 // Move to the next value in the chain.
3308 I = ConsecutiveChain[I];
3309 }
3310
3311 // FIXME: Is division-by-2 the correct step? Should we assert that the
3312 // register size is a power-of-2?
3313 for (unsigned Size = MaxVecRegSize; Size >= MinVecRegSize; Size /= 2) {
3314 if (vectorizeStoreChain(Operands, costThreshold, R, Size)) {
3315 // Mark the vectorized stores so that we don't vectorize them again.
3316 VectorizedStores.insert(Operands.begin(), Operands.end());
3317 Changed = true;
3318 break;
3319 }
3320 }
3321 }
3322
3323 return Changed;
3324}
3325
3326
3327unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) {
3328 unsigned count = 0;
3329 StoreRefs.clear();
3330 const DataLayout &DL = BB->getModule()->getDataLayout();
3331 for (Instruction &I : *BB) {
3332 StoreInst *SI = dyn_cast<StoreInst>(&I);
3333 if (!SI)
3334 continue;
3335
3336 // Don't touch volatile stores.
3337 if (!SI->isSimple())
3338 continue;
3339
3340 // Check that the pointer points to scalars.
3341 Type *Ty = SI->getValueOperand()->getType();
3342 if (!isValidElementType(Ty))
3343 continue;
3344
3345 // Find the base pointer.
3346 Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), DL);
3347
3348 // Save the store locations.
3349 StoreRefs[Ptr].push_back(SI);
3350 count++;
3351 }
3352 return count;
3353}
3354
3355bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
3356 if (!A || !B)
3357 return false;
3358 Value *VL[] = { A, B };
3359 return tryToVectorizeList(VL, R, None, true);
3360}
3361
3362bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
3363 ArrayRef<Value *> BuildVector,
3364 bool allowReorder) {
3365 if (VL.size() < 2)
3366 return false;
3367
3368 DEBUG(dbgs() << "SLP: Vectorizing a list of length = " << VL.size() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Vectorizing a list of length = "
<< VL.size() << ".\n"; } } while (0)
;
3369
3370 // Check that all of the parts are scalar instructions of the same type.
3371 Instruction *I0 = dyn_cast<Instruction>(VL[0]);
3372 if (!I0)
3373 return false;
3374
3375 unsigned Opcode0 = I0->getOpcode();
3376 const DataLayout &DL = I0->getModule()->getDataLayout();
3377
3378 Type *Ty0 = I0->getType();
3379 unsigned Sz = DL.getTypeSizeInBits(Ty0);
3380 // FIXME: Register size should be a parameter to this function, so we can
3381 // try different vectorization factors.
3382 unsigned VF = MinVecRegSize / Sz;
3383
3384 for (Value *V : VL) {
3385 Type *Ty = V->getType();
3386 if (!isValidElementType(Ty))
3387 return false;
3388 Instruction *Inst = dyn_cast<Instruction>(V);
3389 if (!Inst || Inst->getOpcode() != Opcode0)
3390 return false;
3391 }
3392
3393 bool Changed = false;
3394
3395 // Keep track of values that were deleted by vectorizing in the loop below.
3396 SmallVector<WeakVH, 8> TrackValues(VL.begin(), VL.end());
3397
3398 for (unsigned i = 0, e = VL.size(); i < e; ++i) {
3399 unsigned OpsWidth = 0;
3400
3401 if (i + VF > e)
3402 OpsWidth = e - i;
3403 else
3404 OpsWidth = VF;
3405
3406 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
3407 break;
3408
3409 // Check that a previous iteration of this loop did not delete the Value.
3410 if (hasValueBeenRAUWed(VL, TrackValues, i, OpsWidth))
3411 continue;
3412
3413 DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing " << OpsWidth
<< " operations " << "\n"; } } while (0)
3414 << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing " << OpsWidth
<< " operations " << "\n"; } } while (0)
;
3415 ArrayRef<Value *> Ops = VL.slice(i, OpsWidth);
3416
3417 ArrayRef<Value *> BuildVectorSlice;
3418 if (!BuildVector.empty())
3419 BuildVectorSlice = BuildVector.slice(i, OpsWidth);
3420
3421 R.buildTree(Ops, BuildVectorSlice);
3422 // TODO: check if we can allow reordering also for other cases than
3423 // tryToVectorizePair()
3424 if (allowReorder && R.shouldReorder()) {
3425 assert(Ops.size() == 2)((Ops.size() == 2) ? static_cast<void> (0) : __assert_fail
("Ops.size() == 2", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3425, __PRETTY_FUNCTION__))
;
3426 assert(BuildVectorSlice.empty())((BuildVectorSlice.empty()) ? static_cast<void> (0) : __assert_fail
("BuildVectorSlice.empty()", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3426, __PRETTY_FUNCTION__))
;
3427 Value *ReorderedOps[] = { Ops[1], Ops[0] };
3428 R.buildTree(ReorderedOps, None);
3429 }
3430 int Cost = R.getTreeCost();
3431
3432 if (Cost < -SLPCostThreshold) {
3433 DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Vectorizing list at cost:" <<
Cost << ".\n"; } } while (0)
;
3434 Value *VectorizedRoot = R.vectorizeTree();
3435
3436 // Reconstruct the build vector by extracting the vectorized root. This
3437 // way we handle the case where some elements of the vector are undefined.
3438 // (return (inserelt <4 xi32> (insertelt undef (opd0) 0) (opd1) 2))
3439 if (!BuildVectorSlice.empty()) {
3440 // The insert point is the last build vector instruction. The vectorized
3441 // root will precede it. This guarantees that we get an instruction. The
3442 // vectorized tree could have been constant folded.
3443 Instruction *InsertAfter = cast<Instruction>(BuildVectorSlice.back());
3444 unsigned VecIdx = 0;
3445 for (auto &V : BuildVectorSlice) {
3446 IRBuilder<true, NoFolder> Builder(
3447 ++BasicBlock::iterator(InsertAfter));
3448 InsertElementInst *IE = cast<InsertElementInst>(V);
3449 Instruction *Extract = cast<Instruction>(Builder.CreateExtractElement(
3450 VectorizedRoot, Builder.getInt32(VecIdx++)));
3451 IE->setOperand(1, Extract);
3452 IE->removeFromParent();
3453 IE->insertAfter(Extract);
3454 InsertAfter = IE;
3455 }
3456 }
3457 // Move to the next bundle.
3458 i += VF - 1;
3459 Changed = true;
3460 }
3461 }
3462
3463 return Changed;
3464}
3465
3466bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) {
3467 if (!V)
3468 return false;
3469
3470 // Try to vectorize V.
3471 if (tryToVectorizePair(V->getOperand(0), V->getOperand(1), R))
3472 return true;
3473
3474 BinaryOperator *A = dyn_cast<BinaryOperator>(V->getOperand(0));
3475 BinaryOperator *B = dyn_cast<BinaryOperator>(V->getOperand(1));
3476 // Try to skip B.
3477 if (B && B->hasOneUse()) {
3478 BinaryOperator *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
3479 BinaryOperator *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
3480 if (tryToVectorizePair(A, B0, R)) {
3481 return true;
3482 }
3483 if (tryToVectorizePair(A, B1, R)) {
3484 return true;
3485 }
3486 }
3487
3488 // Try to skip A.
3489 if (A && A->hasOneUse()) {
3490 BinaryOperator *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
3491 BinaryOperator *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
3492 if (tryToVectorizePair(A0, B, R)) {
3493 return true;
3494 }
3495 if (tryToVectorizePair(A1, B, R)) {
3496 return true;
3497 }
3498 }
3499 return 0;
3500}
3501
3502/// \brief Generate a shuffle mask to be used in a reduction tree.
3503///
3504/// \param VecLen The length of the vector to be reduced.
3505/// \param NumEltsToRdx The number of elements that should be reduced in the
3506/// vector.
3507/// \param IsPairwise Whether the reduction is a pairwise or splitting
3508/// reduction. A pairwise reduction will generate a mask of
3509/// <0,2,...> or <1,3,..> while a splitting reduction will generate
3510/// <2,3, undef,undef> for a vector of 4 and NumElts = 2.
3511/// \param IsLeft True will generate a mask of even elements, odd otherwise.
3512static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
3513 bool IsPairwise, bool IsLeft,
3514 IRBuilder<> &Builder) {
3515 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask")(((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask"
) ? static_cast<void> (0) : __assert_fail ("(IsPairwise || !IsLeft) && \"Don't support a <0,1,undef,...> mask\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3515, __PRETTY_FUNCTION__))
;
3516
3517 SmallVector<Constant *, 32> ShuffleMask(
3518 VecLen, UndefValue::get(Builder.getInt32Ty()));
3519
3520 if (IsPairwise)
3521 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
3522 for (unsigned i = 0; i != NumEltsToRdx; ++i)
3523 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
3524 else
3525 // Move the upper half of the vector to the lower half.
3526 for (unsigned i = 0; i != NumEltsToRdx; ++i)
3527 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
3528
3529 return ConstantVector::get(ShuffleMask);
3530}
3531
3532
3533/// Model horizontal reductions.
3534///
3535/// A horizontal reduction is a tree of reduction operations (currently add and
3536/// fadd) that has operations that can be put into a vector as its leaf.
3537/// For example, this tree:
3538///
3539/// mul mul mul mul
3540/// \ / \ /
3541/// + +
3542/// \ /
3543/// +
3544/// This tree has "mul" as its reduced values and "+" as its reduction
3545/// operations. A reduction might be feeding into a store or a binary operation
3546/// feeding a phi.
3547/// ...
3548/// \ /
3549/// +
3550/// |
3551/// phi +=
3552///
3553/// Or:
3554/// ...
3555/// \ /
3556/// +
3557/// |
3558/// *p =
3559///
3560class HorizontalReduction {
3561 SmallVector<Value *, 16> ReductionOps;
3562 SmallVector<Value *, 32> ReducedVals;
3563
3564 BinaryOperator *ReductionRoot;
3565 PHINode *ReductionPHI;
3566
3567 /// The opcode of the reduction.
3568 unsigned ReductionOpcode;
3569 /// The opcode of the values we perform a reduction on.
3570 unsigned ReducedValueOpcode;
3571 /// The width of one full horizontal reduction operation.
3572 unsigned ReduxWidth;
3573 /// Should we model this reduction as a pairwise reduction tree or a tree that
3574 /// splits the vector in halves and adds those halves.
3575 bool IsPairwiseReduction;
3576
3577public:
3578 HorizontalReduction()
3579 : ReductionRoot(nullptr), ReductionPHI(nullptr), ReductionOpcode(0),
3580 ReducedValueOpcode(0), ReduxWidth(0), IsPairwiseReduction(false) {}
3581
3582 /// \brief Try to find a reduction tree.
3583 bool matchAssociativeReduction(PHINode *Phi, BinaryOperator *B) {
3584 assert((!Phi ||(((!Phi || std::find(Phi->op_begin(), Phi->op_end(), B)
!= Phi->op_end()) && "Thi phi needs to use the binary operator"
) ? static_cast<void> (0) : __assert_fail ("(!Phi || std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) && \"Thi phi needs to use the binary operator\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3586, __PRETTY_FUNCTION__))
3585 std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) &&(((!Phi || std::find(Phi->op_begin(), Phi->op_end(), B)
!= Phi->op_end()) && "Thi phi needs to use the binary operator"
) ? static_cast<void> (0) : __assert_fail ("(!Phi || std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) && \"Thi phi needs to use the binary operator\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3586, __PRETTY_FUNCTION__))
3586 "Thi phi needs to use the binary operator")(((!Phi || std::find(Phi->op_begin(), Phi->op_end(), B)
!= Phi->op_end()) && "Thi phi needs to use the binary operator"
) ? static_cast<void> (0) : __assert_fail ("(!Phi || std::find(Phi->op_begin(), Phi->op_end(), B) != Phi->op_end()) && \"Thi phi needs to use the binary operator\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3586, __PRETTY_FUNCTION__))
;
3587
3588 // We could have a initial reductions that is not an add.
3589 // r *= v1 + v2 + v3 + v4
3590 // In such a case start looking for a tree rooted in the first '+'.
3591 if (Phi) {
3592 if (B->getOperand(0) == Phi) {
3593 Phi = nullptr;
3594 B = dyn_cast<BinaryOperator>(B->getOperand(1));
3595 } else if (B->getOperand(1) == Phi) {
3596 Phi = nullptr;
3597 B = dyn_cast<BinaryOperator>(B->getOperand(0));
3598 }
3599 }
3600
3601 if (!B)
3602 return false;
3603
3604 Type *Ty = B->getType();
3605 if (!isValidElementType(Ty))
3606 return false;
3607
3608 const DataLayout &DL = B->getModule()->getDataLayout();
3609 ReductionOpcode = B->getOpcode();
3610 ReducedValueOpcode = 0;
3611 // FIXME: Register size should be a parameter to this function, so we can
3612 // try different vectorization factors.
3613 ReduxWidth = MinVecRegSize / DL.getTypeSizeInBits(Ty);
3614 ReductionRoot = B;
3615 ReductionPHI = Phi;
3616
3617 if (ReduxWidth < 4)
3618 return false;
3619
3620 // We currently only support adds.
3621 if (ReductionOpcode != Instruction::Add &&
3622 ReductionOpcode != Instruction::FAdd)
3623 return false;
3624
3625 // Post order traverse the reduction tree starting at B. We only handle true
3626 // trees containing only binary operators.
3627 SmallVector<std::pair<BinaryOperator *, unsigned>, 32> Stack;
3628 Stack.push_back(std::make_pair(B, 0));
3629 while (!Stack.empty()) {
3630 BinaryOperator *TreeN = Stack.back().first;
3631 unsigned EdgeToVist = Stack.back().second++;
3632 bool IsReducedValue = TreeN->getOpcode() != ReductionOpcode;
3633
3634 // Only handle trees in the current basic block.
3635 if (TreeN->getParent() != B->getParent())
3636 return false;
3637
3638 // Each tree node needs to have one user except for the ultimate
3639 // reduction.
3640 if (!TreeN->hasOneUse() && TreeN != B)
3641 return false;
3642
3643 // Postorder vist.
3644 if (EdgeToVist == 2 || IsReducedValue) {
3645 if (IsReducedValue) {
3646 // Make sure that the opcodes of the operations that we are going to
3647 // reduce match.
3648 if (!ReducedValueOpcode)
3649 ReducedValueOpcode = TreeN->getOpcode();
3650 else if (ReducedValueOpcode != TreeN->getOpcode())
3651 return false;
3652 ReducedVals.push_back(TreeN);
3653 } else {
3654 // We need to be able to reassociate the adds.
3655 if (!TreeN->isAssociative())
3656 return false;
3657 ReductionOps.push_back(TreeN);
3658 }
3659 // Retract.
3660 Stack.pop_back();
3661 continue;
3662 }
3663
3664 // Visit left or right.
3665 Value *NextV = TreeN->getOperand(EdgeToVist);
3666 BinaryOperator *Next = dyn_cast<BinaryOperator>(NextV);
3667 if (Next)
3668 Stack.push_back(std::make_pair(Next, 0));
3669 else if (NextV != Phi)
3670 return false;
3671 }
3672 return true;
3673 }
3674
3675 /// \brief Attempt to vectorize the tree found by
3676 /// matchAssociativeReduction.
3677 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
3678 if (ReducedVals.empty())
3679 return false;
3680
3681 unsigned NumReducedVals = ReducedVals.size();
3682 if (NumReducedVals < ReduxWidth)
3683 return false;
3684
3685 Value *VectorizedTree = nullptr;
3686 IRBuilder<> Builder(ReductionRoot);
3687 FastMathFlags Unsafe;
3688 Unsafe.setUnsafeAlgebra();
3689 Builder.SetFastMathFlags(Unsafe);
3690 unsigned i = 0;
3691
3692 for (; i < NumReducedVals - ReduxWidth + 1; i += ReduxWidth) {
3693 V.buildTree(makeArrayRef(&ReducedVals[i], ReduxWidth), ReductionOps);
3694
3695 // Estimate cost.
3696 int Cost = V.getTreeCost() + getReductionCost(TTI, ReducedVals[i]);
3697 if (Cost >= -SLPCostThreshold)
3698 break;
3699
3700 DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:" << Costdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
<< Cost << ". (HorRdx)\n"; } } while (0)
3701 << ". (HorRdx)\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
<< Cost << ". (HorRdx)\n"; } } while (0)
;
3702
3703 // Vectorize a tree.
3704 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
3705 Value *VectorizedRoot = V.vectorizeTree();
3706
3707 // Emit a reduction.
3708 Value *ReducedSubTree = emitReduction(VectorizedRoot, Builder);
3709 if (VectorizedTree) {
3710 Builder.SetCurrentDebugLocation(Loc);
3711 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
3712 ReducedSubTree, "bin.rdx");
3713 } else
3714 VectorizedTree = ReducedSubTree;
3715 }
3716
3717 if (VectorizedTree) {
3718 // Finish the reduction.
3719 for (; i < NumReducedVals; ++i) {
3720 Builder.SetCurrentDebugLocation(
3721 cast<Instruction>(ReducedVals[i])->getDebugLoc());
3722 VectorizedTree = createBinOp(Builder, ReductionOpcode, VectorizedTree,
3723 ReducedVals[i]);
3724 }
3725 // Update users.
3726 if (ReductionPHI) {
3727 assert(ReductionRoot && "Need a reduction operation")((ReductionRoot && "Need a reduction operation") ? static_cast
<void> (0) : __assert_fail ("ReductionRoot && \"Need a reduction operation\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3727, __PRETTY_FUNCTION__))
;
3728 ReductionRoot->setOperand(0, VectorizedTree);
3729 ReductionRoot->setOperand(1, ReductionPHI);
3730 } else
3731 ReductionRoot->replaceAllUsesWith(VectorizedTree);
3732 }
3733 return VectorizedTree != nullptr;
3734 }
3735
3736private:
3737
3738 /// \brief Calculate the cost of a reduction.
3739 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal) {
3740 Type *ScalarTy = FirstReducedVal->getType();
3741 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
3742
3743 int PairwiseRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, true);
3744 int SplittingRdxCost = TTI->getReductionCost(ReductionOpcode, VecTy, false);
3745
3746 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
3747 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
3748
3749 int ScalarReduxCost =
3750 ReduxWidth * TTI->getArithmeticInstrCost(ReductionOpcode, VecTy);
3751
3752 DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCostdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << VecReduxCost
- ScalarReduxCost << " for reduction that starts with "
<< *FirstReducedVal << " (It is a " << (IsPairwiseReduction
? "pairwise" : "splitting") << " reduction)\n"; } } while
(0)
3753 << " for reduction that starts with " << *FirstReducedValdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << VecReduxCost
- ScalarReduxCost << " for reduction that starts with "
<< *FirstReducedVal << " (It is a " << (IsPairwiseReduction
? "pairwise" : "splitting") << " reduction)\n"; } } while
(0)
3754 << " (It is a "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << VecReduxCost
- ScalarReduxCost << " for reduction that starts with "
<< *FirstReducedVal << " (It is a " << (IsPairwiseReduction
? "pairwise" : "splitting") << " reduction)\n"; } } while
(0)
3755 << (IsPairwiseReduction ? "pairwise" : "splitting")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << VecReduxCost
- ScalarReduxCost << " for reduction that starts with "
<< *FirstReducedVal << " (It is a " << (IsPairwiseReduction
? "pairwise" : "splitting") << " reduction)\n"; } } while
(0)
3756 << " reduction)\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Adding cost " << VecReduxCost
- ScalarReduxCost << " for reduction that starts with "
<< *FirstReducedVal << " (It is a " << (IsPairwiseReduction
? "pairwise" : "splitting") << " reduction)\n"; } } while
(0)
;
3757
3758 return VecReduxCost - ScalarReduxCost;
3759 }
3760
3761 static Value *createBinOp(IRBuilder<> &Builder, unsigned Opcode, Value *L,
3762 Value *R, const Twine &Name = "") {
3763 if (Opcode == Instruction::FAdd)
3764 return Builder.CreateFAdd(L, R, Name);
3765 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, L, R, Name);
3766 }
3767
3768 /// \brief Emit a horizontal reduction of the vectorized value.
3769 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder) {
3770 assert(VectorizedValue && "Need to have a vectorized tree node")((VectorizedValue && "Need to have a vectorized tree node"
) ? static_cast<void> (0) : __assert_fail ("VectorizedValue && \"Need to have a vectorized tree node\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3770, __PRETTY_FUNCTION__))
;
3771 assert(isPowerOf2_32(ReduxWidth) &&((isPowerOf2_32(ReduxWidth) && "We only handle power-of-two reductions for now"
) ? static_cast<void> (0) : __assert_fail ("isPowerOf2_32(ReduxWidth) && \"We only handle power-of-two reductions for now\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3772, __PRETTY_FUNCTION__))
3772 "We only handle power-of-two reductions for now")((isPowerOf2_32(ReduxWidth) && "We only handle power-of-two reductions for now"
) ? static_cast<void> (0) : __assert_fail ("isPowerOf2_32(ReduxWidth) && \"We only handle power-of-two reductions for now\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn246424/lib/Transforms/Vectorize/SLPVectorizer.cpp"
, 3772, __PRETTY_FUNCTION__))
;
3773
3774 Value *TmpVec = VectorizedValue;
3775 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
3776 if (IsPairwiseReduction) {
3777 Value *LeftMask =
3778 createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
3779 Value *RightMask =
3780 createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
3781
3782 Value *LeftShuf = Builder.CreateShuffleVector(
3783 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
3784 Value *RightShuf = Builder.CreateShuffleVector(
3785 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
3786 "rdx.shuf.r");
3787 TmpVec = createBinOp(Builder, ReductionOpcode, LeftShuf, RightShuf,
3788 "bin.rdx");
3789 } else {
3790 Value *UpperHalf =
3791 createRdxShuffleMask(ReduxWidth, i, false, false, Builder);
3792 Value *Shuf = Builder.CreateShuffleVector(
3793 TmpVec, UndefValue::get(TmpVec->getType()), UpperHalf, "rdx.shuf");
3794 TmpVec = createBinOp(Builder, ReductionOpcode, TmpVec, Shuf, "bin.rdx");
3795 }
3796 }
3797
3798 // The result is in the first element of the vector.
3799 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
3800 }
3801};
3802
3803/// \brief Recognize construction of vectors like
3804/// %ra = insertelement <4 x float> undef, float %s0, i32 0
3805/// %rb = insertelement <4 x float> %ra, float %s1, i32 1
3806/// %rc = insertelement <4 x float> %rb, float %s2, i32 2
3807/// %rd = insertelement <4 x float> %rc, float %s3, i32 3
3808///
3809/// Returns true if it matches
3810///
3811static bool findBuildVector(InsertElementInst *FirstInsertElem,
3812 SmallVectorImpl<Value *> &BuildVector,
3813 SmallVectorImpl<Value *> &BuildVectorOpds) {
3814 if (!isa<UndefValue>(FirstInsertElem->getOperand(0)))
3815 return false;
3816
3817 InsertElementInst *IE = FirstInsertElem;
3818 while (true) {
3819 BuildVector.push_back(IE);
3820 BuildVectorOpds.push_back(IE->getOperand(1));
3821
3822 if (IE->use_empty())
3823 return false;
3824
3825 InsertElementInst *NextUse = dyn_cast<InsertElementInst>(IE->user_back());
3826 if (!NextUse)
3827 return true;
3828
3829 // If this isn't the final use, make sure the next insertelement is the only
3830 // use. It's OK if the final constructed vector is used multiple times
3831 if (!IE->hasOneUse())
3832 return false;
3833
3834 IE = NextUse;
3835 }
3836
3837 return false;
3838}
3839
3840static bool PhiTypeSorterFunc(Value *V, Value *V2) {
3841 return V->getType() < V2->getType();
3842}
3843
3844bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
3845 bool Changed = false;
3846 SmallVector<Value *, 4> Incoming;
3847 SmallSet<Value *, 16> VisitedInstrs;
3848
3849 bool HaveVectorizedPhiNodes = true;
3850 while (HaveVectorizedPhiNodes) {
3851 HaveVectorizedPhiNodes = false;
3852
3853 // Collect the incoming values from the PHIs.
3854 Incoming.clear();
3855 for (BasicBlock::iterator instr = BB->begin(), ie = BB->end(); instr != ie;
3856 ++instr) {
3857 PHINode *P = dyn_cast<PHINode>(instr);
3858 if (!P)
3859 break;
3860
3861 if (!VisitedInstrs.count(P))
3862 Incoming.push_back(P);
3863 }
3864
3865 // Sort by type.
3866 std::stable_sort(Incoming.begin(), Incoming.end(), PhiTypeSorterFunc);
3867
3868 // Try to vectorize elements base on their type.
3869 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
3870 E = Incoming.end();
3871 IncIt != E;) {
3872
3873 // Look for the next elements with the same type.
3874 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
3875 while (SameTypeIt != E &&
3876 (*SameTypeIt)->getType() == (*IncIt)->getType()) {
3877 VisitedInstrs.insert(*SameTypeIt);
3878 ++SameTypeIt;
3879 }
3880
3881 // Try to vectorize them.
3882 unsigned NumElts = (SameTypeIt - IncIt);
3883 DEBUG(errs() << "SLP: Trying to vectorize starting at PHIs (" << NumElts << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { errs() << "SLP: Trying to vectorize starting at PHIs ("
<< NumElts << ")\n"; } } while (0)
;
3884 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R)) {
3885 // Success start over because instructions might have been changed.
3886 HaveVectorizedPhiNodes = true;
3887 Changed = true;
3888 break;
3889 }
3890
3891 // Start over at the next instruction of a different type (or the end).
3892 IncIt = SameTypeIt;
3893 }
3894 }
3895
3896 VisitedInstrs.clear();
3897
3898 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; it++) {
3899 // We may go through BB multiple times so skip the one we have checked.
3900 if (!VisitedInstrs.insert(it).second)
3901 continue;
3902
3903 if (isa<DbgInfoIntrinsic>(it))
3904 continue;
3905
3906 // Try to vectorize reductions that use PHINodes.
3907 if (PHINode *P = dyn_cast<PHINode>(it)) {
3908 // Check that the PHI is a reduction PHI.
3909 if (P->getNumIncomingValues() != 2)
3910 return Changed;
3911 Value *Rdx =
3912 (P->getIncomingBlock(0) == BB
3913 ? (P->getIncomingValue(0))
3914 : (P->getIncomingBlock(1) == BB ? P->getIncomingValue(1)
3915 : nullptr));
3916 // Check if this is a Binary Operator.
3917 BinaryOperator *BI = dyn_cast_or_null<BinaryOperator>(Rdx);
3918 if (!BI)
3919 continue;
3920
3921 // Try to match and vectorize a horizontal reduction.
3922 HorizontalReduction HorRdx;
3923 if (ShouldVectorizeHor && HorRdx.matchAssociativeReduction(P, BI) &&
3924 HorRdx.tryToReduce(R, TTI)) {
3925 Changed = true;
3926 it = BB->begin();
3927 e = BB->end();
3928 continue;
3929 }
3930
3931 Value *Inst = BI->getOperand(0);
3932 if (Inst == P)
3933 Inst = BI->getOperand(1);
3934
3935 if (tryToVectorize(dyn_cast<BinaryOperator>(Inst), R)) {
3936 // We would like to start over since some instructions are deleted
3937 // and the iterator may become invalid value.
3938 Changed = true;
3939 it = BB->begin();
3940 e = BB->end();
3941 continue;
3942 }
3943
3944 continue;
3945 }
3946
3947 // Try to vectorize horizontal reductions feeding into a store.
3948 if (ShouldStartVectorizeHorAtStore)
3949 if (StoreInst *SI = dyn_cast<StoreInst>(it))
3950 if (BinaryOperator *BinOp =
3951 dyn_cast<BinaryOperator>(SI->getValueOperand())) {
3952 HorizontalReduction HorRdx;
3953 if (((HorRdx.matchAssociativeReduction(nullptr, BinOp) &&
3954 HorRdx.tryToReduce(R, TTI)) ||
3955 tryToVectorize(BinOp, R))) {
3956 Changed = true;
3957 it = BB->begin();
3958 e = BB->end();
3959 continue;
3960 }
3961 }
3962
3963 // Try to vectorize horizontal reductions feeding into a return.
3964 if (ReturnInst *RI = dyn_cast<ReturnInst>(it))
3965 if (RI->getNumOperands() != 0)
3966 if (BinaryOperator *BinOp =
3967 dyn_cast<BinaryOperator>(RI->getOperand(0))) {
3968 DEBUG(dbgs() << "SLP: Found a return to vectorize.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Found a return to vectorize.\n"
; } } while (0)
;
3969 if (tryToVectorizePair(BinOp->getOperand(0),
3970 BinOp->getOperand(1), R)) {
3971 Changed = true;
3972 it = BB->begin();
3973 e = BB->end();
3974 continue;
3975 }
3976 }
3977
3978 // Try to vectorize trees that start at compare instructions.
3979 if (CmpInst *CI = dyn_cast<CmpInst>(it)) {
3980 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R)) {
3981 Changed = true;
3982 // We would like to start over since some instructions are deleted
3983 // and the iterator may become invalid value.
3984 it = BB->begin();
3985 e = BB->end();
3986 continue;
3987 }
3988
3989 for (int i = 0; i < 2; ++i) {
3990 if (BinaryOperator *BI = dyn_cast<BinaryOperator>(CI->getOperand(i))) {
3991 if (tryToVectorizePair(BI->getOperand(0), BI->getOperand(1), R)) {
3992 Changed = true;
3993 // We would like to start over since some instructions are deleted
3994 // and the iterator may become invalid value.
3995 it = BB->begin();
3996 e = BB->end();
3997 break;
3998 }
3999 }
4000 }
4001 continue;
4002 }
4003
4004 // Try to vectorize trees that start at insertelement instructions.
4005 if (InsertElementInst *FirstInsertElem = dyn_cast<InsertElementInst>(it)) {
4006 SmallVector<Value *, 16> BuildVector;
4007 SmallVector<Value *, 16> BuildVectorOpds;
4008 if (!findBuildVector(FirstInsertElem, BuildVector, BuildVectorOpds))
4009 continue;
4010
4011 // Vectorize starting with the build vector operands ignoring the
4012 // BuildVector instructions for the purpose of scheduling and user
4013 // extraction.
4014 if (tryToVectorizeList(BuildVectorOpds, R, BuildVector)) {
4015 Changed = true;
4016 it = BB->begin();
4017 e = BB->end();
4018 }
4019
4020 continue;
4021 }
4022 }
4023
4024 return Changed;
4025}
4026
4027bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) {
4028 bool Changed = false;
4029 // Attempt to sort and vectorize each of the store-groups.
4030 for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end();
4031 it != e; ++it) {
4032 if (it->second.size() < 2)
4033 continue;
4034
4035 DEBUG(dbgs() << "SLP: Analyzing a store chain of length "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a store chain of length "
<< it->second.size() << ".\n"; } } while (0)
4036 << it->second.size() << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("SLP")) { dbgs() << "SLP: Analyzing a store chain of length "
<< it->second.size() << ".\n"; } } while (0)
;
4037
4038 // Process the stores in chunks of 16.
4039 // TODO: The limit of 16 inhibits greater vectorization factors.
4040 // For example, AVX2 supports v32i8. Increasing this limit, however,
4041 // may cause a significant compile-time increase.
4042 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI+=16) {
4043 unsigned Len = std::min<unsigned>(CE - CI, 16);
4044 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len),
4045 -SLPCostThreshold, R);
4046 }
4047 }
4048 return Changed;
4049}
4050
4051} // end anonymous namespace
4052
4053char SLPVectorizer::ID = 0;
4054static const char lv_name[] = "SLP Vectorizer";
4055INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)static void* initializeSLPVectorizerPassOnce(PassRegistry &
Registry) {
4056INITIALIZE_AG_DEPENDENCY(AliasAnalysis)initializeAliasAnalysisAnalysisGroup(Registry);
4057INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)initializeTargetTransformInfoWrapperPassPass(Registry);
4058INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)initializeAssumptionCacheTrackerPass(Registry);
4059INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)initializeScalarEvolutionWrapperPassPass(Registry);
4060INITIALIZE_PASS_DEPENDENCY(LoopSimplify)initializeLoopSimplifyPass(Registry);
4061INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)PassInfo *PI = new PassInfo(lv_name, "slp-vectorizer", & SLPVectorizer
::ID, PassInfo::NormalCtor_t(callDefaultCtor< SLPVectorizer
>), false, false); Registry.registerPass(*PI, true); return
PI; } void llvm::initializeSLPVectorizerPass(PassRegistry &
Registry) { static volatile sys::cas_flag initialized = 0; sys
::cas_flag old_val = sys::CompareAndSwap(&initialized, 1,
0); if (old_val == 0) { initializeSLPVectorizerPassOnce(Registry
); sys::MemoryFence(); ; ; initialized = 2; ; } else { sys::cas_flag
tmp = initialized; sys::MemoryFence(); while (tmp != 2) { tmp
= initialized; sys::MemoryFence(); } } ; }
4062
4063namespace llvm {
4064Pass *createSLPVectorizerPass() { return new SLPVectorizer(); }
4065}