Bug Summary

File:lib/Transforms/IPO/SampleProfile.cpp
Warning:line 1725, column 34
Dereference of null smart pointer 'Reader' of type 'std::unique_ptr'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SampleProfile.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-10/lib/clang/10.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-10~svn374814/build-llvm/lib/Transforms/IPO -I /build/llvm-toolchain-snapshot-10~svn374814/lib/Transforms/IPO -I /build/llvm-toolchain-snapshot-10~svn374814/build-llvm/include -I /build/llvm-toolchain-snapshot-10~svn374814/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-10/lib/clang/10.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-10~svn374814/build-llvm/lib/Transforms/IPO -fdebug-prefix-map=/build/llvm-toolchain-snapshot-10~svn374814=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2019-10-15-035155-28452-1 -x c++ /build/llvm-toolchain-snapshot-10~svn374814/lib/Transforms/IPO/SampleProfile.cpp
1//===- SampleProfile.cpp - Incorporate sample profiles into the IR --------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the SampleProfileLoader transformation. This pass
10// reads a profile file generated by a sampling profiler (e.g. Linux Perf -
11// http://perf.wiki.kernel.org/) and generates IR metadata to reflect the
12// profile information in the given profile.
13//
14// This pass generates branch weight annotations on the IR:
15//
16// - prof: Represents branch weights. This annotation is added to branches
17// to indicate the weights of each edge coming out of the branch.
18// The weight of each edge is the weight of the target block for
19// that edge. The weight of a block B is computed as the maximum
20// number of samples found in B.
21//
22//===----------------------------------------------------------------------===//
23
24#include "llvm/Transforms/IPO/SampleProfile.h"
25#include "llvm/ADT/ArrayRef.h"
26#include "llvm/ADT/DenseMap.h"
27#include "llvm/ADT/DenseSet.h"
28#include "llvm/ADT/None.h"
29#include "llvm/ADT/SmallPtrSet.h"
30#include "llvm/ADT/SmallSet.h"
31#include "llvm/ADT/SmallVector.h"
32#include "llvm/ADT/StringMap.h"
33#include "llvm/ADT/StringRef.h"
34#include "llvm/ADT/Twine.h"
35#include "llvm/Analysis/AssumptionCache.h"
36#include "llvm/Analysis/InlineCost.h"
37#include "llvm/Analysis/LoopInfo.h"
38#include "llvm/Analysis/OptimizationRemarkEmitter.h"
39#include "llvm/Analysis/PostDominators.h"
40#include "llvm/Analysis/ProfileSummaryInfo.h"
41#include "llvm/Analysis/TargetTransformInfo.h"
42#include "llvm/IR/BasicBlock.h"
43#include "llvm/IR/CFG.h"
44#include "llvm/IR/CallSite.h"
45#include "llvm/IR/DebugInfoMetadata.h"
46#include "llvm/IR/DebugLoc.h"
47#include "llvm/IR/DiagnosticInfo.h"
48#include "llvm/IR/Dominators.h"
49#include "llvm/IR/Function.h"
50#include "llvm/IR/GlobalValue.h"
51#include "llvm/IR/InstrTypes.h"
52#include "llvm/IR/Instruction.h"
53#include "llvm/IR/Instructions.h"
54#include "llvm/IR/IntrinsicInst.h"
55#include "llvm/IR/LLVMContext.h"
56#include "llvm/IR/MDBuilder.h"
57#include "llvm/IR/Module.h"
58#include "llvm/IR/PassManager.h"
59#include "llvm/IR/ValueSymbolTable.h"
60#include "llvm/Pass.h"
61#include "llvm/ProfileData/InstrProf.h"
62#include "llvm/ProfileData/SampleProf.h"
63#include "llvm/ProfileData/SampleProfReader.h"
64#include "llvm/Support/Casting.h"
65#include "llvm/Support/CommandLine.h"
66#include "llvm/Support/Debug.h"
67#include "llvm/Support/ErrorHandling.h"
68#include "llvm/Support/ErrorOr.h"
69#include "llvm/Support/GenericDomTree.h"
70#include "llvm/Support/raw_ostream.h"
71#include "llvm/Transforms/IPO.h"
72#include "llvm/Transforms/Instrumentation.h"
73#include "llvm/Transforms/Utils/CallPromotionUtils.h"
74#include "llvm/Transforms/Utils/Cloning.h"
75#include "llvm/Transforms/Utils/MisExpect.h"
76#include <algorithm>
77#include <cassert>
78#include <cstdint>
79#include <functional>
80#include <limits>
81#include <map>
82#include <memory>
83#include <queue>
84#include <string>
85#include <system_error>
86#include <utility>
87#include <vector>
88
89using namespace llvm;
90using namespace sampleprof;
91using ProfileCount = Function::ProfileCount;
92#define DEBUG_TYPE"sample-profile" "sample-profile"
93
94// Command line option to specify the file to read samples from. This is
95// mainly used for debugging.
96static cl::opt<std::string> SampleProfileFile(
97 "sample-profile-file", cl::init(""), cl::value_desc("filename"),
98 cl::desc("Profile file loaded by -sample-profile"), cl::Hidden);
99
100// The named file contains a set of transformations that may have been applied
101// to the symbol names between the program from which the sample data was
102// collected and the current program's symbols.
103static cl::opt<std::string> SampleProfileRemappingFile(
104 "sample-profile-remapping-file", cl::init(""), cl::value_desc("filename"),
105 cl::desc("Profile remapping file loaded by -sample-profile"), cl::Hidden);
106
107static cl::opt<unsigned> SampleProfileMaxPropagateIterations(
108 "sample-profile-max-propagate-iterations", cl::init(100),
109 cl::desc("Maximum number of iterations to go through when propagating "
110 "sample block/edge weights through the CFG."));
111
112static cl::opt<unsigned> SampleProfileRecordCoverage(
113 "sample-profile-check-record-coverage", cl::init(0), cl::value_desc("N"),
114 cl::desc("Emit a warning if less than N% of records in the input profile "
115 "are matched to the IR."));
116
117static cl::opt<unsigned> SampleProfileSampleCoverage(
118 "sample-profile-check-sample-coverage", cl::init(0), cl::value_desc("N"),
119 cl::desc("Emit a warning if less than N% of samples in the input profile "
120 "are matched to the IR."));
121
122static cl::opt<bool> NoWarnSampleUnused(
123 "no-warn-sample-unused", cl::init(false), cl::Hidden,
124 cl::desc("Use this option to turn off/on warnings about function with "
125 "samples but without debug information to use those samples. "));
126
127static cl::opt<bool> ProfileSampleAccurate(
128 "profile-sample-accurate", cl::Hidden, cl::init(false),
129 cl::desc("If the sample profile is accurate, we will mark all un-sampled "
130 "callsite and function as having 0 samples. Otherwise, treat "
131 "un-sampled callsites and functions conservatively as unknown. "));
132
133static cl::opt<bool> ProfileAccurateForSymsInList(
134 "profile-accurate-for-symsinlist", cl::Hidden, cl::ZeroOrMore,
135 cl::init(true),
136 cl::desc("For symbols in profile symbol list, regard their profiles to "
137 "be accurate. It may be overriden by profile-sample-accurate. "));
138
139namespace {
140
141using BlockWeightMap = DenseMap<const BasicBlock *, uint64_t>;
142using EquivalenceClassMap = DenseMap<const BasicBlock *, const BasicBlock *>;
143using Edge = std::pair<const BasicBlock *, const BasicBlock *>;
144using EdgeWeightMap = DenseMap<Edge, uint64_t>;
145using BlockEdgeMap =
146 DenseMap<const BasicBlock *, SmallVector<const BasicBlock *, 8>>;
147
148class SampleProfileLoader;
149
150class SampleCoverageTracker {
151public:
152 SampleCoverageTracker(SampleProfileLoader &SPL) : SPLoader(SPL){};
153
154 bool markSamplesUsed(const FunctionSamples *FS, uint32_t LineOffset,
155 uint32_t Discriminator, uint64_t Samples);
156 unsigned computeCoverage(unsigned Used, unsigned Total) const;
157 unsigned countUsedRecords(const FunctionSamples *FS,
158 ProfileSummaryInfo *PSI) const;
159 unsigned countBodyRecords(const FunctionSamples *FS,
160 ProfileSummaryInfo *PSI) const;
161 uint64_t getTotalUsedSamples() const { return TotalUsedSamples; }
162 uint64_t countBodySamples(const FunctionSamples *FS,
163 ProfileSummaryInfo *PSI) const;
164
165 void clear() {
166 SampleCoverage.clear();
167 TotalUsedSamples = 0;
168 }
169
170private:
171 using BodySampleCoverageMap = std::map<LineLocation, unsigned>;
172 using FunctionSamplesCoverageMap =
173 DenseMap<const FunctionSamples *, BodySampleCoverageMap>;
174
175 /// Coverage map for sampling records.
176 ///
177 /// This map keeps a record of sampling records that have been matched to
178 /// an IR instruction. This is used to detect some form of staleness in
179 /// profiles (see flag -sample-profile-check-coverage).
180 ///
181 /// Each entry in the map corresponds to a FunctionSamples instance. This is
182 /// another map that counts how many times the sample record at the
183 /// given location has been used.
184 FunctionSamplesCoverageMap SampleCoverage;
185
186 /// Number of samples used from the profile.
187 ///
188 /// When a sampling record is used for the first time, the samples from
189 /// that record are added to this accumulator. Coverage is later computed
190 /// based on the total number of samples available in this function and
191 /// its callsites.
192 ///
193 /// Note that this accumulator tracks samples used from a single function
194 /// and all the inlined callsites. Strictly, we should have a map of counters
195 /// keyed by FunctionSamples pointers, but these stats are cleared after
196 /// every function, so we just need to keep a single counter.
197 uint64_t TotalUsedSamples = 0;
198
199 SampleProfileLoader &SPLoader;
200};
201
202class GUIDToFuncNameMapper {
203public:
204 GUIDToFuncNameMapper(Module &M, SampleProfileReader &Reader,
205 DenseMap<uint64_t, StringRef> &GUIDToFuncNameMap)
206 : CurrentReader(Reader), CurrentModule(M),
207 CurrentGUIDToFuncNameMap(GUIDToFuncNameMap) {
208 if (CurrentReader.getFormat() != SPF_Compact_Binary)
209 return;
210
211 for (const auto &F : CurrentModule) {
212 StringRef OrigName = F.getName();
213 CurrentGUIDToFuncNameMap.insert(
214 {Function::getGUID(OrigName), OrigName});
215
216 // Local to global var promotion used by optimization like thinlto
217 // will rename the var and add suffix like ".llvm.xxx" to the
218 // original local name. In sample profile, the suffixes of function
219 // names are all stripped. Since it is possible that the mapper is
220 // built in post-thin-link phase and var promotion has been done,
221 // we need to add the substring of function name without the suffix
222 // into the GUIDToFuncNameMap.
223 StringRef CanonName = FunctionSamples::getCanonicalFnName(F);
224 if (CanonName != OrigName)
225 CurrentGUIDToFuncNameMap.insert(
226 {Function::getGUID(CanonName), CanonName});
227 }
228
229 // Update GUIDToFuncNameMap for each function including inlinees.
230 SetGUIDToFuncNameMapForAll(&CurrentGUIDToFuncNameMap);
231 }
232
233 ~GUIDToFuncNameMapper() {
234 if (CurrentReader.getFormat() != SPF_Compact_Binary)
235 return;
236
237 CurrentGUIDToFuncNameMap.clear();
238
239 // Reset GUIDToFuncNameMap for of each function as they're no
240 // longer valid at this point.
241 SetGUIDToFuncNameMapForAll(nullptr);
242 }
243
244private:
245 void SetGUIDToFuncNameMapForAll(DenseMap<uint64_t, StringRef> *Map) {
246 std::queue<FunctionSamples *> FSToUpdate;
247 for (auto &IFS : CurrentReader.getProfiles()) {
248 FSToUpdate.push(&IFS.second);
249 }
250
251 while (!FSToUpdate.empty()) {
252 FunctionSamples *FS = FSToUpdate.front();
253 FSToUpdate.pop();
254 FS->GUIDToFuncNameMap = Map;
255 for (const auto &ICS : FS->getCallsiteSamples()) {
256 const FunctionSamplesMap &FSMap = ICS.second;
257 for (auto &IFS : FSMap) {
258 FunctionSamples &FS = const_cast<FunctionSamples &>(IFS.second);
259 FSToUpdate.push(&FS);
260 }
261 }
262 }
263 }
264
265 SampleProfileReader &CurrentReader;
266 Module &CurrentModule;
267 DenseMap<uint64_t, StringRef> &CurrentGUIDToFuncNameMap;
268};
269
270/// Sample profile pass.
271///
272/// This pass reads profile data from the file specified by
273/// -sample-profile-file and annotates every affected function with the
274/// profile information found in that file.
275class SampleProfileLoader {
276public:
277 SampleProfileLoader(
278 StringRef Name, StringRef RemapName, bool IsThinLTOPreLink,
279 std::function<AssumptionCache &(Function &)> GetAssumptionCache,
280 std::function<TargetTransformInfo &(Function &)> GetTargetTransformInfo)
281 : GetAC(std::move(GetAssumptionCache)),
282 GetTTI(std::move(GetTargetTransformInfo)), CoverageTracker(*this),
283 Filename(Name), RemappingFilename(RemapName),
284 IsThinLTOPreLink(IsThinLTOPreLink) {}
285
286 bool doInitialization(Module &M);
287 bool runOnModule(Module &M, ModuleAnalysisManager *AM,
288 ProfileSummaryInfo *_PSI);
289
290 void dump() { Reader->dump(); }
291
292protected:
293 friend class SampleCoverageTracker;
294
295 bool runOnFunction(Function &F, ModuleAnalysisManager *AM);
296 unsigned getFunctionLoc(Function &F);
297 bool emitAnnotations(Function &F);
298 ErrorOr<uint64_t> getInstWeight(const Instruction &I);
299 ErrorOr<uint64_t> getBlockWeight(const BasicBlock *BB);
300 const FunctionSamples *findCalleeFunctionSamples(const Instruction &I) const;
301 std::vector<const FunctionSamples *>
302 findIndirectCallFunctionSamples(const Instruction &I, uint64_t &Sum) const;
303 mutable DenseMap<const DILocation *, const FunctionSamples *> DILocation2SampleMap;
304 const FunctionSamples *findFunctionSamples(const Instruction &I) const;
305 bool inlineCallInstruction(Instruction *I);
306 bool inlineHotFunctions(Function &F,
307 DenseSet<GlobalValue::GUID> &InlinedGUIDs);
308 void printEdgeWeight(raw_ostream &OS, Edge E);
309 void printBlockWeight(raw_ostream &OS, const BasicBlock *BB) const;
310 void printBlockEquivalence(raw_ostream &OS, const BasicBlock *BB);
311 bool computeBlockWeights(Function &F);
312 void findEquivalenceClasses(Function &F);
313 template <bool IsPostDom>
314 void findEquivalencesFor(BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
315 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree);
316
317 void propagateWeights(Function &F);
318 uint64_t visitEdge(Edge E, unsigned *NumUnknownEdges, Edge *UnknownEdge);
319 void buildEdges(Function &F);
320 bool propagateThroughEdges(Function &F, bool UpdateBlockCount);
321 void computeDominanceAndLoopInfo(Function &F);
322 void clearFunctionData();
323 bool callsiteIsHot(const FunctionSamples *CallsiteFS,
324 ProfileSummaryInfo *PSI);
325
326 /// Map basic blocks to their computed weights.
327 ///
328 /// The weight of a basic block is defined to be the maximum
329 /// of all the instruction weights in that block.
330 BlockWeightMap BlockWeights;
331
332 /// Map edges to their computed weights.
333 ///
334 /// Edge weights are computed by propagating basic block weights in
335 /// SampleProfile::propagateWeights.
336 EdgeWeightMap EdgeWeights;
337
338 /// Set of visited blocks during propagation.
339 SmallPtrSet<const BasicBlock *, 32> VisitedBlocks;
340
341 /// Set of visited edges during propagation.
342 SmallSet<Edge, 32> VisitedEdges;
343
344 /// Equivalence classes for block weights.
345 ///
346 /// Two blocks BB1 and BB2 are in the same equivalence class if they
347 /// dominate and post-dominate each other, and they are in the same loop
348 /// nest. When this happens, the two blocks are guaranteed to execute
349 /// the same number of times.
350 EquivalenceClassMap EquivalenceClass;
351
352 /// Map from function name to Function *. Used to find the function from
353 /// the function name. If the function name contains suffix, additional
354 /// entry is added to map from the stripped name to the function if there
355 /// is one-to-one mapping.
356 StringMap<Function *> SymbolMap;
357
358 /// Dominance, post-dominance and loop information.
359 std::unique_ptr<DominatorTree> DT;
360 std::unique_ptr<PostDominatorTree> PDT;
361 std::unique_ptr<LoopInfo> LI;
362
363 std::function<AssumptionCache &(Function &)> GetAC;
364 std::function<TargetTransformInfo &(Function &)> GetTTI;
365
366 /// Predecessors for each basic block in the CFG.
367 BlockEdgeMap Predecessors;
368
369 /// Successors for each basic block in the CFG.
370 BlockEdgeMap Successors;
371
372 SampleCoverageTracker CoverageTracker;
373
374 /// Profile reader object.
375 std::unique_ptr<SampleProfileReader> Reader;
376
377 /// Samples collected for the body of this function.
378 FunctionSamples *Samples = nullptr;
379
380 /// Name of the profile file to load.
381 std::string Filename;
382
383 /// Name of the profile remapping file to load.
384 std::string RemappingFilename;
385
386 /// Flag indicating whether the profile input loaded successfully.
387 bool ProfileIsValid = false;
388
389 /// Flag indicating if the pass is invoked in ThinLTO compile phase.
390 ///
391 /// In this phase, in annotation, we should not promote indirect calls.
392 /// Instead, we will mark GUIDs that needs to be annotated to the function.
393 bool IsThinLTOPreLink;
394
395 /// Profile Summary Info computed from sample profile.
396 ProfileSummaryInfo *PSI = nullptr;
397
398 /// Profle Symbol list tells whether a function name appears in the binary
399 /// used to generate the current profile.
400 std::unique_ptr<ProfileSymbolList> PSL;
401
402 /// Total number of samples collected in this profile.
403 ///
404 /// This is the sum of all the samples collected in all the functions executed
405 /// at runtime.
406 uint64_t TotalCollectedSamples = 0;
407
408 /// Optimization Remark Emitter used to emit diagnostic remarks.
409 OptimizationRemarkEmitter *ORE = nullptr;
410
411 // Information recorded when we declined to inline a call site
412 // because we have determined it is too cold is accumulated for
413 // each callee function. Initially this is just the entry count.
414 struct NotInlinedProfileInfo {
415 uint64_t entryCount;
416 };
417 DenseMap<Function *, NotInlinedProfileInfo> notInlinedCallInfo;
418
419 // GUIDToFuncNameMap saves the mapping from GUID to the symbol name, for
420 // all the function symbols defined or declared in current module.
421 DenseMap<uint64_t, StringRef> GUIDToFuncNameMap;
422
423 // All the Names used in FunctionSamples including outline function
424 // names, inline instance names and call target names.
425 StringSet<> NamesInProfile;
426
427 // For symbol in profile symbol list, whether to regard their profiles
428 // to be accurate. It is mainly decided by existance of profile symbol
429 // list and -profile-accurate-for-symsinlist flag, but it can be
430 // overriden by -profile-sample-accurate or profile-sample-accurate
431 // attribute.
432 bool ProfAccForSymsInList;
433};
434
435class SampleProfileLoaderLegacyPass : public ModulePass {
436public:
437 // Class identification, replacement for typeinfo
438 static char ID;
439
440 SampleProfileLoaderLegacyPass(StringRef Name = SampleProfileFile,
441 bool IsThinLTOPreLink = false)
442 : ModulePass(ID),
443 SampleLoader(Name, SampleProfileRemappingFile, IsThinLTOPreLink,
444 [&](Function &F) -> AssumptionCache & {
445 return ACT->getAssumptionCache(F);
446 },
447 [&](Function &F) -> TargetTransformInfo & {
448 return TTIWP->getTTI(F);
449 }) {
450 initializeSampleProfileLoaderLegacyPassPass(
451 *PassRegistry::getPassRegistry());
452 }
453
454 void dump() { SampleLoader.dump(); }
455
456 bool doInitialization(Module &M) override {
457 return SampleLoader.doInitialization(M);
458 }
459
460 StringRef getPassName() const override { return "Sample profile pass"; }
461 bool runOnModule(Module &M) override;
462
463 void getAnalysisUsage(AnalysisUsage &AU) const override {
464 AU.addRequired<AssumptionCacheTracker>();
465 AU.addRequired<TargetTransformInfoWrapperPass>();
466 AU.addRequired<ProfileSummaryInfoWrapperPass>();
467 }
468
469private:
470 SampleProfileLoader SampleLoader;
471 AssumptionCacheTracker *ACT = nullptr;
472 TargetTransformInfoWrapperPass *TTIWP = nullptr;
473};
474
475} // end anonymous namespace
476
477/// Return true if the given callsite is hot wrt to hot cutoff threshold.
478///
479/// Functions that were inlined in the original binary will be represented
480/// in the inline stack in the sample profile. If the profile shows that
481/// the original inline decision was "good" (i.e., the callsite is executed
482/// frequently), then we will recreate the inline decision and apply the
483/// profile from the inlined callsite.
484///
485/// To decide whether an inlined callsite is hot, we compare the callsite
486/// sample count with the hot cutoff computed by ProfileSummaryInfo, it is
487/// regarded as hot if the count is above the cutoff value.
488///
489/// When ProfileAccurateForSymsInList is enabled and profile symbol list
490/// is present, functions in the profile symbol list but without profile will
491/// be regarded as cold and much less inlining will happen in CGSCC inlining
492/// pass, so we tend to lower the hot criteria here to allow more early
493/// inlining to happen for warm callsites and it is helpful for performance.
494bool SampleProfileLoader::callsiteIsHot(const FunctionSamples *CallsiteFS,
495 ProfileSummaryInfo *PSI) {
496 if (!CallsiteFS)
497 return false; // The callsite was not inlined in the original binary.
498
499 assert(PSI && "PSI is expected to be non null")((PSI && "PSI is expected to be non null") ? static_cast
<void> (0) : __assert_fail ("PSI && \"PSI is expected to be non null\""
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Transforms/IPO/SampleProfile.cpp"
, 499, __PRETTY_FUNCTION__))
;
500 uint64_t CallsiteTotalSamples = CallsiteFS->getTotalSamples();
501 if (ProfAccForSymsInList)
502 return !PSI->isColdCount(CallsiteTotalSamples);
503 else
504 return PSI->isHotCount(CallsiteTotalSamples);
505}
506
507/// Mark as used the sample record for the given function samples at
508/// (LineOffset, Discriminator).
509///
510/// \returns true if this is the first time we mark the given record.
511bool SampleCoverageTracker::markSamplesUsed(const FunctionSamples *FS,
512 uint32_t LineOffset,
513 uint32_t Discriminator,
514 uint64_t Samples) {
515 LineLocation Loc(LineOffset, Discriminator);
516 unsigned &Count = SampleCoverage[FS][Loc];
517 bool FirstTime = (++Count == 1);
518 if (FirstTime)
519 TotalUsedSamples += Samples;
520 return FirstTime;
521}
522
523/// Return the number of sample records that were applied from this profile.
524///
525/// This count does not include records from cold inlined callsites.
526unsigned
527SampleCoverageTracker::countUsedRecords(const FunctionSamples *FS,
528 ProfileSummaryInfo *PSI) const {
529 auto I = SampleCoverage.find(FS);
530
531 // The size of the coverage map for FS represents the number of records
532 // that were marked used at least once.
533 unsigned Count = (I != SampleCoverage.end()) ? I->second.size() : 0;
534
535 // If there are inlined callsites in this function, count the samples found
536 // in the respective bodies. However, do not bother counting callees with 0
537 // total samples, these are callees that were never invoked at runtime.
538 for (const auto &I : FS->getCallsiteSamples())
539 for (const auto &J : I.second) {
540 const FunctionSamples *CalleeSamples = &J.second;
541 if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
542 Count += countUsedRecords(CalleeSamples, PSI);
543 }
544
545 return Count;
546}
547
548/// Return the number of sample records in the body of this profile.
549///
550/// This count does not include records from cold inlined callsites.
551unsigned
552SampleCoverageTracker::countBodyRecords(const FunctionSamples *FS,
553 ProfileSummaryInfo *PSI) const {
554 unsigned Count = FS->getBodySamples().size();
555
556 // Only count records in hot callsites.
557 for (const auto &I : FS->getCallsiteSamples())
558 for (const auto &J : I.second) {
559 const FunctionSamples *CalleeSamples = &J.second;
560 if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
561 Count += countBodyRecords(CalleeSamples, PSI);
562 }
563
564 return Count;
565}
566
567/// Return the number of samples collected in the body of this profile.
568///
569/// This count does not include samples from cold inlined callsites.
570uint64_t
571SampleCoverageTracker::countBodySamples(const FunctionSamples *FS,
572 ProfileSummaryInfo *PSI) const {
573 uint64_t Total = 0;
574 for (const auto &I : FS->getBodySamples())
575 Total += I.second.getSamples();
576
577 // Only count samples in hot callsites.
578 for (const auto &I : FS->getCallsiteSamples())
579 for (const auto &J : I.second) {
580 const FunctionSamples *CalleeSamples = &J.second;
581 if (SPLoader.callsiteIsHot(CalleeSamples, PSI))
582 Total += countBodySamples(CalleeSamples, PSI);
583 }
584
585 return Total;
586}
587
588/// Return the fraction of sample records used in this profile.
589///
590/// The returned value is an unsigned integer in the range 0-100 indicating
591/// the percentage of sample records that were used while applying this
592/// profile to the associated function.
593unsigned SampleCoverageTracker::computeCoverage(unsigned Used,
594 unsigned Total) const {
595 assert(Used <= Total &&((Used <= Total && "number of used records cannot exceed the total number of records"
) ? static_cast<void> (0) : __assert_fail ("Used <= Total && \"number of used records cannot exceed the total number of records\""
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Transforms/IPO/SampleProfile.cpp"
, 596, __PRETTY_FUNCTION__))
596 "number of used records cannot exceed the total number of records")((Used <= Total && "number of used records cannot exceed the total number of records"
) ? static_cast<void> (0) : __assert_fail ("Used <= Total && \"number of used records cannot exceed the total number of records\""
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Transforms/IPO/SampleProfile.cpp"
, 596, __PRETTY_FUNCTION__))
;
597 return Total > 0 ? Used * 100 / Total : 100;
598}
599
600/// Clear all the per-function data used to load samples and propagate weights.
601void SampleProfileLoader::clearFunctionData() {
602 BlockWeights.clear();
603 EdgeWeights.clear();
604 VisitedBlocks.clear();
605 VisitedEdges.clear();
606 EquivalenceClass.clear();
607 DT = nullptr;
608 PDT = nullptr;
609 LI = nullptr;
610 Predecessors.clear();
611 Successors.clear();
612 CoverageTracker.clear();
613}
614
615#ifndef NDEBUG
616/// Print the weight of edge \p E on stream \p OS.
617///
618/// \param OS Stream to emit the output to.
619/// \param E Edge to print.
620void SampleProfileLoader::printEdgeWeight(raw_ostream &OS, Edge E) {
621 OS << "weight[" << E.first->getName() << "->" << E.second->getName()
622 << "]: " << EdgeWeights[E] << "\n";
623}
624
625/// Print the equivalence class of block \p BB on stream \p OS.
626///
627/// \param OS Stream to emit the output to.
628/// \param BB Block to print.
629void SampleProfileLoader::printBlockEquivalence(raw_ostream &OS,
630 const BasicBlock *BB) {
631 const BasicBlock *Equiv = EquivalenceClass[BB];
632 OS << "equivalence[" << BB->getName()
633 << "]: " << ((Equiv) ? EquivalenceClass[BB]->getName() : "NONE") << "\n";
634}
635
636/// Print the weight of block \p BB on stream \p OS.
637///
638/// \param OS Stream to emit the output to.
639/// \param BB Block to print.
640void SampleProfileLoader::printBlockWeight(raw_ostream &OS,
641 const BasicBlock *BB) const {
642 const auto &I = BlockWeights.find(BB);
643 uint64_t W = (I == BlockWeights.end() ? 0 : I->second);
644 OS << "weight[" << BB->getName() << "]: " << W << "\n";
645}
646#endif
647
648/// Get the weight for an instruction.
649///
650/// The "weight" of an instruction \p Inst is the number of samples
651/// collected on that instruction at runtime. To retrieve it, we
652/// need to compute the line number of \p Inst relative to the start of its
653/// function. We use HeaderLineno to compute the offset. We then
654/// look up the samples collected for \p Inst using BodySamples.
655///
656/// \param Inst Instruction to query.
657///
658/// \returns the weight of \p Inst.
659ErrorOr<uint64_t> SampleProfileLoader::getInstWeight(const Instruction &Inst) {
660 const DebugLoc &DLoc = Inst.getDebugLoc();
661 if (!DLoc)
662 return std::error_code();
663
664 const FunctionSamples *FS = findFunctionSamples(Inst);
665 if (!FS)
666 return std::error_code();
667
668 // Ignore all intrinsics, phinodes and branch instructions.
669 // Branch and phinodes instruction usually contains debug info from sources outside of
670 // the residing basic block, thus we ignore them during annotation.
671 if (isa<BranchInst>(Inst) || isa<IntrinsicInst>(Inst) || isa<PHINode>(Inst))
672 return std::error_code();
673
674 // If a direct call/invoke instruction is inlined in profile
675 // (findCalleeFunctionSamples returns non-empty result), but not inlined here,
676 // it means that the inlined callsite has no sample, thus the call
677 // instruction should have 0 count.
678 if ((isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) &&
679 !ImmutableCallSite(&Inst).isIndirectCall() &&
680 findCalleeFunctionSamples(Inst))
681 return 0;
682
683 const DILocation *DIL = DLoc;
684 uint32_t LineOffset = FunctionSamples::getOffset(DIL);
685 uint32_t Discriminator = DIL->getBaseDiscriminator();
686 ErrorOr<uint64_t> R = FS->findSamplesAt(LineOffset, Discriminator);
687 if (R) {
688 bool FirstMark =
689 CoverageTracker.markSamplesUsed(FS, LineOffset, Discriminator, R.get());
690 if (FirstMark) {
691 ORE->emit([&]() {
692 OptimizationRemarkAnalysis Remark(DEBUG_TYPE"sample-profile", "AppliedSamples", &Inst);
693 Remark << "Applied " << ore::NV("NumSamples", *R);
694 Remark << " samples from profile (offset: ";
695 Remark << ore::NV("LineOffset", LineOffset);
696 if (Discriminator) {
697 Remark << ".";
698 Remark << ore::NV("Discriminator", Discriminator);
699 }
700 Remark << ")";
701 return Remark;
702 });
703 }
704 LLVM_DEBUG(dbgs() << " " << DLoc.getLine() << "."do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("sample-profile")) { dbgs() << " " << DLoc.getLine
() << "." << DIL->getBaseDiscriminator() <<
":" << Inst << " (line offset: " << LineOffset
<< "." << DIL->getBaseDiscriminator() <<
" - weight: " << R.get() << ")\n"; } } while (false
)
705 << DIL->getBaseDiscriminator() << ":" << Instdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("sample-profile")) { dbgs() << " " << DLoc.getLine
() << "." << DIL->getBaseDiscriminator() <<
":" << Inst << " (line offset: " << LineOffset
<< "." << DIL->getBaseDiscriminator() <<
" - weight: " << R.get() << ")\n"; } } while (false
)
706 << " (line offset: " << LineOffset << "."do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("sample-profile")) { dbgs() << " " << DLoc.getLine
() << "." << DIL->getBaseDiscriminator() <<
":" << Inst << " (line offset: " << LineOffset
<< "." << DIL->getBaseDiscriminator() <<
" - weight: " << R.get() << ")\n"; } } while (false
)
707 << DIL->getBaseDiscriminator() << " - weight: " << R.get()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("sample-profile")) { dbgs() << " " << DLoc.getLine
() << "." << DIL->getBaseDiscriminator() <<
":" << Inst << " (line offset: " << LineOffset
<< "." << DIL->getBaseDiscriminator() <<
" - weight: " << R.get() << ")\n"; } } while (false
)
708 << ")\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("sample-profile")) { dbgs() << " " << DLoc.getLine
() << "." << DIL->getBaseDiscriminator() <<
":" << Inst << " (line offset: " << LineOffset
<< "." << DIL->getBaseDiscriminator() <<
" - weight: " << R.get() << ")\n"; } } while (false
)
;
709 }
710 return R;
711}
712
713/// Compute the weight of a basic block.
714///
715/// The weight of basic block \p BB is the maximum weight of all the
716/// instructions in BB.
717///
718/// \param BB The basic block to query.
719///
720/// \returns the weight for \p BB.
721ErrorOr<uint64_t> SampleProfileLoader::getBlockWeight(const BasicBlock *BB) {
722 uint64_t Max = 0;
723 bool HasWeight = false;
724 for (auto &I : BB->getInstList()) {
725 const ErrorOr<uint64_t> &R = getInstWeight(I);
726 if (R) {
727 Max = std::max(Max, R.get());
728 HasWeight = true;
729 }
730 }
731 return HasWeight ? ErrorOr<uint64_t>(Max) : std::error_code();
732}
733
734/// Compute and store the weights of every basic block.
735///
736/// This populates the BlockWeights map by computing
737/// the weights of every basic block in the CFG.
738///
739/// \param F The function to query.
740bool SampleProfileLoader::computeBlockWeights(Function &F) {
741 bool Changed = false;
742 LLVM_DEBUG(dbgs() << "Block weights\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("sample-profile")) { dbgs() << "Block weights\n"; } } while
(false)
;
743 for (const auto &BB : F) {
744 ErrorOr<uint64_t> Weight = getBlockWeight(&BB);
745 if (Weight) {
746 BlockWeights[&BB] = Weight.get();
747 VisitedBlocks.insert(&BB);
748 Changed = true;
749 }
750 LLVM_DEBUG(printBlockWeight(dbgs(), &BB))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("sample-profile")) { printBlockWeight(dbgs(), &BB); } } while
(false)
;
751 }
752
753 return Changed;
754}
755
756/// Get the FunctionSamples for a call instruction.
757///
758/// The FunctionSamples of a call/invoke instruction \p Inst is the inlined
759/// instance in which that call instruction is calling to. It contains
760/// all samples that resides in the inlined instance. We first find the
761/// inlined instance in which the call instruction is from, then we
762/// traverse its children to find the callsite with the matching
763/// location.
764///
765/// \param Inst Call/Invoke instruction to query.
766///
767/// \returns The FunctionSamples pointer to the inlined instance.
768const FunctionSamples *
769SampleProfileLoader::findCalleeFunctionSamples(const Instruction &Inst) const {
770 const DILocation *DIL = Inst.getDebugLoc();
771 if (!DIL) {
772 return nullptr;
773 }
774
775 StringRef CalleeName;
776 if (const CallInst *CI = dyn_cast<CallInst>(&Inst))
777 if (Function *Callee = CI->getCalledFunction())
778 CalleeName = Callee->getName();
779
780 const FunctionSamples *FS = findFunctionSamples(Inst);
781 if (FS == nullptr)
782 return nullptr;
783
784 return FS->findFunctionSamplesAt(LineLocation(FunctionSamples::getOffset(DIL),
785 DIL->getBaseDiscriminator()),
786 CalleeName);
787}
788
789/// Returns a vector of FunctionSamples that are the indirect call targets
790/// of \p Inst. The vector is sorted by the total number of samples. Stores
791/// the total call count of the indirect call in \p Sum.
792std::vector<const FunctionSamples *>
793SampleProfileLoader::findIndirectCallFunctionSamples(
794 const Instruction &Inst, uint64_t &Sum) const {
795 const DILocation *DIL = Inst.getDebugLoc();
796 std::vector<const FunctionSamples *> R;
797
798 if (!DIL) {
799 return R;
800 }
801
802 const FunctionSamples *FS = findFunctionSamples(Inst);
803 if (FS == nullptr)
804 return R;
805
806 uint32_t LineOffset = FunctionSamples::getOffset(DIL);
807 uint32_t Discriminator = DIL->getBaseDiscriminator();
808
809 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
810 Sum = 0;
811 if (T)
812 for (const auto &T_C : T.get())
813 Sum += T_C.second;
814 if (const FunctionSamplesMap *M = FS->findFunctionSamplesMapAt(LineLocation(
815 FunctionSamples::getOffset(DIL), DIL->getBaseDiscriminator()))) {
816 if (M->empty())
817 return R;
818 for (const auto &NameFS : *M) {
819 Sum += NameFS.second.getEntrySamples();
820 R.push_back(&NameFS.second);
821 }
822 llvm::sort(R, [](const FunctionSamples *L, const FunctionSamples *R) {
823 if (L->getEntrySamples() != R->getEntrySamples())
824 return L->getEntrySamples() > R->getEntrySamples();
825 return FunctionSamples::getGUID(L->getName()) <
826 FunctionSamples::getGUID(R->getName());
827 });
828 }
829 return R;
830}
831
832/// Get the FunctionSamples for an instruction.
833///
834/// The FunctionSamples of an instruction \p Inst is the inlined instance
835/// in which that instruction is coming from. We traverse the inline stack
836/// of that instruction, and match it with the tree nodes in the profile.
837///
838/// \param Inst Instruction to query.
839///
840/// \returns the FunctionSamples pointer to the inlined instance.
841const FunctionSamples *
842SampleProfileLoader::findFunctionSamples(const Instruction &Inst) const {
843 const DILocation *DIL = Inst.getDebugLoc();
844 if (!DIL)
845 return Samples;
846
847 auto it = DILocation2SampleMap.try_emplace(DIL,nullptr);
848 if (it.second)
849 it.first->second = Samples->findFunctionSamples(DIL);
850 return it.first->second;
851}
852
853bool SampleProfileLoader::inlineCallInstruction(Instruction *I) {
854 assert(isa<CallInst>(I) || isa<InvokeInst>(I))((isa<CallInst>(I) || isa<InvokeInst>(I)) ? static_cast
<void> (0) : __assert_fail ("isa<CallInst>(I) || isa<InvokeInst>(I)"
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Transforms/IPO/SampleProfile.cpp"
, 854, __PRETTY_FUNCTION__))
;
855 CallSite CS(I);
856 Function *CalledFunction = CS.getCalledFunction();
857 assert(CalledFunction)((CalledFunction) ? static_cast<void> (0) : __assert_fail
("CalledFunction", "/build/llvm-toolchain-snapshot-10~svn374814/lib/Transforms/IPO/SampleProfile.cpp"
, 857, __PRETTY_FUNCTION__))
;
858 DebugLoc DLoc = I->getDebugLoc();
859 BasicBlock *BB = I->getParent();
860 InlineParams Params = getInlineParams();
861 Params.ComputeFullInlineCost = true;
862 // Checks if there is anything in the reachable portion of the callee at
863 // this callsite that makes this inlining potentially illegal. Need to
864 // set ComputeFullInlineCost, otherwise getInlineCost may return early
865 // when cost exceeds threshold without checking all IRs in the callee.
866 // The acutal cost does not matter because we only checks isNever() to
867 // see if it is legal to inline the callsite.
868 InlineCost Cost =
869 getInlineCost(cast<CallBase>(*I), Params, GetTTI(*CalledFunction), GetAC,
870 None, nullptr, nullptr);
871 if (Cost.isNever()) {
872 ORE->emit(OptimizationRemark(DEBUG_TYPE"sample-profile", "Not inline", DLoc, BB)
873 << "incompatible inlining");
874 return false;
875 }
876 InlineFunctionInfo IFI(nullptr, &GetAC);
877 if (InlineFunction(CS, IFI)) {
878 // The call to InlineFunction erases I, so we can't pass it here.
879 ORE->emit(OptimizationRemark(DEBUG_TYPE"sample-profile", "HotInline", DLoc, BB)
880 << "inlined hot callee '" << ore::NV("Callee", CalledFunction)
881 << "' into '" << ore::NV("Caller", BB->getParent()) << "'");
882 return true;
883 }
884 return false;
885}
886
887/// Iteratively inline hot callsites of a function.
888///
889/// Iteratively traverse all callsites of the function \p F, and find if
890/// the corresponding inlined instance exists and is hot in profile. If
891/// it is hot enough, inline the callsites and adds new callsites of the
892/// callee into the caller. If the call is an indirect call, first promote
893/// it to direct call. Each indirect call is limited with a single target.
894///
895/// \param F function to perform iterative inlining.
896/// \param InlinedGUIDs a set to be updated to include all GUIDs that are
897/// inlined in the profiled binary.
898///
899/// \returns True if there is any inline happened.
900bool SampleProfileLoader::inlineHotFunctions(
901 Function &F, DenseSet<GlobalValue::GUID> &InlinedGUIDs) {
902 DenseSet<Instruction *> PromotedInsns;
903
904 // ProfAccForSymsInList is used in callsiteIsHot. The assertion makes sure
905 // Profile symbol list is ignored when profile-sample-accurate is on.
906 assert((!ProfAccForSymsInList ||(((!ProfAccForSymsInList || (!ProfileSampleAccurate &&
!F.hasFnAttribute("profile-sample-accurate"))) && "ProfAccForSymsInList should be false when profile-sample-accurate "
"is enabled") ? static_cast<void> (0) : __assert_fail (
"(!ProfAccForSymsInList || (!ProfileSampleAccurate && !F.hasFnAttribute(\"profile-sample-accurate\"))) && \"ProfAccForSymsInList should be false when profile-sample-accurate \" \"is enabled\""
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Transforms/IPO/SampleProfile.cpp"
, 910, __PRETTY_FUNCTION__))
907 (!ProfileSampleAccurate &&(((!ProfAccForSymsInList || (!ProfileSampleAccurate &&
!F.hasFnAttribute("profile-sample-accurate"))) && "ProfAccForSymsInList should be false when profile-sample-accurate "
"is enabled") ? static_cast<void> (0) : __assert_fail (
"(!ProfAccForSymsInList || (!ProfileSampleAccurate && !F.hasFnAttribute(\"profile-sample-accurate\"))) && \"ProfAccForSymsInList should be false when profile-sample-accurate \" \"is enabled\""
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Transforms/IPO/SampleProfile.cpp"
, 910, __PRETTY_FUNCTION__))
908 !F.hasFnAttribute("profile-sample-accurate"))) &&(((!ProfAccForSymsInList || (!ProfileSampleAccurate &&
!F.hasFnAttribute("profile-sample-accurate"))) && "ProfAccForSymsInList should be false when profile-sample-accurate "
"is enabled") ? static_cast<void> (0) : __assert_fail (
"(!ProfAccForSymsInList || (!ProfileSampleAccurate && !F.hasFnAttribute(\"profile-sample-accurate\"))) && \"ProfAccForSymsInList should be false when profile-sample-accurate \" \"is enabled\""
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Transforms/IPO/SampleProfile.cpp"
, 910, __PRETTY_FUNCTION__))
909 "ProfAccForSymsInList should be false when profile-sample-accurate "(((!ProfAccForSymsInList || (!ProfileSampleAccurate &&
!F.hasFnAttribute("profile-sample-accurate"))) && "ProfAccForSymsInList should be false when profile-sample-accurate "
"is enabled") ? static_cast<void> (0) : __assert_fail (
"(!ProfAccForSymsInList || (!ProfileSampleAccurate && !F.hasFnAttribute(\"profile-sample-accurate\"))) && \"ProfAccForSymsInList should be false when profile-sample-accurate \" \"is enabled\""
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Transforms/IPO/SampleProfile.cpp"
, 910, __PRETTY_FUNCTION__))
910 "is enabled")(((!ProfAccForSymsInList || (!ProfileSampleAccurate &&
!F.hasFnAttribute("profile-sample-accurate"))) && "ProfAccForSymsInList should be false when profile-sample-accurate "
"is enabled") ? static_cast<void> (0) : __assert_fail (
"(!ProfAccForSymsInList || (!ProfileSampleAccurate && !F.hasFnAttribute(\"profile-sample-accurate\"))) && \"ProfAccForSymsInList should be false when profile-sample-accurate \" \"is enabled\""
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Transforms/IPO/SampleProfile.cpp"
, 910, __PRETTY_FUNCTION__))
;
911
912 DenseMap<Instruction *, const FunctionSamples *> localNotInlinedCallSites;
913 bool Changed = false;
914 while (true) {
915 bool LocalChanged = false;
916 SmallVector<Instruction *, 10> CIS;
917 for (auto &BB : F) {
918 bool Hot = false;
919 SmallVector<Instruction *, 10> Candidates;
920 for (auto &I : BB.getInstList()) {
921 const FunctionSamples *FS = nullptr;
922 if ((isa<CallInst>(I) || isa<InvokeInst>(I)) &&
923 !isa<IntrinsicInst>(I) && (FS = findCalleeFunctionSamples(I))) {
924 Candidates.push_back(&I);
925 if (FS->getEntrySamples() > 0)
926 localNotInlinedCallSites.try_emplace(&I, FS);
927 if (callsiteIsHot(FS, PSI))
928 Hot = true;
929 }
930 }
931 if (Hot) {
932 CIS.insert(CIS.begin(), Candidates.begin(), Candidates.end());
933 }
934 }
935 for (auto I : CIS) {
936 Function *CalledFunction = CallSite(I).getCalledFunction();
937 // Do not inline recursive calls.
938 if (CalledFunction == &F)
939 continue;
940 if (CallSite(I).isIndirectCall()) {
941 if (PromotedInsns.count(I))
942 continue;
943 uint64_t Sum;
944 for (const auto *FS : findIndirectCallFunctionSamples(*I, Sum)) {
945 if (IsThinLTOPreLink) {
946 FS->findInlinedFunctions(InlinedGUIDs, F.getParent(),
947 PSI->getOrCompHotCountThreshold());
948 continue;
949 }
950 auto CalleeFunctionName = FS->getFuncNameInModule(F.getParent());
951 // If it is a recursive call, we do not inline it as it could bloat
952 // the code exponentially. There is way to better handle this, e.g.
953 // clone the caller first, and inline the cloned caller if it is
954 // recursive. As llvm does not inline recursive calls, we will
955 // simply ignore it instead of handling it explicitly.
956 if (CalleeFunctionName == F.getName())
957 continue;
958
959 if (!callsiteIsHot(FS, PSI))
960 continue;
961
962 const char *Reason = "Callee function not available";
963 auto R = SymbolMap.find(CalleeFunctionName);
964 if (R != SymbolMap.end() && R->getValue() &&
965 !R->getValue()->isDeclaration() &&
966 R->getValue()->getSubprogram() &&
967 isLegalToPromote(CallSite(I), R->getValue(), &Reason)) {
968 uint64_t C = FS->getEntrySamples();
969 Instruction *DI =
970 pgo::promoteIndirectCall(I, R->getValue(), C, Sum, false, ORE);
971 Sum -= C;
972 PromotedInsns.insert(I);
973 // If profile mismatches, we should not attempt to inline DI.
974 if ((isa<CallInst>(DI) || isa<InvokeInst>(DI)) &&
975 inlineCallInstruction(DI)) {
976 localNotInlinedCallSites.erase(I);
977 LocalChanged = true;
978 }
979 } else {
980 LLVM_DEBUG(dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("sample-profile")) { dbgs() << "\nFailed to promote indirect call to "
<< CalleeFunctionName << " because " << Reason
<< "\n"; } } while (false)
981 << "\nFailed to promote indirect call to "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("sample-profile")) { dbgs() << "\nFailed to promote indirect call to "
<< CalleeFunctionName << " because " << Reason
<< "\n"; } } while (false)
982 << CalleeFunctionName << " because " << Reason << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("sample-profile")) { dbgs() << "\nFailed to promote indirect call to "
<< CalleeFunctionName << " because " << Reason
<< "\n"; } } while (false)
;
983 }
984 }
985 } else if (CalledFunction && CalledFunction->getSubprogram() &&
986 !CalledFunction->isDeclaration()) {
987 if (inlineCallInstruction(I)) {
988 localNotInlinedCallSites.erase(I);
989 LocalChanged = true;
990 }
991 } else if (IsThinLTOPreLink) {
992 findCalleeFunctionSamples(*I)->findInlinedFunctions(
993 InlinedGUIDs, F.getParent(), PSI->getOrCompHotCountThreshold());
994 }
995 }
996 if (LocalChanged) {
997 Changed = true;
998 } else {
999 break;
1000 }
1001 }
1002
1003 // Accumulate not inlined callsite information into notInlinedSamples
1004 for (const auto &Pair : localNotInlinedCallSites) {
1005 Instruction *I = Pair.getFirst();
1006 Function *Callee = CallSite(I).getCalledFunction();
1007 if (!Callee || Callee->isDeclaration())
1008 continue;
1009 const FunctionSamples *FS = Pair.getSecond();
1010 auto pair =
1011 notInlinedCallInfo.try_emplace(Callee, NotInlinedProfileInfo{0});
1012 pair.first->second.entryCount += FS->getEntrySamples();
1013 }
1014 return Changed;
1015}
1016
1017/// Find equivalence classes for the given block.
1018///
1019/// This finds all the blocks that are guaranteed to execute the same
1020/// number of times as \p BB1. To do this, it traverses all the
1021/// descendants of \p BB1 in the dominator or post-dominator tree.
1022///
1023/// A block BB2 will be in the same equivalence class as \p BB1 if
1024/// the following holds:
1025///
1026/// 1- \p BB1 is a descendant of BB2 in the opposite tree. So, if BB2
1027/// is a descendant of \p BB1 in the dominator tree, then BB2 should
1028/// dominate BB1 in the post-dominator tree.
1029///
1030/// 2- Both BB2 and \p BB1 must be in the same loop.
1031///
1032/// For every block BB2 that meets those two requirements, we set BB2's
1033/// equivalence class to \p BB1.
1034///
1035/// \param BB1 Block to check.
1036/// \param Descendants Descendants of \p BB1 in either the dom or pdom tree.
1037/// \param DomTree Opposite dominator tree. If \p Descendants is filled
1038/// with blocks from \p BB1's dominator tree, then
1039/// this is the post-dominator tree, and vice versa.
1040template <bool IsPostDom>
1041void SampleProfileLoader::findEquivalencesFor(
1042 BasicBlock *BB1, ArrayRef<BasicBlock *> Descendants,
1043 DominatorTreeBase<BasicBlock, IsPostDom> *DomTree) {
1044 const BasicBlock *EC = EquivalenceClass[BB1];
1045 uint64_t Weight = BlockWeights[EC];
1046 for (const auto *BB2 : Descendants) {
1047 bool IsDomParent = DomTree->dominates(BB2, BB1);
1048 bool IsInSameLoop = LI->getLoopFor(BB1) == LI->getLoopFor(BB2);
1049 if (BB1 != BB2 && IsDomParent && IsInSameLoop) {
1050 EquivalenceClass[BB2] = EC;
1051 // If BB2 is visited, then the entire EC should be marked as visited.
1052 if (VisitedBlocks.count(BB2)) {
1053 VisitedBlocks.insert(EC);
1054 }
1055
1056 // If BB2 is heavier than BB1, make BB2 have the same weight
1057 // as BB1.
1058 //
1059 // Note that we don't worry about the opposite situation here
1060 // (when BB2 is lighter than BB1). We will deal with this
1061 // during the propagation phase. Right now, we just want to
1062 // make sure that BB1 has the largest weight of all the
1063 // members of its equivalence set.
1064 Weight = std::max(Weight, BlockWeights[BB2]);
1065 }
1066 }
1067 if (EC == &EC->getParent()->getEntryBlock()) {
1068 BlockWeights[EC] = Samples->getHeadSamples() + 1;
1069 } else {
1070 BlockWeights[EC] = Weight;
1071 }
1072}
1073
1074/// Find equivalence classes.
1075///
1076/// Since samples may be missing from blocks, we can fill in the gaps by setting
1077/// the weights of all the blocks in the same equivalence class to the same
1078/// weight. To compute the concept of equivalence, we use dominance and loop
1079/// information. Two blocks B1 and B2 are in the same equivalence class if B1
1080/// dominates B2, B2 post-dominates B1 and both are in the same loop.
1081///
1082/// \param F The function to query.
1083void SampleProfileLoader::findEquivalenceClasses(Function &F) {
1084 SmallVector<BasicBlock *, 8> DominatedBBs;
1085 LLVM_DEBUG(dbgs() << "\nBlock equivalence classes\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("sample-profile")) { dbgs() << "\nBlock equivalence classes\n"
; } } while (false)
;
1086 // Find equivalence sets based on dominance and post-dominance information.
1087 for (auto &BB : F) {
1088 BasicBlock *BB1 = &BB;
1089
1090 // Compute BB1's equivalence class once.
1091 if (EquivalenceClass.count(BB1)) {
1092 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("sample-profile")) { printBlockEquivalence(dbgs(), BB1); } }
while (false)
;
1093 continue;
1094 }
1095
1096 // By default, blocks are in their own equivalence class.
1097 EquivalenceClass[BB1] = BB1;
1098
1099 // Traverse all the blocks dominated by BB1. We are looking for
1100 // every basic block BB2 such that:
1101 //
1102 // 1- BB1 dominates BB2.
1103 // 2- BB2 post-dominates BB1.
1104 // 3- BB1 and BB2 are in the same loop nest.
1105 //
1106 // If all those conditions hold, it means that BB2 is executed
1107 // as many times as BB1, so they are placed in the same equivalence
1108 // class by making BB2's equivalence class be BB1.
1109 DominatedBBs.clear();
1110 DT->getDescendants(BB1, DominatedBBs);
1111 findEquivalencesFor(BB1, DominatedBBs, PDT.get());
1112
1113 LLVM_DEBUG(printBlockEquivalence(dbgs(), BB1))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("sample-profile")) { printBlockEquivalence(dbgs(), BB1); } }
while (false)
;
1114 }
1115
1116 // Assign weights to equivalence classes.
1117 //
1118 // All the basic blocks in the same equivalence class will execute
1119 // the same number of times. Since we know that the head block in
1120 // each equivalence class has the largest weight, assign that weight
1121 // to all the blocks in that equivalence class.
1122 LLVM_DEBUG(do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("sample-profile")) { dbgs() << "\nAssign the same weight to all blocks in the same class\n"
; } } while (false)
1123 dbgs() << "\nAssign the same weight to all blocks in the same class\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("sample-profile")) { dbgs() << "\nAssign the same weight to all blocks in the same class\n"
; } } while (false)
;
1124 for (auto &BI : F) {
1125 const BasicBlock *BB = &BI;
1126 const BasicBlock *EquivBB = EquivalenceClass[BB];
1127 if (BB != EquivBB)
1128 BlockWeights[BB] = BlockWeights[EquivBB];
1129 LLVM_DEBUG(printBlockWeight(dbgs(), BB))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("sample-profile")) { printBlockWeight(dbgs(), BB); } } while
(false)
;
1130 }
1131}
1132
1133/// Visit the given edge to decide if it has a valid weight.
1134///
1135/// If \p E has not been visited before, we copy to \p UnknownEdge
1136/// and increment the count of unknown edges.
1137///
1138/// \param E Edge to visit.
1139/// \param NumUnknownEdges Current number of unknown edges.
1140/// \param UnknownEdge Set if E has not been visited before.
1141///
1142/// \returns E's weight, if known. Otherwise, return 0.
1143uint64_t SampleProfileLoader::visitEdge(Edge E, unsigned *NumUnknownEdges,
1144 Edge *UnknownEdge) {
1145 if (!VisitedEdges.count(E)) {
1146 (*NumUnknownEdges)++;
1147 *UnknownEdge = E;
1148 return 0;
1149 }
1150
1151 return EdgeWeights[E];
1152}
1153
1154/// Propagate weights through incoming/outgoing edges.
1155///
1156/// If the weight of a basic block is known, and there is only one edge
1157/// with an unknown weight, we can calculate the weight of that edge.
1158///
1159/// Similarly, if all the edges have a known count, we can calculate the
1160/// count of the basic block, if needed.
1161///
1162/// \param F Function to process.
1163/// \param UpdateBlockCount Whether we should update basic block counts that
1164/// has already been annotated.
1165///
1166/// \returns True if new weights were assigned to edges or blocks.
1167bool SampleProfileLoader::propagateThroughEdges(Function &F,
1168 bool UpdateBlockCount) {
1169 bool Changed = false;
1170 LLVM_DEBUG(dbgs() << "\nPropagation through edges\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("sample-profile")) { dbgs() << "\nPropagation through edges\n"
; } } while (false)
;
1171 for (const auto &BI : F) {
1172 const BasicBlock *BB = &BI;
1173 const BasicBlock *EC = EquivalenceClass[BB];
1174
1175 // Visit all the predecessor and successor edges to determine
1176 // which ones have a weight assigned already. Note that it doesn't
1177 // matter that we only keep track of a single unknown edge. The
1178 // only case we are interested in handling is when only a single
1179 // edge is unknown (see setEdgeOrBlockWeight).
1180 for (unsigned i = 0; i < 2; i++) {
1181 uint64_t TotalWeight = 0;
1182 unsigned NumUnknownEdges = 0, NumTotalEdges = 0;
1183 Edge UnknownEdge, SelfReferentialEdge, SingleEdge;
1184
1185 if (i == 0) {
1186 // First, visit all predecessor edges.
1187 NumTotalEdges = Predecessors[BB].size();
1188 for (auto *Pred : Predecessors[BB]) {
1189 Edge E = std::make_pair(Pred, BB);
1190 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1191 if (E.first == E.second)
1192 SelfReferentialEdge = E;
1193 }
1194 if (NumTotalEdges == 1) {
1195 SingleEdge = std::make_pair(Predecessors[BB][0], BB);
1196 }
1197 } else {
1198 // On the second round, visit all successor edges.
1199 NumTotalEdges = Successors[BB].size();
1200 for (auto *Succ : Successors[BB]) {
1201 Edge E = std::make_pair(BB, Succ);
1202 TotalWeight += visitEdge(E, &NumUnknownEdges, &UnknownEdge);
1203 }
1204 if (NumTotalEdges == 1) {
1205 SingleEdge = std::make_pair(BB, Successors[BB][0]);
1206 }
1207 }
1208
1209 // After visiting all the edges, there are three cases that we
1210 // can handle immediately:
1211 //
1212 // - All the edge weights are known (i.e., NumUnknownEdges == 0).
1213 // In this case, we simply check that the sum of all the edges
1214 // is the same as BB's weight. If not, we change BB's weight
1215 // to match. Additionally, if BB had not been visited before,
1216 // we mark it visited.
1217 //
1218 // - Only one edge is unknown and BB has already been visited.
1219 // In this case, we can compute the weight of the edge by
1220 // subtracting the total block weight from all the known
1221 // edge weights. If the edges weight more than BB, then the
1222 // edge of the last remaining edge is set to zero.
1223 //
1224 // - There exists a self-referential edge and the weight of BB is
1225 // known. In this case, this edge can be based on BB's weight.
1226 // We add up all the other known edges and set the weight on
1227 // the self-referential edge as we did in the previous case.
1228 //
1229 // In any other case, we must continue iterating. Eventually,
1230 // all edges will get a weight, or iteration will stop when
1231 // it reaches SampleProfileMaxPropagateIterations.
1232 if (NumUnknownEdges <= 1) {
1233 uint64_t &BBWeight = BlockWeights[EC];
1234 if (NumUnknownEdges == 0) {
1235 if (!VisitedBlocks.count(EC)) {
1236 // If we already know the weight of all edges, the weight of the
1237 // basic block can be computed. It should be no larger than the sum
1238 // of all edge weights.
1239 if (TotalWeight > BBWeight) {
1240 BBWeight = TotalWeight;
1241 Changed = true;
1242 LLVM_DEBUG(dbgs() << "All edge weights for " << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("sample-profile")) { dbgs() << "All edge weights for "
<< BB->getName() << " known. Set weight for block: "
; printBlockWeight(dbgs(), BB);; } } while (false)
1243 << " known. Set weight for block: ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("sample-profile")) { dbgs() << "All edge weights for "
<< BB->getName() << " known. Set weight for block: "
; printBlockWeight(dbgs(), BB);; } } while (false)
1244 printBlockWeight(dbgs(), BB);)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("sample-profile")) { dbgs() << "All edge weights for "
<< BB->getName() << " known. Set weight for block: "
; printBlockWeight(dbgs(), BB);; } } while (false)
;
1245 }
1246 } else if (NumTotalEdges == 1 &&
1247 EdgeWeights[SingleEdge] < BlockWeights[EC]) {
1248 // If there is only one edge for the visited basic block, use the
1249 // block weight to adjust edge weight if edge weight is smaller.
1250 EdgeWeights[SingleEdge] = BlockWeights[EC];
1251 Changed = true;
1252 }
1253 } else if (NumUnknownEdges == 1 && VisitedBlocks.count(EC)) {
1254 // If there is a single unknown edge and the block has been
1255 // visited, then we can compute E's weight.
1256 if (BBWeight >= TotalWeight)
1257 EdgeWeights[UnknownEdge] = BBWeight - TotalWeight;
1258 else
1259 EdgeWeights[UnknownEdge] = 0;
1260 const BasicBlock *OtherEC;
1261 if (i == 0)
1262 OtherEC = EquivalenceClass[UnknownEdge.first];
1263 else
1264 OtherEC = EquivalenceClass[UnknownEdge.second];
1265 // Edge weights should never exceed the BB weights it connects.
1266 if (VisitedBlocks.count(OtherEC) &&
1267 EdgeWeights[UnknownEdge] > BlockWeights[OtherEC])
1268 EdgeWeights[UnknownEdge] = BlockWeights[OtherEC];
1269 VisitedEdges.insert(UnknownEdge);
1270 Changed = true;
1271 LLVM_DEBUG(dbgs() << "Set weight for edge: ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("sample-profile")) { dbgs() << "Set weight for edge: "
; printEdgeWeight(dbgs(), UnknownEdge); } } while (false)
1272 printEdgeWeight(dbgs(), UnknownEdge))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("sample-profile")) { dbgs() << "Set weight for edge: "
; printEdgeWeight(dbgs(), UnknownEdge); } } while (false)
;
1273 }
1274 } else if (VisitedBlocks.count(EC) && BlockWeights[EC] == 0) {
1275 // If a block Weights 0, all its in/out edges should weight 0.
1276 if (i == 0) {
1277 for (auto *Pred : Predecessors[BB]) {
1278 Edge E = std::make_pair(Pred, BB);
1279 EdgeWeights[E] = 0;
1280 VisitedEdges.insert(E);
1281 }
1282 } else {
1283 for (auto *Succ : Successors[BB]) {
1284 Edge E = std::make_pair(BB, Succ);
1285 EdgeWeights[E] = 0;
1286 VisitedEdges.insert(E);
1287 }
1288 }
1289 } else if (SelfReferentialEdge.first && VisitedBlocks.count(EC)) {
1290 uint64_t &BBWeight = BlockWeights[BB];
1291 // We have a self-referential edge and the weight of BB is known.
1292 if (BBWeight >= TotalWeight)
1293 EdgeWeights[SelfReferentialEdge] = BBWeight - TotalWeight;
1294 else
1295 EdgeWeights[SelfReferentialEdge] = 0;
1296 VisitedEdges.insert(SelfReferentialEdge);
1297 Changed = true;
1298 LLVM_DEBUG(dbgs() << "Set self-referential edge weight to: ";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("sample-profile")) { dbgs() << "Set self-referential edge weight to: "
; printEdgeWeight(dbgs(), SelfReferentialEdge); } } while (false
)
1299 printEdgeWeight(dbgs(), SelfReferentialEdge))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("sample-profile")) { dbgs() << "Set self-referential edge weight to: "
; printEdgeWeight(dbgs(), SelfReferentialEdge); } } while (false
)
;
1300 }
1301 if (UpdateBlockCount && !VisitedBlocks.count(EC) && TotalWeight > 0) {
1302 BlockWeights[EC] = TotalWeight;
1303 VisitedBlocks.insert(EC);
1304 Changed = true;
1305 }
1306 }
1307 }
1308
1309 return Changed;
1310}
1311
1312/// Build in/out edge lists for each basic block in the CFG.
1313///
1314/// We are interested in unique edges. If a block B1 has multiple
1315/// edges to another block B2, we only add a single B1->B2 edge.
1316void SampleProfileLoader::buildEdges(Function &F) {
1317 for (auto &BI : F) {
1318 BasicBlock *B1 = &BI;
1319
1320 // Add predecessors for B1.
1321 SmallPtrSet<BasicBlock *, 16> Visited;
1322 if (!Predecessors[B1].empty())
1323 llvm_unreachable("Found a stale predecessors list in a basic block.")::llvm::llvm_unreachable_internal("Found a stale predecessors list in a basic block."
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Transforms/IPO/SampleProfile.cpp"
, 1323)
;
1324 for (pred_iterator PI = pred_begin(B1), PE = pred_end(B1); PI != PE; ++PI) {
1325 BasicBlock *B2 = *PI;
1326 if (Visited.insert(B2).second)
1327 Predecessors[B1].push_back(B2);
1328 }
1329
1330 // Add successors for B1.
1331 Visited.clear();
1332 if (!Successors[B1].empty())
1333 llvm_unreachable("Found a stale successors list in a basic block.")::llvm::llvm_unreachable_internal("Found a stale successors list in a basic block."
, "/build/llvm-toolchain-snapshot-10~svn374814/lib/Transforms/IPO/SampleProfile.cpp"
, 1333)
;
1334 for (succ_iterator SI = succ_begin(B1), SE = succ_end(B1); SI != SE; ++SI) {
1335 BasicBlock *B2 = *SI;
1336 if (Visited.insert(B2).second)
1337 Successors[B1].push_back(B2);
1338 }
1339 }
1340}
1341
1342/// Returns the sorted CallTargetMap \p M by count in descending order.
1343static SmallVector<InstrProfValueData, 2> GetSortedValueDataFromCallTargets(
1344 const SampleRecord::CallTargetMap & M) {
1345 SmallVector<InstrProfValueData, 2> R;
1346 for (const auto &I : SampleRecord::SortCallTargets(M)) {
1347 R.emplace_back(InstrProfValueData{FunctionSamples::getGUID(I.first), I.second});
1348 }
1349 return R;
1350}
1351
1352/// Propagate weights into edges
1353///
1354/// The following rules are applied to every block BB in the CFG:
1355///
1356/// - If BB has a single predecessor/successor, then the weight
1357/// of that edge is the weight of the block.
1358///
1359/// - If all incoming or outgoing edges are known except one, and the
1360/// weight of the block is already known, the weight of the unknown
1361/// edge will be the weight of the block minus the sum of all the known
1362/// edges. If the sum of all the known edges is larger than BB's weight,
1363/// we set the unknown edge weight to zero.
1364///
1365/// - If there is a self-referential edge, and the weight of the block is
1366/// known, the weight for that edge is set to the weight of the block
1367/// minus the weight of the other incoming edges to that block (if
1368/// known).
1369void SampleProfileLoader::propagateWeights(Function &F) {
1370 bool Changed = true;
1371 unsigned I = 0;
1372
1373 // If BB weight is larger than its corresponding loop's header BB weight,
1374 // use the BB weight to replace the loop header BB weight.
1375 for (auto &BI : F) {
1376 BasicBlock *BB = &BI;
1377 Loop *L = LI->getLoopFor(BB);
1378 if (!L) {
1379 continue;
1380 }
1381 BasicBlock *Header = L->getHeader();
1382 if (Header && BlockWeights[BB] > BlockWeights[Header]) {
1383 BlockWeights[Header] = BlockWeights[BB];
1384 }
1385 }
1386
1387 // Before propagation starts, build, for each block, a list of
1388 // unique predecessors and successors. This is necessary to handle
1389 // identical edges in multiway branches. Since we visit all blocks and all
1390 // edges of the CFG, it is cleaner to build these lists once at the start
1391 // of the pass.
1392 buildEdges(F);
1393
1394 // Propagate until we converge or we go past the iteration limit.
1395 while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1396 Changed = propagateThroughEdges(F, false);
1397 }
1398
1399 // The first propagation propagates BB counts from annotated BBs to unknown
1400 // BBs. The 2nd propagation pass resets edges weights, and use all BB weights
1401 // to propagate edge weights.
1402 VisitedEdges.clear();
1403 Changed = true;
1404 while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1405 Changed = propagateThroughEdges(F, false);
1406 }
1407
1408 // The 3rd propagation pass allows adjust annotated BB weights that are
1409 // obviously wrong.
1410 Changed = true;
1411 while (Changed && I++ < SampleProfileMaxPropagateIterations) {
1412 Changed = propagateThroughEdges(F, true);
1413 }
1414
1415 // Generate MD_prof metadata for every branch instruction using the
1416 // edge weights computed during propagation.
1417 LLVM_DEBUG(dbgs() << "\nPropagation complete. Setting branch weights\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("sample-profile")) { dbgs() << "\nPropagation complete. Setting branch weights\n"
; } } while (false)
;
1418 LLVMContext &Ctx = F.getContext();
1419 MDBuilder MDB(Ctx);
1420 for (auto &BI : F) {
1421 BasicBlock *BB = &BI;
1422
1423 if (BlockWeights[BB]) {
1424 for (auto &I : BB->getInstList()) {
1425 if (!isa<CallInst>(I) && !isa<InvokeInst>(I))
1426 continue;
1427 CallSite CS(&I);
1428 if (!CS.getCalledFunction()) {
1429 const DebugLoc &DLoc = I.getDebugLoc();
1430 if (!DLoc)
1431 continue;
1432 const DILocation *DIL = DLoc;
1433 uint32_t LineOffset = FunctionSamples::getOffset(DIL);
1434 uint32_t Discriminator = DIL->getBaseDiscriminator();
1435
1436 const FunctionSamples *FS = findFunctionSamples(I);
1437 if (!FS)
1438 continue;
1439 auto T = FS->findCallTargetMapAt(LineOffset, Discriminator);
1440 if (!T || T.get().empty())
1441 continue;
1442 SmallVector<InstrProfValueData, 2> SortedCallTargets =
1443 GetSortedValueDataFromCallTargets(T.get());
1444 uint64_t Sum;
1445 findIndirectCallFunctionSamples(I, Sum);
1446 annotateValueSite(*I.getParent()->getParent()->getParent(), I,
1447 SortedCallTargets, Sum, IPVK_IndirectCallTarget,
1448 SortedCallTargets.size());
1449 } else if (!isa<IntrinsicInst>(&I)) {
1450 I.setMetadata(LLVMContext::MD_prof,
1451 MDB.createBranchWeights(
1452 {static_cast<uint32_t>(BlockWeights[BB])}));
1453 }
1454 }
1455 }
1456 Instruction *TI = BB->getTerminator();
1457 if (TI->getNumSuccessors() == 1)
1458 continue;
1459 if (!isa<BranchInst>(TI) && !isa<SwitchInst>(TI))
1460 continue;
1461
1462 DebugLoc BranchLoc = TI->getDebugLoc();
1463 LLVM_DEBUG(dbgs() << "\nGetting weights for branch at line "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("sample-profile")) { dbgs() << "\nGetting weights for branch at line "
<< ((BranchLoc) ? Twine(BranchLoc.getLine()) : Twine("<UNKNOWN LOCATION>"
)) << ".\n"; } } while (false)
1464 << ((BranchLoc) ? Twine(BranchLoc.getLine())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("sample-profile")) { dbgs() << "\nGetting weights for branch at line "
<< ((BranchLoc) ? Twine(BranchLoc.getLine()) : Twine("<UNKNOWN LOCATION>"
)) << ".\n"; } } while (false)
1465 : Twine("<UNKNOWN LOCATION>"))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("sample-profile")) { dbgs() << "\nGetting weights for branch at line "
<< ((BranchLoc) ? Twine(BranchLoc.getLine()) : Twine("<UNKNOWN LOCATION>"
)) << ".\n"; } } while (false)
1466 << ".\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("sample-profile")) { dbgs() << "\nGetting weights for branch at line "
<< ((BranchLoc) ? Twine(BranchLoc.getLine()) : Twine("<UNKNOWN LOCATION>"
)) << ".\n"; } } while (false)
;
1467 SmallVector<uint32_t, 4> Weights;
1468 uint32_t MaxWeight = 0;
1469 Instruction *MaxDestInst;
1470 for (unsigned I = 0; I < TI->getNumSuccessors(); ++I) {
1471 BasicBlock *Succ = TI->getSuccessor(I);
1472 Edge E = std::make_pair(BB, Succ);
1473 uint64_t Weight = EdgeWeights[E];
1474 LLVM_DEBUG(dbgs() << "\t"; printEdgeWeight(dbgs(), E))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("sample-profile")) { dbgs() << "\t"; printEdgeWeight(dbgs
(), E); } } while (false)
;
1475 // Use uint32_t saturated arithmetic to adjust the incoming weights,
1476 // if needed. Sample counts in profiles are 64-bit unsigned values,
1477 // but internally branch weights are expressed as 32-bit values.
1478 if (Weight > std::numeric_limits<uint32_t>::max()) {
1479 LLVM_DEBUG(dbgs() << " (saturated due to uint32_t overflow)")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("sample-profile")) { dbgs() << " (saturated due to uint32_t overflow)"
; } } while (false)
;
1480 Weight = std::numeric_limits<uint32_t>::max();
1481 }
1482 // Weight is added by one to avoid propagation errors introduced by
1483 // 0 weights.
1484 Weights.push_back(static_cast<uint32_t>(Weight + 1));
1485 if (Weight != 0) {
1486 if (Weight > MaxWeight) {
1487 MaxWeight = Weight;
1488 MaxDestInst = Succ->getFirstNonPHIOrDbgOrLifetime();
1489 }
1490 }
1491 }
1492
1493 misexpect::verifyMisExpect(TI, Weights, TI->getContext());
1494
1495 uint64_t TempWeight;
1496 // Only set weights if there is at least one non-zero weight.
1497 // In any other case, let the analyzer set weights.
1498 // Do not set weights if the weights are present. In ThinLTO, the profile
1499 // annotation is done twice. If the first annotation already set the
1500 // weights, the second pass does not need to set it.
1501 if (MaxWeight > 0 && !TI->extractProfTotalWeight(TempWeight)) {
1502 LLVM_DEBUG(dbgs() << "SUCCESS. Found non-zero weights.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("sample-profile")) { dbgs() << "SUCCESS. Found non-zero weights.\n"
; } } while (false)
;
1503 TI->setMetadata(LLVMContext::MD_prof,
1504 MDB.createBranchWeights(Weights));
1505 ORE->emit([&]() {
1506 return OptimizationRemark(DEBUG_TYPE"sample-profile", "PopularDest", MaxDestInst)
1507 << "most popular destination for conditional branches at "
1508 << ore::NV("CondBranchesLoc", BranchLoc);
1509 });
1510 } else {
1511 LLVM_DEBUG(dbgs() << "SKIPPED. All branch weights are zero.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("sample-profile")) { dbgs() << "SKIPPED. All branch weights are zero.\n"
; } } while (false)
;
1512 }
1513 }
1514}
1515
1516/// Get the line number for the function header.
1517///
1518/// This looks up function \p F in the current compilation unit and
1519/// retrieves the line number where the function is defined. This is
1520/// line 0 for all the samples read from the profile file. Every line
1521/// number is relative to this line.
1522///
1523/// \param F Function object to query.
1524///
1525/// \returns the line number where \p F is defined. If it returns 0,
1526/// it means that there is no debug information available for \p F.
1527unsigned SampleProfileLoader::getFunctionLoc(Function &F) {
1528 if (DISubprogram *S = F.getSubprogram())
1529 return S->getLine();
1530
1531 if (NoWarnSampleUnused)
1532 return 0;
1533
1534 // If the start of \p F is missing, emit a diagnostic to inform the user
1535 // about the missed opportunity.
1536 F.getContext().diagnose(DiagnosticInfoSampleProfile(
1537 "No debug information found in function " + F.getName() +
1538 ": Function profile not used",
1539 DS_Warning));
1540 return 0;
1541}
1542
1543void SampleProfileLoader::computeDominanceAndLoopInfo(Function &F) {
1544 DT.reset(new DominatorTree);
1545 DT->recalculate(F);
1546
1547 PDT.reset(new PostDominatorTree(F));
1548
1549 LI.reset(new LoopInfo);
1550 LI->analyze(*DT);
1551}
1552
1553/// Generate branch weight metadata for all branches in \p F.
1554///
1555/// Branch weights are computed out of instruction samples using a
1556/// propagation heuristic. Propagation proceeds in 3 phases:
1557///
1558/// 1- Assignment of block weights. All the basic blocks in the function
1559/// are initial assigned the same weight as their most frequently
1560/// executed instruction.
1561///
1562/// 2- Creation of equivalence classes. Since samples may be missing from
1563/// blocks, we can fill in the gaps by setting the weights of all the
1564/// blocks in the same equivalence class to the same weight. To compute
1565/// the concept of equivalence, we use dominance and loop information.
1566/// Two blocks B1 and B2 are in the same equivalence class if B1
1567/// dominates B2, B2 post-dominates B1 and both are in the same loop.
1568///
1569/// 3- Propagation of block weights into edges. This uses a simple
1570/// propagation heuristic. The following rules are applied to every
1571/// block BB in the CFG:
1572///
1573/// - If BB has a single predecessor/successor, then the weight
1574/// of that edge is the weight of the block.
1575///
1576/// - If all the edges are known except one, and the weight of the
1577/// block is already known, the weight of the unknown edge will
1578/// be the weight of the block minus the sum of all the known
1579/// edges. If the sum of all the known edges is larger than BB's weight,
1580/// we set the unknown edge weight to zero.
1581///
1582/// - If there is a self-referential edge, and the weight of the block is
1583/// known, the weight for that edge is set to the weight of the block
1584/// minus the weight of the other incoming edges to that block (if
1585/// known).
1586///
1587/// Since this propagation is not guaranteed to finalize for every CFG, we
1588/// only allow it to proceed for a limited number of iterations (controlled
1589/// by -sample-profile-max-propagate-iterations).
1590///
1591/// FIXME: Try to replace this propagation heuristic with a scheme
1592/// that is guaranteed to finalize. A work-list approach similar to
1593/// the standard value propagation algorithm used by SSA-CCP might
1594/// work here.
1595///
1596/// Once all the branch weights are computed, we emit the MD_prof
1597/// metadata on BB using the computed values for each of its branches.
1598///
1599/// \param F The function to query.
1600///
1601/// \returns true if \p F was modified. Returns false, otherwise.
1602bool SampleProfileLoader::emitAnnotations(Function &F) {
1603 bool Changed = false;
1604
1605 if (getFunctionLoc(F) == 0)
1606 return false;
1607
1608 LLVM_DEBUG(dbgs() << "Line number for the first instruction in "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("sample-profile")) { dbgs() << "Line number for the first instruction in "
<< F.getName() << ": " << getFunctionLoc(F
) << "\n"; } } while (false)
1609 << F.getName() << ": " << getFunctionLoc(F) << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("sample-profile")) { dbgs() << "Line number for the first instruction in "
<< F.getName() << ": " << getFunctionLoc(F
) << "\n"; } } while (false)
;
1610
1611 DenseSet<GlobalValue::GUID> InlinedGUIDs;
1612 Changed |= inlineHotFunctions(F, InlinedGUIDs);
1613
1614 // Compute basic block weights.
1615 Changed |= computeBlockWeights(F);
1616
1617 if (Changed) {
1618 // Add an entry count to the function using the samples gathered at the
1619 // function entry.
1620 // Sets the GUIDs that are inlined in the profiled binary. This is used
1621 // for ThinLink to make correct liveness analysis, and also make the IR
1622 // match the profiled binary before annotation.
1623 F.setEntryCount(
1624 ProfileCount(Samples->getHeadSamples() + 1, Function::PCT_Real),
1625 &InlinedGUIDs);
1626
1627 // Compute dominance and loop info needed for propagation.
1628 computeDominanceAndLoopInfo(F);
1629
1630 // Find equivalence classes.
1631 findEquivalenceClasses(F);
1632
1633 // Propagate weights to all edges.
1634 propagateWeights(F);
1635 }
1636
1637 // If coverage checking was requested, compute it now.
1638 if (SampleProfileRecordCoverage) {
1639 unsigned Used = CoverageTracker.countUsedRecords(Samples, PSI);
1640 unsigned Total = CoverageTracker.countBodyRecords(Samples, PSI);
1641 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1642 if (Coverage < SampleProfileRecordCoverage) {
1643 F.getContext().diagnose(DiagnosticInfoSampleProfile(
1644 F.getSubprogram()->getFilename(), getFunctionLoc(F),
1645 Twine(Used) + " of " + Twine(Total) + " available profile records (" +
1646 Twine(Coverage) + "%) were applied",
1647 DS_Warning));
1648 }
1649 }
1650
1651 if (SampleProfileSampleCoverage) {
1652 uint64_t Used = CoverageTracker.getTotalUsedSamples();
1653 uint64_t Total = CoverageTracker.countBodySamples(Samples, PSI);
1654 unsigned Coverage = CoverageTracker.computeCoverage(Used, Total);
1655 if (Coverage < SampleProfileSampleCoverage) {
1656 F.getContext().diagnose(DiagnosticInfoSampleProfile(
1657 F.getSubprogram()->getFilename(), getFunctionLoc(F),
1658 Twine(Used) + " of " + Twine(Total) + " available profile samples (" +
1659 Twine(Coverage) + "%) were applied",
1660 DS_Warning));
1661 }
1662 }
1663 return Changed;
1664}
1665
1666char SampleProfileLoaderLegacyPass::ID = 0;
1667
1668INITIALIZE_PASS_BEGIN(SampleProfileLoaderLegacyPass, "sample-profile",static void *initializeSampleProfileLoaderLegacyPassPassOnce(
PassRegistry &Registry) {
1669 "Sample Profile loader", false, false)static void *initializeSampleProfileLoaderLegacyPassPassOnce(
PassRegistry &Registry) {
1670INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)initializeAssumptionCacheTrackerPass(Registry);
1671INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)initializeTargetTransformInfoWrapperPassPass(Registry);
1672INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)initializeProfileSummaryInfoWrapperPassPass(Registry);
1673INITIALIZE_PASS_END(SampleProfileLoaderLegacyPass, "sample-profile",PassInfo *PI = new PassInfo( "Sample Profile loader", "sample-profile"
, &SampleProfileLoaderLegacyPass::ID, PassInfo::NormalCtor_t
(callDefaultCtor<SampleProfileLoaderLegacyPass>), false
, false); Registry.registerPass(*PI, true); return PI; } static
llvm::once_flag InitializeSampleProfileLoaderLegacyPassPassFlag
; void llvm::initializeSampleProfileLoaderLegacyPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeSampleProfileLoaderLegacyPassPassFlag
, initializeSampleProfileLoaderLegacyPassPassOnce, std::ref(Registry
)); }
1674 "Sample Profile loader", false, false)PassInfo *PI = new PassInfo( "Sample Profile loader", "sample-profile"
, &SampleProfileLoaderLegacyPass::ID, PassInfo::NormalCtor_t
(callDefaultCtor<SampleProfileLoaderLegacyPass>), false
, false); Registry.registerPass(*PI, true); return PI; } static
llvm::once_flag InitializeSampleProfileLoaderLegacyPassPassFlag
; void llvm::initializeSampleProfileLoaderLegacyPassPass(PassRegistry
&Registry) { llvm::call_once(InitializeSampleProfileLoaderLegacyPassPassFlag
, initializeSampleProfileLoaderLegacyPassPassOnce, std::ref(Registry
)); }
1675
1676bool SampleProfileLoader::doInitialization(Module &M) {
1677 auto &Ctx = M.getContext();
1678 auto ReaderOrErr = SampleProfileReader::create(Filename, Ctx);
1679 if (std::error_code EC = ReaderOrErr.getError()) {
6
Taking false branch
1680 std::string Msg = "Could not open profile: " + EC.message();
1681 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1682 return false;
1683 }
1684 Reader = std::move(ReaderOrErr.get());
1685 Reader->collectFuncsFrom(M);
1686 ProfileIsValid = (Reader->read() == sampleprof_error::success);
1687 PSL = Reader->getProfileSymbolList();
1688
1689 // While profile-sample-accurate is on, ignore symbol list.
1690 ProfAccForSymsInList =
1691 ProfileAccurateForSymsInList && PSL && !ProfileSampleAccurate;
7
Assuming the condition is false
1692 if (ProfAccForSymsInList
7.1
Field 'ProfAccForSymsInList' is false
) {
8
Taking false branch
1693 NamesInProfile.clear();
1694 if (auto NameTable = Reader->getNameTable())
1695 NamesInProfile.insert(NameTable->begin(), NameTable->end());
1696 }
1697
1698 if (!RemappingFilename.empty()) {
9
Assuming the condition is true
10
Taking true branch
1699 // Apply profile remappings to the loaded profile data if requested.
1700 // For now, we only support remapping symbols encoded using the Itanium
1701 // C++ ABI's name mangling scheme.
1702 ReaderOrErr = SampleProfileReaderItaniumRemapper::create(
1703 RemappingFilename, Ctx, std::move(Reader));
11
Smart pointer 'Reader' of type 'std::unique_ptr' is reset to null when moved from
1704 if (std::error_code EC = ReaderOrErr.getError()) {
12
Taking true branch
1705 std::string Msg = "Could not open profile remapping file: " + EC.message();
1706 Ctx.diagnose(DiagnosticInfoSampleProfile(Filename, Msg));
1707 return false;
1708 }
1709 Reader = std::move(ReaderOrErr.get());
1710 ProfileIsValid = (Reader->read() == sampleprof_error::success);
1711 }
1712 return true;
1713}
1714
1715ModulePass *llvm::createSampleProfileLoaderPass() {
1716 return new SampleProfileLoaderLegacyPass();
1717}
1718
1719ModulePass *llvm::createSampleProfileLoaderPass(StringRef Name) {
1720 return new SampleProfileLoaderLegacyPass(Name);
1721}
1722
1723bool SampleProfileLoader::runOnModule(Module &M, ModuleAnalysisManager *AM,
1724 ProfileSummaryInfo *_PSI) {
1725 GUIDToFuncNameMapper Mapper(M, *Reader, GUIDToFuncNameMap);
15
Dereference of null smart pointer 'Reader' of type 'std::unique_ptr'
1726 if (!ProfileIsValid)
1727 return false;
1728
1729 PSI = _PSI;
1730 if (M.getProfileSummary(/* IsCS */ false) == nullptr)
1731 M.setProfileSummary(Reader->getSummary().getMD(M.getContext()),
1732 ProfileSummary::PSK_Sample);
1733
1734 // Compute the total number of samples collected in this profile.
1735 for (const auto &I : Reader->getProfiles())
1736 TotalCollectedSamples += I.second.getTotalSamples();
1737
1738 // Populate the symbol map.
1739 for (const auto &N_F : M.getValueSymbolTable()) {
1740 StringRef OrigName = N_F.getKey();
1741 Function *F = dyn_cast<Function>(N_F.getValue());
1742 if (F == nullptr)
1743 continue;
1744 SymbolMap[OrigName] = F;
1745 auto pos = OrigName.find('.');
1746 if (pos != StringRef::npos) {
1747 StringRef NewName = OrigName.substr(0, pos);
1748 auto r = SymbolMap.insert(std::make_pair(NewName, F));
1749 // Failiing to insert means there is already an entry in SymbolMap,
1750 // thus there are multiple functions that are mapped to the same
1751 // stripped name. In this case of name conflicting, set the value
1752 // to nullptr to avoid confusion.
1753 if (!r.second)
1754 r.first->second = nullptr;
1755 }
1756 }
1757
1758 bool retval = false;
1759 for (auto &F : M)
1760 if (!F.isDeclaration()) {
1761 clearFunctionData();
1762 retval |= runOnFunction(F, AM);
1763 }
1764
1765 // Account for cold calls not inlined....
1766 for (const std::pair<Function *, NotInlinedProfileInfo> &pair :
1767 notInlinedCallInfo)
1768 updateProfileCallee(pair.first, pair.second.entryCount);
1769
1770 return retval;
1771}
1772
1773bool SampleProfileLoaderLegacyPass::runOnModule(Module &M) {
1774 ACT = &getAnalysis<AssumptionCacheTracker>();
1775 TTIWP = &getAnalysis<TargetTransformInfoWrapperPass>();
1776 ProfileSummaryInfo *PSI =
1777 &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
1778 return SampleLoader.runOnModule(M, nullptr, PSI);
1779}
1780
1781bool SampleProfileLoader::runOnFunction(Function &F, ModuleAnalysisManager *AM) {
1782
1783 DILocation2SampleMap.clear();
1784 // By default the entry count is initialized to -1, which will be treated
1785 // conservatively by getEntryCount as the same as unknown (None). This is
1786 // to avoid newly added code to be treated as cold. If we have samples
1787 // this will be overwritten in emitAnnotations.
1788 uint64_t initialEntryCount = -1;
1789
1790 ProfAccForSymsInList = ProfileAccurateForSymsInList && PSL;
1791 if (ProfileSampleAccurate || F.hasFnAttribute("profile-sample-accurate")) {
1792 // initialize all the function entry counts to 0. It means all the
1793 // functions without profile will be regarded as cold.
1794 initialEntryCount = 0;
1795 // profile-sample-accurate is a user assertion which has a higher precedence
1796 // than symbol list. When profile-sample-accurate is on, ignore symbol list.
1797 ProfAccForSymsInList = false;
1798 }
1799
1800 // PSL -- profile symbol list include all the symbols in sampled binary.
1801 // If ProfileAccurateForSymsInList is enabled, PSL is used to treat
1802 // old functions without samples being cold, without having to worry
1803 // about new and hot functions being mistakenly treated as cold.
1804 if (ProfAccForSymsInList) {
1805 // Initialize the entry count to 0 for functions in the list.
1806 if (PSL->contains(F.getName()))
1807 initialEntryCount = 0;
1808
1809 // Function in the symbol list but without sample will be regarded as
1810 // cold. To minimize the potential negative performance impact it could
1811 // have, we want to be a little conservative here saying if a function
1812 // shows up in the profile, no matter as outline function, inline instance
1813 // or call targets, treat the function as not being cold. This will handle
1814 // the cases such as most callsites of a function are inlined in sampled
1815 // binary but not inlined in current build (because of source code drift,
1816 // imprecise debug information, or the callsites are all cold individually
1817 // but not cold accumulatively...), so the outline function showing up as
1818 // cold in sampled binary will actually not be cold after current build.
1819 StringRef CanonName = FunctionSamples::getCanonicalFnName(F);
1820 if (NamesInProfile.count(CanonName))
1821 initialEntryCount = -1;
1822 }
1823
1824 F.setEntryCount(ProfileCount(initialEntryCount, Function::PCT_Real));
1825 std::unique_ptr<OptimizationRemarkEmitter> OwnedORE;
1826 if (AM) {
1827 auto &FAM =
1828 AM->getResult<FunctionAnalysisManagerModuleProxy>(*F.getParent())
1829 .getManager();
1830 ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
1831 } else {
1832 OwnedORE = std::make_unique<OptimizationRemarkEmitter>(&F);
1833 ORE = OwnedORE.get();
1834 }
1835 Samples = Reader->getSamplesFor(F);
1836 if (Samples && !Samples->empty())
1837 return emitAnnotations(F);
1838 return false;
1839}
1840
1841PreservedAnalyses SampleProfileLoaderPass::run(Module &M,
1842 ModuleAnalysisManager &AM) {
1843 FunctionAnalysisManager &FAM =
1844 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1845
1846 auto GetAssumptionCache = [&](Function &F) -> AssumptionCache & {
1847 return FAM.getResult<AssumptionAnalysis>(F);
1848 };
1849 auto GetTTI = [&](Function &F) -> TargetTransformInfo & {
1850 return FAM.getResult<TargetIRAnalysis>(F);
1851 };
1852
1853 SampleProfileLoader SampleLoader(
1854 ProfileFileName.empty() ? SampleProfileFile : ProfileFileName,
1
Assuming the condition is false
2
'?' condition is false
1855 ProfileRemappingFileName.empty() ? SampleProfileRemappingFile
3
Assuming the condition is false
4
'?' condition is false
1856 : ProfileRemappingFileName,
1857 IsThinLTOPreLink, GetAssumptionCache, GetTTI);
1858
1859 SampleLoader.doInitialization(M);
5
Calling 'SampleProfileLoader::doInitialization'
13
Returning from 'SampleProfileLoader::doInitialization'
1860
1861 ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M);
1862 if (!SampleLoader.runOnModule(M, &AM, PSI))
14
Calling 'SampleProfileLoader::runOnModule'
1863 return PreservedAnalyses::all();
1864
1865 return PreservedAnalyses::none();
1866}