Bug Summary

File:lib/Analysis/ScalarEvolution.cpp
Location:line 8635, column 15
Description:Value stored to 'MaxBECount' during its initialization is never read

Annotated Source Code

1//===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
19//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
30//
31// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
35// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
61#include "llvm/Analysis/ScalarEvolution.h"
62#include "llvm/ADT/Optional.h"
63#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/Statistic.h"
66#include "llvm/Analysis/AssumptionCache.h"
67#include "llvm/Analysis/ConstantFolding.h"
68#include "llvm/Analysis/InstructionSimplify.h"
69#include "llvm/Analysis/LoopInfo.h"
70#include "llvm/Analysis/ScalarEvolutionExpressions.h"
71#include "llvm/Analysis/TargetLibraryInfo.h"
72#include "llvm/Analysis/ValueTracking.h"
73#include "llvm/IR/ConstantRange.h"
74#include "llvm/IR/Constants.h"
75#include "llvm/IR/DataLayout.h"
76#include "llvm/IR/DerivedTypes.h"
77#include "llvm/IR/Dominators.h"
78#include "llvm/IR/GetElementPtrTypeIterator.h"
79#include "llvm/IR/GlobalAlias.h"
80#include "llvm/IR/GlobalVariable.h"
81#include "llvm/IR/InstIterator.h"
82#include "llvm/IR/Instructions.h"
83#include "llvm/IR/LLVMContext.h"
84#include "llvm/IR/Metadata.h"
85#include "llvm/IR/Operator.h"
86#include "llvm/IR/PatternMatch.h"
87#include "llvm/Support/CommandLine.h"
88#include "llvm/Support/Debug.h"
89#include "llvm/Support/ErrorHandling.h"
90#include "llvm/Support/MathExtras.h"
91#include "llvm/Support/raw_ostream.h"
92#include "llvm/Support/SaveAndRestore.h"
93#include <algorithm>
94using namespace llvm;
95
96#define DEBUG_TYPE"scalar-evolution" "scalar-evolution"
97
98STATISTIC(NumArrayLenItCounts,static llvm::Statistic NumArrayLenItCounts = { "scalar-evolution"
, "Number of trip counts computed with array length", 0, 0 }
99 "Number of trip counts computed with array length")static llvm::Statistic NumArrayLenItCounts = { "scalar-evolution"
, "Number of trip counts computed with array length", 0, 0 }
;
100STATISTIC(NumTripCountsComputed,static llvm::Statistic NumTripCountsComputed = { "scalar-evolution"
, "Number of loops with predictable loop counts", 0, 0 }
101 "Number of loops with predictable loop counts")static llvm::Statistic NumTripCountsComputed = { "scalar-evolution"
, "Number of loops with predictable loop counts", 0, 0 }
;
102STATISTIC(NumTripCountsNotComputed,static llvm::Statistic NumTripCountsNotComputed = { "scalar-evolution"
, "Number of loops without predictable loop counts", 0, 0 }
103 "Number of loops without predictable loop counts")static llvm::Statistic NumTripCountsNotComputed = { "scalar-evolution"
, "Number of loops without predictable loop counts", 0, 0 }
;
104STATISTIC(NumBruteForceTripCountsComputed,static llvm::Statistic NumBruteForceTripCountsComputed = { "scalar-evolution"
, "Number of loops with trip counts computed by force", 0, 0 }
105 "Number of loops with trip counts computed by force")static llvm::Statistic NumBruteForceTripCountsComputed = { "scalar-evolution"
, "Number of loops with trip counts computed by force", 0, 0 }
;
106
107static cl::opt<unsigned>
108MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
109 cl::desc("Maximum number of iterations SCEV will "
110 "symbolically execute a constant "
111 "derived loop"),
112 cl::init(100));
113
114// FIXME: Enable this with XDEBUG when the test suite is clean.
115static cl::opt<bool>
116VerifySCEV("verify-scev",
117 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
118static cl::opt<bool>
119 VerifySCEVMap("verify-scev-maps",
120 cl::desc("Verify no dangling value in ScalarEvolution's"
121 "ExprValueMap (slow)"));
122
123//===----------------------------------------------------------------------===//
124// SCEV class definitions
125//===----------------------------------------------------------------------===//
126
127//===----------------------------------------------------------------------===//
128// Implementation of the SCEV class.
129//
130
131LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__))
132void SCEV::dump() const {
133 print(dbgs());
134 dbgs() << '\n';
135}
136
137void SCEV::print(raw_ostream &OS) const {
138 switch (static_cast<SCEVTypes>(getSCEVType())) {
139 case scConstant:
140 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
141 return;
142 case scTruncate: {
143 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
144 const SCEV *Op = Trunc->getOperand();
145 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
146 << *Trunc->getType() << ")";
147 return;
148 }
149 case scZeroExtend: {
150 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
151 const SCEV *Op = ZExt->getOperand();
152 OS << "(zext " << *Op->getType() << " " << *Op << " to "
153 << *ZExt->getType() << ")";
154 return;
155 }
156 case scSignExtend: {
157 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
158 const SCEV *Op = SExt->getOperand();
159 OS << "(sext " << *Op->getType() << " " << *Op << " to "
160 << *SExt->getType() << ")";
161 return;
162 }
163 case scAddRecExpr: {
164 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
165 OS << "{" << *AR->getOperand(0);
166 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
167 OS << ",+," << *AR->getOperand(i);
168 OS << "}<";
169 if (AR->hasNoUnsignedWrap())
170 OS << "nuw><";
171 if (AR->hasNoSignedWrap())
172 OS << "nsw><";
173 if (AR->hasNoSelfWrap() &&
174 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
175 OS << "nw><";
176 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
177 OS << ">";
178 return;
179 }
180 case scAddExpr:
181 case scMulExpr:
182 case scUMaxExpr:
183 case scSMaxExpr: {
184 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
185 const char *OpStr = nullptr;
186 switch (NAry->getSCEVType()) {
187 case scAddExpr: OpStr = " + "; break;
188 case scMulExpr: OpStr = " * "; break;
189 case scUMaxExpr: OpStr = " umax "; break;
190 case scSMaxExpr: OpStr = " smax "; break;
191 }
192 OS << "(";
193 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
194 I != E; ++I) {
195 OS << **I;
196 if (std::next(I) != E)
197 OS << OpStr;
198 }
199 OS << ")";
200 switch (NAry->getSCEVType()) {
201 case scAddExpr:
202 case scMulExpr:
203 if (NAry->hasNoUnsignedWrap())
204 OS << "<nuw>";
205 if (NAry->hasNoSignedWrap())
206 OS << "<nsw>";
207 }
208 return;
209 }
210 case scUDivExpr: {
211 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
212 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
213 return;
214 }
215 case scUnknown: {
216 const SCEVUnknown *U = cast<SCEVUnknown>(this);
217 Type *AllocTy;
218 if (U->isSizeOf(AllocTy)) {
219 OS << "sizeof(" << *AllocTy << ")";
220 return;
221 }
222 if (U->isAlignOf(AllocTy)) {
223 OS << "alignof(" << *AllocTy << ")";
224 return;
225 }
226
227 Type *CTy;
228 Constant *FieldNo;
229 if (U->isOffsetOf(CTy, FieldNo)) {
230 OS << "offsetof(" << *CTy << ", ";
231 FieldNo->printAsOperand(OS, false);
232 OS << ")";
233 return;
234 }
235
236 // Otherwise just print it normally.
237 U->getValue()->printAsOperand(OS, false);
238 return;
239 }
240 case scCouldNotCompute:
241 OS << "***COULDNOTCOMPUTE***";
242 return;
243 }
244 llvm_unreachable("Unknown SCEV kind!")::llvm::llvm_unreachable_internal("Unknown SCEV kind!", "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 244)
;
245}
246
247Type *SCEV::getType() const {
248 switch (static_cast<SCEVTypes>(getSCEVType())) {
249 case scConstant:
250 return cast<SCEVConstant>(this)->getType();
251 case scTruncate:
252 case scZeroExtend:
253 case scSignExtend:
254 return cast<SCEVCastExpr>(this)->getType();
255 case scAddRecExpr:
256 case scMulExpr:
257 case scUMaxExpr:
258 case scSMaxExpr:
259 return cast<SCEVNAryExpr>(this)->getType();
260 case scAddExpr:
261 return cast<SCEVAddExpr>(this)->getType();
262 case scUDivExpr:
263 return cast<SCEVUDivExpr>(this)->getType();
264 case scUnknown:
265 return cast<SCEVUnknown>(this)->getType();
266 case scCouldNotCompute:
267 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!")::llvm::llvm_unreachable_internal("Attempt to use a SCEVCouldNotCompute object!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 267)
;
268 }
269 llvm_unreachable("Unknown SCEV kind!")::llvm::llvm_unreachable_internal("Unknown SCEV kind!", "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 269)
;
270}
271
272bool SCEV::isZero() const {
273 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
274 return SC->getValue()->isZero();
275 return false;
276}
277
278bool SCEV::isOne() const {
279 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
280 return SC->getValue()->isOne();
281 return false;
282}
283
284bool SCEV::isAllOnesValue() const {
285 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
286 return SC->getValue()->isAllOnesValue();
287 return false;
288}
289
290/// isNonConstantNegative - Return true if the specified scev is negated, but
291/// not a constant.
292bool SCEV::isNonConstantNegative() const {
293 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
294 if (!Mul) return false;
295
296 // If there is a constant factor, it will be first.
297 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
298 if (!SC) return false;
299
300 // Return true if the value is negative, this matches things like (-42 * V).
301 return SC->getAPInt().isNegative();
302}
303
304SCEVCouldNotCompute::SCEVCouldNotCompute() :
305 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
306
307bool SCEVCouldNotCompute::classof(const SCEV *S) {
308 return S->getSCEVType() == scCouldNotCompute;
309}
310
311const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
312 FoldingSetNodeID ID;
313 ID.AddInteger(scConstant);
314 ID.AddPointer(V);
315 void *IP = nullptr;
316 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
317 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
318 UniqueSCEVs.InsertNode(S, IP);
319 return S;
320}
321
322const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
323 return getConstant(ConstantInt::get(getContext(), Val));
324}
325
326const SCEV *
327ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
328 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
329 return getConstant(ConstantInt::get(ITy, V, isSigned));
330}
331
332SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
333 unsigned SCEVTy, const SCEV *op, Type *ty)
334 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
335
336SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
337 const SCEV *op, Type *ty)
338 : SCEVCastExpr(ID, scTruncate, op, ty) {
339 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&(((Op->getType()->isIntegerTy() || Op->getType()->
isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy
()) && "Cannot truncate non-integer value!") ? static_cast
<void> (0) : __assert_fail ("(Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot truncate non-integer value!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 341, __PRETTY_FUNCTION__))
340 (Ty->isIntegerTy() || Ty->isPointerTy()) &&(((Op->getType()->isIntegerTy() || Op->getType()->
isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy
()) && "Cannot truncate non-integer value!") ? static_cast
<void> (0) : __assert_fail ("(Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot truncate non-integer value!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 341, __PRETTY_FUNCTION__))
341 "Cannot truncate non-integer value!")(((Op->getType()->isIntegerTy() || Op->getType()->
isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy
()) && "Cannot truncate non-integer value!") ? static_cast
<void> (0) : __assert_fail ("(Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot truncate non-integer value!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 341, __PRETTY_FUNCTION__))
;
342}
343
344SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
345 const SCEV *op, Type *ty)
346 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
347 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&(((Op->getType()->isIntegerTy() || Op->getType()->
isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy
()) && "Cannot zero extend non-integer value!") ? static_cast
<void> (0) : __assert_fail ("(Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot zero extend non-integer value!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 349, __PRETTY_FUNCTION__))
348 (Ty->isIntegerTy() || Ty->isPointerTy()) &&(((Op->getType()->isIntegerTy() || Op->getType()->
isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy
()) && "Cannot zero extend non-integer value!") ? static_cast
<void> (0) : __assert_fail ("(Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot zero extend non-integer value!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 349, __PRETTY_FUNCTION__))
349 "Cannot zero extend non-integer value!")(((Op->getType()->isIntegerTy() || Op->getType()->
isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy
()) && "Cannot zero extend non-integer value!") ? static_cast
<void> (0) : __assert_fail ("(Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot zero extend non-integer value!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 349, __PRETTY_FUNCTION__))
;
350}
351
352SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
353 const SCEV *op, Type *ty)
354 : SCEVCastExpr(ID, scSignExtend, op, ty) {
355 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&(((Op->getType()->isIntegerTy() || Op->getType()->
isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy
()) && "Cannot sign extend non-integer value!") ? static_cast
<void> (0) : __assert_fail ("(Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot sign extend non-integer value!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 357, __PRETTY_FUNCTION__))
356 (Ty->isIntegerTy() || Ty->isPointerTy()) &&(((Op->getType()->isIntegerTy() || Op->getType()->
isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy
()) && "Cannot sign extend non-integer value!") ? static_cast
<void> (0) : __assert_fail ("(Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot sign extend non-integer value!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 357, __PRETTY_FUNCTION__))
357 "Cannot sign extend non-integer value!")(((Op->getType()->isIntegerTy() || Op->getType()->
isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy
()) && "Cannot sign extend non-integer value!") ? static_cast
<void> (0) : __assert_fail ("(Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot sign extend non-integer value!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 357, __PRETTY_FUNCTION__))
;
358}
359
360void SCEVUnknown::deleted() {
361 // Clear this SCEVUnknown from various maps.
362 SE->forgetMemoizedResults(this);
363
364 // Remove this SCEVUnknown from the uniquing map.
365 SE->UniqueSCEVs.RemoveNode(this);
366
367 // Release the value.
368 setValPtr(nullptr);
369}
370
371void SCEVUnknown::allUsesReplacedWith(Value *New) {
372 // Clear this SCEVUnknown from various maps.
373 SE->forgetMemoizedResults(this);
374
375 // Remove this SCEVUnknown from the uniquing map.
376 SE->UniqueSCEVs.RemoveNode(this);
377
378 // Update this SCEVUnknown to point to the new value. This is needed
379 // because there may still be outstanding SCEVs which still point to
380 // this SCEVUnknown.
381 setValPtr(New);
382}
383
384bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
385 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
386 if (VCE->getOpcode() == Instruction::PtrToInt)
387 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
388 if (CE->getOpcode() == Instruction::GetElementPtr &&
389 CE->getOperand(0)->isNullValue() &&
390 CE->getNumOperands() == 2)
391 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
392 if (CI->isOne()) {
393 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
394 ->getElementType();
395 return true;
396 }
397
398 return false;
399}
400
401bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
402 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
403 if (VCE->getOpcode() == Instruction::PtrToInt)
404 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
405 if (CE->getOpcode() == Instruction::GetElementPtr &&
406 CE->getOperand(0)->isNullValue()) {
407 Type *Ty =
408 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
409 if (StructType *STy = dyn_cast<StructType>(Ty))
410 if (!STy->isPacked() &&
411 CE->getNumOperands() == 3 &&
412 CE->getOperand(1)->isNullValue()) {
413 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
414 if (CI->isOne() &&
415 STy->getNumElements() == 2 &&
416 STy->getElementType(0)->isIntegerTy(1)) {
417 AllocTy = STy->getElementType(1);
418 return true;
419 }
420 }
421 }
422
423 return false;
424}
425
426bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
427 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
428 if (VCE->getOpcode() == Instruction::PtrToInt)
429 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
430 if (CE->getOpcode() == Instruction::GetElementPtr &&
431 CE->getNumOperands() == 3 &&
432 CE->getOperand(0)->isNullValue() &&
433 CE->getOperand(1)->isNullValue()) {
434 Type *Ty =
435 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
436 // Ignore vector types here so that ScalarEvolutionExpander doesn't
437 // emit getelementptrs that index into vectors.
438 if (Ty->isStructTy() || Ty->isArrayTy()) {
439 CTy = Ty;
440 FieldNo = CE->getOperand(2);
441 return true;
442 }
443 }
444
445 return false;
446}
447
448//===----------------------------------------------------------------------===//
449// SCEV Utilities
450//===----------------------------------------------------------------------===//
451
452namespace {
453/// SCEVComplexityCompare - Return true if the complexity of the LHS is less
454/// than the complexity of the RHS. This comparator is used to canonicalize
455/// expressions.
456class SCEVComplexityCompare {
457 const LoopInfo *const LI;
458public:
459 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
460
461 // Return true or false if LHS is less than, or at least RHS, respectively.
462 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
463 return compare(LHS, RHS) < 0;
464 }
465
466 // Return negative, zero, or positive, if LHS is less than, equal to, or
467 // greater than RHS, respectively. A three-way result allows recursive
468 // comparisons to be more efficient.
469 int compare(const SCEV *LHS, const SCEV *RHS) const {
470 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
471 if (LHS == RHS)
472 return 0;
473
474 // Primarily, sort the SCEVs by their getSCEVType().
475 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
476 if (LType != RType)
477 return (int)LType - (int)RType;
478
479 // Aside from the getSCEVType() ordering, the particular ordering
480 // isn't very important except that it's beneficial to be consistent,
481 // so that (a + b) and (b + a) don't end up as different expressions.
482 switch (static_cast<SCEVTypes>(LType)) {
483 case scUnknown: {
484 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
485 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
486
487 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
488 // not as complete as it could be.
489 const Value *LV = LU->getValue(), *RV = RU->getValue();
490
491 // Order pointer values after integer values. This helps SCEVExpander
492 // form GEPs.
493 bool LIsPointer = LV->getType()->isPointerTy(),
494 RIsPointer = RV->getType()->isPointerTy();
495 if (LIsPointer != RIsPointer)
496 return (int)LIsPointer - (int)RIsPointer;
497
498 // Compare getValueID values.
499 unsigned LID = LV->getValueID(),
500 RID = RV->getValueID();
501 if (LID != RID)
502 return (int)LID - (int)RID;
503
504 // Sort arguments by their position.
505 if (const Argument *LA = dyn_cast<Argument>(LV)) {
506 const Argument *RA = cast<Argument>(RV);
507 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
508 return (int)LArgNo - (int)RArgNo;
509 }
510
511 // For instructions, compare their loop depth, and their operand
512 // count. This is pretty loose.
513 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
514 const Instruction *RInst = cast<Instruction>(RV);
515
516 // Compare loop depths.
517 const BasicBlock *LParent = LInst->getParent(),
518 *RParent = RInst->getParent();
519 if (LParent != RParent) {
520 unsigned LDepth = LI->getLoopDepth(LParent),
521 RDepth = LI->getLoopDepth(RParent);
522 if (LDepth != RDepth)
523 return (int)LDepth - (int)RDepth;
524 }
525
526 // Compare the number of operands.
527 unsigned LNumOps = LInst->getNumOperands(),
528 RNumOps = RInst->getNumOperands();
529 return (int)LNumOps - (int)RNumOps;
530 }
531
532 return 0;
533 }
534
535 case scConstant: {
536 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
537 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
538
539 // Compare constant values.
540 const APInt &LA = LC->getAPInt();
541 const APInt &RA = RC->getAPInt();
542 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
543 if (LBitWidth != RBitWidth)
544 return (int)LBitWidth - (int)RBitWidth;
545 return LA.ult(RA) ? -1 : 1;
546 }
547
548 case scAddRecExpr: {
549 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
550 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
551
552 // Compare addrec loop depths.
553 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
554 if (LLoop != RLoop) {
555 unsigned LDepth = LLoop->getLoopDepth(),
556 RDepth = RLoop->getLoopDepth();
557 if (LDepth != RDepth)
558 return (int)LDepth - (int)RDepth;
559 }
560
561 // Addrec complexity grows with operand count.
562 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
563 if (LNumOps != RNumOps)
564 return (int)LNumOps - (int)RNumOps;
565
566 // Lexicographically compare.
567 for (unsigned i = 0; i != LNumOps; ++i) {
568 long X = compare(LA->getOperand(i), RA->getOperand(i));
569 if (X != 0)
570 return X;
571 }
572
573 return 0;
574 }
575
576 case scAddExpr:
577 case scMulExpr:
578 case scSMaxExpr:
579 case scUMaxExpr: {
580 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
581 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
582
583 // Lexicographically compare n-ary expressions.
584 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
585 if (LNumOps != RNumOps)
586 return (int)LNumOps - (int)RNumOps;
587
588 for (unsigned i = 0; i != LNumOps; ++i) {
589 if (i >= RNumOps)
590 return 1;
591 long X = compare(LC->getOperand(i), RC->getOperand(i));
592 if (X != 0)
593 return X;
594 }
595 return (int)LNumOps - (int)RNumOps;
596 }
597
598 case scUDivExpr: {
599 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
600 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
601
602 // Lexicographically compare udiv expressions.
603 long X = compare(LC->getLHS(), RC->getLHS());
604 if (X != 0)
605 return X;
606 return compare(LC->getRHS(), RC->getRHS());
607 }
608
609 case scTruncate:
610 case scZeroExtend:
611 case scSignExtend: {
612 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
613 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
614
615 // Compare cast expressions by operand.
616 return compare(LC->getOperand(), RC->getOperand());
617 }
618
619 case scCouldNotCompute:
620 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!")::llvm::llvm_unreachable_internal("Attempt to use a SCEVCouldNotCompute object!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 620)
;
621 }
622 llvm_unreachable("Unknown SCEV kind!")::llvm::llvm_unreachable_internal("Unknown SCEV kind!", "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 622)
;
623 }
624};
625} // end anonymous namespace
626
627/// GroupByComplexity - Given a list of SCEV objects, order them by their
628/// complexity, and group objects of the same complexity together by value.
629/// When this routine is finished, we know that any duplicates in the vector are
630/// consecutive and that complexity is monotonically increasing.
631///
632/// Note that we go take special precautions to ensure that we get deterministic
633/// results from this routine. In other words, we don't want the results of
634/// this to depend on where the addresses of various SCEV objects happened to
635/// land in memory.
636///
637static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
638 LoopInfo *LI) {
639 if (Ops.size() < 2) return; // Noop
640 if (Ops.size() == 2) {
641 // This is the common case, which also happens to be trivially simple.
642 // Special case it.
643 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
644 if (SCEVComplexityCompare(LI)(RHS, LHS))
645 std::swap(LHS, RHS);
646 return;
647 }
648
649 // Do the rough sort by complexity.
650 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
651
652 // Now that we are sorted by complexity, group elements of the same
653 // complexity. Note that this is, at worst, N^2, but the vector is likely to
654 // be extremely short in practice. Note that we take this approach because we
655 // do not want to depend on the addresses of the objects we are grouping.
656 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
657 const SCEV *S = Ops[i];
658 unsigned Complexity = S->getSCEVType();
659
660 // If there are any objects of the same complexity and same value as this
661 // one, group them.
662 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
663 if (Ops[j] == S) { // Found a duplicate.
664 // Move it to immediately after i'th element.
665 std::swap(Ops[i+1], Ops[j]);
666 ++i; // no need to rescan it.
667 if (i == e-2) return; // Done!
668 }
669 }
670 }
671}
672
673// Returns the size of the SCEV S.
674static inline int sizeOfSCEV(const SCEV *S) {
675 struct FindSCEVSize {
676 int Size;
677 FindSCEVSize() : Size(0) {}
678
679 bool follow(const SCEV *S) {
680 ++Size;
681 // Keep looking at all operands of S.
682 return true;
683 }
684 bool isDone() const {
685 return false;
686 }
687 };
688
689 FindSCEVSize F;
690 SCEVTraversal<FindSCEVSize> ST(F);
691 ST.visitAll(S);
692 return F.Size;
693}
694
695namespace {
696
697struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
698public:
699 // Computes the Quotient and Remainder of the division of Numerator by
700 // Denominator.
701 static void divide(ScalarEvolution &SE, const SCEV *Numerator,
702 const SCEV *Denominator, const SCEV **Quotient,
703 const SCEV **Remainder) {
704 assert(Numerator && Denominator && "Uninitialized SCEV")((Numerator && Denominator && "Uninitialized SCEV"
) ? static_cast<void> (0) : __assert_fail ("Numerator && Denominator && \"Uninitialized SCEV\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 704, __PRETTY_FUNCTION__))
;
705
706 SCEVDivision D(SE, Numerator, Denominator);
707
708 // Check for the trivial case here to avoid having to check for it in the
709 // rest of the code.
710 if (Numerator == Denominator) {
711 *Quotient = D.One;
712 *Remainder = D.Zero;
713 return;
714 }
715
716 if (Numerator->isZero()) {
717 *Quotient = D.Zero;
718 *Remainder = D.Zero;
719 return;
720 }
721
722 // A simple case when N/1. The quotient is N.
723 if (Denominator->isOne()) {
724 *Quotient = Numerator;
725 *Remainder = D.Zero;
726 return;
727 }
728
729 // Split the Denominator when it is a product.
730 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
731 const SCEV *Q, *R;
732 *Quotient = Numerator;
733 for (const SCEV *Op : T->operands()) {
734 divide(SE, *Quotient, Op, &Q, &R);
735 *Quotient = Q;
736
737 // Bail out when the Numerator is not divisible by one of the terms of
738 // the Denominator.
739 if (!R->isZero()) {
740 *Quotient = D.Zero;
741 *Remainder = Numerator;
742 return;
743 }
744 }
745 *Remainder = D.Zero;
746 return;
747 }
748
749 D.visit(Numerator);
750 *Quotient = D.Quotient;
751 *Remainder = D.Remainder;
752 }
753
754 // Except in the trivial case described above, we do not know how to divide
755 // Expr by Denominator for the following functions with empty implementation.
756 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
757 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
758 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
759 void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
760 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
761 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
762 void visitUnknown(const SCEVUnknown *Numerator) {}
763 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
764
765 void visitConstant(const SCEVConstant *Numerator) {
766 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
767 APInt NumeratorVal = Numerator->getAPInt();
768 APInt DenominatorVal = D->getAPInt();
769 uint32_t NumeratorBW = NumeratorVal.getBitWidth();
770 uint32_t DenominatorBW = DenominatorVal.getBitWidth();
771
772 if (NumeratorBW > DenominatorBW)
773 DenominatorVal = DenominatorVal.sext(NumeratorBW);
774 else if (NumeratorBW < DenominatorBW)
775 NumeratorVal = NumeratorVal.sext(DenominatorBW);
776
777 APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
778 APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
779 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
780 Quotient = SE.getConstant(QuotientVal);
781 Remainder = SE.getConstant(RemainderVal);
782 return;
783 }
784 }
785
786 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
787 const SCEV *StartQ, *StartR, *StepQ, *StepR;
788 if (!Numerator->isAffine())
789 return cannotDivide(Numerator);
790 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
791 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
792 // Bail out if the types do not match.
793 Type *Ty = Denominator->getType();
794 if (Ty != StartQ->getType() || Ty != StartR->getType() ||
795 Ty != StepQ->getType() || Ty != StepR->getType())
796 return cannotDivide(Numerator);
797 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
798 Numerator->getNoWrapFlags());
799 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
800 Numerator->getNoWrapFlags());
801 }
802
803 void visitAddExpr(const SCEVAddExpr *Numerator) {
804 SmallVector<const SCEV *, 2> Qs, Rs;
805 Type *Ty = Denominator->getType();
806
807 for (const SCEV *Op : Numerator->operands()) {
808 const SCEV *Q, *R;
809 divide(SE, Op, Denominator, &Q, &R);
810
811 // Bail out if types do not match.
812 if (Ty != Q->getType() || Ty != R->getType())
813 return cannotDivide(Numerator);
814
815 Qs.push_back(Q);
816 Rs.push_back(R);
817 }
818
819 if (Qs.size() == 1) {
820 Quotient = Qs[0];
821 Remainder = Rs[0];
822 return;
823 }
824
825 Quotient = SE.getAddExpr(Qs);
826 Remainder = SE.getAddExpr(Rs);
827 }
828
829 void visitMulExpr(const SCEVMulExpr *Numerator) {
830 SmallVector<const SCEV *, 2> Qs;
831 Type *Ty = Denominator->getType();
832
833 bool FoundDenominatorTerm = false;
834 for (const SCEV *Op : Numerator->operands()) {
835 // Bail out if types do not match.
836 if (Ty != Op->getType())
837 return cannotDivide(Numerator);
838
839 if (FoundDenominatorTerm) {
840 Qs.push_back(Op);
841 continue;
842 }
843
844 // Check whether Denominator divides one of the product operands.
845 const SCEV *Q, *R;
846 divide(SE, Op, Denominator, &Q, &R);
847 if (!R->isZero()) {
848 Qs.push_back(Op);
849 continue;
850 }
851
852 // Bail out if types do not match.
853 if (Ty != Q->getType())
854 return cannotDivide(Numerator);
855
856 FoundDenominatorTerm = true;
857 Qs.push_back(Q);
858 }
859
860 if (FoundDenominatorTerm) {
861 Remainder = Zero;
862 if (Qs.size() == 1)
863 Quotient = Qs[0];
864 else
865 Quotient = SE.getMulExpr(Qs);
866 return;
867 }
868
869 if (!isa<SCEVUnknown>(Denominator))
870 return cannotDivide(Numerator);
871
872 // The Remainder is obtained by replacing Denominator by 0 in Numerator.
873 ValueToValueMap RewriteMap;
874 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
875 cast<SCEVConstant>(Zero)->getValue();
876 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
877
878 if (Remainder->isZero()) {
879 // The Quotient is obtained by replacing Denominator by 1 in Numerator.
880 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
881 cast<SCEVConstant>(One)->getValue();
882 Quotient =
883 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
884 return;
885 }
886
887 // Quotient is (Numerator - Remainder) divided by Denominator.
888 const SCEV *Q, *R;
889 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
890 // This SCEV does not seem to simplify: fail the division here.
891 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
892 return cannotDivide(Numerator);
893 divide(SE, Diff, Denominator, &Q, &R);
894 if (R != Zero)
895 return cannotDivide(Numerator);
896 Quotient = Q;
897 }
898
899private:
900 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
901 const SCEV *Denominator)
902 : SE(S), Denominator(Denominator) {
903 Zero = SE.getZero(Denominator->getType());
904 One = SE.getOne(Denominator->getType());
905
906 // We generally do not know how to divide Expr by Denominator. We
907 // initialize the division to a "cannot divide" state to simplify the rest
908 // of the code.
909 cannotDivide(Numerator);
910 }
911
912 // Convenience function for giving up on the division. We set the quotient to
913 // be equal to zero and the remainder to be equal to the numerator.
914 void cannotDivide(const SCEV *Numerator) {
915 Quotient = Zero;
916 Remainder = Numerator;
917 }
918
919 ScalarEvolution &SE;
920 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
921};
922
923}
924
925//===----------------------------------------------------------------------===//
926// Simple SCEV method implementations
927//===----------------------------------------------------------------------===//
928
929/// BinomialCoefficient - Compute BC(It, K). The result has width W.
930/// Assume, K > 0.
931static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
932 ScalarEvolution &SE,
933 Type *ResultTy) {
934 // Handle the simplest case efficiently.
935 if (K == 1)
936 return SE.getTruncateOrZeroExtend(It, ResultTy);
937
938 // We are using the following formula for BC(It, K):
939 //
940 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
941 //
942 // Suppose, W is the bitwidth of the return value. We must be prepared for
943 // overflow. Hence, we must assure that the result of our computation is
944 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
945 // safe in modular arithmetic.
946 //
947 // However, this code doesn't use exactly that formula; the formula it uses
948 // is something like the following, where T is the number of factors of 2 in
949 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
950 // exponentiation:
951 //
952 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
953 //
954 // This formula is trivially equivalent to the previous formula. However,
955 // this formula can be implemented much more efficiently. The trick is that
956 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
957 // arithmetic. To do exact division in modular arithmetic, all we have
958 // to do is multiply by the inverse. Therefore, this step can be done at
959 // width W.
960 //
961 // The next issue is how to safely do the division by 2^T. The way this
962 // is done is by doing the multiplication step at a width of at least W + T
963 // bits. This way, the bottom W+T bits of the product are accurate. Then,
964 // when we perform the division by 2^T (which is equivalent to a right shift
965 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
966 // truncated out after the division by 2^T.
967 //
968 // In comparison to just directly using the first formula, this technique
969 // is much more efficient; using the first formula requires W * K bits,
970 // but this formula less than W + K bits. Also, the first formula requires
971 // a division step, whereas this formula only requires multiplies and shifts.
972 //
973 // It doesn't matter whether the subtraction step is done in the calculation
974 // width or the input iteration count's width; if the subtraction overflows,
975 // the result must be zero anyway. We prefer here to do it in the width of
976 // the induction variable because it helps a lot for certain cases; CodeGen
977 // isn't smart enough to ignore the overflow, which leads to much less
978 // efficient code if the width of the subtraction is wider than the native
979 // register width.
980 //
981 // (It's possible to not widen at all by pulling out factors of 2 before
982 // the multiplication; for example, K=2 can be calculated as
983 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
984 // extra arithmetic, so it's not an obvious win, and it gets
985 // much more complicated for K > 3.)
986
987 // Protection from insane SCEVs; this bound is conservative,
988 // but it probably doesn't matter.
989 if (K > 1000)
990 return SE.getCouldNotCompute();
991
992 unsigned W = SE.getTypeSizeInBits(ResultTy);
993
994 // Calculate K! / 2^T and T; we divide out the factors of two before
995 // multiplying for calculating K! / 2^T to avoid overflow.
996 // Other overflow doesn't matter because we only care about the bottom
997 // W bits of the result.
998 APInt OddFactorial(W, 1);
999 unsigned T = 1;
1000 for (unsigned i = 3; i <= K; ++i) {
1001 APInt Mult(W, i);
1002 unsigned TwoFactors = Mult.countTrailingZeros();
1003 T += TwoFactors;
1004 Mult = Mult.lshr(TwoFactors);
1005 OddFactorial *= Mult;
1006 }
1007
1008 // We need at least W + T bits for the multiplication step
1009 unsigned CalculationBits = W + T;
1010
1011 // Calculate 2^T, at width T+W.
1012 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
1013
1014 // Calculate the multiplicative inverse of K! / 2^T;
1015 // this multiplication factor will perform the exact division by
1016 // K! / 2^T.
1017 APInt Mod = APInt::getSignedMinValue(W+1);
1018 APInt MultiplyFactor = OddFactorial.zext(W+1);
1019 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1020 MultiplyFactor = MultiplyFactor.trunc(W);
1021
1022 // Calculate the product, at width T+W
1023 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1024 CalculationBits);
1025 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1026 for (unsigned i = 1; i != K; ++i) {
1027 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1028 Dividend = SE.getMulExpr(Dividend,
1029 SE.getTruncateOrZeroExtend(S, CalculationTy));
1030 }
1031
1032 // Divide by 2^T
1033 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1034
1035 // Truncate the result, and divide by K! / 2^T.
1036
1037 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1038 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1039}
1040
1041/// evaluateAtIteration - Return the value of this chain of recurrences at
1042/// the specified iteration number. We can evaluate this recurrence by
1043/// multiplying each element in the chain by the binomial coefficient
1044/// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as:
1045///
1046/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1047///
1048/// where BC(It, k) stands for binomial coefficient.
1049///
1050const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1051 ScalarEvolution &SE) const {
1052 const SCEV *Result = getStart();
1053 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1054 // The computation is correct in the face of overflow provided that the
1055 // multiplication is performed _after_ the evaluation of the binomial
1056 // coefficient.
1057 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1058 if (isa<SCEVCouldNotCompute>(Coeff))
1059 return Coeff;
1060
1061 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1062 }
1063 return Result;
1064}
1065
1066//===----------------------------------------------------------------------===//
1067// SCEV Expression folder implementations
1068//===----------------------------------------------------------------------===//
1069
1070const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
1071 Type *Ty) {
1072 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&((getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(
Ty) && "This is not a truncating conversion!") ? static_cast
<void> (0) : __assert_fail ("getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && \"This is not a truncating conversion!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 1073, __PRETTY_FUNCTION__))
1073 "This is not a truncating conversion!")((getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(
Ty) && "This is not a truncating conversion!") ? static_cast
<void> (0) : __assert_fail ("getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && \"This is not a truncating conversion!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 1073, __PRETTY_FUNCTION__))
;
1074 assert(isSCEVable(Ty) &&((isSCEVable(Ty) && "This is not a conversion to a SCEVable type!"
) ? static_cast<void> (0) : __assert_fail ("isSCEVable(Ty) && \"This is not a conversion to a SCEVable type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 1075, __PRETTY_FUNCTION__))
1075 "This is not a conversion to a SCEVable type!")((isSCEVable(Ty) && "This is not a conversion to a SCEVable type!"
) ? static_cast<void> (0) : __assert_fail ("isSCEVable(Ty) && \"This is not a conversion to a SCEVable type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 1075, __PRETTY_FUNCTION__))
;
1076 Ty = getEffectiveSCEVType(Ty);
1077
1078 FoldingSetNodeID ID;
1079 ID.AddInteger(scTruncate);
1080 ID.AddPointer(Op);
1081 ID.AddPointer(Ty);
1082 void *IP = nullptr;
1083 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1084
1085 // Fold if the operand is constant.
1086 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1087 return getConstant(
1088 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1089
1090 // trunc(trunc(x)) --> trunc(x)
1091 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1092 return getTruncateExpr(ST->getOperand(), Ty);
1093
1094 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1095 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1096 return getTruncateOrSignExtend(SS->getOperand(), Ty);
1097
1098 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1099 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1100 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1101
1102 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
1103 // eliminate all the truncates, or we replace other casts with truncates.
1104 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1105 SmallVector<const SCEV *, 4> Operands;
1106 bool hasTrunc = false;
1107 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1108 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
1109 if (!isa<SCEVCastExpr>(SA->getOperand(i)))
1110 hasTrunc = isa<SCEVTruncateExpr>(S);
1111 Operands.push_back(S);
1112 }
1113 if (!hasTrunc)
1114 return getAddExpr(Operands);
1115 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
1116 }
1117
1118 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
1119 // eliminate all the truncates, or we replace other casts with truncates.
1120 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1121 SmallVector<const SCEV *, 4> Operands;
1122 bool hasTrunc = false;
1123 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1124 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
1125 if (!isa<SCEVCastExpr>(SM->getOperand(i)))
1126 hasTrunc = isa<SCEVTruncateExpr>(S);
1127 Operands.push_back(S);
1128 }
1129 if (!hasTrunc)
1130 return getMulExpr(Operands);
1131 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
1132 }
1133
1134 // If the input value is a chrec scev, truncate the chrec's operands.
1135 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1136 SmallVector<const SCEV *, 4> Operands;
1137 for (const SCEV *Op : AddRec->operands())
1138 Operands.push_back(getTruncateExpr(Op, Ty));
1139 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1140 }
1141
1142 // The cast wasn't folded; create an explicit cast node. We can reuse
1143 // the existing insert position since if we get here, we won't have
1144 // made any changes which would invalidate it.
1145 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1146 Op, Ty);
1147 UniqueSCEVs.InsertNode(S, IP);
1148 return S;
1149}
1150
1151// Get the limit of a recurrence such that incrementing by Step cannot cause
1152// signed overflow as long as the value of the recurrence within the
1153// loop does not exceed this limit before incrementing.
1154static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1155 ICmpInst::Predicate *Pred,
1156 ScalarEvolution *SE) {
1157 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1158 if (SE->isKnownPositive(Step)) {
1159 *Pred = ICmpInst::ICMP_SLT;
1160 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1161 SE->getSignedRange(Step).getSignedMax());
1162 }
1163 if (SE->isKnownNegative(Step)) {
1164 *Pred = ICmpInst::ICMP_SGT;
1165 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1166 SE->getSignedRange(Step).getSignedMin());
1167 }
1168 return nullptr;
1169}
1170
1171// Get the limit of a recurrence such that incrementing by Step cannot cause
1172// unsigned overflow as long as the value of the recurrence within the loop does
1173// not exceed this limit before incrementing.
1174static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1175 ICmpInst::Predicate *Pred,
1176 ScalarEvolution *SE) {
1177 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1178 *Pred = ICmpInst::ICMP_ULT;
1179
1180 return SE->getConstant(APInt::getMinValue(BitWidth) -
1181 SE->getUnsignedRange(Step).getUnsignedMax());
1182}
1183
1184namespace {
1185
1186struct ExtendOpTraitsBase {
1187 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
1188};
1189
1190// Used to make code generic over signed and unsigned overflow.
1191template <typename ExtendOp> struct ExtendOpTraits {
1192 // Members present:
1193 //
1194 // static const SCEV::NoWrapFlags WrapType;
1195 //
1196 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1197 //
1198 // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1199 // ICmpInst::Predicate *Pred,
1200 // ScalarEvolution *SE);
1201};
1202
1203template <>
1204struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1205 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1206
1207 static const GetExtendExprTy GetExtendExpr;
1208
1209 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1210 ICmpInst::Predicate *Pred,
1211 ScalarEvolution *SE) {
1212 return getSignedOverflowLimitForStep(Step, Pred, SE);
1213 }
1214};
1215
1216const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1217 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1218
1219template <>
1220struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1221 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1222
1223 static const GetExtendExprTy GetExtendExpr;
1224
1225 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1226 ICmpInst::Predicate *Pred,
1227 ScalarEvolution *SE) {
1228 return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1229 }
1230};
1231
1232const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1233 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1234}
1235
1236// The recurrence AR has been shown to have no signed/unsigned wrap or something
1237// close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1238// easily prove NSW/NUW for its preincrement or postincrement sibling. This
1239// allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1240// Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1241// expression "Step + sext/zext(PreIncAR)" is congruent with
1242// "sext/zext(PostIncAR)"
1243template <typename ExtendOpTy>
1244static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1245 ScalarEvolution *SE) {
1246 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1247 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1248
1249 const Loop *L = AR->getLoop();
1250 const SCEV *Start = AR->getStart();
1251 const SCEV *Step = AR->getStepRecurrence(*SE);
1252
1253 // Check for a simple looking step prior to loop entry.
1254 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1255 if (!SA)
1256 return nullptr;
1257
1258 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1259 // subtraction is expensive. For this purpose, perform a quick and dirty
1260 // difference, by checking for Step in the operand list.
1261 SmallVector<const SCEV *, 4> DiffOps;
1262 for (const SCEV *Op : SA->operands())
1263 if (Op != Step)
1264 DiffOps.push_back(Op);
1265
1266 if (DiffOps.size() == SA->getNumOperands())
1267 return nullptr;
1268
1269 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1270 // `Step`:
1271
1272 // 1. NSW/NUW flags on the step increment.
1273 auto PreStartFlags =
1274 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1275 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1276 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1277 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1278
1279 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1280 // "S+X does not sign/unsign-overflow".
1281 //
1282
1283 const SCEV *BECount = SE->getBackedgeTakenCount(L);
1284 if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1285 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1286 return PreStart;
1287
1288 // 2. Direct overflow check on the step operation's expression.
1289 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1290 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1291 const SCEV *OperandExtendedStart =
1292 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
1293 (SE->*GetExtendExpr)(Step, WideTy));
1294 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
1295 if (PreAR && AR->getNoWrapFlags(WrapType)) {
1296 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1297 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1298 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact.
1299 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1300 }
1301 return PreStart;
1302 }
1303
1304 // 3. Loop precondition.
1305 ICmpInst::Predicate Pred;
1306 const SCEV *OverflowLimit =
1307 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1308
1309 if (OverflowLimit &&
1310 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1311 return PreStart;
1312
1313 return nullptr;
1314}
1315
1316// Get the normalized zero or sign extended expression for this AddRec's Start.
1317template <typename ExtendOpTy>
1318static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1319 ScalarEvolution *SE) {
1320 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1321
1322 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
1323 if (!PreStart)
1324 return (SE->*GetExtendExpr)(AR->getStart(), Ty);
1325
1326 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
1327 (SE->*GetExtendExpr)(PreStart, Ty));
1328}
1329
1330// Try to prove away overflow by looking at "nearby" add recurrences. A
1331// motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1332// does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1333//
1334// Formally:
1335//
1336// {S,+,X} == {S-T,+,X} + T
1337// => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1338//
1339// If ({S-T,+,X} + T) does not overflow ... (1)
1340//
1341// RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1342//
1343// If {S-T,+,X} does not overflow ... (2)
1344//
1345// RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1346// == {Ext(S-T)+Ext(T),+,Ext(X)}
1347//
1348// If (S-T)+T does not overflow ... (3)
1349//
1350// RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1351// == {Ext(S),+,Ext(X)} == LHS
1352//
1353// Thus, if (1), (2) and (3) are true for some T, then
1354// Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1355//
1356// (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1357// does not overflow" restricted to the 0th iteration. Therefore we only need
1358// to check for (1) and (2).
1359//
1360// In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1361// is `Delta` (defined below).
1362//
1363template <typename ExtendOpTy>
1364bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1365 const SCEV *Step,
1366 const Loop *L) {
1367 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1368
1369 // We restrict `Start` to a constant to prevent SCEV from spending too much
1370 // time here. It is correct (but more expensive) to continue with a
1371 // non-constant `Start` and do a general SCEV subtraction to compute
1372 // `PreStart` below.
1373 //
1374 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1375 if (!StartC)
1376 return false;
1377
1378 APInt StartAI = StartC->getAPInt();
1379
1380 for (unsigned Delta : {-2, -1, 1, 2}) {
1381 const SCEV *PreStart = getConstant(StartAI - Delta);
1382
1383 FoldingSetNodeID ID;
1384 ID.AddInteger(scAddRecExpr);
1385 ID.AddPointer(PreStart);
1386 ID.AddPointer(Step);
1387 ID.AddPointer(L);
1388 void *IP = nullptr;
1389 const auto *PreAR =
1390 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1391
1392 // Give up if we don't already have the add recurrence we need because
1393 // actually constructing an add recurrence is relatively expensive.
1394 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2)
1395 const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1396 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1397 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1398 DeltaS, &Pred, this);
1399 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1)
1400 return true;
1401 }
1402 }
1403
1404 return false;
1405}
1406
1407const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
1408 Type *Ty) {
1409 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&((getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(
Ty) && "This is not an extending conversion!") ? static_cast
<void> (0) : __assert_fail ("getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && \"This is not an extending conversion!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 1410, __PRETTY_FUNCTION__))
1410 "This is not an extending conversion!")((getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(
Ty) && "This is not an extending conversion!") ? static_cast
<void> (0) : __assert_fail ("getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && \"This is not an extending conversion!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 1410, __PRETTY_FUNCTION__))
;
1411 assert(isSCEVable(Ty) &&((isSCEVable(Ty) && "This is not a conversion to a SCEVable type!"
) ? static_cast<void> (0) : __assert_fail ("isSCEVable(Ty) && \"This is not a conversion to a SCEVable type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 1412, __PRETTY_FUNCTION__))
1412 "This is not a conversion to a SCEVable type!")((isSCEVable(Ty) && "This is not a conversion to a SCEVable type!"
) ? static_cast<void> (0) : __assert_fail ("isSCEVable(Ty) && \"This is not a conversion to a SCEVable type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 1412, __PRETTY_FUNCTION__))
;
1413 Ty = getEffectiveSCEVType(Ty);
1414
1415 // Fold if the operand is constant.
1416 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1417 return getConstant(
1418 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1419
1420 // zext(zext(x)) --> zext(x)
1421 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1422 return getZeroExtendExpr(SZ->getOperand(), Ty);
1423
1424 // Before doing any expensive analysis, check to see if we've already
1425 // computed a SCEV for this Op and Ty.
1426 FoldingSetNodeID ID;
1427 ID.AddInteger(scZeroExtend);
1428 ID.AddPointer(Op);
1429 ID.AddPointer(Ty);
1430 void *IP = nullptr;
1431 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1432
1433 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1434 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1435 // It's possible the bits taken off by the truncate were all zero bits. If
1436 // so, we should be able to simplify this further.
1437 const SCEV *X = ST->getOperand();
1438 ConstantRange CR = getUnsignedRange(X);
1439 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1440 unsigned NewBits = getTypeSizeInBits(Ty);
1441 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1442 CR.zextOrTrunc(NewBits)))
1443 return getTruncateOrZeroExtend(X, Ty);
1444 }
1445
1446 // If the input value is a chrec scev, and we can prove that the value
1447 // did not overflow the old, smaller, value, we can zero extend all of the
1448 // operands (often constants). This allows analysis of something like
1449 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1450 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1451 if (AR->isAffine()) {
1452 const SCEV *Start = AR->getStart();
1453 const SCEV *Step = AR->getStepRecurrence(*this);
1454 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1455 const Loop *L = AR->getLoop();
1456
1457 if (!AR->hasNoUnsignedWrap()) {
1458 auto NewFlags = proveNoWrapViaConstantRanges(AR);
1459 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1460 }
1461
1462 // If we have special knowledge that this addrec won't overflow,
1463 // we don't need to do any further analysis.
1464 if (AR->hasNoUnsignedWrap())
1465 return getAddRecExpr(
1466 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1467 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1468
1469 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1470 // Note that this serves two purposes: It filters out loops that are
1471 // simply not analyzable, and it covers the case where this code is
1472 // being called from within backedge-taken count analysis, such that
1473 // attempting to ask for the backedge-taken count would likely result
1474 // in infinite recursion. In the later case, the analysis code will
1475 // cope with a conservative value, and it will take care to purge
1476 // that value once it has finished.
1477 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1478 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1479 // Manually compute the final value for AR, checking for
1480 // overflow.
1481
1482 // Check whether the backedge-taken count can be losslessly casted to
1483 // the addrec's type. The count is always unsigned.
1484 const SCEV *CastedMaxBECount =
1485 getTruncateOrZeroExtend(MaxBECount, Start->getType());
1486 const SCEV *RecastedMaxBECount =
1487 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1488 if (MaxBECount == RecastedMaxBECount) {
1489 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1490 // Check whether Start+Step*MaxBECount has no unsigned overflow.
1491 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
1492 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1493 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1494 const SCEV *WideMaxBECount =
1495 getZeroExtendExpr(CastedMaxBECount, WideTy);
1496 const SCEV *OperandExtendedAdd =
1497 getAddExpr(WideStart,
1498 getMulExpr(WideMaxBECount,
1499 getZeroExtendExpr(Step, WideTy)));
1500 if (ZAdd == OperandExtendedAdd) {
1501 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1502 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1503 // Return the expression with the addrec on the outside.
1504 return getAddRecExpr(
1505 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1506 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1507 }
1508 // Similar to above, only this time treat the step value as signed.
1509 // This covers loops that count down.
1510 OperandExtendedAdd =
1511 getAddExpr(WideStart,
1512 getMulExpr(WideMaxBECount,
1513 getSignExtendExpr(Step, WideTy)));
1514 if (ZAdd == OperandExtendedAdd) {
1515 // Cache knowledge of AR NW, which is propagated to this AddRec.
1516 // Negative step causes unsigned wrap, but it still can't self-wrap.
1517 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1518 // Return the expression with the addrec on the outside.
1519 return getAddRecExpr(
1520 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1521 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1522 }
1523 }
1524
1525 // If the backedge is guarded by a comparison with the pre-inc value
1526 // the addrec is safe. Also, if the entry is guarded by a comparison
1527 // with the start value and the backedge is guarded by a comparison
1528 // with the post-inc value, the addrec is safe.
1529 if (isKnownPositive(Step)) {
1530 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1531 getUnsignedRange(Step).getUnsignedMax());
1532 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1533 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1534 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1535 AR->getPostIncExpr(*this), N))) {
1536 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1537 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1538 // Return the expression with the addrec on the outside.
1539 return getAddRecExpr(
1540 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1541 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1542 }
1543 } else if (isKnownNegative(Step)) {
1544 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1545 getSignedRange(Step).getSignedMin());
1546 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1547 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1548 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1549 AR->getPostIncExpr(*this), N))) {
1550 // Cache knowledge of AR NW, which is propagated to this AddRec.
1551 // Negative step causes unsigned wrap, but it still can't self-wrap.
1552 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1553 // Return the expression with the addrec on the outside.
1554 return getAddRecExpr(
1555 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1556 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1557 }
1558 }
1559 }
1560
1561 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1562 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1563 return getAddRecExpr(
1564 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1565 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1566 }
1567 }
1568
1569 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1570 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1571 if (SA->hasNoUnsignedWrap()) {
1572 // If the addition does not unsign overflow then we can, by definition,
1573 // commute the zero extension with the addition operation.
1574 SmallVector<const SCEV *, 4> Ops;
1575 for (const auto *Op : SA->operands())
1576 Ops.push_back(getZeroExtendExpr(Op, Ty));
1577 return getAddExpr(Ops, SCEV::FlagNUW);
1578 }
1579 }
1580
1581 // The cast wasn't folded; create an explicit cast node.
1582 // Recompute the insert position, as it may have been invalidated.
1583 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1584 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1585 Op, Ty);
1586 UniqueSCEVs.InsertNode(S, IP);
1587 return S;
1588}
1589
1590const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1591 Type *Ty) {
1592 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&((getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(
Ty) && "This is not an extending conversion!") ? static_cast
<void> (0) : __assert_fail ("getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && \"This is not an extending conversion!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 1593, __PRETTY_FUNCTION__))
1593 "This is not an extending conversion!")((getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(
Ty) && "This is not an extending conversion!") ? static_cast
<void> (0) : __assert_fail ("getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && \"This is not an extending conversion!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 1593, __PRETTY_FUNCTION__))
;
1594 assert(isSCEVable(Ty) &&((isSCEVable(Ty) && "This is not a conversion to a SCEVable type!"
) ? static_cast<void> (0) : __assert_fail ("isSCEVable(Ty) && \"This is not a conversion to a SCEVable type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 1595, __PRETTY_FUNCTION__))
1595 "This is not a conversion to a SCEVable type!")((isSCEVable(Ty) && "This is not a conversion to a SCEVable type!"
) ? static_cast<void> (0) : __assert_fail ("isSCEVable(Ty) && \"This is not a conversion to a SCEVable type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 1595, __PRETTY_FUNCTION__))
;
1596 Ty = getEffectiveSCEVType(Ty);
1597
1598 // Fold if the operand is constant.
1599 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1600 return getConstant(
1601 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1602
1603 // sext(sext(x)) --> sext(x)
1604 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1605 return getSignExtendExpr(SS->getOperand(), Ty);
1606
1607 // sext(zext(x)) --> zext(x)
1608 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1609 return getZeroExtendExpr(SZ->getOperand(), Ty);
1610
1611 // Before doing any expensive analysis, check to see if we've already
1612 // computed a SCEV for this Op and Ty.
1613 FoldingSetNodeID ID;
1614 ID.AddInteger(scSignExtend);
1615 ID.AddPointer(Op);
1616 ID.AddPointer(Ty);
1617 void *IP = nullptr;
1618 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1619
1620 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1621 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1622 // It's possible the bits taken off by the truncate were all sign bits. If
1623 // so, we should be able to simplify this further.
1624 const SCEV *X = ST->getOperand();
1625 ConstantRange CR = getSignedRange(X);
1626 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1627 unsigned NewBits = getTypeSizeInBits(Ty);
1628 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1629 CR.sextOrTrunc(NewBits)))
1630 return getTruncateOrSignExtend(X, Ty);
1631 }
1632
1633 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1634 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1635 if (SA->getNumOperands() == 2) {
1636 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1637 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1638 if (SMul && SC1) {
1639 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
1640 const APInt &C1 = SC1->getAPInt();
1641 const APInt &C2 = SC2->getAPInt();
1642 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
1643 C2.ugt(C1) && C2.isPowerOf2())
1644 return getAddExpr(getSignExtendExpr(SC1, Ty),
1645 getSignExtendExpr(SMul, Ty));
1646 }
1647 }
1648 }
1649
1650 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1651 if (SA->hasNoSignedWrap()) {
1652 // If the addition does not sign overflow then we can, by definition,
1653 // commute the sign extension with the addition operation.
1654 SmallVector<const SCEV *, 4> Ops;
1655 for (const auto *Op : SA->operands())
1656 Ops.push_back(getSignExtendExpr(Op, Ty));
1657 return getAddExpr(Ops, SCEV::FlagNSW);
1658 }
1659 }
1660 // If the input value is a chrec scev, and we can prove that the value
1661 // did not overflow the old, smaller, value, we can sign extend all of the
1662 // operands (often constants). This allows analysis of something like
1663 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
1664 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1665 if (AR->isAffine()) {
1666 const SCEV *Start = AR->getStart();
1667 const SCEV *Step = AR->getStepRecurrence(*this);
1668 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1669 const Loop *L = AR->getLoop();
1670
1671 if (!AR->hasNoSignedWrap()) {
1672 auto NewFlags = proveNoWrapViaConstantRanges(AR);
1673 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1674 }
1675
1676 // If we have special knowledge that this addrec won't overflow,
1677 // we don't need to do any further analysis.
1678 if (AR->hasNoSignedWrap())
1679 return getAddRecExpr(
1680 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1681 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
1682
1683 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1684 // Note that this serves two purposes: It filters out loops that are
1685 // simply not analyzable, and it covers the case where this code is
1686 // being called from within backedge-taken count analysis, such that
1687 // attempting to ask for the backedge-taken count would likely result
1688 // in infinite recursion. In the later case, the analysis code will
1689 // cope with a conservative value, and it will take care to purge
1690 // that value once it has finished.
1691 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1692 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1693 // Manually compute the final value for AR, checking for
1694 // overflow.
1695
1696 // Check whether the backedge-taken count can be losslessly casted to
1697 // the addrec's type. The count is always unsigned.
1698 const SCEV *CastedMaxBECount =
1699 getTruncateOrZeroExtend(MaxBECount, Start->getType());
1700 const SCEV *RecastedMaxBECount =
1701 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1702 if (MaxBECount == RecastedMaxBECount) {
1703 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1704 // Check whether Start+Step*MaxBECount has no signed overflow.
1705 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1706 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1707 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1708 const SCEV *WideMaxBECount =
1709 getZeroExtendExpr(CastedMaxBECount, WideTy);
1710 const SCEV *OperandExtendedAdd =
1711 getAddExpr(WideStart,
1712 getMulExpr(WideMaxBECount,
1713 getSignExtendExpr(Step, WideTy)));
1714 if (SAdd == OperandExtendedAdd) {
1715 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1716 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1717 // Return the expression with the addrec on the outside.
1718 return getAddRecExpr(
1719 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1720 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1721 }
1722 // Similar to above, only this time treat the step value as unsigned.
1723 // This covers loops that count up with an unsigned step.
1724 OperandExtendedAdd =
1725 getAddExpr(WideStart,
1726 getMulExpr(WideMaxBECount,
1727 getZeroExtendExpr(Step, WideTy)));
1728 if (SAdd == OperandExtendedAdd) {
1729 // If AR wraps around then
1730 //
1731 // abs(Step) * MaxBECount > unsigned-max(AR->getType())
1732 // => SAdd != OperandExtendedAdd
1733 //
1734 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1735 // (SAdd == OperandExtendedAdd => AR is NW)
1736
1737 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1738
1739 // Return the expression with the addrec on the outside.
1740 return getAddRecExpr(
1741 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1742 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1743 }
1744 }
1745
1746 // If the backedge is guarded by a comparison with the pre-inc value
1747 // the addrec is safe. Also, if the entry is guarded by a comparison
1748 // with the start value and the backedge is guarded by a comparison
1749 // with the post-inc value, the addrec is safe.
1750 ICmpInst::Predicate Pred;
1751 const SCEV *OverflowLimit =
1752 getSignedOverflowLimitForStep(Step, &Pred, this);
1753 if (OverflowLimit &&
1754 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1755 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1756 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1757 OverflowLimit)))) {
1758 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1759 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1760 return getAddRecExpr(
1761 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1762 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1763 }
1764 }
1765 // If Start and Step are constants, check if we can apply this
1766 // transformation:
1767 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1768 auto *SC1 = dyn_cast<SCEVConstant>(Start);
1769 auto *SC2 = dyn_cast<SCEVConstant>(Step);
1770 if (SC1 && SC2) {
1771 const APInt &C1 = SC1->getAPInt();
1772 const APInt &C2 = SC2->getAPInt();
1773 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1774 C2.isPowerOf2()) {
1775 Start = getSignExtendExpr(Start, Ty);
1776 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L,
1777 AR->getNoWrapFlags());
1778 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1779 }
1780 }
1781
1782 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1783 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1784 return getAddRecExpr(
1785 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1786 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1787 }
1788 }
1789
1790 // If the input value is provably positive and we could not simplify
1791 // away the sext build a zext instead.
1792 if (isKnownNonNegative(Op))
1793 return getZeroExtendExpr(Op, Ty);
1794
1795 // The cast wasn't folded; create an explicit cast node.
1796 // Recompute the insert position, as it may have been invalidated.
1797 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1798 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1799 Op, Ty);
1800 UniqueSCEVs.InsertNode(S, IP);
1801 return S;
1802}
1803
1804/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1805/// unspecified bits out to the given type.
1806///
1807const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1808 Type *Ty) {
1809 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&((getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(
Ty) && "This is not an extending conversion!") ? static_cast
<void> (0) : __assert_fail ("getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && \"This is not an extending conversion!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 1810, __PRETTY_FUNCTION__))
1810 "This is not an extending conversion!")((getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(
Ty) && "This is not an extending conversion!") ? static_cast
<void> (0) : __assert_fail ("getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && \"This is not an extending conversion!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 1810, __PRETTY_FUNCTION__))
;
1811 assert(isSCEVable(Ty) &&((isSCEVable(Ty) && "This is not a conversion to a SCEVable type!"
) ? static_cast<void> (0) : __assert_fail ("isSCEVable(Ty) && \"This is not a conversion to a SCEVable type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 1812, __PRETTY_FUNCTION__))
1812 "This is not a conversion to a SCEVable type!")((isSCEVable(Ty) && "This is not a conversion to a SCEVable type!"
) ? static_cast<void> (0) : __assert_fail ("isSCEVable(Ty) && \"This is not a conversion to a SCEVable type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 1812, __PRETTY_FUNCTION__))
;
1813 Ty = getEffectiveSCEVType(Ty);
1814
1815 // Sign-extend negative constants.
1816 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1817 if (SC->getAPInt().isNegative())
1818 return getSignExtendExpr(Op, Ty);
1819
1820 // Peel off a truncate cast.
1821 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1822 const SCEV *NewOp = T->getOperand();
1823 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1824 return getAnyExtendExpr(NewOp, Ty);
1825 return getTruncateOrNoop(NewOp, Ty);
1826 }
1827
1828 // Next try a zext cast. If the cast is folded, use it.
1829 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1830 if (!isa<SCEVZeroExtendExpr>(ZExt))
1831 return ZExt;
1832
1833 // Next try a sext cast. If the cast is folded, use it.
1834 const SCEV *SExt = getSignExtendExpr(Op, Ty);
1835 if (!isa<SCEVSignExtendExpr>(SExt))
1836 return SExt;
1837
1838 // Force the cast to be folded into the operands of an addrec.
1839 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1840 SmallVector<const SCEV *, 4> Ops;
1841 for (const SCEV *Op : AR->operands())
1842 Ops.push_back(getAnyExtendExpr(Op, Ty));
1843 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1844 }
1845
1846 // If the expression is obviously signed, use the sext cast value.
1847 if (isa<SCEVSMaxExpr>(Op))
1848 return SExt;
1849
1850 // Absent any other information, use the zext cast value.
1851 return ZExt;
1852}
1853
1854/// CollectAddOperandsWithScales - Process the given Ops list, which is
1855/// a list of operands to be added under the given scale, update the given
1856/// map. This is a helper function for getAddRecExpr. As an example of
1857/// what it does, given a sequence of operands that would form an add
1858/// expression like this:
1859///
1860/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
1861///
1862/// where A and B are constants, update the map with these values:
1863///
1864/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1865///
1866/// and add 13 + A*B*29 to AccumulatedConstant.
1867/// This will allow getAddRecExpr to produce this:
1868///
1869/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1870///
1871/// This form often exposes folding opportunities that are hidden in
1872/// the original operand list.
1873///
1874/// Return true iff it appears that any interesting folding opportunities
1875/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1876/// the common case where no interesting opportunities are present, and
1877/// is also used as a check to avoid infinite recursion.
1878///
1879static bool
1880CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1881 SmallVectorImpl<const SCEV *> &NewOps,
1882 APInt &AccumulatedConstant,
1883 const SCEV *const *Ops, size_t NumOperands,
1884 const APInt &Scale,
1885 ScalarEvolution &SE) {
1886 bool Interesting = false;
1887
1888 // Iterate over the add operands. They are sorted, with constants first.
1889 unsigned i = 0;
1890 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1891 ++i;
1892 // Pull a buried constant out to the outside.
1893 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1894 Interesting = true;
1895 AccumulatedConstant += Scale * C->getAPInt();
1896 }
1897
1898 // Next comes everything else. We're especially interested in multiplies
1899 // here, but they're in the middle, so just visit the rest with one loop.
1900 for (; i != NumOperands; ++i) {
1901 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1902 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1903 APInt NewScale =
1904 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
1905 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1906 // A multiplication of a constant with another add; recurse.
1907 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1908 Interesting |=
1909 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1910 Add->op_begin(), Add->getNumOperands(),
1911 NewScale, SE);
1912 } else {
1913 // A multiplication of a constant with some other value. Update
1914 // the map.
1915 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1916 const SCEV *Key = SE.getMulExpr(MulOps);
1917 auto Pair = M.insert({Key, NewScale});
1918 if (Pair.second) {
1919 NewOps.push_back(Pair.first->first);
1920 } else {
1921 Pair.first->second += NewScale;
1922 // The map already had an entry for this value, which may indicate
1923 // a folding opportunity.
1924 Interesting = true;
1925 }
1926 }
1927 } else {
1928 // An ordinary operand. Update the map.
1929 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1930 M.insert({Ops[i], Scale});
1931 if (Pair.second) {
1932 NewOps.push_back(Pair.first->first);
1933 } else {
1934 Pair.first->second += Scale;
1935 // The map already had an entry for this value, which may indicate
1936 // a folding opportunity.
1937 Interesting = true;
1938 }
1939 }
1940 }
1941
1942 return Interesting;
1943}
1944
1945// We're trying to construct a SCEV of type `Type' with `Ops' as operands and
1946// `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
1947// can't-overflow flags for the operation if possible.
1948static SCEV::NoWrapFlags
1949StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
1950 const SmallVectorImpl<const SCEV *> &Ops,
1951 SCEV::NoWrapFlags Flags) {
1952 using namespace std::placeholders;
1953 typedef OverflowingBinaryOperator OBO;
1954
1955 bool CanAnalyze =
1956 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
1957 (void)CanAnalyze;
1958 assert(CanAnalyze && "don't call from other places!")((CanAnalyze && "don't call from other places!") ? static_cast
<void> (0) : __assert_fail ("CanAnalyze && \"don't call from other places!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 1958, __PRETTY_FUNCTION__))
;
1959
1960 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1961 SCEV::NoWrapFlags SignOrUnsignWrap =
1962 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
1963
1964 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1965 auto IsKnownNonNegative = [&](const SCEV *S) {
1966 return SE->isKnownNonNegative(S);
1967 };
1968
1969 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
1970 Flags =
1971 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1972
1973 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
1974
1975 if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr &&
1976 Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) {
1977
1978 // (A + C) --> (A + C)<nsw> if the addition does not sign overflow
1979 // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow
1980
1981 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
1982 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
1983 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
1984 Instruction::Add, C, OBO::NoSignedWrap);
1985 if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
1986 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
1987 }
1988 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
1989 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
1990 Instruction::Add, C, OBO::NoUnsignedWrap);
1991 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
1992 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
1993 }
1994 }
1995
1996 return Flags;
1997}
1998
1999/// getAddExpr - Get a canonical add expression, or something simpler if
2000/// possible.
2001const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2002 SCEV::NoWrapFlags Flags) {
2003 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&((!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && "only nuw or nsw allowed"
) ? static_cast<void> (0) : __assert_fail ("!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && \"only nuw or nsw allowed\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 2004, __PRETTY_FUNCTION__))
2004 "only nuw or nsw allowed")((!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && "only nuw or nsw allowed"
) ? static_cast<void> (0) : __assert_fail ("!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && \"only nuw or nsw allowed\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 2004, __PRETTY_FUNCTION__))
;
2005 assert(!Ops.empty() && "Cannot get empty add!")((!Ops.empty() && "Cannot get empty add!") ? static_cast
<void> (0) : __assert_fail ("!Ops.empty() && \"Cannot get empty add!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 2005, __PRETTY_FUNCTION__))
;
2006 if (Ops.size() == 1) return Ops[0];
2007#ifndef NDEBUG
2008 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2009 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2010 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&((getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
"SCEVAddExpr operand types don't match!") ? static_cast<void
> (0) : __assert_fail ("getEffectiveSCEVType(Ops[i]->getType()) == ETy && \"SCEVAddExpr operand types don't match!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 2011, __PRETTY_FUNCTION__))
2011 "SCEVAddExpr operand types don't match!")((getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
"SCEVAddExpr operand types don't match!") ? static_cast<void
> (0) : __assert_fail ("getEffectiveSCEVType(Ops[i]->getType()) == ETy && \"SCEVAddExpr operand types don't match!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 2011, __PRETTY_FUNCTION__))
;
2012#endif
2013
2014 // Sort by complexity, this groups all similar expression types together.
2015 GroupByComplexity(Ops, &LI);
2016
2017 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2018
2019 // If there are any constants, fold them together.
2020 unsigned Idx = 0;
2021 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2022 ++Idx;
2023 assert(Idx < Ops.size())((Idx < Ops.size()) ? static_cast<void> (0) : __assert_fail
("Idx < Ops.size()", "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 2023, __PRETTY_FUNCTION__))
;
2024 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2025 // We found two constants, fold them together!
2026 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2027 if (Ops.size() == 2) return Ops[0];
2028 Ops.erase(Ops.begin()+1); // Erase the folded element
2029 LHSC = cast<SCEVConstant>(Ops[0]);
2030 }
2031
2032 // If we are left with a constant zero being added, strip it off.
2033 if (LHSC->getValue()->isZero()) {
2034 Ops.erase(Ops.begin());
2035 --Idx;
2036 }
2037
2038 if (Ops.size() == 1) return Ops[0];
2039 }
2040
2041 // Okay, check to see if the same value occurs in the operand list more than
2042 // once. If so, merge them together into an multiply expression. Since we
2043 // sorted the list, these values are required to be adjacent.
2044 Type *Ty = Ops[0]->getType();
2045 bool FoundMatch = false;
2046 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2047 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
2048 // Scan ahead to count how many equal operands there are.
2049 unsigned Count = 2;
2050 while (i+Count != e && Ops[i+Count] == Ops[i])
2051 ++Count;
2052 // Merge the values into a multiply.
2053 const SCEV *Scale = getConstant(Ty, Count);
2054 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
2055 if (Ops.size() == Count)
2056 return Mul;
2057 Ops[i] = Mul;
2058 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2059 --i; e -= Count - 1;
2060 FoundMatch = true;
2061 }
2062 if (FoundMatch)
2063 return getAddExpr(Ops, Flags);
2064
2065 // Check for truncates. If all the operands are truncated from the same
2066 // type, see if factoring out the truncate would permit the result to be
2067 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
2068 // if the contents of the resulting outer trunc fold to something simple.
2069 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
2070 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
2071 Type *DstType = Trunc->getType();
2072 Type *SrcType = Trunc->getOperand()->getType();
2073 SmallVector<const SCEV *, 8> LargeOps;
2074 bool Ok = true;
2075 // Check all the operands to see if they can be represented in the
2076 // source type of the truncate.
2077 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2078 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2079 if (T->getOperand()->getType() != SrcType) {
2080 Ok = false;
2081 break;
2082 }
2083 LargeOps.push_back(T->getOperand());
2084 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2085 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2086 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2087 SmallVector<const SCEV *, 8> LargeMulOps;
2088 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2089 if (const SCEVTruncateExpr *T =
2090 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2091 if (T->getOperand()->getType() != SrcType) {
2092 Ok = false;
2093 break;
2094 }
2095 LargeMulOps.push_back(T->getOperand());
2096 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2097 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2098 } else {
2099 Ok = false;
2100 break;
2101 }
2102 }
2103 if (Ok)
2104 LargeOps.push_back(getMulExpr(LargeMulOps));
2105 } else {
2106 Ok = false;
2107 break;
2108 }
2109 }
2110 if (Ok) {
2111 // Evaluate the expression in the larger type.
2112 const SCEV *Fold = getAddExpr(LargeOps, Flags);
2113 // If it folds to something simple, use it. Otherwise, don't.
2114 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2115 return getTruncateExpr(Fold, DstType);
2116 }
2117 }
2118
2119 // Skip past any other cast SCEVs.
2120 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2121 ++Idx;
2122
2123 // If there are add operands they would be next.
2124 if (Idx < Ops.size()) {
2125 bool DeletedAdd = false;
2126 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2127 // If we have an add, expand the add operands onto the end of the operands
2128 // list.
2129 Ops.erase(Ops.begin()+Idx);
2130 Ops.append(Add->op_begin(), Add->op_end());
2131 DeletedAdd = true;
2132 }
2133
2134 // If we deleted at least one add, we added operands to the end of the list,
2135 // and they are not necessarily sorted. Recurse to resort and resimplify
2136 // any operands we just acquired.
2137 if (DeletedAdd)
2138 return getAddExpr(Ops);
2139 }
2140
2141 // Skip over the add expression until we get to a multiply.
2142 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2143 ++Idx;
2144
2145 // Check to see if there are any folding opportunities present with
2146 // operands multiplied by constant values.
2147 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2148 uint64_t BitWidth = getTypeSizeInBits(Ty);
2149 DenseMap<const SCEV *, APInt> M;
2150 SmallVector<const SCEV *, 8> NewOps;
2151 APInt AccumulatedConstant(BitWidth, 0);
2152 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2153 Ops.data(), Ops.size(),
2154 APInt(BitWidth, 1), *this)) {
2155 struct APIntCompare {
2156 bool operator()(const APInt &LHS, const APInt &RHS) const {
2157 return LHS.ult(RHS);
2158 }
2159 };
2160
2161 // Some interesting folding opportunity is present, so its worthwhile to
2162 // re-generate the operands list. Group the operands by constant scale,
2163 // to avoid multiplying by the same constant scale multiple times.
2164 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2165 for (const SCEV *NewOp : NewOps)
2166 MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2167 // Re-generate the operands list.
2168 Ops.clear();
2169 if (AccumulatedConstant != 0)
2170 Ops.push_back(getConstant(AccumulatedConstant));
2171 for (auto &MulOp : MulOpLists)
2172 if (MulOp.first != 0)
2173 Ops.push_back(getMulExpr(getConstant(MulOp.first),
2174 getAddExpr(MulOp.second)));
2175 if (Ops.empty())
2176 return getZero(Ty);
2177 if (Ops.size() == 1)
2178 return Ops[0];
2179 return getAddExpr(Ops);
2180 }
2181 }
2182
2183 // If we are adding something to a multiply expression, make sure the
2184 // something is not already an operand of the multiply. If so, merge it into
2185 // the multiply.
2186 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2187 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2188 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2189 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2190 if (isa<SCEVConstant>(MulOpSCEV))
2191 continue;
2192 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2193 if (MulOpSCEV == Ops[AddOp]) {
2194 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
2195 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2196 if (Mul->getNumOperands() != 2) {
2197 // If the multiply has more than two operands, we must get the
2198 // Y*Z term.
2199 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2200 Mul->op_begin()+MulOp);
2201 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2202 InnerMul = getMulExpr(MulOps);
2203 }
2204 const SCEV *One = getOne(Ty);
2205 const SCEV *AddOne = getAddExpr(One, InnerMul);
2206 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
2207 if (Ops.size() == 2) return OuterMul;
2208 if (AddOp < Idx) {
2209 Ops.erase(Ops.begin()+AddOp);
2210 Ops.erase(Ops.begin()+Idx-1);
2211 } else {
2212 Ops.erase(Ops.begin()+Idx);
2213 Ops.erase(Ops.begin()+AddOp-1);
2214 }
2215 Ops.push_back(OuterMul);
2216 return getAddExpr(Ops);
2217 }
2218
2219 // Check this multiply against other multiplies being added together.
2220 for (unsigned OtherMulIdx = Idx+1;
2221 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2222 ++OtherMulIdx) {
2223 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2224 // If MulOp occurs in OtherMul, we can fold the two multiplies
2225 // together.
2226 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2227 OMulOp != e; ++OMulOp)
2228 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2229 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2230 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2231 if (Mul->getNumOperands() != 2) {
2232 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2233 Mul->op_begin()+MulOp);
2234 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2235 InnerMul1 = getMulExpr(MulOps);
2236 }
2237 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2238 if (OtherMul->getNumOperands() != 2) {
2239 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2240 OtherMul->op_begin()+OMulOp);
2241 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2242 InnerMul2 = getMulExpr(MulOps);
2243 }
2244 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2245 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
2246 if (Ops.size() == 2) return OuterMul;
2247 Ops.erase(Ops.begin()+Idx);
2248 Ops.erase(Ops.begin()+OtherMulIdx-1);
2249 Ops.push_back(OuterMul);
2250 return getAddExpr(Ops);
2251 }
2252 }
2253 }
2254 }
2255
2256 // If there are any add recurrences in the operands list, see if any other
2257 // added values are loop invariant. If so, we can fold them into the
2258 // recurrence.
2259 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2260 ++Idx;
2261
2262 // Scan over all recurrences, trying to fold loop invariants into them.
2263 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2264 // Scan all of the other operands to this add and add them to the vector if
2265 // they are loop invariant w.r.t. the recurrence.
2266 SmallVector<const SCEV *, 8> LIOps;
2267 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2268 const Loop *AddRecLoop = AddRec->getLoop();
2269 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2270 if (isLoopInvariant(Ops[i], AddRecLoop)) {
2271 LIOps.push_back(Ops[i]);
2272 Ops.erase(Ops.begin()+i);
2273 --i; --e;
2274 }
2275
2276 // If we found some loop invariants, fold them into the recurrence.
2277 if (!LIOps.empty()) {
2278 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
2279 LIOps.push_back(AddRec->getStart());
2280
2281 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2282 AddRec->op_end());
2283 AddRecOps[0] = getAddExpr(LIOps);
2284
2285 // Build the new addrec. Propagate the NUW and NSW flags if both the
2286 // outer add and the inner addrec are guaranteed to have no overflow.
2287 // Always propagate NW.
2288 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2289 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2290
2291 // If all of the other operands were loop invariant, we are done.
2292 if (Ops.size() == 1) return NewRec;
2293
2294 // Otherwise, add the folded AddRec by the non-invariant parts.
2295 for (unsigned i = 0;; ++i)
2296 if (Ops[i] == AddRec) {
2297 Ops[i] = NewRec;
2298 break;
2299 }
2300 return getAddExpr(Ops);
2301 }
2302
2303 // Okay, if there weren't any loop invariants to be folded, check to see if
2304 // there are multiple AddRec's with the same loop induction variable being
2305 // added together. If so, we can fold them.
2306 for (unsigned OtherIdx = Idx+1;
2307 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2308 ++OtherIdx)
2309 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2310 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2311 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2312 AddRec->op_end());
2313 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2314 ++OtherIdx)
2315 if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
2316 if (OtherAddRec->getLoop() == AddRecLoop) {
2317 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2318 i != e; ++i) {
2319 if (i >= AddRecOps.size()) {
2320 AddRecOps.append(OtherAddRec->op_begin()+i,
2321 OtherAddRec->op_end());
2322 break;
2323 }
2324 AddRecOps[i] = getAddExpr(AddRecOps[i],
2325 OtherAddRec->getOperand(i));
2326 }
2327 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2328 }
2329 // Step size has changed, so we cannot guarantee no self-wraparound.
2330 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2331 return getAddExpr(Ops);
2332 }
2333
2334 // Otherwise couldn't fold anything into this recurrence. Move onto the
2335 // next one.
2336 }
2337
2338 // Okay, it looks like we really DO need an add expr. Check to see if we
2339 // already have one, otherwise create a new one.
2340 FoldingSetNodeID ID;
2341 ID.AddInteger(scAddExpr);
2342 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2343 ID.AddPointer(Ops[i]);
2344 void *IP = nullptr;
2345 SCEVAddExpr *S =
2346 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2347 if (!S) {
2348 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2349 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2350 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2351 O, Ops.size());
2352 UniqueSCEVs.InsertNode(S, IP);
2353 }
2354 S->setNoWrapFlags(Flags);
2355 return S;
2356}
2357
2358static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2359 uint64_t k = i*j;
2360 if (j > 1 && k / j != i) Overflow = true;
2361 return k;
2362}
2363
2364/// Compute the result of "n choose k", the binomial coefficient. If an
2365/// intermediate computation overflows, Overflow will be set and the return will
2366/// be garbage. Overflow is not cleared on absence of overflow.
2367static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2368 // We use the multiplicative formula:
2369 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2370 // At each iteration, we take the n-th term of the numeral and divide by the
2371 // (k-n)th term of the denominator. This division will always produce an
2372 // integral result, and helps reduce the chance of overflow in the
2373 // intermediate computations. However, we can still overflow even when the
2374 // final result would fit.
2375
2376 if (n == 0 || n == k) return 1;
2377 if (k > n) return 0;
2378
2379 if (k > n/2)
2380 k = n-k;
2381
2382 uint64_t r = 1;
2383 for (uint64_t i = 1; i <= k; ++i) {
2384 r = umul_ov(r, n-(i-1), Overflow);
2385 r /= i;
2386 }
2387 return r;
2388}
2389
2390/// Determine if any of the operands in this SCEV are a constant or if
2391/// any of the add or multiply expressions in this SCEV contain a constant.
2392static bool containsConstantSomewhere(const SCEV *StartExpr) {
2393 SmallVector<const SCEV *, 4> Ops;
2394 Ops.push_back(StartExpr);
2395 while (!Ops.empty()) {
2396 const SCEV *CurrentExpr = Ops.pop_back_val();
2397 if (isa<SCEVConstant>(*CurrentExpr))
2398 return true;
2399
2400 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2401 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
2402 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
2403 }
2404 }
2405 return false;
2406}
2407
2408/// getMulExpr - Get a canonical multiply expression, or something simpler if
2409/// possible.
2410const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2411 SCEV::NoWrapFlags Flags) {
2412 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&((Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
"only nuw or nsw allowed") ? static_cast<void> (0) : __assert_fail
("Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && \"only nuw or nsw allowed\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 2413, __PRETTY_FUNCTION__))
2413 "only nuw or nsw allowed")((Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
"only nuw or nsw allowed") ? static_cast<void> (0) : __assert_fail
("Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && \"only nuw or nsw allowed\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 2413, __PRETTY_FUNCTION__))
;
2414 assert(!Ops.empty() && "Cannot get empty mul!")((!Ops.empty() && "Cannot get empty mul!") ? static_cast
<void> (0) : __assert_fail ("!Ops.empty() && \"Cannot get empty mul!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 2414, __PRETTY_FUNCTION__))
;
2415 if (Ops.size() == 1) return Ops[0];
2416#ifndef NDEBUG
2417 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2418 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2419 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&((getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
"SCEVMulExpr operand types don't match!") ? static_cast<void
> (0) : __assert_fail ("getEffectiveSCEVType(Ops[i]->getType()) == ETy && \"SCEVMulExpr operand types don't match!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 2420, __PRETTY_FUNCTION__))
2420 "SCEVMulExpr operand types don't match!")((getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
"SCEVMulExpr operand types don't match!") ? static_cast<void
> (0) : __assert_fail ("getEffectiveSCEVType(Ops[i]->getType()) == ETy && \"SCEVMulExpr operand types don't match!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 2420, __PRETTY_FUNCTION__))
;
2421#endif
2422
2423 // Sort by complexity, this groups all similar expression types together.
2424 GroupByComplexity(Ops, &LI);
2425
2426 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2427
2428 // If there are any constants, fold them together.
2429 unsigned Idx = 0;
2430 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2431
2432 // C1*(C2+V) -> C1*C2 + C1*V
2433 if (Ops.size() == 2)
2434 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2435 // If any of Add's ops are Adds or Muls with a constant,
2436 // apply this transformation as well.
2437 if (Add->getNumOperands() == 2)
2438 if (containsConstantSomewhere(Add))
2439 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2440 getMulExpr(LHSC, Add->getOperand(1)));
2441
2442 ++Idx;
2443 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2444 // We found two constants, fold them together!
2445 ConstantInt *Fold =
2446 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
2447 Ops[0] = getConstant(Fold);
2448 Ops.erase(Ops.begin()+1); // Erase the folded element
2449 if (Ops.size() == 1) return Ops[0];
2450 LHSC = cast<SCEVConstant>(Ops[0]);
2451 }
2452
2453 // If we are left with a constant one being multiplied, strip it off.
2454 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2455 Ops.erase(Ops.begin());
2456 --Idx;
2457 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2458 // If we have a multiply of zero, it will always be zero.
2459 return Ops[0];
2460 } else if (Ops[0]->isAllOnesValue()) {
2461 // If we have a mul by -1 of an add, try distributing the -1 among the
2462 // add operands.
2463 if (Ops.size() == 2) {
2464 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2465 SmallVector<const SCEV *, 4> NewOps;
2466 bool AnyFolded = false;
2467 for (const SCEV *AddOp : Add->operands()) {
2468 const SCEV *Mul = getMulExpr(Ops[0], AddOp);
2469 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2470 NewOps.push_back(Mul);
2471 }
2472 if (AnyFolded)
2473 return getAddExpr(NewOps);
2474 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2475 // Negation preserves a recurrence's no self-wrap property.
2476 SmallVector<const SCEV *, 4> Operands;
2477 for (const SCEV *AddRecOp : AddRec->operands())
2478 Operands.push_back(getMulExpr(Ops[0], AddRecOp));
2479
2480 return getAddRecExpr(Operands, AddRec->getLoop(),
2481 AddRec->getNoWrapFlags(SCEV::FlagNW));
2482 }
2483 }
2484 }
2485
2486 if (Ops.size() == 1)
2487 return Ops[0];
2488 }
2489
2490 // Skip over the add expression until we get to a multiply.
2491 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2492 ++Idx;
2493
2494 // If there are mul operands inline them all into this expression.
2495 if (Idx < Ops.size()) {
2496 bool DeletedMul = false;
2497 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2498 // If we have an mul, expand the mul operands onto the end of the operands
2499 // list.
2500 Ops.erase(Ops.begin()+Idx);
2501 Ops.append(Mul->op_begin(), Mul->op_end());
2502 DeletedMul = true;
2503 }
2504
2505 // If we deleted at least one mul, we added operands to the end of the list,
2506 // and they are not necessarily sorted. Recurse to resort and resimplify
2507 // any operands we just acquired.
2508 if (DeletedMul)
2509 return getMulExpr(Ops);
2510 }
2511
2512 // If there are any add recurrences in the operands list, see if any other
2513 // added values are loop invariant. If so, we can fold them into the
2514 // recurrence.
2515 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2516 ++Idx;
2517
2518 // Scan over all recurrences, trying to fold loop invariants into them.
2519 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2520 // Scan all of the other operands to this mul and add them to the vector if
2521 // they are loop invariant w.r.t. the recurrence.
2522 SmallVector<const SCEV *, 8> LIOps;
2523 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2524 const Loop *AddRecLoop = AddRec->getLoop();
2525 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2526 if (isLoopInvariant(Ops[i], AddRecLoop)) {
2527 LIOps.push_back(Ops[i]);
2528 Ops.erase(Ops.begin()+i);
2529 --i; --e;
2530 }
2531
2532 // If we found some loop invariants, fold them into the recurrence.
2533 if (!LIOps.empty()) {
2534 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
2535 SmallVector<const SCEV *, 4> NewOps;
2536 NewOps.reserve(AddRec->getNumOperands());
2537 const SCEV *Scale = getMulExpr(LIOps);
2538 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2539 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
2540
2541 // Build the new addrec. Propagate the NUW and NSW flags if both the
2542 // outer mul and the inner addrec are guaranteed to have no overflow.
2543 //
2544 // No self-wrap cannot be guaranteed after changing the step size, but
2545 // will be inferred if either NUW or NSW is true.
2546 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2547 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2548
2549 // If all of the other operands were loop invariant, we are done.
2550 if (Ops.size() == 1) return NewRec;
2551
2552 // Otherwise, multiply the folded AddRec by the non-invariant parts.
2553 for (unsigned i = 0;; ++i)
2554 if (Ops[i] == AddRec) {
2555 Ops[i] = NewRec;
2556 break;
2557 }
2558 return getMulExpr(Ops);
2559 }
2560
2561 // Okay, if there weren't any loop invariants to be folded, check to see if
2562 // there are multiple AddRec's with the same loop induction variable being
2563 // multiplied together. If so, we can fold them.
2564
2565 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2566 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2567 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2568 // ]]],+,...up to x=2n}.
2569 // Note that the arguments to choose() are always integers with values
2570 // known at compile time, never SCEV objects.
2571 //
2572 // The implementation avoids pointless extra computations when the two
2573 // addrec's are of different length (mathematically, it's equivalent to
2574 // an infinite stream of zeros on the right).
2575 bool OpsModified = false;
2576 for (unsigned OtherIdx = Idx+1;
2577 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2578 ++OtherIdx) {
2579 const SCEVAddRecExpr *OtherAddRec =
2580 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2581 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2582 continue;
2583
2584 bool Overflow = false;
2585 Type *Ty = AddRec->getType();
2586 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2587 SmallVector<const SCEV*, 7> AddRecOps;
2588 for (int x = 0, xe = AddRec->getNumOperands() +
2589 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2590 const SCEV *Term = getZero(Ty);
2591 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2592 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2593 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2594 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2595 z < ze && !Overflow; ++z) {
2596 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2597 uint64_t Coeff;
2598 if (LargerThan64Bits)
2599 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2600 else
2601 Coeff = Coeff1*Coeff2;
2602 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2603 const SCEV *Term1 = AddRec->getOperand(y-z);
2604 const SCEV *Term2 = OtherAddRec->getOperand(z);
2605 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
2606 }
2607 }
2608 AddRecOps.push_back(Term);
2609 }
2610 if (!Overflow) {
2611 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2612 SCEV::FlagAnyWrap);
2613 if (Ops.size() == 2) return NewAddRec;
2614 Ops[Idx] = NewAddRec;
2615 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2616 OpsModified = true;
2617 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2618 if (!AddRec)
2619 break;
2620 }
2621 }
2622 if (OpsModified)
2623 return getMulExpr(Ops);
2624
2625 // Otherwise couldn't fold anything into this recurrence. Move onto the
2626 // next one.
2627 }
2628
2629 // Okay, it looks like we really DO need an mul expr. Check to see if we
2630 // already have one, otherwise create a new one.
2631 FoldingSetNodeID ID;
2632 ID.AddInteger(scMulExpr);
2633 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2634 ID.AddPointer(Ops[i]);
2635 void *IP = nullptr;
2636 SCEVMulExpr *S =
2637 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2638 if (!S) {
2639 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2640 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2641 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2642 O, Ops.size());
2643 UniqueSCEVs.InsertNode(S, IP);
2644 }
2645 S->setNoWrapFlags(Flags);
2646 return S;
2647}
2648
2649/// getUDivExpr - Get a canonical unsigned division expression, or something
2650/// simpler if possible.
2651const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2652 const SCEV *RHS) {
2653 assert(getEffectiveSCEVType(LHS->getType()) ==((getEffectiveSCEVType(LHS->getType()) == getEffectiveSCEVType
(RHS->getType()) && "SCEVUDivExpr operand types don't match!"
) ? static_cast<void> (0) : __assert_fail ("getEffectiveSCEVType(LHS->getType()) == getEffectiveSCEVType(RHS->getType()) && \"SCEVUDivExpr operand types don't match!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 2655, __PRETTY_FUNCTION__))
2654 getEffectiveSCEVType(RHS->getType()) &&((getEffectiveSCEVType(LHS->getType()) == getEffectiveSCEVType
(RHS->getType()) && "SCEVUDivExpr operand types don't match!"
) ? static_cast<void> (0) : __assert_fail ("getEffectiveSCEVType(LHS->getType()) == getEffectiveSCEVType(RHS->getType()) && \"SCEVUDivExpr operand types don't match!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 2655, __PRETTY_FUNCTION__))
2655 "SCEVUDivExpr operand types don't match!")((getEffectiveSCEVType(LHS->getType()) == getEffectiveSCEVType
(RHS->getType()) && "SCEVUDivExpr operand types don't match!"
) ? static_cast<void> (0) : __assert_fail ("getEffectiveSCEVType(LHS->getType()) == getEffectiveSCEVType(RHS->getType()) && \"SCEVUDivExpr operand types don't match!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 2655, __PRETTY_FUNCTION__))
;
2656
2657 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2658 if (RHSC->getValue()->equalsInt(1))
2659 return LHS; // X udiv 1 --> x
2660 // If the denominator is zero, the result of the udiv is undefined. Don't
2661 // try to analyze it, because the resolution chosen here may differ from
2662 // the resolution chosen in other parts of the compiler.
2663 if (!RHSC->getValue()->isZero()) {
2664 // Determine if the division can be folded into the operands of
2665 // its operands.
2666 // TODO: Generalize this to non-constants by using known-bits information.
2667 Type *Ty = LHS->getType();
2668 unsigned LZ = RHSC->getAPInt().countLeadingZeros();
2669 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2670 // For non-power-of-two values, effectively round the value up to the
2671 // nearest power of two.
2672 if (!RHSC->getAPInt().isPowerOf2())
2673 ++MaxShiftAmt;
2674 IntegerType *ExtTy =
2675 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2676 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2677 if (const SCEVConstant *Step =
2678 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2679 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2680 const APInt &StepInt = Step->getAPInt();
2681 const APInt &DivInt = RHSC->getAPInt();
2682 if (!StepInt.urem(DivInt) &&
2683 getZeroExtendExpr(AR, ExtTy) ==
2684 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2685 getZeroExtendExpr(Step, ExtTy),
2686 AR->getLoop(), SCEV::FlagAnyWrap)) {
2687 SmallVector<const SCEV *, 4> Operands;
2688 for (const SCEV *Op : AR->operands())
2689 Operands.push_back(getUDivExpr(Op, RHS));
2690 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
2691 }
2692 /// Get a canonical UDivExpr for a recurrence.
2693 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2694 // We can currently only fold X%N if X is constant.
2695 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2696 if (StartC && !DivInt.urem(StepInt) &&
2697 getZeroExtendExpr(AR, ExtTy) ==
2698 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2699 getZeroExtendExpr(Step, ExtTy),
2700 AR->getLoop(), SCEV::FlagAnyWrap)) {
2701 const APInt &StartInt = StartC->getAPInt();
2702 const APInt &StartRem = StartInt.urem(StepInt);
2703 if (StartRem != 0)
2704 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2705 AR->getLoop(), SCEV::FlagNW);
2706 }
2707 }
2708 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2709 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2710 SmallVector<const SCEV *, 4> Operands;
2711 for (const SCEV *Op : M->operands())
2712 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
2713 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2714 // Find an operand that's safely divisible.
2715 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2716 const SCEV *Op = M->getOperand(i);
2717 const SCEV *Div = getUDivExpr(Op, RHSC);
2718 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2719 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2720 M->op_end());
2721 Operands[i] = Div;
2722 return getMulExpr(Operands);
2723 }
2724 }
2725 }
2726 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2727 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
2728 SmallVector<const SCEV *, 4> Operands;
2729 for (const SCEV *Op : A->operands())
2730 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
2731 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2732 Operands.clear();
2733 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2734 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2735 if (isa<SCEVUDivExpr>(Op) ||
2736 getMulExpr(Op, RHS) != A->getOperand(i))
2737 break;
2738 Operands.push_back(Op);
2739 }
2740 if (Operands.size() == A->getNumOperands())
2741 return getAddExpr(Operands);
2742 }
2743 }
2744
2745 // Fold if both operands are constant.
2746 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2747 Constant *LHSCV = LHSC->getValue();
2748 Constant *RHSCV = RHSC->getValue();
2749 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2750 RHSCV)));
2751 }
2752 }
2753 }
2754
2755 FoldingSetNodeID ID;
2756 ID.AddInteger(scUDivExpr);
2757 ID.AddPointer(LHS);
2758 ID.AddPointer(RHS);
2759 void *IP = nullptr;
2760 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2761 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2762 LHS, RHS);
2763 UniqueSCEVs.InsertNode(S, IP);
2764 return S;
2765}
2766
2767static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2768 APInt A = C1->getAPInt().abs();
2769 APInt B = C2->getAPInt().abs();
2770 uint32_t ABW = A.getBitWidth();
2771 uint32_t BBW = B.getBitWidth();
2772
2773 if (ABW > BBW)
2774 B = B.zext(ABW);
2775 else if (ABW < BBW)
2776 A = A.zext(BBW);
2777
2778 return APIntOps::GreatestCommonDivisor(A, B);
2779}
2780
2781/// getUDivExactExpr - Get a canonical unsigned division expression, or
2782/// something simpler if possible. There is no representation for an exact udiv
2783/// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2784/// We can't do this when it's not exact because the udiv may be clearing bits.
2785const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2786 const SCEV *RHS) {
2787 // TODO: we could try to find factors in all sorts of things, but for now we
2788 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2789 // end of this file for inspiration.
2790
2791 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2792 if (!Mul)
2793 return getUDivExpr(LHS, RHS);
2794
2795 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2796 // If the mulexpr multiplies by a constant, then that constant must be the
2797 // first element of the mulexpr.
2798 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2799 if (LHSCst == RHSCst) {
2800 SmallVector<const SCEV *, 2> Operands;
2801 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2802 return getMulExpr(Operands);
2803 }
2804
2805 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2806 // that there's a factor provided by one of the other terms. We need to
2807 // check.
2808 APInt Factor = gcd(LHSCst, RHSCst);
2809 if (!Factor.isIntN(1)) {
2810 LHSCst =
2811 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
2812 RHSCst =
2813 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
2814 SmallVector<const SCEV *, 2> Operands;
2815 Operands.push_back(LHSCst);
2816 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2817 LHS = getMulExpr(Operands);
2818 RHS = RHSCst;
2819 Mul = dyn_cast<SCEVMulExpr>(LHS);
2820 if (!Mul)
2821 return getUDivExactExpr(LHS, RHS);
2822 }
2823 }
2824 }
2825
2826 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2827 if (Mul->getOperand(i) == RHS) {
2828 SmallVector<const SCEV *, 2> Operands;
2829 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2830 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2831 return getMulExpr(Operands);
2832 }
2833 }
2834
2835 return getUDivExpr(LHS, RHS);
2836}
2837
2838/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2839/// Simplify the expression as much as possible.
2840const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2841 const Loop *L,
2842 SCEV::NoWrapFlags Flags) {
2843 SmallVector<const SCEV *, 4> Operands;
2844 Operands.push_back(Start);
2845 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2846 if (StepChrec->getLoop() == L) {
2847 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2848 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
2849 }
2850
2851 Operands.push_back(Step);
2852 return getAddRecExpr(Operands, L, Flags);
2853}
2854
2855/// getAddRecExpr - Get an add recurrence expression for the specified loop.
2856/// Simplify the expression as much as possible.
2857const SCEV *
2858ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2859 const Loop *L, SCEV::NoWrapFlags Flags) {
2860 if (Operands.size() == 1) return Operands[0];
2861#ifndef NDEBUG
2862 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2863 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2864 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&((getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
"SCEVAddRecExpr operand types don't match!") ? static_cast<
void> (0) : __assert_fail ("getEffectiveSCEVType(Operands[i]->getType()) == ETy && \"SCEVAddRecExpr operand types don't match!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 2865, __PRETTY_FUNCTION__))
2865 "SCEVAddRecExpr operand types don't match!")((getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
"SCEVAddRecExpr operand types don't match!") ? static_cast<
void> (0) : __assert_fail ("getEffectiveSCEVType(Operands[i]->getType()) == ETy && \"SCEVAddRecExpr operand types don't match!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 2865, __PRETTY_FUNCTION__))
;
2866 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2867 assert(isLoopInvariant(Operands[i], L) &&((isLoopInvariant(Operands[i], L) && "SCEVAddRecExpr operand is not loop-invariant!"
) ? static_cast<void> (0) : __assert_fail ("isLoopInvariant(Operands[i], L) && \"SCEVAddRecExpr operand is not loop-invariant!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 2868, __PRETTY_FUNCTION__))
2868 "SCEVAddRecExpr operand is not loop-invariant!")((isLoopInvariant(Operands[i], L) && "SCEVAddRecExpr operand is not loop-invariant!"
) ? static_cast<void> (0) : __assert_fail ("isLoopInvariant(Operands[i], L) && \"SCEVAddRecExpr operand is not loop-invariant!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 2868, __PRETTY_FUNCTION__))
;
2869#endif
2870
2871 if (Operands.back()->isZero()) {
2872 Operands.pop_back();
2873 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
2874 }
2875
2876 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2877 // use that information to infer NUW and NSW flags. However, computing a
2878 // BE count requires calling getAddRecExpr, so we may not yet have a
2879 // meaningful BE count at this point (and if we don't, we'd be stuck
2880 // with a SCEVCouldNotCompute as the cached BE count).
2881
2882 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
2883
2884 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2885 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2886 const Loop *NestedLoop = NestedAR->getLoop();
2887 if (L->contains(NestedLoop)
2888 ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
2889 : (!NestedLoop->contains(L) &&
2890 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
2891 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2892 NestedAR->op_end());
2893 Operands[0] = NestedAR->getStart();
2894 // AddRecs require their operands be loop-invariant with respect to their
2895 // loops. Don't perform this transformation if it would break this
2896 // requirement.
2897 bool AllInvariant = all_of(
2898 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
2899
2900 if (AllInvariant) {
2901 // Create a recurrence for the outer loop with the same step size.
2902 //
2903 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2904 // inner recurrence has the same property.
2905 SCEV::NoWrapFlags OuterFlags =
2906 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
2907
2908 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
2909 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
2910 return isLoopInvariant(Op, NestedLoop);
2911 });
2912
2913 if (AllInvariant) {
2914 // Ok, both add recurrences are valid after the transformation.
2915 //
2916 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2917 // the outer recurrence has the same property.
2918 SCEV::NoWrapFlags InnerFlags =
2919 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
2920 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2921 }
2922 }
2923 // Reset Operands to its original state.
2924 Operands[0] = NestedAR;
2925 }
2926 }
2927
2928 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2929 // already have one, otherwise create a new one.
2930 FoldingSetNodeID ID;
2931 ID.AddInteger(scAddRecExpr);
2932 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2933 ID.AddPointer(Operands[i]);
2934 ID.AddPointer(L);
2935 void *IP = nullptr;
2936 SCEVAddRecExpr *S =
2937 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2938 if (!S) {
2939 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2940 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2941 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2942 O, Operands.size(), L);
2943 UniqueSCEVs.InsertNode(S, IP);
2944 }
2945 S->setNoWrapFlags(Flags);
2946 return S;
2947}
2948
2949const SCEV *
2950ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
2951 const SmallVectorImpl<const SCEV *> &IndexExprs,
2952 bool InBounds) {
2953 // getSCEV(Base)->getType() has the same address space as Base->getType()
2954 // because SCEV::getType() preserves the address space.
2955 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
2956 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
2957 // instruction to its SCEV, because the Instruction may be guarded by control
2958 // flow and the no-overflow bits may not be valid for the expression in any
2959 // context. This can be fixed similarly to how these flags are handled for
2960 // adds.
2961 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
2962
2963 const SCEV *TotalOffset = getZero(IntPtrTy);
2964 // The address space is unimportant. The first thing we do on CurTy is getting
2965 // its element type.
2966 Type *CurTy = PointerType::getUnqual(PointeeType);
2967 for (const SCEV *IndexExpr : IndexExprs) {
2968 // Compute the (potentially symbolic) offset in bytes for this index.
2969 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2970 // For a struct, add the member offset.
2971 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
2972 unsigned FieldNo = Index->getZExtValue();
2973 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
2974
2975 // Add the field offset to the running total offset.
2976 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
2977
2978 // Update CurTy to the type of the field at Index.
2979 CurTy = STy->getTypeAtIndex(Index);
2980 } else {
2981 // Update CurTy to its element type.
2982 CurTy = cast<SequentialType>(CurTy)->getElementType();
2983 // For an array, add the element offset, explicitly scaled.
2984 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
2985 // Getelementptr indices are signed.
2986 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
2987
2988 // Multiply the index by the element size to compute the element offset.
2989 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
2990
2991 // Add the element offset to the running total offset.
2992 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
2993 }
2994 }
2995
2996 // Add the total offset from all the GEP indices to the base.
2997 return getAddExpr(BaseExpr, TotalOffset, Wrap);
2998}
2999
3000const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
3001 const SCEV *RHS) {
3002 SmallVector<const SCEV *, 2> Ops;
3003 Ops.push_back(LHS);
3004 Ops.push_back(RHS);
3005 return getSMaxExpr(Ops);
3006}
3007
3008const SCEV *
3009ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3010 assert(!Ops.empty() && "Cannot get empty smax!")((!Ops.empty() && "Cannot get empty smax!") ? static_cast
<void> (0) : __assert_fail ("!Ops.empty() && \"Cannot get empty smax!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3010, __PRETTY_FUNCTION__))
;
3011 if (Ops.size() == 1) return Ops[0];
3012#ifndef NDEBUG
3013 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3014 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3015 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&((getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
"SCEVSMaxExpr operand types don't match!") ? static_cast<
void> (0) : __assert_fail ("getEffectiveSCEVType(Ops[i]->getType()) == ETy && \"SCEVSMaxExpr operand types don't match!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3016, __PRETTY_FUNCTION__))
3016 "SCEVSMaxExpr operand types don't match!")((getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
"SCEVSMaxExpr operand types don't match!") ? static_cast<
void> (0) : __assert_fail ("getEffectiveSCEVType(Ops[i]->getType()) == ETy && \"SCEVSMaxExpr operand types don't match!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3016, __PRETTY_FUNCTION__))
;
3017#endif
3018
3019 // Sort by complexity, this groups all similar expression types together.
3020 GroupByComplexity(Ops, &LI);
3021
3022 // If there are any constants, fold them together.
3023 unsigned Idx = 0;
3024 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3025 ++Idx;
3026 assert(Idx < Ops.size())((Idx < Ops.size()) ? static_cast<void> (0) : __assert_fail
("Idx < Ops.size()", "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3026, __PRETTY_FUNCTION__))
;
3027 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3028 // We found two constants, fold them together!
3029 ConstantInt *Fold = ConstantInt::get(
3030 getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt()));
3031 Ops[0] = getConstant(Fold);
3032 Ops.erase(Ops.begin()+1); // Erase the folded element
3033 if (Ops.size() == 1) return Ops[0];
3034 LHSC = cast<SCEVConstant>(Ops[0]);
3035 }
3036
3037 // If we are left with a constant minimum-int, strip it off.
3038 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3039 Ops.erase(Ops.begin());
3040 --Idx;
3041 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3042 // If we have an smax with a constant maximum-int, it will always be
3043 // maximum-int.
3044 return Ops[0];
3045 }
3046
3047 if (Ops.size() == 1) return Ops[0];
3048 }
3049
3050 // Find the first SMax
3051 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3052 ++Idx;
3053
3054 // Check to see if one of the operands is an SMax. If so, expand its operands
3055 // onto our operand list, and recurse to simplify.
3056 if (Idx < Ops.size()) {
3057 bool DeletedSMax = false;
3058 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
3059 Ops.erase(Ops.begin()+Idx);
3060 Ops.append(SMax->op_begin(), SMax->op_end());
3061 DeletedSMax = true;
3062 }
3063
3064 if (DeletedSMax)
3065 return getSMaxExpr(Ops);
3066 }
3067
3068 // Okay, check to see if the same value occurs in the operand list twice. If
3069 // so, delete one. Since we sorted the list, these values are required to
3070 // be adjacent.
3071 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3072 // X smax Y smax Y --> X smax Y
3073 // X smax Y --> X, if X is always greater than Y
3074 if (Ops[i] == Ops[i+1] ||
3075 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3076 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3077 --i; --e;
3078 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
3079 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3080 --i; --e;
3081 }
3082
3083 if (Ops.size() == 1) return Ops[0];
3084
3085 assert(!Ops.empty() && "Reduced smax down to nothing!")((!Ops.empty() && "Reduced smax down to nothing!") ? static_cast
<void> (0) : __assert_fail ("!Ops.empty() && \"Reduced smax down to nothing!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3085, __PRETTY_FUNCTION__))
;
3086
3087 // Okay, it looks like we really DO need an smax expr. Check to see if we
3088 // already have one, otherwise create a new one.
3089 FoldingSetNodeID ID;
3090 ID.AddInteger(scSMaxExpr);
3091 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3092 ID.AddPointer(Ops[i]);
3093 void *IP = nullptr;
3094 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3095 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3096 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3097 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3098 O, Ops.size());
3099 UniqueSCEVs.InsertNode(S, IP);
3100 return S;
3101}
3102
3103const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3104 const SCEV *RHS) {
3105 SmallVector<const SCEV *, 2> Ops;
3106 Ops.push_back(LHS);
3107 Ops.push_back(RHS);
3108 return getUMaxExpr(Ops);
3109}
3110
3111const SCEV *
3112ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3113 assert(!Ops.empty() && "Cannot get empty umax!")((!Ops.empty() && "Cannot get empty umax!") ? static_cast
<void> (0) : __assert_fail ("!Ops.empty() && \"Cannot get empty umax!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3113, __PRETTY_FUNCTION__))
;
3114 if (Ops.size() == 1) return Ops[0];
3115#ifndef NDEBUG
3116 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3117 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3118 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&((getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
"SCEVUMaxExpr operand types don't match!") ? static_cast<
void> (0) : __assert_fail ("getEffectiveSCEVType(Ops[i]->getType()) == ETy && \"SCEVUMaxExpr operand types don't match!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3119, __PRETTY_FUNCTION__))
3119 "SCEVUMaxExpr operand types don't match!")((getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
"SCEVUMaxExpr operand types don't match!") ? static_cast<
void> (0) : __assert_fail ("getEffectiveSCEVType(Ops[i]->getType()) == ETy && \"SCEVUMaxExpr operand types don't match!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3119, __PRETTY_FUNCTION__))
;
3120#endif
3121
3122 // Sort by complexity, this groups all similar expression types together.
3123 GroupByComplexity(Ops, &LI);
3124
3125 // If there are any constants, fold them together.
3126 unsigned Idx = 0;
3127 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3128 ++Idx;
3129 assert(Idx < Ops.size())((Idx < Ops.size()) ? static_cast<void> (0) : __assert_fail
("Idx < Ops.size()", "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3129, __PRETTY_FUNCTION__))
;
3130 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3131 // We found two constants, fold them together!
3132 ConstantInt *Fold = ConstantInt::get(
3133 getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt()));
3134 Ops[0] = getConstant(Fold);
3135 Ops.erase(Ops.begin()+1); // Erase the folded element
3136 if (Ops.size() == 1) return Ops[0];
3137 LHSC = cast<SCEVConstant>(Ops[0]);
3138 }
3139
3140 // If we are left with a constant minimum-int, strip it off.
3141 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3142 Ops.erase(Ops.begin());
3143 --Idx;
3144 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3145 // If we have an umax with a constant maximum-int, it will always be
3146 // maximum-int.
3147 return Ops[0];
3148 }
3149
3150 if (Ops.size() == 1) return Ops[0];
3151 }
3152
3153 // Find the first UMax
3154 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3155 ++Idx;
3156
3157 // Check to see if one of the operands is a UMax. If so, expand its operands
3158 // onto our operand list, and recurse to simplify.
3159 if (Idx < Ops.size()) {
3160 bool DeletedUMax = false;
3161 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
3162 Ops.erase(Ops.begin()+Idx);
3163 Ops.append(UMax->op_begin(), UMax->op_end());
3164 DeletedUMax = true;
3165 }
3166
3167 if (DeletedUMax)
3168 return getUMaxExpr(Ops);
3169 }
3170
3171 // Okay, check to see if the same value occurs in the operand list twice. If
3172 // so, delete one. Since we sorted the list, these values are required to
3173 // be adjacent.
3174 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3175 // X umax Y umax Y --> X umax Y
3176 // X umax Y --> X, if X is always greater than Y
3177 if (Ops[i] == Ops[i+1] ||
3178 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3179 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3180 --i; --e;
3181 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
3182 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3183 --i; --e;
3184 }
3185
3186 if (Ops.size() == 1) return Ops[0];
3187
3188 assert(!Ops.empty() && "Reduced umax down to nothing!")((!Ops.empty() && "Reduced umax down to nothing!") ? static_cast
<void> (0) : __assert_fail ("!Ops.empty() && \"Reduced umax down to nothing!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3188, __PRETTY_FUNCTION__))
;
3189
3190 // Okay, it looks like we really DO need a umax expr. Check to see if we
3191 // already have one, otherwise create a new one.
3192 FoldingSetNodeID ID;
3193 ID.AddInteger(scUMaxExpr);
3194 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3195 ID.AddPointer(Ops[i]);
3196 void *IP = nullptr;
3197 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3198 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3199 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3200 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3201 O, Ops.size());
3202 UniqueSCEVs.InsertNode(S, IP);
3203 return S;
3204}
3205
3206const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3207 const SCEV *RHS) {
3208 // ~smax(~x, ~y) == smin(x, y).
3209 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3210}
3211
3212const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3213 const SCEV *RHS) {
3214 // ~umax(~x, ~y) == umin(x, y)
3215 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3216}
3217
3218const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3219 // We can bypass creating a target-independent
3220 // constant expression and then folding it back into a ConstantInt.
3221 // This is just a compile-time optimization.
3222 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3223}
3224
3225const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3226 StructType *STy,
3227 unsigned FieldNo) {
3228 // We can bypass creating a target-independent
3229 // constant expression and then folding it back into a ConstantInt.
3230 // This is just a compile-time optimization.
3231 return getConstant(
3232 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3233}
3234
3235const SCEV *ScalarEvolution::getUnknown(Value *V) {
3236 // Don't attempt to do anything other than create a SCEVUnknown object
3237 // here. createSCEV only calls getUnknown after checking for all other
3238 // interesting possibilities, and any other code that calls getUnknown
3239 // is doing so in order to hide a value from SCEV canonicalization.
3240
3241 FoldingSetNodeID ID;
3242 ID.AddInteger(scUnknown);
3243 ID.AddPointer(V);
3244 void *IP = nullptr;
3245 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3246 assert(cast<SCEVUnknown>(S)->getValue() == V &&((cast<SCEVUnknown>(S)->getValue() == V && "Stale SCEVUnknown in uniquing map!"
) ? static_cast<void> (0) : __assert_fail ("cast<SCEVUnknown>(S)->getValue() == V && \"Stale SCEVUnknown in uniquing map!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3247, __PRETTY_FUNCTION__))
3247 "Stale SCEVUnknown in uniquing map!")((cast<SCEVUnknown>(S)->getValue() == V && "Stale SCEVUnknown in uniquing map!"
) ? static_cast<void> (0) : __assert_fail ("cast<SCEVUnknown>(S)->getValue() == V && \"Stale SCEVUnknown in uniquing map!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3247, __PRETTY_FUNCTION__))
;
3248 return S;
3249 }
3250 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3251 FirstUnknown);
3252 FirstUnknown = cast<SCEVUnknown>(S);
3253 UniqueSCEVs.InsertNode(S, IP);
3254 return S;
3255}
3256
3257//===----------------------------------------------------------------------===//
3258// Basic SCEV Analysis and PHI Idiom Recognition Code
3259//
3260
3261/// isSCEVable - Test if values of the given type are analyzable within
3262/// the SCEV framework. This primarily includes integer types, and it
3263/// can optionally include pointer types if the ScalarEvolution class
3264/// has access to target-specific information.
3265bool ScalarEvolution::isSCEVable(Type *Ty) const {
3266 // Integers and pointers are always SCEVable.
3267 return Ty->isIntegerTy() || Ty->isPointerTy();
3268}
3269
3270/// getTypeSizeInBits - Return the size in bits of the specified type,
3271/// for which isSCEVable must return true.
3272uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3273 assert(isSCEVable(Ty) && "Type is not SCEVable!")((isSCEVable(Ty) && "Type is not SCEVable!") ? static_cast
<void> (0) : __assert_fail ("isSCEVable(Ty) && \"Type is not SCEVable!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3273, __PRETTY_FUNCTION__))
;
3274 return getDataLayout().getTypeSizeInBits(Ty);
3275}
3276
3277/// getEffectiveSCEVType - Return a type with the same bitwidth as
3278/// the given type and which represents how SCEV will treat the given
3279/// type, for which isSCEVable must return true. For pointer types,
3280/// this is the pointer-sized integer type.
3281Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3282 assert(isSCEVable(Ty) && "Type is not SCEVable!")((isSCEVable(Ty) && "Type is not SCEVable!") ? static_cast
<void> (0) : __assert_fail ("isSCEVable(Ty) && \"Type is not SCEVable!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3282, __PRETTY_FUNCTION__))
;
3283
3284 if (Ty->isIntegerTy())
3285 return Ty;
3286
3287 // The only other support type is pointer.
3288 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!")((Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"
) ? static_cast<void> (0) : __assert_fail ("Ty->isPointerTy() && \"Unexpected non-pointer non-integer type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3288, __PRETTY_FUNCTION__))
;
3289 return getDataLayout().getIntPtrType(Ty);
3290}
3291
3292const SCEV *ScalarEvolution::getCouldNotCompute() {
3293 return CouldNotCompute.get();
3294}
3295
3296
3297bool ScalarEvolution::checkValidity(const SCEV *S) const {
3298 // Helper class working with SCEVTraversal to figure out if a SCEV contains
3299 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3300 // is set iff if find such SCEVUnknown.
3301 //
3302 struct FindInvalidSCEVUnknown {
3303 bool FindOne;
3304 FindInvalidSCEVUnknown() { FindOne = false; }
3305 bool follow(const SCEV *S) {
3306 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
3307 case scConstant:
3308 return false;
3309 case scUnknown:
3310 if (!cast<SCEVUnknown>(S)->getValue())
3311 FindOne = true;
3312 return false;
3313 default:
3314 return true;
3315 }
3316 }
3317 bool isDone() const { return FindOne; }
3318 };
3319
3320 FindInvalidSCEVUnknown F;
3321 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3322 ST.visitAll(S);
3323
3324 return !F.FindOne;
3325}
3326
3327namespace {
3328// Helper class working with SCEVTraversal to figure out if a SCEV contains
3329// a sub SCEV of scAddRecExpr type. FindInvalidSCEVUnknown::FoundOne is set
3330// iff if such sub scAddRecExpr type SCEV is found.
3331struct FindAddRecurrence {
3332 bool FoundOne;
3333 FindAddRecurrence() : FoundOne(false) {}
3334
3335 bool follow(const SCEV *S) {
3336 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
3337 case scAddRecExpr:
3338 FoundOne = true;
3339 case scConstant:
3340 case scUnknown:
3341 case scCouldNotCompute:
3342 return false;
3343 default:
3344 return true;
3345 }
3346 }
3347 bool isDone() const { return FoundOne; }
3348};
3349}
3350
3351bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3352 HasRecMapType::iterator I = HasRecMap.find_as(S);
3353 if (I != HasRecMap.end())
3354 return I->second;
3355
3356 FindAddRecurrence F;
3357 SCEVTraversal<FindAddRecurrence> ST(F);
3358 ST.visitAll(S);
3359 HasRecMap.insert({S, F.FoundOne});
3360 return F.FoundOne;
3361}
3362
3363/// getSCEVValues - Return the Value set from S.
3364SetVector<Value *> *ScalarEvolution::getSCEVValues(const SCEV *S) {
3365 ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3366 if (SI == ExprValueMap.end())
3367 return nullptr;
3368#ifndef NDEBUG
3369 if (VerifySCEVMap) {
3370 // Check there is no dangling Value in the set returned.
3371 for (const auto &VE : SI->second)
3372 assert(ValueExprMap.count(VE))((ValueExprMap.count(VE)) ? static_cast<void> (0) : __assert_fail
("ValueExprMap.count(VE)", "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3372, __PRETTY_FUNCTION__))
;
3373 }
3374#endif
3375 return &SI->second;
3376}
3377
3378/// eraseValueFromMap - Erase Value from ValueExprMap and ExprValueMap.
3379/// If ValueExprMap.erase(V) is not used together with forgetMemoizedResults(S),
3380/// eraseValueFromMap should be used instead to ensure whenever V->S is removed
3381/// from ValueExprMap, V is also removed from the set of ExprValueMap[S].
3382void ScalarEvolution::eraseValueFromMap(Value *V) {
3383 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3384 if (I != ValueExprMap.end()) {
3385 const SCEV *S = I->second;
3386 SetVector<Value *> *SV = getSCEVValues(S);
3387 // Remove V from the set of ExprValueMap[S]
3388 if (SV)
3389 SV->remove(V);
3390 ValueExprMap.erase(V);
3391 }
3392}
3393
3394/// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
3395/// expression and create a new one.
3396const SCEV *ScalarEvolution::getSCEV(Value *V) {
3397 assert(isSCEVable(V->getType()) && "Value is not SCEVable!")((isSCEVable(V->getType()) && "Value is not SCEVable!"
) ? static_cast<void> (0) : __assert_fail ("isSCEVable(V->getType()) && \"Value is not SCEVable!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3397, __PRETTY_FUNCTION__))
;
3398
3399 const SCEV *S = getExistingSCEV(V);
3400 if (S == nullptr) {
3401 S = createSCEV(V);
3402 // During PHI resolution, it is possible to create two SCEVs for the same
3403 // V, so it is needed to double check whether V->S is inserted into
3404 // ValueExprMap before insert S->V into ExprValueMap.
3405 std::pair<ValueExprMapType::iterator, bool> Pair =
3406 ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3407 if (Pair.second)
3408 ExprValueMap[S].insert(V);
3409 }
3410 return S;
3411}
3412
3413const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3414 assert(isSCEVable(V->getType()) && "Value is not SCEVable!")((isSCEVable(V->getType()) && "Value is not SCEVable!"
) ? static_cast<void> (0) : __assert_fail ("isSCEVable(V->getType()) && \"Value is not SCEVable!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3414, __PRETTY_FUNCTION__))
;
3415
3416 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3417 if (I != ValueExprMap.end()) {
3418 const SCEV *S = I->second;
3419 if (checkValidity(S))
3420 return S;
3421 forgetMemoizedResults(S);
3422 ValueExprMap.erase(I);
3423 }
3424 return nullptr;
3425}
3426
3427/// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
3428///
3429const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3430 SCEV::NoWrapFlags Flags) {
3431 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3432 return getConstant(
3433 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3434
3435 Type *Ty = V->getType();
3436 Ty = getEffectiveSCEVType(Ty);
3437 return getMulExpr(
3438 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
3439}
3440
3441/// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
3442const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3443 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3444 return getConstant(
3445 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3446
3447 Type *Ty = V->getType();
3448 Ty = getEffectiveSCEVType(Ty);
3449 const SCEV *AllOnes =
3450 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
3451 return getMinusSCEV(AllOnes, V);
3452}
3453
3454/// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1.
3455const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3456 SCEV::NoWrapFlags Flags) {
3457 // Fast path: X - X --> 0.
3458 if (LHS == RHS)
3459 return getZero(LHS->getType());
3460
3461 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3462 // makes it so that we cannot make much use of NUW.
3463 auto AddFlags = SCEV::FlagAnyWrap;
3464 const bool RHSIsNotMinSigned =
3465 !getSignedRange(RHS).getSignedMin().isMinSignedValue();
3466 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3467 // Let M be the minimum representable signed value. Then (-1)*RHS
3468 // signed-wraps if and only if RHS is M. That can happen even for
3469 // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3470 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3471 // (-1)*RHS, we need to prove that RHS != M.
3472 //
3473 // If LHS is non-negative and we know that LHS - RHS does not
3474 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3475 // either by proving that RHS > M or that LHS >= 0.
3476 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3477 AddFlags = SCEV::FlagNSW;
3478 }
3479 }
3480
3481 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3482 // RHS is NSW and LHS >= 0.
3483 //
3484 // The difficulty here is that the NSW flag may have been proven
3485 // relative to a loop that is to be found in a recurrence in LHS and
3486 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3487 // larger scope than intended.
3488 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3489
3490 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags);
3491}
3492
3493/// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
3494/// input value to the specified type. If the type must be extended, it is zero
3495/// extended.
3496const SCEV *
3497ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3498 Type *SrcTy = V->getType();
3499 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&(((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
(Ty->isIntegerTy() || Ty->isPointerTy()) && "Cannot truncate or zero extend with non-integer arguments!"
) ? static_cast<void> (0) : __assert_fail ("(SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot truncate or zero extend with non-integer arguments!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3501, __PRETTY_FUNCTION__))
3500 (Ty->isIntegerTy() || Ty->isPointerTy()) &&(((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
(Ty->isIntegerTy() || Ty->isPointerTy()) && "Cannot truncate or zero extend with non-integer arguments!"
) ? static_cast<void> (0) : __assert_fail ("(SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot truncate or zero extend with non-integer arguments!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3501, __PRETTY_FUNCTION__))
3501 "Cannot truncate or zero extend with non-integer arguments!")(((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
(Ty->isIntegerTy() || Ty->isPointerTy()) && "Cannot truncate or zero extend with non-integer arguments!"
) ? static_cast<void> (0) : __assert_fail ("(SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot truncate or zero extend with non-integer arguments!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3501, __PRETTY_FUNCTION__))
;
3502 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3503 return V; // No conversion
3504 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3505 return getTruncateExpr(V, Ty);
3506 return getZeroExtendExpr(V, Ty);
3507}
3508
3509/// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
3510/// input value to the specified type. If the type must be extended, it is sign
3511/// extended.
3512const SCEV *
3513ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
3514 Type *Ty) {
3515 Type *SrcTy = V->getType();
3516 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&(((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
(Ty->isIntegerTy() || Ty->isPointerTy()) && "Cannot truncate or zero extend with non-integer arguments!"
) ? static_cast<void> (0) : __assert_fail ("(SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot truncate or zero extend with non-integer arguments!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3518, __PRETTY_FUNCTION__))
3517 (Ty->isIntegerTy() || Ty->isPointerTy()) &&(((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
(Ty->isIntegerTy() || Ty->isPointerTy()) && "Cannot truncate or zero extend with non-integer arguments!"
) ? static_cast<void> (0) : __assert_fail ("(SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot truncate or zero extend with non-integer arguments!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3518, __PRETTY_FUNCTION__))
3518 "Cannot truncate or zero extend with non-integer arguments!")(((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
(Ty->isIntegerTy() || Ty->isPointerTy()) && "Cannot truncate or zero extend with non-integer arguments!"
) ? static_cast<void> (0) : __assert_fail ("(SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot truncate or zero extend with non-integer arguments!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3518, __PRETTY_FUNCTION__))
;
3519 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3520 return V; // No conversion
3521 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3522 return getTruncateExpr(V, Ty);
3523 return getSignExtendExpr(V, Ty);
3524}
3525
3526/// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
3527/// input value to the specified type. If the type must be extended, it is zero
3528/// extended. The conversion must not be narrowing.
3529const SCEV *
3530ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3531 Type *SrcTy = V->getType();
3532 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&(((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
(Ty->isIntegerTy() || Ty->isPointerTy()) && "Cannot noop or zero extend with non-integer arguments!"
) ? static_cast<void> (0) : __assert_fail ("(SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot noop or zero extend with non-integer arguments!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3534, __PRETTY_FUNCTION__))
3533 (Ty->isIntegerTy() || Ty->isPointerTy()) &&(((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
(Ty->isIntegerTy() || Ty->isPointerTy()) && "Cannot noop or zero extend with non-integer arguments!"
) ? static_cast<void> (0) : __assert_fail ("(SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot noop or zero extend with non-integer arguments!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3534, __PRETTY_FUNCTION__))
3534 "Cannot noop or zero extend with non-integer arguments!")(((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
(Ty->isIntegerTy() || Ty->isPointerTy()) && "Cannot noop or zero extend with non-integer arguments!"
) ? static_cast<void> (0) : __assert_fail ("(SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot noop or zero extend with non-integer arguments!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3534, __PRETTY_FUNCTION__))
;
3535 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&((getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
"getNoopOrZeroExtend cannot truncate!") ? static_cast<void
> (0) : __assert_fail ("getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && \"getNoopOrZeroExtend cannot truncate!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3536, __PRETTY_FUNCTION__))
3536 "getNoopOrZeroExtend cannot truncate!")((getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
"getNoopOrZeroExtend cannot truncate!") ? static_cast<void
> (0) : __assert_fail ("getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && \"getNoopOrZeroExtend cannot truncate!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3536, __PRETTY_FUNCTION__))
;
3537 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3538 return V; // No conversion
3539 return getZeroExtendExpr(V, Ty);
3540}
3541
3542/// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
3543/// input value to the specified type. If the type must be extended, it is sign
3544/// extended. The conversion must not be narrowing.
3545const SCEV *
3546ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3547 Type *SrcTy = V->getType();
3548 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&(((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
(Ty->isIntegerTy() || Ty->isPointerTy()) && "Cannot noop or sign extend with non-integer arguments!"
) ? static_cast<void> (0) : __assert_fail ("(SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot noop or sign extend with non-integer arguments!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3550, __PRETTY_FUNCTION__))
3549 (Ty->isIntegerTy() || Ty->isPointerTy()) &&(((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
(Ty->isIntegerTy() || Ty->isPointerTy()) && "Cannot noop or sign extend with non-integer arguments!"
) ? static_cast<void> (0) : __assert_fail ("(SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot noop or sign extend with non-integer arguments!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3550, __PRETTY_FUNCTION__))
3550 "Cannot noop or sign extend with non-integer arguments!")(((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
(Ty->isIntegerTy() || Ty->isPointerTy()) && "Cannot noop or sign extend with non-integer arguments!"
) ? static_cast<void> (0) : __assert_fail ("(SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot noop or sign extend with non-integer arguments!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3550, __PRETTY_FUNCTION__))
;
3551 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&((getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
"getNoopOrSignExtend cannot truncate!") ? static_cast<void
> (0) : __assert_fail ("getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && \"getNoopOrSignExtend cannot truncate!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3552, __PRETTY_FUNCTION__))
3552 "getNoopOrSignExtend cannot truncate!")((getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
"getNoopOrSignExtend cannot truncate!") ? static_cast<void
> (0) : __assert_fail ("getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && \"getNoopOrSignExtend cannot truncate!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3552, __PRETTY_FUNCTION__))
;
3553 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3554 return V; // No conversion
3555 return getSignExtendExpr(V, Ty);
3556}
3557
3558/// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
3559/// the input value to the specified type. If the type must be extended,
3560/// it is extended with unspecified bits. The conversion must not be
3561/// narrowing.
3562const SCEV *
3563ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3564 Type *SrcTy = V->getType();
3565 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&(((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
(Ty->isIntegerTy() || Ty->isPointerTy()) && "Cannot noop or any extend with non-integer arguments!"
) ? static_cast<void> (0) : __assert_fail ("(SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot noop or any extend with non-integer arguments!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3567, __PRETTY_FUNCTION__))
3566 (Ty->isIntegerTy() || Ty->isPointerTy()) &&(((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
(Ty->isIntegerTy() || Ty->isPointerTy()) && "Cannot noop or any extend with non-integer arguments!"
) ? static_cast<void> (0) : __assert_fail ("(SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot noop or any extend with non-integer arguments!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3567, __PRETTY_FUNCTION__))
3567 "Cannot noop or any extend with non-integer arguments!")(((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
(Ty->isIntegerTy() || Ty->isPointerTy()) && "Cannot noop or any extend with non-integer arguments!"
) ? static_cast<void> (0) : __assert_fail ("(SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot noop or any extend with non-integer arguments!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3567, __PRETTY_FUNCTION__))
;
3568 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&((getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
"getNoopOrAnyExtend cannot truncate!") ? static_cast<void
> (0) : __assert_fail ("getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && \"getNoopOrAnyExtend cannot truncate!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3569, __PRETTY_FUNCTION__))
3569 "getNoopOrAnyExtend cannot truncate!")((getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
"getNoopOrAnyExtend cannot truncate!") ? static_cast<void
> (0) : __assert_fail ("getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && \"getNoopOrAnyExtend cannot truncate!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3569, __PRETTY_FUNCTION__))
;
3570 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3571 return V; // No conversion
3572 return getAnyExtendExpr(V, Ty);
3573}
3574
3575/// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
3576/// input value to the specified type. The conversion must not be widening.
3577const SCEV *
3578ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3579 Type *SrcTy = V->getType();
3580 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&(((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
(Ty->isIntegerTy() || Ty->isPointerTy()) && "Cannot truncate or noop with non-integer arguments!"
) ? static_cast<void> (0) : __assert_fail ("(SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot truncate or noop with non-integer arguments!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3582, __PRETTY_FUNCTION__))
3581 (Ty->isIntegerTy() || Ty->isPointerTy()) &&(((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
(Ty->isIntegerTy() || Ty->isPointerTy()) && "Cannot truncate or noop with non-integer arguments!"
) ? static_cast<void> (0) : __assert_fail ("(SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot truncate or noop with non-integer arguments!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3582, __PRETTY_FUNCTION__))
3582 "Cannot truncate or noop with non-integer arguments!")(((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
(Ty->isIntegerTy() || Ty->isPointerTy()) && "Cannot truncate or noop with non-integer arguments!"
) ? static_cast<void> (0) : __assert_fail ("(SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot truncate or noop with non-integer arguments!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3582, __PRETTY_FUNCTION__))
;
3583 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&((getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
"getTruncateOrNoop cannot extend!") ? static_cast<void>
(0) : __assert_fail ("getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && \"getTruncateOrNoop cannot extend!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3584, __PRETTY_FUNCTION__))
3584 "getTruncateOrNoop cannot extend!")((getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
"getTruncateOrNoop cannot extend!") ? static_cast<void>
(0) : __assert_fail ("getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && \"getTruncateOrNoop cannot extend!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3584, __PRETTY_FUNCTION__))
;
3585 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3586 return V; // No conversion
3587 return getTruncateExpr(V, Ty);
3588}
3589
3590/// getUMaxFromMismatchedTypes - Promote the operands to the wider of
3591/// the types using zero-extension, and then perform a umax operation
3592/// with them.
3593const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3594 const SCEV *RHS) {
3595 const SCEV *PromotedLHS = LHS;
3596 const SCEV *PromotedRHS = RHS;
3597
3598 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3599 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3600 else
3601 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3602
3603 return getUMaxExpr(PromotedLHS, PromotedRHS);
3604}
3605
3606/// getUMinFromMismatchedTypes - Promote the operands to the wider of
3607/// the types using zero-extension, and then perform a umin operation
3608/// with them.
3609const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3610 const SCEV *RHS) {
3611 const SCEV *PromotedLHS = LHS;
3612 const SCEV *PromotedRHS = RHS;
3613
3614 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3615 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3616 else
3617 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3618
3619 return getUMinExpr(PromotedLHS, PromotedRHS);
3620}
3621
3622/// getPointerBase - Transitively follow the chain of pointer-type operands
3623/// until reaching a SCEV that does not have a single pointer operand. This
3624/// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3625/// but corner cases do exist.
3626const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3627 // A pointer operand may evaluate to a nonpointer expression, such as null.
3628 if (!V->getType()->isPointerTy())
3629 return V;
3630
3631 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3632 return getPointerBase(Cast->getOperand());
3633 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
3634 const SCEV *PtrOp = nullptr;
3635 for (const SCEV *NAryOp : NAry->operands()) {
3636 if (NAryOp->getType()->isPointerTy()) {
3637 // Cannot find the base of an expression with multiple pointer operands.
3638 if (PtrOp)
3639 return V;
3640 PtrOp = NAryOp;
3641 }
3642 }
3643 if (!PtrOp)
3644 return V;
3645 return getPointerBase(PtrOp);
3646 }
3647 return V;
3648}
3649
3650/// PushDefUseChildren - Push users of the given Instruction
3651/// onto the given Worklist.
3652static void
3653PushDefUseChildren(Instruction *I,
3654 SmallVectorImpl<Instruction *> &Worklist) {
3655 // Push the def-use children onto the Worklist stack.
3656 for (User *U : I->users())
3657 Worklist.push_back(cast<Instruction>(U));
3658}
3659
3660/// ForgetSymbolicValue - This looks up computed SCEV values for all
3661/// instructions that depend on the given instruction and removes them from
3662/// the ValueExprMapType map if they reference SymName. This is used during PHI
3663/// resolution.
3664void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
3665 SmallVector<Instruction *, 16> Worklist;
3666 PushDefUseChildren(PN, Worklist);
3667
3668 SmallPtrSet<Instruction *, 8> Visited;
3669 Visited.insert(PN);
3670 while (!Worklist.empty()) {
3671 Instruction *I = Worklist.pop_back_val();
3672 if (!Visited.insert(I).second)
3673 continue;
3674
3675 auto It = ValueExprMap.find_as(static_cast<Value *>(I));
3676 if (It != ValueExprMap.end()) {
3677 const SCEV *Old = It->second;
3678
3679 // Short-circuit the def-use traversal if the symbolic name
3680 // ceases to appear in expressions.
3681 if (Old != SymName && !hasOperand(Old, SymName))
3682 continue;
3683
3684 // SCEVUnknown for a PHI either means that it has an unrecognized
3685 // structure, it's a PHI that's in the progress of being computed
3686 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3687 // additional loop trip count information isn't going to change anything.
3688 // In the second case, createNodeForPHI will perform the necessary
3689 // updates on its own when it gets to that point. In the third, we do
3690 // want to forget the SCEVUnknown.
3691 if (!isa<PHINode>(I) ||
3692 !isa<SCEVUnknown>(Old) ||
3693 (I != PN && Old == SymName)) {
3694 forgetMemoizedResults(Old);
3695 ValueExprMap.erase(It);
3696 }
3697 }
3698
3699 PushDefUseChildren(I, Worklist);
3700 }
3701}
3702
3703namespace {
3704class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
3705public:
3706 static const SCEV *rewrite(const SCEV *S, const Loop *L,
3707 ScalarEvolution &SE) {
3708 SCEVInitRewriter Rewriter(L, SE);
3709 const SCEV *Result = Rewriter.visit(S);
3710 return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3711 }
3712
3713 SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
3714 : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3715
3716 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3717 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3718 Valid = false;
3719 return Expr;
3720 }
3721
3722 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3723 // Only allow AddRecExprs for this loop.
3724 if (Expr->getLoop() == L)
3725 return Expr->getStart();
3726 Valid = false;
3727 return Expr;
3728 }
3729
3730 bool isValid() { return Valid; }
3731
3732private:
3733 const Loop *L;
3734 bool Valid;
3735};
3736
3737class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
3738public:
3739 static const SCEV *rewrite(const SCEV *S, const Loop *L,
3740 ScalarEvolution &SE) {
3741 SCEVShiftRewriter Rewriter(L, SE);
3742 const SCEV *Result = Rewriter.visit(S);
3743 return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3744 }
3745
3746 SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
3747 : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3748
3749 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3750 // Only allow AddRecExprs for this loop.
3751 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3752 Valid = false;
3753 return Expr;
3754 }
3755
3756 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3757 if (Expr->getLoop() == L && Expr->isAffine())
3758 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
3759 Valid = false;
3760 return Expr;
3761 }
3762 bool isValid() { return Valid; }
3763
3764private:
3765 const Loop *L;
3766 bool Valid;
3767};
3768} // end anonymous namespace
3769
3770SCEV::NoWrapFlags
3771ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
3772 if (!AR->isAffine())
3773 return SCEV::FlagAnyWrap;
3774
3775 typedef OverflowingBinaryOperator OBO;
3776 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
3777
3778 if (!AR->hasNoSignedWrap()) {
3779 ConstantRange AddRecRange = getSignedRange(AR);
3780 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
3781
3782 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
3783 Instruction::Add, IncRange, OBO::NoSignedWrap);
3784 if (NSWRegion.contains(AddRecRange))
3785 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
3786 }
3787
3788 if (!AR->hasNoUnsignedWrap()) {
3789 ConstantRange AddRecRange = getUnsignedRange(AR);
3790 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
3791
3792 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
3793 Instruction::Add, IncRange, OBO::NoUnsignedWrap);
3794 if (NUWRegion.contains(AddRecRange))
3795 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
3796 }
3797
3798 return Result;
3799}
3800
3801namespace {
3802/// Represents an abstract binary operation. This may exist as a
3803/// normal instruction or constant expression, or may have been
3804/// derived from an expression tree.
3805struct BinaryOp {
3806 unsigned Opcode;
3807 Value *LHS;
3808 Value *RHS;
3809 bool IsNSW;
3810 bool IsNUW;
3811
3812 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
3813 /// constant expression.
3814 Operator *Op;
3815
3816 explicit BinaryOp(Operator *Op)
3817 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
3818 IsNSW(false), IsNUW(false), Op(Op) {
3819 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
3820 IsNSW = OBO->hasNoSignedWrap();
3821 IsNUW = OBO->hasNoUnsignedWrap();
3822 }
3823 }
3824
3825 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
3826 bool IsNUW = false)
3827 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW),
3828 Op(nullptr) {}
3829};
3830}
3831
3832
3833/// Try to map \p V into a BinaryOp, and return \c None on failure.
3834static Optional<BinaryOp> MatchBinaryOp(Value *V) {
3835 auto *Op = dyn_cast<Operator>(V);
3836 if (!Op)
3837 return None;
3838
3839 // Implementation detail: all the cleverness here should happen without
3840 // creating new SCEV expressions -- our caller knowns tricks to avoid creating
3841 // SCEV expressions when possible, and we should not break that.
3842
3843 switch (Op->getOpcode()) {
3844 case Instruction::Add:
3845 case Instruction::Sub:
3846 case Instruction::Mul:
3847 case Instruction::UDiv:
3848 case Instruction::And:
3849 case Instruction::Or:
3850 case Instruction::AShr:
3851 case Instruction::Shl:
3852 return BinaryOp(Op);
3853
3854 case Instruction::Xor:
3855 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
3856 // If the RHS of the xor is a signbit, then this is just an add.
3857 // Instcombine turns add of signbit into xor as a strength reduction step.
3858 if (RHSC->getValue().isSignBit())
3859 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
3860 return BinaryOp(Op);
3861
3862 case Instruction::LShr:
3863 // Turn logical shift right of a constant into a unsigned divide.
3864 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
3865 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
3866
3867 // If the shift count is not less than the bitwidth, the result of
3868 // the shift is undefined. Don't try to analyze it, because the
3869 // resolution chosen here may differ from the resolution chosen in
3870 // other parts of the compiler.
3871 if (SA->getValue().ult(BitWidth)) {
3872 Constant *X =
3873 ConstantInt::get(SA->getContext(),
3874 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
3875 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
3876 }
3877 }
3878 return BinaryOp(Op);
3879
3880 default:
3881 break;
3882 }
3883
3884 return None;
3885}
3886
3887const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
3888 const Loop *L = LI.getLoopFor(PN->getParent());
3889 if (!L || L->getHeader() != PN->getParent())
3890 return nullptr;
3891
3892 // The loop may have multiple entrances or multiple exits; we can analyze
3893 // this phi as an addrec if it has a unique entry value and a unique
3894 // backedge value.
3895 Value *BEValueV = nullptr, *StartValueV = nullptr;
3896 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3897 Value *V = PN->getIncomingValue(i);
3898 if (L->contains(PN->getIncomingBlock(i))) {
3899 if (!BEValueV) {
3900 BEValueV = V;
3901 } else if (BEValueV != V) {
3902 BEValueV = nullptr;
3903 break;
3904 }
3905 } else if (!StartValueV) {
3906 StartValueV = V;
3907 } else if (StartValueV != V) {
3908 StartValueV = nullptr;
3909 break;
3910 }
3911 }
3912 if (BEValueV && StartValueV) {
3913 // While we are analyzing this PHI node, handle its value symbolically.
3914 const SCEV *SymbolicName = getUnknown(PN);
3915 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&((ValueExprMap.find_as(PN) == ValueExprMap.end() && "PHI node already processed?"
) ? static_cast<void> (0) : __assert_fail ("ValueExprMap.find_as(PN) == ValueExprMap.end() && \"PHI node already processed?\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3916, __PRETTY_FUNCTION__))
3916 "PHI node already processed?")((ValueExprMap.find_as(PN) == ValueExprMap.end() && "PHI node already processed?"
) ? static_cast<void> (0) : __assert_fail ("ValueExprMap.find_as(PN) == ValueExprMap.end() && \"PHI node already processed?\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 3916, __PRETTY_FUNCTION__))
;
3917 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
3918
3919 // Using this symbolic name for the PHI, analyze the value coming around
3920 // the back-edge.
3921 const SCEV *BEValue = getSCEV(BEValueV);
3922
3923 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3924 // has a special value for the first iteration of the loop.
3925
3926 // If the value coming around the backedge is an add with the symbolic
3927 // value we just inserted, then we found a simple induction variable!
3928 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3929 // If there is a single occurrence of the symbolic value, replace it
3930 // with a recurrence.
3931 unsigned FoundIndex = Add->getNumOperands();
3932 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3933 if (Add->getOperand(i) == SymbolicName)
3934 if (FoundIndex == e) {
3935 FoundIndex = i;
3936 break;
3937 }
3938
3939 if (FoundIndex != Add->getNumOperands()) {
3940 // Create an add with everything but the specified operand.
3941 SmallVector<const SCEV *, 8> Ops;
3942 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3943 if (i != FoundIndex)
3944 Ops.push_back(Add->getOperand(i));
3945 const SCEV *Accum = getAddExpr(Ops);
3946
3947 // This is not a valid addrec if the step amount is varying each
3948 // loop iteration, but is not itself an addrec in this loop.
3949 if (isLoopInvariant(Accum, L) ||
3950 (isa<SCEVAddRecExpr>(Accum) &&
3951 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
3952 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3953
3954 // If the increment doesn't overflow, then neither the addrec nor
3955 // the post-increment will overflow.
3956 if (auto BO = MatchBinaryOp(BEValueV)) {
3957 if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
3958 if (BO->IsNUW)
3959 Flags = setFlags(Flags, SCEV::FlagNUW);
3960 if (BO->IsNSW)
3961 Flags = setFlags(Flags, SCEV::FlagNSW);
3962 }
3963 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
3964 // If the increment is an inbounds GEP, then we know the address
3965 // space cannot be wrapped around. We cannot make any guarantee
3966 // about signed or unsigned overflow because pointers are
3967 // unsigned but we may have a negative index from the base
3968 // pointer. We can guarantee that no unsigned wrap occurs if the
3969 // indices form a positive value.
3970 if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
3971 Flags = setFlags(Flags, SCEV::FlagNW);
3972
3973 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
3974 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
3975 Flags = setFlags(Flags, SCEV::FlagNUW);
3976 }
3977
3978 // We cannot transfer nuw and nsw flags from subtraction
3979 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
3980 // for instance.
3981 }
3982
3983 const SCEV *StartVal = getSCEV(StartValueV);
3984 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
3985
3986 // Since the no-wrap flags are on the increment, they apply to the
3987 // post-incremented value as well.
3988 if (isLoopInvariant(Accum, L))
3989 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
3990
3991 // Okay, for the entire analysis of this edge we assumed the PHI
3992 // to be symbolic. We now need to go back and purge all of the
3993 // entries for the scalars that use the symbolic expression.
3994 forgetSymbolicName(PN, SymbolicName);
3995 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
3996 return PHISCEV;
3997 }
3998 }
3999 } else {
4000 // Otherwise, this could be a loop like this:
4001 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
4002 // In this case, j = {1,+,1} and BEValue is j.
4003 // Because the other in-value of i (0) fits the evolution of BEValue
4004 // i really is an addrec evolution.
4005 //
4006 // We can generalize this saying that i is the shifted value of BEValue
4007 // by one iteration:
4008 // PHI(f(0), f({1,+,1})) --> f({0,+,1})
4009 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
4010 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this);
4011 if (Shifted != getCouldNotCompute() &&
4012 Start != getCouldNotCompute()) {
4013 const SCEV *StartVal = getSCEV(StartValueV);
4014 if (Start == StartVal) {
4015 // Okay, for the entire analysis of this edge we assumed the PHI
4016 // to be symbolic. We now need to go back and purge all of the
4017 // entries for the scalars that use the symbolic expression.
4018 forgetSymbolicName(PN, SymbolicName);
4019 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
4020 return Shifted;
4021 }
4022 }
4023 }
4024
4025 // Remove the temporary PHI node SCEV that has been inserted while intending
4026 // to create an AddRecExpr for this PHI node. We can not keep this temporary
4027 // as it will prevent later (possibly simpler) SCEV expressions to be added
4028 // to the ValueExprMap.
4029 ValueExprMap.erase(PN);
4030 }
4031
4032 return nullptr;
4033}
4034
4035// Checks if the SCEV S is available at BB. S is considered available at BB
4036// if S can be materialized at BB without introducing a fault.
4037static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
4038 BasicBlock *BB) {
4039 struct CheckAvailable {
4040 bool TraversalDone = false;
4041 bool Available = true;
4042
4043 const Loop *L = nullptr; // The loop BB is in (can be nullptr)
4044 BasicBlock *BB = nullptr;
4045 DominatorTree &DT;
4046
4047 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
4048 : L(L), BB(BB), DT(DT) {}
4049
4050 bool setUnavailable() {
4051 TraversalDone = true;
4052 Available = false;
4053 return false;
4054 }
4055
4056 bool follow(const SCEV *S) {
4057 switch (S->getSCEVType()) {
4058 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
4059 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
4060 // These expressions are available if their operand(s) is/are.
4061 return true;
4062
4063 case scAddRecExpr: {
4064 // We allow add recurrences that are on the loop BB is in, or some
4065 // outer loop. This guarantees availability because the value of the
4066 // add recurrence at BB is simply the "current" value of the induction
4067 // variable. We can relax this in the future; for instance an add
4068 // recurrence on a sibling dominating loop is also available at BB.
4069 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
4070 if (L && (ARLoop == L || ARLoop->contains(L)))
4071 return true;
4072
4073 return setUnavailable();
4074 }
4075
4076 case scUnknown: {
4077 // For SCEVUnknown, we check for simple dominance.
4078 const auto *SU = cast<SCEVUnknown>(S);
4079 Value *V = SU->getValue();
4080
4081 if (isa<Argument>(V))
4082 return false;
4083
4084 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
4085 return false;
4086
4087 return setUnavailable();
4088 }
4089
4090 case scUDivExpr:
4091 case scCouldNotCompute:
4092 // We do not try to smart about these at all.
4093 return setUnavailable();
4094 }
4095 llvm_unreachable("switch should be fully covered!")::llvm::llvm_unreachable_internal("switch should be fully covered!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 4095)
;
4096 }
4097
4098 bool isDone() { return TraversalDone; }
4099 };
4100
4101 CheckAvailable CA(L, BB, DT);
4102 SCEVTraversal<CheckAvailable> ST(CA);
4103
4104 ST.visitAll(S);
4105 return CA.Available;
4106}
4107
4108// Try to match a control flow sequence that branches out at BI and merges back
4109// at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful
4110// match.
4111static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
4112 Value *&C, Value *&LHS, Value *&RHS) {
4113 C = BI->getCondition();
4114
4115 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
4116 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
4117
4118 if (!LeftEdge.isSingleEdge())
4119 return false;
4120
4121 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()")((RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"
) ? static_cast<void> (0) : __assert_fail ("RightEdge.isSingleEdge() && \"Follows from LeftEdge.isSingleEdge()\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 4121, __PRETTY_FUNCTION__))
;
4122
4123 Use &LeftUse = Merge->getOperandUse(0);
4124 Use &RightUse = Merge->getOperandUse(1);
4125
4126 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
4127 LHS = LeftUse;
4128 RHS = RightUse;
4129 return true;
4130 }
4131
4132 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
4133 LHS = RightUse;
4134 RHS = LeftUse;
4135 return true;
4136 }
4137
4138 return false;
4139}
4140
4141const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
4142 if (PN->getNumIncomingValues() == 2) {
4143 const Loop *L = LI.getLoopFor(PN->getParent());
4144
4145 // We don't want to break LCSSA, even in a SCEV expression tree.
4146 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4147 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
4148 return nullptr;
4149
4150 // Try to match
4151 //
4152 // br %cond, label %left, label %right
4153 // left:
4154 // br label %merge
4155 // right:
4156 // br label %merge
4157 // merge:
4158 // V = phi [ %x, %left ], [ %y, %right ]
4159 //
4160 // as "select %cond, %x, %y"
4161
4162 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
4163 assert(IDom && "At least the entry block should dominate PN")((IDom && "At least the entry block should dominate PN"
) ? static_cast<void> (0) : __assert_fail ("IDom && \"At least the entry block should dominate PN\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 4163, __PRETTY_FUNCTION__))
;
4164
4165 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
4166 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
4167
4168 if (BI && BI->isConditional() &&
4169 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
4170 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
4171 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
4172 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
4173 }
4174
4175 return nullptr;
4176}
4177
4178const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
4179 if (const SCEV *S = createAddRecFromPHI(PN))
4180 return S;
4181
4182 if (const SCEV *S = createNodeFromSelectLikePHI(PN))
4183 return S;
4184
4185 // If the PHI has a single incoming value, follow that value, unless the
4186 // PHI's incoming blocks are in a different loop, in which case doing so
4187 // risks breaking LCSSA form. Instcombine would normally zap these, but
4188 // it doesn't have DominatorTree information, so it may miss cases.
4189 if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC))
4190 if (LI.replacementPreservesLCSSAForm(PN, V))
4191 return getSCEV(V);
4192
4193 // If it's not a loop phi, we can't handle it yet.
4194 return getUnknown(PN);
4195}
4196
4197const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
4198 Value *Cond,
4199 Value *TrueVal,
4200 Value *FalseVal) {
4201 // Handle "constant" branch or select. This can occur for instance when a
4202 // loop pass transforms an inner loop and moves on to process the outer loop.
4203 if (auto *CI = dyn_cast<ConstantInt>(Cond))
4204 return getSCEV(CI->isOne() ? TrueVal : FalseVal);
4205
4206 // Try to match some simple smax or umax patterns.
4207 auto *ICI = dyn_cast<ICmpInst>(Cond);
4208 if (!ICI)
4209 return getUnknown(I);
4210
4211 Value *LHS = ICI->getOperand(0);
4212 Value *RHS = ICI->getOperand(1);
4213
4214 switch (ICI->getPredicate()) {
4215 case ICmpInst::ICMP_SLT:
4216 case ICmpInst::ICMP_SLE:
4217 std::swap(LHS, RHS);
4218 // fall through
4219 case ICmpInst::ICMP_SGT:
4220 case ICmpInst::ICMP_SGE:
4221 // a >s b ? a+x : b+x -> smax(a, b)+x
4222 // a >s b ? b+x : a+x -> smin(a, b)+x
4223 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4224 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
4225 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
4226 const SCEV *LA = getSCEV(TrueVal);
4227 const SCEV *RA = getSCEV(FalseVal);
4228 const SCEV *LDiff = getMinusSCEV(LA, LS);
4229 const SCEV *RDiff = getMinusSCEV(RA, RS);
4230 if (LDiff == RDiff)
4231 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4232 LDiff = getMinusSCEV(LA, RS);
4233 RDiff = getMinusSCEV(RA, LS);
4234 if (LDiff == RDiff)
4235 return getAddExpr(getSMinExpr(LS, RS), LDiff);
4236 }
4237 break;
4238 case ICmpInst::ICMP_ULT:
4239 case ICmpInst::ICMP_ULE:
4240 std::swap(LHS, RHS);
4241 // fall through
4242 case ICmpInst::ICMP_UGT:
4243 case ICmpInst::ICMP_UGE:
4244 // a >u b ? a+x : b+x -> umax(a, b)+x
4245 // a >u b ? b+x : a+x -> umin(a, b)+x
4246 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4247 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4248 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
4249 const SCEV *LA = getSCEV(TrueVal);
4250 const SCEV *RA = getSCEV(FalseVal);
4251 const SCEV *LDiff = getMinusSCEV(LA, LS);
4252 const SCEV *RDiff = getMinusSCEV(RA, RS);
4253 if (LDiff == RDiff)
4254 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4255 LDiff = getMinusSCEV(LA, RS);
4256 RDiff = getMinusSCEV(RA, LS);
4257 if (LDiff == RDiff)
4258 return getAddExpr(getUMinExpr(LS, RS), LDiff);
4259 }
4260 break;
4261 case ICmpInst::ICMP_NE:
4262 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
4263 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4264 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4265 const SCEV *One = getOne(I->getType());
4266 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4267 const SCEV *LA = getSCEV(TrueVal);
4268 const SCEV *RA = getSCEV(FalseVal);
4269 const SCEV *LDiff = getMinusSCEV(LA, LS);
4270 const SCEV *RDiff = getMinusSCEV(RA, One);
4271 if (LDiff == RDiff)
4272 return getAddExpr(getUMaxExpr(One, LS), LDiff);
4273 }
4274 break;
4275 case ICmpInst::ICMP_EQ:
4276 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
4277 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4278 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4279 const SCEV *One = getOne(I->getType());
4280 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4281 const SCEV *LA = getSCEV(TrueVal);
4282 const SCEV *RA = getSCEV(FalseVal);
4283 const SCEV *LDiff = getMinusSCEV(LA, One);
4284 const SCEV *RDiff = getMinusSCEV(RA, LS);
4285 if (LDiff == RDiff)
4286 return getAddExpr(getUMaxExpr(One, LS), LDiff);
4287 }
4288 break;
4289 default:
4290 break;
4291 }
4292
4293 return getUnknown(I);
4294}
4295
4296/// createNodeForGEP - Expand GEP instructions into add and multiply
4297/// operations. This allows them to be analyzed by regular SCEV code.
4298///
4299const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
4300 // Don't attempt to analyze GEPs over unsized objects.
4301 if (!GEP->getSourceElementType()->isSized())
4302 return getUnknown(GEP);
4303
4304 SmallVector<const SCEV *, 4> IndexExprs;
4305 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
4306 IndexExprs.push_back(getSCEV(*Index));
4307 return getGEPExpr(GEP->getSourceElementType(),
4308 getSCEV(GEP->getPointerOperand()),
4309 IndexExprs, GEP->isInBounds());
4310}
4311
4312/// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
4313/// guaranteed to end in (at every loop iteration). It is, at the same time,
4314/// the minimum number of times S is divisible by 2. For example, given {4,+,8}
4315/// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S.
4316uint32_t
4317ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
4318 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
4319 return C->getAPInt().countTrailingZeros();
4320
4321 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
4322 return std::min(GetMinTrailingZeros(T->getOperand()),
4323 (uint32_t)getTypeSizeInBits(T->getType()));
4324
4325 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
4326 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4327 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4328 getTypeSizeInBits(E->getType()) : OpRes;
4329 }
4330
4331 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
4332 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4333 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4334 getTypeSizeInBits(E->getType()) : OpRes;
4335 }
4336
4337 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
4338 // The result is the min of all operands results.
4339 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
4340 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
4341 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
4342 return MinOpRes;
4343 }
4344
4345 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
4346 // The result is the sum of all operands results.
4347 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
4348 uint32_t BitWidth = getTypeSizeInBits(M->getType());
4349 for (unsigned i = 1, e = M->getNumOperands();
4350 SumOpRes != BitWidth && i != e; ++i)
4351 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
4352 BitWidth);
4353 return SumOpRes;
4354 }
4355
4356 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
4357 // The result is the min of all operands results.
4358 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
4359 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
4360 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
4361 return MinOpRes;
4362 }
4363
4364 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
4365 // The result is the min of all operands results.
4366 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
4367 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
4368 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
4369 return MinOpRes;
4370 }
4371
4372 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
4373 // The result is the min of all operands results.
4374 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
4375 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
4376 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
4377 return MinOpRes;
4378 }
4379
4380 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4381 // For a SCEVUnknown, ask ValueTracking.
4382 unsigned BitWidth = getTypeSizeInBits(U->getType());
4383 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
4384 computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC,
4385 nullptr, &DT);
4386 return Zeros.countTrailingOnes();
4387 }
4388
4389 // SCEVUDivExpr
4390 return 0;
4391}
4392
4393/// GetRangeFromMetadata - Helper method to assign a range to V from
4394/// metadata present in the IR.
4395static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
4396 if (Instruction *I = dyn_cast<Instruction>(V))
4397 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
4398 return getConstantRangeFromMetadata(*MD);
4399
4400 return None;
4401}
4402
4403/// getRange - Determine the range for a particular SCEV. If SignHint is
4404/// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
4405/// with a "cleaner" unsigned (resp. signed) representation.
4406///
4407ConstantRange
4408ScalarEvolution::getRange(const SCEV *S,
4409 ScalarEvolution::RangeSignHint SignHint) {
4410 DenseMap<const SCEV *, ConstantRange> &Cache =
4411 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
4412 : SignedRanges;
4413
4414 // See if we've computed this range already.
4415 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
4416 if (I != Cache.end())
4417 return I->second;
4418
4419 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
4420 return setRange(C, SignHint, ConstantRange(C->getAPInt()));
4421
4422 unsigned BitWidth = getTypeSizeInBits(S->getType());
4423 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
4424
4425 // If the value has known zeros, the maximum value will have those known zeros
4426 // as well.
4427 uint32_t TZ = GetMinTrailingZeros(S);
4428 if (TZ != 0) {
4429 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
4430 ConservativeResult =
4431 ConstantRange(APInt::getMinValue(BitWidth),
4432 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
4433 else
4434 ConservativeResult = ConstantRange(
4435 APInt::getSignedMinValue(BitWidth),
4436 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
4437 }
4438
4439 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
4440 ConstantRange X = getRange(Add->getOperand(0), SignHint);
4441 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
4442 X = X.add(getRange(Add->getOperand(i), SignHint));
4443 return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
4444 }
4445
4446 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
4447 ConstantRange X = getRange(Mul->getOperand(0), SignHint);
4448 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
4449 X = X.multiply(getRange(Mul->getOperand(i), SignHint));
4450 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
4451 }
4452
4453 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
4454 ConstantRange X = getRange(SMax->getOperand(0), SignHint);
4455 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
4456 X = X.smax(getRange(SMax->getOperand(i), SignHint));
4457 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
4458 }
4459
4460 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
4461 ConstantRange X = getRange(UMax->getOperand(0), SignHint);
4462 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
4463 X = X.umax(getRange(UMax->getOperand(i), SignHint));
4464 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
4465 }
4466
4467 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
4468 ConstantRange X = getRange(UDiv->getLHS(), SignHint);
4469 ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
4470 return setRange(UDiv, SignHint,
4471 ConservativeResult.intersectWith(X.udiv(Y)));
4472 }
4473
4474 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
4475 ConstantRange X = getRange(ZExt->getOperand(), SignHint);
4476 return setRange(ZExt, SignHint,
4477 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
4478 }
4479
4480 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
4481 ConstantRange X = getRange(SExt->getOperand(), SignHint);
4482 return setRange(SExt, SignHint,
4483 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
4484 }
4485
4486 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
4487 ConstantRange X = getRange(Trunc->getOperand(), SignHint);
4488 return setRange(Trunc, SignHint,
4489 ConservativeResult.intersectWith(X.truncate(BitWidth)));
4490 }
4491
4492 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
4493 // If there's no unsigned wrap, the value will never be less than its
4494 // initial value.
4495 if (AddRec->hasNoUnsignedWrap())
4496 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
4497 if (!C->getValue()->isZero())
4498 ConservativeResult = ConservativeResult.intersectWith(
4499 ConstantRange(C->getAPInt(), APInt(BitWidth, 0)));
4500
4501 // If there's no signed wrap, and all the operands have the same sign or
4502 // zero, the value won't ever change sign.
4503 if (AddRec->hasNoSignedWrap()) {
4504 bool AllNonNeg = true;
4505 bool AllNonPos = true;
4506 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4507 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
4508 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
4509 }
4510 if (AllNonNeg)
4511 ConservativeResult = ConservativeResult.intersectWith(
4512 ConstantRange(APInt(BitWidth, 0),
4513 APInt::getSignedMinValue(BitWidth)));
4514 else if (AllNonPos)
4515 ConservativeResult = ConservativeResult.intersectWith(
4516 ConstantRange(APInt::getSignedMinValue(BitWidth),
4517 APInt(BitWidth, 1)));
4518 }
4519
4520 // TODO: non-affine addrec
4521 if (AddRec->isAffine()) {
4522 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
4523 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
4524 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
4525 auto RangeFromAffine = getRangeForAffineAR(
4526 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
4527 BitWidth);
4528 if (!RangeFromAffine.isFullSet())
4529 ConservativeResult =
4530 ConservativeResult.intersectWith(RangeFromAffine);
4531
4532 auto RangeFromFactoring = getRangeViaFactoring(
4533 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
4534 BitWidth);
4535 if (!RangeFromFactoring.isFullSet())
4536 ConservativeResult =
4537 ConservativeResult.intersectWith(RangeFromFactoring);
4538 }
4539 }
4540
4541 return setRange(AddRec, SignHint, ConservativeResult);
4542 }
4543
4544 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4545 // Check if the IR explicitly contains !range metadata.
4546 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4547 if (MDRange.hasValue())
4548 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4549
4550 // Split here to avoid paying the compile-time cost of calling both
4551 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted
4552 // if needed.
4553 const DataLayout &DL = getDataLayout();
4554 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
4555 // For a SCEVUnknown, ask ValueTracking.
4556 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
4557 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT);
4558 if (Ones != ~Zeros + 1)
4559 ConservativeResult =
4560 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
4561 } else {
4562 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&((SignHint == ScalarEvolution::HINT_RANGE_SIGNED && "generalize as needed!"
) ? static_cast<void> (0) : __assert_fail ("SignHint == ScalarEvolution::HINT_RANGE_SIGNED && \"generalize as needed!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 4563, __PRETTY_FUNCTION__))
4563 "generalize as needed!")((SignHint == ScalarEvolution::HINT_RANGE_SIGNED && "generalize as needed!"
) ? static_cast<void> (0) : __assert_fail ("SignHint == ScalarEvolution::HINT_RANGE_SIGNED && \"generalize as needed!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 4563, __PRETTY_FUNCTION__))
;
4564 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
4565 if (NS > 1)
4566 ConservativeResult = ConservativeResult.intersectWith(
4567 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
4568 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
4569 }
4570
4571 return setRange(U, SignHint, ConservativeResult);
4572 }
4573
4574 return setRange(S, SignHint, ConservativeResult);
4575}
4576
4577ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
4578 const SCEV *Step,
4579 const SCEV *MaxBECount,
4580 unsigned BitWidth) {
4581 assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&((!isa<SCEVCouldNotCompute>(MaxBECount) && getTypeSizeInBits
(MaxBECount->getType()) <= BitWidth && "Precondition!"
) ? static_cast<void> (0) : __assert_fail ("!isa<SCEVCouldNotCompute>(MaxBECount) && getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && \"Precondition!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 4583, __PRETTY_FUNCTION__))
4582 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&((!isa<SCEVCouldNotCompute>(MaxBECount) && getTypeSizeInBits
(MaxBECount->getType()) <= BitWidth && "Precondition!"
) ? static_cast<void> (0) : __assert_fail ("!isa<SCEVCouldNotCompute>(MaxBECount) && getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && \"Precondition!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 4583, __PRETTY_FUNCTION__))
4583 "Precondition!")((!isa<SCEVCouldNotCompute>(MaxBECount) && getTypeSizeInBits
(MaxBECount->getType()) <= BitWidth && "Precondition!"
) ? static_cast<void> (0) : __assert_fail ("!isa<SCEVCouldNotCompute>(MaxBECount) && getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && \"Precondition!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 4583, __PRETTY_FUNCTION__))
;
4584
4585 ConstantRange Result(BitWidth, /* isFullSet = */ true);
4586
4587 // Check for overflow. This must be done with ConstantRange arithmetic
4588 // because we could be called from within the ScalarEvolution overflow
4589 // checking code.
4590
4591 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
4592 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
4593 ConstantRange ZExtMaxBECountRange =
4594 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1);
4595
4596 ConstantRange StepSRange = getSignedRange(Step);
4597 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1);
4598
4599 ConstantRange StartURange = getUnsignedRange(Start);
4600 ConstantRange EndURange =
4601 StartURange.add(MaxBECountRange.multiply(StepSRange));
4602
4603 // Check for unsigned overflow.
4604 ConstantRange ZExtStartURange = StartURange.zextOrTrunc(BitWidth * 2 + 1);
4605 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1);
4606 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4607 ZExtEndURange) {
4608 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(),
4609 EndURange.getUnsignedMin());
4610 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(),
4611 EndURange.getUnsignedMax());
4612 bool IsFullRange = Min.isMinValue() && Max.isMaxValue();
4613 if (!IsFullRange)
4614 Result =
4615 Result.intersectWith(ConstantRange(Min, Max + 1));
4616 }
4617
4618 ConstantRange StartSRange = getSignedRange(Start);
4619 ConstantRange EndSRange =
4620 StartSRange.add(MaxBECountRange.multiply(StepSRange));
4621
4622 // Check for signed overflow. This must be done with ConstantRange
4623 // arithmetic because we could be called from within the ScalarEvolution
4624 // overflow checking code.
4625 ConstantRange SExtStartSRange = StartSRange.sextOrTrunc(BitWidth * 2 + 1);
4626 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1);
4627 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4628 SExtEndSRange) {
4629 APInt Min =
4630 APIntOps::smin(StartSRange.getSignedMin(), EndSRange.getSignedMin());
4631 APInt Max =
4632 APIntOps::smax(StartSRange.getSignedMax(), EndSRange.getSignedMax());
4633 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue();
4634 if (!IsFullRange)
4635 Result =
4636 Result.intersectWith(ConstantRange(Min, Max + 1));
4637 }
4638
4639 return Result;
4640}
4641
4642ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
4643 const SCEV *Step,
4644 const SCEV *MaxBECount,
4645 unsigned BitWidth) {
4646 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
4647 // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
4648
4649 struct SelectPattern {
4650 Value *Condition = nullptr;
4651 APInt TrueValue;
4652 APInt FalseValue;
4653
4654 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
4655 const SCEV *S) {
4656 Optional<unsigned> CastOp;
4657 APInt Offset(BitWidth, 0);
4658
4659 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&((SE.getTypeSizeInBits(S->getType()) == BitWidth &&
"Should be!") ? static_cast<void> (0) : __assert_fail (
"SE.getTypeSizeInBits(S->getType()) == BitWidth && \"Should be!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 4660, __PRETTY_FUNCTION__))
4660 "Should be!")((SE.getTypeSizeInBits(S->getType()) == BitWidth &&
"Should be!") ? static_cast<void> (0) : __assert_fail (
"SE.getTypeSizeInBits(S->getType()) == BitWidth && \"Should be!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 4660, __PRETTY_FUNCTION__))
;
4661
4662 // Peel off a constant offset:
4663 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
4664 // In the future we could consider being smarter here and handle
4665 // {Start+Step,+,Step} too.
4666 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
4667 return;
4668
4669 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
4670 S = SA->getOperand(1);
4671 }
4672
4673 // Peel off a cast operation
4674 if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
4675 CastOp = SCast->getSCEVType();
4676 S = SCast->getOperand();
4677 }
4678
4679 using namespace llvm::PatternMatch;
4680
4681 auto *SU = dyn_cast<SCEVUnknown>(S);
4682 const APInt *TrueVal, *FalseVal;
4683 if (!SU ||
4684 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
4685 m_APInt(FalseVal)))) {
4686 Condition = nullptr;
4687 return;
4688 }
4689
4690 TrueValue = *TrueVal;
4691 FalseValue = *FalseVal;
4692
4693 // Re-apply the cast we peeled off earlier
4694 if (CastOp.hasValue())
4695 switch (*CastOp) {
4696 default:
4697 llvm_unreachable("Unknown SCEV cast type!")::llvm::llvm_unreachable_internal("Unknown SCEV cast type!", "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 4697)
;
4698
4699 case scTruncate:
4700 TrueValue = TrueValue.trunc(BitWidth);
4701 FalseValue = FalseValue.trunc(BitWidth);
4702 break;
4703 case scZeroExtend:
4704 TrueValue = TrueValue.zext(BitWidth);
4705 FalseValue = FalseValue.zext(BitWidth);
4706 break;
4707 case scSignExtend:
4708 TrueValue = TrueValue.sext(BitWidth);
4709 FalseValue = FalseValue.sext(BitWidth);
4710 break;
4711 }
4712
4713 // Re-apply the constant offset we peeled off earlier
4714 TrueValue += Offset;
4715 FalseValue += Offset;
4716 }
4717
4718 bool isRecognized() { return Condition != nullptr; }
4719 };
4720
4721 SelectPattern StartPattern(*this, BitWidth, Start);
4722 if (!StartPattern.isRecognized())
4723 return ConstantRange(BitWidth, /* isFullSet = */ true);
4724
4725 SelectPattern StepPattern(*this, BitWidth, Step);
4726 if (!StepPattern.isRecognized())
4727 return ConstantRange(BitWidth, /* isFullSet = */ true);
4728
4729 if (StartPattern.Condition != StepPattern.Condition) {
4730 // We don't handle this case today; but we could, by considering four
4731 // possibilities below instead of two. I'm not sure if there are cases where
4732 // that will help over what getRange already does, though.
4733 return ConstantRange(BitWidth, /* isFullSet = */ true);
4734 }
4735
4736 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
4737 // construct arbitrary general SCEV expressions here. This function is called
4738 // from deep in the call stack, and calling getSCEV (on a sext instruction,
4739 // say) can end up caching a suboptimal value.
4740
4741 // FIXME: without the explicit `this` receiver below, MSVC errors out with
4742 // C2352 and C2512 (otherwise it isn't needed).
4743
4744 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
4745 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
4746 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
4747 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
4748
4749 ConstantRange TrueRange =
4750 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
4751 ConstantRange FalseRange =
4752 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
4753
4754 return TrueRange.unionWith(FalseRange);
4755}
4756
4757SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
4758 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
4759 const BinaryOperator *BinOp = cast<BinaryOperator>(V);
4760
4761 // Return early if there are no flags to propagate to the SCEV.
4762 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4763 if (BinOp->hasNoUnsignedWrap())
4764 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
4765 if (BinOp->hasNoSignedWrap())
4766 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
4767 if (Flags == SCEV::FlagAnyWrap)
4768 return SCEV::FlagAnyWrap;
4769
4770 // Here we check that BinOp is in the header of the innermost loop
4771 // containing BinOp, since we only deal with instructions in the loop
4772 // header. The actual loop we need to check later will come from an add
4773 // recurrence, but getting that requires computing the SCEV of the operands,
4774 // which can be expensive. This check we can do cheaply to rule out some
4775 // cases early.
4776 Loop *InnermostContainingLoop = LI.getLoopFor(BinOp->getParent());
4777 if (InnermostContainingLoop == nullptr ||
4778 InnermostContainingLoop->getHeader() != BinOp->getParent())
4779 return SCEV::FlagAnyWrap;
4780
4781 // Only proceed if we can prove that BinOp does not yield poison.
4782 if (!isKnownNotFullPoison(BinOp)) return SCEV::FlagAnyWrap;
4783
4784 // At this point we know that if V is executed, then it does not wrap
4785 // according to at least one of NSW or NUW. If V is not executed, then we do
4786 // not know if the calculation that V represents would wrap. Multiple
4787 // instructions can map to the same SCEV. If we apply NSW or NUW from V to
4788 // the SCEV, we must guarantee no wrapping for that SCEV also when it is
4789 // derived from other instructions that map to the same SCEV. We cannot make
4790 // that guarantee for cases where V is not executed. So we need to find the
4791 // loop that V is considered in relation to and prove that V is executed for
4792 // every iteration of that loop. That implies that the value that V
4793 // calculates does not wrap anywhere in the loop, so then we can apply the
4794 // flags to the SCEV.
4795 //
4796 // We check isLoopInvariant to disambiguate in case we are adding two
4797 // recurrences from different loops, so that we know which loop to prove
4798 // that V is executed in.
4799 for (int OpIndex = 0; OpIndex < 2; ++OpIndex) {
4800 const SCEV *Op = getSCEV(BinOp->getOperand(OpIndex));
4801 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
4802 const int OtherOpIndex = 1 - OpIndex;
4803 const SCEV *OtherOp = getSCEV(BinOp->getOperand(OtherOpIndex));
4804 if (isLoopInvariant(OtherOp, AddRec->getLoop()) &&
4805 isGuaranteedToExecuteForEveryIteration(BinOp, AddRec->getLoop()))
4806 return Flags;
4807 }
4808 }
4809 return SCEV::FlagAnyWrap;
4810}
4811
4812/// createSCEV - We know that there is no SCEV for the specified value. Analyze
4813/// the expression.
4814///
4815const SCEV *ScalarEvolution::createSCEV(Value *V) {
4816 if (!isSCEVable(V->getType()))
4817 return getUnknown(V);
4818
4819 if (Instruction *I = dyn_cast<Instruction>(V)) {
4820 // Don't attempt to analyze instructions in blocks that aren't
4821 // reachable. Such instructions don't matter, and they aren't required
4822 // to obey basic rules for definitions dominating uses which this
4823 // analysis depends on.
4824 if (!DT.isReachableFromEntry(I->getParent()))
4825 return getUnknown(V);
4826 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
4827 return getConstant(CI);
4828 else if (isa<ConstantPointerNull>(V))
4829 return getZero(V->getType());
4830 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
4831 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee());
4832 else if (!isa<ConstantExpr>(V))
4833 return getUnknown(V);
4834
4835 Operator *U = cast<Operator>(V);
4836 if (auto BO = MatchBinaryOp(U)) {
4837 switch (BO->Opcode) {
4838 case Instruction::Add: {
4839 // The simple thing to do would be to just call getSCEV on both operands
4840 // and call getAddExpr with the result. However if we're looking at a
4841 // bunch of things all added together, this can be quite inefficient,
4842 // because it leads to N-1 getAddExpr calls for N ultimate operands.
4843 // Instead, gather up all the operands and make a single getAddExpr call.
4844 // LLVM IR canonical form means we need only traverse the left operands.
4845 SmallVector<const SCEV *, 4> AddOps;
4846 do {
4847 if (BO->Op) {
4848 if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
4849 AddOps.push_back(OpSCEV);
4850 break;
4851 }
4852
4853 // If a NUW or NSW flag can be applied to the SCEV for this
4854 // addition, then compute the SCEV for this addition by itself
4855 // with a separate call to getAddExpr. We need to do that
4856 // instead of pushing the operands of the addition onto AddOps,
4857 // since the flags are only known to apply to this particular
4858 // addition - they may not apply to other additions that can be
4859 // formed with operands from AddOps.
4860 const SCEV *RHS = getSCEV(BO->RHS);
4861 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
4862 if (Flags != SCEV::FlagAnyWrap) {
4863 const SCEV *LHS = getSCEV(BO->LHS);
4864 if (BO->Opcode == Instruction::Sub)
4865 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
4866 else
4867 AddOps.push_back(getAddExpr(LHS, RHS, Flags));
4868 break;
4869 }
4870 }
4871
4872 if (BO->Opcode == Instruction::Sub)
4873 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
4874 else
4875 AddOps.push_back(getSCEV(BO->RHS));
4876
4877 auto NewBO = MatchBinaryOp(BO->LHS);
4878 if (!NewBO || (NewBO->Opcode != Instruction::Add &&
4879 NewBO->Opcode != Instruction::Sub)) {
4880 AddOps.push_back(getSCEV(BO->LHS));
4881 break;
4882 }
4883 BO = NewBO;
4884 } while (true);
4885
4886 return getAddExpr(AddOps);
4887 }
4888
4889 case Instruction::Mul: {
4890 SmallVector<const SCEV *, 4> MulOps;
4891 do {
4892 if (BO->Op) {
4893 if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
4894 MulOps.push_back(OpSCEV);
4895 break;
4896 }
4897
4898 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
4899 if (Flags != SCEV::FlagAnyWrap) {
4900 MulOps.push_back(
4901 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
4902 break;
4903 }
4904 }
4905
4906 MulOps.push_back(getSCEV(BO->RHS));
4907 auto NewBO = MatchBinaryOp(BO->LHS);
4908 if (!NewBO || NewBO->Opcode != Instruction::Mul) {
4909 MulOps.push_back(getSCEV(BO->LHS));
4910 break;
4911 }
4912 BO = NewBO;
4913 } while (true);
4914
4915 return getMulExpr(MulOps);
4916 }
4917 case Instruction::UDiv:
4918 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
4919 case Instruction::Sub: {
4920 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4921 if (BO->Op)
4922 Flags = getNoWrapFlagsFromUB(BO->Op);
4923 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
4924 }
4925 case Instruction::And:
4926 // For an expression like x&255 that merely masks off the high bits,
4927 // use zext(trunc(x)) as the SCEV expression.
4928 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
4929 if (CI->isNullValue())
4930 return getSCEV(BO->RHS);
4931 if (CI->isAllOnesValue())
4932 return getSCEV(BO->LHS);
4933 const APInt &A = CI->getValue();
4934
4935 // Instcombine's ShrinkDemandedConstant may strip bits out of
4936 // constants, obscuring what would otherwise be a low-bits mask.
4937 // Use computeKnownBits to compute what ShrinkDemandedConstant
4938 // knew about to reconstruct a low-bits mask value.
4939 unsigned LZ = A.countLeadingZeros();
4940 unsigned TZ = A.countTrailingZeros();
4941 unsigned BitWidth = A.getBitWidth();
4942 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4943 computeKnownBits(BO->LHS, KnownZero, KnownOne, getDataLayout(),
4944 0, &AC, nullptr, &DT);
4945
4946 APInt EffectiveMask =
4947 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
4948 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
4949 const SCEV *MulCount = getConstant(ConstantInt::get(
4950 getContext(), APInt::getOneBitSet(BitWidth, TZ)));
4951 return getMulExpr(
4952 getZeroExtendExpr(
4953 getTruncateExpr(
4954 getUDivExactExpr(getSCEV(BO->LHS), MulCount),
4955 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
4956 BO->LHS->getType()),
4957 MulCount);
4958 }
4959 }
4960 break;
4961
4962 case Instruction::Or:
4963 // If the RHS of the Or is a constant, we may have something like:
4964 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
4965 // optimizations will transparently handle this case.
4966 //
4967 // In order for this transformation to be safe, the LHS must be of the
4968 // form X*(2^n) and the Or constant must be less than 2^n.
4969 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
4970 const SCEV *LHS = getSCEV(BO->LHS);
4971 const APInt &CIVal = CI->getValue();
4972 if (GetMinTrailingZeros(LHS) >=
4973 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
4974 // Build a plain add SCEV.
4975 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
4976 // If the LHS of the add was an addrec and it has no-wrap flags,
4977 // transfer the no-wrap flags, since an or won't introduce a wrap.
4978 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
4979 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
4980 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
4981 OldAR->getNoWrapFlags());
4982 }
4983 return S;
4984 }
4985 }
4986 break;
4987
4988 case Instruction::Xor:
4989 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
4990 // If the RHS of xor is -1, then this is a not operation.
4991 if (CI->isAllOnesValue())
4992 return getNotSCEV(getSCEV(BO->LHS));
4993
4994 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
4995 // This is a variant of the check for xor with -1, and it handles
4996 // the case where instcombine has trimmed non-demanded bits out
4997 // of an xor with -1.
4998 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
4999 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
5000 if (LBO->getOpcode() == Instruction::And &&
5001 LCI->getValue() == CI->getValue())
5002 if (const SCEVZeroExtendExpr *Z =
5003 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
5004 Type *UTy = BO->LHS->getType();
5005 const SCEV *Z0 = Z->getOperand();
5006 Type *Z0Ty = Z0->getType();
5007 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
5008
5009 // If C is a low-bits mask, the zero extend is serving to
5010 // mask off the high bits. Complement the operand and
5011 // re-apply the zext.
5012 if (APIntOps::isMask(Z0TySize, CI->getValue()))
5013 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
5014
5015 // If C is a single bit, it may be in the sign-bit position
5016 // before the zero-extend. In this case, represent the xor
5017 // using an add, which is equivalent, and re-apply the zext.
5018 APInt Trunc = CI->getValue().trunc(Z0TySize);
5019 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
5020 Trunc.isSignBit())
5021 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
5022 UTy);
5023 }
5024 }
5025 break;
5026
5027 case Instruction::Shl:
5028 // Turn shift left of a constant amount into a multiply.
5029 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
5030 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
5031
5032 // If the shift count is not less than the bitwidth, the result of
5033 // the shift is undefined. Don't try to analyze it, because the
5034 // resolution chosen here may differ from the resolution chosen in
5035 // other parts of the compiler.
5036 if (SA->getValue().uge(BitWidth))
5037 break;
5038
5039 // It is currently not resolved how to interpret NSW for left
5040 // shift by BitWidth - 1, so we avoid applying flags in that
5041 // case. Remove this check (or this comment) once the situation
5042 // is resolved. See
5043 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
5044 // and http://reviews.llvm.org/D8890 .
5045 auto Flags = SCEV::FlagAnyWrap;
5046 if (BO->Op && SA->getValue().ult(BitWidth - 1))
5047 Flags = getNoWrapFlagsFromUB(BO->Op);
5048
5049 Constant *X = ConstantInt::get(getContext(),
5050 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
5051 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
5052 }
5053 break;
5054
5055 case Instruction::AShr:
5056 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
5057 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS))
5058 if (Operator *L = dyn_cast<Operator>(BO->LHS))
5059 if (L->getOpcode() == Instruction::Shl &&
5060 L->getOperand(1) == BO->RHS) {
5061 uint64_t BitWidth = getTypeSizeInBits(BO->LHS->getType());
5062
5063 // If the shift count is not less than the bitwidth, the result of
5064 // the shift is undefined. Don't try to analyze it, because the
5065 // resolution chosen here may differ from the resolution chosen in
5066 // other parts of the compiler.
5067 if (CI->getValue().uge(BitWidth))
5068 break;
5069
5070 uint64_t Amt = BitWidth - CI->getZExtValue();
5071 if (Amt == BitWidth)
5072 return getSCEV(L->getOperand(0)); // shift by zero --> noop
5073 return getSignExtendExpr(
5074 getTruncateExpr(getSCEV(L->getOperand(0)),
5075 IntegerType::get(getContext(), Amt)),
5076 BO->LHS->getType());
5077 }
5078 break;
5079 }
5080 }
5081
5082 switch (U->getOpcode()) {
5083 case Instruction::Trunc:
5084 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
5085
5086 case Instruction::ZExt:
5087 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
5088
5089 case Instruction::SExt:
5090 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
5091
5092 case Instruction::BitCast:
5093 // BitCasts are no-op casts so we just eliminate the cast.
5094 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
5095 return getSCEV(U->getOperand(0));
5096 break;
5097
5098 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
5099 // lead to pointer expressions which cannot safely be expanded to GEPs,
5100 // because ScalarEvolution doesn't respect the GEP aliasing rules when
5101 // simplifying integer expressions.
5102
5103 case Instruction::GetElementPtr:
5104 return createNodeForGEP(cast<GEPOperator>(U));
5105
5106 case Instruction::PHI:
5107 return createNodeForPHI(cast<PHINode>(U));
5108
5109 case Instruction::Select:
5110 // U can also be a select constant expr, which let fall through. Since
5111 // createNodeForSelect only works for a condition that is an `ICmpInst`, and
5112 // constant expressions cannot have instructions as operands, we'd have
5113 // returned getUnknown for a select constant expressions anyway.
5114 if (isa<Instruction>(U))
5115 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
5116 U->getOperand(1), U->getOperand(2));
5117 }
5118
5119 return getUnknown(V);
5120}
5121
5122
5123
5124//===----------------------------------------------------------------------===//
5125// Iteration Count Computation Code
5126//
5127
5128unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
5129 if (BasicBlock *ExitingBB = L->getExitingBlock())
5130 return getSmallConstantTripCount(L, ExitingBB);
5131
5132 // No trip count information for multiple exits.
5133 return 0;
5134}
5135
5136/// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
5137/// normal unsigned value. Returns 0 if the trip count is unknown or not
5138/// constant. Will also return 0 if the maximum trip count is very large (>=
5139/// 2^32).
5140///
5141/// This "trip count" assumes that control exits via ExitingBlock. More
5142/// precisely, it is the number of times that control may reach ExitingBlock
5143/// before taking the branch. For loops with multiple exits, it may not be the
5144/// number times that the loop header executes because the loop may exit
5145/// prematurely via another branch.
5146unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
5147 BasicBlock *ExitingBlock) {
5148 assert(ExitingBlock && "Must pass a non-null exiting block!")((ExitingBlock && "Must pass a non-null exiting block!"
) ? static_cast<void> (0) : __assert_fail ("ExitingBlock && \"Must pass a non-null exiting block!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 5148, __PRETTY_FUNCTION__))
;
5149 assert(L->isLoopExiting(ExitingBlock) &&((L->isLoopExiting(ExitingBlock) && "Exiting block must actually branch out of the loop!"
) ? static_cast<void> (0) : __assert_fail ("L->isLoopExiting(ExitingBlock) && \"Exiting block must actually branch out of the loop!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 5150, __PRETTY_FUNCTION__))
5150 "Exiting block must actually branch out of the loop!")((L->isLoopExiting(ExitingBlock) && "Exiting block must actually branch out of the loop!"
) ? static_cast<void> (0) : __assert_fail ("L->isLoopExiting(ExitingBlock) && \"Exiting block must actually branch out of the loop!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 5150, __PRETTY_FUNCTION__))
;
5151 const SCEVConstant *ExitCount =
5152 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
5153 if (!ExitCount)
5154 return 0;
5155
5156 ConstantInt *ExitConst = ExitCount->getValue();
5157
5158 // Guard against huge trip counts.
5159 if (ExitConst->getValue().getActiveBits() > 32)
5160 return 0;
5161
5162 // In case of integer overflow, this returns 0, which is correct.
5163 return ((unsigned)ExitConst->getZExtValue()) + 1;
5164}
5165
5166unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
5167 if (BasicBlock *ExitingBB = L->getExitingBlock())
5168 return getSmallConstantTripMultiple(L, ExitingBB);
5169
5170 // No trip multiple information for multiple exits.
5171 return 0;
5172}
5173
5174/// getSmallConstantTripMultiple - Returns the largest constant divisor of the
5175/// trip count of this loop as a normal unsigned value, if possible. This
5176/// means that the actual trip count is always a multiple of the returned
5177/// value (don't forget the trip count could very well be zero as well!).
5178///
5179/// Returns 1 if the trip count is unknown or not guaranteed to be the
5180/// multiple of a constant (which is also the case if the trip count is simply
5181/// constant, use getSmallConstantTripCount for that case), Will also return 1
5182/// if the trip count is very large (>= 2^32).
5183///
5184/// As explained in the comments for getSmallConstantTripCount, this assumes
5185/// that control exits the loop via ExitingBlock.
5186unsigned
5187ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
5188 BasicBlock *ExitingBlock) {
5189 assert(ExitingBlock && "Must pass a non-null exiting block!")((ExitingBlock && "Must pass a non-null exiting block!"
) ? static_cast<void> (0) : __assert_fail ("ExitingBlock && \"Must pass a non-null exiting block!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 5189, __PRETTY_FUNCTION__))
;
5190 assert(L->isLoopExiting(ExitingBlock) &&((L->isLoopExiting(ExitingBlock) && "Exiting block must actually branch out of the loop!"
) ? static_cast<void> (0) : __assert_fail ("L->isLoopExiting(ExitingBlock) && \"Exiting block must actually branch out of the loop!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 5191, __PRETTY_FUNCTION__))
5191 "Exiting block must actually branch out of the loop!")((L->isLoopExiting(ExitingBlock) && "Exiting block must actually branch out of the loop!"
) ? static_cast<void> (0) : __assert_fail ("L->isLoopExiting(ExitingBlock) && \"Exiting block must actually branch out of the loop!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 5191, __PRETTY_FUNCTION__))
;
5192 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
5193 if (ExitCount == getCouldNotCompute())
5194 return 1;
5195
5196 // Get the trip count from the BE count by adding 1.
5197 const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType()));
5198 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
5199 // to factor simple cases.
5200 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
5201 TCMul = Mul->getOperand(0);
5202
5203 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
5204 if (!MulC)
5205 return 1;
5206
5207 ConstantInt *Result = MulC->getValue();
5208
5209 // Guard against huge trip counts (this requires checking
5210 // for zero to handle the case where the trip count == -1 and the
5211 // addition wraps).
5212 if (!Result || Result->getValue().getActiveBits() > 32 ||
5213 Result->getValue().getActiveBits() == 0)
5214 return 1;
5215
5216 return (unsigned)Result->getZExtValue();
5217}
5218
5219// getExitCount - Get the expression for the number of loop iterations for which
5220// this loop is guaranteed not to exit via ExitingBlock. Otherwise return
5221// SCEVCouldNotCompute.
5222const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
5223 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
5224}
5225
5226/// getBackedgeTakenCount - If the specified loop has a predictable
5227/// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
5228/// object. The backedge-taken count is the number of times the loop header
5229/// will be branched to from within the loop. This is one less than the
5230/// trip count of the loop, since it doesn't count the first iteration,
5231/// when the header is branched to from outside the loop.
5232///
5233/// Note that it is not valid to call this method on a loop without a
5234/// loop-invariant backedge-taken count (see
5235/// hasLoopInvariantBackedgeTakenCount).
5236///
5237const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
5238 return getBackedgeTakenInfo(L).getExact(this);
5239}
5240
5241/// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
5242/// return the least SCEV value that is known never to be less than the
5243/// actual backedge taken count.
5244const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
5245 return getBackedgeTakenInfo(L).getMax(this);
5246}
5247
5248/// PushLoopPHIs - Push PHI nodes in the header of the given loop
5249/// onto the given Worklist.
5250static void
5251PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
5252 BasicBlock *Header = L->getHeader();
5253
5254 // Push all Loop-header PHIs onto the Worklist stack.
5255 for (BasicBlock::iterator I = Header->begin();
5256 PHINode *PN = dyn_cast<PHINode>(I); ++I)
5257 Worklist.push_back(PN);
5258}
5259
5260const ScalarEvolution::BackedgeTakenInfo &
5261ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
5262 // Initially insert an invalid entry for this loop. If the insertion
5263 // succeeds, proceed to actually compute a backedge-taken count and
5264 // update the value. The temporary CouldNotCompute value tells SCEV
5265 // code elsewhere that it shouldn't attempt to request a new
5266 // backedge-taken count, which could result in infinite recursion.
5267 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
5268 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
5269 if (!Pair.second)
5270 return Pair.first->second;
5271
5272 // computeBackedgeTakenCount may allocate memory for its result. Inserting it
5273 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
5274 // must be cleared in this scope.
5275 BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
5276
5277 if (Result.getExact(this) != getCouldNotCompute()) {
5278 assert(isLoopInvariant(Result.getExact(this), L) &&((isLoopInvariant(Result.getExact(this), L) && isLoopInvariant
(Result.getMax(this), L) && "Computed backedge-taken count isn't loop invariant for loop!"
) ? static_cast<void> (0) : __assert_fail ("isLoopInvariant(Result.getExact(this), L) && isLoopInvariant(Result.getMax(this), L) && \"Computed backedge-taken count isn't loop invariant for loop!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 5280, __PRETTY_FUNCTION__))
5279 isLoopInvariant(Result.getMax(this), L) &&((isLoopInvariant(Result.getExact(this), L) && isLoopInvariant
(Result.getMax(this), L) && "Computed backedge-taken count isn't loop invariant for loop!"
) ? static_cast<void> (0) : __assert_fail ("isLoopInvariant(Result.getExact(this), L) && isLoopInvariant(Result.getMax(this), L) && \"Computed backedge-taken count isn't loop invariant for loop!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 5280, __PRETTY_FUNCTION__))
5280 "Computed backedge-taken count isn't loop invariant for loop!")((isLoopInvariant(Result.getExact(this), L) && isLoopInvariant
(Result.getMax(this), L) && "Computed backedge-taken count isn't loop invariant for loop!"
) ? static_cast<void> (0) : __assert_fail ("isLoopInvariant(Result.getExact(this), L) && isLoopInvariant(Result.getMax(this), L) && \"Computed backedge-taken count isn't loop invariant for loop!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 5280, __PRETTY_FUNCTION__))
;
5281 ++NumTripCountsComputed;
5282 }
5283 else if (Result.getMax(this) == getCouldNotCompute() &&
5284 isa<PHINode>(L->getHeader()->begin())) {
5285 // Only count loops that have phi nodes as not being computable.
5286 ++NumTripCountsNotComputed;
5287 }
5288
5289 // Now that we know more about the trip count for this loop, forget any
5290 // existing SCEV values for PHI nodes in this loop since they are only
5291 // conservative estimates made without the benefit of trip count
5292 // information. This is similar to the code in forgetLoop, except that
5293 // it handles SCEVUnknown PHI nodes specially.
5294 if (Result.hasAnyInfo()) {
5295 SmallVector<Instruction *, 16> Worklist;
5296 PushLoopPHIs(L, Worklist);
5297
5298 SmallPtrSet<Instruction *, 8> Visited;
5299 while (!Worklist.empty()) {
5300 Instruction *I = Worklist.pop_back_val();
5301 if (!Visited.insert(I).second)
5302 continue;
5303
5304 ValueExprMapType::iterator It =
5305 ValueExprMap.find_as(static_cast<Value *>(I));
5306 if (It != ValueExprMap.end()) {
5307 const SCEV *Old = It->second;
5308
5309 // SCEVUnknown for a PHI either means that it has an unrecognized
5310 // structure, or it's a PHI that's in the progress of being computed
5311 // by createNodeForPHI. In the former case, additional loop trip
5312 // count information isn't going to change anything. In the later
5313 // case, createNodeForPHI will perform the necessary updates on its
5314 // own when it gets to that point.
5315 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
5316 forgetMemoizedResults(Old);
5317 ValueExprMap.erase(It);
5318 }
5319 if (PHINode *PN = dyn_cast<PHINode>(I))
5320 ConstantEvolutionLoopExitValue.erase(PN);
5321 }
5322
5323 PushDefUseChildren(I, Worklist);
5324 }
5325 }
5326
5327 // Re-lookup the insert position, since the call to
5328 // computeBackedgeTakenCount above could result in a
5329 // recusive call to getBackedgeTakenInfo (on a different
5330 // loop), which would invalidate the iterator computed
5331 // earlier.
5332 return BackedgeTakenCounts.find(L)->second = Result;
5333}
5334
5335/// forgetLoop - This method should be called by the client when it has
5336/// changed a loop in a way that may effect ScalarEvolution's ability to
5337/// compute a trip count, or if the loop is deleted.
5338void ScalarEvolution::forgetLoop(const Loop *L) {
5339 // Drop any stored trip count value.
5340 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos =
5341 BackedgeTakenCounts.find(L);
5342 if (BTCPos != BackedgeTakenCounts.end()) {
5343 BTCPos->second.clear();
5344 BackedgeTakenCounts.erase(BTCPos);
5345 }
5346
5347 // Drop information about expressions based on loop-header PHIs.
5348 SmallVector<Instruction *, 16> Worklist;
5349 PushLoopPHIs(L, Worklist);
5350
5351 SmallPtrSet<Instruction *, 8> Visited;
5352 while (!Worklist.empty()) {
5353 Instruction *I = Worklist.pop_back_val();
5354 if (!Visited.insert(I).second)
5355 continue;
5356
5357 ValueExprMapType::iterator It =
5358 ValueExprMap.find_as(static_cast<Value *>(I));
5359 if (It != ValueExprMap.end()) {
5360 forgetMemoizedResults(It->second);
5361 ValueExprMap.erase(It);
5362 if (PHINode *PN = dyn_cast<PHINode>(I))
5363 ConstantEvolutionLoopExitValue.erase(PN);
5364 }
5365
5366 PushDefUseChildren(I, Worklist);
5367 }
5368
5369 // Forget all contained loops too, to avoid dangling entries in the
5370 // ValuesAtScopes map.
5371 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5372 forgetLoop(*I);
5373}
5374
5375/// forgetValue - This method should be called by the client when it has
5376/// changed a value in a way that may effect its value, or which may
5377/// disconnect it from a def-use chain linking it to a loop.
5378void ScalarEvolution::forgetValue(Value *V) {
5379 Instruction *I = dyn_cast<Instruction>(V);
5380 if (!I) return;
5381
5382 // Drop information about expressions based on loop-header PHIs.
5383 SmallVector<Instruction *, 16> Worklist;
5384 Worklist.push_back(I);
5385
5386 SmallPtrSet<Instruction *, 8> Visited;
5387 while (!Worklist.empty()) {
5388 I = Worklist.pop_back_val();
5389 if (!Visited.insert(I).second)
5390 continue;
5391
5392 ValueExprMapType::iterator It =
5393 ValueExprMap.find_as(static_cast<Value *>(I));
5394 if (It != ValueExprMap.end()) {
5395 forgetMemoizedResults(It->second);
5396 ValueExprMap.erase(It);
5397 if (PHINode *PN = dyn_cast<PHINode>(I))
5398 ConstantEvolutionLoopExitValue.erase(PN);
5399 }
5400
5401 PushDefUseChildren(I, Worklist);
5402 }
5403}
5404
5405/// getExact - Get the exact loop backedge taken count considering all loop
5406/// exits. A computable result can only be returned for loops with a single
5407/// exit. Returning the minimum taken count among all exits is incorrect
5408/// because one of the loop's exit limit's may have been skipped. HowFarToZero
5409/// assumes that the limit of each loop test is never skipped. This is a valid
5410/// assumption as long as the loop exits via that test. For precise results, it
5411/// is the caller's responsibility to specify the relevant loop exit using
5412/// getExact(ExitingBlock, SE).
5413const SCEV *
5414ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const {
5415 // If any exits were not computable, the loop is not computable.
5416 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
5417
5418 // We need exactly one computable exit.
5419 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
5420 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info")((ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"
) ? static_cast<void> (0) : __assert_fail ("ExitNotTaken.ExactNotTaken && \"uninitialized not-taken info\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 5420, __PRETTY_FUNCTION__))
;
5421
5422 const SCEV *BECount = nullptr;
5423 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
5424 ENT != nullptr; ENT = ENT->getNextExit()) {
5425
5426 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV")((ENT->ExactNotTaken != SE->getCouldNotCompute() &&
"bad exit SCEV") ? static_cast<void> (0) : __assert_fail
("ENT->ExactNotTaken != SE->getCouldNotCompute() && \"bad exit SCEV\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 5426, __PRETTY_FUNCTION__))
;
5427
5428 if (!BECount)
5429 BECount = ENT->ExactNotTaken;
5430 else if (BECount != ENT->ExactNotTaken)
5431 return SE->getCouldNotCompute();
5432 }
5433 assert(BECount && "Invalid not taken count for loop exit")((BECount && "Invalid not taken count for loop exit")
? static_cast<void> (0) : __assert_fail ("BECount && \"Invalid not taken count for loop exit\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 5433, __PRETTY_FUNCTION__))
;
5434 return BECount;
5435}
5436
5437/// getExact - Get the exact not taken count for this loop exit.
5438const SCEV *
5439ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
5440 ScalarEvolution *SE) const {
5441 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
5442 ENT != nullptr; ENT = ENT->getNextExit()) {
5443
5444 if (ENT->ExitingBlock == ExitingBlock)
5445 return ENT->ExactNotTaken;
5446 }
5447 return SE->getCouldNotCompute();
5448}
5449
5450/// getMax - Get the max backedge taken count for the loop.
5451const SCEV *
5452ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
5453 return Max ? Max : SE->getCouldNotCompute();
5454}
5455
5456bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
5457 ScalarEvolution *SE) const {
5458 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
5459 return true;
5460
5461 if (!ExitNotTaken.ExitingBlock)
5462 return false;
5463
5464 for (const ExitNotTakenInfo *ENT = &ExitNotTaken;
5465 ENT != nullptr; ENT = ENT->getNextExit()) {
5466
5467 if (ENT->ExactNotTaken != SE->getCouldNotCompute()
5468 && SE->hasOperand(ENT->ExactNotTaken, S)) {
5469 return true;
5470 }
5471 }
5472 return false;
5473}
5474
5475/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
5476/// computable exit into a persistent ExitNotTakenInfo array.
5477ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
5478 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts,
5479 bool Complete, const SCEV *MaxCount) : Max(MaxCount) {
5480
5481 if (!Complete)
5482 ExitNotTaken.setIncomplete();
5483
5484 unsigned NumExits = ExitCounts.size();
5485 if (NumExits == 0) return;
5486
5487 ExitNotTaken.ExitingBlock = ExitCounts[0].first;
5488 ExitNotTaken.ExactNotTaken = ExitCounts[0].second;
5489 if (NumExits == 1) return;
5490
5491 // Handle the rare case of multiple computable exits.
5492 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1];
5493
5494 ExitNotTakenInfo *PrevENT = &ExitNotTaken;
5495 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) {
5496 PrevENT->setNextExit(ENT);
5497 ENT->ExitingBlock = ExitCounts[i].first;
5498 ENT->ExactNotTaken = ExitCounts[i].second;
5499 }
5500}
5501
5502/// clear - Invalidate this result and free the ExitNotTakenInfo array.
5503void ScalarEvolution::BackedgeTakenInfo::clear() {
5504 ExitNotTaken.ExitingBlock = nullptr;
5505 ExitNotTaken.ExactNotTaken = nullptr;
5506 delete[] ExitNotTaken.getNextExit();
5507}
5508
5509/// computeBackedgeTakenCount - Compute the number of times the backedge
5510/// of the specified loop will execute.
5511ScalarEvolution::BackedgeTakenInfo
5512ScalarEvolution::computeBackedgeTakenCount(const Loop *L) {
5513 SmallVector<BasicBlock *, 8> ExitingBlocks;
5514 L->getExitingBlocks(ExitingBlocks);
5515
5516 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts;
5517 bool CouldComputeBECount = true;
5518 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
5519 const SCEV *MustExitMaxBECount = nullptr;
5520 const SCEV *MayExitMaxBECount = nullptr;
5521
5522 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
5523 // and compute maxBECount.
5524 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
5525 BasicBlock *ExitBB = ExitingBlocks[i];
5526 ExitLimit EL = computeExitLimit(L, ExitBB);
5527
5528 // 1. For each exit that can be computed, add an entry to ExitCounts.
5529 // CouldComputeBECount is true only if all exits can be computed.
5530 if (EL.Exact == getCouldNotCompute())
5531 // We couldn't compute an exact value for this exit, so
5532 // we won't be able to compute an exact value for the loop.
5533 CouldComputeBECount = false;
5534 else
5535 ExitCounts.push_back({ExitBB, EL.Exact});
5536
5537 // 2. Derive the loop's MaxBECount from each exit's max number of
5538 // non-exiting iterations. Partition the loop exits into two kinds:
5539 // LoopMustExits and LoopMayExits.
5540 //
5541 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
5542 // is a LoopMayExit. If any computable LoopMustExit is found, then
5543 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
5544 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
5545 // considered greater than any computable EL.Max.
5546 if (EL.Max != getCouldNotCompute() && Latch &&
5547 DT.dominates(ExitBB, Latch)) {
5548 if (!MustExitMaxBECount)
5549 MustExitMaxBECount = EL.Max;
5550 else {
5551 MustExitMaxBECount =
5552 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
5553 }
5554 } else if (MayExitMaxBECount != getCouldNotCompute()) {
5555 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
5556 MayExitMaxBECount = EL.Max;
5557 else {
5558 MayExitMaxBECount =
5559 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
5560 }
5561 }
5562 }
5563 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
5564 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
5565 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
5566}
5567
5568ScalarEvolution::ExitLimit
5569ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock) {
5570
5571 // Okay, we've chosen an exiting block. See what condition causes us to exit
5572 // at this block and remember the exit block and whether all other targets
5573 // lead to the loop header.
5574 bool MustExecuteLoopHeader = true;
5575 BasicBlock *Exit = nullptr;
5576 for (auto *SBB : successors(ExitingBlock))
5577 if (!L->contains(SBB)) {
5578 if (Exit) // Multiple exit successors.
5579 return getCouldNotCompute();
5580 Exit = SBB;
5581 } else if (SBB != L->getHeader()) {
5582 MustExecuteLoopHeader = false;
5583 }
5584
5585 // At this point, we know we have a conditional branch that determines whether
5586 // the loop is exited. However, we don't know if the branch is executed each
5587 // time through the loop. If not, then the execution count of the branch will
5588 // not be equal to the trip count of the loop.
5589 //
5590 // Currently we check for this by checking to see if the Exit branch goes to
5591 // the loop header. If so, we know it will always execute the same number of
5592 // times as the loop. We also handle the case where the exit block *is* the
5593 // loop header. This is common for un-rotated loops.
5594 //
5595 // If both of those tests fail, walk up the unique predecessor chain to the
5596 // header, stopping if there is an edge that doesn't exit the loop. If the
5597 // header is reached, the execution count of the branch will be equal to the
5598 // trip count of the loop.
5599 //
5600 // More extensive analysis could be done to handle more cases here.
5601 //
5602 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
5603 // The simple checks failed, try climbing the unique predecessor chain
5604 // up to the header.
5605 bool Ok = false;
5606 for (BasicBlock *BB = ExitingBlock; BB; ) {
5607 BasicBlock *Pred = BB->getUniquePredecessor();
5608 if (!Pred)
5609 return getCouldNotCompute();
5610 TerminatorInst *PredTerm = Pred->getTerminator();
5611 for (const BasicBlock *PredSucc : PredTerm->successors()) {
5612 if (PredSucc == BB)
5613 continue;
5614 // If the predecessor has a successor that isn't BB and isn't
5615 // outside the loop, assume the worst.
5616 if (L->contains(PredSucc))
5617 return getCouldNotCompute();
5618 }
5619 if (Pred == L->getHeader()) {
5620 Ok = true;
5621 break;
5622 }
5623 BB = Pred;
5624 }
5625 if (!Ok)
5626 return getCouldNotCompute();
5627 }
5628
5629 bool IsOnlyExit = (L->getExitingBlock() != nullptr);
5630 TerminatorInst *Term = ExitingBlock->getTerminator();
5631 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
5632 assert(BI->isConditional() && "If unconditional, it can't be in loop!")((BI->isConditional() && "If unconditional, it can't be in loop!"
) ? static_cast<void> (0) : __assert_fail ("BI->isConditional() && \"If unconditional, it can't be in loop!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 5632, __PRETTY_FUNCTION__))
;
5633 // Proceed to the next level to examine the exit condition expression.
5634 return computeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0),
5635 BI->getSuccessor(1),
5636 /*ControlsExit=*/IsOnlyExit);
5637 }
5638
5639 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
5640 return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
5641 /*ControlsExit=*/IsOnlyExit);
5642
5643 return getCouldNotCompute();
5644}
5645
5646/// computeExitLimitFromCond - Compute the number of times the
5647/// backedge of the specified loop will execute if its exit condition
5648/// were a conditional branch of ExitCond, TBB, and FBB.
5649///
5650/// @param ControlsExit is true if ExitCond directly controls the exit
5651/// branch. In this case, we can assume that the loop exits only if the
5652/// condition is true and can infer that failing to meet the condition prior to
5653/// integer wraparound results in undefined behavior.
5654ScalarEvolution::ExitLimit
5655ScalarEvolution::computeExitLimitFromCond(const Loop *L,
5656 Value *ExitCond,
5657 BasicBlock *TBB,
5658 BasicBlock *FBB,
5659 bool ControlsExit) {
5660 // Check if the controlling expression for this loop is an And or Or.
5661 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
5662 if (BO->getOpcode() == Instruction::And) {
5663 // Recurse on the operands of the and.
5664 bool EitherMayExit = L->contains(TBB);
5665 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
5666 ControlsExit && !EitherMayExit);
5667 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
5668 ControlsExit && !EitherMayExit);
5669 const SCEV *BECount = getCouldNotCompute();
5670 const SCEV *MaxBECount = getCouldNotCompute();
5671 if (EitherMayExit) {
5672 // Both conditions must be true for the loop to continue executing.
5673 // Choose the less conservative count.
5674 if (EL0.Exact == getCouldNotCompute() ||
5675 EL1.Exact == getCouldNotCompute())
5676 BECount = getCouldNotCompute();
5677 else
5678 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5679 if (EL0.Max == getCouldNotCompute())
5680 MaxBECount = EL1.Max;
5681 else if (EL1.Max == getCouldNotCompute())
5682 MaxBECount = EL0.Max;
5683 else
5684 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
5685 } else {
5686 // Both conditions must be true at the same time for the loop to exit.
5687 // For now, be conservative.
5688 assert(L->contains(FBB) && "Loop block has no successor in loop!")((L->contains(FBB) && "Loop block has no successor in loop!"
) ? static_cast<void> (0) : __assert_fail ("L->contains(FBB) && \"Loop block has no successor in loop!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 5688, __PRETTY_FUNCTION__))
;
5689 if (EL0.Max == EL1.Max)
5690 MaxBECount = EL0.Max;
5691 if (EL0.Exact == EL1.Exact)
5692 BECount = EL0.Exact;
5693 }
5694
5695 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
5696 // to be more aggressive when computing BECount than when computing
5697 // MaxBECount. In these cases it is possible for EL0.Exact and EL1.Exact
5698 // to match, but for EL0.Max and EL1.Max to not.
5699 if (isa<SCEVCouldNotCompute>(MaxBECount) &&
5700 !isa<SCEVCouldNotCompute>(BECount))
5701 MaxBECount = BECount;
5702
5703 return ExitLimit(BECount, MaxBECount);
5704 }
5705 if (BO->getOpcode() == Instruction::Or) {
5706 // Recurse on the operands of the or.
5707 bool EitherMayExit = L->contains(FBB);
5708 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
5709 ControlsExit && !EitherMayExit);
5710 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
5711 ControlsExit && !EitherMayExit);
5712 const SCEV *BECount = getCouldNotCompute();
5713 const SCEV *MaxBECount = getCouldNotCompute();
5714 if (EitherMayExit) {
5715 // Both conditions must be false for the loop to continue executing.
5716 // Choose the less conservative count.
5717 if (EL0.Exact == getCouldNotCompute() ||
5718 EL1.Exact == getCouldNotCompute())
5719 BECount = getCouldNotCompute();
5720 else
5721 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5722 if (EL0.Max == getCouldNotCompute())
5723 MaxBECount = EL1.Max;
5724 else if (EL1.Max == getCouldNotCompute())
5725 MaxBECount = EL0.Max;
5726 else
5727 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
5728 } else {
5729 // Both conditions must be false at the same time for the loop to exit.
5730 // For now, be conservative.
5731 assert(L->contains(TBB) && "Loop block has no successor in loop!")((L->contains(TBB) && "Loop block has no successor in loop!"
) ? static_cast<void> (0) : __assert_fail ("L->contains(TBB) && \"Loop block has no successor in loop!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 5731, __PRETTY_FUNCTION__))
;
5732 if (EL0.Max == EL1.Max)
5733 MaxBECount = EL0.Max;
5734 if (EL0.Exact == EL1.Exact)
5735 BECount = EL0.Exact;
5736 }
5737
5738 return ExitLimit(BECount, MaxBECount);
5739 }
5740 }
5741
5742 // With an icmp, it may be feasible to compute an exact backedge-taken count.
5743 // Proceed to the next level to examine the icmp.
5744 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond))
5745 return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
5746
5747 // Check for a constant condition. These are normally stripped out by
5748 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
5749 // preserve the CFG and is temporarily leaving constant conditions
5750 // in place.
5751 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
5752 if (L->contains(FBB) == !CI->getZExtValue())
5753 // The backedge is always taken.
5754 return getCouldNotCompute();
5755 else
5756 // The backedge is never taken.
5757 return getZero(CI->getType());
5758 }
5759
5760 // If it's not an integer or pointer comparison then compute it the hard way.
5761 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
5762}
5763
5764ScalarEvolution::ExitLimit
5765ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
5766 ICmpInst *ExitCond,
5767 BasicBlock *TBB,
5768 BasicBlock *FBB,
5769 bool ControlsExit) {
5770
5771 // If the condition was exit on true, convert the condition to exit on false
5772 ICmpInst::Predicate Cond;
5773 if (!L->contains(FBB))
5774 Cond = ExitCond->getPredicate();
5775 else
5776 Cond = ExitCond->getInversePredicate();
5777
5778 // Handle common loops like: for (X = "string"; *X; ++X)
5779 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
5780 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
5781 ExitLimit ItCnt =
5782 computeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
5783 if (ItCnt.hasAnyInfo())
5784 return ItCnt;
5785 }
5786
5787 ExitLimit ShiftEL = computeShiftCompareExitLimit(
5788 ExitCond->getOperand(0), ExitCond->getOperand(1), L, Cond);
5789 if (ShiftEL.hasAnyInfo())
5790 return ShiftEL;
5791
5792 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5793 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
5794
5795 // Try to evaluate any dependencies out of the loop.
5796 LHS = getSCEVAtScope(LHS, L);
5797 RHS = getSCEVAtScope(RHS, L);
5798
5799 // At this point, we would like to compute how many iterations of the
5800 // loop the predicate will return true for these inputs.
5801 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
5802 // If there is a loop-invariant, force it into the RHS.
5803 std::swap(LHS, RHS);
5804 Cond = ICmpInst::getSwappedPredicate(Cond);
5805 }
5806
5807 // Simplify the operands before analyzing them.
5808 (void)SimplifyICmpOperands(Cond, LHS, RHS);
5809
5810 // If we have a comparison of a chrec against a constant, try to use value
5811 // ranges to answer this query.
5812 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
5813 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
5814 if (AddRec->getLoop() == L) {
5815 // Form the constant range.
5816 ConstantRange CompRange(
5817 ICmpInst::makeConstantRange(Cond, RHSC->getAPInt()));
5818
5819 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
5820 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
5821 }
5822
5823 switch (Cond) {
5824 case ICmpInst::ICMP_NE: { // while (X != Y)
5825 // Convert to: while (X-Y != 0)
5826 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
5827 if (EL.hasAnyInfo()) return EL;
5828 break;
5829 }
5830 case ICmpInst::ICMP_EQ: { // while (X == Y)
5831 // Convert to: while (X-Y == 0)
5832 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
5833 if (EL.hasAnyInfo()) return EL;
5834 break;
5835 }
5836 case ICmpInst::ICMP_SLT:
5837 case ICmpInst::ICMP_ULT: { // while (X < Y)
5838 bool IsSigned = Cond == ICmpInst::ICMP_SLT;
5839 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit);
5840 if (EL.hasAnyInfo()) return EL;
5841 break;
5842 }
5843 case ICmpInst::ICMP_SGT:
5844 case ICmpInst::ICMP_UGT: { // while (X > Y)
5845 bool IsSigned = Cond == ICmpInst::ICMP_SGT;
5846 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit);
5847 if (EL.hasAnyInfo()) return EL;
5848 break;
5849 }
5850 default:
5851 break;
5852 }
5853 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
5854}
5855
5856ScalarEvolution::ExitLimit
5857ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
5858 SwitchInst *Switch,
5859 BasicBlock *ExitingBlock,
5860 bool ControlsExit) {
5861 assert(!L->contains(ExitingBlock) && "Not an exiting block!")((!L->contains(ExitingBlock) && "Not an exiting block!"
) ? static_cast<void> (0) : __assert_fail ("!L->contains(ExitingBlock) && \"Not an exiting block!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 5861, __PRETTY_FUNCTION__))
;
5862
5863 // Give up if the exit is the default dest of a switch.
5864 if (Switch->getDefaultDest() == ExitingBlock)
5865 return getCouldNotCompute();
5866
5867 assert(L->contains(Switch->getDefaultDest()) &&((L->contains(Switch->getDefaultDest()) && "Default case must not exit the loop!"
) ? static_cast<void> (0) : __assert_fail ("L->contains(Switch->getDefaultDest()) && \"Default case must not exit the loop!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 5868, __PRETTY_FUNCTION__))
5868 "Default case must not exit the loop!")((L->contains(Switch->getDefaultDest()) && "Default case must not exit the loop!"
) ? static_cast<void> (0) : __assert_fail ("L->contains(Switch->getDefaultDest()) && \"Default case must not exit the loop!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 5868, __PRETTY_FUNCTION__))
;
5869 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
5870 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
5871
5872 // while (X != Y) --> while (X-Y != 0)
5873 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
5874 if (EL.hasAnyInfo())
5875 return EL;
5876
5877 return getCouldNotCompute();
5878}
5879
5880static ConstantInt *
5881EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
5882 ScalarEvolution &SE) {
5883 const SCEV *InVal = SE.getConstant(C);
5884 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
5885 assert(isa<SCEVConstant>(Val) &&((isa<SCEVConstant>(Val) && "Evaluation of SCEV at constant didn't fold correctly?"
) ? static_cast<void> (0) : __assert_fail ("isa<SCEVConstant>(Val) && \"Evaluation of SCEV at constant didn't fold correctly?\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 5886, __PRETTY_FUNCTION__))
5886 "Evaluation of SCEV at constant didn't fold correctly?")((isa<SCEVConstant>(Val) && "Evaluation of SCEV at constant didn't fold correctly?"
) ? static_cast<void> (0) : __assert_fail ("isa<SCEVConstant>(Val) && \"Evaluation of SCEV at constant didn't fold correctly?\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 5886, __PRETTY_FUNCTION__))
;
5887 return cast<SCEVConstant>(Val)->getValue();
5888}
5889
5890/// computeLoadConstantCompareExitLimit - Given an exit condition of
5891/// 'icmp op load X, cst', try to see if we can compute the backedge
5892/// execution count.
5893ScalarEvolution::ExitLimit
5894ScalarEvolution::computeLoadConstantCompareExitLimit(
5895 LoadInst *LI,
5896 Constant *RHS,
5897 const Loop *L,
5898 ICmpInst::Predicate predicate) {
5899
5900 if (LI->isVolatile()) return getCouldNotCompute();
5901
5902 // Check to see if the loaded pointer is a getelementptr of a global.
5903 // TODO: Use SCEV instead of manually grubbing with GEPs.
5904 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
5905 if (!GEP) return getCouldNotCompute();
5906
5907 // Make sure that it is really a constant global we are gepping, with an
5908 // initializer, and make sure the first IDX is really 0.
5909 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
5910 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
5911 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
5912 !cast<Constant>(GEP->getOperand(1))->isNullValue())
5913 return getCouldNotCompute();
5914
5915 // Okay, we allow one non-constant index into the GEP instruction.
5916 Value *VarIdx = nullptr;
5917 std::vector<Constant*> Indexes;
5918 unsigned VarIdxNum = 0;
5919 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
5920 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
5921 Indexes.push_back(CI);
5922 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
5923 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
5924 VarIdx = GEP->getOperand(i);
5925 VarIdxNum = i-2;
5926 Indexes.push_back(nullptr);
5927 }
5928
5929 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
5930 if (!VarIdx)
5931 return getCouldNotCompute();
5932
5933 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
5934 // Check to see if X is a loop variant variable value now.
5935 const SCEV *Idx = getSCEV(VarIdx);
5936 Idx = getSCEVAtScope(Idx, L);
5937
5938 // We can only recognize very limited forms of loop index expressions, in
5939 // particular, only affine AddRec's like {C1,+,C2}.
5940 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
5941 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
5942 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
5943 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
5944 return getCouldNotCompute();
5945
5946 unsigned MaxSteps = MaxBruteForceIterations;
5947 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
5948 ConstantInt *ItCst = ConstantInt::get(
5949 cast<IntegerType>(IdxExpr->getType()), IterationNum);
5950 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
5951
5952 // Form the GEP offset.
5953 Indexes[VarIdxNum] = Val;
5954
5955 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
5956 Indexes);
5957 if (!Result) break; // Cannot compute!
5958
5959 // Evaluate the condition for this iteration.
5960 Result = ConstantExpr::getICmp(predicate, Result, RHS);
5961 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
5962 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
5963 ++NumArrayLenItCounts;
5964 return getConstant(ItCst); // Found terminating iteration!
5965 }
5966 }
5967 return getCouldNotCompute();
5968}
5969
5970ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
5971 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
5972 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
5973 if (!RHS)
5974 return getCouldNotCompute();
5975
5976 const BasicBlock *Latch = L->getLoopLatch();
5977 if (!Latch)
5978 return getCouldNotCompute();
5979
5980 const BasicBlock *Predecessor = L->getLoopPredecessor();
5981 if (!Predecessor)
5982 return getCouldNotCompute();
5983
5984 // Return true if V is of the form "LHS `shift_op` <positive constant>".
5985 // Return LHS in OutLHS and shift_opt in OutOpCode.
5986 auto MatchPositiveShift =
5987 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
5988
5989 using namespace PatternMatch;
5990
5991 ConstantInt *ShiftAmt;
5992 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
5993 OutOpCode = Instruction::LShr;
5994 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
5995 OutOpCode = Instruction::AShr;
5996 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
5997 OutOpCode = Instruction::Shl;
5998 else
5999 return false;
6000
6001 return ShiftAmt->getValue().isStrictlyPositive();
6002 };
6003
6004 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
6005 //
6006 // loop:
6007 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
6008 // %iv.shifted = lshr i32 %iv, <positive constant>
6009 //
6010 // Return true on a succesful match. Return the corresponding PHI node (%iv
6011 // above) in PNOut and the opcode of the shift operation in OpCodeOut.
6012 auto MatchShiftRecurrence =
6013 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
6014 Optional<Instruction::BinaryOps> PostShiftOpCode;
6015
6016 {
6017 Instruction::BinaryOps OpC;
6018 Value *V;
6019
6020 // If we encounter a shift instruction, "peel off" the shift operation,
6021 // and remember that we did so. Later when we inspect %iv's backedge
6022 // value, we will make sure that the backedge value uses the same
6023 // operation.
6024 //
6025 // Note: the peeled shift operation does not have to be the same
6026 // instruction as the one feeding into the PHI's backedge value. We only
6027 // really care about it being the same *kind* of shift instruction --
6028 // that's all that is required for our later inferences to hold.
6029 if (MatchPositiveShift(LHS, V, OpC)) {
6030 PostShiftOpCode = OpC;
6031 LHS = V;
6032 }
6033 }
6034
6035 PNOut = dyn_cast<PHINode>(LHS);
6036 if (!PNOut || PNOut->getParent() != L->getHeader())
6037 return false;
6038
6039 Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
6040 Value *OpLHS;
6041
6042 return
6043 // The backedge value for the PHI node must be a shift by a positive
6044 // amount
6045 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
6046
6047 // of the PHI node itself
6048 OpLHS == PNOut &&
6049
6050 // and the kind of shift should be match the kind of shift we peeled
6051 // off, if any.
6052 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
6053 };
6054
6055 PHINode *PN;
6056 Instruction::BinaryOps OpCode;
6057 if (!MatchShiftRecurrence(LHS, PN, OpCode))
6058 return getCouldNotCompute();
6059
6060 const DataLayout &DL = getDataLayout();
6061
6062 // The key rationale for this optimization is that for some kinds of shift
6063 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
6064 // within a finite number of iterations. If the condition guarding the
6065 // backedge (in the sense that the backedge is taken if the condition is true)
6066 // is false for the value the shift recurrence stabilizes to, then we know
6067 // that the backedge is taken only a finite number of times.
6068
6069 ConstantInt *StableValue = nullptr;
6070 switch (OpCode) {
6071 default:
6072 llvm_unreachable("Impossible case!")::llvm::llvm_unreachable_internal("Impossible case!", "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 6072)
;
6073
6074 case Instruction::AShr: {
6075 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
6076 // bitwidth(K) iterations.
6077 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
6078 bool KnownZero, KnownOne;
6079 ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr,
6080 Predecessor->getTerminator(), &DT);
6081 auto *Ty = cast<IntegerType>(RHS->getType());
6082 if (KnownZero)
6083 StableValue = ConstantInt::get(Ty, 0);
6084 else if (KnownOne)
6085 StableValue = ConstantInt::get(Ty, -1, true);
6086 else
6087 return getCouldNotCompute();
6088
6089 break;
6090 }
6091 case Instruction::LShr:
6092 case Instruction::Shl:
6093 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
6094 // stabilize to 0 in at most bitwidth(K) iterations.
6095 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
6096 break;
6097 }
6098
6099 auto *Result =
6100 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
6101 assert(Result->getType()->isIntegerTy(1) &&((Result->getType()->isIntegerTy(1) && "Otherwise cannot be an operand to a branch instruction"
) ? static_cast<void> (0) : __assert_fail ("Result->getType()->isIntegerTy(1) && \"Otherwise cannot be an operand to a branch instruction\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 6102, __PRETTY_FUNCTION__))
6102 "Otherwise cannot be an operand to a branch instruction")((Result->getType()->isIntegerTy(1) && "Otherwise cannot be an operand to a branch instruction"
) ? static_cast<void> (0) : __assert_fail ("Result->getType()->isIntegerTy(1) && \"Otherwise cannot be an operand to a branch instruction\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 6102, __PRETTY_FUNCTION__))
;
6103
6104 if (Result->isZeroValue()) {
6105 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6106 const SCEV *UpperBound =
6107 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
6108 return ExitLimit(getCouldNotCompute(), UpperBound);
6109 }
6110
6111 return getCouldNotCompute();
6112}
6113
6114/// CanConstantFold - Return true if we can constant fold an instruction of the
6115/// specified type, assuming that all operands were constants.
6116static bool CanConstantFold(const Instruction *I) {
6117 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
6118 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
6119 isa<LoadInst>(I))
6120 return true;
6121
6122 if (const CallInst *CI = dyn_cast<CallInst>(I))
6123 if (const Function *F = CI->getCalledFunction())
6124 return canConstantFoldCallTo(F);
6125 return false;
6126}
6127
6128/// Determine whether this instruction can constant evolve within this loop
6129/// assuming its operands can all constant evolve.
6130static bool canConstantEvolve(Instruction *I, const Loop *L) {
6131 // An instruction outside of the loop can't be derived from a loop PHI.
6132 if (!L->contains(I)) return false;
6133
6134 if (isa<PHINode>(I)) {
6135 // We don't currently keep track of the control flow needed to evaluate
6136 // PHIs, so we cannot handle PHIs inside of loops.
6137 return L->getHeader() == I->getParent();
6138 }
6139
6140 // If we won't be able to constant fold this expression even if the operands
6141 // are constants, bail early.
6142 return CanConstantFold(I);
6143}
6144
6145/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
6146/// recursing through each instruction operand until reaching a loop header phi.
6147static PHINode *
6148getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
6149 DenseMap<Instruction *, PHINode *> &PHIMap) {
6150
6151 // Otherwise, we can evaluate this instruction if all of its operands are
6152 // constant or derived from a PHI node themselves.
6153 PHINode *PHI = nullptr;
6154 for (Value *Op : UseInst->operands()) {
6155 if (isa<Constant>(Op)) continue;
6156
6157 Instruction *OpInst = dyn_cast<Instruction>(Op);
6158 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
6159
6160 PHINode *P = dyn_cast<PHINode>(OpInst);
6161 if (!P)
6162 // If this operand is already visited, reuse the prior result.
6163 // We may have P != PHI if this is the deepest point at which the
6164 // inconsistent paths meet.
6165 P = PHIMap.lookup(OpInst);
6166 if (!P) {
6167 // Recurse and memoize the results, whether a phi is found or not.
6168 // This recursive call invalidates pointers into PHIMap.
6169 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
6170 PHIMap[OpInst] = P;
6171 }
6172 if (!P)
6173 return nullptr; // Not evolving from PHI
6174 if (PHI && PHI != P)
6175 return nullptr; // Evolving from multiple different PHIs.
6176 PHI = P;
6177 }
6178 // This is a expression evolving from a constant PHI!
6179 return PHI;
6180}
6181
6182/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
6183/// in the loop that V is derived from. We allow arbitrary operations along the
6184/// way, but the operands of an operation must either be constants or a value
6185/// derived from a constant PHI. If this expression does not fit with these
6186/// constraints, return null.
6187static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
6188 Instruction *I = dyn_cast<Instruction>(V);
6189 if (!I || !canConstantEvolve(I, L)) return nullptr;
6190
6191 if (PHINode *PN = dyn_cast<PHINode>(I))
6192 return PN;
6193
6194 // Record non-constant instructions contained by the loop.
6195 DenseMap<Instruction *, PHINode *> PHIMap;
6196 return getConstantEvolvingPHIOperands(I, L, PHIMap);
6197}
6198
6199/// EvaluateExpression - Given an expression that passes the
6200/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
6201/// in the loop has the value PHIVal. If we can't fold this expression for some
6202/// reason, return null.
6203static Constant *EvaluateExpression(Value *V, const Loop *L,
6204 DenseMap<Instruction *, Constant *> &Vals,
6205 const DataLayout &DL,
6206 const TargetLibraryInfo *TLI) {
6207 // Convenient constant check, but redundant for recursive calls.
6208 if (Constant *C = dyn_cast<Constant>(V)) return C;
6209 Instruction *I = dyn_cast<Instruction>(V);
6210 if (!I) return nullptr;
6211
6212 if (Constant *C = Vals.lookup(I)) return C;
6213
6214 // An instruction inside the loop depends on a value outside the loop that we
6215 // weren't given a mapping for, or a value such as a call inside the loop.
6216 if (!canConstantEvolve(I, L)) return nullptr;
6217
6218 // An unmapped PHI can be due to a branch or another loop inside this loop,
6219 // or due to this not being the initial iteration through a loop where we
6220 // couldn't compute the evolution of this particular PHI last time.
6221 if (isa<PHINode>(I)) return nullptr;
6222
6223 std::vector<Constant*> Operands(I->getNumOperands());
6224
6225 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
6226 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
6227 if (!Operand) {
6228 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
6229 if (!Operands[i]) return nullptr;
6230 continue;
6231 }
6232 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
6233 Vals[Operand] = C;
6234 if (!C) return nullptr;
6235 Operands[i] = C;
6236 }
6237
6238 if (CmpInst *CI = dyn_cast<CmpInst>(I))
6239 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
6240 Operands[1], DL, TLI);
6241 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
6242 if (!LI->isVolatile())
6243 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
6244 }
6245 return ConstantFoldInstOperands(I, Operands, DL, TLI);
6246}
6247
6248
6249// If every incoming value to PN except the one for BB is a specific Constant,
6250// return that, else return nullptr.
6251static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
6252 Constant *IncomingVal = nullptr;
6253
6254 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
6255 if (PN->getIncomingBlock(i) == BB)
6256 continue;
6257
6258 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
6259 if (!CurrentVal)
6260 return nullptr;
6261
6262 if (IncomingVal != CurrentVal) {
6263 if (IncomingVal)
6264 return nullptr;
6265 IncomingVal = CurrentVal;
6266 }
6267 }
6268
6269 return IncomingVal;
6270}
6271
6272/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
6273/// in the header of its containing loop, we know the loop executes a
6274/// constant number of times, and the PHI node is just a recurrence
6275/// involving constants, fold it.
6276Constant *
6277ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
6278 const APInt &BEs,
6279 const Loop *L) {
6280 auto I = ConstantEvolutionLoopExitValue.find(PN);
6281 if (I != ConstantEvolutionLoopExitValue.end())
6282 return I->second;
6283
6284 if (BEs.ugt(MaxBruteForceIterations))
6285 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
6286
6287 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
6288
6289 DenseMap<Instruction *, Constant *> CurrentIterVals;
6290 BasicBlock *Header = L->getHeader();
6291 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!")((PN->getParent() == Header && "Can't evaluate PHI not in loop header!"
) ? static_cast<void> (0) : __assert_fail ("PN->getParent() == Header && \"Can't evaluate PHI not in loop header!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 6291, __PRETTY_FUNCTION__))
;
6292
6293 BasicBlock *Latch = L->getLoopLatch();
6294 if (!Latch)
6295 return nullptr;
6296
6297 for (auto &I : *Header) {
6298 PHINode *PHI = dyn_cast<PHINode>(&I);
6299 if (!PHI) break;
6300 auto *StartCST = getOtherIncomingValue(PHI, Latch);
6301 if (!StartCST) continue;
6302 CurrentIterVals[PHI] = StartCST;
6303 }
6304 if (!CurrentIterVals.count(PN))
6305 return RetVal = nullptr;
6306
6307 Value *BEValue = PN->getIncomingValueForBlock(Latch);
6308
6309 // Execute the loop symbolically to determine the exit value.
6310 if (BEs.getActiveBits() >= 32)
6311 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
6312
6313 unsigned NumIterations = BEs.getZExtValue(); // must be in range
6314 unsigned IterationNum = 0;
6315 const DataLayout &DL = getDataLayout();
6316 for (; ; ++IterationNum) {
6317 if (IterationNum == NumIterations)
6318 return RetVal = CurrentIterVals[PN]; // Got exit value!
6319
6320 // Compute the value of the PHIs for the next iteration.
6321 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
6322 DenseMap<Instruction *, Constant *> NextIterVals;
6323 Constant *NextPHI =
6324 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6325 if (!NextPHI)
6326 return nullptr; // Couldn't evaluate!
6327 NextIterVals[PN] = NextPHI;
6328
6329 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
6330
6331 // Also evaluate the other PHI nodes. However, we don't get to stop if we
6332 // cease to be able to evaluate one of them or if they stop evolving,
6333 // because that doesn't necessarily prevent us from computing PN.
6334 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
6335 for (const auto &I : CurrentIterVals) {
6336 PHINode *PHI = dyn_cast<PHINode>(I.first);
6337 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
6338 PHIsToCompute.emplace_back(PHI, I.second);
6339 }
6340 // We use two distinct loops because EvaluateExpression may invalidate any
6341 // iterators into CurrentIterVals.
6342 for (const auto &I : PHIsToCompute) {
6343 PHINode *PHI = I.first;
6344 Constant *&NextPHI = NextIterVals[PHI];
6345 if (!NextPHI) { // Not already computed.
6346 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
6347 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6348 }
6349 if (NextPHI != I.second)
6350 StoppedEvolving = false;
6351 }
6352
6353 // If all entries in CurrentIterVals == NextIterVals then we can stop
6354 // iterating, the loop can't continue to change.
6355 if (StoppedEvolving)
6356 return RetVal = CurrentIterVals[PN];
6357
6358 CurrentIterVals.swap(NextIterVals);
6359 }
6360}
6361
6362const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
6363 Value *Cond,
6364 bool ExitWhen) {
6365 PHINode *PN = getConstantEvolvingPHI(Cond, L);
6366 if (!PN) return getCouldNotCompute();
6367
6368 // If the loop is canonicalized, the PHI will have exactly two entries.
6369 // That's the only form we support here.
6370 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
6371
6372 DenseMap<Instruction *, Constant *> CurrentIterVals;
6373 BasicBlock *Header = L->getHeader();
6374 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!")((PN->getParent() == Header && "Can't evaluate PHI not in loop header!"
) ? static_cast<void> (0) : __assert_fail ("PN->getParent() == Header && \"Can't evaluate PHI not in loop header!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 6374, __PRETTY_FUNCTION__))
;
6375
6376 BasicBlock *Latch = L->getLoopLatch();
6377 assert(Latch && "Should follow from NumIncomingValues == 2!")((Latch && "Should follow from NumIncomingValues == 2!"
) ? static_cast<void> (0) : __assert_fail ("Latch && \"Should follow from NumIncomingValues == 2!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 6377, __PRETTY_FUNCTION__))
;
6378
6379 for (auto &I : *Header) {
6380 PHINode *PHI = dyn_cast<PHINode>(&I);
6381 if (!PHI)
6382 break;
6383 auto *StartCST = getOtherIncomingValue(PHI, Latch);
6384 if (!StartCST) continue;
6385 CurrentIterVals[PHI] = StartCST;
6386 }
6387 if (!CurrentIterVals.count(PN))
6388 return getCouldNotCompute();
6389
6390 // Okay, we find a PHI node that defines the trip count of this loop. Execute
6391 // the loop symbolically to determine when the condition gets a value of
6392 // "ExitWhen".
6393 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
6394 const DataLayout &DL = getDataLayout();
6395 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
6396 auto *CondVal = dyn_cast_or_null<ConstantInt>(
6397 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
6398
6399 // Couldn't symbolically evaluate.
6400 if (!CondVal) return getCouldNotCompute();
6401
6402 if (CondVal->getValue() == uint64_t(ExitWhen)) {
6403 ++NumBruteForceTripCountsComputed;
6404 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
6405 }
6406
6407 // Update all the PHI nodes for the next iteration.
6408 DenseMap<Instruction *, Constant *> NextIterVals;
6409
6410 // Create a list of which PHIs we need to compute. We want to do this before
6411 // calling EvaluateExpression on them because that may invalidate iterators
6412 // into CurrentIterVals.
6413 SmallVector<PHINode *, 8> PHIsToCompute;
6414 for (const auto &I : CurrentIterVals) {
6415 PHINode *PHI = dyn_cast<PHINode>(I.first);
6416 if (!PHI || PHI->getParent() != Header) continue;
6417 PHIsToCompute.push_back(PHI);
6418 }
6419 for (PHINode *PHI : PHIsToCompute) {
6420 Constant *&NextPHI = NextIterVals[PHI];
6421 if (NextPHI) continue; // Already computed!
6422
6423 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
6424 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6425 }
6426 CurrentIterVals.swap(NextIterVals);
6427 }
6428
6429 // Too many iterations were needed to evaluate.
6430 return getCouldNotCompute();
6431}
6432
6433/// getSCEVAtScope - Return a SCEV expression for the specified value
6434/// at the specified scope in the program. The L value specifies a loop
6435/// nest to evaluate the expression at, where null is the top-level or a
6436/// specified loop is immediately inside of the loop.
6437///
6438/// This method can be used to compute the exit value for a variable defined
6439/// in a loop by querying what the value will hold in the parent loop.
6440///
6441/// In the case that a relevant loop exit value cannot be computed, the
6442/// original value V is returned.
6443const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
6444 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
6445 ValuesAtScopes[V];
6446 // Check to see if we've folded this expression at this loop before.
6447 for (auto &LS : Values)
6448 if (LS.first == L)
6449 return LS.second ? LS.second : V;
6450
6451 Values.emplace_back(L, nullptr);
6452
6453 // Otherwise compute it.
6454 const SCEV *C = computeSCEVAtScope(V, L);
6455 for (auto &LS : reverse(ValuesAtScopes[V]))
6456 if (LS.first == L) {
6457 LS.second = C;
6458 break;
6459 }
6460 return C;
6461}
6462
6463/// This builds up a Constant using the ConstantExpr interface. That way, we
6464/// will return Constants for objects which aren't represented by a
6465/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
6466/// Returns NULL if the SCEV isn't representable as a Constant.
6467static Constant *BuildConstantFromSCEV(const SCEV *V) {
6468 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
6469 case scCouldNotCompute:
6470 case scAddRecExpr:
6471 break;
6472 case scConstant:
6473 return cast<SCEVConstant>(V)->getValue();
6474 case scUnknown:
6475 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
6476 case scSignExtend: {
6477 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
6478 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
6479 return ConstantExpr::getSExt(CastOp, SS->getType());
6480 break;
6481 }
6482 case scZeroExtend: {
6483 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
6484 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
6485 return ConstantExpr::getZExt(CastOp, SZ->getType());
6486 break;
6487 }
6488 case scTruncate: {
6489 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
6490 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
6491 return ConstantExpr::getTrunc(CastOp, ST->getType());
6492 break;
6493 }
6494 case scAddExpr: {
6495 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
6496 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
6497 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6498 unsigned AS = PTy->getAddressSpace();
6499 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6500 C = ConstantExpr::getBitCast(C, DestPtrTy);
6501 }
6502 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
6503 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
6504 if (!C2) return nullptr;
6505
6506 // First pointer!
6507 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
6508 unsigned AS = C2->getType()->getPointerAddressSpace();
6509 std::swap(C, C2);
6510 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6511 // The offsets have been converted to bytes. We can add bytes to an
6512 // i8* by GEP with the byte count in the first index.
6513 C = ConstantExpr::getBitCast(C, DestPtrTy);
6514 }
6515
6516 // Don't bother trying to sum two pointers. We probably can't
6517 // statically compute a load that results from it anyway.
6518 if (C2->getType()->isPointerTy())
6519 return nullptr;
6520
6521 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6522 if (PTy->getElementType()->isStructTy())
6523 C2 = ConstantExpr::getIntegerCast(
6524 C2, Type::getInt32Ty(C->getContext()), true);
6525 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
6526 } else
6527 C = ConstantExpr::getAdd(C, C2);
6528 }
6529 return C;
6530 }
6531 break;
6532 }
6533 case scMulExpr: {
6534 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
6535 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
6536 // Don't bother with pointers at all.
6537 if (C->getType()->isPointerTy()) return nullptr;
6538 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
6539 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
6540 if (!C2 || C2->getType()->isPointerTy()) return nullptr;
6541 C = ConstantExpr::getMul(C, C2);
6542 }
6543 return C;
6544 }
6545 break;
6546 }
6547 case scUDivExpr: {
6548 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
6549 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
6550 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
6551 if (LHS->getType() == RHS->getType())
6552 return ConstantExpr::getUDiv(LHS, RHS);
6553 break;
6554 }
6555 case scSMaxExpr:
6556 case scUMaxExpr:
6557 break; // TODO: smax, umax.
6558 }
6559 return nullptr;
6560}
6561
6562const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
6563 if (isa<SCEVConstant>(V)) return V;
6564
6565 // If this instruction is evolved from a constant-evolving PHI, compute the
6566 // exit value from the loop without using SCEVs.
6567 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
6568 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
6569 const Loop *LI = this->LI[I->getParent()];
6570 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
6571 if (PHINode *PN = dyn_cast<PHINode>(I))
6572 if (PN->getParent() == LI->getHeader()) {
6573 // Okay, there is no closed form solution for the PHI node. Check
6574 // to see if the loop that contains it has a known backedge-taken
6575 // count. If so, we may be able to force computation of the exit
6576 // value.
6577 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
6578 if (const SCEVConstant *BTCC =
6579 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
6580 // Okay, we know how many times the containing loop executes. If
6581 // this is a constant evolving PHI node, get the final value at
6582 // the specified iteration number.
6583 Constant *RV =
6584 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
6585 if (RV) return getSCEV(RV);
6586 }
6587 }
6588
6589 // Okay, this is an expression that we cannot symbolically evaluate
6590 // into a SCEV. Check to see if it's possible to symbolically evaluate
6591 // the arguments into constants, and if so, try to constant propagate the
6592 // result. This is particularly useful for computing loop exit values.
6593 if (CanConstantFold(I)) {
6594 SmallVector<Constant *, 4> Operands;
6595 bool MadeImprovement = false;
6596 for (Value *Op : I->operands()) {
6597 if (Constant *C = dyn_cast<Constant>(Op)) {
6598 Operands.push_back(C);
6599 continue;
6600 }
6601
6602 // If any of the operands is non-constant and if they are
6603 // non-integer and non-pointer, don't even try to analyze them
6604 // with scev techniques.
6605 if (!isSCEVable(Op->getType()))
6606 return V;
6607
6608 const SCEV *OrigV = getSCEV(Op);
6609 const SCEV *OpV = getSCEVAtScope(OrigV, L);
6610 MadeImprovement |= OrigV != OpV;
6611
6612 Constant *C = BuildConstantFromSCEV(OpV);
6613 if (!C) return V;
6614 if (C->getType() != Op->getType())
6615 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
6616 Op->getType(),
6617 false),
6618 C, Op->getType());
6619 Operands.push_back(C);
6620 }
6621
6622 // Check to see if getSCEVAtScope actually made an improvement.
6623 if (MadeImprovement) {
6624 Constant *C = nullptr;
6625 const DataLayout &DL = getDataLayout();
6626 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
6627 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
6628 Operands[1], DL, &TLI);
6629 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
6630 if (!LI->isVolatile())
6631 C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
6632 } else
6633 C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
6634 if (!C) return V;
6635 return getSCEV(C);
6636 }
6637 }
6638 }
6639
6640 // This is some other type of SCEVUnknown, just return it.
6641 return V;
6642 }
6643
6644 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
6645 // Avoid performing the look-up in the common case where the specified
6646 // expression has no loop-variant portions.
6647 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
6648 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
6649 if (OpAtScope != Comm->getOperand(i)) {
6650 // Okay, at least one of these operands is loop variant but might be
6651 // foldable. Build a new instance of the folded commutative expression.
6652 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
6653 Comm->op_begin()+i);
6654 NewOps.push_back(OpAtScope);
6655
6656 for (++i; i != e; ++i) {
6657 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
6658 NewOps.push_back(OpAtScope);
6659 }
6660 if (isa<SCEVAddExpr>(Comm))
6661 return getAddExpr(NewOps);
6662 if (isa<SCEVMulExpr>(Comm))
6663 return getMulExpr(NewOps);
6664 if (isa<SCEVSMaxExpr>(Comm))
6665 return getSMaxExpr(NewOps);
6666 if (isa<SCEVUMaxExpr>(Comm))
6667 return getUMaxExpr(NewOps);
6668 llvm_unreachable("Unknown commutative SCEV type!")::llvm::llvm_unreachable_internal("Unknown commutative SCEV type!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 6668)
;
6669 }
6670 }
6671 // If we got here, all operands are loop invariant.
6672 return Comm;
6673 }
6674
6675 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
6676 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
6677 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
6678 if (LHS == Div->getLHS() && RHS == Div->getRHS())
6679 return Div; // must be loop invariant
6680 return getUDivExpr(LHS, RHS);
6681 }
6682
6683 // If this is a loop recurrence for a loop that does not contain L, then we
6684 // are dealing with the final value computed by the loop.
6685 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
6686 // First, attempt to evaluate each operand.
6687 // Avoid performing the look-up in the common case where the specified
6688 // expression has no loop-variant portions.
6689 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
6690 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
6691 if (OpAtScope == AddRec->getOperand(i))
6692 continue;
6693
6694 // Okay, at least one of these operands is loop variant but might be
6695 // foldable. Build a new instance of the folded commutative expression.
6696 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
6697 AddRec->op_begin()+i);
6698 NewOps.push_back(OpAtScope);
6699 for (++i; i != e; ++i)
6700 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
6701
6702 const SCEV *FoldedRec =
6703 getAddRecExpr(NewOps, AddRec->getLoop(),
6704 AddRec->getNoWrapFlags(SCEV::FlagNW));
6705 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
6706 // The addrec may be folded to a nonrecurrence, for example, if the
6707 // induction variable is multiplied by zero after constant folding. Go
6708 // ahead and return the folded value.
6709 if (!AddRec)
6710 return FoldedRec;
6711 break;
6712 }
6713
6714 // If the scope is outside the addrec's loop, evaluate it by using the
6715 // loop exit value of the addrec.
6716 if (!AddRec->getLoop()->contains(L)) {
6717 // To evaluate this recurrence, we need to know how many times the AddRec
6718 // loop iterates. Compute this now.
6719 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
6720 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
6721
6722 // Then, evaluate the AddRec.
6723 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
6724 }
6725
6726 return AddRec;
6727 }
6728
6729 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
6730 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6731 if (Op == Cast->getOperand())
6732 return Cast; // must be loop invariant
6733 return getZeroExtendExpr(Op, Cast->getType());
6734 }
6735
6736 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
6737 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6738 if (Op == Cast->getOperand())
6739 return Cast; // must be loop invariant
6740 return getSignExtendExpr(Op, Cast->getType());
6741 }
6742
6743 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
6744 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6745 if (Op == Cast->getOperand())
6746 return Cast; // must be loop invariant
6747 return getTruncateExpr(Op, Cast->getType());
6748 }
6749
6750 llvm_unreachable("Unknown SCEV type!")::llvm::llvm_unreachable_internal("Unknown SCEV type!", "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 6750)
;
6751}
6752
6753/// getSCEVAtScope - This is a convenience function which does
6754/// getSCEVAtScope(getSCEV(V), L).
6755const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
6756 return getSCEVAtScope(getSCEV(V), L);
6757}
6758
6759/// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
6760/// following equation:
6761///
6762/// A * X = B (mod N)
6763///
6764/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
6765/// A and B isn't important.
6766///
6767/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
6768static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
6769 ScalarEvolution &SE) {
6770 uint32_t BW = A.getBitWidth();
6771 assert(BW == B.getBitWidth() && "Bit widths must be the same.")((BW == B.getBitWidth() && "Bit widths must be the same."
) ? static_cast<void> (0) : __assert_fail ("BW == B.getBitWidth() && \"Bit widths must be the same.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 6771, __PRETTY_FUNCTION__))
;
6772 assert(A != 0 && "A must be non-zero.")((A != 0 && "A must be non-zero.") ? static_cast<void
> (0) : __assert_fail ("A != 0 && \"A must be non-zero.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 6772, __PRETTY_FUNCTION__))
;
6773
6774 // 1. D = gcd(A, N)
6775 //
6776 // The gcd of A and N may have only one prime factor: 2. The number of
6777 // trailing zeros in A is its multiplicity
6778 uint32_t Mult2 = A.countTrailingZeros();
6779 // D = 2^Mult2
6780
6781 // 2. Check if B is divisible by D.
6782 //
6783 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
6784 // is not less than multiplicity of this prime factor for D.
6785 if (B.countTrailingZeros() < Mult2)
6786 return SE.getCouldNotCompute();
6787
6788 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
6789 // modulo (N / D).
6790 //
6791 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
6792 // bit width during computations.
6793 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
6794 APInt Mod(BW + 1, 0);
6795 Mod.setBit(BW - Mult2); // Mod = N / D
6796 APInt I = AD.multiplicativeInverse(Mod);
6797
6798 // 4. Compute the minimum unsigned root of the equation:
6799 // I * (B / D) mod (N / D)
6800 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
6801
6802 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
6803 // bits.
6804 return SE.getConstant(Result.trunc(BW));
6805}
6806
6807/// SolveQuadraticEquation - Find the roots of the quadratic equation for the
6808/// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which
6809/// might be the same) or two SCEVCouldNotCompute objects.
6810///
6811static std::pair<const SCEV *,const SCEV *>
6812SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
6813 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!")((AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"
) ? static_cast<void> (0) : __assert_fail ("AddRec->getNumOperands() == 3 && \"This is not a quadratic chrec!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 6813, __PRETTY_FUNCTION__))
;
6814 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
6815 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
6816 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
6817
6818 // We currently can only solve this if the coefficients are constants.
6819 if (!LC || !MC || !NC) {
6820 const SCEV *CNC = SE.getCouldNotCompute();
6821 return {CNC, CNC};
6822 }
6823
6824 uint32_t BitWidth = LC->getAPInt().getBitWidth();
6825 const APInt &L = LC->getAPInt();
6826 const APInt &M = MC->getAPInt();
6827 const APInt &N = NC->getAPInt();
6828 APInt Two(BitWidth, 2);
6829 APInt Four(BitWidth, 4);
6830
6831 {
6832 using namespace APIntOps;
6833 const APInt& C = L;
6834 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
6835 // The B coefficient is M-N/2
6836 APInt B(M);
6837 B -= sdiv(N,Two);
6838
6839 // The A coefficient is N/2
6840 APInt A(N.sdiv(Two));
6841
6842 // Compute the B^2-4ac term.
6843 APInt SqrtTerm(B);
6844 SqrtTerm *= B;
6845 SqrtTerm -= Four * (A * C);
6846
6847 if (SqrtTerm.isNegative()) {
6848 // The loop is provably infinite.
6849 const SCEV *CNC = SE.getCouldNotCompute();
6850 return {CNC, CNC};
6851 }
6852
6853 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
6854 // integer value or else APInt::sqrt() will assert.
6855 APInt SqrtVal(SqrtTerm.sqrt());
6856
6857 // Compute the two solutions for the quadratic formula.
6858 // The divisions must be performed as signed divisions.
6859 APInt NegB(-B);
6860 APInt TwoA(A << 1);
6861 if (TwoA.isMinValue()) {
6862 const SCEV *CNC = SE.getCouldNotCompute();
6863 return {CNC, CNC};
6864 }
6865
6866 LLVMContext &Context = SE.getContext();
6867
6868 ConstantInt *Solution1 =
6869 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
6870 ConstantInt *Solution2 =
6871 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
6872
6873 return {SE.getConstant(Solution1), SE.getConstant(Solution2)};
6874 } // end APIntOps namespace
6875}
6876
6877/// HowFarToZero - Return the number of times a backedge comparing the specified
6878/// value to zero will execute. If not computable, return CouldNotCompute.
6879///
6880/// This is only used for loops with a "x != y" exit test. The exit condition is
6881/// now expressed as a single expression, V = x-y. So the exit test is
6882/// effectively V != 0. We know and take advantage of the fact that this
6883/// expression only being used in a comparison by zero context.
6884ScalarEvolution::ExitLimit
6885ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) {
6886 // If the value is a constant
6887 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
6888 // If the value is already zero, the branch will execute zero times.
6889 if (C->getValue()->isZero()) return C;
6890 return getCouldNotCompute(); // Otherwise it will loop infinitely.
6891 }
6892
6893 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
6894 if (!AddRec || AddRec->getLoop() != L)
6895 return getCouldNotCompute();
6896
6897 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
6898 // the quadratic equation to solve it.
6899 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
6900 std::pair<const SCEV *,const SCEV *> Roots =
6901 SolveQuadraticEquation(AddRec, *this);
6902 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
6903 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
6904 if (R1 && R2) {
6905 // Pick the smallest positive root value.
6906 if (ConstantInt *CB =
6907 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
6908 R1->getValue(),
6909 R2->getValue()))) {
6910 if (!CB->getZExtValue())
6911 std::swap(R1, R2); // R1 is the minimum root now.
6912
6913 // We can only use this value if the chrec ends up with an exact zero
6914 // value at this index. When solving for "X*X != 5", for example, we
6915 // should not accept a root of 2.
6916 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
6917 if (Val->isZero())
6918 return R1; // We found a quadratic root!
6919 }
6920 }
6921 return getCouldNotCompute();
6922 }
6923
6924 // Otherwise we can only handle this if it is affine.
6925 if (!AddRec->isAffine())
6926 return getCouldNotCompute();
6927
6928 // If this is an affine expression, the execution count of this branch is
6929 // the minimum unsigned root of the following equation:
6930 //
6931 // Start + Step*N = 0 (mod 2^BW)
6932 //
6933 // equivalent to:
6934 //
6935 // Step*N = -Start (mod 2^BW)
6936 //
6937 // where BW is the common bit width of Start and Step.
6938
6939 // Get the initial value for the loop.
6940 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
6941 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
6942
6943 // For now we handle only constant steps.
6944 //
6945 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
6946 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
6947 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
6948 // We have not yet seen any such cases.
6949 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
6950 if (!StepC || StepC->getValue()->equalsInt(0))
6951 return getCouldNotCompute();
6952
6953 // For positive steps (counting up until unsigned overflow):
6954 // N = -Start/Step (as unsigned)
6955 // For negative steps (counting down to zero):
6956 // N = Start/-Step
6957 // First compute the unsigned distance from zero in the direction of Step.
6958 bool CountDown = StepC->getAPInt().isNegative();
6959 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
6960
6961 // Handle unitary steps, which cannot wraparound.
6962 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
6963 // N = Distance (as unsigned)
6964 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
6965 ConstantRange CR = getUnsignedRange(Start);
6966 const SCEV *MaxBECount;
6967 if (!CountDown && CR.getUnsignedMin().isMinValue())
6968 // When counting up, the worst starting value is 1, not 0.
6969 MaxBECount = CR.getUnsignedMax().isMinValue()
6970 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
6971 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
6972 else
6973 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
6974 : -CR.getUnsignedMin());
6975 return ExitLimit(Distance, MaxBECount);
6976 }
6977
6978 // As a special case, handle the instance where Step is a positive power of
6979 // two. In this case, determining whether Step divides Distance evenly can be
6980 // done by counting and comparing the number of trailing zeros of Step and
6981 // Distance.
6982 if (!CountDown) {
6983 const APInt &StepV = StepC->getAPInt();
6984 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It
6985 // also returns true if StepV is maximally negative (eg, INT_MIN), but that
6986 // case is not handled as this code is guarded by !CountDown.
6987 if (StepV.isPowerOf2() &&
6988 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) {
6989 // Here we've constrained the equation to be of the form
6990 //
6991 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0)
6992 //
6993 // where we're operating on a W bit wide integer domain and k is
6994 // non-negative. The smallest unsigned solution for X is the trip count.
6995 //
6996 // (0) is equivalent to:
6997 //
6998 // 2^(N + k) * Distance' - 2^N * X = L * 2^W
6999 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N
7000 // <=> 2^k * Distance' - X = L * 2^(W - N)
7001 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1)
7002 //
7003 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS
7004 // by 2^(W - N).
7005 //
7006 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2)
7007 //
7008 // E.g. say we're solving
7009 //
7010 // 2 * Val = 2 * X (in i8) ... (3)
7011 //
7012 // then from (2), we get X = Val URem i8 128 (k = 0 in this case).
7013 //
7014 // Note: It is tempting to solve (3) by setting X = Val, but Val is not
7015 // necessarily the smallest unsigned value of X that satisfies (3).
7016 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3)
7017 // is i8 1, not i8 -127
7018
7019 const auto *ModuloResult = getUDivExactExpr(Distance, Step);
7020
7021 // Since SCEV does not have a URem node, we construct one using a truncate
7022 // and a zero extend.
7023
7024 unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros();
7025 auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth);
7026 auto *WideTy = Distance->getType();
7027
7028 return getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy);
7029 }
7030 }
7031
7032 // If the condition controls loop exit (the loop exits only if the expression
7033 // is true) and the addition is no-wrap we can use unsigned divide to
7034 // compute the backedge count. In this case, the step may not divide the
7035 // distance, but we don't care because if the condition is "missed" the loop
7036 // will have undefined behavior due to wrapping.
7037 if (ControlsExit && AddRec->hasNoSelfWrap()) {
7038 const SCEV *Exact =
7039 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
7040 return ExitLimit(Exact, Exact);
7041 }
7042
7043 // Then, try to solve the above equation provided that Start is constant.
7044 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start))
7045 return SolveLinEquationWithOverflow(StepC->getAPInt(), -StartC->getAPInt(),
7046 *this);
7047 return getCouldNotCompute();
7048}
7049
7050/// HowFarToNonZero - Return the number of times a backedge checking the
7051/// specified value for nonzero will execute. If not computable, return
7052/// CouldNotCompute
7053ScalarEvolution::ExitLimit
7054ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
7055 // Loops that look like: while (X == 0) are very strange indeed. We don't
7056 // handle them yet except for the trivial case. This could be expanded in the
7057 // future as needed.
7058
7059 // If the value is a constant, check to see if it is known to be non-zero
7060 // already. If so, the backedge will execute zero times.
7061 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
7062 if (!C->getValue()->isNullValue())
7063 return getZero(C->getType());
7064 return getCouldNotCompute(); // Otherwise it will loop infinitely.
7065 }
7066
7067 // We could implement others, but I really doubt anyone writes loops like
7068 // this, and if they did, they would already be constant folded.
7069 return getCouldNotCompute();
7070}
7071
7072/// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
7073/// (which may not be an immediate predecessor) which has exactly one
7074/// successor from which BB is reachable, or null if no such block is
7075/// found.
7076///
7077std::pair<BasicBlock *, BasicBlock *>
7078ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
7079 // If the block has a unique predecessor, then there is no path from the
7080 // predecessor to the block that does not go through the direct edge
7081 // from the predecessor to the block.
7082 if (BasicBlock *Pred = BB->getSinglePredecessor())
7083 return {Pred, BB};
7084
7085 // A loop's header is defined to be a block that dominates the loop.
7086 // If the header has a unique predecessor outside the loop, it must be
7087 // a block that has exactly one successor that can reach the loop.
7088 if (Loop *L = LI.getLoopFor(BB))
7089 return {L->getLoopPredecessor(), L->getHeader()};
7090
7091 return {nullptr, nullptr};
7092}
7093
7094/// HasSameValue - SCEV structural equivalence is usually sufficient for
7095/// testing whether two expressions are equal, however for the purposes of
7096/// looking for a condition guarding a loop, it can be useful to be a little
7097/// more general, since a front-end may have replicated the controlling
7098/// expression.
7099///
7100static bool HasSameValue(const SCEV *A, const SCEV *B) {
7101 // Quick check to see if they are the same SCEV.
7102 if (A == B) return true;
7103
7104 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
7105 // Not all instructions that are "identical" compute the same value. For
7106 // instance, two distinct alloca instructions allocating the same type are
7107 // identical and do not read memory; but compute distinct values.
7108 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
7109 };
7110
7111 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
7112 // two different instructions with the same value. Check for this case.
7113 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
7114 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
7115 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
7116 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
7117 if (ComputesEqualValues(AI, BI))
7118 return true;
7119
7120 // Otherwise assume they may have a different value.
7121 return false;
7122}
7123
7124/// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
7125/// predicate Pred. Return true iff any changes were made.
7126///
7127bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
7128 const SCEV *&LHS, const SCEV *&RHS,
7129 unsigned Depth) {
7130 bool Changed = false;
7131
7132 // If we hit the max recursion limit bail out.
7133 if (Depth >= 3)
7134 return false;
7135
7136 // Canonicalize a constant to the right side.
7137 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
7138 // Check for both operands constant.
7139 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
7140 if (ConstantExpr::getICmp(Pred,
7141 LHSC->getValue(),
7142 RHSC->getValue())->isNullValue())
7143 goto trivially_false;
7144 else
7145 goto trivially_true;
7146 }
7147 // Otherwise swap the operands to put the constant on the right.
7148 std::swap(LHS, RHS);
7149 Pred = ICmpInst::getSwappedPredicate(Pred);
7150 Changed = true;
7151 }
7152
7153 // If we're comparing an addrec with a value which is loop-invariant in the
7154 // addrec's loop, put the addrec on the left. Also make a dominance check,
7155 // as both operands could be addrecs loop-invariant in each other's loop.
7156 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
7157 const Loop *L = AR->getLoop();
7158 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
7159 std::swap(LHS, RHS);
7160 Pred = ICmpInst::getSwappedPredicate(Pred);
7161 Changed = true;
7162 }
7163 }
7164
7165 // If there's a constant operand, canonicalize comparisons with boundary
7166 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
7167 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
7168 const APInt &RA = RC->getAPInt();
7169 switch (Pred) {
7170 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!")::llvm::llvm_unreachable_internal("Unexpected ICmpInst::Predicate value!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 7170)
;
7171 case ICmpInst::ICMP_EQ:
7172 case ICmpInst::ICMP_NE:
7173 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
7174 if (!RA)
7175 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
7176 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
7177 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
7178 ME->getOperand(0)->isAllOnesValue()) {
7179 RHS = AE->getOperand(1);
7180 LHS = ME->getOperand(1);
7181 Changed = true;
7182 }
7183 break;
7184 case ICmpInst::ICMP_UGE:
7185 if ((RA - 1).isMinValue()) {
7186 Pred = ICmpInst::ICMP_NE;
7187 RHS = getConstant(RA - 1);
7188 Changed = true;
7189 break;
7190 }
7191 if (RA.isMaxValue()) {
7192 Pred = ICmpInst::ICMP_EQ;
7193 Changed = true;
7194 break;
7195 }
7196 if (RA.isMinValue()) goto trivially_true;
7197
7198 Pred = ICmpInst::ICMP_UGT;
7199 RHS = getConstant(RA - 1);
7200 Changed = true;
7201 break;
7202 case ICmpInst::ICMP_ULE:
7203 if ((RA + 1).isMaxValue()) {
7204 Pred = ICmpInst::ICMP_NE;
7205 RHS = getConstant(RA + 1);
7206 Changed = true;
7207 break;
7208 }
7209 if (RA.isMinValue()) {
7210 Pred = ICmpInst::ICMP_EQ;
7211 Changed = true;
7212 break;
7213 }
7214 if (RA.isMaxValue()) goto trivially_true;
7215
7216 Pred = ICmpInst::ICMP_ULT;
7217 RHS = getConstant(RA + 1);
7218 Changed = true;
7219 break;
7220 case ICmpInst::ICMP_SGE:
7221 if ((RA - 1).isMinSignedValue()) {
7222 Pred = ICmpInst::ICMP_NE;
7223 RHS = getConstant(RA - 1);
7224 Changed = true;
7225 break;
7226 }
7227 if (RA.isMaxSignedValue()) {
7228 Pred = ICmpInst::ICMP_EQ;
7229 Changed = true;
7230 break;
7231 }
7232 if (RA.isMinSignedValue()) goto trivially_true;
7233
7234 Pred = ICmpInst::ICMP_SGT;
7235 RHS = getConstant(RA - 1);
7236 Changed = true;
7237 break;
7238 case ICmpInst::ICMP_SLE:
7239 if ((RA + 1).isMaxSignedValue()) {
7240 Pred = ICmpInst::ICMP_NE;
7241 RHS = getConstant(RA + 1);
7242 Changed = true;
7243 break;
7244 }
7245 if (RA.isMinSignedValue()) {
7246 Pred = ICmpInst::ICMP_EQ;
7247 Changed = true;
7248 break;
7249 }
7250 if (RA.isMaxSignedValue()) goto trivially_true;
7251
7252 Pred = ICmpInst::ICMP_SLT;
7253 RHS = getConstant(RA + 1);
7254 Changed = true;
7255 break;
7256 case ICmpInst::ICMP_UGT:
7257 if (RA.isMinValue()) {
7258 Pred = ICmpInst::ICMP_NE;
7259 Changed = true;
7260 break;
7261 }
7262 if ((RA + 1).isMaxValue()) {
7263 Pred = ICmpInst::ICMP_EQ;
7264 RHS = getConstant(RA + 1);
7265 Changed = true;
7266 break;
7267 }
7268 if (RA.isMaxValue()) goto trivially_false;
7269 break;
7270 case ICmpInst::ICMP_ULT:
7271 if (RA.isMaxValue()) {
7272 Pred = ICmpInst::ICMP_NE;
7273 Changed = true;
7274 break;
7275 }
7276 if ((RA - 1).isMinValue()) {
7277 Pred = ICmpInst::ICMP_EQ;
7278 RHS = getConstant(RA - 1);
7279 Changed = true;
7280 break;
7281 }
7282 if (RA.isMinValue()) goto trivially_false;
7283 break;
7284 case ICmpInst::ICMP_SGT:
7285 if (RA.isMinSignedValue()) {
7286 Pred = ICmpInst::ICMP_NE;
7287 Changed = true;
7288 break;
7289 }
7290 if ((RA + 1).isMaxSignedValue()) {
7291 Pred = ICmpInst::ICMP_EQ;
7292 RHS = getConstant(RA + 1);
7293 Changed = true;
7294 break;
7295 }
7296 if (RA.isMaxSignedValue()) goto trivially_false;
7297 break;
7298 case ICmpInst::ICMP_SLT:
7299 if (RA.isMaxSignedValue()) {
7300 Pred = ICmpInst::ICMP_NE;
7301 Changed = true;
7302 break;
7303 }
7304 if ((RA - 1).isMinSignedValue()) {
7305 Pred = ICmpInst::ICMP_EQ;
7306 RHS = getConstant(RA - 1);
7307 Changed = true;
7308 break;
7309 }
7310 if (RA.isMinSignedValue()) goto trivially_false;
7311 break;
7312 }
7313 }
7314
7315 // Check for obvious equality.
7316 if (HasSameValue(LHS, RHS)) {
7317 if (ICmpInst::isTrueWhenEqual(Pred))
7318 goto trivially_true;
7319 if (ICmpInst::isFalseWhenEqual(Pred))
7320 goto trivially_false;
7321 }
7322
7323 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
7324 // adding or subtracting 1 from one of the operands.
7325 switch (Pred) {
7326 case ICmpInst::ICMP_SLE:
7327 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
7328 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
7329 SCEV::FlagNSW);
7330 Pred = ICmpInst::ICMP_SLT;
7331 Changed = true;
7332 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
7333 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
7334 SCEV::FlagNSW);
7335 Pred = ICmpInst::ICMP_SLT;
7336 Changed = true;
7337 }
7338 break;
7339 case ICmpInst::ICMP_SGE:
7340 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
7341 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
7342 SCEV::FlagNSW);
7343 Pred = ICmpInst::ICMP_SGT;
7344 Changed = true;
7345 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
7346 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
7347 SCEV::FlagNSW);
7348 Pred = ICmpInst::ICMP_SGT;
7349 Changed = true;
7350 }
7351 break;
7352 case ICmpInst::ICMP_ULE:
7353 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
7354 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
7355 SCEV::FlagNUW);
7356 Pred = ICmpInst::ICMP_ULT;
7357 Changed = true;
7358 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
7359 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
7360 Pred = ICmpInst::ICMP_ULT;
7361 Changed = true;
7362 }
7363 break;
7364 case ICmpInst::ICMP_UGE:
7365 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
7366 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
7367 Pred = ICmpInst::ICMP_UGT;
7368 Changed = true;
7369 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
7370 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
7371 SCEV::FlagNUW);
7372 Pred = ICmpInst::ICMP_UGT;
7373 Changed = true;
7374 }
7375 break;
7376 default:
7377 break;
7378 }
7379
7380 // TODO: More simplifications are possible here.
7381
7382 // Recursively simplify until we either hit a recursion limit or nothing
7383 // changes.
7384 if (Changed)
7385 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
7386
7387 return Changed;
7388
7389trivially_true:
7390 // Return 0 == 0.
7391 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
7392 Pred = ICmpInst::ICMP_EQ;
7393 return true;
7394
7395trivially_false:
7396 // Return 0 != 0.
7397 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
7398 Pred = ICmpInst::ICMP_NE;
7399 return true;
7400}
7401
7402bool ScalarEvolution::isKnownNegative(const SCEV *S) {
7403 return getSignedRange(S).getSignedMax().isNegative();
7404}
7405
7406bool ScalarEvolution::isKnownPositive(const SCEV *S) {
7407 return getSignedRange(S).getSignedMin().isStrictlyPositive();
7408}
7409
7410bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
7411 return !getSignedRange(S).getSignedMin().isNegative();
7412}
7413
7414bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
7415 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
7416}
7417
7418bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
7419 return isKnownNegative(S) || isKnownPositive(S);
7420}
7421
7422bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
7423 const SCEV *LHS, const SCEV *RHS) {
7424 // Canonicalize the inputs first.
7425 (void)SimplifyICmpOperands(Pred, LHS, RHS);
7426
7427 // If LHS or RHS is an addrec, check to see if the condition is true in
7428 // every iteration of the loop.
7429 // If LHS and RHS are both addrec, both conditions must be true in
7430 // every iteration of the loop.
7431 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
7432 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
7433 bool LeftGuarded = false;
7434 bool RightGuarded = false;
7435 if (LAR) {
7436 const Loop *L = LAR->getLoop();
7437 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
7438 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
7439 if (!RAR) return true;
7440 LeftGuarded = true;
7441 }
7442 }
7443 if (RAR) {
7444 const Loop *L = RAR->getLoop();
7445 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
7446 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
7447 if (!LAR) return true;
7448 RightGuarded = true;
7449 }
7450 }
7451 if (LeftGuarded && RightGuarded)
7452 return true;
7453
7454 if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
7455 return true;
7456
7457 // Otherwise see what can be done with known constant ranges.
7458 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS);
7459}
7460
7461bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
7462 ICmpInst::Predicate Pred,
7463 bool &Increasing) {
7464 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
7465
7466#ifndef NDEBUG
7467 // Verify an invariant: inverting the predicate should turn a monotonically
7468 // increasing change to a monotonically decreasing one, and vice versa.
7469 bool IncreasingSwapped;
7470 bool ResultSwapped = isMonotonicPredicateImpl(
7471 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
7472
7473 assert(Result == ResultSwapped && "should be able to analyze both!")((Result == ResultSwapped && "should be able to analyze both!"
) ? static_cast<void> (0) : __assert_fail ("Result == ResultSwapped && \"should be able to analyze both!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 7473, __PRETTY_FUNCTION__))
;
7474 if (ResultSwapped)
7475 assert(Increasing == !IncreasingSwapped &&((Increasing == !IncreasingSwapped && "monotonicity should flip as we flip the predicate"
) ? static_cast<void> (0) : __assert_fail ("Increasing == !IncreasingSwapped && \"monotonicity should flip as we flip the predicate\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 7476, __PRETTY_FUNCTION__))
7476 "monotonicity should flip as we flip the predicate")((Increasing == !IncreasingSwapped && "monotonicity should flip as we flip the predicate"
) ? static_cast<void> (0) : __assert_fail ("Increasing == !IncreasingSwapped && \"monotonicity should flip as we flip the predicate\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 7476, __PRETTY_FUNCTION__))
;
7477#endif
7478
7479 return Result;
7480}
7481
7482bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
7483 ICmpInst::Predicate Pred,
7484 bool &Increasing) {
7485
7486 // A zero step value for LHS means the induction variable is essentially a
7487 // loop invariant value. We don't really depend on the predicate actually
7488 // flipping from false to true (for increasing predicates, and the other way
7489 // around for decreasing predicates), all we care about is that *if* the
7490 // predicate changes then it only changes from false to true.
7491 //
7492 // A zero step value in itself is not very useful, but there may be places
7493 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
7494 // as general as possible.
7495
7496 switch (Pred) {
7497 default:
7498 return false; // Conservative answer
7499
7500 case ICmpInst::ICMP_UGT:
7501 case ICmpInst::ICMP_UGE:
7502 case ICmpInst::ICMP_ULT:
7503 case ICmpInst::ICMP_ULE:
7504 if (!LHS->hasNoUnsignedWrap())
7505 return false;
7506
7507 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
7508 return true;
7509
7510 case ICmpInst::ICMP_SGT:
7511 case ICmpInst::ICMP_SGE:
7512 case ICmpInst::ICMP_SLT:
7513 case ICmpInst::ICMP_SLE: {
7514 if (!LHS->hasNoSignedWrap())
7515 return false;
7516
7517 const SCEV *Step = LHS->getStepRecurrence(*this);
7518
7519 if (isKnownNonNegative(Step)) {
7520 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
7521 return true;
7522 }
7523
7524 if (isKnownNonPositive(Step)) {
7525 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
7526 return true;
7527 }
7528
7529 return false;
7530 }
7531
7532 }
7533
7534 llvm_unreachable("switch has default clause!")::llvm::llvm_unreachable_internal("switch has default clause!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 7534)
;
7535}
7536
7537bool ScalarEvolution::isLoopInvariantPredicate(
7538 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
7539 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
7540 const SCEV *&InvariantRHS) {
7541
7542 // If there is a loop-invariant, force it into the RHS, otherwise bail out.
7543 if (!isLoopInvariant(RHS, L)) {
7544 if (!isLoopInvariant(LHS, L))
7545 return false;
7546
7547 std::swap(LHS, RHS);
7548 Pred = ICmpInst::getSwappedPredicate(Pred);
7549 }
7550
7551 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7552 if (!ArLHS || ArLHS->getLoop() != L)
7553 return false;
7554
7555 bool Increasing;
7556 if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
7557 return false;
7558
7559 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
7560 // true as the loop iterates, and the backedge is control dependent on
7561 // "ArLHS `Pred` RHS" == true then we can reason as follows:
7562 //
7563 // * if the predicate was false in the first iteration then the predicate
7564 // is never evaluated again, since the loop exits without taking the
7565 // backedge.
7566 // * if the predicate was true in the first iteration then it will
7567 // continue to be true for all future iterations since it is
7568 // monotonically increasing.
7569 //
7570 // For both the above possibilities, we can replace the loop varying
7571 // predicate with its value on the first iteration of the loop (which is
7572 // loop invariant).
7573 //
7574 // A similar reasoning applies for a monotonically decreasing predicate, by
7575 // replacing true with false and false with true in the above two bullets.
7576
7577 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
7578
7579 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
7580 return false;
7581
7582 InvariantPred = Pred;
7583 InvariantLHS = ArLHS->getStart();
7584 InvariantRHS = RHS;
7585 return true;
7586}
7587
7588bool ScalarEvolution::isKnownPredicateViaConstantRanges(
7589 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
7590 if (HasSameValue(LHS, RHS))
7591 return ICmpInst::isTrueWhenEqual(Pred);
7592
7593 // This code is split out from isKnownPredicate because it is called from
7594 // within isLoopEntryGuardedByCond.
7595
7596 auto CheckRanges =
7597 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
7598 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
7599 .contains(RangeLHS);
7600 };
7601
7602 // The check at the top of the function catches the case where the values are
7603 // known to be equal.
7604 if (Pred == CmpInst::ICMP_EQ)
7605 return false;
7606
7607 if (Pred == CmpInst::ICMP_NE)
7608 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
7609 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
7610 isKnownNonZero(getMinusSCEV(LHS, RHS));
7611
7612 if (CmpInst::isSigned(Pred))
7613 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
7614
7615 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
7616}
7617
7618bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
7619 const SCEV *LHS,
7620 const SCEV *RHS) {
7621
7622 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
7623 // Return Y via OutY.
7624 auto MatchBinaryAddToConst =
7625 [this](const SCEV *Result, const SCEV *X, APInt &OutY,
7626 SCEV::NoWrapFlags ExpectedFlags) {
7627 const SCEV *NonConstOp, *ConstOp;
7628 SCEV::NoWrapFlags FlagsPresent;
7629
7630 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
7631 !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
7632 return false;
7633
7634 OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
7635 return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
7636 };
7637
7638 APInt C;
7639
7640 switch (Pred) {
7641 default:
7642 break;
7643
7644 case ICmpInst::ICMP_SGE:
7645 std::swap(LHS, RHS);
7646 case ICmpInst::ICMP_SLE:
7647 // X s<= (X + C)<nsw> if C >= 0
7648 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
7649 return true;
7650
7651 // (X + C)<nsw> s<= X if C <= 0
7652 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
7653 !C.isStrictlyPositive())
7654 return true;
7655 break;
7656
7657 case ICmpInst::ICMP_SGT:
7658 std::swap(LHS, RHS);
7659 case ICmpInst::ICMP_SLT:
7660 // X s< (X + C)<nsw> if C > 0
7661 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
7662 C.isStrictlyPositive())
7663 return true;
7664
7665 // (X + C)<nsw> s< X if C < 0
7666 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
7667 return true;
7668 break;
7669 }
7670
7671 return false;
7672}
7673
7674bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
7675 const SCEV *LHS,
7676 const SCEV *RHS) {
7677 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
7678 return false;
7679
7680 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
7681 // the stack can result in exponential time complexity.
7682 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
7683
7684 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
7685 //
7686 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
7687 // isKnownPredicate. isKnownPredicate is more powerful, but also more
7688 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
7689 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to
7690 // use isKnownPredicate later if needed.
7691 return isKnownNonNegative(RHS) &&
7692 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
7693 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
7694}
7695
7696/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
7697/// protected by a conditional between LHS and RHS. This is used to
7698/// to eliminate casts.
7699bool
7700ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
7701 ICmpInst::Predicate Pred,
7702 const SCEV *LHS, const SCEV *RHS) {
7703 // Interpret a null as meaning no loop, where there is obviously no guard
7704 // (interprocedural conditions notwithstanding).
7705 if (!L) return true;
7706
7707 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
7708 return true;
7709
7710 BasicBlock *Latch = L->getLoopLatch();
7711 if (!Latch)
7712 return false;
7713
7714 BranchInst *LoopContinuePredicate =
7715 dyn_cast<BranchInst>(Latch->getTerminator());
7716 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
7717 isImpliedCond(Pred, LHS, RHS,
7718 LoopContinuePredicate->getCondition(),
7719 LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
7720 return true;
7721
7722 // We don't want more than one activation of the following loops on the stack
7723 // -- that can lead to O(n!) time complexity.
7724 if (WalkingBEDominatingConds)
7725 return false;
7726
7727 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
7728
7729 // See if we can exploit a trip count to prove the predicate.
7730 const auto &BETakenInfo = getBackedgeTakenInfo(L);
7731 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
7732 if (LatchBECount != getCouldNotCompute()) {
7733 // We know that Latch branches back to the loop header exactly
7734 // LatchBECount times. This means the backdege condition at Latch is
7735 // equivalent to "{0,+,1} u< LatchBECount".
7736 Type *Ty = LatchBECount->getType();
7737 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
7738 const SCEV *LoopCounter =
7739 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
7740 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
7741 LatchBECount))
7742 return true;
7743 }
7744
7745 // Check conditions due to any @llvm.assume intrinsics.
7746 for (auto &AssumeVH : AC.assumptions()) {
7747 if (!AssumeVH)
7748 continue;
7749 auto *CI = cast<CallInst>(AssumeVH);
7750 if (!DT.dominates(CI, Latch->getTerminator()))
7751 continue;
7752
7753 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7754 return true;
7755 }
7756
7757 // If the loop is not reachable from the entry block, we risk running into an
7758 // infinite loop as we walk up into the dom tree. These loops do not matter
7759 // anyway, so we just return a conservative answer when we see them.
7760 if (!DT.isReachableFromEntry(L->getHeader()))
7761 return false;
7762
7763 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
7764 DTN != HeaderDTN; DTN = DTN->getIDom()) {
7765
7766 assert(DTN && "should reach the loop header before reaching the root!")((DTN && "should reach the loop header before reaching the root!"
) ? static_cast<void> (0) : __assert_fail ("DTN && \"should reach the loop header before reaching the root!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 7766, __PRETTY_FUNCTION__))
;
7767
7768 BasicBlock *BB = DTN->getBlock();
7769 BasicBlock *PBB = BB->getSinglePredecessor();
7770 if (!PBB)
7771 continue;
7772
7773 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
7774 if (!ContinuePredicate || !ContinuePredicate->isConditional())
7775 continue;
7776
7777 Value *Condition = ContinuePredicate->getCondition();
7778
7779 // If we have an edge `E` within the loop body that dominates the only
7780 // latch, the condition guarding `E` also guards the backedge. This
7781 // reasoning works only for loops with a single latch.
7782
7783 BasicBlockEdge DominatingEdge(PBB, BB);
7784 if (DominatingEdge.isSingleEdge()) {
7785 // We're constructively (and conservatively) enumerating edges within the
7786 // loop body that dominate the latch. The dominator tree better agree
7787 // with us on this:
7788 assert(DT.dominates(DominatingEdge, Latch) && "should be!")((DT.dominates(DominatingEdge, Latch) && "should be!"
) ? static_cast<void> (0) : __assert_fail ("DT.dominates(DominatingEdge, Latch) && \"should be!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 7788, __PRETTY_FUNCTION__))
;
7789
7790 if (isImpliedCond(Pred, LHS, RHS, Condition,
7791 BB != ContinuePredicate->getSuccessor(0)))
7792 return true;
7793 }
7794 }
7795
7796 return false;
7797}
7798
7799/// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
7800/// by a conditional between LHS and RHS. This is used to help avoid max
7801/// expressions in loop trip counts, and to eliminate casts.
7802bool
7803ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
7804 ICmpInst::Predicate Pred,
7805 const SCEV *LHS, const SCEV *RHS) {
7806 // Interpret a null as meaning no loop, where there is obviously no guard
7807 // (interprocedural conditions notwithstanding).
7808 if (!L) return false;
7809
7810 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
7811 return true;
7812
7813 // Starting at the loop predecessor, climb up the predecessor chain, as long
7814 // as there are predecessors that can be found that have unique successors
7815 // leading to the original header.
7816 for (std::pair<BasicBlock *, BasicBlock *>
7817 Pair(L->getLoopPredecessor(), L->getHeader());
7818 Pair.first;
7819 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
7820
7821 BranchInst *LoopEntryPredicate =
7822 dyn_cast<BranchInst>(Pair.first->getTerminator());
7823 if (!LoopEntryPredicate ||
7824 LoopEntryPredicate->isUnconditional())
7825 continue;
7826
7827 if (isImpliedCond(Pred, LHS, RHS,
7828 LoopEntryPredicate->getCondition(),
7829 LoopEntryPredicate->getSuccessor(0) != Pair.second))
7830 return true;
7831 }
7832
7833 // Check conditions due to any @llvm.assume intrinsics.
7834 for (auto &AssumeVH : AC.assumptions()) {
7835 if (!AssumeVH)
7836 continue;
7837 auto *CI = cast<CallInst>(AssumeVH);
7838 if (!DT.dominates(CI, L->getHeader()))
7839 continue;
7840
7841 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7842 return true;
7843 }
7844
7845 return false;
7846}
7847
7848namespace {
7849/// RAII wrapper to prevent recursive application of isImpliedCond.
7850/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
7851/// currently evaluating isImpliedCond.
7852struct MarkPendingLoopPredicate {
7853 Value *Cond;
7854 DenseSet<Value*> &LoopPreds;
7855 bool Pending;
7856
7857 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
7858 : Cond(C), LoopPreds(LP) {
7859 Pending = !LoopPreds.insert(Cond).second;
7860 }
7861 ~MarkPendingLoopPredicate() {
7862 if (!Pending)
7863 LoopPreds.erase(Cond);
7864 }
7865};
7866} // end anonymous namespace
7867
7868/// isImpliedCond - Test whether the condition described by Pred, LHS,
7869/// and RHS is true whenever the given Cond value evaluates to true.
7870bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
7871 const SCEV *LHS, const SCEV *RHS,
7872 Value *FoundCondValue,
7873 bool Inverse) {
7874 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
7875 if (Mark.Pending)
7876 return false;
7877
7878 // Recursively handle And and Or conditions.
7879 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
7880 if (BO->getOpcode() == Instruction::And) {
7881 if (!Inverse)
7882 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
7883 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
7884 } else if (BO->getOpcode() == Instruction::Or) {
7885 if (Inverse)
7886 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
7887 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
7888 }
7889 }
7890
7891 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
7892 if (!ICI) return false;
7893
7894 // Now that we found a conditional branch that dominates the loop or controls
7895 // the loop latch. Check to see if it is the comparison we are looking for.
7896 ICmpInst::Predicate FoundPred;
7897 if (Inverse)
7898 FoundPred = ICI->getInversePredicate();
7899 else
7900 FoundPred = ICI->getPredicate();
7901
7902 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
7903 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
7904
7905 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
7906}
7907
7908bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
7909 const SCEV *RHS,
7910 ICmpInst::Predicate FoundPred,
7911 const SCEV *FoundLHS,
7912 const SCEV *FoundRHS) {
7913 // Balance the types.
7914 if (getTypeSizeInBits(LHS->getType()) <
7915 getTypeSizeInBits(FoundLHS->getType())) {
7916 if (CmpInst::isSigned(Pred)) {
7917 LHS = getSignExtendExpr(LHS, FoundLHS->getType());
7918 RHS = getSignExtendExpr(RHS, FoundLHS->getType());
7919 } else {
7920 LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
7921 RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
7922 }
7923 } else if (getTypeSizeInBits(LHS->getType()) >
7924 getTypeSizeInBits(FoundLHS->getType())) {
7925 if (CmpInst::isSigned(FoundPred)) {
7926 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
7927 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
7928 } else {
7929 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
7930 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
7931 }
7932 }
7933
7934 // Canonicalize the query to match the way instcombine will have
7935 // canonicalized the comparison.
7936 if (SimplifyICmpOperands(Pred, LHS, RHS))
7937 if (LHS == RHS)
7938 return CmpInst::isTrueWhenEqual(Pred);
7939 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
7940 if (FoundLHS == FoundRHS)
7941 return CmpInst::isFalseWhenEqual(FoundPred);
7942
7943 // Check to see if we can make the LHS or RHS match.
7944 if (LHS == FoundRHS || RHS == FoundLHS) {
7945 if (isa<SCEVConstant>(RHS)) {
7946 std::swap(FoundLHS, FoundRHS);
7947 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
7948 } else {
7949 std::swap(LHS, RHS);
7950 Pred = ICmpInst::getSwappedPredicate(Pred);
7951 }
7952 }
7953
7954 // Check whether the found predicate is the same as the desired predicate.
7955 if (FoundPred == Pred)
7956 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
7957
7958 // Check whether swapping the found predicate makes it the same as the
7959 // desired predicate.
7960 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
7961 if (isa<SCEVConstant>(RHS))
7962 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
7963 else
7964 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
7965 RHS, LHS, FoundLHS, FoundRHS);
7966 }
7967
7968 // Unsigned comparison is the same as signed comparison when both the operands
7969 // are non-negative.
7970 if (CmpInst::isUnsigned(FoundPred) &&
7971 CmpInst::getSignedPredicate(FoundPred) == Pred &&
7972 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
7973 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
7974
7975 // Check if we can make progress by sharpening ranges.
7976 if (FoundPred == ICmpInst::ICMP_NE &&
7977 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
7978
7979 const SCEVConstant *C = nullptr;
7980 const SCEV *V = nullptr;
7981
7982 if (isa<SCEVConstant>(FoundLHS)) {
7983 C = cast<SCEVConstant>(FoundLHS);
7984 V = FoundRHS;
7985 } else {
7986 C = cast<SCEVConstant>(FoundRHS);
7987 V = FoundLHS;
7988 }
7989
7990 // The guarding predicate tells us that C != V. If the known range
7991 // of V is [C, t), we can sharpen the range to [C + 1, t). The
7992 // range we consider has to correspond to same signedness as the
7993 // predicate we're interested in folding.
7994
7995 APInt Min = ICmpInst::isSigned(Pred) ?
7996 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
7997
7998 if (Min == C->getAPInt()) {
7999 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
8000 // This is true even if (Min + 1) wraps around -- in case of
8001 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
8002
8003 APInt SharperMin = Min + 1;
8004
8005 switch (Pred) {
8006 case ICmpInst::ICMP_SGE:
8007 case ICmpInst::ICMP_UGE:
8008 // We know V `Pred` SharperMin. If this implies LHS `Pred`
8009 // RHS, we're done.
8010 if (isImpliedCondOperands(Pred, LHS, RHS, V,
8011 getConstant(SharperMin)))
8012 return true;
8013
8014 case ICmpInst::ICMP_SGT:
8015 case ICmpInst::ICMP_UGT:
8016 // We know from the range information that (V `Pred` Min ||
8017 // V == Min). We know from the guarding condition that !(V
8018 // == Min). This gives us
8019 //
8020 // V `Pred` Min || V == Min && !(V == Min)
8021 // => V `Pred` Min
8022 //
8023 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
8024
8025 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
8026 return true;
8027
8028 default:
8029 // No change
8030 break;
8031 }
8032 }
8033 }
8034
8035 // Check whether the actual condition is beyond sufficient.
8036 if (FoundPred == ICmpInst::ICMP_EQ)
8037 if (ICmpInst::isTrueWhenEqual(Pred))
8038 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
8039 return true;
8040 if (Pred == ICmpInst::ICMP_NE)
8041 if (!ICmpInst::isTrueWhenEqual(FoundPred))
8042 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
8043 return true;
8044
8045 // Otherwise assume the worst.
8046 return false;
8047}
8048
8049bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
8050 const SCEV *&L, const SCEV *&R,
8051 SCEV::NoWrapFlags &Flags) {
8052 const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
8053 if (!AE || AE->getNumOperands() != 2)
8054 return false;
8055
8056 L = AE->getOperand(0);
8057 R = AE->getOperand(1);
8058 Flags = AE->getNoWrapFlags();
8059 return true;
8060}
8061
8062bool ScalarEvolution::computeConstantDifference(const SCEV *Less,
8063 const SCEV *More,
8064 APInt &C) {
8065 // We avoid subtracting expressions here because this function is usually
8066 // fairly deep in the call stack (i.e. is called many times).
8067
8068 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
8069 const auto *LAR = cast<SCEVAddRecExpr>(Less);
8070 const auto *MAR = cast<SCEVAddRecExpr>(More);
8071
8072 if (LAR->getLoop() != MAR->getLoop())
8073 return false;
8074
8075 // We look at affine expressions only; not for correctness but to keep
8076 // getStepRecurrence cheap.
8077 if (!LAR->isAffine() || !MAR->isAffine())
8078 return false;
8079
8080 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
8081 return false;
8082
8083 Less = LAR->getStart();
8084 More = MAR->getStart();
8085
8086 // fall through
8087 }
8088
8089 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
8090 const auto &M = cast<SCEVConstant>(More)->getAPInt();
8091 const auto &L = cast<SCEVConstant>(Less)->getAPInt();
8092 C = M - L;
8093 return true;
8094 }
8095
8096 const SCEV *L, *R;
8097 SCEV::NoWrapFlags Flags;
8098 if (splitBinaryAdd(Less, L, R, Flags))
8099 if (const auto *LC = dyn_cast<SCEVConstant>(L))
8100 if (R == More) {
8101 C = -(LC->getAPInt());
8102 return true;
8103 }
8104
8105 if (splitBinaryAdd(More, L, R, Flags))
8106 if (const auto *LC = dyn_cast<SCEVConstant>(L))
8107 if (R == Less) {
8108 C = LC->getAPInt();
8109 return true;
8110 }
8111
8112 return false;
8113}
8114
8115bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
8116 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
8117 const SCEV *FoundLHS, const SCEV *FoundRHS) {
8118 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
8119 return false;
8120
8121 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
8122 if (!AddRecLHS)
8123 return false;
8124
8125 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
8126 if (!AddRecFoundLHS)
8127 return false;
8128
8129 // We'd like to let SCEV reason about control dependencies, so we constrain
8130 // both the inequalities to be about add recurrences on the same loop. This
8131 // way we can use isLoopEntryGuardedByCond later.
8132
8133 const Loop *L = AddRecFoundLHS->getLoop();
8134 if (L != AddRecLHS->getLoop())
8135 return false;
8136
8137 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1)
8138 //
8139 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
8140 // ... (2)
8141 //
8142 // Informal proof for (2), assuming (1) [*]:
8143 //
8144 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
8145 //
8146 // Then
8147 //
8148 // FoundLHS s< FoundRHS s< INT_MIN - C
8149 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ]
8150 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
8151 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s<
8152 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
8153 // <=> FoundLHS + C s< FoundRHS + C
8154 //
8155 // [*]: (1) can be proved by ruling out overflow.
8156 //
8157 // [**]: This can be proved by analyzing all the four possibilities:
8158 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
8159 // (A s>= 0, B s>= 0).
8160 //
8161 // Note:
8162 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
8163 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS
8164 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS
8165 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is
8166 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
8167 // C)".
8168
8169 APInt LDiff, RDiff;
8170 if (!computeConstantDifference(FoundLHS, LHS, LDiff) ||
8171 !computeConstantDifference(FoundRHS, RHS, RDiff) ||
8172 LDiff != RDiff)
8173 return false;
8174
8175 if (LDiff == 0)
8176 return true;
8177
8178 APInt FoundRHSLimit;
8179
8180 if (Pred == CmpInst::ICMP_ULT) {
8181 FoundRHSLimit = -RDiff;
8182 } else {
8183 assert(Pred == CmpInst::ICMP_SLT && "Checked above!")((Pred == CmpInst::ICMP_SLT && "Checked above!") ? static_cast
<void> (0) : __assert_fail ("Pred == CmpInst::ICMP_SLT && \"Checked above!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 8183, __PRETTY_FUNCTION__))
;
8184 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff;
8185 }
8186
8187 // Try to prove (1) or (2), as needed.
8188 return isLoopEntryGuardedByCond(L, Pred, FoundRHS,
8189 getConstant(FoundRHSLimit));
8190}
8191
8192/// isImpliedCondOperands - Test whether the condition described by Pred,
8193/// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
8194/// and FoundRHS is true.
8195bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
8196 const SCEV *LHS, const SCEV *RHS,
8197 const SCEV *FoundLHS,
8198 const SCEV *FoundRHS) {
8199 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
8200 return true;
8201
8202 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
8203 return true;
8204
8205 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
8206 FoundLHS, FoundRHS) ||
8207 // ~x < ~y --> x > y
8208 isImpliedCondOperandsHelper(Pred, LHS, RHS,
8209 getNotSCEV(FoundRHS),
8210 getNotSCEV(FoundLHS));
8211}
8212
8213
8214/// If Expr computes ~A, return A else return nullptr
8215static const SCEV *MatchNotExpr(const SCEV *Expr) {
8216 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
8217 if (!Add || Add->getNumOperands() != 2 ||
8218 !Add->getOperand(0)->isAllOnesValue())
8219 return nullptr;
8220
8221 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
8222 if (!AddRHS || AddRHS->getNumOperands() != 2 ||
8223 !AddRHS->getOperand(0)->isAllOnesValue())
8224 return nullptr;
8225
8226 return AddRHS->getOperand(1);
8227}
8228
8229
8230/// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
8231template<typename MaxExprType>
8232static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
8233 const SCEV *Candidate) {
8234 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
8235 if (!MaxExpr) return false;
8236
8237 return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end();
8238}
8239
8240
8241/// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
8242template<typename MaxExprType>
8243static bool IsMinConsistingOf(ScalarEvolution &SE,
8244 const SCEV *MaybeMinExpr,
8245 const SCEV *Candidate) {
8246 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
8247 if (!MaybeMaxExpr)
8248 return false;
8249
8250 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
8251}
8252
8253static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
8254 ICmpInst::Predicate Pred,
8255 const SCEV *LHS, const SCEV *RHS) {
8256
8257 // If both sides are affine addrecs for the same loop, with equal
8258 // steps, and we know the recurrences don't wrap, then we only
8259 // need to check the predicate on the starting values.
8260
8261 if (!ICmpInst::isRelational(Pred))
8262 return false;
8263
8264 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
8265 if (!LAR)
8266 return false;
8267 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
8268 if (!RAR)
8269 return false;
8270 if (LAR->getLoop() != RAR->getLoop())
8271 return false;
8272 if (!LAR->isAffine() || !RAR->isAffine())
8273 return false;
8274
8275 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
8276 return false;
8277
8278 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
8279 SCEV::FlagNSW : SCEV::FlagNUW;
8280 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
8281 return false;
8282
8283 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
8284}
8285
8286/// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
8287/// expression?
8288static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
8289 ICmpInst::Predicate Pred,
8290 const SCEV *LHS, const SCEV *RHS) {
8291 switch (Pred) {
8292 default:
8293 return false;
8294
8295 case ICmpInst::ICMP_SGE:
8296 std::swap(LHS, RHS);
8297 // fall through
8298 case ICmpInst::ICMP_SLE:
8299 return
8300 // min(A, ...) <= A
8301 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
8302 // A <= max(A, ...)
8303 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
8304
8305 case ICmpInst::ICMP_UGE:
8306 std::swap(LHS, RHS);
8307 // fall through
8308 case ICmpInst::ICMP_ULE:
8309 return
8310 // min(A, ...) <= A
8311 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
8312 // A <= max(A, ...)
8313 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
8314 }
8315
8316 llvm_unreachable("covered switch fell through?!")::llvm::llvm_unreachable_internal("covered switch fell through?!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 8316)
;
8317}
8318
8319/// isImpliedCondOperandsHelper - Test whether the condition described by
8320/// Pred, LHS, and RHS is true whenever the condition described by Pred,
8321/// FoundLHS, and FoundRHS is true.
8322bool
8323ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
8324 const SCEV *LHS, const SCEV *RHS,
8325 const SCEV *FoundLHS,
8326 const SCEV *FoundRHS) {
8327 auto IsKnownPredicateFull =
8328 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
8329 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
8330 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
8331 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
8332 isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
8333 };
8334
8335 switch (Pred) {
8336 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!")::llvm::llvm_unreachable_internal("Unexpected ICmpInst::Predicate value!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 8336)
;
8337 case ICmpInst::ICMP_EQ:
8338 case ICmpInst::ICMP_NE:
8339 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
8340 return true;
8341 break;
8342 case ICmpInst::ICMP_SLT:
8343 case ICmpInst::ICMP_SLE:
8344 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
8345 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
8346 return true;
8347 break;
8348 case ICmpInst::ICMP_SGT:
8349 case ICmpInst::ICMP_SGE:
8350 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
8351 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
8352 return true;
8353 break;
8354 case ICmpInst::ICMP_ULT:
8355 case ICmpInst::ICMP_ULE:
8356 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
8357 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
8358 return true;
8359 break;
8360 case ICmpInst::ICMP_UGT:
8361 case ICmpInst::ICMP_UGE:
8362 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
8363 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
8364 return true;
8365 break;
8366 }
8367
8368 return false;
8369}
8370
8371/// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands.
8372/// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1".
8373bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
8374 const SCEV *LHS,
8375 const SCEV *RHS,
8376 const SCEV *FoundLHS,
8377 const SCEV *FoundRHS) {
8378 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
8379 // The restriction on `FoundRHS` be lifted easily -- it exists only to
8380 // reduce the compile time impact of this optimization.
8381 return false;
8382
8383 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS);
8384 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS ||
8385 !isa<SCEVConstant>(AddLHS->getOperand(0)))
8386 return false;
8387
8388 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
8389
8390 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
8391 // antecedent "`FoundLHS` `Pred` `FoundRHS`".
8392 ConstantRange FoundLHSRange =
8393 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
8394
8395 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range
8396 // for `LHS`:
8397 APInt Addend = cast<SCEVConstant>(AddLHS->getOperand(0))->getAPInt();
8398 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend));
8399
8400 // We can also compute the range of values for `LHS` that satisfy the
8401 // consequent, "`LHS` `Pred` `RHS`":
8402 APInt ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
8403 ConstantRange SatisfyingLHSRange =
8404 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
8405
8406 // The antecedent implies the consequent if every value of `LHS` that
8407 // satisfies the antecedent also satisfies the consequent.
8408 return SatisfyingLHSRange.contains(LHSRange);
8409}
8410
8411// Verify if an linear IV with positive stride can overflow when in a
8412// less-than comparison, knowing the invariant term of the comparison, the
8413// stride and the knowledge of NSW/NUW flags on the recurrence.
8414bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
8415 bool IsSigned, bool NoWrap) {
8416 if (NoWrap) return false;
8417
8418 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8419 const SCEV *One = getOne(Stride->getType());
8420
8421 if (IsSigned) {
8422 APInt MaxRHS = getSignedRange(RHS).getSignedMax();
8423 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
8424 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8425 .getSignedMax();
8426
8427 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
8428 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
8429 }
8430
8431 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
8432 APInt MaxValue = APInt::getMaxValue(BitWidth);
8433 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8434 .getUnsignedMax();
8435
8436 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
8437 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
8438}
8439
8440// Verify if an linear IV with negative stride can overflow when in a
8441// greater-than comparison, knowing the invariant term of the comparison,
8442// the stride and the knowledge of NSW/NUW flags on the recurrence.
8443bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
8444 bool IsSigned, bool NoWrap) {
8445 if (NoWrap) return false;
8446
8447 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8448 const SCEV *One = getOne(Stride->getType());
8449
8450 if (IsSigned) {
8451 APInt MinRHS = getSignedRange(RHS).getSignedMin();
8452 APInt MinValue = APInt::getSignedMinValue(BitWidth);
8453 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8454 .getSignedMax();
8455
8456 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
8457 return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
8458 }
8459
8460 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
8461 APInt MinValue = APInt::getMinValue(BitWidth);
8462 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8463 .getUnsignedMax();
8464
8465 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
8466 return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
8467}
8468
8469// Compute the backedge taken count knowing the interval difference, the
8470// stride and presence of the equality in the comparison.
8471const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
8472 bool Equality) {
8473 const SCEV *One = getOne(Step->getType());
8474 Delta = Equality ? getAddExpr(Delta, Step)
8475 : getAddExpr(Delta, getMinusSCEV(Step, One));
8476 return getUDivExpr(Delta, Step);
8477}
8478
8479/// HowManyLessThans - Return the number of times a backedge containing the
8480/// specified less-than comparison will execute. If not computable, return
8481/// CouldNotCompute.
8482///
8483/// @param ControlsExit is true when the LHS < RHS condition directly controls
8484/// the branch (loops exits only if condition is true). In this case, we can use
8485/// NoWrapFlags to skip overflow checks.
8486ScalarEvolution::ExitLimit
8487ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
8488 const Loop *L, bool IsSigned,
8489 bool ControlsExit) {
8490 // We handle only IV < Invariant
8491 if (!isLoopInvariant(RHS, L))
8492 return getCouldNotCompute();
8493
8494 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8495
8496 // Avoid weird loops
8497 if (!IV || IV->getLoop() != L || !IV->isAffine())
8498 return getCouldNotCompute();
8499
8500 bool NoWrap = ControlsExit &&
8501 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8502
8503 const SCEV *Stride = IV->getStepRecurrence(*this);
8504
8505 // Avoid negative or zero stride values
8506 if (!isKnownPositive(Stride))
8507 return getCouldNotCompute();
8508
8509 // Avoid proven overflow cases: this will ensure that the backedge taken count
8510 // will not generate any unsigned overflow. Relaxed no-overflow conditions
8511 // exploit NoWrapFlags, allowing to optimize in presence of undefined
8512 // behaviors like the case of C language.
8513 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
8514 return getCouldNotCompute();
8515
8516 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
8517 : ICmpInst::ICMP_ULT;
8518 const SCEV *Start = IV->getStart();
8519 const SCEV *End = RHS;
8520 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
8521 const SCEV *Diff = getMinusSCEV(RHS, Start);
8522 // If we have NoWrap set, then we can assume that the increment won't
8523 // overflow, in which case if RHS - Start is a constant, we don't need to
8524 // do a max operation since we can just figure it out statically
8525 if (NoWrap && isa<SCEVConstant>(Diff)) {
8526 APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt();
8527 if (D.isNegative())
8528 End = Start;
8529 } else
8530 End = IsSigned ? getSMaxExpr(RHS, Start)
8531 : getUMaxExpr(RHS, Start);
8532 }
8533
8534 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
8535
8536 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
8537 : getUnsignedRange(Start).getUnsignedMin();
8538
8539 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8540 : getUnsignedRange(Stride).getUnsignedMin();
8541
8542 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8543 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
8544 : APInt::getMaxValue(BitWidth) - (MinStride - 1);
8545
8546 // Although End can be a MAX expression we estimate MaxEnd considering only
8547 // the case End = RHS. This is safe because in the other case (End - Start)
8548 // is zero, leading to a zero maximum backedge taken count.
8549 APInt MaxEnd =
8550 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
8551 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
8552
8553 const SCEV *MaxBECount;
8554 if (isa<SCEVConstant>(BECount))
8555 MaxBECount = BECount;
8556 else
8557 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
8558 getConstant(MinStride), false);
8559
8560 if (isa<SCEVCouldNotCompute>(MaxBECount))
8561 MaxBECount = BECount;
8562
8563 return ExitLimit(BECount, MaxBECount);
8564}
8565
8566ScalarEvolution::ExitLimit
8567ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
8568 const Loop *L, bool IsSigned,
8569 bool ControlsExit) {
8570 // We handle only IV > Invariant
8571 if (!isLoopInvariant(RHS, L))
8572 return getCouldNotCompute();
8573
8574 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8575
8576 // Avoid weird loops
8577 if (!IV || IV->getLoop() != L || !IV->isAffine())
8578 return getCouldNotCompute();
8579
8580 bool NoWrap = ControlsExit &&
8581 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8582
8583 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
8584
8585 // Avoid negative or zero stride values
8586 if (!isKnownPositive(Stride))
8587 return getCouldNotCompute();
8588
8589 // Avoid proven overflow cases: this will ensure that the backedge taken count
8590 // will not generate any unsigned overflow. Relaxed no-overflow conditions
8591 // exploit NoWrapFlags, allowing to optimize in presence of undefined
8592 // behaviors like the case of C language.
8593 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
8594 return getCouldNotCompute();
8595
8596 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
8597 : ICmpInst::ICMP_UGT;
8598
8599 const SCEV *Start = IV->getStart();
8600 const SCEV *End = RHS;
8601 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
8602 const SCEV *Diff = getMinusSCEV(RHS, Start);
8603 // If we have NoWrap set, then we can assume that the increment won't
8604 // overflow, in which case if RHS - Start is a constant, we don't need to
8605 // do a max operation since we can just figure it out statically
8606 if (NoWrap && isa<SCEVConstant>(Diff)) {
8607 APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt();
8608 if (!D.isNegative())
8609 End = Start;
8610 } else
8611 End = IsSigned ? getSMinExpr(RHS, Start)
8612 : getUMinExpr(RHS, Start);
8613 }
8614
8615 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
8616
8617 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
8618 : getUnsignedRange(Start).getUnsignedMax();
8619
8620 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8621 : getUnsignedRange(Stride).getUnsignedMin();
8622
8623 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8624 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
8625 : APInt::getMinValue(BitWidth) + (MinStride - 1);
8626
8627 // Although End can be a MIN expression we estimate MinEnd considering only
8628 // the case End = RHS. This is safe because in the other case (Start - End)
8629 // is zero, leading to a zero maximum backedge taken count.
8630 APInt MinEnd =
8631 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
8632 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
8633
8634
8635 const SCEV *MaxBECount = getCouldNotCompute();
Value stored to 'MaxBECount' during its initialization is never read
8636 if (isa<SCEVConstant>(BECount))
8637 MaxBECount = BECount;
8638 else
8639 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
8640 getConstant(MinStride), false);
8641
8642 if (isa<SCEVCouldNotCompute>(MaxBECount))
8643 MaxBECount = BECount;
8644
8645 return ExitLimit(BECount, MaxBECount);
8646}
8647
8648/// getNumIterationsInRange - Return the number of iterations of this loop that
8649/// produce values in the specified constant range. Another way of looking at
8650/// this is that it returns the first iteration number where the value is not in
8651/// the condition, thus computing the exit count. If the iteration count can't
8652/// be computed, an instance of SCEVCouldNotCompute is returned.
8653const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
8654 ScalarEvolution &SE) const {
8655 if (Range.isFullSet()) // Infinite loop.
8656 return SE.getCouldNotCompute();
8657
8658 // If the start is a non-zero constant, shift the range to simplify things.
8659 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
8660 if (!SC->getValue()->isZero()) {
8661 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
8662 Operands[0] = SE.getZero(SC->getType());
8663 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
8664 getNoWrapFlags(FlagNW));
8665 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
8666 return ShiftedAddRec->getNumIterationsInRange(
8667 Range.subtract(SC->getAPInt()), SE);
8668 // This is strange and shouldn't happen.
8669 return SE.getCouldNotCompute();
8670 }
8671
8672 // The only time we can solve this is when we have all constant indices.
8673 // Otherwise, we cannot determine the overflow conditions.
8674 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
8675 return SE.getCouldNotCompute();
8676
8677 // Okay at this point we know that all elements of the chrec are constants and
8678 // that the start element is zero.
8679
8680 // First check to see if the range contains zero. If not, the first
8681 // iteration exits.
8682 unsigned BitWidth = SE.getTypeSizeInBits(getType());
8683 if (!Range.contains(APInt(BitWidth, 0)))
8684 return SE.getZero(getType());
8685
8686 if (isAffine()) {
8687 // If this is an affine expression then we have this situation:
8688 // Solve {0,+,A} in Range === Ax in Range
8689
8690 // We know that zero is in the range. If A is positive then we know that
8691 // the upper value of the range must be the first possible exit value.
8692 // If A is negative then the lower of the range is the last possible loop
8693 // value. Also note that we already checked for a full range.
8694 APInt One(BitWidth,1);
8695 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
8696 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
8697
8698 // The exit value should be (End+A)/A.
8699 APInt ExitVal = (End + A).udiv(A);
8700 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
8701
8702 // Evaluate at the exit value. If we really did fall out of the valid
8703 // range, then we computed our trip count, otherwise wrap around or other
8704 // things must have happened.
8705 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
8706 if (Range.contains(Val->getValue()))
8707 return SE.getCouldNotCompute(); // Something strange happened
8708
8709 // Ensure that the previous value is in the range. This is a sanity check.
8710 assert(Range.contains(((Range.contains( EvaluateConstantChrecAtConstant(this, ConstantInt
::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
"Linear scev computation is off in a bad way!") ? static_cast
<void> (0) : __assert_fail ("Range.contains( EvaluateConstantChrecAtConstant(this, ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && \"Linear scev computation is off in a bad way!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 8713, __PRETTY_FUNCTION__))
8711 EvaluateConstantChrecAtConstant(this,((Range.contains( EvaluateConstantChrecAtConstant(this, ConstantInt
::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
"Linear scev computation is off in a bad way!") ? static_cast
<void> (0) : __assert_fail ("Range.contains( EvaluateConstantChrecAtConstant(this, ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && \"Linear scev computation is off in a bad way!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 8713, __PRETTY_FUNCTION__))
8712 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&((Range.contains( EvaluateConstantChrecAtConstant(this, ConstantInt
::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
"Linear scev computation is off in a bad way!") ? static_cast
<void> (0) : __assert_fail ("Range.contains( EvaluateConstantChrecAtConstant(this, ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && \"Linear scev computation is off in a bad way!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 8713, __PRETTY_FUNCTION__))
8713 "Linear scev computation is off in a bad way!")((Range.contains( EvaluateConstantChrecAtConstant(this, ConstantInt
::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
"Linear scev computation is off in a bad way!") ? static_cast
<void> (0) : __assert_fail ("Range.contains( EvaluateConstantChrecAtConstant(this, ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && \"Linear scev computation is off in a bad way!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 8713, __PRETTY_FUNCTION__))
;
8714 return SE.getConstant(ExitValue);
8715 } else if (isQuadratic()) {
8716 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
8717 // quadratic equation to solve it. To do this, we must frame our problem in
8718 // terms of figuring out when zero is crossed, instead of when
8719 // Range.getUpper() is crossed.
8720 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
8721 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
8722 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
8723 // getNoWrapFlags(FlagNW)
8724 FlagAnyWrap);
8725
8726 // Next, solve the constructed addrec
8727 auto Roots = SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
8728 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
8729 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
8730 if (R1) {
8731 // Pick the smallest positive root value.
8732 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
8733 ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
8734 if (!CB->getZExtValue())
8735 std::swap(R1, R2); // R1 is the minimum root now.
8736
8737 // Make sure the root is not off by one. The returned iteration should
8738 // not be in the range, but the previous one should be. When solving
8739 // for "X*X < 5", for example, we should not return a root of 2.
8740 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
8741 R1->getValue(),
8742 SE);
8743 if (Range.contains(R1Val->getValue())) {
8744 // The next iteration must be out of the range...
8745 ConstantInt *NextVal =
8746 ConstantInt::get(SE.getContext(), R1->getAPInt() + 1);
8747
8748 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
8749 if (!Range.contains(R1Val->getValue()))
8750 return SE.getConstant(NextVal);
8751 return SE.getCouldNotCompute(); // Something strange happened
8752 }
8753
8754 // If R1 was not in the range, then it is a good return value. Make
8755 // sure that R1-1 WAS in the range though, just in case.
8756 ConstantInt *NextVal =
8757 ConstantInt::get(SE.getContext(), R1->getAPInt() - 1);
8758 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
8759 if (Range.contains(R1Val->getValue()))
8760 return R1;
8761 return SE.getCouldNotCompute(); // Something strange happened
8762 }
8763 }
8764 }
8765
8766 return SE.getCouldNotCompute();
8767}
8768
8769namespace {
8770struct FindUndefs {
8771 bool Found;
8772 FindUndefs() : Found(false) {}
8773
8774 bool follow(const SCEV *S) {
8775 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
8776 if (isa<UndefValue>(C->getValue()))
8777 Found = true;
8778 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
8779 if (isa<UndefValue>(C->getValue()))
8780 Found = true;
8781 }
8782
8783 // Keep looking if we haven't found it yet.
8784 return !Found;
8785 }
8786 bool isDone() const {
8787 // Stop recursion if we have found an undef.
8788 return Found;
8789 }
8790};
8791}
8792
8793// Return true when S contains at least an undef value.
8794static inline bool
8795containsUndefs(const SCEV *S) {
8796 FindUndefs F;
8797 SCEVTraversal<FindUndefs> ST(F);
8798 ST.visitAll(S);
8799
8800 return F.Found;
8801}
8802
8803namespace {
8804// Collect all steps of SCEV expressions.
8805struct SCEVCollectStrides {
8806 ScalarEvolution &SE;
8807 SmallVectorImpl<const SCEV *> &Strides;
8808
8809 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
8810 : SE(SE), Strides(S) {}
8811
8812 bool follow(const SCEV *S) {
8813 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
8814 Strides.push_back(AR->getStepRecurrence(SE));
8815 return true;
8816 }
8817 bool isDone() const { return false; }
8818};
8819
8820// Collect all SCEVUnknown and SCEVMulExpr expressions.
8821struct SCEVCollectTerms {
8822 SmallVectorImpl<const SCEV *> &Terms;
8823
8824 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
8825 : Terms(T) {}
8826
8827 bool follow(const SCEV *S) {
8828 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
8829 if (!containsUndefs(S))
8830 Terms.push_back(S);
8831
8832 // Stop recursion: once we collected a term, do not walk its operands.
8833 return false;
8834 }
8835
8836 // Keep looking.
8837 return true;
8838 }
8839 bool isDone() const { return false; }
8840};
8841
8842// Check if a SCEV contains an AddRecExpr.
8843struct SCEVHasAddRec {
8844 bool &ContainsAddRec;
8845
8846 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
8847 ContainsAddRec = false;
8848 }
8849
8850 bool follow(const SCEV *S) {
8851 if (isa<SCEVAddRecExpr>(S)) {
8852 ContainsAddRec = true;
8853
8854 // Stop recursion: once we collected a term, do not walk its operands.
8855 return false;
8856 }
8857
8858 // Keep looking.
8859 return true;
8860 }
8861 bool isDone() const { return false; }
8862};
8863
8864// Find factors that are multiplied with an expression that (possibly as a
8865// subexpression) contains an AddRecExpr. In the expression:
8866//
8867// 8 * (100 + %p * %q * (%a + {0, +, 1}_loop))
8868//
8869// "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
8870// that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
8871// parameters as they form a product with an induction variable.
8872//
8873// This collector expects all array size parameters to be in the same MulExpr.
8874// It might be necessary to later add support for collecting parameters that are
8875// spread over different nested MulExpr.
8876struct SCEVCollectAddRecMultiplies {
8877 SmallVectorImpl<const SCEV *> &Terms;
8878 ScalarEvolution &SE;
8879
8880 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
8881 : Terms(T), SE(SE) {}
8882
8883 bool follow(const SCEV *S) {
8884 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
8885 bool HasAddRec = false;
8886 SmallVector<const SCEV *, 0> Operands;
8887 for (auto Op : Mul->operands()) {
8888 if (isa<SCEVUnknown>(Op)) {
8889 Operands.push_back(Op);
8890 } else {
8891 bool ContainsAddRec;
8892 SCEVHasAddRec ContiansAddRec(ContainsAddRec);
8893 visitAll(Op, ContiansAddRec);
8894 HasAddRec |= ContainsAddRec;
8895 }
8896 }
8897 if (Operands.size() == 0)
8898 return true;
8899
8900 if (!HasAddRec)
8901 return false;
8902
8903 Terms.push_back(SE.getMulExpr(Operands));
8904 // Stop recursion: once we collected a term, do not walk its operands.
8905 return false;
8906 }
8907
8908 // Keep looking.
8909 return true;
8910 }
8911 bool isDone() const { return false; }
8912};
8913}
8914
8915/// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
8916/// two places:
8917/// 1) The strides of AddRec expressions.
8918/// 2) Unknowns that are multiplied with AddRec expressions.
8919void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
8920 SmallVectorImpl<const SCEV *> &Terms) {
8921 SmallVector<const SCEV *, 4> Strides;
8922 SCEVCollectStrides StrideCollector(*this, Strides);
8923 visitAll(Expr, StrideCollector);
8924
8925 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Strides:\n"; for (
const SCEV *S : Strides) dbgs() << *S << "\n"; };
} } while (0)
8926 dbgs() << "Strides:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Strides:\n"; for (
const SCEV *S : Strides) dbgs() << *S << "\n"; };
} } while (0)
8927 for (const SCEV *S : Strides)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Strides:\n"; for (
const SCEV *S : Strides) dbgs() << *S << "\n"; };
} } while (0)
8928 dbgs() << *S << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Strides:\n"; for (
const SCEV *S : Strides) dbgs() << *S << "\n"; };
} } while (0)
8929 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Strides:\n"; for (
const SCEV *S : Strides) dbgs() << *S << "\n"; };
} } while (0)
;
8930
8931 for (const SCEV *S : Strides) {
8932 SCEVCollectTerms TermCollector(Terms);
8933 visitAll(S, TermCollector);
8934 }
8935
8936 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Terms:\n"; for (const
SCEV *T : Terms) dbgs() << *T << "\n"; }; } } while
(0)
8937 dbgs() << "Terms:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Terms:\n"; for (const
SCEV *T : Terms) dbgs() << *T << "\n"; }; } } while
(0)
8938 for (const SCEV *T : Terms)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Terms:\n"; for (const
SCEV *T : Terms) dbgs() << *T << "\n"; }; } } while
(0)
8939 dbgs() << *T << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Terms:\n"; for (const
SCEV *T : Terms) dbgs() << *T << "\n"; }; } } while
(0)
8940 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Terms:\n"; for (const
SCEV *T : Terms) dbgs() << *T << "\n"; }; } } while
(0)
;
8941
8942 SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
8943 visitAll(Expr, MulCollector);
8944}
8945
8946static bool findArrayDimensionsRec(ScalarEvolution &SE,
8947 SmallVectorImpl<const SCEV *> &Terms,
8948 SmallVectorImpl<const SCEV *> &Sizes) {
8949 int Last = Terms.size() - 1;
8950 const SCEV *Step = Terms[Last];
8951
8952 // End of recursion.
8953 if (Last == 0) {
8954 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
8955 SmallVector<const SCEV *, 2> Qs;
8956 for (const SCEV *Op : M->operands())
8957 if (!isa<SCEVConstant>(Op))
8958 Qs.push_back(Op);
8959
8960 Step = SE.getMulExpr(Qs);
8961 }
8962
8963 Sizes.push_back(Step);
8964 return true;
8965 }
8966
8967 for (const SCEV *&Term : Terms) {
8968 // Normalize the terms before the next call to findArrayDimensionsRec.
8969 const SCEV *Q, *R;
8970 SCEVDivision::divide(SE, Term, Step, &Q, &R);
8971
8972 // Bail out when GCD does not evenly divide one of the terms.
8973 if (!R->isZero())
8974 return false;
8975
8976 Term = Q;
8977 }
8978
8979 // Remove all SCEVConstants.
8980 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
8981 return isa<SCEVConstant>(E);
8982 }),
8983 Terms.end());
8984
8985 if (Terms.size() > 0)
8986 if (!findArrayDimensionsRec(SE, Terms, Sizes))
8987 return false;
8988
8989 Sizes.push_back(Step);
8990 return true;
8991}
8992
8993// Returns true when S contains at least a SCEVUnknown parameter.
8994static inline bool
8995containsParameters(const SCEV *S) {
8996 struct FindParameter {
8997 bool FoundParameter;
8998 FindParameter() : FoundParameter(false) {}
8999
9000 bool follow(const SCEV *S) {
9001 if (isa<SCEVUnknown>(S)) {
9002 FoundParameter = true;
9003 // Stop recursion: we found a parameter.
9004 return false;
9005 }
9006 // Keep looking.
9007 return true;
9008 }
9009 bool isDone() const {
9010 // Stop recursion if we have found a parameter.
9011 return FoundParameter;
9012 }
9013 };
9014
9015 FindParameter F;
9016 SCEVTraversal<FindParameter> ST(F);
9017 ST.visitAll(S);
9018
9019 return F.FoundParameter;
9020}
9021
9022// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
9023static inline bool
9024containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
9025 for (const SCEV *T : Terms)
9026 if (containsParameters(T))
9027 return true;
9028 return false;
9029}
9030
9031// Return the number of product terms in S.
9032static inline int numberOfTerms(const SCEV *S) {
9033 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
9034 return Expr->getNumOperands();
9035 return 1;
9036}
9037
9038static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
9039 if (isa<SCEVConstant>(T))
9040 return nullptr;
9041
9042 if (isa<SCEVUnknown>(T))
9043 return T;
9044
9045 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
9046 SmallVector<const SCEV *, 2> Factors;
9047 for (const SCEV *Op : M->operands())
9048 if (!isa<SCEVConstant>(Op))
9049 Factors.push_back(Op);
9050
9051 return SE.getMulExpr(Factors);
9052 }
9053
9054 return T;
9055}
9056
9057/// Return the size of an element read or written by Inst.
9058const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
9059 Type *Ty;
9060 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
9061 Ty = Store->getValueOperand()->getType();
9062 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
9063 Ty = Load->getType();
9064 else
9065 return nullptr;
9066
9067 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
9068 return getSizeOfExpr(ETy, Ty);
9069}
9070
9071/// Second step of delinearization: compute the array dimensions Sizes from the
9072/// set of Terms extracted from the memory access function of this SCEVAddRec.
9073void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
9074 SmallVectorImpl<const SCEV *> &Sizes,
9075 const SCEV *ElementSize) const {
9076
9077 if (Terms.size() < 1 || !ElementSize)
9078 return;
9079
9080 // Early return when Terms do not contain parameters: we do not delinearize
9081 // non parametric SCEVs.
9082 if (!containsParameters(Terms))
9083 return;
9084
9085 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Terms:\n"; for (const
SCEV *T : Terms) dbgs() << *T << "\n"; }; } } while
(0)
9086 dbgs() << "Terms:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Terms:\n"; for (const
SCEV *T : Terms) dbgs() << *T << "\n"; }; } } while
(0)
9087 for (const SCEV *T : Terms)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Terms:\n"; for (const
SCEV *T : Terms) dbgs() << *T << "\n"; }; } } while
(0)
9088 dbgs() << *T << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Terms:\n"; for (const
SCEV *T : Terms) dbgs() << *T << "\n"; }; } } while
(0)
9089 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Terms:\n"; for (const
SCEV *T : Terms) dbgs() << *T << "\n"; }; } } while
(0)
;
9090
9091 // Remove duplicates.
9092 std::sort(Terms.begin(), Terms.end());
9093 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
9094
9095 // Put larger terms first.
9096 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
9097 return numberOfTerms(LHS) > numberOfTerms(RHS);
9098 });
9099
9100 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9101
9102 // Try to divide all terms by the element size. If term is not divisible by
9103 // element size, proceed with the original term.
9104 for (const SCEV *&Term : Terms) {
9105 const SCEV *Q, *R;
9106 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
9107 if (!Q->isZero())
9108 Term = Q;
9109 }
9110
9111 SmallVector<const SCEV *, 4> NewTerms;
9112
9113 // Remove constant factors.
9114 for (const SCEV *T : Terms)
9115 if (const SCEV *NewT = removeConstantFactors(SE, T))
9116 NewTerms.push_back(NewT);
9117
9118 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Terms after sorting:\n"
; for (const SCEV *T : NewTerms) dbgs() << *T << "\n"
; }; } } while (0)
9119 dbgs() << "Terms after sorting:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Terms after sorting:\n"
; for (const SCEV *T : NewTerms) dbgs() << *T << "\n"
; }; } } while (0)
9120 for (const SCEV *T : NewTerms)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Terms after sorting:\n"
; for (const SCEV *T : NewTerms) dbgs() << *T << "\n"
; }; } } while (0)
9121 dbgs() << *T << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Terms after sorting:\n"
; for (const SCEV *T : NewTerms) dbgs() << *T << "\n"
; }; } } while (0)
9122 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Terms after sorting:\n"
; for (const SCEV *T : NewTerms) dbgs() << *T << "\n"
; }; } } while (0)
;
9123
9124 if (NewTerms.empty() ||
9125 !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
9126 Sizes.clear();
9127 return;
9128 }
9129
9130 // The last element to be pushed into Sizes is the size of an element.
9131 Sizes.push_back(ElementSize);
9132
9133 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Sizes:\n"; for (const
SCEV *S : Sizes) dbgs() << *S << "\n"; }; } } while
(0)
9134 dbgs() << "Sizes:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Sizes:\n"; for (const
SCEV *S : Sizes) dbgs() << *S << "\n"; }; } } while
(0)
9135 for (const SCEV *S : Sizes)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Sizes:\n"; for (const
SCEV *S : Sizes) dbgs() << *S << "\n"; }; } } while
(0)
9136 dbgs() << *S << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Sizes:\n"; for (const
SCEV *S : Sizes) dbgs() << *S << "\n"; }; } } while
(0)
9137 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Sizes:\n"; for (const
SCEV *S : Sizes) dbgs() << *S << "\n"; }; } } while
(0)
;
9138}
9139
9140/// Third step of delinearization: compute the access functions for the
9141/// Subscripts based on the dimensions in Sizes.
9142void ScalarEvolution::computeAccessFunctions(
9143 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
9144 SmallVectorImpl<const SCEV *> &Sizes) {
9145
9146 // Early exit in case this SCEV is not an affine multivariate function.
9147 if (Sizes.empty())
9148 return;
9149
9150 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
9151 if (!AR->isAffine())
9152 return;
9153
9154 const SCEV *Res = Expr;
9155 int Last = Sizes.size() - 1;
9156 for (int i = Last; i >= 0; i--) {
9157 const SCEV *Q, *R;
9158 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
9159
9160 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Res: " << *Res
<< "\n"; dbgs() << "Sizes[i]: " << *Sizes[
i] << "\n"; dbgs() << "Res divided by Sizes[i]:\n"
; dbgs() << "Quotient: " << *Q << "\n"; dbgs
() << "Remainder: " << *R << "\n"; }; } } while
(0)
9161 dbgs() << "Res: " << *Res << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Res: " << *Res
<< "\n"; dbgs() << "Sizes[i]: " << *Sizes[
i] << "\n"; dbgs() << "Res divided by Sizes[i]:\n"
; dbgs() << "Quotient: " << *Q << "\n"; dbgs
() << "Remainder: " << *R << "\n"; }; } } while
(0)
9162 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Res: " << *Res
<< "\n"; dbgs() << "Sizes[i]: " << *Sizes[
i] << "\n"; dbgs() << "Res divided by Sizes[i]:\n"
; dbgs() << "Quotient: " << *Q << "\n"; dbgs
() << "Remainder: " << *R << "\n"; }; } } while
(0)
9163 dbgs() << "Res divided by Sizes[i]:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Res: " << *Res
<< "\n"; dbgs() << "Sizes[i]: " << *Sizes[
i] << "\n"; dbgs() << "Res divided by Sizes[i]:\n"
; dbgs() << "Quotient: " << *Q << "\n"; dbgs
() << "Remainder: " << *R << "\n"; }; } } while
(0)
9164 dbgs() << "Quotient: " << *Q << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Res: " << *Res
<< "\n"; dbgs() << "Sizes[i]: " << *Sizes[
i] << "\n"; dbgs() << "Res divided by Sizes[i]:\n"
; dbgs() << "Quotient: " << *Q << "\n"; dbgs
() << "Remainder: " << *R << "\n"; }; } } while
(0)
9165 dbgs() << "Remainder: " << *R << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Res: " << *Res
<< "\n"; dbgs() << "Sizes[i]: " << *Sizes[
i] << "\n"; dbgs() << "Res divided by Sizes[i]:\n"
; dbgs() << "Quotient: " << *Q << "\n"; dbgs
() << "Remainder: " << *R << "\n"; }; } } while
(0)
9166 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Res: " << *Res
<< "\n"; dbgs() << "Sizes[i]: " << *Sizes[
i] << "\n"; dbgs() << "Res divided by Sizes[i]:\n"
; dbgs() << "Quotient: " << *Q << "\n"; dbgs
() << "Remainder: " << *R << "\n"; }; } } while
(0)
;
9167
9168 Res = Q;
9169
9170 // Do not record the last subscript corresponding to the size of elements in
9171 // the array.
9172 if (i == Last) {
9173
9174 // Bail out if the remainder is too complex.
9175 if (isa<SCEVAddRecExpr>(R)) {
9176 Subscripts.clear();
9177 Sizes.clear();
9178 return;
9179 }
9180
9181 continue;
9182 }
9183
9184 // Record the access function for the current subscript.
9185 Subscripts.push_back(R);
9186 }
9187
9188 // Also push in last position the remainder of the last division: it will be
9189 // the access function of the innermost dimension.
9190 Subscripts.push_back(Res);
9191
9192 std::reverse(Subscripts.begin(), Subscripts.end());
9193
9194 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Subscripts:\n"; for
(const SCEV *S : Subscripts) dbgs() << *S << "\n"
; }; } } while (0)
9195 dbgs() << "Subscripts:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Subscripts:\n"; for
(const SCEV *S : Subscripts) dbgs() << *S << "\n"
; }; } } while (0)
9196 for (const SCEV *S : Subscripts)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Subscripts:\n"; for
(const SCEV *S : Subscripts) dbgs() << *S << "\n"
; }; } } while (0)
9197 dbgs() << *S << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Subscripts:\n"; for
(const SCEV *S : Subscripts) dbgs() << *S << "\n"
; }; } } while (0)
9198 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Subscripts:\n"; for
(const SCEV *S : Subscripts) dbgs() << *S << "\n"
; }; } } while (0)
;
9199}
9200
9201/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
9202/// sizes of an array access. Returns the remainder of the delinearization that
9203/// is the offset start of the array. The SCEV->delinearize algorithm computes
9204/// the multiples of SCEV coefficients: that is a pattern matching of sub
9205/// expressions in the stride and base of a SCEV corresponding to the
9206/// computation of a GCD (greatest common divisor) of base and stride. When
9207/// SCEV->delinearize fails, it returns the SCEV unchanged.
9208///
9209/// For example: when analyzing the memory access A[i][j][k] in this loop nest
9210///
9211/// void foo(long n, long m, long o, double A[n][m][o]) {
9212///
9213/// for (long i = 0; i < n; i++)
9214/// for (long j = 0; j < m; j++)
9215/// for (long k = 0; k < o; k++)
9216/// A[i][j][k] = 1.0;
9217/// }
9218///
9219/// the delinearization input is the following AddRec SCEV:
9220///
9221/// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
9222///
9223/// From this SCEV, we are able to say that the base offset of the access is %A
9224/// because it appears as an offset that does not divide any of the strides in
9225/// the loops:
9226///
9227/// CHECK: Base offset: %A
9228///
9229/// and then SCEV->delinearize determines the size of some of the dimensions of
9230/// the array as these are the multiples by which the strides are happening:
9231///
9232/// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
9233///
9234/// Note that the outermost dimension remains of UnknownSize because there are
9235/// no strides that would help identifying the size of the last dimension: when
9236/// the array has been statically allocated, one could compute the size of that
9237/// dimension by dividing the overall size of the array by the size of the known
9238/// dimensions: %m * %o * 8.
9239///
9240/// Finally delinearize provides the access functions for the array reference
9241/// that does correspond to A[i][j][k] of the above C testcase:
9242///
9243/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
9244///
9245/// The testcases are checking the output of a function pass:
9246/// DelinearizationPass that walks through all loads and stores of a function
9247/// asking for the SCEV of the memory access with respect to all enclosing
9248/// loops, calling SCEV->delinearize on that and printing the results.
9249
9250void ScalarEvolution::delinearize(const SCEV *Expr,
9251 SmallVectorImpl<const SCEV *> &Subscripts,
9252 SmallVectorImpl<const SCEV *> &Sizes,
9253 const SCEV *ElementSize) {
9254 // First step: collect parametric terms.
9255 SmallVector<const SCEV *, 4> Terms;
9256 collectParametricTerms(Expr, Terms);
9257
9258 if (Terms.empty())
9259 return;
9260
9261 // Second step: find subscript sizes.
9262 findArrayDimensions(Terms, Sizes, ElementSize);
9263
9264 if (Sizes.empty())
9265 return;
9266
9267 // Third step: compute the access functions for each subscript.
9268 computeAccessFunctions(Expr, Subscripts, Sizes);
9269
9270 if (Subscripts.empty())
9271 return;
9272
9273 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "succeeded to delinearize "
<< *Expr << "\n"; dbgs() << "ArrayDecl[UnknownSize]"
; for (const SCEV *S : Sizes) dbgs() << "[" << *S
<< "]"; dbgs() << "\nArrayRef"; for (const SCEV *
S : Subscripts) dbgs() << "[" << *S << "]";
dbgs() << "\n"; }; } } while (0)
9274 dbgs() << "succeeded to delinearize " << *Expr << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "succeeded to delinearize "
<< *Expr << "\n"; dbgs() << "ArrayDecl[UnknownSize]"
; for (const SCEV *S : Sizes) dbgs() << "[" << *S
<< "]"; dbgs() << "\nArrayRef"; for (const SCEV *
S : Subscripts) dbgs() << "[" << *S << "]";
dbgs() << "\n"; }; } } while (0)
9275 dbgs() << "ArrayDecl[UnknownSize]";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "succeeded to delinearize "
<< *Expr << "\n"; dbgs() << "ArrayDecl[UnknownSize]"
; for (const SCEV *S : Sizes) dbgs() << "[" << *S
<< "]"; dbgs() << "\nArrayRef"; for (const SCEV *
S : Subscripts) dbgs() << "[" << *S << "]";
dbgs() << "\n"; }; } } while (0)
9276 for (const SCEV *S : Sizes)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "succeeded to delinearize "
<< *Expr << "\n"; dbgs() << "ArrayDecl[UnknownSize]"
; for (const SCEV *S : Sizes) dbgs() << "[" << *S
<< "]"; dbgs() << "\nArrayRef"; for (const SCEV *
S : Subscripts) dbgs() << "[" << *S << "]";
dbgs() << "\n"; }; } } while (0)
9277 dbgs() << "[" << *S << "]";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "succeeded to delinearize "
<< *Expr << "\n"; dbgs() << "ArrayDecl[UnknownSize]"
; for (const SCEV *S : Sizes) dbgs() << "[" << *S
<< "]"; dbgs() << "\nArrayRef"; for (const SCEV *
S : Subscripts) dbgs() << "[" << *S << "]";
dbgs() << "\n"; }; } } while (0)
9278
9279 dbgs() << "\nArrayRef";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "succeeded to delinearize "
<< *Expr << "\n"; dbgs() << "ArrayDecl[UnknownSize]"
; for (const SCEV *S : Sizes) dbgs() << "[" << *S
<< "]"; dbgs() << "\nArrayRef"; for (const SCEV *
S : Subscripts) dbgs() << "[" << *S << "]";
dbgs() << "\n"; }; } } while (0)
9280 for (const SCEV *S : Subscripts)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "succeeded to delinearize "
<< *Expr << "\n"; dbgs() << "ArrayDecl[UnknownSize]"
; for (const SCEV *S : Sizes) dbgs() << "[" << *S
<< "]"; dbgs() << "\nArrayRef"; for (const SCEV *
S : Subscripts) dbgs() << "[" << *S << "]";
dbgs() << "\n"; }; } } while (0)
9281 dbgs() << "[" << *S << "]";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "succeeded to delinearize "
<< *Expr << "\n"; dbgs() << "ArrayDecl[UnknownSize]"
; for (const SCEV *S : Sizes) dbgs() << "[" << *S
<< "]"; dbgs() << "\nArrayRef"; for (const SCEV *
S : Subscripts) dbgs() << "[" << *S << "]";
dbgs() << "\n"; }; } } while (0)
9282 dbgs() << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "succeeded to delinearize "
<< *Expr << "\n"; dbgs() << "ArrayDecl[UnknownSize]"
; for (const SCEV *S : Sizes) dbgs() << "[" << *S
<< "]"; dbgs() << "\nArrayRef"; for (const SCEV *
S : Subscripts) dbgs() << "[" << *S << "]";
dbgs() << "\n"; }; } } while (0)
9283 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "succeeded to delinearize "
<< *Expr << "\n"; dbgs() << "ArrayDecl[UnknownSize]"
; for (const SCEV *S : Sizes) dbgs() << "[" << *S
<< "]"; dbgs() << "\nArrayRef"; for (const SCEV *
S : Subscripts) dbgs() << "[" << *S << "]";
dbgs() << "\n"; }; } } while (0)
;
9284}
9285
9286//===----------------------------------------------------------------------===//
9287// SCEVCallbackVH Class Implementation
9288//===----------------------------------------------------------------------===//
9289
9290void ScalarEvolution::SCEVCallbackVH::deleted() {
9291 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!")((SE && "SCEVCallbackVH called with a null ScalarEvolution!"
) ? static_cast<void> (0) : __assert_fail ("SE && \"SCEVCallbackVH called with a null ScalarEvolution!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 9291, __PRETTY_FUNCTION__))
;
9292 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
9293 SE->ConstantEvolutionLoopExitValue.erase(PN);
9294 SE->eraseValueFromMap(getValPtr());
9295 // this now dangles!
9296}
9297
9298void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
9299 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!")((SE && "SCEVCallbackVH called with a null ScalarEvolution!"
) ? static_cast<void> (0) : __assert_fail ("SE && \"SCEVCallbackVH called with a null ScalarEvolution!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 9299, __PRETTY_FUNCTION__))
;
9300
9301 // Forget all the expressions associated with users of the old value,
9302 // so that future queries will recompute the expressions using the new
9303 // value.
9304 Value *Old = getValPtr();
9305 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
9306 SmallPtrSet<User *, 8> Visited;
9307 while (!Worklist.empty()) {
9308 User *U = Worklist.pop_back_val();
9309 // Deleting the Old value will cause this to dangle. Postpone
9310 // that until everything else is done.
9311 if (U == Old)
9312 continue;
9313 if (!Visited.insert(U).second)
9314 continue;
9315 if (PHINode *PN = dyn_cast<PHINode>(U))
9316 SE->ConstantEvolutionLoopExitValue.erase(PN);
9317 SE->eraseValueFromMap(U);
9318 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
9319 }
9320 // Delete the Old value.
9321 if (PHINode *PN = dyn_cast<PHINode>(Old))
9322 SE->ConstantEvolutionLoopExitValue.erase(PN);
9323 SE->eraseValueFromMap(Old);
9324 // this now dangles!
9325}
9326
9327ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
9328 : CallbackVH(V), SE(se) {}
9329
9330//===----------------------------------------------------------------------===//
9331// ScalarEvolution Class Implementation
9332//===----------------------------------------------------------------------===//
9333
9334ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
9335 AssumptionCache &AC, DominatorTree &DT,
9336 LoopInfo &LI)
9337 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
9338 CouldNotCompute(new SCEVCouldNotCompute()),
9339 WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9340 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64),
9341 FirstUnknown(nullptr) {}
9342
9343ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
9344 : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI),
9345 CouldNotCompute(std::move(Arg.CouldNotCompute)),
9346 ValueExprMap(std::move(Arg.ValueExprMap)),
9347 WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9348 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
9349 ConstantEvolutionLoopExitValue(
9350 std::move(Arg.ConstantEvolutionLoopExitValue)),
9351 ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
9352 LoopDispositions(std::move(Arg.LoopDispositions)),
9353 BlockDispositions(std::move(Arg.BlockDispositions)),
9354 UnsignedRanges(std::move(Arg.UnsignedRanges)),
9355 SignedRanges(std::move(Arg.SignedRanges)),
9356 UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
9357 UniquePreds(std::move(Arg.UniquePreds)),
9358 SCEVAllocator(std::move(Arg.SCEVAllocator)),
9359 FirstUnknown(Arg.FirstUnknown) {
9360 Arg.FirstUnknown = nullptr;
9361}
9362
9363ScalarEvolution::~ScalarEvolution() {
9364 // Iterate through all the SCEVUnknown instances and call their
9365 // destructors, so that they release their references to their values.
9366 for (SCEVUnknown *U = FirstUnknown; U;) {
9367 SCEVUnknown *Tmp = U;
9368 U = U->Next;
9369 Tmp->~SCEVUnknown();
9370 }
9371 FirstUnknown = nullptr;
9372
9373 ExprValueMap.clear();
9374 ValueExprMap.clear();
9375 HasRecMap.clear();
9376
9377 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
9378 // that a loop had multiple computable exits.
9379 for (auto &BTCI : BackedgeTakenCounts)
9380 BTCI.second.clear();
9381
9382 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage")((PendingLoopPredicates.empty() && "isImpliedCond garbage"
) ? static_cast<void> (0) : __assert_fail ("PendingLoopPredicates.empty() && \"isImpliedCond garbage\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 9382, __PRETTY_FUNCTION__))
;
9383 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!")((!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"
) ? static_cast<void> (0) : __assert_fail ("!WalkingBEDominatingConds && \"isLoopBackedgeGuardedByCond garbage!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 9383, __PRETTY_FUNCTION__))
;
9384 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!")((!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"
) ? static_cast<void> (0) : __assert_fail ("!ProvingSplitPredicate && \"ProvingSplitPredicate garbage!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 9384, __PRETTY_FUNCTION__))
;
9385}
9386
9387bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
9388 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
9389}
9390
9391static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
9392 const Loop *L) {
9393 // Print all inner loops first
9394 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
9395 PrintLoopInfo(OS, SE, *I);
9396
9397 OS << "Loop ";
9398 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9399 OS << ": ";
9400
9401 SmallVector<BasicBlock *, 8> ExitBlocks;
9402 L->getExitBlocks(ExitBlocks);
9403 if (ExitBlocks.size() != 1)
9404 OS << "<multiple exits> ";
9405
9406 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
9407 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
9408 } else {
9409 OS << "Unpredictable backedge-taken count. ";
9410 }
9411
9412 OS << "\n"
9413 "Loop ";
9414 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9415 OS << ": ";
9416
9417 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
9418 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
9419 } else {
9420 OS << "Unpredictable max backedge-taken count. ";
9421 }
9422
9423 OS << "\n";
9424}
9425
9426void ScalarEvolution::print(raw_ostream &OS) const {
9427 // ScalarEvolution's implementation of the print method is to print
9428 // out SCEV values of all instructions that are interesting. Doing
9429 // this potentially causes it to create new SCEV objects though,
9430 // which technically conflicts with the const qualifier. This isn't
9431 // observable from outside the class though, so casting away the
9432 // const isn't dangerous.
9433 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9434
9435 OS << "Classifying expressions for: ";
9436 F.printAsOperand(OS, /*PrintType=*/false);
9437 OS << "\n";
9438 for (Instruction &I : instructions(F))
9439 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
9440 OS << I << '\n';
9441 OS << " --> ";
9442 const SCEV *SV = SE.getSCEV(&I);
9443 SV->print(OS);
9444 if (!isa<SCEVCouldNotCompute>(SV)) {
9445 OS << " U: ";
9446 SE.getUnsignedRange(SV).print(OS);
9447 OS << " S: ";
9448 SE.getSignedRange(SV).print(OS);
9449 }
9450
9451 const Loop *L = LI.getLoopFor(I.getParent());
9452
9453 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
9454 if (AtUse != SV) {
9455 OS << " --> ";
9456 AtUse->print(OS);
9457 if (!isa<SCEVCouldNotCompute>(AtUse)) {
9458 OS << " U: ";
9459 SE.getUnsignedRange(AtUse).print(OS);
9460 OS << " S: ";
9461 SE.getSignedRange(AtUse).print(OS);
9462 }
9463 }
9464
9465 if (L) {
9466 OS << "\t\t" "Exits: ";
9467 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
9468 if (!SE.isLoopInvariant(ExitValue, L)) {
9469 OS << "<<Unknown>>";
9470 } else {
9471 OS << *ExitValue;
9472 }
9473 }
9474
9475 OS << "\n";
9476 }
9477
9478 OS << "Determining loop execution counts for: ";
9479 F.printAsOperand(OS, /*PrintType=*/false);
9480 OS << "\n";
9481 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
9482 PrintLoopInfo(OS, &SE, *I);
9483}
9484
9485ScalarEvolution::LoopDisposition
9486ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
9487 auto &Values = LoopDispositions[S];
9488 for (auto &V : Values) {
9489 if (V.getPointer() == L)
9490 return V.getInt();
9491 }
9492 Values.emplace_back(L, LoopVariant);
9493 LoopDisposition D = computeLoopDisposition(S, L);
9494 auto &Values2 = LoopDispositions[S];
9495 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9496 if (V.getPointer() == L) {
9497 V.setInt(D);
9498 break;
9499 }
9500 }
9501 return D;
9502}
9503
9504ScalarEvolution::LoopDisposition
9505ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
9506 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
9507 case scConstant:
9508 return LoopInvariant;
9509 case scTruncate:
9510 case scZeroExtend:
9511 case scSignExtend:
9512 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
9513 case scAddRecExpr: {
9514 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9515
9516 // If L is the addrec's loop, it's computable.
9517 if (AR->getLoop() == L)
9518 return LoopComputable;
9519
9520 // Add recurrences are never invariant in the function-body (null loop).
9521 if (!L)
9522 return LoopVariant;
9523
9524 // This recurrence is variant w.r.t. L if L contains AR's loop.
9525 if (L->contains(AR->getLoop()))
9526 return LoopVariant;
9527
9528 // This recurrence is invariant w.r.t. L if AR's loop contains L.
9529 if (AR->getLoop()->contains(L))
9530 return LoopInvariant;
9531
9532 // This recurrence is variant w.r.t. L if any of its operands
9533 // are variant.
9534 for (auto *Op : AR->operands())
9535 if (!isLoopInvariant(Op, L))
9536 return LoopVariant;
9537
9538 // Otherwise it's loop-invariant.
9539 return LoopInvariant;
9540 }
9541 case scAddExpr:
9542 case scMulExpr:
9543 case scUMaxExpr:
9544 case scSMaxExpr: {
9545 bool HasVarying = false;
9546 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
9547 LoopDisposition D = getLoopDisposition(Op, L);
9548 if (D == LoopVariant)
9549 return LoopVariant;
9550 if (D == LoopComputable)
9551 HasVarying = true;
9552 }
9553 return HasVarying ? LoopComputable : LoopInvariant;
9554 }
9555 case scUDivExpr: {
9556 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
9557 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
9558 if (LD == LoopVariant)
9559 return LoopVariant;
9560 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
9561 if (RD == LoopVariant)
9562 return LoopVariant;
9563 return (LD == LoopInvariant && RD == LoopInvariant) ?
9564 LoopInvariant : LoopComputable;
9565 }
9566 case scUnknown:
9567 // All non-instruction values are loop invariant. All instructions are loop
9568 // invariant if they are not contained in the specified loop.
9569 // Instructions are never considered invariant in the function body
9570 // (null loop) because they are defined within the "loop".
9571 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
9572 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
9573 return LoopInvariant;
9574 case scCouldNotCompute:
9575 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!")::llvm::llvm_unreachable_internal("Attempt to use a SCEVCouldNotCompute object!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 9575)
;
9576 }
9577 llvm_unreachable("Unknown SCEV kind!")::llvm::llvm_unreachable_internal("Unknown SCEV kind!", "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 9577)
;
9578}
9579
9580bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
9581 return getLoopDisposition(S, L) == LoopInvariant;
9582}
9583
9584bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
9585 return getLoopDisposition(S, L) == LoopComputable;
9586}
9587
9588ScalarEvolution::BlockDisposition
9589ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
9590 auto &Values = BlockDispositions[S];
9591 for (auto &V : Values) {
9592 if (V.getPointer() == BB)
9593 return V.getInt();
9594 }
9595 Values.emplace_back(BB, DoesNotDominateBlock);
9596 BlockDisposition D = computeBlockDisposition(S, BB);
9597 auto &Values2 = BlockDispositions[S];
9598 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9599 if (V.getPointer() == BB) {
9600 V.setInt(D);
9601 break;
9602 }
9603 }
9604 return D;
9605}
9606
9607ScalarEvolution::BlockDisposition
9608ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
9609 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
9610 case scConstant:
9611 return ProperlyDominatesBlock;
9612 case scTruncate:
9613 case scZeroExtend:
9614 case scSignExtend:
9615 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
9616 case scAddRecExpr: {
9617 // This uses a "dominates" query instead of "properly dominates" query
9618 // to test for proper dominance too, because the instruction which
9619 // produces the addrec's value is a PHI, and a PHI effectively properly
9620 // dominates its entire containing block.
9621 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9622 if (!DT.dominates(AR->getLoop()->getHeader(), BB))
9623 return DoesNotDominateBlock;
9624 }
9625 // FALL THROUGH into SCEVNAryExpr handling.
9626 case scAddExpr:
9627 case scMulExpr:
9628 case scUMaxExpr:
9629 case scSMaxExpr: {
9630 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
9631 bool Proper = true;
9632 for (const SCEV *NAryOp : NAry->operands()) {
9633 BlockDisposition D = getBlockDisposition(NAryOp, BB);
9634 if (D == DoesNotDominateBlock)
9635 return DoesNotDominateBlock;
9636 if (D == DominatesBlock)
9637 Proper = false;
9638 }
9639 return Proper ? ProperlyDominatesBlock : DominatesBlock;
9640 }
9641 case scUDivExpr: {
9642 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
9643 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
9644 BlockDisposition LD = getBlockDisposition(LHS, BB);
9645 if (LD == DoesNotDominateBlock)
9646 return DoesNotDominateBlock;
9647 BlockDisposition RD = getBlockDisposition(RHS, BB);
9648 if (RD == DoesNotDominateBlock)
9649 return DoesNotDominateBlock;
9650 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
9651 ProperlyDominatesBlock : DominatesBlock;
9652 }
9653 case scUnknown:
9654 if (Instruction *I =
9655 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
9656 if (I->getParent() == BB)
9657 return DominatesBlock;
9658 if (DT.properlyDominates(I->getParent(), BB))
9659 return ProperlyDominatesBlock;
9660 return DoesNotDominateBlock;
9661 }
9662 return ProperlyDominatesBlock;
9663 case scCouldNotCompute:
9664 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!")::llvm::llvm_unreachable_internal("Attempt to use a SCEVCouldNotCompute object!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 9664)
;
9665 }
9666 llvm_unreachable("Unknown SCEV kind!")::llvm::llvm_unreachable_internal("Unknown SCEV kind!", "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 9666)
;
9667}
9668
9669bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
9670 return getBlockDisposition(S, BB) >= DominatesBlock;
9671}
9672
9673bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
9674 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
9675}
9676
9677bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
9678 // Search for a SCEV expression node within an expression tree.
9679 // Implements SCEVTraversal::Visitor.
9680 struct SCEVSearch {
9681 const SCEV *Node;
9682 bool IsFound;
9683
9684 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
9685
9686 bool follow(const SCEV *S) {
9687 IsFound |= (S == Node);
9688 return !IsFound;
9689 }
9690 bool isDone() const { return IsFound; }
9691 };
9692
9693 SCEVSearch Search(Op);
9694 visitAll(S, Search);
9695 return Search.IsFound;
9696}
9697
9698void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
9699 ValuesAtScopes.erase(S);
9700 LoopDispositions.erase(S);
9701 BlockDispositions.erase(S);
9702 UnsignedRanges.erase(S);
9703 SignedRanges.erase(S);
9704 ExprValueMap.erase(S);
9705 HasRecMap.erase(S);
9706
9707 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I =
9708 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) {
9709 BackedgeTakenInfo &BEInfo = I->second;
9710 if (BEInfo.hasOperand(S, this)) {
9711 BEInfo.clear();
9712 BackedgeTakenCounts.erase(I++);
9713 }
9714 else
9715 ++I;
9716 }
9717}
9718
9719typedef DenseMap<const Loop *, std::string> VerifyMap;
9720
9721/// replaceSubString - Replaces all occurrences of From in Str with To.
9722static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
9723 size_t Pos = 0;
9724 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
9725 Str.replace(Pos, From.size(), To.data(), To.size());
9726 Pos += To.size();
9727 }
9728}
9729
9730/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
9731static void
9732getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
9733 std::string &S = Map[L];
9734 if (S.empty()) {
9735 raw_string_ostream OS(S);
9736 SE.getBackedgeTakenCount(L)->print(OS);
9737
9738 // false and 0 are semantically equivalent. This can happen in dead loops.
9739 replaceSubString(OS.str(), "false", "0");
9740 // Remove wrap flags, their use in SCEV is highly fragile.
9741 // FIXME: Remove this when SCEV gets smarter about them.
9742 replaceSubString(OS.str(), "<nw>", "");
9743 replaceSubString(OS.str(), "<nsw>", "");
9744 replaceSubString(OS.str(), "<nuw>", "");
9745 }
9746
9747 for (auto *R : reverse(*L))
9748 getLoopBackedgeTakenCounts(R, Map, SE); // recurse.
9749}
9750
9751void ScalarEvolution::verify() const {
9752 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9753
9754 // Gather stringified backedge taken counts for all loops using SCEV's caches.
9755 // FIXME: It would be much better to store actual values instead of strings,
9756 // but SCEV pointers will change if we drop the caches.
9757 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
9758 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
9759 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
9760
9761 // Gather stringified backedge taken counts for all loops using a fresh
9762 // ScalarEvolution object.
9763 ScalarEvolution SE2(F, TLI, AC, DT, LI);
9764 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
9765 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2);
9766
9767 // Now compare whether they're the same with and without caches. This allows
9768 // verifying that no pass changed the cache.
9769 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&((BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
"New loops suddenly appeared!") ? static_cast<void> (0
) : __assert_fail ("BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && \"New loops suddenly appeared!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 9770, __PRETTY_FUNCTION__))
9770 "New loops suddenly appeared!")((BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
"New loops suddenly appeared!") ? static_cast<void> (0
) : __assert_fail ("BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && \"New loops suddenly appeared!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 9770, __PRETTY_FUNCTION__))
;
9771
9772 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
9773 OldE = BackedgeDumpsOld.end(),
9774 NewI = BackedgeDumpsNew.begin();
9775 OldI != OldE; ++OldI, ++NewI) {
9776 assert(OldI->first == NewI->first && "Loop order changed!")((OldI->first == NewI->first && "Loop order changed!"
) ? static_cast<void> (0) : __assert_fail ("OldI->first == NewI->first && \"Loop order changed!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 9776, __PRETTY_FUNCTION__))
;
9777
9778 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
9779 // changes.
9780 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
9781 // means that a pass is buggy or SCEV has to learn a new pattern but is
9782 // usually not harmful.
9783 if (OldI->second != NewI->second &&
9784 OldI->second.find("undef") == std::string::npos &&
9785 NewI->second.find("undef") == std::string::npos &&
9786 OldI->second != "***COULDNOTCOMPUTE***" &&
9787 NewI->second != "***COULDNOTCOMPUTE***") {
9788 dbgs() << "SCEVValidator: SCEV for loop '"
9789 << OldI->first->getHeader()->getName()
9790 << "' changed from '" << OldI->second
9791 << "' to '" << NewI->second << "'!\n";
9792 std::abort();
9793 }
9794 }
9795
9796 // TODO: Verify more things.
9797}
9798
9799char ScalarEvolutionAnalysis::PassID;
9800
9801ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
9802 AnalysisManager<Function> &AM) {
9803 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
9804 AM.getResult<AssumptionAnalysis>(F),
9805 AM.getResult<DominatorTreeAnalysis>(F),
9806 AM.getResult<LoopAnalysis>(F));
9807}
9808
9809PreservedAnalyses
9810ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> &AM) {
9811 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
9812 return PreservedAnalyses::all();
9813}
9814
9815INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",static void* initializeScalarEvolutionWrapperPassPassOnce(PassRegistry
&Registry) {
9816 "Scalar Evolution Analysis", false, true)static void* initializeScalarEvolutionWrapperPassPassOnce(PassRegistry
&Registry) {
9817INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)initializeAssumptionCacheTrackerPass(Registry);
9818INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)initializeLoopInfoWrapperPassPass(Registry);
9819INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)initializeDominatorTreeWrapperPassPass(Registry);
9820INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry);
9821INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",PassInfo *PI = new PassInfo("Scalar Evolution Analysis", "scalar-evolution"
, & ScalarEvolutionWrapperPass ::ID, PassInfo::NormalCtor_t
(callDefaultCtor< ScalarEvolutionWrapperPass >), false,
true); Registry.registerPass(*PI, true); return PI; } void llvm
::initializeScalarEvolutionWrapperPassPass(PassRegistry &
Registry) { static volatile sys::cas_flag initialized = 0; sys
::cas_flag old_val = sys::CompareAndSwap(&initialized, 1,
0); if (old_val == 0) { initializeScalarEvolutionWrapperPassPassOnce
(Registry); sys::MemoryFence(); ; ; initialized = 2; ; } else
{ sys::cas_flag tmp = initialized; sys::MemoryFence(); while
(tmp != 2) { tmp = initialized; sys::MemoryFence(); } } ; }
9822 "Scalar Evolution Analysis", false, true)PassInfo *PI = new PassInfo("Scalar Evolution Analysis", "scalar-evolution"
, & ScalarEvolutionWrapperPass ::ID, PassInfo::NormalCtor_t
(callDefaultCtor< ScalarEvolutionWrapperPass >), false,
true); Registry.registerPass(*PI, true); return PI; } void llvm
::initializeScalarEvolutionWrapperPassPass(PassRegistry &
Registry) { static volatile sys::cas_flag initialized = 0; sys
::cas_flag old_val = sys::CompareAndSwap(&initialized, 1,
0); if (old_val == 0) { initializeScalarEvolutionWrapperPassPassOnce
(Registry); sys::MemoryFence(); ; ; initialized = 2; ; } else
{ sys::cas_flag tmp = initialized; sys::MemoryFence(); while
(tmp != 2) { tmp = initialized; sys::MemoryFence(); } } ; }
9823char ScalarEvolutionWrapperPass::ID = 0;
9824
9825ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
9826 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
9827}
9828
9829bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
9830 SE.reset(new ScalarEvolution(
9831 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
9832 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
9833 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
9834 getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
9835 return false;
9836}
9837
9838void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
9839
9840void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
9841 SE->print(OS);
9842}
9843
9844void ScalarEvolutionWrapperPass::verifyAnalysis() const {
9845 if (!VerifySCEV)
9846 return;
9847
9848 SE->verify();
9849}
9850
9851void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
9852 AU.setPreservesAll();
9853 AU.addRequiredTransitive<AssumptionCacheTracker>();
9854 AU.addRequiredTransitive<LoopInfoWrapperPass>();
9855 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
9856 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
9857}
9858
9859const SCEVPredicate *
9860ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS,
9861 const SCEVConstant *RHS) {
9862 FoldingSetNodeID ID;
9863 // Unique this node based on the arguments
9864 ID.AddInteger(SCEVPredicate::P_Equal);
9865 ID.AddPointer(LHS);
9866 ID.AddPointer(RHS);
9867 void *IP = nullptr;
9868 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
9869 return S;
9870 SCEVEqualPredicate *Eq = new (SCEVAllocator)
9871 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
9872 UniquePreds.InsertNode(Eq, IP);
9873 return Eq;
9874}
9875
9876const SCEVPredicate *ScalarEvolution::getWrapPredicate(
9877 const SCEVAddRecExpr *AR,
9878 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
9879 FoldingSetNodeID ID;
9880 // Unique this node based on the arguments
9881 ID.AddInteger(SCEVPredicate::P_Wrap);
9882 ID.AddPointer(AR);
9883 ID.AddInteger(AddedFlags);
9884 void *IP = nullptr;
9885 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
9886 return S;
9887 auto *OF = new (SCEVAllocator)
9888 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
9889 UniquePreds.InsertNode(OF, IP);
9890 return OF;
9891}
9892
9893namespace {
9894
9895class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
9896public:
9897 // Rewrites \p S in the context of a loop L and the predicate A.
9898 // If Assume is true, rewrite is free to add further predicates to A
9899 // such that the result will be an AddRecExpr.
9900 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
9901 SCEVUnionPredicate &A, bool Assume) {
9902 SCEVPredicateRewriter Rewriter(L, SE, A, Assume);
9903 return Rewriter.visit(S);
9904 }
9905
9906 SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
9907 SCEVUnionPredicate &P, bool Assume)
9908 : SCEVRewriteVisitor(SE), P(P), L(L), Assume(Assume) {}
9909
9910 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
9911 auto ExprPreds = P.getPredicatesForExpr(Expr);
9912 for (auto *Pred : ExprPreds)
9913 if (const auto *IPred = dyn_cast<const SCEVEqualPredicate>(Pred))
9914 if (IPred->getLHS() == Expr)
9915 return IPred->getRHS();
9916
9917 return Expr;
9918 }
9919
9920 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
9921 const SCEV *Operand = visit(Expr->getOperand());
9922 const SCEVAddRecExpr *AR = dyn_cast<const SCEVAddRecExpr>(Operand);
9923 if (AR && AR->getLoop() == L && AR->isAffine()) {
9924 // This couldn't be folded because the operand didn't have the nuw
9925 // flag. Add the nusw flag as an assumption that we could make.
9926 const SCEV *Step = AR->getStepRecurrence(SE);
9927 Type *Ty = Expr->getType();
9928 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
9929 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
9930 SE.getSignExtendExpr(Step, Ty), L,
9931 AR->getNoWrapFlags());
9932 }
9933 return SE.getZeroExtendExpr(Operand, Expr->getType());
9934 }
9935
9936 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
9937 const SCEV *Operand = visit(Expr->getOperand());
9938 const SCEVAddRecExpr *AR = dyn_cast<const SCEVAddRecExpr>(Operand);
9939 if (AR && AR->getLoop() == L && AR->isAffine()) {
9940 // This couldn't be folded because the operand didn't have the nsw
9941 // flag. Add the nssw flag as an assumption that we could make.
9942 const SCEV *Step = AR->getStepRecurrence(SE);
9943 Type *Ty = Expr->getType();
9944 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
9945 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
9946 SE.getSignExtendExpr(Step, Ty), L,
9947 AR->getNoWrapFlags());
9948 }
9949 return SE.getSignExtendExpr(Operand, Expr->getType());
9950 }
9951
9952private:
9953 bool addOverflowAssumption(const SCEVAddRecExpr *AR,
9954 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
9955 auto *A = SE.getWrapPredicate(AR, AddedFlags);
9956 if (!Assume) {
9957 // Check if we've already made this assumption.
9958 if (P.implies(A))
9959 return true;
9960 return false;
9961 }
9962 P.add(A);
9963 return true;
9964 }
9965
9966 SCEVUnionPredicate &P;
9967 const Loop *L;
9968 bool Assume;
9969};
9970} // end anonymous namespace
9971
9972const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
9973 SCEVUnionPredicate &Preds) {
9974 return SCEVPredicateRewriter::rewrite(S, L, *this, Preds, false);
9975}
9976
9977const SCEVAddRecExpr *
9978ScalarEvolution::convertSCEVToAddRecWithPredicates(const SCEV *S, const Loop *L,
9979 SCEVUnionPredicate &Preds) {
9980 SCEVUnionPredicate TransformPreds;
9981 S = SCEVPredicateRewriter::rewrite(S, L, *this, TransformPreds, true);
9982 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
9983
9984 if (!AddRec)
9985 return nullptr;
9986
9987 // Since the transformation was successful, we can now transfer the SCEV
9988 // predicates.
9989 Preds.add(&TransformPreds);
9990 return AddRec;
9991}
9992
9993/// SCEV predicates
9994SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
9995 SCEVPredicateKind Kind)
9996 : FastID(ID), Kind(Kind) {}
9997
9998SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
9999 const SCEVUnknown *LHS,
10000 const SCEVConstant *RHS)
10001 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {}
10002
10003bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
10004 const auto *Op = dyn_cast<const SCEVEqualPredicate>(N);
10005
10006 if (!Op)
10007 return false;
10008
10009 return Op->LHS == LHS && Op->RHS == RHS;
10010}
10011
10012bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
10013
10014const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
10015
10016void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
10017 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
10018}
10019
10020SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
10021 const SCEVAddRecExpr *AR,
10022 IncrementWrapFlags Flags)
10023 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
10024
10025const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
10026
10027bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
10028 const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
10029
10030 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
10031}
10032
10033bool SCEVWrapPredicate::isAlwaysTrue() const {
10034 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
10035 IncrementWrapFlags IFlags = Flags;
10036
10037 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
10038 IFlags = clearFlags(IFlags, IncrementNSSW);
10039
10040 return IFlags == IncrementAnyWrap;
10041}
10042
10043void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
10044 OS.indent(Depth) << *getExpr() << " Added Flags: ";
10045 if (SCEVWrapPredicate::IncrementNUSW & getFlags())
10046 OS << "<nusw>";
10047 if (SCEVWrapPredicate::IncrementNSSW & getFlags())
10048 OS << "<nssw>";
10049 OS << "\n";
10050}
10051
10052SCEVWrapPredicate::IncrementWrapFlags
10053SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
10054 ScalarEvolution &SE) {
10055 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
10056 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
10057
10058 // We can safely transfer the NSW flag as NSSW.
10059 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
10060 ImpliedFlags = IncrementNSSW;
10061
10062 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
10063 // If the increment is positive, the SCEV NUW flag will also imply the
10064 // WrapPredicate NUSW flag.
10065 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
10066 if (Step->getValue()->getValue().isNonNegative())
10067 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
10068 }
10069
10070 return ImpliedFlags;
10071}
10072
10073/// Union predicates don't get cached so create a dummy set ID for it.
10074SCEVUnionPredicate::SCEVUnionPredicate()
10075 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
10076
10077bool SCEVUnionPredicate::isAlwaysTrue() const {
10078 return all_of(Preds,
10079 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
10080}
10081
10082ArrayRef<const SCEVPredicate *>
10083SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
10084 auto I = SCEVToPreds.find(Expr);
10085 if (I == SCEVToPreds.end())
10086 return ArrayRef<const SCEVPredicate *>();
10087 return I->second;
10088}
10089
10090bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
10091 if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N))
10092 return all_of(Set->Preds,
10093 [this](const SCEVPredicate *I) { return this->implies(I); });
10094
10095 auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
10096 if (ScevPredsIt == SCEVToPreds.end())
10097 return false;
10098 auto &SCEVPreds = ScevPredsIt->second;
10099
10100 return any_of(SCEVPreds,
10101 [N](const SCEVPredicate *I) { return I->implies(N); });
10102}
10103
10104const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
10105
10106void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
10107 for (auto Pred : Preds)
10108 Pred->print(OS, Depth);
10109}
10110
10111void SCEVUnionPredicate::add(const SCEVPredicate *N) {
10112 if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N)) {
10113 for (auto Pred : Set->Preds)
10114 add(Pred);
10115 return;
10116 }
10117
10118 if (implies(N))
10119 return;
10120
10121 const SCEV *Key = N->getExpr();
10122 assert(Key && "Only SCEVUnionPredicate doesn't have an "((Key && "Only SCEVUnionPredicate doesn't have an " " associated expression!"
) ? static_cast<void> (0) : __assert_fail ("Key && \"Only SCEVUnionPredicate doesn't have an \" \" associated expression!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 10123, __PRETTY_FUNCTION__))
10123 " associated expression!")((Key && "Only SCEVUnionPredicate doesn't have an " " associated expression!"
) ? static_cast<void> (0) : __assert_fail ("Key && \"Only SCEVUnionPredicate doesn't have an \" \" associated expression!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn265534/lib/Analysis/ScalarEvolution.cpp"
, 10123, __PRETTY_FUNCTION__))
;
10124
10125 SCEVToPreds[Key].push_back(N);
10126 Preds.push_back(N);
10127}
10128
10129PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
10130 Loop &L)
10131 : SE(SE), L(L), Generation(0) {}
10132
10133const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
10134 const SCEV *Expr = SE.getSCEV(V);
10135 RewriteEntry &Entry = RewriteMap[Expr];
10136
10137 // If we already have an entry and the version matches, return it.
10138 if (Entry.second && Generation == Entry.first)
10139 return Entry.second;
10140
10141 // We found an entry but it's stale. Rewrite the stale entry
10142 // acording to the current predicate.
10143 if (Entry.second)
10144 Expr = Entry.second;
10145
10146 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
10147 Entry = {Generation, NewSCEV};
10148
10149 return NewSCEV;
10150}
10151
10152void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
10153 if (Preds.implies(&Pred))
10154 return;
10155 Preds.add(&Pred);
10156 updateGeneration();
10157}
10158
10159const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
10160 return Preds;
10161}
10162
10163void PredicatedScalarEvolution::updateGeneration() {
10164 // If the generation number wrapped recompute everything.
10165 if (++Generation == 0) {
10166 for (auto &II : RewriteMap) {
10167 const SCEV *Rewritten = II.second.second;
10168 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
10169 }
10170 }
10171}
10172
10173void PredicatedScalarEvolution::setNoOverflow(
10174 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
10175 const SCEV *Expr = getSCEV(V);
10176 const auto *AR = cast<SCEVAddRecExpr>(Expr);
10177
10178 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
10179
10180 // Clear the statically implied flags.
10181 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
10182 addPredicate(*SE.getWrapPredicate(AR, Flags));
10183
10184 auto II = FlagsMap.insert({V, Flags});
10185 if (!II.second)
10186 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
10187}
10188
10189bool PredicatedScalarEvolution::hasNoOverflow(
10190 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
10191 const SCEV *Expr = getSCEV(V);
10192 const auto *AR = cast<SCEVAddRecExpr>(Expr);
10193
10194 Flags = SCEVWrapPredicate::clearFlags(
10195 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
10196
10197 auto II = FlagsMap.find(V);
10198
10199 if (II != FlagsMap.end())
10200 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
10201
10202 return Flags == SCEVWrapPredicate::IncrementAnyWrap;
10203}
10204
10205const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
10206 const SCEV *Expr = this->getSCEV(V);
10207 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, Preds);
10208
10209 if (!New)
10210 return nullptr;
10211
10212 updateGeneration();
10213 RewriteMap[SE.getSCEV(V)] = {Generation, New};
10214 return New;
10215}
10216
10217PredicatedScalarEvolution::
10218PredicatedScalarEvolution(const PredicatedScalarEvolution &Init) :
10219 RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
10220 Generation(Init.Generation) {
10221 for (auto I = Init.FlagsMap.begin(), E = Init.FlagsMap.end(); I != E; ++I)
10222 FlagsMap.insert(*I);
10223}