Bug Summary

File:lib/Analysis/ScalarEvolution.cpp
Location:line 8800, column 15
Description:Value stored to 'MaxBECount' during its initialization is never read

Annotated Source Code

1//===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains the implementation of the scalar evolution analysis
11// engine, which is used primarily to analyze expressions involving induction
12// variables in loops.
13//
14// There are several aspects to this library. First is the representation of
15// scalar expressions, which are represented as subclasses of the SCEV class.
16// These classes are used to represent certain types of subexpressions that we
17// can handle. We only create one SCEV of a particular shape, so
18// pointer-comparisons for equality are legal.
19//
20// One important aspect of the SCEV objects is that they are never cyclic, even
21// if there is a cycle in the dataflow for an expression (ie, a PHI node). If
22// the PHI node is one of the idioms that we can represent (e.g., a polynomial
23// recurrence) then we represent it directly as a recurrence node, otherwise we
24// represent it as a SCEVUnknown node.
25//
26// In addition to being able to represent expressions of various types, we also
27// have folders that are used to build the *canonical* representation for a
28// particular expression. These folders are capable of using a variety of
29// rewrite rules to simplify the expressions.
30//
31// Once the folders are defined, we can implement the more interesting
32// higher-level code, such as the code that recognizes PHI nodes of various
33// types, computes the execution count of a loop, etc.
34//
35// TODO: We should use these routines and value representations to implement
36// dependence analysis!
37//
38//===----------------------------------------------------------------------===//
39//
40// There are several good references for the techniques used in this analysis.
41//
42// Chains of recurrences -- a method to expedite the evaluation
43// of closed-form functions
44// Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45//
46// On computational properties of chains of recurrences
47// Eugene V. Zima
48//
49// Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50// Robert A. van Engelen
51//
52// Efficient Symbolic Analysis for Optimizing Compilers
53// Robert A. van Engelen
54//
55// Using the chains of recurrences algebra for data dependence testing and
56// induction variable substitution
57// MS Thesis, Johnie Birch
58//
59//===----------------------------------------------------------------------===//
60
61#include "llvm/Analysis/ScalarEvolution.h"
62#include "llvm/ADT/Optional.h"
63#include "llvm/ADT/STLExtras.h"
64#include "llvm/ADT/SmallPtrSet.h"
65#include "llvm/ADT/Statistic.h"
66#include "llvm/Analysis/AssumptionCache.h"
67#include "llvm/Analysis/ConstantFolding.h"
68#include "llvm/Analysis/InstructionSimplify.h"
69#include "llvm/Analysis/LoopInfo.h"
70#include "llvm/Analysis/ScalarEvolutionExpressions.h"
71#include "llvm/Analysis/TargetLibraryInfo.h"
72#include "llvm/Analysis/ValueTracking.h"
73#include "llvm/IR/ConstantRange.h"
74#include "llvm/IR/Constants.h"
75#include "llvm/IR/DataLayout.h"
76#include "llvm/IR/DerivedTypes.h"
77#include "llvm/IR/Dominators.h"
78#include "llvm/IR/GetElementPtrTypeIterator.h"
79#include "llvm/IR/GlobalAlias.h"
80#include "llvm/IR/GlobalVariable.h"
81#include "llvm/IR/InstIterator.h"
82#include "llvm/IR/Instructions.h"
83#include "llvm/IR/LLVMContext.h"
84#include "llvm/IR/Metadata.h"
85#include "llvm/IR/Operator.h"
86#include "llvm/IR/PatternMatch.h"
87#include "llvm/Support/CommandLine.h"
88#include "llvm/Support/Debug.h"
89#include "llvm/Support/ErrorHandling.h"
90#include "llvm/Support/MathExtras.h"
91#include "llvm/Support/raw_ostream.h"
92#include "llvm/Support/SaveAndRestore.h"
93#include <algorithm>
94using namespace llvm;
95
96#define DEBUG_TYPE"scalar-evolution" "scalar-evolution"
97
98STATISTIC(NumArrayLenItCounts,static llvm::Statistic NumArrayLenItCounts = { "scalar-evolution"
, "Number of trip counts computed with array length", 0, 0 }
99 "Number of trip counts computed with array length")static llvm::Statistic NumArrayLenItCounts = { "scalar-evolution"
, "Number of trip counts computed with array length", 0, 0 }
;
100STATISTIC(NumTripCountsComputed,static llvm::Statistic NumTripCountsComputed = { "scalar-evolution"
, "Number of loops with predictable loop counts", 0, 0 }
101 "Number of loops with predictable loop counts")static llvm::Statistic NumTripCountsComputed = { "scalar-evolution"
, "Number of loops with predictable loop counts", 0, 0 }
;
102STATISTIC(NumTripCountsNotComputed,static llvm::Statistic NumTripCountsNotComputed = { "scalar-evolution"
, "Number of loops without predictable loop counts", 0, 0 }
103 "Number of loops without predictable loop counts")static llvm::Statistic NumTripCountsNotComputed = { "scalar-evolution"
, "Number of loops without predictable loop counts", 0, 0 }
;
104STATISTIC(NumBruteForceTripCountsComputed,static llvm::Statistic NumBruteForceTripCountsComputed = { "scalar-evolution"
, "Number of loops with trip counts computed by force", 0, 0 }
105 "Number of loops with trip counts computed by force")static llvm::Statistic NumBruteForceTripCountsComputed = { "scalar-evolution"
, "Number of loops with trip counts computed by force", 0, 0 }
;
106
107static cl::opt<unsigned>
108MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
109 cl::desc("Maximum number of iterations SCEV will "
110 "symbolically execute a constant "
111 "derived loop"),
112 cl::init(100));
113
114// FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
115static cl::opt<bool>
116VerifySCEV("verify-scev",
117 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
118static cl::opt<bool>
119 VerifySCEVMap("verify-scev-maps",
120 cl::desc("Verify no dangling value in ScalarEvolution's "
121 "ExprValueMap (slow)"));
122
123//===----------------------------------------------------------------------===//
124// SCEV class definitions
125//===----------------------------------------------------------------------===//
126
127//===----------------------------------------------------------------------===//
128// Implementation of the SCEV class.
129//
130
131LLVM_DUMP_METHOD__attribute__((noinline)) __attribute__((__used__))
132void SCEV::dump() const {
133 print(dbgs());
134 dbgs() << '\n';
135}
136
137void SCEV::print(raw_ostream &OS) const {
138 switch (static_cast<SCEVTypes>(getSCEVType())) {
139 case scConstant:
140 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
141 return;
142 case scTruncate: {
143 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
144 const SCEV *Op = Trunc->getOperand();
145 OS << "(trunc " << *Op->getType() << " " << *Op << " to "
146 << *Trunc->getType() << ")";
147 return;
148 }
149 case scZeroExtend: {
150 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
151 const SCEV *Op = ZExt->getOperand();
152 OS << "(zext " << *Op->getType() << " " << *Op << " to "
153 << *ZExt->getType() << ")";
154 return;
155 }
156 case scSignExtend: {
157 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
158 const SCEV *Op = SExt->getOperand();
159 OS << "(sext " << *Op->getType() << " " << *Op << " to "
160 << *SExt->getType() << ")";
161 return;
162 }
163 case scAddRecExpr: {
164 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
165 OS << "{" << *AR->getOperand(0);
166 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
167 OS << ",+," << *AR->getOperand(i);
168 OS << "}<";
169 if (AR->hasNoUnsignedWrap())
170 OS << "nuw><";
171 if (AR->hasNoSignedWrap())
172 OS << "nsw><";
173 if (AR->hasNoSelfWrap() &&
174 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
175 OS << "nw><";
176 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
177 OS << ">";
178 return;
179 }
180 case scAddExpr:
181 case scMulExpr:
182 case scUMaxExpr:
183 case scSMaxExpr: {
184 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
185 const char *OpStr = nullptr;
186 switch (NAry->getSCEVType()) {
187 case scAddExpr: OpStr = " + "; break;
188 case scMulExpr: OpStr = " * "; break;
189 case scUMaxExpr: OpStr = " umax "; break;
190 case scSMaxExpr: OpStr = " smax "; break;
191 }
192 OS << "(";
193 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
194 I != E; ++I) {
195 OS << **I;
196 if (std::next(I) != E)
197 OS << OpStr;
198 }
199 OS << ")";
200 switch (NAry->getSCEVType()) {
201 case scAddExpr:
202 case scMulExpr:
203 if (NAry->hasNoUnsignedWrap())
204 OS << "<nuw>";
205 if (NAry->hasNoSignedWrap())
206 OS << "<nsw>";
207 }
208 return;
209 }
210 case scUDivExpr: {
211 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
212 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
213 return;
214 }
215 case scUnknown: {
216 const SCEVUnknown *U = cast<SCEVUnknown>(this);
217 Type *AllocTy;
218 if (U->isSizeOf(AllocTy)) {
219 OS << "sizeof(" << *AllocTy << ")";
220 return;
221 }
222 if (U->isAlignOf(AllocTy)) {
223 OS << "alignof(" << *AllocTy << ")";
224 return;
225 }
226
227 Type *CTy;
228 Constant *FieldNo;
229 if (U->isOffsetOf(CTy, FieldNo)) {
230 OS << "offsetof(" << *CTy << ", ";
231 FieldNo->printAsOperand(OS, false);
232 OS << ")";
233 return;
234 }
235
236 // Otherwise just print it normally.
237 U->getValue()->printAsOperand(OS, false);
238 return;
239 }
240 case scCouldNotCompute:
241 OS << "***COULDNOTCOMPUTE***";
242 return;
243 }
244 llvm_unreachable("Unknown SCEV kind!")::llvm::llvm_unreachable_internal("Unknown SCEV kind!", "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 244)
;
245}
246
247Type *SCEV::getType() const {
248 switch (static_cast<SCEVTypes>(getSCEVType())) {
249 case scConstant:
250 return cast<SCEVConstant>(this)->getType();
251 case scTruncate:
252 case scZeroExtend:
253 case scSignExtend:
254 return cast<SCEVCastExpr>(this)->getType();
255 case scAddRecExpr:
256 case scMulExpr:
257 case scUMaxExpr:
258 case scSMaxExpr:
259 return cast<SCEVNAryExpr>(this)->getType();
260 case scAddExpr:
261 return cast<SCEVAddExpr>(this)->getType();
262 case scUDivExpr:
263 return cast<SCEVUDivExpr>(this)->getType();
264 case scUnknown:
265 return cast<SCEVUnknown>(this)->getType();
266 case scCouldNotCompute:
267 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!")::llvm::llvm_unreachable_internal("Attempt to use a SCEVCouldNotCompute object!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 267)
;
268 }
269 llvm_unreachable("Unknown SCEV kind!")::llvm::llvm_unreachable_internal("Unknown SCEV kind!", "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 269)
;
270}
271
272bool SCEV::isZero() const {
273 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
274 return SC->getValue()->isZero();
275 return false;
276}
277
278bool SCEV::isOne() const {
279 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
280 return SC->getValue()->isOne();
281 return false;
282}
283
284bool SCEV::isAllOnesValue() const {
285 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
286 return SC->getValue()->isAllOnesValue();
287 return false;
288}
289
290bool SCEV::isNonConstantNegative() const {
291 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
292 if (!Mul) return false;
293
294 // If there is a constant factor, it will be first.
295 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
296 if (!SC) return false;
297
298 // Return true if the value is negative, this matches things like (-42 * V).
299 return SC->getAPInt().isNegative();
300}
301
302SCEVCouldNotCompute::SCEVCouldNotCompute() :
303 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
304
305bool SCEVCouldNotCompute::classof(const SCEV *S) {
306 return S->getSCEVType() == scCouldNotCompute;
307}
308
309const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
310 FoldingSetNodeID ID;
311 ID.AddInteger(scConstant);
312 ID.AddPointer(V);
313 void *IP = nullptr;
314 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
315 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
316 UniqueSCEVs.InsertNode(S, IP);
317 return S;
318}
319
320const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
321 return getConstant(ConstantInt::get(getContext(), Val));
322}
323
324const SCEV *
325ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
326 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
327 return getConstant(ConstantInt::get(ITy, V, isSigned));
328}
329
330SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
331 unsigned SCEVTy, const SCEV *op, Type *ty)
332 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
333
334SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
335 const SCEV *op, Type *ty)
336 : SCEVCastExpr(ID, scTruncate, op, ty) {
337 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&(((Op->getType()->isIntegerTy() || Op->getType()->
isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy
()) && "Cannot truncate non-integer value!") ? static_cast
<void> (0) : __assert_fail ("(Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot truncate non-integer value!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 339, __PRETTY_FUNCTION__))
338 (Ty->isIntegerTy() || Ty->isPointerTy()) &&(((Op->getType()->isIntegerTy() || Op->getType()->
isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy
()) && "Cannot truncate non-integer value!") ? static_cast
<void> (0) : __assert_fail ("(Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot truncate non-integer value!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 339, __PRETTY_FUNCTION__))
339 "Cannot truncate non-integer value!")(((Op->getType()->isIntegerTy() || Op->getType()->
isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy
()) && "Cannot truncate non-integer value!") ? static_cast
<void> (0) : __assert_fail ("(Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot truncate non-integer value!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 339, __PRETTY_FUNCTION__))
;
340}
341
342SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
343 const SCEV *op, Type *ty)
344 : SCEVCastExpr(ID, scZeroExtend, op, ty) {
345 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&(((Op->getType()->isIntegerTy() || Op->getType()->
isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy
()) && "Cannot zero extend non-integer value!") ? static_cast
<void> (0) : __assert_fail ("(Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot zero extend non-integer value!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 347, __PRETTY_FUNCTION__))
346 (Ty->isIntegerTy() || Ty->isPointerTy()) &&(((Op->getType()->isIntegerTy() || Op->getType()->
isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy
()) && "Cannot zero extend non-integer value!") ? static_cast
<void> (0) : __assert_fail ("(Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot zero extend non-integer value!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 347, __PRETTY_FUNCTION__))
347 "Cannot zero extend non-integer value!")(((Op->getType()->isIntegerTy() || Op->getType()->
isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy
()) && "Cannot zero extend non-integer value!") ? static_cast
<void> (0) : __assert_fail ("(Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot zero extend non-integer value!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 347, __PRETTY_FUNCTION__))
;
348}
349
350SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
351 const SCEV *op, Type *ty)
352 : SCEVCastExpr(ID, scSignExtend, op, ty) {
353 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&(((Op->getType()->isIntegerTy() || Op->getType()->
isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy
()) && "Cannot sign extend non-integer value!") ? static_cast
<void> (0) : __assert_fail ("(Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot sign extend non-integer value!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 355, __PRETTY_FUNCTION__))
354 (Ty->isIntegerTy() || Ty->isPointerTy()) &&(((Op->getType()->isIntegerTy() || Op->getType()->
isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy
()) && "Cannot sign extend non-integer value!") ? static_cast
<void> (0) : __assert_fail ("(Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot sign extend non-integer value!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 355, __PRETTY_FUNCTION__))
355 "Cannot sign extend non-integer value!")(((Op->getType()->isIntegerTy() || Op->getType()->
isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy
()) && "Cannot sign extend non-integer value!") ? static_cast
<void> (0) : __assert_fail ("(Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot sign extend non-integer value!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 355, __PRETTY_FUNCTION__))
;
356}
357
358void SCEVUnknown::deleted() {
359 // Clear this SCEVUnknown from various maps.
360 SE->forgetMemoizedResults(this);
361
362 // Remove this SCEVUnknown from the uniquing map.
363 SE->UniqueSCEVs.RemoveNode(this);
364
365 // Release the value.
366 setValPtr(nullptr);
367}
368
369void SCEVUnknown::allUsesReplacedWith(Value *New) {
370 // Clear this SCEVUnknown from various maps.
371 SE->forgetMemoizedResults(this);
372
373 // Remove this SCEVUnknown from the uniquing map.
374 SE->UniqueSCEVs.RemoveNode(this);
375
376 // Update this SCEVUnknown to point to the new value. This is needed
377 // because there may still be outstanding SCEVs which still point to
378 // this SCEVUnknown.
379 setValPtr(New);
380}
381
382bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
383 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
384 if (VCE->getOpcode() == Instruction::PtrToInt)
385 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
386 if (CE->getOpcode() == Instruction::GetElementPtr &&
387 CE->getOperand(0)->isNullValue() &&
388 CE->getNumOperands() == 2)
389 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
390 if (CI->isOne()) {
391 AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
392 ->getElementType();
393 return true;
394 }
395
396 return false;
397}
398
399bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
400 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
401 if (VCE->getOpcode() == Instruction::PtrToInt)
402 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
403 if (CE->getOpcode() == Instruction::GetElementPtr &&
404 CE->getOperand(0)->isNullValue()) {
405 Type *Ty =
406 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
407 if (StructType *STy = dyn_cast<StructType>(Ty))
408 if (!STy->isPacked() &&
409 CE->getNumOperands() == 3 &&
410 CE->getOperand(1)->isNullValue()) {
411 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
412 if (CI->isOne() &&
413 STy->getNumElements() == 2 &&
414 STy->getElementType(0)->isIntegerTy(1)) {
415 AllocTy = STy->getElementType(1);
416 return true;
417 }
418 }
419 }
420
421 return false;
422}
423
424bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
425 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
426 if (VCE->getOpcode() == Instruction::PtrToInt)
427 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
428 if (CE->getOpcode() == Instruction::GetElementPtr &&
429 CE->getNumOperands() == 3 &&
430 CE->getOperand(0)->isNullValue() &&
431 CE->getOperand(1)->isNullValue()) {
432 Type *Ty =
433 cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
434 // Ignore vector types here so that ScalarEvolutionExpander doesn't
435 // emit getelementptrs that index into vectors.
436 if (Ty->isStructTy() || Ty->isArrayTy()) {
437 CTy = Ty;
438 FieldNo = CE->getOperand(2);
439 return true;
440 }
441 }
442
443 return false;
444}
445
446//===----------------------------------------------------------------------===//
447// SCEV Utilities
448//===----------------------------------------------------------------------===//
449
450namespace {
451/// SCEVComplexityCompare - Return true if the complexity of the LHS is less
452/// than the complexity of the RHS. This comparator is used to canonicalize
453/// expressions.
454class SCEVComplexityCompare {
455 const LoopInfo *const LI;
456public:
457 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
458
459 // Return true or false if LHS is less than, or at least RHS, respectively.
460 bool operator()(const SCEV *LHS, const SCEV *RHS) const {
461 return compare(LHS, RHS) < 0;
462 }
463
464 // Return negative, zero, or positive, if LHS is less than, equal to, or
465 // greater than RHS, respectively. A three-way result allows recursive
466 // comparisons to be more efficient.
467 int compare(const SCEV *LHS, const SCEV *RHS) const {
468 // Fast-path: SCEVs are uniqued so we can do a quick equality check.
469 if (LHS == RHS)
470 return 0;
471
472 // Primarily, sort the SCEVs by their getSCEVType().
473 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
474 if (LType != RType)
475 return (int)LType - (int)RType;
476
477 // Aside from the getSCEVType() ordering, the particular ordering
478 // isn't very important except that it's beneficial to be consistent,
479 // so that (a + b) and (b + a) don't end up as different expressions.
480 switch (static_cast<SCEVTypes>(LType)) {
481 case scUnknown: {
482 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
483 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
484
485 // Sort SCEVUnknown values with some loose heuristics. TODO: This is
486 // not as complete as it could be.
487 const Value *LV = LU->getValue(), *RV = RU->getValue();
488
489 // Order pointer values after integer values. This helps SCEVExpander
490 // form GEPs.
491 bool LIsPointer = LV->getType()->isPointerTy(),
492 RIsPointer = RV->getType()->isPointerTy();
493 if (LIsPointer != RIsPointer)
494 return (int)LIsPointer - (int)RIsPointer;
495
496 // Compare getValueID values.
497 unsigned LID = LV->getValueID(),
498 RID = RV->getValueID();
499 if (LID != RID)
500 return (int)LID - (int)RID;
501
502 // Sort arguments by their position.
503 if (const Argument *LA = dyn_cast<Argument>(LV)) {
504 const Argument *RA = cast<Argument>(RV);
505 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
506 return (int)LArgNo - (int)RArgNo;
507 }
508
509 // For instructions, compare their loop depth, and their operand
510 // count. This is pretty loose.
511 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
512 const Instruction *RInst = cast<Instruction>(RV);
513
514 // Compare loop depths.
515 const BasicBlock *LParent = LInst->getParent(),
516 *RParent = RInst->getParent();
517 if (LParent != RParent) {
518 unsigned LDepth = LI->getLoopDepth(LParent),
519 RDepth = LI->getLoopDepth(RParent);
520 if (LDepth != RDepth)
521 return (int)LDepth - (int)RDepth;
522 }
523
524 // Compare the number of operands.
525 unsigned LNumOps = LInst->getNumOperands(),
526 RNumOps = RInst->getNumOperands();
527 return (int)LNumOps - (int)RNumOps;
528 }
529
530 return 0;
531 }
532
533 case scConstant: {
534 const SCEVConstant *LC = cast<SCEVConstant>(LHS);
535 const SCEVConstant *RC = cast<SCEVConstant>(RHS);
536
537 // Compare constant values.
538 const APInt &LA = LC->getAPInt();
539 const APInt &RA = RC->getAPInt();
540 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
541 if (LBitWidth != RBitWidth)
542 return (int)LBitWidth - (int)RBitWidth;
543 return LA.ult(RA) ? -1 : 1;
544 }
545
546 case scAddRecExpr: {
547 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
548 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
549
550 // Compare addrec loop depths.
551 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
552 if (LLoop != RLoop) {
553 unsigned LDepth = LLoop->getLoopDepth(),
554 RDepth = RLoop->getLoopDepth();
555 if (LDepth != RDepth)
556 return (int)LDepth - (int)RDepth;
557 }
558
559 // Addrec complexity grows with operand count.
560 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
561 if (LNumOps != RNumOps)
562 return (int)LNumOps - (int)RNumOps;
563
564 // Lexicographically compare.
565 for (unsigned i = 0; i != LNumOps; ++i) {
566 long X = compare(LA->getOperand(i), RA->getOperand(i));
567 if (X != 0)
568 return X;
569 }
570
571 return 0;
572 }
573
574 case scAddExpr:
575 case scMulExpr:
576 case scSMaxExpr:
577 case scUMaxExpr: {
578 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
579 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
580
581 // Lexicographically compare n-ary expressions.
582 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
583 if (LNumOps != RNumOps)
584 return (int)LNumOps - (int)RNumOps;
585
586 for (unsigned i = 0; i != LNumOps; ++i) {
587 if (i >= RNumOps)
588 return 1;
589 long X = compare(LC->getOperand(i), RC->getOperand(i));
590 if (X != 0)
591 return X;
592 }
593 return (int)LNumOps - (int)RNumOps;
594 }
595
596 case scUDivExpr: {
597 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
598 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
599
600 // Lexicographically compare udiv expressions.
601 long X = compare(LC->getLHS(), RC->getLHS());
602 if (X != 0)
603 return X;
604 return compare(LC->getRHS(), RC->getRHS());
605 }
606
607 case scTruncate:
608 case scZeroExtend:
609 case scSignExtend: {
610 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
611 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
612
613 // Compare cast expressions by operand.
614 return compare(LC->getOperand(), RC->getOperand());
615 }
616
617 case scCouldNotCompute:
618 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!")::llvm::llvm_unreachable_internal("Attempt to use a SCEVCouldNotCompute object!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 618)
;
619 }
620 llvm_unreachable("Unknown SCEV kind!")::llvm::llvm_unreachable_internal("Unknown SCEV kind!", "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 620)
;
621 }
622};
623} // end anonymous namespace
624
625/// Given a list of SCEV objects, order them by their complexity, and group
626/// objects of the same complexity together by value. When this routine is
627/// finished, we know that any duplicates in the vector are consecutive and that
628/// complexity is monotonically increasing.
629///
630/// Note that we go take special precautions to ensure that we get deterministic
631/// results from this routine. In other words, we don't want the results of
632/// this to depend on where the addresses of various SCEV objects happened to
633/// land in memory.
634///
635static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
636 LoopInfo *LI) {
637 if (Ops.size() < 2) return; // Noop
638 if (Ops.size() == 2) {
639 // This is the common case, which also happens to be trivially simple.
640 // Special case it.
641 const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
642 if (SCEVComplexityCompare(LI)(RHS, LHS))
643 std::swap(LHS, RHS);
644 return;
645 }
646
647 // Do the rough sort by complexity.
648 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
649
650 // Now that we are sorted by complexity, group elements of the same
651 // complexity. Note that this is, at worst, N^2, but the vector is likely to
652 // be extremely short in practice. Note that we take this approach because we
653 // do not want to depend on the addresses of the objects we are grouping.
654 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
655 const SCEV *S = Ops[i];
656 unsigned Complexity = S->getSCEVType();
657
658 // If there are any objects of the same complexity and same value as this
659 // one, group them.
660 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
661 if (Ops[j] == S) { // Found a duplicate.
662 // Move it to immediately after i'th element.
663 std::swap(Ops[i+1], Ops[j]);
664 ++i; // no need to rescan it.
665 if (i == e-2) return; // Done!
666 }
667 }
668 }
669}
670
671// Returns the size of the SCEV S.
672static inline int sizeOfSCEV(const SCEV *S) {
673 struct FindSCEVSize {
674 int Size;
675 FindSCEVSize() : Size(0) {}
676
677 bool follow(const SCEV *S) {
678 ++Size;
679 // Keep looking at all operands of S.
680 return true;
681 }
682 bool isDone() const {
683 return false;
684 }
685 };
686
687 FindSCEVSize F;
688 SCEVTraversal<FindSCEVSize> ST(F);
689 ST.visitAll(S);
690 return F.Size;
691}
692
693namespace {
694
695struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
696public:
697 // Computes the Quotient and Remainder of the division of Numerator by
698 // Denominator.
699 static void divide(ScalarEvolution &SE, const SCEV *Numerator,
700 const SCEV *Denominator, const SCEV **Quotient,
701 const SCEV **Remainder) {
702 assert(Numerator && Denominator && "Uninitialized SCEV")((Numerator && Denominator && "Uninitialized SCEV"
) ? static_cast<void> (0) : __assert_fail ("Numerator && Denominator && \"Uninitialized SCEV\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 702, __PRETTY_FUNCTION__))
;
703
704 SCEVDivision D(SE, Numerator, Denominator);
705
706 // Check for the trivial case here to avoid having to check for it in the
707 // rest of the code.
708 if (Numerator == Denominator) {
709 *Quotient = D.One;
710 *Remainder = D.Zero;
711 return;
712 }
713
714 if (Numerator->isZero()) {
715 *Quotient = D.Zero;
716 *Remainder = D.Zero;
717 return;
718 }
719
720 // A simple case when N/1. The quotient is N.
721 if (Denominator->isOne()) {
722 *Quotient = Numerator;
723 *Remainder = D.Zero;
724 return;
725 }
726
727 // Split the Denominator when it is a product.
728 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
729 const SCEV *Q, *R;
730 *Quotient = Numerator;
731 for (const SCEV *Op : T->operands()) {
732 divide(SE, *Quotient, Op, &Q, &R);
733 *Quotient = Q;
734
735 // Bail out when the Numerator is not divisible by one of the terms of
736 // the Denominator.
737 if (!R->isZero()) {
738 *Quotient = D.Zero;
739 *Remainder = Numerator;
740 return;
741 }
742 }
743 *Remainder = D.Zero;
744 return;
745 }
746
747 D.visit(Numerator);
748 *Quotient = D.Quotient;
749 *Remainder = D.Remainder;
750 }
751
752 // Except in the trivial case described above, we do not know how to divide
753 // Expr by Denominator for the following functions with empty implementation.
754 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
755 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
756 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
757 void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
758 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
759 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
760 void visitUnknown(const SCEVUnknown *Numerator) {}
761 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
762
763 void visitConstant(const SCEVConstant *Numerator) {
764 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
765 APInt NumeratorVal = Numerator->getAPInt();
766 APInt DenominatorVal = D->getAPInt();
767 uint32_t NumeratorBW = NumeratorVal.getBitWidth();
768 uint32_t DenominatorBW = DenominatorVal.getBitWidth();
769
770 if (NumeratorBW > DenominatorBW)
771 DenominatorVal = DenominatorVal.sext(NumeratorBW);
772 else if (NumeratorBW < DenominatorBW)
773 NumeratorVal = NumeratorVal.sext(DenominatorBW);
774
775 APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
776 APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
777 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
778 Quotient = SE.getConstant(QuotientVal);
779 Remainder = SE.getConstant(RemainderVal);
780 return;
781 }
782 }
783
784 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
785 const SCEV *StartQ, *StartR, *StepQ, *StepR;
786 if (!Numerator->isAffine())
787 return cannotDivide(Numerator);
788 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
789 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
790 // Bail out if the types do not match.
791 Type *Ty = Denominator->getType();
792 if (Ty != StartQ->getType() || Ty != StartR->getType() ||
793 Ty != StepQ->getType() || Ty != StepR->getType())
794 return cannotDivide(Numerator);
795 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
796 Numerator->getNoWrapFlags());
797 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
798 Numerator->getNoWrapFlags());
799 }
800
801 void visitAddExpr(const SCEVAddExpr *Numerator) {
802 SmallVector<const SCEV *, 2> Qs, Rs;
803 Type *Ty = Denominator->getType();
804
805 for (const SCEV *Op : Numerator->operands()) {
806 const SCEV *Q, *R;
807 divide(SE, Op, Denominator, &Q, &R);
808
809 // Bail out if types do not match.
810 if (Ty != Q->getType() || Ty != R->getType())
811 return cannotDivide(Numerator);
812
813 Qs.push_back(Q);
814 Rs.push_back(R);
815 }
816
817 if (Qs.size() == 1) {
818 Quotient = Qs[0];
819 Remainder = Rs[0];
820 return;
821 }
822
823 Quotient = SE.getAddExpr(Qs);
824 Remainder = SE.getAddExpr(Rs);
825 }
826
827 void visitMulExpr(const SCEVMulExpr *Numerator) {
828 SmallVector<const SCEV *, 2> Qs;
829 Type *Ty = Denominator->getType();
830
831 bool FoundDenominatorTerm = false;
832 for (const SCEV *Op : Numerator->operands()) {
833 // Bail out if types do not match.
834 if (Ty != Op->getType())
835 return cannotDivide(Numerator);
836
837 if (FoundDenominatorTerm) {
838 Qs.push_back(Op);
839 continue;
840 }
841
842 // Check whether Denominator divides one of the product operands.
843 const SCEV *Q, *R;
844 divide(SE, Op, Denominator, &Q, &R);
845 if (!R->isZero()) {
846 Qs.push_back(Op);
847 continue;
848 }
849
850 // Bail out if types do not match.
851 if (Ty != Q->getType())
852 return cannotDivide(Numerator);
853
854 FoundDenominatorTerm = true;
855 Qs.push_back(Q);
856 }
857
858 if (FoundDenominatorTerm) {
859 Remainder = Zero;
860 if (Qs.size() == 1)
861 Quotient = Qs[0];
862 else
863 Quotient = SE.getMulExpr(Qs);
864 return;
865 }
866
867 if (!isa<SCEVUnknown>(Denominator))
868 return cannotDivide(Numerator);
869
870 // The Remainder is obtained by replacing Denominator by 0 in Numerator.
871 ValueToValueMap RewriteMap;
872 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
873 cast<SCEVConstant>(Zero)->getValue();
874 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
875
876 if (Remainder->isZero()) {
877 // The Quotient is obtained by replacing Denominator by 1 in Numerator.
878 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
879 cast<SCEVConstant>(One)->getValue();
880 Quotient =
881 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
882 return;
883 }
884
885 // Quotient is (Numerator - Remainder) divided by Denominator.
886 const SCEV *Q, *R;
887 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
888 // This SCEV does not seem to simplify: fail the division here.
889 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
890 return cannotDivide(Numerator);
891 divide(SE, Diff, Denominator, &Q, &R);
892 if (R != Zero)
893 return cannotDivide(Numerator);
894 Quotient = Q;
895 }
896
897private:
898 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
899 const SCEV *Denominator)
900 : SE(S), Denominator(Denominator) {
901 Zero = SE.getZero(Denominator->getType());
902 One = SE.getOne(Denominator->getType());
903
904 // We generally do not know how to divide Expr by Denominator. We
905 // initialize the division to a "cannot divide" state to simplify the rest
906 // of the code.
907 cannotDivide(Numerator);
908 }
909
910 // Convenience function for giving up on the division. We set the quotient to
911 // be equal to zero and the remainder to be equal to the numerator.
912 void cannotDivide(const SCEV *Numerator) {
913 Quotient = Zero;
914 Remainder = Numerator;
915 }
916
917 ScalarEvolution &SE;
918 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
919};
920
921}
922
923//===----------------------------------------------------------------------===//
924// Simple SCEV method implementations
925//===----------------------------------------------------------------------===//
926
927/// Compute BC(It, K). The result has width W. Assume, K > 0.
928static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
929 ScalarEvolution &SE,
930 Type *ResultTy) {
931 // Handle the simplest case efficiently.
932 if (K == 1)
933 return SE.getTruncateOrZeroExtend(It, ResultTy);
934
935 // We are using the following formula for BC(It, K):
936 //
937 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
938 //
939 // Suppose, W is the bitwidth of the return value. We must be prepared for
940 // overflow. Hence, we must assure that the result of our computation is
941 // equal to the accurate one modulo 2^W. Unfortunately, division isn't
942 // safe in modular arithmetic.
943 //
944 // However, this code doesn't use exactly that formula; the formula it uses
945 // is something like the following, where T is the number of factors of 2 in
946 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
947 // exponentiation:
948 //
949 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
950 //
951 // This formula is trivially equivalent to the previous formula. However,
952 // this formula can be implemented much more efficiently. The trick is that
953 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
954 // arithmetic. To do exact division in modular arithmetic, all we have
955 // to do is multiply by the inverse. Therefore, this step can be done at
956 // width W.
957 //
958 // The next issue is how to safely do the division by 2^T. The way this
959 // is done is by doing the multiplication step at a width of at least W + T
960 // bits. This way, the bottom W+T bits of the product are accurate. Then,
961 // when we perform the division by 2^T (which is equivalent to a right shift
962 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get
963 // truncated out after the division by 2^T.
964 //
965 // In comparison to just directly using the first formula, this technique
966 // is much more efficient; using the first formula requires W * K bits,
967 // but this formula less than W + K bits. Also, the first formula requires
968 // a division step, whereas this formula only requires multiplies and shifts.
969 //
970 // It doesn't matter whether the subtraction step is done in the calculation
971 // width or the input iteration count's width; if the subtraction overflows,
972 // the result must be zero anyway. We prefer here to do it in the width of
973 // the induction variable because it helps a lot for certain cases; CodeGen
974 // isn't smart enough to ignore the overflow, which leads to much less
975 // efficient code if the width of the subtraction is wider than the native
976 // register width.
977 //
978 // (It's possible to not widen at all by pulling out factors of 2 before
979 // the multiplication; for example, K=2 can be calculated as
980 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
981 // extra arithmetic, so it's not an obvious win, and it gets
982 // much more complicated for K > 3.)
983
984 // Protection from insane SCEVs; this bound is conservative,
985 // but it probably doesn't matter.
986 if (K > 1000)
987 return SE.getCouldNotCompute();
988
989 unsigned W = SE.getTypeSizeInBits(ResultTy);
990
991 // Calculate K! / 2^T and T; we divide out the factors of two before
992 // multiplying for calculating K! / 2^T to avoid overflow.
993 // Other overflow doesn't matter because we only care about the bottom
994 // W bits of the result.
995 APInt OddFactorial(W, 1);
996 unsigned T = 1;
997 for (unsigned i = 3; i <= K; ++i) {
998 APInt Mult(W, i);
999 unsigned TwoFactors = Mult.countTrailingZeros();
1000 T += TwoFactors;
1001 Mult = Mult.lshr(TwoFactors);
1002 OddFactorial *= Mult;
1003 }
1004
1005 // We need at least W + T bits for the multiplication step
1006 unsigned CalculationBits = W + T;
1007
1008 // Calculate 2^T, at width T+W.
1009 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
1010
1011 // Calculate the multiplicative inverse of K! / 2^T;
1012 // this multiplication factor will perform the exact division by
1013 // K! / 2^T.
1014 APInt Mod = APInt::getSignedMinValue(W+1);
1015 APInt MultiplyFactor = OddFactorial.zext(W+1);
1016 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1017 MultiplyFactor = MultiplyFactor.trunc(W);
1018
1019 // Calculate the product, at width T+W
1020 IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1021 CalculationBits);
1022 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1023 for (unsigned i = 1; i != K; ++i) {
1024 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1025 Dividend = SE.getMulExpr(Dividend,
1026 SE.getTruncateOrZeroExtend(S, CalculationTy));
1027 }
1028
1029 // Divide by 2^T
1030 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1031
1032 // Truncate the result, and divide by K! / 2^T.
1033
1034 return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1035 SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1036}
1037
1038/// Return the value of this chain of recurrences at the specified iteration
1039/// number. We can evaluate this recurrence by multiplying each element in the
1040/// chain by the binomial coefficient corresponding to it. In other words, we
1041/// can evaluate {A,+,B,+,C,+,D} as:
1042///
1043/// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1044///
1045/// where BC(It, k) stands for binomial coefficient.
1046///
1047const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1048 ScalarEvolution &SE) const {
1049 const SCEV *Result = getStart();
1050 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1051 // The computation is correct in the face of overflow provided that the
1052 // multiplication is performed _after_ the evaluation of the binomial
1053 // coefficient.
1054 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1055 if (isa<SCEVCouldNotCompute>(Coeff))
1056 return Coeff;
1057
1058 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1059 }
1060 return Result;
1061}
1062
1063//===----------------------------------------------------------------------===//
1064// SCEV Expression folder implementations
1065//===----------------------------------------------------------------------===//
1066
1067const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
1068 Type *Ty) {
1069 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&((getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(
Ty) && "This is not a truncating conversion!") ? static_cast
<void> (0) : __assert_fail ("getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && \"This is not a truncating conversion!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 1070, __PRETTY_FUNCTION__))
1070 "This is not a truncating conversion!")((getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(
Ty) && "This is not a truncating conversion!") ? static_cast
<void> (0) : __assert_fail ("getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && \"This is not a truncating conversion!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 1070, __PRETTY_FUNCTION__))
;
1071 assert(isSCEVable(Ty) &&((isSCEVable(Ty) && "This is not a conversion to a SCEVable type!"
) ? static_cast<void> (0) : __assert_fail ("isSCEVable(Ty) && \"This is not a conversion to a SCEVable type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 1072, __PRETTY_FUNCTION__))
1072 "This is not a conversion to a SCEVable type!")((isSCEVable(Ty) && "This is not a conversion to a SCEVable type!"
) ? static_cast<void> (0) : __assert_fail ("isSCEVable(Ty) && \"This is not a conversion to a SCEVable type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 1072, __PRETTY_FUNCTION__))
;
1073 Ty = getEffectiveSCEVType(Ty);
1074
1075 FoldingSetNodeID ID;
1076 ID.AddInteger(scTruncate);
1077 ID.AddPointer(Op);
1078 ID.AddPointer(Ty);
1079 void *IP = nullptr;
1080 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1081
1082 // Fold if the operand is constant.
1083 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1084 return getConstant(
1085 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1086
1087 // trunc(trunc(x)) --> trunc(x)
1088 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1089 return getTruncateExpr(ST->getOperand(), Ty);
1090
1091 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1092 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1093 return getTruncateOrSignExtend(SS->getOperand(), Ty);
1094
1095 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1096 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1097 return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1098
1099 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
1100 // eliminate all the truncates, or we replace other casts with truncates.
1101 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1102 SmallVector<const SCEV *, 4> Operands;
1103 bool hasTrunc = false;
1104 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1105 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
1106 if (!isa<SCEVCastExpr>(SA->getOperand(i)))
1107 hasTrunc = isa<SCEVTruncateExpr>(S);
1108 Operands.push_back(S);
1109 }
1110 if (!hasTrunc)
1111 return getAddExpr(Operands);
1112 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
1113 }
1114
1115 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
1116 // eliminate all the truncates, or we replace other casts with truncates.
1117 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1118 SmallVector<const SCEV *, 4> Operands;
1119 bool hasTrunc = false;
1120 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1121 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
1122 if (!isa<SCEVCastExpr>(SM->getOperand(i)))
1123 hasTrunc = isa<SCEVTruncateExpr>(S);
1124 Operands.push_back(S);
1125 }
1126 if (!hasTrunc)
1127 return getMulExpr(Operands);
1128 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL.
1129 }
1130
1131 // If the input value is a chrec scev, truncate the chrec's operands.
1132 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1133 SmallVector<const SCEV *, 4> Operands;
1134 for (const SCEV *Op : AddRec->operands())
1135 Operands.push_back(getTruncateExpr(Op, Ty));
1136 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1137 }
1138
1139 // The cast wasn't folded; create an explicit cast node. We can reuse
1140 // the existing insert position since if we get here, we won't have
1141 // made any changes which would invalidate it.
1142 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1143 Op, Ty);
1144 UniqueSCEVs.InsertNode(S, IP);
1145 return S;
1146}
1147
1148// Get the limit of a recurrence such that incrementing by Step cannot cause
1149// signed overflow as long as the value of the recurrence within the
1150// loop does not exceed this limit before incrementing.
1151static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1152 ICmpInst::Predicate *Pred,
1153 ScalarEvolution *SE) {
1154 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1155 if (SE->isKnownPositive(Step)) {
1156 *Pred = ICmpInst::ICMP_SLT;
1157 return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1158 SE->getSignedRange(Step).getSignedMax());
1159 }
1160 if (SE->isKnownNegative(Step)) {
1161 *Pred = ICmpInst::ICMP_SGT;
1162 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1163 SE->getSignedRange(Step).getSignedMin());
1164 }
1165 return nullptr;
1166}
1167
1168// Get the limit of a recurrence such that incrementing by Step cannot cause
1169// unsigned overflow as long as the value of the recurrence within the loop does
1170// not exceed this limit before incrementing.
1171static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1172 ICmpInst::Predicate *Pred,
1173 ScalarEvolution *SE) {
1174 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1175 *Pred = ICmpInst::ICMP_ULT;
1176
1177 return SE->getConstant(APInt::getMinValue(BitWidth) -
1178 SE->getUnsignedRange(Step).getUnsignedMax());
1179}
1180
1181namespace {
1182
1183struct ExtendOpTraitsBase {
1184 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
1185};
1186
1187// Used to make code generic over signed and unsigned overflow.
1188template <typename ExtendOp> struct ExtendOpTraits {
1189 // Members present:
1190 //
1191 // static const SCEV::NoWrapFlags WrapType;
1192 //
1193 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1194 //
1195 // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1196 // ICmpInst::Predicate *Pred,
1197 // ScalarEvolution *SE);
1198};
1199
1200template <>
1201struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1202 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1203
1204 static const GetExtendExprTy GetExtendExpr;
1205
1206 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1207 ICmpInst::Predicate *Pred,
1208 ScalarEvolution *SE) {
1209 return getSignedOverflowLimitForStep(Step, Pred, SE);
1210 }
1211};
1212
1213const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1214 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1215
1216template <>
1217struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1218 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1219
1220 static const GetExtendExprTy GetExtendExpr;
1221
1222 static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1223 ICmpInst::Predicate *Pred,
1224 ScalarEvolution *SE) {
1225 return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1226 }
1227};
1228
1229const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1230 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1231}
1232
1233// The recurrence AR has been shown to have no signed/unsigned wrap or something
1234// close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1235// easily prove NSW/NUW for its preincrement or postincrement sibling. This
1236// allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1237// Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1238// expression "Step + sext/zext(PreIncAR)" is congruent with
1239// "sext/zext(PostIncAR)"
1240template <typename ExtendOpTy>
1241static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1242 ScalarEvolution *SE) {
1243 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1244 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1245
1246 const Loop *L = AR->getLoop();
1247 const SCEV *Start = AR->getStart();
1248 const SCEV *Step = AR->getStepRecurrence(*SE);
1249
1250 // Check for a simple looking step prior to loop entry.
1251 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1252 if (!SA)
1253 return nullptr;
1254
1255 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1256 // subtraction is expensive. For this purpose, perform a quick and dirty
1257 // difference, by checking for Step in the operand list.
1258 SmallVector<const SCEV *, 4> DiffOps;
1259 for (const SCEV *Op : SA->operands())
1260 if (Op != Step)
1261 DiffOps.push_back(Op);
1262
1263 if (DiffOps.size() == SA->getNumOperands())
1264 return nullptr;
1265
1266 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1267 // `Step`:
1268
1269 // 1. NSW/NUW flags on the step increment.
1270 auto PreStartFlags =
1271 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1272 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1273 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1274 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1275
1276 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1277 // "S+X does not sign/unsign-overflow".
1278 //
1279
1280 const SCEV *BECount = SE->getBackedgeTakenCount(L);
1281 if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1282 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1283 return PreStart;
1284
1285 // 2. Direct overflow check on the step operation's expression.
1286 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1287 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1288 const SCEV *OperandExtendedStart =
1289 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
1290 (SE->*GetExtendExpr)(Step, WideTy));
1291 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
1292 if (PreAR && AR->getNoWrapFlags(WrapType)) {
1293 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1294 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1295 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact.
1296 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1297 }
1298 return PreStart;
1299 }
1300
1301 // 3. Loop precondition.
1302 ICmpInst::Predicate Pred;
1303 const SCEV *OverflowLimit =
1304 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1305
1306 if (OverflowLimit &&
1307 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1308 return PreStart;
1309
1310 return nullptr;
1311}
1312
1313// Get the normalized zero or sign extended expression for this AddRec's Start.
1314template <typename ExtendOpTy>
1315static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1316 ScalarEvolution *SE) {
1317 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1318
1319 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
1320 if (!PreStart)
1321 return (SE->*GetExtendExpr)(AR->getStart(), Ty);
1322
1323 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
1324 (SE->*GetExtendExpr)(PreStart, Ty));
1325}
1326
1327// Try to prove away overflow by looking at "nearby" add recurrences. A
1328// motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1329// does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1330//
1331// Formally:
1332//
1333// {S,+,X} == {S-T,+,X} + T
1334// => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1335//
1336// If ({S-T,+,X} + T) does not overflow ... (1)
1337//
1338// RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1339//
1340// If {S-T,+,X} does not overflow ... (2)
1341//
1342// RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1343// == {Ext(S-T)+Ext(T),+,Ext(X)}
1344//
1345// If (S-T)+T does not overflow ... (3)
1346//
1347// RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1348// == {Ext(S),+,Ext(X)} == LHS
1349//
1350// Thus, if (1), (2) and (3) are true for some T, then
1351// Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1352//
1353// (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1354// does not overflow" restricted to the 0th iteration. Therefore we only need
1355// to check for (1) and (2).
1356//
1357// In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1358// is `Delta` (defined below).
1359//
1360template <typename ExtendOpTy>
1361bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1362 const SCEV *Step,
1363 const Loop *L) {
1364 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1365
1366 // We restrict `Start` to a constant to prevent SCEV from spending too much
1367 // time here. It is correct (but more expensive) to continue with a
1368 // non-constant `Start` and do a general SCEV subtraction to compute
1369 // `PreStart` below.
1370 //
1371 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1372 if (!StartC)
1373 return false;
1374
1375 APInt StartAI = StartC->getAPInt();
1376
1377 for (unsigned Delta : {-2, -1, 1, 2}) {
1378 const SCEV *PreStart = getConstant(StartAI - Delta);
1379
1380 FoldingSetNodeID ID;
1381 ID.AddInteger(scAddRecExpr);
1382 ID.AddPointer(PreStart);
1383 ID.AddPointer(Step);
1384 ID.AddPointer(L);
1385 void *IP = nullptr;
1386 const auto *PreAR =
1387 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1388
1389 // Give up if we don't already have the add recurrence we need because
1390 // actually constructing an add recurrence is relatively expensive.
1391 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2)
1392 const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1393 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1394 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1395 DeltaS, &Pred, this);
1396 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1)
1397 return true;
1398 }
1399 }
1400
1401 return false;
1402}
1403
1404const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
1405 Type *Ty) {
1406 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&((getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(
Ty) && "This is not an extending conversion!") ? static_cast
<void> (0) : __assert_fail ("getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && \"This is not an extending conversion!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 1407, __PRETTY_FUNCTION__))
1407 "This is not an extending conversion!")((getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(
Ty) && "This is not an extending conversion!") ? static_cast
<void> (0) : __assert_fail ("getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && \"This is not an extending conversion!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 1407, __PRETTY_FUNCTION__))
;
1408 assert(isSCEVable(Ty) &&((isSCEVable(Ty) && "This is not a conversion to a SCEVable type!"
) ? static_cast<void> (0) : __assert_fail ("isSCEVable(Ty) && \"This is not a conversion to a SCEVable type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 1409, __PRETTY_FUNCTION__))
1409 "This is not a conversion to a SCEVable type!")((isSCEVable(Ty) && "This is not a conversion to a SCEVable type!"
) ? static_cast<void> (0) : __assert_fail ("isSCEVable(Ty) && \"This is not a conversion to a SCEVable type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 1409, __PRETTY_FUNCTION__))
;
1410 Ty = getEffectiveSCEVType(Ty);
1411
1412 // Fold if the operand is constant.
1413 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1414 return getConstant(
1415 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1416
1417 // zext(zext(x)) --> zext(x)
1418 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1419 return getZeroExtendExpr(SZ->getOperand(), Ty);
1420
1421 // Before doing any expensive analysis, check to see if we've already
1422 // computed a SCEV for this Op and Ty.
1423 FoldingSetNodeID ID;
1424 ID.AddInteger(scZeroExtend);
1425 ID.AddPointer(Op);
1426 ID.AddPointer(Ty);
1427 void *IP = nullptr;
1428 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1429
1430 // zext(trunc(x)) --> zext(x) or x or trunc(x)
1431 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1432 // It's possible the bits taken off by the truncate were all zero bits. If
1433 // so, we should be able to simplify this further.
1434 const SCEV *X = ST->getOperand();
1435 ConstantRange CR = getUnsignedRange(X);
1436 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1437 unsigned NewBits = getTypeSizeInBits(Ty);
1438 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1439 CR.zextOrTrunc(NewBits)))
1440 return getTruncateOrZeroExtend(X, Ty);
1441 }
1442
1443 // If the input value is a chrec scev, and we can prove that the value
1444 // did not overflow the old, smaller, value, we can zero extend all of the
1445 // operands (often constants). This allows analysis of something like
1446 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1447 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1448 if (AR->isAffine()) {
1449 const SCEV *Start = AR->getStart();
1450 const SCEV *Step = AR->getStepRecurrence(*this);
1451 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1452 const Loop *L = AR->getLoop();
1453
1454 if (!AR->hasNoUnsignedWrap()) {
1455 auto NewFlags = proveNoWrapViaConstantRanges(AR);
1456 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1457 }
1458
1459 // If we have special knowledge that this addrec won't overflow,
1460 // we don't need to do any further analysis.
1461 if (AR->hasNoUnsignedWrap())
1462 return getAddRecExpr(
1463 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1464 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1465
1466 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1467 // Note that this serves two purposes: It filters out loops that are
1468 // simply not analyzable, and it covers the case where this code is
1469 // being called from within backedge-taken count analysis, such that
1470 // attempting to ask for the backedge-taken count would likely result
1471 // in infinite recursion. In the later case, the analysis code will
1472 // cope with a conservative value, and it will take care to purge
1473 // that value once it has finished.
1474 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1475 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1476 // Manually compute the final value for AR, checking for
1477 // overflow.
1478
1479 // Check whether the backedge-taken count can be losslessly casted to
1480 // the addrec's type. The count is always unsigned.
1481 const SCEV *CastedMaxBECount =
1482 getTruncateOrZeroExtend(MaxBECount, Start->getType());
1483 const SCEV *RecastedMaxBECount =
1484 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1485 if (MaxBECount == RecastedMaxBECount) {
1486 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1487 // Check whether Start+Step*MaxBECount has no unsigned overflow.
1488 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
1489 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1490 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1491 const SCEV *WideMaxBECount =
1492 getZeroExtendExpr(CastedMaxBECount, WideTy);
1493 const SCEV *OperandExtendedAdd =
1494 getAddExpr(WideStart,
1495 getMulExpr(WideMaxBECount,
1496 getZeroExtendExpr(Step, WideTy)));
1497 if (ZAdd == OperandExtendedAdd) {
1498 // Cache knowledge of AR NUW, which is propagated to this AddRec.
1499 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1500 // Return the expression with the addrec on the outside.
1501 return getAddRecExpr(
1502 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1503 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1504 }
1505 // Similar to above, only this time treat the step value as signed.
1506 // This covers loops that count down.
1507 OperandExtendedAdd =
1508 getAddExpr(WideStart,
1509 getMulExpr(WideMaxBECount,
1510 getSignExtendExpr(Step, WideTy)));
1511 if (ZAdd == OperandExtendedAdd) {
1512 // Cache knowledge of AR NW, which is propagated to this AddRec.
1513 // Negative step causes unsigned wrap, but it still can't self-wrap.
1514 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1515 // Return the expression with the addrec on the outside.
1516 return getAddRecExpr(
1517 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1518 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1519 }
1520 }
1521 }
1522
1523 // Normally, in the cases we can prove no-overflow via a
1524 // backedge guarding condition, we can also compute a backedge
1525 // taken count for the loop. The exceptions are assumptions and
1526 // guards present in the loop -- SCEV is not great at exploiting
1527 // these to compute max backedge taken counts, but can still use
1528 // these to prove lack of overflow. Use this fact to avoid
1529 // doing extra work that may not pay off.
1530 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1531 !AC.assumptions().empty()) {
1532 // If the backedge is guarded by a comparison with the pre-inc
1533 // value the addrec is safe. Also, if the entry is guarded by
1534 // a comparison with the start value and the backedge is
1535 // guarded by a comparison with the post-inc value, the addrec
1536 // is safe.
1537 if (isKnownPositive(Step)) {
1538 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1539 getUnsignedRange(Step).getUnsignedMax());
1540 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1541 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1542 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1543 AR->getPostIncExpr(*this), N))) {
1544 // Cache knowledge of AR NUW, which is propagated to this
1545 // AddRec.
1546 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1547 // Return the expression with the addrec on the outside.
1548 return getAddRecExpr(
1549 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1550 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1551 }
1552 } else if (isKnownNegative(Step)) {
1553 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1554 getSignedRange(Step).getSignedMin());
1555 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1556 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1557 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1558 AR->getPostIncExpr(*this), N))) {
1559 // Cache knowledge of AR NW, which is propagated to this
1560 // AddRec. Negative step causes unsigned wrap, but it
1561 // still can't self-wrap.
1562 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1563 // Return the expression with the addrec on the outside.
1564 return getAddRecExpr(
1565 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1566 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1567 }
1568 }
1569 }
1570
1571 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1572 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1573 return getAddRecExpr(
1574 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1575 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1576 }
1577 }
1578
1579 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1580 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1581 if (SA->hasNoUnsignedWrap()) {
1582 // If the addition does not unsign overflow then we can, by definition,
1583 // commute the zero extension with the addition operation.
1584 SmallVector<const SCEV *, 4> Ops;
1585 for (const auto *Op : SA->operands())
1586 Ops.push_back(getZeroExtendExpr(Op, Ty));
1587 return getAddExpr(Ops, SCEV::FlagNUW);
1588 }
1589 }
1590
1591 // The cast wasn't folded; create an explicit cast node.
1592 // Recompute the insert position, as it may have been invalidated.
1593 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1594 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1595 Op, Ty);
1596 UniqueSCEVs.InsertNode(S, IP);
1597 return S;
1598}
1599
1600const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1601 Type *Ty) {
1602 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&((getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(
Ty) && "This is not an extending conversion!") ? static_cast
<void> (0) : __assert_fail ("getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && \"This is not an extending conversion!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 1603, __PRETTY_FUNCTION__))
1603 "This is not an extending conversion!")((getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(
Ty) && "This is not an extending conversion!") ? static_cast
<void> (0) : __assert_fail ("getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && \"This is not an extending conversion!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 1603, __PRETTY_FUNCTION__))
;
1604 assert(isSCEVable(Ty) &&((isSCEVable(Ty) && "This is not a conversion to a SCEVable type!"
) ? static_cast<void> (0) : __assert_fail ("isSCEVable(Ty) && \"This is not a conversion to a SCEVable type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 1605, __PRETTY_FUNCTION__))
1605 "This is not a conversion to a SCEVable type!")((isSCEVable(Ty) && "This is not a conversion to a SCEVable type!"
) ? static_cast<void> (0) : __assert_fail ("isSCEVable(Ty) && \"This is not a conversion to a SCEVable type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 1605, __PRETTY_FUNCTION__))
;
1606 Ty = getEffectiveSCEVType(Ty);
1607
1608 // Fold if the operand is constant.
1609 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1610 return getConstant(
1611 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1612
1613 // sext(sext(x)) --> sext(x)
1614 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1615 return getSignExtendExpr(SS->getOperand(), Ty);
1616
1617 // sext(zext(x)) --> zext(x)
1618 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1619 return getZeroExtendExpr(SZ->getOperand(), Ty);
1620
1621 // Before doing any expensive analysis, check to see if we've already
1622 // computed a SCEV for this Op and Ty.
1623 FoldingSetNodeID ID;
1624 ID.AddInteger(scSignExtend);
1625 ID.AddPointer(Op);
1626 ID.AddPointer(Ty);
1627 void *IP = nullptr;
1628 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1629
1630 // sext(trunc(x)) --> sext(x) or x or trunc(x)
1631 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1632 // It's possible the bits taken off by the truncate were all sign bits. If
1633 // so, we should be able to simplify this further.
1634 const SCEV *X = ST->getOperand();
1635 ConstantRange CR = getSignedRange(X);
1636 unsigned TruncBits = getTypeSizeInBits(ST->getType());
1637 unsigned NewBits = getTypeSizeInBits(Ty);
1638 if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1639 CR.sextOrTrunc(NewBits)))
1640 return getTruncateOrSignExtend(X, Ty);
1641 }
1642
1643 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1644 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1645 if (SA->getNumOperands() == 2) {
1646 auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1647 auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1648 if (SMul && SC1) {
1649 if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
1650 const APInt &C1 = SC1->getAPInt();
1651 const APInt &C2 = SC2->getAPInt();
1652 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
1653 C2.ugt(C1) && C2.isPowerOf2())
1654 return getAddExpr(getSignExtendExpr(SC1, Ty),
1655 getSignExtendExpr(SMul, Ty));
1656 }
1657 }
1658 }
1659
1660 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1661 if (SA->hasNoSignedWrap()) {
1662 // If the addition does not sign overflow then we can, by definition,
1663 // commute the sign extension with the addition operation.
1664 SmallVector<const SCEV *, 4> Ops;
1665 for (const auto *Op : SA->operands())
1666 Ops.push_back(getSignExtendExpr(Op, Ty));
1667 return getAddExpr(Ops, SCEV::FlagNSW);
1668 }
1669 }
1670 // If the input value is a chrec scev, and we can prove that the value
1671 // did not overflow the old, smaller, value, we can sign extend all of the
1672 // operands (often constants). This allows analysis of something like
1673 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; }
1674 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1675 if (AR->isAffine()) {
1676 const SCEV *Start = AR->getStart();
1677 const SCEV *Step = AR->getStepRecurrence(*this);
1678 unsigned BitWidth = getTypeSizeInBits(AR->getType());
1679 const Loop *L = AR->getLoop();
1680
1681 if (!AR->hasNoSignedWrap()) {
1682 auto NewFlags = proveNoWrapViaConstantRanges(AR);
1683 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1684 }
1685
1686 // If we have special knowledge that this addrec won't overflow,
1687 // we don't need to do any further analysis.
1688 if (AR->hasNoSignedWrap())
1689 return getAddRecExpr(
1690 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1691 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
1692
1693 // Check whether the backedge-taken count is SCEVCouldNotCompute.
1694 // Note that this serves two purposes: It filters out loops that are
1695 // simply not analyzable, and it covers the case where this code is
1696 // being called from within backedge-taken count analysis, such that
1697 // attempting to ask for the backedge-taken count would likely result
1698 // in infinite recursion. In the later case, the analysis code will
1699 // cope with a conservative value, and it will take care to purge
1700 // that value once it has finished.
1701 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1702 if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1703 // Manually compute the final value for AR, checking for
1704 // overflow.
1705
1706 // Check whether the backedge-taken count can be losslessly casted to
1707 // the addrec's type. The count is always unsigned.
1708 const SCEV *CastedMaxBECount =
1709 getTruncateOrZeroExtend(MaxBECount, Start->getType());
1710 const SCEV *RecastedMaxBECount =
1711 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1712 if (MaxBECount == RecastedMaxBECount) {
1713 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1714 // Check whether Start+Step*MaxBECount has no signed overflow.
1715 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1716 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1717 const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1718 const SCEV *WideMaxBECount =
1719 getZeroExtendExpr(CastedMaxBECount, WideTy);
1720 const SCEV *OperandExtendedAdd =
1721 getAddExpr(WideStart,
1722 getMulExpr(WideMaxBECount,
1723 getSignExtendExpr(Step, WideTy)));
1724 if (SAdd == OperandExtendedAdd) {
1725 // Cache knowledge of AR NSW, which is propagated to this AddRec.
1726 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1727 // Return the expression with the addrec on the outside.
1728 return getAddRecExpr(
1729 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1730 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1731 }
1732 // Similar to above, only this time treat the step value as unsigned.
1733 // This covers loops that count up with an unsigned step.
1734 OperandExtendedAdd =
1735 getAddExpr(WideStart,
1736 getMulExpr(WideMaxBECount,
1737 getZeroExtendExpr(Step, WideTy)));
1738 if (SAdd == OperandExtendedAdd) {
1739 // If AR wraps around then
1740 //
1741 // abs(Step) * MaxBECount > unsigned-max(AR->getType())
1742 // => SAdd != OperandExtendedAdd
1743 //
1744 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1745 // (SAdd == OperandExtendedAdd => AR is NW)
1746
1747 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1748
1749 // Return the expression with the addrec on the outside.
1750 return getAddRecExpr(
1751 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1752 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1753 }
1754 }
1755 }
1756
1757 // Normally, in the cases we can prove no-overflow via a
1758 // backedge guarding condition, we can also compute a backedge
1759 // taken count for the loop. The exceptions are assumptions and
1760 // guards present in the loop -- SCEV is not great at exploiting
1761 // these to compute max backedge taken counts, but can still use
1762 // these to prove lack of overflow. Use this fact to avoid
1763 // doing extra work that may not pay off.
1764
1765 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1766 !AC.assumptions().empty()) {
1767 // If the backedge is guarded by a comparison with the pre-inc
1768 // value the addrec is safe. Also, if the entry is guarded by
1769 // a comparison with the start value and the backedge is
1770 // guarded by a comparison with the post-inc value, the addrec
1771 // is safe.
1772 ICmpInst::Predicate Pred;
1773 const SCEV *OverflowLimit =
1774 getSignedOverflowLimitForStep(Step, &Pred, this);
1775 if (OverflowLimit &&
1776 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1777 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1778 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1779 OverflowLimit)))) {
1780 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1781 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1782 return getAddRecExpr(
1783 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1784 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1785 }
1786 }
1787
1788 // If Start and Step are constants, check if we can apply this
1789 // transformation:
1790 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1791 auto *SC1 = dyn_cast<SCEVConstant>(Start);
1792 auto *SC2 = dyn_cast<SCEVConstant>(Step);
1793 if (SC1 && SC2) {
1794 const APInt &C1 = SC1->getAPInt();
1795 const APInt &C2 = SC2->getAPInt();
1796 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1797 C2.isPowerOf2()) {
1798 Start = getSignExtendExpr(Start, Ty);
1799 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L,
1800 AR->getNoWrapFlags());
1801 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1802 }
1803 }
1804
1805 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1806 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1807 return getAddRecExpr(
1808 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1809 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1810 }
1811 }
1812
1813 // If the input value is provably positive and we could not simplify
1814 // away the sext build a zext instead.
1815 if (isKnownNonNegative(Op))
1816 return getZeroExtendExpr(Op, Ty);
1817
1818 // The cast wasn't folded; create an explicit cast node.
1819 // Recompute the insert position, as it may have been invalidated.
1820 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1821 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1822 Op, Ty);
1823 UniqueSCEVs.InsertNode(S, IP);
1824 return S;
1825}
1826
1827/// getAnyExtendExpr - Return a SCEV for the given operand extended with
1828/// unspecified bits out to the given type.
1829///
1830const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1831 Type *Ty) {
1832 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&((getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(
Ty) && "This is not an extending conversion!") ? static_cast
<void> (0) : __assert_fail ("getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && \"This is not an extending conversion!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 1833, __PRETTY_FUNCTION__))
1833 "This is not an extending conversion!")((getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(
Ty) && "This is not an extending conversion!") ? static_cast
<void> (0) : __assert_fail ("getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && \"This is not an extending conversion!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 1833, __PRETTY_FUNCTION__))
;
1834 assert(isSCEVable(Ty) &&((isSCEVable(Ty) && "This is not a conversion to a SCEVable type!"
) ? static_cast<void> (0) : __assert_fail ("isSCEVable(Ty) && \"This is not a conversion to a SCEVable type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 1835, __PRETTY_FUNCTION__))
1835 "This is not a conversion to a SCEVable type!")((isSCEVable(Ty) && "This is not a conversion to a SCEVable type!"
) ? static_cast<void> (0) : __assert_fail ("isSCEVable(Ty) && \"This is not a conversion to a SCEVable type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 1835, __PRETTY_FUNCTION__))
;
1836 Ty = getEffectiveSCEVType(Ty);
1837
1838 // Sign-extend negative constants.
1839 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1840 if (SC->getAPInt().isNegative())
1841 return getSignExtendExpr(Op, Ty);
1842
1843 // Peel off a truncate cast.
1844 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1845 const SCEV *NewOp = T->getOperand();
1846 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1847 return getAnyExtendExpr(NewOp, Ty);
1848 return getTruncateOrNoop(NewOp, Ty);
1849 }
1850
1851 // Next try a zext cast. If the cast is folded, use it.
1852 const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1853 if (!isa<SCEVZeroExtendExpr>(ZExt))
1854 return ZExt;
1855
1856 // Next try a sext cast. If the cast is folded, use it.
1857 const SCEV *SExt = getSignExtendExpr(Op, Ty);
1858 if (!isa<SCEVSignExtendExpr>(SExt))
1859 return SExt;
1860
1861 // Force the cast to be folded into the operands of an addrec.
1862 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1863 SmallVector<const SCEV *, 4> Ops;
1864 for (const SCEV *Op : AR->operands())
1865 Ops.push_back(getAnyExtendExpr(Op, Ty));
1866 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1867 }
1868
1869 // If the expression is obviously signed, use the sext cast value.
1870 if (isa<SCEVSMaxExpr>(Op))
1871 return SExt;
1872
1873 // Absent any other information, use the zext cast value.
1874 return ZExt;
1875}
1876
1877/// Process the given Ops list, which is a list of operands to be added under
1878/// the given scale, update the given map. This is a helper function for
1879/// getAddRecExpr. As an example of what it does, given a sequence of operands
1880/// that would form an add expression like this:
1881///
1882/// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
1883///
1884/// where A and B are constants, update the map with these values:
1885///
1886/// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1887///
1888/// and add 13 + A*B*29 to AccumulatedConstant.
1889/// This will allow getAddRecExpr to produce this:
1890///
1891/// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1892///
1893/// This form often exposes folding opportunities that are hidden in
1894/// the original operand list.
1895///
1896/// Return true iff it appears that any interesting folding opportunities
1897/// may be exposed. This helps getAddRecExpr short-circuit extra work in
1898/// the common case where no interesting opportunities are present, and
1899/// is also used as a check to avoid infinite recursion.
1900///
1901static bool
1902CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1903 SmallVectorImpl<const SCEV *> &NewOps,
1904 APInt &AccumulatedConstant,
1905 const SCEV *const *Ops, size_t NumOperands,
1906 const APInt &Scale,
1907 ScalarEvolution &SE) {
1908 bool Interesting = false;
1909
1910 // Iterate over the add operands. They are sorted, with constants first.
1911 unsigned i = 0;
1912 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1913 ++i;
1914 // Pull a buried constant out to the outside.
1915 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1916 Interesting = true;
1917 AccumulatedConstant += Scale * C->getAPInt();
1918 }
1919
1920 // Next comes everything else. We're especially interested in multiplies
1921 // here, but they're in the middle, so just visit the rest with one loop.
1922 for (; i != NumOperands; ++i) {
1923 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1924 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1925 APInt NewScale =
1926 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
1927 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1928 // A multiplication of a constant with another add; recurse.
1929 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1930 Interesting |=
1931 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1932 Add->op_begin(), Add->getNumOperands(),
1933 NewScale, SE);
1934 } else {
1935 // A multiplication of a constant with some other value. Update
1936 // the map.
1937 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1938 const SCEV *Key = SE.getMulExpr(MulOps);
1939 auto Pair = M.insert({Key, NewScale});
1940 if (Pair.second) {
1941 NewOps.push_back(Pair.first->first);
1942 } else {
1943 Pair.first->second += NewScale;
1944 // The map already had an entry for this value, which may indicate
1945 // a folding opportunity.
1946 Interesting = true;
1947 }
1948 }
1949 } else {
1950 // An ordinary operand. Update the map.
1951 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1952 M.insert({Ops[i], Scale});
1953 if (Pair.second) {
1954 NewOps.push_back(Pair.first->first);
1955 } else {
1956 Pair.first->second += Scale;
1957 // The map already had an entry for this value, which may indicate
1958 // a folding opportunity.
1959 Interesting = true;
1960 }
1961 }
1962 }
1963
1964 return Interesting;
1965}
1966
1967// We're trying to construct a SCEV of type `Type' with `Ops' as operands and
1968// `OldFlags' as can't-wrap behavior. Infer a more aggressive set of
1969// can't-overflow flags for the operation if possible.
1970static SCEV::NoWrapFlags
1971StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
1972 const SmallVectorImpl<const SCEV *> &Ops,
1973 SCEV::NoWrapFlags Flags) {
1974 using namespace std::placeholders;
1975 typedef OverflowingBinaryOperator OBO;
1976
1977 bool CanAnalyze =
1978 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
1979 (void)CanAnalyze;
1980 assert(CanAnalyze && "don't call from other places!")((CanAnalyze && "don't call from other places!") ? static_cast
<void> (0) : __assert_fail ("CanAnalyze && \"don't call from other places!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 1980, __PRETTY_FUNCTION__))
;
1981
1982 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1983 SCEV::NoWrapFlags SignOrUnsignWrap =
1984 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
1985
1986 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1987 auto IsKnownNonNegative = [&](const SCEV *S) {
1988 return SE->isKnownNonNegative(S);
1989 };
1990
1991 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
1992 Flags =
1993 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1994
1995 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
1996
1997 if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr &&
1998 Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) {
1999
2000 // (A + C) --> (A + C)<nsw> if the addition does not sign overflow
2001 // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow
2002
2003 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2004 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2005 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2006 Instruction::Add, C, OBO::NoSignedWrap);
2007 if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2008 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2009 }
2010 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2011 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2012 Instruction::Add, C, OBO::NoUnsignedWrap);
2013 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2014 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2015 }
2016 }
2017
2018 return Flags;
2019}
2020
2021/// Get a canonical add expression, or something simpler if possible.
2022const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2023 SCEV::NoWrapFlags Flags) {
2024 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&((!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && "only nuw or nsw allowed"
) ? static_cast<void> (0) : __assert_fail ("!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && \"only nuw or nsw allowed\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 2025, __PRETTY_FUNCTION__))
2025 "only nuw or nsw allowed")((!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && "only nuw or nsw allowed"
) ? static_cast<void> (0) : __assert_fail ("!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && \"only nuw or nsw allowed\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 2025, __PRETTY_FUNCTION__))
;
2026 assert(!Ops.empty() && "Cannot get empty add!")((!Ops.empty() && "Cannot get empty add!") ? static_cast
<void> (0) : __assert_fail ("!Ops.empty() && \"Cannot get empty add!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 2026, __PRETTY_FUNCTION__))
;
2027 if (Ops.size() == 1) return Ops[0];
2028#ifndef NDEBUG
2029 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2030 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2031 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&((getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
"SCEVAddExpr operand types don't match!") ? static_cast<void
> (0) : __assert_fail ("getEffectiveSCEVType(Ops[i]->getType()) == ETy && \"SCEVAddExpr operand types don't match!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 2032, __PRETTY_FUNCTION__))
2032 "SCEVAddExpr operand types don't match!")((getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
"SCEVAddExpr operand types don't match!") ? static_cast<void
> (0) : __assert_fail ("getEffectiveSCEVType(Ops[i]->getType()) == ETy && \"SCEVAddExpr operand types don't match!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 2032, __PRETTY_FUNCTION__))
;
2033#endif
2034
2035 // Sort by complexity, this groups all similar expression types together.
2036 GroupByComplexity(Ops, &LI);
2037
2038 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2039
2040 // If there are any constants, fold them together.
2041 unsigned Idx = 0;
2042 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2043 ++Idx;
2044 assert(Idx < Ops.size())((Idx < Ops.size()) ? static_cast<void> (0) : __assert_fail
("Idx < Ops.size()", "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 2044, __PRETTY_FUNCTION__))
;
2045 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2046 // We found two constants, fold them together!
2047 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2048 if (Ops.size() == 2) return Ops[0];
2049 Ops.erase(Ops.begin()+1); // Erase the folded element
2050 LHSC = cast<SCEVConstant>(Ops[0]);
2051 }
2052
2053 // If we are left with a constant zero being added, strip it off.
2054 if (LHSC->getValue()->isZero()) {
2055 Ops.erase(Ops.begin());
2056 --Idx;
2057 }
2058
2059 if (Ops.size() == 1) return Ops[0];
2060 }
2061
2062 // Okay, check to see if the same value occurs in the operand list more than
2063 // once. If so, merge them together into an multiply expression. Since we
2064 // sorted the list, these values are required to be adjacent.
2065 Type *Ty = Ops[0]->getType();
2066 bool FoundMatch = false;
2067 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2068 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2
2069 // Scan ahead to count how many equal operands there are.
2070 unsigned Count = 2;
2071 while (i+Count != e && Ops[i+Count] == Ops[i])
2072 ++Count;
2073 // Merge the values into a multiply.
2074 const SCEV *Scale = getConstant(Ty, Count);
2075 const SCEV *Mul = getMulExpr(Scale, Ops[i]);
2076 if (Ops.size() == Count)
2077 return Mul;
2078 Ops[i] = Mul;
2079 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2080 --i; e -= Count - 1;
2081 FoundMatch = true;
2082 }
2083 if (FoundMatch)
2084 return getAddExpr(Ops, Flags);
2085
2086 // Check for truncates. If all the operands are truncated from the same
2087 // type, see if factoring out the truncate would permit the result to be
2088 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
2089 // if the contents of the resulting outer trunc fold to something simple.
2090 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
2091 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
2092 Type *DstType = Trunc->getType();
2093 Type *SrcType = Trunc->getOperand()->getType();
2094 SmallVector<const SCEV *, 8> LargeOps;
2095 bool Ok = true;
2096 // Check all the operands to see if they can be represented in the
2097 // source type of the truncate.
2098 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2099 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2100 if (T->getOperand()->getType() != SrcType) {
2101 Ok = false;
2102 break;
2103 }
2104 LargeOps.push_back(T->getOperand());
2105 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2106 LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2107 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2108 SmallVector<const SCEV *, 8> LargeMulOps;
2109 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2110 if (const SCEVTruncateExpr *T =
2111 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2112 if (T->getOperand()->getType() != SrcType) {
2113 Ok = false;
2114 break;
2115 }
2116 LargeMulOps.push_back(T->getOperand());
2117 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2118 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2119 } else {
2120 Ok = false;
2121 break;
2122 }
2123 }
2124 if (Ok)
2125 LargeOps.push_back(getMulExpr(LargeMulOps));
2126 } else {
2127 Ok = false;
2128 break;
2129 }
2130 }
2131 if (Ok) {
2132 // Evaluate the expression in the larger type.
2133 const SCEV *Fold = getAddExpr(LargeOps, Flags);
2134 // If it folds to something simple, use it. Otherwise, don't.
2135 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2136 return getTruncateExpr(Fold, DstType);
2137 }
2138 }
2139
2140 // Skip past any other cast SCEVs.
2141 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2142 ++Idx;
2143
2144 // If there are add operands they would be next.
2145 if (Idx < Ops.size()) {
2146 bool DeletedAdd = false;
2147 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2148 // If we have an add, expand the add operands onto the end of the operands
2149 // list.
2150 Ops.erase(Ops.begin()+Idx);
2151 Ops.append(Add->op_begin(), Add->op_end());
2152 DeletedAdd = true;
2153 }
2154
2155 // If we deleted at least one add, we added operands to the end of the list,
2156 // and they are not necessarily sorted. Recurse to resort and resimplify
2157 // any operands we just acquired.
2158 if (DeletedAdd)
2159 return getAddExpr(Ops);
2160 }
2161
2162 // Skip over the add expression until we get to a multiply.
2163 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2164 ++Idx;
2165
2166 // Check to see if there are any folding opportunities present with
2167 // operands multiplied by constant values.
2168 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2169 uint64_t BitWidth = getTypeSizeInBits(Ty);
2170 DenseMap<const SCEV *, APInt> M;
2171 SmallVector<const SCEV *, 8> NewOps;
2172 APInt AccumulatedConstant(BitWidth, 0);
2173 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2174 Ops.data(), Ops.size(),
2175 APInt(BitWidth, 1), *this)) {
2176 struct APIntCompare {
2177 bool operator()(const APInt &LHS, const APInt &RHS) const {
2178 return LHS.ult(RHS);
2179 }
2180 };
2181
2182 // Some interesting folding opportunity is present, so its worthwhile to
2183 // re-generate the operands list. Group the operands by constant scale,
2184 // to avoid multiplying by the same constant scale multiple times.
2185 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2186 for (const SCEV *NewOp : NewOps)
2187 MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2188 // Re-generate the operands list.
2189 Ops.clear();
2190 if (AccumulatedConstant != 0)
2191 Ops.push_back(getConstant(AccumulatedConstant));
2192 for (auto &MulOp : MulOpLists)
2193 if (MulOp.first != 0)
2194 Ops.push_back(getMulExpr(getConstant(MulOp.first),
2195 getAddExpr(MulOp.second)));
2196 if (Ops.empty())
2197 return getZero(Ty);
2198 if (Ops.size() == 1)
2199 return Ops[0];
2200 return getAddExpr(Ops);
2201 }
2202 }
2203
2204 // If we are adding something to a multiply expression, make sure the
2205 // something is not already an operand of the multiply. If so, merge it into
2206 // the multiply.
2207 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2208 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2209 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2210 const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2211 if (isa<SCEVConstant>(MulOpSCEV))
2212 continue;
2213 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2214 if (MulOpSCEV == Ops[AddOp]) {
2215 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1))
2216 const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2217 if (Mul->getNumOperands() != 2) {
2218 // If the multiply has more than two operands, we must get the
2219 // Y*Z term.
2220 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2221 Mul->op_begin()+MulOp);
2222 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2223 InnerMul = getMulExpr(MulOps);
2224 }
2225 const SCEV *One = getOne(Ty);
2226 const SCEV *AddOne = getAddExpr(One, InnerMul);
2227 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
2228 if (Ops.size() == 2) return OuterMul;
2229 if (AddOp < Idx) {
2230 Ops.erase(Ops.begin()+AddOp);
2231 Ops.erase(Ops.begin()+Idx-1);
2232 } else {
2233 Ops.erase(Ops.begin()+Idx);
2234 Ops.erase(Ops.begin()+AddOp-1);
2235 }
2236 Ops.push_back(OuterMul);
2237 return getAddExpr(Ops);
2238 }
2239
2240 // Check this multiply against other multiplies being added together.
2241 for (unsigned OtherMulIdx = Idx+1;
2242 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2243 ++OtherMulIdx) {
2244 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2245 // If MulOp occurs in OtherMul, we can fold the two multiplies
2246 // together.
2247 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2248 OMulOp != e; ++OMulOp)
2249 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2250 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2251 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2252 if (Mul->getNumOperands() != 2) {
2253 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2254 Mul->op_begin()+MulOp);
2255 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2256 InnerMul1 = getMulExpr(MulOps);
2257 }
2258 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2259 if (OtherMul->getNumOperands() != 2) {
2260 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2261 OtherMul->op_begin()+OMulOp);
2262 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2263 InnerMul2 = getMulExpr(MulOps);
2264 }
2265 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2266 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
2267 if (Ops.size() == 2) return OuterMul;
2268 Ops.erase(Ops.begin()+Idx);
2269 Ops.erase(Ops.begin()+OtherMulIdx-1);
2270 Ops.push_back(OuterMul);
2271 return getAddExpr(Ops);
2272 }
2273 }
2274 }
2275 }
2276
2277 // If there are any add recurrences in the operands list, see if any other
2278 // added values are loop invariant. If so, we can fold them into the
2279 // recurrence.
2280 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2281 ++Idx;
2282
2283 // Scan over all recurrences, trying to fold loop invariants into them.
2284 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2285 // Scan all of the other operands to this add and add them to the vector if
2286 // they are loop invariant w.r.t. the recurrence.
2287 SmallVector<const SCEV *, 8> LIOps;
2288 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2289 const Loop *AddRecLoop = AddRec->getLoop();
2290 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2291 if (isLoopInvariant(Ops[i], AddRecLoop)) {
2292 LIOps.push_back(Ops[i]);
2293 Ops.erase(Ops.begin()+i);
2294 --i; --e;
2295 }
2296
2297 // If we found some loop invariants, fold them into the recurrence.
2298 if (!LIOps.empty()) {
2299 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step}
2300 LIOps.push_back(AddRec->getStart());
2301
2302 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2303 AddRec->op_end());
2304 // This follows from the fact that the no-wrap flags on the outer add
2305 // expression are applicable on the 0th iteration, when the add recurrence
2306 // will be equal to its start value.
2307 AddRecOps[0] = getAddExpr(LIOps, Flags);
2308
2309 // Build the new addrec. Propagate the NUW and NSW flags if both the
2310 // outer add and the inner addrec are guaranteed to have no overflow.
2311 // Always propagate NW.
2312 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2313 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2314
2315 // If all of the other operands were loop invariant, we are done.
2316 if (Ops.size() == 1) return NewRec;
2317
2318 // Otherwise, add the folded AddRec by the non-invariant parts.
2319 for (unsigned i = 0;; ++i)
2320 if (Ops[i] == AddRec) {
2321 Ops[i] = NewRec;
2322 break;
2323 }
2324 return getAddExpr(Ops);
2325 }
2326
2327 // Okay, if there weren't any loop invariants to be folded, check to see if
2328 // there are multiple AddRec's with the same loop induction variable being
2329 // added together. If so, we can fold them.
2330 for (unsigned OtherIdx = Idx+1;
2331 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2332 ++OtherIdx)
2333 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2334 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L>
2335 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2336 AddRec->op_end());
2337 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2338 ++OtherIdx)
2339 if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
2340 if (OtherAddRec->getLoop() == AddRecLoop) {
2341 for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2342 i != e; ++i) {
2343 if (i >= AddRecOps.size()) {
2344 AddRecOps.append(OtherAddRec->op_begin()+i,
2345 OtherAddRec->op_end());
2346 break;
2347 }
2348 AddRecOps[i] = getAddExpr(AddRecOps[i],
2349 OtherAddRec->getOperand(i));
2350 }
2351 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2352 }
2353 // Step size has changed, so we cannot guarantee no self-wraparound.
2354 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2355 return getAddExpr(Ops);
2356 }
2357
2358 // Otherwise couldn't fold anything into this recurrence. Move onto the
2359 // next one.
2360 }
2361
2362 // Okay, it looks like we really DO need an add expr. Check to see if we
2363 // already have one, otherwise create a new one.
2364 FoldingSetNodeID ID;
2365 ID.AddInteger(scAddExpr);
2366 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2367 ID.AddPointer(Ops[i]);
2368 void *IP = nullptr;
2369 SCEVAddExpr *S =
2370 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2371 if (!S) {
2372 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2373 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2374 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2375 O, Ops.size());
2376 UniqueSCEVs.InsertNode(S, IP);
2377 }
2378 S->setNoWrapFlags(Flags);
2379 return S;
2380}
2381
2382static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2383 uint64_t k = i*j;
2384 if (j > 1 && k / j != i) Overflow = true;
2385 return k;
2386}
2387
2388/// Compute the result of "n choose k", the binomial coefficient. If an
2389/// intermediate computation overflows, Overflow will be set and the return will
2390/// be garbage. Overflow is not cleared on absence of overflow.
2391static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2392 // We use the multiplicative formula:
2393 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2394 // At each iteration, we take the n-th term of the numeral and divide by the
2395 // (k-n)th term of the denominator. This division will always produce an
2396 // integral result, and helps reduce the chance of overflow in the
2397 // intermediate computations. However, we can still overflow even when the
2398 // final result would fit.
2399
2400 if (n == 0 || n == k) return 1;
2401 if (k > n) return 0;
2402
2403 if (k > n/2)
2404 k = n-k;
2405
2406 uint64_t r = 1;
2407 for (uint64_t i = 1; i <= k; ++i) {
2408 r = umul_ov(r, n-(i-1), Overflow);
2409 r /= i;
2410 }
2411 return r;
2412}
2413
2414/// Determine if any of the operands in this SCEV are a constant or if
2415/// any of the add or multiply expressions in this SCEV contain a constant.
2416static bool containsConstantSomewhere(const SCEV *StartExpr) {
2417 SmallVector<const SCEV *, 4> Ops;
2418 Ops.push_back(StartExpr);
2419 while (!Ops.empty()) {
2420 const SCEV *CurrentExpr = Ops.pop_back_val();
2421 if (isa<SCEVConstant>(*CurrentExpr))
2422 return true;
2423
2424 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2425 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
2426 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
2427 }
2428 }
2429 return false;
2430}
2431
2432/// Get a canonical multiply expression, or something simpler if possible.
2433const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2434 SCEV::NoWrapFlags Flags) {
2435 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&((Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
"only nuw or nsw allowed") ? static_cast<void> (0) : __assert_fail
("Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && \"only nuw or nsw allowed\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 2436, __PRETTY_FUNCTION__))
2436 "only nuw or nsw allowed")((Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
"only nuw or nsw allowed") ? static_cast<void> (0) : __assert_fail
("Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && \"only nuw or nsw allowed\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 2436, __PRETTY_FUNCTION__))
;
2437 assert(!Ops.empty() && "Cannot get empty mul!")((!Ops.empty() && "Cannot get empty mul!") ? static_cast
<void> (0) : __assert_fail ("!Ops.empty() && \"Cannot get empty mul!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 2437, __PRETTY_FUNCTION__))
;
2438 if (Ops.size() == 1) return Ops[0];
2439#ifndef NDEBUG
2440 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2441 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2442 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&((getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
"SCEVMulExpr operand types don't match!") ? static_cast<void
> (0) : __assert_fail ("getEffectiveSCEVType(Ops[i]->getType()) == ETy && \"SCEVMulExpr operand types don't match!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 2443, __PRETTY_FUNCTION__))
2443 "SCEVMulExpr operand types don't match!")((getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
"SCEVMulExpr operand types don't match!") ? static_cast<void
> (0) : __assert_fail ("getEffectiveSCEVType(Ops[i]->getType()) == ETy && \"SCEVMulExpr operand types don't match!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 2443, __PRETTY_FUNCTION__))
;
2444#endif
2445
2446 // Sort by complexity, this groups all similar expression types together.
2447 GroupByComplexity(Ops, &LI);
2448
2449 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2450
2451 // If there are any constants, fold them together.
2452 unsigned Idx = 0;
2453 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2454
2455 // C1*(C2+V) -> C1*C2 + C1*V
2456 if (Ops.size() == 2)
2457 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2458 // If any of Add's ops are Adds or Muls with a constant,
2459 // apply this transformation as well.
2460 if (Add->getNumOperands() == 2)
2461 if (containsConstantSomewhere(Add))
2462 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2463 getMulExpr(LHSC, Add->getOperand(1)));
2464
2465 ++Idx;
2466 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2467 // We found two constants, fold them together!
2468 ConstantInt *Fold =
2469 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
2470 Ops[0] = getConstant(Fold);
2471 Ops.erase(Ops.begin()+1); // Erase the folded element
2472 if (Ops.size() == 1) return Ops[0];
2473 LHSC = cast<SCEVConstant>(Ops[0]);
2474 }
2475
2476 // If we are left with a constant one being multiplied, strip it off.
2477 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2478 Ops.erase(Ops.begin());
2479 --Idx;
2480 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2481 // If we have a multiply of zero, it will always be zero.
2482 return Ops[0];
2483 } else if (Ops[0]->isAllOnesValue()) {
2484 // If we have a mul by -1 of an add, try distributing the -1 among the
2485 // add operands.
2486 if (Ops.size() == 2) {
2487 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2488 SmallVector<const SCEV *, 4> NewOps;
2489 bool AnyFolded = false;
2490 for (const SCEV *AddOp : Add->operands()) {
2491 const SCEV *Mul = getMulExpr(Ops[0], AddOp);
2492 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2493 NewOps.push_back(Mul);
2494 }
2495 if (AnyFolded)
2496 return getAddExpr(NewOps);
2497 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2498 // Negation preserves a recurrence's no self-wrap property.
2499 SmallVector<const SCEV *, 4> Operands;
2500 for (const SCEV *AddRecOp : AddRec->operands())
2501 Operands.push_back(getMulExpr(Ops[0], AddRecOp));
2502
2503 return getAddRecExpr(Operands, AddRec->getLoop(),
2504 AddRec->getNoWrapFlags(SCEV::FlagNW));
2505 }
2506 }
2507 }
2508
2509 if (Ops.size() == 1)
2510 return Ops[0];
2511 }
2512
2513 // Skip over the add expression until we get to a multiply.
2514 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2515 ++Idx;
2516
2517 // If there are mul operands inline them all into this expression.
2518 if (Idx < Ops.size()) {
2519 bool DeletedMul = false;
2520 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2521 // If we have an mul, expand the mul operands onto the end of the operands
2522 // list.
2523 Ops.erase(Ops.begin()+Idx);
2524 Ops.append(Mul->op_begin(), Mul->op_end());
2525 DeletedMul = true;
2526 }
2527
2528 // If we deleted at least one mul, we added operands to the end of the list,
2529 // and they are not necessarily sorted. Recurse to resort and resimplify
2530 // any operands we just acquired.
2531 if (DeletedMul)
2532 return getMulExpr(Ops);
2533 }
2534
2535 // If there are any add recurrences in the operands list, see if any other
2536 // added values are loop invariant. If so, we can fold them into the
2537 // recurrence.
2538 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2539 ++Idx;
2540
2541 // Scan over all recurrences, trying to fold loop invariants into them.
2542 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2543 // Scan all of the other operands to this mul and add them to the vector if
2544 // they are loop invariant w.r.t. the recurrence.
2545 SmallVector<const SCEV *, 8> LIOps;
2546 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2547 const Loop *AddRecLoop = AddRec->getLoop();
2548 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2549 if (isLoopInvariant(Ops[i], AddRecLoop)) {
2550 LIOps.push_back(Ops[i]);
2551 Ops.erase(Ops.begin()+i);
2552 --i; --e;
2553 }
2554
2555 // If we found some loop invariants, fold them into the recurrence.
2556 if (!LIOps.empty()) {
2557 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step}
2558 SmallVector<const SCEV *, 4> NewOps;
2559 NewOps.reserve(AddRec->getNumOperands());
2560 const SCEV *Scale = getMulExpr(LIOps);
2561 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2562 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
2563
2564 // Build the new addrec. Propagate the NUW and NSW flags if both the
2565 // outer mul and the inner addrec are guaranteed to have no overflow.
2566 //
2567 // No self-wrap cannot be guaranteed after changing the step size, but
2568 // will be inferred if either NUW or NSW is true.
2569 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2570 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2571
2572 // If all of the other operands were loop invariant, we are done.
2573 if (Ops.size() == 1) return NewRec;
2574
2575 // Otherwise, multiply the folded AddRec by the non-invariant parts.
2576 for (unsigned i = 0;; ++i)
2577 if (Ops[i] == AddRec) {
2578 Ops[i] = NewRec;
2579 break;
2580 }
2581 return getMulExpr(Ops);
2582 }
2583
2584 // Okay, if there weren't any loop invariants to be folded, check to see if
2585 // there are multiple AddRec's with the same loop induction variable being
2586 // multiplied together. If so, we can fold them.
2587
2588 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2589 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2590 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2591 // ]]],+,...up to x=2n}.
2592 // Note that the arguments to choose() are always integers with values
2593 // known at compile time, never SCEV objects.
2594 //
2595 // The implementation avoids pointless extra computations when the two
2596 // addrec's are of different length (mathematically, it's equivalent to
2597 // an infinite stream of zeros on the right).
2598 bool OpsModified = false;
2599 for (unsigned OtherIdx = Idx+1;
2600 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2601 ++OtherIdx) {
2602 const SCEVAddRecExpr *OtherAddRec =
2603 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2604 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2605 continue;
2606
2607 bool Overflow = false;
2608 Type *Ty = AddRec->getType();
2609 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2610 SmallVector<const SCEV*, 7> AddRecOps;
2611 for (int x = 0, xe = AddRec->getNumOperands() +
2612 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2613 const SCEV *Term = getZero(Ty);
2614 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2615 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2616 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2617 ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2618 z < ze && !Overflow; ++z) {
2619 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2620 uint64_t Coeff;
2621 if (LargerThan64Bits)
2622 Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2623 else
2624 Coeff = Coeff1*Coeff2;
2625 const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2626 const SCEV *Term1 = AddRec->getOperand(y-z);
2627 const SCEV *Term2 = OtherAddRec->getOperand(z);
2628 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
2629 }
2630 }
2631 AddRecOps.push_back(Term);
2632 }
2633 if (!Overflow) {
2634 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2635 SCEV::FlagAnyWrap);
2636 if (Ops.size() == 2) return NewAddRec;
2637 Ops[Idx] = NewAddRec;
2638 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2639 OpsModified = true;
2640 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2641 if (!AddRec)
2642 break;
2643 }
2644 }
2645 if (OpsModified)
2646 return getMulExpr(Ops);
2647
2648 // Otherwise couldn't fold anything into this recurrence. Move onto the
2649 // next one.
2650 }
2651
2652 // Okay, it looks like we really DO need an mul expr. Check to see if we
2653 // already have one, otherwise create a new one.
2654 FoldingSetNodeID ID;
2655 ID.AddInteger(scMulExpr);
2656 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2657 ID.AddPointer(Ops[i]);
2658 void *IP = nullptr;
2659 SCEVMulExpr *S =
2660 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2661 if (!S) {
2662 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2663 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2664 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2665 O, Ops.size());
2666 UniqueSCEVs.InsertNode(S, IP);
2667 }
2668 S->setNoWrapFlags(Flags);
2669 return S;
2670}
2671
2672/// Get a canonical unsigned division expression, or something simpler if
2673/// possible.
2674const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2675 const SCEV *RHS) {
2676 assert(getEffectiveSCEVType(LHS->getType()) ==((getEffectiveSCEVType(LHS->getType()) == getEffectiveSCEVType
(RHS->getType()) && "SCEVUDivExpr operand types don't match!"
) ? static_cast<void> (0) : __assert_fail ("getEffectiveSCEVType(LHS->getType()) == getEffectiveSCEVType(RHS->getType()) && \"SCEVUDivExpr operand types don't match!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 2678, __PRETTY_FUNCTION__))
2677 getEffectiveSCEVType(RHS->getType()) &&((getEffectiveSCEVType(LHS->getType()) == getEffectiveSCEVType
(RHS->getType()) && "SCEVUDivExpr operand types don't match!"
) ? static_cast<void> (0) : __assert_fail ("getEffectiveSCEVType(LHS->getType()) == getEffectiveSCEVType(RHS->getType()) && \"SCEVUDivExpr operand types don't match!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 2678, __PRETTY_FUNCTION__))
2678 "SCEVUDivExpr operand types don't match!")((getEffectiveSCEVType(LHS->getType()) == getEffectiveSCEVType
(RHS->getType()) && "SCEVUDivExpr operand types don't match!"
) ? static_cast<void> (0) : __assert_fail ("getEffectiveSCEVType(LHS->getType()) == getEffectiveSCEVType(RHS->getType()) && \"SCEVUDivExpr operand types don't match!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 2678, __PRETTY_FUNCTION__))
;
2679
2680 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2681 if (RHSC->getValue()->equalsInt(1))
2682 return LHS; // X udiv 1 --> x
2683 // If the denominator is zero, the result of the udiv is undefined. Don't
2684 // try to analyze it, because the resolution chosen here may differ from
2685 // the resolution chosen in other parts of the compiler.
2686 if (!RHSC->getValue()->isZero()) {
2687 // Determine if the division can be folded into the operands of
2688 // its operands.
2689 // TODO: Generalize this to non-constants by using known-bits information.
2690 Type *Ty = LHS->getType();
2691 unsigned LZ = RHSC->getAPInt().countLeadingZeros();
2692 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2693 // For non-power-of-two values, effectively round the value up to the
2694 // nearest power of two.
2695 if (!RHSC->getAPInt().isPowerOf2())
2696 ++MaxShiftAmt;
2697 IntegerType *ExtTy =
2698 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2699 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2700 if (const SCEVConstant *Step =
2701 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2702 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2703 const APInt &StepInt = Step->getAPInt();
2704 const APInt &DivInt = RHSC->getAPInt();
2705 if (!StepInt.urem(DivInt) &&
2706 getZeroExtendExpr(AR, ExtTy) ==
2707 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2708 getZeroExtendExpr(Step, ExtTy),
2709 AR->getLoop(), SCEV::FlagAnyWrap)) {
2710 SmallVector<const SCEV *, 4> Operands;
2711 for (const SCEV *Op : AR->operands())
2712 Operands.push_back(getUDivExpr(Op, RHS));
2713 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
2714 }
2715 /// Get a canonical UDivExpr for a recurrence.
2716 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2717 // We can currently only fold X%N if X is constant.
2718 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2719 if (StartC && !DivInt.urem(StepInt) &&
2720 getZeroExtendExpr(AR, ExtTy) ==
2721 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2722 getZeroExtendExpr(Step, ExtTy),
2723 AR->getLoop(), SCEV::FlagAnyWrap)) {
2724 const APInt &StartInt = StartC->getAPInt();
2725 const APInt &StartRem = StartInt.urem(StepInt);
2726 if (StartRem != 0)
2727 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2728 AR->getLoop(), SCEV::FlagNW);
2729 }
2730 }
2731 // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2732 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2733 SmallVector<const SCEV *, 4> Operands;
2734 for (const SCEV *Op : M->operands())
2735 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
2736 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2737 // Find an operand that's safely divisible.
2738 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2739 const SCEV *Op = M->getOperand(i);
2740 const SCEV *Div = getUDivExpr(Op, RHSC);
2741 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2742 Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2743 M->op_end());
2744 Operands[i] = Div;
2745 return getMulExpr(Operands);
2746 }
2747 }
2748 }
2749 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2750 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
2751 SmallVector<const SCEV *, 4> Operands;
2752 for (const SCEV *Op : A->operands())
2753 Operands.push_back(getZeroExtendExpr(Op, ExtTy));
2754 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2755 Operands.clear();
2756 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2757 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2758 if (isa<SCEVUDivExpr>(Op) ||
2759 getMulExpr(Op, RHS) != A->getOperand(i))
2760 break;
2761 Operands.push_back(Op);
2762 }
2763 if (Operands.size() == A->getNumOperands())
2764 return getAddExpr(Operands);
2765 }
2766 }
2767
2768 // Fold if both operands are constant.
2769 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2770 Constant *LHSCV = LHSC->getValue();
2771 Constant *RHSCV = RHSC->getValue();
2772 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2773 RHSCV)));
2774 }
2775 }
2776 }
2777
2778 FoldingSetNodeID ID;
2779 ID.AddInteger(scUDivExpr);
2780 ID.AddPointer(LHS);
2781 ID.AddPointer(RHS);
2782 void *IP = nullptr;
2783 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2784 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2785 LHS, RHS);
2786 UniqueSCEVs.InsertNode(S, IP);
2787 return S;
2788}
2789
2790static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2791 APInt A = C1->getAPInt().abs();
2792 APInt B = C2->getAPInt().abs();
2793 uint32_t ABW = A.getBitWidth();
2794 uint32_t BBW = B.getBitWidth();
2795
2796 if (ABW > BBW)
2797 B = B.zext(ABW);
2798 else if (ABW < BBW)
2799 A = A.zext(BBW);
2800
2801 return APIntOps::GreatestCommonDivisor(A, B);
2802}
2803
2804/// Get a canonical unsigned division expression, or something simpler if
2805/// possible. There is no representation for an exact udiv in SCEV IR, but we
2806/// can attempt to remove factors from the LHS and RHS. We can't do this when
2807/// it's not exact because the udiv may be clearing bits.
2808const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2809 const SCEV *RHS) {
2810 // TODO: we could try to find factors in all sorts of things, but for now we
2811 // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2812 // end of this file for inspiration.
2813
2814 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2815 if (!Mul)
2816 return getUDivExpr(LHS, RHS);
2817
2818 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2819 // If the mulexpr multiplies by a constant, then that constant must be the
2820 // first element of the mulexpr.
2821 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2822 if (LHSCst == RHSCst) {
2823 SmallVector<const SCEV *, 2> Operands;
2824 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2825 return getMulExpr(Operands);
2826 }
2827
2828 // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2829 // that there's a factor provided by one of the other terms. We need to
2830 // check.
2831 APInt Factor = gcd(LHSCst, RHSCst);
2832 if (!Factor.isIntN(1)) {
2833 LHSCst =
2834 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
2835 RHSCst =
2836 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
2837 SmallVector<const SCEV *, 2> Operands;
2838 Operands.push_back(LHSCst);
2839 Operands.append(Mul->op_begin() + 1, Mul->op_end());
2840 LHS = getMulExpr(Operands);
2841 RHS = RHSCst;
2842 Mul = dyn_cast<SCEVMulExpr>(LHS);
2843 if (!Mul)
2844 return getUDivExactExpr(LHS, RHS);
2845 }
2846 }
2847 }
2848
2849 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2850 if (Mul->getOperand(i) == RHS) {
2851 SmallVector<const SCEV *, 2> Operands;
2852 Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2853 Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2854 return getMulExpr(Operands);
2855 }
2856 }
2857
2858 return getUDivExpr(LHS, RHS);
2859}
2860
2861/// Get an add recurrence expression for the specified loop. Simplify the
2862/// expression as much as possible.
2863const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2864 const Loop *L,
2865 SCEV::NoWrapFlags Flags) {
2866 SmallVector<const SCEV *, 4> Operands;
2867 Operands.push_back(Start);
2868 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2869 if (StepChrec->getLoop() == L) {
2870 Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2871 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
2872 }
2873
2874 Operands.push_back(Step);
2875 return getAddRecExpr(Operands, L, Flags);
2876}
2877
2878/// Get an add recurrence expression for the specified loop. Simplify the
2879/// expression as much as possible.
2880const SCEV *
2881ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2882 const Loop *L, SCEV::NoWrapFlags Flags) {
2883 if (Operands.size() == 1) return Operands[0];
2884#ifndef NDEBUG
2885 Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2886 for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2887 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&((getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
"SCEVAddRecExpr operand types don't match!") ? static_cast<
void> (0) : __assert_fail ("getEffectiveSCEVType(Operands[i]->getType()) == ETy && \"SCEVAddRecExpr operand types don't match!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 2888, __PRETTY_FUNCTION__))
2888 "SCEVAddRecExpr operand types don't match!")((getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
"SCEVAddRecExpr operand types don't match!") ? static_cast<
void> (0) : __assert_fail ("getEffectiveSCEVType(Operands[i]->getType()) == ETy && \"SCEVAddRecExpr operand types don't match!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 2888, __PRETTY_FUNCTION__))
;
2889 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2890 assert(isLoopInvariant(Operands[i], L) &&((isLoopInvariant(Operands[i], L) && "SCEVAddRecExpr operand is not loop-invariant!"
) ? static_cast<void> (0) : __assert_fail ("isLoopInvariant(Operands[i], L) && \"SCEVAddRecExpr operand is not loop-invariant!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 2891, __PRETTY_FUNCTION__))
2891 "SCEVAddRecExpr operand is not loop-invariant!")((isLoopInvariant(Operands[i], L) && "SCEVAddRecExpr operand is not loop-invariant!"
) ? static_cast<void> (0) : __assert_fail ("isLoopInvariant(Operands[i], L) && \"SCEVAddRecExpr operand is not loop-invariant!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 2891, __PRETTY_FUNCTION__))
;
2892#endif
2893
2894 if (Operands.back()->isZero()) {
2895 Operands.pop_back();
2896 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X
2897 }
2898
2899 // It's tempting to want to call getMaxBackedgeTakenCount count here and
2900 // use that information to infer NUW and NSW flags. However, computing a
2901 // BE count requires calling getAddRecExpr, so we may not yet have a
2902 // meaningful BE count at this point (and if we don't, we'd be stuck
2903 // with a SCEVCouldNotCompute as the cached BE count).
2904
2905 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
2906
2907 // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2908 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2909 const Loop *NestedLoop = NestedAR->getLoop();
2910 if (L->contains(NestedLoop)
2911 ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
2912 : (!NestedLoop->contains(L) &&
2913 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
2914 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2915 NestedAR->op_end());
2916 Operands[0] = NestedAR->getStart();
2917 // AddRecs require their operands be loop-invariant with respect to their
2918 // loops. Don't perform this transformation if it would break this
2919 // requirement.
2920 bool AllInvariant = all_of(
2921 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
2922
2923 if (AllInvariant) {
2924 // Create a recurrence for the outer loop with the same step size.
2925 //
2926 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2927 // inner recurrence has the same property.
2928 SCEV::NoWrapFlags OuterFlags =
2929 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
2930
2931 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
2932 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
2933 return isLoopInvariant(Op, NestedLoop);
2934 });
2935
2936 if (AllInvariant) {
2937 // Ok, both add recurrences are valid after the transformation.
2938 //
2939 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2940 // the outer recurrence has the same property.
2941 SCEV::NoWrapFlags InnerFlags =
2942 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
2943 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2944 }
2945 }
2946 // Reset Operands to its original state.
2947 Operands[0] = NestedAR;
2948 }
2949 }
2950
2951 // Okay, it looks like we really DO need an addrec expr. Check to see if we
2952 // already have one, otherwise create a new one.
2953 FoldingSetNodeID ID;
2954 ID.AddInteger(scAddRecExpr);
2955 for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2956 ID.AddPointer(Operands[i]);
2957 ID.AddPointer(L);
2958 void *IP = nullptr;
2959 SCEVAddRecExpr *S =
2960 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2961 if (!S) {
2962 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2963 std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2964 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2965 O, Operands.size(), L);
2966 UniqueSCEVs.InsertNode(S, IP);
2967 }
2968 S->setNoWrapFlags(Flags);
2969 return S;
2970}
2971
2972const SCEV *
2973ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
2974 const SmallVectorImpl<const SCEV *> &IndexExprs,
2975 bool InBounds) {
2976 // getSCEV(Base)->getType() has the same address space as Base->getType()
2977 // because SCEV::getType() preserves the address space.
2978 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
2979 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
2980 // instruction to its SCEV, because the Instruction may be guarded by control
2981 // flow and the no-overflow bits may not be valid for the expression in any
2982 // context. This can be fixed similarly to how these flags are handled for
2983 // adds.
2984 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
2985
2986 const SCEV *TotalOffset = getZero(IntPtrTy);
2987 // The address space is unimportant. The first thing we do on CurTy is getting
2988 // its element type.
2989 Type *CurTy = PointerType::getUnqual(PointeeType);
2990 for (const SCEV *IndexExpr : IndexExprs) {
2991 // Compute the (potentially symbolic) offset in bytes for this index.
2992 if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2993 // For a struct, add the member offset.
2994 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
2995 unsigned FieldNo = Index->getZExtValue();
2996 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
2997
2998 // Add the field offset to the running total offset.
2999 TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3000
3001 // Update CurTy to the type of the field at Index.
3002 CurTy = STy->getTypeAtIndex(Index);
3003 } else {
3004 // Update CurTy to its element type.
3005 CurTy = cast<SequentialType>(CurTy)->getElementType();
3006 // For an array, add the element offset, explicitly scaled.
3007 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
3008 // Getelementptr indices are signed.
3009 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
3010
3011 // Multiply the index by the element size to compute the element offset.
3012 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
3013
3014 // Add the element offset to the running total offset.
3015 TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3016 }
3017 }
3018
3019 // Add the total offset from all the GEP indices to the base.
3020 return getAddExpr(BaseExpr, TotalOffset, Wrap);
3021}
3022
3023const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
3024 const SCEV *RHS) {
3025 SmallVector<const SCEV *, 2> Ops;
3026 Ops.push_back(LHS);
3027 Ops.push_back(RHS);
3028 return getSMaxExpr(Ops);
3029}
3030
3031const SCEV *
3032ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3033 assert(!Ops.empty() && "Cannot get empty smax!")((!Ops.empty() && "Cannot get empty smax!") ? static_cast
<void> (0) : __assert_fail ("!Ops.empty() && \"Cannot get empty smax!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3033, __PRETTY_FUNCTION__))
;
3034 if (Ops.size() == 1) return Ops[0];
3035#ifndef NDEBUG
3036 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3037 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3038 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&((getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
"SCEVSMaxExpr operand types don't match!") ? static_cast<
void> (0) : __assert_fail ("getEffectiveSCEVType(Ops[i]->getType()) == ETy && \"SCEVSMaxExpr operand types don't match!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3039, __PRETTY_FUNCTION__))
3039 "SCEVSMaxExpr operand types don't match!")((getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
"SCEVSMaxExpr operand types don't match!") ? static_cast<
void> (0) : __assert_fail ("getEffectiveSCEVType(Ops[i]->getType()) == ETy && \"SCEVSMaxExpr operand types don't match!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3039, __PRETTY_FUNCTION__))
;
3040#endif
3041
3042 // Sort by complexity, this groups all similar expression types together.
3043 GroupByComplexity(Ops, &LI);
3044
3045 // If there are any constants, fold them together.
3046 unsigned Idx = 0;
3047 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3048 ++Idx;
3049 assert(Idx < Ops.size())((Idx < Ops.size()) ? static_cast<void> (0) : __assert_fail
("Idx < Ops.size()", "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3049, __PRETTY_FUNCTION__))
;
3050 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3051 // We found two constants, fold them together!
3052 ConstantInt *Fold = ConstantInt::get(
3053 getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt()));
3054 Ops[0] = getConstant(Fold);
3055 Ops.erase(Ops.begin()+1); // Erase the folded element
3056 if (Ops.size() == 1) return Ops[0];
3057 LHSC = cast<SCEVConstant>(Ops[0]);
3058 }
3059
3060 // If we are left with a constant minimum-int, strip it off.
3061 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3062 Ops.erase(Ops.begin());
3063 --Idx;
3064 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3065 // If we have an smax with a constant maximum-int, it will always be
3066 // maximum-int.
3067 return Ops[0];
3068 }
3069
3070 if (Ops.size() == 1) return Ops[0];
3071 }
3072
3073 // Find the first SMax
3074 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3075 ++Idx;
3076
3077 // Check to see if one of the operands is an SMax. If so, expand its operands
3078 // onto our operand list, and recurse to simplify.
3079 if (Idx < Ops.size()) {
3080 bool DeletedSMax = false;
3081 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
3082 Ops.erase(Ops.begin()+Idx);
3083 Ops.append(SMax->op_begin(), SMax->op_end());
3084 DeletedSMax = true;
3085 }
3086
3087 if (DeletedSMax)
3088 return getSMaxExpr(Ops);
3089 }
3090
3091 // Okay, check to see if the same value occurs in the operand list twice. If
3092 // so, delete one. Since we sorted the list, these values are required to
3093 // be adjacent.
3094 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3095 // X smax Y smax Y --> X smax Y
3096 // X smax Y --> X, if X is always greater than Y
3097 if (Ops[i] == Ops[i+1] ||
3098 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3099 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3100 --i; --e;
3101 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
3102 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3103 --i; --e;
3104 }
3105
3106 if (Ops.size() == 1) return Ops[0];
3107
3108 assert(!Ops.empty() && "Reduced smax down to nothing!")((!Ops.empty() && "Reduced smax down to nothing!") ? static_cast
<void> (0) : __assert_fail ("!Ops.empty() && \"Reduced smax down to nothing!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3108, __PRETTY_FUNCTION__))
;
3109
3110 // Okay, it looks like we really DO need an smax expr. Check to see if we
3111 // already have one, otherwise create a new one.
3112 FoldingSetNodeID ID;
3113 ID.AddInteger(scSMaxExpr);
3114 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3115 ID.AddPointer(Ops[i]);
3116 void *IP = nullptr;
3117 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3118 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3119 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3120 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3121 O, Ops.size());
3122 UniqueSCEVs.InsertNode(S, IP);
3123 return S;
3124}
3125
3126const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3127 const SCEV *RHS) {
3128 SmallVector<const SCEV *, 2> Ops;
3129 Ops.push_back(LHS);
3130 Ops.push_back(RHS);
3131 return getUMaxExpr(Ops);
3132}
3133
3134const SCEV *
3135ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3136 assert(!Ops.empty() && "Cannot get empty umax!")((!Ops.empty() && "Cannot get empty umax!") ? static_cast
<void> (0) : __assert_fail ("!Ops.empty() && \"Cannot get empty umax!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3136, __PRETTY_FUNCTION__))
;
3137 if (Ops.size() == 1) return Ops[0];
3138#ifndef NDEBUG
3139 Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3140 for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3141 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&((getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
"SCEVUMaxExpr operand types don't match!") ? static_cast<
void> (0) : __assert_fail ("getEffectiveSCEVType(Ops[i]->getType()) == ETy && \"SCEVUMaxExpr operand types don't match!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3142, __PRETTY_FUNCTION__))
3142 "SCEVUMaxExpr operand types don't match!")((getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
"SCEVUMaxExpr operand types don't match!") ? static_cast<
void> (0) : __assert_fail ("getEffectiveSCEVType(Ops[i]->getType()) == ETy && \"SCEVUMaxExpr operand types don't match!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3142, __PRETTY_FUNCTION__))
;
3143#endif
3144
3145 // Sort by complexity, this groups all similar expression types together.
3146 GroupByComplexity(Ops, &LI);
3147
3148 // If there are any constants, fold them together.
3149 unsigned Idx = 0;
3150 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3151 ++Idx;
3152 assert(Idx < Ops.size())((Idx < Ops.size()) ? static_cast<void> (0) : __assert_fail
("Idx < Ops.size()", "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3152, __PRETTY_FUNCTION__))
;
3153 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3154 // We found two constants, fold them together!
3155 ConstantInt *Fold = ConstantInt::get(
3156 getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt()));
3157 Ops[0] = getConstant(Fold);
3158 Ops.erase(Ops.begin()+1); // Erase the folded element
3159 if (Ops.size() == 1) return Ops[0];
3160 LHSC = cast<SCEVConstant>(Ops[0]);
3161 }
3162
3163 // If we are left with a constant minimum-int, strip it off.
3164 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3165 Ops.erase(Ops.begin());
3166 --Idx;
3167 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3168 // If we have an umax with a constant maximum-int, it will always be
3169 // maximum-int.
3170 return Ops[0];
3171 }
3172
3173 if (Ops.size() == 1) return Ops[0];
3174 }
3175
3176 // Find the first UMax
3177 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3178 ++Idx;
3179
3180 // Check to see if one of the operands is a UMax. If so, expand its operands
3181 // onto our operand list, and recurse to simplify.
3182 if (Idx < Ops.size()) {
3183 bool DeletedUMax = false;
3184 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
3185 Ops.erase(Ops.begin()+Idx);
3186 Ops.append(UMax->op_begin(), UMax->op_end());
3187 DeletedUMax = true;
3188 }
3189
3190 if (DeletedUMax)
3191 return getUMaxExpr(Ops);
3192 }
3193
3194 // Okay, check to see if the same value occurs in the operand list twice. If
3195 // so, delete one. Since we sorted the list, these values are required to
3196 // be adjacent.
3197 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3198 // X umax Y umax Y --> X umax Y
3199 // X umax Y --> X, if X is always greater than Y
3200 if (Ops[i] == Ops[i+1] ||
3201 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3202 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3203 --i; --e;
3204 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
3205 Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3206 --i; --e;
3207 }
3208
3209 if (Ops.size() == 1) return Ops[0];
3210
3211 assert(!Ops.empty() && "Reduced umax down to nothing!")((!Ops.empty() && "Reduced umax down to nothing!") ? static_cast
<void> (0) : __assert_fail ("!Ops.empty() && \"Reduced umax down to nothing!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3211, __PRETTY_FUNCTION__))
;
3212
3213 // Okay, it looks like we really DO need a umax expr. Check to see if we
3214 // already have one, otherwise create a new one.
3215 FoldingSetNodeID ID;
3216 ID.AddInteger(scUMaxExpr);
3217 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3218 ID.AddPointer(Ops[i]);
3219 void *IP = nullptr;
3220 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3221 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3222 std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3223 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3224 O, Ops.size());
3225 UniqueSCEVs.InsertNode(S, IP);
3226 return S;
3227}
3228
3229const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3230 const SCEV *RHS) {
3231 // ~smax(~x, ~y) == smin(x, y).
3232 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3233}
3234
3235const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3236 const SCEV *RHS) {
3237 // ~umax(~x, ~y) == umin(x, y)
3238 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3239}
3240
3241const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3242 // We can bypass creating a target-independent
3243 // constant expression and then folding it back into a ConstantInt.
3244 // This is just a compile-time optimization.
3245 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3246}
3247
3248const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3249 StructType *STy,
3250 unsigned FieldNo) {
3251 // We can bypass creating a target-independent
3252 // constant expression and then folding it back into a ConstantInt.
3253 // This is just a compile-time optimization.
3254 return getConstant(
3255 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3256}
3257
3258const SCEV *ScalarEvolution::getUnknown(Value *V) {
3259 // Don't attempt to do anything other than create a SCEVUnknown object
3260 // here. createSCEV only calls getUnknown after checking for all other
3261 // interesting possibilities, and any other code that calls getUnknown
3262 // is doing so in order to hide a value from SCEV canonicalization.
3263
3264 FoldingSetNodeID ID;
3265 ID.AddInteger(scUnknown);
3266 ID.AddPointer(V);
3267 void *IP = nullptr;
3268 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3269 assert(cast<SCEVUnknown>(S)->getValue() == V &&((cast<SCEVUnknown>(S)->getValue() == V && "Stale SCEVUnknown in uniquing map!"
) ? static_cast<void> (0) : __assert_fail ("cast<SCEVUnknown>(S)->getValue() == V && \"Stale SCEVUnknown in uniquing map!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3270, __PRETTY_FUNCTION__))
3270 "Stale SCEVUnknown in uniquing map!")((cast<SCEVUnknown>(S)->getValue() == V && "Stale SCEVUnknown in uniquing map!"
) ? static_cast<void> (0) : __assert_fail ("cast<SCEVUnknown>(S)->getValue() == V && \"Stale SCEVUnknown in uniquing map!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3270, __PRETTY_FUNCTION__))
;
3271 return S;
3272 }
3273 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3274 FirstUnknown);
3275 FirstUnknown = cast<SCEVUnknown>(S);
3276 UniqueSCEVs.InsertNode(S, IP);
3277 return S;
3278}
3279
3280//===----------------------------------------------------------------------===//
3281// Basic SCEV Analysis and PHI Idiom Recognition Code
3282//
3283
3284/// Test if values of the given type are analyzable within the SCEV
3285/// framework. This primarily includes integer types, and it can optionally
3286/// include pointer types if the ScalarEvolution class has access to
3287/// target-specific information.
3288bool ScalarEvolution::isSCEVable(Type *Ty) const {
3289 // Integers and pointers are always SCEVable.
3290 return Ty->isIntegerTy() || Ty->isPointerTy();
3291}
3292
3293/// Return the size in bits of the specified type, for which isSCEVable must
3294/// return true.
3295uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3296 assert(isSCEVable(Ty) && "Type is not SCEVable!")((isSCEVable(Ty) && "Type is not SCEVable!") ? static_cast
<void> (0) : __assert_fail ("isSCEVable(Ty) && \"Type is not SCEVable!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3296, __PRETTY_FUNCTION__))
;
3297 return getDataLayout().getTypeSizeInBits(Ty);
3298}
3299
3300/// Return a type with the same bitwidth as the given type and which represents
3301/// how SCEV will treat the given type, for which isSCEVable must return
3302/// true. For pointer types, this is the pointer-sized integer type.
3303Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3304 assert(isSCEVable(Ty) && "Type is not SCEVable!")((isSCEVable(Ty) && "Type is not SCEVable!") ? static_cast
<void> (0) : __assert_fail ("isSCEVable(Ty) && \"Type is not SCEVable!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3304, __PRETTY_FUNCTION__))
;
3305
3306 if (Ty->isIntegerTy())
3307 return Ty;
3308
3309 // The only other support type is pointer.
3310 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!")((Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"
) ? static_cast<void> (0) : __assert_fail ("Ty->isPointerTy() && \"Unexpected non-pointer non-integer type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3310, __PRETTY_FUNCTION__))
;
3311 return getDataLayout().getIntPtrType(Ty);
3312}
3313
3314const SCEV *ScalarEvolution::getCouldNotCompute() {
3315 return CouldNotCompute.get();
3316}
3317
3318
3319bool ScalarEvolution::checkValidity(const SCEV *S) const {
3320 // Helper class working with SCEVTraversal to figure out if a SCEV contains
3321 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3322 // is set iff if find such SCEVUnknown.
3323 //
3324 struct FindInvalidSCEVUnknown {
3325 bool FindOne;
3326 FindInvalidSCEVUnknown() { FindOne = false; }
3327 bool follow(const SCEV *S) {
3328 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
3329 case scConstant:
3330 return false;
3331 case scUnknown:
3332 if (!cast<SCEVUnknown>(S)->getValue())
3333 FindOne = true;
3334 return false;
3335 default:
3336 return true;
3337 }
3338 }
3339 bool isDone() const { return FindOne; }
3340 };
3341
3342 FindInvalidSCEVUnknown F;
3343 SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3344 ST.visitAll(S);
3345
3346 return !F.FindOne;
3347}
3348
3349namespace {
3350// Helper class working with SCEVTraversal to figure out if a SCEV contains
3351// a sub SCEV of scAddRecExpr type. FindInvalidSCEVUnknown::FoundOne is set
3352// iff if such sub scAddRecExpr type SCEV is found.
3353struct FindAddRecurrence {
3354 bool FoundOne;
3355 FindAddRecurrence() : FoundOne(false) {}
3356
3357 bool follow(const SCEV *S) {
3358 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
3359 case scAddRecExpr:
3360 FoundOne = true;
3361 case scConstant:
3362 case scUnknown:
3363 case scCouldNotCompute:
3364 return false;
3365 default:
3366 return true;
3367 }
3368 }
3369 bool isDone() const { return FoundOne; }
3370};
3371}
3372
3373bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3374 HasRecMapType::iterator I = HasRecMap.find_as(S);
3375 if (I != HasRecMap.end())
3376 return I->second;
3377
3378 FindAddRecurrence F;
3379 SCEVTraversal<FindAddRecurrence> ST(F);
3380 ST.visitAll(S);
3381 HasRecMap.insert({S, F.FoundOne});
3382 return F.FoundOne;
3383}
3384
3385/// Return the Value set from S.
3386SetVector<Value *> *ScalarEvolution::getSCEVValues(const SCEV *S) {
3387 ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3388 if (SI == ExprValueMap.end())
3389 return nullptr;
3390#ifndef NDEBUG
3391 if (VerifySCEVMap) {
3392 // Check there is no dangling Value in the set returned.
3393 for (const auto &VE : SI->second)
3394 assert(ValueExprMap.count(VE))((ValueExprMap.count(VE)) ? static_cast<void> (0) : __assert_fail
("ValueExprMap.count(VE)", "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3394, __PRETTY_FUNCTION__))
;
3395 }
3396#endif
3397 return &SI->second;
3398}
3399
3400/// Erase Value from ValueExprMap and ExprValueMap. If ValueExprMap.erase(V) is
3401/// not used together with forgetMemoizedResults(S), eraseValueFromMap should be
3402/// used instead to ensure whenever V->S is removed from ValueExprMap, V is also
3403/// removed from the set of ExprValueMap[S].
3404void ScalarEvolution::eraseValueFromMap(Value *V) {
3405 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3406 if (I != ValueExprMap.end()) {
3407 const SCEV *S = I->second;
3408 SetVector<Value *> *SV = getSCEVValues(S);
3409 // Remove V from the set of ExprValueMap[S]
3410 if (SV)
3411 SV->remove(V);
3412 ValueExprMap.erase(V);
3413 }
3414}
3415
3416/// Return an existing SCEV if it exists, otherwise analyze the expression and
3417/// create a new one.
3418const SCEV *ScalarEvolution::getSCEV(Value *V) {
3419 assert(isSCEVable(V->getType()) && "Value is not SCEVable!")((isSCEVable(V->getType()) && "Value is not SCEVable!"
) ? static_cast<void> (0) : __assert_fail ("isSCEVable(V->getType()) && \"Value is not SCEVable!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3419, __PRETTY_FUNCTION__))
;
3420
3421 const SCEV *S = getExistingSCEV(V);
3422 if (S == nullptr) {
3423 S = createSCEV(V);
3424 // During PHI resolution, it is possible to create two SCEVs for the same
3425 // V, so it is needed to double check whether V->S is inserted into
3426 // ValueExprMap before insert S->V into ExprValueMap.
3427 std::pair<ValueExprMapType::iterator, bool> Pair =
3428 ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3429 if (Pair.second)
3430 ExprValueMap[S].insert(V);
3431 }
3432 return S;
3433}
3434
3435const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3436 assert(isSCEVable(V->getType()) && "Value is not SCEVable!")((isSCEVable(V->getType()) && "Value is not SCEVable!"
) ? static_cast<void> (0) : __assert_fail ("isSCEVable(V->getType()) && \"Value is not SCEVable!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3436, __PRETTY_FUNCTION__))
;
3437
3438 ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3439 if (I != ValueExprMap.end()) {
3440 const SCEV *S = I->second;
3441 if (checkValidity(S))
3442 return S;
3443 forgetMemoizedResults(S);
3444 ValueExprMap.erase(I);
3445 }
3446 return nullptr;
3447}
3448
3449/// Return a SCEV corresponding to -V = -1*V
3450///
3451const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3452 SCEV::NoWrapFlags Flags) {
3453 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3454 return getConstant(
3455 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3456
3457 Type *Ty = V->getType();
3458 Ty = getEffectiveSCEVType(Ty);
3459 return getMulExpr(
3460 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
3461}
3462
3463/// Return a SCEV corresponding to ~V = -1-V
3464const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3465 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3466 return getConstant(
3467 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3468
3469 Type *Ty = V->getType();
3470 Ty = getEffectiveSCEVType(Ty);
3471 const SCEV *AllOnes =
3472 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
3473 return getMinusSCEV(AllOnes, V);
3474}
3475
3476const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3477 SCEV::NoWrapFlags Flags) {
3478 // Fast path: X - X --> 0.
3479 if (LHS == RHS)
3480 return getZero(LHS->getType());
3481
3482 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3483 // makes it so that we cannot make much use of NUW.
3484 auto AddFlags = SCEV::FlagAnyWrap;
3485 const bool RHSIsNotMinSigned =
3486 !getSignedRange(RHS).getSignedMin().isMinSignedValue();
3487 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3488 // Let M be the minimum representable signed value. Then (-1)*RHS
3489 // signed-wraps if and only if RHS is M. That can happen even for
3490 // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3491 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3492 // (-1)*RHS, we need to prove that RHS != M.
3493 //
3494 // If LHS is non-negative and we know that LHS - RHS does not
3495 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3496 // either by proving that RHS > M or that LHS >= 0.
3497 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3498 AddFlags = SCEV::FlagNSW;
3499 }
3500 }
3501
3502 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3503 // RHS is NSW and LHS >= 0.
3504 //
3505 // The difficulty here is that the NSW flag may have been proven
3506 // relative to a loop that is to be found in a recurrence in LHS and
3507 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3508 // larger scope than intended.
3509 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3510
3511 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags);
3512}
3513
3514const SCEV *
3515ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3516 Type *SrcTy = V->getType();
3517 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&(((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
(Ty->isIntegerTy() || Ty->isPointerTy()) && "Cannot truncate or zero extend with non-integer arguments!"
) ? static_cast<void> (0) : __assert_fail ("(SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot truncate or zero extend with non-integer arguments!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3519, __PRETTY_FUNCTION__))
3518 (Ty->isIntegerTy() || Ty->isPointerTy()) &&(((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
(Ty->isIntegerTy() || Ty->isPointerTy()) && "Cannot truncate or zero extend with non-integer arguments!"
) ? static_cast<void> (0) : __assert_fail ("(SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot truncate or zero extend with non-integer arguments!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3519, __PRETTY_FUNCTION__))
3519 "Cannot truncate or zero extend with non-integer arguments!")(((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
(Ty->isIntegerTy() || Ty->isPointerTy()) && "Cannot truncate or zero extend with non-integer arguments!"
) ? static_cast<void> (0) : __assert_fail ("(SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot truncate or zero extend with non-integer arguments!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3519, __PRETTY_FUNCTION__))
;
3520 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3521 return V; // No conversion
3522 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3523 return getTruncateExpr(V, Ty);
3524 return getZeroExtendExpr(V, Ty);
3525}
3526
3527const SCEV *
3528ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
3529 Type *Ty) {
3530 Type *SrcTy = V->getType();
3531 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&(((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
(Ty->isIntegerTy() || Ty->isPointerTy()) && "Cannot truncate or zero extend with non-integer arguments!"
) ? static_cast<void> (0) : __assert_fail ("(SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot truncate or zero extend with non-integer arguments!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3533, __PRETTY_FUNCTION__))
3532 (Ty->isIntegerTy() || Ty->isPointerTy()) &&(((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
(Ty->isIntegerTy() || Ty->isPointerTy()) && "Cannot truncate or zero extend with non-integer arguments!"
) ? static_cast<void> (0) : __assert_fail ("(SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot truncate or zero extend with non-integer arguments!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3533, __PRETTY_FUNCTION__))
3533 "Cannot truncate or zero extend with non-integer arguments!")(((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
(Ty->isIntegerTy() || Ty->isPointerTy()) && "Cannot truncate or zero extend with non-integer arguments!"
) ? static_cast<void> (0) : __assert_fail ("(SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot truncate or zero extend with non-integer arguments!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3533, __PRETTY_FUNCTION__))
;
3534 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3535 return V; // No conversion
3536 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3537 return getTruncateExpr(V, Ty);
3538 return getSignExtendExpr(V, Ty);
3539}
3540
3541const SCEV *
3542ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3543 Type *SrcTy = V->getType();
3544 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&(((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
(Ty->isIntegerTy() || Ty->isPointerTy()) && "Cannot noop or zero extend with non-integer arguments!"
) ? static_cast<void> (0) : __assert_fail ("(SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot noop or zero extend with non-integer arguments!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3546, __PRETTY_FUNCTION__))
3545 (Ty->isIntegerTy() || Ty->isPointerTy()) &&(((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
(Ty->isIntegerTy() || Ty->isPointerTy()) && "Cannot noop or zero extend with non-integer arguments!"
) ? static_cast<void> (0) : __assert_fail ("(SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot noop or zero extend with non-integer arguments!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3546, __PRETTY_FUNCTION__))
3546 "Cannot noop or zero extend with non-integer arguments!")(((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
(Ty->isIntegerTy() || Ty->isPointerTy()) && "Cannot noop or zero extend with non-integer arguments!"
) ? static_cast<void> (0) : __assert_fail ("(SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot noop or zero extend with non-integer arguments!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3546, __PRETTY_FUNCTION__))
;
3547 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&((getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
"getNoopOrZeroExtend cannot truncate!") ? static_cast<void
> (0) : __assert_fail ("getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && \"getNoopOrZeroExtend cannot truncate!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3548, __PRETTY_FUNCTION__))
3548 "getNoopOrZeroExtend cannot truncate!")((getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
"getNoopOrZeroExtend cannot truncate!") ? static_cast<void
> (0) : __assert_fail ("getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && \"getNoopOrZeroExtend cannot truncate!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3548, __PRETTY_FUNCTION__))
;
3549 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3550 return V; // No conversion
3551 return getZeroExtendExpr(V, Ty);
3552}
3553
3554const SCEV *
3555ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3556 Type *SrcTy = V->getType();
3557 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&(((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
(Ty->isIntegerTy() || Ty->isPointerTy()) && "Cannot noop or sign extend with non-integer arguments!"
) ? static_cast<void> (0) : __assert_fail ("(SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot noop or sign extend with non-integer arguments!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3559, __PRETTY_FUNCTION__))
3558 (Ty->isIntegerTy() || Ty->isPointerTy()) &&(((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
(Ty->isIntegerTy() || Ty->isPointerTy()) && "Cannot noop or sign extend with non-integer arguments!"
) ? static_cast<void> (0) : __assert_fail ("(SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot noop or sign extend with non-integer arguments!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3559, __PRETTY_FUNCTION__))
3559 "Cannot noop or sign extend with non-integer arguments!")(((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
(Ty->isIntegerTy() || Ty->isPointerTy()) && "Cannot noop or sign extend with non-integer arguments!"
) ? static_cast<void> (0) : __assert_fail ("(SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot noop or sign extend with non-integer arguments!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3559, __PRETTY_FUNCTION__))
;
3560 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&((getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
"getNoopOrSignExtend cannot truncate!") ? static_cast<void
> (0) : __assert_fail ("getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && \"getNoopOrSignExtend cannot truncate!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3561, __PRETTY_FUNCTION__))
3561 "getNoopOrSignExtend cannot truncate!")((getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
"getNoopOrSignExtend cannot truncate!") ? static_cast<void
> (0) : __assert_fail ("getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && \"getNoopOrSignExtend cannot truncate!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3561, __PRETTY_FUNCTION__))
;
3562 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3563 return V; // No conversion
3564 return getSignExtendExpr(V, Ty);
3565}
3566
3567const SCEV *
3568ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3569 Type *SrcTy = V->getType();
3570 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&(((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
(Ty->isIntegerTy() || Ty->isPointerTy()) && "Cannot noop or any extend with non-integer arguments!"
) ? static_cast<void> (0) : __assert_fail ("(SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot noop or any extend with non-integer arguments!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3572, __PRETTY_FUNCTION__))
3571 (Ty->isIntegerTy() || Ty->isPointerTy()) &&(((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
(Ty->isIntegerTy() || Ty->isPointerTy()) && "Cannot noop or any extend with non-integer arguments!"
) ? static_cast<void> (0) : __assert_fail ("(SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot noop or any extend with non-integer arguments!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3572, __PRETTY_FUNCTION__))
3572 "Cannot noop or any extend with non-integer arguments!")(((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
(Ty->isIntegerTy() || Ty->isPointerTy()) && "Cannot noop or any extend with non-integer arguments!"
) ? static_cast<void> (0) : __assert_fail ("(SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot noop or any extend with non-integer arguments!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3572, __PRETTY_FUNCTION__))
;
3573 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&((getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
"getNoopOrAnyExtend cannot truncate!") ? static_cast<void
> (0) : __assert_fail ("getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && \"getNoopOrAnyExtend cannot truncate!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3574, __PRETTY_FUNCTION__))
3574 "getNoopOrAnyExtend cannot truncate!")((getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
"getNoopOrAnyExtend cannot truncate!") ? static_cast<void
> (0) : __assert_fail ("getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && \"getNoopOrAnyExtend cannot truncate!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3574, __PRETTY_FUNCTION__))
;
3575 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3576 return V; // No conversion
3577 return getAnyExtendExpr(V, Ty);
3578}
3579
3580const SCEV *
3581ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3582 Type *SrcTy = V->getType();
3583 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&(((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
(Ty->isIntegerTy() || Ty->isPointerTy()) && "Cannot truncate or noop with non-integer arguments!"
) ? static_cast<void> (0) : __assert_fail ("(SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot truncate or noop with non-integer arguments!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3585, __PRETTY_FUNCTION__))
3584 (Ty->isIntegerTy() || Ty->isPointerTy()) &&(((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
(Ty->isIntegerTy() || Ty->isPointerTy()) && "Cannot truncate or noop with non-integer arguments!"
) ? static_cast<void> (0) : __assert_fail ("(SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot truncate or noop with non-integer arguments!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3585, __PRETTY_FUNCTION__))
3585 "Cannot truncate or noop with non-integer arguments!")(((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
(Ty->isIntegerTy() || Ty->isPointerTy()) && "Cannot truncate or noop with non-integer arguments!"
) ? static_cast<void> (0) : __assert_fail ("(SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && (Ty->isIntegerTy() || Ty->isPointerTy()) && \"Cannot truncate or noop with non-integer arguments!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3585, __PRETTY_FUNCTION__))
;
3586 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&((getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
"getTruncateOrNoop cannot extend!") ? static_cast<void>
(0) : __assert_fail ("getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && \"getTruncateOrNoop cannot extend!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3587, __PRETTY_FUNCTION__))
3587 "getTruncateOrNoop cannot extend!")((getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
"getTruncateOrNoop cannot extend!") ? static_cast<void>
(0) : __assert_fail ("getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && \"getTruncateOrNoop cannot extend!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3587, __PRETTY_FUNCTION__))
;
3588 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3589 return V; // No conversion
3590 return getTruncateExpr(V, Ty);
3591}
3592
3593const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3594 const SCEV *RHS) {
3595 const SCEV *PromotedLHS = LHS;
3596 const SCEV *PromotedRHS = RHS;
3597
3598 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3599 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3600 else
3601 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3602
3603 return getUMaxExpr(PromotedLHS, PromotedRHS);
3604}
3605
3606const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3607 const SCEV *RHS) {
3608 const SCEV *PromotedLHS = LHS;
3609 const SCEV *PromotedRHS = RHS;
3610
3611 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3612 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3613 else
3614 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3615
3616 return getUMinExpr(PromotedLHS, PromotedRHS);
3617}
3618
3619const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3620 // A pointer operand may evaluate to a nonpointer expression, such as null.
3621 if (!V->getType()->isPointerTy())
3622 return V;
3623
3624 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3625 return getPointerBase(Cast->getOperand());
3626 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
3627 const SCEV *PtrOp = nullptr;
3628 for (const SCEV *NAryOp : NAry->operands()) {
3629 if (NAryOp->getType()->isPointerTy()) {
3630 // Cannot find the base of an expression with multiple pointer operands.
3631 if (PtrOp)
3632 return V;
3633 PtrOp = NAryOp;
3634 }
3635 }
3636 if (!PtrOp)
3637 return V;
3638 return getPointerBase(PtrOp);
3639 }
3640 return V;
3641}
3642
3643/// Push users of the given Instruction onto the given Worklist.
3644static void
3645PushDefUseChildren(Instruction *I,
3646 SmallVectorImpl<Instruction *> &Worklist) {
3647 // Push the def-use children onto the Worklist stack.
3648 for (User *U : I->users())
3649 Worklist.push_back(cast<Instruction>(U));
3650}
3651
3652void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
3653 SmallVector<Instruction *, 16> Worklist;
3654 PushDefUseChildren(PN, Worklist);
3655
3656 SmallPtrSet<Instruction *, 8> Visited;
3657 Visited.insert(PN);
3658 while (!Worklist.empty()) {
3659 Instruction *I = Worklist.pop_back_val();
3660 if (!Visited.insert(I).second)
3661 continue;
3662
3663 auto It = ValueExprMap.find_as(static_cast<Value *>(I));
3664 if (It != ValueExprMap.end()) {
3665 const SCEV *Old = It->second;
3666
3667 // Short-circuit the def-use traversal if the symbolic name
3668 // ceases to appear in expressions.
3669 if (Old != SymName && !hasOperand(Old, SymName))
3670 continue;
3671
3672 // SCEVUnknown for a PHI either means that it has an unrecognized
3673 // structure, it's a PHI that's in the progress of being computed
3674 // by createNodeForPHI, or it's a single-value PHI. In the first case,
3675 // additional loop trip count information isn't going to change anything.
3676 // In the second case, createNodeForPHI will perform the necessary
3677 // updates on its own when it gets to that point. In the third, we do
3678 // want to forget the SCEVUnknown.
3679 if (!isa<PHINode>(I) ||
3680 !isa<SCEVUnknown>(Old) ||
3681 (I != PN && Old == SymName)) {
3682 forgetMemoizedResults(Old);
3683 ValueExprMap.erase(It);
3684 }
3685 }
3686
3687 PushDefUseChildren(I, Worklist);
3688 }
3689}
3690
3691namespace {
3692class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
3693public:
3694 static const SCEV *rewrite(const SCEV *S, const Loop *L,
3695 ScalarEvolution &SE) {
3696 SCEVInitRewriter Rewriter(L, SE);
3697 const SCEV *Result = Rewriter.visit(S);
3698 return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3699 }
3700
3701 SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
3702 : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3703
3704 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3705 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3706 Valid = false;
3707 return Expr;
3708 }
3709
3710 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3711 // Only allow AddRecExprs for this loop.
3712 if (Expr->getLoop() == L)
3713 return Expr->getStart();
3714 Valid = false;
3715 return Expr;
3716 }
3717
3718 bool isValid() { return Valid; }
3719
3720private:
3721 const Loop *L;
3722 bool Valid;
3723};
3724
3725class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
3726public:
3727 static const SCEV *rewrite(const SCEV *S, const Loop *L,
3728 ScalarEvolution &SE) {
3729 SCEVShiftRewriter Rewriter(L, SE);
3730 const SCEV *Result = Rewriter.visit(S);
3731 return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3732 }
3733
3734 SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
3735 : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3736
3737 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3738 // Only allow AddRecExprs for this loop.
3739 if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3740 Valid = false;
3741 return Expr;
3742 }
3743
3744 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3745 if (Expr->getLoop() == L && Expr->isAffine())
3746 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
3747 Valid = false;
3748 return Expr;
3749 }
3750 bool isValid() { return Valid; }
3751
3752private:
3753 const Loop *L;
3754 bool Valid;
3755};
3756} // end anonymous namespace
3757
3758SCEV::NoWrapFlags
3759ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
3760 if (!AR->isAffine())
3761 return SCEV::FlagAnyWrap;
3762
3763 typedef OverflowingBinaryOperator OBO;
3764 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
3765
3766 if (!AR->hasNoSignedWrap()) {
3767 ConstantRange AddRecRange = getSignedRange(AR);
3768 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
3769
3770 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
3771 Instruction::Add, IncRange, OBO::NoSignedWrap);
3772 if (NSWRegion.contains(AddRecRange))
3773 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
3774 }
3775
3776 if (!AR->hasNoUnsignedWrap()) {
3777 ConstantRange AddRecRange = getUnsignedRange(AR);
3778 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
3779
3780 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
3781 Instruction::Add, IncRange, OBO::NoUnsignedWrap);
3782 if (NUWRegion.contains(AddRecRange))
3783 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
3784 }
3785
3786 return Result;
3787}
3788
3789namespace {
3790/// Represents an abstract binary operation. This may exist as a
3791/// normal instruction or constant expression, or may have been
3792/// derived from an expression tree.
3793struct BinaryOp {
3794 unsigned Opcode;
3795 Value *LHS;
3796 Value *RHS;
3797 bool IsNSW;
3798 bool IsNUW;
3799
3800 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
3801 /// constant expression.
3802 Operator *Op;
3803
3804 explicit BinaryOp(Operator *Op)
3805 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
3806 IsNSW(false), IsNUW(false), Op(Op) {
3807 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
3808 IsNSW = OBO->hasNoSignedWrap();
3809 IsNUW = OBO->hasNoUnsignedWrap();
3810 }
3811 }
3812
3813 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
3814 bool IsNUW = false)
3815 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW),
3816 Op(nullptr) {}
3817};
3818}
3819
3820
3821/// Try to map \p V into a BinaryOp, and return \c None on failure.
3822static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
3823 auto *Op = dyn_cast<Operator>(V);
3824 if (!Op)
3825 return None;
3826
3827 // Implementation detail: all the cleverness here should happen without
3828 // creating new SCEV expressions -- our caller knowns tricks to avoid creating
3829 // SCEV expressions when possible, and we should not break that.
3830
3831 switch (Op->getOpcode()) {
3832 case Instruction::Add:
3833 case Instruction::Sub:
3834 case Instruction::Mul:
3835 case Instruction::UDiv:
3836 case Instruction::And:
3837 case Instruction::Or:
3838 case Instruction::AShr:
3839 case Instruction::Shl:
3840 return BinaryOp(Op);
3841
3842 case Instruction::Xor:
3843 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
3844 // If the RHS of the xor is a signbit, then this is just an add.
3845 // Instcombine turns add of signbit into xor as a strength reduction step.
3846 if (RHSC->getValue().isSignBit())
3847 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
3848 return BinaryOp(Op);
3849
3850 case Instruction::LShr:
3851 // Turn logical shift right of a constant into a unsigned divide.
3852 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
3853 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
3854
3855 // If the shift count is not less than the bitwidth, the result of
3856 // the shift is undefined. Don't try to analyze it, because the
3857 // resolution chosen here may differ from the resolution chosen in
3858 // other parts of the compiler.
3859 if (SA->getValue().ult(BitWidth)) {
3860 Constant *X =
3861 ConstantInt::get(SA->getContext(),
3862 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
3863 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
3864 }
3865 }
3866 return BinaryOp(Op);
3867
3868 case Instruction::ExtractValue: {
3869 auto *EVI = cast<ExtractValueInst>(Op);
3870 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
3871 break;
3872
3873 auto *CI = dyn_cast<CallInst>(EVI->getAggregateOperand());
3874 if (!CI)
3875 break;
3876
3877 if (auto *F = CI->getCalledFunction())
3878 switch (F->getIntrinsicID()) {
3879 case Intrinsic::sadd_with_overflow:
3880 case Intrinsic::uadd_with_overflow: {
3881 if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT))
3882 return BinaryOp(Instruction::Add, CI->getArgOperand(0),
3883 CI->getArgOperand(1));
3884
3885 // Now that we know that all uses of the arithmetic-result component of
3886 // CI are guarded by the overflow check, we can go ahead and pretend
3887 // that the arithmetic is non-overflowing.
3888 if (F->getIntrinsicID() == Intrinsic::sadd_with_overflow)
3889 return BinaryOp(Instruction::Add, CI->getArgOperand(0),
3890 CI->getArgOperand(1), /* IsNSW = */ true,
3891 /* IsNUW = */ false);
3892 else
3893 return BinaryOp(Instruction::Add, CI->getArgOperand(0),
3894 CI->getArgOperand(1), /* IsNSW = */ false,
3895 /* IsNUW*/ true);
3896 }
3897
3898 case Intrinsic::ssub_with_overflow:
3899 case Intrinsic::usub_with_overflow:
3900 return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
3901 CI->getArgOperand(1));
3902
3903 case Intrinsic::smul_with_overflow:
3904 case Intrinsic::umul_with_overflow:
3905 return BinaryOp(Instruction::Mul, CI->getArgOperand(0),
3906 CI->getArgOperand(1));
3907 default:
3908 break;
3909 }
3910 }
3911
3912 default:
3913 break;
3914 }
3915
3916 return None;
3917}
3918
3919const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
3920 const Loop *L = LI.getLoopFor(PN->getParent());
3921 if (!L || L->getHeader() != PN->getParent())
3922 return nullptr;
3923
3924 // The loop may have multiple entrances or multiple exits; we can analyze
3925 // this phi as an addrec if it has a unique entry value and a unique
3926 // backedge value.
3927 Value *BEValueV = nullptr, *StartValueV = nullptr;
3928 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3929 Value *V = PN->getIncomingValue(i);
3930 if (L->contains(PN->getIncomingBlock(i))) {
3931 if (!BEValueV) {
3932 BEValueV = V;
3933 } else if (BEValueV != V) {
3934 BEValueV = nullptr;
3935 break;
3936 }
3937 } else if (!StartValueV) {
3938 StartValueV = V;
3939 } else if (StartValueV != V) {
3940 StartValueV = nullptr;
3941 break;
3942 }
3943 }
3944 if (BEValueV && StartValueV) {
3945 // While we are analyzing this PHI node, handle its value symbolically.
3946 const SCEV *SymbolicName = getUnknown(PN);
3947 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&((ValueExprMap.find_as(PN) == ValueExprMap.end() && "PHI node already processed?"
) ? static_cast<void> (0) : __assert_fail ("ValueExprMap.find_as(PN) == ValueExprMap.end() && \"PHI node already processed?\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3948, __PRETTY_FUNCTION__))
3948 "PHI node already processed?")((ValueExprMap.find_as(PN) == ValueExprMap.end() && "PHI node already processed?"
) ? static_cast<void> (0) : __assert_fail ("ValueExprMap.find_as(PN) == ValueExprMap.end() && \"PHI node already processed?\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 3948, __PRETTY_FUNCTION__))
;
3949 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
3950
3951 // Using this symbolic name for the PHI, analyze the value coming around
3952 // the back-edge.
3953 const SCEV *BEValue = getSCEV(BEValueV);
3954
3955 // NOTE: If BEValue is loop invariant, we know that the PHI node just
3956 // has a special value for the first iteration of the loop.
3957
3958 // If the value coming around the backedge is an add with the symbolic
3959 // value we just inserted, then we found a simple induction variable!
3960 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3961 // If there is a single occurrence of the symbolic value, replace it
3962 // with a recurrence.
3963 unsigned FoundIndex = Add->getNumOperands();
3964 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3965 if (Add->getOperand(i) == SymbolicName)
3966 if (FoundIndex == e) {
3967 FoundIndex = i;
3968 break;
3969 }
3970
3971 if (FoundIndex != Add->getNumOperands()) {
3972 // Create an add with everything but the specified operand.
3973 SmallVector<const SCEV *, 8> Ops;
3974 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3975 if (i != FoundIndex)
3976 Ops.push_back(Add->getOperand(i));
3977 const SCEV *Accum = getAddExpr(Ops);
3978
3979 // This is not a valid addrec if the step amount is varying each
3980 // loop iteration, but is not itself an addrec in this loop.
3981 if (isLoopInvariant(Accum, L) ||
3982 (isa<SCEVAddRecExpr>(Accum) &&
3983 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
3984 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3985
3986 if (auto BO = MatchBinaryOp(BEValueV, DT)) {
3987 if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
3988 if (BO->IsNUW)
3989 Flags = setFlags(Flags, SCEV::FlagNUW);
3990 if (BO->IsNSW)
3991 Flags = setFlags(Flags, SCEV::FlagNSW);
3992 }
3993 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
3994 // If the increment is an inbounds GEP, then we know the address
3995 // space cannot be wrapped around. We cannot make any guarantee
3996 // about signed or unsigned overflow because pointers are
3997 // unsigned but we may have a negative index from the base
3998 // pointer. We can guarantee that no unsigned wrap occurs if the
3999 // indices form a positive value.
4000 if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
4001 Flags = setFlags(Flags, SCEV::FlagNW);
4002
4003 const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
4004 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
4005 Flags = setFlags(Flags, SCEV::FlagNUW);
4006 }
4007
4008 // We cannot transfer nuw and nsw flags from subtraction
4009 // operations -- sub nuw X, Y is not the same as add nuw X, -Y
4010 // for instance.
4011 }
4012
4013 const SCEV *StartVal = getSCEV(StartValueV);
4014 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
4015
4016 // Okay, for the entire analysis of this edge we assumed the PHI
4017 // to be symbolic. We now need to go back and purge all of the
4018 // entries for the scalars that use the symbolic expression.
4019 forgetSymbolicName(PN, SymbolicName);
4020 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
4021
4022 // We can add Flags to the post-inc expression only if we
4023 // know that it us *undefined behavior* for BEValueV to
4024 // overflow.
4025 if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
4026 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
4027 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
4028
4029 return PHISCEV;
4030 }
4031 }
4032 } else {
4033 // Otherwise, this could be a loop like this:
4034 // i = 0; for (j = 1; ..; ++j) { .... i = j; }
4035 // In this case, j = {1,+,1} and BEValue is j.
4036 // Because the other in-value of i (0) fits the evolution of BEValue
4037 // i really is an addrec evolution.
4038 //
4039 // We can generalize this saying that i is the shifted value of BEValue
4040 // by one iteration:
4041 // PHI(f(0), f({1,+,1})) --> f({0,+,1})
4042 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
4043 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this);
4044 if (Shifted != getCouldNotCompute() &&
4045 Start != getCouldNotCompute()) {
4046 const SCEV *StartVal = getSCEV(StartValueV);
4047 if (Start == StartVal) {
4048 // Okay, for the entire analysis of this edge we assumed the PHI
4049 // to be symbolic. We now need to go back and purge all of the
4050 // entries for the scalars that use the symbolic expression.
4051 forgetSymbolicName(PN, SymbolicName);
4052 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
4053 return Shifted;
4054 }
4055 }
4056 }
4057
4058 // Remove the temporary PHI node SCEV that has been inserted while intending
4059 // to create an AddRecExpr for this PHI node. We can not keep this temporary
4060 // as it will prevent later (possibly simpler) SCEV expressions to be added
4061 // to the ValueExprMap.
4062 ValueExprMap.erase(PN);
4063 }
4064
4065 return nullptr;
4066}
4067
4068// Checks if the SCEV S is available at BB. S is considered available at BB
4069// if S can be materialized at BB without introducing a fault.
4070static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
4071 BasicBlock *BB) {
4072 struct CheckAvailable {
4073 bool TraversalDone = false;
4074 bool Available = true;
4075
4076 const Loop *L = nullptr; // The loop BB is in (can be nullptr)
4077 BasicBlock *BB = nullptr;
4078 DominatorTree &DT;
4079
4080 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
4081 : L(L), BB(BB), DT(DT) {}
4082
4083 bool setUnavailable() {
4084 TraversalDone = true;
4085 Available = false;
4086 return false;
4087 }
4088
4089 bool follow(const SCEV *S) {
4090 switch (S->getSCEVType()) {
4091 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
4092 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
4093 // These expressions are available if their operand(s) is/are.
4094 return true;
4095
4096 case scAddRecExpr: {
4097 // We allow add recurrences that are on the loop BB is in, or some
4098 // outer loop. This guarantees availability because the value of the
4099 // add recurrence at BB is simply the "current" value of the induction
4100 // variable. We can relax this in the future; for instance an add
4101 // recurrence on a sibling dominating loop is also available at BB.
4102 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
4103 if (L && (ARLoop == L || ARLoop->contains(L)))
4104 return true;
4105
4106 return setUnavailable();
4107 }
4108
4109 case scUnknown: {
4110 // For SCEVUnknown, we check for simple dominance.
4111 const auto *SU = cast<SCEVUnknown>(S);
4112 Value *V = SU->getValue();
4113
4114 if (isa<Argument>(V))
4115 return false;
4116
4117 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
4118 return false;
4119
4120 return setUnavailable();
4121 }
4122
4123 case scUDivExpr:
4124 case scCouldNotCompute:
4125 // We do not try to smart about these at all.
4126 return setUnavailable();
4127 }
4128 llvm_unreachable("switch should be fully covered!")::llvm::llvm_unreachable_internal("switch should be fully covered!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 4128)
;
4129 }
4130
4131 bool isDone() { return TraversalDone; }
4132 };
4133
4134 CheckAvailable CA(L, BB, DT);
4135 SCEVTraversal<CheckAvailable> ST(CA);
4136
4137 ST.visitAll(S);
4138 return CA.Available;
4139}
4140
4141// Try to match a control flow sequence that branches out at BI and merges back
4142// at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful
4143// match.
4144static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
4145 Value *&C, Value *&LHS, Value *&RHS) {
4146 C = BI->getCondition();
4147
4148 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
4149 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
4150
4151 if (!LeftEdge.isSingleEdge())
4152 return false;
4153
4154 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()")((RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"
) ? static_cast<void> (0) : __assert_fail ("RightEdge.isSingleEdge() && \"Follows from LeftEdge.isSingleEdge()\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 4154, __PRETTY_FUNCTION__))
;
4155
4156 Use &LeftUse = Merge->getOperandUse(0);
4157 Use &RightUse = Merge->getOperandUse(1);
4158
4159 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
4160 LHS = LeftUse;
4161 RHS = RightUse;
4162 return true;
4163 }
4164
4165 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
4166 LHS = RightUse;
4167 RHS = LeftUse;
4168 return true;
4169 }
4170
4171 return false;
4172}
4173
4174const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
4175 if (PN->getNumIncomingValues() == 2) {
4176 const Loop *L = LI.getLoopFor(PN->getParent());
4177
4178 // We don't want to break LCSSA, even in a SCEV expression tree.
4179 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4180 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
4181 return nullptr;
4182
4183 // Try to match
4184 //
4185 // br %cond, label %left, label %right
4186 // left:
4187 // br label %merge
4188 // right:
4189 // br label %merge
4190 // merge:
4191 // V = phi [ %x, %left ], [ %y, %right ]
4192 //
4193 // as "select %cond, %x, %y"
4194
4195 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
4196 assert(IDom && "At least the entry block should dominate PN")((IDom && "At least the entry block should dominate PN"
) ? static_cast<void> (0) : __assert_fail ("IDom && \"At least the entry block should dominate PN\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 4196, __PRETTY_FUNCTION__))
;
4197
4198 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
4199 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
4200
4201 if (BI && BI->isConditional() &&
4202 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
4203 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
4204 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
4205 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
4206 }
4207
4208 return nullptr;
4209}
4210
4211const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
4212 if (const SCEV *S = createAddRecFromPHI(PN))
4213 return S;
4214
4215 if (const SCEV *S = createNodeFromSelectLikePHI(PN))
4216 return S;
4217
4218 // If the PHI has a single incoming value, follow that value, unless the
4219 // PHI's incoming blocks are in a different loop, in which case doing so
4220 // risks breaking LCSSA form. Instcombine would normally zap these, but
4221 // it doesn't have DominatorTree information, so it may miss cases.
4222 if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC))
4223 if (LI.replacementPreservesLCSSAForm(PN, V))
4224 return getSCEV(V);
4225
4226 // If it's not a loop phi, we can't handle it yet.
4227 return getUnknown(PN);
4228}
4229
4230const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
4231 Value *Cond,
4232 Value *TrueVal,
4233 Value *FalseVal) {
4234 // Handle "constant" branch or select. This can occur for instance when a
4235 // loop pass transforms an inner loop and moves on to process the outer loop.
4236 if (auto *CI = dyn_cast<ConstantInt>(Cond))
4237 return getSCEV(CI->isOne() ? TrueVal : FalseVal);
4238
4239 // Try to match some simple smax or umax patterns.
4240 auto *ICI = dyn_cast<ICmpInst>(Cond);
4241 if (!ICI)
4242 return getUnknown(I);
4243
4244 Value *LHS = ICI->getOperand(0);
4245 Value *RHS = ICI->getOperand(1);
4246
4247 switch (ICI->getPredicate()) {
4248 case ICmpInst::ICMP_SLT:
4249 case ICmpInst::ICMP_SLE:
4250 std::swap(LHS, RHS);
4251 // fall through
4252 case ICmpInst::ICMP_SGT:
4253 case ICmpInst::ICMP_SGE:
4254 // a >s b ? a+x : b+x -> smax(a, b)+x
4255 // a >s b ? b+x : a+x -> smin(a, b)+x
4256 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4257 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
4258 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
4259 const SCEV *LA = getSCEV(TrueVal);
4260 const SCEV *RA = getSCEV(FalseVal);
4261 const SCEV *LDiff = getMinusSCEV(LA, LS);
4262 const SCEV *RDiff = getMinusSCEV(RA, RS);
4263 if (LDiff == RDiff)
4264 return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4265 LDiff = getMinusSCEV(LA, RS);
4266 RDiff = getMinusSCEV(RA, LS);
4267 if (LDiff == RDiff)
4268 return getAddExpr(getSMinExpr(LS, RS), LDiff);
4269 }
4270 break;
4271 case ICmpInst::ICMP_ULT:
4272 case ICmpInst::ICMP_ULE:
4273 std::swap(LHS, RHS);
4274 // fall through
4275 case ICmpInst::ICMP_UGT:
4276 case ICmpInst::ICMP_UGE:
4277 // a >u b ? a+x : b+x -> umax(a, b)+x
4278 // a >u b ? b+x : a+x -> umin(a, b)+x
4279 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4280 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4281 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
4282 const SCEV *LA = getSCEV(TrueVal);
4283 const SCEV *RA = getSCEV(FalseVal);
4284 const SCEV *LDiff = getMinusSCEV(LA, LS);
4285 const SCEV *RDiff = getMinusSCEV(RA, RS);
4286 if (LDiff == RDiff)
4287 return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4288 LDiff = getMinusSCEV(LA, RS);
4289 RDiff = getMinusSCEV(RA, LS);
4290 if (LDiff == RDiff)
4291 return getAddExpr(getUMinExpr(LS, RS), LDiff);
4292 }
4293 break;
4294 case ICmpInst::ICMP_NE:
4295 // n != 0 ? n+x : 1+x -> umax(n, 1)+x
4296 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4297 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4298 const SCEV *One = getOne(I->getType());
4299 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4300 const SCEV *LA = getSCEV(TrueVal);
4301 const SCEV *RA = getSCEV(FalseVal);
4302 const SCEV *LDiff = getMinusSCEV(LA, LS);
4303 const SCEV *RDiff = getMinusSCEV(RA, One);
4304 if (LDiff == RDiff)
4305 return getAddExpr(getUMaxExpr(One, LS), LDiff);
4306 }
4307 break;
4308 case ICmpInst::ICMP_EQ:
4309 // n == 0 ? 1+x : n+x -> umax(n, 1)+x
4310 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4311 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4312 const SCEV *One = getOne(I->getType());
4313 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4314 const SCEV *LA = getSCEV(TrueVal);
4315 const SCEV *RA = getSCEV(FalseVal);
4316 const SCEV *LDiff = getMinusSCEV(LA, One);
4317 const SCEV *RDiff = getMinusSCEV(RA, LS);
4318 if (LDiff == RDiff)
4319 return getAddExpr(getUMaxExpr(One, LS), LDiff);
4320 }
4321 break;
4322 default:
4323 break;
4324 }
4325
4326 return getUnknown(I);
4327}
4328
4329/// Expand GEP instructions into add and multiply operations. This allows them
4330/// to be analyzed by regular SCEV code.
4331const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
4332 // Don't attempt to analyze GEPs over unsized objects.
4333 if (!GEP->getSourceElementType()->isSized())
4334 return getUnknown(GEP);
4335
4336 SmallVector<const SCEV *, 4> IndexExprs;
4337 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
4338 IndexExprs.push_back(getSCEV(*Index));
4339 return getGEPExpr(GEP->getSourceElementType(),
4340 getSCEV(GEP->getPointerOperand()),
4341 IndexExprs, GEP->isInBounds());
4342}
4343
4344uint32_t
4345ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
4346 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
4347 return C->getAPInt().countTrailingZeros();
4348
4349 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
4350 return std::min(GetMinTrailingZeros(T->getOperand()),
4351 (uint32_t)getTypeSizeInBits(T->getType()));
4352
4353 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
4354 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4355 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4356 getTypeSizeInBits(E->getType()) : OpRes;
4357 }
4358
4359 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
4360 uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4361 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4362 getTypeSizeInBits(E->getType()) : OpRes;
4363 }
4364
4365 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
4366 // The result is the min of all operands results.
4367 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
4368 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
4369 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
4370 return MinOpRes;
4371 }
4372
4373 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
4374 // The result is the sum of all operands results.
4375 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
4376 uint32_t BitWidth = getTypeSizeInBits(M->getType());
4377 for (unsigned i = 1, e = M->getNumOperands();
4378 SumOpRes != BitWidth && i != e; ++i)
4379 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
4380 BitWidth);
4381 return SumOpRes;
4382 }
4383
4384 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
4385 // The result is the min of all operands results.
4386 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
4387 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
4388 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
4389 return MinOpRes;
4390 }
4391
4392 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
4393 // The result is the min of all operands results.
4394 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
4395 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
4396 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
4397 return MinOpRes;
4398 }
4399
4400 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
4401 // The result is the min of all operands results.
4402 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
4403 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
4404 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
4405 return MinOpRes;
4406 }
4407
4408 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4409 // For a SCEVUnknown, ask ValueTracking.
4410 unsigned BitWidth = getTypeSizeInBits(U->getType());
4411 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
4412 computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC,
4413 nullptr, &DT);
4414 return Zeros.countTrailingOnes();
4415 }
4416
4417 // SCEVUDivExpr
4418 return 0;
4419}
4420
4421/// Helper method to assign a range to V from metadata present in the IR.
4422static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
4423 if (Instruction *I = dyn_cast<Instruction>(V))
4424 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
4425 return getConstantRangeFromMetadata(*MD);
4426
4427 return None;
4428}
4429
4430/// Determine the range for a particular SCEV. If SignHint is
4431/// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
4432/// with a "cleaner" unsigned (resp. signed) representation.
4433ConstantRange
4434ScalarEvolution::getRange(const SCEV *S,
4435 ScalarEvolution::RangeSignHint SignHint) {
4436 DenseMap<const SCEV *, ConstantRange> &Cache =
4437 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
4438 : SignedRanges;
4439
4440 // See if we've computed this range already.
4441 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
4442 if (I != Cache.end())
4443 return I->second;
4444
4445 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
4446 return setRange(C, SignHint, ConstantRange(C->getAPInt()));
4447
4448 unsigned BitWidth = getTypeSizeInBits(S->getType());
4449 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
4450
4451 // If the value has known zeros, the maximum value will have those known zeros
4452 // as well.
4453 uint32_t TZ = GetMinTrailingZeros(S);
4454 if (TZ != 0) {
4455 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
4456 ConservativeResult =
4457 ConstantRange(APInt::getMinValue(BitWidth),
4458 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
4459 else
4460 ConservativeResult = ConstantRange(
4461 APInt::getSignedMinValue(BitWidth),
4462 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
4463 }
4464
4465 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
4466 ConstantRange X = getRange(Add->getOperand(0), SignHint);
4467 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
4468 X = X.add(getRange(Add->getOperand(i), SignHint));
4469 return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
4470 }
4471
4472 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
4473 ConstantRange X = getRange(Mul->getOperand(0), SignHint);
4474 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
4475 X = X.multiply(getRange(Mul->getOperand(i), SignHint));
4476 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
4477 }
4478
4479 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
4480 ConstantRange X = getRange(SMax->getOperand(0), SignHint);
4481 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
4482 X = X.smax(getRange(SMax->getOperand(i), SignHint));
4483 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
4484 }
4485
4486 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
4487 ConstantRange X = getRange(UMax->getOperand(0), SignHint);
4488 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
4489 X = X.umax(getRange(UMax->getOperand(i), SignHint));
4490 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
4491 }
4492
4493 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
4494 ConstantRange X = getRange(UDiv->getLHS(), SignHint);
4495 ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
4496 return setRange(UDiv, SignHint,
4497 ConservativeResult.intersectWith(X.udiv(Y)));
4498 }
4499
4500 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
4501 ConstantRange X = getRange(ZExt->getOperand(), SignHint);
4502 return setRange(ZExt, SignHint,
4503 ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
4504 }
4505
4506 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
4507 ConstantRange X = getRange(SExt->getOperand(), SignHint);
4508 return setRange(SExt, SignHint,
4509 ConservativeResult.intersectWith(X.signExtend(BitWidth)));
4510 }
4511
4512 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
4513 ConstantRange X = getRange(Trunc->getOperand(), SignHint);
4514 return setRange(Trunc, SignHint,
4515 ConservativeResult.intersectWith(X.truncate(BitWidth)));
4516 }
4517
4518 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
4519 // If there's no unsigned wrap, the value will never be less than its
4520 // initial value.
4521 if (AddRec->hasNoUnsignedWrap())
4522 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
4523 if (!C->getValue()->isZero())
4524 ConservativeResult = ConservativeResult.intersectWith(
4525 ConstantRange(C->getAPInt(), APInt(BitWidth, 0)));
4526
4527 // If there's no signed wrap, and all the operands have the same sign or
4528 // zero, the value won't ever change sign.
4529 if (AddRec->hasNoSignedWrap()) {
4530 bool AllNonNeg = true;
4531 bool AllNonPos = true;
4532 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4533 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
4534 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
4535 }
4536 if (AllNonNeg)
4537 ConservativeResult = ConservativeResult.intersectWith(
4538 ConstantRange(APInt(BitWidth, 0),
4539 APInt::getSignedMinValue(BitWidth)));
4540 else if (AllNonPos)
4541 ConservativeResult = ConservativeResult.intersectWith(
4542 ConstantRange(APInt::getSignedMinValue(BitWidth),
4543 APInt(BitWidth, 1)));
4544 }
4545
4546 // TODO: non-affine addrec
4547 if (AddRec->isAffine()) {
4548 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
4549 if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
4550 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
4551 auto RangeFromAffine = getRangeForAffineAR(
4552 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
4553 BitWidth);
4554 if (!RangeFromAffine.isFullSet())
4555 ConservativeResult =
4556 ConservativeResult.intersectWith(RangeFromAffine);
4557
4558 auto RangeFromFactoring = getRangeViaFactoring(
4559 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
4560 BitWidth);
4561 if (!RangeFromFactoring.isFullSet())
4562 ConservativeResult =
4563 ConservativeResult.intersectWith(RangeFromFactoring);
4564 }
4565 }
4566
4567 return setRange(AddRec, SignHint, ConservativeResult);
4568 }
4569
4570 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4571 // Check if the IR explicitly contains !range metadata.
4572 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4573 if (MDRange.hasValue())
4574 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4575
4576 // Split here to avoid paying the compile-time cost of calling both
4577 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted
4578 // if needed.
4579 const DataLayout &DL = getDataLayout();
4580 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
4581 // For a SCEVUnknown, ask ValueTracking.
4582 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
4583 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT);
4584 if (Ones != ~Zeros + 1)
4585 ConservativeResult =
4586 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
4587 } else {
4588 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&((SignHint == ScalarEvolution::HINT_RANGE_SIGNED && "generalize as needed!"
) ? static_cast<void> (0) : __assert_fail ("SignHint == ScalarEvolution::HINT_RANGE_SIGNED && \"generalize as needed!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 4589, __PRETTY_FUNCTION__))
4589 "generalize as needed!")((SignHint == ScalarEvolution::HINT_RANGE_SIGNED && "generalize as needed!"
) ? static_cast<void> (0) : __assert_fail ("SignHint == ScalarEvolution::HINT_RANGE_SIGNED && \"generalize as needed!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 4589, __PRETTY_FUNCTION__))
;
4590 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
4591 if (NS > 1)
4592 ConservativeResult = ConservativeResult.intersectWith(
4593 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
4594 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
4595 }
4596
4597 return setRange(U, SignHint, ConservativeResult);
4598 }
4599
4600 return setRange(S, SignHint, ConservativeResult);
4601}
4602
4603ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
4604 const SCEV *Step,
4605 const SCEV *MaxBECount,
4606 unsigned BitWidth) {
4607 assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&((!isa<SCEVCouldNotCompute>(MaxBECount) && getTypeSizeInBits
(MaxBECount->getType()) <= BitWidth && "Precondition!"
) ? static_cast<void> (0) : __assert_fail ("!isa<SCEVCouldNotCompute>(MaxBECount) && getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && \"Precondition!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 4609, __PRETTY_FUNCTION__))
4608 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&((!isa<SCEVCouldNotCompute>(MaxBECount) && getTypeSizeInBits
(MaxBECount->getType()) <= BitWidth && "Precondition!"
) ? static_cast<void> (0) : __assert_fail ("!isa<SCEVCouldNotCompute>(MaxBECount) && getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && \"Precondition!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 4609, __PRETTY_FUNCTION__))
4609 "Precondition!")((!isa<SCEVCouldNotCompute>(MaxBECount) && getTypeSizeInBits
(MaxBECount->getType()) <= BitWidth && "Precondition!"
) ? static_cast<void> (0) : __assert_fail ("!isa<SCEVCouldNotCompute>(MaxBECount) && getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && \"Precondition!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 4609, __PRETTY_FUNCTION__))
;
4610
4611 ConstantRange Result(BitWidth, /* isFullSet = */ true);
4612
4613 // Check for overflow. This must be done with ConstantRange arithmetic
4614 // because we could be called from within the ScalarEvolution overflow
4615 // checking code.
4616
4617 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
4618 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
4619 ConstantRange ZExtMaxBECountRange =
4620 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1);
4621
4622 ConstantRange StepSRange = getSignedRange(Step);
4623 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1);
4624
4625 ConstantRange StartURange = getUnsignedRange(Start);
4626 ConstantRange EndURange =
4627 StartURange.add(MaxBECountRange.multiply(StepSRange));
4628
4629 // Check for unsigned overflow.
4630 ConstantRange ZExtStartURange = StartURange.zextOrTrunc(BitWidth * 2 + 1);
4631 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1);
4632 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4633 ZExtEndURange) {
4634 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(),
4635 EndURange.getUnsignedMin());
4636 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(),
4637 EndURange.getUnsignedMax());
4638 bool IsFullRange = Min.isMinValue() && Max.isMaxValue();
4639 if (!IsFullRange)
4640 Result =
4641 Result.intersectWith(ConstantRange(Min, Max + 1));
4642 }
4643
4644 ConstantRange StartSRange = getSignedRange(Start);
4645 ConstantRange EndSRange =
4646 StartSRange.add(MaxBECountRange.multiply(StepSRange));
4647
4648 // Check for signed overflow. This must be done with ConstantRange
4649 // arithmetic because we could be called from within the ScalarEvolution
4650 // overflow checking code.
4651 ConstantRange SExtStartSRange = StartSRange.sextOrTrunc(BitWidth * 2 + 1);
4652 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1);
4653 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4654 SExtEndSRange) {
4655 APInt Min =
4656 APIntOps::smin(StartSRange.getSignedMin(), EndSRange.getSignedMin());
4657 APInt Max =
4658 APIntOps::smax(StartSRange.getSignedMax(), EndSRange.getSignedMax());
4659 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue();
4660 if (!IsFullRange)
4661 Result =
4662 Result.intersectWith(ConstantRange(Min, Max + 1));
4663 }
4664
4665 return Result;
4666}
4667
4668ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
4669 const SCEV *Step,
4670 const SCEV *MaxBECount,
4671 unsigned BitWidth) {
4672 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
4673 // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
4674
4675 struct SelectPattern {
4676 Value *Condition = nullptr;
4677 APInt TrueValue;
4678 APInt FalseValue;
4679
4680 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
4681 const SCEV *S) {
4682 Optional<unsigned> CastOp;
4683 APInt Offset(BitWidth, 0);
4684
4685 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&((SE.getTypeSizeInBits(S->getType()) == BitWidth &&
"Should be!") ? static_cast<void> (0) : __assert_fail (
"SE.getTypeSizeInBits(S->getType()) == BitWidth && \"Should be!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 4686, __PRETTY_FUNCTION__))
4686 "Should be!")((SE.getTypeSizeInBits(S->getType()) == BitWidth &&
"Should be!") ? static_cast<void> (0) : __assert_fail (
"SE.getTypeSizeInBits(S->getType()) == BitWidth && \"Should be!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 4686, __PRETTY_FUNCTION__))
;
4687
4688 // Peel off a constant offset:
4689 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
4690 // In the future we could consider being smarter here and handle
4691 // {Start+Step,+,Step} too.
4692 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
4693 return;
4694
4695 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
4696 S = SA->getOperand(1);
4697 }
4698
4699 // Peel off a cast operation
4700 if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
4701 CastOp = SCast->getSCEVType();
4702 S = SCast->getOperand();
4703 }
4704
4705 using namespace llvm::PatternMatch;
4706
4707 auto *SU = dyn_cast<SCEVUnknown>(S);
4708 const APInt *TrueVal, *FalseVal;
4709 if (!SU ||
4710 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
4711 m_APInt(FalseVal)))) {
4712 Condition = nullptr;
4713 return;
4714 }
4715
4716 TrueValue = *TrueVal;
4717 FalseValue = *FalseVal;
4718
4719 // Re-apply the cast we peeled off earlier
4720 if (CastOp.hasValue())
4721 switch (*CastOp) {
4722 default:
4723 llvm_unreachable("Unknown SCEV cast type!")::llvm::llvm_unreachable_internal("Unknown SCEV cast type!", "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 4723)
;
4724
4725 case scTruncate:
4726 TrueValue = TrueValue.trunc(BitWidth);
4727 FalseValue = FalseValue.trunc(BitWidth);
4728 break;
4729 case scZeroExtend:
4730 TrueValue = TrueValue.zext(BitWidth);
4731 FalseValue = FalseValue.zext(BitWidth);
4732 break;
4733 case scSignExtend:
4734 TrueValue = TrueValue.sext(BitWidth);
4735 FalseValue = FalseValue.sext(BitWidth);
4736 break;
4737 }
4738
4739 // Re-apply the constant offset we peeled off earlier
4740 TrueValue += Offset;
4741 FalseValue += Offset;
4742 }
4743
4744 bool isRecognized() { return Condition != nullptr; }
4745 };
4746
4747 SelectPattern StartPattern(*this, BitWidth, Start);
4748 if (!StartPattern.isRecognized())
4749 return ConstantRange(BitWidth, /* isFullSet = */ true);
4750
4751 SelectPattern StepPattern(*this, BitWidth, Step);
4752 if (!StepPattern.isRecognized())
4753 return ConstantRange(BitWidth, /* isFullSet = */ true);
4754
4755 if (StartPattern.Condition != StepPattern.Condition) {
4756 // We don't handle this case today; but we could, by considering four
4757 // possibilities below instead of two. I'm not sure if there are cases where
4758 // that will help over what getRange already does, though.
4759 return ConstantRange(BitWidth, /* isFullSet = */ true);
4760 }
4761
4762 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
4763 // construct arbitrary general SCEV expressions here. This function is called
4764 // from deep in the call stack, and calling getSCEV (on a sext instruction,
4765 // say) can end up caching a suboptimal value.
4766
4767 // FIXME: without the explicit `this` receiver below, MSVC errors out with
4768 // C2352 and C2512 (otherwise it isn't needed).
4769
4770 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
4771 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
4772 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
4773 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
4774
4775 ConstantRange TrueRange =
4776 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
4777 ConstantRange FalseRange =
4778 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
4779
4780 return TrueRange.unionWith(FalseRange);
4781}
4782
4783SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
4784 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
4785 const BinaryOperator *BinOp = cast<BinaryOperator>(V);
4786
4787 // Return early if there are no flags to propagate to the SCEV.
4788 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4789 if (BinOp->hasNoUnsignedWrap())
4790 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
4791 if (BinOp->hasNoSignedWrap())
4792 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
4793 if (Flags == SCEV::FlagAnyWrap)
4794 return SCEV::FlagAnyWrap;
4795
4796 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
4797}
4798
4799bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
4800 // Here we check that I is in the header of the innermost loop containing I,
4801 // since we only deal with instructions in the loop header. The actual loop we
4802 // need to check later will come from an add recurrence, but getting that
4803 // requires computing the SCEV of the operands, which can be expensive. This
4804 // check we can do cheaply to rule out some cases early.
4805 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
4806 if (InnermostContainingLoop == nullptr ||
4807 InnermostContainingLoop->getHeader() != I->getParent())
4808 return false;
4809
4810 // Only proceed if we can prove that I does not yield poison.
4811 if (!isKnownNotFullPoison(I)) return false;
4812
4813 // At this point we know that if I is executed, then it does not wrap
4814 // according to at least one of NSW or NUW. If I is not executed, then we do
4815 // not know if the calculation that I represents would wrap. Multiple
4816 // instructions can map to the same SCEV. If we apply NSW or NUW from I to
4817 // the SCEV, we must guarantee no wrapping for that SCEV also when it is
4818 // derived from other instructions that map to the same SCEV. We cannot make
4819 // that guarantee for cases where I is not executed. So we need to find the
4820 // loop that I is considered in relation to and prove that I is executed for
4821 // every iteration of that loop. That implies that the value that I
4822 // calculates does not wrap anywhere in the loop, so then we can apply the
4823 // flags to the SCEV.
4824 //
4825 // We check isLoopInvariant to disambiguate in case we are adding recurrences
4826 // from different loops, so that we know which loop to prove that I is
4827 // executed in.
4828 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
4829 const SCEV *Op = getSCEV(I->getOperand(OpIndex));
4830 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
4831 bool AllOtherOpsLoopInvariant = true;
4832 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
4833 ++OtherOpIndex) {
4834 if (OtherOpIndex != OpIndex) {
4835 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
4836 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
4837 AllOtherOpsLoopInvariant = false;
4838 break;
4839 }
4840 }
4841 }
4842 if (AllOtherOpsLoopInvariant &&
4843 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
4844 return true;
4845 }
4846 }
4847 return false;
4848}
4849
4850bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
4851 // If we know that \c I can never be poison period, then that's enough.
4852 if (isSCEVExprNeverPoison(I))
4853 return true;
4854
4855 // For an add recurrence specifically, we assume that infinite loops without
4856 // side effects are undefined behavior, and then reason as follows:
4857 //
4858 // If the add recurrence is poison in any iteration, it is poison on all
4859 // future iterations (since incrementing poison yields poison). If the result
4860 // of the add recurrence is fed into the loop latch condition and the loop
4861 // does not contain any throws or exiting blocks other than the latch, we now
4862 // have the ability to "choose" whether the backedge is taken or not (by
4863 // choosing a sufficiently evil value for the poison feeding into the branch)
4864 // for every iteration including and after the one in which \p I first became
4865 // poison. There are two possibilities (let's call the iteration in which \p
4866 // I first became poison as K):
4867 //
4868 // 1. In the set of iterations including and after K, the loop body executes
4869 // no side effects. In this case executing the backege an infinte number
4870 // of times will yield undefined behavior.
4871 //
4872 // 2. In the set of iterations including and after K, the loop body executes
4873 // at least one side effect. In this case, that specific instance of side
4874 // effect is control dependent on poison, which also yields undefined
4875 // behavior.
4876
4877 auto *ExitingBB = L->getExitingBlock();
4878 auto *LatchBB = L->getLoopLatch();
4879 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
4880 return false;
4881
4882 SmallPtrSet<const Instruction *, 16> Pushed;
4883 SmallVector<const Instruction *, 8> Stack;
4884
4885 Pushed.insert(I);
4886 for (auto *U : I->users())
4887 if (Pushed.insert(cast<Instruction>(U)).second)
4888 Stack.push_back(cast<Instruction>(U));
4889
4890 bool LatchControlDependentOnPoison = false;
4891 while (!Stack.empty()) {
4892 const Instruction *I = Stack.pop_back_val();
4893
4894 for (auto *U : I->users()) {
4895 if (propagatesFullPoison(cast<Instruction>(U))) {
4896 if (Pushed.insert(cast<Instruction>(U)).second)
4897 Stack.push_back(cast<Instruction>(U));
4898 } else if (auto *BI = dyn_cast<BranchInst>(U)) {
4899 assert(BI->isConditional() && "Only possibility!")((BI->isConditional() && "Only possibility!") ? static_cast
<void> (0) : __assert_fail ("BI->isConditional() && \"Only possibility!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 4899, __PRETTY_FUNCTION__))
;
4900 if (BI->getParent() == LatchBB) {
4901 LatchControlDependentOnPoison = true;
4902 break;
4903 }
4904 }
4905 }
4906 }
4907
4908 if (!LatchControlDependentOnPoison)
4909 return false;
4910
4911 // Now check if loop is no-throw, and cache the information. In the future,
4912 // we can consider commoning this logic with LICMSafetyInfo into a separate
4913 // analysis pass.
4914
4915 auto Itr = LoopMayThrow.find(L);
4916 if (Itr == LoopMayThrow.end()) {
4917 bool MayThrow = false;
4918 for (auto *BB : L->getBlocks()) {
4919 MayThrow = any_of(*BB, [](Instruction &I) { return I.mayThrow(); });
4920 if (MayThrow)
4921 break;
4922 }
4923 auto InsertPair = LoopMayThrow.insert({L, MayThrow});
4924 assert(InsertPair.second && "We just checked!")((InsertPair.second && "We just checked!") ? static_cast
<void> (0) : __assert_fail ("InsertPair.second && \"We just checked!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 4924, __PRETTY_FUNCTION__))
;
4925 Itr = InsertPair.first;
4926 }
4927
4928 return !Itr->second;
4929}
4930
4931const SCEV *ScalarEvolution::createSCEV(Value *V) {
4932 if (!isSCEVable(V->getType()))
4933 return getUnknown(V);
4934
4935 if (Instruction *I = dyn_cast<Instruction>(V)) {
4936 // Don't attempt to analyze instructions in blocks that aren't
4937 // reachable. Such instructions don't matter, and they aren't required
4938 // to obey basic rules for definitions dominating uses which this
4939 // analysis depends on.
4940 if (!DT.isReachableFromEntry(I->getParent()))
4941 return getUnknown(V);
4942 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
4943 return getConstant(CI);
4944 else if (isa<ConstantPointerNull>(V))
4945 return getZero(V->getType());
4946 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
4947 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
4948 else if (!isa<ConstantExpr>(V))
4949 return getUnknown(V);
4950
4951 Operator *U = cast<Operator>(V);
4952 if (auto BO = MatchBinaryOp(U, DT)) {
4953 switch (BO->Opcode) {
4954 case Instruction::Add: {
4955 // The simple thing to do would be to just call getSCEV on both operands
4956 // and call getAddExpr with the result. However if we're looking at a
4957 // bunch of things all added together, this can be quite inefficient,
4958 // because it leads to N-1 getAddExpr calls for N ultimate operands.
4959 // Instead, gather up all the operands and make a single getAddExpr call.
4960 // LLVM IR canonical form means we need only traverse the left operands.
4961 SmallVector<const SCEV *, 4> AddOps;
4962 do {
4963 if (BO->Op) {
4964 if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
4965 AddOps.push_back(OpSCEV);
4966 break;
4967 }
4968
4969 // If a NUW or NSW flag can be applied to the SCEV for this
4970 // addition, then compute the SCEV for this addition by itself
4971 // with a separate call to getAddExpr. We need to do that
4972 // instead of pushing the operands of the addition onto AddOps,
4973 // since the flags are only known to apply to this particular
4974 // addition - they may not apply to other additions that can be
4975 // formed with operands from AddOps.
4976 const SCEV *RHS = getSCEV(BO->RHS);
4977 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
4978 if (Flags != SCEV::FlagAnyWrap) {
4979 const SCEV *LHS = getSCEV(BO->LHS);
4980 if (BO->Opcode == Instruction::Sub)
4981 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
4982 else
4983 AddOps.push_back(getAddExpr(LHS, RHS, Flags));
4984 break;
4985 }
4986 }
4987
4988 if (BO->Opcode == Instruction::Sub)
4989 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
4990 else
4991 AddOps.push_back(getSCEV(BO->RHS));
4992
4993 auto NewBO = MatchBinaryOp(BO->LHS, DT);
4994 if (!NewBO || (NewBO->Opcode != Instruction::Add &&
4995 NewBO->Opcode != Instruction::Sub)) {
4996 AddOps.push_back(getSCEV(BO->LHS));
4997 break;
4998 }
4999 BO = NewBO;
5000 } while (true);
5001
5002 return getAddExpr(AddOps);
5003 }
5004
5005 case Instruction::Mul: {
5006 SmallVector<const SCEV *, 4> MulOps;
5007 do {
5008 if (BO->Op) {
5009 if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
5010 MulOps.push_back(OpSCEV);
5011 break;
5012 }
5013
5014 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
5015 if (Flags != SCEV::FlagAnyWrap) {
5016 MulOps.push_back(
5017 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
5018 break;
5019 }
5020 }
5021
5022 MulOps.push_back(getSCEV(BO->RHS));
5023 auto NewBO = MatchBinaryOp(BO->LHS, DT);
5024 if (!NewBO || NewBO->Opcode != Instruction::Mul) {
5025 MulOps.push_back(getSCEV(BO->LHS));
5026 break;
5027 }
5028 BO = NewBO;
5029 } while (true);
5030
5031 return getMulExpr(MulOps);
5032 }
5033 case Instruction::UDiv:
5034 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
5035 case Instruction::Sub: {
5036 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5037 if (BO->Op)
5038 Flags = getNoWrapFlagsFromUB(BO->Op);
5039 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
5040 }
5041 case Instruction::And:
5042 // For an expression like x&255 that merely masks off the high bits,
5043 // use zext(trunc(x)) as the SCEV expression.
5044 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5045 if (CI->isNullValue())
5046 return getSCEV(BO->RHS);
5047 if (CI->isAllOnesValue())
5048 return getSCEV(BO->LHS);
5049 const APInt &A = CI->getValue();
5050
5051 // Instcombine's ShrinkDemandedConstant may strip bits out of
5052 // constants, obscuring what would otherwise be a low-bits mask.
5053 // Use computeKnownBits to compute what ShrinkDemandedConstant
5054 // knew about to reconstruct a low-bits mask value.
5055 unsigned LZ = A.countLeadingZeros();
5056 unsigned TZ = A.countTrailingZeros();
5057 unsigned BitWidth = A.getBitWidth();
5058 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
5059 computeKnownBits(BO->LHS, KnownZero, KnownOne, getDataLayout(),
5060 0, &AC, nullptr, &DT);
5061
5062 APInt EffectiveMask =
5063 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
5064 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
5065 const SCEV *MulCount = getConstant(ConstantInt::get(
5066 getContext(), APInt::getOneBitSet(BitWidth, TZ)));
5067 return getMulExpr(
5068 getZeroExtendExpr(
5069 getTruncateExpr(
5070 getUDivExactExpr(getSCEV(BO->LHS), MulCount),
5071 IntegerType::get(getContext(), BitWidth - LZ - TZ)),
5072 BO->LHS->getType()),
5073 MulCount);
5074 }
5075 }
5076 break;
5077
5078 case Instruction::Or:
5079 // If the RHS of the Or is a constant, we may have something like:
5080 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop
5081 // optimizations will transparently handle this case.
5082 //
5083 // In order for this transformation to be safe, the LHS must be of the
5084 // form X*(2^n) and the Or constant must be less than 2^n.
5085 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5086 const SCEV *LHS = getSCEV(BO->LHS);
5087 const APInt &CIVal = CI->getValue();
5088 if (GetMinTrailingZeros(LHS) >=
5089 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
5090 // Build a plain add SCEV.
5091 const SCEV *S = getAddExpr(LHS, getSCEV(CI));
5092 // If the LHS of the add was an addrec and it has no-wrap flags,
5093 // transfer the no-wrap flags, since an or won't introduce a wrap.
5094 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
5095 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
5096 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
5097 OldAR->getNoWrapFlags());
5098 }
5099 return S;
5100 }
5101 }
5102 break;
5103
5104 case Instruction::Xor:
5105 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5106 // If the RHS of xor is -1, then this is a not operation.
5107 if (CI->isAllOnesValue())
5108 return getNotSCEV(getSCEV(BO->LHS));
5109
5110 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
5111 // This is a variant of the check for xor with -1, and it handles
5112 // the case where instcombine has trimmed non-demanded bits out
5113 // of an xor with -1.
5114 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
5115 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
5116 if (LBO->getOpcode() == Instruction::And &&
5117 LCI->getValue() == CI->getValue())
5118 if (const SCEVZeroExtendExpr *Z =
5119 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
5120 Type *UTy = BO->LHS->getType();
5121 const SCEV *Z0 = Z->getOperand();
5122 Type *Z0Ty = Z0->getType();
5123 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
5124
5125 // If C is a low-bits mask, the zero extend is serving to
5126 // mask off the high bits. Complement the operand and
5127 // re-apply the zext.
5128 if (APIntOps::isMask(Z0TySize, CI->getValue()))
5129 return getZeroExtendExpr(getNotSCEV(Z0), UTy);
5130
5131 // If C is a single bit, it may be in the sign-bit position
5132 // before the zero-extend. In this case, represent the xor
5133 // using an add, which is equivalent, and re-apply the zext.
5134 APInt Trunc = CI->getValue().trunc(Z0TySize);
5135 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
5136 Trunc.isSignBit())
5137 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
5138 UTy);
5139 }
5140 }
5141 break;
5142
5143 case Instruction::Shl:
5144 // Turn shift left of a constant amount into a multiply.
5145 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
5146 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
5147
5148 // If the shift count is not less than the bitwidth, the result of
5149 // the shift is undefined. Don't try to analyze it, because the
5150 // resolution chosen here may differ from the resolution chosen in
5151 // other parts of the compiler.
5152 if (SA->getValue().uge(BitWidth))
5153 break;
5154
5155 // It is currently not resolved how to interpret NSW for left
5156 // shift by BitWidth - 1, so we avoid applying flags in that
5157 // case. Remove this check (or this comment) once the situation
5158 // is resolved. See
5159 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
5160 // and http://reviews.llvm.org/D8890 .
5161 auto Flags = SCEV::FlagAnyWrap;
5162 if (BO->Op && SA->getValue().ult(BitWidth - 1))
5163 Flags = getNoWrapFlagsFromUB(BO->Op);
5164
5165 Constant *X = ConstantInt::get(getContext(),
5166 APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
5167 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
5168 }
5169 break;
5170
5171 case Instruction::AShr:
5172 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
5173 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS))
5174 if (Operator *L = dyn_cast<Operator>(BO->LHS))
5175 if (L->getOpcode() == Instruction::Shl &&
5176 L->getOperand(1) == BO->RHS) {
5177 uint64_t BitWidth = getTypeSizeInBits(BO->LHS->getType());
5178
5179 // If the shift count is not less than the bitwidth, the result of
5180 // the shift is undefined. Don't try to analyze it, because the
5181 // resolution chosen here may differ from the resolution chosen in
5182 // other parts of the compiler.
5183 if (CI->getValue().uge(BitWidth))
5184 break;
5185
5186 uint64_t Amt = BitWidth - CI->getZExtValue();
5187 if (Amt == BitWidth)
5188 return getSCEV(L->getOperand(0)); // shift by zero --> noop
5189 return getSignExtendExpr(
5190 getTruncateExpr(getSCEV(L->getOperand(0)),
5191 IntegerType::get(getContext(), Amt)),
5192 BO->LHS->getType());
5193 }
5194 break;
5195 }
5196 }
5197
5198 switch (U->getOpcode()) {
5199 case Instruction::Trunc:
5200 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
5201
5202 case Instruction::ZExt:
5203 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
5204
5205 case Instruction::SExt:
5206 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
5207
5208 case Instruction::BitCast:
5209 // BitCasts are no-op casts so we just eliminate the cast.
5210 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
5211 return getSCEV(U->getOperand(0));
5212 break;
5213
5214 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
5215 // lead to pointer expressions which cannot safely be expanded to GEPs,
5216 // because ScalarEvolution doesn't respect the GEP aliasing rules when
5217 // simplifying integer expressions.
5218
5219 case Instruction::GetElementPtr:
5220 return createNodeForGEP(cast<GEPOperator>(U));
5221
5222 case Instruction::PHI:
5223 return createNodeForPHI(cast<PHINode>(U));
5224
5225 case Instruction::Select:
5226 // U can also be a select constant expr, which let fall through. Since
5227 // createNodeForSelect only works for a condition that is an `ICmpInst`, and
5228 // constant expressions cannot have instructions as operands, we'd have
5229 // returned getUnknown for a select constant expressions anyway.
5230 if (isa<Instruction>(U))
5231 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
5232 U->getOperand(1), U->getOperand(2));
5233 }
5234
5235 return getUnknown(V);
5236}
5237
5238
5239
5240//===----------------------------------------------------------------------===//
5241// Iteration Count Computation Code
5242//
5243
5244unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
5245 if (BasicBlock *ExitingBB = L->getExitingBlock())
5246 return getSmallConstantTripCount(L, ExitingBB);
5247
5248 // No trip count information for multiple exits.
5249 return 0;
5250}
5251
5252unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
5253 BasicBlock *ExitingBlock) {
5254 assert(ExitingBlock && "Must pass a non-null exiting block!")((ExitingBlock && "Must pass a non-null exiting block!"
) ? static_cast<void> (0) : __assert_fail ("ExitingBlock && \"Must pass a non-null exiting block!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 5254, __PRETTY_FUNCTION__))
;
5255 assert(L->isLoopExiting(ExitingBlock) &&((L->isLoopExiting(ExitingBlock) && "Exiting block must actually branch out of the loop!"
) ? static_cast<void> (0) : __assert_fail ("L->isLoopExiting(ExitingBlock) && \"Exiting block must actually branch out of the loop!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 5256, __PRETTY_FUNCTION__))
5256 "Exiting block must actually branch out of the loop!")((L->isLoopExiting(ExitingBlock) && "Exiting block must actually branch out of the loop!"
) ? static_cast<void> (0) : __assert_fail ("L->isLoopExiting(ExitingBlock) && \"Exiting block must actually branch out of the loop!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 5256, __PRETTY_FUNCTION__))
;
5257 const SCEVConstant *ExitCount =
5258 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
5259 if (!ExitCount)
5260 return 0;
5261
5262 ConstantInt *ExitConst = ExitCount->getValue();
5263
5264 // Guard against huge trip counts.
5265 if (ExitConst->getValue().getActiveBits() > 32)
5266 return 0;
5267
5268 // In case of integer overflow, this returns 0, which is correct.
5269 return ((unsigned)ExitConst->getZExtValue()) + 1;
5270}
5271
5272unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
5273 if (BasicBlock *ExitingBB = L->getExitingBlock())
5274 return getSmallConstantTripMultiple(L, ExitingBB);
5275
5276 // No trip multiple information for multiple exits.
5277 return 0;
5278}
5279
5280/// Returns the largest constant divisor of the trip count of this loop as a
5281/// normal unsigned value, if possible. This means that the actual trip count is
5282/// always a multiple of the returned value (don't forget the trip count could
5283/// very well be zero as well!).
5284///
5285/// Returns 1 if the trip count is unknown or not guaranteed to be the
5286/// multiple of a constant (which is also the case if the trip count is simply
5287/// constant, use getSmallConstantTripCount for that case), Will also return 1
5288/// if the trip count is very large (>= 2^32).
5289///
5290/// As explained in the comments for getSmallConstantTripCount, this assumes
5291/// that control exits the loop via ExitingBlock.
5292unsigned
5293ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
5294 BasicBlock *ExitingBlock) {
5295 assert(ExitingBlock && "Must pass a non-null exiting block!")((ExitingBlock && "Must pass a non-null exiting block!"
) ? static_cast<void> (0) : __assert_fail ("ExitingBlock && \"Must pass a non-null exiting block!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 5295, __PRETTY_FUNCTION__))
;
5296 assert(L->isLoopExiting(ExitingBlock) &&((L->isLoopExiting(ExitingBlock) && "Exiting block must actually branch out of the loop!"
) ? static_cast<void> (0) : __assert_fail ("L->isLoopExiting(ExitingBlock) && \"Exiting block must actually branch out of the loop!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 5297, __PRETTY_FUNCTION__))
5297 "Exiting block must actually branch out of the loop!")((L->isLoopExiting(ExitingBlock) && "Exiting block must actually branch out of the loop!"
) ? static_cast<void> (0) : __assert_fail ("L->isLoopExiting(ExitingBlock) && \"Exiting block must actually branch out of the loop!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 5297, __PRETTY_FUNCTION__))
;
5298 const SCEV *ExitCount = getExitCount(L, ExitingBlock);
5299 if (ExitCount == getCouldNotCompute())
5300 return 1;
5301
5302 // Get the trip count from the BE count by adding 1.
5303 const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType()));
5304 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
5305 // to factor simple cases.
5306 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
5307 TCMul = Mul->getOperand(0);
5308
5309 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
5310 if (!MulC)
5311 return 1;
5312
5313 ConstantInt *Result = MulC->getValue();
5314
5315 // Guard against huge trip counts (this requires checking
5316 // for zero to handle the case where the trip count == -1 and the
5317 // addition wraps).
5318 if (!Result || Result->getValue().getActiveBits() > 32 ||
5319 Result->getValue().getActiveBits() == 0)
5320 return 1;
5321
5322 return (unsigned)Result->getZExtValue();
5323}
5324
5325/// Get the expression for the number of loop iterations for which this loop is
5326/// guaranteed not to exit via ExitingBlock. Otherwise return
5327/// SCEVCouldNotCompute.
5328const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
5329 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
5330}
5331
5332const SCEV *
5333ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
5334 SCEVUnionPredicate &Preds) {
5335 return getPredicatedBackedgeTakenInfo(L).getExact(this, &Preds);
5336}
5337
5338const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
5339 return getBackedgeTakenInfo(L).getExact(this);
5340}
5341
5342/// Similar to getBackedgeTakenCount, except return the least SCEV value that is
5343/// known never to be less than the actual backedge taken count.
5344const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
5345 return getBackedgeTakenInfo(L).getMax(this);
5346}
5347
5348/// Push PHI nodes in the header of the given loop onto the given Worklist.
5349static void
5350PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
5351 BasicBlock *Header = L->getHeader();
5352
5353 // Push all Loop-header PHIs onto the Worklist stack.
5354 for (BasicBlock::iterator I = Header->begin();
5355 PHINode *PN = dyn_cast<PHINode>(I); ++I)
5356 Worklist.push_back(PN);
5357}
5358
5359const ScalarEvolution::BackedgeTakenInfo &
5360ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
5361 auto &BTI = getBackedgeTakenInfo(L);
5362 if (BTI.hasFullInfo())
5363 return BTI;
5364
5365 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
5366
5367 if (!Pair.second)
5368 return Pair.first->second;
5369
5370 BackedgeTakenInfo Result =
5371 computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
5372
5373 return PredicatedBackedgeTakenCounts.find(L)->second = Result;
5374}
5375
5376const ScalarEvolution::BackedgeTakenInfo &
5377ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
5378 // Initially insert an invalid entry for this loop. If the insertion
5379 // succeeds, proceed to actually compute a backedge-taken count and
5380 // update the value. The temporary CouldNotCompute value tells SCEV
5381 // code elsewhere that it shouldn't attempt to request a new
5382 // backedge-taken count, which could result in infinite recursion.
5383 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
5384 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
5385 if (!Pair.second)
5386 return Pair.first->second;
5387
5388 // computeBackedgeTakenCount may allocate memory for its result. Inserting it
5389 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
5390 // must be cleared in this scope.
5391 BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
5392
5393 if (Result.getExact(this) != getCouldNotCompute()) {
5394 assert(isLoopInvariant(Result.getExact(this), L) &&((isLoopInvariant(Result.getExact(this), L) && isLoopInvariant
(Result.getMax(this), L) && "Computed backedge-taken count isn't loop invariant for loop!"
) ? static_cast<void> (0) : __assert_fail ("isLoopInvariant(Result.getExact(this), L) && isLoopInvariant(Result.getMax(this), L) && \"Computed backedge-taken count isn't loop invariant for loop!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 5396, __PRETTY_FUNCTION__))
5395 isLoopInvariant(Result.getMax(this), L) &&((isLoopInvariant(Result.getExact(this), L) && isLoopInvariant
(Result.getMax(this), L) && "Computed backedge-taken count isn't loop invariant for loop!"
) ? static_cast<void> (0) : __assert_fail ("isLoopInvariant(Result.getExact(this), L) && isLoopInvariant(Result.getMax(this), L) && \"Computed backedge-taken count isn't loop invariant for loop!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 5396, __PRETTY_FUNCTION__))
5396 "Computed backedge-taken count isn't loop invariant for loop!")((isLoopInvariant(Result.getExact(this), L) && isLoopInvariant
(Result.getMax(this), L) && "Computed backedge-taken count isn't loop invariant for loop!"
) ? static_cast<void> (0) : __assert_fail ("isLoopInvariant(Result.getExact(this), L) && isLoopInvariant(Result.getMax(this), L) && \"Computed backedge-taken count isn't loop invariant for loop!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 5396, __PRETTY_FUNCTION__))
;
5397 ++NumTripCountsComputed;
5398 }
5399 else if (Result.getMax(this) == getCouldNotCompute() &&
5400 isa<PHINode>(L->getHeader()->begin())) {
5401 // Only count loops that have phi nodes as not being computable.
5402 ++NumTripCountsNotComputed;
5403 }
5404
5405 // Now that we know more about the trip count for this loop, forget any
5406 // existing SCEV values for PHI nodes in this loop since they are only
5407 // conservative estimates made without the benefit of trip count
5408 // information. This is similar to the code in forgetLoop, except that
5409 // it handles SCEVUnknown PHI nodes specially.
5410 if (Result.hasAnyInfo()) {
5411 SmallVector<Instruction *, 16> Worklist;
5412 PushLoopPHIs(L, Worklist);
5413
5414 SmallPtrSet<Instruction *, 8> Visited;
5415 while (!Worklist.empty()) {
5416 Instruction *I = Worklist.pop_back_val();
5417 if (!Visited.insert(I).second)
5418 continue;
5419
5420 ValueExprMapType::iterator It =
5421 ValueExprMap.find_as(static_cast<Value *>(I));
5422 if (It != ValueExprMap.end()) {
5423 const SCEV *Old = It->second;
5424
5425 // SCEVUnknown for a PHI either means that it has an unrecognized
5426 // structure, or it's a PHI that's in the progress of being computed
5427 // by createNodeForPHI. In the former case, additional loop trip
5428 // count information isn't going to change anything. In the later
5429 // case, createNodeForPHI will perform the necessary updates on its
5430 // own when it gets to that point.
5431 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
5432 forgetMemoizedResults(Old);
5433 ValueExprMap.erase(It);
5434 }
5435 if (PHINode *PN = dyn_cast<PHINode>(I))
5436 ConstantEvolutionLoopExitValue.erase(PN);
5437 }
5438
5439 PushDefUseChildren(I, Worklist);
5440 }
5441 }
5442
5443 // Re-lookup the insert position, since the call to
5444 // computeBackedgeTakenCount above could result in a
5445 // recusive call to getBackedgeTakenInfo (on a different
5446 // loop), which would invalidate the iterator computed
5447 // earlier.
5448 return BackedgeTakenCounts.find(L)->second = Result;
5449}
5450
5451void ScalarEvolution::forgetLoop(const Loop *L) {
5452 // Drop any stored trip count value.
5453 auto RemoveLoopFromBackedgeMap =
5454 [L](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
5455 auto BTCPos = Map.find(L);
5456 if (BTCPos != Map.end()) {
5457 BTCPos->second.clear();
5458 Map.erase(BTCPos);
5459 }
5460 };
5461
5462 RemoveLoopFromBackedgeMap(BackedgeTakenCounts);
5463 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts);
5464
5465 // Drop information about expressions based on loop-header PHIs.
5466 SmallVector<Instruction *, 16> Worklist;
5467 PushLoopPHIs(L, Worklist);
5468
5469 SmallPtrSet<Instruction *, 8> Visited;
5470 while (!Worklist.empty()) {
5471 Instruction *I = Worklist.pop_back_val();
5472 if (!Visited.insert(I).second)
5473 continue;
5474
5475 ValueExprMapType::iterator It =
5476 ValueExprMap.find_as(static_cast<Value *>(I));
5477 if (It != ValueExprMap.end()) {
5478 forgetMemoizedResults(It->second);
5479 ValueExprMap.erase(It);
5480 if (PHINode *PN = dyn_cast<PHINode>(I))
5481 ConstantEvolutionLoopExitValue.erase(PN);
5482 }
5483
5484 PushDefUseChildren(I, Worklist);
5485 }
5486
5487 // Forget all contained loops too, to avoid dangling entries in the
5488 // ValuesAtScopes map.
5489 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5490 forgetLoop(*I);
5491
5492 LoopMayThrow.erase(L);
5493}
5494
5495void ScalarEvolution::forgetValue(Value *V) {
5496 Instruction *I = dyn_cast<Instruction>(V);
5497 if (!I) return;
5498
5499 // Drop information about expressions based on loop-header PHIs.
5500 SmallVector<Instruction *, 16> Worklist;
5501 Worklist.push_back(I);
5502
5503 SmallPtrSet<Instruction *, 8> Visited;
5504 while (!Worklist.empty()) {
5505 I = Worklist.pop_back_val();
5506 if (!Visited.insert(I).second)
5507 continue;
5508
5509 ValueExprMapType::iterator It =
5510 ValueExprMap.find_as(static_cast<Value *>(I));
5511 if (It != ValueExprMap.end()) {
5512 forgetMemoizedResults(It->second);
5513 ValueExprMap.erase(It);
5514 if (PHINode *PN = dyn_cast<PHINode>(I))
5515 ConstantEvolutionLoopExitValue.erase(PN);
5516 }
5517
5518 PushDefUseChildren(I, Worklist);
5519 }
5520}
5521
5522/// Get the exact loop backedge taken count considering all loop exits. A
5523/// computable result can only be returned for loops with a single exit.
5524/// Returning the minimum taken count among all exits is incorrect because one
5525/// of the loop's exit limit's may have been skipped. howFarToZero assumes that
5526/// the limit of each loop test is never skipped. This is a valid assumption as
5527/// long as the loop exits via that test. For precise results, it is the
5528/// caller's responsibility to specify the relevant loop exit using
5529/// getExact(ExitingBlock, SE).
5530const SCEV *
5531ScalarEvolution::BackedgeTakenInfo::getExact(
5532 ScalarEvolution *SE, SCEVUnionPredicate *Preds) const {
5533 // If any exits were not computable, the loop is not computable.
5534 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
5535
5536 // We need exactly one computable exit.
5537 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
5538 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info")((ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"
) ? static_cast<void> (0) : __assert_fail ("ExitNotTaken.ExactNotTaken && \"uninitialized not-taken info\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 5538, __PRETTY_FUNCTION__))
;
5539
5540 const SCEV *BECount = nullptr;
5541 for (auto &ENT : ExitNotTaken) {
5542 assert(ENT.ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV")((ENT.ExactNotTaken != SE->getCouldNotCompute() &&
"bad exit SCEV") ? static_cast<void> (0) : __assert_fail
("ENT.ExactNotTaken != SE->getCouldNotCompute() && \"bad exit SCEV\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 5542, __PRETTY_FUNCTION__))
;
5543
5544 if (!BECount)
5545 BECount = ENT.ExactNotTaken;
5546 else if (BECount != ENT.ExactNotTaken)
5547 return SE->getCouldNotCompute();
5548 if (Preds && ENT.getPred())
5549 Preds->add(ENT.getPred());
5550
5551 assert((Preds || ENT.hasAlwaysTruePred()) &&(((Preds || ENT.hasAlwaysTruePred()) && "Predicate should be always true!"
) ? static_cast<void> (0) : __assert_fail ("(Preds || ENT.hasAlwaysTruePred()) && \"Predicate should be always true!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 5552, __PRETTY_FUNCTION__))
5552 "Predicate should be always true!")(((Preds || ENT.hasAlwaysTruePred()) && "Predicate should be always true!"
) ? static_cast<void> (0) : __assert_fail ("(Preds || ENT.hasAlwaysTruePred()) && \"Predicate should be always true!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 5552, __PRETTY_FUNCTION__))
;
5553 }
5554
5555 assert(BECount && "Invalid not taken count for loop exit")((BECount && "Invalid not taken count for loop exit")
? static_cast<void> (0) : __assert_fail ("BECount && \"Invalid not taken count for loop exit\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 5555, __PRETTY_FUNCTION__))
;
5556 return BECount;
5557}
5558
5559/// Get the exact not taken count for this loop exit.
5560const SCEV *
5561ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
5562 ScalarEvolution *SE) const {
5563 for (auto &ENT : ExitNotTaken)
5564 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePred())
5565 return ENT.ExactNotTaken;
5566
5567 return SE->getCouldNotCompute();
5568}
5569
5570/// getMax - Get the max backedge taken count for the loop.
5571const SCEV *
5572ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
5573 for (auto &ENT : ExitNotTaken)
5574 if (!ENT.hasAlwaysTruePred())
5575 return SE->getCouldNotCompute();
5576
5577 return Max ? Max : SE->getCouldNotCompute();
5578}
5579
5580bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
5581 ScalarEvolution *SE) const {
5582 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
5583 return true;
5584
5585 if (!ExitNotTaken.ExitingBlock)
5586 return false;
5587
5588 for (auto &ENT : ExitNotTaken)
5589 if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
5590 SE->hasOperand(ENT.ExactNotTaken, S))
5591 return true;
5592
5593 return false;
5594}
5595
5596/// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
5597/// computable exit into a persistent ExitNotTakenInfo array.
5598ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
5599 SmallVectorImpl<EdgeInfo> &ExitCounts, bool Complete, const SCEV *MaxCount)
5600 : Max(MaxCount) {
5601
5602 if (!Complete)
5603 ExitNotTaken.setIncomplete();
5604
5605 unsigned NumExits = ExitCounts.size();
5606 if (NumExits == 0) return;
5607
5608 ExitNotTaken.ExitingBlock = ExitCounts[0].ExitBlock;
5609 ExitNotTaken.ExactNotTaken = ExitCounts[0].Taken;
5610
5611 // Determine the number of ExitNotTakenExtras structures that we need.
5612 unsigned ExtraInfoSize = 0;
5613 if (NumExits > 1)
5614 ExtraInfoSize = 1 + std::count_if(std::next(ExitCounts.begin()),
5615 ExitCounts.end(), [](EdgeInfo &Entry) {
5616 return !Entry.Pred.isAlwaysTrue();
5617 });
5618 else if (!ExitCounts[0].Pred.isAlwaysTrue())
5619 ExtraInfoSize = 1;
5620
5621 ExitNotTakenExtras *ENT = nullptr;
5622
5623 // Allocate the ExitNotTakenExtras structures and initialize the first
5624 // element (ExitNotTaken).
5625 if (ExtraInfoSize > 0) {
5626 ENT = new ExitNotTakenExtras[ExtraInfoSize];
5627 ExitNotTaken.ExtraInfo = &ENT[0];
5628 *ExitNotTaken.getPred() = std::move(ExitCounts[0].Pred);
5629 }
5630
5631 if (NumExits == 1)
5632 return;
5633
5634 assert(ENT && "ExitNotTakenExtras is NULL while having more than one exit")((ENT && "ExitNotTakenExtras is NULL while having more than one exit"
) ? static_cast<void> (0) : __assert_fail ("ENT && \"ExitNotTakenExtras is NULL while having more than one exit\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 5634, __PRETTY_FUNCTION__))
;
5635
5636 auto &Exits = ExitNotTaken.ExtraInfo->Exits;
5637
5638 // Handle the rare case of multiple computable exits.
5639 for (unsigned i = 1, PredPos = 1; i < NumExits; ++i) {
5640 ExitNotTakenExtras *Ptr = nullptr;
5641 if (!ExitCounts[i].Pred.isAlwaysTrue()) {
5642 Ptr = &ENT[PredPos++];
5643 Ptr->Pred = std::move(ExitCounts[i].Pred);
5644 }
5645
5646 Exits.emplace_back(ExitCounts[i].ExitBlock, ExitCounts[i].Taken, Ptr);
5647 }
5648}
5649
5650/// Invalidate this result and free the ExitNotTakenInfo array.
5651void ScalarEvolution::BackedgeTakenInfo::clear() {
5652 ExitNotTaken.ExitingBlock = nullptr;
5653 ExitNotTaken.ExactNotTaken = nullptr;
5654 delete[] ExitNotTaken.ExtraInfo;
5655}
5656
5657/// Compute the number of times the backedge of the specified loop will execute.
5658ScalarEvolution::BackedgeTakenInfo
5659ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
5660 bool AllowPredicates) {
5661 SmallVector<BasicBlock *, 8> ExitingBlocks;
5662 L->getExitingBlocks(ExitingBlocks);
5663
5664 SmallVector<EdgeInfo, 4> ExitCounts;
5665 bool CouldComputeBECount = true;
5666 BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
5667 const SCEV *MustExitMaxBECount = nullptr;
5668 const SCEV *MayExitMaxBECount = nullptr;
5669
5670 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
5671 // and compute maxBECount.
5672 // Do a union of all the predicates here.
5673 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
5674 BasicBlock *ExitBB = ExitingBlocks[i];
5675 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
5676
5677 assert((AllowPredicates || EL.Pred.isAlwaysTrue()) &&(((AllowPredicates || EL.Pred.isAlwaysTrue()) && "Predicated exit limit when predicates are not allowed!"
) ? static_cast<void> (0) : __assert_fail ("(AllowPredicates || EL.Pred.isAlwaysTrue()) && \"Predicated exit limit when predicates are not allowed!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 5678, __PRETTY_FUNCTION__))
5678 "Predicated exit limit when predicates are not allowed!")(((AllowPredicates || EL.Pred.isAlwaysTrue()) && "Predicated exit limit when predicates are not allowed!"
) ? static_cast<void> (0) : __assert_fail ("(AllowPredicates || EL.Pred.isAlwaysTrue()) && \"Predicated exit limit when predicates are not allowed!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 5678, __PRETTY_FUNCTION__))
;
5679
5680 // 1. For each exit that can be computed, add an entry to ExitCounts.
5681 // CouldComputeBECount is true only if all exits can be computed.
5682 if (EL.Exact == getCouldNotCompute())
5683 // We couldn't compute an exact value for this exit, so
5684 // we won't be able to compute an exact value for the loop.
5685 CouldComputeBECount = false;
5686 else
5687 ExitCounts.emplace_back(EdgeInfo(ExitBB, EL.Exact, EL.Pred));
5688
5689 // 2. Derive the loop's MaxBECount from each exit's max number of
5690 // non-exiting iterations. Partition the loop exits into two kinds:
5691 // LoopMustExits and LoopMayExits.
5692 //
5693 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
5694 // is a LoopMayExit. If any computable LoopMustExit is found, then
5695 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
5696 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
5697 // considered greater than any computable EL.Max.
5698 if (EL.Max != getCouldNotCompute() && Latch &&
5699 DT.dominates(ExitBB, Latch)) {
5700 if (!MustExitMaxBECount)
5701 MustExitMaxBECount = EL.Max;
5702 else {
5703 MustExitMaxBECount =
5704 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
5705 }
5706 } else if (MayExitMaxBECount != getCouldNotCompute()) {
5707 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
5708 MayExitMaxBECount = EL.Max;
5709 else {
5710 MayExitMaxBECount =
5711 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
5712 }
5713 }
5714 }
5715 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
5716 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
5717 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
5718}
5719
5720ScalarEvolution::ExitLimit
5721ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
5722 bool AllowPredicates) {
5723
5724 // Okay, we've chosen an exiting block. See what condition causes us to exit
5725 // at this block and remember the exit block and whether all other targets
5726 // lead to the loop header.
5727 bool MustExecuteLoopHeader = true;
5728 BasicBlock *Exit = nullptr;
5729 for (auto *SBB : successors(ExitingBlock))
5730 if (!L->contains(SBB)) {
5731 if (Exit) // Multiple exit successors.
5732 return getCouldNotCompute();
5733 Exit = SBB;
5734 } else if (SBB != L->getHeader()) {
5735 MustExecuteLoopHeader = false;
5736 }
5737
5738 // At this point, we know we have a conditional branch that determines whether
5739 // the loop is exited. However, we don't know if the branch is executed each
5740 // time through the loop. If not, then the execution count of the branch will
5741 // not be equal to the trip count of the loop.
5742 //
5743 // Currently we check for this by checking to see if the Exit branch goes to
5744 // the loop header. If so, we know it will always execute the same number of
5745 // times as the loop. We also handle the case where the exit block *is* the
5746 // loop header. This is common for un-rotated loops.
5747 //
5748 // If both of those tests fail, walk up the unique predecessor chain to the
5749 // header, stopping if there is an edge that doesn't exit the loop. If the
5750 // header is reached, the execution count of the branch will be equal to the
5751 // trip count of the loop.
5752 //
5753 // More extensive analysis could be done to handle more cases here.
5754 //
5755 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
5756 // The simple checks failed, try climbing the unique predecessor chain
5757 // up to the header.
5758 bool Ok = false;
5759 for (BasicBlock *BB = ExitingBlock; BB; ) {
5760 BasicBlock *Pred = BB->getUniquePredecessor();
5761 if (!Pred)
5762 return getCouldNotCompute();
5763 TerminatorInst *PredTerm = Pred->getTerminator();
5764 for (const BasicBlock *PredSucc : PredTerm->successors()) {
5765 if (PredSucc == BB)
5766 continue;
5767 // If the predecessor has a successor that isn't BB and isn't
5768 // outside the loop, assume the worst.
5769 if (L->contains(PredSucc))
5770 return getCouldNotCompute();
5771 }
5772 if (Pred == L->getHeader()) {
5773 Ok = true;
5774 break;
5775 }
5776 BB = Pred;
5777 }
5778 if (!Ok)
5779 return getCouldNotCompute();
5780 }
5781
5782 bool IsOnlyExit = (L->getExitingBlock() != nullptr);
5783 TerminatorInst *Term = ExitingBlock->getTerminator();
5784 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
5785 assert(BI->isConditional() && "If unconditional, it can't be in loop!")((BI->isConditional() && "If unconditional, it can't be in loop!"
) ? static_cast<void> (0) : __assert_fail ("BI->isConditional() && \"If unconditional, it can't be in loop!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 5785, __PRETTY_FUNCTION__))
;
5786 // Proceed to the next level to examine the exit condition expression.
5787 return computeExitLimitFromCond(
5788 L, BI->getCondition(), BI->getSuccessor(0), BI->getSuccessor(1),
5789 /*ControlsExit=*/IsOnlyExit, AllowPredicates);
5790 }
5791
5792 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
5793 return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
5794 /*ControlsExit=*/IsOnlyExit);
5795
5796 return getCouldNotCompute();
5797}
5798
5799ScalarEvolution::ExitLimit
5800ScalarEvolution::computeExitLimitFromCond(const Loop *L,
5801 Value *ExitCond,
5802 BasicBlock *TBB,
5803 BasicBlock *FBB,
5804 bool ControlsExit,
5805 bool AllowPredicates) {
5806 // Check if the controlling expression for this loop is an And or Or.
5807 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
5808 if (BO->getOpcode() == Instruction::And) {
5809 // Recurse on the operands of the and.
5810 bool EitherMayExit = L->contains(TBB);
5811 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
5812 ControlsExit && !EitherMayExit,
5813 AllowPredicates);
5814 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
5815 ControlsExit && !EitherMayExit,
5816 AllowPredicates);
5817 const SCEV *BECount = getCouldNotCompute();
5818 const SCEV *MaxBECount = getCouldNotCompute();
5819 if (EitherMayExit) {
5820 // Both conditions must be true for the loop to continue executing.
5821 // Choose the less conservative count.
5822 if (EL0.Exact == getCouldNotCompute() ||
5823 EL1.Exact == getCouldNotCompute())
5824 BECount = getCouldNotCompute();
5825 else
5826 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5827 if (EL0.Max == getCouldNotCompute())
5828 MaxBECount = EL1.Max;
5829 else if (EL1.Max == getCouldNotCompute())
5830 MaxBECount = EL0.Max;
5831 else
5832 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
5833 } else {
5834 // Both conditions must be true at the same time for the loop to exit.
5835 // For now, be conservative.
5836 assert(L->contains(FBB) && "Loop block has no successor in loop!")((L->contains(FBB) && "Loop block has no successor in loop!"
) ? static_cast<void> (0) : __assert_fail ("L->contains(FBB) && \"Loop block has no successor in loop!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 5836, __PRETTY_FUNCTION__))
;
5837 if (EL0.Max == EL1.Max)
5838 MaxBECount = EL0.Max;
5839 if (EL0.Exact == EL1.Exact)
5840 BECount = EL0.Exact;
5841 }
5842
5843 SCEVUnionPredicate NP;
5844 NP.add(&EL0.Pred);
5845 NP.add(&EL1.Pred);
5846 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
5847 // to be more aggressive when computing BECount than when computing
5848 // MaxBECount. In these cases it is possible for EL0.Exact and EL1.Exact
5849 // to match, but for EL0.Max and EL1.Max to not.
5850 if (isa<SCEVCouldNotCompute>(MaxBECount) &&
5851 !isa<SCEVCouldNotCompute>(BECount))
5852 MaxBECount = BECount;
5853
5854 return ExitLimit(BECount, MaxBECount, NP);
5855 }
5856 if (BO->getOpcode() == Instruction::Or) {
5857 // Recurse on the operands of the or.
5858 bool EitherMayExit = L->contains(FBB);
5859 ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
5860 ControlsExit && !EitherMayExit,
5861 AllowPredicates);
5862 ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
5863 ControlsExit && !EitherMayExit,
5864 AllowPredicates);
5865 const SCEV *BECount = getCouldNotCompute();
5866 const SCEV *MaxBECount = getCouldNotCompute();
5867 if (EitherMayExit) {
5868 // Both conditions must be false for the loop to continue executing.
5869 // Choose the less conservative count.
5870 if (EL0.Exact == getCouldNotCompute() ||
5871 EL1.Exact == getCouldNotCompute())
5872 BECount = getCouldNotCompute();
5873 else
5874 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5875 if (EL0.Max == getCouldNotCompute())
5876 MaxBECount = EL1.Max;
5877 else if (EL1.Max == getCouldNotCompute())
5878 MaxBECount = EL0.Max;
5879 else
5880 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
5881 } else {
5882 // Both conditions must be false at the same time for the loop to exit.
5883 // For now, be conservative.
5884 assert(L->contains(TBB) && "Loop block has no successor in loop!")((L->contains(TBB) && "Loop block has no successor in loop!"
) ? static_cast<void> (0) : __assert_fail ("L->contains(TBB) && \"Loop block has no successor in loop!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 5884, __PRETTY_FUNCTION__))
;
5885 if (EL0.Max == EL1.Max)
5886 MaxBECount = EL0.Max;
5887 if (EL0.Exact == EL1.Exact)
5888 BECount = EL0.Exact;
5889 }
5890
5891 SCEVUnionPredicate NP;
5892 NP.add(&EL0.Pred);
5893 NP.add(&EL1.Pred);
5894 return ExitLimit(BECount, MaxBECount, NP);
5895 }
5896 }
5897
5898 // With an icmp, it may be feasible to compute an exact backedge-taken count.
5899 // Proceed to the next level to examine the icmp.
5900 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
5901 ExitLimit EL =
5902 computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
5903 if (EL.hasFullInfo() || !AllowPredicates)
5904 return EL;
5905
5906 // Try again, but use SCEV predicates this time.
5907 return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit,
5908 /*AllowPredicates=*/true);
5909 }
5910
5911 // Check for a constant condition. These are normally stripped out by
5912 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
5913 // preserve the CFG and is temporarily leaving constant conditions
5914 // in place.
5915 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
5916 if (L->contains(FBB) == !CI->getZExtValue())
5917 // The backedge is always taken.
5918 return getCouldNotCompute();
5919 else
5920 // The backedge is never taken.
5921 return getZero(CI->getType());
5922 }
5923
5924 // If it's not an integer or pointer comparison then compute it the hard way.
5925 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
5926}
5927
5928ScalarEvolution::ExitLimit
5929ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
5930 ICmpInst *ExitCond,
5931 BasicBlock *TBB,
5932 BasicBlock *FBB,
5933 bool ControlsExit,
5934 bool AllowPredicates) {
5935
5936 // If the condition was exit on true, convert the condition to exit on false
5937 ICmpInst::Predicate Cond;
5938 if (!L->contains(FBB))
5939 Cond = ExitCond->getPredicate();
5940 else
5941 Cond = ExitCond->getInversePredicate();
5942
5943 // Handle common loops like: for (X = "string"; *X; ++X)
5944 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
5945 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
5946 ExitLimit ItCnt =
5947 computeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
5948 if (ItCnt.hasAnyInfo())
5949 return ItCnt;
5950 }
5951
5952 ExitLimit ShiftEL = computeShiftCompareExitLimit(
5953 ExitCond->getOperand(0), ExitCond->getOperand(1), L, Cond);
5954 if (ShiftEL.hasAnyInfo())
5955 return ShiftEL;
5956
5957 const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5958 const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
5959
5960 // Try to evaluate any dependencies out of the loop.
5961 LHS = getSCEVAtScope(LHS, L);
5962 RHS = getSCEVAtScope(RHS, L);
5963
5964 // At this point, we would like to compute how many iterations of the
5965 // loop the predicate will return true for these inputs.
5966 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
5967 // If there is a loop-invariant, force it into the RHS.
5968 std::swap(LHS, RHS);
5969 Cond = ICmpInst::getSwappedPredicate(Cond);
5970 }
5971
5972 // Simplify the operands before analyzing them.
5973 (void)SimplifyICmpOperands(Cond, LHS, RHS);
5974
5975 // If we have a comparison of a chrec against a constant, try to use value
5976 // ranges to answer this query.
5977 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
5978 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
5979 if (AddRec->getLoop() == L) {
5980 // Form the constant range.
5981 ConstantRange CompRange(
5982 ICmpInst::makeConstantRange(Cond, RHSC->getAPInt()));
5983
5984 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
5985 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
5986 }
5987
5988 switch (Cond) {
5989 case ICmpInst::ICMP_NE: { // while (X != Y)
5990 // Convert to: while (X-Y != 0)
5991 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
5992 AllowPredicates);
5993 if (EL.hasAnyInfo()) return EL;
5994 break;
5995 }
5996 case ICmpInst::ICMP_EQ: { // while (X == Y)
5997 // Convert to: while (X-Y == 0)
5998 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
5999 if (EL.hasAnyInfo()) return EL;
6000 break;
6001 }
6002 case ICmpInst::ICMP_SLT:
6003 case ICmpInst::ICMP_ULT: { // while (X < Y)
6004 bool IsSigned = Cond == ICmpInst::ICMP_SLT;
6005 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
6006 AllowPredicates);
6007 if (EL.hasAnyInfo()) return EL;
6008 break;
6009 }
6010 case ICmpInst::ICMP_SGT:
6011 case ICmpInst::ICMP_UGT: { // while (X > Y)
6012 bool IsSigned = Cond == ICmpInst::ICMP_SGT;
6013 ExitLimit EL =
6014 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
6015 AllowPredicates);
6016 if (EL.hasAnyInfo()) return EL;
6017 break;
6018 }
6019 default:
6020 break;
6021 }
6022 return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
6023}
6024
6025ScalarEvolution::ExitLimit
6026ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
6027 SwitchInst *Switch,
6028 BasicBlock *ExitingBlock,
6029 bool ControlsExit) {
6030 assert(!L->contains(ExitingBlock) && "Not an exiting block!")((!L->contains(ExitingBlock) && "Not an exiting block!"
) ? static_cast<void> (0) : __assert_fail ("!L->contains(ExitingBlock) && \"Not an exiting block!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 6030, __PRETTY_FUNCTION__))
;
6031
6032 // Give up if the exit is the default dest of a switch.
6033 if (Switch->getDefaultDest() == ExitingBlock)
6034 return getCouldNotCompute();
6035
6036 assert(L->contains(Switch->getDefaultDest()) &&((L->contains(Switch->getDefaultDest()) && "Default case must not exit the loop!"
) ? static_cast<void> (0) : __assert_fail ("L->contains(Switch->getDefaultDest()) && \"Default case must not exit the loop!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 6037, __PRETTY_FUNCTION__))
6037 "Default case must not exit the loop!")((L->contains(Switch->getDefaultDest()) && "Default case must not exit the loop!"
) ? static_cast<void> (0) : __assert_fail ("L->contains(Switch->getDefaultDest()) && \"Default case must not exit the loop!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 6037, __PRETTY_FUNCTION__))
;
6038 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
6039 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
6040
6041 // while (X != Y) --> while (X-Y != 0)
6042 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
6043 if (EL.hasAnyInfo())
6044 return EL;
6045
6046 return getCouldNotCompute();
6047}
6048
6049static ConstantInt *
6050EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
6051 ScalarEvolution &SE) {
6052 const SCEV *InVal = SE.getConstant(C);
6053 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
6054 assert(isa<SCEVConstant>(Val) &&((isa<SCEVConstant>(Val) && "Evaluation of SCEV at constant didn't fold correctly?"
) ? static_cast<void> (0) : __assert_fail ("isa<SCEVConstant>(Val) && \"Evaluation of SCEV at constant didn't fold correctly?\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 6055, __PRETTY_FUNCTION__))
6055 "Evaluation of SCEV at constant didn't fold correctly?")((isa<SCEVConstant>(Val) && "Evaluation of SCEV at constant didn't fold correctly?"
) ? static_cast<void> (0) : __assert_fail ("isa<SCEVConstant>(Val) && \"Evaluation of SCEV at constant didn't fold correctly?\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 6055, __PRETTY_FUNCTION__))
;
6056 return cast<SCEVConstant>(Val)->getValue();
6057}
6058
6059/// Given an exit condition of 'icmp op load X, cst', try to see if we can
6060/// compute the backedge execution count.
6061ScalarEvolution::ExitLimit
6062ScalarEvolution::computeLoadConstantCompareExitLimit(
6063 LoadInst *LI,
6064 Constant *RHS,
6065 const Loop *L,
6066 ICmpInst::Predicate predicate) {
6067
6068 if (LI->isVolatile()) return getCouldNotCompute();
6069
6070 // Check to see if the loaded pointer is a getelementptr of a global.
6071 // TODO: Use SCEV instead of manually grubbing with GEPs.
6072 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
6073 if (!GEP) return getCouldNotCompute();
6074
6075 // Make sure that it is really a constant global we are gepping, with an
6076 // initializer, and make sure the first IDX is really 0.
6077 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
6078 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
6079 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
6080 !cast<Constant>(GEP->getOperand(1))->isNullValue())
6081 return getCouldNotCompute();
6082
6083 // Okay, we allow one non-constant index into the GEP instruction.
6084 Value *VarIdx = nullptr;
6085 std::vector<Constant*> Indexes;
6086 unsigned VarIdxNum = 0;
6087 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
6088 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
6089 Indexes.push_back(CI);
6090 } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
6091 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's.
6092 VarIdx = GEP->getOperand(i);
6093 VarIdxNum = i-2;
6094 Indexes.push_back(nullptr);
6095 }
6096
6097 // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
6098 if (!VarIdx)
6099 return getCouldNotCompute();
6100
6101 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
6102 // Check to see if X is a loop variant variable value now.
6103 const SCEV *Idx = getSCEV(VarIdx);
6104 Idx = getSCEVAtScope(Idx, L);
6105
6106 // We can only recognize very limited forms of loop index expressions, in
6107 // particular, only affine AddRec's like {C1,+,C2}.
6108 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
6109 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
6110 !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
6111 !isa<SCEVConstant>(IdxExpr->getOperand(1)))
6112 return getCouldNotCompute();
6113
6114 unsigned MaxSteps = MaxBruteForceIterations;
6115 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
6116 ConstantInt *ItCst = ConstantInt::get(
6117 cast<IntegerType>(IdxExpr->getType()), IterationNum);
6118 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
6119
6120 // Form the GEP offset.
6121 Indexes[VarIdxNum] = Val;
6122
6123 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
6124 Indexes);
6125 if (!Result) break; // Cannot compute!
6126
6127 // Evaluate the condition for this iteration.
6128 Result = ConstantExpr::getICmp(predicate, Result, RHS);
6129 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure
6130 if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
6131 ++NumArrayLenItCounts;
6132 return getConstant(ItCst); // Found terminating iteration!
6133 }
6134 }
6135 return getCouldNotCompute();
6136}
6137
6138ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
6139 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
6140 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
6141 if (!RHS)
6142 return getCouldNotCompute();
6143
6144 const BasicBlock *Latch = L->getLoopLatch();
6145 if (!Latch)
6146 return getCouldNotCompute();
6147
6148 const BasicBlock *Predecessor = L->getLoopPredecessor();
6149 if (!Predecessor)
6150 return getCouldNotCompute();
6151
6152 // Return true if V is of the form "LHS `shift_op` <positive constant>".
6153 // Return LHS in OutLHS and shift_opt in OutOpCode.
6154 auto MatchPositiveShift =
6155 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
6156
6157 using namespace PatternMatch;
6158
6159 ConstantInt *ShiftAmt;
6160 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6161 OutOpCode = Instruction::LShr;
6162 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6163 OutOpCode = Instruction::AShr;
6164 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6165 OutOpCode = Instruction::Shl;
6166 else
6167 return false;
6168
6169 return ShiftAmt->getValue().isStrictlyPositive();
6170 };
6171
6172 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
6173 //
6174 // loop:
6175 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
6176 // %iv.shifted = lshr i32 %iv, <positive constant>
6177 //
6178 // Return true on a succesful match. Return the corresponding PHI node (%iv
6179 // above) in PNOut and the opcode of the shift operation in OpCodeOut.
6180 auto MatchShiftRecurrence =
6181 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
6182 Optional<Instruction::BinaryOps> PostShiftOpCode;
6183
6184 {
6185 Instruction::BinaryOps OpC;
6186 Value *V;
6187
6188 // If we encounter a shift instruction, "peel off" the shift operation,
6189 // and remember that we did so. Later when we inspect %iv's backedge
6190 // value, we will make sure that the backedge value uses the same
6191 // operation.
6192 //
6193 // Note: the peeled shift operation does not have to be the same
6194 // instruction as the one feeding into the PHI's backedge value. We only
6195 // really care about it being the same *kind* of shift instruction --
6196 // that's all that is required for our later inferences to hold.
6197 if (MatchPositiveShift(LHS, V, OpC)) {
6198 PostShiftOpCode = OpC;
6199 LHS = V;
6200 }
6201 }
6202
6203 PNOut = dyn_cast<PHINode>(LHS);
6204 if (!PNOut || PNOut->getParent() != L->getHeader())
6205 return false;
6206
6207 Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
6208 Value *OpLHS;
6209
6210 return
6211 // The backedge value for the PHI node must be a shift by a positive
6212 // amount
6213 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
6214
6215 // of the PHI node itself
6216 OpLHS == PNOut &&
6217
6218 // and the kind of shift should be match the kind of shift we peeled
6219 // off, if any.
6220 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
6221 };
6222
6223 PHINode *PN;
6224 Instruction::BinaryOps OpCode;
6225 if (!MatchShiftRecurrence(LHS, PN, OpCode))
6226 return getCouldNotCompute();
6227
6228 const DataLayout &DL = getDataLayout();
6229
6230 // The key rationale for this optimization is that for some kinds of shift
6231 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
6232 // within a finite number of iterations. If the condition guarding the
6233 // backedge (in the sense that the backedge is taken if the condition is true)
6234 // is false for the value the shift recurrence stabilizes to, then we know
6235 // that the backedge is taken only a finite number of times.
6236
6237 ConstantInt *StableValue = nullptr;
6238 switch (OpCode) {
6239 default:
6240 llvm_unreachable("Impossible case!")::llvm::llvm_unreachable_internal("Impossible case!", "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 6240)
;
6241
6242 case Instruction::AShr: {
6243 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
6244 // bitwidth(K) iterations.
6245 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
6246 bool KnownZero, KnownOne;
6247 ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr,
6248 Predecessor->getTerminator(), &DT);
6249 auto *Ty = cast<IntegerType>(RHS->getType());
6250 if (KnownZero)
6251 StableValue = ConstantInt::get(Ty, 0);
6252 else if (KnownOne)
6253 StableValue = ConstantInt::get(Ty, -1, true);
6254 else
6255 return getCouldNotCompute();
6256
6257 break;
6258 }
6259 case Instruction::LShr:
6260 case Instruction::Shl:
6261 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
6262 // stabilize to 0 in at most bitwidth(K) iterations.
6263 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
6264 break;
6265 }
6266
6267 auto *Result =
6268 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
6269 assert(Result->getType()->isIntegerTy(1) &&((Result->getType()->isIntegerTy(1) && "Otherwise cannot be an operand to a branch instruction"
) ? static_cast<void> (0) : __assert_fail ("Result->getType()->isIntegerTy(1) && \"Otherwise cannot be an operand to a branch instruction\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 6270, __PRETTY_FUNCTION__))
6270 "Otherwise cannot be an operand to a branch instruction")((Result->getType()->isIntegerTy(1) && "Otherwise cannot be an operand to a branch instruction"
) ? static_cast<void> (0) : __assert_fail ("Result->getType()->isIntegerTy(1) && \"Otherwise cannot be an operand to a branch instruction\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 6270, __PRETTY_FUNCTION__))
;
6271
6272 if (Result->isZeroValue()) {
6273 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6274 const SCEV *UpperBound =
6275 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
6276 SCEVUnionPredicate P;
6277 return ExitLimit(getCouldNotCompute(), UpperBound, P);
6278 }
6279
6280 return getCouldNotCompute();
6281}
6282
6283/// Return true if we can constant fold an instruction of the specified type,
6284/// assuming that all operands were constants.
6285static bool CanConstantFold(const Instruction *I) {
6286 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
6287 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
6288 isa<LoadInst>(I))
6289 return true;
6290
6291 if (const CallInst *CI = dyn_cast<CallInst>(I))
6292 if (const Function *F = CI->getCalledFunction())
6293 return canConstantFoldCallTo(F);
6294 return false;
6295}
6296
6297/// Determine whether this instruction can constant evolve within this loop
6298/// assuming its operands can all constant evolve.
6299static bool canConstantEvolve(Instruction *I, const Loop *L) {
6300 // An instruction outside of the loop can't be derived from a loop PHI.
6301 if (!L->contains(I)) return false;
6302
6303 if (isa<PHINode>(I)) {
6304 // We don't currently keep track of the control flow needed to evaluate
6305 // PHIs, so we cannot handle PHIs inside of loops.
6306 return L->getHeader() == I->getParent();
6307 }
6308
6309 // If we won't be able to constant fold this expression even if the operands
6310 // are constants, bail early.
6311 return CanConstantFold(I);
6312}
6313
6314/// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
6315/// recursing through each instruction operand until reaching a loop header phi.
6316static PHINode *
6317getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
6318 DenseMap<Instruction *, PHINode *> &PHIMap) {
6319
6320 // Otherwise, we can evaluate this instruction if all of its operands are
6321 // constant or derived from a PHI node themselves.
6322 PHINode *PHI = nullptr;
6323 for (Value *Op : UseInst->operands()) {
6324 if (isa<Constant>(Op)) continue;
6325
6326 Instruction *OpInst = dyn_cast<Instruction>(Op);
6327 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
6328
6329 PHINode *P = dyn_cast<PHINode>(OpInst);
6330 if (!P)
6331 // If this operand is already visited, reuse the prior result.
6332 // We may have P != PHI if this is the deepest point at which the
6333 // inconsistent paths meet.
6334 P = PHIMap.lookup(OpInst);
6335 if (!P) {
6336 // Recurse and memoize the results, whether a phi is found or not.
6337 // This recursive call invalidates pointers into PHIMap.
6338 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
6339 PHIMap[OpInst] = P;
6340 }
6341 if (!P)
6342 return nullptr; // Not evolving from PHI
6343 if (PHI && PHI != P)
6344 return nullptr; // Evolving from multiple different PHIs.
6345 PHI = P;
6346 }
6347 // This is a expression evolving from a constant PHI!
6348 return PHI;
6349}
6350
6351/// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
6352/// in the loop that V is derived from. We allow arbitrary operations along the
6353/// way, but the operands of an operation must either be constants or a value
6354/// derived from a constant PHI. If this expression does not fit with these
6355/// constraints, return null.
6356static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
6357 Instruction *I = dyn_cast<Instruction>(V);
6358 if (!I || !canConstantEvolve(I, L)) return nullptr;
6359
6360 if (PHINode *PN = dyn_cast<PHINode>(I))
6361 return PN;
6362
6363 // Record non-constant instructions contained by the loop.
6364 DenseMap<Instruction *, PHINode *> PHIMap;
6365 return getConstantEvolvingPHIOperands(I, L, PHIMap);
6366}
6367
6368/// EvaluateExpression - Given an expression that passes the
6369/// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
6370/// in the loop has the value PHIVal. If we can't fold this expression for some
6371/// reason, return null.
6372static Constant *EvaluateExpression(Value *V, const Loop *L,
6373 DenseMap<Instruction *, Constant *> &Vals,
6374 const DataLayout &DL,
6375 const TargetLibraryInfo *TLI) {
6376 // Convenient constant check, but redundant for recursive calls.
6377 if (Constant *C = dyn_cast<Constant>(V)) return C;
6378 Instruction *I = dyn_cast<Instruction>(V);
6379 if (!I) return nullptr;
6380
6381 if (Constant *C = Vals.lookup(I)) return C;
6382
6383 // An instruction inside the loop depends on a value outside the loop that we
6384 // weren't given a mapping for, or a value such as a call inside the loop.
6385 if (!canConstantEvolve(I, L)) return nullptr;
6386
6387 // An unmapped PHI can be due to a branch or another loop inside this loop,
6388 // or due to this not being the initial iteration through a loop where we
6389 // couldn't compute the evolution of this particular PHI last time.
6390 if (isa<PHINode>(I)) return nullptr;
6391
6392 std::vector<Constant*> Operands(I->getNumOperands());
6393
6394 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
6395 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
6396 if (!Operand) {
6397 Operands[i] = dyn_cast<Constant>(I->getOperand(i));
6398 if (!Operands[i]) return nullptr;
6399 continue;
6400 }
6401 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
6402 Vals[Operand] = C;
6403 if (!C) return nullptr;
6404 Operands[i] = C;
6405 }
6406
6407 if (CmpInst *CI = dyn_cast<CmpInst>(I))
6408 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
6409 Operands[1], DL, TLI);
6410 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
6411 if (!LI->isVolatile())
6412 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
6413 }
6414 return ConstantFoldInstOperands(I, Operands, DL, TLI);
6415}
6416
6417
6418// If every incoming value to PN except the one for BB is a specific Constant,
6419// return that, else return nullptr.
6420static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
6421 Constant *IncomingVal = nullptr;
6422
6423 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
6424 if (PN->getIncomingBlock(i) == BB)
6425 continue;
6426
6427 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
6428 if (!CurrentVal)
6429 return nullptr;
6430
6431 if (IncomingVal != CurrentVal) {
6432 if (IncomingVal)
6433 return nullptr;
6434 IncomingVal = CurrentVal;
6435 }
6436 }
6437
6438 return IncomingVal;
6439}
6440
6441/// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
6442/// in the header of its containing loop, we know the loop executes a
6443/// constant number of times, and the PHI node is just a recurrence
6444/// involving constants, fold it.
6445Constant *
6446ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
6447 const APInt &BEs,
6448 const Loop *L) {
6449 auto I = ConstantEvolutionLoopExitValue.find(PN);
6450 if (I != ConstantEvolutionLoopExitValue.end())
6451 return I->second;
6452
6453 if (BEs.ugt(MaxBruteForceIterations))
6454 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it.
6455
6456 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
6457
6458 DenseMap<Instruction *, Constant *> CurrentIterVals;
6459 BasicBlock *Header = L->getHeader();
6460 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!")((PN->getParent() == Header && "Can't evaluate PHI not in loop header!"
) ? static_cast<void> (0) : __assert_fail ("PN->getParent() == Header && \"Can't evaluate PHI not in loop header!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 6460, __PRETTY_FUNCTION__))
;
6461
6462 BasicBlock *Latch = L->getLoopLatch();
6463 if (!Latch)
6464 return nullptr;
6465
6466 for (auto &I : *Header) {
6467 PHINode *PHI = dyn_cast<PHINode>(&I);
6468 if (!PHI) break;
6469 auto *StartCST = getOtherIncomingValue(PHI, Latch);
6470 if (!StartCST) continue;
6471 CurrentIterVals[PHI] = StartCST;
6472 }
6473 if (!CurrentIterVals.count(PN))
6474 return RetVal = nullptr;
6475
6476 Value *BEValue = PN->getIncomingValueForBlock(Latch);
6477
6478 // Execute the loop symbolically to determine the exit value.
6479 if (BEs.getActiveBits() >= 32)
6480 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
6481
6482 unsigned NumIterations = BEs.getZExtValue(); // must be in range
6483 unsigned IterationNum = 0;
6484 const DataLayout &DL = getDataLayout();
6485 for (; ; ++IterationNum) {
6486 if (IterationNum == NumIterations)
6487 return RetVal = CurrentIterVals[PN]; // Got exit value!
6488
6489 // Compute the value of the PHIs for the next iteration.
6490 // EvaluateExpression adds non-phi values to the CurrentIterVals map.
6491 DenseMap<Instruction *, Constant *> NextIterVals;
6492 Constant *NextPHI =
6493 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6494 if (!NextPHI)
6495 return nullptr; // Couldn't evaluate!
6496 NextIterVals[PN] = NextPHI;
6497
6498 bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
6499
6500 // Also evaluate the other PHI nodes. However, we don't get to stop if we
6501 // cease to be able to evaluate one of them or if they stop evolving,
6502 // because that doesn't necessarily prevent us from computing PN.
6503 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
6504 for (const auto &I : CurrentIterVals) {
6505 PHINode *PHI = dyn_cast<PHINode>(I.first);
6506 if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
6507 PHIsToCompute.emplace_back(PHI, I.second);
6508 }
6509 // We use two distinct loops because EvaluateExpression may invalidate any
6510 // iterators into CurrentIterVals.
6511 for (const auto &I : PHIsToCompute) {
6512 PHINode *PHI = I.first;
6513 Constant *&NextPHI = NextIterVals[PHI];
6514 if (!NextPHI) { // Not already computed.
6515 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
6516 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6517 }
6518 if (NextPHI != I.second)
6519 StoppedEvolving = false;
6520 }
6521
6522 // If all entries in CurrentIterVals == NextIterVals then we can stop
6523 // iterating, the loop can't continue to change.
6524 if (StoppedEvolving)
6525 return RetVal = CurrentIterVals[PN];
6526
6527 CurrentIterVals.swap(NextIterVals);
6528 }
6529}
6530
6531const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
6532 Value *Cond,
6533 bool ExitWhen) {
6534 PHINode *PN = getConstantEvolvingPHI(Cond, L);
6535 if (!PN) return getCouldNotCompute();
6536
6537 // If the loop is canonicalized, the PHI will have exactly two entries.
6538 // That's the only form we support here.
6539 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
6540
6541 DenseMap<Instruction *, Constant *> CurrentIterVals;
6542 BasicBlock *Header = L->getHeader();
6543 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!")((PN->getParent() == Header && "Can't evaluate PHI not in loop header!"
) ? static_cast<void> (0) : __assert_fail ("PN->getParent() == Header && \"Can't evaluate PHI not in loop header!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 6543, __PRETTY_FUNCTION__))
;
6544
6545 BasicBlock *Latch = L->getLoopLatch();
6546 assert(Latch && "Should follow from NumIncomingValues == 2!")((Latch && "Should follow from NumIncomingValues == 2!"
) ? static_cast<void> (0) : __assert_fail ("Latch && \"Should follow from NumIncomingValues == 2!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 6546, __PRETTY_FUNCTION__))
;
6547
6548 for (auto &I : *Header) {
6549 PHINode *PHI = dyn_cast<PHINode>(&I);
6550 if (!PHI)
6551 break;
6552 auto *StartCST = getOtherIncomingValue(PHI, Latch);
6553 if (!StartCST) continue;
6554 CurrentIterVals[PHI] = StartCST;
6555 }
6556 if (!CurrentIterVals.count(PN))
6557 return getCouldNotCompute();
6558
6559 // Okay, we find a PHI node that defines the trip count of this loop. Execute
6560 // the loop symbolically to determine when the condition gets a value of
6561 // "ExitWhen".
6562 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis.
6563 const DataLayout &DL = getDataLayout();
6564 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
6565 auto *CondVal = dyn_cast_or_null<ConstantInt>(
6566 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
6567
6568 // Couldn't symbolically evaluate.
6569 if (!CondVal) return getCouldNotCompute();
6570
6571 if (CondVal->getValue() == uint64_t(ExitWhen)) {
6572 ++NumBruteForceTripCountsComputed;
6573 return getConstant(Type::getInt32Ty(getContext()), IterationNum);
6574 }
6575
6576 // Update all the PHI nodes for the next iteration.
6577 DenseMap<Instruction *, Constant *> NextIterVals;
6578
6579 // Create a list of which PHIs we need to compute. We want to do this before
6580 // calling EvaluateExpression on them because that may invalidate iterators
6581 // into CurrentIterVals.
6582 SmallVector<PHINode *, 8> PHIsToCompute;
6583 for (const auto &I : CurrentIterVals) {
6584 PHINode *PHI = dyn_cast<PHINode>(I.first);
6585 if (!PHI || PHI->getParent() != Header) continue;
6586 PHIsToCompute.push_back(PHI);
6587 }
6588 for (PHINode *PHI : PHIsToCompute) {
6589 Constant *&NextPHI = NextIterVals[PHI];
6590 if (NextPHI) continue; // Already computed!
6591
6592 Value *BEValue = PHI->getIncomingValueForBlock(Latch);
6593 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6594 }
6595 CurrentIterVals.swap(NextIterVals);
6596 }
6597
6598 // Too many iterations were needed to evaluate.
6599 return getCouldNotCompute();
6600}
6601
6602const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
6603 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
6604 ValuesAtScopes[V];
6605 // Check to see if we've folded this expression at this loop before.
6606 for (auto &LS : Values)
6607 if (LS.first == L)
6608 return LS.second ? LS.second : V;
6609
6610 Values.emplace_back(L, nullptr);
6611
6612 // Otherwise compute it.
6613 const SCEV *C = computeSCEVAtScope(V, L);
6614 for (auto &LS : reverse(ValuesAtScopes[V]))
6615 if (LS.first == L) {
6616 LS.second = C;
6617 break;
6618 }
6619 return C;
6620}
6621
6622/// This builds up a Constant using the ConstantExpr interface. That way, we
6623/// will return Constants for objects which aren't represented by a
6624/// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
6625/// Returns NULL if the SCEV isn't representable as a Constant.
6626static Constant *BuildConstantFromSCEV(const SCEV *V) {
6627 switch (static_cast<SCEVTypes>(V->getSCEVType())) {
6628 case scCouldNotCompute:
6629 case scAddRecExpr:
6630 break;
6631 case scConstant:
6632 return cast<SCEVConstant>(V)->getValue();
6633 case scUnknown:
6634 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
6635 case scSignExtend: {
6636 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
6637 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
6638 return ConstantExpr::getSExt(CastOp, SS->getType());
6639 break;
6640 }
6641 case scZeroExtend: {
6642 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
6643 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
6644 return ConstantExpr::getZExt(CastOp, SZ->getType());
6645 break;
6646 }
6647 case scTruncate: {
6648 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
6649 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
6650 return ConstantExpr::getTrunc(CastOp, ST->getType());
6651 break;
6652 }
6653 case scAddExpr: {
6654 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
6655 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
6656 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6657 unsigned AS = PTy->getAddressSpace();
6658 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6659 C = ConstantExpr::getBitCast(C, DestPtrTy);
6660 }
6661 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
6662 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
6663 if (!C2) return nullptr;
6664
6665 // First pointer!
6666 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
6667 unsigned AS = C2->getType()->getPointerAddressSpace();
6668 std::swap(C, C2);
6669 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6670 // The offsets have been converted to bytes. We can add bytes to an
6671 // i8* by GEP with the byte count in the first index.
6672 C = ConstantExpr::getBitCast(C, DestPtrTy);
6673 }
6674
6675 // Don't bother trying to sum two pointers. We probably can't
6676 // statically compute a load that results from it anyway.
6677 if (C2->getType()->isPointerTy())
6678 return nullptr;
6679
6680 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6681 if (PTy->getElementType()->isStructTy())
6682 C2 = ConstantExpr::getIntegerCast(
6683 C2, Type::getInt32Ty(C->getContext()), true);
6684 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
6685 } else
6686 C = ConstantExpr::getAdd(C, C2);
6687 }
6688 return C;
6689 }
6690 break;
6691 }
6692 case scMulExpr: {
6693 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
6694 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
6695 // Don't bother with pointers at all.
6696 if (C->getType()->isPointerTy()) return nullptr;
6697 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
6698 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
6699 if (!C2 || C2->getType()->isPointerTy()) return nullptr;
6700 C = ConstantExpr::getMul(C, C2);
6701 }
6702 return C;
6703 }
6704 break;
6705 }
6706 case scUDivExpr: {
6707 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
6708 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
6709 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
6710 if (LHS->getType() == RHS->getType())
6711 return ConstantExpr::getUDiv(LHS, RHS);
6712 break;
6713 }
6714 case scSMaxExpr:
6715 case scUMaxExpr:
6716 break; // TODO: smax, umax.
6717 }
6718 return nullptr;
6719}
6720
6721const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
6722 if (isa<SCEVConstant>(V)) return V;
6723
6724 // If this instruction is evolved from a constant-evolving PHI, compute the
6725 // exit value from the loop without using SCEVs.
6726 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
6727 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
6728 const Loop *LI = this->LI[I->getParent()];
6729 if (LI && LI->getParentLoop() == L) // Looking for loop exit value.
6730 if (PHINode *PN = dyn_cast<PHINode>(I))
6731 if (PN->getParent() == LI->getHeader()) {
6732 // Okay, there is no closed form solution for the PHI node. Check
6733 // to see if the loop that contains it has a known backedge-taken
6734 // count. If so, we may be able to force computation of the exit
6735 // value.
6736 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
6737 if (const SCEVConstant *BTCC =
6738 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
6739 // Okay, we know how many times the containing loop executes. If
6740 // this is a constant evolving PHI node, get the final value at
6741 // the specified iteration number.
6742 Constant *RV =
6743 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
6744 if (RV) return getSCEV(RV);
6745 }
6746 }
6747
6748 // Okay, this is an expression that we cannot symbolically evaluate
6749 // into a SCEV. Check to see if it's possible to symbolically evaluate
6750 // the arguments into constants, and if so, try to constant propagate the
6751 // result. This is particularly useful for computing loop exit values.
6752 if (CanConstantFold(I)) {
6753 SmallVector<Constant *, 4> Operands;
6754 bool MadeImprovement = false;
6755 for (Value *Op : I->operands()) {
6756 if (Constant *C = dyn_cast<Constant>(Op)) {
6757 Operands.push_back(C);
6758 continue;
6759 }
6760
6761 // If any of the operands is non-constant and if they are
6762 // non-integer and non-pointer, don't even try to analyze them
6763 // with scev techniques.
6764 if (!isSCEVable(Op->getType()))
6765 return V;
6766
6767 const SCEV *OrigV = getSCEV(Op);
6768 const SCEV *OpV = getSCEVAtScope(OrigV, L);
6769 MadeImprovement |= OrigV != OpV;
6770
6771 Constant *C = BuildConstantFromSCEV(OpV);
6772 if (!C) return V;
6773 if (C->getType() != Op->getType())
6774 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
6775 Op->getType(),
6776 false),
6777 C, Op->getType());
6778 Operands.push_back(C);
6779 }
6780
6781 // Check to see if getSCEVAtScope actually made an improvement.
6782 if (MadeImprovement) {
6783 Constant *C = nullptr;
6784 const DataLayout &DL = getDataLayout();
6785 if (const CmpInst *CI = dyn_cast<CmpInst>(I))
6786 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
6787 Operands[1], DL, &TLI);
6788 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
6789 if (!LI->isVolatile())
6790 C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
6791 } else
6792 C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
6793 if (!C) return V;
6794 return getSCEV(C);
6795 }
6796 }
6797 }
6798
6799 // This is some other type of SCEVUnknown, just return it.
6800 return V;
6801 }
6802
6803 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
6804 // Avoid performing the look-up in the common case where the specified
6805 // expression has no loop-variant portions.
6806 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
6807 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
6808 if (OpAtScope != Comm->getOperand(i)) {
6809 // Okay, at least one of these operands is loop variant but might be
6810 // foldable. Build a new instance of the folded commutative expression.
6811 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
6812 Comm->op_begin()+i);
6813 NewOps.push_back(OpAtScope);
6814
6815 for (++i; i != e; ++i) {
6816 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
6817 NewOps.push_back(OpAtScope);
6818 }
6819 if (isa<SCEVAddExpr>(Comm))
6820 return getAddExpr(NewOps);
6821 if (isa<SCEVMulExpr>(Comm))
6822 return getMulExpr(NewOps);
6823 if (isa<SCEVSMaxExpr>(Comm))
6824 return getSMaxExpr(NewOps);
6825 if (isa<SCEVUMaxExpr>(Comm))
6826 return getUMaxExpr(NewOps);
6827 llvm_unreachable("Unknown commutative SCEV type!")::llvm::llvm_unreachable_internal("Unknown commutative SCEV type!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 6827)
;
6828 }
6829 }
6830 // If we got here, all operands are loop invariant.
6831 return Comm;
6832 }
6833
6834 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
6835 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
6836 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
6837 if (LHS == Div->getLHS() && RHS == Div->getRHS())
6838 return Div; // must be loop invariant
6839 return getUDivExpr(LHS, RHS);
6840 }
6841
6842 // If this is a loop recurrence for a loop that does not contain L, then we
6843 // are dealing with the final value computed by the loop.
6844 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
6845 // First, attempt to evaluate each operand.
6846 // Avoid performing the look-up in the common case where the specified
6847 // expression has no loop-variant portions.
6848 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
6849 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
6850 if (OpAtScope == AddRec->getOperand(i))
6851 continue;
6852
6853 // Okay, at least one of these operands is loop variant but might be
6854 // foldable. Build a new instance of the folded commutative expression.
6855 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
6856 AddRec->op_begin()+i);
6857 NewOps.push_back(OpAtScope);
6858 for (++i; i != e; ++i)
6859 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
6860
6861 const SCEV *FoldedRec =
6862 getAddRecExpr(NewOps, AddRec->getLoop(),
6863 AddRec->getNoWrapFlags(SCEV::FlagNW));
6864 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
6865 // The addrec may be folded to a nonrecurrence, for example, if the
6866 // induction variable is multiplied by zero after constant folding. Go
6867 // ahead and return the folded value.
6868 if (!AddRec)
6869 return FoldedRec;
6870 break;
6871 }
6872
6873 // If the scope is outside the addrec's loop, evaluate it by using the
6874 // loop exit value of the addrec.
6875 if (!AddRec->getLoop()->contains(L)) {
6876 // To evaluate this recurrence, we need to know how many times the AddRec
6877 // loop iterates. Compute this now.
6878 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
6879 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
6880
6881 // Then, evaluate the AddRec.
6882 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
6883 }
6884
6885 return AddRec;
6886 }
6887
6888 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
6889 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6890 if (Op == Cast->getOperand())
6891 return Cast; // must be loop invariant
6892 return getZeroExtendExpr(Op, Cast->getType());
6893 }
6894
6895 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
6896 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6897 if (Op == Cast->getOperand())
6898 return Cast; // must be loop invariant
6899 return getSignExtendExpr(Op, Cast->getType());
6900 }
6901
6902 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
6903 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6904 if (Op == Cast->getOperand())
6905 return Cast; // must be loop invariant
6906 return getTruncateExpr(Op, Cast->getType());
6907 }
6908
6909 llvm_unreachable("Unknown SCEV type!")::llvm::llvm_unreachable_internal("Unknown SCEV type!", "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 6909)
;
6910}
6911
6912const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
6913 return getSCEVAtScope(getSCEV(V), L);
6914}
6915
6916/// Finds the minimum unsigned root of the following equation:
6917///
6918/// A * X = B (mod N)
6919///
6920/// where N = 2^BW and BW is the common bit width of A and B. The signedness of
6921/// A and B isn't important.
6922///
6923/// If the equation does not have a solution, SCEVCouldNotCompute is returned.
6924static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
6925 ScalarEvolution &SE) {
6926 uint32_t BW = A.getBitWidth();
6927 assert(BW == B.getBitWidth() && "Bit widths must be the same.")((BW == B.getBitWidth() && "Bit widths must be the same."
) ? static_cast<void> (0) : __assert_fail ("BW == B.getBitWidth() && \"Bit widths must be the same.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 6927, __PRETTY_FUNCTION__))
;
6928 assert(A != 0 && "A must be non-zero.")((A != 0 && "A must be non-zero.") ? static_cast<void
> (0) : __assert_fail ("A != 0 && \"A must be non-zero.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 6928, __PRETTY_FUNCTION__))
;
6929
6930 // 1. D = gcd(A, N)
6931 //
6932 // The gcd of A and N may have only one prime factor: 2. The number of
6933 // trailing zeros in A is its multiplicity
6934 uint32_t Mult2 = A.countTrailingZeros();
6935 // D = 2^Mult2
6936
6937 // 2. Check if B is divisible by D.
6938 //
6939 // B is divisible by D if and only if the multiplicity of prime factor 2 for B
6940 // is not less than multiplicity of this prime factor for D.
6941 if (B.countTrailingZeros() < Mult2)
6942 return SE.getCouldNotCompute();
6943
6944 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
6945 // modulo (N / D).
6946 //
6947 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this
6948 // bit width during computations.
6949 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D
6950 APInt Mod(BW + 1, 0);
6951 Mod.setBit(BW - Mult2); // Mod = N / D
6952 APInt I = AD.multiplicativeInverse(Mod);
6953
6954 // 4. Compute the minimum unsigned root of the equation:
6955 // I * (B / D) mod (N / D)
6956 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
6957
6958 // The result is guaranteed to be less than 2^BW so we may truncate it to BW
6959 // bits.
6960 return SE.getConstant(Result.trunc(BW));
6961}
6962
6963/// Find the roots of the quadratic equation for the given quadratic chrec
6964/// {L,+,M,+,N}. This returns either the two roots (which might be the same) or
6965/// two SCEVCouldNotCompute objects.
6966///
6967static std::pair<const SCEV *,const SCEV *>
6968SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
6969 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!")((AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"
) ? static_cast<void> (0) : __assert_fail ("AddRec->getNumOperands() == 3 && \"This is not a quadratic chrec!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 6969, __PRETTY_FUNCTION__))
;
6970 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
6971 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
6972 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
6973
6974 // We currently can only solve this if the coefficients are constants.
6975 if (!LC || !MC || !NC) {
6976 const SCEV *CNC = SE.getCouldNotCompute();
6977 return {CNC, CNC};
6978 }
6979
6980 uint32_t BitWidth = LC->getAPInt().getBitWidth();
6981 const APInt &L = LC->getAPInt();
6982 const APInt &M = MC->getAPInt();
6983 const APInt &N = NC->getAPInt();
6984 APInt Two(BitWidth, 2);
6985 APInt Four(BitWidth, 4);
6986
6987 {
6988 using namespace APIntOps;
6989 const APInt& C = L;
6990 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
6991 // The B coefficient is M-N/2
6992 APInt B(M);
6993 B -= sdiv(N,Two);
6994
6995 // The A coefficient is N/2
6996 APInt A(N.sdiv(Two));
6997
6998 // Compute the B^2-4ac term.
6999 APInt SqrtTerm(B);
7000 SqrtTerm *= B;
7001 SqrtTerm -= Four * (A * C);
7002
7003 if (SqrtTerm.isNegative()) {
7004 // The loop is provably infinite.
7005 const SCEV *CNC = SE.getCouldNotCompute();
7006 return {CNC, CNC};
7007 }
7008
7009 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
7010 // integer value or else APInt::sqrt() will assert.
7011 APInt SqrtVal(SqrtTerm.sqrt());
7012
7013 // Compute the two solutions for the quadratic formula.
7014 // The divisions must be performed as signed divisions.
7015 APInt NegB(-B);
7016 APInt TwoA(A << 1);
7017 if (TwoA.isMinValue()) {
7018 const SCEV *CNC = SE.getCouldNotCompute();
7019 return {CNC, CNC};
7020 }
7021
7022 LLVMContext &Context = SE.getContext();
7023
7024 ConstantInt *Solution1 =
7025 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
7026 ConstantInt *Solution2 =
7027 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
7028
7029 return {SE.getConstant(Solution1), SE.getConstant(Solution2)};
7030 } // end APIntOps namespace
7031}
7032
7033ScalarEvolution::ExitLimit
7034ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
7035 bool AllowPredicates) {
7036
7037 // This is only used for loops with a "x != y" exit test. The exit condition
7038 // is now expressed as a single expression, V = x-y. So the exit test is
7039 // effectively V != 0. We know and take advantage of the fact that this
7040 // expression only being used in a comparison by zero context.
7041
7042 SCEVUnionPredicate P;
7043 // If the value is a constant
7044 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
7045 // If the value is already zero, the branch will execute zero times.
7046 if (C->getValue()->isZero()) return C;
7047 return getCouldNotCompute(); // Otherwise it will loop infinitely.
7048 }
7049
7050 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
7051 if (!AddRec && AllowPredicates)
7052 // Try to make this an AddRec using runtime tests, in the first X
7053 // iterations of this loop, where X is the SCEV expression found by the
7054 // algorithm below.
7055 AddRec = convertSCEVToAddRecWithPredicates(V, L, P);
7056
7057 if (!AddRec || AddRec->getLoop() != L)
7058 return getCouldNotCompute();
7059
7060 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
7061 // the quadratic equation to solve it.
7062 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
7063 std::pair<const SCEV *,const SCEV *> Roots =
7064 SolveQuadraticEquation(AddRec, *this);
7065 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
7066 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
7067 if (R1 && R2) {
7068 // Pick the smallest positive root value.
7069 if (ConstantInt *CB =
7070 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
7071 R1->getValue(),
7072 R2->getValue()))) {
7073 if (!CB->getZExtValue())
7074 std::swap(R1, R2); // R1 is the minimum root now.
7075
7076 // We can only use this value if the chrec ends up with an exact zero
7077 // value at this index. When solving for "X*X != 5", for example, we
7078 // should not accept a root of 2.
7079 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
7080 if (Val->isZero())
7081 return ExitLimit(R1, R1, P); // We found a quadratic root!
7082 }
7083 }
7084 return getCouldNotCompute();
7085 }
7086
7087 // Otherwise we can only handle this if it is affine.
7088 if (!AddRec->isAffine())
7089 return getCouldNotCompute();
7090
7091 // If this is an affine expression, the execution count of this branch is
7092 // the minimum unsigned root of the following equation:
7093 //
7094 // Start + Step*N = 0 (mod 2^BW)
7095 //
7096 // equivalent to:
7097 //
7098 // Step*N = -Start (mod 2^BW)
7099 //
7100 // where BW is the common bit width of Start and Step.
7101
7102 // Get the initial value for the loop.
7103 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
7104 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
7105
7106 // For now we handle only constant steps.
7107 //
7108 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
7109 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
7110 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
7111 // We have not yet seen any such cases.
7112 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
7113 if (!StepC || StepC->getValue()->equalsInt(0))
7114 return getCouldNotCompute();
7115
7116 // For positive steps (counting up until unsigned overflow):
7117 // N = -Start/Step (as unsigned)
7118 // For negative steps (counting down to zero):
7119 // N = Start/-Step
7120 // First compute the unsigned distance from zero in the direction of Step.
7121 bool CountDown = StepC->getAPInt().isNegative();
7122 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
7123
7124 // Handle unitary steps, which cannot wraparound.
7125 // 1*N = -Start; -1*N = Start (mod 2^BW), so:
7126 // N = Distance (as unsigned)
7127 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
7128 ConstantRange CR = getUnsignedRange(Start);
7129 const SCEV *MaxBECount;
7130 if (!CountDown && CR.getUnsignedMin().isMinValue())
7131 // When counting up, the worst starting value is 1, not 0.
7132 MaxBECount = CR.getUnsignedMax().isMinValue()
7133 ? getConstant(APInt::getMinValue(CR.getBitWidth()))
7134 : getConstant(APInt::getMaxValue(CR.getBitWidth()));
7135 else
7136 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
7137 : -CR.getUnsignedMin());
7138 return ExitLimit(Distance, MaxBECount, P);
7139 }
7140
7141 // As a special case, handle the instance where Step is a positive power of
7142 // two. In this case, determining whether Step divides Distance evenly can be
7143 // done by counting and comparing the number of trailing zeros of Step and
7144 // Distance.
7145 if (!CountDown) {
7146 const APInt &StepV = StepC->getAPInt();
7147 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It
7148 // also returns true if StepV is maximally negative (eg, INT_MIN), but that
7149 // case is not handled as this code is guarded by !CountDown.
7150 if (StepV.isPowerOf2() &&
7151 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) {
7152 // Here we've constrained the equation to be of the form
7153 //
7154 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0)
7155 //
7156 // where we're operating on a W bit wide integer domain and k is
7157 // non-negative. The smallest unsigned solution for X is the trip count.
7158 //
7159 // (0) is equivalent to:
7160 //
7161 // 2^(N + k) * Distance' - 2^N * X = L * 2^W
7162 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N
7163 // <=> 2^k * Distance' - X = L * 2^(W - N)
7164 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1)
7165 //
7166 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS
7167 // by 2^(W - N).
7168 //
7169 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2)
7170 //
7171 // E.g. say we're solving
7172 //
7173 // 2 * Val = 2 * X (in i8) ... (3)
7174 //
7175 // then from (2), we get X = Val URem i8 128 (k = 0 in this case).
7176 //
7177 // Note: It is tempting to solve (3) by setting X = Val, but Val is not
7178 // necessarily the smallest unsigned value of X that satisfies (3).
7179 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3)
7180 // is i8 1, not i8 -127
7181
7182 const auto *ModuloResult = getUDivExactExpr(Distance, Step);
7183
7184 // Since SCEV does not have a URem node, we construct one using a truncate
7185 // and a zero extend.
7186
7187 unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros();
7188 auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth);
7189 auto *WideTy = Distance->getType();
7190
7191 const SCEV *Limit =
7192 getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy);
7193 return ExitLimit(Limit, Limit, P);
7194 }
7195 }
7196
7197 // If the condition controls loop exit (the loop exits only if the expression
7198 // is true) and the addition is no-wrap we can use unsigned divide to
7199 // compute the backedge count. In this case, the step may not divide the
7200 // distance, but we don't care because if the condition is "missed" the loop
7201 // will have undefined behavior due to wrapping.
7202 if (ControlsExit && AddRec->hasNoSelfWrap()) {
7203 const SCEV *Exact =
7204 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
7205 return ExitLimit(Exact, Exact, P);
7206 }
7207
7208 // Then, try to solve the above equation provided that Start is constant.
7209 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
7210 const SCEV *E = SolveLinEquationWithOverflow(
7211 StepC->getValue()->getValue(), -StartC->getValue()->getValue(), *this);
7212 return ExitLimit(E, E, P);
7213 }
7214 return getCouldNotCompute();
7215}
7216
7217ScalarEvolution::ExitLimit
7218ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
7219 // Loops that look like: while (X == 0) are very strange indeed. We don't
7220 // handle them yet except for the trivial case. This could be expanded in the
7221 // future as needed.
7222
7223 // If the value is a constant, check to see if it is known to be non-zero
7224 // already. If so, the backedge will execute zero times.
7225 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
7226 if (!C->getValue()->isNullValue())
7227 return getZero(C->getType());
7228 return getCouldNotCompute(); // Otherwise it will loop infinitely.
7229 }
7230
7231 // We could implement others, but I really doubt anyone writes loops like
7232 // this, and if they did, they would already be constant folded.
7233 return getCouldNotCompute();
7234}
7235
7236std::pair<BasicBlock *, BasicBlock *>
7237ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
7238 // If the block has a unique predecessor, then there is no path from the
7239 // predecessor to the block that does not go through the direct edge
7240 // from the predecessor to the block.
7241 if (BasicBlock *Pred = BB->getSinglePredecessor())
7242 return {Pred, BB};
7243
7244 // A loop's header is defined to be a block that dominates the loop.
7245 // If the header has a unique predecessor outside the loop, it must be
7246 // a block that has exactly one successor that can reach the loop.
7247 if (Loop *L = LI.getLoopFor(BB))
7248 return {L->getLoopPredecessor(), L->getHeader()};
7249
7250 return {nullptr, nullptr};
7251}
7252
7253/// SCEV structural equivalence is usually sufficient for testing whether two
7254/// expressions are equal, however for the purposes of looking for a condition
7255/// guarding a loop, it can be useful to be a little more general, since a
7256/// front-end may have replicated the controlling expression.
7257///
7258static bool HasSameValue(const SCEV *A, const SCEV *B) {
7259 // Quick check to see if they are the same SCEV.
7260 if (A == B) return true;
7261
7262 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
7263 // Not all instructions that are "identical" compute the same value. For
7264 // instance, two distinct alloca instructions allocating the same type are
7265 // identical and do not read memory; but compute distinct values.
7266 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
7267 };
7268
7269 // Otherwise, if they're both SCEVUnknown, it's possible that they hold
7270 // two different instructions with the same value. Check for this case.
7271 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
7272 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
7273 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
7274 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
7275 if (ComputesEqualValues(AI, BI))
7276 return true;
7277
7278 // Otherwise assume they may have a different value.
7279 return false;
7280}
7281
7282bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
7283 const SCEV *&LHS, const SCEV *&RHS,
7284 unsigned Depth) {
7285 bool Changed = false;
7286
7287 // If we hit the max recursion limit bail out.
7288 if (Depth >= 3)
7289 return false;
7290
7291 // Canonicalize a constant to the right side.
7292 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
7293 // Check for both operands constant.
7294 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
7295 if (ConstantExpr::getICmp(Pred,
7296 LHSC->getValue(),
7297 RHSC->getValue())->isNullValue())
7298 goto trivially_false;
7299 else
7300 goto trivially_true;
7301 }
7302 // Otherwise swap the operands to put the constant on the right.
7303 std::swap(LHS, RHS);
7304 Pred = ICmpInst::getSwappedPredicate(Pred);
7305 Changed = true;
7306 }
7307
7308 // If we're comparing an addrec with a value which is loop-invariant in the
7309 // addrec's loop, put the addrec on the left. Also make a dominance check,
7310 // as both operands could be addrecs loop-invariant in each other's loop.
7311 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
7312 const Loop *L = AR->getLoop();
7313 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
7314 std::swap(LHS, RHS);
7315 Pred = ICmpInst::getSwappedPredicate(Pred);
7316 Changed = true;
7317 }
7318 }
7319
7320 // If there's a constant operand, canonicalize comparisons with boundary
7321 // cases, and canonicalize *-or-equal comparisons to regular comparisons.
7322 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
7323 const APInt &RA = RC->getAPInt();
7324 switch (Pred) {
7325 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!")::llvm::llvm_unreachable_internal("Unexpected ICmpInst::Predicate value!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 7325)
;
7326 case ICmpInst::ICMP_EQ:
7327 case ICmpInst::ICMP_NE:
7328 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
7329 if (!RA)
7330 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
7331 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
7332 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
7333 ME->getOperand(0)->isAllOnesValue()) {
7334 RHS = AE->getOperand(1);
7335 LHS = ME->getOperand(1);
7336 Changed = true;
7337 }
7338 break;
7339 case ICmpInst::ICMP_UGE:
7340 if ((RA - 1).isMinValue()) {
7341 Pred = ICmpInst::ICMP_NE;
7342 RHS = getConstant(RA - 1);
7343 Changed = true;
7344 break;
7345 }
7346 if (RA.isMaxValue()) {
7347 Pred = ICmpInst::ICMP_EQ;
7348 Changed = true;
7349 break;
7350 }
7351 if (RA.isMinValue()) goto trivially_true;
7352
7353 Pred = ICmpInst::ICMP_UGT;
7354 RHS = getConstant(RA - 1);
7355 Changed = true;
7356 break;
7357 case ICmpInst::ICMP_ULE:
7358 if ((RA + 1).isMaxValue()) {
7359 Pred = ICmpInst::ICMP_NE;
7360 RHS = getConstant(RA + 1);
7361 Changed = true;
7362 break;
7363 }
7364 if (RA.isMinValue()) {
7365 Pred = ICmpInst::ICMP_EQ;
7366 Changed = true;
7367 break;
7368 }
7369 if (RA.isMaxValue()) goto trivially_true;
7370
7371 Pred = ICmpInst::ICMP_ULT;
7372 RHS = getConstant(RA + 1);
7373 Changed = true;
7374 break;
7375 case ICmpInst::ICMP_SGE:
7376 if ((RA - 1).isMinSignedValue()) {
7377 Pred = ICmpInst::ICMP_NE;
7378 RHS = getConstant(RA - 1);
7379 Changed = true;
7380 break;
7381 }
7382 if (RA.isMaxSignedValue()) {
7383 Pred = ICmpInst::ICMP_EQ;
7384 Changed = true;
7385 break;
7386 }
7387 if (RA.isMinSignedValue()) goto trivially_true;
7388
7389 Pred = ICmpInst::ICMP_SGT;
7390 RHS = getConstant(RA - 1);
7391 Changed = true;
7392 break;
7393 case ICmpInst::ICMP_SLE:
7394 if ((RA + 1).isMaxSignedValue()) {
7395 Pred = ICmpInst::ICMP_NE;
7396 RHS = getConstant(RA + 1);
7397 Changed = true;
7398 break;
7399 }
7400 if (RA.isMinSignedValue()) {
7401 Pred = ICmpInst::ICMP_EQ;
7402 Changed = true;
7403 break;
7404 }
7405 if (RA.isMaxSignedValue()) goto trivially_true;
7406
7407 Pred = ICmpInst::ICMP_SLT;
7408 RHS = getConstant(RA + 1);
7409 Changed = true;
7410 break;
7411 case ICmpInst::ICMP_UGT:
7412 if (RA.isMinValue()) {
7413 Pred = ICmpInst::ICMP_NE;
7414 Changed = true;
7415 break;
7416 }
7417 if ((RA + 1).isMaxValue()) {
7418 Pred = ICmpInst::ICMP_EQ;
7419 RHS = getConstant(RA + 1);
7420 Changed = true;
7421 break;
7422 }
7423 if (RA.isMaxValue()) goto trivially_false;
7424 break;
7425 case ICmpInst::ICMP_ULT:
7426 if (RA.isMaxValue()) {
7427 Pred = ICmpInst::ICMP_NE;
7428 Changed = true;
7429 break;
7430 }
7431 if ((RA - 1).isMinValue()) {
7432 Pred = ICmpInst::ICMP_EQ;
7433 RHS = getConstant(RA - 1);
7434 Changed = true;
7435 break;
7436 }
7437 if (RA.isMinValue()) goto trivially_false;
7438 break;
7439 case ICmpInst::ICMP_SGT:
7440 if (RA.isMinSignedValue()) {
7441 Pred = ICmpInst::ICMP_NE;
7442 Changed = true;
7443 break;
7444 }
7445 if ((RA + 1).isMaxSignedValue()) {
7446 Pred = ICmpInst::ICMP_EQ;
7447 RHS = getConstant(RA + 1);
7448 Changed = true;
7449 break;
7450 }
7451 if (RA.isMaxSignedValue()) goto trivially_false;
7452 break;
7453 case ICmpInst::ICMP_SLT:
7454 if (RA.isMaxSignedValue()) {
7455 Pred = ICmpInst::ICMP_NE;
7456 Changed = true;
7457 break;
7458 }
7459 if ((RA - 1).isMinSignedValue()) {
7460 Pred = ICmpInst::ICMP_EQ;
7461 RHS = getConstant(RA - 1);
7462 Changed = true;
7463 break;
7464 }
7465 if (RA.isMinSignedValue()) goto trivially_false;
7466 break;
7467 }
7468 }
7469
7470 // Check for obvious equality.
7471 if (HasSameValue(LHS, RHS)) {
7472 if (ICmpInst::isTrueWhenEqual(Pred))
7473 goto trivially_true;
7474 if (ICmpInst::isFalseWhenEqual(Pred))
7475 goto trivially_false;
7476 }
7477
7478 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
7479 // adding or subtracting 1 from one of the operands.
7480 switch (Pred) {
7481 case ICmpInst::ICMP_SLE:
7482 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
7483 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
7484 SCEV::FlagNSW);
7485 Pred = ICmpInst::ICMP_SLT;
7486 Changed = true;
7487 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
7488 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
7489 SCEV::FlagNSW);
7490 Pred = ICmpInst::ICMP_SLT;
7491 Changed = true;
7492 }
7493 break;
7494 case ICmpInst::ICMP_SGE:
7495 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
7496 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
7497 SCEV::FlagNSW);
7498 Pred = ICmpInst::ICMP_SGT;
7499 Changed = true;
7500 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
7501 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
7502 SCEV::FlagNSW);
7503 Pred = ICmpInst::ICMP_SGT;
7504 Changed = true;
7505 }
7506 break;
7507 case ICmpInst::ICMP_ULE:
7508 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
7509 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
7510 SCEV::FlagNUW);
7511 Pred = ICmpInst::ICMP_ULT;
7512 Changed = true;
7513 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
7514 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
7515 Pred = ICmpInst::ICMP_ULT;
7516 Changed = true;
7517 }
7518 break;
7519 case ICmpInst::ICMP_UGE:
7520 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
7521 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
7522 Pred = ICmpInst::ICMP_UGT;
7523 Changed = true;
7524 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
7525 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
7526 SCEV::FlagNUW);
7527 Pred = ICmpInst::ICMP_UGT;
7528 Changed = true;
7529 }
7530 break;
7531 default:
7532 break;
7533 }
7534
7535 // TODO: More simplifications are possible here.
7536
7537 // Recursively simplify until we either hit a recursion limit or nothing
7538 // changes.
7539 if (Changed)
7540 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
7541
7542 return Changed;
7543
7544trivially_true:
7545 // Return 0 == 0.
7546 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
7547 Pred = ICmpInst::ICMP_EQ;
7548 return true;
7549
7550trivially_false:
7551 // Return 0 != 0.
7552 LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
7553 Pred = ICmpInst::ICMP_NE;
7554 return true;
7555}
7556
7557bool ScalarEvolution::isKnownNegative(const SCEV *S) {
7558 return getSignedRange(S).getSignedMax().isNegative();
7559}
7560
7561bool ScalarEvolution::isKnownPositive(const SCEV *S) {
7562 return getSignedRange(S).getSignedMin().isStrictlyPositive();
7563}
7564
7565bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
7566 return !getSignedRange(S).getSignedMin().isNegative();
7567}
7568
7569bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
7570 return !getSignedRange(S).getSignedMax().isStrictlyPositive();
7571}
7572
7573bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
7574 return isKnownNegative(S) || isKnownPositive(S);
7575}
7576
7577bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
7578 const SCEV *LHS, const SCEV *RHS) {
7579 // Canonicalize the inputs first.
7580 (void)SimplifyICmpOperands(Pred, LHS, RHS);
7581
7582 // If LHS or RHS is an addrec, check to see if the condition is true in
7583 // every iteration of the loop.
7584 // If LHS and RHS are both addrec, both conditions must be true in
7585 // every iteration of the loop.
7586 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
7587 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
7588 bool LeftGuarded = false;
7589 bool RightGuarded = false;
7590 if (LAR) {
7591 const Loop *L = LAR->getLoop();
7592 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
7593 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
7594 if (!RAR) return true;
7595 LeftGuarded = true;
7596 }
7597 }
7598 if (RAR) {
7599 const Loop *L = RAR->getLoop();
7600 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
7601 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
7602 if (!LAR) return true;
7603 RightGuarded = true;
7604 }
7605 }
7606 if (LeftGuarded && RightGuarded)
7607 return true;
7608
7609 if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
7610 return true;
7611
7612 // Otherwise see what can be done with known constant ranges.
7613 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS);
7614}
7615
7616bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
7617 ICmpInst::Predicate Pred,
7618 bool &Increasing) {
7619 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
7620
7621#ifndef NDEBUG
7622 // Verify an invariant: inverting the predicate should turn a monotonically
7623 // increasing change to a monotonically decreasing one, and vice versa.
7624 bool IncreasingSwapped;
7625 bool ResultSwapped = isMonotonicPredicateImpl(
7626 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
7627
7628 assert(Result == ResultSwapped && "should be able to analyze both!")((Result == ResultSwapped && "should be able to analyze both!"
) ? static_cast<void> (0) : __assert_fail ("Result == ResultSwapped && \"should be able to analyze both!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 7628, __PRETTY_FUNCTION__))
;
7629 if (ResultSwapped)
7630 assert(Increasing == !IncreasingSwapped &&((Increasing == !IncreasingSwapped && "monotonicity should flip as we flip the predicate"
) ? static_cast<void> (0) : __assert_fail ("Increasing == !IncreasingSwapped && \"monotonicity should flip as we flip the predicate\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 7631, __PRETTY_FUNCTION__))
7631 "monotonicity should flip as we flip the predicate")((Increasing == !IncreasingSwapped && "monotonicity should flip as we flip the predicate"
) ? static_cast<void> (0) : __assert_fail ("Increasing == !IncreasingSwapped && \"monotonicity should flip as we flip the predicate\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 7631, __PRETTY_FUNCTION__))
;
7632#endif
7633
7634 return Result;
7635}
7636
7637bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
7638 ICmpInst::Predicate Pred,
7639 bool &Increasing) {
7640
7641 // A zero step value for LHS means the induction variable is essentially a
7642 // loop invariant value. We don't really depend on the predicate actually
7643 // flipping from false to true (for increasing predicates, and the other way
7644 // around for decreasing predicates), all we care about is that *if* the
7645 // predicate changes then it only changes from false to true.
7646 //
7647 // A zero step value in itself is not very useful, but there may be places
7648 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
7649 // as general as possible.
7650
7651 switch (Pred) {
7652 default:
7653 return false; // Conservative answer
7654
7655 case ICmpInst::ICMP_UGT:
7656 case ICmpInst::ICMP_UGE:
7657 case ICmpInst::ICMP_ULT:
7658 case ICmpInst::ICMP_ULE:
7659 if (!LHS->hasNoUnsignedWrap())
7660 return false;
7661
7662 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
7663 return true;
7664
7665 case ICmpInst::ICMP_SGT:
7666 case ICmpInst::ICMP_SGE:
7667 case ICmpInst::ICMP_SLT:
7668 case ICmpInst::ICMP_SLE: {
7669 if (!LHS->hasNoSignedWrap())
7670 return false;
7671
7672 const SCEV *Step = LHS->getStepRecurrence(*this);
7673
7674 if (isKnownNonNegative(Step)) {
7675 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
7676 return true;
7677 }
7678
7679 if (isKnownNonPositive(Step)) {
7680 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
7681 return true;
7682 }
7683
7684 return false;
7685 }
7686
7687 }
7688
7689 llvm_unreachable("switch has default clause!")::llvm::llvm_unreachable_internal("switch has default clause!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 7689)
;
7690}
7691
7692bool ScalarEvolution::isLoopInvariantPredicate(
7693 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
7694 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
7695 const SCEV *&InvariantRHS) {
7696
7697 // If there is a loop-invariant, force it into the RHS, otherwise bail out.
7698 if (!isLoopInvariant(RHS, L)) {
7699 if (!isLoopInvariant(LHS, L))
7700 return false;
7701
7702 std::swap(LHS, RHS);
7703 Pred = ICmpInst::getSwappedPredicate(Pred);
7704 }
7705
7706 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7707 if (!ArLHS || ArLHS->getLoop() != L)
7708 return false;
7709
7710 bool Increasing;
7711 if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
7712 return false;
7713
7714 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
7715 // true as the loop iterates, and the backedge is control dependent on
7716 // "ArLHS `Pred` RHS" == true then we can reason as follows:
7717 //
7718 // * if the predicate was false in the first iteration then the predicate
7719 // is never evaluated again, since the loop exits without taking the
7720 // backedge.
7721 // * if the predicate was true in the first iteration then it will
7722 // continue to be true for all future iterations since it is
7723 // monotonically increasing.
7724 //
7725 // For both the above possibilities, we can replace the loop varying
7726 // predicate with its value on the first iteration of the loop (which is
7727 // loop invariant).
7728 //
7729 // A similar reasoning applies for a monotonically decreasing predicate, by
7730 // replacing true with false and false with true in the above two bullets.
7731
7732 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
7733
7734 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
7735 return false;
7736
7737 InvariantPred = Pred;
7738 InvariantLHS = ArLHS->getStart();
7739 InvariantRHS = RHS;
7740 return true;
7741}
7742
7743bool ScalarEvolution::isKnownPredicateViaConstantRanges(
7744 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
7745 if (HasSameValue(LHS, RHS))
7746 return ICmpInst::isTrueWhenEqual(Pred);
7747
7748 // This code is split out from isKnownPredicate because it is called from
7749 // within isLoopEntryGuardedByCond.
7750
7751 auto CheckRanges =
7752 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
7753 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
7754 .contains(RangeLHS);
7755 };
7756
7757 // The check at the top of the function catches the case where the values are
7758 // known to be equal.
7759 if (Pred == CmpInst::ICMP_EQ)
7760 return false;
7761
7762 if (Pred == CmpInst::ICMP_NE)
7763 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
7764 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
7765 isKnownNonZero(getMinusSCEV(LHS, RHS));
7766
7767 if (CmpInst::isSigned(Pred))
7768 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
7769
7770 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
7771}
7772
7773bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
7774 const SCEV *LHS,
7775 const SCEV *RHS) {
7776
7777 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
7778 // Return Y via OutY.
7779 auto MatchBinaryAddToConst =
7780 [this](const SCEV *Result, const SCEV *X, APInt &OutY,
7781 SCEV::NoWrapFlags ExpectedFlags) {
7782 const SCEV *NonConstOp, *ConstOp;
7783 SCEV::NoWrapFlags FlagsPresent;
7784
7785 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
7786 !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
7787 return false;
7788
7789 OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
7790 return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
7791 };
7792
7793 APInt C;
7794
7795 switch (Pred) {
7796 default:
7797 break;
7798
7799 case ICmpInst::ICMP_SGE:
7800 std::swap(LHS, RHS);
7801 case ICmpInst::ICMP_SLE:
7802 // X s<= (X + C)<nsw> if C >= 0
7803 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
7804 return true;
7805
7806 // (X + C)<nsw> s<= X if C <= 0
7807 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
7808 !C.isStrictlyPositive())
7809 return true;
7810 break;
7811
7812 case ICmpInst::ICMP_SGT:
7813 std::swap(LHS, RHS);
7814 case ICmpInst::ICMP_SLT:
7815 // X s< (X + C)<nsw> if C > 0
7816 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
7817 C.isStrictlyPositive())
7818 return true;
7819
7820 // (X + C)<nsw> s< X if C < 0
7821 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
7822 return true;
7823 break;
7824 }
7825
7826 return false;
7827}
7828
7829bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
7830 const SCEV *LHS,
7831 const SCEV *RHS) {
7832 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
7833 return false;
7834
7835 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
7836 // the stack can result in exponential time complexity.
7837 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
7838
7839 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
7840 //
7841 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
7842 // isKnownPredicate. isKnownPredicate is more powerful, but also more
7843 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
7844 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to
7845 // use isKnownPredicate later if needed.
7846 return isKnownNonNegative(RHS) &&
7847 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
7848 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
7849}
7850
7851bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB,
7852 ICmpInst::Predicate Pred,
7853 const SCEV *LHS, const SCEV *RHS) {
7854 // No need to even try if we know the module has no guards.
7855 if (!HasGuards)
7856 return false;
7857
7858 return any_of(*BB, [&](Instruction &I) {
7859 using namespace llvm::PatternMatch;
7860
7861 Value *Condition;
7862 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
7863 m_Value(Condition))) &&
7864 isImpliedCond(Pred, LHS, RHS, Condition, false);
7865 });
7866}
7867
7868/// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
7869/// protected by a conditional between LHS and RHS. This is used to
7870/// to eliminate casts.
7871bool
7872ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
7873 ICmpInst::Predicate Pred,
7874 const SCEV *LHS, const SCEV *RHS) {
7875 // Interpret a null as meaning no loop, where there is obviously no guard
7876 // (interprocedural conditions notwithstanding).
7877 if (!L) return true;
7878
7879 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
7880 return true;
7881
7882 BasicBlock *Latch = L->getLoopLatch();
7883 if (!Latch)
7884 return false;
7885
7886 BranchInst *LoopContinuePredicate =
7887 dyn_cast<BranchInst>(Latch->getTerminator());
7888 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
7889 isImpliedCond(Pred, LHS, RHS,
7890 LoopContinuePredicate->getCondition(),
7891 LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
7892 return true;
7893
7894 // We don't want more than one activation of the following loops on the stack
7895 // -- that can lead to O(n!) time complexity.
7896 if (WalkingBEDominatingConds)
7897 return false;
7898
7899 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
7900
7901 // See if we can exploit a trip count to prove the predicate.
7902 const auto &BETakenInfo = getBackedgeTakenInfo(L);
7903 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
7904 if (LatchBECount != getCouldNotCompute()) {
7905 // We know that Latch branches back to the loop header exactly
7906 // LatchBECount times. This means the backdege condition at Latch is
7907 // equivalent to "{0,+,1} u< LatchBECount".
7908 Type *Ty = LatchBECount->getType();
7909 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
7910 const SCEV *LoopCounter =
7911 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
7912 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
7913 LatchBECount))
7914 return true;
7915 }
7916
7917 // Check conditions due to any @llvm.assume intrinsics.
7918 for (auto &AssumeVH : AC.assumptions()) {
7919 if (!AssumeVH)
7920 continue;
7921 auto *CI = cast<CallInst>(AssumeVH);
7922 if (!DT.dominates(CI, Latch->getTerminator()))
7923 continue;
7924
7925 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7926 return true;
7927 }
7928
7929 // If the loop is not reachable from the entry block, we risk running into an
7930 // infinite loop as we walk up into the dom tree. These loops do not matter
7931 // anyway, so we just return a conservative answer when we see them.
7932 if (!DT.isReachableFromEntry(L->getHeader()))
7933 return false;
7934
7935 if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
7936 return true;
7937
7938 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
7939 DTN != HeaderDTN; DTN = DTN->getIDom()) {
7940
7941 assert(DTN && "should reach the loop header before reaching the root!")((DTN && "should reach the loop header before reaching the root!"
) ? static_cast<void> (0) : __assert_fail ("DTN && \"should reach the loop header before reaching the root!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 7941, __PRETTY_FUNCTION__))
;
7942
7943 BasicBlock *BB = DTN->getBlock();
7944 if (isImpliedViaGuard(BB, Pred, LHS, RHS))
7945 return true;
7946
7947 BasicBlock *PBB = BB->getSinglePredecessor();
7948 if (!PBB)
7949 continue;
7950
7951 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
7952 if (!ContinuePredicate || !ContinuePredicate->isConditional())
7953 continue;
7954
7955 Value *Condition = ContinuePredicate->getCondition();
7956
7957 // If we have an edge `E` within the loop body that dominates the only
7958 // latch, the condition guarding `E` also guards the backedge. This
7959 // reasoning works only for loops with a single latch.
7960
7961 BasicBlockEdge DominatingEdge(PBB, BB);
7962 if (DominatingEdge.isSingleEdge()) {
7963 // We're constructively (and conservatively) enumerating edges within the
7964 // loop body that dominate the latch. The dominator tree better agree
7965 // with us on this:
7966 assert(DT.dominates(DominatingEdge, Latch) && "should be!")((DT.dominates(DominatingEdge, Latch) && "should be!"
) ? static_cast<void> (0) : __assert_fail ("DT.dominates(DominatingEdge, Latch) && \"should be!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 7966, __PRETTY_FUNCTION__))
;
7967
7968 if (isImpliedCond(Pred, LHS, RHS, Condition,
7969 BB != ContinuePredicate->getSuccessor(0)))
7970 return true;
7971 }
7972 }
7973
7974 return false;
7975}
7976
7977bool
7978ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
7979 ICmpInst::Predicate Pred,
7980 const SCEV *LHS, const SCEV *RHS) {
7981 // Interpret a null as meaning no loop, where there is obviously no guard
7982 // (interprocedural conditions notwithstanding).
7983 if (!L) return false;
7984
7985 if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
7986 return true;
7987
7988 // Starting at the loop predecessor, climb up the predecessor chain, as long
7989 // as there are predecessors that can be found that have unique successors
7990 // leading to the original header.
7991 for (std::pair<BasicBlock *, BasicBlock *>
7992 Pair(L->getLoopPredecessor(), L->getHeader());
7993 Pair.first;
7994 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
7995
7996 if (isImpliedViaGuard(Pair.first, Pred, LHS, RHS))
7997 return true;
7998
7999 BranchInst *LoopEntryPredicate =
8000 dyn_cast<BranchInst>(Pair.first->getTerminator());
8001 if (!LoopEntryPredicate ||
8002 LoopEntryPredicate->isUnconditional())
8003 continue;
8004
8005 if (isImpliedCond(Pred, LHS, RHS,
8006 LoopEntryPredicate->getCondition(),
8007 LoopEntryPredicate->getSuccessor(0) != Pair.second))
8008 return true;
8009 }
8010
8011 // Check conditions due to any @llvm.assume intrinsics.
8012 for (auto &AssumeVH : AC.assumptions()) {
8013 if (!AssumeVH)
8014 continue;
8015 auto *CI = cast<CallInst>(AssumeVH);
8016 if (!DT.dominates(CI, L->getHeader()))
8017 continue;
8018
8019 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
8020 return true;
8021 }
8022
8023 return false;
8024}
8025
8026namespace {
8027/// RAII wrapper to prevent recursive application of isImpliedCond.
8028/// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
8029/// currently evaluating isImpliedCond.
8030struct MarkPendingLoopPredicate {
8031 Value *Cond;
8032 DenseSet<Value*> &LoopPreds;
8033 bool Pending;
8034
8035 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
8036 : Cond(C), LoopPreds(LP) {
8037 Pending = !LoopPreds.insert(Cond).second;
8038 }
8039 ~MarkPendingLoopPredicate() {
8040 if (!Pending)
8041 LoopPreds.erase(Cond);
8042 }
8043};
8044} // end anonymous namespace
8045
8046bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
8047 const SCEV *LHS, const SCEV *RHS,
8048 Value *FoundCondValue,
8049 bool Inverse) {
8050 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
8051 if (Mark.Pending)
8052 return false;
8053
8054 // Recursively handle And and Or conditions.
8055 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
8056 if (BO->getOpcode() == Instruction::And) {
8057 if (!Inverse)
8058 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
8059 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
8060 } else if (BO->getOpcode() == Instruction::Or) {
8061 if (Inverse)
8062 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
8063 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
8064 }
8065 }
8066
8067 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
8068 if (!ICI) return false;
8069
8070 // Now that we found a conditional branch that dominates the loop or controls
8071 // the loop latch. Check to see if it is the comparison we are looking for.
8072 ICmpInst::Predicate FoundPred;
8073 if (Inverse)
8074 FoundPred = ICI->getInversePredicate();
8075 else
8076 FoundPred = ICI->getPredicate();
8077
8078 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
8079 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
8080
8081 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
8082}
8083
8084bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
8085 const SCEV *RHS,
8086 ICmpInst::Predicate FoundPred,
8087 const SCEV *FoundLHS,
8088 const SCEV *FoundRHS) {
8089 // Balance the types.
8090 if (getTypeSizeInBits(LHS->getType()) <
8091 getTypeSizeInBits(FoundLHS->getType())) {
8092 if (CmpInst::isSigned(Pred)) {
8093 LHS = getSignExtendExpr(LHS, FoundLHS->getType());
8094 RHS = getSignExtendExpr(RHS, FoundLHS->getType());
8095 } else {
8096 LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
8097 RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
8098 }
8099 } else if (getTypeSizeInBits(LHS->getType()) >
8100 getTypeSizeInBits(FoundLHS->getType())) {
8101 if (CmpInst::isSigned(FoundPred)) {
8102 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
8103 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
8104 } else {
8105 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
8106 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
8107 }
8108 }
8109
8110 // Canonicalize the query to match the way instcombine will have
8111 // canonicalized the comparison.
8112 if (SimplifyICmpOperands(Pred, LHS, RHS))
8113 if (LHS == RHS)
8114 return CmpInst::isTrueWhenEqual(Pred);
8115 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
8116 if (FoundLHS == FoundRHS)
8117 return CmpInst::isFalseWhenEqual(FoundPred);
8118
8119 // Check to see if we can make the LHS or RHS match.
8120 if (LHS == FoundRHS || RHS == FoundLHS) {
8121 if (isa<SCEVConstant>(RHS)) {
8122 std::swap(FoundLHS, FoundRHS);
8123 FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
8124 } else {
8125 std::swap(LHS, RHS);
8126 Pred = ICmpInst::getSwappedPredicate(Pred);
8127 }
8128 }
8129
8130 // Check whether the found predicate is the same as the desired predicate.
8131 if (FoundPred == Pred)
8132 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
8133
8134 // Check whether swapping the found predicate makes it the same as the
8135 // desired predicate.
8136 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
8137 if (isa<SCEVConstant>(RHS))
8138 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
8139 else
8140 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
8141 RHS, LHS, FoundLHS, FoundRHS);
8142 }
8143
8144 // Unsigned comparison is the same as signed comparison when both the operands
8145 // are non-negative.
8146 if (CmpInst::isUnsigned(FoundPred) &&
8147 CmpInst::getSignedPredicate(FoundPred) == Pred &&
8148 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
8149 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
8150
8151 // Check if we can make progress by sharpening ranges.
8152 if (FoundPred == ICmpInst::ICMP_NE &&
8153 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
8154
8155 const SCEVConstant *C = nullptr;
8156 const SCEV *V = nullptr;
8157
8158 if (isa<SCEVConstant>(FoundLHS)) {
8159 C = cast<SCEVConstant>(FoundLHS);
8160 V = FoundRHS;
8161 } else {
8162 C = cast<SCEVConstant>(FoundRHS);
8163 V = FoundLHS;
8164 }
8165
8166 // The guarding predicate tells us that C != V. If the known range
8167 // of V is [C, t), we can sharpen the range to [C + 1, t). The
8168 // range we consider has to correspond to same signedness as the
8169 // predicate we're interested in folding.
8170
8171 APInt Min = ICmpInst::isSigned(Pred) ?
8172 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
8173
8174 if (Min == C->getAPInt()) {
8175 // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
8176 // This is true even if (Min + 1) wraps around -- in case of
8177 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
8178
8179 APInt SharperMin = Min + 1;
8180
8181 switch (Pred) {
8182 case ICmpInst::ICMP_SGE:
8183 case ICmpInst::ICMP_UGE:
8184 // We know V `Pred` SharperMin. If this implies LHS `Pred`
8185 // RHS, we're done.
8186 if (isImpliedCondOperands(Pred, LHS, RHS, V,
8187 getConstant(SharperMin)))
8188 return true;
8189
8190 case ICmpInst::ICMP_SGT:
8191 case ICmpInst::ICMP_UGT:
8192 // We know from the range information that (V `Pred` Min ||
8193 // V == Min). We know from the guarding condition that !(V
8194 // == Min). This gives us
8195 //
8196 // V `Pred` Min || V == Min && !(V == Min)
8197 // => V `Pred` Min
8198 //
8199 // If V `Pred` Min implies LHS `Pred` RHS, we're done.
8200
8201 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
8202 return true;
8203
8204 default:
8205 // No change
8206 break;
8207 }
8208 }
8209 }
8210
8211 // Check whether the actual condition is beyond sufficient.
8212 if (FoundPred == ICmpInst::ICMP_EQ)
8213 if (ICmpInst::isTrueWhenEqual(Pred))
8214 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
8215 return true;
8216 if (Pred == ICmpInst::ICMP_NE)
8217 if (!ICmpInst::isTrueWhenEqual(FoundPred))
8218 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
8219 return true;
8220
8221 // Otherwise assume the worst.
8222 return false;
8223}
8224
8225bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
8226 const SCEV *&L, const SCEV *&R,
8227 SCEV::NoWrapFlags &Flags) {
8228 const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
8229 if (!AE || AE->getNumOperands() != 2)
8230 return false;
8231
8232 L = AE->getOperand(0);
8233 R = AE->getOperand(1);
8234 Flags = AE->getNoWrapFlags();
8235 return true;
8236}
8237
8238bool ScalarEvolution::computeConstantDifference(const SCEV *Less,
8239 const SCEV *More,
8240 APInt &C) {
8241 // We avoid subtracting expressions here because this function is usually
8242 // fairly deep in the call stack (i.e. is called many times).
8243
8244 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
8245 const auto *LAR = cast<SCEVAddRecExpr>(Less);
8246 const auto *MAR = cast<SCEVAddRecExpr>(More);
8247
8248 if (LAR->getLoop() != MAR->getLoop())
8249 return false;
8250
8251 // We look at affine expressions only; not for correctness but to keep
8252 // getStepRecurrence cheap.
8253 if (!LAR->isAffine() || !MAR->isAffine())
8254 return false;
8255
8256 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
8257 return false;
8258
8259 Less = LAR->getStart();
8260 More = MAR->getStart();
8261
8262 // fall through
8263 }
8264
8265 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
8266 const auto &M = cast<SCEVConstant>(More)->getAPInt();
8267 const auto &L = cast<SCEVConstant>(Less)->getAPInt();
8268 C = M - L;
8269 return true;
8270 }
8271
8272 const SCEV *L, *R;
8273 SCEV::NoWrapFlags Flags;
8274 if (splitBinaryAdd(Less, L, R, Flags))
8275 if (const auto *LC = dyn_cast<SCEVConstant>(L))
8276 if (R == More) {
8277 C = -(LC->getAPInt());
8278 return true;
8279 }
8280
8281 if (splitBinaryAdd(More, L, R, Flags))
8282 if (const auto *LC = dyn_cast<SCEVConstant>(L))
8283 if (R == Less) {
8284 C = LC->getAPInt();
8285 return true;
8286 }
8287
8288 return false;
8289}
8290
8291bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
8292 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
8293 const SCEV *FoundLHS, const SCEV *FoundRHS) {
8294 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
8295 return false;
8296
8297 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
8298 if (!AddRecLHS)
8299 return false;
8300
8301 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
8302 if (!AddRecFoundLHS)
8303 return false;
8304
8305 // We'd like to let SCEV reason about control dependencies, so we constrain
8306 // both the inequalities to be about add recurrences on the same loop. This
8307 // way we can use isLoopEntryGuardedByCond later.
8308
8309 const Loop *L = AddRecFoundLHS->getLoop();
8310 if (L != AddRecLHS->getLoop())
8311 return false;
8312
8313 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1)
8314 //
8315 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
8316 // ... (2)
8317 //
8318 // Informal proof for (2), assuming (1) [*]:
8319 //
8320 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
8321 //
8322 // Then
8323 //
8324 // FoundLHS s< FoundRHS s< INT_MIN - C
8325 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ]
8326 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
8327 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s<
8328 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
8329 // <=> FoundLHS + C s< FoundRHS + C
8330 //
8331 // [*]: (1) can be proved by ruling out overflow.
8332 //
8333 // [**]: This can be proved by analyzing all the four possibilities:
8334 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
8335 // (A s>= 0, B s>= 0).
8336 //
8337 // Note:
8338 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
8339 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS
8340 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS
8341 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is
8342 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
8343 // C)".
8344
8345 APInt LDiff, RDiff;
8346 if (!computeConstantDifference(FoundLHS, LHS, LDiff) ||
8347 !computeConstantDifference(FoundRHS, RHS, RDiff) ||
8348 LDiff != RDiff)
8349 return false;
8350
8351 if (LDiff == 0)
8352 return true;
8353
8354 APInt FoundRHSLimit;
8355
8356 if (Pred == CmpInst::ICMP_ULT) {
8357 FoundRHSLimit = -RDiff;
8358 } else {
8359 assert(Pred == CmpInst::ICMP_SLT && "Checked above!")((Pred == CmpInst::ICMP_SLT && "Checked above!") ? static_cast
<void> (0) : __assert_fail ("Pred == CmpInst::ICMP_SLT && \"Checked above!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 8359, __PRETTY_FUNCTION__))
;
8360 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff;
8361 }
8362
8363 // Try to prove (1) or (2), as needed.
8364 return isLoopEntryGuardedByCond(L, Pred, FoundRHS,
8365 getConstant(FoundRHSLimit));
8366}
8367
8368bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
8369 const SCEV *LHS, const SCEV *RHS,
8370 const SCEV *FoundLHS,
8371 const SCEV *FoundRHS) {
8372 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
8373 return true;
8374
8375 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
8376 return true;
8377
8378 return isImpliedCondOperandsHelper(Pred, LHS, RHS,
8379 FoundLHS, FoundRHS) ||
8380 // ~x < ~y --> x > y
8381 isImpliedCondOperandsHelper(Pred, LHS, RHS,
8382 getNotSCEV(FoundRHS),
8383 getNotSCEV(FoundLHS));
8384}
8385
8386
8387/// If Expr computes ~A, return A else return nullptr
8388static const SCEV *MatchNotExpr(const SCEV *Expr) {
8389 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
8390 if (!Add || Add->getNumOperands() != 2 ||
8391 !Add->getOperand(0)->isAllOnesValue())
8392 return nullptr;
8393
8394 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
8395 if (!AddRHS || AddRHS->getNumOperands() != 2 ||
8396 !AddRHS->getOperand(0)->isAllOnesValue())
8397 return nullptr;
8398
8399 return AddRHS->getOperand(1);
8400}
8401
8402
8403/// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
8404template<typename MaxExprType>
8405static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
8406 const SCEV *Candidate) {
8407 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
8408 if (!MaxExpr) return false;
8409
8410 return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end();
8411}
8412
8413
8414/// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
8415template<typename MaxExprType>
8416static bool IsMinConsistingOf(ScalarEvolution &SE,
8417 const SCEV *MaybeMinExpr,
8418 const SCEV *Candidate) {
8419 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
8420 if (!MaybeMaxExpr)
8421 return false;
8422
8423 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
8424}
8425
8426static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
8427 ICmpInst::Predicate Pred,
8428 const SCEV *LHS, const SCEV *RHS) {
8429
8430 // If both sides are affine addrecs for the same loop, with equal
8431 // steps, and we know the recurrences don't wrap, then we only
8432 // need to check the predicate on the starting values.
8433
8434 if (!ICmpInst::isRelational(Pred))
8435 return false;
8436
8437 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
8438 if (!LAR)
8439 return false;
8440 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
8441 if (!RAR)
8442 return false;
8443 if (LAR->getLoop() != RAR->getLoop())
8444 return false;
8445 if (!LAR->isAffine() || !RAR->isAffine())
8446 return false;
8447
8448 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
8449 return false;
8450
8451 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
8452 SCEV::FlagNSW : SCEV::FlagNUW;
8453 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
8454 return false;
8455
8456 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
8457}
8458
8459/// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
8460/// expression?
8461static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
8462 ICmpInst::Predicate Pred,
8463 const SCEV *LHS, const SCEV *RHS) {
8464 switch (Pred) {
8465 default:
8466 return false;
8467
8468 case ICmpInst::ICMP_SGE:
8469 std::swap(LHS, RHS);
8470 // fall through
8471 case ICmpInst::ICMP_SLE:
8472 return
8473 // min(A, ...) <= A
8474 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
8475 // A <= max(A, ...)
8476 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
8477
8478 case ICmpInst::ICMP_UGE:
8479 std::swap(LHS, RHS);
8480 // fall through
8481 case ICmpInst::ICMP_ULE:
8482 return
8483 // min(A, ...) <= A
8484 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
8485 // A <= max(A, ...)
8486 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
8487 }
8488
8489 llvm_unreachable("covered switch fell through?!")::llvm::llvm_unreachable_internal("covered switch fell through?!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 8489)
;
8490}
8491
8492bool
8493ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
8494 const SCEV *LHS, const SCEV *RHS,
8495 const SCEV *FoundLHS,
8496 const SCEV *FoundRHS) {
8497 auto IsKnownPredicateFull =
8498 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
8499 return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
8500 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
8501 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
8502 isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
8503 };
8504
8505 switch (Pred) {
8506 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!")::llvm::llvm_unreachable_internal("Unexpected ICmpInst::Predicate value!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 8506)
;
8507 case ICmpInst::ICMP_EQ:
8508 case ICmpInst::ICMP_NE:
8509 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
8510 return true;
8511 break;
8512 case ICmpInst::ICMP_SLT:
8513 case ICmpInst::ICMP_SLE:
8514 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
8515 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
8516 return true;
8517 break;
8518 case ICmpInst::ICMP_SGT:
8519 case ICmpInst::ICMP_SGE:
8520 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
8521 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
8522 return true;
8523 break;
8524 case ICmpInst::ICMP_ULT:
8525 case ICmpInst::ICMP_ULE:
8526 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
8527 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
8528 return true;
8529 break;
8530 case ICmpInst::ICMP_UGT:
8531 case ICmpInst::ICMP_UGE:
8532 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
8533 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
8534 return true;
8535 break;
8536 }
8537
8538 return false;
8539}
8540
8541bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
8542 const SCEV *LHS,
8543 const SCEV *RHS,
8544 const SCEV *FoundLHS,
8545 const SCEV *FoundRHS) {
8546 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
8547 // The restriction on `FoundRHS` be lifted easily -- it exists only to
8548 // reduce the compile time impact of this optimization.
8549 return false;
8550
8551 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS);
8552 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS ||
8553 !isa<SCEVConstant>(AddLHS->getOperand(0)))
8554 return false;
8555
8556 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
8557
8558 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
8559 // antecedent "`FoundLHS` `Pred` `FoundRHS`".
8560 ConstantRange FoundLHSRange =
8561 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
8562
8563 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range
8564 // for `LHS`:
8565 APInt Addend = cast<SCEVConstant>(AddLHS->getOperand(0))->getAPInt();
8566 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend));
8567
8568 // We can also compute the range of values for `LHS` that satisfy the
8569 // consequent, "`LHS` `Pred` `RHS`":
8570 APInt ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
8571 ConstantRange SatisfyingLHSRange =
8572 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
8573
8574 // The antecedent implies the consequent if every value of `LHS` that
8575 // satisfies the antecedent also satisfies the consequent.
8576 return SatisfyingLHSRange.contains(LHSRange);
8577}
8578
8579bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
8580 bool IsSigned, bool NoWrap) {
8581 if (NoWrap) return false;
8582
8583 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8584 const SCEV *One = getOne(Stride->getType());
8585
8586 if (IsSigned) {
8587 APInt MaxRHS = getSignedRange(RHS).getSignedMax();
8588 APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
8589 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8590 .getSignedMax();
8591
8592 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
8593 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
8594 }
8595
8596 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
8597 APInt MaxValue = APInt::getMaxValue(BitWidth);
8598 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8599 .getUnsignedMax();
8600
8601 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
8602 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
8603}
8604
8605bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
8606 bool IsSigned, bool NoWrap) {
8607 if (NoWrap) return false;
8608
8609 unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8610 const SCEV *One = getOne(Stride->getType());
8611
8612 if (IsSigned) {
8613 APInt MinRHS = getSignedRange(RHS).getSignedMin();
8614 APInt MinValue = APInt::getSignedMinValue(BitWidth);
8615 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8616 .getSignedMax();
8617
8618 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
8619 return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
8620 }
8621
8622 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
8623 APInt MinValue = APInt::getMinValue(BitWidth);
8624 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8625 .getUnsignedMax();
8626
8627 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
8628 return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
8629}
8630
8631const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
8632 bool Equality) {
8633 const SCEV *One = getOne(Step->getType());
8634 Delta = Equality ? getAddExpr(Delta, Step)
8635 : getAddExpr(Delta, getMinusSCEV(Step, One));
8636 return getUDivExpr(Delta, Step);
8637}
8638
8639ScalarEvolution::ExitLimit
8640ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
8641 const Loop *L, bool IsSigned,
8642 bool ControlsExit, bool AllowPredicates) {
8643 SCEVUnionPredicate P;
8644 // We handle only IV < Invariant
8645 if (!isLoopInvariant(RHS, L))
8646 return getCouldNotCompute();
8647
8648 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8649 if (!IV && AllowPredicates)
8650 // Try to make this an AddRec using runtime tests, in the first X
8651 // iterations of this loop, where X is the SCEV expression found by the
8652 // algorithm below.
8653 IV = convertSCEVToAddRecWithPredicates(LHS, L, P);
8654
8655 // Avoid weird loops
8656 if (!IV || IV->getLoop() != L || !IV->isAffine())
8657 return getCouldNotCompute();
8658
8659 bool NoWrap = ControlsExit &&
8660 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8661
8662 const SCEV *Stride = IV->getStepRecurrence(*this);
8663
8664 // Avoid negative or zero stride values
8665 if (!isKnownPositive(Stride))
8666 return getCouldNotCompute();
8667
8668 // Avoid proven overflow cases: this will ensure that the backedge taken count
8669 // will not generate any unsigned overflow. Relaxed no-overflow conditions
8670 // exploit NoWrapFlags, allowing to optimize in presence of undefined
8671 // behaviors like the case of C language.
8672 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
8673 return getCouldNotCompute();
8674
8675 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
8676 : ICmpInst::ICMP_ULT;
8677 const SCEV *Start = IV->getStart();
8678 const SCEV *End = RHS;
8679 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
8680 const SCEV *Diff = getMinusSCEV(RHS, Start);
8681 // If we have NoWrap set, then we can assume that the increment won't
8682 // overflow, in which case if RHS - Start is a constant, we don't need to
8683 // do a max operation since we can just figure it out statically
8684 if (NoWrap && isa<SCEVConstant>(Diff)) {
8685 APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt();
8686 if (D.isNegative())
8687 End = Start;
8688 } else
8689 End = IsSigned ? getSMaxExpr(RHS, Start)
8690 : getUMaxExpr(RHS, Start);
8691 }
8692
8693 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
8694
8695 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
8696 : getUnsignedRange(Start).getUnsignedMin();
8697
8698 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8699 : getUnsignedRange(Stride).getUnsignedMin();
8700
8701 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8702 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
8703 : APInt::getMaxValue(BitWidth) - (MinStride - 1);
8704
8705 // Although End can be a MAX expression we estimate MaxEnd considering only
8706 // the case End = RHS. This is safe because in the other case (End - Start)
8707 // is zero, leading to a zero maximum backedge taken count.
8708 APInt MaxEnd =
8709 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
8710 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
8711
8712 const SCEV *MaxBECount;
8713 if (isa<SCEVConstant>(BECount))
8714 MaxBECount = BECount;
8715 else
8716 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
8717 getConstant(MinStride), false);
8718
8719 if (isa<SCEVCouldNotCompute>(MaxBECount))
8720 MaxBECount = BECount;
8721
8722 return ExitLimit(BECount, MaxBECount, P);
8723}
8724
8725ScalarEvolution::ExitLimit
8726ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
8727 const Loop *L, bool IsSigned,
8728 bool ControlsExit, bool AllowPredicates) {
8729 SCEVUnionPredicate P;
8730 // We handle only IV > Invariant
8731 if (!isLoopInvariant(RHS, L))
8732 return getCouldNotCompute();
8733
8734 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8735 if (!IV && AllowPredicates)
8736 // Try to make this an AddRec using runtime tests, in the first X
8737 // iterations of this loop, where X is the SCEV expression found by the
8738 // algorithm below.
8739 IV = convertSCEVToAddRecWithPredicates(LHS, L, P);
8740
8741 // Avoid weird loops
8742 if (!IV || IV->getLoop() != L || !IV->isAffine())
8743 return getCouldNotCompute();
8744
8745 bool NoWrap = ControlsExit &&
8746 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8747
8748 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
8749
8750 // Avoid negative or zero stride values
8751 if (!isKnownPositive(Stride))
8752 return getCouldNotCompute();
8753
8754 // Avoid proven overflow cases: this will ensure that the backedge taken count
8755 // will not generate any unsigned overflow. Relaxed no-overflow conditions
8756 // exploit NoWrapFlags, allowing to optimize in presence of undefined
8757 // behaviors like the case of C language.
8758 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
8759 return getCouldNotCompute();
8760
8761 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
8762 : ICmpInst::ICMP_UGT;
8763
8764 const SCEV *Start = IV->getStart();
8765 const SCEV *End = RHS;
8766 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
8767 const SCEV *Diff = getMinusSCEV(RHS, Start);
8768 // If we have NoWrap set, then we can assume that the increment won't
8769 // overflow, in which case if RHS - Start is a constant, we don't need to
8770 // do a max operation since we can just figure it out statically
8771 if (NoWrap && isa<SCEVConstant>(Diff)) {
8772 APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt();
8773 if (!D.isNegative())
8774 End = Start;
8775 } else
8776 End = IsSigned ? getSMinExpr(RHS, Start)
8777 : getUMinExpr(RHS, Start);
8778 }
8779
8780 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
8781
8782 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
8783 : getUnsignedRange(Start).getUnsignedMax();
8784
8785 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8786 : getUnsignedRange(Stride).getUnsignedMin();
8787
8788 unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8789 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
8790 : APInt::getMinValue(BitWidth) + (MinStride - 1);
8791
8792 // Although End can be a MIN expression we estimate MinEnd considering only
8793 // the case End = RHS. This is safe because in the other case (Start - End)
8794 // is zero, leading to a zero maximum backedge taken count.
8795 APInt MinEnd =
8796 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
8797 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
8798
8799
8800 const SCEV *MaxBECount = getCouldNotCompute();
Value stored to 'MaxBECount' during its initialization is never read
8801 if (isa<SCEVConstant>(BECount))
8802 MaxBECount = BECount;
8803 else
8804 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
8805 getConstant(MinStride), false);
8806
8807 if (isa<SCEVCouldNotCompute>(MaxBECount))
8808 MaxBECount = BECount;
8809
8810 return ExitLimit(BECount, MaxBECount, P);
8811}
8812
8813const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
8814 ScalarEvolution &SE) const {
8815 if (Range.isFullSet()) // Infinite loop.
8816 return SE.getCouldNotCompute();
8817
8818 // If the start is a non-zero constant, shift the range to simplify things.
8819 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
8820 if (!SC->getValue()->isZero()) {
8821 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
8822 Operands[0] = SE.getZero(SC->getType());
8823 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
8824 getNoWrapFlags(FlagNW));
8825 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
8826 return ShiftedAddRec->getNumIterationsInRange(
8827 Range.subtract(SC->getAPInt()), SE);
8828 // This is strange and shouldn't happen.
8829 return SE.getCouldNotCompute();
8830 }
8831
8832 // The only time we can solve this is when we have all constant indices.
8833 // Otherwise, we cannot determine the overflow conditions.
8834 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
8835 return SE.getCouldNotCompute();
8836
8837 // Okay at this point we know that all elements of the chrec are constants and
8838 // that the start element is zero.
8839
8840 // First check to see if the range contains zero. If not, the first
8841 // iteration exits.
8842 unsigned BitWidth = SE.getTypeSizeInBits(getType());
8843 if (!Range.contains(APInt(BitWidth, 0)))
8844 return SE.getZero(getType());
8845
8846 if (isAffine()) {
8847 // If this is an affine expression then we have this situation:
8848 // Solve {0,+,A} in Range === Ax in Range
8849
8850 // We know that zero is in the range. If A is positive then we know that
8851 // the upper value of the range must be the first possible exit value.
8852 // If A is negative then the lower of the range is the last possible loop
8853 // value. Also note that we already checked for a full range.
8854 APInt One(BitWidth,1);
8855 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
8856 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
8857
8858 // The exit value should be (End+A)/A.
8859 APInt ExitVal = (End + A).udiv(A);
8860 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
8861
8862 // Evaluate at the exit value. If we really did fall out of the valid
8863 // range, then we computed our trip count, otherwise wrap around or other
8864 // things must have happened.
8865 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
8866 if (Range.contains(Val->getValue()))
8867 return SE.getCouldNotCompute(); // Something strange happened
8868
8869 // Ensure that the previous value is in the range. This is a sanity check.
8870 assert(Range.contains(((Range.contains( EvaluateConstantChrecAtConstant(this, ConstantInt
::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
"Linear scev computation is off in a bad way!") ? static_cast
<void> (0) : __assert_fail ("Range.contains( EvaluateConstantChrecAtConstant(this, ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && \"Linear scev computation is off in a bad way!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 8873, __PRETTY_FUNCTION__))
8871 EvaluateConstantChrecAtConstant(this,((Range.contains( EvaluateConstantChrecAtConstant(this, ConstantInt
::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
"Linear scev computation is off in a bad way!") ? static_cast
<void> (0) : __assert_fail ("Range.contains( EvaluateConstantChrecAtConstant(this, ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && \"Linear scev computation is off in a bad way!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 8873, __PRETTY_FUNCTION__))
8872 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&((Range.contains( EvaluateConstantChrecAtConstant(this, ConstantInt
::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
"Linear scev computation is off in a bad way!") ? static_cast
<void> (0) : __assert_fail ("Range.contains( EvaluateConstantChrecAtConstant(this, ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && \"Linear scev computation is off in a bad way!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 8873, __PRETTY_FUNCTION__))
8873 "Linear scev computation is off in a bad way!")((Range.contains( EvaluateConstantChrecAtConstant(this, ConstantInt
::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
"Linear scev computation is off in a bad way!") ? static_cast
<void> (0) : __assert_fail ("Range.contains( EvaluateConstantChrecAtConstant(this, ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && \"Linear scev computation is off in a bad way!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 8873, __PRETTY_FUNCTION__))
;
8874 return SE.getConstant(ExitValue);
8875 } else if (isQuadratic()) {
8876 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
8877 // quadratic equation to solve it. To do this, we must frame our problem in
8878 // terms of figuring out when zero is crossed, instead of when
8879 // Range.getUpper() is crossed.
8880 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
8881 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
8882 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
8883 // getNoWrapFlags(FlagNW)
8884 FlagAnyWrap);
8885
8886 // Next, solve the constructed addrec
8887 auto Roots = SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
8888 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
8889 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
8890 if (R1) {
8891 // Pick the smallest positive root value.
8892 if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
8893 ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
8894 if (!CB->getZExtValue())
8895 std::swap(R1, R2); // R1 is the minimum root now.
8896
8897 // Make sure the root is not off by one. The returned iteration should
8898 // not be in the range, but the previous one should be. When solving
8899 // for "X*X < 5", for example, we should not return a root of 2.
8900 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
8901 R1->getValue(),
8902 SE);
8903 if (Range.contains(R1Val->getValue())) {
8904 // The next iteration must be out of the range...
8905 ConstantInt *NextVal =
8906 ConstantInt::get(SE.getContext(), R1->getAPInt() + 1);
8907
8908 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
8909 if (!Range.contains(R1Val->getValue()))
8910 return SE.getConstant(NextVal);
8911 return SE.getCouldNotCompute(); // Something strange happened
8912 }
8913
8914 // If R1 was not in the range, then it is a good return value. Make
8915 // sure that R1-1 WAS in the range though, just in case.
8916 ConstantInt *NextVal =
8917 ConstantInt::get(SE.getContext(), R1->getAPInt() - 1);
8918 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
8919 if (Range.contains(R1Val->getValue()))
8920 return R1;
8921 return SE.getCouldNotCompute(); // Something strange happened
8922 }
8923 }
8924 }
8925
8926 return SE.getCouldNotCompute();
8927}
8928
8929namespace {
8930struct FindUndefs {
8931 bool Found;
8932 FindUndefs() : Found(false) {}
8933
8934 bool follow(const SCEV *S) {
8935 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
8936 if (isa<UndefValue>(C->getValue()))
8937 Found = true;
8938 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
8939 if (isa<UndefValue>(C->getValue()))
8940 Found = true;
8941 }
8942
8943 // Keep looking if we haven't found it yet.
8944 return !Found;
8945 }
8946 bool isDone() const {
8947 // Stop recursion if we have found an undef.
8948 return Found;
8949 }
8950};
8951}
8952
8953// Return true when S contains at least an undef value.
8954static inline bool
8955containsUndefs(const SCEV *S) {
8956 FindUndefs F;
8957 SCEVTraversal<FindUndefs> ST(F);
8958 ST.visitAll(S);
8959
8960 return F.Found;
8961}
8962
8963namespace {
8964// Collect all steps of SCEV expressions.
8965struct SCEVCollectStrides {
8966 ScalarEvolution &SE;
8967 SmallVectorImpl<const SCEV *> &Strides;
8968
8969 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
8970 : SE(SE), Strides(S) {}
8971
8972 bool follow(const SCEV *S) {
8973 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
8974 Strides.push_back(AR->getStepRecurrence(SE));
8975 return true;
8976 }
8977 bool isDone() const { return false; }
8978};
8979
8980// Collect all SCEVUnknown and SCEVMulExpr expressions.
8981struct SCEVCollectTerms {
8982 SmallVectorImpl<const SCEV *> &Terms;
8983
8984 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
8985 : Terms(T) {}
8986
8987 bool follow(const SCEV *S) {
8988 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
8989 if (!containsUndefs(S))
8990 Terms.push_back(S);
8991
8992 // Stop recursion: once we collected a term, do not walk its operands.
8993 return false;
8994 }
8995
8996 // Keep looking.
8997 return true;
8998 }
8999 bool isDone() const { return false; }
9000};
9001
9002// Check if a SCEV contains an AddRecExpr.
9003struct SCEVHasAddRec {
9004 bool &ContainsAddRec;
9005
9006 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
9007 ContainsAddRec = false;
9008 }
9009
9010 bool follow(const SCEV *S) {
9011 if (isa<SCEVAddRecExpr>(S)) {
9012 ContainsAddRec = true;
9013
9014 // Stop recursion: once we collected a term, do not walk its operands.
9015 return false;
9016 }
9017
9018 // Keep looking.
9019 return true;
9020 }
9021 bool isDone() const { return false; }
9022};
9023
9024// Find factors that are multiplied with an expression that (possibly as a
9025// subexpression) contains an AddRecExpr. In the expression:
9026//
9027// 8 * (100 + %p * %q * (%a + {0, +, 1}_loop))
9028//
9029// "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
9030// that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
9031// parameters as they form a product with an induction variable.
9032//
9033// This collector expects all array size parameters to be in the same MulExpr.
9034// It might be necessary to later add support for collecting parameters that are
9035// spread over different nested MulExpr.
9036struct SCEVCollectAddRecMultiplies {
9037 SmallVectorImpl<const SCEV *> &Terms;
9038 ScalarEvolution &SE;
9039
9040 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
9041 : Terms(T), SE(SE) {}
9042
9043 bool follow(const SCEV *S) {
9044 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
9045 bool HasAddRec = false;
9046 SmallVector<const SCEV *, 0> Operands;
9047 for (auto Op : Mul->operands()) {
9048 if (isa<SCEVUnknown>(Op)) {
9049 Operands.push_back(Op);
9050 } else {
9051 bool ContainsAddRec;
9052 SCEVHasAddRec ContiansAddRec(ContainsAddRec);
9053 visitAll(Op, ContiansAddRec);
9054 HasAddRec |= ContainsAddRec;
9055 }
9056 }
9057 if (Operands.size() == 0)
9058 return true;
9059
9060 if (!HasAddRec)
9061 return false;
9062
9063 Terms.push_back(SE.getMulExpr(Operands));
9064 // Stop recursion: once we collected a term, do not walk its operands.
9065 return false;
9066 }
9067
9068 // Keep looking.
9069 return true;
9070 }
9071 bool isDone() const { return false; }
9072};
9073}
9074
9075/// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
9076/// two places:
9077/// 1) The strides of AddRec expressions.
9078/// 2) Unknowns that are multiplied with AddRec expressions.
9079void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
9080 SmallVectorImpl<const SCEV *> &Terms) {
9081 SmallVector<const SCEV *, 4> Strides;
9082 SCEVCollectStrides StrideCollector(*this, Strides);
9083 visitAll(Expr, StrideCollector);
9084
9085 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Strides:\n"; for (
const SCEV *S : Strides) dbgs() << *S << "\n"; };
} } while (0)
9086 dbgs() << "Strides:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Strides:\n"; for (
const SCEV *S : Strides) dbgs() << *S << "\n"; };
} } while (0)
9087 for (const SCEV *S : Strides)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Strides:\n"; for (
const SCEV *S : Strides) dbgs() << *S << "\n"; };
} } while (0)
9088 dbgs() << *S << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Strides:\n"; for (
const SCEV *S : Strides) dbgs() << *S << "\n"; };
} } while (0)
9089 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Strides:\n"; for (
const SCEV *S : Strides) dbgs() << *S << "\n"; };
} } while (0)
;
9090
9091 for (const SCEV *S : Strides) {
9092 SCEVCollectTerms TermCollector(Terms);
9093 visitAll(S, TermCollector);
9094 }
9095
9096 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Terms:\n"; for (const
SCEV *T : Terms) dbgs() << *T << "\n"; }; } } while
(0)
9097 dbgs() << "Terms:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Terms:\n"; for (const
SCEV *T : Terms) dbgs() << *T << "\n"; }; } } while
(0)
9098 for (const SCEV *T : Terms)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Terms:\n"; for (const
SCEV *T : Terms) dbgs() << *T << "\n"; }; } } while
(0)
9099 dbgs() << *T << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Terms:\n"; for (const
SCEV *T : Terms) dbgs() << *T << "\n"; }; } } while
(0)
9100 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Terms:\n"; for (const
SCEV *T : Terms) dbgs() << *T << "\n"; }; } } while
(0)
;
9101
9102 SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
9103 visitAll(Expr, MulCollector);
9104}
9105
9106static bool findArrayDimensionsRec(ScalarEvolution &SE,
9107 SmallVectorImpl<const SCEV *> &Terms,
9108 SmallVectorImpl<const SCEV *> &Sizes) {
9109 int Last = Terms.size() - 1;
9110 const SCEV *Step = Terms[Last];
9111
9112 // End of recursion.
9113 if (Last == 0) {
9114 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
9115 SmallVector<const SCEV *, 2> Qs;
9116 for (const SCEV *Op : M->operands())
9117 if (!isa<SCEVConstant>(Op))
9118 Qs.push_back(Op);
9119
9120 Step = SE.getMulExpr(Qs);
9121 }
9122
9123 Sizes.push_back(Step);
9124 return true;
9125 }
9126
9127 for (const SCEV *&Term : Terms) {
9128 // Normalize the terms before the next call to findArrayDimensionsRec.
9129 const SCEV *Q, *R;
9130 SCEVDivision::divide(SE, Term, Step, &Q, &R);
9131
9132 // Bail out when GCD does not evenly divide one of the terms.
9133 if (!R->isZero())
9134 return false;
9135
9136 Term = Q;
9137 }
9138
9139 // Remove all SCEVConstants.
9140 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
9141 return isa<SCEVConstant>(E);
9142 }),
9143 Terms.end());
9144
9145 if (Terms.size() > 0)
9146 if (!findArrayDimensionsRec(SE, Terms, Sizes))
9147 return false;
9148
9149 Sizes.push_back(Step);
9150 return true;
9151}
9152
9153// Returns true when S contains at least a SCEVUnknown parameter.
9154static inline bool
9155containsParameters(const SCEV *S) {
9156 struct FindParameter {
9157 bool FoundParameter;
9158 FindParameter() : FoundParameter(false) {}
9159
9160 bool follow(const SCEV *S) {
9161 if (isa<SCEVUnknown>(S)) {
9162 FoundParameter = true;
9163 // Stop recursion: we found a parameter.
9164 return false;
9165 }
9166 // Keep looking.
9167 return true;
9168 }
9169 bool isDone() const {
9170 // Stop recursion if we have found a parameter.
9171 return FoundParameter;
9172 }
9173 };
9174
9175 FindParameter F;
9176 SCEVTraversal<FindParameter> ST(F);
9177 ST.visitAll(S);
9178
9179 return F.FoundParameter;
9180}
9181
9182// Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
9183static inline bool
9184containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
9185 for (const SCEV *T : Terms)
9186 if (containsParameters(T))
9187 return true;
9188 return false;
9189}
9190
9191// Return the number of product terms in S.
9192static inline int numberOfTerms(const SCEV *S) {
9193 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
9194 return Expr->getNumOperands();
9195 return 1;
9196}
9197
9198static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
9199 if (isa<SCEVConstant>(T))
9200 return nullptr;
9201
9202 if (isa<SCEVUnknown>(T))
9203 return T;
9204
9205 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
9206 SmallVector<const SCEV *, 2> Factors;
9207 for (const SCEV *Op : M->operands())
9208 if (!isa<SCEVConstant>(Op))
9209 Factors.push_back(Op);
9210
9211 return SE.getMulExpr(Factors);
9212 }
9213
9214 return T;
9215}
9216
9217/// Return the size of an element read or written by Inst.
9218const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
9219 Type *Ty;
9220 if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
9221 Ty = Store->getValueOperand()->getType();
9222 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
9223 Ty = Load->getType();
9224 else
9225 return nullptr;
9226
9227 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
9228 return getSizeOfExpr(ETy, Ty);
9229}
9230
9231void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
9232 SmallVectorImpl<const SCEV *> &Sizes,
9233 const SCEV *ElementSize) const {
9234 if (Terms.size() < 1 || !ElementSize)
9235 return;
9236
9237 // Early return when Terms do not contain parameters: we do not delinearize
9238 // non parametric SCEVs.
9239 if (!containsParameters(Terms))
9240 return;
9241
9242 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Terms:\n"; for (const
SCEV *T : Terms) dbgs() << *T << "\n"; }; } } while
(0)
9243 dbgs() << "Terms:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Terms:\n"; for (const
SCEV *T : Terms) dbgs() << *T << "\n"; }; } } while
(0)
9244 for (const SCEV *T : Terms)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Terms:\n"; for (const
SCEV *T : Terms) dbgs() << *T << "\n"; }; } } while
(0)
9245 dbgs() << *T << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Terms:\n"; for (const
SCEV *T : Terms) dbgs() << *T << "\n"; }; } } while
(0)
9246 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Terms:\n"; for (const
SCEV *T : Terms) dbgs() << *T << "\n"; }; } } while
(0)
;
9247
9248 // Remove duplicates.
9249 std::sort(Terms.begin(), Terms.end());
9250 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
9251
9252 // Put larger terms first.
9253 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
9254 return numberOfTerms(LHS) > numberOfTerms(RHS);
9255 });
9256
9257 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9258
9259 // Try to divide all terms by the element size. If term is not divisible by
9260 // element size, proceed with the original term.
9261 for (const SCEV *&Term : Terms) {
9262 const SCEV *Q, *R;
9263 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
9264 if (!Q->isZero())
9265 Term = Q;
9266 }
9267
9268 SmallVector<const SCEV *, 4> NewTerms;
9269
9270 // Remove constant factors.
9271 for (const SCEV *T : Terms)
9272 if (const SCEV *NewT = removeConstantFactors(SE, T))
9273 NewTerms.push_back(NewT);
9274
9275 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Terms after sorting:\n"
; for (const SCEV *T : NewTerms) dbgs() << *T << "\n"
; }; } } while (0)
9276 dbgs() << "Terms after sorting:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Terms after sorting:\n"
; for (const SCEV *T : NewTerms) dbgs() << *T << "\n"
; }; } } while (0)
9277 for (const SCEV *T : NewTerms)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Terms after sorting:\n"
; for (const SCEV *T : NewTerms) dbgs() << *T << "\n"
; }; } } while (0)
9278 dbgs() << *T << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Terms after sorting:\n"
; for (const SCEV *T : NewTerms) dbgs() << *T << "\n"
; }; } } while (0)
9279 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Terms after sorting:\n"
; for (const SCEV *T : NewTerms) dbgs() << *T << "\n"
; }; } } while (0)
;
9280
9281 if (NewTerms.empty() ||
9282 !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
9283 Sizes.clear();
9284 return;
9285 }
9286
9287 // The last element to be pushed into Sizes is the size of an element.
9288 Sizes.push_back(ElementSize);
9289
9290 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Sizes:\n"; for (const
SCEV *S : Sizes) dbgs() << *S << "\n"; }; } } while
(0)
9291 dbgs() << "Sizes:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Sizes:\n"; for (const
SCEV *S : Sizes) dbgs() << *S << "\n"; }; } } while
(0)
9292 for (const SCEV *S : Sizes)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Sizes:\n"; for (const
SCEV *S : Sizes) dbgs() << *S << "\n"; }; } } while
(0)
9293 dbgs() << *S << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Sizes:\n"; for (const
SCEV *S : Sizes) dbgs() << *S << "\n"; }; } } while
(0)
9294 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Sizes:\n"; for (const
SCEV *S : Sizes) dbgs() << *S << "\n"; }; } } while
(0)
;
9295}
9296
9297void ScalarEvolution::computeAccessFunctions(
9298 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
9299 SmallVectorImpl<const SCEV *> &Sizes) {
9300
9301 // Early exit in case this SCEV is not an affine multivariate function.
9302 if (Sizes.empty())
9303 return;
9304
9305 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
9306 if (!AR->isAffine())
9307 return;
9308
9309 const SCEV *Res = Expr;
9310 int Last = Sizes.size() - 1;
9311 for (int i = Last; i >= 0; i--) {
9312 const SCEV *Q, *R;
9313 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
9314
9315 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Res: " << *Res
<< "\n"; dbgs() << "Sizes[i]: " << *Sizes[
i] << "\n"; dbgs() << "Res divided by Sizes[i]:\n"
; dbgs() << "Quotient: " << *Q << "\n"; dbgs
() << "Remainder: " << *R << "\n"; }; } } while
(0)
9316 dbgs() << "Res: " << *Res << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Res: " << *Res
<< "\n"; dbgs() << "Sizes[i]: " << *Sizes[
i] << "\n"; dbgs() << "Res divided by Sizes[i]:\n"
; dbgs() << "Quotient: " << *Q << "\n"; dbgs
() << "Remainder: " << *R << "\n"; }; } } while
(0)
9317 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Res: " << *Res
<< "\n"; dbgs() << "Sizes[i]: " << *Sizes[
i] << "\n"; dbgs() << "Res divided by Sizes[i]:\n"
; dbgs() << "Quotient: " << *Q << "\n"; dbgs
() << "Remainder: " << *R << "\n"; }; } } while
(0)
9318 dbgs() << "Res divided by Sizes[i]:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Res: " << *Res
<< "\n"; dbgs() << "Sizes[i]: " << *Sizes[
i] << "\n"; dbgs() << "Res divided by Sizes[i]:\n"
; dbgs() << "Quotient: " << *Q << "\n"; dbgs
() << "Remainder: " << *R << "\n"; }; } } while
(0)
9319 dbgs() << "Quotient: " << *Q << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Res: " << *Res
<< "\n"; dbgs() << "Sizes[i]: " << *Sizes[
i] << "\n"; dbgs() << "Res divided by Sizes[i]:\n"
; dbgs() << "Quotient: " << *Q << "\n"; dbgs
() << "Remainder: " << *R << "\n"; }; } } while
(0)
9320 dbgs() << "Remainder: " << *R << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Res: " << *Res
<< "\n"; dbgs() << "Sizes[i]: " << *Sizes[
i] << "\n"; dbgs() << "Res divided by Sizes[i]:\n"
; dbgs() << "Quotient: " << *Q << "\n"; dbgs
() << "Remainder: " << *R << "\n"; }; } } while
(0)
9321 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Res: " << *Res
<< "\n"; dbgs() << "Sizes[i]: " << *Sizes[
i] << "\n"; dbgs() << "Res divided by Sizes[i]:\n"
; dbgs() << "Quotient: " << *Q << "\n"; dbgs
() << "Remainder: " << *R << "\n"; }; } } while
(0)
;
9322
9323 Res = Q;
9324
9325 // Do not record the last subscript corresponding to the size of elements in
9326 // the array.
9327 if (i == Last) {
9328
9329 // Bail out if the remainder is too complex.
9330 if (isa<SCEVAddRecExpr>(R)) {
9331 Subscripts.clear();
9332 Sizes.clear();
9333 return;
9334 }
9335
9336 continue;
9337 }
9338
9339 // Record the access function for the current subscript.
9340 Subscripts.push_back(R);
9341 }
9342
9343 // Also push in last position the remainder of the last division: it will be
9344 // the access function of the innermost dimension.
9345 Subscripts.push_back(Res);
9346
9347 std::reverse(Subscripts.begin(), Subscripts.end());
9348
9349 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Subscripts:\n"; for
(const SCEV *S : Subscripts) dbgs() << *S << "\n"
; }; } } while (0)
9350 dbgs() << "Subscripts:\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Subscripts:\n"; for
(const SCEV *S : Subscripts) dbgs() << *S << "\n"
; }; } } while (0)
9351 for (const SCEV *S : Subscripts)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Subscripts:\n"; for
(const SCEV *S : Subscripts) dbgs() << *S << "\n"
; }; } } while (0)
9352 dbgs() << *S << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Subscripts:\n"; for
(const SCEV *S : Subscripts) dbgs() << *S << "\n"
; }; } } while (0)
9353 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "Subscripts:\n"; for
(const SCEV *S : Subscripts) dbgs() << *S << "\n"
; }; } } while (0)
;
9354}
9355
9356/// Splits the SCEV into two vectors of SCEVs representing the subscripts and
9357/// sizes of an array access. Returns the remainder of the delinearization that
9358/// is the offset start of the array. The SCEV->delinearize algorithm computes
9359/// the multiples of SCEV coefficients: that is a pattern matching of sub
9360/// expressions in the stride and base of a SCEV corresponding to the
9361/// computation of a GCD (greatest common divisor) of base and stride. When
9362/// SCEV->delinearize fails, it returns the SCEV unchanged.
9363///
9364/// For example: when analyzing the memory access A[i][j][k] in this loop nest
9365///
9366/// void foo(long n, long m, long o, double A[n][m][o]) {
9367///
9368/// for (long i = 0; i < n; i++)
9369/// for (long j = 0; j < m; j++)
9370/// for (long k = 0; k < o; k++)
9371/// A[i][j][k] = 1.0;
9372/// }
9373///
9374/// the delinearization input is the following AddRec SCEV:
9375///
9376/// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
9377///
9378/// From this SCEV, we are able to say that the base offset of the access is %A
9379/// because it appears as an offset that does not divide any of the strides in
9380/// the loops:
9381///
9382/// CHECK: Base offset: %A
9383///
9384/// and then SCEV->delinearize determines the size of some of the dimensions of
9385/// the array as these are the multiples by which the strides are happening:
9386///
9387/// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
9388///
9389/// Note that the outermost dimension remains of UnknownSize because there are
9390/// no strides that would help identifying the size of the last dimension: when
9391/// the array has been statically allocated, one could compute the size of that
9392/// dimension by dividing the overall size of the array by the size of the known
9393/// dimensions: %m * %o * 8.
9394///
9395/// Finally delinearize provides the access functions for the array reference
9396/// that does correspond to A[i][j][k] of the above C testcase:
9397///
9398/// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
9399///
9400/// The testcases are checking the output of a function pass:
9401/// DelinearizationPass that walks through all loads and stores of a function
9402/// asking for the SCEV of the memory access with respect to all enclosing
9403/// loops, calling SCEV->delinearize on that and printing the results.
9404
9405void ScalarEvolution::delinearize(const SCEV *Expr,
9406 SmallVectorImpl<const SCEV *> &Subscripts,
9407 SmallVectorImpl<const SCEV *> &Sizes,
9408 const SCEV *ElementSize) {
9409 // First step: collect parametric terms.
9410 SmallVector<const SCEV *, 4> Terms;
9411 collectParametricTerms(Expr, Terms);
9412
9413 if (Terms.empty())
9414 return;
9415
9416 // Second step: find subscript sizes.
9417 findArrayDimensions(Terms, Sizes, ElementSize);
9418
9419 if (Sizes.empty())
9420 return;
9421
9422 // Third step: compute the access functions for each subscript.
9423 computeAccessFunctions(Expr, Subscripts, Sizes);
9424
9425 if (Subscripts.empty())
9426 return;
9427
9428 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "succeeded to delinearize "
<< *Expr << "\n"; dbgs() << "ArrayDecl[UnknownSize]"
; for (const SCEV *S : Sizes) dbgs() << "[" << *S
<< "]"; dbgs() << "\nArrayRef"; for (const SCEV *
S : Subscripts) dbgs() << "[" << *S << "]";
dbgs() << "\n"; }; } } while (0)
9429 dbgs() << "succeeded to delinearize " << *Expr << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "succeeded to delinearize "
<< *Expr << "\n"; dbgs() << "ArrayDecl[UnknownSize]"
; for (const SCEV *S : Sizes) dbgs() << "[" << *S
<< "]"; dbgs() << "\nArrayRef"; for (const SCEV *
S : Subscripts) dbgs() << "[" << *S << "]";
dbgs() << "\n"; }; } } while (0)
9430 dbgs() << "ArrayDecl[UnknownSize]";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "succeeded to delinearize "
<< *Expr << "\n"; dbgs() << "ArrayDecl[UnknownSize]"
; for (const SCEV *S : Sizes) dbgs() << "[" << *S
<< "]"; dbgs() << "\nArrayRef"; for (const SCEV *
S : Subscripts) dbgs() << "[" << *S << "]";
dbgs() << "\n"; }; } } while (0)
9431 for (const SCEV *S : Sizes)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "succeeded to delinearize "
<< *Expr << "\n"; dbgs() << "ArrayDecl[UnknownSize]"
; for (const SCEV *S : Sizes) dbgs() << "[" << *S
<< "]"; dbgs() << "\nArrayRef"; for (const SCEV *
S : Subscripts) dbgs() << "[" << *S << "]";
dbgs() << "\n"; }; } } while (0)
9432 dbgs() << "[" << *S << "]";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "succeeded to delinearize "
<< *Expr << "\n"; dbgs() << "ArrayDecl[UnknownSize]"
; for (const SCEV *S : Sizes) dbgs() << "[" << *S
<< "]"; dbgs() << "\nArrayRef"; for (const SCEV *
S : Subscripts) dbgs() << "[" << *S << "]";
dbgs() << "\n"; }; } } while (0)
9433
9434 dbgs() << "\nArrayRef";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "succeeded to delinearize "
<< *Expr << "\n"; dbgs() << "ArrayDecl[UnknownSize]"
; for (const SCEV *S : Sizes) dbgs() << "[" << *S
<< "]"; dbgs() << "\nArrayRef"; for (const SCEV *
S : Subscripts) dbgs() << "[" << *S << "]";
dbgs() << "\n"; }; } } while (0)
9435 for (const SCEV *S : Subscripts)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "succeeded to delinearize "
<< *Expr << "\n"; dbgs() << "ArrayDecl[UnknownSize]"
; for (const SCEV *S : Sizes) dbgs() << "[" << *S
<< "]"; dbgs() << "\nArrayRef"; for (const SCEV *
S : Subscripts) dbgs() << "[" << *S << "]";
dbgs() << "\n"; }; } } while (0)
9436 dbgs() << "[" << *S << "]";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "succeeded to delinearize "
<< *Expr << "\n"; dbgs() << "ArrayDecl[UnknownSize]"
; for (const SCEV *S : Sizes) dbgs() << "[" << *S
<< "]"; dbgs() << "\nArrayRef"; for (const SCEV *
S : Subscripts) dbgs() << "[" << *S << "]";
dbgs() << "\n"; }; } } while (0)
9437 dbgs() << "\n";do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "succeeded to delinearize "
<< *Expr << "\n"; dbgs() << "ArrayDecl[UnknownSize]"
; for (const SCEV *S : Sizes) dbgs() << "[" << *S
<< "]"; dbgs() << "\nArrayRef"; for (const SCEV *
S : Subscripts) dbgs() << "[" << *S << "]";
dbgs() << "\n"; }; } } while (0)
9438 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("scalar-evolution")) { { dbgs() << "succeeded to delinearize "
<< *Expr << "\n"; dbgs() << "ArrayDecl[UnknownSize]"
; for (const SCEV *S : Sizes) dbgs() << "[" << *S
<< "]"; dbgs() << "\nArrayRef"; for (const SCEV *
S : Subscripts) dbgs() << "[" << *S << "]";
dbgs() << "\n"; }; } } while (0)
;
9439}
9440
9441//===----------------------------------------------------------------------===//
9442// SCEVCallbackVH Class Implementation
9443//===----------------------------------------------------------------------===//
9444
9445void ScalarEvolution::SCEVCallbackVH::deleted() {
9446 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!")((SE && "SCEVCallbackVH called with a null ScalarEvolution!"
) ? static_cast<void> (0) : __assert_fail ("SE && \"SCEVCallbackVH called with a null ScalarEvolution!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 9446, __PRETTY_FUNCTION__))
;
9447 if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
9448 SE->ConstantEvolutionLoopExitValue.erase(PN);
9449 SE->eraseValueFromMap(getValPtr());
9450 // this now dangles!
9451}
9452
9453void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
9454 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!")((SE && "SCEVCallbackVH called with a null ScalarEvolution!"
) ? static_cast<void> (0) : __assert_fail ("SE && \"SCEVCallbackVH called with a null ScalarEvolution!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 9454, __PRETTY_FUNCTION__))
;
9455
9456 // Forget all the expressions associated with users of the old value,
9457 // so that future queries will recompute the expressions using the new
9458 // value.
9459 Value *Old = getValPtr();
9460 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
9461 SmallPtrSet<User *, 8> Visited;
9462 while (!Worklist.empty()) {
9463 User *U = Worklist.pop_back_val();
9464 // Deleting the Old value will cause this to dangle. Postpone
9465 // that until everything else is done.
9466 if (U == Old)
9467 continue;
9468 if (!Visited.insert(U).second)
9469 continue;
9470 if (PHINode *PN = dyn_cast<PHINode>(U))
9471 SE->ConstantEvolutionLoopExitValue.erase(PN);
9472 SE->eraseValueFromMap(U);
9473 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
9474 }
9475 // Delete the Old value.
9476 if (PHINode *PN = dyn_cast<PHINode>(Old))
9477 SE->ConstantEvolutionLoopExitValue.erase(PN);
9478 SE->eraseValueFromMap(Old);
9479 // this now dangles!
9480}
9481
9482ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
9483 : CallbackVH(V), SE(se) {}
9484
9485//===----------------------------------------------------------------------===//
9486// ScalarEvolution Class Implementation
9487//===----------------------------------------------------------------------===//
9488
9489ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
9490 AssumptionCache &AC, DominatorTree &DT,
9491 LoopInfo &LI)
9492 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
9493 CouldNotCompute(new SCEVCouldNotCompute()),
9494 WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9495 ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64),
9496 FirstUnknown(nullptr) {
9497
9498 // To use guards for proving predicates, we need to scan every instruction in
9499 // relevant basic blocks, and not just terminators. Doing this is a waste of
9500 // time if the IR does not actually contain any calls to
9501 // @llvm.experimental.guard, so do a quick check and remember this beforehand.
9502 //
9503 // This pessimizes the case where a pass that preserves ScalarEvolution wants
9504 // to _add_ guards to the module when there weren't any before, and wants
9505 // ScalarEvolution to optimize based on those guards. For now we prefer to be
9506 // efficient in lieu of being smart in that rather obscure case.
9507
9508 auto *GuardDecl = F.getParent()->getFunction(
9509 Intrinsic::getName(Intrinsic::experimental_guard));
9510 HasGuards = GuardDecl && !GuardDecl->use_empty();
9511}
9512
9513ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
9514 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
9515 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
9516 ValueExprMap(std::move(Arg.ValueExprMap)),
9517 WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9518 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
9519 PredicatedBackedgeTakenCounts(
9520 std::move(Arg.PredicatedBackedgeTakenCounts)),
9521 ConstantEvolutionLoopExitValue(
9522 std::move(Arg.ConstantEvolutionLoopExitValue)),
9523 ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
9524 LoopDispositions(std::move(Arg.LoopDispositions)),
9525 BlockDispositions(std::move(Arg.BlockDispositions)),
9526 UnsignedRanges(std::move(Arg.UnsignedRanges)),
9527 SignedRanges(std::move(Arg.SignedRanges)),
9528 UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
9529 UniquePreds(std::move(Arg.UniquePreds)),
9530 SCEVAllocator(std::move(Arg.SCEVAllocator)),
9531 FirstUnknown(Arg.FirstUnknown) {
9532 Arg.FirstUnknown = nullptr;
9533}
9534
9535ScalarEvolution::~ScalarEvolution() {
9536 // Iterate through all the SCEVUnknown instances and call their
9537 // destructors, so that they release their references to their values.
9538 for (SCEVUnknown *U = FirstUnknown; U;) {
9539 SCEVUnknown *Tmp = U;
9540 U = U->Next;
9541 Tmp->~SCEVUnknown();
9542 }
9543 FirstUnknown = nullptr;
9544
9545 ExprValueMap.clear();
9546 ValueExprMap.clear();
9547 HasRecMap.clear();
9548
9549 // Free any extra memory created for ExitNotTakenInfo in the unlikely event
9550 // that a loop had multiple computable exits.
9551 for (auto &BTCI : BackedgeTakenCounts)
9552 BTCI.second.clear();
9553 for (auto &BTCI : PredicatedBackedgeTakenCounts)
9554 BTCI.second.clear();
9555
9556 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage")((PendingLoopPredicates.empty() && "isImpliedCond garbage"
) ? static_cast<void> (0) : __assert_fail ("PendingLoopPredicates.empty() && \"isImpliedCond garbage\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 9556, __PRETTY_FUNCTION__))
;
9557 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!")((!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"
) ? static_cast<void> (0) : __assert_fail ("!WalkingBEDominatingConds && \"isLoopBackedgeGuardedByCond garbage!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 9557, __PRETTY_FUNCTION__))
;
9558 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!")((!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"
) ? static_cast<void> (0) : __assert_fail ("!ProvingSplitPredicate && \"ProvingSplitPredicate garbage!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 9558, __PRETTY_FUNCTION__))
;
9559}
9560
9561bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
9562 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
9563}
9564
9565static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
9566 const Loop *L) {
9567 // Print all inner loops first
9568 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
9569 PrintLoopInfo(OS, SE, *I);
9570
9571 OS << "Loop ";
9572 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9573 OS << ": ";
9574
9575 SmallVector<BasicBlock *, 8> ExitBlocks;
9576 L->getExitBlocks(ExitBlocks);
9577 if (ExitBlocks.size() != 1)
9578 OS << "<multiple exits> ";
9579
9580 if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
9581 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
9582 } else {
9583 OS << "Unpredictable backedge-taken count. ";
9584 }
9585
9586 OS << "\n"
9587 "Loop ";
9588 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9589 OS << ": ";
9590
9591 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
9592 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
9593 } else {
9594 OS << "Unpredictable max backedge-taken count. ";
9595 }
9596
9597 OS << "\n"
9598 "Loop ";
9599 L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9600 OS << ": ";
9601
9602 SCEVUnionPredicate Pred;
9603 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
9604 if (!isa<SCEVCouldNotCompute>(PBT)) {
9605 OS << "Predicated backedge-taken count is " << *PBT << "\n";
9606 OS << " Predicates:\n";
9607 Pred.print(OS, 4);
9608 } else {
9609 OS << "Unpredictable predicated backedge-taken count. ";
9610 }
9611 OS << "\n";
9612}
9613
9614static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
9615 switch (LD) {
9616 case ScalarEvolution::LoopVariant:
9617 return "Variant";
9618 case ScalarEvolution::LoopInvariant:
9619 return "Invariant";
9620 case ScalarEvolution::LoopComputable:
9621 return "Computable";
9622 }
9623 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!")::llvm::llvm_unreachable_internal("Unknown ScalarEvolution::LoopDisposition kind!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 9623)
;
9624}
9625
9626void ScalarEvolution::print(raw_ostream &OS) const {
9627 // ScalarEvolution's implementation of the print method is to print
9628 // out SCEV values of all instructions that are interesting. Doing
9629 // this potentially causes it to create new SCEV objects though,
9630 // which technically conflicts with the const qualifier. This isn't
9631 // observable from outside the class though, so casting away the
9632 // const isn't dangerous.
9633 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9634
9635 OS << "Classifying expressions for: ";
9636 F.printAsOperand(OS, /*PrintType=*/false);
9637 OS << "\n";
9638 for (Instruction &I : instructions(F))
9639 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
9640 OS << I << '\n';
9641 OS << " --> ";
9642 const SCEV *SV = SE.getSCEV(&I);
9643 SV->print(OS);
9644 if (!isa<SCEVCouldNotCompute>(SV)) {
9645 OS << " U: ";
9646 SE.getUnsignedRange(SV).print(OS);
9647 OS << " S: ";
9648 SE.getSignedRange(SV).print(OS);
9649 }
9650
9651 const Loop *L = LI.getLoopFor(I.getParent());
9652
9653 const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
9654 if (AtUse != SV) {
9655 OS << " --> ";
9656 AtUse->print(OS);
9657 if (!isa<SCEVCouldNotCompute>(AtUse)) {
9658 OS << " U: ";
9659 SE.getUnsignedRange(AtUse).print(OS);
9660 OS << " S: ";
9661 SE.getSignedRange(AtUse).print(OS);
9662 }
9663 }
9664
9665 if (L) {
9666 OS << "\t\t" "Exits: ";
9667 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
9668 if (!SE.isLoopInvariant(ExitValue, L)) {
9669 OS << "<<Unknown>>";
9670 } else {
9671 OS << *ExitValue;
9672 }
9673
9674 bool First = true;
9675 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
9676 if (First) {
9677 OS << "\t\t" "LoopDispositions: { ";
9678 First = false;
9679 } else {
9680 OS << ", ";
9681 }
9682
9683 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9684 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
9685 }
9686
9687 for (auto *InnerL : depth_first(L)) {
9688 if (InnerL == L)
9689 continue;
9690 if (First) {
9691 OS << "\t\t" "LoopDispositions: { ";
9692 First = false;
9693 } else {
9694 OS << ", ";
9695 }
9696
9697 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9698 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
9699 }
9700
9701 OS << " }";
9702 }
9703
9704 OS << "\n";
9705 }
9706
9707 OS << "Determining loop execution counts for: ";
9708 F.printAsOperand(OS, /*PrintType=*/false);
9709 OS << "\n";
9710 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
9711 PrintLoopInfo(OS, &SE, *I);
9712}
9713
9714ScalarEvolution::LoopDisposition
9715ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
9716 auto &Values = LoopDispositions[S];
9717 for (auto &V : Values) {
9718 if (V.getPointer() == L)
9719 return V.getInt();
9720 }
9721 Values.emplace_back(L, LoopVariant);
9722 LoopDisposition D = computeLoopDisposition(S, L);
9723 auto &Values2 = LoopDispositions[S];
9724 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9725 if (V.getPointer() == L) {
9726 V.setInt(D);
9727 break;
9728 }
9729 }
9730 return D;
9731}
9732
9733ScalarEvolution::LoopDisposition
9734ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
9735 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
9736 case scConstant:
9737 return LoopInvariant;
9738 case scTruncate:
9739 case scZeroExtend:
9740 case scSignExtend:
9741 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
9742 case scAddRecExpr: {
9743 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9744
9745 // If L is the addrec's loop, it's computable.
9746 if (AR->getLoop() == L)
9747 return LoopComputable;
9748
9749 // Add recurrences are never invariant in the function-body (null loop).
9750 if (!L)
9751 return LoopVariant;
9752
9753 // This recurrence is variant w.r.t. L if L contains AR's loop.
9754 if (L->contains(AR->getLoop()))
9755 return LoopVariant;
9756
9757 // This recurrence is invariant w.r.t. L if AR's loop contains L.
9758 if (AR->getLoop()->contains(L))
9759 return LoopInvariant;
9760
9761 // This recurrence is variant w.r.t. L if any of its operands
9762 // are variant.
9763 for (auto *Op : AR->operands())
9764 if (!isLoopInvariant(Op, L))
9765 return LoopVariant;
9766
9767 // Otherwise it's loop-invariant.
9768 return LoopInvariant;
9769 }
9770 case scAddExpr:
9771 case scMulExpr:
9772 case scUMaxExpr:
9773 case scSMaxExpr: {
9774 bool HasVarying = false;
9775 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
9776 LoopDisposition D = getLoopDisposition(Op, L);
9777 if (D == LoopVariant)
9778 return LoopVariant;
9779 if (D == LoopComputable)
9780 HasVarying = true;
9781 }
9782 return HasVarying ? LoopComputable : LoopInvariant;
9783 }
9784 case scUDivExpr: {
9785 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
9786 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
9787 if (LD == LoopVariant)
9788 return LoopVariant;
9789 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
9790 if (RD == LoopVariant)
9791 return LoopVariant;
9792 return (LD == LoopInvariant && RD == LoopInvariant) ?
9793 LoopInvariant : LoopComputable;
9794 }
9795 case scUnknown:
9796 // All non-instruction values are loop invariant. All instructions are loop
9797 // invariant if they are not contained in the specified loop.
9798 // Instructions are never considered invariant in the function body
9799 // (null loop) because they are defined within the "loop".
9800 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
9801 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
9802 return LoopInvariant;
9803 case scCouldNotCompute:
9804 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!")::llvm::llvm_unreachable_internal("Attempt to use a SCEVCouldNotCompute object!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 9804)
;
9805 }
9806 llvm_unreachable("Unknown SCEV kind!")::llvm::llvm_unreachable_internal("Unknown SCEV kind!", "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 9806)
;
9807}
9808
9809bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
9810 return getLoopDisposition(S, L) == LoopInvariant;
9811}
9812
9813bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
9814 return getLoopDisposition(S, L) == LoopComputable;
9815}
9816
9817ScalarEvolution::BlockDisposition
9818ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
9819 auto &Values = BlockDispositions[S];
9820 for (auto &V : Values) {
9821 if (V.getPointer() == BB)
9822 return V.getInt();
9823 }
9824 Values.emplace_back(BB, DoesNotDominateBlock);
9825 BlockDisposition D = computeBlockDisposition(S, BB);
9826 auto &Values2 = BlockDispositions[S];
9827 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9828 if (V.getPointer() == BB) {
9829 V.setInt(D);
9830 break;
9831 }
9832 }
9833 return D;
9834}
9835
9836ScalarEvolution::BlockDisposition
9837ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
9838 switch (static_cast<SCEVTypes>(S->getSCEVType())) {
9839 case scConstant:
9840 return ProperlyDominatesBlock;
9841 case scTruncate:
9842 case scZeroExtend:
9843 case scSignExtend:
9844 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
9845 case scAddRecExpr: {
9846 // This uses a "dominates" query instead of "properly dominates" query
9847 // to test for proper dominance too, because the instruction which
9848 // produces the addrec's value is a PHI, and a PHI effectively properly
9849 // dominates its entire containing block.
9850 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9851 if (!DT.dominates(AR->getLoop()->getHeader(), BB))
9852 return DoesNotDominateBlock;
9853 }
9854 // FALL THROUGH into SCEVNAryExpr handling.
9855 case scAddExpr:
9856 case scMulExpr:
9857 case scUMaxExpr:
9858 case scSMaxExpr: {
9859 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
9860 bool Proper = true;
9861 for (const SCEV *NAryOp : NAry->operands()) {
9862 BlockDisposition D = getBlockDisposition(NAryOp, BB);
9863 if (D == DoesNotDominateBlock)
9864 return DoesNotDominateBlock;
9865 if (D == DominatesBlock)
9866 Proper = false;
9867 }
9868 return Proper ? ProperlyDominatesBlock : DominatesBlock;
9869 }
9870 case scUDivExpr: {
9871 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
9872 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
9873 BlockDisposition LD = getBlockDisposition(LHS, BB);
9874 if (LD == DoesNotDominateBlock)
9875 return DoesNotDominateBlock;
9876 BlockDisposition RD = getBlockDisposition(RHS, BB);
9877 if (RD == DoesNotDominateBlock)
9878 return DoesNotDominateBlock;
9879 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
9880 ProperlyDominatesBlock : DominatesBlock;
9881 }
9882 case scUnknown:
9883 if (Instruction *I =
9884 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
9885 if (I->getParent() == BB)
9886 return DominatesBlock;
9887 if (DT.properlyDominates(I->getParent(), BB))
9888 return ProperlyDominatesBlock;
9889 return DoesNotDominateBlock;
9890 }
9891 return ProperlyDominatesBlock;
9892 case scCouldNotCompute:
9893 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!")::llvm::llvm_unreachable_internal("Attempt to use a SCEVCouldNotCompute object!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 9893)
;
9894 }
9895 llvm_unreachable("Unknown SCEV kind!")::llvm::llvm_unreachable_internal("Unknown SCEV kind!", "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 9895)
;
9896}
9897
9898bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
9899 return getBlockDisposition(S, BB) >= DominatesBlock;
9900}
9901
9902bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
9903 return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
9904}
9905
9906bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
9907 // Search for a SCEV expression node within an expression tree.
9908 // Implements SCEVTraversal::Visitor.
9909 struct SCEVSearch {
9910 const SCEV *Node;
9911 bool IsFound;
9912
9913 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
9914
9915 bool follow(const SCEV *S) {
9916 IsFound |= (S == Node);
9917 return !IsFound;
9918 }
9919 bool isDone() const { return IsFound; }
9920 };
9921
9922 SCEVSearch Search(Op);
9923 visitAll(S, Search);
9924 return Search.IsFound;
9925}
9926
9927void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
9928 ValuesAtScopes.erase(S);
9929 LoopDispositions.erase(S);
9930 BlockDispositions.erase(S);
9931 UnsignedRanges.erase(S);
9932 SignedRanges.erase(S);
9933 ExprValueMap.erase(S);
9934 HasRecMap.erase(S);
9935
9936 auto RemoveSCEVFromBackedgeMap =
9937 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
9938 for (auto I = Map.begin(), E = Map.end(); I != E;) {
9939 BackedgeTakenInfo &BEInfo = I->second;
9940 if (BEInfo.hasOperand(S, this)) {
9941 BEInfo.clear();
9942 Map.erase(I++);
9943 } else
9944 ++I;
9945 }
9946 };
9947
9948 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
9949 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
9950}
9951
9952typedef DenseMap<const Loop *, std::string> VerifyMap;
9953
9954/// replaceSubString - Replaces all occurrences of From in Str with To.
9955static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
9956 size_t Pos = 0;
9957 while ((Pos = Str.find(From, Pos)) != std::string::npos) {
9958 Str.replace(Pos, From.size(), To.data(), To.size());
9959 Pos += To.size();
9960 }
9961}
9962
9963/// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
9964static void
9965getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
9966 std::string &S = Map[L];
9967 if (S.empty()) {
9968 raw_string_ostream OS(S);
9969 SE.getBackedgeTakenCount(L)->print(OS);
9970
9971 // false and 0 are semantically equivalent. This can happen in dead loops.
9972 replaceSubString(OS.str(), "false", "0");
9973 // Remove wrap flags, their use in SCEV is highly fragile.
9974 // FIXME: Remove this when SCEV gets smarter about them.
9975 replaceSubString(OS.str(), "<nw>", "");
9976 replaceSubString(OS.str(), "<nsw>", "");
9977 replaceSubString(OS.str(), "<nuw>", "");
9978 }
9979
9980 for (auto *R : reverse(*L))
9981 getLoopBackedgeTakenCounts(R, Map, SE); // recurse.
9982}
9983
9984void ScalarEvolution::verify() const {
9985 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9986
9987 // Gather stringified backedge taken counts for all loops using SCEV's caches.
9988 // FIXME: It would be much better to store actual values instead of strings,
9989 // but SCEV pointers will change if we drop the caches.
9990 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
9991 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
9992 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
9993
9994 // Gather stringified backedge taken counts for all loops using a fresh
9995 // ScalarEvolution object.
9996 ScalarEvolution SE2(F, TLI, AC, DT, LI);
9997 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
9998 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2);
9999
10000 // Now compare whether they're the same with and without caches. This allows
10001 // verifying that no pass changed the cache.
10002 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&((BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
"New loops suddenly appeared!") ? static_cast<void> (0
) : __assert_fail ("BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && \"New loops suddenly appeared!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 10003, __PRETTY_FUNCTION__))
10003 "New loops suddenly appeared!")((BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
"New loops suddenly appeared!") ? static_cast<void> (0
) : __assert_fail ("BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && \"New loops suddenly appeared!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 10003, __PRETTY_FUNCTION__))
;
10004
10005 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
10006 OldE = BackedgeDumpsOld.end(),
10007 NewI = BackedgeDumpsNew.begin();
10008 OldI != OldE; ++OldI, ++NewI) {
10009 assert(OldI->first == NewI->first && "Loop order changed!")((OldI->first == NewI->first && "Loop order changed!"
) ? static_cast<void> (0) : __assert_fail ("OldI->first == NewI->first && \"Loop order changed!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 10009, __PRETTY_FUNCTION__))
;
10010
10011 // Compare the stringified SCEVs. We don't care if undef backedgetaken count
10012 // changes.
10013 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
10014 // means that a pass is buggy or SCEV has to learn a new pattern but is
10015 // usually not harmful.
10016 if (OldI->second != NewI->second &&
10017 OldI->second.find("undef") == std::string::npos &&
10018 NewI->second.find("undef") == std::string::npos &&
10019 OldI->second != "***COULDNOTCOMPUTE***" &&
10020 NewI->second != "***COULDNOTCOMPUTE***") {
10021 dbgs() << "SCEVValidator: SCEV for loop '"
10022 << OldI->first->getHeader()->getName()
10023 << "' changed from '" << OldI->second
10024 << "' to '" << NewI->second << "'!\n";
10025 std::abort();
10026 }
10027 }
10028
10029 // TODO: Verify more things.
10030}
10031
10032char ScalarEvolutionAnalysis::PassID;
10033
10034ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
10035 AnalysisManager<Function> &AM) {
10036 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
10037 AM.getResult<AssumptionAnalysis>(F),
10038 AM.getResult<DominatorTreeAnalysis>(F),
10039 AM.getResult<LoopAnalysis>(F));
10040}
10041
10042PreservedAnalyses
10043ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> &AM) {
10044 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
10045 return PreservedAnalyses::all();
10046}
10047
10048INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",static void* initializeScalarEvolutionWrapperPassPassOnce(PassRegistry
&Registry) {
10049 "Scalar Evolution Analysis", false, true)static void* initializeScalarEvolutionWrapperPassPassOnce(PassRegistry
&Registry) {
10050INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)initializeAssumptionCacheTrackerPass(Registry);
10051INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)initializeLoopInfoWrapperPassPass(Registry);
10052INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)initializeDominatorTreeWrapperPassPass(Registry);
10053INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)initializeTargetLibraryInfoWrapperPassPass(Registry);
10054INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",PassInfo *PI = new PassInfo("Scalar Evolution Analysis", "scalar-evolution"
, & ScalarEvolutionWrapperPass ::ID, PassInfo::NormalCtor_t
(callDefaultCtor< ScalarEvolutionWrapperPass >), false,
true); Registry.registerPass(*PI, true); return PI; } void llvm
::initializeScalarEvolutionWrapperPassPass(PassRegistry &
Registry) { static volatile sys::cas_flag initialized = 0; sys
::cas_flag old_val = sys::CompareAndSwap(&initialized, 1,
0); if (old_val == 0) { initializeScalarEvolutionWrapperPassPassOnce
(Registry); sys::MemoryFence(); ; ; initialized = 2; ; } else
{ sys::cas_flag tmp = initialized; sys::MemoryFence(); while
(tmp != 2) { tmp = initialized; sys::MemoryFence(); } } ; }
10055 "Scalar Evolution Analysis", false, true)PassInfo *PI = new PassInfo("Scalar Evolution Analysis", "scalar-evolution"
, & ScalarEvolutionWrapperPass ::ID, PassInfo::NormalCtor_t
(callDefaultCtor< ScalarEvolutionWrapperPass >), false,
true); Registry.registerPass(*PI, true); return PI; } void llvm
::initializeScalarEvolutionWrapperPassPass(PassRegistry &
Registry) { static volatile sys::cas_flag initialized = 0; sys
::cas_flag old_val = sys::CompareAndSwap(&initialized, 1,
0); if (old_val == 0) { initializeScalarEvolutionWrapperPassPassOnce
(Registry); sys::MemoryFence(); ; ; initialized = 2; ; } else
{ sys::cas_flag tmp = initialized; sys::MemoryFence(); while
(tmp != 2) { tmp = initialized; sys::MemoryFence(); } } ; }
10056char ScalarEvolutionWrapperPass::ID = 0;
10057
10058ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
10059 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
10060}
10061
10062bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
10063 SE.reset(new ScalarEvolution(
10064 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
10065 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
10066 getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
10067 getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
10068 return false;
10069}
10070
10071void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
10072
10073void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
10074 SE->print(OS);
10075}
10076
10077void ScalarEvolutionWrapperPass::verifyAnalysis() const {
10078 if (!VerifySCEV)
10079 return;
10080
10081 SE->verify();
10082}
10083
10084void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
10085 AU.setPreservesAll();
10086 AU.addRequiredTransitive<AssumptionCacheTracker>();
10087 AU.addRequiredTransitive<LoopInfoWrapperPass>();
10088 AU.addRequiredTransitive<DominatorTreeWrapperPass>();
10089 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
10090}
10091
10092const SCEVPredicate *
10093ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS,
10094 const SCEVConstant *RHS) {
10095 FoldingSetNodeID ID;
10096 // Unique this node based on the arguments
10097 ID.AddInteger(SCEVPredicate::P_Equal);
10098 ID.AddPointer(LHS);
10099 ID.AddPointer(RHS);
10100 void *IP = nullptr;
10101 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
10102 return S;
10103 SCEVEqualPredicate *Eq = new (SCEVAllocator)
10104 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
10105 UniquePreds.InsertNode(Eq, IP);
10106 return Eq;
10107}
10108
10109const SCEVPredicate *ScalarEvolution::getWrapPredicate(
10110 const SCEVAddRecExpr *AR,
10111 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
10112 FoldingSetNodeID ID;
10113 // Unique this node based on the arguments
10114 ID.AddInteger(SCEVPredicate::P_Wrap);
10115 ID.AddPointer(AR);
10116 ID.AddInteger(AddedFlags);
10117 void *IP = nullptr;
10118 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
10119 return S;
10120 auto *OF = new (SCEVAllocator)
10121 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
10122 UniquePreds.InsertNode(OF, IP);
10123 return OF;
10124}
10125
10126namespace {
10127
10128class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
10129public:
10130 // Rewrites \p S in the context of a loop L and the predicate A.
10131 // If Assume is true, rewrite is free to add further predicates to A
10132 // such that the result will be an AddRecExpr.
10133 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
10134 SCEVUnionPredicate &A, bool Assume) {
10135 SCEVPredicateRewriter Rewriter(L, SE, A, Assume);
10136 return Rewriter.visit(S);
10137 }
10138
10139 SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
10140 SCEVUnionPredicate &P, bool Assume)
10141 : SCEVRewriteVisitor(SE), P(P), L(L), Assume(Assume) {}
10142
10143 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
10144 auto ExprPreds = P.getPredicatesForExpr(Expr);
10145 for (auto *Pred : ExprPreds)
10146 if (const auto *IPred = dyn_cast<const SCEVEqualPredicate>(Pred))
10147 if (IPred->getLHS() == Expr)
10148 return IPred->getRHS();
10149
10150 return Expr;
10151 }
10152
10153 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
10154 const SCEV *Operand = visit(Expr->getOperand());
10155 const SCEVAddRecExpr *AR = dyn_cast<const SCEVAddRecExpr>(Operand);
10156 if (AR && AR->getLoop() == L && AR->isAffine()) {
10157 // This couldn't be folded because the operand didn't have the nuw
10158 // flag. Add the nusw flag as an assumption that we could make.
10159 const SCEV *Step = AR->getStepRecurrence(SE);
10160 Type *Ty = Expr->getType();
10161 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
10162 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
10163 SE.getSignExtendExpr(Step, Ty), L,
10164 AR->getNoWrapFlags());
10165 }
10166 return SE.getZeroExtendExpr(Operand, Expr->getType());
10167 }
10168
10169 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
10170 const SCEV *Operand = visit(Expr->getOperand());
10171 const SCEVAddRecExpr *AR = dyn_cast<const SCEVAddRecExpr>(Operand);
10172 if (AR && AR->getLoop() == L && AR->isAffine()) {
10173 // This couldn't be folded because the operand didn't have the nsw
10174 // flag. Add the nssw flag as an assumption that we could make.
10175 const SCEV *Step = AR->getStepRecurrence(SE);
10176 Type *Ty = Expr->getType();
10177 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
10178 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
10179 SE.getSignExtendExpr(Step, Ty), L,
10180 AR->getNoWrapFlags());
10181 }
10182 return SE.getSignExtendExpr(Operand, Expr->getType());
10183 }
10184
10185private:
10186 bool addOverflowAssumption(const SCEVAddRecExpr *AR,
10187 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
10188 auto *A = SE.getWrapPredicate(AR, AddedFlags);
10189 if (!Assume) {
10190 // Check if we've already made this assumption.
10191 if (P.implies(A))
10192 return true;
10193 return false;
10194 }
10195 P.add(A);
10196 return true;
10197 }
10198
10199 SCEVUnionPredicate &P;
10200 const Loop *L;
10201 bool Assume;
10202};
10203} // end anonymous namespace
10204
10205const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
10206 SCEVUnionPredicate &Preds) {
10207 return SCEVPredicateRewriter::rewrite(S, L, *this, Preds, false);
10208}
10209
10210const SCEVAddRecExpr *
10211ScalarEvolution::convertSCEVToAddRecWithPredicates(const SCEV *S, const Loop *L,
10212 SCEVUnionPredicate &Preds) {
10213 SCEVUnionPredicate TransformPreds;
10214 S = SCEVPredicateRewriter::rewrite(S, L, *this, TransformPreds, true);
10215 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
10216
10217 if (!AddRec)
10218 return nullptr;
10219
10220 // Since the transformation was successful, we can now transfer the SCEV
10221 // predicates.
10222 Preds.add(&TransformPreds);
10223 return AddRec;
10224}
10225
10226/// SCEV predicates
10227SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
10228 SCEVPredicateKind Kind)
10229 : FastID(ID), Kind(Kind) {}
10230
10231SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
10232 const SCEVUnknown *LHS,
10233 const SCEVConstant *RHS)
10234 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {}
10235
10236bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
10237 const auto *Op = dyn_cast<const SCEVEqualPredicate>(N);
10238
10239 if (!Op)
10240 return false;
10241
10242 return Op->LHS == LHS && Op->RHS == RHS;
10243}
10244
10245bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
10246
10247const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
10248
10249void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
10250 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
10251}
10252
10253SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
10254 const SCEVAddRecExpr *AR,
10255 IncrementWrapFlags Flags)
10256 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
10257
10258const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
10259
10260bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
10261 const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
10262
10263 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
10264}
10265
10266bool SCEVWrapPredicate::isAlwaysTrue() const {
10267 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
10268 IncrementWrapFlags IFlags = Flags;
10269
10270 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
10271 IFlags = clearFlags(IFlags, IncrementNSSW);
10272
10273 return IFlags == IncrementAnyWrap;
10274}
10275
10276void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
10277 OS.indent(Depth) << *getExpr() << " Added Flags: ";
10278 if (SCEVWrapPredicate::IncrementNUSW & getFlags())
10279 OS << "<nusw>";
10280 if (SCEVWrapPredicate::IncrementNSSW & getFlags())
10281 OS << "<nssw>";
10282 OS << "\n";
10283}
10284
10285SCEVWrapPredicate::IncrementWrapFlags
10286SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
10287 ScalarEvolution &SE) {
10288 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
10289 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
10290
10291 // We can safely transfer the NSW flag as NSSW.
10292 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
10293 ImpliedFlags = IncrementNSSW;
10294
10295 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
10296 // If the increment is positive, the SCEV NUW flag will also imply the
10297 // WrapPredicate NUSW flag.
10298 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
10299 if (Step->getValue()->getValue().isNonNegative())
10300 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
10301 }
10302
10303 return ImpliedFlags;
10304}
10305
10306/// Union predicates don't get cached so create a dummy set ID for it.
10307SCEVUnionPredicate::SCEVUnionPredicate()
10308 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
10309
10310bool SCEVUnionPredicate::isAlwaysTrue() const {
10311 return all_of(Preds,
10312 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
10313}
10314
10315ArrayRef<const SCEVPredicate *>
10316SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
10317 auto I = SCEVToPreds.find(Expr);
10318 if (I == SCEVToPreds.end())
10319 return ArrayRef<const SCEVPredicate *>();
10320 return I->second;
10321}
10322
10323bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
10324 if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N))
10325 return all_of(Set->Preds,
10326 [this](const SCEVPredicate *I) { return this->implies(I); });
10327
10328 auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
10329 if (ScevPredsIt == SCEVToPreds.end())
10330 return false;
10331 auto &SCEVPreds = ScevPredsIt->second;
10332
10333 return any_of(SCEVPreds,
10334 [N](const SCEVPredicate *I) { return I->implies(N); });
10335}
10336
10337const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
10338
10339void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
10340 for (auto Pred : Preds)
10341 Pred->print(OS, Depth);
10342}
10343
10344void SCEVUnionPredicate::add(const SCEVPredicate *N) {
10345 if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N)) {
10346 for (auto Pred : Set->Preds)
10347 add(Pred);
10348 return;
10349 }
10350
10351 if (implies(N))
10352 return;
10353
10354 const SCEV *Key = N->getExpr();
10355 assert(Key && "Only SCEVUnionPredicate doesn't have an "((Key && "Only SCEVUnionPredicate doesn't have an " " associated expression!"
) ? static_cast<void> (0) : __assert_fail ("Key && \"Only SCEVUnionPredicate doesn't have an \" \" associated expression!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 10356, __PRETTY_FUNCTION__))
10356 " associated expression!")((Key && "Only SCEVUnionPredicate doesn't have an " " associated expression!"
) ? static_cast<void> (0) : __assert_fail ("Key && \"Only SCEVUnionPredicate doesn't have an \" \" associated expression!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.9~svn271203/lib/Analysis/ScalarEvolution.cpp"
, 10356, __PRETTY_FUNCTION__))
;
10357
10358 SCEVToPreds[Key].push_back(N);
10359 Preds.push_back(N);
10360}
10361
10362PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
10363 Loop &L)
10364 : SE(SE), L(L), Generation(0), BackedgeCount(nullptr) {}
10365
10366const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
10367 const SCEV *Expr = SE.getSCEV(V);
10368 RewriteEntry &Entry = RewriteMap[Expr];
10369
10370 // If we already have an entry and the version matches, return it.
10371 if (Entry.second && Generation == Entry.first)
10372 return Entry.second;
10373
10374 // We found an entry but it's stale. Rewrite the stale entry
10375 // acording to the current predicate.
10376 if (Entry.second)
10377 Expr = Entry.second;
10378
10379 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
10380 Entry = {Generation, NewSCEV};
10381
10382 return NewSCEV;
10383}
10384
10385const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
10386 if (!BackedgeCount) {
10387 SCEVUnionPredicate BackedgePred;
10388 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
10389 addPredicate(BackedgePred);
10390 }
10391 return BackedgeCount;
10392}
10393
10394void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
10395 if (Preds.implies(&Pred))
10396 return;
10397 Preds.add(&Pred);
10398 updateGeneration();
10399}
10400
10401const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
10402 return Preds;
10403}
10404
10405void PredicatedScalarEvolution::updateGeneration() {
10406 // If the generation number wrapped recompute everything.
10407 if (++Generation == 0) {
10408 for (auto &II : RewriteMap) {
10409 const SCEV *Rewritten = II.second.second;
10410 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
10411 }
10412 }
10413}
10414
10415void PredicatedScalarEvolution::setNoOverflow(
10416 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
10417 const SCEV *Expr = getSCEV(V);
10418 const auto *AR = cast<SCEVAddRecExpr>(Expr);
10419
10420 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
10421
10422 // Clear the statically implied flags.
10423 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
10424 addPredicate(*SE.getWrapPredicate(AR, Flags));
10425
10426 auto II = FlagsMap.insert({V, Flags});
10427 if (!II.second)
10428 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
10429}
10430
10431bool PredicatedScalarEvolution::hasNoOverflow(
10432 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
10433 const SCEV *Expr = getSCEV(V);
10434 const auto *AR = cast<SCEVAddRecExpr>(Expr);
10435
10436 Flags = SCEVWrapPredicate::clearFlags(
10437 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
10438
10439 auto II = FlagsMap.find(V);
10440
10441 if (II != FlagsMap.end())
10442 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
10443
10444 return Flags == SCEVWrapPredicate::IncrementAnyWrap;
10445}
10446
10447const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
10448 const SCEV *Expr = this->getSCEV(V);
10449 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, Preds);
10450
10451 if (!New)
10452 return nullptr;
10453
10454 updateGeneration();
10455 RewriteMap[SE.getSCEV(V)] = {Generation, New};
10456 return New;
10457}
10458
10459PredicatedScalarEvolution::PredicatedScalarEvolution(
10460 const PredicatedScalarEvolution &Init)
10461 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
10462 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
10463 for (auto I = Init.FlagsMap.begin(), E = Init.FlagsMap.end(); I != E; ++I)
10464 FlagsMap.insert(*I);
10465}
10466
10467void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
10468 // For each block.
10469 for (auto *BB : L.getBlocks())
10470 for (auto &I : *BB) {
10471 if (!SE.isSCEVable(I.getType()))
10472 continue;
10473
10474 auto *Expr = SE.getSCEV(&I);
10475 auto II = RewriteMap.find(Expr);
10476
10477 if (II == RewriteMap.end())
10478 continue;
10479
10480 // Don't print things that are not interesting.
10481 if (II->second.second == Expr)
10482 continue;
10483
10484 OS.indent(Depth) << "[PSE]" << I << ":\n";
10485 OS.indent(Depth + 2) << *Expr << "\n";
10486 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
10487 }
10488}