Bug Summary

File:polly/lib/Analysis/ScopInfo.cpp
Location:line 1191, column 5
Description:Value stored to 'Ty' is never read

Annotated Source Code

1//===--------- ScopInfo.cpp - Create Scops from LLVM IR ------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// Create a polyhedral description for a static control flow region.
11//
12// The pass creates a polyhedral description of the Scops detected by the Scop
13// detection derived from their LLVM-IR code.
14//
15// This representation is shared among several tools in the polyhedral
16// community, which are e.g. Cloog, Pluto, Loopo, Graphite.
17//
18//===----------------------------------------------------------------------===//
19
20#include "polly/ScopInfo.h"
21#include "polly/LinkAllPasses.h"
22#include "polly/Options.h"
23#include "polly/Support/GICHelper.h"
24#include "polly/Support/SCEVValidator.h"
25#include "polly/Support/ScopHelper.h"
26#include "llvm/ADT/DepthFirstIterator.h"
27#include "llvm/ADT/MapVector.h"
28#include "llvm/ADT/PostOrderIterator.h"
29#include "llvm/ADT/STLExtras.h"
30#include "llvm/ADT/SetVector.h"
31#include "llvm/ADT/Statistic.h"
32#include "llvm/ADT/StringExtras.h"
33#include "llvm/Analysis/AliasAnalysis.h"
34#include "llvm/Analysis/AssumptionCache.h"
35#include "llvm/Analysis/LoopInfo.h"
36#include "llvm/Analysis/LoopIterator.h"
37#include "llvm/Analysis/RegionIterator.h"
38#include "llvm/Analysis/ScalarEvolutionExpressions.h"
39#include "llvm/IR/DiagnosticInfo.h"
40#include "llvm/Support/Debug.h"
41#include "isl/aff.h"
42#include "isl/constraint.h"
43#include "isl/local_space.h"
44#include "isl/map.h"
45#include "isl/options.h"
46#include "isl/printer.h"
47#include "isl/schedule.h"
48#include "isl/schedule_node.h"
49#include "isl/set.h"
50#include "isl/union_map.h"
51#include "isl/union_set.h"
52#include "isl/val.h"
53#include <sstream>
54#include <string>
55#include <vector>
56
57using namespace llvm;
58using namespace polly;
59
60#define DEBUG_TYPE"polly-scops" "polly-scops"
61
62STATISTIC(ScopFound, "Number of valid Scops")static llvm::Statistic ScopFound = { "polly-scops", "Number of valid Scops"
, 0, 0 }
;
63STATISTIC(RichScopFound, "Number of Scops containing a loop")static llvm::Statistic RichScopFound = { "polly-scops", "Number of Scops containing a loop"
, 0, 0 }
;
64
65// The maximal number of basic sets we allow during domain construction to
66// be created. More complex scops will result in very high compile time and
67// are also unlikely to result in good code
68static int const MaxConjunctsInDomain = 20;
69
70static cl::opt<bool> ModelReadOnlyScalars(
71 "polly-analyze-read-only-scalars",
72 cl::desc("Model read-only scalar values in the scop description"),
73 cl::Hidden, cl::ZeroOrMore, cl::init(true), cl::cat(PollyCategory));
74
75// Multiplicative reductions can be disabled separately as these kind of
76// operations can overflow easily. Additive reductions and bit operations
77// are in contrast pretty stable.
78static cl::opt<bool> DisableMultiplicativeReductions(
79 "polly-disable-multiplicative-reductions",
80 cl::desc("Disable multiplicative reductions"), cl::Hidden, cl::ZeroOrMore,
81 cl::init(false), cl::cat(PollyCategory));
82
83static cl::opt<unsigned> RunTimeChecksMaxParameters(
84 "polly-rtc-max-parameters",
85 cl::desc("The maximal number of parameters allowed in RTCs."), cl::Hidden,
86 cl::ZeroOrMore, cl::init(8), cl::cat(PollyCategory));
87
88static cl::opt<unsigned> RunTimeChecksMaxArraysPerGroup(
89 "polly-rtc-max-arrays-per-group",
90 cl::desc("The maximal number of arrays to compare in each alias group."),
91 cl::Hidden, cl::ZeroOrMore, cl::init(20), cl::cat(PollyCategory));
92static cl::opt<std::string> UserContextStr(
93 "polly-context", cl::value_desc("isl parameter set"),
94 cl::desc("Provide additional constraints on the context parameters"),
95 cl::init(""), cl::cat(PollyCategory));
96
97static cl::opt<bool> DetectReductions("polly-detect-reductions",
98 cl::desc("Detect and exploit reductions"),
99 cl::Hidden, cl::ZeroOrMore,
100 cl::init(true), cl::cat(PollyCategory));
101
102static cl::opt<int> MaxDisjunctsAssumed(
103 "polly-max-disjuncts-assumed",
104 cl::desc("The maximal number of disjuncts we allow in the assumption "
105 "context (this bounds compile time)"),
106 cl::Hidden, cl::ZeroOrMore, cl::init(150), cl::cat(PollyCategory));
107
108static cl::opt<bool> IgnoreIntegerWrapping(
109 "polly-ignore-integer-wrapping",
110 cl::desc("Do not build run-time checks to proof absence of integer "
111 "wrapping"),
112 cl::Hidden, cl::ZeroOrMore, cl::init(false), cl::cat(PollyCategory));
113
114//===----------------------------------------------------------------------===//
115
116// Create a sequence of two schedules. Either argument may be null and is
117// interpreted as the empty schedule. Can also return null if both schedules are
118// empty.
119static __isl_give isl_schedule *
120combineInSequence(__isl_take isl_schedule *Prev,
121 __isl_take isl_schedule *Succ) {
122 if (!Prev)
123 return Succ;
124 if (!Succ)
125 return Prev;
126
127 return isl_schedule_sequence(Prev, Succ);
128}
129
130static __isl_give isl_set *addRangeBoundsToSet(__isl_take isl_set *S,
131 const ConstantRange &Range,
132 int dim,
133 enum isl_dim_type type) {
134 isl_val *V;
135 isl_ctx *ctx = isl_set_get_ctx(S);
136
137 bool useLowerUpperBound = Range.isSignWrappedSet() && !Range.isFullSet();
138 const auto LB = useLowerUpperBound ? Range.getLower() : Range.getSignedMin();
139 V = isl_valFromAPInt(ctx, LB, true);
140 isl_set *SLB = isl_set_lower_bound_val(isl_set_copy(S), type, dim, V);
141
142 const auto UB = useLowerUpperBound ? Range.getUpper() : Range.getSignedMax();
143 V = isl_valFromAPInt(ctx, UB, true);
144 if (useLowerUpperBound)
145 V = isl_val_sub_ui(V, 1);
146 isl_set *SUB = isl_set_upper_bound_val(S, type, dim, V);
147
148 if (useLowerUpperBound)
149 return isl_set_union(SLB, SUB);
150 else
151 return isl_set_intersect(SLB, SUB);
152}
153
154static const ScopArrayInfo *identifyBasePtrOriginSAI(Scop *S, Value *BasePtr) {
155 LoadInst *BasePtrLI = dyn_cast<LoadInst>(BasePtr);
156 if (!BasePtrLI)
157 return nullptr;
158
159 if (!S->getRegion().contains(BasePtrLI))
160 return nullptr;
161
162 ScalarEvolution &SE = *S->getSE();
163
164 auto *OriginBaseSCEV =
165 SE.getPointerBase(SE.getSCEV(BasePtrLI->getPointerOperand()));
166 if (!OriginBaseSCEV)
167 return nullptr;
168
169 auto *OriginBaseSCEVUnknown = dyn_cast<SCEVUnknown>(OriginBaseSCEV);
170 if (!OriginBaseSCEVUnknown)
171 return nullptr;
172
173 return S->getScopArrayInfo(OriginBaseSCEVUnknown->getValue(),
174 ScopArrayInfo::MK_Array);
175}
176
177ScopArrayInfo::ScopArrayInfo(Value *BasePtr, Type *ElementType, isl_ctx *Ctx,
178 ArrayRef<const SCEV *> Sizes, enum MemoryKind Kind,
179 const DataLayout &DL, Scop *S)
180 : BasePtr(BasePtr), ElementType(ElementType), Kind(Kind), DL(DL), S(*S) {
181 std::string BasePtrName =
182 getIslCompatibleName("MemRef_", BasePtr, Kind == MK_PHI ? "__phi" : "");
183 Id = isl_id_alloc(Ctx, BasePtrName.c_str(), this);
184
185 updateSizes(Sizes);
186 BasePtrOriginSAI = identifyBasePtrOriginSAI(S, BasePtr);
187 if (BasePtrOriginSAI)
188 const_cast<ScopArrayInfo *>(BasePtrOriginSAI)->addDerivedSAI(this);
189}
190
191__isl_give isl_space *ScopArrayInfo::getSpace() const {
192 auto Space =
193 isl_space_set_alloc(isl_id_get_ctx(Id), 0, getNumberOfDimensions());
194 Space = isl_space_set_tuple_id(Space, isl_dim_set, isl_id_copy(Id));
195 return Space;
196}
197
198bool ScopArrayInfo::updateSizes(ArrayRef<const SCEV *> NewSizes) {
199 int SharedDims = std::min(NewSizes.size(), DimensionSizes.size());
200 int ExtraDimsNew = NewSizes.size() - SharedDims;
201 int ExtraDimsOld = DimensionSizes.size() - SharedDims;
202 for (int i = 0; i < SharedDims; i++)
203 if (NewSizes[i + ExtraDimsNew] != DimensionSizes[i + ExtraDimsOld])
204 return false;
205
206 if (DimensionSizes.size() >= NewSizes.size())
207 return true;
208
209 DimensionSizes.clear();
210 DimensionSizes.insert(DimensionSizes.begin(), NewSizes.begin(),
211 NewSizes.end());
212 for (isl_pw_aff *Size : DimensionSizesPw)
213 isl_pw_aff_free(Size);
214 DimensionSizesPw.clear();
215 for (const SCEV *Expr : DimensionSizes) {
216 isl_pw_aff *Size = S.getPwAff(Expr);
217 DimensionSizesPw.push_back(Size);
218 }
219 return true;
220}
221
222ScopArrayInfo::~ScopArrayInfo() {
223 isl_id_free(Id);
224 for (isl_pw_aff *Size : DimensionSizesPw)
225 isl_pw_aff_free(Size);
226}
227
228std::string ScopArrayInfo::getName() const { return isl_id_get_name(Id); }
229
230int ScopArrayInfo::getElemSizeInBytes() const {
231 return DL.getTypeAllocSize(ElementType);
232}
233
234isl_id *ScopArrayInfo::getBasePtrId() const { return isl_id_copy(Id); }
235
236void ScopArrayInfo::dump() const { print(errs()); }
237
238void ScopArrayInfo::print(raw_ostream &OS, bool SizeAsPwAff) const {
239 OS.indent(8) << *getElementType() << " " << getName();
240 if (getNumberOfDimensions() > 0)
241 OS << "[*]";
242 for (unsigned u = 1; u < getNumberOfDimensions(); u++) {
243 OS << "[";
244
245 if (SizeAsPwAff) {
246 auto Size = getDimensionSizePw(u);
247 OS << " " << Size << " ";
248 isl_pw_aff_free(Size);
249 } else {
250 OS << *getDimensionSize(u);
251 }
252
253 OS << "]";
254 }
255
256 OS << ";";
257
258 if (BasePtrOriginSAI)
259 OS << " [BasePtrOrigin: " << BasePtrOriginSAI->getName() << "]";
260
261 OS << " // Element size " << getElemSizeInBytes() << "\n";
262}
263
264const ScopArrayInfo *
265ScopArrayInfo::getFromAccessFunction(__isl_keep isl_pw_multi_aff *PMA) {
266 isl_id *Id = isl_pw_multi_aff_get_tuple_id(PMA, isl_dim_out);
267 assert(Id && "Output dimension didn't have an ID")((Id && "Output dimension didn't have an ID") ? static_cast
<void> (0) : __assert_fail ("Id && \"Output dimension didn't have an ID\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 267, __PRETTY_FUNCTION__))
;
268 return getFromId(Id);
269}
270
271const ScopArrayInfo *ScopArrayInfo::getFromId(isl_id *Id) {
272 void *User = isl_id_get_user(Id);
273 const ScopArrayInfo *SAI = static_cast<ScopArrayInfo *>(User);
274 isl_id_free(Id);
275 return SAI;
276}
277
278void MemoryAccess::updateDimensionality() {
279 auto ArraySpace = getScopArrayInfo()->getSpace();
280 auto AccessSpace = isl_space_range(isl_map_get_space(AccessRelation));
281
282 auto DimsArray = isl_space_dim(ArraySpace, isl_dim_set);
283 auto DimsAccess = isl_space_dim(AccessSpace, isl_dim_set);
284 auto DimsMissing = DimsArray - DimsAccess;
285
286 auto Map = isl_map_from_domain_and_range(isl_set_universe(AccessSpace),
287 isl_set_universe(ArraySpace));
288
289 for (unsigned i = 0; i < DimsMissing; i++)
290 Map = isl_map_fix_si(Map, isl_dim_out, i, 0);
291
292 for (unsigned i = DimsMissing; i < DimsArray; i++)
293 Map = isl_map_equate(Map, isl_dim_in, i - DimsMissing, isl_dim_out, i);
294
295 AccessRelation = isl_map_apply_range(AccessRelation, Map);
296
297 assumeNoOutOfBound();
298}
299
300const std::string
301MemoryAccess::getReductionOperatorStr(MemoryAccess::ReductionType RT) {
302 switch (RT) {
303 case MemoryAccess::RT_NONE:
304 llvm_unreachable("Requested a reduction operator string for a memory "::llvm::llvm_unreachable_internal("Requested a reduction operator string for a memory "
"access which isn't a reduction", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 305)
305 "access which isn't a reduction")::llvm::llvm_unreachable_internal("Requested a reduction operator string for a memory "
"access which isn't a reduction", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 305)
;
306 case MemoryAccess::RT_ADD:
307 return "+";
308 case MemoryAccess::RT_MUL:
309 return "*";
310 case MemoryAccess::RT_BOR:
311 return "|";
312 case MemoryAccess::RT_BXOR:
313 return "^";
314 case MemoryAccess::RT_BAND:
315 return "&";
316 }
317 llvm_unreachable("Unknown reduction type")::llvm::llvm_unreachable_internal("Unknown reduction type", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 317)
;
318 return "";
319}
320
321/// @brief Return the reduction type for a given binary operator
322static MemoryAccess::ReductionType getReductionType(const BinaryOperator *BinOp,
323 const Instruction *Load) {
324 if (!BinOp)
325 return MemoryAccess::RT_NONE;
326 switch (BinOp->getOpcode()) {
327 case Instruction::FAdd:
328 if (!BinOp->hasUnsafeAlgebra())
329 return MemoryAccess::RT_NONE;
330 // Fall through
331 case Instruction::Add:
332 return MemoryAccess::RT_ADD;
333 case Instruction::Or:
334 return MemoryAccess::RT_BOR;
335 case Instruction::Xor:
336 return MemoryAccess::RT_BXOR;
337 case Instruction::And:
338 return MemoryAccess::RT_BAND;
339 case Instruction::FMul:
340 if (!BinOp->hasUnsafeAlgebra())
341 return MemoryAccess::RT_NONE;
342 // Fall through
343 case Instruction::Mul:
344 if (DisableMultiplicativeReductions)
345 return MemoryAccess::RT_NONE;
346 return MemoryAccess::RT_MUL;
347 default:
348 return MemoryAccess::RT_NONE;
349 }
350}
351
352/// @brief Derive the individual index expressions from a GEP instruction
353///
354/// This function optimistically assumes the GEP references into a fixed size
355/// array. If this is actually true, this function returns a list of array
356/// subscript expressions as SCEV as well as a list of integers describing
357/// the size of the individual array dimensions. Both lists have either equal
358/// length of the size list is one element shorter in case there is no known
359/// size available for the outermost array dimension.
360///
361/// @param GEP The GetElementPtr instruction to analyze.
362///
363/// @return A tuple with the subscript expressions and the dimension sizes.
364static std::tuple<std::vector<const SCEV *>, std::vector<int>>
365getIndexExpressionsFromGEP(GetElementPtrInst *GEP, ScalarEvolution &SE) {
366 std::vector<const SCEV *> Subscripts;
367 std::vector<int> Sizes;
368
369 Type *Ty = GEP->getPointerOperandType();
370
371 bool DroppedFirstDim = false;
372
373 for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
374
375 const SCEV *Expr = SE.getSCEV(GEP->getOperand(i));
376
377 if (i == 1) {
378 if (auto PtrTy = dyn_cast<PointerType>(Ty)) {
379 Ty = PtrTy->getElementType();
380 } else if (auto ArrayTy = dyn_cast<ArrayType>(Ty)) {
381 Ty = ArrayTy->getElementType();
382 } else {
383 Subscripts.clear();
384 Sizes.clear();
385 break;
386 }
387 if (auto Const = dyn_cast<SCEVConstant>(Expr))
388 if (Const->getValue()->isZero()) {
389 DroppedFirstDim = true;
390 continue;
391 }
392 Subscripts.push_back(Expr);
393 continue;
394 }
395
396 auto ArrayTy = dyn_cast<ArrayType>(Ty);
397 if (!ArrayTy) {
398 Subscripts.clear();
399 Sizes.clear();
400 break;
401 }
402
403 Subscripts.push_back(Expr);
404 if (!(DroppedFirstDim && i == 2))
405 Sizes.push_back(ArrayTy->getNumElements());
406
407 Ty = ArrayTy->getElementType();
408 }
409
410 return std::make_tuple(Subscripts, Sizes);
411}
412
413MemoryAccess::~MemoryAccess() {
414 isl_id_free(Id);
415 isl_map_free(AccessRelation);
416 isl_map_free(NewAccessRelation);
417}
418
419const ScopArrayInfo *MemoryAccess::getScopArrayInfo() const {
420 isl_id *ArrayId = getArrayId();
421 void *User = isl_id_get_user(ArrayId);
422 const ScopArrayInfo *SAI = static_cast<ScopArrayInfo *>(User);
423 isl_id_free(ArrayId);
424 return SAI;
425}
426
427__isl_give isl_id *MemoryAccess::getArrayId() const {
428 return isl_map_get_tuple_id(AccessRelation, isl_dim_out);
429}
430
431__isl_give isl_pw_multi_aff *MemoryAccess::applyScheduleToAccessRelation(
432 __isl_take isl_union_map *USchedule) const {
433 isl_map *Schedule, *ScheduledAccRel;
434 isl_union_set *UDomain;
435
436 UDomain = isl_union_set_from_set(getStatement()->getDomain());
437 USchedule = isl_union_map_intersect_domain(USchedule, UDomain);
438 Schedule = isl_map_from_union_map(USchedule);
439 ScheduledAccRel = isl_map_apply_domain(getAccessRelation(), Schedule);
440 return isl_pw_multi_aff_from_map(ScheduledAccRel);
441}
442
443__isl_give isl_map *MemoryAccess::getOriginalAccessRelation() const {
444 return isl_map_copy(AccessRelation);
445}
446
447std::string MemoryAccess::getOriginalAccessRelationStr() const {
448 return stringFromIslObj(AccessRelation);
449}
450
451__isl_give isl_space *MemoryAccess::getOriginalAccessRelationSpace() const {
452 return isl_map_get_space(AccessRelation);
453}
454
455__isl_give isl_map *MemoryAccess::getNewAccessRelation() const {
456 return isl_map_copy(NewAccessRelation);
457}
458
459std::string MemoryAccess::getNewAccessRelationStr() const {
460 return stringFromIslObj(NewAccessRelation);
461}
462
463__isl_give isl_basic_map *
464MemoryAccess::createBasicAccessMap(ScopStmt *Statement) {
465 isl_space *Space = isl_space_set_alloc(Statement->getIslCtx(), 0, 1);
466 Space = isl_space_align_params(Space, Statement->getDomainSpace());
467
468 return isl_basic_map_from_domain_and_range(
469 isl_basic_set_universe(Statement->getDomainSpace()),
470 isl_basic_set_universe(Space));
471}
472
473// Formalize no out-of-bound access assumption
474//
475// When delinearizing array accesses we optimistically assume that the
476// delinearized accesses do not access out of bound locations (the subscript
477// expression of each array evaluates for each statement instance that is
478// executed to a value that is larger than zero and strictly smaller than the
479// size of the corresponding dimension). The only exception is the outermost
480// dimension for which we do not need to assume any upper bound. At this point
481// we formalize this assumption to ensure that at code generation time the
482// relevant run-time checks can be generated.
483//
484// To find the set of constraints necessary to avoid out of bound accesses, we
485// first build the set of data locations that are not within array bounds. We
486// then apply the reverse access relation to obtain the set of iterations that
487// may contain invalid accesses and reduce this set of iterations to the ones
488// that are actually executed by intersecting them with the domain of the
489// statement. If we now project out all loop dimensions, we obtain a set of
490// parameters that may cause statement instances to be executed that may
491// possibly yield out of bound memory accesses. The complement of these
492// constraints is the set of constraints that needs to be assumed to ensure such
493// statement instances are never executed.
494void MemoryAccess::assumeNoOutOfBound() {
495 isl_space *Space = isl_space_range(getOriginalAccessRelationSpace());
496 isl_set *Outside = isl_set_empty(isl_space_copy(Space));
497 for (int i = 1, Size = isl_space_dim(Space, isl_dim_set); i < Size; ++i) {
498 isl_local_space *LS = isl_local_space_from_space(isl_space_copy(Space));
499 isl_pw_aff *Var =
500 isl_pw_aff_var_on_domain(isl_local_space_copy(LS), isl_dim_set, i);
501 isl_pw_aff *Zero = isl_pw_aff_zero_on_domain(LS);
502
503 isl_set *DimOutside;
504
505 DimOutside = isl_pw_aff_lt_set(isl_pw_aff_copy(Var), Zero);
506 isl_pw_aff *SizeE = getScopArrayInfo()->getDimensionSizePw(i);
507 SizeE = isl_pw_aff_add_dims(SizeE, isl_dim_in,
508 isl_space_dim(Space, isl_dim_set));
509 SizeE = isl_pw_aff_set_tuple_id(SizeE, isl_dim_in,
510 isl_space_get_tuple_id(Space, isl_dim_set));
511
512 DimOutside = isl_set_union(DimOutside, isl_pw_aff_le_set(SizeE, Var));
513
514 Outside = isl_set_union(Outside, DimOutside);
515 }
516
517 Outside = isl_set_apply(Outside, isl_map_reverse(getAccessRelation()));
518 Outside = isl_set_intersect(Outside, Statement->getDomain());
519 Outside = isl_set_params(Outside);
520
521 // Remove divs to avoid the construction of overly complicated assumptions.
522 // Doing so increases the set of parameter combinations that are assumed to
523 // not appear. This is always save, but may make the resulting run-time check
524 // bail out more often than strictly necessary.
525 Outside = isl_set_remove_divs(Outside);
526 Outside = isl_set_complement(Outside);
527 Statement->getParent()->addAssumption(INBOUNDS, Outside,
528 getAccessInstruction()->getDebugLoc());
529 isl_space_free(Space);
530}
531
532void MemoryAccess::computeBoundsOnAccessRelation(unsigned ElementSize) {
533 ScalarEvolution *SE = Statement->getParent()->getSE();
534
535 Value *Ptr = getPointerOperand(*getAccessInstruction());
536 if (!Ptr || !SE->isSCEVable(Ptr->getType()))
537 return;
538
539 auto *PtrSCEV = SE->getSCEV(Ptr);
540 if (isa<SCEVCouldNotCompute>(PtrSCEV))
541 return;
542
543 auto *BasePtrSCEV = SE->getPointerBase(PtrSCEV);
544 if (BasePtrSCEV && !isa<SCEVCouldNotCompute>(BasePtrSCEV))
545 PtrSCEV = SE->getMinusSCEV(PtrSCEV, BasePtrSCEV);
546
547 const ConstantRange &Range = SE->getSignedRange(PtrSCEV);
548 if (Range.isFullSet())
549 return;
550
551 bool isWrapping = Range.isSignWrappedSet();
552 unsigned BW = Range.getBitWidth();
553 const auto LB = isWrapping ? Range.getLower() : Range.getSignedMin();
554 const auto UB = isWrapping ? Range.getUpper() : Range.getSignedMax();
555
556 auto Min = LB.sdiv(APInt(BW, ElementSize));
557 auto Max = (UB - APInt(BW, 1)).sdiv(APInt(BW, ElementSize));
558
559 isl_set *AccessRange = isl_map_range(isl_map_copy(AccessRelation));
560 AccessRange =
561 addRangeBoundsToSet(AccessRange, ConstantRange(Min, Max), 0, isl_dim_set);
562 AccessRelation = isl_map_intersect_range(AccessRelation, AccessRange);
563}
564
565__isl_give isl_map *MemoryAccess::foldAccess(__isl_take isl_map *AccessRelation,
566 ScopStmt *Statement) {
567 int Size = Subscripts.size();
568
569 for (int i = Size - 2; i >= 0; --i) {
570 isl_space *Space;
571 isl_map *MapOne, *MapTwo;
572 isl_pw_aff *DimSize = Statement->getPwAff(Sizes[i]);
573
574 isl_space *SpaceSize = isl_pw_aff_get_space(DimSize);
575 isl_pw_aff_free(DimSize);
576 isl_id *ParamId = isl_space_get_dim_id(SpaceSize, isl_dim_param, 0);
577
578 Space = isl_map_get_space(AccessRelation);
579 Space = isl_space_map_from_set(isl_space_range(Space));
580 Space = isl_space_align_params(Space, SpaceSize);
581
582 int ParamLocation = isl_space_find_dim_by_id(Space, isl_dim_param, ParamId);
583 isl_id_free(ParamId);
584
585 MapOne = isl_map_universe(isl_space_copy(Space));
586 for (int j = 0; j < Size; ++j)
587 MapOne = isl_map_equate(MapOne, isl_dim_in, j, isl_dim_out, j);
588 MapOne = isl_map_lower_bound_si(MapOne, isl_dim_in, i + 1, 0);
589
590 MapTwo = isl_map_universe(isl_space_copy(Space));
591 for (int j = 0; j < Size; ++j)
592 if (j < i || j > i + 1)
593 MapTwo = isl_map_equate(MapTwo, isl_dim_in, j, isl_dim_out, j);
594
595 isl_local_space *LS = isl_local_space_from_space(Space);
596 isl_constraint *C;
597 C = isl_equality_alloc(isl_local_space_copy(LS));
598 C = isl_constraint_set_constant_si(C, -1);
599 C = isl_constraint_set_coefficient_si(C, isl_dim_in, i, 1);
600 C = isl_constraint_set_coefficient_si(C, isl_dim_out, i, -1);
601 MapTwo = isl_map_add_constraint(MapTwo, C);
602 C = isl_equality_alloc(LS);
603 C = isl_constraint_set_coefficient_si(C, isl_dim_in, i + 1, 1);
604 C = isl_constraint_set_coefficient_si(C, isl_dim_out, i + 1, -1);
605 C = isl_constraint_set_coefficient_si(C, isl_dim_param, ParamLocation, 1);
606 MapTwo = isl_map_add_constraint(MapTwo, C);
607 MapTwo = isl_map_upper_bound_si(MapTwo, isl_dim_in, i + 1, -1);
608
609 MapOne = isl_map_union(MapOne, MapTwo);
610 AccessRelation = isl_map_apply_range(AccessRelation, MapOne);
611 }
612 return AccessRelation;
613}
614
615/// @brief Check if @p Expr is divisible by @p Size.
616static bool isDivisible(const SCEV *Expr, unsigned Size, ScalarEvolution &SE) {
617
618 // Only one factor needs to be divisible.
619 if (auto *MulExpr = dyn_cast<SCEVMulExpr>(Expr)) {
620 for (auto *FactorExpr : MulExpr->operands())
621 if (isDivisible(FactorExpr, Size, SE))
622 return true;
623 return false;
624 }
625
626 // For other n-ary expressions (Add, AddRec, Max,...) all operands need
627 // to be divisble.
628 if (auto *NAryExpr = dyn_cast<SCEVNAryExpr>(Expr)) {
629 for (auto *OpExpr : NAryExpr->operands())
630 if (!isDivisible(OpExpr, Size, SE))
631 return false;
632 return true;
633 }
634
635 auto *SizeSCEV = SE.getConstant(Expr->getType(), Size);
636 auto *UDivSCEV = SE.getUDivExpr(Expr, SizeSCEV);
637 auto *MulSCEV = SE.getMulExpr(UDivSCEV, SizeSCEV);
638 return MulSCEV == Expr;
639}
640
641void MemoryAccess::buildAccessRelation(const ScopArrayInfo *SAI) {
642 assert(!AccessRelation && "AccessReltation already built")((!AccessRelation && "AccessReltation already built")
? static_cast<void> (0) : __assert_fail ("!AccessRelation && \"AccessReltation already built\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 642, __PRETTY_FUNCTION__))
;
643
644 isl_ctx *Ctx = isl_id_get_ctx(Id);
645 isl_id *BaseAddrId = SAI->getBasePtrId();
646
647 if (!isAffine()) {
648 // We overapproximate non-affine accesses with a possible access to the
649 // whole array. For read accesses it does not make a difference, if an
650 // access must or may happen. However, for write accesses it is important to
651 // differentiate between writes that must happen and writes that may happen.
652 AccessRelation = isl_map_from_basic_map(createBasicAccessMap(Statement));
653 AccessRelation =
654 isl_map_set_tuple_id(AccessRelation, isl_dim_out, BaseAddrId);
655
656 computeBoundsOnAccessRelation(getElemSizeInBytes());
657 return;
658 }
659
660 Scop &S = *getStatement()->getParent();
661 isl_space *Space = isl_space_alloc(Ctx, 0, Statement->getNumIterators(), 0);
662 AccessRelation = isl_map_universe(Space);
663
664 for (int i = 0, Size = Subscripts.size(); i < Size; ++i) {
665 isl_pw_aff *Affine = Statement->getPwAff(Subscripts[i]);
666
667 if (Size == 1) {
668 // For the non delinearized arrays, divide the access function of the last
669 // subscript by the size of the elements in the array.
670 //
671 // A stride one array access in C expressed as A[i] is expressed in
672 // LLVM-IR as something like A[i * elementsize]. This hides the fact that
673 // two subsequent values of 'i' index two values that are stored next to
674 // each other in memory. By this division we make this characteristic
675 // obvious again. However, if the index is not divisible by the element
676 // size we will bail out.
677 isl_val *v = isl_val_int_from_si(Ctx, getElemSizeInBytes());
678 Affine = isl_pw_aff_scale_down_val(Affine, v);
679
680 if (!isDivisible(Subscripts[0], getElemSizeInBytes(), *S.getSE()))
681 S.invalidate(ALIGNMENT, AccessInstruction->getDebugLoc());
682 }
683
684 isl_map *SubscriptMap = isl_map_from_pw_aff(Affine);
685
686 AccessRelation = isl_map_flat_range_product(AccessRelation, SubscriptMap);
687 }
688
689 if (Sizes.size() > 1 && !isa<SCEVConstant>(Sizes[0]))
690 AccessRelation = foldAccess(AccessRelation, Statement);
691
692 Space = Statement->getDomainSpace();
693 AccessRelation = isl_map_set_tuple_id(
694 AccessRelation, isl_dim_in, isl_space_get_tuple_id(Space, isl_dim_set));
695 AccessRelation =
696 isl_map_set_tuple_id(AccessRelation, isl_dim_out, BaseAddrId);
697
698 AccessRelation = isl_map_gist_domain(AccessRelation, Statement->getDomain());
699 isl_space_free(Space);
700}
701
702MemoryAccess::MemoryAccess(ScopStmt *Stmt, Instruction *AccessInst,
703 AccessType Type, Value *BaseAddress,
704 unsigned ElemBytes, bool Affine,
705 ArrayRef<const SCEV *> Subscripts,
706 ArrayRef<const SCEV *> Sizes, Value *AccessValue,
707 ScopArrayInfo::MemoryKind Kind, StringRef BaseName)
708 : Kind(Kind), AccType(Type), RedType(RT_NONE), Statement(Stmt),
709 BaseAddr(BaseAddress), BaseName(BaseName), ElemBytes(ElemBytes),
710 Sizes(Sizes.begin(), Sizes.end()), AccessInstruction(AccessInst),
711 AccessValue(AccessValue), IsAffine(Affine),
712 Subscripts(Subscripts.begin(), Subscripts.end()), AccessRelation(nullptr),
713 NewAccessRelation(nullptr) {
714
715 std::string IdName = "__polly_array_ref";
716 Id = isl_id_alloc(Stmt->getParent()->getIslCtx(), IdName.c_str(), this);
717}
718
719void MemoryAccess::realignParams() {
720 isl_space *ParamSpace = Statement->getParent()->getParamSpace();
721 AccessRelation = isl_map_align_params(AccessRelation, ParamSpace);
722}
723
724const std::string MemoryAccess::getReductionOperatorStr() const {
725 return MemoryAccess::getReductionOperatorStr(getReductionType());
726}
727
728__isl_give isl_id *MemoryAccess::getId() const { return isl_id_copy(Id); }
729
730raw_ostream &polly::operator<<(raw_ostream &OS,
731 MemoryAccess::ReductionType RT) {
732 if (RT == MemoryAccess::RT_NONE)
733 OS << "NONE";
734 else
735 OS << MemoryAccess::getReductionOperatorStr(RT);
736 return OS;
737}
738
739void MemoryAccess::print(raw_ostream &OS) const {
740 switch (AccType) {
741 case READ:
742 OS.indent(12) << "ReadAccess :=\t";
743 break;
744 case MUST_WRITE:
745 OS.indent(12) << "MustWriteAccess :=\t";
746 break;
747 case MAY_WRITE:
748 OS.indent(12) << "MayWriteAccess :=\t";
749 break;
750 }
751 OS << "[Reduction Type: " << getReductionType() << "] ";
752 OS << "[Scalar: " << isScalarKind() << "]\n";
753 OS.indent(16) << getOriginalAccessRelationStr() << ";\n";
754 if (hasNewAccessRelation())
755 OS.indent(11) << "new: " << getNewAccessRelationStr() << ";\n";
756}
757
758void MemoryAccess::dump() const { print(errs()); }
759
760// Create a map in the size of the provided set domain, that maps from the
761// one element of the provided set domain to another element of the provided
762// set domain.
763// The mapping is limited to all points that are equal in all but the last
764// dimension and for which the last dimension of the input is strict smaller
765// than the last dimension of the output.
766//
767// getEqualAndLarger(set[i0, i1, ..., iX]):
768//
769// set[i0, i1, ..., iX] -> set[o0, o1, ..., oX]
770// : i0 = o0, i1 = o1, ..., i(X-1) = o(X-1), iX < oX
771//
772static isl_map *getEqualAndLarger(isl_space *setDomain) {
773 isl_space *Space = isl_space_map_from_set(setDomain);
774 isl_map *Map = isl_map_universe(Space);
775 unsigned lastDimension = isl_map_dim(Map, isl_dim_in) - 1;
776
777 // Set all but the last dimension to be equal for the input and output
778 //
779 // input[i0, i1, ..., iX] -> output[o0, o1, ..., oX]
780 // : i0 = o0, i1 = o1, ..., i(X-1) = o(X-1)
781 for (unsigned i = 0; i < lastDimension; ++i)
782 Map = isl_map_equate(Map, isl_dim_in, i, isl_dim_out, i);
783
784 // Set the last dimension of the input to be strict smaller than the
785 // last dimension of the output.
786 //
787 // input[?,?,?,...,iX] -> output[?,?,?,...,oX] : iX < oX
788 Map = isl_map_order_lt(Map, isl_dim_in, lastDimension, isl_dim_out,
789 lastDimension);
790 return Map;
791}
792
793__isl_give isl_set *
794MemoryAccess::getStride(__isl_take const isl_map *Schedule) const {
795 isl_map *S = const_cast<isl_map *>(Schedule);
796 isl_map *AccessRelation = getAccessRelation();
797 isl_space *Space = isl_space_range(isl_map_get_space(S));
798 isl_map *NextScatt = getEqualAndLarger(Space);
799
800 S = isl_map_reverse(S);
801 NextScatt = isl_map_lexmin(NextScatt);
802
803 NextScatt = isl_map_apply_range(NextScatt, isl_map_copy(S));
804 NextScatt = isl_map_apply_range(NextScatt, isl_map_copy(AccessRelation));
805 NextScatt = isl_map_apply_domain(NextScatt, S);
806 NextScatt = isl_map_apply_domain(NextScatt, AccessRelation);
807
808 isl_set *Deltas = isl_map_deltas(NextScatt);
809 return Deltas;
810}
811
812bool MemoryAccess::isStrideX(__isl_take const isl_map *Schedule,
813 int StrideWidth) const {
814 isl_set *Stride, *StrideX;
815 bool IsStrideX;
816
817 Stride = getStride(Schedule);
818 StrideX = isl_set_universe(isl_set_get_space(Stride));
819 for (unsigned i = 0; i < isl_set_dim(StrideX, isl_dim_set) - 1; i++)
820 StrideX = isl_set_fix_si(StrideX, isl_dim_set, i, 0);
821 StrideX = isl_set_fix_si(StrideX, isl_dim_set,
822 isl_set_dim(StrideX, isl_dim_set) - 1, StrideWidth);
823 IsStrideX = isl_set_is_subset(Stride, StrideX);
824
825 isl_set_free(StrideX);
826 isl_set_free(Stride);
827
828 return IsStrideX;
829}
830
831bool MemoryAccess::isStrideZero(const isl_map *Schedule) const {
832 return isStrideX(Schedule, 0);
833}
834
835bool MemoryAccess::isStrideOne(const isl_map *Schedule) const {
836 return isStrideX(Schedule, 1);
837}
838
839void MemoryAccess::setNewAccessRelation(isl_map *NewAccess) {
840 isl_map_free(NewAccessRelation);
841 NewAccessRelation = NewAccess;
842}
843
844//===----------------------------------------------------------------------===//
845
846isl_map *ScopStmt::getSchedule() const {
847 isl_set *Domain = getDomain();
848 if (isl_set_is_empty(Domain)) {
849 isl_set_free(Domain);
850 return isl_map_from_aff(
851 isl_aff_zero_on_domain(isl_local_space_from_space(getDomainSpace())));
852 }
853 auto *Schedule = getParent()->getSchedule();
854 Schedule = isl_union_map_intersect_domain(
855 Schedule, isl_union_set_from_set(isl_set_copy(Domain)));
856 if (isl_union_map_is_empty(Schedule)) {
857 isl_set_free(Domain);
858 isl_union_map_free(Schedule);
859 return isl_map_from_aff(
860 isl_aff_zero_on_domain(isl_local_space_from_space(getDomainSpace())));
861 }
862 auto *M = isl_map_from_union_map(Schedule);
863 M = isl_map_coalesce(M);
864 M = isl_map_gist_domain(M, Domain);
865 M = isl_map_coalesce(M);
866 return M;
867}
868
869__isl_give isl_pw_aff *ScopStmt::getPwAff(const SCEV *E) {
870 return getParent()->getPwAff(E, isBlockStmt() ? getBasicBlock()
871 : getRegion()->getEntry());
872}
873
874void ScopStmt::restrictDomain(__isl_take isl_set *NewDomain) {
875 assert(isl_set_is_subset(NewDomain, Domain) &&((isl_set_is_subset(NewDomain, Domain) && "New domain is not a subset of old domain!"
) ? static_cast<void> (0) : __assert_fail ("isl_set_is_subset(NewDomain, Domain) && \"New domain is not a subset of old domain!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 876, __PRETTY_FUNCTION__))
876 "New domain is not a subset of old domain!")((isl_set_is_subset(NewDomain, Domain) && "New domain is not a subset of old domain!"
) ? static_cast<void> (0) : __assert_fail ("isl_set_is_subset(NewDomain, Domain) && \"New domain is not a subset of old domain!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 876, __PRETTY_FUNCTION__))
;
877 isl_set_free(Domain);
878 Domain = NewDomain;
879}
880
881void ScopStmt::buildAccessRelations() {
882 for (MemoryAccess *Access : MemAccs) {
883 Type *ElementType = Access->getAccessValue()->getType();
884
885 ScopArrayInfo::MemoryKind Ty;
886 if (Access->isPHIKind())
887 Ty = ScopArrayInfo::MK_PHI;
888 else if (Access->isExitPHIKind())
889 Ty = ScopArrayInfo::MK_ExitPHI;
890 else if (Access->isValueKind())
891 Ty = ScopArrayInfo::MK_Value;
892 else
893 Ty = ScopArrayInfo::MK_Array;
894
895 const ScopArrayInfo *SAI = getParent()->getOrCreateScopArrayInfo(
896 Access->getBaseAddr(), ElementType, Access->Sizes, Ty);
897
898 Access->buildAccessRelation(SAI);
899 }
900}
901
902void ScopStmt::addAccess(MemoryAccess *Access) {
903 Instruction *AccessInst = Access->getAccessInstruction();
904
905 if (Access->isArrayKind()) {
906 MemoryAccessList &MAL = InstructionToAccess[AccessInst];
907 MAL.emplace_front(Access);
908 }
909
910 MemAccs.push_back(Access);
911}
912
913void ScopStmt::realignParams() {
914 for (MemoryAccess *MA : *this)
915 MA->realignParams();
916
917 Domain = isl_set_align_params(Domain, Parent.getParamSpace());
918}
919
920/// @brief Add @p BSet to the set @p User if @p BSet is bounded.
921static isl_stat collectBoundedParts(__isl_take isl_basic_set *BSet,
922 void *User) {
923 isl_set **BoundedParts = static_cast<isl_set **>(User);
924 if (isl_basic_set_is_bounded(BSet))
925 *BoundedParts = isl_set_union(*BoundedParts, isl_set_from_basic_set(BSet));
926 else
927 isl_basic_set_free(BSet);
928 return isl_stat_ok;
929}
930
931/// @brief Return the bounded parts of @p S.
932static __isl_give isl_set *collectBoundedParts(__isl_take isl_set *S) {
933 isl_set *BoundedParts = isl_set_empty(isl_set_get_space(S));
934 isl_set_foreach_basic_set(S, collectBoundedParts, &BoundedParts);
935 isl_set_free(S);
936 return BoundedParts;
937}
938
939/// @brief Compute the (un)bounded parts of @p S wrt. to dimension @p Dim.
940///
941/// @returns A separation of @p S into first an unbounded then a bounded subset,
942/// both with regards to the dimension @p Dim.
943static std::pair<__isl_give isl_set *, __isl_give isl_set *>
944partitionSetParts(__isl_take isl_set *S, unsigned Dim) {
945
946 for (unsigned u = 0, e = isl_set_n_dim(S); u < e; u++)
947 S = isl_set_lower_bound_si(S, isl_dim_set, u, 0);
948
949 unsigned NumDimsS = isl_set_n_dim(S);
950 isl_set *OnlyDimS = isl_set_copy(S);
951
952 // Remove dimensions that are greater than Dim as they are not interesting.
953 assert(NumDimsS >= Dim + 1)((NumDimsS >= Dim + 1) ? static_cast<void> (0) : __assert_fail
("NumDimsS >= Dim + 1", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 953, __PRETTY_FUNCTION__))
;
954 OnlyDimS =
955 isl_set_project_out(OnlyDimS, isl_dim_set, Dim + 1, NumDimsS - Dim - 1);
956
957 // Create artificial parametric upper bounds for dimensions smaller than Dim
958 // as we are not interested in them.
959 OnlyDimS = isl_set_insert_dims(OnlyDimS, isl_dim_param, 0, Dim);
960 for (unsigned u = 0; u < Dim; u++) {
961 isl_constraint *C = isl_inequality_alloc(
962 isl_local_space_from_space(isl_set_get_space(OnlyDimS)));
963 C = isl_constraint_set_coefficient_si(C, isl_dim_param, u, 1);
964 C = isl_constraint_set_coefficient_si(C, isl_dim_set, u, -1);
965 OnlyDimS = isl_set_add_constraint(OnlyDimS, C);
966 }
967
968 // Collect all bounded parts of OnlyDimS.
969 isl_set *BoundedParts = collectBoundedParts(OnlyDimS);
970
971 // Create the dimensions greater than Dim again.
972 BoundedParts = isl_set_insert_dims(BoundedParts, isl_dim_set, Dim + 1,
973 NumDimsS - Dim - 1);
974
975 // Remove the artificial upper bound parameters again.
976 BoundedParts = isl_set_remove_dims(BoundedParts, isl_dim_param, 0, Dim);
977
978 isl_set *UnboundedParts = isl_set_subtract(S, isl_set_copy(BoundedParts));
979 return std::make_pair(UnboundedParts, BoundedParts);
980}
981
982/// @brief Set the dimension Ids from @p From in @p To.
983static __isl_give isl_set *setDimensionIds(__isl_keep isl_set *From,
984 __isl_take isl_set *To) {
985 for (unsigned u = 0, e = isl_set_n_dim(From); u < e; u++) {
986 isl_id *DimId = isl_set_get_dim_id(From, isl_dim_set, u);
987 To = isl_set_set_dim_id(To, isl_dim_set, u, DimId);
988 }
989 return To;
990}
991
992/// @brief Create the conditions under which @p L @p Pred @p R is true.
993static __isl_give isl_set *buildConditionSet(ICmpInst::Predicate Pred,
994 __isl_take isl_pw_aff *L,
995 __isl_take isl_pw_aff *R) {
996 switch (Pred) {
997 case ICmpInst::ICMP_EQ:
998 return isl_pw_aff_eq_set(L, R);
999 case ICmpInst::ICMP_NE:
1000 return isl_pw_aff_ne_set(L, R);
1001 case ICmpInst::ICMP_SLT:
1002 return isl_pw_aff_lt_set(L, R);
1003 case ICmpInst::ICMP_SLE:
1004 return isl_pw_aff_le_set(L, R);
1005 case ICmpInst::ICMP_SGT:
1006 return isl_pw_aff_gt_set(L, R);
1007 case ICmpInst::ICMP_SGE:
1008 return isl_pw_aff_ge_set(L, R);
1009 case ICmpInst::ICMP_ULT:
1010 return isl_pw_aff_lt_set(L, R);
1011 case ICmpInst::ICMP_UGT:
1012 return isl_pw_aff_gt_set(L, R);
1013 case ICmpInst::ICMP_ULE:
1014 return isl_pw_aff_le_set(L, R);
1015 case ICmpInst::ICMP_UGE:
1016 return isl_pw_aff_ge_set(L, R);
1017 default:
1018 llvm_unreachable("Non integer predicate not supported")::llvm::llvm_unreachable_internal("Non integer predicate not supported"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 1018)
;
1019 }
1020}
1021
1022/// @brief Create the conditions under which @p L @p Pred @p R is true.
1023///
1024/// Helper function that will make sure the dimensions of the result have the
1025/// same isl_id's as the @p Domain.
1026static __isl_give isl_set *buildConditionSet(ICmpInst::Predicate Pred,
1027 __isl_take isl_pw_aff *L,
1028 __isl_take isl_pw_aff *R,
1029 __isl_keep isl_set *Domain) {
1030 isl_set *ConsequenceCondSet = buildConditionSet(Pred, L, R);
1031 return setDimensionIds(Domain, ConsequenceCondSet);
1032}
1033
1034/// @brief Build the conditions sets for the switch @p SI in the @p Domain.
1035///
1036/// This will fill @p ConditionSets with the conditions under which control
1037/// will be moved from @p SI to its successors. Hence, @p ConditionSets will
1038/// have as many elements as @p SI has successors.
1039static void
1040buildConditionSets(Scop &S, SwitchInst *SI, Loop *L, __isl_keep isl_set *Domain,
1041 SmallVectorImpl<__isl_give isl_set *> &ConditionSets) {
1042
1043 Value *Condition = getConditionFromTerminator(SI);
1044 assert(Condition && "No condition for switch")((Condition && "No condition for switch") ? static_cast
<void> (0) : __assert_fail ("Condition && \"No condition for switch\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 1044, __PRETTY_FUNCTION__))
;
1045
1046 ScalarEvolution &SE = *S.getSE();
1047 BasicBlock *BB = SI->getParent();
1048 isl_pw_aff *LHS, *RHS;
1049 LHS = S.getPwAff(SE.getSCEVAtScope(Condition, L), BB);
1050
1051 unsigned NumSuccessors = SI->getNumSuccessors();
1052 ConditionSets.resize(NumSuccessors);
1053 for (auto &Case : SI->cases()) {
1054 unsigned Idx = Case.getSuccessorIndex();
1055 ConstantInt *CaseValue = Case.getCaseValue();
1056
1057 RHS = S.getPwAff(SE.getSCEV(CaseValue), BB);
1058 isl_set *CaseConditionSet =
1059 buildConditionSet(ICmpInst::ICMP_EQ, isl_pw_aff_copy(LHS), RHS, Domain);
1060 ConditionSets[Idx] = isl_set_coalesce(
1061 isl_set_intersect(CaseConditionSet, isl_set_copy(Domain)));
1062 }
1063
1064 assert(ConditionSets[0] == nullptr && "Default condition set was set")((ConditionSets[0] == nullptr && "Default condition set was set"
) ? static_cast<void> (0) : __assert_fail ("ConditionSets[0] == nullptr && \"Default condition set was set\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 1064, __PRETTY_FUNCTION__))
;
1065 isl_set *ConditionSetUnion = isl_set_copy(ConditionSets[1]);
1066 for (unsigned u = 2; u < NumSuccessors; u++)
1067 ConditionSetUnion =
1068 isl_set_union(ConditionSetUnion, isl_set_copy(ConditionSets[u]));
1069 ConditionSets[0] = setDimensionIds(
1070 Domain, isl_set_subtract(isl_set_copy(Domain), ConditionSetUnion));
1071
1072 S.markAsOptimized();
1073 isl_pw_aff_free(LHS);
1074}
1075
1076/// @brief Build the conditions sets for the branch condition @p Condition in
1077/// the @p Domain.
1078///
1079/// This will fill @p ConditionSets with the conditions under which control
1080/// will be moved from @p TI to its successors. Hence, @p ConditionSets will
1081/// have as many elements as @p TI has successors. If @p TI is nullptr the
1082/// context under which @p Condition is true/false will be returned as the
1083/// new elements of @p ConditionSets.
1084static void
1085buildConditionSets(Scop &S, Value *Condition, TerminatorInst *TI, Loop *L,
1086 __isl_keep isl_set *Domain,
1087 SmallVectorImpl<__isl_give isl_set *> &ConditionSets) {
1088
1089 isl_set *ConsequenceCondSet = nullptr;
1090 if (auto *CCond = dyn_cast<ConstantInt>(Condition)) {
1091 if (CCond->isZero())
1092 ConsequenceCondSet = isl_set_empty(isl_set_get_space(Domain));
1093 else
1094 ConsequenceCondSet = isl_set_universe(isl_set_get_space(Domain));
1095 } else if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Condition)) {
1096 auto Opcode = BinOp->getOpcode();
1097 assert(Opcode == Instruction::And || Opcode == Instruction::Or)((Opcode == Instruction::And || Opcode == Instruction::Or) ? static_cast
<void> (0) : __assert_fail ("Opcode == Instruction::And || Opcode == Instruction::Or"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 1097, __PRETTY_FUNCTION__))
;
1098
1099 buildConditionSets(S, BinOp->getOperand(0), TI, L, Domain, ConditionSets);
1100 buildConditionSets(S, BinOp->getOperand(1), TI, L, Domain, ConditionSets);
1101
1102 isl_set_free(ConditionSets.pop_back_val());
1103 isl_set *ConsCondPart0 = ConditionSets.pop_back_val();
1104 isl_set_free(ConditionSets.pop_back_val());
1105 isl_set *ConsCondPart1 = ConditionSets.pop_back_val();
1106
1107 if (Opcode == Instruction::And)
1108 ConsequenceCondSet = isl_set_intersect(ConsCondPart0, ConsCondPart1);
1109 else
1110 ConsequenceCondSet = isl_set_union(ConsCondPart0, ConsCondPart1);
1111 } else {
1112 auto *ICond = dyn_cast<ICmpInst>(Condition);
1113 assert(ICond &&((ICond && "Condition of exiting branch was neither constant nor ICmp!"
) ? static_cast<void> (0) : __assert_fail ("ICond && \"Condition of exiting branch was neither constant nor ICmp!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 1114, __PRETTY_FUNCTION__))
1114 "Condition of exiting branch was neither constant nor ICmp!")((ICond && "Condition of exiting branch was neither constant nor ICmp!"
) ? static_cast<void> (0) : __assert_fail ("ICond && \"Condition of exiting branch was neither constant nor ICmp!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 1114, __PRETTY_FUNCTION__))
;
1115
1116 ScalarEvolution &SE = *S.getSE();
1117 BasicBlock *BB = TI ? TI->getParent() : nullptr;
1118 isl_pw_aff *LHS, *RHS;
1119 LHS = S.getPwAff(SE.getSCEVAtScope(ICond->getOperand(0), L), BB);
1120 RHS = S.getPwAff(SE.getSCEVAtScope(ICond->getOperand(1), L), BB);
1121 ConsequenceCondSet =
1122 buildConditionSet(ICond->getPredicate(), LHS, RHS, Domain);
1123 }
1124
1125 // If no terminator was given we are only looking for parameter constraints
1126 // under which @p Condition is true/false.
1127 if (!TI)
1128 ConsequenceCondSet = isl_set_params(ConsequenceCondSet);
1129
1130 assert(ConsequenceCondSet)((ConsequenceCondSet) ? static_cast<void> (0) : __assert_fail
("ConsequenceCondSet", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 1130, __PRETTY_FUNCTION__))
;
1131 isl_set *AlternativeCondSet =
1132 isl_set_complement(isl_set_copy(ConsequenceCondSet));
1133
1134 ConditionSets.push_back(isl_set_coalesce(
1135 isl_set_intersect(ConsequenceCondSet, isl_set_copy(Domain))));
1136 ConditionSets.push_back(isl_set_coalesce(
1137 isl_set_intersect(AlternativeCondSet, isl_set_copy(Domain))));
1138}
1139
1140/// @brief Build the conditions sets for the terminator @p TI in the @p Domain.
1141///
1142/// This will fill @p ConditionSets with the conditions under which control
1143/// will be moved from @p TI to its successors. Hence, @p ConditionSets will
1144/// have as many elements as @p TI has successors.
1145static void
1146buildConditionSets(Scop &S, TerminatorInst *TI, Loop *L,
1147 __isl_keep isl_set *Domain,
1148 SmallVectorImpl<__isl_give isl_set *> &ConditionSets) {
1149
1150 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI))
1151 return buildConditionSets(S, SI, L, Domain, ConditionSets);
1152
1153 assert(isa<BranchInst>(TI) && "Terminator was neither branch nor switch.")((isa<BranchInst>(TI) && "Terminator was neither branch nor switch."
) ? static_cast<void> (0) : __assert_fail ("isa<BranchInst>(TI) && \"Terminator was neither branch nor switch.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 1153, __PRETTY_FUNCTION__))
;
1154
1155 if (TI->getNumSuccessors() == 1) {
1156 ConditionSets.push_back(isl_set_copy(Domain));
1157 return;
1158 }
1159
1160 Value *Condition = getConditionFromTerminator(TI);
1161 assert(Condition && "No condition for Terminator")((Condition && "No condition for Terminator") ? static_cast
<void> (0) : __assert_fail ("Condition && \"No condition for Terminator\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 1161, __PRETTY_FUNCTION__))
;
1162
1163 return buildConditionSets(S, Condition, TI, L, Domain, ConditionSets);
1164}
1165
1166void ScopStmt::buildDomain() {
1167 isl_id *Id;
1168
1169 Id = isl_id_alloc(getIslCtx(), getBaseName(), this);
1170
1171 Domain = getParent()->getDomainConditions(this);
1172 Domain = isl_set_set_tuple_id(Domain, Id);
1173}
1174
1175void ScopStmt::deriveAssumptionsFromGEP(GetElementPtrInst *GEP) {
1176 isl_ctx *Ctx = Parent.getIslCtx();
1177 isl_local_space *LSpace = isl_local_space_from_space(getDomainSpace());
1178 Type *Ty = GEP->getPointerOperandType();
1179 ScalarEvolution &SE = *Parent.getSE();
1180 ScopDetection &SD = Parent.getSD();
1181
1182 // The set of loads that are required to be invariant.
1183 auto &ScopRIL = *SD.getRequiredInvariantLoads(&Parent.getRegion());
1184
1185 std::vector<const SCEV *> Subscripts;
1186 std::vector<int> Sizes;
1187
1188 std::tie(Subscripts, Sizes) = getIndexExpressionsFromGEP(GEP, SE);
1189
1190 if (auto *PtrTy = dyn_cast<PointerType>(Ty)) {
1191 Ty = PtrTy->getElementType();
Value stored to 'Ty' is never read
1192 }
1193
1194 int IndexOffset = Subscripts.size() - Sizes.size();
1195
1196 assert(IndexOffset <= 1 && "Unexpected large index offset")((IndexOffset <= 1 && "Unexpected large index offset"
) ? static_cast<void> (0) : __assert_fail ("IndexOffset <= 1 && \"Unexpected large index offset\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 1196, __PRETTY_FUNCTION__))
;
1197
1198 for (size_t i = 0; i < Sizes.size(); i++) {
1199 auto Expr = Subscripts[i + IndexOffset];
1200 auto Size = Sizes[i];
1201
1202 InvariantLoadsSetTy AccessILS;
1203 if (!isAffineExpr(&Parent.getRegion(), Expr, SE, nullptr, &AccessILS))
1204 continue;
1205
1206 bool NonAffine = false;
1207 for (LoadInst *LInst : AccessILS)
1208 if (!ScopRIL.count(LInst))
1209 NonAffine = true;
1210
1211 if (NonAffine)
1212 continue;
1213
1214 isl_pw_aff *AccessOffset = getPwAff(Expr);
1215 AccessOffset =
1216 isl_pw_aff_set_tuple_id(AccessOffset, isl_dim_in, getDomainId());
1217
1218 isl_pw_aff *DimSize = isl_pw_aff_from_aff(isl_aff_val_on_domain(
1219 isl_local_space_copy(LSpace), isl_val_int_from_si(Ctx, Size)));
1220
1221 isl_set *OutOfBound = isl_pw_aff_ge_set(AccessOffset, DimSize);
1222 OutOfBound = isl_set_intersect(getDomain(), OutOfBound);
1223 OutOfBound = isl_set_params(OutOfBound);
1224 isl_set *InBound = isl_set_complement(OutOfBound);
1225 isl_set *Executed = isl_set_params(getDomain());
1226
1227 // A => B == !A or B
1228 isl_set *InBoundIfExecuted =
1229 isl_set_union(isl_set_complement(Executed), InBound);
1230
1231 InBoundIfExecuted = isl_set_coalesce(InBoundIfExecuted);
1232 Parent.addAssumption(INBOUNDS, InBoundIfExecuted, GEP->getDebugLoc());
1233 }
1234
1235 isl_local_space_free(LSpace);
1236}
1237
1238void ScopStmt::deriveAssumptions(BasicBlock *Block) {
1239 for (Instruction &Inst : *Block)
1240 if (auto *GEP = dyn_cast<GetElementPtrInst>(&Inst))
1241 deriveAssumptionsFromGEP(GEP);
1242}
1243
1244void ScopStmt::collectSurroundingLoops() {
1245 for (unsigned u = 0, e = isl_set_n_dim(Domain); u < e; u++) {
1246 isl_id *DimId = isl_set_get_dim_id(Domain, isl_dim_set, u);
1247 NestLoops.push_back(static_cast<Loop *>(isl_id_get_user(DimId)));
1248 isl_id_free(DimId);
1249 }
1250}
1251
1252ScopStmt::ScopStmt(Scop &parent, Region &R)
1253 : Parent(parent), Domain(nullptr), BB(nullptr), R(&R), Build(nullptr) {
1254
1255 BaseName = getIslCompatibleName("Stmt_", R.getNameStr(), "");
1256}
1257
1258ScopStmt::ScopStmt(Scop &parent, BasicBlock &bb)
1259 : Parent(parent), Domain(nullptr), BB(&bb), R(nullptr), Build(nullptr) {
1260
1261 BaseName = getIslCompatibleName("Stmt_", &bb, "");
1262}
1263
1264void ScopStmt::init() {
1265 assert(!Domain && "init must be called only once")((!Domain && "init must be called only once") ? static_cast
<void> (0) : __assert_fail ("!Domain && \"init must be called only once\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 1265, __PRETTY_FUNCTION__))
;
1266
1267 buildDomain();
1268 collectSurroundingLoops();
1269 buildAccessRelations();
1270
1271 if (BB) {
1272 deriveAssumptions(BB);
1273 } else {
1274 for (BasicBlock *Block : R->blocks()) {
1275 deriveAssumptions(Block);
1276 }
1277 }
1278
1279 if (DetectReductions)
1280 checkForReductions();
1281}
1282
1283/// @brief Collect loads which might form a reduction chain with @p StoreMA
1284///
1285/// Check if the stored value for @p StoreMA is a binary operator with one or
1286/// two loads as operands. If the binary operand is commutative & associative,
1287/// used only once (by @p StoreMA) and its load operands are also used only
1288/// once, we have found a possible reduction chain. It starts at an operand
1289/// load and includes the binary operator and @p StoreMA.
1290///
1291/// Note: We allow only one use to ensure the load and binary operator cannot
1292/// escape this block or into any other store except @p StoreMA.
1293void ScopStmt::collectCandiateReductionLoads(
1294 MemoryAccess *StoreMA, SmallVectorImpl<MemoryAccess *> &Loads) {
1295 auto *Store = dyn_cast<StoreInst>(StoreMA->getAccessInstruction());
1296 if (!Store)
1297 return;
1298
1299 // Skip if there is not one binary operator between the load and the store
1300 auto *BinOp = dyn_cast<BinaryOperator>(Store->getValueOperand());
1301 if (!BinOp)
1302 return;
1303
1304 // Skip if the binary operators has multiple uses
1305 if (BinOp->getNumUses() != 1)
1306 return;
1307
1308 // Skip if the opcode of the binary operator is not commutative/associative
1309 if (!BinOp->isCommutative() || !BinOp->isAssociative())
1310 return;
1311
1312 // Skip if the binary operator is outside the current SCoP
1313 if (BinOp->getParent() != Store->getParent())
1314 return;
1315
1316 // Skip if it is a multiplicative reduction and we disabled them
1317 if (DisableMultiplicativeReductions &&
1318 (BinOp->getOpcode() == Instruction::Mul ||
1319 BinOp->getOpcode() == Instruction::FMul))
1320 return;
1321
1322 // Check the binary operator operands for a candidate load
1323 auto *PossibleLoad0 = dyn_cast<LoadInst>(BinOp->getOperand(0));
1324 auto *PossibleLoad1 = dyn_cast<LoadInst>(BinOp->getOperand(1));
1325 if (!PossibleLoad0 && !PossibleLoad1)
1326 return;
1327
1328 // A load is only a candidate if it cannot escape (thus has only this use)
1329 if (PossibleLoad0 && PossibleLoad0->getNumUses() == 1)
1330 if (PossibleLoad0->getParent() == Store->getParent())
1331 Loads.push_back(&getArrayAccessFor(PossibleLoad0));
1332 if (PossibleLoad1 && PossibleLoad1->getNumUses() == 1)
1333 if (PossibleLoad1->getParent() == Store->getParent())
1334 Loads.push_back(&getArrayAccessFor(PossibleLoad1));
1335}
1336
1337/// @brief Check for reductions in this ScopStmt
1338///
1339/// Iterate over all store memory accesses and check for valid binary reduction
1340/// like chains. For all candidates we check if they have the same base address
1341/// and there are no other accesses which overlap with them. The base address
1342/// check rules out impossible reductions candidates early. The overlap check,
1343/// together with the "only one user" check in collectCandiateReductionLoads,
1344/// guarantees that none of the intermediate results will escape during
1345/// execution of the loop nest. We basically check here that no other memory
1346/// access can access the same memory as the potential reduction.
1347void ScopStmt::checkForReductions() {
1348 SmallVector<MemoryAccess *, 2> Loads;
1349 SmallVector<std::pair<MemoryAccess *, MemoryAccess *>, 4> Candidates;
1350
1351 // First collect candidate load-store reduction chains by iterating over all
1352 // stores and collecting possible reduction loads.
1353 for (MemoryAccess *StoreMA : MemAccs) {
1354 if (StoreMA->isRead())
1355 continue;
1356
1357 Loads.clear();
1358 collectCandiateReductionLoads(StoreMA, Loads);
1359 for (MemoryAccess *LoadMA : Loads)
1360 Candidates.push_back(std::make_pair(LoadMA, StoreMA));
1361 }
1362
1363 // Then check each possible candidate pair.
1364 for (const auto &CandidatePair : Candidates) {
1365 bool Valid = true;
1366 isl_map *LoadAccs = CandidatePair.first->getAccessRelation();
1367 isl_map *StoreAccs = CandidatePair.second->getAccessRelation();
1368
1369 // Skip those with obviously unequal base addresses.
1370 if (!isl_map_has_equal_space(LoadAccs, StoreAccs)) {
1371 isl_map_free(LoadAccs);
1372 isl_map_free(StoreAccs);
1373 continue;
1374 }
1375
1376 // And check if the remaining for overlap with other memory accesses.
1377 isl_map *AllAccsRel = isl_map_union(LoadAccs, StoreAccs);
1378 AllAccsRel = isl_map_intersect_domain(AllAccsRel, getDomain());
1379 isl_set *AllAccs = isl_map_range(AllAccsRel);
1380
1381 for (MemoryAccess *MA : MemAccs) {
1382 if (MA == CandidatePair.first || MA == CandidatePair.second)
1383 continue;
1384
1385 isl_map *AccRel =
1386 isl_map_intersect_domain(MA->getAccessRelation(), getDomain());
1387 isl_set *Accs = isl_map_range(AccRel);
1388
1389 if (isl_set_has_equal_space(AllAccs, Accs) || isl_set_free(Accs)) {
1390 isl_set *OverlapAccs = isl_set_intersect(Accs, isl_set_copy(AllAccs));
1391 Valid = Valid && isl_set_is_empty(OverlapAccs);
1392 isl_set_free(OverlapAccs);
1393 }
1394 }
1395
1396 isl_set_free(AllAccs);
1397 if (!Valid)
1398 continue;
1399
1400 const LoadInst *Load =
1401 dyn_cast<const LoadInst>(CandidatePair.first->getAccessInstruction());
1402 MemoryAccess::ReductionType RT =
1403 getReductionType(dyn_cast<BinaryOperator>(Load->user_back()), Load);
1404
1405 // If no overlapping access was found we mark the load and store as
1406 // reduction like.
1407 CandidatePair.first->markAsReductionLike(RT);
1408 CandidatePair.second->markAsReductionLike(RT);
1409 }
1410}
1411
1412std::string ScopStmt::getDomainStr() const { return stringFromIslObj(Domain); }
1413
1414std::string ScopStmt::getScheduleStr() const {
1415 auto *S = getSchedule();
1416 auto Str = stringFromIslObj(S);
1417 isl_map_free(S);
1418 return Str;
1419}
1420
1421unsigned ScopStmt::getNumParams() const { return Parent.getNumParams(); }
1422
1423unsigned ScopStmt::getNumIterators() const { return NestLoops.size(); }
1424
1425const char *ScopStmt::getBaseName() const { return BaseName.c_str(); }
1426
1427const Loop *ScopStmt::getLoopForDimension(unsigned Dimension) const {
1428 return NestLoops[Dimension];
1429}
1430
1431isl_ctx *ScopStmt::getIslCtx() const { return Parent.getIslCtx(); }
1432
1433__isl_give isl_set *ScopStmt::getDomain() const { return isl_set_copy(Domain); }
1434
1435__isl_give isl_space *ScopStmt::getDomainSpace() const {
1436 return isl_set_get_space(Domain);
1437}
1438
1439__isl_give isl_id *ScopStmt::getDomainId() const {
1440 return isl_set_get_tuple_id(Domain);
1441}
1442
1443ScopStmt::~ScopStmt() { isl_set_free(Domain); }
1444
1445void ScopStmt::print(raw_ostream &OS) const {
1446 OS << "\t" << getBaseName() << "\n";
1447 OS.indent(12) << "Domain :=\n";
1448
1449 if (Domain) {
1450 OS.indent(16) << getDomainStr() << ";\n";
1451 } else
1452 OS.indent(16) << "n/a\n";
1453
1454 OS.indent(12) << "Schedule :=\n";
1455
1456 if (Domain) {
1457 OS.indent(16) << getScheduleStr() << ";\n";
1458 } else
1459 OS.indent(16) << "n/a\n";
1460
1461 for (MemoryAccess *Access : MemAccs)
1462 Access->print(OS);
1463}
1464
1465void ScopStmt::dump() const { print(dbgs()); }
1466
1467void ScopStmt::removeMemoryAccesses(MemoryAccessList &InvMAs) {
1468 // Remove all memory accesses in @p InvMAs from this statement
1469 // together with all scalar accesses that were caused by them.
1470 for (MemoryAccess *MA : InvMAs) {
1471 auto Predicate = [&](MemoryAccess *Acc) {
1472 return Acc->getAccessInstruction() == MA->getAccessInstruction();
1473 };
1474 MemAccs.erase(std::remove_if(MemAccs.begin(), MemAccs.end(), Predicate),
1475 MemAccs.end());
1476 InstructionToAccess.erase(MA->getAccessInstruction());
1477 }
1478}
1479
1480//===----------------------------------------------------------------------===//
1481/// Scop class implement
1482
1483void Scop::setContext(__isl_take isl_set *NewContext) {
1484 NewContext = isl_set_align_params(NewContext, isl_set_get_space(Context));
1485 isl_set_free(Context);
1486 Context = NewContext;
1487}
1488
1489/// @brief Remap parameter values but keep AddRecs valid wrt. invariant loads.
1490struct SCEVSensitiveParameterRewriter
1491 : public SCEVVisitor<SCEVSensitiveParameterRewriter, const SCEV *> {
1492 ValueToValueMap &VMap;
1493 ScalarEvolution &SE;
1494
1495public:
1496 SCEVSensitiveParameterRewriter(ValueToValueMap &VMap, ScalarEvolution &SE)
1497 : VMap(VMap), SE(SE) {}
1498
1499 static const SCEV *rewrite(const SCEV *E, ScalarEvolution &SE,
1500 ValueToValueMap &VMap) {
1501 SCEVSensitiveParameterRewriter SSPR(VMap, SE);
1502 return SSPR.visit(E);
1503 }
1504
1505 const SCEV *visit(const SCEV *E) {
1506 return SCEVVisitor<SCEVSensitiveParameterRewriter, const SCEV *>::visit(E);
1507 }
1508
1509 const SCEV *visitConstant(const SCEVConstant *E) { return E; }
1510
1511 const SCEV *visitTruncateExpr(const SCEVTruncateExpr *E) {
1512 return SE.getTruncateExpr(visit(E->getOperand()), E->getType());
1513 }
1514
1515 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *E) {
1516 return SE.getZeroExtendExpr(visit(E->getOperand()), E->getType());
1517 }
1518
1519 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *E) {
1520 return SE.getSignExtendExpr(visit(E->getOperand()), E->getType());
1521 }
1522
1523 const SCEV *visitAddExpr(const SCEVAddExpr *E) {
1524 SmallVector<const SCEV *, 4> Operands;
1525 for (int i = 0, e = E->getNumOperands(); i < e; ++i)
1526 Operands.push_back(visit(E->getOperand(i)));
1527 return SE.getAddExpr(Operands);
1528 }
1529
1530 const SCEV *visitMulExpr(const SCEVMulExpr *E) {
1531 SmallVector<const SCEV *, 4> Operands;
1532 for (int i = 0, e = E->getNumOperands(); i < e; ++i)
1533 Operands.push_back(visit(E->getOperand(i)));
1534 return SE.getMulExpr(Operands);
1535 }
1536
1537 const SCEV *visitSMaxExpr(const SCEVSMaxExpr *E) {
1538 SmallVector<const SCEV *, 4> Operands;
1539 for (int i = 0, e = E->getNumOperands(); i < e; ++i)
1540 Operands.push_back(visit(E->getOperand(i)));
1541 return SE.getSMaxExpr(Operands);
1542 }
1543
1544 const SCEV *visitUMaxExpr(const SCEVUMaxExpr *E) {
1545 SmallVector<const SCEV *, 4> Operands;
1546 for (int i = 0, e = E->getNumOperands(); i < e; ++i)
1547 Operands.push_back(visit(E->getOperand(i)));
1548 return SE.getUMaxExpr(Operands);
1549 }
1550
1551 const SCEV *visitUDivExpr(const SCEVUDivExpr *E) {
1552 return SE.getUDivExpr(visit(E->getLHS()), visit(E->getRHS()));
1553 }
1554
1555 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *E) {
1556 auto *Start = visit(E->getStart());
1557 auto *AddRec = SE.getAddRecExpr(SE.getConstant(E->getType(), 0),
1558 visit(E->getStepRecurrence(SE)),
1559 E->getLoop(), SCEV::FlagAnyWrap);
1560 return SE.getAddExpr(Start, AddRec);
1561 }
1562
1563 const SCEV *visitUnknown(const SCEVUnknown *E) {
1564 if (auto *NewValue = VMap.lookup(E->getValue()))
1565 return SE.getUnknown(NewValue);
1566 return E;
1567 }
1568};
1569
1570const SCEV *Scop::getRepresentingInvariantLoadSCEV(const SCEV *S) {
1571 return SCEVSensitiveParameterRewriter::rewrite(S, *SE, InvEquivClassVMap);
1572}
1573
1574void Scop::addParams(std::vector<const SCEV *> NewParameters) {
1575 for (const SCEV *Parameter : NewParameters) {
1576 Parameter = extractConstantFactor(Parameter, *SE).second;
1577
1578 // Normalize the SCEV to get the representing element for an invariant load.
1579 Parameter = getRepresentingInvariantLoadSCEV(Parameter);
1580
1581 if (ParameterIds.find(Parameter) != ParameterIds.end())
1582 continue;
1583
1584 int dimension = Parameters.size();
1585
1586 Parameters.push_back(Parameter);
1587 ParameterIds[Parameter] = dimension;
1588 }
1589}
1590
1591__isl_give isl_id *Scop::getIdForParam(const SCEV *Parameter) {
1592 // Normalize the SCEV to get the representing element for an invariant load.
1593 Parameter = getRepresentingInvariantLoadSCEV(Parameter);
1594
1595 ParamIdType::const_iterator IdIter = ParameterIds.find(Parameter);
1596
1597 if (IdIter == ParameterIds.end())
1598 return nullptr;
1599
1600 std::string ParameterName;
1601
1602 ParameterName = "p_" + utostr_32(IdIter->second);
1603
1604 if (const SCEVUnknown *ValueParameter = dyn_cast<SCEVUnknown>(Parameter)) {
1605 Value *Val = ValueParameter->getValue();
1606
1607 // If this parameter references a specific Value and this value has a name
1608 // we use this name as it is likely to be unique and more useful than just
1609 // a number.
1610 if (Val->hasName())
1611 ParameterName = Val->getName();
1612 else if (LoadInst *LI = dyn_cast<LoadInst>(Val)) {
1613 auto LoadOrigin = LI->getPointerOperand()->stripInBoundsOffsets();
1614 if (LoadOrigin->hasName()) {
1615 ParameterName += "_loaded_from_";
1616 ParameterName +=
1617 LI->getPointerOperand()->stripInBoundsOffsets()->getName();
1618 }
1619 }
1620 }
1621
1622 return isl_id_alloc(getIslCtx(), ParameterName.c_str(),
1623 const_cast<void *>((const void *)Parameter));
1624}
1625
1626isl_set *Scop::addNonEmptyDomainConstraints(isl_set *C) const {
1627 isl_set *DomainContext = isl_union_set_params(getDomains());
1628 return isl_set_intersect_params(C, DomainContext);
1629}
1630
1631void Scop::buildBoundaryContext() {
1632 if (IgnoreIntegerWrapping) {
1633 BoundaryContext = isl_set_universe(getParamSpace());
1634 return;
1635 }
1636
1637 BoundaryContext = Affinator.getWrappingContext();
1638
1639 // The isl_set_complement operation used to create the boundary context
1640 // can possibly become very expensive. We bound the compile time of
1641 // this operation by setting a compute out.
1642 //
1643 // TODO: We can probably get around using isl_set_complement and directly
1644 // AST generate BoundaryContext.
1645 long MaxOpsOld = isl_ctx_get_max_operations(getIslCtx());
1646 isl_ctx_reset_operations(getIslCtx());
1647 isl_ctx_set_max_operations(getIslCtx(), 300000);
1648 isl_options_set_on_error(getIslCtx(), ISL_ON_ERROR_CONTINUE1);
1649
1650 BoundaryContext = isl_set_complement(BoundaryContext);
1651
1652 if (isl_ctx_last_error(getIslCtx()) == isl_error_quota) {
1653 isl_set_free(BoundaryContext);
1654 BoundaryContext = isl_set_empty(getParamSpace());
1655 }
1656
1657 isl_options_set_on_error(getIslCtx(), ISL_ON_ERROR_ABORT2);
1658 isl_ctx_reset_operations(getIslCtx());
1659 isl_ctx_set_max_operations(getIslCtx(), MaxOpsOld);
1660 BoundaryContext = isl_set_gist_params(BoundaryContext, getContext());
1661 trackAssumption(WRAPPING, BoundaryContext, DebugLoc());
1662}
1663
1664void Scop::addUserAssumptions(AssumptionCache &AC) {
1665 auto *R = &getRegion();
1666 auto &F = *R->getEntry()->getParent();
1667 for (auto &Assumption : AC.assumptions()) {
1668 auto *CI = dyn_cast_or_null<CallInst>(Assumption);
1669 if (!CI || CI->getNumArgOperands() != 1)
1670 continue;
1671 if (!DT.dominates(CI->getParent(), R->getEntry()))
1672 continue;
1673
1674 auto *Val = CI->getArgOperand(0);
1675 std::vector<const SCEV *> Params;
1676 if (!isAffineParamConstraint(Val, R, *SE, Params)) {
1677 emitOptimizationRemarkAnalysis(F.getContext(), DEBUG_TYPE"polly-scops", F,
1678 CI->getDebugLoc(),
1679 "Non-affine user assumption ignored.");
1680 continue;
1681 }
1682
1683 addParams(Params);
1684
1685 auto *L = LI.getLoopFor(CI->getParent());
1686 SmallVector<isl_set *, 2> ConditionSets;
1687 buildConditionSets(*this, Val, nullptr, L, Context, ConditionSets);
1688 assert(ConditionSets.size() == 2)((ConditionSets.size() == 2) ? static_cast<void> (0) : __assert_fail
("ConditionSets.size() == 2", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 1688, __PRETTY_FUNCTION__))
;
1689 isl_set_free(ConditionSets[1]);
1690
1691 auto *AssumptionCtx = ConditionSets[0];
1692 emitOptimizationRemarkAnalysis(
1693 F.getContext(), DEBUG_TYPE"polly-scops", F, CI->getDebugLoc(),
1694 "Use user assumption: " + stringFromIslObj(AssumptionCtx));
1695 Context = isl_set_intersect(Context, AssumptionCtx);
1696 }
1697}
1698
1699void Scop::addUserContext() {
1700 if (UserContextStr.empty())
1701 return;
1702
1703 isl_set *UserContext = isl_set_read_from_str(IslCtx, UserContextStr.c_str());
1704 isl_space *Space = getParamSpace();
1705 if (isl_space_dim(Space, isl_dim_param) !=
1706 isl_set_dim(UserContext, isl_dim_param)) {
1707 auto SpaceStr = isl_space_to_str(Space);
1708 errs() << "Error: the context provided in -polly-context has not the same "
1709 << "number of dimensions than the computed context. Due to this "
1710 << "mismatch, the -polly-context option is ignored. Please provide "
1711 << "the context in the parameter space: " << SpaceStr << ".\n";
1712 free(SpaceStr);
1713 isl_set_free(UserContext);
1714 isl_space_free(Space);
1715 return;
1716 }
1717
1718 for (unsigned i = 0; i < isl_space_dim(Space, isl_dim_param); i++) {
1719 auto NameContext = isl_set_get_dim_name(Context, isl_dim_param, i);
1720 auto NameUserContext = isl_set_get_dim_name(UserContext, isl_dim_param, i);
1721
1722 if (strcmp(NameContext, NameUserContext) != 0) {
1723 auto SpaceStr = isl_space_to_str(Space);
1724 errs() << "Error: the name of dimension " << i
1725 << " provided in -polly-context "
1726 << "is '" << NameUserContext << "', but the name in the computed "
1727 << "context is '" << NameContext
1728 << "'. Due to this name mismatch, "
1729 << "the -polly-context option is ignored. Please provide "
1730 << "the context in the parameter space: " << SpaceStr << ".\n";
1731 free(SpaceStr);
1732 isl_set_free(UserContext);
1733 isl_space_free(Space);
1734 return;
1735 }
1736
1737 UserContext =
1738 isl_set_set_dim_id(UserContext, isl_dim_param, i,
1739 isl_space_get_dim_id(Space, isl_dim_param, i));
1740 }
1741
1742 Context = isl_set_intersect(Context, UserContext);
1743 isl_space_free(Space);
1744}
1745
1746void Scop::buildInvariantEquivalenceClasses() {
1747 DenseMap<const SCEV *, LoadInst *> EquivClasses;
1748
1749 const InvariantLoadsSetTy &RIL = *SD.getRequiredInvariantLoads(&getRegion());
1750 for (LoadInst *LInst : RIL) {
1751 const SCEV *PointerSCEV = SE->getSCEV(LInst->getPointerOperand());
1752
1753 LoadInst *&ClassRep = EquivClasses[PointerSCEV];
1754 if (ClassRep) {
1755 InvEquivClassVMap[LInst] = ClassRep;
1756 continue;
1757 }
1758
1759 ClassRep = LInst;
1760 InvariantEquivClasses.emplace_back(PointerSCEV, MemoryAccessList(),
1761 nullptr);
1762 }
1763}
1764
1765void Scop::buildContext() {
1766 isl_space *Space = isl_space_params_alloc(IslCtx, 0);
1767 Context = isl_set_universe(isl_space_copy(Space));
1768 AssumedContext = isl_set_universe(Space);
1769}
1770
1771void Scop::addParameterBounds() {
1772 for (const auto &ParamID : ParameterIds) {
1773 int dim = ParamID.second;
1774
1775 ConstantRange SRange = SE->getSignedRange(ParamID.first);
1776
1777 Context = addRangeBoundsToSet(Context, SRange, dim, isl_dim_param);
1778 }
1779}
1780
1781void Scop::realignParams() {
1782 // Add all parameters into a common model.
1783 isl_space *Space = isl_space_params_alloc(IslCtx, ParameterIds.size());
1784
1785 for (const auto &ParamID : ParameterIds) {
1786 const SCEV *Parameter = ParamID.first;
1787 isl_id *id = getIdForParam(Parameter);
1788 Space = isl_space_set_dim_id(Space, isl_dim_param, ParamID.second, id);
1789 }
1790
1791 // Align the parameters of all data structures to the model.
1792 Context = isl_set_align_params(Context, Space);
1793
1794 for (ScopStmt &Stmt : *this)
1795 Stmt.realignParams();
1796}
1797
1798static __isl_give isl_set *
1799simplifyAssumptionContext(__isl_take isl_set *AssumptionContext,
1800 const Scop &S) {
1801 // If we modelt all blocks in the SCoP that have side effects we can simplify
1802 // the context with the constraints that are needed for anything to be
1803 // executed at all. However, if we have error blocks in the SCoP we already
1804 // assumed some parameter combinations cannot occure and removed them from the
1805 // domains, thus we cannot use the remaining domain to simplify the
1806 // assumptions.
1807 if (!S.hasErrorBlock()) {
1808 isl_set *DomainParameters = isl_union_set_params(S.getDomains());
1809 AssumptionContext =
1810 isl_set_gist_params(AssumptionContext, DomainParameters);
1811 }
1812
1813 AssumptionContext = isl_set_gist_params(AssumptionContext, S.getContext());
1814 return AssumptionContext;
1815}
1816
1817void Scop::simplifyContexts() {
1818 // The parameter constraints of the iteration domains give us a set of
1819 // constraints that need to hold for all cases where at least a single
1820 // statement iteration is executed in the whole scop. We now simplify the
1821 // assumed context under the assumption that such constraints hold and at
1822 // least a single statement iteration is executed. For cases where no
1823 // statement instances are executed, the assumptions we have taken about
1824 // the executed code do not matter and can be changed.
1825 //
1826 // WARNING: This only holds if the assumptions we have taken do not reduce
1827 // the set of statement instances that are executed. Otherwise we
1828 // may run into a case where the iteration domains suggest that
1829 // for a certain set of parameter constraints no code is executed,
1830 // but in the original program some computation would have been
1831 // performed. In such a case, modifying the run-time conditions and
1832 // possibly influencing the run-time check may cause certain scops
1833 // to not be executed.
1834 //
1835 // Example:
1836 //
1837 // When delinearizing the following code:
1838 //
1839 // for (long i = 0; i < 100; i++)
1840 // for (long j = 0; j < m; j++)
1841 // A[i+p][j] = 1.0;
1842 //
1843 // we assume that the condition m <= 0 or (m >= 1 and p >= 0) holds as
1844 // otherwise we would access out of bound data. Now, knowing that code is
1845 // only executed for the case m >= 0, it is sufficient to assume p >= 0.
1846 AssumedContext = simplifyAssumptionContext(AssumedContext, *this);
1847 BoundaryContext = simplifyAssumptionContext(BoundaryContext, *this);
1848}
1849
1850/// @brief Add the minimal/maximal access in @p Set to @p User.
1851static isl_stat buildMinMaxAccess(__isl_take isl_set *Set, void *User) {
1852 Scop::MinMaxVectorTy *MinMaxAccesses = (Scop::MinMaxVectorTy *)User;
1853 isl_pw_multi_aff *MinPMA, *MaxPMA;
1854 isl_pw_aff *LastDimAff;
1855 isl_aff *OneAff;
1856 unsigned Pos;
1857
1858 // Restrict the number of parameters involved in the access as the lexmin/
1859 // lexmax computation will take too long if this number is high.
1860 //
1861 // Experiments with a simple test case using an i7 4800MQ:
1862 //
1863 // #Parameters involved | Time (in sec)
1864 // 6 | 0.01
1865 // 7 | 0.04
1866 // 8 | 0.12
1867 // 9 | 0.40
1868 // 10 | 1.54
1869 // 11 | 6.78
1870 // 12 | 30.38
1871 //
1872 if (isl_set_n_param(Set) > RunTimeChecksMaxParameters) {
1873 unsigned InvolvedParams = 0;
1874 for (unsigned u = 0, e = isl_set_n_param(Set); u < e; u++)
1875 if (isl_set_involves_dims(Set, isl_dim_param, u, 1))
1876 InvolvedParams++;
1877
1878 if (InvolvedParams > RunTimeChecksMaxParameters) {
1879 isl_set_free(Set);
1880 return isl_stat_error;
1881 }
1882 }
1883
1884 Set = isl_set_remove_divs(Set);
1885
1886 MinPMA = isl_set_lexmin_pw_multi_aff(isl_set_copy(Set));
1887 MaxPMA = isl_set_lexmax_pw_multi_aff(isl_set_copy(Set));
1888
1889 MinPMA = isl_pw_multi_aff_coalesce(MinPMA);
1890 MaxPMA = isl_pw_multi_aff_coalesce(MaxPMA);
1891
1892 // Adjust the last dimension of the maximal access by one as we want to
1893 // enclose the accessed memory region by MinPMA and MaxPMA. The pointer
1894 // we test during code generation might now point after the end of the
1895 // allocated array but we will never dereference it anyway.
1896 assert(isl_pw_multi_aff_dim(MaxPMA, isl_dim_out) &&((isl_pw_multi_aff_dim(MaxPMA, isl_dim_out) && "Assumed at least one output dimension"
) ? static_cast<void> (0) : __assert_fail ("isl_pw_multi_aff_dim(MaxPMA, isl_dim_out) && \"Assumed at least one output dimension\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 1897, __PRETTY_FUNCTION__))
1897 "Assumed at least one output dimension")((isl_pw_multi_aff_dim(MaxPMA, isl_dim_out) && "Assumed at least one output dimension"
) ? static_cast<void> (0) : __assert_fail ("isl_pw_multi_aff_dim(MaxPMA, isl_dim_out) && \"Assumed at least one output dimension\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 1897, __PRETTY_FUNCTION__))
;
1898 Pos = isl_pw_multi_aff_dim(MaxPMA, isl_dim_out) - 1;
1899 LastDimAff = isl_pw_multi_aff_get_pw_aff(MaxPMA, Pos);
1900 OneAff = isl_aff_zero_on_domain(
1901 isl_local_space_from_space(isl_pw_aff_get_domain_space(LastDimAff)));
1902 OneAff = isl_aff_add_constant_si(OneAff, 1);
1903 LastDimAff = isl_pw_aff_add(LastDimAff, isl_pw_aff_from_aff(OneAff));
1904 MaxPMA = isl_pw_multi_aff_set_pw_aff(MaxPMA, Pos, LastDimAff);
1905
1906 MinMaxAccesses->push_back(std::make_pair(MinPMA, MaxPMA));
1907
1908 isl_set_free(Set);
1909 return isl_stat_ok;
1910}
1911
1912static __isl_give isl_set *getAccessDomain(MemoryAccess *MA) {
1913 isl_set *Domain = MA->getStatement()->getDomain();
1914 Domain = isl_set_project_out(Domain, isl_dim_set, 0, isl_set_n_dim(Domain));
1915 return isl_set_reset_tuple_id(Domain);
1916}
1917
1918/// @brief Wrapper function to calculate minimal/maximal accesses to each array.
1919static bool calculateMinMaxAccess(__isl_take isl_union_map *Accesses,
1920 __isl_take isl_union_set *Domains,
1921 Scop::MinMaxVectorTy &MinMaxAccesses) {
1922
1923 Accesses = isl_union_map_intersect_domain(Accesses, Domains);
1924 isl_union_set *Locations = isl_union_map_range(Accesses);
1925 Locations = isl_union_set_coalesce(Locations);
1926 Locations = isl_union_set_detect_equalities(Locations);
1927 bool Valid = (0 == isl_union_set_foreach_set(Locations, buildMinMaxAccess,
1928 &MinMaxAccesses));
1929 isl_union_set_free(Locations);
1930 return Valid;
1931}
1932
1933/// @brief Helper to treat non-affine regions and basic blocks the same.
1934///
1935///{
1936
1937/// @brief Return the block that is the representing block for @p RN.
1938static inline BasicBlock *getRegionNodeBasicBlock(RegionNode *RN) {
1939 return RN->isSubRegion() ? RN->getNodeAs<Region>()->getEntry()
1940 : RN->getNodeAs<BasicBlock>();
1941}
1942
1943/// @brief Return the @p idx'th block that is executed after @p RN.
1944static inline BasicBlock *
1945getRegionNodeSuccessor(RegionNode *RN, TerminatorInst *TI, unsigned idx) {
1946 if (RN->isSubRegion()) {
1947 assert(idx == 0)((idx == 0) ? static_cast<void> (0) : __assert_fail ("idx == 0"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 1947, __PRETTY_FUNCTION__))
;
1948 return RN->getNodeAs<Region>()->getExit();
1949 }
1950 return TI->getSuccessor(idx);
1951}
1952
1953/// @brief Return the smallest loop surrounding @p RN.
1954static inline Loop *getRegionNodeLoop(RegionNode *RN, LoopInfo &LI) {
1955 if (!RN->isSubRegion())
1956 return LI.getLoopFor(RN->getNodeAs<BasicBlock>());
1957
1958 Region *NonAffineSubRegion = RN->getNodeAs<Region>();
1959 Loop *L = LI.getLoopFor(NonAffineSubRegion->getEntry());
1960 while (L && NonAffineSubRegion->contains(L))
1961 L = L->getParentLoop();
1962 return L;
1963}
1964
1965static inline unsigned getNumBlocksInRegionNode(RegionNode *RN) {
1966 if (!RN->isSubRegion())
1967 return 1;
1968
1969 unsigned NumBlocks = 0;
1970 Region *R = RN->getNodeAs<Region>();
1971 for (auto BB : R->blocks()) {
1972 (void)BB;
1973 NumBlocks++;
1974 }
1975 return NumBlocks;
1976}
1977
1978static bool containsErrorBlock(RegionNode *RN, const Region &R, LoopInfo &LI,
1979 const DominatorTree &DT) {
1980 if (!RN->isSubRegion())
1981 return isErrorBlock(*RN->getNodeAs<BasicBlock>(), R, LI, DT);
1982 for (BasicBlock *BB : RN->getNodeAs<Region>()->blocks())
1983 if (isErrorBlock(*BB, R, LI, DT))
1984 return true;
1985 return false;
1986}
1987
1988///}
1989
1990static inline __isl_give isl_set *addDomainDimId(__isl_take isl_set *Domain,
1991 unsigned Dim, Loop *L) {
1992 Domain = isl_set_lower_bound_si(Domain, isl_dim_set, Dim, -1);
1993 isl_id *DimId =
1994 isl_id_alloc(isl_set_get_ctx(Domain), nullptr, static_cast<void *>(L));
1995 return isl_set_set_dim_id(Domain, isl_dim_set, Dim, DimId);
1996}
1997
1998isl_set *Scop::getDomainConditions(ScopStmt *Stmt) {
1999 BasicBlock *BB = Stmt->isBlockStmt() ? Stmt->getBasicBlock()
2000 : Stmt->getRegion()->getEntry();
2001 return getDomainConditions(BB);
2002}
2003
2004isl_set *Scop::getDomainConditions(BasicBlock *BB) {
2005 assert(DomainMap.count(BB) && "Requested BB did not have a domain")((DomainMap.count(BB) && "Requested BB did not have a domain"
) ? static_cast<void> (0) : __assert_fail ("DomainMap.count(BB) && \"Requested BB did not have a domain\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 2005, __PRETTY_FUNCTION__))
;
2006 return isl_set_copy(DomainMap[BB]);
2007}
2008
2009void Scop::removeErrorBlockDomains() {
2010 auto removeDomains = [this](BasicBlock *Start) {
2011 auto BBNode = DT.getNode(Start);
2012 for (auto ErrorChild : depth_first(BBNode)) {
2013 auto ErrorChildBlock = ErrorChild->getBlock();
2014 auto CurrentDomain = DomainMap[ErrorChildBlock];
2015 auto Empty = isl_set_empty(isl_set_get_space(CurrentDomain));
2016 DomainMap[ErrorChildBlock] = Empty;
2017 isl_set_free(CurrentDomain);
2018 }
2019 };
2020
2021 SmallVector<Region *, 4> Todo = {&R};
2022
2023 while (!Todo.empty()) {
2024 auto SubRegion = Todo.back();
2025 Todo.pop_back();
2026
2027 if (!SD.isNonAffineSubRegion(SubRegion, &getRegion())) {
2028 for (auto &Child : *SubRegion)
2029 Todo.push_back(Child.get());
2030 continue;
2031 }
2032 if (containsErrorBlock(SubRegion->getNode(), getRegion(), LI, DT))
2033 removeDomains(SubRegion->getEntry());
2034 }
2035
2036 for (auto BB : R.blocks())
2037 if (isErrorBlock(*BB, R, LI, DT))
2038 removeDomains(BB);
2039}
2040
2041void Scop::buildDomains(Region *R) {
2042
2043 auto *EntryBB = R->getEntry();
2044 int LD = getRelativeLoopDepth(LI.getLoopFor(EntryBB));
2045 auto *S = isl_set_universe(isl_space_set_alloc(getIslCtx(), 0, LD + 1));
2046
2047 Loop *L = LI.getLoopFor(EntryBB);
2048 while (LD-- >= 0) {
2049 S = addDomainDimId(S, LD + 1, L);
2050 L = L->getParentLoop();
2051 }
2052
2053 DomainMap[EntryBB] = S;
2054
2055 if (SD.isNonAffineSubRegion(R, R))
2056 return;
2057
2058 buildDomainsWithBranchConstraints(R);
2059 propagateDomainConstraints(R);
2060
2061 // Error blocks and blocks dominated by them have been assumed to never be
2062 // executed. Representing them in the Scop does not add any value. In fact,
2063 // it is likely to cause issues during construction of the ScopStmts. The
2064 // contents of error blocks have not been verfied to be expressible and
2065 // will cause problems when building up a ScopStmt for them.
2066 // Furthermore, basic blocks dominated by error blocks may reference
2067 // instructions in the error block which, if the error block is not modeled,
2068 // can themselves not be constructed properly.
2069 removeErrorBlockDomains();
2070}
2071
2072void Scop::buildDomainsWithBranchConstraints(Region *R) {
2073 RegionInfo &RI = *R->getRegionInfo();
2074
2075 // To create the domain for each block in R we iterate over all blocks and
2076 // subregions in R and propagate the conditions under which the current region
2077 // element is executed. To this end we iterate in reverse post order over R as
2078 // it ensures that we first visit all predecessors of a region node (either a
2079 // basic block or a subregion) before we visit the region node itself.
2080 // Initially, only the domain for the SCoP region entry block is set and from
2081 // there we propagate the current domain to all successors, however we add the
2082 // condition that the successor is actually executed next.
2083 // As we are only interested in non-loop carried constraints here we can
2084 // simply skip loop back edges.
2085
2086 ReversePostOrderTraversal<Region *> RTraversal(R);
2087 for (auto *RN : RTraversal) {
2088
2089 // Recurse for affine subregions but go on for basic blocks and non-affine
2090 // subregions.
2091 if (RN->isSubRegion()) {
2092 Region *SubRegion = RN->getNodeAs<Region>();
2093 if (!SD.isNonAffineSubRegion(SubRegion, &getRegion())) {
2094 buildDomainsWithBranchConstraints(SubRegion);
2095 continue;
2096 }
2097 }
2098
2099 if (containsErrorBlock(RN, getRegion(), LI, DT))
2100 HasErrorBlock = true;
2101
2102 BasicBlock *BB = getRegionNodeBasicBlock(RN);
2103 TerminatorInst *TI = BB->getTerminator();
2104
2105 if (isa<UnreachableInst>(TI))
2106 continue;
2107
2108 isl_set *Domain = DomainMap.lookup(BB);
2109 if (!Domain) {
2110 DEBUG(dbgs() << "\tSkip: " << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("polly-scops")) { dbgs() << "\tSkip: " << BB->
getName() << ", it is only reachable from error blocks.\n"
; } } while (0)
2111 << ", it is only reachable from error blocks.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("polly-scops")) { dbgs() << "\tSkip: " << BB->
getName() << ", it is only reachable from error blocks.\n"
; } } while (0)
;
2112 continue;
2113 }
2114
2115 DEBUG(dbgs() << "\tVisit: " << BB->getName() << " : " << Domain << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("polly-scops")) { dbgs() << "\tVisit: " << BB->
getName() << " : " << Domain << "\n"; } } while
(0)
;
2116
2117 Loop *BBLoop = getRegionNodeLoop(RN, LI);
2118 int BBLoopDepth = getRelativeLoopDepth(BBLoop);
2119
2120 // Build the condition sets for the successor nodes of the current region
2121 // node. If it is a non-affine subregion we will always execute the single
2122 // exit node, hence the single entry node domain is the condition set. For
2123 // basic blocks we use the helper function buildConditionSets.
2124 SmallVector<isl_set *, 8> ConditionSets;
2125 if (RN->isSubRegion())
2126 ConditionSets.push_back(isl_set_copy(Domain));
2127 else
2128 buildConditionSets(*this, TI, BBLoop, Domain, ConditionSets);
2129
2130 // Now iterate over the successors and set their initial domain based on
2131 // their condition set. We skip back edges here and have to be careful when
2132 // we leave a loop not to keep constraints over a dimension that doesn't
2133 // exist anymore.
2134 assert(RN->isSubRegion() || TI->getNumSuccessors() == ConditionSets.size())((RN->isSubRegion() || TI->getNumSuccessors() == ConditionSets
.size()) ? static_cast<void> (0) : __assert_fail ("RN->isSubRegion() || TI->getNumSuccessors() == ConditionSets.size()"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 2134, __PRETTY_FUNCTION__))
;
2135 for (unsigned u = 0, e = ConditionSets.size(); u < e; u++) {
2136 isl_set *CondSet = ConditionSets[u];
2137 BasicBlock *SuccBB = getRegionNodeSuccessor(RN, TI, u);
2138
2139 // Skip back edges.
2140 if (DT.dominates(SuccBB, BB)) {
2141 isl_set_free(CondSet);
2142 continue;
2143 }
2144
2145 // Do not adjust the number of dimensions if we enter a boxed loop or are
2146 // in a non-affine subregion or if the surrounding loop stays the same.
2147 Loop *SuccBBLoop = LI.getLoopFor(SuccBB);
2148 Region *SuccRegion = RI.getRegionFor(SuccBB);
2149 if (SD.isNonAffineSubRegion(SuccRegion, &getRegion()))
2150 while (SuccBBLoop && SuccRegion->contains(SuccBBLoop))
2151 SuccBBLoop = SuccBBLoop->getParentLoop();
2152
2153 if (BBLoop != SuccBBLoop) {
2154
2155 // Check if the edge to SuccBB is a loop entry or exit edge. If so
2156 // adjust the dimensionality accordingly. Lastly, if we leave a loop
2157 // and enter a new one we need to drop the old constraints.
2158 int SuccBBLoopDepth = getRelativeLoopDepth(SuccBBLoop);
2159 unsigned LoopDepthDiff = std::abs(BBLoopDepth - SuccBBLoopDepth);
2160 if (BBLoopDepth > SuccBBLoopDepth) {
2161 CondSet = isl_set_project_out(CondSet, isl_dim_set,
2162 isl_set_n_dim(CondSet) - LoopDepthDiff,
2163 LoopDepthDiff);
2164 } else if (SuccBBLoopDepth > BBLoopDepth) {
2165 assert(LoopDepthDiff == 1)((LoopDepthDiff == 1) ? static_cast<void> (0) : __assert_fail
("LoopDepthDiff == 1", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 2165, __PRETTY_FUNCTION__))
;
2166 CondSet = isl_set_add_dims(CondSet, isl_dim_set, 1);
2167 CondSet = addDomainDimId(CondSet, SuccBBLoopDepth, SuccBBLoop);
2168 } else if (BBLoopDepth >= 0) {
2169 assert(LoopDepthDiff <= 1)((LoopDepthDiff <= 1) ? static_cast<void> (0) : __assert_fail
("LoopDepthDiff <= 1", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 2169, __PRETTY_FUNCTION__))
;
2170 CondSet = isl_set_project_out(CondSet, isl_dim_set, BBLoopDepth, 1);
2171 CondSet = isl_set_add_dims(CondSet, isl_dim_set, 1);
2172 CondSet = addDomainDimId(CondSet, SuccBBLoopDepth, SuccBBLoop);
2173 }
2174 }
2175
2176 // Set the domain for the successor or merge it with an existing domain in
2177 // case there are multiple paths (without loop back edges) to the
2178 // successor block.
2179 isl_set *&SuccDomain = DomainMap[SuccBB];
2180 if (!SuccDomain)
2181 SuccDomain = CondSet;
2182 else
2183 SuccDomain = isl_set_union(SuccDomain, CondSet);
2184
2185 SuccDomain = isl_set_coalesce(SuccDomain);
2186 if (isl_set_n_basic_set(SuccDomain) > MaxConjunctsInDomain) {
2187 auto *Empty = isl_set_empty(isl_set_get_space(SuccDomain));
2188 isl_set_free(SuccDomain);
2189 SuccDomain = Empty;
2190 invalidate(ERROR_DOMAINCONJUNCTS, DebugLoc());
2191 }
2192 DEBUG(dbgs() << "\tSet SuccBB: " << SuccBB->getName() << " : "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("polly-scops")) { dbgs() << "\tSet SuccBB: " << SuccBB
->getName() << " : " << SuccDomain << "\n"
; } } while (0)
2193 << SuccDomain << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("polly-scops")) { dbgs() << "\tSet SuccBB: " << SuccBB
->getName() << " : " << SuccDomain << "\n"
; } } while (0)
;
2194 }
2195 }
2196}
2197
2198/// @brief Return the domain for @p BB wrt @p DomainMap.
2199///
2200/// This helper function will lookup @p BB in @p DomainMap but also handle the
2201/// case where @p BB is contained in a non-affine subregion using the region
2202/// tree obtained by @p RI.
2203static __isl_give isl_set *
2204getDomainForBlock(BasicBlock *BB, DenseMap<BasicBlock *, isl_set *> &DomainMap,
2205 RegionInfo &RI) {
2206 auto DIt = DomainMap.find(BB);
2207 if (DIt != DomainMap.end())
2208 return isl_set_copy(DIt->getSecond());
2209
2210 Region *R = RI.getRegionFor(BB);
2211 while (R->getEntry() == BB)
2212 R = R->getParent();
2213 return getDomainForBlock(R->getEntry(), DomainMap, RI);
2214}
2215
2216void Scop::propagateDomainConstraints(Region *R) {
2217 // Iterate over the region R and propagate the domain constrains from the
2218 // predecessors to the current node. In contrast to the
2219 // buildDomainsWithBranchConstraints function, this one will pull the domain
2220 // information from the predecessors instead of pushing it to the successors.
2221 // Additionally, we assume the domains to be already present in the domain
2222 // map here. However, we iterate again in reverse post order so we know all
2223 // predecessors have been visited before a block or non-affine subregion is
2224 // visited.
2225
2226 // The set of boxed loops (loops in non-affine subregions) for this SCoP.
2227 auto &BoxedLoops = *SD.getBoxedLoops(&getRegion());
2228
2229 ReversePostOrderTraversal<Region *> RTraversal(R);
2230 for (auto *RN : RTraversal) {
2231
2232 // Recurse for affine subregions but go on for basic blocks and non-affine
2233 // subregions.
2234 if (RN->isSubRegion()) {
2235 Region *SubRegion = RN->getNodeAs<Region>();
2236 if (!SD.isNonAffineSubRegion(SubRegion, &getRegion())) {
2237 propagateDomainConstraints(SubRegion);
2238 continue;
2239 }
2240 }
2241
2242 // Get the domain for the current block and check if it was initialized or
2243 // not. The only way it was not is if this block is only reachable via error
2244 // blocks, thus will not be executed under the assumptions we make. Such
2245 // blocks have to be skipped as their predecessors might not have domains
2246 // either. It would not benefit us to compute the domain anyway, only the
2247 // domains of the error blocks that are reachable from non-error blocks
2248 // are needed to generate assumptions.
2249 BasicBlock *BB = getRegionNodeBasicBlock(RN);
2250 isl_set *&Domain = DomainMap[BB];
2251 if (!Domain) {
2252 DEBUG(dbgs() << "\tSkip: " << BB->getName()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("polly-scops")) { dbgs() << "\tSkip: " << BB->
getName() << ", it is only reachable from error blocks.\n"
; } } while (0)
2253 << ", it is only reachable from error blocks.\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("polly-scops")) { dbgs() << "\tSkip: " << BB->
getName() << ", it is only reachable from error blocks.\n"
; } } while (0)
;
2254 DomainMap.erase(BB);
2255 continue;
2256 }
2257 DEBUG(dbgs() << "\tVisit: " << BB->getName() << " : " << Domain << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("polly-scops")) { dbgs() << "\tVisit: " << BB->
getName() << " : " << Domain << "\n"; } } while
(0)
;
2258
2259 Loop *BBLoop = getRegionNodeLoop(RN, LI);
2260 int BBLoopDepth = getRelativeLoopDepth(BBLoop);
2261
2262 isl_set *PredDom = isl_set_empty(isl_set_get_space(Domain));
2263 for (auto *PredBB : predecessors(BB)) {
2264
2265 // Skip backedges
2266 if (DT.dominates(BB, PredBB))
2267 continue;
2268
2269 isl_set *PredBBDom = nullptr;
2270
2271 // Handle the SCoP entry block with its outside predecessors.
2272 if (!getRegion().contains(PredBB))
2273 PredBBDom = isl_set_universe(isl_set_get_space(PredDom));
2274
2275 if (!PredBBDom) {
2276 // Determine the loop depth of the predecessor and adjust its domain to
2277 // the domain of the current block. This can mean we have to:
2278 // o) Drop a dimension if this block is the exit of a loop, not the
2279 // header of a new loop and the predecessor was part of the loop.
2280 // o) Add an unconstrainted new dimension if this block is the header
2281 // of a loop and the predecessor is not part of it.
2282 // o) Drop the information about the innermost loop dimension when the
2283 // predecessor and the current block are surrounded by different
2284 // loops in the same depth.
2285 PredBBDom = getDomainForBlock(PredBB, DomainMap, *R->getRegionInfo());
2286 Loop *PredBBLoop = LI.getLoopFor(PredBB);
2287 while (BoxedLoops.count(PredBBLoop))
2288 PredBBLoop = PredBBLoop->getParentLoop();
2289
2290 int PredBBLoopDepth = getRelativeLoopDepth(PredBBLoop);
2291 unsigned LoopDepthDiff = std::abs(BBLoopDepth - PredBBLoopDepth);
2292 if (BBLoopDepth < PredBBLoopDepth)
2293 PredBBDom = isl_set_project_out(
2294 PredBBDom, isl_dim_set, isl_set_n_dim(PredBBDom) - LoopDepthDiff,
2295 LoopDepthDiff);
2296 else if (PredBBLoopDepth < BBLoopDepth) {
2297 assert(LoopDepthDiff == 1)((LoopDepthDiff == 1) ? static_cast<void> (0) : __assert_fail
("LoopDepthDiff == 1", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 2297, __PRETTY_FUNCTION__))
;
2298 PredBBDom = isl_set_add_dims(PredBBDom, isl_dim_set, 1);
2299 } else if (BBLoop != PredBBLoop && BBLoopDepth >= 0) {
2300 assert(LoopDepthDiff <= 1)((LoopDepthDiff <= 1) ? static_cast<void> (0) : __assert_fail
("LoopDepthDiff <= 1", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 2300, __PRETTY_FUNCTION__))
;
2301 PredBBDom = isl_set_drop_constraints_involving_dims(
2302 PredBBDom, isl_dim_set, BBLoopDepth, 1);
2303 }
2304 }
2305
2306 PredDom = isl_set_union(PredDom, PredBBDom);
2307 }
2308
2309 // Under the union of all predecessor conditions we can reach this block.
2310 Domain = isl_set_coalesce(isl_set_intersect(Domain, PredDom));
2311
2312 if (BBLoop && BBLoop->getHeader() == BB && getRegion().contains(BBLoop))
2313 addLoopBoundsToHeaderDomain(BBLoop);
2314
2315 // Add assumptions for error blocks.
2316 if (containsErrorBlock(RN, getRegion(), LI, DT)) {
2317 IsOptimized = true;
2318 isl_set *DomPar = isl_set_params(isl_set_copy(Domain));
2319 addAssumption(ERRORBLOCK, isl_set_complement(DomPar),
2320 BB->getTerminator()->getDebugLoc());
2321 }
2322 }
2323}
2324
2325/// @brief Create a map from SetSpace -> SetSpace where the dimensions @p Dim
2326/// is incremented by one and all other dimensions are equal, e.g.,
2327/// [i0, i1, i2, i3] -> [i0, i1, i2 + 1, i3]
2328/// if @p Dim is 2 and @p SetSpace has 4 dimensions.
2329static __isl_give isl_map *
2330createNextIterationMap(__isl_take isl_space *SetSpace, unsigned Dim) {
2331 auto *MapSpace = isl_space_map_from_set(SetSpace);
2332 auto *NextIterationMap = isl_map_universe(isl_space_copy(MapSpace));
2333 for (unsigned u = 0; u < isl_map_n_in(NextIterationMap); u++)
2334 if (u != Dim)
2335 NextIterationMap =
2336 isl_map_equate(NextIterationMap, isl_dim_in, u, isl_dim_out, u);
2337 auto *C = isl_constraint_alloc_equality(isl_local_space_from_space(MapSpace));
2338 C = isl_constraint_set_constant_si(C, 1);
2339 C = isl_constraint_set_coefficient_si(C, isl_dim_in, Dim, 1);
2340 C = isl_constraint_set_coefficient_si(C, isl_dim_out, Dim, -1);
2341 NextIterationMap = isl_map_add_constraint(NextIterationMap, C);
2342 return NextIterationMap;
2343}
2344
2345void Scop::addLoopBoundsToHeaderDomain(Loop *L) {
2346 int LoopDepth = getRelativeLoopDepth(L);
2347 assert(LoopDepth >= 0 && "Loop in region should have at least depth one")((LoopDepth >= 0 && "Loop in region should have at least depth one"
) ? static_cast<void> (0) : __assert_fail ("LoopDepth >= 0 && \"Loop in region should have at least depth one\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 2347, __PRETTY_FUNCTION__))
;
2348
2349 BasicBlock *HeaderBB = L->getHeader();
2350 assert(DomainMap.count(HeaderBB))((DomainMap.count(HeaderBB)) ? static_cast<void> (0) : __assert_fail
("DomainMap.count(HeaderBB)", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 2350, __PRETTY_FUNCTION__))
;
2351 isl_set *&HeaderBBDom = DomainMap[HeaderBB];
2352
2353 isl_map *NextIterationMap =
2354 createNextIterationMap(isl_set_get_space(HeaderBBDom), LoopDepth);
2355
2356 isl_set *UnionBackedgeCondition =
2357 isl_set_empty(isl_set_get_space(HeaderBBDom));
2358
2359 SmallVector<llvm::BasicBlock *, 4> LatchBlocks;
2360 L->getLoopLatches(LatchBlocks);
2361
2362 for (BasicBlock *LatchBB : LatchBlocks) {
2363
2364 // If the latch is only reachable via error statements we skip it.
2365 isl_set *LatchBBDom = DomainMap.lookup(LatchBB);
2366 if (!LatchBBDom)
2367 continue;
2368
2369 isl_set *BackedgeCondition = nullptr;
2370
2371 TerminatorInst *TI = LatchBB->getTerminator();
2372 BranchInst *BI = dyn_cast<BranchInst>(TI);
2373 if (BI && BI->isUnconditional())
2374 BackedgeCondition = isl_set_copy(LatchBBDom);
2375 else {
2376 SmallVector<isl_set *, 8> ConditionSets;
2377 int idx = BI->getSuccessor(0) != HeaderBB;
2378 buildConditionSets(*this, TI, L, LatchBBDom, ConditionSets);
2379
2380 // Free the non back edge condition set as we do not need it.
2381 isl_set_free(ConditionSets[1 - idx]);
2382
2383 BackedgeCondition = ConditionSets[idx];
2384 }
2385
2386 int LatchLoopDepth = getRelativeLoopDepth(LI.getLoopFor(LatchBB));
2387 assert(LatchLoopDepth >= LoopDepth)((LatchLoopDepth >= LoopDepth) ? static_cast<void> (
0) : __assert_fail ("LatchLoopDepth >= LoopDepth", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 2387, __PRETTY_FUNCTION__))
;
2388 BackedgeCondition =
2389 isl_set_project_out(BackedgeCondition, isl_dim_set, LoopDepth + 1,
2390 LatchLoopDepth - LoopDepth);
2391 UnionBackedgeCondition =
2392 isl_set_union(UnionBackedgeCondition, BackedgeCondition);
2393 }
2394
2395 isl_map *ForwardMap = isl_map_lex_le(isl_set_get_space(HeaderBBDom));
2396 for (int i = 0; i < LoopDepth; i++)
2397 ForwardMap = isl_map_equate(ForwardMap, isl_dim_in, i, isl_dim_out, i);
2398
2399 isl_set *UnionBackedgeConditionComplement =
2400 isl_set_complement(UnionBackedgeCondition);
2401 UnionBackedgeConditionComplement = isl_set_lower_bound_si(
2402 UnionBackedgeConditionComplement, isl_dim_set, LoopDepth, 0);
2403 UnionBackedgeConditionComplement =
2404 isl_set_apply(UnionBackedgeConditionComplement, ForwardMap);
2405 HeaderBBDom = isl_set_subtract(HeaderBBDom, UnionBackedgeConditionComplement);
2406 HeaderBBDom = isl_set_apply(HeaderBBDom, NextIterationMap);
2407
2408 auto Parts = partitionSetParts(HeaderBBDom, LoopDepth);
2409 HeaderBBDom = Parts.second;
2410
2411 // Check if there is a <nsw> tagged AddRec for this loop and if so do not add
2412 // the bounded assumptions to the context as they are already implied by the
2413 // <nsw> tag.
2414 if (Affinator.hasNSWAddRecForLoop(L)) {
2415 isl_set_free(Parts.first);
2416 return;
2417 }
2418
2419 isl_set *UnboundedCtx = isl_set_params(Parts.first);
2420 isl_set *BoundedCtx = isl_set_complement(UnboundedCtx);
2421 addAssumption(INFINITELOOP, BoundedCtx,
2422 HeaderBB->getTerminator()->getDebugLoc());
2423}
2424
2425void Scop::buildAliasChecks(AliasAnalysis &AA) {
2426 if (!PollyUseRuntimeAliasChecks)
2427 return;
2428
2429 if (buildAliasGroups(AA))
2430 return;
2431
2432 // If a problem occurs while building the alias groups we need to delete
2433 // this SCoP and pretend it wasn't valid in the first place. To this end
2434 // we make the assumed context infeasible.
2435 invalidate(ALIASING, DebugLoc());
2436
2437 DEBUG(dbgs() << "\n\nNOTE: Run time checks for " << getNameStr()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("polly-scops")) { dbgs() << "\n\nNOTE: Run time checks for "
<< getNameStr() << " could not be created as the number of parameters involved "
"is too high. The SCoP will be " "dismissed.\nUse:\n\t--polly-rtc-max-parameters=X\nto adjust "
"the maximal number of parameters but be advised that the " "compile time might increase exponentially.\n\n"
; } } while (0)
2438 << " could not be created as the number of parameters involved "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("polly-scops")) { dbgs() << "\n\nNOTE: Run time checks for "
<< getNameStr() << " could not be created as the number of parameters involved "
"is too high. The SCoP will be " "dismissed.\nUse:\n\t--polly-rtc-max-parameters=X\nto adjust "
"the maximal number of parameters but be advised that the " "compile time might increase exponentially.\n\n"
; } } while (0)
2439 "is too high. The SCoP will be "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("polly-scops")) { dbgs() << "\n\nNOTE: Run time checks for "
<< getNameStr() << " could not be created as the number of parameters involved "
"is too high. The SCoP will be " "dismissed.\nUse:\n\t--polly-rtc-max-parameters=X\nto adjust "
"the maximal number of parameters but be advised that the " "compile time might increase exponentially.\n\n"
; } } while (0)
2440 "dismissed.\nUse:\n\t--polly-rtc-max-parameters=X\nto adjust "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("polly-scops")) { dbgs() << "\n\nNOTE: Run time checks for "
<< getNameStr() << " could not be created as the number of parameters involved "
"is too high. The SCoP will be " "dismissed.\nUse:\n\t--polly-rtc-max-parameters=X\nto adjust "
"the maximal number of parameters but be advised that the " "compile time might increase exponentially.\n\n"
; } } while (0)
2441 "the maximal number of parameters but be advised that the "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("polly-scops")) { dbgs() << "\n\nNOTE: Run time checks for "
<< getNameStr() << " could not be created as the number of parameters involved "
"is too high. The SCoP will be " "dismissed.\nUse:\n\t--polly-rtc-max-parameters=X\nto adjust "
"the maximal number of parameters but be advised that the " "compile time might increase exponentially.\n\n"
; } } while (0)
2442 "compile time might increase exponentially.\n\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("polly-scops")) { dbgs() << "\n\nNOTE: Run time checks for "
<< getNameStr() << " could not be created as the number of parameters involved "
"is too high. The SCoP will be " "dismissed.\nUse:\n\t--polly-rtc-max-parameters=X\nto adjust "
"the maximal number of parameters but be advised that the " "compile time might increase exponentially.\n\n"
; } } while (0)
;
2443}
2444
2445bool Scop::buildAliasGroups(AliasAnalysis &AA) {
2446 // To create sound alias checks we perform the following steps:
2447 // o) Use the alias analysis and an alias set tracker to build alias sets
2448 // for all memory accesses inside the SCoP.
2449 // o) For each alias set we then map the aliasing pointers back to the
2450 // memory accesses we know, thus obtain groups of memory accesses which
2451 // might alias.
2452 // o) We divide each group based on the domains of the minimal/maximal
2453 // accesses. That means two minimal/maximal accesses are only in a group
2454 // if their access domains intersect, otherwise they are in different
2455 // ones.
2456 // o) We partition each group into read only and non read only accesses.
2457 // o) For each group with more than one base pointer we then compute minimal
2458 // and maximal accesses to each array of a group in read only and non
2459 // read only partitions separately.
2460 using AliasGroupTy = SmallVector<MemoryAccess *, 4>;
2461
2462 AliasSetTracker AST(AA);
2463
2464 DenseMap<Value *, MemoryAccess *> PtrToAcc;
2465 DenseSet<Value *> HasWriteAccess;
2466 for (ScopStmt &Stmt : *this) {
2467
2468 // Skip statements with an empty domain as they will never be executed.
2469 isl_set *StmtDomain = Stmt.getDomain();
2470 bool StmtDomainEmpty = isl_set_is_empty(StmtDomain);
2471 isl_set_free(StmtDomain);
2472 if (StmtDomainEmpty)
2473 continue;
2474
2475 for (MemoryAccess *MA : Stmt) {
2476 if (MA->isScalarKind())
2477 continue;
2478 if (!MA->isRead())
2479 HasWriteAccess.insert(MA->getBaseAddr());
2480 Instruction *Acc = MA->getAccessInstruction();
2481 PtrToAcc[getPointerOperand(*Acc)] = MA;
2482 AST.add(Acc);
2483 }
2484 }
2485
2486 SmallVector<AliasGroupTy, 4> AliasGroups;
2487 for (AliasSet &AS : AST) {
2488 if (AS.isMustAlias() || AS.isForwardingAliasSet())
2489 continue;
2490 AliasGroupTy AG;
2491 for (auto PR : AS)
2492 AG.push_back(PtrToAcc[PR.getValue()]);
2493 assert(AG.size() > 1 &&((AG.size() > 1 && "Alias groups should contain at least two accesses"
) ? static_cast<void> (0) : __assert_fail ("AG.size() > 1 && \"Alias groups should contain at least two accesses\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 2494, __PRETTY_FUNCTION__))
2494 "Alias groups should contain at least two accesses")((AG.size() > 1 && "Alias groups should contain at least two accesses"
) ? static_cast<void> (0) : __assert_fail ("AG.size() > 1 && \"Alias groups should contain at least two accesses\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 2494, __PRETTY_FUNCTION__))
;
2495 AliasGroups.push_back(std::move(AG));
2496 }
2497
2498 // Split the alias groups based on their domain.
2499 for (unsigned u = 0; u < AliasGroups.size(); u++) {
2500 AliasGroupTy NewAG;
2501 AliasGroupTy &AG = AliasGroups[u];
2502 AliasGroupTy::iterator AGI = AG.begin();
2503 isl_set *AGDomain = getAccessDomain(*AGI);
2504 while (AGI != AG.end()) {
2505 MemoryAccess *MA = *AGI;
2506 isl_set *MADomain = getAccessDomain(MA);
2507 if (isl_set_is_disjoint(AGDomain, MADomain)) {
2508 NewAG.push_back(MA);
2509 AGI = AG.erase(AGI);
2510 isl_set_free(MADomain);
2511 } else {
2512 AGDomain = isl_set_union(AGDomain, MADomain);
2513 AGI++;
2514 }
2515 }
2516 if (NewAG.size() > 1)
2517 AliasGroups.push_back(std::move(NewAG));
2518 isl_set_free(AGDomain);
2519 }
2520
2521 auto &F = *getRegion().getEntry()->getParent();
2522 MapVector<const Value *, SmallPtrSet<MemoryAccess *, 8>> ReadOnlyPairs;
2523 SmallPtrSet<const Value *, 4> NonReadOnlyBaseValues;
2524 for (AliasGroupTy &AG : AliasGroups) {
2525 NonReadOnlyBaseValues.clear();
2526 ReadOnlyPairs.clear();
2527
2528 if (AG.size() < 2) {
2529 AG.clear();
2530 continue;
2531 }
2532
2533 for (auto II = AG.begin(); II != AG.end();) {
2534 emitOptimizationRemarkAnalysis(
2535 F.getContext(), DEBUG_TYPE"polly-scops", F,
2536 (*II)->getAccessInstruction()->getDebugLoc(),
2537 "Possibly aliasing pointer, use restrict keyword.");
2538
2539 Value *BaseAddr = (*II)->getBaseAddr();
2540 if (HasWriteAccess.count(BaseAddr)) {
2541 NonReadOnlyBaseValues.insert(BaseAddr);
2542 II++;
2543 } else {
2544 ReadOnlyPairs[BaseAddr].insert(*II);
2545 II = AG.erase(II);
2546 }
2547 }
2548
2549 // If we don't have read only pointers check if there are at least two
2550 // non read only pointers, otherwise clear the alias group.
2551 if (ReadOnlyPairs.empty() && NonReadOnlyBaseValues.size() <= 1) {
2552 AG.clear();
2553 continue;
2554 }
2555
2556 // If we don't have non read only pointers clear the alias group.
2557 if (NonReadOnlyBaseValues.empty()) {
2558 AG.clear();
2559 continue;
2560 }
2561
2562 // Calculate minimal and maximal accesses for non read only accesses.
2563 MinMaxAliasGroups.emplace_back();
2564 MinMaxVectorPairTy &pair = MinMaxAliasGroups.back();
2565 MinMaxVectorTy &MinMaxAccessesNonReadOnly = pair.first;
2566 MinMaxVectorTy &MinMaxAccessesReadOnly = pair.second;
2567 MinMaxAccessesNonReadOnly.reserve(AG.size());
2568
2569 isl_union_map *Accesses = isl_union_map_empty(getParamSpace());
2570
2571 // AG contains only non read only accesses.
2572 for (MemoryAccess *MA : AG)
2573 Accesses = isl_union_map_add_map(Accesses, MA->getAccessRelation());
2574
2575 bool Valid = calculateMinMaxAccess(Accesses, getDomains(),
2576 MinMaxAccessesNonReadOnly);
2577
2578 // Bail out if the number of values we need to compare is too large.
2579 // This is important as the number of comparisions grows quadratically with
2580 // the number of values we need to compare.
2581 if (!Valid || (MinMaxAccessesNonReadOnly.size() + !ReadOnlyPairs.empty() >
2582 RunTimeChecksMaxArraysPerGroup))
2583 return false;
2584
2585 // Calculate minimal and maximal accesses for read only accesses.
2586 MinMaxAccessesReadOnly.reserve(ReadOnlyPairs.size());
2587 Accesses = isl_union_map_empty(getParamSpace());
2588
2589 for (const auto &ReadOnlyPair : ReadOnlyPairs)
2590 for (MemoryAccess *MA : ReadOnlyPair.second)
2591 Accesses = isl_union_map_add_map(Accesses, MA->getAccessRelation());
2592
2593 Valid =
2594 calculateMinMaxAccess(Accesses, getDomains(), MinMaxAccessesReadOnly);
2595
2596 if (!Valid)
2597 return false;
2598 }
2599
2600 return true;
2601}
2602
2603/// @brief Get the smallest loop that contains @p R but is not in @p R.
2604static Loop *getLoopSurroundingRegion(Region &R, LoopInfo &LI) {
2605 // Start with the smallest loop containing the entry and expand that
2606 // loop until it contains all blocks in the region. If there is a loop
2607 // containing all blocks in the region check if it is itself contained
2608 // and if so take the parent loop as it will be the smallest containing
2609 // the region but not contained by it.
2610 Loop *L = LI.getLoopFor(R.getEntry());
2611 while (L) {
2612 bool AllContained = true;
2613 for (auto *BB : R.blocks())
2614 AllContained &= L->contains(BB);
2615 if (AllContained)
2616 break;
2617 L = L->getParentLoop();
2618 }
2619
2620 return L ? (R.contains(L) ? L->getParentLoop() : L) : nullptr;
2621}
2622
2623static unsigned getMaxLoopDepthInRegion(const Region &R, LoopInfo &LI,
2624 ScopDetection &SD) {
2625
2626 const ScopDetection::BoxedLoopsSetTy *BoxedLoops = SD.getBoxedLoops(&R);
2627
2628 unsigned MinLD = INT_MAX2147483647, MaxLD = 0;
2629 for (BasicBlock *BB : R.blocks()) {
2630 if (Loop *L = LI.getLoopFor(BB)) {
2631 if (!R.contains(L))
2632 continue;
2633 if (BoxedLoops && BoxedLoops->count(L))
2634 continue;
2635 unsigned LD = L->getLoopDepth();
2636 MinLD = std::min(MinLD, LD);
2637 MaxLD = std::max(MaxLD, LD);
2638 }
2639 }
2640
2641 // Handle the case that there is no loop in the SCoP first.
2642 if (MaxLD == 0)
2643 return 1;
2644
2645 assert(MinLD >= 1 && "Minimal loop depth should be at least one")((MinLD >= 1 && "Minimal loop depth should be at least one"
) ? static_cast<void> (0) : __assert_fail ("MinLD >= 1 && \"Minimal loop depth should be at least one\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 2645, __PRETTY_FUNCTION__))
;
2646 assert(MaxLD >= MinLD &&((MaxLD >= MinLD && "Maximal loop depth was smaller than mininaml loop depth?"
) ? static_cast<void> (0) : __assert_fail ("MaxLD >= MinLD && \"Maximal loop depth was smaller than mininaml loop depth?\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 2647, __PRETTY_FUNCTION__))
2647 "Maximal loop depth was smaller than mininaml loop depth?")((MaxLD >= MinLD && "Maximal loop depth was smaller than mininaml loop depth?"
) ? static_cast<void> (0) : __assert_fail ("MaxLD >= MinLD && \"Maximal loop depth was smaller than mininaml loop depth?\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 2647, __PRETTY_FUNCTION__))
;
2648 return MaxLD - MinLD + 1;
2649}
2650
2651Scop::Scop(Region &R, AccFuncMapType &AccFuncMap, ScopDetection &SD,
2652 ScalarEvolution &ScalarEvolution, DominatorTree &DT, LoopInfo &LI,
2653 isl_ctx *Context, unsigned MaxLoopDepth)
2654 : LI(LI), DT(DT), SE(&ScalarEvolution), SD(SD), R(R),
2655 AccFuncMap(AccFuncMap), IsOptimized(false),
2656 HasSingleExitEdge(R.getExitingBlock()), HasErrorBlock(false),
2657 MaxLoopDepth(MaxLoopDepth), IslCtx(Context), Context(nullptr),
2658 Affinator(this), AssumedContext(nullptr), BoundaryContext(nullptr),
2659 Schedule(nullptr) {}
2660
2661void Scop::init(AliasAnalysis &AA, AssumptionCache &AC) {
2662 buildContext();
2663 addUserAssumptions(AC);
2664 buildInvariantEquivalenceClasses();
2665
2666 buildDomains(&R);
2667
2668 // Remove empty and ignored statements.
2669 // Exit early in case there are no executable statements left in this scop.
2670 simplifySCoP(true);
2671 if (Stmts.empty())
2672 return;
2673
2674 // The ScopStmts now have enough information to initialize themselves.
2675 for (ScopStmt &Stmt : Stmts)
2676 Stmt.init();
2677
2678 buildSchedule();
2679
2680 if (isl_set_is_empty(AssumedContext))
2681 return;
2682
2683 updateAccessDimensionality();
2684 realignParams();
2685 addParameterBounds();
2686 addUserContext();
2687 buildBoundaryContext();
2688 simplifyContexts();
2689 buildAliasChecks(AA);
2690
2691 hoistInvariantLoads();
2692 simplifySCoP(false);
2693}
2694
2695Scop::~Scop() {
2696 isl_set_free(Context);
2697 isl_set_free(AssumedContext);
2698 isl_set_free(BoundaryContext);
2699 isl_schedule_free(Schedule);
2700
2701 for (auto It : DomainMap)
2702 isl_set_free(It.second);
2703
2704 // Free the alias groups
2705 for (MinMaxVectorPairTy &MinMaxAccessPair : MinMaxAliasGroups) {
2706 for (MinMaxAccessTy &MMA : MinMaxAccessPair.first) {
2707 isl_pw_multi_aff_free(MMA.first);
2708 isl_pw_multi_aff_free(MMA.second);
2709 }
2710 for (MinMaxAccessTy &MMA : MinMaxAccessPair.second) {
2711 isl_pw_multi_aff_free(MMA.first);
2712 isl_pw_multi_aff_free(MMA.second);
2713 }
2714 }
2715
2716 for (const auto &IAClass : InvariantEquivClasses)
2717 isl_set_free(std::get<2>(IAClass));
2718}
2719
2720void Scop::updateAccessDimensionality() {
2721 for (auto &Stmt : *this)
2722 for (auto &Access : Stmt)
2723 Access->updateDimensionality();
2724}
2725
2726void Scop::simplifySCoP(bool RemoveIgnoredStmts) {
2727 for (auto StmtIt = Stmts.begin(), StmtEnd = Stmts.end(); StmtIt != StmtEnd;) {
2728 ScopStmt &Stmt = *StmtIt;
2729 RegionNode *RN = Stmt.isRegionStmt()
2730 ? Stmt.getRegion()->getNode()
2731 : getRegion().getBBNode(Stmt.getBasicBlock());
2732
2733 bool RemoveStmt = StmtIt->isEmpty();
2734 if (!RemoveStmt)
2735 RemoveStmt = isl_set_is_empty(DomainMap[getRegionNodeBasicBlock(RN)]);
2736 if (!RemoveStmt)
2737 RemoveStmt = (RemoveIgnoredStmts && isIgnored(RN));
2738
2739 // Remove read only statements only after invariant loop hoisting.
2740 if (!RemoveStmt && !RemoveIgnoredStmts) {
2741 bool OnlyRead = true;
2742 for (MemoryAccess *MA : Stmt) {
2743 if (MA->isRead())
2744 continue;
2745
2746 OnlyRead = false;
2747 break;
2748 }
2749
2750 RemoveStmt = OnlyRead;
2751 }
2752
2753 if (RemoveStmt) {
2754 // Remove the statement because it is unnecessary.
2755 if (Stmt.isRegionStmt())
2756 for (BasicBlock *BB : Stmt.getRegion()->blocks())
2757 StmtMap.erase(BB);
2758 else
2759 StmtMap.erase(Stmt.getBasicBlock());
2760
2761 StmtIt = Stmts.erase(StmtIt);
2762 continue;
2763 }
2764
2765 StmtIt++;
2766 }
2767}
2768
2769const InvariantEquivClassTy *Scop::lookupInvariantEquivClass(Value *Val) const {
2770 LoadInst *LInst = dyn_cast<LoadInst>(Val);
2771 if (!LInst)
2772 return nullptr;
2773
2774 if (Value *Rep = InvEquivClassVMap.lookup(LInst))
2775 LInst = cast<LoadInst>(Rep);
2776
2777 const SCEV *PointerSCEV = SE->getSCEV(LInst->getPointerOperand());
2778 for (auto &IAClass : InvariantEquivClasses)
2779 if (PointerSCEV == std::get<0>(IAClass))
2780 return &IAClass;
2781
2782 return nullptr;
2783}
2784
2785void Scop::addInvariantLoads(ScopStmt &Stmt, MemoryAccessList &InvMAs) {
2786
2787 // Get the context under which the statement is executed.
2788 isl_set *DomainCtx = isl_set_params(Stmt.getDomain());
2789 DomainCtx = isl_set_remove_redundancies(DomainCtx);
2790 DomainCtx = isl_set_detect_equalities(DomainCtx);
2791 DomainCtx = isl_set_coalesce(DomainCtx);
2792
2793 // Project out all parameters that relate to loads in the statement. Otherwise
2794 // we could have cyclic dependences on the constraints under which the
2795 // hoisted loads are executed and we could not determine an order in which to
2796 // pre-load them. This happens because not only lower bounds are part of the
2797 // domain but also upper bounds.
2798 for (MemoryAccess *MA : InvMAs) {
2799 Instruction *AccInst = MA->getAccessInstruction();
2800 if (SE->isSCEVable(AccInst->getType())) {
2801 SetVector<Value *> Values;
2802 for (const SCEV *Parameter : Parameters) {
2803 Values.clear();
2804 findValues(Parameter, Values);
2805 if (!Values.count(AccInst))
2806 continue;
2807
2808 if (isl_id *ParamId = getIdForParam(Parameter)) {
2809 int Dim = isl_set_find_dim_by_id(DomainCtx, isl_dim_param, ParamId);
2810 DomainCtx = isl_set_eliminate(DomainCtx, isl_dim_param, Dim, 1);
2811 isl_id_free(ParamId);
2812 }
2813 }
2814 }
2815 }
2816
2817 for (MemoryAccess *MA : InvMAs) {
2818 // Check for another invariant access that accesses the same location as
2819 // MA and if found consolidate them. Otherwise create a new equivalence
2820 // class at the end of InvariantEquivClasses.
2821 LoadInst *LInst = cast<LoadInst>(MA->getAccessInstruction());
2822 const SCEV *PointerSCEV = SE->getSCEV(LInst->getPointerOperand());
2823
2824 bool Consolidated = false;
2825 for (auto &IAClass : InvariantEquivClasses) {
2826 if (PointerSCEV != std::get<0>(IAClass))
2827 continue;
2828
2829 Consolidated = true;
2830
2831 // Add MA to the list of accesses that are in this class.
2832 auto &MAs = std::get<1>(IAClass);
2833 MAs.push_front(MA);
2834
2835 // Unify the execution context of the class and this statement.
2836 isl_set *&IAClassDomainCtx = std::get<2>(IAClass);
2837 if (IAClassDomainCtx)
2838 IAClassDomainCtx = isl_set_coalesce(
2839 isl_set_union(IAClassDomainCtx, isl_set_copy(DomainCtx)));
2840 else
2841 IAClassDomainCtx = isl_set_copy(DomainCtx);
2842 break;
2843 }
2844
2845 if (Consolidated)
2846 continue;
2847
2848 // If we did not consolidate MA, thus did not find an equivalence class
2849 // for it, we create a new one.
2850 InvariantEquivClasses.emplace_back(PointerSCEV, MemoryAccessList{MA},
2851 isl_set_copy(DomainCtx));
2852 }
2853
2854 isl_set_free(DomainCtx);
2855}
2856
2857bool Scop::isHoistableAccess(MemoryAccess *Access,
2858 __isl_keep isl_union_map *Writes) {
2859 // TODO: Loads that are not loop carried, hence are in a statement with
2860 // zero iterators, are by construction invariant, though we
2861 // currently "hoist" them anyway. This is necessary because we allow
2862 // them to be treated as parameters (e.g., in conditions) and our code
2863 // generation would otherwise use the old value.
2864
2865 auto &Stmt = *Access->getStatement();
2866 BasicBlock *BB =
2867 Stmt.isBlockStmt() ? Stmt.getBasicBlock() : Stmt.getRegion()->getEntry();
2868
2869 if (Access->isScalarKind() || Access->isWrite() || !Access->isAffine())
2870 return false;
2871
2872 // Skip accesses that have an invariant base pointer which is defined but
2873 // not loaded inside the SCoP. This can happened e.g., if a readnone call
2874 // returns a pointer that is used as a base address. However, as we want
2875 // to hoist indirect pointers, we allow the base pointer to be defined in
2876 // the region if it is also a memory access. Each ScopArrayInfo object
2877 // that has a base pointer origin has a base pointer that is loaded and
2878 // that it is invariant, thus it will be hoisted too. However, if there is
2879 // no base pointer origin we check that the base pointer is defined
2880 // outside the region.
2881 const ScopArrayInfo *SAI = Access->getScopArrayInfo();
2882 while (auto *BasePtrOriginSAI = SAI->getBasePtrOriginSAI())
2883 SAI = BasePtrOriginSAI;
2884
2885 if (auto *BasePtrInst = dyn_cast<Instruction>(SAI->getBasePtr()))
2886 if (R.contains(BasePtrInst))
2887 return false;
2888
2889 // Skip accesses in non-affine subregions as they might not be executed
2890 // under the same condition as the entry of the non-affine subregion.
2891 if (BB != Access->getAccessInstruction()->getParent())
2892 return false;
2893
2894 isl_map *AccessRelation = Access->getAccessRelation();
2895
2896 // Skip accesses that have an empty access relation. These can be caused
2897 // by multiple offsets with a type cast in-between that cause the overall
2898 // byte offset to be not divisible by the new types sizes.
2899 if (isl_map_is_empty(AccessRelation)) {
2900 isl_map_free(AccessRelation);
2901 return false;
2902 }
2903
2904 if (isl_map_involves_dims(AccessRelation, isl_dim_in, 0,
2905 Stmt.getNumIterators())) {
2906 isl_map_free(AccessRelation);
2907 return false;
2908 }
2909
2910 AccessRelation = isl_map_intersect_domain(AccessRelation, Stmt.getDomain());
2911 isl_set *AccessRange = isl_map_range(AccessRelation);
2912
2913 isl_union_map *Written = isl_union_map_intersect_range(
2914 isl_union_map_copy(Writes), isl_union_set_from_set(AccessRange));
2915 bool IsWritten = !isl_union_map_is_empty(Written);
2916 isl_union_map_free(Written);
2917
2918 if (IsWritten)
2919 return false;
2920
2921 return true;
2922}
2923
2924void Scop::verifyInvariantLoads() {
2925 auto &RIL = *SD.getRequiredInvariantLoads(&getRegion());
2926 for (LoadInst *LI : RIL) {
2927 assert(LI && getRegion().contains(LI))((LI && getRegion().contains(LI)) ? static_cast<void
> (0) : __assert_fail ("LI && getRegion().contains(LI)"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 2927, __PRETTY_FUNCTION__))
;
2928 ScopStmt *Stmt = getStmtForBasicBlock(LI->getParent());
2929 if (Stmt && Stmt->getArrayAccessOrNULLFor(LI)) {
2930 invalidate(INVARIANTLOAD, LI->getDebugLoc());
2931 return;
2932 }
2933 }
2934}
2935
2936void Scop::hoistInvariantLoads() {
2937 isl_union_map *Writes = getWrites();
2938 for (ScopStmt &Stmt : *this) {
2939
2940 MemoryAccessList InvariantAccesses;
2941
2942 for (MemoryAccess *Access : Stmt)
2943 if (isHoistableAccess(Access, Writes))
2944 InvariantAccesses.push_front(Access);
2945
2946 // We inserted invariant accesses always in the front but need them to be
2947 // sorted in a "natural order". The statements are already sorted in reverse
2948 // post order and that suffices for the accesses too. The reason we require
2949 // an order in the first place is the dependences between invariant loads
2950 // that can be caused by indirect loads.
2951 InvariantAccesses.reverse();
2952
2953 // Transfer the memory access from the statement to the SCoP.
2954 Stmt.removeMemoryAccesses(InvariantAccesses);
2955 addInvariantLoads(Stmt, InvariantAccesses);
2956 }
2957 isl_union_map_free(Writes);
2958
2959 verifyInvariantLoads();
2960}
2961
2962const ScopArrayInfo *
2963Scop::getOrCreateScopArrayInfo(Value *BasePtr, Type *AccessType,
2964 ArrayRef<const SCEV *> Sizes,
2965 ScopArrayInfo::MemoryKind Kind) {
2966 auto &SAI = ScopArrayInfoMap[std::make_pair(BasePtr, Kind)];
2967 if (!SAI) {
2968 auto &DL = getRegion().getEntry()->getModule()->getDataLayout();
2969 SAI.reset(new ScopArrayInfo(BasePtr, AccessType, getIslCtx(), Sizes, Kind,
2970 DL, this));
2971 } else {
2972 // In case of mismatching array sizes, we bail out by setting the run-time
2973 // context to false.
2974 if (!SAI->updateSizes(Sizes))
2975 invalidate(DELINEARIZATION, DebugLoc());
2976 }
2977 return SAI.get();
2978}
2979
2980const ScopArrayInfo *Scop::getScopArrayInfo(Value *BasePtr,
2981 ScopArrayInfo::MemoryKind Kind) {
2982 auto *SAI = ScopArrayInfoMap[std::make_pair(BasePtr, Kind)].get();
2983 assert(SAI && "No ScopArrayInfo available for this base pointer")((SAI && "No ScopArrayInfo available for this base pointer"
) ? static_cast<void> (0) : __assert_fail ("SAI && \"No ScopArrayInfo available for this base pointer\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 2983, __PRETTY_FUNCTION__))
;
2984 return SAI;
2985}
2986
2987std::string Scop::getContextStr() const { return stringFromIslObj(Context); }
2988std::string Scop::getAssumedContextStr() const {
2989 return stringFromIslObj(AssumedContext);
2990}
2991std::string Scop::getBoundaryContextStr() const {
2992 return stringFromIslObj(BoundaryContext);
2993}
2994
2995std::string Scop::getNameStr() const {
2996 std::string ExitName, EntryName;
2997 raw_string_ostream ExitStr(ExitName);
2998 raw_string_ostream EntryStr(EntryName);
2999
3000 R.getEntry()->printAsOperand(EntryStr, false);
3001 EntryStr.str();
3002
3003 if (R.getExit()) {
3004 R.getExit()->printAsOperand(ExitStr, false);
3005 ExitStr.str();
3006 } else
3007 ExitName = "FunctionExit";
3008
3009 return EntryName + "---" + ExitName;
3010}
3011
3012__isl_give isl_set *Scop::getContext() const { return isl_set_copy(Context); }
3013__isl_give isl_space *Scop::getParamSpace() const {
3014 return isl_set_get_space(Context);
3015}
3016
3017__isl_give isl_set *Scop::getAssumedContext() const {
3018 return isl_set_copy(AssumedContext);
3019}
3020
3021__isl_give isl_set *Scop::getRuntimeCheckContext() const {
3022 isl_set *RuntimeCheckContext = getAssumedContext();
3023 RuntimeCheckContext =
3024 isl_set_intersect(RuntimeCheckContext, getBoundaryContext());
3025 RuntimeCheckContext = simplifyAssumptionContext(RuntimeCheckContext, *this);
3026 return RuntimeCheckContext;
3027}
3028
3029bool Scop::hasFeasibleRuntimeContext() const {
3030 isl_set *RuntimeCheckContext = getRuntimeCheckContext();
3031 RuntimeCheckContext = addNonEmptyDomainConstraints(RuntimeCheckContext);
3032 bool IsFeasible = !isl_set_is_empty(RuntimeCheckContext);
3033 isl_set_free(RuntimeCheckContext);
3034 return IsFeasible;
3035}
3036
3037static std::string toString(AssumptionKind Kind) {
3038 switch (Kind) {
3039 case ALIASING:
3040 return "No-aliasing";
3041 case INBOUNDS:
3042 return "Inbounds";
3043 case WRAPPING:
3044 return "No-overflows";
3045 case ALIGNMENT:
3046 return "Alignment";
3047 case ERRORBLOCK:
3048 return "No-error";
3049 case INFINITELOOP:
3050 return "Finite loop";
3051 case INVARIANTLOAD:
3052 return "Invariant load";
3053 case DELINEARIZATION:
3054 return "Delinearization";
3055 case ERROR_DOMAINCONJUNCTS:
3056 return "Low number of domain conjuncts";
3057 }
3058 llvm_unreachable("Unknown AssumptionKind!")::llvm::llvm_unreachable_internal("Unknown AssumptionKind!", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 3058)
;
3059}
3060
3061void Scop::trackAssumption(AssumptionKind Kind, __isl_keep isl_set *Set,
3062 DebugLoc Loc) {
3063 if (isl_set_is_subset(Context, Set))
3064 return;
3065
3066 if (isl_set_is_subset(AssumedContext, Set))
3067 return;
3068
3069 auto &F = *getRegion().getEntry()->getParent();
3070 std::string Msg = toString(Kind) + " assumption:\t" + stringFromIslObj(Set);
3071 emitOptimizationRemarkAnalysis(F.getContext(), DEBUG_TYPE"polly-scops", F, Loc, Msg);
3072}
3073
3074void Scop::addAssumption(AssumptionKind Kind, __isl_take isl_set *Set,
3075 DebugLoc Loc) {
3076 trackAssumption(Kind, Set, Loc);
3077 AssumedContext = isl_set_intersect(AssumedContext, Set);
3078
3079 int NSets = isl_set_n_basic_set(AssumedContext);
3080 if (NSets >= MaxDisjunctsAssumed) {
3081 isl_space *Space = isl_set_get_space(AssumedContext);
3082 isl_set_free(AssumedContext);
3083 AssumedContext = isl_set_empty(Space);
3084 }
3085
3086 AssumedContext = isl_set_coalesce(AssumedContext);
3087}
3088
3089void Scop::invalidate(AssumptionKind Kind, DebugLoc Loc) {
3090 addAssumption(Kind, isl_set_empty(getParamSpace()), Loc);
3091}
3092
3093__isl_give isl_set *Scop::getBoundaryContext() const {
3094 return isl_set_copy(BoundaryContext);
3095}
3096
3097void Scop::printContext(raw_ostream &OS) const {
3098 OS << "Context:\n";
3099
3100 if (!Context) {
3101 OS.indent(4) << "n/a\n\n";
3102 return;
3103 }
3104
3105 OS.indent(4) << getContextStr() << "\n";
3106
3107 OS.indent(4) << "Assumed Context:\n";
3108 if (!AssumedContext) {
3109 OS.indent(4) << "n/a\n\n";
3110 return;
3111 }
3112
3113 OS.indent(4) << getAssumedContextStr() << "\n";
3114
3115 OS.indent(4) << "Boundary Context:\n";
3116 if (!BoundaryContext) {
3117 OS.indent(4) << "n/a\n\n";
3118 return;
3119 }
3120
3121 OS.indent(4) << getBoundaryContextStr() << "\n";
3122
3123 for (const SCEV *Parameter : Parameters) {
3124 int Dim = ParameterIds.find(Parameter)->second;
3125 OS.indent(4) << "p" << Dim << ": " << *Parameter << "\n";
3126 }
3127}
3128
3129void Scop::printAliasAssumptions(raw_ostream &OS) const {
3130 int noOfGroups = 0;
3131 for (const MinMaxVectorPairTy &Pair : MinMaxAliasGroups) {
3132 if (Pair.second.size() == 0)
3133 noOfGroups += 1;
3134 else
3135 noOfGroups += Pair.second.size();
3136 }
3137
3138 OS.indent(4) << "Alias Groups (" << noOfGroups << "):\n";
3139 if (MinMaxAliasGroups.empty()) {
3140 OS.indent(8) << "n/a\n";
3141 return;
3142 }
3143
3144 for (const MinMaxVectorPairTy &Pair : MinMaxAliasGroups) {
3145
3146 // If the group has no read only accesses print the write accesses.
3147 if (Pair.second.empty()) {
3148 OS.indent(8) << "[[";
3149 for (const MinMaxAccessTy &MMANonReadOnly : Pair.first) {
3150 OS << " <" << MMANonReadOnly.first << ", " << MMANonReadOnly.second
3151 << ">";
3152 }
3153 OS << " ]]\n";
3154 }
3155
3156 for (const MinMaxAccessTy &MMAReadOnly : Pair.second) {
3157 OS.indent(8) << "[[";
3158 OS << " <" << MMAReadOnly.first << ", " << MMAReadOnly.second << ">";
3159 for (const MinMaxAccessTy &MMANonReadOnly : Pair.first) {
3160 OS << " <" << MMANonReadOnly.first << ", " << MMANonReadOnly.second
3161 << ">";
3162 }
3163 OS << " ]]\n";
3164 }
3165 }
3166}
3167
3168void Scop::printStatements(raw_ostream &OS) const {
3169 OS << "Statements {\n";
3170
3171 for (const ScopStmt &Stmt : *this)
3172 OS.indent(4) << Stmt;
3173
3174 OS.indent(4) << "}\n";
3175}
3176
3177void Scop::printArrayInfo(raw_ostream &OS) const {
3178 OS << "Arrays {\n";
3179
3180 for (auto &Array : arrays())
3181 Array.second->print(OS);
3182
3183 OS.indent(4) << "}\n";
3184
3185 OS.indent(4) << "Arrays (Bounds as pw_affs) {\n";
3186
3187 for (auto &Array : arrays())
3188 Array.second->print(OS, /* SizeAsPwAff */ true);
3189
3190 OS.indent(4) << "}\n";
3191}
3192
3193void Scop::print(raw_ostream &OS) const {
3194 OS.indent(4) << "Function: " << getRegion().getEntry()->getParent()->getName()
3195 << "\n";
3196 OS.indent(4) << "Region: " << getNameStr() << "\n";
3197 OS.indent(4) << "Max Loop Depth: " << getMaxLoopDepth() << "\n";
3198 OS.indent(4) << "Invariant Accesses: {\n";
3199 for (const auto &IAClass : InvariantEquivClasses) {
3200 const auto &MAs = std::get<1>(IAClass);
3201 if (MAs.empty()) {
3202 OS.indent(12) << "Class Pointer: " << *std::get<0>(IAClass) << "\n";
3203 } else {
3204 MAs.front()->print(OS);
3205 OS.indent(12) << "Execution Context: " << std::get<2>(IAClass) << "\n";
3206 }
3207 }
3208 OS.indent(4) << "}\n";
3209 printContext(OS.indent(4));
3210 printArrayInfo(OS.indent(4));
3211 printAliasAssumptions(OS);
3212 printStatements(OS.indent(4));
3213}
3214
3215void Scop::dump() const { print(dbgs()); }
3216
3217isl_ctx *Scop::getIslCtx() const { return IslCtx; }
3218
3219__isl_give isl_pw_aff *Scop::getPwAff(const SCEV *E, BasicBlock *BB) {
3220 return Affinator.getPwAff(E, BB);
3221}
3222
3223__isl_give isl_union_set *Scop::getDomains() const {
3224 isl_union_set *Domain = isl_union_set_empty(getParamSpace());
3225
3226 for (const ScopStmt &Stmt : *this)
3227 Domain = isl_union_set_add_set(Domain, Stmt.getDomain());
3228
3229 return Domain;
3230}
3231
3232__isl_give isl_union_map *
3233Scop::getAccessesOfType(std::function<bool(MemoryAccess &)> Predicate) {
3234 isl_union_map *Accesses = isl_union_map_empty(getParamSpace());
3235
3236 for (ScopStmt &Stmt : *this) {
3237 for (MemoryAccess *MA : Stmt) {
3238 if (!Predicate(*MA))
3239 continue;
3240
3241 isl_set *Domain = Stmt.getDomain();
3242 isl_map *AccessDomain = MA->getAccessRelation();
3243 AccessDomain = isl_map_intersect_domain(AccessDomain, Domain);
3244 Accesses = isl_union_map_add_map(Accesses, AccessDomain);
3245 }
3246 }
3247 return isl_union_map_coalesce(Accesses);
3248}
3249
3250__isl_give isl_union_map *Scop::getMustWrites() {
3251 return getAccessesOfType([](MemoryAccess &MA) { return MA.isMustWrite(); });
3252}
3253
3254__isl_give isl_union_map *Scop::getMayWrites() {
3255 return getAccessesOfType([](MemoryAccess &MA) { return MA.isMayWrite(); });
3256}
3257
3258__isl_give isl_union_map *Scop::getWrites() {
3259 return getAccessesOfType([](MemoryAccess &MA) { return MA.isWrite(); });
3260}
3261
3262__isl_give isl_union_map *Scop::getReads() {
3263 return getAccessesOfType([](MemoryAccess &MA) { return MA.isRead(); });
3264}
3265
3266__isl_give isl_union_map *Scop::getAccesses() {
3267 return getAccessesOfType([](MemoryAccess &MA) { return true; });
3268}
3269
3270__isl_give isl_union_map *Scop::getSchedule() const {
3271 auto Tree = getScheduleTree();
3272 auto S = isl_schedule_get_map(Tree);
3273 isl_schedule_free(Tree);
3274 return S;
3275}
3276
3277__isl_give isl_schedule *Scop::getScheduleTree() const {
3278 return isl_schedule_intersect_domain(isl_schedule_copy(Schedule),
3279 getDomains());
3280}
3281
3282void Scop::setSchedule(__isl_take isl_union_map *NewSchedule) {
3283 auto *S = isl_schedule_from_domain(getDomains());
3284 S = isl_schedule_insert_partial_schedule(
3285 S, isl_multi_union_pw_aff_from_union_map(NewSchedule));
3286 isl_schedule_free(Schedule);
3287 Schedule = S;
3288}
3289
3290void Scop::setScheduleTree(__isl_take isl_schedule *NewSchedule) {
3291 isl_schedule_free(Schedule);
3292 Schedule = NewSchedule;
3293}
3294
3295bool Scop::restrictDomains(__isl_take isl_union_set *Domain) {
3296 bool Changed = false;
3297 for (ScopStmt &Stmt : *this) {
3298 isl_union_set *StmtDomain = isl_union_set_from_set(Stmt.getDomain());
3299 isl_union_set *NewStmtDomain = isl_union_set_intersect(
3300 isl_union_set_copy(StmtDomain), isl_union_set_copy(Domain));
3301
3302 if (isl_union_set_is_subset(StmtDomain, NewStmtDomain)) {
3303 isl_union_set_free(StmtDomain);
3304 isl_union_set_free(NewStmtDomain);
3305 continue;
3306 }
3307
3308 Changed = true;
3309
3310 isl_union_set_free(StmtDomain);
3311 NewStmtDomain = isl_union_set_coalesce(NewStmtDomain);
3312
3313 if (isl_union_set_is_empty(NewStmtDomain)) {
3314 Stmt.restrictDomain(isl_set_empty(Stmt.getDomainSpace()));
3315 isl_union_set_free(NewStmtDomain);
3316 } else
3317 Stmt.restrictDomain(isl_set_from_union_set(NewStmtDomain));
3318 }
3319 isl_union_set_free(Domain);
3320 return Changed;
3321}
3322
3323ScalarEvolution *Scop::getSE() const { return SE; }
3324
3325bool Scop::isIgnored(RegionNode *RN) {
3326 BasicBlock *BB = getRegionNodeBasicBlock(RN);
3327 ScopStmt *Stmt = getStmtForRegionNode(RN);
3328
3329 // If there is no stmt, then it already has been removed.
3330 if (!Stmt)
3331 return true;
3332
3333 // Check if there are accesses contained.
3334 if (Stmt->isEmpty())
3335 return true;
3336
3337 // Check for reachability via non-error blocks.
3338 if (!DomainMap.count(BB))
3339 return true;
3340
3341 // Check if error blocks are contained.
3342 if (containsErrorBlock(RN, getRegion(), LI, DT))
3343 return true;
3344
3345 return false;
3346}
3347
3348struct MapToDimensionDataTy {
3349 int N;
3350 isl_union_pw_multi_aff *Res;
3351};
3352
3353// @brief Create a function that maps the elements of 'Set' to its N-th
3354// dimension and add it to User->Res.
3355//
3356// @param Set The input set.
3357// @param User->N The dimension to map to.
3358// @param User->Res The isl_union_pw_multi_aff to which to add the result.
3359//
3360// @returns isl_stat_ok if no error occured, othewise isl_stat_error.
3361static isl_stat mapToDimension_AddSet(__isl_take isl_set *Set, void *User) {
3362 struct MapToDimensionDataTy *Data = (struct MapToDimensionDataTy *)User;
3363 int Dim;
3364 isl_space *Space;
3365 isl_pw_multi_aff *PMA;
3366
3367 Dim = isl_set_dim(Set, isl_dim_set);
3368 Space = isl_set_get_space(Set);
3369 PMA = isl_pw_multi_aff_project_out_map(Space, isl_dim_set, Data->N,
3370 Dim - Data->N);
3371 if (Data->N > 1)
3372 PMA = isl_pw_multi_aff_drop_dims(PMA, isl_dim_out, 0, Data->N - 1);
3373 Data->Res = isl_union_pw_multi_aff_add_pw_multi_aff(Data->Res, PMA);
3374
3375 isl_set_free(Set);
3376
3377 return isl_stat_ok;
3378}
3379
3380// @brief Create an isl_multi_union_aff that defines an identity mapping
3381// from the elements of USet to their N-th dimension.
3382//
3383// # Example:
3384//
3385// Domain: { A[i,j]; B[i,j,k] }
3386// N: 1
3387//
3388// Resulting Mapping: { {A[i,j] -> [(j)]; B[i,j,k] -> [(j)] }
3389//
3390// @param USet A union set describing the elements for which to generate a
3391// mapping.
3392// @param N The dimension to map to.
3393// @returns A mapping from USet to its N-th dimension.
3394static __isl_give isl_multi_union_pw_aff *
3395mapToDimension(__isl_take isl_union_set *USet, int N) {
3396 assert(N >= 0)((N >= 0) ? static_cast<void> (0) : __assert_fail ("N >= 0"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 3396, __PRETTY_FUNCTION__))
;
3397 assert(USet)((USet) ? static_cast<void> (0) : __assert_fail ("USet"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 3397, __PRETTY_FUNCTION__))
;
3398 assert(!isl_union_set_is_empty(USet))((!isl_union_set_is_empty(USet)) ? static_cast<void> (0
) : __assert_fail ("!isl_union_set_is_empty(USet)", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 3398, __PRETTY_FUNCTION__))
;
3399
3400 struct MapToDimensionDataTy Data;
3401
3402 auto *Space = isl_union_set_get_space(USet);
3403 auto *PwAff = isl_union_pw_multi_aff_empty(Space);
3404
3405 Data = {N, PwAff};
3406
3407 auto Res = isl_union_set_foreach_set(USet, &mapToDimension_AddSet, &Data);
3408
3409 assert(Res == isl_stat_ok)((Res == isl_stat_ok) ? static_cast<void> (0) : __assert_fail
("Res == isl_stat_ok", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 3409, __PRETTY_FUNCTION__))
;
3410
3411 isl_union_set_free(USet);
3412 return isl_multi_union_pw_aff_from_union_pw_multi_aff(Data.Res);
3413}
3414
3415void Scop::addScopStmt(BasicBlock *BB, Region *R) {
3416 if (BB) {
3417 Stmts.emplace_back(*this, *BB);
3418 auto Stmt = &Stmts.back();
3419 StmtMap[BB] = Stmt;
3420 } else {
3421 assert(R && "Either basic block or a region expected.")((R && "Either basic block or a region expected.") ? static_cast
<void> (0) : __assert_fail ("R && \"Either basic block or a region expected.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 3421, __PRETTY_FUNCTION__))
;
3422 Stmts.emplace_back(*this, *R);
3423 auto Stmt = &Stmts.back();
3424 for (BasicBlock *BB : R->blocks())
3425 StmtMap[BB] = Stmt;
3426 }
3427}
3428
3429void Scop::buildSchedule() {
3430 DenseMap<Loop *, std::pair<isl_schedule *, unsigned>> LoopSchedules;
3431 Loop *L = getLoopSurroundingRegion(getRegion(), LI);
3432 LoopSchedules[L];
3433 buildSchedule(getRegion().getNode(), LoopSchedules);
3434 Schedule = LoopSchedules[L].first;
3435}
3436
3437void Scop::buildSchedule(
3438 RegionNode *RN,
3439 DenseMap<Loop *, std::pair<isl_schedule *, unsigned>> &LoopSchedules) {
3440
3441 if (RN->isSubRegion()) {
3442 auto *LocalRegion = RN->getNodeAs<Region>();
3443 if (!SD.isNonAffineSubRegion(LocalRegion, &getRegion())) {
3444 ReversePostOrderTraversal<Region *> RTraversal(LocalRegion);
3445 for (auto *Child : RTraversal)
3446 buildSchedule(Child, LoopSchedules);
3447 return;
3448 }
3449 }
3450
3451 Loop *L = getRegionNodeLoop(RN, LI);
3452 if (!getRegion().contains(L))
3453 L = getLoopSurroundingRegion(getRegion(), LI);
3454
3455 int LD = getRelativeLoopDepth(L);
3456 auto &LSchedulePair = LoopSchedules[L];
3457 LSchedulePair.second += getNumBlocksInRegionNode(RN);
3458
3459 ScopStmt *Stmt = getStmtForRegionNode(RN);
3460 if (Stmt) {
3461 auto *UDomain = isl_union_set_from_set(Stmt->getDomain());
3462 auto *StmtSchedule = isl_schedule_from_domain(UDomain);
3463 LSchedulePair.first = combineInSequence(LSchedulePair.first, StmtSchedule);
3464 }
3465
3466 isl_schedule *LSchedule = LSchedulePair.first;
3467 unsigned NumVisited = LSchedulePair.second;
3468 while (L && NumVisited == L->getNumBlocks()) {
3469 auto *PL = L->getParentLoop();
3470
3471 // Either we have a proper loop and we also build a schedule for the
3472 // parent loop or we have a infinite loop that does not have a proper
3473 // parent loop. In the former case this conditional will be skipped, in
3474 // the latter case however we will break here as we do not build a domain
3475 // nor a schedule for a infinite loop.
3476 assert(LoopSchedules.count(PL) || LSchedule == nullptr)((LoopSchedules.count(PL) || LSchedule == nullptr) ? static_cast
<void> (0) : __assert_fail ("LoopSchedules.count(PL) || LSchedule == nullptr"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 3476, __PRETTY_FUNCTION__))
;
3477 if (!LoopSchedules.count(PL))
3478 break;
3479
3480 auto &PSchedulePair = LoopSchedules[PL];
3481
3482 if (LSchedule) {
3483 auto *LDomain = isl_schedule_get_domain(LSchedule);
3484 auto *MUPA = mapToDimension(LDomain, LD + 1);
3485 LSchedule = isl_schedule_insert_partial_schedule(LSchedule, MUPA);
3486 PSchedulePair.first = combineInSequence(PSchedulePair.first, LSchedule);
3487 }
3488
3489 PSchedulePair.second += NumVisited;
3490
3491 L = PL;
3492 LD--;
3493 NumVisited = PSchedulePair.second;
3494 LSchedule = PSchedulePair.first;
3495 }
3496}
3497
3498ScopStmt *Scop::getStmtForBasicBlock(BasicBlock *BB) const {
3499 auto StmtMapIt = StmtMap.find(BB);
3500 if (StmtMapIt == StmtMap.end())
3501 return nullptr;
3502 return StmtMapIt->second;
3503}
3504
3505ScopStmt *Scop::getStmtForRegionNode(RegionNode *RN) const {
3506 return getStmtForBasicBlock(getRegionNodeBasicBlock(RN));
3507}
3508
3509int Scop::getRelativeLoopDepth(const Loop *L) const {
3510 Loop *OuterLoop =
3511 L ? R.outermostLoopInRegion(const_cast<Loop *>(L)) : nullptr;
3512 if (!OuterLoop)
3513 return -1;
3514 return L->getLoopDepth() - OuterLoop->getLoopDepth();
3515}
3516
3517void ScopInfo::buildPHIAccesses(PHINode *PHI, Region &R,
3518 Region *NonAffineSubRegion, bool IsExitBlock) {
3519
3520 // PHI nodes that are in the exit block of the region, hence if IsExitBlock is
3521 // true, are not modeled as ordinary PHI nodes as they are not part of the
3522 // region. However, we model the operands in the predecessor blocks that are
3523 // part of the region as regular scalar accesses.
3524
3525 // If we can synthesize a PHI we can skip it, however only if it is in
3526 // the region. If it is not it can only be in the exit block of the region.
3527 // In this case we model the operands but not the PHI itself.
3528 if (!IsExitBlock && canSynthesize(PHI, LI, SE, &R))
3529 return;
3530
3531 // PHI nodes are modeled as if they had been demoted prior to the SCoP
3532 // detection. Hence, the PHI is a load of a new memory location in which the
3533 // incoming value was written at the end of the incoming basic block.
3534 bool OnlyNonAffineSubRegionOperands = true;
3535 for (unsigned u = 0; u < PHI->getNumIncomingValues(); u++) {
3536 Value *Op = PHI->getIncomingValue(u);
3537 BasicBlock *OpBB = PHI->getIncomingBlock(u);
3538
3539 // Do not build scalar dependences inside a non-affine subregion.
3540 if (NonAffineSubRegion && NonAffineSubRegion->contains(OpBB))
3541 continue;
3542
3543 OnlyNonAffineSubRegionOperands = false;
3544
3545 if (!R.contains(OpBB))
3546 continue;
3547
3548 Instruction *OpI = dyn_cast<Instruction>(Op);
3549 if (OpI) {
3550 BasicBlock *OpIBB = OpI->getParent();
3551 // As we pretend there is a use (or more precise a write) of OpI in OpBB
3552 // we have to insert a scalar dependence from the definition of OpI to
3553 // OpBB if the definition is not in OpBB.
3554 if (scop->getStmtForBasicBlock(OpIBB) !=
3555 scop->getStmtForBasicBlock(OpBB)) {
3556 addValueReadAccess(OpI, PHI, OpBB);
3557 addValueWriteAccess(OpI);
3558 }
3559 } else if (ModelReadOnlyScalars && !isa<Constant>(Op)) {
3560 addValueReadAccess(Op, PHI, OpBB);
3561 }
3562
3563 addPHIWriteAccess(PHI, OpBB, Op, IsExitBlock);
3564 }
3565
3566 if (!OnlyNonAffineSubRegionOperands && !IsExitBlock) {
3567 addPHIReadAccess(PHI);
3568 }
3569}
3570
3571bool ScopInfo::buildScalarDependences(Instruction *Inst, Region *R,
3572 Region *NonAffineSubRegion) {
3573 bool canSynthesizeInst = canSynthesize(Inst, LI, SE, R);
3574 if (isIgnoredIntrinsic(Inst))
3575 return false;
3576
3577 bool AnyCrossStmtUse = false;
3578 BasicBlock *ParentBB = Inst->getParent();
3579
3580 for (User *U : Inst->users()) {
3581 Instruction *UI = dyn_cast<Instruction>(U);
3582
3583 // Ignore the strange user
3584 if (UI == 0)
3585 continue;
3586
3587 BasicBlock *UseParent = UI->getParent();
3588
3589 // Ignore basic block local uses. A value that is defined in a scop, but
3590 // used in a PHI node in the same basic block does not count as basic block
3591 // local, as for such cases a control flow edge is passed between definition
3592 // and use.
3593 if (UseParent == ParentBB && !isa<PHINode>(UI))
3594 continue;
3595
3596 // Uses by PHI nodes in the entry node count as external uses in case the
3597 // use is through an incoming block that is itself not contained in the
3598 // region.
3599 if (R->getEntry() == UseParent) {
3600 if (auto *PHI = dyn_cast<PHINode>(UI)) {
3601 bool ExternalUse = false;
3602 for (unsigned i = 0; i < PHI->getNumIncomingValues(); i++) {
3603 if (PHI->getIncomingValue(i) == Inst &&
3604 !R->contains(PHI->getIncomingBlock(i))) {
3605 ExternalUse = true;
3606 break;
3607 }
3608 }
3609
3610 if (ExternalUse) {
3611 AnyCrossStmtUse = true;
3612 continue;
3613 }
3614 }
3615 }
3616
3617 // Do not build scalar dependences inside a non-affine subregion.
3618 if (NonAffineSubRegion && NonAffineSubRegion->contains(UseParent))
3619 continue;
3620
3621 // Check for PHI nodes in the region exit and skip them, if they will be
3622 // modeled as PHI nodes.
3623 //
3624 // PHI nodes in the region exit that have more than two incoming edges need
3625 // to be modeled as PHI-Nodes to correctly model the fact that depending on
3626 // the control flow a different value will be assigned to the PHI node. In
3627 // case this is the case, there is no need to create an additional normal
3628 // scalar dependence. Hence, bail out before we register an "out-of-region"
3629 // use for this definition.
3630 if (isa<PHINode>(UI) && UI->getParent() == R->getExit() &&
3631 !R->getExitingBlock())
3632 continue;
3633
3634 // Check whether or not the use is in the SCoP.
3635 if (!R->contains(UseParent)) {
3636 AnyCrossStmtUse = true;
3637 continue;
3638 }
3639
3640 // If the instruction can be synthesized and the user is in the region
3641 // we do not need to add scalar dependences.
3642 if (canSynthesizeInst)
3643 continue;
3644
3645 // No need to translate these scalar dependences into polyhedral form,
3646 // because synthesizable scalars can be generated by the code generator.
3647 if (canSynthesize(UI, LI, SE, R))
3648 continue;
3649
3650 // Skip PHI nodes in the region as they handle their operands on their own.
3651 if (isa<PHINode>(UI))
3652 continue;
3653
3654 // Now U is used in another statement.
3655 AnyCrossStmtUse = true;
3656
3657 // Do not build a read access that is not in the current SCoP
3658 // Use the def instruction as base address of the MemoryAccess, so that it
3659 // will become the name of the scalar access in the polyhedral form.
3660 addValueReadAccess(Inst, UI);
3661 }
3662
3663 if (ModelReadOnlyScalars && !isa<PHINode>(Inst)) {
3664 for (Value *Op : Inst->operands()) {
3665 if (canSynthesize(Op, LI, SE, R))
3666 continue;
3667
3668 if (Instruction *OpInst = dyn_cast<Instruction>(Op))
3669 if (R->contains(OpInst))
3670 continue;
3671
3672 if (isa<Constant>(Op))
3673 continue;
3674
3675 addValueReadAccess(Op, Inst);
3676 }
3677 }
3678
3679 return AnyCrossStmtUse;
3680}
3681
3682extern MapInsnToMemAcc InsnToMemAcc;
3683
3684void ScopInfo::buildMemoryAccess(
3685 Instruction *Inst, Loop *L, Region *R,
3686 const ScopDetection::BoxedLoopsSetTy *BoxedLoops,
3687 const InvariantLoadsSetTy &ScopRIL) {
3688 unsigned Size;
3689 Type *SizeType;
3690 Value *Val;
3691 enum MemoryAccess::AccessType Type;
3692
3693 if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) {
3694 SizeType = Load->getType();
3695 Size = TD->getTypeAllocSize(SizeType);
3696 Type = MemoryAccess::READ;
3697 Val = Load;
3698 } else {
3699 StoreInst *Store = cast<StoreInst>(Inst);
3700 SizeType = Store->getValueOperand()->getType();
3701 Size = TD->getTypeAllocSize(SizeType);
3702 Type = MemoryAccess::MUST_WRITE;
3703 Val = Store->getValueOperand();
3704 }
3705
3706 auto Address = getPointerOperand(*Inst);
3707
3708 const SCEV *AccessFunction = SE->getSCEVAtScope(Address, L);
3709 const SCEVUnknown *BasePointer =
3710 dyn_cast<SCEVUnknown>(SE->getPointerBase(AccessFunction));
3711
3712 assert(BasePointer && "Could not find base pointer")((BasePointer && "Could not find base pointer") ? static_cast
<void> (0) : __assert_fail ("BasePointer && \"Could not find base pointer\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 3712, __PRETTY_FUNCTION__))
;
3713 AccessFunction = SE->getMinusSCEV(AccessFunction, BasePointer);
3714
3715 if (isa<GetElementPtrInst>(Address) || isa<BitCastInst>(Address)) {
3716 auto NewAddress = Address;
3717 if (auto *BitCast = dyn_cast<BitCastInst>(Address)) {
3718 auto Src = BitCast->getOperand(0);
3719 auto SrcTy = Src->getType();
3720 auto DstTy = BitCast->getType();
3721 if (SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits())
3722 NewAddress = Src;
3723 }
3724
3725 if (auto *GEP = dyn_cast<GetElementPtrInst>(NewAddress)) {
3726 std::vector<const SCEV *> Subscripts;
3727 std::vector<int> Sizes;
3728 std::tie(Subscripts, Sizes) = getIndexExpressionsFromGEP(GEP, *SE);
3729 auto BasePtr = GEP->getOperand(0);
3730
3731 std::vector<const SCEV *> SizesSCEV;
3732
3733 bool AllAffineSubcripts = true;
3734 for (auto Subscript : Subscripts) {
3735 InvariantLoadsSetTy AccessILS;
3736 AllAffineSubcripts =
3737 isAffineExpr(R, Subscript, *SE, nullptr, &AccessILS);
3738
3739 for (LoadInst *LInst : AccessILS)
3740 if (!ScopRIL.count(LInst))
3741 AllAffineSubcripts = false;
3742
3743 if (!AllAffineSubcripts)
3744 break;
3745 }
3746
3747 if (AllAffineSubcripts && Sizes.size() > 0) {
3748 for (auto V : Sizes)
3749 SizesSCEV.push_back(SE->getSCEV(ConstantInt::get(
3750 IntegerType::getInt64Ty(BasePtr->getContext()), V)));
3751 SizesSCEV.push_back(SE->getSCEV(ConstantInt::get(
3752 IntegerType::getInt64Ty(BasePtr->getContext()), Size)));
3753
3754 addArrayAccess(Inst, Type, BasePointer->getValue(), Size, true,
3755 Subscripts, SizesSCEV, Val);
3756 return;
3757 }
3758 }
3759 }
3760
3761 auto AccItr = InsnToMemAcc.find(Inst);
3762 if (PollyDelinearize && AccItr != InsnToMemAcc.end()) {
3763 addArrayAccess(Inst, Type, BasePointer->getValue(), Size, true,
3764 AccItr->second.DelinearizedSubscripts,
3765 AccItr->second.Shape->DelinearizedSizes, Val);
3766 return;
3767 }
3768
3769 // Check if the access depends on a loop contained in a non-affine subregion.
3770 bool isVariantInNonAffineLoop = false;
3771 if (BoxedLoops) {
3772 SetVector<const Loop *> Loops;
3773 findLoops(AccessFunction, Loops);
3774 for (const Loop *L : Loops)
3775 if (BoxedLoops->count(L))
3776 isVariantInNonAffineLoop = true;
3777 }
3778
3779 InvariantLoadsSetTy AccessILS;
3780 bool IsAffine =
3781 !isVariantInNonAffineLoop &&
3782 isAffineExpr(R, AccessFunction, *SE, BasePointer->getValue(), &AccessILS);
3783
3784 for (LoadInst *LInst : AccessILS)
3785 if (!ScopRIL.count(LInst))
3786 IsAffine = false;
3787
3788 // FIXME: Size of the number of bytes of an array element, not the number of
3789 // elements as probably intended here.
3790 const SCEV *SizeSCEV =
3791 SE->getConstant(TD->getIntPtrType(Inst->getContext()), Size);
3792
3793 if (!IsAffine && Type == MemoryAccess::MUST_WRITE)
3794 Type = MemoryAccess::MAY_WRITE;
3795
3796 addArrayAccess(Inst, Type, BasePointer->getValue(), Size, IsAffine,
3797 ArrayRef<const SCEV *>(AccessFunction),
3798 ArrayRef<const SCEV *>(SizeSCEV), Val);
3799}
3800
3801void ScopInfo::buildAccessFunctions(Region &R, Region &SR) {
3802
3803 if (SD->isNonAffineSubRegion(&SR, &R)) {
3804 for (BasicBlock *BB : SR.blocks())
3805 buildAccessFunctions(R, *BB, &SR);
3806 return;
3807 }
3808
3809 for (auto I = SR.element_begin(), E = SR.element_end(); I != E; ++I)
3810 if (I->isSubRegion())
3811 buildAccessFunctions(R, *I->getNodeAs<Region>());
3812 else
3813 buildAccessFunctions(R, *I->getNodeAs<BasicBlock>());
3814}
3815
3816void ScopInfo::buildStmts(Region &SR) {
3817 Region *R = getRegion();
3818
3819 if (SD->isNonAffineSubRegion(&SR, R)) {
3820 scop->addScopStmt(nullptr, &SR);
3821 return;
3822 }
3823
3824 for (auto I = SR.element_begin(), E = SR.element_end(); I != E; ++I)
3825 if (I->isSubRegion())
3826 buildStmts(*I->getNodeAs<Region>());
3827 else
3828 scop->addScopStmt(I->getNodeAs<BasicBlock>(), nullptr);
3829}
3830
3831void ScopInfo::buildAccessFunctions(Region &R, BasicBlock &BB,
3832 Region *NonAffineSubRegion,
3833 bool IsExitBlock) {
3834 // We do not build access functions for error blocks, as they may contain
3835 // instructions we can not model.
3836 DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
3837 if (isErrorBlock(BB, R, *LI, DT) && !IsExitBlock)
3838 return;
3839
3840 Loop *L = LI->getLoopFor(&BB);
3841
3842 // The set of loops contained in non-affine subregions that are part of R.
3843 const ScopDetection::BoxedLoopsSetTy *BoxedLoops = SD->getBoxedLoops(&R);
3844
3845 // The set of loads that are required to be invariant.
3846 auto &ScopRIL = *SD->getRequiredInvariantLoads(&R);
3847
3848 for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I) {
3849 Instruction *Inst = &*I;
3850
3851 PHINode *PHI = dyn_cast<PHINode>(Inst);
3852 if (PHI)
3853 buildPHIAccesses(PHI, R, NonAffineSubRegion, IsExitBlock);
3854
3855 // For the exit block we stop modeling after the last PHI node.
3856 if (!PHI && IsExitBlock)
3857 break;
3858
3859 // TODO: At this point we only know that elements of ScopRIL have to be
3860 // invariant and will be hoisted for the SCoP to be processed. Though,
3861 // there might be other invariant accesses that will be hoisted and
3862 // that would allow to make a non-affine access affine.
3863 if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst))
3864 buildMemoryAccess(Inst, L, &R, BoxedLoops, ScopRIL);
3865
3866 if (isIgnoredIntrinsic(Inst))
3867 continue;
3868
3869 // Do not build scalar dependences for required invariant loads as we will
3870 // hoist them later on anyway or drop the SCoP if we cannot.
3871 if (ScopRIL.count(dyn_cast<LoadInst>(Inst)))
3872 continue;
3873
3874 if (buildScalarDependences(Inst, &R, NonAffineSubRegion)) {
3875 if (!isa<StoreInst>(Inst))
3876 addValueWriteAccess(Inst);
3877 }
3878 }
3879}
3880
3881void ScopInfo::addMemoryAccess(BasicBlock *BB, Instruction *Inst,
3882 MemoryAccess::AccessType Type,
3883 Value *BaseAddress, unsigned ElemBytes,
3884 bool Affine, Value *AccessValue,
3885 ArrayRef<const SCEV *> Subscripts,
3886 ArrayRef<const SCEV *> Sizes,
3887 ScopArrayInfo::MemoryKind Kind) {
3888 ScopStmt *Stmt = scop->getStmtForBasicBlock(BB);
3889
3890 // Do not create a memory access for anything not in the SCoP. It would be
3891 // ignored anyway.
3892 if (!Stmt)
3893 return;
3894
3895 AccFuncSetType &AccList = AccFuncMap[BB];
3896 Value *BaseAddr = BaseAddress;
3897 std::string BaseName = getIslCompatibleName("MemRef_", BaseAddr, "");
3898
3899 bool isKnownMustAccess = false;
3900
3901 // Accesses in single-basic block statements are always excuted.
3902 if (Stmt->isBlockStmt())
3903 isKnownMustAccess = true;
3904
3905 if (Stmt->isRegionStmt()) {
3906 // Accesses that dominate the exit block of a non-affine region are always
3907 // executed. In non-affine regions there may exist MK_Values that do not
3908 // dominate the exit. MK_Values will always dominate the exit and MK_PHIs
3909 // only if there is at most one PHI_WRITE in the non-affine region.
3910 if (DT->dominates(BB, Stmt->getRegion()->getExit()))
3911 isKnownMustAccess = true;
3912 }
3913
3914 if (!isKnownMustAccess && Type == MemoryAccess::MUST_WRITE)
3915 Type = MemoryAccess::MAY_WRITE;
3916
3917 AccList.emplace_back(Stmt, Inst, Type, BaseAddress, ElemBytes, Affine,
3918 Subscripts, Sizes, AccessValue, Kind, BaseName);
3919 Stmt->addAccess(&AccList.back());
3920}
3921
3922void ScopInfo::addArrayAccess(Instruction *MemAccInst,
3923 MemoryAccess::AccessType Type, Value *BaseAddress,
3924 unsigned ElemBytes, bool IsAffine,
3925 ArrayRef<const SCEV *> Subscripts,
3926 ArrayRef<const SCEV *> Sizes,
3927 Value *AccessValue) {
3928 assert(isa<LoadInst>(MemAccInst) || isa<StoreInst>(MemAccInst))((isa<LoadInst>(MemAccInst) || isa<StoreInst>(MemAccInst
)) ? static_cast<void> (0) : __assert_fail ("isa<LoadInst>(MemAccInst) || isa<StoreInst>(MemAccInst)"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 3928, __PRETTY_FUNCTION__))
;
3929 assert(isa<LoadInst>(MemAccInst) == (Type == MemoryAccess::READ))((isa<LoadInst>(MemAccInst) == (Type == MemoryAccess::READ
)) ? static_cast<void> (0) : __assert_fail ("isa<LoadInst>(MemAccInst) == (Type == MemoryAccess::READ)"
, "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 3929, __PRETTY_FUNCTION__))
;
3930 addMemoryAccess(MemAccInst->getParent(), MemAccInst, Type, BaseAddress,
3931 ElemBytes, IsAffine, AccessValue, Subscripts, Sizes,
3932 ScopArrayInfo::MK_Array);
3933}
3934void ScopInfo::addValueWriteAccess(Instruction *Value) {
3935 addMemoryAccess(Value->getParent(), Value, MemoryAccess::MUST_WRITE, Value, 1,
3936 true, Value, ArrayRef<const SCEV *>(),
3937 ArrayRef<const SCEV *>(), ScopArrayInfo::MK_Value);
3938}
3939void ScopInfo::addValueReadAccess(Value *Value, Instruction *User) {
3940 assert(!isa<PHINode>(User))((!isa<PHINode>(User)) ? static_cast<void> (0) : __assert_fail
("!isa<PHINode>(User)", "/tmp/buildd/llvm-toolchain-snapshot-3.8~svn257205/polly/lib/Analysis/ScopInfo.cpp"
, 3940, __PRETTY_FUNCTION__))
;
3941 addMemoryAccess(User->getParent(), User, MemoryAccess::READ, Value, 1, true,
3942 Value, ArrayRef<const SCEV *>(), ArrayRef<const SCEV *>(),
3943 ScopArrayInfo::MK_Value);
3944}
3945void ScopInfo::addValueReadAccess(Value *Value, PHINode *User,
3946 BasicBlock *UserBB) {
3947 addMemoryAccess(UserBB, User, MemoryAccess::READ, Value, 1, true, Value,
3948 ArrayRef<const SCEV *>(), ArrayRef<const SCEV *>(),
3949 ScopArrayInfo::MK_Value);
3950}
3951void ScopInfo::addPHIWriteAccess(PHINode *PHI, BasicBlock *IncomingBlock,
3952 Value *IncomingValue, bool IsExitBlock) {
3953 addMemoryAccess(IncomingBlock, IncomingBlock->getTerminator(),
3954 MemoryAccess::MUST_WRITE, PHI, 1, true, IncomingValue,
3955 ArrayRef<const SCEV *>(), ArrayRef<const SCEV *>(),
3956 IsExitBlock ? ScopArrayInfo::MK_ExitPHI
3957 : ScopArrayInfo::MK_PHI);
3958}
3959void ScopInfo::addPHIReadAccess(PHINode *PHI) {
3960 addMemoryAccess(PHI->getParent(), PHI, MemoryAccess::READ, PHI, 1, true, PHI,
3961 ArrayRef<const SCEV *>(), ArrayRef<const SCEV *>(),
3962 ScopArrayInfo::MK_PHI);
3963}
3964
3965void ScopInfo::buildScop(Region &R, AssumptionCache &AC) {
3966 unsigned MaxLoopDepth = getMaxLoopDepthInRegion(R, *LI, *SD);
3967 scop = new Scop(R, AccFuncMap, *SD, *SE, *DT, *LI, ctx, MaxLoopDepth);
3968
3969 buildStmts(R);
3970 buildAccessFunctions(R, R);
3971
3972 // In case the region does not have an exiting block we will later (during
3973 // code generation) split the exit block. This will move potential PHI nodes
3974 // from the current exit block into the new region exiting block. Hence, PHI
3975 // nodes that are at this point not part of the region will be.
3976 // To handle these PHI nodes later we will now model their operands as scalar
3977 // accesses. Note that we do not model anything in the exit block if we have
3978 // an exiting block in the region, as there will not be any splitting later.
3979 if (!R.getExitingBlock())
3980 buildAccessFunctions(R, *R.getExit(), nullptr, /* IsExitBlock */ true);
3981
3982 scop->init(*AA, AC);
3983}
3984
3985void ScopInfo::print(raw_ostream &OS, const Module *) const {
3986 if (!scop) {
3987 OS << "Invalid Scop!\n";
3988 return;
3989 }
3990
3991 scop->print(OS);
3992}
3993
3994void ScopInfo::clear() {
3995 AccFuncMap.clear();
3996 if (scop) {
3997 delete scop;
3998 scop = 0;
3999 }
4000}
4001
4002//===----------------------------------------------------------------------===//
4003ScopInfo::ScopInfo() : RegionPass(ID), scop(0) {
4004 ctx = isl_ctx_alloc();
4005 isl_options_set_on_error(ctx, ISL_ON_ERROR_ABORT2);
4006}
4007
4008ScopInfo::~ScopInfo() {
4009 clear();
4010 isl_ctx_free(ctx);
4011}
4012
4013void ScopInfo::getAnalysisUsage(AnalysisUsage &AU) const {
4014 AU.addRequired<LoopInfoWrapperPass>();
4015 AU.addRequired<RegionInfoPass>();
4016 AU.addRequired<DominatorTreeWrapperPass>();
4017 AU.addRequiredTransitive<ScalarEvolutionWrapperPass>();
4018 AU.addRequiredTransitive<ScopDetection>();
4019 AU.addRequired<AAResultsWrapperPass>();
4020 AU.addRequired<AssumptionCacheTracker>();
4021 AU.setPreservesAll();
4022}
4023
4024bool ScopInfo::runOnRegion(Region *R, RGPassManager &RGM) {
4025 SD = &getAnalysis<ScopDetection>();
4026
4027 if (!SD->isMaxRegionInScop(*R))
4028 return false;
4029
4030 Function *F = R->getEntry()->getParent();
4031 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
4032 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
4033 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
4034 TD = &F->getParent()->getDataLayout();
4035 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
4036 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(*F);
4037
4038 DebugLoc Beg, End;
4039 getDebugLocations(R, Beg, End);
4040 std::string Msg = "SCoP begins here.";
4041 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE"polly-scops", *F, Beg, Msg);
4042
4043 buildScop(*R, AC);
4044
4045 DEBUG(scop->print(dbgs()))do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("polly-scops")) { scop->print(dbgs()); } } while (0)
;
4046
4047 if (scop->isEmpty() || !scop->hasFeasibleRuntimeContext()) {
4048 Msg = "SCoP ends here but was dismissed.";
4049 delete scop;
4050 scop = nullptr;
4051 } else {
4052 Msg = "SCoP ends here.";
4053 ++ScopFound;
4054 if (scop->getMaxLoopDepth() > 0)
4055 ++RichScopFound;
4056 }
4057
4058 emitOptimizationRemarkAnalysis(F->getContext(), DEBUG_TYPE"polly-scops", *F, End, Msg);
4059
4060 return false;
4061}
4062
4063char ScopInfo::ID = 0;
4064
4065Pass *polly::createScopInfoPass() { return new ScopInfo(); }
4066
4067INITIALIZE_PASS_BEGIN(ScopInfo, "polly-scops",static void* initializeScopInfoPassOnce(PassRegistry &Registry
) {
4068 "Polly - Create polyhedral description of Scops", false,static void* initializeScopInfoPassOnce(PassRegistry &Registry
) {
4069 false)static void* initializeScopInfoPassOnce(PassRegistry &Registry
) {
;
4070INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)initializeAAResultsWrapperPassPass(Registry);;
4071INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)initializeAssumptionCacheTrackerPass(Registry);;
4072INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)initializeLoopInfoWrapperPassPass(Registry);;
4073INITIALIZE_PASS_DEPENDENCY(RegionInfoPass)initializeRegionInfoPassPass(Registry);;
4074INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)initializeScalarEvolutionWrapperPassPass(Registry);;
4075INITIALIZE_PASS_DEPENDENCY(ScopDetection)initializeScopDetectionPass(Registry);;
4076INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)initializeDominatorTreeWrapperPassPass(Registry);;
4077INITIALIZE_PASS_END(ScopInfo, "polly-scops",PassInfo *PI = new PassInfo("Polly - Create polyhedral description of Scops"
, "polly-scops", & ScopInfo ::ID, PassInfo::NormalCtor_t(
callDefaultCtor< ScopInfo >), false, false); Registry.registerPass
(*PI, true); return PI; } void llvm::initializeScopInfoPass(PassRegistry
&Registry) { static volatile sys::cas_flag initialized =
0; sys::cas_flag old_val = sys::CompareAndSwap(&initialized
, 1, 0); if (old_val == 0) { initializeScopInfoPassOnce(Registry
); sys::MemoryFence(); ; ; initialized = 2; ; } else { sys::cas_flag
tmp = initialized; sys::MemoryFence(); while (tmp != 2) { tmp
= initialized; sys::MemoryFence(); } } ; }
4078 "Polly - Create polyhedral description of Scops", false,PassInfo *PI = new PassInfo("Polly - Create polyhedral description of Scops"
, "polly-scops", & ScopInfo ::ID, PassInfo::NormalCtor_t(
callDefaultCtor< ScopInfo >), false, false); Registry.registerPass
(*PI, true); return PI; } void llvm::initializeScopInfoPass(PassRegistry
&Registry) { static volatile sys::cas_flag initialized =
0; sys::cas_flag old_val = sys::CompareAndSwap(&initialized
, 1, 0); if (old_val == 0) { initializeScopInfoPassOnce(Registry
); sys::MemoryFence(); ; ; initialized = 2; ; } else { sys::cas_flag
tmp = initialized; sys::MemoryFence(); while (tmp != 2) { tmp
= initialized; sys::MemoryFence(); } } ; }
4079 false)PassInfo *PI = new PassInfo("Polly - Create polyhedral description of Scops"
, "polly-scops", & ScopInfo ::ID, PassInfo::NormalCtor_t(
callDefaultCtor< ScopInfo >), false, false); Registry.registerPass
(*PI, true); return PI; } void llvm::initializeScopInfoPass(PassRegistry
&Registry) { static volatile sys::cas_flag initialized =
0; sys::cas_flag old_val = sys::CompareAndSwap(&initialized
, 1, 0); if (old_val == 0) { initializeScopInfoPassOnce(Registry
); sys::MemoryFence(); ; ; initialized = 2; ; } else { sys::cas_flag
tmp = initialized; sys::MemoryFence(); while (tmp != 2) { tmp
= initialized; sys::MemoryFence(); } } ; }