Bug Summary

File:lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
Location:line 1411, column 9
Description:Value stored to 'Condition' is never read

Annotated Source Code

1//===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#include "SelectionDAGBuilder.h"
15#include "SDNodeDbgValue.h"
16#include "llvm/ADT/BitVector.h"
17#include "llvm/ADT/Optional.h"
18#include "llvm/ADT/SmallSet.h"
19#include "llvm/ADT/Statistic.h"
20#include "llvm/Analysis/AliasAnalysis.h"
21#include "llvm/Analysis/BranchProbabilityInfo.h"
22#include "llvm/Analysis/ConstantFolding.h"
23#include "llvm/Analysis/ValueTracking.h"
24#include "llvm/CodeGen/Analysis.h"
25#include "llvm/CodeGen/FastISel.h"
26#include "llvm/CodeGen/FunctionLoweringInfo.h"
27#include "llvm/CodeGen/GCMetadata.h"
28#include "llvm/CodeGen/GCStrategy.h"
29#include "llvm/CodeGen/MachineFrameInfo.h"
30#include "llvm/CodeGen/MachineFunction.h"
31#include "llvm/CodeGen/MachineInstrBuilder.h"
32#include "llvm/CodeGen/MachineJumpTableInfo.h"
33#include "llvm/CodeGen/MachineModuleInfo.h"
34#include "llvm/CodeGen/MachineRegisterInfo.h"
35#include "llvm/CodeGen/SelectionDAG.h"
36#include "llvm/CodeGen/StackMaps.h"
37#include "llvm/IR/CallingConv.h"
38#include "llvm/IR/Constants.h"
39#include "llvm/IR/DataLayout.h"
40#include "llvm/IR/DebugInfo.h"
41#include "llvm/IR/DerivedTypes.h"
42#include "llvm/IR/Function.h"
43#include "llvm/IR/GlobalVariable.h"
44#include "llvm/IR/InlineAsm.h"
45#include "llvm/IR/Instructions.h"
46#include "llvm/IR/IntrinsicInst.h"
47#include "llvm/IR/Intrinsics.h"
48#include "llvm/IR/LLVMContext.h"
49#include "llvm/IR/Module.h"
50#include "llvm/IR/Statepoint.h"
51#include "llvm/Support/CommandLine.h"
52#include "llvm/Support/Debug.h"
53#include "llvm/Support/ErrorHandling.h"
54#include "llvm/Support/MathExtras.h"
55#include "llvm/Support/raw_ostream.h"
56#include "llvm/Target/TargetFrameLowering.h"
57#include "llvm/Target/TargetInstrInfo.h"
58#include "llvm/Target/TargetIntrinsicInfo.h"
59#include "llvm/Target/TargetLibraryInfo.h"
60#include "llvm/Target/TargetLowering.h"
61#include "llvm/Target/TargetOptions.h"
62#include "llvm/Target/TargetSelectionDAGInfo.h"
63#include "llvm/Target/TargetSubtargetInfo.h"
64#include <algorithm>
65using namespace llvm;
66
67#define DEBUG_TYPE"isel" "isel"
68
69/// LimitFloatPrecision - Generate low-precision inline sequences for
70/// some float libcalls (6, 8 or 12 bits).
71static unsigned LimitFloatPrecision;
72
73static cl::opt<unsigned, true>
74LimitFPPrecision("limit-float-precision",
75 cl::desc("Generate low-precision inline sequences "
76 "for some float libcalls"),
77 cl::location(LimitFloatPrecision),
78 cl::init(0));
79
80// Limit the width of DAG chains. This is important in general to prevent
81// prevent DAG-based analysis from blowing up. For example, alias analysis and
82// load clustering may not complete in reasonable time. It is difficult to
83// recognize and avoid this situation within each individual analysis, and
84// future analyses are likely to have the same behavior. Limiting DAG width is
85// the safe approach, and will be especially important with global DAGs.
86//
87// MaxParallelChains default is arbitrarily high to avoid affecting
88// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
89// sequence over this should have been converted to llvm.memcpy by the
90// frontend. It easy to induce this behavior with .ll code such as:
91// %buffer = alloca [4096 x i8]
92// %data = load [4096 x i8]* %argPtr
93// store [4096 x i8] %data, [4096 x i8]* %buffer
94static const unsigned MaxParallelChains = 64;
95
96static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
97 const SDValue *Parts, unsigned NumParts,
98 MVT PartVT, EVT ValueVT, const Value *V);
99
100/// getCopyFromParts - Create a value that contains the specified legal parts
101/// combined into the value they represent. If the parts combine to a type
102/// larger then ValueVT then AssertOp can be used to specify whether the extra
103/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
104/// (ISD::AssertSext).
105static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
106 const SDValue *Parts,
107 unsigned NumParts, MVT PartVT, EVT ValueVT,
108 const Value *V,
109 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
110 if (ValueVT.isVector())
111 return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
112 PartVT, ValueVT, V);
113
114 assert(NumParts > 0 && "No parts to assemble!")((NumParts > 0 && "No parts to assemble!") ? static_cast
<void> (0) : __assert_fail ("NumParts > 0 && \"No parts to assemble!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 114, __PRETTY_FUNCTION__))
;
115 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
116 SDValue Val = Parts[0];
117
118 if (NumParts > 1) {
119 // Assemble the value from multiple parts.
120 if (ValueVT.isInteger()) {
121 unsigned PartBits = PartVT.getSizeInBits();
122 unsigned ValueBits = ValueVT.getSizeInBits();
123
124 // Assemble the power of 2 part.
125 unsigned RoundParts = NumParts & (NumParts - 1) ?
126 1 << Log2_32(NumParts) : NumParts;
127 unsigned RoundBits = PartBits * RoundParts;
128 EVT RoundVT = RoundBits == ValueBits ?
129 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
130 SDValue Lo, Hi;
131
132 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
133
134 if (RoundParts > 2) {
135 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
136 PartVT, HalfVT, V);
137 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
138 RoundParts / 2, PartVT, HalfVT, V);
139 } else {
140 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
141 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
142 }
143
144 if (TLI.isBigEndian())
145 std::swap(Lo, Hi);
146
147 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
148
149 if (RoundParts < NumParts) {
150 // Assemble the trailing non-power-of-2 part.
151 unsigned OddParts = NumParts - RoundParts;
152 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
153 Hi = getCopyFromParts(DAG, DL,
154 Parts + RoundParts, OddParts, PartVT, OddVT, V);
155
156 // Combine the round and odd parts.
157 Lo = Val;
158 if (TLI.isBigEndian())
159 std::swap(Lo, Hi);
160 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
161 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
162 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
163 DAG.getConstant(Lo.getValueType().getSizeInBits(),
164 TLI.getPointerTy()));
165 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
166 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
167 }
168 } else if (PartVT.isFloatingPoint()) {
169 // FP split into multiple FP parts (for ppcf128)
170 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&((ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
"Unexpected split") ? static_cast<void> (0) : __assert_fail
("ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && \"Unexpected split\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 171, __PRETTY_FUNCTION__))
171 "Unexpected split")((ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
"Unexpected split") ? static_cast<void> (0) : __assert_fail
("ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && \"Unexpected split\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 171, __PRETTY_FUNCTION__))
;
172 SDValue Lo, Hi;
173 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
174 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
175 if (TLI.hasBigEndianPartOrdering(ValueVT))
176 std::swap(Lo, Hi);
177 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
178 } else {
179 // FP split into integer parts (soft fp)
180 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&((ValueVT.isFloatingPoint() && PartVT.isInteger() &&
!PartVT.isVector() && "Unexpected split") ? static_cast
<void> (0) : __assert_fail ("ValueVT.isFloatingPoint() && PartVT.isInteger() && !PartVT.isVector() && \"Unexpected split\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 181, __PRETTY_FUNCTION__))
181 !PartVT.isVector() && "Unexpected split")((ValueVT.isFloatingPoint() && PartVT.isInteger() &&
!PartVT.isVector() && "Unexpected split") ? static_cast
<void> (0) : __assert_fail ("ValueVT.isFloatingPoint() && PartVT.isInteger() && !PartVT.isVector() && \"Unexpected split\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 181, __PRETTY_FUNCTION__))
;
182 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
183 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
184 }
185 }
186
187 // There is now one part, held in Val. Correct it to match ValueVT.
188 EVT PartEVT = Val.getValueType();
189
190 if (PartEVT == ValueVT)
191 return Val;
192
193 if (PartEVT.isInteger() && ValueVT.isInteger()) {
194 if (ValueVT.bitsLT(PartEVT)) {
195 // For a truncate, see if we have any information to
196 // indicate whether the truncated bits will always be
197 // zero or sign-extension.
198 if (AssertOp != ISD::DELETED_NODE)
199 Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
200 DAG.getValueType(ValueVT));
201 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
202 }
203 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
204 }
205
206 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
207 // FP_ROUND's are always exact here.
208 if (ValueVT.bitsLT(Val.getValueType()))
209 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
210 DAG.getTargetConstant(1, TLI.getPointerTy()));
211
212 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
213 }
214
215 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
216 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
217
218 llvm_unreachable("Unknown mismatch!")::llvm::llvm_unreachable_internal("Unknown mismatch!", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 218)
;
219}
220
221static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
222 const Twine &ErrMsg) {
223 const Instruction *I = dyn_cast_or_null<Instruction>(V);
224 if (!V)
225 return Ctx.emitError(ErrMsg);
226
227 const char *AsmError = ", possible invalid constraint for vector type";
228 if (const CallInst *CI = dyn_cast<CallInst>(I))
229 if (isa<InlineAsm>(CI->getCalledValue()))
230 return Ctx.emitError(I, ErrMsg + AsmError);
231
232 return Ctx.emitError(I, ErrMsg);
233}
234
235/// getCopyFromPartsVector - Create a value that contains the specified legal
236/// parts combined into the value they represent. If the parts combine to a
237/// type larger then ValueVT then AssertOp can be used to specify whether the
238/// extra bits are known to be zero (ISD::AssertZext) or sign extended from
239/// ValueVT (ISD::AssertSext).
240static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
241 const SDValue *Parts, unsigned NumParts,
242 MVT PartVT, EVT ValueVT, const Value *V) {
243 assert(ValueVT.isVector() && "Not a vector value")((ValueVT.isVector() && "Not a vector value") ? static_cast
<void> (0) : __assert_fail ("ValueVT.isVector() && \"Not a vector value\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 243, __PRETTY_FUNCTION__))
;
244 assert(NumParts > 0 && "No parts to assemble!")((NumParts > 0 && "No parts to assemble!") ? static_cast
<void> (0) : __assert_fail ("NumParts > 0 && \"No parts to assemble!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 244, __PRETTY_FUNCTION__))
;
245 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
246 SDValue Val = Parts[0];
247
248 // Handle a multi-element vector.
249 if (NumParts > 1) {
250 EVT IntermediateVT;
251 MVT RegisterVT;
252 unsigned NumIntermediates;
253 unsigned NumRegs =
254 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
255 NumIntermediates, RegisterVT);
256 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!")((NumRegs == NumParts && "Part count doesn't match vector breakdown!"
) ? static_cast<void> (0) : __assert_fail ("NumRegs == NumParts && \"Part count doesn't match vector breakdown!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 256, __PRETTY_FUNCTION__))
;
257 NumParts = NumRegs; // Silence a compiler warning.
258 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!")((RegisterVT == PartVT && "Part type doesn't match vector breakdown!"
) ? static_cast<void> (0) : __assert_fail ("RegisterVT == PartVT && \"Part type doesn't match vector breakdown!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 258, __PRETTY_FUNCTION__))
;
259 assert(RegisterVT == Parts[0].getSimpleValueType() &&((RegisterVT == Parts[0].getSimpleValueType() && "Part type doesn't match part!"
) ? static_cast<void> (0) : __assert_fail ("RegisterVT == Parts[0].getSimpleValueType() && \"Part type doesn't match part!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 260, __PRETTY_FUNCTION__))
260 "Part type doesn't match part!")((RegisterVT == Parts[0].getSimpleValueType() && "Part type doesn't match part!"
) ? static_cast<void> (0) : __assert_fail ("RegisterVT == Parts[0].getSimpleValueType() && \"Part type doesn't match part!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 260, __PRETTY_FUNCTION__))
;
261
262 // Assemble the parts into intermediate operands.
263 SmallVector<SDValue, 8> Ops(NumIntermediates);
264 if (NumIntermediates == NumParts) {
265 // If the register was not expanded, truncate or copy the value,
266 // as appropriate.
267 for (unsigned i = 0; i != NumParts; ++i)
268 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
269 PartVT, IntermediateVT, V);
270 } else if (NumParts > 0) {
271 // If the intermediate type was expanded, build the intermediate
272 // operands from the parts.
273 assert(NumParts % NumIntermediates == 0 &&((NumParts % NumIntermediates == 0 && "Must expand into a divisible number of parts!"
) ? static_cast<void> (0) : __assert_fail ("NumParts % NumIntermediates == 0 && \"Must expand into a divisible number of parts!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 274, __PRETTY_FUNCTION__))
274 "Must expand into a divisible number of parts!")((NumParts % NumIntermediates == 0 && "Must expand into a divisible number of parts!"
) ? static_cast<void> (0) : __assert_fail ("NumParts % NumIntermediates == 0 && \"Must expand into a divisible number of parts!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 274, __PRETTY_FUNCTION__))
;
275 unsigned Factor = NumParts / NumIntermediates;
276 for (unsigned i = 0; i != NumIntermediates; ++i)
277 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
278 PartVT, IntermediateVT, V);
279 }
280
281 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
282 // intermediate operands.
283 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
284 : ISD::BUILD_VECTOR,
285 DL, ValueVT, Ops);
286 }
287
288 // There is now one part, held in Val. Correct it to match ValueVT.
289 EVT PartEVT = Val.getValueType();
290
291 if (PartEVT == ValueVT)
292 return Val;
293
294 if (PartEVT.isVector()) {
295 // If the element type of the source/dest vectors are the same, but the
296 // parts vector has more elements than the value vector, then we have a
297 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the
298 // elements we want.
299 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
300 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&((PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements
() && "Cannot narrow, it would be a lossy transformation"
) ? static_cast<void> (0) : __assert_fail ("PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && \"Cannot narrow, it would be a lossy transformation\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 301, __PRETTY_FUNCTION__))
301 "Cannot narrow, it would be a lossy transformation")((PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements
() && "Cannot narrow, it would be a lossy transformation"
) ? static_cast<void> (0) : __assert_fail ("PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && \"Cannot narrow, it would be a lossy transformation\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 301, __PRETTY_FUNCTION__))
;
302 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
303 DAG.getConstant(0, TLI.getVectorIdxTy()));
304 }
305
306 // Vector/Vector bitcast.
307 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
308 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
309
310 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&((PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements
() && "Cannot handle this kind of promotion") ? static_cast
<void> (0) : __assert_fail ("PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && \"Cannot handle this kind of promotion\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 311, __PRETTY_FUNCTION__))
311 "Cannot handle this kind of promotion")((PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements
() && "Cannot handle this kind of promotion") ? static_cast
<void> (0) : __assert_fail ("PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && \"Cannot handle this kind of promotion\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 311, __PRETTY_FUNCTION__))
;
312 // Promoted vector extract
313 bool Smaller = ValueVT.bitsLE(PartEVT);
314 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
315 DL, ValueVT, Val);
316
317 }
318
319 // Trivial bitcast if the types are the same size and the destination
320 // vector type is legal.
321 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
322 TLI.isTypeLegal(ValueVT))
323 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
324
325 // Handle cases such as i8 -> <1 x i1>
326 if (ValueVT.getVectorNumElements() != 1) {
327 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
328 "non-trivial scalar-to-vector conversion");
329 return DAG.getUNDEF(ValueVT);
330 }
331
332 if (ValueVT.getVectorNumElements() == 1 &&
333 ValueVT.getVectorElementType() != PartEVT) {
334 bool Smaller = ValueVT.bitsLE(PartEVT);
335 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
336 DL, ValueVT.getScalarType(), Val);
337 }
338
339 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
340}
341
342static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
343 SDValue Val, SDValue *Parts, unsigned NumParts,
344 MVT PartVT, const Value *V);
345
346/// getCopyToParts - Create a series of nodes that contain the specified value
347/// split into legal parts. If the parts contain more bits than Val, then, for
348/// integers, ExtendKind can be used to specify how to generate the extra bits.
349static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
350 SDValue Val, SDValue *Parts, unsigned NumParts,
351 MVT PartVT, const Value *V,
352 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
353 EVT ValueVT = Val.getValueType();
354
355 // Handle the vector case separately.
356 if (ValueVT.isVector())
357 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
358
359 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
360 unsigned PartBits = PartVT.getSizeInBits();
361 unsigned OrigNumParts = NumParts;
362 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!")((TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"
) ? static_cast<void> (0) : __assert_fail ("TLI.isTypeLegal(PartVT) && \"Copying to an illegal type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 362, __PRETTY_FUNCTION__))
;
363
364 if (NumParts == 0)
365 return;
366
367 assert(!ValueVT.isVector() && "Vector case handled elsewhere")((!ValueVT.isVector() && "Vector case handled elsewhere"
) ? static_cast<void> (0) : __assert_fail ("!ValueVT.isVector() && \"Vector case handled elsewhere\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 367, __PRETTY_FUNCTION__))
;
368 EVT PartEVT = PartVT;
369 if (PartEVT == ValueVT) {
370 assert(NumParts == 1 && "No-op copy with multiple parts!")((NumParts == 1 && "No-op copy with multiple parts!")
? static_cast<void> (0) : __assert_fail ("NumParts == 1 && \"No-op copy with multiple parts!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 370, __PRETTY_FUNCTION__))
;
371 Parts[0] = Val;
372 return;
373 }
374
375 if (NumParts * PartBits > ValueVT.getSizeInBits()) {
376 // If the parts cover more bits than the value has, promote the value.
377 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
378 assert(NumParts == 1 && "Do not know what to promote to!")((NumParts == 1 && "Do not know what to promote to!")
? static_cast<void> (0) : __assert_fail ("NumParts == 1 && \"Do not know what to promote to!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 378, __PRETTY_FUNCTION__))
;
379 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
380 } else {
381 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&(((PartVT.isInteger() || PartVT == MVT::x86mmx) && ValueVT
.isInteger() && "Unknown mismatch!") ? static_cast<
void> (0) : __assert_fail ("(PartVT.isInteger() || PartVT == MVT::x86mmx) && ValueVT.isInteger() && \"Unknown mismatch!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 383, __PRETTY_FUNCTION__))
382 ValueVT.isInteger() &&(((PartVT.isInteger() || PartVT == MVT::x86mmx) && ValueVT
.isInteger() && "Unknown mismatch!") ? static_cast<
void> (0) : __assert_fail ("(PartVT.isInteger() || PartVT == MVT::x86mmx) && ValueVT.isInteger() && \"Unknown mismatch!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 383, __PRETTY_FUNCTION__))
383 "Unknown mismatch!")(((PartVT.isInteger() || PartVT == MVT::x86mmx) && ValueVT
.isInteger() && "Unknown mismatch!") ? static_cast<
void> (0) : __assert_fail ("(PartVT.isInteger() || PartVT == MVT::x86mmx) && ValueVT.isInteger() && \"Unknown mismatch!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 383, __PRETTY_FUNCTION__))
;
384 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
385 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
386 if (PartVT == MVT::x86mmx)
387 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
388 }
389 } else if (PartBits == ValueVT.getSizeInBits()) {
390 // Different types of the same size.
391 assert(NumParts == 1 && PartEVT != ValueVT)((NumParts == 1 && PartEVT != ValueVT) ? static_cast<
void> (0) : __assert_fail ("NumParts == 1 && PartEVT != ValueVT"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 391, __PRETTY_FUNCTION__))
;
392 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
393 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
394 // If the parts cover less bits than value has, truncate the value.
395 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&(((PartVT.isInteger() || PartVT == MVT::x86mmx) && ValueVT
.isInteger() && "Unknown mismatch!") ? static_cast<
void> (0) : __assert_fail ("(PartVT.isInteger() || PartVT == MVT::x86mmx) && ValueVT.isInteger() && \"Unknown mismatch!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 397, __PRETTY_FUNCTION__))
396 ValueVT.isInteger() &&(((PartVT.isInteger() || PartVT == MVT::x86mmx) && ValueVT
.isInteger() && "Unknown mismatch!") ? static_cast<
void> (0) : __assert_fail ("(PartVT.isInteger() || PartVT == MVT::x86mmx) && ValueVT.isInteger() && \"Unknown mismatch!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 397, __PRETTY_FUNCTION__))
397 "Unknown mismatch!")(((PartVT.isInteger() || PartVT == MVT::x86mmx) && ValueVT
.isInteger() && "Unknown mismatch!") ? static_cast<
void> (0) : __assert_fail ("(PartVT.isInteger() || PartVT == MVT::x86mmx) && ValueVT.isInteger() && \"Unknown mismatch!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 397, __PRETTY_FUNCTION__))
;
398 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
399 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
400 if (PartVT == MVT::x86mmx)
401 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
402 }
403
404 // The value may have changed - recompute ValueVT.
405 ValueVT = Val.getValueType();
406 assert(NumParts * PartBits == ValueVT.getSizeInBits() &&((NumParts * PartBits == ValueVT.getSizeInBits() && "Failed to tile the value with PartVT!"
) ? static_cast<void> (0) : __assert_fail ("NumParts * PartBits == ValueVT.getSizeInBits() && \"Failed to tile the value with PartVT!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 407, __PRETTY_FUNCTION__))
407 "Failed to tile the value with PartVT!")((NumParts * PartBits == ValueVT.getSizeInBits() && "Failed to tile the value with PartVT!"
) ? static_cast<void> (0) : __assert_fail ("NumParts * PartBits == ValueVT.getSizeInBits() && \"Failed to tile the value with PartVT!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 407, __PRETTY_FUNCTION__))
;
408
409 if (NumParts == 1) {
410 if (PartEVT != ValueVT)
411 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
412 "scalar-to-vector conversion failed");
413
414 Parts[0] = Val;
415 return;
416 }
417
418 // Expand the value into multiple parts.
419 if (NumParts & (NumParts - 1)) {
420 // The number of parts is not a power of 2. Split off and copy the tail.
421 assert(PartVT.isInteger() && ValueVT.isInteger() &&((PartVT.isInteger() && ValueVT.isInteger() &&
"Do not know what to expand to!") ? static_cast<void> (
0) : __assert_fail ("PartVT.isInteger() && ValueVT.isInteger() && \"Do not know what to expand to!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 422, __PRETTY_FUNCTION__))
422 "Do not know what to expand to!")((PartVT.isInteger() && ValueVT.isInteger() &&
"Do not know what to expand to!") ? static_cast<void> (
0) : __assert_fail ("PartVT.isInteger() && ValueVT.isInteger() && \"Do not know what to expand to!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 422, __PRETTY_FUNCTION__))
;
423 unsigned RoundParts = 1 << Log2_32(NumParts);
424 unsigned RoundBits = RoundParts * PartBits;
425 unsigned OddParts = NumParts - RoundParts;
426 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
427 DAG.getIntPtrConstant(RoundBits));
428 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
429
430 if (TLI.isBigEndian())
431 // The odd parts were reversed by getCopyToParts - unreverse them.
432 std::reverse(Parts + RoundParts, Parts + NumParts);
433
434 NumParts = RoundParts;
435 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
436 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
437 }
438
439 // The number of parts is a power of 2. Repeatedly bisect the value using
440 // EXTRACT_ELEMENT.
441 Parts[0] = DAG.getNode(ISD::BITCAST, DL,
442 EVT::getIntegerVT(*DAG.getContext(),
443 ValueVT.getSizeInBits()),
444 Val);
445
446 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
447 for (unsigned i = 0; i < NumParts; i += StepSize) {
448 unsigned ThisBits = StepSize * PartBits / 2;
449 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
450 SDValue &Part0 = Parts[i];
451 SDValue &Part1 = Parts[i+StepSize/2];
452
453 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
454 ThisVT, Part0, DAG.getIntPtrConstant(1));
455 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
456 ThisVT, Part0, DAG.getIntPtrConstant(0));
457
458 if (ThisBits == PartBits && ThisVT != PartVT) {
459 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
460 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
461 }
462 }
463 }
464
465 if (TLI.isBigEndian())
466 std::reverse(Parts, Parts + OrigNumParts);
467}
468
469
470/// getCopyToPartsVector - Create a series of nodes that contain the specified
471/// value split into legal parts.
472static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
473 SDValue Val, SDValue *Parts, unsigned NumParts,
474 MVT PartVT, const Value *V) {
475 EVT ValueVT = Val.getValueType();
476 assert(ValueVT.isVector() && "Not a vector")((ValueVT.isVector() && "Not a vector") ? static_cast
<void> (0) : __assert_fail ("ValueVT.isVector() && \"Not a vector\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 476, __PRETTY_FUNCTION__))
;
477 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
478
479 if (NumParts == 1) {
480 EVT PartEVT = PartVT;
481 if (PartEVT == ValueVT) {
482 // Nothing to do.
483 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
484 // Bitconvert vector->vector case.
485 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
486 } else if (PartVT.isVector() &&
487 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
488 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
489 EVT ElementVT = PartVT.getVectorElementType();
490 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in
491 // undef elements.
492 SmallVector<SDValue, 16> Ops;
493 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
494 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
495 ElementVT, Val, DAG.getConstant(i,
496 TLI.getVectorIdxTy())));
497
498 for (unsigned i = ValueVT.getVectorNumElements(),
499 e = PartVT.getVectorNumElements(); i != e; ++i)
500 Ops.push_back(DAG.getUNDEF(ElementVT));
501
502 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops);
503
504 // FIXME: Use CONCAT for 2x -> 4x.
505
506 //SDValue UndefElts = DAG.getUNDEF(VectorTy);
507 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
508 } else if (PartVT.isVector() &&
509 PartEVT.getVectorElementType().bitsGE(
510 ValueVT.getVectorElementType()) &&
511 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
512
513 // Promoted vector extract
514 bool Smaller = PartEVT.bitsLE(ValueVT);
515 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
516 DL, PartVT, Val);
517 } else{
518 // Vector -> scalar conversion.
519 assert(ValueVT.getVectorNumElements() == 1 &&((ValueVT.getVectorNumElements() == 1 && "Only trivial vector-to-scalar conversions should get here!"
) ? static_cast<void> (0) : __assert_fail ("ValueVT.getVectorNumElements() == 1 && \"Only trivial vector-to-scalar conversions should get here!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 520, __PRETTY_FUNCTION__))
520 "Only trivial vector-to-scalar conversions should get here!")((ValueVT.getVectorNumElements() == 1 && "Only trivial vector-to-scalar conversions should get here!"
) ? static_cast<void> (0) : __assert_fail ("ValueVT.getVectorNumElements() == 1 && \"Only trivial vector-to-scalar conversions should get here!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 520, __PRETTY_FUNCTION__))
;
521 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
522 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy()));
523
524 bool Smaller = ValueVT.bitsLE(PartVT);
525 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
526 DL, PartVT, Val);
527 }
528
529 Parts[0] = Val;
530 return;
531 }
532
533 // Handle a multi-element vector.
534 EVT IntermediateVT;
535 MVT RegisterVT;
536 unsigned NumIntermediates;
537 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
538 IntermediateVT,
539 NumIntermediates, RegisterVT);
540 unsigned NumElements = ValueVT.getVectorNumElements();
541
542 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!")((NumRegs == NumParts && "Part count doesn't match vector breakdown!"
) ? static_cast<void> (0) : __assert_fail ("NumRegs == NumParts && \"Part count doesn't match vector breakdown!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 542, __PRETTY_FUNCTION__))
;
543 NumParts = NumRegs; // Silence a compiler warning.
544 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!")((RegisterVT == PartVT && "Part type doesn't match vector breakdown!"
) ? static_cast<void> (0) : __assert_fail ("RegisterVT == PartVT && \"Part type doesn't match vector breakdown!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 544, __PRETTY_FUNCTION__))
;
545
546 // Split the vector into intermediate operands.
547 SmallVector<SDValue, 8> Ops(NumIntermediates);
548 for (unsigned i = 0; i != NumIntermediates; ++i) {
549 if (IntermediateVT.isVector())
550 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
551 IntermediateVT, Val,
552 DAG.getConstant(i * (NumElements / NumIntermediates),
553 TLI.getVectorIdxTy()));
554 else
555 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
556 IntermediateVT, Val,
557 DAG.getConstant(i, TLI.getVectorIdxTy()));
558 }
559
560 // Split the intermediate operands into legal parts.
561 if (NumParts == NumIntermediates) {
562 // If the register was not expanded, promote or copy the value,
563 // as appropriate.
564 for (unsigned i = 0; i != NumParts; ++i)
565 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
566 } else if (NumParts > 0) {
567 // If the intermediate type was expanded, split each the value into
568 // legal parts.
569 assert(NumParts % NumIntermediates == 0 &&((NumParts % NumIntermediates == 0 && "Must expand into a divisible number of parts!"
) ? static_cast<void> (0) : __assert_fail ("NumParts % NumIntermediates == 0 && \"Must expand into a divisible number of parts!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 570, __PRETTY_FUNCTION__))
570 "Must expand into a divisible number of parts!")((NumParts % NumIntermediates == 0 && "Must expand into a divisible number of parts!"
) ? static_cast<void> (0) : __assert_fail ("NumParts % NumIntermediates == 0 && \"Must expand into a divisible number of parts!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 570, __PRETTY_FUNCTION__))
;
571 unsigned Factor = NumParts / NumIntermediates;
572 for (unsigned i = 0; i != NumIntermediates; ++i)
573 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
574 }
575}
576
577namespace {
578 /// RegsForValue - This struct represents the registers (physical or virtual)
579 /// that a particular set of values is assigned, and the type information
580 /// about the value. The most common situation is to represent one value at a
581 /// time, but struct or array values are handled element-wise as multiple
582 /// values. The splitting of aggregates is performed recursively, so that we
583 /// never have aggregate-typed registers. The values at this point do not
584 /// necessarily have legal types, so each value may require one or more
585 /// registers of some legal type.
586 ///
587 struct RegsForValue {
588 /// ValueVTs - The value types of the values, which may not be legal, and
589 /// may need be promoted or synthesized from one or more registers.
590 ///
591 SmallVector<EVT, 4> ValueVTs;
592
593 /// RegVTs - The value types of the registers. This is the same size as
594 /// ValueVTs and it records, for each value, what the type of the assigned
595 /// register or registers are. (Individual values are never synthesized
596 /// from more than one type of register.)
597 ///
598 /// With virtual registers, the contents of RegVTs is redundant with TLI's
599 /// getRegisterType member function, however when with physical registers
600 /// it is necessary to have a separate record of the types.
601 ///
602 SmallVector<MVT, 4> RegVTs;
603
604 /// Regs - This list holds the registers assigned to the values.
605 /// Each legal or promoted value requires one register, and each
606 /// expanded value requires multiple registers.
607 ///
608 SmallVector<unsigned, 4> Regs;
609
610 RegsForValue() {}
611
612 RegsForValue(const SmallVector<unsigned, 4> &regs,
613 MVT regvt, EVT valuevt)
614 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
615
616 RegsForValue(LLVMContext &Context, const TargetLowering &tli,
617 unsigned Reg, Type *Ty) {
618 ComputeValueVTs(tli, Ty, ValueVTs);
619
620 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
621 EVT ValueVT = ValueVTs[Value];
622 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
623 MVT RegisterVT = tli.getRegisterType(Context, ValueVT);
624 for (unsigned i = 0; i != NumRegs; ++i)
625 Regs.push_back(Reg + i);
626 RegVTs.push_back(RegisterVT);
627 Reg += NumRegs;
628 }
629 }
630
631 /// append - Add the specified values to this one.
632 void append(const RegsForValue &RHS) {
633 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
634 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
635 Regs.append(RHS.Regs.begin(), RHS.Regs.end());
636 }
637
638 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
639 /// this value and returns the result as a ValueVTs value. This uses
640 /// Chain/Flag as the input and updates them for the output Chain/Flag.
641 /// If the Flag pointer is NULL, no flag is used.
642 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
643 SDLoc dl,
644 SDValue &Chain, SDValue *Flag,
645 const Value *V = nullptr) const;
646
647 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
648 /// specified value into the registers specified by this object. This uses
649 /// Chain/Flag as the input and updates them for the output Chain/Flag.
650 /// If the Flag pointer is NULL, no flag is used.
651 void
652 getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, SDValue &Chain,
653 SDValue *Flag, const Value *V,
654 ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const;
655
656 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
657 /// operand list. This adds the code marker, matching input operand index
658 /// (if applicable), and includes the number of values added into it.
659 void AddInlineAsmOperands(unsigned Kind,
660 bool HasMatching, unsigned MatchingIdx,
661 SelectionDAG &DAG,
662 std::vector<SDValue> &Ops) const;
663 };
664}
665
666/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
667/// this value and returns the result as a ValueVT value. This uses
668/// Chain/Flag as the input and updates them for the output Chain/Flag.
669/// If the Flag pointer is NULL, no flag is used.
670SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
671 FunctionLoweringInfo &FuncInfo,
672 SDLoc dl,
673 SDValue &Chain, SDValue *Flag,
674 const Value *V) const {
675 // A Value with type {} or [0 x %t] needs no registers.
676 if (ValueVTs.empty())
677 return SDValue();
678
679 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
680
681 // Assemble the legal parts into the final values.
682 SmallVector<SDValue, 4> Values(ValueVTs.size());
683 SmallVector<SDValue, 8> Parts;
684 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
685 // Copy the legal parts from the registers.
686 EVT ValueVT = ValueVTs[Value];
687 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
688 MVT RegisterVT = RegVTs[Value];
689
690 Parts.resize(NumRegs);
691 for (unsigned i = 0; i != NumRegs; ++i) {
692 SDValue P;
693 if (!Flag) {
694 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
695 } else {
696 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
697 *Flag = P.getValue(2);
698 }
699
700 Chain = P.getValue(1);
701 Parts[i] = P;
702
703 // If the source register was virtual and if we know something about it,
704 // add an assert node.
705 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
706 !RegisterVT.isInteger() || RegisterVT.isVector())
707 continue;
708
709 const FunctionLoweringInfo::LiveOutInfo *LOI =
710 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
711 if (!LOI)
712 continue;
713
714 unsigned RegSize = RegisterVT.getSizeInBits();
715 unsigned NumSignBits = LOI->NumSignBits;
716 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
717
718 if (NumZeroBits == RegSize) {
719 // The current value is a zero.
720 // Explicitly express that as it would be easier for
721 // optimizations to kick in.
722 Parts[i] = DAG.getConstant(0, RegisterVT);
723 continue;
724 }
725
726 // FIXME: We capture more information than the dag can represent. For
727 // now, just use the tightest assertzext/assertsext possible.
728 bool isSExt = true;
729 EVT FromVT(MVT::Other);
730 if (NumSignBits == RegSize)
731 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1
732 else if (NumZeroBits >= RegSize-1)
733 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1
734 else if (NumSignBits > RegSize-8)
735 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8
736 else if (NumZeroBits >= RegSize-8)
737 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8
738 else if (NumSignBits > RegSize-16)
739 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16
740 else if (NumZeroBits >= RegSize-16)
741 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
742 else if (NumSignBits > RegSize-32)
743 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32
744 else if (NumZeroBits >= RegSize-32)
745 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
746 else
747 continue;
748
749 // Add an assertion node.
750 assert(FromVT != MVT::Other)((FromVT != MVT::Other) ? static_cast<void> (0) : __assert_fail
("FromVT != MVT::Other", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 750, __PRETTY_FUNCTION__))
;
751 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
752 RegisterVT, P, DAG.getValueType(FromVT));
753 }
754
755 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
756 NumRegs, RegisterVT, ValueVT, V);
757 Part += NumRegs;
758 Parts.clear();
759 }
760
761 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
762}
763
764/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
765/// specified value into the registers specified by this object. This uses
766/// Chain/Flag as the input and updates them for the output Chain/Flag.
767/// If the Flag pointer is NULL, no flag is used.
768void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
769 SDValue &Chain, SDValue *Flag, const Value *V,
770 ISD::NodeType PreferredExtendType) const {
771 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
772 ISD::NodeType ExtendKind = PreferredExtendType;
773
774 // Get the list of the values's legal parts.
775 unsigned NumRegs = Regs.size();
776 SmallVector<SDValue, 8> Parts(NumRegs);
777 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
778 EVT ValueVT = ValueVTs[Value];
779 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
780 MVT RegisterVT = RegVTs[Value];
781
782 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
783 ExtendKind = ISD::ZERO_EXTEND;
784
785 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
786 &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
787 Part += NumParts;
788 }
789
790 // Copy the parts into the registers.
791 SmallVector<SDValue, 8> Chains(NumRegs);
792 for (unsigned i = 0; i != NumRegs; ++i) {
793 SDValue Part;
794 if (!Flag) {
795 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
796 } else {
797 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
798 *Flag = Part.getValue(1);
799 }
800
801 Chains[i] = Part.getValue(0);
802 }
803
804 if (NumRegs == 1 || Flag)
805 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
806 // flagged to it. That is the CopyToReg nodes and the user are considered
807 // a single scheduling unit. If we create a TokenFactor and return it as
808 // chain, then the TokenFactor is both a predecessor (operand) of the
809 // user as well as a successor (the TF operands are flagged to the user).
810 // c1, f1 = CopyToReg
811 // c2, f2 = CopyToReg
812 // c3 = TokenFactor c1, c2
813 // ...
814 // = op c3, ..., f2
815 Chain = Chains[NumRegs-1];
816 else
817 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
818}
819
820/// AddInlineAsmOperands - Add this value to the specified inlineasm node
821/// operand list. This adds the code marker and includes the number of
822/// values added into it.
823void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
824 unsigned MatchingIdx,
825 SelectionDAG &DAG,
826 std::vector<SDValue> &Ops) const {
827 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
828
829 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
830 if (HasMatching)
831 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
832 else if (!Regs.empty() &&
833 TargetRegisterInfo::isVirtualRegister(Regs.front())) {
834 // Put the register class of the virtual registers in the flag word. That
835 // way, later passes can recompute register class constraints for inline
836 // assembly as well as normal instructions.
837 // Don't do this for tied operands that can use the regclass information
838 // from the def.
839 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
840 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
841 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
842 }
843
844 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
845 Ops.push_back(Res);
846
847 unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
848 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
849 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
850 MVT RegisterVT = RegVTs[Value];
851 for (unsigned i = 0; i != NumRegs; ++i) {
852 assert(Reg < Regs.size() && "Mismatch in # registers expected")((Reg < Regs.size() && "Mismatch in # registers expected"
) ? static_cast<void> (0) : __assert_fail ("Reg < Regs.size() && \"Mismatch in # registers expected\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 852, __PRETTY_FUNCTION__))
;
853 unsigned TheReg = Regs[Reg++];
854 Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
855
856 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
857 // If we clobbered the stack pointer, MFI should know about it.
858 assert(DAG.getMachineFunction().getFrameInfo()->((DAG.getMachineFunction().getFrameInfo()-> hasInlineAsmWithSPAdjust
()) ? static_cast<void> (0) : __assert_fail ("DAG.getMachineFunction().getFrameInfo()-> hasInlineAsmWithSPAdjust()"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 859, __PRETTY_FUNCTION__))
859 hasInlineAsmWithSPAdjust())((DAG.getMachineFunction().getFrameInfo()-> hasInlineAsmWithSPAdjust
()) ? static_cast<void> (0) : __assert_fail ("DAG.getMachineFunction().getFrameInfo()-> hasInlineAsmWithSPAdjust()"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 859, __PRETTY_FUNCTION__))
;
860 }
861 }
862 }
863}
864
865void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
866 const TargetLibraryInfo *li) {
867 AA = &aa;
868 GFI = gfi;
869 LibInfo = li;
870 DL = DAG.getSubtarget().getDataLayout();
871 Context = DAG.getContext();
872 LPadToCallSiteMap.clear();
873}
874
875/// clear - Clear out the current SelectionDAG and the associated
876/// state and prepare this SelectionDAGBuilder object to be used
877/// for a new block. This doesn't clear out information about
878/// additional blocks that are needed to complete switch lowering
879/// or PHI node updating; that information is cleared out as it is
880/// consumed.
881void SelectionDAGBuilder::clear() {
882 NodeMap.clear();
883 UnusedArgNodeMap.clear();
884 PendingLoads.clear();
885 PendingExports.clear();
886 CurInst = nullptr;
887 HasTailCall = false;
888 SDNodeOrder = LowestSDNodeOrder;
889 StatepointLowering.clear();
890}
891
892/// clearDanglingDebugInfo - Clear the dangling debug information
893/// map. This function is separated from the clear so that debug
894/// information that is dangling in a basic block can be properly
895/// resolved in a different basic block. This allows the
896/// SelectionDAG to resolve dangling debug information attached
897/// to PHI nodes.
898void SelectionDAGBuilder::clearDanglingDebugInfo() {
899 DanglingDebugInfoMap.clear();
900}
901
902/// getRoot - Return the current virtual root of the Selection DAG,
903/// flushing any PendingLoad items. This must be done before emitting
904/// a store or any other node that may need to be ordered after any
905/// prior load instructions.
906///
907SDValue SelectionDAGBuilder::getRoot() {
908 if (PendingLoads.empty())
909 return DAG.getRoot();
910
911 if (PendingLoads.size() == 1) {
912 SDValue Root = PendingLoads[0];
913 DAG.setRoot(Root);
914 PendingLoads.clear();
915 return Root;
916 }
917
918 // Otherwise, we have to make a token factor node.
919 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
920 PendingLoads);
921 PendingLoads.clear();
922 DAG.setRoot(Root);
923 return Root;
924}
925
926/// getControlRoot - Similar to getRoot, but instead of flushing all the
927/// PendingLoad items, flush all the PendingExports items. It is necessary
928/// to do this before emitting a terminator instruction.
929///
930SDValue SelectionDAGBuilder::getControlRoot() {
931 SDValue Root = DAG.getRoot();
932
933 if (PendingExports.empty())
934 return Root;
935
936 // Turn all of the CopyToReg chains into one factored node.
937 if (Root.getOpcode() != ISD::EntryToken) {
938 unsigned i = 0, e = PendingExports.size();
939 for (; i != e; ++i) {
940 assert(PendingExports[i].getNode()->getNumOperands() > 1)((PendingExports[i].getNode()->getNumOperands() > 1) ? static_cast
<void> (0) : __assert_fail ("PendingExports[i].getNode()->getNumOperands() > 1"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 940, __PRETTY_FUNCTION__))
;
941 if (PendingExports[i].getNode()->getOperand(0) == Root)
942 break; // Don't add the root if we already indirectly depend on it.
943 }
944
945 if (i == e)
946 PendingExports.push_back(Root);
947 }
948
949 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
950 PendingExports);
951 PendingExports.clear();
952 DAG.setRoot(Root);
953 return Root;
954}
955
956void SelectionDAGBuilder::visit(const Instruction &I) {
957 // Set up outgoing PHI node register values before emitting the terminator.
958 if (isa<TerminatorInst>(&I))
959 HandlePHINodesInSuccessorBlocks(I.getParent());
960
961 ++SDNodeOrder;
962
963 CurInst = &I;
964
965 visit(I.getOpcode(), I);
966
967 if (!isa<TerminatorInst>(&I) && !HasTailCall)
968 CopyToExportRegsIfNeeded(&I);
969
970 CurInst = nullptr;
971}
972
973void SelectionDAGBuilder::visitPHI(const PHINode &) {
974 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!")::llvm::llvm_unreachable_internal("SelectionDAGBuilder shouldn't visit PHI nodes!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 974)
;
975}
976
977void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
978 // Note: this doesn't use InstVisitor, because it has to work with
979 // ConstantExpr's in addition to instructions.
980 switch (Opcode) {
981 default: llvm_unreachable("Unknown instruction type encountered!")::llvm::llvm_unreachable_internal("Unknown instruction type encountered!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 981)
;
982 // Build the switch statement using the Instruction.def file.
983#define HANDLE_INST(NUM, OPCODE, CLASS) \
984 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
985#include "llvm/IR/Instruction.def"
986 }
987}
988
989// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
990// generate the debug data structures now that we've seen its definition.
991void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
992 SDValue Val) {
993 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
994 if (DDI.getDI()) {
995 const DbgValueInst *DI = DDI.getDI();
996 DebugLoc dl = DDI.getdl();
997 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
998 MDNode *Variable = DI->getVariable();
999 MDNode *Expr = DI->getExpression();
1000 uint64_t Offset = DI->getOffset();
1001 // A dbg.value for an alloca is always indirect.
1002 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0;
1003 SDDbgValue *SDV;
1004 if (Val.getNode()) {
1005 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, Offset, IsIndirect,
1006 Val)) {
1007 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(),
1008 IsIndirect, Offset, dl, DbgSDNodeOrder);
1009 DAG.AddDbgValue(SDV, Val.getNode(), false);
1010 }
1011 } else
1012 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() << "Dropping debug info for " <<
*DI << "\n"; } } while (0)
;
1013 DanglingDebugInfoMap[V] = DanglingDebugInfo();
1014 }
1015}
1016
1017/// getValue - Return an SDValue for the given Value.
1018SDValue SelectionDAGBuilder::getValue(const Value *V) {
1019 // If we already have an SDValue for this value, use it. It's important
1020 // to do this first, so that we don't create a CopyFromReg if we already
1021 // have a regular SDValue.
1022 SDValue &N = NodeMap[V];
1023 if (N.getNode()) return N;
1024
1025 // If there's a virtual register allocated and initialized for this
1026 // value, use it.
1027 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1028 if (It != FuncInfo.ValueMap.end()) {
1029 unsigned InReg = It->second;
1030 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg,
1031 V->getType());
1032 SDValue Chain = DAG.getEntryNode();
1033 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1034 resolveDanglingDebugInfo(V, N);
1035 return N;
1036 }
1037
1038 // Otherwise create a new SDValue and remember it.
1039 SDValue Val = getValueImpl(V);
1040 NodeMap[V] = Val;
1041 resolveDanglingDebugInfo(V, Val);
1042 return Val;
1043}
1044
1045/// getNonRegisterValue - Return an SDValue for the given Value, but
1046/// don't look in FuncInfo.ValueMap for a virtual register.
1047SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1048 // If we already have an SDValue for this value, use it.
1049 SDValue &N = NodeMap[V];
1050 if (N.getNode()) return N;
1051
1052 // Otherwise create a new SDValue and remember it.
1053 SDValue Val = getValueImpl(V);
1054 NodeMap[V] = Val;
1055 resolveDanglingDebugInfo(V, Val);
1056 return Val;
1057}
1058
1059/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1060/// Create an SDValue for the given value.
1061SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1062 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1063
1064 if (const Constant *C = dyn_cast<Constant>(V)) {
1065 EVT VT = TLI.getValueType(V->getType(), true);
1066
1067 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1068 return DAG.getConstant(*CI, VT);
1069
1070 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1071 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1072
1073 if (isa<ConstantPointerNull>(C)) {
1074 unsigned AS = V->getType()->getPointerAddressSpace();
1075 return DAG.getConstant(0, TLI.getPointerTy(AS));
1076 }
1077
1078 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1079 return DAG.getConstantFP(*CFP, VT);
1080
1081 if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1082 return DAG.getUNDEF(VT);
1083
1084 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1085 visit(CE->getOpcode(), *CE);
1086 SDValue N1 = NodeMap[V];
1087 assert(N1.getNode() && "visit didn't populate the NodeMap!")((N1.getNode() && "visit didn't populate the NodeMap!"
) ? static_cast<void> (0) : __assert_fail ("N1.getNode() && \"visit didn't populate the NodeMap!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 1087, __PRETTY_FUNCTION__))
;
1088 return N1;
1089 }
1090
1091 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1092 SmallVector<SDValue, 4> Constants;
1093 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1094 OI != OE; ++OI) {
1095 SDNode *Val = getValue(*OI).getNode();
1096 // If the operand is an empty aggregate, there are no values.
1097 if (!Val) continue;
1098 // Add each leaf value from the operand to the Constants list
1099 // to form a flattened list of all the values.
1100 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1101 Constants.push_back(SDValue(Val, i));
1102 }
1103
1104 return DAG.getMergeValues(Constants, getCurSDLoc());
1105 }
1106
1107 if (const ConstantDataSequential *CDS =
1108 dyn_cast<ConstantDataSequential>(C)) {
1109 SmallVector<SDValue, 4> Ops;
1110 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1111 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1112 // Add each leaf value from the operand to the Constants list
1113 // to form a flattened list of all the values.
1114 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1115 Ops.push_back(SDValue(Val, i));
1116 }
1117
1118 if (isa<ArrayType>(CDS->getType()))
1119 return DAG.getMergeValues(Ops, getCurSDLoc());
1120 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1121 VT, Ops);
1122 }
1123
1124 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1125 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&(((isa<ConstantAggregateZero>(C) || isa<UndefValue>
(C)) && "Unknown struct or array constant!") ? static_cast
<void> (0) : __assert_fail ("(isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && \"Unknown struct or array constant!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 1126, __PRETTY_FUNCTION__))
1126 "Unknown struct or array constant!")(((isa<ConstantAggregateZero>(C) || isa<UndefValue>
(C)) && "Unknown struct or array constant!") ? static_cast
<void> (0) : __assert_fail ("(isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && \"Unknown struct or array constant!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 1126, __PRETTY_FUNCTION__))
;
1127
1128 SmallVector<EVT, 4> ValueVTs;
1129 ComputeValueVTs(TLI, C->getType(), ValueVTs);
1130 unsigned NumElts = ValueVTs.size();
1131 if (NumElts == 0)
1132 return SDValue(); // empty struct
1133 SmallVector<SDValue, 4> Constants(NumElts);
1134 for (unsigned i = 0; i != NumElts; ++i) {
1135 EVT EltVT = ValueVTs[i];
1136 if (isa<UndefValue>(C))
1137 Constants[i] = DAG.getUNDEF(EltVT);
1138 else if (EltVT.isFloatingPoint())
1139 Constants[i] = DAG.getConstantFP(0, EltVT);
1140 else
1141 Constants[i] = DAG.getConstant(0, EltVT);
1142 }
1143
1144 return DAG.getMergeValues(Constants, getCurSDLoc());
1145 }
1146
1147 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1148 return DAG.getBlockAddress(BA, VT);
1149
1150 VectorType *VecTy = cast<VectorType>(V->getType());
1151 unsigned NumElements = VecTy->getNumElements();
1152
1153 // Now that we know the number and type of the elements, get that number of
1154 // elements into the Ops array based on what kind of constant it is.
1155 SmallVector<SDValue, 16> Ops;
1156 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1157 for (unsigned i = 0; i != NumElements; ++i)
1158 Ops.push_back(getValue(CV->getOperand(i)));
1159 } else {
1160 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!")((isa<ConstantAggregateZero>(C) && "Unknown vector constant!"
) ? static_cast<void> (0) : __assert_fail ("isa<ConstantAggregateZero>(C) && \"Unknown vector constant!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 1160, __PRETTY_FUNCTION__))
;
1161 EVT EltVT = TLI.getValueType(VecTy->getElementType());
1162
1163 SDValue Op;
1164 if (EltVT.isFloatingPoint())
1165 Op = DAG.getConstantFP(0, EltVT);
1166 else
1167 Op = DAG.getConstant(0, EltVT);
1168 Ops.assign(NumElements, Op);
1169 }
1170
1171 // Create a BUILD_VECTOR node.
1172 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops);
1173 }
1174
1175 // If this is a static alloca, generate it as the frameindex instead of
1176 // computation.
1177 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1178 DenseMap<const AllocaInst*, int>::iterator SI =
1179 FuncInfo.StaticAllocaMap.find(AI);
1180 if (SI != FuncInfo.StaticAllocaMap.end())
1181 return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1182 }
1183
1184 // If this is an instruction which fast-isel has deferred, select it now.
1185 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1186 unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1187 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1188 SDValue Chain = DAG.getEntryNode();
1189 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1190 }
1191
1192 llvm_unreachable("Can't get register for value!")::llvm::llvm_unreachable_internal("Can't get register for value!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 1192)
;
1193}
1194
1195void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1196 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1197 SDValue Chain = getControlRoot();
1198 SmallVector<ISD::OutputArg, 8> Outs;
1199 SmallVector<SDValue, 8> OutVals;
1200
1201 if (!FuncInfo.CanLowerReturn) {
1202 unsigned DemoteReg = FuncInfo.DemoteRegister;
1203 const Function *F = I.getParent()->getParent();
1204
1205 // Emit a store of the return value through the virtual register.
1206 // Leave Outs empty so that LowerReturn won't try to load return
1207 // registers the usual way.
1208 SmallVector<EVT, 1> PtrValueVTs;
1209 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1210 PtrValueVTs);
1211
1212 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1213 SDValue RetOp = getValue(I.getOperand(0));
1214
1215 SmallVector<EVT, 4> ValueVTs;
1216 SmallVector<uint64_t, 4> Offsets;
1217 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1218 unsigned NumValues = ValueVTs.size();
1219
1220 SmallVector<SDValue, 4> Chains(NumValues);
1221 for (unsigned i = 0; i != NumValues; ++i) {
1222 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1223 RetPtr.getValueType(), RetPtr,
1224 DAG.getIntPtrConstant(Offsets[i]));
1225 Chains[i] =
1226 DAG.getStore(Chain, getCurSDLoc(),
1227 SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1228 // FIXME: better loc info would be nice.
1229 Add, MachinePointerInfo(), false, false, 0);
1230 }
1231
1232 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1233 MVT::Other, Chains);
1234 } else if (I.getNumOperands() != 0) {
1235 SmallVector<EVT, 4> ValueVTs;
1236 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1237 unsigned NumValues = ValueVTs.size();
1238 if (NumValues) {
1239 SDValue RetOp = getValue(I.getOperand(0));
1240 for (unsigned j = 0, f = NumValues; j != f; ++j) {
1241 EVT VT = ValueVTs[j];
1242
1243 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1244
1245 const Function *F = I.getParent()->getParent();
1246 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1247 Attribute::SExt))
1248 ExtendKind = ISD::SIGN_EXTEND;
1249 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1250 Attribute::ZExt))
1251 ExtendKind = ISD::ZERO_EXTEND;
1252
1253 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1254 VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind);
1255
1256 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT);
1257 MVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT);
1258 SmallVector<SDValue, 4> Parts(NumParts);
1259 getCopyToParts(DAG, getCurSDLoc(),
1260 SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1261 &Parts[0], NumParts, PartVT, &I, ExtendKind);
1262
1263 // 'inreg' on function refers to return value
1264 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1265 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1266 Attribute::InReg))
1267 Flags.setInReg();
1268
1269 // Propagate extension type if any
1270 if (ExtendKind == ISD::SIGN_EXTEND)
1271 Flags.setSExt();
1272 else if (ExtendKind == ISD::ZERO_EXTEND)
1273 Flags.setZExt();
1274
1275 for (unsigned i = 0; i < NumParts; ++i) {
1276 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1277 VT, /*isfixed=*/true, 0, 0));
1278 OutVals.push_back(Parts[i]);
1279 }
1280 }
1281 }
1282 }
1283
1284 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1285 CallingConv::ID CallConv =
1286 DAG.getMachineFunction().getFunction()->getCallingConv();
1287 Chain = DAG.getTargetLoweringInfo().LowerReturn(
1288 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1289
1290 // Verify that the target's LowerReturn behaved as expected.
1291 assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&((Chain.getNode() && Chain.getValueType() == MVT::Other
&& "LowerReturn didn't return a valid chain!") ? static_cast
<void> (0) : __assert_fail ("Chain.getNode() && Chain.getValueType() == MVT::Other && \"LowerReturn didn't return a valid chain!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 1292, __PRETTY_FUNCTION__))
1292 "LowerReturn didn't return a valid chain!")((Chain.getNode() && Chain.getValueType() == MVT::Other
&& "LowerReturn didn't return a valid chain!") ? static_cast
<void> (0) : __assert_fail ("Chain.getNode() && Chain.getValueType() == MVT::Other && \"LowerReturn didn't return a valid chain!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 1292, __PRETTY_FUNCTION__))
;
1293
1294 // Update the DAG with the new chain value resulting from return lowering.
1295 DAG.setRoot(Chain);
1296}
1297
1298/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1299/// created for it, emit nodes to copy the value into the virtual
1300/// registers.
1301void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1302 // Skip empty types
1303 if (V->getType()->isEmptyTy())
1304 return;
1305
1306 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1307 if (VMI != FuncInfo.ValueMap.end()) {
1308 assert(!V->use_empty() && "Unused value assigned virtual registers!")((!V->use_empty() && "Unused value assigned virtual registers!"
) ? static_cast<void> (0) : __assert_fail ("!V->use_empty() && \"Unused value assigned virtual registers!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 1308, __PRETTY_FUNCTION__))
;
1309 CopyValueToVirtualRegister(V, VMI->second);
1310 }
1311}
1312
1313/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1314/// the current basic block, add it to ValueMap now so that we'll get a
1315/// CopyTo/FromReg.
1316void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1317 // No need to export constants.
1318 if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1319
1320 // Already exported?
1321 if (FuncInfo.isExportedInst(V)) return;
1322
1323 unsigned Reg = FuncInfo.InitializeRegForValue(V);
1324 CopyValueToVirtualRegister(V, Reg);
1325}
1326
1327bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1328 const BasicBlock *FromBB) {
1329 // The operands of the setcc have to be in this block. We don't know
1330 // how to export them from some other block.
1331 if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1332 // Can export from current BB.
1333 if (VI->getParent() == FromBB)
1334 return true;
1335
1336 // Is already exported, noop.
1337 return FuncInfo.isExportedInst(V);
1338 }
1339
1340 // If this is an argument, we can export it if the BB is the entry block or
1341 // if it is already exported.
1342 if (isa<Argument>(V)) {
1343 if (FromBB == &FromBB->getParent()->getEntryBlock())
1344 return true;
1345
1346 // Otherwise, can only export this if it is already exported.
1347 return FuncInfo.isExportedInst(V);
1348 }
1349
1350 // Otherwise, constants can always be exported.
1351 return true;
1352}
1353
1354/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1355uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1356 const MachineBasicBlock *Dst) const {
1357 BranchProbabilityInfo *BPI = FuncInfo.BPI;
1358 if (!BPI)
1359 return 0;
1360 const BasicBlock *SrcBB = Src->getBasicBlock();
1361 const BasicBlock *DstBB = Dst->getBasicBlock();
1362 return BPI->getEdgeWeight(SrcBB, DstBB);
1363}
1364
1365void SelectionDAGBuilder::
1366addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1367 uint32_t Weight /* = 0 */) {
1368 if (!Weight)
1369 Weight = getEdgeWeight(Src, Dst);
1370 Src->addSuccessor(Dst, Weight);
1371}
1372
1373
1374static bool InBlock(const Value *V, const BasicBlock *BB) {
1375 if (const Instruction *I = dyn_cast<Instruction>(V))
1376 return I->getParent() == BB;
1377 return true;
1378}
1379
1380/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1381/// This function emits a branch and is used at the leaves of an OR or an
1382/// AND operator tree.
1383///
1384void
1385SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1386 MachineBasicBlock *TBB,
1387 MachineBasicBlock *FBB,
1388 MachineBasicBlock *CurBB,
1389 MachineBasicBlock *SwitchBB,
1390 uint32_t TWeight,
1391 uint32_t FWeight) {
1392 const BasicBlock *BB = CurBB->getBasicBlock();
1393
1394 // If the leaf of the tree is a comparison, merge the condition into
1395 // the caseblock.
1396 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1397 // The operands of the cmp have to be in this block. We don't know
1398 // how to export them from some other block. If this is the first block
1399 // of the sequence, no exporting is needed.
1400 if (CurBB == SwitchBB ||
1401 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1402 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1403 ISD::CondCode Condition;
1404 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1405 Condition = getICmpCondCode(IC->getPredicate());
1406 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1407 Condition = getFCmpCondCode(FC->getPredicate());
1408 if (TM.Options.NoNaNsFPMath)
1409 Condition = getFCmpCodeWithoutNaN(Condition);
1410 } else {
1411 Condition = ISD::SETEQ; // silence warning.
Value stored to 'Condition' is never read
1412 llvm_unreachable("Unknown compare instruction")::llvm::llvm_unreachable_internal("Unknown compare instruction"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 1412)
;
1413 }
1414
1415 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1416 TBB, FBB, CurBB, TWeight, FWeight);
1417 SwitchCases.push_back(CB);
1418 return;
1419 }
1420 }
1421
1422 // Create a CaseBlock record representing this branch.
1423 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1424 nullptr, TBB, FBB, CurBB, TWeight, FWeight);
1425 SwitchCases.push_back(CB);
1426}
1427
1428/// Scale down both weights to fit into uint32_t.
1429static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
1430 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
1431 uint32_t Scale = (NewMax / UINT32_MAX(4294967295U)) + 1;
1432 NewTrue = NewTrue / Scale;
1433 NewFalse = NewFalse / Scale;
1434}
1435
1436/// FindMergedConditions - If Cond is an expression like
1437void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1438 MachineBasicBlock *TBB,
1439 MachineBasicBlock *FBB,
1440 MachineBasicBlock *CurBB,
1441 MachineBasicBlock *SwitchBB,
1442 unsigned Opc, uint32_t TWeight,
1443 uint32_t FWeight) {
1444 // If this node is not part of the or/and tree, emit it as a branch.
1445 const Instruction *BOp = dyn_cast<Instruction>(Cond);
1446 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1447 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1448 BOp->getParent() != CurBB->getBasicBlock() ||
1449 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1450 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1451 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1452 TWeight, FWeight);
1453 return;
1454 }
1455
1456 // Create TmpBB after CurBB.
1457 MachineFunction::iterator BBI = CurBB;
1458 MachineFunction &MF = DAG.getMachineFunction();
1459 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1460 CurBB->getParent()->insert(++BBI, TmpBB);
1461
1462 if (Opc == Instruction::Or) {
1463 // Codegen X | Y as:
1464 // BB1:
1465 // jmp_if_X TBB
1466 // jmp TmpBB
1467 // TmpBB:
1468 // jmp_if_Y TBB
1469 // jmp FBB
1470 //
1471
1472 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1473 // The requirement is that
1474 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1475 // = TrueProb for orignal BB.
1476 // Assuming the orignal weights are A and B, one choice is to set BB1's
1477 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
1478 // assumes that
1479 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1480 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1481 // TmpBB, but the math is more complicated.
1482
1483 uint64_t NewTrueWeight = TWeight;
1484 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight;
1485 ScaleWeights(NewTrueWeight, NewFalseWeight);
1486 // Emit the LHS condition.
1487 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1488 NewTrueWeight, NewFalseWeight);
1489
1490 NewTrueWeight = TWeight;
1491 NewFalseWeight = 2 * (uint64_t)FWeight;
1492 ScaleWeights(NewTrueWeight, NewFalseWeight);
1493 // Emit the RHS condition into TmpBB.
1494 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1495 NewTrueWeight, NewFalseWeight);
1496 } else {
1497 assert(Opc == Instruction::And && "Unknown merge op!")((Opc == Instruction::And && "Unknown merge op!") ? static_cast
<void> (0) : __assert_fail ("Opc == Instruction::And && \"Unknown merge op!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 1497, __PRETTY_FUNCTION__))
;
1498 // Codegen X & Y as:
1499 // BB1:
1500 // jmp_if_X TmpBB
1501 // jmp FBB
1502 // TmpBB:
1503 // jmp_if_Y TBB
1504 // jmp FBB
1505 //
1506 // This requires creation of TmpBB after CurBB.
1507
1508 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1509 // The requirement is that
1510 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1511 // = FalseProb for orignal BB.
1512 // Assuming the orignal weights are A and B, one choice is to set BB1's
1513 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
1514 // assumes that
1515 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
1516
1517 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight;
1518 uint64_t NewFalseWeight = FWeight;
1519 ScaleWeights(NewTrueWeight, NewFalseWeight);
1520 // Emit the LHS condition.
1521 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1522 NewTrueWeight, NewFalseWeight);
1523
1524 NewTrueWeight = 2 * (uint64_t)TWeight;
1525 NewFalseWeight = FWeight;
1526 ScaleWeights(NewTrueWeight, NewFalseWeight);
1527 // Emit the RHS condition into TmpBB.
1528 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1529 NewTrueWeight, NewFalseWeight);
1530 }
1531}
1532
1533/// If the set of cases should be emitted as a series of branches, return true.
1534/// If we should emit this as a bunch of and/or'd together conditions, return
1535/// false.
1536bool
1537SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1538 if (Cases.size() != 2) return true;
1539
1540 // If this is two comparisons of the same values or'd or and'd together, they
1541 // will get folded into a single comparison, so don't emit two blocks.
1542 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1543 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1544 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1545 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1546 return false;
1547 }
1548
1549 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1550 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1551 if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1552 Cases[0].CC == Cases[1].CC &&
1553 isa<Constant>(Cases[0].CmpRHS) &&
1554 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1555 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1556 return false;
1557 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1558 return false;
1559 }
1560
1561 return true;
1562}
1563
1564void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1565 MachineBasicBlock *BrMBB = FuncInfo.MBB;
1566
1567 // Update machine-CFG edges.
1568 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1569
1570 // Figure out which block is immediately after the current one.
1571 MachineBasicBlock *NextBlock = nullptr;
1572 MachineFunction::iterator BBI = BrMBB;
1573 if (++BBI != FuncInfo.MF->end())
1574 NextBlock = BBI;
1575
1576 if (I.isUnconditional()) {
1577 // Update machine-CFG edges.
1578 BrMBB->addSuccessor(Succ0MBB);
1579
1580 // If this is not a fall-through branch or optimizations are switched off,
1581 // emit the branch.
1582 if (Succ0MBB != NextBlock || TM.getOptLevel() == CodeGenOpt::None)
1583 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1584 MVT::Other, getControlRoot(),
1585 DAG.getBasicBlock(Succ0MBB)));
1586
1587 return;
1588 }
1589
1590 // If this condition is one of the special cases we handle, do special stuff
1591 // now.
1592 const Value *CondVal = I.getCondition();
1593 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1594
1595 // If this is a series of conditions that are or'd or and'd together, emit
1596 // this as a sequence of branches instead of setcc's with and/or operations.
1597 // As long as jumps are not expensive, this should improve performance.
1598 // For example, instead of something like:
1599 // cmp A, B
1600 // C = seteq
1601 // cmp D, E
1602 // F = setle
1603 // or C, F
1604 // jnz foo
1605 // Emit:
1606 // cmp A, B
1607 // je foo
1608 // cmp D, E
1609 // jle foo
1610 //
1611 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1612 if (!DAG.getTargetLoweringInfo().isJumpExpensive() &&
1613 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And ||
1614 BOp->getOpcode() == Instruction::Or)) {
1615 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1616 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB),
1617 getEdgeWeight(BrMBB, Succ1MBB));
1618 // If the compares in later blocks need to use values not currently
1619 // exported from this block, export them now. This block should always
1620 // be the first entry.
1621 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!")((SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"
) ? static_cast<void> (0) : __assert_fail ("SwitchCases[0].ThisBB == BrMBB && \"Unexpected lowering!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 1621, __PRETTY_FUNCTION__))
;
1622
1623 // Allow some cases to be rejected.
1624 if (ShouldEmitAsBranches(SwitchCases)) {
1625 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1626 ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1627 ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1628 }
1629
1630 // Emit the branch for this block.
1631 visitSwitchCase(SwitchCases[0], BrMBB);
1632 SwitchCases.erase(SwitchCases.begin());
1633 return;
1634 }
1635
1636 // Okay, we decided not to do this, remove any inserted MBB's and clear
1637 // SwitchCases.
1638 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1639 FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1640
1641 SwitchCases.clear();
1642 }
1643 }
1644
1645 // Create a CaseBlock record representing this branch.
1646 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1647 nullptr, Succ0MBB, Succ1MBB, BrMBB);
1648
1649 // Use visitSwitchCase to actually insert the fast branch sequence for this
1650 // cond branch.
1651 visitSwitchCase(CB, BrMBB);
1652}
1653
1654/// visitSwitchCase - Emits the necessary code to represent a single node in
1655/// the binary search tree resulting from lowering a switch instruction.
1656void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1657 MachineBasicBlock *SwitchBB) {
1658 SDValue Cond;
1659 SDValue CondLHS = getValue(CB.CmpLHS);
1660 SDLoc dl = getCurSDLoc();
1661
1662 // Build the setcc now.
1663 if (!CB.CmpMHS) {
1664 // Fold "(X == true)" to X and "(X == false)" to !X to
1665 // handle common cases produced by branch lowering.
1666 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1667 CB.CC == ISD::SETEQ)
1668 Cond = CondLHS;
1669 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1670 CB.CC == ISD::SETEQ) {
1671 SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1672 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1673 } else
1674 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1675 } else {
1676 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now")((CB.CC == ISD::SETLE && "Can handle only LE ranges now"
) ? static_cast<void> (0) : __assert_fail ("CB.CC == ISD::SETLE && \"Can handle only LE ranges now\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 1676, __PRETTY_FUNCTION__))
;
1677
1678 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1679 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1680
1681 SDValue CmpOp = getValue(CB.CmpMHS);
1682 EVT VT = CmpOp.getValueType();
1683
1684 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1685 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1686 ISD::SETLE);
1687 } else {
1688 SDValue SUB = DAG.getNode(ISD::SUB, dl,
1689 VT, CmpOp, DAG.getConstant(Low, VT));
1690 Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1691 DAG.getConstant(High-Low, VT), ISD::SETULE);
1692 }
1693 }
1694
1695 // Update successor info
1696 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1697 // TrueBB and FalseBB are always different unless the incoming IR is
1698 // degenerate. This only happens when running llc on weird IR.
1699 if (CB.TrueBB != CB.FalseBB)
1700 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1701
1702 // Set NextBlock to be the MBB immediately after the current one, if any.
1703 // This is used to avoid emitting unnecessary branches to the next block.
1704 MachineBasicBlock *NextBlock = nullptr;
1705 MachineFunction::iterator BBI = SwitchBB;
1706 if (++BBI != FuncInfo.MF->end())
1707 NextBlock = BBI;
1708
1709 // If the lhs block is the next block, invert the condition so that we can
1710 // fall through to the lhs instead of the rhs block.
1711 if (CB.TrueBB == NextBlock) {
1712 std::swap(CB.TrueBB, CB.FalseBB);
1713 SDValue True = DAG.getConstant(1, Cond.getValueType());
1714 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1715 }
1716
1717 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1718 MVT::Other, getControlRoot(), Cond,
1719 DAG.getBasicBlock(CB.TrueBB));
1720
1721 // Insert the false branch. Do this even if it's a fall through branch,
1722 // this makes it easier to do DAG optimizations which require inverting
1723 // the branch condition.
1724 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1725 DAG.getBasicBlock(CB.FalseBB));
1726
1727 DAG.setRoot(BrCond);
1728}
1729
1730/// visitJumpTable - Emit JumpTable node in the current MBB
1731void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1732 // Emit the code for the jump table
1733 assert(JT.Reg != -1U && "Should lower JT Header first!")((JT.Reg != -1U && "Should lower JT Header first!") ?
static_cast<void> (0) : __assert_fail ("JT.Reg != -1U && \"Should lower JT Header first!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 1733, __PRETTY_FUNCTION__))
;
1734 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy();
1735 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1736 JT.Reg, PTy);
1737 SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1738 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1739 MVT::Other, Index.getValue(1),
1740 Table, Index);
1741 DAG.setRoot(BrJumpTable);
1742}
1743
1744/// visitJumpTableHeader - This function emits necessary code to produce index
1745/// in the JumpTable from switch case.
1746void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1747 JumpTableHeader &JTH,
1748 MachineBasicBlock *SwitchBB) {
1749 // Subtract the lowest switch case value from the value being switched on and
1750 // conditional branch to default mbb if the result is greater than the
1751 // difference between smallest and largest cases.
1752 SDValue SwitchOp = getValue(JTH.SValue);
1753 EVT VT = SwitchOp.getValueType();
1754 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1755 DAG.getConstant(JTH.First, VT));
1756
1757 // The SDNode we just created, which holds the value being switched on minus
1758 // the smallest case value, needs to be copied to a virtual register so it
1759 // can be used as an index into the jump table in a subsequent basic block.
1760 // This value may be smaller or larger than the target's pointer type, and
1761 // therefore require extension or truncating.
1762 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1763 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI.getPointerTy());
1764
1765 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1766 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1767 JumpTableReg, SwitchOp);
1768 JT.Reg = JumpTableReg;
1769
1770 // Emit the range check for the jump table, and branch to the default block
1771 // for the switch statement if the value being switched on exceeds the largest
1772 // case in the switch.
1773 SDValue CMP =
1774 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(),
1775 Sub.getValueType()),
1776 Sub, DAG.getConstant(JTH.Last - JTH.First, VT), ISD::SETUGT);
1777
1778 // Set NextBlock to be the MBB immediately after the current one, if any.
1779 // This is used to avoid emitting unnecessary branches to the next block.
1780 MachineBasicBlock *NextBlock = nullptr;
1781 MachineFunction::iterator BBI = SwitchBB;
1782
1783 if (++BBI != FuncInfo.MF->end())
1784 NextBlock = BBI;
1785
1786 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1787 MVT::Other, CopyTo, CMP,
1788 DAG.getBasicBlock(JT.Default));
1789
1790 if (JT.MBB != NextBlock)
1791 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond,
1792 DAG.getBasicBlock(JT.MBB));
1793
1794 DAG.setRoot(BrCond);
1795}
1796
1797/// Codegen a new tail for a stack protector check ParentMBB which has had its
1798/// tail spliced into a stack protector check success bb.
1799///
1800/// For a high level explanation of how this fits into the stack protector
1801/// generation see the comment on the declaration of class
1802/// StackProtectorDescriptor.
1803void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
1804 MachineBasicBlock *ParentBB) {
1805
1806 // First create the loads to the guard/stack slot for the comparison.
1807 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1808 EVT PtrTy = TLI.getPointerTy();
1809
1810 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
1811 int FI = MFI->getStackProtectorIndex();
1812
1813 const Value *IRGuard = SPD.getGuard();
1814 SDValue GuardPtr = getValue(IRGuard);
1815 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
1816
1817 unsigned Align =
1818 TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType());
1819
1820 SDValue Guard;
1821
1822 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the
1823 // guard value from the virtual register holding the value. Otherwise, emit a
1824 // volatile load to retrieve the stack guard value.
1825 unsigned GuardReg = SPD.getGuardReg();
1826
1827 if (GuardReg && TLI.useLoadStackGuardNode())
1828 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), GuardReg,
1829 PtrTy);
1830 else
1831 Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
1832 GuardPtr, MachinePointerInfo(IRGuard, 0),
1833 true, false, false, Align);
1834
1835 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
1836 StackSlotPtr,
1837 MachinePointerInfo::getFixedStack(FI),
1838 true, false, false, Align);
1839
1840 // Perform the comparison via a subtract/getsetcc.
1841 EVT VT = Guard.getValueType();
1842 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot);
1843
1844 SDValue Cmp =
1845 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(),
1846 Sub.getValueType()),
1847 Sub, DAG.getConstant(0, VT), ISD::SETNE);
1848
1849 // If the sub is not 0, then we know the guard/stackslot do not equal, so
1850 // branch to failure MBB.
1851 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1852 MVT::Other, StackSlot.getOperand(0),
1853 Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
1854 // Otherwise branch to success MBB.
1855 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(),
1856 MVT::Other, BrCond,
1857 DAG.getBasicBlock(SPD.getSuccessMBB()));
1858
1859 DAG.setRoot(Br);
1860}
1861
1862/// Codegen the failure basic block for a stack protector check.
1863///
1864/// A failure stack protector machine basic block consists simply of a call to
1865/// __stack_chk_fail().
1866///
1867/// For a high level explanation of how this fits into the stack protector
1868/// generation see the comment on the declaration of class
1869/// StackProtectorDescriptor.
1870void
1871SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
1872 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1873 SDValue Chain =
1874 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
1875 nullptr, 0, false, getCurSDLoc(), false, false).second;
1876 DAG.setRoot(Chain);
1877}
1878
1879/// visitBitTestHeader - This function emits necessary code to produce value
1880/// suitable for "bit tests"
1881void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1882 MachineBasicBlock *SwitchBB) {
1883 // Subtract the minimum value
1884 SDValue SwitchOp = getValue(B.SValue);
1885 EVT VT = SwitchOp.getValueType();
1886 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1887 DAG.getConstant(B.First, VT));
1888
1889 // Check range
1890 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1891 SDValue RangeCmp =
1892 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(),
1893 Sub.getValueType()),
1894 Sub, DAG.getConstant(B.Range, VT), ISD::SETUGT);
1895
1896 // Determine the type of the test operands.
1897 bool UsePtrType = false;
1898 if (!TLI.isTypeLegal(VT))
1899 UsePtrType = true;
1900 else {
1901 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1902 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1903 // Switch table case range are encoded into series of masks.
1904 // Just use pointer type, it's guaranteed to fit.
1905 UsePtrType = true;
1906 break;
1907 }
1908 }
1909 if (UsePtrType) {
1910 VT = TLI.getPointerTy();
1911 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT);
1912 }
1913
1914 B.RegVT = VT.getSimpleVT();
1915 B.Reg = FuncInfo.CreateReg(B.RegVT);
1916 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1917 B.Reg, Sub);
1918
1919 // Set NextBlock to be the MBB immediately after the current one, if any.
1920 // This is used to avoid emitting unnecessary branches to the next block.
1921 MachineBasicBlock *NextBlock = nullptr;
1922 MachineFunction::iterator BBI = SwitchBB;
1923 if (++BBI != FuncInfo.MF->end())
1924 NextBlock = BBI;
1925
1926 MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1927
1928 addSuccessorWithWeight(SwitchBB, B.Default);
1929 addSuccessorWithWeight(SwitchBB, MBB);
1930
1931 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1932 MVT::Other, CopyTo, RangeCmp,
1933 DAG.getBasicBlock(B.Default));
1934
1935 if (MBB != NextBlock)
1936 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo,
1937 DAG.getBasicBlock(MBB));
1938
1939 DAG.setRoot(BrRange);
1940}
1941
1942/// visitBitTestCase - this function produces one "bit test"
1943void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1944 MachineBasicBlock* NextMBB,
1945 uint32_t BranchWeightToNext,
1946 unsigned Reg,
1947 BitTestCase &B,
1948 MachineBasicBlock *SwitchBB) {
1949 MVT VT = BB.RegVT;
1950 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1951 Reg, VT);
1952 SDValue Cmp;
1953 unsigned PopCount = CountPopulation_64(B.Mask);
1954 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1955 if (PopCount == 1) {
1956 // Testing for a single bit; just compare the shift count with what it
1957 // would need to be to shift a 1 bit in that position.
1958 Cmp = DAG.getSetCC(
1959 getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp,
1960 DAG.getConstant(countTrailingZeros(B.Mask), VT), ISD::SETEQ);
1961 } else if (PopCount == BB.Range) {
1962 // There is only one zero bit in the range, test for it directly.
1963 Cmp = DAG.getSetCC(
1964 getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp,
1965 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), ISD::SETNE);
1966 } else {
1967 // Make desired shift
1968 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT,
1969 DAG.getConstant(1, VT), ShiftOp);
1970
1971 // Emit bit tests and jumps
1972 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(),
1973 VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1974 Cmp = DAG.getSetCC(getCurSDLoc(),
1975 TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp,
1976 DAG.getConstant(0, VT), ISD::SETNE);
1977 }
1978
1979 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
1980 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
1981 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
1982 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
1983
1984 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1985 MVT::Other, getControlRoot(),
1986 Cmp, DAG.getBasicBlock(B.TargetBB));
1987
1988 // Set NextBlock to be the MBB immediately after the current one, if any.
1989 // This is used to avoid emitting unnecessary branches to the next block.
1990 MachineBasicBlock *NextBlock = nullptr;
1991 MachineFunction::iterator BBI = SwitchBB;
1992 if (++BBI != FuncInfo.MF->end())
1993 NextBlock = BBI;
1994
1995 if (NextMBB != NextBlock)
1996 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd,
1997 DAG.getBasicBlock(NextMBB));
1998
1999 DAG.setRoot(BrAnd);
2000}
2001
2002void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2003 MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2004
2005 // Retrieve successors.
2006 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2007 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
2008
2009 const Value *Callee(I.getCalledValue());
2010 const Function *Fn = dyn_cast<Function>(Callee);
2011 if (isa<InlineAsm>(Callee))
2012 visitInlineAsm(&I);
2013 else if (Fn && Fn->isIntrinsic()) {
2014 switch (Fn->getIntrinsicID()) {
2015 default:
2016 llvm_unreachable("Cannot invoke this intrinsic")::llvm::llvm_unreachable_internal("Cannot invoke this intrinsic"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 2016)
;
2017 case Intrinsic::donothing:
2018 // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2019 break;
2020 case Intrinsic::experimental_patchpoint_void:
2021 case Intrinsic::experimental_patchpoint_i64:
2022 visitPatchpoint(&I, LandingPad);
2023 break;
2024 }
2025 } else
2026 LowerCallTo(&I, getValue(Callee), false, LandingPad);
2027
2028 // If the value of the invoke is used outside of its defining block, make it
2029 // available as a virtual register.
2030 CopyToExportRegsIfNeeded(&I);
2031
2032 // Update successor info
2033 addSuccessorWithWeight(InvokeMBB, Return);
2034 addSuccessorWithWeight(InvokeMBB, LandingPad);
2035
2036 // Drop into normal successor.
2037 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2038 MVT::Other, getControlRoot(),
2039 DAG.getBasicBlock(Return)));
2040}
2041
2042void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2043 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!")::llvm::llvm_unreachable_internal("SelectionDAGBuilder shouldn't visit resume instructions!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 2043)
;
2044}
2045
2046void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2047 assert(FuncInfo.MBB->isLandingPad() &&((FuncInfo.MBB->isLandingPad() && "Call to landingpad not in landing pad!"
) ? static_cast<void> (0) : __assert_fail ("FuncInfo.MBB->isLandingPad() && \"Call to landingpad not in landing pad!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 2048, __PRETTY_FUNCTION__))
2048 "Call to landingpad not in landing pad!")((FuncInfo.MBB->isLandingPad() && "Call to landingpad not in landing pad!"
) ? static_cast<void> (0) : __assert_fail ("FuncInfo.MBB->isLandingPad() && \"Call to landingpad not in landing pad!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 2048, __PRETTY_FUNCTION__))
;
2049
2050 MachineBasicBlock *MBB = FuncInfo.MBB;
2051 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
2052 AddLandingPadInfo(LP, MMI, MBB);
2053
2054 // If there aren't registers to copy the values into (e.g., during SjLj
2055 // exceptions), then don't bother to create these DAG nodes.
2056 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2057 if (TLI.getExceptionPointerRegister() == 0 &&
2058 TLI.getExceptionSelectorRegister() == 0)
2059 return;
2060
2061 SmallVector<EVT, 2> ValueVTs;
2062 ComputeValueVTs(TLI, LP.getType(), ValueVTs);
2063 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported")((ValueVTs.size() == 2 && "Only two-valued landingpads are supported"
) ? static_cast<void> (0) : __assert_fail ("ValueVTs.size() == 2 && \"Only two-valued landingpads are supported\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 2063, __PRETTY_FUNCTION__))
;
2064
2065 // Get the two live-in registers as SDValues. The physregs have already been
2066 // copied into virtual registers.
2067 SDValue Ops[2];
2068 Ops[0] = DAG.getZExtOrTrunc(
2069 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
2070 FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()),
2071 getCurSDLoc(), ValueVTs[0]);
2072 Ops[1] = DAG.getZExtOrTrunc(
2073 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
2074 FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()),
2075 getCurSDLoc(), ValueVTs[1]);
2076
2077 // Merge into one.
2078 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2079 DAG.getVTList(ValueVTs), Ops);
2080 setValue(&LP, Res);
2081}
2082
2083/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
2084/// small case ranges).
2085bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
2086 CaseRecVector& WorkList,
2087 const Value* SV,
2088 MachineBasicBlock *Default,
2089 MachineBasicBlock *SwitchBB) {
2090 // Size is the number of Cases represented by this range.
2091 size_t Size = CR.Range.second - CR.Range.first;
2092 if (Size > 3)
2093 return false;
2094
2095 // Get the MachineFunction which holds the current MBB. This is used when
2096 // inserting any additional MBBs necessary to represent the switch.
2097 MachineFunction *CurMF = FuncInfo.MF;
2098
2099 // Figure out which block is immediately after the current one.
2100 MachineBasicBlock *NextBlock = nullptr;
2101 MachineFunction::iterator BBI = CR.CaseBB;
2102
2103 if (++BBI != FuncInfo.MF->end())
2104 NextBlock = BBI;
2105
2106 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2107 // If any two of the cases has the same destination, and if one value
2108 // is the same as the other, but has one bit unset that the other has set,
2109 // use bit manipulation to do two compares at once. For example:
2110 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
2111 // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
2112 // TODO: Handle cases where CR.CaseBB != SwitchBB.
2113 if (Size == 2 && CR.CaseBB == SwitchBB) {
2114 Case &Small = *CR.Range.first;
2115 Case &Big = *(CR.Range.second-1);
2116
2117 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
2118 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
2119 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
2120
2121 // Check that there is only one bit different.
2122 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
2123 (SmallValue | BigValue) == BigValue) {
2124 // Isolate the common bit.
2125 APInt CommonBit = BigValue & ~SmallValue;
2126 assert((SmallValue | CommonBit) == BigValue &&(((SmallValue | CommonBit) == BigValue && CommonBit.countPopulation
() == 1 && "Not a common bit?") ? static_cast<void
> (0) : __assert_fail ("(SmallValue | CommonBit) == BigValue && CommonBit.countPopulation() == 1 && \"Not a common bit?\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 2127, __PRETTY_FUNCTION__))
2127 CommonBit.countPopulation() == 1 && "Not a common bit?")(((SmallValue | CommonBit) == BigValue && CommonBit.countPopulation
() == 1 && "Not a common bit?") ? static_cast<void
> (0) : __assert_fail ("(SmallValue | CommonBit) == BigValue && CommonBit.countPopulation() == 1 && \"Not a common bit?\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 2127, __PRETTY_FUNCTION__))
;
2128
2129 SDValue CondLHS = getValue(SV);
2130 EVT VT = CondLHS.getValueType();
2131 SDLoc DL = getCurSDLoc();
2132
2133 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
2134 DAG.getConstant(CommonBit, VT));
2135 SDValue Cond = DAG.getSetCC(DL, MVT::i1,
2136 Or, DAG.getConstant(BigValue, VT),
2137 ISD::SETEQ);
2138
2139 // Update successor info.
2140 // Both Small and Big will jump to Small.BB, so we sum up the weights.
2141 addSuccessorWithWeight(SwitchBB, Small.BB,
2142 Small.ExtraWeight + Big.ExtraWeight);
2143 addSuccessorWithWeight(SwitchBB, Default,
2144 // The default destination is the first successor in IR.
2145 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0);
2146
2147 // Insert the true branch.
2148 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
2149 getControlRoot(), Cond,
2150 DAG.getBasicBlock(Small.BB));
2151
2152 // Insert the false branch.
2153 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
2154 DAG.getBasicBlock(Default));
2155
2156 DAG.setRoot(BrCond);
2157 return true;
2158 }
2159 }
2160 }
2161
2162 // Order cases by weight so the most likely case will be checked first.
2163 uint32_t UnhandledWeights = 0;
2164 if (BPI) {
2165 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
2166 uint32_t IWeight = I->ExtraWeight;
2167 UnhandledWeights += IWeight;
2168 for (CaseItr J = CR.Range.first; J < I; ++J) {
2169 uint32_t JWeight = J->ExtraWeight;
2170 if (IWeight > JWeight)
2171 std::swap(*I, *J);
2172 }
2173 }
2174 }
2175 // Rearrange the case blocks so that the last one falls through if possible.
2176 Case &BackCase = *(CR.Range.second-1);
2177 if (Size > 1 &&
2178 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
2179 // The last case block won't fall through into 'NextBlock' if we emit the
2180 // branches in this order. See if rearranging a case value would help.
2181 // We start at the bottom as it's the case with the least weight.
2182 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I)
2183 if (I->BB == NextBlock) {
2184 std::swap(*I, BackCase);
2185 break;
2186 }
2187 }
2188
2189 // Create a CaseBlock record representing a conditional branch to
2190 // the Case's target mbb if the value being switched on SV is equal
2191 // to C.
2192 MachineBasicBlock *CurBlock = CR.CaseBB;
2193 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2194 MachineBasicBlock *FallThrough;
2195 if (I != E-1) {
2196 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
2197 CurMF->insert(BBI, FallThrough);
2198
2199 // Put SV in a virtual register to make it available from the new blocks.
2200 ExportFromCurrentBlock(SV);
2201 } else {
2202 // If the last case doesn't match, go to the default block.
2203 FallThrough = Default;
2204 }
2205
2206 const Value *RHS, *LHS, *MHS;
2207 ISD::CondCode CC;
2208 if (I->High == I->Low) {
2209 // This is just small small case range :) containing exactly 1 case
2210 CC = ISD::SETEQ;
2211 LHS = SV; RHS = I->High; MHS = nullptr;
2212 } else {
2213 CC = ISD::SETLE;
2214 LHS = I->Low; MHS = SV; RHS = I->High;
2215 }
2216
2217 // The false weight should be sum of all un-handled cases.
2218 UnhandledWeights -= I->ExtraWeight;
2219 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2220 /* me */ CurBlock,
2221 /* trueweight */ I->ExtraWeight,
2222 /* falseweight */ UnhandledWeights);
2223
2224 // If emitting the first comparison, just call visitSwitchCase to emit the
2225 // code into the current block. Otherwise, push the CaseBlock onto the
2226 // vector to be later processed by SDISel, and insert the node's MBB
2227 // before the next MBB.
2228 if (CurBlock == SwitchBB)
2229 visitSwitchCase(CB, SwitchBB);
2230 else
2231 SwitchCases.push_back(CB);
2232
2233 CurBlock = FallThrough;
2234 }
2235
2236 return true;
2237}
2238
2239static inline bool areJTsAllowed(const TargetLowering &TLI) {
2240 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2241 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
2242}
2243
2244static APInt ComputeRange(const APInt &First, const APInt &Last) {
2245 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2246 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
2247 return (LastExt - FirstExt + 1ULL);
2248}
2249
2250/// handleJTSwitchCase - Emit jumptable for current switch case range
2251bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2252 CaseRecVector &WorkList,
2253 const Value *SV,
2254 MachineBasicBlock *Default,
2255 MachineBasicBlock *SwitchBB) {
2256 Case& FrontCase = *CR.Range.first;
2257 Case& BackCase = *(CR.Range.second-1);
2258
2259 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2260 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue();
2261
2262 APInt TSize(First.getBitWidth(), 0);
2263 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2264 TSize += I->size();
2265
2266 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2267 if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries()))
2268 return false;
2269
2270 APInt Range = ComputeRange(First, Last);
2271 // The density is TSize / Range. Require at least 40%.
2272 // It should not be possible for IntTSize to saturate for sane code, but make
2273 // sure we handle Range saturation correctly.
2274 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX(18446744073709551615UL)/10);
2275 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX(18446744073709551615UL)/10);
2276 if (IntTSize * 10 < IntRange * 4)
2277 return false;
2278
2279 DEBUG(dbgs() << "Lowering jump table\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() << "Lowering jump table\n" << "First entry: "
<< First << ". Last entry: " << Last <<
'\n' << "Range: " << Range << ". Size: " <<
TSize << ".\n\n"; } } while (0)
2280 << "First entry: " << First << ". Last entry: " << Last << '\n'do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() << "Lowering jump table\n" << "First entry: "
<< First << ". Last entry: " << Last <<
'\n' << "Range: " << Range << ". Size: " <<
TSize << ".\n\n"; } } while (0)
2281 << "Range: " << Range << ". Size: " << TSize << ".\n\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() << "Lowering jump table\n" << "First entry: "
<< First << ". Last entry: " << Last <<
'\n' << "Range: " << Range << ". Size: " <<
TSize << ".\n\n"; } } while (0)
;
2282
2283 // Get the MachineFunction which holds the current MBB. This is used when
2284 // inserting any additional MBBs necessary to represent the switch.
2285 MachineFunction *CurMF = FuncInfo.MF;
2286
2287 // Figure out which block is immediately after the current one.
2288 MachineFunction::iterator BBI = CR.CaseBB;
2289 ++BBI;
2290
2291 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2292
2293 // Create a new basic block to hold the code for loading the address
2294 // of the jump table, and jumping to it. Update successor information;
2295 // we will either branch to the default case for the switch, or the jump
2296 // table.
2297 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2298 CurMF->insert(BBI, JumpTableBB);
2299
2300 addSuccessorWithWeight(CR.CaseBB, Default);
2301 addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2302
2303 // Build a vector of destination BBs, corresponding to each target
2304 // of the jump table. If the value of the jump table slot corresponds to
2305 // a case statement, push the case's BB onto the vector, otherwise, push
2306 // the default BB.
2307 std::vector<MachineBasicBlock*> DestBBs;
2308 APInt TEI = First;
2309 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2310 const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2311 const APInt &High = cast<ConstantInt>(I->High)->getValue();
2312
2313 if (Low.sle(TEI) && TEI.sle(High)) {
2314 DestBBs.push_back(I->BB);
2315 if (TEI==High)
2316 ++I;
2317 } else {
2318 DestBBs.push_back(Default);
2319 }
2320 }
2321
2322 // Calculate weight for each unique destination in CR.
2323 DenseMap<MachineBasicBlock*, uint32_t> DestWeights;
2324 if (FuncInfo.BPI)
2325 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2326 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2327 DestWeights.find(I->BB);
2328 if (Itr != DestWeights.end())
2329 Itr->second += I->ExtraWeight;
2330 else
2331 DestWeights[I->BB] = I->ExtraWeight;
2332 }
2333
2334 // Update successor info. Add one edge to each unique successor.
2335 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2336 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2337 E = DestBBs.end(); I != E; ++I) {
2338 if (!SuccsHandled[(*I)->getNumber()]) {
2339 SuccsHandled[(*I)->getNumber()] = true;
2340 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2341 DestWeights.find(*I);
2342 addSuccessorWithWeight(JumpTableBB, *I,
2343 Itr != DestWeights.end() ? Itr->second : 0);
2344 }
2345 }
2346
2347 // Create a jump table index for this jump table.
2348 unsigned JTEncoding = TLI.getJumpTableEncoding();
2349 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2350 ->createJumpTableIndex(DestBBs);
2351
2352 // Set the jump table information so that we can codegen it as a second
2353 // MachineBasicBlock
2354 JumpTable JT(-1U, JTI, JumpTableBB, Default);
2355 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2356 if (CR.CaseBB == SwitchBB)
2357 visitJumpTableHeader(JT, JTH, SwitchBB);
2358
2359 JTCases.push_back(JumpTableBlock(JTH, JT));
2360 return true;
2361}
2362
2363/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2364/// 2 subtrees.
2365bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2366 CaseRecVector& WorkList,
2367 const Value* SV,
2368 MachineBasicBlock* SwitchBB) {
2369 // Get the MachineFunction which holds the current MBB. This is used when
2370 // inserting any additional MBBs necessary to represent the switch.
2371 MachineFunction *CurMF = FuncInfo.MF;
2372
2373 // Figure out which block is immediately after the current one.
2374 MachineFunction::iterator BBI = CR.CaseBB;
2375 ++BBI;
2376
2377 Case& FrontCase = *CR.Range.first;
2378 Case& BackCase = *(CR.Range.second-1);
2379 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2380
2381 // Size is the number of Cases represented by this range.
2382 unsigned Size = CR.Range.second - CR.Range.first;
2383
2384 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2385 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue();
2386 double FMetric = 0;
2387 CaseItr Pivot = CR.Range.first + Size/2;
2388
2389 // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2390 // (heuristically) allow us to emit JumpTable's later.
2391 APInt TSize(First.getBitWidth(), 0);
2392 for (CaseItr I = CR.Range.first, E = CR.Range.second;
2393 I!=E; ++I)
2394 TSize += I->size();
2395
2396 APInt LSize = FrontCase.size();
2397 APInt RSize = TSize-LSize;
2398 DEBUG(dbgs() << "Selecting best pivot: \n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() << "Selecting best pivot: \n" <<
"First: " << First << ", Last: " << Last <<
'\n' << "LSize: " << LSize << ", RSize: " <<
RSize << '\n'; } } while (0)
2399 << "First: " << First << ", Last: " << Last <<'\n'do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() << "Selecting best pivot: \n" <<
"First: " << First << ", Last: " << Last <<
'\n' << "LSize: " << LSize << ", RSize: " <<
RSize << '\n'; } } while (0)
2400 << "LSize: " << LSize << ", RSize: " << RSize << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() << "Selecting best pivot: \n" <<
"First: " << First << ", Last: " << Last <<
'\n' << "LSize: " << LSize << ", RSize: " <<
RSize << '\n'; } } while (0)
;
2401 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2402 J!=E; ++I, ++J) {
2403 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2404 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2405 APInt Range = ComputeRange(LEnd, RBegin);
2406 assert((Range - 2ULL).isNonNegative() &&(((Range - 2ULL).isNonNegative() && "Invalid case distance"
) ? static_cast<void> (0) : __assert_fail ("(Range - 2ULL).isNonNegative() && \"Invalid case distance\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 2407, __PRETTY_FUNCTION__))
2407 "Invalid case distance")(((Range - 2ULL).isNonNegative() && "Invalid case distance"
) ? static_cast<void> (0) : __assert_fail ("(Range - 2ULL).isNonNegative() && \"Invalid case distance\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 2407, __PRETTY_FUNCTION__))
;
2408 // Use volatile double here to avoid excess precision issues on some hosts,
2409 // e.g. that use 80-bit X87 registers.
2410 volatile double LDensity =
2411 (double)LSize.roundToDouble() /
2412 (LEnd - First + 1ULL).roundToDouble();
2413 volatile double RDensity =
2414 (double)RSize.roundToDouble() /
2415 (Last - RBegin + 1ULL).roundToDouble();
2416 volatile double Metric = Range.logBase2()*(LDensity+RDensity);
2417 // Should always split in some non-trivial place
2418 DEBUG(dbgs() <<"=>Step\n"do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() <<"=>Step\n" << "LEnd: " <<
LEnd << ", RBegin: " << RBegin << '\n' <<
"LDensity: " << LDensity << ", RDensity: " <<
RDensity << '\n' << "Metric: " << Metric <<
'\n'; } } while (0)
2419 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() <<"=>Step\n" << "LEnd: " <<
LEnd << ", RBegin: " << RBegin << '\n' <<
"LDensity: " << LDensity << ", RDensity: " <<
RDensity << '\n' << "Metric: " << Metric <<
'\n'; } } while (0)
2420 << "LDensity: " << LDensitydo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() <<"=>Step\n" << "LEnd: " <<
LEnd << ", RBegin: " << RBegin << '\n' <<
"LDensity: " << LDensity << ", RDensity: " <<
RDensity << '\n' << "Metric: " << Metric <<
'\n'; } } while (0)
2421 << ", RDensity: " << RDensity << '\n'do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() <<"=>Step\n" << "LEnd: " <<
LEnd << ", RBegin: " << RBegin << '\n' <<
"LDensity: " << LDensity << ", RDensity: " <<
RDensity << '\n' << "Metric: " << Metric <<
'\n'; } } while (0)
2422 << "Metric: " << Metric << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() <<"=>Step\n" << "LEnd: " <<
LEnd << ", RBegin: " << RBegin << '\n' <<
"LDensity: " << LDensity << ", RDensity: " <<
RDensity << '\n' << "Metric: " << Metric <<
'\n'; } } while (0)
;
2423 if (FMetric < Metric) {
2424 Pivot = J;
2425 FMetric = Metric;
2426 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() << "Current metric set to: " <<
FMetric << '\n'; } } while (0)
;
2427 }
2428
2429 LSize += J->size();
2430 RSize -= J->size();
2431 }
2432
2433 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2434 if (areJTsAllowed(TLI)) {
2435 // If our case is dense we *really* should handle it earlier!
2436 assert((FMetric > 0) && "Should handle dense range earlier!")(((FMetric > 0) && "Should handle dense range earlier!"
) ? static_cast<void> (0) : __assert_fail ("(FMetric > 0) && \"Should handle dense range earlier!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 2436, __PRETTY_FUNCTION__))
;
2437 } else {
2438 Pivot = CR.Range.first + Size/2;
2439 }
2440
2441 CaseRange LHSR(CR.Range.first, Pivot);
2442 CaseRange RHSR(Pivot, CR.Range.second);
2443 const Constant *C = Pivot->Low;
2444 MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr;
2445
2446 // We know that we branch to the LHS if the Value being switched on is
2447 // less than the Pivot value, C. We use this to optimize our binary
2448 // tree a bit, by recognizing that if SV is greater than or equal to the
2449 // LHS's Case Value, and that Case Value is exactly one less than the
2450 // Pivot's Value, then we can branch directly to the LHS's Target,
2451 // rather than creating a leaf node for it.
2452 if ((LHSR.second - LHSR.first) == 1 &&
2453 LHSR.first->High == CR.GE &&
2454 cast<ConstantInt>(C)->getValue() ==
2455 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2456 TrueBB = LHSR.first->BB;
2457 } else {
2458 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2459 CurMF->insert(BBI, TrueBB);
2460 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2461
2462 // Put SV in a virtual register to make it available from the new blocks.
2463 ExportFromCurrentBlock(SV);
2464 }
2465
2466 // Similar to the optimization above, if the Value being switched on is
2467 // known to be less than the Constant CR.LT, and the current Case Value
2468 // is CR.LT - 1, then we can branch directly to the target block for
2469 // the current Case Value, rather than emitting a RHS leaf node for it.
2470 if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2471 cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2472 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2473 FalseBB = RHSR.first->BB;
2474 } else {
2475 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2476 CurMF->insert(BBI, FalseBB);
2477 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2478
2479 // Put SV in a virtual register to make it available from the new blocks.
2480 ExportFromCurrentBlock(SV);
2481 }
2482
2483 // Create a CaseBlock record representing a conditional branch to
2484 // the LHS node if the value being switched on SV is less than C.
2485 // Otherwise, branch to LHS.
2486 CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB);
2487
2488 if (CR.CaseBB == SwitchBB)
2489 visitSwitchCase(CB, SwitchBB);
2490 else
2491 SwitchCases.push_back(CB);
2492
2493 return true;
2494}
2495
2496/// handleBitTestsSwitchCase - if current case range has few destination and
2497/// range span less, than machine word bitwidth, encode case range into series
2498/// of masks and emit bit tests with these masks.
2499bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2500 CaseRecVector& WorkList,
2501 const Value* SV,
2502 MachineBasicBlock* Default,
2503 MachineBasicBlock* SwitchBB) {
2504 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2505 EVT PTy = TLI.getPointerTy();
2506 unsigned IntPtrBits = PTy.getSizeInBits();
2507
2508 Case& FrontCase = *CR.Range.first;
2509 Case& BackCase = *(CR.Range.second-1);
2510
2511 // Get the MachineFunction which holds the current MBB. This is used when
2512 // inserting any additional MBBs necessary to represent the switch.
2513 MachineFunction *CurMF = FuncInfo.MF;
2514
2515 // If target does not have legal shift left, do not emit bit tests at all.
2516 if (!TLI.isOperationLegal(ISD::SHL, PTy))
2517 return false;
2518
2519 size_t numCmps = 0;
2520 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2521 // Single case counts one, case range - two.
2522 numCmps += (I->Low == I->High ? 1 : 2);
2523 }
2524
2525 // Count unique destinations
2526 SmallSet<MachineBasicBlock*, 4> Dests;
2527 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2528 Dests.insert(I->BB);
2529 if (Dests.size() > 3)
2530 // Don't bother the code below, if there are too much unique destinations
2531 return false;
2532 }
2533 DEBUG(dbgs() << "Total number of unique destinations: "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() << "Total number of unique destinations: "
<< Dests.size() << '\n' << "Total number of comparisons: "
<< numCmps << '\n'; } } while (0)
2534 << Dests.size() << '\n'do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() << "Total number of unique destinations: "
<< Dests.size() << '\n' << "Total number of comparisons: "
<< numCmps << '\n'; } } while (0)
2535 << "Total number of comparisons: " << numCmps << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() << "Total number of unique destinations: "
<< Dests.size() << '\n' << "Total number of comparisons: "
<< numCmps << '\n'; } } while (0)
;
2536
2537 // Compute span of values.
2538 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2539 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2540 APInt cmpRange = maxValue - minValue;
2541
2542 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() << "Compare range: " << cmpRange
<< '\n' << "Low bound: " << minValue <<
'\n' << "High bound: " << maxValue << '\n'
; } } while (0)
2543 << "Low bound: " << minValue << '\n'do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() << "Compare range: " << cmpRange
<< '\n' << "Low bound: " << minValue <<
'\n' << "High bound: " << maxValue << '\n'
; } } while (0)
2544 << "High bound: " << maxValue << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() << "Compare range: " << cmpRange
<< '\n' << "Low bound: " << minValue <<
'\n' << "High bound: " << maxValue << '\n'
; } } while (0)
;
2545
2546 if (cmpRange.uge(IntPtrBits) ||
2547 (!(Dests.size() == 1 && numCmps >= 3) &&
2548 !(Dests.size() == 2 && numCmps >= 5) &&
2549 !(Dests.size() >= 3 && numCmps >= 6)))
2550 return false;
2551
2552 DEBUG(dbgs() << "Emitting bit tests\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() << "Emitting bit tests\n"; } } while
(0)
;
2553 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2554
2555 // Optimize the case where all the case values fit in a
2556 // word without having to subtract minValue. In this case,
2557 // we can optimize away the subtraction.
2558 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2559 cmpRange = maxValue;
2560 } else {
2561 lowBound = minValue;
2562 }
2563
2564 CaseBitsVector CasesBits;
2565 unsigned i, count = 0;
2566
2567 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2568 MachineBasicBlock* Dest = I->BB;
2569 for (i = 0; i < count; ++i)
2570 if (Dest == CasesBits[i].BB)
2571 break;
2572
2573 if (i == count) {
2574 assert((count < 3) && "Too much destinations to test!")(((count < 3) && "Too much destinations to test!")
? static_cast<void> (0) : __assert_fail ("(count < 3) && \"Too much destinations to test!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 2574, __PRETTY_FUNCTION__))
;
2575 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/));
2576 count++;
2577 }
2578
2579 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2580 const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2581
2582 uint64_t lo = (lowValue - lowBound).getZExtValue();
2583 uint64_t hi = (highValue - lowBound).getZExtValue();
2584 CasesBits[i].ExtraWeight += I->ExtraWeight;
2585
2586 for (uint64_t j = lo; j <= hi; j++) {
2587 CasesBits[i].Mask |= 1ULL << j;
2588 CasesBits[i].Bits++;
2589 }
2590
2591 }
2592 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2593
2594 BitTestInfo BTC;
2595
2596 // Figure out which block is immediately after the current one.
2597 MachineFunction::iterator BBI = CR.CaseBB;
2598 ++BBI;
2599
2600 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2601
2602 DEBUG(dbgs() << "Cases:\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() << "Cases:\n"; } } while (0)
;
2603 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2604 DEBUG(dbgs() << "Mask: " << CasesBits[i].Maskdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() << "Mask: " << CasesBits[i].Mask
<< ", Bits: " << CasesBits[i].Bits << ", BB: "
<< CasesBits[i].BB << '\n'; } } while (0)
2605 << ", Bits: " << CasesBits[i].Bitsdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() << "Mask: " << CasesBits[i].Mask
<< ", Bits: " << CasesBits[i].Bits << ", BB: "
<< CasesBits[i].BB << '\n'; } } while (0)
2606 << ", BB: " << CasesBits[i].BB << '\n')do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() << "Mask: " << CasesBits[i].Mask
<< ", Bits: " << CasesBits[i].Bits << ", BB: "
<< CasesBits[i].BB << '\n'; } } while (0)
;
2607
2608 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2609 CurMF->insert(BBI, CaseBB);
2610 BTC.push_back(BitTestCase(CasesBits[i].Mask,
2611 CaseBB,
2612 CasesBits[i].BB, CasesBits[i].ExtraWeight));
2613
2614 // Put SV in a virtual register to make it available from the new blocks.
2615 ExportFromCurrentBlock(SV);
2616 }
2617
2618 BitTestBlock BTB(lowBound, cmpRange, SV,
2619 -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2620 CR.CaseBB, Default, std::move(BTC));
2621
2622 if (CR.CaseBB == SwitchBB)
2623 visitBitTestHeader(BTB, SwitchBB);
2624
2625 BitTestCases.push_back(std::move(BTB));
2626
2627 return true;
2628}
2629
2630/// Clusterify - Transform simple list of Cases into list of CaseRange's
2631void SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2632 const SwitchInst& SI) {
2633 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2634 // Start with "simple" cases.
2635 for (SwitchInst::ConstCaseIt i : SI.cases()) {
2636 const BasicBlock *SuccBB = i.getCaseSuccessor();
2637 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2638
2639 uint32_t ExtraWeight =
2640 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0;
2641
2642 Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(),
2643 SMBB, ExtraWeight));
2644 }
2645 std::sort(Cases.begin(), Cases.end(), CaseCmp());
2646
2647 // Merge case into clusters
2648 if (Cases.size() >= 2)
2649 // Must recompute end() each iteration because it may be
2650 // invalidated by erase if we hold on to it
2651 for (CaseItr I = Cases.begin(), J = std::next(Cases.begin());
2652 J != Cases.end(); ) {
2653 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2654 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2655 MachineBasicBlock* nextBB = J->BB;
2656 MachineBasicBlock* currentBB = I->BB;
2657
2658 // If the two neighboring cases go to the same destination, merge them
2659 // into a single case.
2660 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2661 I->High = J->High;
2662 I->ExtraWeight += J->ExtraWeight;
2663 J = Cases.erase(J);
2664 } else {
2665 I = J++;
2666 }
2667 }
2668
2669 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { { size_t numCmps = 0; for (auto &I : Cases) numCmps
+= I.Low != I.High ? 2 : 1; dbgs() << "Clusterify finished. Total clusters: "
<< Cases.size() << ". Total compares: " <<
numCmps << '\n'; }; } } while (0)
2670 size_t numCmps = 0;do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { { size_t numCmps = 0; for (auto &I : Cases) numCmps
+= I.Low != I.High ? 2 : 1; dbgs() << "Clusterify finished. Total clusters: "
<< Cases.size() << ". Total compares: " <<
numCmps << '\n'; }; } } while (0)
2671 for (auto &I : Cases)do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { { size_t numCmps = 0; for (auto &I : Cases) numCmps
+= I.Low != I.High ? 2 : 1; dbgs() << "Clusterify finished. Total clusters: "
<< Cases.size() << ". Total compares: " <<
numCmps << '\n'; }; } } while (0)
2672 // A range counts double, since it requires two compares.do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { { size_t numCmps = 0; for (auto &I : Cases) numCmps
+= I.Low != I.High ? 2 : 1; dbgs() << "Clusterify finished. Total clusters: "
<< Cases.size() << ". Total compares: " <<
numCmps << '\n'; }; } } while (0)
2673 numCmps += I.Low != I.High ? 2 : 1;do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { { size_t numCmps = 0; for (auto &I : Cases) numCmps
+= I.Low != I.High ? 2 : 1; dbgs() << "Clusterify finished. Total clusters: "
<< Cases.size() << ". Total compares: " <<
numCmps << '\n'; }; } } while (0)
2674
2675 dbgs() << "Clusterify finished. Total clusters: " << Cases.size()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { { size_t numCmps = 0; for (auto &I : Cases) numCmps
+= I.Low != I.High ? 2 : 1; dbgs() << "Clusterify finished. Total clusters: "
<< Cases.size() << ". Total compares: " <<
numCmps << '\n'; }; } } while (0)
2676 << ". Total compares: " << numCmps << '\n';do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { { size_t numCmps = 0; for (auto &I : Cases) numCmps
+= I.Low != I.High ? 2 : 1; dbgs() << "Clusterify finished. Total clusters: "
<< Cases.size() << ". Total compares: " <<
numCmps << '\n'; }; } } while (0)
2677 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { { size_t numCmps = 0; for (auto &I : Cases) numCmps
+= I.Low != I.High ? 2 : 1; dbgs() << "Clusterify finished. Total clusters: "
<< Cases.size() << ". Total compares: " <<
numCmps << '\n'; }; } } while (0)
;
2678}
2679
2680void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2681 MachineBasicBlock *Last) {
2682 // Update JTCases.
2683 for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2684 if (JTCases[i].first.HeaderBB == First)
2685 JTCases[i].first.HeaderBB = Last;
2686
2687 // Update BitTestCases.
2688 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2689 if (BitTestCases[i].Parent == First)
2690 BitTestCases[i].Parent = Last;
2691}
2692
2693void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2694 MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2695
2696 // Figure out which block is immediately after the current one.
2697 MachineBasicBlock *NextBlock = nullptr;
2698 if (SwitchMBB + 1 != FuncInfo.MF->end())
2699 NextBlock = SwitchMBB + 1;
2700
2701
2702 // Create a vector of Cases, sorted so that we can efficiently create a binary
2703 // search tree from them.
2704 CaseVector Cases;
2705 Clusterify(Cases, SI);
2706
2707 // Get the default destination MBB.
2708 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2709
2710 if (isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()) &&
2711 !Cases.empty()) {
2712 // Replace an unreachable default destination with the most popular case
2713 // destination.
2714 DenseMap<const BasicBlock *, uint64_t> Popularity;
2715 uint64_t MaxPop = 0;
2716 const BasicBlock *MaxBB = nullptr;
2717 for (auto I : SI.cases()) {
2718 const BasicBlock *BB = I.getCaseSuccessor();
2719 if (++Popularity[BB] > MaxPop) {
2720 MaxPop = Popularity[BB];
2721 MaxBB = BB;
2722 }
2723 }
2724
2725 // Set new default.
2726 assert(MaxPop > 0)((MaxPop > 0) ? static_cast<void> (0) : __assert_fail
("MaxPop > 0", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 2726, __PRETTY_FUNCTION__))
;
2727 assert(MaxBB)((MaxBB) ? static_cast<void> (0) : __assert_fail ("MaxBB"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 2727, __PRETTY_FUNCTION__))
;
2728 Default = FuncInfo.MBBMap[MaxBB];
2729
2730 // Remove cases that were pointing to the destination that is now the default.
2731 Cases.erase(std::remove_if(Cases.begin(), Cases.end(),
2732 [&](const Case &C) { return C.BB == Default; }),
2733 Cases.end());
2734 }
2735
2736 // If there is only the default destination, go there directly.
2737 if (Cases.empty()) {
2738 // Update machine-CFG edges.
2739 SwitchMBB->addSuccessor(Default);
2740
2741 // If this is not a fall-through branch, emit the branch.
2742 if (Default != NextBlock) {
2743 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2744 getControlRoot(), DAG.getBasicBlock(Default)));
2745 }
2746 return;
2747 }
2748
2749 // Get the Value to be switched on.
2750 const Value *SV = SI.getCondition();
2751
2752 // Push the initial CaseRec onto the worklist
2753 CaseRecVector WorkList;
2754 WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr,
2755 CaseRange(Cases.begin(),Cases.end())));
2756
2757 while (!WorkList.empty()) {
2758 // Grab a record representing a case range to process off the worklist
2759 CaseRec CR = WorkList.back();
2760 WorkList.pop_back();
2761
2762 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2763 continue;
2764
2765 // If the range has few cases (two or less) emit a series of specific
2766 // tests.
2767 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2768 continue;
2769
2770 // If the switch has more than N blocks, and is at least 40% dense, and the
2771 // target supports indirect branches, then emit a jump table rather than
2772 // lowering the switch to a binary tree of conditional branches.
2773 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries().
2774 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2775 continue;
2776
2777 // Emit binary tree. We need to pick a pivot, and push left and right ranges
2778 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2779 handleBTSplitSwitchCase(CR, WorkList, SV, SwitchMBB);
2780 }
2781}
2782
2783void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2784 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2785
2786 // Update machine-CFG edges with unique successors.
2787 SmallSet<BasicBlock*, 32> Done;
2788 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2789 BasicBlock *BB = I.getSuccessor(i);
2790 bool Inserted = Done.insert(BB).second;
2791 if (!Inserted)
2792 continue;
2793
2794 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2795 addSuccessorWithWeight(IndirectBrMBB, Succ);
2796 }
2797
2798 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2799 MVT::Other, getControlRoot(),
2800 getValue(I.getAddress())));
2801}
2802
2803void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2804 if (DAG.getTarget().Options.TrapUnreachable)
2805 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2806}
2807
2808void SelectionDAGBuilder::visitFSub(const User &I) {
2809 // -0.0 - X --> fneg
2810 Type *Ty = I.getType();
2811 if (isa<Constant>(I.getOperand(0)) &&
2812 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2813 SDValue Op2 = getValue(I.getOperand(1));
2814 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2815 Op2.getValueType(), Op2));
2816 return;
2817 }
2818
2819 visitBinary(I, ISD::FSUB);
2820}
2821
2822void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2823 SDValue Op1 = getValue(I.getOperand(0));
2824 SDValue Op2 = getValue(I.getOperand(1));
2825
2826 bool nuw = false;
2827 bool nsw = false;
2828 bool exact = false;
2829 if (const OverflowingBinaryOperator *OFBinOp =
2830 dyn_cast<const OverflowingBinaryOperator>(&I)) {
2831 nuw = OFBinOp->hasNoUnsignedWrap();
2832 nsw = OFBinOp->hasNoSignedWrap();
2833 }
2834 if (const PossiblyExactOperator *ExactOp =
2835 dyn_cast<const PossiblyExactOperator>(&I))
2836 exact = ExactOp->isExact();
2837
2838 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2839 Op1, Op2, nuw, nsw, exact);
2840 setValue(&I, BinNodeValue);
2841}
2842
2843void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2844 SDValue Op1 = getValue(I.getOperand(0));
2845 SDValue Op2 = getValue(I.getOperand(1));
2846
2847 EVT ShiftTy =
2848 DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType());
2849
2850 // Coerce the shift amount to the right type if we can.
2851 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2852 unsigned ShiftSize = ShiftTy.getSizeInBits();
2853 unsigned Op2Size = Op2.getValueType().getSizeInBits();
2854 SDLoc DL = getCurSDLoc();
2855
2856 // If the operand is smaller than the shift count type, promote it.
2857 if (ShiftSize > Op2Size)
2858 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2859
2860 // If the operand is larger than the shift count type but the shift
2861 // count type has enough bits to represent any shift value, truncate
2862 // it now. This is a common case and it exposes the truncate to
2863 // optimization early.
2864 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2865 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2866 // Otherwise we'll need to temporarily settle for some other convenient
2867 // type. Type legalization will make adjustments once the shiftee is split.
2868 else
2869 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2870 }
2871
2872 bool nuw = false;
2873 bool nsw = false;
2874 bool exact = false;
2875
2876 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2877
2878 if (const OverflowingBinaryOperator *OFBinOp =
2879 dyn_cast<const OverflowingBinaryOperator>(&I)) {
2880 nuw = OFBinOp->hasNoUnsignedWrap();
2881 nsw = OFBinOp->hasNoSignedWrap();
2882 }
2883 if (const PossiblyExactOperator *ExactOp =
2884 dyn_cast<const PossiblyExactOperator>(&I))
2885 exact = ExactOp->isExact();
2886 }
2887
2888 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2889 nuw, nsw, exact);
2890 setValue(&I, Res);
2891}
2892
2893void SelectionDAGBuilder::visitSDiv(const User &I) {
2894 SDValue Op1 = getValue(I.getOperand(0));
2895 SDValue Op2 = getValue(I.getOperand(1));
2896
2897 // Turn exact SDivs into multiplications.
2898 // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2899 // exact bit.
2900 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2901 !isa<ConstantSDNode>(Op1) &&
2902 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2903 setValue(&I, DAG.getTargetLoweringInfo()
2904 .BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG));
2905 else
2906 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(),
2907 Op1, Op2));
2908}
2909
2910void SelectionDAGBuilder::visitICmp(const User &I) {
2911 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2912 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2913 predicate = IC->getPredicate();
2914 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2915 predicate = ICmpInst::Predicate(IC->getPredicate());
2916 SDValue Op1 = getValue(I.getOperand(0));
2917 SDValue Op2 = getValue(I.getOperand(1));
2918 ISD::CondCode Opcode = getICmpCondCode(predicate);
2919
2920 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2921 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2922}
2923
2924void SelectionDAGBuilder::visitFCmp(const User &I) {
2925 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2926 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2927 predicate = FC->getPredicate();
2928 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2929 predicate = FCmpInst::Predicate(FC->getPredicate());
2930 SDValue Op1 = getValue(I.getOperand(0));
2931 SDValue Op2 = getValue(I.getOperand(1));
2932 ISD::CondCode Condition = getFCmpCondCode(predicate);
2933 if (TM.Options.NoNaNsFPMath)
2934 Condition = getFCmpCodeWithoutNaN(Condition);
2935 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2936 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2937}
2938
2939void SelectionDAGBuilder::visitSelect(const User &I) {
2940 SmallVector<EVT, 4> ValueVTs;
2941 ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs);
2942 unsigned NumValues = ValueVTs.size();
2943 if (NumValues == 0) return;
2944
2945 SmallVector<SDValue, 4> Values(NumValues);
2946 SDValue Cond = getValue(I.getOperand(0));
2947 SDValue TrueVal = getValue(I.getOperand(1));
2948 SDValue FalseVal = getValue(I.getOperand(2));
2949 ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2950 ISD::VSELECT : ISD::SELECT;
2951
2952 for (unsigned i = 0; i != NumValues; ++i)
2953 Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2954 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2955 Cond,
2956 SDValue(TrueVal.getNode(),
2957 TrueVal.getResNo() + i),
2958 SDValue(FalseVal.getNode(),
2959 FalseVal.getResNo() + i));
2960
2961 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2962 DAG.getVTList(ValueVTs), Values));
2963}
2964
2965void SelectionDAGBuilder::visitTrunc(const User &I) {
2966 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2967 SDValue N = getValue(I.getOperand(0));
2968 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2969 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2970}
2971
2972void SelectionDAGBuilder::visitZExt(const User &I) {
2973 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2974 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2975 SDValue N = getValue(I.getOperand(0));
2976 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2977 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2978}
2979
2980void SelectionDAGBuilder::visitSExt(const User &I) {
2981 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2982 // SExt also can't be a cast to bool for same reason. So, nothing much to do
2983 SDValue N = getValue(I.getOperand(0));
2984 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2985 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2986}
2987
2988void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2989 // FPTrunc is never a no-op cast, no need to check
2990 SDValue N = getValue(I.getOperand(0));
2991 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2992 EVT DestVT = TLI.getValueType(I.getType());
2993 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), DestVT, N,
2994 DAG.getTargetConstant(0, TLI.getPointerTy())));
2995}
2996
2997void SelectionDAGBuilder::visitFPExt(const User &I) {
2998 // FPExt is never a no-op cast, no need to check
2999 SDValue N = getValue(I.getOperand(0));
3000 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3001 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3002}
3003
3004void SelectionDAGBuilder::visitFPToUI(const User &I) {
3005 // FPToUI is never a no-op cast, no need to check
3006 SDValue N = getValue(I.getOperand(0));
3007 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3008 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3009}
3010
3011void SelectionDAGBuilder::visitFPToSI(const User &I) {
3012 // FPToSI is never a no-op cast, no need to check
3013 SDValue N = getValue(I.getOperand(0));
3014 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3015 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3016}
3017
3018void SelectionDAGBuilder::visitUIToFP(const User &I) {
3019 // UIToFP is never a no-op cast, no need to check
3020 SDValue N = getValue(I.getOperand(0));
3021 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3022 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3023}
3024
3025void SelectionDAGBuilder::visitSIToFP(const User &I) {
3026 // SIToFP is never a no-op cast, no need to check
3027 SDValue N = getValue(I.getOperand(0));
3028 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3029 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3030}
3031
3032void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3033 // What to do depends on the size of the integer and the size of the pointer.
3034 // We can either truncate, zero extend, or no-op, accordingly.
3035 SDValue N = getValue(I.getOperand(0));
3036 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3037 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3038}
3039
3040void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3041 // What to do depends on the size of the integer and the size of the pointer.
3042 // We can either truncate, zero extend, or no-op, accordingly.
3043 SDValue N = getValue(I.getOperand(0));
3044 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3045 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3046}
3047
3048void SelectionDAGBuilder::visitBitCast(const User &I) {
3049 SDValue N = getValue(I.getOperand(0));
3050 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3051
3052 // BitCast assures us that source and destination are the same size so this is
3053 // either a BITCAST or a no-op.
3054 if (DestVT != N.getValueType())
3055 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(),
3056 DestVT, N)); // convert types.
3057 // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3058 // might fold any kind of constant expression to an integer constant and that
3059 // is not what we are looking for. Only regcognize a bitcast of a genuine
3060 // constant integer as an opaque constant.
3061 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3062 setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false,
3063 /*isOpaque*/true));
3064 else
3065 setValue(&I, N); // noop cast.
3066}
3067
3068void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3069 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3070 const Value *SV = I.getOperand(0);
3071 SDValue N = getValue(SV);
3072 EVT DestVT = TLI.getValueType(I.getType());
3073
3074 unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3075 unsigned DestAS = I.getType()->getPointerAddressSpace();
3076
3077 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3078 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3079
3080 setValue(&I, N);
3081}
3082
3083void SelectionDAGBuilder::visitInsertElement(const User &I) {
3084 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3085 SDValue InVec = getValue(I.getOperand(0));
3086 SDValue InVal = getValue(I.getOperand(1));
3087 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)),
3088 getCurSDLoc(), TLI.getVectorIdxTy());
3089 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3090 TLI.getValueType(I.getType()), InVec, InVal, InIdx));
3091}
3092
3093void SelectionDAGBuilder::visitExtractElement(const User &I) {
3094 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3095 SDValue InVec = getValue(I.getOperand(0));
3096 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)),
3097 getCurSDLoc(), TLI.getVectorIdxTy());
3098 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3099 TLI.getValueType(I.getType()), InVec, InIdx));
3100}
3101
3102// Utility for visitShuffleVector - Return true if every element in Mask,
3103// beginning from position Pos and ending in Pos+Size, falls within the
3104// specified sequential range [L, L+Pos). or is undef.
3105static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
3106 unsigned Pos, unsigned Size, int Low) {
3107 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3108 if (Mask[i] >= 0 && Mask[i] != Low)
3109 return false;
3110 return true;
3111}
3112
3113void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3114 SDValue Src1 = getValue(I.getOperand(0));
3115 SDValue Src2 = getValue(I.getOperand(1));
3116
3117 SmallVector<int, 8> Mask;
3118 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3119 unsigned MaskNumElts = Mask.size();
3120
3121 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3122 EVT VT = TLI.getValueType(I.getType());
3123 EVT SrcVT = Src1.getValueType();
3124 unsigned SrcNumElts = SrcVT.getVectorNumElements();
3125
3126 if (SrcNumElts == MaskNumElts) {
3127 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3128 &Mask[0]));
3129 return;
3130 }
3131
3132 // Normalize the shuffle vector since mask and vector length don't match.
3133 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
3134 // Mask is longer than the source vectors and is a multiple of the source
3135 // vectors. We can use concatenate vector to make the mask and vectors
3136 // lengths match.
3137 if (SrcNumElts*2 == MaskNumElts) {
3138 // First check for Src1 in low and Src2 in high
3139 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
3140 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
3141 // The shuffle is concatenating two vectors together.
3142 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
3143 VT, Src1, Src2));
3144 return;
3145 }
3146 // Then check for Src2 in low and Src1 in high
3147 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
3148 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
3149 // The shuffle is concatenating two vectors together.
3150 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
3151 VT, Src2, Src1));
3152 return;
3153 }
3154 }
3155
3156 // Pad both vectors with undefs to make them the same length as the mask.
3157 unsigned NumConcat = MaskNumElts / SrcNumElts;
3158 bool Src1U = Src1.getOpcode() == ISD::UNDEF;
3159 bool Src2U = Src2.getOpcode() == ISD::UNDEF;
3160 SDValue UndefVal = DAG.getUNDEF(SrcVT);
3161
3162 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3163 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3164 MOps1[0] = Src1;
3165 MOps2[0] = Src2;
3166
3167 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
3168 getCurSDLoc(), VT, MOps1);
3169 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
3170 getCurSDLoc(), VT, MOps2);
3171
3172 // Readjust mask for new input vector length.
3173 SmallVector<int, 8> MappedOps;
3174 for (unsigned i = 0; i != MaskNumElts; ++i) {
3175 int Idx = Mask[i];
3176 if (Idx >= (int)SrcNumElts)
3177 Idx -= SrcNumElts - MaskNumElts;
3178 MappedOps.push_back(Idx);
3179 }
3180
3181 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3182 &MappedOps[0]));
3183 return;
3184 }
3185
3186 if (SrcNumElts > MaskNumElts) {
3187 // Analyze the access pattern of the vector to see if we can extract
3188 // two subvectors and do the shuffle. The analysis is done by calculating
3189 // the range of elements the mask access on both vectors.
3190 int MinRange[2] = { static_cast<int>(SrcNumElts),
3191 static_cast<int>(SrcNumElts)};
3192 int MaxRange[2] = {-1, -1};
3193
3194 for (unsigned i = 0; i != MaskNumElts; ++i) {
3195 int Idx = Mask[i];
3196 unsigned Input = 0;
3197 if (Idx < 0)
3198 continue;
3199
3200 if (Idx >= (int)SrcNumElts) {
3201 Input = 1;
3202 Idx -= SrcNumElts;
3203 }
3204 if (Idx > MaxRange[Input])
3205 MaxRange[Input] = Idx;
3206 if (Idx < MinRange[Input])
3207 MinRange[Input] = Idx;
3208 }
3209
3210 // Check if the access is smaller than the vector size and can we find
3211 // a reasonable extract index.
3212 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not
3213 // Extract.
3214 int StartIdx[2]; // StartIdx to extract from
3215 for (unsigned Input = 0; Input < 2; ++Input) {
3216 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
3217 RangeUse[Input] = 0; // Unused
3218 StartIdx[Input] = 0;
3219 continue;
3220 }
3221
3222 // Find a good start index that is a multiple of the mask length. Then
3223 // see if the rest of the elements are in range.
3224 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
3225 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
3226 StartIdx[Input] + MaskNumElts <= SrcNumElts)
3227 RangeUse[Input] = 1; // Extract from a multiple of the mask length.
3228 }
3229
3230 if (RangeUse[0] == 0 && RangeUse[1] == 0) {
3231 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3232 return;
3233 }
3234 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3235 // Extract appropriate subvector and generate a vector shuffle
3236 for (unsigned Input = 0; Input < 2; ++Input) {
3237 SDValue &Src = Input == 0 ? Src1 : Src2;
3238 if (RangeUse[Input] == 0)
3239 Src = DAG.getUNDEF(VT);
3240 else
3241 Src = DAG.getNode(
3242 ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, Src,
3243 DAG.getConstant(StartIdx[Input], TLI.getVectorIdxTy()));
3244 }
3245
3246 // Calculate new mask.
3247 SmallVector<int, 8> MappedOps;
3248 for (unsigned i = 0; i != MaskNumElts; ++i) {
3249 int Idx = Mask[i];
3250 if (Idx >= 0) {
3251 if (Idx < (int)SrcNumElts)
3252 Idx -= StartIdx[0];
3253 else
3254 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3255 }
3256 MappedOps.push_back(Idx);
3257 }
3258
3259 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3260 &MappedOps[0]));
3261 return;
3262 }
3263 }
3264
3265 // We can't use either concat vectors or extract subvectors so fall back to
3266 // replacing the shuffle with extract and build vector.
3267 // to insert and build vector.
3268 EVT EltVT = VT.getVectorElementType();
3269 EVT IdxVT = TLI.getVectorIdxTy();
3270 SmallVector<SDValue,8> Ops;
3271 for (unsigned i = 0; i != MaskNumElts; ++i) {
3272 int Idx = Mask[i];
3273 SDValue Res;
3274
3275 if (Idx < 0) {
3276 Res = DAG.getUNDEF(EltVT);
3277 } else {
3278 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3279 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3280
3281 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3282 EltVT, Src, DAG.getConstant(Idx, IdxVT));
3283 }
3284
3285 Ops.push_back(Res);
3286 }
3287
3288 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops));
3289}
3290
3291void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3292 const Value *Op0 = I.getOperand(0);
3293 const Value *Op1 = I.getOperand(1);
3294 Type *AggTy = I.getType();
3295 Type *ValTy = Op1->getType();
3296 bool IntoUndef = isa<UndefValue>(Op0);
3297 bool FromUndef = isa<UndefValue>(Op1);
3298
3299 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3300
3301 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3302 SmallVector<EVT, 4> AggValueVTs;
3303 ComputeValueVTs(TLI, AggTy, AggValueVTs);
3304 SmallVector<EVT, 4> ValValueVTs;
3305 ComputeValueVTs(TLI, ValTy, ValValueVTs);
3306
3307 unsigned NumAggValues = AggValueVTs.size();
3308 unsigned NumValValues = ValValueVTs.size();
3309 SmallVector<SDValue, 4> Values(NumAggValues);
3310
3311 // Ignore an insertvalue that produces an empty object
3312 if (!NumAggValues) {
3313 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3314 return;
3315 }
3316
3317 SDValue Agg = getValue(Op0);
3318 unsigned i = 0;
3319 // Copy the beginning value(s) from the original aggregate.
3320 for (; i != LinearIndex; ++i)
3321 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3322 SDValue(Agg.getNode(), Agg.getResNo() + i);
3323 // Copy values from the inserted value(s).
3324 if (NumValValues) {
3325 SDValue Val = getValue(Op1);
3326 for (; i != LinearIndex + NumValValues; ++i)
3327 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3328 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3329 }
3330 // Copy remaining value(s) from the original aggregate.
3331 for (; i != NumAggValues; ++i)
3332 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3333 SDValue(Agg.getNode(), Agg.getResNo() + i);
3334
3335 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3336 DAG.getVTList(AggValueVTs), Values));
3337}
3338
3339void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3340 const Value *Op0 = I.getOperand(0);
3341 Type *AggTy = Op0->getType();
3342 Type *ValTy = I.getType();
3343 bool OutOfUndef = isa<UndefValue>(Op0);
3344
3345 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3346
3347 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3348 SmallVector<EVT, 4> ValValueVTs;
3349 ComputeValueVTs(TLI, ValTy, ValValueVTs);
3350
3351 unsigned NumValValues = ValValueVTs.size();
3352
3353 // Ignore a extractvalue that produces an empty object
3354 if (!NumValValues) {
3355 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3356 return;
3357 }
3358
3359 SmallVector<SDValue, 4> Values(NumValValues);
3360
3361 SDValue Agg = getValue(Op0);
3362 // Copy out the selected value(s).
3363 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3364 Values[i - LinearIndex] =
3365 OutOfUndef ?
3366 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3367 SDValue(Agg.getNode(), Agg.getResNo() + i);
3368
3369 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3370 DAG.getVTList(ValValueVTs), Values));
3371}
3372
3373void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3374 Value *Op0 = I.getOperand(0);
3375 // Note that the pointer operand may be a vector of pointers. Take the scalar
3376 // element which holds a pointer.
3377 Type *Ty = Op0->getType()->getScalarType();
3378 unsigned AS = Ty->getPointerAddressSpace();
3379 SDValue N = getValue(Op0);
3380
3381 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3382 OI != E; ++OI) {
3383 const Value *Idx = *OI;
3384 if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3385 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3386 if (Field) {
3387 // N = N + Offset
3388 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3389 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
3390 DAG.getConstant(Offset, N.getValueType()));
3391 }
3392
3393 Ty = StTy->getElementType(Field);
3394 } else {
3395 Ty = cast<SequentialType>(Ty)->getElementType();
3396
3397 // If this is a constant subscript, handle it quickly.
3398 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3399 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3400 if (CI->isZero()) continue;
3401 uint64_t Offs =
3402 DL->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3403 SDValue OffsVal;
3404 EVT PTy = TLI.getPointerTy(AS);
3405 unsigned PtrBits = PTy.getSizeInBits();
3406 if (PtrBits < 64)
3407 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy,
3408 DAG.getConstant(Offs, MVT::i64));
3409 else
3410 OffsVal = DAG.getConstant(Offs, PTy);
3411
3412 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
3413 OffsVal);
3414 continue;
3415 }
3416
3417 // N = N + Idx * ElementSize;
3418 APInt ElementSize =
3419 APInt(TLI.getPointerSizeInBits(AS), DL->getTypeAllocSize(Ty));
3420 SDValue IdxN = getValue(Idx);
3421
3422 // If the index is smaller or larger than intptr_t, truncate or extend
3423 // it.
3424 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType());
3425
3426 // If this is a multiply by a power of two, turn it into a shl
3427 // immediately. This is a very common case.
3428 if (ElementSize != 1) {
3429 if (ElementSize.isPowerOf2()) {
3430 unsigned Amt = ElementSize.logBase2();
3431 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(),
3432 N.getValueType(), IdxN,
3433 DAG.getConstant(Amt, IdxN.getValueType()));
3434 } else {
3435 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType());
3436 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(),
3437 N.getValueType(), IdxN, Scale);
3438 }
3439 }
3440
3441 N = DAG.getNode(ISD::ADD, getCurSDLoc(),
3442 N.getValueType(), N, IdxN);
3443 }
3444 }
3445
3446 setValue(&I, N);
3447}
3448
3449void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3450 // If this is a fixed sized alloca in the entry block of the function,
3451 // allocate it statically on the stack.
3452 if (FuncInfo.StaticAllocaMap.count(&I))
3453 return; // getValue will auto-populate this.
3454
3455 Type *Ty = I.getAllocatedType();
3456 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3457 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
3458 unsigned Align =
3459 std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty),
3460 I.getAlignment());
3461
3462 SDValue AllocSize = getValue(I.getArraySize());
3463
3464 EVT IntPtr = TLI.getPointerTy();
3465 if (AllocSize.getValueType() != IntPtr)
3466 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr);
3467
3468 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr,
3469 AllocSize,
3470 DAG.getConstant(TySize, IntPtr));
3471
3472 // Handle alignment. If the requested alignment is less than or equal to
3473 // the stack alignment, ignore it. If the size is greater than or equal to
3474 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3475 unsigned StackAlign =
3476 DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3477 if (Align <= StackAlign)
3478 Align = 0;
3479
3480 // Round the size of the allocation up to the stack alignment size
3481 // by add SA-1 to the size.
3482 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(),
3483 AllocSize.getValueType(), AllocSize,
3484 DAG.getIntPtrConstant(StackAlign-1));
3485
3486 // Mask out the low bits for alignment purposes.
3487 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(),
3488 AllocSize.getValueType(), AllocSize,
3489 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3490
3491 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3492 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3493 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops);
3494 setValue(&I, DSA);
3495 DAG.setRoot(DSA.getValue(1));
3496
3497 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects())((FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()) ? static_cast
<void> (0) : __assert_fail ("FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 3497, __PRETTY_FUNCTION__))
;
3498}
3499
3500void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3501 if (I.isAtomic())
3502 return visitAtomicLoad(I);
3503
3504 const Value *SV = I.getOperand(0);
3505 SDValue Ptr = getValue(SV);
3506
3507 Type *Ty = I.getType();
3508
3509 bool isVolatile = I.isVolatile();
3510 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3511 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3512 unsigned Alignment = I.getAlignment();
3513
3514 AAMDNodes AAInfo;
3515 I.getAAMetadata(AAInfo);
3516 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3517
3518 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3519 SmallVector<EVT, 4> ValueVTs;
3520 SmallVector<uint64_t, 4> Offsets;
3521 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3522 unsigned NumValues = ValueVTs.size();
3523 if (NumValues == 0)
3524 return;
3525
3526 SDValue Root;
3527 bool ConstantMemory = false;
3528 if (isVolatile || NumValues > MaxParallelChains)
3529 // Serialize volatile loads with other side effects.
3530 Root = getRoot();
3531 else if (AA->pointsToConstantMemory(
3532 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) {
3533 // Do not serialize (non-volatile) loads of constant memory with anything.
3534 Root = DAG.getEntryNode();
3535 ConstantMemory = true;
3536 } else {
3537 // Do not serialize non-volatile loads against each other.
3538 Root = DAG.getRoot();
3539 }
3540
3541 if (isVolatile)
3542 Root = TLI.prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG);
3543
3544 SmallVector<SDValue, 4> Values(NumValues);
3545 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3546 NumValues));
3547 EVT PtrVT = Ptr.getValueType();
3548 unsigned ChainI = 0;
3549 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3550 // Serializing loads here may result in excessive register pressure, and
3551 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3552 // could recover a bit by hoisting nodes upward in the chain by recognizing
3553 // they are side-effect free or do not alias. The optimizer should really
3554 // avoid this case by converting large object/array copies to llvm.memcpy
3555 // (MaxParallelChains should always remain as failsafe).
3556 if (ChainI == MaxParallelChains) {
3557 assert(PendingLoads.empty() && "PendingLoads must be serialized first")((PendingLoads.empty() && "PendingLoads must be serialized first"
) ? static_cast<void> (0) : __assert_fail ("PendingLoads.empty() && \"PendingLoads must be serialized first\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 3557, __PRETTY_FUNCTION__))
;
3558 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
3559 makeArrayRef(Chains.data(), ChainI));
3560 Root = Chain;
3561 ChainI = 0;
3562 }
3563 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(),
3564 PtrVT, Ptr,
3565 DAG.getConstant(Offsets[i], PtrVT));
3566 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root,
3567 A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3568 isNonTemporal, isInvariant, Alignment, AAInfo,
3569 Ranges);
3570
3571 Values[i] = L;
3572 Chains[ChainI] = L.getValue(1);
3573 }
3574
3575 if (!ConstantMemory) {
3576 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
3577 makeArrayRef(Chains.data(), ChainI));
3578 if (isVolatile)
3579 DAG.setRoot(Chain);
3580 else
3581 PendingLoads.push_back(Chain);
3582 }
3583
3584 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3585 DAG.getVTList(ValueVTs), Values));
3586}
3587
3588void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3589 if (I.isAtomic())
3590 return visitAtomicStore(I);
3591
3592 const Value *SrcV = I.getOperand(0);
3593 const Value *PtrV = I.getOperand(1);
3594
3595 SmallVector<EVT, 4> ValueVTs;
3596 SmallVector<uint64_t, 4> Offsets;
3597 ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(),
3598 ValueVTs, &Offsets);
3599 unsigned NumValues = ValueVTs.size();
3600 if (NumValues == 0)
3601 return;
3602
3603 // Get the lowered operands. Note that we do this after
3604 // checking if NumResults is zero, because with zero results
3605 // the operands won't have values in the map.
3606 SDValue Src = getValue(SrcV);
3607 SDValue Ptr = getValue(PtrV);
3608
3609 SDValue Root = getRoot();
3610 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3611 NumValues));
3612 EVT PtrVT = Ptr.getValueType();
3613 bool isVolatile = I.isVolatile();
3614 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3615 unsigned Alignment = I.getAlignment();
3616
3617 AAMDNodes AAInfo;
3618 I.getAAMetadata(AAInfo);
3619
3620 unsigned ChainI = 0;
3621 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3622 // See visitLoad comments.
3623 if (ChainI == MaxParallelChains) {
3624 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
3625 makeArrayRef(Chains.data(), ChainI));
3626 Root = Chain;
3627 ChainI = 0;
3628 }
3629 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr,
3630 DAG.getConstant(Offsets[i], PtrVT));
3631 SDValue St = DAG.getStore(Root, getCurSDLoc(),
3632 SDValue(Src.getNode(), Src.getResNo() + i),
3633 Add, MachinePointerInfo(PtrV, Offsets[i]),
3634 isVolatile, isNonTemporal, Alignment, AAInfo);
3635 Chains[ChainI] = St;
3636 }
3637
3638 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
3639 makeArrayRef(Chains.data(), ChainI));
3640 DAG.setRoot(StoreNode);
3641}
3642
3643void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) {
3644 SDLoc sdl = getCurSDLoc();
3645
3646 Value *PtrOperand = I.getArgOperand(0);
3647 SDValue Ptr = getValue(PtrOperand);
3648 SDValue Src0 = getValue(I.getArgOperand(1));
3649 SDValue Mask = getValue(I.getArgOperand(3));
3650 EVT VT = Src0.getValueType();
3651 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3652 if (!Alignment)
3653 Alignment = DAG.getEVTAlignment(VT);
3654
3655 AAMDNodes AAInfo;
3656 I.getAAMetadata(AAInfo);
3657
3658 MachineMemOperand *MMO =
3659 DAG.getMachineFunction().
3660 getMachineMemOperand(MachinePointerInfo(PtrOperand),
3661 MachineMemOperand::MOStore, VT.getStoreSize(),
3662 Alignment, AAInfo);
3663 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, MMO);
3664 DAG.setRoot(StoreNode);
3665 setValue(&I, StoreNode);
3666}
3667
3668void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) {
3669 SDLoc sdl = getCurSDLoc();
3670
3671 Value *PtrOperand = I.getArgOperand(0);
3672 SDValue Ptr = getValue(PtrOperand);
3673 SDValue Src0 = getValue(I.getArgOperand(1));
3674 SDValue Mask = getValue(I.getArgOperand(3));
3675
3676 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3677 EVT VT = TLI.getValueType(I.getType());
3678 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3679 if (!Alignment)
3680 Alignment = DAG.getEVTAlignment(VT);
3681
3682 AAMDNodes AAInfo;
3683 I.getAAMetadata(AAInfo);
3684 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3685
3686 SDValue InChain = DAG.getRoot();
3687 if (AA->pointsToConstantMemory(
3688 AliasAnalysis::Location(PtrOperand,
3689 AA->getTypeStoreSize(I.getType()),
3690 AAInfo))) {
3691 // Do not serialize (non-volatile) loads of constant memory with anything.
3692 InChain = DAG.getEntryNode();
3693 }
3694
3695 MachineMemOperand *MMO =
3696 DAG.getMachineFunction().
3697 getMachineMemOperand(MachinePointerInfo(PtrOperand),
3698 MachineMemOperand::MOLoad, VT.getStoreSize(),
3699 Alignment, AAInfo, Ranges);
3700
3701 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, MMO);
3702 SDValue OutChain = Load.getValue(1);
3703 DAG.setRoot(OutChain);
3704 setValue(&I, Load);
3705}
3706
3707void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3708 SDLoc dl = getCurSDLoc();
3709 AtomicOrdering SuccessOrder = I.getSuccessOrdering();
3710 AtomicOrdering FailureOrder = I.getFailureOrdering();
3711 SynchronizationScope Scope = I.getSynchScope();
3712
3713 SDValue InChain = getRoot();
3714
3715 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
3716 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
3717 SDValue L = DAG.getAtomicCmpSwap(
3718 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
3719 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
3720 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
3721 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope);
3722
3723 SDValue OutChain = L.getValue(2);
3724
3725 setValue(&I, L);
3726 DAG.setRoot(OutChain);
3727}
3728
3729void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3730 SDLoc dl = getCurSDLoc();
3731 ISD::NodeType NT;
3732 switch (I.getOperation()) {
3733 default: llvm_unreachable("Unknown atomicrmw operation")::llvm::llvm_unreachable_internal("Unknown atomicrmw operation"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 3733)
;
3734 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3735 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break;
3736 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break;
3737 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break;
3738 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3739 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break;
3740 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break;
3741 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break;
3742 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break;
3743 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3744 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3745 }
3746 AtomicOrdering Order = I.getOrdering();
3747 SynchronizationScope Scope = I.getSynchScope();
3748
3749 SDValue InChain = getRoot();
3750
3751 SDValue L =
3752 DAG.getAtomic(NT, dl,
3753 getValue(I.getValOperand()).getSimpleValueType(),
3754 InChain,
3755 getValue(I.getPointerOperand()),
3756 getValue(I.getValOperand()),
3757 I.getPointerOperand(),
3758 /* Alignment=*/ 0, Order, Scope);
3759
3760 SDValue OutChain = L.getValue(1);
3761
3762 setValue(&I, L);
3763 DAG.setRoot(OutChain);
3764}
3765
3766void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3767 SDLoc dl = getCurSDLoc();
3768 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3769 SDValue Ops[3];
3770 Ops[0] = getRoot();
3771 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3772 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3773 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
3774}
3775
3776void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3777 SDLoc dl = getCurSDLoc();
3778 AtomicOrdering Order = I.getOrdering();
3779 SynchronizationScope Scope = I.getSynchScope();
3780
3781 SDValue InChain = getRoot();
3782
3783 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3784 EVT VT = TLI.getValueType(I.getType());
3785
3786 if (I.getAlignment() < VT.getSizeInBits() / 8)
3787 report_fatal_error("Cannot generate unaligned atomic load");
3788
3789 MachineMemOperand *MMO =
3790 DAG.getMachineFunction().
3791 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
3792 MachineMemOperand::MOVolatile |
3793 MachineMemOperand::MOLoad,
3794 VT.getStoreSize(),
3795 I.getAlignment() ? I.getAlignment() :
3796 DAG.getEVTAlignment(VT));
3797
3798 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
3799 SDValue L =
3800 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3801 getValue(I.getPointerOperand()), MMO,
3802 Order, Scope);
3803
3804 SDValue OutChain = L.getValue(1);
3805
3806 setValue(&I, L);
3807 DAG.setRoot(OutChain);
3808}
3809
3810void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3811 SDLoc dl = getCurSDLoc();
3812
3813 AtomicOrdering Order = I.getOrdering();
3814 SynchronizationScope Scope = I.getSynchScope();
3815
3816 SDValue InChain = getRoot();
3817
3818 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3819 EVT VT = TLI.getValueType(I.getValueOperand()->getType());
3820
3821 if (I.getAlignment() < VT.getSizeInBits() / 8)
3822 report_fatal_error("Cannot generate unaligned atomic store");
3823
3824 SDValue OutChain =
3825 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3826 InChain,
3827 getValue(I.getPointerOperand()),
3828 getValue(I.getValueOperand()),
3829 I.getPointerOperand(), I.getAlignment(),
3830 Order, Scope);
3831
3832 DAG.setRoot(OutChain);
3833}
3834
3835/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3836/// node.
3837void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3838 unsigned Intrinsic) {
3839 bool HasChain = !I.doesNotAccessMemory();
3840 bool OnlyLoad = HasChain && I.onlyReadsMemory();
3841
3842 // Build the operand list.
3843 SmallVector<SDValue, 8> Ops;
3844 if (HasChain) { // If this intrinsic has side-effects, chainify it.
3845 if (OnlyLoad) {
3846 // We don't need to serialize loads against other loads.
3847 Ops.push_back(DAG.getRoot());
3848 } else {
3849 Ops.push_back(getRoot());
3850 }
3851 }
3852
3853 // Info is set by getTgtMemInstrinsic
3854 TargetLowering::IntrinsicInfo Info;
3855 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3856 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3857
3858 // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3859 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3860 Info.opc == ISD::INTRINSIC_W_CHAIN)
3861 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy()));
3862
3863 // Add all operands of the call to the operand list.
3864 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3865 SDValue Op = getValue(I.getArgOperand(i));
3866 Ops.push_back(Op);
3867 }
3868
3869 SmallVector<EVT, 4> ValueVTs;
3870 ComputeValueVTs(TLI, I.getType(), ValueVTs);
3871
3872 if (HasChain)
3873 ValueVTs.push_back(MVT::Other);
3874
3875 SDVTList VTs = DAG.getVTList(ValueVTs);
3876
3877 // Create the node.
3878 SDValue Result;
3879 if (IsTgtIntrinsic) {
3880 // This is target intrinsic that touches memory
3881 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
3882 VTs, Ops, Info.memVT,
3883 MachinePointerInfo(Info.ptrVal, Info.offset),
3884 Info.align, Info.vol,
3885 Info.readMem, Info.writeMem, Info.size);
3886 } else if (!HasChain) {
3887 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
3888 } else if (!I.getType()->isVoidTy()) {
3889 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
3890 } else {
3891 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
3892 }
3893
3894 if (HasChain) {
3895 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3896 if (OnlyLoad)
3897 PendingLoads.push_back(Chain);
3898 else
3899 DAG.setRoot(Chain);
3900 }
3901
3902 if (!I.getType()->isVoidTy()) {
3903 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3904 EVT VT = TLI.getValueType(PTy);
3905 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
3906 }
3907
3908 setValue(&I, Result);
3909 }
3910}
3911
3912/// GetSignificand - Get the significand and build it into a floating-point
3913/// number with exponent of 1:
3914///
3915/// Op = (Op & 0x007fffff) | 0x3f800000;
3916///
3917/// where Op is the hexadecimal representation of floating point value.
3918static SDValue
3919GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
3920 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3921 DAG.getConstant(0x007fffff, MVT::i32));
3922 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3923 DAG.getConstant(0x3f800000, MVT::i32));
3924 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3925}
3926
3927/// GetExponent - Get the exponent:
3928///
3929/// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3930///
3931/// where Op is the hexadecimal representation of floating point value.
3932static SDValue
3933GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3934 SDLoc dl) {
3935 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3936 DAG.getConstant(0x7f800000, MVT::i32));
3937 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3938 DAG.getConstant(23, TLI.getPointerTy()));
3939 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3940 DAG.getConstant(127, MVT::i32));
3941 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3942}
3943
3944/// getF32Constant - Get 32-bit floating point constant.
3945static SDValue
3946getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3947 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)),
3948 MVT::f32);
3949}
3950
3951/// expandExp - Lower an exp intrinsic. Handles the special sequences for
3952/// limited-precision mode.
3953static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3954 const TargetLowering &TLI) {
3955 if (Op.getValueType() == MVT::f32 &&
3956 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3957
3958 // Put the exponent in the right bit position for later addition to the
3959 // final result:
3960 //
3961 // #define LOG2OFe 1.4426950f
3962 // IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3963 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3964 getF32Constant(DAG, 0x3fb8aa3b));
3965 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3966
3967 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3968 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3969 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3970
3971 // IntegerPartOfX <<= 23;
3972 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3973 DAG.getConstant(23, TLI.getPointerTy()));
3974
3975 SDValue TwoToFracPartOfX;
3976 if (LimitFloatPrecision <= 6) {
3977 // For floating-point precision of 6:
3978 //
3979 // TwoToFractionalPartOfX =
3980 // 0.997535578f +
3981 // (0.735607626f + 0.252464424f * x) * x;
3982 //
3983 // error 0.0144103317, which is 6 bits
3984 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3985 getF32Constant(DAG, 0x3e814304));
3986 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3987 getF32Constant(DAG, 0x3f3c50c8));
3988 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3989 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3990 getF32Constant(DAG, 0x3f7f5e7e));
3991 } else if (LimitFloatPrecision <= 12) {
3992 // For floating-point precision of 12:
3993 //
3994 // TwoToFractionalPartOfX =
3995 // 0.999892986f +
3996 // (0.696457318f +
3997 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
3998 //
3999 // 0.000107046256 error, which is 13 to 14 bits
4000 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4001 getF32Constant(DAG, 0x3da235e3));
4002 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4003 getF32Constant(DAG, 0x3e65b8f3));
4004 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4005 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4006 getF32Constant(DAG, 0x3f324b07));
4007 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4008 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4009 getF32Constant(DAG, 0x3f7ff8fd));
4010 } else { // LimitFloatPrecision <= 18
4011 // For floating-point precision of 18:
4012 //
4013 // TwoToFractionalPartOfX =
4014 // 0.999999982f +
4015 // (0.693148872f +
4016 // (0.240227044f +
4017 // (0.554906021e-1f +
4018 // (0.961591928e-2f +
4019 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4020 //
4021 // error 2.47208000*10^(-7), which is better than 18 bits
4022 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4023 getF32Constant(DAG, 0x3924b03e));
4024 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4025 getF32Constant(DAG, 0x3ab24b87));
4026 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4027 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4028 getF32Constant(DAG, 0x3c1d8c17));
4029 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4030 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4031 getF32Constant(DAG, 0x3d634a1d));
4032 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4033 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4034 getF32Constant(DAG, 0x3e75fe14));
4035 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4036 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4037 getF32Constant(DAG, 0x3f317234));
4038 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4039 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4040 getF32Constant(DAG, 0x3f800000));
4041 }
4042
4043 // Add the exponent into the result in integer domain.
4044 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX);
4045 return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4046 DAG.getNode(ISD::ADD, dl, MVT::i32,
4047 t13, IntegerPartOfX));
4048 }
4049
4050 // No special expansion.
4051 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4052}
4053
4054/// expandLog - Lower a log intrinsic. Handles the special sequences for
4055/// limited-precision mode.
4056static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4057 const TargetLowering &TLI) {
4058 if (Op.getValueType() == MVT::f32 &&
4059 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4060 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4061
4062 // Scale the exponent by log(2) [0.69314718f].
4063 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4064 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4065 getF32Constant(DAG, 0x3f317218));
4066
4067 // Get the significand and build it into a floating-point number with
4068 // exponent of 1.
4069 SDValue X = GetSignificand(DAG, Op1, dl);
4070
4071 SDValue LogOfMantissa;
4072 if (LimitFloatPrecision <= 6) {
4073 // For floating-point precision of 6:
4074 //
4075 // LogofMantissa =
4076 // -1.1609546f +
4077 // (1.4034025f - 0.23903021f * x) * x;
4078 //
4079 // error 0.0034276066, which is better than 8 bits
4080 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4081 getF32Constant(DAG, 0xbe74c456));
4082 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4083 getF32Constant(DAG, 0x3fb3a2b1));
4084 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4085 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4086 getF32Constant(DAG, 0x3f949a29));
4087 } else if (LimitFloatPrecision <= 12) {
4088 // For floating-point precision of 12:
4089 //
4090 // LogOfMantissa =
4091 // -1.7417939f +
4092 // (2.8212026f +
4093 // (-1.4699568f +
4094 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4095 //
4096 // error 0.000061011436, which is 14 bits
4097 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4098 getF32Constant(DAG, 0xbd67b6d6));
4099 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4100 getF32Constant(DAG, 0x3ee4f4b8));
4101 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4102 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4103 getF32Constant(DAG, 0x3fbc278b));
4104 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4105 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4106 getF32Constant(DAG, 0x40348e95));
4107 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4108 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4109 getF32Constant(DAG, 0x3fdef31a));
4110 } else { // LimitFloatPrecision <= 18
4111 // For floating-point precision of 18:
4112 //
4113 // LogOfMantissa =
4114 // -2.1072184f +
4115 // (4.2372794f +
4116 // (-3.7029485f +
4117 // (2.2781945f +
4118 // (-0.87823314f +
4119 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4120 //
4121 // error 0.0000023660568, which is better than 18 bits
4122 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4123 getF32Constant(DAG, 0xbc91e5ac));
4124 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4125 getF32Constant(DAG, 0x3e4350aa));
4126 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4127 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4128 getF32Constant(DAG, 0x3f60d3e3));
4129 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4130 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4131 getF32Constant(DAG, 0x4011cdf0));
4132 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4133 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4134 getF32Constant(DAG, 0x406cfd1c));
4135 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4136 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4137 getF32Constant(DAG, 0x408797cb));
4138 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4139 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4140 getF32Constant(DAG, 0x4006dcab));
4141 }
4142
4143 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4144 }
4145
4146 // No special expansion.
4147 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4148}
4149
4150/// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4151/// limited-precision mode.
4152static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4153 const TargetLowering &TLI) {
4154 if (Op.getValueType() == MVT::f32 &&
4155 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4156 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4157
4158 // Get the exponent.
4159 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4160
4161 // Get the significand and build it into a floating-point number with
4162 // exponent of 1.
4163 SDValue X = GetSignificand(DAG, Op1, dl);
4164
4165 // Different possible minimax approximations of significand in
4166 // floating-point for various degrees of accuracy over [1,2].
4167 SDValue Log2ofMantissa;
4168 if (LimitFloatPrecision <= 6) {
4169 // For floating-point precision of 6:
4170 //
4171 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4172 //
4173 // error 0.0049451742, which is more than 7 bits
4174 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4175 getF32Constant(DAG, 0xbeb08fe0));
4176 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4177 getF32Constant(DAG, 0x40019463));
4178 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4179 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4180 getF32Constant(DAG, 0x3fd6633d));
4181 } else if (LimitFloatPrecision <= 12) {
4182 // For floating-point precision of 12:
4183 //
4184 // Log2ofMantissa =
4185 // -2.51285454f +
4186 // (4.07009056f +
4187 // (-2.12067489f +
4188 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4189 //
4190 // error 0.0000876136000, which is better than 13 bits
4191 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4192 getF32Constant(DAG, 0xbda7262e));
4193 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4194 getF32Constant(DAG, 0x3f25280b));
4195 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4196 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4197 getF32Constant(DAG, 0x4007b923));
4198 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4199 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4200 getF32Constant(DAG, 0x40823e2f));
4201 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4202 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4203 getF32Constant(DAG, 0x4020d29c));
4204 } else { // LimitFloatPrecision <= 18
4205 // For floating-point precision of 18:
4206 //
4207 // Log2ofMantissa =
4208 // -3.0400495f +
4209 // (6.1129976f +
4210 // (-5.3420409f +
4211 // (3.2865683f +
4212 // (-1.2669343f +
4213 // (0.27515199f -
4214 // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4215 //
4216 // error 0.0000018516, which is better than 18 bits
4217 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4218 getF32Constant(DAG, 0xbcd2769e));
4219 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4220 getF32Constant(DAG, 0x3e8ce0b9));
4221 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4222 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4223 getF32Constant(DAG, 0x3fa22ae7));
4224 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4225 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4226 getF32Constant(DAG, 0x40525723));
4227 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4228 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4229 getF32Constant(DAG, 0x40aaf200));
4230 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4231 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4232 getF32Constant(DAG, 0x40c39dad));
4233 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4234 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4235 getF32Constant(DAG, 0x4042902c));
4236 }
4237
4238 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4239 }
4240
4241 // No special expansion.
4242 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4243}
4244
4245/// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4246/// limited-precision mode.
4247static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4248 const TargetLowering &TLI) {
4249 if (Op.getValueType() == MVT::f32 &&
4250 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4251 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4252
4253 // Scale the exponent by log10(2) [0.30102999f].
4254 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4255 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4256 getF32Constant(DAG, 0x3e9a209a));
4257
4258 // Get the significand and build it into a floating-point number with
4259 // exponent of 1.
4260 SDValue X = GetSignificand(DAG, Op1, dl);
4261
4262 SDValue Log10ofMantissa;
4263 if (LimitFloatPrecision <= 6) {
4264 // For floating-point precision of 6:
4265 //
4266 // Log10ofMantissa =
4267 // -0.50419619f +
4268 // (0.60948995f - 0.10380950f * x) * x;
4269 //
4270 // error 0.0014886165, which is 6 bits
4271 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4272 getF32Constant(DAG, 0xbdd49a13));
4273 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4274 getF32Constant(DAG, 0x3f1c0789));
4275 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4276 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4277 getF32Constant(DAG, 0x3f011300));
4278 } else if (LimitFloatPrecision <= 12) {
4279 // For floating-point precision of 12:
4280 //
4281 // Log10ofMantissa =
4282 // -0.64831180f +
4283 // (0.91751397f +
4284 // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4285 //
4286 // error 0.00019228036, which is better than 12 bits
4287 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4288 getF32Constant(DAG, 0x3d431f31));
4289 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4290 getF32Constant(DAG, 0x3ea21fb2));
4291 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4292 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4293 getF32Constant(DAG, 0x3f6ae232));
4294 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4295 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4296 getF32Constant(DAG, 0x3f25f7c3));
4297 } else { // LimitFloatPrecision <= 18
4298 // For floating-point precision of 18:
4299 //
4300 // Log10ofMantissa =
4301 // -0.84299375f +
4302 // (1.5327582f +
4303 // (-1.0688956f +
4304 // (0.49102474f +
4305 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4306 //
4307 // error 0.0000037995730, which is better than 18 bits
4308 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4309 getF32Constant(DAG, 0x3c5d51ce));
4310 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4311 getF32Constant(DAG, 0x3e00685a));
4312 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4313 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4314 getF32Constant(DAG, 0x3efb6798));
4315 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4316 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4317 getF32Constant(DAG, 0x3f88d192));
4318 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4319 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4320 getF32Constant(DAG, 0x3fc4316c));
4321 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4322 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4323 getF32Constant(DAG, 0x3f57ce70));
4324 }
4325
4326 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4327 }
4328
4329 // No special expansion.
4330 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4331}
4332
4333/// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4334/// limited-precision mode.
4335static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4336 const TargetLowering &TLI) {
4337 if (Op.getValueType() == MVT::f32 &&
4338 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4339 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4340
4341 // FractionalPartOfX = x - (float)IntegerPartOfX;
4342 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4343 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4344
4345 // IntegerPartOfX <<= 23;
4346 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4347 DAG.getConstant(23, TLI.getPointerTy()));
4348
4349 SDValue TwoToFractionalPartOfX;
4350 if (LimitFloatPrecision <= 6) {
4351 // For floating-point precision of 6:
4352 //
4353 // TwoToFractionalPartOfX =
4354 // 0.997535578f +
4355 // (0.735607626f + 0.252464424f * x) * x;
4356 //
4357 // error 0.0144103317, which is 6 bits
4358 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4359 getF32Constant(DAG, 0x3e814304));
4360 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4361 getF32Constant(DAG, 0x3f3c50c8));
4362 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4363 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4364 getF32Constant(DAG, 0x3f7f5e7e));
4365 } else if (LimitFloatPrecision <= 12) {
4366 // For floating-point precision of 12:
4367 //
4368 // TwoToFractionalPartOfX =
4369 // 0.999892986f +
4370 // (0.696457318f +
4371 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
4372 //
4373 // error 0.000107046256, which is 13 to 14 bits
4374 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4375 getF32Constant(DAG, 0x3da235e3));
4376 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4377 getF32Constant(DAG, 0x3e65b8f3));
4378 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4379 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4380 getF32Constant(DAG, 0x3f324b07));
4381 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4382 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4383 getF32Constant(DAG, 0x3f7ff8fd));
4384 } else { // LimitFloatPrecision <= 18
4385 // For floating-point precision of 18:
4386 //
4387 // TwoToFractionalPartOfX =
4388 // 0.999999982f +
4389 // (0.693148872f +
4390 // (0.240227044f +
4391 // (0.554906021e-1f +
4392 // (0.961591928e-2f +
4393 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4394 // error 2.47208000*10^(-7), which is better than 18 bits
4395 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4396 getF32Constant(DAG, 0x3924b03e));
4397 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4398 getF32Constant(DAG, 0x3ab24b87));
4399 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4400 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4401 getF32Constant(DAG, 0x3c1d8c17));
4402 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4403 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4404 getF32Constant(DAG, 0x3d634a1d));
4405 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4406 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4407 getF32Constant(DAG, 0x3e75fe14));
4408 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4409 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4410 getF32Constant(DAG, 0x3f317234));
4411 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4412 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4413 getF32Constant(DAG, 0x3f800000));
4414 }
4415
4416 // Add the exponent into the result in integer domain.
4417 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4418 TwoToFractionalPartOfX);
4419 return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4420 DAG.getNode(ISD::ADD, dl, MVT::i32,
4421 t13, IntegerPartOfX));
4422 }
4423
4424 // No special expansion.
4425 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4426}
4427
4428/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4429/// limited-precision mode with x == 10.0f.
4430static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
4431 SelectionDAG &DAG, const TargetLowering &TLI) {
4432 bool IsExp10 = false;
4433 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4434 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4435 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4436 APFloat Ten(10.0f);
4437 IsExp10 = LHSC->isExactlyValue(Ten);
4438 }
4439 }
4440
4441 if (IsExp10) {
4442 // Put the exponent in the right bit position for later addition to the
4443 // final result:
4444 //
4445 // #define LOG2OF10 3.3219281f
4446 // IntegerPartOfX = (int32_t)(x * LOG2OF10);
4447 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4448 getF32Constant(DAG, 0x40549a78));
4449 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4450
4451 // FractionalPartOfX = x - (float)IntegerPartOfX;
4452 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4453 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4454
4455 // IntegerPartOfX <<= 23;
4456 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4457 DAG.getConstant(23, TLI.getPointerTy()));
4458
4459 SDValue TwoToFractionalPartOfX;
4460 if (LimitFloatPrecision <= 6) {
4461 // For floating-point precision of 6:
4462 //
4463 // twoToFractionalPartOfX =
4464 // 0.997535578f +
4465 // (0.735607626f + 0.252464424f * x) * x;
4466 //
4467 // error 0.0144103317, which is 6 bits
4468 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4469 getF32Constant(DAG, 0x3e814304));
4470 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4471 getF32Constant(DAG, 0x3f3c50c8));
4472 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4473 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4474 getF32Constant(DAG, 0x3f7f5e7e));
4475 } else if (LimitFloatPrecision <= 12) {
4476 // For floating-point precision of 12:
4477 //
4478 // TwoToFractionalPartOfX =
4479 // 0.999892986f +
4480 // (0.696457318f +
4481 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
4482 //
4483 // error 0.000107046256, which is 13 to 14 bits
4484 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4485 getF32Constant(DAG, 0x3da235e3));
4486 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4487 getF32Constant(DAG, 0x3e65b8f3));
4488 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4489 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4490 getF32Constant(DAG, 0x3f324b07));
4491 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4492 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4493 getF32Constant(DAG, 0x3f7ff8fd));
4494 } else { // LimitFloatPrecision <= 18
4495 // For floating-point precision of 18:
4496 //
4497 // TwoToFractionalPartOfX =
4498 // 0.999999982f +
4499 // (0.693148872f +
4500 // (0.240227044f +
4501 // (0.554906021e-1f +
4502 // (0.961591928e-2f +
4503 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4504 // error 2.47208000*10^(-7), which is better than 18 bits
4505 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4506 getF32Constant(DAG, 0x3924b03e));
4507 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4508 getF32Constant(DAG, 0x3ab24b87));
4509 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4510 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4511 getF32Constant(DAG, 0x3c1d8c17));
4512 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4513 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4514 getF32Constant(DAG, 0x3d634a1d));
4515 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4516 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4517 getF32Constant(DAG, 0x3e75fe14));
4518 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4519 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4520 getF32Constant(DAG, 0x3f317234));
4521 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4522 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4523 getF32Constant(DAG, 0x3f800000));
4524 }
4525
4526 SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX);
4527 return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4528 DAG.getNode(ISD::ADD, dl, MVT::i32,
4529 t13, IntegerPartOfX));
4530 }
4531
4532 // No special expansion.
4533 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4534}
4535
4536
4537/// ExpandPowI - Expand a llvm.powi intrinsic.
4538static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
4539 SelectionDAG &DAG) {
4540 // If RHS is a constant, we can expand this out to a multiplication tree,
4541 // otherwise we end up lowering to a call to __powidf2 (for example). When
4542 // optimizing for size, we only want to do this if the expansion would produce
4543 // a small number of multiplies, otherwise we do the full expansion.
4544 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4545 // Get the exponent as a positive value.
4546 unsigned Val = RHSC->getSExtValue();
4547 if ((int)Val < 0) Val = -Val;
4548
4549 // powi(x, 0) -> 1.0
4550 if (Val == 0)
4551 return DAG.getConstantFP(1.0, LHS.getValueType());
4552
4553 const Function *F = DAG.getMachineFunction().getFunction();
4554 if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
4555 Attribute::OptimizeForSize) ||
4556 // If optimizing for size, don't insert too many multiplies. This
4557 // inserts up to 5 multiplies.
4558 CountPopulation_32(Val)+Log2_32(Val) < 7) {
4559 // We use the simple binary decomposition method to generate the multiply
4560 // sequence. There are more optimal ways to do this (for example,
4561 // powi(x,15) generates one more multiply than it should), but this has
4562 // the benefit of being both really simple and much better than a libcall.
4563 SDValue Res; // Logically starts equal to 1.0
4564 SDValue CurSquare = LHS;
4565 while (Val) {
4566 if (Val & 1) {
4567 if (Res.getNode())
4568 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4569 else
4570 Res = CurSquare; // 1.0*CurSquare.
4571 }
4572
4573 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4574 CurSquare, CurSquare);
4575 Val >>= 1;
4576 }
4577
4578 // If the original was negative, invert the result, producing 1/(x*x*x).
4579 if (RHSC->getSExtValue() < 0)
4580 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4581 DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4582 return Res;
4583 }
4584 }
4585
4586 // Otherwise, expand to a libcall.
4587 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4588}
4589
4590// getTruncatedArgReg - Find underlying register used for an truncated
4591// argument.
4592static unsigned getTruncatedArgReg(const SDValue &N) {
4593 if (N.getOpcode() != ISD::TRUNCATE)
4594 return 0;
4595
4596 const SDValue &Ext = N.getOperand(0);
4597 if (Ext.getOpcode() == ISD::AssertZext ||
4598 Ext.getOpcode() == ISD::AssertSext) {
4599 const SDValue &CFR = Ext.getOperand(0);
4600 if (CFR.getOpcode() == ISD::CopyFromReg)
4601 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4602 if (CFR.getOpcode() == ISD::TRUNCATE)
4603 return getTruncatedArgReg(CFR);
4604 }
4605 return 0;
4606}
4607
4608/// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4609/// argument, create the corresponding DBG_VALUE machine instruction for it now.
4610/// At the end of instruction selection, they will be inserted to the entry BB.
4611bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V,
4612 MDNode *Variable,
4613 MDNode *Expr, int64_t Offset,
4614 bool IsIndirect,
4615 const SDValue &N) {
4616 const Argument *Arg = dyn_cast<Argument>(V);
4617 if (!Arg)
4618 return false;
4619
4620 MachineFunction &MF = DAG.getMachineFunction();
4621 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4622
4623 // Ignore inlined function arguments here.
4624 DIVariable DV(Variable);
4625 if (DV.isInlinedFnArgument(MF.getFunction()))
4626 return false;
4627
4628 Optional<MachineOperand> Op;
4629 // Some arguments' frame index is recorded during argument lowering.
4630 if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4631 Op = MachineOperand::CreateFI(FI);
4632
4633 if (!Op && N.getNode()) {
4634 unsigned Reg;
4635 if (N.getOpcode() == ISD::CopyFromReg)
4636 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4637 else
4638 Reg = getTruncatedArgReg(N);
4639 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4640 MachineRegisterInfo &RegInfo = MF.getRegInfo();
4641 unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4642 if (PR)
4643 Reg = PR;
4644 }
4645 if (Reg)
4646 Op = MachineOperand::CreateReg(Reg, false);
4647 }
4648
4649 if (!Op) {
4650 // Check if ValueMap has reg number.
4651 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4652 if (VMI != FuncInfo.ValueMap.end())
4653 Op = MachineOperand::CreateReg(VMI->second, false);
4654 }
4655
4656 if (!Op && N.getNode())
4657 // Check if frame index is available.
4658 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4659 if (FrameIndexSDNode *FINode =
4660 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4661 Op = MachineOperand::CreateFI(FINode->getIndex());
4662
4663 if (!Op)
4664 return false;
4665
4666 if (Op->isReg())
4667 FuncInfo.ArgDbgValues.push_back(
4668 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE),
4669 IsIndirect, Op->getReg(), Offset, Variable, Expr));
4670 else
4671 FuncInfo.ArgDbgValues.push_back(
4672 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE))
4673 .addOperand(*Op)
4674 .addImm(Offset)
4675 .addMetadata(Variable)
4676 .addMetadata(Expr));
4677
4678 return true;
4679}
4680
4681// VisualStudio defines setjmp as _setjmp
4682#if defined(_MSC_VER) && defined(setjmp) && \
4683 !defined(setjmp_undefined_for_msvc)
4684# pragma push_macro("setjmp")
4685# undef setjmp
4686# define setjmp_undefined_for_msvc
4687#endif
4688
4689/// visitIntrinsicCall - Lower the call to the specified intrinsic function. If
4690/// we want to emit this as a call to a named external function, return the name
4691/// otherwise lower it and return null.
4692const char *
4693SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4694 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4695 SDLoc sdl = getCurSDLoc();
4696 DebugLoc dl = getCurDebugLoc();
4697 SDValue Res;
4698
4699 switch (Intrinsic) {
4700 default:
4701 // By default, turn this into a target intrinsic node.
4702 visitTargetIntrinsic(I, Intrinsic);
4703 return nullptr;
4704 case Intrinsic::vastart: visitVAStart(I); return nullptr;
4705 case Intrinsic::vaend: visitVAEnd(I); return nullptr;
4706 case Intrinsic::vacopy: visitVACopy(I); return nullptr;
4707 case Intrinsic::returnaddress:
4708 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(),
4709 getValue(I.getArgOperand(0))));
4710 return nullptr;
4711 case Intrinsic::frameaddress:
4712 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(),
4713 getValue(I.getArgOperand(0))));
4714 return nullptr;
4715 case Intrinsic::read_register: {
4716 Value *Reg = I.getArgOperand(0);
4717 SDValue RegName =
4718 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4719 EVT VT = TLI.getValueType(I.getType());
4720 setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName));
4721 return nullptr;
4722 }
4723 case Intrinsic::write_register: {
4724 Value *Reg = I.getArgOperand(0);
4725 Value *RegValue = I.getArgOperand(1);
4726 SDValue Chain = getValue(RegValue).getOperand(0);
4727 SDValue RegName =
4728 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4729 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
4730 RegName, getValue(RegValue)));
4731 return nullptr;
4732 }
4733 case Intrinsic::setjmp:
4734 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4735 case Intrinsic::longjmp:
4736 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4737 case Intrinsic::memcpy: {
4738 // Assert for address < 256 since we support only user defined address
4739 // spaces.
4740 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()((cast<PointerType>(I.getArgOperand(0)->getType())->
getAddressSpace() < 256 && cast<PointerType>
(I.getArgOperand(1)->getType())->getAddressSpace() <
256 && "Unknown address space") ? static_cast<void
> (0) : __assert_fail ("cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() < 256 && cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() < 256 && \"Unknown address space\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 4744, __PRETTY_FUNCTION__))
4741 < 256 &&((cast<PointerType>(I.getArgOperand(0)->getType())->
getAddressSpace() < 256 && cast<PointerType>
(I.getArgOperand(1)->getType())->getAddressSpace() <
256 && "Unknown address space") ? static_cast<void
> (0) : __assert_fail ("cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() < 256 && cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() < 256 && \"Unknown address space\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 4744, __PRETTY_FUNCTION__))
4742 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()((cast<PointerType>(I.getArgOperand(0)->getType())->
getAddressSpace() < 256 && cast<PointerType>
(I.getArgOperand(1)->getType())->getAddressSpace() <
256 && "Unknown address space") ? static_cast<void
> (0) : __assert_fail ("cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() < 256 && cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() < 256 && \"Unknown address space\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 4744, __PRETTY_FUNCTION__))
4743 < 256 &&((cast<PointerType>(I.getArgOperand(0)->getType())->
getAddressSpace() < 256 && cast<PointerType>
(I.getArgOperand(1)->getType())->getAddressSpace() <
256 && "Unknown address space") ? static_cast<void
> (0) : __assert_fail ("cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() < 256 && cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() < 256 && \"Unknown address space\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 4744, __PRETTY_FUNCTION__))
4744 "Unknown address space")((cast<PointerType>(I.getArgOperand(0)->getType())->
getAddressSpace() < 256 && cast<PointerType>
(I.getArgOperand(1)->getType())->getAddressSpace() <
256 && "Unknown address space") ? static_cast<void
> (0) : __assert_fail ("cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() < 256 && cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() < 256 && \"Unknown address space\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 4744, __PRETTY_FUNCTION__))
;
4745 SDValue Op1 = getValue(I.getArgOperand(0));
4746 SDValue Op2 = getValue(I.getArgOperand(1));
4747 SDValue Op3 = getValue(I.getArgOperand(2));
4748 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4749 if (!Align)
4750 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4751 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4752 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false,
4753 MachinePointerInfo(I.getArgOperand(0)),
4754 MachinePointerInfo(I.getArgOperand(1))));
4755 return nullptr;
4756 }
4757 case Intrinsic::memset: {
4758 // Assert for address < 256 since we support only user defined address
4759 // spaces.
4760 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()((cast<PointerType>(I.getArgOperand(0)->getType())->
getAddressSpace() < 256 && "Unknown address space"
) ? static_cast<void> (0) : __assert_fail ("cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() < 256 && \"Unknown address space\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 4762, __PRETTY_FUNCTION__))
4761 < 256 &&((cast<PointerType>(I.getArgOperand(0)->getType())->
getAddressSpace() < 256 && "Unknown address space"
) ? static_cast<void> (0) : __assert_fail ("cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() < 256 && \"Unknown address space\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 4762, __PRETTY_FUNCTION__))
4762 "Unknown address space")((cast<PointerType>(I.getArgOperand(0)->getType())->
getAddressSpace() < 256 && "Unknown address space"
) ? static_cast<void> (0) : __assert_fail ("cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() < 256 && \"Unknown address space\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 4762, __PRETTY_FUNCTION__))
;
4763 SDValue Op1 = getValue(I.getArgOperand(0));
4764 SDValue Op2 = getValue(I.getArgOperand(1));
4765 SDValue Op3 = getValue(I.getArgOperand(2));
4766 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4767 if (!Align)
4768 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4769 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4770 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4771 MachinePointerInfo(I.getArgOperand(0))));
4772 return nullptr;
4773 }
4774 case Intrinsic::memmove: {
4775 // Assert for address < 256 since we support only user defined address
4776 // spaces.
4777 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()((cast<PointerType>(I.getArgOperand(0)->getType())->
getAddressSpace() < 256 && cast<PointerType>
(I.getArgOperand(1)->getType())->getAddressSpace() <
256 && "Unknown address space") ? static_cast<void
> (0) : __assert_fail ("cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() < 256 && cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() < 256 && \"Unknown address space\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 4781, __PRETTY_FUNCTION__))
4778 < 256 &&((cast<PointerType>(I.getArgOperand(0)->getType())->
getAddressSpace() < 256 && cast<PointerType>
(I.getArgOperand(1)->getType())->getAddressSpace() <
256 && "Unknown address space") ? static_cast<void
> (0) : __assert_fail ("cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() < 256 && cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() < 256 && \"Unknown address space\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 4781, __PRETTY_FUNCTION__))
4779 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()((cast<PointerType>(I.getArgOperand(0)->getType())->
getAddressSpace() < 256 && cast<PointerType>
(I.getArgOperand(1)->getType())->getAddressSpace() <
256 && "Unknown address space") ? static_cast<void
> (0) : __assert_fail ("cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() < 256 && cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() < 256 && \"Unknown address space\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 4781, __PRETTY_FUNCTION__))
4780 < 256 &&((cast<PointerType>(I.getArgOperand(0)->getType())->
getAddressSpace() < 256 && cast<PointerType>
(I.getArgOperand(1)->getType())->getAddressSpace() <
256 && "Unknown address space") ? static_cast<void
> (0) : __assert_fail ("cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() < 256 && cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() < 256 && \"Unknown address space\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 4781, __PRETTY_FUNCTION__))
4781 "Unknown address space")((cast<PointerType>(I.getArgOperand(0)->getType())->
getAddressSpace() < 256 && cast<PointerType>
(I.getArgOperand(1)->getType())->getAddressSpace() <
256 && "Unknown address space") ? static_cast<void
> (0) : __assert_fail ("cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() < 256 && cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() < 256 && \"Unknown address space\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 4781, __PRETTY_FUNCTION__))
;
4782 SDValue Op1 = getValue(I.getArgOperand(0));
4783 SDValue Op2 = getValue(I.getArgOperand(1));
4784 SDValue Op3 = getValue(I.getArgOperand(2));
4785 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4786 if (!Align)
4787 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4788 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4789 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4790 MachinePointerInfo(I.getArgOperand(0)),
4791 MachinePointerInfo(I.getArgOperand(1))));
4792 return nullptr;
4793 }
4794 case Intrinsic::dbg_declare: {
4795 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4796 MDNode *Variable = DI.getVariable();
4797 MDNode *Expression = DI.getExpression();
4798 const Value *Address = DI.getAddress();
4799 DIVariable DIVar(Variable);
4800 assert((!DIVar || DIVar.isVariable()) &&(((!DIVar || DIVar.isVariable()) && "Variable in DbgDeclareInst should be either null or a DIVariable."
) ? static_cast<void> (0) : __assert_fail ("(!DIVar || DIVar.isVariable()) && \"Variable in DbgDeclareInst should be either null or a DIVariable.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 4801, __PRETTY_FUNCTION__))
4801 "Variable in DbgDeclareInst should be either null or a DIVariable.")(((!DIVar || DIVar.isVariable()) && "Variable in DbgDeclareInst should be either null or a DIVariable."
) ? static_cast<void> (0) : __assert_fail ("(!DIVar || DIVar.isVariable()) && \"Variable in DbgDeclareInst should be either null or a DIVariable.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 4801, __PRETTY_FUNCTION__))
;
4802 if (!Address || !DIVar) {
4803 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() << "Dropping debug info for " <<
DI << "\n"; } } while (0)
;
4804 return nullptr;
4805 }
4806
4807 // Check if address has undef value.
4808 if (isa<UndefValue>(Address) ||
4809 (Address->use_empty() && !isa<Argument>(Address))) {
4810 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() << "Dropping debug info for " <<
DI << "\n"; } } while (0)
;
4811 return nullptr;
4812 }
4813
4814 SDValue &N = NodeMap[Address];
4815 if (!N.getNode() && isa<Argument>(Address))
4816 // Check unused arguments map.
4817 N = UnusedArgNodeMap[Address];
4818 SDDbgValue *SDV;
4819 if (N.getNode()) {
4820 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4821 Address = BCI->getOperand(0);
4822 // Parameters are handled specially.
4823 bool isParameter =
4824 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
4825 isa<Argument>(Address));
4826
4827 const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4828
4829 if (isParameter && !AI) {
4830 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4831 if (FINode)
4832 // Byval parameter. We have a frame index at this point.
4833 SDV = DAG.getFrameIndexDbgValue(
4834 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder);
4835 else {
4836 // Address is an argument, so try to emit its dbg value using
4837 // virtual register info from the FuncInfo.ValueMap.
4838 EmitFuncArgumentDbgValue(Address, Variable, Expression, 0, false, N);
4839 return nullptr;
4840 }
4841 } else if (AI)
4842 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4843 true, 0, dl, SDNodeOrder);
4844 else {
4845 // Can't do anything with other non-AI cases yet.
4846 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() << "Dropping debug info for " <<
DI << "\n"; } } while (0)
;
4847 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() << "non-AllocaInst issue for Address: \n\t"
; } } while (0)
;
4848 DEBUG(Address->dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { Address->dump(); } } while (0)
;
4849 return nullptr;
4850 }
4851 DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4852 } else {
4853 // If Address is an argument then try to emit its dbg value using
4854 // virtual register info from the FuncInfo.ValueMap.
4855 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, 0, false,
4856 N)) {
4857 // If variable is pinned by a alloca in dominating bb then
4858 // use StaticAllocaMap.
4859 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4860 if (AI->getParent() != DI.getParent()) {
4861 DenseMap<const AllocaInst*, int>::iterator SI =
4862 FuncInfo.StaticAllocaMap.find(AI);
4863 if (SI != FuncInfo.StaticAllocaMap.end()) {
4864 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second,
4865 0, dl, SDNodeOrder);
4866 DAG.AddDbgValue(SDV, nullptr, false);
4867 return nullptr;
4868 }
4869 }
4870 }
4871 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() << "Dropping debug info for " <<
DI << "\n"; } } while (0)
;
4872 }
4873 }
4874 return nullptr;
4875 }
4876 case Intrinsic::dbg_value: {
4877 const DbgValueInst &DI = cast<DbgValueInst>(I);
4878 DIVariable DIVar(DI.getVariable());
4879 assert((!DIVar || DIVar.isVariable()) &&(((!DIVar || DIVar.isVariable()) && "Variable in DbgValueInst should be either null or a DIVariable."
) ? static_cast<void> (0) : __assert_fail ("(!DIVar || DIVar.isVariable()) && \"Variable in DbgValueInst should be either null or a DIVariable.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 4880, __PRETTY_FUNCTION__))
4880 "Variable in DbgValueInst should be either null or a DIVariable.")(((!DIVar || DIVar.isVariable()) && "Variable in DbgValueInst should be either null or a DIVariable."
) ? static_cast<void> (0) : __assert_fail ("(!DIVar || DIVar.isVariable()) && \"Variable in DbgValueInst should be either null or a DIVariable.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 4880, __PRETTY_FUNCTION__))
;
4881 if (!DIVar)
4882 return nullptr;
4883
4884 MDNode *Variable = DI.getVariable();
4885 MDNode *Expression = DI.getExpression();
4886 uint64_t Offset = DI.getOffset();
4887 const Value *V = DI.getValue();
4888 if (!V)
4889 return nullptr;
4890
4891 SDDbgValue *SDV;
4892 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4893 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl,
4894 SDNodeOrder);
4895 DAG.AddDbgValue(SDV, nullptr, false);
4896 } else {
4897 // Do not use getValue() in here; we don't want to generate code at
4898 // this point if it hasn't been done yet.
4899 SDValue N = NodeMap[V];
4900 if (!N.getNode() && isa<Argument>(V))
4901 // Check unused arguments map.
4902 N = UnusedArgNodeMap[V];
4903 if (N.getNode()) {
4904 // A dbg.value for an alloca is always indirect.
4905 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0;
4906 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, Offset,
4907 IsIndirect, N)) {
4908 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4909 IsIndirect, Offset, dl, SDNodeOrder);
4910 DAG.AddDbgValue(SDV, N.getNode(), false);
4911 }
4912 } else if (!V->use_empty() ) {
4913 // Do not call getValue(V) yet, as we don't want to generate code.
4914 // Remember it for later.
4915 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4916 DanglingDebugInfoMap[V] = DDI;
4917 } else {
4918 // We may expand this to cover more cases. One case where we have no
4919 // data available is an unreferenced parameter.
4920 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() << "Dropping debug info for " <<
DI << "\n"; } } while (0)
;
4921 }
4922 }
4923
4924 // Build a debug info table entry.
4925 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4926 V = BCI->getOperand(0);
4927 const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4928 // Don't handle byval struct arguments or VLAs, for example.
4929 if (!AI) {
4930 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() << "Dropping debug location info for:\n "
<< DI << "\n"; } } while (0)
;
4931 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() << " Last seen at:\n " << *
V << "\n"; } } while (0)
;
4932 return nullptr;
4933 }
4934 DenseMap<const AllocaInst*, int>::iterator SI =
4935 FuncInfo.StaticAllocaMap.find(AI);
4936 if (SI == FuncInfo.StaticAllocaMap.end())
4937 return nullptr; // VLAs.
4938 return nullptr;
4939 }
4940
4941 case Intrinsic::eh_typeid_for: {
4942 // Find the type id for the given typeinfo.
4943 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
4944 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4945 Res = DAG.getConstant(TypeID, MVT::i32);
4946 setValue(&I, Res);
4947 return nullptr;
4948 }
4949
4950 case Intrinsic::eh_return_i32:
4951 case Intrinsic::eh_return_i64:
4952 DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4953 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
4954 MVT::Other,
4955 getControlRoot(),
4956 getValue(I.getArgOperand(0)),
4957 getValue(I.getArgOperand(1))));
4958 return nullptr;
4959 case Intrinsic::eh_unwind_init:
4960 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4961 return nullptr;
4962 case Intrinsic::eh_dwarf_cfa: {
4963 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
4964 TLI.getPointerTy());
4965 SDValue Offset = DAG.getNode(ISD::ADD, sdl,
4966 CfaArg.getValueType(),
4967 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
4968 CfaArg.getValueType()),
4969 CfaArg);
4970 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(),
4971 DAG.getConstant(0, TLI.getPointerTy()));
4972 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
4973 FA, Offset));
4974 return nullptr;
4975 }
4976 case Intrinsic::eh_sjlj_callsite: {
4977 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4978 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4979 assert(CI && "Non-constant call site value in eh.sjlj.callsite!")((CI && "Non-constant call site value in eh.sjlj.callsite!"
) ? static_cast<void> (0) : __assert_fail ("CI && \"Non-constant call site value in eh.sjlj.callsite!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 4979, __PRETTY_FUNCTION__))
;
4980 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!")((MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"
) ? static_cast<void> (0) : __assert_fail ("MMI.getCurrentCallSite() == 0 && \"Overlapping call sites!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 4980, __PRETTY_FUNCTION__))
;
4981
4982 MMI.setCurrentCallSite(CI->getZExtValue());
4983 return nullptr;
4984 }
4985 case Intrinsic::eh_sjlj_functioncontext: {
4986 // Get and store the index of the function context.
4987 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4988 AllocaInst *FnCtx =
4989 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4990 int FI = FuncInfo.StaticAllocaMap[FnCtx];
4991 MFI->setFunctionContextIndex(FI);
4992 return nullptr;
4993 }
4994 case Intrinsic::eh_sjlj_setjmp: {
4995 SDValue Ops[2];
4996 Ops[0] = getRoot();
4997 Ops[1] = getValue(I.getArgOperand(0));
4998 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
4999 DAG.getVTList(MVT::i32, MVT::Other), Ops);
5000 setValue(&I, Op.getValue(0));
5001 DAG.setRoot(Op.getValue(1));
5002 return nullptr;
5003 }
5004 case Intrinsic::eh_sjlj_longjmp: {
5005 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5006 getRoot(), getValue(I.getArgOperand(0))));
5007 return nullptr;
5008 }
5009
5010 case Intrinsic::masked_load:
5011 visitMaskedLoad(I);
5012 return nullptr;
5013 case Intrinsic::masked_store:
5014 visitMaskedStore(I);
5015 return nullptr;
5016 case Intrinsic::x86_mmx_pslli_w:
5017 case Intrinsic::x86_mmx_pslli_d:
5018 case Intrinsic::x86_mmx_pslli_q:
5019 case Intrinsic::x86_mmx_psrli_w:
5020 case Intrinsic::x86_mmx_psrli_d:
5021 case Intrinsic::x86_mmx_psrli_q:
5022 case Intrinsic::x86_mmx_psrai_w:
5023 case Intrinsic::x86_mmx_psrai_d: {
5024 SDValue ShAmt = getValue(I.getArgOperand(1));
5025 if (isa<ConstantSDNode>(ShAmt)) {
5026 visitTargetIntrinsic(I, Intrinsic);
5027 return nullptr;
5028 }
5029 unsigned NewIntrinsic = 0;
5030 EVT ShAmtVT = MVT::v2i32;
5031 switch (Intrinsic) {
5032 case Intrinsic::x86_mmx_pslli_w:
5033 NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5034 break;
5035 case Intrinsic::x86_mmx_pslli_d:
5036 NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5037 break;
5038 case Intrinsic::x86_mmx_pslli_q:
5039 NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5040 break;
5041 case Intrinsic::x86_mmx_psrli_w:
5042 NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5043 break;
5044 case Intrinsic::x86_mmx_psrli_d:
5045 NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5046 break;
5047 case Intrinsic::x86_mmx_psrli_q:
5048 NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5049 break;
5050 case Intrinsic::x86_mmx_psrai_w:
5051 NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5052 break;
5053 case Intrinsic::x86_mmx_psrai_d:
5054 NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5055 break;
5056 default: llvm_unreachable("Impossible intrinsic")::llvm::llvm_unreachable_internal("Impossible intrinsic", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 5056)
; // Can't reach here.
5057 }
5058
5059 // The vector shift intrinsics with scalars uses 32b shift amounts but
5060 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5061 // to be zero.
5062 // We must do this early because v2i32 is not a legal type.
5063 SDValue ShOps[2];
5064 ShOps[0] = ShAmt;
5065 ShOps[1] = DAG.getConstant(0, MVT::i32);
5066 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps);
5067 EVT DestVT = TLI.getValueType(I.getType());
5068 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5069 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5070 DAG.getConstant(NewIntrinsic, MVT::i32),
5071 getValue(I.getArgOperand(0)), ShAmt);
5072 setValue(&I, Res);
5073 return nullptr;
5074 }
5075 case Intrinsic::x86_avx_vinsertf128_pd_256:
5076 case Intrinsic::x86_avx_vinsertf128_ps_256:
5077 case Intrinsic::x86_avx_vinsertf128_si_256:
5078 case Intrinsic::x86_avx2_vinserti128: {
5079 EVT DestVT = TLI.getValueType(I.getType());
5080 EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType());
5081 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
5082 ElVT.getVectorNumElements();
5083 Res =
5084 DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT,
5085 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
5086 DAG.getConstant(Idx, TLI.getVectorIdxTy()));
5087 setValue(&I, Res);
5088 return nullptr;
5089 }
5090 case Intrinsic::x86_avx_vextractf128_pd_256:
5091 case Intrinsic::x86_avx_vextractf128_ps_256:
5092 case Intrinsic::x86_avx_vextractf128_si_256:
5093 case Intrinsic::x86_avx2_vextracti128: {
5094 EVT DestVT = TLI.getValueType(I.getType());
5095 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) *
5096 DestVT.getVectorNumElements();
5097 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT,
5098 getValue(I.getArgOperand(0)),
5099 DAG.getConstant(Idx, TLI.getVectorIdxTy()));
5100 setValue(&I, Res);
5101 return nullptr;
5102 }
5103 case Intrinsic::convertff:
5104 case Intrinsic::convertfsi:
5105 case Intrinsic::convertfui:
5106 case Intrinsic::convertsif:
5107 case Intrinsic::convertuif:
5108 case Intrinsic::convertss:
5109 case Intrinsic::convertsu:
5110 case Intrinsic::convertus:
5111 case Intrinsic::convertuu: {
5112 ISD::CvtCode Code = ISD::CVT_INVALID;
5113 switch (Intrinsic) {
5114 default: llvm_unreachable("Impossible intrinsic")::llvm::llvm_unreachable_internal("Impossible intrinsic", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 5114)
; // Can't reach here.
5115 case Intrinsic::convertff: Code = ISD::CVT_FF; break;
5116 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
5117 case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
5118 case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
5119 case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
5120 case Intrinsic::convertss: Code = ISD::CVT_SS; break;
5121 case Intrinsic::convertsu: Code = ISD::CVT_SU; break;
5122 case Intrinsic::convertus: Code = ISD::CVT_US; break;
5123 case Intrinsic::convertuu: Code = ISD::CVT_UU; break;
5124 }
5125 EVT DestVT = TLI.getValueType(I.getType());
5126 const Value *Op1 = I.getArgOperand(0);
5127 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
5128 DAG.getValueType(DestVT),
5129 DAG.getValueType(getValue(Op1).getValueType()),
5130 getValue(I.getArgOperand(1)),
5131 getValue(I.getArgOperand(2)),
5132 Code);
5133 setValue(&I, Res);
5134 return nullptr;
5135 }
5136 case Intrinsic::powi:
5137 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5138 getValue(I.getArgOperand(1)), DAG));
5139 return nullptr;
5140 case Intrinsic::log:
5141 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5142 return nullptr;
5143 case Intrinsic::log2:
5144 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5145 return nullptr;
5146 case Intrinsic::log10:
5147 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5148 return nullptr;
5149 case Intrinsic::exp:
5150 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5151 return nullptr;
5152 case Intrinsic::exp2:
5153 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5154 return nullptr;
5155 case Intrinsic::pow:
5156 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5157 getValue(I.getArgOperand(1)), DAG, TLI));
5158 return nullptr;
5159 case Intrinsic::sqrt:
5160 case Intrinsic::fabs:
5161 case Intrinsic::sin:
5162 case Intrinsic::cos:
5163 case Intrinsic::floor:
5164 case Intrinsic::ceil:
5165 case Intrinsic::trunc:
5166 case Intrinsic::rint:
5167 case Intrinsic::nearbyint:
5168 case Intrinsic::round: {
5169 unsigned Opcode;
5170 switch (Intrinsic) {
5171 default: llvm_unreachable("Impossible intrinsic")::llvm::llvm_unreachable_internal("Impossible intrinsic", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 5171)
; // Can't reach here.
5172 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break;
5173 case Intrinsic::fabs: Opcode = ISD::FABS; break;
5174 case Intrinsic::sin: Opcode = ISD::FSIN; break;
5175 case Intrinsic::cos: Opcode = ISD::FCOS; break;
5176 case Intrinsic::floor: Opcode = ISD::FFLOOR; break;
5177 case Intrinsic::ceil: Opcode = ISD::FCEIL; break;
5178 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break;
5179 case Intrinsic::rint: Opcode = ISD::FRINT; break;
5180 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5181 case Intrinsic::round: Opcode = ISD::FROUND; break;
5182 }
5183
5184 setValue(&I, DAG.getNode(Opcode, sdl,
5185 getValue(I.getArgOperand(0)).getValueType(),
5186 getValue(I.getArgOperand(0))));
5187 return nullptr;
5188 }
5189 case Intrinsic::minnum:
5190 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
5191 getValue(I.getArgOperand(0)).getValueType(),
5192 getValue(I.getArgOperand(0)),
5193 getValue(I.getArgOperand(1))));
5194 return nullptr;
5195 case Intrinsic::maxnum:
5196 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
5197 getValue(I.getArgOperand(0)).getValueType(),
5198 getValue(I.getArgOperand(0)),
5199 getValue(I.getArgOperand(1))));
5200 return nullptr;
5201 case Intrinsic::copysign:
5202 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5203 getValue(I.getArgOperand(0)).getValueType(),
5204 getValue(I.getArgOperand(0)),
5205 getValue(I.getArgOperand(1))));
5206 return nullptr;
5207 case Intrinsic::fma:
5208 setValue(&I, DAG.getNode(ISD::FMA, sdl,
5209 getValue(I.getArgOperand(0)).getValueType(),
5210 getValue(I.getArgOperand(0)),
5211 getValue(I.getArgOperand(1)),
5212 getValue(I.getArgOperand(2))));
5213 return nullptr;
5214 case Intrinsic::fmuladd: {
5215 EVT VT = TLI.getValueType(I.getType());
5216 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5217 TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5218 setValue(&I, DAG.getNode(ISD::FMA, sdl,
5219 getValue(I.getArgOperand(0)).getValueType(),
5220 getValue(I.getArgOperand(0)),
5221 getValue(I.getArgOperand(1)),
5222 getValue(I.getArgOperand(2))));
5223 } else {
5224 SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5225 getValue(I.getArgOperand(0)).getValueType(),
5226 getValue(I.getArgOperand(0)),
5227 getValue(I.getArgOperand(1)));
5228 SDValue Add = DAG.getNode(ISD::FADD, sdl,
5229 getValue(I.getArgOperand(0)).getValueType(),
5230 Mul,
5231 getValue(I.getArgOperand(2)));
5232 setValue(&I, Add);
5233 }
5234 return nullptr;
5235 }
5236 case Intrinsic::convert_to_fp16:
5237 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5238 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5239 getValue(I.getArgOperand(0)),
5240 DAG.getTargetConstant(0, MVT::i32))));
5241 return nullptr;
5242 case Intrinsic::convert_from_fp16:
5243 setValue(&I,
5244 DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(I.getType()),
5245 DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5246 getValue(I.getArgOperand(0)))));
5247 return nullptr;
5248 case Intrinsic::pcmarker: {
5249 SDValue Tmp = getValue(I.getArgOperand(0));
5250 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5251 return nullptr;
5252 }
5253 case Intrinsic::readcyclecounter: {
5254 SDValue Op = getRoot();
5255 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5256 DAG.getVTList(MVT::i64, MVT::Other), Op);
5257 setValue(&I, Res);
5258 DAG.setRoot(Res.getValue(1));
5259 return nullptr;
5260 }
5261 case Intrinsic::bswap:
5262 setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5263 getValue(I.getArgOperand(0)).getValueType(),
5264 getValue(I.getArgOperand(0))));
5265 return nullptr;
5266 case Intrinsic::cttz: {
5267 SDValue Arg = getValue(I.getArgOperand(0));
5268 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5269 EVT Ty = Arg.getValueType();
5270 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5271 sdl, Ty, Arg));
5272 return nullptr;
5273 }
5274 case Intrinsic::ctlz: {
5275 SDValue Arg = getValue(I.getArgOperand(0));
5276 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5277 EVT Ty = Arg.getValueType();
5278 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5279 sdl, Ty, Arg));
5280 return nullptr;
5281 }
5282 case Intrinsic::ctpop: {
5283 SDValue Arg = getValue(I.getArgOperand(0));
5284 EVT Ty = Arg.getValueType();
5285 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5286 return nullptr;
5287 }
5288 case Intrinsic::stacksave: {
5289 SDValue Op = getRoot();
5290 Res = DAG.getNode(ISD::STACKSAVE, sdl,
5291 DAG.getVTList(TLI.getPointerTy(), MVT::Other), Op);
5292 setValue(&I, Res);
5293 DAG.setRoot(Res.getValue(1));
5294 return nullptr;
5295 }
5296 case Intrinsic::stackrestore: {
5297 Res = getValue(I.getArgOperand(0));
5298 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5299 return nullptr;
5300 }
5301 case Intrinsic::stackprotector: {
5302 // Emit code into the DAG to store the stack guard onto the stack.
5303 MachineFunction &MF = DAG.getMachineFunction();
5304 MachineFrameInfo *MFI = MF.getFrameInfo();
5305 EVT PtrTy = TLI.getPointerTy();
5306 SDValue Src, Chain = getRoot();
5307 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand();
5308 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr);
5309
5310 // See if Ptr is a bitcast. If it is, look through it and see if we can get
5311 // global variable __stack_chk_guard.
5312 if (!GV)
5313 if (const Operator *BC = dyn_cast<Operator>(Ptr))
5314 if (BC->getOpcode() == Instruction::BitCast)
5315 GV = dyn_cast<GlobalVariable>(BC->getOperand(0));
5316
5317 if (GV && TLI.useLoadStackGuardNode()) {
5318 // Emit a LOAD_STACK_GUARD node.
5319 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD,
5320 sdl, PtrTy, Chain);
5321 MachinePointerInfo MPInfo(GV);
5322 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
5323 unsigned Flags = MachineMemOperand::MOLoad |
5324 MachineMemOperand::MOInvariant;
5325 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags,
5326 PtrTy.getSizeInBits() / 8,
5327 DAG.getEVTAlignment(PtrTy));
5328 Node->setMemRefs(MemRefs, MemRefs + 1);
5329
5330 // Copy the guard value to a virtual register so that it can be
5331 // retrieved in the epilogue.
5332 Src = SDValue(Node, 0);
5333 const TargetRegisterClass *RC =
5334 TLI.getRegClassFor(Src.getSimpleValueType());
5335 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC);
5336
5337 SPDescriptor.setGuardReg(Reg);
5338 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src);
5339 } else {
5340 Src = getValue(I.getArgOperand(0)); // The guard's value.
5341 }
5342
5343 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5344
5345 int FI = FuncInfo.StaticAllocaMap[Slot];
5346 MFI->setStackProtectorIndex(FI);
5347
5348 SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5349
5350 // Store the stack protector onto the stack.
5351 Res = DAG.getStore(Chain, sdl, Src, FIN,
5352 MachinePointerInfo::getFixedStack(FI),
5353 true, false, 0);
5354 setValue(&I, Res);
5355 DAG.setRoot(Res);
5356 return nullptr;
5357 }
5358 case Intrinsic::objectsize: {
5359 // If we don't know by now, we're never going to know.
5360 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5361
5362 assert(CI && "Non-constant type in __builtin_object_size?")((CI && "Non-constant type in __builtin_object_size?"
) ? static_cast<void> (0) : __assert_fail ("CI && \"Non-constant type in __builtin_object_size?\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 5362, __PRETTY_FUNCTION__))
;
5363
5364 SDValue Arg = getValue(I.getCalledValue());
5365 EVT Ty = Arg.getValueType();
5366
5367 if (CI->isZero())
5368 Res = DAG.getConstant(-1ULL, Ty);
5369 else
5370 Res = DAG.getConstant(0, Ty);
5371
5372 setValue(&I, Res);
5373 return nullptr;
5374 }
5375 case Intrinsic::annotation:
5376 case Intrinsic::ptr_annotation:
5377 // Drop the intrinsic, but forward the value
5378 setValue(&I, getValue(I.getOperand(0)));
5379 return nullptr;
5380 case Intrinsic::assume:
5381 case Intrinsic::var_annotation:
5382 // Discard annotate attributes and assumptions
5383 return nullptr;
5384
5385 case Intrinsic::init_trampoline: {
5386 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5387
5388 SDValue Ops[6];
5389 Ops[0] = getRoot();
5390 Ops[1] = getValue(I.getArgOperand(0));
5391 Ops[2] = getValue(I.getArgOperand(1));
5392 Ops[3] = getValue(I.getArgOperand(2));
5393 Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5394 Ops[5] = DAG.getSrcValue(F);
5395
5396 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5397
5398 DAG.setRoot(Res);
5399 return nullptr;
5400 }
5401 case Intrinsic::adjust_trampoline: {
5402 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5403 TLI.getPointerTy(),
5404 getValue(I.getArgOperand(0))));
5405 return nullptr;
5406 }
5407 case Intrinsic::gcroot:
5408 if (GFI) {
5409 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5410 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5411
5412 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5413 GFI->addStackRoot(FI->getIndex(), TypeMap);
5414 }
5415 return nullptr;
5416 case Intrinsic::gcread:
5417 case Intrinsic::gcwrite:
5418 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!")::llvm::llvm_unreachable_internal("GC failed to lower gcread/gcwrite intrinsics!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 5418)
;
5419 case Intrinsic::flt_rounds:
5420 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5421 return nullptr;
5422
5423 case Intrinsic::expect: {
5424 // Just replace __builtin_expect(exp, c) with EXP.
5425 setValue(&I, getValue(I.getArgOperand(0)));
5426 return nullptr;
5427 }
5428
5429 case Intrinsic::debugtrap:
5430 case Intrinsic::trap: {
5431 StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5432 if (TrapFuncName.empty()) {
5433 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5434 ISD::TRAP : ISD::DEBUGTRAP;
5435 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5436 return nullptr;
5437 }
5438 TargetLowering::ArgListTy Args;
5439
5440 TargetLowering::CallLoweringInfo CLI(DAG);
5441 CLI.setDebugLoc(sdl).setChain(getRoot())
5442 .setCallee(CallingConv::C, I.getType(),
5443 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
5444 std::move(Args), 0);
5445
5446 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5447 DAG.setRoot(Result.second);
5448 return nullptr;
5449 }
5450
5451 case Intrinsic::uadd_with_overflow:
5452 case Intrinsic::sadd_with_overflow:
5453 case Intrinsic::usub_with_overflow:
5454 case Intrinsic::ssub_with_overflow:
5455 case Intrinsic::umul_with_overflow:
5456 case Intrinsic::smul_with_overflow: {
5457 ISD::NodeType Op;
5458 switch (Intrinsic) {
5459 default: llvm_unreachable("Impossible intrinsic")::llvm::llvm_unreachable_internal("Impossible intrinsic", "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 5459)
; // Can't reach here.
5460 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5461 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5462 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5463 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5464 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5465 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5466 }
5467 SDValue Op1 = getValue(I.getArgOperand(0));
5468 SDValue Op2 = getValue(I.getArgOperand(1));
5469
5470 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5471 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5472 return nullptr;
5473 }
5474 case Intrinsic::prefetch: {
5475 SDValue Ops[5];
5476 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5477 Ops[0] = getRoot();
5478 Ops[1] = getValue(I.getArgOperand(0));
5479 Ops[2] = getValue(I.getArgOperand(1));
5480 Ops[3] = getValue(I.getArgOperand(2));
5481 Ops[4] = getValue(I.getArgOperand(3));
5482 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5483 DAG.getVTList(MVT::Other), Ops,
5484 EVT::getIntegerVT(*Context, 8),
5485 MachinePointerInfo(I.getArgOperand(0)),
5486 0, /* align */
5487 false, /* volatile */
5488 rw==0, /* read */
5489 rw==1)); /* write */
5490 return nullptr;
5491 }
5492 case Intrinsic::lifetime_start:
5493 case Intrinsic::lifetime_end: {
5494 bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5495 // Stack coloring is not enabled in O0, discard region information.
5496 if (TM.getOptLevel() == CodeGenOpt::None)
5497 return nullptr;
5498
5499 SmallVector<Value *, 4> Allocas;
5500 GetUnderlyingObjects(I.getArgOperand(1), Allocas, DL);
5501
5502 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5503 E = Allocas.end(); Object != E; ++Object) {
5504 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5505
5506 // Could not find an Alloca.
5507 if (!LifetimeObject)
5508 continue;
5509
5510 // First check that the Alloca is static, otherwise it won't have a
5511 // valid frame index.
5512 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5513 if (SI == FuncInfo.StaticAllocaMap.end())
5514 return nullptr;
5515
5516 int FI = SI->second;
5517
5518 SDValue Ops[2];
5519 Ops[0] = getRoot();
5520 Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true);
5521 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5522
5523 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5524 DAG.setRoot(Res);
5525 }
5526 return nullptr;
5527 }
5528 case Intrinsic::invariant_start:
5529 // Discard region information.
5530 setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5531 return nullptr;
5532 case Intrinsic::invariant_end:
5533 // Discard region information.
5534 return nullptr;
5535 case Intrinsic::stackprotectorcheck: {
5536 // Do not actually emit anything for this basic block. Instead we initialize
5537 // the stack protector descriptor and export the guard variable so we can
5538 // access it in FinishBasicBlock.
5539 const BasicBlock *BB = I.getParent();
5540 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I);
5541 ExportFromCurrentBlock(SPDescriptor.getGuard());
5542
5543 // Flush our exports since we are going to process a terminator.
5544 (void)getControlRoot();
5545 return nullptr;
5546 }
5547 case Intrinsic::clear_cache:
5548 return TLI.getClearCacheBuiltinName();
5549 case Intrinsic::donothing:
5550 // ignore
5551 return nullptr;
5552 case Intrinsic::experimental_stackmap: {
5553 visitStackmap(I);
5554 return nullptr;
5555 }
5556 case Intrinsic::experimental_patchpoint_void:
5557 case Intrinsic::experimental_patchpoint_i64: {
5558 visitPatchpoint(&I);
5559 return nullptr;
5560 }
5561 case Intrinsic::experimental_gc_statepoint: {
5562 visitStatepoint(I);
5563 return nullptr;
5564 }
5565 case Intrinsic::experimental_gc_result_int:
5566 case Intrinsic::experimental_gc_result_float:
5567 case Intrinsic::experimental_gc_result_ptr: {
5568 visitGCResult(I);
5569 return nullptr;
5570 }
5571 case Intrinsic::experimental_gc_relocate: {
5572 visitGCRelocate(I);
5573 return nullptr;
5574 }
5575 case Intrinsic::instrprof_increment:
5576 llvm_unreachable("instrprof failed to lower an increment")::llvm::llvm_unreachable_internal("instrprof failed to lower an increment"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 5576)
;
5577 }
5578}
5579
5580std::pair<SDValue, SDValue>
5581SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
5582 MachineBasicBlock *LandingPad) {
5583 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5584 MCSymbol *BeginLabel = nullptr;
5585
5586 if (LandingPad) {
5587 // Insert a label before the invoke call to mark the try range. This can be
5588 // used to detect deletion of the invoke via the MachineModuleInfo.
5589 BeginLabel = MMI.getContext().CreateTempSymbol();
5590
5591 // For SjLj, keep track of which landing pads go with which invokes
5592 // so as to maintain the ordering of pads in the LSDA.
5593 unsigned CallSiteIndex = MMI.getCurrentCallSite();
5594 if (CallSiteIndex) {
5595 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5596 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5597
5598 // Now that the call site is handled, stop tracking it.
5599 MMI.setCurrentCallSite(0);
5600 }
5601
5602 // Both PendingLoads and PendingExports must be flushed here;
5603 // this call might not return.
5604 (void)getRoot();
5605 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5606
5607 CLI.setChain(getRoot());
5608 }
5609
5610 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering();
5611 std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI);
5612
5613 assert((CLI.IsTailCall || Result.second.getNode()) &&(((CLI.IsTailCall || Result.second.getNode()) && "Non-null chain expected with non-tail call!"
) ? static_cast<void> (0) : __assert_fail ("(CLI.IsTailCall || Result.second.getNode()) && \"Non-null chain expected with non-tail call!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 5614, __PRETTY_FUNCTION__))
5614 "Non-null chain expected with non-tail call!")(((CLI.IsTailCall || Result.second.getNode()) && "Non-null chain expected with non-tail call!"
) ? static_cast<void> (0) : __assert_fail ("(CLI.IsTailCall || Result.second.getNode()) && \"Non-null chain expected with non-tail call!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 5614, __PRETTY_FUNCTION__))
;
5615 assert((Result.second.getNode() || !Result.first.getNode()) &&(((Result.second.getNode() || !Result.first.getNode()) &&
"Null value expected with tail call!") ? static_cast<void
> (0) : __assert_fail ("(Result.second.getNode() || !Result.first.getNode()) && \"Null value expected with tail call!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 5616, __PRETTY_FUNCTION__))
5616 "Null value expected with tail call!")(((Result.second.getNode() || !Result.first.getNode()) &&
"Null value expected with tail call!") ? static_cast<void
> (0) : __assert_fail ("(Result.second.getNode() || !Result.first.getNode()) && \"Null value expected with tail call!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 5616, __PRETTY_FUNCTION__))
;
5617
5618 if (!Result.second.getNode()) {
5619 // As a special case, a null chain means that a tail call has been emitted
5620 // and the DAG root is already updated.
5621 HasTailCall = true;
5622
5623 // Since there's no actual continuation from this block, nothing can be
5624 // relying on us setting vregs for them.
5625 PendingExports.clear();
5626 } else {
5627 DAG.setRoot(Result.second);
5628 }
5629
5630 if (LandingPad) {
5631 // Insert a label at the end of the invoke call to mark the try range. This
5632 // can be used to detect deletion of the invoke via the MachineModuleInfo.
5633 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5634 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5635
5636 // Inform MachineModuleInfo of range.
5637 MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5638 }
5639
5640 return Result;
5641}
5642
5643void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5644 bool isTailCall,
5645 MachineBasicBlock *LandingPad) {
5646 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5647 FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5648 Type *RetTy = FTy->getReturnType();
5649
5650 TargetLowering::ArgListTy Args;
5651 TargetLowering::ArgListEntry Entry;
5652 Args.reserve(CS.arg_size());
5653
5654 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5655 i != e; ++i) {
5656 const Value *V = *i;
5657
5658 // Skip empty types
5659 if (V->getType()->isEmptyTy())
5660 continue;
5661
5662 SDValue ArgNode = getValue(V);
5663 Entry.Node = ArgNode; Entry.Ty = V->getType();
5664
5665 // Skip the first return-type Attribute to get to params.
5666 Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
5667 Args.push_back(Entry);
5668 }
5669
5670 // Check if target-independent constraints permit a tail call here.
5671 // Target-dependent constraints are checked within TLI->LowerCallTo.
5672 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
5673 isTailCall = false;
5674
5675 TargetLowering::CallLoweringInfo CLI(DAG);
5676 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
5677 .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
5678 .setTailCall(isTailCall);
5679 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad);
5680
5681 if (Result.first.getNode())
5682 setValue(CS.getInstruction(), Result.first);
5683}
5684
5685/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5686/// value is equal or not-equal to zero.
5687static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5688 for (const User *U : V->users()) {
5689 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
5690 if (IC->isEquality())
5691 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5692 if (C->isNullValue())
5693 continue;
5694 // Unknown instruction.
5695 return false;
5696 }
5697 return true;
5698}
5699
5700static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5701 Type *LoadTy,
5702 SelectionDAGBuilder &Builder) {
5703
5704 // Check to see if this load can be trivially constant folded, e.g. if the
5705 // input is from a string literal.
5706 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5707 // Cast pointer to the type we really want to load.
5708 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5709 PointerType::getUnqual(LoadTy));
5710
5711 if (const Constant *LoadCst =
5712 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5713 Builder.DL))
5714 return Builder.getValue(LoadCst);
5715 }
5716
5717 // Otherwise, we have to emit the load. If the pointer is to unfoldable but
5718 // still constant memory, the input chain can be the entry node.
5719 SDValue Root;
5720 bool ConstantMemory = false;
5721
5722 // Do not serialize (non-volatile) loads of constant memory with anything.
5723 if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5724 Root = Builder.DAG.getEntryNode();
5725 ConstantMemory = true;
5726 } else {
5727 // Do not serialize non-volatile loads against each other.
5728 Root = Builder.DAG.getRoot();
5729 }
5730
5731 SDValue Ptr = Builder.getValue(PtrVal);
5732 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5733 Ptr, MachinePointerInfo(PtrVal),
5734 false /*volatile*/,
5735 false /*nontemporal*/,
5736 false /*isinvariant*/, 1 /* align=1 */);
5737
5738 if (!ConstantMemory)
5739 Builder.PendingLoads.push_back(LoadVal.getValue(1));
5740 return LoadVal;
5741}
5742
5743/// processIntegerCallValue - Record the value for an instruction that
5744/// produces an integer result, converting the type where necessary.
5745void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
5746 SDValue Value,
5747 bool IsSigned) {
5748 EVT VT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true);
5749 if (IsSigned)
5750 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
5751 else
5752 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
5753 setValue(&I, Value);
5754}
5755
5756/// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5757/// If so, return true and lower it, otherwise return false and it will be
5758/// lowered like a normal call.
5759bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5760 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t)
5761 if (I.getNumArgOperands() != 3)
5762 return false;
5763
5764 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5765 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5766 !I.getArgOperand(2)->getType()->isIntegerTy() ||
5767 !I.getType()->isIntegerTy())
5768 return false;
5769
5770 const Value *Size = I.getArgOperand(2);
5771 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
5772 if (CSize && CSize->getZExtValue() == 0) {
5773 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true);
5774 setValue(&I, DAG.getConstant(0, CallVT));
5775 return true;
5776 }
5777
5778 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5779 std::pair<SDValue, SDValue> Res =
5780 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5781 getValue(LHS), getValue(RHS), getValue(Size),
5782 MachinePointerInfo(LHS),
5783 MachinePointerInfo(RHS));
5784 if (Res.first.getNode()) {
5785 processIntegerCallValue(I, Res.first, true);
5786 PendingLoads.push_back(Res.second);
5787 return true;
5788 }
5789
5790 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0
5791 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0
5792 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
5793 bool ActuallyDoIt = true;
5794 MVT LoadVT;
5795 Type *LoadTy;
5796 switch (CSize->getZExtValue()) {
5797 default:
5798 LoadVT = MVT::Other;
5799 LoadTy = nullptr;
5800 ActuallyDoIt = false;
5801 break;
5802 case 2:
5803 LoadVT = MVT::i16;
5804 LoadTy = Type::getInt16Ty(CSize->getContext());
5805 break;
5806 case 4:
5807 LoadVT = MVT::i32;
5808 LoadTy = Type::getInt32Ty(CSize->getContext());
5809 break;
5810 case 8:
5811 LoadVT = MVT::i64;
5812 LoadTy = Type::getInt64Ty(CSize->getContext());
5813 break;
5814 /*
5815 case 16:
5816 LoadVT = MVT::v4i32;
5817 LoadTy = Type::getInt32Ty(CSize->getContext());
5818 LoadTy = VectorType::get(LoadTy, 4);
5819 break;
5820 */
5821 }
5822
5823 // This turns into unaligned loads. We only do this if the target natively
5824 // supports the MVT we'll be loading or if it is small enough (<= 4) that
5825 // we'll only produce a small number of byte loads.
5826
5827 // Require that we can find a legal MVT, and only do this if the target
5828 // supports unaligned loads of that type. Expanding into byte loads would
5829 // bloat the code.
5830 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5831 if (ActuallyDoIt && CSize->getZExtValue() > 4) {
5832 unsigned DstAS = LHS->getType()->getPointerAddressSpace();
5833 unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
5834 // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5835 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5836 // TODO: Check alignment of src and dest ptrs.
5837 if (!TLI.isTypeLegal(LoadVT) ||
5838 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) ||
5839 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS))
5840 ActuallyDoIt = false;
5841 }
5842
5843 if (ActuallyDoIt) {
5844 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5845 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5846
5847 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
5848 ISD::SETNE);
5849 processIntegerCallValue(I, Res, false);
5850 return true;
5851 }
5852 }
5853
5854
5855 return false;
5856}
5857
5858/// visitMemChrCall -- See if we can lower a memchr call into an optimized
5859/// form. If so, return true and lower it, otherwise return false and it
5860/// will be lowered like a normal call.
5861bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
5862 // Verify that the prototype makes sense. void *memchr(void *, int, size_t)
5863 if (I.getNumArgOperands() != 3)
5864 return false;
5865
5866 const Value *Src = I.getArgOperand(0);
5867 const Value *Char = I.getArgOperand(1);
5868 const Value *Length = I.getArgOperand(2);
5869 if (!Src->getType()->isPointerTy() ||
5870 !Char->getType()->isIntegerTy() ||
5871 !Length->getType()->isIntegerTy() ||
5872 !I.getType()->isPointerTy())
5873 return false;
5874
5875 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5876 std::pair<SDValue, SDValue> Res =
5877 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
5878 getValue(Src), getValue(Char), getValue(Length),
5879 MachinePointerInfo(Src));
5880 if (Res.first.getNode()) {
5881 setValue(&I, Res.first);
5882 PendingLoads.push_back(Res.second);
5883 return true;
5884 }
5885
5886 return false;
5887}
5888
5889/// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
5890/// optimized form. If so, return true and lower it, otherwise return false
5891/// and it will be lowered like a normal call.
5892bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
5893 // Verify that the prototype makes sense. char *strcpy(char *, char *)
5894 if (I.getNumArgOperands() != 2)
5895 return false;
5896
5897 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5898 if (!Arg0->getType()->isPointerTy() ||
5899 !Arg1->getType()->isPointerTy() ||
5900 !I.getType()->isPointerTy())
5901 return false;
5902
5903 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5904 std::pair<SDValue, SDValue> Res =
5905 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
5906 getValue(Arg0), getValue(Arg1),
5907 MachinePointerInfo(Arg0),
5908 MachinePointerInfo(Arg1), isStpcpy);
5909 if (Res.first.getNode()) {
5910 setValue(&I, Res.first);
5911 DAG.setRoot(Res.second);
5912 return true;
5913 }
5914
5915 return false;
5916}
5917
5918/// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
5919/// If so, return true and lower it, otherwise return false and it will be
5920/// lowered like a normal call.
5921bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
5922 // Verify that the prototype makes sense. int strcmp(void*,void*)
5923 if (I.getNumArgOperands() != 2)
5924 return false;
5925
5926 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5927 if (!Arg0->getType()->isPointerTy() ||
5928 !Arg1->getType()->isPointerTy() ||
5929 !I.getType()->isIntegerTy())
5930 return false;
5931
5932 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5933 std::pair<SDValue, SDValue> Res =
5934 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5935 getValue(Arg0), getValue(Arg1),
5936 MachinePointerInfo(Arg0),
5937 MachinePointerInfo(Arg1));
5938 if (Res.first.getNode()) {
5939 processIntegerCallValue(I, Res.first, true);
5940 PendingLoads.push_back(Res.second);
5941 return true;
5942 }
5943
5944 return false;
5945}
5946
5947/// visitStrLenCall -- See if we can lower a strlen call into an optimized
5948/// form. If so, return true and lower it, otherwise return false and it
5949/// will be lowered like a normal call.
5950bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
5951 // Verify that the prototype makes sense. size_t strlen(char *)
5952 if (I.getNumArgOperands() != 1)
5953 return false;
5954
5955 const Value *Arg0 = I.getArgOperand(0);
5956 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
5957 return false;
5958
5959 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5960 std::pair<SDValue, SDValue> Res =
5961 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
5962 getValue(Arg0), MachinePointerInfo(Arg0));
5963 if (Res.first.getNode()) {
5964 processIntegerCallValue(I, Res.first, false);
5965 PendingLoads.push_back(Res.second);
5966 return true;
5967 }
5968
5969 return false;
5970}
5971
5972/// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
5973/// form. If so, return true and lower it, otherwise return false and it
5974/// will be lowered like a normal call.
5975bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
5976 // Verify that the prototype makes sense. size_t strnlen(char *, size_t)
5977 if (I.getNumArgOperands() != 2)
5978 return false;
5979
5980 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5981 if (!Arg0->getType()->isPointerTy() ||
5982 !Arg1->getType()->isIntegerTy() ||
5983 !I.getType()->isIntegerTy())
5984 return false;
5985
5986 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5987 std::pair<SDValue, SDValue> Res =
5988 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
5989 getValue(Arg0), getValue(Arg1),
5990 MachinePointerInfo(Arg0));
5991 if (Res.first.getNode()) {
5992 processIntegerCallValue(I, Res.first, false);
5993 PendingLoads.push_back(Res.second);
5994 return true;
5995 }
5996
5997 return false;
5998}
5999
6000/// visitUnaryFloatCall - If a call instruction is a unary floating-point
6001/// operation (as expected), translate it to an SDNode with the specified opcode
6002/// and return true.
6003bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
6004 unsigned Opcode) {
6005 // Sanity check that it really is a unary floating-point call.
6006 if (I.getNumArgOperands() != 1 ||
6007 !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
6008 I.getType() != I.getArgOperand(0)->getType() ||
6009 !I.onlyReadsMemory())
6010 return false;
6011
6012 SDValue Tmp = getValue(I.getArgOperand(0));
6013 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
6014 return true;
6015}
6016
6017/// visitBinaryFloatCall - If a call instruction is a binary floating-point
6018/// operation (as expected), translate it to an SDNode with the specified opcode
6019/// and return true.
6020bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
6021 unsigned Opcode) {
6022 // Sanity check that it really is a binary floating-point call.
6023 if (I.getNumArgOperands() != 2 ||
6024 !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
6025 I.getType() != I.getArgOperand(0)->getType() ||
6026 I.getType() != I.getArgOperand(1)->getType() ||
6027 !I.onlyReadsMemory())
6028 return false;
6029
6030 SDValue Tmp0 = getValue(I.getArgOperand(0));
6031 SDValue Tmp1 = getValue(I.getArgOperand(1));
6032 EVT VT = Tmp0.getValueType();
6033 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
6034 return true;
6035}
6036
6037void SelectionDAGBuilder::visitCall(const CallInst &I) {
6038 // Handle inline assembly differently.
6039 if (isa<InlineAsm>(I.getCalledValue())) {
6040 visitInlineAsm(&I);
6041 return;
6042 }
6043
6044 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6045 ComputeUsesVAFloatArgument(I, &MMI);
6046
6047 const char *RenameFn = nullptr;
6048 if (Function *F = I.getCalledFunction()) {
6049 if (F->isDeclaration()) {
6050 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
6051 if (unsigned IID = II->getIntrinsicID(F)) {
6052 RenameFn = visitIntrinsicCall(I, IID);
6053 if (!RenameFn)
6054 return;
6055 }
6056 }
6057 if (unsigned IID = F->getIntrinsicID()) {
6058 RenameFn = visitIntrinsicCall(I, IID);
6059 if (!RenameFn)
6060 return;
6061 }
6062 }
6063
6064 // Check for well-known libc/libm calls. If the function is internal, it
6065 // can't be a library call.
6066 LibFunc::Func Func;
6067 if (!F->hasLocalLinkage() && F->hasName() &&
6068 LibInfo->getLibFunc(F->getName(), Func) &&
6069 LibInfo->hasOptimizedCodeGen(Func)) {
6070 switch (Func) {
6071 default: break;
6072 case LibFunc::copysign:
6073 case LibFunc::copysignf:
6074 case LibFunc::copysignl:
6075 if (I.getNumArgOperands() == 2 && // Basic sanity checks.
6076 I.getArgOperand(0)->getType()->isFloatingPointTy() &&
6077 I.getType() == I.getArgOperand(0)->getType() &&
6078 I.getType() == I.getArgOperand(1)->getType() &&
6079 I.onlyReadsMemory()) {
6080 SDValue LHS = getValue(I.getArgOperand(0));
6081 SDValue RHS = getValue(I.getArgOperand(1));
6082 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
6083 LHS.getValueType(), LHS, RHS));
6084 return;
6085 }
6086 break;
6087 case LibFunc::fabs:
6088 case LibFunc::fabsf:
6089 case LibFunc::fabsl:
6090 if (visitUnaryFloatCall(I, ISD::FABS))
6091 return;
6092 break;
6093 case LibFunc::fmin:
6094 case LibFunc::fminf:
6095 case LibFunc::fminl:
6096 if (visitBinaryFloatCall(I, ISD::FMINNUM))
6097 return;
6098 break;
6099 case LibFunc::fmax:
6100 case LibFunc::fmaxf:
6101 case LibFunc::fmaxl:
6102 if (visitBinaryFloatCall(I, ISD::FMAXNUM))
6103 return;
6104 break;
6105 case LibFunc::sin:
6106 case LibFunc::sinf:
6107 case LibFunc::sinl:
6108 if (visitUnaryFloatCall(I, ISD::FSIN))
6109 return;
6110 break;
6111 case LibFunc::cos:
6112 case LibFunc::cosf:
6113 case LibFunc::cosl:
6114 if (visitUnaryFloatCall(I, ISD::FCOS))
6115 return;
6116 break;
6117 case LibFunc::sqrt:
6118 case LibFunc::sqrtf:
6119 case LibFunc::sqrtl:
6120 case LibFunc::sqrt_finite:
6121 case LibFunc::sqrtf_finite:
6122 case LibFunc::sqrtl_finite:
6123 if (visitUnaryFloatCall(I, ISD::FSQRT))
6124 return;
6125 break;
6126 case LibFunc::floor:
6127 case LibFunc::floorf:
6128 case LibFunc::floorl:
6129 if (visitUnaryFloatCall(I, ISD::FFLOOR))
6130 return;
6131 break;
6132 case LibFunc::nearbyint:
6133 case LibFunc::nearbyintf:
6134 case LibFunc::nearbyintl:
6135 if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6136 return;
6137 break;
6138 case LibFunc::ceil:
6139 case LibFunc::ceilf:
6140 case LibFunc::ceill:
6141 if (visitUnaryFloatCall(I, ISD::FCEIL))
6142 return;
6143 break;
6144 case LibFunc::rint:
6145 case LibFunc::rintf:
6146 case LibFunc::rintl:
6147 if (visitUnaryFloatCall(I, ISD::FRINT))
6148 return;
6149 break;
6150 case LibFunc::round:
6151 case LibFunc::roundf:
6152 case LibFunc::roundl:
6153 if (visitUnaryFloatCall(I, ISD::FROUND))
6154 return;
6155 break;
6156 case LibFunc::trunc:
6157 case LibFunc::truncf:
6158 case LibFunc::truncl:
6159 if (visitUnaryFloatCall(I, ISD::FTRUNC))
6160 return;
6161 break;
6162 case LibFunc::log2:
6163 case LibFunc::log2f:
6164 case LibFunc::log2l:
6165 if (visitUnaryFloatCall(I, ISD::FLOG2))
6166 return;
6167 break;
6168 case LibFunc::exp2:
6169 case LibFunc::exp2f:
6170 case LibFunc::exp2l:
6171 if (visitUnaryFloatCall(I, ISD::FEXP2))
6172 return;
6173 break;
6174 case LibFunc::memcmp:
6175 if (visitMemCmpCall(I))
6176 return;
6177 break;
6178 case LibFunc::memchr:
6179 if (visitMemChrCall(I))
6180 return;
6181 break;
6182 case LibFunc::strcpy:
6183 if (visitStrCpyCall(I, false))
6184 return;
6185 break;
6186 case LibFunc::stpcpy:
6187 if (visitStrCpyCall(I, true))
6188 return;
6189 break;
6190 case LibFunc::strcmp:
6191 if (visitStrCmpCall(I))
6192 return;
6193 break;
6194 case LibFunc::strlen:
6195 if (visitStrLenCall(I))
6196 return;
6197 break;
6198 case LibFunc::strnlen:
6199 if (visitStrNLenCall(I))
6200 return;
6201 break;
6202 }
6203 }
6204 }
6205
6206 SDValue Callee;
6207 if (!RenameFn)
6208 Callee = getValue(I.getCalledValue());
6209 else
6210 Callee = DAG.getExternalSymbol(RenameFn,
6211 DAG.getTargetLoweringInfo().getPointerTy());
6212
6213 // Check if we can potentially perform a tail call. More detailed checking is
6214 // be done within LowerCallTo, after more information about the call is known.
6215 LowerCallTo(&I, Callee, I.isTailCall());
6216}
6217
6218namespace {
6219
6220/// AsmOperandInfo - This contains information for each constraint that we are
6221/// lowering.
6222class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6223public:
6224 /// CallOperand - If this is the result output operand or a clobber
6225 /// this is null, otherwise it is the incoming operand to the CallInst.
6226 /// This gets modified as the asm is processed.
6227 SDValue CallOperand;
6228
6229 /// AssignedRegs - If this is a register or register class operand, this
6230 /// contains the set of register corresponding to the operand.
6231 RegsForValue AssignedRegs;
6232
6233 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6234 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
6235 }
6236
6237 /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6238 /// corresponds to. If there is no Value* for this operand, it returns
6239 /// MVT::Other.
6240 EVT getCallOperandValEVT(LLVMContext &Context,
6241 const TargetLowering &TLI,
6242 const DataLayout *DL) const {
6243 if (!CallOperandVal) return MVT::Other;
6244
6245 if (isa<BasicBlock>(CallOperandVal))
6246 return TLI.getPointerTy();
6247
6248 llvm::Type *OpTy = CallOperandVal->getType();
6249
6250 // FIXME: code duplicated from TargetLowering::ParseConstraints().
6251 // If this is an indirect operand, the operand is a pointer to the
6252 // accessed type.
6253 if (isIndirect) {
6254 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6255 if (!PtrTy)
6256 report_fatal_error("Indirect operand for inline asm not a pointer!");
6257 OpTy = PtrTy->getElementType();
6258 }
6259
6260 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6261 if (StructType *STy = dyn_cast<StructType>(OpTy))
6262 if (STy->getNumElements() == 1)
6263 OpTy = STy->getElementType(0);
6264
6265 // If OpTy is not a single value, it may be a struct/union that we
6266 // can tile with integers.
6267 if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6268 unsigned BitSize = DL->getTypeSizeInBits(OpTy);
6269 switch (BitSize) {
6270 default: break;
6271 case 1:
6272 case 8:
6273 case 16:
6274 case 32:
6275 case 64:
6276 case 128:
6277 OpTy = IntegerType::get(Context, BitSize);
6278 break;
6279 }
6280 }
6281
6282 return TLI.getValueType(OpTy, true);
6283 }
6284};
6285
6286typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
6287
6288} // end anonymous namespace
6289
6290/// GetRegistersForValue - Assign registers (virtual or physical) for the
6291/// specified operand. We prefer to assign virtual registers, to allow the
6292/// register allocator to handle the assignment process. However, if the asm
6293/// uses features that we can't model on machineinstrs, we have SDISel do the
6294/// allocation. This produces generally horrible, but correct, code.
6295///
6296/// OpInfo describes the operand.
6297///
6298static void GetRegistersForValue(SelectionDAG &DAG,
6299 const TargetLowering &TLI,
6300 SDLoc DL,
6301 SDISelAsmOperandInfo &OpInfo) {
6302 LLVMContext &Context = *DAG.getContext();
6303
6304 MachineFunction &MF = DAG.getMachineFunction();
6305 SmallVector<unsigned, 4> Regs;
6306
6307 // If this is a constraint for a single physreg, or a constraint for a
6308 // register class, find it.
6309 std::pair<unsigned, const TargetRegisterClass*> PhysReg =
6310 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
6311 OpInfo.ConstraintVT);
6312
6313 unsigned NumRegs = 1;
6314 if (OpInfo.ConstraintVT != MVT::Other) {
6315 // If this is a FP input in an integer register (or visa versa) insert a bit
6316 // cast of the input value. More generally, handle any case where the input
6317 // value disagrees with the register class we plan to stick this in.
6318 if (OpInfo.Type == InlineAsm::isInput &&
6319 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
6320 // Try to convert to the first EVT that the reg class contains. If the
6321 // types are identical size, use a bitcast to convert (e.g. two differing
6322 // vector types).
6323 MVT RegVT = *PhysReg.second->vt_begin();
6324 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
6325 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6326 RegVT, OpInfo.CallOperand);
6327 OpInfo.ConstraintVT = RegVT;
6328 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6329 // If the input is a FP value and we want it in FP registers, do a
6330 // bitcast to the corresponding integer type. This turns an f64 value
6331 // into i64, which can be passed with two i32 values on a 32-bit
6332 // machine.
6333 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6334 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6335 RegVT, OpInfo.CallOperand);
6336 OpInfo.ConstraintVT = RegVT;
6337 }
6338 }
6339
6340 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6341 }
6342
6343 MVT RegVT;
6344 EVT ValueVT = OpInfo.ConstraintVT;
6345
6346 // If this is a constraint for a specific physical register, like {r17},
6347 // assign it now.
6348 if (unsigned AssignedReg = PhysReg.first) {
6349 const TargetRegisterClass *RC = PhysReg.second;
6350 if (OpInfo.ConstraintVT == MVT::Other)
6351 ValueVT = *RC->vt_begin();
6352
6353 // Get the actual register value type. This is important, because the user
6354 // may have asked for (e.g.) the AX register in i32 type. We need to
6355 // remember that AX is actually i16 to get the right extension.
6356 RegVT = *RC->vt_begin();
6357
6358 // This is a explicit reference to a physical register.
6359 Regs.push_back(AssignedReg);
6360
6361 // If this is an expanded reference, add the rest of the regs to Regs.
6362 if (NumRegs != 1) {
6363 TargetRegisterClass::iterator I = RC->begin();
6364 for (; *I != AssignedReg; ++I)
6365 assert(I != RC->end() && "Didn't find reg!")((I != RC->end() && "Didn't find reg!") ? static_cast
<void> (0) : __assert_fail ("I != RC->end() && \"Didn't find reg!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 6365, __PRETTY_FUNCTION__))
;
6366
6367 // Already added the first reg.
6368 --NumRegs; ++I;
6369 for (; NumRegs; --NumRegs, ++I) {
6370 assert(I != RC->end() && "Ran out of registers to allocate!")((I != RC->end() && "Ran out of registers to allocate!"
) ? static_cast<void> (0) : __assert_fail ("I != RC->end() && \"Ran out of registers to allocate!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 6370, __PRETTY_FUNCTION__))
;
6371 Regs.push_back(*I);
6372 }
6373 }
6374
6375 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6376 return;
6377 }
6378
6379 // Otherwise, if this was a reference to an LLVM register class, create vregs
6380 // for this reference.
6381 if (const TargetRegisterClass *RC = PhysReg.second) {
6382 RegVT = *RC->vt_begin();
6383 if (OpInfo.ConstraintVT == MVT::Other)
6384 ValueVT = RegVT;
6385
6386 // Create the appropriate number of virtual registers.
6387 MachineRegisterInfo &RegInfo = MF.getRegInfo();
6388 for (; NumRegs; --NumRegs)
6389 Regs.push_back(RegInfo.createVirtualRegister(RC));
6390
6391 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6392 return;
6393 }
6394
6395 // Otherwise, we couldn't allocate enough registers for this.
6396}
6397
6398/// visitInlineAsm - Handle a call to an InlineAsm object.
6399///
6400void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6401 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6402
6403 /// ConstraintOperands - Information about all of the constraints.
6404 SDISelAsmOperandInfoVector ConstraintOperands;
6405
6406 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6407 TargetLowering::AsmOperandInfoVector
6408 TargetConstraints = TLI.ParseConstraints(CS);
6409
6410 bool hasMemory = false;
6411
6412 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
6413 unsigned ResNo = 0; // ResNo - The result number of the next output.
6414 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6415 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6416 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6417
6418 MVT OpVT = MVT::Other;
6419
6420 // Compute the value type for each operand.
6421 switch (OpInfo.Type) {
6422 case InlineAsm::isOutput:
6423 // Indirect outputs just consume an argument.
6424 if (OpInfo.isIndirect) {
6425 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6426 break;
6427 }
6428
6429 // The return value of the call is this value. As such, there is no
6430 // corresponding argument.
6431 assert(!CS.getType()->isVoidTy() && "Bad inline asm!")((!CS.getType()->isVoidTy() && "Bad inline asm!") ?
static_cast<void> (0) : __assert_fail ("!CS.getType()->isVoidTy() && \"Bad inline asm!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 6431, __PRETTY_FUNCTION__))
;
6432 if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6433 OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo));
6434 } else {
6435 assert(ResNo == 0 && "Asm only has one result!")((ResNo == 0 && "Asm only has one result!") ? static_cast
<void> (0) : __assert_fail ("ResNo == 0 && \"Asm only has one result!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 6435, __PRETTY_FUNCTION__))
;
6436 OpVT = TLI.getSimpleValueType(CS.getType());
6437 }
6438 ++ResNo;
6439 break;
6440 case InlineAsm::isInput:
6441 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6442 break;
6443 case InlineAsm::isClobber:
6444 // Nothing to do.
6445 break;
6446 }
6447
6448 // If this is an input or an indirect output, process the call argument.
6449 // BasicBlocks are labels, currently appearing only in asm's.
6450 if (OpInfo.CallOperandVal) {
6451 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6452 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6453 } else {
6454 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6455 }
6456
6457 OpVT =
6458 OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, DL).getSimpleVT();
6459 }
6460
6461 OpInfo.ConstraintVT = OpVT;
6462
6463 // Indirect operand accesses access memory.
6464 if (OpInfo.isIndirect)
6465 hasMemory = true;
6466 else {
6467 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
6468 TargetLowering::ConstraintType
6469 CType = TLI.getConstraintType(OpInfo.Codes[j]);
6470 if (CType == TargetLowering::C_Memory) {
6471 hasMemory = true;
6472 break;
6473 }
6474 }
6475 }
6476 }
6477
6478 SDValue Chain, Flag;
6479
6480 // We won't need to flush pending loads if this asm doesn't touch
6481 // memory and is nonvolatile.
6482 if (hasMemory || IA->hasSideEffects())
6483 Chain = getRoot();
6484 else
6485 Chain = DAG.getRoot();
6486
6487 // Second pass over the constraints: compute which constraint option to use
6488 // and assign registers to constraints that want a specific physreg.
6489 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6490 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6491
6492 // If this is an output operand with a matching input operand, look up the
6493 // matching input. If their types mismatch, e.g. one is an integer, the
6494 // other is floating point, or their sizes are different, flag it as an
6495 // error.
6496 if (OpInfo.hasMatchingInput()) {
6497 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6498
6499 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6500 std::pair<unsigned, const TargetRegisterClass*> MatchRC =
6501 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
6502 OpInfo.ConstraintVT);
6503 std::pair<unsigned, const TargetRegisterClass*> InputRC =
6504 TLI.getRegForInlineAsmConstraint(Input.ConstraintCode,
6505 Input.ConstraintVT);
6506 if ((OpInfo.ConstraintVT.isInteger() !=
6507 Input.ConstraintVT.isInteger()) ||
6508 (MatchRC.second != InputRC.second)) {
6509 report_fatal_error("Unsupported asm: input constraint"
6510 " with a matching output constraint of"
6511 " incompatible type!");
6512 }
6513 Input.ConstraintVT = OpInfo.ConstraintVT;
6514 }
6515 }
6516
6517 // Compute the constraint code and ConstraintType to use.
6518 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6519
6520 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6521 OpInfo.Type == InlineAsm::isClobber)
6522 continue;
6523
6524 // If this is a memory input, and if the operand is not indirect, do what we
6525 // need to to provide an address for the memory input.
6526 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6527 !OpInfo.isIndirect) {
6528 assert((OpInfo.isMultipleAlternative ||(((OpInfo.isMultipleAlternative || (OpInfo.Type == InlineAsm::
isInput)) && "Can only indirectify direct input operands!"
) ? static_cast<void> (0) : __assert_fail ("(OpInfo.isMultipleAlternative || (OpInfo.Type == InlineAsm::isInput)) && \"Can only indirectify direct input operands!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 6530, __PRETTY_FUNCTION__))
6529 (OpInfo.Type == InlineAsm::isInput)) &&(((OpInfo.isMultipleAlternative || (OpInfo.Type == InlineAsm::
isInput)) && "Can only indirectify direct input operands!"
) ? static_cast<void> (0) : __assert_fail ("(OpInfo.isMultipleAlternative || (OpInfo.Type == InlineAsm::isInput)) && \"Can only indirectify direct input operands!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 6530, __PRETTY_FUNCTION__))
6530 "Can only indirectify direct input operands!")(((OpInfo.isMultipleAlternative || (OpInfo.Type == InlineAsm::
isInput)) && "Can only indirectify direct input operands!"
) ? static_cast<void> (0) : __assert_fail ("(OpInfo.isMultipleAlternative || (OpInfo.Type == InlineAsm::isInput)) && \"Can only indirectify direct input operands!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 6530, __PRETTY_FUNCTION__))
;
6531
6532 // Memory operands really want the address of the value. If we don't have
6533 // an indirect input, put it in the constpool if we can, otherwise spill
6534 // it to a stack slot.
6535 // TODO: This isn't quite right. We need to handle these according to
6536 // the addressing mode that the constraint wants. Also, this may take
6537 // an additional register for the computation and we don't want that
6538 // either.
6539
6540 // If the operand is a float, integer, or vector constant, spill to a
6541 // constant pool entry to get its address.
6542 const Value *OpVal = OpInfo.CallOperandVal;
6543 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6544 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6545 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
6546 TLI.getPointerTy());
6547 } else {
6548 // Otherwise, create a stack slot and emit a store to it before the
6549 // asm.
6550 Type *Ty = OpVal->getType();
6551 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
6552 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty);
6553 MachineFunction &MF = DAG.getMachineFunction();
6554 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6555 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
6556 Chain = DAG.getStore(Chain, getCurSDLoc(),
6557 OpInfo.CallOperand, StackSlot,
6558 MachinePointerInfo::getFixedStack(SSFI),
6559 false, false, 0);
6560 OpInfo.CallOperand = StackSlot;
6561 }
6562
6563 // There is no longer a Value* corresponding to this operand.
6564 OpInfo.CallOperandVal = nullptr;
6565
6566 // It is now an indirect operand.
6567 OpInfo.isIndirect = true;
6568 }
6569
6570 // If this constraint is for a specific register, allocate it before
6571 // anything else.
6572 if (OpInfo.ConstraintType == TargetLowering::C_Register)
6573 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6574 }
6575
6576 // Second pass - Loop over all of the operands, assigning virtual or physregs
6577 // to register class operands.
6578 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6579 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6580
6581 // C_Register operands have already been allocated, Other/Memory don't need
6582 // to be.
6583 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6584 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6585 }
6586
6587 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6588 std::vector<SDValue> AsmNodeOperands;
6589 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain
6590 AsmNodeOperands.push_back(
6591 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6592 TLI.getPointerTy()));
6593
6594 // If we have a !srcloc metadata node associated with it, we want to attach
6595 // this to the ultimately generated inline asm machineinstr. To do this, we
6596 // pass in the third operand as this (potentially null) inline asm MDNode.
6597 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6598 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6599
6600 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6601 // bits as operand 3.
6602 unsigned ExtraInfo = 0;
6603 if (IA->hasSideEffects())
6604 ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6605 if (IA->isAlignStack())
6606 ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6607 // Set the asm dialect.
6608 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6609
6610 // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6611 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6612 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6613
6614 // Compute the constraint code and ConstraintType to use.
6615 TLI.ComputeConstraintToUse(OpInfo, SDValue());
6616
6617 // Ideally, we would only check against memory constraints. However, the
6618 // meaning of an other constraint can be target-specific and we can't easily
6619 // reason about it. Therefore, be conservative and set MayLoad/MayStore
6620 // for other constriants as well.
6621 if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6622 OpInfo.ConstraintType == TargetLowering::C_Other) {
6623 if (OpInfo.Type == InlineAsm::isInput)
6624 ExtraInfo |= InlineAsm::Extra_MayLoad;
6625 else if (OpInfo.Type == InlineAsm::isOutput)
6626 ExtraInfo |= InlineAsm::Extra_MayStore;
6627 else if (OpInfo.Type == InlineAsm::isClobber)
6628 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6629 }
6630 }
6631
6632 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6633 TLI.getPointerTy()));
6634
6635 // Loop over all of the inputs, copying the operand values into the
6636 // appropriate registers and processing the output regs.
6637 RegsForValue RetValRegs;
6638
6639 // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6640 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6641
6642 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6643 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6644
6645 switch (OpInfo.Type) {
6646 case InlineAsm::isOutput: {
6647 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6648 OpInfo.ConstraintType != TargetLowering::C_Register) {
6649 // Memory output, or 'other' output (e.g. 'X' constraint).
6650 assert(OpInfo.isIndirect && "Memory output must be indirect operand")((OpInfo.isIndirect && "Memory output must be indirect operand"
) ? static_cast<void> (0) : __assert_fail ("OpInfo.isIndirect && \"Memory output must be indirect operand\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 6650, __PRETTY_FUNCTION__))
;
6651
6652 // Add information to the INLINEASM node to know about this output.
6653 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6654 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6655 TLI.getPointerTy()));
6656 AsmNodeOperands.push_back(OpInfo.CallOperand);
6657 break;
6658 }
6659
6660 // Otherwise, this is a register or register class output.
6661
6662 // Copy the output from the appropriate register. Find a register that
6663 // we can use.
6664 if (OpInfo.AssignedRegs.Regs.empty()) {
6665 LLVMContext &Ctx = *DAG.getContext();
6666 Ctx.emitError(CS.getInstruction(),
6667 "couldn't allocate output register for constraint '" +
6668 Twine(OpInfo.ConstraintCode) + "'");
6669 return;
6670 }
6671
6672 // If this is an indirect operand, store through the pointer after the
6673 // asm.
6674 if (OpInfo.isIndirect) {
6675 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6676 OpInfo.CallOperandVal));
6677 } else {
6678 // This is the result value of the call.
6679 assert(!CS.getType()->isVoidTy() && "Bad inline asm!")((!CS.getType()->isVoidTy() && "Bad inline asm!") ?
static_cast<void> (0) : __assert_fail ("!CS.getType()->isVoidTy() && \"Bad inline asm!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 6679, __PRETTY_FUNCTION__))
;
6680 // Concatenate this output onto the outputs list.
6681 RetValRegs.append(OpInfo.AssignedRegs);
6682 }
6683
6684 // Add information to the INLINEASM node to know that this register is
6685 // set.
6686 OpInfo.AssignedRegs
6687 .AddInlineAsmOperands(OpInfo.isEarlyClobber
6688 ? InlineAsm::Kind_RegDefEarlyClobber
6689 : InlineAsm::Kind_RegDef,
6690 false, 0, DAG, AsmNodeOperands);
6691 break;
6692 }
6693 case InlineAsm::isInput: {
6694 SDValue InOperandVal = OpInfo.CallOperand;
6695
6696 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint?
6697 // If this is required to match an output register we have already set,
6698 // just use its register.
6699 unsigned OperandNo = OpInfo.getMatchedOperand();
6700
6701 // Scan until we find the definition we already emitted of this operand.
6702 // When we find it, create a RegsForValue operand.
6703 unsigned CurOp = InlineAsm::Op_FirstOperand;
6704 for (; OperandNo; --OperandNo) {
6705 // Advance to the next operand.
6706 unsigned OpFlag =
6707 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6708 assert((InlineAsm::isRegDefKind(OpFlag) ||(((InlineAsm::isRegDefKind(OpFlag) || InlineAsm::isRegDefEarlyClobberKind
(OpFlag) || InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"
) ? static_cast<void> (0) : __assert_fail ("(InlineAsm::isRegDefKind(OpFlag) || InlineAsm::isRegDefEarlyClobberKind(OpFlag) || InlineAsm::isMemKind(OpFlag)) && \"Skipped past definitions?\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 6710, __PRETTY_FUNCTION__))
6709 InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||(((InlineAsm::isRegDefKind(OpFlag) || InlineAsm::isRegDefEarlyClobberKind
(OpFlag) || InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"
) ? static_cast<void> (0) : __assert_fail ("(InlineAsm::isRegDefKind(OpFlag) || InlineAsm::isRegDefEarlyClobberKind(OpFlag) || InlineAsm::isMemKind(OpFlag)) && \"Skipped past definitions?\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 6710, __PRETTY_FUNCTION__))
6710 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?")(((InlineAsm::isRegDefKind(OpFlag) || InlineAsm::isRegDefEarlyClobberKind
(OpFlag) || InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"
) ? static_cast<void> (0) : __assert_fail ("(InlineAsm::isRegDefKind(OpFlag) || InlineAsm::isRegDefEarlyClobberKind(OpFlag) || InlineAsm::isMemKind(OpFlag)) && \"Skipped past definitions?\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 6710, __PRETTY_FUNCTION__))
;
6711 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6712 }
6713
6714 unsigned OpFlag =
6715 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6716 if (InlineAsm::isRegDefKind(OpFlag) ||
6717 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6718 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6719 if (OpInfo.isIndirect) {
6720 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6721 LLVMContext &Ctx = *DAG.getContext();
6722 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
6723 " don't know how to handle tied "
6724 "indirect register inputs");
6725 return;
6726 }
6727
6728 RegsForValue MatchedRegs;
6729 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6730 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6731 MatchedRegs.RegVTs.push_back(RegVT);
6732 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6733 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6734 i != e; ++i) {
6735 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
6736 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6737 else {
6738 LLVMContext &Ctx = *DAG.getContext();
6739 Ctx.emitError(CS.getInstruction(),
6740 "inline asm error: This value"
6741 " type register class is not natively supported!");
6742 return;
6743 }
6744 }
6745 // Use the produced MatchedRegs object to
6746 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6747 Chain, &Flag, CS.getInstruction());
6748 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6749 true, OpInfo.getMatchedOperand(),
6750 DAG, AsmNodeOperands);
6751 break;
6752 }
6753
6754 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!")((InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"
) ? static_cast<void> (0) : __assert_fail ("InlineAsm::isMemKind(OpFlag) && \"Unknown matching constraint!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 6754, __PRETTY_FUNCTION__))
;
6755 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&((InlineAsm::getNumOperandRegisters(OpFlag) == 1 && "Unexpected number of operands"
) ? static_cast<void> (0) : __assert_fail ("InlineAsm::getNumOperandRegisters(OpFlag) == 1 && \"Unexpected number of operands\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 6756, __PRETTY_FUNCTION__))
6756 "Unexpected number of operands")((InlineAsm::getNumOperandRegisters(OpFlag) == 1 && "Unexpected number of operands"
) ? static_cast<void> (0) : __assert_fail ("InlineAsm::getNumOperandRegisters(OpFlag) == 1 && \"Unexpected number of operands\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 6756, __PRETTY_FUNCTION__))
;
6757 // Add information to the INLINEASM node to know about this input.
6758 // See InlineAsm.h isUseOperandTiedToDef.
6759 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6760 OpInfo.getMatchedOperand());
6761 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6762 TLI.getPointerTy()));
6763 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6764 break;
6765 }
6766
6767 // Treat indirect 'X' constraint as memory.
6768 if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6769 OpInfo.isIndirect)
6770 OpInfo.ConstraintType = TargetLowering::C_Memory;
6771
6772 if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6773 std::vector<SDValue> Ops;
6774 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6775 Ops, DAG);
6776 if (Ops.empty()) {
6777 LLVMContext &Ctx = *DAG.getContext();
6778 Ctx.emitError(CS.getInstruction(),
6779 "invalid operand for inline asm constraint '" +
6780 Twine(OpInfo.ConstraintCode) + "'");
6781 return;
6782 }
6783
6784 // Add information to the INLINEASM node to know about this input.
6785 unsigned ResOpType =
6786 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6787 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6788 TLI.getPointerTy()));
6789 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6790 break;
6791 }
6792
6793 if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6794 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!")((OpInfo.isIndirect && "Operand must be indirect to be a mem!"
) ? static_cast<void> (0) : __assert_fail ("OpInfo.isIndirect && \"Operand must be indirect to be a mem!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 6794, __PRETTY_FUNCTION__))
;
6795 assert(InOperandVal.getValueType() == TLI.getPointerTy() &&((InOperandVal.getValueType() == TLI.getPointerTy() &&
"Memory operands expect pointer values") ? static_cast<void
> (0) : __assert_fail ("InOperandVal.getValueType() == TLI.getPointerTy() && \"Memory operands expect pointer values\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 6796, __PRETTY_FUNCTION__))
6796 "Memory operands expect pointer values")((InOperandVal.getValueType() == TLI.getPointerTy() &&
"Memory operands expect pointer values") ? static_cast<void
> (0) : __assert_fail ("InOperandVal.getValueType() == TLI.getPointerTy() && \"Memory operands expect pointer values\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 6796, __PRETTY_FUNCTION__))
;
6797
6798 // Add information to the INLINEASM node to know about this input.
6799 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6800 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6801 TLI.getPointerTy()));
6802 AsmNodeOperands.push_back(InOperandVal);
6803 break;
6804 }
6805
6806 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||(((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
OpInfo.ConstraintType == TargetLowering::C_Register) &&
"Unknown constraint type!") ? static_cast<void> (0) : __assert_fail
("(OpInfo.ConstraintType == TargetLowering::C_RegisterClass || OpInfo.ConstraintType == TargetLowering::C_Register) && \"Unknown constraint type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 6808, __PRETTY_FUNCTION__))
6807 OpInfo.ConstraintType == TargetLowering::C_Register) &&(((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
OpInfo.ConstraintType == TargetLowering::C_Register) &&
"Unknown constraint type!") ? static_cast<void> (0) : __assert_fail
("(OpInfo.ConstraintType == TargetLowering::C_RegisterClass || OpInfo.ConstraintType == TargetLowering::C_Register) && \"Unknown constraint type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 6808, __PRETTY_FUNCTION__))
6808 "Unknown constraint type!")(((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
OpInfo.ConstraintType == TargetLowering::C_Register) &&
"Unknown constraint type!") ? static_cast<void> (0) : __assert_fail
("(OpInfo.ConstraintType == TargetLowering::C_RegisterClass || OpInfo.ConstraintType == TargetLowering::C_Register) && \"Unknown constraint type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 6808, __PRETTY_FUNCTION__))
;
6809
6810 // TODO: Support this.
6811 if (OpInfo.isIndirect) {
6812 LLVMContext &Ctx = *DAG.getContext();
6813 Ctx.emitError(CS.getInstruction(),
6814 "Don't know how to handle indirect register inputs yet "
6815 "for constraint '" +
6816 Twine(OpInfo.ConstraintCode) + "'");
6817 return;
6818 }
6819
6820 // Copy the input into the appropriate registers.
6821 if (OpInfo.AssignedRegs.Regs.empty()) {
6822 LLVMContext &Ctx = *DAG.getContext();
6823 Ctx.emitError(CS.getInstruction(),
6824 "couldn't allocate input reg for constraint '" +
6825 Twine(OpInfo.ConstraintCode) + "'");
6826 return;
6827 }
6828
6829 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6830 Chain, &Flag, CS.getInstruction());
6831
6832 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6833 DAG, AsmNodeOperands);
6834 break;
6835 }
6836 case InlineAsm::isClobber: {
6837 // Add the clobbered value to the operand list, so that the register
6838 // allocator is aware that the physreg got clobbered.
6839 if (!OpInfo.AssignedRegs.Regs.empty())
6840 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6841 false, 0, DAG,
6842 AsmNodeOperands);
6843 break;
6844 }
6845 }
6846 }
6847
6848 // Finish up input operands. Set the input chain and add the flag last.
6849 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6850 if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6851
6852 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
6853 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
6854 Flag = Chain.getValue(1);
6855
6856 // If this asm returns a register value, copy the result from that register
6857 // and set it as the value of the call.
6858 if (!RetValRegs.Regs.empty()) {
6859 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6860 Chain, &Flag, CS.getInstruction());
6861
6862 // FIXME: Why don't we do this for inline asms with MRVs?
6863 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6864 EVT ResultType = TLI.getValueType(CS.getType());
6865
6866 // If any of the results of the inline asm is a vector, it may have the
6867 // wrong width/num elts. This can happen for register classes that can
6868 // contain multiple different value types. The preg or vreg allocated may
6869 // not have the same VT as was expected. Convert it to the right type
6870 // with bit_convert.
6871 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6872 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
6873 ResultType, Val);
6874
6875 } else if (ResultType != Val.getValueType() &&
6876 ResultType.isInteger() && Val.getValueType().isInteger()) {
6877 // If a result value was tied to an input value, the computed result may
6878 // have a wider width than the expected result. Extract the relevant
6879 // portion.
6880 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
6881 }
6882
6883 assert(ResultType == Val.getValueType() && "Asm result value mismatch!")((ResultType == Val.getValueType() && "Asm result value mismatch!"
) ? static_cast<void> (0) : __assert_fail ("ResultType == Val.getValueType() && \"Asm result value mismatch!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 6883, __PRETTY_FUNCTION__))
;
6884 }
6885
6886 setValue(CS.getInstruction(), Val);
6887 // Don't need to use this as a chain in this case.
6888 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6889 return;
6890 }
6891
6892 std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6893
6894 // Process indirect outputs, first output all of the flagged copies out of
6895 // physregs.
6896 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6897 RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6898 const Value *Ptr = IndirectStoresToEmit[i].second;
6899 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6900 Chain, &Flag, IA);
6901 StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6902 }
6903
6904 // Emit the non-flagged stores from the physregs.
6905 SmallVector<SDValue, 8> OutChains;
6906 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6907 SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
6908 StoresToEmit[i].first,
6909 getValue(StoresToEmit[i].second),
6910 MachinePointerInfo(StoresToEmit[i].second),
6911 false, false, 0);
6912 OutChains.push_back(Val);
6913 }
6914
6915 if (!OutChains.empty())
6916 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
6917
6918 DAG.setRoot(Chain);
6919}
6920
6921void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6922 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
6923 MVT::Other, getRoot(),
6924 getValue(I.getArgOperand(0)),
6925 DAG.getSrcValue(I.getArgOperand(0))));
6926}
6927
6928void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6929 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6930 const DataLayout &DL = *TLI.getDataLayout();
6931 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(),
6932 getRoot(), getValue(I.getOperand(0)),
6933 DAG.getSrcValue(I.getOperand(0)),
6934 DL.getABITypeAlignment(I.getType()));
6935 setValue(&I, V);
6936 DAG.setRoot(V.getValue(1));
6937}
6938
6939void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6940 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
6941 MVT::Other, getRoot(),
6942 getValue(I.getArgOperand(0)),
6943 DAG.getSrcValue(I.getArgOperand(0))));
6944}
6945
6946void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6947 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
6948 MVT::Other, getRoot(),
6949 getValue(I.getArgOperand(0)),
6950 getValue(I.getArgOperand(1)),
6951 DAG.getSrcValue(I.getArgOperand(0)),
6952 DAG.getSrcValue(I.getArgOperand(1))));
6953}
6954
6955/// \brief Lower an argument list according to the target calling convention.
6956///
6957/// \return A tuple of <return-value, token-chain>
6958///
6959/// This is a helper for lowering intrinsics that follow a target calling
6960/// convention or require stack pointer adjustment. Only a subset of the
6961/// intrinsic's operands need to participate in the calling convention.
6962std::pair<SDValue, SDValue>
6963SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx,
6964 unsigned NumArgs, SDValue Callee,
6965 bool UseVoidTy,
6966 MachineBasicBlock *LandingPad) {
6967 TargetLowering::ArgListTy Args;
6968 Args.reserve(NumArgs);
6969
6970 // Populate the argument list.
6971 // Attributes for args start at offset 1, after the return attribute.
6972 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
6973 ArgI != ArgE; ++ArgI) {
6974 const Value *V = CS->getOperand(ArgI);
6975
6976 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.")((!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."
) ? static_cast<void> (0) : __assert_fail ("!V->getType()->isEmptyTy() && \"Empty type passed to intrinsic.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 6976, __PRETTY_FUNCTION__))
;
6977
6978 TargetLowering::ArgListEntry Entry;
6979 Entry.Node = getValue(V);
6980 Entry.Ty = V->getType();
6981 Entry.setAttributes(&CS, AttrI);
6982 Args.push_back(Entry);
6983 }
6984
6985 Type *retTy = UseVoidTy ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
6986 TargetLowering::CallLoweringInfo CLI(DAG);
6987 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
6988 .setCallee(CS.getCallingConv(), retTy, Callee, std::move(Args), NumArgs)
6989 .setDiscardResult(CS->use_empty());
6990
6991 return lowerInvokable(CLI, LandingPad);
6992}
6993
6994/// \brief Add a stack map intrinsic call's live variable operands to a stackmap
6995/// or patchpoint target node's operand list.
6996///
6997/// Constants are converted to TargetConstants purely as an optimization to
6998/// avoid constant materialization and register allocation.
6999///
7000/// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
7001/// generate addess computation nodes, and so ExpandISelPseudo can convert the
7002/// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
7003/// address materialization and register allocation, but may also be required
7004/// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
7005/// alloca in the entry block, then the runtime may assume that the alloca's
7006/// StackMap location can be read immediately after compilation and that the
7007/// location is valid at any point during execution (this is similar to the
7008/// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
7009/// only available in a register, then the runtime would need to trap when
7010/// execution reaches the StackMap in order to read the alloca's location.
7011static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
7012 SmallVectorImpl<SDValue> &Ops,
7013 SelectionDAGBuilder &Builder) {
7014 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
7015 SDValue OpVal = Builder.getValue(CS.getArgument(i));
7016 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
7017 Ops.push_back(
7018 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64));
7019 Ops.push_back(
7020 Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64));
7021 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
7022 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
7023 Ops.push_back(
7024 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy()));
7025 } else
7026 Ops.push_back(OpVal);
7027 }
7028}
7029
7030/// \brief Lower llvm.experimental.stackmap directly to its target opcode.
7031void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
7032 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
7033 // [live variables...])
7034
7035 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.")((CI.getType()->isVoidTy() && "Stackmap cannot return a value."
) ? static_cast<void> (0) : __assert_fail ("CI.getType()->isVoidTy() && \"Stackmap cannot return a value.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7035, __PRETTY_FUNCTION__))
;
7036
7037 SDValue Chain, InFlag, Callee, NullPtr;
7038 SmallVector<SDValue, 32> Ops;
7039
7040 SDLoc DL = getCurSDLoc();
7041 Callee = getValue(CI.getCalledValue());
7042 NullPtr = DAG.getIntPtrConstant(0, true);
7043
7044 // The stackmap intrinsic only records the live variables (the arguemnts
7045 // passed to it) and emits NOPS (if requested). Unlike the patchpoint
7046 // intrinsic, this won't be lowered to a function call. This means we don't
7047 // have to worry about calling conventions and target specific lowering code.
7048 // Instead we perform the call lowering right here.
7049 //
7050 // chain, flag = CALLSEQ_START(chain, 0)
7051 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
7052 // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
7053 //
7054 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL);
7055 InFlag = Chain.getValue(1);
7056
7057 // Add the <id> and <numBytes> constants.
7058 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
7059 Ops.push_back(DAG.getTargetConstant(
7060 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64));
7061 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
7062 Ops.push_back(DAG.getTargetConstant(
7063 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32));
7064
7065 // Push live variables for the stack map.
7066 addStackMapLiveVars(&CI, 2, Ops, *this);
7067
7068 // We are not pushing any register mask info here on the operands list,
7069 // because the stackmap doesn't clobber anything.
7070
7071 // Push the chain and the glue flag.
7072 Ops.push_back(Chain);
7073 Ops.push_back(InFlag);
7074
7075 // Create the STACKMAP node.
7076 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7077 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
7078 Chain = SDValue(SM, 0);
7079 InFlag = Chain.getValue(1);
7080
7081 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
7082
7083 // Stackmaps don't generate values, so nothing goes into the NodeMap.
7084
7085 // Set the root to the target-lowered call chain.
7086 DAG.setRoot(Chain);
7087
7088 // Inform the Frame Information that we have a stackmap in this function.
7089 FuncInfo.MF->getFrameInfo()->setHasStackMap();
7090}
7091
7092/// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
7093void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
7094 MachineBasicBlock *LandingPad) {
7095 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
7096 // i32 <numBytes>,
7097 // i8* <target>,
7098 // i32 <numArgs>,
7099 // [Args...],
7100 // [live variables...])
7101
7102 CallingConv::ID CC = CS.getCallingConv();
7103 bool IsAnyRegCC = CC == CallingConv::AnyReg;
7104 bool HasDef = !CS->getType()->isVoidTy();
7105 SDValue Callee = getValue(CS->getOperand(2)); // <target>
7106
7107 // Get the real number of arguments participating in the call <numArgs>
7108 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
7109 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
7110
7111 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
7112 // Intrinsics include all meta-operands up to but not including CC.
7113 unsigned NumMetaOpers = PatchPointOpers::CCPos;
7114 assert(CS.arg_size() >= NumMetaOpers + NumArgs &&((CS.arg_size() >= NumMetaOpers + NumArgs && "Not enough arguments provided to the patchpoint intrinsic"
) ? static_cast<void> (0) : __assert_fail ("CS.arg_size() >= NumMetaOpers + NumArgs && \"Not enough arguments provided to the patchpoint intrinsic\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7115, __PRETTY_FUNCTION__))
7115 "Not enough arguments provided to the patchpoint intrinsic")((CS.arg_size() >= NumMetaOpers + NumArgs && "Not enough arguments provided to the patchpoint intrinsic"
) ? static_cast<void> (0) : __assert_fail ("CS.arg_size() >= NumMetaOpers + NumArgs && \"Not enough arguments provided to the patchpoint intrinsic\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7115, __PRETTY_FUNCTION__))
;
7116
7117 // For AnyRegCC the arguments are lowered later on manually.
7118 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
7119 std::pair<SDValue, SDValue> Result =
7120 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC,
7121 LandingPad);
7122
7123 SDNode *CallEnd = Result.second.getNode();
7124 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
7125 CallEnd = CallEnd->getOperand(0).getNode();
7126
7127 /// Get a call instruction from the call sequence chain.
7128 /// Tail calls are not allowed.
7129 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&((CallEnd->getOpcode() == ISD::CALLSEQ_END && "Expected a callseq node."
) ? static_cast<void> (0) : __assert_fail ("CallEnd->getOpcode() == ISD::CALLSEQ_END && \"Expected a callseq node.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7130, __PRETTY_FUNCTION__))
7130 "Expected a callseq node.")((CallEnd->getOpcode() == ISD::CALLSEQ_END && "Expected a callseq node."
) ? static_cast<void> (0) : __assert_fail ("CallEnd->getOpcode() == ISD::CALLSEQ_END && \"Expected a callseq node.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7130, __PRETTY_FUNCTION__))
;
7131 SDNode *Call = CallEnd->getOperand(0).getNode();
7132 bool HasGlue = Call->getGluedNode();
7133
7134 // Replace the target specific call node with the patchable intrinsic.
7135 SmallVector<SDValue, 8> Ops;
7136
7137 // Add the <id> and <numBytes> constants.
7138 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
7139 Ops.push_back(DAG.getTargetConstant(
7140 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64));
7141 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
7142 Ops.push_back(DAG.getTargetConstant(
7143 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32));
7144
7145 // Assume that the Callee is a constant address.
7146 // FIXME: handle function symbols in the future.
7147 Ops.push_back(
7148 DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(),
7149 /*isTarget=*/true));
7150
7151 // Adjust <numArgs> to account for any arguments that have been passed on the
7152 // stack instead.
7153 // Call Node: Chain, Target, {Args}, RegMask, [Glue]
7154 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
7155 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
7156 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32));
7157
7158 // Add the calling convention
7159 Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32));
7160
7161 // Add the arguments we omitted previously. The register allocator should
7162 // place these in any free register.
7163 if (IsAnyRegCC)
7164 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
7165 Ops.push_back(getValue(CS.getArgument(i)));
7166
7167 // Push the arguments from the call instruction up to the register mask.
7168 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
7169 for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i)
7170 Ops.push_back(*i);
7171
7172 // Push live variables for the stack map.
7173 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, Ops, *this);
7174
7175 // Push the register mask info.
7176 if (HasGlue)
7177 Ops.push_back(*(Call->op_end()-2));
7178 else
7179 Ops.push_back(*(Call->op_end()-1));
7180
7181 // Push the chain (this is originally the first operand of the call, but
7182 // becomes now the last or second to last operand).
7183 Ops.push_back(*(Call->op_begin()));
7184
7185 // Push the glue flag (last operand).
7186 if (HasGlue)
7187 Ops.push_back(*(Call->op_end()-1));
7188
7189 SDVTList NodeTys;
7190 if (IsAnyRegCC && HasDef) {
7191 // Create the return types based on the intrinsic definition
7192 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7193 SmallVector<EVT, 3> ValueVTs;
7194 ComputeValueVTs(TLI, CS->getType(), ValueVTs);
7195 assert(ValueVTs.size() == 1 && "Expected only one return value type.")((ValueVTs.size() == 1 && "Expected only one return value type."
) ? static_cast<void> (0) : __assert_fail ("ValueVTs.size() == 1 && \"Expected only one return value type.\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7195, __PRETTY_FUNCTION__))
;
7196
7197 // There is always a chain and a glue type at the end
7198 ValueVTs.push_back(MVT::Other);
7199 ValueVTs.push_back(MVT::Glue);
7200 NodeTys = DAG.getVTList(ValueVTs);
7201 } else
7202 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7203
7204 // Replace the target specific call node with a PATCHPOINT node.
7205 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
7206 getCurSDLoc(), NodeTys, Ops);
7207
7208 // Update the NodeMap.
7209 if (HasDef) {
7210 if (IsAnyRegCC)
7211 setValue(CS.getInstruction(), SDValue(MN, 0));
7212 else
7213 setValue(CS.getInstruction(), Result.first);
7214 }
7215
7216 // Fixup the consumers of the intrinsic. The chain and glue may be used in the
7217 // call sequence. Furthermore the location of the chain and glue can change
7218 // when the AnyReg calling convention is used and the intrinsic returns a
7219 // value.
7220 if (IsAnyRegCC && HasDef) {
7221 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
7222 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
7223 DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
7224 } else
7225 DAG.ReplaceAllUsesWith(Call, MN);
7226 DAG.DeleteNode(Call);
7227
7228 // Inform the Frame Information that we have a patchpoint in this function.
7229 FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
7230}
7231
7232/// Returns an AttributeSet representing the attributes applied to the return
7233/// value of the given call.
7234static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
7235 SmallVector<Attribute::AttrKind, 2> Attrs;
7236 if (CLI.RetSExt)
7237 Attrs.push_back(Attribute::SExt);
7238 if (CLI.RetZExt)
7239 Attrs.push_back(Attribute::ZExt);
7240 if (CLI.IsInReg)
7241 Attrs.push_back(Attribute::InReg);
7242
7243 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
7244 Attrs);
7245}
7246
7247/// TargetLowering::LowerCallTo - This is the default LowerCallTo
7248/// implementation, which just calls LowerCall.
7249/// FIXME: When all targets are
7250/// migrated to using LowerCall, this hook should be integrated into SDISel.
7251std::pair<SDValue, SDValue>
7252TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
7253 // Handle the incoming return values from the call.
7254 CLI.Ins.clear();
7255 Type *OrigRetTy = CLI.RetTy;
7256 SmallVector<EVT, 4> RetTys;
7257 SmallVector<uint64_t, 4> Offsets;
7258 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets);
7259
7260 SmallVector<ISD::OutputArg, 4> Outs;
7261 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this);
7262
7263 bool CanLowerReturn =
7264 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
7265 CLI.IsVarArg, Outs, CLI.RetTy->getContext());
7266
7267 SDValue DemoteStackSlot;
7268 int DemoteStackIdx = -100;
7269 if (!CanLowerReturn) {
7270 // FIXME: equivalent assert?
7271 // assert(!CS.hasInAllocaArgument() &&
7272 // "sret demotion is incompatible with inalloca");
7273 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy);
7274 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy);
7275 MachineFunction &MF = CLI.DAG.getMachineFunction();
7276 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
7277 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
7278
7279 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy());
7280 ArgListEntry Entry;
7281 Entry.Node = DemoteStackSlot;
7282 Entry.Ty = StackSlotPtrType;
7283 Entry.isSExt = false;
7284 Entry.isZExt = false;
7285 Entry.isInReg = false;
7286 Entry.isSRet = true;
7287 Entry.isNest = false;
7288 Entry.isByVal = false;
7289 Entry.isReturned = false;
7290 Entry.Alignment = Align;
7291 CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
7292 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
7293 } else {
7294 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7295 EVT VT = RetTys[I];
7296 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7297 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7298 for (unsigned i = 0; i != NumRegs; ++i) {
7299 ISD::InputArg MyFlags;
7300 MyFlags.VT = RegisterVT;
7301 MyFlags.ArgVT = VT;
7302 MyFlags.Used = CLI.IsReturnValueUsed;
7303 if (CLI.RetSExt)
7304 MyFlags.Flags.setSExt();
7305 if (CLI.RetZExt)
7306 MyFlags.Flags.setZExt();
7307 if (CLI.IsInReg)
7308 MyFlags.Flags.setInReg();
7309 CLI.Ins.push_back(MyFlags);
7310 }
7311 }
7312 }
7313
7314 // Handle all of the outgoing arguments.
7315 CLI.Outs.clear();
7316 CLI.OutVals.clear();
7317 ArgListTy &Args = CLI.getArgs();
7318 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7319 SmallVector<EVT, 4> ValueVTs;
7320 ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
7321 Type *FinalType = Args[i].Ty;
7322 if (Args[i].isByVal)
7323 FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
7324 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
7325 FinalType, CLI.CallConv, CLI.IsVarArg);
7326 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
7327 ++Value) {
7328 EVT VT = ValueVTs[Value];
7329 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
7330 SDValue Op = SDValue(Args[i].Node.getNode(),
7331 Args[i].Node.getResNo() + Value);
7332 ISD::ArgFlagsTy Flags;
7333 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy);
7334
7335 if (Args[i].isZExt)
7336 Flags.setZExt();
7337 if (Args[i].isSExt)
7338 Flags.setSExt();
7339 if (Args[i].isInReg)
7340 Flags.setInReg();
7341 if (Args[i].isSRet)
7342 Flags.setSRet();
7343 if (Args[i].isByVal)
7344 Flags.setByVal();
7345 if (Args[i].isInAlloca) {
7346 Flags.setInAlloca();
7347 // Set the byval flag for CCAssignFn callbacks that don't know about
7348 // inalloca. This way we can know how many bytes we should've allocated
7349 // and how many bytes a callee cleanup function will pop. If we port
7350 // inalloca to more targets, we'll have to add custom inalloca handling
7351 // in the various CC lowering callbacks.
7352 Flags.setByVal();
7353 }
7354 if (Args[i].isByVal || Args[i].isInAlloca) {
7355 PointerType *Ty = cast<PointerType>(Args[i].Ty);
7356 Type *ElementTy = Ty->getElementType();
7357 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy));
7358 // For ByVal, alignment should come from FE. BE will guess if this
7359 // info is not there but there are cases it cannot get right.
7360 unsigned FrameAlign;
7361 if (Args[i].Alignment)
7362 FrameAlign = Args[i].Alignment;
7363 else
7364 FrameAlign = getByValTypeAlignment(ElementTy);
7365 Flags.setByValAlign(FrameAlign);
7366 }
7367 if (Args[i].isNest)
7368 Flags.setNest();
7369 if (NeedsRegBlock) {
7370 Flags.setInConsecutiveRegs();
7371 if (Value == NumValues - 1)
7372 Flags.setInConsecutiveRegsLast();
7373 }
7374 Flags.setOrigAlign(OriginalAlignment);
7375
7376 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
7377 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
7378 SmallVector<SDValue, 4> Parts(NumParts);
7379 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
7380
7381 if (Args[i].isSExt)
7382 ExtendKind = ISD::SIGN_EXTEND;
7383 else if (Args[i].isZExt)
7384 ExtendKind = ISD::ZERO_EXTEND;
7385
7386 // Conservatively only handle 'returned' on non-vectors for now
7387 if (Args[i].isReturned && !Op.getValueType().isVector()) {
7388 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&((CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues
&& "unexpected use of 'returned'") ? static_cast<
void> (0) : __assert_fail ("CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && \"unexpected use of 'returned'\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7389, __PRETTY_FUNCTION__))
7389 "unexpected use of 'returned'")((CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues
&& "unexpected use of 'returned'") ? static_cast<
void> (0) : __assert_fail ("CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && \"unexpected use of 'returned'\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7389, __PRETTY_FUNCTION__))
;
7390 // Before passing 'returned' to the target lowering code, ensure that
7391 // either the register MVT and the actual EVT are the same size or that
7392 // the return value and argument are extended in the same way; in these
7393 // cases it's safe to pass the argument register value unchanged as the
7394 // return register value (although it's at the target's option whether
7395 // to do so)
7396 // TODO: allow code generation to take advantage of partially preserved
7397 // registers rather than clobbering the entire register when the
7398 // parameter extension method is not compatible with the return
7399 // extension method
7400 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
7401 (ExtendKind != ISD::ANY_EXTEND &&
7402 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
7403 Flags.setReturned();
7404 }
7405
7406 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
7407 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind);
7408
7409 for (unsigned j = 0; j != NumParts; ++j) {
7410 // if it isn't first piece, alignment must be 1
7411 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
7412 i < CLI.NumFixedArgs,
7413 i, j*Parts[j].getValueType().getStoreSize());
7414 if (NumParts > 1 && j == 0)
7415 MyFlags.Flags.setSplit();
7416 else if (j != 0)
7417 MyFlags.Flags.setOrigAlign(1);
7418
7419 CLI.Outs.push_back(MyFlags);
7420 CLI.OutVals.push_back(Parts[j]);
7421 }
7422 }
7423 }
7424
7425 SmallVector<SDValue, 4> InVals;
7426 CLI.Chain = LowerCall(CLI, InVals);
7427
7428 // Verify that the target's LowerCall behaved as expected.
7429 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&((CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT
::Other && "LowerCall didn't return a valid chain!") ?
static_cast<void> (0) : __assert_fail ("CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && \"LowerCall didn't return a valid chain!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7430, __PRETTY_FUNCTION__))
7430 "LowerCall didn't return a valid chain!")((CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT
::Other && "LowerCall didn't return a valid chain!") ?
static_cast<void> (0) : __assert_fail ("CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && \"LowerCall didn't return a valid chain!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7430, __PRETTY_FUNCTION__))
;
7431 assert((!CLI.IsTailCall || InVals.empty()) &&(((!CLI.IsTailCall || InVals.empty()) && "LowerCall emitted a return value for a tail call!"
) ? static_cast<void> (0) : __assert_fail ("(!CLI.IsTailCall || InVals.empty()) && \"LowerCall emitted a return value for a tail call!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7432, __PRETTY_FUNCTION__))
7432 "LowerCall emitted a return value for a tail call!")(((!CLI.IsTailCall || InVals.empty()) && "LowerCall emitted a return value for a tail call!"
) ? static_cast<void> (0) : __assert_fail ("(!CLI.IsTailCall || InVals.empty()) && \"LowerCall emitted a return value for a tail call!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7432, __PRETTY_FUNCTION__))
;
7433 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&(((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
"LowerCall didn't emit the correct number of values!") ? static_cast
<void> (0) : __assert_fail ("(CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && \"LowerCall didn't emit the correct number of values!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7434, __PRETTY_FUNCTION__))
7434 "LowerCall didn't emit the correct number of values!")(((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
"LowerCall didn't emit the correct number of values!") ? static_cast
<void> (0) : __assert_fail ("(CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && \"LowerCall didn't emit the correct number of values!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7434, __PRETTY_FUNCTION__))
;
7435
7436 // For a tail call, the return value is merely live-out and there aren't
7437 // any nodes in the DAG representing it. Return a special value to
7438 // indicate that a tail call has been emitted and no more Instructions
7439 // should be processed in the current block.
7440 if (CLI.IsTailCall) {
7441 CLI.DAG.setRoot(CLI.Chain);
7442 return std::make_pair(SDValue(), SDValue());
7443 }
7444
7445 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++
i) { ((InVals[i].getNode() && "LowerCall emitted a null value!"
) ? static_cast<void> (0) : __assert_fail ("InVals[i].getNode() && \"LowerCall emitted a null value!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7447, __PRETTY_FUNCTION__)); ((EVT(CLI.Ins[i].VT) == InVals
[i].getValueType() && "LowerCall emitted a value with the wrong type!"
) ? static_cast<void> (0) : __assert_fail ("EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && \"LowerCall emitted a value with the wrong type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7449, __PRETTY_FUNCTION__)); }; } } while (0)
7446 assert(InVals[i].getNode() &&do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++
i) { ((InVals[i].getNode() && "LowerCall emitted a null value!"
) ? static_cast<void> (0) : __assert_fail ("InVals[i].getNode() && \"LowerCall emitted a null value!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7447, __PRETTY_FUNCTION__)); ((EVT(CLI.Ins[i].VT) == InVals
[i].getValueType() && "LowerCall emitted a value with the wrong type!"
) ? static_cast<void> (0) : __assert_fail ("EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && \"LowerCall emitted a value with the wrong type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7449, __PRETTY_FUNCTION__)); }; } } while (0)
7447 "LowerCall emitted a null value!");do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++
i) { ((InVals[i].getNode() && "LowerCall emitted a null value!"
) ? static_cast<void> (0) : __assert_fail ("InVals[i].getNode() && \"LowerCall emitted a null value!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7447, __PRETTY_FUNCTION__)); ((EVT(CLI.Ins[i].VT) == InVals
[i].getValueType() && "LowerCall emitted a value with the wrong type!"
) ? static_cast<void> (0) : __assert_fail ("EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && \"LowerCall emitted a value with the wrong type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7449, __PRETTY_FUNCTION__)); }; } } while (0)
7448 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++
i) { ((InVals[i].getNode() && "LowerCall emitted a null value!"
) ? static_cast<void> (0) : __assert_fail ("InVals[i].getNode() && \"LowerCall emitted a null value!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7447, __PRETTY_FUNCTION__)); ((EVT(CLI.Ins[i].VT) == InVals
[i].getValueType() && "LowerCall emitted a value with the wrong type!"
) ? static_cast<void> (0) : __assert_fail ("EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && \"LowerCall emitted a value with the wrong type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7449, __PRETTY_FUNCTION__)); }; } } while (0)
7449 "LowerCall emitted a value with the wrong type!");do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++
i) { ((InVals[i].getNode() && "LowerCall emitted a null value!"
) ? static_cast<void> (0) : __assert_fail ("InVals[i].getNode() && \"LowerCall emitted a null value!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7447, __PRETTY_FUNCTION__)); ((EVT(CLI.Ins[i].VT) == InVals
[i].getValueType() && "LowerCall emitted a value with the wrong type!"
) ? static_cast<void> (0) : __assert_fail ("EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && \"LowerCall emitted a value with the wrong type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7449, __PRETTY_FUNCTION__)); }; } } while (0)
7450 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++
i) { ((InVals[i].getNode() && "LowerCall emitted a null value!"
) ? static_cast<void> (0) : __assert_fail ("InVals[i].getNode() && \"LowerCall emitted a null value!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7447, __PRETTY_FUNCTION__)); ((EVT(CLI.Ins[i].VT) == InVals
[i].getValueType() && "LowerCall emitted a value with the wrong type!"
) ? static_cast<void> (0) : __assert_fail ("EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && \"LowerCall emitted a value with the wrong type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7449, __PRETTY_FUNCTION__)); }; } } while (0)
;
7451
7452 SmallVector<SDValue, 4> ReturnValues;
7453 if (!CanLowerReturn) {
7454 // The instruction result is the result of loading from the
7455 // hidden sret parameter.
7456 SmallVector<EVT, 1> PVTs;
7457 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
7458
7459 ComputeValueVTs(*this, PtrRetTy, PVTs);
7460 assert(PVTs.size() == 1 && "Pointers should fit in one register")((PVTs.size() == 1 && "Pointers should fit in one register"
) ? static_cast<void> (0) : __assert_fail ("PVTs.size() == 1 && \"Pointers should fit in one register\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7460, __PRETTY_FUNCTION__))
;
7461 EVT PtrVT = PVTs[0];
7462
7463 unsigned NumValues = RetTys.size();
7464 ReturnValues.resize(NumValues);
7465 SmallVector<SDValue, 4> Chains(NumValues);
7466
7467 for (unsigned i = 0; i < NumValues; ++i) {
7468 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
7469 CLI.DAG.getConstant(Offsets[i], PtrVT));
7470 SDValue L = CLI.DAG.getLoad(
7471 RetTys[i], CLI.DL, CLI.Chain, Add,
7472 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false,
7473 false, false, 1);
7474 ReturnValues[i] = L;
7475 Chains[i] = L.getValue(1);
7476 }
7477
7478 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
7479 } else {
7480 // Collect the legal value parts into potentially illegal values
7481 // that correspond to the original function's return values.
7482 ISD::NodeType AssertOp = ISD::DELETED_NODE;
7483 if (CLI.RetSExt)
7484 AssertOp = ISD::AssertSext;
7485 else if (CLI.RetZExt)
7486 AssertOp = ISD::AssertZext;
7487 unsigned CurReg = 0;
7488 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7489 EVT VT = RetTys[I];
7490 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7491 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7492
7493 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
7494 NumRegs, RegisterVT, VT, nullptr,
7495 AssertOp));
7496 CurReg += NumRegs;
7497 }
7498
7499 // For a function returning void, there is no return value. We can't create
7500 // such a node, so we just return a null return value in that case. In
7501 // that case, nothing will actually look at the value.
7502 if (ReturnValues.empty())
7503 return std::make_pair(SDValue(), CLI.Chain);
7504 }
7505
7506 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
7507 CLI.DAG.getVTList(RetTys), ReturnValues);
7508 return std::make_pair(Res, CLI.Chain);
7509}
7510
7511void TargetLowering::LowerOperationWrapper(SDNode *N,
7512 SmallVectorImpl<SDValue> &Results,
7513 SelectionDAG &DAG) const {
7514 SDValue Res = LowerOperation(SDValue(N, 0), DAG);
7515 if (Res.getNode())
7516 Results.push_back(Res);
7517}
7518
7519SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7520 llvm_unreachable("LowerOperation not implemented for this target!")::llvm::llvm_unreachable_internal("LowerOperation not implemented for this target!"
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7520)
;
7521}
7522
7523void
7524SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
7525 SDValue Op = getNonRegisterValue(V);
7526 assert((Op.getOpcode() != ISD::CopyFromReg ||(((Op.getOpcode() != ISD::CopyFromReg || cast<RegisterSDNode
>(Op.getOperand(1))->getReg() != Reg) && "Copy from a reg to the same reg!"
) ? static_cast<void> (0) : __assert_fail ("(Op.getOpcode() != ISD::CopyFromReg || cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && \"Copy from a reg to the same reg!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7528, __PRETTY_FUNCTION__))
7527 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&(((Op.getOpcode() != ISD::CopyFromReg || cast<RegisterSDNode
>(Op.getOperand(1))->getReg() != Reg) && "Copy from a reg to the same reg!"
) ? static_cast<void> (0) : __assert_fail ("(Op.getOpcode() != ISD::CopyFromReg || cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && \"Copy from a reg to the same reg!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7528, __PRETTY_FUNCTION__))
7528 "Copy from a reg to the same reg!")(((Op.getOpcode() != ISD::CopyFromReg || cast<RegisterSDNode
>(Op.getOperand(1))->getReg() != Reg) && "Copy from a reg to the same reg!"
) ? static_cast<void> (0) : __assert_fail ("(Op.getOpcode() != ISD::CopyFromReg || cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && \"Copy from a reg to the same reg!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7528, __PRETTY_FUNCTION__))
;
7529 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg")((!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"
) ? static_cast<void> (0) : __assert_fail ("!TargetRegisterInfo::isPhysicalRegister(Reg) && \"Is a physreg\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7529, __PRETTY_FUNCTION__))
;
7530
7531 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7532 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
7533 SDValue Chain = DAG.getEntryNode();
7534
7535 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
7536 FuncInfo.PreferredExtendType.end())
7537 ? ISD::ANY_EXTEND
7538 : FuncInfo.PreferredExtendType[V];
7539 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
7540 PendingExports.push_back(Chain);
7541}
7542
7543#include "llvm/CodeGen/SelectionDAGISel.h"
7544
7545/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
7546/// entry block, return true. This includes arguments used by switches, since
7547/// the switch may expand into multiple basic blocks.
7548static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
7549 // With FastISel active, we may be splitting blocks, so force creation
7550 // of virtual registers for all non-dead arguments.
7551 if (FastISel)
7552 return A->use_empty();
7553
7554 const BasicBlock *Entry = A->getParent()->begin();
7555 for (const User *U : A->users())
7556 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
7557 return false; // Use not in entry block.
7558
7559 return true;
7560}
7561
7562void SelectionDAGISel::LowerArguments(const Function &F) {
7563 SelectionDAG &DAG = SDB->DAG;
7564 SDLoc dl = SDB->getCurSDLoc();
7565 const DataLayout *DL = TLI->getDataLayout();
7566 SmallVector<ISD::InputArg, 16> Ins;
7567
7568 if (!FuncInfo->CanLowerReturn) {
7569 // Put in an sret pointer parameter before all the other parameters.
7570 SmallVector<EVT, 1> ValueVTs;
7571 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
7572
7573 // NOTE: Assuming that a pointer will never break down to more than one VT
7574 // or one register.
7575 ISD::ArgFlagsTy Flags;
7576 Flags.setSRet();
7577 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
7578 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0);
7579 Ins.push_back(RetArg);
7580 }
7581
7582 // Set up the incoming argument description vector.
7583 unsigned Idx = 1;
7584 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
7585 I != E; ++I, ++Idx) {
7586 SmallVector<EVT, 4> ValueVTs;
7587 ComputeValueVTs(*TLI, I->getType(), ValueVTs);
7588 bool isArgValueUsed = !I->use_empty();
7589 unsigned PartBase = 0;
7590 Type *FinalType = I->getType();
7591 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7592 FinalType = cast<PointerType>(FinalType)->getElementType();
7593 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
7594 FinalType, F.getCallingConv(), F.isVarArg());
7595 for (unsigned Value = 0, NumValues = ValueVTs.size();
7596 Value != NumValues; ++Value) {
7597 EVT VT = ValueVTs[Value];
7598 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
7599 ISD::ArgFlagsTy Flags;
7600 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy);
7601
7602 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7603 Flags.setZExt();
7604 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7605 Flags.setSExt();
7606 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
7607 Flags.setInReg();
7608 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
7609 Flags.setSRet();
7610 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7611 Flags.setByVal();
7612 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) {
7613 Flags.setInAlloca();
7614 // Set the byval flag for CCAssignFn callbacks that don't know about
7615 // inalloca. This way we can know how many bytes we should've allocated
7616 // and how many bytes a callee cleanup function will pop. If we port
7617 // inalloca to more targets, we'll have to add custom inalloca handling
7618 // in the various CC lowering callbacks.
7619 Flags.setByVal();
7620 }
7621 if (Flags.isByVal() || Flags.isInAlloca()) {
7622 PointerType *Ty = cast<PointerType>(I->getType());
7623 Type *ElementTy = Ty->getElementType();
7624 Flags.setByValSize(DL->getTypeAllocSize(ElementTy));
7625 // For ByVal, alignment should be passed from FE. BE will guess if
7626 // this info is not there but there are cases it cannot get right.
7627 unsigned FrameAlign;
7628 if (F.getParamAlignment(Idx))
7629 FrameAlign = F.getParamAlignment(Idx);
7630 else
7631 FrameAlign = TLI->getByValTypeAlignment(ElementTy);
7632 Flags.setByValAlign(FrameAlign);
7633 }
7634 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
7635 Flags.setNest();
7636 if (NeedsRegBlock) {
7637 Flags.setInConsecutiveRegs();
7638 if (Value == NumValues - 1)
7639 Flags.setInConsecutiveRegsLast();
7640 }
7641 Flags.setOrigAlign(OriginalAlignment);
7642
7643 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7644 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7645 for (unsigned i = 0; i != NumRegs; ++i) {
7646 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
7647 Idx-1, PartBase+i*RegisterVT.getStoreSize());
7648 if (NumRegs > 1 && i == 0)
7649 MyFlags.Flags.setSplit();
7650 // if it isn't first piece, alignment must be 1
7651 else if (i > 0)
7652 MyFlags.Flags.setOrigAlign(1);
7653 Ins.push_back(MyFlags);
7654 }
7655 PartBase += VT.getStoreSize();
7656 }
7657 }
7658
7659 // Call the target to set up the argument values.
7660 SmallVector<SDValue, 8> InVals;
7661 SDValue NewRoot = TLI->LowerFormalArguments(
7662 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
7663
7664 // Verify that the target's LowerFormalArguments behaved as expected.
7665 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&((NewRoot.getNode() && NewRoot.getValueType() == MVT::
Other && "LowerFormalArguments didn't return a valid chain!"
) ? static_cast<void> (0) : __assert_fail ("NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && \"LowerFormalArguments didn't return a valid chain!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7666, __PRETTY_FUNCTION__))
7666 "LowerFormalArguments didn't return a valid chain!")((NewRoot.getNode() && NewRoot.getValueType() == MVT::
Other && "LowerFormalArguments didn't return a valid chain!"
) ? static_cast<void> (0) : __assert_fail ("NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && \"LowerFormalArguments didn't return a valid chain!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7666, __PRETTY_FUNCTION__))
;
7667 assert(InVals.size() == Ins.size() &&((InVals.size() == Ins.size() && "LowerFormalArguments didn't emit the correct number of values!"
) ? static_cast<void> (0) : __assert_fail ("InVals.size() == Ins.size() && \"LowerFormalArguments didn't emit the correct number of values!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7668, __PRETTY_FUNCTION__))
7668 "LowerFormalArguments didn't emit the correct number of values!")((InVals.size() == Ins.size() && "LowerFormalArguments didn't emit the correct number of values!"
) ? static_cast<void> (0) : __assert_fail ("InVals.size() == Ins.size() && \"LowerFormalArguments didn't emit the correct number of values!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7668, __PRETTY_FUNCTION__))
;
7669 DEBUG({do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { { for (unsigned i = 0, e = Ins.size(); i != e; ++
i) { ((InVals[i].getNode() && "LowerFormalArguments emitted a null value!"
) ? static_cast<void> (0) : __assert_fail ("InVals[i].getNode() && \"LowerFormalArguments emitted a null value!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7672, __PRETTY_FUNCTION__)); ((EVT(Ins[i].VT) == InVals[i].
getValueType() && "LowerFormalArguments emitted a value with the wrong type!"
) ? static_cast<void> (0) : __assert_fail ("EVT(Ins[i].VT) == InVals[i].getValueType() && \"LowerFormalArguments emitted a value with the wrong type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7674, __PRETTY_FUNCTION__)); } }; } } while (0)
7670 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { { for (unsigned i = 0, e = Ins.size(); i != e; ++
i) { ((InVals[i].getNode() && "LowerFormalArguments emitted a null value!"
) ? static_cast<void> (0) : __assert_fail ("InVals[i].getNode() && \"LowerFormalArguments emitted a null value!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7672, __PRETTY_FUNCTION__)); ((EVT(Ins[i].VT) == InVals[i].
getValueType() && "LowerFormalArguments emitted a value with the wrong type!"
) ? static_cast<void> (0) : __assert_fail ("EVT(Ins[i].VT) == InVals[i].getValueType() && \"LowerFormalArguments emitted a value with the wrong type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7674, __PRETTY_FUNCTION__)); } }; } } while (0)
7671 assert(InVals[i].getNode() &&do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { { for (unsigned i = 0, e = Ins.size(); i != e; ++
i) { ((InVals[i].getNode() && "LowerFormalArguments emitted a null value!"
) ? static_cast<void> (0) : __assert_fail ("InVals[i].getNode() && \"LowerFormalArguments emitted a null value!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7672, __PRETTY_FUNCTION__)); ((EVT(Ins[i].VT) == InVals[i].
getValueType() && "LowerFormalArguments emitted a value with the wrong type!"
) ? static_cast<void> (0) : __assert_fail ("EVT(Ins[i].VT) == InVals[i].getValueType() && \"LowerFormalArguments emitted a value with the wrong type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7674, __PRETTY_FUNCTION__)); } }; } } while (0)
7672 "LowerFormalArguments emitted a null value!");do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { { for (unsigned i = 0, e = Ins.size(); i != e; ++
i) { ((InVals[i].getNode() && "LowerFormalArguments emitted a null value!"
) ? static_cast<void> (0) : __assert_fail ("InVals[i].getNode() && \"LowerFormalArguments emitted a null value!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7672, __PRETTY_FUNCTION__)); ((EVT(Ins[i].VT) == InVals[i].
getValueType() && "LowerFormalArguments emitted a value with the wrong type!"
) ? static_cast<void> (0) : __assert_fail ("EVT(Ins[i].VT) == InVals[i].getValueType() && \"LowerFormalArguments emitted a value with the wrong type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7674, __PRETTY_FUNCTION__)); } }; } } while (0)
7673 assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { { for (unsigned i = 0, e = Ins.size(); i != e; ++
i) { ((InVals[i].getNode() && "LowerFormalArguments emitted a null value!"
) ? static_cast<void> (0) : __assert_fail ("InVals[i].getNode() && \"LowerFormalArguments emitted a null value!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7672, __PRETTY_FUNCTION__)); ((EVT(Ins[i].VT) == InVals[i].
getValueType() && "LowerFormalArguments emitted a value with the wrong type!"
) ? static_cast<void> (0) : __assert_fail ("EVT(Ins[i].VT) == InVals[i].getValueType() && \"LowerFormalArguments emitted a value with the wrong type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7674, __PRETTY_FUNCTION__)); } }; } } while (0)
7674 "LowerFormalArguments emitted a value with the wrong type!");do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { { for (unsigned i = 0, e = Ins.size(); i != e; ++
i) { ((InVals[i].getNode() && "LowerFormalArguments emitted a null value!"
) ? static_cast<void> (0) : __assert_fail ("InVals[i].getNode() && \"LowerFormalArguments emitted a null value!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7672, __PRETTY_FUNCTION__)); ((EVT(Ins[i].VT) == InVals[i].
getValueType() && "LowerFormalArguments emitted a value with the wrong type!"
) ? static_cast<void> (0) : __assert_fail ("EVT(Ins[i].VT) == InVals[i].getValueType() && \"LowerFormalArguments emitted a value with the wrong type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7674, __PRETTY_FUNCTION__)); } }; } } while (0)
7675 }do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { { for (unsigned i = 0, e = Ins.size(); i != e; ++
i) { ((InVals[i].getNode() && "LowerFormalArguments emitted a null value!"
) ? static_cast<void> (0) : __assert_fail ("InVals[i].getNode() && \"LowerFormalArguments emitted a null value!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7672, __PRETTY_FUNCTION__)); ((EVT(Ins[i].VT) == InVals[i].
getValueType() && "LowerFormalArguments emitted a value with the wrong type!"
) ? static_cast<void> (0) : __assert_fail ("EVT(Ins[i].VT) == InVals[i].getValueType() && \"LowerFormalArguments emitted a value with the wrong type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7674, __PRETTY_FUNCTION__)); } }; } } while (0)
7676 })do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { { for (unsigned i = 0, e = Ins.size(); i != e; ++
i) { ((InVals[i].getNode() && "LowerFormalArguments emitted a null value!"
) ? static_cast<void> (0) : __assert_fail ("InVals[i].getNode() && \"LowerFormalArguments emitted a null value!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7672, __PRETTY_FUNCTION__)); ((EVT(Ins[i].VT) == InVals[i].
getValueType() && "LowerFormalArguments emitted a value with the wrong type!"
) ? static_cast<void> (0) : __assert_fail ("EVT(Ins[i].VT) == InVals[i].getValueType() && \"LowerFormalArguments emitted a value with the wrong type!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7674, __PRETTY_FUNCTION__)); } }; } } while (0)
;
7677
7678 // Update the DAG with the new chain value resulting from argument lowering.
7679 DAG.setRoot(NewRoot);
7680
7681 // Set up the argument values.
7682 unsigned i = 0;
7683 Idx = 1;
7684 if (!FuncInfo->CanLowerReturn) {
7685 // Create a virtual register for the sret pointer, and put in a copy
7686 // from the sret argument into it.
7687 SmallVector<EVT, 1> ValueVTs;
7688 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
7689 MVT VT = ValueVTs[0].getSimpleVT();
7690 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7691 ISD::NodeType AssertOp = ISD::DELETED_NODE;
7692 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
7693 RegVT, VT, nullptr, AssertOp);
7694
7695 MachineFunction& MF = SDB->DAG.getMachineFunction();
7696 MachineRegisterInfo& RegInfo = MF.getRegInfo();
7697 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
7698 FuncInfo->DemoteRegister = SRetReg;
7699 NewRoot =
7700 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
7701 DAG.setRoot(NewRoot);
7702
7703 // i indexes lowered arguments. Bump it past the hidden sret argument.
7704 // Idx indexes LLVM arguments. Don't touch it.
7705 ++i;
7706 }
7707
7708 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
7709 ++I, ++Idx) {
7710 SmallVector<SDValue, 4> ArgValues;
7711 SmallVector<EVT, 4> ValueVTs;
7712 ComputeValueVTs(*TLI, I->getType(), ValueVTs);
7713 unsigned NumValues = ValueVTs.size();
7714
7715 // If this argument is unused then remember its value. It is used to generate
7716 // debugging information.
7717 if (I->use_empty() && NumValues) {
7718 SDB->setUnusedArgValue(I, InVals[i]);
7719
7720 // Also remember any frame index for use in FastISel.
7721 if (FrameIndexSDNode *FI =
7722 dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
7723 FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7724 }
7725
7726 for (unsigned Val = 0; Val != NumValues; ++Val) {
7727 EVT VT = ValueVTs[Val];
7728 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7729 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7730
7731 if (!I->use_empty()) {
7732 ISD::NodeType AssertOp = ISD::DELETED_NODE;
7733 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7734 AssertOp = ISD::AssertSext;
7735 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7736 AssertOp = ISD::AssertZext;
7737
7738 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
7739 NumParts, PartVT, VT,
7740 nullptr, AssertOp));
7741 }
7742
7743 i += NumParts;
7744 }
7745
7746 // We don't need to do anything else for unused arguments.
7747 if (ArgValues.empty())
7748 continue;
7749
7750 // Note down frame index.
7751 if (FrameIndexSDNode *FI =
7752 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
7753 FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7754
7755 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
7756 SDB->getCurSDLoc());
7757
7758 SDB->setValue(I, Res);
7759 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
7760 if (LoadSDNode *LNode =
7761 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
7762 if (FrameIndexSDNode *FI =
7763 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
7764 FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7765 }
7766
7767 // If this argument is live outside of the entry block, insert a copy from
7768 // wherever we got it to the vreg that other BB's will reference it as.
7769 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
7770 // If we can, though, try to skip creating an unnecessary vreg.
7771 // FIXME: This isn't very clean... it would be nice to make this more
7772 // general. It's also subtly incompatible with the hacks FastISel
7773 // uses with vregs.
7774 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
7775 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
7776 FuncInfo->ValueMap[I] = Reg;
7777 continue;
7778 }
7779 }
7780 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
7781 FuncInfo->InitializeRegForValue(I);
7782 SDB->CopyToExportRegsIfNeeded(I);
7783 }
7784 }
7785
7786 assert(i == InVals.size() && "Argument register count mismatch!")((i == InVals.size() && "Argument register count mismatch!"
) ? static_cast<void> (0) : __assert_fail ("i == InVals.size() && \"Argument register count mismatch!\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7786, __PRETTY_FUNCTION__))
;
7787
7788 // Finally, if the target has anything special to do, allow it to do so.
7789 // FIXME: this should insert code into the DAG!
7790 EmitFunctionEntryCode();
7791}
7792
7793/// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
7794/// ensure constants are generated when needed. Remember the virtual registers
7795/// that need to be added to the Machine PHI nodes as input. We cannot just
7796/// directly add them, because expansion might result in multiple MBB's for one
7797/// BB. As such, the start of the BB might correspond to a different MBB than
7798/// the end.
7799///
7800void
7801SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
7802 const TerminatorInst *TI = LLVMBB->getTerminator();
7803
7804 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
7805
7806 // Check successor nodes' PHI nodes that expect a constant to be available
7807 // from this block.
7808 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
7809 const BasicBlock *SuccBB = TI->getSuccessor(succ);
7810 if (!isa<PHINode>(SuccBB->begin())) continue;
7811 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
7812
7813 // If this terminator has multiple identical successors (common for
7814 // switches), only handle each succ once.
7815 if (!SuccsHandled.insert(SuccMBB).second)
7816 continue;
7817
7818 MachineBasicBlock::iterator MBBI = SuccMBB->begin();
7819
7820 // At this point we know that there is a 1-1 correspondence between LLVM PHI
7821 // nodes and Machine PHI nodes, but the incoming operands have not been
7822 // emitted yet.
7823 for (BasicBlock::const_iterator I = SuccBB->begin();
7824 const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
7825 // Ignore dead phi's.
7826 if (PN->use_empty()) continue;
7827
7828 // Skip empty types
7829 if (PN->getType()->isEmptyTy())
7830 continue;
7831
7832 unsigned Reg;
7833 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
7834
7835 if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
7836 unsigned &RegOut = ConstantsOut[C];
7837 if (RegOut == 0) {
7838 RegOut = FuncInfo.CreateRegs(C->getType());
7839 CopyValueToVirtualRegister(C, RegOut);
7840 }
7841 Reg = RegOut;
7842 } else {
7843 DenseMap<const Value *, unsigned>::iterator I =
7844 FuncInfo.ValueMap.find(PHIOp);
7845 if (I != FuncInfo.ValueMap.end())
7846 Reg = I->second;
7847 else {
7848 assert(isa<AllocaInst>(PHIOp) &&((isa<AllocaInst>(PHIOp) && FuncInfo.StaticAllocaMap
.count(cast<AllocaInst>(PHIOp)) && "Didn't codegen value into a register!??"
) ? static_cast<void> (0) : __assert_fail ("isa<AllocaInst>(PHIOp) && FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && \"Didn't codegen value into a register!??\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7850, __PRETTY_FUNCTION__))
7849 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&((isa<AllocaInst>(PHIOp) && FuncInfo.StaticAllocaMap
.count(cast<AllocaInst>(PHIOp)) && "Didn't codegen value into a register!??"
) ? static_cast<void> (0) : __assert_fail ("isa<AllocaInst>(PHIOp) && FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && \"Didn't codegen value into a register!??\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7850, __PRETTY_FUNCTION__))
7850 "Didn't codegen value into a register!??")((isa<AllocaInst>(PHIOp) && FuncInfo.StaticAllocaMap
.count(cast<AllocaInst>(PHIOp)) && "Didn't codegen value into a register!??"
) ? static_cast<void> (0) : __assert_fail ("isa<AllocaInst>(PHIOp) && FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && \"Didn't codegen value into a register!??\""
, "/tmp/buildd/llvm-toolchain-snapshot-3.6~svn224240/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 7850, __PRETTY_FUNCTION__))
;
7851 Reg = FuncInfo.CreateRegs(PHIOp->getType());
7852 CopyValueToVirtualRegister(PHIOp, Reg);
7853 }
7854 }
7855
7856 // Remember that this register needs to added to the machine PHI node as
7857 // the input for this MBB.
7858 SmallVector<EVT, 4> ValueVTs;
7859 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7860 ComputeValueVTs(TLI, PN->getType(), ValueVTs);
7861 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
7862 EVT VT = ValueVTs[vti];
7863 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
7864 for (unsigned i = 0, e = NumRegisters; i != e; ++i)
7865 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
7866 Reg += NumRegisters;
7867 }
7868 }
7869 }
7870
7871 ConstantsOut.clear();
7872}
7873
7874/// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
7875/// is 0.
7876MachineBasicBlock *
7877SelectionDAGBuilder::StackProtectorDescriptor::
7878AddSuccessorMBB(const BasicBlock *BB,
7879 MachineBasicBlock *ParentMBB,
7880 bool IsLikely,
7881 MachineBasicBlock *SuccMBB) {
7882 // If SuccBB has not been created yet, create it.
7883 if (!SuccMBB) {
7884 MachineFunction *MF = ParentMBB->getParent();
7885 MachineFunction::iterator BBI = ParentMBB;
7886 SuccMBB = MF->CreateMachineBasicBlock(BB);
7887 MF->insert(++BBI, SuccMBB);
7888 }
7889 // Add it as a successor of ParentMBB.
7890 ParentMBB->addSuccessor(
7891 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely));
7892 return SuccMBB;
7893}