Bug Summary

File:lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp
Warning:line 8482, column 9
Method called on moved-from object 'Offsets'

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SelectionDAGBuilder.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-8/lib/clang/8.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-8~svn350071/build-llvm/lib/CodeGen/SelectionDAG -I /build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG -I /build/llvm-toolchain-snapshot-8~svn350071/build-llvm/include -I /build/llvm-toolchain-snapshot-8~svn350071/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/8.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-8/lib/clang/8.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-8~svn350071/build-llvm/lib/CodeGen/SelectionDAG -fdebug-prefix-map=/build/llvm-toolchain-snapshot-8~svn350071=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-12-27-042839-1215-1 -x c++ /build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp -faddrsig
1//===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#include "SelectionDAGBuilder.h"
15#include "SDNodeDbgValue.h"
16#include "llvm/ADT/APFloat.h"
17#include "llvm/ADT/APInt.h"
18#include "llvm/ADT/ArrayRef.h"
19#include "llvm/ADT/BitVector.h"
20#include "llvm/ADT/DenseMap.h"
21#include "llvm/ADT/None.h"
22#include "llvm/ADT/Optional.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/ADT/SmallPtrSet.h"
25#include "llvm/ADT/SmallSet.h"
26#include "llvm/ADT/SmallVector.h"
27#include "llvm/ADT/StringRef.h"
28#include "llvm/ADT/Triple.h"
29#include "llvm/ADT/Twine.h"
30#include "llvm/Analysis/AliasAnalysis.h"
31#include "llvm/Analysis/BranchProbabilityInfo.h"
32#include "llvm/Analysis/ConstantFolding.h"
33#include "llvm/Analysis/EHPersonalities.h"
34#include "llvm/Analysis/Loads.h"
35#include "llvm/Analysis/MemoryLocation.h"
36#include "llvm/Analysis/TargetLibraryInfo.h"
37#include "llvm/Analysis/ValueTracking.h"
38#include "llvm/Analysis/VectorUtils.h"
39#include "llvm/CodeGen/Analysis.h"
40#include "llvm/CodeGen/FunctionLoweringInfo.h"
41#include "llvm/CodeGen/GCMetadata.h"
42#include "llvm/CodeGen/ISDOpcodes.h"
43#include "llvm/CodeGen/MachineBasicBlock.h"
44#include "llvm/CodeGen/MachineFrameInfo.h"
45#include "llvm/CodeGen/MachineFunction.h"
46#include "llvm/CodeGen/MachineInstr.h"
47#include "llvm/CodeGen/MachineInstrBuilder.h"
48#include "llvm/CodeGen/MachineJumpTableInfo.h"
49#include "llvm/CodeGen/MachineMemOperand.h"
50#include "llvm/CodeGen/MachineModuleInfo.h"
51#include "llvm/CodeGen/MachineOperand.h"
52#include "llvm/CodeGen/MachineRegisterInfo.h"
53#include "llvm/CodeGen/RuntimeLibcalls.h"
54#include "llvm/CodeGen/SelectionDAG.h"
55#include "llvm/CodeGen/SelectionDAGNodes.h"
56#include "llvm/CodeGen/SelectionDAGTargetInfo.h"
57#include "llvm/CodeGen/StackMaps.h"
58#include "llvm/CodeGen/TargetFrameLowering.h"
59#include "llvm/CodeGen/TargetInstrInfo.h"
60#include "llvm/CodeGen/TargetLowering.h"
61#include "llvm/CodeGen/TargetOpcodes.h"
62#include "llvm/CodeGen/TargetRegisterInfo.h"
63#include "llvm/CodeGen/TargetSubtargetInfo.h"
64#include "llvm/CodeGen/ValueTypes.h"
65#include "llvm/CodeGen/WinEHFuncInfo.h"
66#include "llvm/IR/Argument.h"
67#include "llvm/IR/Attributes.h"
68#include "llvm/IR/BasicBlock.h"
69#include "llvm/IR/CFG.h"
70#include "llvm/IR/CallSite.h"
71#include "llvm/IR/CallingConv.h"
72#include "llvm/IR/Constant.h"
73#include "llvm/IR/ConstantRange.h"
74#include "llvm/IR/Constants.h"
75#include "llvm/IR/DataLayout.h"
76#include "llvm/IR/DebugInfoMetadata.h"
77#include "llvm/IR/DebugLoc.h"
78#include "llvm/IR/DerivedTypes.h"
79#include "llvm/IR/Function.h"
80#include "llvm/IR/GetElementPtrTypeIterator.h"
81#include "llvm/IR/InlineAsm.h"
82#include "llvm/IR/InstrTypes.h"
83#include "llvm/IR/Instruction.h"
84#include "llvm/IR/Instructions.h"
85#include "llvm/IR/IntrinsicInst.h"
86#include "llvm/IR/Intrinsics.h"
87#include "llvm/IR/LLVMContext.h"
88#include "llvm/IR/Metadata.h"
89#include "llvm/IR/Module.h"
90#include "llvm/IR/Operator.h"
91#include "llvm/IR/PatternMatch.h"
92#include "llvm/IR/Statepoint.h"
93#include "llvm/IR/Type.h"
94#include "llvm/IR/User.h"
95#include "llvm/IR/Value.h"
96#include "llvm/MC/MCContext.h"
97#include "llvm/MC/MCSymbol.h"
98#include "llvm/Support/AtomicOrdering.h"
99#include "llvm/Support/BranchProbability.h"
100#include "llvm/Support/Casting.h"
101#include "llvm/Support/CodeGen.h"
102#include "llvm/Support/CommandLine.h"
103#include "llvm/Support/Compiler.h"
104#include "llvm/Support/Debug.h"
105#include "llvm/Support/ErrorHandling.h"
106#include "llvm/Support/MachineValueType.h"
107#include "llvm/Support/MathExtras.h"
108#include "llvm/Support/raw_ostream.h"
109#include "llvm/Target/TargetIntrinsicInfo.h"
110#include "llvm/Target/TargetMachine.h"
111#include "llvm/Target/TargetOptions.h"
112#include <algorithm>
113#include <cassert>
114#include <cstddef>
115#include <cstdint>
116#include <cstring>
117#include <iterator>
118#include <limits>
119#include <numeric>
120#include <tuple>
121#include <utility>
122#include <vector>
123
124using namespace llvm;
125using namespace PatternMatch;
126
127#define DEBUG_TYPE"isel" "isel"
128
129/// LimitFloatPrecision - Generate low-precision inline sequences for
130/// some float libcalls (6, 8 or 12 bits).
131static unsigned LimitFloatPrecision;
132
133static cl::opt<unsigned, true>
134 LimitFPPrecision("limit-float-precision",
135 cl::desc("Generate low-precision inline sequences "
136 "for some float libcalls"),
137 cl::location(LimitFloatPrecision), cl::Hidden,
138 cl::init(0));
139
140static cl::opt<unsigned> SwitchPeelThreshold(
141 "switch-peel-threshold", cl::Hidden, cl::init(66),
142 cl::desc("Set the case probability threshold for peeling the case from a "
143 "switch statement. A value greater than 100 will void this "
144 "optimization"));
145
146// Limit the width of DAG chains. This is important in general to prevent
147// DAG-based analysis from blowing up. For example, alias analysis and
148// load clustering may not complete in reasonable time. It is difficult to
149// recognize and avoid this situation within each individual analysis, and
150// future analyses are likely to have the same behavior. Limiting DAG width is
151// the safe approach and will be especially important with global DAGs.
152//
153// MaxParallelChains default is arbitrarily high to avoid affecting
154// optimization, but could be lowered to improve compile time. Any ld-ld-st-st
155// sequence over this should have been converted to llvm.memcpy by the
156// frontend. It is easy to induce this behavior with .ll code such as:
157// %buffer = alloca [4096 x i8]
158// %data = load [4096 x i8]* %argPtr
159// store [4096 x i8] %data, [4096 x i8]* %buffer
160static const unsigned MaxParallelChains = 64;
161
162// Return the calling convention if the Value passed requires ABI mangling as it
163// is a parameter to a function or a return value from a function which is not
164// an intrinsic.
165static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
166 if (auto *R = dyn_cast<ReturnInst>(V))
167 return R->getParent()->getParent()->getCallingConv();
168
169 if (auto *CI = dyn_cast<CallInst>(V)) {
170 const bool IsInlineAsm = CI->isInlineAsm();
171 const bool IsIndirectFunctionCall =
172 !IsInlineAsm && !CI->getCalledFunction();
173
174 // It is possible that the call instruction is an inline asm statement or an
175 // indirect function call in which case the return value of
176 // getCalledFunction() would be nullptr.
177 const bool IsInstrinsicCall =
178 !IsInlineAsm && !IsIndirectFunctionCall &&
179 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
180
181 if (!IsInlineAsm && !IsInstrinsicCall)
182 return CI->getCallingConv();
183 }
184
185 return None;
186}
187
188static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
189 const SDValue *Parts, unsigned NumParts,
190 MVT PartVT, EVT ValueVT, const Value *V,
191 Optional<CallingConv::ID> CC);
192
193/// getCopyFromParts - Create a value that contains the specified legal parts
194/// combined into the value they represent. If the parts combine to a type
195/// larger than ValueVT then AssertOp can be used to specify whether the extra
196/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
197/// (ISD::AssertSext).
198static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
199 const SDValue *Parts, unsigned NumParts,
200 MVT PartVT, EVT ValueVT, const Value *V,
201 Optional<CallingConv::ID> CC = None,
202 Optional<ISD::NodeType> AssertOp = None) {
203 if (ValueVT.isVector())
204 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
205 CC);
206
207 assert(NumParts > 0 && "No parts to assemble!")((NumParts > 0 && "No parts to assemble!") ? static_cast
<void> (0) : __assert_fail ("NumParts > 0 && \"No parts to assemble!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 207, __PRETTY_FUNCTION__))
;
208 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
209 SDValue Val = Parts[0];
210
211 if (NumParts > 1) {
212 // Assemble the value from multiple parts.
213 if (ValueVT.isInteger()) {
214 unsigned PartBits = PartVT.getSizeInBits();
215 unsigned ValueBits = ValueVT.getSizeInBits();
216
217 // Assemble the power of 2 part.
218 unsigned RoundParts = NumParts & (NumParts - 1) ?
219 1 << Log2_32(NumParts) : NumParts;
220 unsigned RoundBits = PartBits * RoundParts;
221 EVT RoundVT = RoundBits == ValueBits ?
222 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
223 SDValue Lo, Hi;
224
225 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
226
227 if (RoundParts > 2) {
228 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
229 PartVT, HalfVT, V);
230 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
231 RoundParts / 2, PartVT, HalfVT, V);
232 } else {
233 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
234 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
235 }
236
237 if (DAG.getDataLayout().isBigEndian())
238 std::swap(Lo, Hi);
239
240 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
241
242 if (RoundParts < NumParts) {
243 // Assemble the trailing non-power-of-2 part.
244 unsigned OddParts = NumParts - RoundParts;
245 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
246 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
247 OddVT, V, CC);
248
249 // Combine the round and odd parts.
250 Lo = Val;
251 if (DAG.getDataLayout().isBigEndian())
252 std::swap(Lo, Hi);
253 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
254 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
255 Hi =
256 DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
257 DAG.getConstant(Lo.getValueSizeInBits(), DL,
258 TLI.getPointerTy(DAG.getDataLayout())));
259 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
260 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
261 }
262 } else if (PartVT.isFloatingPoint()) {
263 // FP split into multiple FP parts (for ppcf128)
264 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&((ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
"Unexpected split") ? static_cast<void> (0) : __assert_fail
("ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && \"Unexpected split\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 265, __PRETTY_FUNCTION__))
265 "Unexpected split")((ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
"Unexpected split") ? static_cast<void> (0) : __assert_fail
("ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && \"Unexpected split\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 265, __PRETTY_FUNCTION__))
;
266 SDValue Lo, Hi;
267 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
268 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
269 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
270 std::swap(Lo, Hi);
271 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
272 } else {
273 // FP split into integer parts (soft fp)
274 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&((ValueVT.isFloatingPoint() && PartVT.isInteger() &&
!PartVT.isVector() && "Unexpected split") ? static_cast
<void> (0) : __assert_fail ("ValueVT.isFloatingPoint() && PartVT.isInteger() && !PartVT.isVector() && \"Unexpected split\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 275, __PRETTY_FUNCTION__))
275 !PartVT.isVector() && "Unexpected split")((ValueVT.isFloatingPoint() && PartVT.isInteger() &&
!PartVT.isVector() && "Unexpected split") ? static_cast
<void> (0) : __assert_fail ("ValueVT.isFloatingPoint() && PartVT.isInteger() && !PartVT.isVector() && \"Unexpected split\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 275, __PRETTY_FUNCTION__))
;
276 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
277 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
278 }
279 }
280
281 // There is now one part, held in Val. Correct it to match ValueVT.
282 // PartEVT is the type of the register class that holds the value.
283 // ValueVT is the type of the inline asm operation.
284 EVT PartEVT = Val.getValueType();
285
286 if (PartEVT == ValueVT)
287 return Val;
288
289 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
290 ValueVT.bitsLT(PartEVT)) {
291 // For an FP value in an integer part, we need to truncate to the right
292 // width first.
293 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
294 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
295 }
296
297 // Handle types that have the same size.
298 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
299 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
300
301 // Handle types with different sizes.
302 if (PartEVT.isInteger() && ValueVT.isInteger()) {
303 if (ValueVT.bitsLT(PartEVT)) {
304 // For a truncate, see if we have any information to
305 // indicate whether the truncated bits will always be
306 // zero or sign-extension.
307 if (AssertOp.hasValue())
308 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
309 DAG.getValueType(ValueVT));
310 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
311 }
312 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
313 }
314
315 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
316 // FP_ROUND's are always exact here.
317 if (ValueVT.bitsLT(Val.getValueType()))
318 return DAG.getNode(
319 ISD::FP_ROUND, DL, ValueVT, Val,
320 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
321
322 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
323 }
324
325 llvm_unreachable("Unknown mismatch!")::llvm::llvm_unreachable_internal("Unknown mismatch!", "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 325)
;
326}
327
328static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
329 const Twine &ErrMsg) {
330 const Instruction *I = dyn_cast_or_null<Instruction>(V);
331 if (!V)
332 return Ctx.emitError(ErrMsg);
333
334 const char *AsmError = ", possible invalid constraint for vector type";
335 if (const CallInst *CI = dyn_cast<CallInst>(I))
336 if (isa<InlineAsm>(CI->getCalledValue()))
337 return Ctx.emitError(I, ErrMsg + AsmError);
338
339 return Ctx.emitError(I, ErrMsg);
340}
341
342/// getCopyFromPartsVector - Create a value that contains the specified legal
343/// parts combined into the value they represent. If the parts combine to a
344/// type larger than ValueVT then AssertOp can be used to specify whether the
345/// extra bits are known to be zero (ISD::AssertZext) or sign extended from
346/// ValueVT (ISD::AssertSext).
347static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
348 const SDValue *Parts, unsigned NumParts,
349 MVT PartVT, EVT ValueVT, const Value *V,
350 Optional<CallingConv::ID> CallConv) {
351 assert(ValueVT.isVector() && "Not a vector value")((ValueVT.isVector() && "Not a vector value") ? static_cast
<void> (0) : __assert_fail ("ValueVT.isVector() && \"Not a vector value\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 351, __PRETTY_FUNCTION__))
;
352 assert(NumParts > 0 && "No parts to assemble!")((NumParts > 0 && "No parts to assemble!") ? static_cast
<void> (0) : __assert_fail ("NumParts > 0 && \"No parts to assemble!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 352, __PRETTY_FUNCTION__))
;
353 const bool IsABIRegCopy = CallConv.hasValue();
354
355 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
356 SDValue Val = Parts[0];
357
358 // Handle a multi-element vector.
359 if (NumParts > 1) {
360 EVT IntermediateVT;
361 MVT RegisterVT;
362 unsigned NumIntermediates;
363 unsigned NumRegs;
364
365 if (IsABIRegCopy) {
366 NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
367 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
368 NumIntermediates, RegisterVT);
369 } else {
370 NumRegs =
371 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
372 NumIntermediates, RegisterVT);
373 }
374
375 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!")((NumRegs == NumParts && "Part count doesn't match vector breakdown!"
) ? static_cast<void> (0) : __assert_fail ("NumRegs == NumParts && \"Part count doesn't match vector breakdown!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 375, __PRETTY_FUNCTION__))
;
376 NumParts = NumRegs; // Silence a compiler warning.
377 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!")((RegisterVT == PartVT && "Part type doesn't match vector breakdown!"
) ? static_cast<void> (0) : __assert_fail ("RegisterVT == PartVT && \"Part type doesn't match vector breakdown!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 377, __PRETTY_FUNCTION__))
;
378 assert(RegisterVT.getSizeInBits() ==((RegisterVT.getSizeInBits() == Parts[0].getSimpleValueType()
.getSizeInBits() && "Part type sizes don't match!") ?
static_cast<void> (0) : __assert_fail ("RegisterVT.getSizeInBits() == Parts[0].getSimpleValueType().getSizeInBits() && \"Part type sizes don't match!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 380, __PRETTY_FUNCTION__))
379 Parts[0].getSimpleValueType().getSizeInBits() &&((RegisterVT.getSizeInBits() == Parts[0].getSimpleValueType()
.getSizeInBits() && "Part type sizes don't match!") ?
static_cast<void> (0) : __assert_fail ("RegisterVT.getSizeInBits() == Parts[0].getSimpleValueType().getSizeInBits() && \"Part type sizes don't match!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 380, __PRETTY_FUNCTION__))
380 "Part type sizes don't match!")((RegisterVT.getSizeInBits() == Parts[0].getSimpleValueType()
.getSizeInBits() && "Part type sizes don't match!") ?
static_cast<void> (0) : __assert_fail ("RegisterVT.getSizeInBits() == Parts[0].getSimpleValueType().getSizeInBits() && \"Part type sizes don't match!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 380, __PRETTY_FUNCTION__))
;
381
382 // Assemble the parts into intermediate operands.
383 SmallVector<SDValue, 8> Ops(NumIntermediates);
384 if (NumIntermediates == NumParts) {
385 // If the register was not expanded, truncate or copy the value,
386 // as appropriate.
387 for (unsigned i = 0; i != NumParts; ++i)
388 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
389 PartVT, IntermediateVT, V);
390 } else if (NumParts > 0) {
391 // If the intermediate type was expanded, build the intermediate
392 // operands from the parts.
393 assert(NumParts % NumIntermediates == 0 &&((NumParts % NumIntermediates == 0 && "Must expand into a divisible number of parts!"
) ? static_cast<void> (0) : __assert_fail ("NumParts % NumIntermediates == 0 && \"Must expand into a divisible number of parts!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 394, __PRETTY_FUNCTION__))
394 "Must expand into a divisible number of parts!")((NumParts % NumIntermediates == 0 && "Must expand into a divisible number of parts!"
) ? static_cast<void> (0) : __assert_fail ("NumParts % NumIntermediates == 0 && \"Must expand into a divisible number of parts!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 394, __PRETTY_FUNCTION__))
;
395 unsigned Factor = NumParts / NumIntermediates;
396 for (unsigned i = 0; i != NumIntermediates; ++i)
397 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
398 PartVT, IntermediateVT, V);
399 }
400
401 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
402 // intermediate operands.
403 EVT BuiltVectorTy =
404 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
405 (IntermediateVT.isVector()
406 ? IntermediateVT.getVectorNumElements() * NumParts
407 : NumIntermediates));
408 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
409 : ISD::BUILD_VECTOR,
410 DL, BuiltVectorTy, Ops);
411 }
412
413 // There is now one part, held in Val. Correct it to match ValueVT.
414 EVT PartEVT = Val.getValueType();
415
416 if (PartEVT == ValueVT)
417 return Val;
418
419 if (PartEVT.isVector()) {
420 // If the element type of the source/dest vectors are the same, but the
421 // parts vector has more elements than the value vector, then we have a
422 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the
423 // elements we want.
424 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
425 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&((PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements
() && "Cannot narrow, it would be a lossy transformation"
) ? static_cast<void> (0) : __assert_fail ("PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && \"Cannot narrow, it would be a lossy transformation\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 426, __PRETTY_FUNCTION__))
426 "Cannot narrow, it would be a lossy transformation")((PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements
() && "Cannot narrow, it would be a lossy transformation"
) ? static_cast<void> (0) : __assert_fail ("PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && \"Cannot narrow, it would be a lossy transformation\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 426, __PRETTY_FUNCTION__))
;
427 return DAG.getNode(
428 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
429 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
430 }
431
432 // Vector/Vector bitcast.
433 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
434 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
435
436 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&((PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements
() && "Cannot handle this kind of promotion") ? static_cast
<void> (0) : __assert_fail ("PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && \"Cannot handle this kind of promotion\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 437, __PRETTY_FUNCTION__))
437 "Cannot handle this kind of promotion")((PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements
() && "Cannot handle this kind of promotion") ? static_cast
<void> (0) : __assert_fail ("PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && \"Cannot handle this kind of promotion\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 437, __PRETTY_FUNCTION__))
;
438 // Promoted vector extract
439 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
440
441 }
442
443 // Trivial bitcast if the types are the same size and the destination
444 // vector type is legal.
445 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
446 TLI.isTypeLegal(ValueVT))
447 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
448
449 if (ValueVT.getVectorNumElements() != 1) {
450 // Certain ABIs require that vectors are passed as integers. For vectors
451 // are the same size, this is an obvious bitcast.
452 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
453 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
454 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
455 // Bitcast Val back the original type and extract the corresponding
456 // vector we want.
457 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
458 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
459 ValueVT.getVectorElementType(), Elts);
460 Val = DAG.getBitcast(WiderVecType, Val);
461 return DAG.getNode(
462 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
463 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
464 }
465
466 diagnosePossiblyInvalidConstraint(
467 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
468 return DAG.getUNDEF(ValueVT);
469 }
470
471 // Handle cases such as i8 -> <1 x i1>
472 EVT ValueSVT = ValueVT.getVectorElementType();
473 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
474 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
475 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
476
477 return DAG.getBuildVector(ValueVT, DL, Val);
478}
479
480static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
481 SDValue Val, SDValue *Parts, unsigned NumParts,
482 MVT PartVT, const Value *V,
483 Optional<CallingConv::ID> CallConv);
484
485/// getCopyToParts - Create a series of nodes that contain the specified value
486/// split into legal parts. If the parts contain more bits than Val, then, for
487/// integers, ExtendKind can be used to specify how to generate the extra bits.
488static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
489 SDValue *Parts, unsigned NumParts, MVT PartVT,
490 const Value *V,
491 Optional<CallingConv::ID> CallConv = None,
492 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
493 EVT ValueVT = Val.getValueType();
494
495 // Handle the vector case separately.
496 if (ValueVT.isVector())
497 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
498 CallConv);
499
500 unsigned PartBits = PartVT.getSizeInBits();
501 unsigned OrigNumParts = NumParts;
502 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&((DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && "Copying to an illegal type!"
) ? static_cast<void> (0) : __assert_fail ("DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && \"Copying to an illegal type!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 503, __PRETTY_FUNCTION__))
503 "Copying to an illegal type!")((DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && "Copying to an illegal type!"
) ? static_cast<void> (0) : __assert_fail ("DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && \"Copying to an illegal type!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 503, __PRETTY_FUNCTION__))
;
504
505 if (NumParts == 0)
506 return;
507
508 assert(!ValueVT.isVector() && "Vector case handled elsewhere")((!ValueVT.isVector() && "Vector case handled elsewhere"
) ? static_cast<void> (0) : __assert_fail ("!ValueVT.isVector() && \"Vector case handled elsewhere\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 508, __PRETTY_FUNCTION__))
;
509 EVT PartEVT = PartVT;
510 if (PartEVT == ValueVT) {
511 assert(NumParts == 1 && "No-op copy with multiple parts!")((NumParts == 1 && "No-op copy with multiple parts!")
? static_cast<void> (0) : __assert_fail ("NumParts == 1 && \"No-op copy with multiple parts!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 511, __PRETTY_FUNCTION__))
;
512 Parts[0] = Val;
513 return;
514 }
515
516 if (NumParts * PartBits > ValueVT.getSizeInBits()) {
517 // If the parts cover more bits than the value has, promote the value.
518 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
519 assert(NumParts == 1 && "Do not know what to promote to!")((NumParts == 1 && "Do not know what to promote to!")
? static_cast<void> (0) : __assert_fail ("NumParts == 1 && \"Do not know what to promote to!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 519, __PRETTY_FUNCTION__))
;
520 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
521 } else {
522 if (ValueVT.isFloatingPoint()) {
523 // FP values need to be bitcast, then extended if they are being put
524 // into a larger container.
525 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
526 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
527 }
528 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&(((PartVT.isInteger() || PartVT == MVT::x86mmx) && ValueVT
.isInteger() && "Unknown mismatch!") ? static_cast<
void> (0) : __assert_fail ("(PartVT.isInteger() || PartVT == MVT::x86mmx) && ValueVT.isInteger() && \"Unknown mismatch!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 530, __PRETTY_FUNCTION__))
529 ValueVT.isInteger() &&(((PartVT.isInteger() || PartVT == MVT::x86mmx) && ValueVT
.isInteger() && "Unknown mismatch!") ? static_cast<
void> (0) : __assert_fail ("(PartVT.isInteger() || PartVT == MVT::x86mmx) && ValueVT.isInteger() && \"Unknown mismatch!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 530, __PRETTY_FUNCTION__))
530 "Unknown mismatch!")(((PartVT.isInteger() || PartVT == MVT::x86mmx) && ValueVT
.isInteger() && "Unknown mismatch!") ? static_cast<
void> (0) : __assert_fail ("(PartVT.isInteger() || PartVT == MVT::x86mmx) && ValueVT.isInteger() && \"Unknown mismatch!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 530, __PRETTY_FUNCTION__))
;
531 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
532 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
533 if (PartVT == MVT::x86mmx)
534 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
535 }
536 } else if (PartBits == ValueVT.getSizeInBits()) {
537 // Different types of the same size.
538 assert(NumParts == 1 && PartEVT != ValueVT)((NumParts == 1 && PartEVT != ValueVT) ? static_cast<
void> (0) : __assert_fail ("NumParts == 1 && PartEVT != ValueVT"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 538, __PRETTY_FUNCTION__))
;
539 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
540 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
541 // If the parts cover less bits than value has, truncate the value.
542 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&(((PartVT.isInteger() || PartVT == MVT::x86mmx) && ValueVT
.isInteger() && "Unknown mismatch!") ? static_cast<
void> (0) : __assert_fail ("(PartVT.isInteger() || PartVT == MVT::x86mmx) && ValueVT.isInteger() && \"Unknown mismatch!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 544, __PRETTY_FUNCTION__))
543 ValueVT.isInteger() &&(((PartVT.isInteger() || PartVT == MVT::x86mmx) && ValueVT
.isInteger() && "Unknown mismatch!") ? static_cast<
void> (0) : __assert_fail ("(PartVT.isInteger() || PartVT == MVT::x86mmx) && ValueVT.isInteger() && \"Unknown mismatch!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 544, __PRETTY_FUNCTION__))
544 "Unknown mismatch!")(((PartVT.isInteger() || PartVT == MVT::x86mmx) && ValueVT
.isInteger() && "Unknown mismatch!") ? static_cast<
void> (0) : __assert_fail ("(PartVT.isInteger() || PartVT == MVT::x86mmx) && ValueVT.isInteger() && \"Unknown mismatch!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 544, __PRETTY_FUNCTION__))
;
545 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
546 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
547 if (PartVT == MVT::x86mmx)
548 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
549 }
550
551 // The value may have changed - recompute ValueVT.
552 ValueVT = Val.getValueType();
553 assert(NumParts * PartBits == ValueVT.getSizeInBits() &&((NumParts * PartBits == ValueVT.getSizeInBits() && "Failed to tile the value with PartVT!"
) ? static_cast<void> (0) : __assert_fail ("NumParts * PartBits == ValueVT.getSizeInBits() && \"Failed to tile the value with PartVT!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 554, __PRETTY_FUNCTION__))
554 "Failed to tile the value with PartVT!")((NumParts * PartBits == ValueVT.getSizeInBits() && "Failed to tile the value with PartVT!"
) ? static_cast<void> (0) : __assert_fail ("NumParts * PartBits == ValueVT.getSizeInBits() && \"Failed to tile the value with PartVT!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 554, __PRETTY_FUNCTION__))
;
555
556 if (NumParts == 1) {
557 if (PartEVT != ValueVT) {
558 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
559 "scalar-to-vector conversion failed");
560 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
561 }
562
563 Parts[0] = Val;
564 return;
565 }
566
567 // Expand the value into multiple parts.
568 if (NumParts & (NumParts - 1)) {
569 // The number of parts is not a power of 2. Split off and copy the tail.
570 assert(PartVT.isInteger() && ValueVT.isInteger() &&((PartVT.isInteger() && ValueVT.isInteger() &&
"Do not know what to expand to!") ? static_cast<void> (
0) : __assert_fail ("PartVT.isInteger() && ValueVT.isInteger() && \"Do not know what to expand to!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 571, __PRETTY_FUNCTION__))
571 "Do not know what to expand to!")((PartVT.isInteger() && ValueVT.isInteger() &&
"Do not know what to expand to!") ? static_cast<void> (
0) : __assert_fail ("PartVT.isInteger() && ValueVT.isInteger() && \"Do not know what to expand to!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 571, __PRETTY_FUNCTION__))
;
572 unsigned RoundParts = 1 << Log2_32(NumParts);
573 unsigned RoundBits = RoundParts * PartBits;
574 unsigned OddParts = NumParts - RoundParts;
575 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
576 DAG.getIntPtrConstant(RoundBits, DL));
577 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
578 CallConv);
579
580 if (DAG.getDataLayout().isBigEndian())
581 // The odd parts were reversed by getCopyToParts - unreverse them.
582 std::reverse(Parts + RoundParts, Parts + NumParts);
583
584 NumParts = RoundParts;
585 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
586 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
587 }
588
589 // The number of parts is a power of 2. Repeatedly bisect the value using
590 // EXTRACT_ELEMENT.
591 Parts[0] = DAG.getNode(ISD::BITCAST, DL,
592 EVT::getIntegerVT(*DAG.getContext(),
593 ValueVT.getSizeInBits()),
594 Val);
595
596 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
597 for (unsigned i = 0; i < NumParts; i += StepSize) {
598 unsigned ThisBits = StepSize * PartBits / 2;
599 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
600 SDValue &Part0 = Parts[i];
601 SDValue &Part1 = Parts[i+StepSize/2];
602
603 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
604 ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
605 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
606 ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
607
608 if (ThisBits == PartBits && ThisVT != PartVT) {
609 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
610 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
611 }
612 }
613 }
614
615 if (DAG.getDataLayout().isBigEndian())
616 std::reverse(Parts, Parts + OrigNumParts);
617}
618
619static SDValue widenVectorToPartType(SelectionDAG &DAG,
620 SDValue Val, const SDLoc &DL, EVT PartVT) {
621 if (!PartVT.isVector())
622 return SDValue();
623
624 EVT ValueVT = Val.getValueType();
625 unsigned PartNumElts = PartVT.getVectorNumElements();
626 unsigned ValueNumElts = ValueVT.getVectorNumElements();
627 if (PartNumElts > ValueNumElts &&
628 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
629 EVT ElementVT = PartVT.getVectorElementType();
630 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in
631 // undef elements.
632 SmallVector<SDValue, 16> Ops;
633 DAG.ExtractVectorElements(Val, Ops);
634 SDValue EltUndef = DAG.getUNDEF(ElementVT);
635 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
636 Ops.push_back(EltUndef);
637
638 // FIXME: Use CONCAT for 2x -> 4x.
639 return DAG.getBuildVector(PartVT, DL, Ops);
640 }
641
642 return SDValue();
643}
644
645/// getCopyToPartsVector - Create a series of nodes that contain the specified
646/// value split into legal parts.
647static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
648 SDValue Val, SDValue *Parts, unsigned NumParts,
649 MVT PartVT, const Value *V,
650 Optional<CallingConv::ID> CallConv) {
651 EVT ValueVT = Val.getValueType();
652 assert(ValueVT.isVector() && "Not a vector")((ValueVT.isVector() && "Not a vector") ? static_cast
<void> (0) : __assert_fail ("ValueVT.isVector() && \"Not a vector\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 652, __PRETTY_FUNCTION__))
;
653 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
654 const bool IsABIRegCopy = CallConv.hasValue();
655
656 if (NumParts == 1) {
657 EVT PartEVT = PartVT;
658 if (PartEVT == ValueVT) {
659 // Nothing to do.
660 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
661 // Bitconvert vector->vector case.
662 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
663 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
664 Val = Widened;
665 } else if (PartVT.isVector() &&
666 PartEVT.getVectorElementType().bitsGE(
667 ValueVT.getVectorElementType()) &&
668 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
669
670 // Promoted vector extract
671 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
672 } else {
673 if (ValueVT.getVectorNumElements() == 1) {
674 Val = DAG.getNode(
675 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
676 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
677 } else {
678 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&((PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
"lossy conversion of vector to scalar type") ? static_cast<
void> (0) : __assert_fail ("PartVT.getSizeInBits() > ValueVT.getSizeInBits() && \"lossy conversion of vector to scalar type\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 679, __PRETTY_FUNCTION__))
679 "lossy conversion of vector to scalar type")((PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
"lossy conversion of vector to scalar type") ? static_cast<
void> (0) : __assert_fail ("PartVT.getSizeInBits() > ValueVT.getSizeInBits() && \"lossy conversion of vector to scalar type\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 679, __PRETTY_FUNCTION__))
;
680 EVT IntermediateType =
681 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
682 Val = DAG.getBitcast(IntermediateType, Val);
683 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
684 }
685 }
686
687 assert(Val.getValueType() == PartVT && "Unexpected vector part value type")((Val.getValueType() == PartVT && "Unexpected vector part value type"
) ? static_cast<void> (0) : __assert_fail ("Val.getValueType() == PartVT && \"Unexpected vector part value type\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 687, __PRETTY_FUNCTION__))
;
688 Parts[0] = Val;
689 return;
690 }
691
692 // Handle a multi-element vector.
693 EVT IntermediateVT;
694 MVT RegisterVT;
695 unsigned NumIntermediates;
696 unsigned NumRegs;
697 if (IsABIRegCopy) {
698 NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
699 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
700 NumIntermediates, RegisterVT);
701 } else {
702 NumRegs =
703 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
704 NumIntermediates, RegisterVT);
705 }
706
707 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!")((NumRegs == NumParts && "Part count doesn't match vector breakdown!"
) ? static_cast<void> (0) : __assert_fail ("NumRegs == NumParts && \"Part count doesn't match vector breakdown!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 707, __PRETTY_FUNCTION__))
;
708 NumParts = NumRegs; // Silence a compiler warning.
709 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!")((RegisterVT == PartVT && "Part type doesn't match vector breakdown!"
) ? static_cast<void> (0) : __assert_fail ("RegisterVT == PartVT && \"Part type doesn't match vector breakdown!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 709, __PRETTY_FUNCTION__))
;
710
711 unsigned IntermediateNumElts = IntermediateVT.isVector() ?
712 IntermediateVT.getVectorNumElements() : 1;
713
714 // Convert the vector to the appropiate type if necessary.
715 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts;
716
717 EVT BuiltVectorTy = EVT::getVectorVT(
718 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
719 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
720 if (ValueVT != BuiltVectorTy) {
721 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
722 Val = Widened;
723
724 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
725 }
726
727 // Split the vector into intermediate operands.
728 SmallVector<SDValue, 8> Ops(NumIntermediates);
729 for (unsigned i = 0; i != NumIntermediates; ++i) {
730 if (IntermediateVT.isVector()) {
731 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
732 DAG.getConstant(i * IntermediateNumElts, DL, IdxVT));
733 } else {
734 Ops[i] = DAG.getNode(
735 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
736 DAG.getConstant(i, DL, IdxVT));
737 }
738 }
739
740 // Split the intermediate operands into legal parts.
741 if (NumParts == NumIntermediates) {
742 // If the register was not expanded, promote or copy the value,
743 // as appropriate.
744 for (unsigned i = 0; i != NumParts; ++i)
745 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
746 } else if (NumParts > 0) {
747 // If the intermediate type was expanded, split each the value into
748 // legal parts.
749 assert(NumIntermediates != 0 && "division by zero")((NumIntermediates != 0 && "division by zero") ? static_cast
<void> (0) : __assert_fail ("NumIntermediates != 0 && \"division by zero\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 749, __PRETTY_FUNCTION__))
;
750 assert(NumParts % NumIntermediates == 0 &&((NumParts % NumIntermediates == 0 && "Must expand into a divisible number of parts!"
) ? static_cast<void> (0) : __assert_fail ("NumParts % NumIntermediates == 0 && \"Must expand into a divisible number of parts!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 751, __PRETTY_FUNCTION__))
751 "Must expand into a divisible number of parts!")((NumParts % NumIntermediates == 0 && "Must expand into a divisible number of parts!"
) ? static_cast<void> (0) : __assert_fail ("NumParts % NumIntermediates == 0 && \"Must expand into a divisible number of parts!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 751, __PRETTY_FUNCTION__))
;
752 unsigned Factor = NumParts / NumIntermediates;
753 for (unsigned i = 0; i != NumIntermediates; ++i)
754 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
755 CallConv);
756 }
757}
758
759RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
760 EVT valuevt, Optional<CallingConv::ID> CC)
761 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
762 RegCount(1, regs.size()), CallConv(CC) {}
763
764RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
765 const DataLayout &DL, unsigned Reg, Type *Ty,
766 Optional<CallingConv::ID> CC) {
767 ComputeValueVTs(TLI, DL, Ty, ValueVTs);
768
769 CallConv = CC;
770
771 for (EVT ValueVT : ValueVTs) {
772 unsigned NumRegs =
773 isABIMangled()
774 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
775 : TLI.getNumRegisters(Context, ValueVT);
776 MVT RegisterVT =
777 isABIMangled()
778 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
779 : TLI.getRegisterType(Context, ValueVT);
780 for (unsigned i = 0; i != NumRegs; ++i)
781 Regs.push_back(Reg + i);
782 RegVTs.push_back(RegisterVT);
783 RegCount.push_back(NumRegs);
784 Reg += NumRegs;
785 }
786}
787
788SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
789 FunctionLoweringInfo &FuncInfo,
790 const SDLoc &dl, SDValue &Chain,
791 SDValue *Flag, const Value *V) const {
792 // A Value with type {} or [0 x %t] needs no registers.
793 if (ValueVTs.empty())
794 return SDValue();
795
796 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
797
798 // Assemble the legal parts into the final values.
799 SmallVector<SDValue, 4> Values(ValueVTs.size());
800 SmallVector<SDValue, 8> Parts;
801 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
802 // Copy the legal parts from the registers.
803 EVT ValueVT = ValueVTs[Value];
804 unsigned NumRegs = RegCount[Value];
805 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
806 *DAG.getContext(),
807 CallConv.getValue(), RegVTs[Value])
808 : RegVTs[Value];
809
810 Parts.resize(NumRegs);
811 for (unsigned i = 0; i != NumRegs; ++i) {
812 SDValue P;
813 if (!Flag) {
814 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
815 } else {
816 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
817 *Flag = P.getValue(2);
818 }
819
820 Chain = P.getValue(1);
821 Parts[i] = P;
822
823 // If the source register was virtual and if we know something about it,
824 // add an assert node.
825 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
826 !RegisterVT.isInteger())
827 continue;
828
829 const FunctionLoweringInfo::LiveOutInfo *LOI =
830 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
831 if (!LOI)
832 continue;
833
834 unsigned RegSize = RegisterVT.getScalarSizeInBits();
835 unsigned NumSignBits = LOI->NumSignBits;
836 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
837
838 if (NumZeroBits == RegSize) {
839 // The current value is a zero.
840 // Explicitly express that as it would be easier for
841 // optimizations to kick in.
842 Parts[i] = DAG.getConstant(0, dl, RegisterVT);
843 continue;
844 }
845
846 // FIXME: We capture more information than the dag can represent. For
847 // now, just use the tightest assertzext/assertsext possible.
848 bool isSExt;
849 EVT FromVT(MVT::Other);
850 if (NumZeroBits) {
851 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
852 isSExt = false;
853 } else if (NumSignBits > 1) {
854 FromVT =
855 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
856 isSExt = true;
857 } else {
858 continue;
859 }
860 // Add an assertion node.
861 assert(FromVT != MVT::Other)((FromVT != MVT::Other) ? static_cast<void> (0) : __assert_fail
("FromVT != MVT::Other", "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 861, __PRETTY_FUNCTION__))
;
862 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
863 RegisterVT, P, DAG.getValueType(FromVT));
864 }
865
866 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
867 RegisterVT, ValueVT, V, CallConv);
868 Part += NumRegs;
869 Parts.clear();
870 }
871
872 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
873}
874
875void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
876 const SDLoc &dl, SDValue &Chain, SDValue *Flag,
877 const Value *V,
878 ISD::NodeType PreferredExtendType) const {
879 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
880 ISD::NodeType ExtendKind = PreferredExtendType;
881
882 // Get the list of the values's legal parts.
883 unsigned NumRegs = Regs.size();
884 SmallVector<SDValue, 8> Parts(NumRegs);
885 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
886 unsigned NumParts = RegCount[Value];
887
888 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
889 *DAG.getContext(),
890 CallConv.getValue(), RegVTs[Value])
891 : RegVTs[Value];
892
893 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
894 ExtendKind = ISD::ZERO_EXTEND;
895
896 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
897 NumParts, RegisterVT, V, CallConv, ExtendKind);
898 Part += NumParts;
899 }
900
901 // Copy the parts into the registers.
902 SmallVector<SDValue, 8> Chains(NumRegs);
903 for (unsigned i = 0; i != NumRegs; ++i) {
904 SDValue Part;
905 if (!Flag) {
906 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
907 } else {
908 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
909 *Flag = Part.getValue(1);
910 }
911
912 Chains[i] = Part.getValue(0);
913 }
914
915 if (NumRegs == 1 || Flag)
916 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
917 // flagged to it. That is the CopyToReg nodes and the user are considered
918 // a single scheduling unit. If we create a TokenFactor and return it as
919 // chain, then the TokenFactor is both a predecessor (operand) of the
920 // user as well as a successor (the TF operands are flagged to the user).
921 // c1, f1 = CopyToReg
922 // c2, f2 = CopyToReg
923 // c3 = TokenFactor c1, c2
924 // ...
925 // = op c3, ..., f2
926 Chain = Chains[NumRegs-1];
927 else
928 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
929}
930
931void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
932 unsigned MatchingIdx, const SDLoc &dl,
933 SelectionDAG &DAG,
934 std::vector<SDValue> &Ops) const {
935 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
936
937 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
938 if (HasMatching)
939 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
940 else if (!Regs.empty() &&
941 TargetRegisterInfo::isVirtualRegister(Regs.front())) {
942 // Put the register class of the virtual registers in the flag word. That
943 // way, later passes can recompute register class constraints for inline
944 // assembly as well as normal instructions.
945 // Don't do this for tied operands that can use the regclass information
946 // from the def.
947 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
948 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
949 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
950 }
951
952 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
953 Ops.push_back(Res);
954
955 if (Code == InlineAsm::Kind_Clobber) {
956 // Clobbers should always have a 1:1 mapping with registers, and may
957 // reference registers that have illegal (e.g. vector) types. Hence, we
958 // shouldn't try to apply any sort of splitting logic to them.
959 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&((Regs.size() == RegVTs.size() && Regs.size() == ValueVTs
.size() && "No 1:1 mapping from clobbers to regs?") ?
static_cast<void> (0) : __assert_fail ("Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && \"No 1:1 mapping from clobbers to regs?\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 960, __PRETTY_FUNCTION__))
960 "No 1:1 mapping from clobbers to regs?")((Regs.size() == RegVTs.size() && Regs.size() == ValueVTs
.size() && "No 1:1 mapping from clobbers to regs?") ?
static_cast<void> (0) : __assert_fail ("Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && \"No 1:1 mapping from clobbers to regs?\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 960, __PRETTY_FUNCTION__))
;
961 unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
962 (void)SP;
963 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
964 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
965 assert((((Regs[I] != SP || DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment
()) && "If we clobbered the stack pointer, MFI should know about it."
) ? static_cast<void> (0) : __assert_fail ("(Regs[I] != SP || DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && \"If we clobbered the stack pointer, MFI should know about it.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 968, __PRETTY_FUNCTION__))
966 (Regs[I] != SP ||(((Regs[I] != SP || DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment
()) && "If we clobbered the stack pointer, MFI should know about it."
) ? static_cast<void> (0) : __assert_fail ("(Regs[I] != SP || DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && \"If we clobbered the stack pointer, MFI should know about it.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 968, __PRETTY_FUNCTION__))
967 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&(((Regs[I] != SP || DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment
()) && "If we clobbered the stack pointer, MFI should know about it."
) ? static_cast<void> (0) : __assert_fail ("(Regs[I] != SP || DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && \"If we clobbered the stack pointer, MFI should know about it.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 968, __PRETTY_FUNCTION__))
968 "If we clobbered the stack pointer, MFI should know about it.")(((Regs[I] != SP || DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment
()) && "If we clobbered the stack pointer, MFI should know about it."
) ? static_cast<void> (0) : __assert_fail ("(Regs[I] != SP || DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && \"If we clobbered the stack pointer, MFI should know about it.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 968, __PRETTY_FUNCTION__))
;
969 }
970 return;
971 }
972
973 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
974 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
975 MVT RegisterVT = RegVTs[Value];
976 for (unsigned i = 0; i != NumRegs; ++i) {
977 assert(Reg < Regs.size() && "Mismatch in # registers expected")((Reg < Regs.size() && "Mismatch in # registers expected"
) ? static_cast<void> (0) : __assert_fail ("Reg < Regs.size() && \"Mismatch in # registers expected\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 977, __PRETTY_FUNCTION__))
;
978 unsigned TheReg = Regs[Reg++];
979 Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
980 }
981 }
982}
983
984SmallVector<std::pair<unsigned, unsigned>, 4>
985RegsForValue::getRegsAndSizes() const {
986 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
987 unsigned I = 0;
988 for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
989 unsigned RegCount = std::get<0>(CountAndVT);
990 MVT RegisterVT = std::get<1>(CountAndVT);
991 unsigned RegisterSize = RegisterVT.getSizeInBits();
992 for (unsigned E = I + RegCount; I != E; ++I)
993 OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
994 }
995 return OutVec;
996}
997
998void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
999 const TargetLibraryInfo *li) {
1000 AA = aa;
1001 GFI = gfi;
1002 LibInfo = li;
1003 DL = &DAG.getDataLayout();
1004 Context = DAG.getContext();
1005 LPadToCallSiteMap.clear();
1006}
1007
1008void SelectionDAGBuilder::clear() {
1009 NodeMap.clear();
1010 UnusedArgNodeMap.clear();
1011 PendingLoads.clear();
1012 PendingExports.clear();
1013 CurInst = nullptr;
1014 HasTailCall = false;
1015 SDNodeOrder = LowestSDNodeOrder;
1016 StatepointLowering.clear();
1017}
1018
1019void SelectionDAGBuilder::clearDanglingDebugInfo() {
1020 DanglingDebugInfoMap.clear();
1021}
1022
1023SDValue SelectionDAGBuilder::getRoot() {
1024 if (PendingLoads.empty())
1025 return DAG.getRoot();
1026
1027 if (PendingLoads.size() == 1) {
1028 SDValue Root = PendingLoads[0];
1029 DAG.setRoot(Root);
1030 PendingLoads.clear();
1031 return Root;
1032 }
1033
1034 // Otherwise, we have to make a token factor node.
1035 // If we have >= 2^16 loads then split across multiple token factors as
1036 // there's a 64k limit on the number of SDNode operands.
1037 SDValue Root;
1038 size_t Limit = (1 << 16) - 1;
1039 while (PendingLoads.size() > Limit) {
1040 unsigned SliceIdx = PendingLoads.size() - Limit;
1041 auto ExtractedTFs = ArrayRef<SDValue>(PendingLoads).slice(SliceIdx, Limit);
1042 SDValue NewTF =
1043 DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, ExtractedTFs);
1044 PendingLoads.erase(PendingLoads.begin() + SliceIdx, PendingLoads.end());
1045 PendingLoads.emplace_back(NewTF);
1046 }
1047 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, PendingLoads);
1048 PendingLoads.clear();
1049 DAG.setRoot(Root);
1050 return Root;
1051}
1052
1053SDValue SelectionDAGBuilder::getControlRoot() {
1054 SDValue Root = DAG.getRoot();
1055
1056 if (PendingExports.empty())
1057 return Root;
1058
1059 // Turn all of the CopyToReg chains into one factored node.
1060 if (Root.getOpcode() != ISD::EntryToken) {
1061 unsigned i = 0, e = PendingExports.size();
1062 for (; i != e; ++i) {
1063 assert(PendingExports[i].getNode()->getNumOperands() > 1)((PendingExports[i].getNode()->getNumOperands() > 1) ? static_cast
<void> (0) : __assert_fail ("PendingExports[i].getNode()->getNumOperands() > 1"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 1063, __PRETTY_FUNCTION__))
;
1064 if (PendingExports[i].getNode()->getOperand(0) == Root)
1065 break; // Don't add the root if we already indirectly depend on it.
1066 }
1067
1068 if (i == e)
1069 PendingExports.push_back(Root);
1070 }
1071
1072 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1073 PendingExports);
1074 PendingExports.clear();
1075 DAG.setRoot(Root);
1076 return Root;
1077}
1078
1079void SelectionDAGBuilder::visit(const Instruction &I) {
1080 // Set up outgoing PHI node register values before emitting the terminator.
1081 if (I.isTerminator()) {
1082 HandlePHINodesInSuccessorBlocks(I.getParent());
1083 }
1084
1085 // Increase the SDNodeOrder if dealing with a non-debug instruction.
1086 if (!isa<DbgInfoIntrinsic>(I))
1087 ++SDNodeOrder;
1088
1089 CurInst = &I;
1090
1091 visit(I.getOpcode(), I);
1092
1093 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1094 // Propagate the fast-math-flags of this IR instruction to the DAG node that
1095 // maps to this instruction.
1096 // TODO: We could handle all flags (nsw, etc) here.
1097 // TODO: If an IR instruction maps to >1 node, only the final node will have
1098 // flags set.
1099 if (SDNode *Node = getNodeForIRValue(&I)) {
1100 SDNodeFlags IncomingFlags;
1101 IncomingFlags.copyFMF(*FPMO);
1102 if (!Node->getFlags().isDefined())
1103 Node->setFlags(IncomingFlags);
1104 else
1105 Node->intersectFlagsWith(IncomingFlags);
1106 }
1107 }
1108
1109 if (!I.isTerminator() && !HasTailCall &&
1110 !isStatepoint(&I)) // statepoints handle their exports internally
1111 CopyToExportRegsIfNeeded(&I);
1112
1113 CurInst = nullptr;
1114}
1115
1116void SelectionDAGBuilder::visitPHI(const PHINode &) {
1117 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!")::llvm::llvm_unreachable_internal("SelectionDAGBuilder shouldn't visit PHI nodes!"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 1117)
;
1118}
1119
1120void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1121 // Note: this doesn't use InstVisitor, because it has to work with
1122 // ConstantExpr's in addition to instructions.
1123 switch (Opcode) {
1124 default: llvm_unreachable("Unknown instruction type encountered!")::llvm::llvm_unreachable_internal("Unknown instruction type encountered!"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 1124)
;
1125 // Build the switch statement using the Instruction.def file.
1126#define HANDLE_INST(NUM, OPCODE, CLASS) \
1127 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1128#include "llvm/IR/Instruction.def"
1129 }
1130}
1131
1132void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1133 const DIExpression *Expr) {
1134 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1135 const DbgValueInst *DI = DDI.getDI();
1136 DIVariable *DanglingVariable = DI->getVariable();
1137 DIExpression *DanglingExpr = DI->getExpression();
1138 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1139 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() << "Dropping dangling debug info for "
<< *DI << "\n"; } } while (false)
;
1140 return true;
1141 }
1142 return false;
1143 };
1144
1145 for (auto &DDIMI : DanglingDebugInfoMap) {
1146 DanglingDebugInfoVector &DDIV = DDIMI.second;
1147 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1148 }
1149}
1150
1151// resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1152// generate the debug data structures now that we've seen its definition.
1153void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1154 SDValue Val) {
1155 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1156 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1157 return;
1158
1159 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1160 for (auto &DDI : DDIV) {
1161 const DbgValueInst *DI = DDI.getDI();
1162 assert(DI && "Ill-formed DanglingDebugInfo")((DI && "Ill-formed DanglingDebugInfo") ? static_cast
<void> (0) : __assert_fail ("DI && \"Ill-formed DanglingDebugInfo\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 1162, __PRETTY_FUNCTION__))
;
1163 DebugLoc dl = DDI.getdl();
1164 unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1165 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1166 DILocalVariable *Variable = DI->getVariable();
1167 DIExpression *Expr = DI->getExpression();
1168 assert(Variable->isValidLocationForIntrinsic(dl) &&((Variable->isValidLocationForIntrinsic(dl) && "Expected inlined-at fields to agree"
) ? static_cast<void> (0) : __assert_fail ("Variable->isValidLocationForIntrinsic(dl) && \"Expected inlined-at fields to agree\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 1169, __PRETTY_FUNCTION__))
1169 "Expected inlined-at fields to agree")((Variable->isValidLocationForIntrinsic(dl) && "Expected inlined-at fields to agree"
) ? static_cast<void> (0) : __assert_fail ("Variable->isValidLocationForIntrinsic(dl) && \"Expected inlined-at fields to agree\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 1169, __PRETTY_FUNCTION__))
;
1170 SDDbgValue *SDV;
1171 if (Val.getNode()) {
1172 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1173 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() << "Resolve dangling debug info [order="
<< DbgSDNodeOrder << "] for:\n " << *DI <<
"\n"; } } while (false)
1174 << DbgSDNodeOrder << "] for:\n " << *DI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() << "Resolve dangling debug info [order="
<< DbgSDNodeOrder << "] for:\n " << *DI <<
"\n"; } } while (false)
;
1175 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump())do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() << " By mapping to:\n "; Val.dump
(); } } while (false)
;
1176 // Increase the SDNodeOrder for the DbgValue here to make sure it is
1177 // inserted after the definition of Val when emitting the instructions
1178 // after ISel. An alternative could be to teach
1179 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1180 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() <<
"changing SDNodeOrder from " << DbgSDNodeOrder <<
" to " << ValSDNodeOrder << "\n"; } } while (false
)
1181 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() <<
"changing SDNodeOrder from " << DbgSDNodeOrder <<
" to " << ValSDNodeOrder << "\n"; } } while (false
)
1182 << ValSDNodeOrder << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() <<
"changing SDNodeOrder from " << DbgSDNodeOrder <<
" to " << ValSDNodeOrder << "\n"; } } while (false
)
;
1183 SDV = getDbgValue(Val, Variable, Expr, dl,
1184 std::max(DbgSDNodeOrder, ValSDNodeOrder));
1185 DAG.AddDbgValue(SDV, Val.getNode(), false);
1186 } else
1187 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DIdo { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() << "Resolved dangling debug info for "
<< *DI << "in EmitFuncArgumentDbgValue\n"; } } while
(false)
1188 << "in EmitFuncArgumentDbgValue\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() << "Resolved dangling debug info for "
<< *DI << "in EmitFuncArgumentDbgValue\n"; } } while
(false)
;
1189 } else
1190 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() << "Dropping debug info for " <<
*DI << "\n"; } } while (false)
;
1191 }
1192 DDIV.clear();
1193}
1194
1195/// getCopyFromRegs - If there was virtual register allocated for the value V
1196/// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1197SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1198 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1199 SDValue Result;
1200
1201 if (It != FuncInfo.ValueMap.end()) {
1202 unsigned InReg = It->second;
1203
1204 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1205 DAG.getDataLayout(), InReg, Ty,
1206 None); // This is not an ABI copy.
1207 SDValue Chain = DAG.getEntryNode();
1208 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1209 V);
1210 resolveDanglingDebugInfo(V, Result);
1211 }
1212
1213 return Result;
1214}
1215
1216/// getValue - Return an SDValue for the given Value.
1217SDValue SelectionDAGBuilder::getValue(const Value *V) {
1218 // If we already have an SDValue for this value, use it. It's important
1219 // to do this first, so that we don't create a CopyFromReg if we already
1220 // have a regular SDValue.
1221 SDValue &N = NodeMap[V];
1222 if (N.getNode()) return N;
1223
1224 // If there's a virtual register allocated and initialized for this
1225 // value, use it.
1226 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1227 return copyFromReg;
1228
1229 // Otherwise create a new SDValue and remember it.
1230 SDValue Val = getValueImpl(V);
1231 NodeMap[V] = Val;
1232 resolveDanglingDebugInfo(V, Val);
1233 return Val;
1234}
1235
1236// Return true if SDValue exists for the given Value
1237bool SelectionDAGBuilder::findValue(const Value *V) const {
1238 return (NodeMap.find(V) != NodeMap.end()) ||
1239 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1240}
1241
1242/// getNonRegisterValue - Return an SDValue for the given Value, but
1243/// don't look in FuncInfo.ValueMap for a virtual register.
1244SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1245 // If we already have an SDValue for this value, use it.
1246 SDValue &N = NodeMap[V];
1247 if (N.getNode()) {
1248 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1249 // Remove the debug location from the node as the node is about to be used
1250 // in a location which may differ from the original debug location. This
1251 // is relevant to Constant and ConstantFP nodes because they can appear
1252 // as constant expressions inside PHI nodes.
1253 N->setDebugLoc(DebugLoc());
1254 }
1255 return N;
1256 }
1257
1258 // Otherwise create a new SDValue and remember it.
1259 SDValue Val = getValueImpl(V);
1260 NodeMap[V] = Val;
1261 resolveDanglingDebugInfo(V, Val);
1262 return Val;
1263}
1264
1265/// getValueImpl - Helper function for getValue and getNonRegisterValue.
1266/// Create an SDValue for the given value.
1267SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1268 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1269
1270 if (const Constant *C = dyn_cast<Constant>(V)) {
1271 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1272
1273 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1274 return DAG.getConstant(*CI, getCurSDLoc(), VT);
1275
1276 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1277 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1278
1279 if (isa<ConstantPointerNull>(C)) {
1280 unsigned AS = V->getType()->getPointerAddressSpace();
1281 return DAG.getConstant(0, getCurSDLoc(),
1282 TLI.getPointerTy(DAG.getDataLayout(), AS));
1283 }
1284
1285 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1286 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1287
1288 if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1289 return DAG.getUNDEF(VT);
1290
1291 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1292 visit(CE->getOpcode(), *CE);
1293 SDValue N1 = NodeMap[V];
1294 assert(N1.getNode() && "visit didn't populate the NodeMap!")((N1.getNode() && "visit didn't populate the NodeMap!"
) ? static_cast<void> (0) : __assert_fail ("N1.getNode() && \"visit didn't populate the NodeMap!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 1294, __PRETTY_FUNCTION__))
;
1295 return N1;
1296 }
1297
1298 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1299 SmallVector<SDValue, 4> Constants;
1300 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1301 OI != OE; ++OI) {
1302 SDNode *Val = getValue(*OI).getNode();
1303 // If the operand is an empty aggregate, there are no values.
1304 if (!Val) continue;
1305 // Add each leaf value from the operand to the Constants list
1306 // to form a flattened list of all the values.
1307 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1308 Constants.push_back(SDValue(Val, i));
1309 }
1310
1311 return DAG.getMergeValues(Constants, getCurSDLoc());
1312 }
1313
1314 if (const ConstantDataSequential *CDS =
1315 dyn_cast<ConstantDataSequential>(C)) {
1316 SmallVector<SDValue, 4> Ops;
1317 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1318 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1319 // Add each leaf value from the operand to the Constants list
1320 // to form a flattened list of all the values.
1321 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1322 Ops.push_back(SDValue(Val, i));
1323 }
1324
1325 if (isa<ArrayType>(CDS->getType()))
1326 return DAG.getMergeValues(Ops, getCurSDLoc());
1327 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1328 }
1329
1330 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1331 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&(((isa<ConstantAggregateZero>(C) || isa<UndefValue>
(C)) && "Unknown struct or array constant!") ? static_cast
<void> (0) : __assert_fail ("(isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && \"Unknown struct or array constant!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 1332, __PRETTY_FUNCTION__))
1332 "Unknown struct or array constant!")(((isa<ConstantAggregateZero>(C) || isa<UndefValue>
(C)) && "Unknown struct or array constant!") ? static_cast
<void> (0) : __assert_fail ("(isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && \"Unknown struct or array constant!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 1332, __PRETTY_FUNCTION__))
;
1333
1334 SmallVector<EVT, 4> ValueVTs;
1335 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1336 unsigned NumElts = ValueVTs.size();
1337 if (NumElts == 0)
1338 return SDValue(); // empty struct
1339 SmallVector<SDValue, 4> Constants(NumElts);
1340 for (unsigned i = 0; i != NumElts; ++i) {
1341 EVT EltVT = ValueVTs[i];
1342 if (isa<UndefValue>(C))
1343 Constants[i] = DAG.getUNDEF(EltVT);
1344 else if (EltVT.isFloatingPoint())
1345 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1346 else
1347 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1348 }
1349
1350 return DAG.getMergeValues(Constants, getCurSDLoc());
1351 }
1352
1353 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1354 return DAG.getBlockAddress(BA, VT);
1355
1356 VectorType *VecTy = cast<VectorType>(V->getType());
1357 unsigned NumElements = VecTy->getNumElements();
1358
1359 // Now that we know the number and type of the elements, get that number of
1360 // elements into the Ops array based on what kind of constant it is.
1361 SmallVector<SDValue, 16> Ops;
1362 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1363 for (unsigned i = 0; i != NumElements; ++i)
1364 Ops.push_back(getValue(CV->getOperand(i)));
1365 } else {
1366 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!")((isa<ConstantAggregateZero>(C) && "Unknown vector constant!"
) ? static_cast<void> (0) : __assert_fail ("isa<ConstantAggregateZero>(C) && \"Unknown vector constant!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 1366, __PRETTY_FUNCTION__))
;
1367 EVT EltVT =
1368 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1369
1370 SDValue Op;
1371 if (EltVT.isFloatingPoint())
1372 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1373 else
1374 Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1375 Ops.assign(NumElements, Op);
1376 }
1377
1378 // Create a BUILD_VECTOR node.
1379 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1380 }
1381
1382 // If this is a static alloca, generate it as the frameindex instead of
1383 // computation.
1384 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1385 DenseMap<const AllocaInst*, int>::iterator SI =
1386 FuncInfo.StaticAllocaMap.find(AI);
1387 if (SI != FuncInfo.StaticAllocaMap.end())
1388 return DAG.getFrameIndex(SI->second,
1389 TLI.getFrameIndexTy(DAG.getDataLayout()));
1390 }
1391
1392 // If this is an instruction which fast-isel has deferred, select it now.
1393 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1394 unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1395
1396 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1397 Inst->getType(), getABIRegCopyCC(V));
1398 SDValue Chain = DAG.getEntryNode();
1399 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1400 }
1401
1402 llvm_unreachable("Can't get register for value!")::llvm::llvm_unreachable_internal("Can't get register for value!"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 1402)
;
1403}
1404
1405void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1406 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1407 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1408 bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1409 bool IsSEH = isAsynchronousEHPersonality(Pers);
1410 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX;
1411 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1412 if (!IsSEH)
1413 CatchPadMBB->setIsEHScopeEntry();
1414 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1415 if (IsMSVCCXX || IsCoreCLR)
1416 CatchPadMBB->setIsEHFuncletEntry();
1417 // Wasm does not need catchpads anymore
1418 if (!IsWasmCXX)
1419 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other,
1420 getControlRoot()));
1421}
1422
1423void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1424 // Update machine-CFG edge.
1425 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1426 FuncInfo.MBB->addSuccessor(TargetMBB);
1427
1428 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1429 bool IsSEH = isAsynchronousEHPersonality(Pers);
1430 if (IsSEH) {
1431 // If this is not a fall-through branch or optimizations are switched off,
1432 // emit the branch.
1433 if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1434 TM.getOptLevel() == CodeGenOpt::None)
1435 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1436 getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1437 return;
1438 }
1439
1440 // Figure out the funclet membership for the catchret's successor.
1441 // This will be used by the FuncletLayout pass to determine how to order the
1442 // BB's.
1443 // A 'catchret' returns to the outer scope's color.
1444 Value *ParentPad = I.getCatchSwitchParentPad();
1445 const BasicBlock *SuccessorColor;
1446 if (isa<ConstantTokenNone>(ParentPad))
1447 SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1448 else
1449 SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1450 assert(SuccessorColor && "No parent funclet for catchret!")((SuccessorColor && "No parent funclet for catchret!"
) ? static_cast<void> (0) : __assert_fail ("SuccessorColor && \"No parent funclet for catchret!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 1450, __PRETTY_FUNCTION__))
;
1451 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1452 assert(SuccessorColorMBB && "No MBB for SuccessorColor!")((SuccessorColorMBB && "No MBB for SuccessorColor!") ?
static_cast<void> (0) : __assert_fail ("SuccessorColorMBB && \"No MBB for SuccessorColor!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 1452, __PRETTY_FUNCTION__))
;
1453
1454 // Create the terminator node.
1455 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1456 getControlRoot(), DAG.getBasicBlock(TargetMBB),
1457 DAG.getBasicBlock(SuccessorColorMBB));
1458 DAG.setRoot(Ret);
1459}
1460
1461void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1462 // Don't emit any special code for the cleanuppad instruction. It just marks
1463 // the start of an EH scope/funclet.
1464 FuncInfo.MBB->setIsEHScopeEntry();
1465 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1466 if (Pers != EHPersonality::Wasm_CXX) {
1467 FuncInfo.MBB->setIsEHFuncletEntry();
1468 FuncInfo.MBB->setIsCleanupFuncletEntry();
1469 }
1470}
1471
1472/// When an invoke or a cleanupret unwinds to the next EH pad, there are
1473/// many places it could ultimately go. In the IR, we have a single unwind
1474/// destination, but in the machine CFG, we enumerate all the possible blocks.
1475/// This function skips over imaginary basic blocks that hold catchswitch
1476/// instructions, and finds all the "real" machine
1477/// basic block destinations. As those destinations may not be successors of
1478/// EHPadBB, here we also calculate the edge probability to those destinations.
1479/// The passed-in Prob is the edge probability to EHPadBB.
1480static void findUnwindDestinations(
1481 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1482 BranchProbability Prob,
1483 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1484 &UnwindDests) {
1485 EHPersonality Personality =
1486 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1487 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1488 bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1489 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1490 bool IsSEH = isAsynchronousEHPersonality(Personality);
1491
1492 while (EHPadBB) {
1493 const Instruction *Pad = EHPadBB->getFirstNonPHI();
1494 BasicBlock *NewEHPadBB = nullptr;
1495 if (isa<LandingPadInst>(Pad)) {
1496 // Stop on landingpads. They are not funclets.
1497 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1498 break;
1499 } else if (isa<CleanupPadInst>(Pad)) {
1500 // Stop on cleanup pads. Cleanups are always funclet entries for all known
1501 // personalities.
1502 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1503 UnwindDests.back().first->setIsEHScopeEntry();
1504 if (!IsWasmCXX)
1505 UnwindDests.back().first->setIsEHFuncletEntry();
1506 break;
1507 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1508 // Add the catchpad handlers to the possible destinations.
1509 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1510 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1511 // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1512 if (IsMSVCCXX || IsCoreCLR)
1513 UnwindDests.back().first->setIsEHFuncletEntry();
1514 if (!IsSEH)
1515 UnwindDests.back().first->setIsEHScopeEntry();
1516 }
1517 NewEHPadBB = CatchSwitch->getUnwindDest();
1518 } else {
1519 continue;
1520 }
1521
1522 BranchProbabilityInfo *BPI = FuncInfo.BPI;
1523 if (BPI && NewEHPadBB)
1524 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1525 EHPadBB = NewEHPadBB;
1526 }
1527}
1528
1529void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1530 // Update successor info.
1531 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1532 auto UnwindDest = I.getUnwindDest();
1533 BranchProbabilityInfo *BPI = FuncInfo.BPI;
1534 BranchProbability UnwindDestProb =
1535 (BPI && UnwindDest)
1536 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1537 : BranchProbability::getZero();
1538 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1539 for (auto &UnwindDest : UnwindDests) {
1540 UnwindDest.first->setIsEHPad();
1541 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1542 }
1543 FuncInfo.MBB->normalizeSuccProbs();
1544
1545 // Create the terminator node.
1546 SDValue Ret =
1547 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1548 DAG.setRoot(Ret);
1549}
1550
1551void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1552 report_fatal_error("visitCatchSwitch not yet implemented!");
1553}
1554
1555void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1556 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1557 auto &DL = DAG.getDataLayout();
1558 SDValue Chain = getControlRoot();
1559 SmallVector<ISD::OutputArg, 8> Outs;
1560 SmallVector<SDValue, 8> OutVals;
1561
1562 // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1563 // lower
1564 //
1565 // %val = call <ty> @llvm.experimental.deoptimize()
1566 // ret <ty> %val
1567 //
1568 // differently.
1569 if (I.getParent()->getTerminatingDeoptimizeCall()) {
1570 LowerDeoptimizingReturn();
1571 return;
1572 }
1573
1574 if (!FuncInfo.CanLowerReturn) {
1575 unsigned DemoteReg = FuncInfo.DemoteRegister;
1576 const Function *F = I.getParent()->getParent();
1577
1578 // Emit a store of the return value through the virtual register.
1579 // Leave Outs empty so that LowerReturn won't try to load return
1580 // registers the usual way.
1581 SmallVector<EVT, 1> PtrValueVTs;
1582 ComputeValueVTs(TLI, DL,
1583 F->getReturnType()->getPointerTo(
1584 DAG.getDataLayout().getAllocaAddrSpace()),
1585 PtrValueVTs);
1586
1587 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1588 DemoteReg, PtrValueVTs[0]);
1589 SDValue RetOp = getValue(I.getOperand(0));
1590
1591 SmallVector<EVT, 4> ValueVTs;
1592 SmallVector<uint64_t, 4> Offsets;
1593 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1594 unsigned NumValues = ValueVTs.size();
1595
1596 SmallVector<SDValue, 4> Chains(NumValues);
1597 for (unsigned i = 0; i != NumValues; ++i) {
1598 // An aggregate return value cannot wrap around the address space, so
1599 // offsets to its parts don't wrap either.
1600 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1601 Chains[i] = DAG.getStore(
1602 Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1603 // FIXME: better loc info would be nice.
1604 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1605 }
1606
1607 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1608 MVT::Other, Chains);
1609 } else if (I.getNumOperands() != 0) {
1610 SmallVector<EVT, 4> ValueVTs;
1611 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1612 unsigned NumValues = ValueVTs.size();
1613 if (NumValues) {
1614 SDValue RetOp = getValue(I.getOperand(0));
1615
1616 const Function *F = I.getParent()->getParent();
1617
1618 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1619 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1620 Attribute::SExt))
1621 ExtendKind = ISD::SIGN_EXTEND;
1622 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1623 Attribute::ZExt))
1624 ExtendKind = ISD::ZERO_EXTEND;
1625
1626 LLVMContext &Context = F->getContext();
1627 bool RetInReg = F->getAttributes().hasAttribute(
1628 AttributeList::ReturnIndex, Attribute::InReg);
1629
1630 for (unsigned j = 0; j != NumValues; ++j) {
1631 EVT VT = ValueVTs[j];
1632
1633 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1634 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1635
1636 CallingConv::ID CC = F->getCallingConv();
1637
1638 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1639 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1640 SmallVector<SDValue, 4> Parts(NumParts);
1641 getCopyToParts(DAG, getCurSDLoc(),
1642 SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1643 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1644
1645 // 'inreg' on function refers to return value
1646 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1647 if (RetInReg)
1648 Flags.setInReg();
1649
1650 // Propagate extension type if any
1651 if (ExtendKind == ISD::SIGN_EXTEND)
1652 Flags.setSExt();
1653 else if (ExtendKind == ISD::ZERO_EXTEND)
1654 Flags.setZExt();
1655
1656 for (unsigned i = 0; i < NumParts; ++i) {
1657 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1658 VT, /*isfixed=*/true, 0, 0));
1659 OutVals.push_back(Parts[i]);
1660 }
1661 }
1662 }
1663 }
1664
1665 // Push in swifterror virtual register as the last element of Outs. This makes
1666 // sure swifterror virtual register will be returned in the swifterror
1667 // physical register.
1668 const Function *F = I.getParent()->getParent();
1669 if (TLI.supportSwiftError() &&
1670 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1671 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument")((FuncInfo.SwiftErrorArg && "Need a swift error argument"
) ? static_cast<void> (0) : __assert_fail ("FuncInfo.SwiftErrorArg && \"Need a swift error argument\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 1671, __PRETTY_FUNCTION__))
;
1672 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1673 Flags.setSwiftError();
1674 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1675 EVT(TLI.getPointerTy(DL)) /*argvt*/,
1676 true /*isfixed*/, 1 /*origidx*/,
1677 0 /*partOffs*/));
1678 // Create SDNode for the swifterror virtual register.
1679 OutVals.push_back(
1680 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt(
1681 &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first,
1682 EVT(TLI.getPointerTy(DL))));
1683 }
1684
1685 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1686 CallingConv::ID CallConv =
1687 DAG.getMachineFunction().getFunction().getCallingConv();
1688 Chain = DAG.getTargetLoweringInfo().LowerReturn(
1689 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1690
1691 // Verify that the target's LowerReturn behaved as expected.
1692 assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&((Chain.getNode() && Chain.getValueType() == MVT::Other
&& "LowerReturn didn't return a valid chain!") ? static_cast
<void> (0) : __assert_fail ("Chain.getNode() && Chain.getValueType() == MVT::Other && \"LowerReturn didn't return a valid chain!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 1693, __PRETTY_FUNCTION__))
1693 "LowerReturn didn't return a valid chain!")((Chain.getNode() && Chain.getValueType() == MVT::Other
&& "LowerReturn didn't return a valid chain!") ? static_cast
<void> (0) : __assert_fail ("Chain.getNode() && Chain.getValueType() == MVT::Other && \"LowerReturn didn't return a valid chain!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 1693, __PRETTY_FUNCTION__))
;
1694
1695 // Update the DAG with the new chain value resulting from return lowering.
1696 DAG.setRoot(Chain);
1697}
1698
1699/// CopyToExportRegsIfNeeded - If the given value has virtual registers
1700/// created for it, emit nodes to copy the value into the virtual
1701/// registers.
1702void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1703 // Skip empty types
1704 if (V->getType()->isEmptyTy())
1705 return;
1706
1707 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1708 if (VMI != FuncInfo.ValueMap.end()) {
1709 assert(!V->use_empty() && "Unused value assigned virtual registers!")((!V->use_empty() && "Unused value assigned virtual registers!"
) ? static_cast<void> (0) : __assert_fail ("!V->use_empty() && \"Unused value assigned virtual registers!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 1709, __PRETTY_FUNCTION__))
;
1710 CopyValueToVirtualRegister(V, VMI->second);
1711 }
1712}
1713
1714/// ExportFromCurrentBlock - If this condition isn't known to be exported from
1715/// the current basic block, add it to ValueMap now so that we'll get a
1716/// CopyTo/FromReg.
1717void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1718 // No need to export constants.
1719 if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1720
1721 // Already exported?
1722 if (FuncInfo.isExportedInst(V)) return;
1723
1724 unsigned Reg = FuncInfo.InitializeRegForValue(V);
1725 CopyValueToVirtualRegister(V, Reg);
1726}
1727
1728bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1729 const BasicBlock *FromBB) {
1730 // The operands of the setcc have to be in this block. We don't know
1731 // how to export them from some other block.
1732 if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1733 // Can export from current BB.
1734 if (VI->getParent() == FromBB)
1735 return true;
1736
1737 // Is already exported, noop.
1738 return FuncInfo.isExportedInst(V);
1739 }
1740
1741 // If this is an argument, we can export it if the BB is the entry block or
1742 // if it is already exported.
1743 if (isa<Argument>(V)) {
1744 if (FromBB == &FromBB->getParent()->getEntryBlock())
1745 return true;
1746
1747 // Otherwise, can only export this if it is already exported.
1748 return FuncInfo.isExportedInst(V);
1749 }
1750
1751 // Otherwise, constants can always be exported.
1752 return true;
1753}
1754
1755/// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1756BranchProbability
1757SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1758 const MachineBasicBlock *Dst) const {
1759 BranchProbabilityInfo *BPI = FuncInfo.BPI;
1760 const BasicBlock *SrcBB = Src->getBasicBlock();
1761 const BasicBlock *DstBB = Dst->getBasicBlock();
1762 if (!BPI) {
1763 // If BPI is not available, set the default probability as 1 / N, where N is
1764 // the number of successors.
1765 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
1766 return BranchProbability(1, SuccSize);
1767 }
1768 return BPI->getEdgeProbability(SrcBB, DstBB);
1769}
1770
1771void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1772 MachineBasicBlock *Dst,
1773 BranchProbability Prob) {
1774 if (!FuncInfo.BPI)
1775 Src->addSuccessorWithoutProb(Dst);
1776 else {
1777 if (Prob.isUnknown())
1778 Prob = getEdgeProbability(Src, Dst);
1779 Src->addSuccessor(Dst, Prob);
1780 }
1781}
1782
1783static bool InBlock(const Value *V, const BasicBlock *BB) {
1784 if (const Instruction *I = dyn_cast<Instruction>(V))
1785 return I->getParent() == BB;
1786 return true;
1787}
1788
1789/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1790/// This function emits a branch and is used at the leaves of an OR or an
1791/// AND operator tree.
1792void
1793SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1794 MachineBasicBlock *TBB,
1795 MachineBasicBlock *FBB,
1796 MachineBasicBlock *CurBB,
1797 MachineBasicBlock *SwitchBB,
1798 BranchProbability TProb,
1799 BranchProbability FProb,
1800 bool InvertCond) {
1801 const BasicBlock *BB = CurBB->getBasicBlock();
1802
1803 // If the leaf of the tree is a comparison, merge the condition into
1804 // the caseblock.
1805 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1806 // The operands of the cmp have to be in this block. We don't know
1807 // how to export them from some other block. If this is the first block
1808 // of the sequence, no exporting is needed.
1809 if (CurBB == SwitchBB ||
1810 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1811 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1812 ISD::CondCode Condition;
1813 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1814 ICmpInst::Predicate Pred =
1815 InvertCond ? IC->getInversePredicate() : IC->getPredicate();
1816 Condition = getICmpCondCode(Pred);
1817 } else {
1818 const FCmpInst *FC = cast<FCmpInst>(Cond);
1819 FCmpInst::Predicate Pred =
1820 InvertCond ? FC->getInversePredicate() : FC->getPredicate();
1821 Condition = getFCmpCondCode(Pred);
1822 if (TM.Options.NoNaNsFPMath)
1823 Condition = getFCmpCodeWithoutNaN(Condition);
1824 }
1825
1826 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1827 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1828 SwitchCases.push_back(CB);
1829 return;
1830 }
1831 }
1832
1833 // Create a CaseBlock record representing this branch.
1834 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
1835 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
1836 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
1837 SwitchCases.push_back(CB);
1838}
1839
1840void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1841 MachineBasicBlock *TBB,
1842 MachineBasicBlock *FBB,
1843 MachineBasicBlock *CurBB,
1844 MachineBasicBlock *SwitchBB,
1845 Instruction::BinaryOps Opc,
1846 BranchProbability TProb,
1847 BranchProbability FProb,
1848 bool InvertCond) {
1849 // Skip over not part of the tree and remember to invert op and operands at
1850 // next level.
1851 Value *NotCond;
1852 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
1853 InBlock(NotCond, CurBB->getBasicBlock())) {
1854 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
1855 !InvertCond);
1856 return;
1857 }
1858
1859 const Instruction *BOp = dyn_cast<Instruction>(Cond);
1860 // Compute the effective opcode for Cond, taking into account whether it needs
1861 // to be inverted, e.g.
1862 // and (not (or A, B)), C
1863 // gets lowered as
1864 // and (and (not A, not B), C)
1865 unsigned BOpc = 0;
1866 if (BOp) {
1867 BOpc = BOp->getOpcode();
1868 if (InvertCond) {
1869 if (BOpc == Instruction::And)
1870 BOpc = Instruction::Or;
1871 else if (BOpc == Instruction::Or)
1872 BOpc = Instruction::And;
1873 }
1874 }
1875
1876 // If this node is not part of the or/and tree, emit it as a branch.
1877 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1878 BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
1879 BOp->getParent() != CurBB->getBasicBlock() ||
1880 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1881 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1882 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1883 TProb, FProb, InvertCond);
1884 return;
1885 }
1886
1887 // Create TmpBB after CurBB.
1888 MachineFunction::iterator BBI(CurBB);
1889 MachineFunction &MF = DAG.getMachineFunction();
1890 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1891 CurBB->getParent()->insert(++BBI, TmpBB);
1892
1893 if (Opc == Instruction::Or) {
1894 // Codegen X | Y as:
1895 // BB1:
1896 // jmp_if_X TBB
1897 // jmp TmpBB
1898 // TmpBB:
1899 // jmp_if_Y TBB
1900 // jmp FBB
1901 //
1902
1903 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1904 // The requirement is that
1905 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1906 // = TrueProb for original BB.
1907 // Assuming the original probabilities are A and B, one choice is to set
1908 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1909 // A/(1+B) and 2B/(1+B). This choice assumes that
1910 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1911 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1912 // TmpBB, but the math is more complicated.
1913
1914 auto NewTrueProb = TProb / 2;
1915 auto NewFalseProb = TProb / 2 + FProb;
1916 // Emit the LHS condition.
1917 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1918 NewTrueProb, NewFalseProb, InvertCond);
1919
1920 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1921 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1922 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1923 // Emit the RHS condition into TmpBB.
1924 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1925 Probs[0], Probs[1], InvertCond);
1926 } else {
1927 assert(Opc == Instruction::And && "Unknown merge op!")((Opc == Instruction::And && "Unknown merge op!") ? static_cast
<void> (0) : __assert_fail ("Opc == Instruction::And && \"Unknown merge op!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 1927, __PRETTY_FUNCTION__))
;
1928 // Codegen X & Y as:
1929 // BB1:
1930 // jmp_if_X TmpBB
1931 // jmp FBB
1932 // TmpBB:
1933 // jmp_if_Y TBB
1934 // jmp FBB
1935 //
1936 // This requires creation of TmpBB after CurBB.
1937
1938 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1939 // The requirement is that
1940 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1941 // = FalseProb for original BB.
1942 // Assuming the original probabilities are A and B, one choice is to set
1943 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1944 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1945 // TrueProb for BB1 * FalseProb for TmpBB.
1946
1947 auto NewTrueProb = TProb + FProb / 2;
1948 auto NewFalseProb = FProb / 2;
1949 // Emit the LHS condition.
1950 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1951 NewTrueProb, NewFalseProb, InvertCond);
1952
1953 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1954 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1955 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1956 // Emit the RHS condition into TmpBB.
1957 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1958 Probs[0], Probs[1], InvertCond);
1959 }
1960}
1961
1962/// If the set of cases should be emitted as a series of branches, return true.
1963/// If we should emit this as a bunch of and/or'd together conditions, return
1964/// false.
1965bool
1966SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1967 if (Cases.size() != 2) return true;
1968
1969 // If this is two comparisons of the same values or'd or and'd together, they
1970 // will get folded into a single comparison, so don't emit two blocks.
1971 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1972 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1973 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1974 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1975 return false;
1976 }
1977
1978 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1979 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1980 if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1981 Cases[0].CC == Cases[1].CC &&
1982 isa<Constant>(Cases[0].CmpRHS) &&
1983 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1984 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1985 return false;
1986 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1987 return false;
1988 }
1989
1990 return true;
1991}
1992
1993void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1994 MachineBasicBlock *BrMBB = FuncInfo.MBB;
1995
1996 // Update machine-CFG edges.
1997 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1998
1999 if (I.isUnconditional()) {
2000 // Update machine-CFG edges.
2001 BrMBB->addSuccessor(Succ0MBB);
2002
2003 // If this is not a fall-through branch or optimizations are switched off,
2004 // emit the branch.
2005 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2006 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2007 MVT::Other, getControlRoot(),
2008 DAG.getBasicBlock(Succ0MBB)));
2009
2010 return;
2011 }
2012
2013 // If this condition is one of the special cases we handle, do special stuff
2014 // now.
2015 const Value *CondVal = I.getCondition();
2016 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2017
2018 // If this is a series of conditions that are or'd or and'd together, emit
2019 // this as a sequence of branches instead of setcc's with and/or operations.
2020 // As long as jumps are not expensive, this should improve performance.
2021 // For example, instead of something like:
2022 // cmp A, B
2023 // C = seteq
2024 // cmp D, E
2025 // F = setle
2026 // or C, F
2027 // jnz foo
2028 // Emit:
2029 // cmp A, B
2030 // je foo
2031 // cmp D, E
2032 // jle foo
2033 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2034 Instruction::BinaryOps Opcode = BOp->getOpcode();
2035 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2036 !I.getMetadata(LLVMContext::MD_unpredictable) &&
2037 (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2038 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2039 Opcode,
2040 getEdgeProbability(BrMBB, Succ0MBB),
2041 getEdgeProbability(BrMBB, Succ1MBB),
2042 /*InvertCond=*/false);
2043 // If the compares in later blocks need to use values not currently
2044 // exported from this block, export them now. This block should always
2045 // be the first entry.
2046 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!")((SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"
) ? static_cast<void> (0) : __assert_fail ("SwitchCases[0].ThisBB == BrMBB && \"Unexpected lowering!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 2046, __PRETTY_FUNCTION__))
;
2047
2048 // Allow some cases to be rejected.
2049 if (ShouldEmitAsBranches(SwitchCases)) {
2050 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
2051 ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
2052 ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
2053 }
2054
2055 // Emit the branch for this block.
2056 visitSwitchCase(SwitchCases[0], BrMBB);
2057 SwitchCases.erase(SwitchCases.begin());
2058 return;
2059 }
2060
2061 // Okay, we decided not to do this, remove any inserted MBB's and clear
2062 // SwitchCases.
2063 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
2064 FuncInfo.MF->erase(SwitchCases[i].ThisBB);
2065
2066 SwitchCases.clear();
2067 }
2068 }
2069
2070 // Create a CaseBlock record representing this branch.
2071 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2072 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2073
2074 // Use visitSwitchCase to actually insert the fast branch sequence for this
2075 // cond branch.
2076 visitSwitchCase(CB, BrMBB);
2077}
2078
2079/// visitSwitchCase - Emits the necessary code to represent a single node in
2080/// the binary search tree resulting from lowering a switch instruction.
2081void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2082 MachineBasicBlock *SwitchBB) {
2083 SDValue Cond;
2084 SDValue CondLHS = getValue(CB.CmpLHS);
2085 SDLoc dl = CB.DL;
2086
2087 // Build the setcc now.
2088 if (!CB.CmpMHS) {
2089 // Fold "(X == true)" to X and "(X == false)" to !X to
2090 // handle common cases produced by branch lowering.
2091 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2092 CB.CC == ISD::SETEQ)
2093 Cond = CondLHS;
2094 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2095 CB.CC == ISD::SETEQ) {
2096 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2097 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2098 } else
2099 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
2100 } else {
2101 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now")((CB.CC == ISD::SETLE && "Can handle only LE ranges now"
) ? static_cast<void> (0) : __assert_fail ("CB.CC == ISD::SETLE && \"Can handle only LE ranges now\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 2101, __PRETTY_FUNCTION__))
;
2102
2103 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2104 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2105
2106 SDValue CmpOp = getValue(CB.CmpMHS);
2107 EVT VT = CmpOp.getValueType();
2108
2109 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2110 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2111 ISD::SETLE);
2112 } else {
2113 SDValue SUB = DAG.getNode(ISD::SUB, dl,
2114 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2115 Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2116 DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2117 }
2118 }
2119
2120 // Update successor info
2121 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2122 // TrueBB and FalseBB are always different unless the incoming IR is
2123 // degenerate. This only happens when running llc on weird IR.
2124 if (CB.TrueBB != CB.FalseBB)
2125 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2126 SwitchBB->normalizeSuccProbs();
2127
2128 // If the lhs block is the next block, invert the condition so that we can
2129 // fall through to the lhs instead of the rhs block.
2130 if (CB.TrueBB == NextBlock(SwitchBB)) {
2131 std::swap(CB.TrueBB, CB.FalseBB);
2132 SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2133 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2134 }
2135
2136 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2137 MVT::Other, getControlRoot(), Cond,
2138 DAG.getBasicBlock(CB.TrueBB));
2139
2140 // Insert the false branch. Do this even if it's a fall through branch,
2141 // this makes it easier to do DAG optimizations which require inverting
2142 // the branch condition.
2143 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2144 DAG.getBasicBlock(CB.FalseBB));
2145
2146 DAG.setRoot(BrCond);
2147}
2148
2149/// visitJumpTable - Emit JumpTable node in the current MBB
2150void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
2151 // Emit the code for the jump table
2152 assert(JT.Reg != -1U && "Should lower JT Header first!")((JT.Reg != -1U && "Should lower JT Header first!") ?
static_cast<void> (0) : __assert_fail ("JT.Reg != -1U && \"Should lower JT Header first!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 2152, __PRETTY_FUNCTION__))
;
2153 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2154 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2155 JT.Reg, PTy);
2156 SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2157 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2158 MVT::Other, Index.getValue(1),
2159 Table, Index);
2160 DAG.setRoot(BrJumpTable);
2161}
2162
2163/// visitJumpTableHeader - This function emits necessary code to produce index
2164/// in the JumpTable from switch case.
2165void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
2166 JumpTableHeader &JTH,
2167 MachineBasicBlock *SwitchBB) {
2168 SDLoc dl = getCurSDLoc();
2169
2170 // Subtract the lowest switch case value from the value being switched on and
2171 // conditional branch to default mbb if the result is greater than the
2172 // difference between smallest and largest cases.
2173 SDValue SwitchOp = getValue(JTH.SValue);
2174 EVT VT = SwitchOp.getValueType();
2175 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2176 DAG.getConstant(JTH.First, dl, VT));
2177
2178 // The SDNode we just created, which holds the value being switched on minus
2179 // the smallest case value, needs to be copied to a virtual register so it
2180 // can be used as an index into the jump table in a subsequent basic block.
2181 // This value may be smaller or larger than the target's pointer type, and
2182 // therefore require extension or truncating.
2183 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2184 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2185
2186 unsigned JumpTableReg =
2187 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2188 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2189 JumpTableReg, SwitchOp);
2190 JT.Reg = JumpTableReg;
2191
2192 // Emit the range check for the jump table, and branch to the default block
2193 // for the switch statement if the value being switched on exceeds the largest
2194 // case in the switch.
2195 SDValue CMP = DAG.getSetCC(
2196 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2197 Sub.getValueType()),
2198 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2199
2200 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2201 MVT::Other, CopyTo, CMP,
2202 DAG.getBasicBlock(JT.Default));
2203
2204 // Avoid emitting unnecessary branches to the next block.
2205 if (JT.MBB != NextBlock(SwitchBB))
2206 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2207 DAG.getBasicBlock(JT.MBB));
2208
2209 DAG.setRoot(BrCond);
2210}
2211
2212/// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2213/// variable if there exists one.
2214static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2215 SDValue &Chain) {
2216 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2217 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2218 MachineFunction &MF = DAG.getMachineFunction();
2219 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2220 MachineSDNode *Node =
2221 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2222 if (Global) {
2223 MachinePointerInfo MPInfo(Global);
2224 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2225 MachineMemOperand::MODereferenceable;
2226 MachineMemOperand *MemRef = MF.getMachineMemOperand(
2227 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy));
2228 DAG.setNodeMemRefs(Node, {MemRef});
2229 }
2230 return SDValue(Node, 0);
2231}
2232
2233/// Codegen a new tail for a stack protector check ParentMBB which has had its
2234/// tail spliced into a stack protector check success bb.
2235///
2236/// For a high level explanation of how this fits into the stack protector
2237/// generation see the comment on the declaration of class
2238/// StackProtectorDescriptor.
2239void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2240 MachineBasicBlock *ParentBB) {
2241
2242 // First create the loads to the guard/stack slot for the comparison.
2243 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2244 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2245
2246 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2247 int FI = MFI.getStackProtectorIndex();
2248
2249 SDValue Guard;
2250 SDLoc dl = getCurSDLoc();
2251 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2252 const Module &M = *ParentBB->getParent()->getFunction().getParent();
2253 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2254
2255 // Generate code to load the content of the guard slot.
2256 SDValue GuardVal = DAG.getLoad(
2257 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2258 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2259 MachineMemOperand::MOVolatile);
2260
2261 if (TLI.useStackGuardXorFP())
2262 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2263
2264 // Retrieve guard check function, nullptr if instrumentation is inlined.
2265 if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) {
2266 // The target provides a guard check function to validate the guard value.
2267 // Generate a call to that function with the content of the guard slot as
2268 // argument.
2269 auto *Fn = cast<Function>(GuardCheck);
2270 FunctionType *FnTy = Fn->getFunctionType();
2271 assert(FnTy->getNumParams() == 1 && "Invalid function signature")((FnTy->getNumParams() == 1 && "Invalid function signature"
) ? static_cast<void> (0) : __assert_fail ("FnTy->getNumParams() == 1 && \"Invalid function signature\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 2271, __PRETTY_FUNCTION__))
;
2272
2273 TargetLowering::ArgListTy Args;
2274 TargetLowering::ArgListEntry Entry;
2275 Entry.Node = GuardVal;
2276 Entry.Ty = FnTy->getParamType(0);
2277 if (Fn->hasAttribute(1, Attribute::AttrKind::InReg))
2278 Entry.IsInReg = true;
2279 Args.push_back(Entry);
2280
2281 TargetLowering::CallLoweringInfo CLI(DAG);
2282 CLI.setDebugLoc(getCurSDLoc())
2283 .setChain(DAG.getEntryNode())
2284 .setCallee(Fn->getCallingConv(), FnTy->getReturnType(),
2285 getValue(GuardCheck), std::move(Args));
2286
2287 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2288 DAG.setRoot(Result.second);
2289 return;
2290 }
2291
2292 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2293 // Otherwise, emit a volatile load to retrieve the stack guard value.
2294 SDValue Chain = DAG.getEntryNode();
2295 if (TLI.useLoadStackGuardNode()) {
2296 Guard = getLoadStackGuard(DAG, dl, Chain);
2297 } else {
2298 const Value *IRGuard = TLI.getSDagStackGuard(M);
2299 SDValue GuardPtr = getValue(IRGuard);
2300
2301 Guard =
2302 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2303 Align, MachineMemOperand::MOVolatile);
2304 }
2305
2306 // Perform the comparison via a subtract/getsetcc.
2307 EVT VT = Guard.getValueType();
2308 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2309
2310 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2311 *DAG.getContext(),
2312 Sub.getValueType()),
2313 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2314
2315 // If the sub is not 0, then we know the guard/stackslot do not equal, so
2316 // branch to failure MBB.
2317 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2318 MVT::Other, GuardVal.getOperand(0),
2319 Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2320 // Otherwise branch to success MBB.
2321 SDValue Br = DAG.getNode(ISD::BR, dl,
2322 MVT::Other, BrCond,
2323 DAG.getBasicBlock(SPD.getSuccessMBB()));
2324
2325 DAG.setRoot(Br);
2326}
2327
2328/// Codegen the failure basic block for a stack protector check.
2329///
2330/// A failure stack protector machine basic block consists simply of a call to
2331/// __stack_chk_fail().
2332///
2333/// For a high level explanation of how this fits into the stack protector
2334/// generation see the comment on the declaration of class
2335/// StackProtectorDescriptor.
2336void
2337SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2338 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2339 SDValue Chain =
2340 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2341 None, false, getCurSDLoc(), false, false).second;
2342 DAG.setRoot(Chain);
2343}
2344
2345/// visitBitTestHeader - This function emits necessary code to produce value
2346/// suitable for "bit tests"
2347void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2348 MachineBasicBlock *SwitchBB) {
2349 SDLoc dl = getCurSDLoc();
2350
2351 // Subtract the minimum value
2352 SDValue SwitchOp = getValue(B.SValue);
2353 EVT VT = SwitchOp.getValueType();
2354 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2355 DAG.getConstant(B.First, dl, VT));
2356
2357 // Check range
2358 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2359 SDValue RangeCmp = DAG.getSetCC(
2360 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2361 Sub.getValueType()),
2362 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2363
2364 // Determine the type of the test operands.
2365 bool UsePtrType = false;
2366 if (!TLI.isTypeLegal(VT))
2367 UsePtrType = true;
2368 else {
2369 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2370 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2371 // Switch table case range are encoded into series of masks.
2372 // Just use pointer type, it's guaranteed to fit.
2373 UsePtrType = true;
2374 break;
2375 }
2376 }
2377 if (UsePtrType) {
2378 VT = TLI.getPointerTy(DAG.getDataLayout());
2379 Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2380 }
2381
2382 B.RegVT = VT.getSimpleVT();
2383 B.Reg = FuncInfo.CreateReg(B.RegVT);
2384 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2385
2386 MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2387
2388 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2389 addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2390 SwitchBB->normalizeSuccProbs();
2391
2392 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2393 MVT::Other, CopyTo, RangeCmp,
2394 DAG.getBasicBlock(B.Default));
2395
2396 // Avoid emitting unnecessary branches to the next block.
2397 if (MBB != NextBlock(SwitchBB))
2398 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2399 DAG.getBasicBlock(MBB));
2400
2401 DAG.setRoot(BrRange);
2402}
2403
2404/// visitBitTestCase - this function produces one "bit test"
2405void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2406 MachineBasicBlock* NextMBB,
2407 BranchProbability BranchProbToNext,
2408 unsigned Reg,
2409 BitTestCase &B,
2410 MachineBasicBlock *SwitchBB) {
2411 SDLoc dl = getCurSDLoc();
2412 MVT VT = BB.RegVT;
2413 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2414 SDValue Cmp;
2415 unsigned PopCount = countPopulation(B.Mask);
2416 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2417 if (PopCount == 1) {
2418 // Testing for a single bit; just compare the shift count with what it
2419 // would need to be to shift a 1 bit in that position.
2420 Cmp = DAG.getSetCC(
2421 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2422 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2423 ISD::SETEQ);
2424 } else if (PopCount == BB.Range) {
2425 // There is only one zero bit in the range, test for it directly.
2426 Cmp = DAG.getSetCC(
2427 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2428 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2429 ISD::SETNE);
2430 } else {
2431 // Make desired shift
2432 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2433 DAG.getConstant(1, dl, VT), ShiftOp);
2434
2435 // Emit bit tests and jumps
2436 SDValue AndOp = DAG.getNode(ISD::AND, dl,
2437 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2438 Cmp = DAG.getSetCC(
2439 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2440 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2441 }
2442
2443 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2444 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2445 // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2446 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2447 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2448 // one as they are relative probabilities (and thus work more like weights),
2449 // and hence we need to normalize them to let the sum of them become one.
2450 SwitchBB->normalizeSuccProbs();
2451
2452 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2453 MVT::Other, getControlRoot(),
2454 Cmp, DAG.getBasicBlock(B.TargetBB));
2455
2456 // Avoid emitting unnecessary branches to the next block.
2457 if (NextMBB != NextBlock(SwitchBB))
2458 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2459 DAG.getBasicBlock(NextMBB));
2460
2461 DAG.setRoot(BrAnd);
2462}
2463
2464void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2465 MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2466
2467 // Retrieve successors. Look through artificial IR level blocks like
2468 // catchswitch for successors.
2469 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2470 const BasicBlock *EHPadBB = I.getSuccessor(1);
2471
2472 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2473 // have to do anything here to lower funclet bundles.
2474 assert(!I.hasOperandBundlesOtherThan(((!I.hasOperandBundlesOtherThan( {LLVMContext::OB_deopt, LLVMContext
::OB_funclet}) && "Cannot lower invokes with arbitrary operand bundles yet!"
) ? static_cast<void> (0) : __assert_fail ("!I.hasOperandBundlesOtherThan( {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && \"Cannot lower invokes with arbitrary operand bundles yet!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 2476, __PRETTY_FUNCTION__))
2475 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&((!I.hasOperandBundlesOtherThan( {LLVMContext::OB_deopt, LLVMContext
::OB_funclet}) && "Cannot lower invokes with arbitrary operand bundles yet!"
) ? static_cast<void> (0) : __assert_fail ("!I.hasOperandBundlesOtherThan( {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && \"Cannot lower invokes with arbitrary operand bundles yet!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 2476, __PRETTY_FUNCTION__))
2476 "Cannot lower invokes with arbitrary operand bundles yet!")((!I.hasOperandBundlesOtherThan( {LLVMContext::OB_deopt, LLVMContext
::OB_funclet}) && "Cannot lower invokes with arbitrary operand bundles yet!"
) ? static_cast<void> (0) : __assert_fail ("!I.hasOperandBundlesOtherThan( {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && \"Cannot lower invokes with arbitrary operand bundles yet!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 2476, __PRETTY_FUNCTION__))
;
2477
2478 const Value *Callee(I.getCalledValue());
2479 const Function *Fn = dyn_cast<Function>(Callee);
2480 if (isa<InlineAsm>(Callee))
2481 visitInlineAsm(&I);
2482 else if (Fn && Fn->isIntrinsic()) {
2483 switch (Fn->getIntrinsicID()) {
2484 default:
2485 llvm_unreachable("Cannot invoke this intrinsic")::llvm::llvm_unreachable_internal("Cannot invoke this intrinsic"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 2485)
;
2486 case Intrinsic::donothing:
2487 // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2488 break;
2489 case Intrinsic::experimental_patchpoint_void:
2490 case Intrinsic::experimental_patchpoint_i64:
2491 visitPatchpoint(&I, EHPadBB);
2492 break;
2493 case Intrinsic::experimental_gc_statepoint:
2494 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2495 break;
2496 }
2497 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2498 // Currently we do not lower any intrinsic calls with deopt operand bundles.
2499 // Eventually we will support lowering the @llvm.experimental.deoptimize
2500 // intrinsic, and right now there are no plans to support other intrinsics
2501 // with deopt state.
2502 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2503 } else {
2504 LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2505 }
2506
2507 // If the value of the invoke is used outside of its defining block, make it
2508 // available as a virtual register.
2509 // We already took care of the exported value for the statepoint instruction
2510 // during call to the LowerStatepoint.
2511 if (!isStatepoint(I)) {
2512 CopyToExportRegsIfNeeded(&I);
2513 }
2514
2515 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2516 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2517 BranchProbability EHPadBBProb =
2518 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2519 : BranchProbability::getZero();
2520 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2521
2522 // Update successor info.
2523 addSuccessorWithProb(InvokeMBB, Return);
2524 for (auto &UnwindDest : UnwindDests) {
2525 UnwindDest.first->setIsEHPad();
2526 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2527 }
2528 InvokeMBB->normalizeSuccProbs();
2529
2530 // Drop into normal successor.
2531 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2532 MVT::Other, getControlRoot(),
2533 DAG.getBasicBlock(Return)));
2534}
2535
2536void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2537 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!")::llvm::llvm_unreachable_internal("SelectionDAGBuilder shouldn't visit resume instructions!"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 2537)
;
2538}
2539
2540void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2541 assert(FuncInfo.MBB->isEHPad() &&((FuncInfo.MBB->isEHPad() && "Call to landingpad not in landing pad!"
) ? static_cast<void> (0) : __assert_fail ("FuncInfo.MBB->isEHPad() && \"Call to landingpad not in landing pad!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 2542, __PRETTY_FUNCTION__))
2542 "Call to landingpad not in landing pad!")((FuncInfo.MBB->isEHPad() && "Call to landingpad not in landing pad!"
) ? static_cast<void> (0) : __assert_fail ("FuncInfo.MBB->isEHPad() && \"Call to landingpad not in landing pad!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 2542, __PRETTY_FUNCTION__))
;
2543
2544 // If there aren't registers to copy the values into (e.g., during SjLj
2545 // exceptions), then don't bother to create these DAG nodes.
2546 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2547 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2548 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2549 TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2550 return;
2551
2552 // If landingpad's return type is token type, we don't create DAG nodes
2553 // for its exception pointer and selector value. The extraction of exception
2554 // pointer or selector value from token type landingpads is not currently
2555 // supported.
2556 if (LP.getType()->isTokenTy())
2557 return;
2558
2559 SmallVector<EVT, 2> ValueVTs;
2560 SDLoc dl = getCurSDLoc();
2561 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2562 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported")((ValueVTs.size() == 2 && "Only two-valued landingpads are supported"
) ? static_cast<void> (0) : __assert_fail ("ValueVTs.size() == 2 && \"Only two-valued landingpads are supported\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 2562, __PRETTY_FUNCTION__))
;
2563
2564 // Get the two live-in registers as SDValues. The physregs have already been
2565 // copied into virtual registers.
2566 SDValue Ops[2];
2567 if (FuncInfo.ExceptionPointerVirtReg) {
2568 Ops[0] = DAG.getZExtOrTrunc(
2569 DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2570 FuncInfo.ExceptionPointerVirtReg,
2571 TLI.getPointerTy(DAG.getDataLayout())),
2572 dl, ValueVTs[0]);
2573 } else {
2574 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2575 }
2576 Ops[1] = DAG.getZExtOrTrunc(
2577 DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2578 FuncInfo.ExceptionSelectorVirtReg,
2579 TLI.getPointerTy(DAG.getDataLayout())),
2580 dl, ValueVTs[1]);
2581
2582 // Merge into one.
2583 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2584 DAG.getVTList(ValueVTs), Ops);
2585 setValue(&LP, Res);
2586}
2587
2588void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2589#ifndef NDEBUG
2590 for (const CaseCluster &CC : Clusters)
2591 assert(CC.Low == CC.High && "Input clusters must be single-case")((CC.Low == CC.High && "Input clusters must be single-case"
) ? static_cast<void> (0) : __assert_fail ("CC.Low == CC.High && \"Input clusters must be single-case\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 2591, __PRETTY_FUNCTION__))
;
2592#endif
2593
2594 llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) {
2595 return a.Low->getValue().slt(b.Low->getValue());
2596 });
2597
2598 // Merge adjacent clusters with the same destination.
2599 const unsigned N = Clusters.size();
2600 unsigned DstIndex = 0;
2601 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2602 CaseCluster &CC = Clusters[SrcIndex];
2603 const ConstantInt *CaseVal = CC.Low;
2604 MachineBasicBlock *Succ = CC.MBB;
2605
2606 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2607 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2608 // If this case has the same successor and is a neighbour, merge it into
2609 // the previous cluster.
2610 Clusters[DstIndex - 1].High = CaseVal;
2611 Clusters[DstIndex - 1].Prob += CC.Prob;
2612 } else {
2613 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2614 sizeof(Clusters[SrcIndex]));
2615 }
2616 }
2617 Clusters.resize(DstIndex);
2618}
2619
2620void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2621 MachineBasicBlock *Last) {
2622 // Update JTCases.
2623 for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2624 if (JTCases[i].first.HeaderBB == First)
2625 JTCases[i].first.HeaderBB = Last;
2626
2627 // Update BitTestCases.
2628 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2629 if (BitTestCases[i].Parent == First)
2630 BitTestCases[i].Parent = Last;
2631}
2632
2633void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2634 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2635
2636 // Update machine-CFG edges with unique successors.
2637 SmallSet<BasicBlock*, 32> Done;
2638 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2639 BasicBlock *BB = I.getSuccessor(i);
2640 bool Inserted = Done.insert(BB).second;
2641 if (!Inserted)
2642 continue;
2643
2644 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2645 addSuccessorWithProb(IndirectBrMBB, Succ);
2646 }
2647 IndirectBrMBB->normalizeSuccProbs();
2648
2649 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2650 MVT::Other, getControlRoot(),
2651 getValue(I.getAddress())));
2652}
2653
2654void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2655 if (!DAG.getTarget().Options.TrapUnreachable)
2656 return;
2657
2658 // We may be able to ignore unreachable behind a noreturn call.
2659 if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2660 const BasicBlock &BB = *I.getParent();
2661 if (&I != &BB.front()) {
2662 BasicBlock::const_iterator PredI =
2663 std::prev(BasicBlock::const_iterator(&I));
2664 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2665 if (Call->doesNotReturn())
2666 return;
2667 }
2668 }
2669 }
2670
2671 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2672}
2673
2674void SelectionDAGBuilder::visitFSub(const User &I) {
2675 // -0.0 - X --> fneg
2676 Type *Ty = I.getType();
2677 if (isa<Constant>(I.getOperand(0)) &&
2678 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2679 SDValue Op2 = getValue(I.getOperand(1));
2680 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2681 Op2.getValueType(), Op2));
2682 return;
2683 }
2684
2685 visitBinary(I, ISD::FSUB);
2686}
2687
2688/// Checks if the given instruction performs a vector reduction, in which case
2689/// we have the freedom to alter the elements in the result as long as the
2690/// reduction of them stays unchanged.
2691static bool isVectorReductionOp(const User *I) {
2692 const Instruction *Inst = dyn_cast<Instruction>(I);
2693 if (!Inst || !Inst->getType()->isVectorTy())
2694 return false;
2695
2696 auto OpCode = Inst->getOpcode();
2697 switch (OpCode) {
2698 case Instruction::Add:
2699 case Instruction::Mul:
2700 case Instruction::And:
2701 case Instruction::Or:
2702 case Instruction::Xor:
2703 break;
2704 case Instruction::FAdd:
2705 case Instruction::FMul:
2706 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2707 if (FPOp->getFastMathFlags().isFast())
2708 break;
2709 LLVM_FALLTHROUGH[[clang::fallthrough]];
2710 default:
2711 return false;
2712 }
2713
2714 unsigned ElemNum = Inst->getType()->getVectorNumElements();
2715 // Ensure the reduction size is a power of 2.
2716 if (!isPowerOf2_32(ElemNum))
2717 return false;
2718
2719 unsigned ElemNumToReduce = ElemNum;
2720
2721 // Do DFS search on the def-use chain from the given instruction. We only
2722 // allow four kinds of operations during the search until we reach the
2723 // instruction that extracts the first element from the vector:
2724 //
2725 // 1. The reduction operation of the same opcode as the given instruction.
2726 //
2727 // 2. PHI node.
2728 //
2729 // 3. ShuffleVector instruction together with a reduction operation that
2730 // does a partial reduction.
2731 //
2732 // 4. ExtractElement that extracts the first element from the vector, and we
2733 // stop searching the def-use chain here.
2734 //
2735 // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2736 // from 1-3 to the stack to continue the DFS. The given instruction is not
2737 // a reduction operation if we meet any other instructions other than those
2738 // listed above.
2739
2740 SmallVector<const User *, 16> UsersToVisit{Inst};
2741 SmallPtrSet<const User *, 16> Visited;
2742 bool ReduxExtracted = false;
2743
2744 while (!UsersToVisit.empty()) {
2745 auto User = UsersToVisit.back();
2746 UsersToVisit.pop_back();
2747 if (!Visited.insert(User).second)
2748 continue;
2749
2750 for (const auto &U : User->users()) {
2751 auto Inst = dyn_cast<Instruction>(U);
2752 if (!Inst)
2753 return false;
2754
2755 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2756 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2757 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
2758 return false;
2759 UsersToVisit.push_back(U);
2760 } else if (const ShuffleVectorInst *ShufInst =
2761 dyn_cast<ShuffleVectorInst>(U)) {
2762 // Detect the following pattern: A ShuffleVector instruction together
2763 // with a reduction that do partial reduction on the first and second
2764 // ElemNumToReduce / 2 elements, and store the result in
2765 // ElemNumToReduce / 2 elements in another vector.
2766
2767 unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2768 if (ResultElements < ElemNum)
2769 return false;
2770
2771 if (ElemNumToReduce == 1)
2772 return false;
2773 if (!isa<UndefValue>(U->getOperand(1)))
2774 return false;
2775 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2776 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2777 return false;
2778 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2779 if (ShufInst->getMaskValue(i) != -1)
2780 return false;
2781
2782 // There is only one user of this ShuffleVector instruction, which
2783 // must be a reduction operation.
2784 if (!U->hasOneUse())
2785 return false;
2786
2787 auto U2 = dyn_cast<Instruction>(*U->user_begin());
2788 if (!U2 || U2->getOpcode() != OpCode)
2789 return false;
2790
2791 // Check operands of the reduction operation.
2792 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2793 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2794 UsersToVisit.push_back(U2);
2795 ElemNumToReduce /= 2;
2796 } else
2797 return false;
2798 } else if (isa<ExtractElementInst>(U)) {
2799 // At this moment we should have reduced all elements in the vector.
2800 if (ElemNumToReduce != 1)
2801 return false;
2802
2803 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2804 if (!Val || !Val->isZero())
2805 return false;
2806
2807 ReduxExtracted = true;
2808 } else
2809 return false;
2810 }
2811 }
2812 return ReduxExtracted;
2813}
2814
2815void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
2816 SDNodeFlags Flags;
2817
2818 SDValue Op = getValue(I.getOperand(0));
2819 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
2820 Op, Flags);
2821 setValue(&I, UnNodeValue);
2822}
2823
2824void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
2825 SDNodeFlags Flags;
2826 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
2827 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
2828 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
2829 }
2830 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
2831 Flags.setExact(ExactOp->isExact());
2832 }
2833 if (isVectorReductionOp(&I)) {
2834 Flags.setVectorReduction(true);
2835 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() << "Detected a reduction operation:"
<< I << "\n"; } } while (false)
;
2836 }
2837
2838 SDValue Op1 = getValue(I.getOperand(0));
2839 SDValue Op2 = getValue(I.getOperand(1));
2840 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
2841 Op1, Op2, Flags);
2842 setValue(&I, BinNodeValue);
2843}
2844
2845void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2846 SDValue Op1 = getValue(I.getOperand(0));
2847 SDValue Op2 = getValue(I.getOperand(1));
2848
2849 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2850 Op1.getValueType(), DAG.getDataLayout());
2851
2852 // Coerce the shift amount to the right type if we can.
2853 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2854 unsigned ShiftSize = ShiftTy.getSizeInBits();
2855 unsigned Op2Size = Op2.getValueSizeInBits();
2856 SDLoc DL = getCurSDLoc();
2857
2858 // If the operand is smaller than the shift count type, promote it.
2859 if (ShiftSize > Op2Size)
2860 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2861
2862 // If the operand is larger than the shift count type but the shift
2863 // count type has enough bits to represent any shift value, truncate
2864 // it now. This is a common case and it exposes the truncate to
2865 // optimization early.
2866 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
2867 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2868 // Otherwise we'll need to temporarily settle for some other convenient
2869 // type. Type legalization will make adjustments once the shiftee is split.
2870 else
2871 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2872 }
2873
2874 bool nuw = false;
2875 bool nsw = false;
2876 bool exact = false;
2877
2878 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2879
2880 if (const OverflowingBinaryOperator *OFBinOp =
2881 dyn_cast<const OverflowingBinaryOperator>(&I)) {
2882 nuw = OFBinOp->hasNoUnsignedWrap();
2883 nsw = OFBinOp->hasNoSignedWrap();
2884 }
2885 if (const PossiblyExactOperator *ExactOp =
2886 dyn_cast<const PossiblyExactOperator>(&I))
2887 exact = ExactOp->isExact();
2888 }
2889 SDNodeFlags Flags;
2890 Flags.setExact(exact);
2891 Flags.setNoSignedWrap(nsw);
2892 Flags.setNoUnsignedWrap(nuw);
2893 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2894 Flags);
2895 setValue(&I, Res);
2896}
2897
2898void SelectionDAGBuilder::visitSDiv(const User &I) {
2899 SDValue Op1 = getValue(I.getOperand(0));
2900 SDValue Op2 = getValue(I.getOperand(1));
2901
2902 SDNodeFlags Flags;
2903 Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2904 cast<PossiblyExactOperator>(&I)->isExact());
2905 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2906 Op2, Flags));
2907}
2908
2909void SelectionDAGBuilder::visitICmp(const User &I) {
2910 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2911 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2912 predicate = IC->getPredicate();
2913 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2914 predicate = ICmpInst::Predicate(IC->getPredicate());
2915 SDValue Op1 = getValue(I.getOperand(0));
2916 SDValue Op2 = getValue(I.getOperand(1));
2917 ISD::CondCode Opcode = getICmpCondCode(predicate);
2918
2919 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2920 I.getType());
2921 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2922}
2923
2924void SelectionDAGBuilder::visitFCmp(const User &I) {
2925 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2926 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2927 predicate = FC->getPredicate();
2928 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2929 predicate = FCmpInst::Predicate(FC->getPredicate());
2930 SDValue Op1 = getValue(I.getOperand(0));
2931 SDValue Op2 = getValue(I.getOperand(1));
2932
2933 ISD::CondCode Condition = getFCmpCondCode(predicate);
2934 auto *FPMO = dyn_cast<FPMathOperator>(&I);
2935 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
2936 Condition = getFCmpCodeWithoutNaN(Condition);
2937
2938 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2939 I.getType());
2940 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2941}
2942
2943// Check if the condition of the select has one use or two users that are both
2944// selects with the same condition.
2945static bool hasOnlySelectUsers(const Value *Cond) {
2946 return llvm::all_of(Cond->users(), [](const Value *V) {
2947 return isa<SelectInst>(V);
2948 });
2949}
2950
2951void SelectionDAGBuilder::visitSelect(const User &I) {
2952 SmallVector<EVT, 4> ValueVTs;
2953 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2954 ValueVTs);
2955 unsigned NumValues = ValueVTs.size();
2956 if (NumValues == 0) return;
2957
2958 SmallVector<SDValue, 4> Values(NumValues);
2959 SDValue Cond = getValue(I.getOperand(0));
2960 SDValue LHSVal = getValue(I.getOperand(1));
2961 SDValue RHSVal = getValue(I.getOperand(2));
2962 auto BaseOps = {Cond};
2963 ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2964 ISD::VSELECT : ISD::SELECT;
2965
2966 // Min/max matching is only viable if all output VTs are the same.
2967 if (is_splat(ValueVTs)) {
2968 EVT VT = ValueVTs[0];
2969 LLVMContext &Ctx = *DAG.getContext();
2970 auto &TLI = DAG.getTargetLoweringInfo();
2971
2972 // We care about the legality of the operation after it has been type
2973 // legalized.
2974 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2975 VT != TLI.getTypeToTransformTo(Ctx, VT))
2976 VT = TLI.getTypeToTransformTo(Ctx, VT);
2977
2978 // If the vselect is legal, assume we want to leave this as a vector setcc +
2979 // vselect. Otherwise, if this is going to be scalarized, we want to see if
2980 // min/max is legal on the scalar type.
2981 bool UseScalarMinMax = VT.isVector() &&
2982 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2983
2984 Value *LHS, *RHS;
2985 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2986 ISD::NodeType Opc = ISD::DELETED_NODE;
2987 switch (SPR.Flavor) {
2988 case SPF_UMAX: Opc = ISD::UMAX; break;
2989 case SPF_UMIN: Opc = ISD::UMIN; break;
2990 case SPF_SMAX: Opc = ISD::SMAX; break;
2991 case SPF_SMIN: Opc = ISD::SMIN; break;
2992 case SPF_FMINNUM:
2993 switch (SPR.NaNBehavior) {
2994 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?")::llvm::llvm_unreachable_internal("No NaN behavior for FP op?"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 2994)
;
2995 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break;
2996 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2997 case SPNB_RETURNS_ANY: {
2998 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2999 Opc = ISD::FMINNUM;
3000 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3001 Opc = ISD::FMINIMUM;
3002 else if (UseScalarMinMax)
3003 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3004 ISD::FMINNUM : ISD::FMINIMUM;
3005 break;
3006 }
3007 }
3008 break;
3009 case SPF_FMAXNUM:
3010 switch (SPR.NaNBehavior) {
3011 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?")::llvm::llvm_unreachable_internal("No NaN behavior for FP op?"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 3011)
;
3012 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break;
3013 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3014 case SPNB_RETURNS_ANY:
3015
3016 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3017 Opc = ISD::FMAXNUM;
3018 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3019 Opc = ISD::FMAXIMUM;
3020 else if (UseScalarMinMax)
3021 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3022 ISD::FMAXNUM : ISD::FMAXIMUM;
3023 break;
3024 }
3025 break;
3026 default: break;
3027 }
3028
3029 if (Opc != ISD::DELETED_NODE &&
3030 (TLI.isOperationLegalOrCustom(Opc, VT) ||
3031 (UseScalarMinMax &&
3032 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3033 // If the underlying comparison instruction is used by any other
3034 // instruction, the consumed instructions won't be destroyed, so it is
3035 // not profitable to convert to a min/max.
3036 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3037 OpCode = Opc;
3038 LHSVal = getValue(LHS);
3039 RHSVal = getValue(RHS);
3040 BaseOps = {};
3041 }
3042 }
3043
3044 for (unsigned i = 0; i != NumValues; ++i) {
3045 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3046 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3047 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3048 Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
3049 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
3050 Ops);
3051 }
3052
3053 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3054 DAG.getVTList(ValueVTs), Values));
3055}
3056
3057void SelectionDAGBuilder::visitTrunc(const User &I) {
3058 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3059 SDValue N = getValue(I.getOperand(0));
3060 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3061 I.getType());
3062 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3063}
3064
3065void SelectionDAGBuilder::visitZExt(const User &I) {
3066 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3067 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3068 SDValue N = getValue(I.getOperand(0));
3069 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3070 I.getType());
3071 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3072}
3073
3074void SelectionDAGBuilder::visitSExt(const User &I) {
3075 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3076 // SExt also can't be a cast to bool for same reason. So, nothing much to do
3077 SDValue N = getValue(I.getOperand(0));
3078 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3079 I.getType());
3080 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3081}
3082
3083void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3084 // FPTrunc is never a no-op cast, no need to check
3085 SDValue N = getValue(I.getOperand(0));
3086 SDLoc dl = getCurSDLoc();
3087 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3088 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3089 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3090 DAG.getTargetConstant(
3091 0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3092}
3093
3094void SelectionDAGBuilder::visitFPExt(const User &I) {
3095 // FPExt is never a no-op cast, no need to check
3096 SDValue N = getValue(I.getOperand(0));
3097 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3098 I.getType());
3099 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3100}
3101
3102void SelectionDAGBuilder::visitFPToUI(const User &I) {
3103 // FPToUI is never a no-op cast, no need to check
3104 SDValue N = getValue(I.getOperand(0));
3105 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3106 I.getType());
3107 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3108}
3109
3110void SelectionDAGBuilder::visitFPToSI(const User &I) {
3111 // FPToSI is never a no-op cast, no need to check
3112 SDValue N = getValue(I.getOperand(0));
3113 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3114 I.getType());
3115 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3116}
3117
3118void SelectionDAGBuilder::visitUIToFP(const User &I) {
3119 // UIToFP is never a no-op cast, no need to check
3120 SDValue N = getValue(I.getOperand(0));
3121 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3122 I.getType());
3123 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3124}
3125
3126void SelectionDAGBuilder::visitSIToFP(const User &I) {
3127 // SIToFP is never a no-op cast, no need to check
3128 SDValue N = getValue(I.getOperand(0));
3129 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3130 I.getType());
3131 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3132}
3133
3134void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3135 // What to do depends on the size of the integer and the size of the pointer.
3136 // We can either truncate, zero extend, or no-op, accordingly.
3137 SDValue N = getValue(I.getOperand(0));
3138 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3139 I.getType());
3140 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3141}
3142
3143void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3144 // What to do depends on the size of the integer and the size of the pointer.
3145 // We can either truncate, zero extend, or no-op, accordingly.
3146 SDValue N = getValue(I.getOperand(0));
3147 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3148 I.getType());
3149 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3150}
3151
3152void SelectionDAGBuilder::visitBitCast(const User &I) {
3153 SDValue N = getValue(I.getOperand(0));
3154 SDLoc dl = getCurSDLoc();
3155 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3156 I.getType());
3157
3158 // BitCast assures us that source and destination are the same size so this is
3159 // either a BITCAST or a no-op.
3160 if (DestVT != N.getValueType())
3161 setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3162 DestVT, N)); // convert types.
3163 // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3164 // might fold any kind of constant expression to an integer constant and that
3165 // is not what we are looking for. Only recognize a bitcast of a genuine
3166 // constant integer as an opaque constant.
3167 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3168 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3169 /*isOpaque*/true));
3170 else
3171 setValue(&I, N); // noop cast.
3172}
3173
3174void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3175 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3176 const Value *SV = I.getOperand(0);
3177 SDValue N = getValue(SV);
3178 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3179
3180 unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3181 unsigned DestAS = I.getType()->getPointerAddressSpace();
3182
3183 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3184 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3185
3186 setValue(&I, N);
3187}
3188
3189void SelectionDAGBuilder::visitInsertElement(const User &I) {
3190 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3191 SDValue InVec = getValue(I.getOperand(0));
3192 SDValue InVal = getValue(I.getOperand(1));
3193 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3194 TLI.getVectorIdxTy(DAG.getDataLayout()));
3195 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3196 TLI.getValueType(DAG.getDataLayout(), I.getType()),
3197 InVec, InVal, InIdx));
3198}
3199
3200void SelectionDAGBuilder::visitExtractElement(const User &I) {
3201 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3202 SDValue InVec = getValue(I.getOperand(0));
3203 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3204 TLI.getVectorIdxTy(DAG.getDataLayout()));
3205 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3206 TLI.getValueType(DAG.getDataLayout(), I.getType()),
3207 InVec, InIdx));
3208}
3209
3210void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3211 SDValue Src1 = getValue(I.getOperand(0));
3212 SDValue Src2 = getValue(I.getOperand(1));
3213 SDLoc DL = getCurSDLoc();
3214
3215 SmallVector<int, 8> Mask;
3216 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3217 unsigned MaskNumElts = Mask.size();
3218
3219 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3220 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3221 EVT SrcVT = Src1.getValueType();
3222 unsigned SrcNumElts = SrcVT.getVectorNumElements();
3223
3224 if (SrcNumElts == MaskNumElts) {
3225 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3226 return;
3227 }
3228
3229 // Normalize the shuffle vector since mask and vector length don't match.
3230 if (SrcNumElts < MaskNumElts) {
3231 // Mask is longer than the source vectors. We can use concatenate vector to
3232 // make the mask and vectors lengths match.
3233
3234 if (MaskNumElts % SrcNumElts == 0) {
3235 // Mask length is a multiple of the source vector length.
3236 // Check if the shuffle is some kind of concatenation of the input
3237 // vectors.
3238 unsigned NumConcat = MaskNumElts / SrcNumElts;
3239 bool IsConcat = true;
3240 SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3241 for (unsigned i = 0; i != MaskNumElts; ++i) {
3242 int Idx = Mask[i];
3243 if (Idx < 0)
3244 continue;
3245 // Ensure the indices in each SrcVT sized piece are sequential and that
3246 // the same source is used for the whole piece.
3247 if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3248 (ConcatSrcs[i / SrcNumElts] >= 0 &&
3249 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3250 IsConcat = false;
3251 break;
3252 }
3253 // Remember which source this index came from.
3254 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3255 }
3256
3257 // The shuffle is concatenating multiple vectors together. Just emit
3258 // a CONCAT_VECTORS operation.
3259 if (IsConcat) {
3260 SmallVector<SDValue, 8> ConcatOps;
3261 for (auto Src : ConcatSrcs) {
3262 if (Src < 0)
3263 ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3264 else if (Src == 0)
3265 ConcatOps.push_back(Src1);
3266 else
3267 ConcatOps.push_back(Src2);
3268 }
3269 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3270 return;
3271 }
3272 }
3273
3274 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3275 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3276 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3277 PaddedMaskNumElts);
3278
3279 // Pad both vectors with undefs to make them the same length as the mask.
3280 SDValue UndefVal = DAG.getUNDEF(SrcVT);
3281
3282 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3283 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3284 MOps1[0] = Src1;
3285 MOps2[0] = Src2;
3286
3287 Src1 = Src1.isUndef()
3288 ? DAG.getUNDEF(PaddedVT)
3289 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3290 Src2 = Src2.isUndef()
3291 ? DAG.getUNDEF(PaddedVT)
3292 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3293
3294 // Readjust mask for new input vector length.
3295 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3296 for (unsigned i = 0; i != MaskNumElts; ++i) {
3297 int Idx = Mask[i];
3298 if (Idx >= (int)SrcNumElts)
3299 Idx -= SrcNumElts - PaddedMaskNumElts;
3300 MappedOps[i] = Idx;
3301 }
3302
3303 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3304
3305 // If the concatenated vector was padded, extract a subvector with the
3306 // correct number of elements.
3307 if (MaskNumElts != PaddedMaskNumElts)
3308 Result = DAG.getNode(
3309 ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3310 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3311
3312 setValue(&I, Result);
3313 return;
3314 }
3315
3316 if (SrcNumElts > MaskNumElts) {
3317 // Analyze the access pattern of the vector to see if we can extract
3318 // two subvectors and do the shuffle.
3319 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from
3320 bool CanExtract = true;
3321 for (int Idx : Mask) {
3322 unsigned Input = 0;
3323 if (Idx < 0)
3324 continue;
3325
3326 if (Idx >= (int)SrcNumElts) {
3327 Input = 1;
3328 Idx -= SrcNumElts;
3329 }
3330
3331 // If all the indices come from the same MaskNumElts sized portion of
3332 // the sources we can use extract. Also make sure the extract wouldn't
3333 // extract past the end of the source.
3334 int NewStartIdx = alignDown(Idx, MaskNumElts);
3335 if (NewStartIdx + MaskNumElts > SrcNumElts ||
3336 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3337 CanExtract = false;
3338 // Make sure we always update StartIdx as we use it to track if all
3339 // elements are undef.
3340 StartIdx[Input] = NewStartIdx;
3341 }
3342
3343 if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3344 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3345 return;
3346 }
3347 if (CanExtract) {
3348 // Extract appropriate subvector and generate a vector shuffle
3349 for (unsigned Input = 0; Input < 2; ++Input) {
3350 SDValue &Src = Input == 0 ? Src1 : Src2;
3351 if (StartIdx[Input] < 0)
3352 Src = DAG.getUNDEF(VT);
3353 else {
3354 Src = DAG.getNode(
3355 ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3356 DAG.getConstant(StartIdx[Input], DL,
3357 TLI.getVectorIdxTy(DAG.getDataLayout())));
3358 }
3359 }
3360
3361 // Calculate new mask.
3362 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3363 for (int &Idx : MappedOps) {
3364 if (Idx >= (int)SrcNumElts)
3365 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3366 else if (Idx >= 0)
3367 Idx -= StartIdx[0];
3368 }
3369
3370 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3371 return;
3372 }
3373 }
3374
3375 // We can't use either concat vectors or extract subvectors so fall back to
3376 // replacing the shuffle with extract and build vector.
3377 // to insert and build vector.
3378 EVT EltVT = VT.getVectorElementType();
3379 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3380 SmallVector<SDValue,8> Ops;
3381 for (int Idx : Mask) {
3382 SDValue Res;
3383
3384 if (Idx < 0) {
3385 Res = DAG.getUNDEF(EltVT);
3386 } else {
3387 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3388 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3389
3390 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3391 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3392 }
3393
3394 Ops.push_back(Res);
3395 }
3396
3397 setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3398}
3399
3400void SelectionDAGBuilder::visitInsertValue(const User &I) {
3401 ArrayRef<unsigned> Indices;
3402 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3403 Indices = IV->getIndices();
3404 else
3405 Indices = cast<ConstantExpr>(&I)->getIndices();
3406
3407 const Value *Op0 = I.getOperand(0);
3408 const Value *Op1 = I.getOperand(1);
3409 Type *AggTy = I.getType();
3410 Type *ValTy = Op1->getType();
3411 bool IntoUndef = isa<UndefValue>(Op0);
3412 bool FromUndef = isa<UndefValue>(Op1);
3413
3414 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3415
3416 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3417 SmallVector<EVT, 4> AggValueVTs;
3418 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3419 SmallVector<EVT, 4> ValValueVTs;
3420 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3421
3422 unsigned NumAggValues = AggValueVTs.size();
3423 unsigned NumValValues = ValValueVTs.size();
3424 SmallVector<SDValue, 4> Values(NumAggValues);
3425
3426 // Ignore an insertvalue that produces an empty object
3427 if (!NumAggValues) {
3428 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3429 return;
3430 }
3431
3432 SDValue Agg = getValue(Op0);
3433 unsigned i = 0;
3434 // Copy the beginning value(s) from the original aggregate.
3435 for (; i != LinearIndex; ++i)
3436 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3437 SDValue(Agg.getNode(), Agg.getResNo() + i);
3438 // Copy values from the inserted value(s).
3439 if (NumValValues) {
3440 SDValue Val = getValue(Op1);
3441 for (; i != LinearIndex + NumValValues; ++i)
3442 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3443 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3444 }
3445 // Copy remaining value(s) from the original aggregate.
3446 for (; i != NumAggValues; ++i)
3447 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3448 SDValue(Agg.getNode(), Agg.getResNo() + i);
3449
3450 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3451 DAG.getVTList(AggValueVTs), Values));
3452}
3453
3454void SelectionDAGBuilder::visitExtractValue(const User &I) {
3455 ArrayRef<unsigned> Indices;
3456 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3457 Indices = EV->getIndices();
3458 else
3459 Indices = cast<ConstantExpr>(&I)->getIndices();
3460
3461 const Value *Op0 = I.getOperand(0);
3462 Type *AggTy = Op0->getType();
3463 Type *ValTy = I.getType();
3464 bool OutOfUndef = isa<UndefValue>(Op0);
3465
3466 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3467
3468 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3469 SmallVector<EVT, 4> ValValueVTs;
3470 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3471
3472 unsigned NumValValues = ValValueVTs.size();
3473
3474 // Ignore a extractvalue that produces an empty object
3475 if (!NumValValues) {
3476 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3477 return;
3478 }
3479
3480 SmallVector<SDValue, 4> Values(NumValValues);
3481
3482 SDValue Agg = getValue(Op0);
3483 // Copy out the selected value(s).
3484 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3485 Values[i - LinearIndex] =
3486 OutOfUndef ?
3487 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3488 SDValue(Agg.getNode(), Agg.getResNo() + i);
3489
3490 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3491 DAG.getVTList(ValValueVTs), Values));
3492}
3493
3494void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3495 Value *Op0 = I.getOperand(0);
3496 // Note that the pointer operand may be a vector of pointers. Take the scalar
3497 // element which holds a pointer.
3498 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3499 SDValue N = getValue(Op0);
3500 SDLoc dl = getCurSDLoc();
3501
3502 // Normalize Vector GEP - all scalar operands should be converted to the
3503 // splat vector.
3504 unsigned VectorWidth = I.getType()->isVectorTy() ?
3505 cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3506
3507 if (VectorWidth && !N.getValueType().isVector()) {
3508 LLVMContext &Context = *DAG.getContext();
3509 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3510 N = DAG.getSplatBuildVector(VT, dl, N);
3511 }
3512
3513 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3514 GTI != E; ++GTI) {
3515 const Value *Idx = GTI.getOperand();
3516 if (StructType *StTy = GTI.getStructTypeOrNull()) {
3517 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3518 if (Field) {
3519 // N = N + Offset
3520 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3521
3522 // In an inbounds GEP with an offset that is nonnegative even when
3523 // interpreted as signed, assume there is no unsigned overflow.
3524 SDNodeFlags Flags;
3525 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3526 Flags.setNoUnsignedWrap(true);
3527
3528 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3529 DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3530 }
3531 } else {
3532 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3533 MVT IdxTy = MVT::getIntegerVT(IdxSize);
3534 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3535
3536 // If this is a scalar constant or a splat vector of constants,
3537 // handle it quickly.
3538 const auto *CI = dyn_cast<ConstantInt>(Idx);
3539 if (!CI && isa<ConstantDataVector>(Idx) &&
3540 cast<ConstantDataVector>(Idx)->getSplatValue())
3541 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3542
3543 if (CI) {
3544 if (CI->isZero())
3545 continue;
3546 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3547 LLVMContext &Context = *DAG.getContext();
3548 SDValue OffsVal = VectorWidth ?
3549 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3550 DAG.getConstant(Offs, dl, IdxTy);
3551
3552 // In an inbouds GEP with an offset that is nonnegative even when
3553 // interpreted as signed, assume there is no unsigned overflow.
3554 SDNodeFlags Flags;
3555 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3556 Flags.setNoUnsignedWrap(true);
3557
3558 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3559 continue;
3560 }
3561
3562 // N = N + Idx * ElementSize;
3563 SDValue IdxN = getValue(Idx);
3564
3565 if (!IdxN.getValueType().isVector() && VectorWidth) {
3566 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3567 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3568 }
3569
3570 // If the index is smaller or larger than intptr_t, truncate or extend
3571 // it.
3572 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3573
3574 // If this is a multiply by a power of two, turn it into a shl
3575 // immediately. This is a very common case.
3576 if (ElementSize != 1) {
3577 if (ElementSize.isPowerOf2()) {
3578 unsigned Amt = ElementSize.logBase2();
3579 IdxN = DAG.getNode(ISD::SHL, dl,
3580 N.getValueType(), IdxN,
3581 DAG.getConstant(Amt, dl, IdxN.getValueType()));
3582 } else {
3583 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3584 IdxN = DAG.getNode(ISD::MUL, dl,
3585 N.getValueType(), IdxN, Scale);
3586 }
3587 }
3588
3589 N = DAG.getNode(ISD::ADD, dl,
3590 N.getValueType(), N, IdxN);
3591 }
3592 }
3593
3594 setValue(&I, N);
3595}
3596
3597void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3598 // If this is a fixed sized alloca in the entry block of the function,
3599 // allocate it statically on the stack.
3600 if (FuncInfo.StaticAllocaMap.count(&I))
3601 return; // getValue will auto-populate this.
3602
3603 SDLoc dl = getCurSDLoc();
3604 Type *Ty = I.getAllocatedType();
3605 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3606 auto &DL = DAG.getDataLayout();
3607 uint64_t TySize = DL.getTypeAllocSize(Ty);
3608 unsigned Align =
3609 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3610
3611 SDValue AllocSize = getValue(I.getArraySize());
3612
3613 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3614 if (AllocSize.getValueType() != IntPtr)
3615 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3616
3617 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3618 AllocSize,
3619 DAG.getConstant(TySize, dl, IntPtr));
3620
3621 // Handle alignment. If the requested alignment is less than or equal to
3622 // the stack alignment, ignore it. If the size is greater than or equal to
3623 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3624 unsigned StackAlign =
3625 DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3626 if (Align <= StackAlign)
3627 Align = 0;
3628
3629 // Round the size of the allocation up to the stack alignment size
3630 // by add SA-1 to the size. This doesn't overflow because we're computing
3631 // an address inside an alloca.
3632 SDNodeFlags Flags;
3633 Flags.setNoUnsignedWrap(true);
3634 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3635 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3636
3637 // Mask out the low bits for alignment purposes.
3638 AllocSize =
3639 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3640 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
3641
3642 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
3643 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3644 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3645 setValue(&I, DSA);
3646 DAG.setRoot(DSA.getValue(1));
3647
3648 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects())((FuncInfo.MF->getFrameInfo().hasVarSizedObjects()) ? static_cast
<void> (0) : __assert_fail ("FuncInfo.MF->getFrameInfo().hasVarSizedObjects()"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 3648, __PRETTY_FUNCTION__))
;
3649}
3650
3651void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3652 if (I.isAtomic())
3653 return visitAtomicLoad(I);
3654
3655 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3656 const Value *SV = I.getOperand(0);
3657 if (TLI.supportSwiftError()) {
3658 // Swifterror values can come from either a function parameter with
3659 // swifterror attribute or an alloca with swifterror attribute.
3660 if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3661 if (Arg->hasSwiftErrorAttr())
3662 return visitLoadFromSwiftError(I);
3663 }
3664
3665 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3666 if (Alloca->isSwiftError())
3667 return visitLoadFromSwiftError(I);
3668 }
3669 }
3670
3671 SDValue Ptr = getValue(SV);
3672
3673 Type *Ty = I.getType();
3674
3675 bool isVolatile = I.isVolatile();
3676 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3677 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3678 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
3679 unsigned Alignment = I.getAlignment();
3680
3681 AAMDNodes AAInfo;
3682 I.getAAMetadata(AAInfo);
3683 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3684
3685 SmallVector<EVT, 4> ValueVTs;
3686 SmallVector<uint64_t, 4> Offsets;
3687 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3688 unsigned NumValues = ValueVTs.size();
3689 if (NumValues == 0)
3690 return;
3691
3692 SDValue Root;
3693 bool ConstantMemory = false;
3694 if (isVolatile || NumValues > MaxParallelChains)
3695 // Serialize volatile loads with other side effects.
3696 Root = getRoot();
3697 else if (AA &&
3698 AA->pointsToConstantMemory(MemoryLocation(
3699 SV,
3700 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
3701 AAInfo))) {
3702 // Do not serialize (non-volatile) loads of constant memory with anything.
3703 Root = DAG.getEntryNode();
3704 ConstantMemory = true;
3705 } else {
3706 // Do not serialize non-volatile loads against each other.
3707 Root = DAG.getRoot();
3708 }
3709
3710 SDLoc dl = getCurSDLoc();
3711
3712 if (isVolatile)
3713 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3714
3715 // An aggregate load cannot wrap around the address space, so offsets to its
3716 // parts don't wrap either.
3717 SDNodeFlags Flags;
3718 Flags.setNoUnsignedWrap(true);
3719
3720 SmallVector<SDValue, 4> Values(NumValues);
3721 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3722 EVT PtrVT = Ptr.getValueType();
3723 unsigned ChainI = 0;
3724 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3725 // Serializing loads here may result in excessive register pressure, and
3726 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3727 // could recover a bit by hoisting nodes upward in the chain by recognizing
3728 // they are side-effect free or do not alias. The optimizer should really
3729 // avoid this case by converting large object/array copies to llvm.memcpy
3730 // (MaxParallelChains should always remain as failsafe).
3731 if (ChainI == MaxParallelChains) {
3732 assert(PendingLoads.empty() && "PendingLoads must be serialized first")((PendingLoads.empty() && "PendingLoads must be serialized first"
) ? static_cast<void> (0) : __assert_fail ("PendingLoads.empty() && \"PendingLoads must be serialized first\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 3732, __PRETTY_FUNCTION__))
;
3733 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3734 makeArrayRef(Chains.data(), ChainI));
3735 Root = Chain;
3736 ChainI = 0;
3737 }
3738 SDValue A = DAG.getNode(ISD::ADD, dl,
3739 PtrVT, Ptr,
3740 DAG.getConstant(Offsets[i], dl, PtrVT),
3741 Flags);
3742 auto MMOFlags = MachineMemOperand::MONone;
3743 if (isVolatile)
3744 MMOFlags |= MachineMemOperand::MOVolatile;
3745 if (isNonTemporal)
3746 MMOFlags |= MachineMemOperand::MONonTemporal;
3747 if (isInvariant)
3748 MMOFlags |= MachineMemOperand::MOInvariant;
3749 if (isDereferenceable)
3750 MMOFlags |= MachineMemOperand::MODereferenceable;
3751 MMOFlags |= TLI.getMMOFlags(I);
3752
3753 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
3754 MachinePointerInfo(SV, Offsets[i]), Alignment,
3755 MMOFlags, AAInfo, Ranges);
3756
3757 Values[i] = L;
3758 Chains[ChainI] = L.getValue(1);
3759 }
3760
3761 if (!ConstantMemory) {
3762 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3763 makeArrayRef(Chains.data(), ChainI));
3764 if (isVolatile)
3765 DAG.setRoot(Chain);
3766 else
3767 PendingLoads.push_back(Chain);
3768 }
3769
3770 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3771 DAG.getVTList(ValueVTs), Values));
3772}
3773
3774void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3775 assert(DAG.getTargetLoweringInfo().supportSwiftError() &&((DAG.getTargetLoweringInfo().supportSwiftError() && "call visitStoreToSwiftError when backend supports swifterror"
) ? static_cast<void> (0) : __assert_fail ("DAG.getTargetLoweringInfo().supportSwiftError() && \"call visitStoreToSwiftError when backend supports swifterror\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 3776, __PRETTY_FUNCTION__))
3776 "call visitStoreToSwiftError when backend supports swifterror")((DAG.getTargetLoweringInfo().supportSwiftError() && "call visitStoreToSwiftError when backend supports swifterror"
) ? static_cast<void> (0) : __assert_fail ("DAG.getTargetLoweringInfo().supportSwiftError() && \"call visitStoreToSwiftError when backend supports swifterror\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 3776, __PRETTY_FUNCTION__))
;
3777
3778 SmallVector<EVT, 4> ValueVTs;
3779 SmallVector<uint64_t, 4> Offsets;
3780 const Value *SrcV = I.getOperand(0);
3781 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3782 SrcV->getType(), ValueVTs, &Offsets);
3783 assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&((ValueVTs.size() == 1 && Offsets[0] == 0 && "expect a single EVT for swifterror"
) ? static_cast<void> (0) : __assert_fail ("ValueVTs.size() == 1 && Offsets[0] == 0 && \"expect a single EVT for swifterror\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 3784, __PRETTY_FUNCTION__))
3784 "expect a single EVT for swifterror")((ValueVTs.size() == 1 && Offsets[0] == 0 && "expect a single EVT for swifterror"
) ? static_cast<void> (0) : __assert_fail ("ValueVTs.size() == 1 && Offsets[0] == 0 && \"expect a single EVT for swifterror\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 3784, __PRETTY_FUNCTION__))
;
3785
3786 SDValue Src = getValue(SrcV);
3787 // Create a virtual register, then update the virtual register.
3788 unsigned VReg; bool CreatedVReg;
3789 std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I);
3790 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
3791 // Chain can be getRoot or getControlRoot.
3792 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
3793 SDValue(Src.getNode(), Src.getResNo()));
3794 DAG.setRoot(CopyNode);
3795 if (CreatedVReg)
3796 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
3797}
3798
3799void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
3800 assert(DAG.getTargetLoweringInfo().supportSwiftError() &&((DAG.getTargetLoweringInfo().supportSwiftError() && "call visitLoadFromSwiftError when backend supports swifterror"
) ? static_cast<void> (0) : __assert_fail ("DAG.getTargetLoweringInfo().supportSwiftError() && \"call visitLoadFromSwiftError when backend supports swifterror\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 3801, __PRETTY_FUNCTION__))
3801 "call visitLoadFromSwiftError when backend supports swifterror")((DAG.getTargetLoweringInfo().supportSwiftError() && "call visitLoadFromSwiftError when backend supports swifterror"
) ? static_cast<void> (0) : __assert_fail ("DAG.getTargetLoweringInfo().supportSwiftError() && \"call visitLoadFromSwiftError when backend supports swifterror\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 3801, __PRETTY_FUNCTION__))
;
3802
3803 assert(!I.isVolatile() &&((!I.isVolatile() && I.getMetadata(LLVMContext::MD_nontemporal
) == nullptr && I.getMetadata(LLVMContext::MD_invariant_load
) == nullptr && "Support volatile, non temporal, invariant for load_from_swift_error"
) ? static_cast<void> (0) : __assert_fail ("!I.isVolatile() && I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && \"Support volatile, non temporal, invariant for load_from_swift_error\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 3806, __PRETTY_FUNCTION__))
3804 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&((!I.isVolatile() && I.getMetadata(LLVMContext::MD_nontemporal
) == nullptr && I.getMetadata(LLVMContext::MD_invariant_load
) == nullptr && "Support volatile, non temporal, invariant for load_from_swift_error"
) ? static_cast<void> (0) : __assert_fail ("!I.isVolatile() && I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && \"Support volatile, non temporal, invariant for load_from_swift_error\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 3806, __PRETTY_FUNCTION__))
3805 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&((!I.isVolatile() && I.getMetadata(LLVMContext::MD_nontemporal
) == nullptr && I.getMetadata(LLVMContext::MD_invariant_load
) == nullptr && "Support volatile, non temporal, invariant for load_from_swift_error"
) ? static_cast<void> (0) : __assert_fail ("!I.isVolatile() && I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && \"Support volatile, non temporal, invariant for load_from_swift_error\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 3806, __PRETTY_FUNCTION__))
3806 "Support volatile, non temporal, invariant for load_from_swift_error")((!I.isVolatile() && I.getMetadata(LLVMContext::MD_nontemporal
) == nullptr && I.getMetadata(LLVMContext::MD_invariant_load
) == nullptr && "Support volatile, non temporal, invariant for load_from_swift_error"
) ? static_cast<void> (0) : __assert_fail ("!I.isVolatile() && I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && \"Support volatile, non temporal, invariant for load_from_swift_error\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 3806, __PRETTY_FUNCTION__))
;
3807
3808 const Value *SV = I.getOperand(0);
3809 Type *Ty = I.getType();
3810 AAMDNodes AAInfo;
3811 I.getAAMetadata(AAInfo);
3812 assert((((!AA || !AA->pointsToConstantMemory(MemoryLocation( SV, LocationSize
::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), AAInfo))
) && "load_from_swift_error should not be constant memory"
) ? static_cast<void> (0) : __assert_fail ("(!AA || !AA->pointsToConstantMemory(MemoryLocation( SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), AAInfo))) && \"load_from_swift_error should not be constant memory\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 3817, __PRETTY_FUNCTION__))
3813 (!AA ||(((!AA || !AA->pointsToConstantMemory(MemoryLocation( SV, LocationSize
::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), AAInfo))
) && "load_from_swift_error should not be constant memory"
) ? static_cast<void> (0) : __assert_fail ("(!AA || !AA->pointsToConstantMemory(MemoryLocation( SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), AAInfo))) && \"load_from_swift_error should not be constant memory\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 3817, __PRETTY_FUNCTION__))
3814 !AA->pointsToConstantMemory(MemoryLocation((((!AA || !AA->pointsToConstantMemory(MemoryLocation( SV, LocationSize
::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), AAInfo))
) && "load_from_swift_error should not be constant memory"
) ? static_cast<void> (0) : __assert_fail ("(!AA || !AA->pointsToConstantMemory(MemoryLocation( SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), AAInfo))) && \"load_from_swift_error should not be constant memory\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 3817, __PRETTY_FUNCTION__))
3815 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),(((!AA || !AA->pointsToConstantMemory(MemoryLocation( SV, LocationSize
::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), AAInfo))
) && "load_from_swift_error should not be constant memory"
) ? static_cast<void> (0) : __assert_fail ("(!AA || !AA->pointsToConstantMemory(MemoryLocation( SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), AAInfo))) && \"load_from_swift_error should not be constant memory\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 3817, __PRETTY_FUNCTION__))
3816 AAInfo))) &&(((!AA || !AA->pointsToConstantMemory(MemoryLocation( SV, LocationSize
::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), AAInfo))
) && "load_from_swift_error should not be constant memory"
) ? static_cast<void> (0) : __assert_fail ("(!AA || !AA->pointsToConstantMemory(MemoryLocation( SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), AAInfo))) && \"load_from_swift_error should not be constant memory\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 3817, __PRETTY_FUNCTION__))
3817 "load_from_swift_error should not be constant memory")(((!AA || !AA->pointsToConstantMemory(MemoryLocation( SV, LocationSize
::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), AAInfo))
) && "load_from_swift_error should not be constant memory"
) ? static_cast<void> (0) : __assert_fail ("(!AA || !AA->pointsToConstantMemory(MemoryLocation( SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), AAInfo))) && \"load_from_swift_error should not be constant memory\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 3817, __PRETTY_FUNCTION__))
;
3818
3819 SmallVector<EVT, 4> ValueVTs;
3820 SmallVector<uint64_t, 4> Offsets;
3821 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
3822 ValueVTs, &Offsets);
3823 assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&((ValueVTs.size() == 1 && Offsets[0] == 0 && "expect a single EVT for swifterror"
) ? static_cast<void> (0) : __assert_fail ("ValueVTs.size() == 1 && Offsets[0] == 0 && \"expect a single EVT for swifterror\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 3824, __PRETTY_FUNCTION__))
3824 "expect a single EVT for swifterror")((ValueVTs.size() == 1 && Offsets[0] == 0 && "expect a single EVT for swifterror"
) ? static_cast<void> (0) : __assert_fail ("ValueVTs.size() == 1 && Offsets[0] == 0 && \"expect a single EVT for swifterror\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 3824, __PRETTY_FUNCTION__))
;
3825
3826 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
3827 SDValue L = DAG.getCopyFromReg(
3828 getRoot(), getCurSDLoc(),
3829 FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first,
3830 ValueVTs[0]);
3831
3832 setValue(&I, L);
3833}
3834
3835void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3836 if (I.isAtomic())
3837 return visitAtomicStore(I);
3838
3839 const Value *SrcV = I.getOperand(0);
3840 const Value *PtrV = I.getOperand(1);
3841
3842 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3843 if (TLI.supportSwiftError()) {
3844 // Swifterror values can come from either a function parameter with
3845 // swifterror attribute or an alloca with swifterror attribute.
3846 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
3847 if (Arg->hasSwiftErrorAttr())
3848 return visitStoreToSwiftError(I);
3849 }
3850
3851 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
3852 if (Alloca->isSwiftError())
3853 return visitStoreToSwiftError(I);
3854 }
3855 }
3856
3857 SmallVector<EVT, 4> ValueVTs;
3858 SmallVector<uint64_t, 4> Offsets;
3859 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3860 SrcV->getType(), ValueVTs, &Offsets);
3861 unsigned NumValues = ValueVTs.size();
3862 if (NumValues == 0)
3863 return;
3864
3865 // Get the lowered operands. Note that we do this after
3866 // checking if NumResults is zero, because with zero results
3867 // the operands won't have values in the map.
3868 SDValue Src = getValue(SrcV);
3869 SDValue Ptr = getValue(PtrV);
3870
3871 SDValue Root = getRoot();
3872 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3873 SDLoc dl = getCurSDLoc();
3874 EVT PtrVT = Ptr.getValueType();
3875 unsigned Alignment = I.getAlignment();
3876 AAMDNodes AAInfo;
3877 I.getAAMetadata(AAInfo);
3878
3879 auto MMOFlags = MachineMemOperand::MONone;
3880 if (I.isVolatile())
3881 MMOFlags |= MachineMemOperand::MOVolatile;
3882 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
3883 MMOFlags |= MachineMemOperand::MONonTemporal;
3884 MMOFlags |= TLI.getMMOFlags(I);
3885
3886 // An aggregate load cannot wrap around the address space, so offsets to its
3887 // parts don't wrap either.
3888 SDNodeFlags Flags;
3889 Flags.setNoUnsignedWrap(true);
3890
3891 unsigned ChainI = 0;
3892 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3893 // See visitLoad comments.
3894 if (ChainI == MaxParallelChains) {
3895 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3896 makeArrayRef(Chains.data(), ChainI));
3897 Root = Chain;
3898 ChainI = 0;
3899 }
3900 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3901 DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
3902 SDValue St = DAG.getStore(
3903 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
3904 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
3905 Chains[ChainI] = St;
3906 }
3907
3908 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3909 makeArrayRef(Chains.data(), ChainI));
3910 DAG.setRoot(StoreNode);
3911}
3912
3913void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
3914 bool IsCompressing) {
3915 SDLoc sdl = getCurSDLoc();
3916
3917 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3918 unsigned& Alignment) {
3919 // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3920 Src0 = I.getArgOperand(0);
3921 Ptr = I.getArgOperand(1);
3922 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
3923 Mask = I.getArgOperand(3);
3924 };
3925 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3926 unsigned& Alignment) {
3927 // llvm.masked.compressstore.*(Src0, Ptr, Mask)
3928 Src0 = I.getArgOperand(0);
3929 Ptr = I.getArgOperand(1);
3930 Mask = I.getArgOperand(2);
3931 Alignment = 0;
3932 };
3933
3934 Value *PtrOperand, *MaskOperand, *Src0Operand;
3935 unsigned Alignment;
3936 if (IsCompressing)
3937 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3938 else
3939 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3940
3941 SDValue Ptr = getValue(PtrOperand);
3942 SDValue Src0 = getValue(Src0Operand);
3943 SDValue Mask = getValue(MaskOperand);
3944
3945 EVT VT = Src0.getValueType();
3946 if (!Alignment)
3947 Alignment = DAG.getEVTAlignment(VT);
3948
3949 AAMDNodes AAInfo;
3950 I.getAAMetadata(AAInfo);
3951
3952 MachineMemOperand *MMO =
3953 DAG.getMachineFunction().
3954 getMachineMemOperand(MachinePointerInfo(PtrOperand),
3955 MachineMemOperand::MOStore, VT.getStoreSize(),
3956 Alignment, AAInfo);
3957 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3958 MMO, false /* Truncating */,
3959 IsCompressing);
3960 DAG.setRoot(StoreNode);
3961 setValue(&I, StoreNode);
3962}
3963
3964// Get a uniform base for the Gather/Scatter intrinsic.
3965// The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3966// We try to represent it as a base pointer + vector of indices.
3967// Usually, the vector of pointers comes from a 'getelementptr' instruction.
3968// The first operand of the GEP may be a single pointer or a vector of pointers
3969// Example:
3970// %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3971// or
3972// %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind
3973// %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3974//
3975// When the first GEP operand is a single pointer - it is the uniform base we
3976// are looking for. If first operand of the GEP is a splat vector - we
3977// extract the splat value and use it as a uniform base.
3978// In all other cases the function returns 'false'.
3979static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
3980 SDValue &Scale, SelectionDAGBuilder* SDB) {
3981 SelectionDAG& DAG = SDB->DAG;
3982 LLVMContext &Context = *DAG.getContext();
3983
3984 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type")((Ptr->getType()->isVectorTy() && "Uexpected pointer type"
) ? static_cast<void> (0) : __assert_fail ("Ptr->getType()->isVectorTy() && \"Uexpected pointer type\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 3984, __PRETTY_FUNCTION__))
;
3985 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3986 if (!GEP)
3987 return false;
3988
3989 const Value *GEPPtr = GEP->getPointerOperand();
3990 if (!GEPPtr->getType()->isVectorTy())
3991 Ptr = GEPPtr;
3992 else if (!(Ptr = getSplatValue(GEPPtr)))
3993 return false;
3994
3995 unsigned FinalIndex = GEP->getNumOperands() - 1;
3996 Value *IndexVal = GEP->getOperand(FinalIndex);
3997
3998 // Ensure all the other indices are 0.
3999 for (unsigned i = 1; i < FinalIndex; ++i) {
4000 auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i));
4001 if (!C || !C->isZero())
4002 return false;
4003 }
4004
4005 // The operands of the GEP may be defined in another basic block.
4006 // In this case we'll not find nodes for the operands.
4007 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
4008 return false;
4009
4010 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4011 const DataLayout &DL = DAG.getDataLayout();
4012 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()),
4013 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4014 Base = SDB->getValue(Ptr);
4015 Index = SDB->getValue(IndexVal);
4016
4017 if (!Index.getValueType().isVector()) {
4018 unsigned GEPWidth = GEP->getType()->getVectorNumElements();
4019 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
4020 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
4021 }
4022 return true;
4023}
4024
4025void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4026 SDLoc sdl = getCurSDLoc();
4027
4028 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
4029 const Value *Ptr = I.getArgOperand(1);
4030 SDValue Src0 = getValue(I.getArgOperand(0));
4031 SDValue Mask = getValue(I.getArgOperand(3));
4032 EVT VT = Src0.getValueType();
4033 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
4034 if (!Alignment)
4035 Alignment = DAG.getEVTAlignment(VT);
4036 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4037
4038 AAMDNodes AAInfo;
4039 I.getAAMetadata(AAInfo);
4040
4041 SDValue Base;
4042 SDValue Index;
4043 SDValue Scale;
4044 const Value *BasePtr = Ptr;
4045 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4046
4047 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
4048 MachineMemOperand *MMO = DAG.getMachineFunction().
4049 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
4050 MachineMemOperand::MOStore, VT.getStoreSize(),
4051 Alignment, AAInfo);
4052 if (!UniformBase) {
4053 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4054 Index = getValue(Ptr);
4055 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4056 }
4057 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale };
4058 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4059 Ops, MMO);
4060 DAG.setRoot(Scatter);
4061 setValue(&I, Scatter);
4062}
4063
4064void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4065 SDLoc sdl = getCurSDLoc();
4066
4067 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4068 unsigned& Alignment) {
4069 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4070 Ptr = I.getArgOperand(0);
4071 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4072 Mask = I.getArgOperand(2);
4073 Src0 = I.getArgOperand(3);
4074 };
4075 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4076 unsigned& Alignment) {
4077 // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4078 Ptr = I.getArgOperand(0);
4079 Alignment = 0;
4080 Mask = I.getArgOperand(1);
4081 Src0 = I.getArgOperand(2);
4082 };
4083
4084 Value *PtrOperand, *MaskOperand, *Src0Operand;
4085 unsigned Alignment;
4086 if (IsExpanding)
4087 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4088 else
4089 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4090
4091 SDValue Ptr = getValue(PtrOperand);
4092 SDValue Src0 = getValue(Src0Operand);
4093 SDValue Mask = getValue(MaskOperand);
4094
4095 EVT VT = Src0.getValueType();
4096 if (!Alignment)
4097 Alignment = DAG.getEVTAlignment(VT);
4098
4099 AAMDNodes AAInfo;
4100 I.getAAMetadata(AAInfo);
4101 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4102
4103 // Do not serialize masked loads of constant memory with anything.
4104 bool AddToChain =
4105 !AA || !AA->pointsToConstantMemory(MemoryLocation(
4106 PtrOperand,
4107 LocationSize::precise(
4108 DAG.getDataLayout().getTypeStoreSize(I.getType())),
4109 AAInfo));
4110 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4111
4112 MachineMemOperand *MMO =
4113 DAG.getMachineFunction().
4114 getMachineMemOperand(MachinePointerInfo(PtrOperand),
4115 MachineMemOperand::MOLoad, VT.getStoreSize(),
4116 Alignment, AAInfo, Ranges);
4117
4118 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
4119 ISD::NON_EXTLOAD, IsExpanding);
4120 if (AddToChain)
4121 PendingLoads.push_back(Load.getValue(1));
4122 setValue(&I, Load);
4123}
4124
4125void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4126 SDLoc sdl = getCurSDLoc();
4127
4128 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4129 const Value *Ptr = I.getArgOperand(0);
4130 SDValue Src0 = getValue(I.getArgOperand(3));
4131 SDValue Mask = getValue(I.getArgOperand(2));
4132
4133 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4134 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4135 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4136 if (!Alignment)
4137 Alignment = DAG.getEVTAlignment(VT);
4138
4139 AAMDNodes AAInfo;
4140 I.getAAMetadata(AAInfo);
4141 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4142
4143 SDValue Root = DAG.getRoot();
4144 SDValue Base;
4145 SDValue Index;
4146 SDValue Scale;
4147 const Value *BasePtr = Ptr;
4148 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4149 bool ConstantMemory = false;
4150 if (UniformBase && AA &&
4151 AA->pointsToConstantMemory(
4152 MemoryLocation(BasePtr,
4153 LocationSize::precise(
4154 DAG.getDataLayout().getTypeStoreSize(I.getType())),
4155 AAInfo))) {
4156 // Do not serialize (non-volatile) loads of constant memory with anything.
4157 Root = DAG.getEntryNode();
4158 ConstantMemory = true;
4159 }
4160
4161 MachineMemOperand *MMO =
4162 DAG.getMachineFunction().
4163 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4164 MachineMemOperand::MOLoad, VT.getStoreSize(),
4165 Alignment, AAInfo, Ranges);
4166
4167 if (!UniformBase) {
4168 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4169 Index = getValue(Ptr);
4170 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4171 }
4172 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4173 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4174 Ops, MMO);
4175
4176 SDValue OutChain = Gather.getValue(1);
4177 if (!ConstantMemory)
4178 PendingLoads.push_back(OutChain);
4179 setValue(&I, Gather);
4180}
4181
4182void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4183 SDLoc dl = getCurSDLoc();
4184 AtomicOrdering SuccessOrder = I.getSuccessOrdering();
4185 AtomicOrdering FailureOrder = I.getFailureOrdering();
4186 SyncScope::ID SSID = I.getSyncScopeID();
4187
4188 SDValue InChain = getRoot();
4189
4190 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4191 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4192 SDValue L = DAG.getAtomicCmpSwap(
4193 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
4194 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
4195 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
4196 /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID);
4197
4198 SDValue OutChain = L.getValue(2);
4199
4200 setValue(&I, L);
4201 DAG.setRoot(OutChain);
4202}
4203
4204void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4205 SDLoc dl = getCurSDLoc();
4206 ISD::NodeType NT;
4207 switch (I.getOperation()) {
4208 default: llvm_unreachable("Unknown atomicrmw operation")::llvm::llvm_unreachable_internal("Unknown atomicrmw operation"
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 4208)
;
4209 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4210 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break;
4211 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break;
4212 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break;
4213 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4214 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break;
4215 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break;
4216 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break;
4217 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break;
4218 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4219 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4220 }
4221 AtomicOrdering Order = I.getOrdering();
4222 SyncScope::ID SSID = I.getSyncScopeID();
4223
4224 SDValue InChain = getRoot();
4225
4226 SDValue L =
4227 DAG.getAtomic(NT, dl,
4228 getValue(I.getValOperand()).getSimpleValueType(),
4229 InChain,
4230 getValue(I.getPointerOperand()),
4231 getValue(I.getValOperand()),
4232 I.getPointerOperand(),
4233 /* Alignment=*/ 0, Order, SSID);
4234
4235 SDValue OutChain = L.getValue(1);
4236
4237 setValue(&I, L);
4238 DAG.setRoot(OutChain);
4239}
4240
4241void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4242 SDLoc dl = getCurSDLoc();
4243 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4244 SDValue Ops[3];
4245 Ops[0] = getRoot();
4246 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4247 TLI.getFenceOperandTy(DAG.getDataLayout()));
4248 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4249 TLI.getFenceOperandTy(DAG.getDataLayout()));
4250 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4251}
4252
4253void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4254 SDLoc dl = getCurSDLoc();
4255 AtomicOrdering Order = I.getOrdering();
4256 SyncScope::ID SSID = I.getSyncScopeID();
4257
4258 SDValue InChain = getRoot();
4259
4260 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4261 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4262
4263 if (!TLI.supportsUnalignedAtomics() &&
4264 I.getAlignment() < VT.getStoreSize())
4265 report_fatal_error("Cannot generate unaligned atomic load");
4266
4267 MachineMemOperand *MMO =
4268 DAG.getMachineFunction().
4269 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4270 MachineMemOperand::MOVolatile |
4271 MachineMemOperand::MOLoad,
4272 VT.getStoreSize(),
4273 I.getAlignment() ? I.getAlignment() :
4274 DAG.getEVTAlignment(VT),
4275 AAMDNodes(), nullptr, SSID, Order);
4276
4277 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4278 SDValue L =
4279 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4280 getValue(I.getPointerOperand()), MMO);
4281
4282 SDValue OutChain = L.getValue(1);
4283
4284 setValue(&I, L);
4285 DAG.setRoot(OutChain);
4286}
4287
4288void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4289 SDLoc dl = getCurSDLoc();
4290
4291 AtomicOrdering Order = I.getOrdering();
4292 SyncScope::ID SSID = I.getSyncScopeID();
4293
4294 SDValue InChain = getRoot();
4295
4296 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4297 EVT VT =
4298 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4299
4300 if (I.getAlignment() < VT.getStoreSize())
4301 report_fatal_error("Cannot generate unaligned atomic store");
4302
4303 SDValue OutChain =
4304 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
4305 InChain,
4306 getValue(I.getPointerOperand()),
4307 getValue(I.getValueOperand()),
4308 I.getPointerOperand(), I.getAlignment(),
4309 Order, SSID);
4310
4311 DAG.setRoot(OutChain);
4312}
4313
4314/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4315/// node.
4316void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4317 unsigned Intrinsic) {
4318 // Ignore the callsite's attributes. A specific call site may be marked with
4319 // readnone, but the lowering code will expect the chain based on the
4320 // definition.
4321 const Function *F = I.getCalledFunction();
4322 bool HasChain = !F->doesNotAccessMemory();
4323 bool OnlyLoad = HasChain && F->onlyReadsMemory();
4324
4325 // Build the operand list.
4326 SmallVector<SDValue, 8> Ops;
4327 if (HasChain) { // If this intrinsic has side-effects, chainify it.
4328 if (OnlyLoad) {
4329 // We don't need to serialize loads against other loads.
4330 Ops.push_back(DAG.getRoot());
4331 } else {
4332 Ops.push_back(getRoot());
4333 }
4334 }
4335
4336 // Info is set by getTgtMemInstrinsic
4337 TargetLowering::IntrinsicInfo Info;
4338 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4339 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4340 DAG.getMachineFunction(),
4341 Intrinsic);
4342
4343 // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4344 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4345 Info.opc == ISD::INTRINSIC_W_CHAIN)
4346 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4347 TLI.getPointerTy(DAG.getDataLayout())));
4348
4349 // Add all operands of the call to the operand list.
4350 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4351 SDValue Op = getValue(I.getArgOperand(i));
4352 Ops.push_back(Op);
4353 }
4354
4355 SmallVector<EVT, 4> ValueVTs;
4356 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4357
4358 if (HasChain)
4359 ValueVTs.push_back(MVT::Other);
4360
4361 SDVTList VTs = DAG.getVTList(ValueVTs);
4362
4363 // Create the node.
4364 SDValue Result;
4365 if (IsTgtIntrinsic) {
4366 // This is target intrinsic that touches memory
4367 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs,
4368 Ops, Info.memVT,
4369 MachinePointerInfo(Info.ptrVal, Info.offset), Info.align,
4370 Info.flags, Info.size);
4371 } else if (!HasChain) {
4372 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4373 } else if (!I.getType()->isVoidTy()) {
4374 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4375 } else {
4376 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4377 }
4378
4379 if (HasChain) {
4380 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4381 if (OnlyLoad)
4382 PendingLoads.push_back(Chain);
4383 else
4384 DAG.setRoot(Chain);
4385 }
4386
4387 if (!I.getType()->isVoidTy()) {
4388 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4389 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4390 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4391 } else
4392 Result = lowerRangeToAssertZExt(DAG, I, Result);
4393
4394 setValue(&I, Result);
4395 }
4396}
4397
4398/// GetSignificand - Get the significand and build it into a floating-point
4399/// number with exponent of 1:
4400///
4401/// Op = (Op & 0x007fffff) | 0x3f800000;
4402///
4403/// where Op is the hexadecimal representation of floating point value.
4404static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4405 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4406 DAG.getConstant(0x007fffff, dl, MVT::i32));
4407 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4408 DAG.getConstant(0x3f800000, dl, MVT::i32));
4409 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4410}
4411
4412/// GetExponent - Get the exponent:
4413///
4414/// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4415///
4416/// where Op is the hexadecimal representation of floating point value.
4417static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4418 const TargetLowering &TLI, const SDLoc &dl) {
4419 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4420 DAG.getConstant(0x7f800000, dl, MVT::i32));
4421 SDValue t1 = DAG.getNode(
4422 ISD::SRL, dl, MVT::i32, t0,
4423 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4424 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4425 DAG.getConstant(127, dl, MVT::i32));
4426 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4427}
4428
4429/// getF32Constant - Get 32-bit floating point constant.
4430static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4431 const SDLoc &dl) {
4432 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4433 MVT::f32);
4434}
4435
4436static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4437 SelectionDAG &DAG) {
4438 // TODO: What fast-math-flags should be set on the floating-point nodes?
4439
4440 // IntegerPartOfX = ((int32_t)(t0);
4441 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4442
4443 // FractionalPartOfX = t0 - (float)IntegerPartOfX;
4444 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4445 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4446
4447 // IntegerPartOfX <<= 23;
4448 IntegerPartOfX = DAG.getNode(
4449 ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4450 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4451 DAG.getDataLayout())));
4452
4453 SDValue TwoToFractionalPartOfX;
4454 if (LimitFloatPrecision <= 6) {
4455 // For floating-point precision of 6:
4456 //
4457 // TwoToFractionalPartOfX =
4458 // 0.997535578f +
4459 // (0.735607626f + 0.252464424f * x) * x;
4460 //
4461 // error 0.0144103317, which is 6 bits
4462 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4463 getF32Constant(DAG, 0x3e814304, dl));
4464 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4465 getF32Constant(DAG, 0x3f3c50c8, dl));
4466 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4467 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4468 getF32Constant(DAG, 0x3f7f5e7e, dl));
4469 } else if (LimitFloatPrecision <= 12) {
4470 // For floating-point precision of 12:
4471 //
4472 // TwoToFractionalPartOfX =
4473 // 0.999892986f +
4474 // (0.696457318f +
4475 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
4476 //
4477 // error 0.000107046256, which is 13 to 14 bits
4478 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4479 getF32Constant(DAG, 0x3da235e3, dl));
4480 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4481 getF32Constant(DAG, 0x3e65b8f3, dl));
4482 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4483 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4484 getF32Constant(DAG, 0x3f324b07, dl));
4485 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4486 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4487 getF32Constant(DAG, 0x3f7ff8fd, dl));
4488 } else { // LimitFloatPrecision <= 18
4489 // For floating-point precision of 18:
4490 //
4491 // TwoToFractionalPartOfX =
4492 // 0.999999982f +
4493 // (0.693148872f +
4494 // (0.240227044f +
4495 // (0.554906021e-1f +
4496 // (0.961591928e-2f +
4497 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4498 // error 2.47208000*10^(-7), which is better than 18 bits
4499 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4500 getF32Constant(DAG, 0x3924b03e, dl));
4501 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4502 getF32Constant(DAG, 0x3ab24b87, dl));
4503 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4504 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4505 getF32Constant(DAG, 0x3c1d8c17, dl));
4506 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4507 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4508 getF32Constant(DAG, 0x3d634a1d, dl));
4509 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4510 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4511 getF32Constant(DAG, 0x3e75fe14, dl));
4512 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4513 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4514 getF32Constant(DAG, 0x3f317234, dl));
4515 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4516 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4517 getF32Constant(DAG, 0x3f800000, dl));
4518 }
4519
4520 // Add the exponent into the result in integer domain.
4521 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4522 return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4523 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4524}
4525
4526/// expandExp - Lower an exp intrinsic. Handles the special sequences for
4527/// limited-precision mode.
4528static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4529 const TargetLowering &TLI) {
4530 if (Op.getValueType() == MVT::f32 &&
4531 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4532
4533 // Put the exponent in the right bit position for later addition to the
4534 // final result:
4535 //
4536 // #define LOG2OFe 1.4426950f
4537 // t0 = Op * LOG2OFe
4538
4539 // TODO: What fast-math-flags should be set here?
4540 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4541 getF32Constant(DAG, 0x3fb8aa3b, dl));
4542 return getLimitedPrecisionExp2(t0, dl, DAG);
4543 }
4544
4545 // No special expansion.
4546 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4547}
4548
4549/// expandLog - Lower a log intrinsic. Handles the special sequences for
4550/// limited-precision mode.
4551static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4552 const TargetLowering &TLI) {
4553 // TODO: What fast-math-flags should be set on the floating-point nodes?
4554
4555 if (Op.getValueType() == MVT::f32 &&
4556 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4557 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4558
4559 // Scale the exponent by log(2) [0.69314718f].
4560 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4561 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4562 getF32Constant(DAG, 0x3f317218, dl));
4563
4564 // Get the significand and build it into a floating-point number with
4565 // exponent of 1.
4566 SDValue X = GetSignificand(DAG, Op1, dl);
4567
4568 SDValue LogOfMantissa;
4569 if (LimitFloatPrecision <= 6) {
4570 // For floating-point precision of 6:
4571 //
4572 // LogofMantissa =
4573 // -1.1609546f +
4574 // (1.4034025f - 0.23903021f * x) * x;
4575 //
4576 // error 0.0034276066, which is better than 8 bits
4577 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4578 getF32Constant(DAG, 0xbe74c456, dl));
4579 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4580 getF32Constant(DAG, 0x3fb3a2b1, dl));
4581 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4582 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4583 getF32Constant(DAG, 0x3f949a29, dl));
4584 } else if (LimitFloatPrecision <= 12) {
4585 // For floating-point precision of 12:
4586 //
4587 // LogOfMantissa =
4588 // -1.7417939f +
4589 // (2.8212026f +
4590 // (-1.4699568f +
4591 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4592 //
4593 // error 0.000061011436, which is 14 bits
4594 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4595 getF32Constant(DAG, 0xbd67b6d6, dl));
4596 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4597 getF32Constant(DAG, 0x3ee4f4b8, dl));
4598 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4599 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4600 getF32Constant(DAG, 0x3fbc278b, dl));
4601 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4602 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4603 getF32Constant(DAG, 0x40348e95, dl));
4604 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4605 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4606 getF32Constant(DAG, 0x3fdef31a, dl));
4607 } else { // LimitFloatPrecision <= 18
4608 // For floating-point precision of 18:
4609 //
4610 // LogOfMantissa =
4611 // -2.1072184f +
4612 // (4.2372794f +
4613 // (-3.7029485f +
4614 // (2.2781945f +
4615 // (-0.87823314f +
4616 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4617 //
4618 // error 0.0000023660568, which is better than 18 bits
4619 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4620 getF32Constant(DAG, 0xbc91e5ac, dl));
4621 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4622 getF32Constant(DAG, 0x3e4350aa, dl));
4623 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4624 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4625 getF32Constant(DAG, 0x3f60d3e3, dl));
4626 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4627 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4628 getF32Constant(DAG, 0x4011cdf0, dl));
4629 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4630 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4631 getF32Constant(DAG, 0x406cfd1c, dl));
4632 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4633 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4634 getF32Constant(DAG, 0x408797cb, dl));
4635 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4636 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4637 getF32Constant(DAG, 0x4006dcab, dl));
4638 }
4639
4640 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4641 }
4642
4643 // No special expansion.
4644 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4645}
4646
4647/// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4648/// limited-precision mode.
4649static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4650 const TargetLowering &TLI) {
4651 // TODO: What fast-math-flags should be set on the floating-point nodes?
4652
4653 if (Op.getValueType() == MVT::f32 &&
4654 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4655 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4656
4657 // Get the exponent.
4658 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4659
4660 // Get the significand and build it into a floating-point number with
4661 // exponent of 1.
4662 SDValue X = GetSignificand(DAG, Op1, dl);
4663
4664 // Different possible minimax approximations of significand in
4665 // floating-point for various degrees of accuracy over [1,2].
4666 SDValue Log2ofMantissa;
4667 if (LimitFloatPrecision <= 6) {
4668 // For floating-point precision of 6:
4669 //
4670 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4671 //
4672 // error 0.0049451742, which is more than 7 bits
4673 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4674 getF32Constant(DAG, 0xbeb08fe0, dl));
4675 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4676 getF32Constant(DAG, 0x40019463, dl));
4677 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4678 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4679 getF32Constant(DAG, 0x3fd6633d, dl));
4680 } else if (LimitFloatPrecision <= 12) {
4681 // For floating-point precision of 12:
4682 //
4683 // Log2ofMantissa =
4684 // -2.51285454f +
4685 // (4.07009056f +
4686 // (-2.12067489f +
4687 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4688 //
4689 // error 0.0000876136000, which is better than 13 bits
4690 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4691 getF32Constant(DAG, 0xbda7262e, dl));
4692 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4693 getF32Constant(DAG, 0x3f25280b, dl));
4694 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4695 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4696 getF32Constant(DAG, 0x4007b923, dl));
4697 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4698 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4699 getF32Constant(DAG, 0x40823e2f, dl));
4700 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4701 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4702 getF32Constant(DAG, 0x4020d29c, dl));
4703 } else { // LimitFloatPrecision <= 18
4704 // For floating-point precision of 18:
4705 //
4706 // Log2ofMantissa =
4707 // -3.0400495f +
4708 // (6.1129976f +
4709 // (-5.3420409f +
4710 // (3.2865683f +
4711 // (-1.2669343f +
4712 // (0.27515199f -
4713 // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4714 //
4715 // error 0.0000018516, which is better than 18 bits
4716 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4717 getF32Constant(DAG, 0xbcd2769e, dl));
4718 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4719 getF32Constant(DAG, 0x3e8ce0b9, dl));
4720 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4721 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4722 getF32Constant(DAG, 0x3fa22ae7, dl));
4723 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4724 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4725 getF32Constant(DAG, 0x40525723, dl));
4726 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4727 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4728 getF32Constant(DAG, 0x40aaf200, dl));
4729 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4730 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4731 getF32Constant(DAG, 0x40c39dad, dl));
4732 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4733 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4734 getF32Constant(DAG, 0x4042902c, dl));
4735 }
4736
4737 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4738 }
4739
4740 // No special expansion.
4741 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4742}
4743
4744/// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4745/// limited-precision mode.
4746static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4747 const TargetLowering &TLI) {
4748 // TODO: What fast-math-flags should be set on the floating-point nodes?
4749
4750 if (Op.getValueType() == MVT::f32 &&
4751 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4752 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4753
4754 // Scale the exponent by log10(2) [0.30102999f].
4755 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4756 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4757 getF32Constant(DAG, 0x3e9a209a, dl));
4758
4759 // Get the significand and build it into a floating-point number with
4760 // exponent of 1.
4761 SDValue X = GetSignificand(DAG, Op1, dl);
4762
4763 SDValue Log10ofMantissa;
4764 if (LimitFloatPrecision <= 6) {
4765 // For floating-point precision of 6:
4766 //
4767 // Log10ofMantissa =
4768 // -0.50419619f +
4769 // (0.60948995f - 0.10380950f * x) * x;
4770 //
4771 // error 0.0014886165, which is 6 bits
4772 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4773 getF32Constant(DAG, 0xbdd49a13, dl));
4774 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4775 getF32Constant(DAG, 0x3f1c0789, dl));
4776 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4777 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4778 getF32Constant(DAG, 0x3f011300, dl));
4779 } else if (LimitFloatPrecision <= 12) {
4780 // For floating-point precision of 12:
4781 //
4782 // Log10ofMantissa =
4783 // -0.64831180f +
4784 // (0.91751397f +
4785 // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4786 //
4787 // error 0.00019228036, which is better than 12 bits
4788 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4789 getF32Constant(DAG, 0x3d431f31, dl));
4790 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4791 getF32Constant(DAG, 0x3ea21fb2, dl));
4792 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4793 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4794 getF32Constant(DAG, 0x3f6ae232, dl));
4795 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4796 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4797 getF32Constant(DAG, 0x3f25f7c3, dl));
4798 } else { // LimitFloatPrecision <= 18
4799 // For floating-point precision of 18:
4800 //
4801 // Log10ofMantissa =
4802 // -0.84299375f +
4803 // (1.5327582f +
4804 // (-1.0688956f +
4805 // (0.49102474f +
4806 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4807 //
4808 // error 0.0000037995730, which is better than 18 bits
4809 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4810 getF32Constant(DAG, 0x3c5d51ce, dl));
4811 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4812 getF32Constant(DAG, 0x3e00685a, dl));
4813 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4814 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4815 getF32Constant(DAG, 0x3efb6798, dl));
4816 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4817 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4818 getF32Constant(DAG, 0x3f88d192, dl));
4819 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4820 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4821 getF32Constant(DAG, 0x3fc4316c, dl));
4822 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4823 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4824 getF32Constant(DAG, 0x3f57ce70, dl));
4825 }
4826
4827 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4828 }
4829
4830 // No special expansion.
4831 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4832}
4833
4834/// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4835/// limited-precision mode.
4836static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4837 const TargetLowering &TLI) {
4838 if (Op.getValueType() == MVT::f32 &&
4839 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4840 return getLimitedPrecisionExp2(Op, dl, DAG);
4841
4842 // No special expansion.
4843 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4844}
4845
4846/// visitPow - Lower a pow intrinsic. Handles the special sequences for
4847/// limited-precision mode with x == 10.0f.
4848static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
4849 SelectionDAG &DAG, const TargetLowering &TLI) {
4850 bool IsExp10 = false;
4851 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4852 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4853 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4854 APFloat Ten(10.0f);
4855 IsExp10 = LHSC->isExactlyValue(Ten);
4856 }
4857 }
4858
4859 // TODO: What fast-math-flags should be set on the FMUL node?
4860 if (IsExp10) {
4861 // Put the exponent in the right bit position for later addition to the
4862 // final result:
4863 //
4864 // #define LOG2OF10 3.3219281f
4865 // t0 = Op * LOG2OF10;
4866 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4867 getF32Constant(DAG, 0x40549a78, dl));
4868 return getLimitedPrecisionExp2(t0, dl, DAG);
4869 }
4870
4871 // No special expansion.
4872 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4873}
4874
4875/// ExpandPowI - Expand a llvm.powi intrinsic.
4876static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
4877 SelectionDAG &DAG) {
4878 // If RHS is a constant, we can expand this out to a multiplication tree,
4879 // otherwise we end up lowering to a call to __powidf2 (for example). When
4880 // optimizing for size, we only want to do this if the expansion would produce
4881 // a small number of multiplies, otherwise we do the full expansion.
4882 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4883 // Get the exponent as a positive value.
4884 unsigned Val = RHSC->getSExtValue();
4885 if ((int)Val < 0) Val = -Val;
4886
4887 // powi(x, 0) -> 1.0
4888 if (Val == 0)
4889 return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4890
4891 const Function &F = DAG.getMachineFunction().getFunction();
4892 if (!F.optForSize() ||
4893 // If optimizing for size, don't insert too many multiplies.
4894 // This inserts up to 5 multiplies.
4895 countPopulation(Val) + Log2_32(Val) < 7) {
4896 // We use the simple binary decomposition method to generate the multiply
4897 // sequence. There are more optimal ways to do this (for example,
4898 // powi(x,15) generates one more multiply than it should), but this has
4899 // the benefit of being both really simple and much better than a libcall.
4900 SDValue Res; // Logically starts equal to 1.0
4901 SDValue CurSquare = LHS;
4902 // TODO: Intrinsics should have fast-math-flags that propagate to these
4903 // nodes.
4904 while (Val) {
4905 if (Val & 1) {
4906 if (Res.getNode())
4907 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4908 else
4909 Res = CurSquare; // 1.0*CurSquare.
4910 }
4911
4912 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4913 CurSquare, CurSquare);
4914 Val >>= 1;
4915 }
4916
4917 // If the original was negative, invert the result, producing 1/(x*x*x).
4918 if (RHSC->getSExtValue() < 0)
4919 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4920 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4921 return Res;
4922 }
4923 }
4924
4925 // Otherwise, expand to a libcall.
4926 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4927}
4928
4929// getUnderlyingArgReg - Find underlying register used for a truncated or
4930// bitcasted argument.
4931static unsigned getUnderlyingArgReg(const SDValue &N) {
4932 switch (N.getOpcode()) {
4933 case ISD::CopyFromReg:
4934 return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4935 case ISD::BITCAST:
4936 case ISD::AssertZext:
4937 case ISD::AssertSext:
4938 case ISD::TRUNCATE:
4939 return getUnderlyingArgReg(N.getOperand(0));
4940 default:
4941 return 0;
4942 }
4943}
4944
4945/// If the DbgValueInst is a dbg_value of a function argument, create the
4946/// corresponding DBG_VALUE machine instruction for it now. At the end of
4947/// instruction selection, they will be inserted to the entry BB.
4948bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4949 const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4950 DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
4951 const Argument *Arg = dyn_cast<Argument>(V);
4952 if (!Arg)
4953 return false;
4954
4955 MachineFunction &MF = DAG.getMachineFunction();
4956 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4957
4958 bool IsIndirect = false;
4959 Optional<MachineOperand> Op;
4960 // Some arguments' frame index is recorded during argument lowering.
4961 int FI = FuncInfo.getArgumentFrameIndex(Arg);
4962 if (FI != std::numeric_limits<int>::max())
4963 Op = MachineOperand::CreateFI(FI);
4964
4965 if (!Op && N.getNode()) {
4966 unsigned Reg = getUnderlyingArgReg(N);
4967 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4968 MachineRegisterInfo &RegInfo = MF.getRegInfo();
4969 unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4970 if (PR)
4971 Reg = PR;
4972 }
4973 if (Reg) {
4974 Op = MachineOperand::CreateReg(Reg, false);
4975 IsIndirect = IsDbgDeclare;
4976 }
4977 }
4978
4979 if (!Op && N.getNode())
4980 // Check if frame index is available.
4981 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4982 if (FrameIndexSDNode *FINode =
4983 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4984 Op = MachineOperand::CreateFI(FINode->getIndex());
4985
4986 if (!Op) {
4987 // Check if ValueMap has reg number.
4988 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4989 if (VMI != FuncInfo.ValueMap.end()) {
4990 const auto &TLI = DAG.getTargetLoweringInfo();
4991 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
4992 V->getType(), getABIRegCopyCC(V));
4993 if (RFV.occupiesMultipleRegs()) {
4994 unsigned Offset = 0;
4995 for (auto RegAndSize : RFV.getRegsAndSizes()) {
4996 Op = MachineOperand::CreateReg(RegAndSize.first, false);
4997 auto FragmentExpr = DIExpression::createFragmentExpression(
4998 Expr, Offset, RegAndSize.second);
4999 if (!FragmentExpr)
5000 continue;
5001 FuncInfo.ArgDbgValues.push_back(
5002 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5003 Op->getReg(), Variable, *FragmentExpr));
5004 Offset += RegAndSize.second;
5005 }
5006 return true;
5007 }
5008 Op = MachineOperand::CreateReg(VMI->second, false);
5009 IsIndirect = IsDbgDeclare;
5010 }
5011 }
5012
5013 if (!Op)
5014 return false;
5015
5016 assert(Variable->isValidLocationForIntrinsic(DL) &&((Variable->isValidLocationForIntrinsic(DL) && "Expected inlined-at fields to agree"
) ? static_cast<void> (0) : __assert_fail ("Variable->isValidLocationForIntrinsic(DL) && \"Expected inlined-at fields to agree\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 5017, __PRETTY_FUNCTION__))
5017 "Expected inlined-at fields to agree")((Variable->isValidLocationForIntrinsic(DL) && "Expected inlined-at fields to agree"
) ? static_cast<void> (0) : __assert_fail ("Variable->isValidLocationForIntrinsic(DL) && \"Expected inlined-at fields to agree\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 5017, __PRETTY_FUNCTION__))
;
5018 IsIndirect = (Op->isReg()) ? IsIndirect : true;
5019 FuncInfo.ArgDbgValues.push_back(
5020 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5021 *Op, Variable, Expr));
5022
5023 return true;
5024}
5025
5026/// Return the appropriate SDDbgValue based on N.
5027SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5028 DILocalVariable *Variable,
5029 DIExpression *Expr,
5030 const DebugLoc &dl,
5031 unsigned DbgSDNodeOrder) {
5032 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5033 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5034 // stack slot locations.
5035 //
5036 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5037 // debug values here after optimization:
5038 //
5039 // dbg.value(i32* %px, !"int *px", !DIExpression()), and
5040 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5041 //
5042 // Both describe the direct values of their associated variables.
5043 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5044 /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5045 }
5046 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5047 /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5048}
5049
5050// VisualStudio defines setjmp as _setjmp
5051#if defined(_MSC_VER) && defined(setjmp) && \
5052 !defined(setjmp_undefined_for_msvc)
5053# pragma push_macro("setjmp")
5054# undef setjmp
5055# define setjmp_undefined_for_msvc
5056#endif
5057
5058/// Lower the call to the specified intrinsic function. If we want to emit this
5059/// as a call to a named external function, return the name. Otherwise, lower it
5060/// and return null.
5061const char *
5062SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
5063 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5064 SDLoc sdl = getCurSDLoc();
5065 DebugLoc dl = getCurDebugLoc();
5066 SDValue Res;
5067
5068 switch (Intrinsic) {
5069 default:
5070 // By default, turn this into a target intrinsic node.
5071 visitTargetIntrinsic(I, Intrinsic);
5072 return nullptr;
5073 case Intrinsic::vastart: visitVAStart(I); return nullptr;
5074 case Intrinsic::vaend: visitVAEnd(I); return nullptr;
5075 case Intrinsic::vacopy: visitVACopy(I); return nullptr;
5076 case Intrinsic::returnaddress:
5077 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5078 TLI.getPointerTy(DAG.getDataLayout()),
5079 getValue(I.getArgOperand(0))));
5080 return nullptr;
5081 case Intrinsic::addressofreturnaddress:
5082 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5083 TLI.getPointerTy(DAG.getDataLayout())));
5084 return nullptr;
5085 case Intrinsic::sponentry:
5086 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5087 TLI.getPointerTy(DAG.getDataLayout())));
5088 return nullptr;
5089 case Intrinsic::frameaddress:
5090 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5091 TLI.getPointerTy(DAG.getDataLayout()),
5092 getValue(I.getArgOperand(0))));
5093 return nullptr;
5094 case Intrinsic::read_register: {
5095 Value *Reg = I.getArgOperand(0);
5096 SDValue Chain = getRoot();
5097 SDValue RegName =
5098 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5099 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5100 Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5101 DAG.getVTList(VT, MVT::Other), Chain, RegName);
5102 setValue(&I, Res);
5103 DAG.setRoot(Res.getValue(1));
5104 return nullptr;
5105 }
5106 case Intrinsic::write_register: {
5107 Value *Reg = I.getArgOperand(0);
5108 Value *RegValue = I.getArgOperand(1);
5109 SDValue Chain = getRoot();
5110 SDValue RegName =
5111 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5112 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5113 RegName, getValue(RegValue)));
5114 return nullptr;
5115 }
5116 case Intrinsic::setjmp:
5117 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
5118 case Intrinsic::longjmp:
5119 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
5120 case Intrinsic::memcpy: {
5121 const auto &MCI = cast<MemCpyInst>(I);
5122 SDValue Op1 = getValue(I.getArgOperand(0));
5123 SDValue Op2 = getValue(I.getArgOperand(1));
5124 SDValue Op3 = getValue(I.getArgOperand(2));
5125 // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5126 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5127 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5128 unsigned Align = MinAlign(DstAlign, SrcAlign);
5129 bool isVol = MCI.isVolatile();
5130 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5131 // FIXME: Support passing different dest/src alignments to the memcpy DAG
5132 // node.
5133 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5134 false, isTC,
5135 MachinePointerInfo(I.getArgOperand(0)),
5136 MachinePointerInfo(I.getArgOperand(1)));
5137 updateDAGForMaybeTailCall(MC);
5138 return nullptr;
5139 }
5140 case Intrinsic::memset: {
5141 const auto &MSI = cast<MemSetInst>(I);
5142 SDValue Op1 = getValue(I.getArgOperand(0));
5143 SDValue Op2 = getValue(I.getArgOperand(1));
5144 SDValue Op3 = getValue(I.getArgOperand(2));
5145 // @llvm.memset defines 0 and 1 to both mean no alignment.
5146 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5147 bool isVol = MSI.isVolatile();
5148 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5149 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5150 isTC, MachinePointerInfo(I.getArgOperand(0)));
5151 updateDAGForMaybeTailCall(MS);
5152 return nullptr;
5153 }
5154 case Intrinsic::memmove: {
5155 const auto &MMI = cast<MemMoveInst>(I);
5156 SDValue Op1 = getValue(I.getArgOperand(0));
5157 SDValue Op2 = getValue(I.getArgOperand(1));
5158 SDValue Op3 = getValue(I.getArgOperand(2));
5159 // @llvm.memmove defines 0 and 1 to both mean no alignment.
5160 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5161 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5162 unsigned Align = MinAlign(DstAlign, SrcAlign);
5163 bool isVol = MMI.isVolatile();
5164 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5165 // FIXME: Support passing different dest/src alignments to the memmove DAG
5166 // node.
5167 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5168 isTC, MachinePointerInfo(I.getArgOperand(0)),
5169 MachinePointerInfo(I.getArgOperand(1)));
5170 updateDAGForMaybeTailCall(MM);
5171 return nullptr;
5172 }
5173 case Intrinsic::memcpy_element_unordered_atomic: {
5174 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5175 SDValue Dst = getValue(MI.getRawDest());
5176 SDValue Src = getValue(MI.getRawSource());
5177 SDValue Length = getValue(MI.getLength());
5178
5179 unsigned DstAlign = MI.getDestAlignment();
5180 unsigned SrcAlign = MI.getSourceAlignment();
5181 Type *LengthTy = MI.getLength()->getType();
5182 unsigned ElemSz = MI.getElementSizeInBytes();
5183 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5184 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5185 SrcAlign, Length, LengthTy, ElemSz, isTC,
5186 MachinePointerInfo(MI.getRawDest()),
5187 MachinePointerInfo(MI.getRawSource()));
5188 updateDAGForMaybeTailCall(MC);
5189 return nullptr;
5190 }
5191 case Intrinsic::memmove_element_unordered_atomic: {
5192 auto &MI = cast<AtomicMemMoveInst>(I);
5193 SDValue Dst = getValue(MI.getRawDest());
5194 SDValue Src = getValue(MI.getRawSource());
5195 SDValue Length = getValue(MI.getLength());
5196
5197 unsigned DstAlign = MI.getDestAlignment();
5198 unsigned SrcAlign = MI.getSourceAlignment();
5199 Type *LengthTy = MI.getLength()->getType();
5200 unsigned ElemSz = MI.getElementSizeInBytes();
5201 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5202 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5203 SrcAlign, Length, LengthTy, ElemSz, isTC,
5204 MachinePointerInfo(MI.getRawDest()),
5205 MachinePointerInfo(MI.getRawSource()));
5206 updateDAGForMaybeTailCall(MC);
5207 return nullptr;
5208 }
5209 case Intrinsic::memset_element_unordered_atomic: {
5210 auto &MI = cast<AtomicMemSetInst>(I);
5211 SDValue Dst = getValue(MI.getRawDest());
5212 SDValue Val = getValue(MI.getValue());
5213 SDValue Length = getValue(MI.getLength());
5214
5215 unsigned DstAlign = MI.getDestAlignment();
5216 Type *LengthTy = MI.getLength()->getType();
5217 unsigned ElemSz = MI.getElementSizeInBytes();
5218 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5219 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5220 LengthTy, ElemSz, isTC,
5221 MachinePointerInfo(MI.getRawDest()));
5222 updateDAGForMaybeTailCall(MC);
5223 return nullptr;
5224 }
5225 case Intrinsic::dbg_addr:
5226 case Intrinsic::dbg_declare: {
5227 const auto &DI = cast<DbgVariableIntrinsic>(I);
5228 DILocalVariable *Variable = DI.getVariable();
5229 DIExpression *Expression = DI.getExpression();
5230 dropDanglingDebugInfo(Variable, Expression);
5231 assert(Variable && "Missing variable")((Variable && "Missing variable") ? static_cast<void
> (0) : __assert_fail ("Variable && \"Missing variable\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 5231, __PRETTY_FUNCTION__))
;
5232
5233 // Check if address has undef value.
5234 const Value *Address = DI.getVariableLocation();
5235 if (!Address || isa<UndefValue>(Address) ||
5236 (Address->use_empty() && !isa<Argument>(Address))) {
5237 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() << "Dropping debug info for " <<
DI << "\n"; } } while (false)
;
5238 return nullptr;
5239 }
5240
5241 bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5242
5243 // Check if this variable can be described by a frame index, typically
5244 // either as a static alloca or a byval parameter.
5245 int FI = std::numeric_limits<int>::max();
5246 if (const auto *AI =
5247 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5248 if (AI->isStaticAlloca()) {
5249 auto I = FuncInfo.StaticAllocaMap.find(AI);
5250 if (I != FuncInfo.StaticAllocaMap.end())
5251 FI = I->second;
5252 }
5253 } else if (const auto *Arg = dyn_cast<Argument>(
5254 Address->stripInBoundsConstantOffsets())) {
5255 FI = FuncInfo.getArgumentFrameIndex(Arg);
5256 }
5257
5258 // llvm.dbg.addr is control dependent and always generates indirect
5259 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5260 // the MachineFunction variable table.
5261 if (FI != std::numeric_limits<int>::max()) {
5262 if (Intrinsic == Intrinsic::dbg_addr) {
5263 SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5264 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5265 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5266 }
5267 return nullptr;
5268 }
5269
5270 SDValue &N = NodeMap[Address];
5271 if (!N.getNode() && isa<Argument>(Address))
5272 // Check unused arguments map.
5273 N = UnusedArgNodeMap[Address];
5274 SDDbgValue *SDV;
5275 if (N.getNode()) {
5276 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5277 Address = BCI->getOperand(0);
5278 // Parameters are handled specially.
5279 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5280 if (isParameter && FINode) {
5281 // Byval parameter. We have a frame index at this point.
5282 SDV =
5283 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5284 /*IsIndirect*/ true, dl, SDNodeOrder);
5285 } else if (isa<Argument>(Address)) {
5286 // Address is an argument, so try to emit its dbg value using
5287 // virtual register info from the FuncInfo.ValueMap.
5288 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5289 return nullptr;
5290 } else {
5291 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5292 true, dl, SDNodeOrder);
5293 }
5294 DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5295 } else {
5296 // If Address is an argument then try to emit its dbg value using
5297 // virtual register info from the FuncInfo.ValueMap.
5298 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5299 N)) {
5300 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() << "Dropping debug info for " <<
DI << "\n"; } } while (false)
;
5301 }
5302 }
5303 return nullptr;
5304 }
5305 case Intrinsic::dbg_label: {
5306 const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5307 DILabel *Label = DI.getLabel();
5308 assert(Label && "Missing label")((Label && "Missing label") ? static_cast<void>
(0) : __assert_fail ("Label && \"Missing label\"", "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 5308, __PRETTY_FUNCTION__))
;
5309
5310 SDDbgLabel *SDV;
5311 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5312 DAG.AddDbgLabel(SDV);
5313 return nullptr;
5314 }
5315 case Intrinsic::dbg_value: {
5316 const DbgValueInst &DI = cast<DbgValueInst>(I);
5317 assert(DI.getVariable() && "Missing variable")((DI.getVariable() && "Missing variable") ? static_cast
<void> (0) : __assert_fail ("DI.getVariable() && \"Missing variable\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 5317, __PRETTY_FUNCTION__))
;
5318
5319 DILocalVariable *Variable = DI.getVariable();
5320 DIExpression *Expression = DI.getExpression();
5321 dropDanglingDebugInfo(Variable, Expression);
5322 const Value *V = DI.getValue();
5323 if (!V)
5324 return nullptr;
5325
5326 SDDbgValue *SDV;
5327 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
5328 isa<ConstantPointerNull>(V)) {
5329 SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder);
5330 DAG.AddDbgValue(SDV, nullptr, false);
5331 return nullptr;
5332 }
5333
5334 // Do not use getValue() in here; we don't want to generate code at
5335 // this point if it hasn't been done yet.
5336 SDValue N = NodeMap[V];
5337 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
5338 N = UnusedArgNodeMap[V];
5339 if (N.getNode()) {
5340 if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N))
5341 return nullptr;
5342 SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder);
5343 DAG.AddDbgValue(SDV, N.getNode(), false);
5344 return nullptr;
5345 }
5346
5347 // PHI nodes have already been selected, so we should know which VReg that
5348 // is assigns to already.
5349 if (isa<PHINode>(V)) {
5350 auto VMI = FuncInfo.ValueMap.find(V);
5351 if (VMI != FuncInfo.ValueMap.end()) {
5352 unsigned Reg = VMI->second;
5353 // The PHI node may be split up into several MI PHI nodes (in
5354 // FunctionLoweringInfo::set).
5355 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
5356 V->getType(), None);
5357 if (RFV.occupiesMultipleRegs()) {
5358 unsigned Offset = 0;
5359 unsigned BitsToDescribe = 0;
5360 if (auto VarSize = Variable->getSizeInBits())
5361 BitsToDescribe = *VarSize;
5362 if (auto Fragment = Expression->getFragmentInfo())
5363 BitsToDescribe = Fragment->SizeInBits;
5364 for (auto RegAndSize : RFV.getRegsAndSizes()) {
5365 unsigned RegisterSize = RegAndSize.second;
5366 // Bail out if all bits are described already.
5367 if (Offset >= BitsToDescribe)
5368 break;
5369 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
5370 ? BitsToDescribe - Offset
5371 : RegisterSize;
5372 auto FragmentExpr = DIExpression::createFragmentExpression(
5373 Expression, Offset, FragmentSize);
5374 if (!FragmentExpr)
5375 continue;
5376 SDV = DAG.getVRegDbgValue(Variable, *FragmentExpr, RegAndSize.first,
5377 false, dl, SDNodeOrder);
5378 DAG.AddDbgValue(SDV, nullptr, false);
5379 Offset += RegisterSize;
5380 }
5381 } else {
5382 SDV = DAG.getVRegDbgValue(Variable, Expression, Reg, false, dl,
5383 SDNodeOrder);
5384 DAG.AddDbgValue(SDV, nullptr, false);
5385 }
5386 return nullptr;
5387 }
5388 }
5389
5390 // TODO: When we get here we will either drop the dbg.value completely, or
5391 // we try to move it forward by letting it dangle for awhile. So we should
5392 // probably add an extra DbgValue to the DAG here, with a reference to
5393 // "noreg", to indicate that we have lost the debug location for the
5394 // variable.
5395
5396 if (!V->use_empty() ) {
5397 // Do not call getValue(V) yet, as we don't want to generate code.
5398 // Remember it for later.
5399 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5400 return nullptr;
5401 }
5402
5403 LLVM_DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() << "Dropping debug location info for:\n "
<< DI << "\n"; } } while (false)
;
5404 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *V << "\n")do { if (::llvm::DebugFlag && ::llvm::isCurrentDebugType
("isel")) { dbgs() << " Last seen at:\n " << *
V << "\n"; } } while (false)
;
5405 return nullptr;
5406 }
5407
5408 case Intrinsic::eh_typeid_for: {
5409 // Find the type id for the given typeinfo.
5410 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5411 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5412 Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5413 setValue(&I, Res);
5414 return nullptr;
5415 }
5416
5417 case Intrinsic::eh_return_i32:
5418 case Intrinsic::eh_return_i64:
5419 DAG.getMachineFunction().setCallsEHReturn(true);
5420 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5421 MVT::Other,
5422 getControlRoot(),
5423 getValue(I.getArgOperand(0)),
5424 getValue(I.getArgOperand(1))));
5425 return nullptr;
5426 case Intrinsic::eh_unwind_init:
5427 DAG.getMachineFunction().setCallsUnwindInit(true);
5428 return nullptr;
5429 case Intrinsic::eh_dwarf_cfa:
5430 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5431 TLI.getPointerTy(DAG.getDataLayout()),
5432 getValue(I.getArgOperand(0))));
5433 return nullptr;
5434 case Intrinsic::eh_sjlj_callsite: {
5435 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5436 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5437 assert(CI && "Non-constant call site value in eh.sjlj.callsite!")((CI && "Non-constant call site value in eh.sjlj.callsite!"
) ? static_cast<void> (0) : __assert_fail ("CI && \"Non-constant call site value in eh.sjlj.callsite!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 5437, __PRETTY_FUNCTION__))
;
5438 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!")((MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"
) ? static_cast<void> (0) : __assert_fail ("MMI.getCurrentCallSite() == 0 && \"Overlapping call sites!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 5438, __PRETTY_FUNCTION__))
;
5439
5440 MMI.setCurrentCallSite(CI->getZExtValue());
5441 return nullptr;
5442 }
5443 case Intrinsic::eh_sjlj_functioncontext: {
5444 // Get and store the index of the function context.
5445 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5446 AllocaInst *FnCtx =
5447 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5448 int FI = FuncInfo.StaticAllocaMap[FnCtx];
5449 MFI.setFunctionContextIndex(FI);
5450 return nullptr;
5451 }
5452 case Intrinsic::eh_sjlj_setjmp: {
5453 SDValue Ops[2];
5454 Ops[0] = getRoot();
5455 Ops[1] = getValue(I.getArgOperand(0));
5456 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5457 DAG.getVTList(MVT::i32, MVT::Other), Ops);
5458 setValue(&I, Op.getValue(0));
5459 DAG.setRoot(Op.getValue(1));
5460 return nullptr;
5461 }
5462 case Intrinsic::eh_sjlj_longjmp:
5463 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5464 getRoot(), getValue(I.getArgOperand(0))));
5465 return nullptr;
5466 case Intrinsic::eh_sjlj_setup_dispatch:
5467 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5468 getRoot()));
5469 return nullptr;
5470 case Intrinsic::masked_gather:
5471 visitMaskedGather(I);
5472 return nullptr;
5473 case Intrinsic::masked_load:
5474 visitMaskedLoad(I);
5475 return nullptr;
5476 case Intrinsic::masked_scatter:
5477 visitMaskedScatter(I);
5478 return nullptr;
5479 case Intrinsic::masked_store:
5480 visitMaskedStore(I);
5481 return nullptr;
5482 case Intrinsic::masked_expandload:
5483 visitMaskedLoad(I, true /* IsExpanding */);
5484 return nullptr;
5485 case Intrinsic::masked_compressstore:
5486 visitMaskedStore(I, true /* IsCompressing */);
5487 return nullptr;
5488 case Intrinsic::x86_mmx_pslli_w:
5489 case Intrinsic::x86_mmx_pslli_d:
5490 case Intrinsic::x86_mmx_pslli_q:
5491 case Intrinsic::x86_mmx_psrli_w:
5492 case Intrinsic::x86_mmx_psrli_d:
5493 case Intrinsic::x86_mmx_psrli_q:
5494 case Intrinsic::x86_mmx_psrai_w:
5495 case Intrinsic::x86_mmx_psrai_d: {
5496 SDValue ShAmt = getValue(I.getArgOperand(1));
5497 if (isa<ConstantSDNode>(ShAmt)) {
5498 visitTargetIntrinsic(I, Intrinsic);
5499 return nullptr;
5500 }
5501 unsigned NewIntrinsic = 0;
5502 EVT ShAmtVT = MVT::v2i32;
5503 switch (Intrinsic) {
5504 case Intrinsic::x86_mmx_pslli_w:
5505 NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5506 break;
5507 case Intrinsic::x86_mmx_pslli_d:
5508 NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5509 break;
5510 case Intrinsic::x86_mmx_pslli_q:
5511 NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5512 break;
5513 case Intrinsic::x86_mmx_psrli_w:
5514 NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5515 break;
5516 case Intrinsic::x86_mmx_psrli_d:
5517 NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5518 break;
5519 case Intrinsic::x86_mmx_psrli_q:
5520 NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5521 break;
5522 case Intrinsic::x86_mmx_psrai_w:
5523 NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5524 break;
5525 case Intrinsic::x86_mmx_psrai_d:
5526 NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5527 break;
5528 default: llvm_unreachable("Impossible intrinsic")::llvm::llvm_unreachable_internal("Impossible intrinsic", "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 5528)
; // Can't reach here.
5529 }
5530
5531 // The vector shift intrinsics with scalars uses 32b shift amounts but
5532 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5533 // to be zero.
5534 // We must do this early because v2i32 is not a legal type.
5535 SDValue ShOps[2];
5536 ShOps[0] = ShAmt;
5537 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5538 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps);
5539 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5540 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5541 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5542 DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5543 getValue(I.getArgOperand(0)), ShAmt);
5544 setValue(&I, Res);
5545 return nullptr;
5546 }
5547 case Intrinsic::powi:
5548 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5549 getValue(I.getArgOperand(1)), DAG));
5550 return nullptr;
5551 case Intrinsic::log:
5552 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5553 return nullptr;
5554 case Intrinsic::log2:
5555 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5556 return nullptr;
5557 case Intrinsic::log10:
5558 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5559 return nullptr;
5560 case Intrinsic::exp:
5561 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5562 return nullptr;
5563 case Intrinsic::exp2:
5564 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5565 return nullptr;
5566 case Intrinsic::pow:
5567 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5568 getValue(I.getArgOperand(1)), DAG, TLI));
5569 return nullptr;
5570 case Intrinsic::sqrt:
5571 case Intrinsic::fabs:
5572 case Intrinsic::sin:
5573 case Intrinsic::cos:
5574 case Intrinsic::floor:
5575 case Intrinsic::ceil:
5576 case Intrinsic::trunc:
5577 case Intrinsic::rint:
5578 case Intrinsic::nearbyint:
5579 case Intrinsic::round:
5580 case Intrinsic::canonicalize: {
5581 unsigned Opcode;
5582 switch (Intrinsic) {
5583 default: llvm_unreachable("Impossible intrinsic")::llvm::llvm_unreachable_internal("Impossible intrinsic", "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 5583)
; // Can't reach here.
5584 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break;
5585 case Intrinsic::fabs: Opcode = ISD::FABS; break;
5586 case Intrinsic::sin: Opcode = ISD::FSIN; break;
5587 case Intrinsic::cos: Opcode = ISD::FCOS; break;
5588 case Intrinsic::floor: Opcode = ISD::FFLOOR; break;
5589 case Intrinsic::ceil: Opcode = ISD::FCEIL; break;
5590 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break;
5591 case Intrinsic::rint: Opcode = ISD::FRINT; break;
5592 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5593 case Intrinsic::round: Opcode = ISD::FROUND; break;
5594 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5595 }
5596
5597 setValue(&I, DAG.getNode(Opcode, sdl,
5598 getValue(I.getArgOperand(0)).getValueType(),
5599 getValue(I.getArgOperand(0))));
5600 return nullptr;
5601 }
5602 case Intrinsic::minnum: {
5603 auto VT = getValue(I.getArgOperand(0)).getValueType();
5604 unsigned Opc =
5605 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)
5606 ? ISD::FMINIMUM
5607 : ISD::FMINNUM;
5608 setValue(&I, DAG.getNode(Opc, sdl, VT,
5609 getValue(I.getArgOperand(0)),
5610 getValue(I.getArgOperand(1))));
5611 return nullptr;
5612 }
5613 case Intrinsic::maxnum: {
5614 auto VT = getValue(I.getArgOperand(0)).getValueType();
5615 unsigned Opc =
5616 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)
5617 ? ISD::FMAXIMUM
5618 : ISD::FMAXNUM;
5619 setValue(&I, DAG.getNode(Opc, sdl, VT,
5620 getValue(I.getArgOperand(0)),
5621 getValue(I.getArgOperand(1))));
5622 return nullptr;
5623 }
5624 case Intrinsic::minimum:
5625 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
5626 getValue(I.getArgOperand(0)).getValueType(),
5627 getValue(I.getArgOperand(0)),
5628 getValue(I.getArgOperand(1))));
5629 return nullptr;
5630 case Intrinsic::maximum:
5631 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
5632 getValue(I.getArgOperand(0)).getValueType(),
5633 getValue(I.getArgOperand(0)),
5634 getValue(I.getArgOperand(1))));
5635 return nullptr;
5636 case Intrinsic::copysign:
5637 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5638 getValue(I.getArgOperand(0)).getValueType(),
5639 getValue(I.getArgOperand(0)),
5640 getValue(I.getArgOperand(1))));
5641 return nullptr;
5642 case Intrinsic::fma:
5643 setValue(&I, DAG.getNode(ISD::FMA, sdl,
5644 getValue(I.getArgOperand(0)).getValueType(),
5645 getValue(I.getArgOperand(0)),
5646 getValue(I.getArgOperand(1)),
5647 getValue(I.getArgOperand(2))));
5648 return nullptr;
5649 case Intrinsic::experimental_constrained_fadd:
5650 case Intrinsic::experimental_constrained_fsub:
5651 case Intrinsic::experimental_constrained_fmul:
5652 case Intrinsic::experimental_constrained_fdiv:
5653 case Intrinsic::experimental_constrained_frem:
5654 case Intrinsic::experimental_constrained_fma:
5655 case Intrinsic::experimental_constrained_sqrt:
5656 case Intrinsic::experimental_constrained_pow:
5657 case Intrinsic::experimental_constrained_powi:
5658 case Intrinsic::experimental_constrained_sin:
5659 case Intrinsic::experimental_constrained_cos:
5660 case Intrinsic::experimental_constrained_exp:
5661 case Intrinsic::experimental_constrained_exp2:
5662 case Intrinsic::experimental_constrained_log:
5663 case Intrinsic::experimental_constrained_log10:
5664 case Intrinsic::experimental_constrained_log2:
5665 case Intrinsic::experimental_constrained_rint:
5666 case Intrinsic::experimental_constrained_nearbyint:
5667 case Intrinsic::experimental_constrained_maxnum:
5668 case Intrinsic::experimental_constrained_minnum:
5669 case Intrinsic::experimental_constrained_ceil:
5670 case Intrinsic::experimental_constrained_floor:
5671 case Intrinsic::experimental_constrained_round:
5672 case Intrinsic::experimental_constrained_trunc:
5673 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
5674 return nullptr;
5675 case Intrinsic::fmuladd: {
5676 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5677 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5678 TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5679 setValue(&I, DAG.getNode(ISD::FMA, sdl,
5680 getValue(I.getArgOperand(0)).getValueType(),
5681 getValue(I.getArgOperand(0)),
5682 getValue(I.getArgOperand(1)),
5683 getValue(I.getArgOperand(2))));
5684 } else {
5685 // TODO: Intrinsic calls should have fast-math-flags.
5686 SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5687 getValue(I.getArgOperand(0)).getValueType(),
5688 getValue(I.getArgOperand(0)),
5689 getValue(I.getArgOperand(1)));
5690 SDValue Add = DAG.getNode(ISD::FADD, sdl,
5691 getValue(I.getArgOperand(0)).getValueType(),
5692 Mul,
5693 getValue(I.getArgOperand(2)));
5694 setValue(&I, Add);
5695 }
5696 return nullptr;
5697 }
5698 case Intrinsic::convert_to_fp16:
5699 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5700 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5701 getValue(I.getArgOperand(0)),
5702 DAG.getTargetConstant(0, sdl,
5703 MVT::i32))));
5704 return nullptr;
5705 case Intrinsic::convert_from_fp16:
5706 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5707 TLI.getValueType(DAG.getDataLayout(), I.getType()),
5708 DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5709 getValue(I.getArgOperand(0)))));
5710 return nullptr;
5711 case Intrinsic::pcmarker: {
5712 SDValue Tmp = getValue(I.getArgOperand(0));
5713 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5714 return nullptr;
5715 }
5716 case Intrinsic::readcyclecounter: {
5717 SDValue Op = getRoot();
5718 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5719 DAG.getVTList(MVT::i64, MVT::Other), Op);
5720 setValue(&I, Res);
5721 DAG.setRoot(Res.getValue(1));
5722 return nullptr;
5723 }
5724 case Intrinsic::bitreverse:
5725 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5726 getValue(I.getArgOperand(0)).getValueType(),
5727 getValue(I.getArgOperand(0))));
5728 return nullptr;
5729 case Intrinsic::bswap:
5730 setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5731 getValue(I.getArgOperand(0)).getValueType(),
5732 getValue(I.getArgOperand(0))));
5733 return nullptr;
5734 case Intrinsic::cttz: {
5735 SDValue Arg = getValue(I.getArgOperand(0));
5736 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5737 EVT Ty = Arg.getValueType();
5738 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5739 sdl, Ty, Arg));
5740 return nullptr;
5741 }
5742 case Intrinsic::ctlz: {
5743 SDValue Arg = getValue(I.getArgOperand(0));
5744 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5745 EVT Ty = Arg.getValueType();
5746 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5747 sdl, Ty, Arg));
5748 return nullptr;
5749 }
5750 case Intrinsic::ctpop: {
5751 SDValue Arg = getValue(I.getArgOperand(0));
5752 EVT Ty = Arg.getValueType();
5753 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5754 return nullptr;
5755 }
5756 case Intrinsic::fshl:
5757 case Intrinsic::fshr: {
5758 bool IsFSHL = Intrinsic == Intrinsic::fshl;
5759 SDValue X = getValue(I.getArgOperand(0));
5760 SDValue Y = getValue(I.getArgOperand(1));
5761 SDValue Z = getValue(I.getArgOperand(2));
5762 EVT VT = X.getValueType();
5763 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
5764 SDValue Zero = DAG.getConstant(0, sdl, VT);
5765 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
5766
5767 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
5768 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) {
5769 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
5770 return nullptr;
5771 }
5772
5773 // When X == Y, this is rotate. If the data type has a power-of-2 size, we
5774 // avoid the select that is necessary in the general case to filter out
5775 // the 0-shift possibility that leads to UB.
5776 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
5777 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
5778 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
5779 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
5780 return nullptr;
5781 }
5782
5783 // Some targets only rotate one way. Try the opposite direction.
5784 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
5785 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
5786 // Negate the shift amount because it is safe to ignore the high bits.
5787 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
5788 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
5789 return nullptr;
5790 }
5791
5792 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
5793 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
5794 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
5795 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
5796 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
5797 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
5798 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
5799 return nullptr;
5800 }
5801
5802 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5803 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5804 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
5805 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
5806 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
5807 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
5808
5809 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
5810 // and that is undefined. We must compare and select to avoid UB.
5811 EVT CCVT = MVT::i1;
5812 if (VT.isVector())
5813 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
5814
5815 // For fshl, 0-shift returns the 1st arg (X).
5816 // For fshr, 0-shift returns the 2nd arg (Y).
5817 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
5818 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
5819 return nullptr;
5820 }
5821 case Intrinsic::sadd_sat: {
5822 SDValue Op1 = getValue(I.getArgOperand(0));
5823 SDValue Op2 = getValue(I.getArgOperand(1));
5824 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
5825 return nullptr;
5826 }
5827 case Intrinsic::uadd_sat: {
5828 SDValue Op1 = getValue(I.getArgOperand(0));
5829 SDValue Op2 = getValue(I.getArgOperand(1));
5830 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
5831 return nullptr;
5832 }
5833 case Intrinsic::ssub_sat: {
5834 SDValue Op1 = getValue(I.getArgOperand(0));
5835 SDValue Op2 = getValue(I.getArgOperand(1));
5836 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
5837 return nullptr;
5838 }
5839 case Intrinsic::usub_sat: {
5840 SDValue Op1 = getValue(I.getArgOperand(0));
5841 SDValue Op2 = getValue(I.getArgOperand(1));
5842 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
5843 return nullptr;
5844 }
5845 case Intrinsic::smul_fix: {
5846 SDValue Op1 = getValue(I.getArgOperand(0));
5847 SDValue Op2 = getValue(I.getArgOperand(1));
5848 SDValue Op3 = getValue(I.getArgOperand(2));
5849 setValue(&I,
5850 DAG.getNode(ISD::SMULFIX, sdl, Op1.getValueType(), Op1, Op2, Op3));
5851 return nullptr;
5852 }
5853 case Intrinsic::stacksave: {
5854 SDValue Op = getRoot();
5855 Res = DAG.getNode(
5856 ISD::STACKSAVE, sdl,
5857 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5858 setValue(&I, Res);
5859 DAG.setRoot(Res.getValue(1));
5860 return nullptr;
5861 }
5862 case Intrinsic::stackrestore:
5863 Res = getValue(I.getArgOperand(0));
5864 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5865 return nullptr;
5866 case Intrinsic::get_dynamic_area_offset: {
5867 SDValue Op = getRoot();
5868 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5869 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5870 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5871 // target.
5872 if (PtrTy != ResTy)
5873 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5874 " intrinsic!");
5875 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5876 Op);
5877 DAG.setRoot(Op);
5878 setValue(&I, Res);
5879 return nullptr;
5880 }
5881 case Intrinsic::stackguard: {
5882 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5883 MachineFunction &MF = DAG.getMachineFunction();
5884 const Module &M = *MF.getFunction().getParent();
5885 SDValue Chain = getRoot();
5886 if (TLI.useLoadStackGuardNode()) {
5887 Res = getLoadStackGuard(DAG, sdl, Chain);
5888 } else {
5889 const Value *Global = TLI.getSDagStackGuard(M);
5890 unsigned Align = DL->getPrefTypeAlignment(Global->getType());
5891 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
5892 MachinePointerInfo(Global, 0), Align,
5893 MachineMemOperand::MOVolatile);
5894 }
5895 if (TLI.useStackGuardXorFP())
5896 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
5897 DAG.setRoot(Chain);
5898 setValue(&I, Res);
5899 return nullptr;
5900 }
5901 case Intrinsic::stackprotector: {
5902 // Emit code into the DAG to store the stack guard onto the stack.
5903 MachineFunction &MF = DAG.getMachineFunction();
5904 MachineFrameInfo &MFI = MF.getFrameInfo();
5905 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5906 SDValue Src, Chain = getRoot();
5907
5908 if (TLI.useLoadStackGuardNode())
5909 Src = getLoadStackGuard(DAG, sdl, Chain);
5910 else
5911 Src = getValue(I.getArgOperand(0)); // The guard's value.
5912
5913 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5914
5915 int FI = FuncInfo.StaticAllocaMap[Slot];
5916 MFI.setStackProtectorIndex(FI);
5917
5918 SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5919
5920 // Store the stack protector onto the stack.
5921 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5922 DAG.getMachineFunction(), FI),
5923 /* Alignment = */ 0, MachineMemOperand::MOVolatile);
5924 setValue(&I, Res);
5925 DAG.setRoot(Res);
5926 return nullptr;
5927 }
5928 case Intrinsic::objectsize: {
5929 // If we don't know by now, we're never going to know.
5930 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5931
5932 assert(CI && "Non-constant type in __builtin_object_size?")((CI && "Non-constant type in __builtin_object_size?"
) ? static_cast<void> (0) : __assert_fail ("CI && \"Non-constant type in __builtin_object_size?\""
, "/build/llvm-toolchain-snapshot-8~svn350071/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp"
, 5932, __PRETTY_FUNCTION__))
;
5933
5934 SDValue Arg = getValue(I.getCalledValue());
5935 EVT Ty = Arg.getValueType();
5936
5937 if (CI->isZero())
5938 Res = DAG.getConstant(-1ULL, sdl, Ty);
5939 else
5940 Res = DAG.getConstant(0, sdl, Ty);
5941
5942 setValue(&I, Res);
5943 return nullptr;
5944 }