Bug Summary

File:clang/lib/Sema/SemaChecking.cpp
Warning:line 10304, column 7
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaChecking.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -fhalf-no-semantic-interposition -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-13/lib/clang/13.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema -I /build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/include -I /build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/build-llvm/include -I /build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-13/lib/clang/13.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir=/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2021-02-23-121308-24221-1 -x c++ /build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp
1//===- SemaChecking.cpp - Extra Semantic Checking -------------------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements extra semantic analysis beyond what is enforced
10// by the C type system.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/APValue.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/Attr.h"
17#include "clang/AST/AttrIterator.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/DeclBase.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclarationName.h"
24#include "clang/AST/EvaluatedExprVisitor.h"
25#include "clang/AST/Expr.h"
26#include "clang/AST/ExprCXX.h"
27#include "clang/AST/ExprObjC.h"
28#include "clang/AST/ExprOpenMP.h"
29#include "clang/AST/FormatString.h"
30#include "clang/AST/NSAPI.h"
31#include "clang/AST/NonTrivialTypeVisitor.h"
32#include "clang/AST/OperationKinds.h"
33#include "clang/AST/RecordLayout.h"
34#include "clang/AST/Stmt.h"
35#include "clang/AST/TemplateBase.h"
36#include "clang/AST/Type.h"
37#include "clang/AST/TypeLoc.h"
38#include "clang/AST/UnresolvedSet.h"
39#include "clang/Basic/AddressSpaces.h"
40#include "clang/Basic/CharInfo.h"
41#include "clang/Basic/Diagnostic.h"
42#include "clang/Basic/IdentifierTable.h"
43#include "clang/Basic/LLVM.h"
44#include "clang/Basic/LangOptions.h"
45#include "clang/Basic/OpenCLOptions.h"
46#include "clang/Basic/OperatorKinds.h"
47#include "clang/Basic/PartialDiagnostic.h"
48#include "clang/Basic/SourceLocation.h"
49#include "clang/Basic/SourceManager.h"
50#include "clang/Basic/Specifiers.h"
51#include "clang/Basic/SyncScope.h"
52#include "clang/Basic/TargetBuiltins.h"
53#include "clang/Basic/TargetCXXABI.h"
54#include "clang/Basic/TargetInfo.h"
55#include "clang/Basic/TypeTraits.h"
56#include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
57#include "clang/Sema/Initialization.h"
58#include "clang/Sema/Lookup.h"
59#include "clang/Sema/Ownership.h"
60#include "clang/Sema/Scope.h"
61#include "clang/Sema/ScopeInfo.h"
62#include "clang/Sema/Sema.h"
63#include "clang/Sema/SemaInternal.h"
64#include "llvm/ADT/APFloat.h"
65#include "llvm/ADT/APInt.h"
66#include "llvm/ADT/APSInt.h"
67#include "llvm/ADT/ArrayRef.h"
68#include "llvm/ADT/DenseMap.h"
69#include "llvm/ADT/FoldingSet.h"
70#include "llvm/ADT/None.h"
71#include "llvm/ADT/Optional.h"
72#include "llvm/ADT/STLExtras.h"
73#include "llvm/ADT/SmallBitVector.h"
74#include "llvm/ADT/SmallPtrSet.h"
75#include "llvm/ADT/SmallString.h"
76#include "llvm/ADT/SmallVector.h"
77#include "llvm/ADT/StringRef.h"
78#include "llvm/ADT/StringSet.h"
79#include "llvm/ADT/StringSwitch.h"
80#include "llvm/ADT/Triple.h"
81#include "llvm/Support/AtomicOrdering.h"
82#include "llvm/Support/Casting.h"
83#include "llvm/Support/Compiler.h"
84#include "llvm/Support/ConvertUTF.h"
85#include "llvm/Support/ErrorHandling.h"
86#include "llvm/Support/Format.h"
87#include "llvm/Support/Locale.h"
88#include "llvm/Support/MathExtras.h"
89#include "llvm/Support/SaveAndRestore.h"
90#include "llvm/Support/raw_ostream.h"
91#include <algorithm>
92#include <bitset>
93#include <cassert>
94#include <cstddef>
95#include <cstdint>
96#include <functional>
97#include <limits>
98#include <string>
99#include <tuple>
100#include <utility>
101
102using namespace clang;
103using namespace sema;
104
105SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
106 unsigned ByteNo) const {
107 return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts,
108 Context.getTargetInfo());
109}
110
111/// Checks that a call expression's argument count is the desired number.
112/// This is useful when doing custom type-checking. Returns true on error.
113static bool checkArgCount(Sema &S, CallExpr *call, unsigned desiredArgCount) {
114 unsigned argCount = call->getNumArgs();
115 if (argCount == desiredArgCount) return false;
116
117 if (argCount < desiredArgCount)
118 return S.Diag(call->getEndLoc(), diag::err_typecheck_call_too_few_args)
119 << 0 /*function call*/ << desiredArgCount << argCount
120 << call->getSourceRange();
121
122 // Highlight all the excess arguments.
123 SourceRange range(call->getArg(desiredArgCount)->getBeginLoc(),
124 call->getArg(argCount - 1)->getEndLoc());
125
126 return S.Diag(range.getBegin(), diag::err_typecheck_call_too_many_args)
127 << 0 /*function call*/ << desiredArgCount << argCount
128 << call->getArg(1)->getSourceRange();
129}
130
131/// Check that the first argument to __builtin_annotation is an integer
132/// and the second argument is a non-wide string literal.
133static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
134 if (checkArgCount(S, TheCall, 2))
135 return true;
136
137 // First argument should be an integer.
138 Expr *ValArg = TheCall->getArg(0);
139 QualType Ty = ValArg->getType();
140 if (!Ty->isIntegerType()) {
141 S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg)
142 << ValArg->getSourceRange();
143 return true;
144 }
145
146 // Second argument should be a constant string.
147 Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
148 StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
149 if (!Literal || !Literal->isAscii()) {
150 S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg)
151 << StrArg->getSourceRange();
152 return true;
153 }
154
155 TheCall->setType(Ty);
156 return false;
157}
158
159static bool SemaBuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) {
160 // We need at least one argument.
161 if (TheCall->getNumArgs() < 1) {
162 S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
163 << 0 << 1 << TheCall->getNumArgs()
164 << TheCall->getCallee()->getSourceRange();
165 return true;
166 }
167
168 // All arguments should be wide string literals.
169 for (Expr *Arg : TheCall->arguments()) {
170 auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
171 if (!Literal || !Literal->isWide()) {
172 S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str)
173 << Arg->getSourceRange();
174 return true;
175 }
176 }
177
178 return false;
179}
180
181/// Check that the argument to __builtin_addressof is a glvalue, and set the
182/// result type to the corresponding pointer type.
183static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) {
184 if (checkArgCount(S, TheCall, 1))
185 return true;
186
187 ExprResult Arg(TheCall->getArg(0));
188 QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getBeginLoc());
189 if (ResultType.isNull())
190 return true;
191
192 TheCall->setArg(0, Arg.get());
193 TheCall->setType(ResultType);
194 return false;
195}
196
197/// Check the number of arguments and set the result type to
198/// the argument type.
199static bool SemaBuiltinPreserveAI(Sema &S, CallExpr *TheCall) {
200 if (checkArgCount(S, TheCall, 1))
201 return true;
202
203 TheCall->setType(TheCall->getArg(0)->getType());
204 return false;
205}
206
207/// Check that the value argument for __builtin_is_aligned(value, alignment) and
208/// __builtin_aligned_{up,down}(value, alignment) is an integer or a pointer
209/// type (but not a function pointer) and that the alignment is a power-of-two.
210static bool SemaBuiltinAlignment(Sema &S, CallExpr *TheCall, unsigned ID) {
211 if (checkArgCount(S, TheCall, 2))
212 return true;
213
214 clang::Expr *Source = TheCall->getArg(0);
215 bool IsBooleanAlignBuiltin = ID == Builtin::BI__builtin_is_aligned;
216
217 auto IsValidIntegerType = [](QualType Ty) {
218 return Ty->isIntegerType() && !Ty->isEnumeralType() && !Ty->isBooleanType();
219 };
220 QualType SrcTy = Source->getType();
221 // We should also be able to use it with arrays (but not functions!).
222 if (SrcTy->canDecayToPointerType() && SrcTy->isArrayType()) {
223 SrcTy = S.Context.getDecayedType(SrcTy);
224 }
225 if ((!SrcTy->isPointerType() && !IsValidIntegerType(SrcTy)) ||
226 SrcTy->isFunctionPointerType()) {
227 // FIXME: this is not quite the right error message since we don't allow
228 // floating point types, or member pointers.
229 S.Diag(Source->getExprLoc(), diag::err_typecheck_expect_scalar_operand)
230 << SrcTy;
231 return true;
232 }
233
234 clang::Expr *AlignOp = TheCall->getArg(1);
235 if (!IsValidIntegerType(AlignOp->getType())) {
236 S.Diag(AlignOp->getExprLoc(), diag::err_typecheck_expect_int)
237 << AlignOp->getType();
238 return true;
239 }
240 Expr::EvalResult AlignResult;
241 unsigned MaxAlignmentBits = S.Context.getIntWidth(SrcTy) - 1;
242 // We can't check validity of alignment if it is value dependent.
243 if (!AlignOp->isValueDependent() &&
244 AlignOp->EvaluateAsInt(AlignResult, S.Context,
245 Expr::SE_AllowSideEffects)) {
246 llvm::APSInt AlignValue = AlignResult.Val.getInt();
247 llvm::APSInt MaxValue(
248 llvm::APInt::getOneBitSet(MaxAlignmentBits + 1, MaxAlignmentBits));
249 if (AlignValue < 1) {
250 S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_small) << 1;
251 return true;
252 }
253 if (llvm::APSInt::compareValues(AlignValue, MaxValue) > 0) {
254 S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_big)
255 << MaxValue.toString(10);
256 return true;
257 }
258 if (!AlignValue.isPowerOf2()) {
259 S.Diag(AlignOp->getExprLoc(), diag::err_alignment_not_power_of_two);
260 return true;
261 }
262 if (AlignValue == 1) {
263 S.Diag(AlignOp->getExprLoc(), diag::warn_alignment_builtin_useless)
264 << IsBooleanAlignBuiltin;
265 }
266 }
267
268 ExprResult SrcArg = S.PerformCopyInitialization(
269 InitializedEntity::InitializeParameter(S.Context, SrcTy, false),
270 SourceLocation(), Source);
271 if (SrcArg.isInvalid())
272 return true;
273 TheCall->setArg(0, SrcArg.get());
274 ExprResult AlignArg =
275 S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
276 S.Context, AlignOp->getType(), false),
277 SourceLocation(), AlignOp);
278 if (AlignArg.isInvalid())
279 return true;
280 TheCall->setArg(1, AlignArg.get());
281 // For align_up/align_down, the return type is the same as the (potentially
282 // decayed) argument type including qualifiers. For is_aligned(), the result
283 // is always bool.
284 TheCall->setType(IsBooleanAlignBuiltin ? S.Context.BoolTy : SrcTy);
285 return false;
286}
287
288static bool SemaBuiltinOverflow(Sema &S, CallExpr *TheCall,
289 unsigned BuiltinID) {
290 if (checkArgCount(S, TheCall, 3))
291 return true;
292
293 // First two arguments should be integers.
294 for (unsigned I = 0; I < 2; ++I) {
295 ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(I));
296 if (Arg.isInvalid()) return true;
297 TheCall->setArg(I, Arg.get());
298
299 QualType Ty = Arg.get()->getType();
300 if (!Ty->isIntegerType()) {
301 S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int)
302 << Ty << Arg.get()->getSourceRange();
303 return true;
304 }
305 }
306
307 // Third argument should be a pointer to a non-const integer.
308 // IRGen correctly handles volatile, restrict, and address spaces, and
309 // the other qualifiers aren't possible.
310 {
311 ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(2));
312 if (Arg.isInvalid()) return true;
313 TheCall->setArg(2, Arg.get());
314
315 QualType Ty = Arg.get()->getType();
316 const auto *PtrTy = Ty->getAs<PointerType>();
317 if (!PtrTy ||
318 !PtrTy->getPointeeType()->isIntegerType() ||
319 PtrTy->getPointeeType().isConstQualified()) {
320 S.Diag(Arg.get()->getBeginLoc(),
321 diag::err_overflow_builtin_must_be_ptr_int)
322 << Ty << Arg.get()->getSourceRange();
323 return true;
324 }
325 }
326
327 // Disallow signed ExtIntType args larger than 128 bits to mul function until
328 // we improve backend support.
329 if (BuiltinID == Builtin::BI__builtin_mul_overflow) {
330 for (unsigned I = 0; I < 3; ++I) {
331 const auto Arg = TheCall->getArg(I);
332 // Third argument will be a pointer.
333 auto Ty = I < 2 ? Arg->getType() : Arg->getType()->getPointeeType();
334 if (Ty->isExtIntType() && Ty->isSignedIntegerType() &&
335 S.getASTContext().getIntWidth(Ty) > 128)
336 return S.Diag(Arg->getBeginLoc(),
337 diag::err_overflow_builtin_ext_int_max_size)
338 << 128;
339 }
340 }
341
342 return false;
343}
344
345static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) {
346 if (checkArgCount(S, BuiltinCall, 2))
347 return true;
348
349 SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc();
350 Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts();
351 Expr *Call = BuiltinCall->getArg(0);
352 Expr *Chain = BuiltinCall->getArg(1);
353
354 if (Call->getStmtClass() != Stmt::CallExprClass) {
355 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call)
356 << Call->getSourceRange();
357 return true;
358 }
359
360 auto CE = cast<CallExpr>(Call);
361 if (CE->getCallee()->getType()->isBlockPointerType()) {
362 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call)
363 << Call->getSourceRange();
364 return true;
365 }
366
367 const Decl *TargetDecl = CE->getCalleeDecl();
368 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
369 if (FD->getBuiltinID()) {
370 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call)
371 << Call->getSourceRange();
372 return true;
373 }
374
375 if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) {
376 S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call)
377 << Call->getSourceRange();
378 return true;
379 }
380
381 ExprResult ChainResult = S.UsualUnaryConversions(Chain);
382 if (ChainResult.isInvalid())
383 return true;
384 if (!ChainResult.get()->getType()->isPointerType()) {
385 S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer)
386 << Chain->getSourceRange();
387 return true;
388 }
389
390 QualType ReturnTy = CE->getCallReturnType(S.Context);
391 QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() };
392 QualType BuiltinTy = S.Context.getFunctionType(
393 ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo());
394 QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy);
395
396 Builtin =
397 S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get();
398
399 BuiltinCall->setType(CE->getType());
400 BuiltinCall->setValueKind(CE->getValueKind());
401 BuiltinCall->setObjectKind(CE->getObjectKind());
402 BuiltinCall->setCallee(Builtin);
403 BuiltinCall->setArg(1, ChainResult.get());
404
405 return false;
406}
407
408namespace {
409
410class EstimateSizeFormatHandler
411 : public analyze_format_string::FormatStringHandler {
412 size_t Size;
413
414public:
415 EstimateSizeFormatHandler(StringRef Format)
416 : Size(std::min(Format.find(0), Format.size()) +
417 1 /* null byte always written by sprintf */) {}
418
419 bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
420 const char *, unsigned SpecifierLen) override {
421
422 const size_t FieldWidth = computeFieldWidth(FS);
423 const size_t Precision = computePrecision(FS);
424
425 // The actual format.
426 switch (FS.getConversionSpecifier().getKind()) {
427 // Just a char.
428 case analyze_format_string::ConversionSpecifier::cArg:
429 case analyze_format_string::ConversionSpecifier::CArg:
430 Size += std::max(FieldWidth, (size_t)1);
431 break;
432 // Just an integer.
433 case analyze_format_string::ConversionSpecifier::dArg:
434 case analyze_format_string::ConversionSpecifier::DArg:
435 case analyze_format_string::ConversionSpecifier::iArg:
436 case analyze_format_string::ConversionSpecifier::oArg:
437 case analyze_format_string::ConversionSpecifier::OArg:
438 case analyze_format_string::ConversionSpecifier::uArg:
439 case analyze_format_string::ConversionSpecifier::UArg:
440 case analyze_format_string::ConversionSpecifier::xArg:
441 case analyze_format_string::ConversionSpecifier::XArg:
442 Size += std::max(FieldWidth, Precision);
443 break;
444
445 // %g style conversion switches between %f or %e style dynamically.
446 // %f always takes less space, so default to it.
447 case analyze_format_string::ConversionSpecifier::gArg:
448 case analyze_format_string::ConversionSpecifier::GArg:
449
450 // Floating point number in the form '[+]ddd.ddd'.
451 case analyze_format_string::ConversionSpecifier::fArg:
452 case analyze_format_string::ConversionSpecifier::FArg:
453 Size += std::max(FieldWidth, 1 /* integer part */ +
454 (Precision ? 1 + Precision
455 : 0) /* period + decimal */);
456 break;
457
458 // Floating point number in the form '[-]d.ddde[+-]dd'.
459 case analyze_format_string::ConversionSpecifier::eArg:
460 case analyze_format_string::ConversionSpecifier::EArg:
461 Size +=
462 std::max(FieldWidth,
463 1 /* integer part */ +
464 (Precision ? 1 + Precision : 0) /* period + decimal */ +
465 1 /* e or E letter */ + 2 /* exponent */);
466 break;
467
468 // Floating point number in the form '[-]0xh.hhhhp±dd'.
469 case analyze_format_string::ConversionSpecifier::aArg:
470 case analyze_format_string::ConversionSpecifier::AArg:
471 Size +=
472 std::max(FieldWidth,
473 2 /* 0x */ + 1 /* integer part */ +
474 (Precision ? 1 + Precision : 0) /* period + decimal */ +
475 1 /* p or P letter */ + 1 /* + or - */ + 1 /* value */);
476 break;
477
478 // Just a string.
479 case analyze_format_string::ConversionSpecifier::sArg:
480 case analyze_format_string::ConversionSpecifier::SArg:
481 Size += FieldWidth;
482 break;
483
484 // Just a pointer in the form '0xddd'.
485 case analyze_format_string::ConversionSpecifier::pArg:
486 Size += std::max(FieldWidth, 2 /* leading 0x */ + Precision);
487 break;
488
489 // A plain percent.
490 case analyze_format_string::ConversionSpecifier::PercentArg:
491 Size += 1;
492 break;
493
494 default:
495 break;
496 }
497
498 Size += FS.hasPlusPrefix() || FS.hasSpacePrefix();
499
500 if (FS.hasAlternativeForm()) {
501 switch (FS.getConversionSpecifier().getKind()) {
502 default:
503 break;
504 // Force a leading '0'.
505 case analyze_format_string::ConversionSpecifier::oArg:
506 Size += 1;
507 break;
508 // Force a leading '0x'.
509 case analyze_format_string::ConversionSpecifier::xArg:
510 case analyze_format_string::ConversionSpecifier::XArg:
511 Size += 2;
512 break;
513 // Force a period '.' before decimal, even if precision is 0.
514 case analyze_format_string::ConversionSpecifier::aArg:
515 case analyze_format_string::ConversionSpecifier::AArg:
516 case analyze_format_string::ConversionSpecifier::eArg:
517 case analyze_format_string::ConversionSpecifier::EArg:
518 case analyze_format_string::ConversionSpecifier::fArg:
519 case analyze_format_string::ConversionSpecifier::FArg:
520 case analyze_format_string::ConversionSpecifier::gArg:
521 case analyze_format_string::ConversionSpecifier::GArg:
522 Size += (Precision ? 0 : 1);
523 break;
524 }
525 }
526 assert(SpecifierLen <= Size && "no underflow")((SpecifierLen <= Size && "no underflow") ? static_cast
<void> (0) : __assert_fail ("SpecifierLen <= Size && \"no underflow\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 526, __PRETTY_FUNCTION__))
;
527 Size -= SpecifierLen;
528 return true;
529 }
530
531 size_t getSizeLowerBound() const { return Size; }
532
533private:
534 static size_t computeFieldWidth(const analyze_printf::PrintfSpecifier &FS) {
535 const analyze_format_string::OptionalAmount &FW = FS.getFieldWidth();
536 size_t FieldWidth = 0;
537 if (FW.getHowSpecified() == analyze_format_string::OptionalAmount::Constant)
538 FieldWidth = FW.getConstantAmount();
539 return FieldWidth;
540 }
541
542 static size_t computePrecision(const analyze_printf::PrintfSpecifier &FS) {
543 const analyze_format_string::OptionalAmount &FW = FS.getPrecision();
544 size_t Precision = 0;
545
546 // See man 3 printf for default precision value based on the specifier.
547 switch (FW.getHowSpecified()) {
548 case analyze_format_string::OptionalAmount::NotSpecified:
549 switch (FS.getConversionSpecifier().getKind()) {
550 default:
551 break;
552 case analyze_format_string::ConversionSpecifier::dArg: // %d
553 case analyze_format_string::ConversionSpecifier::DArg: // %D
554 case analyze_format_string::ConversionSpecifier::iArg: // %i
555 Precision = 1;
556 break;
557 case analyze_format_string::ConversionSpecifier::oArg: // %d
558 case analyze_format_string::ConversionSpecifier::OArg: // %D
559 case analyze_format_string::ConversionSpecifier::uArg: // %d
560 case analyze_format_string::ConversionSpecifier::UArg: // %D
561 case analyze_format_string::ConversionSpecifier::xArg: // %d
562 case analyze_format_string::ConversionSpecifier::XArg: // %D
563 Precision = 1;
564 break;
565 case analyze_format_string::ConversionSpecifier::fArg: // %f
566 case analyze_format_string::ConversionSpecifier::FArg: // %F
567 case analyze_format_string::ConversionSpecifier::eArg: // %e
568 case analyze_format_string::ConversionSpecifier::EArg: // %E
569 case analyze_format_string::ConversionSpecifier::gArg: // %g
570 case analyze_format_string::ConversionSpecifier::GArg: // %G
571 Precision = 6;
572 break;
573 case analyze_format_string::ConversionSpecifier::pArg: // %d
574 Precision = 1;
575 break;
576 }
577 break;
578 case analyze_format_string::OptionalAmount::Constant:
579 Precision = FW.getConstantAmount();
580 break;
581 default:
582 break;
583 }
584 return Precision;
585 }
586};
587
588} // namespace
589
590/// Check a call to BuiltinID for buffer overflows. If BuiltinID is a
591/// __builtin_*_chk function, then use the object size argument specified in the
592/// source. Otherwise, infer the object size using __builtin_object_size.
593void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD,
594 CallExpr *TheCall) {
595 // FIXME: There are some more useful checks we could be doing here:
596 // - Evaluate strlen of strcpy arguments, use as object size.
597
598 if (TheCall->isValueDependent() || TheCall->isTypeDependent() ||
599 isConstantEvaluated())
600 return;
601
602 unsigned BuiltinID = FD->getBuiltinID(/*ConsiderWrappers=*/true);
603 if (!BuiltinID)
604 return;
605
606 const TargetInfo &TI = getASTContext().getTargetInfo();
607 unsigned SizeTypeWidth = TI.getTypeWidth(TI.getSizeType());
608
609 unsigned DiagID = 0;
610 bool IsChkVariant = false;
611 Optional<llvm::APSInt> UsedSize;
612 unsigned SizeIndex, ObjectIndex;
613 switch (BuiltinID) {
614 default:
615 return;
616 case Builtin::BIsprintf:
617 case Builtin::BI__builtin___sprintf_chk: {
618 size_t FormatIndex = BuiltinID == Builtin::BIsprintf ? 1 : 3;
619 auto *FormatExpr = TheCall->getArg(FormatIndex)->IgnoreParenImpCasts();
620
621 if (auto *Format = dyn_cast<StringLiteral>(FormatExpr)) {
622
623 if (!Format->isAscii() && !Format->isUTF8())
624 return;
625
626 StringRef FormatStrRef = Format->getString();
627 EstimateSizeFormatHandler H(FormatStrRef);
628 const char *FormatBytes = FormatStrRef.data();
629 const ConstantArrayType *T =
630 Context.getAsConstantArrayType(Format->getType());
631 assert(T && "String literal not of constant array type!")((T && "String literal not of constant array type!") ?
static_cast<void> (0) : __assert_fail ("T && \"String literal not of constant array type!\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 631, __PRETTY_FUNCTION__))
;
632 size_t TypeSize = T->getSize().getZExtValue();
633
634 // In case there's a null byte somewhere.
635 size_t StrLen =
636 std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0));
637 if (!analyze_format_string::ParsePrintfString(
638 H, FormatBytes, FormatBytes + StrLen, getLangOpts(),
639 Context.getTargetInfo(), false)) {
640 DiagID = diag::warn_fortify_source_format_overflow;
641 UsedSize = llvm::APSInt::getUnsigned(H.getSizeLowerBound())
642 .extOrTrunc(SizeTypeWidth);
643 if (BuiltinID == Builtin::BI__builtin___sprintf_chk) {
644 IsChkVariant = true;
645 ObjectIndex = 2;
646 } else {
647 IsChkVariant = false;
648 ObjectIndex = 0;
649 }
650 break;
651 }
652 }
653 return;
654 }
655 case Builtin::BI__builtin___memcpy_chk:
656 case Builtin::BI__builtin___memmove_chk:
657 case Builtin::BI__builtin___memset_chk:
658// case Builtin::BI__builtin___strlcat_chk:
659// case Builtin::BI__builtin___strlcpy_chk:
660 case Builtin::BI__builtin___strncat_chk:
661 case Builtin::BI__builtin___strncpy_chk:
662 case Builtin::BI__builtin___stpncpy_chk:
663 case Builtin::BI__builtin___memccpy_chk:
664 case Builtin::BI__builtin___mempcpy_chk: {
665 DiagID = diag::warn_builtin_chk_overflow;
666 IsChkVariant = true;
667 SizeIndex = TheCall->getNumArgs() - 2;
668 ObjectIndex = TheCall->getNumArgs() - 1;
669 break;
670 }
671
672 case Builtin::BI__builtin___snprintf_chk:
673 case Builtin::BI__builtin___vsnprintf_chk: {
674 DiagID = diag::warn_builtin_chk_overflow;
675 IsChkVariant = true;
676 SizeIndex = 1;
677 ObjectIndex = 3;
678 break;
679 }
680
681 case Builtin::BIstrncat:
682 case Builtin::BI__builtin_strncat:
683 case Builtin::BIstrncpy:
684 case Builtin::BI__builtin_strncpy:
685 case Builtin::BIstpncpy:
686 case Builtin::BI__builtin_stpncpy: {
687 // Whether these functions overflow depends on the runtime strlen of the
688 // string, not just the buffer size, so emitting the "always overflow"
689 // diagnostic isn't quite right. We should still diagnose passing a buffer
690 // size larger than the destination buffer though; this is a runtime abort
691 // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise.
692 DiagID = diag::warn_fortify_source_size_mismatch;
693 SizeIndex = TheCall->getNumArgs() - 1;
694 ObjectIndex = 0;
695 break;
696 }
697
698 case Builtin::BImemcpy:
699 case Builtin::BI__builtin_memcpy:
700 case Builtin::BImemmove:
701 case Builtin::BI__builtin_memmove:
702 case Builtin::BImemset:
703 case Builtin::BI__builtin_memset:
704 case Builtin::BImempcpy:
705 case Builtin::BI__builtin_mempcpy: {
706 DiagID = diag::warn_fortify_source_overflow;
707 SizeIndex = TheCall->getNumArgs() - 1;
708 ObjectIndex = 0;
709 break;
710 }
711 case Builtin::BIsnprintf:
712 case Builtin::BI__builtin_snprintf:
713 case Builtin::BIvsnprintf:
714 case Builtin::BI__builtin_vsnprintf: {
715 DiagID = diag::warn_fortify_source_size_mismatch;
716 SizeIndex = 1;
717 ObjectIndex = 0;
718 break;
719 }
720 }
721
722 llvm::APSInt ObjectSize;
723 // For __builtin___*_chk, the object size is explicitly provided by the caller
724 // (usually using __builtin_object_size). Use that value to check this call.
725 if (IsChkVariant) {
726 Expr::EvalResult Result;
727 Expr *SizeArg = TheCall->getArg(ObjectIndex);
728 if (!SizeArg->EvaluateAsInt(Result, getASTContext()))
729 return;
730 ObjectSize = Result.Val.getInt();
731
732 // Otherwise, try to evaluate an imaginary call to __builtin_object_size.
733 } else {
734 // If the parameter has a pass_object_size attribute, then we should use its
735 // (potentially) more strict checking mode. Otherwise, conservatively assume
736 // type 0.
737 int BOSType = 0;
738 if (const auto *POS =
739 FD->getParamDecl(ObjectIndex)->getAttr<PassObjectSizeAttr>())
740 BOSType = POS->getType();
741
742 Expr *ObjArg = TheCall->getArg(ObjectIndex);
743 uint64_t Result;
744 if (!ObjArg->tryEvaluateObjectSize(Result, getASTContext(), BOSType))
745 return;
746 // Get the object size in the target's size_t width.
747 ObjectSize = llvm::APSInt::getUnsigned(Result).extOrTrunc(SizeTypeWidth);
748 }
749
750 // Evaluate the number of bytes of the object that this call will use.
751 if (!UsedSize) {
752 Expr::EvalResult Result;
753 Expr *UsedSizeArg = TheCall->getArg(SizeIndex);
754 if (!UsedSizeArg->EvaluateAsInt(Result, getASTContext()))
755 return;
756 UsedSize = Result.Val.getInt().extOrTrunc(SizeTypeWidth);
757 }
758
759 if (UsedSize.getValue().ule(ObjectSize))
760 return;
761
762 StringRef FunctionName = getASTContext().BuiltinInfo.getName(BuiltinID);
763 // Skim off the details of whichever builtin was called to produce a better
764 // diagnostic, as it's unlikley that the user wrote the __builtin explicitly.
765 if (IsChkVariant) {
766 FunctionName = FunctionName.drop_front(std::strlen("__builtin___"));
767 FunctionName = FunctionName.drop_back(std::strlen("_chk"));
768 } else if (FunctionName.startswith("__builtin_")) {
769 FunctionName = FunctionName.drop_front(std::strlen("__builtin_"));
770 }
771
772 DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
773 PDiag(DiagID)
774 << FunctionName << ObjectSize.toString(/*Radix=*/10)
775 << UsedSize.getValue().toString(/*Radix=*/10));
776}
777
778static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall,
779 Scope::ScopeFlags NeededScopeFlags,
780 unsigned DiagID) {
781 // Scopes aren't available during instantiation. Fortunately, builtin
782 // functions cannot be template args so they cannot be formed through template
783 // instantiation. Therefore checking once during the parse is sufficient.
784 if (SemaRef.inTemplateInstantiation())
785 return false;
786
787 Scope *S = SemaRef.getCurScope();
788 while (S && !S->isSEHExceptScope())
789 S = S->getParent();
790 if (!S || !(S->getFlags() & NeededScopeFlags)) {
791 auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
792 SemaRef.Diag(TheCall->getExprLoc(), DiagID)
793 << DRE->getDecl()->getIdentifier();
794 return true;
795 }
796
797 return false;
798}
799
800static inline bool isBlockPointer(Expr *Arg) {
801 return Arg->getType()->isBlockPointerType();
802}
803
804/// OpenCL C v2.0, s6.13.17.2 - Checks that the block parameters are all local
805/// void*, which is a requirement of device side enqueue.
806static bool checkOpenCLBlockArgs(Sema &S, Expr *BlockArg) {
807 const BlockPointerType *BPT =
808 cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
809 ArrayRef<QualType> Params =
810 BPT->getPointeeType()->castAs<FunctionProtoType>()->getParamTypes();
811 unsigned ArgCounter = 0;
812 bool IllegalParams = false;
813 // Iterate through the block parameters until either one is found that is not
814 // a local void*, or the block is valid.
815 for (ArrayRef<QualType>::iterator I = Params.begin(), E = Params.end();
816 I != E; ++I, ++ArgCounter) {
817 if (!(*I)->isPointerType() || !(*I)->getPointeeType()->isVoidType() ||
818 (*I)->getPointeeType().getQualifiers().getAddressSpace() !=
819 LangAS::opencl_local) {
820 // Get the location of the error. If a block literal has been passed
821 // (BlockExpr) then we can point straight to the offending argument,
822 // else we just point to the variable reference.
823 SourceLocation ErrorLoc;
824 if (isa<BlockExpr>(BlockArg)) {
825 BlockDecl *BD = cast<BlockExpr>(BlockArg)->getBlockDecl();
826 ErrorLoc = BD->getParamDecl(ArgCounter)->getBeginLoc();
827 } else if (isa<DeclRefExpr>(BlockArg)) {
828 ErrorLoc = cast<DeclRefExpr>(BlockArg)->getBeginLoc();
829 }
830 S.Diag(ErrorLoc,
831 diag::err_opencl_enqueue_kernel_blocks_non_local_void_args);
832 IllegalParams = true;
833 }
834 }
835
836 return IllegalParams;
837}
838
839static bool checkOpenCLSubgroupExt(Sema &S, CallExpr *Call) {
840 if (!S.getOpenCLOptions().isEnabled("cl_khr_subgroups")) {
841 S.Diag(Call->getBeginLoc(), diag::err_opencl_requires_extension)
842 << 1 << Call->getDirectCallee() << "cl_khr_subgroups";
843 return true;
844 }
845 return false;
846}
847
848static bool SemaOpenCLBuiltinNDRangeAndBlock(Sema &S, CallExpr *TheCall) {
849 if (checkArgCount(S, TheCall, 2))
850 return true;
851
852 if (checkOpenCLSubgroupExt(S, TheCall))
853 return true;
854
855 // First argument is an ndrange_t type.
856 Expr *NDRangeArg = TheCall->getArg(0);
857 if (NDRangeArg->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
858 S.Diag(NDRangeArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
859 << TheCall->getDirectCallee() << "'ndrange_t'";
860 return true;
861 }
862
863 Expr *BlockArg = TheCall->getArg(1);
864 if (!isBlockPointer(BlockArg)) {
865 S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
866 << TheCall->getDirectCallee() << "block";
867 return true;
868 }
869 return checkOpenCLBlockArgs(S, BlockArg);
870}
871
872/// OpenCL C v2.0, s6.13.17.6 - Check the argument to the
873/// get_kernel_work_group_size
874/// and get_kernel_preferred_work_group_size_multiple builtin functions.
875static bool SemaOpenCLBuiltinKernelWorkGroupSize(Sema &S, CallExpr *TheCall) {
876 if (checkArgCount(S, TheCall, 1))
877 return true;
878
879 Expr *BlockArg = TheCall->getArg(0);
880 if (!isBlockPointer(BlockArg)) {
881 S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
882 << TheCall->getDirectCallee() << "block";
883 return true;
884 }
885 return checkOpenCLBlockArgs(S, BlockArg);
886}
887
888/// Diagnose integer type and any valid implicit conversion to it.
889static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E,
890 const QualType &IntType);
891
892static bool checkOpenCLEnqueueLocalSizeArgs(Sema &S, CallExpr *TheCall,
893 unsigned Start, unsigned End) {
894 bool IllegalParams = false;
895 for (unsigned I = Start; I <= End; ++I)
896 IllegalParams |= checkOpenCLEnqueueIntType(S, TheCall->getArg(I),
897 S.Context.getSizeType());
898 return IllegalParams;
899}
900
901/// OpenCL v2.0, s6.13.17.1 - Check that sizes are provided for all
902/// 'local void*' parameter of passed block.
903static bool checkOpenCLEnqueueVariadicArgs(Sema &S, CallExpr *TheCall,
904 Expr *BlockArg,
905 unsigned NumNonVarArgs) {
906 const BlockPointerType *BPT =
907 cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
908 unsigned NumBlockParams =
909 BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams();
910 unsigned TotalNumArgs = TheCall->getNumArgs();
911
912 // For each argument passed to the block, a corresponding uint needs to
913 // be passed to describe the size of the local memory.
914 if (TotalNumArgs != NumBlockParams + NumNonVarArgs) {
915 S.Diag(TheCall->getBeginLoc(),
916 diag::err_opencl_enqueue_kernel_local_size_args);
917 return true;
918 }
919
920 // Check that the sizes of the local memory are specified by integers.
921 return checkOpenCLEnqueueLocalSizeArgs(S, TheCall, NumNonVarArgs,
922 TotalNumArgs - 1);
923}
924
925/// OpenCL C v2.0, s6.13.17 - Enqueue kernel function contains four different
926/// overload formats specified in Table 6.13.17.1.
927/// int enqueue_kernel(queue_t queue,
928/// kernel_enqueue_flags_t flags,
929/// const ndrange_t ndrange,
930/// void (^block)(void))
931/// int enqueue_kernel(queue_t queue,
932/// kernel_enqueue_flags_t flags,
933/// const ndrange_t ndrange,
934/// uint num_events_in_wait_list,
935/// clk_event_t *event_wait_list,
936/// clk_event_t *event_ret,
937/// void (^block)(void))
938/// int enqueue_kernel(queue_t queue,
939/// kernel_enqueue_flags_t flags,
940/// const ndrange_t ndrange,
941/// void (^block)(local void*, ...),
942/// uint size0, ...)
943/// int enqueue_kernel(queue_t queue,
944/// kernel_enqueue_flags_t flags,
945/// const ndrange_t ndrange,
946/// uint num_events_in_wait_list,
947/// clk_event_t *event_wait_list,
948/// clk_event_t *event_ret,
949/// void (^block)(local void*, ...),
950/// uint size0, ...)
951static bool SemaOpenCLBuiltinEnqueueKernel(Sema &S, CallExpr *TheCall) {
952 unsigned NumArgs = TheCall->getNumArgs();
953
954 if (NumArgs < 4) {
955 S.Diag(TheCall->getBeginLoc(),
956 diag::err_typecheck_call_too_few_args_at_least)
957 << 0 << 4 << NumArgs;
958 return true;
959 }
960
961 Expr *Arg0 = TheCall->getArg(0);
962 Expr *Arg1 = TheCall->getArg(1);
963 Expr *Arg2 = TheCall->getArg(2);
964 Expr *Arg3 = TheCall->getArg(3);
965
966 // First argument always needs to be a queue_t type.
967 if (!Arg0->getType()->isQueueT()) {
968 S.Diag(TheCall->getArg(0)->getBeginLoc(),
969 diag::err_opencl_builtin_expected_type)
970 << TheCall->getDirectCallee() << S.Context.OCLQueueTy;
971 return true;
972 }
973
974 // Second argument always needs to be a kernel_enqueue_flags_t enum value.
975 if (!Arg1->getType()->isIntegerType()) {
976 S.Diag(TheCall->getArg(1)->getBeginLoc(),
977 diag::err_opencl_builtin_expected_type)
978 << TheCall->getDirectCallee() << "'kernel_enqueue_flags_t' (i.e. uint)";
979 return true;
980 }
981
982 // Third argument is always an ndrange_t type.
983 if (Arg2->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
984 S.Diag(TheCall->getArg(2)->getBeginLoc(),
985 diag::err_opencl_builtin_expected_type)
986 << TheCall->getDirectCallee() << "'ndrange_t'";
987 return true;
988 }
989
990 // With four arguments, there is only one form that the function could be
991 // called in: no events and no variable arguments.
992 if (NumArgs == 4) {
993 // check that the last argument is the right block type.
994 if (!isBlockPointer(Arg3)) {
995 S.Diag(Arg3->getBeginLoc(), diag::err_opencl_builtin_expected_type)
996 << TheCall->getDirectCallee() << "block";
997 return true;
998 }
999 // we have a block type, check the prototype
1000 const BlockPointerType *BPT =
1001 cast<BlockPointerType>(Arg3->getType().getCanonicalType());
1002 if (BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams() > 0) {
1003 S.Diag(Arg3->getBeginLoc(),
1004 diag::err_opencl_enqueue_kernel_blocks_no_args);
1005 return true;
1006 }
1007 return false;
1008 }
1009 // we can have block + varargs.
1010 if (isBlockPointer(Arg3))
1011 return (checkOpenCLBlockArgs(S, Arg3) ||
1012 checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg3, 4));
1013 // last two cases with either exactly 7 args or 7 args and varargs.
1014 if (NumArgs >= 7) {
1015 // check common block argument.
1016 Expr *Arg6 = TheCall->getArg(6);
1017 if (!isBlockPointer(Arg6)) {
1018 S.Diag(Arg6->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1019 << TheCall->getDirectCallee() << "block";
1020 return true;
1021 }
1022 if (checkOpenCLBlockArgs(S, Arg6))
1023 return true;
1024
1025 // Forth argument has to be any integer type.
1026 if (!Arg3->getType()->isIntegerType()) {
1027 S.Diag(TheCall->getArg(3)->getBeginLoc(),
1028 diag::err_opencl_builtin_expected_type)
1029 << TheCall->getDirectCallee() << "integer";
1030 return true;
1031 }
1032 // check remaining common arguments.
1033 Expr *Arg4 = TheCall->getArg(4);
1034 Expr *Arg5 = TheCall->getArg(5);
1035
1036 // Fifth argument is always passed as a pointer to clk_event_t.
1037 if (!Arg4->isNullPointerConstant(S.Context,
1038 Expr::NPC_ValueDependentIsNotNull) &&
1039 !Arg4->getType()->getPointeeOrArrayElementType()->isClkEventT()) {
1040 S.Diag(TheCall->getArg(4)->getBeginLoc(),
1041 diag::err_opencl_builtin_expected_type)
1042 << TheCall->getDirectCallee()
1043 << S.Context.getPointerType(S.Context.OCLClkEventTy);
1044 return true;
1045 }
1046
1047 // Sixth argument is always passed as a pointer to clk_event_t.
1048 if (!Arg5->isNullPointerConstant(S.Context,
1049 Expr::NPC_ValueDependentIsNotNull) &&
1050 !(Arg5->getType()->isPointerType() &&
1051 Arg5->getType()->getPointeeType()->isClkEventT())) {
1052 S.Diag(TheCall->getArg(5)->getBeginLoc(),
1053 diag::err_opencl_builtin_expected_type)
1054 << TheCall->getDirectCallee()
1055 << S.Context.getPointerType(S.Context.OCLClkEventTy);
1056 return true;
1057 }
1058
1059 if (NumArgs == 7)
1060 return false;
1061
1062 return checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg6, 7);
1063 }
1064
1065 // None of the specific case has been detected, give generic error
1066 S.Diag(TheCall->getBeginLoc(),
1067 diag::err_opencl_enqueue_kernel_incorrect_args);
1068 return true;
1069}
1070
1071/// Returns OpenCL access qual.
1072static OpenCLAccessAttr *getOpenCLArgAccess(const Decl *D) {
1073 return D->getAttr<OpenCLAccessAttr>();
1074}
1075
1076/// Returns true if pipe element type is different from the pointer.
1077static bool checkOpenCLPipeArg(Sema &S, CallExpr *Call) {
1078 const Expr *Arg0 = Call->getArg(0);
1079 // First argument type should always be pipe.
1080 if (!Arg0->getType()->isPipeType()) {
1081 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
1082 << Call->getDirectCallee() << Arg0->getSourceRange();
1083 return true;
1084 }
1085 OpenCLAccessAttr *AccessQual =
1086 getOpenCLArgAccess(cast<DeclRefExpr>(Arg0)->getDecl());
1087 // Validates the access qualifier is compatible with the call.
1088 // OpenCL v2.0 s6.13.16 - The access qualifiers for pipe should only be
1089 // read_only and write_only, and assumed to be read_only if no qualifier is
1090 // specified.
1091 switch (Call->getDirectCallee()->getBuiltinID()) {
1092 case Builtin::BIread_pipe:
1093 case Builtin::BIreserve_read_pipe:
1094 case Builtin::BIcommit_read_pipe:
1095 case Builtin::BIwork_group_reserve_read_pipe:
1096 case Builtin::BIsub_group_reserve_read_pipe:
1097 case Builtin::BIwork_group_commit_read_pipe:
1098 case Builtin::BIsub_group_commit_read_pipe:
1099 if (!(!AccessQual || AccessQual->isReadOnly())) {
1100 S.Diag(Arg0->getBeginLoc(),
1101 diag::err_opencl_builtin_pipe_invalid_access_modifier)
1102 << "read_only" << Arg0->getSourceRange();
1103 return true;
1104 }
1105 break;
1106 case Builtin::BIwrite_pipe:
1107 case Builtin::BIreserve_write_pipe:
1108 case Builtin::BIcommit_write_pipe:
1109 case Builtin::BIwork_group_reserve_write_pipe:
1110 case Builtin::BIsub_group_reserve_write_pipe:
1111 case Builtin::BIwork_group_commit_write_pipe:
1112 case Builtin::BIsub_group_commit_write_pipe:
1113 if (!(AccessQual && AccessQual->isWriteOnly())) {
1114 S.Diag(Arg0->getBeginLoc(),
1115 diag::err_opencl_builtin_pipe_invalid_access_modifier)
1116 << "write_only" << Arg0->getSourceRange();
1117 return true;
1118 }
1119 break;
1120 default:
1121 break;
1122 }
1123 return false;
1124}
1125
1126/// Returns true if pipe element type is different from the pointer.
1127static bool checkOpenCLPipePacketType(Sema &S, CallExpr *Call, unsigned Idx) {
1128 const Expr *Arg0 = Call->getArg(0);
1129 const Expr *ArgIdx = Call->getArg(Idx);
1130 const PipeType *PipeTy = cast<PipeType>(Arg0->getType());
1131 const QualType EltTy = PipeTy->getElementType();
1132 const PointerType *ArgTy = ArgIdx->getType()->getAs<PointerType>();
1133 // The Idx argument should be a pointer and the type of the pointer and
1134 // the type of pipe element should also be the same.
1135 if (!ArgTy ||
1136 !S.Context.hasSameType(
1137 EltTy, ArgTy->getPointeeType()->getCanonicalTypeInternal())) {
1138 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1139 << Call->getDirectCallee() << S.Context.getPointerType(EltTy)
1140 << ArgIdx->getType() << ArgIdx->getSourceRange();
1141 return true;
1142 }
1143 return false;
1144}
1145
1146// Performs semantic analysis for the read/write_pipe call.
1147// \param S Reference to the semantic analyzer.
1148// \param Call A pointer to the builtin call.
1149// \return True if a semantic error has been found, false otherwise.
1150static bool SemaBuiltinRWPipe(Sema &S, CallExpr *Call) {
1151 // OpenCL v2.0 s6.13.16.2 - The built-in read/write
1152 // functions have two forms.
1153 switch (Call->getNumArgs()) {
1154 case 2:
1155 if (checkOpenCLPipeArg(S, Call))
1156 return true;
1157 // The call with 2 arguments should be
1158 // read/write_pipe(pipe T, T*).
1159 // Check packet type T.
1160 if (checkOpenCLPipePacketType(S, Call, 1))
1161 return true;
1162 break;
1163
1164 case 4: {
1165 if (checkOpenCLPipeArg(S, Call))
1166 return true;
1167 // The call with 4 arguments should be
1168 // read/write_pipe(pipe T, reserve_id_t, uint, T*).
1169 // Check reserve_id_t.
1170 if (!Call->getArg(1)->getType()->isReserveIDT()) {
1171 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1172 << Call->getDirectCallee() << S.Context.OCLReserveIDTy
1173 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1174 return true;
1175 }
1176
1177 // Check the index.
1178 const Expr *Arg2 = Call->getArg(2);
1179 if (!Arg2->getType()->isIntegerType() &&
1180 !Arg2->getType()->isUnsignedIntegerType()) {
1181 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1182 << Call->getDirectCallee() << S.Context.UnsignedIntTy
1183 << Arg2->getType() << Arg2->getSourceRange();
1184 return true;
1185 }
1186
1187 // Check packet type T.
1188 if (checkOpenCLPipePacketType(S, Call, 3))
1189 return true;
1190 } break;
1191 default:
1192 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_arg_num)
1193 << Call->getDirectCallee() << Call->getSourceRange();
1194 return true;
1195 }
1196
1197 return false;
1198}
1199
1200// Performs a semantic analysis on the {work_group_/sub_group_
1201// /_}reserve_{read/write}_pipe
1202// \param S Reference to the semantic analyzer.
1203// \param Call The call to the builtin function to be analyzed.
1204// \return True if a semantic error was found, false otherwise.
1205static bool SemaBuiltinReserveRWPipe(Sema &S, CallExpr *Call) {
1206 if (checkArgCount(S, Call, 2))
1207 return true;
1208
1209 if (checkOpenCLPipeArg(S, Call))
1210 return true;
1211
1212 // Check the reserve size.
1213 if (!Call->getArg(1)->getType()->isIntegerType() &&
1214 !Call->getArg(1)->getType()->isUnsignedIntegerType()) {
1215 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1216 << Call->getDirectCallee() << S.Context.UnsignedIntTy
1217 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1218 return true;
1219 }
1220
1221 // Since return type of reserve_read/write_pipe built-in function is
1222 // reserve_id_t, which is not defined in the builtin def file , we used int
1223 // as return type and need to override the return type of these functions.
1224 Call->setType(S.Context.OCLReserveIDTy);
1225
1226 return false;
1227}
1228
1229// Performs a semantic analysis on {work_group_/sub_group_
1230// /_}commit_{read/write}_pipe
1231// \param S Reference to the semantic analyzer.
1232// \param Call The call to the builtin function to be analyzed.
1233// \return True if a semantic error was found, false otherwise.
1234static bool SemaBuiltinCommitRWPipe(Sema &S, CallExpr *Call) {
1235 if (checkArgCount(S, Call, 2))
1236 return true;
1237
1238 if (checkOpenCLPipeArg(S, Call))
1239 return true;
1240
1241 // Check reserve_id_t.
1242 if (!Call->getArg(1)->getType()->isReserveIDT()) {
1243 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1244 << Call->getDirectCallee() << S.Context.OCLReserveIDTy
1245 << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1246 return true;
1247 }
1248
1249 return false;
1250}
1251
1252// Performs a semantic analysis on the call to built-in Pipe
1253// Query Functions.
1254// \param S Reference to the semantic analyzer.
1255// \param Call The call to the builtin function to be analyzed.
1256// \return True if a semantic error was found, false otherwise.
1257static bool SemaBuiltinPipePackets(Sema &S, CallExpr *Call) {
1258 if (checkArgCount(S, Call, 1))
1259 return true;
1260
1261 if (!Call->getArg(0)->getType()->isPipeType()) {
1262 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
1263 << Call->getDirectCallee() << Call->getArg(0)->getSourceRange();
1264 return true;
1265 }
1266
1267 return false;
1268}
1269
1270// OpenCL v2.0 s6.13.9 - Address space qualifier functions.
1271// Performs semantic analysis for the to_global/local/private call.
1272// \param S Reference to the semantic analyzer.
1273// \param BuiltinID ID of the builtin function.
1274// \param Call A pointer to the builtin call.
1275// \return True if a semantic error has been found, false otherwise.
1276static bool SemaOpenCLBuiltinToAddr(Sema &S, unsigned BuiltinID,
1277 CallExpr *Call) {
1278 if (checkArgCount(S, Call, 1))
1279 return true;
1280
1281 auto RT = Call->getArg(0)->getType();
1282 if (!RT->isPointerType() || RT->getPointeeType()
1283 .getAddressSpace() == LangAS::opencl_constant) {
1284 S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_invalid_arg)
1285 << Call->getArg(0) << Call->getDirectCallee() << Call->getSourceRange();
1286 return true;
1287 }
1288
1289 if (RT->getPointeeType().getAddressSpace() != LangAS::opencl_generic) {
1290 S.Diag(Call->getArg(0)->getBeginLoc(),
1291 diag::warn_opencl_generic_address_space_arg)
1292 << Call->getDirectCallee()->getNameInfo().getAsString()
1293 << Call->getArg(0)->getSourceRange();
1294 }
1295
1296 RT = RT->getPointeeType();
1297 auto Qual = RT.getQualifiers();
1298 switch (BuiltinID) {
1299 case Builtin::BIto_global:
1300 Qual.setAddressSpace(LangAS::opencl_global);
1301 break;
1302 case Builtin::BIto_local:
1303 Qual.setAddressSpace(LangAS::opencl_local);
1304 break;
1305 case Builtin::BIto_private:
1306 Qual.setAddressSpace(LangAS::opencl_private);
1307 break;
1308 default:
1309 llvm_unreachable("Invalid builtin function")::llvm::llvm_unreachable_internal("Invalid builtin function",
"/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 1309)
;
1310 }
1311 Call->setType(S.Context.getPointerType(S.Context.getQualifiedType(
1312 RT.getUnqualifiedType(), Qual)));
1313
1314 return false;
1315}
1316
1317static ExprResult SemaBuiltinLaunder(Sema &S, CallExpr *TheCall) {
1318 if (checkArgCount(S, TheCall, 1))
1319 return ExprError();
1320
1321 // Compute __builtin_launder's parameter type from the argument.
1322 // The parameter type is:
1323 // * The type of the argument if it's not an array or function type,
1324 // Otherwise,
1325 // * The decayed argument type.
1326 QualType ParamTy = [&]() {
1327 QualType ArgTy = TheCall->getArg(0)->getType();
1328 if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe())
1329 return S.Context.getPointerType(Ty->getElementType());
1330 if (ArgTy->isFunctionType()) {
1331 return S.Context.getPointerType(ArgTy);
1332 }
1333 return ArgTy;
1334 }();
1335
1336 TheCall->setType(ParamTy);
1337
1338 auto DiagSelect = [&]() -> llvm::Optional<unsigned> {
1339 if (!ParamTy->isPointerType())
1340 return 0;
1341 if (ParamTy->isFunctionPointerType())
1342 return 1;
1343 if (ParamTy->isVoidPointerType())
1344 return 2;
1345 return llvm::Optional<unsigned>{};
1346 }();
1347 if (DiagSelect.hasValue()) {
1348 S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg)
1349 << DiagSelect.getValue() << TheCall->getSourceRange();
1350 return ExprError();
1351 }
1352
1353 // We either have an incomplete class type, or we have a class template
1354 // whose instantiation has not been forced. Example:
1355 //
1356 // template <class T> struct Foo { T value; };
1357 // Foo<int> *p = nullptr;
1358 // auto *d = __builtin_launder(p);
1359 if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(),
1360 diag::err_incomplete_type))
1361 return ExprError();
1362
1363 assert(ParamTy->getPointeeType()->isObjectType() &&((ParamTy->getPointeeType()->isObjectType() && "Unhandled non-object pointer case"
) ? static_cast<void> (0) : __assert_fail ("ParamTy->getPointeeType()->isObjectType() && \"Unhandled non-object pointer case\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 1364, __PRETTY_FUNCTION__))
1364 "Unhandled non-object pointer case")((ParamTy->getPointeeType()->isObjectType() && "Unhandled non-object pointer case"
) ? static_cast<void> (0) : __assert_fail ("ParamTy->getPointeeType()->isObjectType() && \"Unhandled non-object pointer case\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 1364, __PRETTY_FUNCTION__))
;
1365
1366 InitializedEntity Entity =
1367 InitializedEntity::InitializeParameter(S.Context, ParamTy, false);
1368 ExprResult Arg =
1369 S.PerformCopyInitialization(Entity, SourceLocation(), TheCall->getArg(0));
1370 if (Arg.isInvalid())
1371 return ExprError();
1372 TheCall->setArg(0, Arg.get());
1373
1374 return TheCall;
1375}
1376
1377// Emit an error and return true if the current architecture is not in the list
1378// of supported architectures.
1379static bool
1380CheckBuiltinTargetSupport(Sema &S, unsigned BuiltinID, CallExpr *TheCall,
1381 ArrayRef<llvm::Triple::ArchType> SupportedArchs) {
1382 llvm::Triple::ArchType CurArch =
1383 S.getASTContext().getTargetInfo().getTriple().getArch();
1384 if (llvm::is_contained(SupportedArchs, CurArch))
1385 return false;
1386 S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
1387 << TheCall->getSourceRange();
1388 return true;
1389}
1390
1391static void CheckNonNullArgument(Sema &S, const Expr *ArgExpr,
1392 SourceLocation CallSiteLoc);
1393
1394bool Sema::CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
1395 CallExpr *TheCall) {
1396 switch (TI.getTriple().getArch()) {
1397 default:
1398 // Some builtins don't require additional checking, so just consider these
1399 // acceptable.
1400 return false;
1401 case llvm::Triple::arm:
1402 case llvm::Triple::armeb:
1403 case llvm::Triple::thumb:
1404 case llvm::Triple::thumbeb:
1405 return CheckARMBuiltinFunctionCall(TI, BuiltinID, TheCall);
1406 case llvm::Triple::aarch64:
1407 case llvm::Triple::aarch64_32:
1408 case llvm::Triple::aarch64_be:
1409 return CheckAArch64BuiltinFunctionCall(TI, BuiltinID, TheCall);
1410 case llvm::Triple::bpfeb:
1411 case llvm::Triple::bpfel:
1412 return CheckBPFBuiltinFunctionCall(BuiltinID, TheCall);
1413 case llvm::Triple::hexagon:
1414 return CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall);
1415 case llvm::Triple::mips:
1416 case llvm::Triple::mipsel:
1417 case llvm::Triple::mips64:
1418 case llvm::Triple::mips64el:
1419 return CheckMipsBuiltinFunctionCall(TI, BuiltinID, TheCall);
1420 case llvm::Triple::systemz:
1421 return CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall);
1422 case llvm::Triple::x86:
1423 case llvm::Triple::x86_64:
1424 return CheckX86BuiltinFunctionCall(TI, BuiltinID, TheCall);
1425 case llvm::Triple::ppc:
1426 case llvm::Triple::ppcle:
1427 case llvm::Triple::ppc64:
1428 case llvm::Triple::ppc64le:
1429 return CheckPPCBuiltinFunctionCall(TI, BuiltinID, TheCall);
1430 case llvm::Triple::amdgcn:
1431 return CheckAMDGCNBuiltinFunctionCall(BuiltinID, TheCall);
1432 }
1433}
1434
1435ExprResult
1436Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID,
1437 CallExpr *TheCall) {
1438 ExprResult TheCallResult(TheCall);
1439
1440 // Find out if any arguments are required to be integer constant expressions.
1441 unsigned ICEArguments = 0;
1442 ASTContext::GetBuiltinTypeError Error;
1443 Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
1444 if (Error != ASTContext::GE_None)
1445 ICEArguments = 0; // Don't diagnose previously diagnosed errors.
1446
1447 // If any arguments are required to be ICE's, check and diagnose.
1448 for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
1449 // Skip arguments not required to be ICE's.
1450 if ((ICEArguments & (1 << ArgNo)) == 0) continue;
1451
1452 llvm::APSInt Result;
1453 if (SemaBuiltinConstantArg(TheCall, ArgNo, Result))
1454 return true;
1455 ICEArguments &= ~(1 << ArgNo);
1456 }
1457
1458 switch (BuiltinID) {
1459 case Builtin::BI__builtin___CFStringMakeConstantString:
1460 assert(TheCall->getNumArgs() == 1 &&((TheCall->getNumArgs() == 1 && "Wrong # arguments to builtin CFStringMakeConstantString"
) ? static_cast<void> (0) : __assert_fail ("TheCall->getNumArgs() == 1 && \"Wrong # arguments to builtin CFStringMakeConstantString\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 1461, __PRETTY_FUNCTION__))
1461 "Wrong # arguments to builtin CFStringMakeConstantString")((TheCall->getNumArgs() == 1 && "Wrong # arguments to builtin CFStringMakeConstantString"
) ? static_cast<void> (0) : __assert_fail ("TheCall->getNumArgs() == 1 && \"Wrong # arguments to builtin CFStringMakeConstantString\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 1461, __PRETTY_FUNCTION__))
;
1462 if (CheckObjCString(TheCall->getArg(0)))
1463 return ExprError();
1464 break;
1465 case Builtin::BI__builtin_ms_va_start:
1466 case Builtin::BI__builtin_stdarg_start:
1467 case Builtin::BI__builtin_va_start:
1468 if (SemaBuiltinVAStart(BuiltinID, TheCall))
1469 return ExprError();
1470 break;
1471 case Builtin::BI__va_start: {
1472 switch (Context.getTargetInfo().getTriple().getArch()) {
1473 case llvm::Triple::aarch64:
1474 case llvm::Triple::arm:
1475 case llvm::Triple::thumb:
1476 if (SemaBuiltinVAStartARMMicrosoft(TheCall))
1477 return ExprError();
1478 break;
1479 default:
1480 if (SemaBuiltinVAStart(BuiltinID, TheCall))
1481 return ExprError();
1482 break;
1483 }
1484 break;
1485 }
1486
1487 // The acquire, release, and no fence variants are ARM and AArch64 only.
1488 case Builtin::BI_interlockedbittestandset_acq:
1489 case Builtin::BI_interlockedbittestandset_rel:
1490 case Builtin::BI_interlockedbittestandset_nf:
1491 case Builtin::BI_interlockedbittestandreset_acq:
1492 case Builtin::BI_interlockedbittestandreset_rel:
1493 case Builtin::BI_interlockedbittestandreset_nf:
1494 if (CheckBuiltinTargetSupport(
1495 *this, BuiltinID, TheCall,
1496 {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64}))
1497 return ExprError();
1498 break;
1499
1500 // The 64-bit bittest variants are x64, ARM, and AArch64 only.
1501 case Builtin::BI_bittest64:
1502 case Builtin::BI_bittestandcomplement64:
1503 case Builtin::BI_bittestandreset64:
1504 case Builtin::BI_bittestandset64:
1505 case Builtin::BI_interlockedbittestandreset64:
1506 case Builtin::BI_interlockedbittestandset64:
1507 if (CheckBuiltinTargetSupport(*this, BuiltinID, TheCall,
1508 {llvm::Triple::x86_64, llvm::Triple::arm,
1509 llvm::Triple::thumb, llvm::Triple::aarch64}))
1510 return ExprError();
1511 break;
1512
1513 case Builtin::BI__builtin_isgreater:
1514 case Builtin::BI__builtin_isgreaterequal:
1515 case Builtin::BI__builtin_isless:
1516 case Builtin::BI__builtin_islessequal:
1517 case Builtin::BI__builtin_islessgreater:
1518 case Builtin::BI__builtin_isunordered:
1519 if (SemaBuiltinUnorderedCompare(TheCall))
1520 return ExprError();
1521 break;
1522 case Builtin::BI__builtin_fpclassify:
1523 if (SemaBuiltinFPClassification(TheCall, 6))
1524 return ExprError();
1525 break;
1526 case Builtin::BI__builtin_isfinite:
1527 case Builtin::BI__builtin_isinf:
1528 case Builtin::BI__builtin_isinf_sign:
1529 case Builtin::BI__builtin_isnan:
1530 case Builtin::BI__builtin_isnormal:
1531 case Builtin::BI__builtin_signbit:
1532 case Builtin::BI__builtin_signbitf:
1533 case Builtin::BI__builtin_signbitl:
1534 if (SemaBuiltinFPClassification(TheCall, 1))
1535 return ExprError();
1536 break;
1537 case Builtin::BI__builtin_shufflevector:
1538 return SemaBuiltinShuffleVector(TheCall);
1539 // TheCall will be freed by the smart pointer here, but that's fine, since
1540 // SemaBuiltinShuffleVector guts it, but then doesn't release it.
1541 case Builtin::BI__builtin_prefetch:
1542 if (SemaBuiltinPrefetch(TheCall))
1543 return ExprError();
1544 break;
1545 case Builtin::BI__builtin_alloca_with_align:
1546 if (SemaBuiltinAllocaWithAlign(TheCall))
1547 return ExprError();
1548 LLVM_FALLTHROUGH[[gnu::fallthrough]];
1549 case Builtin::BI__builtin_alloca:
1550 Diag(TheCall->getBeginLoc(), diag::warn_alloca)
1551 << TheCall->getDirectCallee();
1552 break;
1553 case Builtin::BI__assume:
1554 case Builtin::BI__builtin_assume:
1555 if (SemaBuiltinAssume(TheCall))
1556 return ExprError();
1557 break;
1558 case Builtin::BI__builtin_assume_aligned:
1559 if (SemaBuiltinAssumeAligned(TheCall))
1560 return ExprError();
1561 break;
1562 case Builtin::BI__builtin_dynamic_object_size:
1563 case Builtin::BI__builtin_object_size:
1564 if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3))
1565 return ExprError();
1566 break;
1567 case Builtin::BI__builtin_longjmp:
1568 if (SemaBuiltinLongjmp(TheCall))
1569 return ExprError();
1570 break;
1571 case Builtin::BI__builtin_setjmp:
1572 if (SemaBuiltinSetjmp(TheCall))
1573 return ExprError();
1574 break;
1575 case Builtin::BI__builtin_classify_type:
1576 if (checkArgCount(*this, TheCall, 1)) return true;
1577 TheCall->setType(Context.IntTy);
1578 break;
1579 case Builtin::BI__builtin_complex:
1580 if (SemaBuiltinComplex(TheCall))
1581 return ExprError();
1582 break;
1583 case Builtin::BI__builtin_constant_p: {
1584 if (checkArgCount(*this, TheCall, 1)) return true;
1585 ExprResult Arg = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0));
1586 if (Arg.isInvalid()) return true;
1587 TheCall->setArg(0, Arg.get());
1588 TheCall->setType(Context.IntTy);
1589 break;
1590 }
1591 case Builtin::BI__builtin_launder:
1592 return SemaBuiltinLaunder(*this, TheCall);
1593 case Builtin::BI__sync_fetch_and_add:
1594 case Builtin::BI__sync_fetch_and_add_1:
1595 case Builtin::BI__sync_fetch_and_add_2:
1596 case Builtin::BI__sync_fetch_and_add_4:
1597 case Builtin::BI__sync_fetch_and_add_8:
1598 case Builtin::BI__sync_fetch_and_add_16:
1599 case Builtin::BI__sync_fetch_and_sub:
1600 case Builtin::BI__sync_fetch_and_sub_1:
1601 case Builtin::BI__sync_fetch_and_sub_2:
1602 case Builtin::BI__sync_fetch_and_sub_4:
1603 case Builtin::BI__sync_fetch_and_sub_8:
1604 case Builtin::BI__sync_fetch_and_sub_16:
1605 case Builtin::BI__sync_fetch_and_or:
1606 case Builtin::BI__sync_fetch_and_or_1:
1607 case Builtin::BI__sync_fetch_and_or_2:
1608 case Builtin::BI__sync_fetch_and_or_4:
1609 case Builtin::BI__sync_fetch_and_or_8:
1610 case Builtin::BI__sync_fetch_and_or_16:
1611 case Builtin::BI__sync_fetch_and_and:
1612 case Builtin::BI__sync_fetch_and_and_1:
1613 case Builtin::BI__sync_fetch_and_and_2:
1614 case Builtin::BI__sync_fetch_and_and_4:
1615 case Builtin::BI__sync_fetch_and_and_8:
1616 case Builtin::BI__sync_fetch_and_and_16:
1617 case Builtin::BI__sync_fetch_and_xor:
1618 case Builtin::BI__sync_fetch_and_xor_1:
1619 case Builtin::BI__sync_fetch_and_xor_2:
1620 case Builtin::BI__sync_fetch_and_xor_4:
1621 case Builtin::BI__sync_fetch_and_xor_8:
1622 case Builtin::BI__sync_fetch_and_xor_16:
1623 case Builtin::BI__sync_fetch_and_nand:
1624 case Builtin::BI__sync_fetch_and_nand_1:
1625 case Builtin::BI__sync_fetch_and_nand_2:
1626 case Builtin::BI__sync_fetch_and_nand_4:
1627 case Builtin::BI__sync_fetch_and_nand_8:
1628 case Builtin::BI__sync_fetch_and_nand_16:
1629 case Builtin::BI__sync_add_and_fetch:
1630 case Builtin::BI__sync_add_and_fetch_1:
1631 case Builtin::BI__sync_add_and_fetch_2:
1632 case Builtin::BI__sync_add_and_fetch_4:
1633 case Builtin::BI__sync_add_and_fetch_8:
1634 case Builtin::BI__sync_add_and_fetch_16:
1635 case Builtin::BI__sync_sub_and_fetch:
1636 case Builtin::BI__sync_sub_and_fetch_1:
1637 case Builtin::BI__sync_sub_and_fetch_2:
1638 case Builtin::BI__sync_sub_and_fetch_4:
1639 case Builtin::BI__sync_sub_and_fetch_8:
1640 case Builtin::BI__sync_sub_and_fetch_16:
1641 case Builtin::BI__sync_and_and_fetch:
1642 case Builtin::BI__sync_and_and_fetch_1:
1643 case Builtin::BI__sync_and_and_fetch_2:
1644 case Builtin::BI__sync_and_and_fetch_4:
1645 case Builtin::BI__sync_and_and_fetch_8:
1646 case Builtin::BI__sync_and_and_fetch_16:
1647 case Builtin::BI__sync_or_and_fetch:
1648 case Builtin::BI__sync_or_and_fetch_1:
1649 case Builtin::BI__sync_or_and_fetch_2:
1650 case Builtin::BI__sync_or_and_fetch_4:
1651 case Builtin::BI__sync_or_and_fetch_8:
1652 case Builtin::BI__sync_or_and_fetch_16:
1653 case Builtin::BI__sync_xor_and_fetch:
1654 case Builtin::BI__sync_xor_and_fetch_1:
1655 case Builtin::BI__sync_xor_and_fetch_2:
1656 case Builtin::BI__sync_xor_and_fetch_4:
1657 case Builtin::BI__sync_xor_and_fetch_8:
1658 case Builtin::BI__sync_xor_and_fetch_16:
1659 case Builtin::BI__sync_nand_and_fetch:
1660 case Builtin::BI__sync_nand_and_fetch_1:
1661 case Builtin::BI__sync_nand_and_fetch_2:
1662 case Builtin::BI__sync_nand_and_fetch_4:
1663 case Builtin::BI__sync_nand_and_fetch_8:
1664 case Builtin::BI__sync_nand_and_fetch_16:
1665 case Builtin::BI__sync_val_compare_and_swap:
1666 case Builtin::BI__sync_val_compare_and_swap_1:
1667 case Builtin::BI__sync_val_compare_and_swap_2:
1668 case Builtin::BI__sync_val_compare_and_swap_4:
1669 case Builtin::BI__sync_val_compare_and_swap_8:
1670 case Builtin::BI__sync_val_compare_and_swap_16:
1671 case Builtin::BI__sync_bool_compare_and_swap:
1672 case Builtin::BI__sync_bool_compare_and_swap_1:
1673 case Builtin::BI__sync_bool_compare_and_swap_2:
1674 case Builtin::BI__sync_bool_compare_and_swap_4:
1675 case Builtin::BI__sync_bool_compare_and_swap_8:
1676 case Builtin::BI__sync_bool_compare_and_swap_16:
1677 case Builtin::BI__sync_lock_test_and_set:
1678 case Builtin::BI__sync_lock_test_and_set_1:
1679 case Builtin::BI__sync_lock_test_and_set_2:
1680 case Builtin::BI__sync_lock_test_and_set_4:
1681 case Builtin::BI__sync_lock_test_and_set_8:
1682 case Builtin::BI__sync_lock_test_and_set_16:
1683 case Builtin::BI__sync_lock_release:
1684 case Builtin::BI__sync_lock_release_1:
1685 case Builtin::BI__sync_lock_release_2:
1686 case Builtin::BI__sync_lock_release_4:
1687 case Builtin::BI__sync_lock_release_8:
1688 case Builtin::BI__sync_lock_release_16:
1689 case Builtin::BI__sync_swap:
1690 case Builtin::BI__sync_swap_1:
1691 case Builtin::BI__sync_swap_2:
1692 case Builtin::BI__sync_swap_4:
1693 case Builtin::BI__sync_swap_8:
1694 case Builtin::BI__sync_swap_16:
1695 return SemaBuiltinAtomicOverloaded(TheCallResult);
1696 case Builtin::BI__sync_synchronize:
1697 Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst)
1698 << TheCall->getCallee()->getSourceRange();
1699 break;
1700 case Builtin::BI__builtin_nontemporal_load:
1701 case Builtin::BI__builtin_nontemporal_store:
1702 return SemaBuiltinNontemporalOverloaded(TheCallResult);
1703 case Builtin::BI__builtin_memcpy_inline: {
1704 clang::Expr *SizeOp = TheCall->getArg(2);
1705 // We warn about copying to or from `nullptr` pointers when `size` is
1706 // greater than 0. When `size` is value dependent we cannot evaluate its
1707 // value so we bail out.
1708 if (SizeOp->isValueDependent())
1709 break;
1710 if (!SizeOp->EvaluateKnownConstInt(Context).isNullValue()) {
1711 CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc());
1712 CheckNonNullArgument(*this, TheCall->getArg(1), TheCall->getExprLoc());
1713 }
1714 break;
1715 }
1716#define BUILTIN(ID, TYPE, ATTRS)
1717#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
1718 case Builtin::BI##ID: \
1719 return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
1720#include "clang/Basic/Builtins.def"
1721 case Builtin::BI__annotation:
1722 if (SemaBuiltinMSVCAnnotation(*this, TheCall))
1723 return ExprError();
1724 break;
1725 case Builtin::BI__builtin_annotation:
1726 if (SemaBuiltinAnnotation(*this, TheCall))
1727 return ExprError();
1728 break;
1729 case Builtin::BI__builtin_addressof:
1730 if (SemaBuiltinAddressof(*this, TheCall))
1731 return ExprError();
1732 break;
1733 case Builtin::BI__builtin_is_aligned:
1734 case Builtin::BI__builtin_align_up:
1735 case Builtin::BI__builtin_align_down:
1736 if (SemaBuiltinAlignment(*this, TheCall, BuiltinID))
1737 return ExprError();
1738 break;
1739 case Builtin::BI__builtin_add_overflow:
1740 case Builtin::BI__builtin_sub_overflow:
1741 case Builtin::BI__builtin_mul_overflow:
1742 if (SemaBuiltinOverflow(*this, TheCall, BuiltinID))
1743 return ExprError();
1744 break;
1745 case Builtin::BI__builtin_operator_new:
1746 case Builtin::BI__builtin_operator_delete: {
1747 bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete;
1748 ExprResult Res =
1749 SemaBuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete);
1750 if (Res.isInvalid())
1751 CorrectDelayedTyposInExpr(TheCallResult.get());
1752 return Res;
1753 }
1754 case Builtin::BI__builtin_dump_struct: {
1755 // We first want to ensure we are called with 2 arguments
1756 if (checkArgCount(*this, TheCall, 2))
1757 return ExprError();
1758 // Ensure that the first argument is of type 'struct XX *'
1759 const Expr *PtrArg = TheCall->getArg(0)->IgnoreParenImpCasts();
1760 const QualType PtrArgType = PtrArg->getType();
1761 if (!PtrArgType->isPointerType() ||
1762 !PtrArgType->getPointeeType()->isRecordType()) {
1763 Diag(PtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1764 << PtrArgType << "structure pointer" << 1 << 0 << 3 << 1 << PtrArgType
1765 << "structure pointer";
1766 return ExprError();
1767 }
1768
1769 // Ensure that the second argument is of type 'FunctionType'
1770 const Expr *FnPtrArg = TheCall->getArg(1)->IgnoreImpCasts();
1771 const QualType FnPtrArgType = FnPtrArg->getType();
1772 if (!FnPtrArgType->isPointerType()) {
1773 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1774 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2
1775 << FnPtrArgType << "'int (*)(const char *, ...)'";
1776 return ExprError();
1777 }
1778
1779 const auto *FuncType =
1780 FnPtrArgType->getPointeeType()->getAs<FunctionType>();
1781
1782 if (!FuncType) {
1783 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1784 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3 << 2
1785 << FnPtrArgType << "'int (*)(const char *, ...)'";
1786 return ExprError();
1787 }
1788
1789 if (const auto *FT = dyn_cast<FunctionProtoType>(FuncType)) {
1790 if (!FT->getNumParams()) {
1791 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1792 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3
1793 << 2 << FnPtrArgType << "'int (*)(const char *, ...)'";
1794 return ExprError();
1795 }
1796 QualType PT = FT->getParamType(0);
1797 if (!FT->isVariadic() || FT->getReturnType() != Context.IntTy ||
1798 !PT->isPointerType() || !PT->getPointeeType()->isCharType() ||
1799 !PT->getPointeeType().isConstQualified()) {
1800 Diag(FnPtrArg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
1801 << FnPtrArgType << "'int (*)(const char *, ...)'" << 1 << 0 << 3
1802 << 2 << FnPtrArgType << "'int (*)(const char *, ...)'";
1803 return ExprError();
1804 }
1805 }
1806
1807 TheCall->setType(Context.IntTy);
1808 break;
1809 }
1810 case Builtin::BI__builtin_expect_with_probability: {
1811 // We first want to ensure we are called with 3 arguments
1812 if (checkArgCount(*this, TheCall, 3))
1813 return ExprError();
1814 // then check probability is constant float in range [0.0, 1.0]
1815 const Expr *ProbArg = TheCall->getArg(2);
1816 SmallVector<PartialDiagnosticAt, 8> Notes;
1817 Expr::EvalResult Eval;
1818 Eval.Diag = &Notes;
1819 if ((!ProbArg->EvaluateAsConstantExpr(Eval, Context)) ||
1820 !Eval.Val.isFloat()) {
1821 Diag(ProbArg->getBeginLoc(), diag::err_probability_not_constant_float)
1822 << ProbArg->getSourceRange();
1823 for (const PartialDiagnosticAt &PDiag : Notes)
1824 Diag(PDiag.first, PDiag.second);
1825 return ExprError();
1826 }
1827 llvm::APFloat Probability = Eval.Val.getFloat();
1828 bool LoseInfo = false;
1829 Probability.convert(llvm::APFloat::IEEEdouble(),
1830 llvm::RoundingMode::Dynamic, &LoseInfo);
1831 if (!(Probability >= llvm::APFloat(0.0) &&
1832 Probability <= llvm::APFloat(1.0))) {
1833 Diag(ProbArg->getBeginLoc(), diag::err_probability_out_of_range)
1834 << ProbArg->getSourceRange();
1835 return ExprError();
1836 }
1837 break;
1838 }
1839 case Builtin::BI__builtin_preserve_access_index:
1840 if (SemaBuiltinPreserveAI(*this, TheCall))
1841 return ExprError();
1842 break;
1843 case Builtin::BI__builtin_call_with_static_chain:
1844 if (SemaBuiltinCallWithStaticChain(*this, TheCall))
1845 return ExprError();
1846 break;
1847 case Builtin::BI__exception_code:
1848 case Builtin::BI_exception_code:
1849 if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope,
1850 diag::err_seh___except_block))
1851 return ExprError();
1852 break;
1853 case Builtin::BI__exception_info:
1854 case Builtin::BI_exception_info:
1855 if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope,
1856 diag::err_seh___except_filter))
1857 return ExprError();
1858 break;
1859 case Builtin::BI__GetExceptionInfo:
1860 if (checkArgCount(*this, TheCall, 1))
1861 return ExprError();
1862
1863 if (CheckCXXThrowOperand(
1864 TheCall->getBeginLoc(),
1865 Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()),
1866 TheCall))
1867 return ExprError();
1868
1869 TheCall->setType(Context.VoidPtrTy);
1870 break;
1871 // OpenCL v2.0, s6.13.16 - Pipe functions
1872 case Builtin::BIread_pipe:
1873 case Builtin::BIwrite_pipe:
1874 // Since those two functions are declared with var args, we need a semantic
1875 // check for the argument.
1876 if (SemaBuiltinRWPipe(*this, TheCall))
1877 return ExprError();
1878 break;
1879 case Builtin::BIreserve_read_pipe:
1880 case Builtin::BIreserve_write_pipe:
1881 case Builtin::BIwork_group_reserve_read_pipe:
1882 case Builtin::BIwork_group_reserve_write_pipe:
1883 if (SemaBuiltinReserveRWPipe(*this, TheCall))
1884 return ExprError();
1885 break;
1886 case Builtin::BIsub_group_reserve_read_pipe:
1887 case Builtin::BIsub_group_reserve_write_pipe:
1888 if (checkOpenCLSubgroupExt(*this, TheCall) ||
1889 SemaBuiltinReserveRWPipe(*this, TheCall))
1890 return ExprError();
1891 break;
1892 case Builtin::BIcommit_read_pipe:
1893 case Builtin::BIcommit_write_pipe:
1894 case Builtin::BIwork_group_commit_read_pipe:
1895 case Builtin::BIwork_group_commit_write_pipe:
1896 if (SemaBuiltinCommitRWPipe(*this, TheCall))
1897 return ExprError();
1898 break;
1899 case Builtin::BIsub_group_commit_read_pipe:
1900 case Builtin::BIsub_group_commit_write_pipe:
1901 if (checkOpenCLSubgroupExt(*this, TheCall) ||
1902 SemaBuiltinCommitRWPipe(*this, TheCall))
1903 return ExprError();
1904 break;
1905 case Builtin::BIget_pipe_num_packets:
1906 case Builtin::BIget_pipe_max_packets:
1907 if (SemaBuiltinPipePackets(*this, TheCall))
1908 return ExprError();
1909 break;
1910 case Builtin::BIto_global:
1911 case Builtin::BIto_local:
1912 case Builtin::BIto_private:
1913 if (SemaOpenCLBuiltinToAddr(*this, BuiltinID, TheCall))
1914 return ExprError();
1915 break;
1916 // OpenCL v2.0, s6.13.17 - Enqueue kernel functions.
1917 case Builtin::BIenqueue_kernel:
1918 if (SemaOpenCLBuiltinEnqueueKernel(*this, TheCall))
1919 return ExprError();
1920 break;
1921 case Builtin::BIget_kernel_work_group_size:
1922 case Builtin::BIget_kernel_preferred_work_group_size_multiple:
1923 if (SemaOpenCLBuiltinKernelWorkGroupSize(*this, TheCall))
1924 return ExprError();
1925 break;
1926 case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
1927 case Builtin::BIget_kernel_sub_group_count_for_ndrange:
1928 if (SemaOpenCLBuiltinNDRangeAndBlock(*this, TheCall))
1929 return ExprError();
1930 break;
1931 case Builtin::BI__builtin_os_log_format:
1932 Cleanup.setExprNeedsCleanups(true);
1933 LLVM_FALLTHROUGH[[gnu::fallthrough]];
1934 case Builtin::BI__builtin_os_log_format_buffer_size:
1935 if (SemaBuiltinOSLogFormat(TheCall))
1936 return ExprError();
1937 break;
1938 case Builtin::BI__builtin_frame_address:
1939 case Builtin::BI__builtin_return_address: {
1940 if (SemaBuiltinConstantArgRange(TheCall, 0, 0, 0xFFFF))
1941 return ExprError();
1942
1943 // -Wframe-address warning if non-zero passed to builtin
1944 // return/frame address.
1945 Expr::EvalResult Result;
1946 if (!TheCall->getArg(0)->isValueDependent() &&
1947 TheCall->getArg(0)->EvaluateAsInt(Result, getASTContext()) &&
1948 Result.Val.getInt() != 0)
1949 Diag(TheCall->getBeginLoc(), diag::warn_frame_address)
1950 << ((BuiltinID == Builtin::BI__builtin_return_address)
1951 ? "__builtin_return_address"
1952 : "__builtin_frame_address")
1953 << TheCall->getSourceRange();
1954 break;
1955 }
1956
1957 case Builtin::BI__builtin_matrix_transpose:
1958 return SemaBuiltinMatrixTranspose(TheCall, TheCallResult);
1959
1960 case Builtin::BI__builtin_matrix_column_major_load:
1961 return SemaBuiltinMatrixColumnMajorLoad(TheCall, TheCallResult);
1962
1963 case Builtin::BI__builtin_matrix_column_major_store:
1964 return SemaBuiltinMatrixColumnMajorStore(TheCall, TheCallResult);
1965 }
1966
1967 // Since the target specific builtins for each arch overlap, only check those
1968 // of the arch we are compiling for.
1969 if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) {
1970 if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
1971 assert(Context.getAuxTargetInfo() &&((Context.getAuxTargetInfo() && "Aux Target Builtin, but not an aux target?"
) ? static_cast<void> (0) : __assert_fail ("Context.getAuxTargetInfo() && \"Aux Target Builtin, but not an aux target?\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 1972, __PRETTY_FUNCTION__))
1972 "Aux Target Builtin, but not an aux target?")((Context.getAuxTargetInfo() && "Aux Target Builtin, but not an aux target?"
) ? static_cast<void> (0) : __assert_fail ("Context.getAuxTargetInfo() && \"Aux Target Builtin, but not an aux target?\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 1972, __PRETTY_FUNCTION__))
;
1973
1974 if (CheckTSBuiltinFunctionCall(
1975 *Context.getAuxTargetInfo(),
1976 Context.BuiltinInfo.getAuxBuiltinID(BuiltinID), TheCall))
1977 return ExprError();
1978 } else {
1979 if (CheckTSBuiltinFunctionCall(Context.getTargetInfo(), BuiltinID,
1980 TheCall))
1981 return ExprError();
1982 }
1983 }
1984
1985 return TheCallResult;
1986}
1987
1988// Get the valid immediate range for the specified NEON type code.
1989static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) {
1990 NeonTypeFlags Type(t);
1991 int IsQuad = ForceQuad ? true : Type.isQuad();
1992 switch (Type.getEltType()) {
1993 case NeonTypeFlags::Int8:
1994 case NeonTypeFlags::Poly8:
1995 return shift ? 7 : (8 << IsQuad) - 1;
1996 case NeonTypeFlags::Int16:
1997 case NeonTypeFlags::Poly16:
1998 return shift ? 15 : (4 << IsQuad) - 1;
1999 case NeonTypeFlags::Int32:
2000 return shift ? 31 : (2 << IsQuad) - 1;
2001 case NeonTypeFlags::Int64:
2002 case NeonTypeFlags::Poly64:
2003 return shift ? 63 : (1 << IsQuad) - 1;
2004 case NeonTypeFlags::Poly128:
2005 return shift ? 127 : (1 << IsQuad) - 1;
2006 case NeonTypeFlags::Float16:
2007 assert(!shift && "cannot shift float types!")((!shift && "cannot shift float types!") ? static_cast
<void> (0) : __assert_fail ("!shift && \"cannot shift float types!\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 2007, __PRETTY_FUNCTION__))
;
2008 return (4 << IsQuad) - 1;
2009 case NeonTypeFlags::Float32:
2010 assert(!shift && "cannot shift float types!")((!shift && "cannot shift float types!") ? static_cast
<void> (0) : __assert_fail ("!shift && \"cannot shift float types!\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 2010, __PRETTY_FUNCTION__))
;
2011 return (2 << IsQuad) - 1;
2012 case NeonTypeFlags::Float64:
2013 assert(!shift && "cannot shift float types!")((!shift && "cannot shift float types!") ? static_cast
<void> (0) : __assert_fail ("!shift && \"cannot shift float types!\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 2013, __PRETTY_FUNCTION__))
;
2014 return (1 << IsQuad) - 1;
2015 case NeonTypeFlags::BFloat16:
2016 assert(!shift && "cannot shift float types!")((!shift && "cannot shift float types!") ? static_cast
<void> (0) : __assert_fail ("!shift && \"cannot shift float types!\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 2016, __PRETTY_FUNCTION__))
;
2017 return (4 << IsQuad) - 1;
2018 }
2019 llvm_unreachable("Invalid NeonTypeFlag!")::llvm::llvm_unreachable_internal("Invalid NeonTypeFlag!", "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 2019)
;
2020}
2021
2022/// getNeonEltType - Return the QualType corresponding to the elements of
2023/// the vector type specified by the NeonTypeFlags. This is used to check
2024/// the pointer arguments for Neon load/store intrinsics.
2025static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context,
2026 bool IsPolyUnsigned, bool IsInt64Long) {
2027 switch (Flags.getEltType()) {
2028 case NeonTypeFlags::Int8:
2029 return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
2030 case NeonTypeFlags::Int16:
2031 return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
2032 case NeonTypeFlags::Int32:
2033 return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
2034 case NeonTypeFlags::Int64:
2035 if (IsInt64Long)
2036 return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy;
2037 else
2038 return Flags.isUnsigned() ? Context.UnsignedLongLongTy
2039 : Context.LongLongTy;
2040 case NeonTypeFlags::Poly8:
2041 return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy;
2042 case NeonTypeFlags::Poly16:
2043 return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy;
2044 case NeonTypeFlags::Poly64:
2045 if (IsInt64Long)
2046 return Context.UnsignedLongTy;
2047 else
2048 return Context.UnsignedLongLongTy;
2049 case NeonTypeFlags::Poly128:
2050 break;
2051 case NeonTypeFlags::Float16:
2052 return Context.HalfTy;
2053 case NeonTypeFlags::Float32:
2054 return Context.FloatTy;
2055 case NeonTypeFlags::Float64:
2056 return Context.DoubleTy;
2057 case NeonTypeFlags::BFloat16:
2058 return Context.BFloat16Ty;
2059 }
2060 llvm_unreachable("Invalid NeonTypeFlag!")::llvm::llvm_unreachable_internal("Invalid NeonTypeFlag!", "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 2060)
;
2061}
2062
2063bool Sema::CheckSVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
2064 // Range check SVE intrinsics that take immediate values.
2065 SmallVector<std::tuple<int,int,int>, 3> ImmChecks;
2066
2067 switch (BuiltinID) {
2068 default:
2069 return false;
2070#define GET_SVE_IMMEDIATE_CHECK
2071#include "clang/Basic/arm_sve_sema_rangechecks.inc"
2072#undef GET_SVE_IMMEDIATE_CHECK
2073 }
2074
2075 // Perform all the immediate checks for this builtin call.
2076 bool HasError = false;
2077 for (auto &I : ImmChecks) {
2078 int ArgNum, CheckTy, ElementSizeInBits;
2079 std::tie(ArgNum, CheckTy, ElementSizeInBits) = I;
2080
2081 typedef bool(*OptionSetCheckFnTy)(int64_t Value);
2082
2083 // Function that checks whether the operand (ArgNum) is an immediate
2084 // that is one of the predefined values.
2085 auto CheckImmediateInSet = [&](OptionSetCheckFnTy CheckImm,
2086 int ErrDiag) -> bool {
2087 // We can't check the value of a dependent argument.
2088 Expr *Arg = TheCall->getArg(ArgNum);
2089 if (Arg->isTypeDependent() || Arg->isValueDependent())
2090 return false;
2091
2092 // Check constant-ness first.
2093 llvm::APSInt Imm;
2094 if (SemaBuiltinConstantArg(TheCall, ArgNum, Imm))
2095 return true;
2096
2097 if (!CheckImm(Imm.getSExtValue()))
2098 return Diag(TheCall->getBeginLoc(), ErrDiag) << Arg->getSourceRange();
2099 return false;
2100 };
2101
2102 switch ((SVETypeFlags::ImmCheckType)CheckTy) {
2103 case SVETypeFlags::ImmCheck0_31:
2104 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 31))
2105 HasError = true;
2106 break;
2107 case SVETypeFlags::ImmCheck0_13:
2108 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 13))
2109 HasError = true;
2110 break;
2111 case SVETypeFlags::ImmCheck1_16:
2112 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, 16))
2113 HasError = true;
2114 break;
2115 case SVETypeFlags::ImmCheck0_7:
2116 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 7))
2117 HasError = true;
2118 break;
2119 case SVETypeFlags::ImmCheckExtract:
2120 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2121 (2048 / ElementSizeInBits) - 1))
2122 HasError = true;
2123 break;
2124 case SVETypeFlags::ImmCheckShiftRight:
2125 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, ElementSizeInBits))
2126 HasError = true;
2127 break;
2128 case SVETypeFlags::ImmCheckShiftRightNarrow:
2129 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1,
2130 ElementSizeInBits / 2))
2131 HasError = true;
2132 break;
2133 case SVETypeFlags::ImmCheckShiftLeft:
2134 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2135 ElementSizeInBits - 1))
2136 HasError = true;
2137 break;
2138 case SVETypeFlags::ImmCheckLaneIndex:
2139 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2140 (128 / (1 * ElementSizeInBits)) - 1))
2141 HasError = true;
2142 break;
2143 case SVETypeFlags::ImmCheckLaneIndexCompRotate:
2144 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2145 (128 / (2 * ElementSizeInBits)) - 1))
2146 HasError = true;
2147 break;
2148 case SVETypeFlags::ImmCheckLaneIndexDot:
2149 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
2150 (128 / (4 * ElementSizeInBits)) - 1))
2151 HasError = true;
2152 break;
2153 case SVETypeFlags::ImmCheckComplexRot90_270:
2154 if (CheckImmediateInSet([](int64_t V) { return V == 90 || V == 270; },
2155 diag::err_rotation_argument_to_cadd))
2156 HasError = true;
2157 break;
2158 case SVETypeFlags::ImmCheckComplexRotAll90:
2159 if (CheckImmediateInSet(
2160 [](int64_t V) {
2161 return V == 0 || V == 90 || V == 180 || V == 270;
2162 },
2163 diag::err_rotation_argument_to_cmla))
2164 HasError = true;
2165 break;
2166 case SVETypeFlags::ImmCheck0_1:
2167 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 1))
2168 HasError = true;
2169 break;
2170 case SVETypeFlags::ImmCheck0_2:
2171 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2))
2172 HasError = true;
2173 break;
2174 case SVETypeFlags::ImmCheck0_3:
2175 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 3))
2176 HasError = true;
2177 break;
2178 }
2179 }
2180
2181 return HasError;
2182}
2183
2184bool Sema::CheckNeonBuiltinFunctionCall(const TargetInfo &TI,
2185 unsigned BuiltinID, CallExpr *TheCall) {
2186 llvm::APSInt Result;
2187 uint64_t mask = 0;
2188 unsigned TV = 0;
2189 int PtrArgNum = -1;
2190 bool HasConstPtr = false;
2191 switch (BuiltinID) {
2192#define GET_NEON_OVERLOAD_CHECK
2193#include "clang/Basic/arm_neon.inc"
2194#include "clang/Basic/arm_fp16.inc"
2195#undef GET_NEON_OVERLOAD_CHECK
2196 }
2197
2198 // For NEON intrinsics which are overloaded on vector element type, validate
2199 // the immediate which specifies which variant to emit.
2200 unsigned ImmArg = TheCall->getNumArgs()-1;
2201 if (mask) {
2202 if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
2203 return true;
2204
2205 TV = Result.getLimitedValue(64);
2206 if ((TV > 63) || (mask & (1ULL << TV)) == 0)
2207 return Diag(TheCall->getBeginLoc(), diag::err_invalid_neon_type_code)
2208 << TheCall->getArg(ImmArg)->getSourceRange();
2209 }
2210
2211 if (PtrArgNum >= 0) {
2212 // Check that pointer arguments have the specified type.
2213 Expr *Arg = TheCall->getArg(PtrArgNum);
2214 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
2215 Arg = ICE->getSubExpr();
2216 ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
2217 QualType RHSTy = RHS.get()->getType();
2218
2219 llvm::Triple::ArchType Arch = TI.getTriple().getArch();
2220 bool IsPolyUnsigned = Arch == llvm::Triple::aarch64 ||
2221 Arch == llvm::Triple::aarch64_32 ||
2222 Arch == llvm::Triple::aarch64_be;
2223 bool IsInt64Long = TI.getInt64Type() == TargetInfo::SignedLong;
2224 QualType EltTy =
2225 getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long);
2226 if (HasConstPtr)
2227 EltTy = EltTy.withConst();
2228 QualType LHSTy = Context.getPointerType(EltTy);
2229 AssignConvertType ConvTy;
2230 ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
2231 if (RHS.isInvalid())
2232 return true;
2233 if (DiagnoseAssignmentResult(ConvTy, Arg->getBeginLoc(), LHSTy, RHSTy,
2234 RHS.get(), AA_Assigning))
2235 return true;
2236 }
2237
2238 // For NEON intrinsics which take an immediate value as part of the
2239 // instruction, range check them here.
2240 unsigned i = 0, l = 0, u = 0;
2241 switch (BuiltinID) {
2242 default:
2243 return false;
2244 #define GET_NEON_IMMEDIATE_CHECK
2245 #include "clang/Basic/arm_neon.inc"
2246 #include "clang/Basic/arm_fp16.inc"
2247 #undef GET_NEON_IMMEDIATE_CHECK
2248 }
2249
2250 return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
2251}
2252
2253bool Sema::CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
2254 switch (BuiltinID) {
2255 default:
2256 return false;
2257 #include "clang/Basic/arm_mve_builtin_sema.inc"
2258 }
2259}
2260
2261bool Sema::CheckCDEBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
2262 CallExpr *TheCall) {
2263 bool Err = false;
2264 switch (BuiltinID) {
2265 default:
2266 return false;
2267#include "clang/Basic/arm_cde_builtin_sema.inc"
2268 }
2269
2270 if (Err)
2271 return true;
2272
2273 return CheckARMCoprocessorImmediate(TI, TheCall->getArg(0), /*WantCDE*/ true);
2274}
2275
2276bool Sema::CheckARMCoprocessorImmediate(const TargetInfo &TI,
2277 const Expr *CoprocArg, bool WantCDE) {
2278 if (isConstantEvaluated())
2279 return false;
2280
2281 // We can't check the value of a dependent argument.
2282 if (CoprocArg->isTypeDependent() || CoprocArg->isValueDependent())
2283 return false;
2284
2285 llvm::APSInt CoprocNoAP = *CoprocArg->getIntegerConstantExpr(Context);
2286 int64_t CoprocNo = CoprocNoAP.getExtValue();
2287 assert(CoprocNo >= 0 && "Coprocessor immediate must be non-negative")((CoprocNo >= 0 && "Coprocessor immediate must be non-negative"
) ? static_cast<void> (0) : __assert_fail ("CoprocNo >= 0 && \"Coprocessor immediate must be non-negative\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 2287, __PRETTY_FUNCTION__))
;
2288
2289 uint32_t CDECoprocMask = TI.getARMCDECoprocMask();
2290 bool IsCDECoproc = CoprocNo <= 7 && (CDECoprocMask & (1 << CoprocNo));
2291
2292 if (IsCDECoproc != WantCDE)
2293 return Diag(CoprocArg->getBeginLoc(), diag::err_arm_invalid_coproc)
2294 << (int)CoprocNo << (int)WantCDE << CoprocArg->getSourceRange();
2295
2296 return false;
2297}
2298
2299bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
2300 unsigned MaxWidth) {
2301 assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||(((BuiltinID == ARM::BI__builtin_arm_ldrex || BuiltinID == ARM
::BI__builtin_arm_ldaex || BuiltinID == ARM::BI__builtin_arm_strex
|| BuiltinID == ARM::BI__builtin_arm_stlex || BuiltinID == AArch64
::BI__builtin_arm_ldrex || BuiltinID == AArch64::BI__builtin_arm_ldaex
|| BuiltinID == AArch64::BI__builtin_arm_strex || BuiltinID ==
AArch64::BI__builtin_arm_stlex) && "unexpected ARM builtin"
) ? static_cast<void> (0) : __assert_fail ("(BuiltinID == ARM::BI__builtin_arm_ldrex || BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex || BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID == AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex || BuiltinID == AArch64::BI__builtin_arm_stlex) && \"unexpected ARM builtin\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 2309, __PRETTY_FUNCTION__))
2302 BuiltinID == ARM::BI__builtin_arm_ldaex ||(((BuiltinID == ARM::BI__builtin_arm_ldrex || BuiltinID == ARM
::BI__builtin_arm_ldaex || BuiltinID == ARM::BI__builtin_arm_strex
|| BuiltinID == ARM::BI__builtin_arm_stlex || BuiltinID == AArch64
::BI__builtin_arm_ldrex || BuiltinID == AArch64::BI__builtin_arm_ldaex
|| BuiltinID == AArch64::BI__builtin_arm_strex || BuiltinID ==
AArch64::BI__builtin_arm_stlex) && "unexpected ARM builtin"
) ? static_cast<void> (0) : __assert_fail ("(BuiltinID == ARM::BI__builtin_arm_ldrex || BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex || BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID == AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex || BuiltinID == AArch64::BI__builtin_arm_stlex) && \"unexpected ARM builtin\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 2309, __PRETTY_FUNCTION__))
2303 BuiltinID == ARM::BI__builtin_arm_strex ||(((BuiltinID == ARM::BI__builtin_arm_ldrex || BuiltinID == ARM
::BI__builtin_arm_ldaex || BuiltinID == ARM::BI__builtin_arm_strex
|| BuiltinID == ARM::BI__builtin_arm_stlex || BuiltinID == AArch64
::BI__builtin_arm_ldrex || BuiltinID == AArch64::BI__builtin_arm_ldaex
|| BuiltinID == AArch64::BI__builtin_arm_strex || BuiltinID ==
AArch64::BI__builtin_arm_stlex) && "unexpected ARM builtin"
) ? static_cast<void> (0) : __assert_fail ("(BuiltinID == ARM::BI__builtin_arm_ldrex || BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex || BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID == AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex || BuiltinID == AArch64::BI__builtin_arm_stlex) && \"unexpected ARM builtin\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 2309, __PRETTY_FUNCTION__))
2304 BuiltinID == ARM::BI__builtin_arm_stlex ||(((BuiltinID == ARM::BI__builtin_arm_ldrex || BuiltinID == ARM
::BI__builtin_arm_ldaex || BuiltinID == ARM::BI__builtin_arm_strex
|| BuiltinID == ARM::BI__builtin_arm_stlex || BuiltinID == AArch64
::BI__builtin_arm_ldrex || BuiltinID == AArch64::BI__builtin_arm_ldaex
|| BuiltinID == AArch64::BI__builtin_arm_strex || BuiltinID ==
AArch64::BI__builtin_arm_stlex) && "unexpected ARM builtin"
) ? static_cast<void> (0) : __assert_fail ("(BuiltinID == ARM::BI__builtin_arm_ldrex || BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex || BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID == AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex || BuiltinID == AArch64::BI__builtin_arm_stlex) && \"unexpected ARM builtin\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 2309, __PRETTY_FUNCTION__))
2305 BuiltinID == AArch64::BI__builtin_arm_ldrex ||(((BuiltinID == ARM::BI__builtin_arm_ldrex || BuiltinID == ARM
::BI__builtin_arm_ldaex || BuiltinID == ARM::BI__builtin_arm_strex
|| BuiltinID == ARM::BI__builtin_arm_stlex || BuiltinID == AArch64
::BI__builtin_arm_ldrex || BuiltinID == AArch64::BI__builtin_arm_ldaex
|| BuiltinID == AArch64::BI__builtin_arm_strex || BuiltinID ==
AArch64::BI__builtin_arm_stlex) && "unexpected ARM builtin"
) ? static_cast<void> (0) : __assert_fail ("(BuiltinID == ARM::BI__builtin_arm_ldrex || BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex || BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID == AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex || BuiltinID == AArch64::BI__builtin_arm_stlex) && \"unexpected ARM builtin\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 2309, __PRETTY_FUNCTION__))
2306 BuiltinID == AArch64::BI__builtin_arm_ldaex ||(((BuiltinID == ARM::BI__builtin_arm_ldrex || BuiltinID == ARM
::BI__builtin_arm_ldaex || BuiltinID == ARM::BI__builtin_arm_strex
|| BuiltinID == ARM::BI__builtin_arm_stlex || BuiltinID == AArch64
::BI__builtin_arm_ldrex || BuiltinID == AArch64::BI__builtin_arm_ldaex
|| BuiltinID == AArch64::BI__builtin_arm_strex || BuiltinID ==
AArch64::BI__builtin_arm_stlex) && "unexpected ARM builtin"
) ? static_cast<void> (0) : __assert_fail ("(BuiltinID == ARM::BI__builtin_arm_ldrex || BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex || BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID == AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex || BuiltinID == AArch64::BI__builtin_arm_stlex) && \"unexpected ARM builtin\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 2309, __PRETTY_FUNCTION__))
2307 BuiltinID == AArch64::BI__builtin_arm_strex ||(((BuiltinID == ARM::BI__builtin_arm_ldrex || BuiltinID == ARM
::BI__builtin_arm_ldaex || BuiltinID == ARM::BI__builtin_arm_strex
|| BuiltinID == ARM::BI__builtin_arm_stlex || BuiltinID == AArch64
::BI__builtin_arm_ldrex || BuiltinID == AArch64::BI__builtin_arm_ldaex
|| BuiltinID == AArch64::BI__builtin_arm_strex || BuiltinID ==
AArch64::BI__builtin_arm_stlex) && "unexpected ARM builtin"
) ? static_cast<void> (0) : __assert_fail ("(BuiltinID == ARM::BI__builtin_arm_ldrex || BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex || BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID == AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex || BuiltinID == AArch64::BI__builtin_arm_stlex) && \"unexpected ARM builtin\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 2309, __PRETTY_FUNCTION__))
2308 BuiltinID == AArch64::BI__builtin_arm_stlex) &&(((BuiltinID == ARM::BI__builtin_arm_ldrex || BuiltinID == ARM
::BI__builtin_arm_ldaex || BuiltinID == ARM::BI__builtin_arm_strex
|| BuiltinID == ARM::BI__builtin_arm_stlex || BuiltinID == AArch64
::BI__builtin_arm_ldrex || BuiltinID == AArch64::BI__builtin_arm_ldaex
|| BuiltinID == AArch64::BI__builtin_arm_strex || BuiltinID ==
AArch64::BI__builtin_arm_stlex) && "unexpected ARM builtin"
) ? static_cast<void> (0) : __assert_fail ("(BuiltinID == ARM::BI__builtin_arm_ldrex || BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex || BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID == AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex || BuiltinID == AArch64::BI__builtin_arm_stlex) && \"unexpected ARM builtin\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 2309, __PRETTY_FUNCTION__))
2309 "unexpected ARM builtin")(((BuiltinID == ARM::BI__builtin_arm_ldrex || BuiltinID == ARM
::BI__builtin_arm_ldaex || BuiltinID == ARM::BI__builtin_arm_strex
|| BuiltinID == ARM::BI__builtin_arm_stlex || BuiltinID == AArch64
::BI__builtin_arm_ldrex || BuiltinID == AArch64::BI__builtin_arm_ldaex
|| BuiltinID == AArch64::BI__builtin_arm_strex || BuiltinID ==
AArch64::BI__builtin_arm_stlex) && "unexpected ARM builtin"
) ? static_cast<void> (0) : __assert_fail ("(BuiltinID == ARM::BI__builtin_arm_ldrex || BuiltinID == ARM::BI__builtin_arm_ldaex || BuiltinID == ARM::BI__builtin_arm_strex || BuiltinID == ARM::BI__builtin_arm_stlex || BuiltinID == AArch64::BI__builtin_arm_ldrex || BuiltinID == AArch64::BI__builtin_arm_ldaex || BuiltinID == AArch64::BI__builtin_arm_strex || BuiltinID == AArch64::BI__builtin_arm_stlex) && \"unexpected ARM builtin\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 2309, __PRETTY_FUNCTION__))
;
2310 bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex ||
2311 BuiltinID == ARM::BI__builtin_arm_ldaex ||
2312 BuiltinID == AArch64::BI__builtin_arm_ldrex ||
2313 BuiltinID == AArch64::BI__builtin_arm_ldaex;
2314
2315 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
2316
2317 // Ensure that we have the proper number of arguments.
2318 if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2))
2319 return true;
2320
2321 // Inspect the pointer argument of the atomic builtin. This should always be
2322 // a pointer type, whose element is an integral scalar or pointer type.
2323 // Because it is a pointer type, we don't have to worry about any implicit
2324 // casts here.
2325 Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
2326 ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg);
2327 if (PointerArgRes.isInvalid())
2328 return true;
2329 PointerArg = PointerArgRes.get();
2330
2331 const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
2332 if (!pointerType) {
2333 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
2334 << PointerArg->getType() << PointerArg->getSourceRange();
2335 return true;
2336 }
2337
2338 // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
2339 // task is to insert the appropriate casts into the AST. First work out just
2340 // what the appropriate type is.
2341 QualType ValType = pointerType->getPointeeType();
2342 QualType AddrType = ValType.getUnqualifiedType().withVolatile();
2343 if (IsLdrex)
2344 AddrType.addConst();
2345
2346 // Issue a warning if the cast is dodgy.
2347 CastKind CastNeeded = CK_NoOp;
2348 if (!AddrType.isAtLeastAsQualifiedAs(ValType)) {
2349 CastNeeded = CK_BitCast;
2350 Diag(DRE->getBeginLoc(), diag::ext_typecheck_convert_discards_qualifiers)
2351 << PointerArg->getType() << Context.getPointerType(AddrType)
2352 << AA_Passing << PointerArg->getSourceRange();
2353 }
2354
2355 // Finally, do the cast and replace the argument with the corrected version.
2356 AddrType = Context.getPointerType(AddrType);
2357 PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded);
2358 if (PointerArgRes.isInvalid())
2359 return true;
2360 PointerArg = PointerArgRes.get();
2361
2362 TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
2363
2364 // In general, we allow ints, floats and pointers to be loaded and stored.
2365 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
2366 !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
2367 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
2368 << PointerArg->getType() << PointerArg->getSourceRange();
2369 return true;
2370 }
2371
2372 // But ARM doesn't have instructions to deal with 128-bit versions.
2373 if (Context.getTypeSize(ValType) > MaxWidth) {
2374 assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate")((MaxWidth == 64 && "Diagnostic unexpectedly inaccurate"
) ? static_cast<void> (0) : __assert_fail ("MaxWidth == 64 && \"Diagnostic unexpectedly inaccurate\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 2374, __PRETTY_FUNCTION__))
;
2375 Diag(DRE->getBeginLoc(), diag::err_atomic_exclusive_builtin_pointer_size)
2376 << PointerArg->getType() << PointerArg->getSourceRange();
2377 return true;
2378 }
2379
2380 switch (ValType.getObjCLifetime()) {
2381 case Qualifiers::OCL_None:
2382 case Qualifiers::OCL_ExplicitNone:
2383 // okay
2384 break;
2385
2386 case Qualifiers::OCL_Weak:
2387 case Qualifiers::OCL_Strong:
2388 case Qualifiers::OCL_Autoreleasing:
2389 Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
2390 << ValType << PointerArg->getSourceRange();
2391 return true;
2392 }
2393
2394 if (IsLdrex) {
2395 TheCall->setType(ValType);
2396 return false;
2397 }
2398
2399 // Initialize the argument to be stored.
2400 ExprResult ValArg = TheCall->getArg(0);
2401 InitializedEntity Entity = InitializedEntity::InitializeParameter(
2402 Context, ValType, /*consume*/ false);
2403 ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
2404 if (ValArg.isInvalid())
2405 return true;
2406 TheCall->setArg(0, ValArg.get());
2407
2408 // __builtin_arm_strex always returns an int. It's marked as such in the .def,
2409 // but the custom checker bypasses all default analysis.
2410 TheCall->setType(Context.IntTy);
2411 return false;
2412}
2413
2414bool Sema::CheckARMBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
2415 CallExpr *TheCall) {
2416 if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
2417 BuiltinID == ARM::BI__builtin_arm_ldaex ||
2418 BuiltinID == ARM::BI__builtin_arm_strex ||
2419 BuiltinID == ARM::BI__builtin_arm_stlex) {
2420 return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64);
2421 }
2422
2423 if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
2424 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
2425 SemaBuiltinConstantArgRange(TheCall, 2, 0, 1);
2426 }
2427
2428 if (BuiltinID == ARM::BI__builtin_arm_rsr64 ||
2429 BuiltinID == ARM::BI__builtin_arm_wsr64)
2430 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false);
2431
2432 if (BuiltinID == ARM::BI__builtin_arm_rsr ||
2433 BuiltinID == ARM::BI__builtin_arm_rsrp ||
2434 BuiltinID == ARM::BI__builtin_arm_wsr ||
2435 BuiltinID == ARM::BI__builtin_arm_wsrp)
2436 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2437
2438 if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall))
2439 return true;
2440 if (CheckMVEBuiltinFunctionCall(BuiltinID, TheCall))
2441 return true;
2442 if (CheckCDEBuiltinFunctionCall(TI, BuiltinID, TheCall))
2443 return true;
2444
2445 // For intrinsics which take an immediate value as part of the instruction,
2446 // range check them here.
2447 // FIXME: VFP Intrinsics should error if VFP not present.
2448 switch (BuiltinID) {
2449 default: return false;
2450 case ARM::BI__builtin_arm_ssat:
2451 return SemaBuiltinConstantArgRange(TheCall, 1, 1, 32);
2452 case ARM::BI__builtin_arm_usat:
2453 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 31);
2454 case ARM::BI__builtin_arm_ssat16:
2455 return SemaBuiltinConstantArgRange(TheCall, 1, 1, 16);
2456 case ARM::BI__builtin_arm_usat16:
2457 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
2458 case ARM::BI__builtin_arm_vcvtr_f:
2459 case ARM::BI__builtin_arm_vcvtr_d:
2460 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
2461 case ARM::BI__builtin_arm_dmb:
2462 case ARM::BI__builtin_arm_dsb:
2463 case ARM::BI__builtin_arm_isb:
2464 case ARM::BI__builtin_arm_dbg:
2465 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15);
2466 case ARM::BI__builtin_arm_cdp:
2467 case ARM::BI__builtin_arm_cdp2:
2468 case ARM::BI__builtin_arm_mcr:
2469 case ARM::BI__builtin_arm_mcr2:
2470 case ARM::BI__builtin_arm_mrc:
2471 case ARM::BI__builtin_arm_mrc2:
2472 case ARM::BI__builtin_arm_mcrr:
2473 case ARM::BI__builtin_arm_mcrr2:
2474 case ARM::BI__builtin_arm_mrrc:
2475 case ARM::BI__builtin_arm_mrrc2:
2476 case ARM::BI__builtin_arm_ldc:
2477 case ARM::BI__builtin_arm_ldcl:
2478 case ARM::BI__builtin_arm_ldc2:
2479 case ARM::BI__builtin_arm_ldc2l:
2480 case ARM::BI__builtin_arm_stc:
2481 case ARM::BI__builtin_arm_stcl:
2482 case ARM::BI__builtin_arm_stc2:
2483 case ARM::BI__builtin_arm_stc2l:
2484 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15) ||
2485 CheckARMCoprocessorImmediate(TI, TheCall->getArg(0),
2486 /*WantCDE*/ false);
2487 }
2488}
2489
2490bool Sema::CheckAArch64BuiltinFunctionCall(const TargetInfo &TI,
2491 unsigned BuiltinID,
2492 CallExpr *TheCall) {
2493 if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
2494 BuiltinID == AArch64::BI__builtin_arm_ldaex ||
2495 BuiltinID == AArch64::BI__builtin_arm_strex ||
2496 BuiltinID == AArch64::BI__builtin_arm_stlex) {
2497 return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128);
2498 }
2499
2500 if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
2501 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
2502 SemaBuiltinConstantArgRange(TheCall, 2, 0, 2) ||
2503 SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) ||
2504 SemaBuiltinConstantArgRange(TheCall, 4, 0, 1);
2505 }
2506
2507 if (BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
2508 BuiltinID == AArch64::BI__builtin_arm_wsr64)
2509 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2510
2511 // Memory Tagging Extensions (MTE) Intrinsics
2512 if (BuiltinID == AArch64::BI__builtin_arm_irg ||
2513 BuiltinID == AArch64::BI__builtin_arm_addg ||
2514 BuiltinID == AArch64::BI__builtin_arm_gmi ||
2515 BuiltinID == AArch64::BI__builtin_arm_ldg ||
2516 BuiltinID == AArch64::BI__builtin_arm_stg ||
2517 BuiltinID == AArch64::BI__builtin_arm_subp) {
2518 return SemaBuiltinARMMemoryTaggingCall(BuiltinID, TheCall);
2519 }
2520
2521 if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
2522 BuiltinID == AArch64::BI__builtin_arm_rsrp ||
2523 BuiltinID == AArch64::BI__builtin_arm_wsr ||
2524 BuiltinID == AArch64::BI__builtin_arm_wsrp)
2525 return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
2526
2527 // Only check the valid encoding range. Any constant in this range would be
2528 // converted to a register of the form S1_2_C3_C4_5. Let the hardware throw
2529 // an exception for incorrect registers. This matches MSVC behavior.
2530 if (BuiltinID == AArch64::BI_ReadStatusReg ||
2531 BuiltinID == AArch64::BI_WriteStatusReg)
2532 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 0x7fff);
2533
2534 if (BuiltinID == AArch64::BI__getReg)
2535 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31);
2536
2537 if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall))
2538 return true;
2539
2540 if (CheckSVEBuiltinFunctionCall(BuiltinID, TheCall))
2541 return true;
2542
2543 // For intrinsics which take an immediate value as part of the instruction,
2544 // range check them here.
2545 unsigned i = 0, l = 0, u = 0;
2546 switch (BuiltinID) {
2547 default: return false;
2548 case AArch64::BI__builtin_arm_dmb:
2549 case AArch64::BI__builtin_arm_dsb:
2550 case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break;
2551 case AArch64::BI__builtin_arm_tcancel: l = 0; u = 65535; break;
2552 }
2553
2554 return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
2555}
2556
2557static bool isValidBPFPreserveFieldInfoArg(Expr *Arg) {
2558 if (Arg->getType()->getAsPlaceholderType())
2559 return false;
2560
2561 // The first argument needs to be a record field access.
2562 // If it is an array element access, we delay decision
2563 // to BPF backend to check whether the access is a
2564 // field access or not.
2565 return (Arg->IgnoreParens()->getObjectKind() == OK_BitField ||
2566 dyn_cast<MemberExpr>(Arg->IgnoreParens()) ||
2567 dyn_cast<ArraySubscriptExpr>(Arg->IgnoreParens()));
2568}
2569
2570static bool isEltOfVectorTy(ASTContext &Context, CallExpr *Call, Sema &S,
2571 QualType VectorTy, QualType EltTy) {
2572 QualType VectorEltTy = VectorTy->castAs<VectorType>()->getElementType();
2573 if (!Context.hasSameType(VectorEltTy, EltTy)) {
2574 S.Diag(Call->getBeginLoc(), diag::err_typecheck_call_different_arg_types)
2575 << Call->getSourceRange() << VectorEltTy << EltTy;
2576 return false;
2577 }
2578 return true;
2579}
2580
2581static bool isValidBPFPreserveTypeInfoArg(Expr *Arg) {
2582 QualType ArgType = Arg->getType();
2583 if (ArgType->getAsPlaceholderType())
2584 return false;
2585
2586 // for TYPE_EXISTENCE/TYPE_SIZEOF reloc type
2587 // format:
2588 // 1. __builtin_preserve_type_info(*(<type> *)0, flag);
2589 // 2. <type> var;
2590 // __builtin_preserve_type_info(var, flag);
2591 if (!dyn_cast<DeclRefExpr>(Arg->IgnoreParens()) &&
2592 !dyn_cast<UnaryOperator>(Arg->IgnoreParens()))
2593 return false;
2594
2595 // Typedef type.
2596 if (ArgType->getAs<TypedefType>())
2597 return true;
2598
2599 // Record type or Enum type.
2600 const Type *Ty = ArgType->getUnqualifiedDesugaredType();
2601 if (const auto *RT = Ty->getAs<RecordType>()) {
2602 if (!RT->getDecl()->getDeclName().isEmpty())
2603 return true;
2604 } else if (const auto *ET = Ty->getAs<EnumType>()) {
2605 if (!ET->getDecl()->getDeclName().isEmpty())
2606 return true;
2607 }
2608
2609 return false;
2610}
2611
2612static bool isValidBPFPreserveEnumValueArg(Expr *Arg) {
2613 QualType ArgType = Arg->getType();
2614 if (ArgType->getAsPlaceholderType())
2615 return false;
2616
2617 // for ENUM_VALUE_EXISTENCE/ENUM_VALUE reloc type
2618 // format:
2619 // __builtin_preserve_enum_value(*(<enum_type> *)<enum_value>,
2620 // flag);
2621 const auto *UO = dyn_cast<UnaryOperator>(Arg->IgnoreParens());
2622 if (!UO)
2623 return false;
2624
2625 const auto *CE = dyn_cast<CStyleCastExpr>(UO->getSubExpr());
2626 if (!CE || CE->getCastKind() != CK_IntegralToPointer)
2627 return false;
2628
2629 // The integer must be from an EnumConstantDecl.
2630 const auto *DR = dyn_cast<DeclRefExpr>(CE->getSubExpr());
2631 if (!DR)
2632 return false;
2633
2634 const EnumConstantDecl *Enumerator =
2635 dyn_cast<EnumConstantDecl>(DR->getDecl());
2636 if (!Enumerator)
2637 return false;
2638
2639 // The type must be EnumType.
2640 const Type *Ty = ArgType->getUnqualifiedDesugaredType();
2641 const auto *ET = Ty->getAs<EnumType>();
2642 if (!ET)
2643 return false;
2644
2645 // The enum value must be supported.
2646 for (auto *EDI : ET->getDecl()->enumerators()) {
2647 if (EDI == Enumerator)
2648 return true;
2649 }
2650
2651 return false;
2652}
2653
2654bool Sema::CheckBPFBuiltinFunctionCall(unsigned BuiltinID,
2655 CallExpr *TheCall) {
2656 assert((BuiltinID == BPF::BI__builtin_preserve_field_info ||(((BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID
== BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info
|| BuiltinID == BPF::BI__builtin_preserve_enum_value) &&
"unexpected BPF builtin") ? static_cast<void> (0) : __assert_fail
("(BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value) && \"unexpected BPF builtin\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 2660, __PRETTY_FUNCTION__))
2657 BuiltinID == BPF::BI__builtin_btf_type_id ||(((BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID
== BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info
|| BuiltinID == BPF::BI__builtin_preserve_enum_value) &&
"unexpected BPF builtin") ? static_cast<void> (0) : __assert_fail
("(BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value) && \"unexpected BPF builtin\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 2660, __PRETTY_FUNCTION__))
2658 BuiltinID == BPF::BI__builtin_preserve_type_info ||(((BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID
== BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info
|| BuiltinID == BPF::BI__builtin_preserve_enum_value) &&
"unexpected BPF builtin") ? static_cast<void> (0) : __assert_fail
("(BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value) && \"unexpected BPF builtin\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 2660, __PRETTY_FUNCTION__))
2659 BuiltinID == BPF::BI__builtin_preserve_enum_value) &&(((BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID
== BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info
|| BuiltinID == BPF::BI__builtin_preserve_enum_value) &&
"unexpected BPF builtin") ? static_cast<void> (0) : __assert_fail
("(BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value) && \"unexpected BPF builtin\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 2660, __PRETTY_FUNCTION__))
2660 "unexpected BPF builtin")(((BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID
== BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info
|| BuiltinID == BPF::BI__builtin_preserve_enum_value) &&
"unexpected BPF builtin") ? static_cast<void> (0) : __assert_fail
("(BuiltinID == BPF::BI__builtin_preserve_field_info || BuiltinID == BPF::BI__builtin_btf_type_id || BuiltinID == BPF::BI__builtin_preserve_type_info || BuiltinID == BPF::BI__builtin_preserve_enum_value) && \"unexpected BPF builtin\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 2660, __PRETTY_FUNCTION__))
;
2661
2662 if (checkArgCount(*this, TheCall, 2))
2663 return true;
2664
2665 // The second argument needs to be a constant int
2666 Expr *Arg = TheCall->getArg(1);
2667 Optional<llvm::APSInt> Value = Arg->getIntegerConstantExpr(Context);
2668 diag::kind kind;
2669 if (!Value) {
2670 if (BuiltinID == BPF::BI__builtin_preserve_field_info)
2671 kind = diag::err_preserve_field_info_not_const;
2672 else if (BuiltinID == BPF::BI__builtin_btf_type_id)
2673 kind = diag::err_btf_type_id_not_const;
2674 else if (BuiltinID == BPF::BI__builtin_preserve_type_info)
2675 kind = diag::err_preserve_type_info_not_const;
2676 else
2677 kind = diag::err_preserve_enum_value_not_const;
2678 Diag(Arg->getBeginLoc(), kind) << 2 << Arg->getSourceRange();
2679 return true;
2680 }
2681
2682 // The first argument
2683 Arg = TheCall->getArg(0);
2684 bool InvalidArg = false;
2685 bool ReturnUnsignedInt = true;
2686 if (BuiltinID == BPF::BI__builtin_preserve_field_info) {
2687 if (!isValidBPFPreserveFieldInfoArg(Arg)) {
2688 InvalidArg = true;
2689 kind = diag::err_preserve_field_info_not_field;
2690 }
2691 } else if (BuiltinID == BPF::BI__builtin_preserve_type_info) {
2692 if (!isValidBPFPreserveTypeInfoArg(Arg)) {
2693 InvalidArg = true;
2694 kind = diag::err_preserve_type_info_invalid;
2695 }
2696 } else if (BuiltinID == BPF::BI__builtin_preserve_enum_value) {
2697 if (!isValidBPFPreserveEnumValueArg(Arg)) {
2698 InvalidArg = true;
2699 kind = diag::err_preserve_enum_value_invalid;
2700 }
2701 ReturnUnsignedInt = false;
2702 } else if (BuiltinID == BPF::BI__builtin_btf_type_id) {
2703 ReturnUnsignedInt = false;
2704 }
2705
2706 if (InvalidArg) {
2707 Diag(Arg->getBeginLoc(), kind) << 1 << Arg->getSourceRange();
2708 return true;
2709 }
2710
2711 if (ReturnUnsignedInt)
2712 TheCall->setType(Context.UnsignedIntTy);
2713 else
2714 TheCall->setType(Context.UnsignedLongTy);
2715 return false;
2716}
2717
2718bool Sema::CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) {
2719 struct ArgInfo {
2720 uint8_t OpNum;
2721 bool IsSigned;
2722 uint8_t BitWidth;
2723 uint8_t Align;
2724 };
2725 struct BuiltinInfo {
2726 unsigned BuiltinID;
2727 ArgInfo Infos[2];
2728 };
2729
2730 static BuiltinInfo Infos[] = {
2731 { Hexagon::BI__builtin_circ_ldd, {{ 3, true, 4, 3 }} },
2732 { Hexagon::BI__builtin_circ_ldw, {{ 3, true, 4, 2 }} },
2733 { Hexagon::BI__builtin_circ_ldh, {{ 3, true, 4, 1 }} },
2734 { Hexagon::BI__builtin_circ_lduh, {{ 3, true, 4, 1 }} },
2735 { Hexagon::BI__builtin_circ_ldb, {{ 3, true, 4, 0 }} },
2736 { Hexagon::BI__builtin_circ_ldub, {{ 3, true, 4, 0 }} },
2737 { Hexagon::BI__builtin_circ_std, {{ 3, true, 4, 3 }} },
2738 { Hexagon::BI__builtin_circ_stw, {{ 3, true, 4, 2 }} },
2739 { Hexagon::BI__builtin_circ_sth, {{ 3, true, 4, 1 }} },
2740 { Hexagon::BI__builtin_circ_sthhi, {{ 3, true, 4, 1 }} },
2741 { Hexagon::BI__builtin_circ_stb, {{ 3, true, 4, 0 }} },
2742
2743 { Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci, {{ 1, true, 4, 0 }} },
2744 { Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci, {{ 1, true, 4, 0 }} },
2745 { Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci, {{ 1, true, 4, 1 }} },
2746 { Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci, {{ 1, true, 4, 1 }} },
2747 { Hexagon::BI__builtin_HEXAGON_L2_loadri_pci, {{ 1, true, 4, 2 }} },
2748 { Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci, {{ 1, true, 4, 3 }} },
2749 { Hexagon::BI__builtin_HEXAGON_S2_storerb_pci, {{ 1, true, 4, 0 }} },
2750 { Hexagon::BI__builtin_HEXAGON_S2_storerh_pci, {{ 1, true, 4, 1 }} },
2751 { Hexagon::BI__builtin_HEXAGON_S2_storerf_pci, {{ 1, true, 4, 1 }} },
2752 { Hexagon::BI__builtin_HEXAGON_S2_storeri_pci, {{ 1, true, 4, 2 }} },
2753 { Hexagon::BI__builtin_HEXAGON_S2_storerd_pci, {{ 1, true, 4, 3 }} },
2754
2755 { Hexagon::BI__builtin_HEXAGON_A2_combineii, {{ 1, true, 8, 0 }} },
2756 { Hexagon::BI__builtin_HEXAGON_A2_tfrih, {{ 1, false, 16, 0 }} },
2757 { Hexagon::BI__builtin_HEXAGON_A2_tfril, {{ 1, false, 16, 0 }} },
2758 { Hexagon::BI__builtin_HEXAGON_A2_tfrpi, {{ 0, true, 8, 0 }} },
2759 { Hexagon::BI__builtin_HEXAGON_A4_bitspliti, {{ 1, false, 5, 0 }} },
2760 { Hexagon::BI__builtin_HEXAGON_A4_cmpbeqi, {{ 1, false, 8, 0 }} },
2761 { Hexagon::BI__builtin_HEXAGON_A4_cmpbgti, {{ 1, true, 8, 0 }} },
2762 { Hexagon::BI__builtin_HEXAGON_A4_cround_ri, {{ 1, false, 5, 0 }} },
2763 { Hexagon::BI__builtin_HEXAGON_A4_round_ri, {{ 1, false, 5, 0 }} },
2764 { Hexagon::BI__builtin_HEXAGON_A4_round_ri_sat, {{ 1, false, 5, 0 }} },
2765 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbeqi, {{ 1, false, 8, 0 }} },
2766 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgti, {{ 1, true, 8, 0 }} },
2767 { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgtui, {{ 1, false, 7, 0 }} },
2768 { Hexagon::BI__builtin_HEXAGON_A4_vcmpheqi, {{ 1, true, 8, 0 }} },
2769 { Hexagon::BI__builtin_HEXAGON_A4_vcmphgti, {{ 1, true, 8, 0 }} },
2770 { Hexagon::BI__builtin_HEXAGON_A4_vcmphgtui, {{ 1, false, 7, 0 }} },
2771 { Hexagon::BI__builtin_HEXAGON_A4_vcmpweqi, {{ 1, true, 8, 0 }} },
2772 { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgti, {{ 1, true, 8, 0 }} },
2773 { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgtui, {{ 1, false, 7, 0 }} },
2774 { Hexagon::BI__builtin_HEXAGON_C2_bitsclri, {{ 1, false, 6, 0 }} },
2775 { Hexagon::BI__builtin_HEXAGON_C2_muxii, {{ 2, true, 8, 0 }} },
2776 { Hexagon::BI__builtin_HEXAGON_C4_nbitsclri, {{ 1, false, 6, 0 }} },
2777 { Hexagon::BI__builtin_HEXAGON_F2_dfclass, {{ 1, false, 5, 0 }} },
2778 { Hexagon::BI__builtin_HEXAGON_F2_dfimm_n, {{ 0, false, 10, 0 }} },
2779 { Hexagon::BI__builtin_HEXAGON_F2_dfimm_p, {{ 0, false, 10, 0 }} },
2780 { Hexagon::BI__builtin_HEXAGON_F2_sfclass, {{ 1, false, 5, 0 }} },
2781 { Hexagon::BI__builtin_HEXAGON_F2_sfimm_n, {{ 0, false, 10, 0 }} },
2782 { Hexagon::BI__builtin_HEXAGON_F2_sfimm_p, {{ 0, false, 10, 0 }} },
2783 { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addi, {{ 2, false, 6, 0 }} },
2784 { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addr_u2, {{ 1, false, 6, 2 }} },
2785 { Hexagon::BI__builtin_HEXAGON_S2_addasl_rrri, {{ 2, false, 3, 0 }} },
2786 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_acc, {{ 2, false, 6, 0 }} },
2787 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_and, {{ 2, false, 6, 0 }} },
2788 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p, {{ 1, false, 6, 0 }} },
2789 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_nac, {{ 2, false, 6, 0 }} },
2790 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_or, {{ 2, false, 6, 0 }} },
2791 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_xacc, {{ 2, false, 6, 0 }} },
2792 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_acc, {{ 2, false, 5, 0 }} },
2793 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_and, {{ 2, false, 5, 0 }} },
2794 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r, {{ 1, false, 5, 0 }} },
2795 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_nac, {{ 2, false, 5, 0 }} },
2796 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_or, {{ 2, false, 5, 0 }} },
2797 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_sat, {{ 1, false, 5, 0 }} },
2798 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_xacc, {{ 2, false, 5, 0 }} },
2799 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vh, {{ 1, false, 4, 0 }} },
2800 { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vw, {{ 1, false, 5, 0 }} },
2801 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_acc, {{ 2, false, 6, 0 }} },
2802 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_and, {{ 2, false, 6, 0 }} },
2803 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p, {{ 1, false, 6, 0 }} },
2804 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_nac, {{ 2, false, 6, 0 }} },
2805 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_or, {{ 2, false, 6, 0 }} },
2806 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd_goodsyntax,
2807 {{ 1, false, 6, 0 }} },
2808 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd, {{ 1, false, 6, 0 }} },
2809 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_acc, {{ 2, false, 5, 0 }} },
2810 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_and, {{ 2, false, 5, 0 }} },
2811 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r, {{ 1, false, 5, 0 }} },
2812 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_nac, {{ 2, false, 5, 0 }} },
2813 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_or, {{ 2, false, 5, 0 }} },
2814 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd_goodsyntax,
2815 {{ 1, false, 5, 0 }} },
2816 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd, {{ 1, false, 5, 0 }} },
2817 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_svw_trun, {{ 1, false, 5, 0 }} },
2818 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vh, {{ 1, false, 4, 0 }} },
2819 { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vw, {{ 1, false, 5, 0 }} },
2820 { Hexagon::BI__builtin_HEXAGON_S2_clrbit_i, {{ 1, false, 5, 0 }} },
2821 { Hexagon::BI__builtin_HEXAGON_S2_extractu, {{ 1, false, 5, 0 },
2822 { 2, false, 5, 0 }} },
2823 { Hexagon::BI__builtin_HEXAGON_S2_extractup, {{ 1, false, 6, 0 },
2824 { 2, false, 6, 0 }} },
2825 { Hexagon::BI__builtin_HEXAGON_S2_insert, {{ 2, false, 5, 0 },
2826 { 3, false, 5, 0 }} },
2827 { Hexagon::BI__builtin_HEXAGON_S2_insertp, {{ 2, false, 6, 0 },
2828 { 3, false, 6, 0 }} },
2829 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_acc, {{ 2, false, 6, 0 }} },
2830 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_and, {{ 2, false, 6, 0 }} },
2831 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p, {{ 1, false, 6, 0 }} },
2832 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_nac, {{ 2, false, 6, 0 }} },
2833 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_or, {{ 2, false, 6, 0 }} },
2834 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_xacc, {{ 2, false, 6, 0 }} },
2835 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_acc, {{ 2, false, 5, 0 }} },
2836 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_and, {{ 2, false, 5, 0 }} },
2837 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r, {{ 1, false, 5, 0 }} },
2838 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_nac, {{ 2, false, 5, 0 }} },
2839 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_or, {{ 2, false, 5, 0 }} },
2840 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_xacc, {{ 2, false, 5, 0 }} },
2841 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vh, {{ 1, false, 4, 0 }} },
2842 { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vw, {{ 1, false, 5, 0 }} },
2843 { Hexagon::BI__builtin_HEXAGON_S2_setbit_i, {{ 1, false, 5, 0 }} },
2844 { Hexagon::BI__builtin_HEXAGON_S2_tableidxb_goodsyntax,
2845 {{ 2, false, 4, 0 },
2846 { 3, false, 5, 0 }} },
2847 { Hexagon::BI__builtin_HEXAGON_S2_tableidxd_goodsyntax,
2848 {{ 2, false, 4, 0 },
2849 { 3, false, 5, 0 }} },
2850 { Hexagon::BI__builtin_HEXAGON_S2_tableidxh_goodsyntax,
2851 {{ 2, false, 4, 0 },
2852 { 3, false, 5, 0 }} },
2853 { Hexagon::BI__builtin_HEXAGON_S2_tableidxw_goodsyntax,
2854 {{ 2, false, 4, 0 },
2855 { 3, false, 5, 0 }} },
2856 { Hexagon::BI__builtin_HEXAGON_S2_togglebit_i, {{ 1, false, 5, 0 }} },
2857 { Hexagon::BI__builtin_HEXAGON_S2_tstbit_i, {{ 1, false, 5, 0 }} },
2858 { Hexagon::BI__builtin_HEXAGON_S2_valignib, {{ 2, false, 3, 0 }} },
2859 { Hexagon::BI__builtin_HEXAGON_S2_vspliceib, {{ 2, false, 3, 0 }} },
2860 { Hexagon::BI__builtin_HEXAGON_S4_addi_asl_ri, {{ 2, false, 5, 0 }} },
2861 { Hexagon::BI__builtin_HEXAGON_S4_addi_lsr_ri, {{ 2, false, 5, 0 }} },
2862 { Hexagon::BI__builtin_HEXAGON_S4_andi_asl_ri, {{ 2, false, 5, 0 }} },
2863 { Hexagon::BI__builtin_HEXAGON_S4_andi_lsr_ri, {{ 2, false, 5, 0 }} },
2864 { Hexagon::BI__builtin_HEXAGON_S4_clbaddi, {{ 1, true , 6, 0 }} },
2865 { Hexagon::BI__builtin_HEXAGON_S4_clbpaddi, {{ 1, true, 6, 0 }} },
2866 { Hexagon::BI__builtin_HEXAGON_S4_extract, {{ 1, false, 5, 0 },
2867 { 2, false, 5, 0 }} },
2868 { Hexagon::BI__builtin_HEXAGON_S4_extractp, {{ 1, false, 6, 0 },
2869 { 2, false, 6, 0 }} },
2870 { Hexagon::BI__builtin_HEXAGON_S4_lsli, {{ 0, true, 6, 0 }} },
2871 { Hexagon::BI__builtin_HEXAGON_S4_ntstbit_i, {{ 1, false, 5, 0 }} },
2872 { Hexagon::BI__builtin_HEXAGON_S4_ori_asl_ri, {{ 2, false, 5, 0 }} },
2873 { Hexagon::BI__builtin_HEXAGON_S4_ori_lsr_ri, {{ 2, false, 5, 0 }} },
2874 { Hexagon::BI__builtin_HEXAGON_S4_subi_asl_ri, {{ 2, false, 5, 0 }} },
2875 { Hexagon::BI__builtin_HEXAGON_S4_subi_lsr_ri, {{ 2, false, 5, 0 }} },
2876 { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate_acc, {{ 3, false, 2, 0 }} },
2877 { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate, {{ 2, false, 2, 0 }} },
2878 { Hexagon::BI__builtin_HEXAGON_S5_asrhub_rnd_sat_goodsyntax,
2879 {{ 1, false, 4, 0 }} },
2880 { Hexagon::BI__builtin_HEXAGON_S5_asrhub_sat, {{ 1, false, 4, 0 }} },
2881 { Hexagon::BI__builtin_HEXAGON_S5_vasrhrnd_goodsyntax,
2882 {{ 1, false, 4, 0 }} },
2883 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p, {{ 1, false, 6, 0 }} },
2884 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc, {{ 2, false, 6, 0 }} },
2885 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and, {{ 2, false, 6, 0 }} },
2886 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac, {{ 2, false, 6, 0 }} },
2887 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or, {{ 2, false, 6, 0 }} },
2888 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc, {{ 2, false, 6, 0 }} },
2889 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r, {{ 1, false, 5, 0 }} },
2890 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc, {{ 2, false, 5, 0 }} },
2891 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and, {{ 2, false, 5, 0 }} },
2892 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac, {{ 2, false, 5, 0 }} },
2893 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or, {{ 2, false, 5, 0 }} },
2894 { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc, {{ 2, false, 5, 0 }} },
2895 { Hexagon::BI__builtin_HEXAGON_V6_valignbi, {{ 2, false, 3, 0 }} },
2896 { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B, {{ 2, false, 3, 0 }} },
2897 { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi, {{ 2, false, 3, 0 }} },
2898 { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, {{ 2, false, 3, 0 }} },
2899 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi, {{ 2, false, 1, 0 }} },
2900 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, {{ 2, false, 1, 0 }} },
2901 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc, {{ 3, false, 1, 0 }} },
2902 { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B,
2903 {{ 3, false, 1, 0 }} },
2904 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi, {{ 2, false, 1, 0 }} },
2905 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B, {{ 2, false, 1, 0 }} },
2906 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc, {{ 3, false, 1, 0 }} },
2907 { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B,
2908 {{ 3, false, 1, 0 }} },
2909 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi, {{ 2, false, 1, 0 }} },
2910 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B, {{ 2, false, 1, 0 }} },
2911 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc, {{ 3, false, 1, 0 }} },
2912 { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B,
2913 {{ 3, false, 1, 0 }} },
2914 };
2915
2916 // Use a dynamically initialized static to sort the table exactly once on
2917 // first run.
2918 static const bool SortOnce =
2919 (llvm::sort(Infos,
2920 [](const BuiltinInfo &LHS, const BuiltinInfo &RHS) {
2921 return LHS.BuiltinID < RHS.BuiltinID;
2922 }),
2923 true);
2924 (void)SortOnce;
2925
2926 const BuiltinInfo *F = llvm::partition_point(
2927 Infos, [=](const BuiltinInfo &BI) { return BI.BuiltinID < BuiltinID; });
2928 if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
2929 return false;
2930
2931 bool Error = false;
2932
2933 for (const ArgInfo &A : F->Infos) {
2934 // Ignore empty ArgInfo elements.
2935 if (A.BitWidth == 0)
2936 continue;
2937
2938 int32_t Min = A.IsSigned ? -(1 << (A.BitWidth - 1)) : 0;
2939 int32_t Max = (1 << (A.IsSigned ? A.BitWidth - 1 : A.BitWidth)) - 1;
2940 if (!A.Align) {
2941 Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max);
2942 } else {
2943 unsigned M = 1 << A.Align;
2944 Min *= M;
2945 Max *= M;
2946 Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max) |
2947 SemaBuiltinConstantArgMultiple(TheCall, A.OpNum, M);
2948 }
2949 }
2950 return Error;
2951}
2952
2953bool Sema::CheckHexagonBuiltinFunctionCall(unsigned BuiltinID,
2954 CallExpr *TheCall) {
2955 return CheckHexagonBuiltinArgument(BuiltinID, TheCall);
2956}
2957
2958bool Sema::CheckMipsBuiltinFunctionCall(const TargetInfo &TI,
2959 unsigned BuiltinID, CallExpr *TheCall) {
2960 return CheckMipsBuiltinCpu(TI, BuiltinID, TheCall) ||
2961 CheckMipsBuiltinArgument(BuiltinID, TheCall);
2962}
2963
2964bool Sema::CheckMipsBuiltinCpu(const TargetInfo &TI, unsigned BuiltinID,
2965 CallExpr *TheCall) {
2966
2967 if (Mips::BI__builtin_mips_addu_qb <= BuiltinID &&
2968 BuiltinID <= Mips::BI__builtin_mips_lwx) {
2969 if (!TI.hasFeature("dsp"))
2970 return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_dsp);
2971 }
2972
2973 if (Mips::BI__builtin_mips_absq_s_qb <= BuiltinID &&
2974 BuiltinID <= Mips::BI__builtin_mips_subuh_r_qb) {
2975 if (!TI.hasFeature("dspr2"))
2976 return Diag(TheCall->getBeginLoc(),
2977 diag::err_mips_builtin_requires_dspr2);
2978 }
2979
2980 if (Mips::BI__builtin_msa_add_a_b <= BuiltinID &&
2981 BuiltinID <= Mips::BI__builtin_msa_xori_b) {
2982 if (!TI.hasFeature("msa"))
2983 return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_msa);
2984 }
2985
2986 return false;
2987}
2988
2989// CheckMipsBuiltinArgument - Checks the constant value passed to the
2990// intrinsic is correct. The switch statement is ordered by DSP, MSA. The
2991// ordering for DSP is unspecified. MSA is ordered by the data format used
2992// by the underlying instruction i.e., df/m, df/n and then by size.
2993//
2994// FIXME: The size tests here should instead be tablegen'd along with the
2995// definitions from include/clang/Basic/BuiltinsMips.def.
2996// FIXME: GCC is strict on signedness for some of these intrinsics, we should
2997// be too.
2998bool Sema::CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) {
2999 unsigned i = 0, l = 0, u = 0, m = 0;
3000 switch (BuiltinID) {
3001 default: return false;
3002 case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
3003 case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
3004 case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
3005 case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
3006 case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
3007 case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
3008 case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
3009 // MSA intrinsics. Instructions (which the intrinsics maps to) which use the
3010 // df/m field.
3011 // These intrinsics take an unsigned 3 bit immediate.
3012 case Mips::BI__builtin_msa_bclri_b:
3013 case Mips::BI__builtin_msa_bnegi_b:
3014 case Mips::BI__builtin_msa_bseti_b:
3015 case Mips::BI__builtin_msa_sat_s_b:
3016 case Mips::BI__builtin_msa_sat_u_b:
3017 case Mips::BI__builtin_msa_slli_b:
3018 case Mips::BI__builtin_msa_srai_b:
3019 case Mips::BI__builtin_msa_srari_b:
3020 case Mips::BI__builtin_msa_srli_b:
3021 case Mips::BI__builtin_msa_srlri_b: i = 1; l = 0; u = 7; break;
3022 case Mips::BI__builtin_msa_binsli_b:
3023 case Mips::BI__builtin_msa_binsri_b: i = 2; l = 0; u = 7; break;
3024 // These intrinsics take an unsigned 4 bit immediate.
3025 case Mips::BI__builtin_msa_bclri_h:
3026 case Mips::BI__builtin_msa_bnegi_h:
3027 case Mips::BI__builtin_msa_bseti_h:
3028 case Mips::BI__builtin_msa_sat_s_h:
3029 case Mips::BI__builtin_msa_sat_u_h:
3030 case Mips::BI__builtin_msa_slli_h:
3031 case Mips::BI__builtin_msa_srai_h:
3032 case Mips::BI__builtin_msa_srari_h:
3033 case Mips::BI__builtin_msa_srli_h:
3034 case Mips::BI__builtin_msa_srlri_h: i = 1; l = 0; u = 15; break;
3035 case Mips::BI__builtin_msa_binsli_h:
3036 case Mips::BI__builtin_msa_binsri_h: i = 2; l = 0; u = 15; break;
3037 // These intrinsics take an unsigned 5 bit immediate.
3038 // The first block of intrinsics actually have an unsigned 5 bit field,
3039 // not a df/n field.
3040 case Mips::BI__builtin_msa_cfcmsa:
3041 case Mips::BI__builtin_msa_ctcmsa: i = 0; l = 0; u = 31; break;
3042 case Mips::BI__builtin_msa_clei_u_b:
3043 case Mips::BI__builtin_msa_clei_u_h:
3044 case Mips::BI__builtin_msa_clei_u_w:
3045 case Mips::BI__builtin_msa_clei_u_d:
3046 case Mips::BI__builtin_msa_clti_u_b:
3047 case Mips::BI__builtin_msa_clti_u_h:
3048 case Mips::BI__builtin_msa_clti_u_w:
3049 case Mips::BI__builtin_msa_clti_u_d:
3050 case Mips::BI__builtin_msa_maxi_u_b:
3051 case Mips::BI__builtin_msa_maxi_u_h:
3052 case Mips::BI__builtin_msa_maxi_u_w:
3053 case Mips::BI__builtin_msa_maxi_u_d:
3054 case Mips::BI__builtin_msa_mini_u_b:
3055 case Mips::BI__builtin_msa_mini_u_h:
3056 case Mips::BI__builtin_msa_mini_u_w:
3057 case Mips::BI__builtin_msa_mini_u_d:
3058 case Mips::BI__builtin_msa_addvi_b:
3059 case Mips::BI__builtin_msa_addvi_h:
3060 case Mips::BI__builtin_msa_addvi_w:
3061 case Mips::BI__builtin_msa_addvi_d:
3062 case Mips::BI__builtin_msa_bclri_w:
3063 case Mips::BI__builtin_msa_bnegi_w:
3064 case Mips::BI__builtin_msa_bseti_w:
3065 case Mips::BI__builtin_msa_sat_s_w:
3066 case Mips::BI__builtin_msa_sat_u_w:
3067 case Mips::BI__builtin_msa_slli_w:
3068 case Mips::BI__builtin_msa_srai_w:
3069 case Mips::BI__builtin_msa_srari_w:
3070 case Mips::BI__builtin_msa_srli_w:
3071 case Mips::BI__builtin_msa_srlri_w:
3072 case Mips::BI__builtin_msa_subvi_b:
3073 case Mips::BI__builtin_msa_subvi_h:
3074 case Mips::BI__builtin_msa_subvi_w:
3075 case Mips::BI__builtin_msa_subvi_d: i = 1; l = 0; u = 31; break;
3076 case Mips::BI__builtin_msa_binsli_w:
3077 case Mips::BI__builtin_msa_binsri_w: i = 2; l = 0; u = 31; break;
3078 // These intrinsics take an unsigned 6 bit immediate.
3079 case Mips::BI__builtin_msa_bclri_d:
3080 case Mips::BI__builtin_msa_bnegi_d:
3081 case Mips::BI__builtin_msa_bseti_d:
3082 case Mips::BI__builtin_msa_sat_s_d:
3083 case Mips::BI__builtin_msa_sat_u_d:
3084 case Mips::BI__builtin_msa_slli_d:
3085 case Mips::BI__builtin_msa_srai_d:
3086 case Mips::BI__builtin_msa_srari_d:
3087 case Mips::BI__builtin_msa_srli_d:
3088 case Mips::BI__builtin_msa_srlri_d: i = 1; l = 0; u = 63; break;
3089 case Mips::BI__builtin_msa_binsli_d:
3090 case Mips::BI__builtin_msa_binsri_d: i = 2; l = 0; u = 63; break;
3091 // These intrinsics take a signed 5 bit immediate.
3092 case Mips::BI__builtin_msa_ceqi_b:
3093 case Mips::BI__builtin_msa_ceqi_h:
3094 case Mips::BI__builtin_msa_ceqi_w:
3095 case Mips::BI__builtin_msa_ceqi_d:
3096 case Mips::BI__builtin_msa_clti_s_b:
3097 case Mips::BI__builtin_msa_clti_s_h:
3098 case Mips::BI__builtin_msa_clti_s_w:
3099 case Mips::BI__builtin_msa_clti_s_d:
3100 case Mips::BI__builtin_msa_clei_s_b:
3101 case Mips::BI__builtin_msa_clei_s_h:
3102 case Mips::BI__builtin_msa_clei_s_w:
3103 case Mips::BI__builtin_msa_clei_s_d:
3104 case Mips::BI__builtin_msa_maxi_s_b:
3105 case Mips::BI__builtin_msa_maxi_s_h:
3106 case Mips::BI__builtin_msa_maxi_s_w:
3107 case Mips::BI__builtin_msa_maxi_s_d:
3108 case Mips::BI__builtin_msa_mini_s_b:
3109 case Mips::BI__builtin_msa_mini_s_h:
3110 case Mips::BI__builtin_msa_mini_s_w:
3111 case Mips::BI__builtin_msa_mini_s_d: i = 1; l = -16; u = 15; break;
3112 // These intrinsics take an unsigned 8 bit immediate.
3113 case Mips::BI__builtin_msa_andi_b:
3114 case Mips::BI__builtin_msa_nori_b:
3115 case Mips::BI__builtin_msa_ori_b:
3116 case Mips::BI__builtin_msa_shf_b:
3117 case Mips::BI__builtin_msa_shf_h:
3118 case Mips::BI__builtin_msa_shf_w:
3119 case Mips::BI__builtin_msa_xori_b: i = 1; l = 0; u = 255; break;
3120 case Mips::BI__builtin_msa_bseli_b:
3121 case Mips::BI__builtin_msa_bmnzi_b:
3122 case Mips::BI__builtin_msa_bmzi_b: i = 2; l = 0; u = 255; break;
3123 // df/n format
3124 // These intrinsics take an unsigned 4 bit immediate.
3125 case Mips::BI__builtin_msa_copy_s_b:
3126 case Mips::BI__builtin_msa_copy_u_b:
3127 case Mips::BI__builtin_msa_insve_b:
3128 case Mips::BI__builtin_msa_splati_b: i = 1; l = 0; u = 15; break;
3129 case Mips::BI__builtin_msa_sldi_b: i = 2; l = 0; u = 15; break;
3130 // These intrinsics take an unsigned 3 bit immediate.
3131 case Mips::BI__builtin_msa_copy_s_h:
3132 case Mips::BI__builtin_msa_copy_u_h:
3133 case Mips::BI__builtin_msa_insve_h:
3134 case Mips::BI__builtin_msa_splati_h: i = 1; l = 0; u = 7; break;
3135 case Mips::BI__builtin_msa_sldi_h: i = 2; l = 0; u = 7; break;
3136 // These intrinsics take an unsigned 2 bit immediate.
3137 case Mips::BI__builtin_msa_copy_s_w:
3138 case Mips::BI__builtin_msa_copy_u_w:
3139 case Mips::BI__builtin_msa_insve_w:
3140 case Mips::BI__builtin_msa_splati_w: i = 1; l = 0; u = 3; break;
3141 case Mips::BI__builtin_msa_sldi_w: i = 2; l = 0; u = 3; break;
3142 // These intrinsics take an unsigned 1 bit immediate.
3143 case Mips::BI__builtin_msa_copy_s_d:
3144 case Mips::BI__builtin_msa_copy_u_d:
3145 case Mips::BI__builtin_msa_insve_d:
3146 case Mips::BI__builtin_msa_splati_d: i = 1; l = 0; u = 1; break;
3147 case Mips::BI__builtin_msa_sldi_d: i = 2; l = 0; u = 1; break;
3148 // Memory offsets and immediate loads.
3149 // These intrinsics take a signed 10 bit immediate.
3150 case Mips::BI__builtin_msa_ldi_b: i = 0; l = -128; u = 255; break;
3151 case Mips::BI__builtin_msa_ldi_h:
3152 case Mips::BI__builtin_msa_ldi_w:
3153 case Mips::BI__builtin_msa_ldi_d: i = 0; l = -512; u = 511; break;
3154 case Mips::BI__builtin_msa_ld_b: i = 1; l = -512; u = 511; m = 1; break;
3155 case Mips::BI__builtin_msa_ld_h: i = 1; l = -1024; u = 1022; m = 2; break;
3156 case Mips::BI__builtin_msa_ld_w: i = 1; l = -2048; u = 2044; m = 4; break;
3157 case Mips::BI__builtin_msa_ld_d: i = 1; l = -4096; u = 4088; m = 8; break;
3158 case Mips::BI__builtin_msa_ldr_d: i = 1; l = -4096; u = 4088; m = 8; break;
3159 case Mips::BI__builtin_msa_ldr_w: i = 1; l = -2048; u = 2044; m = 4; break;
3160 case Mips::BI__builtin_msa_st_b: i = 2; l = -512; u = 511; m = 1; break;
3161 case Mips::BI__builtin_msa_st_h: i = 2; l = -1024; u = 1022; m = 2; break;
3162 case Mips::BI__builtin_msa_st_w: i = 2; l = -2048; u = 2044; m = 4; break;
3163 case Mips::BI__builtin_msa_st_d: i = 2; l = -4096; u = 4088; m = 8; break;
3164 case Mips::BI__builtin_msa_str_d: i = 2; l = -4096; u = 4088; m = 8; break;
3165 case Mips::BI__builtin_msa_str_w: i = 2; l = -2048; u = 2044; m = 4; break;
3166 }
3167
3168 if (!m)
3169 return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3170
3171 return SemaBuiltinConstantArgRange(TheCall, i, l, u) ||
3172 SemaBuiltinConstantArgMultiple(TheCall, i, m);
3173}
3174
3175/// DecodePPCMMATypeFromStr - This decodes one PPC MMA type descriptor from Str,
3176/// advancing the pointer over the consumed characters. The decoded type is
3177/// returned. If the decoded type represents a constant integer with a
3178/// constraint on its value then Mask is set to that value. The type descriptors
3179/// used in Str are specific to PPC MMA builtins and are documented in the file
3180/// defining the PPC builtins.
3181static QualType DecodePPCMMATypeFromStr(ASTContext &Context, const char *&Str,
3182 unsigned &Mask) {
3183 bool RequireICE = false;
3184 ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
3185 switch (*Str++) {
3186 case 'V':
3187 return Context.getVectorType(Context.UnsignedCharTy, 16,
3188 VectorType::VectorKind::AltiVecVector);
3189 case 'i': {
3190 char *End;
3191 unsigned size = strtoul(Str, &End, 10);
3192 assert(End != Str && "Missing constant parameter constraint")((End != Str && "Missing constant parameter constraint"
) ? static_cast<void> (0) : __assert_fail ("End != Str && \"Missing constant parameter constraint\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 3192, __PRETTY_FUNCTION__))
;
3193 Str = End;
3194 Mask = size;
3195 return Context.IntTy;
3196 }
3197 case 'W': {
3198 char *End;
3199 unsigned size = strtoul(Str, &End, 10);
3200 assert(End != Str && "Missing PowerPC MMA type size")((End != Str && "Missing PowerPC MMA type size") ? static_cast
<void> (0) : __assert_fail ("End != Str && \"Missing PowerPC MMA type size\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 3200, __PRETTY_FUNCTION__))
;
3201 Str = End;
3202 QualType Type;
3203 switch (size) {
3204 #define PPC_VECTOR_TYPE(typeName, Id, size) \
3205 case size: Type = Context.Id##Ty; break;
3206 #include "clang/Basic/PPCTypes.def"
3207 default: llvm_unreachable("Invalid PowerPC MMA vector type")::llvm::llvm_unreachable_internal("Invalid PowerPC MMA vector type"
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 3207)
;
3208 }
3209 bool CheckVectorArgs = false;
3210 while (!CheckVectorArgs) {
3211 switch (*Str++) {
3212 case '*':
3213 Type = Context.getPointerType(Type);
3214 break;
3215 case 'C':
3216 Type = Type.withConst();
3217 break;
3218 default:
3219 CheckVectorArgs = true;
3220 --Str;
3221 break;
3222 }
3223 }
3224 return Type;
3225 }
3226 default:
3227 return Context.DecodeTypeStr(--Str, Context, Error, RequireICE, true);
3228 }
3229}
3230
3231bool Sema::CheckPPCBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
3232 CallExpr *TheCall) {
3233 unsigned i = 0, l = 0, u = 0;
3234 bool Is64BitBltin = BuiltinID == PPC::BI__builtin_divde ||
3235 BuiltinID == PPC::BI__builtin_divdeu ||
3236 BuiltinID == PPC::BI__builtin_bpermd;
3237 bool IsTarget64Bit = TI.getTypeWidth(TI.getIntPtrType()) == 64;
3238 bool IsBltinExtDiv = BuiltinID == PPC::BI__builtin_divwe ||
3239 BuiltinID == PPC::BI__builtin_divweu ||
3240 BuiltinID == PPC::BI__builtin_divde ||
3241 BuiltinID == PPC::BI__builtin_divdeu;
3242
3243 if (Is64BitBltin && !IsTarget64Bit)
3244 return Diag(TheCall->getBeginLoc(), diag::err_64_bit_builtin_32_bit_tgt)
3245 << TheCall->getSourceRange();
3246
3247 if ((IsBltinExtDiv && !TI.hasFeature("extdiv")) ||
3248 (BuiltinID == PPC::BI__builtin_bpermd && !TI.hasFeature("bpermd")))
3249 return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7)
3250 << TheCall->getSourceRange();
3251
3252 auto SemaVSXCheck = [&](CallExpr *TheCall) -> bool {
3253 if (!TI.hasFeature("vsx"))
3254 return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_only_on_pwr7)
3255 << TheCall->getSourceRange();
3256 return false;
3257 };
3258
3259 switch (BuiltinID) {
3260 default: return false;
3261 case PPC::BI__builtin_altivec_crypto_vshasigmaw:
3262 case PPC::BI__builtin_altivec_crypto_vshasigmad:
3263 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
3264 SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
3265 case PPC::BI__builtin_altivec_dss:
3266 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3);
3267 case PPC::BI__builtin_tbegin:
3268 case PPC::BI__builtin_tend: i = 0; l = 0; u = 1; break;
3269 case PPC::BI__builtin_tsr: i = 0; l = 0; u = 7; break;
3270 case PPC::BI__builtin_tabortwc:
3271 case PPC::BI__builtin_tabortdc: i = 0; l = 0; u = 31; break;
3272 case PPC::BI__builtin_tabortwci:
3273 case PPC::BI__builtin_tabortdci:
3274 return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) ||
3275 SemaBuiltinConstantArgRange(TheCall, 2, 0, 31);
3276 case PPC::BI__builtin_altivec_dst:
3277 case PPC::BI__builtin_altivec_dstt:
3278 case PPC::BI__builtin_altivec_dstst:
3279 case PPC::BI__builtin_altivec_dststt:
3280 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 3);
3281 case PPC::BI__builtin_vsx_xxpermdi:
3282 case PPC::BI__builtin_vsx_xxsldwi:
3283 return SemaBuiltinVSX(TheCall);
3284 case PPC::BI__builtin_unpack_vector_int128:
3285 return SemaVSXCheck(TheCall) ||
3286 SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
3287 case PPC::BI__builtin_pack_vector_int128:
3288 return SemaVSXCheck(TheCall);
3289 case PPC::BI__builtin_altivec_vgnb:
3290 return SemaBuiltinConstantArgRange(TheCall, 1, 2, 7);
3291 case PPC::BI__builtin_altivec_vec_replace_elt:
3292 case PPC::BI__builtin_altivec_vec_replace_unaligned: {
3293 QualType VecTy = TheCall->getArg(0)->getType();
3294 QualType EltTy = TheCall->getArg(1)->getType();
3295 unsigned Width = Context.getIntWidth(EltTy);
3296 return SemaBuiltinConstantArgRange(TheCall, 2, 0, Width == 32 ? 12 : 8) ||
3297 !isEltOfVectorTy(Context, TheCall, *this, VecTy, EltTy);
3298 }
3299 case PPC::BI__builtin_vsx_xxeval:
3300 return SemaBuiltinConstantArgRange(TheCall, 3, 0, 255);
3301 case PPC::BI__builtin_altivec_vsldbi:
3302 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7);
3303 case PPC::BI__builtin_altivec_vsrdbi:
3304 return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7);
3305 case PPC::BI__builtin_vsx_xxpermx:
3306 return SemaBuiltinConstantArgRange(TheCall, 3, 0, 7);
3307#define CUSTOM_BUILTIN(Name, Types, Acc) \
3308 case PPC::BI__builtin_##Name: \
3309 return SemaBuiltinPPCMMACall(TheCall, Types);
3310#include "clang/Basic/BuiltinsPPC.def"
3311 }
3312 return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3313}
3314
3315// Check if the given type is a non-pointer PPC MMA type. This function is used
3316// in Sema to prevent invalid uses of restricted PPC MMA types.
3317bool Sema::CheckPPCMMAType(QualType Type, SourceLocation TypeLoc) {
3318 if (Type->isPointerType() || Type->isArrayType())
3319 return false;
3320
3321 QualType CoreType = Type.getCanonicalType().getUnqualifiedType();
3322#define PPC_VECTOR_TYPE(Name, Id, Size) || CoreType == Context.Id##Ty
3323 if (false
3324#include "clang/Basic/PPCTypes.def"
3325 ) {
3326 Diag(TypeLoc, diag::err_ppc_invalid_use_mma_type);
3327 return true;
3328 }
3329 return false;
3330}
3331
3332bool Sema::CheckAMDGCNBuiltinFunctionCall(unsigned BuiltinID,
3333 CallExpr *TheCall) {
3334 // position of memory order and scope arguments in the builtin
3335 unsigned OrderIndex, ScopeIndex;
3336 switch (BuiltinID) {
3337 case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
3338 case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
3339 case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
3340 case AMDGPU::BI__builtin_amdgcn_atomic_dec64:
3341 OrderIndex = 2;
3342 ScopeIndex = 3;
3343 break;
3344 case AMDGPU::BI__builtin_amdgcn_fence:
3345 OrderIndex = 0;
3346 ScopeIndex = 1;
3347 break;
3348 default:
3349 return false;
3350 }
3351
3352 ExprResult Arg = TheCall->getArg(OrderIndex);
3353 auto ArgExpr = Arg.get();
3354 Expr::EvalResult ArgResult;
3355
3356 if (!ArgExpr->EvaluateAsInt(ArgResult, Context))
3357 return Diag(ArgExpr->getExprLoc(), diag::err_typecheck_expect_int)
3358 << ArgExpr->getType();
3359 int ord = ArgResult.Val.getInt().getZExtValue();
3360
3361 // Check valididty of memory ordering as per C11 / C++11's memody model.
3362 switch (static_cast<llvm::AtomicOrderingCABI>(ord)) {
3363 case llvm::AtomicOrderingCABI::acquire:
3364 case llvm::AtomicOrderingCABI::release:
3365 case llvm::AtomicOrderingCABI::acq_rel:
3366 case llvm::AtomicOrderingCABI::seq_cst:
3367 break;
3368 default: {
3369 return Diag(ArgExpr->getBeginLoc(),
3370 diag::warn_atomic_op_has_invalid_memory_order)
3371 << ArgExpr->getSourceRange();
3372 }
3373 }
3374
3375 Arg = TheCall->getArg(ScopeIndex);
3376 ArgExpr = Arg.get();
3377 Expr::EvalResult ArgResult1;
3378 // Check that sync scope is a constant literal
3379 if (!ArgExpr->EvaluateAsConstantExpr(ArgResult1, Context))
3380 return Diag(ArgExpr->getExprLoc(), diag::err_expr_not_string_literal)
3381 << ArgExpr->getType();
3382
3383 return false;
3384}
3385
3386bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID,
3387 CallExpr *TheCall) {
3388 if (BuiltinID == SystemZ::BI__builtin_tabort) {
3389 Expr *Arg = TheCall->getArg(0);
3390 if (Optional<llvm::APSInt> AbortCode = Arg->getIntegerConstantExpr(Context))
3391 if (AbortCode->getSExtValue() >= 0 && AbortCode->getSExtValue() < 256)
3392 return Diag(Arg->getBeginLoc(), diag::err_systemz_invalid_tabort_code)
3393 << Arg->getSourceRange();
3394 }
3395
3396 // For intrinsics which take an immediate value as part of the instruction,
3397 // range check them here.
3398 unsigned i = 0, l = 0, u = 0;
3399 switch (BuiltinID) {
3400 default: return false;
3401 case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break;
3402 case SystemZ::BI__builtin_s390_verimb:
3403 case SystemZ::BI__builtin_s390_verimh:
3404 case SystemZ::BI__builtin_s390_verimf:
3405 case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break;
3406 case SystemZ::BI__builtin_s390_vfaeb:
3407 case SystemZ::BI__builtin_s390_vfaeh:
3408 case SystemZ::BI__builtin_s390_vfaef:
3409 case SystemZ::BI__builtin_s390_vfaebs:
3410 case SystemZ::BI__builtin_s390_vfaehs:
3411 case SystemZ::BI__builtin_s390_vfaefs:
3412 case SystemZ::BI__builtin_s390_vfaezb:
3413 case SystemZ::BI__builtin_s390_vfaezh:
3414 case SystemZ::BI__builtin_s390_vfaezf:
3415 case SystemZ::BI__builtin_s390_vfaezbs:
3416 case SystemZ::BI__builtin_s390_vfaezhs:
3417 case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break;
3418 case SystemZ::BI__builtin_s390_vfisb:
3419 case SystemZ::BI__builtin_s390_vfidb:
3420 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) ||
3421 SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
3422 case SystemZ::BI__builtin_s390_vftcisb:
3423 case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break;
3424 case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break;
3425 case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break;
3426 case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break;
3427 case SystemZ::BI__builtin_s390_vstrcb:
3428 case SystemZ::BI__builtin_s390_vstrch:
3429 case SystemZ::BI__builtin_s390_vstrcf:
3430 case SystemZ::BI__builtin_s390_vstrczb:
3431 case SystemZ::BI__builtin_s390_vstrczh:
3432 case SystemZ::BI__builtin_s390_vstrczf:
3433 case SystemZ::BI__builtin_s390_vstrcbs:
3434 case SystemZ::BI__builtin_s390_vstrchs:
3435 case SystemZ::BI__builtin_s390_vstrcfs:
3436 case SystemZ::BI__builtin_s390_vstrczbs:
3437 case SystemZ::BI__builtin_s390_vstrczhs:
3438 case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break;
3439 case SystemZ::BI__builtin_s390_vmslg: i = 3; l = 0; u = 15; break;
3440 case SystemZ::BI__builtin_s390_vfminsb:
3441 case SystemZ::BI__builtin_s390_vfmaxsb:
3442 case SystemZ::BI__builtin_s390_vfmindb:
3443 case SystemZ::BI__builtin_s390_vfmaxdb: i = 2; l = 0; u = 15; break;
3444 case SystemZ::BI__builtin_s390_vsld: i = 2; l = 0; u = 7; break;
3445 case SystemZ::BI__builtin_s390_vsrd: i = 2; l = 0; u = 7; break;
3446 }
3447 return SemaBuiltinConstantArgRange(TheCall, i, l, u);
3448}
3449
3450/// SemaBuiltinCpuSupports - Handle __builtin_cpu_supports(char *).
3451/// This checks that the target supports __builtin_cpu_supports and
3452/// that the string argument is constant and valid.
3453static bool SemaBuiltinCpuSupports(Sema &S, const TargetInfo &TI,
3454 CallExpr *TheCall) {
3455 Expr *Arg = TheCall->getArg(0);
3456
3457 // Check if the argument is a string literal.
3458 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
3459 return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
3460 << Arg->getSourceRange();
3461
3462 // Check the contents of the string.
3463 StringRef Feature =
3464 cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
3465 if (!TI.validateCpuSupports(Feature))
3466 return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_supports)
3467 << Arg->getSourceRange();
3468 return false;
3469}
3470
3471/// SemaBuiltinCpuIs - Handle __builtin_cpu_is(char *).
3472/// This checks that the target supports __builtin_cpu_is and
3473/// that the string argument is constant and valid.
3474static bool SemaBuiltinCpuIs(Sema &S, const TargetInfo &TI, CallExpr *TheCall) {
3475 Expr *Arg = TheCall->getArg(0);
3476
3477 // Check if the argument is a string literal.
3478 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
3479 return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
3480 << Arg->getSourceRange();
3481
3482 // Check the contents of the string.
3483 StringRef Feature =
3484 cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
3485 if (!TI.validateCpuIs(Feature))
3486 return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is)
3487 << Arg->getSourceRange();
3488 return false;
3489}
3490
3491// Check if the rounding mode is legal.
3492bool Sema::CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall) {
3493 // Indicates if this instruction has rounding control or just SAE.
3494 bool HasRC = false;
3495
3496 unsigned ArgNum = 0;
3497 switch (BuiltinID) {
3498 default:
3499 return false;
3500 case X86::BI__builtin_ia32_vcvttsd2si32:
3501 case X86::BI__builtin_ia32_vcvttsd2si64:
3502 case X86::BI__builtin_ia32_vcvttsd2usi32:
3503 case X86::BI__builtin_ia32_vcvttsd2usi64:
3504 case X86::BI__builtin_ia32_vcvttss2si32:
3505 case X86::BI__builtin_ia32_vcvttss2si64:
3506 case X86::BI__builtin_ia32_vcvttss2usi32:
3507 case X86::BI__builtin_ia32_vcvttss2usi64:
3508 ArgNum = 1;
3509 break;
3510 case X86::BI__builtin_ia32_maxpd512:
3511 case X86::BI__builtin_ia32_maxps512:
3512 case X86::BI__builtin_ia32_minpd512:
3513 case X86::BI__builtin_ia32_minps512:
3514 ArgNum = 2;
3515 break;
3516 case X86::BI__builtin_ia32_cvtps2pd512_mask:
3517 case X86::BI__builtin_ia32_cvttpd2dq512_mask:
3518 case X86::BI__builtin_ia32_cvttpd2qq512_mask:
3519 case X86::BI__builtin_ia32_cvttpd2udq512_mask:
3520 case X86::BI__builtin_ia32_cvttpd2uqq512_mask:
3521 case X86::BI__builtin_ia32_cvttps2dq512_mask:
3522 case X86::BI__builtin_ia32_cvttps2qq512_mask:
3523 case X86::BI__builtin_ia32_cvttps2udq512_mask:
3524 case X86::BI__builtin_ia32_cvttps2uqq512_mask:
3525 case X86::BI__builtin_ia32_exp2pd_mask:
3526 case X86::BI__builtin_ia32_exp2ps_mask:
3527 case X86::BI__builtin_ia32_getexppd512_mask:
3528 case X86::BI__builtin_ia32_getexpps512_mask:
3529 case X86::BI__builtin_ia32_rcp28pd_mask:
3530 case X86::BI__builtin_ia32_rcp28ps_mask:
3531 case X86::BI__builtin_ia32_rsqrt28pd_mask:
3532 case X86::BI__builtin_ia32_rsqrt28ps_mask:
3533 case X86::BI__builtin_ia32_vcomisd:
3534 case X86::BI__builtin_ia32_vcomiss:
3535 case X86::BI__builtin_ia32_vcvtph2ps512_mask:
3536 ArgNum = 3;
3537 break;
3538 case X86::BI__builtin_ia32_cmppd512_mask:
3539 case X86::BI__builtin_ia32_cmpps512_mask:
3540 case X86::BI__builtin_ia32_cmpsd_mask:
3541 case X86::BI__builtin_ia32_cmpss_mask:
3542 case X86::BI__builtin_ia32_cvtss2sd_round_mask:
3543 case X86::BI__builtin_ia32_getexpsd128_round_mask:
3544 case X86::BI__builtin_ia32_getexpss128_round_mask:
3545 case X86::BI__builtin_ia32_getmantpd512_mask:
3546 case X86::BI__builtin_ia32_getmantps512_mask:
3547 case X86::BI__builtin_ia32_maxsd_round_mask:
3548 case X86::BI__builtin_ia32_maxss_round_mask:
3549 case X86::BI__builtin_ia32_minsd_round_mask:
3550 case X86::BI__builtin_ia32_minss_round_mask:
3551 case X86::BI__builtin_ia32_rcp28sd_round_mask:
3552 case X86::BI__builtin_ia32_rcp28ss_round_mask:
3553 case X86::BI__builtin_ia32_reducepd512_mask:
3554 case X86::BI__builtin_ia32_reduceps512_mask:
3555 case X86::BI__builtin_ia32_rndscalepd_mask:
3556 case X86::BI__builtin_ia32_rndscaleps_mask:
3557 case X86::BI__builtin_ia32_rsqrt28sd_round_mask:
3558 case X86::BI__builtin_ia32_rsqrt28ss_round_mask:
3559 ArgNum = 4;
3560 break;
3561 case X86::BI__builtin_ia32_fixupimmpd512_mask:
3562 case X86::BI__builtin_ia32_fixupimmpd512_maskz:
3563 case X86::BI__builtin_ia32_fixupimmps512_mask:
3564 case X86::BI__builtin_ia32_fixupimmps512_maskz:
3565 case X86::BI__builtin_ia32_fixupimmsd_mask:
3566 case X86::BI__builtin_ia32_fixupimmsd_maskz:
3567 case X86::BI__builtin_ia32_fixupimmss_mask:
3568 case X86::BI__builtin_ia32_fixupimmss_maskz:
3569 case X86::BI__builtin_ia32_getmantsd_round_mask:
3570 case X86::BI__builtin_ia32_getmantss_round_mask:
3571 case X86::BI__builtin_ia32_rangepd512_mask:
3572 case X86::BI__builtin_ia32_rangeps512_mask:
3573 case X86::BI__builtin_ia32_rangesd128_round_mask:
3574 case X86::BI__builtin_ia32_rangess128_round_mask:
3575 case X86::BI__builtin_ia32_reducesd_mask:
3576 case X86::BI__builtin_ia32_reducess_mask:
3577 case X86::BI__builtin_ia32_rndscalesd_round_mask:
3578 case X86::BI__builtin_ia32_rndscaless_round_mask:
3579 ArgNum = 5;
3580 break;
3581 case X86::BI__builtin_ia32_vcvtsd2si64:
3582 case X86::BI__builtin_ia32_vcvtsd2si32:
3583 case X86::BI__builtin_ia32_vcvtsd2usi32:
3584 case X86::BI__builtin_ia32_vcvtsd2usi64:
3585 case X86::BI__builtin_ia32_vcvtss2si32:
3586 case X86::BI__builtin_ia32_vcvtss2si64:
3587 case X86::BI__builtin_ia32_vcvtss2usi32:
3588 case X86::BI__builtin_ia32_vcvtss2usi64:
3589 case X86::BI__builtin_ia32_sqrtpd512:
3590 case X86::BI__builtin_ia32_sqrtps512:
3591 ArgNum = 1;
3592 HasRC = true;
3593 break;
3594 case X86::BI__builtin_ia32_addpd512:
3595 case X86::BI__builtin_ia32_addps512:
3596 case X86::BI__builtin_ia32_divpd512:
3597 case X86::BI__builtin_ia32_divps512:
3598 case X86::BI__builtin_ia32_mulpd512:
3599 case X86::BI__builtin_ia32_mulps512:
3600 case X86::BI__builtin_ia32_subpd512:
3601 case X86::BI__builtin_ia32_subps512:
3602 case X86::BI__builtin_ia32_cvtsi2sd64:
3603 case X86::BI__builtin_ia32_cvtsi2ss32:
3604 case X86::BI__builtin_ia32_cvtsi2ss64:
3605 case X86::BI__builtin_ia32_cvtusi2sd64:
3606 case X86::BI__builtin_ia32_cvtusi2ss32:
3607 case X86::BI__builtin_ia32_cvtusi2ss64:
3608 ArgNum = 2;
3609 HasRC = true;
3610 break;
3611 case X86::BI__builtin_ia32_cvtdq2ps512_mask:
3612 case X86::BI__builtin_ia32_cvtudq2ps512_mask:
3613 case X86::BI__builtin_ia32_cvtpd2ps512_mask:
3614 case X86::BI__builtin_ia32_cvtpd2dq512_mask:
3615 case X86::BI__builtin_ia32_cvtpd2qq512_mask:
3616 case X86::BI__builtin_ia32_cvtpd2udq512_mask:
3617 case X86::BI__builtin_ia32_cvtpd2uqq512_mask:
3618 case X86::BI__builtin_ia32_cvtps2dq512_mask:
3619 case X86::BI__builtin_ia32_cvtps2qq512_mask:
3620 case X86::BI__builtin_ia32_cvtps2udq512_mask:
3621 case X86::BI__builtin_ia32_cvtps2uqq512_mask:
3622 case X86::BI__builtin_ia32_cvtqq2pd512_mask:
3623 case X86::BI__builtin_ia32_cvtqq2ps512_mask:
3624 case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
3625 case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
3626 ArgNum = 3;
3627 HasRC = true;
3628 break;
3629 case X86::BI__builtin_ia32_addss_round_mask:
3630 case X86::BI__builtin_ia32_addsd_round_mask:
3631 case X86::BI__builtin_ia32_divss_round_mask:
3632 case X86::BI__builtin_ia32_divsd_round_mask:
3633 case X86::BI__builtin_ia32_mulss_round_mask:
3634 case X86::BI__builtin_ia32_mulsd_round_mask:
3635 case X86::BI__builtin_ia32_subss_round_mask:
3636 case X86::BI__builtin_ia32_subsd_round_mask:
3637 case X86::BI__builtin_ia32_scalefpd512_mask:
3638 case X86::BI__builtin_ia32_scalefps512_mask:
3639 case X86::BI__builtin_ia32_scalefsd_round_mask:
3640 case X86::BI__builtin_ia32_scalefss_round_mask:
3641 case X86::BI__builtin_ia32_cvtsd2ss_round_mask:
3642 case X86::BI__builtin_ia32_sqrtsd_round_mask:
3643 case X86::BI__builtin_ia32_sqrtss_round_mask:
3644 case X86::BI__builtin_ia32_vfmaddsd3_mask:
3645 case X86::BI__builtin_ia32_vfmaddsd3_maskz:
3646 case X86::BI__builtin_ia32_vfmaddsd3_mask3:
3647 case X86::BI__builtin_ia32_vfmaddss3_mask:
3648 case X86::BI__builtin_ia32_vfmaddss3_maskz:
3649 case X86::BI__builtin_ia32_vfmaddss3_mask3:
3650 case X86::BI__builtin_ia32_vfmaddpd512_mask:
3651 case X86::BI__builtin_ia32_vfmaddpd512_maskz:
3652 case X86::BI__builtin_ia32_vfmaddpd512_mask3:
3653 case X86::BI__builtin_ia32_vfmsubpd512_mask3:
3654 case X86::BI__builtin_ia32_vfmaddps512_mask:
3655 case X86::BI__builtin_ia32_vfmaddps512_maskz:
3656 case X86::BI__builtin_ia32_vfmaddps512_mask3:
3657 case X86::BI__builtin_ia32_vfmsubps512_mask3:
3658 case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
3659 case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
3660 case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
3661 case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
3662 case X86::BI__builtin_ia32_vfmaddsubps512_mask:
3663 case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
3664 case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
3665 case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
3666 ArgNum = 4;
3667 HasRC = true;
3668 break;
3669 }
3670
3671 llvm::APSInt Result;
3672
3673 // We can't check the value of a dependent argument.
3674 Expr *Arg = TheCall->getArg(ArgNum);
3675 if (Arg->isTypeDependent() || Arg->isValueDependent())
3676 return false;
3677
3678 // Check constant-ness first.
3679 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3680 return true;
3681
3682 // Make sure rounding mode is either ROUND_CUR_DIRECTION or ROUND_NO_EXC bit
3683 // is set. If the intrinsic has rounding control(bits 1:0), make sure its only
3684 // combined with ROUND_NO_EXC. If the intrinsic does not have rounding
3685 // control, allow ROUND_NO_EXC and ROUND_CUR_DIRECTION together.
3686 if (Result == 4/*ROUND_CUR_DIRECTION*/ ||
3687 Result == 8/*ROUND_NO_EXC*/ ||
3688 (!HasRC && Result == 12/*ROUND_CUR_DIRECTION|ROUND_NO_EXC*/) ||
3689 (HasRC && Result.getZExtValue() >= 8 && Result.getZExtValue() <= 11))
3690 return false;
3691
3692 return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_rounding)
3693 << Arg->getSourceRange();
3694}
3695
3696// Check if the gather/scatter scale is legal.
3697bool Sema::CheckX86BuiltinGatherScatterScale(unsigned BuiltinID,
3698 CallExpr *TheCall) {
3699 unsigned ArgNum = 0;
3700 switch (BuiltinID) {
3701 default:
3702 return false;
3703 case X86::BI__builtin_ia32_gatherpfdpd:
3704 case X86::BI__builtin_ia32_gatherpfdps:
3705 case X86::BI__builtin_ia32_gatherpfqpd:
3706 case X86::BI__builtin_ia32_gatherpfqps:
3707 case X86::BI__builtin_ia32_scatterpfdpd:
3708 case X86::BI__builtin_ia32_scatterpfdps:
3709 case X86::BI__builtin_ia32_scatterpfqpd:
3710 case X86::BI__builtin_ia32_scatterpfqps:
3711 ArgNum = 3;
3712 break;
3713 case X86::BI__builtin_ia32_gatherd_pd:
3714 case X86::BI__builtin_ia32_gatherd_pd256:
3715 case X86::BI__builtin_ia32_gatherq_pd:
3716 case X86::BI__builtin_ia32_gatherq_pd256:
3717 case X86::BI__builtin_ia32_gatherd_ps:
3718 case X86::BI__builtin_ia32_gatherd_ps256:
3719 case X86::BI__builtin_ia32_gatherq_ps:
3720 case X86::BI__builtin_ia32_gatherq_ps256:
3721 case X86::BI__builtin_ia32_gatherd_q:
3722 case X86::BI__builtin_ia32_gatherd_q256:
3723 case X86::BI__builtin_ia32_gatherq_q:
3724 case X86::BI__builtin_ia32_gatherq_q256:
3725 case X86::BI__builtin_ia32_gatherd_d:
3726 case X86::BI__builtin_ia32_gatherd_d256:
3727 case X86::BI__builtin_ia32_gatherq_d:
3728 case X86::BI__builtin_ia32_gatherq_d256:
3729 case X86::BI__builtin_ia32_gather3div2df:
3730 case X86::BI__builtin_ia32_gather3div2di:
3731 case X86::BI__builtin_ia32_gather3div4df:
3732 case X86::BI__builtin_ia32_gather3div4di:
3733 case X86::BI__builtin_ia32_gather3div4sf:
3734 case X86::BI__builtin_ia32_gather3div4si:
3735 case X86::BI__builtin_ia32_gather3div8sf:
3736 case X86::BI__builtin_ia32_gather3div8si:
3737 case X86::BI__builtin_ia32_gather3siv2df:
3738 case X86::BI__builtin_ia32_gather3siv2di:
3739 case X86::BI__builtin_ia32_gather3siv4df:
3740 case X86::BI__builtin_ia32_gather3siv4di:
3741 case X86::BI__builtin_ia32_gather3siv4sf:
3742 case X86::BI__builtin_ia32_gather3siv4si:
3743 case X86::BI__builtin_ia32_gather3siv8sf:
3744 case X86::BI__builtin_ia32_gather3siv8si:
3745 case X86::BI__builtin_ia32_gathersiv8df:
3746 case X86::BI__builtin_ia32_gathersiv16sf:
3747 case X86::BI__builtin_ia32_gatherdiv8df:
3748 case X86::BI__builtin_ia32_gatherdiv16sf:
3749 case X86::BI__builtin_ia32_gathersiv8di:
3750 case X86::BI__builtin_ia32_gathersiv16si:
3751 case X86::BI__builtin_ia32_gatherdiv8di:
3752 case X86::BI__builtin_ia32_gatherdiv16si:
3753 case X86::BI__builtin_ia32_scatterdiv2df:
3754 case X86::BI__builtin_ia32_scatterdiv2di:
3755 case X86::BI__builtin_ia32_scatterdiv4df:
3756 case X86::BI__builtin_ia32_scatterdiv4di:
3757 case X86::BI__builtin_ia32_scatterdiv4sf:
3758 case X86::BI__builtin_ia32_scatterdiv4si:
3759 case X86::BI__builtin_ia32_scatterdiv8sf:
3760 case X86::BI__builtin_ia32_scatterdiv8si:
3761 case X86::BI__builtin_ia32_scattersiv2df:
3762 case X86::BI__builtin_ia32_scattersiv2di:
3763 case X86::BI__builtin_ia32_scattersiv4df:
3764 case X86::BI__builtin_ia32_scattersiv4di:
3765 case X86::BI__builtin_ia32_scattersiv4sf:
3766 case X86::BI__builtin_ia32_scattersiv4si:
3767 case X86::BI__builtin_ia32_scattersiv8sf:
3768 case X86::BI__builtin_ia32_scattersiv8si:
3769 case X86::BI__builtin_ia32_scattersiv8df:
3770 case X86::BI__builtin_ia32_scattersiv16sf:
3771 case X86::BI__builtin_ia32_scatterdiv8df:
3772 case X86::BI__builtin_ia32_scatterdiv16sf:
3773 case X86::BI__builtin_ia32_scattersiv8di:
3774 case X86::BI__builtin_ia32_scattersiv16si:
3775 case X86::BI__builtin_ia32_scatterdiv8di:
3776 case X86::BI__builtin_ia32_scatterdiv16si:
3777 ArgNum = 4;
3778 break;
3779 }
3780
3781 llvm::APSInt Result;
3782
3783 // We can't check the value of a dependent argument.
3784 Expr *Arg = TheCall->getArg(ArgNum);
3785 if (Arg->isTypeDependent() || Arg->isValueDependent())
3786 return false;
3787
3788 // Check constant-ness first.
3789 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3790 return true;
3791
3792 if (Result == 1 || Result == 2 || Result == 4 || Result == 8)
3793 return false;
3794
3795 return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_scale)
3796 << Arg->getSourceRange();
3797}
3798
3799enum { TileRegLow = 0, TileRegHigh = 7 };
3800
3801bool Sema::CheckX86BuiltinTileArgumentsRange(CallExpr *TheCall,
3802 ArrayRef<int> ArgNums) {
3803 for (int ArgNum : ArgNums) {
3804 if (SemaBuiltinConstantArgRange(TheCall, ArgNum, TileRegLow, TileRegHigh))
3805 return true;
3806 }
3807 return false;
3808}
3809
3810bool Sema::CheckX86BuiltinTileDuplicate(CallExpr *TheCall,
3811 ArrayRef<int> ArgNums) {
3812 // Because the max number of tile register is TileRegHigh + 1, so here we use
3813 // each bit to represent the usage of them in bitset.
3814 std::bitset<TileRegHigh + 1> ArgValues;
3815 for (int ArgNum : ArgNums) {
3816 Expr *Arg = TheCall->getArg(ArgNum);
3817 if (Arg->isTypeDependent() || Arg->isValueDependent())
3818 continue;
3819
3820 llvm::APSInt Result;
3821 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
3822 return true;
3823 int ArgExtValue = Result.getExtValue();
3824 assert((ArgExtValue >= TileRegLow || ArgExtValue <= TileRegHigh) &&(((ArgExtValue >= TileRegLow || ArgExtValue <= TileRegHigh
) && "Incorrect tile register num.") ? static_cast<
void> (0) : __assert_fail ("(ArgExtValue >= TileRegLow || ArgExtValue <= TileRegHigh) && \"Incorrect tile register num.\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 3825, __PRETTY_FUNCTION__))
3825 "Incorrect tile register num.")(((ArgExtValue >= TileRegLow || ArgExtValue <= TileRegHigh
) && "Incorrect tile register num.") ? static_cast<
void> (0) : __assert_fail ("(ArgExtValue >= TileRegLow || ArgExtValue <= TileRegHigh) && \"Incorrect tile register num.\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 3825, __PRETTY_FUNCTION__))
;
3826 if (ArgValues.test(ArgExtValue))
3827 return Diag(TheCall->getBeginLoc(),
3828 diag::err_x86_builtin_tile_arg_duplicate)
3829 << TheCall->getArg(ArgNum)->getSourceRange();
3830 ArgValues.set(ArgExtValue);
3831 }
3832 return false;
3833}
3834
3835bool Sema::CheckX86BuiltinTileRangeAndDuplicate(CallExpr *TheCall,
3836 ArrayRef<int> ArgNums) {
3837 return CheckX86BuiltinTileArgumentsRange(TheCall, ArgNums) ||
3838 CheckX86BuiltinTileDuplicate(TheCall, ArgNums);
3839}
3840
3841bool Sema::CheckX86BuiltinTileArguments(unsigned BuiltinID, CallExpr *TheCall) {
3842 switch (BuiltinID) {
3843 default:
3844 return false;
3845 case X86::BI__builtin_ia32_tileloadd64:
3846 case X86::BI__builtin_ia32_tileloaddt164:
3847 case X86::BI__builtin_ia32_tilestored64:
3848 case X86::BI__builtin_ia32_tilezero:
3849 return CheckX86BuiltinTileArgumentsRange(TheCall, 0);
3850 case X86::BI__builtin_ia32_tdpbssd:
3851 case X86::BI__builtin_ia32_tdpbsud:
3852 case X86::BI__builtin_ia32_tdpbusd:
3853 case X86::BI__builtin_ia32_tdpbuud:
3854 case X86::BI__builtin_ia32_tdpbf16ps:
3855 return CheckX86BuiltinTileRangeAndDuplicate(TheCall, {0, 1, 2});
3856 }
3857}
3858static bool isX86_32Builtin(unsigned BuiltinID) {
3859 // These builtins only work on x86-32 targets.
3860 switch (BuiltinID) {
3861 case X86::BI__builtin_ia32_readeflags_u32:
3862 case X86::BI__builtin_ia32_writeeflags_u32:
3863 return true;
3864 }
3865
3866 return false;
3867}
3868
3869bool Sema::CheckX86BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
3870 CallExpr *TheCall) {
3871 if (BuiltinID == X86::BI__builtin_cpu_supports)
3872 return SemaBuiltinCpuSupports(*this, TI, TheCall);
3873
3874 if (BuiltinID == X86::BI__builtin_cpu_is)
3875 return SemaBuiltinCpuIs(*this, TI, TheCall);
3876
3877 // Check for 32-bit only builtins on a 64-bit target.
3878 const llvm::Triple &TT = TI.getTriple();
3879 if (TT.getArch() != llvm::Triple::x86 && isX86_32Builtin(BuiltinID))
3880 return Diag(TheCall->getCallee()->getBeginLoc(),
3881 diag::err_32_bit_builtin_64_bit_tgt);
3882
3883 // If the intrinsic has rounding or SAE make sure its valid.
3884 if (CheckX86BuiltinRoundingOrSAE(BuiltinID, TheCall))
3885 return true;
3886
3887 // If the intrinsic has a gather/scatter scale immediate make sure its valid.
3888 if (CheckX86BuiltinGatherScatterScale(BuiltinID, TheCall))
3889 return true;
3890
3891 // If the intrinsic has a tile arguments, make sure they are valid.
3892 if (CheckX86BuiltinTileArguments(BuiltinID, TheCall))
3893 return true;
3894
3895 // For intrinsics which take an immediate value as part of the instruction,
3896 // range check them here.
3897 int i = 0, l = 0, u = 0;
3898 switch (BuiltinID) {
3899 default:
3900 return false;
3901 case X86::BI__builtin_ia32_vec_ext_v2si:
3902 case X86::BI__builtin_ia32_vec_ext_v2di:
3903 case X86::BI__builtin_ia32_vextractf128_pd256:
3904 case X86::BI__builtin_ia32_vextractf128_ps256:
3905 case X86::BI__builtin_ia32_vextractf128_si256:
3906 case X86::BI__builtin_ia32_extract128i256:
3907 case X86::BI__builtin_ia32_extractf64x4_mask:
3908 case X86::BI__builtin_ia32_extracti64x4_mask:
3909 case X86::BI__builtin_ia32_extractf32x8_mask:
3910 case X86::BI__builtin_ia32_extracti32x8_mask:
3911 case X86::BI__builtin_ia32_extractf64x2_256_mask:
3912 case X86::BI__builtin_ia32_extracti64x2_256_mask:
3913 case X86::BI__builtin_ia32_extractf32x4_256_mask:
3914 case X86::BI__builtin_ia32_extracti32x4_256_mask:
3915 i = 1; l = 0; u = 1;
3916 break;
3917 case X86::BI__builtin_ia32_vec_set_v2di:
3918 case X86::BI__builtin_ia32_vinsertf128_pd256:
3919 case X86::BI__builtin_ia32_vinsertf128_ps256:
3920 case X86::BI__builtin_ia32_vinsertf128_si256:
3921 case X86::BI__builtin_ia32_insert128i256:
3922 case X86::BI__builtin_ia32_insertf32x8:
3923 case X86::BI__builtin_ia32_inserti32x8:
3924 case X86::BI__builtin_ia32_insertf64x4:
3925 case X86::BI__builtin_ia32_inserti64x4:
3926 case X86::BI__builtin_ia32_insertf64x2_256:
3927 case X86::BI__builtin_ia32_inserti64x2_256:
3928 case X86::BI__builtin_ia32_insertf32x4_256:
3929 case X86::BI__builtin_ia32_inserti32x4_256:
3930 i = 2; l = 0; u = 1;
3931 break;
3932 case X86::BI__builtin_ia32_vpermilpd:
3933 case X86::BI__builtin_ia32_vec_ext_v4hi:
3934 case X86::BI__builtin_ia32_vec_ext_v4si:
3935 case X86::BI__builtin_ia32_vec_ext_v4sf:
3936 case X86::BI__builtin_ia32_vec_ext_v4di:
3937 case X86::BI__builtin_ia32_extractf32x4_mask:
3938 case X86::BI__builtin_ia32_extracti32x4_mask:
3939 case X86::BI__builtin_ia32_extractf64x2_512_mask:
3940 case X86::BI__builtin_ia32_extracti64x2_512_mask:
3941 i = 1; l = 0; u = 3;
3942 break;
3943 case X86::BI_mm_prefetch:
3944 case X86::BI__builtin_ia32_vec_ext_v8hi:
3945 case X86::BI__builtin_ia32_vec_ext_v8si:
3946 i = 1; l = 0; u = 7;
3947 break;
3948 case X86::BI__builtin_ia32_sha1rnds4:
3949 case X86::BI__builtin_ia32_blendpd:
3950 case X86::BI__builtin_ia32_shufpd:
3951 case X86::BI__builtin_ia32_vec_set_v4hi:
3952 case X86::BI__builtin_ia32_vec_set_v4si:
3953 case X86::BI__builtin_ia32_vec_set_v4di:
3954 case X86::BI__builtin_ia32_shuf_f32x4_256:
3955 case X86::BI__builtin_ia32_shuf_f64x2_256:
3956 case X86::BI__builtin_ia32_shuf_i32x4_256:
3957 case X86::BI__builtin_ia32_shuf_i64x2_256:
3958 case X86::BI__builtin_ia32_insertf64x2_512:
3959 case X86::BI__builtin_ia32_inserti64x2_512:
3960 case X86::BI__builtin_ia32_insertf32x4:
3961 case X86::BI__builtin_ia32_inserti32x4:
3962 i = 2; l = 0; u = 3;
3963 break;
3964 case X86::BI__builtin_ia32_vpermil2pd:
3965 case X86::BI__builtin_ia32_vpermil2pd256:
3966 case X86::BI__builtin_ia32_vpermil2ps:
3967 case X86::BI__builtin_ia32_vpermil2ps256:
3968 i = 3; l = 0; u = 3;
3969 break;
3970 case X86::BI__builtin_ia32_cmpb128_mask:
3971 case X86::BI__builtin_ia32_cmpw128_mask:
3972 case X86::BI__builtin_ia32_cmpd128_mask:
3973 case X86::BI__builtin_ia32_cmpq128_mask:
3974 case X86::BI__builtin_ia32_cmpb256_mask:
3975 case X86::BI__builtin_ia32_cmpw256_mask:
3976 case X86::BI__builtin_ia32_cmpd256_mask:
3977 case X86::BI__builtin_ia32_cmpq256_mask:
3978 case X86::BI__builtin_ia32_cmpb512_mask:
3979 case X86::BI__builtin_ia32_cmpw512_mask:
3980 case X86::BI__builtin_ia32_cmpd512_mask:
3981 case X86::BI__builtin_ia32_cmpq512_mask:
3982 case X86::BI__builtin_ia32_ucmpb128_mask:
3983 case X86::BI__builtin_ia32_ucmpw128_mask:
3984 case X86::BI__builtin_ia32_ucmpd128_mask:
3985 case X86::BI__builtin_ia32_ucmpq128_mask:
3986 case X86::BI__builtin_ia32_ucmpb256_mask:
3987 case X86::BI__builtin_ia32_ucmpw256_mask:
3988 case X86::BI__builtin_ia32_ucmpd256_mask:
3989 case X86::BI__builtin_ia32_ucmpq256_mask:
3990 case X86::BI__builtin_ia32_ucmpb512_mask:
3991 case X86::BI__builtin_ia32_ucmpw512_mask:
3992 case X86::BI__builtin_ia32_ucmpd512_mask:
3993 case X86::BI__builtin_ia32_ucmpq512_mask:
3994 case X86::BI__builtin_ia32_vpcomub:
3995 case X86::BI__builtin_ia32_vpcomuw:
3996 case X86::BI__builtin_ia32_vpcomud:
3997 case X86::BI__builtin_ia32_vpcomuq:
3998 case X86::BI__builtin_ia32_vpcomb:
3999 case X86::BI__builtin_ia32_vpcomw:
4000 case X86::BI__builtin_ia32_vpcomd:
4001 case X86::BI__builtin_ia32_vpcomq:
4002 case X86::BI__builtin_ia32_vec_set_v8hi:
4003 case X86::BI__builtin_ia32_vec_set_v8si:
4004 i = 2; l = 0; u = 7;
4005 break;
4006 case X86::BI__builtin_ia32_vpermilpd256:
4007 case X86::BI__builtin_ia32_roundps:
4008 case X86::BI__builtin_ia32_roundpd:
4009 case X86::BI__builtin_ia32_roundps256:
4010 case X86::BI__builtin_ia32_roundpd256:
4011 case X86::BI__builtin_ia32_getmantpd128_mask:
4012 case X86::BI__builtin_ia32_getmantpd256_mask:
4013 case X86::BI__builtin_ia32_getmantps128_mask:
4014 case X86::BI__builtin_ia32_getmantps256_mask:
4015 case X86::BI__builtin_ia32_getmantpd512_mask:
4016 case X86::BI__builtin_ia32_getmantps512_mask:
4017 case X86::BI__builtin_ia32_vec_ext_v16qi:
4018 case X86::BI__builtin_ia32_vec_ext_v16hi:
4019 i = 1; l = 0; u = 15;
4020 break;
4021 case X86::BI__builtin_ia32_pblendd128:
4022 case X86::BI__builtin_ia32_blendps:
4023 case X86::BI__builtin_ia32_blendpd256:
4024 case X86::BI__builtin_ia32_shufpd256:
4025 case X86::BI__builtin_ia32_roundss:
4026 case X86::BI__builtin_ia32_roundsd:
4027 case X86::BI__builtin_ia32_rangepd128_mask:
4028 case X86::BI__builtin_ia32_rangepd256_mask:
4029 case X86::BI__builtin_ia32_rangepd512_mask:
4030 case X86::BI__builtin_ia32_rangeps128_mask:
4031 case X86::BI__builtin_ia32_rangeps256_mask:
4032 case X86::BI__builtin_ia32_rangeps512_mask:
4033 case X86::BI__builtin_ia32_getmantsd_round_mask:
4034 case X86::BI__builtin_ia32_getmantss_round_mask:
4035 case X86::BI__builtin_ia32_vec_set_v16qi:
4036 case X86::BI__builtin_ia32_vec_set_v16hi:
4037 i = 2; l = 0; u = 15;
4038 break;
4039 case X86::BI__builtin_ia32_vec_ext_v32qi:
4040 i = 1; l = 0; u = 31;
4041 break;
4042 case X86::BI__builtin_ia32_cmpps:
4043 case X86::BI__builtin_ia32_cmpss:
4044 case X86::BI__builtin_ia32_cmppd:
4045 case X86::BI__builtin_ia32_cmpsd:
4046 case X86::BI__builtin_ia32_cmpps256:
4047 case X86::BI__builtin_ia32_cmppd256:
4048 case X86::BI__builtin_ia32_cmpps128_mask:
4049 case X86::BI__builtin_ia32_cmppd128_mask:
4050 case X86::BI__builtin_ia32_cmpps256_mask:
4051 case X86::BI__builtin_ia32_cmppd256_mask:
4052 case X86::BI__builtin_ia32_cmpps512_mask:
4053 case X86::BI__builtin_ia32_cmppd512_mask:
4054 case X86::BI__builtin_ia32_cmpsd_mask:
4055 case X86::BI__builtin_ia32_cmpss_mask:
4056 case X86::BI__builtin_ia32_vec_set_v32qi:
4057 i = 2; l = 0; u = 31;
4058 break;
4059 case X86::BI__builtin_ia32_permdf256:
4060 case X86::BI__builtin_ia32_permdi256:
4061 case X86::BI__builtin_ia32_permdf512:
4062 case X86::BI__builtin_ia32_permdi512:
4063 case X86::BI__builtin_ia32_vpermilps:
4064 case X86::BI__builtin_ia32_vpermilps256:
4065 case X86::BI__builtin_ia32_vpermilpd512:
4066 case X86::BI__builtin_ia32_vpermilps512:
4067 case X86::BI__builtin_ia32_pshufd:
4068 case X86::BI__builtin_ia32_pshufd256:
4069 case X86::BI__builtin_ia32_pshufd512:
4070 case X86::BI__builtin_ia32_pshufhw:
4071 case X86::BI__builtin_ia32_pshufhw256:
4072 case X86::BI__builtin_ia32_pshufhw512:
4073 case X86::BI__builtin_ia32_pshuflw:
4074 case X86::BI__builtin_ia32_pshuflw256:
4075 case X86::BI__builtin_ia32_pshuflw512:
4076 case X86::BI__builtin_ia32_vcvtps2ph:
4077 case X86::BI__builtin_ia32_vcvtps2ph_mask:
4078 case X86::BI__builtin_ia32_vcvtps2ph256:
4079 case X86::BI__builtin_ia32_vcvtps2ph256_mask:
4080 case X86::BI__builtin_ia32_vcvtps2ph512_mask:
4081 case X86::BI__builtin_ia32_rndscaleps_128_mask:
4082 case X86::BI__builtin_ia32_rndscalepd_128_mask:
4083 case X86::BI__builtin_ia32_rndscaleps_256_mask:
4084 case X86::BI__builtin_ia32_rndscalepd_256_mask:
4085 case X86::BI__builtin_ia32_rndscaleps_mask:
4086 case X86::BI__builtin_ia32_rndscalepd_mask:
4087 case X86::BI__builtin_ia32_reducepd128_mask:
4088 case X86::BI__builtin_ia32_reducepd256_mask:
4089 case X86::BI__builtin_ia32_reducepd512_mask:
4090 case X86::BI__builtin_ia32_reduceps128_mask:
4091 case X86::BI__builtin_ia32_reduceps256_mask:
4092 case X86::BI__builtin_ia32_reduceps512_mask:
4093 case X86::BI__builtin_ia32_prold512:
4094 case X86::BI__builtin_ia32_prolq512:
4095 case X86::BI__builtin_ia32_prold128:
4096 case X86::BI__builtin_ia32_prold256:
4097 case X86::BI__builtin_ia32_prolq128:
4098 case X86::BI__builtin_ia32_prolq256:
4099 case X86::BI__builtin_ia32_prord512:
4100 case X86::BI__builtin_ia32_prorq512:
4101 case X86::BI__builtin_ia32_prord128:
4102 case X86::BI__builtin_ia32_prord256:
4103 case X86::BI__builtin_ia32_prorq128:
4104 case X86::BI__builtin_ia32_prorq256:
4105 case X86::BI__builtin_ia32_fpclasspd128_mask:
4106 case X86::BI__builtin_ia32_fpclasspd256_mask:
4107 case X86::BI__builtin_ia32_fpclassps128_mask:
4108 case X86::BI__builtin_ia32_fpclassps256_mask:
4109 case X86::BI__builtin_ia32_fpclassps512_mask:
4110 case X86::BI__builtin_ia32_fpclasspd512_mask:
4111 case X86::BI__builtin_ia32_fpclasssd_mask:
4112 case X86::BI__builtin_ia32_fpclassss_mask:
4113 case X86::BI__builtin_ia32_pslldqi128_byteshift:
4114 case X86::BI__builtin_ia32_pslldqi256_byteshift:
4115 case X86::BI__builtin_ia32_pslldqi512_byteshift:
4116 case X86::BI__builtin_ia32_psrldqi128_byteshift:
4117 case X86::BI__builtin_ia32_psrldqi256_byteshift:
4118 case X86::BI__builtin_ia32_psrldqi512_byteshift:
4119 case X86::BI__builtin_ia32_kshiftliqi:
4120 case X86::BI__builtin_ia32_kshiftlihi:
4121 case X86::BI__builtin_ia32_kshiftlisi:
4122 case X86::BI__builtin_ia32_kshiftlidi:
4123 case X86::BI__builtin_ia32_kshiftriqi:
4124 case X86::BI__builtin_ia32_kshiftrihi:
4125 case X86::BI__builtin_ia32_kshiftrisi:
4126 case X86::BI__builtin_ia32_kshiftridi:
4127 i = 1; l = 0; u = 255;
4128 break;
4129 case X86::BI__builtin_ia32_vperm2f128_pd256:
4130 case X86::BI__builtin_ia32_vperm2f128_ps256:
4131 case X86::BI__builtin_ia32_vperm2f128_si256:
4132 case X86::BI__builtin_ia32_permti256:
4133 case X86::BI__builtin_ia32_pblendw128:
4134 case X86::BI__builtin_ia32_pblendw256:
4135 case X86::BI__builtin_ia32_blendps256:
4136 case X86::BI__builtin_ia32_pblendd256:
4137 case X86::BI__builtin_ia32_palignr128:
4138 case X86::BI__builtin_ia32_palignr256:
4139 case X86::BI__builtin_ia32_palignr512:
4140 case X86::BI__builtin_ia32_alignq512:
4141 case X86::BI__builtin_ia32_alignd512:
4142 case X86::BI__builtin_ia32_alignd128:
4143 case X86::BI__builtin_ia32_alignd256:
4144 case X86::BI__builtin_ia32_alignq128:
4145 case X86::BI__builtin_ia32_alignq256:
4146 case X86::BI__builtin_ia32_vcomisd:
4147 case X86::BI__builtin_ia32_vcomiss:
4148 case X86::BI__builtin_ia32_shuf_f32x4:
4149 case X86::BI__builtin_ia32_shuf_f64x2:
4150 case X86::BI__builtin_ia32_shuf_i32x4:
4151 case X86::BI__builtin_ia32_shuf_i64x2:
4152 case X86::BI__builtin_ia32_shufpd512:
4153 case X86::BI__builtin_ia32_shufps:
4154 case X86::BI__builtin_ia32_shufps256:
4155 case X86::BI__builtin_ia32_shufps512:
4156 case X86::BI__builtin_ia32_dbpsadbw128:
4157 case X86::BI__builtin_ia32_dbpsadbw256:
4158 case X86::BI__builtin_ia32_dbpsadbw512:
4159 case X86::BI__builtin_ia32_vpshldd128:
4160 case X86::BI__builtin_ia32_vpshldd256:
4161 case X86::BI__builtin_ia32_vpshldd512:
4162 case X86::BI__builtin_ia32_vpshldq128:
4163 case X86::BI__builtin_ia32_vpshldq256:
4164 case X86::BI__builtin_ia32_vpshldq512:
4165 case X86::BI__builtin_ia32_vpshldw128:
4166 case X86::BI__builtin_ia32_vpshldw256:
4167 case X86::BI__builtin_ia32_vpshldw512:
4168 case X86::BI__builtin_ia32_vpshrdd128:
4169 case X86::BI__builtin_ia32_vpshrdd256:
4170 case X86::BI__builtin_ia32_vpshrdd512:
4171 case X86::BI__builtin_ia32_vpshrdq128:
4172 case X86::BI__builtin_ia32_vpshrdq256:
4173 case X86::BI__builtin_ia32_vpshrdq512:
4174 case X86::BI__builtin_ia32_vpshrdw128:
4175 case X86::BI__builtin_ia32_vpshrdw256:
4176 case X86::BI__builtin_ia32_vpshrdw512:
4177 i = 2; l = 0; u = 255;
4178 break;
4179 case X86::BI__builtin_ia32_fixupimmpd512_mask:
4180 case X86::BI__builtin_ia32_fixupimmpd512_maskz:
4181 case X86::BI__builtin_ia32_fixupimmps512_mask:
4182 case X86::BI__builtin_ia32_fixupimmps512_maskz:
4183 case X86::BI__builtin_ia32_fixupimmsd_mask:
4184 case X86::BI__builtin_ia32_fixupimmsd_maskz:
4185 case X86::BI__builtin_ia32_fixupimmss_mask:
4186 case X86::BI__builtin_ia32_fixupimmss_maskz:
4187 case X86::BI__builtin_ia32_fixupimmpd128_mask:
4188 case X86::BI__builtin_ia32_fixupimmpd128_maskz:
4189 case X86::BI__builtin_ia32_fixupimmpd256_mask:
4190 case X86::BI__builtin_ia32_fixupimmpd256_maskz:
4191 case X86::BI__builtin_ia32_fixupimmps128_mask:
4192 case X86::BI__builtin_ia32_fixupimmps128_maskz:
4193 case X86::BI__builtin_ia32_fixupimmps256_mask:
4194 case X86::BI__builtin_ia32_fixupimmps256_maskz:
4195 case X86::BI__builtin_ia32_pternlogd512_mask:
4196 case X86::BI__builtin_ia32_pternlogd512_maskz:
4197 case X86::BI__builtin_ia32_pternlogq512_mask:
4198 case X86::BI__builtin_ia32_pternlogq512_maskz:
4199 case X86::BI__builtin_ia32_pternlogd128_mask:
4200 case X86::BI__builtin_ia32_pternlogd128_maskz:
4201 case X86::BI__builtin_ia32_pternlogd256_mask:
4202 case X86::BI__builtin_ia32_pternlogd256_maskz:
4203 case X86::BI__builtin_ia32_pternlogq128_mask:
4204 case X86::BI__builtin_ia32_pternlogq128_maskz:
4205 case X86::BI__builtin_ia32_pternlogq256_mask:
4206 case X86::BI__builtin_ia32_pternlogq256_maskz:
4207 i = 3; l = 0; u = 255;
4208 break;
4209 case X86::BI__builtin_ia32_gatherpfdpd:
4210 case X86::BI__builtin_ia32_gatherpfdps:
4211 case X86::BI__builtin_ia32_gatherpfqpd:
4212 case X86::BI__builtin_ia32_gatherpfqps:
4213 case X86::BI__builtin_ia32_scatterpfdpd:
4214 case X86::BI__builtin_ia32_scatterpfdps:
4215 case X86::BI__builtin_ia32_scatterpfqpd:
4216 case X86::BI__builtin_ia32_scatterpfqps:
4217 i = 4; l = 2; u = 3;
4218 break;
4219 case X86::BI__builtin_ia32_reducesd_mask:
4220 case X86::BI__builtin_ia32_reducess_mask:
4221 case X86::BI__builtin_ia32_rndscalesd_round_mask:
4222 case X86::BI__builtin_ia32_rndscaless_round_mask:
4223 i = 4; l = 0; u = 255;
4224 break;
4225 }
4226
4227 // Note that we don't force a hard error on the range check here, allowing
4228 // template-generated or macro-generated dead code to potentially have out-of-
4229 // range values. These need to code generate, but don't need to necessarily
4230 // make any sense. We use a warning that defaults to an error.
4231 return SemaBuiltinConstantArgRange(TheCall, i, l, u, /*RangeIsError*/ false);
4232}
4233
4234/// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
4235/// parameter with the FormatAttr's correct format_idx and firstDataArg.
4236/// Returns true when the format fits the function and the FormatStringInfo has
4237/// been populated.
4238bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
4239 FormatStringInfo *FSI) {
4240 FSI->HasVAListArg = Format->getFirstArg() == 0;
4241 FSI->FormatIdx = Format->getFormatIdx() - 1;
4242 FSI->FirstDataArg = FSI->HasVAListArg ? 0 : Format->getFirstArg() - 1;
4243
4244 // The way the format attribute works in GCC, the implicit this argument
4245 // of member functions is counted. However, it doesn't appear in our own
4246 // lists, so decrement format_idx in that case.
4247 if (IsCXXMember) {
4248 if(FSI->FormatIdx == 0)
4249 return false;
4250 --FSI->FormatIdx;
4251 if (FSI->FirstDataArg != 0)
4252 --FSI->FirstDataArg;
4253 }
4254 return true;
4255}
4256
4257/// Checks if a the given expression evaluates to null.
4258///
4259/// Returns true if the value evaluates to null.
4260static bool CheckNonNullExpr(Sema &S, const Expr *Expr) {
4261 // If the expression has non-null type, it doesn't evaluate to null.
4262 if (auto nullability
4263 = Expr->IgnoreImplicit()->getType()->getNullability(S.Context)) {
4264 if (*nullability == NullabilityKind::NonNull)
4265 return false;
4266 }
4267
4268 // As a special case, transparent unions initialized with zero are
4269 // considered null for the purposes of the nonnull attribute.
4270 if (const RecordType *UT = Expr->getType()->getAsUnionType()) {
4271 if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
4272 if (const CompoundLiteralExpr *CLE =
4273 dyn_cast<CompoundLiteralExpr>(Expr))
4274 if (const InitListExpr *ILE =
4275 dyn_cast<InitListExpr>(CLE->getInitializer()))
4276 Expr = ILE->getInit(0);
4277 }
4278
4279 bool Result;
4280 return (!Expr->isValueDependent() &&
4281 Expr->EvaluateAsBooleanCondition(Result, S.Context) &&
4282 !Result);
4283}
4284
4285static void CheckNonNullArgument(Sema &S,
4286 const Expr *ArgExpr,
4287 SourceLocation CallSiteLoc) {
4288 if (CheckNonNullExpr(S, ArgExpr))
4289 S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr,
4290 S.PDiag(diag::warn_null_arg)
4291 << ArgExpr->getSourceRange());
4292}
4293
4294bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) {
4295 FormatStringInfo FSI;
4296 if ((GetFormatStringType(Format) == FST_NSString) &&
4297 getFormatStringInfo(Format, false, &FSI)) {
4298 Idx = FSI.FormatIdx;
4299 return true;
4300 }
4301 return false;
4302}
4303
4304/// Diagnose use of %s directive in an NSString which is being passed
4305/// as formatting string to formatting method.
4306static void
4307DiagnoseCStringFormatDirectiveInCFAPI(Sema &S,
4308 const NamedDecl *FDecl,
4309 Expr **Args,
4310 unsigned NumArgs) {
4311 unsigned Idx = 0;
4312 bool Format = false;
4313 ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily();
4314 if (SFFamily == ObjCStringFormatFamily::SFF_CFString) {
4315 Idx = 2;
4316 Format = true;
4317 }
4318 else
4319 for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
4320 if (S.GetFormatNSStringIdx(I, Idx)) {
4321 Format = true;
4322 break;
4323 }
4324 }
4325 if (!Format || NumArgs <= Idx)
4326 return;
4327 const Expr *FormatExpr = Args[Idx];
4328 if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr))
4329 FormatExpr = CSCE->getSubExpr();
4330 const StringLiteral *FormatString;
4331 if (const ObjCStringLiteral *OSL =
4332 dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts()))
4333 FormatString = OSL->getString();
4334 else
4335 FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts());
4336 if (!FormatString)
4337 return;
4338 if (S.FormatStringHasSArg(FormatString)) {
4339 S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string)
4340 << "%s" << 1 << 1;
4341 S.Diag(FDecl->getLocation(), diag::note_entity_declared_at)
4342 << FDecl->getDeclName();
4343 }
4344}
4345
4346/// Determine whether the given type has a non-null nullability annotation.
4347static bool isNonNullType(ASTContext &ctx, QualType type) {
4348 if (auto nullability = type->getNullability(ctx))
4349 return *nullability == NullabilityKind::NonNull;
4350
4351 return false;
4352}
4353
4354static void CheckNonNullArguments(Sema &S,
4355 const NamedDecl *FDecl,
4356 const FunctionProtoType *Proto,
4357 ArrayRef<const Expr *> Args,
4358 SourceLocation CallSiteLoc) {
4359 assert((FDecl || Proto) && "Need a function declaration or prototype")(((FDecl || Proto) && "Need a function declaration or prototype"
) ? static_cast<void> (0) : __assert_fail ("(FDecl || Proto) && \"Need a function declaration or prototype\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 4359, __PRETTY_FUNCTION__))
;
4360
4361 // Already checked by by constant evaluator.
4362 if (S.isConstantEvaluated())
4363 return;
4364 // Check the attributes attached to the method/function itself.
4365 llvm::SmallBitVector NonNullArgs;
4366 if (FDecl) {
4367 // Handle the nonnull attribute on the function/method declaration itself.
4368 for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) {
4369 if (!NonNull->args_size()) {
4370 // Easy case: all pointer arguments are nonnull.
4371 for (const auto *Arg : Args)
4372 if (S.isValidPointerAttrType(Arg->getType()))
4373 CheckNonNullArgument(S, Arg, CallSiteLoc);
4374 return;
4375 }
4376
4377 for (const ParamIdx &Idx : NonNull->args()) {
4378 unsigned IdxAST = Idx.getASTIndex();
4379 if (IdxAST >= Args.size())
4380 continue;
4381 if (NonNullArgs.empty())
4382 NonNullArgs.resize(Args.size());
4383 NonNullArgs.set(IdxAST);
4384 }
4385 }
4386 }
4387
4388 if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) {
4389 // Handle the nonnull attribute on the parameters of the
4390 // function/method.
4391 ArrayRef<ParmVarDecl*> parms;
4392 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl))
4393 parms = FD->parameters();
4394 else
4395 parms = cast<ObjCMethodDecl>(FDecl)->parameters();
4396
4397 unsigned ParamIndex = 0;
4398 for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end();
4399 I != E; ++I, ++ParamIndex) {
4400 const ParmVarDecl *PVD = *I;
4401 if (PVD->hasAttr<NonNullAttr>() ||
4402 isNonNullType(S.Context, PVD->getType())) {
4403 if (NonNullArgs.empty())
4404 NonNullArgs.resize(Args.size());
4405
4406 NonNullArgs.set(ParamIndex);
4407 }
4408 }
4409 } else {
4410 // If we have a non-function, non-method declaration but no
4411 // function prototype, try to dig out the function prototype.
4412 if (!Proto) {
4413 if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) {
4414 QualType type = VD->getType().getNonReferenceType();
4415 if (auto pointerType = type->getAs<PointerType>())
4416 type = pointerType->getPointeeType();
4417 else if (auto blockType = type->getAs<BlockPointerType>())
4418 type = blockType->getPointeeType();
4419 // FIXME: data member pointers?
4420
4421 // Dig out the function prototype, if there is one.
4422 Proto = type->getAs<FunctionProtoType>();
4423 }
4424 }
4425
4426 // Fill in non-null argument information from the nullability
4427 // information on the parameter types (if we have them).
4428 if (Proto) {
4429 unsigned Index = 0;
4430 for (auto paramType : Proto->getParamTypes()) {
4431 if (isNonNullType(S.Context, paramType)) {
4432 if (NonNullArgs.empty())
4433 NonNullArgs.resize(Args.size());
4434
4435 NonNullArgs.set(Index);
4436 }
4437
4438 ++Index;
4439 }
4440 }
4441 }
4442
4443 // Check for non-null arguments.
4444 for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size();
4445 ArgIndex != ArgIndexEnd; ++ArgIndex) {
4446 if (NonNullArgs[ArgIndex])
4447 CheckNonNullArgument(S, Args[ArgIndex], CallSiteLoc);
4448 }
4449}
4450
4451/// Handles the checks for format strings, non-POD arguments to vararg
4452/// functions, NULL arguments passed to non-NULL parameters, and diagnose_if
4453/// attributes.
4454void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
4455 const Expr *ThisArg, ArrayRef<const Expr *> Args,
4456 bool IsMemberFunction, SourceLocation Loc,
4457 SourceRange Range, VariadicCallType CallType) {
4458 // FIXME: We should check as much as we can in the template definition.
4459 if (CurContext->isDependentContext())
4460 return;
4461
4462 // Printf and scanf checking.
4463 llvm::SmallBitVector CheckedVarArgs;
4464 if (FDecl) {
4465 for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
4466 // Only create vector if there are format attributes.
4467 CheckedVarArgs.resize(Args.size());
4468
4469 CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range,
4470 CheckedVarArgs);
4471 }
4472 }
4473
4474 // Refuse POD arguments that weren't caught by the format string
4475 // checks above.
4476 auto *FD = dyn_cast_or_null<FunctionDecl>(FDecl);
4477 if (CallType != VariadicDoesNotApply &&
4478 (!FD || FD->getBuiltinID() != Builtin::BI__noop)) {
4479 unsigned NumParams = Proto ? Proto->getNumParams()
4480 : FDecl && isa<FunctionDecl>(FDecl)
4481 ? cast<FunctionDecl>(FDecl)->getNumParams()
4482 : FDecl && isa<ObjCMethodDecl>(FDecl)
4483 ? cast<ObjCMethodDecl>(FDecl)->param_size()
4484 : 0;
4485
4486 for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) {
4487 // Args[ArgIdx] can be null in malformed code.
4488 if (const Expr *Arg = Args[ArgIdx]) {
4489 if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
4490 checkVariadicArgument(Arg, CallType);
4491 }
4492 }
4493 }
4494
4495 if (FDecl || Proto) {
4496 CheckNonNullArguments(*this, FDecl, Proto, Args, Loc);
4497
4498 // Type safety checking.
4499 if (FDecl) {
4500 for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>())
4501 CheckArgumentWithTypeTag(I, Args, Loc);
4502 }
4503 }
4504
4505 if (FDecl && FDecl->hasAttr<AllocAlignAttr>()) {
4506 auto *AA = FDecl->getAttr<AllocAlignAttr>();
4507 const Expr *Arg = Args[AA->getParamIndex().getASTIndex()];
4508 if (!Arg->isValueDependent()) {
4509 Expr::EvalResult Align;
4510 if (Arg->EvaluateAsInt(Align, Context)) {
4511 const llvm::APSInt &I = Align.Val.getInt();
4512 if (!I.isPowerOf2())
4513 Diag(Arg->getExprLoc(), diag::warn_alignment_not_power_of_two)
4514 << Arg->getSourceRange();
4515
4516 if (I > Sema::MaximumAlignment)
4517 Diag(Arg->getExprLoc(), diag::warn_assume_aligned_too_great)
4518 << Arg->getSourceRange() << Sema::MaximumAlignment;
4519 }
4520 }
4521 }
4522
4523 if (FD)
4524 diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc);
4525}
4526
4527/// CheckConstructorCall - Check a constructor call for correctness and safety
4528/// properties not enforced by the C type system.
4529void Sema::CheckConstructorCall(FunctionDecl *FDecl,
4530 ArrayRef<const Expr *> Args,
4531 const FunctionProtoType *Proto,
4532 SourceLocation Loc) {
4533 VariadicCallType CallType =
4534 Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
4535 checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true,
4536 Loc, SourceRange(), CallType);
4537}
4538
4539/// CheckFunctionCall - Check a direct function call for various correctness
4540/// and safety properties not strictly enforced by the C type system.
4541bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
4542 const FunctionProtoType *Proto) {
4543 bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
1
Assuming 'TheCall' is not a 'CXXOperatorCallExpr'
4544 isa<CXXMethodDecl>(FDecl);
4545 bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
2
Assuming 'TheCall' is not a 'CXXMemberCallExpr'
4546 IsMemberOperatorCall;
4547 VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
4548 TheCall->getCallee());
4549 Expr** Args = TheCall->getArgs();
4550 unsigned NumArgs = TheCall->getNumArgs();
4551
4552 Expr *ImplicitThis = nullptr;
4553 if (IsMemberOperatorCall
2.1
'IsMemberOperatorCall' is false
) {
3
Taking false branch
4554 // If this is a call to a member operator, hide the first argument
4555 // from checkCall.
4556 // FIXME: Our choice of AST representation here is less than ideal.
4557 ImplicitThis = Args[0];
4558 ++Args;
4559 --NumArgs;
4560 } else if (IsMemberFunction
3.1
'IsMemberFunction' is false
)
4
Taking false branch
4561 ImplicitThis =
4562 cast<CXXMemberCallExpr>(TheCall)->getImplicitObjectArgument();
4563
4564 checkCall(FDecl, Proto, ImplicitThis, llvm::makeArrayRef(Args, NumArgs),
4565 IsMemberFunction, TheCall->getRParenLoc(),
4566 TheCall->getCallee()->getSourceRange(), CallType);
4567
4568 IdentifierInfo *FnInfo = FDecl->getIdentifier();
4569 // None of the checks below are needed for functions that don't have
4570 // simple names (e.g., C++ conversion functions).
4571 if (!FnInfo)
5
Assuming 'FnInfo' is non-null
6
Taking false branch
4572 return false;
4573
4574 CheckTCBEnforcement(TheCall, FDecl);
4575
4576 CheckAbsoluteValueFunction(TheCall, FDecl);
4577 CheckMaxUnsignedZero(TheCall, FDecl);
4578
4579 if (getLangOpts().ObjC)
7
Assuming field 'ObjC' is 0
8
Taking false branch
4580 DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs);
4581
4582 unsigned CMId = FDecl->getMemoryFunctionKind();
4583
4584 // Handle memory setting and copying functions.
4585 switch (CMId) {
9
Control jumps to 'case BIfree:' at line 4595
4586 case 0:
4587 return false;
4588/* case Builtin::BIstrlcpy: // fallthrough
4589 case Builtin::BIstrlcat:
4590 CheckStrlcpycatArguments(TheCall, FnInfo);
4591 break;*/
4592 case Builtin::BIstrncat:
4593 CheckStrncatArguments(TheCall, FnInfo);
4594 break;
4595 case Builtin::BIfree:
4596 CheckFreeArguments(TheCall);
10
Calling 'Sema::CheckFreeArguments'
4597 break;
4598 default:
4599 CheckMemaccessArguments(TheCall, CMId, FnInfo);
4600 }
4601
4602 return false;
4603}
4604
4605bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
4606 ArrayRef<const Expr *> Args) {
4607 VariadicCallType CallType =
4608 Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
4609
4610 checkCall(Method, nullptr, /*ThisArg=*/nullptr, Args,
4611 /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(),
4612 CallType);
4613
4614 return false;
4615}
4616
4617bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
4618 const FunctionProtoType *Proto) {
4619 QualType Ty;
4620 if (const auto *V = dyn_cast<VarDecl>(NDecl))
4621 Ty = V->getType().getNonReferenceType();
4622 else if (const auto *F = dyn_cast<FieldDecl>(NDecl))
4623 Ty = F->getType().getNonReferenceType();
4624 else
4625 return false;
4626
4627 if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() &&
4628 !Ty->isFunctionProtoType())
4629 return false;
4630
4631 VariadicCallType CallType;
4632 if (!Proto || !Proto->isVariadic()) {
4633 CallType = VariadicDoesNotApply;
4634 } else if (Ty->isBlockPointerType()) {
4635 CallType = VariadicBlock;
4636 } else { // Ty->isFunctionPointerType()
4637 CallType = VariadicFunction;
4638 }
4639
4640 checkCall(NDecl, Proto, /*ThisArg=*/nullptr,
4641 llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
4642 /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
4643 TheCall->getCallee()->getSourceRange(), CallType);
4644
4645 return false;
4646}
4647
4648/// Checks function calls when a FunctionDecl or a NamedDecl is not available,
4649/// such as function pointers returned from functions.
4650bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
4651 VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto,
4652 TheCall->getCallee());
4653 checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr,
4654 llvm::makeArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
4655 /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
4656 TheCall->getCallee()->getSourceRange(), CallType);
4657
4658 return false;
4659}
4660
4661static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) {
4662 if (!llvm::isValidAtomicOrderingCABI(Ordering))
4663 return false;
4664
4665 auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering;
4666 switch (Op) {
4667 case AtomicExpr::AO__c11_atomic_init:
4668 case AtomicExpr::AO__opencl_atomic_init:
4669 llvm_unreachable("There is no ordering argument for an init")::llvm::llvm_unreachable_internal("There is no ordering argument for an init"
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 4669)
;
4670
4671 case AtomicExpr::AO__c11_atomic_load:
4672 case AtomicExpr::AO__opencl_atomic_load:
4673 case AtomicExpr::AO__atomic_load_n:
4674 case AtomicExpr::AO__atomic_load:
4675 return OrderingCABI != llvm::AtomicOrderingCABI::release &&
4676 OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
4677
4678 case AtomicExpr::AO__c11_atomic_store:
4679 case AtomicExpr::AO__opencl_atomic_store:
4680 case AtomicExpr::AO__atomic_store:
4681 case AtomicExpr::AO__atomic_store_n:
4682 return OrderingCABI != llvm::AtomicOrderingCABI::consume &&
4683 OrderingCABI != llvm::AtomicOrderingCABI::acquire &&
4684 OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
4685
4686 default:
4687 return true;
4688 }
4689}
4690
4691ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
4692 AtomicExpr::AtomicOp Op) {
4693 CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
4694 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
4695 MultiExprArg Args{TheCall->getArgs(), TheCall->getNumArgs()};
4696 return BuildAtomicExpr({TheCall->getBeginLoc(), TheCall->getEndLoc()},
4697 DRE->getSourceRange(), TheCall->getRParenLoc(), Args,
4698 Op);
4699}
4700
4701ExprResult Sema::BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange,
4702 SourceLocation RParenLoc, MultiExprArg Args,
4703 AtomicExpr::AtomicOp Op,
4704 AtomicArgumentOrder ArgOrder) {
4705 // All the non-OpenCL operations take one of the following forms.
4706 // The OpenCL operations take the __c11 forms with one extra argument for
4707 // synchronization scope.
4708 enum {
4709 // C __c11_atomic_init(A *, C)
4710 Init,
4711
4712 // C __c11_atomic_load(A *, int)
4713 Load,
4714
4715 // void __atomic_load(A *, CP, int)
4716 LoadCopy,
4717
4718 // void __atomic_store(A *, CP, int)
4719 Copy,
4720
4721 // C __c11_atomic_add(A *, M, int)
4722 Arithmetic,
4723
4724 // C __atomic_exchange_n(A *, CP, int)
4725 Xchg,
4726
4727 // void __atomic_exchange(A *, C *, CP, int)
4728 GNUXchg,
4729
4730 // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
4731 C11CmpXchg,
4732
4733 // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
4734 GNUCmpXchg
4735 } Form = Init;
4736
4737 const unsigned NumForm = GNUCmpXchg + 1;
4738 const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 };
4739 const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 };
4740 // where:
4741 // C is an appropriate type,
4742 // A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
4743 // CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
4744 // M is C if C is an integer, and ptrdiff_t if C is a pointer, and
4745 // the int parameters are for orderings.
4746
4747 static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm
4748 && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm,
4749 "need to update code for modified forms");
4750 static_assert(AtomicExpr::AO__c11_atomic_init == 0 &&
4751 AtomicExpr::AO__c11_atomic_fetch_min + 1 ==
4752 AtomicExpr::AO__atomic_load,
4753 "need to update code for modified C11 atomics");
4754 bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_init &&
4755 Op <= AtomicExpr::AO__opencl_atomic_fetch_max;
4756 bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_init &&
4757 Op <= AtomicExpr::AO__c11_atomic_fetch_min) ||
4758 IsOpenCL;
4759 bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
4760 Op == AtomicExpr::AO__atomic_store_n ||
4761 Op == AtomicExpr::AO__atomic_exchange_n ||
4762 Op == AtomicExpr::AO__atomic_compare_exchange_n;
4763 bool IsAddSub = false;
4764
4765 switch (Op) {
4766 case AtomicExpr::AO__c11_atomic_init:
4767 case AtomicExpr::AO__opencl_atomic_init:
4768 Form = Init;
4769 break;
4770
4771 case AtomicExpr::AO__c11_atomic_load:
4772 case AtomicExpr::AO__opencl_atomic_load:
4773 case AtomicExpr::AO__atomic_load_n:
4774 Form = Load;
4775 break;
4776
4777 case AtomicExpr::AO__atomic_load:
4778 Form = LoadCopy;
4779 break;
4780
4781 case AtomicExpr::AO__c11_atomic_store:
4782 case AtomicExpr::AO__opencl_atomic_store:
4783 case AtomicExpr::AO__atomic_store:
4784 case AtomicExpr::AO__atomic_store_n:
4785 Form = Copy;
4786 break;
4787
4788 case AtomicExpr::AO__c11_atomic_fetch_add:
4789 case AtomicExpr::AO__c11_atomic_fetch_sub:
4790 case AtomicExpr::AO__opencl_atomic_fetch_add:
4791 case AtomicExpr::AO__opencl_atomic_fetch_sub:
4792 case AtomicExpr::AO__atomic_fetch_add:
4793 case AtomicExpr::AO__atomic_fetch_sub:
4794 case AtomicExpr::AO__atomic_add_fetch:
4795 case AtomicExpr::AO__atomic_sub_fetch:
4796 IsAddSub = true;
4797 LLVM_FALLTHROUGH[[gnu::fallthrough]];
4798 case AtomicExpr::AO__c11_atomic_fetch_and:
4799 case AtomicExpr::AO__c11_atomic_fetch_or:
4800 case AtomicExpr::AO__c11_atomic_fetch_xor:
4801 case AtomicExpr::AO__opencl_atomic_fetch_and:
4802 case AtomicExpr::AO__opencl_atomic_fetch_or:
4803 case AtomicExpr::AO__opencl_atomic_fetch_xor:
4804 case AtomicExpr::AO__atomic_fetch_and:
4805 case AtomicExpr::AO__atomic_fetch_or:
4806 case AtomicExpr::AO__atomic_fetch_xor:
4807 case AtomicExpr::AO__atomic_fetch_nand:
4808 case AtomicExpr::AO__atomic_and_fetch:
4809 case AtomicExpr::AO__atomic_or_fetch:
4810 case AtomicExpr::AO__atomic_xor_fetch:
4811 case AtomicExpr::AO__atomic_nand_fetch:
4812 case AtomicExpr::AO__c11_atomic_fetch_min:
4813 case AtomicExpr::AO__c11_atomic_fetch_max:
4814 case AtomicExpr::AO__opencl_atomic_fetch_min:
4815 case AtomicExpr::AO__opencl_atomic_fetch_max:
4816 case AtomicExpr::AO__atomic_min_fetch:
4817 case AtomicExpr::AO__atomic_max_fetch:
4818 case AtomicExpr::AO__atomic_fetch_min:
4819 case AtomicExpr::AO__atomic_fetch_max:
4820 Form = Arithmetic;
4821 break;
4822
4823 case AtomicExpr::AO__c11_atomic_exchange:
4824 case AtomicExpr::AO__opencl_atomic_exchange:
4825 case AtomicExpr::AO__atomic_exchange_n:
4826 Form = Xchg;
4827 break;
4828
4829 case AtomicExpr::AO__atomic_exchange:
4830 Form = GNUXchg;
4831 break;
4832
4833 case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
4834 case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
4835 case AtomicExpr::AO__opencl_atomic_compare_exchange_strong:
4836 case AtomicExpr::AO__opencl_atomic_compare_exchange_weak:
4837 Form = C11CmpXchg;
4838 break;
4839
4840 case AtomicExpr::AO__atomic_compare_exchange:
4841 case AtomicExpr::AO__atomic_compare_exchange_n:
4842 Form = GNUCmpXchg;
4843 break;
4844 }
4845
4846 unsigned AdjustedNumArgs = NumArgs[Form];
4847 if (IsOpenCL && Op != AtomicExpr::AO__opencl_atomic_init)
4848 ++AdjustedNumArgs;
4849 // Check we have the right number of arguments.
4850 if (Args.size() < AdjustedNumArgs) {
4851 Diag(CallRange.getEnd(), diag::err_typecheck_call_too_few_args)
4852 << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
4853 << ExprRange;
4854 return ExprError();
4855 } else if (Args.size() > AdjustedNumArgs) {
4856 Diag(Args[AdjustedNumArgs]->getBeginLoc(),
4857 diag::err_typecheck_call_too_many_args)
4858 << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
4859 << ExprRange;
4860 return ExprError();
4861 }
4862
4863 // Inspect the first argument of the atomic operation.
4864 Expr *Ptr = Args[0];
4865 ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr);
4866 if (ConvertedPtr.isInvalid())
4867 return ExprError();
4868
4869 Ptr = ConvertedPtr.get();
4870 const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
4871 if (!pointerType) {
4872 Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer)
4873 << Ptr->getType() << Ptr->getSourceRange();
4874 return ExprError();
4875 }
4876
4877 // For a __c11 builtin, this should be a pointer to an _Atomic type.
4878 QualType AtomTy = pointerType->getPointeeType(); // 'A'
4879 QualType ValType = AtomTy; // 'C'
4880 if (IsC11) {
4881 if (!AtomTy->isAtomicType()) {
4882 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic)
4883 << Ptr->getType() << Ptr->getSourceRange();
4884 return ExprError();
4885 }
4886 if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) ||
4887 AtomTy.getAddressSpace() == LangAS::opencl_constant) {
4888 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_atomic)
4889 << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType()
4890 << Ptr->getSourceRange();
4891 return ExprError();
4892 }
4893 ValType = AtomTy->castAs<AtomicType>()->getValueType();
4894 } else if (Form != Load && Form != LoadCopy) {
4895 if (ValType.isConstQualified()) {
4896 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_pointer)
4897 << Ptr->getType() << Ptr->getSourceRange();
4898 return ExprError();
4899 }
4900 }
4901
4902 // For an arithmetic operation, the implied arithmetic must be well-formed.
4903 if (Form == Arithmetic) {
4904 // gcc does not enforce these rules for GNU atomics, but we do so for sanity.
4905 if (IsAddSub && !ValType->isIntegerType()
4906 && !ValType->isPointerType()) {
4907 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr)
4908 << IsC11 << Ptr->getType() << Ptr->getSourceRange();
4909 return ExprError();
4910 }
4911 if (!IsAddSub && !ValType->isIntegerType()) {
4912 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int)
4913 << IsC11 << Ptr->getType() << Ptr->getSourceRange();
4914 return ExprError();
4915 }
4916 if (IsC11 && ValType->isPointerType() &&
4917 RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(),
4918 diag::err_incomplete_type)) {
4919 return ExprError();
4920 }
4921 } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
4922 // For __atomic_*_n operations, the value type must be a scalar integral or
4923 // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
4924 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr)
4925 << IsC11 << Ptr->getType() << Ptr->getSourceRange();
4926 return ExprError();
4927 }
4928
4929 if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) &&
4930 !AtomTy->isScalarType()) {
4931 // For GNU atomics, require a trivially-copyable type. This is not part of
4932 // the GNU atomics specification, but we enforce it for sanity.
4933 Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_trivial_copy)
4934 << Ptr->getType() << Ptr->getSourceRange();
4935 return ExprError();
4936 }
4937
4938 switch (ValType.getObjCLifetime()) {
4939 case Qualifiers::OCL_None:
4940 case Qualifiers::OCL_ExplicitNone:
4941 // okay
4942 break;
4943
4944 case Qualifiers::OCL_Weak:
4945 case Qualifiers::OCL_Strong:
4946 case Qualifiers::OCL_Autoreleasing:
4947 // FIXME: Can this happen? By this point, ValType should be known
4948 // to be trivially copyable.
4949 Diag(ExprRange.getBegin(), diag::err_arc_atomic_ownership)
4950 << ValType << Ptr->getSourceRange();
4951 return ExprError();
4952 }
4953
4954 // All atomic operations have an overload which takes a pointer to a volatile
4955 // 'A'. We shouldn't let the volatile-ness of the pointee-type inject itself
4956 // into the result or the other operands. Similarly atomic_load takes a
4957 // pointer to a const 'A'.
4958 ValType.removeLocalVolatile();
4959 ValType.removeLocalConst();
4960 QualType ResultType = ValType;
4961 if (Form == Copy || Form == LoadCopy || Form == GNUXchg ||
4962 Form == Init)
4963 ResultType = Context.VoidTy;
4964 else if (Form == C11CmpXchg || Form == GNUCmpXchg)
4965 ResultType = Context.BoolTy;
4966
4967 // The type of a parameter passed 'by value'. In the GNU atomics, such
4968 // arguments are actually passed as pointers.
4969 QualType ByValType = ValType; // 'CP'
4970 bool IsPassedByAddress = false;
4971 if (!IsC11 && !IsN) {
4972 ByValType = Ptr->getType();
4973 IsPassedByAddress = true;
4974 }
4975
4976 SmallVector<Expr *, 5> APIOrderedArgs;
4977 if (ArgOrder == Sema::AtomicArgumentOrder::AST) {
4978 APIOrderedArgs.push_back(Args[0]);
4979 switch (Form) {
4980 case Init:
4981 case Load:
4982 APIOrderedArgs.push_back(Args[1]); // Val1/Order
4983 break;
4984 case LoadCopy:
4985 case Copy:
4986 case Arithmetic:
4987 case Xchg:
4988 APIOrderedArgs.push_back(Args[2]); // Val1
4989 APIOrderedArgs.push_back(Args[1]); // Order
4990 break;
4991 case GNUXchg:
4992 APIOrderedArgs.push_back(Args[2]); // Val1
4993 APIOrderedArgs.push_back(Args[3]); // Val2
4994 APIOrderedArgs.push_back(Args[1]); // Order
4995 break;
4996 case C11CmpXchg:
4997 APIOrderedArgs.push_back(Args[2]); // Val1
4998 APIOrderedArgs.push_back(Args[4]); // Val2
4999 APIOrderedArgs.push_back(Args[1]); // Order
5000 APIOrderedArgs.push_back(Args[3]); // OrderFail
5001 break;
5002 case GNUCmpXchg:
5003 APIOrderedArgs.push_back(Args[2]); // Val1
5004 APIOrderedArgs.push_back(Args[4]); // Val2
5005 APIOrderedArgs.push_back(Args[5]); // Weak
5006 APIOrderedArgs.push_back(Args[1]); // Order
5007 APIOrderedArgs.push_back(Args[3]); // OrderFail
5008 break;
5009 }
5010 } else
5011 APIOrderedArgs.append(Args.begin(), Args.end());
5012
5013 // The first argument's non-CV pointer type is used to deduce the type of
5014 // subsequent arguments, except for:
5015 // - weak flag (always converted to bool)
5016 // - memory order (always converted to int)
5017 // - scope (always converted to int)
5018 for (unsigned i = 0; i != APIOrderedArgs.size(); ++i) {
5019 QualType Ty;
5020 if (i < NumVals[Form] + 1) {
5021 switch (i) {
5022 case 0:
5023 // The first argument is always a pointer. It has a fixed type.
5024 // It is always dereferenced, a nullptr is undefined.
5025 CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
5026 // Nothing else to do: we already know all we want about this pointer.
5027 continue;
5028 case 1:
5029 // The second argument is the non-atomic operand. For arithmetic, this
5030 // is always passed by value, and for a compare_exchange it is always
5031 // passed by address. For the rest, GNU uses by-address and C11 uses
5032 // by-value.
5033 assert(Form != Load)((Form != Load) ? static_cast<void> (0) : __assert_fail
("Form != Load", "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 5033, __PRETTY_FUNCTION__))
;
5034 if (Form == Init || (Form == Arithmetic && ValType->isIntegerType()))
5035 Ty = ValType;
5036 else if (Form == Copy || Form == Xchg) {
5037 if (IsPassedByAddress) {
5038 // The value pointer is always dereferenced, a nullptr is undefined.
5039 CheckNonNullArgument(*this, APIOrderedArgs[i],
5040 ExprRange.getBegin());
5041 }
5042 Ty = ByValType;
5043 } else if (Form == Arithmetic)
5044 Ty = Context.getPointerDiffType();
5045 else {
5046 Expr *ValArg = APIOrderedArgs[i];
5047 // The value pointer is always dereferenced, a nullptr is undefined.
5048 CheckNonNullArgument(*this, ValArg, ExprRange.getBegin());
5049 LangAS AS = LangAS::Default;
5050 // Keep address space of non-atomic pointer type.
5051 if (const PointerType *PtrTy =
5052 ValArg->getType()->getAs<PointerType>()) {
5053 AS = PtrTy->getPointeeType().getAddressSpace();
5054 }
5055 Ty = Context.getPointerType(
5056 Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS));
5057 }
5058 break;
5059 case 2:
5060 // The third argument to compare_exchange / GNU exchange is the desired
5061 // value, either by-value (for the C11 and *_n variant) or as a pointer.
5062 if (IsPassedByAddress)
5063 CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
5064 Ty = ByValType;
5065 break;
5066 case 3:
5067 // The fourth argument to GNU compare_exchange is a 'weak' flag.
5068 Ty = Context.BoolTy;
5069 break;
5070 }
5071 } else {
5072 // The order(s) and scope are always converted to int.
5073 Ty = Context.IntTy;
5074 }
5075
5076 InitializedEntity Entity =
5077 InitializedEntity::InitializeParameter(Context, Ty, false);
5078 ExprResult Arg = APIOrderedArgs[i];
5079 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
5080 if (Arg.isInvalid())
5081 return true;
5082 APIOrderedArgs[i] = Arg.get();
5083 }
5084
5085 // Permute the arguments into a 'consistent' order.
5086 SmallVector<Expr*, 5> SubExprs;
5087 SubExprs.push_back(Ptr);
5088 switch (Form) {
5089 case Init:
5090 // Note, AtomicExpr::getVal1() has a special case for this atomic.
5091 SubExprs.push_back(APIOrderedArgs[1]); // Val1
5092 break;
5093 case Load:
5094 SubExprs.push_back(APIOrderedArgs[1]); // Order
5095 break;
5096 case LoadCopy:
5097 case Copy:
5098 case Arithmetic:
5099 case Xchg:
5100 SubExprs.push_back(APIOrderedArgs[2]); // Order
5101 SubExprs.push_back(APIOrderedArgs[1]); // Val1
5102 break;
5103 case GNUXchg:
5104 // Note, AtomicExpr::getVal2() has a special case for this atomic.
5105 SubExprs.push_back(APIOrderedArgs[3]); // Order
5106 SubExprs.push_back(APIOrderedArgs[1]); // Val1
5107 SubExprs.push_back(APIOrderedArgs[2]); // Val2
5108 break;
5109 case C11CmpXchg:
5110 SubExprs.push_back(APIOrderedArgs[3]); // Order
5111 SubExprs.push_back(APIOrderedArgs[1]); // Val1
5112 SubExprs.push_back(APIOrderedArgs[4]); // OrderFail
5113 SubExprs.push_back(APIOrderedArgs[2]); // Val2
5114 break;
5115 case GNUCmpXchg:
5116 SubExprs.push_back(APIOrderedArgs[4]); // Order
5117 SubExprs.push_back(APIOrderedArgs[1]); // Val1
5118 SubExprs.push_back(APIOrderedArgs[5]); // OrderFail
5119 SubExprs.push_back(APIOrderedArgs[2]); // Val2
5120 SubExprs.push_back(APIOrderedArgs[3]); // Weak
5121 break;
5122 }
5123
5124 if (SubExprs.size() >= 2 && Form != Init) {
5125 if (Optional<llvm::APSInt> Result =
5126 SubExprs[1]->getIntegerConstantExpr(Context))
5127 if (!isValidOrderingForOp(Result->getSExtValue(), Op))
5128 Diag(SubExprs[1]->getBeginLoc(),
5129 diag::warn_atomic_op_has_invalid_memory_order)
5130 << SubExprs[1]->getSourceRange();
5131 }
5132
5133 if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) {
5134 auto *Scope = Args[Args.size() - 1];
5135 if (Optional<llvm::APSInt> Result =
5136 Scope->getIntegerConstantExpr(Context)) {
5137 if (!ScopeModel->isValid(Result->getZExtValue()))
5138 Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_synch_scope)
5139 << Scope->getSourceRange();
5140 }
5141 SubExprs.push_back(Scope);
5142 }
5143
5144 AtomicExpr *AE = new (Context)
5145 AtomicExpr(ExprRange.getBegin(), SubExprs, ResultType, Op, RParenLoc);
5146
5147 if ((Op == AtomicExpr::AO__c11_atomic_load ||
5148 Op == AtomicExpr::AO__c11_atomic_store ||
5149 Op == AtomicExpr::AO__opencl_atomic_load ||
5150 Op == AtomicExpr::AO__opencl_atomic_store ) &&
5151 Context.AtomicUsesUnsupportedLibcall(AE))
5152 Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib)
5153 << ((Op == AtomicExpr::AO__c11_atomic_load ||
5154 Op == AtomicExpr::AO__opencl_atomic_load)
5155 ? 0
5156 : 1);
5157
5158 if (ValType->isExtIntType()) {
5159 Diag(Ptr->getExprLoc(), diag::err_atomic_builtin_ext_int_prohibit);
5160 return ExprError();
5161 }
5162
5163 return AE;
5164}
5165
5166/// checkBuiltinArgument - Given a call to a builtin function, perform
5167/// normal type-checking on the given argument, updating the call in
5168/// place. This is useful when a builtin function requires custom
5169/// type-checking for some of its arguments but not necessarily all of
5170/// them.
5171///
5172/// Returns true on error.
5173static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
5174 FunctionDecl *Fn = E->getDirectCallee();
5175 assert(Fn && "builtin call without direct callee!")((Fn && "builtin call without direct callee!") ? static_cast
<void> (0) : __assert_fail ("Fn && \"builtin call without direct callee!\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 5175, __PRETTY_FUNCTION__))
;
5176
5177 ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
5178 InitializedEntity Entity =
5179 InitializedEntity::InitializeParameter(S.Context, Param);
5180
5181 ExprResult Arg = E->getArg(0);
5182 Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
5183 if (Arg.isInvalid())
5184 return true;
5185
5186 E->setArg(ArgIndex, Arg.get());
5187 return false;
5188}
5189
5190/// We have a call to a function like __sync_fetch_and_add, which is an
5191/// overloaded function based on the pointer type of its first argument.
5192/// The main BuildCallExpr routines have already promoted the types of
5193/// arguments because all of these calls are prototyped as void(...).
5194///
5195/// This function goes through and does final semantic checking for these
5196/// builtins, as well as generating any warnings.
5197ExprResult
5198Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
5199 CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get());
5200 Expr *Callee = TheCall->getCallee();
5201 DeclRefExpr *DRE = cast<DeclRefExpr>(Callee->IgnoreParenCasts());
5202 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
5203
5204 // Ensure that we have at least one argument to do type inference from.
5205 if (TheCall->getNumArgs() < 1) {
5206 Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
5207 << 0 << 1 << TheCall->getNumArgs() << Callee->getSourceRange();
5208 return ExprError();
5209 }
5210
5211 // Inspect the first argument of the atomic builtin. This should always be
5212 // a pointer type, whose element is an integral scalar or pointer type.
5213 // Because it is a pointer type, we don't have to worry about any implicit
5214 // casts here.
5215 // FIXME: We don't allow floating point scalars as input.
5216 Expr *FirstArg = TheCall->getArg(0);
5217 ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
5218 if (FirstArgResult.isInvalid())
5219 return ExprError();
5220 FirstArg = FirstArgResult.get();
5221 TheCall->setArg(0, FirstArg);
5222
5223 const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
5224 if (!pointerType) {
5225 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
5226 << FirstArg->getType() << FirstArg->getSourceRange();
5227 return ExprError();
5228 }
5229
5230 QualType ValType = pointerType->getPointeeType();
5231 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
5232 !ValType->isBlockPointerType()) {
5233 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr)
5234 << FirstArg->getType() << FirstArg->getSourceRange();
5235 return ExprError();
5236 }
5237
5238 if (ValType.isConstQualified()) {
5239 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const)
5240 << FirstArg->getType() << FirstArg->getSourceRange();
5241 return ExprError();
5242 }
5243
5244 switch (ValType.getObjCLifetime()) {
5245 case Qualifiers::OCL_None:
5246 case Qualifiers::OCL_ExplicitNone:
5247 // okay
5248 break;
5249
5250 case Qualifiers::OCL_Weak:
5251 case Qualifiers::OCL_Strong:
5252 case Qualifiers::OCL_Autoreleasing:
5253 Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
5254 << ValType << FirstArg->getSourceRange();
5255 return ExprError();
5256 }
5257
5258 // Strip any qualifiers off ValType.
5259 ValType = ValType.getUnqualifiedType();
5260
5261 // The majority of builtins return a value, but a few have special return
5262 // types, so allow them to override appropriately below.
5263 QualType ResultType = ValType;
5264
5265 // We need to figure out which concrete builtin this maps onto. For example,
5266 // __sync_fetch_and_add with a 2 byte object turns into
5267 // __sync_fetch_and_add_2.
5268#define BUILTIN_ROW(x) \
5269 { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
5270 Builtin::BI##x##_8, Builtin::BI##x##_16 }
5271
5272 static const unsigned BuiltinIndices[][5] = {
5273 BUILTIN_ROW(__sync_fetch_and_add),
5274 BUILTIN_ROW(__sync_fetch_and_sub),
5275 BUILTIN_ROW(__sync_fetch_and_or),
5276 BUILTIN_ROW(__sync_fetch_and_and),
5277 BUILTIN_ROW(__sync_fetch_and_xor),
5278 BUILTIN_ROW(__sync_fetch_and_nand),
5279
5280 BUILTIN_ROW(__sync_add_and_fetch),
5281 BUILTIN_ROW(__sync_sub_and_fetch),
5282 BUILTIN_ROW(__sync_and_and_fetch),
5283 BUILTIN_ROW(__sync_or_and_fetch),
5284 BUILTIN_ROW(__sync_xor_and_fetch),
5285 BUILTIN_ROW(__sync_nand_and_fetch),
5286
5287 BUILTIN_ROW(__sync_val_compare_and_swap),
5288 BUILTIN_ROW(__sync_bool_compare_and_swap),
5289 BUILTIN_ROW(__sync_lock_test_and_set),
5290 BUILTIN_ROW(__sync_lock_release),
5291 BUILTIN_ROW(__sync_swap)
5292 };
5293#undef BUILTIN_ROW
5294
5295 // Determine the index of the size.
5296 unsigned SizeIndex;
5297 switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
5298 case 1: SizeIndex = 0; break;
5299 case 2: SizeIndex = 1; break;
5300 case 4: SizeIndex = 2; break;
5301 case 8: SizeIndex = 3; break;
5302 case 16: SizeIndex = 4; break;
5303 default:
5304 Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size)
5305 << FirstArg->getType() << FirstArg->getSourceRange();
5306 return ExprError();
5307 }
5308
5309 // Each of these builtins has one pointer argument, followed by some number of
5310 // values (0, 1 or 2) followed by a potentially empty varags list of stuff
5311 // that we ignore. Find out which row of BuiltinIndices to read from as well
5312 // as the number of fixed args.
5313 unsigned BuiltinID = FDecl->getBuiltinID();
5314 unsigned BuiltinIndex, NumFixed = 1;
5315 bool WarnAboutSemanticsChange = false;
5316 switch (BuiltinID) {
5317 default: llvm_unreachable("Unknown overloaded atomic builtin!")::llvm::llvm_unreachable_internal("Unknown overloaded atomic builtin!"
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 5317)
;
5318 case Builtin::BI__sync_fetch_and_add:
5319 case Builtin::BI__sync_fetch_and_add_1:
5320 case Builtin::BI__sync_fetch_and_add_2:
5321 case Builtin::BI__sync_fetch_and_add_4:
5322 case Builtin::BI__sync_fetch_and_add_8:
5323 case Builtin::BI__sync_fetch_and_add_16:
5324 BuiltinIndex = 0;
5325 break;
5326
5327 case Builtin::BI__sync_fetch_and_sub:
5328 case Builtin::BI__sync_fetch_and_sub_1:
5329 case Builtin::BI__sync_fetch_and_sub_2:
5330 case Builtin::BI__sync_fetch_and_sub_4:
5331 case Builtin::BI__sync_fetch_and_sub_8:
5332 case Builtin::BI__sync_fetch_and_sub_16:
5333 BuiltinIndex = 1;
5334 break;
5335
5336 case Builtin::BI__sync_fetch_and_or:
5337 case Builtin::BI__sync_fetch_and_or_1:
5338 case Builtin::BI__sync_fetch_and_or_2:
5339 case Builtin::BI__sync_fetch_and_or_4:
5340 case Builtin::BI__sync_fetch_and_or_8:
5341 case Builtin::BI__sync_fetch_and_or_16:
5342 BuiltinIndex = 2;
5343 break;
5344
5345 case Builtin::BI__sync_fetch_and_and:
5346 case Builtin::BI__sync_fetch_and_and_1:
5347 case Builtin::BI__sync_fetch_and_and_2:
5348 case Builtin::BI__sync_fetch_and_and_4:
5349 case Builtin::BI__sync_fetch_and_and_8:
5350 case Builtin::BI__sync_fetch_and_and_16:
5351 BuiltinIndex = 3;
5352 break;
5353
5354 case Builtin::BI__sync_fetch_and_xor:
5355 case Builtin::BI__sync_fetch_and_xor_1:
5356 case Builtin::BI__sync_fetch_and_xor_2:
5357 case Builtin::BI__sync_fetch_and_xor_4:
5358 case Builtin::BI__sync_fetch_and_xor_8:
5359 case Builtin::BI__sync_fetch_and_xor_16:
5360 BuiltinIndex = 4;
5361 break;
5362
5363 case Builtin::BI__sync_fetch_and_nand:
5364 case Builtin::BI__sync_fetch_and_nand_1:
5365 case Builtin::BI__sync_fetch_and_nand_2:
5366 case Builtin::BI__sync_fetch_and_nand_4:
5367 case Builtin::BI__sync_fetch_and_nand_8:
5368 case Builtin::BI__sync_fetch_and_nand_16:
5369 BuiltinIndex = 5;
5370 WarnAboutSemanticsChange = true;
5371 break;
5372
5373 case Builtin::BI__sync_add_and_fetch:
5374 case Builtin::BI__sync_add_and_fetch_1:
5375 case Builtin::BI__sync_add_and_fetch_2:
5376 case Builtin::BI__sync_add_and_fetch_4:
5377 case Builtin::BI__sync_add_and_fetch_8:
5378 case Builtin::BI__sync_add_and_fetch_16:
5379 BuiltinIndex = 6;
5380 break;
5381
5382 case Builtin::BI__sync_sub_and_fetch:
5383 case Builtin::BI__sync_sub_and_fetch_1:
5384 case Builtin::BI__sync_sub_and_fetch_2:
5385 case Builtin::BI__sync_sub_and_fetch_4:
5386 case Builtin::BI__sync_sub_and_fetch_8:
5387 case Builtin::BI__sync_sub_and_fetch_16:
5388 BuiltinIndex = 7;
5389 break;
5390
5391 case Builtin::BI__sync_and_and_fetch:
5392 case Builtin::BI__sync_and_and_fetch_1:
5393 case Builtin::BI__sync_and_and_fetch_2:
5394 case Builtin::BI__sync_and_and_fetch_4:
5395 case Builtin::BI__sync_and_and_fetch_8:
5396 case Builtin::BI__sync_and_and_fetch_16:
5397 BuiltinIndex = 8;
5398 break;
5399
5400 case Builtin::BI__sync_or_and_fetch:
5401 case Builtin::BI__sync_or_and_fetch_1:
5402 case Builtin::BI__sync_or_and_fetch_2:
5403 case Builtin::BI__sync_or_and_fetch_4:
5404 case Builtin::BI__sync_or_and_fetch_8:
5405 case Builtin::BI__sync_or_and_fetch_16:
5406 BuiltinIndex = 9;
5407 break;
5408
5409 case Builtin::BI__sync_xor_and_fetch:
5410 case Builtin::BI__sync_xor_and_fetch_1:
5411 case Builtin::BI__sync_xor_and_fetch_2:
5412 case Builtin::BI__sync_xor_and_fetch_4:
5413 case Builtin::BI__sync_xor_and_fetch_8:
5414 case Builtin::BI__sync_xor_and_fetch_16:
5415 BuiltinIndex = 10;
5416 break;
5417
5418 case Builtin::BI__sync_nand_and_fetch:
5419 case Builtin::BI__sync_nand_and_fetch_1:
5420 case Builtin::BI__sync_nand_and_fetch_2:
5421 case Builtin::BI__sync_nand_and_fetch_4:
5422 case Builtin::BI__sync_nand_and_fetch_8:
5423 case Builtin::BI__sync_nand_and_fetch_16:
5424 BuiltinIndex = 11;
5425 WarnAboutSemanticsChange = true;
5426 break;
5427
5428 case Builtin::BI__sync_val_compare_and_swap:
5429 case Builtin::BI__sync_val_compare_and_swap_1:
5430 case Builtin::BI__sync_val_compare_and_swap_2:
5431 case Builtin::BI__sync_val_compare_and_swap_4:
5432 case Builtin::BI__sync_val_compare_and_swap_8:
5433 case Builtin::BI__sync_val_compare_and_swap_16:
5434 BuiltinIndex = 12;
5435 NumFixed = 2;
5436 break;
5437
5438 case Builtin::BI__sync_bool_compare_and_swap:
5439 case Builtin::BI__sync_bool_compare_and_swap_1:
5440 case Builtin::BI__sync_bool_compare_and_swap_2:
5441 case Builtin::BI__sync_bool_compare_and_swap_4:
5442 case Builtin::BI__sync_bool_compare_and_swap_8:
5443 case Builtin::BI__sync_bool_compare_and_swap_16:
5444 BuiltinIndex = 13;
5445 NumFixed = 2;
5446 ResultType = Context.BoolTy;
5447 break;
5448
5449 case Builtin::BI__sync_lock_test_and_set:
5450 case Builtin::BI__sync_lock_test_and_set_1:
5451 case Builtin::BI__sync_lock_test_and_set_2:
5452 case Builtin::BI__sync_lock_test_and_set_4:
5453 case Builtin::BI__sync_lock_test_and_set_8:
5454 case Builtin::BI__sync_lock_test_and_set_16:
5455 BuiltinIndex = 14;
5456 break;
5457
5458 case Builtin::BI__sync_lock_release:
5459 case Builtin::BI__sync_lock_release_1:
5460 case Builtin::BI__sync_lock_release_2:
5461 case Builtin::BI__sync_lock_release_4:
5462 case Builtin::BI__sync_lock_release_8:
5463 case Builtin::BI__sync_lock_release_16:
5464 BuiltinIndex = 15;
5465 NumFixed = 0;
5466 ResultType = Context.VoidTy;
5467 break;
5468
5469 case Builtin::BI__sync_swap:
5470 case Builtin::BI__sync_swap_1:
5471 case Builtin::BI__sync_swap_2:
5472 case Builtin::BI__sync_swap_4:
5473 case Builtin::BI__sync_swap_8:
5474 case Builtin::BI__sync_swap_16:
5475 BuiltinIndex = 16;
5476 break;
5477 }
5478
5479 // Now that we know how many fixed arguments we expect, first check that we
5480 // have at least that many.
5481 if (TheCall->getNumArgs() < 1+NumFixed) {
5482 Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
5483 << 0 << 1 + NumFixed << TheCall->getNumArgs()
5484 << Callee->getSourceRange();
5485 return ExprError();
5486 }
5487
5488 Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst)
5489 << Callee->getSourceRange();
5490
5491 if (WarnAboutSemanticsChange) {
5492 Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change)
5493 << Callee->getSourceRange();
5494 }
5495
5496 // Get the decl for the concrete builtin from this, we can tell what the
5497 // concrete integer type we should convert to is.
5498 unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
5499 const char *NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID);
5500 FunctionDecl *NewBuiltinDecl;
5501 if (NewBuiltinID == BuiltinID)
5502 NewBuiltinDecl = FDecl;
5503 else {
5504 // Perform builtin lookup to avoid redeclaring it.
5505 DeclarationName DN(&Context.Idents.get(NewBuiltinName));
5506 LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName);
5507 LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
5508 assert(Res.getFoundDecl())((Res.getFoundDecl()) ? static_cast<void> (0) : __assert_fail
("Res.getFoundDecl()", "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 5508, __PRETTY_FUNCTION__))
;
5509 NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
5510 if (!NewBuiltinDecl)
5511 return ExprError();
5512 }
5513
5514 // The first argument --- the pointer --- has a fixed type; we
5515 // deduce the types of the rest of the arguments accordingly. Walk
5516 // the remaining arguments, converting them to the deduced value type.
5517 for (unsigned i = 0; i != NumFixed; ++i) {
5518 ExprResult Arg = TheCall->getArg(i+1);
5519
5520 // GCC does an implicit conversion to the pointer or integer ValType. This
5521 // can fail in some cases (1i -> int**), check for this error case now.
5522 // Initialize the argument.
5523 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
5524 ValType, /*consume*/ false);
5525 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
5526 if (Arg.isInvalid())
5527 return ExprError();
5528
5529 // Okay, we have something that *can* be converted to the right type. Check
5530 // to see if there is a potentially weird extension going on here. This can
5531 // happen when you do an atomic operation on something like an char* and
5532 // pass in 42. The 42 gets converted to char. This is even more strange
5533 // for things like 45.123 -> char, etc.
5534 // FIXME: Do this check.
5535 TheCall->setArg(i+1, Arg.get());
5536 }
5537
5538 // Create a new DeclRefExpr to refer to the new decl.
5539 DeclRefExpr *NewDRE = DeclRefExpr::Create(
5540 Context, DRE->getQualifierLoc(), SourceLocation(), NewBuiltinDecl,
5541 /*enclosing*/ false, DRE->getLocation(), Context.BuiltinFnTy,
5542 DRE->getValueKind(), nullptr, nullptr, DRE->isNonOdrUse());
5543
5544 // Set the callee in the CallExpr.
5545 // FIXME: This loses syntactic information.
5546 QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
5547 ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
5548 CK_BuiltinFnToFnPtr);
5549 TheCall->setCallee(PromotedCall.get());
5550
5551 // Change the result type of the call to match the original value type. This
5552 // is arbitrary, but the codegen for these builtins ins design to handle it
5553 // gracefully.
5554 TheCall->setType(ResultType);
5555
5556 // Prohibit use of _ExtInt with atomic builtins.
5557 // The arguments would have already been converted to the first argument's
5558 // type, so only need to check the first argument.
5559 const auto *ExtIntValType = ValType->getAs<ExtIntType>();
5560 if (ExtIntValType && !llvm::isPowerOf2_64(ExtIntValType->getNumBits())) {
5561 Diag(FirstArg->getExprLoc(), diag::err_atomic_builtin_ext_int_size);
5562 return ExprError();
5563 }
5564
5565 return TheCallResult;
5566}
5567
5568/// SemaBuiltinNontemporalOverloaded - We have a call to
5569/// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an
5570/// overloaded function based on the pointer type of its last argument.
5571///
5572/// This function goes through and does final semantic checking for these
5573/// builtins.
5574ExprResult Sema::SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult) {
5575 CallExpr *TheCall = (CallExpr *)TheCallResult.get();
5576 DeclRefExpr *DRE =
5577 cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
5578 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
5579 unsigned BuiltinID = FDecl->getBuiltinID();
5580 assert((BuiltinID == Builtin::BI__builtin_nontemporal_store ||(((BuiltinID == Builtin::BI__builtin_nontemporal_store || BuiltinID
== Builtin::BI__builtin_nontemporal_load) && "Unexpected nontemporal load/store builtin!"
) ? static_cast<void> (0) : __assert_fail ("(BuiltinID == Builtin::BI__builtin_nontemporal_store || BuiltinID == Builtin::BI__builtin_nontemporal_load) && \"Unexpected nontemporal load/store builtin!\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 5582, __PRETTY_FUNCTION__))
5581 BuiltinID == Builtin::BI__builtin_nontemporal_load) &&(((BuiltinID == Builtin::BI__builtin_nontemporal_store || BuiltinID
== Builtin::BI__builtin_nontemporal_load) && "Unexpected nontemporal load/store builtin!"
) ? static_cast<void> (0) : __assert_fail ("(BuiltinID == Builtin::BI__builtin_nontemporal_store || BuiltinID == Builtin::BI__builtin_nontemporal_load) && \"Unexpected nontemporal load/store builtin!\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 5582, __PRETTY_FUNCTION__))
5582 "Unexpected nontemporal load/store builtin!")(((BuiltinID == Builtin::BI__builtin_nontemporal_store || BuiltinID
== Builtin::BI__builtin_nontemporal_load) && "Unexpected nontemporal load/store builtin!"
) ? static_cast<void> (0) : __assert_fail ("(BuiltinID == Builtin::BI__builtin_nontemporal_store || BuiltinID == Builtin::BI__builtin_nontemporal_load) && \"Unexpected nontemporal load/store builtin!\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 5582, __PRETTY_FUNCTION__))
;
5583 bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store;
5584 unsigned numArgs = isStore ? 2 : 1;
5585
5586 // Ensure that we have the proper number of arguments.
5587 if (checkArgCount(*this, TheCall, numArgs))
5588 return ExprError();
5589
5590 // Inspect the last argument of the nontemporal builtin. This should always
5591 // be a pointer type, from which we imply the type of the memory access.
5592 // Because it is a pointer type, we don't have to worry about any implicit
5593 // casts here.
5594 Expr *PointerArg = TheCall->getArg(numArgs - 1);
5595 ExprResult PointerArgResult =
5596 DefaultFunctionArrayLvalueConversion(PointerArg);
5597
5598 if (PointerArgResult.isInvalid())
5599 return ExprError();
5600 PointerArg = PointerArgResult.get();
5601 TheCall->setArg(numArgs - 1, PointerArg);
5602
5603 const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
5604 if (!pointerType) {
5605 Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer)
5606 << PointerArg->getType() << PointerArg->getSourceRange();
5607 return ExprError();
5608 }
5609
5610 QualType ValType = pointerType->getPointeeType();
5611
5612 // Strip any qualifiers off ValType.
5613 ValType = ValType.getUnqualifiedType();
5614 if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
5615 !ValType->isBlockPointerType() && !ValType->isFloatingType() &&
5616 !ValType->isVectorType()) {
5617 Diag(DRE->getBeginLoc(),
5618 diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector)
5619 << PointerArg->getType() << PointerArg->getSourceRange();
5620 return ExprError();
5621 }
5622
5623 if (!isStore) {
5624 TheCall->setType(ValType);
5625 return TheCallResult;
5626 }
5627
5628 ExprResult ValArg = TheCall->getArg(0);
5629 InitializedEntity Entity = InitializedEntity::InitializeParameter(
5630 Context, ValType, /*consume*/ false);
5631 ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
5632 if (ValArg.isInvalid())
5633 return ExprError();
5634
5635 TheCall->setArg(0, ValArg.get());
5636 TheCall->setType(Context.VoidTy);
5637 return TheCallResult;
5638}
5639
5640/// CheckObjCString - Checks that the argument to the builtin
5641/// CFString constructor is correct
5642/// Note: It might also make sense to do the UTF-16 conversion here (would
5643/// simplify the backend).
5644bool Sema::CheckObjCString(Expr *Arg) {
5645 Arg = Arg->IgnoreParenCasts();
5646 StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
5647
5648 if (!Literal || !Literal->isAscii()) {
5649 Diag(Arg->getBeginLoc(), diag::err_cfstring_literal_not_string_constant)
5650 << Arg->getSourceRange();
5651 return true;
5652 }
5653
5654 if (Literal->containsNonAsciiOrNull()) {
5655 StringRef String = Literal->getString();
5656 unsigned NumBytes = String.size();
5657 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes);
5658 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5659 llvm::UTF16 *ToPtr = &ToBuf[0];
5660
5661 llvm::ConversionResult Result =
5662 llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
5663 ToPtr + NumBytes, llvm::strictConversion);
5664 // Check for conversion failure.
5665 if (Result != llvm::conversionOK)
5666 Diag(Arg->getBeginLoc(), diag::warn_cfstring_truncated)
5667 << Arg->getSourceRange();
5668 }
5669 return false;
5670}
5671
5672/// CheckObjCString - Checks that the format string argument to the os_log()
5673/// and os_trace() functions is correct, and converts it to const char *.
5674ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) {
5675 Arg = Arg->IgnoreParenCasts();
5676 auto *Literal = dyn_cast<StringLiteral>(Arg);
5677 if (!Literal) {
5678 if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Arg)) {
5679 Literal = ObjcLiteral->getString();
5680 }
5681 }
5682
5683 if (!Literal || (!Literal->isAscii() && !Literal->isUTF8())) {
5684 return ExprError(
5685 Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant)
5686 << Arg->getSourceRange());
5687 }
5688
5689 ExprResult Result(Literal);
5690 QualType ResultTy = Context.getPointerType(Context.CharTy.withConst());
5691 InitializedEntity Entity =
5692 InitializedEntity::InitializeParameter(Context, ResultTy, false);
5693 Result = PerformCopyInitialization(Entity, SourceLocation(), Result);
5694 return Result;
5695}
5696
5697/// Check that the user is calling the appropriate va_start builtin for the
5698/// target and calling convention.
5699static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) {
5700 const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
5701 bool IsX64 = TT.getArch() == llvm::Triple::x86_64;
5702 bool IsAArch64 = (TT.getArch() == llvm::Triple::aarch64 ||
5703 TT.getArch() == llvm::Triple::aarch64_32);
5704 bool IsWindows = TT.isOSWindows();
5705 bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start;
5706 if (IsX64 || IsAArch64) {
5707 CallingConv CC = CC_C;
5708 if (const FunctionDecl *FD = S.getCurFunctionDecl())
5709 CC = FD->getType()->castAs<FunctionType>()->getCallConv();
5710 if (IsMSVAStart) {
5711 // Don't allow this in System V ABI functions.
5712 if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64))
5713 return S.Diag(Fn->getBeginLoc(),
5714 diag::err_ms_va_start_used_in_sysv_function);
5715 } else {
5716 // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions.
5717 // On x64 Windows, don't allow this in System V ABI functions.
5718 // (Yes, that means there's no corresponding way to support variadic
5719 // System V ABI functions on Windows.)
5720 if ((IsWindows && CC == CC_X86_64SysV) ||
5721 (!IsWindows && CC == CC_Win64))
5722 return S.Diag(Fn->getBeginLoc(),
5723 diag::err_va_start_used_in_wrong_abi_function)
5724 << !IsWindows;
5725 }
5726 return false;
5727 }
5728
5729 if (IsMSVAStart)
5730 return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only);
5731 return false;
5732}
5733
5734static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn,
5735 ParmVarDecl **LastParam = nullptr) {
5736 // Determine whether the current function, block, or obj-c method is variadic
5737 // and get its parameter list.
5738 bool IsVariadic = false;
5739 ArrayRef<ParmVarDecl *> Params;
5740 DeclContext *Caller = S.CurContext;
5741 if (auto *Block = dyn_cast<BlockDecl>(Caller)) {
5742 IsVariadic = Block->isVariadic();
5743 Params = Block->parameters();
5744 } else if (auto *FD = dyn_cast<FunctionDecl>(Caller)) {
5745 IsVariadic = FD->isVariadic();
5746 Params = FD->parameters();
5747 } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Caller)) {
5748 IsVariadic = MD->isVariadic();
5749 // FIXME: This isn't correct for methods (results in bogus warning).
5750 Params = MD->parameters();
5751 } else if (isa<CapturedDecl>(Caller)) {
5752 // We don't support va_start in a CapturedDecl.
5753 S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt);
5754 return true;
5755 } else {
5756 // This must be some other declcontext that parses exprs.
5757 S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function);
5758 return true;
5759 }
5760
5761 if (!IsVariadic) {
5762 S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function);
5763 return true;
5764 }
5765
5766 if (LastParam)
5767 *LastParam = Params.empty() ? nullptr : Params.back();
5768
5769 return false;
5770}
5771
5772/// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start'
5773/// for validity. Emit an error and return true on failure; return false
5774/// on success.
5775bool Sema::SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) {
5776 Expr *Fn = TheCall->getCallee();
5777
5778 if (checkVAStartABI(*this, BuiltinID, Fn))
5779 return true;
5780
5781 if (checkArgCount(*this, TheCall, 2))
5782 return true;
5783
5784 // Type-check the first argument normally.
5785 if (checkBuiltinArgument(*this, TheCall, 0))
5786 return true;
5787
5788 // Check that the current function is variadic, and get its last parameter.
5789 ParmVarDecl *LastParam;
5790 if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam))
5791 return true;
5792
5793 // Verify that the second argument to the builtin is the last argument of the
5794 // current function or method.
5795 bool SecondArgIsLastNamedArgument = false;
5796 const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
5797
5798 // These are valid if SecondArgIsLastNamedArgument is false after the next
5799 // block.
5800 QualType Type;
5801 SourceLocation ParamLoc;
5802 bool IsCRegister = false;
5803
5804 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
5805 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
5806 SecondArgIsLastNamedArgument = PV == LastParam;
5807
5808 Type = PV->getType();
5809 ParamLoc = PV->getLocation();
5810 IsCRegister =
5811 PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus;
5812 }
5813 }
5814
5815 if (!SecondArgIsLastNamedArgument)
5816 Diag(TheCall->getArg(1)->getBeginLoc(),
5817 diag::warn_second_arg_of_va_start_not_last_named_param);
5818 else if (IsCRegister || Type->isReferenceType() ||
5819 Type->isSpecificBuiltinType(BuiltinType::Float) || [=] {
5820 // Promotable integers are UB, but enumerations need a bit of
5821 // extra checking to see what their promotable type actually is.
5822 if (!Type->isPromotableIntegerType())
5823 return false;
5824 if (!Type->isEnumeralType())
5825 return true;
5826 const EnumDecl *ED = Type->castAs<EnumType>()->getDecl();
5827 return !(ED &&
5828 Context.typesAreCompatible(ED->getPromotionType(), Type));
5829 }()) {
5830 unsigned Reason = 0;
5831 if (Type->isReferenceType()) Reason = 1;
5832 else if (IsCRegister) Reason = 2;
5833 Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason;
5834 Diag(ParamLoc, diag::note_parameter_type) << Type;
5835 }
5836
5837 TheCall->setType(Context.VoidTy);
5838 return false;
5839}
5840
5841bool Sema::SemaBuiltinVAStartARMMicrosoft(CallExpr *Call) {
5842 // void __va_start(va_list *ap, const char *named_addr, size_t slot_size,
5843 // const char *named_addr);
5844
5845 Expr *Func = Call->getCallee();
5846
5847 if (Call->getNumArgs() < 3)
5848 return Diag(Call->getEndLoc(),
5849 diag::err_typecheck_call_too_few_args_at_least)
5850 << 0 /*function call*/ << 3 << Call->getNumArgs();
5851
5852 // Type-check the first argument normally.
5853 if (checkBuiltinArgument(*this, Call, 0))
5854 return true;
5855
5856 // Check that the current function is variadic.
5857 if (checkVAStartIsInVariadicFunction(*this, Func))
5858 return true;
5859
5860 // __va_start on Windows does not validate the parameter qualifiers
5861
5862 const Expr *Arg1 = Call->getArg(1)->IgnoreParens();
5863 const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr();
5864
5865 const Expr *Arg2 = Call->getArg(2)->IgnoreParens();
5866 const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr();
5867
5868 const QualType &ConstCharPtrTy =
5869 Context.getPointerType(Context.CharTy.withConst());
5870 if (!Arg1Ty->isPointerType() ||
5871 Arg1Ty->getPointeeType().withoutLocalFastQualifiers() != Context.CharTy)
5872 Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible)
5873 << Arg1->getType() << ConstCharPtrTy << 1 /* different class */
5874 << 0 /* qualifier difference */
5875 << 3 /* parameter mismatch */
5876 << 2 << Arg1->getType() << ConstCharPtrTy;
5877
5878 const QualType SizeTy = Context.getSizeType();
5879 if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy)
5880 Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible)
5881 << Arg2->getType() << SizeTy << 1 /* different class */
5882 << 0 /* qualifier difference */
5883 << 3 /* parameter mismatch */
5884 << 3 << Arg2->getType() << SizeTy;
5885
5886 return false;
5887}
5888
5889/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
5890/// friends. This is declared to take (...), so we have to check everything.
5891bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
5892 if (checkArgCount(*this, TheCall, 2))
5893 return true;
5894
5895 ExprResult OrigArg0 = TheCall->getArg(0);
5896 ExprResult OrigArg1 = TheCall->getArg(1);
5897
5898 // Do standard promotions between the two arguments, returning their common
5899 // type.
5900 QualType Res = UsualArithmeticConversions(
5901 OrigArg0, OrigArg1, TheCall->getExprLoc(), ACK_Comparison);
5902 if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
5903 return true;
5904
5905 // Make sure any conversions are pushed back into the call; this is
5906 // type safe since unordered compare builtins are declared as "_Bool
5907 // foo(...)".
5908 TheCall->setArg(0, OrigArg0.get());
5909 TheCall->setArg(1, OrigArg1.get());
5910
5911 if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
5912 return false;
5913
5914 // If the common type isn't a real floating type, then the arguments were
5915 // invalid for this operation.
5916 if (Res.isNull() || !Res->isRealFloatingType())
5917 return Diag(OrigArg0.get()->getBeginLoc(),
5918 diag::err_typecheck_call_invalid_ordered_compare)
5919 << OrigArg0.get()->getType() << OrigArg1.get()->getType()
5920 << SourceRange(OrigArg0.get()->getBeginLoc(),
5921 OrigArg1.get()->getEndLoc());
5922
5923 return false;
5924}
5925
5926/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
5927/// __builtin_isnan and friends. This is declared to take (...), so we have
5928/// to check everything. We expect the last argument to be a floating point
5929/// value.
5930bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
5931 if (checkArgCount(*this, TheCall, NumArgs))
5932 return true;
5933
5934 // __builtin_fpclassify is the only case where NumArgs != 1, so we can count
5935 // on all preceding parameters just being int. Try all of those.
5936 for (unsigned i = 0; i < NumArgs - 1; ++i) {
5937 Expr *Arg = TheCall->getArg(i);
5938
5939 if (Arg->isTypeDependent())
5940 return false;
5941
5942 ExprResult Res = PerformImplicitConversion(Arg, Context.IntTy, AA_Passing);
5943
5944 if (Res.isInvalid())
5945 return true;
5946 TheCall->setArg(i, Res.get());
5947 }
5948
5949 Expr *OrigArg = TheCall->getArg(NumArgs-1);
5950
5951 if (OrigArg->isTypeDependent())
5952 return false;
5953
5954 // Usual Unary Conversions will convert half to float, which we want for
5955 // machines that use fp16 conversion intrinsics. Else, we wnat to leave the
5956 // type how it is, but do normal L->Rvalue conversions.
5957 if (Context.getTargetInfo().useFP16ConversionIntrinsics())
5958 OrigArg = UsualUnaryConversions(OrigArg).get();
5959 else
5960 OrigArg = DefaultFunctionArrayLvalueConversion(OrigArg).get();
5961 TheCall->setArg(NumArgs - 1, OrigArg);
5962
5963 // This operation requires a non-_Complex floating-point number.
5964 if (!OrigArg->getType()->isRealFloatingType())
5965 return Diag(OrigArg->getBeginLoc(),
5966 diag::err_typecheck_call_invalid_unary_fp)
5967 << OrigArg->getType() << OrigArg->getSourceRange();
5968
5969 return false;
5970}
5971
5972/// Perform semantic analysis for a call to __builtin_complex.
5973bool Sema::SemaBuiltinComplex(CallExpr *TheCall) {
5974 if (checkArgCount(*this, TheCall, 2))
5975 return true;
5976
5977 bool Dependent = false;
5978 for (unsigned I = 0; I != 2; ++I) {
5979 Expr *Arg = TheCall->getArg(I);
5980 QualType T = Arg->getType();
5981 if (T->isDependentType()) {
5982 Dependent = true;
5983 continue;
5984 }
5985
5986 // Despite supporting _Complex int, GCC requires a real floating point type
5987 // for the operands of __builtin_complex.
5988 if (!T->isRealFloatingType()) {
5989 return Diag(Arg->getBeginLoc(), diag::err_typecheck_call_requires_real_fp)
5990 << Arg->getType() << Arg->getSourceRange();
5991 }
5992
5993 ExprResult Converted = DefaultLvalueConversion(Arg);
5994 if (Converted.isInvalid())
5995 return true;
5996 TheCall->setArg(I, Converted.get());
5997 }
5998
5999 if (Dependent) {
6000 TheCall->setType(Context.DependentTy);
6001 return false;
6002 }
6003
6004 Expr *Real = TheCall->getArg(0);
6005 Expr *Imag = TheCall->getArg(1);
6006 if (!Context.hasSameType(Real->getType(), Imag->getType())) {
6007 return Diag(Real->getBeginLoc(),
6008 diag::err_typecheck_call_different_arg_types)
6009 << Real->getType() << Imag->getType()
6010 << Real->getSourceRange() << Imag->getSourceRange();
6011 }
6012
6013 // We don't allow _Complex _Float16 nor _Complex __fp16 as type specifiers;
6014 // don't allow this builtin to form those types either.
6015 // FIXME: Should we allow these types?
6016 if (Real->getType()->isFloat16Type())
6017 return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
6018 << "_Float16";
6019 if (Real->getType()->isHalfType())
6020 return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
6021 << "half";
6022
6023 TheCall->setType(Context.getComplexType(Real->getType()));
6024 return false;
6025}
6026
6027// Customized Sema Checking for VSX builtins that have the following signature:
6028// vector [...] builtinName(vector [...], vector [...], const int);
6029// Which takes the same type of vectors (any legal vector type) for the first
6030// two arguments and takes compile time constant for the third argument.
6031// Example builtins are :
6032// vector double vec_xxpermdi(vector double, vector double, int);
6033// vector short vec_xxsldwi(vector short, vector short, int);
6034bool Sema::SemaBuiltinVSX(CallExpr *TheCall) {
6035 unsigned ExpectedNumArgs = 3;
6036 if (checkArgCount(*this, TheCall, ExpectedNumArgs))
6037 return true;
6038
6039 // Check the third argument is a compile time constant
6040 if (!TheCall->getArg(2)->isIntegerConstantExpr(Context))
6041 return Diag(TheCall->getBeginLoc(),
6042 diag::err_vsx_builtin_nonconstant_argument)
6043 << 3 /* argument index */ << TheCall->getDirectCallee()
6044 << SourceRange(TheCall->getArg(2)->getBeginLoc(),
6045 TheCall->getArg(2)->getEndLoc());
6046
6047 QualType Arg1Ty = TheCall->getArg(0)->getType();
6048 QualType Arg2Ty = TheCall->getArg(1)->getType();
6049
6050 // Check the type of argument 1 and argument 2 are vectors.
6051 SourceLocation BuiltinLoc = TheCall->getBeginLoc();
6052 if ((!Arg1Ty->isVectorType() && !Arg1Ty->isDependentType()) ||
6053 (!Arg2Ty->isVectorType() && !Arg2Ty->isDependentType())) {
6054 return Diag(BuiltinLoc, diag::err_vec_builtin_non_vector)
6055 << TheCall->getDirectCallee()
6056 << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6057 TheCall->getArg(1)->getEndLoc());
6058 }
6059
6060 // Check the first two arguments are the same type.
6061 if (!Context.hasSameUnqualifiedType(Arg1Ty, Arg2Ty)) {
6062 return Diag(BuiltinLoc, diag::err_vec_builtin_incompatible_vector)
6063 << TheCall->getDirectCallee()
6064 << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6065 TheCall->getArg(1)->getEndLoc());
6066 }
6067
6068 // When default clang type checking is turned off and the customized type
6069 // checking is used, the returning type of the function must be explicitly
6070 // set. Otherwise it is _Bool by default.
6071 TheCall->setType(Arg1Ty);
6072
6073 return false;
6074}
6075
6076/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
6077// This is declared to take (...), so we have to check everything.
6078ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
6079 if (TheCall->getNumArgs() < 2)
6080 return ExprError(Diag(TheCall->getEndLoc(),
6081 diag::err_typecheck_call_too_few_args_at_least)
6082 << 0 /*function call*/ << 2 << TheCall->getNumArgs()
6083 << TheCall->getSourceRange());
6084
6085 // Determine which of the following types of shufflevector we're checking:
6086 // 1) unary, vector mask: (lhs, mask)
6087 // 2) binary, scalar mask: (lhs, rhs, index, ..., index)
6088 QualType resType = TheCall->getArg(0)->getType();
6089 unsigned numElements = 0;
6090
6091 if (!TheCall->getArg(0)->isTypeDependent() &&
6092 !TheCall->getArg(1)->isTypeDependent()) {
6093 QualType LHSType = TheCall->getArg(0)->getType();
6094 QualType RHSType = TheCall->getArg(1)->getType();
6095
6096 if (!LHSType->isVectorType() || !RHSType->isVectorType())
6097 return ExprError(
6098 Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector)
6099 << TheCall->getDirectCallee()
6100 << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6101 TheCall->getArg(1)->getEndLoc()));
6102
6103 numElements = LHSType->castAs<VectorType>()->getNumElements();
6104 unsigned numResElements = TheCall->getNumArgs() - 2;
6105
6106 // Check to see if we have a call with 2 vector arguments, the unary shuffle
6107 // with mask. If so, verify that RHS is an integer vector type with the
6108 // same number of elts as lhs.
6109 if (TheCall->getNumArgs() == 2) {
6110 if (!RHSType->hasIntegerRepresentation() ||
6111 RHSType->castAs<VectorType>()->getNumElements() != numElements)
6112 return ExprError(Diag(TheCall->getBeginLoc(),
6113 diag::err_vec_builtin_incompatible_vector)
6114 << TheCall->getDirectCallee()
6115 << SourceRange(TheCall->getArg(1)->getBeginLoc(),
6116 TheCall->getArg(1)->getEndLoc()));
6117 } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
6118 return ExprError(Diag(TheCall->getBeginLoc(),
6119 diag::err_vec_builtin_incompatible_vector)
6120 << TheCall->getDirectCallee()
6121 << SourceRange(TheCall->getArg(0)->getBeginLoc(),
6122 TheCall->getArg(1)->getEndLoc()));
6123 } else if (numElements != numResElements) {
6124 QualType eltType = LHSType->castAs<VectorType>()->getElementType();
6125 resType = Context.getVectorType(eltType, numResElements,
6126 VectorType::GenericVector);
6127 }
6128 }
6129
6130 for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
6131 if (TheCall->getArg(i)->isTypeDependent() ||
6132 TheCall->getArg(i)->isValueDependent())
6133 continue;
6134
6135 Optional<llvm::APSInt> Result;
6136 if (!(Result = TheCall->getArg(i)->getIntegerConstantExpr(Context)))
6137 return ExprError(Diag(TheCall->getBeginLoc(),
6138 diag::err_shufflevector_nonconstant_argument)
6139 << TheCall->getArg(i)->getSourceRange());
6140
6141 // Allow -1 which will be translated to undef in the IR.
6142 if (Result->isSigned() && Result->isAllOnesValue())
6143 continue;
6144
6145 if (Result->getActiveBits() > 64 ||
6146 Result->getZExtValue() >= numElements * 2)
6147 return ExprError(Diag(TheCall->getBeginLoc(),
6148 diag::err_shufflevector_argument_too_large)
6149 << TheCall->getArg(i)->getSourceRange());
6150 }
6151
6152 SmallVector<Expr*, 32> exprs;
6153
6154 for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
6155 exprs.push_back(TheCall->getArg(i));
6156 TheCall->setArg(i, nullptr);
6157 }
6158
6159 return new (Context) ShuffleVectorExpr(Context, exprs, resType,
6160 TheCall->getCallee()->getBeginLoc(),
6161 TheCall->getRParenLoc());
6162}
6163
6164/// SemaConvertVectorExpr - Handle __builtin_convertvector
6165ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
6166 SourceLocation BuiltinLoc,
6167 SourceLocation RParenLoc) {
6168 ExprValueKind VK = VK_RValue;
6169 ExprObjectKind OK = OK_Ordinary;
6170 QualType DstTy = TInfo->getType();
6171 QualType SrcTy = E->getType();
6172
6173 if (!SrcTy->isVectorType() && !SrcTy->isDependentType())
6174 return ExprError(Diag(BuiltinLoc,
6175 diag::err_convertvector_non_vector)
6176 << E->getSourceRange());
6177 if (!DstTy->isVectorType() && !DstTy->isDependentType())
6178 return ExprError(Diag(BuiltinLoc,
6179 diag::err_convertvector_non_vector_type));
6180
6181 if (!SrcTy->isDependentType() && !DstTy->isDependentType()) {
6182 unsigned SrcElts = SrcTy->castAs<VectorType>()->getNumElements();
6183 unsigned DstElts = DstTy->castAs<VectorType>()->getNumElements();
6184 if (SrcElts != DstElts)
6185 return ExprError(Diag(BuiltinLoc,
6186 diag::err_convertvector_incompatible_vector)
6187 << E->getSourceRange());
6188 }
6189
6190 return new (Context)
6191 ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc);
6192}
6193
6194/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
6195// This is declared to take (const void*, ...) and can take two
6196// optional constant int args.
6197bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
6198 unsigned NumArgs = TheCall->getNumArgs();
6199
6200 if (NumArgs > 3)
6201 return Diag(TheCall->getEndLoc(),
6202 diag::err_typecheck_call_too_many_args_at_most)
6203 << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange();
6204
6205 // Argument 0 is checked for us and the remaining arguments must be
6206 // constant integers.
6207 for (unsigned i = 1; i != NumArgs; ++i)
6208 if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3))
6209 return true;
6210
6211 return false;
6212}
6213
6214/// SemaBuiltinAssume - Handle __assume (MS Extension).
6215// __assume does not evaluate its arguments, and should warn if its argument
6216// has side effects.
6217bool Sema::SemaBuiltinAssume(CallExpr *TheCall) {
6218 Expr *Arg = TheCall->getArg(0);
6219 if (Arg->isInstantiationDependent()) return false;
6220
6221 if (Arg->HasSideEffects(Context))
6222 Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects)
6223 << Arg->getSourceRange()
6224 << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier();
6225
6226 return false;
6227}
6228
6229/// Handle __builtin_alloca_with_align. This is declared
6230/// as (size_t, size_t) where the second size_t must be a power of 2 greater
6231/// than 8.
6232bool Sema::SemaBuiltinAllocaWithAlign(CallExpr *TheCall) {
6233 // The alignment must be a constant integer.
6234 Expr *Arg = TheCall->getArg(1);
6235
6236 // We can't check the value of a dependent argument.
6237 if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
6238 if (const auto *UE =
6239 dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts()))
6240 if (UE->getKind() == UETT_AlignOf ||
6241 UE->getKind() == UETT_PreferredAlignOf)
6242 Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof)
6243 << Arg->getSourceRange();
6244
6245 llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context);
6246
6247 if (!Result.isPowerOf2())
6248 return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
6249 << Arg->getSourceRange();
6250
6251 if (Result < Context.getCharWidth())
6252 return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small)
6253 << (unsigned)Context.getCharWidth() << Arg->getSourceRange();
6254
6255 if (Result > std::numeric_limits<int32_t>::max())
6256 return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big)
6257 << std::numeric_limits<int32_t>::max() << Arg->getSourceRange();
6258 }
6259
6260 return false;
6261}
6262
6263/// Handle __builtin_assume_aligned. This is declared
6264/// as (const void*, size_t, ...) and can take one optional constant int arg.
6265bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) {
6266 unsigned NumArgs = TheCall->getNumArgs();
6267
6268 if (NumArgs > 3)
6269 return Diag(TheCall->getEndLoc(),
6270 diag::err_typecheck_call_too_many_args_at_most)
6271 << 0 /*function call*/ << 3 << NumArgs << TheCall->getSourceRange();
6272
6273 // The alignment must be a constant integer.
6274 Expr *Arg = TheCall->getArg(1);
6275
6276 // We can't check the value of a dependent argument.
6277 if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
6278 llvm::APSInt Result;
6279 if (SemaBuiltinConstantArg(TheCall, 1, Result))
6280 return true;
6281
6282 if (!Result.isPowerOf2())
6283 return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
6284 << Arg->getSourceRange();
6285
6286 if (Result > Sema::MaximumAlignment)
6287 Diag(TheCall->getBeginLoc(), diag::warn_assume_aligned_too_great)
6288 << Arg->getSourceRange() << Sema::MaximumAlignment;
6289 }
6290
6291 if (NumArgs > 2) {
6292 ExprResult Arg(TheCall->getArg(2));
6293 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
6294 Context.getSizeType(), false);
6295 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
6296 if (Arg.isInvalid()) return true;
6297 TheCall->setArg(2, Arg.get());
6298 }
6299
6300 return false;
6301}
6302
6303bool Sema::SemaBuiltinOSLogFormat(CallExpr *TheCall) {
6304 unsigned BuiltinID =
6305 cast<FunctionDecl>(TheCall->getCalleeDecl())->getBuiltinID();
6306 bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size;
6307
6308 unsigned NumArgs = TheCall->getNumArgs();
6309 unsigned NumRequiredArgs = IsSizeCall ? 1 : 2;
6310 if (NumArgs < NumRequiredArgs) {
6311 return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args)
6312 << 0 /* function call */ << NumRequiredArgs << NumArgs
6313 << TheCall->getSourceRange();
6314 }
6315 if (NumArgs >= NumRequiredArgs + 0x100) {
6316 return Diag(TheCall->getEndLoc(),
6317 diag::err_typecheck_call_too_many_args_at_most)
6318 << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs
6319 << TheCall->getSourceRange();
6320 }
6321 unsigned i = 0;
6322
6323 // For formatting call, check buffer arg.
6324 if (!IsSizeCall) {
6325 ExprResult Arg(TheCall->getArg(i));
6326 InitializedEntity Entity = InitializedEntity::InitializeParameter(
6327 Context, Context.VoidPtrTy, false);
6328 Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
6329 if (Arg.isInvalid())
6330 return true;
6331 TheCall->setArg(i, Arg.get());
6332 i++;
6333 }
6334
6335 // Check string literal arg.
6336 unsigned FormatIdx = i;
6337 {
6338 ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i));
6339 if (Arg.isInvalid())
6340 return true;
6341 TheCall->setArg(i, Arg.get());
6342 i++;
6343 }
6344
6345 // Make sure variadic args are scalar.
6346 unsigned FirstDataArg = i;
6347 while (i < NumArgs) {
6348 ExprResult Arg = DefaultVariadicArgumentPromotion(
6349 TheCall->getArg(i), VariadicFunction, nullptr);
6350 if (Arg.isInvalid())
6351 return true;
6352 CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType());
6353 if (ArgSize.getQuantity() >= 0x100) {
6354 return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big)
6355 << i << (int)ArgSize.getQuantity() << 0xff
6356 << TheCall->getSourceRange();
6357 }
6358 TheCall->setArg(i, Arg.get());
6359 i++;
6360 }
6361
6362 // Check formatting specifiers. NOTE: We're only doing this for the non-size
6363 // call to avoid duplicate diagnostics.
6364 if (!IsSizeCall) {
6365 llvm::SmallBitVector CheckedVarArgs(NumArgs, false);
6366 ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs());
6367 bool Success = CheckFormatArguments(
6368 Args, /*HasVAListArg*/ false, FormatIdx, FirstDataArg, FST_OSLog,
6369 VariadicFunction, TheCall->getBeginLoc(), SourceRange(),
6370 CheckedVarArgs);
6371 if (!Success)
6372 return true;
6373 }
6374
6375 if (IsSizeCall) {
6376 TheCall->setType(Context.getSizeType());
6377 } else {
6378 TheCall->setType(Context.VoidPtrTy);
6379 }
6380 return false;
6381}
6382
6383/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
6384/// TheCall is a constant expression.
6385bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
6386 llvm::APSInt &Result) {
6387 Expr *Arg = TheCall->getArg(ArgNum);
6388 DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
6389 FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
6390
6391 if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
6392
6393 Optional<llvm::APSInt> R;
6394 if (!(R = Arg->getIntegerConstantExpr(Context)))
6395 return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type)
6396 << FDecl->getDeclName() << Arg->getSourceRange();
6397 Result = *R;
6398 return false;
6399}
6400
6401/// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr
6402/// TheCall is a constant expression in the range [Low, High].
6403bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum,
6404 int Low, int High, bool RangeIsError) {
6405 if (isConstantEvaluated())
6406 return false;
6407 llvm::APSInt Result;
6408
6409 // We can't check the value of a dependent argument.
6410 Expr *Arg = TheCall->getArg(ArgNum);
6411 if (Arg->isTypeDependent() || Arg->isValueDependent())
6412 return false;
6413
6414 // Check constant-ness first.
6415 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6416 return true;
6417
6418 if (Result.getSExtValue() < Low || Result.getSExtValue() > High) {
6419 if (RangeIsError)
6420 return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range)
6421 << Result.toString(10) << Low << High << Arg->getSourceRange();
6422 else
6423 // Defer the warning until we know if the code will be emitted so that
6424 // dead code can ignore this.
6425 DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
6426 PDiag(diag::warn_argument_invalid_range)
6427 << Result.toString(10) << Low << High
6428 << Arg->getSourceRange());
6429 }
6430
6431 return false;
6432}
6433
6434/// SemaBuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr
6435/// TheCall is a constant expression is a multiple of Num..
6436bool Sema::SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum,
6437 unsigned Num) {
6438 llvm::APSInt Result;
6439
6440 // We can't check the value of a dependent argument.
6441 Expr *Arg = TheCall->getArg(ArgNum);
6442 if (Arg->isTypeDependent() || Arg->isValueDependent())
6443 return false;
6444
6445 // Check constant-ness first.
6446 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6447 return true;
6448
6449 if (Result.getSExtValue() % Num != 0)
6450 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple)
6451 << Num << Arg->getSourceRange();
6452
6453 return false;
6454}
6455
6456/// SemaBuiltinConstantArgPower2 - Check if argument ArgNum of TheCall is a
6457/// constant expression representing a power of 2.
6458bool Sema::SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum) {
6459 llvm::APSInt Result;
6460
6461 // We can't check the value of a dependent argument.
6462 Expr *Arg = TheCall->getArg(ArgNum);
6463 if (Arg->isTypeDependent() || Arg->isValueDependent())
6464 return false;
6465
6466 // Check constant-ness first.
6467 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6468 return true;
6469
6470 // Bit-twiddling to test for a power of 2: for x > 0, x & (x-1) is zero if
6471 // and only if x is a power of 2.
6472 if (Result.isStrictlyPositive() && (Result & (Result - 1)) == 0)
6473 return false;
6474
6475 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_power_of_2)
6476 << Arg->getSourceRange();
6477}
6478
6479static bool IsShiftedByte(llvm::APSInt Value) {
6480 if (Value.isNegative())
6481 return false;
6482
6483 // Check if it's a shifted byte, by shifting it down
6484 while (true) {
6485 // If the value fits in the bottom byte, the check passes.
6486 if (Value < 0x100)
6487 return true;
6488
6489 // Otherwise, if the value has _any_ bits in the bottom byte, the check
6490 // fails.
6491 if ((Value & 0xFF) != 0)
6492 return false;
6493
6494 // If the bottom 8 bits are all 0, but something above that is nonzero,
6495 // then shifting the value right by 8 bits won't affect whether it's a
6496 // shifted byte or not. So do that, and go round again.
6497 Value >>= 8;
6498 }
6499}
6500
6501/// SemaBuiltinConstantArgShiftedByte - Check if argument ArgNum of TheCall is
6502/// a constant expression representing an arbitrary byte value shifted left by
6503/// a multiple of 8 bits.
6504bool Sema::SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum,
6505 unsigned ArgBits) {
6506 llvm::APSInt Result;
6507
6508 // We can't check the value of a dependent argument.
6509 Expr *Arg = TheCall->getArg(ArgNum);
6510 if (Arg->isTypeDependent() || Arg->isValueDependent())
6511 return false;
6512
6513 // Check constant-ness first.
6514 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6515 return true;
6516
6517 // Truncate to the given size.
6518 Result = Result.getLoBits(ArgBits);
6519 Result.setIsUnsigned(true);
6520
6521 if (IsShiftedByte(Result))
6522 return false;
6523
6524 return Diag(TheCall->getBeginLoc(), diag::err_argument_not_shifted_byte)
6525 << Arg->getSourceRange();
6526}
6527
6528/// SemaBuiltinConstantArgShiftedByteOr0xFF - Check if argument ArgNum of
6529/// TheCall is a constant expression representing either a shifted byte value,
6530/// or a value of the form 0x??FF (i.e. a member of the arithmetic progression
6531/// 0x00FF, 0x01FF, ..., 0xFFFF). This strange range check is needed for some
6532/// Arm MVE intrinsics.
6533bool Sema::SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall,
6534 int ArgNum,
6535 unsigned ArgBits) {
6536 llvm::APSInt Result;
6537
6538 // We can't check the value of a dependent argument.
6539 Expr *Arg = TheCall->getArg(ArgNum);
6540 if (Arg->isTypeDependent() || Arg->isValueDependent())
6541 return false;
6542
6543 // Check constant-ness first.
6544 if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6545 return true;
6546
6547 // Truncate to the given size.
6548 Result = Result.getLoBits(ArgBits);
6549 Result.setIsUnsigned(true);
6550
6551 // Check to see if it's in either of the required forms.
6552 if (IsShiftedByte(Result) ||
6553 (Result > 0 && Result < 0x10000 && (Result & 0xFF) == 0xFF))
6554 return false;
6555
6556 return Diag(TheCall->getBeginLoc(),
6557 diag::err_argument_not_shifted_byte_or_xxff)
6558 << Arg->getSourceRange();
6559}
6560
6561/// SemaBuiltinARMMemoryTaggingCall - Handle calls of memory tagging extensions
6562bool Sema::SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall) {
6563 if (BuiltinID == AArch64::BI__builtin_arm_irg) {
6564 if (checkArgCount(*this, TheCall, 2))
6565 return true;
6566 Expr *Arg0 = TheCall->getArg(0);
6567 Expr *Arg1 = TheCall->getArg(1);
6568
6569 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
6570 if (FirstArg.isInvalid())
6571 return true;
6572 QualType FirstArgType = FirstArg.get()->getType();
6573 if (!FirstArgType->isAnyPointerType())
6574 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
6575 << "first" << FirstArgType << Arg0->getSourceRange();
6576 TheCall->setArg(0, FirstArg.get());
6577
6578 ExprResult SecArg = DefaultLvalueConversion(Arg1);
6579 if (SecArg.isInvalid())
6580 return true;
6581 QualType SecArgType = SecArg.get()->getType();
6582 if (!SecArgType->isIntegerType())
6583 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
6584 << "second" << SecArgType << Arg1->getSourceRange();
6585
6586 // Derive the return type from the pointer argument.
6587 TheCall->setType(FirstArgType);
6588 return false;
6589 }
6590
6591 if (BuiltinID == AArch64::BI__builtin_arm_addg) {
6592 if (checkArgCount(*this, TheCall, 2))
6593 return true;
6594
6595 Expr *Arg0 = TheCall->getArg(0);
6596 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
6597 if (FirstArg.isInvalid())
6598 return true;
6599 QualType FirstArgType = FirstArg.get()->getType();
6600 if (!FirstArgType->isAnyPointerType())
6601 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
6602 << "first" << FirstArgType << Arg0->getSourceRange();
6603 TheCall->setArg(0, FirstArg.get());
6604
6605 // Derive the return type from the pointer argument.
6606 TheCall->setType(FirstArgType);
6607
6608 // Second arg must be an constant in range [0,15]
6609 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
6610 }
6611
6612 if (BuiltinID == AArch64::BI__builtin_arm_gmi) {
6613 if (checkArgCount(*this, TheCall, 2))
6614 return true;
6615 Expr *Arg0 = TheCall->getArg(0);
6616 Expr *Arg1 = TheCall->getArg(1);
6617
6618 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
6619 if (FirstArg.isInvalid())
6620 return true;
6621 QualType FirstArgType = FirstArg.get()->getType();
6622 if (!FirstArgType->isAnyPointerType())
6623 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
6624 << "first" << FirstArgType << Arg0->getSourceRange();
6625
6626 QualType SecArgType = Arg1->getType();
6627 if (!SecArgType->isIntegerType())
6628 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
6629 << "second" << SecArgType << Arg1->getSourceRange();
6630 TheCall->setType(Context.IntTy);
6631 return false;
6632 }
6633
6634 if (BuiltinID == AArch64::BI__builtin_arm_ldg ||
6635 BuiltinID == AArch64::BI__builtin_arm_stg) {
6636 if (checkArgCount(*this, TheCall, 1))
6637 return true;
6638 Expr *Arg0 = TheCall->getArg(0);
6639 ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
6640 if (FirstArg.isInvalid())
6641 return true;
6642
6643 QualType FirstArgType = FirstArg.get()->getType();
6644 if (!FirstArgType->isAnyPointerType())
6645 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
6646 << "first" << FirstArgType << Arg0->getSourceRange();
6647 TheCall->setArg(0, FirstArg.get());
6648
6649 // Derive the return type from the pointer argument.
6650 if (BuiltinID == AArch64::BI__builtin_arm_ldg)
6651 TheCall->setType(FirstArgType);
6652 return false;
6653 }
6654
6655 if (BuiltinID == AArch64::BI__builtin_arm_subp) {
6656 Expr *ArgA = TheCall->getArg(0);
6657 Expr *ArgB = TheCall->getArg(1);
6658
6659 ExprResult ArgExprA = DefaultFunctionArrayLvalueConversion(ArgA);
6660 ExprResult ArgExprB = DefaultFunctionArrayLvalueConversion(ArgB);
6661
6662 if (ArgExprA.isInvalid() || ArgExprB.isInvalid())
6663 return true;
6664
6665 QualType ArgTypeA = ArgExprA.get()->getType();
6666 QualType ArgTypeB = ArgExprB.get()->getType();
6667
6668 auto isNull = [&] (Expr *E) -> bool {
6669 return E->isNullPointerConstant(
6670 Context, Expr::NPC_ValueDependentIsNotNull); };
6671
6672 // argument should be either a pointer or null
6673 if (!ArgTypeA->isAnyPointerType() && !isNull(ArgA))
6674 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
6675 << "first" << ArgTypeA << ArgA->getSourceRange();
6676
6677 if (!ArgTypeB->isAnyPointerType() && !isNull(ArgB))
6678 return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
6679 << "second" << ArgTypeB << ArgB->getSourceRange();
6680
6681 // Ensure Pointee types are compatible
6682 if (ArgTypeA->isAnyPointerType() && !isNull(ArgA) &&
6683 ArgTypeB->isAnyPointerType() && !isNull(ArgB)) {
6684 QualType pointeeA = ArgTypeA->getPointeeType();
6685 QualType pointeeB = ArgTypeB->getPointeeType();
6686 if (!Context.typesAreCompatible(
6687 Context.getCanonicalType(pointeeA).getUnqualifiedType(),
6688 Context.getCanonicalType(pointeeB).getUnqualifiedType())) {
6689 return Diag(TheCall->getBeginLoc(), diag::err_typecheck_sub_ptr_compatible)
6690 << ArgTypeA << ArgTypeB << ArgA->getSourceRange()
6691 << ArgB->getSourceRange();
6692 }
6693 }
6694
6695 // at least one argument should be pointer type
6696 if (!ArgTypeA->isAnyPointerType() && !ArgTypeB->isAnyPointerType())
6697 return Diag(TheCall->getBeginLoc(), diag::err_memtag_any2arg_pointer)
6698 << ArgTypeA << ArgTypeB << ArgA->getSourceRange();
6699
6700 if (isNull(ArgA)) // adopt type of the other pointer
6701 ArgExprA = ImpCastExprToType(ArgExprA.get(), ArgTypeB, CK_NullToPointer);
6702
6703 if (isNull(ArgB))
6704 ArgExprB = ImpCastExprToType(ArgExprB.get(), ArgTypeA, CK_NullToPointer);
6705
6706 TheCall->setArg(0, ArgExprA.get());
6707 TheCall->setArg(1, ArgExprB.get());
6708 TheCall->setType(Context.LongLongTy);
6709 return false;
6710 }
6711 assert(false && "Unhandled ARM MTE intrinsic")((false && "Unhandled ARM MTE intrinsic") ? static_cast
<void> (0) : __assert_fail ("false && \"Unhandled ARM MTE intrinsic\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 6711, __PRETTY_FUNCTION__))
;
6712 return true;
6713}
6714
6715/// SemaBuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr
6716/// TheCall is an ARM/AArch64 special register string literal.
6717bool Sema::SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall,
6718 int ArgNum, unsigned ExpectedFieldNum,
6719 bool AllowName) {
6720 bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
6721 BuiltinID == ARM::BI__builtin_arm_wsr64 ||
6722 BuiltinID == ARM::BI__builtin_arm_rsr ||
6723 BuiltinID == ARM::BI__builtin_arm_rsrp ||
6724 BuiltinID == ARM::BI__builtin_arm_wsr ||
6725 BuiltinID == ARM::BI__builtin_arm_wsrp;
6726 bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
6727 BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
6728 BuiltinID == AArch64::BI__builtin_arm_rsr ||
6729 BuiltinID == AArch64::BI__builtin_arm_rsrp ||
6730 BuiltinID == AArch64::BI__builtin_arm_wsr ||
6731 BuiltinID == AArch64::BI__builtin_arm_wsrp;
6732 assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin.")(((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin."
) ? static_cast<void> (0) : __assert_fail ("(IsARMBuiltin || IsAArch64Builtin) && \"Unexpected ARM builtin.\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 6732, __PRETTY_FUNCTION__))
;
6733
6734 // We can't check the value of a dependent argument.
6735 Expr *Arg = TheCall->getArg(ArgNum);
6736 if (Arg->isTypeDependent() || Arg->isValueDependent())
6737 return false;
6738
6739 // Check if the argument is a string literal.
6740 if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
6741 return Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
6742 << Arg->getSourceRange();
6743
6744 // Check the type of special register given.
6745 StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
6746 SmallVector<StringRef, 6> Fields;
6747 Reg.split(Fields, ":");
6748
6749 if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1))
6750 return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
6751 << Arg->getSourceRange();
6752
6753 // If the string is the name of a register then we cannot check that it is
6754 // valid here but if the string is of one the forms described in ACLE then we
6755 // can check that the supplied fields are integers and within the valid
6756 // ranges.
6757 if (Fields.size() > 1) {
6758 bool FiveFields = Fields.size() == 5;
6759
6760 bool ValidString = true;
6761 if (IsARMBuiltin) {
6762 ValidString &= Fields[0].startswith_lower("cp") ||
6763 Fields[0].startswith_lower("p");
6764 if (ValidString)
6765 Fields[0] =
6766 Fields[0].drop_front(Fields[0].startswith_lower("cp") ? 2 : 1);
6767
6768 ValidString &= Fields[2].startswith_lower("c");
6769 if (ValidString)
6770 Fields[2] = Fields[2].drop_front(1);
6771
6772 if (FiveFields) {
6773 ValidString &= Fields[3].startswith_lower("c");
6774 if (ValidString)
6775 Fields[3] = Fields[3].drop_front(1);
6776 }
6777 }
6778
6779 SmallVector<int, 5> Ranges;
6780 if (FiveFields)
6781 Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 15, 15, 7});
6782 else
6783 Ranges.append({15, 7, 15});
6784
6785 for (unsigned i=0; i<Fields.size(); ++i) {
6786 int IntField;
6787 ValidString &= !Fields[i].getAsInteger(10, IntField);
6788 ValidString &= (IntField >= 0 && IntField <= Ranges[i]);
6789 }
6790
6791 if (!ValidString)
6792 return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
6793 << Arg->getSourceRange();
6794 } else if (IsAArch64Builtin && Fields.size() == 1) {
6795 // If the register name is one of those that appear in the condition below
6796 // and the special register builtin being used is one of the write builtins,
6797 // then we require that the argument provided for writing to the register
6798 // is an integer constant expression. This is because it will be lowered to
6799 // an MSR (immediate) instruction, so we need to know the immediate at
6800 // compile time.
6801 if (TheCall->getNumArgs() != 2)
6802 return false;
6803
6804 std::string RegLower = Reg.lower();
6805 if (RegLower != "spsel" && RegLower != "daifset" && RegLower != "daifclr" &&
6806 RegLower != "pan" && RegLower != "uao")
6807 return false;
6808
6809 return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
6810 }
6811
6812 return false;
6813}
6814
6815/// SemaBuiltinPPCMMACall - Check the call to a PPC MMA builtin for validity.
6816/// Emit an error and return true on failure; return false on success.
6817/// TypeStr is a string containing the type descriptor of the value returned by
6818/// the builtin and the descriptors of the expected type of the arguments.
6819bool Sema::SemaBuiltinPPCMMACall(CallExpr *TheCall, const char *TypeStr) {
6820
6821 assert((TypeStr[0] != '\0') &&(((TypeStr[0] != '\0') && "Invalid types in PPC MMA builtin declaration"
) ? static_cast<void> (0) : __assert_fail ("(TypeStr[0] != '\\0') && \"Invalid types in PPC MMA builtin declaration\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 6822, __PRETTY_FUNCTION__))
6822 "Invalid types in PPC MMA builtin declaration")(((TypeStr[0] != '\0') && "Invalid types in PPC MMA builtin declaration"
) ? static_cast<void> (0) : __assert_fail ("(TypeStr[0] != '\\0') && \"Invalid types in PPC MMA builtin declaration\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 6822, __PRETTY_FUNCTION__))
;
6823
6824 unsigned Mask = 0;
6825 unsigned ArgNum = 0;
6826
6827 // The first type in TypeStr is the type of the value returned by the
6828 // builtin. So we first read that type and change the type of TheCall.
6829 QualType type = DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
6830 TheCall->setType(type);
6831
6832 while (*TypeStr != '\0') {
6833 Mask = 0;
6834 QualType ExpectedType = DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
6835 if (ArgNum >= TheCall->getNumArgs()) {
6836 ArgNum++;
6837 break;
6838 }
6839
6840 Expr *Arg = TheCall->getArg(ArgNum);
6841 QualType ArgType = Arg->getType();
6842
6843 if ((ExpectedType->isVoidPointerType() && !ArgType->isPointerType()) ||
6844 (!ExpectedType->isVoidPointerType() &&
6845 ArgType.getCanonicalType() != ExpectedType))
6846 return Diag(Arg->getBeginLoc(), diag::err_typecheck_convert_incompatible)
6847 << ArgType << ExpectedType << 1 << 0 << 0;
6848
6849 // If the value of the Mask is not 0, we have a constraint in the size of
6850 // the integer argument so here we ensure the argument is a constant that
6851 // is in the valid range.
6852 if (Mask != 0 &&
6853 SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, Mask, true))
6854 return true;
6855
6856 ArgNum++;
6857 }
6858
6859 // In case we exited early from the previous loop, there are other types to
6860 // read from TypeStr. So we need to read them all to ensure we have the right
6861 // number of arguments in TheCall and if it is not the case, to display a
6862 // better error message.
6863 while (*TypeStr != '\0') {
6864 (void) DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
6865 ArgNum++;
6866 }
6867 if (checkArgCount(*this, TheCall, ArgNum))
6868 return true;
6869
6870 return false;
6871}
6872
6873/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
6874/// This checks that the target supports __builtin_longjmp and
6875/// that val is a constant 1.
6876bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
6877 if (!Context.getTargetInfo().hasSjLjLowering())
6878 return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported)
6879 << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
6880
6881 Expr *Arg = TheCall->getArg(1);
6882 llvm::APSInt Result;
6883
6884 // TODO: This is less than ideal. Overload this to take a value.
6885 if (SemaBuiltinConstantArg(TheCall, 1, Result))
6886 return true;
6887
6888 if (Result != 1)
6889 return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val)
6890 << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc());
6891
6892 return false;
6893}
6894
6895/// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]).
6896/// This checks that the target supports __builtin_setjmp.
6897bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) {
6898 if (!Context.getTargetInfo().hasSjLjLowering())
6899 return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported)
6900 << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
6901 return false;
6902}
6903
6904namespace {
6905
6906class UncoveredArgHandler {
6907 enum { Unknown = -1, AllCovered = -2 };
6908
6909 signed FirstUncoveredArg = Unknown;
6910 SmallVector<const Expr *, 4> DiagnosticExprs;
6911
6912public:
6913 UncoveredArgHandler() = default;
6914
6915 bool hasUncoveredArg() const {
6916 return (FirstUncoveredArg >= 0);
6917 }
6918
6919 unsigned getUncoveredArg() const {
6920 assert(hasUncoveredArg() && "no uncovered argument")((hasUncoveredArg() && "no uncovered argument") ? static_cast
<void> (0) : __assert_fail ("hasUncoveredArg() && \"no uncovered argument\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 6920, __PRETTY_FUNCTION__))
;
6921 return FirstUncoveredArg;
6922 }
6923
6924 void setAllCovered() {
6925 // A string has been found with all arguments covered, so clear out
6926 // the diagnostics.
6927 DiagnosticExprs.clear();
6928 FirstUncoveredArg = AllCovered;
6929 }
6930
6931 void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) {
6932 assert(NewFirstUncoveredArg >= 0 && "Outside range")((NewFirstUncoveredArg >= 0 && "Outside range") ? static_cast
<void> (0) : __assert_fail ("NewFirstUncoveredArg >= 0 && \"Outside range\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 6932, __PRETTY_FUNCTION__))
;
6933
6934 // Don't update if a previous string covers all arguments.
6935 if (FirstUncoveredArg == AllCovered)
6936 return;
6937
6938 // UncoveredArgHandler tracks the highest uncovered argument index
6939 // and with it all the strings that match this index.
6940 if (NewFirstUncoveredArg == FirstUncoveredArg)
6941 DiagnosticExprs.push_back(StrExpr);
6942 else if (NewFirstUncoveredArg > FirstUncoveredArg) {
6943 DiagnosticExprs.clear();
6944 DiagnosticExprs.push_back(StrExpr);
6945 FirstUncoveredArg = NewFirstUncoveredArg;
6946 }
6947 }
6948
6949 void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr);
6950};
6951
6952enum StringLiteralCheckType {
6953 SLCT_NotALiteral,
6954 SLCT_UncheckedLiteral,
6955 SLCT_CheckedLiteral
6956};
6957
6958} // namespace
6959
6960static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend,
6961 BinaryOperatorKind BinOpKind,
6962 bool AddendIsRight) {
6963 unsigned BitWidth = Offset.getBitWidth();
6964 unsigned AddendBitWidth = Addend.getBitWidth();
6965 // There might be negative interim results.
6966 if (Addend.isUnsigned()) {
6967 Addend = Addend.zext(++AddendBitWidth);
6968 Addend.setIsSigned(true);
6969 }
6970 // Adjust the bit width of the APSInts.
6971 if (AddendBitWidth > BitWidth) {
6972 Offset = Offset.sext(AddendBitWidth);
6973 BitWidth = AddendBitWidth;
6974 } else if (BitWidth > AddendBitWidth) {
6975 Addend = Addend.sext(BitWidth);
6976 }
6977
6978 bool Ov = false;
6979 llvm::APSInt ResOffset = Offset;
6980 if (BinOpKind == BO_Add)
6981 ResOffset = Offset.sadd_ov(Addend, Ov);
6982 else {
6983 assert(AddendIsRight && BinOpKind == BO_Sub &&((AddendIsRight && BinOpKind == BO_Sub && "operator must be add or sub with addend on the right"
) ? static_cast<void> (0) : __assert_fail ("AddendIsRight && BinOpKind == BO_Sub && \"operator must be add or sub with addend on the right\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 6984, __PRETTY_FUNCTION__))
6984 "operator must be add or sub with addend on the right")((AddendIsRight && BinOpKind == BO_Sub && "operator must be add or sub with addend on the right"
) ? static_cast<void> (0) : __assert_fail ("AddendIsRight && BinOpKind == BO_Sub && \"operator must be add or sub with addend on the right\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 6984, __PRETTY_FUNCTION__))
;
6985 ResOffset = Offset.ssub_ov(Addend, Ov);
6986 }
6987
6988 // We add an offset to a pointer here so we should support an offset as big as
6989 // possible.
6990 if (Ov) {
6991 assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 &&((BitWidth <= std::numeric_limits<unsigned>::max() /
2 && "index (intermediate) result too big") ? static_cast
<void> (0) : __assert_fail ("BitWidth <= std::numeric_limits<unsigned>::max() / 2 && \"index (intermediate) result too big\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 6992, __PRETTY_FUNCTION__))
6992 "index (intermediate) result too big")((BitWidth <= std::numeric_limits<unsigned>::max() /
2 && "index (intermediate) result too big") ? static_cast
<void> (0) : __assert_fail ("BitWidth <= std::numeric_limits<unsigned>::max() / 2 && \"index (intermediate) result too big\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 6992, __PRETTY_FUNCTION__))
;
6993 Offset = Offset.sext(2 * BitWidth);
6994 sumOffsets(Offset, Addend, BinOpKind, AddendIsRight);
6995 return;
6996 }
6997
6998 Offset = ResOffset;
6999}
7000
7001namespace {
7002
7003// This is a wrapper class around StringLiteral to support offsetted string
7004// literals as format strings. It takes the offset into account when returning
7005// the string and its length or the source locations to display notes correctly.
7006class FormatStringLiteral {
7007 const StringLiteral *FExpr;
7008 int64_t Offset;
7009
7010 public:
7011 FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0)
7012 : FExpr(fexpr), Offset(Offset) {}
7013
7014 StringRef getString() const {
7015 return FExpr->getString().drop_front(Offset);
7016 }
7017
7018 unsigned getByteLength() const {
7019 return FExpr->getByteLength() - getCharByteWidth() * Offset;
7020 }
7021
7022 unsigned getLength() const { return FExpr->getLength() - Offset; }
7023 unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); }
7024
7025 StringLiteral::StringKind getKind() const { return FExpr->getKind(); }
7026
7027 QualType getType() const { return FExpr->getType(); }
7028
7029 bool isAscii() const { return FExpr->isAscii(); }
7030 bool isWide() const { return FExpr->isWide(); }
7031 bool isUTF8() const { return FExpr->isUTF8(); }
7032 bool isUTF16() const { return FExpr->isUTF16(); }
7033 bool isUTF32() const { return FExpr->isUTF32(); }
7034 bool isPascal() const { return FExpr->isPascal(); }
7035
7036 SourceLocation getLocationOfByte(
7037 unsigned ByteNo, const SourceManager &SM, const LangOptions &Features,
7038 const TargetInfo &Target, unsigned *StartToken = nullptr,
7039 unsigned *StartTokenByteOffset = nullptr) const {
7040 return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target,
7041 StartToken, StartTokenByteOffset);
7042 }
7043
7044 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
7045 return FExpr->getBeginLoc().getLocWithOffset(Offset);
7046 }
7047
7048 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) { return FExpr->getEndLoc(); }
7049};
7050
7051} // namespace
7052
7053static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr,
7054 const Expr *OrigFormatExpr,
7055 ArrayRef<const Expr *> Args,
7056 bool HasVAListArg, unsigned format_idx,
7057 unsigned firstDataArg,
7058 Sema::FormatStringType Type,
7059 bool inFunctionCall,
7060 Sema::VariadicCallType CallType,
7061 llvm::SmallBitVector &CheckedVarArgs,
7062 UncoveredArgHandler &UncoveredArg,
7063 bool IgnoreStringsWithoutSpecifiers);
7064
7065// Determine if an expression is a string literal or constant string.
7066// If this function returns false on the arguments to a function expecting a
7067// format string, we will usually need to emit a warning.
7068// True string literals are then checked by CheckFormatString.
7069static StringLiteralCheckType
7070checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
7071 bool HasVAListArg, unsigned format_idx,
7072 unsigned firstDataArg, Sema::FormatStringType Type,
7073 Sema::VariadicCallType CallType, bool InFunctionCall,
7074 llvm::SmallBitVector &CheckedVarArgs,
7075 UncoveredArgHandler &UncoveredArg,
7076 llvm::APSInt Offset,
7077 bool IgnoreStringsWithoutSpecifiers = false) {
7078 if (S.isConstantEvaluated())
7079 return SLCT_NotALiteral;
7080 tryAgain:
7081 assert(Offset.isSigned() && "invalid offset")((Offset.isSigned() && "invalid offset") ? static_cast
<void> (0) : __assert_fail ("Offset.isSigned() && \"invalid offset\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 7081, __PRETTY_FUNCTION__))
;
7082
7083 if (E->isTypeDependent() || E->isValueDependent())
7084 return SLCT_NotALiteral;
7085
7086 E = E->IgnoreParenCasts();
7087
7088 if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
7089 // Technically -Wformat-nonliteral does not warn about this case.
7090 // The behavior of printf and friends in this case is implementation
7091 // dependent. Ideally if the format string cannot be null then
7092 // it should have a 'nonnull' attribute in the function prototype.
7093 return SLCT_UncheckedLiteral;
7094
7095 switch (E->getStmtClass()) {
7096 case Stmt::BinaryConditionalOperatorClass:
7097 case Stmt::ConditionalOperatorClass: {
7098 // The expression is a literal if both sub-expressions were, and it was
7099 // completely checked only if both sub-expressions were checked.
7100 const AbstractConditionalOperator *C =
7101 cast<AbstractConditionalOperator>(E);
7102
7103 // Determine whether it is necessary to check both sub-expressions, for
7104 // example, because the condition expression is a constant that can be
7105 // evaluated at compile time.
7106 bool CheckLeft = true, CheckRight = true;
7107
7108 bool Cond;
7109 if (C->getCond()->EvaluateAsBooleanCondition(Cond, S.getASTContext(),
7110 S.isConstantEvaluated())) {
7111 if (Cond)
7112 CheckRight = false;
7113 else
7114 CheckLeft = false;
7115 }
7116
7117 // We need to maintain the offsets for the right and the left hand side
7118 // separately to check if every possible indexed expression is a valid
7119 // string literal. They might have different offsets for different string
7120 // literals in the end.
7121 StringLiteralCheckType Left;
7122 if (!CheckLeft)
7123 Left = SLCT_UncheckedLiteral;
7124 else {
7125 Left = checkFormatStringExpr(S, C->getTrueExpr(), Args,
7126 HasVAListArg, format_idx, firstDataArg,
7127 Type, CallType, InFunctionCall,
7128 CheckedVarArgs, UncoveredArg, Offset,
7129 IgnoreStringsWithoutSpecifiers);
7130 if (Left == SLCT_NotALiteral || !CheckRight) {
7131 return Left;
7132 }
7133 }
7134
7135 StringLiteralCheckType Right = checkFormatStringExpr(
7136 S, C->getFalseExpr(), Args, HasVAListArg, format_idx, firstDataArg,
7137 Type, CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
7138 IgnoreStringsWithoutSpecifiers);
7139
7140 return (CheckLeft && Left < Right) ? Left : Right;
7141 }
7142
7143 case Stmt::ImplicitCastExprClass:
7144 E = cast<ImplicitCastExpr>(E)->getSubExpr();
7145 goto tryAgain;
7146
7147 case Stmt::OpaqueValueExprClass:
7148 if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
7149 E = src;
7150 goto tryAgain;
7151 }
7152 return SLCT_NotALiteral;
7153
7154 case Stmt::PredefinedExprClass:
7155 // While __func__, etc., are technically not string literals, they
7156 // cannot contain format specifiers and thus are not a security
7157 // liability.
7158 return SLCT_UncheckedLiteral;
7159
7160 case Stmt::DeclRefExprClass: {
7161 const DeclRefExpr *DR = cast<DeclRefExpr>(E);
7162
7163 // As an exception, do not flag errors for variables binding to
7164 // const string literals.
7165 if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
7166 bool isConstant = false;
7167 QualType T = DR->getType();
7168
7169 if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
7170 isConstant = AT->getElementType().isConstant(S.Context);
7171 } else if (const PointerType *PT = T->getAs<PointerType>()) {
7172 isConstant = T.isConstant(S.Context) &&
7173 PT->getPointeeType().isConstant(S.Context);
7174 } else if (T->isObjCObjectPointerType()) {
7175 // In ObjC, there is usually no "const ObjectPointer" type,
7176 // so don't check if the pointee type is constant.
7177 isConstant = T.isConstant(S.Context);
7178 }
7179
7180 if (isConstant) {
7181 if (const Expr *Init = VD->getAnyInitializer()) {
7182 // Look through initializers like const char c[] = { "foo" }
7183 if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
7184 if (InitList->isStringLiteralInit())
7185 Init = InitList->getInit(0)->IgnoreParenImpCasts();
7186 }
7187 return checkFormatStringExpr(S, Init, Args,
7188 HasVAListArg, format_idx,
7189 firstDataArg, Type, CallType,
7190 /*InFunctionCall*/ false, CheckedVarArgs,
7191 UncoveredArg, Offset);
7192 }
7193 }
7194
7195 // For vprintf* functions (i.e., HasVAListArg==true), we add a
7196 // special check to see if the format string is a function parameter
7197 // of the function calling the printf function. If the function
7198 // has an attribute indicating it is a printf-like function, then we
7199 // should suppress warnings concerning non-literals being used in a call
7200 // to a vprintf function. For example:
7201 //
7202 // void
7203 // logmessage(char const *fmt __attribute__ (format (printf, 1, 2)), ...){
7204 // va_list ap;
7205 // va_start(ap, fmt);
7206 // vprintf(fmt, ap); // Do NOT emit a warning about "fmt".
7207 // ...
7208 // }
7209 if (HasVAListArg) {
7210 if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(VD)) {
7211 if (const NamedDecl *ND = dyn_cast<NamedDecl>(PV->getDeclContext())) {
7212 int PVIndex = PV->getFunctionScopeIndex() + 1;
7213 for (const auto *PVFormat : ND->specific_attrs<FormatAttr>()) {
7214 // adjust for implicit parameter
7215 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
7216 if (MD->isInstance())
7217 ++PVIndex;
7218 // We also check if the formats are compatible.
7219 // We can't pass a 'scanf' string to a 'printf' function.
7220 if (PVIndex == PVFormat->getFormatIdx() &&
7221 Type == S.GetFormatStringType(PVFormat))
7222 return SLCT_UncheckedLiteral;
7223 }
7224 }
7225 }
7226 }
7227 }
7228
7229 return SLCT_NotALiteral;
7230 }
7231
7232 case Stmt::CallExprClass:
7233 case Stmt::CXXMemberCallExprClass: {
7234 const CallExpr *CE = cast<CallExpr>(E);
7235 if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
7236 bool IsFirst = true;
7237 StringLiteralCheckType CommonResult;
7238 for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) {
7239 const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex());
7240 StringLiteralCheckType Result = checkFormatStringExpr(
7241 S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type,
7242 CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
7243 IgnoreStringsWithoutSpecifiers);
7244 if (IsFirst) {
7245 CommonResult = Result;
7246 IsFirst = false;
7247 }
7248 }
7249 if (!IsFirst)
7250 return CommonResult;
7251
7252 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
7253 unsigned BuiltinID = FD->getBuiltinID();
7254 if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
7255 BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
7256 const Expr *Arg = CE->getArg(0);
7257 return checkFormatStringExpr(S, Arg, Args,
7258 HasVAListArg, format_idx,
7259 firstDataArg, Type, CallType,
7260 InFunctionCall, CheckedVarArgs,
7261 UncoveredArg, Offset,
7262 IgnoreStringsWithoutSpecifiers);
7263 }
7264 }
7265 }
7266
7267 return SLCT_NotALiteral;
7268 }
7269 case Stmt::ObjCMessageExprClass: {
7270 const auto *ME = cast<ObjCMessageExpr>(E);
7271 if (const auto *MD = ME->getMethodDecl()) {
7272 if (const auto *FA = MD->getAttr<FormatArgAttr>()) {
7273 // As a special case heuristic, if we're using the method -[NSBundle
7274 // localizedStringForKey:value:table:], ignore any key strings that lack
7275 // format specifiers. The idea is that if the key doesn't have any
7276 // format specifiers then its probably just a key to map to the
7277 // localized strings. If it does have format specifiers though, then its
7278 // likely that the text of the key is the format string in the
7279 // programmer's language, and should be checked.
7280 const ObjCInterfaceDecl *IFace;
7281 if (MD->isInstanceMethod() && (IFace = MD->getClassInterface()) &&
7282 IFace->getIdentifier()->isStr("NSBundle") &&
7283 MD->getSelector().isKeywordSelector(
7284 {"localizedStringForKey", "value", "table"})) {
7285 IgnoreStringsWithoutSpecifiers = true;
7286 }
7287
7288 const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex());
7289 return checkFormatStringExpr(
7290 S, Arg, Args, HasVAListArg, format_idx, firstDataArg, Type,
7291 CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
7292 IgnoreStringsWithoutSpecifiers);
7293 }
7294 }
7295
7296 return SLCT_NotALiteral;
7297 }
7298 case Stmt::ObjCStringLiteralClass:
7299 case Stmt::StringLiteralClass: {
7300 const StringLiteral *StrE = nullptr;
7301
7302 if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
7303 StrE = ObjCFExpr->getString();
7304 else
7305 StrE = cast<StringLiteral>(E);
7306
7307 if (StrE) {
7308 if (Offset.isNegative() || Offset > StrE->getLength()) {
7309 // TODO: It would be better to have an explicit warning for out of
7310 // bounds literals.
7311 return SLCT_NotALiteral;
7312 }
7313 FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue());
7314 CheckFormatString(S, &FStr, E, Args, HasVAListArg, format_idx,
7315 firstDataArg, Type, InFunctionCall, CallType,
7316 CheckedVarArgs, UncoveredArg,
7317 IgnoreStringsWithoutSpecifiers);
7318 return SLCT_CheckedLiteral;
7319 }
7320
7321 return SLCT_NotALiteral;
7322 }
7323 case Stmt::BinaryOperatorClass: {
7324 const BinaryOperator *BinOp = cast<BinaryOperator>(E);
7325
7326 // A string literal + an int offset is still a string literal.
7327 if (BinOp->isAdditiveOp()) {
7328 Expr::EvalResult LResult, RResult;
7329
7330 bool LIsInt = BinOp->getLHS()->EvaluateAsInt(
7331 LResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated());
7332 bool RIsInt = BinOp->getRHS()->EvaluateAsInt(
7333 RResult, S.Context, Expr::SE_NoSideEffects, S.isConstantEvaluated());
7334
7335 if (LIsInt != RIsInt) {
7336 BinaryOperatorKind BinOpKind = BinOp->getOpcode();
7337
7338 if (LIsInt) {
7339 if (BinOpKind == BO_Add) {
7340 sumOffsets(Offset, LResult.Val.getInt(), BinOpKind, RIsInt);
7341 E = BinOp->getRHS();
7342 goto tryAgain;
7343 }
7344 } else {
7345 sumOffsets(Offset, RResult.Val.getInt(), BinOpKind, RIsInt);
7346 E = BinOp->getLHS();
7347 goto tryAgain;
7348 }
7349 }
7350 }
7351
7352 return SLCT_NotALiteral;
7353 }
7354 case Stmt::UnaryOperatorClass: {
7355 const UnaryOperator *UnaOp = cast<UnaryOperator>(E);
7356 auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr());
7357 if (UnaOp->getOpcode() == UO_AddrOf && ASE) {
7358 Expr::EvalResult IndexResult;
7359 if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context,
7360 Expr::SE_NoSideEffects,
7361 S.isConstantEvaluated())) {
7362 sumOffsets(Offset, IndexResult.Val.getInt(), BO_Add,
7363 /*RHS is int*/ true);
7364 E = ASE->getBase();
7365 goto tryAgain;
7366 }
7367 }
7368
7369 return SLCT_NotALiteral;
7370 }
7371
7372 default:
7373 return SLCT_NotALiteral;
7374 }
7375}
7376
7377Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
7378 return llvm::StringSwitch<FormatStringType>(Format->getType()->getName())
7379 .Case("scanf", FST_Scanf)
7380 .Cases("printf", "printf0", FST_Printf)
7381 .Cases("NSString", "CFString", FST_NSString)
7382 .Case("strftime", FST_Strftime)
7383 .Case("strfmon", FST_Strfmon)
7384 .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
7385 .Case("freebsd_kprintf", FST_FreeBSDKPrintf)
7386 .Case("os_trace", FST_OSLog)
7387 .Case("os_log", FST_OSLog)
7388 .Default(FST_Unknown);
7389}
7390
7391/// CheckFormatArguments - Check calls to printf and scanf (and similar
7392/// functions) for correct use of format strings.
7393/// Returns true if a format string has been fully checked.
7394bool Sema::CheckFormatArguments(const FormatAttr *Format,
7395 ArrayRef<const Expr *> Args,
7396 bool IsCXXMember,
7397 VariadicCallType CallType,
7398 SourceLocation Loc, SourceRange Range,
7399 llvm::SmallBitVector &CheckedVarArgs) {
7400 FormatStringInfo FSI;
7401 if (getFormatStringInfo(Format, IsCXXMember, &FSI))
7402 return CheckFormatArguments(Args, FSI.HasVAListArg, FSI.FormatIdx,
7403 FSI.FirstDataArg, GetFormatStringType(Format),
7404 CallType, Loc, Range, CheckedVarArgs);
7405 return false;
7406}
7407
7408bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
7409 bool HasVAListArg, unsigned format_idx,
7410 unsigned firstDataArg, FormatStringType Type,
7411 VariadicCallType CallType,
7412 SourceLocation Loc, SourceRange Range,
7413 llvm::SmallBitVector &CheckedVarArgs) {
7414 // CHECK: printf/scanf-like function is called with no format string.
7415 if (format_idx >= Args.size()) {
7416 Diag(Loc, diag::warn_missing_format_string) << Range;
7417 return false;
7418 }
7419
7420 const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
7421
7422 // CHECK: format string is not a string literal.
7423 //
7424 // Dynamically generated format strings are difficult to
7425 // automatically vet at compile time. Requiring that format strings
7426 // are string literals: (1) permits the checking of format strings by
7427 // the compiler and thereby (2) can practically remove the source of
7428 // many format string exploits.
7429
7430 // Format string can be either ObjC string (e.g. @"%d") or
7431 // C string (e.g. "%d")
7432 // ObjC string uses the same format specifiers as C string, so we can use
7433 // the same format string checking logic for both ObjC and C strings.
7434 UncoveredArgHandler UncoveredArg;
7435 StringLiteralCheckType CT =
7436 checkFormatStringExpr(*this, OrigFormatExpr, Args, HasVAListArg,
7437 format_idx, firstDataArg, Type, CallType,
7438 /*IsFunctionCall*/ true, CheckedVarArgs,
7439 UncoveredArg,
7440 /*no string offset*/ llvm::APSInt(64, false) = 0);
7441
7442 // Generate a diagnostic where an uncovered argument is detected.
7443 if (UncoveredArg.hasUncoveredArg()) {
7444 unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg;
7445 assert(ArgIdx < Args.size() && "ArgIdx outside bounds")((ArgIdx < Args.size() && "ArgIdx outside bounds")
? static_cast<void> (0) : __assert_fail ("ArgIdx < Args.size() && \"ArgIdx outside bounds\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 7445, __PRETTY_FUNCTION__))
;
7446 UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]);
7447 }
7448
7449 if (CT != SLCT_NotALiteral)
7450 // Literal format string found, check done!
7451 return CT == SLCT_CheckedLiteral;
7452
7453 // Strftime is particular as it always uses a single 'time' argument,
7454 // so it is safe to pass a non-literal string.
7455 if (Type == FST_Strftime)
7456 return false;
7457
7458 // Do not emit diag when the string param is a macro expansion and the
7459 // format is either NSString or CFString. This is a hack to prevent
7460 // diag when using the NSLocalizedString and CFCopyLocalizedString macros
7461 // which are usually used in place of NS and CF string literals.
7462 SourceLocation FormatLoc = Args[format_idx]->getBeginLoc();
7463 if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc))
7464 return false;
7465
7466 // If there are no arguments specified, warn with -Wformat-security, otherwise
7467 // warn only with -Wformat-nonliteral.
7468 if (Args.size() == firstDataArg) {
7469 Diag(FormatLoc, diag::warn_format_nonliteral_noargs)
7470 << OrigFormatExpr->getSourceRange();
7471 switch (Type) {
7472 default:
7473 break;
7474 case FST_Kprintf:
7475 case FST_FreeBSDKPrintf:
7476 case FST_Printf:
7477 Diag(FormatLoc, diag::note_format_security_fixit)
7478 << FixItHint::CreateInsertion(FormatLoc, "\"%s\", ");
7479 break;
7480 case FST_NSString:
7481 Diag(FormatLoc, diag::note_format_security_fixit)
7482 << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", ");
7483 break;
7484 }
7485 } else {
7486 Diag(FormatLoc, diag::warn_format_nonliteral)
7487 << OrigFormatExpr->getSourceRange();
7488 }
7489 return false;
7490}
7491
7492namespace {
7493
7494class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
7495protected:
7496 Sema &S;
7497 const FormatStringLiteral *FExpr;
7498 const Expr *OrigFormatExpr;
7499 const Sema::FormatStringType FSType;
7500 const unsigned FirstDataArg;
7501 const unsigned NumDataArgs;
7502 const char *Beg; // Start of format string.
7503 const bool HasVAListArg;
7504 ArrayRef<const Expr *> Args;
7505 unsigned FormatIdx;
7506 llvm::SmallBitVector CoveredArgs;
7507 bool usesPositionalArgs = false;
7508 bool atFirstArg = true;
7509 bool inFunctionCall;
7510 Sema::VariadicCallType CallType;
7511 llvm::SmallBitVector &CheckedVarArgs;
7512 UncoveredArgHandler &UncoveredArg;
7513
7514public:
7515 CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr,
7516 const Expr *origFormatExpr,
7517 const Sema::FormatStringType type, unsigned firstDataArg,
7518 unsigned numDataArgs, const char *beg, bool hasVAListArg,
7519 ArrayRef<const Expr *> Args, unsigned formatIdx,
7520 bool inFunctionCall, Sema::VariadicCallType callType,
7521 llvm::SmallBitVector &CheckedVarArgs,
7522 UncoveredArgHandler &UncoveredArg)
7523 : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type),
7524 FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg),
7525 HasVAListArg(hasVAListArg), Args(Args), FormatIdx(formatIdx),
7526 inFunctionCall(inFunctionCall), CallType(callType),
7527 CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) {
7528 CoveredArgs.resize(numDataArgs);
7529 CoveredArgs.reset();
7530 }
7531
7532 void DoneProcessing();
7533
7534 void HandleIncompleteSpecifier(const char *startSpecifier,
7535 unsigned specifierLen) override;
7536
7537 void HandleInvalidLengthModifier(
7538 const analyze_format_string::FormatSpecifier &FS,
7539 const analyze_format_string::ConversionSpecifier &CS,
7540 const char *startSpecifier, unsigned specifierLen,
7541 unsigned DiagID);
7542
7543 void HandleNonStandardLengthModifier(
7544 const analyze_format_string::FormatSpecifier &FS,
7545 const char *startSpecifier, unsigned specifierLen);
7546
7547 void HandleNonStandardConversionSpecifier(
7548 const analyze_format_string::ConversionSpecifier &CS,
7549 const char *startSpecifier, unsigned specifierLen);
7550
7551 void HandlePosition(const char *startPos, unsigned posLen) override;
7552
7553 void HandleInvalidPosition(const char *startSpecifier,
7554 unsigned specifierLen,
7555 analyze_format_string::PositionContext p) override;
7556
7557 void HandleZeroPosition(const char *startPos, unsigned posLen) override;
7558
7559 void HandleNullChar(const char *nullCharacter) override;
7560
7561 template <typename Range>
7562 static void
7563 EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr,
7564 const PartialDiagnostic &PDiag, SourceLocation StringLoc,
7565 bool IsStringLocation, Range StringRange,
7566 ArrayRef<FixItHint> Fixit = None);
7567
7568protected:
7569 bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
7570 const char *startSpec,
7571 unsigned specifierLen,
7572 const char *csStart, unsigned csLen);
7573
7574 void HandlePositionalNonpositionalArgs(SourceLocation Loc,
7575 const char *startSpec,
7576 unsigned specifierLen);
7577
7578 SourceRange getFormatStringRange();
7579 CharSourceRange getSpecifierRange(const char *startSpecifier,
7580 unsigned specifierLen);
7581 SourceLocation getLocationOfByte(const char *x);
7582
7583 const Expr *getDataArg(unsigned i) const;
7584
7585 bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
7586 const analyze_format_string::ConversionSpecifier &CS,
7587 const char *startSpecifier, unsigned specifierLen,
7588 unsigned argIndex);
7589
7590 template <typename Range>
7591 void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
7592 bool IsStringLocation, Range StringRange,
7593 ArrayRef<FixItHint> Fixit = None);
7594};
7595
7596} // namespace
7597
7598SourceRange CheckFormatHandler::getFormatStringRange() {
7599 return OrigFormatExpr->getSourceRange();
7600}
7601
7602CharSourceRange CheckFormatHandler::
7603getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
7604 SourceLocation Start = getLocationOfByte(startSpecifier);
7605 SourceLocation End = getLocationOfByte(startSpecifier + specifierLen - 1);
7606
7607 // Advance the end SourceLocation by one due to half-open ranges.
7608 End = End.getLocWithOffset(1);
7609
7610 return CharSourceRange::getCharRange(Start, End);
7611}
7612
7613SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
7614 return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(),
7615 S.getLangOpts(), S.Context.getTargetInfo());
7616}
7617
7618void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
7619 unsigned specifierLen){
7620 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
7621 getLocationOfByte(startSpecifier),
7622 /*IsStringLocation*/true,
7623 getSpecifierRange(startSpecifier, specifierLen));
7624}
7625
7626void CheckFormatHandler::HandleInvalidLengthModifier(
7627 const analyze_format_string::FormatSpecifier &FS,
7628 const analyze_format_string::ConversionSpecifier &CS,
7629 const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
7630 using namespace analyze_format_string;
7631
7632 const LengthModifier &LM = FS.getLengthModifier();
7633 CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
7634
7635 // See if we know how to fix this length modifier.
7636 Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
7637 if (FixedLM) {
7638 EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
7639 getLocationOfByte(LM.getStart()),
7640 /*IsStringLocation*/true,
7641 getSpecifierRange(startSpecifier, specifierLen));
7642
7643 S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
7644 << FixedLM->toString()
7645 << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
7646
7647 } else {
7648 FixItHint Hint;
7649 if (DiagID == diag::warn_format_nonsensical_length)
7650 Hint = FixItHint::CreateRemoval(LMRange);
7651
7652 EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
7653 getLocationOfByte(LM.getStart()),
7654 /*IsStringLocation*/true,
7655 getSpecifierRange(startSpecifier, specifierLen),
7656 Hint);
7657 }
7658}
7659
7660void CheckFormatHandler::HandleNonStandardLengthModifier(
7661 const analyze_format_string::FormatSpecifier &FS,
7662 const char *startSpecifier, unsigned specifierLen) {
7663 using namespace analyze_format_string;
7664
7665 const LengthModifier &LM = FS.getLengthModifier();
7666 CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
7667
7668 // See if we know how to fix this length modifier.
7669 Optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
7670 if (FixedLM) {
7671 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
7672 << LM.toString() << 0,
7673 getLocationOfByte(LM.getStart()),
7674 /*IsStringLocation*/true,
7675 getSpecifierRange(startSpecifier, specifierLen));
7676
7677 S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
7678 << FixedLM->toString()
7679 << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
7680
7681 } else {
7682 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
7683 << LM.toString() << 0,
7684 getLocationOfByte(LM.getStart()),
7685 /*IsStringLocation*/true,
7686 getSpecifierRange(startSpecifier, specifierLen));
7687 }
7688}
7689
7690void CheckFormatHandler::HandleNonStandardConversionSpecifier(
7691 const analyze_format_string::ConversionSpecifier &CS,
7692 const char *startSpecifier, unsigned specifierLen) {
7693 using namespace analyze_format_string;
7694
7695 // See if we know how to fix this conversion specifier.
7696 Optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
7697 if (FixedCS) {
7698 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
7699 << CS.toString() << /*conversion specifier*/1,
7700 getLocationOfByte(CS.getStart()),
7701 /*IsStringLocation*/true,
7702 getSpecifierRange(startSpecifier, specifierLen));
7703
7704 CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
7705 S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
7706 << FixedCS->toString()
7707 << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
7708 } else {
7709 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
7710 << CS.toString() << /*conversion specifier*/1,
7711 getLocationOfByte(CS.getStart()),
7712 /*IsStringLocation*/true,
7713 getSpecifierRange(startSpecifier, specifierLen));
7714 }
7715}
7716
7717void CheckFormatHandler::HandlePosition(const char *startPos,
7718 unsigned posLen) {
7719 EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
7720 getLocationOfByte(startPos),
7721 /*IsStringLocation*/true,
7722 getSpecifierRange(startPos, posLen));
7723}
7724
7725void
7726CheckFormatHandler::HandleInvalidPosition(const char *startPos, unsigned posLen,
7727 analyze_format_string::PositionContext p) {
7728 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_positional_specifier)
7729 << (unsigned) p,
7730 getLocationOfByte(startPos), /*IsStringLocation*/true,
7731 getSpecifierRange(startPos, posLen));
7732}
7733
7734void CheckFormatHandler::HandleZeroPosition(const char *startPos,
7735 unsigned posLen) {
7736 EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
7737 getLocationOfByte(startPos),
7738 /*IsStringLocation*/true,
7739 getSpecifierRange(startPos, posLen));
7740}
7741
7742void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
7743 if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
7744 // The presence of a null character is likely an error.
7745 EmitFormatDiagnostic(
7746 S.PDiag(diag::warn_printf_format_string_contains_null_char),
7747 getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
7748 getFormatStringRange());
7749 }
7750}
7751
7752// Note that this may return NULL if there was an error parsing or building
7753// one of the argument expressions.
7754const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
7755 return Args[FirstDataArg + i];
7756}
7757
7758void CheckFormatHandler::DoneProcessing() {
7759 // Does the number of data arguments exceed the number of
7760 // format conversions in the format string?
7761 if (!HasVAListArg) {
7762 // Find any arguments that weren't covered.
7763 CoveredArgs.flip();
7764 signed notCoveredArg = CoveredArgs.find_first();
7765 if (notCoveredArg >= 0) {
7766 assert((unsigned)notCoveredArg < NumDataArgs)(((unsigned)notCoveredArg < NumDataArgs) ? static_cast<
void> (0) : __assert_fail ("(unsigned)notCoveredArg < NumDataArgs"
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 7766, __PRETTY_FUNCTION__))
;
7767 UncoveredArg.Update(notCoveredArg, OrigFormatExpr);
7768 } else {
7769 UncoveredArg.setAllCovered();
7770 }
7771 }
7772}
7773
7774void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall,
7775 const Expr *ArgExpr) {
7776 assert(hasUncoveredArg() && DiagnosticExprs.size() > 0 &&((hasUncoveredArg() && DiagnosticExprs.size() > 0 &&
"Invalid state") ? static_cast<void> (0) : __assert_fail
("hasUncoveredArg() && DiagnosticExprs.size() > 0 && \"Invalid state\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 7777, __PRETTY_FUNCTION__))
7777 "Invalid state")((hasUncoveredArg() && DiagnosticExprs.size() > 0 &&
"Invalid state") ? static_cast<void> (0) : __assert_fail
("hasUncoveredArg() && DiagnosticExprs.size() > 0 && \"Invalid state\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 7777, __PRETTY_FUNCTION__))
;
7778
7779 if (!ArgExpr)
7780 return;
7781
7782 SourceLocation Loc = ArgExpr->getBeginLoc();
7783
7784 if (S.getSourceManager().isInSystemMacro(Loc))
7785 return;
7786
7787 PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used);
7788 for (auto E : DiagnosticExprs)
7789 PDiag << E->getSourceRange();
7790
7791 CheckFormatHandler::EmitFormatDiagnostic(
7792 S, IsFunctionCall, DiagnosticExprs[0],
7793 PDiag, Loc, /*IsStringLocation*/false,
7794 DiagnosticExprs[0]->getSourceRange());
7795}
7796
7797bool
7798CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
7799 SourceLocation Loc,
7800 const char *startSpec,
7801 unsigned specifierLen,
7802 const char *csStart,
7803 unsigned csLen) {
7804 bool keepGoing = true;
7805 if (argIndex < NumDataArgs) {
7806 // Consider the argument coverered, even though the specifier doesn't
7807 // make sense.
7808 CoveredArgs.set(argIndex);
7809 }
7810 else {
7811 // If argIndex exceeds the number of data arguments we
7812 // don't issue a warning because that is just a cascade of warnings (and
7813 // they may have intended '%%' anyway). We don't want to continue processing
7814 // the format string after this point, however, as we will like just get
7815 // gibberish when trying to match arguments.
7816 keepGoing = false;
7817 }
7818
7819 StringRef Specifier(csStart, csLen);
7820
7821 // If the specifier in non-printable, it could be the first byte of a UTF-8
7822 // sequence. In that case, print the UTF-8 code point. If not, print the byte
7823 // hex value.
7824 std::string CodePointStr;
7825 if (!llvm::sys::locale::isPrint(*csStart)) {
7826 llvm::UTF32 CodePoint;
7827 const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart);
7828 const llvm::UTF8 *E =
7829 reinterpret_cast<const llvm::UTF8 *>(csStart + csLen);
7830 llvm::ConversionResult Result =
7831 llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion);
7832
7833 if (Result != llvm::conversionOK) {
7834 unsigned char FirstChar = *csStart;
7835 CodePoint = (llvm::UTF32)FirstChar;
7836 }
7837
7838 llvm::raw_string_ostream OS(CodePointStr);
7839 if (CodePoint < 256)
7840 OS << "\\x" << llvm::format("%02x", CodePoint);
7841 else if (CodePoint <= 0xFFFF)
7842 OS << "\\u" << llvm::format("%04x", CodePoint);
7843 else
7844 OS << "\\U" << llvm::format("%08x", CodePoint);
7845 OS.flush();
7846 Specifier = CodePointStr;
7847 }
7848
7849 EmitFormatDiagnostic(
7850 S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc,
7851 /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen));
7852
7853 return keepGoing;
7854}
7855
7856void
7857CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
7858 const char *startSpec,
7859 unsigned specifierLen) {
7860 EmitFormatDiagnostic(
7861 S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
7862 Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
7863}
7864
7865bool
7866CheckFormatHandler::CheckNumArgs(
7867 const analyze_format_string::FormatSpecifier &FS,
7868 const analyze_format_string::ConversionSpecifier &CS,
7869 const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
7870
7871 if (argIndex >= NumDataArgs) {
7872 PartialDiagnostic PDiag = FS.usesPositionalArg()
7873 ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
7874 << (argIndex+1) << NumDataArgs)
7875 : S.PDiag(diag::warn_printf_insufficient_data_args);
7876 EmitFormatDiagnostic(
7877 PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
7878 getSpecifierRange(startSpecifier, specifierLen));
7879
7880 // Since more arguments than conversion tokens are given, by extension
7881 // all arguments are covered, so mark this as so.
7882 UncoveredArg.setAllCovered();
7883 return false;
7884 }
7885 return true;
7886}
7887
7888template<typename Range>
7889void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
7890 SourceLocation Loc,
7891 bool IsStringLocation,
7892 Range StringRange,
7893 ArrayRef<FixItHint> FixIt) {
7894 EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
7895 Loc, IsStringLocation, StringRange, FixIt);
7896}
7897
7898/// If the format string is not within the function call, emit a note
7899/// so that the function call and string are in diagnostic messages.
7900///
7901/// \param InFunctionCall if true, the format string is within the function
7902/// call and only one diagnostic message will be produced. Otherwise, an
7903/// extra note will be emitted pointing to location of the format string.
7904///
7905/// \param ArgumentExpr the expression that is passed as the format string
7906/// argument in the function call. Used for getting locations when two
7907/// diagnostics are emitted.
7908///
7909/// \param PDiag the callee should already have provided any strings for the
7910/// diagnostic message. This function only adds locations and fixits
7911/// to diagnostics.
7912///
7913/// \param Loc primary location for diagnostic. If two diagnostics are
7914/// required, one will be at Loc and a new SourceLocation will be created for
7915/// the other one.
7916///
7917/// \param IsStringLocation if true, Loc points to the format string should be
7918/// used for the note. Otherwise, Loc points to the argument list and will
7919/// be used with PDiag.
7920///
7921/// \param StringRange some or all of the string to highlight. This is
7922/// templated so it can accept either a CharSourceRange or a SourceRange.
7923///
7924/// \param FixIt optional fix it hint for the format string.
7925template <typename Range>
7926void CheckFormatHandler::EmitFormatDiagnostic(
7927 Sema &S, bool InFunctionCall, const Expr *ArgumentExpr,
7928 const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation,
7929 Range StringRange, ArrayRef<FixItHint> FixIt) {
7930 if (InFunctionCall) {
7931 const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
7932 D << StringRange;
7933 D << FixIt;
7934 } else {
7935 S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
7936 << ArgumentExpr->getSourceRange();
7937
7938 const Sema::SemaDiagnosticBuilder &Note =
7939 S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
7940 diag::note_format_string_defined);
7941
7942 Note << StringRange;
7943 Note << FixIt;
7944 }
7945}
7946
7947//===--- CHECK: Printf format string checking ------------------------------===//
7948
7949namespace {
7950
7951class CheckPrintfHandler : public CheckFormatHandler {
7952public:
7953 CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr,
7954 const Expr *origFormatExpr,
7955 const Sema::FormatStringType type, unsigned firstDataArg,
7956 unsigned numDataArgs, bool isObjC, const char *beg,
7957 bool hasVAListArg, ArrayRef<const Expr *> Args,
7958 unsigned formatIdx, bool inFunctionCall,
7959 Sema::VariadicCallType CallType,
7960 llvm::SmallBitVector &CheckedVarArgs,
7961 UncoveredArgHandler &UncoveredArg)
7962 : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
7963 numDataArgs, beg, hasVAListArg, Args, formatIdx,
7964 inFunctionCall, CallType, CheckedVarArgs,
7965 UncoveredArg) {}
7966
7967 bool isObjCContext() const { return FSType == Sema::FST_NSString; }
7968
7969 /// Returns true if '%@' specifiers are allowed in the format string.
7970 bool allowsObjCArg() const {
7971 return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog ||
7972 FSType == Sema::FST_OSTrace;
7973 }
7974
7975 bool HandleInvalidPrintfConversionSpecifier(
7976 const analyze_printf::PrintfSpecifier &FS,
7977 const char *startSpecifier,
7978 unsigned specifierLen) override;
7979
7980 void handleInvalidMaskType(StringRef MaskType) override;
7981
7982 bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
7983 const char *startSpecifier,
7984 unsigned specifierLen) override;
7985 bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
7986 const char *StartSpecifier,
7987 unsigned SpecifierLen,
7988 const Expr *E);
7989
7990 bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
7991 const char *startSpecifier, unsigned specifierLen);
7992 void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
7993 const analyze_printf::OptionalAmount &Amt,
7994 unsigned type,
7995 const char *startSpecifier, unsigned specifierLen);
7996 void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
7997 const analyze_printf::OptionalFlag &flag,
7998 const char *startSpecifier, unsigned specifierLen);
7999 void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
8000 const analyze_printf::OptionalFlag &ignoredFlag,
8001 const analyze_printf::OptionalFlag &flag,
8002 const char *startSpecifier, unsigned specifierLen);
8003 bool checkForCStrMembers(const analyze_printf::ArgType &AT,
8004 const Expr *E);
8005
8006 void HandleEmptyObjCModifierFlag(const char *startFlag,
8007 unsigned flagLen) override;
8008
8009 void HandleInvalidObjCModifierFlag(const char *startFlag,
8010 unsigned flagLen) override;
8011
8012 void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart,
8013 const char *flagsEnd,
8014 const char *conversionPosition)
8015 override;
8016};
8017
8018} // namespace
8019
8020bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
8021 const analyze_printf::PrintfSpecifier &FS,
8022 const char *startSpecifier,
8023 unsigned specifierLen) {
8024 const analyze_printf::PrintfConversionSpecifier &CS =
8025 FS.getConversionSpecifier();
8026
8027 return HandleInvalidConversionSpecifier(FS.getArgIndex(),
8028 getLocationOfByte(CS.getStart()),
8029 startSpecifier, specifierLen,
8030 CS.getStart(), CS.getLength());
8031}
8032
8033void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) {
8034 S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size);
8035}
8036
8037bool CheckPrintfHandler::HandleAmount(
8038 const analyze_format_string::OptionalAmount &Amt,
8039 unsigned k, const char *startSpecifier,
8040 unsigned specifierLen) {
8041 if (Amt.hasDataArgument()) {
8042 if (!HasVAListArg) {
8043 unsigned argIndex = Amt.getArgIndex();
8044 if (argIndex >= NumDataArgs) {
8045 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
8046 << k,
8047 getLocationOfByte(Amt.getStart()),
8048 /*IsStringLocation*/true,
8049 getSpecifierRange(startSpecifier, specifierLen));
8050 // Don't do any more checking. We will just emit
8051 // spurious errors.
8052 return false;
8053 }
8054
8055 // Type check the data argument. It should be an 'int'.
8056 // Although not in conformance with C99, we also allow the argument to be
8057 // an 'unsigned int' as that is a reasonably safe case. GCC also
8058 // doesn't emit a warning for that case.
8059 CoveredArgs.set(argIndex);
8060 const Expr *Arg = getDataArg(argIndex);
8061 if (!Arg)
8062 return false;
8063
8064 QualType T = Arg->getType();
8065
8066 const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
8067 assert(AT.isValid())((AT.isValid()) ? static_cast<void> (0) : __assert_fail
("AT.isValid()", "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 8067, __PRETTY_FUNCTION__))
;
8068
8069 if (!AT.matchesType(S.Context, T)) {
8070 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
8071 << k << AT.getRepresentativeTypeName(S.Context)
8072 << T << Arg->getSourceRange(),
8073 getLocationOfByte(Amt.getStart()),
8074 /*IsStringLocation*/true,
8075 getSpecifierRange(startSpecifier, specifierLen));
8076 // Don't do any more checking. We will just emit
8077 // spurious errors.
8078 return false;
8079 }
8080 }
8081 }
8082 return true;
8083}
8084
8085void CheckPrintfHandler::HandleInvalidAmount(
8086 const analyze_printf::PrintfSpecifier &FS,
8087 const analyze_printf::OptionalAmount &Amt,
8088 unsigned type,
8089 const char *startSpecifier,
8090 unsigned specifierLen) {
8091 const analyze_printf::PrintfConversionSpecifier &CS =
8092 FS.getConversionSpecifier();
8093
8094 FixItHint fixit =
8095 Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
8096 ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
8097 Amt.getConstantLength()))
8098 : FixItHint();
8099
8100 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
8101 << type << CS.toString(),
8102 getLocationOfByte(Amt.getStart()),
8103 /*IsStringLocation*/true,
8104 getSpecifierRange(startSpecifier, specifierLen),
8105 fixit);
8106}
8107
8108void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
8109 const analyze_printf::OptionalFlag &flag,
8110 const char *startSpecifier,
8111 unsigned specifierLen) {
8112 // Warn about pointless flag with a fixit removal.
8113 const analyze_printf::PrintfConversionSpecifier &CS =
8114 FS.getConversionSpecifier();
8115 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
8116 << flag.toString() << CS.toString(),
8117 getLocationOfByte(flag.getPosition()),
8118 /*IsStringLocation*/true,
8119 getSpecifierRange(startSpecifier, specifierLen),
8120 FixItHint::CreateRemoval(
8121 getSpecifierRange(flag.getPosition(), 1)));
8122}
8123
8124void CheckPrintfHandler::HandleIgnoredFlag(
8125 const analyze_printf::PrintfSpecifier &FS,
8126 const analyze_printf::OptionalFlag &ignoredFlag,
8127 const analyze_printf::OptionalFlag &flag,
8128 const char *startSpecifier,
8129 unsigned specifierLen) {
8130 // Warn about ignored flag with a fixit removal.
8131 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
8132 << ignoredFlag.toString() << flag.toString(),
8133 getLocationOfByte(ignoredFlag.getPosition()),
8134 /*IsStringLocation*/true,
8135 getSpecifierRange(startSpecifier, specifierLen),
8136 FixItHint::CreateRemoval(
8137 getSpecifierRange(ignoredFlag.getPosition(), 1)));
8138}
8139
8140void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag,
8141 unsigned flagLen) {
8142 // Warn about an empty flag.
8143 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag),
8144 getLocationOfByte(startFlag),
8145 /*IsStringLocation*/true,
8146 getSpecifierRange(startFlag, flagLen));
8147}
8148
8149void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag,
8150 unsigned flagLen) {
8151 // Warn about an invalid flag.
8152 auto Range = getSpecifierRange(startFlag, flagLen);
8153 StringRef flag(startFlag, flagLen);
8154 EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag,
8155 getLocationOfByte(startFlag),
8156 /*IsStringLocation*/true,
8157 Range, FixItHint::CreateRemoval(Range));
8158}
8159
8160void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion(
8161 const char *flagsStart, const char *flagsEnd, const char *conversionPosition) {
8162 // Warn about using '[...]' without a '@' conversion.
8163 auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1);
8164 auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion;
8165 EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1),
8166 getLocationOfByte(conversionPosition),
8167 /*IsStringLocation*/true,
8168 Range, FixItHint::CreateRemoval(Range));
8169}
8170
8171// Determines if the specified is a C++ class or struct containing
8172// a member with the specified name and kind (e.g. a CXXMethodDecl named
8173// "c_str()").
8174template<typename MemberKind>
8175static llvm::SmallPtrSet<MemberKind*, 1>
8176CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
8177 const RecordType *RT = Ty->getAs<RecordType>();
8178 llvm::SmallPtrSet<MemberKind*, 1> Results;
8179
8180 if (!RT)
8181 return Results;
8182 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
8183 if (!RD || !RD->getDefinition())
8184 return Results;
8185
8186 LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(),
8187 Sema::LookupMemberName);
8188 R.suppressDiagnostics();
8189
8190 // We just need to include all members of the right kind turned up by the
8191 // filter, at this point.
8192 if (S.LookupQualifiedName(R, RT->getDecl()))
8193 for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
8194 NamedDecl *decl = (*I)->getUnderlyingDecl();
8195 if (MemberKind *FK = dyn_cast<MemberKind>(decl))
8196 Results.insert(FK);
8197 }
8198 return Results;
8199}
8200
8201/// Check if we could call '.c_str()' on an object.
8202///
8203/// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't
8204/// allow the call, or if it would be ambiguous).
8205bool Sema::hasCStrMethod(const Expr *E) {
8206 using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
8207
8208 MethodSet Results =
8209 CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType());
8210 for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
8211 MI != ME; ++MI)
8212 if ((*MI)->getMinRequiredArguments() == 0)
8213 return true;
8214 return false;
8215}
8216
8217// Check if a (w)string was passed when a (w)char* was needed, and offer a
8218// better diagnostic if so. AT is assumed to be valid.
8219// Returns true when a c_str() conversion method is found.
8220bool CheckPrintfHandler::checkForCStrMembers(
8221 const analyze_printf::ArgType &AT, const Expr *E) {
8222 using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
8223
8224 MethodSet Results =
8225 CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
8226
8227 for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
8228 MI != ME; ++MI) {
8229 const CXXMethodDecl *Method = *MI;
8230 if (Method->getMinRequiredArguments() == 0 &&
8231 AT.matchesType(S.Context, Method->getReturnType())) {
8232 // FIXME: Suggest parens if the expression needs them.
8233 SourceLocation EndLoc = S.getLocForEndOfToken(E->getEndLoc());
8234 S.Diag(E->getBeginLoc(), diag::note_printf_c_str)
8235 << "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()");
8236 return true;
8237 }
8238 }
8239
8240 return false;
8241}
8242
8243bool
8244CheckPrintfHandler::HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier
8245 &FS,
8246 const char *startSpecifier,
8247 unsigned specifierLen) {
8248 using namespace analyze_format_string;
8249 using namespace analyze_printf;
8250
8251 const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
8252
8253 if (FS.consumesDataArgument()) {
8254 if (atFirstArg) {
8255 atFirstArg = false;
8256 usesPositionalArgs = FS.usesPositionalArg();
8257 }
8258 else if (usesPositionalArgs != FS.usesPositionalArg()) {
8259 HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
8260 startSpecifier, specifierLen);
8261 return false;
8262 }
8263 }
8264
8265 // First check if the field width, precision, and conversion specifier
8266 // have matching data arguments.
8267 if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
8268 startSpecifier, specifierLen)) {
8269 return false;
8270 }
8271
8272 if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
8273 startSpecifier, specifierLen)) {
8274 return false;
8275 }
8276
8277 if (!CS.consumesDataArgument()) {
8278 // FIXME: Technically specifying a precision or field width here
8279 // makes no sense. Worth issuing a warning at some point.
8280 return true;
8281 }
8282
8283 // Consume the argument.
8284 unsigned argIndex = FS.getArgIndex();
8285 if (argIndex < NumDataArgs) {
8286 // The check to see if the argIndex is valid will come later.
8287 // We set the bit here because we may exit early from this
8288 // function if we encounter some other error.
8289 CoveredArgs.set(argIndex);
8290 }
8291
8292 // FreeBSD kernel extensions.
8293 if (CS.getKind() == ConversionSpecifier::FreeBSDbArg ||
8294 CS.getKind() == ConversionSpecifier::FreeBSDDArg) {
8295 // We need at least two arguments.
8296 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1))
8297 return false;
8298
8299 // Claim the second argument.
8300 CoveredArgs.set(argIndex + 1);
8301
8302 // Type check the first argument (int for %b, pointer for %D)
8303 const Expr *Ex = getDataArg(argIndex);
8304 const analyze_printf::ArgType &AT =
8305 (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ?
8306 ArgType(S.Context.IntTy) : ArgType::CPointerTy;
8307 if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType()))
8308 EmitFormatDiagnostic(
8309 S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
8310 << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
8311 << false << Ex->getSourceRange(),
8312 Ex->getBeginLoc(), /*IsStringLocation*/ false,
8313 getSpecifierRange(startSpecifier, specifierLen));
8314
8315 // Type check the second argument (char * for both %b and %D)
8316 Ex = getDataArg(argIndex + 1);
8317 const analyze_printf::ArgType &AT2 = ArgType::CStrTy;
8318 if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType()))
8319 EmitFormatDiagnostic(
8320 S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
8321 << AT2.getRepresentativeTypeName(S.Context) << Ex->getType()
8322 << false << Ex->getSourceRange(),
8323 Ex->getBeginLoc(), /*IsStringLocation*/ false,
8324 getSpecifierRange(startSpecifier, specifierLen));
8325
8326 return true;
8327 }
8328
8329 // Check for using an Objective-C specific conversion specifier
8330 // in a non-ObjC literal.
8331 if (!allowsObjCArg() && CS.isObjCArg()) {
8332 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
8333 specifierLen);
8334 }
8335
8336 // %P can only be used with os_log.
8337 if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) {
8338 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
8339 specifierLen);
8340 }
8341
8342 // %n is not allowed with os_log.
8343 if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) {
8344 EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg),
8345 getLocationOfByte(CS.getStart()),
8346 /*IsStringLocation*/ false,
8347 getSpecifierRange(startSpecifier, specifierLen));
8348
8349 return true;
8350 }
8351
8352 // Only scalars are allowed for os_trace.
8353 if (FSType == Sema::FST_OSTrace &&
8354 (CS.getKind() == ConversionSpecifier::PArg ||
8355 CS.getKind() == ConversionSpecifier::sArg ||
8356 CS.getKind() == ConversionSpecifier::ObjCObjArg)) {
8357 return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
8358 specifierLen);
8359 }
8360
8361 // Check for use of public/private annotation outside of os_log().
8362 if (FSType != Sema::FST_OSLog) {
8363 if (FS.isPublic().isSet()) {
8364 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
8365 << "public",
8366 getLocationOfByte(FS.isPublic().getPosition()),
8367 /*IsStringLocation*/ false,
8368 getSpecifierRange(startSpecifier, specifierLen));
8369 }
8370 if (FS.isPrivate().isSet()) {
8371 EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
8372 << "private",
8373 getLocationOfByte(FS.isPrivate().getPosition()),
8374 /*IsStringLocation*/ false,
8375 getSpecifierRange(startSpecifier, specifierLen));
8376 }
8377 }
8378
8379 // Check for invalid use of field width
8380 if (!FS.hasValidFieldWidth()) {
8381 HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
8382 startSpecifier, specifierLen);
8383 }
8384
8385 // Check for invalid use of precision
8386 if (!FS.hasValidPrecision()) {
8387 HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
8388 startSpecifier, specifierLen);
8389 }
8390
8391 // Precision is mandatory for %P specifier.
8392 if (CS.getKind() == ConversionSpecifier::PArg &&
8393 FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) {
8394 EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision),
8395 getLocationOfByte(startSpecifier),
8396 /*IsStringLocation*/ false,
8397 getSpecifierRange(startSpecifier, specifierLen));
8398 }
8399
8400 // Check each flag does not conflict with any other component.
8401 if (!FS.hasValidThousandsGroupingPrefix())
8402 HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
8403 if (!FS.hasValidLeadingZeros())
8404 HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
8405 if (!FS.hasValidPlusPrefix())
8406 HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
8407 if (!FS.hasValidSpacePrefix())
8408 HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
8409 if (!FS.hasValidAlternativeForm())
8410 HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
8411 if (!FS.hasValidLeftJustified())
8412 HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
8413
8414 // Check that flags are not ignored by another flag
8415 if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
8416 HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
8417 startSpecifier, specifierLen);
8418 if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
8419 HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
8420 startSpecifier, specifierLen);
8421
8422 // Check the length modifier is valid with the given conversion specifier.
8423 if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
8424 S.getLangOpts()))
8425 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
8426 diag::warn_format_nonsensical_length);
8427 else if (!FS.hasStandardLengthModifier())
8428 HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
8429 else if (!FS.hasStandardLengthConversionCombination())
8430 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
8431 diag::warn_format_non_standard_conversion_spec);
8432
8433 if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
8434 HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
8435
8436 // The remaining checks depend on the data arguments.
8437 if (HasVAListArg)
8438 return true;
8439
8440 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
8441 return false;
8442
8443 const Expr *Arg = getDataArg(argIndex);
8444 if (!Arg)
8445 return true;
8446
8447 return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
8448}
8449
8450static bool requiresParensToAddCast(const Expr *E) {
8451 // FIXME: We should have a general way to reason about operator
8452 // precedence and whether parens are actually needed here.
8453 // Take care of a few common cases where they aren't.
8454 const Expr *Inside = E->IgnoreImpCasts();
8455 if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
8456 Inside = POE->getSyntacticForm()->IgnoreImpCasts();
8457
8458 switch (Inside->getStmtClass()) {
8459 case Stmt::ArraySubscriptExprClass:
8460 case Stmt::CallExprClass:
8461 case Stmt::CharacterLiteralClass:
8462 case Stmt::CXXBoolLiteralExprClass:
8463 case Stmt::DeclRefExprClass:
8464 case Stmt::FloatingLiteralClass:
8465 case Stmt::IntegerLiteralClass:
8466 case Stmt::MemberExprClass:
8467 case Stmt::ObjCArrayLiteralClass:
8468 case Stmt::ObjCBoolLiteralExprClass:
8469 case Stmt::ObjCBoxedExprClass:
8470 case Stmt::ObjCDictionaryLiteralClass:
8471 case Stmt::ObjCEncodeExprClass:
8472 case Stmt::ObjCIvarRefExprClass:
8473 case Stmt::ObjCMessageExprClass:
8474 case Stmt::ObjCPropertyRefExprClass:
8475 case Stmt::ObjCStringLiteralClass:
8476 case Stmt::ObjCSubscriptRefExprClass:
8477 case Stmt::ParenExprClass:
8478 case Stmt::StringLiteralClass:
8479 case Stmt::UnaryOperatorClass:
8480 return false;
8481 default:
8482 return true;
8483 }
8484}
8485
8486static std::pair<QualType, StringRef>
8487shouldNotPrintDirectly(const ASTContext &Context,
8488 QualType IntendedTy,
8489 const Expr *E) {
8490 // Use a 'while' to peel off layers of typedefs.
8491 QualType TyTy = IntendedTy;
8492 while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
8493 StringRef Name = UserTy->getDecl()->getName();
8494 QualType CastTy = llvm::StringSwitch<QualType>(Name)
8495 .Case("CFIndex", Context.getNSIntegerType())
8496 .Case("NSInteger", Context.getNSIntegerType())
8497 .Case("NSUInteger", Context.getNSUIntegerType())
8498 .Case("SInt32", Context.IntTy)
8499 .Case("UInt32", Context.UnsignedIntTy)
8500 .Default(QualType());
8501
8502 if (!CastTy.isNull())
8503 return std::make_pair(CastTy, Name);
8504
8505 TyTy = UserTy->desugar();
8506 }
8507
8508 // Strip parens if necessary.
8509 if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
8510 return shouldNotPrintDirectly(Context,
8511 PE->getSubExpr()->getType(),
8512 PE->getSubExpr());
8513
8514 // If this is a conditional expression, then its result type is constructed
8515 // via usual arithmetic conversions and thus there might be no necessary
8516 // typedef sugar there. Recurse to operands to check for NSInteger &
8517 // Co. usage condition.
8518 if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
8519 QualType TrueTy, FalseTy;
8520 StringRef TrueName, FalseName;
8521
8522 std::tie(TrueTy, TrueName) =
8523 shouldNotPrintDirectly(Context,
8524 CO->getTrueExpr()->getType(),
8525 CO->getTrueExpr());
8526 std::tie(FalseTy, FalseName) =
8527 shouldNotPrintDirectly(Context,
8528 CO->getFalseExpr()->getType(),
8529 CO->getFalseExpr());
8530
8531 if (TrueTy == FalseTy)
8532 return std::make_pair(TrueTy, TrueName);
8533 else if (TrueTy.isNull())
8534 return std::make_pair(FalseTy, FalseName);
8535 else if (FalseTy.isNull())
8536 return std::make_pair(TrueTy, TrueName);
8537 }
8538
8539 return std::make_pair(QualType(), StringRef());
8540}
8541
8542/// Return true if \p ICE is an implicit argument promotion of an arithmetic
8543/// type. Bit-field 'promotions' from a higher ranked type to a lower ranked
8544/// type do not count.
8545static bool
8546isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) {
8547 QualType From = ICE->getSubExpr()->getType();
8548 QualType To = ICE->getType();
8549 // It's an integer promotion if the destination type is the promoted
8550 // source type.
8551 if (ICE->getCastKind() == CK_IntegralCast &&
8552 From->isPromotableIntegerType() &&
8553 S.Context.getPromotedIntegerType(From) == To)
8554 return true;
8555 // Look through vector types, since we do default argument promotion for
8556 // those in OpenCL.
8557 if (const auto *VecTy = From->getAs<ExtVectorType>())
8558 From = VecTy->getElementType();
8559 if (const auto *VecTy = To->getAs<ExtVectorType>())
8560 To = VecTy->getElementType();
8561 // It's a floating promotion if the source type is a lower rank.
8562 return ICE->getCastKind() == CK_FloatingCast &&
8563 S.Context.getFloatingTypeOrder(From, To) < 0;
8564}
8565
8566bool
8567CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
8568 const char *StartSpecifier,
8569 unsigned SpecifierLen,
8570 const Expr *E) {
8571 using namespace analyze_format_string;
8572 using namespace analyze_printf;
8573
8574 // Now type check the data expression that matches the
8575 // format specifier.
8576 const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext());
8577 if (!AT.isValid())
8578 return true;
8579
8580 QualType ExprTy = E->getType();
8581 while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
8582 ExprTy = TET->getUnderlyingExpr()->getType();
8583 }
8584
8585 // Diagnose attempts to print a boolean value as a character. Unlike other
8586 // -Wformat diagnostics, this is fine from a type perspective, but it still
8587 // doesn't make sense.
8588 if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::cArg &&
8589 E->isKnownToHaveBooleanValue()) {
8590 const CharSourceRange &CSR =
8591 getSpecifierRange(StartSpecifier, SpecifierLen);
8592 SmallString<4> FSString;
8593 llvm::raw_svector_ostream os(FSString);
8594 FS.toString(os);
8595 EmitFormatDiagnostic(S.PDiag(diag::warn_format_bool_as_character)
8596 << FSString,
8597 E->getExprLoc(), false, CSR);
8598 return true;
8599 }
8600
8601 analyze_printf::ArgType::MatchKind Match = AT.matchesType(S.Context, ExprTy);
8602 if (Match == analyze_printf::ArgType::Match)
8603 return true;
8604
8605 // Look through argument promotions for our error message's reported type.
8606 // This includes the integral and floating promotions, but excludes array
8607 // and function pointer decay (seeing that an argument intended to be a
8608 // string has type 'char [6]' is probably more confusing than 'char *') and
8609 // certain bitfield promotions (bitfields can be 'demoted' to a lesser type).
8610 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
8611 if (isArithmeticArgumentPromotion(S, ICE)) {
8612 E = ICE->getSubExpr();
8613 ExprTy = E->getType();
8614
8615 // Check if we didn't match because of an implicit cast from a 'char'
8616 // or 'short' to an 'int'. This is done because printf is a varargs
8617 // function.
8618 if (ICE->getType() == S.Context.IntTy ||
8619 ICE->getType() == S.Context.UnsignedIntTy) {
8620 // All further checking is done on the subexpression
8621 const analyze_printf::ArgType::MatchKind ImplicitMatch =
8622 AT.matchesType(S.Context, ExprTy);
8623 if (ImplicitMatch == analyze_printf::ArgType::Match)
8624 return true;
8625 if (ImplicitMatch == ArgType::NoMatchPedantic ||
8626 ImplicitMatch == ArgType::NoMatchTypeConfusion)
8627 Match = ImplicitMatch;
8628 }
8629 }
8630 } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
8631 // Special case for 'a', which has type 'int' in C.
8632 // Note, however, that we do /not/ want to treat multibyte constants like
8633 // 'MooV' as characters! This form is deprecated but still exists.
8634 if (ExprTy == S.Context.IntTy)
8635 if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue()))
8636 ExprTy = S.Context.CharTy;
8637 }
8638
8639 // Look through enums to their underlying type.
8640 bool IsEnum = false;
8641 if (auto EnumTy = ExprTy->getAs<EnumType>()) {
8642 ExprTy = EnumTy->getDecl()->getIntegerType();
8643 IsEnum = true;
8644 }
8645
8646 // %C in an Objective-C context prints a unichar, not a wchar_t.
8647 // If the argument is an integer of some kind, believe the %C and suggest
8648 // a cast instead of changing the conversion specifier.
8649 QualType IntendedTy = ExprTy;
8650 if (isObjCContext() &&
8651 FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
8652 if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
8653 !ExprTy->isCharType()) {
8654 // 'unichar' is defined as a typedef of unsigned short, but we should
8655 // prefer using the typedef if it is visible.
8656 IntendedTy = S.Context.UnsignedShortTy;
8657
8658 // While we are here, check if the value is an IntegerLiteral that happens
8659 // to be within the valid range.
8660 if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) {
8661 const llvm::APInt &V = IL->getValue();
8662 if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy))
8663 return true;
8664 }
8665
8666 LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getBeginLoc(),
8667 Sema::LookupOrdinaryName);
8668 if (S.LookupName(Result, S.getCurScope())) {
8669 NamedDecl *ND = Result.getFoundDecl();
8670 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
8671 if (TD->getUnderlyingType() == IntendedTy)
8672 IntendedTy = S.Context.getTypedefType(TD);
8673 }
8674 }
8675 }
8676
8677 // Special-case some of Darwin's platform-independence types by suggesting
8678 // casts to primitive types that are known to be large enough.
8679 bool ShouldNotPrintDirectly = false; StringRef CastTyName;
8680 if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
8681 QualType CastTy;
8682 std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E);
8683 if (!CastTy.isNull()) {
8684 // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int
8685 // (long in ASTContext). Only complain to pedants.
8686 if ((CastTyName == "NSInteger" || CastTyName == "NSUInteger") &&
8687 (AT.isSizeT() || AT.isPtrdiffT()) &&
8688 AT.matchesType(S.Context, CastTy))
8689 Match = ArgType::NoMatchPedantic;
8690 IntendedTy = CastTy;
8691 ShouldNotPrintDirectly = true;
8692 }
8693 }
8694
8695 // We may be able to offer a FixItHint if it is a supported type.
8696 PrintfSpecifier fixedFS = FS;
8697 bool Success =
8698 fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext());
8699
8700 if (Success) {
8701 // Get the fix string from the fixed format specifier
8702 SmallString<16> buf;
8703 llvm::raw_svector_ostream os(buf);
8704 fixedFS.toString(os);
8705
8706 CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
8707
8708 if (IntendedTy == ExprTy && !ShouldNotPrintDirectly) {
8709 unsigned Diag;
8710 switch (Match) {
8711 case ArgType::Match: llvm_unreachable("expected non-matching")::llvm::llvm_unreachable_internal("expected non-matching", "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 8711)
;
8712 case ArgType::NoMatchPedantic:
8713 Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
8714 break;
8715 case ArgType::NoMatchTypeConfusion:
8716 Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
8717 break;
8718 case ArgType::NoMatch:
8719 Diag = diag::warn_format_conversion_argument_type_mismatch;
8720 break;
8721 }
8722
8723 // In this case, the specifier is wrong and should be changed to match
8724 // the argument.
8725 EmitFormatDiagnostic(S.PDiag(Diag)
8726 << AT.getRepresentativeTypeName(S.Context)
8727 << IntendedTy << IsEnum << E->getSourceRange(),
8728 E->getBeginLoc(),
8729 /*IsStringLocation*/ false, SpecRange,
8730 FixItHint::CreateReplacement(SpecRange, os.str()));
8731 } else {
8732 // The canonical type for formatting this value is different from the
8733 // actual type of the expression. (This occurs, for example, with Darwin's
8734 // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
8735 // should be printed as 'long' for 64-bit compatibility.)
8736 // Rather than emitting a normal format/argument mismatch, we want to
8737 // add a cast to the recommended type (and correct the format string
8738 // if necessary).
8739 SmallString<16> CastBuf;
8740 llvm::raw_svector_ostream CastFix(CastBuf);
8741 CastFix << "(";
8742 IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
8743 CastFix << ")";
8744
8745 SmallVector<FixItHint,4> Hints;
8746 if (!AT.matchesType(S.Context, IntendedTy) || ShouldNotPrintDirectly)
8747 Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
8748
8749 if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
8750 // If there's already a cast present, just replace it.
8751 SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
8752 Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
8753
8754 } else if (!requiresParensToAddCast(E)) {
8755 // If the expression has high enough precedence,
8756 // just write the C-style cast.
8757 Hints.push_back(
8758 FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
8759 } else {
8760 // Otherwise, add parens around the expression as well as the cast.
8761 CastFix << "(";
8762 Hints.push_back(
8763 FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
8764
8765 SourceLocation After = S.getLocForEndOfToken(E->getEndLoc());
8766 Hints.push_back(FixItHint::CreateInsertion(After, ")"));
8767 }
8768
8769 if (ShouldNotPrintDirectly) {
8770 // The expression has a type that should not be printed directly.
8771 // We extract the name from the typedef because we don't want to show
8772 // the underlying type in the diagnostic.
8773 StringRef Name;
8774 if (const TypedefType *TypedefTy = dyn_cast<TypedefType>(ExprTy))
8775 Name = TypedefTy->getDecl()->getName();
8776 else
8777 Name = CastTyName;
8778 unsigned Diag = Match == ArgType::NoMatchPedantic
8779 ? diag::warn_format_argument_needs_cast_pedantic
8780 : diag::warn_format_argument_needs_cast;
8781 EmitFormatDiagnostic(S.PDiag(Diag) << Name << IntendedTy << IsEnum
8782 << E->getSourceRange(),
8783 E->getBeginLoc(), /*IsStringLocation=*/false,
8784 SpecRange, Hints);
8785 } else {
8786 // In this case, the expression could be printed using a different
8787 // specifier, but we've decided that the specifier is probably correct
8788 // and we should cast instead. Just use the normal warning message.
8789 EmitFormatDiagnostic(
8790 S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
8791 << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum
8792 << E->getSourceRange(),
8793 E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints);
8794 }
8795 }
8796 } else {
8797 const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
8798 SpecifierLen);
8799 // Since the warning for passing non-POD types to variadic functions
8800 // was deferred until now, we emit a warning for non-POD
8801 // arguments here.
8802 switch (S.isValidVarArgType(ExprTy)) {
8803 case Sema::VAK_Valid:
8804 case Sema::VAK_ValidInCXX11: {
8805 unsigned Diag;
8806 switch (Match) {
8807 case ArgType::Match: llvm_unreachable("expected non-matching")::llvm::llvm_unreachable_internal("expected non-matching", "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 8807)
;
8808 case ArgType::NoMatchPedantic:
8809 Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
8810 break;
8811 case ArgType::NoMatchTypeConfusion:
8812 Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
8813 break;
8814 case ArgType::NoMatch:
8815 Diag = diag::warn_format_conversion_argument_type_mismatch;
8816 break;
8817 }
8818
8819 EmitFormatDiagnostic(
8820 S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy
8821 << IsEnum << CSR << E->getSourceRange(),
8822 E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
8823 break;
8824 }
8825 case Sema::VAK_Undefined:
8826 case Sema::VAK_MSVCUndefined:
8827 EmitFormatDiagnostic(S.PDiag(diag::warn_non_pod_vararg_with_format_string)
8828 << S.getLangOpts().CPlusPlus11 << ExprTy
8829 << CallType
8830 << AT.getRepresentativeTypeName(S.Context) << CSR
8831 << E->getSourceRange(),
8832 E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
8833 checkForCStrMembers(AT, E);
8834 break;
8835
8836 case Sema::VAK_Invalid:
8837 if (ExprTy->isObjCObjectType())
8838 EmitFormatDiagnostic(
8839 S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
8840 << S.getLangOpts().CPlusPlus11 << ExprTy << CallType
8841 << AT.getRepresentativeTypeName(S.Context) << CSR
8842 << E->getSourceRange(),
8843 E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
8844 else
8845 // FIXME: If this is an initializer list, suggest removing the braces
8846 // or inserting a cast to the target type.
8847 S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format)
8848 << isa<InitListExpr>(E) << ExprTy << CallType
8849 << AT.getRepresentativeTypeName(S.Context) << E->getSourceRange();
8850 break;
8851 }
8852
8853 assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&((FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
"format string specifier index out of range") ? static_cast<
void> (0) : __assert_fail ("FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() && \"format string specifier index out of range\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 8854, __PRETTY_FUNCTION__))
8854 "format string specifier index out of range")((FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
"format string specifier index out of range") ? static_cast<
void> (0) : __assert_fail ("FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() && \"format string specifier index out of range\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 8854, __PRETTY_FUNCTION__))
;
8855 CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
8856 }
8857
8858 return true;
8859}
8860
8861//===--- CHECK: Scanf format string checking ------------------------------===//
8862
8863namespace {
8864
8865class CheckScanfHandler : public CheckFormatHandler {
8866public:
8867 CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr,
8868 const Expr *origFormatExpr, Sema::FormatStringType type,
8869 unsigned firstDataArg, unsigned numDataArgs,
8870 const char *beg, bool hasVAListArg,
8871 ArrayRef<const Expr *> Args, unsigned formatIdx,
8872 bool inFunctionCall, Sema::VariadicCallType CallType,
8873 llvm::SmallBitVector &CheckedVarArgs,
8874 UncoveredArgHandler &UncoveredArg)
8875 : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
8876 numDataArgs, beg, hasVAListArg, Args, formatIdx,
8877 inFunctionCall, CallType, CheckedVarArgs,
8878 UncoveredArg) {}
8879
8880 bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
8881 const char *startSpecifier,
8882 unsigned specifierLen) override;
8883
8884 bool HandleInvalidScanfConversionSpecifier(
8885 const analyze_scanf::ScanfSpecifier &FS,
8886 const char *startSpecifier,
8887 unsigned specifierLen) override;
8888
8889 void HandleIncompleteScanList(const char *start, const char *end) override;
8890};
8891
8892} // namespace
8893
8894void CheckScanfHandler::HandleIncompleteScanList(const char *start,
8895 const char *end) {
8896 EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
8897 getLocationOfByte(end), /*IsStringLocation*/true,
8898 getSpecifierRange(start, end - start));
8899}
8900
8901bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
8902 const analyze_scanf::ScanfSpecifier &FS,
8903 const char *startSpecifier,
8904 unsigned specifierLen) {
8905 const analyze_scanf::ScanfConversionSpecifier &CS =
8906 FS.getConversionSpecifier();
8907
8908 return HandleInvalidConversionSpecifier(FS.getArgIndex(),
8909 getLocationOfByte(CS.getStart()),
8910 startSpecifier, specifierLen,
8911 CS.getStart(), CS.getLength());
8912}
8913
8914bool CheckScanfHandler::HandleScanfSpecifier(
8915 const analyze_scanf::ScanfSpecifier &FS,
8916 const char *startSpecifier,
8917 unsigned specifierLen) {
8918 using namespace analyze_scanf;
8919 using namespace analyze_format_string;
8920
8921 const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
8922
8923 // Handle case where '%' and '*' don't consume an argument. These shouldn't
8924 // be used to decide if we are using positional arguments consistently.
8925 if (FS.consumesDataArgument()) {
8926 if (atFirstArg) {
8927 atFirstArg = false;
8928 usesPositionalArgs = FS.usesPositionalArg();
8929 }
8930 else if (usesPositionalArgs != FS.usesPositionalArg()) {
8931 HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
8932 startSpecifier, specifierLen);
8933 return false;
8934 }
8935 }
8936
8937 // Check if the field with is non-zero.
8938 const OptionalAmount &Amt = FS.getFieldWidth();
8939 if (Amt.getHowSpecified() == OptionalAmount::Constant) {
8940 if (Amt.getConstantAmount() == 0) {
8941 const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
8942 Amt.getConstantLength());
8943 EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
8944 getLocationOfByte(Amt.getStart()),
8945 /*IsStringLocation*/true, R,
8946 FixItHint::CreateRemoval(R));
8947 }
8948 }
8949
8950 if (!FS.consumesDataArgument()) {
8951 // FIXME: Technically specifying a precision or field width here
8952 // makes no sense. Worth issuing a warning at some point.
8953 return true;
8954 }
8955
8956 // Consume the argument.
8957 unsigned argIndex = FS.getArgIndex();
8958 if (argIndex < NumDataArgs) {
8959 // The check to see if the argIndex is valid will come later.
8960 // We set the bit here because we may exit early from this
8961 // function if we encounter some other error.
8962 CoveredArgs.set(argIndex);
8963 }
8964
8965 // Check the length modifier is valid with the given conversion specifier.
8966 if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
8967 S.getLangOpts()))
8968 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
8969 diag::warn_format_nonsensical_length);
8970 else if (!FS.hasStandardLengthModifier())
8971 HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
8972 else if (!FS.hasStandardLengthConversionCombination())
8973 HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
8974 diag::warn_format_non_standard_conversion_spec);
8975
8976 if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
8977 HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
8978
8979 // The remaining checks depend on the data arguments.
8980 if (HasVAListArg)
8981 return true;
8982
8983 if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
8984 return false;
8985
8986 // Check that the argument type matches the format specifier.
8987 const Expr *Ex = getDataArg(argIndex);
8988 if (!Ex)
8989 return true;
8990
8991 const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
8992
8993 if (!AT.isValid()) {
8994 return true;
8995 }
8996
8997 analyze_format_string::ArgType::MatchKind Match =
8998 AT.matchesType(S.Context, Ex->getType());
8999 bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic;
9000 if (Match == analyze_format_string::ArgType::Match)
9001 return true;
9002
9003 ScanfSpecifier fixedFS = FS;
9004 bool Success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(),
9005 S.getLangOpts(), S.Context);
9006
9007 unsigned Diag =
9008 Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic
9009 : diag::warn_format_conversion_argument_type_mismatch;
9010
9011 if (Success) {
9012 // Get the fix string from the fixed format specifier.
9013 SmallString<128> buf;
9014 llvm::raw_svector_ostream os(buf);
9015 fixedFS.toString(os);
9016
9017 EmitFormatDiagnostic(
9018 S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context)
9019 << Ex->getType() << false << Ex->getSourceRange(),
9020 Ex->getBeginLoc(),
9021 /*IsStringLocation*/ false,
9022 getSpecifierRange(startSpecifier, specifierLen),
9023 FixItHint::CreateReplacement(
9024 getSpecifierRange(startSpecifier, specifierLen), os.str()));
9025 } else {
9026 EmitFormatDiagnostic(S.PDiag(Diag)
9027 << AT.getRepresentativeTypeName(S.Context)
9028 << Ex->getType() << false << Ex->getSourceRange(),
9029 Ex->getBeginLoc(),
9030 /*IsStringLocation*/ false,
9031 getSpecifierRange(startSpecifier, specifierLen));
9032 }
9033
9034 return true;
9035}
9036
9037static void CheckFormatString(Sema &S, const FormatStringLiteral *FExpr,
9038 const Expr *OrigFormatExpr,
9039 ArrayRef<const Expr *> Args,
9040 bool HasVAListArg, unsigned format_idx,
9041 unsigned firstDataArg,
9042 Sema::FormatStringType Type,
9043 bool inFunctionCall,
9044 Sema::VariadicCallType CallType,
9045 llvm::SmallBitVector &CheckedVarArgs,
9046 UncoveredArgHandler &UncoveredArg,
9047 bool IgnoreStringsWithoutSpecifiers) {
9048 // CHECK: is the format string a wide literal?
9049 if (!FExpr->isAscii() && !FExpr->isUTF8()) {
9050 CheckFormatHandler::EmitFormatDiagnostic(
9051 S, inFunctionCall, Args[format_idx],
9052 S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(),
9053 /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
9054 return;
9055 }
9056
9057 // Str - The format string. NOTE: this is NOT null-terminated!
9058 StringRef StrRef = FExpr->getString();
9059 const char *Str = StrRef.data();
9060 // Account for cases where the string literal is truncated in a declaration.
9061 const ConstantArrayType *T =
9062 S.Context.getAsConstantArrayType(FExpr->getType());
9063 assert(T && "String literal not of constant array type!")((T && "String literal not of constant array type!") ?
static_cast<void> (0) : __assert_fail ("T && \"String literal not of constant array type!\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 9063, __PRETTY_FUNCTION__))
;
9064 size_t TypeSize = T->getSize().getZExtValue();
9065 size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
9066 const unsigned numDataArgs = Args.size() - firstDataArg;
9067
9068 if (IgnoreStringsWithoutSpecifiers &&
9069 !analyze_format_string::parseFormatStringHasFormattingSpecifiers(
9070 Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo()))
9071 return;
9072
9073 // Emit a warning if the string literal is truncated and does not contain an
9074 // embedded null character.
9075 if (TypeSize <= StrRef.size() &&
9076 StrRef.substr(0, TypeSize).find('\0') == StringRef::npos) {
9077 CheckFormatHandler::EmitFormatDiagnostic(
9078 S, inFunctionCall, Args[format_idx],
9079 S.PDiag(diag::warn_printf_format_string_not_null_terminated),
9080 FExpr->getBeginLoc(),
9081 /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange());
9082 return;
9083 }
9084
9085 // CHECK: empty format string?
9086 if (StrLen == 0 && numDataArgs > 0) {
9087 CheckFormatHandler::EmitFormatDiagnostic(
9088 S, inFunctionCall, Args[format_idx],
9089 S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(),
9090 /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
9091 return;
9092 }
9093
9094 if (Type == Sema::FST_Printf || Type == Sema::FST_NSString ||
9095 Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSLog ||
9096 Type == Sema::FST_OSTrace) {
9097 CheckPrintfHandler H(
9098 S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs,
9099 (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str,
9100 HasVAListArg, Args, format_idx, inFunctionCall, CallType,
9101 CheckedVarArgs, UncoveredArg);
9102
9103 if (!analyze_format_string::ParsePrintfString(H, Str, Str + StrLen,
9104 S.getLangOpts(),
9105 S.Context.getTargetInfo(),
9106 Type == Sema::FST_FreeBSDKPrintf))
9107 H.DoneProcessing();
9108 } else if (Type == Sema::FST_Scanf) {
9109 CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg,
9110 numDataArgs, Str, HasVAListArg, Args, format_idx,
9111 inFunctionCall, CallType, CheckedVarArgs, UncoveredArg);
9112
9113 if (!analyze_format_string::ParseScanfString(H, Str, Str + StrLen,
9114 S.getLangOpts(),
9115 S.Context.getTargetInfo()))
9116 H.DoneProcessing();
9117 } // TODO: handle other formats
9118}
9119
9120bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) {
9121 // Str - The format string. NOTE: this is NOT null-terminated!
9122 StringRef StrRef = FExpr->getString();
9123 const char *Str = StrRef.data();
9124 // Account for cases where the string literal is truncated in a declaration.
9125 const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
9126 assert(T && "String literal not of constant array type!")((T && "String literal not of constant array type!") ?
static_cast<void> (0) : __assert_fail ("T && \"String literal not of constant array type!\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 9126, __PRETTY_FUNCTION__))
;
9127 size_t TypeSize = T->getSize().getZExtValue();
9128 size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
9129 return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen,
9130 getLangOpts(),
9131 Context.getTargetInfo());
9132}
9133
9134//===--- CHECK: Warn on use of wrong absolute value function. -------------===//
9135
9136// Returns the related absolute value function that is larger, of 0 if one
9137// does not exist.
9138static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) {
9139 switch (AbsFunction) {
9140 default:
9141 return 0;
9142
9143 case Builtin::BI__builtin_abs:
9144 return Builtin::BI__builtin_labs;
9145 case Builtin::BI__builtin_labs:
9146 return Builtin::BI__builtin_llabs;
9147 case Builtin::BI__builtin_llabs:
9148 return 0;
9149
9150 case Builtin::BI__builtin_fabsf:
9151 return Builtin::BI__builtin_fabs;
9152 case Builtin::BI__builtin_fabs:
9153 return Builtin::BI__builtin_fabsl;
9154 case Builtin::BI__builtin_fabsl:
9155 return 0;
9156
9157 case Builtin::BI__builtin_cabsf:
9158 return Builtin::BI__builtin_cabs;
9159 case Builtin::BI__builtin_cabs:
9160 return Builtin::BI__builtin_cabsl;
9161 case Builtin::BI__builtin_cabsl:
9162 return 0;
9163
9164 case Builtin::BIabs:
9165 return Builtin::BIlabs;
9166 case Builtin::BIlabs:
9167 return Builtin::BIllabs;
9168 case Builtin::BIllabs:
9169 return 0;
9170
9171 case Builtin::BIfabsf:
9172 return Builtin::BIfabs;
9173 case Builtin::BIfabs:
9174 return Builtin::BIfabsl;
9175 case Builtin::BIfabsl:
9176 return 0;
9177
9178 case Builtin::BIcabsf:
9179 return Builtin::BIcabs;
9180 case Builtin::BIcabs:
9181 return Builtin::BIcabsl;
9182 case Builtin::BIcabsl:
9183 return 0;
9184 }
9185}
9186
9187// Returns the argument type of the absolute value function.
9188static QualType getAbsoluteValueArgumentType(ASTContext &Context,
9189 unsigned AbsType) {
9190 if (AbsType == 0)
9191 return QualType();
9192
9193 ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
9194 QualType BuiltinType = Context.GetBuiltinType(AbsType, Error);
9195 if (Error != ASTContext::GE_None)
9196 return QualType();
9197
9198 const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>();
9199 if (!FT)
9200 return QualType();
9201
9202 if (FT->getNumParams() != 1)
9203 return QualType();
9204
9205 return FT->getParamType(0);
9206}
9207
9208// Returns the best absolute value function, or zero, based on type and
9209// current absolute value function.
9210static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType,
9211 unsigned AbsFunctionKind) {
9212 unsigned BestKind = 0;
9213 uint64_t ArgSize = Context.getTypeSize(ArgType);
9214 for (unsigned Kind = AbsFunctionKind; Kind != 0;
9215 Kind = getLargerAbsoluteValueFunction(Kind)) {
9216 QualType ParamType = getAbsoluteValueArgumentType(Context, Kind);
9217 if (Context.getTypeSize(ParamType) >= ArgSize) {
9218 if (BestKind == 0)
9219 BestKind = Kind;
9220 else if (Context.hasSameType(ParamType, ArgType)) {
9221 BestKind = Kind;
9222 break;
9223 }
9224 }
9225 }
9226 return BestKind;
9227}
9228
9229enum AbsoluteValueKind {
9230 AVK_Integer,
9231 AVK_Floating,
9232 AVK_Complex
9233};
9234
9235static AbsoluteValueKind getAbsoluteValueKind(QualType T) {
9236 if (T->isIntegralOrEnumerationType())
9237 return AVK_Integer;
9238 if (T->isRealFloatingType())
9239 return AVK_Floating;
9240 if (T->isAnyComplexType())
9241 return AVK_Complex;
9242
9243 llvm_unreachable("Type not integer, floating, or complex")::llvm::llvm_unreachable_internal("Type not integer, floating, or complex"
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 9243)
;
9244}
9245
9246// Changes the absolute value function to a different type. Preserves whether
9247// the function is a builtin.
9248static unsigned changeAbsFunction(unsigned AbsKind,
9249 AbsoluteValueKind ValueKind) {
9250 switch (ValueKind) {
9251 case AVK_Integer:
9252 switch (AbsKind) {
9253 default:
9254 return 0;
9255 case Builtin::BI__builtin_fabsf:
9256 case Builtin::BI__builtin_fabs:
9257 case Builtin::BI__builtin_fabsl:
9258 case Builtin::BI__builtin_cabsf:
9259 case Builtin::BI__builtin_cabs:
9260 case Builtin::BI__builtin_cabsl:
9261 return Builtin::BI__builtin_abs;
9262 case Builtin::BIfabsf:
9263 case Builtin::BIfabs:
9264 case Builtin::BIfabsl:
9265 case Builtin::BIcabsf:
9266 case Builtin::BIcabs:
9267 case Builtin::BIcabsl:
9268 return Builtin::BIabs;
9269 }
9270 case AVK_Floating:
9271 switch (AbsKind) {
9272 default:
9273 return 0;
9274 case Builtin::BI__builtin_abs:
9275 case Builtin::BI__builtin_labs:
9276 case Builtin::BI__builtin_llabs:
9277 case Builtin::BI__builtin_cabsf:
9278 case Builtin::BI__builtin_cabs:
9279 case Builtin::BI__builtin_cabsl:
9280 return Builtin::BI__builtin_fabsf;
9281 case Builtin::BIabs:
9282 case Builtin::BIlabs:
9283 case Builtin::BIllabs:
9284 case Builtin::BIcabsf:
9285 case Builtin::BIcabs:
9286 case Builtin::BIcabsl:
9287 return Builtin::BIfabsf;
9288 }
9289 case AVK_Complex:
9290 switch (AbsKind) {
9291 default:
9292 return 0;
9293 case Builtin::BI__builtin_abs:
9294 case Builtin::BI__builtin_labs:
9295 case Builtin::BI__builtin_llabs:
9296 case Builtin::BI__builtin_fabsf:
9297 case Builtin::BI__builtin_fabs:
9298 case Builtin::BI__builtin_fabsl:
9299 return Builtin::BI__builtin_cabsf;
9300 case Builtin::BIabs:
9301 case Builtin::BIlabs:
9302 case Builtin::BIllabs:
9303 case Builtin::BIfabsf:
9304 case Builtin::BIfabs:
9305 case Builtin::BIfabsl:
9306 return Builtin::BIcabsf;
9307 }
9308 }
9309 llvm_unreachable("Unable to convert function")::llvm::llvm_unreachable_internal("Unable to convert function"
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 9309)
;
9310}
9311
9312static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) {
9313 const IdentifierInfo *FnInfo = FDecl->getIdentifier();
9314 if (!FnInfo)
9315 return 0;
9316
9317 switch (FDecl->getBuiltinID()) {
9318 default:
9319 return 0;
9320 case Builtin::BI__builtin_abs:
9321 case Builtin::BI__builtin_fabs:
9322 case Builtin::BI__builtin_fabsf:
9323 case Builtin::BI__builtin_fabsl:
9324 case Builtin::BI__builtin_labs:
9325 case Builtin::BI__builtin_llabs:
9326 case Builtin::BI__builtin_cabs:
9327 case Builtin::BI__builtin_cabsf:
9328 case Builtin::BI__builtin_cabsl:
9329 case Builtin::BIabs:
9330 case Builtin::BIlabs:
9331 case Builtin::BIllabs:
9332 case Builtin::BIfabs:
9333 case Builtin::BIfabsf:
9334 case Builtin::BIfabsl:
9335 case Builtin::BIcabs:
9336 case Builtin::BIcabsf:
9337 case Builtin::BIcabsl:
9338 return FDecl->getBuiltinID();
9339 }
9340 llvm_unreachable("Unknown Builtin type")::llvm::llvm_unreachable_internal("Unknown Builtin type", "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 9340)
;
9341}
9342
9343// If the replacement is valid, emit a note with replacement function.
9344// Additionally, suggest including the proper header if not already included.
9345static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range,
9346 unsigned AbsKind, QualType ArgType) {
9347 bool EmitHeaderHint = true;
9348 const char *HeaderName = nullptr;
9349 const char *FunctionName = nullptr;
9350 if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) {
9351 FunctionName = "std::abs";
9352 if (ArgType->isIntegralOrEnumerationType()) {
9353 HeaderName = "cstdlib";
9354 } else if (ArgType->isRealFloatingType()) {
9355 HeaderName = "cmath";
9356 } else {
9357 llvm_unreachable("Invalid Type")::llvm::llvm_unreachable_internal("Invalid Type", "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 9357)
;
9358 }
9359
9360 // Lookup all std::abs
9361 if (NamespaceDecl *Std = S.getStdNamespace()) {
9362 LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName);
9363 R.suppressDiagnostics();
9364 S.LookupQualifiedName(R, Std);
9365
9366 for (const auto *I : R) {
9367 const FunctionDecl *FDecl = nullptr;
9368 if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) {
9369 FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl());
9370 } else {
9371 FDecl = dyn_cast<FunctionDecl>(I);
9372 }
9373 if (!FDecl)
9374 continue;
9375
9376 // Found std::abs(), check that they are the right ones.
9377 if (FDecl->getNumParams() != 1)
9378 continue;
9379
9380 // Check that the parameter type can handle the argument.
9381 QualType ParamType = FDecl->getParamDecl(0)->getType();
9382 if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) &&
9383 S.Context.getTypeSize(ArgType) <=
9384 S.Context.getTypeSize(ParamType)) {
9385 // Found a function, don't need the header hint.
9386 EmitHeaderHint = false;
9387 break;
9388 }
9389 }
9390 }
9391 } else {
9392 FunctionName = S.Context.BuiltinInfo.getName(AbsKind);
9393 HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind);
9394
9395 if (HeaderName) {
9396 DeclarationName DN(&S.Context.Idents.get(FunctionName));
9397 LookupResult R(S, DN, Loc, Sema::LookupAnyName);
9398 R.suppressDiagnostics();
9399 S.LookupName(R, S.getCurScope());
9400
9401 if (R.isSingleResult()) {
9402 FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
9403 if (FD && FD->getBuiltinID() == AbsKind) {
9404 EmitHeaderHint = false;
9405 } else {
9406 return;
9407 }
9408 } else if (!R.empty()) {
9409 return;
9410 }
9411 }
9412 }
9413
9414 S.Diag(Loc, diag::note_replace_abs_function)
9415 << FunctionName << FixItHint::CreateReplacement(Range, FunctionName);
9416
9417 if (!HeaderName)
9418 return;
9419
9420 if (!EmitHeaderHint)
9421 return;
9422
9423 S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName
9424 << FunctionName;
9425}
9426
9427template <std::size_t StrLen>
9428static bool IsStdFunction(const FunctionDecl *FDecl,
9429 const char (&Str)[StrLen]) {
9430 if (!FDecl)
9431 return false;
9432 if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str))
9433 return false;
9434 if (!FDecl->isInStdNamespace())
9435 return false;
9436
9437 return true;
9438}
9439
9440// Warn when using the wrong abs() function.
9441void Sema::CheckAbsoluteValueFunction(const CallExpr *Call,
9442 const FunctionDecl *FDecl) {
9443 if (Call->getNumArgs() != 1)
9444 return;
9445
9446 unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl);
9447 bool IsStdAbs = IsStdFunction(FDecl, "abs");
9448 if (AbsKind == 0 && !IsStdAbs)
9449 return;
9450
9451 QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType();
9452 QualType ParamType = Call->getArg(0)->getType();
9453
9454 // Unsigned types cannot be negative. Suggest removing the absolute value
9455 // function call.
9456 if (ArgType->isUnsignedIntegerType()) {
9457 const char *FunctionName =
9458 IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind);
9459 Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType;
9460 Diag(Call->getExprLoc(), diag::note_remove_abs)
9461 << FunctionName
9462 << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange());
9463 return;
9464 }
9465
9466 // Taking the absolute value of a pointer is very suspicious, they probably
9467 // wanted to index into an array, dereference a pointer, call a function, etc.
9468 if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) {
9469 unsigned DiagType = 0;
9470 if (ArgType->isFunctionType())
9471 DiagType = 1;
9472 else if (ArgType->isArrayType())
9473 DiagType = 2;
9474
9475 Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType;
9476 return;
9477 }
9478
9479 // std::abs has overloads which prevent most of the absolute value problems
9480 // from occurring.
9481 if (IsStdAbs)
9482 return;
9483
9484 AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType);
9485 AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType);
9486
9487 // The argument and parameter are the same kind. Check if they are the right
9488 // size.
9489 if (ArgValueKind == ParamValueKind) {
9490 if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType))
9491 return;
9492
9493 unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind);
9494 Diag(Call->getExprLoc(), diag::warn_abs_too_small)
9495 << FDecl << ArgType << ParamType;
9496
9497 if (NewAbsKind == 0)
9498 return;
9499
9500 emitReplacement(*this, Call->getExprLoc(),
9501 Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
9502 return;
9503 }
9504
9505 // ArgValueKind != ParamValueKind
9506 // The wrong type of absolute value function was used. Attempt to find the
9507 // proper one.
9508 unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind);
9509 NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind);
9510 if (NewAbsKind == 0)
9511 return;
9512
9513 Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type)
9514 << FDecl << ParamValueKind << ArgValueKind;
9515
9516 emitReplacement(*this, Call->getExprLoc(),
9517 Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
9518}
9519
9520//===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===//
9521void Sema::CheckMaxUnsignedZero(const CallExpr *Call,
9522 const FunctionDecl *FDecl) {
9523 if (!Call || !FDecl) return;
9524
9525 // Ignore template specializations and macros.
9526 if (inTemplateInstantiation()) return;
9527 if (Call->getExprLoc().isMacroID()) return;
9528
9529 // Only care about the one template argument, two function parameter std::max
9530 if (Call->getNumArgs() != 2) return;
9531 if (!IsStdFunction(FDecl, "max")) return;
9532 const auto * ArgList = FDecl->getTemplateSpecializationArgs();
9533 if (!ArgList) return;
9534 if (ArgList->size() != 1) return;
9535
9536 // Check that template type argument is unsigned integer.
9537 const auto& TA = ArgList->get(0);
9538 if (TA.getKind() != TemplateArgument::Type) return;
9539 QualType ArgType = TA.getAsType();
9540 if (!ArgType->isUnsignedIntegerType()) return;
9541
9542 // See if either argument is a literal zero.
9543 auto IsLiteralZeroArg = [](const Expr* E) -> bool {
9544 const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E);
9545 if (!MTE) return false;
9546 const auto *Num = dyn_cast<IntegerLiteral>(MTE->getSubExpr());
9547 if (!Num) return false;
9548 if (Num->getValue() != 0) return false;
9549 return true;
9550 };
9551
9552 const Expr *FirstArg = Call->getArg(0);
9553 const Expr *SecondArg = Call->getArg(1);
9554 const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg);
9555 const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg);
9556
9557 // Only warn when exactly one argument is zero.
9558 if (IsFirstArgZero == IsSecondArgZero) return;
9559
9560 SourceRange FirstRange = FirstArg->getSourceRange();
9561 SourceRange SecondRange = SecondArg->getSourceRange();
9562
9563 SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange;
9564
9565 Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero)
9566 << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange;
9567
9568 // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)".
9569 SourceRange RemovalRange;
9570 if (IsFirstArgZero) {
9571 RemovalRange = SourceRange(FirstRange.getBegin(),
9572 SecondRange.getBegin().getLocWithOffset(-1));
9573 } else {
9574 RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()),
9575 SecondRange.getEnd());
9576 }
9577
9578 Diag(Call->getExprLoc(), diag::note_remove_max_call)
9579 << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange())
9580 << FixItHint::CreateRemoval(RemovalRange);
9581}
9582
9583//===--- CHECK: Standard memory functions ---------------------------------===//
9584
9585/// Takes the expression passed to the size_t parameter of functions
9586/// such as memcmp, strncat, etc and warns if it's a comparison.
9587///
9588/// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`.
9589static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E,
9590 IdentifierInfo *FnName,
9591 SourceLocation FnLoc,
9592 SourceLocation RParenLoc) {
9593 const BinaryOperator *Size = dyn_cast<BinaryOperator>(E);
9594 if (!Size)
9595 return false;
9596
9597 // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||:
9598 if (!Size->isComparisonOp() && !Size->isLogicalOp())
9599 return false;
9600
9601 SourceRange SizeRange = Size->getSourceRange();
9602 S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison)
9603 << SizeRange << FnName;
9604 S.Diag(FnLoc, diag::note_memsize_comparison_paren)
9605 << FnName
9606 << FixItHint::CreateInsertion(
9607 S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")")
9608 << FixItHint::CreateRemoval(RParenLoc);
9609 S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence)
9610 << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(")
9611 << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()),
9612 ")");
9613
9614 return true;
9615}
9616
9617/// Determine whether the given type is or contains a dynamic class type
9618/// (e.g., whether it has a vtable).
9619static const CXXRecordDecl *getContainedDynamicClass(QualType T,
9620 bool &IsContained) {
9621 // Look through array types while ignoring qualifiers.
9622 const Type *Ty = T->getBaseElementTypeUnsafe();
9623 IsContained = false;
9624
9625 const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
9626 RD = RD ? RD->getDefinition() : nullptr;
9627 if (!RD || RD->isInvalidDecl())
9628 return nullptr;
9629
9630 if (RD->isDynamicClass())
9631 return RD;
9632
9633 // Check all the fields. If any bases were dynamic, the class is dynamic.
9634 // It's impossible for a class to transitively contain itself by value, so
9635 // infinite recursion is impossible.
9636 for (auto *FD : RD->fields()) {
9637 bool SubContained;
9638 if (const CXXRecordDecl *ContainedRD =
9639 getContainedDynamicClass(FD->getType(), SubContained)) {
9640 IsContained = true;
9641 return ContainedRD;
9642 }
9643 }
9644
9645 return nullptr;
9646}
9647
9648static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) {
9649 if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(E))
9650 if (Unary->getKind() == UETT_SizeOf)
9651 return Unary;
9652 return nullptr;
9653}
9654
9655/// If E is a sizeof expression, returns its argument expression,
9656/// otherwise returns NULL.
9657static const Expr *getSizeOfExprArg(const Expr *E) {
9658 if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
9659 if (!SizeOf->isArgumentType())
9660 return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
9661 return nullptr;
9662}
9663
9664/// If E is a sizeof expression, returns its argument type.
9665static QualType getSizeOfArgType(const Expr *E) {
9666 if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
9667 return SizeOf->getTypeOfArgument();
9668 return QualType();
9669}
9670
9671namespace {
9672
9673struct SearchNonTrivialToInitializeField
9674 : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> {
9675 using Super =
9676 DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>;
9677
9678 SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {}
9679
9680 void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT,
9681 SourceLocation SL) {
9682 if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
9683 asDerived().visitArray(PDIK, AT, SL);
9684 return;
9685 }
9686
9687 Super::visitWithKind(PDIK, FT, SL);
9688 }
9689
9690 void visitARCStrong(QualType FT, SourceLocation SL) {
9691 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
9692 }
9693 void visitARCWeak(QualType FT, SourceLocation SL) {
9694 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
9695 }
9696 void visitStruct(QualType FT, SourceLocation SL) {
9697 for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
9698 visit(FD->getType(), FD->getLocation());
9699 }
9700 void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK,
9701 const ArrayType *AT, SourceLocation SL) {
9702 visit(getContext().getBaseElementType(AT), SL);
9703 }
9704 void visitTrivial(QualType FT, SourceLocation SL) {}
9705
9706 static void diag(QualType RT, const Expr *E, Sema &S) {
9707 SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation());
9708 }
9709
9710 ASTContext &getContext() { return S.getASTContext(); }
9711
9712 const Expr *E;
9713 Sema &S;
9714};
9715
9716struct SearchNonTrivialToCopyField
9717 : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> {
9718 using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>;
9719
9720 SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {}
9721
9722 void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT,
9723 SourceLocation SL) {
9724 if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
9725 asDerived().visitArray(PCK, AT, SL);
9726 return;
9727 }
9728
9729 Super::visitWithKind(PCK, FT, SL);
9730 }
9731
9732 void visitARCStrong(QualType FT, SourceLocation SL) {
9733 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
9734 }
9735 void visitARCWeak(QualType FT, SourceLocation SL) {
9736 S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
9737 }
9738 void visitStruct(QualType FT, SourceLocation SL) {
9739 for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
9740 visit(FD->getType(), FD->getLocation());
9741 }
9742 void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT,
9743 SourceLocation SL) {
9744 visit(getContext().getBaseElementType(AT), SL);
9745 }
9746 void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT,
9747 SourceLocation SL) {}
9748 void visitTrivial(QualType FT, SourceLocation SL) {}
9749 void visitVolatileTrivial(QualType FT, SourceLocation SL) {}
9750
9751 static void diag(QualType RT, const Expr *E, Sema &S) {
9752 SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation());
9753 }
9754
9755 ASTContext &getContext() { return S.getASTContext(); }
9756
9757 const Expr *E;
9758 Sema &S;
9759};
9760
9761}
9762
9763/// Detect if \c SizeofExpr is likely to calculate the sizeof an object.
9764static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) {
9765 SizeofExpr = SizeofExpr->IgnoreParenImpCasts();
9766
9767 if (const auto *BO = dyn_cast<BinaryOperator>(SizeofExpr)) {
9768 if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add)
9769 return false;
9770
9771 return doesExprLikelyComputeSize(BO->getLHS()) ||
9772 doesExprLikelyComputeSize(BO->getRHS());
9773 }
9774
9775 return getAsSizeOfExpr(SizeofExpr) != nullptr;
9776}
9777
9778/// Check if the ArgLoc originated from a macro passed to the call at CallLoc.
9779///
9780/// \code
9781/// #define MACRO 0
9782/// foo(MACRO);
9783/// foo(0);
9784/// \endcode
9785///
9786/// This should return true for the first call to foo, but not for the second
9787/// (regardless of whether foo is a macro or function).
9788static bool isArgumentExpandedFromMacro(SourceManager &SM,
9789 SourceLocation CallLoc,
9790 SourceLocation ArgLoc) {
9791 if (!CallLoc.isMacroID())
9792 return SM.getFileID(CallLoc) != SM.getFileID(ArgLoc);
9793
9794 return SM.getFileID(SM.getImmediateMacroCallerLoc(CallLoc)) !=
9795 SM.getFileID(SM.getImmediateMacroCallerLoc(ArgLoc));
9796}
9797
9798/// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the
9799/// last two arguments transposed.
9800static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) {
9801 if (BId != Builtin::BImemset && BId != Builtin::BIbzero)
9802 return;
9803
9804 const Expr *SizeArg =
9805 Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts();
9806
9807 auto isLiteralZero = [](const Expr *E) {
9808 return isa<IntegerLiteral>(E) && cast<IntegerLiteral>(E)->getValue() == 0;
9809 };
9810
9811 // If we're memsetting or bzeroing 0 bytes, then this is likely an error.
9812 SourceLocation CallLoc = Call->getRParenLoc();
9813 SourceManager &SM = S.getSourceManager();
9814 if (isLiteralZero(SizeArg) &&
9815 !isArgumentExpandedFromMacro(SM, CallLoc, SizeArg->getExprLoc())) {
9816
9817 SourceLocation DiagLoc = SizeArg->getExprLoc();
9818
9819 // Some platforms #define bzero to __builtin_memset. See if this is the
9820 // case, and if so, emit a better diagnostic.
9821 if (BId == Builtin::BIbzero ||
9822 (CallLoc.isMacroID() && Lexer::getImmediateMacroName(
9823 CallLoc, SM, S.getLangOpts()) == "bzero")) {
9824 S.Diag(DiagLoc, diag::warn_suspicious_bzero_size);
9825 S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence);
9826 } else if (!isLiteralZero(Call->getArg(1)->IgnoreImpCasts())) {
9827 S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0;
9828 S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0;
9829 }
9830 return;
9831 }
9832
9833 // If the second argument to a memset is a sizeof expression and the third
9834 // isn't, this is also likely an error. This should catch
9835 // 'memset(buf, sizeof(buf), 0xff)'.
9836 if (BId == Builtin::BImemset &&
9837 doesExprLikelyComputeSize(Call->getArg(1)) &&
9838 !doesExprLikelyComputeSize(Call->getArg(2))) {
9839 SourceLocation DiagLoc = Call->getArg(1)->getExprLoc();
9840 S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1;
9841 S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1;
9842 return;
9843 }
9844}
9845
9846/// Check for dangerous or invalid arguments to memset().
9847///
9848/// This issues warnings on known problematic, dangerous or unspecified
9849/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
9850/// function calls.
9851///
9852/// \param Call The call expression to diagnose.
9853void Sema::CheckMemaccessArguments(const CallExpr *Call,
9854 unsigned BId,
9855 IdentifierInfo *FnName) {
9856 assert(BId != 0)((BId != 0) ? static_cast<void> (0) : __assert_fail ("BId != 0"
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 9856, __PRETTY_FUNCTION__))
;
9857
9858 // It is possible to have a non-standard definition of memset. Validate
9859 // we have enough arguments, and if not, abort further checking.
9860 unsigned ExpectedNumArgs =
9861 (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3);
9862 if (Call->getNumArgs() < ExpectedNumArgs)
9863 return;
9864
9865 unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero ||
9866 BId == Builtin::BIstrndup ? 1 : 2);
9867 unsigned LenArg =
9868 (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2);
9869 const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
9870
9871 if (CheckMemorySizeofForComparison(*this, LenExpr, FnName,
9872 Call->getBeginLoc(), Call->getRParenLoc()))
9873 return;
9874
9875 // Catch cases like 'memset(buf, sizeof(buf), 0)'.
9876 CheckMemaccessSize(*this, BId, Call);
9877
9878 // We have special checking when the length is a sizeof expression.
9879 QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
9880 const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
9881 llvm::FoldingSetNodeID SizeOfArgID;
9882
9883 // Although widely used, 'bzero' is not a standard function. Be more strict
9884 // with the argument types before allowing diagnostics and only allow the
9885 // form bzero(ptr, sizeof(...)).
9886 QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType();
9887 if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>())
9888 return;
9889
9890 for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
9891 const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
9892 SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
9893
9894 QualType DestTy = Dest->getType();
9895 QualType PointeeTy;
9896 if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
9897 PointeeTy = DestPtrTy->getPointeeType();
9898
9899 // Never warn about void type pointers. This can be used to suppress
9900 // false positives.
9901 if (PointeeTy->isVoidType())
9902 continue;
9903
9904 // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
9905 // actually comparing the expressions for equality. Because computing the
9906 // expression IDs can be expensive, we only do this if the diagnostic is
9907 // enabled.
9908 if (SizeOfArg &&
9909 !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess,
9910 SizeOfArg->getExprLoc())) {
9911 // We only compute IDs for expressions if the warning is enabled, and
9912 // cache the sizeof arg's ID.
9913 if (SizeOfArgID == llvm::FoldingSetNodeID())
9914 SizeOfArg->Profile(SizeOfArgID, Context, true);
9915 llvm::FoldingSetNodeID DestID;
9916 Dest->Profile(DestID, Context, true);
9917 if (DestID == SizeOfArgID) {
9918 // TODO: For strncpy() and friends, this could suggest sizeof(dst)
9919 // over sizeof(src) as well.
9920 unsigned ActionIdx = 0; // Default is to suggest dereferencing.
9921 StringRef ReadableName = FnName->getName();
9922
9923 if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
9924 if (UnaryOp->getOpcode() == UO_AddrOf)
9925 ActionIdx = 1; // If its an address-of operator, just remove it.
9926 if (!PointeeTy->isIncompleteType() &&
9927 (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
9928 ActionIdx = 2; // If the pointee's size is sizeof(char),
9929 // suggest an explicit length.
9930
9931 // If the function is defined as a builtin macro, do not show macro
9932 // expansion.
9933 SourceLocation SL = SizeOfArg->getExprLoc();
9934 SourceRange DSR = Dest->getSourceRange();
9935 SourceRange SSR = SizeOfArg->getSourceRange();
9936 SourceManager &SM = getSourceManager();
9937
9938 if (SM.isMacroArgExpansion(SL)) {
9939 ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
9940 SL = SM.getSpellingLoc(SL);
9941 DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
9942 SM.getSpellingLoc(DSR.getEnd()));
9943 SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
9944 SM.getSpellingLoc(SSR.getEnd()));
9945 }
9946
9947 DiagRuntimeBehavior(SL, SizeOfArg,
9948 PDiag(diag::warn_sizeof_pointer_expr_memaccess)
9949 << ReadableName
9950 << PointeeTy
9951 << DestTy
9952 << DSR
9953 << SSR);
9954 DiagRuntimeBehavior(SL, SizeOfArg,
9955 PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
9956 << ActionIdx
9957 << SSR);
9958
9959 break;
9960 }
9961 }
9962
9963 // Also check for cases where the sizeof argument is the exact same
9964 // type as the memory argument, and where it points to a user-defined
9965 // record type.
9966 if (SizeOfArgTy != QualType()) {
9967 if (PointeeTy->isRecordType() &&
9968 Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
9969 DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
9970 PDiag(diag::warn_sizeof_pointer_type_memaccess)
9971 << FnName << SizeOfArgTy << ArgIdx
9972 << PointeeTy << Dest->getSourceRange()
9973 << LenExpr->getSourceRange());
9974 break;
9975 }
9976 }
9977 } else if (DestTy->isArrayType()) {
9978 PointeeTy = DestTy;
9979 }
9980
9981 if (PointeeTy == QualType())
9982 continue;
9983
9984 // Always complain about dynamic classes.
9985 bool IsContained;
9986 if (const CXXRecordDecl *ContainedRD =
9987 getContainedDynamicClass(PointeeTy, IsContained)) {
9988
9989 unsigned OperationType = 0;
9990 const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp;
9991 // "overwritten" if we're warning about the destination for any call
9992 // but memcmp; otherwise a verb appropriate to the call.
9993 if (ArgIdx != 0 || IsCmp) {
9994 if (BId == Builtin::BImemcpy)
9995 OperationType = 1;
9996 else if(BId == Builtin::BImemmove)
9997 OperationType = 2;
9998 else if (IsCmp)
9999 OperationType = 3;
10000 }
10001
10002 DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
10003 PDiag(diag::warn_dyn_class_memaccess)
10004 << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName
10005 << IsContained << ContainedRD << OperationType
10006 << Call->getCallee()->getSourceRange());
10007 } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
10008 BId != Builtin::BImemset)
10009 DiagRuntimeBehavior(
10010 Dest->getExprLoc(), Dest,
10011 PDiag(diag::warn_arc_object_memaccess)
10012 << ArgIdx << FnName << PointeeTy
10013 << Call->getCallee()->getSourceRange());
10014 else if (const auto *RT = PointeeTy->getAs<RecordType>()) {
10015 if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) &&
10016 RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) {
10017 DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
10018 PDiag(diag::warn_cstruct_memaccess)
10019 << ArgIdx << FnName << PointeeTy << 0);
10020 SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this);
10021 } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) &&
10022 RT->getDecl()->isNonTrivialToPrimitiveCopy()) {
10023 DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
10024 PDiag(diag::warn_cstruct_memaccess)
10025 << ArgIdx << FnName << PointeeTy << 1);
10026 SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this);
10027 } else {
10028 continue;
10029 }
10030 } else
10031 continue;
10032
10033 DiagRuntimeBehavior(
10034 Dest->getExprLoc(), Dest,
10035 PDiag(diag::note_bad_memaccess_silence)
10036 << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
10037 break;
10038 }
10039}
10040
10041// A little helper routine: ignore addition and subtraction of integer literals.
10042// This intentionally does not ignore all integer constant expressions because
10043// we don't want to remove sizeof().
10044static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
10045 Ex = Ex->IgnoreParenCasts();
10046
10047 while (true) {
10048 const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
10049 if (!BO || !BO->isAdditiveOp())
10050 break;
10051
10052 const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
10053 const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
10054
10055 if (isa<IntegerLiteral>(RHS))
10056 Ex = LHS;
10057 else if (isa<IntegerLiteral>(LHS))
10058 Ex = RHS;
10059 else
10060 break;
10061 }
10062
10063 return Ex;
10064}
10065
10066static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
10067 ASTContext &Context) {
10068 // Only handle constant-sized or VLAs, but not flexible members.
10069 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
10070 // Only issue the FIXIT for arrays of size > 1.
10071 if (CAT->getSize().getSExtValue() <= 1)
10072 return false;
10073 } else if (!Ty->isVariableArrayType()) {
10074 return false;
10075 }
10076 return true;
10077}
10078
10079// Warn if the user has made the 'size' argument to strlcpy or strlcat
10080// be the size of the source, instead of the destination.
10081void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
10082 IdentifierInfo *FnName) {
10083
10084 // Don't crash if the user has the wrong number of arguments
10085 unsigned NumArgs = Call->getNumArgs();
10086 if ((NumArgs != 3) && (NumArgs != 4))
10087 return;
10088
10089 const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
10090 const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
10091 const Expr *CompareWithSrc = nullptr;
10092
10093 if (CheckMemorySizeofForComparison(*this, SizeArg, FnName,
10094 Call->getBeginLoc(), Call->getRParenLoc()))
10095 return;
10096
10097 // Look for 'strlcpy(dst, x, sizeof(x))'
10098 if (const Expr *Ex = getSizeOfExprArg(SizeArg))
10099 CompareWithSrc = Ex;
10100 else {
10101 // Look for 'strlcpy(dst, x, strlen(x))'
10102 if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
10103 if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen &&
10104 SizeCall->getNumArgs() == 1)
10105 CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
10106 }
10107 }
10108
10109 if (!CompareWithSrc)
10110 return;
10111
10112 // Determine if the argument to sizeof/strlen is equal to the source
10113 // argument. In principle there's all kinds of things you could do
10114 // here, for instance creating an == expression and evaluating it with
10115 // EvaluateAsBooleanCondition, but this uses a more direct technique:
10116 const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
10117 if (!SrcArgDRE)
10118 return;
10119
10120 const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
10121 if (!CompareWithSrcDRE ||
10122 SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
10123 return;
10124
10125 const Expr *OriginalSizeArg = Call->getArg(2);
10126 Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size)
10127 << OriginalSizeArg->getSourceRange() << FnName;
10128
10129 // Output a FIXIT hint if the destination is an array (rather than a
10130 // pointer to an array). This could be enhanced to handle some
10131 // pointers if we know the actual size, like if DstArg is 'array+2'
10132 // we could say 'sizeof(array)-2'.
10133 const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
10134 if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
10135 return;
10136
10137 SmallString<128> sizeString;
10138 llvm::raw_svector_ostream OS(sizeString);
10139 OS << "sizeof(";
10140 DstArg->printPretty(OS, nullptr, getPrintingPolicy());
10141 OS << ")";
10142
10143 Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size)
10144 << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
10145 OS.str());
10146}
10147
10148/// Check if two expressions refer to the same declaration.
10149static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
10150 if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
10151 if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
10152 return D1->getDecl() == D2->getDecl();
10153 return false;
10154}
10155
10156static const Expr *getStrlenExprArg(const Expr *E) {
10157 if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
10158 const FunctionDecl *FD = CE->getDirectCallee();
10159 if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
10160 return nullptr;
10161 return CE->getArg(0)->IgnoreParenCasts();
10162 }
10163 return nullptr;
10164}
10165
10166// Warn on anti-patterns as the 'size' argument to strncat.
10167// The correct size argument should look like following:
10168// strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
10169void Sema::CheckStrncatArguments(const CallExpr *CE,
10170 IdentifierInfo *FnName) {
10171 // Don't crash if the user has the wrong number of arguments.
10172 if (CE->getNumArgs() < 3)
10173 return;
10174 const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
10175 const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
10176 const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
10177
10178 if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getBeginLoc(),
10179 CE->getRParenLoc()))
10180 return;
10181
10182 // Identify common expressions, which are wrongly used as the size argument
10183 // to strncat and may lead to buffer overflows.
10184 unsigned PatternType = 0;
10185 if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
10186 // - sizeof(dst)
10187 if (referToTheSameDecl(SizeOfArg, DstArg))
10188 PatternType = 1;
10189 // - sizeof(src)
10190 else if (referToTheSameDecl(SizeOfArg, SrcArg))
10191 PatternType = 2;
10192 } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
10193 if (BE->getOpcode() == BO_Sub) {
10194 const Expr *L = BE->getLHS()->IgnoreParenCasts();
10195 const Expr *R = BE->getRHS()->IgnoreParenCasts();
10196 // - sizeof(dst) - strlen(dst)
10197 if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
10198 referToTheSameDecl(DstArg, getStrlenExprArg(R)))
10199 PatternType = 1;
10200 // - sizeof(src) - (anything)
10201 else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
10202 PatternType = 2;
10203 }
10204 }
10205
10206 if (PatternType == 0)
10207 return;
10208
10209 // Generate the diagnostic.
10210 SourceLocation SL = LenArg->getBeginLoc();
10211 SourceRange SR = LenArg->getSourceRange();
10212 SourceManager &SM = getSourceManager();
10213
10214 // If the function is defined as a builtin macro, do not show macro expansion.
10215 if (SM.isMacroArgExpansion(SL)) {
10216 SL = SM.getSpellingLoc(SL);
10217 SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
10218 SM.getSpellingLoc(SR.getEnd()));
10219 }
10220
10221 // Check if the destination is an array (rather than a pointer to an array).
10222 QualType DstTy = DstArg->getType();
10223 bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
10224 Context);
10225 if (!isKnownSizeArray) {
10226 if (PatternType == 1)
10227 Diag(SL, diag::warn_strncat_wrong_size) << SR;
10228 else
10229 Diag(SL, diag::warn_strncat_src_size) << SR;
10230 return;
10231 }
10232
10233 if (PatternType == 1)
10234 Diag(SL, diag::warn_strncat_large_size) << SR;
10235 else
10236 Diag(SL, diag::warn_strncat_src_size) << SR;
10237
10238 SmallString<128> sizeString;
10239 llvm::raw_svector_ostream OS(sizeString);
10240 OS << "sizeof(";
10241 DstArg->printPretty(OS, nullptr, getPrintingPolicy());
10242 OS << ") - ";
10243 OS << "strlen(";
10244 DstArg->printPretty(OS, nullptr, getPrintingPolicy());
10245 OS << ") - 1";
10246
10247 Diag(SL, diag::note_strncat_wrong_size)
10248 << FixItHint::CreateReplacement(SR, OS.str());
10249}
10250
10251namespace {
10252void CheckFreeArgumentsOnLvalue(Sema &S, const std::string &CalleeName,
10253 const UnaryOperator *UnaryExpr,
10254 const VarDecl *Var) {
10255 StorageClass Class = Var->getStorageClass();
10256 if (Class == StorageClass::SC_Extern ||
10257 Class == StorageClass::SC_PrivateExtern ||
10258 Var->getType()->isReferenceType())
10259 return;
10260
10261 S.Diag(UnaryExpr->getBeginLoc(), diag::warn_free_nonheap_object)
10262 << CalleeName << Var;
10263}
10264
10265void CheckFreeArgumentsOnLvalue(Sema &S, const std::string &CalleeName,
10266 const UnaryOperator *UnaryExpr, const Decl *D) {
10267 if (const auto *Field = dyn_cast<FieldDecl>(D))
10268 S.Diag(UnaryExpr->getBeginLoc(), diag::warn_free_nonheap_object)
10269 << CalleeName << Field;
10270}
10271
10272void CheckFreeArgumentsAddressof(Sema &S, const std::string &CalleeName,
10273 const UnaryOperator *UnaryExpr) {
10274 if (UnaryExpr->getOpcode() != UnaryOperator::Opcode::UO_AddrOf)
10275 return;
10276
10277 if (const auto *Lvalue = dyn_cast<DeclRefExpr>(UnaryExpr->getSubExpr()))
10278 if (const auto *Var = dyn_cast<VarDecl>(Lvalue->getDecl()))
10279 return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, Var);
10280
10281 if (const auto *Lvalue = dyn_cast<MemberExpr>(UnaryExpr->getSubExpr()))
10282 return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr,
10283 Lvalue->getMemberDecl());
10284}
10285
10286void CheckFreeArgumentsStackArray(Sema &S, const std::string &CalleeName,
10287 const DeclRefExpr *Lvalue) {
10288 if (!Lvalue->getType()->isArrayType())
10289 return;
10290
10291 const auto *Var = dyn_cast<VarDecl>(Lvalue->getDecl());
10292 if (Var == nullptr)
10293 return;
10294
10295 S.Diag(Lvalue->getBeginLoc(), diag::warn_free_nonheap_object)
10296 << CalleeName << Var;
10297}
10298} // namespace
10299
10300/// Alerts the user that they are attempting to free a non-malloc'd object.
10301void Sema::CheckFreeArguments(const CallExpr *E) {
10302 const Expr *Arg = E->getArg(0)->IgnoreParenCasts();
10303 const std::string CalleeName =
10304 dyn_cast<FunctionDecl>(E->getCalleeDecl())->getQualifiedNameAsString();
11
Assuming the object is not a 'FunctionDecl'
12
Called C++ object pointer is null
10305
10306 if (const auto *UnaryExpr = dyn_cast<UnaryOperator>(Arg))
10307 return CheckFreeArgumentsAddressof(*this, CalleeName, UnaryExpr);
10308
10309 if (const auto *Lvalue = dyn_cast<DeclRefExpr>(Arg))
10310 return CheckFreeArgumentsStackArray(*this, CalleeName, Lvalue);
10311}
10312
10313void
10314Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
10315 SourceLocation ReturnLoc,
10316 bool isObjCMethod,
10317 const AttrVec *Attrs,
10318 const FunctionDecl *FD) {
10319 // Check if the return value is null but should not be.
10320 if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) ||
10321 (!isObjCMethod && isNonNullType(Context, lhsType))) &&
10322 CheckNonNullExpr(*this, RetValExp))
10323 Diag(ReturnLoc, diag::warn_null_ret)
10324 << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange();
10325
10326 // C++11 [basic.stc.dynamic.allocation]p4:
10327 // If an allocation function declared with a non-throwing
10328 // exception-specification fails to allocate storage, it shall return
10329 // a null pointer. Any other allocation function that fails to allocate
10330 // storage shall indicate failure only by throwing an exception [...]
10331 if (FD) {
10332 OverloadedOperatorKind Op = FD->getOverloadedOperator();
10333 if (Op == OO_New || Op == OO_Array_New) {
10334 const FunctionProtoType *Proto
10335 = FD->getType()->castAs<FunctionProtoType>();
10336 if (!Proto->isNothrow(/*ResultIfDependent*/true) &&
10337 CheckNonNullExpr(*this, RetValExp))
10338 Diag(ReturnLoc, diag::warn_operator_new_returns_null)
10339 << FD << getLangOpts().CPlusPlus11;
10340 }
10341 }
10342
10343 // PPC MMA non-pointer types are not allowed as return type. Checking the type
10344 // here prevent the user from using a PPC MMA type as trailing return type.
10345 if (Context.getTargetInfo().getTriple().isPPC64())
10346 CheckPPCMMAType(RetValExp->getType(), ReturnLoc);
10347}
10348
10349//===--- CHECK: Floating-Point comparisons (-Wfloat-equal) ---------------===//
10350
10351/// Check for comparisons of floating point operands using != and ==.
10352/// Issue a warning if these are no self-comparisons, as they are not likely
10353/// to do what the programmer intended.
10354void Sema::CheckFloatComparison(SourceLocation Loc, Expr* LHS, Expr *RHS) {
10355 Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
10356 Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
10357
10358 // Special case: check for x == x (which is OK).
10359 // Do not emit warnings for such cases.
10360 if (DeclRefExpr* DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
10361 if (DeclRefExpr* DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
10362 if (DRL->getDecl() == DRR->getDecl())
10363 return;
10364
10365 // Special case: check for comparisons against literals that can be exactly
10366 // represented by APFloat. In such cases, do not emit a warning. This
10367 // is a heuristic: often comparison against such literals are used to
10368 // detect if a value in a variable has not changed. This clearly can
10369 // lead to false negatives.
10370 if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
10371 if (FLL->isExact())
10372 return;
10373 } else
10374 if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
10375 if (FLR->isExact())
10376 return;
10377
10378 // Check for comparisons with builtin types.
10379 if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
10380 if (CL->getBuiltinCallee())
10381 return;
10382
10383 if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
10384 if (CR->getBuiltinCallee())
10385 return;
10386
10387 // Emit the diagnostic.
10388 Diag(Loc, diag::warn_floatingpoint_eq)
10389 << LHS->getSourceRange() << RHS->getSourceRange();
10390}
10391
10392//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
10393//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
10394
10395namespace {
10396
10397/// Structure recording the 'active' range of an integer-valued
10398/// expression.
10399struct IntRange {
10400 /// The number of bits active in the int. Note that this includes exactly one
10401 /// sign bit if !NonNegative.
10402 unsigned Width;
10403
10404 /// True if the int is known not to have negative values. If so, all leading
10405 /// bits before Width are known zero, otherwise they are known to be the
10406 /// same as the MSB within Width.
10407 bool NonNegative;
10408
10409 IntRange(unsigned Width, bool NonNegative)
10410 : Width(Width), NonNegative(NonNegative) {}
10411
10412 /// Number of bits excluding the sign bit.
10413 unsigned valueBits() const {
10414 return NonNegative ? Width : Width - 1;
10415 }
10416
10417 /// Returns the range of the bool type.
10418 static IntRange forBoolType() {
10419 return IntRange(1, true);
10420 }
10421
10422 /// Returns the range of an opaque value of the given integral type.
10423 static IntRange forValueOfType(ASTContext &C, QualType T) {
10424 return forValueOfCanonicalType(C,
10425 T->getCanonicalTypeInternal().getTypePtr());
10426 }
10427
10428 /// Returns the range of an opaque value of a canonical integral type.
10429 static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
10430 assert(T->isCanonicalUnqualified())((T->isCanonicalUnqualified()) ? static_cast<void> (
0) : __assert_fail ("T->isCanonicalUnqualified()", "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 10430, __PRETTY_FUNCTION__))
;
10431
10432 if (const VectorType *VT = dyn_cast<VectorType>(T))
10433 T = VT->getElementType().getTypePtr();
10434 if (const ComplexType *CT = dyn_cast<ComplexType>(T))
10435 T = CT->getElementType().getTypePtr();
10436 if (const AtomicType *AT = dyn_cast<AtomicType>(T))
10437 T = AT->getValueType().getTypePtr();
10438
10439 if (!C.getLangOpts().CPlusPlus) {
10440 // For enum types in C code, use the underlying datatype.
10441 if (const EnumType *ET = dyn_cast<EnumType>(T))
10442 T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr();
10443 } else if (const EnumType *ET = dyn_cast<EnumType>(T)) {
10444 // For enum types in C++, use the known bit width of the enumerators.
10445 EnumDecl *Enum = ET->getDecl();
10446 // In C++11, enums can have a fixed underlying type. Use this type to
10447 // compute the range.
10448 if (Enum->isFixed()) {
10449 return IntRange(C.getIntWidth(QualType(T, 0)),
10450 !ET->isSignedIntegerOrEnumerationType());
10451 }
10452
10453 unsigned NumPositive = Enum->getNumPositiveBits();
10454 unsigned NumNegative = Enum->getNumNegativeBits();
10455
10456 if (NumNegative == 0)
10457 return IntRange(NumPositive, true/*NonNegative*/);
10458 else
10459 return IntRange(std::max(NumPositive + 1, NumNegative),
10460 false/*NonNegative*/);
10461 }
10462
10463 if (const auto *EIT = dyn_cast<ExtIntType>(T))
10464 return IntRange(EIT->getNumBits(), EIT->isUnsigned());
10465
10466 const BuiltinType *BT = cast<BuiltinType>(T);
10467 assert(BT->isInteger())((BT->isInteger()) ? static_cast<void> (0) : __assert_fail
("BT->isInteger()", "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 10467, __PRETTY_FUNCTION__))
;
10468
10469 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
10470 }
10471
10472 /// Returns the "target" range of a canonical integral type, i.e.
10473 /// the range of values expressible in the type.
10474 ///
10475 /// This matches forValueOfCanonicalType except that enums have the
10476 /// full range of their type, not the range of their enumerators.
10477 static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
10478 assert(T->isCanonicalUnqualified())((T->isCanonicalUnqualified()) ? static_cast<void> (
0) : __assert_fail ("T->isCanonicalUnqualified()", "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 10478, __PRETTY_FUNCTION__))
;
10479
10480 if (const VectorType *VT = dyn_cast<VectorType>(T))
10481 T = VT->getElementType().getTypePtr();
10482 if (const ComplexType *CT = dyn_cast<ComplexType>(T))
10483 T = CT->getElementType().getTypePtr();
10484 if (const AtomicType *AT = dyn_cast<AtomicType>(T))
10485 T = AT->getValueType().getTypePtr();
10486 if (const EnumType *ET = dyn_cast<EnumType>(T))
10487 T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
10488
10489 if (const auto *EIT = dyn_cast<ExtIntType>(T))
10490 return IntRange(EIT->getNumBits(), EIT->isUnsigned());
10491
10492 const BuiltinType *BT = cast<BuiltinType>(T);
10493 assert(BT->isInteger())((BT->isInteger()) ? static_cast<void> (0) : __assert_fail
("BT->isInteger()", "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 10493, __PRETTY_FUNCTION__))
;
10494
10495 return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
10496 }
10497
10498 /// Returns the supremum of two ranges: i.e. their conservative merge.
10499 static IntRange join(IntRange L, IntRange R) {
10500 bool Unsigned = L.NonNegative && R.NonNegative;
10501 return IntRange(std::max(L.valueBits(), R.valueBits()) + !Unsigned,
10502 L.NonNegative && R.NonNegative);
10503 }
10504
10505 /// Return the range of a bitwise-AND of the two ranges.
10506 static IntRange bit_and(IntRange L, IntRange R) {
10507 unsigned Bits = std::max(L.Width, R.Width);
10508 bool NonNegative = false;
10509 if (L.NonNegative) {
10510 Bits = std::min(Bits, L.Width);
10511 NonNegative = true;
10512 }
10513 if (R.NonNegative) {
10514 Bits = std::min(Bits, R.Width);
10515 NonNegative = true;
10516 }
10517 return IntRange(Bits, NonNegative);
10518 }
10519
10520 /// Return the range of a sum of the two ranges.
10521 static IntRange sum(IntRange L, IntRange R) {
10522 bool Unsigned = L.NonNegative && R.NonNegative;
10523 return IntRange(std::max(L.valueBits(), R.valueBits()) + 1 + !Unsigned,
10524 Unsigned);
10525 }
10526
10527 /// Return the range of a difference of the two ranges.
10528 static IntRange difference(IntRange L, IntRange R) {
10529 // We need a 1-bit-wider range if:
10530 // 1) LHS can be negative: least value can be reduced.
10531 // 2) RHS can be negative: greatest value can be increased.
10532 bool CanWiden = !L.NonNegative || !R.NonNegative;
10533 bool Unsigned = L.NonNegative && R.Width == 0;
10534 return IntRange(std::max(L.valueBits(), R.valueBits()) + CanWiden +
10535 !Unsigned,
10536 Unsigned);
10537 }
10538
10539 /// Return the range of a product of the two ranges.
10540 static IntRange product(IntRange L, IntRange R) {
10541 // If both LHS and RHS can be negative, we can form
10542 // -2^L * -2^R = 2^(L + R)
10543 // which requires L + R + 1 value bits to represent.
10544 bool CanWiden = !L.NonNegative && !R.NonNegative;
10545 bool Unsigned = L.NonNegative && R.NonNegative;
10546 return IntRange(L.valueBits() + R.valueBits() + CanWiden + !Unsigned,
10547 Unsigned);
10548 }
10549
10550 /// Return the range of a remainder operation between the two ranges.
10551 static IntRange rem(IntRange L, IntRange R) {
10552 // The result of a remainder can't be larger than the result of
10553 // either side. The sign of the result is the sign of the LHS.
10554 bool Unsigned = L.NonNegative;
10555 return IntRange(std::min(L.valueBits(), R.valueBits()) + !Unsigned,
10556 Unsigned);
10557 }
10558};
10559
10560} // namespace
10561
10562static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
10563 unsigned MaxWidth) {
10564 if (value.isSigned() && value.isNegative())
10565 return IntRange(value.getMinSignedBits(), false);
10566
10567 if (value.getBitWidth() > MaxWidth)
10568 value = value.trunc(MaxWidth);
10569
10570 // isNonNegative() just checks the sign bit without considering
10571 // signedness.
10572 return IntRange(value.getActiveBits(), true);
10573}
10574
10575static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
10576 unsigned MaxWidth) {
10577 if (result.isInt())
10578 return GetValueRange(C, result.getInt(), MaxWidth);
10579
10580 if (result.isVector()) {
10581 IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
10582 for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
10583 IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
10584 R = IntRange::join(R, El);
10585 }
10586 return R;
10587 }
10588
10589 if (result.isComplexInt()) {
10590 IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
10591 IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
10592 return IntRange::join(R, I);
10593 }
10594
10595 // This can happen with lossless casts to intptr_t of "based" lvalues.
10596 // Assume it might use arbitrary bits.
10597 // FIXME: The only reason we need to pass the type in here is to get
10598 // the sign right on this one case. It would be nice if APValue
10599 // preserved this.
10600 assert(result.isLValue() || result.isAddrLabelDiff())((result.isLValue() || result.isAddrLabelDiff()) ? static_cast
<void> (0) : __assert_fail ("result.isLValue() || result.isAddrLabelDiff()"
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 10600, __PRETTY_FUNCTION__))
;
10601 return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
10602}
10603
10604static QualType GetExprType(const Expr *E) {
10605 QualType Ty = E->getType();
10606 if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
10607 Ty = AtomicRHS->getValueType();
10608 return Ty;
10609}
10610
10611/// Pseudo-evaluate the given integer expression, estimating the
10612/// range of values it might take.
10613///
10614/// \param MaxWidth The width to which the value will be truncated.
10615/// \param Approximate If \c true, return a likely range for the result: in
10616/// particular, assume that aritmetic on narrower types doesn't leave
10617/// those types. If \c false, return a range including all possible
10618/// result values.
10619static IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth,
10620 bool InConstantContext, bool Approximate) {
10621 E = E->IgnoreParens();
10622
10623 // Try a full evaluation first.
10624 Expr::EvalResult result;
10625 if (E->EvaluateAsRValue(result, C, InConstantContext))
10626 return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
10627
10628 // I think we only want to look through implicit casts here; if the
10629 // user has an explicit widening cast, we should treat the value as
10630 // being of the new, wider type.
10631 if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) {
10632 if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
10633 return GetExprRange(C, CE->getSubExpr(), MaxWidth, InConstantContext,
10634 Approximate);
10635
10636 IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
10637
10638 bool isIntegerCast = CE->getCastKind() == CK_IntegralCast ||
10639 CE->getCastKind() == CK_BooleanToSignedIntegral;
10640
10641 // Assume that non-integer casts can span the full range of the type.
10642 if (!isIntegerCast)
10643 return OutputTypeRange;
10644
10645 IntRange SubRange = GetExprRange(C, CE->getSubExpr(),
10646 std::min(MaxWidth, OutputTypeRange.Width),
10647 InConstantContext, Approximate);
10648
10649 // Bail out if the subexpr's range is as wide as the cast type.
10650 if (SubRange.Width >= OutputTypeRange.Width)
10651 return OutputTypeRange;
10652
10653 // Otherwise, we take the smaller width, and we're non-negative if
10654 // either the output type or the subexpr is.
10655 return IntRange(SubRange.Width,
10656 SubRange.NonNegative || OutputTypeRange.NonNegative);
10657 }
10658
10659 if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
10660 // If we can fold the condition, just take that operand.
10661 bool CondResult;
10662 if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
10663 return GetExprRange(C,
10664 CondResult ? CO->getTrueExpr() : CO->getFalseExpr(),
10665 MaxWidth, InConstantContext, Approximate);
10666
10667 // Otherwise, conservatively merge.
10668 // GetExprRange requires an integer expression, but a throw expression
10669 // results in a void type.
10670 Expr *E = CO->getTrueExpr();
10671 IntRange L = E->getType()->isVoidType()
10672 ? IntRange{0, true}
10673 : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate);
10674 E = CO->getFalseExpr();
10675 IntRange R = E->getType()->isVoidType()
10676 ? IntRange{0, true}
10677 : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate);
10678 return IntRange::join(L, R);
10679 }
10680
10681 if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
10682 IntRange (*Combine)(IntRange, IntRange) = IntRange::join;
10683
10684 switch (BO->getOpcode()) {
10685 case BO_Cmp:
10686 llvm_unreachable("builtin <=> should have class type")::llvm::llvm_unreachable_internal("builtin <=> should have class type"
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 10686)
;
10687
10688 // Boolean-valued operations are single-bit and positive.
10689 case BO_LAnd:
10690 case BO_LOr:
10691 case BO_LT:
10692 case BO_GT:
10693 case BO_LE:
10694 case BO_GE:
10695 case BO_EQ:
10696 case BO_NE:
10697 return IntRange::forBoolType();
10698
10699 // The type of the assignments is the type of the LHS, so the RHS
10700 // is not necessarily the same type.
10701 case BO_MulAssign:
10702 case BO_DivAssign:
10703 case BO_RemAssign:
10704 case BO_AddAssign:
10705 case BO_SubAssign:
10706 case BO_XorAssign:
10707 case BO_OrAssign:
10708 // TODO: bitfields?
10709 return IntRange::forValueOfType(C, GetExprType(E));
10710
10711 // Simple assignments just pass through the RHS, which will have
10712 // been coerced to the LHS type.
10713 case BO_Assign:
10714 // TODO: bitfields?
10715 return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
10716 Approximate);
10717
10718 // Operations with opaque sources are black-listed.
10719 case BO_PtrMemD:
10720 case BO_PtrMemI:
10721 return IntRange::forValueOfType(C, GetExprType(E));
10722
10723 // Bitwise-and uses the *infinum* of the two source ranges.
10724 case BO_And:
10725 case BO_AndAssign:
10726 Combine = IntRange::bit_and;
10727 break;
10728
10729 // Left shift gets black-listed based on a judgement call.
10730 case BO_Shl:
10731 // ...except that we want to treat '1 << (blah)' as logically
10732 // positive. It's an important idiom.
10733 if (IntegerLiteral *I
10734 = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
10735 if (I->getValue() == 1) {
10736 IntRange R = IntRange::forValueOfType(C, GetExprType(E));
10737 return IntRange(R.Width, /*NonNegative*/ true);
10738 }
10739 }
10740 LLVM_FALLTHROUGH[[gnu::fallthrough]];
10741
10742 case BO_ShlAssign:
10743 return IntRange::forValueOfType(C, GetExprType(E));
10744
10745 // Right shift by a constant can narrow its left argument.
10746 case BO_Shr:
10747 case BO_ShrAssign: {
10748 IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext,
10749 Approximate);
10750
10751 // If the shift amount is a positive constant, drop the width by
10752 // that much.
10753 if (Optional<llvm::APSInt> shift =
10754 BO->getRHS()->getIntegerConstantExpr(C)) {
10755 if (shift->isNonNegative()) {
10756 unsigned zext = shift->getZExtValue();
10757 if (zext >= L.Width)
10758 L.Width = (L.NonNegative ? 0 : 1);
10759 else
10760 L.Width -= zext;
10761 }
10762 }
10763
10764 return L;
10765 }
10766
10767 // Comma acts as its right operand.
10768 case BO_Comma:
10769 return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
10770 Approximate);
10771
10772 case BO_Add:
10773 if (!Approximate)
10774 Combine = IntRange::sum;
10775 break;
10776
10777 case BO_Sub:
10778 if (BO->getLHS()->getType()->isPointerType())
10779 return IntRange::forValueOfType(C, GetExprType(E));
10780 if (!Approximate)
10781 Combine = IntRange::difference;
10782 break;
10783
10784 case BO_Mul:
10785 if (!Approximate)
10786 Combine = IntRange::product;
10787 break;
10788
10789 // The width of a division result is mostly determined by the size
10790 // of the LHS.
10791 case BO_Div: {
10792 // Don't 'pre-truncate' the operands.
10793 unsigned opWidth = C.getIntWidth(GetExprType(E));
10794 IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext,
10795 Approximate);
10796
10797 // If the divisor is constant, use that.
10798 if (Optional<llvm::APSInt> divisor =
10799 BO->getRHS()->getIntegerConstantExpr(C)) {
10800 unsigned log2 = divisor->logBase2(); // floor(log_2(divisor))
10801 if (log2 >= L.Width)
10802 L.Width = (L.NonNegative ? 0 : 1);
10803 else
10804 L.Width = std::min(L.Width - log2, MaxWidth);
10805 return L;
10806 }
10807
10808 // Otherwise, just use the LHS's width.
10809 // FIXME: This is wrong if the LHS could be its minimal value and the RHS
10810 // could be -1.
10811 IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext,
10812 Approximate);
10813 return IntRange(L.Width, L.NonNegative && R.NonNegative);
10814 }
10815
10816 case BO_Rem:
10817 Combine = IntRange::rem;
10818 break;
10819
10820 // The default behavior is okay for these.
10821 case BO_Xor:
10822 case BO_Or:
10823 break;
10824 }
10825
10826 // Combine the two ranges, but limit the result to the type in which we
10827 // performed the computation.
10828 QualType T = GetExprType(E);
10829 unsigned opWidth = C.getIntWidth(T);
10830 IntRange L =
10831 GetExprRange(C, BO->getLHS(), opWidth, InConstantContext, Approximate);
10832 IntRange R =
10833 GetExprRange(C, BO->getRHS(), opWidth, InConstantContext, Approximate);
10834 IntRange C = Combine(L, R);
10835 C.NonNegative |= T->isUnsignedIntegerOrEnumerationType();
10836 C.Width = std::min(C.Width, MaxWidth);
10837 return C;
10838 }
10839
10840 if (const auto *UO = dyn_cast<UnaryOperator>(E)) {
10841 switch (UO->getOpcode()) {
10842 // Boolean-valued operations are white-listed.
10843 case UO_LNot:
10844 return IntRange::forBoolType();
10845
10846 // Operations with opaque sources are black-listed.
10847 case UO_Deref:
10848 case UO_AddrOf: // should be impossible
10849 return IntRange::forValueOfType(C, GetExprType(E));
10850
10851 default:
10852 return GetExprRange(C, UO->getSubExpr(), MaxWidth, InConstantContext,
10853 Approximate);
10854 }
10855 }
10856
10857 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
10858 return GetExprRange(C, OVE->getSourceExpr(), MaxWidth, InConstantContext,
10859 Approximate);
10860
10861 if (const auto *BitField = E->getSourceBitField())
10862 return IntRange(BitField->getBitWidthValue(C),
10863 BitField->getType()->isUnsignedIntegerOrEnumerationType());
10864
10865 return IntRange::forValueOfType(C, GetExprType(E));
10866}
10867
10868static IntRange GetExprRange(ASTContext &C, const Expr *E,
10869 bool InConstantContext, bool Approximate) {
10870 return GetExprRange(C, E, C.getIntWidth(GetExprType(E)), InConstantContext,
10871 Approximate);
10872}
10873
10874/// Checks whether the given value, which currently has the given
10875/// source semantics, has the same value when coerced through the
10876/// target semantics.
10877static bool IsSameFloatAfterCast(const llvm::APFloat &value,
10878 const llvm::fltSemantics &Src,
10879 const llvm::fltSemantics &Tgt) {
10880 llvm::APFloat truncated = value;
10881
10882 bool ignored;
10883 truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
10884 truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
10885
10886 return truncated.bitwiseIsEqual(value);
10887}
10888
10889/// Checks whether the given value, which currently has the given
10890/// source semantics, has the same value when coerced through the
10891/// target semantics.
10892///
10893/// The value might be a vector of floats (or a complex number).
10894static bool IsSameFloatAfterCast(const APValue &value,
10895 const llvm::fltSemantics &Src,
10896 const llvm::fltSemantics &Tgt) {
10897 if (value.isFloat())
10898 return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
10899
10900 if (value.isVector()) {
10901 for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
10902 if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
10903 return false;
10904 return true;
10905 }
10906
10907 assert(value.isComplexFloat())((value.isComplexFloat()) ? static_cast<void> (0) : __assert_fail
("value.isComplexFloat()", "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 10907, __PRETTY_FUNCTION__))
;
10908 return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
10909 IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
10910}
10911
10912static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC,
10913 bool IsListInit = false);
10914
10915static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) {
10916 // Suppress cases where we are comparing against an enum constant.
10917 if (const DeclRefExpr *DR =
10918 dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
10919 if (isa<EnumConstantDecl>(DR->getDecl()))
10920 return true;
10921
10922 // Suppress cases where the value is expanded from a macro, unless that macro
10923 // is how a language represents a boolean literal. This is the case in both C
10924 // and Objective-C.
10925 SourceLocation BeginLoc = E->getBeginLoc();
10926 if (BeginLoc.isMacroID()) {
10927 StringRef MacroName = Lexer::getImmediateMacroName(
10928 BeginLoc, S.getSourceManager(), S.getLangOpts());
10929 return MacroName != "YES" && MacroName != "NO" &&
10930 MacroName != "true" && MacroName != "false";
10931 }
10932
10933 return false;
10934}
10935
10936static bool isKnownToHaveUnsignedValue(Expr *E) {
10937 return E->getType()->isIntegerType() &&
10938 (!E->getType()->isSignedIntegerType() ||
10939 !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType());
10940}
10941
10942namespace {
10943/// The promoted range of values of a type. In general this has the
10944/// following structure:
10945///
10946/// |-----------| . . . |-----------|
10947/// ^ ^ ^ ^
10948/// Min HoleMin HoleMax Max
10949///
10950/// ... where there is only a hole if a signed type is promoted to unsigned
10951/// (in which case Min and Max are the smallest and largest representable
10952/// values).
10953struct PromotedRange {
10954 // Min, or HoleMax if there is a hole.
10955 llvm::APSInt PromotedMin;
10956 // Max, or HoleMin if there is a hole.
10957 llvm::APSInt PromotedMax;
10958
10959 PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) {
10960 if (R.Width == 0)
10961 PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned);
10962 else if (R.Width >= BitWidth && !Unsigned) {
10963 // Promotion made the type *narrower*. This happens when promoting
10964 // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'.
10965 // Treat all values of 'signed int' as being in range for now.
10966 PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned);
10967 PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned);
10968 } else {
10969 PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative)
10970 .extOrTrunc(BitWidth);
10971 PromotedMin.setIsUnsigned(Unsigned);
10972
10973 PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative)
10974 .extOrTrunc(BitWidth);
10975 PromotedMax.setIsUnsigned(Unsigned);
10976 }
10977 }
10978
10979 // Determine whether this range is contiguous (has no hole).
10980 bool isContiguous() const { return PromotedMin <= PromotedMax; }
10981
10982 // Where a constant value is within the range.
10983 enum ComparisonResult {
10984 LT = 0x1,
10985 LE = 0x2,
10986 GT = 0x4,
10987 GE = 0x8,
10988 EQ = 0x10,
10989 NE = 0x20,
10990 InRangeFlag = 0x40,
10991
10992 Less = LE | LT | NE,
10993 Min = LE | InRangeFlag,
10994 InRange = InRangeFlag,
10995 Max = GE | InRangeFlag,
10996 Greater = GE | GT | NE,
10997
10998 OnlyValue = LE | GE | EQ | InRangeFlag,
10999 InHole = NE
11000 };
11001
11002 ComparisonResult compare(const llvm::APSInt &Value) const {
11003 assert(Value.getBitWidth() == PromotedMin.getBitWidth() &&((Value.getBitWidth() == PromotedMin.getBitWidth() &&
Value.isUnsigned() == PromotedMin.isUnsigned()) ? static_cast
<void> (0) : __assert_fail ("Value.getBitWidth() == PromotedMin.getBitWidth() && Value.isUnsigned() == PromotedMin.isUnsigned()"
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 11004, __PRETTY_FUNCTION__))
11004 Value.isUnsigned() == PromotedMin.isUnsigned())((Value.getBitWidth() == PromotedMin.getBitWidth() &&
Value.isUnsigned() == PromotedMin.isUnsigned()) ? static_cast
<void> (0) : __assert_fail ("Value.getBitWidth() == PromotedMin.getBitWidth() && Value.isUnsigned() == PromotedMin.isUnsigned()"
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 11004, __PRETTY_FUNCTION__))
;
11005 if (!isContiguous()) {
11006 assert(Value.isUnsigned() && "discontiguous range for signed compare")((Value.isUnsigned() && "discontiguous range for signed compare"
) ? static_cast<void> (0) : __assert_fail ("Value.isUnsigned() && \"discontiguous range for signed compare\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 11006, __PRETTY_FUNCTION__))
;
11007 if (Value.isMinValue()) return Min;
11008 if (Value.isMaxValue()) return Max;
11009 if (Value >= PromotedMin) return InRange;
11010 if (Value <= PromotedMax) return InRange;
11011 return InHole;
11012 }
11013
11014 switch (llvm::APSInt::compareValues(Value, PromotedMin)) {
11015 case -1: return Less;
11016 case 0: return PromotedMin == PromotedMax ? OnlyValue : Min;
11017 case 1:
11018 switch (llvm::APSInt::compareValues(Value, PromotedMax)) {
11019 case -1: return InRange;
11020 case 0: return Max;
11021 case 1: return Greater;
11022 }
11023 }
11024
11025 llvm_unreachable("impossible compare result")::llvm::llvm_unreachable_internal("impossible compare result"
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 11025)
;
11026 }
11027
11028 static llvm::Optional<StringRef>
11029 constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) {
11030 if (Op == BO_Cmp) {
11031 ComparisonResult LTFlag = LT, GTFlag = GT;
11032 if (ConstantOnRHS) std::swap(LTFlag, GTFlag);
11033
11034 if (R & EQ) return StringRef("'std::strong_ordering::equal'");
11035 if (R & LTFlag) return StringRef("'std::strong_ordering::less'");
11036 if (R & GTFlag) return StringRef("'std::strong_ordering::greater'");
11037 return llvm::None;
11038 }
11039
11040 ComparisonResult TrueFlag, FalseFlag;
11041 if (Op == BO_EQ) {
11042 TrueFlag = EQ;
11043 FalseFlag = NE;
11044 } else if (Op == BO_NE) {
11045 TrueFlag = NE;
11046 FalseFlag = EQ;
11047 } else {
11048 if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) {
11049 TrueFlag = LT;
11050 FalseFlag = GE;
11051 } else {
11052 TrueFlag = GT;
11053 FalseFlag = LE;
11054 }
11055 if (Op == BO_GE || Op == BO_LE)
11056 std::swap(TrueFlag, FalseFlag);
11057 }
11058 if (R & TrueFlag)
11059 return StringRef("true");
11060 if (R & FalseFlag)
11061 return StringRef("false");
11062 return llvm::None;
11063 }
11064};
11065}
11066
11067static bool HasEnumType(Expr *E) {
11068 // Strip off implicit integral promotions.
11069 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
11070 if (ICE->getCastKind() != CK_IntegralCast &&
11071 ICE->getCastKind() != CK_NoOp)
11072 break;
11073 E = ICE->getSubExpr();
11074 }
11075
11076 return E->getType()->isEnumeralType();
11077}
11078
11079static int classifyConstantValue(Expr *Constant) {
11080 // The values of this enumeration are used in the diagnostics
11081 // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare.
11082 enum ConstantValueKind {
11083 Miscellaneous = 0,
11084 LiteralTrue,
11085 LiteralFalse
11086 };
11087 if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Constant))
11088 return BL->getValue() ? ConstantValueKind::LiteralTrue
11089 : ConstantValueKind::LiteralFalse;
11090 return ConstantValueKind::Miscellaneous;
11091}
11092
11093static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E,
11094 Expr *Constant, Expr *Other,
11095 const llvm::APSInt &Value,
11096 bool RhsConstant) {
11097 if (S.inTemplateInstantiation())
11098 return false;
11099
11100 Expr *OriginalOther = Other;
11101
11102 Constant = Constant->IgnoreParenImpCasts();
11103 Other = Other->IgnoreParenImpCasts();
11104
11105 // Suppress warnings on tautological comparisons between values of the same
11106 // enumeration type. There are only two ways we could warn on this:
11107 // - If the constant is outside the range of representable values of
11108 // the enumeration. In such a case, we should warn about the cast
11109 // to enumeration type, not about the comparison.
11110 // - If the constant is the maximum / minimum in-range value. For an
11111 // enumeratin type, such comparisons can be meaningful and useful.
11112 if (Constant->getType()->isEnumeralType() &&
11113 S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType()))
11114 return false;
11115
11116 IntRange OtherValueRange = GetExprRange(
11117 S.Context, Other, S.isConstantEvaluated(), /*Approximate*/ false);
11118
11119 QualType OtherT = Other->getType();
11120 if (const auto *AT = OtherT->getAs<AtomicType>())
11121 OtherT = AT->getValueType();
11122 IntRange OtherTypeRange = IntRange::forValueOfType(S.Context, OtherT);
11123
11124 // Special case for ObjC BOOL on targets where its a typedef for a signed char
11125 // (Namely, macOS). FIXME: IntRange::forValueOfType should do this.
11126 bool IsObjCSignedCharBool = S.getLangOpts().ObjC &&
11127 S.NSAPIObj->isObjCBOOLType(OtherT) &&
11128 OtherT->isSpecificBuiltinType(BuiltinType::SChar);
11129
11130 // Whether we're treating Other as being a bool because of the form of
11131 // expression despite it having another type (typically 'int' in C).
11132 bool OtherIsBooleanDespiteType =
11133 !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue();
11134 if (OtherIsBooleanDespiteType || IsObjCSignedCharBool)
11135 OtherTypeRange = OtherValueRange = IntRange::forBoolType();
11136
11137 // Check if all values in the range of possible values of this expression
11138 // lead to the same comparison outcome.
11139 PromotedRange OtherPromotedValueRange(OtherValueRange, Value.getBitWidth(),
11140 Value.isUnsigned());
11141 auto Cmp = OtherPromotedValueRange.compare(Value);
11142 auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant);
11143 if (!Result)
11144 return false;
11145
11146 // Also consider the range determined by the type alone. This allows us to
11147 // classify the warning under the proper diagnostic group.
11148 bool TautologicalTypeCompare = false;
11149 {
11150 PromotedRange OtherPromotedTypeRange(OtherTypeRange, Value.getBitWidth(),
11151 Value.isUnsigned());
11152 auto TypeCmp = OtherPromotedTypeRange.compare(Value);
11153 if (auto TypeResult = PromotedRange::constantValue(E->getOpcode(), TypeCmp,
11154 RhsConstant)) {
11155 TautologicalTypeCompare = true;
11156 Cmp = TypeCmp;
11157 Result = TypeResult;
11158 }
11159 }
11160
11161 // Don't warn if the non-constant operand actually always evaluates to the
11162 // same value.
11163 if (!TautologicalTypeCompare && OtherValueRange.Width == 0)
11164 return false;
11165
11166 // Suppress the diagnostic for an in-range comparison if the constant comes
11167 // from a macro or enumerator. We don't want to diagnose
11168 //
11169 // some_long_value <= INT_MAX
11170 //
11171 // when sizeof(int) == sizeof(long).
11172 bool InRange = Cmp & PromotedRange::InRangeFlag;
11173 if (InRange && IsEnumConstOrFromMacro(S, Constant))
11174 return false;
11175
11176 // A comparison of an unsigned bit-field against 0 is really a type problem,
11177 // even though at the type level the bit-field might promote to 'signed int'.
11178 if (Other->refersToBitField() && InRange && Value == 0 &&
11179 Other->getType()->isUnsignedIntegerOrEnumerationType())
11180 TautologicalTypeCompare = true;
11181
11182 // If this is a comparison to an enum constant, include that
11183 // constant in the diagnostic.
11184 const EnumConstantDecl *ED = nullptr;
11185 if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
11186 ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
11187
11188 // Should be enough for uint128 (39 decimal digits)
11189 SmallString<64> PrettySourceValue;
11190 llvm::raw_svector_ostream OS(PrettySourceValue);
11191 if (ED) {
11192 OS << '\'' << *ED << "' (" << Value << ")";
11193 } else if (auto *BL = dyn_cast<ObjCBoolLiteralExpr>(
11194 Constant->IgnoreParenImpCasts())) {
11195 OS << (BL->getValue() ? "YES" : "NO");
11196 } else {
11197 OS << Value;
11198 }
11199
11200 if (!TautologicalTypeCompare) {
11201 S.Diag(E->getOperatorLoc(), diag::warn_tautological_compare_value_range)
11202 << RhsConstant << OtherValueRange.Width << OtherValueRange.NonNegative
11203 << E->getOpcodeStr() << OS.str() << *Result
11204 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
11205 return true;
11206 }
11207
11208 if (IsObjCSignedCharBool) {
11209 S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
11210 S.PDiag(diag::warn_tautological_compare_objc_bool)
11211 << OS.str() << *Result);
11212 return true;
11213 }
11214
11215 // FIXME: We use a somewhat different formatting for the in-range cases and
11216 // cases involving boolean values for historical reasons. We should pick a
11217 // consistent way of presenting these diagnostics.
11218 if (!InRange || Other->isKnownToHaveBooleanValue()) {
11219
11220 S.DiagRuntimeBehavior(
11221 E->getOperatorLoc(), E,
11222 S.PDiag(!InRange ? diag::warn_out_of_range_compare
11223 : diag::warn_tautological_bool_compare)
11224 << OS.str() << classifyConstantValue(Constant) << OtherT
11225 << OtherIsBooleanDespiteType << *Result
11226 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange());
11227 } else {
11228 unsigned Diag = (isKnownToHaveUnsignedValue(OriginalOther) && Value == 0)
11229 ? (HasEnumType(OriginalOther)
11230 ? diag::warn_unsigned_enum_always_true_comparison
11231 : diag::warn_unsigned_always_true_comparison)
11232 : diag::warn_tautological_constant_compare;
11233
11234 S.Diag(E->getOperatorLoc(), Diag)
11235 << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result
11236 << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
11237 }
11238
11239 return true;
11240}
11241
11242/// Analyze the operands of the given comparison. Implements the
11243/// fallback case from AnalyzeComparison.
11244static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
11245 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
11246 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
11247}
11248
11249/// Implements -Wsign-compare.
11250///
11251/// \param E the binary operator to check for warnings
11252static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
11253 // The type the comparison is being performed in.
11254 QualType T = E->getLHS()->getType();
11255
11256 // Only analyze comparison operators where both sides have been converted to
11257 // the same type.
11258 if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType()))
11259 return AnalyzeImpConvsInComparison(S, E);
11260
11261 // Don't analyze value-dependent comparisons directly.
11262 if (E->isValueDependent())
11263 return AnalyzeImpConvsInComparison(S, E);
11264
11265 Expr *LHS = E->getLHS();
11266 Expr *RHS = E->getRHS();
11267
11268 if (T->isIntegralType(S.Context)) {
11269 Optional<llvm::APSInt> RHSValue = RHS->getIntegerConstantExpr(S.Context);
11270 Optional<llvm::APSInt> LHSValue = LHS->getIntegerConstantExpr(S.Context);
11271
11272 // We don't care about expressions whose result is a constant.
11273 if (RHSValue && LHSValue)
11274 return AnalyzeImpConvsInComparison(S, E);
11275
11276 // We only care about expressions where just one side is literal
11277 if ((bool)RHSValue ^ (bool)LHSValue) {
11278 // Is the constant on the RHS or LHS?
11279 const bool RhsConstant = (bool)RHSValue;
11280 Expr *Const = RhsConstant ? RHS : LHS;
11281 Expr *Other = RhsConstant ? LHS : RHS;
11282 const llvm::APSInt &Value = RhsConstant ? *RHSValue : *LHSValue;
11283
11284 // Check whether an integer constant comparison results in a value
11285 // of 'true' or 'false'.
11286 if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant))
11287 return AnalyzeImpConvsInComparison(S, E);
11288 }
11289 }
11290
11291 if (!T->hasUnsignedIntegerRepresentation()) {
11292 // We don't do anything special if this isn't an unsigned integral
11293 // comparison: we're only interested in integral comparisons, and
11294 // signed comparisons only happen in cases we don't care to warn about.
11295 return AnalyzeImpConvsInComparison(S, E);
11296 }
11297
11298 LHS = LHS->IgnoreParenImpCasts();
11299 RHS = RHS->IgnoreParenImpCasts();
11300
11301 if (!S.getLangOpts().CPlusPlus) {
11302 // Avoid warning about comparison of integers with different signs when
11303 // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of
11304 // the type of `E`.
11305 if (const auto *TET = dyn_cast<TypeOfExprType>(LHS->getType()))
11306 LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
11307 if (const auto *TET = dyn_cast<TypeOfExprType>(RHS->getType()))
11308 RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
11309 }
11310
11311 // Check to see if one of the (unmodified) operands is of different
11312 // signedness.
11313 Expr *signedOperand, *unsignedOperand;
11314 if (LHS->getType()->hasSignedIntegerRepresentation()) {
11315 assert(!RHS->getType()->hasSignedIntegerRepresentation() &&((!RHS->getType()->hasSignedIntegerRepresentation() &&
"unsigned comparison between two signed integer expressions?"
) ? static_cast<void> (0) : __assert_fail ("!RHS->getType()->hasSignedIntegerRepresentation() && \"unsigned comparison between two signed integer expressions?\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 11316, __PRETTY_FUNCTION__))
11316 "unsigned comparison between two signed integer expressions?")((!RHS->getType()->hasSignedIntegerRepresentation() &&
"unsigned comparison between two signed integer expressions?"
) ? static_cast<void> (0) : __assert_fail ("!RHS->getType()->hasSignedIntegerRepresentation() && \"unsigned comparison between two signed integer expressions?\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 11316, __PRETTY_FUNCTION__))
;
11317 signedOperand = LHS;
11318 unsignedOperand = RHS;
11319 } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
11320 signedOperand = RHS;
11321 unsignedOperand = LHS;
11322 } else {
11323 return AnalyzeImpConvsInComparison(S, E);
11324 }
11325
11326 // Otherwise, calculate the effective range of the signed operand.
11327 IntRange signedRange = GetExprRange(
11328 S.Context, signedOperand, S.isConstantEvaluated(), /*Approximate*/ true);
11329
11330 // Go ahead and analyze implicit conversions in the operands. Note
11331 // that we skip the implicit conversions on both sides.
11332 AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
11333 AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
11334
11335 // If the signed range is non-negative, -Wsign-compare won't fire.
11336 if (signedRange.NonNegative)
11337 return;
11338
11339 // For (in)equality comparisons, if the unsigned operand is a
11340 // constant which cannot collide with a overflowed signed operand,
11341 // then reinterpreting the signed operand as unsigned will not
11342 // change the result of the comparison.
11343 if (E->isEqualityOp()) {
11344 unsigned comparisonWidth = S.Context.getIntWidth(T);
11345 IntRange unsignedRange =
11346 GetExprRange(S.Context, unsignedOperand, S.isConstantEvaluated(),
11347 /*Approximate*/ true);
11348
11349 // We should never be unable to prove that the unsigned operand is
11350 // non-negative.
11351 assert(unsignedRange.NonNegative && "unsigned range includes negative?")((unsignedRange.NonNegative && "unsigned range includes negative?"
) ? static_cast<void> (0) : __assert_fail ("unsignedRange.NonNegative && \"unsigned range includes negative?\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 11351, __PRETTY_FUNCTION__))
;
11352
11353 if (unsignedRange.Width < comparisonWidth)
11354 return;
11355 }
11356
11357 S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
11358 S.PDiag(diag::warn_mixed_sign_comparison)
11359 << LHS->getType() << RHS->getType()
11360 << LHS->getSourceRange() << RHS->getSourceRange());
11361}
11362
11363/// Analyzes an attempt to assign the given value to a bitfield.
11364///
11365/// Returns true if there was something fishy about the attempt.
11366static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
11367 SourceLocation InitLoc) {
11368 assert(Bitfield->isBitField())((Bitfield->isBitField()) ? static_cast<void> (0) : __assert_fail
("Bitfield->isBitField()", "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 11368, __PRETTY_FUNCTION__))
;
11369 if (Bitfield->isInvalidDecl())
11370 return false;
11371
11372 // White-list bool bitfields.
11373 QualType BitfieldType = Bitfield->getType();
11374 if (BitfieldType->isBooleanType())
11375 return false;
11376
11377 if (BitfieldType->isEnumeralType()) {
11378 EnumDecl *BitfieldEnumDecl = BitfieldType->castAs<EnumType>()->getDecl();
11379 // If the underlying enum type was not explicitly specified as an unsigned
11380 // type and the enum contain only positive values, MSVC++ will cause an
11381 // inconsistency by storing this as a signed type.
11382 if (S.getLangOpts().CPlusPlus11 &&
11383 !BitfieldEnumDecl->getIntegerTypeSourceInfo() &&
11384 BitfieldEnumDecl->getNumPositiveBits() > 0 &&
11385 BitfieldEnumDecl->getNumNegativeBits() == 0) {
11386 S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield)
11387 << BitfieldEnumDecl;
11388 }
11389 }
11390
11391 if (Bitfield->getType()->isBooleanType())
11392 return false;
11393
11394 // Ignore value- or type-dependent expressions.
11395 if (Bitfield->getBitWidth()->isValueDependent() ||
11396 Bitfield->getBitWidth()->isTypeDependent() ||
11397 Init->isValueDependent() ||
11398 Init->isTypeDependent())
11399 return false;
11400
11401 Expr *OriginalInit = Init->IgnoreParenImpCasts();
11402 unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
11403
11404 Expr::EvalResult Result;
11405 if (!OriginalInit->EvaluateAsInt(Result, S.Context,
11406 Expr::SE_AllowSideEffects)) {
11407 // The RHS is not constant. If the RHS has an enum type, make sure the
11408 // bitfield is wide enough to hold all the values of the enum without
11409 // truncation.
11410 if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) {
11411 EnumDecl *ED = EnumTy->getDecl();
11412 bool SignedBitfield = BitfieldType->isSignedIntegerType();
11413
11414 // Enum types are implicitly signed on Windows, so check if there are any
11415 // negative enumerators to see if the enum was intended to be signed or
11416 // not.
11417 bool SignedEnum = ED->getNumNegativeBits() > 0;
11418
11419 // Check for surprising sign changes when assigning enum values to a
11420 // bitfield of different signedness. If the bitfield is signed and we
11421 // have exactly the right number of bits to store this unsigned enum,
11422 // suggest changing the enum to an unsigned type. This typically happens
11423 // on Windows where unfixed enums always use an underlying type of 'int'.
11424 unsigned DiagID = 0;
11425 if (SignedEnum && !SignedBitfield) {
11426 DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum;
11427 } else if (SignedBitfield && !SignedEnum &&
11428 ED->getNumPositiveBits() == FieldWidth) {
11429 DiagID = diag::warn_signed_bitfield_enum_conversion;
11430 }
11431
11432 if (DiagID) {
11433 S.Diag(InitLoc, DiagID) << Bitfield << ED;
11434 TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo();
11435 SourceRange TypeRange =
11436 TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange();
11437 S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign)
11438 << SignedEnum << TypeRange;
11439 }
11440
11441 // Compute the required bitwidth. If the enum has negative values, we need
11442 // one more bit than the normal number of positive bits to represent the
11443 // sign bit.
11444 unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1,
11445 ED->getNumNegativeBits())
11446 : ED->getNumPositiveBits();
11447
11448 // Check the bitwidth.
11449 if (BitsNeeded > FieldWidth) {
11450 Expr *WidthExpr = Bitfield->getBitWidth();
11451 S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum)
11452 << Bitfield << ED;
11453 S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield)
11454 << BitsNeeded << ED << WidthExpr->getSourceRange();
11455 }
11456 }
11457
11458 return false;
11459 }
11460
11461 llvm::APSInt Value = Result.Val.getInt();
11462
11463 unsigned OriginalWidth = Value.getBitWidth();
11464
11465 if (!Value.isSigned() || Value.isNegative())
11466 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit))
11467 if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not)
11468 OriginalWidth = Value.getMinSignedBits();
11469
11470 if (OriginalWidth <= FieldWidth)
11471 return false;
11472
11473 // Compute the value which the bitfield will contain.
11474 llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
11475 TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType());
11476
11477 // Check whether the stored value is equal to the original value.
11478 TruncatedValue = TruncatedValue.extend(OriginalWidth);
11479 if (llvm::APSInt::isSameValue(Value, TruncatedValue))
11480 return false;
11481
11482 // Special-case bitfields of width 1: booleans are naturally 0/1, and
11483 // therefore don't strictly fit into a signed bitfield of width 1.
11484 if (FieldWidth == 1 && Value == 1)
11485 return false;
11486
11487 std::string PrettyValue = Value.toString(10);
11488 std::string PrettyTrunc = TruncatedValue.toString(10);
11489
11490 S.Diag(InitLoc, diag::warn_impcast_bitfield_precision_constant)
11491 << PrettyValue << PrettyTrunc << OriginalInit->getType()
11492 << Init->getSourceRange();
11493
11494 return true;
11495}
11496
11497/// Analyze the given simple or compound assignment for warning-worthy
11498/// operations.
11499static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
11500 // Just recurse on the LHS.
11501 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
11502
11503 // We want to recurse on the RHS as normal unless we're assigning to
11504 // a bitfield.
11505 if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
11506 if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
11507 E->getOperatorLoc())) {
11508 // Recurse, ignoring any implicit conversions on the RHS.
11509 return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
11510 E->getOperatorLoc());
11511 }
11512 }
11513
11514 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
11515
11516 // Diagnose implicitly sequentially-consistent atomic assignment.
11517 if (E->getLHS()->getType()->isAtomicType())
11518 S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
11519}
11520
11521/// Diagnose an implicit cast; purely a helper for CheckImplicitConversion.
11522static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
11523 SourceLocation CContext, unsigned diag,
11524 bool pruneControlFlow = false) {
11525 if (pruneControlFlow) {
11526 S.DiagRuntimeBehavior(E->getExprLoc(), E,
11527 S.PDiag(diag)
11528 << SourceType << T << E->getSourceRange()
11529 << SourceRange(CContext));
11530 return;
11531 }
11532 S.Diag(E->getExprLoc(), diag)
11533 << SourceType << T << E->getSourceRange() << SourceRange(CContext);
11534}
11535
11536/// Diagnose an implicit cast; purely a helper for CheckImplicitConversion.
11537static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
11538 SourceLocation CContext,
11539 unsigned diag, bool pruneControlFlow = false) {
11540 DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
11541}
11542
11543static bool isObjCSignedCharBool(Sema &S, QualType Ty) {
11544 return Ty->isSpecificBuiltinType(BuiltinType::SChar) &&
11545 S.getLangOpts().ObjC && S.NSAPIObj->isObjCBOOLType(Ty);
11546}
11547
11548static void adornObjCBoolConversionDiagWithTernaryFixit(
11549 Sema &S, Expr *SourceExpr, const Sema::SemaDiagnosticBuilder &Builder) {
11550 Expr *Ignored = SourceExpr->IgnoreImplicit();
11551 if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ignored))
11552 Ignored = OVE->getSourceExpr();
11553 bool NeedsParens = isa<AbstractConditionalOperator>(Ignored) ||
11554 isa<BinaryOperator>(Ignored) ||
11555 isa<CXXOperatorCallExpr>(Ignored);
11556 SourceLocation EndLoc = S.getLocForEndOfToken(SourceExpr->getEndLoc());
11557 if (NeedsParens)
11558 Builder << FixItHint::CreateInsertion(SourceExpr->getBeginLoc(), "(")
11559 << FixItHint::CreateInsertion(EndLoc, ")");
11560 Builder << FixItHint::CreateInsertion(EndLoc, " ? YES : NO");
11561}
11562
11563/// Diagnose an implicit cast from a floating point value to an integer value.
11564static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T,
11565 SourceLocation CContext) {
11566 const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool);
11567 const bool PruneWarnings = S.inTemplateInstantiation();
11568
11569 Expr *InnerE = E->IgnoreParenImpCasts();
11570 // We also want to warn on, e.g., "int i = -1.234"
11571 if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
11572 if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
11573 InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
11574
11575 const bool IsLiteral =
11576 isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE);
11577
11578 llvm::APFloat Value(0.0);
11579 bool IsConstant =
11580 E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects);
11581 if (!IsConstant) {
11582 if (isObjCSignedCharBool(S, T)) {
11583 return adornObjCBoolConversionDiagWithTernaryFixit(
11584 S, E,
11585 S.Diag(CContext, diag::warn_impcast_float_to_objc_signed_char_bool)
11586 << E->getType());
11587 }
11588
11589 return DiagnoseImpCast(S, E, T, CContext,
11590 diag::warn_impcast_float_integer, PruneWarnings);
11591 }
11592
11593 bool isExact = false;
11594
11595 llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
11596 T->hasUnsignedIntegerRepresentation());
11597 llvm::APFloat::opStatus Result = Value.convertToInteger(
11598 IntegerValue, llvm::APFloat::rmTowardZero, &isExact);
11599
11600 // FIXME: Force the precision of the source value down so we don't print
11601 // digits which are usually useless (we don't really care here if we
11602 // truncate a digit by accident in edge cases). Ideally, APFloat::toString
11603 // would automatically print the shortest representation, but it's a bit
11604 // tricky to implement.
11605 SmallString<16> PrettySourceValue;
11606 unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
11607 precision = (precision * 59 + 195) / 196;
11608 Value.toString(PrettySourceValue, precision);
11609
11610 if (isObjCSignedCharBool(S, T) && IntegerValue != 0 && IntegerValue != 1) {
11611 return adornObjCBoolConversionDiagWithTernaryFixit(
11612 S, E,
11613 S.Diag(CContext, diag::warn_impcast_constant_value_to_objc_bool)
11614 << PrettySourceValue);
11615 }
11616
11617 if (Result == llvm::APFloat::opOK && isExact) {
11618 if (IsLiteral) return;
11619 return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer,
11620 PruneWarnings);
11621 }
11622
11623 // Conversion of a floating-point value to a non-bool integer where the
11624 // integral part cannot be represented by the integer type is undefined.
11625 if (!IsBool && Result == llvm::APFloat::opInvalidOp)
11626 return DiagnoseImpCast(
11627 S, E, T, CContext,
11628 IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range
11629 : diag::warn_impcast_float_to_integer_out_of_range,
11630 PruneWarnings);
11631
11632 unsigned DiagID = 0;
11633 if (IsLiteral) {
11634 // Warn on floating point literal to integer.
11635 DiagID = diag::warn_impcast_literal_float_to_integer;
11636 } else if (IntegerValue == 0) {
11637 if (Value.isZero()) { // Skip -0.0 to 0 conversion.
11638 return DiagnoseImpCast(S, E, T, CContext,
11639 diag::warn_impcast_float_integer, PruneWarnings);
11640 }
11641 // Warn on non-zero to zero conversion.
11642 DiagID = diag::warn_impcast_float_to_integer_zero;
11643 } else {
11644 if (IntegerValue.isUnsigned()) {
11645 if (!IntegerValue.isMaxValue()) {
11646 return DiagnoseImpCast(S, E, T, CContext,
11647 diag::warn_impcast_float_integer, PruneWarnings);
11648 }
11649 } else { // IntegerValue.isSigned()
11650 if (!IntegerValue.isMaxSignedValue() &&
11651 !IntegerValue.isMinSignedValue()) {
11652 return DiagnoseImpCast(S, E, T, CContext,
11653 diag::warn_impcast_float_integer, PruneWarnings);
11654 }
11655 }
11656 // Warn on evaluatable floating point expression to integer conversion.
11657 DiagID = diag::warn_impcast_float_to_integer;
11658 }
11659
11660 SmallString<16> PrettyTargetValue;
11661 if (IsBool)
11662 PrettyTargetValue = Value.isZero() ? "false" : "true";
11663 else
11664 IntegerValue.toString(PrettyTargetValue);
11665
11666 if (PruneWarnings) {
11667 S.DiagRuntimeBehavior(E->getExprLoc(), E,
11668 S.PDiag(DiagID)
11669 << E->getType() << T.getUnqualifiedType()
11670 << PrettySourceValue << PrettyTargetValue
11671 << E->getSourceRange() << SourceRange(CContext));
11672 } else {
11673 S.Diag(E->getExprLoc(), DiagID)
11674 << E->getType() << T.getUnqualifiedType() << PrettySourceValue
11675 << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext);
11676 }
11677}
11678
11679/// Analyze the given compound assignment for the possible losing of
11680/// floating-point precision.
11681static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) {
11682 assert(isa<CompoundAssignOperator>(E) &&((isa<CompoundAssignOperator>(E) && "Must be compound assignment operation"
) ? static_cast<void> (0) : __assert_fail ("isa<CompoundAssignOperator>(E) && \"Must be compound assignment operation\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 11683, __PRETTY_FUNCTION__))
11683 "Must be compound assignment operation")((isa<CompoundAssignOperator>(E) && "Must be compound assignment operation"
) ? static_cast<void> (0) : __assert_fail ("isa<CompoundAssignOperator>(E) && \"Must be compound assignment operation\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 11683, __PRETTY_FUNCTION__))
;
11684 // Recurse on the LHS and RHS in here
11685 AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
11686 AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
11687
11688 if (E->getLHS()->getType()->isAtomicType())
11689 S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst);
11690
11691 // Now check the outermost expression
11692 const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>();
11693 const auto *RBT = cast<CompoundAssignOperator>(E)
11694 ->getComputationResultType()
11695 ->getAs<BuiltinType>();
11696
11697 // The below checks assume source is floating point.
11698 if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return;
11699
11700 // If source is floating point but target is an integer.
11701 if (ResultBT->isInteger())
11702 return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(),
11703 E->getExprLoc(), diag::warn_impcast_float_integer);
11704
11705 if (!ResultBT->isFloatingPoint())
11706 return;
11707
11708 // If both source and target are floating points, warn about losing precision.
11709 int Order = S.getASTContext().getFloatingTypeSemanticOrder(
11710 QualType(ResultBT, 0), QualType(RBT, 0));
11711 if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc()))
11712 // warn about dropping FP rank.
11713 DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(),
11714 diag::warn_impcast_float_result_precision);
11715}
11716
11717static std::string PrettyPrintInRange(const llvm::APSInt &Value,
11718 IntRange Range) {
11719 if (!Range.Width) return "0";
11720
11721 llvm::APSInt ValueInRange = Value;
11722 ValueInRange.setIsSigned(!Range.NonNegative);
11723 ValueInRange = ValueInRange.trunc(Range.Width);
11724 return ValueInRange.toString(10);
11725}
11726
11727static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
11728 if (!isa<ImplicitCastExpr>(Ex))
11729 return false;
11730
11731 Expr *InnerE = Ex->IgnoreParenImpCasts();
11732 const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
11733 const Type *Source =
11734 S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
11735 if (Target->isDependentType())
11736 return false;
11737
11738 const BuiltinType *FloatCandidateBT =
11739 dyn_cast<BuiltinType>(ToBool ? Source : Target);
11740 const Type *BoolCandidateType = ToBool ? Target : Source;
11741
11742 return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
11743 FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
11744}
11745
11746static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
11747 SourceLocation CC) {
11748 unsigned NumArgs = TheCall->getNumArgs();
11749 for (unsigned i = 0; i < NumArgs; ++i) {
11750 Expr *CurrA = TheCall->getArg(i);
11751 if (!IsImplicitBoolFloatConversion(S, CurrA, true))
11752 continue;
11753
11754 bool IsSwapped = ((i > 0) &&
11755 IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
11756 IsSwapped |= ((i < (NumArgs - 1)) &&
11757 IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
11758 if (IsSwapped) {
11759 // Warn on this floating-point to bool conversion.
11760 DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
11761 CurrA->getType(), CC,
11762 diag::warn_impcast_floating_point_to_bool);
11763 }
11764 }
11765}
11766
11767static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T,
11768 SourceLocation CC) {
11769 if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer,
11770 E->getExprLoc()))
11771 return;
11772
11773 // Don't warn on functions which have return type nullptr_t.
11774 if (isa<CallExpr>(E))
11775 return;
11776
11777 // Check for NULL (GNUNull) or nullptr (CXX11_nullptr).
11778 const Expr::NullPointerConstantKind NullKind =
11779 E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull);
11780 if (NullKind != Expr::NPCK_GNUNull && NullKind != Expr::NPCK_CXX11_nullptr)
11781 return;
11782
11783 // Return if target type is a safe conversion.
11784 if (T->isAnyPointerType() || T->isBlockPointerType() ||
11785 T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType())
11786 return;
11787
11788 SourceLocation Loc = E->getSourceRange().getBegin();
11789
11790 // Venture through the macro stacks to get to the source of macro arguments.
11791 // The new location is a better location than the complete location that was
11792 // passed in.
11793 Loc = S.SourceMgr.getTopMacroCallerLoc(Loc);
11794 CC = S.SourceMgr.getTopMacroCallerLoc(CC);
11795
11796 // __null is usually wrapped in a macro. Go up a macro if that is the case.
11797 if (NullKind == Expr::NPCK_GNUNull && Loc.isMacroID()) {
11798 StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics(
11799 Loc, S.SourceMgr, S.getLangOpts());
11800 if (MacroName == "NULL")
11801 Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin();
11802 }
11803
11804 // Only warn if the null and context location are in the same macro expansion.
11805 if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC))
11806 return;
11807
11808 S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
11809 << (NullKind == Expr::NPCK_CXX11_nullptr) << T << SourceRange(CC)
11810 << FixItHint::CreateReplacement(Loc,
11811 S.getFixItZeroLiteralForType(T, Loc));
11812}
11813
11814static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
11815 ObjCArrayLiteral *ArrayLiteral);
11816
11817static void
11818checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
11819 ObjCDictionaryLiteral *DictionaryLiteral);
11820
11821/// Check a single element within a collection literal against the
11822/// target element type.
11823static void checkObjCCollectionLiteralElement(Sema &S,
11824 QualType TargetElementType,
11825 Expr *Element,
11826 unsigned ElementKind) {
11827 // Skip a bitcast to 'id' or qualified 'id'.
11828 if (auto ICE = dyn_cast<ImplicitCastExpr>(Element)) {
11829 if (ICE->getCastKind() == CK_BitCast &&
11830 ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>())
11831 Element = ICE->getSubExpr();
11832 }
11833
11834 QualType ElementType = Element->getType();
11835 ExprResult ElementResult(Element);
11836 if (ElementType->getAs<ObjCObjectPointerType>() &&
11837 S.CheckSingleAssignmentConstraints(TargetElementType,
11838 ElementResult,
11839 false, false)
11840 != Sema::Compatible) {
11841 S.Diag(Element->getBeginLoc(), diag::warn_objc_collection_literal_element)
11842 << ElementType << ElementKind << TargetElementType
11843 << Element->getSourceRange();
11844 }
11845
11846 if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Element))
11847 checkObjCArrayLiteral(S, TargetElementType, ArrayLiteral);
11848 else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Element))
11849 checkObjCDictionaryLiteral(S, TargetElementType, DictionaryLiteral);
11850}
11851
11852/// Check an Objective-C array literal being converted to the given
11853/// target type.
11854static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
11855 ObjCArrayLiteral *ArrayLiteral) {
11856 if (!S.NSArrayDecl)
11857 return;
11858
11859 const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
11860 if (!TargetObjCPtr)
11861 return;
11862
11863 if (TargetObjCPtr->isUnspecialized() ||
11864 TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
11865 != S.NSArrayDecl->getCanonicalDecl())
11866 return;
11867
11868 auto TypeArgs = TargetObjCPtr->getTypeArgs();
11869 if (TypeArgs.size() != 1)
11870 return;
11871
11872 QualType TargetElementType = TypeArgs[0];
11873 for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) {
11874 checkObjCCollectionLiteralElement(S, TargetElementType,
11875 ArrayLiteral->getElement(I),
11876 0);
11877 }
11878}
11879
11880/// Check an Objective-C dictionary literal being converted to the given
11881/// target type.
11882static void
11883checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
11884 ObjCDictionaryLiteral *DictionaryLiteral) {
11885 if (!S.NSDictionaryDecl)
11886 return;
11887
11888 const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
11889 if (!TargetObjCPtr)
11890 return;
11891
11892 if (TargetObjCPtr->isUnspecialized() ||
11893 TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
11894 != S.NSDictionaryDecl->getCanonicalDecl())
11895 return;
11896
11897 auto TypeArgs = TargetObjCPtr->getTypeArgs();
11898 if (TypeArgs.size() != 2)
11899 return;
11900
11901 QualType TargetKeyType = TypeArgs[0];
11902 QualType TargetObjectType = TypeArgs[1];
11903 for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) {
11904 auto Element = DictionaryLiteral->getKeyValueElement(I);
11905 checkObjCCollectionLiteralElement(S, TargetKeyType, Element.Key, 1);
11906 checkObjCCollectionLiteralElement(S, TargetObjectType, Element.Value, 2);
11907 }
11908}
11909
11910// Helper function to filter out cases for constant width constant conversion.
11911// Don't warn on char array initialization or for non-decimal values.
11912static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T,
11913 SourceLocation CC) {
11914 // If initializing from a constant, and the constant starts with '0',
11915 // then it is a binary, octal, or hexadecimal. Allow these constants
11916 // to fill all the bits, even if there is a sign change.
11917 if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) {
11918 const char FirstLiteralCharacter =
11919 S.getSourceManager().getCharacterData(IntLit->getBeginLoc())[0];
11920 if (FirstLiteralCharacter == '0')
11921 return false;
11922 }
11923
11924 // If the CC location points to a '{', and the type is char, then assume
11925 // assume it is an array initialization.
11926 if (CC.isValid() && T->isCharType()) {
11927 const char FirstContextCharacter =
11928 S.getSourceManager().getCharacterData(CC)[0];
11929 if (FirstContextCharacter == '{')
11930 return false;
11931 }
11932
11933 return true;
11934}
11935
11936static const IntegerLiteral *getIntegerLiteral(Expr *E) {
11937 const auto *IL = dyn_cast<IntegerLiteral>(E);
11938 if (!IL) {
11939 if (auto *UO = dyn_cast<UnaryOperator>(E)) {
11940 if (UO->getOpcode() == UO_Minus)
11941 return dyn_cast<IntegerLiteral>(UO->getSubExpr());
11942 }
11943 }
11944
11945 return IL;
11946}
11947
11948static void DiagnoseIntInBoolContext(Sema &S, Expr *E) {
11949 E = E->IgnoreParenImpCasts();
11950 SourceLocation ExprLoc = E->getExprLoc();
11951
11952 if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
11953 BinaryOperator::Opcode Opc = BO->getOpcode();
11954 Expr::EvalResult Result;
11955 // Do not diagnose unsigned shifts.
11956 if (Opc == BO_Shl) {
11957 const auto *LHS = getIntegerLiteral(BO->getLHS());
11958 const auto *RHS = getIntegerLiteral(BO->getRHS());
11959 if (LHS && LHS->getValue() == 0)
11960 S.Diag(ExprLoc, diag::warn_left_shift_always) << 0;
11961 else if (!E->isValueDependent() && LHS && RHS &&
11962 RHS->getValue().isNonNegative() &&
11963 E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects))
11964 S.Diag(ExprLoc, diag::warn_left_shift_always)
11965 << (Result.Val.getInt() != 0);
11966 else if (E->getType()->isSignedIntegerType())
11967 S.Diag(ExprLoc, diag::warn_left_shift_in_bool_context) << E;
11968 }
11969 }
11970
11971 if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
11972 const auto *LHS = getIntegerLiteral(CO->getTrueExpr());
11973 const auto *RHS = getIntegerLiteral(CO->getFalseExpr());
11974 if (!LHS || !RHS)
11975 return;
11976 if ((LHS->getValue() == 0 || LHS->getValue() == 1) &&
11977 (RHS->getValue() == 0 || RHS->getValue() == 1))
11978 // Do not diagnose common idioms.
11979 return;
11980 if (LHS->getValue() != 0 && RHS->getValue() != 0)
11981 S.Diag(ExprLoc, diag::warn_integer_constants_in_conditional_always_true);
11982 }
11983}
11984
11985static void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
11986 SourceLocation CC,
11987 bool *ICContext = nullptr,
11988 bool IsListInit = false) {
11989 if (E->isTypeDependent() || E->isValueDependent()) return;
11990
11991 const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
11992 const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
11993 if (Source == Target) return;
11994 if (Target->isDependentType()) return;
11995
11996 // If the conversion context location is invalid don't complain. We also
11997 // don't want to emit a warning if the issue occurs from the expansion of
11998 // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
11999 // delay this check as long as possible. Once we detect we are in that
12000 // scenario, we just return.
12001 if (CC.isInvalid())
12002 return;
12003
12004 if (Source->isAtomicType())
12005 S.Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst);
12006
12007 // Diagnose implicit casts to bool.
12008 if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
12009 if (isa<StringLiteral>(E))
12010 // Warn on string literal to bool. Checks for string literals in logical
12011 // and expressions, for instance, assert(0 && "error here"), are
12012 // prevented by a check in AnalyzeImplicitConversions().
12013 return DiagnoseImpCast(S, E, T, CC,
12014 diag::warn_impcast_string_literal_to_bool);
12015 if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) ||
12016 isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) {
12017 // This covers the literal expressions that evaluate to Objective-C
12018 // objects.
12019 return DiagnoseImpCast(S, E, T, CC,
12020 diag::warn_impcast_objective_c_literal_to_bool);
12021 }
12022 if (Source->isPointerType() || Source->canDecayToPointerType()) {
12023 // Warn on pointer to bool conversion that is always true.
12024 S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false,
12025 SourceRange(CC));
12026 }
12027 }
12028
12029 // If the we're converting a constant to an ObjC BOOL on a platform where BOOL
12030 // is a typedef for signed char (macOS), then that constant value has to be 1
12031 // or 0.
12032 if (isObjCSignedCharBool(S, T) && Source->isIntegralType(S.Context)) {
12033 Expr::EvalResult Result;
12034 if (E->EvaluateAsInt(Result, S.getASTContext(),
12035 Expr::SE_AllowSideEffects)) {
12036 if (Result.Val.getInt() != 1 && Result.Val.getInt() != 0) {
12037 adornObjCBoolConversionDiagWithTernaryFixit(
12038 S, E,
12039 S.Diag(CC, diag::warn_impcast_constant_value_to_objc_bool)
12040 << Result.Val.getInt().toString(10));
12041 }
12042 return;
12043 }
12044 }
12045
12046 // Check implicit casts from Objective-C collection literals to specialized
12047 // collection types, e.g., NSArray<NSString *> *.
12048 if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E))
12049 checkObjCArrayLiteral(S, QualType(Target, 0), ArrayLiteral);
12050 else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E))
12051 checkObjCDictionaryLiteral(S, QualType(Target, 0), DictionaryLiteral);
12052
12053 // Strip vector types.
12054 if (isa<VectorType>(Source)) {
12055 if (!isa<VectorType>(Target)) {
12056 if (S.SourceMgr.isInSystemMacro(CC))
12057 return;
12058 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
12059 }
12060
12061 // If the vector cast is cast between two vectors of the same size, it is
12062 // a bitcast, not a conversion.
12063 if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
12064 return;
12065
12066 Source = cast<VectorType>(Source)->getElementType().getTypePtr();
12067 Target = cast<VectorType>(Target)->getElementType().getTypePtr();
12068 }
12069 if (auto VecTy = dyn_cast<VectorType>(Target))
12070 Target = VecTy->getElementType().getTypePtr();
12071
12072 // Strip complex types.
12073 if (isa<ComplexType>(Source)) {
12074 if (!isa<ComplexType>(Target)) {
12075 if (S.SourceMgr.isInSystemMacro(CC) || Target->isBooleanType())
12076 return;
12077
12078 return DiagnoseImpCast(S, E, T, CC,
12079 S.getLangOpts().CPlusPlus
12080 ? diag::err_impcast_complex_scalar
12081 : diag::warn_impcast_complex_scalar);
12082 }
12083
12084 Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
12085 Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
12086 }
12087
12088 const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
12089 const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
12090
12091 // If the source is floating point...
12092 if (SourceBT && SourceBT->isFloatingPoint()) {
12093 // ...and the target is floating point...
12094 if (TargetBT && TargetBT->isFloatingPoint()) {
12095 // ...then warn if we're dropping FP rank.
12096
12097 int Order = S.getASTContext().getFloatingTypeSemanticOrder(
12098 QualType(SourceBT, 0), QualType(TargetBT, 0));
12099 if (Order > 0) {
12100 // Don't warn about float constants that are precisely
12101 // representable in the target type.
12102 Expr::EvalResult result;
12103 if (E->EvaluateAsRValue(result, S.Context)) {
12104 // Value might be a float, a float vector, or a float complex.
12105 if (IsSameFloatAfterCast(result.Val,
12106 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
12107 S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
12108 return;
12109 }
12110
12111 if (S.SourceMgr.isInSystemMacro(CC))
12112 return;
12113
12114 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
12115 }
12116 // ... or possibly if we're increasing rank, too
12117 else if (Order < 0) {
12118 if (S.SourceMgr.isInSystemMacro(CC))
12119 return;
12120
12121 DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_double_promotion);
12122 }
12123 return;
12124 }
12125
12126 // If the target is integral, always warn.
12127 if (TargetBT && TargetBT->isInteger()) {
12128 if (S.SourceMgr.isInSystemMacro(CC))
12129 return;
12130
12131 DiagnoseFloatingImpCast(S, E, T, CC);
12132 }
12133
12134 // Detect the case where a call result is converted from floating-point to
12135 // to bool, and the final argument to the call is converted from bool, to
12136 // discover this typo:
12137 //
12138 // bool b = fabs(x < 1.0); // should be "bool b = fabs(x) < 1.0;"
12139 //
12140 // FIXME: This is an incredibly special case; is there some more general
12141 // way to detect this class of misplaced-parentheses bug?
12142 if (Target->isBooleanType() && isa<CallExpr>(E)) {
12143 // Check last argument of function call to see if it is an
12144 // implicit cast from a type matching the type the result
12145 // is being cast to.
12146 CallExpr *CEx = cast<CallExpr>(E);
12147 if (unsigned NumArgs = CEx->getNumArgs()) {
12148 Expr *LastA = CEx->getArg(NumArgs - 1);
12149 Expr *InnerE = LastA->IgnoreParenImpCasts();
12150 if (isa<ImplicitCastExpr>(LastA) &&
12151 InnerE->getType()->isBooleanType()) {
12152 // Warn on this floating-point to bool conversion
12153 DiagnoseImpCast(S, E, T, CC,
12154 diag::warn_impcast_floating_point_to_bool);
12155 }
12156 }
12157 }
12158 return;
12159 }
12160
12161 // Valid casts involving fixed point types should be accounted for here.
12162 if (Source->isFixedPointType()) {
12163 if (Target->isUnsaturatedFixedPointType()) {
12164 Expr::EvalResult Result;
12165 if (E->EvaluateAsFixedPoint(Result, S.Context, Expr::SE_AllowSideEffects,
12166 S.isConstantEvaluated())) {
12167 llvm::APFixedPoint Value = Result.Val.getFixedPoint();
12168 llvm::APFixedPoint MaxVal = S.Context.getFixedPointMax(T);
12169 llvm::APFixedPoint MinVal = S.Context.getFixedPointMin(T);
12170 if (Value > MaxVal || Value < MinVal) {
12171 S.DiagRuntimeBehavior(E->getExprLoc(), E,
12172 S.PDiag(diag::warn_impcast_fixed_point_range)
12173 << Value.toString() << T
12174 << E->getSourceRange()
12175 << clang::SourceRange(CC));
12176 return;
12177 }
12178 }
12179 } else if (Target->isIntegerType()) {
12180 Expr::EvalResult Result;
12181 if (!S.isConstantEvaluated() &&
12182 E->EvaluateAsFixedPoint(Result, S.Context,
12183 Expr::SE_AllowSideEffects)) {
12184 llvm::APFixedPoint FXResult = Result.Val.getFixedPoint();
12185
12186 bool Overflowed;
12187 llvm::APSInt IntResult = FXResult.convertToInt(
12188 S.Context.getIntWidth(T),
12189 Target->isSignedIntegerOrEnumerationType(), &Overflowed);
12190
12191 if (Overflowed) {
12192 S.DiagRuntimeBehavior(E->getExprLoc(), E,
12193 S.PDiag(diag::warn_impcast_fixed_point_range)
12194 << FXResult.toString() << T
12195 << E->getSourceRange()
12196 << clang::SourceRange(CC));
12197 return;
12198 }
12199 }
12200 }
12201 } else if (Target->isUnsaturatedFixedPointType()) {
12202 if (Source->isIntegerType()) {
12203 Expr::EvalResult Result;
12204 if (!S.isConstantEvaluated() &&
12205 E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) {
12206 llvm::APSInt Value = Result.Val.getInt();
12207
12208 bool Overflowed;
12209 llvm::APFixedPoint IntResult = llvm::APFixedPoint::getFromIntValue(
12210 Value, S.Context.getFixedPointSemantics(T), &Overflowed);
12211
12212 if (Overflowed) {
12213 S.DiagRuntimeBehavior(E->getExprLoc(), E,
12214 S.PDiag(diag::warn_impcast_fixed_point_range)
12215 << Value.toString(/*Radix=*/10) << T
12216 << E->getSourceRange()
12217 << clang::SourceRange(CC));
12218 return;
12219 }
12220 }
12221 }
12222 }
12223
12224 // If we are casting an integer type to a floating point type without
12225 // initialization-list syntax, we might lose accuracy if the floating
12226 // point type has a narrower significand than the integer type.
12227 if (SourceBT && TargetBT && SourceBT->isIntegerType() &&
12228 TargetBT->isFloatingType() && !IsListInit) {
12229 // Determine the number of precision bits in the source integer type.
12230 IntRange SourceRange = GetExprRange(S.Context, E, S.isConstantEvaluated(),
12231 /*Approximate*/ true);
12232 unsigned int SourcePrecision = SourceRange.Width;
12233
12234 // Determine the number of precision bits in the
12235 // target floating point type.
12236 unsigned int TargetPrecision = llvm::APFloatBase::semanticsPrecision(
12237 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
12238
12239 if (SourcePrecision > 0 && TargetPrecision > 0 &&
12240 SourcePrecision > TargetPrecision) {
12241
12242 if (Optional<llvm::APSInt> SourceInt =
12243 E->getIntegerConstantExpr(S.Context)) {
12244 // If the source integer is a constant, convert it to the target
12245 // floating point type. Issue a warning if the value changes
12246 // during the whole conversion.
12247 llvm::APFloat TargetFloatValue(
12248 S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
12249 llvm::APFloat::opStatus ConversionStatus =
12250 TargetFloatValue.convertFromAPInt(
12251 *SourceInt, SourceBT->isSignedInteger(),
12252 llvm::APFloat::rmNearestTiesToEven);
12253
12254 if (ConversionStatus != llvm::APFloat::opOK) {
12255 std::string PrettySourceValue = SourceInt->toString(10);
12256 SmallString<32> PrettyTargetValue;
12257 TargetFloatValue.toString(PrettyTargetValue, TargetPrecision);
12258
12259 S.DiagRuntimeBehavior(
12260 E->getExprLoc(), E,
12261 S.PDiag(diag::warn_impcast_integer_float_precision_constant)
12262 << PrettySourceValue << PrettyTargetValue << E->getType() << T
12263 << E->getSourceRange() << clang::SourceRange(CC));
12264 }
12265 } else {
12266 // Otherwise, the implicit conversion may lose precision.
12267 DiagnoseImpCast(S, E, T, CC,
12268 diag::warn_impcast_integer_float_precision);
12269 }
12270 }
12271 }
12272
12273 DiagnoseNullConversion(S, E, T, CC);
12274
12275 S.DiscardMisalignedMemberAddress(Target, E);
12276
12277 if (Target->isBooleanType())
12278 DiagnoseIntInBoolContext(S, E);
12279
12280 if (!Source->isIntegerType() || !Target->isIntegerType())
12281 return;
12282
12283 // TODO: remove this early return once the false positives for constant->bool
12284 // in templates, macros, etc, are reduced or removed.
12285 if (Target->isSpecificBuiltinType(BuiltinType::Bool))
12286 return;
12287
12288 if (isObjCSignedCharBool(S, T) && !Source->isCharType() &&
12289 !E->isKnownToHaveBooleanValue(/*Semantic=*/false)) {
12290 return adornObjCBoolConversionDiagWithTernaryFixit(
12291 S, E,
12292 S.Diag(CC, diag::warn_impcast_int_to_objc_signed_char_bool)
12293 << E->getType());
12294 }
12295
12296 IntRange SourceTypeRange =
12297 IntRange::forTargetOfCanonicalType(S.Context, Source);
12298 IntRange LikelySourceRange =
12299 GetExprRange(S.Context, E, S.isConstantEvaluated(), /*Approximate*/ true);
12300 IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
12301
12302 if (LikelySourceRange.Width > TargetRange.Width) {
12303 // If the source is a constant, use a default-on diagnostic.
12304 // TODO: this should happen for bitfield stores, too.
12305 Expr::EvalResult Result;
12306 if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects,
12307 S.isConstantEvaluated())) {
12308 llvm::APSInt Value(32);
12309 Value = Result.Val.getInt();
12310
12311 if (S.SourceMgr.isInSystemMacro(CC))
12312 return;
12313
12314 std::string PrettySourceValue = Value.toString(10);
12315 std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
12316
12317 S.DiagRuntimeBehavior(
12318 E->getExprLoc(), E,
12319 S.PDiag(diag::warn_impcast_integer_precision_constant)
12320 << PrettySourceValue << PrettyTargetValue << E->getType() << T
12321 << E->getSourceRange() << SourceRange(CC));
12322 return;
12323 }
12324
12325 // People want to build with -Wshorten-64-to-32 and not -Wconversion.
12326 if (S.SourceMgr.isInSystemMacro(CC))
12327 return;
12328
12329 if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
12330 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
12331 /* pruneControlFlow */ true);
12332 return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
12333 }
12334
12335 if (TargetRange.Width > SourceTypeRange.Width) {
12336 if (auto *UO = dyn_cast<UnaryOperator>(E))
12337 if (UO->getOpcode() == UO_Minus)
12338 if (Source->isUnsignedIntegerType()) {
12339 if (Target->isUnsignedIntegerType())
12340 return DiagnoseImpCast(S, E, T, CC,
12341 diag::warn_impcast_high_order_zero_bits);
12342 if (Target->isSignedIntegerType())
12343 return DiagnoseImpCast(S, E, T, CC,
12344 diag::warn_impcast_nonnegative_result);
12345 }
12346 }
12347
12348 if (TargetRange.Width == LikelySourceRange.Width &&
12349 !TargetRange.NonNegative && LikelySourceRange.NonNegative &&
12350 Source->isSignedIntegerType()) {
12351 // Warn when doing a signed to signed conversion, warn if the positive
12352 // source value is exactly the width of the target type, which will
12353 // cause a negative value to be stored.
12354
12355 Expr::EvalResult Result;
12356 if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects) &&
12357 !S.SourceMgr.isInSystemMacro(CC)) {
12358 llvm::APSInt Value = Result.Val.getInt();
12359 if (isSameWidthConstantConversion(S, E, T, CC)) {
12360 std::string PrettySourceValue = Value.toString(10);
12361 std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
12362
12363 S.DiagRuntimeBehavior(
12364 E->getExprLoc(), E,
12365 S.PDiag(diag::warn_impcast_integer_precision_constant)
12366 << PrettySourceValue << PrettyTargetValue << E->getType() << T
12367 << E->getSourceRange() << SourceRange(CC));
12368 return;
12369 }
12370 }
12371
12372 // Fall through for non-constants to give a sign conversion warning.
12373 }
12374
12375 if ((TargetRange.NonNegative && !LikelySourceRange.NonNegative) ||
12376 (!TargetRange.NonNegative && LikelySourceRange.NonNegative &&
12377 LikelySourceRange.Width == TargetRange.Width)) {
12378 if (S.SourceMgr.isInSystemMacro(CC))
12379 return;
12380
12381 unsigned DiagID = diag::warn_impcast_integer_sign;
12382
12383 // Traditionally, gcc has warned about this under -Wsign-compare.
12384 // We also want to warn about it in -Wconversion.
12385 // So if -Wconversion is off, use a completely identical diagnostic
12386 // in the sign-compare group.
12387 // The conditional-checking code will
12388 if (ICContext) {
12389 DiagID = diag::warn_impcast_integer_sign_conditional;
12390 *ICContext = true;
12391 }
12392
12393 return DiagnoseImpCast(S, E, T, CC, DiagID);
12394 }
12395
12396 // Diagnose conversions between different enumeration types.
12397 // In C, we pretend that the type of an EnumConstantDecl is its enumeration
12398 // type, to give us better diagnostics.
12399 QualType SourceType = E->getType();
12400 if (!S.getLangOpts().CPlusPlus) {
12401 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
12402 if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
12403 EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
12404 SourceType = S.Context.getTypeDeclType(Enum);
12405 Source = S.Context.getCanonicalType(SourceType).getTypePtr();
12406 }
12407 }
12408
12409 if (const EnumType *SourceEnum = Source->getAs<EnumType>())
12410 if (const EnumType *TargetEnum = Target->getAs<EnumType>())
12411 if (SourceEnum->getDecl()->hasNameForLinkage() &&
12412 TargetEnum->getDecl()->hasNameForLinkage() &&
12413 SourceEnum != TargetEnum) {
12414 if (S.SourceMgr.isInSystemMacro(CC))
12415 return;
12416
12417 return DiagnoseImpCast(S, E, SourceType, T, CC,
12418 diag::warn_impcast_different_enum_types);
12419 }
12420}
12421
12422static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
12423 SourceLocation CC, QualType T);
12424
12425static void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
12426 SourceLocation CC, bool &ICContext) {
12427 E = E->IgnoreParenImpCasts();
12428
12429 if (auto *CO = dyn_cast<AbstractConditionalOperator>(E))
12430 return CheckConditionalOperator(S, CO, CC, T);
12431
12432 AnalyzeImplicitConversions(S, E, CC);
12433 if (E->getType() != T)
12434 return CheckImplicitConversion(S, E, T, CC, &ICContext);
12435}
12436
12437static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
12438 SourceLocation CC, QualType T) {
12439 AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc());
12440
12441 Expr *TrueExpr = E->getTrueExpr();
12442 if (auto *BCO = dyn_cast<BinaryConditionalOperator>(E))
12443 TrueExpr = BCO->getCommon();
12444
12445 bool Suspicious = false;
12446 CheckConditionalOperand(S, TrueExpr, T, CC, Suspicious);
12447 CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
12448
12449 if (T->isBooleanType())
12450 DiagnoseIntInBoolContext(S, E);
12451
12452 // If -Wconversion would have warned about either of the candidates
12453 // for a signedness conversion to the context type...
12454 if (!Suspicious) return;
12455
12456 // ...but it's currently ignored...
12457 if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC))
12458 return;
12459
12460 // ...then check whether it would have warned about either of the
12461 // candidates for a signedness conversion to the condition type.
12462 if (E->getType() == T) return;
12463
12464 Suspicious = false;
12465 CheckImplicitConversion(S, TrueExpr->IgnoreParenImpCasts(),
12466 E->getType(), CC, &Suspicious);
12467 if (!Suspicious)
12468 CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
12469 E->getType(), CC, &Suspicious);
12470}
12471
12472/// Check conversion of given expression to boolean.
12473/// Input argument E is a logical expression.
12474static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) {
12475 if (S.getLangOpts().Bool)
12476 return;
12477 if (E->IgnoreParenImpCasts()->getType()->isAtomicType())
12478 return;
12479 CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC);
12480}
12481
12482namespace {
12483struct AnalyzeImplicitConversionsWorkItem {
12484 Expr *E;
12485 SourceLocation CC;
12486 bool IsListInit;
12487};
12488}
12489
12490/// Data recursive variant of AnalyzeImplicitConversions. Subexpressions
12491/// that should be visited are added to WorkList.
12492static void AnalyzeImplicitConversions(
12493 Sema &S, AnalyzeImplicitConversionsWorkItem Item,
12494 llvm::SmallVectorImpl<AnalyzeImplicitConversionsWorkItem> &WorkList) {
12495 Expr *OrigE = Item.E;
12496 SourceLocation CC = Item.CC;
12497
12498 QualType T = OrigE->getType();
12499 Expr *E = OrigE->IgnoreParenImpCasts();
12500
12501 // Propagate whether we are in a C++ list initialization expression.
12502 // If so, we do not issue warnings for implicit int-float conversion
12503 // precision loss, because C++11 narrowing already handles it.
12504 bool IsListInit = Item.IsListInit ||
12505 (isa<InitListExpr>(OrigE) && S.getLangOpts().CPlusPlus);
12506
12507 if (E->isTypeDependent() || E->isValueDependent())
12508 return;
12509
12510 Expr *SourceExpr = E;
12511 // Examine, but don't traverse into the source expression of an
12512 // OpaqueValueExpr, since it may have multiple parents and we don't want to
12513 // emit duplicate diagnostics. Its fine to examine the form or attempt to
12514 // evaluate it in the context of checking the specific conversion to T though.
12515 if (auto *OVE = dyn_cast<OpaqueValueExpr>(E))
12516 if (auto *Src = OVE->getSourceExpr())
12517 SourceExpr = Src;
12518
12519 if (const auto *UO = dyn_cast<UnaryOperator>(SourceExpr))
12520 if (UO->getOpcode() == UO_Not &&
12521 UO->getSubExpr()->isKnownToHaveBooleanValue())
12522 S.Diag(UO->getBeginLoc(), diag::warn_bitwise_negation_bool)
12523 << OrigE->getSourceRange() << T->isBooleanType()
12524 << FixItHint::CreateReplacement(UO->getBeginLoc(), "!");
12525
12526 // For conditional operators, we analyze the arguments as if they
12527 // were being fed directly into the output.
12528 if (auto *CO = dyn_cast<AbstractConditionalOperator>(SourceExpr)) {
12529 CheckConditionalOperator(S, CO, CC, T);
12530 return;
12531 }
12532
12533 // Check implicit argument conversions for function calls.
12534 if (CallExpr *Call = dyn_cast<CallExpr>(SourceExpr))
12535 CheckImplicitArgumentConversions(S, Call, CC);
12536
12537 // Go ahead and check any implicit conversions we might have skipped.
12538 // The non-canonical typecheck is just an optimization;
12539 // CheckImplicitConversion will filter out dead implicit conversions.
12540 if (SourceExpr->getType() != T)
12541 CheckImplicitConversion(S, SourceExpr, T, CC, nullptr, IsListInit);
12542
12543 // Now continue drilling into this expression.
12544
12545 if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
12546 // The bound subexpressions in a PseudoObjectExpr are not reachable
12547 // as transitive children.
12548 // FIXME: Use a more uniform representation for this.
12549 for (auto *SE : POE->semantics())
12550 if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE))
12551 WorkList.push_back({OVE->getSourceExpr(), CC, IsListInit});
12552 }
12553
12554 // Skip past explicit casts.
12555 if (auto *CE = dyn_cast<ExplicitCastExpr>(E)) {
12556 E = CE->getSubExpr()->IgnoreParenImpCasts();
12557 if (!CE->getType()->isVoidType() && E->getType()->isAtomicType())
12558 S.Diag(E->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
12559 WorkList.push_back({E, CC, IsListInit});
12560 return;
12561 }
12562
12563 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
12564 // Do a somewhat different check with comparison operators.
12565 if (BO->isComparisonOp())
12566 return AnalyzeComparison(S, BO);
12567
12568 // And with simple assignments.
12569 if (BO->getOpcode() == BO_Assign)
12570 return AnalyzeAssignment(S, BO);
12571 // And with compound assignments.
12572 if (BO->isAssignmentOp())
12573 return AnalyzeCompoundAssignment(S, BO);
12574 }
12575
12576 // These break the otherwise-useful invariant below. Fortunately,
12577 // we don't really need to recurse into them, because any internal
12578 // expressions should have been analyzed already when they were
12579 // built into statements.
12580 if (isa<StmtExpr>(E)) return;
12581
12582 // Don't descend into unevaluated contexts.
12583 if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
12584
12585 // Now just recurse over the expression's children.
12586 CC = E->getExprLoc();
12587 BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
12588 bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd;
12589 for (Stmt *SubStmt : E->children()) {
12590 Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt);
12591 if (!ChildExpr)
12592 continue;
12593
12594 if (IsLogicalAndOperator &&
12595 isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
12596 // Ignore checking string literals that are in logical and operators.
12597 // This is a common pattern for asserts.
12598 continue;
12599 WorkList.push_back({ChildExpr, CC, IsListInit});
12600 }
12601
12602 if (BO && BO->isLogicalOp()) {
12603 Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts();
12604 if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
12605 ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
12606
12607 SubExpr = BO->getRHS()->IgnoreParenImpCasts();
12608 if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
12609 ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
12610 }
12611
12612 if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E)) {
12613 if (U->getOpcode() == UO_LNot) {
12614 ::CheckBoolLikeConversion(S, U->getSubExpr(), CC);
12615 } else if (U->getOpcode() != UO_AddrOf) {
12616 if (U->getSubExpr()->getType()->isAtomicType())
12617 S.Diag(U->getSubExpr()->getBeginLoc(),
12618 diag::warn_atomic_implicit_seq_cst);
12619 }
12620 }
12621}
12622
12623/// AnalyzeImplicitConversions - Find and report any interesting
12624/// implicit conversions in the given expression. There are a couple
12625/// of competing diagnostics here, -Wconversion and -Wsign-compare.
12626static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC,
12627 bool IsListInit/*= false*/) {
12628 llvm::SmallVector<AnalyzeImplicitConversionsWorkItem, 16> WorkList;
12629 WorkList.push_back({OrigE, CC, IsListInit});
12630 while (!WorkList.empty())
12631 AnalyzeImplicitConversions(S, WorkList.pop_back_val(), WorkList);
12632}
12633
12634/// Diagnose integer type and any valid implicit conversion to it.
12635static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, const QualType &IntT) {
12636 // Taking into account implicit conversions,
12637 // allow any integer.
12638 if (!E->getType()->isIntegerType()) {
12639 S.Diag(E->getBeginLoc(),
12640 diag::err_opencl_enqueue_kernel_invalid_local_size_type);
12641 return true;
12642 }
12643 // Potentially emit standard warnings for implicit conversions if enabled
12644 // using -Wconversion.
12645 CheckImplicitConversion(S, E, IntT, E->getBeginLoc());
12646 return false;
12647}
12648
12649// Helper function for Sema::DiagnoseAlwaysNonNullPointer.
12650// Returns true when emitting a warning about taking the address of a reference.
12651static bool CheckForReference(Sema &SemaRef, const Expr *E,
12652 const PartialDiagnostic &PD) {
12653 E = E->IgnoreParenImpCasts();
12654
12655 const FunctionDecl *FD = nullptr;
12656
12657 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
12658 if (!DRE->getDecl()->getType()->isReferenceType())
12659 return false;
12660 } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) {
12661 if (!M->getMemberDecl()->getType()->isReferenceType())
12662 return false;
12663 } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) {
12664 if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType())
12665 return false;
12666 FD = Call->getDirectCallee();
12667 } else {
12668 return false;
12669 }
12670
12671 SemaRef.Diag(E->getExprLoc(), PD);
12672
12673 // If possible, point to location of function.
12674 if (FD) {
12675 SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD;
12676 }
12677
12678 return true;
12679}
12680
12681// Returns true if the SourceLocation is expanded from any macro body.
12682// Returns false if the SourceLocation is invalid, is from not in a macro
12683// expansion, or is from expanded from a top-level macro argument.
12684static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) {
12685 if (Loc.isInvalid())
12686 return false;
12687
12688 while (Loc.isMacroID()) {
12689 if (SM.isMacroBodyExpansion(Loc))
12690 return true;
12691 Loc = SM.getImmediateMacroCallerLoc(Loc);
12692 }
12693
12694 return false;
12695}
12696
12697/// Diagnose pointers that are always non-null.
12698/// \param E the expression containing the pointer
12699/// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is
12700/// compared to a null pointer
12701/// \param IsEqual True when the comparison is equal to a null pointer
12702/// \param Range Extra SourceRange to highlight in the diagnostic
12703void Sema::DiagnoseAlwaysNonNullPointer(Expr *E,
12704 Expr::NullPointerConstantKind NullKind,
12705 bool IsEqual, SourceRange Range) {
12706 if (!E)
12707 return;
12708
12709 // Don't warn inside macros.
12710 if (E->getExprLoc().isMacroID()) {
12711 const SourceManager &SM = getSourceManager();
12712 if (IsInAnyMacroBody(SM, E->getExprLoc()) ||
12713 IsInAnyMacroBody(SM, Range.getBegin()))
12714 return;
12715 }
12716 E = E->IgnoreImpCasts();
12717
12718 const bool IsCompare = NullKind != Expr::NPCK_NotNull;
12719
12720 if (isa<CXXThisExpr>(E)) {
12721 unsigned DiagID = IsCompare ? diag::warn_this_null_compare
12722 : diag::warn_this_bool_conversion;
12723 Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual;
12724 return;
12725 }
12726
12727 bool IsAddressOf = false;
12728
12729 if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
12730 if (UO->getOpcode() != UO_AddrOf)
12731 return;
12732 IsAddressOf = true;
12733 E = UO->getSubExpr();
12734 }
12735
12736 if (IsAddressOf) {
12737 unsigned DiagID = IsCompare
12738 ? diag::warn_address_of_reference_null_compare
12739 : diag::warn_address_of_reference_bool_conversion;
12740 PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range
12741 << IsEqual;
12742 if (CheckForReference(*this, E, PD)) {
12743 return;
12744 }
12745 }
12746
12747 auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) {
12748 bool IsParam = isa<NonNullAttr>(NonnullAttr);
12749 std::string Str;
12750 llvm::raw_string_ostream S(Str);
12751 E->printPretty(S, nullptr, getPrintingPolicy());
12752 unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare
12753 : diag::warn_cast_nonnull_to_bool;
12754 Diag(E->getExprLoc(), DiagID) << IsParam << S.str()
12755 << E->getSourceRange() << Range << IsEqual;
12756 Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam;
12757 };
12758
12759 // If we have a CallExpr that is tagged with returns_nonnull, we can complain.
12760 if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) {
12761 if (auto *Callee = Call->getDirectCallee()) {
12762 if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) {
12763 ComplainAboutNonnullParamOrCall(A);
12764 return;
12765 }
12766 }
12767 }
12768
12769 // Expect to find a single Decl. Skip anything more complicated.
12770 ValueDecl *D = nullptr;
12771 if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) {
12772 D = R->getDecl();
12773 } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
12774 D = M->getMemberDecl();
12775 }
12776
12777 // Weak Decls can be null.
12778 if (!D || D->isWeak())
12779 return;
12780
12781 // Check for parameter decl with nonnull attribute
12782 if (const auto* PV = dyn_cast<ParmVarDecl>(D)) {
12783 if (getCurFunction() &&
12784 !getCurFunction()->ModifiedNonNullParams.count(PV)) {
12785 if (const Attr *A = PV->getAttr<NonNullAttr>()) {
12786 ComplainAboutNonnullParamOrCall(A);
12787 return;
12788 }
12789
12790 if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) {
12791 // Skip function template not specialized yet.
12792 if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
12793 return;
12794 auto ParamIter = llvm::find(FD->parameters(), PV);
12795 assert(ParamIter != FD->param_end())((ParamIter != FD->param_end()) ? static_cast<void> (
0) : __assert_fail ("ParamIter != FD->param_end()", "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 12795, __PRETTY_FUNCTION__))
;
12796 unsigned ParamNo = std::distance(FD->param_begin(), ParamIter);
12797
12798 for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) {
12799 if (!NonNull->args_size()) {
12800 ComplainAboutNonnullParamOrCall(NonNull);
12801 return;
12802 }
12803
12804 for (const ParamIdx &ArgNo : NonNull->args()) {
12805 if (ArgNo.getASTIndex() == ParamNo) {
12806 ComplainAboutNonnullParamOrCall(NonNull);
12807 return;
12808 }
12809 }
12810 }
12811 }
12812 }
12813 }
12814
12815 QualType T = D->getType();
12816 const bool IsArray = T->isArrayType();
12817 const bool IsFunction = T->isFunctionType();
12818
12819 // Address of function is used to silence the function warning.
12820 if (IsAddressOf && IsFunction) {
12821 return;
12822 }
12823
12824 // Found nothing.
12825 if (!IsAddressOf && !IsFunction && !IsArray)
12826 return;
12827
12828 // Pretty print the expression for the diagnostic.
12829 std::string Str;
12830 llvm::raw_string_ostream S(Str);
12831 E->printPretty(S, nullptr, getPrintingPolicy());
12832
12833 unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare
12834 : diag::warn_impcast_pointer_to_bool;
12835 enum {
12836 AddressOf,
12837 FunctionPointer,
12838 ArrayPointer
12839 } DiagType;
12840 if (IsAddressOf)
12841 DiagType = AddressOf;
12842 else if (IsFunction)
12843 DiagType = FunctionPointer;
12844 else if (IsArray)
12845 DiagType = ArrayPointer;
12846 else
12847 llvm_unreachable("Could not determine diagnostic.")::llvm::llvm_unreachable_internal("Could not determine diagnostic."
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 12847)
;
12848 Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange()
12849 << Range << IsEqual;
12850
12851 if (!IsFunction)
12852 return;
12853
12854 // Suggest '&' to silence the function warning.
12855 Diag(E->getExprLoc(), diag::note_function_warning_silence)
12856 << FixItHint::CreateInsertion(E->getBeginLoc(), "&");
12857
12858 // Check to see if '()' fixit should be emitted.
12859 QualType ReturnType;
12860 UnresolvedSet<4> NonTemplateOverloads;
12861 tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
12862 if (ReturnType.isNull())
12863 return;
12864
12865 if (IsCompare) {
12866 // There are two cases here. If there is null constant, the only suggest
12867 // for a pointer return type. If the null is 0, then suggest if the return
12868 // type is a pointer or an integer type.
12869 if (!ReturnType->isPointerType()) {
12870 if (NullKind == Expr::NPCK_ZeroExpression ||
12871 NullKind == Expr::NPCK_ZeroLiteral) {
12872 if (!ReturnType->isIntegerType())
12873 return;
12874 } else {
12875 return;
12876 }
12877 }
12878 } else { // !IsCompare
12879 // For function to bool, only suggest if the function pointer has bool
12880 // return type.
12881 if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
12882 return;
12883 }
12884 Diag(E->getExprLoc(), diag::note_function_to_function_call)
12885 << FixItHint::CreateInsertion(getLocForEndOfToken(E->getEndLoc()), "()");
12886}
12887
12888/// Diagnoses "dangerous" implicit conversions within the given
12889/// expression (which is a full expression). Implements -Wconversion
12890/// and -Wsign-compare.
12891///
12892/// \param CC the "context" location of the implicit conversion, i.e.
12893/// the most location of the syntactic entity requiring the implicit
12894/// conversion
12895void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
12896 // Don't diagnose in unevaluated contexts.
12897 if (isUnevaluatedContext())
12898 return;
12899
12900 // Don't diagnose for value- or type-dependent expressions.
12901 if (E->isTypeDependent() || E->isValueDependent())
12902 return;
12903
12904 // Check for array bounds violations in cases where the check isn't triggered
12905 // elsewhere for other Expr types (like BinaryOperators), e.g. when an
12906 // ArraySubscriptExpr is on the RHS of a variable initialization.
12907 CheckArrayAccess(E);
12908
12909 // This is not the right CC for (e.g.) a variable initialization.
12910 AnalyzeImplicitConversions(*this, E, CC);
12911}
12912
12913/// CheckBoolLikeConversion - Check conversion of given expression to boolean.
12914/// Input argument E is a logical expression.
12915void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) {
12916 ::CheckBoolLikeConversion(*this, E, CC);
12917}
12918
12919/// Diagnose when expression is an integer constant expression and its evaluation
12920/// results in integer overflow
12921void Sema::CheckForIntOverflow (Expr *E) {
12922 // Use a work list to deal with nested struct initializers.
12923 SmallVector<Expr *, 2> Exprs(1, E);
12924
12925 do {
12926 Expr *OriginalE = Exprs.pop_back_val();
12927 Expr *E = OriginalE->IgnoreParenCasts();
12928
12929 if (isa<BinaryOperator>(E)) {
12930 E->EvaluateForOverflow(Context);
12931 continue;
12932 }
12933
12934 if (auto InitList = dyn_cast<InitListExpr>(OriginalE))
12935 Exprs.append(InitList->inits().begin(), InitList->inits().end());
12936 else if (isa<ObjCBoxedExpr>(OriginalE))
12937 E->EvaluateForOverflow(Context);
12938 else if (auto Call = dyn_cast<CallExpr>(E))
12939 Exprs.append(Call->arg_begin(), Call->arg_end());
12940 else if (auto Message = dyn_cast<ObjCMessageExpr>(E))
12941 Exprs.append(Message->arg_begin(), Message->arg_end());
12942 } while (!Exprs.empty());
12943}
12944
12945namespace {
12946
12947/// Visitor for expressions which looks for unsequenced operations on the
12948/// same object.
12949class SequenceChecker : public ConstEvaluatedExprVisitor<SequenceChecker> {
12950 using Base = ConstEvaluatedExprVisitor<SequenceChecker>;
12951
12952 /// A tree of sequenced regions within an expression. Two regions are
12953 /// unsequenced if one is an ancestor or a descendent of the other. When we
12954 /// finish processing an expression with sequencing, such as a comma
12955 /// expression, we fold its tree nodes into its parent, since they are
12956 /// unsequenced with respect to nodes we will visit later.
12957 class SequenceTree {
12958 struct Value {
12959 explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
12960 unsigned Parent : 31;
12961 unsigned Merged : 1;
12962 };
12963 SmallVector<Value, 8> Values;
12964
12965 public:
12966 /// A region within an expression which may be sequenced with respect
12967 /// to some other region.
12968 class Seq {
12969 friend class SequenceTree;
12970
12971 unsigned Index;
12972
12973 explicit Seq(unsigned N) : Index(N) {}
12974
12975 public:
12976 Seq() : Index(0) {}
12977 };
12978
12979 SequenceTree() { Values.push_back(Value(0)); }
12980 Seq root() const { return Seq(0); }
12981
12982 /// Create a new sequence of operations, which is an unsequenced
12983 /// subset of \p Parent. This sequence of operations is sequenced with
12984 /// respect to other children of \p Parent.
12985 Seq allocate(Seq Parent) {
12986 Values.push_back(Value(Parent.Index));
12987 return Seq(Values.size() - 1);
12988 }
12989
12990 /// Merge a sequence of operations into its parent.
12991 void merge(Seq S) {
12992 Values[S.Index].Merged = true;
12993 }
12994
12995 /// Determine whether two operations are unsequenced. This operation
12996 /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
12997 /// should have been merged into its parent as appropriate.
12998 bool isUnsequenced(Seq Cur, Seq Old) {
12999 unsigned C = representative(Cur.Index);
13000 unsigned Target = representative(Old.Index);
13001 while (C >= Target) {
13002 if (C == Target)
13003 return true;
13004 C = Values[C].Parent;
13005 }
13006 return false;
13007 }
13008
13009 private:
13010 /// Pick a representative for a sequence.
13011 unsigned representative(unsigned K) {
13012 if (Values[K].Merged)
13013 // Perform path compression as we go.
13014 return Values[K].Parent = representative(Values[K].Parent);
13015 return K;
13016 }
13017 };
13018
13019 /// An object for which we can track unsequenced uses.
13020 using Object = const NamedDecl *;
13021
13022 /// Different flavors of object usage which we track. We only track the
13023 /// least-sequenced usage of each kind.
13024 enum UsageKind {
13025 /// A read of an object. Multiple unsequenced reads are OK.
13026 UK_Use,
13027
13028 /// A modification of an object which is sequenced before the value
13029 /// computation of the expression, such as ++n in C++.
13030 UK_ModAsValue,
13031
13032 /// A modification of an object which is not sequenced before the value
13033 /// computation of the expression, such as n++.
13034 UK_ModAsSideEffect,
13035
13036 UK_Count = UK_ModAsSideEffect + 1
13037 };
13038
13039 /// Bundle together a sequencing region and the expression corresponding
13040 /// to a specific usage. One Usage is stored for each usage kind in UsageInfo.
13041 struct Usage {
13042 const Expr *UsageExpr;
13043 SequenceTree::Seq Seq;
13044
13045 Usage() : UsageExpr(nullptr), Seq() {}
13046 };
13047
13048 struct UsageInfo {
13049 Usage Uses[UK_Count];
13050
13051 /// Have we issued a diagnostic for this object already?
13052 bool Diagnosed;
13053
13054 UsageInfo() : Uses(), Diagnosed(false) {}
13055 };
13056 using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>;
13057
13058 Sema &SemaRef;
13059
13060 /// Sequenced regions within the expression.
13061 SequenceTree Tree;
13062
13063 /// Declaration modifications and references which we have seen.
13064 UsageInfoMap UsageMap;
13065
13066 /// The region we are currently within.
13067 SequenceTree::Seq Region;
13068
13069 /// Filled in with declarations which were modified as a side-effect
13070 /// (that is, post-increment operations).
13071 SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr;
13072
13073 /// Expressions to check later. We defer checking these to reduce
13074 /// stack usage.
13075 SmallVectorImpl<const Expr *> &WorkList;
13076
13077 /// RAII object wrapping the visitation of a sequenced subexpression of an
13078 /// expression. At the end of this process, the side-effects of the evaluation
13079 /// become sequenced with respect to the value computation of the result, so
13080 /// we downgrade any UK_ModAsSideEffect within the evaluation to
13081 /// UK_ModAsValue.
13082 struct SequencedSubexpression {
13083 SequencedSubexpression(SequenceChecker &Self)
13084 : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
13085 Self.ModAsSideEffect = &ModAsSideEffect;
13086 }
13087
13088 ~SequencedSubexpression() {
13089 for (const std::pair<Object, Usage> &M : llvm::reverse(ModAsSideEffect)) {
13090 // Add a new usage with usage kind UK_ModAsValue, and then restore
13091 // the previous usage with UK_ModAsSideEffect (thus clearing it if
13092 // the previous one was empty).
13093 UsageInfo &UI = Self.UsageMap[M.first];
13094 auto &SideEffectUsage = UI.Uses[UK_ModAsSideEffect];
13095 Self.addUsage(M.first, UI, SideEffectUsage.UsageExpr, UK_ModAsValue);
13096 SideEffectUsage = M.second;
13097 }
13098 Self.ModAsSideEffect = OldModAsSideEffect;
13099 }
13100
13101 SequenceChecker &Self;
13102 SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
13103 SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect;
13104 };
13105
13106 /// RAII object wrapping the visitation of a subexpression which we might
13107 /// choose to evaluate as a constant. If any subexpression is evaluated and
13108 /// found to be non-constant, this allows us to suppress the evaluation of
13109 /// the outer expression.
13110 class EvaluationTracker {
13111 public:
13112 EvaluationTracker(SequenceChecker &Self)
13113 : Self(Self), Prev(Self.EvalTracker) {
13114 Self.EvalTracker = this;
13115 }
13116
13117 ~EvaluationTracker() {
13118 Self.EvalTracker = Prev;
13119 if (Prev)
13120 Prev->EvalOK &= EvalOK;
13121 }
13122
13123 bool evaluate(const Expr *E, bool &Result) {
13124 if (!EvalOK || E->isValueDependent())
13125 return false;
13126 EvalOK = E->EvaluateAsBooleanCondition(
13127 Result, Self.SemaRef.Context, Self.SemaRef.isConstantEvaluated());
13128 return EvalOK;
13129 }
13130
13131 private:
13132 SequenceChecker &Self;
13133 EvaluationTracker *Prev;
13134 bool EvalOK = true;
13135 } *EvalTracker = nullptr;
13136
13137 /// Find the object which is produced by the specified expression,
13138 /// if any.
13139 Object getObject(const Expr *E, bool Mod) const {
13140 E = E->IgnoreParenCasts();
13141 if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
13142 if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
13143 return getObject(UO->getSubExpr(), Mod);
13144 } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
13145 if (BO->getOpcode() == BO_Comma)
13146 return getObject(BO->getRHS(), Mod);
13147 if (Mod && BO->isAssignmentOp())
13148 return getObject(BO->getLHS(), Mod);
13149 } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
13150 // FIXME: Check for more interesting cases, like "x.n = ++x.n".
13151 if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
13152 return ME->getMemberDecl();
13153 } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
13154 // FIXME: If this is a reference, map through to its value.
13155 return DRE->getDecl();
13156 return nullptr;
13157 }
13158
13159 /// Note that an object \p O was modified or used by an expression
13160 /// \p UsageExpr with usage kind \p UK. \p UI is the \p UsageInfo for
13161 /// the object \p O as obtained via the \p UsageMap.
13162 void addUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, UsageKind UK) {
13163 // Get the old usage for the given object and usage kind.
13164 Usage &U = UI.Uses[UK];
13165 if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) {
13166 // If we have a modification as side effect and are in a sequenced
13167 // subexpression, save the old Usage so that we can restore it later
13168 // in SequencedSubexpression::~SequencedSubexpression.
13169 if (UK == UK_ModAsSideEffect && ModAsSideEffect)
13170 ModAsSideEffect->push_back(std::make_pair(O, U));
13171 // Then record the new usage with the current sequencing region.
13172 U.UsageExpr = UsageExpr;
13173 U.Seq = Region;
13174 }
13175 }
13176
13177 /// Check whether a modification or use of an object \p O in an expression
13178 /// \p UsageExpr conflicts with a prior usage of kind \p OtherKind. \p UI is
13179 /// the \p UsageInfo for the object \p O as obtained via the \p UsageMap.
13180 /// \p IsModMod is true when we are checking for a mod-mod unsequenced
13181 /// usage and false we are checking for a mod-use unsequenced usage.
13182 void checkUsage(Object O, UsageInfo &UI, const Expr *UsageExpr,
13183 UsageKind OtherKind, bool IsModMod) {
13184 if (UI.Diagnosed)
13185 return;
13186
13187 const Usage &U = UI.Uses[OtherKind];
13188 if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq))
13189 return;
13190
13191 const Expr *Mod = U.UsageExpr;
13192 const Expr *ModOrUse = UsageExpr;
13193 if (OtherKind == UK_Use)
13194 std::swap(Mod, ModOrUse);
13195
13196 SemaRef.DiagRuntimeBehavior(
13197 Mod->getExprLoc(), {Mod, ModOrUse},
13198 SemaRef.PDiag(IsModMod ? diag::warn_unsequenced_mod_mod
13199 : diag::warn_unsequenced_mod_use)
13200 << O << SourceRange(ModOrUse->getExprLoc()));
13201 UI.Diagnosed = true;
13202 }
13203
13204 // A note on note{Pre, Post}{Use, Mod}:
13205 //
13206 // (It helps to follow the algorithm with an expression such as
13207 // "((++k)++, k) = k" or "k = (k++, k++)". Both contain unsequenced
13208 // operations before C++17 and both are well-defined in C++17).
13209 //
13210 // When visiting a node which uses/modify an object we first call notePreUse
13211 // or notePreMod before visiting its sub-expression(s). At this point the
13212 // children of the current node have not yet been visited and so the eventual
13213 // uses/modifications resulting from the children of the current node have not
13214 // been recorded yet.
13215 //
13216 // We then visit the children of the current node. After that notePostUse or
13217 // notePostMod is called. These will 1) detect an unsequenced modification
13218 // as side effect (as in "k++ + k") and 2) add a new usage with the
13219 // appropriate usage kind.
13220 //
13221 // We also have to be careful that some operation sequences modification as
13222 // side effect as well (for example: || or ,). To account for this we wrap
13223 // the visitation of such a sub-expression (for example: the LHS of || or ,)
13224 // with SequencedSubexpression. SequencedSubexpression is an RAII object
13225 // which record usages which are modifications as side effect, and then
13226 // downgrade them (or more accurately restore the previous usage which was a
13227 // modification as side effect) when exiting the scope of the sequenced
13228 // subexpression.
13229
13230 void notePreUse(Object O, const Expr *UseExpr) {
13231 UsageInfo &UI = UsageMap[O];
13232 // Uses conflict with other modifications.
13233 checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/false);
13234 }
13235
13236 void notePostUse(Object O, const Expr *UseExpr) {
13237 UsageInfo &UI = UsageMap[O];
13238 checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsSideEffect,
13239 /*IsModMod=*/false);
13240 addUsage(O, UI, UseExpr, /*UsageKind=*/UK_Use);
13241 }
13242
13243 void notePreMod(Object O, const Expr *ModExpr) {
13244 UsageInfo &UI = UsageMap[O];
13245 // Modifications conflict with other modifications and with uses.
13246 checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/true);
13247 checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_Use, /*IsModMod=*/false);
13248 }
13249
13250 void notePostMod(Object O, const Expr *ModExpr, UsageKind UK) {
13251 UsageInfo &UI = UsageMap[O];
13252 checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsSideEffect,
13253 /*IsModMod=*/true);
13254 addUsage(O, UI, ModExpr, /*UsageKind=*/UK);
13255 }
13256
13257public:
13258 SequenceChecker(Sema &S, const Expr *E,
13259 SmallVectorImpl<const Expr *> &WorkList)
13260 : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) {
13261 Visit(E);
13262 // Silence a -Wunused-private-field since WorkList is now unused.
13263 // TODO: Evaluate if it can be used, and if not remove it.
13264 (void)this->WorkList;
13265 }
13266
13267 void VisitStmt(const Stmt *S) {
13268 // Skip all statements which aren't expressions for now.
13269 }
13270
13271 void VisitExpr(const Expr *E) {
13272 // By default, just recurse to evaluated subexpressions.
13273 Base::VisitStmt(E);
13274 }
13275
13276 void VisitCastExpr(const CastExpr *E) {
13277 Object O = Object();
13278 if (E->getCastKind() == CK_LValueToRValue)
13279 O = getObject(E->getSubExpr(), false);
13280
13281 if (O)
13282 notePreUse(O, E);
13283 VisitExpr(E);
13284 if (O)
13285 notePostUse(O, E);
13286 }
13287
13288 void VisitSequencedExpressions(const Expr *SequencedBefore,
13289 const Expr *SequencedAfter) {
13290 SequenceTree::Seq BeforeRegion = Tree.allocate(Region);
13291 SequenceTree::Seq AfterRegion = Tree.allocate(Region);
13292 SequenceTree::Seq OldRegion = Region;
13293
13294 {
13295 SequencedSubexpression SeqBefore(*this);
13296 Region = BeforeRegion;
13297 Visit(SequencedBefore);
13298 }
13299
13300 Region = AfterRegion;
13301 Visit(SequencedAfter);
13302
13303 Region = OldRegion;
13304
13305 Tree.merge(BeforeRegion);
13306 Tree.merge(AfterRegion);
13307 }
13308
13309 void VisitArraySubscriptExpr(const ArraySubscriptExpr *ASE) {
13310 // C++17 [expr.sub]p1:
13311 // The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The
13312 // expression E1 is sequenced before the expression E2.
13313 if (SemaRef.getLangOpts().CPlusPlus17)
13314 VisitSequencedExpressions(ASE->getLHS(), ASE->getRHS());
13315 else {
13316 Visit(ASE->getLHS());
13317 Visit(ASE->getRHS());
13318 }
13319 }
13320
13321 void VisitBinPtrMemD(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
13322 void VisitBinPtrMemI(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
13323 void VisitBinPtrMem(const BinaryOperator *BO) {
13324 // C++17 [expr.mptr.oper]p4:
13325 // Abbreviating pm-expression.*cast-expression as E1.*E2, [...]
13326 // the expression E1 is sequenced before the expression E2.
13327 if (SemaRef.getLangOpts().CPlusPlus17)
13328 VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
13329 else {
13330 Visit(BO->getLHS());
13331 Visit(BO->getRHS());
13332 }
13333 }
13334
13335 void VisitBinShl(const BinaryOperator *BO) { VisitBinShlShr(BO); }
13336 void VisitBinShr(const BinaryOperator *BO) { VisitBinShlShr(BO); }
13337 void VisitBinShlShr(const BinaryOperator *BO) {
13338 // C++17 [expr.shift]p4:
13339 // The expression E1 is sequenced before the expression E2.
13340 if (SemaRef.getLangOpts().CPlusPlus17)
13341 VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
13342 else {
13343 Visit(BO->getLHS());
13344 Visit(BO->getRHS());
13345 }
13346 }
13347
13348 void VisitBinComma(const BinaryOperator *BO) {
13349 // C++11 [expr.comma]p1:
13350 // Every value computation and side effect associated with the left
13351 // expression is sequenced before every value computation and side
13352 // effect associated with the right expression.
13353 VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
13354 }
13355
13356 void VisitBinAssign(const BinaryOperator *BO) {
13357 SequenceTree::Seq RHSRegion;
13358 SequenceTree::Seq LHSRegion;
13359 if (SemaRef.getLangOpts().CPlusPlus17) {
13360 RHSRegion = Tree.allocate(Region);
13361 LHSRegion = Tree.allocate(Region);
13362 } else {
13363 RHSRegion = Region;
13364 LHSRegion = Region;
13365 }
13366 SequenceTree::Seq OldRegion = Region;
13367
13368 // C++11 [expr.ass]p1:
13369 // [...] the assignment is sequenced after the value computation
13370 // of the right and left operands, [...]
13371 //
13372 // so check it before inspecting the operands and update the
13373 // map afterwards.
13374 Object O = getObject(BO->getLHS(), /*Mod=*/true);
13375 if (O)
13376 notePreMod(O, BO);
13377
13378 if (SemaRef.getLangOpts().CPlusPlus17) {
13379 // C++17 [expr.ass]p1:
13380 // [...] The right operand is sequenced before the left operand. [...]
13381 {
13382 SequencedSubexpression SeqBefore(*this);
13383 Region = RHSRegion;
13384 Visit(BO->getRHS());
13385 }
13386
13387 Region = LHSRegion;
13388 Visit(BO->getLHS());
13389
13390 if (O && isa<CompoundAssignOperator>(BO))
13391 notePostUse(O, BO);
13392
13393 } else {
13394 // C++11 does not specify any sequencing between the LHS and RHS.
13395 Region = LHSRegion;
13396 Visit(BO->getLHS());
13397
13398 if (O && isa<CompoundAssignOperator>(BO))
13399 notePostUse(O, BO);
13400
13401 Region = RHSRegion;
13402 Visit(BO->getRHS());
13403 }
13404
13405 // C++11 [expr.ass]p1:
13406 // the assignment is sequenced [...] before the value computation of the
13407 // assignment expression.
13408 // C11 6.5.16/3 has no such rule.
13409 Region = OldRegion;
13410 if (O)
13411 notePostMod(O, BO,
13412 SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
13413 : UK_ModAsSideEffect);
13414 if (SemaRef.getLangOpts().CPlusPlus17) {
13415 Tree.merge(RHSRegion);
13416 Tree.merge(LHSRegion);
13417 }
13418 }
13419
13420 void VisitCompoundAssignOperator(const CompoundAssignOperator *CAO) {
13421 VisitBinAssign(CAO);
13422 }
13423
13424 void VisitUnaryPreInc(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
13425 void VisitUnaryPreDec(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
13426 void VisitUnaryPreIncDec(const UnaryOperator *UO) {
13427 Object O = getObject(UO->getSubExpr(), true);
13428 if (!O)
13429 return VisitExpr(UO);
13430
13431 notePreMod(O, UO);
13432 Visit(UO->getSubExpr());
13433 // C++11 [expr.pre.incr]p1:
13434 // the expression ++x is equivalent to x+=1
13435 notePostMod(O, UO,
13436 SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
13437 : UK_ModAsSideEffect);
13438 }
13439
13440 void VisitUnaryPostInc(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
13441 void VisitUnaryPostDec(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
13442 void VisitUnaryPostIncDec(const UnaryOperator *UO) {
13443 Object O = getObject(UO->getSubExpr(), true);
13444 if (!O)
13445 return VisitExpr(UO);
13446
13447 notePreMod(O, UO);
13448 Visit(UO->getSubExpr());
13449 notePostMod(O, UO, UK_ModAsSideEffect);
13450 }
13451
13452 void VisitBinLOr(const BinaryOperator *BO) {
13453 // C++11 [expr.log.or]p2:
13454 // If the second expression is evaluated, every value computation and
13455 // side effect associated with the first expression is sequenced before
13456 // every value computation and side effect associated with the
13457 // second expression.
13458 SequenceTree::Seq LHSRegion = Tree.allocate(Region);
13459 SequenceTree::Seq RHSRegion = Tree.allocate(Region);
13460 SequenceTree::Seq OldRegion = Region;
13461
13462 EvaluationTracker Eval(*this);
13463 {
13464 SequencedSubexpression Sequenced(*this);
13465 Region = LHSRegion;
13466 Visit(BO->getLHS());
13467 }
13468
13469 // C++11 [expr.log.or]p1:
13470 // [...] the second operand is not evaluated if the first operand
13471 // evaluates to true.
13472 bool EvalResult = false;
13473 bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
13474 bool ShouldVisitRHS = !EvalOK || (EvalOK && !EvalResult);
13475 if (ShouldVisitRHS) {
13476 Region = RHSRegion;
13477 Visit(BO->getRHS());
13478 }
13479
13480 Region = OldRegion;
13481 Tree.merge(LHSRegion);
13482 Tree.merge(RHSRegion);
13483 }
13484
13485 void VisitBinLAnd(const BinaryOperator *BO) {
13486 // C++11 [expr.log.and]p2:
13487 // If the second expression is evaluated, every value computation and
13488 // side effect associated with the first expression is sequenced before
13489 // every value computation and side effect associated with the
13490 // second expression.
13491 SequenceTree::Seq LHSRegion = Tree.allocate(Region);
13492 SequenceTree::Seq RHSRegion = Tree.allocate(Region);
13493 SequenceTree::Seq OldRegion = Region;
13494
13495 EvaluationTracker Eval(*this);
13496 {
13497 SequencedSubexpression Sequenced(*this);
13498 Region = LHSRegion;
13499 Visit(BO->getLHS());
13500 }
13501
13502 // C++11 [expr.log.and]p1:
13503 // [...] the second operand is not evaluated if the first operand is false.
13504 bool EvalResult = false;
13505 bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
13506 bool ShouldVisitRHS = !EvalOK || (EvalOK && EvalResult);
13507 if (ShouldVisitRHS) {
13508 Region = RHSRegion;
13509 Visit(BO->getRHS());
13510 }
13511
13512 Region = OldRegion;
13513 Tree.merge(LHSRegion);
13514 Tree.merge(RHSRegion);
13515 }
13516
13517 void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO) {
13518 // C++11 [expr.cond]p1:
13519 // [...] Every value computation and side effect associated with the first
13520 // expression is sequenced before every value computation and side effect
13521 // associated with the second or third expression.
13522 SequenceTree::Seq ConditionRegion = Tree.allocate(Region);
13523
13524 // No sequencing is specified between the true and false expression.
13525 // However since exactly one of both is going to be evaluated we can
13526 // consider them to be sequenced. This is needed to avoid warning on
13527 // something like "x ? y+= 1 : y += 2;" in the case where we will visit
13528 // both the true and false expressions because we can't evaluate x.
13529 // This will still allow us to detect an expression like (pre C++17)
13530 // "(x ? y += 1 : y += 2) = y".
13531 //
13532 // We don't wrap the visitation of the true and false expression with
13533 // SequencedSubexpression because we don't want to downgrade modifications
13534 // as side effect in the true and false expressions after the visition
13535 // is done. (for example in the expression "(x ? y++ : y++) + y" we should
13536 // not warn between the two "y++", but we should warn between the "y++"
13537 // and the "y".
13538 SequenceTree::Seq TrueRegion = Tree.allocate(Region);
13539 SequenceTree::Seq FalseRegion = Tree.allocate(Region);
13540 SequenceTree::Seq OldRegion = Region;
13541
13542 EvaluationTracker Eval(*this);
13543 {
13544 SequencedSubexpression Sequenced(*this);
13545 Region = ConditionRegion;
13546 Visit(CO->getCond());
13547 }
13548
13549 // C++11 [expr.cond]p1:
13550 // [...] The first expression is contextually converted to bool (Clause 4).
13551 // It is evaluated and if it is true, the result of the conditional
13552 // expression is the value of the second expression, otherwise that of the
13553 // third expression. Only one of the second and third expressions is
13554 // evaluated. [...]
13555 bool EvalResult = false;
13556 bool EvalOK = Eval.evaluate(CO->getCond(), EvalResult);
13557 bool ShouldVisitTrueExpr = !EvalOK || (EvalOK && EvalResult);
13558 bool ShouldVisitFalseExpr = !EvalOK || (EvalOK && !EvalResult);
13559 if (ShouldVisitTrueExpr) {
13560 Region = TrueRegion;
13561 Visit(CO->getTrueExpr());
13562 }
13563 if (ShouldVisitFalseExpr) {
13564 Region = FalseRegion;
13565 Visit(CO->getFalseExpr());
13566 }
13567
13568 Region = OldRegion;
13569 Tree.merge(ConditionRegion);
13570 Tree.merge(TrueRegion);
13571 Tree.merge(FalseRegion);
13572 }
13573
13574 void VisitCallExpr(const CallExpr *CE) {
13575 // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
13576
13577 if (CE->isUnevaluatedBuiltinCall(Context))
13578 return;
13579
13580 // C++11 [intro.execution]p15:
13581 // When calling a function [...], every value computation and side effect
13582 // associated with any argument expression, or with the postfix expression
13583 // designating the called function, is sequenced before execution of every
13584 // expression or statement in the body of the function [and thus before
13585 // the value computation of its result].
13586 SequencedSubexpression Sequenced(*this);
13587 SemaRef.runWithSufficientStackSpace(CE->getExprLoc(), [&] {
13588 // C++17 [expr.call]p5
13589 // The postfix-expression is sequenced before each expression in the
13590 // expression-list and any default argument. [...]
13591 SequenceTree::Seq CalleeRegion;
13592 SequenceTree::Seq OtherRegion;
13593 if (SemaRef.getLangOpts().CPlusPlus17) {
13594 CalleeRegion = Tree.allocate(Region);
13595 OtherRegion = Tree.allocate(Region);
13596 } else {
13597 CalleeRegion = Region;
13598 OtherRegion = Region;
13599 }
13600 SequenceTree::Seq OldRegion = Region;
13601
13602 // Visit the callee expression first.
13603 Region = CalleeRegion;
13604 if (SemaRef.getLangOpts().CPlusPlus17) {
13605 SequencedSubexpression Sequenced(*this);
13606 Visit(CE->getCallee());
13607 } else {
13608 Visit(CE->getCallee());
13609 }
13610
13611 // Then visit the argument expressions.
13612 Region = OtherRegion;
13613 for (const Expr *Argument : CE->arguments())
13614 Visit(Argument);
13615
13616 Region = OldRegion;
13617 if (SemaRef.getLangOpts().CPlusPlus17) {
13618 Tree.merge(CalleeRegion);
13619 Tree.merge(OtherRegion);
13620 }
13621 });
13622 }
13623
13624 void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *CXXOCE) {
13625 // C++17 [over.match.oper]p2:
13626 // [...] the operator notation is first transformed to the equivalent
13627 // function-call notation as summarized in Table 12 (where @ denotes one
13628 // of the operators covered in the specified subclause). However, the
13629 // operands are sequenced in the order prescribed for the built-in
13630 // operator (Clause 8).
13631 //
13632 // From the above only overloaded binary operators and overloaded call
13633 // operators have sequencing rules in C++17 that we need to handle
13634 // separately.
13635 if (!SemaRef.getLangOpts().CPlusPlus17 ||
13636 (CXXOCE->getNumArgs() != 2 && CXXOCE->getOperator() != OO_Call))
13637 return VisitCallExpr(CXXOCE);
13638
13639 enum {
13640 NoSequencing,
13641 LHSBeforeRHS,
13642 RHSBeforeLHS,
13643 LHSBeforeRest
13644 } SequencingKind;
13645 switch (CXXOCE->getOperator()) {
13646 case OO_Equal:
13647 case OO_PlusEqual:
13648 case OO_MinusEqual:
13649 case OO_StarEqual:
13650 case OO_SlashEqual:
13651 case OO_PercentEqual:
13652 case OO_CaretEqual:
13653 case OO_AmpEqual:
13654 case OO_PipeEqual:
13655 case OO_LessLessEqual:
13656 case OO_GreaterGreaterEqual:
13657 SequencingKind = RHSBeforeLHS;
13658 break;
13659
13660 case OO_LessLess:
13661 case OO_GreaterGreater:
13662 case OO_AmpAmp:
13663 case OO_PipePipe:
13664 case OO_Comma:
13665 case OO_ArrowStar:
13666 case OO_Subscript:
13667 SequencingKind = LHSBeforeRHS;
13668 break;
13669
13670 case OO_Call:
13671 SequencingKind = LHSBeforeRest;
13672 break;
13673
13674 default:
13675 SequencingKind = NoSequencing;
13676 break;
13677 }
13678
13679 if (SequencingKind == NoSequencing)
13680 return VisitCallExpr(CXXOCE);
13681
13682 // This is a call, so all subexpressions are sequenced before the result.
13683 SequencedSubexpression Sequenced(*this);
13684
13685 SemaRef.runWithSufficientStackSpace(CXXOCE->getExprLoc(), [&] {
13686 assert(SemaRef.getLangOpts().CPlusPlus17 &&((SemaRef.getLangOpts().CPlusPlus17 && "Should only get there with C++17 and above!"
) ? static_cast<void> (0) : __assert_fail ("SemaRef.getLangOpts().CPlusPlus17 && \"Should only get there with C++17 and above!\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 13687, __PRETTY_FUNCTION__))
13687 "Should only get there with C++17 and above!")((SemaRef.getLangOpts().CPlusPlus17 && "Should only get there with C++17 and above!"
) ? static_cast<void> (0) : __assert_fail ("SemaRef.getLangOpts().CPlusPlus17 && \"Should only get there with C++17 and above!\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 13687, __PRETTY_FUNCTION__))
;
13688 assert((CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) &&(((CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() ==
OO_Call) && "Should only get there with an overloaded binary operator"
" or an overloaded call operator!") ? static_cast<void>
(0) : __assert_fail ("(CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) && \"Should only get there with an overloaded binary operator\" \" or an overloaded call operator!\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 13690, __PRETTY_FUNCTION__))
13689 "Should only get there with an overloaded binary operator"(((CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() ==
OO_Call) && "Should only get there with an overloaded binary operator"
" or an overloaded call operator!") ? static_cast<void>
(0) : __assert_fail ("(CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) && \"Should only get there with an overloaded binary operator\" \" or an overloaded call operator!\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 13690, __PRETTY_FUNCTION__))
13690 " or an overloaded call operator!")(((CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() ==
OO_Call) && "Should only get there with an overloaded binary operator"
" or an overloaded call operator!") ? static_cast<void>
(0) : __assert_fail ("(CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) && \"Should only get there with an overloaded binary operator\" \" or an overloaded call operator!\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 13690, __PRETTY_FUNCTION__))
;
13691
13692 if (SequencingKind == LHSBeforeRest) {
13693 assert(CXXOCE->getOperator() == OO_Call &&((CXXOCE->getOperator() == OO_Call && "We should only have an overloaded call operator here!"
) ? static_cast<void> (0) : __assert_fail ("CXXOCE->getOperator() == OO_Call && \"We should only have an overloaded call operator here!\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 13694, __PRETTY_FUNCTION__))
13694 "We should only have an overloaded call operator here!")((CXXOCE->getOperator() == OO_Call && "We should only have an overloaded call operator here!"
) ? static_cast<void> (0) : __assert_fail ("CXXOCE->getOperator() == OO_Call && \"We should only have an overloaded call operator here!\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 13694, __PRETTY_FUNCTION__))
;
13695
13696 // This is very similar to VisitCallExpr, except that we only have the
13697 // C++17 case. The postfix-expression is the first argument of the
13698 // CXXOperatorCallExpr. The expressions in the expression-list, if any,
13699 // are in the following arguments.
13700 //
13701 // Note that we intentionally do not visit the callee expression since
13702 // it is just a decayed reference to a function.
13703 SequenceTree::Seq PostfixExprRegion = Tree.allocate(Region);
13704 SequenceTree::Seq ArgsRegion = Tree.allocate(Region);
13705 SequenceTree::Seq OldRegion = Region;
13706
13707 assert(CXXOCE->getNumArgs() >= 1 &&((CXXOCE->getNumArgs() >= 1 && "An overloaded call operator must have at least one argument"
" for the postfix-expression!") ? static_cast<void> (0
) : __assert_fail ("CXXOCE->getNumArgs() >= 1 && \"An overloaded call operator must have at least one argument\" \" for the postfix-expression!\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 13709, __PRETTY_FUNCTION__))
13708 "An overloaded call operator must have at least one argument"((CXXOCE->getNumArgs() >= 1 && "An overloaded call operator must have at least one argument"
" for the postfix-expression!") ? static_cast<void> (0
) : __assert_fail ("CXXOCE->getNumArgs() >= 1 && \"An overloaded call operator must have at least one argument\" \" for the postfix-expression!\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 13709, __PRETTY_FUNCTION__))
13709 " for the postfix-expression!")((CXXOCE->getNumArgs() >= 1 && "An overloaded call operator must have at least one argument"
" for the postfix-expression!") ? static_cast<void> (0
) : __assert_fail ("CXXOCE->getNumArgs() >= 1 && \"An overloaded call operator must have at least one argument\" \" for the postfix-expression!\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 13709, __PRETTY_FUNCTION__))
;
13710 const Expr *PostfixExpr = CXXOCE->getArgs()[0];
13711 llvm::ArrayRef<const Expr *> Args(CXXOCE->getArgs() + 1,
13712 CXXOCE->getNumArgs() - 1);
13713
13714 // Visit the postfix-expression first.
13715 {
13716 Region = PostfixExprRegion;
13717 SequencedSubexpression Sequenced(*this);
13718 Visit(PostfixExpr);
13719 }
13720
13721 // Then visit the argument expressions.
13722 Region = ArgsRegion;
13723 for (const Expr *Arg : Args)
13724 Visit(Arg);
13725
13726 Region = OldRegion;
13727 Tree.merge(PostfixExprRegion);
13728 Tree.merge(ArgsRegion);
13729 } else {
13730 assert(CXXOCE->getNumArgs() == 2 &&((CXXOCE->getNumArgs() == 2 && "Should only have two arguments here!"
) ? static_cast<void> (0) : __assert_fail ("CXXOCE->getNumArgs() == 2 && \"Should only have two arguments here!\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 13731, __PRETTY_FUNCTION__))
13731 "Should only have two arguments here!")((CXXOCE->getNumArgs() == 2 && "Should only have two arguments here!"
) ? static_cast<void> (0) : __assert_fail ("CXXOCE->getNumArgs() == 2 && \"Should only have two arguments here!\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 13731, __PRETTY_FUNCTION__))
;
13732 assert((SequencingKind == LHSBeforeRHS ||(((SequencingKind == LHSBeforeRHS || SequencingKind == RHSBeforeLHS
) && "Unexpected sequencing kind!") ? static_cast<
void> (0) : __assert_fail ("(SequencingKind == LHSBeforeRHS || SequencingKind == RHSBeforeLHS) && \"Unexpected sequencing kind!\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 13734, __PRETTY_FUNCTION__))
13733 SequencingKind == RHSBeforeLHS) &&(((SequencingKind == LHSBeforeRHS || SequencingKind == RHSBeforeLHS
) && "Unexpected sequencing kind!") ? static_cast<
void> (0) : __assert_fail ("(SequencingKind == LHSBeforeRHS || SequencingKind == RHSBeforeLHS) && \"Unexpected sequencing kind!\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 13734, __PRETTY_FUNCTION__))
13734 "Unexpected sequencing kind!")(((SequencingKind == LHSBeforeRHS || SequencingKind == RHSBeforeLHS
) && "Unexpected sequencing kind!") ? static_cast<
void> (0) : __assert_fail ("(SequencingKind == LHSBeforeRHS || SequencingKind == RHSBeforeLHS) && \"Unexpected sequencing kind!\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 13734, __PRETTY_FUNCTION__))
;
13735
13736 // We do not visit the callee expression since it is just a decayed
13737 // reference to a function.
13738 const Expr *E1 = CXXOCE->getArg(0);
13739 const Expr *E2 = CXXOCE->getArg(1);
13740 if (SequencingKind == RHSBeforeLHS)
13741 std::swap(E1, E2);
13742
13743 return VisitSequencedExpressions(E1, E2);
13744 }
13745 });
13746 }
13747
13748 void VisitCXXConstructExpr(const CXXConstructExpr *CCE) {
13749 // This is a call, so all subexpressions are sequenced before the result.
13750 SequencedSubexpression Sequenced(*this);
13751
13752 if (!CCE->isListInitialization())
13753 return VisitExpr(CCE);
13754
13755 // In C++11, list initializations are sequenced.
13756 SmallVector<SequenceTree::Seq, 32> Elts;
13757 SequenceTree::Seq Parent = Region;
13758 for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
13759 E = CCE->arg_end();
13760 I != E; ++I) {
13761 Region = Tree.allocate(Parent);
13762 Elts.push_back(Region);
13763 Visit(*I);
13764 }
13765
13766 // Forget that the initializers are sequenced.
13767 Region = Parent;
13768 for (unsigned I = 0; I < Elts.size(); ++I)
13769 Tree.merge(Elts[I]);
13770 }
13771
13772 void VisitInitListExpr(const InitListExpr *ILE) {
13773 if (!SemaRef.getLangOpts().CPlusPlus11)
13774 return VisitExpr(ILE);
13775
13776 // In C++11, list initializations are sequenced.
13777 SmallVector<SequenceTree::Seq, 32> Elts;
13778 SequenceTree::Seq Parent = Region;
13779 for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
13780 const Expr *E = ILE->getInit(I);
13781 if (!E)
13782 continue;
13783 Region = Tree.allocate(Parent);
13784 Elts.push_back(Region);
13785 Visit(E);
13786 }
13787
13788 // Forget that the initializers are sequenced.
13789 Region = Parent;
13790 for (unsigned I = 0; I < Elts.size(); ++I)
13791 Tree.merge(Elts[I]);
13792 }
13793};
13794
13795} // namespace
13796
13797void Sema::CheckUnsequencedOperations(const Expr *E) {
13798 SmallVector<const Expr *, 8> WorkList;
13799 WorkList.push_back(E);
13800 while (!WorkList.empty()) {
13801 const Expr *Item = WorkList.pop_back_val();
13802 SequenceChecker(*this, Item, WorkList);
13803 }
13804}
13805
13806void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
13807 bool IsConstexpr) {
13808 llvm::SaveAndRestore<bool> ConstantContext(
13809 isConstantEvaluatedOverride, IsConstexpr || isa<ConstantExpr>(E));
13810 CheckImplicitConversions(E, CheckLoc);
13811 if (!E->isInstantiationDependent())
13812 CheckUnsequencedOperations(E);
13813 if (!IsConstexpr && !E->isValueDependent())
13814 CheckForIntOverflow(E);
13815 DiagnoseMisalignedMembers();
13816}
13817
13818void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
13819 FieldDecl *BitField,
13820 Expr *Init) {
13821 (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
13822}
13823
13824static void diagnoseArrayStarInParamType(Sema &S, QualType PType,
13825 SourceLocation Loc) {
13826 if (!PType->isVariablyModifiedType())
13827 return;
13828 if (const auto *PointerTy = dyn_cast<PointerType>(PType)) {
13829 diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc);
13830 return;
13831 }
13832 if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) {
13833 diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc);
13834 return;
13835 }
13836 if (const auto *ParenTy = dyn_cast<ParenType>(PType)) {
13837 diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc);
13838 return;
13839 }
13840
13841 const ArrayType *AT = S.Context.getAsArrayType(PType);
13842 if (!AT)
13843 return;
13844
13845 if (AT->getSizeModifier() != ArrayType::Star) {
13846 diagnoseArrayStarInParamType(S, AT->getElementType(), Loc);
13847 return;
13848 }
13849
13850 S.Diag(Loc, diag::err_array_star_in_function_definition);
13851}
13852
13853/// CheckParmsForFunctionDef - Check that the parameters of the given
13854/// function are appropriate for the definition of a function. This
13855/// takes care of any checks that cannot be performed on the
13856/// declaration itself, e.g., that the types of each of the function
13857/// parameters are complete.
13858bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters,
13859 bool CheckParameterNames) {
13860 bool HasInvalidParm = false;
13861 for (ParmVarDecl *Param : Parameters) {
13862 // C99 6.7.5.3p4: the parameters in a parameter type list in a
13863 // function declarator that is part of a function definition of
13864 // that function shall not have incomplete type.
13865 //
13866 // This is also C++ [dcl.fct]p6.
13867 if (!Param->isInvalidDecl() &&
13868 RequireCompleteType(Param->getLocation(), Param->getType(),
13869 diag::err_typecheck_decl_incomplete_type)) {
13870 Param->setInvalidDecl();
13871 HasInvalidParm = true;
13872 }
13873
13874 // C99 6.9.1p5: If the declarator includes a parameter type list, the
13875 // declaration of each parameter shall include an identifier.
13876 if (CheckParameterNames && Param->getIdentifier() == nullptr &&
13877 !Param->isImplicit() && !getLangOpts().CPlusPlus) {
13878 // Diagnose this as an extension in C17 and earlier.
13879 if (!getLangOpts().C2x)
13880 Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c2x);
13881 }
13882
13883 // C99 6.7.5.3p12:
13884 // If the function declarator is not part of a definition of that
13885 // function, parameters may have incomplete type and may use the [*]
13886 // notation in their sequences of declarator specifiers to specify
13887 // variable length array types.
13888 QualType PType = Param->getOriginalType();
13889 // FIXME: This diagnostic should point the '[*]' if source-location
13890 // information is added for it.
13891 diagnoseArrayStarInParamType(*this, PType, Param->getLocation());
13892
13893 // If the parameter is a c++ class type and it has to be destructed in the
13894 // callee function, declare the destructor so that it can be called by the
13895 // callee function. Do not perform any direct access check on the dtor here.
13896 if (!Param->isInvalidDecl()) {
13897 if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) {
13898 if (!ClassDecl->isInvalidDecl() &&
13899 !ClassDecl->hasIrrelevantDestructor() &&
13900 !ClassDecl->isDependentContext() &&
13901 ClassDecl->isParamDestroyedInCallee()) {
13902 CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
13903 MarkFunctionReferenced(Param->getLocation(), Destructor);
13904 DiagnoseUseOfDecl(Destructor, Param->getLocation());
13905 }
13906 }
13907 }
13908
13909 // Parameters with the pass_object_size attribute only need to be marked
13910 // constant at function definitions. Because we lack information about
13911 // whether we're on a declaration or definition when we're instantiating the
13912 // attribute, we need to check for constness here.
13913 if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>())
13914 if (!Param->getType().isConstQualified())
13915 Diag(Param->getLocation(), diag::err_attribute_pointers_only)
13916 << Attr->getSpelling() << 1;
13917
13918 // Check for parameter names shadowing fields from the class.
13919 if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) {
13920 // The owning context for the parameter should be the function, but we
13921 // want to see if this function's declaration context is a record.
13922 DeclContext *DC = Param->getDeclContext();
13923 if (DC && DC->isFunctionOrMethod()) {
13924 if (auto *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
13925 CheckShadowInheritedFields(Param->getLocation(), Param->getDeclName(),
13926 RD, /*DeclIsField*/ false);
13927 }
13928 }
13929 }
13930
13931 return HasInvalidParm;
13932}
13933
13934Optional<std::pair<CharUnits, CharUnits>>
13935static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx);
13936
13937/// Compute the alignment and offset of the base class object given the
13938/// derived-to-base cast expression and the alignment and offset of the derived
13939/// class object.
13940static std::pair<CharUnits, CharUnits>
13941getDerivedToBaseAlignmentAndOffset(const CastExpr *CE, QualType DerivedType,
13942 CharUnits BaseAlignment, CharUnits Offset,
13943 ASTContext &Ctx) {
13944 for (auto PathI = CE->path_begin(), PathE = CE->path_end(); PathI != PathE;
13945 ++PathI) {
13946 const CXXBaseSpecifier *Base = *PathI;
13947 const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
13948 if (Base->isVirtual()) {
13949 // The complete object may have a lower alignment than the non-virtual
13950 // alignment of the base, in which case the base may be misaligned. Choose
13951 // the smaller of the non-virtual alignment and BaseAlignment, which is a
13952 // conservative lower bound of the complete object alignment.
13953 CharUnits NonVirtualAlignment =
13954 Ctx.getASTRecordLayout(BaseDecl).getNonVirtualAlignment();
13955 BaseAlignment = std::min(BaseAlignment, NonVirtualAlignment);
13956 Offset = CharUnits::Zero();
13957 } else {
13958 const ASTRecordLayout &RL =
13959 Ctx.getASTRecordLayout(DerivedType->getAsCXXRecordDecl());
13960 Offset += RL.getBaseClassOffset(BaseDecl);
13961 }
13962 DerivedType = Base->getType();
13963 }
13964
13965 return std::make_pair(BaseAlignment, Offset);
13966}
13967
13968/// Compute the alignment and offset of a binary additive operator.
13969static Optional<std::pair<CharUnits, CharUnits>>
13970getAlignmentAndOffsetFromBinAddOrSub(const Expr *PtrE, const Expr *IntE,
13971 bool IsSub, ASTContext &Ctx) {
13972 QualType PointeeType = PtrE->getType()->getPointeeType();
13973
13974 if (!PointeeType->isConstantSizeType())
13975 return llvm::None;
13976
13977 auto P = getBaseAlignmentAndOffsetFromPtr(PtrE, Ctx);
13978
13979 if (!P)
13980 return llvm::None;
13981
13982 CharUnits EltSize = Ctx.getTypeSizeInChars(PointeeType);
13983 if (Optional<llvm::APSInt> IdxRes = IntE->getIntegerConstantExpr(Ctx)) {
13984 CharUnits Offset = EltSize * IdxRes->getExtValue();
13985 if (IsSub)
13986 Offset = -Offset;
13987 return std::make_pair(P->first, P->second + Offset);
13988 }
13989
13990 // If the integer expression isn't a constant expression, compute the lower
13991 // bound of the alignment using the alignment and offset of the pointer
13992 // expression and the element size.
13993 return std::make_pair(
13994 P->first.alignmentAtOffset(P->second).alignmentAtOffset(EltSize),
13995 CharUnits::Zero());
13996}
13997
13998/// This helper function takes an lvalue expression and returns the alignment of
13999/// a VarDecl and a constant offset from the VarDecl.
14000Optional<std::pair<CharUnits, CharUnits>>
14001static getBaseAlignmentAndOffsetFromLValue(const Expr *E, ASTContext &Ctx) {
14002 E = E->IgnoreParens();
14003 switch (E->getStmtClass()) {
14004 default:
14005 break;
14006 case Stmt::CStyleCastExprClass:
14007 case Stmt::CXXStaticCastExprClass:
14008 case Stmt::ImplicitCastExprClass: {
14009 auto *CE = cast<CastExpr>(E);
14010 const Expr *From = CE->getSubExpr();
14011 switch (CE->getCastKind()) {
14012 default:
14013 break;
14014 case CK_NoOp:
14015 return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
14016 case CK_UncheckedDerivedToBase:
14017 case CK_DerivedToBase: {
14018 auto P = getBaseAlignmentAndOffsetFromLValue(From, Ctx);
14019 if (!P)
14020 break;
14021 return getDerivedToBaseAlignmentAndOffset(CE, From->getType(), P->first,
14022 P->second, Ctx);
14023 }
14024 }
14025 break;
14026 }
14027 case Stmt::ArraySubscriptExprClass: {
14028 auto *ASE = cast<ArraySubscriptExpr>(E);
14029 return getAlignmentAndOffsetFromBinAddOrSub(ASE->getBase(), ASE->getIdx(),
14030 false, Ctx);
14031 }
14032 case Stmt::DeclRefExprClass: {
14033 if (auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) {
14034 // FIXME: If VD is captured by copy or is an escaping __block variable,
14035 // use the alignment of VD's type.
14036 if (!VD->getType()->isReferenceType())
14037 return std::make_pair(Ctx.getDeclAlign(VD), CharUnits::Zero());
14038 if (VD->hasInit())
14039 return getBaseAlignmentAndOffsetFromLValue(VD->getInit(), Ctx);
14040 }
14041 break;
14042 }
14043 case Stmt::MemberExprClass: {
14044 auto *ME = cast<MemberExpr>(E);
14045 auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
14046 if (!FD || FD->getType()->isReferenceType())
14047 break;
14048 Optional<std::pair<CharUnits, CharUnits>> P;
14049 if (ME->isArrow())
14050 P = getBaseAlignmentAndOffsetFromPtr(ME->getBase(), Ctx);
14051 else
14052 P = getBaseAlignmentAndOffsetFromLValue(ME->getBase(), Ctx);
14053 if (!P)
14054 break;
14055 const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(FD->getParent());
14056 uint64_t Offset = Layout.getFieldOffset(FD->getFieldIndex());
14057 return std::make_pair(P->first,
14058 P->second + CharUnits::fromQuantity(Offset));
14059 }
14060 case Stmt::UnaryOperatorClass: {
14061 auto *UO = cast<UnaryOperator>(E);
14062 switch (UO->getOpcode()) {
14063 default:
14064 break;
14065 case UO_Deref:
14066 return getBaseAlignmentAndOffsetFromPtr(UO->getSubExpr(), Ctx);
14067 }
14068 break;
14069 }
14070 case Stmt::BinaryOperatorClass: {
14071 auto *BO = cast<BinaryOperator>(E);
14072 auto Opcode = BO->getOpcode();
14073 switch (Opcode) {
14074 default:
14075 break;
14076 case BO_Comma:
14077 return getBaseAlignmentAndOffsetFromLValue(BO->getRHS(), Ctx);
14078 }
14079 break;
14080 }
14081 }
14082 return llvm::None;
14083}
14084
14085/// This helper function takes a pointer expression and returns the alignment of
14086/// a VarDecl and a constant offset from the VarDecl.
14087Optional<std::pair<CharUnits, CharUnits>>
14088static getBaseAlignmentAndOffsetFromPtr(const Expr *E, ASTContext &Ctx) {
14089 E = E->IgnoreParens();
14090 switch (E->getStmtClass()) {
14091 default:
14092 break;
14093 case Stmt::CStyleCastExprClass:
14094 case Stmt::CXXStaticCastExprClass:
14095 case Stmt::ImplicitCastExprClass: {
14096 auto *CE = cast<CastExpr>(E);
14097 const Expr *From = CE->getSubExpr();
14098 switch (CE->getCastKind()) {
14099 default:
14100 break;
14101 case CK_NoOp:
14102 return getBaseAlignmentAndOffsetFromPtr(From, Ctx);
14103 case CK_ArrayToPointerDecay:
14104 return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
14105 case CK_UncheckedDerivedToBase:
14106 case CK_DerivedToBase: {
14107 auto P = getBaseAlignmentAndOffsetFromPtr(From, Ctx);
14108 if (!P)
14109 break;
14110 return getDerivedToBaseAlignmentAndOffset(
14111 CE, From->getType()->getPointeeType(), P->first, P->second, Ctx);
14112 }
14113 }
14114 break;
14115 }
14116 case Stmt::CXXThisExprClass: {
14117 auto *RD = E->getType()->getPointeeType()->getAsCXXRecordDecl();
14118 CharUnits Alignment = Ctx.getASTRecordLayout(RD).getNonVirtualAlignment();
14119 return std::make_pair(Alignment, CharUnits::Zero());
14120 }
14121 case Stmt::UnaryOperatorClass: {
14122 auto *UO = cast<UnaryOperator>(E);
14123 if (UO->getOpcode() == UO_AddrOf)
14124 return getBaseAlignmentAndOffsetFromLValue(UO->getSubExpr(), Ctx);
14125 break;
14126 }
14127 case Stmt::BinaryOperatorClass: {
14128 auto *BO = cast<BinaryOperator>(E);
14129 auto Opcode = BO->getOpcode();
14130 switch (Opcode) {
14131 default:
14132 break;
14133 case BO_Add:
14134 case BO_Sub: {
14135 const Expr *LHS = BO->getLHS(), *RHS = BO->getRHS();
14136 if (Opcode == BO_Add && !RHS->getType()->isIntegralOrEnumerationType())
14137 std::swap(LHS, RHS);
14138 return getAlignmentAndOffsetFromBinAddOrSub(LHS, RHS, Opcode == BO_Sub,
14139 Ctx);
14140 }
14141 case BO_Comma:
14142 return getBaseAlignmentAndOffsetFromPtr(BO->getRHS(), Ctx);
14143 }
14144 break;
14145 }
14146 }
14147 return llvm::None;
14148}
14149
14150static CharUnits getPresumedAlignmentOfPointer(const Expr *E, Sema &S) {
14151 // See if we can compute the alignment of a VarDecl and an offset from it.
14152 Optional<std::pair<CharUnits, CharUnits>> P =
14153 getBaseAlignmentAndOffsetFromPtr(E, S.Context);
14154
14155 if (P)
14156 return P->first.alignmentAtOffset(P->second);
14157
14158 // If that failed, return the type's alignment.
14159 return S.Context.getTypeAlignInChars(E->getType()->getPointeeType());
14160}
14161
14162/// CheckCastAlign - Implements -Wcast-align, which warns when a
14163/// pointer cast increases the alignment requirements.
14164void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
14165 // This is actually a lot of work to potentially be doing on every
14166 // cast; don't do it if we're ignoring -Wcast_align (as is the default).
14167 if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin()))
14168 return;
14169
14170 // Ignore dependent types.
14171 if (T->isDependentType() || Op->getType()->isDependentType())
14172 return;
14173
14174 // Require that the destination be a pointer type.
14175 const PointerType *DestPtr = T->getAs<PointerType>();
14176 if (!DestPtr) return;
14177
14178 // If the destination has alignment 1, we're done.
14179 QualType DestPointee = DestPtr->getPointeeType();
14180 if (DestPointee->isIncompleteType()) return;
14181 CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
14182 if (DestAlign.isOne()) return;
14183
14184 // Require that the source be a pointer type.
14185 const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
14186 if (!SrcPtr) return;
14187 QualType SrcPointee = SrcPtr->getPointeeType();
14188
14189 // Explicitly allow casts from cv void*. We already implicitly
14190 // allowed casts to cv void*, since they have alignment 1.
14191 // Also allow casts involving incomplete types, which implicitly
14192 // includes 'void'.
14193 if (SrcPointee->isIncompleteType()) return;
14194
14195 CharUnits SrcAlign = getPresumedAlignmentOfPointer(Op, *this);
14196
14197 if (SrcAlign >= DestAlign) return;
14198
14199 Diag(TRange.getBegin(), diag::warn_cast_align)
14200 << Op->getType() << T
14201 << static_cast<unsigned>(SrcAlign.getQuantity())
14202 << static_cast<unsigned>(DestAlign.getQuantity())
14203 << TRange << Op->getSourceRange();
14204}
14205
14206/// Check whether this array fits the idiom of a size-one tail padded
14207/// array member of a struct.
14208///
14209/// We avoid emitting out-of-bounds access warnings for such arrays as they are
14210/// commonly used to emulate flexible arrays in C89 code.
14211static bool IsTailPaddedMemberArray(Sema &S, const llvm::APInt &Size,
14212 const NamedDecl *ND) {
14213 if (Size != 1 || !ND) return false;
14214
14215 const FieldDecl *FD = dyn_cast<FieldDecl>(ND);
14216 if (!FD) return false;
14217
14218 // Don't consider sizes resulting from macro expansions or template argument
14219 // substitution to form C89 tail-padded arrays.
14220
14221 TypeSourceInfo *TInfo = FD->getTypeSourceInfo();
14222 while (TInfo) {
14223 TypeLoc TL = TInfo->getTypeLoc();
14224 // Look through typedefs.
14225 if (TypedefTypeLoc TTL = TL.getAs<TypedefTypeLoc>()) {
14226 const TypedefNameDecl *TDL = TTL.getTypedefNameDecl();
14227 TInfo = TDL->getTypeSourceInfo();
14228 continue;
14229 }
14230 if (ConstantArrayTypeLoc CTL = TL.getAs<ConstantArrayTypeLoc>()) {
14231 const Expr *SizeExpr = dyn_cast<IntegerLiteral>(CTL.getSizeExpr());
14232 if (!SizeExpr || SizeExpr->getExprLoc().isMacroID())
14233 return false;
14234 }
14235 break;
14236 }
14237
14238 const RecordDecl *RD = dyn_cast<RecordDecl>(FD->getDeclContext());
14239 if (!RD) return false;
14240 if (RD->isUnion()) return false;
14241 if (const CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
14242 if (!CRD->isStandardLayout()) return false;
14243 }
14244
14245 // See if this is the last field decl in the record.
14246 const Decl *D = FD;
14247 while ((D = D->getNextDeclInContext()))
14248 if (isa<FieldDecl>(D))
14249 return false;
14250 return true;
14251}
14252
14253void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
14254 const ArraySubscriptExpr *ASE,
14255 bool AllowOnePastEnd, bool IndexNegated) {
14256 // Already diagnosed by the constant evaluator.
14257 if (isConstantEvaluated())
14258 return;
14259
14260 IndexExpr = IndexExpr->IgnoreParenImpCasts();
14261 if (IndexExpr->isValueDependent())
14262 return;
14263
14264 const Type *EffectiveType =
14265 BaseExpr->getType()->getPointeeOrArrayElementType();
14266 BaseExpr = BaseExpr->IgnoreParenCasts();
14267 const ConstantArrayType *ArrayTy =
14268 Context.getAsConstantArrayType(BaseExpr->getType());
14269
14270 if (!ArrayTy)
14271 return;
14272
14273 const Type *BaseType = ArrayTy->getElementType().getTypePtr();
14274 if (EffectiveType->isDependentType() || BaseType->isDependentType())
14275 return;
14276
14277 Expr::EvalResult Result;
14278 if (!IndexExpr->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects))
14279 return;
14280
14281 llvm::APSInt index = Result.Val.getInt();
14282 if (IndexNegated)
14283 index = -index;
14284
14285 const NamedDecl *ND = nullptr;
14286 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
14287 ND = DRE->getDecl();
14288 if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
14289 ND = ME->getMemberDecl();
14290
14291 if (index.isUnsigned() || !index.isNegative()) {
14292 // It is possible that the type of the base expression after
14293 // IgnoreParenCasts is incomplete, even though the type of the base
14294 // expression before IgnoreParenCasts is complete (see PR39746 for an
14295 // example). In this case we have no information about whether the array
14296 // access exceeds the array bounds. However we can still diagnose an array
14297 // access which precedes the array bounds.
14298 if (BaseType->isIncompleteType())
14299 return;
14300
14301 llvm::APInt size = ArrayTy->getSize();
14302 if (!size.isStrictlyPositive())
14303 return;
14304
14305 if (BaseType != EffectiveType) {
14306 // Make sure we're comparing apples to apples when comparing index to size
14307 uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
14308 uint64_t array_typesize = Context.getTypeSize(BaseType);
14309 // Handle ptrarith_typesize being zero, such as when casting to void*
14310 if (!ptrarith_typesize) ptrarith_typesize = 1;
14311 if (ptrarith_typesize != array_typesize) {
14312 // There's a cast to a different size type involved
14313 uint64_t ratio = array_typesize / ptrarith_typesize;
14314 // TODO: Be smarter about handling cases where array_typesize is not a
14315 // multiple of ptrarith_typesize
14316 if (ptrarith_typesize * ratio == array_typesize)
14317 size *= llvm::APInt(size.getBitWidth(), ratio);
14318 }
14319 }
14320
14321 if (size.getBitWidth() > index.getBitWidth())
14322 index = index.zext(size.getBitWidth());
14323 else if (size.getBitWidth() < index.getBitWidth())
14324 size = size.zext(index.getBitWidth());
14325
14326 // For array subscripting the index must be less than size, but for pointer
14327 // arithmetic also allow the index (offset) to be equal to size since
14328 // computing the next address after the end of the array is legal and
14329 // commonly done e.g. in C++ iterators and range-based for loops.
14330 if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
14331 return;
14332
14333 // Also don't warn for arrays of size 1 which are members of some
14334 // structure. These are often used to approximate flexible arrays in C89
14335 // code.
14336 if (IsTailPaddedMemberArray(*this, size, ND))
14337 return;
14338
14339 // Suppress the warning if the subscript expression (as identified by the
14340 // ']' location) and the index expression are both from macro expansions
14341 // within a system header.
14342 if (ASE) {
14343 SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
14344 ASE->getRBracketLoc());
14345 if (SourceMgr.isInSystemHeader(RBracketLoc)) {
14346 SourceLocation IndexLoc =
14347 SourceMgr.getSpellingLoc(IndexExpr->getBeginLoc());
14348 if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
14349 return;
14350 }
14351 }
14352
14353 unsigned DiagID = diag::warn_ptr_arith_exceeds_bounds;
14354 if (ASE)
14355 DiagID = diag::warn_array_index_exceeds_bounds;
14356
14357 DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
14358 PDiag(DiagID) << index.toString(10, true)
14359 << size.toString(10, true)
14360 << (unsigned)size.getLimitedValue(~0U)
14361 << IndexExpr->getSourceRange());
14362 } else {
14363 unsigned DiagID = diag::warn_array_index_precedes_bounds;
14364 if (!ASE) {
14365 DiagID = diag::warn_ptr_arith_precedes_bounds;
14366 if (index.isNegative()) index = -index;
14367 }
14368
14369 DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
14370 PDiag(DiagID) << index.toString(10, true)
14371 << IndexExpr->getSourceRange());
14372 }
14373
14374 if (!ND) {
14375 // Try harder to find a NamedDecl to point at in the note.
14376 while (const ArraySubscriptExpr *ASE =
14377 dyn_cast<ArraySubscriptExpr>(BaseExpr))
14378 BaseExpr = ASE->getBase()->IgnoreParenCasts();
14379 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
14380 ND = DRE->getDecl();
14381 if (const MemberExpr *ME = dyn_cast<MemberExpr>(BaseExpr))
14382 ND = ME->getMemberDecl();
14383 }
14384
14385 if (ND)
14386 DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr,
14387 PDiag(diag::note_array_declared_here) << ND);
14388}
14389
14390void Sema::CheckArrayAccess(const Expr *expr) {
14391 int AllowOnePastEnd = 0;
14392 while (expr) {
14393 expr = expr->IgnoreParenImpCasts();
14394 switch (expr->getStmtClass()) {
14395 case Stmt::ArraySubscriptExprClass: {
14396 const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
14397 CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
14398 AllowOnePastEnd > 0);
14399 expr = ASE->getBase();
14400 break;
14401 }
14402 case Stmt::MemberExprClass: {
14403 expr = cast<MemberExpr>(expr)->getBase();
14404 break;
14405 }
14406 case Stmt::OMPArraySectionExprClass: {
14407 const OMPArraySectionExpr *ASE = cast<OMPArraySectionExpr>(expr);
14408 if (ASE->getLowerBound())
14409 CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(),
14410 /*ASE=*/nullptr, AllowOnePastEnd > 0);
14411 return;
14412 }
14413 case Stmt::UnaryOperatorClass: {
14414 // Only unwrap the * and & unary operators
14415 const UnaryOperator *UO = cast<UnaryOperator>(expr);
14416 expr = UO->getSubExpr();
14417 switch (UO->getOpcode()) {
14418 case UO_AddrOf:
14419 AllowOnePastEnd++;
14420 break;
14421 case UO_Deref:
14422 AllowOnePastEnd--;
14423 break;
14424 default:
14425 return;
14426 }
14427 break;
14428 }
14429 case Stmt::ConditionalOperatorClass: {
14430 const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
14431 if (const Expr *lhs = cond->getLHS())
14432 CheckArrayAccess(lhs);
14433 if (const Expr *rhs = cond->getRHS())
14434 CheckArrayAccess(rhs);
14435 return;
14436 }
14437 case Stmt::CXXOperatorCallExprClass: {
14438 const auto *OCE = cast<CXXOperatorCallExpr>(expr);
14439 for (const auto *Arg : OCE->arguments())
14440 CheckArrayAccess(Arg);
14441 return;
14442 }
14443 default:
14444 return;
14445 }
14446 }
14447}
14448
14449//===--- CHECK: Objective-C retain cycles ----------------------------------//
14450
14451namespace {
14452
14453struct RetainCycleOwner {
14454 VarDecl *Variable = nullptr;
14455 SourceRange Range;
14456 SourceLocation Loc;
14457 bool Indirect = false;
14458
14459 RetainCycleOwner() = default;
14460
14461 void setLocsFrom(Expr *e) {
14462 Loc = e->getExprLoc();
14463 Range = e->getSourceRange();
14464 }
14465};
14466
14467} // namespace
14468
14469/// Consider whether capturing the given variable can possibly lead to
14470/// a retain cycle.
14471static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
14472 // In ARC, it's captured strongly iff the variable has __strong
14473 // lifetime. In MRR, it's captured strongly if the variable is
14474 // __block and has an appropriate type.
14475 if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
14476 return false;
14477
14478 owner.Variable = var;
14479 if (ref)
14480 owner.setLocsFrom(ref);
14481 return true;
14482}
14483
14484static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
14485 while (true) {
14486 e = e->IgnoreParens();
14487 if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
14488 switch (cast->getCastKind()) {
14489 case CK_BitCast:
14490 case CK_LValueBitCast:
14491 case CK_LValueToRValue:
14492 case CK_ARCReclaimReturnedObject:
14493 e = cast->getSubExpr();
14494 continue;
14495
14496 default:
14497 return false;
14498 }
14499 }
14500
14501 if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
14502 ObjCIvarDecl *ivar = ref->getDecl();
14503 if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
14504 return false;
14505
14506 // Try to find a retain cycle in the base.
14507 if (!findRetainCycleOwner(S, ref->getBase(), owner))
14508 return false;
14509
14510 if (ref->isFreeIvar()) owner.setLocsFrom(ref);
14511 owner.Indirect = true;
14512 return true;
14513 }
14514
14515 if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
14516 VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
14517 if (!var) return false;
14518 return considerVariable(var, ref, owner);
14519 }
14520
14521 if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
14522 if (member->isArrow()) return false;
14523
14524 // Don't count this as an indirect ownership.
14525 e = member->getBase();
14526 continue;
14527 }
14528
14529 if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
14530 // Only pay attention to pseudo-objects on property references.
14531 ObjCPropertyRefExpr *pre
14532 = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
14533 ->IgnoreParens());
14534 if (!pre) return false;
14535 if (pre->isImplicitProperty()) return false;
14536 ObjCPropertyDecl *property = pre->getExplicitProperty();
14537 if (!property->isRetaining() &&
14538 !(property->getPropertyIvarDecl() &&
14539 property->getPropertyIvarDecl()->getType()
14540 .getObjCLifetime() == Qualifiers::OCL_Strong))
14541 return false;
14542
14543 owner.Indirect = true;
14544 if (pre->isSuperReceiver()) {
14545 owner.Variable = S.getCurMethodDecl()->getSelfDecl();
14546 if (!owner.Variable)
14547 return false;
14548 owner.Loc = pre->getLocation();
14549 owner.Range = pre->getSourceRange();
14550 return true;
14551 }
14552 e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
14553 ->getSourceExpr());
14554 continue;
14555 }
14556
14557 // Array ivars?
14558
14559 return false;
14560 }
14561}
14562
14563namespace {
14564
14565 struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
14566 ASTContext &Context;
14567 VarDecl *Variable;
14568 Expr *Capturer = nullptr;
14569 bool VarWillBeReased = false;
14570
14571 FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
14572 : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
14573 Context(Context), Variable(variable) {}
14574
14575 void VisitDeclRefExpr(DeclRefExpr *ref) {
14576 if (ref->getDecl() == Variable && !Capturer)
14577 Capturer = ref;
14578 }
14579
14580 void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
14581 if (Capturer) return;
14582 Visit(ref->getBase());
14583 if (Capturer && ref->isFreeIvar())
14584 Capturer = ref;
14585 }
14586
14587 void VisitBlockExpr(BlockExpr *block) {
14588 // Look inside nested blocks
14589 if (block->getBlockDecl()->capturesVariable(Variable))
14590 Visit(block->getBlockDecl()->getBody());
14591 }
14592
14593 void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
14594 if (Capturer) return;
14595 if (OVE->getSourceExpr())
14596 Visit(OVE->getSourceExpr());
14597 }
14598
14599 void VisitBinaryOperator(BinaryOperator *BinOp) {
14600 if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign)
14601 return;
14602 Expr *LHS = BinOp->getLHS();
14603 if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) {
14604 if (DRE->getDecl() != Variable)
14605 return;
14606 if (Expr *RHS = BinOp->getRHS()) {
14607 RHS = RHS->IgnoreParenCasts();
14608 Optional<llvm::APSInt> Value;
14609 VarWillBeReased =
14610 (RHS && (Value = RHS->getIntegerConstantExpr(Context)) &&
14611 *Value == 0);
14612 }
14613 }
14614 }
14615 };
14616
14617} // namespace
14618
14619/// Check whether the given argument is a block which captures a
14620/// variable.
14621static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
14622 assert(owner.Variable && owner.Loc.isValid())((owner.Variable && owner.Loc.isValid()) ? static_cast
<void> (0) : __assert_fail ("owner.Variable && owner.Loc.isValid()"
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 14622, __PRETTY_FUNCTION__))
;
14623
14624 e = e->IgnoreParenCasts();
14625
14626 // Look through [^{...} copy] and Block_copy(^{...}).
14627 if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
14628 Selector Cmd = ME->getSelector();
14629 if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
14630 e = ME->getInstanceReceiver();
14631 if (!e)
14632 return nullptr;
14633 e = e->IgnoreParenCasts();
14634 }
14635 } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
14636 if (CE->getNumArgs() == 1) {
14637 FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
14638 if (Fn) {
14639 const IdentifierInfo *FnI = Fn->getIdentifier();
14640 if (FnI && FnI->isStr("_Block_copy")) {
14641 e = CE->getArg(0)->IgnoreParenCasts();
14642 }
14643 }
14644 }
14645 }
14646
14647 BlockExpr *block = dyn_cast<BlockExpr>(e);
14648 if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
14649 return nullptr;
14650
14651 FindCaptureVisitor visitor(S.Context, owner.Variable);
14652 visitor.Visit(block->getBlockDecl()->getBody());
14653 return visitor.VarWillBeReased ? nullptr : visitor.Capturer;
14654}
14655
14656static void diagnoseRetainCycle(Sema &S, Expr *capturer,
14657 RetainCycleOwner &owner) {
14658 assert(capturer)((capturer) ? static_cast<void> (0) : __assert_fail ("capturer"
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 14658, __PRETTY_FUNCTION__))
;
14659 assert(owner.Variable && owner.Loc.isValid())((owner.Variable && owner.Loc.isValid()) ? static_cast
<void> (0) : __assert_fail ("owner.Variable && owner.Loc.isValid()"
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 14659, __PRETTY_FUNCTION__))
;
14660
14661 S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
14662 << owner.Variable << capturer->getSourceRange();
14663 S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
14664 << owner.Indirect << owner.Range;
14665}
14666
14667/// Check for a keyword selector that starts with the word 'add' or
14668/// 'set'.
14669static bool isSetterLikeSelector(Selector sel) {
14670 if (sel.isUnarySelector()) return false;
14671
14672 StringRef str = sel.getNameForSlot(0);
14673 while (!str.empty() && str.front() == '_') str = str.substr(1);
14674 if (str.startswith("set"))
14675 str = str.substr(3);
14676 else if (str.startswith("add")) {
14677 // Specially allow 'addOperationWithBlock:'.
14678 if (sel.getNumArgs() == 1 && str.startswith("addOperationWithBlock"))
14679 return false;
14680 str = str.substr(3);
14681 }
14682 else
14683 return false;
14684
14685 if (str.empty()) return true;
14686 return !isLowercase(str.front());
14687}
14688
14689static Optional<int> GetNSMutableArrayArgumentIndex(Sema &S,
14690 ObjCMessageExpr *Message) {
14691 bool IsMutableArray = S.NSAPIObj->isSubclassOfNSClass(
14692 Message->getReceiverInterface(),
14693 NSAPI::ClassId_NSMutableArray);
14694 if (!IsMutableArray) {
14695 return None;
14696 }
14697
14698 Selector Sel = Message->getSelector();
14699
14700 Optional<NSAPI::NSArrayMethodKind> MKOpt =
14701 S.NSAPIObj->getNSArrayMethodKind(Sel);
14702 if (!MKOpt) {
14703 return None;
14704 }
14705
14706 NSAPI::NSArrayMethodKind MK = *MKOpt;
14707
14708 switch (MK) {
14709 case NSAPI::NSMutableArr_addObject:
14710 case NSAPI::NSMutableArr_insertObjectAtIndex:
14711 case NSAPI::NSMutableArr_setObjectAtIndexedSubscript:
14712 return 0;
14713 case NSAPI::NSMutableArr_replaceObjectAtIndex:
14714 return 1;
14715
14716 default:
14717 return None;
14718 }
14719
14720 return None;
14721}
14722
14723static
14724Optional<int> GetNSMutableDictionaryArgumentIndex(Sema &S,
14725 ObjCMessageExpr *Message) {
14726 bool IsMutableDictionary = S.NSAPIObj->isSubclassOfNSClass(
14727 Message->getReceiverInterface(),
14728 NSAPI::ClassId_NSMutableDictionary);
14729 if (!IsMutableDictionary) {
14730 return None;
14731 }
14732
14733 Selector Sel = Message->getSelector();
14734
14735 Optional<NSAPI::NSDictionaryMethodKind> MKOpt =
14736 S.NSAPIObj->getNSDictionaryMethodKind(Sel);
14737 if (!MKOpt) {
14738 return None;
14739 }
14740
14741 NSAPI::NSDictionaryMethodKind MK = *MKOpt;
14742
14743 switch (MK) {
14744 case NSAPI::NSMutableDict_setObjectForKey:
14745 case NSAPI::NSMutableDict_setValueForKey:
14746 case NSAPI::NSMutableDict_setObjectForKeyedSubscript:
14747 return 0;
14748
14749 default:
14750 return None;
14751 }
14752
14753 return None;
14754}
14755
14756static Optional<int> GetNSSetArgumentIndex(Sema &S, ObjCMessageExpr *Message) {
14757 bool IsMutableSet = S.NSAPIObj->isSubclassOfNSClass(
14758 Message->getReceiverInterface(),
14759 NSAPI::ClassId_NSMutableSet);
14760
14761 bool IsMutableOrderedSet = S.NSAPIObj->isSubclassOfNSClass(
14762 Message->getReceiverInterface(),
14763 NSAPI::ClassId_NSMutableOrderedSet);
14764 if (!IsMutableSet && !IsMutableOrderedSet) {
14765 return None;
14766 }
14767
14768 Selector Sel = Message->getSelector();
14769
14770 Optional<NSAPI::NSSetMethodKind> MKOpt = S.NSAPIObj->getNSSetMethodKind(Sel);
14771 if (!MKOpt) {
14772 return None;
14773 }
14774
14775 NSAPI::NSSetMethodKind MK = *MKOpt;
14776
14777 switch (MK) {
14778 case NSAPI::NSMutableSet_addObject:
14779 case NSAPI::NSOrderedSet_setObjectAtIndex:
14780 case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript:
14781 case NSAPI::NSOrderedSet_insertObjectAtIndex:
14782 return 0;
14783 case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject:
14784 return 1;
14785 }
14786
14787 return None;
14788}
14789
14790void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) {
14791 if (!Message->isInstanceMessage()) {
14792 return;
14793 }
14794
14795 Optional<int> ArgOpt;
14796
14797 if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) &&
14798 !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) &&
14799 !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) {
14800 return;
14801 }
14802
14803 int ArgIndex = *ArgOpt;
14804
14805 Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts();
14806 if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) {
14807 Arg = OE->getSourceExpr()->IgnoreImpCasts();
14808 }
14809
14810 if (Message->getReceiverKind() == ObjCMessageExpr::SuperInstance) {
14811 if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
14812 if (ArgRE->isObjCSelfExpr()) {
14813 Diag(Message->getSourceRange().getBegin(),
14814 diag::warn_objc_circular_container)
14815 << ArgRE->getDecl() << StringRef("'super'");
14816 }
14817 }
14818 } else {
14819 Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts();
14820
14821 if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) {
14822 Receiver = OE->getSourceExpr()->IgnoreImpCasts();
14823 }
14824
14825 if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) {
14826 if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
14827 if (ReceiverRE->getDecl() == ArgRE->getDecl()) {
14828 ValueDecl *Decl = ReceiverRE->getDecl();
14829 Diag(Message->getSourceRange().getBegin(),
14830 diag::warn_objc_circular_container)
14831 << Decl << Decl;
14832 if (!ArgRE->isObjCSelfExpr()) {
14833 Diag(Decl->getLocation(),
14834 diag::note_objc_circular_container_declared_here)
14835 << Decl;
14836 }
14837 }
14838 }
14839 } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) {
14840 if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) {
14841 if (IvarRE->getDecl() == IvarArgRE->getDecl()) {
14842 ObjCIvarDecl *Decl = IvarRE->getDecl();
14843 Diag(Message->getSourceRange().getBegin(),
14844 diag::warn_objc_circular_container)
14845 << Decl << Decl;
14846 Diag(Decl->getLocation(),
14847 diag::note_objc_circular_container_declared_here)
14848 << Decl;
14849 }
14850 }
14851 }
14852 }
14853}
14854
14855/// Check a message send to see if it's likely to cause a retain cycle.
14856void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
14857 // Only check instance methods whose selector looks like a setter.
14858 if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
14859 return;
14860
14861 // Try to find a variable that the receiver is strongly owned by.
14862 RetainCycleOwner owner;
14863 if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
14864 if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
14865 return;
14866 } else {
14867 assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance)((msg->getReceiverKind() == ObjCMessageExpr::SuperInstance
) ? static_cast<void> (0) : __assert_fail ("msg->getReceiverKind() == ObjCMessageExpr::SuperInstance"
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 14867, __PRETTY_FUNCTION__))
;
14868 owner.Variable = getCurMethodDecl()->getSelfDecl();
14869 owner.Loc = msg->getSuperLoc();
14870 owner.Range = msg->getSuperLoc();
14871 }
14872
14873 // Check whether the receiver is captured by any of the arguments.
14874 const ObjCMethodDecl *MD = msg->getMethodDecl();
14875 for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i) {
14876 if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner)) {
14877 // noescape blocks should not be retained by the method.
14878 if (MD && MD->parameters()[i]->hasAttr<NoEscapeAttr>())
14879 continue;
14880 return diagnoseRetainCycle(*this, capturer, owner);
14881 }
14882 }
14883}
14884
14885/// Check a property assign to see if it's likely to cause a retain cycle.
14886void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
14887 RetainCycleOwner owner;
14888 if (!findRetainCycleOwner(*this, receiver, owner))
14889 return;
14890
14891 if (Expr *capturer = findCapturingExpr(*this, argument, owner))
14892 diagnoseRetainCycle(*this, capturer, owner);
14893}
14894
14895void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
14896 RetainCycleOwner Owner;
14897 if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner))
14898 return;
14899
14900 // Because we don't have an expression for the variable, we have to set the
14901 // location explicitly here.
14902 Owner.Loc = Var->getLocation();
14903 Owner.Range = Var->getSourceRange();
14904
14905 if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
14906 diagnoseRetainCycle(*this, Capturer, Owner);
14907}
14908
14909static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
14910 Expr *RHS, bool isProperty) {
14911 // Check if RHS is an Objective-C object literal, which also can get
14912 // immediately zapped in a weak reference. Note that we explicitly
14913 // allow ObjCStringLiterals, since those are designed to never really die.
14914 RHS = RHS->IgnoreParenImpCasts();
14915
14916 // This enum needs to match with the 'select' in
14917 // warn_objc_arc_literal_assign (off-by-1).
14918 Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
14919 if (Kind == Sema::LK_String || Kind == Sema::LK_None)
14920 return false;
14921
14922 S.Diag(Loc, diag::warn_arc_literal_assign)
14923 << (unsigned) Kind
14924 << (isProperty ? 0 : 1)
14925 << RHS->getSourceRange();
14926
14927 return true;
14928}
14929
14930static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
14931 Qualifiers::ObjCLifetime LT,
14932 Expr *RHS, bool isProperty) {
14933 // Strip off any implicit cast added to get to the one ARC-specific.
14934 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
14935 if (cast->getCastKind() == CK_ARCConsumeObject) {
14936 S.Diag(Loc, diag::warn_arc_retained_assign)
14937 << (LT == Qualifiers::OCL_ExplicitNone)
14938 << (isProperty ? 0 : 1)
14939 << RHS->getSourceRange();
14940 return true;
14941 }
14942 RHS = cast->getSubExpr();
14943 }
14944
14945 if (LT == Qualifiers::OCL_Weak &&
14946 checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
14947 return true;
14948
14949 return false;
14950}
14951
14952bool Sema::checkUnsafeAssigns(SourceLocation Loc,
14953 QualType LHS, Expr *RHS) {
14954 Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
14955
14956 if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
14957 return false;
14958
14959 if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
14960 return true;
14961
14962 return false;
14963}
14964
14965void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
14966 Expr *LHS, Expr *RHS) {
14967 QualType LHSType;
14968 // PropertyRef on LHS type need be directly obtained from
14969 // its declaration as it has a PseudoType.
14970 ObjCPropertyRefExpr *PRE
14971 = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
14972 if (PRE && !PRE->isImplicitProperty()) {
14973 const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
14974 if (PD)
14975 LHSType = PD->getType();
14976 }
14977
14978 if (LHSType.isNull())
14979 LHSType = LHS->getType();
14980
14981 Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
14982
14983 if (LT == Qualifiers::OCL_Weak) {
14984 if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
14985 getCurFunction()->markSafeWeakUse(LHS);
14986 }
14987
14988 if (checkUnsafeAssigns(Loc, LHSType, RHS))
14989 return;
14990
14991 // FIXME. Check for other life times.
14992 if (LT != Qualifiers::OCL_None)
14993 return;
14994
14995 if (PRE) {
14996 if (PRE->isImplicitProperty())
14997 return;
14998 const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
14999 if (!PD)
15000 return;
15001
15002 unsigned Attributes = PD->getPropertyAttributes();
15003 if (Attributes & ObjCPropertyAttribute::kind_assign) {
15004 // when 'assign' attribute was not explicitly specified
15005 // by user, ignore it and rely on property type itself
15006 // for lifetime info.
15007 unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
15008 if (!(AsWrittenAttr & ObjCPropertyAttribute::kind_assign) &&
15009 LHSType->isObjCRetainableType())
15010 return;
15011
15012 while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
15013 if (cast->getCastKind() == CK_ARCConsumeObject) {
15014 Diag(Loc, diag::warn_arc_retained_property_assign)
15015 << RHS->getSourceRange();
15016 return;
15017 }
15018 RHS = cast->getSubExpr();
15019 }
15020 } else if (Attributes & ObjCPropertyAttribute::kind_weak) {
15021 if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
15022 return;
15023 }
15024 }
15025}
15026
15027//===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
15028
15029static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
15030 SourceLocation StmtLoc,
15031 const NullStmt *Body) {
15032 // Do not warn if the body is a macro that expands to nothing, e.g:
15033 //
15034 // #define CALL(x)
15035 // if (condition)
15036 // CALL(0);
15037 if (Body->hasLeadingEmptyMacro())
15038 return false;
15039
15040 // Get line numbers of statement and body.
15041 bool StmtLineInvalid;
15042 unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc,
15043 &StmtLineInvalid);
15044 if (StmtLineInvalid)
15045 return false;
15046
15047 bool BodyLineInvalid;
15048 unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
15049 &BodyLineInvalid);
15050 if (BodyLineInvalid)
15051 return false;
15052
15053 // Warn if null statement and body are on the same line.
15054 if (StmtLine != BodyLine)
15055 return false;
15056
15057 return true;
15058}
15059
15060void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
15061 const Stmt *Body,
15062 unsigned DiagID) {
15063 // Since this is a syntactic check, don't emit diagnostic for template
15064 // instantiations, this just adds noise.
15065 if (CurrentInstantiationScope)
15066 return;
15067
15068 // The body should be a null statement.
15069 const NullStmt *NBody = dyn_cast<NullStmt>(Body);
15070 if (!NBody)
15071 return;
15072
15073 // Do the usual checks.
15074 if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
15075 return;
15076
15077 Diag(NBody->getSemiLoc(), DiagID);
15078 Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
15079}
15080
15081void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
15082 const Stmt *PossibleBody) {
15083 assert(!CurrentInstantiationScope)((!CurrentInstantiationScope) ? static_cast<void> (0) :
__assert_fail ("!CurrentInstantiationScope", "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 15083, __PRETTY_FUNCTION__))
; // Ensured by caller
15084
15085 SourceLocation StmtLoc;
15086 const Stmt *Body;
15087 unsigned DiagID;
15088 if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
15089 StmtLoc = FS->getRParenLoc();
15090 Body = FS->getBody();
15091 DiagID = diag::warn_empty_for_body;
15092 } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
15093 StmtLoc = WS->getCond()->getSourceRange().getEnd();
15094 Body = WS->getBody();
15095 DiagID = diag::warn_empty_while_body;
15096 } else
15097 return; // Neither `for' nor `while'.
15098
15099 // The body should be a null statement.
15100 const NullStmt *NBody = dyn_cast<NullStmt>(Body);
15101 if (!NBody)
15102 return;
15103
15104 // Skip expensive checks if diagnostic is disabled.
15105 if (Diags.isIgnored(DiagID, NBody->getSemiLoc()))
15106 return;
15107
15108 // Do the usual checks.
15109 if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
15110 return;
15111
15112 // `for(...);' and `while(...);' are popular idioms, so in order to keep
15113 // noise level low, emit diagnostics only if for/while is followed by a
15114 // CompoundStmt, e.g.:
15115 // for (int i = 0; i < n; i++);
15116 // {
15117 // a(i);
15118 // }
15119 // or if for/while is followed by a statement with more indentation
15120 // than for/while itself:
15121 // for (int i = 0; i < n; i++);
15122 // a(i);
15123 bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
15124 if (!ProbableTypo) {
15125 bool BodyColInvalid;
15126 unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
15127 PossibleBody->getBeginLoc(), &BodyColInvalid);
15128 if (BodyColInvalid)
15129 return;
15130
15131 bool StmtColInvalid;
15132 unsigned StmtCol =
15133 SourceMgr.getPresumedColumnNumber(S->getBeginLoc(), &StmtColInvalid);
15134 if (StmtColInvalid)
15135 return;
15136
15137 if (BodyCol > StmtCol)
15138 ProbableTypo = true;
15139 }
15140
15141 if (ProbableTypo) {
15142 Diag(NBody->getSemiLoc(), DiagID);
15143 Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
15144 }
15145}
15146
15147//===--- CHECK: Warn on self move with std::move. -------------------------===//
15148
15149/// DiagnoseSelfMove - Emits a warning if a value is moved to itself.
15150void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
15151 SourceLocation OpLoc) {
15152 if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc))
15153 return;
15154
15155 if (inTemplateInstantiation())
15156 return;
15157
15158 // Strip parens and casts away.
15159 LHSExpr = LHSExpr->IgnoreParenImpCasts();
15160 RHSExpr = RHSExpr->IgnoreParenImpCasts();
15161
15162 // Check for a call expression
15163 const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr);
15164 if (!CE || CE->getNumArgs() != 1)
15165 return;
15166
15167 // Check for a call to std::move
15168 if (!CE->isCallToStdMove())
15169 return;
15170
15171 // Get argument from std::move
15172 RHSExpr = CE->getArg(0);
15173
15174 const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
15175 const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
15176
15177 // Two DeclRefExpr's, check that the decls are the same.
15178 if (LHSDeclRef && RHSDeclRef) {
15179 if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
15180 return;
15181 if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
15182 RHSDeclRef->getDecl()->getCanonicalDecl())
15183 return;
15184
15185 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
15186 << LHSExpr->getSourceRange()
15187 << RHSExpr->getSourceRange();
15188 return;
15189 }
15190
15191 // Member variables require a different approach to check for self moves.
15192 // MemberExpr's are the same if every nested MemberExpr refers to the same
15193 // Decl and that the base Expr's are DeclRefExpr's with the same Decl or
15194 // the base Expr's are CXXThisExpr's.
15195 const Expr *LHSBase = LHSExpr;
15196 const Expr *RHSBase = RHSExpr;
15197 const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr);
15198 const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr);
15199 if (!LHSME || !RHSME)
15200 return;
15201
15202 while (LHSME && RHSME) {
15203 if (LHSME->getMemberDecl()->getCanonicalDecl() !=
15204 RHSME->getMemberDecl()->getCanonicalDecl())
15205 return;
15206
15207 LHSBase = LHSME->getBase();
15208 RHSBase = RHSME->getBase();
15209 LHSME = dyn_cast<MemberExpr>(LHSBase);
15210 RHSME = dyn_cast<MemberExpr>(RHSBase);
15211 }
15212
15213 LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase);
15214 RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase);
15215 if (LHSDeclRef && RHSDeclRef) {
15216 if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
15217 return;
15218 if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
15219 RHSDeclRef->getDecl()->getCanonicalDecl())
15220 return;
15221
15222 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
15223 << LHSExpr->getSourceRange()
15224 << RHSExpr->getSourceRange();
15225 return;
15226 }
15227
15228 if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase))
15229 Diag(OpLoc, diag::warn_self_move) << LHSExpr->getType()
15230 << LHSExpr->getSourceRange()
15231 << RHSExpr->getSourceRange();
15232}
15233
15234//===--- Layout compatibility ----------------------------------------------//
15235
15236static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
15237
15238/// Check if two enumeration types are layout-compatible.
15239static bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
15240 // C++11 [dcl.enum] p8:
15241 // Two enumeration types are layout-compatible if they have the same
15242 // underlying type.
15243 return ED1->isComplete() && ED2->isComplete() &&
15244 C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
15245}
15246
15247/// Check if two fields are layout-compatible.
15248static bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1,
15249 FieldDecl *Field2) {
15250 if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
15251 return false;
15252
15253 if (Field1->isBitField() != Field2->isBitField())
15254 return false;
15255
15256 if (Field1->isBitField()) {
15257 // Make sure that the bit-fields are the same length.
15258 unsigned Bits1 = Field1->getBitWidthValue(C);
15259 unsigned Bits2 = Field2->getBitWidthValue(C);
15260
15261 if (Bits1 != Bits2)
15262 return false;
15263 }
15264
15265 return true;
15266}
15267
15268/// Check if two standard-layout structs are layout-compatible.
15269/// (C++11 [class.mem] p17)
15270static bool isLayoutCompatibleStruct(ASTContext &C, RecordDecl *RD1,
15271 RecordDecl *RD2) {
15272 // If both records are C++ classes, check that base classes match.
15273 if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
15274 // If one of records is a CXXRecordDecl we are in C++ mode,
15275 // thus the other one is a CXXRecordDecl, too.
15276 const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
15277 // Check number of base classes.
15278 if (D1CXX->getNumBases() != D2CXX->getNumBases())
15279 return false;
15280
15281 // Check the base classes.
15282 for (CXXRecordDecl::base_class_const_iterator
15283 Base1 = D1CXX->bases_begin(),
15284 BaseEnd1 = D1CXX->bases_end(),
15285 Base2 = D2CXX->bases_begin();
15286 Base1 != BaseEnd1;
15287 ++Base1, ++Base2) {
15288 if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
15289 return false;
15290 }
15291 } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
15292 // If only RD2 is a C++ class, it should have zero base classes.
15293 if (D2CXX->getNumBases() > 0)
15294 return false;
15295 }
15296
15297 // Check the fields.
15298 RecordDecl::field_iterator Field2 = RD2->field_begin(),
15299 Field2End = RD2->field_end(),
15300 Field1 = RD1->field_begin(),
15301 Field1End = RD1->field_end();
15302 for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
15303 if (!isLayoutCompatible(C, *Field1, *Field2))
15304 return false;
15305 }
15306 if (Field1 != Field1End || Field2 != Field2End)
15307 return false;
15308
15309 return true;
15310}
15311
15312/// Check if two standard-layout unions are layout-compatible.
15313/// (C++11 [class.mem] p18)
15314static bool isLayoutCompatibleUnion(ASTContext &C, RecordDecl *RD1,
15315 RecordDecl *RD2) {
15316 llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
15317 for (auto *Field2 : RD2->fields())
15318 UnmatchedFields.insert(Field2);
15319
15320 for (auto *Field1 : RD1->fields()) {
15321 llvm::SmallPtrSet<FieldDecl *, 8>::iterator
15322 I = UnmatchedFields.begin(),
15323 E = UnmatchedFields.end();
15324
15325 for ( ; I != E; ++I) {
15326 if (isLayoutCompatible(C, Field1, *I)) {
15327 bool Result = UnmatchedFields.erase(*I);
15328 (void) Result;
15329 assert(Result)((Result) ? static_cast<void> (0) : __assert_fail ("Result"
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 15329, __PRETTY_FUNCTION__))
;
15330 break;
15331 }
15332 }
15333 if (I == E)
15334 return false;
15335 }
15336
15337 return UnmatchedFields.empty();
15338}
15339
15340static bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1,
15341 RecordDecl *RD2) {
15342 if (RD1->isUnion() != RD2->isUnion())
15343 return false;
15344
15345 if (RD1->isUnion())
15346 return isLayoutCompatibleUnion(C, RD1, RD2);
15347 else
15348 return isLayoutCompatibleStruct(C, RD1, RD2);
15349}
15350
15351/// Check if two types are layout-compatible in C++11 sense.
15352static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
15353 if (T1.isNull() || T2.isNull())
15354 return false;
15355
15356 // C++11 [basic.types] p11:
15357 // If two types T1 and T2 are the same type, then T1 and T2 are
15358 // layout-compatible types.
15359 if (C.hasSameType(T1, T2))
15360 return true;
15361
15362 T1 = T1.getCanonicalType().getUnqualifiedType();
15363 T2 = T2.getCanonicalType().getUnqualifiedType();
15364
15365 const Type::TypeClass TC1 = T1->getTypeClass();
15366 const Type::TypeClass TC2 = T2->getTypeClass();
15367
15368 if (TC1 != TC2)
15369 return false;
15370
15371 if (TC1 == Type::Enum) {
15372 return isLayoutCompatible(C,
15373 cast<EnumType>(T1)->getDecl(),
15374 cast<EnumType>(T2)->getDecl());
15375 } else if (TC1 == Type::Record) {
15376 if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
15377 return false;
15378
15379 return isLayoutCompatible(C,
15380 cast<RecordType>(T1)->getDecl(),
15381 cast<RecordType>(T2)->getDecl());
15382 }
15383
15384 return false;
15385}
15386
15387//===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
15388
15389/// Given a type tag expression find the type tag itself.
15390///
15391/// \param TypeExpr Type tag expression, as it appears in user's code.
15392///
15393/// \param VD Declaration of an identifier that appears in a type tag.
15394///
15395/// \param MagicValue Type tag magic value.
15396///
15397/// \param isConstantEvaluated wether the evalaution should be performed in
15398
15399/// constant context.
15400static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
15401 const ValueDecl **VD, uint64_t *MagicValue,
15402 bool isConstantEvaluated) {
15403 while(true) {
15404 if (!TypeExpr)
15405 return false;
15406
15407 TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
15408
15409 switch (TypeExpr->getStmtClass()) {
15410 case Stmt::UnaryOperatorClass: {
15411 const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
15412 if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
15413 TypeExpr = UO->getSubExpr();
15414 continue;
15415 }
15416 return false;
15417 }
15418
15419 case Stmt::DeclRefExprClass: {
15420 const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
15421 *VD = DRE->getDecl();
15422 return true;
15423 }
15424
15425 case Stmt::IntegerLiteralClass: {
15426 const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
15427 llvm::APInt MagicValueAPInt = IL->getValue();
15428 if (MagicValueAPInt.getActiveBits() <= 64) {
15429 *MagicValue = MagicValueAPInt.getZExtValue();
15430 return true;
15431 } else
15432 return false;
15433 }
15434
15435 case Stmt::BinaryConditionalOperatorClass:
15436 case Stmt::ConditionalOperatorClass: {
15437 const AbstractConditionalOperator *ACO =
15438 cast<AbstractConditionalOperator>(TypeExpr);
15439 bool Result;
15440 if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx,
15441 isConstantEvaluated)) {
15442 if (Result)
15443 TypeExpr = ACO->getTrueExpr();
15444 else
15445 TypeExpr = ACO->getFalseExpr();
15446 continue;
15447 }
15448 return false;
15449 }
15450
15451 case Stmt::BinaryOperatorClass: {
15452 const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
15453 if (BO->getOpcode() == BO_Comma) {
15454 TypeExpr = BO->getRHS();
15455 continue;
15456 }
15457 return false;
15458 }
15459
15460 default:
15461 return false;
15462 }
15463 }
15464}
15465
15466/// Retrieve the C type corresponding to type tag TypeExpr.
15467///
15468/// \param TypeExpr Expression that specifies a type tag.
15469///
15470/// \param MagicValues Registered magic values.
15471///
15472/// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
15473/// kind.
15474///
15475/// \param TypeInfo Information about the corresponding C type.
15476///
15477/// \param isConstantEvaluated wether the evalaution should be performed in
15478/// constant context.
15479///
15480/// \returns true if the corresponding C type was found.
15481static bool GetMatchingCType(
15482 const IdentifierInfo *ArgumentKind, const Expr *TypeExpr,
15483 const ASTContext &Ctx,
15484 const llvm::DenseMap<Sema::TypeTagMagicValue, Sema::TypeTagData>
15485 *MagicValues,
15486 bool &FoundWrongKind, Sema::TypeTagData &TypeInfo,
15487 bool isConstantEvaluated) {
15488 FoundWrongKind = false;
15489
15490 // Variable declaration that has type_tag_for_datatype attribute.
15491 const ValueDecl *VD = nullptr;
15492
15493 uint64_t MagicValue;
15494
15495 if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue, isConstantEvaluated))
15496 return false;
15497
15498 if (VD) {
15499 if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) {
15500 if (I->getArgumentKind() != ArgumentKind) {
15501 FoundWrongKind = true;
15502 return false;
15503 }
15504 TypeInfo.Type = I->getMatchingCType();
15505 TypeInfo.LayoutCompatible = I->getLayoutCompatible();
15506 TypeInfo.MustBeNull = I->getMustBeNull();
15507 return true;
15508 }
15509 return false;
15510 }
15511
15512 if (!MagicValues)
15513 return false;
15514
15515 llvm::DenseMap<Sema::TypeTagMagicValue,
15516 Sema::TypeTagData>::const_iterator I =
15517 MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
15518 if (I == MagicValues->end())
15519 return false;
15520
15521 TypeInfo = I->second;
15522 return true;
15523}
15524
15525void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
15526 uint64_t MagicValue, QualType Type,
15527 bool LayoutCompatible,
15528 bool MustBeNull) {
15529 if (!TypeTagForDatatypeMagicValues)
15530 TypeTagForDatatypeMagicValues.reset(
15531 new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
15532
15533 TypeTagMagicValue Magic(ArgumentKind, MagicValue);
15534 (*TypeTagForDatatypeMagicValues)[Magic] =
15535 TypeTagData(Type, LayoutCompatible, MustBeNull);
15536}
15537
15538static bool IsSameCharType(QualType T1, QualType T2) {
15539 const BuiltinType *BT1 = T1->getAs<BuiltinType>();
15540 if (!BT1)
15541 return false;
15542
15543 const BuiltinType *BT2 = T2->getAs<BuiltinType>();
15544 if (!BT2)
15545 return false;
15546
15547 BuiltinType::Kind T1Kind = BT1->getKind();
15548 BuiltinType::Kind T2Kind = BT2->getKind();
15549
15550 return (T1Kind == BuiltinType::SChar && T2Kind == BuiltinType::Char_S) ||
15551 (T1Kind == BuiltinType::UChar && T2Kind == BuiltinType::Char_U) ||
15552 (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
15553 (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
15554}
15555
15556void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
15557 const ArrayRef<const Expr *> ExprArgs,
15558 SourceLocation CallSiteLoc) {
15559 const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
15560 bool IsPointerAttr = Attr->getIsPointer();
15561
15562 // Retrieve the argument representing the 'type_tag'.
15563 unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex();
15564 if (TypeTagIdxAST >= ExprArgs.size()) {
15565 Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
15566 << 0 << Attr->getTypeTagIdx().getSourceIndex();
15567 return;
15568 }
15569 const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST];
15570 bool FoundWrongKind;
15571 TypeTagData TypeInfo;
15572 if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
15573 TypeTagForDatatypeMagicValues.get(), FoundWrongKind,
15574 TypeInfo, isConstantEvaluated())) {
15575 if (FoundWrongKind)
15576 Diag(TypeTagExpr->getExprLoc(),
15577 diag::warn_type_tag_for_datatype_wrong_kind)
15578 << TypeTagExpr->getSourceRange();
15579 return;
15580 }
15581
15582 // Retrieve the argument representing the 'arg_idx'.
15583 unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex();
15584 if (ArgumentIdxAST >= ExprArgs.size()) {
15585 Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
15586 << 1 << Attr->getArgumentIdx().getSourceIndex();
15587 return;
15588 }
15589 const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST];
15590 if (IsPointerAttr) {
15591 // Skip implicit cast of pointer to `void *' (as a function argument).
15592 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
15593 if (ICE->getType()->isVoidPointerType() &&
15594 ICE->getCastKind() == CK_BitCast)
15595 ArgumentExpr = ICE->getSubExpr();
15596 }
15597 QualType ArgumentType = ArgumentExpr->getType();
15598
15599 // Passing a `void*' pointer shouldn't trigger a warning.
15600 if (IsPointerAttr && ArgumentType->isVoidPointerType())
15601 return;
15602
15603 if (TypeInfo.MustBeNull) {
15604 // Type tag with matching void type requires a null pointer.
15605 if (!ArgumentExpr->isNullPointerConstant(Context,
15606 Expr::NPC_ValueDependentIsNotNull)) {
15607 Diag(ArgumentExpr->getExprLoc(),
15608 diag::warn_type_safety_null_pointer_required)
15609 << ArgumentKind->getName()
15610 << ArgumentExpr->getSourceRange()
15611 << TypeTagExpr->getSourceRange();
15612 }
15613 return;
15614 }
15615
15616 QualType RequiredType = TypeInfo.Type;
15617 if (IsPointerAttr)
15618 RequiredType = Context.getPointerType(RequiredType);
15619
15620 bool mismatch = false;
15621 if (!TypeInfo.LayoutCompatible) {
15622 mismatch = !Context.hasSameType(ArgumentType, RequiredType);
15623
15624 // C++11 [basic.fundamental] p1:
15625 // Plain char, signed char, and unsigned char are three distinct types.
15626 //
15627 // But we treat plain `char' as equivalent to `signed char' or `unsigned
15628 // char' depending on the current char signedness mode.
15629 if (mismatch)
15630 if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
15631 RequiredType->getPointeeType())) ||
15632 (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
15633 mismatch = false;
15634 } else
15635 if (IsPointerAttr)
15636 mismatch = !isLayoutCompatible(Context,
15637 ArgumentType->getPointeeType(),
15638 RequiredType->getPointeeType());
15639 else
15640 mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
15641
15642 if (mismatch)
15643 Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
15644 << ArgumentType << ArgumentKind
15645 << TypeInfo.LayoutCompatible << RequiredType
15646 << ArgumentExpr->getSourceRange()
15647 << TypeTagExpr->getSourceRange();
15648}
15649
15650void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD,
15651 CharUnits Alignment) {
15652 MisalignedMembers.emplace_back(E, RD, MD, Alignment);
15653}
15654
15655void Sema::DiagnoseMisalignedMembers() {
15656 for (MisalignedMember &m : MisalignedMembers) {
15657 const NamedDecl *ND = m.RD;
15658 if (ND->getName().empty()) {
15659 if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl())
15660 ND = TD;
15661 }
15662 Diag(m.E->getBeginLoc(), diag::warn_taking_address_of_packed_member)
15663 << m.MD << ND << m.E->getSourceRange();
15664 }
15665 MisalignedMembers.clear();
15666}
15667
15668void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) {
15669 E = E->IgnoreParens();
15670 if (!T->isPointerType() && !T->isIntegerType())
15671 return;
15672 if (isa<UnaryOperator>(E) &&
15673 cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) {
15674 auto *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
15675 if (isa<MemberExpr>(Op)) {
15676 auto MA = llvm::find(MisalignedMembers, MisalignedMember(Op));
15677 if (MA != MisalignedMembers.end() &&
15678 (T->isIntegerType() ||
15679 (T->isPointerType() && (T->getPointeeType()->isIncompleteType() ||
15680 Context.getTypeAlignInChars(
15681 T->getPointeeType()) <= MA->Alignment))))
15682 MisalignedMembers.erase(MA);
15683 }
15684 }
15685}
15686
15687void Sema::RefersToMemberWithReducedAlignment(
15688 Expr *E,
15689 llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)>
15690 Action) {
15691 const auto *ME = dyn_cast<MemberExpr>(E);
15692 if (!ME)
15693 return;
15694
15695 // No need to check expressions with an __unaligned-qualified type.
15696 if (E->getType().getQualifiers().hasUnaligned())
15697 return;
15698
15699 // For a chain of MemberExpr like "a.b.c.d" this list
15700 // will keep FieldDecl's like [d, c, b].
15701 SmallVector<FieldDecl *, 4> ReverseMemberChain;
15702 const MemberExpr *TopME = nullptr;
15703 bool AnyIsPacked = false;
15704 do {
15705 QualType BaseType = ME->getBase()->getType();
15706 if (BaseType->isDependentType())
15707 return;
15708 if (ME->isArrow())
15709 BaseType = BaseType->getPointeeType();
15710 RecordDecl *RD = BaseType->castAs<RecordType>()->getDecl();
15711 if (RD->isInvalidDecl())
15712 return;
15713
15714 ValueDecl *MD = ME->getMemberDecl();
15715 auto *FD = dyn_cast<FieldDecl>(MD);
15716 // We do not care about non-data members.
15717 if (!FD || FD->isInvalidDecl())
15718 return;
15719
15720 AnyIsPacked =
15721 AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>());
15722 ReverseMemberChain.push_back(FD);
15723
15724 TopME = ME;
15725 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParens());
15726 } while (ME);
15727 assert(TopME && "We did not compute a topmost MemberExpr!")((TopME && "We did not compute a topmost MemberExpr!"
) ? static_cast<void> (0) : __assert_fail ("TopME && \"We did not compute a topmost MemberExpr!\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 15727, __PRETTY_FUNCTION__))
;
15728
15729 // Not the scope of this diagnostic.
15730 if (!AnyIsPacked)
15731 return;
15732
15733 const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts();
15734 const auto *DRE = dyn_cast<DeclRefExpr>(TopBase);
15735 // TODO: The innermost base of the member expression may be too complicated.
15736 // For now, just disregard these cases. This is left for future
15737 // improvement.
15738 if (!DRE && !isa<CXXThisExpr>(TopBase))
15739 return;
15740
15741 // Alignment expected by the whole expression.
15742 CharUnits ExpectedAlignment = Context.getTypeAlignInChars(E->getType());
15743
15744 // No need to do anything else with this case.
15745 if (ExpectedAlignment.isOne())
15746 return;
15747
15748 // Synthesize offset of the whole access.
15749 CharUnits Offset;
15750 for (auto I = ReverseMemberChain.rbegin(); I != ReverseMemberChain.rend();
15751 I++) {
15752 Offset += Context.toCharUnitsFromBits(Context.getFieldOffset(*I));
15753 }
15754
15755 // Compute the CompleteObjectAlignment as the alignment of the whole chain.
15756 CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars(
15757 ReverseMemberChain.back()->getParent()->getTypeForDecl());
15758
15759 // The base expression of the innermost MemberExpr may give
15760 // stronger guarantees than the class containing the member.
15761 if (DRE && !TopME->isArrow()) {
15762 const ValueDecl *VD = DRE->getDecl();
15763 if (!VD->getType()->isReferenceType())
15764 CompleteObjectAlignment =
15765 std::max(CompleteObjectAlignment, Context.getDeclAlign(VD));
15766 }
15767
15768 // Check if the synthesized offset fulfills the alignment.
15769 if (Offset % ExpectedAlignment != 0 ||
15770 // It may fulfill the offset it but the effective alignment may still be
15771 // lower than the expected expression alignment.
15772 CompleteObjectAlignment < ExpectedAlignment) {
15773 // If this happens, we want to determine a sensible culprit of this.
15774 // Intuitively, watching the chain of member expressions from right to
15775 // left, we start with the required alignment (as required by the field
15776 // type) but some packed attribute in that chain has reduced the alignment.
15777 // It may happen that another packed structure increases it again. But if
15778 // we are here such increase has not been enough. So pointing the first
15779 // FieldDecl that either is packed or else its RecordDecl is,
15780 // seems reasonable.
15781 FieldDecl *FD = nullptr;
15782 CharUnits Alignment;
15783 for (FieldDecl *FDI : ReverseMemberChain) {
15784 if (FDI->hasAttr<PackedAttr>() ||
15785 FDI->getParent()->hasAttr<PackedAttr>()) {
15786 FD = FDI;
15787 Alignment = std::min(
15788 Context.getTypeAlignInChars(FD->getType()),
15789 Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl()));
15790 break;
15791 }
15792 }
15793 assert(FD && "We did not find a packed FieldDecl!")((FD && "We did not find a packed FieldDecl!") ? static_cast
<void> (0) : __assert_fail ("FD && \"We did not find a packed FieldDecl!\""
, "/build/llvm-toolchain-snapshot-13~++20210223111116+16ede0956cb1/clang/lib/Sema/SemaChecking.cpp"
, 15793, __PRETTY_FUNCTION__))
;
15794 Action(E, FD->getParent(), FD, Alignment);
15795 }
15796}
15797
15798void Sema::CheckAddressOfPackedMember(Expr *rhs) {
15799 using namespace std::placeholders;
15800
15801 RefersToMemberWithReducedAlignment(
15802 rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1,
15803 _2, _3, _4));
15804}
15805
15806ExprResult Sema::SemaBuiltinMatrixTranspose(CallExpr *TheCall,
15807 ExprResult CallResult) {
15808 if (checkArgCount(*this, TheCall, 1))
15809 return ExprError();
15810
15811 ExprResult MatrixArg = DefaultLvalueConversion(TheCall->getArg(0));
15812 if (MatrixArg.isInvalid())
15813 return MatrixArg;
15814 Expr *Matrix = MatrixArg.get();
15815
15816 auto *MType = Matrix->getType()->getAs<ConstantMatrixType>();
15817 if (!MType) {
15818 Diag(Matrix->getBeginLoc(), diag::err_builtin_matrix_arg);
15819 return ExprError();
15820 }
15821
15822 // Create returned matrix type by swapping rows and columns of the argument
15823 // matrix type.
15824 QualType ResultType = Context.getConstantMatrixType(
15825 MType->getElementType(), MType->getNumColumns(), MType->getNumRows());
15826
15827 // Change the return type to the type of the returned matrix.
15828 TheCall->setType(ResultType);
15829
15830 // Update call argument to use the possibly converted matrix argument.
15831 TheCall->setArg(0, Matrix);
15832 return CallResult;
15833}
15834
15835// Get and verify the matrix dimensions.
15836static llvm::Optional<unsigned>
15837getAndVerifyMatrixDimension(Expr *Expr, StringRef Name, Sema &S) {
15838 SourceLocation ErrorPos;
15839 Optional<llvm::APSInt> Value =
15840 Expr->getIntegerConstantExpr(S.Context, &ErrorPos);
15841 if (!Value) {
15842 S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_scalar_unsigned_arg)
15843 << Name;
15844 return {};
15845 }
15846 uint64_t Dim = Value->getZExtValue();
15847 if (!ConstantMatrixType::isDimensionValid(Dim)) {
15848 S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_invalid_dimension)
15849 << Name << ConstantMatrixType::getMaxElementsPerDimension();
15850 return {};
15851 }
15852 return Dim;
15853}
15854
15855ExprResult Sema::SemaBuiltinMatrixColumnMajorLoad(CallExpr *TheCall,
15856 ExprResult CallResult) {
15857 if (!getLangOpts().MatrixTypes) {
15858 Diag(TheCall->getBeginLoc(), diag::err_builtin_matrix_disabled);
15859 return ExprError();
15860 }
15861
15862 if (checkArgCount(*this, TheCall, 4))
15863 return ExprError();
15864
15865 unsigned PtrArgIdx = 0;
15866 Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
15867 Expr *RowsExpr = TheCall->getArg(1);
15868 Expr *ColumnsExpr = TheCall->getArg(2);
15869 Expr *StrideExpr = TheCall->getArg(3);
15870
15871 bool ArgError = false;
15872
15873 // Check pointer argument.
15874 {
15875 ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
15876 if (PtrConv.isInvalid())
15877 return PtrConv;
15878 PtrExpr = PtrConv.get();
15879 TheCall->setArg(0, PtrExpr);
15880 if (PtrExpr->isTypeDependent()) {
15881 TheCall->setType(Context.DependentTy);
15882 return TheCall;
15883 }
15884 }
15885
15886 auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
15887 QualType ElementTy;
15888 if (!PtrTy) {
15889 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg)
15890 << PtrArgIdx + 1;
15891 ArgError = true;
15892 } else {
15893 ElementTy = PtrTy->getPointeeType().getUnqualifiedType();
15894
15895 if (!ConstantMatrixType::isValidElementType(ElementTy)) {
15896 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg)
15897 << PtrArgIdx + 1;
15898 ArgError = true;
15899 }
15900 }
15901
15902 // Apply default Lvalue conversions and convert the expression to size_t.
15903 auto ApplyArgumentConversions = [this](Expr *E) {
15904 ExprResult Conv = DefaultLvalueConversion(E);
15905 if (Conv.isInvalid())
15906 return Conv;
15907
15908 return tryConvertExprToType(Conv.get(), Context.getSizeType());
15909 };
15910
15911 // Apply conversion to row and column expressions.
15912 ExprResult RowsConv = ApplyArgumentConversions(RowsExpr);
15913 if (!RowsConv.isInvalid()) {
15914 RowsExpr = RowsConv.get();
15915 TheCall->setArg(1, RowsExpr);
15916 } else
15917 RowsExpr = nullptr;
15918
15919 ExprResult ColumnsConv = ApplyArgumentConversions(ColumnsExpr);
15920 if (!ColumnsConv.isInvalid()) {
15921 ColumnsExpr = ColumnsConv.get();
15922 TheCall->setArg(2, ColumnsExpr);
15923 } else
15924 ColumnsExpr = nullptr;
15925
15926 // If any any part of the result matrix type is still pending, just use
15927 // Context.DependentTy, until all parts are resolved.
15928 if ((RowsExpr && RowsExpr->isTypeDependent()) ||
15929 (ColumnsExpr && ColumnsExpr->isTypeDependent())) {
15930 TheCall->setType(Context.DependentTy);
15931 return CallResult;
15932 }
15933
15934 // Check row and column dimenions.
15935 llvm::Optional<unsigned> MaybeRows;
15936 if (RowsExpr)
15937 MaybeRows = getAndVerifyMatrixDimension(RowsExpr, "row", *this);
15938
15939 llvm::Optional<unsigned> MaybeColumns;
15940 if (ColumnsExpr)
15941 MaybeColumns = getAndVerifyMatrixDimension(ColumnsExpr, "column", *this);
15942
15943 // Check stride argument.
15944 ExprResult StrideConv = ApplyArgumentConversions(StrideExpr);
15945 if (StrideConv.isInvalid())
15946 return ExprError();
15947 StrideExpr = StrideConv.get();
15948 TheCall->setArg(3, StrideExpr);
15949
15950 if (MaybeRows) {
15951 if (Optional<llvm::APSInt> Value =
15952 StrideExpr->getIntegerConstantExpr(Context)) {
15953 uint64_t Stride = Value->getZExtValue();
15954 if (Stride < *MaybeRows) {
15955 Diag(StrideExpr->getBeginLoc(),
15956 diag::err_builtin_matrix_stride_too_small);
15957 ArgError = true;
15958 }
15959 }
15960 }
15961
15962 if (ArgError || !MaybeRows || !MaybeColumns)
15963 return ExprError();
15964
15965 TheCall->setType(
15966 Context.getConstantMatrixType(ElementTy, *MaybeRows, *MaybeColumns));
15967 return CallResult;
15968}
15969
15970ExprResult Sema::SemaBuiltinMatrixColumnMajorStore(CallExpr *TheCall,
15971 ExprResult CallResult) {
15972 if (checkArgCount(*this, TheCall, 3))
15973 return ExprError();
15974
15975 unsigned PtrArgIdx = 1;
15976 Expr *MatrixExpr = TheCall->getArg(0);
15977 Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
15978 Expr *StrideExpr = TheCall->getArg(2);
15979
15980 bool ArgError = false;
15981
15982 {
15983 ExprResult MatrixConv = DefaultLvalueConversion(MatrixExpr);
15984 if (MatrixConv.isInvalid())
15985 return MatrixConv;
15986 MatrixExpr = MatrixConv.get();
15987 TheCall->setArg(0, MatrixExpr);
15988 }
15989 if (MatrixExpr->isTypeDependent()) {
15990 TheCall->setType(Context.DependentTy);
15991 return TheCall;
15992 }
15993
15994 auto *MatrixTy = MatrixExpr->getType()->getAs<ConstantMatrixType>();
15995 if (!MatrixTy) {
15996 Diag(MatrixExpr->getBeginLoc(), diag::err_builtin_matrix_arg) << 0;
15997 ArgError = true;
15998 }
15999
16000 {
16001 ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
16002 if (PtrConv.isInvalid())
16003 return PtrConv;
16004 PtrExpr = PtrConv.get();
16005 TheCall->setArg(1, PtrExpr);
16006 if (PtrExpr->isTypeDependent()) {
16007 TheCall->setType(Context.DependentTy);
16008 return TheCall;
16009 }
16010 }
16011
16012 // Check pointer argument.
16013 auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
16014 if (!PtrTy) {
16015 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_pointer_arg)
16016 << PtrArgIdx + 1;
16017 ArgError = true;
16018 } else {
16019 QualType ElementTy = PtrTy->getPointeeType();
16020 if (ElementTy.isConstQualified()) {
16021 Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_store_to_const);
16022 ArgError = true;
16023 }
16024 ElementTy = ElementTy.getUnqualifiedType().getCanonicalType();
16025 if (MatrixTy &&
16026 !Context.hasSameType(ElementTy, MatrixTy->getElementType())) {
16027 Diag(PtrExpr->getBeginLoc(),
16028 diag::err_builtin_matrix_pointer_arg_mismatch)
16029 << ElementTy << MatrixTy->getElementType();
16030 ArgError = true;
16031 }
16032 }
16033
16034 // Apply default Lvalue conversions and convert the stride expression to
16035 // size_t.
16036 {
16037 ExprResult StrideConv = DefaultLvalueConversion(StrideExpr);
16038 if (StrideConv.isInvalid())
16039 return StrideConv;
16040
16041 StrideConv = tryConvertExprToType(StrideConv.get(), Context.getSizeType());
16042 if (StrideConv.isInvalid())
16043 return StrideConv;
16044 StrideExpr = StrideConv.get();
16045 TheCall->setArg(2, StrideExpr);
16046 }
16047
16048 // Check stride argument.
16049 if (MatrixTy) {
16050 if (Optional<llvm::APSInt> Value =
16051 StrideExpr->getIntegerConstantExpr(Context)) {
16052 uint64_t Stride = Value->getZExtValue();
16053 if (Stride < MatrixTy->getNumRows()) {
16054 Diag(StrideExpr->getBeginLoc(),
16055 diag::err_builtin_matrix_stride_too_small);
16056 ArgError = true;
16057 }
16058 }
16059 }
16060
16061 if (ArgError)
16062 return ExprError();
16063
16064 return CallResult;
16065}
16066
16067/// \brief Enforce the bounds of a TCB
16068/// CheckTCBEnforcement - Enforces that every function in a named TCB only
16069/// directly calls other functions in the same TCB as marked by the enforce_tcb
16070/// and enforce_tcb_leaf attributes.
16071void Sema::CheckTCBEnforcement(const CallExpr *TheCall,
16072 const FunctionDecl *Callee) {
16073 const FunctionDecl *Caller = getCurFunctionDecl();
16074
16075 // Calls to builtins are not enforced.
16076 if (!Caller || !Caller->hasAttr<EnforceTCBAttr>() ||
16077 Callee->getBuiltinID() != 0)
16078 return;
16079
16080 // Search through the enforce_tcb and enforce_tcb_leaf attributes to find
16081 // all TCBs the callee is a part of.
16082 llvm::StringSet<> CalleeTCBs;
16083 for_each(Callee->specific_attrs<EnforceTCBAttr>(),
16084 [&](const auto *A) { CalleeTCBs.insert(A->getTCBName()); });
16085 for_each(Callee->specific_attrs<EnforceTCBLeafAttr>(),
16086 [&](const auto *A) { CalleeTCBs.insert(A->getTCBName()); });
16087
16088 // Go through the TCBs the caller is a part of and emit warnings if Caller
16089 // is in a TCB that the Callee is not.
16090 for_each(
16091 Caller->specific_attrs<EnforceTCBAttr>(),
16092 [&](const auto *A) {
16093 StringRef CallerTCB = A->getTCBName();
16094 if (CalleeTCBs.count(CallerTCB) == 0) {
16095 this->Diag(TheCall->getExprLoc(),
16096 diag::warn_tcb_enforcement_violation) << Callee
16097 << CallerTCB;
16098 }
16099 });
16100}