Bug Summary

File:tools/clang/lib/Sema/SemaDecl.cpp
Warning:line 1055, column 9
Null pointer passed as an argument to a 'nonnull' parameter

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaDecl.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn325118/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-7~svn325118/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn325118/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn325118/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn325118/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/x86_64-linux-gnu/c++/7.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/7.3.0/../../../../include/c++/7.3.0/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn325118/build-llvm/tools/clang/lib/Sema -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-checker optin.performance.Padding -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-02-14-150435-17243-1 -x c++ /build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp

/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp

1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "TypeLocBuilder.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTLambda.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CommentDiagnostic.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/EvaluatedExprVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/Basic/Builtins.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/SourceManager.h"
30#include "clang/Basic/TargetInfo.h"
31#include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
32#include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
33#include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
34#include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
35#include "clang/Sema/CXXFieldCollector.h"
36#include "clang/Sema/DeclSpec.h"
37#include "clang/Sema/DelayedDiagnostic.h"
38#include "clang/Sema/Initialization.h"
39#include "clang/Sema/Lookup.h"
40#include "clang/Sema/ParsedTemplate.h"
41#include "clang/Sema/Scope.h"
42#include "clang/Sema/ScopeInfo.h"
43#include "clang/Sema/SemaInternal.h"
44#include "clang/Sema/Template.h"
45#include "llvm/ADT/SmallString.h"
46#include "llvm/ADT/Triple.h"
47#include <algorithm>
48#include <cstring>
49#include <functional>
50
51using namespace clang;
52using namespace sema;
53
54Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
55 if (OwnedType) {
56 Decl *Group[2] = { OwnedType, Ptr };
57 return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
58 }
59
60 return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
61}
62
63namespace {
64
65class TypeNameValidatorCCC : public CorrectionCandidateCallback {
66 public:
67 TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false,
68 bool AllowTemplates = false,
69 bool AllowNonTemplates = true)
70 : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
71 AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) {
72 WantExpressionKeywords = false;
73 WantCXXNamedCasts = false;
74 WantRemainingKeywords = false;
75 }
76
77 bool ValidateCandidate(const TypoCorrection &candidate) override {
78 if (NamedDecl *ND = candidate.getCorrectionDecl()) {
79 if (!AllowInvalidDecl && ND->isInvalidDecl())
80 return false;
81
82 if (getAsTypeTemplateDecl(ND))
83 return AllowTemplates;
84
85 bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
86 if (!IsType)
87 return false;
88
89 if (AllowNonTemplates)
90 return true;
91
92 // An injected-class-name of a class template (specialization) is valid
93 // as a template or as a non-template.
94 if (AllowTemplates) {
95 auto *RD = dyn_cast<CXXRecordDecl>(ND);
96 if (!RD || !RD->isInjectedClassName())
97 return false;
98 RD = cast<CXXRecordDecl>(RD->getDeclContext());
99 return RD->getDescribedClassTemplate() ||
100 isa<ClassTemplateSpecializationDecl>(RD);
101 }
102
103 return false;
104 }
105
106 return !WantClassName && candidate.isKeyword();
107 }
108
109 private:
110 bool AllowInvalidDecl;
111 bool WantClassName;
112 bool AllowTemplates;
113 bool AllowNonTemplates;
114};
115
116} // end anonymous namespace
117
118/// \brief Determine whether the token kind starts a simple-type-specifier.
119bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
120 switch (Kind) {
121 // FIXME: Take into account the current language when deciding whether a
122 // token kind is a valid type specifier
123 case tok::kw_short:
124 case tok::kw_long:
125 case tok::kw___int64:
126 case tok::kw___int128:
127 case tok::kw_signed:
128 case tok::kw_unsigned:
129 case tok::kw_void:
130 case tok::kw_char:
131 case tok::kw_int:
132 case tok::kw_half:
133 case tok::kw_float:
134 case tok::kw_double:
135 case tok::kw__Float16:
136 case tok::kw___float128:
137 case tok::kw_wchar_t:
138 case tok::kw_bool:
139 case tok::kw___underlying_type:
140 case tok::kw___auto_type:
141 return true;
142
143 case tok::annot_typename:
144 case tok::kw_char16_t:
145 case tok::kw_char32_t:
146 case tok::kw_typeof:
147 case tok::annot_decltype:
148 case tok::kw_decltype:
149 return getLangOpts().CPlusPlus;
150
151 default:
152 break;
153 }
154
155 return false;
156}
157
158namespace {
159enum class UnqualifiedTypeNameLookupResult {
160 NotFound,
161 FoundNonType,
162 FoundType
163};
164} // end anonymous namespace
165
166/// \brief Tries to perform unqualified lookup of the type decls in bases for
167/// dependent class.
168/// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
169/// type decl, \a FoundType if only type decls are found.
170static UnqualifiedTypeNameLookupResult
171lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II,
172 SourceLocation NameLoc,
173 const CXXRecordDecl *RD) {
174 if (!RD->hasDefinition())
175 return UnqualifiedTypeNameLookupResult::NotFound;
176 // Look for type decls in base classes.
177 UnqualifiedTypeNameLookupResult FoundTypeDecl =
178 UnqualifiedTypeNameLookupResult::NotFound;
179 for (const auto &Base : RD->bases()) {
180 const CXXRecordDecl *BaseRD = nullptr;
181 if (auto *BaseTT = Base.getType()->getAs<TagType>())
182 BaseRD = BaseTT->getAsCXXRecordDecl();
183 else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) {
184 // Look for type decls in dependent base classes that have known primary
185 // templates.
186 if (!TST || !TST->isDependentType())
187 continue;
188 auto *TD = TST->getTemplateName().getAsTemplateDecl();
189 if (!TD)
190 continue;
191 if (auto *BasePrimaryTemplate =
192 dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) {
193 if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl())
194 BaseRD = BasePrimaryTemplate;
195 else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) {
196 if (const ClassTemplatePartialSpecializationDecl *PS =
197 CTD->findPartialSpecialization(Base.getType()))
198 if (PS->getCanonicalDecl() != RD->getCanonicalDecl())
199 BaseRD = PS;
200 }
201 }
202 }
203 if (BaseRD) {
204 for (NamedDecl *ND : BaseRD->lookup(&II)) {
205 if (!isa<TypeDecl>(ND))
206 return UnqualifiedTypeNameLookupResult::FoundNonType;
207 FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
208 }
209 if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) {
210 switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) {
211 case UnqualifiedTypeNameLookupResult::FoundNonType:
212 return UnqualifiedTypeNameLookupResult::FoundNonType;
213 case UnqualifiedTypeNameLookupResult::FoundType:
214 FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
215 break;
216 case UnqualifiedTypeNameLookupResult::NotFound:
217 break;
218 }
219 }
220 }
221 }
222
223 return FoundTypeDecl;
224}
225
226static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
227 const IdentifierInfo &II,
228 SourceLocation NameLoc) {
229 // Lookup in the parent class template context, if any.
230 const CXXRecordDecl *RD = nullptr;
231 UnqualifiedTypeNameLookupResult FoundTypeDecl =
232 UnqualifiedTypeNameLookupResult::NotFound;
233 for (DeclContext *DC = S.CurContext;
234 DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound;
235 DC = DC->getParent()) {
236 // Look for type decls in dependent base classes that have known primary
237 // templates.
238 RD = dyn_cast<CXXRecordDecl>(DC);
239 if (RD && RD->getDescribedClassTemplate())
240 FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD);
241 }
242 if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType)
243 return nullptr;
244
245 // We found some types in dependent base classes. Recover as if the user
246 // wrote 'typename MyClass::II' instead of 'II'. We'll fully resolve the
247 // lookup during template instantiation.
248 S.Diag(NameLoc, diag::ext_found_via_dependent_bases_lookup) << &II;
249
250 ASTContext &Context = S.Context;
251 auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
252 cast<Type>(Context.getRecordType(RD)));
253 QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II);
254
255 CXXScopeSpec SS;
256 SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
257
258 TypeLocBuilder Builder;
259 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
260 DepTL.setNameLoc(NameLoc);
261 DepTL.setElaboratedKeywordLoc(SourceLocation());
262 DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
263 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
264}
265
266/// \brief If the identifier refers to a type name within this scope,
267/// return the declaration of that type.
268///
269/// This routine performs ordinary name lookup of the identifier II
270/// within the given scope, with optional C++ scope specifier SS, to
271/// determine whether the name refers to a type. If so, returns an
272/// opaque pointer (actually a QualType) corresponding to that
273/// type. Otherwise, returns NULL.
274ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
275 Scope *S, CXXScopeSpec *SS,
276 bool isClassName, bool HasTrailingDot,
277 ParsedType ObjectTypePtr,
278 bool IsCtorOrDtorName,
279 bool WantNontrivialTypeSourceInfo,
280 bool IsClassTemplateDeductionContext,
281 IdentifierInfo **CorrectedII) {
282 // FIXME: Consider allowing this outside C++1z mode as an extension.
283 bool AllowDeducedTemplate = IsClassTemplateDeductionContext &&
284 getLangOpts().CPlusPlus17 && !IsCtorOrDtorName &&
285 !isClassName && !HasTrailingDot;
286
287 // Determine where we will perform name lookup.
288 DeclContext *LookupCtx = nullptr;
289 if (ObjectTypePtr) {
290 QualType ObjectType = ObjectTypePtr.get();
291 if (ObjectType->isRecordType())
292 LookupCtx = computeDeclContext(ObjectType);
293 } else if (SS && SS->isNotEmpty()) {
294 LookupCtx = computeDeclContext(*SS, false);
295
296 if (!LookupCtx) {
297 if (isDependentScopeSpecifier(*SS)) {
298 // C++ [temp.res]p3:
299 // A qualified-id that refers to a type and in which the
300 // nested-name-specifier depends on a template-parameter (14.6.2)
301 // shall be prefixed by the keyword typename to indicate that the
302 // qualified-id denotes a type, forming an
303 // elaborated-type-specifier (7.1.5.3).
304 //
305 // We therefore do not perform any name lookup if the result would
306 // refer to a member of an unknown specialization.
307 if (!isClassName && !IsCtorOrDtorName)
308 return nullptr;
309
310 // We know from the grammar that this name refers to a type,
311 // so build a dependent node to describe the type.
312 if (WantNontrivialTypeSourceInfo)
313 return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
314
315 NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
316 QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
317 II, NameLoc);
318 return ParsedType::make(T);
319 }
320
321 return nullptr;
322 }
323
324 if (!LookupCtx->isDependentContext() &&
325 RequireCompleteDeclContext(*SS, LookupCtx))
326 return nullptr;
327 }
328
329 // FIXME: LookupNestedNameSpecifierName isn't the right kind of
330 // lookup for class-names.
331 LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
332 LookupOrdinaryName;
333 LookupResult Result(*this, &II, NameLoc, Kind);
334 if (LookupCtx) {
335 // Perform "qualified" name lookup into the declaration context we
336 // computed, which is either the type of the base of a member access
337 // expression or the declaration context associated with a prior
338 // nested-name-specifier.
339 LookupQualifiedName(Result, LookupCtx);
340
341 if (ObjectTypePtr && Result.empty()) {
342 // C++ [basic.lookup.classref]p3:
343 // If the unqualified-id is ~type-name, the type-name is looked up
344 // in the context of the entire postfix-expression. If the type T of
345 // the object expression is of a class type C, the type-name is also
346 // looked up in the scope of class C. At least one of the lookups shall
347 // find a name that refers to (possibly cv-qualified) T.
348 LookupName(Result, S);
349 }
350 } else {
351 // Perform unqualified name lookup.
352 LookupName(Result, S);
353
354 // For unqualified lookup in a class template in MSVC mode, look into
355 // dependent base classes where the primary class template is known.
356 if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
357 if (ParsedType TypeInBase =
358 recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
359 return TypeInBase;
360 }
361 }
362
363 NamedDecl *IIDecl = nullptr;
364 switch (Result.getResultKind()) {
365 case LookupResult::NotFound:
366 case LookupResult::NotFoundInCurrentInstantiation:
367 if (CorrectedII) {
368 TypoCorrection Correction =
369 CorrectTypo(Result.getLookupNameInfo(), Kind, S, SS,
370 llvm::make_unique<TypeNameValidatorCCC>(
371 true, isClassName, AllowDeducedTemplate),
372 CTK_ErrorRecovery);
373 IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
374 TemplateTy Template;
375 bool MemberOfUnknownSpecialization;
376 UnqualifiedId TemplateName;
377 TemplateName.setIdentifier(NewII, NameLoc);
378 NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
379 CXXScopeSpec NewSS, *NewSSPtr = SS;
380 if (SS && NNS) {
381 NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
382 NewSSPtr = &NewSS;
383 }
384 if (Correction && (NNS || NewII != &II) &&
385 // Ignore a correction to a template type as the to-be-corrected
386 // identifier is not a template (typo correction for template names
387 // is handled elsewhere).
388 !(getLangOpts().CPlusPlus && NewSSPtr &&
389 isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false,
390 Template, MemberOfUnknownSpecialization))) {
391 ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
392 isClassName, HasTrailingDot, ObjectTypePtr,
393 IsCtorOrDtorName,
394 WantNontrivialTypeSourceInfo,
395 IsClassTemplateDeductionContext);
396 if (Ty) {
397 diagnoseTypo(Correction,
398 PDiag(diag::err_unknown_type_or_class_name_suggest)
399 << Result.getLookupName() << isClassName);
400 if (SS && NNS)
401 SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
402 *CorrectedII = NewII;
403 return Ty;
404 }
405 }
406 }
407 // If typo correction failed or was not performed, fall through
408 LLVM_FALLTHROUGH[[clang::fallthrough]];
409 case LookupResult::FoundOverloaded:
410 case LookupResult::FoundUnresolvedValue:
411 Result.suppressDiagnostics();
412 return nullptr;
413
414 case LookupResult::Ambiguous:
415 // Recover from type-hiding ambiguities by hiding the type. We'll
416 // do the lookup again when looking for an object, and we can
417 // diagnose the error then. If we don't do this, then the error
418 // about hiding the type will be immediately followed by an error
419 // that only makes sense if the identifier was treated like a type.
420 if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
421 Result.suppressDiagnostics();
422 return nullptr;
423 }
424
425 // Look to see if we have a type anywhere in the list of results.
426 for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
427 Res != ResEnd; ++Res) {
428 if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res) ||
429 (AllowDeducedTemplate && getAsTypeTemplateDecl(*Res))) {
430 if (!IIDecl ||
431 (*Res)->getLocation().getRawEncoding() <
432 IIDecl->getLocation().getRawEncoding())
433 IIDecl = *Res;
434 }
435 }
436
437 if (!IIDecl) {
438 // None of the entities we found is a type, so there is no way
439 // to even assume that the result is a type. In this case, don't
440 // complain about the ambiguity. The parser will either try to
441 // perform this lookup again (e.g., as an object name), which
442 // will produce the ambiguity, or will complain that it expected
443 // a type name.
444 Result.suppressDiagnostics();
445 return nullptr;
446 }
447
448 // We found a type within the ambiguous lookup; diagnose the
449 // ambiguity and then return that type. This might be the right
450 // answer, or it might not be, but it suppresses any attempt to
451 // perform the name lookup again.
452 break;
453
454 case LookupResult::Found:
455 IIDecl = Result.getFoundDecl();
456 break;
457 }
458
459 assert(IIDecl && "Didn't find decl")(static_cast <bool> (IIDecl && "Didn't find decl"
) ? void (0) : __assert_fail ("IIDecl && \"Didn't find decl\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 459, __extension__ __PRETTY_FUNCTION__))
;
460
461 QualType T;
462 if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
463 // C++ [class.qual]p2: A lookup that would find the injected-class-name
464 // instead names the constructors of the class, except when naming a class.
465 // This is ill-formed when we're not actually forming a ctor or dtor name.
466 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
467 auto *FoundRD = dyn_cast<CXXRecordDecl>(TD);
468 if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD &&
469 FoundRD->isInjectedClassName() &&
470 declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
471 Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor)
472 << &II << /*Type*/1;
473
474 DiagnoseUseOfDecl(IIDecl, NameLoc);
475
476 T = Context.getTypeDeclType(TD);
477 MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
478 } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
479 (void)DiagnoseUseOfDecl(IDecl, NameLoc);
480 if (!HasTrailingDot)
481 T = Context.getObjCInterfaceType(IDecl);
482 } else if (AllowDeducedTemplate) {
483 if (auto *TD = getAsTypeTemplateDecl(IIDecl))
484 T = Context.getDeducedTemplateSpecializationType(TemplateName(TD),
485 QualType(), false);
486 }
487
488 if (T.isNull()) {
489 // If it's not plausibly a type, suppress diagnostics.
490 Result.suppressDiagnostics();
491 return nullptr;
492 }
493
494 // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
495 // constructor or destructor name (in such a case, the scope specifier
496 // will be attached to the enclosing Expr or Decl node).
497 if (SS && SS->isNotEmpty() && !IsCtorOrDtorName &&
498 !isa<ObjCInterfaceDecl>(IIDecl)) {
499 if (WantNontrivialTypeSourceInfo) {
500 // Construct a type with type-source information.
501 TypeLocBuilder Builder;
502 Builder.pushTypeSpec(T).setNameLoc(NameLoc);
503
504 T = getElaboratedType(ETK_None, *SS, T);
505 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
506 ElabTL.setElaboratedKeywordLoc(SourceLocation());
507 ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
508 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
509 } else {
510 T = getElaboratedType(ETK_None, *SS, T);
511 }
512 }
513
514 return ParsedType::make(T);
515}
516
517// Builds a fake NNS for the given decl context.
518static NestedNameSpecifier *
519synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
520 for (;; DC = DC->getLookupParent()) {
521 DC = DC->getPrimaryContext();
522 auto *ND = dyn_cast<NamespaceDecl>(DC);
523 if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
524 return NestedNameSpecifier::Create(Context, nullptr, ND);
525 else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
526 return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
527 RD->getTypeForDecl());
528 else if (isa<TranslationUnitDecl>(DC))
529 return NestedNameSpecifier::GlobalSpecifier(Context);
530 }
531 llvm_unreachable("something isn't in TU scope?")::llvm::llvm_unreachable_internal("something isn't in TU scope?"
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 531)
;
532}
533
534/// Find the parent class with dependent bases of the innermost enclosing method
535/// context. Do not look for enclosing CXXRecordDecls directly, or we will end
536/// up allowing unqualified dependent type names at class-level, which MSVC
537/// correctly rejects.
538static const CXXRecordDecl *
539findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) {
540 for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) {
541 DC = DC->getPrimaryContext();
542 if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
543 if (MD->getParent()->hasAnyDependentBases())
544 return MD->getParent();
545 }
546 return nullptr;
547}
548
549ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
550 SourceLocation NameLoc,
551 bool IsTemplateTypeArg) {
552 assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode")(static_cast <bool> (getLangOpts().MSVCCompat &&
"shouldn't be called in non-MSVC mode") ? void (0) : __assert_fail
("getLangOpts().MSVCCompat && \"shouldn't be called in non-MSVC mode\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 552, __extension__ __PRETTY_FUNCTION__))
;
553
554 NestedNameSpecifier *NNS = nullptr;
555 if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) {
556 // If we weren't able to parse a default template argument, delay lookup
557 // until instantiation time by making a non-dependent DependentTypeName. We
558 // pretend we saw a NestedNameSpecifier referring to the current scope, and
559 // lookup is retried.
560 // FIXME: This hurts our diagnostic quality, since we get errors like "no
561 // type named 'Foo' in 'current_namespace'" when the user didn't write any
562 // name specifiers.
563 NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext);
564 Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
565 } else if (const CXXRecordDecl *RD =
566 findRecordWithDependentBasesOfEnclosingMethod(CurContext)) {
567 // Build a DependentNameType that will perform lookup into RD at
568 // instantiation time.
569 NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
570 RD->getTypeForDecl());
571
572 // Diagnose that this identifier was undeclared, and retry the lookup during
573 // template instantiation.
574 Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II
575 << RD;
576 } else {
577 // This is not a situation that we should recover from.
578 return ParsedType();
579 }
580
581 QualType T = Context.getDependentNameType(ETK_None, NNS, &II);
582
583 // Build type location information. We synthesized the qualifier, so we have
584 // to build a fake NestedNameSpecifierLoc.
585 NestedNameSpecifierLocBuilder NNSLocBuilder;
586 NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
587 NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
588
589 TypeLocBuilder Builder;
590 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
591 DepTL.setNameLoc(NameLoc);
592 DepTL.setElaboratedKeywordLoc(SourceLocation());
593 DepTL.setQualifierLoc(QualifierLoc);
594 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
595}
596
597/// isTagName() - This method is called *for error recovery purposes only*
598/// to determine if the specified name is a valid tag name ("struct foo"). If
599/// so, this returns the TST for the tag corresponding to it (TST_enum,
600/// TST_union, TST_struct, TST_interface, TST_class). This is used to diagnose
601/// cases in C where the user forgot to specify the tag.
602DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
603 // Do a tag name lookup in this scope.
604 LookupResult R(*this, &II, SourceLocation(), LookupTagName);
605 LookupName(R, S, false);
606 R.suppressDiagnostics();
607 if (R.getResultKind() == LookupResult::Found)
608 if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
609 switch (TD->getTagKind()) {
610 case TTK_Struct: return DeclSpec::TST_struct;
611 case TTK_Interface: return DeclSpec::TST_interface;
612 case TTK_Union: return DeclSpec::TST_union;
613 case TTK_Class: return DeclSpec::TST_class;
614 case TTK_Enum: return DeclSpec::TST_enum;
615 }
616 }
617
618 return DeclSpec::TST_unspecified;
619}
620
621/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
622/// if a CXXScopeSpec's type is equal to the type of one of the base classes
623/// then downgrade the missing typename error to a warning.
624/// This is needed for MSVC compatibility; Example:
625/// @code
626/// template<class T> class A {
627/// public:
628/// typedef int TYPE;
629/// };
630/// template<class T> class B : public A<T> {
631/// public:
632/// A<T>::TYPE a; // no typename required because A<T> is a base class.
633/// };
634/// @endcode
635bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
636 if (CurContext->isRecord()) {
637 if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super)
638 return true;
639
640 const Type *Ty = SS->getScopeRep()->getAsType();
641
642 CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
643 for (const auto &Base : RD->bases())
644 if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
645 return true;
646 return S->isFunctionPrototypeScope();
647 }
648 return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
649}
650
651void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
652 SourceLocation IILoc,
653 Scope *S,
654 CXXScopeSpec *SS,
655 ParsedType &SuggestedType,
656 bool IsTemplateName) {
657 // Don't report typename errors for editor placeholders.
658 if (II->isEditorPlaceholder())
659 return;
660 // We don't have anything to suggest (yet).
661 SuggestedType = nullptr;
662
663 // There may have been a typo in the name of the type. Look up typo
664 // results, in case we have something that we can suggest.
665 if (TypoCorrection Corrected =
666 CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS,
667 llvm::make_unique<TypeNameValidatorCCC>(
668 false, false, IsTemplateName, !IsTemplateName),
669 CTK_ErrorRecovery)) {
670 // FIXME: Support error recovery for the template-name case.
671 bool CanRecover = !IsTemplateName;
672 if (Corrected.isKeyword()) {
673 // We corrected to a keyword.
674 diagnoseTypo(Corrected,
675 PDiag(IsTemplateName ? diag::err_no_template_suggest
676 : diag::err_unknown_typename_suggest)
677 << II);
678 II = Corrected.getCorrectionAsIdentifierInfo();
679 } else {
680 // We found a similarly-named type or interface; suggest that.
681 if (!SS || !SS->isSet()) {
682 diagnoseTypo(Corrected,
683 PDiag(IsTemplateName ? diag::err_no_template_suggest
684 : diag::err_unknown_typename_suggest)
685 << II, CanRecover);
686 } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
687 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
688 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
689 II->getName().equals(CorrectedStr);
690 diagnoseTypo(Corrected,
691 PDiag(IsTemplateName
692 ? diag::err_no_member_template_suggest
693 : diag::err_unknown_nested_typename_suggest)
694 << II << DC << DroppedSpecifier << SS->getRange(),
695 CanRecover);
696 } else {
697 llvm_unreachable("could not have corrected a typo here")::llvm::llvm_unreachable_internal("could not have corrected a typo here"
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 697)
;
698 }
699
700 if (!CanRecover)
701 return;
702
703 CXXScopeSpec tmpSS;
704 if (Corrected.getCorrectionSpecifier())
705 tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
706 SourceRange(IILoc));
707 // FIXME: Support class template argument deduction here.
708 SuggestedType =
709 getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S,
710 tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr,
711 /*IsCtorOrDtorName=*/false,
712 /*NonTrivialTypeSourceInfo=*/true);
713 }
714 return;
715 }
716
717 if (getLangOpts().CPlusPlus && !IsTemplateName) {
718 // See if II is a class template that the user forgot to pass arguments to.
719 UnqualifiedId Name;
720 Name.setIdentifier(II, IILoc);
721 CXXScopeSpec EmptySS;
722 TemplateTy TemplateResult;
723 bool MemberOfUnknownSpecialization;
724 if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
725 Name, nullptr, true, TemplateResult,
726 MemberOfUnknownSpecialization) == TNK_Type_template) {
727 TemplateName TplName = TemplateResult.get();
728 Diag(IILoc, diag::err_template_missing_args)
729 << (int)getTemplateNameKindForDiagnostics(TplName) << TplName;
730 if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
731 Diag(TplDecl->getLocation(), diag::note_template_decl_here)
732 << TplDecl->getTemplateParameters()->getSourceRange();
733 }
734 return;
735 }
736 }
737
738 // FIXME: Should we move the logic that tries to recover from a missing tag
739 // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
740
741 if (!SS || (!SS->isSet() && !SS->isInvalid()))
742 Diag(IILoc, IsTemplateName ? diag::err_no_template
743 : diag::err_unknown_typename)
744 << II;
745 else if (DeclContext *DC = computeDeclContext(*SS, false))
746 Diag(IILoc, IsTemplateName ? diag::err_no_member_template
747 : diag::err_typename_nested_not_found)
748 << II << DC << SS->getRange();
749 else if (isDependentScopeSpecifier(*SS)) {
750 unsigned DiagID = diag::err_typename_missing;
751 if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
752 DiagID = diag::ext_typename_missing;
753
754 Diag(SS->getRange().getBegin(), DiagID)
755 << SS->getScopeRep() << II->getName()
756 << SourceRange(SS->getRange().getBegin(), IILoc)
757 << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
758 SuggestedType = ActOnTypenameType(S, SourceLocation(),
759 *SS, *II, IILoc).get();
760 } else {
761 assert(SS && SS->isInvalid() &&(static_cast <bool> (SS && SS->isInvalid() &&
"Invalid scope specifier has already been diagnosed") ? void
(0) : __assert_fail ("SS && SS->isInvalid() && \"Invalid scope specifier has already been diagnosed\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 762, __extension__ __PRETTY_FUNCTION__))
762 "Invalid scope specifier has already been diagnosed")(static_cast <bool> (SS && SS->isInvalid() &&
"Invalid scope specifier has already been diagnosed") ? void
(0) : __assert_fail ("SS && SS->isInvalid() && \"Invalid scope specifier has already been diagnosed\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 762, __extension__ __PRETTY_FUNCTION__))
;
763 }
764}
765
766/// \brief Determine whether the given result set contains either a type name
767/// or
768static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
769 bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
770 NextToken.is(tok::less);
771
772 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
773 if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
774 return true;
775
776 if (CheckTemplate && isa<TemplateDecl>(*I))
777 return true;
778 }
779
780 return false;
781}
782
783static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
784 Scope *S, CXXScopeSpec &SS,
785 IdentifierInfo *&Name,
786 SourceLocation NameLoc) {
787 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
788 SemaRef.LookupParsedName(R, S, &SS);
789 if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
790 StringRef FixItTagName;
791 switch (Tag->getTagKind()) {
792 case TTK_Class:
793 FixItTagName = "class ";
794 break;
795
796 case TTK_Enum:
797 FixItTagName = "enum ";
798 break;
799
800 case TTK_Struct:
801 FixItTagName = "struct ";
802 break;
803
804 case TTK_Interface:
805 FixItTagName = "__interface ";
806 break;
807
808 case TTK_Union:
809 FixItTagName = "union ";
810 break;
811 }
812
813 StringRef TagName = FixItTagName.drop_back();
814 SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
815 << Name << TagName << SemaRef.getLangOpts().CPlusPlus
816 << FixItHint::CreateInsertion(NameLoc, FixItTagName);
817
818 for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
819 I != IEnd; ++I)
820 SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
821 << Name << TagName;
822
823 // Replace lookup results with just the tag decl.
824 Result.clear(Sema::LookupTagName);
825 SemaRef.LookupParsedName(Result, S, &SS);
826 return true;
827 }
828
829 return false;
830}
831
832/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
833static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
834 QualType T, SourceLocation NameLoc) {
835 ASTContext &Context = S.Context;
836
837 TypeLocBuilder Builder;
838 Builder.pushTypeSpec(T).setNameLoc(NameLoc);
839
840 T = S.getElaboratedType(ETK_None, SS, T);
841 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
842 ElabTL.setElaboratedKeywordLoc(SourceLocation());
843 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
844 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
845}
846
847Sema::NameClassification
848Sema::ClassifyName(Scope *S, CXXScopeSpec &SS, IdentifierInfo *&Name,
849 SourceLocation NameLoc, const Token &NextToken,
850 bool IsAddressOfOperand,
851 std::unique_ptr<CorrectionCandidateCallback> CCC) {
852 DeclarationNameInfo NameInfo(Name, NameLoc);
853 ObjCMethodDecl *CurMethod = getCurMethodDecl();
854
855 if (NextToken.is(tok::coloncolon)) {
856 NestedNameSpecInfo IdInfo(Name, NameLoc, NextToken.getLocation());
857 BuildCXXNestedNameSpecifier(S, IdInfo, false, SS, nullptr, false);
858 } else if (getLangOpts().CPlusPlus && SS.isSet() &&
859 isCurrentClassName(*Name, S, &SS)) {
860 // Per [class.qual]p2, this names the constructors of SS, not the
861 // injected-class-name. We don't have a classification for that.
862 // There's not much point caching this result, since the parser
863 // will reject it later.
864 return NameClassification::Unknown();
865 }
866
867 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
868 LookupParsedName(Result, S, &SS, !CurMethod);
869
870 // For unqualified lookup in a class template in MSVC mode, look into
871 // dependent base classes where the primary class template is known.
872 if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
873 if (ParsedType TypeInBase =
874 recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
875 return TypeInBase;
876 }
877
878 // Perform lookup for Objective-C instance variables (including automatically
879 // synthesized instance variables), if we're in an Objective-C method.
880 // FIXME: This lookup really, really needs to be folded in to the normal
881 // unqualified lookup mechanism.
882 if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
883 ExprResult E = LookupInObjCMethod(Result, S, Name, true);
884 if (E.get() || E.isInvalid())
885 return E;
886 }
887
888 bool SecondTry = false;
889 bool IsFilteredTemplateName = false;
890
891Corrected:
892 switch (Result.getResultKind()) {
893 case LookupResult::NotFound:
894 // If an unqualified-id is followed by a '(', then we have a function
895 // call.
896 if (!SS.isSet() && NextToken.is(tok::l_paren)) {
897 // In C++, this is an ADL-only call.
898 // FIXME: Reference?
899 if (getLangOpts().CPlusPlus)
900 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
901
902 // C90 6.3.2.2:
903 // If the expression that precedes the parenthesized argument list in a
904 // function call consists solely of an identifier, and if no
905 // declaration is visible for this identifier, the identifier is
906 // implicitly declared exactly as if, in the innermost block containing
907 // the function call, the declaration
908 //
909 // extern int identifier ();
910 //
911 // appeared.
912 //
913 // We also allow this in C99 as an extension.
914 if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
915 Result.addDecl(D);
916 Result.resolveKind();
917 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
918 }
919 }
920
921 // In C, we first see whether there is a tag type by the same name, in
922 // which case it's likely that the user just forgot to write "enum",
923 // "struct", or "union".
924 if (!getLangOpts().CPlusPlus && !SecondTry &&
925 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
926 break;
927 }
928
929 // Perform typo correction to determine if there is another name that is
930 // close to this name.
931 if (!SecondTry && CCC) {
932 SecondTry = true;
933 if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
934 Result.getLookupKind(), S,
935 &SS, std::move(CCC),
936 CTK_ErrorRecovery)) {
937 unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
938 unsigned QualifiedDiag = diag::err_no_member_suggest;
939
940 NamedDecl *FirstDecl = Corrected.getFoundDecl();
941 NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl();
942 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
943 UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
944 UnqualifiedDiag = diag::err_no_template_suggest;
945 QualifiedDiag = diag::err_no_member_template_suggest;
946 } else if (UnderlyingFirstDecl &&
947 (isa<TypeDecl>(UnderlyingFirstDecl) ||
948 isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
949 isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
950 UnqualifiedDiag = diag::err_unknown_typename_suggest;
951 QualifiedDiag = diag::err_unknown_nested_typename_suggest;
952 }
953
954 if (SS.isEmpty()) {
955 diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
956 } else {// FIXME: is this even reachable? Test it.
957 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
958 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
959 Name->getName().equals(CorrectedStr);
960 diagnoseTypo(Corrected, PDiag(QualifiedDiag)
961 << Name << computeDeclContext(SS, false)
962 << DroppedSpecifier << SS.getRange());
963 }
964
965 // Update the name, so that the caller has the new name.
966 Name = Corrected.getCorrectionAsIdentifierInfo();
967
968 // Typo correction corrected to a keyword.
969 if (Corrected.isKeyword())
970 return Name;
971
972 // Also update the LookupResult...
973 // FIXME: This should probably go away at some point
974 Result.clear();
975 Result.setLookupName(Corrected.getCorrection());
976 if (FirstDecl)
977 Result.addDecl(FirstDecl);
978
979 // If we found an Objective-C instance variable, let
980 // LookupInObjCMethod build the appropriate expression to
981 // reference the ivar.
982 // FIXME: This is a gross hack.
983 if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
984 Result.clear();
985 ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
986 return E;
987 }
988
989 goto Corrected;
990 }
991 }
992
993 // We failed to correct; just fall through and let the parser deal with it.
994 Result.suppressDiagnostics();
995 return NameClassification::Unknown();
996
997 case LookupResult::NotFoundInCurrentInstantiation: {
998 // We performed name lookup into the current instantiation, and there were
999 // dependent bases, so we treat this result the same way as any other
1000 // dependent nested-name-specifier.
1001
1002 // C++ [temp.res]p2:
1003 // A name used in a template declaration or definition and that is
1004 // dependent on a template-parameter is assumed not to name a type
1005 // unless the applicable name lookup finds a type name or the name is
1006 // qualified by the keyword typename.
1007 //
1008 // FIXME: If the next token is '<', we might want to ask the parser to
1009 // perform some heroics to see if we actually have a
1010 // template-argument-list, which would indicate a missing 'template'
1011 // keyword here.
1012 return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
1013 NameInfo, IsAddressOfOperand,
1014 /*TemplateArgs=*/nullptr);
1015 }
1016
1017 case LookupResult::Found:
1018 case LookupResult::FoundOverloaded:
1019 case LookupResult::FoundUnresolvedValue:
1020 break;
1021
1022 case LookupResult::Ambiguous:
1023 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1024 hasAnyAcceptableTemplateNames(Result)) {
1025 // C++ [temp.local]p3:
1026 // A lookup that finds an injected-class-name (10.2) can result in an
1027 // ambiguity in certain cases (for example, if it is found in more than
1028 // one base class). If all of the injected-class-names that are found
1029 // refer to specializations of the same class template, and if the name
1030 // is followed by a template-argument-list, the reference refers to the
1031 // class template itself and not a specialization thereof, and is not
1032 // ambiguous.
1033 //
1034 // This filtering can make an ambiguous result into an unambiguous one,
1035 // so try again after filtering out template names.
1036 FilterAcceptableTemplateNames(Result);
1037 if (!Result.isAmbiguous()) {
1038 IsFilteredTemplateName = true;
1039 break;
1040 }
1041 }
1042
1043 // Diagnose the ambiguity and return an error.
1044 return NameClassification::Error();
1045 }
1046
1047 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1048 (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
1049 // C++ [temp.names]p3:
1050 // After name lookup (3.4) finds that a name is a template-name or that
1051 // an operator-function-id or a literal- operator-id refers to a set of
1052 // overloaded functions any member of which is a function template if
1053 // this is followed by a <, the < is always taken as the delimiter of a
1054 // template-argument-list and never as the less-than operator.
1055 if (!IsFilteredTemplateName)
1056 FilterAcceptableTemplateNames(Result);
1057
1058 if (!Result.empty()) {
1059 bool IsFunctionTemplate;
1060 bool IsVarTemplate;
1061 TemplateName Template;
1062 if (Result.end() - Result.begin() > 1) {
1063 IsFunctionTemplate = true;
1064 Template = Context.getOverloadedTemplateName(Result.begin(),
1065 Result.end());
1066 } else {
1067 TemplateDecl *TD
1068 = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
1069 IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
1070 IsVarTemplate = isa<VarTemplateDecl>(TD);
1071
1072 if (SS.isSet() && !SS.isInvalid())
1073 Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
1074 /*TemplateKeyword=*/false,
1075 TD);
1076 else
1077 Template = TemplateName(TD);
1078 }
1079
1080 if (IsFunctionTemplate) {
1081 // Function templates always go through overload resolution, at which
1082 // point we'll perform the various checks (e.g., accessibility) we need
1083 // to based on which function we selected.
1084 Result.suppressDiagnostics();
1085
1086 return NameClassification::FunctionTemplate(Template);
1087 }
1088
1089 return IsVarTemplate ? NameClassification::VarTemplate(Template)
1090 : NameClassification::TypeTemplate(Template);
1091 }
1092 }
1093
1094 NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
1095 if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
1096 DiagnoseUseOfDecl(Type, NameLoc);
1097 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
1098 QualType T = Context.getTypeDeclType(Type);
1099 if (SS.isNotEmpty())
1100 return buildNestedType(*this, SS, T, NameLoc);
1101 return ParsedType::make(T);
1102 }
1103
1104 ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
1105 if (!Class) {
1106 // FIXME: It's unfortunate that we don't have a Type node for handling this.
1107 if (ObjCCompatibleAliasDecl *Alias =
1108 dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
1109 Class = Alias->getClassInterface();
1110 }
1111
1112 if (Class) {
1113 DiagnoseUseOfDecl(Class, NameLoc);
1114
1115 if (NextToken.is(tok::period)) {
1116 // Interface. <something> is parsed as a property reference expression.
1117 // Just return "unknown" as a fall-through for now.
1118 Result.suppressDiagnostics();
1119 return NameClassification::Unknown();
1120 }
1121
1122 QualType T = Context.getObjCInterfaceType(Class);
1123 return ParsedType::make(T);
1124 }
1125
1126 // We can have a type template here if we're classifying a template argument.
1127 if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) &&
1128 !isa<VarTemplateDecl>(FirstDecl))
1129 return NameClassification::TypeTemplate(
1130 TemplateName(cast<TemplateDecl>(FirstDecl)));
1131
1132 // Check for a tag type hidden by a non-type decl in a few cases where it
1133 // seems likely a type is wanted instead of the non-type that was found.
1134 bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star);
1135 if ((NextToken.is(tok::identifier) ||
1136 (NextIsOp &&
1137 FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
1138 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
1139 TypeDecl *Type = Result.getAsSingle<TypeDecl>();
1140 DiagnoseUseOfDecl(Type, NameLoc);
1141 QualType T = Context.getTypeDeclType(Type);
1142 if (SS.isNotEmpty())
1143 return buildNestedType(*this, SS, T, NameLoc);
1144 return ParsedType::make(T);
1145 }
1146
1147 if (FirstDecl->isCXXClassMember())
1148 return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
1149 nullptr, S);
1150
1151 bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1152 return BuildDeclarationNameExpr(SS, Result, ADL);
1153}
1154
1155Sema::TemplateNameKindForDiagnostics
1156Sema::getTemplateNameKindForDiagnostics(TemplateName Name) {
1157 auto *TD = Name.getAsTemplateDecl();
1158 if (!TD)
1159 return TemplateNameKindForDiagnostics::DependentTemplate;
1160 if (isa<ClassTemplateDecl>(TD))
1161 return TemplateNameKindForDiagnostics::ClassTemplate;
1162 if (isa<FunctionTemplateDecl>(TD))
1163 return TemplateNameKindForDiagnostics::FunctionTemplate;
1164 if (isa<VarTemplateDecl>(TD))
1165 return TemplateNameKindForDiagnostics::VarTemplate;
1166 if (isa<TypeAliasTemplateDecl>(TD))
1167 return TemplateNameKindForDiagnostics::AliasTemplate;
1168 if (isa<TemplateTemplateParmDecl>(TD))
1169 return TemplateNameKindForDiagnostics::TemplateTemplateParam;
1170 return TemplateNameKindForDiagnostics::DependentTemplate;
1171}
1172
1173// Determines the context to return to after temporarily entering a
1174// context. This depends in an unnecessarily complicated way on the
1175// exact ordering of callbacks from the parser.
1176DeclContext *Sema::getContainingDC(DeclContext *DC) {
1177
1178 // Functions defined inline within classes aren't parsed until we've
1179 // finished parsing the top-level class, so the top-level class is
1180 // the context we'll need to return to.
1181 // A Lambda call operator whose parent is a class must not be treated
1182 // as an inline member function. A Lambda can be used legally
1183 // either as an in-class member initializer or a default argument. These
1184 // are parsed once the class has been marked complete and so the containing
1185 // context would be the nested class (when the lambda is defined in one);
1186 // If the class is not complete, then the lambda is being used in an
1187 // ill-formed fashion (such as to specify the width of a bit-field, or
1188 // in an array-bound) - in which case we still want to return the
1189 // lexically containing DC (which could be a nested class).
1190 if (isa<FunctionDecl>(DC) && !isLambdaCallOperator(DC)) {
1191 DC = DC->getLexicalParent();
1192
1193 // A function not defined within a class will always return to its
1194 // lexical context.
1195 if (!isa<CXXRecordDecl>(DC))
1196 return DC;
1197
1198 // A C++ inline method/friend is parsed *after* the topmost class
1199 // it was declared in is fully parsed ("complete"); the topmost
1200 // class is the context we need to return to.
1201 while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
1202 DC = RD;
1203
1204 // Return the declaration context of the topmost class the inline method is
1205 // declared in.
1206 return DC;
1207 }
1208
1209 return DC->getLexicalParent();
1210}
1211
1212void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
1213 assert(getContainingDC(DC) == CurContext &&(static_cast <bool> (getContainingDC(DC) == CurContext &&
"The next DeclContext should be lexically contained in the current one."
) ? void (0) : __assert_fail ("getContainingDC(DC) == CurContext && \"The next DeclContext should be lexically contained in the current one.\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 1214, __extension__ __PRETTY_FUNCTION__))
1214 "The next DeclContext should be lexically contained in the current one.")(static_cast <bool> (getContainingDC(DC) == CurContext &&
"The next DeclContext should be lexically contained in the current one."
) ? void (0) : __assert_fail ("getContainingDC(DC) == CurContext && \"The next DeclContext should be lexically contained in the current one.\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 1214, __extension__ __PRETTY_FUNCTION__))
;
1215 CurContext = DC;
1216 S->setEntity(DC);
1217}
1218
1219void Sema::PopDeclContext() {
1220 assert(CurContext && "DeclContext imbalance!")(static_cast <bool> (CurContext && "DeclContext imbalance!"
) ? void (0) : __assert_fail ("CurContext && \"DeclContext imbalance!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 1220, __extension__ __PRETTY_FUNCTION__))
;
1221
1222 CurContext = getContainingDC(CurContext);
1223 assert(CurContext && "Popped translation unit!")(static_cast <bool> (CurContext && "Popped translation unit!"
) ? void (0) : __assert_fail ("CurContext && \"Popped translation unit!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 1223, __extension__ __PRETTY_FUNCTION__))
;
1224}
1225
1226Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S,
1227 Decl *D) {
1228 // Unlike PushDeclContext, the context to which we return is not necessarily
1229 // the containing DC of TD, because the new context will be some pre-existing
1230 // TagDecl definition instead of a fresh one.
1231 auto Result = static_cast<SkippedDefinitionContext>(CurContext);
1232 CurContext = cast<TagDecl>(D)->getDefinition();
1233 assert(CurContext && "skipping definition of undefined tag")(static_cast <bool> (CurContext && "skipping definition of undefined tag"
) ? void (0) : __assert_fail ("CurContext && \"skipping definition of undefined tag\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 1233, __extension__ __PRETTY_FUNCTION__))
;
1234 // Start lookups from the parent of the current context; we don't want to look
1235 // into the pre-existing complete definition.
1236 S->setEntity(CurContext->getLookupParent());
1237 return Result;
1238}
1239
1240void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) {
1241 CurContext = static_cast<decltype(CurContext)>(Context);
1242}
1243
1244/// EnterDeclaratorContext - Used when we must lookup names in the context
1245/// of a declarator's nested name specifier.
1246///
1247void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
1248 // C++0x [basic.lookup.unqual]p13:
1249 // A name used in the definition of a static data member of class
1250 // X (after the qualified-id of the static member) is looked up as
1251 // if the name was used in a member function of X.
1252 // C++0x [basic.lookup.unqual]p14:
1253 // If a variable member of a namespace is defined outside of the
1254 // scope of its namespace then any name used in the definition of
1255 // the variable member (after the declarator-id) is looked up as
1256 // if the definition of the variable member occurred in its
1257 // namespace.
1258 // Both of these imply that we should push a scope whose context
1259 // is the semantic context of the declaration. We can't use
1260 // PushDeclContext here because that context is not necessarily
1261 // lexically contained in the current context. Fortunately,
1262 // the containing scope should have the appropriate information.
1263
1264 assert(!S->getEntity() && "scope already has entity")(static_cast <bool> (!S->getEntity() && "scope already has entity"
) ? void (0) : __assert_fail ("!S->getEntity() && \"scope already has entity\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 1264, __extension__ __PRETTY_FUNCTION__))
;
1265
1266#ifndef NDEBUG
1267 Scope *Ancestor = S->getParent();
1268 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1269 assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch")(static_cast <bool> (Ancestor->getEntity() == CurContext
&& "ancestor context mismatch") ? void (0) : __assert_fail
("Ancestor->getEntity() == CurContext && \"ancestor context mismatch\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 1269, __extension__ __PRETTY_FUNCTION__))
;
1270#endif
1271
1272 CurContext = DC;
1273 S->setEntity(DC);
1274}
1275
1276void Sema::ExitDeclaratorContext(Scope *S) {
1277 assert(S->getEntity() == CurContext && "Context imbalance!")(static_cast <bool> (S->getEntity() == CurContext &&
"Context imbalance!") ? void (0) : __assert_fail ("S->getEntity() == CurContext && \"Context imbalance!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 1277, __extension__ __PRETTY_FUNCTION__))
;
1278
1279 // Switch back to the lexical context. The safety of this is
1280 // enforced by an assert in EnterDeclaratorContext.
1281 Scope *Ancestor = S->getParent();
1282 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1283 CurContext = Ancestor->getEntity();
1284
1285 // We don't need to do anything with the scope, which is going to
1286 // disappear.
1287}
1288
1289void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
1290 // We assume that the caller has already called
1291 // ActOnReenterTemplateScope so getTemplatedDecl() works.
1292 FunctionDecl *FD = D->getAsFunction();
1293 if (!FD)
1294 return;
1295
1296 // Same implementation as PushDeclContext, but enters the context
1297 // from the lexical parent, rather than the top-level class.
1298 assert(CurContext == FD->getLexicalParent() &&(static_cast <bool> (CurContext == FD->getLexicalParent
() && "The next DeclContext should be lexically contained in the current one."
) ? void (0) : __assert_fail ("CurContext == FD->getLexicalParent() && \"The next DeclContext should be lexically contained in the current one.\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 1299, __extension__ __PRETTY_FUNCTION__))
1299 "The next DeclContext should be lexically contained in the current one.")(static_cast <bool> (CurContext == FD->getLexicalParent
() && "The next DeclContext should be lexically contained in the current one."
) ? void (0) : __assert_fail ("CurContext == FD->getLexicalParent() && \"The next DeclContext should be lexically contained in the current one.\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 1299, __extension__ __PRETTY_FUNCTION__))
;
1300 CurContext = FD;
1301 S->setEntity(CurContext);
1302
1303 for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1304 ParmVarDecl *Param = FD->getParamDecl(P);
1305 // If the parameter has an identifier, then add it to the scope
1306 if (Param->getIdentifier()) {
1307 S->AddDecl(Param);
1308 IdResolver.AddDecl(Param);
1309 }
1310 }
1311}
1312
1313void Sema::ActOnExitFunctionContext() {
1314 // Same implementation as PopDeclContext, but returns to the lexical parent,
1315 // rather than the top-level class.
1316 assert(CurContext && "DeclContext imbalance!")(static_cast <bool> (CurContext && "DeclContext imbalance!"
) ? void (0) : __assert_fail ("CurContext && \"DeclContext imbalance!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 1316, __extension__ __PRETTY_FUNCTION__))
;
1317 CurContext = CurContext->getLexicalParent();
1318 assert(CurContext && "Popped translation unit!")(static_cast <bool> (CurContext && "Popped translation unit!"
) ? void (0) : __assert_fail ("CurContext && \"Popped translation unit!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 1318, __extension__ __PRETTY_FUNCTION__))
;
1319}
1320
1321/// \brief Determine whether we allow overloading of the function
1322/// PrevDecl with another declaration.
1323///
1324/// This routine determines whether overloading is possible, not
1325/// whether some new function is actually an overload. It will return
1326/// true in C++ (where we can always provide overloads) or, as an
1327/// extension, in C when the previous function is already an
1328/// overloaded function declaration or has the "overloadable"
1329/// attribute.
1330static bool AllowOverloadingOfFunction(LookupResult &Previous,
1331 ASTContext &Context,
1332 const FunctionDecl *New) {
1333 if (Context.getLangOpts().CPlusPlus)
1334 return true;
1335
1336 if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1337 return true;
1338
1339 return Previous.getResultKind() == LookupResult::Found &&
1340 (Previous.getFoundDecl()->hasAttr<OverloadableAttr>() ||
1341 New->hasAttr<OverloadableAttr>());
1342}
1343
1344/// Add this decl to the scope shadowed decl chains.
1345void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1346 // Move up the scope chain until we find the nearest enclosing
1347 // non-transparent context. The declaration will be introduced into this
1348 // scope.
1349 while (S->getEntity() && S->getEntity()->isTransparentContext())
1350 S = S->getParent();
1351
1352 // Add scoped declarations into their context, so that they can be
1353 // found later. Declarations without a context won't be inserted
1354 // into any context.
1355 if (AddToContext)
1356 CurContext->addDecl(D);
1357
1358 // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1359 // are function-local declarations.
1360 if (getLangOpts().CPlusPlus && D->isOutOfLine() &&
1361 !D->getDeclContext()->getRedeclContext()->Equals(
1362 D->getLexicalDeclContext()->getRedeclContext()) &&
1363 !D->getLexicalDeclContext()->isFunctionOrMethod())
1364 return;
1365
1366 // Template instantiations should also not be pushed into scope.
1367 if (isa<FunctionDecl>(D) &&
1368 cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1369 return;
1370
1371 // If this replaces anything in the current scope,
1372 IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1373 IEnd = IdResolver.end();
1374 for (; I != IEnd; ++I) {
1375 if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1376 S->RemoveDecl(*I);
1377 IdResolver.RemoveDecl(*I);
1378
1379 // Should only need to replace one decl.
1380 break;
1381 }
1382 }
1383
1384 S->AddDecl(D);
1385
1386 if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1387 // Implicitly-generated labels may end up getting generated in an order that
1388 // isn't strictly lexical, which breaks name lookup. Be careful to insert
1389 // the label at the appropriate place in the identifier chain.
1390 for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1391 DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1392 if (IDC == CurContext) {
1393 if (!S->isDeclScope(*I))
1394 continue;
1395 } else if (IDC->Encloses(CurContext))
1396 break;
1397 }
1398
1399 IdResolver.InsertDeclAfter(I, D);
1400 } else {
1401 IdResolver.AddDecl(D);
1402 }
1403}
1404
1405void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1406 if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1407 TUScope->AddDecl(D);
1408}
1409
1410bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1411 bool AllowInlineNamespace) {
1412 return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
1413}
1414
1415Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1416 DeclContext *TargetDC = DC->getPrimaryContext();
1417 do {
1418 if (DeclContext *ScopeDC = S->getEntity())
1419 if (ScopeDC->getPrimaryContext() == TargetDC)
1420 return S;
1421 } while ((S = S->getParent()));
1422
1423 return nullptr;
1424}
1425
1426static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1427 DeclContext*,
1428 ASTContext&);
1429
1430/// Filters out lookup results that don't fall within the given scope
1431/// as determined by isDeclInScope.
1432void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
1433 bool ConsiderLinkage,
1434 bool AllowInlineNamespace) {
1435 LookupResult::Filter F = R.makeFilter();
1436 while (F.hasNext()) {
1437 NamedDecl *D = F.next();
1438
1439 if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
1440 continue;
1441
1442 if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
1443 continue;
1444
1445 F.erase();
1446 }
1447
1448 F.done();
1449}
1450
1451/// We've determined that \p New is a redeclaration of \p Old. Check that they
1452/// have compatible owning modules.
1453bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) {
1454 // FIXME: The Modules TS is not clear about how friend declarations are
1455 // to be treated. It's not meaningful to have different owning modules for
1456 // linkage in redeclarations of the same entity, so for now allow the
1457 // redeclaration and change the owning modules to match.
1458 if (New->getFriendObjectKind() &&
1459 Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) {
1460 New->setLocalOwningModule(Old->getOwningModule());
1461 makeMergedDefinitionVisible(New);
1462 return false;
1463 }
1464
1465 Module *NewM = New->getOwningModule();
1466 Module *OldM = Old->getOwningModule();
1467 if (NewM == OldM)
1468 return false;
1469
1470 // FIXME: Check proclaimed-ownership-declarations here too.
1471 bool NewIsModuleInterface = NewM && NewM->Kind == Module::ModuleInterfaceUnit;
1472 bool OldIsModuleInterface = OldM && OldM->Kind == Module::ModuleInterfaceUnit;
1473 if (NewIsModuleInterface || OldIsModuleInterface) {
1474 // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]:
1475 // if a declaration of D [...] appears in the purview of a module, all
1476 // other such declarations shall appear in the purview of the same module
1477 Diag(New->getLocation(), diag::err_mismatched_owning_module)
1478 << New
1479 << NewIsModuleInterface
1480 << (NewIsModuleInterface ? NewM->getFullModuleName() : "")
1481 << OldIsModuleInterface
1482 << (OldIsModuleInterface ? OldM->getFullModuleName() : "");
1483 Diag(Old->getLocation(), diag::note_previous_declaration);
1484 New->setInvalidDecl();
1485 return true;
1486 }
1487
1488 return false;
1489}
1490
1491static bool isUsingDecl(NamedDecl *D) {
1492 return isa<UsingShadowDecl>(D) ||
1493 isa<UnresolvedUsingTypenameDecl>(D) ||
1494 isa<UnresolvedUsingValueDecl>(D);
1495}
1496
1497/// Removes using shadow declarations from the lookup results.
1498static void RemoveUsingDecls(LookupResult &R) {
1499 LookupResult::Filter F = R.makeFilter();
1500 while (F.hasNext())
1501 if (isUsingDecl(F.next()))
1502 F.erase();
1503
1504 F.done();
1505}
1506
1507/// \brief Check for this common pattern:
1508/// @code
1509/// class S {
1510/// S(const S&); // DO NOT IMPLEMENT
1511/// void operator=(const S&); // DO NOT IMPLEMENT
1512/// };
1513/// @endcode
1514static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1515 // FIXME: Should check for private access too but access is set after we get
1516 // the decl here.
1517 if (D->doesThisDeclarationHaveABody())
1518 return false;
1519
1520 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1521 return CD->isCopyConstructor();
1522 if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1523 return Method->isCopyAssignmentOperator();
1524 return false;
1525}
1526
1527// We need this to handle
1528//
1529// typedef struct {
1530// void *foo() { return 0; }
1531// } A;
1532//
1533// When we see foo we don't know if after the typedef we will get 'A' or '*A'
1534// for example. If 'A', foo will have external linkage. If we have '*A',
1535// foo will have no linkage. Since we can't know until we get to the end
1536// of the typedef, this function finds out if D might have non-external linkage.
1537// Callers should verify at the end of the TU if it D has external linkage or
1538// not.
1539bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1540 const DeclContext *DC = D->getDeclContext();
1541 while (!DC->isTranslationUnit()) {
1542 if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1543 if (!RD->hasNameForLinkage())
1544 return true;
1545 }
1546 DC = DC->getParent();
1547 }
1548
1549 return !D->isExternallyVisible();
1550}
1551
1552// FIXME: This needs to be refactored; some other isInMainFile users want
1553// these semantics.
1554static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1555 if (S.TUKind != TU_Complete)
1556 return false;
1557 return S.SourceMgr.isInMainFile(Loc);
1558}
1559
1560bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1561 assert(D)(static_cast <bool> (D) ? void (0) : __assert_fail ("D"
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 1561, __extension__ __PRETTY_FUNCTION__))
;
1562
1563 if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1564 return false;
1565
1566 // Ignore all entities declared within templates, and out-of-line definitions
1567 // of members of class templates.
1568 if (D->getDeclContext()->isDependentContext() ||
1569 D->getLexicalDeclContext()->isDependentContext())
1570 return false;
1571
1572 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1573 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1574 return false;
1575 // A non-out-of-line declaration of a member specialization was implicitly
1576 // instantiated; it's the out-of-line declaration that we're interested in.
1577 if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1578 FD->getMemberSpecializationInfo() && !FD->isOutOfLine())
1579 return false;
1580
1581 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1582 if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1583 return false;
1584 } else {
1585 // 'static inline' functions are defined in headers; don't warn.
1586 if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
1587 return false;
1588 }
1589
1590 if (FD->doesThisDeclarationHaveABody() &&
1591 Context.DeclMustBeEmitted(FD))
1592 return false;
1593 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1594 // Constants and utility variables are defined in headers with internal
1595 // linkage; don't warn. (Unlike functions, there isn't a convenient marker
1596 // like "inline".)
1597 if (!isMainFileLoc(*this, VD->getLocation()))
1598 return false;
1599
1600 if (Context.DeclMustBeEmitted(VD))
1601 return false;
1602
1603 if (VD->isStaticDataMember() &&
1604 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1605 return false;
1606 if (VD->isStaticDataMember() &&
1607 VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1608 VD->getMemberSpecializationInfo() && !VD->isOutOfLine())
1609 return false;
1610
1611 if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation()))
1612 return false;
1613 } else {
1614 return false;
1615 }
1616
1617 // Only warn for unused decls internal to the translation unit.
1618 // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1619 // for inline functions defined in the main source file, for instance.
1620 return mightHaveNonExternalLinkage(D);
1621}
1622
1623void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1624 if (!D)
1625 return;
1626
1627 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1628 const FunctionDecl *First = FD->getFirstDecl();
1629 if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1630 return; // First should already be in the vector.
1631 }
1632
1633 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1634 const VarDecl *First = VD->getFirstDecl();
1635 if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1636 return; // First should already be in the vector.
1637 }
1638
1639 if (ShouldWarnIfUnusedFileScopedDecl(D))
1640 UnusedFileScopedDecls.push_back(D);
1641}
1642
1643static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1644 if (D->isInvalidDecl())
1645 return false;
1646
1647 bool Referenced = false;
1648 if (auto *DD = dyn_cast<DecompositionDecl>(D)) {
1649 // For a decomposition declaration, warn if none of the bindings are
1650 // referenced, instead of if the variable itself is referenced (which
1651 // it is, by the bindings' expressions).
1652 for (auto *BD : DD->bindings()) {
1653 if (BD->isReferenced()) {
1654 Referenced = true;
1655 break;
1656 }
1657 }
1658 } else if (!D->getDeclName()) {
1659 return false;
1660 } else if (D->isReferenced() || D->isUsed()) {
1661 Referenced = true;
1662 }
1663
1664 if (Referenced || D->hasAttr<UnusedAttr>() ||
1665 D->hasAttr<ObjCPreciseLifetimeAttr>())
1666 return false;
1667
1668 if (isa<LabelDecl>(D))
1669 return true;
1670
1671 // Except for labels, we only care about unused decls that are local to
1672 // functions.
1673 bool WithinFunction = D->getDeclContext()->isFunctionOrMethod();
1674 if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext()))
1675 // For dependent types, the diagnostic is deferred.
1676 WithinFunction =
1677 WithinFunction || (R->isLocalClass() && !R->isDependentType());
1678 if (!WithinFunction)
1679 return false;
1680
1681 if (isa<TypedefNameDecl>(D))
1682 return true;
1683
1684 // White-list anything that isn't a local variable.
1685 if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D))
1686 return false;
1687
1688 // Types of valid local variables should be complete, so this should succeed.
1689 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1690
1691 // White-list anything with an __attribute__((unused)) type.
1692 const auto *Ty = VD->getType().getTypePtr();
1693
1694 // Only look at the outermost level of typedef.
1695 if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1696 if (TT->getDecl()->hasAttr<UnusedAttr>())
1697 return false;
1698 }
1699
1700 // If we failed to complete the type for some reason, or if the type is
1701 // dependent, don't diagnose the variable.
1702 if (Ty->isIncompleteType() || Ty->isDependentType())
1703 return false;
1704
1705 // Look at the element type to ensure that the warning behaviour is
1706 // consistent for both scalars and arrays.
1707 Ty = Ty->getBaseElementTypeUnsafe();
1708
1709 if (const TagType *TT = Ty->getAs<TagType>()) {
1710 const TagDecl *Tag = TT->getDecl();
1711 if (Tag->hasAttr<UnusedAttr>())
1712 return false;
1713
1714 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1715 if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
1716 return false;
1717
1718 if (const Expr *Init = VD->getInit()) {
1719 if (const ExprWithCleanups *Cleanups =
1720 dyn_cast<ExprWithCleanups>(Init))
1721 Init = Cleanups->getSubExpr();
1722 const CXXConstructExpr *Construct =
1723 dyn_cast<CXXConstructExpr>(Init);
1724 if (Construct && !Construct->isElidable()) {
1725 CXXConstructorDecl *CD = Construct->getConstructor();
1726 if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() &&
1727 (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
1728 return false;
1729 }
1730 }
1731 }
1732 }
1733
1734 // TODO: __attribute__((unused)) templates?
1735 }
1736
1737 return true;
1738}
1739
1740static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1741 FixItHint &Hint) {
1742 if (isa<LabelDecl>(D)) {
1743 SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1744 tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1745 if (AfterColon.isInvalid())
1746 return;
1747 Hint = FixItHint::CreateRemoval(CharSourceRange::
1748 getCharRange(D->getLocStart(), AfterColon));
1749 }
1750}
1751
1752void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) {
1753 if (D->getTypeForDecl()->isDependentType())
1754 return;
1755
1756 for (auto *TmpD : D->decls()) {
1757 if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD))
1758 DiagnoseUnusedDecl(T);
1759 else if(const auto *R = dyn_cast<RecordDecl>(TmpD))
1760 DiagnoseUnusedNestedTypedefs(R);
1761 }
1762}
1763
1764/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1765/// unless they are marked attr(unused).
1766void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1767 if (!ShouldDiagnoseUnusedDecl(D))
1768 return;
1769
1770 if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
1771 // typedefs can be referenced later on, so the diagnostics are emitted
1772 // at end-of-translation-unit.
1773 UnusedLocalTypedefNameCandidates.insert(TD);
1774 return;
1775 }
1776
1777 FixItHint Hint;
1778 GenerateFixForUnusedDecl(D, Context, Hint);
1779
1780 unsigned DiagID;
1781 if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1782 DiagID = diag::warn_unused_exception_param;
1783 else if (isa<LabelDecl>(D))
1784 DiagID = diag::warn_unused_label;
1785 else
1786 DiagID = diag::warn_unused_variable;
1787
1788 Diag(D->getLocation(), DiagID) << D << Hint;
1789}
1790
1791static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1792 // Verify that we have no forward references left. If so, there was a goto
1793 // or address of a label taken, but no definition of it. Label fwd
1794 // definitions are indicated with a null substmt which is also not a resolved
1795 // MS inline assembly label name.
1796 bool Diagnose = false;
1797 if (L->isMSAsmLabel())
1798 Diagnose = !L->isResolvedMSAsmLabel();
1799 else
1800 Diagnose = L->getStmt() == nullptr;
1801 if (Diagnose)
1802 S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1803}
1804
1805void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1806 S->mergeNRVOIntoParent();
1807
1808 if (S->decl_empty()) return;
1809 assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&(static_cast <bool> ((S->getFlags() & (Scope::DeclScope
| Scope::TemplateParamScope)) && "Scope shouldn't contain decls!"
) ? void (0) : __assert_fail ("(S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && \"Scope shouldn't contain decls!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 1810, __extension__ __PRETTY_FUNCTION__))
1810 "Scope shouldn't contain decls!")(static_cast <bool> ((S->getFlags() & (Scope::DeclScope
| Scope::TemplateParamScope)) && "Scope shouldn't contain decls!"
) ? void (0) : __assert_fail ("(S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && \"Scope shouldn't contain decls!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 1810, __extension__ __PRETTY_FUNCTION__))
;
1811
1812 for (auto *TmpD : S->decls()) {
1813 assert(TmpD && "This decl didn't get pushed??")(static_cast <bool> (TmpD && "This decl didn't get pushed??"
) ? void (0) : __assert_fail ("TmpD && \"This decl didn't get pushed??\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 1813, __extension__ __PRETTY_FUNCTION__))
;
1814
1815 assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?")(static_cast <bool> (isa<NamedDecl>(TmpD) &&
"Decl isn't NamedDecl?") ? void (0) : __assert_fail ("isa<NamedDecl>(TmpD) && \"Decl isn't NamedDecl?\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 1815, __extension__ __PRETTY_FUNCTION__))
;
1816 NamedDecl *D = cast<NamedDecl>(TmpD);
1817
1818 // Diagnose unused variables in this scope.
1819 if (!S->hasUnrecoverableErrorOccurred()) {
1820 DiagnoseUnusedDecl(D);
1821 if (const auto *RD = dyn_cast<RecordDecl>(D))
1822 DiagnoseUnusedNestedTypedefs(RD);
1823 }
1824
1825 if (!D->getDeclName()) continue;
1826
1827 // If this was a forward reference to a label, verify it was defined.
1828 if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1829 CheckPoppedLabel(LD, *this);
1830
1831 // Remove this name from our lexical scope, and warn on it if we haven't
1832 // already.
1833 IdResolver.RemoveDecl(D);
1834 auto ShadowI = ShadowingDecls.find(D);
1835 if (ShadowI != ShadowingDecls.end()) {
1836 if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) {
1837 Diag(D->getLocation(), diag::warn_ctor_parm_shadows_field)
1838 << D << FD << FD->getParent();
1839 Diag(FD->getLocation(), diag::note_previous_declaration);
1840 }
1841 ShadowingDecls.erase(ShadowI);
1842 }
1843 }
1844}
1845
1846/// \brief Look for an Objective-C class in the translation unit.
1847///
1848/// \param Id The name of the Objective-C class we're looking for. If
1849/// typo-correction fixes this name, the Id will be updated
1850/// to the fixed name.
1851///
1852/// \param IdLoc The location of the name in the translation unit.
1853///
1854/// \param DoTypoCorrection If true, this routine will attempt typo correction
1855/// if there is no class with the given name.
1856///
1857/// \returns The declaration of the named Objective-C class, or NULL if the
1858/// class could not be found.
1859ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1860 SourceLocation IdLoc,
1861 bool DoTypoCorrection) {
1862 // The third "scope" argument is 0 since we aren't enabling lazy built-in
1863 // creation from this context.
1864 NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1865
1866 if (!IDecl && DoTypoCorrection) {
1867 // Perform typo correction at the given location, but only if we
1868 // find an Objective-C class name.
1869 if (TypoCorrection C = CorrectTypo(
1870 DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName, TUScope, nullptr,
1871 llvm::make_unique<DeclFilterCCC<ObjCInterfaceDecl>>(),
1872 CTK_ErrorRecovery)) {
1873 diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
1874 IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1875 Id = IDecl->getIdentifier();
1876 }
1877 }
1878 ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1879 // This routine must always return a class definition, if any.
1880 if (Def && Def->getDefinition())
1881 Def = Def->getDefinition();
1882 return Def;
1883}
1884
1885/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1886/// from S, where a non-field would be declared. This routine copes
1887/// with the difference between C and C++ scoping rules in structs and
1888/// unions. For example, the following code is well-formed in C but
1889/// ill-formed in C++:
1890/// @code
1891/// struct S6 {
1892/// enum { BAR } e;
1893/// };
1894///
1895/// void test_S6() {
1896/// struct S6 a;
1897/// a.e = BAR;
1898/// }
1899/// @endcode
1900/// For the declaration of BAR, this routine will return a different
1901/// scope. The scope S will be the scope of the unnamed enumeration
1902/// within S6. In C++, this routine will return the scope associated
1903/// with S6, because the enumeration's scope is a transparent
1904/// context but structures can contain non-field names. In C, this
1905/// routine will return the translation unit scope, since the
1906/// enumeration's scope is a transparent context and structures cannot
1907/// contain non-field names.
1908Scope *Sema::getNonFieldDeclScope(Scope *S) {
1909 while (((S->getFlags() & Scope::DeclScope) == 0) ||
1910 (S->getEntity() && S->getEntity()->isTransparentContext()) ||
1911 (S->isClassScope() && !getLangOpts().CPlusPlus))
1912 S = S->getParent();
1913 return S;
1914}
1915
1916/// \brief Looks up the declaration of "struct objc_super" and
1917/// saves it for later use in building builtin declaration of
1918/// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1919/// pre-existing declaration exists no action takes place.
1920static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1921 IdentifierInfo *II) {
1922 if (!II->isStr("objc_msgSendSuper"))
1923 return;
1924 ASTContext &Context = ThisSema.Context;
1925
1926 LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1927 SourceLocation(), Sema::LookupTagName);
1928 ThisSema.LookupName(Result, S);
1929 if (Result.getResultKind() == LookupResult::Found)
1930 if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1931 Context.setObjCSuperType(Context.getTagDeclType(TD));
1932}
1933
1934static StringRef getHeaderName(ASTContext::GetBuiltinTypeError Error) {
1935 switch (Error) {
1936 case ASTContext::GE_None:
1937 return "";
1938 case ASTContext::GE_Missing_stdio:
1939 return "stdio.h";
1940 case ASTContext::GE_Missing_setjmp:
1941 return "setjmp.h";
1942 case ASTContext::GE_Missing_ucontext:
1943 return "ucontext.h";
1944 }
1945 llvm_unreachable("unhandled error kind")::llvm::llvm_unreachable_internal("unhandled error kind", "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 1945)
;
1946}
1947
1948/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1949/// file scope. lazily create a decl for it. ForRedeclaration is true
1950/// if we're creating this built-in in anticipation of redeclaring the
1951/// built-in.
1952NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
1953 Scope *S, bool ForRedeclaration,
1954 SourceLocation Loc) {
1955 LookupPredefedObjCSuperType(*this, S, II);
1956
1957 ASTContext::GetBuiltinTypeError Error;
1958 QualType R = Context.GetBuiltinType(ID, Error);
1959 if (Error) {
1960 if (ForRedeclaration)
1961 Diag(Loc, diag::warn_implicit_decl_requires_sysheader)
1962 << getHeaderName(Error) << Context.BuiltinInfo.getName(ID);
1963 return nullptr;
1964 }
1965
1966 if (!ForRedeclaration &&
1967 (Context.BuiltinInfo.isPredefinedLibFunction(ID) ||
1968 Context.BuiltinInfo.isHeaderDependentFunction(ID))) {
1969 Diag(Loc, diag::ext_implicit_lib_function_decl)
1970 << Context.BuiltinInfo.getName(ID) << R;
1971 if (Context.BuiltinInfo.getHeaderName(ID) &&
1972 !Diags.isIgnored(diag::ext_implicit_lib_function_decl, Loc))
1973 Diag(Loc, diag::note_include_header_or_declare)
1974 << Context.BuiltinInfo.getHeaderName(ID)
1975 << Context.BuiltinInfo.getName(ID);
1976 }
1977
1978 if (R.isNull())
1979 return nullptr;
1980
1981 DeclContext *Parent = Context.getTranslationUnitDecl();
1982 if (getLangOpts().CPlusPlus) {
1983 LinkageSpecDecl *CLinkageDecl =
1984 LinkageSpecDecl::Create(Context, Parent, Loc, Loc,
1985 LinkageSpecDecl::lang_c, false);
1986 CLinkageDecl->setImplicit();
1987 Parent->addDecl(CLinkageDecl);
1988 Parent = CLinkageDecl;
1989 }
1990
1991 FunctionDecl *New = FunctionDecl::Create(Context,
1992 Parent,
1993 Loc, Loc, II, R, /*TInfo=*/nullptr,
1994 SC_Extern,
1995 false,
1996 R->isFunctionProtoType());
1997 New->setImplicit();
1998
1999 // Create Decl objects for each parameter, adding them to the
2000 // FunctionDecl.
2001 if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
2002 SmallVector<ParmVarDecl*, 16> Params;
2003 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2004 ParmVarDecl *parm =
2005 ParmVarDecl::Create(Context, New, SourceLocation(), SourceLocation(),
2006 nullptr, FT->getParamType(i), /*TInfo=*/nullptr,
2007 SC_None, nullptr);
2008 parm->setScopeInfo(0, i);
2009 Params.push_back(parm);
2010 }
2011 New->setParams(Params);
2012 }
2013
2014 AddKnownFunctionAttributes(New);
2015 RegisterLocallyScopedExternCDecl(New, S);
2016
2017 // TUScope is the translation-unit scope to insert this function into.
2018 // FIXME: This is hideous. We need to teach PushOnScopeChains to
2019 // relate Scopes to DeclContexts, and probably eliminate CurContext
2020 // entirely, but we're not there yet.
2021 DeclContext *SavedContext = CurContext;
2022 CurContext = Parent;
2023 PushOnScopeChains(New, TUScope);
2024 CurContext = SavedContext;
2025 return New;
2026}
2027
2028/// Typedef declarations don't have linkage, but they still denote the same
2029/// entity if their types are the same.
2030/// FIXME: This is notionally doing the same thing as ASTReaderDecl's
2031/// isSameEntity.
2032static void filterNonConflictingPreviousTypedefDecls(Sema &S,
2033 TypedefNameDecl *Decl,
2034 LookupResult &Previous) {
2035 // This is only interesting when modules are enabled.
2036 if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility)
2037 return;
2038
2039 // Empty sets are uninteresting.
2040 if (Previous.empty())
2041 return;
2042
2043 LookupResult::Filter Filter = Previous.makeFilter();
2044 while (Filter.hasNext()) {
2045 NamedDecl *Old = Filter.next();
2046
2047 // Non-hidden declarations are never ignored.
2048 if (S.isVisible(Old))
2049 continue;
2050
2051 // Declarations of the same entity are not ignored, even if they have
2052 // different linkages.
2053 if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2054 if (S.Context.hasSameType(OldTD->getUnderlyingType(),
2055 Decl->getUnderlyingType()))
2056 continue;
2057
2058 // If both declarations give a tag declaration a typedef name for linkage
2059 // purposes, then they declare the same entity.
2060 if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) &&
2061 Decl->getAnonDeclWithTypedefName())
2062 continue;
2063 }
2064
2065 Filter.erase();
2066 }
2067
2068 Filter.done();
2069}
2070
2071bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
2072 QualType OldType;
2073 if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
2074 OldType = OldTypedef->getUnderlyingType();
2075 else
2076 OldType = Context.getTypeDeclType(Old);
2077 QualType NewType = New->getUnderlyingType();
2078
2079 if (NewType->isVariablyModifiedType()) {
2080 // Must not redefine a typedef with a variably-modified type.
2081 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2082 Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
2083 << Kind << NewType;
2084 if (Old->getLocation().isValid())
2085 notePreviousDefinition(Old, New->getLocation());
2086 New->setInvalidDecl();
2087 return true;
2088 }
2089
2090 if (OldType != NewType &&
2091 !OldType->isDependentType() &&
2092 !NewType->isDependentType() &&
2093 !Context.hasSameType(OldType, NewType)) {
2094 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2095 Diag(New->getLocation(), diag::err_redefinition_different_typedef)
2096 << Kind << NewType << OldType;
2097 if (Old->getLocation().isValid())
2098 notePreviousDefinition(Old, New->getLocation());
2099 New->setInvalidDecl();
2100 return true;
2101 }
2102 return false;
2103}
2104
2105/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
2106/// same name and scope as a previous declaration 'Old'. Figure out
2107/// how to resolve this situation, merging decls or emitting
2108/// diagnostics as appropriate. If there was an error, set New to be invalid.
2109///
2110void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
2111 LookupResult &OldDecls) {
2112 // If the new decl is known invalid already, don't bother doing any
2113 // merging checks.
2114 if (New->isInvalidDecl()) return;
2115
2116 // Allow multiple definitions for ObjC built-in typedefs.
2117 // FIXME: Verify the underlying types are equivalent!
2118 if (getLangOpts().ObjC1) {
2119 const IdentifierInfo *TypeID = New->getIdentifier();
2120 switch (TypeID->getLength()) {
2121 default: break;
2122 case 2:
2123 {
2124 if (!TypeID->isStr("id"))
2125 break;
2126 QualType T = New->getUnderlyingType();
2127 if (!T->isPointerType())
2128 break;
2129 if (!T->isVoidPointerType()) {
2130 QualType PT = T->getAs<PointerType>()->getPointeeType();
2131 if (!PT->isStructureType())
2132 break;
2133 }
2134 Context.setObjCIdRedefinitionType(T);
2135 // Install the built-in type for 'id', ignoring the current definition.
2136 New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
2137 return;
2138 }
2139 case 5:
2140 if (!TypeID->isStr("Class"))
2141 break;
2142 Context.setObjCClassRedefinitionType(New->getUnderlyingType());
2143 // Install the built-in type for 'Class', ignoring the current definition.
2144 New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
2145 return;
2146 case 3:
2147 if (!TypeID->isStr("SEL"))
2148 break;
2149 Context.setObjCSelRedefinitionType(New->getUnderlyingType());
2150 // Install the built-in type for 'SEL', ignoring the current definition.
2151 New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
2152 return;
2153 }
2154 // Fall through - the typedef name was not a builtin type.
2155 }
2156
2157 // Verify the old decl was also a type.
2158 TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
2159 if (!Old) {
2160 Diag(New->getLocation(), diag::err_redefinition_different_kind)
2161 << New->getDeclName();
2162
2163 NamedDecl *OldD = OldDecls.getRepresentativeDecl();
2164 if (OldD->getLocation().isValid())
2165 notePreviousDefinition(OldD, New->getLocation());
2166
2167 return New->setInvalidDecl();
2168 }
2169
2170 // If the old declaration is invalid, just give up here.
2171 if (Old->isInvalidDecl())
2172 return New->setInvalidDecl();
2173
2174 if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2175 auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
2176 auto *NewTag = New->getAnonDeclWithTypedefName();
2177 NamedDecl *Hidden = nullptr;
2178 if (OldTag && NewTag &&
2179 OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() &&
2180 !hasVisibleDefinition(OldTag, &Hidden)) {
2181 // There is a definition of this tag, but it is not visible. Use it
2182 // instead of our tag.
2183 New->setTypeForDecl(OldTD->getTypeForDecl());
2184 if (OldTD->isModed())
2185 New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(),
2186 OldTD->getUnderlyingType());
2187 else
2188 New->setTypeSourceInfo(OldTD->getTypeSourceInfo());
2189
2190 // Make the old tag definition visible.
2191 makeMergedDefinitionVisible(Hidden);
2192
2193 // If this was an unscoped enumeration, yank all of its enumerators
2194 // out of the scope.
2195 if (isa<EnumDecl>(NewTag)) {
2196 Scope *EnumScope = getNonFieldDeclScope(S);
2197 for (auto *D : NewTag->decls()) {
2198 auto *ED = cast<EnumConstantDecl>(D);
2199 assert(EnumScope->isDeclScope(ED))(static_cast <bool> (EnumScope->isDeclScope(ED)) ? void
(0) : __assert_fail ("EnumScope->isDeclScope(ED)", "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 2199, __extension__ __PRETTY_FUNCTION__))
;
2200 EnumScope->RemoveDecl(ED);
2201 IdResolver.RemoveDecl(ED);
2202 ED->getLexicalDeclContext()->removeDecl(ED);
2203 }
2204 }
2205 }
2206 }
2207
2208 // If the typedef types are not identical, reject them in all languages and
2209 // with any extensions enabled.
2210 if (isIncompatibleTypedef(Old, New))
2211 return;
2212
2213 // The types match. Link up the redeclaration chain and merge attributes if
2214 // the old declaration was a typedef.
2215 if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
2216 New->setPreviousDecl(Typedef);
2217 mergeDeclAttributes(New, Old);
2218 }
2219
2220 if (getLangOpts().MicrosoftExt)
2221 return;
2222
2223 if (getLangOpts().CPlusPlus) {
2224 // C++ [dcl.typedef]p2:
2225 // In a given non-class scope, a typedef specifier can be used to
2226 // redefine the name of any type declared in that scope to refer
2227 // to the type to which it already refers.
2228 if (!isa<CXXRecordDecl>(CurContext))
2229 return;
2230
2231 // C++0x [dcl.typedef]p4:
2232 // In a given class scope, a typedef specifier can be used to redefine
2233 // any class-name declared in that scope that is not also a typedef-name
2234 // to refer to the type to which it already refers.
2235 //
2236 // This wording came in via DR424, which was a correction to the
2237 // wording in DR56, which accidentally banned code like:
2238 //
2239 // struct S {
2240 // typedef struct A { } A;
2241 // };
2242 //
2243 // in the C++03 standard. We implement the C++0x semantics, which
2244 // allow the above but disallow
2245 //
2246 // struct S {
2247 // typedef int I;
2248 // typedef int I;
2249 // };
2250 //
2251 // since that was the intent of DR56.
2252 if (!isa<TypedefNameDecl>(Old))
2253 return;
2254
2255 Diag(New->getLocation(), diag::err_redefinition)
2256 << New->getDeclName();
2257 notePreviousDefinition(Old, New->getLocation());
2258 return New->setInvalidDecl();
2259 }
2260
2261 // Modules always permit redefinition of typedefs, as does C11.
2262 if (getLangOpts().Modules || getLangOpts().C11)
2263 return;
2264
2265 // If we have a redefinition of a typedef in C, emit a warning. This warning
2266 // is normally mapped to an error, but can be controlled with
2267 // -Wtypedef-redefinition. If either the original or the redefinition is
2268 // in a system header, don't emit this for compatibility with GCC.
2269 if (getDiagnostics().getSuppressSystemWarnings() &&
2270 // Some standard types are defined implicitly in Clang (e.g. OpenCL).
2271 (Old->isImplicit() ||
2272 Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
2273 Context.getSourceManager().isInSystemHeader(New->getLocation())))
2274 return;
2275
2276 Diag(New->getLocation(), diag::ext_redefinition_of_typedef)
2277 << New->getDeclName();
2278 notePreviousDefinition(Old, New->getLocation());
2279}
2280
2281/// DeclhasAttr - returns true if decl Declaration already has the target
2282/// attribute.
2283static bool DeclHasAttr(const Decl *D, const Attr *A) {
2284 const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
2285 const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
2286 for (const auto *i : D->attrs())
2287 if (i->getKind() == A->getKind()) {
2288 if (Ann) {
2289 if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
2290 return true;
2291 continue;
2292 }
2293 // FIXME: Don't hardcode this check
2294 if (OA && isa<OwnershipAttr>(i))
2295 return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
2296 return true;
2297 }
2298
2299 return false;
2300}
2301
2302static bool isAttributeTargetADefinition(Decl *D) {
2303 if (VarDecl *VD = dyn_cast<VarDecl>(D))
2304 return VD->isThisDeclarationADefinition();
2305 if (TagDecl *TD = dyn_cast<TagDecl>(D))
2306 return TD->isCompleteDefinition() || TD->isBeingDefined();
2307 return true;
2308}
2309
2310/// Merge alignment attributes from \p Old to \p New, taking into account the
2311/// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
2312///
2313/// \return \c true if any attributes were added to \p New.
2314static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
2315 // Look for alignas attributes on Old, and pick out whichever attribute
2316 // specifies the strictest alignment requirement.
2317 AlignedAttr *OldAlignasAttr = nullptr;
2318 AlignedAttr *OldStrictestAlignAttr = nullptr;
2319 unsigned OldAlign = 0;
2320 for (auto *I : Old->specific_attrs<AlignedAttr>()) {
2321 // FIXME: We have no way of representing inherited dependent alignments
2322 // in a case like:
2323 // template<int A, int B> struct alignas(A) X;
2324 // template<int A, int B> struct alignas(B) X {};
2325 // For now, we just ignore any alignas attributes which are not on the
2326 // definition in such a case.
2327 if (I->isAlignmentDependent())
2328 return false;
2329
2330 if (I->isAlignas())
2331 OldAlignasAttr = I;
2332
2333 unsigned Align = I->getAlignment(S.Context);
2334 if (Align > OldAlign) {
2335 OldAlign = Align;
2336 OldStrictestAlignAttr = I;
2337 }
2338 }
2339
2340 // Look for alignas attributes on New.
2341 AlignedAttr *NewAlignasAttr = nullptr;
2342 unsigned NewAlign = 0;
2343 for (auto *I : New->specific_attrs<AlignedAttr>()) {
2344 if (I->isAlignmentDependent())
2345 return false;
2346
2347 if (I->isAlignas())
2348 NewAlignasAttr = I;
2349
2350 unsigned Align = I->getAlignment(S.Context);
2351 if (Align > NewAlign)
2352 NewAlign = Align;
2353 }
2354
2355 if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
2356 // Both declarations have 'alignas' attributes. We require them to match.
2357 // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
2358 // fall short. (If two declarations both have alignas, they must both match
2359 // every definition, and so must match each other if there is a definition.)
2360
2361 // If either declaration only contains 'alignas(0)' specifiers, then it
2362 // specifies the natural alignment for the type.
2363 if (OldAlign == 0 || NewAlign == 0) {
2364 QualType Ty;
2365 if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
2366 Ty = VD->getType();
2367 else
2368 Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
2369
2370 if (OldAlign == 0)
2371 OldAlign = S.Context.getTypeAlign(Ty);
2372 if (NewAlign == 0)
2373 NewAlign = S.Context.getTypeAlign(Ty);
2374 }
2375
2376 if (OldAlign != NewAlign) {
2377 S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
2378 << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
2379 << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
2380 S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
2381 }
2382 }
2383
2384 if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
2385 // C++11 [dcl.align]p6:
2386 // if any declaration of an entity has an alignment-specifier,
2387 // every defining declaration of that entity shall specify an
2388 // equivalent alignment.
2389 // C11 6.7.5/7:
2390 // If the definition of an object does not have an alignment
2391 // specifier, any other declaration of that object shall also
2392 // have no alignment specifier.
2393 S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
2394 << OldAlignasAttr;
2395 S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
2396 << OldAlignasAttr;
2397 }
2398
2399 bool AnyAdded = false;
2400
2401 // Ensure we have an attribute representing the strictest alignment.
2402 if (OldAlign > NewAlign) {
2403 AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
2404 Clone->setInherited(true);
2405 New->addAttr(Clone);
2406 AnyAdded = true;
2407 }
2408
2409 // Ensure we have an alignas attribute if the old declaration had one.
2410 if (OldAlignasAttr && !NewAlignasAttr &&
2411 !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
2412 AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
2413 Clone->setInherited(true);
2414 New->addAttr(Clone);
2415 AnyAdded = true;
2416 }
2417
2418 return AnyAdded;
2419}
2420
2421static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
2422 const InheritableAttr *Attr,
2423 Sema::AvailabilityMergeKind AMK) {
2424 // This function copies an attribute Attr from a previous declaration to the
2425 // new declaration D if the new declaration doesn't itself have that attribute
2426 // yet or if that attribute allows duplicates.
2427 // If you're adding a new attribute that requires logic different from
2428 // "use explicit attribute on decl if present, else use attribute from
2429 // previous decl", for example if the attribute needs to be consistent
2430 // between redeclarations, you need to call a custom merge function here.
2431 InheritableAttr *NewAttr = nullptr;
2432 unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
2433 if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
2434 NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
2435 AA->isImplicit(), AA->getIntroduced(),
2436 AA->getDeprecated(),
2437 AA->getObsoleted(), AA->getUnavailable(),
2438 AA->getMessage(), AA->getStrict(),
2439 AA->getReplacement(), AMK,
2440 AttrSpellingListIndex);
2441 else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
2442 NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
2443 AttrSpellingListIndex);
2444 else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
2445 NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
2446 AttrSpellingListIndex);
2447 else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
2448 NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
2449 AttrSpellingListIndex);
2450 else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
2451 NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
2452 AttrSpellingListIndex);
2453 else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
2454 NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
2455 FA->getFormatIdx(), FA->getFirstArg(),
2456 AttrSpellingListIndex);
2457 else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
2458 NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
2459 AttrSpellingListIndex);
2460 else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
2461 NewAttr = S.mergeMSInheritanceAttr(D, IA->getRange(), IA->getBestCase(),
2462 AttrSpellingListIndex,
2463 IA->getSemanticSpelling());
2464 else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr))
2465 NewAttr = S.mergeAlwaysInlineAttr(D, AA->getRange(),
2466 &S.Context.Idents.get(AA->getSpelling()),
2467 AttrSpellingListIndex);
2468 else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) &&
2469 (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) ||
2470 isa<CUDAGlobalAttr>(Attr))) {
2471 // CUDA target attributes are part of function signature for
2472 // overloading purposes and must not be merged.
2473 return false;
2474 } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr))
2475 NewAttr = S.mergeMinSizeAttr(D, MA->getRange(), AttrSpellingListIndex);
2476 else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr))
2477 NewAttr = S.mergeOptimizeNoneAttr(D, OA->getRange(), AttrSpellingListIndex);
2478 else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr))
2479 NewAttr = S.mergeInternalLinkageAttr(
2480 D, InternalLinkageA->getRange(),
2481 &S.Context.Idents.get(InternalLinkageA->getSpelling()),
2482 AttrSpellingListIndex);
2483 else if (const auto *CommonA = dyn_cast<CommonAttr>(Attr))
2484 NewAttr = S.mergeCommonAttr(D, CommonA->getRange(),
2485 &S.Context.Idents.get(CommonA->getSpelling()),
2486 AttrSpellingListIndex);
2487 else if (isa<AlignedAttr>(Attr))
2488 // AlignedAttrs are handled separately, because we need to handle all
2489 // such attributes on a declaration at the same time.
2490 NewAttr = nullptr;
2491 else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) &&
2492 (AMK == Sema::AMK_Override ||
2493 AMK == Sema::AMK_ProtocolImplementation))
2494 NewAttr = nullptr;
2495 else if (const auto *UA = dyn_cast<UuidAttr>(Attr))
2496 NewAttr = S.mergeUuidAttr(D, UA->getRange(), AttrSpellingListIndex,
2497 UA->getGuid());
2498 else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr))
2499 NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2500
2501 if (NewAttr) {
2502 NewAttr->setInherited(true);
2503 D->addAttr(NewAttr);
2504 if (isa<MSInheritanceAttr>(NewAttr))
2505 S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
2506 return true;
2507 }
2508
2509 return false;
2510}
2511
2512static const NamedDecl *getDefinition(const Decl *D) {
2513 if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2514 return TD->getDefinition();
2515 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2516 const VarDecl *Def = VD->getDefinition();
2517 if (Def)
2518 return Def;
2519 return VD->getActingDefinition();
2520 }
2521 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
2522 return FD->getDefinition();
2523 return nullptr;
2524}
2525
2526static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2527 for (const auto *Attribute : D->attrs())
2528 if (Attribute->getKind() == Kind)
2529 return true;
2530 return false;
2531}
2532
2533/// checkNewAttributesAfterDef - If we already have a definition, check that
2534/// there are no new attributes in this declaration.
2535static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2536 if (!New->hasAttrs())
2537 return;
2538
2539 const NamedDecl *Def = getDefinition(Old);
2540 if (!Def || Def == New)
2541 return;
2542
2543 AttrVec &NewAttributes = New->getAttrs();
2544 for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2545 const Attr *NewAttribute = NewAttributes[I];
2546
2547 if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) {
2548 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) {
2549 Sema::SkipBodyInfo SkipBody;
2550 S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody);
2551
2552 // If we're skipping this definition, drop the "alias" attribute.
2553 if (SkipBody.ShouldSkip) {
2554 NewAttributes.erase(NewAttributes.begin() + I);
2555 --E;
2556 continue;
2557 }
2558 } else {
2559 VarDecl *VD = cast<VarDecl>(New);
2560 unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
2561 VarDecl::TentativeDefinition
2562 ? diag::err_alias_after_tentative
2563 : diag::err_redefinition;
2564 S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
2565 if (Diag == diag::err_redefinition)
2566 S.notePreviousDefinition(Def, VD->getLocation());
2567 else
2568 S.Diag(Def->getLocation(), diag::note_previous_definition);
2569 VD->setInvalidDecl();
2570 }
2571 ++I;
2572 continue;
2573 }
2574
2575 if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
2576 // Tentative definitions are only interesting for the alias check above.
2577 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
2578 ++I;
2579 continue;
2580 }
2581 }
2582
2583 if (hasAttribute(Def, NewAttribute->getKind())) {
2584 ++I;
2585 continue; // regular attr merging will take care of validating this.
2586 }
2587
2588 if (isa<C11NoReturnAttr>(NewAttribute)) {
2589 // C's _Noreturn is allowed to be added to a function after it is defined.
2590 ++I;
2591 continue;
2592 } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2593 if (AA->isAlignas()) {
2594 // C++11 [dcl.align]p6:
2595 // if any declaration of an entity has an alignment-specifier,
2596 // every defining declaration of that entity shall specify an
2597 // equivalent alignment.
2598 // C11 6.7.5/7:
2599 // If the definition of an object does not have an alignment
2600 // specifier, any other declaration of that object shall also
2601 // have no alignment specifier.
2602 S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2603 << AA;
2604 S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2605 << AA;
2606 NewAttributes.erase(NewAttributes.begin() + I);
2607 --E;
2608 continue;
2609 }
2610 }
2611
2612 S.Diag(NewAttribute->getLocation(),
2613 diag::warn_attribute_precede_definition);
2614 S.Diag(Def->getLocation(), diag::note_previous_definition);
2615 NewAttributes.erase(NewAttributes.begin() + I);
2616 --E;
2617 }
2618}
2619
2620/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
2621void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2622 AvailabilityMergeKind AMK) {
2623 if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
2624 UsedAttr *NewAttr = OldAttr->clone(Context);
2625 NewAttr->setInherited(true);
2626 New->addAttr(NewAttr);
2627 }
2628
2629 if (!Old->hasAttrs() && !New->hasAttrs())
2630 return;
2631
2632 // Attributes declared post-definition are currently ignored.
2633 checkNewAttributesAfterDef(*this, New, Old);
2634
2635 if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) {
2636 if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) {
2637 if (OldA->getLabel() != NewA->getLabel()) {
2638 // This redeclaration changes __asm__ label.
2639 Diag(New->getLocation(), diag::err_different_asm_label);
2640 Diag(OldA->getLocation(), diag::note_previous_declaration);
2641 }
2642 } else if (Old->isUsed()) {
2643 // This redeclaration adds an __asm__ label to a declaration that has
2644 // already been ODR-used.
2645 Diag(New->getLocation(), diag::err_late_asm_label_name)
2646 << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange();
2647 }
2648 }
2649
2650 // Re-declaration cannot add abi_tag's.
2651 if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) {
2652 if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) {
2653 for (const auto &NewTag : NewAbiTagAttr->tags()) {
2654 if (std::find(OldAbiTagAttr->tags_begin(), OldAbiTagAttr->tags_end(),
2655 NewTag) == OldAbiTagAttr->tags_end()) {
2656 Diag(NewAbiTagAttr->getLocation(),
2657 diag::err_new_abi_tag_on_redeclaration)
2658 << NewTag;
2659 Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration);
2660 }
2661 }
2662 } else {
2663 Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration);
2664 Diag(Old->getLocation(), diag::note_previous_declaration);
2665 }
2666 }
2667
2668 // This redeclaration adds a section attribute.
2669 if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) {
2670 if (auto *VD = dyn_cast<VarDecl>(New)) {
2671 if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) {
2672 Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration);
2673 Diag(Old->getLocation(), diag::note_previous_declaration);
2674 }
2675 }
2676 }
2677
2678 if (!Old->hasAttrs())
2679 return;
2680
2681 bool foundAny = New->hasAttrs();
2682
2683 // Ensure that any moving of objects within the allocated map is done before
2684 // we process them.
2685 if (!foundAny) New->setAttrs(AttrVec());
2686
2687 for (auto *I : Old->specific_attrs<InheritableAttr>()) {
2688 // Ignore deprecated/unavailable/availability attributes if requested.
2689 AvailabilityMergeKind LocalAMK = AMK_None;
2690 if (isa<DeprecatedAttr>(I) ||
2691 isa<UnavailableAttr>(I) ||
2692 isa<AvailabilityAttr>(I)) {
2693 switch (AMK) {
2694 case AMK_None:
2695 continue;
2696
2697 case AMK_Redeclaration:
2698 case AMK_Override:
2699 case AMK_ProtocolImplementation:
2700 LocalAMK = AMK;
2701 break;
2702 }
2703 }
2704
2705 // Already handled.
2706 if (isa<UsedAttr>(I))
2707 continue;
2708
2709 if (mergeDeclAttribute(*this, New, I, LocalAMK))
2710 foundAny = true;
2711 }
2712
2713 if (mergeAlignedAttrs(*this, New, Old))
2714 foundAny = true;
2715
2716 if (!foundAny) New->dropAttrs();
2717}
2718
2719/// mergeParamDeclAttributes - Copy attributes from the old parameter
2720/// to the new one.
2721static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2722 const ParmVarDecl *oldDecl,
2723 Sema &S) {
2724 // C++11 [dcl.attr.depend]p2:
2725 // The first declaration of a function shall specify the
2726 // carries_dependency attribute for its declarator-id if any declaration
2727 // of the function specifies the carries_dependency attribute.
2728 const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
2729 if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2730 S.Diag(CDA->getLocation(),
2731 diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2732 // Find the first declaration of the parameter.
2733 // FIXME: Should we build redeclaration chains for function parameters?
2734 const FunctionDecl *FirstFD =
2735 cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
2736 const ParmVarDecl *FirstVD =
2737 FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2738 S.Diag(FirstVD->getLocation(),
2739 diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2740 }
2741
2742 if (!oldDecl->hasAttrs())
2743 return;
2744
2745 bool foundAny = newDecl->hasAttrs();
2746
2747 // Ensure that any moving of objects within the allocated map is
2748 // done before we process them.
2749 if (!foundAny) newDecl->setAttrs(AttrVec());
2750
2751 for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
2752 if (!DeclHasAttr(newDecl, I)) {
2753 InheritableAttr *newAttr =
2754 cast<InheritableParamAttr>(I->clone(S.Context));
2755 newAttr->setInherited(true);
2756 newDecl->addAttr(newAttr);
2757 foundAny = true;
2758 }
2759 }
2760
2761 if (!foundAny) newDecl->dropAttrs();
2762}
2763
2764static void mergeParamDeclTypes(ParmVarDecl *NewParam,
2765 const ParmVarDecl *OldParam,
2766 Sema &S) {
2767 if (auto Oldnullability = OldParam->getType()->getNullability(S.Context)) {
2768 if (auto Newnullability = NewParam->getType()->getNullability(S.Context)) {
2769 if (*Oldnullability != *Newnullability) {
2770 S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr)
2771 << DiagNullabilityKind(
2772 *Newnullability,
2773 ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2774 != 0))
2775 << DiagNullabilityKind(
2776 *Oldnullability,
2777 ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2778 != 0));
2779 S.Diag(OldParam->getLocation(), diag::note_previous_declaration);
2780 }
2781 } else {
2782 QualType NewT = NewParam->getType();
2783 NewT = S.Context.getAttributedType(
2784 AttributedType::getNullabilityAttrKind(*Oldnullability),
2785 NewT, NewT);
2786 NewParam->setType(NewT);
2787 }
2788 }
2789}
2790
2791namespace {
2792
2793/// Used in MergeFunctionDecl to keep track of function parameters in
2794/// C.
2795struct GNUCompatibleParamWarning {
2796 ParmVarDecl *OldParm;
2797 ParmVarDecl *NewParm;
2798 QualType PromotedType;
2799};
2800
2801} // end anonymous namespace
2802
2803/// getSpecialMember - get the special member enum for a method.
2804Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2805 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2806 if (Ctor->isDefaultConstructor())
2807 return Sema::CXXDefaultConstructor;
2808
2809 if (Ctor->isCopyConstructor())
2810 return Sema::CXXCopyConstructor;
2811
2812 if (Ctor->isMoveConstructor())
2813 return Sema::CXXMoveConstructor;
2814 } else if (isa<CXXDestructorDecl>(MD)) {
2815 return Sema::CXXDestructor;
2816 } else if (MD->isCopyAssignmentOperator()) {
2817 return Sema::CXXCopyAssignment;
2818 } else if (MD->isMoveAssignmentOperator()) {
2819 return Sema::CXXMoveAssignment;
2820 }
2821
2822 return Sema::CXXInvalid;
2823}
2824
2825// Determine whether the previous declaration was a definition, implicit
2826// declaration, or a declaration.
2827template <typename T>
2828static std::pair<diag::kind, SourceLocation>
2829getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
2830 diag::kind PrevDiag;
2831 SourceLocation OldLocation = Old->getLocation();
2832 if (Old->isThisDeclarationADefinition())
2833 PrevDiag = diag::note_previous_definition;
2834 else if (Old->isImplicit()) {
2835 PrevDiag = diag::note_previous_implicit_declaration;
2836 if (OldLocation.isInvalid())
2837 OldLocation = New->getLocation();
2838 } else
2839 PrevDiag = diag::note_previous_declaration;
2840 return std::make_pair(PrevDiag, OldLocation);
2841}
2842
2843/// canRedefineFunction - checks if a function can be redefined. Currently,
2844/// only extern inline functions can be redefined, and even then only in
2845/// GNU89 mode.
2846static bool canRedefineFunction(const FunctionDecl *FD,
2847 const LangOptions& LangOpts) {
2848 return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2849 !LangOpts.CPlusPlus &&
2850 FD->isInlineSpecified() &&
2851 FD->getStorageClass() == SC_Extern);
2852}
2853
2854const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
2855 const AttributedType *AT = T->getAs<AttributedType>();
2856 while (AT && !AT->isCallingConv())
2857 AT = AT->getModifiedType()->getAs<AttributedType>();
2858 return AT;
2859}
2860
2861template <typename T>
2862static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
2863 const DeclContext *DC = Old->getDeclContext();
2864 if (DC->isRecord())
2865 return false;
2866
2867 LanguageLinkage OldLinkage = Old->getLanguageLinkage();
2868 if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
2869 return true;
2870 if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
2871 return true;
2872 return false;
2873}
2874
2875template<typename T> static bool isExternC(T *D) { return D->isExternC(); }
2876static bool isExternC(VarTemplateDecl *) { return false; }
2877
2878/// \brief Check whether a redeclaration of an entity introduced by a
2879/// using-declaration is valid, given that we know it's not an overload
2880/// (nor a hidden tag declaration).
2881template<typename ExpectedDecl>
2882static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS,
2883 ExpectedDecl *New) {
2884 // C++11 [basic.scope.declarative]p4:
2885 // Given a set of declarations in a single declarative region, each of
2886 // which specifies the same unqualified name,
2887 // -- they shall all refer to the same entity, or all refer to functions
2888 // and function templates; or
2889 // -- exactly one declaration shall declare a class name or enumeration
2890 // name that is not a typedef name and the other declarations shall all
2891 // refer to the same variable or enumerator, or all refer to functions
2892 // and function templates; in this case the class name or enumeration
2893 // name is hidden (3.3.10).
2894
2895 // C++11 [namespace.udecl]p14:
2896 // If a function declaration in namespace scope or block scope has the
2897 // same name and the same parameter-type-list as a function introduced
2898 // by a using-declaration, and the declarations do not declare the same
2899 // function, the program is ill-formed.
2900
2901 auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl());
2902 if (Old &&
2903 !Old->getDeclContext()->getRedeclContext()->Equals(
2904 New->getDeclContext()->getRedeclContext()) &&
2905 !(isExternC(Old) && isExternC(New)))
2906 Old = nullptr;
2907
2908 if (!Old) {
2909 S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2910 S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target);
2911 S.Diag(OldS->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
2912 return true;
2913 }
2914 return false;
2915}
2916
2917static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A,
2918 const FunctionDecl *B) {
2919 assert(A->getNumParams() == B->getNumParams())(static_cast <bool> (A->getNumParams() == B->getNumParams
()) ? void (0) : __assert_fail ("A->getNumParams() == B->getNumParams()"
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 2919, __extension__ __PRETTY_FUNCTION__))
;
2920
2921 auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) {
2922 const auto *AttrA = A->getAttr<PassObjectSizeAttr>();
2923 const auto *AttrB = B->getAttr<PassObjectSizeAttr>();
2924 if (AttrA == AttrB)
2925 return true;
2926 return AttrA && AttrB && AttrA->getType() == AttrB->getType();
2927 };
2928
2929 return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq);
2930}
2931
2932/// If necessary, adjust the semantic declaration context for a qualified
2933/// declaration to name the correct inline namespace within the qualifier.
2934static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD,
2935 DeclaratorDecl *OldD) {
2936 // The only case where we need to update the DeclContext is when
2937 // redeclaration lookup for a qualified name finds a declaration
2938 // in an inline namespace within the context named by the qualifier:
2939 //
2940 // inline namespace N { int f(); }
2941 // int ::f(); // Sema DC needs adjusting from :: to N::.
2942 //
2943 // For unqualified declarations, the semantic context *can* change
2944 // along the redeclaration chain (for local extern declarations,
2945 // extern "C" declarations, and friend declarations in particular).
2946 if (!NewD->getQualifier())
2947 return;
2948
2949 // NewD is probably already in the right context.
2950 auto *NamedDC = NewD->getDeclContext()->getRedeclContext();
2951 auto *SemaDC = OldD->getDeclContext()->getRedeclContext();
2952 if (NamedDC->Equals(SemaDC))
2953 return;
2954
2955 assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) ||(static_cast <bool> ((NamedDC->InEnclosingNamespaceSetOf
(SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl
()) && "unexpected context for redeclaration") ? void
(0) : __assert_fail ("(NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl()) && \"unexpected context for redeclaration\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 2957, __extension__ __PRETTY_FUNCTION__))
2956 NewD->isInvalidDecl() || OldD->isInvalidDecl()) &&(static_cast <bool> ((NamedDC->InEnclosingNamespaceSetOf
(SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl
()) && "unexpected context for redeclaration") ? void
(0) : __assert_fail ("(NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl()) && \"unexpected context for redeclaration\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 2957, __extension__ __PRETTY_FUNCTION__))
2957 "unexpected context for redeclaration")(static_cast <bool> ((NamedDC->InEnclosingNamespaceSetOf
(SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl
()) && "unexpected context for redeclaration") ? void
(0) : __assert_fail ("(NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl()) && \"unexpected context for redeclaration\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 2957, __extension__ __PRETTY_FUNCTION__))
;
2958
2959 auto *LexDC = NewD->getLexicalDeclContext();
2960 auto FixSemaDC = [=](NamedDecl *D) {
2961 if (!D)
2962 return;
2963 D->setDeclContext(SemaDC);
2964 D->setLexicalDeclContext(LexDC);
2965 };
2966
2967 FixSemaDC(NewD);
2968 if (auto *FD = dyn_cast<FunctionDecl>(NewD))
2969 FixSemaDC(FD->getDescribedFunctionTemplate());
2970 else if (auto *VD = dyn_cast<VarDecl>(NewD))
2971 FixSemaDC(VD->getDescribedVarTemplate());
2972}
2973
2974/// MergeFunctionDecl - We just parsed a function 'New' from
2975/// declarator D which has the same name and scope as a previous
2976/// declaration 'Old'. Figure out how to resolve this situation,
2977/// merging decls or emitting diagnostics as appropriate.
2978///
2979/// In C++, New and Old must be declarations that are not
2980/// overloaded. Use IsOverload to determine whether New and Old are
2981/// overloaded, and to select the Old declaration that New should be
2982/// merged with.
2983///
2984/// Returns true if there was an error, false otherwise.
2985bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD,
2986 Scope *S, bool MergeTypeWithOld) {
2987 // Verify the old decl was also a function.
2988 FunctionDecl *Old = OldD->getAsFunction();
2989 if (!Old) {
2990 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2991 if (New->getFriendObjectKind()) {
2992 Diag(New->getLocation(), diag::err_using_decl_friend);
2993 Diag(Shadow->getTargetDecl()->getLocation(),
2994 diag::note_using_decl_target);
2995 Diag(Shadow->getUsingDecl()->getLocation(),
2996 diag::note_using_decl) << 0;
2997 return true;
2998 }
2999
3000 // Check whether the two declarations might declare the same function.
3001 if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New))
3002 return true;
3003 OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl());
3004 } else {
3005 Diag(New->getLocation(), diag::err_redefinition_different_kind)
3006 << New->getDeclName();
3007 notePreviousDefinition(OldD, New->getLocation());
3008 return true;
3009 }
3010 }
3011
3012 // If the old declaration is invalid, just give up here.
3013 if (Old->isInvalidDecl())
3014 return true;
3015
3016 diag::kind PrevDiag;
3017 SourceLocation OldLocation;
3018 std::tie(PrevDiag, OldLocation) =
3019 getNoteDiagForInvalidRedeclaration(Old, New);
3020
3021 // Don't complain about this if we're in GNU89 mode and the old function
3022 // is an extern inline function.
3023 // Don't complain about specializations. They are not supposed to have
3024 // storage classes.
3025 if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
3026 New->getStorageClass() == SC_Static &&
3027 Old->hasExternalFormalLinkage() &&
3028 !New->getTemplateSpecializationInfo() &&
3029 !canRedefineFunction(Old, getLangOpts())) {
3030 if (getLangOpts().MicrosoftExt) {
3031 Diag(New->getLocation(), diag::ext_static_non_static) << New;
3032 Diag(OldLocation, PrevDiag);
3033 } else {
3034 Diag(New->getLocation(), diag::err_static_non_static) << New;
3035 Diag(OldLocation, PrevDiag);
3036 return true;
3037 }
3038 }
3039
3040 if (New->hasAttr<InternalLinkageAttr>() &&
3041 !Old->hasAttr<InternalLinkageAttr>()) {
3042 Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
3043 << New->getDeclName();
3044 notePreviousDefinition(Old, New->getLocation());
3045 New->dropAttr<InternalLinkageAttr>();
3046 }
3047
3048 if (CheckRedeclarationModuleOwnership(New, Old))
3049 return true;
3050
3051 if (!getLangOpts().CPlusPlus) {
3052 bool OldOvl = Old->hasAttr<OverloadableAttr>();
3053 if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) {
3054 Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch)
3055 << New << OldOvl;
3056
3057 // Try our best to find a decl that actually has the overloadable
3058 // attribute for the note. In most cases (e.g. programs with only one
3059 // broken declaration/definition), this won't matter.
3060 //
3061 // FIXME: We could do this if we juggled some extra state in
3062 // OverloadableAttr, rather than just removing it.
3063 const Decl *DiagOld = Old;
3064 if (OldOvl) {
3065 auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) {
3066 const auto *A = D->getAttr<OverloadableAttr>();
3067 return A && !A->isImplicit();
3068 });
3069 // If we've implicitly added *all* of the overloadable attrs to this
3070 // chain, emitting a "previous redecl" note is pointless.
3071 DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter;
3072 }
3073
3074 if (DiagOld)
3075 Diag(DiagOld->getLocation(),
3076 diag::note_attribute_overloadable_prev_overload)
3077 << OldOvl;
3078
3079 if (OldOvl)
3080 New->addAttr(OverloadableAttr::CreateImplicit(Context));
3081 else
3082 New->dropAttr<OverloadableAttr>();
3083 }
3084 }
3085
3086 // If a function is first declared with a calling convention, but is later
3087 // declared or defined without one, all following decls assume the calling
3088 // convention of the first.
3089 //
3090 // It's OK if a function is first declared without a calling convention,
3091 // but is later declared or defined with the default calling convention.
3092 //
3093 // To test if either decl has an explicit calling convention, we look for
3094 // AttributedType sugar nodes on the type as written. If they are missing or
3095 // were canonicalized away, we assume the calling convention was implicit.
3096 //
3097 // Note also that we DO NOT return at this point, because we still have
3098 // other tests to run.
3099 QualType OldQType = Context.getCanonicalType(Old->getType());
3100 QualType NewQType = Context.getCanonicalType(New->getType());
3101 const FunctionType *OldType = cast<FunctionType>(OldQType);
3102 const FunctionType *NewType = cast<FunctionType>(NewQType);
3103 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
3104 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
3105 bool RequiresAdjustment = false;
3106
3107 if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
3108 FunctionDecl *First = Old->getFirstDecl();
3109 const FunctionType *FT =
3110 First->getType().getCanonicalType()->castAs<FunctionType>();
3111 FunctionType::ExtInfo FI = FT->getExtInfo();
3112 bool NewCCExplicit = getCallingConvAttributedType(New->getType());
3113 if (!NewCCExplicit) {
3114 // Inherit the CC from the previous declaration if it was specified
3115 // there but not here.
3116 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3117 RequiresAdjustment = true;
3118 } else {
3119 // Calling conventions aren't compatible, so complain.
3120 bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
3121 Diag(New->getLocation(), diag::err_cconv_change)
3122 << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3123 << !FirstCCExplicit
3124 << (!FirstCCExplicit ? "" :
3125 FunctionType::getNameForCallConv(FI.getCC()));
3126
3127 // Put the note on the first decl, since it is the one that matters.
3128 Diag(First->getLocation(), diag::note_previous_declaration);
3129 return true;
3130 }
3131 }
3132
3133 // FIXME: diagnose the other way around?
3134 if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
3135 NewTypeInfo = NewTypeInfo.withNoReturn(true);
3136 RequiresAdjustment = true;
3137 }
3138
3139 // Merge regparm attribute.
3140 if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
3141 OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
3142 if (NewTypeInfo.getHasRegParm()) {
3143 Diag(New->getLocation(), diag::err_regparm_mismatch)
3144 << NewType->getRegParmType()
3145 << OldType->getRegParmType();
3146 Diag(OldLocation, diag::note_previous_declaration);
3147 return true;
3148 }
3149
3150 NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
3151 RequiresAdjustment = true;
3152 }
3153
3154 // Merge ns_returns_retained attribute.
3155 if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
3156 if (NewTypeInfo.getProducesResult()) {
3157 Diag(New->getLocation(), diag::err_function_attribute_mismatch)
3158 << "'ns_returns_retained'";
3159 Diag(OldLocation, diag::note_previous_declaration);
3160 return true;
3161 }
3162
3163 NewTypeInfo = NewTypeInfo.withProducesResult(true);
3164 RequiresAdjustment = true;
3165 }
3166
3167 if (OldTypeInfo.getNoCallerSavedRegs() !=
3168 NewTypeInfo.getNoCallerSavedRegs()) {
3169 if (NewTypeInfo.getNoCallerSavedRegs()) {
3170 AnyX86NoCallerSavedRegistersAttr *Attr =
3171 New->getAttr<AnyX86NoCallerSavedRegistersAttr>();
3172 Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr;
3173 Diag(OldLocation, diag::note_previous_declaration);
3174 return true;
3175 }
3176
3177 NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true);
3178 RequiresAdjustment = true;
3179 }
3180
3181 if (RequiresAdjustment) {
3182 const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
3183 AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
3184 New->setType(QualType(AdjustedType, 0));
3185 NewQType = Context.getCanonicalType(New->getType());
3186 NewType = cast<FunctionType>(NewQType);
3187 }
3188
3189 // If this redeclaration makes the function inline, we may need to add it to
3190 // UndefinedButUsed.
3191 if (!Old->isInlined() && New->isInlined() &&
3192 !New->hasAttr<GNUInlineAttr>() &&
3193 !getLangOpts().GNUInline &&
3194 Old->isUsed(false) &&
3195 !Old->isDefined() && !New->isThisDeclarationADefinition())
3196 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
3197 SourceLocation()));
3198
3199 // If this redeclaration makes it newly gnu_inline, we don't want to warn
3200 // about it.
3201 if (New->hasAttr<GNUInlineAttr>() &&
3202 Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
3203 UndefinedButUsed.erase(Old->getCanonicalDecl());
3204 }
3205
3206 // If pass_object_size params don't match up perfectly, this isn't a valid
3207 // redeclaration.
3208 if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() &&
3209 !hasIdenticalPassObjectSizeAttrs(Old, New)) {
3210 Diag(New->getLocation(), diag::err_different_pass_object_size_params)
3211 << New->getDeclName();
3212 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3213 return true;
3214 }
3215
3216 if (getLangOpts().CPlusPlus) {
3217 // C++1z [over.load]p2
3218 // Certain function declarations cannot be overloaded:
3219 // -- Function declarations that differ only in the return type,
3220 // the exception specification, or both cannot be overloaded.
3221
3222 // Check the exception specifications match. This may recompute the type of
3223 // both Old and New if it resolved exception specifications, so grab the
3224 // types again after this. Because this updates the type, we do this before
3225 // any of the other checks below, which may update the "de facto" NewQType
3226 // but do not necessarily update the type of New.
3227 if (CheckEquivalentExceptionSpec(Old, New))
3228 return true;
3229 OldQType = Context.getCanonicalType(Old->getType());
3230 NewQType = Context.getCanonicalType(New->getType());
3231
3232 // Go back to the type source info to compare the declared return types,
3233 // per C++1y [dcl.type.auto]p13:
3234 // Redeclarations or specializations of a function or function template
3235 // with a declared return type that uses a placeholder type shall also
3236 // use that placeholder, not a deduced type.
3237 QualType OldDeclaredReturnType =
3238 (Old->getTypeSourceInfo()
3239 ? Old->getTypeSourceInfo()->getType()->castAs<FunctionType>()
3240 : OldType)->getReturnType();
3241 QualType NewDeclaredReturnType =
3242 (New->getTypeSourceInfo()
3243 ? New->getTypeSourceInfo()->getType()->castAs<FunctionType>()
3244 : NewType)->getReturnType();
3245 if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
3246 !((NewQType->isDependentType() || OldQType->isDependentType()) &&
3247 New->isLocalExternDecl())) {
3248 QualType ResQT;
3249 if (NewDeclaredReturnType->isObjCObjectPointerType() &&
3250 OldDeclaredReturnType->isObjCObjectPointerType())
3251 ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
3252 if (ResQT.isNull()) {
3253 if (New->isCXXClassMember() && New->isOutOfLine())
3254 Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
3255 << New << New->getReturnTypeSourceRange();
3256 else
3257 Diag(New->getLocation(), diag::err_ovl_diff_return_type)
3258 << New->getReturnTypeSourceRange();
3259 Diag(OldLocation, PrevDiag) << Old << Old->getType()
3260 << Old->getReturnTypeSourceRange();
3261 return true;
3262 }
3263 else
3264 NewQType = ResQT;
3265 }
3266
3267 QualType OldReturnType = OldType->getReturnType();
3268 QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
3269 if (OldReturnType != NewReturnType) {
3270 // If this function has a deduced return type and has already been
3271 // defined, copy the deduced value from the old declaration.
3272 AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
3273 if (OldAT && OldAT->isDeduced()) {
3274 New->setType(
3275 SubstAutoType(New->getType(),
3276 OldAT->isDependentType() ? Context.DependentTy
3277 : OldAT->getDeducedType()));
3278 NewQType = Context.getCanonicalType(
3279 SubstAutoType(NewQType,
3280 OldAT->isDependentType() ? Context.DependentTy
3281 : OldAT->getDeducedType()));
3282 }
3283 }
3284
3285 const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
3286 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
3287 if (OldMethod && NewMethod) {
3288 // Preserve triviality.
3289 NewMethod->setTrivial(OldMethod->isTrivial());
3290
3291 // MSVC allows explicit template specialization at class scope:
3292 // 2 CXXMethodDecls referring to the same function will be injected.
3293 // We don't want a redeclaration error.
3294 bool IsClassScopeExplicitSpecialization =
3295 OldMethod->isFunctionTemplateSpecialization() &&
3296 NewMethod->isFunctionTemplateSpecialization();
3297 bool isFriend = NewMethod->getFriendObjectKind();
3298
3299 if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
3300 !IsClassScopeExplicitSpecialization) {
3301 // -- Member function declarations with the same name and the
3302 // same parameter types cannot be overloaded if any of them
3303 // is a static member function declaration.
3304 if (OldMethod->isStatic() != NewMethod->isStatic()) {
3305 Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
3306 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3307 return true;
3308 }
3309
3310 // C++ [class.mem]p1:
3311 // [...] A member shall not be declared twice in the
3312 // member-specification, except that a nested class or member
3313 // class template can be declared and then later defined.
3314 if (!inTemplateInstantiation()) {
3315 unsigned NewDiag;
3316 if (isa<CXXConstructorDecl>(OldMethod))
3317 NewDiag = diag::err_constructor_redeclared;
3318 else if (isa<CXXDestructorDecl>(NewMethod))
3319 NewDiag = diag::err_destructor_redeclared;
3320 else if (isa<CXXConversionDecl>(NewMethod))
3321 NewDiag = diag::err_conv_function_redeclared;
3322 else
3323 NewDiag = diag::err_member_redeclared;
3324
3325 Diag(New->getLocation(), NewDiag);
3326 } else {
3327 Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
3328 << New << New->getType();
3329 }
3330 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3331 return true;
3332
3333 // Complain if this is an explicit declaration of a special
3334 // member that was initially declared implicitly.
3335 //
3336 // As an exception, it's okay to befriend such methods in order
3337 // to permit the implicit constructor/destructor/operator calls.
3338 } else if (OldMethod->isImplicit()) {
3339 if (isFriend) {
3340 NewMethod->setImplicit();
3341 } else {
3342 Diag(NewMethod->getLocation(),
3343 diag::err_definition_of_implicitly_declared_member)
3344 << New << getSpecialMember(OldMethod);
3345 return true;
3346 }
3347 } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) {
3348 Diag(NewMethod->getLocation(),
3349 diag::err_definition_of_explicitly_defaulted_member)
3350 << getSpecialMember(OldMethod);
3351 return true;
3352 }
3353 }
3354
3355 // C++11 [dcl.attr.noreturn]p1:
3356 // The first declaration of a function shall specify the noreturn
3357 // attribute if any declaration of that function specifies the noreturn
3358 // attribute.
3359 const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>();
3360 if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) {
3361 Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl);
3362 Diag(Old->getFirstDecl()->getLocation(),
3363 diag::note_noreturn_missing_first_decl);
3364 }
3365
3366 // C++11 [dcl.attr.depend]p2:
3367 // The first declaration of a function shall specify the
3368 // carries_dependency attribute for its declarator-id if any declaration
3369 // of the function specifies the carries_dependency attribute.
3370 const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
3371 if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
3372 Diag(CDA->getLocation(),
3373 diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
3374 Diag(Old->getFirstDecl()->getLocation(),
3375 diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
3376 }
3377
3378 // (C++98 8.3.5p3):
3379 // All declarations for a function shall agree exactly in both the
3380 // return type and the parameter-type-list.
3381 // We also want to respect all the extended bits except noreturn.
3382
3383 // noreturn should now match unless the old type info didn't have it.
3384 QualType OldQTypeForComparison = OldQType;
3385 if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
3386 auto *OldType = OldQType->castAs<FunctionProtoType>();
3387 const FunctionType *OldTypeForComparison
3388 = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
3389 OldQTypeForComparison = QualType(OldTypeForComparison, 0);
3390 assert(OldQTypeForComparison.isCanonical())(static_cast <bool> (OldQTypeForComparison.isCanonical(
)) ? void (0) : __assert_fail ("OldQTypeForComparison.isCanonical()"
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 3390, __extension__ __PRETTY_FUNCTION__))
;
3391 }
3392
3393 if (haveIncompatibleLanguageLinkages(Old, New)) {
3394 // As a special case, retain the language linkage from previous
3395 // declarations of a friend function as an extension.
3396 //
3397 // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
3398 // and is useful because there's otherwise no way to specify language
3399 // linkage within class scope.
3400 //
3401 // Check cautiously as the friend object kind isn't yet complete.
3402 if (New->getFriendObjectKind() != Decl::FOK_None) {
3403 Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
3404 Diag(OldLocation, PrevDiag);
3405 } else {
3406 Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3407 Diag(OldLocation, PrevDiag);
3408 return true;
3409 }
3410 }
3411
3412 if (OldQTypeForComparison == NewQType)
3413 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3414
3415 if ((NewQType->isDependentType() || OldQType->isDependentType()) &&
3416 New->isLocalExternDecl()) {
3417 // It's OK if we couldn't merge types for a local function declaraton
3418 // if either the old or new type is dependent. We'll merge the types
3419 // when we instantiate the function.
3420 return false;
3421 }
3422
3423 // Fall through for conflicting redeclarations and redefinitions.
3424 }
3425
3426 // C: Function types need to be compatible, not identical. This handles
3427 // duplicate function decls like "void f(int); void f(enum X);" properly.
3428 if (!getLangOpts().CPlusPlus &&
3429 Context.typesAreCompatible(OldQType, NewQType)) {
3430 const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
3431 const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
3432 const FunctionProtoType *OldProto = nullptr;
3433 if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
3434 (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
3435 // The old declaration provided a function prototype, but the
3436 // new declaration does not. Merge in the prototype.
3437 assert(!OldProto->hasExceptionSpec() && "Exception spec in C")(static_cast <bool> (!OldProto->hasExceptionSpec() &&
"Exception spec in C") ? void (0) : __assert_fail ("!OldProto->hasExceptionSpec() && \"Exception spec in C\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 3437, __extension__ __PRETTY_FUNCTION__))
;
3438 SmallVector<QualType, 16> ParamTypes(OldProto->param_types());
3439 NewQType =
3440 Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes,
3441 OldProto->getExtProtoInfo());
3442 New->setType(NewQType);
3443 New->setHasInheritedPrototype();
3444
3445 // Synthesize parameters with the same types.
3446 SmallVector<ParmVarDecl*, 16> Params;
3447 for (const auto &ParamType : OldProto->param_types()) {
3448 ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(),
3449 SourceLocation(), nullptr,
3450 ParamType, /*TInfo=*/nullptr,
3451 SC_None, nullptr);
3452 Param->setScopeInfo(0, Params.size());
3453 Param->setImplicit();
3454 Params.push_back(Param);
3455 }
3456
3457 New->setParams(Params);
3458 }
3459
3460 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3461 }
3462
3463 // GNU C permits a K&R definition to follow a prototype declaration
3464 // if the declared types of the parameters in the K&R definition
3465 // match the types in the prototype declaration, even when the
3466 // promoted types of the parameters from the K&R definition differ
3467 // from the types in the prototype. GCC then keeps the types from
3468 // the prototype.
3469 //
3470 // If a variadic prototype is followed by a non-variadic K&R definition,
3471 // the K&R definition becomes variadic. This is sort of an edge case, but
3472 // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
3473 // C99 6.9.1p8.
3474 if (!getLangOpts().CPlusPlus &&
3475 Old->hasPrototype() && !New->hasPrototype() &&
3476 New->getType()->getAs<FunctionProtoType>() &&
3477 Old->getNumParams() == New->getNumParams()) {
3478 SmallVector<QualType, 16> ArgTypes;
3479 SmallVector<GNUCompatibleParamWarning, 16> Warnings;
3480 const FunctionProtoType *OldProto
3481 = Old->getType()->getAs<FunctionProtoType>();
3482 const FunctionProtoType *NewProto
3483 = New->getType()->getAs<FunctionProtoType>();
3484
3485 // Determine whether this is the GNU C extension.
3486 QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
3487 NewProto->getReturnType());
3488 bool LooseCompatible = !MergedReturn.isNull();
3489 for (unsigned Idx = 0, End = Old->getNumParams();
3490 LooseCompatible && Idx != End; ++Idx) {
3491 ParmVarDecl *OldParm = Old->getParamDecl(Idx);
3492 ParmVarDecl *NewParm = New->getParamDecl(Idx);
3493 if (Context.typesAreCompatible(OldParm->getType(),
3494 NewProto->getParamType(Idx))) {
3495 ArgTypes.push_back(NewParm->getType());
3496 } else if (Context.typesAreCompatible(OldParm->getType(),
3497 NewParm->getType(),
3498 /*CompareUnqualified=*/true)) {
3499 GNUCompatibleParamWarning Warn = { OldParm, NewParm,
3500 NewProto->getParamType(Idx) };
3501 Warnings.push_back(Warn);
3502 ArgTypes.push_back(NewParm->getType());
3503 } else
3504 LooseCompatible = false;
3505 }
3506
3507 if (LooseCompatible) {
3508 for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
3509 Diag(Warnings[Warn].NewParm->getLocation(),
3510 diag::ext_param_promoted_not_compatible_with_prototype)
3511 << Warnings[Warn].PromotedType
3512 << Warnings[Warn].OldParm->getType();
3513 if (Warnings[Warn].OldParm->getLocation().isValid())
3514 Diag(Warnings[Warn].OldParm->getLocation(),
3515 diag::note_previous_declaration);
3516 }
3517
3518 if (MergeTypeWithOld)
3519 New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
3520 OldProto->getExtProtoInfo()));
3521 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3522 }
3523
3524 // Fall through to diagnose conflicting types.
3525 }
3526
3527 // A function that has already been declared has been redeclared or
3528 // defined with a different type; show an appropriate diagnostic.
3529
3530 // If the previous declaration was an implicitly-generated builtin
3531 // declaration, then at the very least we should use a specialized note.
3532 unsigned BuiltinID;
3533 if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
3534 // If it's actually a library-defined builtin function like 'malloc'
3535 // or 'printf', just warn about the incompatible redeclaration.
3536 if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3537 Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
3538 Diag(OldLocation, diag::note_previous_builtin_declaration)
3539 << Old << Old->getType();
3540
3541 // If this is a global redeclaration, just forget hereafter
3542 // about the "builtin-ness" of the function.
3543 //
3544 // Doing this for local extern declarations is problematic. If
3545 // the builtin declaration remains visible, a second invalid
3546 // local declaration will produce a hard error; if it doesn't
3547 // remain visible, a single bogus local redeclaration (which is
3548 // actually only a warning) could break all the downstream code.
3549 if (!New->getLexicalDeclContext()->isFunctionOrMethod())
3550 New->getIdentifier()->revertBuiltin();
3551
3552 return false;
3553 }
3554
3555 PrevDiag = diag::note_previous_builtin_declaration;
3556 }
3557
3558 Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
3559 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3560 return true;
3561}
3562
3563/// \brief Completes the merge of two function declarations that are
3564/// known to be compatible.
3565///
3566/// This routine handles the merging of attributes and other
3567/// properties of function declarations from the old declaration to
3568/// the new declaration, once we know that New is in fact a
3569/// redeclaration of Old.
3570///
3571/// \returns false
3572bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
3573 Scope *S, bool MergeTypeWithOld) {
3574 // Merge the attributes
3575 mergeDeclAttributes(New, Old);
3576
3577 // Merge "pure" flag.
3578 if (Old->isPure())
3579 New->setPure();
3580
3581 // Merge "used" flag.
3582 if (Old->getMostRecentDecl()->isUsed(false))
3583 New->setIsUsed();
3584
3585 // Merge attributes from the parameters. These can mismatch with K&R
3586 // declarations.
3587 if (New->getNumParams() == Old->getNumParams())
3588 for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) {
3589 ParmVarDecl *NewParam = New->getParamDecl(i);
3590 ParmVarDecl *OldParam = Old->getParamDecl(i);
3591 mergeParamDeclAttributes(NewParam, OldParam, *this);
3592 mergeParamDeclTypes(NewParam, OldParam, *this);
3593 }
3594
3595 if (getLangOpts().CPlusPlus)
3596 return MergeCXXFunctionDecl(New, Old, S);
3597
3598 // Merge the function types so the we get the composite types for the return
3599 // and argument types. Per C11 6.2.7/4, only update the type if the old decl
3600 // was visible.
3601 QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
3602 if (!Merged.isNull() && MergeTypeWithOld)
3603 New->setType(Merged);
3604
3605 return false;
3606}
3607
3608void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
3609 ObjCMethodDecl *oldMethod) {
3610 // Merge the attributes, including deprecated/unavailable
3611 AvailabilityMergeKind MergeKind =
3612 isa<ObjCProtocolDecl>(oldMethod->getDeclContext())
3613 ? AMK_ProtocolImplementation
3614 : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
3615 : AMK_Override;
3616
3617 mergeDeclAttributes(newMethod, oldMethod, MergeKind);
3618
3619 // Merge attributes from the parameters.
3620 ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
3621 oe = oldMethod->param_end();
3622 for (ObjCMethodDecl::param_iterator
3623 ni = newMethod->param_begin(), ne = newMethod->param_end();
3624 ni != ne && oi != oe; ++ni, ++oi)
3625 mergeParamDeclAttributes(*ni, *oi, *this);
3626
3627 CheckObjCMethodOverride(newMethod, oldMethod);
3628}
3629
3630static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) {
3631 assert(!S.Context.hasSameType(New->getType(), Old->getType()))(static_cast <bool> (!S.Context.hasSameType(New->getType
(), Old->getType())) ? void (0) : __assert_fail ("!S.Context.hasSameType(New->getType(), Old->getType())"
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 3631, __extension__ __PRETTY_FUNCTION__))
;
3632
3633 S.Diag(New->getLocation(), New->isThisDeclarationADefinition()
3634 ? diag::err_redefinition_different_type
3635 : diag::err_redeclaration_different_type)
3636 << New->getDeclName() << New->getType() << Old->getType();
3637
3638 diag::kind PrevDiag;
3639 SourceLocation OldLocation;
3640 std::tie(PrevDiag, OldLocation)
3641 = getNoteDiagForInvalidRedeclaration(Old, New);
3642 S.Diag(OldLocation, PrevDiag);
3643 New->setInvalidDecl();
3644}
3645
3646/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
3647/// scope as a previous declaration 'Old'. Figure out how to merge their types,
3648/// emitting diagnostics as appropriate.
3649///
3650/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
3651/// to here in AddInitializerToDecl. We can't check them before the initializer
3652/// is attached.
3653void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
3654 bool MergeTypeWithOld) {
3655 if (New->isInvalidDecl() || Old->isInvalidDecl())
3656 return;
3657
3658 QualType MergedT;
3659 if (getLangOpts().CPlusPlus) {
3660 if (New->getType()->isUndeducedType()) {
3661 // We don't know what the new type is until the initializer is attached.
3662 return;
3663 } else if (Context.hasSameType(New->getType(), Old->getType())) {
3664 // These could still be something that needs exception specs checked.
3665 return MergeVarDeclExceptionSpecs(New, Old);
3666 }
3667 // C++ [basic.link]p10:
3668 // [...] the types specified by all declarations referring to a given
3669 // object or function shall be identical, except that declarations for an
3670 // array object can specify array types that differ by the presence or
3671 // absence of a major array bound (8.3.4).
3672 else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) {
3673 const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
3674 const ArrayType *NewArray = Context.getAsArrayType(New->getType());
3675
3676 // We are merging a variable declaration New into Old. If it has an array
3677 // bound, and that bound differs from Old's bound, we should diagnose the
3678 // mismatch.
3679 if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) {
3680 for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD;
3681 PrevVD = PrevVD->getPreviousDecl()) {
3682 const ArrayType *PrevVDTy = Context.getAsArrayType(PrevVD->getType());
3683 if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType())
3684 continue;
3685
3686 if (!Context.hasSameType(NewArray, PrevVDTy))
3687 return diagnoseVarDeclTypeMismatch(*this, New, PrevVD);
3688 }
3689 }
3690
3691 if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) {
3692 if (Context.hasSameType(OldArray->getElementType(),
3693 NewArray->getElementType()))
3694 MergedT = New->getType();
3695 }
3696 // FIXME: Check visibility. New is hidden but has a complete type. If New
3697 // has no array bound, it should not inherit one from Old, if Old is not
3698 // visible.
3699 else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) {
3700 if (Context.hasSameType(OldArray->getElementType(),
3701 NewArray->getElementType()))
3702 MergedT = Old->getType();
3703 }
3704 }
3705 else if (New->getType()->isObjCObjectPointerType() &&
3706 Old->getType()->isObjCObjectPointerType()) {
3707 MergedT = Context.mergeObjCGCQualifiers(New->getType(),
3708 Old->getType());
3709 }
3710 } else {
3711 // C 6.2.7p2:
3712 // All declarations that refer to the same object or function shall have
3713 // compatible type.
3714 MergedT = Context.mergeTypes(New->getType(), Old->getType());
3715 }
3716 if (MergedT.isNull()) {
3717 // It's OK if we couldn't merge types if either type is dependent, for a
3718 // block-scope variable. In other cases (static data members of class
3719 // templates, variable templates, ...), we require the types to be
3720 // equivalent.
3721 // FIXME: The C++ standard doesn't say anything about this.
3722 if ((New->getType()->isDependentType() ||
3723 Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
3724 // If the old type was dependent, we can't merge with it, so the new type
3725 // becomes dependent for now. We'll reproduce the original type when we
3726 // instantiate the TypeSourceInfo for the variable.
3727 if (!New->getType()->isDependentType() && MergeTypeWithOld)
3728 New->setType(Context.DependentTy);
3729 return;
3730 }
3731 return diagnoseVarDeclTypeMismatch(*this, New, Old);
3732 }
3733
3734 // Don't actually update the type on the new declaration if the old
3735 // declaration was an extern declaration in a different scope.
3736 if (MergeTypeWithOld)
3737 New->setType(MergedT);
3738}
3739
3740static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
3741 LookupResult &Previous) {
3742 // C11 6.2.7p4:
3743 // For an identifier with internal or external linkage declared
3744 // in a scope in which a prior declaration of that identifier is
3745 // visible, if the prior declaration specifies internal or
3746 // external linkage, the type of the identifier at the later
3747 // declaration becomes the composite type.
3748 //
3749 // If the variable isn't visible, we do not merge with its type.
3750 if (Previous.isShadowed())
3751 return false;
3752
3753 if (S.getLangOpts().CPlusPlus) {
3754 // C++11 [dcl.array]p3:
3755 // If there is a preceding declaration of the entity in the same
3756 // scope in which the bound was specified, an omitted array bound
3757 // is taken to be the same as in that earlier declaration.
3758 return NewVD->isPreviousDeclInSameBlockScope() ||
3759 (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
3760 !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
3761 } else {
3762 // If the old declaration was function-local, don't merge with its
3763 // type unless we're in the same function.
3764 return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
3765 OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
3766 }
3767}
3768
3769/// MergeVarDecl - We just parsed a variable 'New' which has the same name
3770/// and scope as a previous declaration 'Old'. Figure out how to resolve this
3771/// situation, merging decls or emitting diagnostics as appropriate.
3772///
3773/// Tentative definition rules (C99 6.9.2p2) are checked by
3774/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
3775/// definitions here, since the initializer hasn't been attached.
3776///
3777void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
3778 // If the new decl is already invalid, don't do any other checking.
3779 if (New->isInvalidDecl())
3780 return;
3781
3782 if (!shouldLinkPossiblyHiddenDecl(Previous, New))
3783 return;
3784
3785 VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
3786
3787 // Verify the old decl was also a variable or variable template.
3788 VarDecl *Old = nullptr;
3789 VarTemplateDecl *OldTemplate = nullptr;
3790 if (Previous.isSingleResult()) {
3791 if (NewTemplate) {
3792 OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
3793 Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
3794
3795 if (auto *Shadow =
3796 dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
3797 if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate))
3798 return New->setInvalidDecl();
3799 } else {
3800 Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
3801
3802 if (auto *Shadow =
3803 dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
3804 if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New))
3805 return New->setInvalidDecl();
3806 }
3807 }
3808 if (!Old) {
3809 Diag(New->getLocation(), diag::err_redefinition_different_kind)
3810 << New->getDeclName();
3811 notePreviousDefinition(Previous.getRepresentativeDecl(),
3812 New->getLocation());
3813 return New->setInvalidDecl();
3814 }
3815
3816 // Ensure the template parameters are compatible.
3817 if (NewTemplate &&
3818 !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
3819 OldTemplate->getTemplateParameters(),
3820 /*Complain=*/true, TPL_TemplateMatch))
3821 return New->setInvalidDecl();
3822
3823 // C++ [class.mem]p1:
3824 // A member shall not be declared twice in the member-specification [...]
3825 //
3826 // Here, we need only consider static data members.
3827 if (Old->isStaticDataMember() && !New->isOutOfLine()) {
3828 Diag(New->getLocation(), diag::err_duplicate_member)
3829 << New->getIdentifier();
3830 Diag(Old->getLocation(), diag::note_previous_declaration);
3831 New->setInvalidDecl();
3832 }
3833
3834 mergeDeclAttributes(New, Old);
3835 // Warn if an already-declared variable is made a weak_import in a subsequent
3836 // declaration
3837 if (New->hasAttr<WeakImportAttr>() &&
3838 Old->getStorageClass() == SC_None &&
3839 !Old->hasAttr<WeakImportAttr>()) {
3840 Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
3841 notePreviousDefinition(Old, New->getLocation());
3842 // Remove weak_import attribute on new declaration.
3843 New->dropAttr<WeakImportAttr>();
3844 }
3845
3846 if (New->hasAttr<InternalLinkageAttr>() &&
3847 !Old->hasAttr<InternalLinkageAttr>()) {
3848 Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
3849 << New->getDeclName();
3850 notePreviousDefinition(Old, New->getLocation());
3851 New->dropAttr<InternalLinkageAttr>();
3852 }
3853
3854 // Merge the types.
3855 VarDecl *MostRecent = Old->getMostRecentDecl();
3856 if (MostRecent != Old) {
3857 MergeVarDeclTypes(New, MostRecent,
3858 mergeTypeWithPrevious(*this, New, MostRecent, Previous));
3859 if (New->isInvalidDecl())
3860 return;
3861 }
3862
3863 MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
3864 if (New->isInvalidDecl())
3865 return;
3866
3867 diag::kind PrevDiag;
3868 SourceLocation OldLocation;
3869 std::tie(PrevDiag, OldLocation) =
3870 getNoteDiagForInvalidRedeclaration(Old, New);
3871
3872 // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
3873 if (New->getStorageClass() == SC_Static &&
3874 !New->isStaticDataMember() &&
3875 Old->hasExternalFormalLinkage()) {
3876 if (getLangOpts().MicrosoftExt) {
3877 Diag(New->getLocation(), diag::ext_static_non_static)
3878 << New->getDeclName();
3879 Diag(OldLocation, PrevDiag);
3880 } else {
3881 Diag(New->getLocation(), diag::err_static_non_static)
3882 << New->getDeclName();
3883 Diag(OldLocation, PrevDiag);
3884 return New->setInvalidDecl();
3885 }
3886 }
3887 // C99 6.2.2p4:
3888 // For an identifier declared with the storage-class specifier
3889 // extern in a scope in which a prior declaration of that
3890 // identifier is visible,23) if the prior declaration specifies
3891 // internal or external linkage, the linkage of the identifier at
3892 // the later declaration is the same as the linkage specified at
3893 // the prior declaration. If no prior declaration is visible, or
3894 // if the prior declaration specifies no linkage, then the
3895 // identifier has external linkage.
3896 if (New->hasExternalStorage() && Old->hasLinkage())
3897 /* Okay */;
3898 else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
3899 !New->isStaticDataMember() &&
3900 Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
3901 Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
3902 Diag(OldLocation, PrevDiag);
3903 return New->setInvalidDecl();
3904 }
3905
3906 // Check if extern is followed by non-extern and vice-versa.
3907 if (New->hasExternalStorage() &&
3908 !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) {
3909 Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
3910 Diag(OldLocation, PrevDiag);
3911 return New->setInvalidDecl();
3912 }
3913 if (Old->hasLinkage() && New->isLocalVarDeclOrParm() &&
3914 !New->hasExternalStorage()) {
3915 Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
3916 Diag(OldLocation, PrevDiag);
3917 return New->setInvalidDecl();
3918 }
3919
3920 if (CheckRedeclarationModuleOwnership(New, Old))
3921 return;
3922
3923 // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
3924
3925 // FIXME: The test for external storage here seems wrong? We still
3926 // need to check for mismatches.
3927 if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
3928 // Don't complain about out-of-line definitions of static members.
3929 !(Old->getLexicalDeclContext()->isRecord() &&
3930 !New->getLexicalDeclContext()->isRecord())) {
3931 Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
3932 Diag(OldLocation, PrevDiag);
3933 return New->setInvalidDecl();
3934 }
3935
3936 if (New->isInline() && !Old->getMostRecentDecl()->isInline()) {
3937 if (VarDecl *Def = Old->getDefinition()) {
3938 // C++1z [dcl.fcn.spec]p4:
3939 // If the definition of a variable appears in a translation unit before
3940 // its first declaration as inline, the program is ill-formed.
3941 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
3942 Diag(Def->getLocation(), diag::note_previous_definition);
3943 }
3944 }
3945
3946 // If this redeclaration makes the variable inline, we may need to add it to
3947 // UndefinedButUsed.
3948 if (!Old->isInline() && New->isInline() && Old->isUsed(false) &&
3949 !Old->getDefinition() && !New->isThisDeclarationADefinition())
3950 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
3951 SourceLocation()));
3952
3953 if (New->getTLSKind() != Old->getTLSKind()) {
3954 if (!Old->getTLSKind()) {
3955 Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
3956 Diag(OldLocation, PrevDiag);
3957 } else if (!New->getTLSKind()) {
3958 Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
3959 Diag(OldLocation, PrevDiag);
3960 } else {
3961 // Do not allow redeclaration to change the variable between requiring
3962 // static and dynamic initialization.
3963 // FIXME: GCC allows this, but uses the TLS keyword on the first
3964 // declaration to determine the kind. Do we need to be compatible here?
3965 Diag(New->getLocation(), diag::err_thread_thread_different_kind)
3966 << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
3967 Diag(OldLocation, PrevDiag);
3968 }
3969 }
3970
3971 // C++ doesn't have tentative definitions, so go right ahead and check here.
3972 if (getLangOpts().CPlusPlus &&
3973 New->isThisDeclarationADefinition() == VarDecl::Definition) {
3974 if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() &&
3975 Old->getCanonicalDecl()->isConstexpr()) {
3976 // This definition won't be a definition any more once it's been merged.
3977 Diag(New->getLocation(),
3978 diag::warn_deprecated_redundant_constexpr_static_def);
3979 } else if (VarDecl *Def = Old->getDefinition()) {
3980 if (checkVarDeclRedefinition(Def, New))
3981 return;
3982 }
3983 }
3984
3985 if (haveIncompatibleLanguageLinkages(Old, New)) {
3986 Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3987 Diag(OldLocation, PrevDiag);
3988 New->setInvalidDecl();
3989 return;
3990 }
3991
3992 // Merge "used" flag.
3993 if (Old->getMostRecentDecl()->isUsed(false))
3994 New->setIsUsed();
3995
3996 // Keep a chain of previous declarations.
3997 New->setPreviousDecl(Old);
3998 if (NewTemplate)
3999 NewTemplate->setPreviousDecl(OldTemplate);
4000 adjustDeclContextForDeclaratorDecl(New, Old);
4001
4002 // Inherit access appropriately.
4003 New->setAccess(Old->getAccess());
4004 if (NewTemplate)
4005 NewTemplate->setAccess(New->getAccess());
4006
4007 if (Old->isInline())
4008 New->setImplicitlyInline();
4009}
4010
4011void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) {
4012 SourceManager &SrcMgr = getSourceManager();
4013 auto FNewDecLoc = SrcMgr.getDecomposedLoc(New);
4014 auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation());
4015 auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first);
4016 auto *FOld = SrcMgr.getFileEntryForID(FOldDecLoc.first);
4017 auto &HSI = PP.getHeaderSearchInfo();
4018 StringRef HdrFilename =
4019 SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation()));
4020
4021 auto noteFromModuleOrInclude = [&](Module *Mod,
4022 SourceLocation IncLoc) -> bool {
4023 // Redefinition errors with modules are common with non modular mapped
4024 // headers, example: a non-modular header H in module A that also gets
4025 // included directly in a TU. Pointing twice to the same header/definition
4026 // is confusing, try to get better diagnostics when modules is on.
4027 if (IncLoc.isValid()) {
4028 if (Mod) {
4029 Diag(IncLoc, diag::note_redefinition_modules_same_file)
4030 << HdrFilename.str() << Mod->getFullModuleName();
4031 if (!Mod->DefinitionLoc.isInvalid())
4032 Diag(Mod->DefinitionLoc, diag::note_defined_here)
4033 << Mod->getFullModuleName();
4034 } else {
4035 Diag(IncLoc, diag::note_redefinition_include_same_file)
4036 << HdrFilename.str();
4037 }
4038 return true;
4039 }
4040
4041 return false;
4042 };
4043
4044 // Is it the same file and same offset? Provide more information on why
4045 // this leads to a redefinition error.
4046 bool EmittedDiag = false;
4047 if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) {
4048 SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first);
4049 SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first);
4050 EmittedDiag = noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc);
4051 EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc);
4052
4053 // If the header has no guards, emit a note suggesting one.
4054 if (FOld && !HSI.isFileMultipleIncludeGuarded(FOld))
4055 Diag(Old->getLocation(), diag::note_use_ifdef_guards);
4056
4057 if (EmittedDiag)
4058 return;
4059 }
4060
4061 // Redefinition coming from different files or couldn't do better above.
4062 Diag(Old->getLocation(), diag::note_previous_definition);
4063}
4064
4065/// We've just determined that \p Old and \p New both appear to be definitions
4066/// of the same variable. Either diagnose or fix the problem.
4067bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) {
4068 if (!hasVisibleDefinition(Old) &&
4069 (New->getFormalLinkage() == InternalLinkage ||
4070 New->isInline() ||
4071 New->getDescribedVarTemplate() ||
4072 New->getNumTemplateParameterLists() ||
4073 New->getDeclContext()->isDependentContext())) {
4074 // The previous definition is hidden, and multiple definitions are
4075 // permitted (in separate TUs). Demote this to a declaration.
4076 New->demoteThisDefinitionToDeclaration();
4077
4078 // Make the canonical definition visible.
4079 if (auto *OldTD = Old->getDescribedVarTemplate())
4080 makeMergedDefinitionVisible(OldTD);
4081 makeMergedDefinitionVisible(Old);
4082 return false;
4083 } else {
4084 Diag(New->getLocation(), diag::err_redefinition) << New;
4085 notePreviousDefinition(Old, New->getLocation());
4086 New->setInvalidDecl();
4087 return true;
4088 }
4089}
4090
4091/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4092/// no declarator (e.g. "struct foo;") is parsed.
4093Decl *
4094Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4095 RecordDecl *&AnonRecord) {
4096 return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg(), false,
4097 AnonRecord);
4098}
4099
4100// The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
4101// disambiguate entities defined in different scopes.
4102// While the VS2015 ABI fixes potential miscompiles, it is also breaks
4103// compatibility.
4104// We will pick our mangling number depending on which version of MSVC is being
4105// targeted.
4106static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) {
4107 return LO.isCompatibleWithMSVC(LangOptions::MSVC2015)
4108 ? S->getMSCurManglingNumber()
4109 : S->getMSLastManglingNumber();
4110}
4111
4112void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) {
4113 if (!Context.getLangOpts().CPlusPlus)
4114 return;
4115
4116 if (isa<CXXRecordDecl>(Tag->getParent())) {
4117 // If this tag is the direct child of a class, number it if
4118 // it is anonymous.
4119 if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
4120 return;
4121 MangleNumberingContext &MCtx =
4122 Context.getManglingNumberContext(Tag->getParent());
4123 Context.setManglingNumber(
4124 Tag, MCtx.getManglingNumber(
4125 Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4126 return;
4127 }
4128
4129 // If this tag isn't a direct child of a class, number it if it is local.
4130 Decl *ManglingContextDecl;
4131 if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
4132 Tag->getDeclContext(), ManglingContextDecl)) {
4133 Context.setManglingNumber(
4134 Tag, MCtx->getManglingNumber(
4135 Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4136 }
4137}
4138
4139void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
4140 TypedefNameDecl *NewTD) {
4141 if (TagFromDeclSpec->isInvalidDecl())
4142 return;
4143
4144 // Do nothing if the tag already has a name for linkage purposes.
4145 if (TagFromDeclSpec->hasNameForLinkage())
4146 return;
4147
4148 // A well-formed anonymous tag must always be a TUK_Definition.
4149 assert(TagFromDeclSpec->isThisDeclarationADefinition())(static_cast <bool> (TagFromDeclSpec->isThisDeclarationADefinition
()) ? void (0) : __assert_fail ("TagFromDeclSpec->isThisDeclarationADefinition()"
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 4149, __extension__ __PRETTY_FUNCTION__))
;
4150
4151 // The type must match the tag exactly; no qualifiers allowed.
4152 if (!Context.hasSameType(NewTD->getUnderlyingType(),
4153 Context.getTagDeclType(TagFromDeclSpec))) {
4154 if (getLangOpts().CPlusPlus)
4155 Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD);
4156 return;
4157 }
4158
4159 // If we've already computed linkage for the anonymous tag, then
4160 // adding a typedef name for the anonymous decl can change that
4161 // linkage, which might be a serious problem. Diagnose this as
4162 // unsupported and ignore the typedef name. TODO: we should
4163 // pursue this as a language defect and establish a formal rule
4164 // for how to handle it.
4165 if (TagFromDeclSpec->hasLinkageBeenComputed()) {
4166 Diag(NewTD->getLocation(), diag::err_typedef_changes_linkage);
4167
4168 SourceLocation tagLoc = TagFromDeclSpec->getInnerLocStart();
4169 tagLoc = getLocForEndOfToken(tagLoc);
4170
4171 llvm::SmallString<40> textToInsert;
4172 textToInsert += ' ';
4173 textToInsert += NewTD->getIdentifier()->getName();
4174 Diag(tagLoc, diag::note_typedef_changes_linkage)
4175 << FixItHint::CreateInsertion(tagLoc, textToInsert);
4176 return;
4177 }
4178
4179 // Otherwise, set this is the anon-decl typedef for the tag.
4180 TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
4181}
4182
4183static unsigned GetDiagnosticTypeSpecifierID(DeclSpec::TST T) {
4184 switch (T) {
4185 case DeclSpec::TST_class:
4186 return 0;
4187 case DeclSpec::TST_struct:
4188 return 1;
4189 case DeclSpec::TST_interface:
4190 return 2;
4191 case DeclSpec::TST_union:
4192 return 3;
4193 case DeclSpec::TST_enum:
4194 return 4;
4195 default:
4196 llvm_unreachable("unexpected type specifier")::llvm::llvm_unreachable_internal("unexpected type specifier"
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 4196)
;
4197 }
4198}
4199
4200/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4201/// no declarator (e.g. "struct foo;") is parsed. It also accepts template
4202/// parameters to cope with template friend declarations.
4203Decl *
4204Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4205 MultiTemplateParamsArg TemplateParams,
4206 bool IsExplicitInstantiation,
4207 RecordDecl *&AnonRecord) {
4208 Decl *TagD = nullptr;
4209 TagDecl *Tag = nullptr;
4210 if (DS.getTypeSpecType() == DeclSpec::TST_class ||
4211 DS.getTypeSpecType() == DeclSpec::TST_struct ||
4212 DS.getTypeSpecType() == DeclSpec::TST_interface ||
4213 DS.getTypeSpecType() == DeclSpec::TST_union ||
4214 DS.getTypeSpecType() == DeclSpec::TST_enum) {
4215 TagD = DS.getRepAsDecl();
4216
4217 if (!TagD) // We probably had an error
4218 return nullptr;
4219
4220 // Note that the above type specs guarantee that the
4221 // type rep is a Decl, whereas in many of the others
4222 // it's a Type.
4223 if (isa<TagDecl>(TagD))
4224 Tag = cast<TagDecl>(TagD);
4225 else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
4226 Tag = CTD->getTemplatedDecl();
4227 }
4228
4229 if (Tag) {
4230 handleTagNumbering(Tag, S);
4231 Tag->setFreeStanding();
4232 if (Tag->isInvalidDecl())
4233 return Tag;
4234 }
4235
4236 if (unsigned TypeQuals = DS.getTypeQualifiers()) {
4237 // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
4238 // or incomplete types shall not be restrict-qualified."
4239 if (TypeQuals & DeclSpec::TQ_restrict)
4240 Diag(DS.getRestrictSpecLoc(),
4241 diag::err_typecheck_invalid_restrict_not_pointer_noarg)
4242 << DS.getSourceRange();
4243 }
4244
4245 if (DS.isInlineSpecified())
4246 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
4247 << getLangOpts().CPlusPlus17;
4248
4249 if (DS.isConstexprSpecified()) {
4250 // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
4251 // and definitions of functions and variables.
4252 if (Tag)
4253 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
4254 << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType());
4255 else
4256 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
4257 // Don't emit warnings after this error.
4258 return TagD;
4259 }
4260
4261 DiagnoseFunctionSpecifiers(DS);
4262
4263 if (DS.isFriendSpecified()) {
4264 // If we're dealing with a decl but not a TagDecl, assume that
4265 // whatever routines created it handled the friendship aspect.
4266 if (TagD && !Tag)
4267 return nullptr;
4268 return ActOnFriendTypeDecl(S, DS, TemplateParams);
4269 }
4270
4271 const CXXScopeSpec &SS = DS.getTypeSpecScope();
4272 bool IsExplicitSpecialization =
4273 !TemplateParams.empty() && TemplateParams.back()->size() == 0;
4274 if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
4275 !IsExplicitInstantiation && !IsExplicitSpecialization &&
4276 !isa<ClassTemplatePartialSpecializationDecl>(Tag)) {
4277 // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
4278 // nested-name-specifier unless it is an explicit instantiation
4279 // or an explicit specialization.
4280 //
4281 // FIXME: We allow class template partial specializations here too, per the
4282 // obvious intent of DR1819.
4283 //
4284 // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
4285 Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
4286 << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << SS.getRange();
4287 return nullptr;
4288 }
4289
4290 // Track whether this decl-specifier declares anything.
4291 bool DeclaresAnything = true;
4292
4293 // Handle anonymous struct definitions.
4294 if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
4295 if (!Record->getDeclName() && Record->isCompleteDefinition() &&
4296 DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
4297 if (getLangOpts().CPlusPlus ||
4298 Record->getDeclContext()->isRecord()) {
4299 // If CurContext is a DeclContext that can contain statements,
4300 // RecursiveASTVisitor won't visit the decls that
4301 // BuildAnonymousStructOrUnion() will put into CurContext.
4302 // Also store them here so that they can be part of the
4303 // DeclStmt that gets created in this case.
4304 // FIXME: Also return the IndirectFieldDecls created by
4305 // BuildAnonymousStructOr union, for the same reason?
4306 if (CurContext->isFunctionOrMethod())
4307 AnonRecord = Record;
4308 return BuildAnonymousStructOrUnion(S, DS, AS, Record,
4309 Context.getPrintingPolicy());
4310 }
4311
4312 DeclaresAnything = false;
4313 }
4314 }
4315
4316 // C11 6.7.2.1p2:
4317 // A struct-declaration that does not declare an anonymous structure or
4318 // anonymous union shall contain a struct-declarator-list.
4319 //
4320 // This rule also existed in C89 and C99; the grammar for struct-declaration
4321 // did not permit a struct-declaration without a struct-declarator-list.
4322 if (!getLangOpts().CPlusPlus && CurContext->isRecord() &&
4323 DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
4324 // Check for Microsoft C extension: anonymous struct/union member.
4325 // Handle 2 kinds of anonymous struct/union:
4326 // struct STRUCT;
4327 // union UNION;
4328 // and
4329 // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct.
4330 // UNION_TYPE; <- where UNION_TYPE is a typedef union.
4331 if ((Tag && Tag->getDeclName()) ||
4332 DS.getTypeSpecType() == DeclSpec::TST_typename) {
4333 RecordDecl *Record = nullptr;
4334 if (Tag)
4335 Record = dyn_cast<RecordDecl>(Tag);
4336 else if (const RecordType *RT =
4337 DS.getRepAsType().get()->getAsStructureType())
4338 Record = RT->getDecl();
4339 else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType())
4340 Record = UT->getDecl();
4341
4342 if (Record && getLangOpts().MicrosoftExt) {
4343 Diag(DS.getLocStart(), diag::ext_ms_anonymous_record)
4344 << Record->isUnion() << DS.getSourceRange();
4345 return BuildMicrosoftCAnonymousStruct(S, DS, Record);
4346 }
4347
4348 DeclaresAnything = false;
4349 }
4350 }
4351
4352 // Skip all the checks below if we have a type error.
4353 if (DS.getTypeSpecType() == DeclSpec::TST_error ||
4354 (TagD && TagD->isInvalidDecl()))
4355 return TagD;
4356
4357 if (getLangOpts().CPlusPlus &&
4358 DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
4359 if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
4360 if (Enum->enumerator_begin() == Enum->enumerator_end() &&
4361 !Enum->getIdentifier() && !Enum->isInvalidDecl())
4362 DeclaresAnything = false;
4363
4364 if (!DS.isMissingDeclaratorOk()) {
4365 // Customize diagnostic for a typedef missing a name.
4366 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
4367 Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
4368 << DS.getSourceRange();
4369 else
4370 DeclaresAnything = false;
4371 }
4372
4373 if (DS.isModulePrivateSpecified() &&
4374 Tag && Tag->getDeclContext()->isFunctionOrMethod())
4375 Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
4376 << Tag->getTagKind()
4377 << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
4378
4379 ActOnDocumentableDecl(TagD);
4380
4381 // C 6.7/2:
4382 // A declaration [...] shall declare at least a declarator [...], a tag,
4383 // or the members of an enumeration.
4384 // C++ [dcl.dcl]p3:
4385 // [If there are no declarators], and except for the declaration of an
4386 // unnamed bit-field, the decl-specifier-seq shall introduce one or more
4387 // names into the program, or shall redeclare a name introduced by a
4388 // previous declaration.
4389 if (!DeclaresAnything) {
4390 // In C, we allow this as a (popular) extension / bug. Don't bother
4391 // producing further diagnostics for redundant qualifiers after this.
4392 Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange();
4393 return TagD;
4394 }
4395
4396 // C++ [dcl.stc]p1:
4397 // If a storage-class-specifier appears in a decl-specifier-seq, [...] the
4398 // init-declarator-list of the declaration shall not be empty.
4399 // C++ [dcl.fct.spec]p1:
4400 // If a cv-qualifier appears in a decl-specifier-seq, the
4401 // init-declarator-list of the declaration shall not be empty.
4402 //
4403 // Spurious qualifiers here appear to be valid in C.
4404 unsigned DiagID = diag::warn_standalone_specifier;
4405 if (getLangOpts().CPlusPlus)
4406 DiagID = diag::ext_standalone_specifier;
4407
4408 // Note that a linkage-specification sets a storage class, but
4409 // 'extern "C" struct foo;' is actually valid and not theoretically
4410 // useless.
4411 if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
4412 if (SCS == DeclSpec::SCS_mutable)
4413 // Since mutable is not a viable storage class specifier in C, there is
4414 // no reason to treat it as an extension. Instead, diagnose as an error.
4415 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
4416 else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
4417 Diag(DS.getStorageClassSpecLoc(), DiagID)
4418 << DeclSpec::getSpecifierName(SCS);
4419 }
4420
4421 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
4422 Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
4423 << DeclSpec::getSpecifierName(TSCS);
4424 if (DS.getTypeQualifiers()) {
4425 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4426 Diag(DS.getConstSpecLoc(), DiagID) << "const";
4427 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4428 Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
4429 // Restrict is covered above.
4430 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4431 Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
4432 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
4433 Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned";
4434 }
4435
4436 // Warn about ignored type attributes, for example:
4437 // __attribute__((aligned)) struct A;
4438 // Attributes should be placed after tag to apply to type declaration.
4439 if (!DS.getAttributes().empty()) {
4440 DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
4441 if (TypeSpecType == DeclSpec::TST_class ||
4442 TypeSpecType == DeclSpec::TST_struct ||
4443 TypeSpecType == DeclSpec::TST_interface ||
4444 TypeSpecType == DeclSpec::TST_union ||
4445 TypeSpecType == DeclSpec::TST_enum) {
4446 for (AttributeList* attrs = DS.getAttributes().getList(); attrs;
4447 attrs = attrs->getNext())
4448 Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
4449 << attrs->getName() << GetDiagnosticTypeSpecifierID(TypeSpecType);
4450 }
4451 }
4452
4453 return TagD;
4454}
4455
4456/// We are trying to inject an anonymous member into the given scope;
4457/// check if there's an existing declaration that can't be overloaded.
4458///
4459/// \return true if this is a forbidden redeclaration
4460static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
4461 Scope *S,
4462 DeclContext *Owner,
4463 DeclarationName Name,
4464 SourceLocation NameLoc,
4465 bool IsUnion) {
4466 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
4467 Sema::ForVisibleRedeclaration);
4468 if (!SemaRef.LookupName(R, S)) return false;
4469
4470 // Pick a representative declaration.
4471 NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
4472 assert(PrevDecl && "Expected a non-null Decl")(static_cast <bool> (PrevDecl && "Expected a non-null Decl"
) ? void (0) : __assert_fail ("PrevDecl && \"Expected a non-null Decl\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 4472, __extension__ __PRETTY_FUNCTION__))
;
4473
4474 if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
4475 return false;
4476
4477 SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl)
4478 << IsUnion << Name;
4479 SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4480
4481 return true;
4482}
4483
4484/// InjectAnonymousStructOrUnionMembers - Inject the members of the
4485/// anonymous struct or union AnonRecord into the owning context Owner
4486/// and scope S. This routine will be invoked just after we realize
4487/// that an unnamed union or struct is actually an anonymous union or
4488/// struct, e.g.,
4489///
4490/// @code
4491/// union {
4492/// int i;
4493/// float f;
4494/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
4495/// // f into the surrounding scope.x
4496/// @endcode
4497///
4498/// This routine is recursive, injecting the names of nested anonymous
4499/// structs/unions into the owning context and scope as well.
4500static bool
4501InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner,
4502 RecordDecl *AnonRecord, AccessSpecifier AS,
4503 SmallVectorImpl<NamedDecl *> &Chaining) {
4504 bool Invalid = false;
4505
4506 // Look every FieldDecl and IndirectFieldDecl with a name.
4507 for (auto *D : AnonRecord->decls()) {
4508 if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
4509 cast<NamedDecl>(D)->getDeclName()) {
4510 ValueDecl *VD = cast<ValueDecl>(D);
4511 if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
4512 VD->getLocation(),
4513 AnonRecord->isUnion())) {
4514 // C++ [class.union]p2:
4515 // The names of the members of an anonymous union shall be
4516 // distinct from the names of any other entity in the
4517 // scope in which the anonymous union is declared.
4518 Invalid = true;
4519 } else {
4520 // C++ [class.union]p2:
4521 // For the purpose of name lookup, after the anonymous union
4522 // definition, the members of the anonymous union are
4523 // considered to have been defined in the scope in which the
4524 // anonymous union is declared.
4525 unsigned OldChainingSize = Chaining.size();
4526 if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
4527 Chaining.append(IF->chain_begin(), IF->chain_end());
4528 else
4529 Chaining.push_back(VD);
4530
4531 assert(Chaining.size() >= 2)(static_cast <bool> (Chaining.size() >= 2) ? void (0
) : __assert_fail ("Chaining.size() >= 2", "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 4531, __extension__ __PRETTY_FUNCTION__))
;
4532 NamedDecl **NamedChain =
4533 new (SemaRef.Context)NamedDecl*[Chaining.size()];
4534 for (unsigned i = 0; i < Chaining.size(); i++)
4535 NamedChain[i] = Chaining[i];
4536
4537 IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
4538 SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(),
4539 VD->getType(), {NamedChain, Chaining.size()});
4540
4541 for (const auto *Attr : VD->attrs())
4542 IndirectField->addAttr(Attr->clone(SemaRef.Context));
4543
4544 IndirectField->setAccess(AS);
4545 IndirectField->setImplicit();
4546 SemaRef.PushOnScopeChains(IndirectField, S);
4547
4548 // That includes picking up the appropriate access specifier.
4549 if (AS != AS_none) IndirectField->setAccess(AS);
4550
4551 Chaining.resize(OldChainingSize);
4552 }
4553 }
4554 }
4555
4556 return Invalid;
4557}
4558
4559/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
4560/// a VarDecl::StorageClass. Any error reporting is up to the caller:
4561/// illegal input values are mapped to SC_None.
4562static StorageClass
4563StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
4564 DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
4565 assert(StorageClassSpec != DeclSpec::SCS_typedef &&(static_cast <bool> (StorageClassSpec != DeclSpec::SCS_typedef
&& "Parser allowed 'typedef' as storage class VarDecl."
) ? void (0) : __assert_fail ("StorageClassSpec != DeclSpec::SCS_typedef && \"Parser allowed 'typedef' as storage class VarDecl.\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 4566, __extension__ __PRETTY_FUNCTION__))
4566 "Parser allowed 'typedef' as storage class VarDecl.")(static_cast <bool> (StorageClassSpec != DeclSpec::SCS_typedef
&& "Parser allowed 'typedef' as storage class VarDecl."
) ? void (0) : __assert_fail ("StorageClassSpec != DeclSpec::SCS_typedef && \"Parser allowed 'typedef' as storage class VarDecl.\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 4566, __extension__ __PRETTY_FUNCTION__))
;
4567 switch (StorageClassSpec) {
4568 case DeclSpec::SCS_unspecified: return SC_None;
4569 case DeclSpec::SCS_extern:
4570 if (DS.isExternInLinkageSpec())
4571 return SC_None;
4572 return SC_Extern;
4573 case DeclSpec::SCS_static: return SC_Static;
4574 case DeclSpec::SCS_auto: return SC_Auto;
4575 case DeclSpec::SCS_register: return SC_Register;
4576 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4577 // Illegal SCSs map to None: error reporting is up to the caller.
4578 case DeclSpec::SCS_mutable: // Fall through.
4579 case DeclSpec::SCS_typedef: return SC_None;
4580 }
4581 llvm_unreachable("unknown storage class specifier")::llvm::llvm_unreachable_internal("unknown storage class specifier"
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 4581)
;
4582}
4583
4584static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
4585 assert(Record->hasInClassInitializer())(static_cast <bool> (Record->hasInClassInitializer()
) ? void (0) : __assert_fail ("Record->hasInClassInitializer()"
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 4585, __extension__ __PRETTY_FUNCTION__))
;
4586
4587 for (const auto *I : Record->decls()) {
4588 const auto *FD = dyn_cast<FieldDecl>(I);
4589 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
4590 FD = IFD->getAnonField();
4591 if (FD && FD->hasInClassInitializer())
4592 return FD->getLocation();
4593 }
4594
4595 llvm_unreachable("couldn't find in-class initializer")::llvm::llvm_unreachable_internal("couldn't find in-class initializer"
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 4595)
;
4596}
4597
4598static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4599 SourceLocation DefaultInitLoc) {
4600 if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4601 return;
4602
4603 S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
4604 S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
4605}
4606
4607static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4608 CXXRecordDecl *AnonUnion) {
4609 if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4610 return;
4611
4612 checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
4613}
4614
4615/// BuildAnonymousStructOrUnion - Handle the declaration of an
4616/// anonymous structure or union. Anonymous unions are a C++ feature
4617/// (C++ [class.union]) and a C11 feature; anonymous structures
4618/// are a C11 feature and GNU C++ extension.
4619Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
4620 AccessSpecifier AS,
4621 RecordDecl *Record,
4622 const PrintingPolicy &Policy) {
4623 DeclContext *Owner = Record->getDeclContext();
4624
4625 // Diagnose whether this anonymous struct/union is an extension.
4626 if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
4627 Diag(Record->getLocation(), diag::ext_anonymous_union);
4628 else if (!Record->isUnion() && getLangOpts().CPlusPlus)
4629 Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
4630 else if (!Record->isUnion() && !getLangOpts().C11)
4631 Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
4632
4633 // C and C++ require different kinds of checks for anonymous
4634 // structs/unions.
4635 bool Invalid = false;
4636 if (getLangOpts().CPlusPlus) {
4637 const char *PrevSpec = nullptr;
4638 unsigned DiagID;
4639 if (Record->isUnion()) {
4640 // C++ [class.union]p6:
4641 // Anonymous unions declared in a named namespace or in the
4642 // global namespace shall be declared static.
4643 if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
4644 (isa<TranslationUnitDecl>(Owner) ||
4645 (isa<NamespaceDecl>(Owner) &&
4646 cast<NamespaceDecl>(Owner)->getDeclName()))) {
4647 Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
4648 << FixItHint::CreateInsertion(Record->getLocation(), "static ");
4649
4650 // Recover by adding 'static'.
4651 DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
4652 PrevSpec, DiagID, Policy);
4653 }
4654 // C++ [class.union]p6:
4655 // A storage class is not allowed in a declaration of an
4656 // anonymous union in a class scope.
4657 else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
4658 isa<RecordDecl>(Owner)) {
4659 Diag(DS.getStorageClassSpecLoc(),
4660 diag::err_anonymous_union_with_storage_spec)
4661 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
4662
4663 // Recover by removing the storage specifier.
4664 DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
4665 SourceLocation(),
4666 PrevSpec, DiagID, Context.getPrintingPolicy());
4667 }
4668 }
4669
4670 // Ignore const/volatile/restrict qualifiers.
4671 if (DS.getTypeQualifiers()) {
4672 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4673 Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
4674 << Record->isUnion() << "const"
4675 << FixItHint::CreateRemoval(DS.getConstSpecLoc());
4676 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4677 Diag(DS.getVolatileSpecLoc(),
4678 diag::ext_anonymous_struct_union_qualified)
4679 << Record->isUnion() << "volatile"
4680 << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
4681 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
4682 Diag(DS.getRestrictSpecLoc(),
4683 diag::ext_anonymous_struct_union_qualified)
4684 << Record->isUnion() << "restrict"
4685 << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
4686 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4687 Diag(DS.getAtomicSpecLoc(),
4688 diag::ext_anonymous_struct_union_qualified)
4689 << Record->isUnion() << "_Atomic"
4690 << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
4691 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
4692 Diag(DS.getUnalignedSpecLoc(),
4693 diag::ext_anonymous_struct_union_qualified)
4694 << Record->isUnion() << "__unaligned"
4695 << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc());
4696
4697 DS.ClearTypeQualifiers();
4698 }
4699
4700 // C++ [class.union]p2:
4701 // The member-specification of an anonymous union shall only
4702 // define non-static data members. [Note: nested types and
4703 // functions cannot be declared within an anonymous union. ]
4704 for (auto *Mem : Record->decls()) {
4705 if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
4706 // C++ [class.union]p3:
4707 // An anonymous union shall not have private or protected
4708 // members (clause 11).
4709 assert(FD->getAccess() != AS_none)(static_cast <bool> (FD->getAccess() != AS_none) ? void
(0) : __assert_fail ("FD->getAccess() != AS_none", "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 4709, __extension__ __PRETTY_FUNCTION__))
;
4710 if (FD->getAccess() != AS_public) {
4711 Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
4712 << Record->isUnion() << (FD->getAccess() == AS_protected);
4713 Invalid = true;
4714 }
4715
4716 // C++ [class.union]p1
4717 // An object of a class with a non-trivial constructor, a non-trivial
4718 // copy constructor, a non-trivial destructor, or a non-trivial copy
4719 // assignment operator cannot be a member of a union, nor can an
4720 // array of such objects.
4721 if (CheckNontrivialField(FD))
4722 Invalid = true;
4723 } else if (Mem->isImplicit()) {
4724 // Any implicit members are fine.
4725 } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
4726 // This is a type that showed up in an
4727 // elaborated-type-specifier inside the anonymous struct or
4728 // union, but which actually declares a type outside of the
4729 // anonymous struct or union. It's okay.
4730 } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
4731 if (!MemRecord->isAnonymousStructOrUnion() &&
4732 MemRecord->getDeclName()) {
4733 // Visual C++ allows type definition in anonymous struct or union.
4734 if (getLangOpts().MicrosoftExt)
4735 Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
4736 << Record->isUnion();
4737 else {
4738 // This is a nested type declaration.
4739 Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
4740 << Record->isUnion();
4741 Invalid = true;
4742 }
4743 } else {
4744 // This is an anonymous type definition within another anonymous type.
4745 // This is a popular extension, provided by Plan9, MSVC and GCC, but
4746 // not part of standard C++.
4747 Diag(MemRecord->getLocation(),
4748 diag::ext_anonymous_record_with_anonymous_type)
4749 << Record->isUnion();
4750 }
4751 } else if (isa<AccessSpecDecl>(Mem)) {
4752 // Any access specifier is fine.
4753 } else if (isa<StaticAssertDecl>(Mem)) {
4754 // In C++1z, static_assert declarations are also fine.
4755 } else {
4756 // We have something that isn't a non-static data
4757 // member. Complain about it.
4758 unsigned DK = diag::err_anonymous_record_bad_member;
4759 if (isa<TypeDecl>(Mem))
4760 DK = diag::err_anonymous_record_with_type;
4761 else if (isa<FunctionDecl>(Mem))
4762 DK = diag::err_anonymous_record_with_function;
4763 else if (isa<VarDecl>(Mem))
4764 DK = diag::err_anonymous_record_with_static;
4765
4766 // Visual C++ allows type definition in anonymous struct or union.
4767 if (getLangOpts().MicrosoftExt &&
4768 DK == diag::err_anonymous_record_with_type)
4769 Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
4770 << Record->isUnion();
4771 else {
4772 Diag(Mem->getLocation(), DK) << Record->isUnion();
4773 Invalid = true;
4774 }
4775 }
4776 }
4777
4778 // C++11 [class.union]p8 (DR1460):
4779 // At most one variant member of a union may have a
4780 // brace-or-equal-initializer.
4781 if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
4782 Owner->isRecord())
4783 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
4784 cast<CXXRecordDecl>(Record));
4785 }
4786
4787 if (!Record->isUnion() && !Owner->isRecord()) {
4788 Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
4789 << getLangOpts().CPlusPlus;
4790 Invalid = true;
4791 }
4792
4793 // Mock up a declarator.
4794 Declarator Dc(DS, DeclaratorContext::MemberContext);
4795 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
4796 assert(TInfo && "couldn't build declarator info for anonymous struct/union")(static_cast <bool> (TInfo && "couldn't build declarator info for anonymous struct/union"
) ? void (0) : __assert_fail ("TInfo && \"couldn't build declarator info for anonymous struct/union\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 4796, __extension__ __PRETTY_FUNCTION__))
;
4797
4798 // Create a declaration for this anonymous struct/union.
4799 NamedDecl *Anon = nullptr;
4800 if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
4801 Anon = FieldDecl::Create(Context, OwningClass,
4802 DS.getLocStart(),
4803 Record->getLocation(),
4804 /*IdentifierInfo=*/nullptr,
4805 Context.getTypeDeclType(Record),
4806 TInfo,
4807 /*BitWidth=*/nullptr, /*Mutable=*/false,
4808 /*InitStyle=*/ICIS_NoInit);
4809 Anon->setAccess(AS);
4810 if (getLangOpts().CPlusPlus)
4811 FieldCollector->Add(cast<FieldDecl>(Anon));
4812 } else {
4813 DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
4814 StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
4815 if (SCSpec == DeclSpec::SCS_mutable) {
4816 // mutable can only appear on non-static class members, so it's always
4817 // an error here
4818 Diag(Record->getLocation(), diag::err_mutable_nonmember);
4819 Invalid = true;
4820 SC = SC_None;
4821 }
4822
4823 Anon = VarDecl::Create(Context, Owner,
4824 DS.getLocStart(),
4825 Record->getLocation(), /*IdentifierInfo=*/nullptr,
4826 Context.getTypeDeclType(Record),
4827 TInfo, SC);
4828
4829 // Default-initialize the implicit variable. This initialization will be
4830 // trivial in almost all cases, except if a union member has an in-class
4831 // initializer:
4832 // union { int n = 0; };
4833 ActOnUninitializedDecl(Anon);
4834 }
4835 Anon->setImplicit();
4836
4837 // Mark this as an anonymous struct/union type.
4838 Record->setAnonymousStructOrUnion(true);
4839
4840 // Add the anonymous struct/union object to the current
4841 // context. We'll be referencing this object when we refer to one of
4842 // its members.
4843 Owner->addDecl(Anon);
4844
4845 // Inject the members of the anonymous struct/union into the owning
4846 // context and into the identifier resolver chain for name lookup
4847 // purposes.
4848 SmallVector<NamedDecl*, 2> Chain;
4849 Chain.push_back(Anon);
4850
4851 if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, Chain))
4852 Invalid = true;
4853
4854 if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
4855 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
4856 Decl *ManglingContextDecl;
4857 if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
4858 NewVD->getDeclContext(), ManglingContextDecl)) {
4859 Context.setManglingNumber(
4860 NewVD, MCtx->getManglingNumber(
4861 NewVD, getMSManglingNumber(getLangOpts(), S)));
4862 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
4863 }
4864 }
4865 }
4866
4867 if (Invalid)
4868 Anon->setInvalidDecl();
4869
4870 return Anon;
4871}
4872
4873/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
4874/// Microsoft C anonymous structure.
4875/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
4876/// Example:
4877///
4878/// struct A { int a; };
4879/// struct B { struct A; int b; };
4880///
4881/// void foo() {
4882/// B var;
4883/// var.a = 3;
4884/// }
4885///
4886Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
4887 RecordDecl *Record) {
4888 assert(Record && "expected a record!")(static_cast <bool> (Record && "expected a record!"
) ? void (0) : __assert_fail ("Record && \"expected a record!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 4888, __extension__ __PRETTY_FUNCTION__))
;
4889
4890 // Mock up a declarator.
4891 Declarator Dc(DS, DeclaratorContext::TypeNameContext);
4892 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
4893 assert(TInfo && "couldn't build declarator info for anonymous struct")(static_cast <bool> (TInfo && "couldn't build declarator info for anonymous struct"
) ? void (0) : __assert_fail ("TInfo && \"couldn't build declarator info for anonymous struct\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 4893, __extension__ __PRETTY_FUNCTION__))
;
4894
4895 auto *ParentDecl = cast<RecordDecl>(CurContext);
4896 QualType RecTy = Context.getTypeDeclType(Record);
4897
4898 // Create a declaration for this anonymous struct.
4899 NamedDecl *Anon = FieldDecl::Create(Context,
4900 ParentDecl,
4901 DS.getLocStart(),
4902 DS.getLocStart(),
4903 /*IdentifierInfo=*/nullptr,
4904 RecTy,
4905 TInfo,
4906 /*BitWidth=*/nullptr, /*Mutable=*/false,
4907 /*InitStyle=*/ICIS_NoInit);
4908 Anon->setImplicit();
4909
4910 // Add the anonymous struct object to the current context.
4911 CurContext->addDecl(Anon);
4912
4913 // Inject the members of the anonymous struct into the current
4914 // context and into the identifier resolver chain for name lookup
4915 // purposes.
4916 SmallVector<NamedDecl*, 2> Chain;
4917 Chain.push_back(Anon);
4918
4919 RecordDecl *RecordDef = Record->getDefinition();
4920 if (RequireCompleteType(Anon->getLocation(), RecTy,
4921 diag::err_field_incomplete) ||
4922 InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef,
4923 AS_none, Chain)) {
4924 Anon->setInvalidDecl();
4925 ParentDecl->setInvalidDecl();
4926 }
4927
4928 return Anon;
4929}
4930
4931/// GetNameForDeclarator - Determine the full declaration name for the
4932/// given Declarator.
4933DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
4934 return GetNameFromUnqualifiedId(D.getName());
4935}
4936
4937/// \brief Retrieves the declaration name from a parsed unqualified-id.
4938DeclarationNameInfo
4939Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
4940 DeclarationNameInfo NameInfo;
4941 NameInfo.setLoc(Name.StartLocation);
4942
4943 switch (Name.getKind()) {
4944
4945 case UnqualifiedIdKind::IK_ImplicitSelfParam:
4946 case UnqualifiedIdKind::IK_Identifier:
4947 NameInfo.setName(Name.Identifier);
4948 NameInfo.setLoc(Name.StartLocation);
4949 return NameInfo;
4950
4951 case UnqualifiedIdKind::IK_DeductionGuideName: {
4952 // C++ [temp.deduct.guide]p3:
4953 // The simple-template-id shall name a class template specialization.
4954 // The template-name shall be the same identifier as the template-name
4955 // of the simple-template-id.
4956 // These together intend to imply that the template-name shall name a
4957 // class template.
4958 // FIXME: template<typename T> struct X {};
4959 // template<typename T> using Y = X<T>;
4960 // Y(int) -> Y<int>;
4961 // satisfies these rules but does not name a class template.
4962 TemplateName TN = Name.TemplateName.get().get();
4963 auto *Template = TN.getAsTemplateDecl();
4964 if (!Template || !isa<ClassTemplateDecl>(Template)) {
4965 Diag(Name.StartLocation,
4966 diag::err_deduction_guide_name_not_class_template)
4967 << (int)getTemplateNameKindForDiagnostics(TN) << TN;
4968 if (Template)
4969 Diag(Template->getLocation(), diag::note_template_decl_here);
4970 return DeclarationNameInfo();
4971 }
4972
4973 NameInfo.setName(
4974 Context.DeclarationNames.getCXXDeductionGuideName(Template));
4975 NameInfo.setLoc(Name.StartLocation);
4976 return NameInfo;
4977 }
4978
4979 case UnqualifiedIdKind::IK_OperatorFunctionId:
4980 NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
4981 Name.OperatorFunctionId.Operator));
4982 NameInfo.setLoc(Name.StartLocation);
4983 NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
4984 = Name.OperatorFunctionId.SymbolLocations[0];
4985 NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
4986 = Name.EndLocation.getRawEncoding();
4987 return NameInfo;
4988
4989 case UnqualifiedIdKind::IK_LiteralOperatorId:
4990 NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
4991 Name.Identifier));
4992 NameInfo.setLoc(Name.StartLocation);
4993 NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
4994 return NameInfo;
4995
4996 case UnqualifiedIdKind::IK_ConversionFunctionId: {
4997 TypeSourceInfo *TInfo;
4998 QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
4999 if (Ty.isNull())
5000 return DeclarationNameInfo();
5001 NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
5002 Context.getCanonicalType(Ty)));
5003 NameInfo.setLoc(Name.StartLocation);
5004 NameInfo.setNamedTypeInfo(TInfo);
5005 return NameInfo;
5006 }
5007
5008 case UnqualifiedIdKind::IK_ConstructorName: {
5009 TypeSourceInfo *TInfo;
5010 QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
5011 if (Ty.isNull())
5012 return DeclarationNameInfo();
5013 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5014 Context.getCanonicalType(Ty)));
5015 NameInfo.setLoc(Name.StartLocation);
5016 NameInfo.setNamedTypeInfo(TInfo);
5017 return NameInfo;
5018 }
5019
5020 case UnqualifiedIdKind::IK_ConstructorTemplateId: {
5021 // In well-formed code, we can only have a constructor
5022 // template-id that refers to the current context, so go there
5023 // to find the actual type being constructed.
5024 CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
5025 if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
5026 return DeclarationNameInfo();
5027
5028 // Determine the type of the class being constructed.
5029 QualType CurClassType = Context.getTypeDeclType(CurClass);
5030
5031 // FIXME: Check two things: that the template-id names the same type as
5032 // CurClassType, and that the template-id does not occur when the name
5033 // was qualified.
5034
5035 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5036 Context.getCanonicalType(CurClassType)));
5037 NameInfo.setLoc(Name.StartLocation);
5038 // FIXME: should we retrieve TypeSourceInfo?
5039 NameInfo.setNamedTypeInfo(nullptr);
5040 return NameInfo;
5041 }
5042
5043 case UnqualifiedIdKind::IK_DestructorName: {
5044 TypeSourceInfo *TInfo;
5045 QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
5046 if (Ty.isNull())
5047 return DeclarationNameInfo();
5048 NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
5049 Context.getCanonicalType(Ty)));
5050 NameInfo.setLoc(Name.StartLocation);
5051 NameInfo.setNamedTypeInfo(TInfo);
5052 return NameInfo;
5053 }
5054
5055 case UnqualifiedIdKind::IK_TemplateId: {
5056 TemplateName TName = Name.TemplateId->Template.get();
5057 SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
5058 return Context.getNameForTemplate(TName, TNameLoc);
5059 }
5060
5061 } // switch (Name.getKind())
5062
5063 llvm_unreachable("Unknown name kind")::llvm::llvm_unreachable_internal("Unknown name kind", "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 5063)
;
5064}
5065
5066static QualType getCoreType(QualType Ty) {
5067 do {
5068 if (Ty->isPointerType() || Ty->isReferenceType())
5069 Ty = Ty->getPointeeType();
5070 else if (Ty->isArrayType())
5071 Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
5072 else
5073 return Ty.withoutLocalFastQualifiers();
5074 } while (true);
5075}
5076
5077/// hasSimilarParameters - Determine whether the C++ functions Declaration
5078/// and Definition have "nearly" matching parameters. This heuristic is
5079/// used to improve diagnostics in the case where an out-of-line function
5080/// definition doesn't match any declaration within the class or namespace.
5081/// Also sets Params to the list of indices to the parameters that differ
5082/// between the declaration and the definition. If hasSimilarParameters
5083/// returns true and Params is empty, then all of the parameters match.
5084static bool hasSimilarParameters(ASTContext &Context,
5085 FunctionDecl *Declaration,
5086 FunctionDecl *Definition,
5087 SmallVectorImpl<unsigned> &Params) {
5088 Params.clear();
5089 if (Declaration->param_size() != Definition->param_size())
5090 return false;
5091 for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
5092 QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
5093 QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
5094
5095 // The parameter types are identical
5096 if (Context.hasSameType(DefParamTy, DeclParamTy))
5097 continue;
5098
5099 QualType DeclParamBaseTy = getCoreType(DeclParamTy);
5100 QualType DefParamBaseTy = getCoreType(DefParamTy);
5101 const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
5102 const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
5103
5104 if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
5105 (DeclTyName && DeclTyName == DefTyName))
5106 Params.push_back(Idx);
5107 else // The two parameters aren't even close
5108 return false;
5109 }
5110
5111 return true;
5112}
5113
5114/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
5115/// declarator needs to be rebuilt in the current instantiation.
5116/// Any bits of declarator which appear before the name are valid for
5117/// consideration here. That's specifically the type in the decl spec
5118/// and the base type in any member-pointer chunks.
5119static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
5120 DeclarationName Name) {
5121 // The types we specifically need to rebuild are:
5122 // - typenames, typeofs, and decltypes
5123 // - types which will become injected class names
5124 // Of course, we also need to rebuild any type referencing such a
5125 // type. It's safest to just say "dependent", but we call out a
5126 // few cases here.
5127
5128 DeclSpec &DS = D.getMutableDeclSpec();
5129 switch (DS.getTypeSpecType()) {
5130 case DeclSpec::TST_typename:
5131 case DeclSpec::TST_typeofType:
5132 case DeclSpec::TST_underlyingType:
5133 case DeclSpec::TST_atomic: {
5134 // Grab the type from the parser.
5135 TypeSourceInfo *TSI = nullptr;
5136 QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
5137 if (T.isNull() || !T->isDependentType()) break;
5138
5139 // Make sure there's a type source info. This isn't really much
5140 // of a waste; most dependent types should have type source info
5141 // attached already.
5142 if (!TSI)
5143 TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
5144
5145 // Rebuild the type in the current instantiation.
5146 TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
5147 if (!TSI) return true;
5148
5149 // Store the new type back in the decl spec.
5150 ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
5151 DS.UpdateTypeRep(LocType);
5152 break;
5153 }
5154
5155 case DeclSpec::TST_decltype:
5156 case DeclSpec::TST_typeofExpr: {
5157 Expr *E = DS.getRepAsExpr();
5158 ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
5159 if (Result.isInvalid()) return true;
5160 DS.UpdateExprRep(Result.get());
5161 break;
5162 }
5163
5164 default:
5165 // Nothing to do for these decl specs.
5166 break;
5167 }
5168
5169 // It doesn't matter what order we do this in.
5170 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
5171 DeclaratorChunk &Chunk = D.getTypeObject(I);
5172
5173 // The only type information in the declarator which can come
5174 // before the declaration name is the base type of a member
5175 // pointer.
5176 if (Chunk.Kind != DeclaratorChunk::MemberPointer)
5177 continue;
5178
5179 // Rebuild the scope specifier in-place.
5180 CXXScopeSpec &SS = Chunk.Mem.Scope();
5181 if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
5182 return true;
5183 }
5184
5185 return false;
5186}
5187
5188Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
5189 D.setFunctionDefinitionKind(FDK_Declaration);
5190 Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
5191
5192 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
5193 Dcl && Dcl->getDeclContext()->isFileContext())
5194 Dcl->setTopLevelDeclInObjCContainer();
5195
5196 if (getLangOpts().OpenCL)
5197 setCurrentOpenCLExtensionForDecl(Dcl);
5198
5199 return Dcl;
5200}
5201
5202/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
5203/// If T is the name of a class, then each of the following shall have a
5204/// name different from T:
5205/// - every static data member of class T;
5206/// - every member function of class T
5207/// - every member of class T that is itself a type;
5208/// \returns true if the declaration name violates these rules.
5209bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
5210 DeclarationNameInfo NameInfo) {
5211 DeclarationName Name = NameInfo.getName();
5212
5213 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC);
5214 while (Record && Record->isAnonymousStructOrUnion())
5215 Record = dyn_cast<CXXRecordDecl>(Record->getParent());
5216 if (Record && Record->getIdentifier() && Record->getDeclName() == Name) {
5217 Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
5218 return true;
5219 }
5220
5221 return false;
5222}
5223
5224/// \brief Diagnose a declaration whose declarator-id has the given
5225/// nested-name-specifier.
5226///
5227/// \param SS The nested-name-specifier of the declarator-id.
5228///
5229/// \param DC The declaration context to which the nested-name-specifier
5230/// resolves.
5231///
5232/// \param Name The name of the entity being declared.
5233///
5234/// \param Loc The location of the name of the entity being declared.
5235///
5236/// \returns true if we cannot safely recover from this error, false otherwise.
5237bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
5238 DeclarationName Name,
5239 SourceLocation Loc) {
5240 DeclContext *Cur = CurContext;
5241 while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
5242 Cur = Cur->getParent();
5243
5244 // If the user provided a superfluous scope specifier that refers back to the
5245 // class in which the entity is already declared, diagnose and ignore it.
5246 //
5247 // class X {
5248 // void X::f();
5249 // };
5250 //
5251 // Note, it was once ill-formed to give redundant qualification in all
5252 // contexts, but that rule was removed by DR482.
5253 if (Cur->Equals(DC)) {
5254 if (Cur->isRecord()) {
5255 Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
5256 : diag::err_member_extra_qualification)
5257 << Name << FixItHint::CreateRemoval(SS.getRange());
5258 SS.clear();
5259 } else {
5260 Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
5261 }
5262 return false;
5263 }
5264
5265 // Check whether the qualifying scope encloses the scope of the original
5266 // declaration.
5267 if (!Cur->Encloses(DC)) {
5268 if (Cur->isRecord())
5269 Diag(Loc, diag::err_member_qualification)
5270 << Name << SS.getRange();
5271 else if (isa<TranslationUnitDecl>(DC))
5272 Diag(Loc, diag::err_invalid_declarator_global_scope)
5273 << Name << SS.getRange();
5274 else if (isa<FunctionDecl>(Cur))
5275 Diag(Loc, diag::err_invalid_declarator_in_function)
5276 << Name << SS.getRange();
5277 else if (isa<BlockDecl>(Cur))
5278 Diag(Loc, diag::err_invalid_declarator_in_block)
5279 << Name << SS.getRange();
5280 else
5281 Diag(Loc, diag::err_invalid_declarator_scope)
5282 << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
5283
5284 return true;
5285 }
5286
5287 if (Cur->isRecord()) {
5288 // Cannot qualify members within a class.
5289 Diag(Loc, diag::err_member_qualification)
5290 << Name << SS.getRange();
5291 SS.clear();
5292
5293 // C++ constructors and destructors with incorrect scopes can break
5294 // our AST invariants by having the wrong underlying types. If
5295 // that's the case, then drop this declaration entirely.
5296 if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
5297 Name.getNameKind() == DeclarationName::CXXDestructorName) &&
5298 !Context.hasSameType(Name.getCXXNameType(),
5299 Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
5300 return true;
5301
5302 return false;
5303 }
5304
5305 // C++11 [dcl.meaning]p1:
5306 // [...] "The nested-name-specifier of the qualified declarator-id shall
5307 // not begin with a decltype-specifer"
5308 NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
5309 while (SpecLoc.getPrefix())
5310 SpecLoc = SpecLoc.getPrefix();
5311 if (dyn_cast_or_null<DecltypeType>(
5312 SpecLoc.getNestedNameSpecifier()->getAsType()))
5313 Diag(Loc, diag::err_decltype_in_declarator)
5314 << SpecLoc.getTypeLoc().getSourceRange();
5315
5316 return false;
5317}
5318
5319NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
5320 MultiTemplateParamsArg TemplateParamLists) {
5321 // TODO: consider using NameInfo for diagnostic.
5322 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5323 DeclarationName Name = NameInfo.getName();
5324
5325 // All of these full declarators require an identifier. If it doesn't have
5326 // one, the ParsedFreeStandingDeclSpec action should be used.
5327 if (D.isDecompositionDeclarator()) {
5328 return ActOnDecompositionDeclarator(S, D, TemplateParamLists);
5329 } else if (!Name) {
5330 if (!D.isInvalidType()) // Reject this if we think it is valid.
5331 Diag(D.getDeclSpec().getLocStart(),
5332 diag::err_declarator_need_ident)
5333 << D.getDeclSpec().getSourceRange() << D.getSourceRange();
5334 return nullptr;
5335 } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
5336 return nullptr;
5337
5338 // The scope passed in may not be a decl scope. Zip up the scope tree until
5339 // we find one that is.
5340 while ((S->getFlags() & Scope::DeclScope) == 0 ||
5341 (S->getFlags() & Scope::TemplateParamScope) != 0)
5342 S = S->getParent();
5343
5344 DeclContext *DC = CurContext;
5345 if (D.getCXXScopeSpec().isInvalid())
5346 D.setInvalidType();
5347 else if (D.getCXXScopeSpec().isSet()) {
5348 if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
5349 UPPC_DeclarationQualifier))
5350 return nullptr;
5351
5352 bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
5353 DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
5354 if (!DC || isa<EnumDecl>(DC)) {
5355 // If we could not compute the declaration context, it's because the
5356 // declaration context is dependent but does not refer to a class,
5357 // class template, or class template partial specialization. Complain
5358 // and return early, to avoid the coming semantic disaster.
5359 Diag(D.getIdentifierLoc(),
5360 diag::err_template_qualified_declarator_no_match)
5361 << D.getCXXScopeSpec().getScopeRep()
5362 << D.getCXXScopeSpec().getRange();
5363 return nullptr;
5364 }
5365 bool IsDependentContext = DC->isDependentContext();
5366
5367 if (!IsDependentContext &&
5368 RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
5369 return nullptr;
5370
5371 // If a class is incomplete, do not parse entities inside it.
5372 if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
5373 Diag(D.getIdentifierLoc(),
5374 diag::err_member_def_undefined_record)
5375 << Name << DC << D.getCXXScopeSpec().getRange();
5376 return nullptr;
5377 }
5378 if (!D.getDeclSpec().isFriendSpecified()) {
5379 if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
5380 Name, D.getIdentifierLoc())) {
5381 if (DC->isRecord())
5382 return nullptr;
5383
5384 D.setInvalidType();
5385 }
5386 }
5387
5388 // Check whether we need to rebuild the type of the given
5389 // declaration in the current instantiation.
5390 if (EnteringContext && IsDependentContext &&
5391 TemplateParamLists.size() != 0) {
5392 ContextRAII SavedContext(*this, DC);
5393 if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
5394 D.setInvalidType();
5395 }
5396 }
5397
5398 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5399 QualType R = TInfo->getType();
5400
5401 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
5402 UPPC_DeclarationType))
5403 D.setInvalidType();
5404
5405 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
5406 forRedeclarationInCurContext());
5407
5408 // See if this is a redefinition of a variable in the same scope.
5409 if (!D.getCXXScopeSpec().isSet()) {
5410 bool IsLinkageLookup = false;
5411 bool CreateBuiltins = false;
5412
5413 // If the declaration we're planning to build will be a function
5414 // or object with linkage, then look for another declaration with
5415 // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
5416 //
5417 // If the declaration we're planning to build will be declared with
5418 // external linkage in the translation unit, create any builtin with
5419 // the same name.
5420 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
5421 /* Do nothing*/;
5422 else if (CurContext->isFunctionOrMethod() &&
5423 (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
5424 R->isFunctionType())) {
5425 IsLinkageLookup = true;
5426 CreateBuiltins =
5427 CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
5428 } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
5429 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
5430 CreateBuiltins = true;
5431
5432 if (IsLinkageLookup) {
5433 Previous.clear(LookupRedeclarationWithLinkage);
5434 Previous.setRedeclarationKind(ForExternalRedeclaration);
5435 }
5436
5437 LookupName(Previous, S, CreateBuiltins);
5438 } else { // Something like "int foo::x;"
5439 LookupQualifiedName(Previous, DC);
5440
5441 // C++ [dcl.meaning]p1:
5442 // When the declarator-id is qualified, the declaration shall refer to a
5443 // previously declared member of the class or namespace to which the
5444 // qualifier refers (or, in the case of a namespace, of an element of the
5445 // inline namespace set of that namespace (7.3.1)) or to a specialization
5446 // thereof; [...]
5447 //
5448 // Note that we already checked the context above, and that we do not have
5449 // enough information to make sure that Previous contains the declaration
5450 // we want to match. For example, given:
5451 //
5452 // class X {
5453 // void f();
5454 // void f(float);
5455 // };
5456 //
5457 // void X::f(int) { } // ill-formed
5458 //
5459 // In this case, Previous will point to the overload set
5460 // containing the two f's declared in X, but neither of them
5461 // matches.
5462
5463 // C++ [dcl.meaning]p1:
5464 // [...] the member shall not merely have been introduced by a
5465 // using-declaration in the scope of the class or namespace nominated by
5466 // the nested-name-specifier of the declarator-id.
5467 RemoveUsingDecls(Previous);
5468 }
5469
5470 if (Previous.isSingleResult() &&
5471 Previous.getFoundDecl()->isTemplateParameter()) {
5472 // Maybe we will complain about the shadowed template parameter.
5473 if (!D.isInvalidType())
5474 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
5475 Previous.getFoundDecl());
5476
5477 // Just pretend that we didn't see the previous declaration.
5478 Previous.clear();
5479 }
5480
5481 if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo))
5482 // Forget that the previous declaration is the injected-class-name.
5483 Previous.clear();
5484
5485 // In C++, the previous declaration we find might be a tag type
5486 // (class or enum). In this case, the new declaration will hide the
5487 // tag type. Note that this applies to functions, function templates, and
5488 // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates.
5489 if (Previous.isSingleTagDecl() &&
5490 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5491 (TemplateParamLists.size() == 0 || R->isFunctionType()))
5492 Previous.clear();
5493
5494 // Check that there are no default arguments other than in the parameters
5495 // of a function declaration (C++ only).
5496 if (getLangOpts().CPlusPlus)
5497 CheckExtraCXXDefaultArguments(D);
5498
5499 NamedDecl *New;
5500
5501 bool AddToScope = true;
5502 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5503 if (TemplateParamLists.size()) {
5504 Diag(D.getIdentifierLoc(), diag::err_template_typedef);
5505 return nullptr;
5506 }
5507
5508 New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
5509 } else if (R->isFunctionType()) {
5510 New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
5511 TemplateParamLists,
5512 AddToScope);
5513 } else {
5514 New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
5515 AddToScope);
5516 }
5517
5518 if (!New)
5519 return nullptr;
5520
5521 // If this has an identifier and is not a function template specialization,
5522 // add it to the scope stack.
5523 if (New->getDeclName() && AddToScope) {
5524 // Only make a locally-scoped extern declaration visible if it is the first
5525 // declaration of this entity. Qualified lookup for such an entity should
5526 // only find this declaration if there is no visible declaration of it.
5527 bool AddToContext = !D.isRedeclaration() || !New->isLocalExternDecl();
5528 PushOnScopeChains(New, S, AddToContext);
5529 if (!AddToContext)
5530 CurContext->addHiddenDecl(New);
5531 }
5532
5533 if (isInOpenMPDeclareTargetContext())
5534 checkDeclIsAllowedInOpenMPTarget(nullptr, New);
5535
5536 return New;
5537}
5538
5539/// Helper method to turn variable array types into constant array
5540/// types in certain situations which would otherwise be errors (for
5541/// GCC compatibility).
5542static QualType TryToFixInvalidVariablyModifiedType(QualType T,
5543 ASTContext &Context,
5544 bool &SizeIsNegative,
5545 llvm::APSInt &Oversized) {
5546 // This method tries to turn a variable array into a constant
5547 // array even when the size isn't an ICE. This is necessary
5548 // for compatibility with code that depends on gcc's buggy
5549 // constant expression folding, like struct {char x[(int)(char*)2];}
5550 SizeIsNegative = false;
5551 Oversized = 0;
5552
5553 if (T->isDependentType())
5554 return QualType();
5555
5556 QualifierCollector Qs;
5557 const Type *Ty = Qs.strip(T);
5558
5559 if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
5560 QualType Pointee = PTy->getPointeeType();
5561 QualType FixedType =
5562 TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
5563 Oversized);
5564 if (FixedType.isNull()) return FixedType;
5565 FixedType = Context.getPointerType(FixedType);
5566 return Qs.apply(Context, FixedType);
5567 }
5568 if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
5569 QualType Inner = PTy->getInnerType();
5570 QualType FixedType =
5571 TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
5572 Oversized);
5573 if (FixedType.isNull()) return FixedType;
5574 FixedType = Context.getParenType(FixedType);
5575 return Qs.apply(Context, FixedType);
5576 }
5577
5578 const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
5579 if (!VLATy)
5580 return QualType();
5581 // FIXME: We should probably handle this case
5582 if (VLATy->getElementType()->isVariablyModifiedType())
5583 return QualType();
5584
5585 llvm::APSInt Res;
5586 if (!VLATy->getSizeExpr() ||
5587 !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
5588 return QualType();
5589
5590 // Check whether the array size is negative.
5591 if (Res.isSigned() && Res.isNegative()) {
5592 SizeIsNegative = true;
5593 return QualType();
5594 }
5595
5596 // Check whether the array is too large to be addressed.
5597 unsigned ActiveSizeBits
5598 = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
5599 Res);
5600 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
5601 Oversized = Res;
5602 return QualType();
5603 }
5604
5605 return Context.getConstantArrayType(VLATy->getElementType(),
5606 Res, ArrayType::Normal, 0);
5607}
5608
5609static void
5610FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
5611 SrcTL = SrcTL.getUnqualifiedLoc();
5612 DstTL = DstTL.getUnqualifiedLoc();
5613 if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
5614 PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
5615 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
5616 DstPTL.getPointeeLoc());
5617 DstPTL.setStarLoc(SrcPTL.getStarLoc());
5618 return;
5619 }
5620 if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
5621 ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
5622 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
5623 DstPTL.getInnerLoc());
5624 DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
5625 DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
5626 return;
5627 }
5628 ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
5629 ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
5630 TypeLoc SrcElemTL = SrcATL.getElementLoc();
5631 TypeLoc DstElemTL = DstATL.getElementLoc();
5632 DstElemTL.initializeFullCopy(SrcElemTL);
5633 DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
5634 DstATL.setSizeExpr(SrcATL.getSizeExpr());
5635 DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
5636}
5637
5638/// Helper method to turn variable array types into constant array
5639/// types in certain situations which would otherwise be errors (for
5640/// GCC compatibility).
5641static TypeSourceInfo*
5642TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
5643 ASTContext &Context,
5644 bool &SizeIsNegative,
5645 llvm::APSInt &Oversized) {
5646 QualType FixedTy
5647 = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
5648 SizeIsNegative, Oversized);
5649 if (FixedTy.isNull())
5650 return nullptr;
5651 TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
5652 FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
5653 FixedTInfo->getTypeLoc());
5654 return FixedTInfo;
5655}
5656
5657/// \brief Register the given locally-scoped extern "C" declaration so
5658/// that it can be found later for redeclarations. We include any extern "C"
5659/// declaration that is not visible in the translation unit here, not just
5660/// function-scope declarations.
5661void
5662Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
5663 if (!getLangOpts().CPlusPlus &&
5664 ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
5665 // Don't need to track declarations in the TU in C.
5666 return;
5667
5668 // Note that we have a locally-scoped external with this name.
5669 Context.getExternCContextDecl()->makeDeclVisibleInContext(ND);
5670}
5671
5672NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
5673 // FIXME: We can have multiple results via __attribute__((overloadable)).
5674 auto Result = Context.getExternCContextDecl()->lookup(Name);
5675 return Result.empty() ? nullptr : *Result.begin();
5676}
5677
5678/// \brief Diagnose function specifiers on a declaration of an identifier that
5679/// does not identify a function.
5680void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
5681 // FIXME: We should probably indicate the identifier in question to avoid
5682 // confusion for constructs like "virtual int a(), b;"
5683 if (DS.isVirtualSpecified())
5684 Diag(DS.getVirtualSpecLoc(),
5685 diag::err_virtual_non_function);
5686
5687 if (DS.isExplicitSpecified())
5688 Diag(DS.getExplicitSpecLoc(),
5689 diag::err_explicit_non_function);
5690
5691 if (DS.isNoreturnSpecified())
5692 Diag(DS.getNoreturnSpecLoc(),
5693 diag::err_noreturn_non_function);
5694}
5695
5696NamedDecl*
5697Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
5698 TypeSourceInfo *TInfo, LookupResult &Previous) {
5699 // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
5700 if (D.getCXXScopeSpec().isSet()) {
5701 Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
5702 << D.getCXXScopeSpec().getRange();
5703 D.setInvalidType();
5704 // Pretend we didn't see the scope specifier.
5705 DC = CurContext;
5706 Previous.clear();
5707 }
5708
5709 DiagnoseFunctionSpecifiers(D.getDeclSpec());
5710
5711 if (D.getDeclSpec().isInlineSpecified())
5712 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
5713 << getLangOpts().CPlusPlus17;
5714 if (D.getDeclSpec().isConstexprSpecified())
5715 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
5716 << 1;
5717
5718 if (D.getName().Kind != UnqualifiedIdKind::IK_Identifier) {
5719 if (D.getName().Kind == UnqualifiedIdKind::IK_DeductionGuideName)
5720 Diag(D.getName().StartLocation,
5721 diag::err_deduction_guide_invalid_specifier)
5722 << "typedef";
5723 else
5724 Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
5725 << D.getName().getSourceRange();
5726 return nullptr;
5727 }
5728
5729 TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
5730 if (!NewTD) return nullptr;
5731
5732 // Handle attributes prior to checking for duplicates in MergeVarDecl
5733 ProcessDeclAttributes(S, NewTD, D);
5734
5735 CheckTypedefForVariablyModifiedType(S, NewTD);
5736
5737 bool Redeclaration = D.isRedeclaration();
5738 NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
5739 D.setRedeclaration(Redeclaration);
5740 return ND;
5741}
5742
5743void
5744Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
5745 // C99 6.7.7p2: If a typedef name specifies a variably modified type
5746 // then it shall have block scope.
5747 // Note that variably modified types must be fixed before merging the decl so
5748 // that redeclarations will match.
5749 TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
5750 QualType T = TInfo->getType();
5751 if (T->isVariablyModifiedType()) {
5752 getCurFunction()->setHasBranchProtectedScope();
5753
5754 if (S->getFnParent() == nullptr) {
5755 bool SizeIsNegative;
5756 llvm::APSInt Oversized;
5757 TypeSourceInfo *FixedTInfo =
5758 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
5759 SizeIsNegative,
5760 Oversized);
5761 if (FixedTInfo) {
5762 Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
5763 NewTD->setTypeSourceInfo(FixedTInfo);
5764 } else {
5765 if (SizeIsNegative)
5766 Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
5767 else if (T->isVariableArrayType())
5768 Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
5769 else if (Oversized.getBoolValue())
5770 Diag(NewTD->getLocation(), diag::err_array_too_large)
5771 << Oversized.toString(10);
5772 else
5773 Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
5774 NewTD->setInvalidDecl();
5775 }
5776 }
5777 }
5778}
5779
5780/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
5781/// declares a typedef-name, either using the 'typedef' type specifier or via
5782/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
5783NamedDecl*
5784Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
5785 LookupResult &Previous, bool &Redeclaration) {
5786
5787 // Find the shadowed declaration before filtering for scope.
5788 NamedDecl *ShadowedDecl = getShadowedDeclaration(NewTD, Previous);
5789
5790 // Merge the decl with the existing one if appropriate. If the decl is
5791 // in an outer scope, it isn't the same thing.
5792 FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
5793 /*AllowInlineNamespace*/false);
5794 filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous);
5795 if (!Previous.empty()) {
5796 Redeclaration = true;
5797 MergeTypedefNameDecl(S, NewTD, Previous);
5798 }
5799
5800 if (ShadowedDecl && !Redeclaration)
5801 CheckShadow(NewTD, ShadowedDecl, Previous);
5802
5803 // If this is the C FILE type, notify the AST context.
5804 if (IdentifierInfo *II = NewTD->getIdentifier())
5805 if (!NewTD->isInvalidDecl() &&
5806 NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5807 if (II->isStr("FILE"))
5808 Context.setFILEDecl(NewTD);
5809 else if (II->isStr("jmp_buf"))
5810 Context.setjmp_bufDecl(NewTD);
5811 else if (II->isStr("sigjmp_buf"))
5812 Context.setsigjmp_bufDecl(NewTD);
5813 else if (II->isStr("ucontext_t"))
5814 Context.setucontext_tDecl(NewTD);
5815 }
5816
5817 return NewTD;
5818}
5819
5820/// \brief Determines whether the given declaration is an out-of-scope
5821/// previous declaration.
5822///
5823/// This routine should be invoked when name lookup has found a
5824/// previous declaration (PrevDecl) that is not in the scope where a
5825/// new declaration by the same name is being introduced. If the new
5826/// declaration occurs in a local scope, previous declarations with
5827/// linkage may still be considered previous declarations (C99
5828/// 6.2.2p4-5, C++ [basic.link]p6).
5829///
5830/// \param PrevDecl the previous declaration found by name
5831/// lookup
5832///
5833/// \param DC the context in which the new declaration is being
5834/// declared.
5835///
5836/// \returns true if PrevDecl is an out-of-scope previous declaration
5837/// for a new delcaration with the same name.
5838static bool
5839isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
5840 ASTContext &Context) {
5841 if (!PrevDecl)
5842 return false;
5843
5844 if (!PrevDecl->hasLinkage())
5845 return false;
5846
5847 if (Context.getLangOpts().CPlusPlus) {
5848 // C++ [basic.link]p6:
5849 // If there is a visible declaration of an entity with linkage
5850 // having the same name and type, ignoring entities declared
5851 // outside the innermost enclosing namespace scope, the block
5852 // scope declaration declares that same entity and receives the
5853 // linkage of the previous declaration.
5854 DeclContext *OuterContext = DC->getRedeclContext();
5855 if (!OuterContext->isFunctionOrMethod())
5856 // This rule only applies to block-scope declarations.
5857 return false;
5858
5859 DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
5860 if (PrevOuterContext->isRecord())
5861 // We found a member function: ignore it.
5862 return false;
5863
5864 // Find the innermost enclosing namespace for the new and
5865 // previous declarations.
5866 OuterContext = OuterContext->getEnclosingNamespaceContext();
5867 PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
5868
5869 // The previous declaration is in a different namespace, so it
5870 // isn't the same function.
5871 if (!OuterContext->Equals(PrevOuterContext))
5872 return false;
5873 }
5874
5875 return true;
5876}
5877
5878static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
5879 CXXScopeSpec &SS = D.getCXXScopeSpec();
5880 if (!SS.isSet()) return;
5881 DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
5882}
5883
5884bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
5885 QualType type = decl->getType();
5886 Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
5887 if (lifetime == Qualifiers::OCL_Autoreleasing) {
5888 // Various kinds of declaration aren't allowed to be __autoreleasing.
5889 unsigned kind = -1U;
5890 if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5891 if (var->hasAttr<BlocksAttr>())
5892 kind = 0; // __block
5893 else if (!var->hasLocalStorage())
5894 kind = 1; // global
5895 } else if (isa<ObjCIvarDecl>(decl)) {
5896 kind = 3; // ivar
5897 } else if (isa<FieldDecl>(decl)) {
5898 kind = 2; // field
5899 }
5900
5901 if (kind != -1U) {
5902 Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
5903 << kind;
5904 }
5905 } else if (lifetime == Qualifiers::OCL_None) {
5906 // Try to infer lifetime.
5907 if (!type->isObjCLifetimeType())
5908 return false;
5909
5910 lifetime = type->getObjCARCImplicitLifetime();
5911 type = Context.getLifetimeQualifiedType(type, lifetime);
5912 decl->setType(type);
5913 }
5914
5915 if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5916 // Thread-local variables cannot have lifetime.
5917 if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
5918 var->getTLSKind()) {
5919 Diag(var->getLocation(), diag::err_arc_thread_ownership)
5920 << var->getType();
5921 return true;
5922 }
5923 }
5924
5925 return false;
5926}
5927
5928static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
5929 // Ensure that an auto decl is deduced otherwise the checks below might cache
5930 // the wrong linkage.
5931 assert(S.ParsingInitForAutoVars.count(&ND) == 0)(static_cast <bool> (S.ParsingInitForAutoVars.count(&
ND) == 0) ? void (0) : __assert_fail ("S.ParsingInitForAutoVars.count(&ND) == 0"
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 5931, __extension__ __PRETTY_FUNCTION__))
;
5932
5933 // 'weak' only applies to declarations with external linkage.
5934 if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
5935 if (!ND.isExternallyVisible()) {
5936 S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
5937 ND.dropAttr<WeakAttr>();
5938 }
5939 }
5940 if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
5941 if (ND.isExternallyVisible()) {
5942 S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
5943 ND.dropAttr<WeakRefAttr>();
5944 ND.dropAttr<AliasAttr>();
5945 }
5946 }
5947
5948 if (auto *VD = dyn_cast<VarDecl>(&ND)) {
5949 if (VD->hasInit()) {
5950 if (const auto *Attr = VD->getAttr<AliasAttr>()) {
5951 assert(VD->isThisDeclarationADefinition() &&(static_cast <bool> (VD->isThisDeclarationADefinition
() && !VD->isExternallyVisible() && "Broken AliasAttr handled late!"
) ? void (0) : __assert_fail ("VD->isThisDeclarationADefinition() && !VD->isExternallyVisible() && \"Broken AliasAttr handled late!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 5952, __extension__ __PRETTY_FUNCTION__))
5952 !VD->isExternallyVisible() && "Broken AliasAttr handled late!")(static_cast <bool> (VD->isThisDeclarationADefinition
() && !VD->isExternallyVisible() && "Broken AliasAttr handled late!"
) ? void (0) : __assert_fail ("VD->isThisDeclarationADefinition() && !VD->isExternallyVisible() && \"Broken AliasAttr handled late!\""
, "/build/llvm-toolchain-snapshot-7~svn325118/tools/clang/lib/Sema/SemaDecl.cpp"
, 5952, __extension__ __PRETTY_FUNCTION__))
;
5953 S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0;
5954 VD->dropAttr<AliasAttr>();
5955 }
5956 }
5957 }
5958
5959 // 'selectany' only applies to externally visible variable declarations.
5960 // It does not apply to functions.
5961 if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
5962 if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
5963 S.Diag(Attr->getLocation(),
5964 diag::err_attribute_selectany_non_extern_data);
5965 ND.dropAttr<SelectAnyAttr>();
5966 }
5967 }
5968
5969 if (const InheritableAttr *Attr = getDLLAttr(&ND)) {
5970 // dll attributes require external linkage. Static locals may have external
5971 // linkage but still cannot be explicitly imported or exported.
5972 auto *VD = dyn_cast<VarDecl>(&ND);
5973 if (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())) {
5974 S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
5975 << &ND << Attr;
5976 ND.setInvalidDecl();
5977 }
5978 }
5979
5980 // Virtual functions cannot be marked as 'notail'.
5981 if (auto *Attr = ND.getAttr<NotTailCalledAttr>())
5982 if (auto *MD = dyn_cast<CXXMethodDecl>(&ND))
5983 if (MD->isVirtual()) {
5984 S.Diag(ND.getLocation(),
5985 diag::err_invalid_attribute_on_virtual_function)
5986 << Attr;
5987 ND.dropAttr<NotTailCalledAttr>();
5988 }
5989}
5990
5991static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
5992 NamedDecl *NewDecl,
5993 bool IsSpecialization,
5994 bool IsDefinition) {
5995 if (OldDecl->isInvalidDecl() || NewDecl->isInvalidDecl())
5996 return;
5997
5998 bool IsTemplate = false;
5999 if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) {
6000 OldDecl = OldTD->getTemplatedDecl();
6001 IsTemplate = true;
6002 if (!IsSpecialization)
6003 IsDefinition = false;
6004 }
6005 if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) {
6006 NewDecl = NewTD->getTemplatedDecl();
6007 IsTemplate = true;
6008 }
6009
6010 if (!OldDecl || !NewDecl)
6011 return;
6012
6013 const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
6014 const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
6015 const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
6016 const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
6017
6018 // dllimport and dllexport are inheritable attributes so we have to exclude
6019 // inherited attribute instances.
6020 bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
6021 (NewExportAttr && !NewExportAttr->isInherited());
6022
6023 // A redeclaration is not allowed to add a dllimport or dllexport attribute,
6024 // the only exception being explicit specializations.
6025 // Implicitly generated declarations are also excluded for now because there
6026 // is no other way to switch these to use dllimport or dllexport.
6027 bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
6028
6029 if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
6030 // Allow with a warning for free functions and global variables.
6031 bool JustWarn = false;
6032 if (!OldDecl->isCXXClassMember()) {
6033 auto *VD = dyn_cast<VarDecl>(OldDecl);
6034 if (VD && !VD->getDescribedVarTemplate())
6035 JustWarn = true;
6036 auto *FD = dyn_cast<FunctionDecl>(OldDecl);
6037 if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate)
6038 JustWarn = true;
6039 }
6040
6041 // We cannot change a declaration that's been used because IR has already
6042 // been emitted. Dllimported functions will still work though (modulo
6043 // address equality) as they can use the thunk.
6044 if (OldDecl->isUsed())
6045 if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr)
6046 JustWarn = false;
6047
6048 unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration
6049 : diag::err_attribute_dll_redeclaration;
6050 S.Diag(NewDecl->getLocation(), DiagID)
6051 << NewDecl
6052 << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
6053 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6054 if (!JustWarn) {
6055 NewDecl->setInvalidDecl();
6056 return;
6057 }
6058 }
6059
6060 // A redeclaration is not allowed to drop a dllimport attribute, the only
6061 // exceptions being inline function definitions (except for function
6062 // templates), local extern declarations, qualified friend declarations or
6063 // special MSVC extension: in the last case, the declaration is treated as if
6064 // it were marked dllexport.
6065 bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false;
6066 bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft();
6067 if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) {