Bug Summary

File:build-llvm/tools/clang/include/clang/AST/Attrs.inc
Warning:line 1175, column 5
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaDecl.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-8/lib/clang/8.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-8~svn350071/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-8~svn350071/tools/clang/include -I /build/llvm-toolchain-snapshot-8~svn350071/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-8~svn350071/build-llvm/include -I /build/llvm-toolchain-snapshot-8~svn350071/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/8.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-8/lib/clang/8.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-8~svn350071/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-8~svn350071=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-12-27-042839-1215-1 -x c++ /build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp -faddrsig

/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp

1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "TypeLocBuilder.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTLambda.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CommentDiagnostic.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/EvaluatedExprVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/Basic/Builtins.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/SourceManager.h"
30#include "clang/Basic/TargetInfo.h"
31#include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
32#include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
33#include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
34#include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
35#include "clang/Sema/CXXFieldCollector.h"
36#include "clang/Sema/DeclSpec.h"
37#include "clang/Sema/DelayedDiagnostic.h"
38#include "clang/Sema/Initialization.h"
39#include "clang/Sema/Lookup.h"
40#include "clang/Sema/ParsedTemplate.h"
41#include "clang/Sema/Scope.h"
42#include "clang/Sema/ScopeInfo.h"
43#include "clang/Sema/SemaInternal.h"
44#include "clang/Sema/Template.h"
45#include "llvm/ADT/SmallString.h"
46#include "llvm/ADT/Triple.h"
47#include <algorithm>
48#include <cstring>
49#include <functional>
50
51using namespace clang;
52using namespace sema;
53
54Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
55 if (OwnedType) {
56 Decl *Group[2] = { OwnedType, Ptr };
57 return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
58 }
59
60 return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
61}
62
63namespace {
64
65class TypeNameValidatorCCC : public CorrectionCandidateCallback {
66 public:
67 TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false,
68 bool AllowTemplates = false,
69 bool AllowNonTemplates = true)
70 : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
71 AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) {
72 WantExpressionKeywords = false;
73 WantCXXNamedCasts = false;
74 WantRemainingKeywords = false;
75 }
76
77 bool ValidateCandidate(const TypoCorrection &candidate) override {
78 if (NamedDecl *ND = candidate.getCorrectionDecl()) {
79 if (!AllowInvalidDecl && ND->isInvalidDecl())
80 return false;
81
82 if (getAsTypeTemplateDecl(ND))
83 return AllowTemplates;
84
85 bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
86 if (!IsType)
87 return false;
88
89 if (AllowNonTemplates)
90 return true;
91
92 // An injected-class-name of a class template (specialization) is valid
93 // as a template or as a non-template.
94 if (AllowTemplates) {
95 auto *RD = dyn_cast<CXXRecordDecl>(ND);
96 if (!RD || !RD->isInjectedClassName())
97 return false;
98 RD = cast<CXXRecordDecl>(RD->getDeclContext());
99 return RD->getDescribedClassTemplate() ||
100 isa<ClassTemplateSpecializationDecl>(RD);
101 }
102
103 return false;
104 }
105
106 return !WantClassName && candidate.isKeyword();
107 }
108
109 private:
110 bool AllowInvalidDecl;
111 bool WantClassName;
112 bool AllowTemplates;
113 bool AllowNonTemplates;
114};
115
116} // end anonymous namespace
117
118/// Determine whether the token kind starts a simple-type-specifier.
119bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
120 switch (Kind) {
121 // FIXME: Take into account the current language when deciding whether a
122 // token kind is a valid type specifier
123 case tok::kw_short:
124 case tok::kw_long:
125 case tok::kw___int64:
126 case tok::kw___int128:
127 case tok::kw_signed:
128 case tok::kw_unsigned:
129 case tok::kw_void:
130 case tok::kw_char:
131 case tok::kw_int:
132 case tok::kw_half:
133 case tok::kw_float:
134 case tok::kw_double:
135 case tok::kw__Float16:
136 case tok::kw___float128:
137 case tok::kw_wchar_t:
138 case tok::kw_bool:
139 case tok::kw___underlying_type:
140 case tok::kw___auto_type:
141 return true;
142
143 case tok::annot_typename:
144 case tok::kw_char16_t:
145 case tok::kw_char32_t:
146 case tok::kw_typeof:
147 case tok::annot_decltype:
148 case tok::kw_decltype:
149 return getLangOpts().CPlusPlus;
150
151 case tok::kw_char8_t:
152 return getLangOpts().Char8;
153
154 default:
155 break;
156 }
157
158 return false;
159}
160
161namespace {
162enum class UnqualifiedTypeNameLookupResult {
163 NotFound,
164 FoundNonType,
165 FoundType
166};
167} // end anonymous namespace
168
169/// Tries to perform unqualified lookup of the type decls in bases for
170/// dependent class.
171/// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
172/// type decl, \a FoundType if only type decls are found.
173static UnqualifiedTypeNameLookupResult
174lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II,
175 SourceLocation NameLoc,
176 const CXXRecordDecl *RD) {
177 if (!RD->hasDefinition())
178 return UnqualifiedTypeNameLookupResult::NotFound;
179 // Look for type decls in base classes.
180 UnqualifiedTypeNameLookupResult FoundTypeDecl =
181 UnqualifiedTypeNameLookupResult::NotFound;
182 for (const auto &Base : RD->bases()) {
183 const CXXRecordDecl *BaseRD = nullptr;
184 if (auto *BaseTT = Base.getType()->getAs<TagType>())
185 BaseRD = BaseTT->getAsCXXRecordDecl();
186 else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) {
187 // Look for type decls in dependent base classes that have known primary
188 // templates.
189 if (!TST || !TST->isDependentType())
190 continue;
191 auto *TD = TST->getTemplateName().getAsTemplateDecl();
192 if (!TD)
193 continue;
194 if (auto *BasePrimaryTemplate =
195 dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) {
196 if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl())
197 BaseRD = BasePrimaryTemplate;
198 else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) {
199 if (const ClassTemplatePartialSpecializationDecl *PS =
200 CTD->findPartialSpecialization(Base.getType()))
201 if (PS->getCanonicalDecl() != RD->getCanonicalDecl())
202 BaseRD = PS;
203 }
204 }
205 }
206 if (BaseRD) {
207 for (NamedDecl *ND : BaseRD->lookup(&II)) {
208 if (!isa<TypeDecl>(ND))
209 return UnqualifiedTypeNameLookupResult::FoundNonType;
210 FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
211 }
212 if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) {
213 switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) {
214 case UnqualifiedTypeNameLookupResult::FoundNonType:
215 return UnqualifiedTypeNameLookupResult::FoundNonType;
216 case UnqualifiedTypeNameLookupResult::FoundType:
217 FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
218 break;
219 case UnqualifiedTypeNameLookupResult::NotFound:
220 break;
221 }
222 }
223 }
224 }
225
226 return FoundTypeDecl;
227}
228
229static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
230 const IdentifierInfo &II,
231 SourceLocation NameLoc) {
232 // Lookup in the parent class template context, if any.
233 const CXXRecordDecl *RD = nullptr;
234 UnqualifiedTypeNameLookupResult FoundTypeDecl =
235 UnqualifiedTypeNameLookupResult::NotFound;
236 for (DeclContext *DC = S.CurContext;
237 DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound;
238 DC = DC->getParent()) {
239 // Look for type decls in dependent base classes that have known primary
240 // templates.
241 RD = dyn_cast<CXXRecordDecl>(DC);
242 if (RD && RD->getDescribedClassTemplate())
243 FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD);
244 }
245 if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType)
246 return nullptr;
247
248 // We found some types in dependent base classes. Recover as if the user
249 // wrote 'typename MyClass::II' instead of 'II'. We'll fully resolve the
250 // lookup during template instantiation.
251 S.Diag(NameLoc, diag::ext_found_via_dependent_bases_lookup) << &II;
252
253 ASTContext &Context = S.Context;
254 auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
255 cast<Type>(Context.getRecordType(RD)));
256 QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II);
257
258 CXXScopeSpec SS;
259 SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
260
261 TypeLocBuilder Builder;
262 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
263 DepTL.setNameLoc(NameLoc);
264 DepTL.setElaboratedKeywordLoc(SourceLocation());
265 DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
266 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
267}
268
269/// If the identifier refers to a type name within this scope,
270/// return the declaration of that type.
271///
272/// This routine performs ordinary name lookup of the identifier II
273/// within the given scope, with optional C++ scope specifier SS, to
274/// determine whether the name refers to a type. If so, returns an
275/// opaque pointer (actually a QualType) corresponding to that
276/// type. Otherwise, returns NULL.
277ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
278 Scope *S, CXXScopeSpec *SS,
279 bool isClassName, bool HasTrailingDot,
280 ParsedType ObjectTypePtr,
281 bool IsCtorOrDtorName,
282 bool WantNontrivialTypeSourceInfo,
283 bool IsClassTemplateDeductionContext,
284 IdentifierInfo **CorrectedII) {
285 // FIXME: Consider allowing this outside C++1z mode as an extension.
286 bool AllowDeducedTemplate = IsClassTemplateDeductionContext &&
287 getLangOpts().CPlusPlus17 && !IsCtorOrDtorName &&
288 !isClassName && !HasTrailingDot;
289
290 // Determine where we will perform name lookup.
291 DeclContext *LookupCtx = nullptr;
292 if (ObjectTypePtr) {
293 QualType ObjectType = ObjectTypePtr.get();
294 if (ObjectType->isRecordType())
295 LookupCtx = computeDeclContext(ObjectType);
296 } else if (SS && SS->isNotEmpty()) {
297 LookupCtx = computeDeclContext(*SS, false);
298
299 if (!LookupCtx) {
300 if (isDependentScopeSpecifier(*SS)) {
301 // C++ [temp.res]p3:
302 // A qualified-id that refers to a type and in which the
303 // nested-name-specifier depends on a template-parameter (14.6.2)
304 // shall be prefixed by the keyword typename to indicate that the
305 // qualified-id denotes a type, forming an
306 // elaborated-type-specifier (7.1.5.3).
307 //
308 // We therefore do not perform any name lookup if the result would
309 // refer to a member of an unknown specialization.
310 if (!isClassName && !IsCtorOrDtorName)
311 return nullptr;
312
313 // We know from the grammar that this name refers to a type,
314 // so build a dependent node to describe the type.
315 if (WantNontrivialTypeSourceInfo)
316 return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
317
318 NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
319 QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
320 II, NameLoc);
321 return ParsedType::make(T);
322 }
323
324 return nullptr;
325 }
326
327 if (!LookupCtx->isDependentContext() &&
328 RequireCompleteDeclContext(*SS, LookupCtx))
329 return nullptr;
330 }
331
332 // FIXME: LookupNestedNameSpecifierName isn't the right kind of
333 // lookup for class-names.
334 LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
335 LookupOrdinaryName;
336 LookupResult Result(*this, &II, NameLoc, Kind);
337 if (LookupCtx) {
338 // Perform "qualified" name lookup into the declaration context we
339 // computed, which is either the type of the base of a member access
340 // expression or the declaration context associated with a prior
341 // nested-name-specifier.
342 LookupQualifiedName(Result, LookupCtx);
343
344 if (ObjectTypePtr && Result.empty()) {
345 // C++ [basic.lookup.classref]p3:
346 // If the unqualified-id is ~type-name, the type-name is looked up
347 // in the context of the entire postfix-expression. If the type T of
348 // the object expression is of a class type C, the type-name is also
349 // looked up in the scope of class C. At least one of the lookups shall
350 // find a name that refers to (possibly cv-qualified) T.
351 LookupName(Result, S);
352 }
353 } else {
354 // Perform unqualified name lookup.
355 LookupName(Result, S);
356
357 // For unqualified lookup in a class template in MSVC mode, look into
358 // dependent base classes where the primary class template is known.
359 if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
360 if (ParsedType TypeInBase =
361 recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
362 return TypeInBase;
363 }
364 }
365
366 NamedDecl *IIDecl = nullptr;
367 switch (Result.getResultKind()) {
368 case LookupResult::NotFound:
369 case LookupResult::NotFoundInCurrentInstantiation:
370 if (CorrectedII) {
371 TypoCorrection Correction =
372 CorrectTypo(Result.getLookupNameInfo(), Kind, S, SS,
373 llvm::make_unique<TypeNameValidatorCCC>(
374 true, isClassName, AllowDeducedTemplate),
375 CTK_ErrorRecovery);
376 IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
377 TemplateTy Template;
378 bool MemberOfUnknownSpecialization;
379 UnqualifiedId TemplateName;
380 TemplateName.setIdentifier(NewII, NameLoc);
381 NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
382 CXXScopeSpec NewSS, *NewSSPtr = SS;
383 if (SS && NNS) {
384 NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
385 NewSSPtr = &NewSS;
386 }
387 if (Correction && (NNS || NewII != &II) &&
388 // Ignore a correction to a template type as the to-be-corrected
389 // identifier is not a template (typo correction for template names
390 // is handled elsewhere).
391 !(getLangOpts().CPlusPlus && NewSSPtr &&
392 isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false,
393 Template, MemberOfUnknownSpecialization))) {
394 ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
395 isClassName, HasTrailingDot, ObjectTypePtr,
396 IsCtorOrDtorName,
397 WantNontrivialTypeSourceInfo,
398 IsClassTemplateDeductionContext);
399 if (Ty) {
400 diagnoseTypo(Correction,
401 PDiag(diag::err_unknown_type_or_class_name_suggest)
402 << Result.getLookupName() << isClassName);
403 if (SS && NNS)
404 SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
405 *CorrectedII = NewII;
406 return Ty;
407 }
408 }
409 }
410 // If typo correction failed or was not performed, fall through
411 LLVM_FALLTHROUGH[[clang::fallthrough]];
412 case LookupResult::FoundOverloaded:
413 case LookupResult::FoundUnresolvedValue:
414 Result.suppressDiagnostics();
415 return nullptr;
416
417 case LookupResult::Ambiguous:
418 // Recover from type-hiding ambiguities by hiding the type. We'll
419 // do the lookup again when looking for an object, and we can
420 // diagnose the error then. If we don't do this, then the error
421 // about hiding the type will be immediately followed by an error
422 // that only makes sense if the identifier was treated like a type.
423 if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
424 Result.suppressDiagnostics();
425 return nullptr;
426 }
427
428 // Look to see if we have a type anywhere in the list of results.
429 for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
430 Res != ResEnd; ++Res) {
431 if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res) ||
432 (AllowDeducedTemplate && getAsTypeTemplateDecl(*Res))) {
433 if (!IIDecl ||
434 (*Res)->getLocation().getRawEncoding() <
435 IIDecl->getLocation().getRawEncoding())
436 IIDecl = *Res;
437 }
438 }
439
440 if (!IIDecl) {
441 // None of the entities we found is a type, so there is no way
442 // to even assume that the result is a type. In this case, don't
443 // complain about the ambiguity. The parser will either try to
444 // perform this lookup again (e.g., as an object name), which
445 // will produce the ambiguity, or will complain that it expected
446 // a type name.
447 Result.suppressDiagnostics();
448 return nullptr;
449 }
450
451 // We found a type within the ambiguous lookup; diagnose the
452 // ambiguity and then return that type. This might be the right
453 // answer, or it might not be, but it suppresses any attempt to
454 // perform the name lookup again.
455 break;
456
457 case LookupResult::Found:
458 IIDecl = Result.getFoundDecl();
459 break;
460 }
461
462 assert(IIDecl && "Didn't find decl")((IIDecl && "Didn't find decl") ? static_cast<void
> (0) : __assert_fail ("IIDecl && \"Didn't find decl\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 462, __PRETTY_FUNCTION__))
;
463
464 QualType T;
465 if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
466 // C++ [class.qual]p2: A lookup that would find the injected-class-name
467 // instead names the constructors of the class, except when naming a class.
468 // This is ill-formed when we're not actually forming a ctor or dtor name.
469 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
470 auto *FoundRD = dyn_cast<CXXRecordDecl>(TD);
471 if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD &&
472 FoundRD->isInjectedClassName() &&
473 declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
474 Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor)
475 << &II << /*Type*/1;
476
477 DiagnoseUseOfDecl(IIDecl, NameLoc);
478
479 T = Context.getTypeDeclType(TD);
480 MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
481 } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
482 (void)DiagnoseUseOfDecl(IDecl, NameLoc);
483 if (!HasTrailingDot)
484 T = Context.getObjCInterfaceType(IDecl);
485 } else if (AllowDeducedTemplate) {
486 if (auto *TD = getAsTypeTemplateDecl(IIDecl))
487 T = Context.getDeducedTemplateSpecializationType(TemplateName(TD),
488 QualType(), false);
489 }
490
491 if (T.isNull()) {
492 // If it's not plausibly a type, suppress diagnostics.
493 Result.suppressDiagnostics();
494 return nullptr;
495 }
496
497 // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
498 // constructor or destructor name (in such a case, the scope specifier
499 // will be attached to the enclosing Expr or Decl node).
500 if (SS && SS->isNotEmpty() && !IsCtorOrDtorName &&
501 !isa<ObjCInterfaceDecl>(IIDecl)) {
502 if (WantNontrivialTypeSourceInfo) {
503 // Construct a type with type-source information.
504 TypeLocBuilder Builder;
505 Builder.pushTypeSpec(T).setNameLoc(NameLoc);
506
507 T = getElaboratedType(ETK_None, *SS, T);
508 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
509 ElabTL.setElaboratedKeywordLoc(SourceLocation());
510 ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
511 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
512 } else {
513 T = getElaboratedType(ETK_None, *SS, T);
514 }
515 }
516
517 return ParsedType::make(T);
518}
519
520// Builds a fake NNS for the given decl context.
521static NestedNameSpecifier *
522synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
523 for (;; DC = DC->getLookupParent()) {
524 DC = DC->getPrimaryContext();
525 auto *ND = dyn_cast<NamespaceDecl>(DC);
526 if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
527 return NestedNameSpecifier::Create(Context, nullptr, ND);
528 else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
529 return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
530 RD->getTypeForDecl());
531 else if (isa<TranslationUnitDecl>(DC))
532 return NestedNameSpecifier::GlobalSpecifier(Context);
533 }
534 llvm_unreachable("something isn't in TU scope?")::llvm::llvm_unreachable_internal("something isn't in TU scope?"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 534)
;
535}
536
537/// Find the parent class with dependent bases of the innermost enclosing method
538/// context. Do not look for enclosing CXXRecordDecls directly, or we will end
539/// up allowing unqualified dependent type names at class-level, which MSVC
540/// correctly rejects.
541static const CXXRecordDecl *
542findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) {
543 for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) {
544 DC = DC->getPrimaryContext();
545 if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
546 if (MD->getParent()->hasAnyDependentBases())
547 return MD->getParent();
548 }
549 return nullptr;
550}
551
552ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
553 SourceLocation NameLoc,
554 bool IsTemplateTypeArg) {
555 assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode")((getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().MSVCCompat && \"shouldn't be called in non-MSVC mode\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 555, __PRETTY_FUNCTION__))
;
556
557 NestedNameSpecifier *NNS = nullptr;
558 if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) {
559 // If we weren't able to parse a default template argument, delay lookup
560 // until instantiation time by making a non-dependent DependentTypeName. We
561 // pretend we saw a NestedNameSpecifier referring to the current scope, and
562 // lookup is retried.
563 // FIXME: This hurts our diagnostic quality, since we get errors like "no
564 // type named 'Foo' in 'current_namespace'" when the user didn't write any
565 // name specifiers.
566 NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext);
567 Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
568 } else if (const CXXRecordDecl *RD =
569 findRecordWithDependentBasesOfEnclosingMethod(CurContext)) {
570 // Build a DependentNameType that will perform lookup into RD at
571 // instantiation time.
572 NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
573 RD->getTypeForDecl());
574
575 // Diagnose that this identifier was undeclared, and retry the lookup during
576 // template instantiation.
577 Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II
578 << RD;
579 } else {
580 // This is not a situation that we should recover from.
581 return ParsedType();
582 }
583
584 QualType T = Context.getDependentNameType(ETK_None, NNS, &II);
585
586 // Build type location information. We synthesized the qualifier, so we have
587 // to build a fake NestedNameSpecifierLoc.
588 NestedNameSpecifierLocBuilder NNSLocBuilder;
589 NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
590 NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
591
592 TypeLocBuilder Builder;
593 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
594 DepTL.setNameLoc(NameLoc);
595 DepTL.setElaboratedKeywordLoc(SourceLocation());
596 DepTL.setQualifierLoc(QualifierLoc);
597 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
598}
599
600/// isTagName() - This method is called *for error recovery purposes only*
601/// to determine if the specified name is a valid tag name ("struct foo"). If
602/// so, this returns the TST for the tag corresponding to it (TST_enum,
603/// TST_union, TST_struct, TST_interface, TST_class). This is used to diagnose
604/// cases in C where the user forgot to specify the tag.
605DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
606 // Do a tag name lookup in this scope.
607 LookupResult R(*this, &II, SourceLocation(), LookupTagName);
608 LookupName(R, S, false);
609 R.suppressDiagnostics();
610 if (R.getResultKind() == LookupResult::Found)
611 if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
612 switch (TD->getTagKind()) {
613 case TTK_Struct: return DeclSpec::TST_struct;
614 case TTK_Interface: return DeclSpec::TST_interface;
615 case TTK_Union: return DeclSpec::TST_union;
616 case TTK_Class: return DeclSpec::TST_class;
617 case TTK_Enum: return DeclSpec::TST_enum;
618 }
619 }
620
621 return DeclSpec::TST_unspecified;
622}
623
624/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
625/// if a CXXScopeSpec's type is equal to the type of one of the base classes
626/// then downgrade the missing typename error to a warning.
627/// This is needed for MSVC compatibility; Example:
628/// @code
629/// template<class T> class A {
630/// public:
631/// typedef int TYPE;
632/// };
633/// template<class T> class B : public A<T> {
634/// public:
635/// A<T>::TYPE a; // no typename required because A<T> is a base class.
636/// };
637/// @endcode
638bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
639 if (CurContext->isRecord()) {
640 if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super)
641 return true;
642
643 const Type *Ty = SS->getScopeRep()->getAsType();
644
645 CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
646 for (const auto &Base : RD->bases())
647 if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
648 return true;
649 return S->isFunctionPrototypeScope();
650 }
651 return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
652}
653
654void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
655 SourceLocation IILoc,
656 Scope *S,
657 CXXScopeSpec *SS,
658 ParsedType &SuggestedType,
659 bool IsTemplateName) {
660 // Don't report typename errors for editor placeholders.
661 if (II->isEditorPlaceholder())
662 return;
663 // We don't have anything to suggest (yet).
664 SuggestedType = nullptr;
665
666 // There may have been a typo in the name of the type. Look up typo
667 // results, in case we have something that we can suggest.
668 if (TypoCorrection Corrected =
669 CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS,
670 llvm::make_unique<TypeNameValidatorCCC>(
671 false, false, IsTemplateName, !IsTemplateName),
672 CTK_ErrorRecovery)) {
673 // FIXME: Support error recovery for the template-name case.
674 bool CanRecover = !IsTemplateName;
675 if (Corrected.isKeyword()) {
676 // We corrected to a keyword.
677 diagnoseTypo(Corrected,
678 PDiag(IsTemplateName ? diag::err_no_template_suggest
679 : diag::err_unknown_typename_suggest)
680 << II);
681 II = Corrected.getCorrectionAsIdentifierInfo();
682 } else {
683 // We found a similarly-named type or interface; suggest that.
684 if (!SS || !SS->isSet()) {
685 diagnoseTypo(Corrected,
686 PDiag(IsTemplateName ? diag::err_no_template_suggest
687 : diag::err_unknown_typename_suggest)
688 << II, CanRecover);
689 } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
690 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
691 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
692 II->getName().equals(CorrectedStr);
693 diagnoseTypo(Corrected,
694 PDiag(IsTemplateName
695 ? diag::err_no_member_template_suggest
696 : diag::err_unknown_nested_typename_suggest)
697 << II << DC << DroppedSpecifier << SS->getRange(),
698 CanRecover);
699 } else {
700 llvm_unreachable("could not have corrected a typo here")::llvm::llvm_unreachable_internal("could not have corrected a typo here"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 700)
;
701 }
702
703 if (!CanRecover)
704 return;
705
706 CXXScopeSpec tmpSS;
707 if (Corrected.getCorrectionSpecifier())
708 tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
709 SourceRange(IILoc));
710 // FIXME: Support class template argument deduction here.
711 SuggestedType =
712 getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S,
713 tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr,
714 /*IsCtorOrDtorName=*/false,
715 /*NonTrivialTypeSourceInfo=*/true);
716 }
717 return;
718 }
719
720 if (getLangOpts().CPlusPlus && !IsTemplateName) {
721 // See if II is a class template that the user forgot to pass arguments to.
722 UnqualifiedId Name;
723 Name.setIdentifier(II, IILoc);
724 CXXScopeSpec EmptySS;
725 TemplateTy TemplateResult;
726 bool MemberOfUnknownSpecialization;
727 if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
728 Name, nullptr, true, TemplateResult,
729 MemberOfUnknownSpecialization) == TNK_Type_template) {
730 diagnoseMissingTemplateArguments(TemplateResult.get(), IILoc);
731 return;
732 }
733 }
734
735 // FIXME: Should we move the logic that tries to recover from a missing tag
736 // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
737
738 if (!SS || (!SS->isSet() && !SS->isInvalid()))
739 Diag(IILoc, IsTemplateName ? diag::err_no_template
740 : diag::err_unknown_typename)
741 << II;
742 else if (DeclContext *DC = computeDeclContext(*SS, false))
743 Diag(IILoc, IsTemplateName ? diag::err_no_member_template
744 : diag::err_typename_nested_not_found)
745 << II << DC << SS->getRange();
746 else if (isDependentScopeSpecifier(*SS)) {
747 unsigned DiagID = diag::err_typename_missing;
748 if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
749 DiagID = diag::ext_typename_missing;
750
751 Diag(SS->getRange().getBegin(), DiagID)
752 << SS->getScopeRep() << II->getName()
753 << SourceRange(SS->getRange().getBegin(), IILoc)
754 << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
755 SuggestedType = ActOnTypenameType(S, SourceLocation(),
756 *SS, *II, IILoc).get();
757 } else {
758 assert(SS && SS->isInvalid() &&((SS && SS->isInvalid() && "Invalid scope specifier has already been diagnosed"
) ? static_cast<void> (0) : __assert_fail ("SS && SS->isInvalid() && \"Invalid scope specifier has already been diagnosed\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 759, __PRETTY_FUNCTION__))
759 "Invalid scope specifier has already been diagnosed")((SS && SS->isInvalid() && "Invalid scope specifier has already been diagnosed"
) ? static_cast<void> (0) : __assert_fail ("SS && SS->isInvalid() && \"Invalid scope specifier has already been diagnosed\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 759, __PRETTY_FUNCTION__))
;
760 }
761}
762
763/// Determine whether the given result set contains either a type name
764/// or
765static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
766 bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
767 NextToken.is(tok::less);
768
769 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
770 if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
771 return true;
772
773 if (CheckTemplate && isa<TemplateDecl>(*I))
774 return true;
775 }
776
777 return false;
778}
779
780static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
781 Scope *S, CXXScopeSpec &SS,
782 IdentifierInfo *&Name,
783 SourceLocation NameLoc) {
784 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
785 SemaRef.LookupParsedName(R, S, &SS);
786 if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
787 StringRef FixItTagName;
788 switch (Tag->getTagKind()) {
789 case TTK_Class:
790 FixItTagName = "class ";
791 break;
792
793 case TTK_Enum:
794 FixItTagName = "enum ";
795 break;
796
797 case TTK_Struct:
798 FixItTagName = "struct ";
799 break;
800
801 case TTK_Interface:
802 FixItTagName = "__interface ";
803 break;
804
805 case TTK_Union:
806 FixItTagName = "union ";
807 break;
808 }
809
810 StringRef TagName = FixItTagName.drop_back();
811 SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
812 << Name << TagName << SemaRef.getLangOpts().CPlusPlus
813 << FixItHint::CreateInsertion(NameLoc, FixItTagName);
814
815 for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
816 I != IEnd; ++I)
817 SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
818 << Name << TagName;
819
820 // Replace lookup results with just the tag decl.
821 Result.clear(Sema::LookupTagName);
822 SemaRef.LookupParsedName(Result, S, &SS);
823 return true;
824 }
825
826 return false;
827}
828
829/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
830static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
831 QualType T, SourceLocation NameLoc) {
832 ASTContext &Context = S.Context;
833
834 TypeLocBuilder Builder;
835 Builder.pushTypeSpec(T).setNameLoc(NameLoc);
836
837 T = S.getElaboratedType(ETK_None, SS, T);
838 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
839 ElabTL.setElaboratedKeywordLoc(SourceLocation());
840 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
841 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
842}
843
844Sema::NameClassification
845Sema::ClassifyName(Scope *S, CXXScopeSpec &SS, IdentifierInfo *&Name,
846 SourceLocation NameLoc, const Token &NextToken,
847 bool IsAddressOfOperand,
848 std::unique_ptr<CorrectionCandidateCallback> CCC) {
849 DeclarationNameInfo NameInfo(Name, NameLoc);
850 ObjCMethodDecl *CurMethod = getCurMethodDecl();
851
852 if (NextToken.is(tok::coloncolon)) {
853 NestedNameSpecInfo IdInfo(Name, NameLoc, NextToken.getLocation());
854 BuildCXXNestedNameSpecifier(S, IdInfo, false, SS, nullptr, false);
855 } else if (getLangOpts().CPlusPlus && SS.isSet() &&
856 isCurrentClassName(*Name, S, &SS)) {
857 // Per [class.qual]p2, this names the constructors of SS, not the
858 // injected-class-name. We don't have a classification for that.
859 // There's not much point caching this result, since the parser
860 // will reject it later.
861 return NameClassification::Unknown();
862 }
863
864 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
865 LookupParsedName(Result, S, &SS, !CurMethod);
866
867 // For unqualified lookup in a class template in MSVC mode, look into
868 // dependent base classes where the primary class template is known.
869 if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
870 if (ParsedType TypeInBase =
871 recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
872 return TypeInBase;
873 }
874
875 // Perform lookup for Objective-C instance variables (including automatically
876 // synthesized instance variables), if we're in an Objective-C method.
877 // FIXME: This lookup really, really needs to be folded in to the normal
878 // unqualified lookup mechanism.
879 if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
880 ExprResult E = LookupInObjCMethod(Result, S, Name, true);
881 if (E.get() || E.isInvalid())
882 return E;
883 }
884
885 bool SecondTry = false;
886 bool IsFilteredTemplateName = false;
887
888Corrected:
889 switch (Result.getResultKind()) {
890 case LookupResult::NotFound:
891 // If an unqualified-id is followed by a '(', then we have a function
892 // call.
893 if (!SS.isSet() && NextToken.is(tok::l_paren)) {
894 // In C++, this is an ADL-only call.
895 // FIXME: Reference?
896 if (getLangOpts().CPlusPlus)
897 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
898
899 // C90 6.3.2.2:
900 // If the expression that precedes the parenthesized argument list in a
901 // function call consists solely of an identifier, and if no
902 // declaration is visible for this identifier, the identifier is
903 // implicitly declared exactly as if, in the innermost block containing
904 // the function call, the declaration
905 //
906 // extern int identifier ();
907 //
908 // appeared.
909 //
910 // We also allow this in C99 as an extension.
911 if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
912 Result.addDecl(D);
913 Result.resolveKind();
914 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
915 }
916 }
917
918 // In C, we first see whether there is a tag type by the same name, in
919 // which case it's likely that the user just forgot to write "enum",
920 // "struct", or "union".
921 if (!getLangOpts().CPlusPlus && !SecondTry &&
922 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
923 break;
924 }
925
926 // Perform typo correction to determine if there is another name that is
927 // close to this name.
928 if (!SecondTry && CCC) {
929 SecondTry = true;
930 if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
931 Result.getLookupKind(), S,
932 &SS, std::move(CCC),
933 CTK_ErrorRecovery)) {
934 unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
935 unsigned QualifiedDiag = diag::err_no_member_suggest;
936
937 NamedDecl *FirstDecl = Corrected.getFoundDecl();
938 NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl();
939 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
940 UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
941 UnqualifiedDiag = diag::err_no_template_suggest;
942 QualifiedDiag = diag::err_no_member_template_suggest;
943 } else if (UnderlyingFirstDecl &&
944 (isa<TypeDecl>(UnderlyingFirstDecl) ||
945 isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
946 isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
947 UnqualifiedDiag = diag::err_unknown_typename_suggest;
948 QualifiedDiag = diag::err_unknown_nested_typename_suggest;
949 }
950
951 if (SS.isEmpty()) {
952 diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
953 } else {// FIXME: is this even reachable? Test it.
954 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
955 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
956 Name->getName().equals(CorrectedStr);
957 diagnoseTypo(Corrected, PDiag(QualifiedDiag)
958 << Name << computeDeclContext(SS, false)
959 << DroppedSpecifier << SS.getRange());
960 }
961
962 // Update the name, so that the caller has the new name.
963 Name = Corrected.getCorrectionAsIdentifierInfo();
964
965 // Typo correction corrected to a keyword.
966 if (Corrected.isKeyword())
967 return Name;
968
969 // Also update the LookupResult...
970 // FIXME: This should probably go away at some point
971 Result.clear();
972 Result.setLookupName(Corrected.getCorrection());
973 if (FirstDecl)
974 Result.addDecl(FirstDecl);
975
976 // If we found an Objective-C instance variable, let
977 // LookupInObjCMethod build the appropriate expression to
978 // reference the ivar.
979 // FIXME: This is a gross hack.
980 if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
981 Result.clear();
982 ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
983 return E;
984 }
985
986 goto Corrected;
987 }
988 }
989
990 // We failed to correct; just fall through and let the parser deal with it.
991 Result.suppressDiagnostics();
992 return NameClassification::Unknown();
993
994 case LookupResult::NotFoundInCurrentInstantiation: {
995 // We performed name lookup into the current instantiation, and there were
996 // dependent bases, so we treat this result the same way as any other
997 // dependent nested-name-specifier.
998
999 // C++ [temp.res]p2:
1000 // A name used in a template declaration or definition and that is
1001 // dependent on a template-parameter is assumed not to name a type
1002 // unless the applicable name lookup finds a type name or the name is
1003 // qualified by the keyword typename.
1004 //
1005 // FIXME: If the next token is '<', we might want to ask the parser to
1006 // perform some heroics to see if we actually have a
1007 // template-argument-list, which would indicate a missing 'template'
1008 // keyword here.
1009 return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
1010 NameInfo, IsAddressOfOperand,
1011 /*TemplateArgs=*/nullptr);
1012 }
1013
1014 case LookupResult::Found:
1015 case LookupResult::FoundOverloaded:
1016 case LookupResult::FoundUnresolvedValue:
1017 break;
1018
1019 case LookupResult::Ambiguous:
1020 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1021 hasAnyAcceptableTemplateNames(Result)) {
1022 // C++ [temp.local]p3:
1023 // A lookup that finds an injected-class-name (10.2) can result in an
1024 // ambiguity in certain cases (for example, if it is found in more than
1025 // one base class). If all of the injected-class-names that are found
1026 // refer to specializations of the same class template, and if the name
1027 // is followed by a template-argument-list, the reference refers to the
1028 // class template itself and not a specialization thereof, and is not
1029 // ambiguous.
1030 //
1031 // This filtering can make an ambiguous result into an unambiguous one,
1032 // so try again after filtering out template names.
1033 FilterAcceptableTemplateNames(Result);
1034 if (!Result.isAmbiguous()) {
1035 IsFilteredTemplateName = true;
1036 break;
1037 }
1038 }
1039
1040 // Diagnose the ambiguity and return an error.
1041 return NameClassification::Error();
1042 }
1043
1044 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1045 (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
1046 // C++ [temp.names]p3:
1047 // After name lookup (3.4) finds that a name is a template-name or that
1048 // an operator-function-id or a literal- operator-id refers to a set of
1049 // overloaded functions any member of which is a function template if
1050 // this is followed by a <, the < is always taken as the delimiter of a
1051 // template-argument-list and never as the less-than operator.
1052 if (!IsFilteredTemplateName)
1053 FilterAcceptableTemplateNames(Result);
1054
1055 if (!Result.empty()) {
1056 bool IsFunctionTemplate;
1057 bool IsVarTemplate;
1058 TemplateName Template;
1059 if (Result.end() - Result.begin() > 1) {
1060 IsFunctionTemplate = true;
1061 Template = Context.getOverloadedTemplateName(Result.begin(),
1062 Result.end());
1063 } else {
1064 TemplateDecl *TD
1065 = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
1066 IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
1067 IsVarTemplate = isa<VarTemplateDecl>(TD);
1068
1069 if (SS.isSet() && !SS.isInvalid())
1070 Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
1071 /*TemplateKeyword=*/false,
1072 TD);
1073 else
1074 Template = TemplateName(TD);
1075 }
1076
1077 if (IsFunctionTemplate) {
1078 // Function templates always go through overload resolution, at which
1079 // point we'll perform the various checks (e.g., accessibility) we need
1080 // to based on which function we selected.
1081 Result.suppressDiagnostics();
1082
1083 return NameClassification::FunctionTemplate(Template);
1084 }
1085
1086 return IsVarTemplate ? NameClassification::VarTemplate(Template)
1087 : NameClassification::TypeTemplate(Template);
1088 }
1089 }
1090
1091 NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
1092 if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
1093 DiagnoseUseOfDecl(Type, NameLoc);
1094 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
1095 QualType T = Context.getTypeDeclType(Type);
1096 if (SS.isNotEmpty())
1097 return buildNestedType(*this, SS, T, NameLoc);
1098 return ParsedType::make(T);
1099 }
1100
1101 ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
1102 if (!Class) {
1103 // FIXME: It's unfortunate that we don't have a Type node for handling this.
1104 if (ObjCCompatibleAliasDecl *Alias =
1105 dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
1106 Class = Alias->getClassInterface();
1107 }
1108
1109 if (Class) {
1110 DiagnoseUseOfDecl(Class, NameLoc);
1111
1112 if (NextToken.is(tok::period)) {
1113 // Interface. <something> is parsed as a property reference expression.
1114 // Just return "unknown" as a fall-through for now.
1115 Result.suppressDiagnostics();
1116 return NameClassification::Unknown();
1117 }
1118
1119 QualType T = Context.getObjCInterfaceType(Class);
1120 return ParsedType::make(T);
1121 }
1122
1123 // We can have a type template here if we're classifying a template argument.
1124 if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) &&
1125 !isa<VarTemplateDecl>(FirstDecl))
1126 return NameClassification::TypeTemplate(
1127 TemplateName(cast<TemplateDecl>(FirstDecl)));
1128
1129 // Check for a tag type hidden by a non-type decl in a few cases where it
1130 // seems likely a type is wanted instead of the non-type that was found.
1131 bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star);
1132 if ((NextToken.is(tok::identifier) ||
1133 (NextIsOp &&
1134 FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
1135 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
1136 TypeDecl *Type = Result.getAsSingle<TypeDecl>();
1137 DiagnoseUseOfDecl(Type, NameLoc);
1138 QualType T = Context.getTypeDeclType(Type);
1139 if (SS.isNotEmpty())
1140 return buildNestedType(*this, SS, T, NameLoc);
1141 return ParsedType::make(T);
1142 }
1143
1144 if (FirstDecl->isCXXClassMember())
1145 return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
1146 nullptr, S);
1147
1148 bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1149 return BuildDeclarationNameExpr(SS, Result, ADL);
1150}
1151
1152Sema::TemplateNameKindForDiagnostics
1153Sema::getTemplateNameKindForDiagnostics(TemplateName Name) {
1154 auto *TD = Name.getAsTemplateDecl();
1155 if (!TD)
1156 return TemplateNameKindForDiagnostics::DependentTemplate;
1157 if (isa<ClassTemplateDecl>(TD))
1158 return TemplateNameKindForDiagnostics::ClassTemplate;
1159 if (isa<FunctionTemplateDecl>(TD))
1160 return TemplateNameKindForDiagnostics::FunctionTemplate;
1161 if (isa<VarTemplateDecl>(TD))
1162 return TemplateNameKindForDiagnostics::VarTemplate;
1163 if (isa<TypeAliasTemplateDecl>(TD))
1164 return TemplateNameKindForDiagnostics::AliasTemplate;
1165 if (isa<TemplateTemplateParmDecl>(TD))
1166 return TemplateNameKindForDiagnostics::TemplateTemplateParam;
1167 return TemplateNameKindForDiagnostics::DependentTemplate;
1168}
1169
1170// Determines the context to return to after temporarily entering a
1171// context. This depends in an unnecessarily complicated way on the
1172// exact ordering of callbacks from the parser.
1173DeclContext *Sema::getContainingDC(DeclContext *DC) {
1174
1175 // Functions defined inline within classes aren't parsed until we've
1176 // finished parsing the top-level class, so the top-level class is
1177 // the context we'll need to return to.
1178 // A Lambda call operator whose parent is a class must not be treated
1179 // as an inline member function. A Lambda can be used legally
1180 // either as an in-class member initializer or a default argument. These
1181 // are parsed once the class has been marked complete and so the containing
1182 // context would be the nested class (when the lambda is defined in one);
1183 // If the class is not complete, then the lambda is being used in an
1184 // ill-formed fashion (such as to specify the width of a bit-field, or
1185 // in an array-bound) - in which case we still want to return the
1186 // lexically containing DC (which could be a nested class).
1187 if (isa<FunctionDecl>(DC) && !isLambdaCallOperator(DC)) {
1188 DC = DC->getLexicalParent();
1189
1190 // A function not defined within a class will always return to its
1191 // lexical context.
1192 if (!isa<CXXRecordDecl>(DC))
1193 return DC;
1194
1195 // A C++ inline method/friend is parsed *after* the topmost class
1196 // it was declared in is fully parsed ("complete"); the topmost
1197 // class is the context we need to return to.
1198 while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
1199 DC = RD;
1200
1201 // Return the declaration context of the topmost class the inline method is
1202 // declared in.
1203 return DC;
1204 }
1205
1206 return DC->getLexicalParent();
1207}
1208
1209void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
1210 assert(getContainingDC(DC) == CurContext &&((getContainingDC(DC) == CurContext && "The next DeclContext should be lexically contained in the current one."
) ? static_cast<void> (0) : __assert_fail ("getContainingDC(DC) == CurContext && \"The next DeclContext should be lexically contained in the current one.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 1211, __PRETTY_FUNCTION__))
1211 "The next DeclContext should be lexically contained in the current one.")((getContainingDC(DC) == CurContext && "The next DeclContext should be lexically contained in the current one."
) ? static_cast<void> (0) : __assert_fail ("getContainingDC(DC) == CurContext && \"The next DeclContext should be lexically contained in the current one.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 1211, __PRETTY_FUNCTION__))
;
1212 CurContext = DC;
1213 S->setEntity(DC);
1214}
1215
1216void Sema::PopDeclContext() {
1217 assert(CurContext && "DeclContext imbalance!")((CurContext && "DeclContext imbalance!") ? static_cast
<void> (0) : __assert_fail ("CurContext && \"DeclContext imbalance!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 1217, __PRETTY_FUNCTION__))
;
1218
1219 CurContext = getContainingDC(CurContext);
1220 assert(CurContext && "Popped translation unit!")((CurContext && "Popped translation unit!") ? static_cast
<void> (0) : __assert_fail ("CurContext && \"Popped translation unit!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 1220, __PRETTY_FUNCTION__))
;
1221}
1222
1223Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S,
1224 Decl *D) {
1225 // Unlike PushDeclContext, the context to which we return is not necessarily
1226 // the containing DC of TD, because the new context will be some pre-existing
1227 // TagDecl definition instead of a fresh one.
1228 auto Result = static_cast<SkippedDefinitionContext>(CurContext);
1229 CurContext = cast<TagDecl>(D)->getDefinition();
1230 assert(CurContext && "skipping definition of undefined tag")((CurContext && "skipping definition of undefined tag"
) ? static_cast<void> (0) : __assert_fail ("CurContext && \"skipping definition of undefined tag\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 1230, __PRETTY_FUNCTION__))
;
1231 // Start lookups from the parent of the current context; we don't want to look
1232 // into the pre-existing complete definition.
1233 S->setEntity(CurContext->getLookupParent());
1234 return Result;
1235}
1236
1237void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) {
1238 CurContext = static_cast<decltype(CurContext)>(Context);
1239}
1240
1241/// EnterDeclaratorContext - Used when we must lookup names in the context
1242/// of a declarator's nested name specifier.
1243///
1244void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
1245 // C++0x [basic.lookup.unqual]p13:
1246 // A name used in the definition of a static data member of class
1247 // X (after the qualified-id of the static member) is looked up as
1248 // if the name was used in a member function of X.
1249 // C++0x [basic.lookup.unqual]p14:
1250 // If a variable member of a namespace is defined outside of the
1251 // scope of its namespace then any name used in the definition of
1252 // the variable member (after the declarator-id) is looked up as
1253 // if the definition of the variable member occurred in its
1254 // namespace.
1255 // Both of these imply that we should push a scope whose context
1256 // is the semantic context of the declaration. We can't use
1257 // PushDeclContext here because that context is not necessarily
1258 // lexically contained in the current context. Fortunately,
1259 // the containing scope should have the appropriate information.
1260
1261 assert(!S->getEntity() && "scope already has entity")((!S->getEntity() && "scope already has entity") ?
static_cast<void> (0) : __assert_fail ("!S->getEntity() && \"scope already has entity\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 1261, __PRETTY_FUNCTION__))
;
1262
1263#ifndef NDEBUG
1264 Scope *Ancestor = S->getParent();
1265 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1266 assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch")((Ancestor->getEntity() == CurContext && "ancestor context mismatch"
) ? static_cast<void> (0) : __assert_fail ("Ancestor->getEntity() == CurContext && \"ancestor context mismatch\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 1266, __PRETTY_FUNCTION__))
;
1267#endif
1268
1269 CurContext = DC;
1270 S->setEntity(DC);
1271}
1272
1273void Sema::ExitDeclaratorContext(Scope *S) {
1274 assert(S->getEntity() == CurContext && "Context imbalance!")((S->getEntity() == CurContext && "Context imbalance!"
) ? static_cast<void> (0) : __assert_fail ("S->getEntity() == CurContext && \"Context imbalance!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 1274, __PRETTY_FUNCTION__))
;
1275
1276 // Switch back to the lexical context. The safety of this is
1277 // enforced by an assert in EnterDeclaratorContext.
1278 Scope *Ancestor = S->getParent();
1279 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1280 CurContext = Ancestor->getEntity();
1281
1282 // We don't need to do anything with the scope, which is going to
1283 // disappear.
1284}
1285
1286void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
1287 // We assume that the caller has already called
1288 // ActOnReenterTemplateScope so getTemplatedDecl() works.
1289 FunctionDecl *FD = D->getAsFunction();
1290 if (!FD)
1291 return;
1292
1293 // Same implementation as PushDeclContext, but enters the context
1294 // from the lexical parent, rather than the top-level class.
1295 assert(CurContext == FD->getLexicalParent() &&((CurContext == FD->getLexicalParent() && "The next DeclContext should be lexically contained in the current one."
) ? static_cast<void> (0) : __assert_fail ("CurContext == FD->getLexicalParent() && \"The next DeclContext should be lexically contained in the current one.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 1296, __PRETTY_FUNCTION__))
1296 "The next DeclContext should be lexically contained in the current one.")((CurContext == FD->getLexicalParent() && "The next DeclContext should be lexically contained in the current one."
) ? static_cast<void> (0) : __assert_fail ("CurContext == FD->getLexicalParent() && \"The next DeclContext should be lexically contained in the current one.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 1296, __PRETTY_FUNCTION__))
;
1297 CurContext = FD;
1298 S->setEntity(CurContext);
1299
1300 for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1301 ParmVarDecl *Param = FD->getParamDecl(P);
1302 // If the parameter has an identifier, then add it to the scope
1303 if (Param->getIdentifier()) {
1304 S->AddDecl(Param);
1305 IdResolver.AddDecl(Param);
1306 }
1307 }
1308}
1309
1310void Sema::ActOnExitFunctionContext() {
1311 // Same implementation as PopDeclContext, but returns to the lexical parent,
1312 // rather than the top-level class.
1313 assert(CurContext && "DeclContext imbalance!")((CurContext && "DeclContext imbalance!") ? static_cast
<void> (0) : __assert_fail ("CurContext && \"DeclContext imbalance!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 1313, __PRETTY_FUNCTION__))
;
1314 CurContext = CurContext->getLexicalParent();
1315 assert(CurContext && "Popped translation unit!")((CurContext && "Popped translation unit!") ? static_cast
<void> (0) : __assert_fail ("CurContext && \"Popped translation unit!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 1315, __PRETTY_FUNCTION__))
;
1316}
1317
1318/// Determine whether we allow overloading of the function
1319/// PrevDecl with another declaration.
1320///
1321/// This routine determines whether overloading is possible, not
1322/// whether some new function is actually an overload. It will return
1323/// true in C++ (where we can always provide overloads) or, as an
1324/// extension, in C when the previous function is already an
1325/// overloaded function declaration or has the "overloadable"
1326/// attribute.
1327static bool AllowOverloadingOfFunction(LookupResult &Previous,
1328 ASTContext &Context,
1329 const FunctionDecl *New) {
1330 if (Context.getLangOpts().CPlusPlus)
1331 return true;
1332
1333 if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1334 return true;
1335
1336 return Previous.getResultKind() == LookupResult::Found &&
1337 (Previous.getFoundDecl()->hasAttr<OverloadableAttr>() ||
1338 New->hasAttr<OverloadableAttr>());
1339}
1340
1341/// Add this decl to the scope shadowed decl chains.
1342void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1343 // Move up the scope chain until we find the nearest enclosing
1344 // non-transparent context. The declaration will be introduced into this
1345 // scope.
1346 while (S->getEntity() && S->getEntity()->isTransparentContext())
1347 S = S->getParent();
1348
1349 // Add scoped declarations into their context, so that they can be
1350 // found later. Declarations without a context won't be inserted
1351 // into any context.
1352 if (AddToContext)
1353 CurContext->addDecl(D);
1354
1355 // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1356 // are function-local declarations.
1357 if (getLangOpts().CPlusPlus && D->isOutOfLine() &&
1358 !D->getDeclContext()->getRedeclContext()->Equals(
1359 D->getLexicalDeclContext()->getRedeclContext()) &&
1360 !D->getLexicalDeclContext()->isFunctionOrMethod())
1361 return;
1362
1363 // Template instantiations should also not be pushed into scope.
1364 if (isa<FunctionDecl>(D) &&
1365 cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1366 return;
1367
1368 // If this replaces anything in the current scope,
1369 IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1370 IEnd = IdResolver.end();
1371 for (; I != IEnd; ++I) {
1372 if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1373 S->RemoveDecl(*I);
1374 IdResolver.RemoveDecl(*I);
1375
1376 // Should only need to replace one decl.
1377 break;
1378 }
1379 }
1380
1381 S->AddDecl(D);
1382
1383 if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1384 // Implicitly-generated labels may end up getting generated in an order that
1385 // isn't strictly lexical, which breaks name lookup. Be careful to insert
1386 // the label at the appropriate place in the identifier chain.
1387 for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1388 DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1389 if (IDC == CurContext) {
1390 if (!S->isDeclScope(*I))
1391 continue;
1392 } else if (IDC->Encloses(CurContext))
1393 break;
1394 }
1395
1396 IdResolver.InsertDeclAfter(I, D);
1397 } else {
1398 IdResolver.AddDecl(D);
1399 }
1400}
1401
1402void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1403 if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1404 TUScope->AddDecl(D);
1405}
1406
1407bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1408 bool AllowInlineNamespace) {
1409 return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
1410}
1411
1412Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1413 DeclContext *TargetDC = DC->getPrimaryContext();
1414 do {
1415 if (DeclContext *ScopeDC = S->getEntity())
1416 if (ScopeDC->getPrimaryContext() == TargetDC)
1417 return S;
1418 } while ((S = S->getParent()));
1419
1420 return nullptr;
1421}
1422
1423static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1424 DeclContext*,
1425 ASTContext&);
1426
1427/// Filters out lookup results that don't fall within the given scope
1428/// as determined by isDeclInScope.
1429void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
1430 bool ConsiderLinkage,
1431 bool AllowInlineNamespace) {
1432 LookupResult::Filter F = R.makeFilter();
1433 while (F.hasNext()) {
1434 NamedDecl *D = F.next();
1435
1436 if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
1437 continue;
1438
1439 if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
1440 continue;
1441
1442 F.erase();
1443 }
1444
1445 F.done();
1446}
1447
1448/// We've determined that \p New is a redeclaration of \p Old. Check that they
1449/// have compatible owning modules.
1450bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) {
1451 // FIXME: The Modules TS is not clear about how friend declarations are
1452 // to be treated. It's not meaningful to have different owning modules for
1453 // linkage in redeclarations of the same entity, so for now allow the
1454 // redeclaration and change the owning modules to match.
1455 if (New->getFriendObjectKind() &&
1456 Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) {
1457 New->setLocalOwningModule(Old->getOwningModule());
1458 makeMergedDefinitionVisible(New);
1459 return false;
1460 }
1461
1462 Module *NewM = New->getOwningModule();
1463 Module *OldM = Old->getOwningModule();
1464 if (NewM == OldM)
1465 return false;
1466
1467 // FIXME: Check proclaimed-ownership-declarations here too.
1468 bool NewIsModuleInterface = NewM && NewM->Kind == Module::ModuleInterfaceUnit;
1469 bool OldIsModuleInterface = OldM && OldM->Kind == Module::ModuleInterfaceUnit;
1470 if (NewIsModuleInterface || OldIsModuleInterface) {
1471 // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]:
1472 // if a declaration of D [...] appears in the purview of a module, all
1473 // other such declarations shall appear in the purview of the same module
1474 Diag(New->getLocation(), diag::err_mismatched_owning_module)
1475 << New
1476 << NewIsModuleInterface
1477 << (NewIsModuleInterface ? NewM->getFullModuleName() : "")
1478 << OldIsModuleInterface
1479 << (OldIsModuleInterface ? OldM->getFullModuleName() : "");
1480 Diag(Old->getLocation(), diag::note_previous_declaration);
1481 New->setInvalidDecl();
1482 return true;
1483 }
1484
1485 return false;
1486}
1487
1488static bool isUsingDecl(NamedDecl *D) {
1489 return isa<UsingShadowDecl>(D) ||
1490 isa<UnresolvedUsingTypenameDecl>(D) ||
1491 isa<UnresolvedUsingValueDecl>(D);
1492}
1493
1494/// Removes using shadow declarations from the lookup results.
1495static void RemoveUsingDecls(LookupResult &R) {
1496 LookupResult::Filter F = R.makeFilter();
1497 while (F.hasNext())
1498 if (isUsingDecl(F.next()))
1499 F.erase();
1500
1501 F.done();
1502}
1503
1504/// Check for this common pattern:
1505/// @code
1506/// class S {
1507/// S(const S&); // DO NOT IMPLEMENT
1508/// void operator=(const S&); // DO NOT IMPLEMENT
1509/// };
1510/// @endcode
1511static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1512 // FIXME: Should check for private access too but access is set after we get
1513 // the decl here.
1514 if (D->doesThisDeclarationHaveABody())
1515 return false;
1516
1517 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1518 return CD->isCopyConstructor();
1519 return D->isCopyAssignmentOperator();
1520}
1521
1522// We need this to handle
1523//
1524// typedef struct {
1525// void *foo() { return 0; }
1526// } A;
1527//
1528// When we see foo we don't know if after the typedef we will get 'A' or '*A'
1529// for example. If 'A', foo will have external linkage. If we have '*A',
1530// foo will have no linkage. Since we can't know until we get to the end
1531// of the typedef, this function finds out if D might have non-external linkage.
1532// Callers should verify at the end of the TU if it D has external linkage or
1533// not.
1534bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1535 const DeclContext *DC = D->getDeclContext();
1536 while (!DC->isTranslationUnit()) {
1537 if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1538 if (!RD->hasNameForLinkage())
1539 return true;
1540 }
1541 DC = DC->getParent();
1542 }
1543
1544 return !D->isExternallyVisible();
1545}
1546
1547// FIXME: This needs to be refactored; some other isInMainFile users want
1548// these semantics.
1549static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1550 if (S.TUKind != TU_Complete)
1551 return false;
1552 return S.SourceMgr.isInMainFile(Loc);
1553}
1554
1555bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1556 assert(D)((D) ? static_cast<void> (0) : __assert_fail ("D", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 1556, __PRETTY_FUNCTION__))
;
1557
1558 if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1559 return false;
1560
1561 // Ignore all entities declared within templates, and out-of-line definitions
1562 // of members of class templates.
1563 if (D->getDeclContext()->isDependentContext() ||
1564 D->getLexicalDeclContext()->isDependentContext())
1565 return false;
1566
1567 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1568 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1569 return false;
1570 // A non-out-of-line declaration of a member specialization was implicitly
1571 // instantiated; it's the out-of-line declaration that we're interested in.
1572 if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1573 FD->getMemberSpecializationInfo() && !FD->isOutOfLine())
1574 return false;
1575
1576 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1577 if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1578 return false;
1579 } else {
1580 // 'static inline' functions are defined in headers; don't warn.
1581 if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
1582 return false;
1583 }
1584
1585 if (FD->doesThisDeclarationHaveABody() &&
1586 Context.DeclMustBeEmitted(FD))
1587 return false;
1588 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1589 // Constants and utility variables are defined in headers with internal
1590 // linkage; don't warn. (Unlike functions, there isn't a convenient marker
1591 // like "inline".)
1592 if (!isMainFileLoc(*this, VD->getLocation()))
1593 return false;
1594
1595 if (Context.DeclMustBeEmitted(VD))
1596 return false;
1597
1598 if (VD->isStaticDataMember() &&
1599 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1600 return false;
1601 if (VD->isStaticDataMember() &&
1602 VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1603 VD->getMemberSpecializationInfo() && !VD->isOutOfLine())
1604 return false;
1605
1606 if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation()))
1607 return false;
1608 } else {
1609 return false;
1610 }
1611
1612 // Only warn for unused decls internal to the translation unit.
1613 // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1614 // for inline functions defined in the main source file, for instance.
1615 return mightHaveNonExternalLinkage(D);
1616}
1617
1618void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1619 if (!D)
1620 return;
1621
1622 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1623 const FunctionDecl *First = FD->getFirstDecl();
1624 if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1625 return; // First should already be in the vector.
1626 }
1627
1628 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1629 const VarDecl *First = VD->getFirstDecl();
1630 if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1631 return; // First should already be in the vector.
1632 }
1633
1634 if (ShouldWarnIfUnusedFileScopedDecl(D))
1635 UnusedFileScopedDecls.push_back(D);
1636}
1637
1638static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1639 if (D->isInvalidDecl())
1640 return false;
1641
1642 bool Referenced = false;
1643 if (auto *DD = dyn_cast<DecompositionDecl>(D)) {
1644 // For a decomposition declaration, warn if none of the bindings are
1645 // referenced, instead of if the variable itself is referenced (which
1646 // it is, by the bindings' expressions).
1647 for (auto *BD : DD->bindings()) {
1648 if (BD->isReferenced()) {
1649 Referenced = true;
1650 break;
1651 }
1652 }
1653 } else if (!D->getDeclName()) {
1654 return false;
1655 } else if (D->isReferenced() || D->isUsed()) {
1656 Referenced = true;
1657 }
1658
1659 if (Referenced || D->hasAttr<UnusedAttr>() ||
1660 D->hasAttr<ObjCPreciseLifetimeAttr>())
1661 return false;
1662
1663 if (isa<LabelDecl>(D))
1664 return true;
1665
1666 // Except for labels, we only care about unused decls that are local to
1667 // functions.
1668 bool WithinFunction = D->getDeclContext()->isFunctionOrMethod();
1669 if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext()))
1670 // For dependent types, the diagnostic is deferred.
1671 WithinFunction =
1672 WithinFunction || (R->isLocalClass() && !R->isDependentType());
1673 if (!WithinFunction)
1674 return false;
1675
1676 if (isa<TypedefNameDecl>(D))
1677 return true;
1678
1679 // White-list anything that isn't a local variable.
1680 if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D))
1681 return false;
1682
1683 // Types of valid local variables should be complete, so this should succeed.
1684 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1685
1686 // White-list anything with an __attribute__((unused)) type.
1687 const auto *Ty = VD->getType().getTypePtr();
1688
1689 // Only look at the outermost level of typedef.
1690 if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1691 if (TT->getDecl()->hasAttr<UnusedAttr>())
1692 return false;
1693 }
1694
1695 // If we failed to complete the type for some reason, or if the type is
1696 // dependent, don't diagnose the variable.
1697 if (Ty->isIncompleteType() || Ty->isDependentType())
1698 return false;
1699
1700 // Look at the element type to ensure that the warning behaviour is
1701 // consistent for both scalars and arrays.
1702 Ty = Ty->getBaseElementTypeUnsafe();
1703
1704 if (const TagType *TT = Ty->getAs<TagType>()) {
1705 const TagDecl *Tag = TT->getDecl();
1706 if (Tag->hasAttr<UnusedAttr>())
1707 return false;
1708
1709 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1710 if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
1711 return false;
1712
1713 if (const Expr *Init = VD->getInit()) {
1714 if (const ExprWithCleanups *Cleanups =
1715 dyn_cast<ExprWithCleanups>(Init))
1716 Init = Cleanups->getSubExpr();
1717 const CXXConstructExpr *Construct =
1718 dyn_cast<CXXConstructExpr>(Init);
1719 if (Construct && !Construct->isElidable()) {
1720 CXXConstructorDecl *CD = Construct->getConstructor();
1721 if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() &&
1722 (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
1723 return false;
1724 }
1725 }
1726 }
1727 }
1728
1729 // TODO: __attribute__((unused)) templates?
1730 }
1731
1732 return true;
1733}
1734
1735static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1736 FixItHint &Hint) {
1737 if (isa<LabelDecl>(D)) {
1738 SourceLocation AfterColon = Lexer::findLocationAfterToken(
1739 D->getEndLoc(), tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(),
1740 true);
1741 if (AfterColon.isInvalid())
1742 return;
1743 Hint = FixItHint::CreateRemoval(
1744 CharSourceRange::getCharRange(D->getBeginLoc(), AfterColon));
1745 }
1746}
1747
1748void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) {
1749 if (D->getTypeForDecl()->isDependentType())
1750 return;
1751
1752 for (auto *TmpD : D->decls()) {
1753 if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD))
1754 DiagnoseUnusedDecl(T);
1755 else if(const auto *R = dyn_cast<RecordDecl>(TmpD))
1756 DiagnoseUnusedNestedTypedefs(R);
1757 }
1758}
1759
1760/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1761/// unless they are marked attr(unused).
1762void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1763 if (!ShouldDiagnoseUnusedDecl(D))
1764 return;
1765
1766 if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
1767 // typedefs can be referenced later on, so the diagnostics are emitted
1768 // at end-of-translation-unit.
1769 UnusedLocalTypedefNameCandidates.insert(TD);
1770 return;
1771 }
1772
1773 FixItHint Hint;
1774 GenerateFixForUnusedDecl(D, Context, Hint);
1775
1776 unsigned DiagID;
1777 if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1778 DiagID = diag::warn_unused_exception_param;
1779 else if (isa<LabelDecl>(D))
1780 DiagID = diag::warn_unused_label;
1781 else
1782 DiagID = diag::warn_unused_variable;
1783
1784 Diag(D->getLocation(), DiagID) << D << Hint;
1785}
1786
1787static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1788 // Verify that we have no forward references left. If so, there was a goto
1789 // or address of a label taken, but no definition of it. Label fwd
1790 // definitions are indicated with a null substmt which is also not a resolved
1791 // MS inline assembly label name.
1792 bool Diagnose = false;
1793 if (L->isMSAsmLabel())
1794 Diagnose = !L->isResolvedMSAsmLabel();
1795 else
1796 Diagnose = L->getStmt() == nullptr;
1797 if (Diagnose)
1798 S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1799}
1800
1801void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1802 S->mergeNRVOIntoParent();
1803
1804 if (S->decl_empty()) return;
1805 assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&(((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope
)) && "Scope shouldn't contain decls!") ? static_cast
<void> (0) : __assert_fail ("(S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && \"Scope shouldn't contain decls!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 1806, __PRETTY_FUNCTION__))
1806 "Scope shouldn't contain decls!")(((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope
)) && "Scope shouldn't contain decls!") ? static_cast
<void> (0) : __assert_fail ("(S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && \"Scope shouldn't contain decls!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 1806, __PRETTY_FUNCTION__))
;
1807
1808 for (auto *TmpD : S->decls()) {
1809 assert(TmpD && "This decl didn't get pushed??")((TmpD && "This decl didn't get pushed??") ? static_cast
<void> (0) : __assert_fail ("TmpD && \"This decl didn't get pushed??\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 1809, __PRETTY_FUNCTION__))
;
1810
1811 assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?")((isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?"
) ? static_cast<void> (0) : __assert_fail ("isa<NamedDecl>(TmpD) && \"Decl isn't NamedDecl?\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 1811, __PRETTY_FUNCTION__))
;
1812 NamedDecl *D = cast<NamedDecl>(TmpD);
1813
1814 // Diagnose unused variables in this scope.
1815 if (!S->hasUnrecoverableErrorOccurred()) {
1816 DiagnoseUnusedDecl(D);
1817 if (const auto *RD = dyn_cast<RecordDecl>(D))
1818 DiagnoseUnusedNestedTypedefs(RD);
1819 }
1820
1821 if (!D->getDeclName()) continue;
1822
1823 // If this was a forward reference to a label, verify it was defined.
1824 if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1825 CheckPoppedLabel(LD, *this);
1826
1827 // Remove this name from our lexical scope, and warn on it if we haven't
1828 // already.
1829 IdResolver.RemoveDecl(D);
1830 auto ShadowI = ShadowingDecls.find(D);
1831 if (ShadowI != ShadowingDecls.end()) {
1832 if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) {
1833 Diag(D->getLocation(), diag::warn_ctor_parm_shadows_field)
1834 << D << FD << FD->getParent();
1835 Diag(FD->getLocation(), diag::note_previous_declaration);
1836 }
1837 ShadowingDecls.erase(ShadowI);
1838 }
1839 }
1840}
1841
1842/// Look for an Objective-C class in the translation unit.
1843///
1844/// \param Id The name of the Objective-C class we're looking for. If
1845/// typo-correction fixes this name, the Id will be updated
1846/// to the fixed name.
1847///
1848/// \param IdLoc The location of the name in the translation unit.
1849///
1850/// \param DoTypoCorrection If true, this routine will attempt typo correction
1851/// if there is no class with the given name.
1852///
1853/// \returns The declaration of the named Objective-C class, or NULL if the
1854/// class could not be found.
1855ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1856 SourceLocation IdLoc,
1857 bool DoTypoCorrection) {
1858 // The third "scope" argument is 0 since we aren't enabling lazy built-in
1859 // creation from this context.
1860 NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1861
1862 if (!IDecl && DoTypoCorrection) {
1863 // Perform typo correction at the given location, but only if we
1864 // find an Objective-C class name.
1865 if (TypoCorrection C = CorrectTypo(
1866 DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName, TUScope, nullptr,
1867 llvm::make_unique<DeclFilterCCC<ObjCInterfaceDecl>>(),
1868 CTK_ErrorRecovery)) {
1869 diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
1870 IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1871 Id = IDecl->getIdentifier();
1872 }
1873 }
1874 ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1875 // This routine must always return a class definition, if any.
1876 if (Def && Def->getDefinition())
1877 Def = Def->getDefinition();
1878 return Def;
1879}
1880
1881/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1882/// from S, where a non-field would be declared. This routine copes
1883/// with the difference between C and C++ scoping rules in structs and
1884/// unions. For example, the following code is well-formed in C but
1885/// ill-formed in C++:
1886/// @code
1887/// struct S6 {
1888/// enum { BAR } e;
1889/// };
1890///
1891/// void test_S6() {
1892/// struct S6 a;
1893/// a.e = BAR;
1894/// }
1895/// @endcode
1896/// For the declaration of BAR, this routine will return a different
1897/// scope. The scope S will be the scope of the unnamed enumeration
1898/// within S6. In C++, this routine will return the scope associated
1899/// with S6, because the enumeration's scope is a transparent
1900/// context but structures can contain non-field names. In C, this
1901/// routine will return the translation unit scope, since the
1902/// enumeration's scope is a transparent context and structures cannot
1903/// contain non-field names.
1904Scope *Sema::getNonFieldDeclScope(Scope *S) {
1905 while (((S->getFlags() & Scope::DeclScope) == 0) ||
1906 (S->getEntity() && S->getEntity()->isTransparentContext()) ||
1907 (S->isClassScope() && !getLangOpts().CPlusPlus))
1908 S = S->getParent();
1909 return S;
1910}
1911
1912/// Looks up the declaration of "struct objc_super" and
1913/// saves it for later use in building builtin declaration of
1914/// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1915/// pre-existing declaration exists no action takes place.
1916static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1917 IdentifierInfo *II) {
1918 if (!II->isStr("objc_msgSendSuper"))
1919 return;
1920 ASTContext &Context = ThisSema.Context;
1921
1922 LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1923 SourceLocation(), Sema::LookupTagName);
1924 ThisSema.LookupName(Result, S);
1925 if (Result.getResultKind() == LookupResult::Found)
1926 if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1927 Context.setObjCSuperType(Context.getTagDeclType(TD));
1928}
1929
1930static StringRef getHeaderName(ASTContext::GetBuiltinTypeError Error) {
1931 switch (Error) {
1932 case ASTContext::GE_None:
1933 return "";
1934 case ASTContext::GE_Missing_stdio:
1935 return "stdio.h";
1936 case ASTContext::GE_Missing_setjmp:
1937 return "setjmp.h";
1938 case ASTContext::GE_Missing_ucontext:
1939 return "ucontext.h";
1940 }
1941 llvm_unreachable("unhandled error kind")::llvm::llvm_unreachable_internal("unhandled error kind", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 1941)
;
1942}
1943
1944/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1945/// file scope. lazily create a decl for it. ForRedeclaration is true
1946/// if we're creating this built-in in anticipation of redeclaring the
1947/// built-in.
1948NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
1949 Scope *S, bool ForRedeclaration,
1950 SourceLocation Loc) {
1951 LookupPredefedObjCSuperType(*this, S, II);
1952
1953 ASTContext::GetBuiltinTypeError Error;
1954 QualType R = Context.GetBuiltinType(ID, Error);
1955 if (Error) {
1956 if (ForRedeclaration)
1957 Diag(Loc, diag::warn_implicit_decl_requires_sysheader)
1958 << getHeaderName(Error) << Context.BuiltinInfo.getName(ID);
1959 return nullptr;
1960 }
1961
1962 if (!ForRedeclaration &&
1963 (Context.BuiltinInfo.isPredefinedLibFunction(ID) ||
1964 Context.BuiltinInfo.isHeaderDependentFunction(ID))) {
1965 Diag(Loc, diag::ext_implicit_lib_function_decl)
1966 << Context.BuiltinInfo.getName(ID) << R;
1967 if (Context.BuiltinInfo.getHeaderName(ID) &&
1968 !Diags.isIgnored(diag::ext_implicit_lib_function_decl, Loc))
1969 Diag(Loc, diag::note_include_header_or_declare)
1970 << Context.BuiltinInfo.getHeaderName(ID)
1971 << Context.BuiltinInfo.getName(ID);
1972 }
1973
1974 if (R.isNull())
1975 return nullptr;
1976
1977 DeclContext *Parent = Context.getTranslationUnitDecl();
1978 if (getLangOpts().CPlusPlus) {
1979 LinkageSpecDecl *CLinkageDecl =
1980 LinkageSpecDecl::Create(Context, Parent, Loc, Loc,
1981 LinkageSpecDecl::lang_c, false);
1982 CLinkageDecl->setImplicit();
1983 Parent->addDecl(CLinkageDecl);
1984 Parent = CLinkageDecl;
1985 }
1986
1987 FunctionDecl *New = FunctionDecl::Create(Context,
1988 Parent,
1989 Loc, Loc, II, R, /*TInfo=*/nullptr,
1990 SC_Extern,
1991 false,
1992 R->isFunctionProtoType());
1993 New->setImplicit();
1994
1995 // Create Decl objects for each parameter, adding them to the
1996 // FunctionDecl.
1997 if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1998 SmallVector<ParmVarDecl*, 16> Params;
1999 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2000 ParmVarDecl *parm =
2001 ParmVarDecl::Create(Context, New, SourceLocation(), SourceLocation(),
2002 nullptr, FT->getParamType(i), /*TInfo=*/nullptr,
2003 SC_None, nullptr);
2004 parm->setScopeInfo(0, i);
2005 Params.push_back(parm);
2006 }
2007 New->setParams(Params);
2008 }
2009
2010 AddKnownFunctionAttributes(New);
2011 RegisterLocallyScopedExternCDecl(New, S);
2012
2013 // TUScope is the translation-unit scope to insert this function into.
2014 // FIXME: This is hideous. We need to teach PushOnScopeChains to
2015 // relate Scopes to DeclContexts, and probably eliminate CurContext
2016 // entirely, but we're not there yet.
2017 DeclContext *SavedContext = CurContext;
2018 CurContext = Parent;
2019 PushOnScopeChains(New, TUScope);
2020 CurContext = SavedContext;
2021 return New;
2022}
2023
2024/// Typedef declarations don't have linkage, but they still denote the same
2025/// entity if their types are the same.
2026/// FIXME: This is notionally doing the same thing as ASTReaderDecl's
2027/// isSameEntity.
2028static void filterNonConflictingPreviousTypedefDecls(Sema &S,
2029 TypedefNameDecl *Decl,
2030 LookupResult &Previous) {
2031 // This is only interesting when modules are enabled.
2032 if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility)
2033 return;
2034
2035 // Empty sets are uninteresting.
2036 if (Previous.empty())
2037 return;
2038
2039 LookupResult::Filter Filter = Previous.makeFilter();
2040 while (Filter.hasNext()) {
2041 NamedDecl *Old = Filter.next();
2042
2043 // Non-hidden declarations are never ignored.
2044 if (S.isVisible(Old))
2045 continue;
2046
2047 // Declarations of the same entity are not ignored, even if they have
2048 // different linkages.
2049 if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2050 if (S.Context.hasSameType(OldTD->getUnderlyingType(),
2051 Decl->getUnderlyingType()))
2052 continue;
2053
2054 // If both declarations give a tag declaration a typedef name for linkage
2055 // purposes, then they declare the same entity.
2056 if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) &&
2057 Decl->getAnonDeclWithTypedefName())
2058 continue;
2059 }
2060
2061 Filter.erase();
2062 }
2063
2064 Filter.done();
2065}
2066
2067bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
2068 QualType OldType;
2069 if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
2070 OldType = OldTypedef->getUnderlyingType();
2071 else
2072 OldType = Context.getTypeDeclType(Old);
2073 QualType NewType = New->getUnderlyingType();
2074
2075 if (NewType->isVariablyModifiedType()) {
2076 // Must not redefine a typedef with a variably-modified type.
2077 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2078 Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
2079 << Kind << NewType;
2080 if (Old->getLocation().isValid())
2081 notePreviousDefinition(Old, New->getLocation());
2082 New->setInvalidDecl();
2083 return true;
2084 }
2085
2086 if (OldType != NewType &&
2087 !OldType->isDependentType() &&
2088 !NewType->isDependentType() &&
2089 !Context.hasSameType(OldType, NewType)) {
2090 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2091 Diag(New->getLocation(), diag::err_redefinition_different_typedef)
2092 << Kind << NewType << OldType;
2093 if (Old->getLocation().isValid())
2094 notePreviousDefinition(Old, New->getLocation());
2095 New->setInvalidDecl();
2096 return true;
2097 }
2098 return false;
2099}
2100
2101/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
2102/// same name and scope as a previous declaration 'Old'. Figure out
2103/// how to resolve this situation, merging decls or emitting
2104/// diagnostics as appropriate. If there was an error, set New to be invalid.
2105///
2106void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
2107 LookupResult &OldDecls) {
2108 // If the new decl is known invalid already, don't bother doing any
2109 // merging checks.
2110 if (New->isInvalidDecl()) return;
2111
2112 // Allow multiple definitions for ObjC built-in typedefs.
2113 // FIXME: Verify the underlying types are equivalent!
2114 if (getLangOpts().ObjC) {
2115 const IdentifierInfo *TypeID = New->getIdentifier();
2116 switch (TypeID->getLength()) {
2117 default: break;
2118 case 2:
2119 {
2120 if (!TypeID->isStr("id"))
2121 break;
2122 QualType T = New->getUnderlyingType();
2123 if (!T->isPointerType())
2124 break;
2125 if (!T->isVoidPointerType()) {
2126 QualType PT = T->getAs<PointerType>()->getPointeeType();
2127 if (!PT->isStructureType())
2128 break;
2129 }
2130 Context.setObjCIdRedefinitionType(T);
2131 // Install the built-in type for 'id', ignoring the current definition.
2132 New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
2133 return;
2134 }
2135 case 5:
2136 if (!TypeID->isStr("Class"))
2137 break;
2138 Context.setObjCClassRedefinitionType(New->getUnderlyingType());
2139 // Install the built-in type for 'Class', ignoring the current definition.
2140 New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
2141 return;
2142 case 3:
2143 if (!TypeID->isStr("SEL"))
2144 break;
2145 Context.setObjCSelRedefinitionType(New->getUnderlyingType());
2146 // Install the built-in type for 'SEL', ignoring the current definition.
2147 New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
2148 return;
2149 }
2150 // Fall through - the typedef name was not a builtin type.
2151 }
2152
2153 // Verify the old decl was also a type.
2154 TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
2155 if (!Old) {
2156 Diag(New->getLocation(), diag::err_redefinition_different_kind)
2157 << New->getDeclName();
2158
2159 NamedDecl *OldD = OldDecls.getRepresentativeDecl();
2160 if (OldD->getLocation().isValid())
2161 notePreviousDefinition(OldD, New->getLocation());
2162
2163 return New->setInvalidDecl();
2164 }
2165
2166 // If the old declaration is invalid, just give up here.
2167 if (Old->isInvalidDecl())
2168 return New->setInvalidDecl();
2169
2170 if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2171 auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
2172 auto *NewTag = New->getAnonDeclWithTypedefName();
2173 NamedDecl *Hidden = nullptr;
2174 if (OldTag && NewTag &&
2175 OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() &&
2176 !hasVisibleDefinition(OldTag, &Hidden)) {
2177 // There is a definition of this tag, but it is not visible. Use it
2178 // instead of our tag.
2179 New->setTypeForDecl(OldTD->getTypeForDecl());
2180 if (OldTD->isModed())
2181 New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(),
2182 OldTD->getUnderlyingType());
2183 else
2184 New->setTypeSourceInfo(OldTD->getTypeSourceInfo());
2185
2186 // Make the old tag definition visible.
2187 makeMergedDefinitionVisible(Hidden);
2188
2189 // If this was an unscoped enumeration, yank all of its enumerators
2190 // out of the scope.
2191 if (isa<EnumDecl>(NewTag)) {
2192 Scope *EnumScope = getNonFieldDeclScope(S);
2193 for (auto *D : NewTag->decls()) {
2194 auto *ED = cast<EnumConstantDecl>(D);
2195 assert(EnumScope->isDeclScope(ED))((EnumScope->isDeclScope(ED)) ? static_cast<void> (0
) : __assert_fail ("EnumScope->isDeclScope(ED)", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 2195, __PRETTY_FUNCTION__))
;
2196 EnumScope->RemoveDecl(ED);
2197 IdResolver.RemoveDecl(ED);
2198 ED->getLexicalDeclContext()->removeDecl(ED);
2199 }
2200 }
2201 }
2202 }
2203
2204 // If the typedef types are not identical, reject them in all languages and
2205 // with any extensions enabled.
2206 if (isIncompatibleTypedef(Old, New))
2207 return;
2208
2209 // The types match. Link up the redeclaration chain and merge attributes if
2210 // the old declaration was a typedef.
2211 if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
2212 New->setPreviousDecl(Typedef);
2213 mergeDeclAttributes(New, Old);
2214 }
2215
2216 if (getLangOpts().MicrosoftExt)
2217 return;
2218
2219 if (getLangOpts().CPlusPlus) {
2220 // C++ [dcl.typedef]p2:
2221 // In a given non-class scope, a typedef specifier can be used to
2222 // redefine the name of any type declared in that scope to refer
2223 // to the type to which it already refers.
2224 if (!isa<CXXRecordDecl>(CurContext))
2225 return;
2226
2227 // C++0x [dcl.typedef]p4:
2228 // In a given class scope, a typedef specifier can be used to redefine
2229 // any class-name declared in that scope that is not also a typedef-name
2230 // to refer to the type to which it already refers.
2231 //
2232 // This wording came in via DR424, which was a correction to the
2233 // wording in DR56, which accidentally banned code like:
2234 //
2235 // struct S {
2236 // typedef struct A { } A;
2237 // };
2238 //
2239 // in the C++03 standard. We implement the C++0x semantics, which
2240 // allow the above but disallow
2241 //
2242 // struct S {
2243 // typedef int I;
2244 // typedef int I;
2245 // };
2246 //
2247 // since that was the intent of DR56.
2248 if (!isa<TypedefNameDecl>(Old))
2249 return;
2250
2251 Diag(New->getLocation(), diag::err_redefinition)
2252 << New->getDeclName();
2253 notePreviousDefinition(Old, New->getLocation());
2254 return New->setInvalidDecl();
2255 }
2256
2257 // Modules always permit redefinition of typedefs, as does C11.
2258 if (getLangOpts().Modules || getLangOpts().C11)
2259 return;
2260
2261 // If we have a redefinition of a typedef in C, emit a warning. This warning
2262 // is normally mapped to an error, but can be controlled with
2263 // -Wtypedef-redefinition. If either the original or the redefinition is
2264 // in a system header, don't emit this for compatibility with GCC.
2265 if (getDiagnostics().getSuppressSystemWarnings() &&
2266 // Some standard types are defined implicitly in Clang (e.g. OpenCL).
2267 (Old->isImplicit() ||
2268 Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
2269 Context.getSourceManager().isInSystemHeader(New->getLocation())))
2270 return;
2271
2272 Diag(New->getLocation(), diag::ext_redefinition_of_typedef)
2273 << New->getDeclName();
2274 notePreviousDefinition(Old, New->getLocation());
2275}
2276
2277/// DeclhasAttr - returns true if decl Declaration already has the target
2278/// attribute.
2279static bool DeclHasAttr(const Decl *D, const Attr *A) {
2280 const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
2281 const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
2282 for (const auto *i : D->attrs())
2283 if (i->getKind() == A->getKind()) {
2284 if (Ann) {
2285 if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
2286 return true;
2287 continue;
2288 }
2289 // FIXME: Don't hardcode this check
2290 if (OA && isa<OwnershipAttr>(i))
2291 return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
2292 return true;
2293 }
2294
2295 return false;
2296}
2297
2298static bool isAttributeTargetADefinition(Decl *D) {
2299 if (VarDecl *VD = dyn_cast<VarDecl>(D))
2300 return VD->isThisDeclarationADefinition();
2301 if (TagDecl *TD = dyn_cast<TagDecl>(D))
2302 return TD->isCompleteDefinition() || TD->isBeingDefined();
2303 return true;
2304}
2305
2306/// Merge alignment attributes from \p Old to \p New, taking into account the
2307/// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
2308///
2309/// \return \c true if any attributes were added to \p New.
2310static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
2311 // Look for alignas attributes on Old, and pick out whichever attribute
2312 // specifies the strictest alignment requirement.
2313 AlignedAttr *OldAlignasAttr = nullptr;
2314 AlignedAttr *OldStrictestAlignAttr = nullptr;
2315 unsigned OldAlign = 0;
2316 for (auto *I : Old->specific_attrs<AlignedAttr>()) {
2317 // FIXME: We have no way of representing inherited dependent alignments
2318 // in a case like:
2319 // template<int A, int B> struct alignas(A) X;
2320 // template<int A, int B> struct alignas(B) X {};
2321 // For now, we just ignore any alignas attributes which are not on the
2322 // definition in such a case.
2323 if (I->isAlignmentDependent())
2324 return false;
2325
2326 if (I->isAlignas())
2327 OldAlignasAttr = I;
2328
2329 unsigned Align = I->getAlignment(S.Context);
2330 if (Align > OldAlign) {
2331 OldAlign = Align;
2332 OldStrictestAlignAttr = I;
2333 }
2334 }
2335
2336 // Look for alignas attributes on New.
2337 AlignedAttr *NewAlignasAttr = nullptr;
2338 unsigned NewAlign = 0;
2339 for (auto *I : New->specific_attrs<AlignedAttr>()) {
2340 if (I->isAlignmentDependent())
2341 return false;
2342
2343 if (I->isAlignas())
2344 NewAlignasAttr = I;
2345
2346 unsigned Align = I->getAlignment(S.Context);
2347 if (Align > NewAlign)
2348 NewAlign = Align;
2349 }
2350
2351 if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
2352 // Both declarations have 'alignas' attributes. We require them to match.
2353 // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
2354 // fall short. (If two declarations both have alignas, they must both match
2355 // every definition, and so must match each other if there is a definition.)
2356
2357 // If either declaration only contains 'alignas(0)' specifiers, then it
2358 // specifies the natural alignment for the type.
2359 if (OldAlign == 0 || NewAlign == 0) {
2360 QualType Ty;
2361 if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
2362 Ty = VD->getType();
2363 else
2364 Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
2365
2366 if (OldAlign == 0)
2367 OldAlign = S.Context.getTypeAlign(Ty);
2368 if (NewAlign == 0)
2369 NewAlign = S.Context.getTypeAlign(Ty);
2370 }
2371
2372 if (OldAlign != NewAlign) {
2373 S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
2374 << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
2375 << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
2376 S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
2377 }
2378 }
2379
2380 if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
2381 // C++11 [dcl.align]p6:
2382 // if any declaration of an entity has an alignment-specifier,
2383 // every defining declaration of that entity shall specify an
2384 // equivalent alignment.
2385 // C11 6.7.5/7:
2386 // If the definition of an object does not have an alignment
2387 // specifier, any other declaration of that object shall also
2388 // have no alignment specifier.
2389 S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
2390 << OldAlignasAttr;
2391 S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
2392 << OldAlignasAttr;
2393 }
2394
2395 bool AnyAdded = false;
2396
2397 // Ensure we have an attribute representing the strictest alignment.
2398 if (OldAlign > NewAlign) {
2399 AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
2400 Clone->setInherited(true);
2401 New->addAttr(Clone);
2402 AnyAdded = true;
2403 }
2404
2405 // Ensure we have an alignas attribute if the old declaration had one.
2406 if (OldAlignasAttr && !NewAlignasAttr &&
2407 !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
2408 AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
2409 Clone->setInherited(true);
2410 New->addAttr(Clone);
2411 AnyAdded = true;
2412 }
2413
2414 return AnyAdded;
2415}
2416
2417static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
2418 const InheritableAttr *Attr,
2419 Sema::AvailabilityMergeKind AMK) {
2420 // This function copies an attribute Attr from a previous declaration to the
2421 // new declaration D if the new declaration doesn't itself have that attribute
2422 // yet or if that attribute allows duplicates.
2423 // If you're adding a new attribute that requires logic different from
2424 // "use explicit attribute on decl if present, else use attribute from
2425 // previous decl", for example if the attribute needs to be consistent
2426 // between redeclarations, you need to call a custom merge function here.
2427 InheritableAttr *NewAttr = nullptr;
2428 unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
2429 if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
2430 NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
2431 AA->isImplicit(), AA->getIntroduced(),
2432 AA->getDeprecated(),
2433 AA->getObsoleted(), AA->getUnavailable(),
2434 AA->getMessage(), AA->getStrict(),
2435 AA->getReplacement(), AMK,
2436 AttrSpellingListIndex);
2437 else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
2438 NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
2439 AttrSpellingListIndex);
2440 else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
2441 NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
2442 AttrSpellingListIndex);
2443 else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
2444 NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
2445 AttrSpellingListIndex);
2446 else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
2447 NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
2448 AttrSpellingListIndex);
2449 else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
2450 NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
2451 FA->getFormatIdx(), FA->getFirstArg(),
2452 AttrSpellingListIndex);
2453 else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
2454 NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
2455 AttrSpellingListIndex);
2456 else if (const auto *CSA = dyn_cast<CodeSegAttr>(Attr))
2457 NewAttr = S.mergeCodeSegAttr(D, CSA->getRange(), CSA->getName(),
2458 AttrSpellingListIndex);
2459 else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
2460 NewAttr = S.mergeMSInheritanceAttr(D, IA->getRange(), IA->getBestCase(),
2461 AttrSpellingListIndex,
2462 IA->getSemanticSpelling());
2463 else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr))
2464 NewAttr = S.mergeAlwaysInlineAttr(D, AA->getRange(),
2465 &S.Context.Idents.get(AA->getSpelling()),
2466 AttrSpellingListIndex);
2467 else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) &&
2468 (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) ||
2469 isa<CUDAGlobalAttr>(Attr))) {
2470 // CUDA target attributes are part of function signature for
2471 // overloading purposes and must not be merged.
2472 return false;
2473 } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr))
2474 NewAttr = S.mergeMinSizeAttr(D, MA->getRange(), AttrSpellingListIndex);
2475 else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr))
2476 NewAttr = S.mergeOptimizeNoneAttr(D, OA->getRange(), AttrSpellingListIndex);
2477 else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr))
2478 NewAttr = S.mergeInternalLinkageAttr(D, *InternalLinkageA);
2479 else if (const auto *CommonA = dyn_cast<CommonAttr>(Attr))
2480 NewAttr = S.mergeCommonAttr(D, *CommonA);
2481 else if (isa<AlignedAttr>(Attr))
2482 // AlignedAttrs are handled separately, because we need to handle all
2483 // such attributes on a declaration at the same time.
2484 NewAttr = nullptr;
2485 else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) &&
2486 (AMK == Sema::AMK_Override ||
2487 AMK == Sema::AMK_ProtocolImplementation))
2488 NewAttr = nullptr;
2489 else if (const auto *UA = dyn_cast<UuidAttr>(Attr))
2490 NewAttr = S.mergeUuidAttr(D, UA->getRange(), AttrSpellingListIndex,
2491 UA->getGuid());
2492 else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr))
2493 NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2494
2495 if (NewAttr) {
2496 NewAttr->setInherited(true);
2497 D->addAttr(NewAttr);
2498 if (isa<MSInheritanceAttr>(NewAttr))
2499 S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
2500 return true;
2501 }
2502
2503 return false;
2504}
2505
2506static const NamedDecl *getDefinition(const Decl *D) {
2507 if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2508 return TD->getDefinition();
2509 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2510 const VarDecl *Def = VD->getDefinition();
2511 if (Def)
2512 return Def;
2513 return VD->getActingDefinition();
2514 }
2515 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
2516 return FD->getDefinition();
2517 return nullptr;
2518}
2519
2520static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2521 for (const auto *Attribute : D->attrs())
2522 if (Attribute->getKind() == Kind)
2523 return true;
2524 return false;
2525}
2526
2527/// checkNewAttributesAfterDef - If we already have a definition, check that
2528/// there are no new attributes in this declaration.
2529static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2530 if (!New->hasAttrs())
2531 return;
2532
2533 const NamedDecl *Def = getDefinition(Old);
2534 if (!Def || Def == New)
2535 return;
2536
2537 AttrVec &NewAttributes = New->getAttrs();
2538 for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2539 const Attr *NewAttribute = NewAttributes[I];
2540
2541 if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) {
2542 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) {
2543 Sema::SkipBodyInfo SkipBody;
2544 S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody);
2545
2546 // If we're skipping this definition, drop the "alias" attribute.
2547 if (SkipBody.ShouldSkip) {
2548 NewAttributes.erase(NewAttributes.begin() + I);
2549 --E;
2550 continue;
2551 }
2552 } else {
2553 VarDecl *VD = cast<VarDecl>(New);
2554 unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
2555 VarDecl::TentativeDefinition
2556 ? diag::err_alias_after_tentative
2557 : diag::err_redefinition;
2558 S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
2559 if (Diag == diag::err_redefinition)
2560 S.notePreviousDefinition(Def, VD->getLocation());
2561 else
2562 S.Diag(Def->getLocation(), diag::note_previous_definition);
2563 VD->setInvalidDecl();
2564 }
2565 ++I;
2566 continue;
2567 }
2568
2569 if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
2570 // Tentative definitions are only interesting for the alias check above.
2571 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
2572 ++I;
2573 continue;
2574 }
2575 }
2576
2577 if (hasAttribute(Def, NewAttribute->getKind())) {
2578 ++I;
2579 continue; // regular attr merging will take care of validating this.
2580 }
2581
2582 if (isa<C11NoReturnAttr>(NewAttribute)) {
2583 // C's _Noreturn is allowed to be added to a function after it is defined.
2584 ++I;
2585 continue;
2586 } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2587 if (AA->isAlignas()) {
2588 // C++11 [dcl.align]p6:
2589 // if any declaration of an entity has an alignment-specifier,
2590 // every defining declaration of that entity shall specify an
2591 // equivalent alignment.
2592 // C11 6.7.5/7:
2593 // If the definition of an object does not have an alignment
2594 // specifier, any other declaration of that object shall also
2595 // have no alignment specifier.
2596 S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2597 << AA;
2598 S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2599 << AA;
2600 NewAttributes.erase(NewAttributes.begin() + I);
2601 --E;
2602 continue;
2603 }
2604 }
2605
2606 S.Diag(NewAttribute->getLocation(),
2607 diag::warn_attribute_precede_definition);
2608 S.Diag(Def->getLocation(), diag::note_previous_definition);
2609 NewAttributes.erase(NewAttributes.begin() + I);
2610 --E;
2611 }
2612}
2613
2614/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
2615void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2616 AvailabilityMergeKind AMK) {
2617 if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
2618 UsedAttr *NewAttr = OldAttr->clone(Context);
2619 NewAttr->setInherited(true);
2620 New->addAttr(NewAttr);
2621 }
2622
2623 if (!Old->hasAttrs() && !New->hasAttrs())
2624 return;
2625
2626 // Attributes declared post-definition are currently ignored.
2627 checkNewAttributesAfterDef(*this, New, Old);
2628
2629 if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) {
2630 if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) {
2631 if (OldA->getLabel() != NewA->getLabel()) {
2632 // This redeclaration changes __asm__ label.
2633 Diag(New->getLocation(), diag::err_different_asm_label);
2634 Diag(OldA->getLocation(), diag::note_previous_declaration);
2635 }
2636 } else if (Old->isUsed()) {
2637 // This redeclaration adds an __asm__ label to a declaration that has
2638 // already been ODR-used.
2639 Diag(New->getLocation(), diag::err_late_asm_label_name)
2640 << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange();
2641 }
2642 }
2643
2644 // Re-declaration cannot add abi_tag's.
2645 if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) {
2646 if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) {
2647 for (const auto &NewTag : NewAbiTagAttr->tags()) {
2648 if (std::find(OldAbiTagAttr->tags_begin(), OldAbiTagAttr->tags_end(),
2649 NewTag) == OldAbiTagAttr->tags_end()) {
2650 Diag(NewAbiTagAttr->getLocation(),
2651 diag::err_new_abi_tag_on_redeclaration)
2652 << NewTag;
2653 Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration);
2654 }
2655 }
2656 } else {
2657 Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration);
2658 Diag(Old->getLocation(), diag::note_previous_declaration);
2659 }
2660 }
2661
2662 // This redeclaration adds a section attribute.
2663 if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) {
2664 if (auto *VD = dyn_cast<VarDecl>(New)) {
2665 if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) {
2666 Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration);
2667 Diag(Old->getLocation(), diag::note_previous_declaration);
2668 }
2669 }
2670 }
2671
2672 // Redeclaration adds code-seg attribute.
2673 const auto *NewCSA = New->getAttr<CodeSegAttr>();
2674 if (NewCSA && !Old->hasAttr<CodeSegAttr>() &&
2675 !NewCSA->isImplicit() && isa<CXXMethodDecl>(New)) {
2676 Diag(New->getLocation(), diag::warn_mismatched_section)
2677 << 0 /*codeseg*/;
2678 Diag(Old->getLocation(), diag::note_previous_declaration);
2679 }
2680
2681 if (!Old->hasAttrs())
2682 return;
2683
2684 bool foundAny = New->hasAttrs();
2685
2686 // Ensure that any moving of objects within the allocated map is done before
2687 // we process them.
2688 if (!foundAny) New->setAttrs(AttrVec());
2689
2690 for (auto *I : Old->specific_attrs<InheritableAttr>()) {
2691 // Ignore deprecated/unavailable/availability attributes if requested.
2692 AvailabilityMergeKind LocalAMK = AMK_None;
2693 if (isa<DeprecatedAttr>(I) ||
2694 isa<UnavailableAttr>(I) ||
2695 isa<AvailabilityAttr>(I)) {
2696 switch (AMK) {
2697 case AMK_None:
2698 continue;
2699
2700 case AMK_Redeclaration:
2701 case AMK_Override:
2702 case AMK_ProtocolImplementation:
2703 LocalAMK = AMK;
2704 break;
2705 }
2706 }
2707
2708 // Already handled.
2709 if (isa<UsedAttr>(I))
2710 continue;
2711
2712 if (mergeDeclAttribute(*this, New, I, LocalAMK))
2713 foundAny = true;
2714 }
2715
2716 if (mergeAlignedAttrs(*this, New, Old))
2717 foundAny = true;
2718
2719 if (!foundAny) New->dropAttrs();
2720}
2721
2722/// mergeParamDeclAttributes - Copy attributes from the old parameter
2723/// to the new one.
2724static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2725 const ParmVarDecl *oldDecl,
2726 Sema &S) {
2727 // C++11 [dcl.attr.depend]p2:
2728 // The first declaration of a function shall specify the
2729 // carries_dependency attribute for its declarator-id if any declaration
2730 // of the function specifies the carries_dependency attribute.
2731 const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
2732 if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2733 S.Diag(CDA->getLocation(),
2734 diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2735 // Find the first declaration of the parameter.
2736 // FIXME: Should we build redeclaration chains for function parameters?
2737 const FunctionDecl *FirstFD =
2738 cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
2739 const ParmVarDecl *FirstVD =
2740 FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2741 S.Diag(FirstVD->getLocation(),
2742 diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2743 }
2744
2745 if (!oldDecl->hasAttrs())
2746 return;
2747
2748 bool foundAny = newDecl->hasAttrs();
2749
2750 // Ensure that any moving of objects within the allocated map is
2751 // done before we process them.
2752 if (!foundAny) newDecl->setAttrs(AttrVec());
2753
2754 for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
2755 if (!DeclHasAttr(newDecl, I)) {
2756 InheritableAttr *newAttr =
2757 cast<InheritableParamAttr>(I->clone(S.Context));
2758 newAttr->setInherited(true);
2759 newDecl->addAttr(newAttr);
2760 foundAny = true;
2761 }
2762 }
2763
2764 if (!foundAny) newDecl->dropAttrs();
2765}
2766
2767static void mergeParamDeclTypes(ParmVarDecl *NewParam,
2768 const ParmVarDecl *OldParam,
2769 Sema &S) {
2770 if (auto Oldnullability = OldParam->getType()->getNullability(S.Context)) {
2771 if (auto Newnullability = NewParam->getType()->getNullability(S.Context)) {
2772 if (*Oldnullability != *Newnullability) {
2773 S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr)
2774 << DiagNullabilityKind(
2775 *Newnullability,
2776 ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2777 != 0))
2778 << DiagNullabilityKind(
2779 *Oldnullability,
2780 ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2781 != 0));
2782 S.Diag(OldParam->getLocation(), diag::note_previous_declaration);
2783 }
2784 } else {
2785 QualType NewT = NewParam->getType();
2786 NewT = S.Context.getAttributedType(
2787 AttributedType::getNullabilityAttrKind(*Oldnullability),
2788 NewT, NewT);
2789 NewParam->setType(NewT);
2790 }
2791 }
2792}
2793
2794namespace {
2795
2796/// Used in MergeFunctionDecl to keep track of function parameters in
2797/// C.
2798struct GNUCompatibleParamWarning {
2799 ParmVarDecl *OldParm;
2800 ParmVarDecl *NewParm;
2801 QualType PromotedType;
2802};
2803
2804} // end anonymous namespace
2805
2806/// getSpecialMember - get the special member enum for a method.
2807Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2808 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2809 if (Ctor->isDefaultConstructor())
2810 return Sema::CXXDefaultConstructor;
2811
2812 if (Ctor->isCopyConstructor())
2813 return Sema::CXXCopyConstructor;
2814
2815 if (Ctor->isMoveConstructor())
2816 return Sema::CXXMoveConstructor;
2817 } else if (isa<CXXDestructorDecl>(MD)) {
2818 return Sema::CXXDestructor;
2819 } else if (MD->isCopyAssignmentOperator()) {
2820 return Sema::CXXCopyAssignment;
2821 } else if (MD->isMoveAssignmentOperator()) {
2822 return Sema::CXXMoveAssignment;
2823 }
2824
2825 return Sema::CXXInvalid;
2826}
2827
2828// Determine whether the previous declaration was a definition, implicit
2829// declaration, or a declaration.
2830template <typename T>
2831static std::pair<diag::kind, SourceLocation>
2832getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
2833 diag::kind PrevDiag;
2834 SourceLocation OldLocation = Old->getLocation();
2835 if (Old->isThisDeclarationADefinition())
2836 PrevDiag = diag::note_previous_definition;
2837 else if (Old->isImplicit()) {
2838 PrevDiag = diag::note_previous_implicit_declaration;
2839 if (OldLocation.isInvalid())
2840 OldLocation = New->getLocation();
2841 } else
2842 PrevDiag = diag::note_previous_declaration;
2843 return std::make_pair(PrevDiag, OldLocation);
2844}
2845
2846/// canRedefineFunction - checks if a function can be redefined. Currently,
2847/// only extern inline functions can be redefined, and even then only in
2848/// GNU89 mode.
2849static bool canRedefineFunction(const FunctionDecl *FD,
2850 const LangOptions& LangOpts) {
2851 return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2852 !LangOpts.CPlusPlus &&
2853 FD->isInlineSpecified() &&
2854 FD->getStorageClass() == SC_Extern);
2855}
2856
2857const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
2858 const AttributedType *AT = T->getAs<AttributedType>();
2859 while (AT && !AT->isCallingConv())
2860 AT = AT->getModifiedType()->getAs<AttributedType>();
2861 return AT;
2862}
2863
2864template <typename T>
2865static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
2866 const DeclContext *DC = Old->getDeclContext();
2867 if (DC->isRecord())
2868 return false;
2869
2870 LanguageLinkage OldLinkage = Old->getLanguageLinkage();
2871 if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
2872 return true;
2873 if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
2874 return true;
2875 return false;
2876}
2877
2878template<typename T> static bool isExternC(T *D) { return D->isExternC(); }
2879static bool isExternC(VarTemplateDecl *) { return false; }
2880
2881/// Check whether a redeclaration of an entity introduced by a
2882/// using-declaration is valid, given that we know it's not an overload
2883/// (nor a hidden tag declaration).
2884template<typename ExpectedDecl>
2885static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS,
2886 ExpectedDecl *New) {
2887 // C++11 [basic.scope.declarative]p4:
2888 // Given a set of declarations in a single declarative region, each of
2889 // which specifies the same unqualified name,
2890 // -- they shall all refer to the same entity, or all refer to functions
2891 // and function templates; or
2892 // -- exactly one declaration shall declare a class name or enumeration
2893 // name that is not a typedef name and the other declarations shall all
2894 // refer to the same variable or enumerator, or all refer to functions
2895 // and function templates; in this case the class name or enumeration
2896 // name is hidden (3.3.10).
2897
2898 // C++11 [namespace.udecl]p14:
2899 // If a function declaration in namespace scope or block scope has the
2900 // same name and the same parameter-type-list as a function introduced
2901 // by a using-declaration, and the declarations do not declare the same
2902 // function, the program is ill-formed.
2903
2904 auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl());
2905 if (Old &&
2906 !Old->getDeclContext()->getRedeclContext()->Equals(
2907 New->getDeclContext()->getRedeclContext()) &&
2908 !(isExternC(Old) && isExternC(New)))
2909 Old = nullptr;
2910
2911 if (!Old) {
2912 S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2913 S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target);
2914 S.Diag(OldS->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
2915 return true;
2916 }
2917 return false;
2918}
2919
2920static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A,
2921 const FunctionDecl *B) {
2922 assert(A->getNumParams() == B->getNumParams())((A->getNumParams() == B->getNumParams()) ? static_cast
<void> (0) : __assert_fail ("A->getNumParams() == B->getNumParams()"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 2922, __PRETTY_FUNCTION__))
;
2923
2924 auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) {
2925 const auto *AttrA = A->getAttr<PassObjectSizeAttr>();
2926 const auto *AttrB = B->getAttr<PassObjectSizeAttr>();
2927 if (AttrA == AttrB)
2928 return true;
2929 return AttrA && AttrB && AttrA->getType() == AttrB->getType();
2930 };
2931
2932 return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq);
2933}
2934
2935/// If necessary, adjust the semantic declaration context for a qualified
2936/// declaration to name the correct inline namespace within the qualifier.
2937static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD,
2938 DeclaratorDecl *OldD) {
2939 // The only case where we need to update the DeclContext is when
2940 // redeclaration lookup for a qualified name finds a declaration
2941 // in an inline namespace within the context named by the qualifier:
2942 //
2943 // inline namespace N { int f(); }
2944 // int ::f(); // Sema DC needs adjusting from :: to N::.
2945 //
2946 // For unqualified declarations, the semantic context *can* change
2947 // along the redeclaration chain (for local extern declarations,
2948 // extern "C" declarations, and friend declarations in particular).
2949 if (!NewD->getQualifier())
2950 return;
2951
2952 // NewD is probably already in the right context.
2953 auto *NamedDC = NewD->getDeclContext()->getRedeclContext();
2954 auto *SemaDC = OldD->getDeclContext()->getRedeclContext();
2955 if (NamedDC->Equals(SemaDC))
2956 return;
2957
2958 assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) ||(((NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->
isInvalidDecl() || OldD->isInvalidDecl()) && "unexpected context for redeclaration"
) ? static_cast<void> (0) : __assert_fail ("(NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl()) && \"unexpected context for redeclaration\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 2960, __PRETTY_FUNCTION__))
2959 NewD->isInvalidDecl() || OldD->isInvalidDecl()) &&(((NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->
isInvalidDecl() || OldD->isInvalidDecl()) && "unexpected context for redeclaration"
) ? static_cast<void> (0) : __assert_fail ("(NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl()) && \"unexpected context for redeclaration\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 2960, __PRETTY_FUNCTION__))
2960 "unexpected context for redeclaration")(((NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->
isInvalidDecl() || OldD->isInvalidDecl()) && "unexpected context for redeclaration"
) ? static_cast<void> (0) : __assert_fail ("(NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl()) && \"unexpected context for redeclaration\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 2960, __PRETTY_FUNCTION__))
;
2961
2962 auto *LexDC = NewD->getLexicalDeclContext();
2963 auto FixSemaDC = [=](NamedDecl *D) {
2964 if (!D)
2965 return;
2966 D->setDeclContext(SemaDC);
2967 D->setLexicalDeclContext(LexDC);
2968 };
2969
2970 FixSemaDC(NewD);
2971 if (auto *FD = dyn_cast<FunctionDecl>(NewD))
2972 FixSemaDC(FD->getDescribedFunctionTemplate());
2973 else if (auto *VD = dyn_cast<VarDecl>(NewD))
2974 FixSemaDC(VD->getDescribedVarTemplate());
2975}
2976
2977/// MergeFunctionDecl - We just parsed a function 'New' from
2978/// declarator D which has the same name and scope as a previous
2979/// declaration 'Old'. Figure out how to resolve this situation,
2980/// merging decls or emitting diagnostics as appropriate.
2981///
2982/// In C++, New and Old must be declarations that are not
2983/// overloaded. Use IsOverload to determine whether New and Old are
2984/// overloaded, and to select the Old declaration that New should be
2985/// merged with.
2986///
2987/// Returns true if there was an error, false otherwise.
2988bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD,
2989 Scope *S, bool MergeTypeWithOld) {
2990 // Verify the old decl was also a function.
2991 FunctionDecl *Old = OldD->getAsFunction();
2992 if (!Old) {
2993 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2994 if (New->getFriendObjectKind()) {
2995 Diag(New->getLocation(), diag::err_using_decl_friend);
2996 Diag(Shadow->getTargetDecl()->getLocation(),
2997 diag::note_using_decl_target);
2998 Diag(Shadow->getUsingDecl()->getLocation(),
2999 diag::note_using_decl) << 0;
3000 return true;
3001 }
3002
3003 // Check whether the two declarations might declare the same function.
3004 if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New))
3005 return true;
3006 OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl());
3007 } else {
3008 Diag(New->getLocation(), diag::err_redefinition_different_kind)
3009 << New->getDeclName();
3010 notePreviousDefinition(OldD, New->getLocation());
3011 return true;
3012 }
3013 }
3014
3015 // If the old declaration is invalid, just give up here.
3016 if (Old->isInvalidDecl())
3017 return true;
3018
3019 // Disallow redeclaration of some builtins.
3020 if (!getASTContext().canBuiltinBeRedeclared(Old)) {
3021 Diag(New->getLocation(), diag::err_builtin_redeclare) << Old->getDeclName();
3022 Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
3023 << Old << Old->getType();
3024 return true;
3025 }
3026
3027 diag::kind PrevDiag;
3028 SourceLocation OldLocation;
3029 std::tie(PrevDiag, OldLocation) =
3030 getNoteDiagForInvalidRedeclaration(Old, New);
3031
3032 // Don't complain about this if we're in GNU89 mode and the old function
3033 // is an extern inline function.
3034 // Don't complain about specializations. They are not supposed to have
3035 // storage classes.
3036 if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
3037 New->getStorageClass() == SC_Static &&
3038 Old->hasExternalFormalLinkage() &&
3039 !New->getTemplateSpecializationInfo() &&
3040 !canRedefineFunction(Old, getLangOpts())) {
3041 if (getLangOpts().MicrosoftExt) {
3042 Diag(New->getLocation(), diag::ext_static_non_static) << New;
3043 Diag(OldLocation, PrevDiag);
3044 } else {
3045 Diag(New->getLocation(), diag::err_static_non_static) << New;
3046 Diag(OldLocation, PrevDiag);
3047 return true;
3048 }
3049 }
3050
3051 if (New->hasAttr<InternalLinkageAttr>() &&
3052 !Old->hasAttr<InternalLinkageAttr>()) {
3053 Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
3054 << New->getDeclName();
3055 notePreviousDefinition(Old, New->getLocation());
3056 New->dropAttr<InternalLinkageAttr>();
3057 }
3058
3059 if (CheckRedeclarationModuleOwnership(New, Old))
3060 return true;
3061
3062 if (!getLangOpts().CPlusPlus) {
3063 bool OldOvl = Old->hasAttr<OverloadableAttr>();
3064 if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) {
3065 Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch)
3066 << New << OldOvl;
3067
3068 // Try our best to find a decl that actually has the overloadable
3069 // attribute for the note. In most cases (e.g. programs with only one
3070 // broken declaration/definition), this won't matter.
3071 //
3072 // FIXME: We could do this if we juggled some extra state in
3073 // OverloadableAttr, rather than just removing it.
3074 const Decl *DiagOld = Old;
3075 if (OldOvl) {
3076 auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) {
3077 const auto *A = D->getAttr<OverloadableAttr>();
3078 return A && !A->isImplicit();
3079 });
3080 // If we've implicitly added *all* of the overloadable attrs to this
3081 // chain, emitting a "previous redecl" note is pointless.
3082 DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter;
3083 }
3084
3085 if (DiagOld)
3086 Diag(DiagOld->getLocation(),
3087 diag::note_attribute_overloadable_prev_overload)
3088 << OldOvl;
3089
3090 if (OldOvl)
3091 New->addAttr(OverloadableAttr::CreateImplicit(Context));
3092 else
3093 New->dropAttr<OverloadableAttr>();
3094 }
3095 }
3096
3097 // If a function is first declared with a calling convention, but is later
3098 // declared or defined without one, all following decls assume the calling
3099 // convention of the first.
3100 //
3101 // It's OK if a function is first declared without a calling convention,
3102 // but is later declared or defined with the default calling convention.
3103 //
3104 // To test if either decl has an explicit calling convention, we look for
3105 // AttributedType sugar nodes on the type as written. If they are missing or
3106 // were canonicalized away, we assume the calling convention was implicit.
3107 //
3108 // Note also that we DO NOT return at this point, because we still have
3109 // other tests to run.
3110 QualType OldQType = Context.getCanonicalType(Old->getType());
3111 QualType NewQType = Context.getCanonicalType(New->getType());
3112 const FunctionType *OldType = cast<FunctionType>(OldQType);
3113 const FunctionType *NewType = cast<FunctionType>(NewQType);
3114 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
3115 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
3116 bool RequiresAdjustment = false;
3117
3118 if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
3119 FunctionDecl *First = Old->getFirstDecl();
3120 const FunctionType *FT =
3121 First->getType().getCanonicalType()->castAs<FunctionType>();
3122 FunctionType::ExtInfo FI = FT->getExtInfo();
3123 bool NewCCExplicit = getCallingConvAttributedType(New->getType());
3124 if (!NewCCExplicit) {
3125 // Inherit the CC from the previous declaration if it was specified
3126 // there but not here.
3127 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3128 RequiresAdjustment = true;
3129 } else {
3130 // Calling conventions aren't compatible, so complain.
3131 bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
3132 Diag(New->getLocation(), diag::err_cconv_change)
3133 << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3134 << !FirstCCExplicit
3135 << (!FirstCCExplicit ? "" :
3136 FunctionType::getNameForCallConv(FI.getCC()));
3137
3138 // Put the note on the first decl, since it is the one that matters.
3139 Diag(First->getLocation(), diag::note_previous_declaration);
3140 return true;
3141 }
3142 }
3143
3144 // FIXME: diagnose the other way around?
3145 if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
3146 NewTypeInfo = NewTypeInfo.withNoReturn(true);
3147 RequiresAdjustment = true;
3148 }
3149
3150 // Merge regparm attribute.
3151 if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
3152 OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
3153 if (NewTypeInfo.getHasRegParm()) {
3154 Diag(New->getLocation(), diag::err_regparm_mismatch)
3155 << NewType->getRegParmType()
3156 << OldType->getRegParmType();
3157 Diag(OldLocation, diag::note_previous_declaration);
3158 return true;
3159 }
3160
3161 NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
3162 RequiresAdjustment = true;
3163 }
3164
3165 // Merge ns_returns_retained attribute.
3166 if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
3167 if (NewTypeInfo.getProducesResult()) {
3168 Diag(New->getLocation(), diag::err_function_attribute_mismatch)
3169 << "'ns_returns_retained'";
3170 Diag(OldLocation, diag::note_previous_declaration);
3171 return true;
3172 }
3173
3174 NewTypeInfo = NewTypeInfo.withProducesResult(true);
3175 RequiresAdjustment = true;
3176 }
3177
3178 if (OldTypeInfo.getNoCallerSavedRegs() !=
3179 NewTypeInfo.getNoCallerSavedRegs()) {
3180 if (NewTypeInfo.getNoCallerSavedRegs()) {
3181 AnyX86NoCallerSavedRegistersAttr *Attr =
3182 New->getAttr<AnyX86NoCallerSavedRegistersAttr>();
3183 Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr;
3184 Diag(OldLocation, diag::note_previous_declaration);
3185 return true;
3186 }
3187
3188 NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true);
3189 RequiresAdjustment = true;
3190 }
3191
3192 if (RequiresAdjustment) {
3193 const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
3194 AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
3195
3196 QualType AdjustedQT = QualType(AdjustedType, 0);
3197 LangAS AS = Old->getType().getAddressSpace();
3198 AdjustedQT = Context.getAddrSpaceQualType(AdjustedQT, AS);
3199
3200 New->setType(AdjustedQT);
3201 NewQType = Context.getCanonicalType(New->getType());
3202 NewType = cast<FunctionType>(NewQType);
3203 }
3204
3205 // If this redeclaration makes the function inline, we may need to add it to
3206 // UndefinedButUsed.
3207 if (!Old->isInlined() && New->isInlined() &&
3208 !New->hasAttr<GNUInlineAttr>() &&
3209 !getLangOpts().GNUInline &&
3210 Old->isUsed(false) &&
3211 !Old->isDefined() && !New->isThisDeclarationADefinition())
3212 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
3213 SourceLocation()));
3214
3215 // If this redeclaration makes it newly gnu_inline, we don't want to warn
3216 // about it.
3217 if (New->hasAttr<GNUInlineAttr>() &&
3218 Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
3219 UndefinedButUsed.erase(Old->getCanonicalDecl());
3220 }
3221
3222 // If pass_object_size params don't match up perfectly, this isn't a valid
3223 // redeclaration.
3224 if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() &&
3225 !hasIdenticalPassObjectSizeAttrs(Old, New)) {
3226 Diag(New->getLocation(), diag::err_different_pass_object_size_params)
3227 << New->getDeclName();
3228 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3229 return true;
3230 }
3231
3232 if (getLangOpts().CPlusPlus) {
3233 // C++1z [over.load]p2
3234 // Certain function declarations cannot be overloaded:
3235 // -- Function declarations that differ only in the return type,
3236 // the exception specification, or both cannot be overloaded.
3237
3238 // Check the exception specifications match. This may recompute the type of
3239 // both Old and New if it resolved exception specifications, so grab the
3240 // types again after this. Because this updates the type, we do this before
3241 // any of the other checks below, which may update the "de facto" NewQType
3242 // but do not necessarily update the type of New.
3243 if (CheckEquivalentExceptionSpec(Old, New))
3244 return true;
3245 OldQType = Context.getCanonicalType(Old->getType());
3246 NewQType = Context.getCanonicalType(New->getType());
3247
3248 // Go back to the type source info to compare the declared return types,
3249 // per C++1y [dcl.type.auto]p13:
3250 // Redeclarations or specializations of a function or function template
3251 // with a declared return type that uses a placeholder type shall also
3252 // use that placeholder, not a deduced type.
3253 QualType OldDeclaredReturnType = Old->getDeclaredReturnType();
3254 QualType NewDeclaredReturnType = New->getDeclaredReturnType();
3255 if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
3256 canFullyTypeCheckRedeclaration(New, Old, NewDeclaredReturnType,
3257 OldDeclaredReturnType)) {
3258 QualType ResQT;
3259 if (NewDeclaredReturnType->isObjCObjectPointerType() &&
3260 OldDeclaredReturnType->isObjCObjectPointerType())
3261 // FIXME: This does the wrong thing for a deduced return type.
3262 ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
3263 if (ResQT.isNull()) {
3264 if (New->isCXXClassMember() && New->isOutOfLine())
3265 Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
3266 << New << New->getReturnTypeSourceRange();
3267 else
3268 Diag(New->getLocation(), diag::err_ovl_diff_return_type)
3269 << New->getReturnTypeSourceRange();
3270 Diag(OldLocation, PrevDiag) << Old << Old->getType()
3271 << Old->getReturnTypeSourceRange();
3272 return true;
3273 }
3274 else
3275 NewQType = ResQT;
3276 }
3277
3278 QualType OldReturnType = OldType->getReturnType();
3279 QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
3280 if (OldReturnType != NewReturnType) {
3281 // If this function has a deduced return type and has already been
3282 // defined, copy the deduced value from the old declaration.
3283 AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
3284 if (OldAT && OldAT->isDeduced()) {
3285 New->setType(
3286 SubstAutoType(New->getType(),
3287 OldAT->isDependentType() ? Context.DependentTy
3288 : OldAT->getDeducedType()));
3289 NewQType = Context.getCanonicalType(
3290 SubstAutoType(NewQType,
3291 OldAT->isDependentType() ? Context.DependentTy
3292 : OldAT->getDeducedType()));
3293 }
3294 }
3295
3296 const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
3297 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
3298 if (OldMethod && NewMethod) {
3299 // Preserve triviality.
3300 NewMethod->setTrivial(OldMethod->isTrivial());
3301
3302 // MSVC allows explicit template specialization at class scope:
3303 // 2 CXXMethodDecls referring to the same function will be injected.
3304 // We don't want a redeclaration error.
3305 bool IsClassScopeExplicitSpecialization =
3306 OldMethod->isFunctionTemplateSpecialization() &&
3307 NewMethod->isFunctionTemplateSpecialization();
3308 bool isFriend = NewMethod->getFriendObjectKind();
3309
3310 if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
3311 !IsClassScopeExplicitSpecialization) {
3312 // -- Member function declarations with the same name and the
3313 // same parameter types cannot be overloaded if any of them
3314 // is a static member function declaration.
3315 if (OldMethod->isStatic() != NewMethod->isStatic()) {
3316 Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
3317 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3318 return true;
3319 }
3320
3321 // C++ [class.mem]p1:
3322 // [...] A member shall not be declared twice in the
3323 // member-specification, except that a nested class or member
3324 // class template can be declared and then later defined.
3325 if (!inTemplateInstantiation()) {
3326 unsigned NewDiag;
3327 if (isa<CXXConstructorDecl>(OldMethod))
3328 NewDiag = diag::err_constructor_redeclared;
3329 else if (isa<CXXDestructorDecl>(NewMethod))
3330 NewDiag = diag::err_destructor_redeclared;
3331 else if (isa<CXXConversionDecl>(NewMethod))
3332 NewDiag = diag::err_conv_function_redeclared;
3333 else
3334 NewDiag = diag::err_member_redeclared;
3335
3336 Diag(New->getLocation(), NewDiag);
3337 } else {
3338 Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
3339 << New << New->getType();
3340 }
3341 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3342 return true;
3343
3344 // Complain if this is an explicit declaration of a special
3345 // member that was initially declared implicitly.
3346 //
3347 // As an exception, it's okay to befriend such methods in order
3348 // to permit the implicit constructor/destructor/operator calls.
3349 } else if (OldMethod->isImplicit()) {
3350 if (isFriend) {
3351 NewMethod->setImplicit();
3352 } else {
3353 Diag(NewMethod->getLocation(),
3354 diag::err_definition_of_implicitly_declared_member)
3355 << New << getSpecialMember(OldMethod);
3356 return true;
3357 }
3358 } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) {
3359 Diag(NewMethod->getLocation(),
3360 diag::err_definition_of_explicitly_defaulted_member)
3361 << getSpecialMember(OldMethod);
3362 return true;
3363 }
3364 }
3365
3366 // C++11 [dcl.attr.noreturn]p1:
3367 // The first declaration of a function shall specify the noreturn
3368 // attribute if any declaration of that function specifies the noreturn
3369 // attribute.
3370 const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>();
3371 if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) {
3372 Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl);
3373 Diag(Old->getFirstDecl()->getLocation(),
3374 diag::note_noreturn_missing_first_decl);
3375 }
3376
3377 // C++11 [dcl.attr.depend]p2:
3378 // The first declaration of a function shall specify the
3379 // carries_dependency attribute for its declarator-id if any declaration
3380 // of the function specifies the carries_dependency attribute.
3381 const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
3382 if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
3383 Diag(CDA->getLocation(),
3384 diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
3385 Diag(Old->getFirstDecl()->getLocation(),
3386 diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
3387 }
3388
3389 // (C++98 8.3.5p3):
3390 // All declarations for a function shall agree exactly in both the
3391 // return type and the parameter-type-list.
3392 // We also want to respect all the extended bits except noreturn.
3393
3394 // noreturn should now match unless the old type info didn't have it.
3395 QualType OldQTypeForComparison = OldQType;
3396 if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
3397 auto *OldType = OldQType->castAs<FunctionProtoType>();
3398 const FunctionType *OldTypeForComparison
3399 = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
3400 OldQTypeForComparison = QualType(OldTypeForComparison, 0);
3401 assert(OldQTypeForComparison.isCanonical())((OldQTypeForComparison.isCanonical()) ? static_cast<void>
(0) : __assert_fail ("OldQTypeForComparison.isCanonical()", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 3401, __PRETTY_FUNCTION__))
;
3402 }
3403
3404 if (haveIncompatibleLanguageLinkages(Old, New)) {
3405 // As a special case, retain the language linkage from previous
3406 // declarations of a friend function as an extension.
3407 //
3408 // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
3409 // and is useful because there's otherwise no way to specify language
3410 // linkage within class scope.
3411 //
3412 // Check cautiously as the friend object kind isn't yet complete.
3413 if (New->getFriendObjectKind() != Decl::FOK_None) {
3414 Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
3415 Diag(OldLocation, PrevDiag);
3416 } else {
3417 Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3418 Diag(OldLocation, PrevDiag);
3419 return true;
3420 }
3421 }
3422
3423 if (OldQTypeForComparison == NewQType)
3424 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3425
3426 // If the types are imprecise (due to dependent constructs in friends or
3427 // local extern declarations), it's OK if they differ. We'll check again
3428 // during instantiation.
3429 if (!canFullyTypeCheckRedeclaration(New, Old, NewQType, OldQType))
3430 return false;
3431
3432 // Fall through for conflicting redeclarations and redefinitions.
3433 }
3434
3435 // C: Function types need to be compatible, not identical. This handles
3436 // duplicate function decls like "void f(int); void f(enum X);" properly.
3437 if (!getLangOpts().CPlusPlus &&
3438 Context.typesAreCompatible(OldQType, NewQType)) {
3439 const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
3440 const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
3441 const FunctionProtoType *OldProto = nullptr;
3442 if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
3443 (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
3444 // The old declaration provided a function prototype, but the
3445 // new declaration does not. Merge in the prototype.
3446 assert(!OldProto->hasExceptionSpec() && "Exception spec in C")((!OldProto->hasExceptionSpec() && "Exception spec in C"
) ? static_cast<void> (0) : __assert_fail ("!OldProto->hasExceptionSpec() && \"Exception spec in C\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 3446, __PRETTY_FUNCTION__))
;
3447 SmallVector<QualType, 16> ParamTypes(OldProto->param_types());
3448 NewQType =
3449 Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes,
3450 OldProto->getExtProtoInfo());
3451 New->setType(NewQType);
3452 New->setHasInheritedPrototype();
3453
3454 // Synthesize parameters with the same types.
3455 SmallVector<ParmVarDecl*, 16> Params;
3456 for (const auto &ParamType : OldProto->param_types()) {
3457 ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(),
3458 SourceLocation(), nullptr,
3459 ParamType, /*TInfo=*/nullptr,
3460 SC_None, nullptr);
3461 Param->setScopeInfo(0, Params.size());
3462 Param->setImplicit();
3463 Params.push_back(Param);
3464 }
3465
3466 New->setParams(Params);
3467 }
3468
3469 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3470 }
3471
3472 // GNU C permits a K&R definition to follow a prototype declaration
3473 // if the declared types of the parameters in the K&R definition
3474 // match the types in the prototype declaration, even when the
3475 // promoted types of the parameters from the K&R definition differ
3476 // from the types in the prototype. GCC then keeps the types from
3477 // the prototype.
3478 //
3479 // If a variadic prototype is followed by a non-variadic K&R definition,
3480 // the K&R definition becomes variadic. This is sort of an edge case, but
3481 // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
3482 // C99 6.9.1p8.
3483 if (!getLangOpts().CPlusPlus &&
3484 Old->hasPrototype() && !New->hasPrototype() &&
3485 New->getType()->getAs<FunctionProtoType>() &&
3486 Old->getNumParams() == New->getNumParams()) {
3487 SmallVector<QualType, 16> ArgTypes;
3488 SmallVector<GNUCompatibleParamWarning, 16> Warnings;
3489 const FunctionProtoType *OldProto
3490 = Old->getType()->getAs<FunctionProtoType>();
3491 const FunctionProtoType *NewProto
3492 = New->getType()->getAs<FunctionProtoType>();
3493
3494 // Determine whether this is the GNU C extension.
3495 QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
3496 NewProto->getReturnType());
3497 bool LooseCompatible = !MergedReturn.isNull();
3498 for (unsigned Idx = 0, End = Old->getNumParams();
3499 LooseCompatible && Idx != End; ++Idx) {
3500 ParmVarDecl *OldParm = Old->getParamDecl(Idx);
3501 ParmVarDecl *NewParm = New->getParamDecl(Idx);
3502 if (Context.typesAreCompatible(OldParm->getType(),
3503 NewProto->getParamType(Idx))) {
3504 ArgTypes.push_back(NewParm->getType());
3505 } else if (Context.typesAreCompatible(OldParm->getType(),
3506 NewParm->getType(),
3507 /*CompareUnqualified=*/true)) {
3508 GNUCompatibleParamWarning Warn = { OldParm, NewParm,
3509 NewProto->getParamType(Idx) };
3510 Warnings.push_back(Warn);
3511 ArgTypes.push_back(NewParm->getType());
3512 } else
3513 LooseCompatible = false;
3514 }
3515
3516 if (LooseCompatible) {
3517 for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
3518 Diag(Warnings[Warn].NewParm->getLocation(),
3519 diag::ext_param_promoted_not_compatible_with_prototype)
3520 << Warnings[Warn].PromotedType
3521 << Warnings[Warn].OldParm->getType();
3522 if (Warnings[Warn].OldParm->getLocation().isValid())
3523 Diag(Warnings[Warn].OldParm->getLocation(),
3524 diag::note_previous_declaration);
3525 }
3526
3527 if (MergeTypeWithOld)
3528 New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
3529 OldProto->getExtProtoInfo()));
3530 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3531 }
3532
3533 // Fall through to diagnose conflicting types.
3534 }
3535
3536 // A function that has already been declared has been redeclared or
3537 // defined with a different type; show an appropriate diagnostic.
3538
3539 // If the previous declaration was an implicitly-generated builtin
3540 // declaration, then at the very least we should use a specialized note.
3541 unsigned BuiltinID;
3542 if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
3543 // If it's actually a library-defined builtin function like 'malloc'
3544 // or 'printf', just warn about the incompatible redeclaration.
3545 if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3546 Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
3547 Diag(OldLocation, diag::note_previous_builtin_declaration)
3548 << Old << Old->getType();
3549
3550 // If this is a global redeclaration, just forget hereafter
3551 // about the "builtin-ness" of the function.
3552 //
3553 // Doing this for local extern declarations is problematic. If
3554 // the builtin declaration remains visible, a second invalid
3555 // local declaration will produce a hard error; if it doesn't
3556 // remain visible, a single bogus local redeclaration (which is
3557 // actually only a warning) could break all the downstream code.
3558 if (!New->getLexicalDeclContext()->isFunctionOrMethod())
3559 New->getIdentifier()->revertBuiltin();
3560
3561 return false;
3562 }
3563
3564 PrevDiag = diag::note_previous_builtin_declaration;
3565 }
3566
3567 Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
3568 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3569 return true;
3570}
3571
3572/// Completes the merge of two function declarations that are
3573/// known to be compatible.
3574///
3575/// This routine handles the merging of attributes and other
3576/// properties of function declarations from the old declaration to
3577/// the new declaration, once we know that New is in fact a
3578/// redeclaration of Old.
3579///
3580/// \returns false
3581bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
3582 Scope *S, bool MergeTypeWithOld) {
3583 // Merge the attributes
3584 mergeDeclAttributes(New, Old);
3585
3586 // Merge "pure" flag.
3587 if (Old->isPure())
3588 New->setPure();
3589
3590 // Merge "used" flag.
3591 if (Old->getMostRecentDecl()->isUsed(false))
3592 New->setIsUsed();
3593
3594 // Merge attributes from the parameters. These can mismatch with K&R
3595 // declarations.
3596 if (New->getNumParams() == Old->getNumParams())
3597 for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) {
3598 ParmVarDecl *NewParam = New->getParamDecl(i);
3599 ParmVarDecl *OldParam = Old->getParamDecl(i);
3600 mergeParamDeclAttributes(NewParam, OldParam, *this);
3601 mergeParamDeclTypes(NewParam, OldParam, *this);
3602 }
3603
3604 if (getLangOpts().CPlusPlus)
3605 return MergeCXXFunctionDecl(New, Old, S);
3606
3607 // Merge the function types so the we get the composite types for the return
3608 // and argument types. Per C11 6.2.7/4, only update the type if the old decl
3609 // was visible.
3610 QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
3611 if (!Merged.isNull() && MergeTypeWithOld)
3612 New->setType(Merged);
3613
3614 return false;
3615}
3616
3617void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
3618 ObjCMethodDecl *oldMethod) {
3619 // Merge the attributes, including deprecated/unavailable
3620 AvailabilityMergeKind MergeKind =
3621 isa<ObjCProtocolDecl>(oldMethod->getDeclContext())
3622 ? AMK_ProtocolImplementation
3623 : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
3624 : AMK_Override;
3625
3626 mergeDeclAttributes(newMethod, oldMethod, MergeKind);
3627
3628 // Merge attributes from the parameters.
3629 ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
3630 oe = oldMethod->param_end();
3631 for (ObjCMethodDecl::param_iterator
3632 ni = newMethod->param_begin(), ne = newMethod->param_end();
3633 ni != ne && oi != oe; ++ni, ++oi)
3634 mergeParamDeclAttributes(*ni, *oi, *this);
3635
3636 CheckObjCMethodOverride(newMethod, oldMethod);
3637}
3638
3639static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) {
3640 assert(!S.Context.hasSameType(New->getType(), Old->getType()))((!S.Context.hasSameType(New->getType(), Old->getType()
)) ? static_cast<void> (0) : __assert_fail ("!S.Context.hasSameType(New->getType(), Old->getType())"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 3640, __PRETTY_FUNCTION__))
;
3641
3642 S.Diag(New->getLocation(), New->isThisDeclarationADefinition()
3643 ? diag::err_redefinition_different_type
3644 : diag::err_redeclaration_different_type)
3645 << New->getDeclName() << New->getType() << Old->getType();
3646
3647 diag::kind PrevDiag;
3648 SourceLocation OldLocation;
3649 std::tie(PrevDiag, OldLocation)
3650 = getNoteDiagForInvalidRedeclaration(Old, New);
3651 S.Diag(OldLocation, PrevDiag);
3652 New->setInvalidDecl();
3653}
3654
3655/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
3656/// scope as a previous declaration 'Old'. Figure out how to merge their types,
3657/// emitting diagnostics as appropriate.
3658///
3659/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
3660/// to here in AddInitializerToDecl. We can't check them before the initializer
3661/// is attached.
3662void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
3663 bool MergeTypeWithOld) {
3664 if (New->isInvalidDecl() || Old->isInvalidDecl())
3665 return;
3666
3667 QualType MergedT;
3668 if (getLangOpts().CPlusPlus) {
3669 if (New->getType()->isUndeducedType()) {
3670 // We don't know what the new type is until the initializer is attached.
3671 return;
3672 } else if (Context.hasSameType(New->getType(), Old->getType())) {
3673 // These could still be something that needs exception specs checked.
3674 return MergeVarDeclExceptionSpecs(New, Old);
3675 }
3676 // C++ [basic.link]p10:
3677 // [...] the types specified by all declarations referring to a given
3678 // object or function shall be identical, except that declarations for an
3679 // array object can specify array types that differ by the presence or
3680 // absence of a major array bound (8.3.4).
3681 else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) {
3682 const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
3683 const ArrayType *NewArray = Context.getAsArrayType(New->getType());
3684
3685 // We are merging a variable declaration New into Old. If it has an array
3686 // bound, and that bound differs from Old's bound, we should diagnose the
3687 // mismatch.
3688 if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) {
3689 for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD;
3690 PrevVD = PrevVD->getPreviousDecl()) {
3691 const ArrayType *PrevVDTy = Context.getAsArrayType(PrevVD->getType());
3692 if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType())
3693 continue;
3694
3695 if (!Context.hasSameType(NewArray, PrevVDTy))
3696 return diagnoseVarDeclTypeMismatch(*this, New, PrevVD);
3697 }
3698 }
3699
3700 if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) {
3701 if (Context.hasSameType(OldArray->getElementType(),
3702 NewArray->getElementType()))
3703 MergedT = New->getType();
3704 }
3705 // FIXME: Check visibility. New is hidden but has a complete type. If New
3706 // has no array bound, it should not inherit one from Old, if Old is not
3707 // visible.
3708 else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) {
3709 if (Context.hasSameType(OldArray->getElementType(),
3710 NewArray->getElementType()))
3711 MergedT = Old->getType();
3712 }
3713 }
3714 else if (New->getType()->isObjCObjectPointerType() &&
3715 Old->getType()->isObjCObjectPointerType()) {
3716 MergedT = Context.mergeObjCGCQualifiers(New->getType(),
3717 Old->getType());
3718 }
3719 } else {
3720 // C 6.2.7p2:
3721 // All declarations that refer to the same object or function shall have
3722 // compatible type.
3723 MergedT = Context.mergeTypes(New->getType(), Old->getType());
3724 }
3725 if (MergedT.isNull()) {
3726 // It's OK if we couldn't merge types if either type is dependent, for a
3727 // block-scope variable. In other cases (static data members of class
3728 // templates, variable templates, ...), we require the types to be
3729 // equivalent.
3730 // FIXME: The C++ standard doesn't say anything about this.
3731 if ((New->getType()->isDependentType() ||
3732 Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
3733 // If the old type was dependent, we can't merge with it, so the new type
3734 // becomes dependent for now. We'll reproduce the original type when we
3735 // instantiate the TypeSourceInfo for the variable.
3736 if (!New->getType()->isDependentType() && MergeTypeWithOld)
3737 New->setType(Context.DependentTy);
3738 return;
3739 }
3740 return diagnoseVarDeclTypeMismatch(*this, New, Old);
3741 }
3742
3743 // Don't actually update the type on the new declaration if the old
3744 // declaration was an extern declaration in a different scope.
3745 if (MergeTypeWithOld)
3746 New->setType(MergedT);
3747}
3748
3749static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
3750 LookupResult &Previous) {
3751 // C11 6.2.7p4:
3752 // For an identifier with internal or external linkage declared
3753 // in a scope in which a prior declaration of that identifier is
3754 // visible, if the prior declaration specifies internal or
3755 // external linkage, the type of the identifier at the later
3756 // declaration becomes the composite type.
3757 //
3758 // If the variable isn't visible, we do not merge with its type.
3759 if (Previous.isShadowed())
3760 return false;
3761
3762 if (S.getLangOpts().CPlusPlus) {
3763 // C++11 [dcl.array]p3:
3764 // If there is a preceding declaration of the entity in the same
3765 // scope in which the bound was specified, an omitted array bound
3766 // is taken to be the same as in that earlier declaration.
3767 return NewVD->isPreviousDeclInSameBlockScope() ||
3768 (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
3769 !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
3770 } else {
3771 // If the old declaration was function-local, don't merge with its
3772 // type unless we're in the same function.
3773 return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
3774 OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
3775 }
3776}
3777
3778/// MergeVarDecl - We just parsed a variable 'New' which has the same name
3779/// and scope as a previous declaration 'Old'. Figure out how to resolve this
3780/// situation, merging decls or emitting diagnostics as appropriate.
3781///
3782/// Tentative definition rules (C99 6.9.2p2) are checked by
3783/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
3784/// definitions here, since the initializer hasn't been attached.
3785///
3786void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
3787 // If the new decl is already invalid, don't do any other checking.
3788 if (New->isInvalidDecl())
3789 return;
3790
3791 if (!shouldLinkPossiblyHiddenDecl(Previous, New))
3792 return;
3793
3794 VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
3795
3796 // Verify the old decl was also a variable or variable template.
3797 VarDecl *Old = nullptr;
3798 VarTemplateDecl *OldTemplate = nullptr;
3799 if (Previous.isSingleResult()) {
3800 if (NewTemplate) {
3801 OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
3802 Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
3803
3804 if (auto *Shadow =
3805 dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
3806 if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate))
3807 return New->setInvalidDecl();
3808 } else {
3809 Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
3810
3811 if (auto *Shadow =
3812 dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
3813 if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New))
3814 return New->setInvalidDecl();
3815 }
3816 }
3817 if (!Old) {
3818 Diag(New->getLocation(), diag::err_redefinition_different_kind)
3819 << New->getDeclName();
3820 notePreviousDefinition(Previous.getRepresentativeDecl(),
3821 New->getLocation());
3822 return New->setInvalidDecl();
3823 }
3824
3825 // Ensure the template parameters are compatible.
3826 if (NewTemplate &&
3827 !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
3828 OldTemplate->getTemplateParameters(),
3829 /*Complain=*/true, TPL_TemplateMatch))
3830 return New->setInvalidDecl();
3831
3832 // C++ [class.mem]p1:
3833 // A member shall not be declared twice in the member-specification [...]
3834 //
3835 // Here, we need only consider static data members.
3836 if (Old->isStaticDataMember() && !New->isOutOfLine()) {
3837 Diag(New->getLocation(), diag::err_duplicate_member)
3838 << New->getIdentifier();
3839 Diag(Old->getLocation(), diag::note_previous_declaration);
3840 New->setInvalidDecl();
3841 }
3842
3843 mergeDeclAttributes(New, Old);
3844 // Warn if an already-declared variable is made a weak_import in a subsequent
3845 // declaration
3846 if (New->hasAttr<WeakImportAttr>() &&
3847 Old->getStorageClass() == SC_None &&
3848 !Old->hasAttr<WeakImportAttr>()) {
3849 Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
3850 notePreviousDefinition(Old, New->getLocation());
3851 // Remove weak_import attribute on new declaration.
3852 New->dropAttr<WeakImportAttr>();
3853 }
3854
3855 if (New->hasAttr<InternalLinkageAttr>() &&
3856 !Old->hasAttr<InternalLinkageAttr>()) {
3857 Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
3858 << New->getDeclName();
3859 notePreviousDefinition(Old, New->getLocation());
3860 New->dropAttr<InternalLinkageAttr>();
3861 }
3862
3863 // Merge the types.
3864 VarDecl *MostRecent = Old->getMostRecentDecl();
3865 if (MostRecent != Old) {
3866 MergeVarDeclTypes(New, MostRecent,
3867 mergeTypeWithPrevious(*this, New, MostRecent, Previous));
3868 if (New->isInvalidDecl())
3869 return;
3870 }
3871
3872 MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
3873 if (New->isInvalidDecl())
3874 return;
3875
3876 diag::kind PrevDiag;
3877 SourceLocation OldLocation;
3878 std::tie(PrevDiag, OldLocation) =
3879 getNoteDiagForInvalidRedeclaration(Old, New);
3880
3881 // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
3882 if (New->getStorageClass() == SC_Static &&
3883 !New->isStaticDataMember() &&
3884 Old->hasExternalFormalLinkage()) {
3885 if (getLangOpts().MicrosoftExt) {
3886 Diag(New->getLocation(), diag::ext_static_non_static)
3887 << New->getDeclName();
3888 Diag(OldLocation, PrevDiag);
3889 } else {
3890 Diag(New->getLocation(), diag::err_static_non_static)
3891 << New->getDeclName();
3892 Diag(OldLocation, PrevDiag);
3893 return New->setInvalidDecl();
3894 }
3895 }
3896 // C99 6.2.2p4:
3897 // For an identifier declared with the storage-class specifier
3898 // extern in a scope in which a prior declaration of that
3899 // identifier is visible,23) if the prior declaration specifies
3900 // internal or external linkage, the linkage of the identifier at
3901 // the later declaration is the same as the linkage specified at
3902 // the prior declaration. If no prior declaration is visible, or
3903 // if the prior declaration specifies no linkage, then the
3904 // identifier has external linkage.
3905 if (New->hasExternalStorage() && Old->hasLinkage())
3906 /* Okay */;
3907 else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
3908 !New->isStaticDataMember() &&
3909 Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
3910 Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
3911 Diag(OldLocation, PrevDiag);
3912 return New->setInvalidDecl();
3913 }
3914
3915 // Check if extern is followed by non-extern and vice-versa.
3916 if (New->hasExternalStorage() &&
3917 !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) {
3918 Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
3919 Diag(OldLocation, PrevDiag);
3920 return New->setInvalidDecl();
3921 }
3922 if (Old->hasLinkage() && New->isLocalVarDeclOrParm() &&
3923 !New->hasExternalStorage()) {
3924 Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
3925 Diag(OldLocation, PrevDiag);
3926 return New->setInvalidDecl();
3927 }
3928
3929 if (CheckRedeclarationModuleOwnership(New, Old))
3930 return;
3931
3932 // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
3933
3934 // FIXME: The test for external storage here seems wrong? We still
3935 // need to check for mismatches.
3936 if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
3937 // Don't complain about out-of-line definitions of static members.
3938 !(Old->getLexicalDeclContext()->isRecord() &&
3939 !New->getLexicalDeclContext()->isRecord())) {
3940 Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
3941 Diag(OldLocation, PrevDiag);
3942 return New->setInvalidDecl();
3943 }
3944
3945 if (New->isInline() && !Old->getMostRecentDecl()->isInline()) {
3946 if (VarDecl *Def = Old->getDefinition()) {
3947 // C++1z [dcl.fcn.spec]p4:
3948 // If the definition of a variable appears in a translation unit before
3949 // its first declaration as inline, the program is ill-formed.
3950 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
3951 Diag(Def->getLocation(), diag::note_previous_definition);
3952 }
3953 }
3954
3955 // If this redeclaration makes the variable inline, we may need to add it to
3956 // UndefinedButUsed.
3957 if (!Old->isInline() && New->isInline() && Old->isUsed(false) &&
3958 !Old->getDefinition() && !New->isThisDeclarationADefinition())
3959 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
3960 SourceLocation()));
3961
3962 if (New->getTLSKind() != Old->getTLSKind()) {
3963 if (!Old->getTLSKind()) {
3964 Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
3965 Diag(OldLocation, PrevDiag);
3966 } else if (!New->getTLSKind()) {
3967 Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
3968 Diag(OldLocation, PrevDiag);
3969 } else {
3970 // Do not allow redeclaration to change the variable between requiring
3971 // static and dynamic initialization.
3972 // FIXME: GCC allows this, but uses the TLS keyword on the first
3973 // declaration to determine the kind. Do we need to be compatible here?
3974 Diag(New->getLocation(), diag::err_thread_thread_different_kind)
3975 << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
3976 Diag(OldLocation, PrevDiag);
3977 }
3978 }
3979
3980 // C++ doesn't have tentative definitions, so go right ahead and check here.
3981 if (getLangOpts().CPlusPlus &&
3982 New->isThisDeclarationADefinition() == VarDecl::Definition) {
3983 if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() &&
3984 Old->getCanonicalDecl()->isConstexpr()) {
3985 // This definition won't be a definition any more once it's been merged.
3986 Diag(New->getLocation(),
3987 diag::warn_deprecated_redundant_constexpr_static_def);
3988 } else if (VarDecl *Def = Old->getDefinition()) {
3989 if (checkVarDeclRedefinition(Def, New))
3990 return;
3991 }
3992 }
3993
3994 if (haveIncompatibleLanguageLinkages(Old, New)) {
3995 Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3996 Diag(OldLocation, PrevDiag);
3997 New->setInvalidDecl();
3998 return;
3999 }
4000
4001 // Merge "used" flag.
4002 if (Old->getMostRecentDecl()->isUsed(false))
4003 New->setIsUsed();
4004
4005 // Keep a chain of previous declarations.
4006 New->setPreviousDecl(Old);
4007 if (NewTemplate)
4008 NewTemplate->setPreviousDecl(OldTemplate);
4009 adjustDeclContextForDeclaratorDecl(New, Old);
4010
4011 // Inherit access appropriately.
4012 New->setAccess(Old->getAccess());
4013 if (NewTemplate)
4014 NewTemplate->setAccess(New->getAccess());
4015
4016 if (Old->isInline())
4017 New->setImplicitlyInline();
4018}
4019
4020void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) {
4021 SourceManager &SrcMgr = getSourceManager();
4022 auto FNewDecLoc = SrcMgr.getDecomposedLoc(New);
4023 auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation());
4024 auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first);
4025 auto *FOld = SrcMgr.getFileEntryForID(FOldDecLoc.first);
4026 auto &HSI = PP.getHeaderSearchInfo();
4027 StringRef HdrFilename =
4028 SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation()));
4029
4030 auto noteFromModuleOrInclude = [&](Module *Mod,
4031 SourceLocation IncLoc) -> bool {
4032 // Redefinition errors with modules are common with non modular mapped
4033 // headers, example: a non-modular header H in module A that also gets
4034 // included directly in a TU. Pointing twice to the same header/definition
4035 // is confusing, try to get better diagnostics when modules is on.
4036 if (IncLoc.isValid()) {
4037 if (Mod) {
4038 Diag(IncLoc, diag::note_redefinition_modules_same_file)
4039 << HdrFilename.str() << Mod->getFullModuleName();
4040 if (!Mod->DefinitionLoc.isInvalid())
4041 Diag(Mod->DefinitionLoc, diag::note_defined_here)
4042 << Mod->getFullModuleName();
4043 } else {
4044 Diag(IncLoc, diag::note_redefinition_include_same_file)
4045 << HdrFilename.str();
4046 }
4047 return true;
4048 }
4049
4050 return false;
4051 };
4052
4053 // Is it the same file and same offset? Provide more information on why
4054 // this leads to a redefinition error.
4055 bool EmittedDiag = false;
4056 if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) {
4057 SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first);
4058 SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first);
4059 EmittedDiag = noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc);
4060 EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc);
4061
4062 // If the header has no guards, emit a note suggesting one.
4063 if (FOld && !HSI.isFileMultipleIncludeGuarded(FOld))
4064 Diag(Old->getLocation(), diag::note_use_ifdef_guards);
4065
4066 if (EmittedDiag)
4067 return;
4068 }
4069
4070 // Redefinition coming from different files or couldn't do better above.
4071 if (Old->getLocation().isValid())
4072 Diag(Old->getLocation(), diag::note_previous_definition);
4073}
4074
4075/// We've just determined that \p Old and \p New both appear to be definitions
4076/// of the same variable. Either diagnose or fix the problem.
4077bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) {
4078 if (!hasVisibleDefinition(Old) &&
4079 (New->getFormalLinkage() == InternalLinkage ||
4080 New->isInline() ||
4081 New->getDescribedVarTemplate() ||
4082 New->getNumTemplateParameterLists() ||
4083 New->getDeclContext()->isDependentContext())) {
4084 // The previous definition is hidden, and multiple definitions are
4085 // permitted (in separate TUs). Demote this to a declaration.
4086 New->demoteThisDefinitionToDeclaration();
4087
4088 // Make the canonical definition visible.
4089 if (auto *OldTD = Old->getDescribedVarTemplate())
4090 makeMergedDefinitionVisible(OldTD);
4091 makeMergedDefinitionVisible(Old);
4092 return false;
4093 } else {
4094 Diag(New->getLocation(), diag::err_redefinition) << New;
4095 notePreviousDefinition(Old, New->getLocation());
4096 New->setInvalidDecl();
4097 return true;
4098 }
4099}
4100
4101/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4102/// no declarator (e.g. "struct foo;") is parsed.
4103Decl *
4104Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4105 RecordDecl *&AnonRecord) {
4106 return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg(), false,
4107 AnonRecord);
4108}
4109
4110// The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
4111// disambiguate entities defined in different scopes.
4112// While the VS2015 ABI fixes potential miscompiles, it is also breaks
4113// compatibility.
4114// We will pick our mangling number depending on which version of MSVC is being
4115// targeted.
4116static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) {
4117 return LO.isCompatibleWithMSVC(LangOptions::MSVC2015)
4118 ? S->getMSCurManglingNumber()
4119 : S->getMSLastManglingNumber();
4120}
4121
4122void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) {
4123 if (!Context.getLangOpts().CPlusPlus)
4124 return;
4125
4126 if (isa<CXXRecordDecl>(Tag->getParent())) {
4127 // If this tag is the direct child of a class, number it if
4128 // it is anonymous.
4129 if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
4130 return;
4131 MangleNumberingContext &MCtx =
4132 Context.getManglingNumberContext(Tag->getParent());
4133 Context.setManglingNumber(
4134 Tag, MCtx.getManglingNumber(
4135 Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4136 return;
4137 }
4138
4139 // If this tag isn't a direct child of a class, number it if it is local.
4140 Decl *ManglingContextDecl;
4141 if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
4142 Tag->getDeclContext(), ManglingContextDecl)) {
4143 Context.setManglingNumber(
4144 Tag, MCtx->getManglingNumber(
4145 Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4146 }
4147}
4148
4149void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
4150 TypedefNameDecl *NewTD) {
4151 if (TagFromDeclSpec->isInvalidDecl())
4152 return;
4153
4154 // Do nothing if the tag already has a name for linkage purposes.
4155 if (TagFromDeclSpec->hasNameForLinkage())
4156 return;
4157
4158 // A well-formed anonymous tag must always be a TUK_Definition.
4159 assert(TagFromDeclSpec->isThisDeclarationADefinition())((TagFromDeclSpec->isThisDeclarationADefinition()) ? static_cast
<void> (0) : __assert_fail ("TagFromDeclSpec->isThisDeclarationADefinition()"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 4159, __PRETTY_FUNCTION__))
;
4160
4161 // The type must match the tag exactly; no qualifiers allowed.
4162 if (!Context.hasSameType(NewTD->getUnderlyingType(),
4163 Context.getTagDeclType(TagFromDeclSpec))) {
4164 if (getLangOpts().CPlusPlus)
4165 Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD);
4166 return;
4167 }
4168
4169 // If we've already computed linkage for the anonymous tag, then
4170 // adding a typedef name for the anonymous decl can change that
4171 // linkage, which might be a serious problem. Diagnose this as
4172 // unsupported and ignore the typedef name. TODO: we should
4173 // pursue this as a language defect and establish a formal rule
4174 // for how to handle it.
4175 if (TagFromDeclSpec->hasLinkageBeenComputed()) {
4176 Diag(NewTD->getLocation(), diag::err_typedef_changes_linkage);
4177
4178 SourceLocation tagLoc = TagFromDeclSpec->getInnerLocStart();
4179 tagLoc = getLocForEndOfToken(tagLoc);
4180
4181 llvm::SmallString<40> textToInsert;
4182 textToInsert += ' ';
4183 textToInsert += NewTD->getIdentifier()->getName();
4184 Diag(tagLoc, diag::note_typedef_changes_linkage)
4185 << FixItHint::CreateInsertion(tagLoc, textToInsert);
4186 return;
4187 }
4188
4189 // Otherwise, set this is the anon-decl typedef for the tag.
4190 TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
4191}
4192
4193static unsigned GetDiagnosticTypeSpecifierID(DeclSpec::TST T) {
4194 switch (T) {
4195 case DeclSpec::TST_class:
4196 return 0;
4197 case DeclSpec::TST_struct:
4198 return 1;
4199 case DeclSpec::TST_interface:
4200 return 2;
4201 case DeclSpec::TST_union:
4202 return 3;
4203 case DeclSpec::TST_enum:
4204 return 4;
4205 default:
4206 llvm_unreachable("unexpected type specifier")::llvm::llvm_unreachable_internal("unexpected type specifier"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 4206)
;
4207 }
4208}
4209
4210/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4211/// no declarator (e.g. "struct foo;") is parsed. It also accepts template
4212/// parameters to cope with template friend declarations.
4213Decl *
4214Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4215 MultiTemplateParamsArg TemplateParams,
4216 bool IsExplicitInstantiation,
4217 RecordDecl *&AnonRecord) {
4218 Decl *TagD = nullptr;
4219 TagDecl *Tag = nullptr;
4220 if (DS.getTypeSpecType() == DeclSpec::TST_class ||
4221 DS.getTypeSpecType() == DeclSpec::TST_struct ||
4222 DS.getTypeSpecType() == DeclSpec::TST_interface ||
4223 DS.getTypeSpecType() == DeclSpec::TST_union ||
4224 DS.getTypeSpecType() == DeclSpec::TST_enum) {
4225 TagD = DS.getRepAsDecl();
4226
4227 if (!TagD) // We probably had an error
4228 return nullptr;
4229
4230 // Note that the above type specs guarantee that the
4231 // type rep is a Decl, whereas in many of the others
4232 // it's a Type.
4233 if (isa<TagDecl>(TagD))
4234 Tag = cast<TagDecl>(TagD);
4235 else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
4236 Tag = CTD->getTemplatedDecl();
4237 }
4238
4239 if (Tag) {
4240 handleTagNumbering(Tag, S);
4241 Tag->setFreeStanding();
4242 if (Tag->isInvalidDecl())
4243 return Tag;
4244 }
4245
4246 if (unsigned TypeQuals = DS.getTypeQualifiers()) {
4247 // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
4248 // or incomplete types shall not be restrict-qualified."
4249 if (TypeQuals & DeclSpec::TQ_restrict)
4250 Diag(DS.getRestrictSpecLoc(),
4251 diag::err_typecheck_invalid_restrict_not_pointer_noarg)
4252 << DS.getSourceRange();
4253 }
4254
4255 if (DS.isInlineSpecified())
4256 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
4257 << getLangOpts().CPlusPlus17;
4258
4259 if (DS.isConstexprSpecified()) {
4260 // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
4261 // and definitions of functions and variables.
4262 if (Tag)
4263 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
4264 << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType());
4265 else
4266 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
4267 // Don't emit warnings after this error.
4268 return TagD;
4269 }
4270
4271 DiagnoseFunctionSpecifiers(DS);
4272
4273 if (DS.isFriendSpecified()) {
4274 // If we're dealing with a decl but not a TagDecl, assume that
4275 // whatever routines created it handled the friendship aspect.
4276 if (TagD && !Tag)
4277 return nullptr;
4278 return ActOnFriendTypeDecl(S, DS, TemplateParams);
4279 }
4280
4281 const CXXScopeSpec &SS = DS.getTypeSpecScope();
4282 bool IsExplicitSpecialization =
4283 !TemplateParams.empty() && TemplateParams.back()->size() == 0;
4284 if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
4285 !IsExplicitInstantiation && !IsExplicitSpecialization &&
4286 !isa<ClassTemplatePartialSpecializationDecl>(Tag)) {
4287 // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
4288 // nested-name-specifier unless it is an explicit instantiation
4289 // or an explicit specialization.
4290 //
4291 // FIXME: We allow class template partial specializations here too, per the
4292 // obvious intent of DR1819.
4293 //
4294 // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
4295 Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
4296 << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << SS.getRange();
4297 return nullptr;
4298 }
4299
4300 // Track whether this decl-specifier declares anything.
4301 bool DeclaresAnything = true;
4302
4303 // Handle anonymous struct definitions.
4304 if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
4305 if (!Record->getDeclName() && Record->isCompleteDefinition() &&
4306 DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
4307 if (getLangOpts().CPlusPlus ||
4308 Record->getDeclContext()->isRecord()) {
4309 // If CurContext is a DeclContext that can contain statements,
4310 // RecursiveASTVisitor won't visit the decls that
4311 // BuildAnonymousStructOrUnion() will put into CurContext.
4312 // Also store them here so that they can be part of the
4313 // DeclStmt that gets created in this case.
4314 // FIXME: Also return the IndirectFieldDecls created by
4315 // BuildAnonymousStructOr union, for the same reason?
4316 if (CurContext->isFunctionOrMethod())
4317 AnonRecord = Record;
4318 return BuildAnonymousStructOrUnion(S, DS, AS, Record,
4319 Context.getPrintingPolicy());
4320 }
4321
4322 DeclaresAnything = false;
4323 }
4324 }
4325
4326 // C11 6.7.2.1p2:
4327 // A struct-declaration that does not declare an anonymous structure or
4328 // anonymous union shall contain a struct-declarator-list.
4329 //
4330 // This rule also existed in C89 and C99; the grammar for struct-declaration
4331 // did not permit a struct-declaration without a struct-declarator-list.
4332 if (!getLangOpts().CPlusPlus && CurContext->isRecord() &&
4333 DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
4334 // Check for Microsoft C extension: anonymous struct/union member.
4335 // Handle 2 kinds of anonymous struct/union:
4336 // struct STRUCT;
4337 // union UNION;
4338 // and
4339 // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct.
4340 // UNION_TYPE; <- where UNION_TYPE is a typedef union.
4341 if ((Tag && Tag->getDeclName()) ||
4342 DS.getTypeSpecType() == DeclSpec::TST_typename) {
4343 RecordDecl *Record = nullptr;
4344 if (Tag)
4345 Record = dyn_cast<RecordDecl>(Tag);
4346 else if (const RecordType *RT =
4347 DS.getRepAsType().get()->getAsStructureType())
4348 Record = RT->getDecl();
4349 else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType())
4350 Record = UT->getDecl();
4351
4352 if (Record && getLangOpts().MicrosoftExt) {
4353 Diag(DS.getBeginLoc(), diag::ext_ms_anonymous_record)
4354 << Record->isUnion() << DS.getSourceRange();
4355 return BuildMicrosoftCAnonymousStruct(S, DS, Record);
4356 }
4357
4358 DeclaresAnything = false;
4359 }
4360 }
4361
4362 // Skip all the checks below if we have a type error.
4363 if (DS.getTypeSpecType() == DeclSpec::TST_error ||
4364 (TagD && TagD->isInvalidDecl()))
4365 return TagD;
4366
4367 if (getLangOpts().CPlusPlus &&
4368 DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
4369 if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
4370 if (Enum->enumerator_begin() == Enum->enumerator_end() &&
4371 !Enum->getIdentifier() && !Enum->isInvalidDecl())
4372 DeclaresAnything = false;
4373
4374 if (!DS.isMissingDeclaratorOk()) {
4375 // Customize diagnostic for a typedef missing a name.
4376 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
4377 Diag(DS.getBeginLoc(), diag::ext_typedef_without_a_name)
4378 << DS.getSourceRange();
4379 else
4380 DeclaresAnything = false;
4381 }
4382
4383 if (DS.isModulePrivateSpecified() &&
4384 Tag && Tag->getDeclContext()->isFunctionOrMethod())
4385 Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
4386 << Tag->getTagKind()
4387 << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
4388
4389 ActOnDocumentableDecl(TagD);
4390
4391 // C 6.7/2:
4392 // A declaration [...] shall declare at least a declarator [...], a tag,
4393 // or the members of an enumeration.
4394 // C++ [dcl.dcl]p3:
4395 // [If there are no declarators], and except for the declaration of an
4396 // unnamed bit-field, the decl-specifier-seq shall introduce one or more
4397 // names into the program, or shall redeclare a name introduced by a
4398 // previous declaration.
4399 if (!DeclaresAnything) {
4400 // In C, we allow this as a (popular) extension / bug. Don't bother
4401 // producing further diagnostics for redundant qualifiers after this.
4402 Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange();
4403 return TagD;
4404 }
4405
4406 // C++ [dcl.stc]p1:
4407 // If a storage-class-specifier appears in a decl-specifier-seq, [...] the
4408 // init-declarator-list of the declaration shall not be empty.
4409 // C++ [dcl.fct.spec]p1:
4410 // If a cv-qualifier appears in a decl-specifier-seq, the
4411 // init-declarator-list of the declaration shall not be empty.
4412 //
4413 // Spurious qualifiers here appear to be valid in C.
4414 unsigned DiagID = diag::warn_standalone_specifier;
4415 if (getLangOpts().CPlusPlus)
4416 DiagID = diag::ext_standalone_specifier;
4417
4418 // Note that a linkage-specification sets a storage class, but
4419 // 'extern "C" struct foo;' is actually valid and not theoretically
4420 // useless.
4421 if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
4422 if (SCS == DeclSpec::SCS_mutable)
4423 // Since mutable is not a viable storage class specifier in C, there is
4424 // no reason to treat it as an extension. Instead, diagnose as an error.
4425 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
4426 else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
4427 Diag(DS.getStorageClassSpecLoc(), DiagID)
4428 << DeclSpec::getSpecifierName(SCS);
4429 }
4430
4431 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
4432 Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
4433 << DeclSpec::getSpecifierName(TSCS);
4434 if (DS.getTypeQualifiers()) {
4435 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4436 Diag(DS.getConstSpecLoc(), DiagID) << "const";
4437 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4438 Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
4439 // Restrict is covered above.
4440 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4441 Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
4442 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
4443 Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned";
4444 }
4445
4446 // Warn about ignored type attributes, for example:
4447 // __attribute__((aligned)) struct A;
4448 // Attributes should be placed after tag to apply to type declaration.
4449 if (!DS.getAttributes().empty()) {
4450 DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
4451 if (TypeSpecType == DeclSpec::TST_class ||
4452 TypeSpecType == DeclSpec::TST_struct ||
4453 TypeSpecType == DeclSpec::TST_interface ||
4454 TypeSpecType == DeclSpec::TST_union ||
4455 TypeSpecType == DeclSpec::TST_enum) {
4456 for (const ParsedAttr &AL : DS.getAttributes())
4457 Diag(AL.getLoc(), diag::warn_declspec_attribute_ignored)
4458 << AL.getName() << GetDiagnosticTypeSpecifierID(TypeSpecType);
4459 }
4460 }
4461
4462 return TagD;
4463}
4464
4465/// We are trying to inject an anonymous member into the given scope;
4466/// check if there's an existing declaration that can't be overloaded.
4467///
4468/// \return true if this is a forbidden redeclaration
4469static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
4470 Scope *S,
4471 DeclContext *Owner,
4472 DeclarationName Name,
4473 SourceLocation NameLoc,
4474 bool IsUnion) {
4475 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
4476 Sema::ForVisibleRedeclaration);
4477 if (!SemaRef.LookupName(R, S)) return false;
4478
4479 // Pick a representative declaration.
4480 NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
4481 assert(PrevDecl && "Expected a non-null Decl")((PrevDecl && "Expected a non-null Decl") ? static_cast
<void> (0) : __assert_fail ("PrevDecl && \"Expected a non-null Decl\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 4481, __PRETTY_FUNCTION__))
;
4482
4483 if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
4484 return false;
4485
4486 SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl)
4487 << IsUnion << Name;
4488 SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4489
4490 return true;
4491}
4492
4493/// InjectAnonymousStructOrUnionMembers - Inject the members of the
4494/// anonymous struct or union AnonRecord into the owning context Owner
4495/// and scope S. This routine will be invoked just after we realize
4496/// that an unnamed union or struct is actually an anonymous union or
4497/// struct, e.g.,
4498///
4499/// @code
4500/// union {
4501/// int i;
4502/// float f;
4503/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
4504/// // f into the surrounding scope.x
4505/// @endcode
4506///
4507/// This routine is recursive, injecting the names of nested anonymous
4508/// structs/unions into the owning context and scope as well.
4509static bool
4510InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner,
4511 RecordDecl *AnonRecord, AccessSpecifier AS,
4512 SmallVectorImpl<NamedDecl *> &Chaining) {
4513 bool Invalid = false;
4514
4515 // Look every FieldDecl and IndirectFieldDecl with a name.
4516 for (auto *D : AnonRecord->decls()) {
4517 if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
4518 cast<NamedDecl>(D)->getDeclName()) {
4519 ValueDecl *VD = cast<ValueDecl>(D);
4520 if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
4521 VD->getLocation(),
4522 AnonRecord->isUnion())) {
4523 // C++ [class.union]p2:
4524 // The names of the members of an anonymous union shall be
4525 // distinct from the names of any other entity in the
4526 // scope in which the anonymous union is declared.
4527 Invalid = true;
4528 } else {
4529 // C++ [class.union]p2:
4530 // For the purpose of name lookup, after the anonymous union
4531 // definition, the members of the anonymous union are
4532 // considered to have been defined in the scope in which the
4533 // anonymous union is declared.
4534 unsigned OldChainingSize = Chaining.size();
4535 if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
4536 Chaining.append(IF->chain_begin(), IF->chain_end());
4537 else
4538 Chaining.push_back(VD);
4539
4540 assert(Chaining.size() >= 2)((Chaining.size() >= 2) ? static_cast<void> (0) : __assert_fail
("Chaining.size() >= 2", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 4540, __PRETTY_FUNCTION__))
;
4541 NamedDecl **NamedChain =
4542 new (SemaRef.Context)NamedDecl*[Chaining.size()];
4543 for (unsigned i = 0; i < Chaining.size(); i++)
4544 NamedChain[i] = Chaining[i];
4545
4546 IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
4547 SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(),
4548 VD->getType(), {NamedChain, Chaining.size()});
4549
4550 for (const auto *Attr : VD->attrs())
4551 IndirectField->addAttr(Attr->clone(SemaRef.Context));
4552
4553 IndirectField->setAccess(AS);
4554 IndirectField->setImplicit();
4555 SemaRef.PushOnScopeChains(IndirectField, S);
4556
4557 // That includes picking up the appropriate access specifier.
4558 if (AS != AS_none) IndirectField->setAccess(AS);
4559
4560 Chaining.resize(OldChainingSize);
4561 }
4562 }
4563 }
4564
4565 return Invalid;
4566}
4567
4568/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
4569/// a VarDecl::StorageClass. Any error reporting is up to the caller:
4570/// illegal input values are mapped to SC_None.
4571static StorageClass
4572StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
4573 DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
4574 assert(StorageClassSpec != DeclSpec::SCS_typedef &&((StorageClassSpec != DeclSpec::SCS_typedef && "Parser allowed 'typedef' as storage class VarDecl."
) ? static_cast<void> (0) : __assert_fail ("StorageClassSpec != DeclSpec::SCS_typedef && \"Parser allowed 'typedef' as storage class VarDecl.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 4575, __PRETTY_FUNCTION__))
4575 "Parser allowed 'typedef' as storage class VarDecl.")((StorageClassSpec != DeclSpec::SCS_typedef && "Parser allowed 'typedef' as storage class VarDecl."
) ? static_cast<void> (0) : __assert_fail ("StorageClassSpec != DeclSpec::SCS_typedef && \"Parser allowed 'typedef' as storage class VarDecl.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 4575, __PRETTY_FUNCTION__))
;
4576 switch (StorageClassSpec) {
4577 case DeclSpec::SCS_unspecified: return SC_None;
4578 case DeclSpec::SCS_extern:
4579 if (DS.isExternInLinkageSpec())
4580 return SC_None;
4581 return SC_Extern;
4582 case DeclSpec::SCS_static: return SC_Static;
4583 case DeclSpec::SCS_auto: return SC_Auto;
4584 case DeclSpec::SCS_register: return SC_Register;
4585 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4586 // Illegal SCSs map to None: error reporting is up to the caller.
4587 case DeclSpec::SCS_mutable: // Fall through.
4588 case DeclSpec::SCS_typedef: return SC_None;
4589 }
4590 llvm_unreachable("unknown storage class specifier")::llvm::llvm_unreachable_internal("unknown storage class specifier"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 4590)
;
4591}
4592
4593static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
4594 assert(Record->hasInClassInitializer())((Record->hasInClassInitializer()) ? static_cast<void>
(0) : __assert_fail ("Record->hasInClassInitializer()", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 4594, __PRETTY_FUNCTION__))
;
4595
4596 for (const auto *I : Record->decls()) {
4597 const auto *FD = dyn_cast<FieldDecl>(I);
4598 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
4599 FD = IFD->getAnonField();
4600 if (FD && FD->hasInClassInitializer())
4601 return FD->getLocation();
4602 }
4603
4604 llvm_unreachable("couldn't find in-class initializer")::llvm::llvm_unreachable_internal("couldn't find in-class initializer"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 4604)
;
4605}
4606
4607static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4608 SourceLocation DefaultInitLoc) {
4609 if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4610 return;
4611
4612 S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
4613 S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
4614}
4615
4616static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4617 CXXRecordDecl *AnonUnion) {
4618 if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4619 return;
4620
4621 checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
4622}
4623
4624/// BuildAnonymousStructOrUnion - Handle the declaration of an
4625/// anonymous structure or union. Anonymous unions are a C++ feature
4626/// (C++ [class.union]) and a C11 feature; anonymous structures
4627/// are a C11 feature and GNU C++ extension.
4628Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
4629 AccessSpecifier AS,
4630 RecordDecl *Record,
4631 const PrintingPolicy &Policy) {
4632 DeclContext *Owner = Record->getDeclContext();
4633
4634 // Diagnose whether this anonymous struct/union is an extension.
4635 if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
4636 Diag(Record->getLocation(), diag::ext_anonymous_union);
4637 else if (!Record->isUnion() && getLangOpts().CPlusPlus)
4638 Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
4639 else if (!Record->isUnion() && !getLangOpts().C11)
4640 Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
4641
4642 // C and C++ require different kinds of checks for anonymous
4643 // structs/unions.
4644 bool Invalid = false;
4645 if (getLangOpts().CPlusPlus) {
4646 const char *PrevSpec = nullptr;
4647 unsigned DiagID;
4648 if (Record->isUnion()) {
4649 // C++ [class.union]p6:
4650 // C++17 [class.union.anon]p2:
4651 // Anonymous unions declared in a named namespace or in the
4652 // global namespace shall be declared static.
4653 DeclContext *OwnerScope = Owner->getRedeclContext();
4654 if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
4655 (OwnerScope->isTranslationUnit() ||
4656 (OwnerScope->isNamespace() &&
4657 !cast<NamespaceDecl>(OwnerScope)->isAnonymousNamespace()))) {
4658 Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
4659 << FixItHint::CreateInsertion(Record->getLocation(), "static ");
4660
4661 // Recover by adding 'static'.
4662 DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
4663 PrevSpec, DiagID, Policy);
4664 }
4665 // C++ [class.union]p6:
4666 // A storage class is not allowed in a declaration of an
4667 // anonymous union in a class scope.
4668 else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
4669 isa<RecordDecl>(Owner)) {
4670 Diag(DS.getStorageClassSpecLoc(),
4671 diag::err_anonymous_union_with_storage_spec)
4672 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
4673
4674 // Recover by removing the storage specifier.
4675 DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
4676 SourceLocation(),
4677 PrevSpec, DiagID, Context.getPrintingPolicy());
4678 }
4679 }
4680
4681 // Ignore const/volatile/restrict qualifiers.
4682 if (DS.getTypeQualifiers()) {
4683 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4684 Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
4685 << Record->isUnion() << "const"
4686 << FixItHint::CreateRemoval(DS.getConstSpecLoc());
4687 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4688 Diag(DS.getVolatileSpecLoc(),
4689 diag::ext_anonymous_struct_union_qualified)
4690 << Record->isUnion() << "volatile"
4691 << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
4692 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
4693 Diag(DS.getRestrictSpecLoc(),
4694 diag::ext_anonymous_struct_union_qualified)
4695 << Record->isUnion() << "restrict"
4696 << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
4697 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4698 Diag(DS.getAtomicSpecLoc(),
4699 diag::ext_anonymous_struct_union_qualified)
4700 << Record->isUnion() << "_Atomic"
4701 << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
4702 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
4703 Diag(DS.getUnalignedSpecLoc(),
4704 diag::ext_anonymous_struct_union_qualified)
4705 << Record->isUnion() << "__unaligned"
4706 << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc());
4707
4708 DS.ClearTypeQualifiers();
4709 }
4710
4711 // C++ [class.union]p2:
4712 // The member-specification of an anonymous union shall only
4713 // define non-static data members. [Note: nested types and
4714 // functions cannot be declared within an anonymous union. ]
4715 for (auto *Mem : Record->decls()) {
4716 if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
4717 // C++ [class.union]p3:
4718 // An anonymous union shall not have private or protected
4719 // members (clause 11).
4720 assert(FD->getAccess() != AS_none)((FD->getAccess() != AS_none) ? static_cast<void> (0
) : __assert_fail ("FD->getAccess() != AS_none", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 4720, __PRETTY_FUNCTION__))
;
4721 if (FD->getAccess() != AS_public) {
4722 Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
4723 << Record->isUnion() << (FD->getAccess() == AS_protected);
4724 Invalid = true;
4725 }
4726
4727 // C++ [class.union]p1
4728 // An object of a class with a non-trivial constructor, a non-trivial
4729 // copy constructor, a non-trivial destructor, or a non-trivial copy
4730 // assignment operator cannot be a member of a union, nor can an
4731 // array of such objects.
4732 if (CheckNontrivialField(FD))
4733 Invalid = true;
4734 } else if (Mem->isImplicit()) {
4735 // Any implicit members are fine.
4736 } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
4737 // This is a type that showed up in an
4738 // elaborated-type-specifier inside the anonymous struct or
4739 // union, but which actually declares a type outside of the
4740 // anonymous struct or union. It's okay.
4741 } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
4742 if (!MemRecord->isAnonymousStructOrUnion() &&
4743 MemRecord->getDeclName()) {
4744 // Visual C++ allows type definition in anonymous struct or union.
4745 if (getLangOpts().MicrosoftExt)
4746 Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
4747 << Record->isUnion();
4748 else {
4749 // This is a nested type declaration.
4750 Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
4751 << Record->isUnion();
4752 Invalid = true;
4753 }
4754 } else {
4755 // This is an anonymous type definition within another anonymous type.
4756 // This is a popular extension, provided by Plan9, MSVC and GCC, but
4757 // not part of standard C++.
4758 Diag(MemRecord->getLocation(),
4759 diag::ext_anonymous_record_with_anonymous_type)
4760 << Record->isUnion();
4761 }
4762 } else if (isa<AccessSpecDecl>(Mem)) {
4763 // Any access specifier is fine.
4764 } else if (isa<StaticAssertDecl>(Mem)) {
4765 // In C++1z, static_assert declarations are also fine.
4766 } else {
4767 // We have something that isn't a non-static data
4768 // member. Complain about it.
4769 unsigned DK = diag::err_anonymous_record_bad_member;
4770 if (isa<TypeDecl>(Mem))
4771 DK = diag::err_anonymous_record_with_type;
4772 else if (isa<FunctionDecl>(Mem))
4773 DK = diag::err_anonymous_record_with_function;
4774 else if (isa<VarDecl>(Mem))
4775 DK = diag::err_anonymous_record_with_static;
4776
4777 // Visual C++ allows type definition in anonymous struct or union.
4778 if (getLangOpts().MicrosoftExt &&
4779 DK == diag::err_anonymous_record_with_type)
4780 Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
4781 << Record->isUnion();
4782 else {
4783 Diag(Mem->getLocation(), DK) << Record->isUnion();
4784 Invalid = true;
4785 }
4786 }
4787 }
4788
4789 // C++11 [class.union]p8 (DR1460):
4790 // At most one variant member of a union may have a
4791 // brace-or-equal-initializer.
4792 if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
4793 Owner->isRecord())
4794 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
4795 cast<CXXRecordDecl>(Record));
4796 }
4797
4798 if (!Record->isUnion() && !Owner->isRecord()) {
4799 Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
4800 << getLangOpts().CPlusPlus;
4801 Invalid = true;
4802 }
4803
4804 // Mock up a declarator.
4805 Declarator Dc(DS, DeclaratorContext::MemberContext);
4806 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
4807 assert(TInfo && "couldn't build declarator info for anonymous struct/union")((TInfo && "couldn't build declarator info for anonymous struct/union"
) ? static_cast<void> (0) : __assert_fail ("TInfo && \"couldn't build declarator info for anonymous struct/union\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 4807, __PRETTY_FUNCTION__))
;
4808
4809 // Create a declaration for this anonymous struct/union.
4810 NamedDecl *Anon = nullptr;
4811 if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
4812 Anon = FieldDecl::Create(
4813 Context, OwningClass, DS.getBeginLoc(), Record->getLocation(),
4814 /*IdentifierInfo=*/nullptr, Context.getTypeDeclType(Record), TInfo,
4815 /*BitWidth=*/nullptr, /*Mutable=*/false,
4816 /*InitStyle=*/ICIS_NoInit);
4817 Anon->setAccess(AS);
4818 if (getLangOpts().CPlusPlus)
4819 FieldCollector->Add(cast<FieldDecl>(Anon));
4820 } else {
4821 DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
4822 StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
4823 if (SCSpec == DeclSpec::SCS_mutable) {
4824 // mutable can only appear on non-static class members, so it's always
4825 // an error here
4826 Diag(Record->getLocation(), diag::err_mutable_nonmember);
4827 Invalid = true;
4828 SC = SC_None;
4829 }
4830
4831 Anon = VarDecl::Create(Context, Owner, DS.getBeginLoc(),
4832 Record->getLocation(), /*IdentifierInfo=*/nullptr,
4833 Context.getTypeDeclType(Record), TInfo, SC);
4834
4835 // Default-initialize the implicit variable. This initialization will be
4836 // trivial in almost all cases, except if a union member has an in-class
4837 // initializer:
4838 // union { int n = 0; };
4839 ActOnUninitializedDecl(Anon);
4840 }
4841 Anon->setImplicit();
4842
4843 // Mark this as an anonymous struct/union type.
4844 Record->setAnonymousStructOrUnion(true);
4845
4846 // Add the anonymous struct/union object to the current
4847 // context. We'll be referencing this object when we refer to one of
4848 // its members.
4849 Owner->addDecl(Anon);
4850
4851 // Inject the members of the anonymous struct/union into the owning
4852 // context and into the identifier resolver chain for name lookup
4853 // purposes.
4854 SmallVector<NamedDecl*, 2> Chain;
4855 Chain.push_back(Anon);
4856
4857 if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, Chain))
4858 Invalid = true;
4859
4860 if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
4861 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
4862 Decl *ManglingContextDecl;
4863 if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
4864 NewVD->getDeclContext(), ManglingContextDecl)) {
4865 Context.setManglingNumber(
4866 NewVD, MCtx->getManglingNumber(
4867 NewVD, getMSManglingNumber(getLangOpts(), S)));
4868 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
4869 }
4870 }
4871 }
4872
4873 if (Invalid)
4874 Anon->setInvalidDecl();
4875
4876 return Anon;
4877}
4878
4879/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
4880/// Microsoft C anonymous structure.
4881/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
4882/// Example:
4883///
4884/// struct A { int a; };
4885/// struct B { struct A; int b; };
4886///
4887/// void foo() {
4888/// B var;
4889/// var.a = 3;
4890/// }
4891///
4892Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
4893 RecordDecl *Record) {
4894 assert(Record && "expected a record!")((Record && "expected a record!") ? static_cast<void
> (0) : __assert_fail ("Record && \"expected a record!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 4894, __PRETTY_FUNCTION__))
;
4895
4896 // Mock up a declarator.
4897 Declarator Dc(DS, DeclaratorContext::TypeNameContext);
4898 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
4899 assert(TInfo && "couldn't build declarator info for anonymous struct")((TInfo && "couldn't build declarator info for anonymous struct"
) ? static_cast<void> (0) : __assert_fail ("TInfo && \"couldn't build declarator info for anonymous struct\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 4899, __PRETTY_FUNCTION__))
;
4900
4901 auto *ParentDecl = cast<RecordDecl>(CurContext);
4902 QualType RecTy = Context.getTypeDeclType(Record);
4903
4904 // Create a declaration for this anonymous struct.
4905 NamedDecl *Anon =
4906 FieldDecl::Create(Context, ParentDecl, DS.getBeginLoc(), DS.getBeginLoc(),
4907 /*IdentifierInfo=*/nullptr, RecTy, TInfo,
4908 /*BitWidth=*/nullptr, /*Mutable=*/false,
4909 /*InitStyle=*/ICIS_NoInit);
4910 Anon->setImplicit();
4911
4912 // Add the anonymous struct object to the current context.
4913 CurContext->addDecl(Anon);
4914
4915 // Inject the members of the anonymous struct into the current
4916 // context and into the identifier resolver chain for name lookup
4917 // purposes.
4918 SmallVector<NamedDecl*, 2> Chain;
4919 Chain.push_back(Anon);
4920
4921 RecordDecl *RecordDef = Record->getDefinition();
4922 if (RequireCompleteType(Anon->getLocation(), RecTy,
4923 diag::err_field_incomplete) ||
4924 InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef,
4925 AS_none, Chain)) {
4926 Anon->setInvalidDecl();
4927 ParentDecl->setInvalidDecl();
4928 }
4929
4930 return Anon;
4931}
4932
4933/// GetNameForDeclarator - Determine the full declaration name for the
4934/// given Declarator.
4935DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
4936 return GetNameFromUnqualifiedId(D.getName());
4937}
4938
4939/// Retrieves the declaration name from a parsed unqualified-id.
4940DeclarationNameInfo
4941Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
4942 DeclarationNameInfo NameInfo;
4943 NameInfo.setLoc(Name.StartLocation);
4944
4945 switch (Name.getKind()) {
4946
4947 case UnqualifiedIdKind::IK_ImplicitSelfParam:
4948 case UnqualifiedIdKind::IK_Identifier:
4949 NameInfo.setName(Name.Identifier);
4950 return NameInfo;
4951
4952 case UnqualifiedIdKind::IK_DeductionGuideName: {
4953 // C++ [temp.deduct.guide]p3:
4954 // The simple-template-id shall name a class template specialization.
4955 // The template-name shall be the same identifier as the template-name
4956 // of the simple-template-id.
4957 // These together intend to imply that the template-name shall name a
4958 // class template.
4959 // FIXME: template<typename T> struct X {};
4960 // template<typename T> using Y = X<T>;
4961 // Y(int) -> Y<int>;
4962 // satisfies these rules but does not name a class template.
4963 TemplateName TN = Name.TemplateName.get().get();
4964 auto *Template = TN.getAsTemplateDecl();
4965 if (!Template || !isa<ClassTemplateDecl>(Template)) {
4966 Diag(Name.StartLocation,
4967 diag::err_deduction_guide_name_not_class_template)
4968 << (int)getTemplateNameKindForDiagnostics(TN) << TN;
4969 if (Template)
4970 Diag(Template->getLocation(), diag::note_template_decl_here);
4971 return DeclarationNameInfo();
4972 }
4973
4974 NameInfo.setName(
4975 Context.DeclarationNames.getCXXDeductionGuideName(Template));
4976 return NameInfo;
4977 }
4978
4979 case UnqualifiedIdKind::IK_OperatorFunctionId:
4980 NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
4981 Name.OperatorFunctionId.Operator));
4982 NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
4983 = Name.OperatorFunctionId.SymbolLocations[0];
4984 NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
4985 = Name.EndLocation.getRawEncoding();
4986 return NameInfo;
4987
4988 case UnqualifiedIdKind::IK_LiteralOperatorId:
4989 NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
4990 Name.Identifier));
4991 NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
4992 return NameInfo;
4993
4994 case UnqualifiedIdKind::IK_ConversionFunctionId: {
4995 TypeSourceInfo *TInfo;
4996 QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
4997 if (Ty.isNull())
4998 return DeclarationNameInfo();
4999 NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
5000 Context.getCanonicalType(Ty)));
5001 NameInfo.setNamedTypeInfo(TInfo);
5002 return NameInfo;
5003 }
5004
5005 case UnqualifiedIdKind::IK_ConstructorName: {
5006 TypeSourceInfo *TInfo;
5007 QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
5008 if (Ty.isNull())
5009 return DeclarationNameInfo();
5010 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5011 Context.getCanonicalType(Ty)));
5012 NameInfo.setNamedTypeInfo(TInfo);
5013 return NameInfo;
5014 }
5015
5016 case UnqualifiedIdKind::IK_ConstructorTemplateId: {
5017 // In well-formed code, we can only have a constructor
5018 // template-id that refers to the current context, so go there
5019 // to find the actual type being constructed.
5020 CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
5021 if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
5022 return DeclarationNameInfo();
5023
5024 // Determine the type of the class being constructed.
5025 QualType CurClassType = Context.getTypeDeclType(CurClass);
5026
5027 // FIXME: Check two things: that the template-id names the same type as
5028 // CurClassType, and that the template-id does not occur when the name
5029 // was qualified.
5030
5031 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5032 Context.getCanonicalType(CurClassType)));
5033 // FIXME: should we retrieve TypeSourceInfo?
5034 NameInfo.setNamedTypeInfo(nullptr);
5035 return NameInfo;
5036 }
5037
5038 case UnqualifiedIdKind::IK_DestructorName: {
5039 TypeSourceInfo *TInfo;
5040 QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
5041 if (Ty.isNull())
5042 return DeclarationNameInfo();
5043 NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
5044 Context.getCanonicalType(Ty)));
5045 NameInfo.setNamedTypeInfo(TInfo);
5046 return NameInfo;
5047 }
5048
5049 case UnqualifiedIdKind::IK_TemplateId: {
5050 TemplateName TName = Name.TemplateId->Template.get();
5051 SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
5052 return Context.getNameForTemplate(TName, TNameLoc);
5053 }
5054
5055 } // switch (Name.getKind())
5056
5057 llvm_unreachable("Unknown name kind")::llvm::llvm_unreachable_internal("Unknown name kind", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 5057)
;
5058}
5059
5060static QualType getCoreType(QualType Ty) {
5061 do {
5062 if (Ty->isPointerType() || Ty->isReferenceType())
5063 Ty = Ty->getPointeeType();
5064 else if (Ty->isArrayType())
5065 Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
5066 else
5067 return Ty.withoutLocalFastQualifiers();
5068 } while (true);
5069}
5070
5071/// hasSimilarParameters - Determine whether the C++ functions Declaration
5072/// and Definition have "nearly" matching parameters. This heuristic is
5073/// used to improve diagnostics in the case where an out-of-line function
5074/// definition doesn't match any declaration within the class or namespace.
5075/// Also sets Params to the list of indices to the parameters that differ
5076/// between the declaration and the definition. If hasSimilarParameters
5077/// returns true and Params is empty, then all of the parameters match.
5078static bool hasSimilarParameters(ASTContext &Context,
5079 FunctionDecl *Declaration,
5080 FunctionDecl *Definition,
5081 SmallVectorImpl<unsigned> &Params) {
5082 Params.clear();
5083 if (Declaration->param_size() != Definition->param_size())
5084 return false;
5085 for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
5086 QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
5087 QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
5088
5089 // The parameter types are identical
5090 if (Context.hasSameType(DefParamTy, DeclParamTy))
5091 continue;
5092
5093 QualType DeclParamBaseTy = getCoreType(DeclParamTy);
5094 QualType DefParamBaseTy = getCoreType(DefParamTy);
5095 const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
5096 const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
5097
5098 if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
5099 (DeclTyName && DeclTyName == DefTyName))
5100 Params.push_back(Idx);
5101 else // The two parameters aren't even close
5102 return false;
5103 }
5104
5105 return true;
5106}
5107
5108/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
5109/// declarator needs to be rebuilt in the current instantiation.
5110/// Any bits of declarator which appear before the name are valid for
5111/// consideration here. That's specifically the type in the decl spec
5112/// and the base type in any member-pointer chunks.
5113static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
5114 DeclarationName Name) {
5115 // The types we specifically need to rebuild are:
5116 // - typenames, typeofs, and decltypes
5117 // - types which will become injected class names
5118 // Of course, we also need to rebuild any type referencing such a
5119 // type. It's safest to just say "dependent", but we call out a
5120 // few cases here.
5121
5122 DeclSpec &DS = D.getMutableDeclSpec();
5123 switch (DS.getTypeSpecType()) {
5124 case DeclSpec::TST_typename:
5125 case DeclSpec::TST_typeofType:
5126 case DeclSpec::TST_underlyingType:
5127 case DeclSpec::TST_atomic: {
5128 // Grab the type from the parser.
5129 TypeSourceInfo *TSI = nullptr;
5130 QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
5131 if (T.isNull() || !T->isDependentType()) break;
5132
5133 // Make sure there's a type source info. This isn't really much
5134 // of a waste; most dependent types should have type source info
5135 // attached already.
5136 if (!TSI)
5137 TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
5138
5139 // Rebuild the type in the current instantiation.
5140 TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
5141 if (!TSI) return true;
5142
5143 // Store the new type back in the decl spec.
5144 ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
5145 DS.UpdateTypeRep(LocType);
5146 break;
5147 }
5148
5149 case DeclSpec::TST_decltype:
5150 case DeclSpec::TST_typeofExpr: {
5151 Expr *E = DS.getRepAsExpr();
5152 ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
5153 if (Result.isInvalid()) return true;
5154 DS.UpdateExprRep(Result.get());
5155 break;
5156 }
5157
5158 default:
5159 // Nothing to do for these decl specs.
5160 break;
5161 }
5162
5163 // It doesn't matter what order we do this in.
5164 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
5165 DeclaratorChunk &Chunk = D.getTypeObject(I);
5166
5167 // The only type information in the declarator which can come
5168 // before the declaration name is the base type of a member
5169 // pointer.
5170 if (Chunk.Kind != DeclaratorChunk::MemberPointer)
5171 continue;
5172
5173 // Rebuild the scope specifier in-place.
5174 CXXScopeSpec &SS = Chunk.Mem.Scope();
5175 if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
5176 return true;
5177 }
5178
5179 return false;
5180}
5181
5182Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
5183 D.setFunctionDefinitionKind(FDK_Declaration);
5184 Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
5185
5186 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
5187 Dcl && Dcl->getDeclContext()->isFileContext())
5188 Dcl->setTopLevelDeclInObjCContainer();
5189
5190 if (getLangOpts().OpenCL)
5191 setCurrentOpenCLExtensionForDecl(Dcl);
5192
5193 return Dcl;
5194}
5195
5196/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
5197/// If T is the name of a class, then each of the following shall have a
5198/// name different from T:
5199/// - every static data member of class T;
5200/// - every member function of class T
5201/// - every member of class T that is itself a type;
5202/// \returns true if the declaration name violates these rules.
5203bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
5204 DeclarationNameInfo NameInfo) {
5205 DeclarationName Name = NameInfo.getName();
5206
5207 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC);
5208 while (Record && Record->isAnonymousStructOrUnion())
5209 Record = dyn_cast<CXXRecordDecl>(Record->getParent());
5210 if (Record && Record->getIdentifier() && Record->getDeclName() == Name) {
5211 Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
5212 return true;
5213 }
5214
5215 return false;
5216}
5217
5218/// Diagnose a declaration whose declarator-id has the given
5219/// nested-name-specifier.
5220///
5221/// \param SS The nested-name-specifier of the declarator-id.
5222///
5223/// \param DC The declaration context to which the nested-name-specifier
5224/// resolves.
5225///
5226/// \param Name The name of the entity being declared.
5227///
5228/// \param Loc The location of the name of the entity being declared.
5229///
5230/// \param IsTemplateId Whether the name is a (simple-)template-id, and thus
5231/// we're declaring an explicit / partial specialization / instantiation.
5232///
5233/// \returns true if we cannot safely recover from this error, false otherwise.
5234bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
5235 DeclarationName Name,
5236 SourceLocation Loc, bool IsTemplateId) {
5237 DeclContext *Cur = CurContext;
5238 while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
5239 Cur = Cur->getParent();
5240
5241 // If the user provided a superfluous scope specifier that refers back to the
5242 // class in which the entity is already declared, diagnose and ignore it.
5243 //
5244 // class X {
5245 // void X::f();
5246 // };
5247 //
5248 // Note, it was once ill-formed to give redundant qualification in all
5249 // contexts, but that rule was removed by DR482.
5250 if (Cur->Equals(DC)) {
5251 if (Cur->isRecord()) {
5252 Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
5253 : diag::err_member_extra_qualification)
5254 << Name << FixItHint::CreateRemoval(SS.getRange());
5255 SS.clear();
5256 } else {
5257 Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
5258 }
5259 return false;
5260 }
5261
5262 // Check whether the qualifying scope encloses the scope of the original
5263 // declaration. For a template-id, we perform the checks in
5264 // CheckTemplateSpecializationScope.
5265 if (!Cur->Encloses(DC) && !IsTemplateId) {
5266 if (Cur->isRecord())
5267 Diag(Loc, diag::err_member_qualification)
5268 << Name << SS.getRange();
5269 else if (isa<TranslationUnitDecl>(DC))
5270 Diag(Loc, diag::err_invalid_declarator_global_scope)
5271 << Name << SS.getRange();
5272 else if (isa<FunctionDecl>(Cur))
5273 Diag(Loc, diag::err_invalid_declarator_in_function)
5274 << Name << SS.getRange();
5275 else if (isa<BlockDecl>(Cur))
5276 Diag(Loc, diag::err_invalid_declarator_in_block)
5277 << Name << SS.getRange();
5278 else
5279 Diag(Loc, diag::err_invalid_declarator_scope)
5280 << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
5281
5282 return true;
5283 }
5284
5285 if (Cur->isRecord()) {
5286 // Cannot qualify members within a class.
5287 Diag(Loc, diag::err_member_qualification)
5288 << Name << SS.getRange();
5289 SS.clear();
5290
5291 // C++ constructors and destructors with incorrect scopes can break
5292 // our AST invariants by having the wrong underlying types. If
5293 // that's the case, then drop this declaration entirely.
5294 if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
5295 Name.getNameKind() == DeclarationName::CXXDestructorName) &&
5296 !Context.hasSameType(Name.getCXXNameType(),
5297 Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
5298 return true;
5299
5300 return false;
5301 }
5302
5303 // C++11 [dcl.meaning]p1:
5304 // [...] "The nested-name-specifier of the qualified declarator-id shall
5305 // not begin with a decltype-specifer"
5306 NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
5307 while (SpecLoc.getPrefix())
5308 SpecLoc = SpecLoc.getPrefix();
5309 if (dyn_cast_or_null<DecltypeType>(
5310 SpecLoc.getNestedNameSpecifier()->getAsType()))
5311 Diag(Loc, diag::err_decltype_in_declarator)
5312 << SpecLoc.getTypeLoc().getSourceRange();
5313
5314 return false;
5315}
5316
5317NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
5318 MultiTemplateParamsArg TemplateParamLists) {
5319 // TODO: consider using NameInfo for diagnostic.
5320 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5321 DeclarationName Name = NameInfo.getName();
5322
5323 // All of these full declarators require an identifier. If it doesn't have
5324 // one, the ParsedFreeStandingDeclSpec action should be used.
5325 if (D.isDecompositionDeclarator()) {
5326 return ActOnDecompositionDeclarator(S, D, TemplateParamLists);
5327 } else if (!Name) {
5328 if (!D.isInvalidType()) // Reject this if we think it is valid.
5329 Diag(D.getDeclSpec().getBeginLoc(), diag::err_declarator_need_ident)
5330 << D.getDeclSpec().getSourceRange() << D.getSourceRange();
5331 return nullptr;
5332 } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
5333 return nullptr;
5334
5335 // The scope passed in may not be a decl scope. Zip up the scope tree until
5336 // we find one that is.
5337 while ((S->getFlags() & Scope::DeclScope) == 0 ||
5338 (S->getFlags() & Scope::TemplateParamScope) != 0)
5339 S = S->getParent();
5340
5341 DeclContext *DC = CurContext;
5342 if (D.getCXXScopeSpec().isInvalid())
5343 D.setInvalidType();
5344 else if (D.getCXXScopeSpec().isSet()) {
5345 if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
5346 UPPC_DeclarationQualifier))
5347 return nullptr;
5348
5349 bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
5350 DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
5351 if (!DC || isa<EnumDecl>(DC)) {
5352 // If we could not compute the declaration context, it's because the
5353 // declaration context is dependent but does not refer to a class,
5354 // class template, or class template partial specialization. Complain
5355 // and return early, to avoid the coming semantic disaster.
5356 Diag(D.getIdentifierLoc(),
5357 diag::err_template_qualified_declarator_no_match)
5358 << D.getCXXScopeSpec().getScopeRep()
5359 << D.getCXXScopeSpec().getRange();
5360 return nullptr;
5361 }
5362 bool IsDependentContext = DC->isDependentContext();
5363
5364 if (!IsDependentContext &&
5365 RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
5366 return nullptr;
5367
5368 // If a class is incomplete, do not parse entities inside it.
5369 if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
5370 Diag(D.getIdentifierLoc(),
5371 diag::err_member_def_undefined_record)
5372 << Name << DC << D.getCXXScopeSpec().getRange();
5373 return nullptr;
5374 }
5375 if (!D.getDeclSpec().isFriendSpecified()) {
5376 if (diagnoseQualifiedDeclaration(
5377 D.getCXXScopeSpec(), DC, Name, D.getIdentifierLoc(),
5378 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId)) {
5379 if (DC->isRecord())
5380 return nullptr;
5381
5382 D.setInvalidType();
5383 }
5384 }
5385
5386 // Check whether we need to rebuild the type of the given
5387 // declaration in the current instantiation.
5388 if (EnteringContext && IsDependentContext &&
5389 TemplateParamLists.size() != 0) {
5390 ContextRAII SavedContext(*this, DC);
5391 if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
5392 D.setInvalidType();
5393 }
5394 }
5395
5396 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5397 QualType R = TInfo->getType();
5398
5399 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
5400 UPPC_DeclarationType))
5401 D.setInvalidType();
5402
5403 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
5404 forRedeclarationInCurContext());
5405
5406 // See if this is a redefinition of a variable in the same scope.
5407 if (!D.getCXXScopeSpec().isSet()) {
5408 bool IsLinkageLookup = false;
5409 bool CreateBuiltins = false;
5410
5411 // If the declaration we're planning to build will be a function
5412 // or object with linkage, then look for another declaration with
5413 // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
5414 //
5415 // If the declaration we're planning to build will be declared with
5416 // external linkage in the translation unit, create any builtin with
5417 // the same name.
5418 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
5419 /* Do nothing*/;
5420 else if (CurContext->isFunctionOrMethod() &&
5421 (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
5422 R->isFunctionType())) {
5423 IsLinkageLookup = true;
5424 CreateBuiltins =
5425 CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
5426 } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
5427 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
5428 CreateBuiltins = true;
5429
5430 if (IsLinkageLookup) {
5431 Previous.clear(LookupRedeclarationWithLinkage);
5432 Previous.setRedeclarationKind(ForExternalRedeclaration);
5433 }
5434
5435 LookupName(Previous, S, CreateBuiltins);
5436 } else { // Something like "int foo::x;"
5437 LookupQualifiedName(Previous, DC);
5438
5439 // C++ [dcl.meaning]p1:
5440 // When the declarator-id is qualified, the declaration shall refer to a
5441 // previously declared member of the class or namespace to which the
5442 // qualifier refers (or, in the case of a namespace, of an element of the
5443 // inline namespace set of that namespace (7.3.1)) or to a specialization
5444 // thereof; [...]
5445 //
5446 // Note that we already checked the context above, and that we do not have
5447 // enough information to make sure that Previous contains the declaration
5448 // we want to match. For example, given:
5449 //
5450 // class X {
5451 // void f();
5452 // void f(float);
5453 // };
5454 //
5455 // void X::f(int) { } // ill-formed
5456 //
5457 // In this case, Previous will point to the overload set
5458 // containing the two f's declared in X, but neither of them
5459 // matches.
5460
5461 // C++ [dcl.meaning]p1:
5462 // [...] the member shall not merely have been introduced by a
5463 // using-declaration in the scope of the class or namespace nominated by
5464 // the nested-name-specifier of the declarator-id.
5465 RemoveUsingDecls(Previous);
5466 }
5467
5468 if (Previous.isSingleResult() &&
5469 Previous.getFoundDecl()->isTemplateParameter()) {
5470 // Maybe we will complain about the shadowed template parameter.
5471 if (!D.isInvalidType())
5472 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
5473 Previous.getFoundDecl());
5474
5475 // Just pretend that we didn't see the previous declaration.
5476 Previous.clear();
5477 }
5478
5479 if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo))
5480 // Forget that the previous declaration is the injected-class-name.
5481 Previous.clear();
5482
5483 // In C++, the previous declaration we find might be a tag type
5484 // (class or enum). In this case, the new declaration will hide the
5485 // tag type. Note that this applies to functions, function templates, and
5486 // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates.
5487 if (Previous.isSingleTagDecl() &&
5488 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5489 (TemplateParamLists.size() == 0 || R->isFunctionType()))
5490 Previous.clear();
5491
5492 // Check that there are no default arguments other than in the parameters
5493 // of a function declaration (C++ only).
5494 if (getLangOpts().CPlusPlus)
5495 CheckExtraCXXDefaultArguments(D);
5496
5497 NamedDecl *New;
5498
5499 bool AddToScope = true;
5500 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5501 if (TemplateParamLists.size()) {
5502 Diag(D.getIdentifierLoc(), diag::err_template_typedef);
5503 return nullptr;
5504 }
5505
5506 New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
5507 } else if (R->isFunctionType()) {
5508 New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
5509 TemplateParamLists,
5510 AddToScope);
5511 } else {
5512 New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
5513 AddToScope);
5514 }
5515
5516 if (!New)
5517 return nullptr;
5518
5519 // If this has an identifier and is not a function template specialization,
5520 // add it to the scope stack.
5521 if (New->getDeclName() && AddToScope) {
5522 // Only make a locally-scoped extern declaration visible if it is the first
5523 // declaration of this entity. Qualified lookup for such an entity should
5524 // only find this declaration if there is no visible declaration of it.
5525 bool AddToContext = !D.isRedeclaration() || !New->isLocalExternDecl();
5526 PushOnScopeChains(New, S, AddToContext);
5527 if (!AddToContext)
5528 CurContext->addHiddenDecl(New);
5529 }
5530
5531 if (isInOpenMPDeclareTargetContext())
5532 checkDeclIsAllowedInOpenMPTarget(nullptr, New);
5533
5534 return New;
5535}
5536
5537/// Helper method to turn variable array types into constant array
5538/// types in certain situations which would otherwise be errors (for
5539/// GCC compatibility).
5540static QualType TryToFixInvalidVariablyModifiedType(QualType T,
5541 ASTContext &Context,
5542 bool &SizeIsNegative,
5543 llvm::APSInt &Oversized) {
5544 // This method tries to turn a variable array into a constant
5545 // array even when the size isn't an ICE. This is necessary
5546 // for compatibility with code that depends on gcc's buggy
5547 // constant expression folding, like struct {char x[(int)(char*)2];}
5548 SizeIsNegative = false;
5549 Oversized = 0;
5550
5551 if (T->isDependentType())
5552 return QualType();
5553
5554 QualifierCollector Qs;
5555 const Type *Ty = Qs.strip(T);
5556
5557 if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
5558 QualType Pointee = PTy->getPointeeType();
5559 QualType FixedType =
5560 TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
5561 Oversized);
5562 if (FixedType.isNull()) return FixedType;
5563 FixedType = Context.getPointerType(FixedType);
5564 return Qs.apply(Context, FixedType);
5565 }
5566 if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
5567 QualType Inner = PTy->getInnerType();
5568 QualType FixedType =
5569 TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
5570 Oversized);
5571 if (FixedType.isNull()) return FixedType;
5572 FixedType = Context.getParenType(FixedType);
5573 return Qs.apply(Context, FixedType);
5574 }
5575
5576 const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
5577 if (!VLATy)
5578 return QualType();
5579 // FIXME: We should probably handle this case
5580 if (VLATy->getElementType()->isVariablyModifiedType())
5581 return QualType();
5582
5583 Expr::EvalResult Result;
5584 if (!VLATy->getSizeExpr() ||
5585 !VLATy->getSizeExpr()->EvaluateAsInt(Result, Context))
5586 return QualType();
5587
5588 llvm::APSInt Res = Result.Val.getInt();
5589
5590 // Check whether the array size is negative.
5591 if (Res.isSigned() && Res.isNegative()) {
5592 SizeIsNegative = true;
5593 return QualType();
5594 }
5595
5596 // Check whether the array is too large to be addressed.
5597 unsigned ActiveSizeBits
5598 = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
5599 Res);
5600 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
5601 Oversized = Res;
5602 return QualType();
5603 }
5604
5605 return Context.getConstantArrayType(VLATy->getElementType(),
5606 Res, ArrayType::Normal, 0);
5607}
5608
5609static void
5610FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
5611 SrcTL = SrcTL.getUnqualifiedLoc();
5612 DstTL = DstTL.getUnqualifiedLoc();
5613 if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
5614 PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
5615 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
5616 DstPTL.getPointeeLoc());
5617 DstPTL.setStarLoc(SrcPTL.getStarLoc());
5618 return;
5619 }
5620 if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
5621 ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
5622 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
5623 DstPTL.getInnerLoc());
5624 DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
5625 DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
5626 return;
5627 }
5628 ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
5629 ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
5630 TypeLoc SrcElemTL = SrcATL.getElementLoc();
5631 TypeLoc DstElemTL = DstATL.getElementLoc();
5632 DstElemTL.initializeFullCopy(SrcElemTL);
5633 DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
5634 DstATL.setSizeExpr(SrcATL.getSizeExpr());
5635 DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
5636}
5637
5638/// Helper method to turn variable array types into constant array
5639/// types in certain situations which would otherwise be errors (for
5640/// GCC compatibility).
5641static TypeSourceInfo*
5642TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
5643 ASTContext &Context,
5644 bool &SizeIsNegative,
5645 llvm::APSInt &Oversized) {
5646 QualType FixedTy
5647 = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
5648 SizeIsNegative, Oversized);
5649 if (FixedTy.isNull())
5650 return nullptr;
5651 TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
5652 FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
5653 FixedTInfo->getTypeLoc());
5654 return FixedTInfo;
5655}
5656
5657/// Register the given locally-scoped extern "C" declaration so
5658/// that it can be found later for redeclarations. We include any extern "C"
5659/// declaration that is not visible in the translation unit here, not just
5660/// function-scope declarations.
5661void
5662Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
5663 if (!getLangOpts().CPlusPlus &&
5664 ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
5665 // Don't need to track declarations in the TU in C.
5666 return;
5667
5668 // Note that we have a locally-scoped external with this name.
5669 Context.getExternCContextDecl()->makeDeclVisibleInContext(ND);
5670}
5671
5672NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
5673 // FIXME: We can have multiple results via __attribute__((overloadable)).
5674 auto Result = Context.getExternCContextDecl()->lookup(Name);
5675 return Result.empty() ? nullptr : *Result.begin();
5676}
5677
5678/// Diagnose function specifiers on a declaration of an identifier that
5679/// does not identify a function.
5680void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
5681 // FIXME: We should probably indicate the identifier in question to avoid
5682 // confusion for constructs like "virtual int a(), b;"
5683 if (DS.isVirtualSpecified())
5684 Diag(DS.getVirtualSpecLoc(),
5685 diag::err_virtual_non_function);
5686
5687 if (DS.isExplicitSpecified())
5688 Diag(DS.getExplicitSpecLoc(),
5689 diag::err_explicit_non_function);
5690
5691 if (DS.isNoreturnSpecified())
5692 Diag(DS.getNoreturnSpecLoc(),
5693 diag::err_noreturn_non_function);
5694}
5695
5696NamedDecl*
5697Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
5698 TypeSourceInfo *TInfo, LookupResult &Previous) {
5699 // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
5700 if (D.getCXXScopeSpec().isSet()) {
5701 Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
5702 << D.getCXXScopeSpec().getRange();
5703 D.setInvalidType();
5704 // Pretend we didn't see the scope specifier.
5705 DC = CurContext;
5706 Previous.clear();
5707 }
5708
5709 DiagnoseFunctionSpecifiers(D.getDeclSpec());
5710
5711 if (D.getDeclSpec().isInlineSpecified())
5712 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
5713 << getLangOpts().CPlusPlus17;
5714 if (D.getDeclSpec().isConstexprSpecified())
5715 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
5716 << 1;
5717
5718 if (D.getName().Kind != UnqualifiedIdKind::IK_Identifier) {
5719 if (D.getName().Kind == UnqualifiedIdKind::IK_DeductionGuideName)
5720 Diag(D.getName().StartLocation,
5721 diag::err_deduction_guide_invalid_specifier)
5722 << "typedef";
5723 else
5724 Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
5725 << D.getName().getSourceRange();
5726 return nullptr;
5727 }
5728
5729 TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
5730 if (!NewTD) return nullptr;
5731
5732 // Handle attributes prior to checking for duplicates in MergeVarDecl
5733 ProcessDeclAttributes(S, NewTD, D);
5734
5735 CheckTypedefForVariablyModifiedType(S, NewTD);
5736
5737 bool Redeclaration = D.isRedeclaration();
5738 NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
5739 D.setRedeclaration(Redeclaration);
5740 return ND;
5741}
5742
5743void
5744Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
5745 // C99 6.7.7p2: If a typedef name specifies a variably modified type
5746 // then it shall have block scope.
5747 // Note that variably modified types must be fixed before merging the decl so
5748 // that redeclarations will match.
5749 TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
5750 QualType T = TInfo->getType();
5751 if (T->isVariablyModifiedType()) {
5752 setFunctionHasBranchProtectedScope();
5753
5754 if (S->getFnParent() == nullptr) {
5755 bool SizeIsNegative;
5756 llvm::APSInt Oversized;
5757 TypeSourceInfo *FixedTInfo =
5758 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
5759 SizeIsNegative,
5760 Oversized);
5761 if (FixedTInfo) {
5762 Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
5763 NewTD->setTypeSourceInfo(FixedTInfo);
5764 } else {
5765 if (SizeIsNegative)
5766 Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
5767 else if (T->isVariableArrayType())
5768 Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
5769 else if (Oversized.getBoolValue())
5770 Diag(NewTD->getLocation(), diag::err_array_too_large)
5771 << Oversized.toString(10);
5772 else
5773 Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
5774 NewTD->setInvalidDecl();
5775 }
5776 }
5777 }
5778}
5779
5780/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
5781/// declares a typedef-name, either using the 'typedef' type specifier or via
5782/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
5783NamedDecl*
5784Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
5785 LookupResult &Previous, bool &Redeclaration) {
5786
5787 // Find the shadowed declaration before filtering for scope.
5788 NamedDecl *ShadowedDecl = getShadowedDeclaration(NewTD, Previous);
5789
5790 // Merge the decl with the existing one if appropriate. If the decl is
5791 // in an outer scope, it isn't the same thing.
5792 FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
5793 /*AllowInlineNamespace*/false);
5794 filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous);
5795 if (!Previous.empty()) {
5796 Redeclaration = true;
5797 MergeTypedefNameDecl(S, NewTD, Previous);
5798 }
5799
5800 if (ShadowedDecl && !Redeclaration)
5801 CheckShadow(NewTD, ShadowedDecl, Previous);
5802
5803 // If this is the C FILE type, notify the AST context.
5804 if (IdentifierInfo *II = NewTD->getIdentifier())
5805 if (!NewTD->isInvalidDecl() &&
5806 NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5807 if (II->isStr("FILE"))
5808 Context.setFILEDecl(NewTD);
5809 else if (II->isStr("jmp_buf"))
5810 Context.setjmp_bufDecl(NewTD);
5811 else if (II->isStr("sigjmp_buf"))
5812 Context.setsigjmp_bufDecl(NewTD);
5813 else if (II->isStr("ucontext_t"))
5814 Context.setucontext_tDecl(NewTD);
5815 }
5816
5817 return NewTD;
5818}
5819
5820/// Determines whether the given declaration is an out-of-scope
5821/// previous declaration.
5822///
5823/// This routine should be invoked when name lookup has found a
5824/// previous declaration (PrevDecl) that is not in the scope where a
5825/// new declaration by the same name is being introduced. If the new
5826/// declaration occurs in a local scope, previous declarations with
5827/// linkage may still be considered previous declarations (C99
5828/// 6.2.2p4-5, C++ [basic.link]p6).
5829///
5830/// \param PrevDecl the previous declaration found by name
5831/// lookup
5832///
5833/// \param DC the context in which the new declaration is being
5834/// declared.
5835///
5836/// \returns true if PrevDecl is an out-of-scope previous declaration
5837/// for a new delcaration with the same name.
5838static bool
5839isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
5840 ASTContext &Context) {
5841 if (!PrevDecl)
5842 return false;
5843
5844 if (!PrevDecl->hasLinkage())
5845 return false;
5846
5847 if (Context.getLangOpts().CPlusPlus) {
5848 // C++ [basic.link]p6:
5849 // If there is a visible declaration of an entity with linkage
5850 // having the same name and type, ignoring entities declared
5851 // outside the innermost enclosing namespace scope, the block
5852 // scope declaration declares that same entity and receives the
5853 // linkage of the previous declaration.
5854 DeclContext *OuterContext = DC->getRedeclContext();
5855 if (!OuterContext->isFunctionOrMethod())
5856 // This rule only applies to block-scope declarations.
5857 return false;
5858
5859 DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
5860 if (PrevOuterContext->isRecord())
5861 // We found a member function: ignore it.
5862 return false;
5863
5864 // Find the innermost enclosing namespace for the new and
5865 // previous declarations.
5866 OuterContext = OuterContext->getEnclosingNamespaceContext();
5867 PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
5868
5869 // The previous declaration is in a different namespace, so it
5870 // isn't the same function.
5871 if (!OuterContext->Equals(PrevOuterContext))
5872 return false;
5873 }
5874
5875 return true;
5876}
5877
5878static void SetNestedNameSpecifier(Sema &S, DeclaratorDecl *DD, Declarator &D) {
5879 CXXScopeSpec &SS = D.getCXXScopeSpec();
5880 if (!SS.isSet()) return;
5881 DD->setQualifierInfo(SS.getWithLocInContext(S.Context));
5882}
5883
5884bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
5885 QualType type = decl->getType();
5886 Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
5887 if (lifetime == Qualifiers::OCL_Autoreleasing) {
5888 // Various kinds of declaration aren't allowed to be __autoreleasing.
5889 unsigned kind = -1U;
5890 if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5891 if (var->hasAttr<BlocksAttr>())
5892 kind = 0; // __block
5893 else if (!var->hasLocalStorage())
5894 kind = 1; // global
5895 } else if (isa<ObjCIvarDecl>(decl)) {
5896 kind = 3; // ivar
5897 } else if (isa<FieldDecl>(decl)) {
5898 kind = 2; // field
5899 }
5900
5901 if (kind != -1U) {
5902 Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
5903 << kind;
5904 }
5905 } else if (lifetime == Qualifiers::OCL_None) {
5906 // Try to infer lifetime.
5907 if (!type->isObjCLifetimeType())
5908 return false;
5909
5910 lifetime = type->getObjCARCImplicitLifetime();
5911 type = Context.getLifetimeQualifiedType(type, lifetime);
5912 decl->setType(type);
5913 }
5914
5915 if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5916 // Thread-local variables cannot have lifetime.
5917 if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
5918 var->getTLSKind()) {
5919 Diag(var->getLocation(), diag::err_arc_thread_ownership)
5920 << var->getType();
5921 return true;
5922 }
5923 }
5924
5925 return false;
5926}
5927
5928static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
5929 // Ensure that an auto decl is deduced otherwise the checks below might cache
5930 // the wrong linkage.
5931 assert(S.ParsingInitForAutoVars.count(&ND) == 0)((S.ParsingInitForAutoVars.count(&ND) == 0) ? static_cast
<void> (0) : __assert_fail ("S.ParsingInitForAutoVars.count(&ND) == 0"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 5931, __PRETTY_FUNCTION__))
;
5932
5933 // 'weak' only applies to declarations with external linkage.
5934 if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
5935 if (!ND.isExternallyVisible()) {
5936 S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
5937 ND.dropAttr<WeakAttr>();
5938 }
5939 }
5940 if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
5941 if (ND.isExternallyVisible()) {
5942 S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
5943 ND.dropAttr<WeakRefAttr>();
5944 ND.dropAttr<AliasAttr>();
5945 }
5946 }
5947
5948 if (auto *VD = dyn_cast<VarDecl>(&ND)) {
5949 if (VD->hasInit()) {
5950 if (const auto *Attr = VD->getAttr<AliasAttr>()) {
5951 assert(VD->isThisDeclarationADefinition() &&((VD->isThisDeclarationADefinition() && !VD->isExternallyVisible
() && "Broken AliasAttr handled late!") ? static_cast
<void> (0) : __assert_fail ("VD->isThisDeclarationADefinition() && !VD->isExternallyVisible() && \"Broken AliasAttr handled late!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 5952, __PRETTY_FUNCTION__))
5952 !VD->isExternallyVisible() && "Broken AliasAttr handled late!")((VD->isThisDeclarationADefinition() && !VD->isExternallyVisible
() && "Broken AliasAttr handled late!") ? static_cast
<void> (0) : __assert_fail ("VD->isThisDeclarationADefinition() && !VD->isExternallyVisible() && \"Broken AliasAttr handled late!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 5952, __PRETTY_FUNCTION__))
;
5953 S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0;
5954 VD->dropAttr<AliasAttr>();
5955 }
5956 }
5957 }
5958
5959 // 'selectany' only applies to externally visible variable declarations.
5960 // It does not apply to functions.
5961 if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
5962 if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
5963 S.Diag(Attr->getLocation(),
5964 diag::err_attribute_selectany_non_extern_data);
5965 ND.dropAttr<SelectAnyAttr>();
5966 }
5967 }
5968
5969 if (const InheritableAttr *Attr = getDLLAttr(&ND)) {
5970 // dll attributes require external linkage. Static locals may have external
5971 // linkage but still cannot be explicitly imported or exported.
5972 auto *VD = dyn_cast<VarDecl>(&ND);
5973 if (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())) {
5974 S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
5975 << &ND << Attr;
5976 ND.setInvalidDecl();
5977 }
5978 }
5979
5980 // Virtual functions cannot be marked as 'notail'.
5981 if (auto *Attr = ND.getAttr<NotTailCalledAttr>())
5982 if (auto *MD = dyn_cast<CXXMethodDecl>(&ND))
5983 if (MD->isVirtual()) {
5984 S.Diag(ND.getLocation(),
5985 diag::err_invalid_attribute_on_virtual_function)
5986 << Attr;
5987 ND.dropAttr<NotTailCalledAttr>();
5988 }
5989
5990 // Check the attributes on the function type, if any.
5991 if (const auto *FD = dyn_cast<FunctionDecl>(&ND)) {
5992 // Don't declare this variable in the second operand of the for-statement;
5993 // GCC miscompiles that by ending its lifetime before evaluating the
5994 // third operand. See gcc.gnu.org/PR86769.
5995 AttributedTypeLoc ATL;
5996 for (TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc();
5997 (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
5998 TL = ATL.getModifiedLoc()) {
5999 // The [[lifetimebound]] attribute can be applied to the implicit object
6000 // parameter of a non-static member function (other than a ctor or dtor)
6001 // by applying it to the function type.
6002 if (const auto *A = ATL.getAttrAs<LifetimeBoundAttr>()) {
6003 const auto *MD = dyn_cast<CXXMethodDecl>(FD);
6004 if (!MD || MD->isStatic()) {
6005 S.Diag(A->getLocation(), diag::err_lifetimebound_no_object_param)
6006 << !MD << A->getRange();
6007 } else if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) {
6008 S.Diag(A->getLocation(), diag::err_lifetimebound_ctor_dtor)
6009 << isa<CXXDestructorDecl>(MD) << A->getRange();
6010 }
6011 }
6012 }
6013 }
6014}
6015
6016static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
6017 NamedDecl *NewDecl,
6018 bool IsSpecialization,
6019 bool IsDefinition) {
6020 if (OldDecl->isInvalidDecl() || NewDecl->isInvalidDecl())
6021 return;
6022
6023 bool IsTemplate = false;
6024 if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) {
6025 OldDecl = OldTD->getTemplatedDecl();
6026 IsTemplate = true;
6027 if (!IsSpecialization)
6028 IsDefinition = false;
6029 }
6030 if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) {
6031 NewDecl = NewTD->getTemplatedDecl();
6032 IsTemplate = true;
6033 }
6034
6035 if (!OldDecl || !NewDecl)
6036 return;
6037
6038 const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
6039 const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
6040 const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
6041 const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
6042
6043 // dllimport and dllexport are inheritable attributes so we have to exclude
6044 // inherited attribute instances.
6045 bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
6046 (NewExportAttr && !NewExportAttr->isInherited());
6047
6048 // A redeclaration is not allowed to add a dllimport or dllexport attribute,
6049 // the only exception being explicit specializations.
6050 // Implicitly generated declarations are also excluded for now because there
6051 // is no other way to switch these to use dllimport or dllexport.
6052 bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
6053
6054 if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
6055 // Allow with a warning for free functions and global variables.
6056 bool JustWarn = false;
6057 if (!OldDecl->isCXXClassMember()) {
6058 auto *VD = dyn_cast<VarDecl>(OldDecl);
6059 if (VD && !VD->getDescribedVarTemplate())
6060 JustWarn = true;
6061 auto *FD = dyn_cast<FunctionDecl>(OldDecl);
6062 if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate)
6063 JustWarn = true;
6064 }
6065
6066 // We cannot change a declaration that's been used because IR has already
6067 // been emitted. Dllimported functions will still work though (modulo
6068 // address equality) as they can use the thunk.
6069 if (OldDecl->isUsed())