Bug Summary

File:tools/clang/lib/Sema/SemaDecl.cpp
Warning:line 3202, column 5
Value stored to 'NewType' is never read

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaDecl.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-8/lib/clang/8.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-8~svn350071/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-8~svn350071/tools/clang/include -I /build/llvm-toolchain-snapshot-8~svn350071/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-8~svn350071/build-llvm/include -I /build/llvm-toolchain-snapshot-8~svn350071/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/include/clang/8.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-8/lib/clang/8.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-8~svn350071/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-8~svn350071=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-12-27-042839-1215-1 -x c++ /build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp -faddrsig
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "TypeLocBuilder.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/ASTLambda.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CommentDiagnostic.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/EvaluatedExprVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/Basic/Builtins.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/SourceManager.h"
30#include "clang/Basic/TargetInfo.h"
31#include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
32#include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
33#include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
34#include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
35#include "clang/Sema/CXXFieldCollector.h"
36#include "clang/Sema/DeclSpec.h"
37#include "clang/Sema/DelayedDiagnostic.h"
38#include "clang/Sema/Initialization.h"
39#include "clang/Sema/Lookup.h"
40#include "clang/Sema/ParsedTemplate.h"
41#include "clang/Sema/Scope.h"
42#include "clang/Sema/ScopeInfo.h"
43#include "clang/Sema/SemaInternal.h"
44#include "clang/Sema/Template.h"
45#include "llvm/ADT/SmallString.h"
46#include "llvm/ADT/Triple.h"
47#include <algorithm>
48#include <cstring>
49#include <functional>
50
51using namespace clang;
52using namespace sema;
53
54Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
55 if (OwnedType) {
56 Decl *Group[2] = { OwnedType, Ptr };
57 return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
58 }
59
60 return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
61}
62
63namespace {
64
65class TypeNameValidatorCCC : public CorrectionCandidateCallback {
66 public:
67 TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false,
68 bool AllowTemplates = false,
69 bool AllowNonTemplates = true)
70 : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
71 AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) {
72 WantExpressionKeywords = false;
73 WantCXXNamedCasts = false;
74 WantRemainingKeywords = false;
75 }
76
77 bool ValidateCandidate(const TypoCorrection &candidate) override {
78 if (NamedDecl *ND = candidate.getCorrectionDecl()) {
79 if (!AllowInvalidDecl && ND->isInvalidDecl())
80 return false;
81
82 if (getAsTypeTemplateDecl(ND))
83 return AllowTemplates;
84
85 bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
86 if (!IsType)
87 return false;
88
89 if (AllowNonTemplates)
90 return true;
91
92 // An injected-class-name of a class template (specialization) is valid
93 // as a template or as a non-template.
94 if (AllowTemplates) {
95 auto *RD = dyn_cast<CXXRecordDecl>(ND);
96 if (!RD || !RD->isInjectedClassName())
97 return false;
98 RD = cast<CXXRecordDecl>(RD->getDeclContext());
99 return RD->getDescribedClassTemplate() ||
100 isa<ClassTemplateSpecializationDecl>(RD);
101 }
102
103 return false;
104 }
105
106 return !WantClassName && candidate.isKeyword();
107 }
108
109 private:
110 bool AllowInvalidDecl;
111 bool WantClassName;
112 bool AllowTemplates;
113 bool AllowNonTemplates;
114};
115
116} // end anonymous namespace
117
118/// Determine whether the token kind starts a simple-type-specifier.
119bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
120 switch (Kind) {
121 // FIXME: Take into account the current language when deciding whether a
122 // token kind is a valid type specifier
123 case tok::kw_short:
124 case tok::kw_long:
125 case tok::kw___int64:
126 case tok::kw___int128:
127 case tok::kw_signed:
128 case tok::kw_unsigned:
129 case tok::kw_void:
130 case tok::kw_char:
131 case tok::kw_int:
132 case tok::kw_half:
133 case tok::kw_float:
134 case tok::kw_double:
135 case tok::kw__Float16:
136 case tok::kw___float128:
137 case tok::kw_wchar_t:
138 case tok::kw_bool:
139 case tok::kw___underlying_type:
140 case tok::kw___auto_type:
141 return true;
142
143 case tok::annot_typename:
144 case tok::kw_char16_t:
145 case tok::kw_char32_t:
146 case tok::kw_typeof:
147 case tok::annot_decltype:
148 case tok::kw_decltype:
149 return getLangOpts().CPlusPlus;
150
151 case tok::kw_char8_t:
152 return getLangOpts().Char8;
153
154 default:
155 break;
156 }
157
158 return false;
159}
160
161namespace {
162enum class UnqualifiedTypeNameLookupResult {
163 NotFound,
164 FoundNonType,
165 FoundType
166};
167} // end anonymous namespace
168
169/// Tries to perform unqualified lookup of the type decls in bases for
170/// dependent class.
171/// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
172/// type decl, \a FoundType if only type decls are found.
173static UnqualifiedTypeNameLookupResult
174lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II,
175 SourceLocation NameLoc,
176 const CXXRecordDecl *RD) {
177 if (!RD->hasDefinition())
178 return UnqualifiedTypeNameLookupResult::NotFound;
179 // Look for type decls in base classes.
180 UnqualifiedTypeNameLookupResult FoundTypeDecl =
181 UnqualifiedTypeNameLookupResult::NotFound;
182 for (const auto &Base : RD->bases()) {
183 const CXXRecordDecl *BaseRD = nullptr;
184 if (auto *BaseTT = Base.getType()->getAs<TagType>())
185 BaseRD = BaseTT->getAsCXXRecordDecl();
186 else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) {
187 // Look for type decls in dependent base classes that have known primary
188 // templates.
189 if (!TST || !TST->isDependentType())
190 continue;
191 auto *TD = TST->getTemplateName().getAsTemplateDecl();
192 if (!TD)
193 continue;
194 if (auto *BasePrimaryTemplate =
195 dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) {
196 if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl())
197 BaseRD = BasePrimaryTemplate;
198 else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) {
199 if (const ClassTemplatePartialSpecializationDecl *PS =
200 CTD->findPartialSpecialization(Base.getType()))
201 if (PS->getCanonicalDecl() != RD->getCanonicalDecl())
202 BaseRD = PS;
203 }
204 }
205 }
206 if (BaseRD) {
207 for (NamedDecl *ND : BaseRD->lookup(&II)) {
208 if (!isa<TypeDecl>(ND))
209 return UnqualifiedTypeNameLookupResult::FoundNonType;
210 FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
211 }
212 if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) {
213 switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) {
214 case UnqualifiedTypeNameLookupResult::FoundNonType:
215 return UnqualifiedTypeNameLookupResult::FoundNonType;
216 case UnqualifiedTypeNameLookupResult::FoundType:
217 FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
218 break;
219 case UnqualifiedTypeNameLookupResult::NotFound:
220 break;
221 }
222 }
223 }
224 }
225
226 return FoundTypeDecl;
227}
228
229static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
230 const IdentifierInfo &II,
231 SourceLocation NameLoc) {
232 // Lookup in the parent class template context, if any.
233 const CXXRecordDecl *RD = nullptr;
234 UnqualifiedTypeNameLookupResult FoundTypeDecl =
235 UnqualifiedTypeNameLookupResult::NotFound;
236 for (DeclContext *DC = S.CurContext;
237 DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound;
238 DC = DC->getParent()) {
239 // Look for type decls in dependent base classes that have known primary
240 // templates.
241 RD = dyn_cast<CXXRecordDecl>(DC);
242 if (RD && RD->getDescribedClassTemplate())
243 FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD);
244 }
245 if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType)
246 return nullptr;
247
248 // We found some types in dependent base classes. Recover as if the user
249 // wrote 'typename MyClass::II' instead of 'II'. We'll fully resolve the
250 // lookup during template instantiation.
251 S.Diag(NameLoc, diag::ext_found_via_dependent_bases_lookup) << &II;
252
253 ASTContext &Context = S.Context;
254 auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
255 cast<Type>(Context.getRecordType(RD)));
256 QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II);
257
258 CXXScopeSpec SS;
259 SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
260
261 TypeLocBuilder Builder;
262 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
263 DepTL.setNameLoc(NameLoc);
264 DepTL.setElaboratedKeywordLoc(SourceLocation());
265 DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
266 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
267}
268
269/// If the identifier refers to a type name within this scope,
270/// return the declaration of that type.
271///
272/// This routine performs ordinary name lookup of the identifier II
273/// within the given scope, with optional C++ scope specifier SS, to
274/// determine whether the name refers to a type. If so, returns an
275/// opaque pointer (actually a QualType) corresponding to that
276/// type. Otherwise, returns NULL.
277ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
278 Scope *S, CXXScopeSpec *SS,
279 bool isClassName, bool HasTrailingDot,
280 ParsedType ObjectTypePtr,
281 bool IsCtorOrDtorName,
282 bool WantNontrivialTypeSourceInfo,
283 bool IsClassTemplateDeductionContext,
284 IdentifierInfo **CorrectedII) {
285 // FIXME: Consider allowing this outside C++1z mode as an extension.
286 bool AllowDeducedTemplate = IsClassTemplateDeductionContext &&
287 getLangOpts().CPlusPlus17 && !IsCtorOrDtorName &&
288 !isClassName && !HasTrailingDot;
289
290 // Determine where we will perform name lookup.
291 DeclContext *LookupCtx = nullptr;
292 if (ObjectTypePtr) {
293 QualType ObjectType = ObjectTypePtr.get();
294 if (ObjectType->isRecordType())
295 LookupCtx = computeDeclContext(ObjectType);
296 } else if (SS && SS->isNotEmpty()) {
297 LookupCtx = computeDeclContext(*SS, false);
298
299 if (!LookupCtx) {
300 if (isDependentScopeSpecifier(*SS)) {
301 // C++ [temp.res]p3:
302 // A qualified-id that refers to a type and in which the
303 // nested-name-specifier depends on a template-parameter (14.6.2)
304 // shall be prefixed by the keyword typename to indicate that the
305 // qualified-id denotes a type, forming an
306 // elaborated-type-specifier (7.1.5.3).
307 //
308 // We therefore do not perform any name lookup if the result would
309 // refer to a member of an unknown specialization.
310 if (!isClassName && !IsCtorOrDtorName)
311 return nullptr;
312
313 // We know from the grammar that this name refers to a type,
314 // so build a dependent node to describe the type.
315 if (WantNontrivialTypeSourceInfo)
316 return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
317
318 NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
319 QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
320 II, NameLoc);
321 return ParsedType::make(T);
322 }
323
324 return nullptr;
325 }
326
327 if (!LookupCtx->isDependentContext() &&
328 RequireCompleteDeclContext(*SS, LookupCtx))
329 return nullptr;
330 }
331
332 // FIXME: LookupNestedNameSpecifierName isn't the right kind of
333 // lookup for class-names.
334 LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
335 LookupOrdinaryName;
336 LookupResult Result(*this, &II, NameLoc, Kind);
337 if (LookupCtx) {
338 // Perform "qualified" name lookup into the declaration context we
339 // computed, which is either the type of the base of a member access
340 // expression or the declaration context associated with a prior
341 // nested-name-specifier.
342 LookupQualifiedName(Result, LookupCtx);
343
344 if (ObjectTypePtr && Result.empty()) {
345 // C++ [basic.lookup.classref]p3:
346 // If the unqualified-id is ~type-name, the type-name is looked up
347 // in the context of the entire postfix-expression. If the type T of
348 // the object expression is of a class type C, the type-name is also
349 // looked up in the scope of class C. At least one of the lookups shall
350 // find a name that refers to (possibly cv-qualified) T.
351 LookupName(Result, S);
352 }
353 } else {
354 // Perform unqualified name lookup.
355 LookupName(Result, S);
356
357 // For unqualified lookup in a class template in MSVC mode, look into
358 // dependent base classes where the primary class template is known.
359 if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
360 if (ParsedType TypeInBase =
361 recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
362 return TypeInBase;
363 }
364 }
365
366 NamedDecl *IIDecl = nullptr;
367 switch (Result.getResultKind()) {
368 case LookupResult::NotFound:
369 case LookupResult::NotFoundInCurrentInstantiation:
370 if (CorrectedII) {
371 TypoCorrection Correction =
372 CorrectTypo(Result.getLookupNameInfo(), Kind, S, SS,
373 llvm::make_unique<TypeNameValidatorCCC>(
374 true, isClassName, AllowDeducedTemplate),
375 CTK_ErrorRecovery);
376 IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
377 TemplateTy Template;
378 bool MemberOfUnknownSpecialization;
379 UnqualifiedId TemplateName;
380 TemplateName.setIdentifier(NewII, NameLoc);
381 NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
382 CXXScopeSpec NewSS, *NewSSPtr = SS;
383 if (SS && NNS) {
384 NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
385 NewSSPtr = &NewSS;
386 }
387 if (Correction && (NNS || NewII != &II) &&
388 // Ignore a correction to a template type as the to-be-corrected
389 // identifier is not a template (typo correction for template names
390 // is handled elsewhere).
391 !(getLangOpts().CPlusPlus && NewSSPtr &&
392 isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false,
393 Template, MemberOfUnknownSpecialization))) {
394 ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
395 isClassName, HasTrailingDot, ObjectTypePtr,
396 IsCtorOrDtorName,
397 WantNontrivialTypeSourceInfo,
398 IsClassTemplateDeductionContext);
399 if (Ty) {
400 diagnoseTypo(Correction,
401 PDiag(diag::err_unknown_type_or_class_name_suggest)
402 << Result.getLookupName() << isClassName);
403 if (SS && NNS)
404 SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
405 *CorrectedII = NewII;
406 return Ty;
407 }
408 }
409 }
410 // If typo correction failed or was not performed, fall through
411 LLVM_FALLTHROUGH[[clang::fallthrough]];
412 case LookupResult::FoundOverloaded:
413 case LookupResult::FoundUnresolvedValue:
414 Result.suppressDiagnostics();
415 return nullptr;
416
417 case LookupResult::Ambiguous:
418 // Recover from type-hiding ambiguities by hiding the type. We'll
419 // do the lookup again when looking for an object, and we can
420 // diagnose the error then. If we don't do this, then the error
421 // about hiding the type will be immediately followed by an error
422 // that only makes sense if the identifier was treated like a type.
423 if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
424 Result.suppressDiagnostics();
425 return nullptr;
426 }
427
428 // Look to see if we have a type anywhere in the list of results.
429 for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
430 Res != ResEnd; ++Res) {
431 if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res) ||
432 (AllowDeducedTemplate && getAsTypeTemplateDecl(*Res))) {
433 if (!IIDecl ||
434 (*Res)->getLocation().getRawEncoding() <
435 IIDecl->getLocation().getRawEncoding())
436 IIDecl = *Res;
437 }
438 }
439
440 if (!IIDecl) {
441 // None of the entities we found is a type, so there is no way
442 // to even assume that the result is a type. In this case, don't
443 // complain about the ambiguity. The parser will either try to
444 // perform this lookup again (e.g., as an object name), which
445 // will produce the ambiguity, or will complain that it expected
446 // a type name.
447 Result.suppressDiagnostics();
448 return nullptr;
449 }
450
451 // We found a type within the ambiguous lookup; diagnose the
452 // ambiguity and then return that type. This might be the right
453 // answer, or it might not be, but it suppresses any attempt to
454 // perform the name lookup again.
455 break;
456
457 case LookupResult::Found:
458 IIDecl = Result.getFoundDecl();
459 break;
460 }
461
462 assert(IIDecl && "Didn't find decl")((IIDecl && "Didn't find decl") ? static_cast<void
> (0) : __assert_fail ("IIDecl && \"Didn't find decl\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 462, __PRETTY_FUNCTION__))
;
463
464 QualType T;
465 if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
466 // C++ [class.qual]p2: A lookup that would find the injected-class-name
467 // instead names the constructors of the class, except when naming a class.
468 // This is ill-formed when we're not actually forming a ctor or dtor name.
469 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
470 auto *FoundRD = dyn_cast<CXXRecordDecl>(TD);
471 if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD &&
472 FoundRD->isInjectedClassName() &&
473 declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
474 Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor)
475 << &II << /*Type*/1;
476
477 DiagnoseUseOfDecl(IIDecl, NameLoc);
478
479 T = Context.getTypeDeclType(TD);
480 MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
481 } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
482 (void)DiagnoseUseOfDecl(IDecl, NameLoc);
483 if (!HasTrailingDot)
484 T = Context.getObjCInterfaceType(IDecl);
485 } else if (AllowDeducedTemplate) {
486 if (auto *TD = getAsTypeTemplateDecl(IIDecl))
487 T = Context.getDeducedTemplateSpecializationType(TemplateName(TD),
488 QualType(), false);
489 }
490
491 if (T.isNull()) {
492 // If it's not plausibly a type, suppress diagnostics.
493 Result.suppressDiagnostics();
494 return nullptr;
495 }
496
497 // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
498 // constructor or destructor name (in such a case, the scope specifier
499 // will be attached to the enclosing Expr or Decl node).
500 if (SS && SS->isNotEmpty() && !IsCtorOrDtorName &&
501 !isa<ObjCInterfaceDecl>(IIDecl)) {
502 if (WantNontrivialTypeSourceInfo) {
503 // Construct a type with type-source information.
504 TypeLocBuilder Builder;
505 Builder.pushTypeSpec(T).setNameLoc(NameLoc);
506
507 T = getElaboratedType(ETK_None, *SS, T);
508 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
509 ElabTL.setElaboratedKeywordLoc(SourceLocation());
510 ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
511 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
512 } else {
513 T = getElaboratedType(ETK_None, *SS, T);
514 }
515 }
516
517 return ParsedType::make(T);
518}
519
520// Builds a fake NNS for the given decl context.
521static NestedNameSpecifier *
522synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
523 for (;; DC = DC->getLookupParent()) {
524 DC = DC->getPrimaryContext();
525 auto *ND = dyn_cast<NamespaceDecl>(DC);
526 if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
527 return NestedNameSpecifier::Create(Context, nullptr, ND);
528 else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
529 return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
530 RD->getTypeForDecl());
531 else if (isa<TranslationUnitDecl>(DC))
532 return NestedNameSpecifier::GlobalSpecifier(Context);
533 }
534 llvm_unreachable("something isn't in TU scope?")::llvm::llvm_unreachable_internal("something isn't in TU scope?"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 534)
;
535}
536
537/// Find the parent class with dependent bases of the innermost enclosing method
538/// context. Do not look for enclosing CXXRecordDecls directly, or we will end
539/// up allowing unqualified dependent type names at class-level, which MSVC
540/// correctly rejects.
541static const CXXRecordDecl *
542findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) {
543 for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) {
544 DC = DC->getPrimaryContext();
545 if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
546 if (MD->getParent()->hasAnyDependentBases())
547 return MD->getParent();
548 }
549 return nullptr;
550}
551
552ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
553 SourceLocation NameLoc,
554 bool IsTemplateTypeArg) {
555 assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode")((getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().MSVCCompat && \"shouldn't be called in non-MSVC mode\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 555, __PRETTY_FUNCTION__))
;
556
557 NestedNameSpecifier *NNS = nullptr;
558 if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) {
559 // If we weren't able to parse a default template argument, delay lookup
560 // until instantiation time by making a non-dependent DependentTypeName. We
561 // pretend we saw a NestedNameSpecifier referring to the current scope, and
562 // lookup is retried.
563 // FIXME: This hurts our diagnostic quality, since we get errors like "no
564 // type named 'Foo' in 'current_namespace'" when the user didn't write any
565 // name specifiers.
566 NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext);
567 Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
568 } else if (const CXXRecordDecl *RD =
569 findRecordWithDependentBasesOfEnclosingMethod(CurContext)) {
570 // Build a DependentNameType that will perform lookup into RD at
571 // instantiation time.
572 NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
573 RD->getTypeForDecl());
574
575 // Diagnose that this identifier was undeclared, and retry the lookup during
576 // template instantiation.
577 Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II
578 << RD;
579 } else {
580 // This is not a situation that we should recover from.
581 return ParsedType();
582 }
583
584 QualType T = Context.getDependentNameType(ETK_None, NNS, &II);
585
586 // Build type location information. We synthesized the qualifier, so we have
587 // to build a fake NestedNameSpecifierLoc.
588 NestedNameSpecifierLocBuilder NNSLocBuilder;
589 NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
590 NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
591
592 TypeLocBuilder Builder;
593 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
594 DepTL.setNameLoc(NameLoc);
595 DepTL.setElaboratedKeywordLoc(SourceLocation());
596 DepTL.setQualifierLoc(QualifierLoc);
597 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
598}
599
600/// isTagName() - This method is called *for error recovery purposes only*
601/// to determine if the specified name is a valid tag name ("struct foo"). If
602/// so, this returns the TST for the tag corresponding to it (TST_enum,
603/// TST_union, TST_struct, TST_interface, TST_class). This is used to diagnose
604/// cases in C where the user forgot to specify the tag.
605DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
606 // Do a tag name lookup in this scope.
607 LookupResult R(*this, &II, SourceLocation(), LookupTagName);
608 LookupName(R, S, false);
609 R.suppressDiagnostics();
610 if (R.getResultKind() == LookupResult::Found)
611 if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
612 switch (TD->getTagKind()) {
613 case TTK_Struct: return DeclSpec::TST_struct;
614 case TTK_Interface: return DeclSpec::TST_interface;
615 case TTK_Union: return DeclSpec::TST_union;
616 case TTK_Class: return DeclSpec::TST_class;
617 case TTK_Enum: return DeclSpec::TST_enum;
618 }
619 }
620
621 return DeclSpec::TST_unspecified;
622}
623
624/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
625/// if a CXXScopeSpec's type is equal to the type of one of the base classes
626/// then downgrade the missing typename error to a warning.
627/// This is needed for MSVC compatibility; Example:
628/// @code
629/// template<class T> class A {
630/// public:
631/// typedef int TYPE;
632/// };
633/// template<class T> class B : public A<T> {
634/// public:
635/// A<T>::TYPE a; // no typename required because A<T> is a base class.
636/// };
637/// @endcode
638bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
639 if (CurContext->isRecord()) {
640 if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super)
641 return true;
642
643 const Type *Ty = SS->getScopeRep()->getAsType();
644
645 CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
646 for (const auto &Base : RD->bases())
647 if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
648 return true;
649 return S->isFunctionPrototypeScope();
650 }
651 return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
652}
653
654void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
655 SourceLocation IILoc,
656 Scope *S,
657 CXXScopeSpec *SS,
658 ParsedType &SuggestedType,
659 bool IsTemplateName) {
660 // Don't report typename errors for editor placeholders.
661 if (II->isEditorPlaceholder())
662 return;
663 // We don't have anything to suggest (yet).
664 SuggestedType = nullptr;
665
666 // There may have been a typo in the name of the type. Look up typo
667 // results, in case we have something that we can suggest.
668 if (TypoCorrection Corrected =
669 CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS,
670 llvm::make_unique<TypeNameValidatorCCC>(
671 false, false, IsTemplateName, !IsTemplateName),
672 CTK_ErrorRecovery)) {
673 // FIXME: Support error recovery for the template-name case.
674 bool CanRecover = !IsTemplateName;
675 if (Corrected.isKeyword()) {
676 // We corrected to a keyword.
677 diagnoseTypo(Corrected,
678 PDiag(IsTemplateName ? diag::err_no_template_suggest
679 : diag::err_unknown_typename_suggest)
680 << II);
681 II = Corrected.getCorrectionAsIdentifierInfo();
682 } else {
683 // We found a similarly-named type or interface; suggest that.
684 if (!SS || !SS->isSet()) {
685 diagnoseTypo(Corrected,
686 PDiag(IsTemplateName ? diag::err_no_template_suggest
687 : diag::err_unknown_typename_suggest)
688 << II, CanRecover);
689 } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
690 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
691 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
692 II->getName().equals(CorrectedStr);
693 diagnoseTypo(Corrected,
694 PDiag(IsTemplateName
695 ? diag::err_no_member_template_suggest
696 : diag::err_unknown_nested_typename_suggest)
697 << II << DC << DroppedSpecifier << SS->getRange(),
698 CanRecover);
699 } else {
700 llvm_unreachable("could not have corrected a typo here")::llvm::llvm_unreachable_internal("could not have corrected a typo here"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 700)
;
701 }
702
703 if (!CanRecover)
704 return;
705
706 CXXScopeSpec tmpSS;
707 if (Corrected.getCorrectionSpecifier())
708 tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
709 SourceRange(IILoc));
710 // FIXME: Support class template argument deduction here.
711 SuggestedType =
712 getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S,
713 tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr,
714 /*IsCtorOrDtorName=*/false,
715 /*NonTrivialTypeSourceInfo=*/true);
716 }
717 return;
718 }
719
720 if (getLangOpts().CPlusPlus && !IsTemplateName) {
721 // See if II is a class template that the user forgot to pass arguments to.
722 UnqualifiedId Name;
723 Name.setIdentifier(II, IILoc);
724 CXXScopeSpec EmptySS;
725 TemplateTy TemplateResult;
726 bool MemberOfUnknownSpecialization;
727 if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
728 Name, nullptr, true, TemplateResult,
729 MemberOfUnknownSpecialization) == TNK_Type_template) {
730 diagnoseMissingTemplateArguments(TemplateResult.get(), IILoc);
731 return;
732 }
733 }
734
735 // FIXME: Should we move the logic that tries to recover from a missing tag
736 // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
737
738 if (!SS || (!SS->isSet() && !SS->isInvalid()))
739 Diag(IILoc, IsTemplateName ? diag::err_no_template
740 : diag::err_unknown_typename)
741 << II;
742 else if (DeclContext *DC = computeDeclContext(*SS, false))
743 Diag(IILoc, IsTemplateName ? diag::err_no_member_template
744 : diag::err_typename_nested_not_found)
745 << II << DC << SS->getRange();
746 else if (isDependentScopeSpecifier(*SS)) {
747 unsigned DiagID = diag::err_typename_missing;
748 if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
749 DiagID = diag::ext_typename_missing;
750
751 Diag(SS->getRange().getBegin(), DiagID)
752 << SS->getScopeRep() << II->getName()
753 << SourceRange(SS->getRange().getBegin(), IILoc)
754 << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
755 SuggestedType = ActOnTypenameType(S, SourceLocation(),
756 *SS, *II, IILoc).get();
757 } else {
758 assert(SS && SS->isInvalid() &&((SS && SS->isInvalid() && "Invalid scope specifier has already been diagnosed"
) ? static_cast<void> (0) : __assert_fail ("SS && SS->isInvalid() && \"Invalid scope specifier has already been diagnosed\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 759, __PRETTY_FUNCTION__))
759 "Invalid scope specifier has already been diagnosed")((SS && SS->isInvalid() && "Invalid scope specifier has already been diagnosed"
) ? static_cast<void> (0) : __assert_fail ("SS && SS->isInvalid() && \"Invalid scope specifier has already been diagnosed\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 759, __PRETTY_FUNCTION__))
;
760 }
761}
762
763/// Determine whether the given result set contains either a type name
764/// or
765static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
766 bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
767 NextToken.is(tok::less);
768
769 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
770 if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
771 return true;
772
773 if (CheckTemplate && isa<TemplateDecl>(*I))
774 return true;
775 }
776
777 return false;
778}
779
780static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
781 Scope *S, CXXScopeSpec &SS,
782 IdentifierInfo *&Name,
783 SourceLocation NameLoc) {
784 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
785 SemaRef.LookupParsedName(R, S, &SS);
786 if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
787 StringRef FixItTagName;
788 switch (Tag->getTagKind()) {
789 case TTK_Class:
790 FixItTagName = "class ";
791 break;
792
793 case TTK_Enum:
794 FixItTagName = "enum ";
795 break;
796
797 case TTK_Struct:
798 FixItTagName = "struct ";
799 break;
800
801 case TTK_Interface:
802 FixItTagName = "__interface ";
803 break;
804
805 case TTK_Union:
806 FixItTagName = "union ";
807 break;
808 }
809
810 StringRef TagName = FixItTagName.drop_back();
811 SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
812 << Name << TagName << SemaRef.getLangOpts().CPlusPlus
813 << FixItHint::CreateInsertion(NameLoc, FixItTagName);
814
815 for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
816 I != IEnd; ++I)
817 SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
818 << Name << TagName;
819
820 // Replace lookup results with just the tag decl.
821 Result.clear(Sema::LookupTagName);
822 SemaRef.LookupParsedName(Result, S, &SS);
823 return true;
824 }
825
826 return false;
827}
828
829/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
830static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
831 QualType T, SourceLocation NameLoc) {
832 ASTContext &Context = S.Context;
833
834 TypeLocBuilder Builder;
835 Builder.pushTypeSpec(T).setNameLoc(NameLoc);
836
837 T = S.getElaboratedType(ETK_None, SS, T);
838 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
839 ElabTL.setElaboratedKeywordLoc(SourceLocation());
840 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
841 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
842}
843
844Sema::NameClassification
845Sema::ClassifyName(Scope *S, CXXScopeSpec &SS, IdentifierInfo *&Name,
846 SourceLocation NameLoc, const Token &NextToken,
847 bool IsAddressOfOperand,
848 std::unique_ptr<CorrectionCandidateCallback> CCC) {
849 DeclarationNameInfo NameInfo(Name, NameLoc);
850 ObjCMethodDecl *CurMethod = getCurMethodDecl();
851
852 if (NextToken.is(tok::coloncolon)) {
853 NestedNameSpecInfo IdInfo(Name, NameLoc, NextToken.getLocation());
854 BuildCXXNestedNameSpecifier(S, IdInfo, false, SS, nullptr, false);
855 } else if (getLangOpts().CPlusPlus && SS.isSet() &&
856 isCurrentClassName(*Name, S, &SS)) {
857 // Per [class.qual]p2, this names the constructors of SS, not the
858 // injected-class-name. We don't have a classification for that.
859 // There's not much point caching this result, since the parser
860 // will reject it later.
861 return NameClassification::Unknown();
862 }
863
864 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
865 LookupParsedName(Result, S, &SS, !CurMethod);
866
867 // For unqualified lookup in a class template in MSVC mode, look into
868 // dependent base classes where the primary class template is known.
869 if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
870 if (ParsedType TypeInBase =
871 recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
872 return TypeInBase;
873 }
874
875 // Perform lookup for Objective-C instance variables (including automatically
876 // synthesized instance variables), if we're in an Objective-C method.
877 // FIXME: This lookup really, really needs to be folded in to the normal
878 // unqualified lookup mechanism.
879 if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
880 ExprResult E = LookupInObjCMethod(Result, S, Name, true);
881 if (E.get() || E.isInvalid())
882 return E;
883 }
884
885 bool SecondTry = false;
886 bool IsFilteredTemplateName = false;
887
888Corrected:
889 switch (Result.getResultKind()) {
890 case LookupResult::NotFound:
891 // If an unqualified-id is followed by a '(', then we have a function
892 // call.
893 if (!SS.isSet() && NextToken.is(tok::l_paren)) {
894 // In C++, this is an ADL-only call.
895 // FIXME: Reference?
896 if (getLangOpts().CPlusPlus)
897 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
898
899 // C90 6.3.2.2:
900 // If the expression that precedes the parenthesized argument list in a
901 // function call consists solely of an identifier, and if no
902 // declaration is visible for this identifier, the identifier is
903 // implicitly declared exactly as if, in the innermost block containing
904 // the function call, the declaration
905 //
906 // extern int identifier ();
907 //
908 // appeared.
909 //
910 // We also allow this in C99 as an extension.
911 if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
912 Result.addDecl(D);
913 Result.resolveKind();
914 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
915 }
916 }
917
918 // In C, we first see whether there is a tag type by the same name, in
919 // which case it's likely that the user just forgot to write "enum",
920 // "struct", or "union".
921 if (!getLangOpts().CPlusPlus && !SecondTry &&
922 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
923 break;
924 }
925
926 // Perform typo correction to determine if there is another name that is
927 // close to this name.
928 if (!SecondTry && CCC) {
929 SecondTry = true;
930 if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
931 Result.getLookupKind(), S,
932 &SS, std::move(CCC),
933 CTK_ErrorRecovery)) {
934 unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
935 unsigned QualifiedDiag = diag::err_no_member_suggest;
936
937 NamedDecl *FirstDecl = Corrected.getFoundDecl();
938 NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl();
939 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
940 UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
941 UnqualifiedDiag = diag::err_no_template_suggest;
942 QualifiedDiag = diag::err_no_member_template_suggest;
943 } else if (UnderlyingFirstDecl &&
944 (isa<TypeDecl>(UnderlyingFirstDecl) ||
945 isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
946 isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
947 UnqualifiedDiag = diag::err_unknown_typename_suggest;
948 QualifiedDiag = diag::err_unknown_nested_typename_suggest;
949 }
950
951 if (SS.isEmpty()) {
952 diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
953 } else {// FIXME: is this even reachable? Test it.
954 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
955 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
956 Name->getName().equals(CorrectedStr);
957 diagnoseTypo(Corrected, PDiag(QualifiedDiag)
958 << Name << computeDeclContext(SS, false)
959 << DroppedSpecifier << SS.getRange());
960 }
961
962 // Update the name, so that the caller has the new name.
963 Name = Corrected.getCorrectionAsIdentifierInfo();
964
965 // Typo correction corrected to a keyword.
966 if (Corrected.isKeyword())
967 return Name;
968
969 // Also update the LookupResult...
970 // FIXME: This should probably go away at some point
971 Result.clear();
972 Result.setLookupName(Corrected.getCorrection());
973 if (FirstDecl)
974 Result.addDecl(FirstDecl);
975
976 // If we found an Objective-C instance variable, let
977 // LookupInObjCMethod build the appropriate expression to
978 // reference the ivar.
979 // FIXME: This is a gross hack.
980 if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
981 Result.clear();
982 ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
983 return E;
984 }
985
986 goto Corrected;
987 }
988 }
989
990 // We failed to correct; just fall through and let the parser deal with it.
991 Result.suppressDiagnostics();
992 return NameClassification::Unknown();
993
994 case LookupResult::NotFoundInCurrentInstantiation: {
995 // We performed name lookup into the current instantiation, and there were
996 // dependent bases, so we treat this result the same way as any other
997 // dependent nested-name-specifier.
998
999 // C++ [temp.res]p2:
1000 // A name used in a template declaration or definition and that is
1001 // dependent on a template-parameter is assumed not to name a type
1002 // unless the applicable name lookup finds a type name or the name is
1003 // qualified by the keyword typename.
1004 //
1005 // FIXME: If the next token is '<', we might want to ask the parser to
1006 // perform some heroics to see if we actually have a
1007 // template-argument-list, which would indicate a missing 'template'
1008 // keyword here.
1009 return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
1010 NameInfo, IsAddressOfOperand,
1011 /*TemplateArgs=*/nullptr);
1012 }
1013
1014 case LookupResult::Found:
1015 case LookupResult::FoundOverloaded:
1016 case LookupResult::FoundUnresolvedValue:
1017 break;
1018
1019 case LookupResult::Ambiguous:
1020 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1021 hasAnyAcceptableTemplateNames(Result)) {
1022 // C++ [temp.local]p3:
1023 // A lookup that finds an injected-class-name (10.2) can result in an
1024 // ambiguity in certain cases (for example, if it is found in more than
1025 // one base class). If all of the injected-class-names that are found
1026 // refer to specializations of the same class template, and if the name
1027 // is followed by a template-argument-list, the reference refers to the
1028 // class template itself and not a specialization thereof, and is not
1029 // ambiguous.
1030 //
1031 // This filtering can make an ambiguous result into an unambiguous one,
1032 // so try again after filtering out template names.
1033 FilterAcceptableTemplateNames(Result);
1034 if (!Result.isAmbiguous()) {
1035 IsFilteredTemplateName = true;
1036 break;
1037 }
1038 }
1039
1040 // Diagnose the ambiguity and return an error.
1041 return NameClassification::Error();
1042 }
1043
1044 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1045 (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
1046 // C++ [temp.names]p3:
1047 // After name lookup (3.4) finds that a name is a template-name or that
1048 // an operator-function-id or a literal- operator-id refers to a set of
1049 // overloaded functions any member of which is a function template if
1050 // this is followed by a <, the < is always taken as the delimiter of a
1051 // template-argument-list and never as the less-than operator.
1052 if (!IsFilteredTemplateName)
1053 FilterAcceptableTemplateNames(Result);
1054
1055 if (!Result.empty()) {
1056 bool IsFunctionTemplate;
1057 bool IsVarTemplate;
1058 TemplateName Template;
1059 if (Result.end() - Result.begin() > 1) {
1060 IsFunctionTemplate = true;
1061 Template = Context.getOverloadedTemplateName(Result.begin(),
1062 Result.end());
1063 } else {
1064 TemplateDecl *TD
1065 = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
1066 IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
1067 IsVarTemplate = isa<VarTemplateDecl>(TD);
1068
1069 if (SS.isSet() && !SS.isInvalid())
1070 Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
1071 /*TemplateKeyword=*/false,
1072 TD);
1073 else
1074 Template = TemplateName(TD);
1075 }
1076
1077 if (IsFunctionTemplate) {
1078 // Function templates always go through overload resolution, at which
1079 // point we'll perform the various checks (e.g., accessibility) we need
1080 // to based on which function we selected.
1081 Result.suppressDiagnostics();
1082
1083 return NameClassification::FunctionTemplate(Template);
1084 }
1085
1086 return IsVarTemplate ? NameClassification::VarTemplate(Template)
1087 : NameClassification::TypeTemplate(Template);
1088 }
1089 }
1090
1091 NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
1092 if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
1093 DiagnoseUseOfDecl(Type, NameLoc);
1094 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
1095 QualType T = Context.getTypeDeclType(Type);
1096 if (SS.isNotEmpty())
1097 return buildNestedType(*this, SS, T, NameLoc);
1098 return ParsedType::make(T);
1099 }
1100
1101 ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
1102 if (!Class) {
1103 // FIXME: It's unfortunate that we don't have a Type node for handling this.
1104 if (ObjCCompatibleAliasDecl *Alias =
1105 dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
1106 Class = Alias->getClassInterface();
1107 }
1108
1109 if (Class) {
1110 DiagnoseUseOfDecl(Class, NameLoc);
1111
1112 if (NextToken.is(tok::period)) {
1113 // Interface. <something> is parsed as a property reference expression.
1114 // Just return "unknown" as a fall-through for now.
1115 Result.suppressDiagnostics();
1116 return NameClassification::Unknown();
1117 }
1118
1119 QualType T = Context.getObjCInterfaceType(Class);
1120 return ParsedType::make(T);
1121 }
1122
1123 // We can have a type template here if we're classifying a template argument.
1124 if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) &&
1125 !isa<VarTemplateDecl>(FirstDecl))
1126 return NameClassification::TypeTemplate(
1127 TemplateName(cast<TemplateDecl>(FirstDecl)));
1128
1129 // Check for a tag type hidden by a non-type decl in a few cases where it
1130 // seems likely a type is wanted instead of the non-type that was found.
1131 bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star);
1132 if ((NextToken.is(tok::identifier) ||
1133 (NextIsOp &&
1134 FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
1135 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
1136 TypeDecl *Type = Result.getAsSingle<TypeDecl>();
1137 DiagnoseUseOfDecl(Type, NameLoc);
1138 QualType T = Context.getTypeDeclType(Type);
1139 if (SS.isNotEmpty())
1140 return buildNestedType(*this, SS, T, NameLoc);
1141 return ParsedType::make(T);
1142 }
1143
1144 if (FirstDecl->isCXXClassMember())
1145 return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
1146 nullptr, S);
1147
1148 bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1149 return BuildDeclarationNameExpr(SS, Result, ADL);
1150}
1151
1152Sema::TemplateNameKindForDiagnostics
1153Sema::getTemplateNameKindForDiagnostics(TemplateName Name) {
1154 auto *TD = Name.getAsTemplateDecl();
1155 if (!TD)
1156 return TemplateNameKindForDiagnostics::DependentTemplate;
1157 if (isa<ClassTemplateDecl>(TD))
1158 return TemplateNameKindForDiagnostics::ClassTemplate;
1159 if (isa<FunctionTemplateDecl>(TD))
1160 return TemplateNameKindForDiagnostics::FunctionTemplate;
1161 if (isa<VarTemplateDecl>(TD))
1162 return TemplateNameKindForDiagnostics::VarTemplate;
1163 if (isa<TypeAliasTemplateDecl>(TD))
1164 return TemplateNameKindForDiagnostics::AliasTemplate;
1165 if (isa<TemplateTemplateParmDecl>(TD))
1166 return TemplateNameKindForDiagnostics::TemplateTemplateParam;
1167 return TemplateNameKindForDiagnostics::DependentTemplate;
1168}
1169
1170// Determines the context to return to after temporarily entering a
1171// context. This depends in an unnecessarily complicated way on the
1172// exact ordering of callbacks from the parser.
1173DeclContext *Sema::getContainingDC(DeclContext *DC) {
1174
1175 // Functions defined inline within classes aren't parsed until we've
1176 // finished parsing the top-level class, so the top-level class is
1177 // the context we'll need to return to.
1178 // A Lambda call operator whose parent is a class must not be treated
1179 // as an inline member function. A Lambda can be used legally
1180 // either as an in-class member initializer or a default argument. These
1181 // are parsed once the class has been marked complete and so the containing
1182 // context would be the nested class (when the lambda is defined in one);
1183 // If the class is not complete, then the lambda is being used in an
1184 // ill-formed fashion (such as to specify the width of a bit-field, or
1185 // in an array-bound) - in which case we still want to return the
1186 // lexically containing DC (which could be a nested class).
1187 if (isa<FunctionDecl>(DC) && !isLambdaCallOperator(DC)) {
1188 DC = DC->getLexicalParent();
1189
1190 // A function not defined within a class will always return to its
1191 // lexical context.
1192 if (!isa<CXXRecordDecl>(DC))
1193 return DC;
1194
1195 // A C++ inline method/friend is parsed *after* the topmost class
1196 // it was declared in is fully parsed ("complete"); the topmost
1197 // class is the context we need to return to.
1198 while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
1199 DC = RD;
1200
1201 // Return the declaration context of the topmost class the inline method is
1202 // declared in.
1203 return DC;
1204 }
1205
1206 return DC->getLexicalParent();
1207}
1208
1209void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
1210 assert(getContainingDC(DC) == CurContext &&((getContainingDC(DC) == CurContext && "The next DeclContext should be lexically contained in the current one."
) ? static_cast<void> (0) : __assert_fail ("getContainingDC(DC) == CurContext && \"The next DeclContext should be lexically contained in the current one.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 1211, __PRETTY_FUNCTION__))
1211 "The next DeclContext should be lexically contained in the current one.")((getContainingDC(DC) == CurContext && "The next DeclContext should be lexically contained in the current one."
) ? static_cast<void> (0) : __assert_fail ("getContainingDC(DC) == CurContext && \"The next DeclContext should be lexically contained in the current one.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 1211, __PRETTY_FUNCTION__))
;
1212 CurContext = DC;
1213 S->setEntity(DC);
1214}
1215
1216void Sema::PopDeclContext() {
1217 assert(CurContext && "DeclContext imbalance!")((CurContext && "DeclContext imbalance!") ? static_cast
<void> (0) : __assert_fail ("CurContext && \"DeclContext imbalance!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 1217, __PRETTY_FUNCTION__))
;
1218
1219 CurContext = getContainingDC(CurContext);
1220 assert(CurContext && "Popped translation unit!")((CurContext && "Popped translation unit!") ? static_cast
<void> (0) : __assert_fail ("CurContext && \"Popped translation unit!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 1220, __PRETTY_FUNCTION__))
;
1221}
1222
1223Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S,
1224 Decl *D) {
1225 // Unlike PushDeclContext, the context to which we return is not necessarily
1226 // the containing DC of TD, because the new context will be some pre-existing
1227 // TagDecl definition instead of a fresh one.
1228 auto Result = static_cast<SkippedDefinitionContext>(CurContext);
1229 CurContext = cast<TagDecl>(D)->getDefinition();
1230 assert(CurContext && "skipping definition of undefined tag")((CurContext && "skipping definition of undefined tag"
) ? static_cast<void> (0) : __assert_fail ("CurContext && \"skipping definition of undefined tag\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 1230, __PRETTY_FUNCTION__))
;
1231 // Start lookups from the parent of the current context; we don't want to look
1232 // into the pre-existing complete definition.
1233 S->setEntity(CurContext->getLookupParent());
1234 return Result;
1235}
1236
1237void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) {
1238 CurContext = static_cast<decltype(CurContext)>(Context);
1239}
1240
1241/// EnterDeclaratorContext - Used when we must lookup names in the context
1242/// of a declarator's nested name specifier.
1243///
1244void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
1245 // C++0x [basic.lookup.unqual]p13:
1246 // A name used in the definition of a static data member of class
1247 // X (after the qualified-id of the static member) is looked up as
1248 // if the name was used in a member function of X.
1249 // C++0x [basic.lookup.unqual]p14:
1250 // If a variable member of a namespace is defined outside of the
1251 // scope of its namespace then any name used in the definition of
1252 // the variable member (after the declarator-id) is looked up as
1253 // if the definition of the variable member occurred in its
1254 // namespace.
1255 // Both of these imply that we should push a scope whose context
1256 // is the semantic context of the declaration. We can't use
1257 // PushDeclContext here because that context is not necessarily
1258 // lexically contained in the current context. Fortunately,
1259 // the containing scope should have the appropriate information.
1260
1261 assert(!S->getEntity() && "scope already has entity")((!S->getEntity() && "scope already has entity") ?
static_cast<void> (0) : __assert_fail ("!S->getEntity() && \"scope already has entity\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 1261, __PRETTY_FUNCTION__))
;
1262
1263#ifndef NDEBUG
1264 Scope *Ancestor = S->getParent();
1265 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1266 assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch")((Ancestor->getEntity() == CurContext && "ancestor context mismatch"
) ? static_cast<void> (0) : __assert_fail ("Ancestor->getEntity() == CurContext && \"ancestor context mismatch\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 1266, __PRETTY_FUNCTION__))
;
1267#endif
1268
1269 CurContext = DC;
1270 S->setEntity(DC);
1271}
1272
1273void Sema::ExitDeclaratorContext(Scope *S) {
1274 assert(S->getEntity() == CurContext && "Context imbalance!")((S->getEntity() == CurContext && "Context imbalance!"
) ? static_cast<void> (0) : __assert_fail ("S->getEntity() == CurContext && \"Context imbalance!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 1274, __PRETTY_FUNCTION__))
;
1275
1276 // Switch back to the lexical context. The safety of this is
1277 // enforced by an assert in EnterDeclaratorContext.
1278 Scope *Ancestor = S->getParent();
1279 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1280 CurContext = Ancestor->getEntity();
1281
1282 // We don't need to do anything with the scope, which is going to
1283 // disappear.
1284}
1285
1286void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
1287 // We assume that the caller has already called
1288 // ActOnReenterTemplateScope so getTemplatedDecl() works.
1289 FunctionDecl *FD = D->getAsFunction();
1290 if (!FD)
1291 return;
1292
1293 // Same implementation as PushDeclContext, but enters the context
1294 // from the lexical parent, rather than the top-level class.
1295 assert(CurContext == FD->getLexicalParent() &&((CurContext == FD->getLexicalParent() && "The next DeclContext should be lexically contained in the current one."
) ? static_cast<void> (0) : __assert_fail ("CurContext == FD->getLexicalParent() && \"The next DeclContext should be lexically contained in the current one.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 1296, __PRETTY_FUNCTION__))
1296 "The next DeclContext should be lexically contained in the current one.")((CurContext == FD->getLexicalParent() && "The next DeclContext should be lexically contained in the current one."
) ? static_cast<void> (0) : __assert_fail ("CurContext == FD->getLexicalParent() && \"The next DeclContext should be lexically contained in the current one.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 1296, __PRETTY_FUNCTION__))
;
1297 CurContext = FD;
1298 S->setEntity(CurContext);
1299
1300 for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1301 ParmVarDecl *Param = FD->getParamDecl(P);
1302 // If the parameter has an identifier, then add it to the scope
1303 if (Param->getIdentifier()) {
1304 S->AddDecl(Param);
1305 IdResolver.AddDecl(Param);
1306 }
1307 }
1308}
1309
1310void Sema::ActOnExitFunctionContext() {
1311 // Same implementation as PopDeclContext, but returns to the lexical parent,
1312 // rather than the top-level class.
1313 assert(CurContext && "DeclContext imbalance!")((CurContext && "DeclContext imbalance!") ? static_cast
<void> (0) : __assert_fail ("CurContext && \"DeclContext imbalance!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 1313, __PRETTY_FUNCTION__))
;
1314 CurContext = CurContext->getLexicalParent();
1315 assert(CurContext && "Popped translation unit!")((CurContext && "Popped translation unit!") ? static_cast
<void> (0) : __assert_fail ("CurContext && \"Popped translation unit!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 1315, __PRETTY_FUNCTION__))
;
1316}
1317
1318/// Determine whether we allow overloading of the function
1319/// PrevDecl with another declaration.
1320///
1321/// This routine determines whether overloading is possible, not
1322/// whether some new function is actually an overload. It will return
1323/// true in C++ (where we can always provide overloads) or, as an
1324/// extension, in C when the previous function is already an
1325/// overloaded function declaration or has the "overloadable"
1326/// attribute.
1327static bool AllowOverloadingOfFunction(LookupResult &Previous,
1328 ASTContext &Context,
1329 const FunctionDecl *New) {
1330 if (Context.getLangOpts().CPlusPlus)
1331 return true;
1332
1333 if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1334 return true;
1335
1336 return Previous.getResultKind() == LookupResult::Found &&
1337 (Previous.getFoundDecl()->hasAttr<OverloadableAttr>() ||
1338 New->hasAttr<OverloadableAttr>());
1339}
1340
1341/// Add this decl to the scope shadowed decl chains.
1342void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1343 // Move up the scope chain until we find the nearest enclosing
1344 // non-transparent context. The declaration will be introduced into this
1345 // scope.
1346 while (S->getEntity() && S->getEntity()->isTransparentContext())
1347 S = S->getParent();
1348
1349 // Add scoped declarations into their context, so that they can be
1350 // found later. Declarations without a context won't be inserted
1351 // into any context.
1352 if (AddToContext)
1353 CurContext->addDecl(D);
1354
1355 // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1356 // are function-local declarations.
1357 if (getLangOpts().CPlusPlus && D->isOutOfLine() &&
1358 !D->getDeclContext()->getRedeclContext()->Equals(
1359 D->getLexicalDeclContext()->getRedeclContext()) &&
1360 !D->getLexicalDeclContext()->isFunctionOrMethod())
1361 return;
1362
1363 // Template instantiations should also not be pushed into scope.
1364 if (isa<FunctionDecl>(D) &&
1365 cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1366 return;
1367
1368 // If this replaces anything in the current scope,
1369 IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1370 IEnd = IdResolver.end();
1371 for (; I != IEnd; ++I) {
1372 if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1373 S->RemoveDecl(*I);
1374 IdResolver.RemoveDecl(*I);
1375
1376 // Should only need to replace one decl.
1377 break;
1378 }
1379 }
1380
1381 S->AddDecl(D);
1382
1383 if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1384 // Implicitly-generated labels may end up getting generated in an order that
1385 // isn't strictly lexical, which breaks name lookup. Be careful to insert
1386 // the label at the appropriate place in the identifier chain.
1387 for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1388 DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1389 if (IDC == CurContext) {
1390 if (!S->isDeclScope(*I))
1391 continue;
1392 } else if (IDC->Encloses(CurContext))
1393 break;
1394 }
1395
1396 IdResolver.InsertDeclAfter(I, D);
1397 } else {
1398 IdResolver.AddDecl(D);
1399 }
1400}
1401
1402void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1403 if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1404 TUScope->AddDecl(D);
1405}
1406
1407bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1408 bool AllowInlineNamespace) {
1409 return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
1410}
1411
1412Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1413 DeclContext *TargetDC = DC->getPrimaryContext();
1414 do {
1415 if (DeclContext *ScopeDC = S->getEntity())
1416 if (ScopeDC->getPrimaryContext() == TargetDC)
1417 return S;
1418 } while ((S = S->getParent()));
1419
1420 return nullptr;
1421}
1422
1423static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1424 DeclContext*,
1425 ASTContext&);
1426
1427/// Filters out lookup results that don't fall within the given scope
1428/// as determined by isDeclInScope.
1429void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
1430 bool ConsiderLinkage,
1431 bool AllowInlineNamespace) {
1432 LookupResult::Filter F = R.makeFilter();
1433 while (F.hasNext()) {
1434 NamedDecl *D = F.next();
1435
1436 if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
1437 continue;
1438
1439 if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
1440 continue;
1441
1442 F.erase();
1443 }
1444
1445 F.done();
1446}
1447
1448/// We've determined that \p New is a redeclaration of \p Old. Check that they
1449/// have compatible owning modules.
1450bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) {
1451 // FIXME: The Modules TS is not clear about how friend declarations are
1452 // to be treated. It's not meaningful to have different owning modules for
1453 // linkage in redeclarations of the same entity, so for now allow the
1454 // redeclaration and change the owning modules to match.
1455 if (New->getFriendObjectKind() &&
1456 Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) {
1457 New->setLocalOwningModule(Old->getOwningModule());
1458 makeMergedDefinitionVisible(New);
1459 return false;
1460 }
1461
1462 Module *NewM = New->getOwningModule();
1463 Module *OldM = Old->getOwningModule();
1464 if (NewM == OldM)
1465 return false;
1466
1467 // FIXME: Check proclaimed-ownership-declarations here too.
1468 bool NewIsModuleInterface = NewM && NewM->Kind == Module::ModuleInterfaceUnit;
1469 bool OldIsModuleInterface = OldM && OldM->Kind == Module::ModuleInterfaceUnit;
1470 if (NewIsModuleInterface || OldIsModuleInterface) {
1471 // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]:
1472 // if a declaration of D [...] appears in the purview of a module, all
1473 // other such declarations shall appear in the purview of the same module
1474 Diag(New->getLocation(), diag::err_mismatched_owning_module)
1475 << New
1476 << NewIsModuleInterface
1477 << (NewIsModuleInterface ? NewM->getFullModuleName() : "")
1478 << OldIsModuleInterface
1479 << (OldIsModuleInterface ? OldM->getFullModuleName() : "");
1480 Diag(Old->getLocation(), diag::note_previous_declaration);
1481 New->setInvalidDecl();
1482 return true;
1483 }
1484
1485 return false;
1486}
1487
1488static bool isUsingDecl(NamedDecl *D) {
1489 return isa<UsingShadowDecl>(D) ||
1490 isa<UnresolvedUsingTypenameDecl>(D) ||
1491 isa<UnresolvedUsingValueDecl>(D);
1492}
1493
1494/// Removes using shadow declarations from the lookup results.
1495static void RemoveUsingDecls(LookupResult &R) {
1496 LookupResult::Filter F = R.makeFilter();
1497 while (F.hasNext())
1498 if (isUsingDecl(F.next()))
1499 F.erase();
1500
1501 F.done();
1502}
1503
1504/// Check for this common pattern:
1505/// @code
1506/// class S {
1507/// S(const S&); // DO NOT IMPLEMENT
1508/// void operator=(const S&); // DO NOT IMPLEMENT
1509/// };
1510/// @endcode
1511static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1512 // FIXME: Should check for private access too but access is set after we get
1513 // the decl here.
1514 if (D->doesThisDeclarationHaveABody())
1515 return false;
1516
1517 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1518 return CD->isCopyConstructor();
1519 return D->isCopyAssignmentOperator();
1520}
1521
1522// We need this to handle
1523//
1524// typedef struct {
1525// void *foo() { return 0; }
1526// } A;
1527//
1528// When we see foo we don't know if after the typedef we will get 'A' or '*A'
1529// for example. If 'A', foo will have external linkage. If we have '*A',
1530// foo will have no linkage. Since we can't know until we get to the end
1531// of the typedef, this function finds out if D might have non-external linkage.
1532// Callers should verify at the end of the TU if it D has external linkage or
1533// not.
1534bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1535 const DeclContext *DC = D->getDeclContext();
1536 while (!DC->isTranslationUnit()) {
1537 if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1538 if (!RD->hasNameForLinkage())
1539 return true;
1540 }
1541 DC = DC->getParent();
1542 }
1543
1544 return !D->isExternallyVisible();
1545}
1546
1547// FIXME: This needs to be refactored; some other isInMainFile users want
1548// these semantics.
1549static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1550 if (S.TUKind != TU_Complete)
1551 return false;
1552 return S.SourceMgr.isInMainFile(Loc);
1553}
1554
1555bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1556 assert(D)((D) ? static_cast<void> (0) : __assert_fail ("D", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 1556, __PRETTY_FUNCTION__))
;
1557
1558 if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1559 return false;
1560
1561 // Ignore all entities declared within templates, and out-of-line definitions
1562 // of members of class templates.
1563 if (D->getDeclContext()->isDependentContext() ||
1564 D->getLexicalDeclContext()->isDependentContext())
1565 return false;
1566
1567 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1568 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1569 return false;
1570 // A non-out-of-line declaration of a member specialization was implicitly
1571 // instantiated; it's the out-of-line declaration that we're interested in.
1572 if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1573 FD->getMemberSpecializationInfo() && !FD->isOutOfLine())
1574 return false;
1575
1576 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1577 if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1578 return false;
1579 } else {
1580 // 'static inline' functions are defined in headers; don't warn.
1581 if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
1582 return false;
1583 }
1584
1585 if (FD->doesThisDeclarationHaveABody() &&
1586 Context.DeclMustBeEmitted(FD))
1587 return false;
1588 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1589 // Constants and utility variables are defined in headers with internal
1590 // linkage; don't warn. (Unlike functions, there isn't a convenient marker
1591 // like "inline".)
1592 if (!isMainFileLoc(*this, VD->getLocation()))
1593 return false;
1594
1595 if (Context.DeclMustBeEmitted(VD))
1596 return false;
1597
1598 if (VD->isStaticDataMember() &&
1599 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1600 return false;
1601 if (VD->isStaticDataMember() &&
1602 VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1603 VD->getMemberSpecializationInfo() && !VD->isOutOfLine())
1604 return false;
1605
1606 if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation()))
1607 return false;
1608 } else {
1609 return false;
1610 }
1611
1612 // Only warn for unused decls internal to the translation unit.
1613 // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1614 // for inline functions defined in the main source file, for instance.
1615 return mightHaveNonExternalLinkage(D);
1616}
1617
1618void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1619 if (!D)
1620 return;
1621
1622 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1623 const FunctionDecl *First = FD->getFirstDecl();
1624 if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1625 return; // First should already be in the vector.
1626 }
1627
1628 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1629 const VarDecl *First = VD->getFirstDecl();
1630 if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1631 return; // First should already be in the vector.
1632 }
1633
1634 if (ShouldWarnIfUnusedFileScopedDecl(D))
1635 UnusedFileScopedDecls.push_back(D);
1636}
1637
1638static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1639 if (D->isInvalidDecl())
1640 return false;
1641
1642 bool Referenced = false;
1643 if (auto *DD = dyn_cast<DecompositionDecl>(D)) {
1644 // For a decomposition declaration, warn if none of the bindings are
1645 // referenced, instead of if the variable itself is referenced (which
1646 // it is, by the bindings' expressions).
1647 for (auto *BD : DD->bindings()) {
1648 if (BD->isReferenced()) {
1649 Referenced = true;
1650 break;
1651 }
1652 }
1653 } else if (!D->getDeclName()) {
1654 return false;
1655 } else if (D->isReferenced() || D->isUsed()) {
1656 Referenced = true;
1657 }
1658
1659 if (Referenced || D->hasAttr<UnusedAttr>() ||
1660 D->hasAttr<ObjCPreciseLifetimeAttr>())
1661 return false;
1662
1663 if (isa<LabelDecl>(D))
1664 return true;
1665
1666 // Except for labels, we only care about unused decls that are local to
1667 // functions.
1668 bool WithinFunction = D->getDeclContext()->isFunctionOrMethod();
1669 if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext()))
1670 // For dependent types, the diagnostic is deferred.
1671 WithinFunction =
1672 WithinFunction || (R->isLocalClass() && !R->isDependentType());
1673 if (!WithinFunction)
1674 return false;
1675
1676 if (isa<TypedefNameDecl>(D))
1677 return true;
1678
1679 // White-list anything that isn't a local variable.
1680 if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D))
1681 return false;
1682
1683 // Types of valid local variables should be complete, so this should succeed.
1684 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1685
1686 // White-list anything with an __attribute__((unused)) type.
1687 const auto *Ty = VD->getType().getTypePtr();
1688
1689 // Only look at the outermost level of typedef.
1690 if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1691 if (TT->getDecl()->hasAttr<UnusedAttr>())
1692 return false;
1693 }
1694
1695 // If we failed to complete the type for some reason, or if the type is
1696 // dependent, don't diagnose the variable.
1697 if (Ty->isIncompleteType() || Ty->isDependentType())
1698 return false;
1699
1700 // Look at the element type to ensure that the warning behaviour is
1701 // consistent for both scalars and arrays.
1702 Ty = Ty->getBaseElementTypeUnsafe();
1703
1704 if (const TagType *TT = Ty->getAs<TagType>()) {
1705 const TagDecl *Tag = TT->getDecl();
1706 if (Tag->hasAttr<UnusedAttr>())
1707 return false;
1708
1709 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1710 if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
1711 return false;
1712
1713 if (const Expr *Init = VD->getInit()) {
1714 if (const ExprWithCleanups *Cleanups =
1715 dyn_cast<ExprWithCleanups>(Init))
1716 Init = Cleanups->getSubExpr();
1717 const CXXConstructExpr *Construct =
1718 dyn_cast<CXXConstructExpr>(Init);
1719 if (Construct && !Construct->isElidable()) {
1720 CXXConstructorDecl *CD = Construct->getConstructor();
1721 if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() &&
1722 (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
1723 return false;
1724 }
1725 }
1726 }
1727 }
1728
1729 // TODO: __attribute__((unused)) templates?
1730 }
1731
1732 return true;
1733}
1734
1735static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1736 FixItHint &Hint) {
1737 if (isa<LabelDecl>(D)) {
1738 SourceLocation AfterColon = Lexer::findLocationAfterToken(
1739 D->getEndLoc(), tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(),
1740 true);
1741 if (AfterColon.isInvalid())
1742 return;
1743 Hint = FixItHint::CreateRemoval(
1744 CharSourceRange::getCharRange(D->getBeginLoc(), AfterColon));
1745 }
1746}
1747
1748void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) {
1749 if (D->getTypeForDecl()->isDependentType())
1750 return;
1751
1752 for (auto *TmpD : D->decls()) {
1753 if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD))
1754 DiagnoseUnusedDecl(T);
1755 else if(const auto *R = dyn_cast<RecordDecl>(TmpD))
1756 DiagnoseUnusedNestedTypedefs(R);
1757 }
1758}
1759
1760/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1761/// unless they are marked attr(unused).
1762void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1763 if (!ShouldDiagnoseUnusedDecl(D))
1764 return;
1765
1766 if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
1767 // typedefs can be referenced later on, so the diagnostics are emitted
1768 // at end-of-translation-unit.
1769 UnusedLocalTypedefNameCandidates.insert(TD);
1770 return;
1771 }
1772
1773 FixItHint Hint;
1774 GenerateFixForUnusedDecl(D, Context, Hint);
1775
1776 unsigned DiagID;
1777 if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1778 DiagID = diag::warn_unused_exception_param;
1779 else if (isa<LabelDecl>(D))
1780 DiagID = diag::warn_unused_label;
1781 else
1782 DiagID = diag::warn_unused_variable;
1783
1784 Diag(D->getLocation(), DiagID) << D << Hint;
1785}
1786
1787static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1788 // Verify that we have no forward references left. If so, there was a goto
1789 // or address of a label taken, but no definition of it. Label fwd
1790 // definitions are indicated with a null substmt which is also not a resolved
1791 // MS inline assembly label name.
1792 bool Diagnose = false;
1793 if (L->isMSAsmLabel())
1794 Diagnose = !L->isResolvedMSAsmLabel();
1795 else
1796 Diagnose = L->getStmt() == nullptr;
1797 if (Diagnose)
1798 S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1799}
1800
1801void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1802 S->mergeNRVOIntoParent();
1803
1804 if (S->decl_empty()) return;
1805 assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&(((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope
)) && "Scope shouldn't contain decls!") ? static_cast
<void> (0) : __assert_fail ("(S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && \"Scope shouldn't contain decls!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 1806, __PRETTY_FUNCTION__))
1806 "Scope shouldn't contain decls!")(((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope
)) && "Scope shouldn't contain decls!") ? static_cast
<void> (0) : __assert_fail ("(S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && \"Scope shouldn't contain decls!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 1806, __PRETTY_FUNCTION__))
;
1807
1808 for (auto *TmpD : S->decls()) {
1809 assert(TmpD && "This decl didn't get pushed??")((TmpD && "This decl didn't get pushed??") ? static_cast
<void> (0) : __assert_fail ("TmpD && \"This decl didn't get pushed??\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 1809, __PRETTY_FUNCTION__))
;
1810
1811 assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?")((isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?"
) ? static_cast<void> (0) : __assert_fail ("isa<NamedDecl>(TmpD) && \"Decl isn't NamedDecl?\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 1811, __PRETTY_FUNCTION__))
;
1812 NamedDecl *D = cast<NamedDecl>(TmpD);
1813
1814 // Diagnose unused variables in this scope.
1815 if (!S->hasUnrecoverableErrorOccurred()) {
1816 DiagnoseUnusedDecl(D);
1817 if (const auto *RD = dyn_cast<RecordDecl>(D))
1818 DiagnoseUnusedNestedTypedefs(RD);
1819 }
1820
1821 if (!D->getDeclName()) continue;
1822
1823 // If this was a forward reference to a label, verify it was defined.
1824 if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1825 CheckPoppedLabel(LD, *this);
1826
1827 // Remove this name from our lexical scope, and warn on it if we haven't
1828 // already.
1829 IdResolver.RemoveDecl(D);
1830 auto ShadowI = ShadowingDecls.find(D);
1831 if (ShadowI != ShadowingDecls.end()) {
1832 if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) {
1833 Diag(D->getLocation(), diag::warn_ctor_parm_shadows_field)
1834 << D << FD << FD->getParent();
1835 Diag(FD->getLocation(), diag::note_previous_declaration);
1836 }
1837 ShadowingDecls.erase(ShadowI);
1838 }
1839 }
1840}
1841
1842/// Look for an Objective-C class in the translation unit.
1843///
1844/// \param Id The name of the Objective-C class we're looking for. If
1845/// typo-correction fixes this name, the Id will be updated
1846/// to the fixed name.
1847///
1848/// \param IdLoc The location of the name in the translation unit.
1849///
1850/// \param DoTypoCorrection If true, this routine will attempt typo correction
1851/// if there is no class with the given name.
1852///
1853/// \returns The declaration of the named Objective-C class, or NULL if the
1854/// class could not be found.
1855ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1856 SourceLocation IdLoc,
1857 bool DoTypoCorrection) {
1858 // The third "scope" argument is 0 since we aren't enabling lazy built-in
1859 // creation from this context.
1860 NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1861
1862 if (!IDecl && DoTypoCorrection) {
1863 // Perform typo correction at the given location, but only if we
1864 // find an Objective-C class name.
1865 if (TypoCorrection C = CorrectTypo(
1866 DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName, TUScope, nullptr,
1867 llvm::make_unique<DeclFilterCCC<ObjCInterfaceDecl>>(),
1868 CTK_ErrorRecovery)) {
1869 diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
1870 IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1871 Id = IDecl->getIdentifier();
1872 }
1873 }
1874 ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1875 // This routine must always return a class definition, if any.
1876 if (Def && Def->getDefinition())
1877 Def = Def->getDefinition();
1878 return Def;
1879}
1880
1881/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1882/// from S, where a non-field would be declared. This routine copes
1883/// with the difference between C and C++ scoping rules in structs and
1884/// unions. For example, the following code is well-formed in C but
1885/// ill-formed in C++:
1886/// @code
1887/// struct S6 {
1888/// enum { BAR } e;
1889/// };
1890///
1891/// void test_S6() {
1892/// struct S6 a;
1893/// a.e = BAR;
1894/// }
1895/// @endcode
1896/// For the declaration of BAR, this routine will return a different
1897/// scope. The scope S will be the scope of the unnamed enumeration
1898/// within S6. In C++, this routine will return the scope associated
1899/// with S6, because the enumeration's scope is a transparent
1900/// context but structures can contain non-field names. In C, this
1901/// routine will return the translation unit scope, since the
1902/// enumeration's scope is a transparent context and structures cannot
1903/// contain non-field names.
1904Scope *Sema::getNonFieldDeclScope(Scope *S) {
1905 while (((S->getFlags() & Scope::DeclScope) == 0) ||
1906 (S->getEntity() && S->getEntity()->isTransparentContext()) ||
1907 (S->isClassScope() && !getLangOpts().CPlusPlus))
1908 S = S->getParent();
1909 return S;
1910}
1911
1912/// Looks up the declaration of "struct objc_super" and
1913/// saves it for later use in building builtin declaration of
1914/// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1915/// pre-existing declaration exists no action takes place.
1916static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1917 IdentifierInfo *II) {
1918 if (!II->isStr("objc_msgSendSuper"))
1919 return;
1920 ASTContext &Context = ThisSema.Context;
1921
1922 LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1923 SourceLocation(), Sema::LookupTagName);
1924 ThisSema.LookupName(Result, S);
1925 if (Result.getResultKind() == LookupResult::Found)
1926 if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1927 Context.setObjCSuperType(Context.getTagDeclType(TD));
1928}
1929
1930static StringRef getHeaderName(ASTContext::GetBuiltinTypeError Error) {
1931 switch (Error) {
1932 case ASTContext::GE_None:
1933 return "";
1934 case ASTContext::GE_Missing_stdio:
1935 return "stdio.h";
1936 case ASTContext::GE_Missing_setjmp:
1937 return "setjmp.h";
1938 case ASTContext::GE_Missing_ucontext:
1939 return "ucontext.h";
1940 }
1941 llvm_unreachable("unhandled error kind")::llvm::llvm_unreachable_internal("unhandled error kind", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 1941)
;
1942}
1943
1944/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1945/// file scope. lazily create a decl for it. ForRedeclaration is true
1946/// if we're creating this built-in in anticipation of redeclaring the
1947/// built-in.
1948NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
1949 Scope *S, bool ForRedeclaration,
1950 SourceLocation Loc) {
1951 LookupPredefedObjCSuperType(*this, S, II);
1952
1953 ASTContext::GetBuiltinTypeError Error;
1954 QualType R = Context.GetBuiltinType(ID, Error);
1955 if (Error) {
1956 if (ForRedeclaration)
1957 Diag(Loc, diag::warn_implicit_decl_requires_sysheader)
1958 << getHeaderName(Error) << Context.BuiltinInfo.getName(ID);
1959 return nullptr;
1960 }
1961
1962 if (!ForRedeclaration &&
1963 (Context.BuiltinInfo.isPredefinedLibFunction(ID) ||
1964 Context.BuiltinInfo.isHeaderDependentFunction(ID))) {
1965 Diag(Loc, diag::ext_implicit_lib_function_decl)
1966 << Context.BuiltinInfo.getName(ID) << R;
1967 if (Context.BuiltinInfo.getHeaderName(ID) &&
1968 !Diags.isIgnored(diag::ext_implicit_lib_function_decl, Loc))
1969 Diag(Loc, diag::note_include_header_or_declare)
1970 << Context.BuiltinInfo.getHeaderName(ID)
1971 << Context.BuiltinInfo.getName(ID);
1972 }
1973
1974 if (R.isNull())
1975 return nullptr;
1976
1977 DeclContext *Parent = Context.getTranslationUnitDecl();
1978 if (getLangOpts().CPlusPlus) {
1979 LinkageSpecDecl *CLinkageDecl =
1980 LinkageSpecDecl::Create(Context, Parent, Loc, Loc,
1981 LinkageSpecDecl::lang_c, false);
1982 CLinkageDecl->setImplicit();
1983 Parent->addDecl(CLinkageDecl);
1984 Parent = CLinkageDecl;
1985 }
1986
1987 FunctionDecl *New = FunctionDecl::Create(Context,
1988 Parent,
1989 Loc, Loc, II, R, /*TInfo=*/nullptr,
1990 SC_Extern,
1991 false,
1992 R->isFunctionProtoType());
1993 New->setImplicit();
1994
1995 // Create Decl objects for each parameter, adding them to the
1996 // FunctionDecl.
1997 if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1998 SmallVector<ParmVarDecl*, 16> Params;
1999 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2000 ParmVarDecl *parm =
2001 ParmVarDecl::Create(Context, New, SourceLocation(), SourceLocation(),
2002 nullptr, FT->getParamType(i), /*TInfo=*/nullptr,
2003 SC_None, nullptr);
2004 parm->setScopeInfo(0, i);
2005 Params.push_back(parm);
2006 }
2007 New->setParams(Params);
2008 }
2009
2010 AddKnownFunctionAttributes(New);
2011 RegisterLocallyScopedExternCDecl(New, S);
2012
2013 // TUScope is the translation-unit scope to insert this function into.
2014 // FIXME: This is hideous. We need to teach PushOnScopeChains to
2015 // relate Scopes to DeclContexts, and probably eliminate CurContext
2016 // entirely, but we're not there yet.
2017 DeclContext *SavedContext = CurContext;
2018 CurContext = Parent;
2019 PushOnScopeChains(New, TUScope);
2020 CurContext = SavedContext;
2021 return New;
2022}
2023
2024/// Typedef declarations don't have linkage, but they still denote the same
2025/// entity if their types are the same.
2026/// FIXME: This is notionally doing the same thing as ASTReaderDecl's
2027/// isSameEntity.
2028static void filterNonConflictingPreviousTypedefDecls(Sema &S,
2029 TypedefNameDecl *Decl,
2030 LookupResult &Previous) {
2031 // This is only interesting when modules are enabled.
2032 if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility)
2033 return;
2034
2035 // Empty sets are uninteresting.
2036 if (Previous.empty())
2037 return;
2038
2039 LookupResult::Filter Filter = Previous.makeFilter();
2040 while (Filter.hasNext()) {
2041 NamedDecl *Old = Filter.next();
2042
2043 // Non-hidden declarations are never ignored.
2044 if (S.isVisible(Old))
2045 continue;
2046
2047 // Declarations of the same entity are not ignored, even if they have
2048 // different linkages.
2049 if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2050 if (S.Context.hasSameType(OldTD->getUnderlyingType(),
2051 Decl->getUnderlyingType()))
2052 continue;
2053
2054 // If both declarations give a tag declaration a typedef name for linkage
2055 // purposes, then they declare the same entity.
2056 if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) &&
2057 Decl->getAnonDeclWithTypedefName())
2058 continue;
2059 }
2060
2061 Filter.erase();
2062 }
2063
2064 Filter.done();
2065}
2066
2067bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
2068 QualType OldType;
2069 if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
2070 OldType = OldTypedef->getUnderlyingType();
2071 else
2072 OldType = Context.getTypeDeclType(Old);
2073 QualType NewType = New->getUnderlyingType();
2074
2075 if (NewType->isVariablyModifiedType()) {
2076 // Must not redefine a typedef with a variably-modified type.
2077 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2078 Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
2079 << Kind << NewType;
2080 if (Old->getLocation().isValid())
2081 notePreviousDefinition(Old, New->getLocation());
2082 New->setInvalidDecl();
2083 return true;
2084 }
2085
2086 if (OldType != NewType &&
2087 !OldType->isDependentType() &&
2088 !NewType->isDependentType() &&
2089 !Context.hasSameType(OldType, NewType)) {
2090 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2091 Diag(New->getLocation(), diag::err_redefinition_different_typedef)
2092 << Kind << NewType << OldType;
2093 if (Old->getLocation().isValid())
2094 notePreviousDefinition(Old, New->getLocation());
2095 New->setInvalidDecl();
2096 return true;
2097 }
2098 return false;
2099}
2100
2101/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
2102/// same name and scope as a previous declaration 'Old'. Figure out
2103/// how to resolve this situation, merging decls or emitting
2104/// diagnostics as appropriate. If there was an error, set New to be invalid.
2105///
2106void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
2107 LookupResult &OldDecls) {
2108 // If the new decl is known invalid already, don't bother doing any
2109 // merging checks.
2110 if (New->isInvalidDecl()) return;
2111
2112 // Allow multiple definitions for ObjC built-in typedefs.
2113 // FIXME: Verify the underlying types are equivalent!
2114 if (getLangOpts().ObjC) {
2115 const IdentifierInfo *TypeID = New->getIdentifier();
2116 switch (TypeID->getLength()) {
2117 default: break;
2118 case 2:
2119 {
2120 if (!TypeID->isStr("id"))
2121 break;
2122 QualType T = New->getUnderlyingType();
2123 if (!T->isPointerType())
2124 break;
2125 if (!T->isVoidPointerType()) {
2126 QualType PT = T->getAs<PointerType>()->getPointeeType();
2127 if (!PT->isStructureType())
2128 break;
2129 }
2130 Context.setObjCIdRedefinitionType(T);
2131 // Install the built-in type for 'id', ignoring the current definition.
2132 New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
2133 return;
2134 }
2135 case 5:
2136 if (!TypeID->isStr("Class"))
2137 break;
2138 Context.setObjCClassRedefinitionType(New->getUnderlyingType());
2139 // Install the built-in type for 'Class', ignoring the current definition.
2140 New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
2141 return;
2142 case 3:
2143 if (!TypeID->isStr("SEL"))
2144 break;
2145 Context.setObjCSelRedefinitionType(New->getUnderlyingType());
2146 // Install the built-in type for 'SEL', ignoring the current definition.
2147 New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
2148 return;
2149 }
2150 // Fall through - the typedef name was not a builtin type.
2151 }
2152
2153 // Verify the old decl was also a type.
2154 TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
2155 if (!Old) {
2156 Diag(New->getLocation(), diag::err_redefinition_different_kind)
2157 << New->getDeclName();
2158
2159 NamedDecl *OldD = OldDecls.getRepresentativeDecl();
2160 if (OldD->getLocation().isValid())
2161 notePreviousDefinition(OldD, New->getLocation());
2162
2163 return New->setInvalidDecl();
2164 }
2165
2166 // If the old declaration is invalid, just give up here.
2167 if (Old->isInvalidDecl())
2168 return New->setInvalidDecl();
2169
2170 if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2171 auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
2172 auto *NewTag = New->getAnonDeclWithTypedefName();
2173 NamedDecl *Hidden = nullptr;
2174 if (OldTag && NewTag &&
2175 OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() &&
2176 !hasVisibleDefinition(OldTag, &Hidden)) {
2177 // There is a definition of this tag, but it is not visible. Use it
2178 // instead of our tag.
2179 New->setTypeForDecl(OldTD->getTypeForDecl());
2180 if (OldTD->isModed())
2181 New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(),
2182 OldTD->getUnderlyingType());
2183 else
2184 New->setTypeSourceInfo(OldTD->getTypeSourceInfo());
2185
2186 // Make the old tag definition visible.
2187 makeMergedDefinitionVisible(Hidden);
2188
2189 // If this was an unscoped enumeration, yank all of its enumerators
2190 // out of the scope.
2191 if (isa<EnumDecl>(NewTag)) {
2192 Scope *EnumScope = getNonFieldDeclScope(S);
2193 for (auto *D : NewTag->decls()) {
2194 auto *ED = cast<EnumConstantDecl>(D);
2195 assert(EnumScope->isDeclScope(ED))((EnumScope->isDeclScope(ED)) ? static_cast<void> (0
) : __assert_fail ("EnumScope->isDeclScope(ED)", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 2195, __PRETTY_FUNCTION__))
;
2196 EnumScope->RemoveDecl(ED);
2197 IdResolver.RemoveDecl(ED);
2198 ED->getLexicalDeclContext()->removeDecl(ED);
2199 }
2200 }
2201 }
2202 }
2203
2204 // If the typedef types are not identical, reject them in all languages and
2205 // with any extensions enabled.
2206 if (isIncompatibleTypedef(Old, New))
2207 return;
2208
2209 // The types match. Link up the redeclaration chain and merge attributes if
2210 // the old declaration was a typedef.
2211 if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
2212 New->setPreviousDecl(Typedef);
2213 mergeDeclAttributes(New, Old);
2214 }
2215
2216 if (getLangOpts().MicrosoftExt)
2217 return;
2218
2219 if (getLangOpts().CPlusPlus) {
2220 // C++ [dcl.typedef]p2:
2221 // In a given non-class scope, a typedef specifier can be used to
2222 // redefine the name of any type declared in that scope to refer
2223 // to the type to which it already refers.
2224 if (!isa<CXXRecordDecl>(CurContext))
2225 return;
2226
2227 // C++0x [dcl.typedef]p4:
2228 // In a given class scope, a typedef specifier can be used to redefine
2229 // any class-name declared in that scope that is not also a typedef-name
2230 // to refer to the type to which it already refers.
2231 //
2232 // This wording came in via DR424, which was a correction to the
2233 // wording in DR56, which accidentally banned code like:
2234 //
2235 // struct S {
2236 // typedef struct A { } A;
2237 // };
2238 //
2239 // in the C++03 standard. We implement the C++0x semantics, which
2240 // allow the above but disallow
2241 //
2242 // struct S {
2243 // typedef int I;
2244 // typedef int I;
2245 // };
2246 //
2247 // since that was the intent of DR56.
2248 if (!isa<TypedefNameDecl>(Old))
2249 return;
2250
2251 Diag(New->getLocation(), diag::err_redefinition)
2252 << New->getDeclName();
2253 notePreviousDefinition(Old, New->getLocation());
2254 return New->setInvalidDecl();
2255 }
2256
2257 // Modules always permit redefinition of typedefs, as does C11.
2258 if (getLangOpts().Modules || getLangOpts().C11)
2259 return;
2260
2261 // If we have a redefinition of a typedef in C, emit a warning. This warning
2262 // is normally mapped to an error, but can be controlled with
2263 // -Wtypedef-redefinition. If either the original or the redefinition is
2264 // in a system header, don't emit this for compatibility with GCC.
2265 if (getDiagnostics().getSuppressSystemWarnings() &&
2266 // Some standard types are defined implicitly in Clang (e.g. OpenCL).
2267 (Old->isImplicit() ||
2268 Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
2269 Context.getSourceManager().isInSystemHeader(New->getLocation())))
2270 return;
2271
2272 Diag(New->getLocation(), diag::ext_redefinition_of_typedef)
2273 << New->getDeclName();
2274 notePreviousDefinition(Old, New->getLocation());
2275}
2276
2277/// DeclhasAttr - returns true if decl Declaration already has the target
2278/// attribute.
2279static bool DeclHasAttr(const Decl *D, const Attr *A) {
2280 const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
2281 const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
2282 for (const auto *i : D->attrs())
2283 if (i->getKind() == A->getKind()) {
2284 if (Ann) {
2285 if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
2286 return true;
2287 continue;
2288 }
2289 // FIXME: Don't hardcode this check
2290 if (OA && isa<OwnershipAttr>(i))
2291 return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
2292 return true;
2293 }
2294
2295 return false;
2296}
2297
2298static bool isAttributeTargetADefinition(Decl *D) {
2299 if (VarDecl *VD = dyn_cast<VarDecl>(D))
2300 return VD->isThisDeclarationADefinition();
2301 if (TagDecl *TD = dyn_cast<TagDecl>(D))
2302 return TD->isCompleteDefinition() || TD->isBeingDefined();
2303 return true;
2304}
2305
2306/// Merge alignment attributes from \p Old to \p New, taking into account the
2307/// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
2308///
2309/// \return \c true if any attributes were added to \p New.
2310static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
2311 // Look for alignas attributes on Old, and pick out whichever attribute
2312 // specifies the strictest alignment requirement.
2313 AlignedAttr *OldAlignasAttr = nullptr;
2314 AlignedAttr *OldStrictestAlignAttr = nullptr;
2315 unsigned OldAlign = 0;
2316 for (auto *I : Old->specific_attrs<AlignedAttr>()) {
2317 // FIXME: We have no way of representing inherited dependent alignments
2318 // in a case like:
2319 // template<int A, int B> struct alignas(A) X;
2320 // template<int A, int B> struct alignas(B) X {};
2321 // For now, we just ignore any alignas attributes which are not on the
2322 // definition in such a case.
2323 if (I->isAlignmentDependent())
2324 return false;
2325
2326 if (I->isAlignas())
2327 OldAlignasAttr = I;
2328
2329 unsigned Align = I->getAlignment(S.Context);
2330 if (Align > OldAlign) {
2331 OldAlign = Align;
2332 OldStrictestAlignAttr = I;
2333 }
2334 }
2335
2336 // Look for alignas attributes on New.
2337 AlignedAttr *NewAlignasAttr = nullptr;
2338 unsigned NewAlign = 0;
2339 for (auto *I : New->specific_attrs<AlignedAttr>()) {
2340 if (I->isAlignmentDependent())
2341 return false;
2342
2343 if (I->isAlignas())
2344 NewAlignasAttr = I;
2345
2346 unsigned Align = I->getAlignment(S.Context);
2347 if (Align > NewAlign)
2348 NewAlign = Align;
2349 }
2350
2351 if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
2352 // Both declarations have 'alignas' attributes. We require them to match.
2353 // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
2354 // fall short. (If two declarations both have alignas, they must both match
2355 // every definition, and so must match each other if there is a definition.)
2356
2357 // If either declaration only contains 'alignas(0)' specifiers, then it
2358 // specifies the natural alignment for the type.
2359 if (OldAlign == 0 || NewAlign == 0) {
2360 QualType Ty;
2361 if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
2362 Ty = VD->getType();
2363 else
2364 Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
2365
2366 if (OldAlign == 0)
2367 OldAlign = S.Context.getTypeAlign(Ty);
2368 if (NewAlign == 0)
2369 NewAlign = S.Context.getTypeAlign(Ty);
2370 }
2371
2372 if (OldAlign != NewAlign) {
2373 S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
2374 << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
2375 << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
2376 S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
2377 }
2378 }
2379
2380 if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
2381 // C++11 [dcl.align]p6:
2382 // if any declaration of an entity has an alignment-specifier,
2383 // every defining declaration of that entity shall specify an
2384 // equivalent alignment.
2385 // C11 6.7.5/7:
2386 // If the definition of an object does not have an alignment
2387 // specifier, any other declaration of that object shall also
2388 // have no alignment specifier.
2389 S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
2390 << OldAlignasAttr;
2391 S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
2392 << OldAlignasAttr;
2393 }
2394
2395 bool AnyAdded = false;
2396
2397 // Ensure we have an attribute representing the strictest alignment.
2398 if (OldAlign > NewAlign) {
2399 AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
2400 Clone->setInherited(true);
2401 New->addAttr(Clone);
2402 AnyAdded = true;
2403 }
2404
2405 // Ensure we have an alignas attribute if the old declaration had one.
2406 if (OldAlignasAttr && !NewAlignasAttr &&
2407 !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
2408 AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
2409 Clone->setInherited(true);
2410 New->addAttr(Clone);
2411 AnyAdded = true;
2412 }
2413
2414 return AnyAdded;
2415}
2416
2417static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
2418 const InheritableAttr *Attr,
2419 Sema::AvailabilityMergeKind AMK) {
2420 // This function copies an attribute Attr from a previous declaration to the
2421 // new declaration D if the new declaration doesn't itself have that attribute
2422 // yet or if that attribute allows duplicates.
2423 // If you're adding a new attribute that requires logic different from
2424 // "use explicit attribute on decl if present, else use attribute from
2425 // previous decl", for example if the attribute needs to be consistent
2426 // between redeclarations, you need to call a custom merge function here.
2427 InheritableAttr *NewAttr = nullptr;
2428 unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
2429 if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
2430 NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
2431 AA->isImplicit(), AA->getIntroduced(),
2432 AA->getDeprecated(),
2433 AA->getObsoleted(), AA->getUnavailable(),
2434 AA->getMessage(), AA->getStrict(),
2435 AA->getReplacement(), AMK,
2436 AttrSpellingListIndex);
2437 else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
2438 NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
2439 AttrSpellingListIndex);
2440 else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
2441 NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
2442 AttrSpellingListIndex);
2443 else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
2444 NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
2445 AttrSpellingListIndex);
2446 else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
2447 NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
2448 AttrSpellingListIndex);
2449 else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
2450 NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
2451 FA->getFormatIdx(), FA->getFirstArg(),
2452 AttrSpellingListIndex);
2453 else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
2454 NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
2455 AttrSpellingListIndex);
2456 else if (const auto *CSA = dyn_cast<CodeSegAttr>(Attr))
2457 NewAttr = S.mergeCodeSegAttr(D, CSA->getRange(), CSA->getName(),
2458 AttrSpellingListIndex);
2459 else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
2460 NewAttr = S.mergeMSInheritanceAttr(D, IA->getRange(), IA->getBestCase(),
2461 AttrSpellingListIndex,
2462 IA->getSemanticSpelling());
2463 else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr))
2464 NewAttr = S.mergeAlwaysInlineAttr(D, AA->getRange(),
2465 &S.Context.Idents.get(AA->getSpelling()),
2466 AttrSpellingListIndex);
2467 else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) &&
2468 (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) ||
2469 isa<CUDAGlobalAttr>(Attr))) {
2470 // CUDA target attributes are part of function signature for
2471 // overloading purposes and must not be merged.
2472 return false;
2473 } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr))
2474 NewAttr = S.mergeMinSizeAttr(D, MA->getRange(), AttrSpellingListIndex);
2475 else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr))
2476 NewAttr = S.mergeOptimizeNoneAttr(D, OA->getRange(), AttrSpellingListIndex);
2477 else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr))
2478 NewAttr = S.mergeInternalLinkageAttr(D, *InternalLinkageA);
2479 else if (const auto *CommonA = dyn_cast<CommonAttr>(Attr))
2480 NewAttr = S.mergeCommonAttr(D, *CommonA);
2481 else if (isa<AlignedAttr>(Attr))
2482 // AlignedAttrs are handled separately, because we need to handle all
2483 // such attributes on a declaration at the same time.
2484 NewAttr = nullptr;
2485 else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) &&
2486 (AMK == Sema::AMK_Override ||
2487 AMK == Sema::AMK_ProtocolImplementation))
2488 NewAttr = nullptr;
2489 else if (const auto *UA = dyn_cast<UuidAttr>(Attr))
2490 NewAttr = S.mergeUuidAttr(D, UA->getRange(), AttrSpellingListIndex,
2491 UA->getGuid());
2492 else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr))
2493 NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2494
2495 if (NewAttr) {
2496 NewAttr->setInherited(true);
2497 D->addAttr(NewAttr);
2498 if (isa<MSInheritanceAttr>(NewAttr))
2499 S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
2500 return true;
2501 }
2502
2503 return false;
2504}
2505
2506static const NamedDecl *getDefinition(const Decl *D) {
2507 if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2508 return TD->getDefinition();
2509 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2510 const VarDecl *Def = VD->getDefinition();
2511 if (Def)
2512 return Def;
2513 return VD->getActingDefinition();
2514 }
2515 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
2516 return FD->getDefinition();
2517 return nullptr;
2518}
2519
2520static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2521 for (const auto *Attribute : D->attrs())
2522 if (Attribute->getKind() == Kind)
2523 return true;
2524 return false;
2525}
2526
2527/// checkNewAttributesAfterDef - If we already have a definition, check that
2528/// there are no new attributes in this declaration.
2529static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2530 if (!New->hasAttrs())
2531 return;
2532
2533 const NamedDecl *Def = getDefinition(Old);
2534 if (!Def || Def == New)
2535 return;
2536
2537 AttrVec &NewAttributes = New->getAttrs();
2538 for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2539 const Attr *NewAttribute = NewAttributes[I];
2540
2541 if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) {
2542 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) {
2543 Sema::SkipBodyInfo SkipBody;
2544 S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody);
2545
2546 // If we're skipping this definition, drop the "alias" attribute.
2547 if (SkipBody.ShouldSkip) {
2548 NewAttributes.erase(NewAttributes.begin() + I);
2549 --E;
2550 continue;
2551 }
2552 } else {
2553 VarDecl *VD = cast<VarDecl>(New);
2554 unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
2555 VarDecl::TentativeDefinition
2556 ? diag::err_alias_after_tentative
2557 : diag::err_redefinition;
2558 S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
2559 if (Diag == diag::err_redefinition)
2560 S.notePreviousDefinition(Def, VD->getLocation());
2561 else
2562 S.Diag(Def->getLocation(), diag::note_previous_definition);
2563 VD->setInvalidDecl();
2564 }
2565 ++I;
2566 continue;
2567 }
2568
2569 if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
2570 // Tentative definitions are only interesting for the alias check above.
2571 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
2572 ++I;
2573 continue;
2574 }
2575 }
2576
2577 if (hasAttribute(Def, NewAttribute->getKind())) {
2578 ++I;
2579 continue; // regular attr merging will take care of validating this.
2580 }
2581
2582 if (isa<C11NoReturnAttr>(NewAttribute)) {
2583 // C's _Noreturn is allowed to be added to a function after it is defined.
2584 ++I;
2585 continue;
2586 } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2587 if (AA->isAlignas()) {
2588 // C++11 [dcl.align]p6:
2589 // if any declaration of an entity has an alignment-specifier,
2590 // every defining declaration of that entity shall specify an
2591 // equivalent alignment.
2592 // C11 6.7.5/7:
2593 // If the definition of an object does not have an alignment
2594 // specifier, any other declaration of that object shall also
2595 // have no alignment specifier.
2596 S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2597 << AA;
2598 S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2599 << AA;
2600 NewAttributes.erase(NewAttributes.begin() + I);
2601 --E;
2602 continue;
2603 }
2604 }
2605
2606 S.Diag(NewAttribute->getLocation(),
2607 diag::warn_attribute_precede_definition);
2608 S.Diag(Def->getLocation(), diag::note_previous_definition);
2609 NewAttributes.erase(NewAttributes.begin() + I);
2610 --E;
2611 }
2612}
2613
2614/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
2615void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2616 AvailabilityMergeKind AMK) {
2617 if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
2618 UsedAttr *NewAttr = OldAttr->clone(Context);
2619 NewAttr->setInherited(true);
2620 New->addAttr(NewAttr);
2621 }
2622
2623 if (!Old->hasAttrs() && !New->hasAttrs())
2624 return;
2625
2626 // Attributes declared post-definition are currently ignored.
2627 checkNewAttributesAfterDef(*this, New, Old);
2628
2629 if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) {
2630 if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) {
2631 if (OldA->getLabel() != NewA->getLabel()) {
2632 // This redeclaration changes __asm__ label.
2633 Diag(New->getLocation(), diag::err_different_asm_label);
2634 Diag(OldA->getLocation(), diag::note_previous_declaration);
2635 }
2636 } else if (Old->isUsed()) {
2637 // This redeclaration adds an __asm__ label to a declaration that has
2638 // already been ODR-used.
2639 Diag(New->getLocation(), diag::err_late_asm_label_name)
2640 << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange();
2641 }
2642 }
2643
2644 // Re-declaration cannot add abi_tag's.
2645 if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) {
2646 if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) {
2647 for (const auto &NewTag : NewAbiTagAttr->tags()) {
2648 if (std::find(OldAbiTagAttr->tags_begin(), OldAbiTagAttr->tags_end(),
2649 NewTag) == OldAbiTagAttr->tags_end()) {
2650 Diag(NewAbiTagAttr->getLocation(),
2651 diag::err_new_abi_tag_on_redeclaration)
2652 << NewTag;
2653 Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration);
2654 }
2655 }
2656 } else {
2657 Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration);
2658 Diag(Old->getLocation(), diag::note_previous_declaration);
2659 }
2660 }
2661
2662 // This redeclaration adds a section attribute.
2663 if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) {
2664 if (auto *VD = dyn_cast<VarDecl>(New)) {
2665 if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) {
2666 Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration);
2667 Diag(Old->getLocation(), diag::note_previous_declaration);
2668 }
2669 }
2670 }
2671
2672 // Redeclaration adds code-seg attribute.
2673 const auto *NewCSA = New->getAttr<CodeSegAttr>();
2674 if (NewCSA && !Old->hasAttr<CodeSegAttr>() &&
2675 !NewCSA->isImplicit() && isa<CXXMethodDecl>(New)) {
2676 Diag(New->getLocation(), diag::warn_mismatched_section)
2677 << 0 /*codeseg*/;
2678 Diag(Old->getLocation(), diag::note_previous_declaration);
2679 }
2680
2681 if (!Old->hasAttrs())
2682 return;
2683
2684 bool foundAny = New->hasAttrs();
2685
2686 // Ensure that any moving of objects within the allocated map is done before
2687 // we process them.
2688 if (!foundAny) New->setAttrs(AttrVec());
2689
2690 for (auto *I : Old->specific_attrs<InheritableAttr>()) {
2691 // Ignore deprecated/unavailable/availability attributes if requested.
2692 AvailabilityMergeKind LocalAMK = AMK_None;
2693 if (isa<DeprecatedAttr>(I) ||
2694 isa<UnavailableAttr>(I) ||
2695 isa<AvailabilityAttr>(I)) {
2696 switch (AMK) {
2697 case AMK_None:
2698 continue;
2699
2700 case AMK_Redeclaration:
2701 case AMK_Override:
2702 case AMK_ProtocolImplementation:
2703 LocalAMK = AMK;
2704 break;
2705 }
2706 }
2707
2708 // Already handled.
2709 if (isa<UsedAttr>(I))
2710 continue;
2711
2712 if (mergeDeclAttribute(*this, New, I, LocalAMK))
2713 foundAny = true;
2714 }
2715
2716 if (mergeAlignedAttrs(*this, New, Old))
2717 foundAny = true;
2718
2719 if (!foundAny) New->dropAttrs();
2720}
2721
2722/// mergeParamDeclAttributes - Copy attributes from the old parameter
2723/// to the new one.
2724static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2725 const ParmVarDecl *oldDecl,
2726 Sema &S) {
2727 // C++11 [dcl.attr.depend]p2:
2728 // The first declaration of a function shall specify the
2729 // carries_dependency attribute for its declarator-id if any declaration
2730 // of the function specifies the carries_dependency attribute.
2731 const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
2732 if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2733 S.Diag(CDA->getLocation(),
2734 diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2735 // Find the first declaration of the parameter.
2736 // FIXME: Should we build redeclaration chains for function parameters?
2737 const FunctionDecl *FirstFD =
2738 cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
2739 const ParmVarDecl *FirstVD =
2740 FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2741 S.Diag(FirstVD->getLocation(),
2742 diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2743 }
2744
2745 if (!oldDecl->hasAttrs())
2746 return;
2747
2748 bool foundAny = newDecl->hasAttrs();
2749
2750 // Ensure that any moving of objects within the allocated map is
2751 // done before we process them.
2752 if (!foundAny) newDecl->setAttrs(AttrVec());
2753
2754 for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
2755 if (!DeclHasAttr(newDecl, I)) {
2756 InheritableAttr *newAttr =
2757 cast<InheritableParamAttr>(I->clone(S.Context));
2758 newAttr->setInherited(true);
2759 newDecl->addAttr(newAttr);
2760 foundAny = true;
2761 }
2762 }
2763
2764 if (!foundAny) newDecl->dropAttrs();
2765}
2766
2767static void mergeParamDeclTypes(ParmVarDecl *NewParam,
2768 const ParmVarDecl *OldParam,
2769 Sema &S) {
2770 if (auto Oldnullability = OldParam->getType()->getNullability(S.Context)) {
2771 if (auto Newnullability = NewParam->getType()->getNullability(S.Context)) {
2772 if (*Oldnullability != *Newnullability) {
2773 S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr)
2774 << DiagNullabilityKind(
2775 *Newnullability,
2776 ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2777 != 0))
2778 << DiagNullabilityKind(
2779 *Oldnullability,
2780 ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2781 != 0));
2782 S.Diag(OldParam->getLocation(), diag::note_previous_declaration);
2783 }
2784 } else {
2785 QualType NewT = NewParam->getType();
2786 NewT = S.Context.getAttributedType(
2787 AttributedType::getNullabilityAttrKind(*Oldnullability),
2788 NewT, NewT);
2789 NewParam->setType(NewT);
2790 }
2791 }
2792}
2793
2794namespace {
2795
2796/// Used in MergeFunctionDecl to keep track of function parameters in
2797/// C.
2798struct GNUCompatibleParamWarning {
2799 ParmVarDecl *OldParm;
2800 ParmVarDecl *NewParm;
2801 QualType PromotedType;
2802};
2803
2804} // end anonymous namespace
2805
2806/// getSpecialMember - get the special member enum for a method.
2807Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2808 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2809 if (Ctor->isDefaultConstructor())
2810 return Sema::CXXDefaultConstructor;
2811
2812 if (Ctor->isCopyConstructor())
2813 return Sema::CXXCopyConstructor;
2814
2815 if (Ctor->isMoveConstructor())
2816 return Sema::CXXMoveConstructor;
2817 } else if (isa<CXXDestructorDecl>(MD)) {
2818 return Sema::CXXDestructor;
2819 } else if (MD->isCopyAssignmentOperator()) {
2820 return Sema::CXXCopyAssignment;
2821 } else if (MD->isMoveAssignmentOperator()) {
2822 return Sema::CXXMoveAssignment;
2823 }
2824
2825 return Sema::CXXInvalid;
2826}
2827
2828// Determine whether the previous declaration was a definition, implicit
2829// declaration, or a declaration.
2830template <typename T>
2831static std::pair<diag::kind, SourceLocation>
2832getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
2833 diag::kind PrevDiag;
2834 SourceLocation OldLocation = Old->getLocation();
2835 if (Old->isThisDeclarationADefinition())
2836 PrevDiag = diag::note_previous_definition;
2837 else if (Old->isImplicit()) {
2838 PrevDiag = diag::note_previous_implicit_declaration;
2839 if (OldLocation.isInvalid())
2840 OldLocation = New->getLocation();
2841 } else
2842 PrevDiag = diag::note_previous_declaration;
2843 return std::make_pair(PrevDiag, OldLocation);
2844}
2845
2846/// canRedefineFunction - checks if a function can be redefined. Currently,
2847/// only extern inline functions can be redefined, and even then only in
2848/// GNU89 mode.
2849static bool canRedefineFunction(const FunctionDecl *FD,
2850 const LangOptions& LangOpts) {
2851 return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2852 !LangOpts.CPlusPlus &&
2853 FD->isInlineSpecified() &&
2854 FD->getStorageClass() == SC_Extern);
2855}
2856
2857const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
2858 const AttributedType *AT = T->getAs<AttributedType>();
2859 while (AT && !AT->isCallingConv())
2860 AT = AT->getModifiedType()->getAs<AttributedType>();
2861 return AT;
2862}
2863
2864template <typename T>
2865static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
2866 const DeclContext *DC = Old->getDeclContext();
2867 if (DC->isRecord())
2868 return false;
2869
2870 LanguageLinkage OldLinkage = Old->getLanguageLinkage();
2871 if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
2872 return true;
2873 if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
2874 return true;
2875 return false;
2876}
2877
2878template<typename T> static bool isExternC(T *D) { return D->isExternC(); }
2879static bool isExternC(VarTemplateDecl *) { return false; }
2880
2881/// Check whether a redeclaration of an entity introduced by a
2882/// using-declaration is valid, given that we know it's not an overload
2883/// (nor a hidden tag declaration).
2884template<typename ExpectedDecl>
2885static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS,
2886 ExpectedDecl *New) {
2887 // C++11 [basic.scope.declarative]p4:
2888 // Given a set of declarations in a single declarative region, each of
2889 // which specifies the same unqualified name,
2890 // -- they shall all refer to the same entity, or all refer to functions
2891 // and function templates; or
2892 // -- exactly one declaration shall declare a class name or enumeration
2893 // name that is not a typedef name and the other declarations shall all
2894 // refer to the same variable or enumerator, or all refer to functions
2895 // and function templates; in this case the class name or enumeration
2896 // name is hidden (3.3.10).
2897
2898 // C++11 [namespace.udecl]p14:
2899 // If a function declaration in namespace scope or block scope has the
2900 // same name and the same parameter-type-list as a function introduced
2901 // by a using-declaration, and the declarations do not declare the same
2902 // function, the program is ill-formed.
2903
2904 auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl());
2905 if (Old &&
2906 !Old->getDeclContext()->getRedeclContext()->Equals(
2907 New->getDeclContext()->getRedeclContext()) &&
2908 !(isExternC(Old) && isExternC(New)))
2909 Old = nullptr;
2910
2911 if (!Old) {
2912 S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2913 S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target);
2914 S.Diag(OldS->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
2915 return true;
2916 }
2917 return false;
2918}
2919
2920static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A,
2921 const FunctionDecl *B) {
2922 assert(A->getNumParams() == B->getNumParams())((A->getNumParams() == B->getNumParams()) ? static_cast
<void> (0) : __assert_fail ("A->getNumParams() == B->getNumParams()"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 2922, __PRETTY_FUNCTION__))
;
2923
2924 auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) {
2925 const auto *AttrA = A->getAttr<PassObjectSizeAttr>();
2926 const auto *AttrB = B->getAttr<PassObjectSizeAttr>();
2927 if (AttrA == AttrB)
2928 return true;
2929 return AttrA && AttrB && AttrA->getType() == AttrB->getType();
2930 };
2931
2932 return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq);
2933}
2934
2935/// If necessary, adjust the semantic declaration context for a qualified
2936/// declaration to name the correct inline namespace within the qualifier.
2937static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD,
2938 DeclaratorDecl *OldD) {
2939 // The only case where we need to update the DeclContext is when
2940 // redeclaration lookup for a qualified name finds a declaration
2941 // in an inline namespace within the context named by the qualifier:
2942 //
2943 // inline namespace N { int f(); }
2944 // int ::f(); // Sema DC needs adjusting from :: to N::.
2945 //
2946 // For unqualified declarations, the semantic context *can* change
2947 // along the redeclaration chain (for local extern declarations,
2948 // extern "C" declarations, and friend declarations in particular).
2949 if (!NewD->getQualifier())
2950 return;
2951
2952 // NewD is probably already in the right context.
2953 auto *NamedDC = NewD->getDeclContext()->getRedeclContext();
2954 auto *SemaDC = OldD->getDeclContext()->getRedeclContext();
2955 if (NamedDC->Equals(SemaDC))
2956 return;
2957
2958 assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) ||(((NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->
isInvalidDecl() || OldD->isInvalidDecl()) && "unexpected context for redeclaration"
) ? static_cast<void> (0) : __assert_fail ("(NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl()) && \"unexpected context for redeclaration\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 2960, __PRETTY_FUNCTION__))
2959 NewD->isInvalidDecl() || OldD->isInvalidDecl()) &&(((NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->
isInvalidDecl() || OldD->isInvalidDecl()) && "unexpected context for redeclaration"
) ? static_cast<void> (0) : __assert_fail ("(NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl()) && \"unexpected context for redeclaration\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 2960, __PRETTY_FUNCTION__))
2960 "unexpected context for redeclaration")(((NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->
isInvalidDecl() || OldD->isInvalidDecl()) && "unexpected context for redeclaration"
) ? static_cast<void> (0) : __assert_fail ("(NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl()) && \"unexpected context for redeclaration\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 2960, __PRETTY_FUNCTION__))
;
2961
2962 auto *LexDC = NewD->getLexicalDeclContext();
2963 auto FixSemaDC = [=](NamedDecl *D) {
2964 if (!D)
2965 return;
2966 D->setDeclContext(SemaDC);
2967 D->setLexicalDeclContext(LexDC);
2968 };
2969
2970 FixSemaDC(NewD);
2971 if (auto *FD = dyn_cast<FunctionDecl>(NewD))
2972 FixSemaDC(FD->getDescribedFunctionTemplate());
2973 else if (auto *VD = dyn_cast<VarDecl>(NewD))
2974 FixSemaDC(VD->getDescribedVarTemplate());
2975}
2976
2977/// MergeFunctionDecl - We just parsed a function 'New' from
2978/// declarator D which has the same name and scope as a previous
2979/// declaration 'Old'. Figure out how to resolve this situation,
2980/// merging decls or emitting diagnostics as appropriate.
2981///
2982/// In C++, New and Old must be declarations that are not
2983/// overloaded. Use IsOverload to determine whether New and Old are
2984/// overloaded, and to select the Old declaration that New should be
2985/// merged with.
2986///
2987/// Returns true if there was an error, false otherwise.
2988bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD,
2989 Scope *S, bool MergeTypeWithOld) {
2990 // Verify the old decl was also a function.
2991 FunctionDecl *Old = OldD->getAsFunction();
2992 if (!Old) {
2993 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2994 if (New->getFriendObjectKind()) {
2995 Diag(New->getLocation(), diag::err_using_decl_friend);
2996 Diag(Shadow->getTargetDecl()->getLocation(),
2997 diag::note_using_decl_target);
2998 Diag(Shadow->getUsingDecl()->getLocation(),
2999 diag::note_using_decl) << 0;
3000 return true;
3001 }
3002
3003 // Check whether the two declarations might declare the same function.
3004 if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New))
3005 return true;
3006 OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl());
3007 } else {
3008 Diag(New->getLocation(), diag::err_redefinition_different_kind)
3009 << New->getDeclName();
3010 notePreviousDefinition(OldD, New->getLocation());
3011 return true;
3012 }
3013 }
3014
3015 // If the old declaration is invalid, just give up here.
3016 if (Old->isInvalidDecl())
3017 return true;
3018
3019 // Disallow redeclaration of some builtins.
3020 if (!getASTContext().canBuiltinBeRedeclared(Old)) {
3021 Diag(New->getLocation(), diag::err_builtin_redeclare) << Old->getDeclName();
3022 Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
3023 << Old << Old->getType();
3024 return true;
3025 }
3026
3027 diag::kind PrevDiag;
3028 SourceLocation OldLocation;
3029 std::tie(PrevDiag, OldLocation) =
3030 getNoteDiagForInvalidRedeclaration(Old, New);
3031
3032 // Don't complain about this if we're in GNU89 mode and the old function
3033 // is an extern inline function.
3034 // Don't complain about specializations. They are not supposed to have
3035 // storage classes.
3036 if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
3037 New->getStorageClass() == SC_Static &&
3038 Old->hasExternalFormalLinkage() &&
3039 !New->getTemplateSpecializationInfo() &&
3040 !canRedefineFunction(Old, getLangOpts())) {
3041 if (getLangOpts().MicrosoftExt) {
3042 Diag(New->getLocation(), diag::ext_static_non_static) << New;
3043 Diag(OldLocation, PrevDiag);
3044 } else {
3045 Diag(New->getLocation(), diag::err_static_non_static) << New;
3046 Diag(OldLocation, PrevDiag);
3047 return true;
3048 }
3049 }
3050
3051 if (New->hasAttr<InternalLinkageAttr>() &&
3052 !Old->hasAttr<InternalLinkageAttr>()) {
3053 Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
3054 << New->getDeclName();
3055 notePreviousDefinition(Old, New->getLocation());
3056 New->dropAttr<InternalLinkageAttr>();
3057 }
3058
3059 if (CheckRedeclarationModuleOwnership(New, Old))
3060 return true;
3061
3062 if (!getLangOpts().CPlusPlus) {
3063 bool OldOvl = Old->hasAttr<OverloadableAttr>();
3064 if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) {
3065 Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch)
3066 << New << OldOvl;
3067
3068 // Try our best to find a decl that actually has the overloadable
3069 // attribute for the note. In most cases (e.g. programs with only one
3070 // broken declaration/definition), this won't matter.
3071 //
3072 // FIXME: We could do this if we juggled some extra state in
3073 // OverloadableAttr, rather than just removing it.
3074 const Decl *DiagOld = Old;
3075 if (OldOvl) {
3076 auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) {
3077 const auto *A = D->getAttr<OverloadableAttr>();
3078 return A && !A->isImplicit();
3079 });
3080 // If we've implicitly added *all* of the overloadable attrs to this
3081 // chain, emitting a "previous redecl" note is pointless.
3082 DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter;
3083 }
3084
3085 if (DiagOld)
3086 Diag(DiagOld->getLocation(),
3087 diag::note_attribute_overloadable_prev_overload)
3088 << OldOvl;
3089
3090 if (OldOvl)
3091 New->addAttr(OverloadableAttr::CreateImplicit(Context));
3092 else
3093 New->dropAttr<OverloadableAttr>();
3094 }
3095 }
3096
3097 // If a function is first declared with a calling convention, but is later
3098 // declared or defined without one, all following decls assume the calling
3099 // convention of the first.
3100 //
3101 // It's OK if a function is first declared without a calling convention,
3102 // but is later declared or defined with the default calling convention.
3103 //
3104 // To test if either decl has an explicit calling convention, we look for
3105 // AttributedType sugar nodes on the type as written. If they are missing or
3106 // were canonicalized away, we assume the calling convention was implicit.
3107 //
3108 // Note also that we DO NOT return at this point, because we still have
3109 // other tests to run.
3110 QualType OldQType = Context.getCanonicalType(Old->getType());
3111 QualType NewQType = Context.getCanonicalType(New->getType());
3112 const FunctionType *OldType = cast<FunctionType>(OldQType);
3113 const FunctionType *NewType = cast<FunctionType>(NewQType);
3114 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
3115 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
3116 bool RequiresAdjustment = false;
3117
3118 if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
3119 FunctionDecl *First = Old->getFirstDecl();
3120 const FunctionType *FT =
3121 First->getType().getCanonicalType()->castAs<FunctionType>();
3122 FunctionType::ExtInfo FI = FT->getExtInfo();
3123 bool NewCCExplicit = getCallingConvAttributedType(New->getType());
3124 if (!NewCCExplicit) {
3125 // Inherit the CC from the previous declaration if it was specified
3126 // there but not here.
3127 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3128 RequiresAdjustment = true;
3129 } else {
3130 // Calling conventions aren't compatible, so complain.
3131 bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
3132 Diag(New->getLocation(), diag::err_cconv_change)
3133 << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3134 << !FirstCCExplicit
3135 << (!FirstCCExplicit ? "" :
3136 FunctionType::getNameForCallConv(FI.getCC()));
3137
3138 // Put the note on the first decl, since it is the one that matters.
3139 Diag(First->getLocation(), diag::note_previous_declaration);
3140 return true;
3141 }
3142 }
3143
3144 // FIXME: diagnose the other way around?
3145 if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
3146 NewTypeInfo = NewTypeInfo.withNoReturn(true);
3147 RequiresAdjustment = true;
3148 }
3149
3150 // Merge regparm attribute.
3151 if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
3152 OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
3153 if (NewTypeInfo.getHasRegParm()) {
3154 Diag(New->getLocation(), diag::err_regparm_mismatch)
3155 << NewType->getRegParmType()
3156 << OldType->getRegParmType();
3157 Diag(OldLocation, diag::note_previous_declaration);
3158 return true;
3159 }
3160
3161 NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
3162 RequiresAdjustment = true;
3163 }
3164
3165 // Merge ns_returns_retained attribute.
3166 if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
3167 if (NewTypeInfo.getProducesResult()) {
3168 Diag(New->getLocation(), diag::err_function_attribute_mismatch)
3169 << "'ns_returns_retained'";
3170 Diag(OldLocation, diag::note_previous_declaration);
3171 return true;
3172 }
3173
3174 NewTypeInfo = NewTypeInfo.withProducesResult(true);
3175 RequiresAdjustment = true;
3176 }
3177
3178 if (OldTypeInfo.getNoCallerSavedRegs() !=
3179 NewTypeInfo.getNoCallerSavedRegs()) {
3180 if (NewTypeInfo.getNoCallerSavedRegs()) {
3181 AnyX86NoCallerSavedRegistersAttr *Attr =
3182 New->getAttr<AnyX86NoCallerSavedRegistersAttr>();
3183 Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr;
3184 Diag(OldLocation, diag::note_previous_declaration);
3185 return true;
3186 }
3187
3188 NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true);
3189 RequiresAdjustment = true;
3190 }
3191
3192 if (RequiresAdjustment) {
3193 const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
3194 AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
3195
3196 QualType AdjustedQT = QualType(AdjustedType, 0);
3197 LangAS AS = Old->getType().getAddressSpace();
3198 AdjustedQT = Context.getAddrSpaceQualType(AdjustedQT, AS);
3199
3200 New->setType(AdjustedQT);
3201 NewQType = Context.getCanonicalType(New->getType());
3202 NewType = cast<FunctionType>(NewQType);
Value stored to 'NewType' is never read
3203 }
3204
3205 // If this redeclaration makes the function inline, we may need to add it to
3206 // UndefinedButUsed.
3207 if (!Old->isInlined() && New->isInlined() &&
3208 !New->hasAttr<GNUInlineAttr>() &&
3209 !getLangOpts().GNUInline &&
3210 Old->isUsed(false) &&
3211 !Old->isDefined() && !New->isThisDeclarationADefinition())
3212 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
3213 SourceLocation()));
3214
3215 // If this redeclaration makes it newly gnu_inline, we don't want to warn
3216 // about it.
3217 if (New->hasAttr<GNUInlineAttr>() &&
3218 Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
3219 UndefinedButUsed.erase(Old->getCanonicalDecl());
3220 }
3221
3222 // If pass_object_size params don't match up perfectly, this isn't a valid
3223 // redeclaration.
3224 if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() &&
3225 !hasIdenticalPassObjectSizeAttrs(Old, New)) {
3226 Diag(New->getLocation(), diag::err_different_pass_object_size_params)
3227 << New->getDeclName();
3228 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3229 return true;
3230 }
3231
3232 if (getLangOpts().CPlusPlus) {
3233 // C++1z [over.load]p2
3234 // Certain function declarations cannot be overloaded:
3235 // -- Function declarations that differ only in the return type,
3236 // the exception specification, or both cannot be overloaded.
3237
3238 // Check the exception specifications match. This may recompute the type of
3239 // both Old and New if it resolved exception specifications, so grab the
3240 // types again after this. Because this updates the type, we do this before
3241 // any of the other checks below, which may update the "de facto" NewQType
3242 // but do not necessarily update the type of New.
3243 if (CheckEquivalentExceptionSpec(Old, New))
3244 return true;
3245 OldQType = Context.getCanonicalType(Old->getType());
3246 NewQType = Context.getCanonicalType(New->getType());
3247
3248 // Go back to the type source info to compare the declared return types,
3249 // per C++1y [dcl.type.auto]p13:
3250 // Redeclarations or specializations of a function or function template
3251 // with a declared return type that uses a placeholder type shall also
3252 // use that placeholder, not a deduced type.
3253 QualType OldDeclaredReturnType = Old->getDeclaredReturnType();
3254 QualType NewDeclaredReturnType = New->getDeclaredReturnType();
3255 if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
3256 canFullyTypeCheckRedeclaration(New, Old, NewDeclaredReturnType,
3257 OldDeclaredReturnType)) {
3258 QualType ResQT;
3259 if (NewDeclaredReturnType->isObjCObjectPointerType() &&
3260 OldDeclaredReturnType->isObjCObjectPointerType())
3261 // FIXME: This does the wrong thing for a deduced return type.
3262 ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
3263 if (ResQT.isNull()) {
3264 if (New->isCXXClassMember() && New->isOutOfLine())
3265 Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
3266 << New << New->getReturnTypeSourceRange();
3267 else
3268 Diag(New->getLocation(), diag::err_ovl_diff_return_type)
3269 << New->getReturnTypeSourceRange();
3270 Diag(OldLocation, PrevDiag) << Old << Old->getType()
3271 << Old->getReturnTypeSourceRange();
3272 return true;
3273 }
3274 else
3275 NewQType = ResQT;
3276 }
3277
3278 QualType OldReturnType = OldType->getReturnType();
3279 QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
3280 if (OldReturnType != NewReturnType) {
3281 // If this function has a deduced return type and has already been
3282 // defined, copy the deduced value from the old declaration.
3283 AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
3284 if (OldAT && OldAT->isDeduced()) {
3285 New->setType(
3286 SubstAutoType(New->getType(),
3287 OldAT->isDependentType() ? Context.DependentTy
3288 : OldAT->getDeducedType()));
3289 NewQType = Context.getCanonicalType(
3290 SubstAutoType(NewQType,
3291 OldAT->isDependentType() ? Context.DependentTy
3292 : OldAT->getDeducedType()));
3293 }
3294 }
3295
3296 const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
3297 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
3298 if (OldMethod && NewMethod) {
3299 // Preserve triviality.
3300 NewMethod->setTrivial(OldMethod->isTrivial());
3301
3302 // MSVC allows explicit template specialization at class scope:
3303 // 2 CXXMethodDecls referring to the same function will be injected.
3304 // We don't want a redeclaration error.
3305 bool IsClassScopeExplicitSpecialization =
3306 OldMethod->isFunctionTemplateSpecialization() &&
3307 NewMethod->isFunctionTemplateSpecialization();
3308 bool isFriend = NewMethod->getFriendObjectKind();
3309
3310 if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
3311 !IsClassScopeExplicitSpecialization) {
3312 // -- Member function declarations with the same name and the
3313 // same parameter types cannot be overloaded if any of them
3314 // is a static member function declaration.
3315 if (OldMethod->isStatic() != NewMethod->isStatic()) {
3316 Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
3317 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3318 return true;
3319 }
3320
3321 // C++ [class.mem]p1:
3322 // [...] A member shall not be declared twice in the
3323 // member-specification, except that a nested class or member
3324 // class template can be declared and then later defined.
3325 if (!inTemplateInstantiation()) {
3326 unsigned NewDiag;
3327 if (isa<CXXConstructorDecl>(OldMethod))
3328 NewDiag = diag::err_constructor_redeclared;
3329 else if (isa<CXXDestructorDecl>(NewMethod))
3330 NewDiag = diag::err_destructor_redeclared;
3331 else if (isa<CXXConversionDecl>(NewMethod))
3332 NewDiag = diag::err_conv_function_redeclared;
3333 else
3334 NewDiag = diag::err_member_redeclared;
3335
3336 Diag(New->getLocation(), NewDiag);
3337 } else {
3338 Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
3339 << New << New->getType();
3340 }
3341 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3342 return true;
3343
3344 // Complain if this is an explicit declaration of a special
3345 // member that was initially declared implicitly.
3346 //
3347 // As an exception, it's okay to befriend such methods in order
3348 // to permit the implicit constructor/destructor/operator calls.
3349 } else if (OldMethod->isImplicit()) {
3350 if (isFriend) {
3351 NewMethod->setImplicit();
3352 } else {
3353 Diag(NewMethod->getLocation(),
3354 diag::err_definition_of_implicitly_declared_member)
3355 << New << getSpecialMember(OldMethod);
3356 return true;
3357 }
3358 } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) {
3359 Diag(NewMethod->getLocation(),
3360 diag::err_definition_of_explicitly_defaulted_member)
3361 << getSpecialMember(OldMethod);
3362 return true;
3363 }
3364 }
3365
3366 // C++11 [dcl.attr.noreturn]p1:
3367 // The first declaration of a function shall specify the noreturn
3368 // attribute if any declaration of that function specifies the noreturn
3369 // attribute.
3370 const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>();
3371 if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) {
3372 Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl);
3373 Diag(Old->getFirstDecl()->getLocation(),
3374 diag::note_noreturn_missing_first_decl);
3375 }
3376
3377 // C++11 [dcl.attr.depend]p2:
3378 // The first declaration of a function shall specify the
3379 // carries_dependency attribute for its declarator-id if any declaration
3380 // of the function specifies the carries_dependency attribute.
3381 const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
3382 if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
3383 Diag(CDA->getLocation(),
3384 diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
3385 Diag(Old->getFirstDecl()->getLocation(),
3386 diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
3387 }
3388
3389 // (C++98 8.3.5p3):
3390 // All declarations for a function shall agree exactly in both the
3391 // return type and the parameter-type-list.
3392 // We also want to respect all the extended bits except noreturn.
3393
3394 // noreturn should now match unless the old type info didn't have it.
3395 QualType OldQTypeForComparison = OldQType;
3396 if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
3397 auto *OldType = OldQType->castAs<FunctionProtoType>();
3398 const FunctionType *OldTypeForComparison
3399 = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
3400 OldQTypeForComparison = QualType(OldTypeForComparison, 0);
3401 assert(OldQTypeForComparison.isCanonical())((OldQTypeForComparison.isCanonical()) ? static_cast<void>
(0) : __assert_fail ("OldQTypeForComparison.isCanonical()", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 3401, __PRETTY_FUNCTION__))
;
3402 }
3403
3404 if (haveIncompatibleLanguageLinkages(Old, New)) {
3405 // As a special case, retain the language linkage from previous
3406 // declarations of a friend function as an extension.
3407 //
3408 // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
3409 // and is useful because there's otherwise no way to specify language
3410 // linkage within class scope.
3411 //
3412 // Check cautiously as the friend object kind isn't yet complete.
3413 if (New->getFriendObjectKind() != Decl::FOK_None) {
3414 Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
3415 Diag(OldLocation, PrevDiag);
3416 } else {
3417 Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3418 Diag(OldLocation, PrevDiag);
3419 return true;
3420 }
3421 }
3422
3423 if (OldQTypeForComparison == NewQType)
3424 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3425
3426 // If the types are imprecise (due to dependent constructs in friends or
3427 // local extern declarations), it's OK if they differ. We'll check again
3428 // during instantiation.
3429 if (!canFullyTypeCheckRedeclaration(New, Old, NewQType, OldQType))
3430 return false;
3431
3432 // Fall through for conflicting redeclarations and redefinitions.
3433 }
3434
3435 // C: Function types need to be compatible, not identical. This handles
3436 // duplicate function decls like "void f(int); void f(enum X);" properly.
3437 if (!getLangOpts().CPlusPlus &&
3438 Context.typesAreCompatible(OldQType, NewQType)) {
3439 const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
3440 const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
3441 const FunctionProtoType *OldProto = nullptr;
3442 if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
3443 (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
3444 // The old declaration provided a function prototype, but the
3445 // new declaration does not. Merge in the prototype.
3446 assert(!OldProto->hasExceptionSpec() && "Exception spec in C")((!OldProto->hasExceptionSpec() && "Exception spec in C"
) ? static_cast<void> (0) : __assert_fail ("!OldProto->hasExceptionSpec() && \"Exception spec in C\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 3446, __PRETTY_FUNCTION__))
;
3447 SmallVector<QualType, 16> ParamTypes(OldProto->param_types());
3448 NewQType =
3449 Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes,
3450 OldProto->getExtProtoInfo());
3451 New->setType(NewQType);
3452 New->setHasInheritedPrototype();
3453
3454 // Synthesize parameters with the same types.
3455 SmallVector<ParmVarDecl*, 16> Params;
3456 for (const auto &ParamType : OldProto->param_types()) {
3457 ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(),
3458 SourceLocation(), nullptr,
3459 ParamType, /*TInfo=*/nullptr,
3460 SC_None, nullptr);
3461 Param->setScopeInfo(0, Params.size());
3462 Param->setImplicit();
3463 Params.push_back(Param);
3464 }
3465
3466 New->setParams(Params);
3467 }
3468
3469 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3470 }
3471
3472 // GNU C permits a K&R definition to follow a prototype declaration
3473 // if the declared types of the parameters in the K&R definition
3474 // match the types in the prototype declaration, even when the
3475 // promoted types of the parameters from the K&R definition differ
3476 // from the types in the prototype. GCC then keeps the types from
3477 // the prototype.
3478 //
3479 // If a variadic prototype is followed by a non-variadic K&R definition,
3480 // the K&R definition becomes variadic. This is sort of an edge case, but
3481 // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
3482 // C99 6.9.1p8.
3483 if (!getLangOpts().CPlusPlus &&
3484 Old->hasPrototype() && !New->hasPrototype() &&
3485 New->getType()->getAs<FunctionProtoType>() &&
3486 Old->getNumParams() == New->getNumParams()) {
3487 SmallVector<QualType, 16> ArgTypes;
3488 SmallVector<GNUCompatibleParamWarning, 16> Warnings;
3489 const FunctionProtoType *OldProto
3490 = Old->getType()->getAs<FunctionProtoType>();
3491 const FunctionProtoType *NewProto
3492 = New->getType()->getAs<FunctionProtoType>();
3493
3494 // Determine whether this is the GNU C extension.
3495 QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
3496 NewProto->getReturnType());
3497 bool LooseCompatible = !MergedReturn.isNull();
3498 for (unsigned Idx = 0, End = Old->getNumParams();
3499 LooseCompatible && Idx != End; ++Idx) {
3500 ParmVarDecl *OldParm = Old->getParamDecl(Idx);
3501 ParmVarDecl *NewParm = New->getParamDecl(Idx);
3502 if (Context.typesAreCompatible(OldParm->getType(),
3503 NewProto->getParamType(Idx))) {
3504 ArgTypes.push_back(NewParm->getType());
3505 } else if (Context.typesAreCompatible(OldParm->getType(),
3506 NewParm->getType(),
3507 /*CompareUnqualified=*/true)) {
3508 GNUCompatibleParamWarning Warn = { OldParm, NewParm,
3509 NewProto->getParamType(Idx) };
3510 Warnings.push_back(Warn);
3511 ArgTypes.push_back(NewParm->getType());
3512 } else
3513 LooseCompatible = false;
3514 }
3515
3516 if (LooseCompatible) {
3517 for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
3518 Diag(Warnings[Warn].NewParm->getLocation(),
3519 diag::ext_param_promoted_not_compatible_with_prototype)
3520 << Warnings[Warn].PromotedType
3521 << Warnings[Warn].OldParm->getType();
3522 if (Warnings[Warn].OldParm->getLocation().isValid())
3523 Diag(Warnings[Warn].OldParm->getLocation(),
3524 diag::note_previous_declaration);
3525 }
3526
3527 if (MergeTypeWithOld)
3528 New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
3529 OldProto->getExtProtoInfo()));
3530 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3531 }
3532
3533 // Fall through to diagnose conflicting types.
3534 }
3535
3536 // A function that has already been declared has been redeclared or
3537 // defined with a different type; show an appropriate diagnostic.
3538
3539 // If the previous declaration was an implicitly-generated builtin
3540 // declaration, then at the very least we should use a specialized note.
3541 unsigned BuiltinID;
3542 if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
3543 // If it's actually a library-defined builtin function like 'malloc'
3544 // or 'printf', just warn about the incompatible redeclaration.
3545 if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3546 Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
3547 Diag(OldLocation, diag::note_previous_builtin_declaration)
3548 << Old << Old->getType();
3549
3550 // If this is a global redeclaration, just forget hereafter
3551 // about the "builtin-ness" of the function.
3552 //
3553 // Doing this for local extern declarations is problematic. If
3554 // the builtin declaration remains visible, a second invalid
3555 // local declaration will produce a hard error; if it doesn't
3556 // remain visible, a single bogus local redeclaration (which is
3557 // actually only a warning) could break all the downstream code.
3558 if (!New->getLexicalDeclContext()->isFunctionOrMethod())
3559 New->getIdentifier()->revertBuiltin();
3560
3561 return false;
3562 }
3563
3564 PrevDiag = diag::note_previous_builtin_declaration;
3565 }
3566
3567 Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
3568 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3569 return true;
3570}
3571
3572/// Completes the merge of two function declarations that are
3573/// known to be compatible.
3574///
3575/// This routine handles the merging of attributes and other
3576/// properties of function declarations from the old declaration to
3577/// the new declaration, once we know that New is in fact a
3578/// redeclaration of Old.
3579///
3580/// \returns false
3581bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
3582 Scope *S, bool MergeTypeWithOld) {
3583 // Merge the attributes
3584 mergeDeclAttributes(New, Old);
3585
3586 // Merge "pure" flag.
3587 if (Old->isPure())
3588 New->setPure();
3589
3590 // Merge "used" flag.
3591 if (Old->getMostRecentDecl()->isUsed(false))
3592 New->setIsUsed();
3593
3594 // Merge attributes from the parameters. These can mismatch with K&R
3595 // declarations.
3596 if (New->getNumParams() == Old->getNumParams())
3597 for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) {
3598 ParmVarDecl *NewParam = New->getParamDecl(i);
3599 ParmVarDecl *OldParam = Old->getParamDecl(i);
3600 mergeParamDeclAttributes(NewParam, OldParam, *this);
3601 mergeParamDeclTypes(NewParam, OldParam, *this);
3602 }
3603
3604 if (getLangOpts().CPlusPlus)
3605 return MergeCXXFunctionDecl(New, Old, S);
3606
3607 // Merge the function types so the we get the composite types for the return
3608 // and argument types. Per C11 6.2.7/4, only update the type if the old decl
3609 // was visible.
3610 QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
3611 if (!Merged.isNull() && MergeTypeWithOld)
3612 New->setType(Merged);
3613
3614 return false;
3615}
3616
3617void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
3618 ObjCMethodDecl *oldMethod) {
3619 // Merge the attributes, including deprecated/unavailable
3620 AvailabilityMergeKind MergeKind =
3621 isa<ObjCProtocolDecl>(oldMethod->getDeclContext())
3622 ? AMK_ProtocolImplementation
3623 : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
3624 : AMK_Override;
3625
3626 mergeDeclAttributes(newMethod, oldMethod, MergeKind);
3627
3628 // Merge attributes from the parameters.
3629 ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
3630 oe = oldMethod->param_end();
3631 for (ObjCMethodDecl::param_iterator
3632 ni = newMethod->param_begin(), ne = newMethod->param_end();
3633 ni != ne && oi != oe; ++ni, ++oi)
3634 mergeParamDeclAttributes(*ni, *oi, *this);
3635
3636 CheckObjCMethodOverride(newMethod, oldMethod);
3637}
3638
3639static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) {
3640 assert(!S.Context.hasSameType(New->getType(), Old->getType()))((!S.Context.hasSameType(New->getType(), Old->getType()
)) ? static_cast<void> (0) : __assert_fail ("!S.Context.hasSameType(New->getType(), Old->getType())"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 3640, __PRETTY_FUNCTION__))
;
3641
3642 S.Diag(New->getLocation(), New->isThisDeclarationADefinition()
3643 ? diag::err_redefinition_different_type
3644 : diag::err_redeclaration_different_type)
3645 << New->getDeclName() << New->getType() << Old->getType();
3646
3647 diag::kind PrevDiag;
3648 SourceLocation OldLocation;
3649 std::tie(PrevDiag, OldLocation)
3650 = getNoteDiagForInvalidRedeclaration(Old, New);
3651 S.Diag(OldLocation, PrevDiag);
3652 New->setInvalidDecl();
3653}
3654
3655/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
3656/// scope as a previous declaration 'Old'. Figure out how to merge their types,
3657/// emitting diagnostics as appropriate.
3658///
3659/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
3660/// to here in AddInitializerToDecl. We can't check them before the initializer
3661/// is attached.
3662void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
3663 bool MergeTypeWithOld) {
3664 if (New->isInvalidDecl() || Old->isInvalidDecl())
3665 return;
3666
3667 QualType MergedT;
3668 if (getLangOpts().CPlusPlus) {
3669 if (New->getType()->isUndeducedType()) {
3670 // We don't know what the new type is until the initializer is attached.
3671 return;
3672 } else if (Context.hasSameType(New->getType(), Old->getType())) {
3673 // These could still be something that needs exception specs checked.
3674 return MergeVarDeclExceptionSpecs(New, Old);
3675 }
3676 // C++ [basic.link]p10:
3677 // [...] the types specified by all declarations referring to a given
3678 // object or function shall be identical, except that declarations for an
3679 // array object can specify array types that differ by the presence or
3680 // absence of a major array bound (8.3.4).
3681 else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) {
3682 const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
3683 const ArrayType *NewArray = Context.getAsArrayType(New->getType());
3684
3685 // We are merging a variable declaration New into Old. If it has an array
3686 // bound, and that bound differs from Old's bound, we should diagnose the
3687 // mismatch.
3688 if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) {
3689 for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD;
3690 PrevVD = PrevVD->getPreviousDecl()) {
3691 const ArrayType *PrevVDTy = Context.getAsArrayType(PrevVD->getType());
3692 if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType())
3693 continue;
3694
3695 if (!Context.hasSameType(NewArray, PrevVDTy))
3696 return diagnoseVarDeclTypeMismatch(*this, New, PrevVD);
3697 }
3698 }
3699
3700 if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) {
3701 if (Context.hasSameType(OldArray->getElementType(),
3702 NewArray->getElementType()))
3703 MergedT = New->getType();
3704 }
3705 // FIXME: Check visibility. New is hidden but has a complete type. If New
3706 // has no array bound, it should not inherit one from Old, if Old is not
3707 // visible.
3708 else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) {
3709 if (Context.hasSameType(OldArray->getElementType(),
3710 NewArray->getElementType()))
3711 MergedT = Old->getType();
3712 }
3713 }
3714 else if (New->getType()->isObjCObjectPointerType() &&
3715 Old->getType()->isObjCObjectPointerType()) {
3716 MergedT = Context.mergeObjCGCQualifiers(New->getType(),
3717 Old->getType());
3718 }
3719 } else {
3720 // C 6.2.7p2:
3721 // All declarations that refer to the same object or function shall have
3722 // compatible type.
3723 MergedT = Context.mergeTypes(New->getType(), Old->getType());
3724 }
3725 if (MergedT.isNull()) {
3726 // It's OK if we couldn't merge types if either type is dependent, for a
3727 // block-scope variable. In other cases (static data members of class
3728 // templates, variable templates, ...), we require the types to be
3729 // equivalent.
3730 // FIXME: The C++ standard doesn't say anything about this.
3731 if ((New->getType()->isDependentType() ||
3732 Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
3733 // If the old type was dependent, we can't merge with it, so the new type
3734 // becomes dependent for now. We'll reproduce the original type when we
3735 // instantiate the TypeSourceInfo for the variable.
3736 if (!New->getType()->isDependentType() && MergeTypeWithOld)
3737 New->setType(Context.DependentTy);
3738 return;
3739 }
3740 return diagnoseVarDeclTypeMismatch(*this, New, Old);
3741 }
3742
3743 // Don't actually update the type on the new declaration if the old
3744 // declaration was an extern declaration in a different scope.
3745 if (MergeTypeWithOld)
3746 New->setType(MergedT);
3747}
3748
3749static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
3750 LookupResult &Previous) {
3751 // C11 6.2.7p4:
3752 // For an identifier with internal or external linkage declared
3753 // in a scope in which a prior declaration of that identifier is
3754 // visible, if the prior declaration specifies internal or
3755 // external linkage, the type of the identifier at the later
3756 // declaration becomes the composite type.
3757 //
3758 // If the variable isn't visible, we do not merge with its type.
3759 if (Previous.isShadowed())
3760 return false;
3761
3762 if (S.getLangOpts().CPlusPlus) {
3763 // C++11 [dcl.array]p3:
3764 // If there is a preceding declaration of the entity in the same
3765 // scope in which the bound was specified, an omitted array bound
3766 // is taken to be the same as in that earlier declaration.
3767 return NewVD->isPreviousDeclInSameBlockScope() ||
3768 (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
3769 !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
3770 } else {
3771 // If the old declaration was function-local, don't merge with its
3772 // type unless we're in the same function.
3773 return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
3774 OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
3775 }
3776}
3777
3778/// MergeVarDecl - We just parsed a variable 'New' which has the same name
3779/// and scope as a previous declaration 'Old'. Figure out how to resolve this
3780/// situation, merging decls or emitting diagnostics as appropriate.
3781///
3782/// Tentative definition rules (C99 6.9.2p2) are checked by
3783/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
3784/// definitions here, since the initializer hasn't been attached.
3785///
3786void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
3787 // If the new decl is already invalid, don't do any other checking.
3788 if (New->isInvalidDecl())
3789 return;
3790
3791 if (!shouldLinkPossiblyHiddenDecl(Previous, New))
3792 return;
3793
3794 VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
3795
3796 // Verify the old decl was also a variable or variable template.
3797 VarDecl *Old = nullptr;
3798 VarTemplateDecl *OldTemplate = nullptr;
3799 if (Previous.isSingleResult()) {
3800 if (NewTemplate) {
3801 OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
3802 Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
3803
3804 if (auto *Shadow =
3805 dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
3806 if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate))
3807 return New->setInvalidDecl();
3808 } else {
3809 Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
3810
3811 if (auto *Shadow =
3812 dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
3813 if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New))
3814 return New->setInvalidDecl();
3815 }
3816 }
3817 if (!Old) {
3818 Diag(New->getLocation(), diag::err_redefinition_different_kind)
3819 << New->getDeclName();
3820 notePreviousDefinition(Previous.getRepresentativeDecl(),
3821 New->getLocation());
3822 return New->setInvalidDecl();
3823 }
3824
3825 // Ensure the template parameters are compatible.
3826 if (NewTemplate &&
3827 !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
3828 OldTemplate->getTemplateParameters(),
3829 /*Complain=*/true, TPL_TemplateMatch))
3830 return New->setInvalidDecl();
3831
3832 // C++ [class.mem]p1:
3833 // A member shall not be declared twice in the member-specification [...]
3834 //
3835 // Here, we need only consider static data members.
3836 if (Old->isStaticDataMember() && !New->isOutOfLine()) {
3837 Diag(New->getLocation(), diag::err_duplicate_member)
3838 << New->getIdentifier();
3839 Diag(Old->getLocation(), diag::note_previous_declaration);
3840 New->setInvalidDecl();
3841 }
3842
3843 mergeDeclAttributes(New, Old);
3844 // Warn if an already-declared variable is made a weak_import in a subsequent
3845 // declaration
3846 if (New->hasAttr<WeakImportAttr>() &&
3847 Old->getStorageClass() == SC_None &&
3848 !Old->hasAttr<WeakImportAttr>()) {
3849 Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
3850 notePreviousDefinition(Old, New->getLocation());
3851 // Remove weak_import attribute on new declaration.
3852 New->dropAttr<WeakImportAttr>();
3853 }
3854
3855 if (New->hasAttr<InternalLinkageAttr>() &&
3856 !Old->hasAttr<InternalLinkageAttr>()) {
3857 Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
3858 << New->getDeclName();
3859 notePreviousDefinition(Old, New->getLocation());
3860 New->dropAttr<InternalLinkageAttr>();
3861 }
3862
3863 // Merge the types.
3864 VarDecl *MostRecent = Old->getMostRecentDecl();
3865 if (MostRecent != Old) {
3866 MergeVarDeclTypes(New, MostRecent,
3867 mergeTypeWithPrevious(*this, New, MostRecent, Previous));
3868 if (New->isInvalidDecl())
3869 return;
3870 }
3871
3872 MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
3873 if (New->isInvalidDecl())
3874 return;
3875
3876 diag::kind PrevDiag;
3877 SourceLocation OldLocation;
3878 std::tie(PrevDiag, OldLocation) =
3879 getNoteDiagForInvalidRedeclaration(Old, New);
3880
3881 // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
3882 if (New->getStorageClass() == SC_Static &&
3883 !New->isStaticDataMember() &&
3884 Old->hasExternalFormalLinkage()) {
3885 if (getLangOpts().MicrosoftExt) {
3886 Diag(New->getLocation(), diag::ext_static_non_static)
3887 << New->getDeclName();
3888 Diag(OldLocation, PrevDiag);
3889 } else {
3890 Diag(New->getLocation(), diag::err_static_non_static)
3891 << New->getDeclName();
3892 Diag(OldLocation, PrevDiag);
3893 return New->setInvalidDecl();
3894 }
3895 }
3896 // C99 6.2.2p4:
3897 // For an identifier declared with the storage-class specifier
3898 // extern in a scope in which a prior declaration of that
3899 // identifier is visible,23) if the prior declaration specifies
3900 // internal or external linkage, the linkage of the identifier at
3901 // the later declaration is the same as the linkage specified at
3902 // the prior declaration. If no prior declaration is visible, or
3903 // if the prior declaration specifies no linkage, then the
3904 // identifier has external linkage.
3905 if (New->hasExternalStorage() && Old->hasLinkage())
3906 /* Okay */;
3907 else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
3908 !New->isStaticDataMember() &&
3909 Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
3910 Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
3911 Diag(OldLocation, PrevDiag);
3912 return New->setInvalidDecl();
3913 }
3914
3915 // Check if extern is followed by non-extern and vice-versa.
3916 if (New->hasExternalStorage() &&
3917 !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) {
3918 Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
3919 Diag(OldLocation, PrevDiag);
3920 return New->setInvalidDecl();
3921 }
3922 if (Old->hasLinkage() && New->isLocalVarDeclOrParm() &&
3923 !New->hasExternalStorage()) {
3924 Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
3925 Diag(OldLocation, PrevDiag);
3926 return New->setInvalidDecl();
3927 }
3928
3929 if (CheckRedeclarationModuleOwnership(New, Old))
3930 return;
3931
3932 // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
3933
3934 // FIXME: The test for external storage here seems wrong? We still
3935 // need to check for mismatches.
3936 if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
3937 // Don't complain about out-of-line definitions of static members.
3938 !(Old->getLexicalDeclContext()->isRecord() &&
3939 !New->getLexicalDeclContext()->isRecord())) {
3940 Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
3941 Diag(OldLocation, PrevDiag);
3942 return New->setInvalidDecl();
3943 }
3944
3945 if (New->isInline() && !Old->getMostRecentDecl()->isInline()) {
3946 if (VarDecl *Def = Old->getDefinition()) {
3947 // C++1z [dcl.fcn.spec]p4:
3948 // If the definition of a variable appears in a translation unit before
3949 // its first declaration as inline, the program is ill-formed.
3950 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
3951 Diag(Def->getLocation(), diag::note_previous_definition);
3952 }
3953 }
3954
3955 // If this redeclaration makes the variable inline, we may need to add it to
3956 // UndefinedButUsed.
3957 if (!Old->isInline() && New->isInline() && Old->isUsed(false) &&
3958 !Old->getDefinition() && !New->isThisDeclarationADefinition())
3959 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
3960 SourceLocation()));
3961
3962 if (New->getTLSKind() != Old->getTLSKind()) {
3963 if (!Old->getTLSKind()) {
3964 Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
3965 Diag(OldLocation, PrevDiag);
3966 } else if (!New->getTLSKind()) {
3967 Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
3968 Diag(OldLocation, PrevDiag);
3969 } else {
3970 // Do not allow redeclaration to change the variable between requiring
3971 // static and dynamic initialization.
3972 // FIXME: GCC allows this, but uses the TLS keyword on the first
3973 // declaration to determine the kind. Do we need to be compatible here?
3974 Diag(New->getLocation(), diag::err_thread_thread_different_kind)
3975 << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
3976 Diag(OldLocation, PrevDiag);
3977 }
3978 }
3979
3980 // C++ doesn't have tentative definitions, so go right ahead and check here.
3981 if (getLangOpts().CPlusPlus &&
3982 New->isThisDeclarationADefinition() == VarDecl::Definition) {
3983 if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() &&
3984 Old->getCanonicalDecl()->isConstexpr()) {
3985 // This definition won't be a definition any more once it's been merged.
3986 Diag(New->getLocation(),
3987 diag::warn_deprecated_redundant_constexpr_static_def);
3988 } else if (VarDecl *Def = Old->getDefinition()) {
3989 if (checkVarDeclRedefinition(Def, New))
3990 return;
3991 }
3992 }
3993
3994 if (haveIncompatibleLanguageLinkages(Old, New)) {
3995 Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3996 Diag(OldLocation, PrevDiag);
3997 New->setInvalidDecl();
3998 return;
3999 }
4000
4001 // Merge "used" flag.
4002 if (Old->getMostRecentDecl()->isUsed(false))
4003 New->setIsUsed();
4004
4005 // Keep a chain of previous declarations.
4006 New->setPreviousDecl(Old);
4007 if (NewTemplate)
4008 NewTemplate->setPreviousDecl(OldTemplate);
4009 adjustDeclContextForDeclaratorDecl(New, Old);
4010
4011 // Inherit access appropriately.
4012 New->setAccess(Old->getAccess());
4013 if (NewTemplate)
4014 NewTemplate->setAccess(New->getAccess());
4015
4016 if (Old->isInline())
4017 New->setImplicitlyInline();
4018}
4019
4020void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) {
4021 SourceManager &SrcMgr = getSourceManager();
4022 auto FNewDecLoc = SrcMgr.getDecomposedLoc(New);
4023 auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation());
4024 auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first);
4025 auto *FOld = SrcMgr.getFileEntryForID(FOldDecLoc.first);
4026 auto &HSI = PP.getHeaderSearchInfo();
4027 StringRef HdrFilename =
4028 SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation()));
4029
4030 auto noteFromModuleOrInclude = [&](Module *Mod,
4031 SourceLocation IncLoc) -> bool {
4032 // Redefinition errors with modules are common with non modular mapped
4033 // headers, example: a non-modular header H in module A that also gets
4034 // included directly in a TU. Pointing twice to the same header/definition
4035 // is confusing, try to get better diagnostics when modules is on.
4036 if (IncLoc.isValid()) {
4037 if (Mod) {
4038 Diag(IncLoc, diag::note_redefinition_modules_same_file)
4039 << HdrFilename.str() << Mod->getFullModuleName();
4040 if (!Mod->DefinitionLoc.isInvalid())
4041 Diag(Mod->DefinitionLoc, diag::note_defined_here)
4042 << Mod->getFullModuleName();
4043 } else {
4044 Diag(IncLoc, diag::note_redefinition_include_same_file)
4045 << HdrFilename.str();
4046 }
4047 return true;
4048 }
4049
4050 return false;
4051 };
4052
4053 // Is it the same file and same offset? Provide more information on why
4054 // this leads to a redefinition error.
4055 bool EmittedDiag = false;
4056 if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) {
4057 SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first);
4058 SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first);
4059 EmittedDiag = noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc);
4060 EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc);
4061
4062 // If the header has no guards, emit a note suggesting one.
4063 if (FOld && !HSI.isFileMultipleIncludeGuarded(FOld))
4064 Diag(Old->getLocation(), diag::note_use_ifdef_guards);
4065
4066 if (EmittedDiag)
4067 return;
4068 }
4069
4070 // Redefinition coming from different files or couldn't do better above.
4071 if (Old->getLocation().isValid())
4072 Diag(Old->getLocation(), diag::note_previous_definition);
4073}
4074
4075/// We've just determined that \p Old and \p New both appear to be definitions
4076/// of the same variable. Either diagnose or fix the problem.
4077bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) {
4078 if (!hasVisibleDefinition(Old) &&
4079 (New->getFormalLinkage() == InternalLinkage ||
4080 New->isInline() ||
4081 New->getDescribedVarTemplate() ||
4082 New->getNumTemplateParameterLists() ||
4083 New->getDeclContext()->isDependentContext())) {
4084 // The previous definition is hidden, and multiple definitions are
4085 // permitted (in separate TUs). Demote this to a declaration.
4086 New->demoteThisDefinitionToDeclaration();
4087
4088 // Make the canonical definition visible.
4089 if (auto *OldTD = Old->getDescribedVarTemplate())
4090 makeMergedDefinitionVisible(OldTD);
4091 makeMergedDefinitionVisible(Old);
4092 return false;
4093 } else {
4094 Diag(New->getLocation(), diag::err_redefinition) << New;
4095 notePreviousDefinition(Old, New->getLocation());
4096 New->setInvalidDecl();
4097 return true;
4098 }
4099}
4100
4101/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4102/// no declarator (e.g. "struct foo;") is parsed.
4103Decl *
4104Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4105 RecordDecl *&AnonRecord) {
4106 return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg(), false,
4107 AnonRecord);
4108}
4109
4110// The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
4111// disambiguate entities defined in different scopes.
4112// While the VS2015 ABI fixes potential miscompiles, it is also breaks
4113// compatibility.
4114// We will pick our mangling number depending on which version of MSVC is being
4115// targeted.
4116static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) {
4117 return LO.isCompatibleWithMSVC(LangOptions::MSVC2015)
4118 ? S->getMSCurManglingNumber()
4119 : S->getMSLastManglingNumber();
4120}
4121
4122void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) {
4123 if (!Context.getLangOpts().CPlusPlus)
4124 return;
4125
4126 if (isa<CXXRecordDecl>(Tag->getParent())) {
4127 // If this tag is the direct child of a class, number it if
4128 // it is anonymous.
4129 if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
4130 return;
4131 MangleNumberingContext &MCtx =
4132 Context.getManglingNumberContext(Tag->getParent());
4133 Context.setManglingNumber(
4134 Tag, MCtx.getManglingNumber(
4135 Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4136 return;
4137 }
4138
4139 // If this tag isn't a direct child of a class, number it if it is local.
4140 Decl *ManglingContextDecl;
4141 if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
4142 Tag->getDeclContext(), ManglingContextDecl)) {
4143 Context.setManglingNumber(
4144 Tag, MCtx->getManglingNumber(
4145 Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4146 }
4147}
4148
4149void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
4150 TypedefNameDecl *NewTD) {
4151 if (TagFromDeclSpec->isInvalidDecl())
4152 return;
4153
4154 // Do nothing if the tag already has a name for linkage purposes.
4155 if (TagFromDeclSpec->hasNameForLinkage())
4156 return;
4157
4158 // A well-formed anonymous tag must always be a TUK_Definition.
4159 assert(TagFromDeclSpec->isThisDeclarationADefinition())((TagFromDeclSpec->isThisDeclarationADefinition()) ? static_cast
<void> (0) : __assert_fail ("TagFromDeclSpec->isThisDeclarationADefinition()"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 4159, __PRETTY_FUNCTION__))
;
4160
4161 // The type must match the tag exactly; no qualifiers allowed.
4162 if (!Context.hasSameType(NewTD->getUnderlyingType(),
4163 Context.getTagDeclType(TagFromDeclSpec))) {
4164 if (getLangOpts().CPlusPlus)
4165 Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD);
4166 return;
4167 }
4168
4169 // If we've already computed linkage for the anonymous tag, then
4170 // adding a typedef name for the anonymous decl can change that
4171 // linkage, which might be a serious problem. Diagnose this as
4172 // unsupported and ignore the typedef name. TODO: we should
4173 // pursue this as a language defect and establish a formal rule
4174 // for how to handle it.
4175 if (TagFromDeclSpec->hasLinkageBeenComputed()) {
4176 Diag(NewTD->getLocation(), diag::err_typedef_changes_linkage);
4177
4178 SourceLocation tagLoc = TagFromDeclSpec->getInnerLocStart();
4179 tagLoc = getLocForEndOfToken(tagLoc);
4180
4181 llvm::SmallString<40> textToInsert;
4182 textToInsert += ' ';
4183 textToInsert += NewTD->getIdentifier()->getName();
4184 Diag(tagLoc, diag::note_typedef_changes_linkage)
4185 << FixItHint::CreateInsertion(tagLoc, textToInsert);
4186 return;
4187 }
4188
4189 // Otherwise, set this is the anon-decl typedef for the tag.
4190 TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
4191}
4192
4193static unsigned GetDiagnosticTypeSpecifierID(DeclSpec::TST T) {
4194 switch (T) {
4195 case DeclSpec::TST_class:
4196 return 0;
4197 case DeclSpec::TST_struct:
4198 return 1;
4199 case DeclSpec::TST_interface:
4200 return 2;
4201 case DeclSpec::TST_union:
4202 return 3;
4203 case DeclSpec::TST_enum:
4204 return 4;
4205 default:
4206 llvm_unreachable("unexpected type specifier")::llvm::llvm_unreachable_internal("unexpected type specifier"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 4206)
;
4207 }
4208}
4209
4210/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4211/// no declarator (e.g. "struct foo;") is parsed. It also accepts template
4212/// parameters to cope with template friend declarations.
4213Decl *
4214Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4215 MultiTemplateParamsArg TemplateParams,
4216 bool IsExplicitInstantiation,
4217 RecordDecl *&AnonRecord) {
4218 Decl *TagD = nullptr;
4219 TagDecl *Tag = nullptr;
4220 if (DS.getTypeSpecType() == DeclSpec::TST_class ||
4221 DS.getTypeSpecType() == DeclSpec::TST_struct ||
4222 DS.getTypeSpecType() == DeclSpec::TST_interface ||
4223 DS.getTypeSpecType() == DeclSpec::TST_union ||
4224 DS.getTypeSpecType() == DeclSpec::TST_enum) {
4225 TagD = DS.getRepAsDecl();
4226
4227 if (!TagD) // We probably had an error
4228 return nullptr;
4229
4230 // Note that the above type specs guarantee that the
4231 // type rep is a Decl, whereas in many of the others
4232 // it's a Type.
4233 if (isa<TagDecl>(TagD))
4234 Tag = cast<TagDecl>(TagD);
4235 else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
4236 Tag = CTD->getTemplatedDecl();
4237 }
4238
4239 if (Tag) {
4240 handleTagNumbering(Tag, S);
4241 Tag->setFreeStanding();
4242 if (Tag->isInvalidDecl())
4243 return Tag;
4244 }
4245
4246 if (unsigned TypeQuals = DS.getTypeQualifiers()) {
4247 // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
4248 // or incomplete types shall not be restrict-qualified."
4249 if (TypeQuals & DeclSpec::TQ_restrict)
4250 Diag(DS.getRestrictSpecLoc(),
4251 diag::err_typecheck_invalid_restrict_not_pointer_noarg)
4252 << DS.getSourceRange();
4253 }
4254
4255 if (DS.isInlineSpecified())
4256 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
4257 << getLangOpts().CPlusPlus17;
4258
4259 if (DS.isConstexprSpecified()) {
4260 // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
4261 // and definitions of functions and variables.
4262 if (Tag)
4263 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
4264 << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType());
4265 else
4266 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
4267 // Don't emit warnings after this error.
4268 return TagD;
4269 }
4270
4271 DiagnoseFunctionSpecifiers(DS);
4272
4273 if (DS.isFriendSpecified()) {
4274 // If we're dealing with a decl but not a TagDecl, assume that
4275 // whatever routines created it handled the friendship aspect.
4276 if (TagD && !Tag)
4277 return nullptr;
4278 return ActOnFriendTypeDecl(S, DS, TemplateParams);
4279 }
4280
4281 const CXXScopeSpec &SS = DS.getTypeSpecScope();
4282 bool IsExplicitSpecialization =
4283 !TemplateParams.empty() && TemplateParams.back()->size() == 0;
4284 if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
4285 !IsExplicitInstantiation && !IsExplicitSpecialization &&
4286 !isa<ClassTemplatePartialSpecializationDecl>(Tag)) {
4287 // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
4288 // nested-name-specifier unless it is an explicit instantiation
4289 // or an explicit specialization.
4290 //
4291 // FIXME: We allow class template partial specializations here too, per the
4292 // obvious intent of DR1819.
4293 //
4294 // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
4295 Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
4296 << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << SS.getRange();
4297 return nullptr;
4298 }
4299
4300 // Track whether this decl-specifier declares anything.
4301 bool DeclaresAnything = true;
4302
4303 // Handle anonymous struct definitions.
4304 if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
4305 if (!Record->getDeclName() && Record->isCompleteDefinition() &&
4306 DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
4307 if (getLangOpts().CPlusPlus ||
4308 Record->getDeclContext()->isRecord()) {
4309 // If CurContext is a DeclContext that can contain statements,
4310 // RecursiveASTVisitor won't visit the decls that
4311 // BuildAnonymousStructOrUnion() will put into CurContext.
4312 // Also store them here so that they can be part of the
4313 // DeclStmt that gets created in this case.
4314 // FIXME: Also return the IndirectFieldDecls created by
4315 // BuildAnonymousStructOr union, for the same reason?
4316 if (CurContext->isFunctionOrMethod())
4317 AnonRecord = Record;
4318 return BuildAnonymousStructOrUnion(S, DS, AS, Record,
4319 Context.getPrintingPolicy());
4320 }
4321
4322 DeclaresAnything = false;
4323 }
4324 }
4325
4326 // C11 6.7.2.1p2:
4327 // A struct-declaration that does not declare an anonymous structure or
4328 // anonymous union shall contain a struct-declarator-list.
4329 //
4330 // This rule also existed in C89 and C99; the grammar for struct-declaration
4331 // did not permit a struct-declaration without a struct-declarator-list.
4332 if (!getLangOpts().CPlusPlus && CurContext->isRecord() &&
4333 DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
4334 // Check for Microsoft C extension: anonymous struct/union member.
4335 // Handle 2 kinds of anonymous struct/union:
4336 // struct STRUCT;
4337 // union UNION;
4338 // and
4339 // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct.
4340 // UNION_TYPE; <- where UNION_TYPE is a typedef union.
4341 if ((Tag && Tag->getDeclName()) ||
4342 DS.getTypeSpecType() == DeclSpec::TST_typename) {
4343 RecordDecl *Record = nullptr;
4344 if (Tag)
4345 Record = dyn_cast<RecordDecl>(Tag);
4346 else if (const RecordType *RT =
4347 DS.getRepAsType().get()->getAsStructureType())
4348 Record = RT->getDecl();
4349 else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType())
4350 Record = UT->getDecl();
4351
4352 if (Record && getLangOpts().MicrosoftExt) {
4353 Diag(DS.getBeginLoc(), diag::ext_ms_anonymous_record)
4354 << Record->isUnion() << DS.getSourceRange();
4355 return BuildMicrosoftCAnonymousStruct(S, DS, Record);
4356 }
4357
4358 DeclaresAnything = false;
4359 }
4360 }
4361
4362 // Skip all the checks below if we have a type error.
4363 if (DS.getTypeSpecType() == DeclSpec::TST_error ||
4364 (TagD && TagD->isInvalidDecl()))
4365 return TagD;
4366
4367 if (getLangOpts().CPlusPlus &&
4368 DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
4369 if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
4370 if (Enum->enumerator_begin() == Enum->enumerator_end() &&
4371 !Enum->getIdentifier() && !Enum->isInvalidDecl())
4372 DeclaresAnything = false;
4373
4374 if (!DS.isMissingDeclaratorOk()) {
4375 // Customize diagnostic for a typedef missing a name.
4376 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
4377 Diag(DS.getBeginLoc(), diag::ext_typedef_without_a_name)
4378 << DS.getSourceRange();
4379 else
4380 DeclaresAnything = false;
4381 }
4382
4383 if (DS.isModulePrivateSpecified() &&
4384 Tag && Tag->getDeclContext()->isFunctionOrMethod())
4385 Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
4386 << Tag->getTagKind()
4387 << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
4388
4389 ActOnDocumentableDecl(TagD);
4390
4391 // C 6.7/2:
4392 // A declaration [...] shall declare at least a declarator [...], a tag,
4393 // or the members of an enumeration.
4394 // C++ [dcl.dcl]p3:
4395 // [If there are no declarators], and except for the declaration of an
4396 // unnamed bit-field, the decl-specifier-seq shall introduce one or more
4397 // names into the program, or shall redeclare a name introduced by a
4398 // previous declaration.
4399 if (!DeclaresAnything) {
4400 // In C, we allow this as a (popular) extension / bug. Don't bother
4401 // producing further diagnostics for redundant qualifiers after this.
4402 Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange();
4403 return TagD;
4404 }
4405
4406 // C++ [dcl.stc]p1:
4407 // If a storage-class-specifier appears in a decl-specifier-seq, [...] the
4408 // init-declarator-list of the declaration shall not be empty.
4409 // C++ [dcl.fct.spec]p1:
4410 // If a cv-qualifier appears in a decl-specifier-seq, the
4411 // init-declarator-list of the declaration shall not be empty.
4412 //
4413 // Spurious qualifiers here appear to be valid in C.
4414 unsigned DiagID = diag::warn_standalone_specifier;
4415 if (getLangOpts().CPlusPlus)
4416 DiagID = diag::ext_standalone_specifier;
4417
4418 // Note that a linkage-specification sets a storage class, but
4419 // 'extern "C" struct foo;' is actually valid and not theoretically
4420 // useless.
4421 if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
4422 if (SCS == DeclSpec::SCS_mutable)
4423 // Since mutable is not a viable storage class specifier in C, there is
4424 // no reason to treat it as an extension. Instead, diagnose as an error.
4425 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
4426 else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
4427 Diag(DS.getStorageClassSpecLoc(), DiagID)
4428 << DeclSpec::getSpecifierName(SCS);
4429 }
4430
4431 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
4432 Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
4433 << DeclSpec::getSpecifierName(TSCS);
4434 if (DS.getTypeQualifiers()) {
4435 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4436 Diag(DS.getConstSpecLoc(), DiagID) << "const";
4437 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4438 Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
4439 // Restrict is covered above.
4440 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4441 Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
4442 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
4443 Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned";
4444 }
4445
4446 // Warn about ignored type attributes, for example:
4447 // __attribute__((aligned)) struct A;
4448 // Attributes should be placed after tag to apply to type declaration.
4449 if (!DS.getAttributes().empty()) {
4450 DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
4451 if (TypeSpecType == DeclSpec::TST_class ||
4452 TypeSpecType == DeclSpec::TST_struct ||
4453 TypeSpecType == DeclSpec::TST_interface ||
4454 TypeSpecType == DeclSpec::TST_union ||
4455 TypeSpecType == DeclSpec::TST_enum) {
4456 for (const ParsedAttr &AL : DS.getAttributes())
4457 Diag(AL.getLoc(), diag::warn_declspec_attribute_ignored)
4458 << AL.getName() << GetDiagnosticTypeSpecifierID(TypeSpecType);
4459 }
4460 }
4461
4462 return TagD;
4463}
4464
4465/// We are trying to inject an anonymous member into the given scope;
4466/// check if there's an existing declaration that can't be overloaded.
4467///
4468/// \return true if this is a forbidden redeclaration
4469static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
4470 Scope *S,
4471 DeclContext *Owner,
4472 DeclarationName Name,
4473 SourceLocation NameLoc,
4474 bool IsUnion) {
4475 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
4476 Sema::ForVisibleRedeclaration);
4477 if (!SemaRef.LookupName(R, S)) return false;
4478
4479 // Pick a representative declaration.
4480 NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
4481 assert(PrevDecl && "Expected a non-null Decl")((PrevDecl && "Expected a non-null Decl") ? static_cast
<void> (0) : __assert_fail ("PrevDecl && \"Expected a non-null Decl\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 4481, __PRETTY_FUNCTION__))
;
4482
4483 if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
4484 return false;
4485
4486 SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl)
4487 << IsUnion << Name;
4488 SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4489
4490 return true;
4491}
4492
4493/// InjectAnonymousStructOrUnionMembers - Inject the members of the
4494/// anonymous struct or union AnonRecord into the owning context Owner
4495/// and scope S. This routine will be invoked just after we realize
4496/// that an unnamed union or struct is actually an anonymous union or
4497/// struct, e.g.,
4498///
4499/// @code
4500/// union {
4501/// int i;
4502/// float f;
4503/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
4504/// // f into the surrounding scope.x
4505/// @endcode
4506///
4507/// This routine is recursive, injecting the names of nested anonymous
4508/// structs/unions into the owning context and scope as well.
4509static bool
4510InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner,
4511 RecordDecl *AnonRecord, AccessSpecifier AS,
4512 SmallVectorImpl<NamedDecl *> &Chaining) {
4513 bool Invalid = false;
4514
4515 // Look every FieldDecl and IndirectFieldDecl with a name.
4516 for (auto *D : AnonRecord->decls()) {
4517 if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
4518 cast<NamedDecl>(D)->getDeclName()) {
4519 ValueDecl *VD = cast<ValueDecl>(D);
4520 if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
4521 VD->getLocation(),
4522 AnonRecord->isUnion())) {
4523 // C++ [class.union]p2:
4524 // The names of the members of an anonymous union shall be
4525 // distinct from the names of any other entity in the
4526 // scope in which the anonymous union is declared.
4527 Invalid = true;
4528 } else {
4529 // C++ [class.union]p2:
4530 // For the purpose of name lookup, after the anonymous union
4531 // definition, the members of the anonymous union are
4532 // considered to have been defined in the scope in which the
4533 // anonymous union is declared.
4534 unsigned OldChainingSize = Chaining.size();
4535 if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
4536 Chaining.append(IF->chain_begin(), IF->chain_end());
4537 else
4538 Chaining.push_back(VD);
4539
4540 assert(Chaining.size() >= 2)((Chaining.size() >= 2) ? static_cast<void> (0) : __assert_fail
("Chaining.size() >= 2", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 4540, __PRETTY_FUNCTION__))
;
4541 NamedDecl **NamedChain =
4542 new (SemaRef.Context)NamedDecl*[Chaining.size()];
4543 for (unsigned i = 0; i < Chaining.size(); i++)
4544 NamedChain[i] = Chaining[i];
4545
4546 IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
4547 SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(),
4548 VD->getType(), {NamedChain, Chaining.size()});
4549
4550 for (const auto *Attr : VD->attrs())
4551 IndirectField->addAttr(Attr->clone(SemaRef.Context));
4552
4553 IndirectField->setAccess(AS);
4554 IndirectField->setImplicit();
4555 SemaRef.PushOnScopeChains(IndirectField, S);
4556
4557 // That includes picking up the appropriate access specifier.
4558 if (AS != AS_none) IndirectField->setAccess(AS);
4559
4560 Chaining.resize(OldChainingSize);
4561 }
4562 }
4563 }
4564
4565 return Invalid;
4566}
4567
4568/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
4569/// a VarDecl::StorageClass. Any error reporting is up to the caller:
4570/// illegal input values are mapped to SC_None.
4571static StorageClass
4572StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
4573 DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
4574 assert(StorageClassSpec != DeclSpec::SCS_typedef &&((StorageClassSpec != DeclSpec::SCS_typedef && "Parser allowed 'typedef' as storage class VarDecl."
) ? static_cast<void> (0) : __assert_fail ("StorageClassSpec != DeclSpec::SCS_typedef && \"Parser allowed 'typedef' as storage class VarDecl.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 4575, __PRETTY_FUNCTION__))
4575 "Parser allowed 'typedef' as storage class VarDecl.")((StorageClassSpec != DeclSpec::SCS_typedef && "Parser allowed 'typedef' as storage class VarDecl."
) ? static_cast<void> (0) : __assert_fail ("StorageClassSpec != DeclSpec::SCS_typedef && \"Parser allowed 'typedef' as storage class VarDecl.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 4575, __PRETTY_FUNCTION__))
;
4576 switch (StorageClassSpec) {
4577 case DeclSpec::SCS_unspecified: return SC_None;
4578 case DeclSpec::SCS_extern:
4579 if (DS.isExternInLinkageSpec())
4580 return SC_None;
4581 return SC_Extern;
4582 case DeclSpec::SCS_static: return SC_Static;
4583 case DeclSpec::SCS_auto: return SC_Auto;
4584 case DeclSpec::SCS_register: return SC_Register;
4585 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4586 // Illegal SCSs map to None: error reporting is up to the caller.
4587 case DeclSpec::SCS_mutable: // Fall through.
4588 case DeclSpec::SCS_typedef: return SC_None;
4589 }
4590 llvm_unreachable("unknown storage class specifier")::llvm::llvm_unreachable_internal("unknown storage class specifier"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 4590)
;
4591}
4592
4593static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
4594 assert(Record->hasInClassInitializer())((Record->hasInClassInitializer()) ? static_cast<void>
(0) : __assert_fail ("Record->hasInClassInitializer()", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 4594, __PRETTY_FUNCTION__))
;
4595
4596 for (const auto *I : Record->decls()) {
4597 const auto *FD = dyn_cast<FieldDecl>(I);
4598 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
4599 FD = IFD->getAnonField();
4600 if (FD && FD->hasInClassInitializer())
4601 return FD->getLocation();
4602 }
4603
4604 llvm_unreachable("couldn't find in-class initializer")::llvm::llvm_unreachable_internal("couldn't find in-class initializer"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 4604)
;
4605}
4606
4607static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4608 SourceLocation DefaultInitLoc) {
4609 if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4610 return;
4611
4612 S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
4613 S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
4614}
4615
4616static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4617 CXXRecordDecl *AnonUnion) {
4618 if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4619 return;
4620
4621 checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
4622}
4623
4624/// BuildAnonymousStructOrUnion - Handle the declaration of an
4625/// anonymous structure or union. Anonymous unions are a C++ feature
4626/// (C++ [class.union]) and a C11 feature; anonymous structures
4627/// are a C11 feature and GNU C++ extension.
4628Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
4629 AccessSpecifier AS,
4630 RecordDecl *Record,
4631 const PrintingPolicy &Policy) {
4632 DeclContext *Owner = Record->getDeclContext();
4633
4634 // Diagnose whether this anonymous struct/union is an extension.
4635 if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
4636 Diag(Record->getLocation(), diag::ext_anonymous_union);
4637 else if (!Record->isUnion() && getLangOpts().CPlusPlus)
4638 Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
4639 else if (!Record->isUnion() && !getLangOpts().C11)
4640 Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
4641
4642 // C and C++ require different kinds of checks for anonymous
4643 // structs/unions.
4644 bool Invalid = false;
4645 if (getLangOpts().CPlusPlus) {
4646 const char *PrevSpec = nullptr;
4647 unsigned DiagID;
4648 if (Record->isUnion()) {
4649 // C++ [class.union]p6:
4650 // C++17 [class.union.anon]p2:
4651 // Anonymous unions declared in a named namespace or in the
4652 // global namespace shall be declared static.
4653 DeclContext *OwnerScope = Owner->getRedeclContext();
4654 if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
4655 (OwnerScope->isTranslationUnit() ||
4656 (OwnerScope->isNamespace() &&
4657 !cast<NamespaceDecl>(OwnerScope)->isAnonymousNamespace()))) {
4658 Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
4659 << FixItHint::CreateInsertion(Record->getLocation(), "static ");
4660
4661 // Recover by adding 'static'.
4662 DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
4663 PrevSpec, DiagID, Policy);
4664 }
4665 // C++ [class.union]p6:
4666 // A storage class is not allowed in a declaration of an
4667 // anonymous union in a class scope.
4668 else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
4669 isa<RecordDecl>(Owner)) {
4670 Diag(DS.getStorageClassSpecLoc(),
4671 diag::err_anonymous_union_with_storage_spec)
4672 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
4673
4674 // Recover by removing the storage specifier.
4675 DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
4676 SourceLocation(),
4677 PrevSpec, DiagID, Context.getPrintingPolicy());
4678 }
4679 }
4680
4681 // Ignore const/volatile/restrict qualifiers.
4682 if (DS.getTypeQualifiers()) {
4683 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4684 Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
4685 << Record->isUnion() << "const"
4686 << FixItHint::CreateRemoval(DS.getConstSpecLoc());
4687 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4688 Diag(DS.getVolatileSpecLoc(),
4689 diag::ext_anonymous_struct_union_qualified)
4690 << Record->isUnion() << "volatile"
4691 << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
4692 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
4693 Diag(DS.getRestrictSpecLoc(),
4694 diag::ext_anonymous_struct_union_qualified)
4695 << Record->isUnion() << "restrict"
4696 << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
4697 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4698 Diag(DS.getAtomicSpecLoc(),
4699 diag::ext_anonymous_struct_union_qualified)
4700 << Record->isUnion() << "_Atomic"
4701 << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
4702 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
4703 Diag(DS.getUnalignedSpecLoc(),
4704 diag::ext_anonymous_struct_union_qualified)
4705 << Record->isUnion() << "__unaligned"
4706 << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc());
4707
4708 DS.ClearTypeQualifiers();
4709 }
4710
4711 // C++ [class.union]p2:
4712 // The member-specification of an anonymous union shall only
4713 // define non-static data members. [Note: nested types and
4714 // functions cannot be declared within an anonymous union. ]
4715 for (auto *Mem : Record->decls()) {
4716 if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
4717 // C++ [class.union]p3:
4718 // An anonymous union shall not have private or protected
4719 // members (clause 11).
4720 assert(FD->getAccess() != AS_none)((FD->getAccess() != AS_none) ? static_cast<void> (0
) : __assert_fail ("FD->getAccess() != AS_none", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 4720, __PRETTY_FUNCTION__))
;
4721 if (FD->getAccess() != AS_public) {
4722 Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
4723 << Record->isUnion() << (FD->getAccess() == AS_protected);
4724 Invalid = true;
4725 }
4726
4727 // C++ [class.union]p1
4728 // An object of a class with a non-trivial constructor, a non-trivial
4729 // copy constructor, a non-trivial destructor, or a non-trivial copy
4730 // assignment operator cannot be a member of a union, nor can an
4731 // array of such objects.
4732 if (CheckNontrivialField(FD))
4733 Invalid = true;
4734 } else if (Mem->isImplicit()) {
4735 // Any implicit members are fine.
4736 } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
4737 // This is a type that showed up in an
4738 // elaborated-type-specifier inside the anonymous struct or
4739 // union, but which actually declares a type outside of the
4740 // anonymous struct or union. It's okay.
4741 } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
4742 if (!MemRecord->isAnonymousStructOrUnion() &&
4743 MemRecord->getDeclName()) {
4744 // Visual C++ allows type definition in anonymous struct or union.
4745 if (getLangOpts().MicrosoftExt)
4746 Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
4747 << Record->isUnion();
4748 else {
4749 // This is a nested type declaration.
4750 Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
4751 << Record->isUnion();
4752 Invalid = true;
4753 }
4754 } else {
4755 // This is an anonymous type definition within another anonymous type.
4756 // This is a popular extension, provided by Plan9, MSVC and GCC, but
4757 // not part of standard C++.
4758 Diag(MemRecord->getLocation(),
4759 diag::ext_anonymous_record_with_anonymous_type)
4760 << Record->isUnion();
4761 }
4762 } else if (isa<AccessSpecDecl>(Mem)) {
4763 // Any access specifier is fine.
4764 } else if (isa<StaticAssertDecl>(Mem)) {
4765 // In C++1z, static_assert declarations are also fine.
4766 } else {
4767 // We have something that isn't a non-static data
4768 // member. Complain about it.
4769 unsigned DK = diag::err_anonymous_record_bad_member;
4770 if (isa<TypeDecl>(Mem))
4771 DK = diag::err_anonymous_record_with_type;
4772 else if (isa<FunctionDecl>(Mem))
4773 DK = diag::err_anonymous_record_with_function;
4774 else if (isa<VarDecl>(Mem))
4775 DK = diag::err_anonymous_record_with_static;
4776
4777 // Visual C++ allows type definition in anonymous struct or union.
4778 if (getLangOpts().MicrosoftExt &&
4779 DK == diag::err_anonymous_record_with_type)
4780 Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
4781 << Record->isUnion();
4782 else {
4783 Diag(Mem->getLocation(), DK) << Record->isUnion();
4784 Invalid = true;
4785 }
4786 }
4787 }
4788
4789 // C++11 [class.union]p8 (DR1460):
4790 // At most one variant member of a union may have a
4791 // brace-or-equal-initializer.
4792 if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
4793 Owner->isRecord())
4794 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
4795 cast<CXXRecordDecl>(Record));
4796 }
4797
4798 if (!Record->isUnion() && !Owner->isRecord()) {
4799 Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
4800 << getLangOpts().CPlusPlus;
4801 Invalid = true;
4802 }
4803
4804 // Mock up a declarator.
4805 Declarator Dc(DS, DeclaratorContext::MemberContext);
4806 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
4807 assert(TInfo && "couldn't build declarator info for anonymous struct/union")((TInfo && "couldn't build declarator info for anonymous struct/union"
) ? static_cast<void> (0) : __assert_fail ("TInfo && \"couldn't build declarator info for anonymous struct/union\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 4807, __PRETTY_FUNCTION__))
;
4808
4809 // Create a declaration for this anonymous struct/union.
4810 NamedDecl *Anon = nullptr;
4811 if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
4812 Anon = FieldDecl::Create(
4813 Context, OwningClass, DS.getBeginLoc(), Record->getLocation(),
4814 /*IdentifierInfo=*/nullptr, Context.getTypeDeclType(Record), TInfo,
4815 /*BitWidth=*/nullptr, /*Mutable=*/false,
4816 /*InitStyle=*/ICIS_NoInit);
4817 Anon->setAccess(AS);
4818 if (getLangOpts().CPlusPlus)
4819 FieldCollector->Add(cast<FieldDecl>(Anon));
4820 } else {
4821 DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
4822 StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
4823 if (SCSpec == DeclSpec::SCS_mutable) {
4824 // mutable can only appear on non-static class members, so it's always
4825 // an error here
4826 Diag(Record->getLocation(), diag::err_mutable_nonmember);
4827 Invalid = true;
4828 SC = SC_None;
4829 }
4830
4831 Anon = VarDecl::Create(Context, Owner, DS.getBeginLoc(),
4832 Record->getLocation(), /*IdentifierInfo=*/nullptr,
4833 Context.getTypeDeclType(Record), TInfo, SC);
4834
4835 // Default-initialize the implicit variable. This initialization will be
4836 // trivial in almost all cases, except if a union member has an in-class
4837 // initializer:
4838 // union { int n = 0; };
4839 ActOnUninitializedDecl(Anon);
4840 }
4841 Anon->setImplicit();
4842
4843 // Mark this as an anonymous struct/union type.
4844 Record->setAnonymousStructOrUnion(true);
4845
4846 // Add the anonymous struct/union object to the current
4847 // context. We'll be referencing this object when we refer to one of
4848 // its members.
4849 Owner->addDecl(Anon);
4850
4851 // Inject the members of the anonymous struct/union into the owning
4852 // context and into the identifier resolver chain for name lookup
4853 // purposes.
4854 SmallVector<NamedDecl*, 2> Chain;
4855 Chain.push_back(Anon);
4856
4857 if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, Chain))
4858 Invalid = true;
4859
4860 if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
4861 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
4862 Decl *ManglingContextDecl;
4863 if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
4864 NewVD->getDeclContext(), ManglingContextDecl)) {
4865 Context.setManglingNumber(
4866 NewVD, MCtx->getManglingNumber(
4867 NewVD, getMSManglingNumber(getLangOpts(), S)));
4868 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
4869 }
4870 }
4871 }
4872
4873 if (Invalid)
4874 Anon->setInvalidDecl();
4875
4876 return Anon;
4877}
4878
4879/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
4880/// Microsoft C anonymous structure.
4881/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
4882/// Example:
4883///
4884/// struct A { int a; };
4885/// struct B { struct A; int b; };
4886///
4887/// void foo() {
4888/// B var;
4889/// var.a = 3;
4890/// }
4891///
4892Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
4893 RecordDecl *Record) {
4894 assert(Record && "expected a record!")((Record && "expected a record!") ? static_cast<void
> (0) : __assert_fail ("Record && \"expected a record!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 4894, __PRETTY_FUNCTION__))
;
4895
4896 // Mock up a declarator.
4897 Declarator Dc(DS, DeclaratorContext::TypeNameContext);
4898 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
4899 assert(TInfo && "couldn't build declarator info for anonymous struct")((TInfo && "couldn't build declarator info for anonymous struct"
) ? static_cast<void> (0) : __assert_fail ("TInfo && \"couldn't build declarator info for anonymous struct\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 4899, __PRETTY_FUNCTION__))
;
4900
4901 auto *ParentDecl = cast<RecordDecl>(CurContext);
4902 QualType RecTy = Context.getTypeDeclType(Record);
4903
4904 // Create a declaration for this anonymous struct.
4905 NamedDecl *Anon =
4906 FieldDecl::Create(Context, ParentDecl, DS.getBeginLoc(), DS.getBeginLoc(),
4907 /*IdentifierInfo=*/nullptr, RecTy, TInfo,
4908 /*BitWidth=*/nullptr, /*Mutable=*/false,
4909 /*InitStyle=*/ICIS_NoInit);
4910 Anon->setImplicit();
4911
4912 // Add the anonymous struct object to the current context.
4913 CurContext->addDecl(Anon);
4914
4915 // Inject the members of the anonymous struct into the current
4916 // context and into the identifier resolver chain for name lookup
4917 // purposes.
4918 SmallVector<NamedDecl*, 2> Chain;
4919 Chain.push_back(Anon);
4920
4921 RecordDecl *RecordDef = Record->getDefinition();
4922 if (RequireCompleteType(Anon->getLocation(), RecTy,
4923 diag::err_field_incomplete) ||
4924 InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef,
4925 AS_none, Chain)) {
4926 Anon->setInvalidDecl();
4927 ParentDecl->setInvalidDecl();
4928 }
4929
4930 return Anon;
4931}
4932
4933/// GetNameForDeclarator - Determine the full declaration name for the
4934/// given Declarator.
4935DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
4936 return GetNameFromUnqualifiedId(D.getName());
4937}
4938
4939/// Retrieves the declaration name from a parsed unqualified-id.
4940DeclarationNameInfo
4941Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
4942 DeclarationNameInfo NameInfo;
4943 NameInfo.setLoc(Name.StartLocation);
4944
4945 switch (Name.getKind()) {
4946
4947 case UnqualifiedIdKind::IK_ImplicitSelfParam:
4948 case UnqualifiedIdKind::IK_Identifier:
4949 NameInfo.setName(Name.Identifier);
4950 return NameInfo;
4951
4952 case UnqualifiedIdKind::IK_DeductionGuideName: {
4953 // C++ [temp.deduct.guide]p3:
4954 // The simple-template-id shall name a class template specialization.
4955 // The template-name shall be the same identifier as the template-name
4956 // of the simple-template-id.
4957 // These together intend to imply that the template-name shall name a
4958 // class template.
4959 // FIXME: template<typename T> struct X {};
4960 // template<typename T> using Y = X<T>;
4961 // Y(int) -> Y<int>;
4962 // satisfies these rules but does not name a class template.
4963 TemplateName TN = Name.TemplateName.get().get();
4964 auto *Template = TN.getAsTemplateDecl();
4965 if (!Template || !isa<ClassTemplateDecl>(Template)) {
4966 Diag(Name.StartLocation,
4967 diag::err_deduction_guide_name_not_class_template)
4968 << (int)getTemplateNameKindForDiagnostics(TN) << TN;
4969 if (Template)
4970 Diag(Template->getLocation(), diag::note_template_decl_here);
4971 return DeclarationNameInfo();
4972 }
4973
4974 NameInfo.setName(
4975 Context.DeclarationNames.getCXXDeductionGuideName(Template));
4976 return NameInfo;
4977 }
4978
4979 case UnqualifiedIdKind::IK_OperatorFunctionId:
4980 NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
4981 Name.OperatorFunctionId.Operator));
4982 NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
4983 = Name.OperatorFunctionId.SymbolLocations[0];
4984 NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
4985 = Name.EndLocation.getRawEncoding();
4986 return NameInfo;
4987
4988 case UnqualifiedIdKind::IK_LiteralOperatorId:
4989 NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
4990 Name.Identifier));
4991 NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
4992 return NameInfo;
4993
4994 case UnqualifiedIdKind::IK_ConversionFunctionId: {
4995 TypeSourceInfo *TInfo;
4996 QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
4997 if (Ty.isNull())
4998 return DeclarationNameInfo();
4999 NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
5000 Context.getCanonicalType(Ty)));
5001 NameInfo.setNamedTypeInfo(TInfo);
5002 return NameInfo;
5003 }
5004
5005 case UnqualifiedIdKind::IK_ConstructorName: {
5006 TypeSourceInfo *TInfo;
5007 QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
5008 if (Ty.isNull())
5009 return DeclarationNameInfo();
5010 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5011 Context.getCanonicalType(Ty)));
5012 NameInfo.setNamedTypeInfo(TInfo);
5013 return NameInfo;
5014 }
5015
5016 case UnqualifiedIdKind::IK_ConstructorTemplateId: {
5017 // In well-formed code, we can only have a constructor
5018 // template-id that refers to the current context, so go there
5019 // to find the actual type being constructed.
5020 CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
5021 if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
5022 return DeclarationNameInfo();
5023
5024 // Determine the type of the class being constructed.
5025 QualType CurClassType = Context.getTypeDeclType(CurClass);
5026
5027 // FIXME: Check two things: that the template-id names the same type as
5028 // CurClassType, and that the template-id does not occur when the name
5029 // was qualified.
5030
5031 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5032 Context.getCanonicalType(CurClassType)));
5033 // FIXME: should we retrieve TypeSourceInfo?
5034 NameInfo.setNamedTypeInfo(nullptr);
5035 return NameInfo;
5036 }
5037
5038 case UnqualifiedIdKind::IK_DestructorName: {
5039 TypeSourceInfo *TInfo;
5040 QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
5041 if (Ty.isNull())
5042 return DeclarationNameInfo();
5043 NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
5044 Context.getCanonicalType(Ty)));
5045 NameInfo.setNamedTypeInfo(TInfo);
5046 return NameInfo;
5047 }
5048
5049 case UnqualifiedIdKind::IK_TemplateId: {
5050 TemplateName TName = Name.TemplateId->Template.get();
5051 SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
5052 return Context.getNameForTemplate(TName, TNameLoc);
5053 }
5054
5055 } // switch (Name.getKind())
5056
5057 llvm_unreachable("Unknown name kind")::llvm::llvm_unreachable_internal("Unknown name kind", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 5057)
;
5058}
5059
5060static QualType getCoreType(QualType Ty) {
5061 do {
5062 if (Ty->isPointerType() || Ty->isReferenceType())
5063 Ty = Ty->getPointeeType();
5064 else if (Ty->isArrayType())
5065 Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
5066 else
5067 return Ty.withoutLocalFastQualifiers();
5068 } while (true);
5069}
5070
5071/// hasSimilarParameters - Determine whether the C++ functions Declaration
5072/// and Definition have "nearly" matching parameters. This heuristic is
5073/// used to improve diagnostics in the case where an out-of-line function
5074/// definition doesn't match any declaration within the class or namespace.
5075/// Also sets Params to the list of indices to the parameters that differ
5076/// between the declaration and the definition. If hasSimilarParameters
5077/// returns true and Params is empty, then all of the parameters match.
5078static bool hasSimilarParameters(ASTContext &Context,
5079 FunctionDecl *Declaration,
5080 FunctionDecl *Definition,
5081 SmallVectorImpl<unsigned> &Params) {
5082 Params.clear();
5083 if (Declaration->param_size() != Definition->param_size())
5084 return false;
5085 for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
5086 QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
5087 QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
5088
5089 // The parameter types are identical
5090 if (Context.hasSameType(DefParamTy, DeclParamTy))
5091 continue;
5092
5093 QualType DeclParamBaseTy = getCoreType(DeclParamTy);
5094 QualType DefParamBaseTy = getCoreType(DefParamTy);
5095 const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
5096 const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
5097
5098 if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
5099 (DeclTyName && DeclTyName == DefTyName))
5100 Params.push_back(Idx);
5101 else // The two parameters aren't even close
5102 return false;
5103 }
5104
5105 return true;
5106}
5107
5108/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
5109/// declarator needs to be rebuilt in the current instantiation.
5110/// Any bits of declarator which appear before the name are valid for
5111/// consideration here. That's specifically the type in the decl spec
5112/// and the base type in any member-pointer chunks.
5113static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
5114 DeclarationName Name) {
5115 // The types we specifically need to rebuild are:
5116 // - typenames, typeofs, and decltypes
5117 // - types which will become injected class names
5118 // Of course, we also need to rebuild any type referencing such a
5119 // type. It's safest to just say "dependent", but we call out a
5120 // few cases here.
5121
5122 DeclSpec &DS = D.getMutableDeclSpec();
5123 switch (DS.getTypeSpecType()) {
5124 case DeclSpec::TST_typename:
5125 case DeclSpec::TST_typeofType:
5126 case DeclSpec::TST_underlyingType:
5127 case DeclSpec::TST_atomic: {
5128 // Grab the type from the parser.
5129 TypeSourceInfo *TSI = nullptr;
5130 QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
5131 if (T.isNull() || !T->isDependentType()) break;
5132
5133 // Make sure there's a type source info. This isn't really much
5134 // of a waste; most dependent types should have type source info
5135 // attached already.
5136 if (!TSI)
5137 TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
5138
5139 // Rebuild the type in the current instantiation.
5140 TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
5141 if (!TSI) return true;
5142
5143 // Store the new type back in the decl spec.
5144 ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
5145 DS.UpdateTypeRep(LocType);
5146 break;
5147 }
5148
5149 case DeclSpec::TST_decltype:
5150 case DeclSpec::TST_typeofExpr: {
5151 Expr *E = DS.getRepAsExpr();
5152 ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
5153 if (Result.isInvalid()) return true;
5154 DS.UpdateExprRep(Result.get());
5155 break;
5156 }
5157
5158 default:
5159 // Nothing to do for these decl specs.
5160 break;
5161 }
5162
5163 // It doesn't matter what order we do this in.
5164 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
5165 DeclaratorChunk &Chunk = D.getTypeObject(I);
5166
5167 // The only type information in the declarator which can come
5168 // before the declaration name is the base type of a member
5169 // pointer.
5170 if (Chunk.Kind != DeclaratorChunk::MemberPointer)
5171 continue;
5172
5173 // Rebuild the scope specifier in-place.
5174 CXXScopeSpec &SS = Chunk.Mem.Scope();
5175 if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
5176 return true;
5177 }
5178
5179 return false;
5180}
5181
5182Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
5183 D.setFunctionDefinitionKind(FDK_Declaration);
5184 Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
5185
5186 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
5187 Dcl && Dcl->getDeclContext()->isFileContext())
5188 Dcl->setTopLevelDeclInObjCContainer();
5189
5190 if (getLangOpts().OpenCL)
5191 setCurrentOpenCLExtensionForDecl(Dcl);
5192
5193 return Dcl;
5194}
5195
5196/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
5197/// If T is the name of a class, then each of the following shall have a
5198/// name different from T:
5199/// - every static data member of class T;
5200/// - every member function of class T
5201/// - every member of class T that is itself a type;
5202/// \returns true if the declaration name violates these rules.
5203bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
5204 DeclarationNameInfo NameInfo) {
5205 DeclarationName Name = NameInfo.getName();
5206
5207 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC);
5208 while (Record && Record->isAnonymousStructOrUnion())
5209 Record = dyn_cast<CXXRecordDecl>(Record->getParent());
5210 if (Record && Record->getIdentifier() && Record->getDeclName() == Name) {
5211 Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
5212 return true;
5213 }
5214
5215 return false;
5216}
5217
5218/// Diagnose a declaration whose declarator-id has the given
5219/// nested-name-specifier.
5220///
5221/// \param SS The nested-name-specifier of the declarator-id.
5222///
5223/// \param DC The declaration context to which the nested-name-specifier
5224/// resolves.
5225///
5226/// \param Name The name of the entity being declared.
5227///
5228/// \param Loc The location of the name of the entity being declared.
5229///
5230/// \param IsTemplateId Whether the name is a (simple-)template-id, and thus
5231/// we're declaring an explicit / partial specialization / instantiation.
5232///
5233/// \returns true if we cannot safely recover from this error, false otherwise.
5234bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
5235 DeclarationName Name,
5236 SourceLocation Loc, bool IsTemplateId) {
5237 DeclContext *Cur = CurContext;
5238 while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
5239 Cur = Cur->getParent();
5240
5241 // If the user provided a superfluous scope specifier that refers back to the
5242 // class in which the entity is already declared, diagnose and ignore it.
5243 //
5244 // class X {
5245 // void X::f();
5246 // };
5247 //
5248 // Note, it was once ill-formed to give redundant qualification in all
5249 // contexts, but that rule was removed by DR482.
5250 if (Cur->Equals(DC)) {
5251 if (Cur->isRecord()) {
5252 Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
5253 : diag::err_member_extra_qualification)
5254 << Name << FixItHint::CreateRemoval(SS.getRange());
5255 SS.clear();
5256 } else {
5257 Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
5258 }
5259 return false;
5260 }
5261
5262 // Check whether the qualifying scope encloses the scope of the original
5263 // declaration. For a template-id, we perform the checks in
5264 // CheckTemplateSpecializationScope.
5265 if (!Cur->Encloses(DC) && !IsTemplateId) {
5266 if (Cur->isRecord())
5267 Diag(Loc, diag::err_member_qualification)
5268 << Name << SS.getRange();
5269 else if (isa<TranslationUnitDecl>(DC))
5270 Diag(Loc, diag::err_invalid_declarator_global_scope)
5271 << Name << SS.getRange();
5272 else if (isa<FunctionDecl>(Cur))
5273 Diag(Loc, diag::err_invalid_declarator_in_function)
5274 << Name << SS.getRange();
5275 else if (isa<BlockDecl>(Cur))
5276 Diag(Loc, diag::err_invalid_declarator_in_block)
5277 << Name << SS.getRange();
5278 else
5279 Diag(Loc, diag::err_invalid_declarator_scope)
5280 << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
5281
5282 return true;
5283 }
5284
5285 if (Cur->isRecord()) {
5286 // Cannot qualify members within a class.
5287 Diag(Loc, diag::err_member_qualification)
5288 << Name << SS.getRange();
5289 SS.clear();
5290
5291 // C++ constructors and destructors with incorrect scopes can break
5292 // our AST invariants by having the wrong underlying types. If
5293 // that's the case, then drop this declaration entirely.
5294 if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
5295 Name.getNameKind() == DeclarationName::CXXDestructorName) &&
5296 !Context.hasSameType(Name.getCXXNameType(),
5297 Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
5298 return true;
5299
5300 return false;
5301 }
5302
5303 // C++11 [dcl.meaning]p1:
5304 // [...] "The nested-name-specifier of the qualified declarator-id shall
5305 // not begin with a decltype-specifer"
5306 NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
5307 while (SpecLoc.getPrefix())
5308 SpecLoc = SpecLoc.getPrefix();
5309 if (dyn_cast_or_null<DecltypeType>(
5310 SpecLoc.getNestedNameSpecifier()->getAsType()))
5311 Diag(Loc, diag::err_decltype_in_declarator)
5312 << SpecLoc.getTypeLoc().getSourceRange();
5313
5314 return false;
5315}
5316
5317NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
5318 MultiTemplateParamsArg TemplateParamLists) {
5319 // TODO: consider using NameInfo for diagnostic.
5320 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5321 DeclarationName Name = NameInfo.getName();
5322
5323 // All of these full declarators require an identifier. If it doesn't have
5324 // one, the ParsedFreeStandingDeclSpec action should be used.
5325 if (D.isDecompositionDeclarator()) {
5326 return ActOnDecompositionDeclarator(S, D, TemplateParamLists);
5327 } else if (!Name) {
5328 if (!D.isInvalidType()) // Reject this if we think it is valid.
5329 Diag(D.getDeclSpec().getBeginLoc(), diag::err_declarator_need_ident)
5330 << D.getDeclSpec().getSourceRange() << D.getSourceRange();
5331 return nullptr;
5332 } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
5333 return nullptr;
5334
5335 // The scope passed in may not be a decl scope. Zip up the scope tree until
5336 // we find one that is.
5337 while ((S->getFlags() & Scope::DeclScope) == 0 ||
5338 (S->getFlags() & Scope::TemplateParamScope) != 0)
5339 S = S->getParent();
5340
5341 DeclContext *DC = CurContext;
5342 if (D.getCXXScopeSpec().isInvalid())
5343 D.setInvalidType();
5344 else if (D.getCXXScopeSpec().isSet()) {
5345 if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
5346 UPPC_DeclarationQualifier))
5347 return nullptr;
5348
5349 bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
5350 DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
5351 if (!DC || isa<EnumDecl>(DC)) {
5352 // If we could not compute the declaration context, it's because the
5353 // declaration context is dependent but does not refer to a class,
5354 // class template, or class template partial specialization. Complain
5355 // and return early, to avoid the coming semantic disaster.
5356 Diag(D.getIdentifierLoc(),
5357 diag::err_template_qualified_declarator_no_match)
5358 << D.getCXXScopeSpec().getScopeRep()
5359 << D.getCXXScopeSpec().getRange();
5360 return nullptr;
5361 }
5362 bool IsDependentContext = DC->isDependentContext();
5363
5364 if (!IsDependentContext &&
5365 RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
5366 return nullptr;
5367
5368 // If a class is incomplete, do not parse entities inside it.
5369 if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
5370 Diag(D.getIdentifierLoc(),
5371 diag::err_member_def_undefined_record)
5372 << Name << DC << D.getCXXScopeSpec().getRange();
5373 return nullptr;
5374 }
5375 if (!D.getDeclSpec().isFriendSpecified()) {
5376 if (diagnoseQualifiedDeclaration(
5377 D.getCXXScopeSpec(), DC, Name, D.getIdentifierLoc(),
5378 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId)) {
5379 if (DC->isRecord())
5380 return nullptr;
5381
5382 D.setInvalidType();
5383 }
5384 }
5385
5386 // Check whether we need to rebuild the type of the given
5387 // declaration in the current instantiation.
5388 if (EnteringContext && IsDependentContext &&
5389 TemplateParamLists.size() != 0) {
5390 ContextRAII SavedContext(*this, DC);
5391 if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
5392 D.setInvalidType();
5393 }
5394 }
5395
5396 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5397 QualType R = TInfo->getType();
5398
5399 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
5400 UPPC_DeclarationType))
5401 D.setInvalidType();
5402
5403 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
5404 forRedeclarationInCurContext());
5405
5406 // See if this is a redefinition of a variable in the same scope.
5407 if (!D.getCXXScopeSpec().isSet()) {
5408 bool IsLinkageLookup = false;
5409 bool CreateBuiltins = false;
5410
5411 // If the declaration we're planning to build will be a function
5412 // or object with linkage, then look for another declaration with
5413 // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
5414 //
5415 // If the declaration we're planning to build will be declared with
5416 // external linkage in the translation unit, create any builtin with
5417 // the same name.
5418 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
5419 /* Do nothing*/;
5420 else if (CurContext->isFunctionOrMethod() &&
5421 (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
5422 R->isFunctionType())) {
5423 IsLinkageLookup = true;
5424 CreateBuiltins =
5425 CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
5426 } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
5427 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
5428 CreateBuiltins = true;
5429
5430 if (IsLinkageLookup) {
5431 Previous.clear(LookupRedeclarationWithLinkage);
5432 Previous.setRedeclarationKind(ForExternalRedeclaration);
5433 }
5434
5435 LookupName(Previous, S, CreateBuiltins);
5436 } else { // Something like "int foo::x;"
5437 LookupQualifiedName(Previous, DC);
5438
5439 // C++ [dcl.meaning]p1:
5440 // When the declarator-id is qualified, the declaration shall refer to a
5441 // previously declared member of the class or namespace to which the
5442 // qualifier refers (or, in the case of a namespace, of an element of the
5443 // inline namespace set of that namespace (7.3.1)) or to a specialization
5444 // thereof; [...]
5445 //
5446 // Note that we already checked the context above, and that we do not have
5447 // enough information to make sure that Previous contains the declaration
5448 // we want to match. For example, given:
5449 //
5450 // class X {
5451 // void f();
5452 // void f(float);
5453 // };
5454 //
5455 // void X::f(int) { } // ill-formed
5456 //
5457 // In this case, Previous will point to the overload set
5458 // containing the two f's declared in X, but neither of them
5459 // matches.
5460
5461 // C++ [dcl.meaning]p1:
5462 // [...] the member shall not merely have been introduced by a
5463 // using-declaration in the scope of the class or namespace nominated by
5464 // the nested-name-specifier of the declarator-id.
5465 RemoveUsingDecls(Previous);
5466 }
5467
5468 if (Previous.isSingleResult() &&
5469 Previous.getFoundDecl()->isTemplateParameter()) {
5470 // Maybe we will complain about the shadowed template parameter.
5471 if (!D.isInvalidType())
5472 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
5473 Previous.getFoundDecl());
5474
5475 // Just pretend that we didn't see the previous declaration.
5476 Previous.clear();
5477 }
5478
5479 if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo))
5480 // Forget that the previous declaration is the injected-class-name.
5481 Previous.clear();
5482
5483 // In C++, the previous declaration we find might be a tag type
5484 // (class or enum). In this case, the new declaration will hide the
5485 // tag type. Note that this applies to functions, function templates, and
5486 // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates.
5487 if (Previous.isSingleTagDecl() &&
5488 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5489 (TemplateParamLists.size() == 0 || R->isFunctionType()))
5490 Previous.clear();
5491
5492 // Check that there are no default arguments other than in the parameters
5493 // of a function declaration (C++ only).
5494 if (getLangOpts().CPlusPlus)
5495 CheckExtraCXXDefaultArguments(D);
5496
5497 NamedDecl *New;
5498
5499 bool AddToScope = true;
5500 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5501 if (TemplateParamLists.size()) {
5502 Diag(D.getIdentifierLoc(), diag::err_template_typedef);
5503 return nullptr;
5504 }
5505
5506 New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
5507 } else if (R->isFunctionType()) {
5508 New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
5509 TemplateParamLists,
5510 AddToScope);
5511 } else {
5512 New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
5513 AddToScope);
5514 }
5515
5516 if (!New)
5517 return nullptr;
5518
5519 // If this has an identifier and is not a function template specialization,
5520 // add it to the scope stack.
5521 if (New->getDeclName() && AddToScope) {
5522 // Only make a locally-scoped extern declaration visible if it is the first
5523 // declaration of this entity. Qualified lookup for such an entity should
5524 // only find this declaration if there is no visible declaration of it.
5525 bool AddToContext = !D.isRedeclaration() || !New->isLocalExternDecl();
5526 PushOnScopeChains(New, S, AddToContext);
5527 if (!AddToContext)
5528 CurContext->addHiddenDecl(New);
5529 }
5530
5531 if (isInOpenMPDeclareTargetContext())
5532 checkDeclIsAllowedInOpenMPTarget(nullptr, New);
5533
5534 return New;
5535}
5536
5537/// Helper method to turn variable array types into constant array
5538/// types in certain situations which would otherwise be errors (for
5539/// GCC compatibility).
5540static QualType TryToFixInvalidVariablyModifiedType(QualType T,
5541 ASTContext &Context,
5542 bool &SizeIsNegative,
5543 llvm::APSInt &Oversized) {
5544 // This method tries to turn a variable array into a constant
5545 // array even when the size isn't an ICE. This is necessary
5546 // for compatibility with code that depends on gcc's buggy
5547 // constant expression folding, like struct {char x[(int)(char*)2];}
5548 SizeIsNegative = false;
5549 Oversized = 0;
5550
5551 if (T->isDependentType())
5552 return QualType();
5553
5554 QualifierCollector Qs;
5555 const Type *Ty = Qs.strip(T);
5556
5557 if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
5558 QualType Pointee = PTy->getPointeeType();
5559 QualType FixedType =
5560 TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
5561 Oversized);
5562 if (FixedType.isNull()) return FixedType;
5563 FixedType = Context.getPointerType(FixedType);
5564 return Qs.apply(Context, FixedType);
5565 }
5566 if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
5567 QualType Inner = PTy->getInnerType();
5568 QualType FixedType =
5569 TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
5570 Oversized);
5571 if (FixedType.isNull()) return FixedType;
5572 FixedType = Context.getParenType(FixedType);
5573 return Qs.apply(Context, FixedType);
5574 }
5575
5576 const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
5577 if (!VLATy)
5578 return QualType();
5579 // FIXME: We should probably handle this case
5580 if (VLATy->getElementType()->isVariablyModifiedType())
5581 return QualType();
5582
5583 Expr::EvalResult Result;
5584 if (!VLATy->getSizeExpr() ||
5585 !VLATy->getSizeExpr()->EvaluateAsInt(Result, Context))
5586 return QualType();
5587
5588 llvm::APSInt Res = Result.Val.getInt();
5589
5590 // Check whether the array size is negative.
5591 if (Res.isSigned() && Res.isNegative()) {
5592 SizeIsNegative = true;
5593 return QualType();
5594 }
5595
5596 // Check whether the array is too large to be addressed.
5597 unsigned ActiveSizeBits
5598 = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
5599 Res);
5600 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
5601 Oversized = Res;
5602 return QualType();
5603 }
5604
5605 return Context.getConstantArrayType(VLATy->getElementType(),
5606 Res, ArrayType::Normal, 0);
5607}
5608
5609static void
5610FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
5611 SrcTL = SrcTL.getUnqualifiedLoc();
5612 DstTL = DstTL.getUnqualifiedLoc();
5613 if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
5614 PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
5615 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
5616 DstPTL.getPointeeLoc());
5617 DstPTL.setStarLoc(SrcPTL.getStarLoc());
5618 return;
5619 }
5620 if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
5621 ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
5622 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
5623 DstPTL.getInnerLoc());
5624 DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
5625 DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
5626 return;
5627 }
5628 ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
5629 ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
5630 TypeLoc SrcElemTL = SrcATL.getElementLoc();
5631 TypeLoc DstElemTL = DstATL.getElementLoc();
5632 DstElemTL.initializeFullCopy(SrcElemTL);
5633 DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
5634 DstATL.setSizeExpr(SrcATL.getSizeExpr());
5635 DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
5636}
5637
5638/// Helper method to turn variable array types into constant array
5639/// types in certain situations which would otherwise be errors (for
5640/// GCC compatibility).
5641static TypeSourceInfo*
5642TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
5643 ASTContext &Context,
5644 bool &SizeIsNegative,
5645 llvm::APSInt &Oversized) {
5646 QualType FixedTy
5647 = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
5648 SizeIsNegative, Oversized);
5649 if (FixedTy.isNull())
5650 return nullptr;
5651 TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
5652 FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
5653 FixedTInfo->getTypeLoc());
5654 return FixedTInfo;
5655}
5656
5657/// Register the given locally-scoped extern "C" declaration so
5658/// that it can be found later for redeclarations. We include any extern "C"
5659/// declaration that is not visible in the translation unit here, not just
5660/// function-scope declarations.
5661void
5662Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
5663 if (!getLangOpts().CPlusPlus &&
5664 ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
5665 // Don't need to track declarations in the TU in C.
5666 return;
5667
5668 // Note that we have a locally-scoped external with this name.
5669 Context.getExternCContextDecl()->makeDeclVisibleInContext(ND);
5670}
5671
5672NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
5673 // FIXME: We can have multiple results via __attribute__((overloadable)).
5674 auto Result = Context.getExternCContextDecl()->lookup(Name);
5675 return Result.empty() ? nullptr : *Result.begin();
5676}
5677
5678/// Diagnose function specifiers on a declaration of an identifier that
5679/// does not identify a function.
5680void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
5681 // FIXME: We should probably indicate the identifier in question to avoid
5682 // confusion for constructs like "virtual int a(), b;"
5683 if (DS.isVirtualSpecified())
5684 Diag(DS.getVirtualSpecLoc(),
5685 diag::err_virtual_non_function);
5686
5687 if (DS.isExplicitSpecified())
5688 Diag(DS.getExplicitSpecLoc(),
5689 diag::err_explicit_non_function);
5690
5691 if (DS.isNoreturnSpecified())
5692 Diag(DS.getNoreturnSpecLoc(),
5693 diag::err_noreturn_non_function);
5694}
5695
5696NamedDecl*
5697Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
5698 TypeSourceInfo *TInfo, LookupResult &Previous) {
5699 // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
5700 if (D.getCXXScopeSpec().isSet()) {
5701 Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
5702 << D.getCXXScopeSpec().getRange();
5703 D.setInvalidType();
5704 // Pretend we didn't see the scope specifier.
5705 DC = CurContext;
5706 Previous.clear();
5707 }
5708
5709 DiagnoseFunctionSpecifiers(D.getDeclSpec());
5710
5711 if (D.getDeclSpec().isInlineSpecified())
5712 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
5713 << getLangOpts().CPlusPlus17;
5714 if (D.getDeclSpec().isConstexprSpecified())
5715 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
5716 << 1;
5717
5718 if (D.getName().Kind != UnqualifiedIdKind::IK_Identifier) {
5719 if (D.getName().Kind == UnqualifiedIdKind::IK_DeductionGuideName)
5720 Diag(D.getName().StartLocation,
5721 diag::err_deduction_guide_invalid_specifier)
5722 << "typedef";
5723 else
5724 Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
5725 << D.getName().getSourceRange();
5726 return nullptr;
5727 }
5728
5729 TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
5730 if (!NewTD) return nullptr;
5731
5732 // Handle attributes prior to checking for duplicates in MergeVarDecl
5733 ProcessDeclAttributes(S, NewTD, D);
5734
5735 CheckTypedefForVariablyModifiedType(S, NewTD);
5736
5737 bool Redeclaration = D.isRedeclaration();
5738 NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
5739 D.setRedeclaration(Redeclaration);
5740 return ND;
5741}
5742
5743void
5744Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
5745 // C99 6.7.7p2: If a typedef name specifies a variably modified type
5746 // then it shall have block scope.
5747 // Note that variably modified types must be fixed before merging the decl so
5748 // that redeclarations will match.
5749 TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
5750 QualType T = TInfo->getType();
5751 if (T->isVariablyModifiedType()) {
5752 setFunctionHasBranchProtectedScope();
5753
5754 if (S->getFnParent() == nullptr) {
5755 bool SizeIsNegative;
5756 llvm::APSInt Oversized;
5757 TypeSourceInfo *FixedTInfo =
5758 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
5759 SizeIsNegative,
5760 Oversized);
5761 if (FixedTInfo) {
5762 Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
5763 NewTD->setTypeSourceInfo(FixedTInfo);
5764 } else {
5765 if (SizeIsNegative)
5766 Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
5767 else if (T->isVariableArrayType())
5768 Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
5769 else if (Oversized.getBoolValue())
5770 Diag(NewTD->getLocation(), diag::err_array_too_large)
5771 << Oversized.toString(10);
5772 else
5773 Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
5774 NewTD->setInvalidDecl();
5775 }
5776 }
5777 }
5778}
5779
5780/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
5781/// declares a typedef-name, either using the 'typedef' type specifier or via
5782/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
5783NamedDecl*
5784Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
5785 LookupResult &Previous, bool &Redeclaration) {
5786
5787 // Find the shadowed declaration before filtering for scope.
5788 NamedDecl *ShadowedDecl = getShadowedDeclaration(NewTD, Previous);
5789
5790 // Merge the decl with the existing one if appropriate. If the decl is
5791 // in an outer scope, it isn't the same thing.
5792 FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
5793 /*AllowInlineNamespace*/false);
5794 filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous);
5795 if (!Previous.empty()) {
5796 Redeclaration = true;
5797 MergeTypedefNameDecl(S, NewTD, Previous);
5798 }
5799
5800 if (ShadowedDecl && !Redeclaration)
5801 CheckShadow(NewTD, ShadowedDecl, Previous);
5802
5803 // If this is the C FILE type, notify the AST context.
5804 if (IdentifierInfo *II = NewTD->getIdentifier())
5805 if (!NewTD->isInvalidDecl() &&
5806 NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5807 if (II->isStr("FILE"))
5808 Context.setFILEDecl(NewTD);
5809 else if (II->isStr("jmp_buf"))
5810 Context.setjmp_bufDecl(NewTD);
5811 else if (II->isStr("sigjmp_buf"))
5812 Context.setsigjmp_bufDecl(NewTD);
5813 else if (II->isStr("ucontext_t"))
5814 Context.setucontext_tDecl(NewTD);
5815 }
5816
5817 return NewTD;
5818}
5819
5820/// Determines whether the given declaration is an out-of-scope
5821/// previous declaration.
5822///
5823/// This routine should be invoked when name lookup has found a
5824/// previous declaration (PrevDecl) that is not in the scope where a
5825/// new declaration by the same name is being introduced. If the new
5826/// declaration occurs in a local scope, previous declarations with
5827/// linkage may still be considered previous declarations (C99
5828/// 6.2.2p4-5, C++ [basic.link]p6).
5829///
5830/// \param PrevDecl the previous declaration found by name
5831/// lookup
5832///
5833/// \param DC the context in which the new declaration is being
5834/// declared.
5835///
5836/// \returns true if PrevDecl is an out-of-scope previous declaration
5837/// for a new delcaration with the same name.
5838static bool
5839isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
5840 ASTContext &Context) {
5841 if (!PrevDecl)
5842 return false;
5843
5844 if (!PrevDecl->hasLinkage())
5845 return false;
5846
5847 if (Context.getLangOpts().CPlusPlus) {
5848 // C++ [basic.link]p6:
5849 // If there is a visible declaration of an entity with linkage
5850 // having the same name and type, ignoring entities declared
5851 // outside the innermost enclosing namespace scope, the block
5852 // scope declaration declares that same entity and receives the
5853 // linkage of the previous declaration.
5854 DeclContext *OuterContext = DC->getRedeclContext();
5855 if (!OuterContext->isFunctionOrMethod())
5856 // This rule only applies to block-scope declarations.
5857 return false;
5858
5859 DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
5860 if (PrevOuterContext->isRecord())
5861 // We found a member function: ignore it.
5862 return false;
5863
5864 // Find the innermost enclosing namespace for the new and
5865 // previous declarations.
5866 OuterContext = OuterContext->getEnclosingNamespaceContext();
5867 PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
5868
5869 // The previous declaration is in a different namespace, so it
5870 // isn't the same function.
5871 if (!OuterContext->Equals(PrevOuterContext))
5872 return false;
5873 }
5874
5875 return true;
5876}
5877
5878static void SetNestedNameSpecifier(Sema &S, DeclaratorDecl *DD, Declarator &D) {
5879 CXXScopeSpec &SS = D.getCXXScopeSpec();
5880 if (!SS.isSet()) return;
5881 DD->setQualifierInfo(SS.getWithLocInContext(S.Context));
5882}
5883
5884bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
5885 QualType type = decl->getType();
5886 Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
5887 if (lifetime == Qualifiers::OCL_Autoreleasing) {
5888 // Various kinds of declaration aren't allowed to be __autoreleasing.
5889 unsigned kind = -1U;
5890 if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5891 if (var->hasAttr<BlocksAttr>())
5892 kind = 0; // __block
5893 else if (!var->hasLocalStorage())
5894 kind = 1; // global
5895 } else if (isa<ObjCIvarDecl>(decl)) {
5896 kind = 3; // ivar
5897 } else if (isa<FieldDecl>(decl)) {
5898 kind = 2; // field
5899 }
5900
5901 if (kind != -1U) {
5902 Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
5903 << kind;
5904 }
5905 } else if (lifetime == Qualifiers::OCL_None) {
5906 // Try to infer lifetime.
5907 if (!type->isObjCLifetimeType())
5908 return false;
5909
5910 lifetime = type->getObjCARCImplicitLifetime();
5911 type = Context.getLifetimeQualifiedType(type, lifetime);
5912 decl->setType(type);
5913 }
5914
5915 if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
5916 // Thread-local variables cannot have lifetime.
5917 if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
5918 var->getTLSKind()) {
5919 Diag(var->getLocation(), diag::err_arc_thread_ownership)
5920 << var->getType();
5921 return true;
5922 }
5923 }
5924
5925 return false;
5926}
5927
5928static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
5929 // Ensure that an auto decl is deduced otherwise the checks below might cache
5930 // the wrong linkage.
5931 assert(S.ParsingInitForAutoVars.count(&ND) == 0)((S.ParsingInitForAutoVars.count(&ND) == 0) ? static_cast
<void> (0) : __assert_fail ("S.ParsingInitForAutoVars.count(&ND) == 0"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 5931, __PRETTY_FUNCTION__))
;
5932
5933 // 'weak' only applies to declarations with external linkage.
5934 if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
5935 if (!ND.isExternallyVisible()) {
5936 S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
5937 ND.dropAttr<WeakAttr>();
5938 }
5939 }
5940 if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
5941 if (ND.isExternallyVisible()) {
5942 S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
5943 ND.dropAttr<WeakRefAttr>();
5944 ND.dropAttr<AliasAttr>();
5945 }
5946 }
5947
5948 if (auto *VD = dyn_cast<VarDecl>(&ND)) {
5949 if (VD->hasInit()) {
5950 if (const auto *Attr = VD->getAttr<AliasAttr>()) {
5951 assert(VD->isThisDeclarationADefinition() &&((VD->isThisDeclarationADefinition() && !VD->isExternallyVisible
() && "Broken AliasAttr handled late!") ? static_cast
<void> (0) : __assert_fail ("VD->isThisDeclarationADefinition() && !VD->isExternallyVisible() && \"Broken AliasAttr handled late!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 5952, __PRETTY_FUNCTION__))
5952 !VD->isExternallyVisible() && "Broken AliasAttr handled late!")((VD->isThisDeclarationADefinition() && !VD->isExternallyVisible
() && "Broken AliasAttr handled late!") ? static_cast
<void> (0) : __assert_fail ("VD->isThisDeclarationADefinition() && !VD->isExternallyVisible() && \"Broken AliasAttr handled late!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 5952, __PRETTY_FUNCTION__))
;
5953 S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0;
5954 VD->dropAttr<AliasAttr>();
5955 }
5956 }
5957 }
5958
5959 // 'selectany' only applies to externally visible variable declarations.
5960 // It does not apply to functions.
5961 if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
5962 if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
5963 S.Diag(Attr->getLocation(),
5964 diag::err_attribute_selectany_non_extern_data);
5965 ND.dropAttr<SelectAnyAttr>();
5966 }
5967 }
5968
5969 if (const InheritableAttr *Attr = getDLLAttr(&ND)) {
5970 // dll attributes require external linkage. Static locals may have external
5971 // linkage but still cannot be explicitly imported or exported.
5972 auto *VD = dyn_cast<VarDecl>(&ND);
5973 if (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())) {
5974 S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
5975 << &ND << Attr;
5976 ND.setInvalidDecl();
5977 }
5978 }
5979
5980 // Virtual functions cannot be marked as 'notail'.
5981 if (auto *Attr = ND.getAttr<NotTailCalledAttr>())
5982 if (auto *MD = dyn_cast<CXXMethodDecl>(&ND))
5983 if (MD->isVirtual()) {
5984 S.Diag(ND.getLocation(),
5985 diag::err_invalid_attribute_on_virtual_function)
5986 << Attr;
5987 ND.dropAttr<NotTailCalledAttr>();
5988 }
5989
5990 // Check the attributes on the function type, if any.
5991 if (const auto *FD = dyn_cast<FunctionDecl>(&ND)) {
5992 // Don't declare this variable in the second operand of the for-statement;
5993 // GCC miscompiles that by ending its lifetime before evaluating the
5994 // third operand. See gcc.gnu.org/PR86769.
5995 AttributedTypeLoc ATL;
5996 for (TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc();
5997 (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
5998 TL = ATL.getModifiedLoc()) {
5999 // The [[lifetimebound]] attribute can be applied to the implicit object
6000 // parameter of a non-static member function (other than a ctor or dtor)
6001 // by applying it to the function type.
6002 if (const auto *A = ATL.getAttrAs<LifetimeBoundAttr>()) {
6003 const auto *MD = dyn_cast<CXXMethodDecl>(FD);
6004 if (!MD || MD->isStatic()) {
6005 S.Diag(A->getLocation(), diag::err_lifetimebound_no_object_param)
6006 << !MD << A->getRange();
6007 } else if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) {
6008 S.Diag(A->getLocation(), diag::err_lifetimebound_ctor_dtor)
6009 << isa<CXXDestructorDecl>(MD) << A->getRange();
6010 }
6011 }
6012 }
6013 }
6014}
6015
6016static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
6017 NamedDecl *NewDecl,
6018 bool IsSpecialization,
6019 bool IsDefinition) {
6020 if (OldDecl->isInvalidDecl() || NewDecl->isInvalidDecl())
6021 return;
6022
6023 bool IsTemplate = false;
6024 if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) {
6025 OldDecl = OldTD->getTemplatedDecl();
6026 IsTemplate = true;
6027 if (!IsSpecialization)
6028 IsDefinition = false;
6029 }
6030 if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) {
6031 NewDecl = NewTD->getTemplatedDecl();
6032 IsTemplate = true;
6033 }
6034
6035 if (!OldDecl || !NewDecl)
6036 return;
6037
6038 const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
6039 const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
6040 const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
6041 const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
6042
6043 // dllimport and dllexport are inheritable attributes so we have to exclude
6044 // inherited attribute instances.
6045 bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
6046 (NewExportAttr && !NewExportAttr->isInherited());
6047
6048 // A redeclaration is not allowed to add a dllimport or dllexport attribute,
6049 // the only exception being explicit specializations.
6050 // Implicitly generated declarations are also excluded for now because there
6051 // is no other way to switch these to use dllimport or dllexport.
6052 bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
6053
6054 if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
6055 // Allow with a warning for free functions and global variables.
6056 bool JustWarn = false;
6057 if (!OldDecl->isCXXClassMember()) {
6058 auto *VD = dyn_cast<VarDecl>(OldDecl);
6059 if (VD && !VD->getDescribedVarTemplate())
6060 JustWarn = true;
6061 auto *FD = dyn_cast<FunctionDecl>(OldDecl);
6062 if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate)
6063 JustWarn = true;
6064 }
6065
6066 // We cannot change a declaration that's been used because IR has already
6067 // been emitted. Dllimported functions will still work though (modulo
6068 // address equality) as they can use the thunk.
6069 if (OldDecl->isUsed())
6070 if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr)
6071 JustWarn = false;
6072
6073 unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration
6074 : diag::err_attribute_dll_redeclaration;
6075 S.Diag(NewDecl->getLocation(), DiagID)
6076 << NewDecl
6077 << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
6078 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6079 if (!JustWarn) {
6080 NewDecl->setInvalidDecl();
6081 return;
6082 }
6083 }
6084
6085 // A redeclaration is not allowed to drop a dllimport attribute, the only
6086 // exceptions being inline function definitions (except for function
6087 // templates), local extern declarations, qualified friend declarations or
6088 // special MSVC extension: in the last case, the declaration is treated as if
6089 // it were marked dllexport.
6090 bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false;
6091 bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft();
6092 if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) {
6093 // Ignore static data because out-of-line definitions are diagnosed
6094 // separately.
6095 IsStaticDataMember = VD->isStaticDataMember();
6096 IsDefinition = VD->isThisDeclarationADefinition(S.Context) !=
6097 VarDecl::DeclarationOnly;
6098 } else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) {
6099 IsInline = FD->isInlined();
6100 IsQualifiedFriend = FD->getQualifier() &&
6101 FD->getFriendObjectKind() == Decl::FOK_Declared;
6102 }
6103
6104 if (OldImportAttr && !HasNewAttr &&
6105 (!IsInline || (IsMicrosoft && IsTemplate)) && !IsStaticDataMember &&
6106 !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) {
6107 if (IsMicrosoft && IsDefinition) {
6108 S.Diag(NewDecl->getLocation(),
6109 diag::warn_redeclaration_without_import_attribute)
6110 << NewDecl;
6111 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6112 NewDecl->dropAttr<DLLImportAttr>();
6113 NewDecl->addAttr(::new (S.Context) DLLExportAttr(
6114 NewImportAttr->getRange(), S.Context,
6115 NewImportAttr->getSpellingListIndex()));
6116 } else {
6117 S.Diag(NewDecl->getLocation(),
6118 diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6119 << NewDecl << OldImportAttr;
6120 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6121 S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
6122 OldDecl->dropAttr<DLLImportAttr>();
6123 NewDecl->dropAttr<DLLImportAttr>();
6124 }
6125 } else if (IsInline && OldImportAttr && !IsMicrosoft) {
6126 // In MinGW, seeing a function declared inline drops the dllimport
6127 // attribute.
6128 OldDecl->dropAttr<DLLImportAttr>();
6129 NewDecl->dropAttr<DLLImportAttr>();
6130 S.Diag(NewDecl->getLocation(),
6131 diag::warn_dllimport_dropped_from_inline_function)
6132 << NewDecl << OldImportAttr;
6133 }
6134
6135 // A specialization of a class template member function is processed here
6136 // since it's a redeclaration. If the parent class is dllexport, the
6137 // specialization inherits that attribute. This doesn't happen automatically
6138 // since the parent class isn't instantiated until later.
6139 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDecl)) {
6140 if (MD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization &&
6141 !NewImportAttr && !NewExportAttr) {
6142 if (const DLLExportAttr *ParentExportAttr =
6143 MD->getParent()->getAttr<DLLExportAttr>()) {
6144 DLLExportAttr *NewAttr = ParentExportAttr->clone(S.Context);
6145 NewAttr->setInherited(true);
6146 NewDecl->addAttr(NewAttr);
6147 }
6148 }
6149 }
6150}
6151
6152/// Given that we are within the definition of the given function,
6153/// will that definition behave like C99's 'inline', where the
6154/// definition is discarded except for optimization purposes?
6155static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
6156 // Try to avoid calling GetGVALinkageForFunction.
6157
6158 // All cases of this require the 'inline' keyword.
6159 if (!FD->isInlined()) return false;
6160
6161 // This is only possible in C++ with the gnu_inline attribute.
6162 if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
6163 return false;
6164
6165 // Okay, go ahead and call the relatively-more-expensive function.
6166 return S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally;
6167}
6168
6169/// Determine whether a variable is extern "C" prior to attaching
6170/// an initializer. We can't just call isExternC() here, because that
6171/// will also compute and cache whether the declaration is externally
6172/// visible, which might change when we attach the initializer.
6173///
6174/// This can only be used if the declaration is known to not be a
6175/// redeclaration of an internal linkage declaration.
6176///
6177/// For instance:
6178///
6179/// auto x = []{};
6180///
6181/// Attaching the initializer here makes this declaration not externally
6182/// visible, because its type has internal linkage.
6183///
6184/// FIXME: This is a hack.
6185template<typename T>
6186static bool isIncompleteDeclExternC(Sema &S, const T *D) {
6187 if (S.getLangOpts().CPlusPlus) {
6188 // In C++, the overloadable attribute negates the effects of extern "C".
6189 if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
6190 return false;
6191
6192 // So do CUDA's host/device attributes.
6193 if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() ||
6194 D->template hasAttr<CUDAHostAttr>()))
6195 return false;
6196 }
6197 return D->isExternC();
6198}
6199
6200static bool shouldConsiderLinkage(const VarDecl *VD) {
6201 const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
6202 if (DC->isFunctionOrMethod() || isa<OMPDeclareReductionDecl>(DC))
6203 return VD->hasExternalStorage();
6204 if (DC->isFileContext())
6205 return true;
6206 if (DC->isRecord())
6207 return false;
6208 llvm_unreachable("Unexpected context")::llvm::llvm_unreachable_internal("Unexpected context", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 6208)
;
6209}
6210
6211static bool shouldConsiderLinkage(const FunctionDecl *FD) {
6212 const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
6213 if (DC->isFileContext() || DC->isFunctionOrMethod() ||
6214 isa<OMPDeclareReductionDecl>(DC))
6215 return true;
6216 if (DC->isRecord())
6217 return false;
6218 llvm_unreachable("Unexpected context")::llvm::llvm_unreachable_internal("Unexpected context", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 6218)
;
6219}
6220
6221static bool hasParsedAttr(Scope *S, const Declarator &PD,
6222 ParsedAttr::Kind Kind) {
6223 // Check decl attributes on the DeclSpec.
6224 if (PD.getDeclSpec().getAttributes().hasAttribute(Kind))
6225 return true;
6226
6227 // Walk the declarator structure, checking decl attributes that were in a type
6228 // position to the decl itself.
6229 for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
6230 if (PD.getTypeObject(I).getAttrs().hasAttribute(Kind))
6231 return true;
6232 }
6233
6234 // Finally, check attributes on the decl itself.
6235 return PD.getAttributes().hasAttribute(Kind);
6236}
6237
6238/// Adjust the \c DeclContext for a function or variable that might be a
6239/// function-local external declaration.
6240bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
6241 if (!DC->isFunctionOrMethod())
6242 return false;
6243
6244 // If this is a local extern function or variable declared within a function
6245 // template, don't add it into the enclosing namespace scope until it is
6246 // instantiated; it might have a dependent type right now.
6247 if (DC->isDependentContext())
6248 return true;
6249
6250 // C++11 [basic.link]p7:
6251 // When a block scope declaration of an entity with linkage is not found to
6252 // refer to some other declaration, then that entity is a member of the
6253 // innermost enclosing namespace.
6254 //
6255 // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
6256 // semantically-enclosing namespace, not a lexically-enclosing one.
6257 while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
6258 DC = DC->getParent();
6259 return true;
6260}
6261
6262/// Returns true if given declaration has external C language linkage.
6263static bool isDeclExternC(const Decl *D) {
6264 if (const auto *FD = dyn_cast<FunctionDecl>(D))
6265 return FD->isExternC();
6266 if (const auto *VD = dyn_cast<VarDecl>(D))
6267 return VD->isExternC();
6268
6269 llvm_unreachable("Unknown type of decl!")::llvm::llvm_unreachable_internal("Unknown type of decl!", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 6269)
;
6270}
6271
6272NamedDecl *Sema::ActOnVariableDeclarator(
6273 Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo,
6274 LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists,
6275 bool &AddToScope, ArrayRef<BindingDecl *> Bindings) {
6276 QualType R = TInfo->getType();
6277 DeclarationName Name = GetNameForDeclarator(D).getName();
6278
6279 IdentifierInfo *II = Name.getAsIdentifierInfo();
6280
6281 if (D.isDecompositionDeclarator()) {
6282 // Take the name of the first declarator as our name for diagnostic
6283 // purposes.
6284 auto &Decomp = D.getDecompositionDeclarator();
6285 if (!Decomp.bindings().empty()) {
6286 II = Decomp.bindings()[0].Name;
6287 Name = II;
6288 }
6289 } else if (!II) {
6290 Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) << Name;
6291 return nullptr;
6292 }
6293
6294 if (getLangOpts().OpenCL) {
6295 // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument.
6296 // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function
6297 // argument.
6298 if (R->isImageType() || R->isPipeType()) {
6299 Diag(D.getIdentifierLoc(),
6300 diag::err_opencl_type_can_only_be_used_as_function_parameter)
6301 << R;
6302 D.setInvalidType();
6303 return nullptr;
6304 }
6305
6306 // OpenCL v1.2 s6.9.r:
6307 // The event type cannot be used to declare a program scope variable.
6308 // OpenCL v2.0 s6.9.q:
6309 // The clk_event_t and reserve_id_t types cannot be declared in program scope.
6310 if (NULL__null == S->getParent()) {
6311 if (R->isReserveIDT() || R->isClkEventT() || R->isEventT()) {
6312 Diag(D.getIdentifierLoc(),
6313 diag::err_invalid_type_for_program_scope_var) << R;
6314 D.setInvalidType();
6315 return nullptr;
6316 }
6317 }
6318
6319 // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
6320 QualType NR = R;
6321 while (NR->isPointerType()) {
6322 if (NR->isFunctionPointerType()) {
6323 Diag(D.getIdentifierLoc(), diag::err_opencl_function_pointer);
6324 D.setInvalidType();
6325 break;
6326 }
6327 NR = NR->getPointeeType();
6328 }
6329
6330 if (!getOpenCLOptions().isEnabled("cl_khr_fp16")) {
6331 // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
6332 // half array type (unless the cl_khr_fp16 extension is enabled).
6333 if (Context.getBaseElementType(R)->isHalfType()) {
6334 Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
6335 D.setInvalidType();
6336 }
6337 }
6338
6339 if (R->isSamplerT()) {
6340 // OpenCL v1.2 s6.9.b p4:
6341 // The sampler type cannot be used with the __local and __global address
6342 // space qualifiers.
6343 if (R.getAddressSpace() == LangAS::opencl_local ||
6344 R.getAddressSpace() == LangAS::opencl_global) {
6345 Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
6346 }
6347
6348 // OpenCL v1.2 s6.12.14.1:
6349 // A global sampler must be declared with either the constant address
6350 // space qualifier or with the const qualifier.
6351 if (DC->isTranslationUnit() &&
6352 !(R.getAddressSpace() == LangAS::opencl_constant ||
6353 R.isConstQualified())) {
6354 Diag(D.getIdentifierLoc(), diag::err_opencl_nonconst_global_sampler);
6355 D.setInvalidType();
6356 }
6357 }
6358
6359 // OpenCL v1.2 s6.9.r:
6360 // The event type cannot be used with the __local, __constant and __global
6361 // address space qualifiers.
6362 if (R->isEventT()) {
6363 if (R.getAddressSpace() != LangAS::opencl_private) {
6364 Diag(D.getBeginLoc(), diag::err_event_t_addr_space_qual);
6365 D.setInvalidType();
6366 }
6367 }
6368
6369 // OpenCL C++ 1.0 s2.9: the thread_local storage qualifier is not
6370 // supported. OpenCL C does not support thread_local either, and
6371 // also reject all other thread storage class specifiers.
6372 DeclSpec::TSCS TSC = D.getDeclSpec().getThreadStorageClassSpec();
6373 if (TSC != TSCS_unspecified) {
6374 bool IsCXX = getLangOpts().OpenCLCPlusPlus;
6375 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6376 diag::err_opencl_unknown_type_specifier)
6377 << IsCXX << getLangOpts().getOpenCLVersionTuple().getAsString()
6378 << DeclSpec::getSpecifierName(TSC) << 1;
6379 D.setInvalidType();
6380 return nullptr;
6381 }
6382 }
6383
6384 DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
6385 StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
6386
6387 // dllimport globals without explicit storage class are treated as extern. We
6388 // have to change the storage class this early to get the right DeclContext.
6389 if (SC == SC_None && !DC->isRecord() &&
6390 hasParsedAttr(S, D, ParsedAttr::AT_DLLImport) &&
6391 !hasParsedAttr(S, D, ParsedAttr::AT_DLLExport))
6392 SC = SC_Extern;
6393
6394 DeclContext *OriginalDC = DC;
6395 bool IsLocalExternDecl = SC == SC_Extern &&
6396 adjustContextForLocalExternDecl(DC);
6397
6398 if (SCSpec == DeclSpec::SCS_mutable) {
6399 // mutable can only appear on non-static class members, so it's always
6400 // an error here
6401 Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
6402 D.setInvalidType();
6403 SC = SC_None;
6404 }
6405
6406 if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
6407 !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
6408 D.getDeclSpec().getStorageClassSpecLoc())) {
6409 // In C++11, the 'register' storage class specifier is deprecated.
6410 // Suppress the warning in system macros, it's used in macros in some
6411 // popular C system headers, such as in glibc's htonl() macro.
6412 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6413 getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
6414 : diag::warn_deprecated_register)
6415 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6416 }
6417
6418 DiagnoseFunctionSpecifiers(D.getDeclSpec());
6419
6420 if (!DC->isRecord() && S->getFnParent() == nullptr) {
6421 // C99 6.9p2: The storage-class specifiers auto and register shall not
6422 // appear in the declaration specifiers in an external declaration.
6423 // Global Register+Asm is a GNU extension we support.
6424 if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
6425 Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
6426 D.setInvalidType();
6427 }
6428 }
6429
6430 bool IsMemberSpecialization = false;
6431 bool IsVariableTemplateSpecialization = false;
6432 bool IsPartialSpecialization = false;
6433 bool IsVariableTemplate = false;
6434 VarDecl *NewVD = nullptr;
6435 VarTemplateDecl *NewTemplate = nullptr;
6436 TemplateParameterList *TemplateParams = nullptr;
6437 if (!getLangOpts().CPlusPlus) {
6438 NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), D.getIdentifierLoc(),
6439 II, R, TInfo, SC);
6440
6441 if (R->getContainedDeducedType())
6442 ParsingInitForAutoVars.insert(NewVD);
6443
6444 if (D.isInvalidType())
6445 NewVD->setInvalidDecl();
6446 } else {
6447 bool Invalid = false;
6448
6449 if (DC->isRecord() && !CurContext->isRecord()) {
6450 // This is an out-of-line definition of a static data member.
6451 switch (SC) {
6452 case SC_None:
6453 break;
6454 case SC_Static:
6455 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6456 diag::err_static_out_of_line)
6457 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6458 break;
6459 case SC_Auto:
6460 case SC_Register:
6461 case SC_Extern:
6462 // [dcl.stc] p2: The auto or register specifiers shall be applied only
6463 // to names of variables declared in a block or to function parameters.
6464 // [dcl.stc] p6: The extern specifier cannot be used in the declaration
6465 // of class members
6466
6467 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6468 diag::err_storage_class_for_static_member)
6469 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6470 break;
6471 case SC_PrivateExtern:
6472 llvm_unreachable("C storage class in c++!")::llvm::llvm_unreachable_internal("C storage class in c++!", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 6472)
;
6473 }
6474 }
6475
6476 if (SC == SC_Static && CurContext->isRecord()) {
6477 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
6478 if (RD->isLocalClass())
6479 Diag(D.getIdentifierLoc(),
6480 diag::err_static_data_member_not_allowed_in_local_class)
6481 << Name << RD->getDeclName();
6482
6483 // C++98 [class.union]p1: If a union contains a static data member,
6484 // the program is ill-formed. C++11 drops this restriction.
6485 if (RD->isUnion())
6486 Diag(D.getIdentifierLoc(),
6487 getLangOpts().CPlusPlus11
6488 ? diag::warn_cxx98_compat_static_data_member_in_union
6489 : diag::ext_static_data_member_in_union) << Name;
6490 // We conservatively disallow static data members in anonymous structs.
6491 else if (!RD->getDeclName())
6492 Diag(D.getIdentifierLoc(),
6493 diag::err_static_data_member_not_allowed_in_anon_struct)
6494 << Name << RD->isUnion();
6495 }
6496 }
6497
6498 // Match up the template parameter lists with the scope specifier, then
6499 // determine whether we have a template or a template specialization.
6500 TemplateParams = MatchTemplateParametersToScopeSpecifier(
6501 D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
6502 D.getCXXScopeSpec(),
6503 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
6504 ? D.getName().TemplateId
6505 : nullptr,
6506 TemplateParamLists,
6507 /*never a friend*/ false, IsMemberSpecialization, Invalid);
6508
6509 if (TemplateParams) {
6510 if (!TemplateParams->size() &&
6511 D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
6512 // There is an extraneous 'template<>' for this variable. Complain
6513 // about it, but allow the declaration of the variable.
6514 Diag(TemplateParams->getTemplateLoc(),
6515 diag::err_template_variable_noparams)
6516 << II
6517 << SourceRange(TemplateParams->getTemplateLoc(),
6518 TemplateParams->getRAngleLoc());
6519 TemplateParams = nullptr;
6520 } else {
6521 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
6522 // This is an explicit specialization or a partial specialization.
6523 // FIXME: Check that we can declare a specialization here.
6524 IsVariableTemplateSpecialization = true;
6525 IsPartialSpecialization = TemplateParams->size() > 0;
6526 } else { // if (TemplateParams->size() > 0)
6527 // This is a template declaration.
6528 IsVariableTemplate = true;
6529
6530 // Check that we can declare a template here.
6531 if (CheckTemplateDeclScope(S, TemplateParams))
6532 return nullptr;
6533
6534 // Only C++1y supports variable templates (N3651).
6535 Diag(D.getIdentifierLoc(),
6536 getLangOpts().CPlusPlus14
6537 ? diag::warn_cxx11_compat_variable_template
6538 : diag::ext_variable_template);
6539 }
6540 }
6541 } else {
6542 assert((Invalid ||(((Invalid || D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId
) && "should have a 'template<>' for this decl"
) ? static_cast<void> (0) : __assert_fail ("(Invalid || D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) && \"should have a 'template<>' for this decl\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 6544, __PRETTY_FUNCTION__))
6543 D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) &&(((Invalid || D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId
) && "should have a 'template<>' for this decl"
) ? static_cast<void> (0) : __assert_fail ("(Invalid || D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) && \"should have a 'template<>' for this decl\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 6544, __PRETTY_FUNCTION__))
6544 "should have a 'template<>' for this decl")(((Invalid || D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId
) && "should have a 'template<>' for this decl"
) ? static_cast<void> (0) : __assert_fail ("(Invalid || D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) && \"should have a 'template<>' for this decl\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 6544, __PRETTY_FUNCTION__))
;
6545 }
6546
6547 if (IsVariableTemplateSpecialization) {
6548 SourceLocation TemplateKWLoc =
6549 TemplateParamLists.size() > 0
6550 ? TemplateParamLists[0]->getTemplateLoc()
6551 : SourceLocation();
6552 DeclResult Res = ActOnVarTemplateSpecialization(
6553 S, D, TInfo, TemplateKWLoc, TemplateParams, SC,
6554 IsPartialSpecialization);
6555 if (Res.isInvalid())
6556 return nullptr;
6557 NewVD = cast<VarDecl>(Res.get());
6558 AddToScope = false;
6559 } else if (D.isDecompositionDeclarator()) {
6560 NewVD = DecompositionDecl::Create(Context, DC, D.getBeginLoc(),
6561 D.getIdentifierLoc(), R, TInfo, SC,
6562 Bindings);
6563 } else
6564 NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(),
6565 D.getIdentifierLoc(), II, R, TInfo, SC);
6566
6567 // If this is supposed to be a variable template, create it as such.
6568 if (IsVariableTemplate) {
6569 NewTemplate =
6570 VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
6571 TemplateParams, NewVD);
6572 NewVD->setDescribedVarTemplate(NewTemplate);
6573 }
6574
6575 // If this decl has an auto type in need of deduction, make a note of the
6576 // Decl so we can diagnose uses of it in its own initializer.
6577 if (R->getContainedDeducedType())
6578 ParsingInitForAutoVars.insert(NewVD);
6579
6580 if (D.isInvalidType() || Invalid) {
6581 NewVD->setInvalidDecl();
6582 if (NewTemplate)
6583 NewTemplate->setInvalidDecl();
6584 }
6585
6586 SetNestedNameSpecifier(*this, NewVD, D);
6587
6588 // If we have any template parameter lists that don't directly belong to
6589 // the variable (matching the scope specifier), store them.
6590 unsigned VDTemplateParamLists = TemplateParams ? 1 : 0;
6591 if (TemplateParamLists.size() > VDTemplateParamLists)
6592 NewVD->setTemplateParameterListsInfo(
6593 Context, TemplateParamLists.drop_back(VDTemplateParamLists));
6594
6595 if (D.getDeclSpec().isConstexprSpecified()) {
6596 NewVD->setConstexpr(true);
6597 // C++1z [dcl.spec.constexpr]p1:
6598 // A static data member declared with the constexpr specifier is
6599 // implicitly an inline variable.
6600 if (NewVD->isStaticDataMember() && getLangOpts().CPlusPlus17)
6601 NewVD->setImplicitlyInline();
6602 }
6603 }
6604
6605 if (D.getDeclSpec().isInlineSpecified()) {
6606 if (!getLangOpts().CPlusPlus) {
6607 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
6608 << 0;
6609 } else if (CurContext->isFunctionOrMethod()) {
6610 // 'inline' is not allowed on block scope variable declaration.
6611 Diag(D.getDeclSpec().getInlineSpecLoc(),
6612 diag::err_inline_declaration_block_scope) << Name
6613 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6614 } else {
6615 Diag(D.getDeclSpec().getInlineSpecLoc(),
6616 getLangOpts().CPlusPlus17 ? diag::warn_cxx14_compat_inline_variable
6617 : diag::ext_inline_variable);
6618 NewVD->setInlineSpecified();
6619 }
6620 }
6621
6622 // Set the lexical context. If the declarator has a C++ scope specifier, the
6623 // lexical context will be different from the semantic context.
6624 NewVD->setLexicalDeclContext(CurContext);
6625 if (NewTemplate)
6626 NewTemplate->setLexicalDeclContext(CurContext);
6627
6628 if (IsLocalExternDecl) {
6629 if (D.isDecompositionDeclarator())
6630 for (auto *B : Bindings)
6631 B->setLocalExternDecl();
6632 else
6633 NewVD->setLocalExternDecl();
6634 }
6635
6636 bool EmitTLSUnsupportedError = false;
6637 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
6638 // C++11 [dcl.stc]p4:
6639 // When thread_local is applied to a variable of block scope the
6640 // storage-class-specifier static is implied if it does not appear
6641 // explicitly.
6642 // Core issue: 'static' is not implied if the variable is declared
6643 // 'extern'.
6644 if (NewVD->hasLocalStorage() &&
6645 (SCSpec != DeclSpec::SCS_unspecified ||
6646 TSCS != DeclSpec::TSCS_thread_local ||
6647 !DC->isFunctionOrMethod()))
6648 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6649 diag::err_thread_non_global)
6650 << DeclSpec::getSpecifierName(TSCS);
6651 else if (!Context.getTargetInfo().isTLSSupported()) {
6652 if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) {
6653 // Postpone error emission until we've collected attributes required to
6654 // figure out whether it's a host or device variable and whether the
6655 // error should be ignored.
6656 EmitTLSUnsupportedError = true;
6657 // We still need to mark the variable as TLS so it shows up in AST with
6658 // proper storage class for other tools to use even if we're not going
6659 // to emit any code for it.
6660 NewVD->setTSCSpec(TSCS);
6661 } else
6662 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6663 diag::err_thread_unsupported);
6664 } else
6665 NewVD->setTSCSpec(TSCS);
6666 }
6667
6668 // C99 6.7.4p3
6669 // An inline definition of a function with external linkage shall
6670 // not contain a definition of a modifiable object with static or
6671 // thread storage duration...
6672 // We only apply this when the function is required to be defined
6673 // elsewhere, i.e. when the function is not 'extern inline'. Note
6674 // that a local variable with thread storage duration still has to
6675 // be marked 'static'. Also note that it's possible to get these
6676 // semantics in C++ using __attribute__((gnu_inline)).
6677 if (SC == SC_Static && S->getFnParent() != nullptr &&
6678 !NewVD->getType().isConstQualified()) {
6679 FunctionDecl *CurFD = getCurFunctionDecl();
6680 if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
6681 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6682 diag::warn_static_local_in_extern_inline);
6683 MaybeSuggestAddingStaticToDecl(CurFD);
6684 }
6685 }
6686
6687 if (D.getDeclSpec().isModulePrivateSpecified()) {
6688 if (IsVariableTemplateSpecialization)
6689 Diag(NewVD->getLocation(), diag::err_module_private_specialization)
6690 << (IsPartialSpecialization ? 1 : 0)
6691 << FixItHint::CreateRemoval(
6692 D.getDeclSpec().getModulePrivateSpecLoc());
6693 else if (IsMemberSpecialization)
6694 Diag(NewVD->getLocation(), diag::err_module_private_specialization)
6695 << 2
6696 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6697 else if (NewVD->hasLocalStorage())
6698 Diag(NewVD->getLocation(), diag::err_module_private_local)
6699 << 0 << NewVD->getDeclName()
6700 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6701 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6702 else {
6703 NewVD->setModulePrivate();
6704 if (NewTemplate)
6705 NewTemplate->setModulePrivate();
6706 for (auto *B : Bindings)
6707 B->setModulePrivate();
6708 }
6709 }
6710
6711 // Handle attributes prior to checking for duplicates in MergeVarDecl
6712 ProcessDeclAttributes(S, NewVD, D);
6713
6714 if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) {
6715 if (EmitTLSUnsupportedError &&
6716 ((getLangOpts().CUDA && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) ||
6717 (getLangOpts().OpenMPIsDevice &&
6718 NewVD->hasAttr<OMPDeclareTargetDeclAttr>())))
6719 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6720 diag::err_thread_unsupported);
6721 // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
6722 // storage [duration]."
6723 if (SC == SC_None && S->getFnParent() != nullptr &&
6724 (NewVD->hasAttr<CUDASharedAttr>() ||
6725 NewVD->hasAttr<CUDAConstantAttr>())) {
6726 NewVD->setStorageClass(SC_Static);
6727 }
6728 }
6729
6730 // Ensure that dllimport globals without explicit storage class are treated as
6731 // extern. The storage class is set above using parsed attributes. Now we can
6732 // check the VarDecl itself.
6733 assert(!NewVD->hasAttr<DLLImportAttr>() ||((!NewVD->hasAttr<DLLImportAttr>() || NewVD->getAttr
<DLLImportAttr>()->isInherited() || NewVD->isStaticDataMember
() || NewVD->getStorageClass() != SC_None) ? static_cast<
void> (0) : __assert_fail ("!NewVD->hasAttr<DLLImportAttr>() || NewVD->getAttr<DLLImportAttr>()->isInherited() || NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 6735, __PRETTY_FUNCTION__))
6734 NewVD->getAttr<DLLImportAttr>()->isInherited() ||((!NewVD->hasAttr<DLLImportAttr>() || NewVD->getAttr
<DLLImportAttr>()->isInherited() || NewVD->isStaticDataMember
() || NewVD->getStorageClass() != SC_None) ? static_cast<
void> (0) : __assert_fail ("!NewVD->hasAttr<DLLImportAttr>() || NewVD->getAttr<DLLImportAttr>()->isInherited() || NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 6735, __PRETTY_FUNCTION__))
6735 NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None)((!NewVD->hasAttr<DLLImportAttr>() || NewVD->getAttr
<DLLImportAttr>()->isInherited() || NewVD->isStaticDataMember
() || NewVD->getStorageClass() != SC_None) ? static_cast<
void> (0) : __assert_fail ("!NewVD->hasAttr<DLLImportAttr>() || NewVD->getAttr<DLLImportAttr>()->isInherited() || NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 6735, __PRETTY_FUNCTION__))
;
6736
6737 // In auto-retain/release, infer strong retension for variables of
6738 // retainable type.
6739 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
6740 NewVD->setInvalidDecl();
6741
6742 // Handle GNU asm-label extension (encoded as an attribute).
6743 if (Expr *E = (Expr*)D.getAsmLabel()) {
6744 // The parser guarantees this is a string.
6745 StringLiteral *SE = cast<StringLiteral>(E);
6746 StringRef Label = SE->getString();
6747 if (S->getFnParent() != nullptr) {
6748 switch (SC) {
6749 case SC_None:
6750 case SC_Auto:
6751 Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
6752 break;
6753 case SC_Register:
6754 // Local Named register
6755 if (!Context.getTargetInfo().isValidGCCRegisterName(Label) &&
6756 DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl()))
6757 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
6758 break;
6759 case SC_Static:
6760 case SC_Extern:
6761 case SC_PrivateExtern:
6762 break;
6763 }
6764 } else if (SC == SC_Register) {
6765 // Global Named register
6766 if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) {
6767 const auto &TI = Context.getTargetInfo();
6768 bool HasSizeMismatch;
6769
6770 if (!TI.isValidGCCRegisterName(Label))
6771 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
6772 else if (!TI.validateGlobalRegisterVariable(Label,
6773 Context.getTypeSize(R),
6774 HasSizeMismatch))
6775 Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label;
6776 else if (HasSizeMismatch)
6777 Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label;
6778 }
6779
6780 if (!R->isIntegralType(Context) && !R->isPointerType()) {
6781 Diag(D.getBeginLoc(), diag::err_asm_bad_register_type);
6782 NewVD->setInvalidDecl(true);
6783 }
6784 }
6785
6786 NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
6787 Context, Label, 0));
6788 } else if (!ExtnameUndeclaredIdentifiers.empty()) {
6789 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
6790 ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
6791 if (I != ExtnameUndeclaredIdentifiers.end()) {
6792 if (isDeclExternC(NewVD)) {
6793 NewVD->addAttr(I->second);
6794 ExtnameUndeclaredIdentifiers.erase(I);
6795 } else
6796 Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied)
6797 << /*Variable*/1 << NewVD;
6798 }
6799 }
6800
6801 // Find the shadowed declaration before filtering for scope.
6802 NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty()
6803 ? getShadowedDeclaration(NewVD, Previous)
6804 : nullptr;
6805
6806 // Don't consider existing declarations that are in a different
6807 // scope and are out-of-semantic-context declarations (if the new
6808 // declaration has linkage).
6809 FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
6810 D.getCXXScopeSpec().isNotEmpty() ||
6811 IsMemberSpecialization ||
6812 IsVariableTemplateSpecialization);
6813
6814 // Check whether the previous declaration is in the same block scope. This
6815 // affects whether we merge types with it, per C++11 [dcl.array]p3.
6816 if (getLangOpts().CPlusPlus &&
6817 NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
6818 NewVD->setPreviousDeclInSameBlockScope(
6819 Previous.isSingleResult() && !Previous.isShadowed() &&
6820 isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
6821
6822 if (!getLangOpts().CPlusPlus) {
6823 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
6824 } else {
6825 // If this is an explicit specialization of a static data member, check it.
6826 if (IsMemberSpecialization && !NewVD->isInvalidDecl() &&
6827 CheckMemberSpecialization(NewVD, Previous))
6828 NewVD->setInvalidDecl();
6829
6830 // Merge the decl with the existing one if appropriate.
6831 if (!Previous.empty()) {
6832 if (Previous.isSingleResult() &&
6833 isa<FieldDecl>(Previous.getFoundDecl()) &&
6834 D.getCXXScopeSpec().isSet()) {
6835 // The user tried to define a non-static data member
6836 // out-of-line (C++ [dcl.meaning]p1).
6837 Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
6838 << D.getCXXScopeSpec().getRange();
6839 Previous.clear();
6840 NewVD->setInvalidDecl();
6841 }
6842 } else if (D.getCXXScopeSpec().isSet()) {
6843 // No previous declaration in the qualifying scope.
6844 Diag(D.getIdentifierLoc(), diag::err_no_member)
6845 << Name << computeDeclContext(D.getCXXScopeSpec(), true)
6846 << D.getCXXScopeSpec().getRange();
6847 NewVD->setInvalidDecl();
6848 }
6849
6850 if (!IsVariableTemplateSpecialization)
6851 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
6852
6853 if (NewTemplate) {
6854 VarTemplateDecl *PrevVarTemplate =
6855 NewVD->getPreviousDecl()
6856 ? NewVD->getPreviousDecl()->getDescribedVarTemplate()
6857 : nullptr;
6858
6859 // Check the template parameter list of this declaration, possibly
6860 // merging in the template parameter list from the previous variable
6861 // template declaration.
6862 if (CheckTemplateParameterList(
6863 TemplateParams,
6864 PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
6865 : nullptr,
6866 (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
6867 DC->isDependentContext())
6868 ? TPC_ClassTemplateMember
6869 : TPC_VarTemplate))
6870 NewVD->setInvalidDecl();
6871
6872 // If we are providing an explicit specialization of a static variable
6873 // template, make a note of that.
6874 if (PrevVarTemplate &&
6875 PrevVarTemplate->getInstantiatedFromMemberTemplate())
6876 PrevVarTemplate->setMemberSpecialization();
6877 }
6878 }
6879
6880 // Diagnose shadowed variables iff this isn't a redeclaration.
6881 if (ShadowedDecl && !D.isRedeclaration())
6882 CheckShadow(NewVD, ShadowedDecl, Previous);
6883
6884 ProcessPragmaWeak(S, NewVD);
6885
6886 // If this is the first declaration of an extern C variable, update
6887 // the map of such variables.
6888 if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
6889 isIncompleteDeclExternC(*this, NewVD))
6890 RegisterLocallyScopedExternCDecl(NewVD, S);
6891
6892 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
6893 Decl *ManglingContextDecl;
6894 if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
6895 NewVD->getDeclContext(), ManglingContextDecl)) {
6896 Context.setManglingNumber(
6897 NewVD, MCtx->getManglingNumber(
6898 NewVD, getMSManglingNumber(getLangOpts(), S)));
6899 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
6900 }
6901 }
6902
6903 // Special handling of variable named 'main'.
6904 if (Name.getAsIdentifierInfo() && Name.getAsIdentifierInfo()->isStr("main") &&
6905 NewVD->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
6906 !getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) {
6907
6908 // C++ [basic.start.main]p3
6909 // A program that declares a variable main at global scope is ill-formed.
6910 if (getLangOpts().CPlusPlus)
6911 Diag(D.getBeginLoc(), diag::err_main_global_variable);
6912
6913 // In C, and external-linkage variable named main results in undefined
6914 // behavior.
6915 else if (NewVD->hasExternalFormalLinkage())
6916 Diag(D.getBeginLoc(), diag::warn_main_redefined);
6917 }
6918
6919 if (D.isRedeclaration() && !Previous.empty()) {
6920 NamedDecl *Prev = Previous.getRepresentativeDecl();
6921 checkDLLAttributeRedeclaration(*this, Prev, NewVD, IsMemberSpecialization,
6922 D.isFunctionDefinition());
6923 }
6924
6925 if (NewTemplate) {
6926 if (NewVD->isInvalidDecl())
6927 NewTemplate->setInvalidDecl();
6928 ActOnDocumentableDecl(NewTemplate);
6929 return NewTemplate;
6930 }
6931
6932 if (IsMemberSpecialization && !NewVD->isInvalidDecl())
6933 CompleteMemberSpecialization(NewVD, Previous);
6934
6935 return NewVD;
6936}
6937
6938/// Enum describing the %select options in diag::warn_decl_shadow.
6939enum ShadowedDeclKind {
6940 SDK_Local,
6941 SDK_Global,
6942 SDK_StaticMember,
6943 SDK_Field,
6944 SDK_Typedef,
6945 SDK_Using
6946};
6947
6948/// Determine what kind of declaration we're shadowing.
6949static ShadowedDeclKind computeShadowedDeclKind(const NamedDecl *ShadowedDecl,
6950 const DeclContext *OldDC) {
6951 if (isa<TypeAliasDecl>(ShadowedDecl))
6952 return SDK_Using;
6953 else if (isa<TypedefDecl>(ShadowedDecl))
6954 return SDK_Typedef;
6955 else if (isa<RecordDecl>(OldDC))
6956 return isa<FieldDecl>(ShadowedDecl) ? SDK_Field : SDK_StaticMember;
6957
6958 return OldDC->isFileContext() ? SDK_Global : SDK_Local;
6959}
6960
6961/// Return the location of the capture if the given lambda captures the given
6962/// variable \p VD, or an invalid source location otherwise.
6963static SourceLocation getCaptureLocation(const LambdaScopeInfo *LSI,
6964 const VarDecl *VD) {
6965 for (const Capture &Capture : LSI->Captures) {
6966 if (Capture.isVariableCapture() && Capture.getVariable() == VD)
6967 return Capture.getLocation();
6968 }
6969 return SourceLocation();
6970}
6971
6972static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine &Diags,
6973 const LookupResult &R) {
6974 // Only diagnose if we're shadowing an unambiguous field or variable.
6975 if (R.getResultKind() != LookupResult::Found)
6976 return false;
6977
6978 // Return false if warning is ignored.
6979 return !Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc());
6980}
6981
6982/// Return the declaration shadowed by the given variable \p D, or null
6983/// if it doesn't shadow any declaration or shadowing warnings are disabled.
6984NamedDecl *Sema::getShadowedDeclaration(const VarDecl *D,
6985 const LookupResult &R) {
6986 if (!shouldWarnIfShadowedDecl(Diags, R))
6987 return nullptr;
6988
6989 // Don't diagnose declarations at file scope.
6990 if (D->hasGlobalStorage())
6991 return nullptr;
6992
6993 NamedDecl *ShadowedDecl = R.getFoundDecl();
6994 return isa<VarDecl>(ShadowedDecl) || isa<FieldDecl>(ShadowedDecl)
6995 ? ShadowedDecl
6996 : nullptr;
6997}
6998
6999/// Return the declaration shadowed by the given typedef \p D, or null
7000/// if it doesn't shadow any declaration or shadowing warnings are disabled.
7001NamedDecl *Sema::getShadowedDeclaration(const TypedefNameDecl *D,
7002 const LookupResult &R) {
7003 // Don't warn if typedef declaration is part of a class
7004 if (D->getDeclContext()->isRecord())
7005 return nullptr;
7006
7007 if (!shouldWarnIfShadowedDecl(Diags, R))
7008 return nullptr;
7009
7010 NamedDecl *ShadowedDecl = R.getFoundDecl();
7011 return isa<TypedefNameDecl>(ShadowedDecl) ? ShadowedDecl : nullptr;
7012}
7013
7014/// Diagnose variable or built-in function shadowing. Implements
7015/// -Wshadow.
7016///
7017/// This method is called whenever a VarDecl is added to a "useful"
7018/// scope.
7019///
7020/// \param ShadowedDecl the declaration that is shadowed by the given variable
7021/// \param R the lookup of the name
7022///
7023void Sema::CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl,
7024 const LookupResult &R) {
7025 DeclContext *NewDC = D->getDeclContext();
7026
7027 if (FieldDecl *FD = dyn_cast<FieldDecl>(ShadowedDecl)) {
7028 // Fields are not shadowed by variables in C++ static methods.
7029 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
7030 if (MD->isStatic())
7031 return;
7032
7033 // Fields shadowed by constructor parameters are a special case. Usually
7034 // the constructor initializes the field with the parameter.
7035 if (isa<CXXConstructorDecl>(NewDC))
7036 if (const auto PVD = dyn_cast<ParmVarDecl>(D)) {
7037 // Remember that this was shadowed so we can either warn about its
7038 // modification or its existence depending on warning settings.
7039 ShadowingDecls.insert({PVD->getCanonicalDecl(), FD});
7040 return;
7041 }
7042 }
7043
7044 if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
7045 if (shadowedVar->isExternC()) {
7046 // For shadowing external vars, make sure that we point to the global
7047 // declaration, not a locally scoped extern declaration.
7048 for (auto I : shadowedVar->redecls())
7049 if (I->isFileVarDecl()) {
7050 ShadowedDecl = I;
7051 break;
7052 }
7053 }
7054
7055 DeclContext *OldDC = ShadowedDecl->getDeclContext()->getRedeclContext();
7056
7057 unsigned WarningDiag = diag::warn_decl_shadow;
7058 SourceLocation CaptureLoc;
7059 if (isa<VarDecl>(D) && isa<VarDecl>(ShadowedDecl) && NewDC &&
7060 isa<CXXMethodDecl>(NewDC)) {
7061 if (const auto *RD = dyn_cast<CXXRecordDecl>(NewDC->getParent())) {
7062 if (RD->isLambda() && OldDC->Encloses(NewDC->getLexicalParent())) {
7063 if (RD->getLambdaCaptureDefault() == LCD_None) {
7064 // Try to avoid warnings for lambdas with an explicit capture list.
7065 const auto *LSI = cast<LambdaScopeInfo>(getCurFunction());
7066 // Warn only when the lambda captures the shadowed decl explicitly.
7067 CaptureLoc = getCaptureLocation(LSI, cast<VarDecl>(ShadowedDecl));
7068 if (CaptureLoc.isInvalid())
7069 WarningDiag = diag::warn_decl_shadow_uncaptured_local;
7070 } else {
7071 // Remember that this was shadowed so we can avoid the warning if the
7072 // shadowed decl isn't captured and the warning settings allow it.
7073 cast<LambdaScopeInfo>(getCurFunction())
7074 ->ShadowingDecls.push_back(
7075 {cast<VarDecl>(D), cast<VarDecl>(ShadowedDecl)});
7076 return;
7077 }
7078 }
7079
7080 if (cast<VarDecl>(ShadowedDecl)->hasLocalStorage()) {
7081 // A variable can't shadow a local variable in an enclosing scope, if
7082 // they are separated by a non-capturing declaration context.
7083 for (DeclContext *ParentDC = NewDC;
7084 ParentDC && !ParentDC->Equals(OldDC);
7085 ParentDC = getLambdaAwareParentOfDeclContext(ParentDC)) {
7086 // Only block literals, captured statements, and lambda expressions
7087 // can capture; other scopes don't.
7088 if (!isa<BlockDecl>(ParentDC) && !isa<CapturedDecl>(ParentDC) &&
7089 !isLambdaCallOperator(ParentDC)) {
7090 return;
7091 }
7092 }
7093 }
7094 }
7095 }
7096
7097 // Only warn about certain kinds of shadowing for class members.
7098 if (NewDC && NewDC->isRecord()) {
7099 // In particular, don't warn about shadowing non-class members.
7100 if (!OldDC->isRecord())
7101 return;
7102
7103 // TODO: should we warn about static data members shadowing
7104 // static data members from base classes?
7105
7106 // TODO: don't diagnose for inaccessible shadowed members.
7107 // This is hard to do perfectly because we might friend the
7108 // shadowing context, but that's just a false negative.
7109 }
7110
7111
7112 DeclarationName Name = R.getLookupName();
7113
7114 // Emit warning and note.
7115 if (getSourceManager().isInSystemMacro(R.getNameLoc()))
7116 return;
7117 ShadowedDeclKind Kind = computeShadowedDeclKind(ShadowedDecl, OldDC);
7118 Diag(R.getNameLoc(), WarningDiag) << Name << Kind << OldDC;
7119 if (!CaptureLoc.isInvalid())
7120 Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
7121 << Name << /*explicitly*/ 1;
7122 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7123}
7124
7125/// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD
7126/// when these variables are captured by the lambda.
7127void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo *LSI) {
7128 for (const auto &Shadow : LSI->ShadowingDecls) {
7129 const VarDecl *ShadowedDecl = Shadow.ShadowedDecl;
7130 // Try to avoid the warning when the shadowed decl isn't captured.
7131 SourceLocation CaptureLoc = getCaptureLocation(LSI, ShadowedDecl);
7132 const DeclContext *OldDC = ShadowedDecl->getDeclContext();
7133 Diag(Shadow.VD->getLocation(), CaptureLoc.isInvalid()
7134 ? diag::warn_decl_shadow_uncaptured_local
7135 : diag::warn_decl_shadow)
7136 << Shadow.VD->getDeclName()
7137 << computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC;
7138 if (!CaptureLoc.isInvalid())
7139 Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
7140 << Shadow.VD->getDeclName() << /*explicitly*/ 0;
7141 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7142 }
7143}
7144
7145/// Check -Wshadow without the advantage of a previous lookup.
7146void Sema::CheckShadow(Scope *S, VarDecl *D) {
7147 if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
7148 return;
7149
7150 LookupResult R(*this, D->getDeclName(), D->getLocation(),
7151 Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
7152 LookupName(R, S);
7153 if (NamedDecl *ShadowedDecl = getShadowedDeclaration(D, R))
7154 CheckShadow(D, ShadowedDecl, R);
7155}
7156
7157/// Check if 'E', which is an expression that is about to be modified, refers
7158/// to a constructor parameter that shadows a field.
7159void Sema::CheckShadowingDeclModification(Expr *E, SourceLocation Loc) {
7160 // Quickly ignore expressions that can't be shadowing ctor parameters.
7161 if (!getLangOpts().CPlusPlus || ShadowingDecls.empty())
7162 return;
7163 E = E->IgnoreParenImpCasts();
7164 auto *DRE = dyn_cast<DeclRefExpr>(E);
7165 if (!DRE)
7166 return;
7167 const NamedDecl *D = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
7168 auto I = ShadowingDecls.find(D);
7169 if (I == ShadowingDecls.end())
7170 return;
7171 const NamedDecl *ShadowedDecl = I->second;
7172 const DeclContext *OldDC = ShadowedDecl->getDeclContext();
7173 Diag(Loc, diag::warn_modifying_shadowing_decl) << D << OldDC;
7174 Diag(D->getLocation(), diag::note_var_declared_here) << D;
7175 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7176
7177 // Avoid issuing multiple warnings about the same decl.
7178 ShadowingDecls.erase(I);
7179}
7180
7181/// Check for conflict between this global or extern "C" declaration and
7182/// previous global or extern "C" declarations. This is only used in C++.
7183template<typename T>
7184static bool checkGlobalOrExternCConflict(
7185 Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
7186 assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"")((S.getLangOpts().CPlusPlus && "only C++ has extern \"C\""
) ? static_cast<void> (0) : __assert_fail ("S.getLangOpts().CPlusPlus && \"only C++ has extern \\\"C\\\"\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 7186, __PRETTY_FUNCTION__))
;
7187 NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
7188
7189 if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
7190 // The common case: this global doesn't conflict with any extern "C"
7191 // declaration.
7192 return false;
7193 }
7194
7195 if (Prev) {
7196 if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
7197 // Both the old and new declarations have C language linkage. This is a
7198 // redeclaration.
7199 Previous.clear();
7200 Previous.addDecl(Prev);
7201 return true;
7202 }
7203
7204 // This is a global, non-extern "C" declaration, and there is a previous
7205 // non-global extern "C" declaration. Diagnose if this is a variable
7206 // declaration.
7207 if (!isa<VarDecl>(ND))
7208 return false;
7209 } else {
7210 // The declaration is extern "C". Check for any declaration in the
7211 // translation unit which might conflict.
7212 if (IsGlobal) {
7213 // We have already performed the lookup into the translation unit.
7214 IsGlobal = false;
7215 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7216 I != E; ++I) {
7217 if (isa<VarDecl>(*I)) {
7218 Prev = *I;
7219 break;
7220 }
7221 }
7222 } else {
7223 DeclContext::lookup_result R =
7224 S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
7225 for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
7226 I != E; ++I) {
7227 if (isa<VarDecl>(*I)) {
7228 Prev = *I;
7229 break;
7230 }
7231 // FIXME: If we have any other entity with this name in global scope,
7232 // the declaration is ill-formed, but that is a defect: it breaks the
7233 // 'stat' hack, for instance. Only variables can have mangled name
7234 // clashes with extern "C" declarations, so only they deserve a
7235 // diagnostic.
7236 }
7237 }
7238
7239 if (!Prev)
7240 return false;
7241 }
7242
7243 // Use the first declaration's location to ensure we point at something which
7244 // is lexically inside an extern "C" linkage-spec.
7245 assert(Prev && "should have found a previous declaration to diagnose")((Prev && "should have found a previous declaration to diagnose"
) ? static_cast<void> (0) : __assert_fail ("Prev && \"should have found a previous declaration to diagnose\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 7245, __PRETTY_FUNCTION__))
;
7246 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
7247 Prev = FD->getFirstDecl();
7248 else
7249 Prev = cast<VarDecl>(Prev)->getFirstDecl();
7250
7251 S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
7252 << IsGlobal << ND;
7253 S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
7254 << IsGlobal;
7255 return false;
7256}
7257
7258/// Apply special rules for handling extern "C" declarations. Returns \c true
7259/// if we have found that this is a redeclaration of some prior entity.
7260///
7261/// Per C++ [dcl.link]p6:
7262/// Two declarations [for a function or variable] with C language linkage
7263/// with the same name that appear in different scopes refer to the same
7264/// [entity]. An entity with C language linkage shall not be declared with
7265/// the same name as an entity in global scope.
7266template<typename T>
7267static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
7268 LookupResult &Previous) {
7269 if (!S.getLangOpts().CPlusPlus) {
7270 // In C, when declaring a global variable, look for a corresponding 'extern'
7271 // variable declared in function scope. We don't need this in C++, because
7272 // we find local extern decls in the surrounding file-scope DeclContext.
7273 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
7274 if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
7275 Previous.clear();
7276 Previous.addDecl(Prev);
7277 return true;
7278 }
7279 }
7280 return false;
7281 }
7282
7283 // A declaration in the translation unit can conflict with an extern "C"
7284 // declaration.
7285 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
7286 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
7287
7288 // An extern "C" declaration can conflict with a declaration in the
7289 // translation unit or can be a redeclaration of an extern "C" declaration
7290 // in another scope.
7291 if (isIncompleteDeclExternC(S,ND))
7292 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
7293
7294 // Neither global nor extern "C": nothing to do.
7295 return false;
7296}
7297
7298void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
7299 // If the decl is already known invalid, don't check it.
7300 if (NewVD->isInvalidDecl())
7301 return;
7302
7303 QualType T = NewVD->getType();
7304
7305 // Defer checking an 'auto' type until its initializer is attached.
7306 if (T->isUndeducedType())
7307 return;
7308
7309 if (NewVD->hasAttrs())
7310 CheckAlignasUnderalignment(NewVD);
7311
7312 if (T->isObjCObjectType()) {
7313 Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
7314 << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
7315 T = Context.getObjCObjectPointerType(T);
7316 NewVD->setType(T);
7317 }
7318
7319 // Emit an error if an address space was applied to decl with local storage.
7320 // This includes arrays of objects with address space qualifiers, but not
7321 // automatic variables that point to other address spaces.
7322 // ISO/IEC TR 18037 S5.1.2
7323 if (!getLangOpts().OpenCL && NewVD->hasLocalStorage() &&
7324 T.getAddressSpace() != LangAS::Default) {
7325 Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 0;
7326 NewVD->setInvalidDecl();
7327 return;
7328 }
7329
7330 // OpenCL v1.2 s6.8 - The static qualifier is valid only in program
7331 // scope.
7332 if (getLangOpts().OpenCLVersion == 120 &&
7333 !getOpenCLOptions().isEnabled("cl_clang_storage_class_specifiers") &&
7334 NewVD->isStaticLocal()) {
7335 Diag(NewVD->getLocation(), diag::err_static_function_scope);
7336 NewVD->setInvalidDecl();
7337 return;
7338 }
7339
7340 if (getLangOpts().OpenCL) {
7341 // OpenCL v2.0 s6.12.5 - The __block storage type is not supported.
7342 if (NewVD->hasAttr<BlocksAttr>()) {
7343 Diag(NewVD->getLocation(), diag::err_opencl_block_storage_type);
7344 return;
7345 }
7346
7347 if (T->isBlockPointerType()) {
7348 // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and
7349 // can't use 'extern' storage class.
7350 if (!T.isConstQualified()) {
7351 Diag(NewVD->getLocation(), diag::err_opencl_invalid_block_declaration)
7352 << 0 /*const*/;
7353 NewVD->setInvalidDecl();
7354 return;
7355 }
7356 if (NewVD->hasExternalStorage()) {
7357 Diag(NewVD->getLocation(), diag::err_opencl_extern_block_declaration);
7358 NewVD->setInvalidDecl();
7359 return;
7360 }
7361 }
7362 // OpenCL C v1.2 s6.5 - All program scope variables must be declared in the
7363 // __constant address space.
7364 // OpenCL C v2.0 s6.5.1 - Variables defined at program scope and static
7365 // variables inside a function can also be declared in the global
7366 // address space.
7367 // OpenCL C++ v1.0 s2.5 inherits rule from OpenCL C v2.0 and allows local
7368 // address space additionally.
7369 // FIXME: Add local AS for OpenCL C++.
7370 if (NewVD->isFileVarDecl() || NewVD->isStaticLocal() ||
7371 NewVD->hasExternalStorage()) {
7372 if (!T->isSamplerT() &&
7373 !(T.getAddressSpace() == LangAS::opencl_constant ||
7374 (T.getAddressSpace() == LangAS::opencl_global &&
7375 (getLangOpts().OpenCLVersion == 200 ||
7376 getLangOpts().OpenCLCPlusPlus)))) {
7377 int Scope = NewVD->isStaticLocal() | NewVD->hasExternalStorage() << 1;
7378 if (getLangOpts().OpenCLVersion == 200 || getLangOpts().OpenCLCPlusPlus)
7379 Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
7380 << Scope << "global or constant";
7381 else
7382 Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
7383 << Scope << "constant";
7384 NewVD->setInvalidDecl();
7385 return;
7386 }
7387 } else {
7388 if (T.getAddressSpace() == LangAS::opencl_global) {
7389 Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7390 << 1 /*is any function*/ << "global";
7391 NewVD->setInvalidDecl();
7392 return;
7393 }
7394 if (T.getAddressSpace() == LangAS::opencl_constant ||
7395 T.getAddressSpace() == LangAS::opencl_local) {
7396 FunctionDecl *FD = getCurFunctionDecl();
7397 // OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables
7398 // in functions.
7399 if (FD && !FD->hasAttr<OpenCLKernelAttr>()) {
7400 if (T.getAddressSpace() == LangAS::opencl_constant)
7401 Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7402 << 0 /*non-kernel only*/ << "constant";
7403 else
7404 Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7405 << 0 /*non-kernel only*/ << "local";
7406 NewVD->setInvalidDecl();
7407 return;
7408 }
7409 // OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be
7410 // in the outermost scope of a kernel function.
7411 if (FD && FD->hasAttr<OpenCLKernelAttr>()) {
7412 if (!getCurScope()->isFunctionScope()) {
7413 if (T.getAddressSpace() == LangAS::opencl_constant)
7414 Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
7415 << "constant";
7416 else
7417 Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
7418 << "local";
7419 NewVD->setInvalidDecl();
7420 return;
7421 }
7422 }
7423 } else if (T.getAddressSpace() != LangAS::opencl_private) {
7424 // Do not allow other address spaces on automatic variable.
7425 Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 1;
7426 NewVD->setInvalidDecl();
7427 return;
7428 }
7429 }
7430 }
7431
7432 if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
7433 && !NewVD->hasAttr<BlocksAttr>()) {
7434 if (getLangOpts().getGC() != LangOptions::NonGC)
7435 Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
7436 else {
7437 assert(!getLangOpts().ObjCAutoRefCount)((!getLangOpts().ObjCAutoRefCount) ? static_cast<void> (
0) : __assert_fail ("!getLangOpts().ObjCAutoRefCount", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 7437, __PRETTY_FUNCTION__))
;
7438 Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
7439 }
7440 }
7441
7442 bool isVM = T->isVariablyModifiedType();
7443 if (isVM || NewVD->hasAttr<CleanupAttr>() ||
7444 NewVD->hasAttr<BlocksAttr>())
7445 setFunctionHasBranchProtectedScope();
7446
7447 if ((isVM && NewVD->hasLinkage()) ||
7448 (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
7449 bool SizeIsNegative;
7450 llvm::APSInt Oversized;
7451 TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo(
7452 NewVD->getTypeSourceInfo(), Context, SizeIsNegative, Oversized);
7453 QualType FixedT;
7454 if (FixedTInfo && T == NewVD->getTypeSourceInfo()->getType())
7455 FixedT = FixedTInfo->getType();
7456 else if (FixedTInfo) {
7457 // Type and type-as-written are canonically different. We need to fix up
7458 // both types separately.
7459 FixedT = TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
7460 Oversized);
7461 }
7462 if ((!FixedTInfo || FixedT.isNull()) && T->isVariableArrayType()) {
7463 const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
7464 // FIXME: This won't give the correct result for
7465 // int a[10][n];
7466 SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
7467
7468 if (NewVD->isFileVarDecl())
7469 Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
7470 << SizeRange;
7471 else if (NewVD->isStaticLocal())
7472 Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
7473 << SizeRange;
7474 else
7475 Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
7476 << SizeRange;
7477 NewVD->setInvalidDecl();
7478 return;
7479 }
7480
7481 if (!FixedTInfo) {
7482 if (NewVD->isFileVarDecl())
7483 Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
7484 else
7485 Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
7486 NewVD->setInvalidDecl();
7487 return;
7488 }
7489
7490 Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
7491 NewVD->setType(FixedT);
7492 NewVD->setTypeSourceInfo(FixedTInfo);
7493 }
7494
7495 if (T->isVoidType()) {
7496 // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
7497 // of objects and functions.
7498 if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
7499 Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
7500 << T;
7501 NewVD->setInvalidDecl();
7502 return;
7503 }
7504 }
7505
7506 if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
7507 Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
7508 NewVD->setInvalidDecl();
7509 return;
7510 }
7511
7512 if (isVM && NewVD->hasAttr<BlocksAttr>()) {
7513 Diag(NewVD->getLocation(), diag::err_block_on_vm);
7514 NewVD->setInvalidDecl();
7515 return;
7516 }
7517
7518 if (NewVD->isConstexpr() && !T->isDependentType() &&
7519 RequireLiteralType(NewVD->getLocation(), T,
7520 diag::err_constexpr_var_non_literal)) {
7521 NewVD->setInvalidDecl();
7522 return;
7523 }
7524}
7525
7526/// Perform semantic checking on a newly-created variable
7527/// declaration.
7528///
7529/// This routine performs all of the type-checking required for a
7530/// variable declaration once it has been built. It is used both to
7531/// check variables after they have been parsed and their declarators
7532/// have been translated into a declaration, and to check variables
7533/// that have been instantiated from a template.
7534///
7535/// Sets NewVD->isInvalidDecl() if an error was encountered.
7536///
7537/// Returns true if the variable declaration is a redeclaration.
7538bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
7539 CheckVariableDeclarationType(NewVD);
7540
7541 // If the decl is already known invalid, don't check it.
7542 if (NewVD->isInvalidDecl())
7543 return false;
7544
7545 // If we did not find anything by this name, look for a non-visible
7546 // extern "C" declaration with the same name.
7547 if (Previous.empty() &&
7548 checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
7549 Previous.setShadowed();
7550
7551 if (!Previous.empty()) {
7552 MergeVarDecl(NewVD, Previous);
7553 return true;
7554 }
7555 return false;
7556}
7557
7558namespace {
7559struct FindOverriddenMethod {
7560 Sema *S;
7561 CXXMethodDecl *Method;
7562
7563 /// Member lookup function that determines whether a given C++
7564 /// method overrides a method in a base class, to be used with
7565 /// CXXRecordDecl::lookupInBases().
7566 bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
7567 RecordDecl *BaseRecord =
7568 Specifier->getType()->getAs<RecordType>()->getDecl();
7569
7570 DeclarationName Name = Method->getDeclName();
7571
7572 // FIXME: Do we care about other names here too?
7573 if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
7574 // We really want to find the base class destructor here.
7575 QualType T = S->Context.getTypeDeclType(BaseRecord);
7576 CanQualType CT = S->Context.getCanonicalType(T);
7577
7578 Name = S->Context.DeclarationNames.getCXXDestructorName(CT);
7579 }
7580
7581 for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty();
7582 Path.Decls = Path.Decls.slice(1)) {
7583 NamedDecl *D = Path.Decls.front();
7584 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
7585 if (MD->isVirtual() && !S->IsOverload(Method, MD, false))
7586 return true;
7587 }
7588 }
7589
7590 return false;
7591 }
7592};
7593
7594enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
7595} // end anonymous namespace
7596
7597/// Report an error regarding overriding, along with any relevant
7598/// overridden methods.
7599///
7600/// \param DiagID the primary error to report.
7601/// \param MD the overriding method.
7602/// \param OEK which overrides to include as notes.
7603static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
7604 OverrideErrorKind OEK = OEK_All) {
7605 S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
7606 for (const CXXMethodDecl *O : MD->overridden_methods()) {
7607 // This check (& the OEK parameter) could be replaced by a predicate, but
7608 // without lambdas that would be overkill. This is still nicer than writing
7609 // out the diag loop 3 times.
7610 if ((OEK == OEK_All) ||
7611 (OEK == OEK_NonDeleted && !O->isDeleted()) ||
7612 (OEK == OEK_Deleted && O->isDeleted()))
7613 S.Diag(O->getLocation(), diag::note_overridden_virtual_function);
7614 }
7615}
7616
7617/// AddOverriddenMethods - See if a method overrides any in the base classes,
7618/// and if so, check that it's a valid override and remember it.
7619bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
7620 // Look for methods in base classes that this method might override.
7621 CXXBasePaths Paths;
7622 FindOverriddenMethod FOM;
7623 FOM.Method = MD;
7624 FOM.S = this;
7625 bool hasDeletedOverridenMethods = false;
7626 bool hasNonDeletedOverridenMethods = false;
7627 bool AddedAny = false;
7628 if (DC->lookupInBases(FOM, Paths)) {
7629 for (auto *I : Paths.found_decls()) {
7630 if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(I)) {
7631 MD->addOverriddenMethod(OldMD->getCanonicalDecl());
7632 if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
7633 !CheckOverridingFunctionAttributes(MD, OldMD) &&
7634 !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
7635 !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
7636 hasDeletedOverridenMethods |= OldMD->isDeleted();
7637 hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
7638 AddedAny = true;
7639 }
7640 }
7641 }
7642 }
7643
7644 if (hasDeletedOverridenMethods && !MD->isDeleted()) {
7645 ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
7646 }
7647 if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
7648 ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
7649 }
7650
7651 return AddedAny;
7652}
7653
7654namespace {
7655 // Struct for holding all of the extra arguments needed by
7656 // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
7657 struct ActOnFDArgs {
7658 Scope *S;
7659 Declarator &D;
7660 MultiTemplateParamsArg TemplateParamLists;
7661 bool AddToScope;
7662 };
7663} // end anonymous namespace
7664
7665namespace {
7666
7667// Callback to only accept typo corrections that have a non-zero edit distance.
7668// Also only accept corrections that have the same parent decl.
7669class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
7670 public:
7671 DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
7672 CXXRecordDecl *Parent)
7673 : Context(Context), OriginalFD(TypoFD),
7674 ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}
7675
7676 bool ValidateCandidate(const TypoCorrection &candidate) override {
7677 if (candidate.getEditDistance() == 0)
7678 return false;
7679
7680 SmallVector<unsigned, 1> MismatchedParams;
7681 for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
7682 CDeclEnd = candidate.end();
7683 CDecl != CDeclEnd; ++CDecl) {
7684 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
7685
7686 if (FD && !FD->hasBody() &&
7687 hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
7688 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7689 CXXRecordDecl *Parent = MD->getParent();
7690 if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
7691 return true;
7692 } else if (!ExpectedParent) {
7693 return true;
7694 }
7695 }
7696 }
7697
7698 return false;
7699 }
7700
7701 private:
7702 ASTContext &Context;
7703 FunctionDecl *OriginalFD;
7704 CXXRecordDecl *ExpectedParent;
7705};
7706
7707} // end anonymous namespace
7708
7709void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl *F) {
7710 TypoCorrectedFunctionDefinitions.insert(F);
7711}
7712
7713/// Generate diagnostics for an invalid function redeclaration.
7714///
7715/// This routine handles generating the diagnostic messages for an invalid
7716/// function redeclaration, including finding possible similar declarations
7717/// or performing typo correction if there are no previous declarations with
7718/// the same name.
7719///
7720/// Returns a NamedDecl iff typo correction was performed and substituting in
7721/// the new declaration name does not cause new errors.
7722static NamedDecl *DiagnoseInvalidRedeclaration(
7723 Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
7724 ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
7725 DeclarationName Name = NewFD->getDeclName();
7726 DeclContext *NewDC = NewFD->getDeclContext();
7727 SmallVector<unsigned, 1> MismatchedParams;
7728 SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
7729 TypoCorrection Correction;
7730 bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
7731 unsigned DiagMsg = IsLocalFriend ? diag::err_no_matching_local_friend
7732 : diag::err_member_decl_does_not_match;
7733 LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
7734 IsLocalFriend ? Sema::LookupLocalFriendName
7735 : Sema::LookupOrdinaryName,
7736 Sema::ForVisibleRedeclaration);
7737
7738 NewFD->setInvalidDecl();
7739 if (IsLocalFriend)
7740 SemaRef.LookupName(Prev, S);
7741 else
7742 SemaRef.LookupQualifiedName(Prev, NewDC);
7743 assert(!Prev.isAmbiguous() &&((!Prev.isAmbiguous() && "Cannot have an ambiguity in previous-declaration lookup"
) ? static_cast<void> (0) : __assert_fail ("!Prev.isAmbiguous() && \"Cannot have an ambiguity in previous-declaration lookup\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 7744, __PRETTY_FUNCTION__))
7744 "Cannot have an ambiguity in previous-declaration lookup")((!Prev.isAmbiguous() && "Cannot have an ambiguity in previous-declaration lookup"
) ? static_cast<void> (0) : __assert_fail ("!Prev.isAmbiguous() && \"Cannot have an ambiguity in previous-declaration lookup\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 7744, __PRETTY_FUNCTION__))
;
7745 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
7746 if (!Prev.empty()) {
7747 for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
7748 Func != FuncEnd; ++Func) {
7749 FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
7750 if (FD &&
7751 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
7752 // Add 1 to the index so that 0 can mean the mismatch didn't
7753 // involve a parameter
7754 unsigned ParamNum =
7755 MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
7756 NearMatches.push_back(std::make_pair(FD, ParamNum));
7757 }
7758 }
7759 // If the qualified name lookup yielded nothing, try typo correction
7760 } else if ((Correction = SemaRef.CorrectTypo(
7761 Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
7762 &ExtraArgs.D.getCXXScopeSpec(),
7763 llvm::make_unique<DifferentNameValidatorCCC>(
7764 SemaRef.Context, NewFD, MD ? MD->getParent() : nullptr),
7765 Sema::CTK_ErrorRecovery, IsLocalFriend ? nullptr : NewDC))) {
7766 // Set up everything for the call to ActOnFunctionDeclarator
7767 ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
7768 ExtraArgs.D.getIdentifierLoc());
7769 Previous.clear();
7770 Previous.setLookupName(Correction.getCorrection());
7771 for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
7772 CDeclEnd = Correction.end();
7773 CDecl != CDeclEnd; ++CDecl) {
7774 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
7775 if (FD && !FD->hasBody() &&
7776 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
7777 Previous.addDecl(FD);
7778 }
7779 }
7780 bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
7781
7782 NamedDecl *Result;
7783 // Retry building the function declaration with the new previous
7784 // declarations, and with errors suppressed.
7785 {
7786 // Trap errors.
7787 Sema::SFINAETrap Trap(SemaRef);
7788
7789 // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
7790 // pieces need to verify the typo-corrected C++ declaration and hopefully
7791 // eliminate the need for the parameter pack ExtraArgs.
7792 Result = SemaRef.ActOnFunctionDeclarator(
7793 ExtraArgs.S, ExtraArgs.D,
7794 Correction.getCorrectionDecl()->getDeclContext(),
7795 NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
7796 ExtraArgs.AddToScope);
7797
7798 if (Trap.hasErrorOccurred())
7799 Result = nullptr;
7800 }
7801
7802 if (Result) {
7803 // Determine which correction we picked.
7804 Decl *Canonical = Result->getCanonicalDecl();
7805 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7806 I != E; ++I)
7807 if ((*I)->getCanonicalDecl() == Canonical)
7808 Correction.setCorrectionDecl(*I);
7809
7810 // Let Sema know about the correction.
7811 SemaRef.MarkTypoCorrectedFunctionDefinition(Result);
7812 SemaRef.diagnoseTypo(
7813 Correction,
7814 SemaRef.PDiag(IsLocalFriend
7815 ? diag::err_no_matching_local_friend_suggest
7816 : diag::err_member_decl_does_not_match_suggest)
7817 << Name << NewDC << IsDefinition);
7818 return Result;
7819 }
7820
7821 // Pretend the typo correction never occurred
7822 ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
7823 ExtraArgs.D.getIdentifierLoc());
7824 ExtraArgs.D.setRedeclaration(wasRedeclaration);
7825 Previous.clear();
7826 Previous.setLookupName(Name);
7827 }
7828
7829 SemaRef.Diag(NewFD->getLocation(), DiagMsg)
7830 << Name << NewDC << IsDefinition << NewFD->getLocation();
7831
7832 bool NewFDisConst = false;
7833 if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
7834 NewFDisConst = NewMD->isConst();
7835
7836 for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
7837 NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
7838 NearMatch != NearMatchEnd; ++NearMatch) {
7839 FunctionDecl *FD = NearMatch->first;
7840 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
7841 bool FDisConst = MD && MD->isConst();
7842 bool IsMember = MD || !IsLocalFriend;
7843
7844 // FIXME: These notes are poorly worded for the local friend case.
7845 if (unsigned Idx = NearMatch->second) {
7846 ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
7847 SourceLocation Loc = FDParam->getTypeSpecStartLoc();
7848 if (Loc.isInvalid()) Loc = FD->getLocation();
7849 SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
7850 : diag::note_local_decl_close_param_match)
7851 << Idx << FDParam->getType()
7852 << NewFD->getParamDecl(Idx - 1)->getType();
7853 } else if (FDisConst != NewFDisConst) {
7854 SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
7855 << NewFDisConst << FD->getSourceRange().getEnd();
7856 } else
7857 SemaRef.Diag(FD->getLocation(),
7858 IsMember ? diag::note_member_def_close_match
7859 : diag::note_local_decl_close_match);
7860 }
7861 return nullptr;
7862}
7863
7864static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) {
7865 switch (D.getDeclSpec().getStorageClassSpec()) {
7866 default: llvm_unreachable("Unknown storage class!")::llvm::llvm_unreachable_internal("Unknown storage class!", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 7866)
;
7867 case DeclSpec::SCS_auto:
7868 case DeclSpec::SCS_register:
7869 case DeclSpec::SCS_mutable:
7870 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7871 diag::err_typecheck_sclass_func);
7872 D.getMutableDeclSpec().ClearStorageClassSpecs();
7873 D.setInvalidType();
7874 break;
7875 case DeclSpec::SCS_unspecified: break;
7876 case DeclSpec::SCS_extern:
7877 if (D.getDeclSpec().isExternInLinkageSpec())
7878 return SC_None;
7879 return SC_Extern;
7880 case DeclSpec::SCS_static: {
7881 if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
7882 // C99 6.7.1p5:
7883 // The declaration of an identifier for a function that has
7884 // block scope shall have no explicit storage-class specifier
7885 // other than extern
7886 // See also (C++ [dcl.stc]p4).
7887 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7888 diag::err_static_block_func);
7889 break;
7890 } else
7891 return SC_Static;
7892 }
7893 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
7894 }
7895
7896 // No explicit storage class has already been returned
7897 return SC_None;
7898}
7899
7900static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
7901 DeclContext *DC, QualType &R,
7902 TypeSourceInfo *TInfo,
7903 StorageClass SC,
7904 bool &IsVirtualOkay) {
7905 DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
7906 DeclarationName Name = NameInfo.getName();
7907
7908 FunctionDecl *NewFD = nullptr;
7909 bool isInline = D.getDeclSpec().isInlineSpecified();
7910
7911 if (!SemaRef.getLangOpts().CPlusPlus) {
7912 // Determine whether the function was written with a
7913 // prototype. This true when:
7914 // - there is a prototype in the declarator, or
7915 // - the type R of the function is some kind of typedef or other non-
7916 // attributed reference to a type name (which eventually refers to a
7917 // function type).
7918 bool HasPrototype =
7919 (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
7920 (!R->getAsAdjusted<FunctionType>() && R->isFunctionProtoType());
7921
7922 NewFD = FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), NameInfo,
7923 R, TInfo, SC, isInline, HasPrototype, false);
7924 if (D.isInvalidType())
7925 NewFD->setInvalidDecl();
7926
7927 return NewFD;
7928 }
7929
7930 bool isExplicit = D.getDeclSpec().isExplicitSpecified();
7931 bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
7932
7933 // Check that the return type is not an abstract class type.
7934 // For record types, this is done by the AbstractClassUsageDiagnoser once
7935 // the class has been completely parsed.
7936 if (!DC->isRecord() &&
7937 SemaRef.RequireNonAbstractType(
7938 D.getIdentifierLoc(), R->getAs<FunctionType>()->getReturnType(),
7939 diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType))
7940 D.setInvalidType();
7941
7942 if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
7943 // This is a C++ constructor declaration.
7944 assert(DC->isRecord() &&((DC->isRecord() && "Constructors can only be declared in a member context"
) ? static_cast<void> (0) : __assert_fail ("DC->isRecord() && \"Constructors can only be declared in a member context\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 7945, __PRETTY_FUNCTION__))
7945 "Constructors can only be declared in a member context")((DC->isRecord() && "Constructors can only be declared in a member context"
) ? static_cast<void> (0) : __assert_fail ("DC->isRecord() && \"Constructors can only be declared in a member context\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 7945, __PRETTY_FUNCTION__))
;
7946
7947 R = SemaRef.CheckConstructorDeclarator(D, R, SC);
7948 return CXXConstructorDecl::Create(
7949 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
7950 TInfo, isExplicit, isInline,
7951 /*isImplicitlyDeclared=*/false, isConstexpr);
7952
7953 } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
7954 // This is a C++ destructor declaration.
7955 if (DC->isRecord()) {
7956 R = SemaRef.CheckDestructorDeclarator(D, R, SC);
7957 CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
7958 CXXDestructorDecl *NewDD =
7959 CXXDestructorDecl::Create(SemaRef.Context, Record, D.getBeginLoc(),
7960 NameInfo, R, TInfo, isInline,
7961 /*isImplicitlyDeclared=*/false);
7962
7963 // If the destructor needs an implicit exception specification, set it
7964 // now. FIXME: It'd be nice to be able to create the right type to start
7965 // with, but the type needs to reference the destructor declaration.
7966 if (SemaRef.getLangOpts().CPlusPlus11)
7967 SemaRef.AdjustDestructorExceptionSpec(NewDD);
7968
7969 IsVirtualOkay = true;
7970 return NewDD;
7971
7972 } else {
7973 SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
7974 D.setInvalidType();
7975
7976 // Create a FunctionDecl to satisfy the function definition parsing
7977 // code path.
7978 return FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(),
7979 D.getIdentifierLoc(), Name, R, TInfo, SC,
7980 isInline,
7981 /*hasPrototype=*/true, isConstexpr);
7982 }
7983
7984 } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
7985 if (!DC->isRecord()) {
7986 SemaRef.Diag(D.getIdentifierLoc(),
7987 diag::err_conv_function_not_member);
7988 return nullptr;
7989 }
7990
7991 SemaRef.CheckConversionDeclarator(D, R, SC);
7992 IsVirtualOkay = true;
7993 return CXXConversionDecl::Create(
7994 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
7995 TInfo, isInline, isExplicit, isConstexpr, SourceLocation());
7996
7997 } else if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
7998 SemaRef.CheckDeductionGuideDeclarator(D, R, SC);
7999
8000 return CXXDeductionGuideDecl::Create(SemaRef.Context, DC, D.getBeginLoc(),
8001 isExplicit, NameInfo, R, TInfo,
8002 D.getEndLoc());
8003 } else if (DC->isRecord()) {
8004 // If the name of the function is the same as the name of the record,
8005 // then this must be an invalid constructor that has a return type.
8006 // (The parser checks for a return type and makes the declarator a
8007 // constructor if it has no return type).
8008 if (Name.getAsIdentifierInfo() &&
8009 Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
8010 SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
8011 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
8012 << SourceRange(D.getIdentifierLoc());
8013 return nullptr;
8014 }
8015
8016 // This is a C++ method declaration.
8017 CXXMethodDecl *Ret = CXXMethodDecl::Create(
8018 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8019 TInfo, SC, isInline, isConstexpr, SourceLocation());
8020 IsVirtualOkay = !Ret->isStatic();
8021 return Ret;
8022 } else {
8023 bool isFriend =
8024 SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified();
8025 if (!isFriend && SemaRef.CurContext->isRecord())
8026 return nullptr;
8027
8028 // Determine whether the function was written with a
8029 // prototype. This true when:
8030 // - we're in C++ (where every function has a prototype),
8031 return FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), NameInfo,
8032 R, TInfo, SC, isInline, true /*HasPrototype*/,
8033 isConstexpr);
8034 }
8035}
8036
8037enum OpenCLParamType {
8038 ValidKernelParam,
8039 PtrPtrKernelParam,
8040 PtrKernelParam,
8041 InvalidAddrSpacePtrKernelParam,
8042 InvalidKernelParam,
8043 RecordKernelParam
8044};
8045
8046static bool isOpenCLSizeDependentType(ASTContext &C, QualType Ty) {
8047 // Size dependent types are just typedefs to normal integer types
8048 // (e.g. unsigned long), so we cannot distinguish them from other typedefs to
8049 // integers other than by their names.
8050 StringRef SizeTypeNames[] = {"size_t", "intptr_t", "uintptr_t", "ptrdiff_t"};
8051
8052 // Remove typedefs one by one until we reach a typedef
8053 // for a size dependent type.
8054 QualType DesugaredTy = Ty;
8055 do {
8056 ArrayRef<StringRef> Names(SizeTypeNames);
8057 auto Match =
8058 std::find(Names.begin(), Names.end(), DesugaredTy.getAsString());
8059 if (Names.end() != Match)
8060 return true;
8061
8062 Ty = DesugaredTy;
8063 DesugaredTy = Ty.getSingleStepDesugaredType(C);
8064 } while (DesugaredTy != Ty);
8065
8066 return false;
8067}
8068
8069static OpenCLParamType getOpenCLKernelParameterType(Sema &S, QualType PT) {
8070 if (PT->isPointerType()) {
8071 QualType PointeeType = PT->getPointeeType();
8072 if (PointeeType->isPointerType())
8073 return PtrPtrKernelParam;
8074 if (PointeeType.getAddressSpace() == LangAS::opencl_generic ||
8075 PointeeType.getAddressSpace() == LangAS::opencl_private ||
8076 PointeeType.getAddressSpace() == LangAS::Default)
8077 return InvalidAddrSpacePtrKernelParam;
8078 return PtrKernelParam;
8079 }
8080
8081 // OpenCL v1.2 s6.9.k:
8082 // Arguments to kernel functions in a program cannot be declared with the
8083 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
8084 // uintptr_t or a struct and/or union that contain fields declared to be one
8085 // of these built-in scalar types.
8086 if (isOpenCLSizeDependentType(S.getASTContext(), PT))
8087 return InvalidKernelParam;
8088
8089 if (PT->isImageType())
8090 return PtrKernelParam;
8091
8092 if (PT->isBooleanType() || PT->isEventT() || PT->isReserveIDT())
8093 return InvalidKernelParam;
8094
8095 // OpenCL extension spec v1.2 s9.5:
8096 // This extension adds support for half scalar and vector types as built-in
8097 // types that can be used for arithmetic operations, conversions etc.
8098 if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16") && PT->isHalfType())
8099 return InvalidKernelParam;
8100
8101 if (PT->isRecordType())
8102 return RecordKernelParam;
8103
8104 // Look into an array argument to check if it has a forbidden type.
8105 if (PT->isArrayType()) {
8106 const Type *UnderlyingTy = PT->getPointeeOrArrayElementType();
8107 // Call ourself to check an underlying type of an array. Since the
8108 // getPointeeOrArrayElementType returns an innermost type which is not an
8109 // array, this recursive call only happens once.
8110 return getOpenCLKernelParameterType(S, QualType(UnderlyingTy, 0));
8111 }
8112
8113 return ValidKernelParam;
8114}
8115
8116static void checkIsValidOpenCLKernelParameter(
8117 Sema &S,
8118 Declarator &D,
8119 ParmVarDecl *Param,
8120 llvm::SmallPtrSetImpl<const Type *> &ValidTypes) {
8121 QualType PT = Param->getType();
8122
8123 // Cache the valid types we encounter to avoid rechecking structs that are
8124 // used again
8125 if (ValidTypes.count(PT.getTypePtr()))
8126 return;
8127
8128 switch (getOpenCLKernelParameterType(S, PT)) {
8129 case PtrPtrKernelParam:
8130 // OpenCL v1.2 s6.9.a:
8131 // A kernel function argument cannot be declared as a
8132 // pointer to a pointer type.
8133 S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
8134 D.setInvalidType();
8135 return;
8136
8137 case InvalidAddrSpacePtrKernelParam:
8138 // OpenCL v1.0 s6.5:
8139 // __kernel function arguments declared to be a pointer of a type can point
8140 // to one of the following address spaces only : __global, __local or
8141 // __constant.
8142 S.Diag(Param->getLocation(), diag::err_kernel_arg_address_space);
8143 D.setInvalidType();
8144 return;
8145
8146 // OpenCL v1.2 s6.9.k:
8147 // Arguments to kernel functions in a program cannot be declared with the
8148 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
8149 // uintptr_t or a struct and/or union that contain fields declared to be
8150 // one of these built-in scalar types.
8151
8152 case InvalidKernelParam:
8153 // OpenCL v1.2 s6.8 n:
8154 // A kernel function argument cannot be declared
8155 // of event_t type.
8156 // Do not diagnose half type since it is diagnosed as invalid argument
8157 // type for any function elsewhere.
8158 if (!PT->isHalfType()) {
8159 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
8160
8161 // Explain what typedefs are involved.
8162 const TypedefType *Typedef = nullptr;
8163 while ((Typedef = PT->getAs<TypedefType>())) {
8164 SourceLocation Loc = Typedef->getDecl()->getLocation();
8165 // SourceLocation may be invalid for a built-in type.
8166 if (Loc.isValid())
8167 S.Diag(Loc, diag::note_entity_declared_at) << PT;
8168 PT = Typedef->desugar();
8169 }
8170 }
8171
8172 D.setInvalidType();
8173 return;
8174
8175 case PtrKernelParam:
8176 case ValidKernelParam:
8177 ValidTypes.insert(PT.getTypePtr());
8178 return;
8179
8180 case RecordKernelParam:
8181 break;
8182 }
8183
8184 // Track nested structs we will inspect
8185 SmallVector<const Decl *, 4> VisitStack;
8186
8187 // Track where we are in the nested structs. Items will migrate from
8188 // VisitStack to HistoryStack as we do the DFS for bad field.
8189 SmallVector<const FieldDecl *, 4> HistoryStack;
8190 HistoryStack.push_back(nullptr);
8191
8192 // At this point we already handled everything except of a RecordType or
8193 // an ArrayType of a RecordType.
8194 assert((PT->isArrayType() || PT->isRecordType()) && "Unexpected type.")(((PT->isArrayType() || PT->isRecordType()) && "Unexpected type."
) ? static_cast<void> (0) : __assert_fail ("(PT->isArrayType() || PT->isRecordType()) && \"Unexpected type.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 8194, __PRETTY_FUNCTION__))
;
8195 const RecordType *RecTy =
8196 PT->getPointeeOrArrayElementType()->getAs<RecordType>();
8197 const RecordDecl *OrigRecDecl = RecTy->getDecl();
8198
8199 VisitStack.push_back(RecTy->getDecl());
8200 assert(VisitStack.back() && "First decl null?")((VisitStack.back() && "First decl null?") ? static_cast
<void> (0) : __assert_fail ("VisitStack.back() && \"First decl null?\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 8200, __PRETTY_FUNCTION__))
;
8201
8202 do {
8203 const Decl *Next = VisitStack.pop_back_val();
8204 if (!Next) {
8205 assert(!HistoryStack.empty())((!HistoryStack.empty()) ? static_cast<void> (0) : __assert_fail
("!HistoryStack.empty()", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 8205, __PRETTY_FUNCTION__))
;
8206 // Found a marker, we have gone up a level
8207 if (const FieldDecl *Hist = HistoryStack.pop_back_val())
8208 ValidTypes.insert(Hist->getType().getTypePtr());
8209
8210 continue;
8211 }
8212
8213 // Adds everything except the original parameter declaration (which is not a
8214 // field itself) to the history stack.
8215 const RecordDecl *RD;
8216 if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
8217 HistoryStack.push_back(Field);
8218
8219 QualType FieldTy = Field->getType();
8220 // Other field types (known to be valid or invalid) are handled while we
8221 // walk around RecordDecl::fields().
8222 assert((FieldTy->isArrayType() || FieldTy->isRecordType()) &&(((FieldTy->isArrayType() || FieldTy->isRecordType()) &&
"Unexpected type.") ? static_cast<void> (0) : __assert_fail
("(FieldTy->isArrayType() || FieldTy->isRecordType()) && \"Unexpected type.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 8223, __PRETTY_FUNCTION__))
8223 "Unexpected type.")(((FieldTy->isArrayType() || FieldTy->isRecordType()) &&
"Unexpected type.") ? static_cast<void> (0) : __assert_fail
("(FieldTy->isArrayType() || FieldTy->isRecordType()) && \"Unexpected type.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 8223, __PRETTY_FUNCTION__))
;
8224 const Type *FieldRecTy = FieldTy->getPointeeOrArrayElementType();
8225
8226 RD = FieldRecTy->castAs<RecordType>()->getDecl();
8227 } else {
8228 RD = cast<RecordDecl>(Next);
8229 }
8230
8231 // Add a null marker so we know when we've gone back up a level
8232 VisitStack.push_back(nullptr);
8233
8234 for (const auto *FD : RD->fields()) {
8235 QualType QT = FD->getType();
8236
8237 if (ValidTypes.count(QT.getTypePtr()))
8238 continue;
8239
8240 OpenCLParamType ParamType = getOpenCLKernelParameterType(S, QT);
8241 if (ParamType == ValidKernelParam)
8242 continue;
8243
8244 if (ParamType == RecordKernelParam) {
8245 VisitStack.push_back(FD);
8246 continue;
8247 }
8248
8249 // OpenCL v1.2 s6.9.p:
8250 // Arguments to kernel functions that are declared to be a struct or union
8251 // do not allow OpenCL objects to be passed as elements of the struct or
8252 // union.
8253 if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
8254 ParamType == InvalidAddrSpacePtrKernelParam) {
8255 S.Diag(Param->getLocation(),
8256 diag::err_record_with_pointers_kernel_param)
8257 << PT->isUnionType()
8258 << PT;
8259 } else {
8260 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
8261 }
8262
8263 S.Diag(OrigRecDecl->getLocation(), diag::note_within_field_of_type)
8264 << OrigRecDecl->getDeclName();
8265
8266 // We have an error, now let's go back up through history and show where
8267 // the offending field came from
8268 for (ArrayRef<const FieldDecl *>::const_iterator
8269 I = HistoryStack.begin() + 1,
8270 E = HistoryStack.end();
8271 I != E; ++I) {
8272 const FieldDecl *OuterField = *I;
8273 S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
8274 << OuterField->getType();
8275 }
8276
8277 S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
8278 << QT->isPointerType()
8279 << QT;
8280 D.setInvalidType();
8281 return;
8282 }
8283 } while (!VisitStack.empty());
8284}
8285
8286/// Find the DeclContext in which a tag is implicitly declared if we see an
8287/// elaborated type specifier in the specified context, and lookup finds
8288/// nothing.
8289static DeclContext *getTagInjectionContext(DeclContext *DC) {
8290 while (!DC->isFileContext() && !DC->isFunctionOrMethod())
8291 DC = DC->getParent();
8292 return DC;
8293}
8294
8295/// Find the Scope in which a tag is implicitly declared if we see an
8296/// elaborated type specifier in the specified context, and lookup finds
8297/// nothing.
8298static Scope *getTagInjectionScope(Scope *S, const LangOptions &LangOpts) {
8299 while (S->isClassScope() ||
8300 (LangOpts.CPlusPlus &&
8301 S->isFunctionPrototypeScope()) ||
8302 ((S->getFlags() & Scope::DeclScope) == 0) ||
8303 (S->getEntity() && S->getEntity()->isTransparentContext()))
8304 S = S->getParent();
8305 return S;
8306}
8307
8308NamedDecl*
8309Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
8310 TypeSourceInfo *TInfo, LookupResult &Previous,
8311 MultiTemplateParamsArg TemplateParamLists,
8312 bool &AddToScope) {
8313 QualType R = TInfo->getType();
8314
8315 assert(R->isFunctionType())((R->isFunctionType()) ? static_cast<void> (0) : __assert_fail
("R->isFunctionType()", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 8315, __PRETTY_FUNCTION__))
;
8316
8317 // TODO: consider using NameInfo for diagnostic.
8318 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
8319 DeclarationName Name = NameInfo.getName();
8320 StorageClass SC = getFunctionStorageClass(*this, D);
8321
8322 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
8323 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
8324 diag::err_invalid_thread)
8325 << DeclSpec::getSpecifierName(TSCS);
8326
8327 if (D.isFirstDeclarationOfMember())
8328 adjustMemberFunctionCC(R, D.isStaticMember(), D.isCtorOrDtor(),
8329 D.getIdentifierLoc());
8330
8331 bool isFriend = false;
8332 FunctionTemplateDecl *FunctionTemplate = nullptr;
8333 bool isMemberSpecialization = false;
8334 bool isFunctionTemplateSpecialization = false;
8335
8336 bool isDependentClassScopeExplicitSpecialization = false;
8337 bool HasExplicitTemplateArgs = false;
8338 TemplateArgumentListInfo TemplateArgs;
8339
8340 bool isVirtualOkay = false;
8341
8342 DeclContext *OriginalDC = DC;
8343 bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
8344
8345 FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
8346 isVirtualOkay);
8347 if (!NewFD) return nullptr;
8348
8349 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
8350 NewFD->setTopLevelDeclInObjCContainer();
8351
8352 // Set the lexical context. If this is a function-scope declaration, or has a
8353 // C++ scope specifier, or is the object of a friend declaration, the lexical
8354 // context will be different from the semantic context.
8355 NewFD->setLexicalDeclContext(CurContext);
8356
8357 if (IsLocalExternDecl)
8358 NewFD->setLocalExternDecl();
8359
8360 if (getLangOpts().CPlusPlus) {
8361 bool isInline = D.getDeclSpec().isInlineSpecified();
8362 bool isVirtual = D.getDeclSpec().isVirtualSpecified();
8363 bool isExplicit = D.getDeclSpec().isExplicitSpecified();
8364 bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
8365 isFriend = D.getDeclSpec().isFriendSpecified();
8366 if (isFriend && !isInline && D.isFunctionDefinition()) {
8367 // C++ [class.friend]p5
8368 // A function can be defined in a friend declaration of a
8369 // class . . . . Such a function is implicitly inline.
8370 NewFD->setImplicitlyInline();
8371 }
8372
8373 // If this is a method defined in an __interface, and is not a constructor
8374 // or an overloaded operator, then set the pure flag (isVirtual will already
8375 // return true).
8376 if (const CXXRecordDecl *Parent =
8377 dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
8378 if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
8379 NewFD->setPure(true);
8380
8381 // C++ [class.union]p2
8382 // A union can have member functions, but not virtual functions.
8383 if (isVirtual && Parent->isUnion())
8384 Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union);
8385 }
8386
8387 SetNestedNameSpecifier(*this, NewFD, D);
8388 isMemberSpecialization = false;
8389 isFunctionTemplateSpecialization = false;
8390 if (D.isInvalidType())
8391 NewFD->setInvalidDecl();
8392
8393 // Match up the template parameter lists with the scope specifier, then
8394 // determine whether we have a template or a template specialization.
8395 bool Invalid = false;
8396 if (TemplateParameterList *TemplateParams =
8397 MatchTemplateParametersToScopeSpecifier(
8398 D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
8399 D.getCXXScopeSpec(),
8400 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
8401 ? D.getName().TemplateId
8402 : nullptr,
8403 TemplateParamLists, isFriend, isMemberSpecialization,
8404 Invalid)) {
8405 if (TemplateParams->size() > 0) {
8406 // This is a function template
8407
8408 // Check that we can declare a template here.
8409 if (CheckTemplateDeclScope(S, TemplateParams))
8410 NewFD->setInvalidDecl();
8411
8412 // A destructor cannot be a template.
8413 if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8414 Diag(NewFD->getLocation(), diag::err_destructor_template);
8415 NewFD->setInvalidDecl();
8416 }
8417
8418 // If we're adding a template to a dependent context, we may need to
8419 // rebuilding some of the types used within the template parameter list,
8420 // now that we know what the current instantiation is.
8421 if (DC->isDependentContext()) {
8422 ContextRAII SavedContext(*this, DC);
8423 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
8424 Invalid = true;
8425 }
8426
8427 FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
8428 NewFD->getLocation(),
8429 Name, TemplateParams,
8430 NewFD);
8431 FunctionTemplate->setLexicalDeclContext(CurContext);
8432 NewFD->setDescribedFunctionTemplate(FunctionTemplate);
8433
8434 // For source fidelity, store the other template param lists.
8435 if (TemplateParamLists.size() > 1) {
8436 NewFD->setTemplateParameterListsInfo(Context,
8437 TemplateParamLists.drop_back(1));
8438 }
8439 } else {
8440 // This is a function template specialization.
8441 isFunctionTemplateSpecialization = true;
8442 // For source fidelity, store all the template param lists.
8443 if (TemplateParamLists.size() > 0)
8444 NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
8445
8446 // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
8447 if (isFriend) {
8448 // We want to remove the "template<>", found here.
8449 SourceRange RemoveRange = TemplateParams->getSourceRange();
8450
8451 // If we remove the template<> and the name is not a
8452 // template-id, we're actually silently creating a problem:
8453 // the friend declaration will refer to an untemplated decl,
8454 // and clearly the user wants a template specialization. So
8455 // we need to insert '<>' after the name.
8456 SourceLocation InsertLoc;
8457 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
8458 InsertLoc = D.getName().getSourceRange().getEnd();
8459 InsertLoc = getLocForEndOfToken(InsertLoc);
8460 }
8461
8462 Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
8463 << Name << RemoveRange
8464 << FixItHint::CreateRemoval(RemoveRange)
8465 << FixItHint::CreateInsertion(InsertLoc, "<>");
8466 }
8467 }
8468 } else {
8469 // All template param lists were matched against the scope specifier:
8470 // this is NOT (an explicit specialization of) a template.
8471 if (TemplateParamLists.size() > 0)
8472 // For source fidelity, store all the template param lists.
8473 NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
8474 }
8475
8476 if (Invalid) {
8477 NewFD->setInvalidDecl();
8478 if (FunctionTemplate)
8479 FunctionTemplate->setInvalidDecl();
8480 }
8481
8482 // C++ [dcl.fct.spec]p5:
8483 // The virtual specifier shall only be used in declarations of
8484 // nonstatic class member functions that appear within a
8485 // member-specification of a class declaration; see 10.3.
8486 //
8487 if (isVirtual && !NewFD->isInvalidDecl()) {
8488 if (!isVirtualOkay) {
8489 Diag(D.getDeclSpec().getVirtualSpecLoc(),
8490 diag::err_virtual_non_function);
8491 } else if (!CurContext->isRecord()) {
8492 // 'virtual' was specified outside of the class.
8493 Diag(D.getDeclSpec().getVirtualSpecLoc(),
8494 diag::err_virtual_out_of_class)
8495 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
8496 } else if (NewFD->getDescribedFunctionTemplate()) {
8497 // C++ [temp.mem]p3:
8498 // A member function template shall not be virtual.
8499 Diag(D.getDeclSpec().getVirtualSpecLoc(),
8500 diag::err_virtual_member_function_template)
8501 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
8502 } else {
8503 // Okay: Add virtual to the method.
8504 NewFD->setVirtualAsWritten(true);
8505 }
8506
8507 if (getLangOpts().CPlusPlus14 &&
8508 NewFD->getReturnType()->isUndeducedType())
8509 Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
8510 }
8511
8512 if (getLangOpts().CPlusPlus14 &&
8513 (NewFD->isDependentContext() ||
8514 (isFriend && CurContext->isDependentContext())) &&
8515 NewFD->getReturnType()->isUndeducedType()) {
8516 // If the function template is referenced directly (for instance, as a
8517 // member of the current instantiation), pretend it has a dependent type.
8518 // This is not really justified by the standard, but is the only sane
8519 // thing to do.
8520 // FIXME: For a friend function, we have not marked the function as being
8521 // a friend yet, so 'isDependentContext' on the FD doesn't work.
8522 const FunctionProtoType *FPT =
8523 NewFD->getType()->castAs<FunctionProtoType>();
8524 QualType Result =
8525 SubstAutoType(FPT->getReturnType(), Context.DependentTy);
8526 NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(),
8527 FPT->getExtProtoInfo()));
8528 }
8529
8530 // C++ [dcl.fct.spec]p3:
8531 // The inline specifier shall not appear on a block scope function
8532 // declaration.
8533 if (isInline && !NewFD->isInvalidDecl()) {
8534 if (CurContext->isFunctionOrMethod()) {
8535 // 'inline' is not allowed on block scope function declaration.
8536 Diag(D.getDeclSpec().getInlineSpecLoc(),
8537 diag::err_inline_declaration_block_scope) << Name
8538 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
8539 }
8540 }
8541
8542 // C++ [dcl.fct.spec]p6:
8543 // The explicit specifier shall be used only in the declaration of a
8544 // constructor or conversion function within its class definition;
8545 // see 12.3.1 and 12.3.2.
8546 if (isExplicit && !NewFD->isInvalidDecl() &&
8547 !isa<CXXDeductionGuideDecl>(NewFD)) {
8548 if (!CurContext->isRecord()) {
8549 // 'explicit' was specified outside of the class.
8550 Diag(D.getDeclSpec().getExplicitSpecLoc(),
8551 diag::err_explicit_out_of_class)
8552 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
8553 } else if (!isa<CXXConstructorDecl>(NewFD) &&
8554 !isa<CXXConversionDecl>(NewFD)) {
8555 // 'explicit' was specified on a function that wasn't a constructor
8556 // or conversion function.
8557 Diag(D.getDeclSpec().getExplicitSpecLoc(),
8558 diag::err_explicit_non_ctor_or_conv_function)
8559 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
8560 }
8561 }
8562
8563 if (isConstexpr) {
8564 // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
8565 // are implicitly inline.
8566 NewFD->setImplicitlyInline();
8567
8568 // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
8569 // be either constructors or to return a literal type. Therefore,
8570 // destructors cannot be declared constexpr.
8571 if (isa<CXXDestructorDecl>(NewFD))
8572 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
8573 }
8574
8575 // If __module_private__ was specified, mark the function accordingly.
8576 if (D.getDeclSpec().isModulePrivateSpecified()) {
8577 if (isFunctionTemplateSpecialization) {
8578 SourceLocation ModulePrivateLoc
8579 = D.getDeclSpec().getModulePrivateSpecLoc();
8580 Diag(ModulePrivateLoc, diag::err_module_private_specialization)
8581 << 0
8582 << FixItHint::CreateRemoval(ModulePrivateLoc);
8583 } else {
8584 NewFD->setModulePrivate();
8585 if (FunctionTemplate)
8586 FunctionTemplate->setModulePrivate();
8587 }
8588 }
8589
8590 if (isFriend) {
8591 if (FunctionTemplate) {
8592 FunctionTemplate->setObjectOfFriendDecl();
8593 FunctionTemplate->setAccess(AS_public);
8594 }
8595 NewFD->setObjectOfFriendDecl();
8596 NewFD->setAccess(AS_public);
8597 }
8598
8599 // If a function is defined as defaulted or deleted, mark it as such now.
8600 // FIXME: Does this ever happen? ActOnStartOfFunctionDef forces the function
8601 // definition kind to FDK_Definition.
8602 switch (D.getFunctionDefinitionKind()) {
8603 case FDK_Declaration:
8604 case FDK_Definition:
8605 break;
8606
8607 case FDK_Defaulted:
8608 NewFD->setDefaulted();
8609 break;
8610
8611 case FDK_Deleted:
8612 NewFD->setDeletedAsWritten();
8613 break;
8614 }
8615
8616 if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
8617 D.isFunctionDefinition()) {
8618 // C++ [class.mfct]p2:
8619 // A member function may be defined (8.4) in its class definition, in
8620 // which case it is an inline member function (7.1.2)
8621 NewFD->setImplicitlyInline();
8622 }
8623
8624 if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
8625 !CurContext->isRecord()) {
8626 // C++ [class.static]p1:
8627 // A data or function member of a class may be declared static
8628 // in a class definition, in which case it is a static member of
8629 // the class.
8630
8631 // Complain about the 'static' specifier if it's on an out-of-line
8632 // member function definition.
8633 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
8634 diag::err_static_out_of_line)
8635 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
8636 }
8637
8638 // C++11 [except.spec]p15:
8639 // A deallocation function with no exception-specification is treated
8640 // as if it were specified with noexcept(true).
8641 const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
8642 if ((Name.getCXXOverloadedOperator() == OO_Delete ||
8643 Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
8644 getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec())
8645 NewFD->setType(Context.getFunctionType(
8646 FPT->getReturnType(), FPT->getParamTypes(),
8647 FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept)));
8648 }
8649
8650 // Filter out previous declarations that don't match the scope.
8651 FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
8652 D.getCXXScopeSpec().isNotEmpty() ||
8653 isMemberSpecialization ||
8654 isFunctionTemplateSpecialization);
8655
8656 // Handle GNU asm-label extension (encoded as an attribute).
8657 if (Expr *E = (Expr*) D.getAsmLabel()) {
8658 // The parser guarantees this is a string.
8659 StringLiteral *SE = cast<StringLiteral>(E);
8660 NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
8661 SE->getString(), 0));
8662 } else if (!ExtnameUndeclaredIdentifiers.empty()) {
8663 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
8664 ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
8665 if (I != ExtnameUndeclaredIdentifiers.end()) {
8666 if (isDeclExternC(NewFD)) {
8667 NewFD->addAttr(I->second);
8668 ExtnameUndeclaredIdentifiers.erase(I);
8669 } else
8670 Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied)
8671 << /*Variable*/0 << NewFD;
8672 }
8673 }
8674
8675 // Copy the parameter declarations from the declarator D to the function
8676 // declaration NewFD, if they are available. First scavenge them into Params.
8677 SmallVector<ParmVarDecl*, 16> Params;
8678 unsigned FTIIdx;
8679 if (D.isFunctionDeclarator(FTIIdx)) {
8680 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(FTIIdx).Fun;
8681
8682 // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
8683 // function that takes no arguments, not a function that takes a
8684 // single void argument.
8685 // We let through "const void" here because Sema::GetTypeForDeclarator
8686 // already checks for that case.
8687 if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
8688 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
8689 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
8690 assert(Param->getDeclContext() != NewFD && "Was set before ?")((Param->getDeclContext() != NewFD && "Was set before ?"
) ? static_cast<void> (0) : __assert_fail ("Param->getDeclContext() != NewFD && \"Was set before ?\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 8690, __PRETTY_FUNCTION__))
;
8691 Param->setDeclContext(NewFD);
8692 Params.push_back(Param);
8693
8694 if (Param->isInvalidDecl())
8695 NewFD->setInvalidDecl();
8696 }
8697 }
8698
8699 if (!getLangOpts().CPlusPlus) {
8700 // In C, find all the tag declarations from the prototype and move them
8701 // into the function DeclContext. Remove them from the surrounding tag
8702 // injection context of the function, which is typically but not always
8703 // the TU.
8704 DeclContext *PrototypeTagContext =
8705 getTagInjectionContext(NewFD->getLexicalDeclContext());
8706 for (NamedDecl *NonParmDecl : FTI.getDeclsInPrototype()) {
8707 auto *TD = dyn_cast<TagDecl>(NonParmDecl);
8708
8709 // We don't want to reparent enumerators. Look at their parent enum
8710 // instead.
8711 if (!TD) {
8712 if (auto *ECD = dyn_cast<EnumConstantDecl>(NonParmDecl))
8713 TD = cast<EnumDecl>(ECD->getDeclContext());
8714 }
8715 if (!TD)
8716 continue;
8717 DeclContext *TagDC = TD->getLexicalDeclContext();
8718 if (!TagDC->containsDecl(TD))
8719 continue;
8720 TagDC->removeDecl(TD);
8721 TD->setDeclContext(NewFD);
8722 NewFD->addDecl(TD);
8723
8724 // Preserve the lexical DeclContext if it is not the surrounding tag
8725 // injection context of the FD. In this example, the semantic context of
8726 // E will be f and the lexical context will be S, while both the
8727 // semantic and lexical contexts of S will be f:
8728 // void f(struct S { enum E { a } f; } s);
8729 if (TagDC != PrototypeTagContext)
8730 TD->setLexicalDeclContext(TagDC);
8731 }
8732 }
8733 } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
8734 // When we're declaring a function with a typedef, typeof, etc as in the
8735 // following example, we'll need to synthesize (unnamed)
8736 // parameters for use in the declaration.
8737 //
8738 // @code
8739 // typedef void fn(int);
8740 // fn f;
8741 // @endcode
8742
8743 // Synthesize a parameter for each argument type.
8744 for (const auto &AI : FT->param_types()) {
8745 ParmVarDecl *Param =
8746 BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
8747 Param->setScopeInfo(0, Params.size());
8748 Params.push_back(Param);
8749 }
8750 } else {
8751 assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&((R->isFunctionNoProtoType() && NewFD->getNumParams
() == 0 && "Should not need args for typedef of non-prototype fn"
) ? static_cast<void> (0) : __assert_fail ("R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 && \"Should not need args for typedef of non-prototype fn\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 8752, __PRETTY_FUNCTION__))
8752 "Should not need args for typedef of non-prototype fn")((R->isFunctionNoProtoType() && NewFD->getNumParams
() == 0 && "Should not need args for typedef of non-prototype fn"
) ? static_cast<void> (0) : __assert_fail ("R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 && \"Should not need args for typedef of non-prototype fn\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 8752, __PRETTY_FUNCTION__))
;
8753 }
8754
8755 // Finally, we know we have the right number of parameters, install them.
8756 NewFD->setParams(Params);
8757
8758 if (D.getDeclSpec().isNoreturnSpecified())
8759 NewFD->addAttr(
8760 ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
8761 Context, 0));
8762
8763 // Functions returning a variably modified type violate C99 6.7.5.2p2
8764 // because all functions have linkage.
8765 if (!NewFD->isInvalidDecl() &&
8766 NewFD->getReturnType()->isVariablyModifiedType()) {
8767 Diag(NewFD->getLocation(), diag::err_vm_func_decl);
8768 NewFD->setInvalidDecl();
8769 }
8770
8771 // Apply an implicit SectionAttr if '#pragma clang section text' is active
8772 if (PragmaClangTextSection.Valid && D.isFunctionDefinition() &&
8773 !NewFD->hasAttr<SectionAttr>()) {
8774 NewFD->addAttr(PragmaClangTextSectionAttr::CreateImplicit(Context,
8775 PragmaClangTextSection.SectionName,
8776 PragmaClangTextSection.PragmaLocation));
8777 }
8778
8779 // Apply an implicit SectionAttr if #pragma code_seg is active.
8780 if (CodeSegStack.CurrentValue && D.isFunctionDefinition() &&
8781 !NewFD->hasAttr<SectionAttr>()) {
8782 NewFD->addAttr(
8783 SectionAttr::CreateImplicit(Context, SectionAttr::Declspec_allocate,
8784 CodeSegStack.CurrentValue->getString(),
8785 CodeSegStack.CurrentPragmaLocation));
8786 if (UnifySection(CodeSegStack.CurrentValue->getString(),
8787 ASTContext::PSF_Implicit | ASTContext::PSF_Execute |
8788 ASTContext::PSF_Read,
8789 NewFD))
8790 NewFD->dropAttr<SectionAttr>();
8791 }
8792
8793 // Apply an implicit CodeSegAttr from class declspec or
8794 // apply an implicit SectionAttr from #pragma code_seg if active.
8795 if (!NewFD->hasAttr<CodeSegAttr>()) {
8796 if (Attr *SAttr = getImplicitCodeSegOrSectionAttrForFunction(NewFD,
8797 D.isFunctionDefinition())) {
8798 NewFD->addAttr(SAttr);
8799 }
8800 }
8801
8802 // Handle attributes.
8803 ProcessDeclAttributes(S, NewFD, D);
8804
8805 if (getLangOpts().OpenCL) {
8806 // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
8807 // type declaration will generate a compilation error.
8808 LangAS AddressSpace = NewFD->getReturnType().getAddressSpace();
8809 if (AddressSpace != LangAS::Default) {
8810 Diag(NewFD->getLocation(),
8811 diag::err_opencl_return_value_with_address_space);
8812 NewFD->setInvalidDecl();
8813 }
8814 }
8815
8816 if (!getLangOpts().CPlusPlus) {
8817 // Perform semantic checking on the function declaration.
8818 if (!NewFD->isInvalidDecl() && NewFD->isMain())
8819 CheckMain(NewFD, D.getDeclSpec());
8820
8821 if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
8822 CheckMSVCRTEntryPoint(NewFD);
8823
8824 if (!NewFD->isInvalidDecl())
8825 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
8826 isMemberSpecialization));
8827 else if (!Previous.empty())
8828 // Recover gracefully from an invalid redeclaration.
8829 D.setRedeclaration(true);
8830 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||(((NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous
.getResultKind() != LookupResult::FoundOverloaded) &&
"previous declaration set still overloaded") ? static_cast<
void> (0) : __assert_fail ("(NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 8832, __PRETTY_FUNCTION__))
8831 Previous.getResultKind() != LookupResult::FoundOverloaded) &&(((NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous
.getResultKind() != LookupResult::FoundOverloaded) &&
"previous declaration set still overloaded") ? static_cast<
void> (0) : __assert_fail ("(NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 8832, __PRETTY_FUNCTION__))
8832 "previous declaration set still overloaded")(((NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous
.getResultKind() != LookupResult::FoundOverloaded) &&
"previous declaration set still overloaded") ? static_cast<
void> (0) : __assert_fail ("(NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 8832, __PRETTY_FUNCTION__))
;
8833
8834 // Diagnose no-prototype function declarations with calling conventions that
8835 // don't support variadic calls. Only do this in C and do it after merging
8836 // possibly prototyped redeclarations.
8837 const FunctionType *FT = NewFD->getType()->castAs<FunctionType>();
8838 if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) {
8839 CallingConv CC = FT->getExtInfo().getCC();
8840 if (!supportsVariadicCall(CC)) {
8841 // Windows system headers sometimes accidentally use stdcall without
8842 // (void) parameters, so we relax this to a warning.
8843 int DiagID =
8844 CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr;
8845 Diag(NewFD->getLocation(), DiagID)
8846 << FunctionType::getNameForCallConv(CC);
8847 }
8848 }
8849 } else {
8850 // C++11 [replacement.functions]p3:
8851 // The program's definitions shall not be specified as inline.
8852 //
8853 // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
8854 //
8855 // Suppress the diagnostic if the function is __attribute__((used)), since
8856 // that forces an external definition to be emitted.
8857 if (D.getDeclSpec().isInlineSpecified() &&
8858 NewFD->isReplaceableGlobalAllocationFunction() &&
8859 !NewFD->hasAttr<UsedAttr>())
8860 Diag(D.getDeclSpec().getInlineSpecLoc(),
8861 diag::ext_operator_new_delete_declared_inline)
8862 << NewFD->getDeclName();
8863
8864 // If the declarator is a template-id, translate the parser's template
8865 // argument list into our AST format.
8866 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
8867 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
8868 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
8869 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
8870 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
8871 TemplateId->NumArgs);
8872 translateTemplateArguments(TemplateArgsPtr,
8873 TemplateArgs);
8874
8875 HasExplicitTemplateArgs = true;
8876
8877 if (NewFD->isInvalidDecl()) {
8878 HasExplicitTemplateArgs = false;
8879 } else if (FunctionTemplate) {
8880 // Function template with explicit template arguments.
8881 Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
8882 << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
8883
8884 HasExplicitTemplateArgs = false;
8885 } else {
8886 assert((isFunctionTemplateSpecialization ||(((isFunctionTemplateSpecialization || D.getDeclSpec().isFriendSpecified
()) && "should have a 'template<>' for this decl"
) ? static_cast<void> (0) : __assert_fail ("(isFunctionTemplateSpecialization || D.getDeclSpec().isFriendSpecified()) && \"should have a 'template<>' for this decl\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 8888, __PRETTY_FUNCTION__))
8887 D.getDeclSpec().isFriendSpecified()) &&(((isFunctionTemplateSpecialization || D.getDeclSpec().isFriendSpecified
()) && "should have a 'template<>' for this decl"
) ? static_cast<void> (0) : __assert_fail ("(isFunctionTemplateSpecialization || D.getDeclSpec().isFriendSpecified()) && \"should have a 'template<>' for this decl\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 8888, __PRETTY_FUNCTION__))
8888 "should have a 'template<>' for this decl")(((isFunctionTemplateSpecialization || D.getDeclSpec().isFriendSpecified
()) && "should have a 'template<>' for this decl"
) ? static_cast<void> (0) : __assert_fail ("(isFunctionTemplateSpecialization || D.getDeclSpec().isFriendSpecified()) && \"should have a 'template<>' for this decl\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 8888, __PRETTY_FUNCTION__))
;
8889 // "friend void foo<>(int);" is an implicit specialization decl.
8890 isFunctionTemplateSpecialization = true;
8891 }
8892 } else if (isFriend && isFunctionTemplateSpecialization) {
8893 // This combination is only possible in a recovery case; the user
8894 // wrote something like:
8895 // template <> friend void foo(int);
8896 // which we're recovering from as if the user had written:
8897 // friend void foo<>(int);
8898 // Go ahead and fake up a template id.
8899 HasExplicitTemplateArgs = true;
8900 TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
8901 TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
8902 }
8903
8904 // We do not add HD attributes to specializations here because
8905 // they may have different constexpr-ness compared to their
8906 // templates and, after maybeAddCUDAHostDeviceAttrs() is applied,
8907 // may end up with different effective targets. Instead, a
8908 // specialization inherits its target attributes from its template
8909 // in the CheckFunctionTemplateSpecialization() call below.
8910 if (getLangOpts().CUDA & !isFunctionTemplateSpecialization)
8911 maybeAddCUDAHostDeviceAttrs(NewFD, Previous);
8912
8913 // If it's a friend (and only if it's a friend), it's possible
8914 // that either the specialized function type or the specialized
8915 // template is dependent, and therefore matching will fail. In
8916 // this case, don't check the specialization yet.
8917 bool InstantiationDependent = false;
8918 if (isFunctionTemplateSpecialization && isFriend &&
8919 (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
8920 TemplateSpecializationType::anyDependentTemplateArguments(
8921 TemplateArgs,
8922 InstantiationDependent))) {
8923 assert(HasExplicitTemplateArgs &&((HasExplicitTemplateArgs && "friend function specialization without template args"
) ? static_cast<void> (0) : __assert_fail ("HasExplicitTemplateArgs && \"friend function specialization without template args\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 8924, __PRETTY_FUNCTION__))
8924 "friend function specialization without template args")((HasExplicitTemplateArgs && "friend function specialization without template args"
) ? static_cast<void> (0) : __assert_fail ("HasExplicitTemplateArgs && \"friend function specialization without template args\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 8924, __PRETTY_FUNCTION__))
;
8925 if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
8926 Previous))
8927 NewFD->setInvalidDecl();
8928 } else if (isFunctionTemplateSpecialization) {
8929 if (CurContext->isDependentContext() && CurContext->isRecord()
8930 && !isFriend) {
8931 isDependentClassScopeExplicitSpecialization = true;
8932 } else if (!NewFD->isInvalidDecl() &&
8933 CheckFunctionTemplateSpecialization(
8934 NewFD, (HasExplicitTemplateArgs ? &TemplateArgs : nullptr),
8935 Previous))
8936 NewFD->setInvalidDecl();
8937
8938 // C++ [dcl.stc]p1:
8939 // A storage-class-specifier shall not be specified in an explicit
8940 // specialization (14.7.3)
8941 FunctionTemplateSpecializationInfo *Info =
8942 NewFD->getTemplateSpecializationInfo();
8943 if (Info && SC != SC_None) {
8944 if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
8945 Diag(NewFD->getLocation(),
8946 diag::err_explicit_specialization_inconsistent_storage_class)
8947 << SC
8948 << FixItHint::CreateRemoval(
8949 D.getDeclSpec().getStorageClassSpecLoc());
8950
8951 else
8952 Diag(NewFD->getLocation(),
8953 diag::ext_explicit_specialization_storage_class)
8954 << FixItHint::CreateRemoval(
8955 D.getDeclSpec().getStorageClassSpecLoc());
8956 }
8957 } else if (isMemberSpecialization && isa<CXXMethodDecl>(NewFD)) {
8958 if (CheckMemberSpecialization(NewFD, Previous))
8959 NewFD->setInvalidDecl();
8960 }
8961
8962 // Perform semantic checking on the function declaration.
8963 if (!isDependentClassScopeExplicitSpecialization) {
8964 if (!NewFD->isInvalidDecl() && NewFD->isMain())
8965 CheckMain(NewFD, D.getDeclSpec());
8966
8967 if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
8968 CheckMSVCRTEntryPoint(NewFD);
8969
8970 if (!NewFD->isInvalidDecl())
8971 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
8972 isMemberSpecialization));
8973 else if (!Previous.empty())
8974 // Recover gracefully from an invalid redeclaration.
8975 D.setRedeclaration(true);
8976 }
8977
8978 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||(((NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous
.getResultKind() != LookupResult::FoundOverloaded) &&
"previous declaration set still overloaded") ? static_cast<
void> (0) : __assert_fail ("(NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 8980, __PRETTY_FUNCTION__))
8979 Previous.getResultKind() != LookupResult::FoundOverloaded) &&(((NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous
.getResultKind() != LookupResult::FoundOverloaded) &&
"previous declaration set still overloaded") ? static_cast<
void> (0) : __assert_fail ("(NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 8980, __PRETTY_FUNCTION__))
8980 "previous declaration set still overloaded")(((NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous
.getResultKind() != LookupResult::FoundOverloaded) &&
"previous declaration set still overloaded") ? static_cast<
void> (0) : __assert_fail ("(NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 8980, __PRETTY_FUNCTION__))
;
8981
8982 NamedDecl *PrincipalDecl = (FunctionTemplate
8983 ? cast<NamedDecl>(FunctionTemplate)
8984 : NewFD);
8985
8986 if (isFriend && NewFD->getPreviousDecl()) {
8987 AccessSpecifier Access = AS_public;
8988 if (!NewFD->isInvalidDecl())
8989 Access = NewFD->getPreviousDecl()->getAccess();
8990
8991 NewFD->setAccess(Access);
8992 if (FunctionTemplate) FunctionTemplate->setAccess(Access);
8993 }
8994
8995 if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
8996 PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
8997 PrincipalDecl->setNonMemberOperator();
8998
8999 // If we have a function template, check the template parameter
9000 // list. This will check and merge default template arguments.
9001 if (FunctionTemplate) {
9002 FunctionTemplateDecl *PrevTemplate =
9003 FunctionTemplate->getPreviousDecl();
9004 CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
9005 PrevTemplate ? PrevTemplate->getTemplateParameters()
9006 : nullptr,
9007 D.getDeclSpec().isFriendSpecified()
9008 ? (D.isFunctionDefinition()
9009 ? TPC_FriendFunctionTemplateDefinition
9010 : TPC_FriendFunctionTemplate)
9011 : (D.getCXXScopeSpec().isSet() &&
9012 DC && DC->isRecord() &&
9013 DC->isDependentContext())
9014 ? TPC_ClassTemplateMember
9015 : TPC_FunctionTemplate);
9016 }
9017
9018 if (NewFD->isInvalidDecl()) {
9019 // Ignore all the rest of this.
9020 } else if (!D.isRedeclaration()) {
9021 struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
9022 AddToScope };
9023 // Fake up an access specifier if it's supposed to be a class member.
9024 if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
9025 NewFD->setAccess(AS_public);
9026
9027 // Qualified decls generally require a previous declaration.
9028 if (D.getCXXScopeSpec().isSet()) {
9029 // ...with the major exception of templated-scope or
9030 // dependent-scope friend declarations.
9031
9032 // TODO: we currently also suppress this check in dependent
9033 // contexts because (1) the parameter depth will be off when
9034 // matching friend templates and (2) we might actually be
9035 // selecting a friend based on a dependent factor. But there
9036 // are situations where these conditions don't apply and we
9037 // can actually do this check immediately.
9038 if (isFriend &&
9039 (TemplateParamLists.size() ||
9040 D.getCXXScopeSpec().getScopeRep()->isDependent() ||
9041 CurContext->isDependentContext())) {
9042 // ignore these
9043 } else {
9044 // The user tried to provide an out-of-line definition for a
9045 // function that is a member of a class or namespace, but there
9046 // was no such member function declared (C++ [class.mfct]p2,
9047 // C++ [namespace.memdef]p2). For example:
9048 //
9049 // class X {
9050 // void f() const;
9051 // };
9052 //
9053 // void X::f() { } // ill-formed
9054 //
9055 // Complain about this problem, and attempt to suggest close
9056 // matches (e.g., those that differ only in cv-qualifiers and
9057 // whether the parameter types are references).
9058
9059 if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
9060 *this, Previous, NewFD, ExtraArgs, false, nullptr)) {
9061 AddToScope = ExtraArgs.AddToScope;
9062 return Result;
9063 }
9064 }
9065
9066 // Unqualified local friend declarations are required to resolve
9067 // to something.
9068 } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
9069 if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
9070 *this, Previous, NewFD, ExtraArgs, true, S)) {
9071 AddToScope = ExtraArgs.AddToScope;
9072 return Result;
9073 }
9074 }
9075 } else if (!D.isFunctionDefinition() &&
9076 isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
9077 !isFriend && !isFunctionTemplateSpecialization &&
9078 !isMemberSpecialization) {
9079 // An out-of-line member function declaration must also be a
9080 // definition (C++ [class.mfct]p2).
9081 // Note that this is not the case for explicit specializations of
9082 // function templates or member functions of class templates, per
9083 // C++ [temp.expl.spec]p2. We also allow these declarations as an
9084 // extension for compatibility with old SWIG code which likes to
9085 // generate them.
9086 Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
9087 << D.getCXXScopeSpec().getRange();
9088 }
9089 }
9090
9091 ProcessPragmaWeak(S, NewFD);
9092 checkAttributesAfterMerging(*this, *NewFD);
9093
9094 AddKnownFunctionAttributes(NewFD);
9095
9096 if (NewFD->hasAttr<OverloadableAttr>() &&
9097 !NewFD->getType()->getAs<FunctionProtoType>()) {
9098 Diag(NewFD->getLocation(),
9099 diag::err_attribute_overloadable_no_prototype)
9100 << NewFD;
9101
9102 // Turn this into a variadic function with no parameters.
9103 const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
9104 FunctionProtoType::ExtProtoInfo EPI(
9105 Context.getDefaultCallingConvention(true, false));
9106 EPI.Variadic = true;
9107 EPI.ExtInfo = FT->getExtInfo();
9108
9109 QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI);
9110 NewFD->setType(R);
9111 }
9112
9113 // If there's a #pragma GCC visibility in scope, and this isn't a class
9114 // member, set the visibility of this function.
9115 if (!DC->isRecord() && NewFD->isExternallyVisible())
9116 AddPushedVisibilityAttribute(NewFD);
9117
9118 // If there's a #pragma clang arc_cf_code_audited in scope, consider
9119 // marking the function.
9120 AddCFAuditedAttribute(NewFD);
9121
9122 // If this is a function definition, check if we have to apply optnone due to
9123 // a pragma.
9124 if(D.isFunctionDefinition())
9125 AddRangeBasedOptnone(NewFD);
9126
9127 // If this is the first declaration of an extern C variable, update
9128 // the map of such variables.
9129 if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
9130 isIncompleteDeclExternC(*this, NewFD))
9131 RegisterLocallyScopedExternCDecl(NewFD, S);
9132
9133 // Set this FunctionDecl's range up to the right paren.
9134 NewFD->setRangeEnd(D.getSourceRange().getEnd());
9135
9136 if (D.isRedeclaration() && !Previous.empty()) {
9137 NamedDecl *Prev = Previous.getRepresentativeDecl();
9138 checkDLLAttributeRedeclaration(*this, Prev, NewFD,
9139 isMemberSpecialization ||
9140 isFunctionTemplateSpecialization,
9141 D.isFunctionDefinition());
9142 }
9143
9144 if (getLangOpts().CUDA) {
9145 IdentifierInfo *II = NewFD->getIdentifier();
9146 if (II &&
9147 II->isStr(getLangOpts().HIP ? "hipConfigureCall"
9148 : "cudaConfigureCall") &&
9149 !NewFD->isInvalidDecl() &&
9150 NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
9151 if (!R->getAs<FunctionType>()->getReturnType()->isScalarType())
9152 Diag(NewFD->getLocation(), diag::err_config_scalar_return);
9153 Context.setcudaConfigureCallDecl(NewFD);
9154 }
9155
9156 // Variadic functions, other than a *declaration* of printf, are not allowed
9157 // in device-side CUDA code, unless someone passed
9158 // -fcuda-allow-variadic-functions.
9159 if (!getLangOpts().CUDAAllowVariadicFunctions && NewFD->isVariadic() &&
9160 (NewFD->hasAttr<CUDADeviceAttr>() ||
9161 NewFD->hasAttr<CUDAGlobalAttr>()) &&
9162 !(II && II->isStr("printf") && NewFD->isExternC() &&
9163 !D.isFunctionDefinition())) {
9164 Diag(NewFD->getLocation(), diag::err_variadic_device_fn);
9165 }
9166 }
9167
9168 MarkUnusedFileScopedDecl(NewFD);
9169
9170 if (getLangOpts().CPlusPlus) {
9171 if (FunctionTemplate) {
9172 if (NewFD->isInvalidDecl())
9173 FunctionTemplate->setInvalidDecl();
9174 return FunctionTemplate;
9175 }
9176
9177 if (isMemberSpecialization && !NewFD->isInvalidDecl())
9178 CompleteMemberSpecialization(NewFD, Previous);
9179 }
9180
9181 if (NewFD->hasAttr<OpenCLKernelAttr>()) {
9182 // OpenCL v1.2 s6.8 static is invalid for kernel functions.
9183 if ((getLangOpts().OpenCLVersion >= 120)
9184 && (SC == SC_Static)) {
9185 Diag(D.getIdentifierLoc(), diag::err_static_kernel);
9186 D.setInvalidType();
9187 }
9188
9189 // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
9190 if (!NewFD->getReturnType()->isVoidType()) {
9191 SourceRange RTRange = NewFD->getReturnTypeSourceRange();
9192 Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
9193 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
9194 : FixItHint());
9195 D.setInvalidType();
9196 }
9197
9198 llvm::SmallPtrSet<const Type *, 16> ValidTypes;
9199 for (auto Param : NewFD->parameters())
9200 checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
9201 }
9202 for (const ParmVarDecl *Param : NewFD->parameters()) {
9203 QualType PT = Param->getType();
9204
9205 // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value
9206 // types.
9207 if (getLangOpts().OpenCLVersion >= 200) {
9208 if(const PipeType *PipeTy = PT->getAs<PipeType>()) {
9209 QualType ElemTy = PipeTy->getElementType();
9210 if (ElemTy->isReferenceType() || ElemTy->isPointerType()) {
9211 Diag(Param->getTypeSpecStartLoc(), diag::err_reference_pipe_type );
9212 D.setInvalidType();
9213 }
9214 }
9215 }
9216 }
9217
9218 // Here we have an function template explicit specialization at class scope.
9219 // The actual specialization will be postponed to template instatiation
9220 // time via the ClassScopeFunctionSpecializationDecl node.
9221 if (isDependentClassScopeExplicitSpecialization) {
9222 ClassScopeFunctionSpecializationDecl *NewSpec =
9223 ClassScopeFunctionSpecializationDecl::Create(
9224 Context, CurContext, NewFD->getLocation(),
9225 cast<CXXMethodDecl>(NewFD),
9226 HasExplicitTemplateArgs, TemplateArgs);
9227 CurContext->addDecl(NewSpec);
9228 AddToScope = false;
9229 }
9230
9231 // Diagnose availability attributes. Availability cannot be used on functions
9232 // that are run during load/unload.
9233 if (const auto *attr = NewFD->getAttr<AvailabilityAttr>()) {
9234 if (NewFD->hasAttr<ConstructorAttr>()) {
9235 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
9236 << 1;
9237 NewFD->dropAttr<AvailabilityAttr>();
9238 }
9239 if (NewFD->hasAttr<DestructorAttr>()) {
9240 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
9241 << 2;
9242 NewFD->dropAttr<AvailabilityAttr>();
9243 }
9244 }
9245
9246 return NewFD;
9247}
9248
9249/// Return a CodeSegAttr from a containing class. The Microsoft docs say
9250/// when __declspec(code_seg) "is applied to a class, all member functions of
9251/// the class and nested classes -- this includes compiler-generated special
9252/// member functions -- are put in the specified segment."
9253/// The actual behavior is a little more complicated. The Microsoft compiler
9254/// won't check outer classes if there is an active value from #pragma code_seg.
9255/// The CodeSeg is always applied from the direct parent but only from outer
9256/// classes when the #pragma code_seg stack is empty. See:
9257/// https://reviews.llvm.org/D22931, the Microsoft feedback page is no longer
9258/// available since MS has removed the page.
9259static Attr *getImplicitCodeSegAttrFromClass(Sema &S, const FunctionDecl *FD) {
9260 const auto *Method = dyn_cast<CXXMethodDecl>(FD);
9261 if (!Method)
9262 return nullptr;
9263 const CXXRecordDecl *Parent = Method->getParent();
9264 if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
9265 Attr *NewAttr = SAttr->clone(S.getASTContext());
9266 NewAttr->setImplicit(true);
9267 return NewAttr;
9268 }
9269
9270 // The Microsoft compiler won't check outer classes for the CodeSeg
9271 // when the #pragma code_seg stack is active.
9272 if (S.CodeSegStack.CurrentValue)
9273 return nullptr;
9274
9275 while ((Parent = dyn_cast<CXXRecordDecl>(Parent->getParent()))) {
9276 if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
9277 Attr *NewAttr = SAttr->clone(S.getASTContext());
9278 NewAttr->setImplicit(true);
9279 return NewAttr;
9280 }
9281 }
9282 return nullptr;
9283}
9284
9285/// Returns an implicit CodeSegAttr if a __declspec(code_seg) is found on a
9286/// containing class. Otherwise it will return implicit SectionAttr if the
9287/// function is a definition and there is an active value on CodeSegStack
9288/// (from the current #pragma code-seg value).
9289///
9290/// \param FD Function being declared.
9291/// \param IsDefinition Whether it is a definition or just a declarartion.
9292/// \returns A CodeSegAttr or SectionAttr to apply to the function or
9293/// nullptr if no attribute should be added.
9294Attr *Sema::getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD,
9295 bool IsDefinition) {
9296 if (Attr *A = getImplicitCodeSegAttrFromClass(*this, FD))
9297 return A;
9298 if (!FD->hasAttr<SectionAttr>() && IsDefinition &&
9299 CodeSegStack.CurrentValue) {
9300 return SectionAttr::CreateImplicit(getASTContext(),
9301 SectionAttr::Declspec_allocate,
9302 CodeSegStack.CurrentValue->getString(),
9303 CodeSegStack.CurrentPragmaLocation);
9304 }
9305 return nullptr;
9306}
9307
9308/// Determines if we can perform a correct type check for \p D as a
9309/// redeclaration of \p PrevDecl. If not, we can generally still perform a
9310/// best-effort check.
9311///
9312/// \param NewD The new declaration.
9313/// \param OldD The old declaration.
9314/// \param NewT The portion of the type of the new declaration to check.
9315/// \param OldT The portion of the type of the old declaration to check.
9316bool Sema::canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD,
9317 QualType NewT, QualType OldT) {
9318 if (!NewD->getLexicalDeclContext()->isDependentContext())
9319 return true;
9320
9321 // For dependently-typed local extern declarations and friends, we can't
9322 // perform a correct type check in general until instantiation:
9323 //
9324 // int f();
9325 // template<typename T> void g() { T f(); }
9326 //
9327 // (valid if g() is only instantiated with T = int).
9328 if (NewT->isDependentType() &&
9329 (NewD->isLocalExternDecl() || NewD->getFriendObjectKind()))
9330 return false;
9331
9332 // Similarly, if the previous declaration was a dependent local extern
9333 // declaration, we don't really know its type yet.
9334 if (OldT->isDependentType() && OldD->isLocalExternDecl())
9335 return false;
9336
9337 return true;
9338}
9339
9340/// Checks if the new declaration declared in dependent context must be
9341/// put in the same redeclaration chain as the specified declaration.
9342///
9343/// \param D Declaration that is checked.
9344/// \param PrevDecl Previous declaration found with proper lookup method for the
9345/// same declaration name.
9346/// \returns True if D must be added to the redeclaration chain which PrevDecl
9347/// belongs to.
9348///
9349bool Sema::shouldLinkDependentDeclWithPrevious(Decl *D, Decl *PrevDecl) {
9350 if (!D->getLexicalDeclContext()->isDependentContext())
9351 return true;
9352
9353 // Don't chain dependent friend function definitions until instantiation, to
9354 // permit cases like
9355 //
9356 // void func();
9357 // template<typename T> class C1 { friend void func() {} };
9358 // template<typename T> class C2 { friend void func() {} };
9359 //
9360 // ... which is valid if only one of C1 and C2 is ever instantiated.
9361 //
9362 // FIXME: This need only apply to function definitions. For now, we proxy
9363 // this by checking for a file-scope function. We do not want this to apply
9364 // to friend declarations nominating member functions, because that gets in
9365 // the way of access checks.
9366 if (D->getFriendObjectKind() && D->getDeclContext()->isFileContext())
9367 return false;
9368
9369 auto *VD = dyn_cast<ValueDecl>(D);
9370 auto *PrevVD = dyn_cast<ValueDecl>(PrevDecl);
9371 return !VD || !PrevVD ||
9372 canFullyTypeCheckRedeclaration(VD, PrevVD, VD->getType(),
9373 PrevVD->getType());
9374}
9375
9376/// Check the target attribute of the function for MultiVersion
9377/// validity.
9378///
9379/// Returns true if there was an error, false otherwise.
9380static bool CheckMultiVersionValue(Sema &S, const FunctionDecl *FD) {
9381 const auto *TA = FD->getAttr<TargetAttr>();
9382 assert(TA && "MultiVersion Candidate requires a target attribute")((TA && "MultiVersion Candidate requires a target attribute"
) ? static_cast<void> (0) : __assert_fail ("TA && \"MultiVersion Candidate requires a target attribute\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 9382, __PRETTY_FUNCTION__))
;
9383 TargetAttr::ParsedTargetAttr ParseInfo = TA->parse();
9384 const TargetInfo &TargetInfo = S.Context.getTargetInfo();
9385 enum ErrType { Feature = 0, Architecture = 1 };
9386
9387 if (!ParseInfo.Architecture.empty() &&
9388 !TargetInfo.validateCpuIs(ParseInfo.Architecture)) {
9389 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
9390 << Architecture << ParseInfo.Architecture;
9391 return true;
9392 }
9393
9394 for (const auto &Feat : ParseInfo.Features) {
9395 auto BareFeat = StringRef{Feat}.substr(1);
9396 if (Feat[0] == '-') {
9397 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
9398 << Feature << ("no-" + BareFeat).str();
9399 return true;
9400 }
9401
9402 if (!TargetInfo.validateCpuSupports(BareFeat) ||
9403 !TargetInfo.isValidFeatureName(BareFeat)) {
9404 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
9405 << Feature << BareFeat;
9406 return true;
9407 }
9408 }
9409 return false;
9410}
9411
9412static bool HasNonMultiVersionAttributes(const FunctionDecl *FD,
9413 MultiVersionKind MVType) {
9414 for (const Attr *A : FD->attrs()) {
9415 switch (A->getKind()) {
9416 case attr::CPUDispatch:
9417 case attr::CPUSpecific:
9418 if (MVType != MultiVersionKind::CPUDispatch &&
9419 MVType != MultiVersionKind::CPUSpecific)
9420 return true;
9421 break;
9422 case attr::Target:
9423 if (MVType != MultiVersionKind::Target)
9424 return true;
9425 break;
9426 default:
9427 return true;
9428 }
9429 }
9430 return false;
9431}
9432
9433static bool CheckMultiVersionAdditionalRules(Sema &S, const FunctionDecl *OldFD,
9434 const FunctionDecl *NewFD,
9435 bool CausesMV,
9436 MultiVersionKind MVType) {
9437 enum DoesntSupport {
9438 FuncTemplates = 0,
9439 VirtFuncs = 1,
9440 DeducedReturn = 2,
9441 Constructors = 3,
9442 Destructors = 4,
9443 DeletedFuncs = 5,
9444 DefaultedFuncs = 6,
9445 ConstexprFuncs = 7,
9446 };
9447 enum Different {
9448 CallingConv = 0,
9449 ReturnType = 1,
9450 ConstexprSpec = 2,
9451 InlineSpec = 3,
9452 StorageClass = 4,
9453 Linkage = 5
9454 };
9455
9456 bool IsCPUSpecificCPUDispatchMVType =
9457 MVType == MultiVersionKind::CPUDispatch ||
9458 MVType == MultiVersionKind::CPUSpecific;
9459
9460 if (OldFD && !OldFD->getType()->getAs<FunctionProtoType>()) {
9461 S.Diag(OldFD->getLocation(), diag::err_multiversion_noproto);
9462 S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
9463 return true;
9464 }
9465
9466 if (!NewFD->getType()->getAs<FunctionProtoType>())
9467 return S.Diag(NewFD->getLocation(), diag::err_multiversion_noproto);
9468
9469 if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
9470 S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
9471 if (OldFD)
9472 S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
9473 return true;
9474 }
9475
9476 // For now, disallow all other attributes. These should be opt-in, but
9477 // an analysis of all of them is a future FIXME.
9478 if (CausesMV && OldFD && HasNonMultiVersionAttributes(OldFD, MVType)) {
9479 S.Diag(OldFD->getLocation(), diag::err_multiversion_no_other_attrs)
9480 << IsCPUSpecificCPUDispatchMVType;
9481 S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
9482 return true;
9483 }
9484
9485 if (HasNonMultiVersionAttributes(NewFD, MVType))
9486 return S.Diag(NewFD->getLocation(), diag::err_multiversion_no_other_attrs)
9487 << IsCPUSpecificCPUDispatchMVType;
9488
9489 if (NewFD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
9490 return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9491 << IsCPUSpecificCPUDispatchMVType << FuncTemplates;
9492
9493 if (const auto *NewCXXFD = dyn_cast<CXXMethodDecl>(NewFD)) {
9494 if (NewCXXFD->isVirtual())
9495 return S.Diag(NewCXXFD->getLocation(),
9496 diag::err_multiversion_doesnt_support)
9497 << IsCPUSpecificCPUDispatchMVType << VirtFuncs;
9498
9499 if (const auto *NewCXXCtor = dyn_cast<CXXConstructorDecl>(NewFD))
9500 return S.Diag(NewCXXCtor->getLocation(),
9501 diag::err_multiversion_doesnt_support)
9502 << IsCPUSpecificCPUDispatchMVType << Constructors;
9503
9504 if (const auto *NewCXXDtor = dyn_cast<CXXDestructorDecl>(NewFD))
9505 return S.Diag(NewCXXDtor->getLocation(),
9506 diag::err_multiversion_doesnt_support)
9507 << IsCPUSpecificCPUDispatchMVType << Destructors;
9508 }
9509
9510 if (NewFD->isDeleted())
9511 return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9512 << IsCPUSpecificCPUDispatchMVType << DeletedFuncs;
9513
9514 if (NewFD->isDefaulted())
9515 return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9516 << IsCPUSpecificCPUDispatchMVType << DefaultedFuncs;
9517
9518 if (NewFD->isConstexpr() && (MVType == MultiVersionKind::CPUDispatch ||
9519 MVType == MultiVersionKind::CPUSpecific))
9520 return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9521 << IsCPUSpecificCPUDispatchMVType << ConstexprFuncs;
9522
9523 QualType NewQType = S.getASTContext().getCanonicalType(NewFD->getType());
9524 const auto *NewType = cast<FunctionType>(NewQType);
9525 QualType NewReturnType = NewType->getReturnType();
9526
9527 if (NewReturnType->isUndeducedType())
9528 return S.Diag(NewFD->getLocation(), diag::err_multiversion_doesnt_support)
9529 << IsCPUSpecificCPUDispatchMVType << DeducedReturn;
9530
9531 // Only allow transition to MultiVersion if it hasn't been used.
9532 if (OldFD && CausesMV && OldFD->isUsed(false))
9533 return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used);
9534
9535 // Ensure the return type is identical.
9536 if (OldFD) {
9537 QualType OldQType = S.getASTContext().getCanonicalType(OldFD->getType());
9538 const auto *OldType = cast<FunctionType>(OldQType);
9539 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
9540 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
9541
9542 if (OldTypeInfo.getCC() != NewTypeInfo.getCC())
9543 return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9544 << CallingConv;
9545
9546 QualType OldReturnType = OldType->getReturnType();
9547
9548 if (OldReturnType != NewReturnType)
9549 return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9550 << ReturnType;
9551
9552 if (OldFD->isConstexpr() != NewFD->isConstexpr())
9553 return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9554 << ConstexprSpec;
9555
9556 if (OldFD->isInlineSpecified() != NewFD->isInlineSpecified())
9557 return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9558 << InlineSpec;
9559
9560 if (OldFD->getStorageClass() != NewFD->getStorageClass())
9561 return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9562 << StorageClass;
9563
9564 if (OldFD->isExternC() != NewFD->isExternC())
9565 return S.Diag(NewFD->getLocation(), diag::err_multiversion_diff)
9566 << Linkage;
9567
9568 if (S.CheckEquivalentExceptionSpec(
9569 OldFD->getType()->getAs<FunctionProtoType>(), OldFD->getLocation(),
9570 NewFD->getType()->getAs<FunctionProtoType>(), NewFD->getLocation()))
9571 return true;
9572 }
9573 return false;
9574}
9575
9576/// Check the validity of a multiversion function declaration that is the
9577/// first of its kind. Also sets the multiversion'ness' of the function itself.
9578///
9579/// This sets NewFD->isInvalidDecl() to true if there was an error.
9580///
9581/// Returns true if there was an error, false otherwise.
9582static bool CheckMultiVersionFirstFunction(Sema &S, FunctionDecl *FD,
9583 MultiVersionKind MVType,
9584 const TargetAttr *TA,
9585 const CPUDispatchAttr *CPUDisp,
9586 const CPUSpecificAttr *CPUSpec) {
9587 assert(MVType != MultiVersionKind::None &&((MVType != MultiVersionKind::None && "Function lacks multiversion attribute"
) ? static_cast<void> (0) : __assert_fail ("MVType != MultiVersionKind::None && \"Function lacks multiversion attribute\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 9588, __PRETTY_FUNCTION__))
9588 "Function lacks multiversion attribute")((MVType != MultiVersionKind::None && "Function lacks multiversion attribute"
) ? static_cast<void> (0) : __assert_fail ("MVType != MultiVersionKind::None && \"Function lacks multiversion attribute\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 9588, __PRETTY_FUNCTION__))
;
9589
9590 // Target only causes MV if it is default, otherwise this is a normal
9591 // function.
9592 if (MVType == MultiVersionKind::Target && !TA->isDefaultVersion())
9593 return false;
9594
9595 if (MVType == MultiVersionKind::Target && CheckMultiVersionValue(S, FD)) {
9596 FD->setInvalidDecl();
9597 return true;
9598 }
9599
9600 if (CheckMultiVersionAdditionalRules(S, nullptr, FD, true, MVType)) {
9601 FD->setInvalidDecl();
9602 return true;
9603 }
9604
9605 FD->setIsMultiVersion();
9606 return false;
9607}
9608
9609static bool PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl *FD) {
9610 for (const Decl *D = FD->getPreviousDecl(); D; D = D->getPreviousDecl()) {
9611 if (D->getAsFunction()->getMultiVersionKind() != MultiVersionKind::None)
9612 return true;
9613 }
9614
9615 return false;
9616}
9617
9618static bool CheckTargetCausesMultiVersioning(
9619 Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD, const TargetAttr *NewTA,
9620 bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious,
9621 LookupResult &Previous) {
9622 const auto *OldTA = OldFD->getAttr<TargetAttr>();
9623 TargetAttr::ParsedTargetAttr NewParsed = NewTA->parse();
9624 // Sort order doesn't matter, it just needs to be consistent.
9625 llvm::sort(NewParsed.Features);
9626
9627 // If the old decl is NOT MultiVersioned yet, and we don't cause that
9628 // to change, this is a simple redeclaration.
9629 if (!NewTA->isDefaultVersion() &&
9630 (!OldTA || OldTA->getFeaturesStr() == NewTA->getFeaturesStr()))
9631 return false;
9632
9633 // Otherwise, this decl causes MultiVersioning.
9634 if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
9635 S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
9636 S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
9637 NewFD->setInvalidDecl();
9638 return true;
9639 }
9640
9641 if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, true,
9642 MultiVersionKind::Target)) {
9643 NewFD->setInvalidDecl();
9644 return true;
9645 }
9646
9647 if (CheckMultiVersionValue(S, NewFD)) {
9648 NewFD->setInvalidDecl();
9649 return true;
9650 }
9651
9652 // If this is 'default', permit the forward declaration.
9653 if (!OldFD->isMultiVersion() && !OldTA && NewTA->isDefaultVersion()) {
9654 Redeclaration = true;
9655 OldDecl = OldFD;
9656 OldFD->setIsMultiVersion();
9657 NewFD->setIsMultiVersion();
9658 return false;
9659 }
9660
9661 if (CheckMultiVersionValue(S, OldFD)) {
9662 S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
9663 NewFD->setInvalidDecl();
9664 return true;
9665 }
9666
9667 TargetAttr::ParsedTargetAttr OldParsed =
9668 OldTA->parse(std::less<std::string>());
9669
9670 if (OldParsed == NewParsed) {
9671 S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
9672 S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
9673 NewFD->setInvalidDecl();
9674 return true;
9675 }
9676
9677 for (const auto *FD : OldFD->redecls()) {
9678 const auto *CurTA = FD->getAttr<TargetAttr>();
9679 // We allow forward declarations before ANY multiversioning attributes, but
9680 // nothing after the fact.
9681 if (PreviousDeclsHaveMultiVersionAttribute(FD) &&
9682 (!CurTA || CurTA->isInherited())) {
9683 S.Diag(FD->getLocation(), diag::err_multiversion_required_in_redecl)
9684 << 0;
9685 S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
9686 NewFD->setInvalidDecl();
9687 return true;
9688 }
9689 }
9690
9691 OldFD->setIsMultiVersion();
9692 NewFD->setIsMultiVersion();
9693 Redeclaration = false;
9694 MergeTypeWithPrevious = false;
9695 OldDecl = nullptr;
9696 Previous.clear();
9697 return false;
9698}
9699
9700/// Check the validity of a new function declaration being added to an existing
9701/// multiversioned declaration collection.
9702static bool CheckMultiVersionAdditionalDecl(
9703 Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD,
9704 MultiVersionKind NewMVType, const TargetAttr *NewTA,
9705 const CPUDispatchAttr *NewCPUDisp, const CPUSpecificAttr *NewCPUSpec,
9706 bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious,
9707 LookupResult &Previous) {
9708
9709 MultiVersionKind OldMVType = OldFD->getMultiVersionKind();
9710 // Disallow mixing of multiversioning types.
9711 if ((OldMVType == MultiVersionKind::Target &&
9712 NewMVType != MultiVersionKind::Target) ||
9713 (NewMVType == MultiVersionKind::Target &&
9714 OldMVType != MultiVersionKind::Target)) {
9715 S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
9716 S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
9717 NewFD->setInvalidDecl();
9718 return true;
9719 }
9720
9721 TargetAttr::ParsedTargetAttr NewParsed;
9722 if (NewTA) {
9723 NewParsed = NewTA->parse();
9724 llvm::sort(NewParsed.Features);
9725 }
9726
9727 bool UseMemberUsingDeclRules =
9728 S.CurContext->isRecord() && !NewFD->getFriendObjectKind();
9729
9730 // Next, check ALL non-overloads to see if this is a redeclaration of a
9731 // previous member of the MultiVersion set.
9732 for (NamedDecl *ND : Previous) {
9733 FunctionDecl *CurFD = ND->getAsFunction();
9734 if (!CurFD)
9735 continue;
9736 if (S.IsOverload(NewFD, CurFD, UseMemberUsingDeclRules))
9737 continue;
9738
9739 if (NewMVType == MultiVersionKind::Target) {
9740 const auto *CurTA = CurFD->getAttr<TargetAttr>();
9741 if (CurTA->getFeaturesStr() == NewTA->getFeaturesStr()) {
9742 NewFD->setIsMultiVersion();
9743 Redeclaration = true;
9744 OldDecl = ND;
9745 return false;
9746 }
9747
9748 TargetAttr::ParsedTargetAttr CurParsed =
9749 CurTA->parse(std::less<std::string>());
9750 if (CurParsed == NewParsed) {
9751 S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
9752 S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
9753 NewFD->setInvalidDecl();
9754 return true;
9755 }
9756 } else {
9757 const auto *CurCPUSpec = CurFD->getAttr<CPUSpecificAttr>();
9758 const auto *CurCPUDisp = CurFD->getAttr<CPUDispatchAttr>();
9759 // Handle CPUDispatch/CPUSpecific versions.
9760 // Only 1 CPUDispatch function is allowed, this will make it go through
9761 // the redeclaration errors.
9762 if (NewMVType == MultiVersionKind::CPUDispatch &&
9763 CurFD->hasAttr<CPUDispatchAttr>()) {
9764 if (CurCPUDisp->cpus_size() == NewCPUDisp->cpus_size() &&
9765 std::equal(
9766 CurCPUDisp->cpus_begin(), CurCPUDisp->cpus_end(),
9767 NewCPUDisp->cpus_begin(),
9768 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
9769 return Cur->getName() == New->getName();
9770 })) {
9771 NewFD->setIsMultiVersion();
9772 Redeclaration = true;
9773 OldDecl = ND;
9774 return false;
9775 }
9776
9777 // If the declarations don't match, this is an error condition.
9778 S.Diag(NewFD->getLocation(), diag::err_cpu_dispatch_mismatch);
9779 S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
9780 NewFD->setInvalidDecl();
9781 return true;
9782 }
9783 if (NewMVType == MultiVersionKind::CPUSpecific && CurCPUSpec) {
9784
9785 if (CurCPUSpec->cpus_size() == NewCPUSpec->cpus_size() &&
9786 std::equal(
9787 CurCPUSpec->cpus_begin(), CurCPUSpec->cpus_end(),
9788 NewCPUSpec->cpus_begin(),
9789 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
9790 return Cur->getName() == New->getName();
9791 })) {
9792 NewFD->setIsMultiVersion();
9793 Redeclaration = true;
9794 OldDecl = ND;
9795 return false;
9796 }
9797
9798 // Only 1 version of CPUSpecific is allowed for each CPU.
9799 for (const IdentifierInfo *CurII : CurCPUSpec->cpus()) {
9800 for (const IdentifierInfo *NewII : NewCPUSpec->cpus()) {
9801 if (CurII == NewII) {
9802 S.Diag(NewFD->getLocation(), diag::err_cpu_specific_multiple_defs)
9803 << NewII;
9804 S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
9805 NewFD->setInvalidDecl();
9806 return true;
9807 }
9808 }
9809 }
9810 }
9811 // If the two decls aren't the same MVType, there is no possible error
9812 // condition.
9813 }
9814 }
9815
9816 // Else, this is simply a non-redecl case. Checking the 'value' is only
9817 // necessary in the Target case, since The CPUSpecific/Dispatch cases are
9818 // handled in the attribute adding step.
9819 if (NewMVType == MultiVersionKind::Target &&
9820 CheckMultiVersionValue(S, NewFD)) {
9821 NewFD->setInvalidDecl();
9822 return true;
9823 }
9824
9825 if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, false, NewMVType)) {
9826 NewFD->setInvalidDecl();
9827 return true;
9828 }
9829
9830 // Permit forward declarations in the case where these two are compatible.
9831 if (!OldFD->isMultiVersion()) {
9832 OldFD->setIsMultiVersion();
9833 NewFD->setIsMultiVersion();
9834 Redeclaration = true;
9835 OldDecl = OldFD;
9836 return false;
9837 }
9838
9839 NewFD->setIsMultiVersion();
9840 Redeclaration = false;
9841 MergeTypeWithPrevious = false;
9842 OldDecl = nullptr;
9843 Previous.clear();
9844 return false;
9845}
9846
9847
9848/// Check the validity of a mulitversion function declaration.
9849/// Also sets the multiversion'ness' of the function itself.
9850///
9851/// This sets NewFD->isInvalidDecl() to true if there was an error.
9852///
9853/// Returns true if there was an error, false otherwise.
9854static bool CheckMultiVersionFunction(Sema &S, FunctionDecl *NewFD,
9855 bool &Redeclaration, NamedDecl *&OldDecl,
9856 bool &MergeTypeWithPrevious,
9857 LookupResult &Previous) {
9858 const auto *NewTA = NewFD->getAttr<TargetAttr>();
9859 const auto *NewCPUDisp = NewFD->getAttr<CPUDispatchAttr>();
9860 const auto *NewCPUSpec = NewFD->getAttr<CPUSpecificAttr>();
9861
9862 // Mixing Multiversioning types is prohibited.
9863 if ((NewTA && NewCPUDisp) || (NewTA && NewCPUSpec) ||
9864 (NewCPUDisp && NewCPUSpec)) {
9865 S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
9866 NewFD->setInvalidDecl();
9867 return true;
9868 }
9869
9870 MultiVersionKind MVType = NewFD->getMultiVersionKind();
9871
9872 // Main isn't allowed to become a multiversion function, however it IS
9873 // permitted to have 'main' be marked with the 'target' optimization hint.
9874 if (NewFD->isMain()) {
9875 if ((MVType == MultiVersionKind::Target && NewTA->isDefaultVersion()) ||
9876 MVType == MultiVersionKind::CPUDispatch ||
9877 MVType == MultiVersionKind::CPUSpecific) {
9878 S.Diag(NewFD->getLocation(), diag::err_multiversion_not_allowed_on_main);
9879 NewFD->setInvalidDecl();
9880 return true;
9881 }
9882 return false;
9883 }
9884
9885 if (!OldDecl || !OldDecl->getAsFunction() ||
9886 OldDecl->getDeclContext()->getRedeclContext() !=
9887 NewFD->getDeclContext()->getRedeclContext()) {
9888 // If there's no previous declaration, AND this isn't attempting to cause
9889 // multiversioning, this isn't an error condition.
9890 if (MVType == MultiVersionKind::None)
9891 return false;
9892 return CheckMultiVersionFirstFunction(S, NewFD, MVType, NewTA, NewCPUDisp,
9893 NewCPUSpec);
9894 }
9895
9896 FunctionDecl *OldFD = OldDecl->getAsFunction();
9897
9898 if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::None)
9899 return false;
9900
9901 if (OldFD->isMultiVersion() && MVType == MultiVersionKind::None) {
9902 S.Diag(NewFD->getLocation(), diag::err_multiversion_required_in_redecl)
9903 << (OldFD->getMultiVersionKind() != MultiVersionKind::Target);
9904 NewFD->setInvalidDecl();
9905 return true;
9906 }
9907
9908 // Handle the target potentially causes multiversioning case.
9909 if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::Target)
9910 return CheckTargetCausesMultiVersioning(S, OldFD, NewFD, NewTA,
9911 Redeclaration, OldDecl,
9912 MergeTypeWithPrevious, Previous);
9913
9914 // At this point, we have a multiversion function decl (in OldFD) AND an
9915 // appropriate attribute in the current function decl. Resolve that these are
9916 // still compatible with previous declarations.
9917 return CheckMultiVersionAdditionalDecl(
9918 S, OldFD, NewFD, MVType, NewTA, NewCPUDisp, NewCPUSpec, Redeclaration,
9919 OldDecl, MergeTypeWithPrevious, Previous);
9920}
9921
9922/// Perform semantic checking of a new function declaration.
9923///
9924/// Performs semantic analysis of the new function declaration
9925/// NewFD. This routine performs all semantic checking that does not
9926/// require the actual declarator involved in the declaration, and is
9927/// used both for the declaration of functions as they are parsed
9928/// (called via ActOnDeclarator) and for the declaration of functions
9929/// that have been instantiated via C++ template instantiation (called
9930/// via InstantiateDecl).
9931///
9932/// \param IsMemberSpecialization whether this new function declaration is
9933/// a member specialization (that replaces any definition provided by the
9934/// previous declaration).
9935///
9936/// This sets NewFD->isInvalidDecl() to true if there was an error.
9937///
9938/// \returns true if the function declaration is a redeclaration.
9939bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
9940 LookupResult &Previous,
9941 bool IsMemberSpecialization) {
9942 assert(!NewFD->getReturnType()->isVariablyModifiedType() &&((!NewFD->getReturnType()->isVariablyModifiedType() &&
"Variably modified return types are not handled here") ? static_cast
<void> (0) : __assert_fail ("!NewFD->getReturnType()->isVariablyModifiedType() && \"Variably modified return types are not handled here\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 9943, __PRETTY_FUNCTION__))
9943 "Variably modified return types are not handled here")((!NewFD->getReturnType()->isVariablyModifiedType() &&
"Variably modified return types are not handled here") ? static_cast
<void> (0) : __assert_fail ("!NewFD->getReturnType()->isVariablyModifiedType() && \"Variably modified return types are not handled here\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 9943, __PRETTY_FUNCTION__))
;
9944
9945 // Determine whether the type of this function should be merged with
9946 // a previous visible declaration. This never happens for functions in C++,
9947 // and always happens in C if the previous declaration was visible.
9948 bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
9949 !Previous.isShadowed();
9950
9951 bool Redeclaration = false;
9952 NamedDecl *OldDecl = nullptr;
9953 bool MayNeedOverloadableChecks = false;
9954
9955 // Merge or overload the declaration with an existing declaration of
9956 // the same name, if appropriate.
9957 if (!Previous.empty()) {
9958 // Determine whether NewFD is an overload of PrevDecl or
9959 // a declaration that requires merging. If it's an overload,
9960 // there's no more work to do here; we'll just add the new
9961 // function to the scope.
9962 if (!AllowOverloadingOfFunction(Previous, Context, NewFD)) {
9963 NamedDecl *Candidate = Previous.getRepresentativeDecl();
9964 if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
9965 Redeclaration = true;
9966 OldDecl = Candidate;
9967 }
9968 } else {
9969 MayNeedOverloadableChecks = true;
9970 switch (CheckOverload(S, NewFD, Previous, OldDecl,
9971 /*NewIsUsingDecl*/ false)) {
9972 case Ovl_Match:
9973 Redeclaration = true;
9974 break;
9975
9976 case Ovl_NonFunction:
9977 Redeclaration = true;
9978 break;
9979
9980 case Ovl_Overload:
9981 Redeclaration = false;
9982 break;
9983 }
9984 }
9985 }
9986
9987 // Check for a previous extern "C" declaration with this name.
9988 if (!Redeclaration &&
9989 checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
9990 if (!Previous.empty()) {
9991 // This is an extern "C" declaration with the same name as a previous
9992 // declaration, and thus redeclares that entity...
9993 Redeclaration = true;
9994 OldDecl = Previous.getFoundDecl();
9995 MergeTypeWithPrevious = false;
9996
9997 // ... except in the presence of __attribute__((overloadable)).
9998 if (OldDecl->hasAttr<OverloadableAttr>() ||
9999 NewFD->hasAttr<OverloadableAttr>()) {
10000 if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
10001 MayNeedOverloadableChecks = true;
10002 Redeclaration = false;
10003 OldDecl = nullptr;
10004 }
10005 }
10006 }
10007 }
10008
10009 if (CheckMultiVersionFunction(*this, NewFD, Redeclaration, OldDecl,
10010 MergeTypeWithPrevious, Previous))
10011 return Redeclaration;
10012
10013 // C++11 [dcl.constexpr]p8:
10014 // A constexpr specifier for a non-static member function that is not
10015 // a constructor declares that member function to be const.
10016 //
10017 // This needs to be delayed until we know whether this is an out-of-line
10018 // definition of a static member function.
10019 //
10020 // This rule is not present in C++1y, so we produce a backwards
10021 // compatibility warning whenever it happens in C++11.
10022 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
10023 if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() &&
10024 !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
10025 !MD->getTypeQualifiers().hasConst()) {
10026 CXXMethodDecl *OldMD = nullptr;
10027 if (OldDecl)
10028 OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction());
10029 if (!OldMD || !OldMD->isStatic()) {
10030 const FunctionProtoType *FPT =
10031 MD->getType()->castAs<FunctionProtoType>();
10032 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
10033 EPI.TypeQuals.addConst();
10034 MD->setType(Context.getFunctionType(FPT->getReturnType(),
10035 FPT->getParamTypes(), EPI));
10036
10037 // Warn that we did this, if we're not performing template instantiation.
10038 // In that case, we'll have warned already when the template was defined.
10039 if (!inTemplateInstantiation()) {
10040 SourceLocation AddConstLoc;
10041 if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
10042 .IgnoreParens().getAs<FunctionTypeLoc>())
10043 AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());
10044
10045 Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const)
10046 << FixItHint::CreateInsertion(AddConstLoc, " const");
10047 }
10048 }
10049 }
10050
10051 if (Redeclaration) {
10052 // NewFD and OldDecl represent declarations that need to be
10053 // merged.
10054 if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) {
10055 NewFD->setInvalidDecl();
10056 return Redeclaration;
10057 }
10058
10059 Previous.clear();
10060 Previous.addDecl(OldDecl);
10061
10062 if (FunctionTemplateDecl *OldTemplateDecl =
10063 dyn_cast<FunctionTemplateDecl>(OldDecl)) {
10064 auto *OldFD = OldTemplateDecl->getTemplatedDecl();
10065 FunctionTemplateDecl *NewTemplateDecl
10066 = NewFD->getDescribedFunctionTemplate();
10067 assert(NewTemplateDecl && "Template/non-template mismatch")((NewTemplateDecl && "Template/non-template mismatch"
) ? static_cast<void> (0) : __assert_fail ("NewTemplateDecl && \"Template/non-template mismatch\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 10067, __PRETTY_FUNCTION__))
;
10068
10069 // The call to MergeFunctionDecl above may have created some state in
10070 // NewTemplateDecl that needs to be merged with OldTemplateDecl before we
10071 // can add it as a redeclaration.
10072 NewTemplateDecl->mergePrevDecl(OldTemplateDecl);
10073
10074 NewFD->setPreviousDeclaration(OldFD);
10075 adjustDeclContextForDeclaratorDecl(NewFD, OldFD);
10076 if (NewFD->isCXXClassMember()) {
10077 NewFD->setAccess(OldTemplateDecl->getAccess());
10078 NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
10079 }
10080
10081 // If this is an explicit specialization of a member that is a function
10082 // template, mark it as a member specialization.
10083 if (IsMemberSpecialization &&
10084 NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
10085 NewTemplateDecl->setMemberSpecialization();
10086 assert(OldTemplateDecl->isMemberSpecialization())((OldTemplateDecl->isMemberSpecialization()) ? static_cast
<void> (0) : __assert_fail ("OldTemplateDecl->isMemberSpecialization()"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 10086, __PRETTY_FUNCTION__))
;
10087 // Explicit specializations of a member template do not inherit deleted
10088 // status from the parent member template that they are specializing.
10089 if (OldFD->isDeleted()) {
10090 // FIXME: This assert will not hold in the presence of modules.
10091 assert(OldFD->getCanonicalDecl() == OldFD)((OldFD->getCanonicalDecl() == OldFD) ? static_cast<void
> (0) : __assert_fail ("OldFD->getCanonicalDecl() == OldFD"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 10091, __PRETTY_FUNCTION__))
;
10092 // FIXME: We need an update record for this AST mutation.
10093 OldFD->setDeletedAsWritten(false);
10094 }
10095 }
10096
10097 } else {
10098 if (shouldLinkDependentDeclWithPrevious(NewFD, OldDecl)) {
10099 auto *OldFD = cast<FunctionDecl>(OldDecl);
10100 // This needs to happen first so that 'inline' propagates.
10101 NewFD->setPreviousDeclaration(OldFD);
10102 adjustDeclContextForDeclaratorDecl(NewFD, OldFD);
10103 if (NewFD->isCXXClassMember())
10104 NewFD->setAccess(OldFD->getAccess());
10105 }
10106 }
10107 } else if (!getLangOpts().CPlusPlus && MayNeedOverloadableChecks &&
10108 !NewFD->getAttr<OverloadableAttr>()) {
10109 assert((Previous.empty() ||(((Previous.empty() || llvm::any_of(Previous, [](const NamedDecl
*ND) { return ND->hasAttr<OverloadableAttr>(); })) &&
"Non-redecls shouldn't happen without overloadable present")
? static_cast<void> (0) : __assert_fail ("(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr<OverloadableAttr>(); })) && \"Non-redecls shouldn't happen without overloadable present\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 10114, __PRETTY_FUNCTION__))
10110 llvm::any_of(Previous,(((Previous.empty() || llvm::any_of(Previous, [](const NamedDecl
*ND) { return ND->hasAttr<OverloadableAttr>(); })) &&
"Non-redecls shouldn't happen without overloadable present")
? static_cast<void> (0) : __assert_fail ("(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr<OverloadableAttr>(); })) && \"Non-redecls shouldn't happen without overloadable present\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 10114, __PRETTY_FUNCTION__))
10111 [](const NamedDecl *ND) {(((Previous.empty() || llvm::any_of(Previous, [](const NamedDecl
*ND) { return ND->hasAttr<OverloadableAttr>(); })) &&
"Non-redecls shouldn't happen without overloadable present")
? static_cast<void> (0) : __assert_fail ("(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr<OverloadableAttr>(); })) && \"Non-redecls shouldn't happen without overloadable present\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 10114, __PRETTY_FUNCTION__))
10112 return ND->hasAttr<OverloadableAttr>();(((Previous.empty() || llvm::any_of(Previous, [](const NamedDecl
*ND) { return ND->hasAttr<OverloadableAttr>(); })) &&
"Non-redecls shouldn't happen without overloadable present")
? static_cast<void> (0) : __assert_fail ("(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr<OverloadableAttr>(); })) && \"Non-redecls shouldn't happen without overloadable present\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 10114, __PRETTY_FUNCTION__))
10113 })) &&(((Previous.empty() || llvm::any_of(Previous, [](const NamedDecl
*ND) { return ND->hasAttr<OverloadableAttr>(); })) &&
"Non-redecls shouldn't happen without overloadable present")
? static_cast<void> (0) : __assert_fail ("(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr<OverloadableAttr>(); })) && \"Non-redecls shouldn't happen without overloadable present\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 10114, __PRETTY_FUNCTION__))
10114 "Non-redecls shouldn't happen without overloadable present")(((Previous.empty() || llvm::any_of(Previous, [](const NamedDecl
*ND) { return ND->hasAttr<OverloadableAttr>(); })) &&
"Non-redecls shouldn't happen without overloadable present")
? static_cast<void> (0) : __assert_fail ("(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr<OverloadableAttr>(); })) && \"Non-redecls shouldn't happen without overloadable present\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 10114, __PRETTY_FUNCTION__))
;
10115
10116 auto OtherUnmarkedIter = llvm::find_if(Previous, [](const NamedDecl *ND) {
10117 const auto *FD = dyn_cast<FunctionDecl>(ND);
10118 return FD && !FD->hasAttr<OverloadableAttr>();
10119 });
10120
10121 if (OtherUnmarkedIter != Previous.end()) {
10122 Diag(NewFD->getLocation(),
10123 diag::err_attribute_overloadable_multiple_unmarked_overloads);
10124 Diag((*OtherUnmarkedIter)->getLocation(),
10125 diag::note_attribute_overloadable_prev_overload)
10126 << false;
10127
10128 NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
10129 }
10130 }
10131
10132 // Semantic checking for this function declaration (in isolation).
10133
10134 if (getLangOpts().CPlusPlus) {
10135 // C++-specific checks.
10136 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
10137 CheckConstructor(Constructor);
10138 } else if (CXXDestructorDecl *Destructor =
10139 dyn_cast<CXXDestructorDecl>(NewFD)) {
10140 CXXRecordDecl *Record = Destructor->getParent();
10141 QualType ClassType = Context.getTypeDeclType(Record);
10142
10143 // FIXME: Shouldn't we be able to perform this check even when the class
10144 // type is dependent? Both gcc and edg can handle that.
10145 if (!ClassType->isDependentType()) {
10146 DeclarationName Name
10147 = Context.DeclarationNames.getCXXDestructorName(
10148 Context.getCanonicalType(ClassType));
10149 if (NewFD->getDeclName() != Name) {
10150 Diag(NewFD->getLocation(), diag::err_destructor_name);
10151 NewFD->setInvalidDecl();
10152 return Redeclaration;
10153 }
10154 }
10155 } else if (CXXConversionDecl *Conversion
10156 = dyn_cast<CXXConversionDecl>(NewFD)) {
10157 ActOnConversionDeclarator(Conversion);
10158 } else if (auto *Guide = dyn_cast<CXXDeductionGuideDecl>(NewFD)) {
10159 if (auto *TD = Guide->getDescribedFunctionTemplate())
10160 CheckDeductionGuideTemplate(TD);
10161
10162 // A deduction guide is not on the list of entities that can be
10163 // explicitly specialized.
10164 if (Guide->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
10165 Diag(Guide->getBeginLoc(), diag::err_deduction_guide_specialized)
10166 << /*explicit specialization*/ 1;
10167 }
10168
10169 // Find any virtual functions that this function overrides.
10170 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
10171 if (!Method->isFunctionTemplateSpecialization() &&
10172 !Method->getDescribedFunctionTemplate() &&
10173 Method->isCanonicalDecl()) {
10174 if (AddOverriddenMethods(Method->getParent(), Method)) {
10175 // If the function was marked as "static", we have a problem.
10176 if (NewFD->getStorageClass() == SC_Static) {
10177 ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
10178 }
10179 }
10180 }
10181
10182 if (Method->isStatic())
10183 checkThisInStaticMemberFunctionType(Method);
10184 }
10185
10186 // Extra checking for C++ overloaded operators (C++ [over.oper]).
10187 if (NewFD->isOverloadedOperator() &&
10188 CheckOverloadedOperatorDeclaration(NewFD)) {
10189 NewFD->setInvalidDecl();
10190 return Redeclaration;
10191 }
10192
10193 // Extra checking for C++0x literal operators (C++0x [over.literal]).
10194 if (NewFD->getLiteralIdentifier() &&
10195 CheckLiteralOperatorDeclaration(NewFD)) {
10196 NewFD->setInvalidDecl();
10197 return Redeclaration;
10198 }
10199
10200 // In C++, check default arguments now that we have merged decls. Unless
10201 // the lexical context is the class, because in this case this is done
10202 // during delayed parsing anyway.
10203 if (!CurContext->isRecord())
10204 CheckCXXDefaultArguments(NewFD);
10205
10206 // If this function declares a builtin function, check the type of this
10207 // declaration against the expected type for the builtin.
10208 if (unsigned BuiltinID = NewFD->getBuiltinID()) {
10209 ASTContext::GetBuiltinTypeError Error;
10210 LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
10211 QualType T = Context.GetBuiltinType(BuiltinID, Error);
10212 // If the type of the builtin differs only in its exception
10213 // specification, that's OK.
10214 // FIXME: If the types do differ in this way, it would be better to
10215 // retain the 'noexcept' form of the type.
10216 if (!T.isNull() &&
10217 !Context.hasSameFunctionTypeIgnoringExceptionSpec(T,
10218 NewFD->getType()))
10219 // The type of this function differs from the type of the builtin,
10220 // so forget about the builtin entirely.
10221 Context.BuiltinInfo.forgetBuiltin(BuiltinID, Context.Idents);
10222 }
10223
10224 // If this function is declared as being extern "C", then check to see if
10225 // the function returns a UDT (class, struct, or union type) that is not C
10226 // compatible, and if it does, warn the user.
10227 // But, issue any diagnostic on the first declaration only.
10228 if (Previous.empty() && NewFD->isExternC()) {
10229 QualType R = NewFD->getReturnType();
10230 if (R->isIncompleteType() && !R->isVoidType())
10231 Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
10232 << NewFD << R;
10233 else if (!R.isPODType(Context) && !R->isVoidType() &&
10234 !R->isObjCObjectPointerType())
10235 Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
10236 }
10237
10238 // C++1z [dcl.fct]p6:
10239 // [...] whether the function has a non-throwing exception-specification
10240 // [is] part of the function type
10241 //
10242 // This results in an ABI break between C++14 and C++17 for functions whose
10243 // declared type includes an exception-specification in a parameter or
10244 // return type. (Exception specifications on the function itself are OK in
10245 // most cases, and exception specifications are not permitted in most other
10246 // contexts where they could make it into a mangling.)
10247 if (!getLangOpts().CPlusPlus17 && !NewFD->getPrimaryTemplate()) {
10248 auto HasNoexcept = [&](QualType T) -> bool {
10249 // Strip off declarator chunks that could be between us and a function
10250 // type. We don't need to look far, exception specifications are very
10251 // restricted prior to C++17.
10252 if (auto *RT = T->getAs<ReferenceType>())
10253 T = RT->getPointeeType();
10254 else if (T->isAnyPointerType())
10255 T = T->getPointeeType();
10256 else if (auto *MPT = T->getAs<MemberPointerType>())
10257 T = MPT->getPointeeType();
10258 if (auto *FPT = T->getAs<FunctionProtoType>())
10259 if (FPT->isNothrow())
10260 return true;
10261 return false;
10262 };
10263
10264 auto *FPT = NewFD->getType()->castAs<FunctionProtoType>();
10265 bool AnyNoexcept = HasNoexcept(FPT->getReturnType());
10266 for (QualType T : FPT->param_types())
10267 AnyNoexcept |= HasNoexcept(T);
10268 if (AnyNoexcept)
10269 Diag(NewFD->getLocation(),
10270 diag::warn_cxx17_compat_exception_spec_in_signature)
10271 << NewFD;
10272 }
10273
10274 if (!Redeclaration && LangOpts.CUDA)
10275 checkCUDATargetOverload(NewFD, Previous);
10276 }
10277 return Redeclaration;
10278}
10279
10280void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
10281 // C++11 [basic.start.main]p3:
10282 // A program that [...] declares main to be inline, static or
10283 // constexpr is ill-formed.
10284 // C11 6.7.4p4: In a hosted environment, no function specifier(s) shall
10285 // appear in a declaration of main.
10286 // static main is not an error under C99, but we should warn about it.
10287 // We accept _Noreturn main as an extension.
10288 if (FD->getStorageClass() == SC_Static)
10289 Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
10290 ? diag::err_static_main : diag::warn_static_main)
10291 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
10292 if (FD->isInlineSpecified())
10293 Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
10294 << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
10295 if (DS.isNoreturnSpecified()) {
10296 SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
10297 SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
10298 Diag(NoreturnLoc, diag::ext_noreturn_main);
10299 Diag(NoreturnLoc, diag::note_main_remove_noreturn)
10300 << FixItHint::CreateRemoval(NoreturnRange);
10301 }
10302 if (FD->isConstexpr()) {
10303 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
10304 << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
10305 FD->setConstexpr(false);
10306 }
10307
10308 if (getLangOpts().OpenCL) {
10309 Diag(FD->getLocation(), diag::err_opencl_no_main)
10310 << FD->hasAttr<OpenCLKernelAttr>();
10311 FD->setInvalidDecl();
10312 return;
10313 }
10314
10315 QualType T = FD->getType();
10316 assert(T->isFunctionType() && "function decl is not of function type")((T->isFunctionType() && "function decl is not of function type"
) ? static_cast<void> (0) : __assert_fail ("T->isFunctionType() && \"function decl is not of function type\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 10316, __PRETTY_FUNCTION__))
;
10317 const FunctionType* FT = T->castAs<FunctionType>();
10318
10319 // Set default calling convention for main()
10320 if (FT->getCallConv() != CC_C) {
10321 FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(CC_C));
10322 FD->setType(QualType(FT, 0));
10323 T = Context.getCanonicalType(FD->getType());
10324 }
10325
10326 if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
10327 // In C with GNU extensions we allow main() to have non-integer return
10328 // type, but we should warn about the extension, and we disable the
10329 // implicit-return-zero rule.
10330
10331 // GCC in C mode accepts qualified 'int'.
10332 if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
10333 FD->setHasImplicitReturnZero(true);
10334 else {
10335 Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
10336 SourceRange RTRange = FD->getReturnTypeSourceRange();
10337 if (RTRange.isValid())
10338 Diag(RTRange.getBegin(), diag::note_main_change_return_type)
10339 << FixItHint::CreateReplacement(RTRange, "int");
10340 }
10341 } else {
10342 // In C and C++, main magically returns 0 if you fall off the end;
10343 // set the flag which tells us that.
10344 // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
10345
10346 // All the standards say that main() should return 'int'.
10347 if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
10348 FD->setHasImplicitReturnZero(true);
10349 else {
10350 // Otherwise, this is just a flat-out error.
10351 SourceRange RTRange = FD->getReturnTypeSourceRange();
10352 Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
10353 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
10354 : FixItHint());
10355 FD->setInvalidDecl(true);
10356 }
10357 }
10358
10359 // Treat protoless main() as nullary.
10360 if (isa<FunctionNoProtoType>(FT)) return;
10361
10362 const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
10363 unsigned nparams = FTP->getNumParams();
10364 assert(FD->getNumParams() == nparams)((FD->getNumParams() == nparams) ? static_cast<void>
(0) : __assert_fail ("FD->getNumParams() == nparams", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 10364, __PRETTY_FUNCTION__))
;
10365
10366 bool HasExtraParameters = (nparams > 3);
10367
10368 if (FTP->isVariadic()) {
10369 Diag(FD->getLocation(), diag::ext_variadic_main);
10370 // FIXME: if we had information about the location of the ellipsis, we
10371 // could add a FixIt hint to remove it as a parameter.
10372 }
10373
10374 // Darwin passes an undocumented fourth argument of type char**. If
10375 // other platforms start sprouting these, the logic below will start
10376 // getting shifty.
10377 if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
10378 HasExtraParameters = false;
10379
10380 if (HasExtraParameters) {
10381 Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
10382 FD->setInvalidDecl(true);
10383 nparams = 3;
10384 }
10385
10386 // FIXME: a lot of the following diagnostics would be improved
10387 // if we had some location information about types.
10388
10389 QualType CharPP =
10390 Context.getPointerType(Context.getPointerType(Context.CharTy));
10391 QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
10392
10393 for (unsigned i = 0; i < nparams; ++i) {
10394 QualType AT = FTP->getParamType(i);
10395
10396 bool mismatch = true;
10397
10398 if (Context.hasSameUnqualifiedType(AT, Expected[i]))
10399 mismatch = false;
10400 else if (Expected[i] == CharPP) {
10401 // As an extension, the following forms are okay:
10402 // char const **
10403 // char const * const *
10404 // char * const *
10405
10406 QualifierCollector qs;
10407 const PointerType* PT;
10408 if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
10409 (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
10410 Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
10411 Context.CharTy)) {
10412 qs.removeConst();
10413 mismatch = !qs.empty();
10414 }
10415 }
10416
10417 if (mismatch) {
10418 Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
10419 // TODO: suggest replacing given type with expected type
10420 FD->setInvalidDecl(true);
10421 }
10422 }
10423
10424 if (nparams == 1 && !FD->isInvalidDecl()) {
10425 Diag(FD->getLocation(), diag::warn_main_one_arg);
10426 }
10427
10428 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
10429 Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
10430 FD->setInvalidDecl();
10431 }
10432}
10433
10434void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
10435 QualType T = FD->getType();
10436 assert(T->isFunctionType() && "function decl is not of function type")((T->isFunctionType() && "function decl is not of function type"
) ? static_cast<void> (0) : __assert_fail ("T->isFunctionType() && \"function decl is not of function type\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 10436, __PRETTY_FUNCTION__))
;
10437 const FunctionType *FT = T->castAs<FunctionType>();
10438
10439 // Set an implicit return of 'zero' if the function can return some integral,
10440 // enumeration, pointer or nullptr type.
10441 if (FT->getReturnType()->isIntegralOrEnumerationType() ||
10442 FT->getReturnType()->isAnyPointerType() ||
10443 FT->getReturnType()->isNullPtrType())
10444 // DllMain is exempt because a return value of zero means it failed.
10445 if (FD->getName() != "DllMain")
10446 FD->setHasImplicitReturnZero(true);
10447
10448 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
10449 Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
10450 FD->setInvalidDecl();
10451 }
10452}
10453
10454bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
10455 // FIXME: Need strict checking. In C89, we need to check for
10456 // any assignment, increment, decrement, function-calls, or
10457 // commas outside of a sizeof. In C99, it's the same list,
10458 // except that the aforementioned are allowed in unevaluated
10459 // expressions. Everything else falls under the
10460 // "may accept other forms of constant expressions" exception.
10461 // (We never end up here for C++, so the constant expression
10462 // rules there don't matter.)
10463 const Expr *Culprit;
10464 if (Init->isConstantInitializer(Context, false, &Culprit))
10465 return false;
10466 Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant)
10467 << Culprit->getSourceRange();
10468 return true;
10469}
10470
10471namespace {
10472 // Visits an initialization expression to see if OrigDecl is evaluated in
10473 // its own initialization and throws a warning if it does.
10474 class SelfReferenceChecker
10475 : public EvaluatedExprVisitor<SelfReferenceChecker> {
10476 Sema &S;
10477 Decl *OrigDecl;
10478 bool isRecordType;
10479 bool isPODType;
10480 bool isReferenceType;
10481
10482 bool isInitList;
10483 llvm::SmallVector<unsigned, 4> InitFieldIndex;
10484
10485 public:
10486 typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
10487
10488 SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
10489 S(S), OrigDecl(OrigDecl) {
10490 isPODType = false;
10491 isRecordType = false;
10492 isReferenceType = false;
10493 isInitList = false;
10494 if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
10495 isPODType = VD->getType().isPODType(S.Context);
10496 isRecordType = VD->getType()->isRecordType();
10497 isReferenceType = VD->getType()->isReferenceType();
10498 }
10499 }
10500
10501 // For most expressions, just call the visitor. For initializer lists,
10502 // track the index of the field being initialized since fields are
10503 // initialized in order allowing use of previously initialized fields.
10504 void CheckExpr(Expr *E) {
10505 InitListExpr *InitList = dyn_cast<InitListExpr>(E);
10506 if (!InitList) {
10507 Visit(E);
10508 return;
10509 }
10510
10511 // Track and increment the index here.
10512 isInitList = true;
10513 InitFieldIndex.push_back(0);
10514 for (auto Child : InitList->children()) {
10515 CheckExpr(cast<Expr>(Child));
10516 ++InitFieldIndex.back();
10517 }
10518 InitFieldIndex.pop_back();
10519 }
10520
10521 // Returns true if MemberExpr is checked and no further checking is needed.
10522 // Returns false if additional checking is required.
10523 bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) {
10524 llvm::SmallVector<FieldDecl*, 4> Fields;
10525 Expr *Base = E;
10526 bool ReferenceField = false;
10527
10528 // Get the field members used.
10529 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
10530 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
10531 if (!FD)
10532 return false;
10533 Fields.push_back(FD);
10534 if (FD->getType()->isReferenceType())
10535 ReferenceField = true;
10536 Base = ME->getBase()->IgnoreParenImpCasts();
10537 }
10538
10539 // Keep checking only if the base Decl is the same.
10540 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base);
10541 if (!DRE || DRE->getDecl() != OrigDecl)
10542 return false;
10543
10544 // A reference field can be bound to an unininitialized field.
10545 if (CheckReference && !ReferenceField)
10546 return true;
10547
10548 // Convert FieldDecls to their index number.
10549 llvm::SmallVector<unsigned, 4> UsedFieldIndex;
10550 for (const FieldDecl *I : llvm::reverse(Fields))
10551 UsedFieldIndex.push_back(I->getFieldIndex());
10552
10553 // See if a warning is needed by checking the first difference in index
10554 // numbers. If field being used has index less than the field being
10555 // initialized, then the use is safe.
10556 for (auto UsedIter = UsedFieldIndex.begin(),
10557 UsedEnd = UsedFieldIndex.end(),
10558 OrigIter = InitFieldIndex.begin(),
10559 OrigEnd = InitFieldIndex.end();
10560 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
10561 if (*UsedIter < *OrigIter)
10562 return true;
10563 if (*UsedIter > *OrigIter)
10564 break;
10565 }
10566
10567 // TODO: Add a different warning which will print the field names.
10568 HandleDeclRefExpr(DRE);
10569 return true;
10570 }
10571
10572 // For most expressions, the cast is directly above the DeclRefExpr.
10573 // For conditional operators, the cast can be outside the conditional
10574 // operator if both expressions are DeclRefExpr's.
10575 void HandleValue(Expr *E) {
10576 E = E->IgnoreParens();
10577 if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
10578 HandleDeclRefExpr(DRE);
10579 return;
10580 }
10581
10582 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
10583 Visit(CO->getCond());
10584 HandleValue(CO->getTrueExpr());
10585 HandleValue(CO->getFalseExpr());
10586 return;
10587 }
10588
10589 if (BinaryConditionalOperator *BCO =
10590 dyn_cast<BinaryConditionalOperator>(E)) {
10591 Visit(BCO->getCond());
10592 HandleValue(BCO->getFalseExpr());
10593 return;
10594 }
10595
10596 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
10597 HandleValue(OVE->getSourceExpr());
10598 return;
10599 }
10600
10601 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
10602 if (BO->getOpcode() == BO_Comma) {
10603 Visit(BO->getLHS());
10604 HandleValue(BO->getRHS());
10605 return;
10606 }
10607 }
10608
10609 if (isa<MemberExpr>(E)) {
10610 if (isInitList) {
10611 if (CheckInitListMemberExpr(cast<MemberExpr>(E),
10612 false /*CheckReference*/))
10613 return;
10614 }
10615
10616 Expr *Base = E->IgnoreParenImpCasts();
10617 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
10618 // Check for static member variables and don't warn on them.
10619 if (!isa<FieldDecl>(ME->getMemberDecl()))
10620 return;
10621 Base = ME->getBase()->IgnoreParenImpCasts();
10622 }
10623 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
10624 HandleDeclRefExpr(DRE);
10625 return;
10626 }
10627
10628 Visit(E);
10629 }
10630
10631 // Reference types not handled in HandleValue are handled here since all
10632 // uses of references are bad, not just r-value uses.
10633 void VisitDeclRefExpr(DeclRefExpr *E) {
10634 if (isReferenceType)
10635 HandleDeclRefExpr(E);
10636 }
10637
10638 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
10639 if (E->getCastKind() == CK_LValueToRValue) {
10640 HandleValue(E->getSubExpr());
10641 return;
10642 }
10643
10644 Inherited::VisitImplicitCastExpr(E);
10645 }
10646
10647 void VisitMemberExpr(MemberExpr *E) {
10648 if (isInitList) {
10649 if (CheckInitListMemberExpr(E, true /*CheckReference*/))
10650 return;
10651 }
10652
10653 // Don't warn on arrays since they can be treated as pointers.
10654 if (E->getType()->canDecayToPointerType()) return;
10655
10656 // Warn when a non-static method call is followed by non-static member
10657 // field accesses, which is followed by a DeclRefExpr.
10658 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
10659 bool Warn = (MD && !MD->isStatic());
10660 Expr *Base = E->getBase()->IgnoreParenImpCasts();
10661 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
10662 if (!isa<FieldDecl>(ME->getMemberDecl()))
10663 Warn = false;
10664 Base = ME->getBase()->IgnoreParenImpCasts();
10665 }
10666
10667 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
10668 if (Warn)
10669 HandleDeclRefExpr(DRE);
10670 return;
10671 }
10672
10673 // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
10674 // Visit that expression.
10675 Visit(Base);
10676 }
10677
10678 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
10679 Expr *Callee = E->getCallee();
10680
10681 if (isa<UnresolvedLookupExpr>(Callee))
10682 return Inherited::VisitCXXOperatorCallExpr(E);
10683
10684 Visit(Callee);
10685 for (auto Arg: E->arguments())
10686 HandleValue(Arg->IgnoreParenImpCasts());
10687 }
10688
10689 void VisitUnaryOperator(UnaryOperator *E) {
10690 // For POD record types, addresses of its own members are well-defined.
10691 if (E->getOpcode() == UO_AddrOf && isRecordType &&
10692 isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
10693 if (!isPODType)
10694 HandleValue(E->getSubExpr());
10695 return;
10696 }
10697
10698 if (E->isIncrementDecrementOp()) {
10699 HandleValue(E->getSubExpr());
10700 return;
10701 }
10702
10703 Inherited::VisitUnaryOperator(E);
10704 }
10705
10706 void VisitObjCMessageExpr(ObjCMessageExpr *E) {}
10707
10708 void VisitCXXConstructExpr(CXXConstructExpr *E) {
10709 if (E->getConstructor()->isCopyConstructor()) {
10710 Expr *ArgExpr = E->getArg(0);
10711 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
10712 if (ILE->getNumInits() == 1)
10713 ArgExpr = ILE->getInit(0);
10714 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
10715 if (ICE->getCastKind() == CK_NoOp)
10716 ArgExpr = ICE->getSubExpr();
10717 HandleValue(ArgExpr);
10718 return;
10719 }
10720 Inherited::VisitCXXConstructExpr(E);
10721 }
10722
10723 void VisitCallExpr(CallExpr *E) {
10724 // Treat std::move as a use.
10725 if (E->isCallToStdMove()) {
10726 HandleValue(E->getArg(0));
10727 return;
10728 }
10729
10730 Inherited::VisitCallExpr(E);
10731 }
10732
10733 void VisitBinaryOperator(BinaryOperator *E) {
10734 if (E->isCompoundAssignmentOp()) {
10735 HandleValue(E->getLHS());
10736 Visit(E->getRHS());
10737 return;
10738 }
10739
10740 Inherited::VisitBinaryOperator(E);
10741 }
10742
10743 // A custom visitor for BinaryConditionalOperator is needed because the
10744 // regular visitor would check the condition and true expression separately
10745 // but both point to the same place giving duplicate diagnostics.
10746 void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
10747 Visit(E->getCond());
10748 Visit(E->getFalseExpr());
10749 }
10750
10751 void HandleDeclRefExpr(DeclRefExpr *DRE) {
10752 Decl* ReferenceDecl = DRE->getDecl();
10753 if (OrigDecl != ReferenceDecl) return;
10754 unsigned diag;
10755 if (isReferenceType) {
10756 diag = diag::warn_uninit_self_reference_in_reference_init;
10757 } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
10758 diag = diag::warn_static_self_reference_in_init;
10759 } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) ||
10760 isa<NamespaceDecl>(OrigDecl->getDeclContext()) ||
10761 DRE->getDecl()->getType()->isRecordType()) {
10762 diag = diag::warn_uninit_self_reference_in_init;
10763 } else {
10764 // Local variables will be handled by the CFG analysis.
10765 return;
10766 }
10767
10768 S.DiagRuntimeBehavior(DRE->getBeginLoc(), DRE,
10769 S.PDiag(diag)
10770 << DRE->getDecl() << OrigDecl->getLocation()
10771 << DRE->getSourceRange());
10772 }
10773 };
10774
10775 /// CheckSelfReference - Warns if OrigDecl is used in expression E.
10776 static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
10777 bool DirectInit) {
10778 // Parameters arguments are occassionially constructed with itself,
10779 // for instance, in recursive functions. Skip them.
10780 if (isa<ParmVarDecl>(OrigDecl))
10781 return;
10782
10783 E = E->IgnoreParens();
10784
10785 // Skip checking T a = a where T is not a record or reference type.
10786 // Doing so is a way to silence uninitialized warnings.
10787 if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
10788 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
10789 if (ICE->getCastKind() == CK_LValueToRValue)
10790 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
10791 if (DRE->getDecl() == OrigDecl)
10792 return;
10793
10794 SelfReferenceChecker(S, OrigDecl).CheckExpr(E);
10795 }
10796} // end anonymous namespace
10797
10798namespace {
10799 // Simple wrapper to add the name of a variable or (if no variable is
10800 // available) a DeclarationName into a diagnostic.
10801 struct VarDeclOrName {
10802 VarDecl *VDecl;
10803 DeclarationName Name;
10804
10805 friend const Sema::SemaDiagnosticBuilder &
10806 operator<<(const Sema::SemaDiagnosticBuilder &Diag, VarDeclOrName VN) {
10807 return VN.VDecl ? Diag << VN.VDecl : Diag << VN.Name;
10808 }
10809 };
10810} // end anonymous namespace
10811
10812QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl,
10813 DeclarationName Name, QualType Type,
10814 TypeSourceInfo *TSI,
10815 SourceRange Range, bool DirectInit,
10816 Expr *Init) {
10817 bool IsInitCapture = !VDecl;
10818 assert((!VDecl || !VDecl->isInitCapture()) &&(((!VDecl || !VDecl->isInitCapture()) && "init captures are expected to be deduced prior to initialization"
) ? static_cast<void> (0) : __assert_fail ("(!VDecl || !VDecl->isInitCapture()) && \"init captures are expected to be deduced prior to initialization\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 10819, __PRETTY_FUNCTION__))
10819 "init captures are expected to be deduced prior to initialization")(((!VDecl || !VDecl->isInitCapture()) && "init captures are expected to be deduced prior to initialization"
) ? static_cast<void> (0) : __assert_fail ("(!VDecl || !VDecl->isInitCapture()) && \"init captures are expected to be deduced prior to initialization\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 10819, __PRETTY_FUNCTION__))
;
10820
10821 VarDeclOrName VN{VDecl, Name};
10822
10823 DeducedType *Deduced = Type->getContainedDeducedType();
10824 assert(Deduced && "deduceVarTypeFromInitializer for non-deduced type")((Deduced && "deduceVarTypeFromInitializer for non-deduced type"
) ? static_cast<void> (0) : __assert_fail ("Deduced && \"deduceVarTypeFromInitializer for non-deduced type\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 10824, __PRETTY_FUNCTION__))
;
10825
10826 // C++11 [dcl.spec.auto]p3
10827 if (!Init) {
10828 assert(VDecl && "no init for init capture deduction?")((VDecl && "no init for init capture deduction?") ? static_cast
<void> (0) : __assert_fail ("VDecl && \"no init for init capture deduction?\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 10828, __PRETTY_FUNCTION__))
;
10829
10830 // Except for class argument deduction, and then for an initializing
10831 // declaration only, i.e. no static at class scope or extern.
10832 if (!isa<DeducedTemplateSpecializationType>(Deduced) ||
10833 VDecl->hasExternalStorage() ||
10834 VDecl->isStaticDataMember()) {
10835 Diag(VDecl->getLocation(), diag::err_auto_var_requires_init)
10836 << VDecl->getDeclName() << Type;
10837 return QualType();
10838 }
10839 }
10840
10841 ArrayRef<Expr*> DeduceInits;
10842 if (Init)
10843 DeduceInits = Init;
10844
10845 if (DirectInit) {
10846 if (auto *PL = dyn_cast_or_null<ParenListExpr>(Init))
10847 DeduceInits = PL->exprs();
10848 }
10849
10850 if (isa<DeducedTemplateSpecializationType>(Deduced)) {
10851 assert(VDecl && "non-auto type for init capture deduction?")((VDecl && "non-auto type for init capture deduction?"
) ? static_cast<void> (0) : __assert_fail ("VDecl && \"non-auto type for init capture deduction?\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 10851, __PRETTY_FUNCTION__))
;
10852 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
10853 InitializationKind Kind = InitializationKind::CreateForInit(
10854 VDecl->getLocation(), DirectInit, Init);
10855 // FIXME: Initialization should not be taking a mutable list of inits.
10856 SmallVector<Expr*, 8> InitsCopy(DeduceInits.begin(), DeduceInits.end());
10857 return DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind,
10858 InitsCopy);
10859 }
10860
10861 if (DirectInit) {
10862 if (auto *IL = dyn_cast<InitListExpr>(Init))
10863 DeduceInits = IL->inits();
10864 }
10865
10866 // Deduction only works if we have exactly one source expression.
10867 if (DeduceInits.empty()) {
10868 // It isn't possible to write this directly, but it is possible to
10869 // end up in this situation with "auto x(some_pack...);"
10870 Diag(Init->getBeginLoc(), IsInitCapture
10871 ? diag::err_init_capture_no_expression
10872 : diag::err_auto_var_init_no_expression)
10873 << VN << Type << Range;
10874 return QualType();
10875 }
10876
10877 if (DeduceInits.size() > 1) {
10878 Diag(DeduceInits[1]->getBeginLoc(),
10879 IsInitCapture ? diag::err_init_capture_multiple_expressions
10880 : diag::err_auto_var_init_multiple_expressions)
10881 << VN << Type << Range;
10882 return QualType();
10883 }
10884
10885 Expr *DeduceInit = DeduceInits[0];
10886 if (DirectInit && isa<InitListExpr>(DeduceInit)) {
10887 Diag(Init->getBeginLoc(), IsInitCapture
10888 ? diag::err_init_capture_paren_braces
10889 : diag::err_auto_var_init_paren_braces)
10890 << isa<InitListExpr>(Init) << VN << Type << Range;
10891 return QualType();
10892 }
10893
10894 // Expressions default to 'id' when we're in a debugger.
10895 bool DefaultedAnyToId = false;
10896 if (getLangOpts().DebuggerCastResultToId &&
10897 Init->getType() == Context.UnknownAnyTy && !IsInitCapture) {
10898 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
10899 if (Result.isInvalid()) {
10900 return QualType();
10901 }
10902 Init = Result.get();
10903 DefaultedAnyToId = true;
10904 }
10905
10906 // C++ [dcl.decomp]p1:
10907 // If the assignment-expression [...] has array type A and no ref-qualifier
10908 // is present, e has type cv A
10909 if (VDecl && isa<DecompositionDecl>(VDecl) &&
10910 Context.hasSameUnqualifiedType(Type, Context.getAutoDeductType()) &&
10911 DeduceInit->getType()->isConstantArrayType())
10912 return Context.getQualifiedType(DeduceInit->getType(),
10913 Type.getQualifiers());
10914
10915 QualType DeducedType;
10916 if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) {
10917 if (!IsInitCapture)
10918 DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
10919 else if (isa<InitListExpr>(Init))
10920 Diag(Range.getBegin(),
10921 diag::err_init_capture_deduction_failure_from_init_list)
10922 << VN
10923 << (DeduceInit->getType().isNull() ? TSI->getType()
10924 : DeduceInit->getType())
10925 << DeduceInit->getSourceRange();
10926 else
10927 Diag(Range.getBegin(), diag::err_init_capture_deduction_failure)
10928 << VN << TSI->getType()
10929 << (DeduceInit->getType().isNull() ? TSI->getType()
10930 : DeduceInit->getType())
10931 << DeduceInit->getSourceRange();
10932 }
10933
10934 // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
10935 // 'id' instead of a specific object type prevents most of our usual
10936 // checks.
10937 // We only want to warn outside of template instantiations, though:
10938 // inside a template, the 'id' could have come from a parameter.
10939 if (!inTemplateInstantiation() && !DefaultedAnyToId && !IsInitCapture &&
10940 !DeducedType.isNull() && DeducedType->isObjCIdType()) {
10941 SourceLocation Loc = TSI->getTypeLoc().getBeginLoc();
10942 Diag(Loc, diag::warn_auto_var_is_id) << VN << Range;
10943 }
10944
10945 return DeducedType;
10946}
10947
10948bool Sema::DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit,
10949 Expr *Init) {
10950 QualType DeducedType = deduceVarTypeFromInitializer(
10951 VDecl, VDecl->getDeclName(), VDecl->getType(), VDecl->getTypeSourceInfo(),
10952 VDecl->getSourceRange(), DirectInit, Init);
10953 if (DeducedType.isNull()) {
10954 VDecl->setInvalidDecl();
10955 return true;
10956 }
10957
10958 VDecl->setType(DeducedType);
10959 assert(VDecl->isLinkageValid())((VDecl->isLinkageValid()) ? static_cast<void> (0) :
__assert_fail ("VDecl->isLinkageValid()", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 10959, __PRETTY_FUNCTION__))
;
10960
10961 // In ARC, infer lifetime.
10962 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
10963 VDecl->setInvalidDecl();
10964
10965 // If this is a redeclaration, check that the type we just deduced matches
10966 // the previously declared type.
10967 if (VarDecl *Old = VDecl->getPreviousDecl()) {
10968 // We never need to merge the type, because we cannot form an incomplete
10969 // array of auto, nor deduce such a type.
10970 MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false);
10971 }
10972
10973 // Check the deduced type is valid for a variable declaration.
10974 CheckVariableDeclarationType(VDecl);
10975 return VDecl->isInvalidDecl();
10976}
10977
10978/// AddInitializerToDecl - Adds the initializer Init to the
10979/// declaration dcl. If DirectInit is true, this is C++ direct
10980/// initialization rather than copy initialization.
10981void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
10982 // If there is no declaration, there was an error parsing it. Just ignore
10983 // the initializer.
10984 if (!RealDecl || RealDecl->isInvalidDecl()) {
10985 CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl));
10986 return;
10987 }
10988
10989 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
10990 // Pure-specifiers are handled in ActOnPureSpecifier.
10991 Diag(Method->getLocation(), diag::err_member_function_initialization)
10992 << Method->getDeclName() << Init->getSourceRange();
10993 Method->setInvalidDecl();
10994 return;
10995 }
10996
10997 VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
10998 if (!VDecl) {
10999 assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here")((!isa<FieldDecl>(RealDecl) && "field init shouldn't get here"
) ? static_cast<void> (0) : __assert_fail ("!isa<FieldDecl>(RealDecl) && \"field init shouldn't get here\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 10999, __PRETTY_FUNCTION__))
;
11000 Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
11001 RealDecl->setInvalidDecl();
11002 return;
11003 }
11004
11005 // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
11006 if (VDecl->getType()->isUndeducedType()) {
11007 // Attempt typo correction early so that the type of the init expression can
11008 // be deduced based on the chosen correction if the original init contains a
11009 // TypoExpr.
11010 ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl);
11011 if (!Res.isUsable()) {
11012 RealDecl->setInvalidDecl();
11013 return;
11014 }
11015 Init = Res.get();
11016
11017 if (DeduceVariableDeclarationType(VDecl, DirectInit, Init))
11018 return;
11019 }
11020
11021 // dllimport cannot be used on variable definitions.
11022 if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
11023 Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
11024 VDecl->setInvalidDecl();
11025 return;
11026 }
11027
11028 if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
11029 // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
11030 Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
11031 VDecl->setInvalidDecl();
11032 return;
11033 }
11034
11035 if (!VDecl->getType()->isDependentType()) {
11036 // A definition must end up with a complete type, which means it must be
11037 // complete with the restriction that an array type might be completed by
11038 // the initializer; note that later code assumes this restriction.
11039 QualType BaseDeclType = VDecl->getType();
11040 if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
11041 BaseDeclType = Array->getElementType();
11042 if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
11043 diag::err_typecheck_decl_incomplete_type)) {
11044 RealDecl->setInvalidDecl();
11045 return;
11046 }
11047
11048 // The variable can not have an abstract class type.
11049 if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
11050 diag::err_abstract_type_in_decl,
11051 AbstractVariableType))
11052 VDecl->setInvalidDecl();
11053 }
11054
11055 // If adding the initializer will turn this declaration into a definition,
11056 // and we already have a definition for this variable, diagnose or otherwise
11057 // handle the situation.
11058 VarDecl *Def;
11059 if ((Def = VDecl->getDefinition()) && Def != VDecl &&
11060 (!VDecl->isStaticDataMember() || VDecl->isOutOfLine()) &&
11061 !VDecl->isThisDeclarationADemotedDefinition() &&
11062 checkVarDeclRedefinition(Def, VDecl))
11063 return;
11064
11065 if (getLangOpts().CPlusPlus) {
11066 // C++ [class.static.data]p4
11067 // If a static data member is of const integral or const
11068 // enumeration type, its declaration in the class definition can
11069 // specify a constant-initializer which shall be an integral
11070 // constant expression (5.19). In that case, the member can appear
11071 // in integral constant expressions. The member shall still be
11072 // defined in a namespace scope if it is used in the program and the
11073 // namespace scope definition shall not contain an initializer.
11074 //
11075 // We already performed a redefinition check above, but for static
11076 // data members we also need to check whether there was an in-class
11077 // declaration with an initializer.
11078 if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) {
11079 Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
11080 << VDecl->getDeclName();
11081 Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(),
11082 diag::note_previous_initializer)
11083 << 0;
11084 return;
11085 }
11086
11087 if (VDecl->hasLocalStorage())
11088 setFunctionHasBranchProtectedScope();
11089
11090 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
11091 VDecl->setInvalidDecl();
11092 return;
11093 }
11094 }
11095
11096 // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
11097 // a kernel function cannot be initialized."
11098 if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) {
11099 Diag(VDecl->getLocation(), diag::err_local_cant_init);
11100 VDecl->setInvalidDecl();
11101 return;
11102 }
11103
11104 // Get the decls type and save a reference for later, since
11105 // CheckInitializerTypes may change it.
11106 QualType DclT = VDecl->getType(), SavT = DclT;
11107
11108 // Expressions default to 'id' when we're in a debugger
11109 // and we are assigning it to a variable of Objective-C pointer type.
11110 if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
11111 Init->getType() == Context.UnknownAnyTy) {
11112 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
11113 if (Result.isInvalid()) {
11114 VDecl->setInvalidDecl();
11115 return;
11116 }
11117 Init = Result.get();
11118 }
11119
11120 // Perform the initialization.
11121 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
11122 if (!VDecl->isInvalidDecl()) {
11123 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
11124 InitializationKind Kind = InitializationKind::CreateForInit(
11125 VDecl->getLocation(), DirectInit, Init);
11126
11127 MultiExprArg Args = Init;
11128 if (CXXDirectInit)
11129 Args = MultiExprArg(CXXDirectInit->getExprs(),
11130 CXXDirectInit->getNumExprs());
11131
11132 // Try to correct any TypoExprs in the initialization arguments.
11133 for (size_t Idx = 0; Idx < Args.size(); ++Idx) {
11134 ExprResult Res = CorrectDelayedTyposInExpr(
11135 Args[Idx], VDecl, [this, Entity, Kind](Expr *E) {
11136 InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E));
11137 return Init.Failed() ? ExprError() : E;
11138 });
11139 if (Res.isInvalid()) {
11140 VDecl->setInvalidDecl();
11141 } else if (Res.get() != Args[Idx]) {
11142 Args[Idx] = Res.get();
11143 }
11144 }
11145 if (VDecl->isInvalidDecl())
11146 return;
11147
11148 InitializationSequence InitSeq(*this, Entity, Kind, Args,
11149 /*TopLevelOfInitList=*/false,
11150 /*TreatUnavailableAsInvalid=*/false);
11151 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
11152 if (Result.isInvalid()) {
11153 VDecl->setInvalidDecl();
11154 return;
11155 }
11156
11157 Init = Result.getAs<Expr>();
11158 }
11159
11160 // Check for self-references within variable initializers.
11161 // Variables declared within a function/method body (except for references)
11162 // are handled by a dataflow analysis.
11163 if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
11164 VDecl->getType()->isReferenceType()) {
11165 CheckSelfReference(*this, RealDecl, Init, DirectInit);
11166 }
11167
11168 // If the type changed, it means we had an incomplete type that was
11169 // completed by the initializer. For example:
11170 // int ary[] = { 1, 3, 5 };
11171 // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
11172 if (!VDecl->isInvalidDecl() && (DclT != SavT))
11173 VDecl->setType(DclT);
11174
11175 if (!VDecl->isInvalidDecl()) {
11176 checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
11177
11178 if (VDecl->hasAttr<BlocksAttr>())
11179 checkRetainCycles(VDecl, Init);
11180
11181 // It is safe to assign a weak reference into a strong variable.
11182 // Although this code can still have problems:
11183 // id x = self.weakProp;
11184 // id y = self.weakProp;
11185 // we do not warn to warn spuriously when 'x' and 'y' are on separate
11186 // paths through the function. This should be revisited if
11187 // -Wrepeated-use-of-weak is made flow-sensitive.
11188 if (FunctionScopeInfo *FSI = getCurFunction())
11189 if ((VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
11190 VDecl->getType().isNonWeakInMRRWithObjCWeak(Context)) &&
11191 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
11192 Init->getBeginLoc()))
11193 FSI->markSafeWeakUse(Init);
11194 }
11195
11196 // The initialization is usually a full-expression.
11197 //
11198 // FIXME: If this is a braced initialization of an aggregate, it is not
11199 // an expression, and each individual field initializer is a separate
11200 // full-expression. For instance, in:
11201 //
11202 // struct Temp { ~Temp(); };
11203 // struct S { S(Temp); };
11204 // struct T { S a, b; } t = { Temp(), Temp() }
11205 //
11206 // we should destroy the first Temp before constructing the second.
11207 ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
11208 false,
11209 VDecl->isConstexpr());
11210 if (Result.isInvalid()) {
11211 VDecl->setInvalidDecl();
11212 return;
11213 }
11214 Init = Result.get();
11215
11216 // Attach the initializer to the decl.
11217 VDecl->setInit(Init);
11218
11219 if (VDecl->isLocalVarDecl()) {
11220 // Don't check the initializer if the declaration is malformed.
11221 if (VDecl->isInvalidDecl()) {
11222 // do nothing
11223
11224 // OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized.
11225 // This is true even in OpenCL C++.
11226 } else if (VDecl->getType().getAddressSpace() == LangAS::opencl_constant) {
11227 CheckForConstantInitializer(Init, DclT);
11228
11229 // Otherwise, C++ does not restrict the initializer.
11230 } else if (getLangOpts().CPlusPlus) {
11231 // do nothing
11232
11233 // C99 6.7.8p4: All the expressions in an initializer for an object that has
11234 // static storage duration shall be constant expressions or string literals.
11235 } else if (VDecl->getStorageClass() == SC_Static) {
11236 CheckForConstantInitializer(Init, DclT);
11237
11238 // C89 is stricter than C99 for aggregate initializers.
11239 // C89 6.5.7p3: All the expressions [...] in an initializer list
11240 // for an object that has aggregate or union type shall be
11241 // constant expressions.
11242 } else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
11243 isa<InitListExpr>(Init)) {
11244 const Expr *Culprit;
11245 if (!Init->isConstantInitializer(Context, false, &Culprit)) {
11246 Diag(Culprit->getExprLoc(),
11247 diag::ext_aggregate_init_not_constant)
11248 << Culprit->getSourceRange();
11249 }
11250 }
11251 } else if (VDecl->isStaticDataMember() && !VDecl->isInline() &&
11252 VDecl->getLexicalDeclContext()->isRecord()) {
11253 // This is an in-class initialization for a static data member, e.g.,
11254 //
11255 // struct S {
11256 // static const int value = 17;
11257 // };
11258
11259 // C++ [class.mem]p4:
11260 // A member-declarator can contain a constant-initializer only
11261 // if it declares a static member (9.4) of const integral or
11262 // const enumeration type, see 9.4.2.
11263 //
11264 // C++11 [class.static.data]p3:
11265 // If a non-volatile non-inline const static data member is of integral
11266 // or enumeration type, its declaration in the class definition can
11267 // specify a brace-or-equal-initializer in which every initializer-clause
11268 // that is an assignment-expression is a constant expression. A static
11269 // data member of literal type can be declared in the class definition
11270 // with the constexpr specifier; if so, its declaration shall specify a
11271 // brace-or-equal-initializer in which every initializer-clause that is
11272 // an assignment-expression is a constant expression.
11273
11274 // Do nothing on dependent types.
11275 if (DclT->isDependentType()) {
11276
11277 // Allow any 'static constexpr' members, whether or not they are of literal
11278 // type. We separately check that every constexpr variable is of literal
11279 // type.
11280 } else if (VDecl->isConstexpr()) {
11281
11282 // Require constness.
11283 } else if (!DclT.isConstQualified()) {
11284 Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
11285 << Init->getSourceRange();
11286 VDecl->setInvalidDecl();
11287
11288 // We allow integer constant expressions in all cases.
11289 } else if (DclT->isIntegralOrEnumerationType()) {
11290 // Check whether the expression is a constant expression.
11291 SourceLocation Loc;
11292 if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
11293 // In C++11, a non-constexpr const static data member with an
11294 // in-class initializer cannot be volatile.
11295 Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
11296 else if (Init->isValueDependent())
11297 ; // Nothing to check.
11298 else if (Init->isIntegerConstantExpr(Context, &Loc))
11299 ; // Ok, it's an ICE!
11300 else if (Init->getType()->isScopedEnumeralType() &&
11301 Init->isCXX11ConstantExpr(Context))
11302 ; // Ok, it is a scoped-enum constant expression.
11303 else if (Init->isEvaluatable(Context)) {
11304 // If we can constant fold the initializer through heroics, accept it,
11305 // but report this as a use of an extension for -pedantic.
11306 Diag(Loc, diag::ext_in_class_initializer_non_constant)
11307 << Init->getSourceRange();
11308 } else {
11309 // Otherwise, this is some crazy unknown case. Report the issue at the
11310 // location provided by the isIntegerConstantExpr failed check.
11311 Diag(Loc, diag::err_in_class_initializer_non_constant)
11312 << Init->getSourceRange();
11313 VDecl->setInvalidDecl();
11314 }
11315
11316 // We allow foldable floating-point constants as an extension.
11317 } else if (DclT->isFloatingType()) { // also permits complex, which is ok
11318 // In C++98, this is a GNU extension. In C++11, it is not, but we support
11319 // it anyway and provide a fixit to add the 'constexpr'.
11320 if (getLangOpts().CPlusPlus11) {
11321 Diag(VDecl->getLocation(),
11322 diag::ext_in_class_initializer_float_type_cxx11)
11323 << DclT << Init->getSourceRange();
11324 Diag(VDecl->getBeginLoc(),
11325 diag::note_in_class_initializer_float_type_cxx11)
11326 << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
11327 } else {
11328 Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
11329 << DclT << Init->getSourceRange();
11330
11331 if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
11332 Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
11333 << Init->getSourceRange();
11334 VDecl->setInvalidDecl();
11335 }
11336 }
11337
11338 // Suggest adding 'constexpr' in C++11 for literal types.
11339 } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
11340 Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
11341 << DclT << Init->getSourceRange()
11342 << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
11343 VDecl->setConstexpr(true);
11344
11345 } else {
11346 Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
11347 << DclT << Init->getSourceRange();
11348 VDecl->setInvalidDecl();
11349 }
11350 } else if (VDecl->isFileVarDecl()) {
11351 // In C, extern is typically used to avoid tentative definitions when
11352 // declaring variables in headers, but adding an intializer makes it a
11353 // definition. This is somewhat confusing, so GCC and Clang both warn on it.
11354 // In C++, extern is often used to give implictly static const variables
11355 // external linkage, so don't warn in that case. If selectany is present,
11356 // this might be header code intended for C and C++ inclusion, so apply the
11357 // C++ rules.
11358 if (VDecl->getStorageClass() == SC_Extern &&
11359 ((!getLangOpts().CPlusPlus && !VDecl->hasAttr<SelectAnyAttr>()) ||
11360 !Context.getBaseElementType(VDecl->getType()).isConstQualified()) &&
11361 !(getLangOpts().CPlusPlus && VDecl->isExternC()) &&
11362 !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
11363 Diag(VDecl->getLocation(), diag::warn_extern_init);
11364
11365 // C99 6.7.8p4. All file scoped initializers need to be constant.
11366 if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
11367 CheckForConstantInitializer(Init, DclT);
11368 }
11369
11370 // We will represent direct-initialization similarly to copy-initialization:
11371 // int x(1); -as-> int x = 1;
11372 // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
11373 //
11374 // Clients that want to distinguish between the two forms, can check for
11375 // direct initializer using VarDecl::getInitStyle().
11376 // A major benefit is that clients that don't particularly care about which
11377 // exactly form was it (like the CodeGen) can handle both cases without
11378 // special case code.
11379
11380 // C++ 8.5p11:
11381 // The form of initialization (using parentheses or '=') is generally
11382 // insignificant, but does matter when the entity being initialized has a
11383 // class type.
11384 if (CXXDirectInit) {
11385 assert(DirectInit && "Call-style initializer must be direct init.")((DirectInit && "Call-style initializer must be direct init."
) ? static_cast<void> (0) : __assert_fail ("DirectInit && \"Call-style initializer must be direct init.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 11385, __PRETTY_FUNCTION__))
;
11386 VDecl->setInitStyle(VarDecl::CallInit);
11387 } else if (DirectInit) {
11388 // This must be list-initialization. No other way is direct-initialization.
11389 VDecl->setInitStyle(VarDecl::ListInit);
11390 }
11391
11392 CheckCompleteVariableDeclaration(VDecl);
11393}
11394
11395/// ActOnInitializerError - Given that there was an error parsing an
11396/// initializer for the given declaration, try to return to some form
11397/// of sanity.
11398void Sema::ActOnInitializerError(Decl *D) {
11399 // Our main concern here is re-establishing invariants like "a
11400 // variable's type is either dependent or complete".
11401 if (!D || D->isInvalidDecl()) return;
11402
11403 VarDecl *VD = dyn_cast<VarDecl>(D);
11404 if (!VD) return;
11405
11406 // Bindings are not usable if we can't make sense of the initializer.
11407 if (auto *DD = dyn_cast<DecompositionDecl>(D))
11408 for (auto *BD : DD->bindings())
11409 BD->setInvalidDecl();
11410
11411 // Auto types are meaningless if we can't make sense of the initializer.
11412 if (ParsingInitForAutoVars.count(D)) {
11413 D->setInvalidDecl();
11414 return;
11415 }
11416
11417 QualType Ty = VD->getType();
11418 if (Ty->isDependentType()) return;
11419
11420 // Require a complete type.
11421 if (RequireCompleteType(VD->getLocation(),
11422 Context.getBaseElementType(Ty),
11423 diag::err_typecheck_decl_incomplete_type)) {
11424 VD->setInvalidDecl();
11425 return;
11426 }
11427
11428 // Require a non-abstract type.
11429 if (RequireNonAbstractType(VD->getLocation(), Ty,
11430 diag::err_abstract_type_in_decl,
11431 AbstractVariableType)) {
11432 VD->setInvalidDecl();
11433 return;
11434 }
11435
11436 // Don't bother complaining about constructors or destructors,
11437 // though.
11438}
11439
11440void Sema::ActOnUninitializedDecl(Decl *RealDecl) {
11441 // If there is no declaration, there was an error parsing it. Just ignore it.
11442 if (!RealDecl)
11443 return;
11444
11445 if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
11446 QualType Type = Var->getType();
11447
11448 // C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory.
11449 if (isa<DecompositionDecl>(RealDecl)) {
11450 Diag(Var->getLocation(), diag::err_decomp_decl_requires_init) << Var;
11451 Var->setInvalidDecl();
11452 return;
11453 }
11454
11455 if (Type->isUndeducedType() &&
11456 DeduceVariableDeclarationType(Var, false, nullptr))
11457 return;
11458
11459 // C++11 [class.static.data]p3: A static data member can be declared with
11460 // the constexpr specifier; if so, its declaration shall specify
11461 // a brace-or-equal-initializer.
11462 // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
11463 // the definition of a variable [...] or the declaration of a static data
11464 // member.
11465 if (Var->isConstexpr() && !Var->isThisDeclarationADefinition() &&
11466 !Var->isThisDeclarationADemotedDefinition()) {
11467 if (Var->isStaticDataMember()) {
11468 // C++1z removes the relevant rule; the in-class declaration is always
11469 // a definition there.
11470 if (!getLangOpts().CPlusPlus17) {
11471 Diag(Var->getLocation(),
11472 diag::err_constexpr_static_mem_var_requires_init)
11473 << Var->getDeclName();
11474 Var->setInvalidDecl();
11475 return;
11476 }
11477 } else {
11478 Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
11479 Var->setInvalidDecl();
11480 return;
11481 }
11482 }
11483
11484 // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
11485 // be initialized.
11486 if (!Var->isInvalidDecl() &&
11487 Var->getType().getAddressSpace() == LangAS::opencl_constant &&
11488 Var->getStorageClass() != SC_Extern && !Var->getInit()) {
11489 Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
11490 Var->setInvalidDecl();
11491 return;
11492 }
11493
11494 switch (Var->isThisDeclarationADefinition()) {
11495 case VarDecl::Definition:
11496 if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
11497 break;
11498
11499 // We have an out-of-line definition of a static data member
11500 // that has an in-class initializer, so we type-check this like
11501 // a declaration.
11502 //
11503 LLVM_FALLTHROUGH[[clang::fallthrough]];
11504
11505 case VarDecl::DeclarationOnly:
11506 // It's only a declaration.
11507
11508 // Block scope. C99 6.7p7: If an identifier for an object is
11509 // declared with no linkage (C99 6.2.2p6), the type for the
11510 // object shall be complete.
11511 if (!Type->isDependentType() && Var->isLocalVarDecl() &&
11512 !Var->hasLinkage() && !Var->isInvalidDecl() &&
11513 RequireCompleteType(Var->getLocation(), Type,
11514 diag::err_typecheck_decl_incomplete_type))
11515 Var->setInvalidDecl();
11516
11517 // Make sure that the type is not abstract.
11518 if (!Type->isDependentType() && !Var->isInvalidDecl() &&
11519 RequireNonAbstractType(Var->getLocation(), Type,
11520 diag::err_abstract_type_in_decl,
11521 AbstractVariableType))
11522 Var->setInvalidDecl();
11523 if (!Type->isDependentType() && !Var->isInvalidDecl() &&
11524 Var->getStorageClass() == SC_PrivateExtern) {
11525 Diag(Var->getLocation(), diag::warn_private_extern);
11526 Diag(Var->getLocation(), diag::note_private_extern);
11527 }
11528
11529 return;
11530
11531 case VarDecl::TentativeDefinition:
11532 // File scope. C99 6.9.2p2: A declaration of an identifier for an
11533 // object that has file scope without an initializer, and without a
11534 // storage-class specifier or with the storage-class specifier "static",
11535 // constitutes a tentative definition. Note: A tentative definition with
11536 // external linkage is valid (C99 6.2.2p5).
11537 if (!Var->isInvalidDecl()) {
11538 if (const IncompleteArrayType *ArrayT
11539 = Context.getAsIncompleteArrayType(Type)) {
11540 if (RequireCompleteType(Var->getLocation(),
11541 ArrayT->getElementType(),
11542 diag::err_illegal_decl_array_incomplete_type))
11543 Var->setInvalidDecl();
11544 } else if (Var->getStorageClass() == SC_Static) {
11545 // C99 6.9.2p3: If the declaration of an identifier for an object is
11546 // a tentative definition and has internal linkage (C99 6.2.2p3), the
11547 // declared type shall not be an incomplete type.
11548 // NOTE: code such as the following
11549 // static struct s;
11550 // struct s { int a; };
11551 // is accepted by gcc. Hence here we issue a warning instead of
11552 // an error and we do not invalidate the static declaration.
11553 // NOTE: to avoid multiple warnings, only check the first declaration.
11554 if (Var->isFirstDecl())
11555 RequireCompleteType(Var->getLocation(), Type,
11556 diag::ext_typecheck_decl_incomplete_type);
11557 }
11558 }
11559
11560 // Record the tentative definition; we're done.
11561 if (!Var->isInvalidDecl())
11562 TentativeDefinitions.push_back(Var);
11563 return;
11564 }
11565
11566 // Provide a specific diagnostic for uninitialized variable
11567 // definitions with incomplete array type.
11568 if (Type->isIncompleteArrayType()) {
11569 Diag(Var->getLocation(),
11570 diag::err_typecheck_incomplete_array_needs_initializer);
11571 Var->setInvalidDecl();
11572 return;
11573 }
11574
11575 // Provide a specific diagnostic for uninitialized variable
11576 // definitions with reference type.
11577 if (Type->isReferenceType()) {
11578 Diag(Var->getLocation(), diag::err_reference_var_requires_init)
11579 << Var->getDeclName()
11580 << SourceRange(Var->getLocation(), Var->getLocation());
11581 Var->setInvalidDecl();
11582 return;
11583 }
11584
11585 // Do not attempt to type-check the default initializer for a
11586 // variable with dependent type.
11587 if (Type->isDependentType())
11588 return;
11589
11590 if (Var->isInvalidDecl())
11591 return;
11592
11593 if (!Var->hasAttr<AliasAttr>()) {
11594 if (RequireCompleteType(Var->getLocation(),
11595 Context.getBaseElementType(Type),
11596 diag::err_typecheck_decl_incomplete_type)) {
11597 Var->setInvalidDecl();
11598 return;
11599 }
11600 } else {
11601 return;
11602 }
11603
11604 // The variable can not have an abstract class type.
11605 if (RequireNonAbstractType(Var->getLocation(), Type,
11606 diag::err_abstract_type_in_decl,
11607 AbstractVariableType)) {
11608 Var->setInvalidDecl();
11609 return;
11610 }
11611
11612 // Check for jumps past the implicit initializer. C++0x
11613 // clarifies that this applies to a "variable with automatic
11614 // storage duration", not a "local variable".
11615 // C++11 [stmt.dcl]p3
11616 // A program that jumps from a point where a variable with automatic
11617 // storage duration is not in scope to a point where it is in scope is
11618 // ill-formed unless the variable has scalar type, class type with a
11619 // trivial default constructor and a trivial destructor, a cv-qualified
11620 // version of one of these types, or an array of one of the preceding
11621 // types and is declared without an initializer.
11622 if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
11623 if (const RecordType *Record
11624 = Context.getBaseElementType(Type)->getAs<RecordType>()) {
11625 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
11626 // Mark the function (if we're in one) for further checking even if the
11627 // looser rules of C++11 do not require such checks, so that we can
11628 // diagnose incompatibilities with C++98.
11629 if (!CXXRecord->isPOD())
11630 setFunctionHasBranchProtectedScope();
11631 }
11632 }
11633
11634 // C++03 [dcl.init]p9:
11635 // If no initializer is specified for an object, and the
11636 // object is of (possibly cv-qualified) non-POD class type (or
11637 // array thereof), the object shall be default-initialized; if
11638 // the object is of const-qualified type, the underlying class
11639 // type shall have a user-declared default
11640 // constructor. Otherwise, if no initializer is specified for
11641 // a non- static object, the object and its subobjects, if
11642 // any, have an indeterminate initial value); if the object
11643 // or any of its subobjects are of const-qualified type, the
11644 // program is ill-formed.
11645 // C++0x [dcl.init]p11:
11646 // If no initializer is specified for an object, the object is
11647 // default-initialized; [...].
11648 InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
11649 InitializationKind Kind
11650 = InitializationKind::CreateDefault(Var->getLocation());
11651
11652 InitializationSequence InitSeq(*this, Entity, Kind, None);
11653 ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
11654 if (Init.isInvalid())
11655 Var->setInvalidDecl();
11656 else if (Init.get()) {
11657 Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
11658 // This is important for template substitution.
11659 Var->setInitStyle(VarDecl::CallInit);
11660 }
11661
11662 CheckCompleteVariableDeclaration(Var);
11663 }
11664}
11665
11666void Sema::ActOnCXXForRangeDecl(Decl *D) {
11667 // If there is no declaration, there was an error parsing it. Ignore it.
11668 if (!D)
11669 return;
11670
11671 VarDecl *VD = dyn_cast<VarDecl>(D);
11672 if (!VD) {
11673 Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
11674 D->setInvalidDecl();
11675 return;
11676 }
11677
11678 VD->setCXXForRangeDecl(true);
11679
11680 // for-range-declaration cannot be given a storage class specifier.
11681 int Error = -1;
11682 switch (VD->getStorageClass()) {
11683 case SC_None:
11684 break;
11685 case SC_Extern:
11686 Error = 0;
11687 break;
11688 case SC_Static:
11689 Error = 1;
11690 break;
11691 case SC_PrivateExtern:
11692 Error = 2;
11693 break;
11694 case SC_Auto:
11695 Error = 3;
11696 break;
11697 case SC_Register:
11698 Error = 4;
11699 break;
11700 }
11701 if (Error != -1) {
11702 Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
11703 << VD->getDeclName() << Error;
11704 D->setInvalidDecl();
11705 }
11706}
11707
11708StmtResult
11709Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
11710 IdentifierInfo *Ident,
11711 ParsedAttributes &Attrs,
11712 SourceLocation AttrEnd) {
11713 // C++1y [stmt.iter]p1:
11714 // A range-based for statement of the form
11715 // for ( for-range-identifier : for-range-initializer ) statement
11716 // is equivalent to
11717 // for ( auto&& for-range-identifier : for-range-initializer ) statement
11718 DeclSpec DS(Attrs.getPool().getFactory());
11719
11720 const char *PrevSpec;
11721 unsigned DiagID;
11722 DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
11723 getPrintingPolicy());
11724
11725 Declarator D(DS, DeclaratorContext::ForContext);
11726 D.SetIdentifier(Ident, IdentLoc);
11727 D.takeAttributes(Attrs, AttrEnd);
11728
11729 ParsedAttributes EmptyAttrs(Attrs.getPool().getFactory());
11730 D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/ false),
11731 IdentLoc);
11732 Decl *Var = ActOnDeclarator(S, D);
11733 cast<VarDecl>(Var)->setCXXForRangeDecl(true);
11734 FinalizeDeclaration(Var);
11735 return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
11736 AttrEnd.isValid() ? AttrEnd : IdentLoc);
11737}
11738
11739void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
11740 if (var->isInvalidDecl()) return;
11741
11742 if (getLangOpts().OpenCL) {
11743 // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an
11744 // initialiser
11745 if (var->getTypeSourceInfo()->getType()->isBlockPointerType() &&
11746 !var->hasInit()) {
11747 Diag(var->getLocation(), diag::err_opencl_invalid_block_declaration)
11748 << 1 /*Init*/;
11749 var->setInvalidDecl();
11750 return;
11751 }
11752 }
11753
11754 // In Objective-C, don't allow jumps past the implicit initialization of a
11755 // local retaining variable.
11756 if (getLangOpts().ObjC &&
11757 var->hasLocalStorage()) {
11758 switch (var->getType().getObjCLifetime()) {
11759 case Qualifiers::OCL_None:
11760 case Qualifiers::OCL_ExplicitNone:
11761 case Qualifiers::OCL_Autoreleasing:
11762 break;
11763
11764 case Qualifiers::OCL_Weak:
11765 case Qualifiers::OCL_Strong:
11766 setFunctionHasBranchProtectedScope();
11767 break;
11768 }
11769 }
11770
11771 if (var->hasLocalStorage() &&
11772 var->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
11773 setFunctionHasBranchProtectedScope();
11774
11775 // Warn about externally-visible variables being defined without a
11776 // prior declaration. We only want to do this for global
11777 // declarations, but we also specifically need to avoid doing it for
11778 // class members because the linkage of an anonymous class can
11779 // change if it's later given a typedef name.
11780 if (var->isThisDeclarationADefinition() &&
11781 var->getDeclContext()->getRedeclContext()->isFileContext() &&
11782 var->isExternallyVisible() && var->hasLinkage() &&
11783 !var->isInline() && !var->getDescribedVarTemplate() &&
11784 !isTemplateInstantiation(var->getTemplateSpecializationKind()) &&
11785 !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
11786 var->getLocation())) {
11787 // Find a previous declaration that's not a definition.
11788 VarDecl *prev = var->getPreviousDecl();
11789 while (prev && prev->isThisDeclarationADefinition())
11790 prev = prev->getPreviousDecl();
11791
11792 if (!prev)
11793 Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
11794 }
11795
11796 // Cache the result of checking for constant initialization.
11797 Optional<bool> CacheHasConstInit;
11798 const Expr *CacheCulprit;
11799 auto checkConstInit = [&]() mutable {
11800 if (!CacheHasConstInit)
11801 CacheHasConstInit = var->getInit()->isConstantInitializer(
11802 Context, var->getType()->isReferenceType(), &CacheCulprit);
11803 return *CacheHasConstInit;
11804 };
11805
11806 if (var->getTLSKind() == VarDecl::TLS_Static) {
11807 if (var->getType().isDestructedType()) {
11808 // GNU C++98 edits for __thread, [basic.start.term]p3:
11809 // The type of an object with thread storage duration shall not
11810 // have a non-trivial destructor.
11811 Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
11812 if (getLangOpts().CPlusPlus11)
11813 Diag(var->getLocation(), diag::note_use_thread_local);
11814 } else if (getLangOpts().CPlusPlus && var->hasInit()) {
11815 if (!checkConstInit()) {
11816 // GNU C++98 edits for __thread, [basic.start.init]p4:
11817 // An object of thread storage duration shall not require dynamic
11818 // initialization.
11819 // FIXME: Need strict checking here.
11820 Diag(CacheCulprit->getExprLoc(), diag::err_thread_dynamic_init)
11821 << CacheCulprit->getSourceRange();
11822 if (getLangOpts().CPlusPlus11)
11823 Diag(var->getLocation(), diag::note_use_thread_local);
11824 }
11825 }
11826 }
11827
11828 // Apply section attributes and pragmas to global variables.
11829 bool GlobalStorage = var->hasGlobalStorage();
11830 if (GlobalStorage && var->isThisDeclarationADefinition() &&
11831 !inTemplateInstantiation()) {
11832 PragmaStack<StringLiteral *> *Stack = nullptr;
11833 int SectionFlags = ASTContext::PSF_Implicit | ASTContext::PSF_Read;
11834 if (var->getType().isConstQualified())
11835 Stack = &ConstSegStack;
11836 else if (!var->getInit()) {
11837 Stack = &BSSSegStack;
11838 SectionFlags |= ASTContext::PSF_Write;
11839 } else {
11840 Stack = &DataSegStack;
11841 SectionFlags |= ASTContext::PSF_Write;
11842 }
11843 if (Stack->CurrentValue && !var->hasAttr<SectionAttr>()) {
11844 var->addAttr(SectionAttr::CreateImplicit(
11845 Context, SectionAttr::Declspec_allocate,
11846 Stack->CurrentValue->getString(), Stack->CurrentPragmaLocation));
11847 }
11848 if (const SectionAttr *SA = var->getAttr<SectionAttr>())
11849 if (UnifySection(SA->getName(), SectionFlags, var))
11850 var->dropAttr<SectionAttr>();
11851
11852 // Apply the init_seg attribute if this has an initializer. If the
11853 // initializer turns out to not be dynamic, we'll end up ignoring this
11854 // attribute.
11855 if (CurInitSeg && var->getInit())
11856 var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(),
11857 CurInitSegLoc));
11858 }
11859
11860 // All the following checks are C++ only.
11861 if (!getLangOpts().CPlusPlus) {
11862 // If this variable must be emitted, add it as an initializer for the
11863 // current module.
11864 if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
11865 Context.addModuleInitializer(ModuleScopes.back().Module, var);
11866 return;
11867 }
11868
11869 if (auto *DD = dyn_cast<DecompositionDecl>(var))
11870 CheckCompleteDecompositionDeclaration(DD);
11871
11872 QualType type = var->getType();
11873 if (type->isDependentType()) return;
11874
11875 if (var->hasAttr<BlocksAttr>())
11876 getCurFunction()->addByrefBlockVar(var);
11877
11878 Expr *Init = var->getInit();
11879 bool IsGlobal = GlobalStorage && !var->isStaticLocal();
11880 QualType baseType = Context.getBaseElementType(type);
11881
11882 if (Init && !Init->isValueDependent()) {
11883 if (var->isConstexpr()) {
11884 SmallVector<PartialDiagnosticAt, 8> Notes;
11885 if (!var->evaluateValue(Notes) || !var->isInitICE()) {
11886 SourceLocation DiagLoc = var->getLocation();
11887 // If the note doesn't add any useful information other than a source
11888 // location, fold it into the primary diagnostic.
11889 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
11890 diag::note_invalid_subexpr_in_const_expr) {
11891 DiagLoc = Notes[0].first;
11892 Notes.clear();
11893 }
11894 Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
11895 << var << Init->getSourceRange();
11896 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
11897 Diag(Notes[I].first, Notes[I].second);
11898 }
11899 } else if (var->isUsableInConstantExpressions(Context)) {
11900 // Check whether the initializer of a const variable of integral or
11901 // enumeration type is an ICE now, since we can't tell whether it was
11902 // initialized by a constant expression if we check later.
11903 var->checkInitIsICE();
11904 }
11905
11906 // Don't emit further diagnostics about constexpr globals since they
11907 // were just diagnosed.
11908 if (!var->isConstexpr() && GlobalStorage &&
11909 var->hasAttr<RequireConstantInitAttr>()) {
11910 // FIXME: Need strict checking in C++03 here.
11911 bool DiagErr = getLangOpts().CPlusPlus11
11912 ? !var->checkInitIsICE() : !checkConstInit();
11913 if (DiagErr) {
11914 auto attr = var->getAttr<RequireConstantInitAttr>();
11915 Diag(var->getLocation(), diag::err_require_constant_init_failed)
11916 << Init->getSourceRange();
11917 Diag(attr->getLocation(), diag::note_declared_required_constant_init_here)
11918 << attr->getRange();
11919 if (getLangOpts().CPlusPlus11) {
11920 APValue Value;
11921 SmallVector<PartialDiagnosticAt, 8> Notes;
11922 Init->EvaluateAsInitializer(Value, getASTContext(), var, Notes);
11923 for (auto &it : Notes)
11924 Diag(it.first, it.second);
11925 } else {
11926 Diag(CacheCulprit->getExprLoc(),
11927 diag::note_invalid_subexpr_in_const_expr)
11928 << CacheCulprit->getSourceRange();
11929 }
11930 }
11931 }
11932 else if (!var->isConstexpr() && IsGlobal &&
11933 !getDiagnostics().isIgnored(diag::warn_global_constructor,
11934 var->getLocation())) {
11935 // Warn about globals which don't have a constant initializer. Don't
11936 // warn about globals with a non-trivial destructor because we already
11937 // warned about them.
11938 CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
11939 if (!(RD && !RD->hasTrivialDestructor())) {
11940 if (!checkConstInit())
11941 Diag(var->getLocation(), diag::warn_global_constructor)
11942 << Init->getSourceRange();
11943 }
11944 }
11945 }
11946
11947 // Require the destructor.
11948 if (const RecordType *recordType = baseType->getAs<RecordType>())
11949 FinalizeVarWithDestructor(var, recordType);
11950
11951 // If this variable must be emitted, add it as an initializer for the current
11952 // module.
11953 if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
11954 Context.addModuleInitializer(ModuleScopes.back().Module, var);
11955}
11956
11957/// Determines if a variable's alignment is dependent.
11958static bool hasDependentAlignment(VarDecl *VD) {
11959 if (VD->getType()->isDependentType())
11960 return true;
11961 for (auto *I : VD->specific_attrs<AlignedAttr>())
11962 if (I->isAlignmentDependent())
11963 return true;
11964 return false;
11965}
11966
11967/// Check if VD needs to be dllexport/dllimport due to being in a
11968/// dllexport/import function.
11969void Sema::CheckStaticLocalForDllExport(VarDecl *VD) {
11970 assert(VD->isStaticLocal())((VD->isStaticLocal()) ? static_cast<void> (0) : __assert_fail
("VD->isStaticLocal()", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 11970, __PRETTY_FUNCTION__))
;
11971
11972 auto *FD = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
11973
11974 // Find outermost function when VD is in lambda function.
11975 while (FD && !getDLLAttr(FD) &&
11976 !FD->hasAttr<DLLExportStaticLocalAttr>() &&
11977 !FD->hasAttr<DLLImportStaticLocalAttr>()) {
11978 FD = dyn_cast_or_null<FunctionDecl>(FD->getParentFunctionOrMethod());
11979 }
11980
11981 if (!FD)
11982 return;
11983
11984 // Static locals inherit dll attributes from their function.
11985 if (Attr *A = getDLLAttr(FD)) {
11986 auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
11987 NewAttr->setInherited(true);
11988 VD->addAttr(NewAttr);
11989 } else if (Attr *A = FD->getAttr<DLLExportStaticLocalAttr>()) {
11990 auto *NewAttr = ::new (getASTContext()) DLLExportAttr(A->getRange(),
11991 getASTContext(),
11992 A->getSpellingListIndex());
11993 NewAttr->setInherited(true);
11994 VD->addAttr(NewAttr);
11995
11996 // Export this function to enforce exporting this static variable even
11997 // if it is not used in this compilation unit.
11998 if (!FD->hasAttr<DLLExportAttr>())
11999 FD->addAttr(NewAttr);
12000
12001 } else if (Attr *A = FD->getAttr<DLLImportStaticLocalAttr>()) {
12002 auto *NewAttr = ::new (getASTContext()) DLLImportAttr(A->getRange(),
12003 getASTContext(),
12004 A->getSpellingListIndex());
12005 NewAttr->setInherited(true);
12006 VD->addAttr(NewAttr);
12007 }
12008}
12009
12010/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
12011/// any semantic actions necessary after any initializer has been attached.
12012void Sema::FinalizeDeclaration(Decl *ThisDecl) {
12013 // Note that we are no longer parsing the initializer for this declaration.
12014 ParsingInitForAutoVars.erase(ThisDecl);
12015
12016 VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
12017 if (!VD)
12018 return;
12019
12020 // Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active
12021 if (VD->hasGlobalStorage() && VD->isThisDeclarationADefinition() &&
12022 !inTemplateInstantiation() && !VD->hasAttr<SectionAttr>()) {
12023 if (PragmaClangBSSSection.Valid)
12024 VD->addAttr(PragmaClangBSSSectionAttr::CreateImplicit(Context,
12025 PragmaClangBSSSection.SectionName,
12026 PragmaClangBSSSection.PragmaLocation));
12027 if (PragmaClangDataSection.Valid)
12028 VD->addAttr(PragmaClangDataSectionAttr::CreateImplicit(Context,
12029 PragmaClangDataSection.SectionName,
12030 PragmaClangDataSection.PragmaLocation));
12031 if (PragmaClangRodataSection.Valid)
12032 VD->addAttr(PragmaClangRodataSectionAttr::CreateImplicit(Context,
12033 PragmaClangRodataSection.SectionName,
12034 PragmaClangRodataSection.PragmaLocation));
12035 }
12036
12037 if (auto *DD = dyn_cast<DecompositionDecl>(ThisDecl)) {
12038 for (auto *BD : DD->bindings()) {
12039 FinalizeDeclaration(BD);
12040 }
12041 }
12042
12043 checkAttributesAfterMerging(*this, *VD);
12044
12045 // Perform TLS alignment check here after attributes attached to the variable
12046 // which may affect the alignment have been processed. Only perform the check
12047 // if the target has a maximum TLS alignment (zero means no constraints).
12048 if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) {
12049 // Protect the check so that it's not performed on dependent types and
12050 // dependent alignments (we can't determine the alignment in that case).
12051 if (VD->getTLSKind() && !hasDependentAlignment(VD) &&
12052 !VD->isInvalidDecl()) {
12053 CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign);
12054 if (Context.getDeclAlign(VD) > MaxAlignChars) {
12055 Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
12056 << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD
12057 << (unsigned)MaxAlignChars.getQuantity();
12058 }
12059 }
12060 }
12061
12062 if (VD->isStaticLocal()) {
12063 CheckStaticLocalForDllExport(VD);
12064
12065 if (dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod())) {
12066 // CUDA 8.0 E.3.9.4: Within the body of a __device__ or __global__
12067 // function, only __shared__ variables or variables without any device
12068 // memory qualifiers may be declared with static storage class.
12069 // Note: It is unclear how a function-scope non-const static variable
12070 // without device memory qualifier is implemented, therefore only static
12071 // const variable without device memory qualifier is allowed.
12072 [&]() {
12073 if (!getLangOpts().CUDA)
12074 return;
12075 if (VD->hasAttr<CUDASharedAttr>())
12076 return;
12077 if (VD->getType().isConstQualified() &&
12078 !(VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>()))
12079 return;
12080 if (CUDADiagIfDeviceCode(VD->getLocation(),
12081 diag::err_device_static_local_var)
12082 << CurrentCUDATarget())
12083 VD->setInvalidDecl();
12084 }();
12085 }
12086 }
12087
12088 // Perform check for initializers of device-side global variables.
12089 // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA
12090 // 7.5). We must also apply the same checks to all __shared__
12091 // variables whether they are local or not. CUDA also allows
12092 // constant initializers for __constant__ and __device__ variables.
12093 if (getLangOpts().CUDA)
12094 checkAllowedCUDAInitializer(VD);
12095
12096 // Grab the dllimport or dllexport attribute off of the VarDecl.
12097 const InheritableAttr *DLLAttr = getDLLAttr(VD);
12098
12099 // Imported static data members cannot be defined out-of-line.
12100 if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) {
12101 if (VD->isStaticDataMember() && VD->isOutOfLine() &&
12102 VD->isThisDeclarationADefinition()) {
12103 // We allow definitions of dllimport class template static data members
12104 // with a warning.
12105 CXXRecordDecl *Context =
12106 cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
12107 bool IsClassTemplateMember =
12108 isa<ClassTemplatePartialSpecializationDecl>(Context) ||
12109 Context->getDescribedClassTemplate();
12110
12111 Diag(VD->getLocation(),
12112 IsClassTemplateMember
12113 ? diag::warn_attribute_dllimport_static_field_definition
12114 : diag::err_attribute_dllimport_static_field_definition);
12115 Diag(IA->getLocation(), diag::note_attribute);
12116 if (!IsClassTemplateMember)
12117 VD->setInvalidDecl();
12118 }
12119 }
12120
12121 // dllimport/dllexport variables cannot be thread local, their TLS index
12122 // isn't exported with the variable.
12123 if (DLLAttr && VD->getTLSKind()) {
12124 auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
12125 if (F && getDLLAttr(F)) {
12126 assert(VD->isStaticLocal())((VD->isStaticLocal()) ? static_cast<void> (0) : __assert_fail
("VD->isStaticLocal()", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 12126, __PRETTY_FUNCTION__))
;
12127 // But if this is a static local in a dlimport/dllexport function, the
12128 // function will never be inlined, which means the var would never be
12129 // imported, so having it marked import/export is safe.
12130 } else {
12131 Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD
12132 << DLLAttr;
12133 VD->setInvalidDecl();
12134 }
12135 }
12136
12137 if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
12138 if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
12139 Diag(Attr->getLocation(), diag::warn_attribute_ignored) << Attr;
12140 VD->dropAttr<UsedAttr>();
12141 }
12142 }
12143
12144 const DeclContext *DC = VD->getDeclContext();
12145 // If there's a #pragma GCC visibility in scope, and this isn't a class
12146 // member, set the visibility of this variable.
12147 if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
12148 AddPushedVisibilityAttribute(VD);
12149
12150 // FIXME: Warn on unused var template partial specializations.
12151 if (VD->isFileVarDecl() && !isa<VarTemplatePartialSpecializationDecl>(VD))
12152 MarkUnusedFileScopedDecl(VD);
12153
12154 // Now we have parsed the initializer and can update the table of magic
12155 // tag values.
12156 if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
12157 !VD->getType()->isIntegralOrEnumerationType())
12158 return;
12159
12160 for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
12161 const Expr *MagicValueExpr = VD->getInit();
12162 if (!MagicValueExpr) {
12163 continue;
12164 }
12165 llvm::APSInt MagicValueInt;
12166 if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
12167 Diag(I->getRange().getBegin(),
12168 diag::err_type_tag_for_datatype_not_ice)
12169 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
12170 continue;
12171 }
12172 if (MagicValueInt.getActiveBits() > 64) {
12173 Diag(I->getRange().getBegin(),
12174 diag::err_type_tag_for_datatype_too_large)
12175 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
12176 continue;
12177 }
12178 uint64_t MagicValue = MagicValueInt.getZExtValue();
12179 RegisterTypeTagForDatatype(I->getArgumentKind(),
12180 MagicValue,
12181 I->getMatchingCType(),
12182 I->getLayoutCompatible(),
12183 I->getMustBeNull());
12184 }
12185}
12186
12187static bool hasDeducedAuto(DeclaratorDecl *DD) {
12188 auto *VD = dyn_cast<VarDecl>(DD);
12189 return VD && !VD->getType()->hasAutoForTrailingReturnType();
12190}
12191
12192Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
12193 ArrayRef<Decl *> Group) {
12194 SmallVector<Decl*, 8> Decls;
12195
12196 if (DS.isTypeSpecOwned())
12197 Decls.push_back(DS.getRepAsDecl());
12198
12199 DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
12200 DecompositionDecl *FirstDecompDeclaratorInGroup = nullptr;
12201 bool DiagnosedMultipleDecomps = false;
12202 DeclaratorDecl *FirstNonDeducedAutoInGroup = nullptr;
12203 bool DiagnosedNonDeducedAuto = false;
12204
12205 for (unsigned i = 0, e = Group.size(); i != e; ++i) {
12206 if (Decl *D = Group[i]) {
12207 // For declarators, there are some additional syntactic-ish checks we need
12208 // to perform.
12209 if (auto *DD = dyn_cast<DeclaratorDecl>(D)) {
12210 if (!FirstDeclaratorInGroup)
12211 FirstDeclaratorInGroup = DD;
12212 if (!FirstDecompDeclaratorInGroup)
12213 FirstDecompDeclaratorInGroup = dyn_cast<DecompositionDecl>(D);
12214 if (!FirstNonDeducedAutoInGroup && DS.hasAutoTypeSpec() &&
12215 !hasDeducedAuto(DD))
12216 FirstNonDeducedAutoInGroup = DD;
12217
12218 if (FirstDeclaratorInGroup != DD) {
12219 // A decomposition declaration cannot be combined with any other
12220 // declaration in the same group.
12221 if (FirstDecompDeclaratorInGroup && !DiagnosedMultipleDecomps) {
12222 Diag(FirstDecompDeclaratorInGroup->getLocation(),
12223 diag::err_decomp_decl_not_alone)
12224 << FirstDeclaratorInGroup->getSourceRange()
12225 << DD->getSourceRange();
12226 DiagnosedMultipleDecomps = true;
12227 }
12228
12229 // A declarator that uses 'auto' in any way other than to declare a
12230 // variable with a deduced type cannot be combined with any other
12231 // declarator in the same group.
12232 if (FirstNonDeducedAutoInGroup && !DiagnosedNonDeducedAuto) {
12233 Diag(FirstNonDeducedAutoInGroup->getLocation(),
12234 diag::err_auto_non_deduced_not_alone)
12235 << FirstNonDeducedAutoInGroup->getType()
12236 ->hasAutoForTrailingReturnType()
12237 << FirstDeclaratorInGroup->getSourceRange()
12238 << DD->getSourceRange();
12239 DiagnosedNonDeducedAuto = true;
12240 }
12241 }
12242 }
12243
12244 Decls.push_back(D);
12245 }
12246 }
12247
12248 if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
12249 if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
12250 handleTagNumbering(Tag, S);
12251 if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() &&
12252 getLangOpts().CPlusPlus)
12253 Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup);
12254 }
12255 }
12256
12257 return BuildDeclaratorGroup(Decls);
12258}
12259
12260/// BuildDeclaratorGroup - convert a list of declarations into a declaration
12261/// group, performing any necessary semantic checking.
12262Sema::DeclGroupPtrTy
12263Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group) {
12264 // C++14 [dcl.spec.auto]p7: (DR1347)
12265 // If the type that replaces the placeholder type is not the same in each
12266 // deduction, the program is ill-formed.
12267 if (Group.size() > 1) {
12268 QualType Deduced;
12269 VarDecl *DeducedDecl = nullptr;
12270 for (unsigned i = 0, e = Group.size(); i != e; ++i) {
12271 VarDecl *D = dyn_cast<VarDecl>(Group[i]);
12272 if (!D || D->isInvalidDecl())
12273 break;
12274 DeducedType *DT = D->getType()->getContainedDeducedType();
12275 if (!DT || DT->getDeducedType().isNull())
12276 continue;
12277 if (Deduced.isNull()) {
12278 Deduced = DT->getDeducedType();
12279 DeducedDecl = D;
12280 } else if (!Context.hasSameType(DT->getDeducedType(), Deduced)) {
12281 auto *AT = dyn_cast<AutoType>(DT);
12282 Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
12283 diag::err_auto_different_deductions)
12284 << (AT ? (unsigned)AT->getKeyword() : 3)
12285 << Deduced << DeducedDecl->getDeclName()
12286 << DT->getDeducedType() << D->getDeclName()
12287 << DeducedDecl->getInit()->getSourceRange()
12288 << D->getInit()->getSourceRange();
12289 D->setInvalidDecl();
12290 break;
12291 }
12292 }
12293 }
12294
12295 ActOnDocumentableDecls(Group);
12296
12297 return DeclGroupPtrTy::make(
12298 DeclGroupRef::Create(Context, Group.data(), Group.size()));
12299}
12300
12301void Sema::ActOnDocumentableDecl(Decl *D) {
12302 ActOnDocumentableDecls(D);
12303}
12304
12305void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
12306 // Don't parse the comment if Doxygen diagnostics are ignored.
12307 if (Group.empty() || !Group[0])
12308 return;
12309
12310 if (Diags.isIgnored(diag::warn_doc_param_not_found,
12311 Group[0]->getLocation()) &&
12312 Diags.isIgnored(diag::warn_unknown_comment_command_name,
12313 Group[0]->getLocation()))
12314 return;
12315
12316 if (Group.size() >= 2) {
12317 // This is a decl group. Normally it will contain only declarations
12318 // produced from declarator list. But in case we have any definitions or
12319 // additional declaration references:
12320 // 'typedef struct S {} S;'
12321 // 'typedef struct S *S;'
12322 // 'struct S *pS;'
12323 // FinalizeDeclaratorGroup adds these as separate declarations.
12324 Decl *MaybeTagDecl = Group[0];
12325 if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
12326 Group = Group.slice(1);
12327 }
12328 }
12329
12330 // See if there are any new comments that are not attached to a decl.
12331 ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
12332 if (!Comments.empty() &&
12333 !Comments.back()->isAttached()) {
12334 // There is at least one comment that not attached to a decl.
12335 // Maybe it should be attached to one of these decls?
12336 //
12337 // Note that this way we pick up not only comments that precede the
12338 // declaration, but also comments that *follow* the declaration -- thanks to
12339 // the lookahead in the lexer: we've consumed the semicolon and looked
12340 // ahead through comments.
12341 for (unsigned i = 0, e = Group.size(); i != e; ++i)
12342 Context.getCommentForDecl(Group[i], &PP);
12343 }
12344}
12345
12346/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
12347/// to introduce parameters into function prototype scope.
12348Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
12349 const DeclSpec &DS = D.getDeclSpec();
12350
12351 // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
12352
12353 // C++03 [dcl.stc]p2 also permits 'auto'.
12354 StorageClass SC = SC_None;
12355 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
12356 SC = SC_Register;
12357 // In C++11, the 'register' storage class specifier is deprecated.
12358 // In C++17, it is not allowed, but we tolerate it as an extension.
12359 if (getLangOpts().CPlusPlus11) {
12360 Diag(DS.getStorageClassSpecLoc(),
12361 getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
12362 : diag::warn_deprecated_register)
12363 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
12364 }
12365 } else if (getLangOpts().CPlusPlus &&
12366 DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
12367 SC = SC_Auto;
12368 } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
12369 Diag(DS.getStorageClassSpecLoc(),
12370 diag::err_invalid_storage_class_in_func_decl);
12371 D.getMutableDeclSpec().ClearStorageClassSpecs();
12372 }
12373
12374 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
12375 Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
12376 << DeclSpec::getSpecifierName(TSCS);
12377 if (DS.isInlineSpecified())
12378 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
12379 << getLangOpts().CPlusPlus17;
12380 if (DS.isConstexprSpecified())
12381 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
12382 << 0;
12383
12384 DiagnoseFunctionSpecifiers(DS);
12385
12386 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12387 QualType parmDeclType = TInfo->getType();
12388
12389 if (getLangOpts().CPlusPlus) {
12390 // Check that there are no default arguments inside the type of this
12391 // parameter.
12392 CheckExtraCXXDefaultArguments(D);
12393
12394 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
12395 if (D.getCXXScopeSpec().isSet()) {
12396 Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
12397 << D.getCXXScopeSpec().getRange();
12398 D.getCXXScopeSpec().clear();
12399 }
12400 }
12401
12402 // Ensure we have a valid name
12403 IdentifierInfo *II = nullptr;
12404 if (D.hasName()) {
12405 II = D.getIdentifier();
12406 if (!II) {
12407 Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
12408 << GetNameForDeclarator(D).getName();
12409 D.setInvalidType(true);
12410 }
12411 }
12412
12413 // Check for redeclaration of parameters, e.g. int foo(int x, int x);
12414 if (II) {
12415 LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
12416 ForVisibleRedeclaration);
12417 LookupName(R, S);
12418 if (R.isSingleResult()) {
12419 NamedDecl *PrevDecl = R.getFoundDecl();
12420 if (PrevDecl->isTemplateParameter()) {
12421 // Maybe we will complain about the shadowed template parameter.
12422 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
12423 // Just pretend that we didn't see the previous declaration.
12424 PrevDecl = nullptr;
12425 } else if (S->isDeclScope(PrevDecl)) {
12426 Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
12427 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
12428
12429 // Recover by removing the name
12430 II = nullptr;
12431 D.SetIdentifier(nullptr, D.getIdentifierLoc());
12432 D.setInvalidType(true);
12433 }
12434 }
12435 }
12436
12437 // Temporarily put parameter variables in the translation unit, not
12438 // the enclosing context. This prevents them from accidentally
12439 // looking like class members in C++.
12440 ParmVarDecl *New =
12441 CheckParameter(Context.getTranslationUnitDecl(), D.getBeginLoc(),
12442 D.getIdentifierLoc(), II, parmDeclType, TInfo, SC);
12443
12444 if (D.isInvalidType())
12445 New->setInvalidDecl();
12446
12447 assert(S->isFunctionPrototypeScope())((S->isFunctionPrototypeScope()) ? static_cast<void>
(0) : __assert_fail ("S->isFunctionPrototypeScope()", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 12447, __PRETTY_FUNCTION__))
;
12448 assert(S->getFunctionPrototypeDepth() >= 1)((S->getFunctionPrototypeDepth() >= 1) ? static_cast<
void> (0) : __assert_fail ("S->getFunctionPrototypeDepth() >= 1"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 12448, __PRETTY_FUNCTION__))
;
12449 New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
12450 S->getNextFunctionPrototypeIndex());
12451
12452 // Add the parameter declaration into this scope.
12453 S->AddDecl(New);
12454 if (II)
12455 IdResolver.AddDecl(New);
12456
12457 ProcessDeclAttributes(S, New, D);
12458
12459 if (D.getDeclSpec().isModulePrivateSpecified())
12460 Diag(New->getLocation(), diag::err_module_private_local)
12461 << 1 << New->getDeclName()
12462 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
12463 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
12464
12465 if (New->hasAttr<BlocksAttr>()) {
12466 Diag(New->getLocation(), diag::err_block_on_nonlocal);
12467 }
12468 return New;
12469}
12470
12471/// Synthesizes a variable for a parameter arising from a
12472/// typedef.
12473ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
12474 SourceLocation Loc,
12475 QualType T) {
12476 /* FIXME: setting StartLoc == Loc.
12477 Would it be worth to modify callers so as to provide proper source
12478 location for the unnamed parameters, embedding the parameter's type? */
12479 ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
12480 T, Context.getTrivialTypeSourceInfo(T, Loc),
12481 SC_None, nullptr);
12482 Param->setImplicit();
12483 return Param;
12484}
12485
12486void Sema::DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters) {
12487 // Don't diagnose unused-parameter errors in template instantiations; we
12488 // will already have done so in the template itself.
12489 if (inTemplateInstantiation())
12490 return;
12491
12492 for (const ParmVarDecl *Parameter : Parameters) {
12493 if (!Parameter->isReferenced() && Parameter->getDeclName() &&
12494 !Parameter->hasAttr<UnusedAttr>()) {
12495 Diag(Parameter->getLocation(), diag::warn_unused_parameter)
12496 << Parameter->getDeclName();
12497 }
12498 }
12499}
12500
12501void Sema::DiagnoseSizeOfParametersAndReturnValue(
12502 ArrayRef<ParmVarDecl *> Parameters, QualType ReturnTy, NamedDecl *D) {
12503 if (LangOpts.NumLargeByValueCopy == 0) // No check.
12504 return;
12505
12506 // Warn if the return value is pass-by-value and larger than the specified
12507 // threshold.
12508 if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
12509 unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
12510 if (Size > LangOpts.NumLargeByValueCopy)
12511 Diag(D->getLocation(), diag::warn_return_value_size)
12512 << D->getDeclName() << Size;
12513 }
12514
12515 // Warn if any parameter is pass-by-value and larger than the specified
12516 // threshold.
12517 for (const ParmVarDecl *Parameter : Parameters) {
12518 QualType T = Parameter->getType();
12519 if (T->isDependentType() || !T.isPODType(Context))
12520 continue;
12521 unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
12522 if (Size > LangOpts.NumLargeByValueCopy)
12523 Diag(Parameter->getLocation(), diag::warn_parameter_size)
12524 << Parameter->getDeclName() << Size;
12525 }
12526}
12527
12528ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
12529 SourceLocation NameLoc, IdentifierInfo *Name,
12530 QualType T, TypeSourceInfo *TSInfo,
12531 StorageClass SC) {
12532 // In ARC, infer a lifetime qualifier for appropriate parameter types.
12533 if (getLangOpts().ObjCAutoRefCount &&
12534 T.getObjCLifetime() == Qualifiers::OCL_None &&
12535 T->isObjCLifetimeType()) {
12536
12537 Qualifiers::ObjCLifetime lifetime;
12538
12539 // Special cases for arrays:
12540 // - if it's const, use __unsafe_unretained
12541 // - otherwise, it's an error
12542 if (T->isArrayType()) {
12543 if (!T.isConstQualified()) {
12544 DelayedDiagnostics.add(
12545 sema::DelayedDiagnostic::makeForbiddenType(
12546 NameLoc, diag::err_arc_array_param_no_ownership, T, false));
12547 }
12548 lifetime = Qualifiers::OCL_ExplicitNone;
12549 } else {
12550 lifetime = T->getObjCARCImplicitLifetime();
12551 }
12552 T = Context.getLifetimeQualifiedType(T, lifetime);
12553 }
12554
12555 ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
12556 Context.getAdjustedParameterType(T),
12557 TSInfo, SC, nullptr);
12558
12559 // Parameters can not be abstract class types.
12560 // For record types, this is done by the AbstractClassUsageDiagnoser once
12561 // the class has been completely parsed.
12562 if (!CurContext->isRecord() &&
12563 RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
12564 AbstractParamType))
12565 New->setInvalidDecl();
12566
12567 // Parameter declarators cannot be interface types. All ObjC objects are
12568 // passed by reference.
12569 if (T->isObjCObjectType()) {
12570 SourceLocation TypeEndLoc =
12571 getLocForEndOfToken(TSInfo->getTypeLoc().getEndLoc());
12572 Diag(NameLoc,
12573 diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
12574 << FixItHint::CreateInsertion(TypeEndLoc, "*");
12575 T = Context.getObjCObjectPointerType(T);
12576 New->setType(T);
12577 }
12578
12579 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
12580 // duration shall not be qualified by an address-space qualifier."
12581 // Since all parameters have automatic store duration, they can not have
12582 // an address space.
12583 if (T.getAddressSpace() != LangAS::Default &&
12584 // OpenCL allows function arguments declared to be an array of a type
12585 // to be qualified with an address space.
12586 !(getLangOpts().OpenCL &&
12587 (T->isArrayType() || T.getAddressSpace() == LangAS::opencl_private))) {
12588 Diag(NameLoc, diag::err_arg_with_address_space);
12589 New->setInvalidDecl();
12590 }
12591
12592 return New;
12593}
12594
12595void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
12596 SourceLocation LocAfterDecls) {
12597 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
12598
12599 // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
12600 // for a K&R function.
12601 if (!FTI.hasPrototype) {
12602 for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
12603 --i;
12604 if (FTI.Params[i].Param == nullptr) {
12605 SmallString<256> Code;
12606 llvm::raw_svector_ostream(Code)
12607 << " int " << FTI.Params[i].Ident->getName() << ";\n";
12608 Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
12609 << FTI.Params[i].Ident
12610 << FixItHint::CreateInsertion(LocAfterDecls, Code);
12611
12612 // Implicitly declare the argument as type 'int' for lack of a better
12613 // type.
12614 AttributeFactory attrs;
12615 DeclSpec DS(attrs);
12616 const char* PrevSpec; // unused
12617 unsigned DiagID; // unused
12618 DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
12619 DiagID, Context.getPrintingPolicy());
12620 // Use the identifier location for the type source range.
12621 DS.SetRangeStart(FTI.Params[i].IdentLoc);
12622 DS.SetRangeEnd(FTI.Params[i].IdentLoc);
12623 Declarator ParamD(DS, DeclaratorContext::KNRTypeListContext);
12624 ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
12625 FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
12626 }
12627 }
12628 }
12629}
12630
12631Decl *
12632Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D,
12633 MultiTemplateParamsArg TemplateParameterLists,
12634 SkipBodyInfo *SkipBody) {
12635 assert(getCurFunctionDecl() == nullptr && "Function parsing confused")((getCurFunctionDecl() == nullptr && "Function parsing confused"
) ? static_cast<void> (0) : __assert_fail ("getCurFunctionDecl() == nullptr && \"Function parsing confused\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 12635, __PRETTY_FUNCTION__))
;
12636 assert(D.isFunctionDeclarator() && "Not a function declarator!")((D.isFunctionDeclarator() && "Not a function declarator!"
) ? static_cast<void> (0) : __assert_fail ("D.isFunctionDeclarator() && \"Not a function declarator!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 12636, __PRETTY_FUNCTION__))
;
12637 Scope *ParentScope = FnBodyScope->getParent();
12638
12639 D.setFunctionDefinitionKind(FDK_Definition);
12640 Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists);
12641 return ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody);
12642}
12643
12644void Sema::ActOnFinishInlineFunctionDef(FunctionDecl *D) {
12645 Consumer.HandleInlineFunctionDefinition(D);
12646}
12647
12648static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
12649 const FunctionDecl*& PossibleZeroParamPrototype) {
12650 // Don't warn about invalid declarations.
12651 if (FD->isInvalidDecl())
12652 return false;
12653
12654 // Or declarations that aren't global.
12655 if (!FD->isGlobal())
12656 return false;
12657
12658 // Don't warn about C++ member functions.
12659 if (isa<CXXMethodDecl>(FD))
12660 return false;
12661
12662 // Don't warn about 'main'.
12663 if (FD->isMain())
12664 return false;
12665
12666 // Don't warn about inline functions.
12667 if (FD->isInlined())
12668 return false;
12669
12670 // Don't warn about function templates.
12671 if (FD->getDescribedFunctionTemplate())
12672 return false;
12673
12674 // Don't warn about function template specializations.
12675 if (FD->isFunctionTemplateSpecialization())
12676 return false;
12677
12678 // Don't warn for OpenCL kernels.
12679 if (FD->hasAttr<OpenCLKernelAttr>())
12680 return false;
12681
12682 // Don't warn on explicitly deleted functions.
12683 if (FD->isDeleted())
12684 return false;
12685
12686 bool MissingPrototype = true;
12687 for (const FunctionDecl *Prev = FD->getPreviousDecl();
12688 Prev; Prev = Prev->getPreviousDecl()) {
12689 // Ignore any declarations that occur in function or method
12690 // scope, because they aren't visible from the header.
12691 if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
12692 continue;
12693
12694 MissingPrototype = !Prev->getType()->isFunctionProtoType();
12695 if (FD->getNumParams() == 0)
12696 PossibleZeroParamPrototype = Prev;
12697 break;
12698 }
12699
12700 return MissingPrototype;
12701}
12702
12703void
12704Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
12705 const FunctionDecl *EffectiveDefinition,
12706 SkipBodyInfo *SkipBody) {
12707 const FunctionDecl *Definition = EffectiveDefinition;
12708 if (!Definition && !FD->isDefined(Definition) && !FD->isCXXClassMember()) {
12709 // If this is a friend function defined in a class template, it does not
12710 // have a body until it is used, nevertheless it is a definition, see
12711 // [temp.inst]p2:
12712 //
12713 // ... for the purpose of determining whether an instantiated redeclaration
12714 // is valid according to [basic.def.odr] and [class.mem], a declaration that
12715 // corresponds to a definition in the template is considered to be a
12716 // definition.
12717 //
12718 // The following code must produce redefinition error:
12719 //
12720 // template<typename T> struct C20 { friend void func_20() {} };
12721 // C20<int> c20i;
12722 // void func_20() {}
12723 //
12724 for (auto I : FD->redecls()) {
12725 if (I != FD && !I->isInvalidDecl() &&
12726 I->getFriendObjectKind() != Decl::FOK_None) {
12727 if (FunctionDecl *Original = I->getInstantiatedFromMemberFunction()) {
12728 if (FunctionDecl *OrigFD = FD->getInstantiatedFromMemberFunction()) {
12729 // A merged copy of the same function, instantiated as a member of
12730 // the same class, is OK.
12731 if (declaresSameEntity(OrigFD, Original) &&
12732 declaresSameEntity(cast<Decl>(I->getLexicalDeclContext()),
12733 cast<Decl>(FD->getLexicalDeclContext())))
12734 continue;
12735 }
12736
12737 if (Original->isThisDeclarationADefinition()) {
12738 Definition = I;
12739 break;
12740 }
12741 }
12742 }
12743 }
12744 }
12745
12746 if (!Definition)
12747 // Similar to friend functions a friend function template may be a
12748 // definition and do not have a body if it is instantiated in a class
12749 // template.
12750 if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) {
12751 for (auto I : FTD->redecls()) {
12752 auto D = cast<FunctionTemplateDecl>(I);
12753 if (D != FTD) {
12754 assert(!D->isThisDeclarationADefinition() &&((!D->isThisDeclarationADefinition() && "More than one definition in redeclaration chain"
) ? static_cast<void> (0) : __assert_fail ("!D->isThisDeclarationADefinition() && \"More than one definition in redeclaration chain\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 12755, __PRETTY_FUNCTION__))
12755 "More than one definition in redeclaration chain")((!D->isThisDeclarationADefinition() && "More than one definition in redeclaration chain"
) ? static_cast<void> (0) : __assert_fail ("!D->isThisDeclarationADefinition() && \"More than one definition in redeclaration chain\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 12755, __PRETTY_FUNCTION__))
;
12756 if (D->getFriendObjectKind() != Decl::FOK_None)
12757 if (FunctionTemplateDecl *FT =
12758 D->getInstantiatedFromMemberTemplate()) {
12759 if (FT->isThisDeclarationADefinition()) {
12760 Definition = D->getTemplatedDecl();
12761 break;
12762 }
12763 }
12764 }
12765 }
12766 }
12767
12768 if (!Definition)
12769 return;
12770
12771 if (canRedefineFunction(Definition, getLangOpts()))
12772 return;
12773
12774 // Don't emit an error when this is redefinition of a typo-corrected
12775 // definition.
12776 if (TypoCorrectedFunctionDefinitions.count(Definition))
12777 return;
12778
12779 // If we don't have a visible definition of the function, and it's inline or
12780 // a template, skip the new definition.
12781 if (SkipBody && !hasVisibleDefinition(Definition) &&
12782 (Definition->getFormalLinkage() == InternalLinkage ||
12783 Definition->isInlined() ||
12784 Definition->getDescribedFunctionTemplate() ||
12785 Definition->getNumTemplateParameterLists())) {
12786 SkipBody->ShouldSkip = true;
12787 SkipBody->Previous = const_cast<FunctionDecl*>(Definition);
12788 if (auto *TD = Definition->getDescribedFunctionTemplate())
12789 makeMergedDefinitionVisible(TD);
12790 makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition));
12791 return;
12792 }
12793
12794 if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
12795 Definition->getStorageClass() == SC_Extern)
12796 Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
12797 << FD->getDeclName() << getLangOpts().CPlusPlus;
12798 else
12799 Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
12800
12801 Diag(Definition->getLocation(), diag::note_previous_definition);
12802 FD->setInvalidDecl();
12803}
12804
12805static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator,
12806 Sema &S) {
12807 CXXRecordDecl *const LambdaClass = CallOperator->getParent();
12808
12809 LambdaScopeInfo *LSI = S.PushLambdaScope();
12810 LSI->CallOperator = CallOperator;
12811 LSI->Lambda = LambdaClass;
12812 LSI->ReturnType = CallOperator->getReturnType();
12813 const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
12814
12815 if (LCD == LCD_None)
12816 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
12817 else if (LCD == LCD_ByCopy)
12818 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
12819 else if (LCD == LCD_ByRef)
12820 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
12821 DeclarationNameInfo DNI = CallOperator->getNameInfo();
12822
12823 LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
12824 LSI->Mutable = !CallOperator->isConst();
12825
12826 // Add the captures to the LSI so they can be noted as already
12827 // captured within tryCaptureVar.
12828 auto I = LambdaClass->field_begin();
12829 for (const auto &C : LambdaClass->captures()) {
12830 if (C.capturesVariable()) {
12831 VarDecl *VD = C.getCapturedVar();
12832 if (VD->isInitCapture())
12833 S.CurrentInstantiationScope->InstantiatedLocal(VD, VD);
12834 QualType CaptureType = VD->getType();
12835 const bool ByRef = C.getCaptureKind() == LCK_ByRef;
12836 LSI->addCapture(VD, /*IsBlock*/false, ByRef,
12837 /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(),
12838 /*EllipsisLoc*/C.isPackExpansion()
12839 ? C.getEllipsisLoc() : SourceLocation(),
12840 CaptureType, /*Expr*/ nullptr);
12841
12842 } else if (C.capturesThis()) {
12843 LSI->addThisCapture(/*Nested*/ false, C.getLocation(),
12844 /*Expr*/ nullptr,
12845 C.getCaptureKind() == LCK_StarThis);
12846 } else {
12847 LSI->addVLATypeCapture(C.getLocation(), I->getType());
12848 }
12849 ++I;
12850 }
12851}
12852
12853Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D,
12854 SkipBodyInfo *SkipBody) {
12855 if (!D) {
12856 // Parsing the function declaration failed in some way. Push on a fake scope
12857 // anyway so we can try to parse the function body.
12858 PushFunctionScope();
12859 PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
12860 return D;
12861 }
12862
12863 FunctionDecl *FD = nullptr;
12864
12865 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
12866 FD = FunTmpl->getTemplatedDecl();
12867 else
12868 FD = cast<FunctionDecl>(D);
12869
12870 // Do not push if it is a lambda because one is already pushed when building
12871 // the lambda in ActOnStartOfLambdaDefinition().
12872 if (!isLambdaCallOperator(FD))
12873 PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
12874
12875 // Check for defining attributes before the check for redefinition.
12876 if (const auto *Attr = FD->getAttr<AliasAttr>()) {
12877 Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 0;
12878 FD->dropAttr<AliasAttr>();
12879 FD->setInvalidDecl();
12880 }
12881 if (const auto *Attr = FD->getAttr<IFuncAttr>()) {
12882 Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 1;
12883 FD->dropAttr<IFuncAttr>();
12884 FD->setInvalidDecl();
12885 }
12886
12887 // See if this is a redefinition. If 'will have body' is already set, then
12888 // these checks were already performed when it was set.
12889 if (!FD->willHaveBody() && !FD->isLateTemplateParsed()) {
12890 CheckForFunctionRedefinition(FD, nullptr, SkipBody);
12891
12892 // If we're skipping the body, we're done. Don't enter the scope.
12893 if (SkipBody && SkipBody->ShouldSkip)
12894 return D;
12895 }
12896
12897 // Mark this function as "will have a body eventually". This lets users to
12898 // call e.g. isInlineDefinitionExternallyVisible while we're still parsing
12899 // this function.
12900 FD->setWillHaveBody();
12901
12902 // If we are instantiating a generic lambda call operator, push
12903 // a LambdaScopeInfo onto the function stack. But use the information
12904 // that's already been calculated (ActOnLambdaExpr) to prime the current
12905 // LambdaScopeInfo.
12906 // When the template operator is being specialized, the LambdaScopeInfo,
12907 // has to be properly restored so that tryCaptureVariable doesn't try
12908 // and capture any new variables. In addition when calculating potential
12909 // captures during transformation of nested lambdas, it is necessary to
12910 // have the LSI properly restored.
12911 if (isGenericLambdaCallOperatorSpecialization(FD)) {
12912 assert(inTemplateInstantiation() &&((inTemplateInstantiation() && "There should be an active template instantiation on the stack "
"when instantiating a generic lambda!") ? static_cast<void
> (0) : __assert_fail ("inTemplateInstantiation() && \"There should be an active template instantiation on the stack \" \"when instantiating a generic lambda!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 12914, __PRETTY_FUNCTION__))
12913 "There should be an active template instantiation on the stack "((inTemplateInstantiation() && "There should be an active template instantiation on the stack "
"when instantiating a generic lambda!") ? static_cast<void
> (0) : __assert_fail ("inTemplateInstantiation() && \"There should be an active template instantiation on the stack \" \"when instantiating a generic lambda!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 12914, __PRETTY_FUNCTION__))
12914 "when instantiating a generic lambda!")((inTemplateInstantiation() && "There should be an active template instantiation on the stack "
"when instantiating a generic lambda!") ? static_cast<void
> (0) : __assert_fail ("inTemplateInstantiation() && \"There should be an active template instantiation on the stack \" \"when instantiating a generic lambda!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 12914, __PRETTY_FUNCTION__))
;
12915 RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this);
12916 } else {
12917 // Enter a new function scope
12918 PushFunctionScope();
12919 }
12920
12921 // Builtin functions cannot be defined.
12922 if (unsigned BuiltinID = FD->getBuiltinID()) {
12923 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
12924 !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
12925 Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
12926 FD->setInvalidDecl();
12927 }
12928 }
12929
12930 // The return type of a function definition must be complete
12931 // (C99 6.9.1p3, C++ [dcl.fct]p6).
12932 QualType ResultType = FD->getReturnType();
12933 if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
12934 !FD->isInvalidDecl() &&
12935 RequireCompleteType(FD->getLocation(), ResultType,
12936 diag::err_func_def_incomplete_result))
12937 FD->setInvalidDecl();
12938
12939 if (FnBodyScope)
12940 PushDeclContext(FnBodyScope, FD);
12941
12942 // Check the validity of our function parameters
12943 CheckParmsForFunctionDef(FD->parameters(),
12944 /*CheckParameterNames=*/true);
12945
12946 // Add non-parameter declarations already in the function to the current
12947 // scope.
12948 if (FnBodyScope) {
12949 for (Decl *NPD : FD->decls()) {
12950 auto *NonParmDecl = dyn_cast<NamedDecl>(NPD);
12951 if (!NonParmDecl)
12952 continue;
12953 assert(!isa<ParmVarDecl>(NonParmDecl) &&((!isa<ParmVarDecl>(NonParmDecl) && "parameters should not be in newly created FD yet"
) ? static_cast<void> (0) : __assert_fail ("!isa<ParmVarDecl>(NonParmDecl) && \"parameters should not be in newly created FD yet\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 12954, __PRETTY_FUNCTION__))
12954 "parameters should not be in newly created FD yet")((!isa<ParmVarDecl>(NonParmDecl) && "parameters should not be in newly created FD yet"
) ? static_cast<void> (0) : __assert_fail ("!isa<ParmVarDecl>(NonParmDecl) && \"parameters should not be in newly created FD yet\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 12954, __PRETTY_FUNCTION__))
;
12955
12956 // If the decl has a name, make it accessible in the current scope.
12957 if (NonParmDecl->getDeclName())
12958 PushOnScopeChains(NonParmDecl, FnBodyScope, /*AddToContext=*/false);
12959
12960 // Similarly, dive into enums and fish their constants out, making them
12961 // accessible in this scope.
12962 if (auto *ED = dyn_cast<EnumDecl>(NonParmDecl)) {
12963 for (auto *EI : ED->enumerators())
12964 PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
12965 }
12966 }
12967 }
12968
12969 // Introduce our parameters into the function scope
12970 for (auto Param : FD->parameters()) {
12971 Param->setOwningFunction(FD);
12972
12973 // If this has an identifier, add it to the scope stack.
12974 if (Param->getIdentifier() && FnBodyScope) {
12975 CheckShadow(FnBodyScope, Param);
12976
12977 PushOnScopeChains(Param, FnBodyScope);
12978 }
12979 }
12980
12981 // Ensure that the function's exception specification is instantiated.
12982 if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
12983 ResolveExceptionSpec(D->getLocation(), FPT);
12984
12985 // dllimport cannot be applied to non-inline function definitions.
12986 if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
12987 !FD->isTemplateInstantiation()) {
12988 assert(!FD->hasAttr<DLLExportAttr>())((!FD->hasAttr<DLLExportAttr>()) ? static_cast<void
> (0) : __assert_fail ("!FD->hasAttr<DLLExportAttr>()"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 12988, __PRETTY_FUNCTION__))
;
12989 Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
12990 FD->setInvalidDecl();
12991 return D;
12992 }
12993 // We want to attach documentation to original Decl (which might be
12994 // a function template).
12995 ActOnDocumentableDecl(D);
12996 if (getCurLexicalContext()->isObjCContainer() &&
12997 getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
12998 getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
12999 Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);
13000
13001 return D;
13002}
13003
13004/// Given the set of return statements within a function body,
13005/// compute the variables that are subject to the named return value
13006/// optimization.
13007///
13008/// Each of the variables that is subject to the named return value
13009/// optimization will be marked as NRVO variables in the AST, and any
13010/// return statement that has a marked NRVO variable as its NRVO candidate can
13011/// use the named return value optimization.
13012///
13013/// This function applies a very simplistic algorithm for NRVO: if every return
13014/// statement in the scope of a variable has the same NRVO candidate, that
13015/// candidate is an NRVO variable.
13016void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
13017 ReturnStmt **Returns = Scope->Returns.data();
13018
13019 for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
13020 if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
13021 if (!NRVOCandidate->isNRVOVariable())
13022 Returns[I]->setNRVOCandidate(nullptr);
13023 }
13024 }
13025}
13026
13027bool Sema::canDelayFunctionBody(const Declarator &D) {
13028 // We can't delay parsing the body of a constexpr function template (yet).
13029 if (D.getDeclSpec().isConstexprSpecified())
13030 return false;
13031
13032 // We can't delay parsing the body of a function template with a deduced
13033 // return type (yet).
13034 if (D.getDeclSpec().hasAutoTypeSpec()) {
13035 // If the placeholder introduces a non-deduced trailing return type,
13036 // we can still delay parsing it.
13037 if (D.getNumTypeObjects()) {
13038 const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
13039 if (Outer.Kind == DeclaratorChunk::Function &&
13040 Outer.Fun.hasTrailingReturnType()) {
13041 QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
13042 return Ty.isNull() || !Ty->isUndeducedType();
13043 }
13044 }
13045 return false;
13046 }
13047
13048 return true;
13049}
13050
13051bool Sema::canSkipFunctionBody(Decl *D) {
13052 // We cannot skip the body of a function (or function template) which is
13053 // constexpr, since we may need to evaluate its body in order to parse the
13054 // rest of the file.
13055 // We cannot skip the body of a function with an undeduced return type,
13056 // because any callers of that function need to know the type.
13057 if (const FunctionDecl *FD = D->getAsFunction()) {
13058 if (FD->isConstexpr())
13059 return false;
13060 // We can't simply call Type::isUndeducedType here, because inside template
13061 // auto can be deduced to a dependent type, which is not considered
13062 // "undeduced".
13063 if (FD->getReturnType()->getContainedDeducedType())
13064 return false;
13065 }
13066 return Consumer.shouldSkipFunctionBody(D);
13067}
13068
13069Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
13070 if (!Decl)
13071 return nullptr;
13072 if (FunctionDecl *FD = Decl->getAsFunction())
13073 FD->setHasSkippedBody();
13074 else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl))
13075 MD->setHasSkippedBody();
13076 return Decl;
13077}
13078
13079Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
13080 return ActOnFinishFunctionBody(D, BodyArg, false);
13081}
13082
13083/// RAII object that pops an ExpressionEvaluationContext when exiting a function
13084/// body.
13085class ExitFunctionBodyRAII {
13086public:
13087 ExitFunctionBodyRAII(Sema &S, bool IsLambda) : S(S), IsLambda(IsLambda) {}
13088 ~ExitFunctionBodyRAII() {
13089 if (!IsLambda)
13090 S.PopExpressionEvaluationContext();
13091 }
13092
13093private:
13094 Sema &S;
13095 bool IsLambda = false;
13096};
13097
13098Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
13099 bool IsInstantiation) {
13100 FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;
13101
13102 sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
13103 sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;
13104
13105 if (getLangOpts().CoroutinesTS && getCurFunction()->isCoroutine())
13106 CheckCompletedCoroutineBody(FD, Body);
13107
13108 // Do not call PopExpressionEvaluationContext() if it is a lambda because one
13109 // is already popped when finishing the lambda in BuildLambdaExpr(). This is
13110 // meant to pop the context added in ActOnStartOfFunctionDef().
13111 ExitFunctionBodyRAII ExitRAII(*this, isLambdaCallOperator(FD));
13112
13113 if (FD) {
13114 FD->setBody(Body);
13115 FD->setWillHaveBody(false);
13116
13117 if (getLangOpts().CPlusPlus14) {
13118 if (!FD->isInvalidDecl() && Body && !FD->isDependentContext() &&
13119 FD->getReturnType()->isUndeducedType()) {
13120 // If the function has a deduced result type but contains no 'return'
13121 // statements, the result type as written must be exactly 'auto', and
13122 // the deduced result type is 'void'.
13123 if (!FD->getReturnType()->getAs<AutoType>()) {
13124 Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
13125 << FD->getReturnType();
13126 FD->setInvalidDecl();
13127 } else {
13128 // Substitute 'void' for the 'auto' in the type.
13129 TypeLoc ResultType = getReturnTypeLoc(FD);
13130 Context.adjustDeducedFunctionResultType(
13131 FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
13132 }
13133 }
13134 } else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) {
13135 // In C++11, we don't use 'auto' deduction rules for lambda call
13136 // operators because we don't support return type deduction.
13137 auto *LSI = getCurLambda();
13138 if (LSI->HasImplicitReturnType) {
13139 deduceClosureReturnType(*LSI);
13140
13141 // C++11 [expr.prim.lambda]p4:
13142 // [...] if there are no return statements in the compound-statement
13143 // [the deduced type is] the type void
13144 QualType RetType =
13145 LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType;
13146
13147 // Update the return type to the deduced type.
13148 const FunctionProtoType *Proto =
13149 FD->getType()->getAs<FunctionProtoType>();
13150 FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(),
13151 Proto->getExtProtoInfo()));
13152 }
13153 }
13154
13155 // If the function implicitly returns zero (like 'main') or is naked,
13156 // don't complain about missing return statements.
13157 if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
13158 WP.disableCheckFallThrough();
13159
13160 // MSVC permits the use of pure specifier (=0) on function definition,
13161 // defined at class scope, warn about this non-standard construct.
13162 if (getLangOpts().MicrosoftExt && FD->isPure() && FD->isCanonicalDecl())
13163 Diag(FD->getLocation(), diag::ext_pure_function_definition);
13164
13165 if (!FD->isInvalidDecl()) {
13166 // Don't diagnose unused parameters of defaulted or deleted functions.
13167 if (!FD->isDeleted() && !FD->isDefaulted() && !FD->hasSkippedBody())
13168 DiagnoseUnusedParameters(FD->parameters());
13169 DiagnoseSizeOfParametersAndReturnValue(FD->parameters(),
13170 FD->getReturnType(), FD);
13171
13172 // If this is a structor, we need a vtable.
13173 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
13174 MarkVTableUsed(FD->getLocation(), Constructor->getParent());
13175 else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(FD))
13176 MarkVTableUsed(FD->getLocation(), Destructor->getParent());
13177
13178 // Try to apply the named return value optimization. We have to check
13179 // if we can do this here because lambdas keep return statements around
13180 // to deduce an implicit return type.
13181 if (FD->getReturnType()->isRecordType() &&
13182 (!getLangOpts().CPlusPlus || !FD->isDependentContext()))
13183 computeNRVO(Body, getCurFunction());
13184 }
13185
13186 // GNU warning -Wmissing-prototypes:
13187 // Warn if a global function is defined without a previous
13188 // prototype declaration. This warning is issued even if the
13189 // definition itself provides a prototype. The aim is to detect
13190 // global functions that fail to be declared in header files.
13191 const FunctionDecl *PossibleZeroParamPrototype = nullptr;
13192 if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
13193 Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
13194
13195 if (PossibleZeroParamPrototype) {
13196 // We found a declaration that is not a prototype,
13197 // but that could be a zero-parameter prototype
13198 if (TypeSourceInfo *TI =
13199 PossibleZeroParamPrototype->getTypeSourceInfo()) {
13200 TypeLoc TL = TI->getTypeLoc();
13201 if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
13202 Diag(PossibleZeroParamPrototype->getLocation(),
13203 diag::note_declaration_not_a_prototype)
13204 << PossibleZeroParamPrototype
13205 << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
13206 }
13207 }
13208
13209 // GNU warning -Wstrict-prototypes
13210 // Warn if K&R function is defined without a previous declaration.
13211 // This warning is issued only if the definition itself does not provide
13212 // a prototype. Only K&R definitions do not provide a prototype.
13213 // An empty list in a function declarator that is part of a definition
13214 // of that function specifies that the function has no parameters
13215 // (C99 6.7.5.3p14)
13216 if (!FD->hasWrittenPrototype() && FD->getNumParams() > 0 &&
13217 !LangOpts.CPlusPlus) {
13218 TypeSourceInfo *TI = FD->getTypeSourceInfo();
13219 TypeLoc TL = TI->getTypeLoc();
13220 FunctionTypeLoc FTL = TL.getAsAdjusted<FunctionTypeLoc>();
13221 Diag(FTL.getLParenLoc(), diag::warn_strict_prototypes) << 2;
13222 }
13223 }
13224
13225 // Warn on CPUDispatch with an actual body.
13226 if (FD->isMultiVersion() && FD->hasAttr<CPUDispatchAttr>() && Body)
13227 if (const auto *CmpndBody = dyn_cast<CompoundStmt>(Body))
13228 if (!CmpndBody->body_empty())
13229 Diag(CmpndBody->body_front()->getBeginLoc(),
13230 diag::warn_dispatch_body_ignored);
13231
13232 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
13233 const CXXMethodDecl *KeyFunction;
13234 if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) &&
13235 MD->isVirtual() &&
13236 (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) &&
13237 MD == KeyFunction->getCanonicalDecl()) {
13238 // Update the key-function state if necessary for this ABI.
13239 if (FD->isInlined() &&
13240 !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
13241 Context.setNonKeyFunction(MD);
13242
13243 // If the newly-chosen key function is already defined, then we
13244 // need to mark the vtable as used retroactively.
13245 KeyFunction = Context.getCurrentKeyFunction(MD->getParent());
13246 const FunctionDecl *Definition;
13247 if (KeyFunction && KeyFunction->isDefined(Definition))
13248 MarkVTableUsed(Definition->getLocation(), MD->getParent(), true);
13249 } else {
13250 // We just defined they key function; mark the vtable as used.
13251 MarkVTableUsed(FD->getLocation(), MD->getParent(), true);
13252 }
13253 }
13254 }
13255
13256 assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&(((FD == getCurFunctionDecl() || getCurLambda()->CallOperator
== FD) && "Function parsing confused") ? static_cast
<void> (0) : __assert_fail ("(FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) && \"Function parsing confused\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 13257, __PRETTY_FUNCTION__))
13257 "Function parsing confused")(((FD == getCurFunctionDecl() || getCurLambda()->CallOperator
== FD) && "Function parsing confused") ? static_cast
<void> (0) : __assert_fail ("(FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) && \"Function parsing confused\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 13257, __PRETTY_FUNCTION__))
;
13258 } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
13259 assert(MD == getCurMethodDecl() && "Method parsing confused")((MD == getCurMethodDecl() && "Method parsing confused"
) ? static_cast<void> (0) : __assert_fail ("MD == getCurMethodDecl() && \"Method parsing confused\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 13259, __PRETTY_FUNCTION__))
;
13260 MD->setBody(Body);
13261 if (!MD->isInvalidDecl()) {
13262 if (!MD->hasSkippedBody())
13263 DiagnoseUnusedParameters(MD->parameters());
13264 DiagnoseSizeOfParametersAndReturnValue(MD->parameters(),
13265 MD->getReturnType(), MD);
13266
13267 if (Body)
13268 computeNRVO(Body, getCurFunction());
13269 }
13270 if (getCurFunction()->ObjCShouldCallSuper) {
13271 Diag(MD->getEndLoc(), diag::warn_objc_missing_super_call)
13272 << MD->getSelector().getAsString();
13273 getCurFunction()->ObjCShouldCallSuper = false;
13274 }
13275 if (getCurFunction()->ObjCWarnForNoDesignatedInitChain) {
13276 const ObjCMethodDecl *InitMethod = nullptr;
13277 bool isDesignated =
13278 MD->isDesignatedInitializerForTheInterface(&InitMethod);
13279 assert(isDesignated && InitMethod)((isDesignated && InitMethod) ? static_cast<void>
(0) : __assert_fail ("isDesignated && InitMethod", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 13279, __PRETTY_FUNCTION__))
;
13280 (void)isDesignated;
13281
13282 auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
13283 auto IFace = MD->getClassInterface();
13284 if (!IFace)
13285 return false;
13286 auto SuperD = IFace->getSuperClass();
13287 if (!SuperD)
13288 return false;
13289 return SuperD->getIdentifier() ==
13290 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
13291 };
13292 // Don't issue this warning for unavailable inits or direct subclasses
13293 // of NSObject.
13294 if (!MD->isUnavailable() && !superIsNSObject(MD)) {
13295 Diag(MD->getLocation(),
13296 diag::warn_objc_designated_init_missing_super_call);
13297 Diag(InitMethod->getLocation(),
13298 diag::note_objc_designated_init_marked_here);
13299 }
13300 getCurFunction()->ObjCWarnForNoDesignatedInitChain = false;
13301 }
13302 if (getCurFunction()->ObjCWarnForNoInitDelegation) {
13303 // Don't issue this warning for unavaialable inits.
13304 if (!MD->isUnavailable())
13305 Diag(MD->getLocation(),
13306 diag::warn_objc_secondary_init_missing_init_call);
13307 getCurFunction()->ObjCWarnForNoInitDelegation = false;
13308 }
13309 } else {
13310 // Parsing the function declaration failed in some way. Pop the fake scope
13311 // we pushed on.
13312 PopFunctionScopeInfo(ActivePolicy, dcl);
13313 return nullptr;
13314 }
13315
13316 if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
13317 DiagnoseUnguardedAvailabilityViolations(dcl);
13318
13319 assert(!getCurFunction()->ObjCShouldCallSuper &&((!getCurFunction()->ObjCShouldCallSuper && "This should only be set for ObjC methods, which should have been "
"handled in the block above.") ? static_cast<void> (0)
: __assert_fail ("!getCurFunction()->ObjCShouldCallSuper && \"This should only be set for ObjC methods, which should have been \" \"handled in the block above.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 13321, __PRETTY_FUNCTION__))
13320 "This should only be set for ObjC methods, which should have been "((!getCurFunction()->ObjCShouldCallSuper && "This should only be set for ObjC methods, which should have been "
"handled in the block above.") ? static_cast<void> (0)
: __assert_fail ("!getCurFunction()->ObjCShouldCallSuper && \"This should only be set for ObjC methods, which should have been \" \"handled in the block above.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 13321, __PRETTY_FUNCTION__))
13321 "handled in the block above.")((!getCurFunction()->ObjCShouldCallSuper && "This should only be set for ObjC methods, which should have been "
"handled in the block above.") ? static_cast<void> (0)
: __assert_fail ("!getCurFunction()->ObjCShouldCallSuper && \"This should only be set for ObjC methods, which should have been \" \"handled in the block above.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 13321, __PRETTY_FUNCTION__))
;
13322
13323 // Verify and clean out per-function state.
13324 if (Body && (!FD || !FD->isDefaulted())) {
13325 // C++ constructors that have function-try-blocks can't have return
13326 // statements in the handlers of that block. (C++ [except.handle]p14)
13327 // Verify this.
13328 if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
13329 DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
13330
13331 // Verify that gotos and switch cases don't jump into scopes illegally.
13332 if (getCurFunction()->NeedsScopeChecking() &&
13333 !PP.isCodeCompletionEnabled())
13334 DiagnoseInvalidJumps(Body);
13335
13336 if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
13337 if (!Destructor->getParent()->isDependentType())
13338 CheckDestructor(Destructor);
13339
13340 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
13341 Destructor->getParent());
13342 }
13343
13344 // If any errors have occurred, clear out any temporaries that may have
13345 // been leftover. This ensures that these temporaries won't be picked up for
13346 // deletion in some later function.
13347 if (getDiagnostics().hasErrorOccurred() ||
13348 getDiagnostics().getSuppressAllDiagnostics()) {
13349 DiscardCleanupsInEvaluationContext();
13350 }
13351 if (!getDiagnostics().hasUncompilableErrorOccurred() &&
13352 !isa<FunctionTemplateDecl>(dcl)) {
13353 // Since the body is valid, issue any analysis-based warnings that are
13354 // enabled.
13355 ActivePolicy = &WP;
13356 }
13357
13358 if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
13359 (!CheckConstexprFunctionDecl(FD) ||
13360 !CheckConstexprFunctionBody(FD, Body)))
13361 FD->setInvalidDecl();
13362
13363 if (FD && FD->hasAttr<NakedAttr>()) {
13364 for (const Stmt *S : Body->children()) {
13365 // Allow local register variables without initializer as they don't
13366 // require prologue.
13367 bool RegisterVariables = false;
13368 if (auto *DS = dyn_cast<DeclStmt>(S)) {
13369 for (const auto *Decl : DS->decls()) {
13370 if (const auto *Var = dyn_cast<VarDecl>(Decl)) {
13371 RegisterVariables =
13372 Var->hasAttr<AsmLabelAttr>() && !Var->hasInit();
13373 if (!RegisterVariables)
13374 break;
13375 }
13376 }
13377 }
13378 if (RegisterVariables)
13379 continue;
13380 if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) {
13381 Diag(S->getBeginLoc(), diag::err_non_asm_stmt_in_naked_function);
13382 Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
13383 FD->setInvalidDecl();
13384 break;
13385 }
13386 }
13387 }
13388
13389 assert(ExprCleanupObjects.size() ==((ExprCleanupObjects.size() == ExprEvalContexts.back().NumCleanupObjects
&& "Leftover temporaries in function") ? static_cast
<void> (0) : __assert_fail ("ExprCleanupObjects.size() == ExprEvalContexts.back().NumCleanupObjects && \"Leftover temporaries in function\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 13391, __PRETTY_FUNCTION__))
13390 ExprEvalContexts.back().NumCleanupObjects &&((ExprCleanupObjects.size() == ExprEvalContexts.back().NumCleanupObjects
&& "Leftover temporaries in function") ? static_cast
<void> (0) : __assert_fail ("ExprCleanupObjects.size() == ExprEvalContexts.back().NumCleanupObjects && \"Leftover temporaries in function\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 13391, __PRETTY_FUNCTION__))
13391 "Leftover temporaries in function")((ExprCleanupObjects.size() == ExprEvalContexts.back().NumCleanupObjects
&& "Leftover temporaries in function") ? static_cast
<void> (0) : __assert_fail ("ExprCleanupObjects.size() == ExprEvalContexts.back().NumCleanupObjects && \"Leftover temporaries in function\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 13391, __PRETTY_FUNCTION__))
;
13392 assert(!Cleanup.exprNeedsCleanups() && "Unaccounted cleanups in function")((!Cleanup.exprNeedsCleanups() && "Unaccounted cleanups in function"
) ? static_cast<void> (0) : __assert_fail ("!Cleanup.exprNeedsCleanups() && \"Unaccounted cleanups in function\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 13392, __PRETTY_FUNCTION__))
;
13393 assert(MaybeODRUseExprs.empty() &&((MaybeODRUseExprs.empty() && "Leftover expressions for odr-use checking"
) ? static_cast<void> (0) : __assert_fail ("MaybeODRUseExprs.empty() && \"Leftover expressions for odr-use checking\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 13394, __PRETTY_FUNCTION__))
13394 "Leftover expressions for odr-use checking")((MaybeODRUseExprs.empty() && "Leftover expressions for odr-use checking"
) ? static_cast<void> (0) : __assert_fail ("MaybeODRUseExprs.empty() && \"Leftover expressions for odr-use checking\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 13394, __PRETTY_FUNCTION__))
;
13395 }
13396
13397 if (!IsInstantiation)
13398 PopDeclContext();
13399
13400 PopFunctionScopeInfo(ActivePolicy, dcl);
13401 // If any errors have occurred, clear out any temporaries that may have
13402 // been leftover. This ensures that these temporaries won't be picked up for
13403 // deletion in some later function.
13404 if (getDiagnostics().hasErrorOccurred()) {
13405 DiscardCleanupsInEvaluationContext();
13406 }
13407
13408 return dcl;
13409}
13410
13411/// When we finish delayed parsing of an attribute, we must attach it to the
13412/// relevant Decl.
13413void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
13414 ParsedAttributes &Attrs) {
13415 // Always attach attributes to the underlying decl.
13416 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
13417 D = TD->getTemplatedDecl();
13418 ProcessDeclAttributeList(S, D, Attrs);
13419
13420 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
13421 if (Method->isStatic())
13422 checkThisInStaticMemberFunctionAttributes(Method);
13423}
13424
13425/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
13426/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
13427NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
13428 IdentifierInfo &II, Scope *S) {
13429 // Find the scope in which the identifier is injected and the corresponding
13430 // DeclContext.
13431 // FIXME: C89 does not say what happens if there is no enclosing block scope.
13432 // In that case, we inject the declaration into the translation unit scope
13433 // instead.
13434 Scope *BlockScope = S;
13435 while (!BlockScope->isCompoundStmtScope() && BlockScope->getParent())
13436 BlockScope = BlockScope->getParent();
13437
13438 Scope *ContextScope = BlockScope;
13439 while (!ContextScope->getEntity())
13440 ContextScope = ContextScope->getParent();
13441 ContextRAII SavedContext(*this, ContextScope->getEntity());
13442
13443 // Before we produce a declaration for an implicitly defined
13444 // function, see whether there was a locally-scoped declaration of
13445 // this name as a function or variable. If so, use that
13446 // (non-visible) declaration, and complain about it.
13447 NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II);
13448 if (ExternCPrev) {
13449 // We still need to inject the function into the enclosing block scope so
13450 // that later (non-call) uses can see it.
13451 PushOnScopeChains(ExternCPrev, BlockScope, /*AddToContext*/false);
13452
13453 // C89 footnote 38:
13454 // If in fact it is not defined as having type "function returning int",
13455 // the behavior is undefined.
13456 if (!isa<FunctionDecl>(ExternCPrev) ||
13457 !Context.typesAreCompatible(
13458 cast<FunctionDecl>(ExternCPrev)->getType(),
13459 Context.getFunctionNoProtoType(Context.IntTy))) {
13460 Diag(Loc, diag::ext_use_out_of_scope_declaration)
13461 << ExternCPrev << !getLangOpts().C99;
13462 Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
13463 return ExternCPrev;
13464 }
13465 }
13466
13467 // Extension in C99. Legal in C90, but warn about it.
13468 unsigned diag_id;
13469 if (II.getName().startswith("__builtin_"))
13470 diag_id = diag::warn_builtin_unknown;
13471 // OpenCL v2.0 s6.9.u - Implicit function declaration is not supported.
13472 else if (getLangOpts().OpenCL)
13473 diag_id = diag::err_opencl_implicit_function_decl;
13474 else if (getLangOpts().C99)
13475 diag_id = diag::ext_implicit_function_decl;
13476 else
13477 diag_id = diag::warn_implicit_function_decl;
13478 Diag(Loc, diag_id) << &II;
13479
13480 // If we found a prior declaration of this function, don't bother building
13481 // another one. We've already pushed that one into scope, so there's nothing
13482 // more to do.
13483 if (ExternCPrev)
13484 return ExternCPrev;
13485
13486 // Because typo correction is expensive, only do it if the implicit
13487 // function declaration is going to be treated as an error.
13488 if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
13489 TypoCorrection Corrected;
13490 if (S &&
13491 (Corrected = CorrectTypo(
13492 DeclarationNameInfo(&II, Loc), LookupOrdinaryName, S, nullptr,
13493 llvm::make_unique<DeclFilterCCC<FunctionDecl>>(), CTK_NonError)))
13494 diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
13495 /*ErrorRecovery*/false);
13496 }
13497
13498 // Set a Declarator for the implicit definition: int foo();
13499 const char *Dummy;
13500 AttributeFactory attrFactory;
13501 DeclSpec DS(attrFactory);
13502 unsigned DiagID;
13503 bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
13504 Context.getPrintingPolicy());
13505 (void)Error; // Silence warning.
13506 assert(!Error && "Error setting up implicit decl!")((!Error && "Error setting up implicit decl!") ? static_cast
<void> (0) : __assert_fail ("!Error && \"Error setting up implicit decl!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 13506, __PRETTY_FUNCTION__))
;
13507 SourceLocation NoLoc;
13508 Declarator D(DS, DeclaratorContext::BlockContext);
13509 D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
13510 /*IsAmbiguous=*/false,
13511 /*LParenLoc=*/NoLoc,
13512 /*Params=*/nullptr,
13513 /*NumParams=*/0,
13514 /*EllipsisLoc=*/NoLoc,
13515 /*RParenLoc=*/NoLoc,
13516 /*TypeQuals=*/0,
13517 /*RefQualifierIsLvalueRef=*/true,
13518 /*RefQualifierLoc=*/NoLoc,
13519 /*ConstQualifierLoc=*/NoLoc,
13520 /*VolatileQualifierLoc=*/NoLoc,
13521 /*RestrictQualifierLoc=*/NoLoc,
13522 /*MutableLoc=*/NoLoc, EST_None,
13523 /*ESpecRange=*/SourceRange(),
13524 /*Exceptions=*/nullptr,
13525 /*ExceptionRanges=*/nullptr,
13526 /*NumExceptions=*/0,
13527 /*NoexceptExpr=*/nullptr,
13528 /*ExceptionSpecTokens=*/nullptr,
13529 /*DeclsInPrototype=*/None, Loc,
13530 Loc, D),
13531 std::move(DS.getAttributes()), SourceLocation());
13532 D.SetIdentifier(&II, Loc);
13533
13534 // Insert this function into the enclosing block scope.
13535 FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(BlockScope, D));
13536 FD->setImplicit();
13537
13538 AddKnownFunctionAttributes(FD);
13539
13540 return FD;
13541}
13542
13543/// Adds any function attributes that we know a priori based on
13544/// the declaration of this function.
13545///
13546/// These attributes can apply both to implicitly-declared builtins
13547/// (like __builtin___printf_chk) or to library-declared functions
13548/// like NSLog or printf.
13549///
13550/// We need to check for duplicate attributes both here and where user-written
13551/// attributes are applied to declarations.
13552void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
13553 if (FD->isInvalidDecl())
13554 return;
13555
13556 // If this is a built-in function, map its builtin attributes to
13557 // actual attributes.
13558 if (unsigned BuiltinID = FD->getBuiltinID()) {
13559 // Handle printf-formatting attributes.
13560 unsigned FormatIdx;
13561 bool HasVAListArg;
13562 if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
13563 if (!FD->hasAttr<FormatAttr>()) {
13564 const char *fmt = "printf";
13565 unsigned int NumParams = FD->getNumParams();
13566 if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
13567 FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
13568 fmt = "NSString";
13569 FD->addAttr(FormatAttr::CreateImplicit(Context,
13570 &Context.Idents.get(fmt),
13571 FormatIdx+1,
13572 HasVAListArg ? 0 : FormatIdx+2,
13573 FD->getLocation()));
13574 }
13575 }
13576 if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
13577 HasVAListArg)) {
13578 if (!FD->hasAttr<FormatAttr>())
13579 FD->addAttr(FormatAttr::CreateImplicit(Context,
13580 &Context.Idents.get("scanf"),
13581 FormatIdx+1,
13582 HasVAListArg ? 0 : FormatIdx+2,
13583 FD->getLocation()));
13584 }
13585
13586 // Mark const if we don't care about errno and that is the only thing
13587 // preventing the function from being const. This allows IRgen to use LLVM
13588 // intrinsics for such functions.
13589 if (!getLangOpts().MathErrno && !FD->hasAttr<ConstAttr>() &&
13590 Context.BuiltinInfo.isConstWithoutErrno(BuiltinID))
13591 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
13592
13593 // We make "fma" on some platforms const because we know it does not set
13594 // errno in those environments even though it could set errno based on the
13595 // C standard.
13596 const llvm::Triple &Trip = Context.getTargetInfo().getTriple();
13597 if ((Trip.isGNUEnvironment() || Trip.isAndroid() || Trip.isOSMSVCRT()) &&
13598 !FD->hasAttr<ConstAttr>()) {
13599 switch (BuiltinID) {
13600 case Builtin::BI__builtin_fma:
13601 case Builtin::BI__builtin_fmaf:
13602 case Builtin::BI__builtin_fmal:
13603 case Builtin::BIfma:
13604 case Builtin::BIfmaf:
13605 case Builtin::BIfmal:
13606 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
13607 break;
13608 default:
13609 break;
13610 }
13611 }
13612
13613 if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
13614 !FD->hasAttr<ReturnsTwiceAttr>())
13615 FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
13616 FD->getLocation()));
13617 if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
13618 FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
13619 if (Context.BuiltinInfo.isPure(BuiltinID) && !FD->hasAttr<PureAttr>())
13620 FD->addAttr(PureAttr::CreateImplicit(Context, FD->getLocation()));
13621 if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
13622 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
13623 if (getLangOpts().CUDA && Context.BuiltinInfo.isTSBuiltin(BuiltinID) &&
13624 !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) {
13625 // Add the appropriate attribute, depending on the CUDA compilation mode
13626 // and which target the builtin belongs to. For example, during host
13627 // compilation, aux builtins are __device__, while the rest are __host__.
13628 if (getLangOpts().CUDAIsDevice !=
13629 Context.BuiltinInfo.isAuxBuiltinID(BuiltinID))
13630 FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation()));
13631 else
13632 FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation()));
13633 }
13634 }
13635
13636 // If C++ exceptions are enabled but we are told extern "C" functions cannot
13637 // throw, add an implicit nothrow attribute to any extern "C" function we come
13638 // across.
13639 if (getLangOpts().CXXExceptions && getLangOpts().ExternCNoUnwind &&
13640 FD->isExternC() && !FD->hasAttr<NoThrowAttr>()) {
13641 const auto *FPT = FD->getType()->getAs<FunctionProtoType>();
13642 if (!FPT || FPT->getExceptionSpecType() == EST_None)
13643 FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
13644 }
13645
13646 IdentifierInfo *Name = FD->getIdentifier();
13647 if (!Name)
13648 return;
13649 if ((!getLangOpts().CPlusPlus &&
13650 FD->getDeclContext()->isTranslationUnit()) ||
13651 (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
13652 cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
13653 LinkageSpecDecl::lang_c)) {
13654 // Okay: this could be a libc/libm/Objective-C function we know
13655 // about.
13656 } else
13657 return;
13658
13659 if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
13660 // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
13661 // target-specific builtins, perhaps?
13662 if (!FD->hasAttr<FormatAttr>())
13663 FD->addAttr(FormatAttr::CreateImplicit(Context,
13664 &Context.Idents.get("printf"), 2,
13665 Name->isStr("vasprintf") ? 0 : 3,
13666 FD->getLocation()));
13667 }
13668
13669 if (Name->isStr("__CFStringMakeConstantString")) {
13670 // We already have a __builtin___CFStringMakeConstantString,
13671 // but builds that use -fno-constant-cfstrings don't go through that.
13672 if (!FD->hasAttr<FormatArgAttr>())
13673 FD->addAttr(FormatArgAttr::CreateImplicit(Context, ParamIdx(1, FD),
13674 FD->getLocation()));
13675 }
13676}
13677
13678TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
13679 TypeSourceInfo *TInfo) {
13680 assert(D.getIdentifier() && "Wrong callback for declspec without declarator")((D.getIdentifier() && "Wrong callback for declspec without declarator"
) ? static_cast<void> (0) : __assert_fail ("D.getIdentifier() && \"Wrong callback for declspec without declarator\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 13680, __PRETTY_FUNCTION__))
;
13681 assert(!T.isNull() && "GetTypeForDeclarator() returned null type")((!T.isNull() && "GetTypeForDeclarator() returned null type"
) ? static_cast<void> (0) : __assert_fail ("!T.isNull() && \"GetTypeForDeclarator() returned null type\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 13681, __PRETTY_FUNCTION__))
;
13682
13683 if (!TInfo) {
13684 assert(D.isInvalidType() && "no declarator info for valid type")((D.isInvalidType() && "no declarator info for valid type"
) ? static_cast<void> (0) : __assert_fail ("D.isInvalidType() && \"no declarator info for valid type\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 13684, __PRETTY_FUNCTION__))
;
13685 TInfo = Context.getTrivialTypeSourceInfo(T);
13686 }
13687
13688 // Scope manipulation handled by caller.
13689 TypedefDecl *NewTD =
13690 TypedefDecl::Create(Context, CurContext, D.getBeginLoc(),
13691 D.getIdentifierLoc(), D.getIdentifier(), TInfo);
13692
13693 // Bail out immediately if we have an invalid declaration.
13694 if (D.isInvalidType()) {
13695 NewTD->setInvalidDecl();
13696 return NewTD;
13697 }
13698
13699 if (D.getDeclSpec().isModulePrivateSpecified()) {
13700 if (CurContext->isFunctionOrMethod())
13701 Diag(NewTD->getLocation(), diag::err_module_private_local)
13702 << 2 << NewTD->getDeclName()
13703 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
13704 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
13705 else
13706 NewTD->setModulePrivate();
13707 }
13708
13709 // C++ [dcl.typedef]p8:
13710 // If the typedef declaration defines an unnamed class (or
13711 // enum), the first typedef-name declared by the declaration
13712 // to be that class type (or enum type) is used to denote the
13713 // class type (or enum type) for linkage purposes only.
13714 // We need to check whether the type was declared in the declaration.
13715 switch (D.getDeclSpec().getTypeSpecType()) {
13716 case TST_enum:
13717 case TST_struct:
13718 case TST_interface:
13719 case TST_union:
13720 case TST_class: {
13721 TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
13722 setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD);
13723 break;
13724 }
13725
13726 default:
13727 break;
13728 }
13729
13730 return NewTD;
13731}
13732
13733/// Check that this is a valid underlying type for an enum declaration.
13734bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
13735 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
13736 QualType T = TI->getType();
13737
13738 if (T->isDependentType())
13739 return false;
13740
13741 if (const BuiltinType *BT = T->getAs<BuiltinType>())
13742 if (BT->isInteger())
13743 return false;
13744
13745 Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
13746 return true;
13747}
13748
13749/// Check whether this is a valid redeclaration of a previous enumeration.
13750/// \return true if the redeclaration was invalid.
13751bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
13752 QualType EnumUnderlyingTy, bool IsFixed,
13753 const EnumDecl *Prev) {
13754 if (IsScoped != Prev->isScoped()) {
13755 Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
13756 << Prev->isScoped();
13757 Diag(Prev->getLocation(), diag::note_previous_declaration);
13758 return true;
13759 }
13760
13761 if (IsFixed && Prev->isFixed()) {
13762 if (!EnumUnderlyingTy->isDependentType() &&
13763 !Prev->getIntegerType()->isDependentType() &&
13764 !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
13765 Prev->getIntegerType())) {
13766 // TODO: Highlight the underlying type of the redeclaration.
13767 Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
13768 << EnumUnderlyingTy << Prev->getIntegerType();
13769 Diag(Prev->getLocation(), diag::note_previous_declaration)
13770 << Prev->getIntegerTypeRange();
13771 return true;
13772 }
13773 } else if (IsFixed != Prev->isFixed()) {
13774 Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
13775 << Prev->isFixed();
13776 Diag(Prev->getLocation(), diag::note_previous_declaration);
13777 return true;
13778 }
13779
13780 return false;
13781}
13782
13783/// Get diagnostic %select index for tag kind for
13784/// redeclaration diagnostic message.
13785/// WARNING: Indexes apply to particular diagnostics only!
13786///
13787/// \returns diagnostic %select index.
13788static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
13789 switch (Tag) {
13790 case TTK_Struct: return 0;
13791 case TTK_Interface: return 1;
13792 case TTK_Class: return 2;
13793 default: llvm_unreachable("Invalid tag kind for redecl diagnostic!")::llvm::llvm_unreachable_internal("Invalid tag kind for redecl diagnostic!"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 13793)
;
13794 }
13795}
13796
13797/// Determine if tag kind is a class-key compatible with
13798/// class for redeclaration (class, struct, or __interface).
13799///
13800/// \returns true iff the tag kind is compatible.
13801static bool isClassCompatTagKind(TagTypeKind Tag)
13802{
13803 return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
13804}
13805
13806Sema::NonTagKind Sema::getNonTagTypeDeclKind(const Decl *PrevDecl,
13807 TagTypeKind TTK) {
13808 if (isa<TypedefDecl>(PrevDecl))
13809 return NTK_Typedef;
13810 else if (isa<TypeAliasDecl>(PrevDecl))
13811 return NTK_TypeAlias;
13812 else if (isa<ClassTemplateDecl>(PrevDecl))
13813 return NTK_Template;
13814 else if (isa<TypeAliasTemplateDecl>(PrevDecl))
13815 return NTK_TypeAliasTemplate;
13816 else if (isa<TemplateTemplateParmDecl>(PrevDecl))
13817 return NTK_TemplateTemplateArgument;
13818 switch (TTK) {
13819 case TTK_Struct:
13820 case TTK_Interface:
13821 case TTK_Class:
13822 return getLangOpts().CPlusPlus ? NTK_NonClass : NTK_NonStruct;
13823 case TTK_Union:
13824 return NTK_NonUnion;
13825 case TTK_Enum:
13826 return NTK_NonEnum;
13827 }
13828 llvm_unreachable("invalid TTK")::llvm::llvm_unreachable_internal("invalid TTK", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 13828)
;
13829}
13830
13831/// Determine whether a tag with a given kind is acceptable
13832/// as a redeclaration of the given tag declaration.
13833///
13834/// \returns true if the new tag kind is acceptable, false otherwise.
13835bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
13836 TagTypeKind NewTag, bool isDefinition,
13837 SourceLocation NewTagLoc,
13838 const IdentifierInfo *Name) {
13839 // C++ [dcl.type.elab]p3:
13840 // The class-key or enum keyword present in the
13841 // elaborated-type-specifier shall agree in kind with the
13842 // declaration to which the name in the elaborated-type-specifier
13843 // refers. This rule also applies to the form of
13844 // elaborated-type-specifier that declares a class-name or
13845 // friend class since it can be construed as referring to the
13846 // definition of the class. Thus, in any
13847 // elaborated-type-specifier, the enum keyword shall be used to
13848 // refer to an enumeration (7.2), the union class-key shall be
13849 // used to refer to a union (clause 9), and either the class or
13850 // struct class-key shall be used to refer to a class (clause 9)
13851 // declared using the class or struct class-key.
13852 TagTypeKind OldTag = Previous->getTagKind();
13853 if (OldTag != NewTag &&
13854 !(isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)))
13855 return false;
13856
13857 // Tags are compatible, but we might still want to warn on mismatched tags.
13858 // Non-class tags can't be mismatched at this point.
13859 if (!isClassCompatTagKind(NewTag))
13860 return true;
13861
13862 // Declarations for which -Wmismatched-tags is disabled are entirely ignored
13863 // by our warning analysis. We don't want to warn about mismatches with (eg)
13864 // declarations in system headers that are designed to be specialized, but if
13865 // a user asks us to warn, we should warn if their code contains mismatched
13866 // declarations.
13867 auto IsIgnoredLoc = [&](SourceLocation Loc) {
13868 return getDiagnostics().isIgnored(diag::warn_struct_class_tag_mismatch,
13869 Loc);
13870 };
13871 if (IsIgnoredLoc(NewTagLoc))
13872 return true;
13873
13874 auto IsIgnored = [&](const TagDecl *Tag) {
13875 return IsIgnoredLoc(Tag->getLocation());
13876 };
13877 while (IsIgnored(Previous)) {
13878 Previous = Previous->getPreviousDecl();
13879 if (!Previous)
13880 return true;
13881 OldTag = Previous->getTagKind();
13882 }
13883
13884 bool isTemplate = false;
13885 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
13886 isTemplate = Record->getDescribedClassTemplate();
13887
13888 if (inTemplateInstantiation()) {
13889 if (OldTag != NewTag) {
13890 // In a template instantiation, do not offer fix-its for tag mismatches
13891 // since they usually mess up the template instead of fixing the problem.
13892 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
13893 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
13894 << getRedeclDiagFromTagKind(OldTag);
13895 // FIXME: Note previous location?
13896 }
13897 return true;
13898 }
13899
13900 if (isDefinition) {
13901 // On definitions, check all previous tags and issue a fix-it for each
13902 // one that doesn't match the current tag.
13903 if (Previous->getDefinition()) {
13904 // Don't suggest fix-its for redefinitions.
13905 return true;
13906 }
13907
13908 bool previousMismatch = false;
13909 for (const TagDecl *I : Previous->redecls()) {
13910 if (I->getTagKind() != NewTag) {
13911 // Ignore previous declarations for which the warning was disabled.
13912 if (IsIgnored(I))
13913 continue;
13914
13915 if (!previousMismatch) {
13916 previousMismatch = true;
13917 Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
13918 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
13919 << getRedeclDiagFromTagKind(I->getTagKind());
13920 }
13921 Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
13922 << getRedeclDiagFromTagKind(NewTag)
13923 << FixItHint::CreateReplacement(I->getInnerLocStart(),
13924 TypeWithKeyword::getTagTypeKindName(NewTag));
13925 }
13926 }
13927 return true;
13928 }
13929
13930 // Identify the prevailing tag kind: this is the kind of the definition (if
13931 // there is a non-ignored definition), or otherwise the kind of the prior
13932 // (non-ignored) declaration.
13933 const TagDecl *PrevDef = Previous->getDefinition();
13934 if (PrevDef && IsIgnored(PrevDef))
13935 PrevDef = nullptr;
13936 const TagDecl *Redecl = PrevDef ? PrevDef : Previous;
13937 if (Redecl->getTagKind() != NewTag) {
13938 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
13939 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
13940 << getRedeclDiagFromTagKind(OldTag);
13941 Diag(Redecl->getLocation(), diag::note_previous_use);
13942
13943 // If there is a previous definition, suggest a fix-it.
13944 if (PrevDef) {
13945 Diag(NewTagLoc, diag::note_struct_class_suggestion)
13946 << getRedeclDiagFromTagKind(Redecl->getTagKind())
13947 << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
13948 TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
13949 }
13950 }
13951
13952 return true;
13953}
13954
13955/// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
13956/// from an outer enclosing namespace or file scope inside a friend declaration.
13957/// This should provide the commented out code in the following snippet:
13958/// namespace N {
13959/// struct X;
13960/// namespace M {
13961/// struct Y { friend struct /*N::*/ X; };
13962/// }
13963/// }
13964static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S,
13965 SourceLocation NameLoc) {
13966 // While the decl is in a namespace, do repeated lookup of that name and see
13967 // if we get the same namespace back. If we do not, continue until
13968 // translation unit scope, at which point we have a fully qualified NNS.
13969 SmallVector<IdentifierInfo *, 4> Namespaces;
13970 DeclContext *DC = ND->getDeclContext()->getRedeclContext();
13971 for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
13972 // This tag should be declared in a namespace, which can only be enclosed by
13973 // other namespaces. Bail if there's an anonymous namespace in the chain.
13974 NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC);
13975 if (!Namespace || Namespace->isAnonymousNamespace())
13976 return FixItHint();
13977 IdentifierInfo *II = Namespace->getIdentifier();
13978 Namespaces.push_back(II);
13979 NamedDecl *Lookup = SemaRef.LookupSingleName(
13980 S, II, NameLoc, Sema::LookupNestedNameSpecifierName);
13981 if (Lookup == Namespace)
13982 break;
13983 }
13984
13985 // Once we have all the namespaces, reverse them to go outermost first, and
13986 // build an NNS.
13987 SmallString<64> Insertion;
13988 llvm::raw_svector_ostream OS(Insertion);
13989 if (DC->isTranslationUnit())
13990 OS << "::";
13991 std::reverse(Namespaces.begin(), Namespaces.end());
13992 for (auto *II : Namespaces)
13993 OS << II->getName() << "::";
13994 return FixItHint::CreateInsertion(NameLoc, Insertion);
13995}
13996
13997/// Determine whether a tag originally declared in context \p OldDC can
13998/// be redeclared with an unqualified name in \p NewDC (assuming name lookup
13999/// found a declaration in \p OldDC as a previous decl, perhaps through a
14000/// using-declaration).
14001static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC,
14002 DeclContext *NewDC) {
14003 OldDC = OldDC->getRedeclContext();
14004 NewDC = NewDC->getRedeclContext();
14005
14006 if (OldDC->Equals(NewDC))
14007 return true;
14008
14009 // In MSVC mode, we allow a redeclaration if the contexts are related (either
14010 // encloses the other).
14011 if (S.getLangOpts().MSVCCompat &&
14012 (OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC)))
14013 return true;
14014
14015 return false;
14016}
14017
14018/// This is invoked when we see 'struct foo' or 'struct {'. In the
14019/// former case, Name will be non-null. In the later case, Name will be null.
14020/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
14021/// reference/declaration/definition of a tag.
14022///
14023/// \param IsTypeSpecifier \c true if this is a type-specifier (or
14024/// trailing-type-specifier) other than one in an alias-declaration.
14025///
14026/// \param SkipBody If non-null, will be set to indicate if the caller should
14027/// skip the definition of this tag and treat it as if it were a declaration.
14028Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
14029 SourceLocation KWLoc, CXXScopeSpec &SS,
14030 IdentifierInfo *Name, SourceLocation NameLoc,
14031 const ParsedAttributesView &Attrs, AccessSpecifier AS,
14032 SourceLocation ModulePrivateLoc,
14033 MultiTemplateParamsArg TemplateParameterLists,
14034 bool &OwnedDecl, bool &IsDependent,
14035 SourceLocation ScopedEnumKWLoc,
14036 bool ScopedEnumUsesClassTag, TypeResult UnderlyingType,
14037 bool IsTypeSpecifier, bool IsTemplateParamOrArg,
14038 SkipBodyInfo *SkipBody) {
14039 // If this is not a definition, it must have a name.
14040 IdentifierInfo *OrigName = Name;
14041 assert((Name != nullptr || TUK == TUK_Definition) &&(((Name != nullptr || TUK == TUK_Definition) && "Nameless record must be a definition!"
) ? static_cast<void> (0) : __assert_fail ("(Name != nullptr || TUK == TUK_Definition) && \"Nameless record must be a definition!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 14042, __PRETTY_FUNCTION__))
14042 "Nameless record must be a definition!")(((Name != nullptr || TUK == TUK_Definition) && "Nameless record must be a definition!"
) ? static_cast<void> (0) : __assert_fail ("(Name != nullptr || TUK == TUK_Definition) && \"Nameless record must be a definition!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 14042, __PRETTY_FUNCTION__))
;
14043 assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference)((TemplateParameterLists.size() == 0 || TUK != TUK_Reference)
? static_cast<void> (0) : __assert_fail ("TemplateParameterLists.size() == 0 || TUK != TUK_Reference"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 14043, __PRETTY_FUNCTION__))
;
14044
14045 OwnedDecl = false;
14046 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
14047 bool ScopedEnum = ScopedEnumKWLoc.isValid();
14048
14049 // FIXME: Check member specializations more carefully.
14050 bool isMemberSpecialization = false;
14051 bool Invalid = false;
14052
14053 // We only need to do this matching if we have template parameters
14054 // or a scope specifier, which also conveniently avoids this work
14055 // for non-C++ cases.
14056 if (TemplateParameterLists.size() > 0 ||
14057 (SS.isNotEmpty() && TUK != TUK_Reference)) {
14058 if (TemplateParameterList *TemplateParams =
14059 MatchTemplateParametersToScopeSpecifier(
14060 KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
14061 TUK == TUK_Friend, isMemberSpecialization, Invalid)) {
14062 if (Kind == TTK_Enum) {
14063 Diag(KWLoc, diag::err_enum_template);
14064 return nullptr;
14065 }
14066
14067 if (TemplateParams->size() > 0) {
14068 // This is a declaration or definition of a class template (which may
14069 // be a member of another template).
14070
14071 if (Invalid)
14072 return nullptr;
14073
14074 OwnedDecl = false;
14075 DeclResult Result = CheckClassTemplate(
14076 S, TagSpec, TUK, KWLoc, SS, Name, NameLoc, Attrs, TemplateParams,
14077 AS, ModulePrivateLoc,
14078 /*FriendLoc*/ SourceLocation(), TemplateParameterLists.size() - 1,
14079 TemplateParameterLists.data(), SkipBody);
14080 return Result.get();
14081 } else {
14082 // The "template<>" header is extraneous.
14083 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
14084 << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
14085 isMemberSpecialization = true;
14086 }
14087 }
14088 }
14089
14090 // Figure out the underlying type if this a enum declaration. We need to do
14091 // this early, because it's needed to detect if this is an incompatible
14092 // redeclaration.
14093 llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
14094 bool IsFixed = !UnderlyingType.isUnset() || ScopedEnum;
14095
14096 if (Kind == TTK_Enum) {
14097 if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) {
14098 // No underlying type explicitly specified, or we failed to parse the
14099 // type, default to int.
14100 EnumUnderlying = Context.IntTy.getTypePtr();
14101 } else if (UnderlyingType.get()) {
14102 // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
14103 // integral type; any cv-qualification is ignored.
14104 TypeSourceInfo *TI = nullptr;
14105 GetTypeFromParser(UnderlyingType.get(), &TI);
14106 EnumUnderlying = TI;
14107
14108 if (CheckEnumUnderlyingType(TI))
14109 // Recover by falling back to int.
14110 EnumUnderlying = Context.IntTy.getTypePtr();
14111
14112 if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
14113 UPPC_FixedUnderlyingType))
14114 EnumUnderlying = Context.IntTy.getTypePtr();
14115
14116 } else if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
14117 // For MSVC ABI compatibility, unfixed enums must use an underlying type
14118 // of 'int'. However, if this is an unfixed forward declaration, don't set
14119 // the underlying type unless the user enables -fms-compatibility. This
14120 // makes unfixed forward declared enums incomplete and is more conforming.
14121 if (TUK == TUK_Definition || getLangOpts().MSVCCompat)
14122 EnumUnderlying = Context.IntTy.getTypePtr();
14123 }
14124 }
14125
14126 DeclContext *SearchDC = CurContext;
14127 DeclContext *DC = CurContext;
14128 bool isStdBadAlloc = false;
14129 bool isStdAlignValT = false;
14130
14131 RedeclarationKind Redecl = forRedeclarationInCurContext();
14132 if (TUK == TUK_Friend || TUK == TUK_Reference)
14133 Redecl = NotForRedeclaration;
14134
14135 /// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C
14136 /// implemented asks for structural equivalence checking, the returned decl
14137 /// here is passed back to the parser, allowing the tag body to be parsed.
14138 auto createTagFromNewDecl = [&]() -> TagDecl * {
14139 assert(!getLangOpts().CPlusPlus && "not meant for C++ usage")((!getLangOpts().CPlusPlus && "not meant for C++ usage"
) ? static_cast<void> (0) : __assert_fail ("!getLangOpts().CPlusPlus && \"not meant for C++ usage\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 14139, __PRETTY_FUNCTION__))
;
14140 // If there is an identifier, use the location of the identifier as the
14141 // location of the decl, otherwise use the location of the struct/union
14142 // keyword.
14143 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
14144 TagDecl *New = nullptr;
14145
14146 if (Kind == TTK_Enum) {
14147 New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, nullptr,
14148 ScopedEnum, ScopedEnumUsesClassTag, IsFixed);
14149 // If this is an undefined enum, bail.
14150 if (TUK != TUK_Definition && !Invalid)
14151 return nullptr;
14152 if (EnumUnderlying) {
14153 EnumDecl *ED = cast<EnumDecl>(New);
14154 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo *>())
14155 ED->setIntegerTypeSourceInfo(TI);
14156 else
14157 ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0));
14158 ED->setPromotionType(ED->getIntegerType());
14159 }
14160 } else { // struct/union
14161 New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
14162 nullptr);
14163 }
14164
14165 if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
14166 // Add alignment attributes if necessary; these attributes are checked
14167 // when the ASTContext lays out the structure.
14168 //
14169 // It is important for implementing the correct semantics that this
14170 // happen here (in ActOnTag). The #pragma pack stack is
14171 // maintained as a result of parser callbacks which can occur at
14172 // many points during the parsing of a struct declaration (because
14173 // the #pragma tokens are effectively skipped over during the
14174 // parsing of the struct).
14175 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
14176 AddAlignmentAttributesForRecord(RD);
14177 AddMsStructLayoutForRecord(RD);
14178 }
14179 }
14180 New->setLexicalDeclContext(CurContext);
14181 return New;
14182 };
14183
14184 LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
14185 if (Name && SS.isNotEmpty()) {
14186 // We have a nested-name tag ('struct foo::bar').
14187
14188 // Check for invalid 'foo::'.
14189 if (SS.isInvalid()) {
14190 Name = nullptr;
14191 goto CreateNewDecl;
14192 }
14193
14194 // If this is a friend or a reference to a class in a dependent
14195 // context, don't try to make a decl for it.
14196 if (TUK == TUK_Friend || TUK == TUK_Reference) {
14197 DC = computeDeclContext(SS, false);
14198 if (!DC) {
14199 IsDependent = true;
14200 return nullptr;
14201 }
14202 } else {
14203 DC = computeDeclContext(SS, true);
14204 if (!DC) {
14205 Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
14206 << SS.getRange();
14207 return nullptr;
14208 }
14209 }
14210
14211 if (RequireCompleteDeclContext(SS, DC))
14212 return nullptr;
14213
14214 SearchDC = DC;
14215 // Look-up name inside 'foo::'.
14216 LookupQualifiedName(Previous, DC);
14217
14218 if (Previous.isAmbiguous())
14219 return nullptr;
14220
14221 if (Previous.empty()) {
14222 // Name lookup did not find anything. However, if the
14223 // nested-name-specifier refers to the current instantiation,
14224 // and that current instantiation has any dependent base
14225 // classes, we might find something at instantiation time: treat
14226 // this as a dependent elaborated-type-specifier.
14227 // But this only makes any sense for reference-like lookups.
14228 if (Previous.wasNotFoundInCurrentInstantiation() &&
14229 (TUK == TUK_Reference || TUK == TUK_Friend)) {
14230 IsDependent = true;
14231 return nullptr;
14232 }
14233
14234 // A tag 'foo::bar' must already exist.
14235 Diag(NameLoc, diag::err_not_tag_in_scope)
14236 << Kind << Name << DC << SS.getRange();
14237 Name = nullptr;
14238 Invalid = true;
14239 goto CreateNewDecl;
14240 }
14241 } else if (Name) {
14242 // C++14 [class.mem]p14:
14243 // If T is the name of a class, then each of the following shall have a
14244 // name different from T:
14245 // -- every member of class T that is itself a type
14246 if (TUK != TUK_Reference && TUK != TUK_Friend &&
14247 DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc)))
14248 return nullptr;
14249
14250 // If this is a named struct, check to see if there was a previous forward
14251 // declaration or definition.
14252 // FIXME: We're looking into outer scopes here, even when we
14253 // shouldn't be. Doing so can result in ambiguities that we
14254 // shouldn't be diagnosing.
14255 LookupName(Previous, S);
14256
14257 // When declaring or defining a tag, ignore ambiguities introduced
14258 // by types using'ed into this scope.
14259 if (Previous.isAmbiguous() &&
14260 (TUK == TUK_Definition || TUK == TUK_Declaration)) {
14261 LookupResult::Filter F = Previous.makeFilter();
14262 while (F.hasNext()) {
14263 NamedDecl *ND = F.next();
14264 if (!ND->getDeclContext()->getRedeclContext()->Equals(
14265 SearchDC->getRedeclContext()))
14266 F.erase();
14267 }
14268 F.done();
14269 }
14270
14271 // C++11 [namespace.memdef]p3:
14272 // If the name in a friend declaration is neither qualified nor
14273 // a template-id and the declaration is a function or an
14274 // elaborated-type-specifier, the lookup to determine whether
14275 // the entity has been previously declared shall not consider
14276 // any scopes outside the innermost enclosing namespace.
14277 //
14278 // MSVC doesn't implement the above rule for types, so a friend tag
14279 // declaration may be a redeclaration of a type declared in an enclosing
14280 // scope. They do implement this rule for friend functions.
14281 //
14282 // Does it matter that this should be by scope instead of by
14283 // semantic context?
14284 if (!Previous.empty() && TUK == TUK_Friend) {
14285 DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
14286 LookupResult::Filter F = Previous.makeFilter();
14287 bool FriendSawTagOutsideEnclosingNamespace = false;
14288 while (F.hasNext()) {
14289 NamedDecl *ND = F.next();
14290 DeclContext *DC = ND->getDeclContext()->getRedeclContext();
14291 if (DC->isFileContext() &&
14292 !EnclosingNS->Encloses(ND->getDeclContext())) {
14293 if (getLangOpts().MSVCCompat)
14294 FriendSawTagOutsideEnclosingNamespace = true;
14295 else
14296 F.erase();
14297 }
14298 }
14299 F.done();
14300
14301 // Diagnose this MSVC extension in the easy case where lookup would have
14302 // unambiguously found something outside the enclosing namespace.
14303 if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) {
14304 NamedDecl *ND = Previous.getFoundDecl();
14305 Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace)
14306 << createFriendTagNNSFixIt(*this, ND, S, NameLoc);
14307 }
14308 }
14309
14310 // Note: there used to be some attempt at recovery here.
14311 if (Previous.isAmbiguous())
14312 return nullptr;
14313
14314 if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
14315 // FIXME: This makes sure that we ignore the contexts associated
14316 // with C structs, unions, and enums when looking for a matching
14317 // tag declaration or definition. See the similar lookup tweak
14318 // in Sema::LookupName; is there a better way to deal with this?
14319 while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
14320 SearchDC = SearchDC->getParent();
14321 }
14322 }
14323
14324 if (Previous.isSingleResult() &&
14325 Previous.getFoundDecl()->isTemplateParameter()) {
14326 // Maybe we will complain about the shadowed template parameter.
14327 DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
14328 // Just pretend that we didn't see the previous declaration.
14329 Previous.clear();
14330 }
14331
14332 if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
14333 DC->Equals(getStdNamespace())) {
14334 if (Name->isStr("bad_alloc")) {
14335 // This is a declaration of or a reference to "std::bad_alloc".
14336 isStdBadAlloc = true;
14337
14338 // If std::bad_alloc has been implicitly declared (but made invisible to
14339 // name lookup), fill in this implicit declaration as the previous
14340 // declaration, so that the declarations get chained appropriately.
14341 if (Previous.empty() && StdBadAlloc)
14342 Previous.addDecl(getStdBadAlloc());
14343 } else if (Name->isStr("align_val_t")) {
14344 isStdAlignValT = true;
14345 if (Previous.empty() && StdAlignValT)
14346 Previous.addDecl(getStdAlignValT());
14347 }
14348 }
14349
14350 // If we didn't find a previous declaration, and this is a reference
14351 // (or friend reference), move to the correct scope. In C++, we
14352 // also need to do a redeclaration lookup there, just in case
14353 // there's a shadow friend decl.
14354 if (Name && Previous.empty() &&
14355 (TUK == TUK_Reference || TUK == TUK_Friend || IsTemplateParamOrArg)) {
14356 if (Invalid) goto CreateNewDecl;
14357 assert(SS.isEmpty())((SS.isEmpty()) ? static_cast<void> (0) : __assert_fail
("SS.isEmpty()", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 14357, __PRETTY_FUNCTION__))
;
14358
14359 if (TUK == TUK_Reference || IsTemplateParamOrArg) {
14360 // C++ [basic.scope.pdecl]p5:
14361 // -- for an elaborated-type-specifier of the form
14362 //
14363 // class-key identifier
14364 //
14365 // if the elaborated-type-specifier is used in the
14366 // decl-specifier-seq or parameter-declaration-clause of a
14367 // function defined in namespace scope, the identifier is
14368 // declared as a class-name in the namespace that contains
14369 // the declaration; otherwise, except as a friend
14370 // declaration, the identifier is declared in the smallest
14371 // non-class, non-function-prototype scope that contains the
14372 // declaration.
14373 //
14374 // C99 6.7.2.3p8 has a similar (but not identical!) provision for
14375 // C structs and unions.
14376 //
14377 // It is an error in C++ to declare (rather than define) an enum
14378 // type, including via an elaborated type specifier. We'll
14379 // diagnose that later; for now, declare the enum in the same
14380 // scope as we would have picked for any other tag type.
14381 //
14382 // GNU C also supports this behavior as part of its incomplete
14383 // enum types extension, while GNU C++ does not.
14384 //
14385 // Find the context where we'll be declaring the tag.
14386 // FIXME: We would like to maintain the current DeclContext as the
14387 // lexical context,
14388 SearchDC = getTagInjectionContext(SearchDC);
14389
14390 // Find the scope where we'll be declaring the tag.
14391 S = getTagInjectionScope(S, getLangOpts());
14392 } else {
14393 assert(TUK == TUK_Friend)((TUK == TUK_Friend) ? static_cast<void> (0) : __assert_fail
("TUK == TUK_Friend", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 14393, __PRETTY_FUNCTION__))
;
14394 // C++ [namespace.memdef]p3:
14395 // If a friend declaration in a non-local class first declares a
14396 // class or function, the friend class or function is a member of
14397 // the innermost enclosing namespace.
14398 SearchDC = SearchDC->getEnclosingNamespaceContext();
14399 }
14400
14401 // In C++, we need to do a redeclaration lookup to properly
14402 // diagnose some problems.
14403 // FIXME: redeclaration lookup is also used (with and without C++) to find a
14404 // hidden declaration so that we don't get ambiguity errors when using a
14405 // type declared by an elaborated-type-specifier. In C that is not correct
14406 // and we should instead merge compatible types found by lookup.
14407 if (getLangOpts().CPlusPlus) {
14408 Previous.setRedeclarationKind(forRedeclarationInCurContext());
14409 LookupQualifiedName(Previous, SearchDC);
14410 } else {
14411 Previous.setRedeclarationKind(forRedeclarationInCurContext());
14412 LookupName(Previous, S);
14413 }
14414 }
14415
14416 // If we have a known previous declaration to use, then use it.
14417 if (Previous.empty() && SkipBody && SkipBody->Previous)
14418 Previous.addDecl(SkipBody->Previous);
14419
14420 if (!Previous.empty()) {
14421 NamedDecl *PrevDecl = Previous.getFoundDecl();
14422 NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl();
14423
14424 // It's okay to have a tag decl in the same scope as a typedef
14425 // which hides a tag decl in the same scope. Finding this
14426 // insanity with a redeclaration lookup can only actually happen
14427 // in C++.
14428 //
14429 // This is also okay for elaborated-type-specifiers, which is
14430 // technically forbidden by the current standard but which is
14431 // okay according to the likely resolution of an open issue;
14432 // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
14433 if (getLangOpts().CPlusPlus) {
14434 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
14435 if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
14436 TagDecl *Tag = TT->getDecl();
14437 if (Tag->getDeclName() == Name &&
14438 Tag->getDeclContext()->getRedeclContext()
14439 ->Equals(TD->getDeclContext()->getRedeclContext())) {
14440 PrevDecl = Tag;
14441 Previous.clear();
14442 Previous.addDecl(Tag);
14443 Previous.resolveKind();
14444 }
14445 }
14446 }
14447 }
14448
14449 // If this is a redeclaration of a using shadow declaration, it must
14450 // declare a tag in the same context. In MSVC mode, we allow a
14451 // redefinition if either context is within the other.
14452 if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) {
14453 auto *OldTag = dyn_cast<TagDecl>(PrevDecl);
14454 if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend &&
14455 isDeclInScope(Shadow, SearchDC, S, isMemberSpecialization) &&
14456 !(OldTag && isAcceptableTagRedeclContext(
14457 *this, OldTag->getDeclContext(), SearchDC))) {
14458 Diag(KWLoc, diag::err_using_decl_conflict_reverse);
14459 Diag(Shadow->getTargetDecl()->getLocation(),
14460 diag::note_using_decl_target);
14461 Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl)
14462 << 0;
14463 // Recover by ignoring the old declaration.
14464 Previous.clear();
14465 goto CreateNewDecl;
14466 }
14467 }
14468
14469 if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
14470 // If this is a use of a previous tag, or if the tag is already declared
14471 // in the same scope (so that the definition/declaration completes or
14472 // rementions the tag), reuse the decl.
14473 if (TUK == TUK_Reference || TUK == TUK_Friend ||
14474 isDeclInScope(DirectPrevDecl, SearchDC, S,
14475 SS.isNotEmpty() || isMemberSpecialization)) {
14476 // Make sure that this wasn't declared as an enum and now used as a
14477 // struct or something similar.
14478 if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
14479 TUK == TUK_Definition, KWLoc,
14480 Name)) {
14481 bool SafeToContinue
14482 = (PrevTagDecl->getTagKind() != TTK_Enum &&
14483 Kind != TTK_Enum);
14484 if (SafeToContinue)
14485 Diag(KWLoc, diag::err_use_with_wrong_tag)
14486 << Name
14487 << FixItHint::CreateReplacement(SourceRange(KWLoc),
14488 PrevTagDecl->getKindName());
14489 else
14490 Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
14491 Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
14492
14493 if (SafeToContinue)
14494 Kind = PrevTagDecl->getTagKind();
14495 else {
14496 // Recover by making this an anonymous redefinition.
14497 Name = nullptr;
14498 Previous.clear();
14499 Invalid = true;
14500 }
14501 }
14502
14503 if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
14504 const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
14505
14506 // If this is an elaborated-type-specifier for a scoped enumeration,
14507 // the 'class' keyword is not necessary and not permitted.
14508 if (TUK == TUK_Reference || TUK == TUK_Friend) {
14509 if (ScopedEnum)
14510 Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
14511 << PrevEnum->isScoped()
14512 << FixItHint::CreateRemoval(ScopedEnumKWLoc);
14513 return PrevTagDecl;
14514 }
14515
14516 QualType EnumUnderlyingTy;
14517 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
14518 EnumUnderlyingTy = TI->getType().getUnqualifiedType();
14519 else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
14520 EnumUnderlyingTy = QualType(T, 0);
14521
14522 // All conflicts with previous declarations are recovered by
14523 // returning the previous declaration, unless this is a definition,
14524 // in which case we want the caller to bail out.
14525 if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
14526 ScopedEnum, EnumUnderlyingTy,
14527 IsFixed, PrevEnum))
14528 return TUK == TUK_Declaration ? PrevTagDecl : nullptr;
14529 }
14530
14531 // C++11 [class.mem]p1:
14532 // A member shall not be declared twice in the member-specification,
14533 // except that a nested class or member class template can be declared
14534 // and then later defined.
14535 if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
14536 S->isDeclScope(PrevDecl)) {
14537 Diag(NameLoc, diag::ext_member_redeclared);
14538 Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
14539 }
14540
14541 if (!Invalid) {
14542 // If this is a use, just return the declaration we found, unless
14543 // we have attributes.
14544 if (TUK == TUK_Reference || TUK == TUK_Friend) {
14545 if (!Attrs.empty()) {
14546 // FIXME: Diagnose these attributes. For now, we create a new
14547 // declaration to hold them.
14548 } else if (TUK == TUK_Reference &&
14549 (PrevTagDecl->getFriendObjectKind() ==
14550 Decl::FOK_Undeclared ||
14551 PrevDecl->getOwningModule() != getCurrentModule()) &&
14552 SS.isEmpty()) {
14553 // This declaration is a reference to an existing entity, but
14554 // has different visibility from that entity: it either makes
14555 // a friend visible or it makes a type visible in a new module.
14556 // In either case, create a new declaration. We only do this if
14557 // the declaration would have meant the same thing if no prior
14558 // declaration were found, that is, if it was found in the same
14559 // scope where we would have injected a declaration.
14560 if (!getTagInjectionContext(CurContext)->getRedeclContext()
14561 ->Equals(PrevDecl->getDeclContext()->getRedeclContext()))
14562 return PrevTagDecl;
14563 // This is in the injected scope, create a new declaration in
14564 // that scope.
14565 S = getTagInjectionScope(S, getLangOpts());
14566 } else {
14567 return PrevTagDecl;
14568 }
14569 }
14570
14571 // Diagnose attempts to redefine a tag.
14572 if (TUK == TUK_Definition) {
14573 if (NamedDecl *Def = PrevTagDecl->getDefinition()) {
14574 // If we're defining a specialization and the previous definition
14575 // is from an implicit instantiation, don't emit an error
14576 // here; we'll catch this in the general case below.
14577 bool IsExplicitSpecializationAfterInstantiation = false;
14578 if (isMemberSpecialization) {
14579 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
14580 IsExplicitSpecializationAfterInstantiation =
14581 RD->getTemplateSpecializationKind() !=
14582 TSK_ExplicitSpecialization;
14583 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
14584 IsExplicitSpecializationAfterInstantiation =
14585 ED->getTemplateSpecializationKind() !=
14586 TSK_ExplicitSpecialization;
14587 }
14588
14589 // Note that clang allows ODR-like semantics for ObjC/C, i.e., do
14590 // not keep more that one definition around (merge them). However,
14591 // ensure the decl passes the structural compatibility check in
14592 // C11 6.2.7/1 (or 6.1.2.6/1 in C89).
14593 NamedDecl *Hidden = nullptr;
14594 if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
14595 // There is a definition of this tag, but it is not visible. We
14596 // explicitly make use of C++'s one definition rule here, and
14597 // assume that this definition is identical to the hidden one
14598 // we already have. Make the existing definition visible and
14599 // use it in place of this one.
14600 if (!getLangOpts().CPlusPlus) {
14601 // Postpone making the old definition visible until after we
14602 // complete parsing the new one and do the structural
14603 // comparison.
14604 SkipBody->CheckSameAsPrevious = true;
14605 SkipBody->New = createTagFromNewDecl();
14606 SkipBody->Previous = Def;
14607 return Def;
14608 } else {
14609 SkipBody->ShouldSkip = true;
14610 SkipBody->Previous = Def;
14611 makeMergedDefinitionVisible(Hidden);
14612 // Carry on and handle it like a normal definition. We'll
14613 // skip starting the definitiion later.
14614 }
14615 } else if (!IsExplicitSpecializationAfterInstantiation) {
14616 // A redeclaration in function prototype scope in C isn't
14617 // visible elsewhere, so merely issue a warning.
14618 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
14619 Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
14620 else
14621 Diag(NameLoc, diag::err_redefinition) << Name;
14622 notePreviousDefinition(Def,
14623 NameLoc.isValid() ? NameLoc : KWLoc);
14624 // If this is a redefinition, recover by making this
14625 // struct be anonymous, which will make any later
14626 // references get the previous definition.
14627 Name = nullptr;
14628 Previous.clear();
14629 Invalid = true;
14630 }
14631 } else {
14632 // If the type is currently being defined, complain
14633 // about a nested redefinition.
14634 auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl();
14635 if (TD->isBeingDefined()) {
14636 Diag(NameLoc, diag::err_nested_redefinition) << Name;
14637 Diag(PrevTagDecl->getLocation(),
14638 diag::note_previous_definition);
14639 Name = nullptr;
14640 Previous.clear();
14641 Invalid = true;
14642 }
14643 }
14644
14645 // Okay, this is definition of a previously declared or referenced
14646 // tag. We're going to create a new Decl for it.
14647 }
14648
14649 // Okay, we're going to make a redeclaration. If this is some kind
14650 // of reference, make sure we build the redeclaration in the same DC
14651 // as the original, and ignore the current access specifier.
14652 if (TUK == TUK_Friend || TUK == TUK_Reference) {
14653 SearchDC = PrevTagDecl->getDeclContext();
14654 AS = AS_none;
14655 }
14656 }
14657 // If we get here we have (another) forward declaration or we
14658 // have a definition. Just create a new decl.
14659
14660 } else {
14661 // If we get here, this is a definition of a new tag type in a nested
14662 // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
14663 // new decl/type. We set PrevDecl to NULL so that the entities
14664 // have distinct types.
14665 Previous.clear();
14666 }
14667 // If we get here, we're going to create a new Decl. If PrevDecl
14668 // is non-NULL, it's a definition of the tag declared by
14669 // PrevDecl. If it's NULL, we have a new definition.
14670
14671 // Otherwise, PrevDecl is not a tag, but was found with tag
14672 // lookup. This is only actually possible in C++, where a few
14673 // things like templates still live in the tag namespace.
14674 } else {
14675 // Use a better diagnostic if an elaborated-type-specifier
14676 // found the wrong kind of type on the first
14677 // (non-redeclaration) lookup.
14678 if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
14679 !Previous.isForRedeclaration()) {
14680 NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
14681 Diag(NameLoc, diag::err_tag_reference_non_tag) << PrevDecl << NTK
14682 << Kind;
14683 Diag(PrevDecl->getLocation(), diag::note_declared_at);
14684 Invalid = true;
14685
14686 // Otherwise, only diagnose if the declaration is in scope.
14687 } else if (!isDeclInScope(DirectPrevDecl, SearchDC, S,
14688 SS.isNotEmpty() || isMemberSpecialization)) {
14689 // do nothing
14690
14691 // Diagnose implicit declarations introduced by elaborated types.
14692 } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
14693 NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
14694 Diag(NameLoc, diag::err_tag_reference_conflict) << NTK;
14695 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
14696 Invalid = true;
14697
14698 // Otherwise it's a declaration. Call out a particularly common
14699 // case here.
14700 } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
14701 unsigned Kind = 0;
14702 if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
14703 Diag(NameLoc, diag::err_tag_definition_of_typedef)
14704 << Name << Kind << TND->getUnderlyingType();
14705 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
14706 Invalid = true;
14707
14708 // Otherwise, diagnose.
14709 } else {
14710 // The tag name clashes with something else in the target scope,
14711 // issue an error and recover by making this tag be anonymous.
14712 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
14713 notePreviousDefinition(PrevDecl, NameLoc);
14714 Name = nullptr;
14715 Invalid = true;
14716 }
14717
14718 // The existing declaration isn't relevant to us; we're in a
14719 // new scope, so clear out the previous declaration.
14720 Previous.clear();
14721 }
14722 }
14723
14724CreateNewDecl:
14725
14726 TagDecl *PrevDecl = nullptr;
14727 if (Previous.isSingleResult())
14728 PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
14729
14730 // If there is an identifier, use the location of the identifier as the
14731 // location of the decl, otherwise use the location of the struct/union
14732 // keyword.
14733 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
14734
14735 // Otherwise, create a new declaration. If there is a previous
14736 // declaration of the same entity, the two will be linked via
14737 // PrevDecl.
14738 TagDecl *New;
14739
14740 if (Kind == TTK_Enum) {
14741 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
14742 // enum X { A, B, C } D; D should chain to X.
14743 New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
14744 cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
14745 ScopedEnumUsesClassTag, IsFixed);
14746
14747 if (isStdAlignValT && (!StdAlignValT || getStdAlignValT()->isImplicit()))
14748 StdAlignValT = cast<EnumDecl>(New);
14749
14750 // If this is an undefined enum, warn.
14751 if (TUK != TUK_Definition && !Invalid) {
14752 TagDecl *Def;
14753 if (IsFixed && (getLangOpts().CPlusPlus11 || getLangOpts().ObjC) &&
14754 cast<EnumDecl>(New)->isFixed()) {
14755 // C++0x: 7.2p2: opaque-enum-declaration.
14756 // Conflicts are diagnosed above. Do nothing.
14757 }
14758 else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
14759 Diag(Loc, diag::ext_forward_ref_enum_def)
14760 << New;
14761 Diag(Def->getLocation(), diag::note_previous_definition);
14762 } else {
14763 unsigned DiagID = diag::ext_forward_ref_enum;
14764 if (getLangOpts().MSVCCompat)
14765 DiagID = diag::ext_ms_forward_ref_enum;
14766 else if (getLangOpts().CPlusPlus)
14767 DiagID = diag::err_forward_ref_enum;
14768 Diag(Loc, DiagID);
14769 }
14770 }
14771
14772 if (EnumUnderlying) {
14773 EnumDecl *ED = cast<EnumDecl>(New);
14774 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
14775 ED->setIntegerTypeSourceInfo(TI);
14776 else
14777 ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
14778 ED->setPromotionType(ED->getIntegerType());
14779 assert(ED->isComplete() && "enum with type should be complete")((ED->isComplete() && "enum with type should be complete"
) ? static_cast<void> (0) : __assert_fail ("ED->isComplete() && \"enum with type should be complete\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 14779, __PRETTY_FUNCTION__))
;
14780 }
14781 } else {
14782 // struct/union/class
14783
14784 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
14785 // struct X { int A; } D; D should chain to X.
14786 if (getLangOpts().CPlusPlus) {
14787 // FIXME: Look for a way to use RecordDecl for simple structs.
14788 New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
14789 cast_or_null<CXXRecordDecl>(PrevDecl));
14790
14791 if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
14792 StdBadAlloc = cast<CXXRecordDecl>(New);
14793 } else
14794 New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
14795 cast_or_null<RecordDecl>(PrevDecl));
14796 }
14797
14798 // C++11 [dcl.type]p3:
14799 // A type-specifier-seq shall not define a class or enumeration [...].
14800 if (getLangOpts().CPlusPlus && (IsTypeSpecifier || IsTemplateParamOrArg) &&
14801 TUK == TUK_Definition) {
14802 Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
14803 << Context.getTagDeclType(New);
14804 Invalid = true;
14805 }
14806
14807 if (!Invalid && getLangOpts().CPlusPlus && TUK == TUK_Definition &&
14808 DC->getDeclKind() == Decl::Enum) {
14809 Diag(New->getLocation(), diag::err_type_defined_in_enum)
14810 << Context.getTagDeclType(New);
14811 Invalid = true;
14812 }
14813
14814 // Maybe add qualifier info.
14815 if (SS.isNotEmpty()) {
14816 if (SS.isSet()) {
14817 // If this is either a declaration or a definition, check the
14818 // nested-name-specifier against the current context.
14819 if ((TUK == TUK_Definition || TUK == TUK_Declaration) &&
14820 diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc,
14821 isMemberSpecialization))
14822 Invalid = true;
14823
14824 New->setQualifierInfo(SS.getWithLocInContext(Context));
14825 if (TemplateParameterLists.size() > 0) {
14826 New->setTemplateParameterListsInfo(Context, TemplateParameterLists);
14827 }
14828 }
14829 else
14830 Invalid = true;
14831 }
14832
14833 if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
14834 // Add alignment attributes if necessary; these attributes are checked when
14835 // the ASTContext lays out the structure.
14836 //
14837 // It is important for implementing the correct semantics that this
14838 // happen here (in ActOnTag). The #pragma pack stack is
14839 // maintained as a result of parser callbacks which can occur at
14840 // many points during the parsing of a struct declaration (because
14841 // the #pragma tokens are effectively skipped over during the
14842 // parsing of the struct).
14843 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
14844 AddAlignmentAttributesForRecord(RD);
14845 AddMsStructLayoutForRecord(RD);
14846 }
14847 }
14848
14849 if (ModulePrivateLoc.isValid()) {
14850 if (isMemberSpecialization)
14851 Diag(New->getLocation(), diag::err_module_private_specialization)
14852 << 2
14853 << FixItHint::CreateRemoval(ModulePrivateLoc);
14854 // __module_private__ does not apply to local classes. However, we only
14855 // diagnose this as an error when the declaration specifiers are
14856 // freestanding. Here, we just ignore the __module_private__.
14857 else if (!SearchDC->isFunctionOrMethod())
14858 New->setModulePrivate();
14859 }
14860
14861 // If this is a specialization of a member class (of a class template),
14862 // check the specialization.
14863 if (isMemberSpecialization && CheckMemberSpecialization(New, Previous))
14864 Invalid = true;
14865
14866 // If we're declaring or defining a tag in function prototype scope in C,
14867 // note that this type can only be used within the function and add it to
14868 // the list of decls to inject into the function definition scope.
14869 if ((Name || Kind == TTK_Enum) &&
14870 getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
14871 if (getLangOpts().CPlusPlus) {
14872 // C++ [dcl.fct]p6:
14873 // Types shall not be defined in return or parameter types.
14874 if (TUK == TUK_Definition && !IsTypeSpecifier) {
14875 Diag(Loc, diag::err_type_defined_in_param_type)
14876 << Name;
14877 Invalid = true;
14878 }
14879 } else if (!PrevDecl) {
14880 Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
14881 }
14882 }
14883
14884 if (Invalid)
14885 New->setInvalidDecl();
14886
14887 // Set the lexical context. If the tag has a C++ scope specifier, the
14888 // lexical context will be different from the semantic context.
14889 New->setLexicalDeclContext(CurContext);
14890
14891 // Mark this as a friend decl if applicable.
14892 // In Microsoft mode, a friend declaration also acts as a forward
14893 // declaration so we always pass true to setObjectOfFriendDecl to make
14894 // the tag name visible.
14895 if (TUK == TUK_Friend)
14896 New->setObjectOfFriendDecl(getLangOpts().MSVCCompat);
14897
14898 // Set the access specifier.
14899 if (!Invalid && SearchDC->isRecord())
14900 SetMemberAccessSpecifier(New, PrevDecl, AS);
14901
14902 if (PrevDecl)
14903 CheckRedeclarationModuleOwnership(New, PrevDecl);
14904
14905 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
14906 New->startDefinition();
14907
14908 ProcessDeclAttributeList(S, New, Attrs);
14909 AddPragmaAttributes(S, New);
14910
14911 // If this has an identifier, add it to the scope stack.
14912 if (TUK == TUK_Friend) {
14913 // We might be replacing an existing declaration in the lookup tables;
14914 // if so, borrow its access specifier.
14915 if (PrevDecl)
14916 New->setAccess(PrevDecl->getAccess());
14917
14918 DeclContext *DC = New->getDeclContext()->getRedeclContext();
14919 DC->makeDeclVisibleInContext(New);
14920 if (Name) // can be null along some error paths
14921 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
14922 PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
14923 } else if (Name) {
14924 S = getNonFieldDeclScope(S);
14925 PushOnScopeChains(New, S, true);
14926 } else {
14927 CurContext->addDecl(New);
14928 }
14929
14930 // If this is the C FILE type, notify the AST context.
14931 if (IdentifierInfo *II = New->getIdentifier())
14932 if (!New->isInvalidDecl() &&
14933 New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
14934 II->isStr("FILE"))
14935 Context.setFILEDecl(New);
14936
14937 if (PrevDecl)
14938 mergeDeclAttributes(New, PrevDecl);
14939
14940 // If there's a #pragma GCC visibility in scope, set the visibility of this
14941 // record.
14942 AddPushedVisibilityAttribute(New);
14943
14944 if (isMemberSpecialization && !New->isInvalidDecl())
14945 CompleteMemberSpecialization(New, Previous);
14946
14947 OwnedDecl = true;
14948 // In C++, don't return an invalid declaration. We can't recover well from
14949 // the cases where we make the type anonymous.
14950 if (Invalid && getLangOpts().CPlusPlus) {
14951 if (New->isBeingDefined())
14952 if (auto RD = dyn_cast<RecordDecl>(New))
14953 RD->completeDefinition();
14954 return nullptr;
14955 } else if (SkipBody && SkipBody->ShouldSkip) {
14956 return SkipBody->Previous;
14957 } else {
14958 return New;
14959 }
14960}
14961
14962void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
14963 AdjustDeclIfTemplate(TagD);
14964 TagDecl *Tag = cast<TagDecl>(TagD);
14965
14966 // Enter the tag context.
14967 PushDeclContext(S, Tag);
14968
14969 ActOnDocumentableDecl(TagD);
14970
14971 // If there's a #pragma GCC visibility in scope, set the visibility of this
14972 // record.
14973 AddPushedVisibilityAttribute(Tag);
14974}
14975
14976bool Sema::ActOnDuplicateDefinition(DeclSpec &DS, Decl *Prev,
14977 SkipBodyInfo &SkipBody) {
14978 if (!hasStructuralCompatLayout(Prev, SkipBody.New))
14979 return false;
14980
14981 // Make the previous decl visible.
14982 makeMergedDefinitionVisible(SkipBody.Previous);
14983 return true;
14984}
14985
14986Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
14987 assert(isa<ObjCContainerDecl>(IDecl) &&((isa<ObjCContainerDecl>(IDecl) && "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl"
) ? static_cast<void> (0) : __assert_fail ("isa<ObjCContainerDecl>(IDecl) && \"ActOnObjCContainerStartDefinition - Not ObjCContainerDecl\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 14988, __PRETTY_FUNCTION__))
14988 "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl")((isa<ObjCContainerDecl>(IDecl) && "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl"
) ? static_cast<void> (0) : __assert_fail ("isa<ObjCContainerDecl>(IDecl) && \"ActOnObjCContainerStartDefinition - Not ObjCContainerDecl\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 14988, __PRETTY_FUNCTION__))
;
14989 DeclContext *OCD = cast<DeclContext>(IDecl);
14990 assert(getContainingDC(OCD) == CurContext &&((getContainingDC(OCD) == CurContext && "The next DeclContext should be lexically contained in the current one."
) ? static_cast<void> (0) : __assert_fail ("getContainingDC(OCD) == CurContext && \"The next DeclContext should be lexically contained in the current one.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 14991, __PRETTY_FUNCTION__))
14991 "The next DeclContext should be lexically contained in the current one.")((getContainingDC(OCD) == CurContext && "The next DeclContext should be lexically contained in the current one."
) ? static_cast<void> (0) : __assert_fail ("getContainingDC(OCD) == CurContext && \"The next DeclContext should be lexically contained in the current one.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 14991, __PRETTY_FUNCTION__))
;
14992 CurContext = OCD;
14993 return IDecl;
14994}
14995
14996void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
14997 SourceLocation FinalLoc,
14998 bool IsFinalSpelledSealed,
14999 SourceLocation LBraceLoc) {
15000 AdjustDeclIfTemplate(TagD);
15001 CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
15002
15003 FieldCollector->StartClass();
15004
15005 if (!Record->getIdentifier())
15006 return;
15007
15008 if (FinalLoc.isValid())
15009 Record->addAttr(new (Context)
15010 FinalAttr(FinalLoc, Context, IsFinalSpelledSealed));
15011
15012 // C++ [class]p2:
15013 // [...] The class-name is also inserted into the scope of the
15014 // class itself; this is known as the injected-class-name. For
15015 // purposes of access checking, the injected-class-name is treated
15016 // as if it were a public member name.
15017 CXXRecordDecl *InjectedClassName = CXXRecordDecl::Create(
15018 Context, Record->getTagKind(), CurContext, Record->getBeginLoc(),
15019 Record->getLocation(), Record->getIdentifier(),
15020 /*PrevDecl=*/nullptr,
15021 /*DelayTypeCreation=*/true);
15022 Context.getTypeDeclType(InjectedClassName, Record);
15023 InjectedClassName->setImplicit();
15024 InjectedClassName->setAccess(AS_public);
15025 if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
15026 InjectedClassName->setDescribedClassTemplate(Template);
15027 PushOnScopeChains(InjectedClassName, S);
15028 assert(InjectedClassName->isInjectedClassName() &&((InjectedClassName->isInjectedClassName() && "Broken injected-class-name"
) ? static_cast<void> (0) : __assert_fail ("InjectedClassName->isInjectedClassName() && \"Broken injected-class-name\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 15029, __PRETTY_FUNCTION__))
15029 "Broken injected-class-name")((InjectedClassName->isInjectedClassName() && "Broken injected-class-name"
) ? static_cast<void> (0) : __assert_fail ("InjectedClassName->isInjectedClassName() && \"Broken injected-class-name\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 15029, __PRETTY_FUNCTION__))
;
15030}
15031
15032void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
15033 SourceRange BraceRange) {
15034 AdjustDeclIfTemplate(TagD);
15035 TagDecl *Tag = cast<TagDecl>(TagD);
15036 Tag->setBraceRange(BraceRange);
15037
15038 // Make sure we "complete" the definition even it is invalid.
15039 if (Tag->isBeingDefined()) {
15040 assert(Tag->isInvalidDecl() && "We should already have completed it")((Tag->isInvalidDecl() && "We should already have completed it"
) ? static_cast<void> (0) : __assert_fail ("Tag->isInvalidDecl() && \"We should already have completed it\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 15040, __PRETTY_FUNCTION__))
;
15041 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
15042 RD->completeDefinition();
15043 }
15044
15045 if (isa<CXXRecordDecl>(Tag)) {
15046 FieldCollector->FinishClass();
15047 }
15048
15049 // Exit this scope of this tag's definition.
15050 PopDeclContext();
15051
15052 if (getCurLexicalContext()->isObjCContainer() &&
15053 Tag->getDeclContext()->isFileContext())
15054 Tag->setTopLevelDeclInObjCContainer();
15055
15056 // Notify the consumer that we've defined a tag.
15057 if (!Tag->isInvalidDecl())
15058 Consumer.HandleTagDeclDefinition(Tag);
15059}
15060
15061void Sema::ActOnObjCContainerFinishDefinition() {
15062 // Exit this scope of this interface definition.
15063 PopDeclContext();
15064}
15065
15066void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
15067 assert(DC == CurContext && "Mismatch of container contexts")((DC == CurContext && "Mismatch of container contexts"
) ? static_cast<void> (0) : __assert_fail ("DC == CurContext && \"Mismatch of container contexts\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 15067, __PRETTY_FUNCTION__))
;
15068 OriginalLexicalContext = DC;
15069 ActOnObjCContainerFinishDefinition();
15070}
15071
15072void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
15073 ActOnObjCContainerStartDefinition(cast<Decl>(DC));
15074 OriginalLexicalContext = nullptr;
15075}
15076
15077void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
15078 AdjustDeclIfTemplate(TagD);
15079 TagDecl *Tag = cast<TagDecl>(TagD);
15080 Tag->setInvalidDecl();
15081
15082 // Make sure we "complete" the definition even it is invalid.
15083 if (Tag->isBeingDefined()) {
15084 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
15085 RD->completeDefinition();
15086 }
15087
15088 // We're undoing ActOnTagStartDefinition here, not
15089 // ActOnStartCXXMemberDeclarations, so we don't have to mess with
15090 // the FieldCollector.
15091
15092 PopDeclContext();
15093}
15094
15095// Note that FieldName may be null for anonymous bitfields.
15096ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
15097 IdentifierInfo *FieldName,
15098 QualType FieldTy, bool IsMsStruct,
15099 Expr *BitWidth, bool *ZeroWidth) {
15100 // Default to true; that shouldn't confuse checks for emptiness
15101 if (ZeroWidth)
15102 *ZeroWidth = true;
15103
15104 // C99 6.7.2.1p4 - verify the field type.
15105 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
15106 if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
15107 // Handle incomplete types with specific error.
15108 if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
15109 return ExprError();
15110 if (FieldName)
15111 return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
15112 << FieldName << FieldTy << BitWidth->getSourceRange();
15113 return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
15114 << FieldTy << BitWidth->getSourceRange();
15115 } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
15116 UPPC_BitFieldWidth))
15117 return ExprError();
15118
15119 // If the bit-width is type- or value-dependent, don't try to check
15120 // it now.
15121 if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
15122 return BitWidth;
15123
15124 llvm::APSInt Value;
15125 ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
15126 if (ICE.isInvalid())
15127 return ICE;
15128 BitWidth = ICE.get();
15129
15130 if (Value != 0 && ZeroWidth)
15131 *ZeroWidth = false;
15132
15133 // Zero-width bitfield is ok for anonymous field.
15134 if (Value == 0 && FieldName)
15135 return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
15136
15137 if (Value.isSigned() && Value.isNegative()) {
15138 if (FieldName)
15139 return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
15140 << FieldName << Value.toString(10);
15141 return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
15142 << Value.toString(10);
15143 }
15144
15145 if (!FieldTy->isDependentType()) {
15146 uint64_t TypeStorageSize = Context.getTypeSize(FieldTy);
15147 uint64_t TypeWidth = Context.getIntWidth(FieldTy);
15148 bool BitfieldIsOverwide = Value.ugt(TypeWidth);
15149
15150 // Over-wide bitfields are an error in C or when using the MSVC bitfield
15151 // ABI.
15152 bool CStdConstraintViolation =
15153 BitfieldIsOverwide && !getLangOpts().CPlusPlus;
15154 bool MSBitfieldViolation =
15155 Value.ugt(TypeStorageSize) &&
15156 (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft());
15157 if (CStdConstraintViolation || MSBitfieldViolation) {
15158 unsigned DiagWidth =
15159 CStdConstraintViolation ? TypeWidth : TypeStorageSize;
15160 if (FieldName)
15161 return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width)
15162 << FieldName << (unsigned)Value.getZExtValue()
15163 << !CStdConstraintViolation << DiagWidth;
15164
15165 return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_width)
15166 << (unsigned)Value.getZExtValue() << !CStdConstraintViolation
15167 << DiagWidth;
15168 }
15169
15170 // Warn on types where the user might conceivably expect to get all
15171 // specified bits as value bits: that's all integral types other than
15172 // 'bool'.
15173 if (BitfieldIsOverwide && !FieldTy->isBooleanType()) {
15174 if (FieldName)
15175 Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width)
15176 << FieldName << (unsigned)Value.getZExtValue()
15177 << (unsigned)TypeWidth;
15178 else
15179 Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_width)
15180 << (unsigned)Value.getZExtValue() << (unsigned)TypeWidth;
15181 }
15182 }
15183
15184 return BitWidth;
15185}
15186
15187/// ActOnField - Each field of a C struct/union is passed into this in order
15188/// to create a FieldDecl object for it.
15189Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
15190 Declarator &D, Expr *BitfieldWidth) {
15191 FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
15192 DeclStart, D, static_cast<Expr*>(BitfieldWidth),
15193 /*InitStyle=*/ICIS_NoInit, AS_public);
15194 return Res;
15195}
15196
15197/// HandleField - Analyze a field of a C struct or a C++ data member.
15198///
15199FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
15200 SourceLocation DeclStart,
15201 Declarator &D, Expr *BitWidth,
15202 InClassInitStyle InitStyle,
15203 AccessSpecifier AS) {
15204 if (D.isDecompositionDeclarator()) {
15205 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
15206 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
15207 << Decomp.getSourceRange();
15208 return nullptr;
15209 }
15210
15211 IdentifierInfo *II = D.getIdentifier();
15212 SourceLocation Loc = DeclStart;
15213 if (II) Loc = D.getIdentifierLoc();
15214
15215 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
15216 QualType T = TInfo->getType();
15217 if (getLangOpts().CPlusPlus) {
15218 CheckExtraCXXDefaultArguments(D);
15219
15220 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
15221 UPPC_DataMemberType)) {
15222 D.setInvalidType();
15223 T = Context.IntTy;
15224 TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
15225 }
15226 }
15227
15228 DiagnoseFunctionSpecifiers(D.getDeclSpec());
15229
15230 if (D.getDeclSpec().isInlineSpecified())
15231 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
15232 << getLangOpts().CPlusPlus17;
15233 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
15234 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
15235 diag::err_invalid_thread)
15236 << DeclSpec::getSpecifierName(TSCS);
15237
15238 // Check to see if this name was declared as a member previously
15239 NamedDecl *PrevDecl = nullptr;
15240 LookupResult Previous(*this, II, Loc, LookupMemberName,
15241 ForVisibleRedeclaration);
15242 LookupName(Previous, S);
15243 switch (Previous.getResultKind()) {
15244 case LookupResult::Found:
15245 case LookupResult::FoundUnresolvedValue:
15246 PrevDecl = Previous.getAsSingle<NamedDecl>();
15247 break;
15248
15249 case LookupResult::FoundOverloaded:
15250 PrevDecl = Previous.getRepresentativeDecl();
15251 break;
15252
15253 case LookupResult::NotFound:
15254 case LookupResult::NotFoundInCurrentInstantiation:
15255 case LookupResult::Ambiguous:
15256 break;
15257 }
15258 Previous.suppressDiagnostics();
15259
15260 if (PrevDecl && PrevDecl->isTemplateParameter()) {
15261 // Maybe we will complain about the shadowed template parameter.
15262 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
15263 // Just pretend that we didn't see the previous declaration.
15264 PrevDecl = nullptr;
15265 }
15266
15267 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
15268 PrevDecl = nullptr;
15269
15270 bool Mutable
15271 = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
15272 SourceLocation TSSL = D.getBeginLoc();
15273 FieldDecl *NewFD
15274 = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
15275 TSSL, AS, PrevDecl, &D);
15276
15277 if (NewFD->isInvalidDecl())
15278 Record->setInvalidDecl();
15279
15280 if (D.getDeclSpec().isModulePrivateSpecified())
15281 NewFD->setModulePrivate();
15282
15283 if (NewFD->isInvalidDecl() && PrevDecl) {
15284 // Don't introduce NewFD into scope; there's already something
15285 // with the same name in the same scope.
15286 } else if (II) {
15287 PushOnScopeChains(NewFD, S);
15288 } else
15289 Record->addDecl(NewFD);
15290
15291 return NewFD;
15292}
15293
15294/// Build a new FieldDecl and check its well-formedness.
15295///
15296/// This routine builds a new FieldDecl given the fields name, type,
15297/// record, etc. \p PrevDecl should refer to any previous declaration
15298/// with the same name and in the same scope as the field to be
15299/// created.
15300///
15301/// \returns a new FieldDecl.
15302///
15303/// \todo The Declarator argument is a hack. It will be removed once
15304FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
15305 TypeSourceInfo *TInfo,
15306 RecordDecl *Record, SourceLocation Loc,
15307 bool Mutable, Expr *BitWidth,
15308 InClassInitStyle InitStyle,
15309 SourceLocation TSSL,
15310 AccessSpecifier AS, NamedDecl *PrevDecl,
15311 Declarator *D) {
15312 IdentifierInfo *II = Name.getAsIdentifierInfo();
15313 bool InvalidDecl = false;
15314 if (D) InvalidDecl = D->isInvalidType();
15315
15316 // If we receive a broken type, recover by assuming 'int' and
15317 // marking this declaration as invalid.
15318 if (T.isNull()) {
15319 InvalidDecl = true;
15320 T = Context.IntTy;
15321 }
15322
15323 QualType EltTy = Context.getBaseElementType(T);
15324 if (!EltTy->isDependentType()) {
15325 if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
15326 // Fields of incomplete type force their record to be invalid.
15327 Record->setInvalidDecl();
15328 InvalidDecl = true;
15329 } else {
15330 NamedDecl *Def;
15331 EltTy->isIncompleteType(&Def);
15332 if (Def && Def->isInvalidDecl()) {
15333 Record->setInvalidDecl();
15334 InvalidDecl = true;
15335 }
15336 }
15337 }
15338
15339 // TR 18037 does not allow fields to be declared with address space
15340 if (T.getQualifiers().hasAddressSpace() || T->isDependentAddressSpaceType() ||
15341 T->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) {
15342 Diag(Loc, diag::err_field_with_address_space);
15343 Record->setInvalidDecl();
15344 InvalidDecl = true;
15345 }
15346
15347 if (LangOpts.OpenCL) {
15348 // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be
15349 // used as structure or union field: image, sampler, event or block types.
15350 if (T->isEventT() || T->isImageType() || T->isSamplerT() ||
15351 T->isBlockPointerType()) {
15352 Diag(Loc, diag::err_opencl_type_struct_or_union_field) << T;
15353 Record->setInvalidDecl();
15354 InvalidDecl = true;
15355 }
15356 // OpenCL v1.2 s6.9.c: bitfields are not supported.
15357 if (BitWidth) {
15358 Diag(Loc, diag::err_opencl_bitfields);
15359 InvalidDecl = true;
15360 }
15361 }
15362
15363 // Anonymous bit-fields cannot be cv-qualified (CWG 2229).
15364 if (!InvalidDecl && getLangOpts().CPlusPlus && !II && BitWidth &&
15365 T.hasQualifiers()) {
15366 InvalidDecl = true;
15367 Diag(Loc, diag::err_anon_bitfield_qualifiers);
15368 }
15369
15370 // C99 6.7.2.1p8: A member of a structure or union may have any type other
15371 // than a variably modified type.
15372 if (!InvalidDecl && T->isVariablyModifiedType()) {
15373 bool SizeIsNegative;
15374 llvm::APSInt Oversized;
15375
15376 TypeSourceInfo *FixedTInfo =
15377 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
15378 SizeIsNegative,
15379 Oversized);
15380 if (FixedTInfo) {
15381 Diag(Loc, diag::warn_illegal_constant_array_size);
15382 TInfo = FixedTInfo;
15383 T = FixedTInfo->getType();
15384 } else {
15385 if (SizeIsNegative)
15386 Diag(Loc, diag::err_typecheck_negative_array_size);
15387 else if (Oversized.getBoolValue())
15388 Diag(Loc, diag::err_array_too_large)
15389 << Oversized.toString(10);
15390 else
15391 Diag(Loc, diag::err_typecheck_field_variable_size);
15392 InvalidDecl = true;
15393 }
15394 }
15395
15396 // Fields can not have abstract class types
15397 if (!InvalidDecl && RequireNonAbstractType(Loc, T,
15398 diag::err_abstract_type_in_decl,
15399 AbstractFieldType))
15400 InvalidDecl = true;
15401
15402 bool ZeroWidth = false;
15403 if (InvalidDecl)
15404 BitWidth = nullptr;
15405 // If this is declared as a bit-field, check the bit-field.
15406 if (BitWidth) {
15407 BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
15408 &ZeroWidth).get();
15409 if (!BitWidth) {
15410 InvalidDecl = true;
15411 BitWidth = nullptr;
15412 ZeroWidth = false;
15413 }
15414 }
15415
15416 // Check that 'mutable' is consistent with the type of the declaration.
15417 if (!InvalidDecl && Mutable) {
15418 unsigned DiagID = 0;
15419 if (T->isReferenceType())
15420 DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference
15421 : diag::err_mutable_reference;
15422 else if (T.isConstQualified())
15423 DiagID = diag::err_mutable_const;
15424
15425 if (DiagID) {
15426 SourceLocation ErrLoc = Loc;
15427 if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
15428 ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
15429 Diag(ErrLoc, DiagID);
15430 if (DiagID != diag::ext_mutable_reference) {
15431 Mutable = false;
15432 InvalidDecl = true;
15433 }
15434 }
15435 }
15436
15437 // C++11 [class.union]p8 (DR1460):
15438 // At most one variant member of a union may have a
15439 // brace-or-equal-initializer.
15440 if (InitStyle != ICIS_NoInit)
15441 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);
15442
15443 FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
15444 BitWidth, Mutable, InitStyle);
15445 if (InvalidDecl)
15446 NewFD->setInvalidDecl();
15447
15448 if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
15449 Diag(Loc, diag::err_duplicate_member) << II;
15450 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
15451 NewFD->setInvalidDecl();
15452 }
15453
15454 if (!InvalidDecl && getLangOpts().CPlusPlus) {
15455 if (Record->isUnion()) {
15456 if (const RecordType *RT = EltTy->getAs<RecordType>()) {
15457 CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
15458 if (RDecl->getDefinition()) {
15459 // C++ [class.union]p1: An object of a class with a non-trivial
15460 // constructor, a non-trivial copy constructor, a non-trivial
15461 // destructor, or a non-trivial copy assignment operator
15462 // cannot be a member of a union, nor can an array of such
15463 // objects.
15464 if (CheckNontrivialField(NewFD))
15465 NewFD->setInvalidDecl();
15466 }
15467 }
15468
15469 // C++ [class.union]p1: If a union contains a member of reference type,
15470 // the program is ill-formed, except when compiling with MSVC extensions
15471 // enabled.
15472 if (EltTy->isReferenceType()) {
15473 Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
15474 diag::ext_union_member_of_reference_type :
15475 diag::err_union_member_of_reference_type)
15476 << NewFD->getDeclName() << EltTy;
15477 if (!getLangOpts().MicrosoftExt)
15478 NewFD->setInvalidDecl();
15479 }
15480 }
15481 }
15482
15483 // FIXME: We need to pass in the attributes given an AST
15484 // representation, not a parser representation.
15485 if (D) {
15486 // FIXME: The current scope is almost... but not entirely... correct here.
15487 ProcessDeclAttributes(getCurScope(), NewFD, *D);
15488
15489 if (NewFD->hasAttrs())
15490 CheckAlignasUnderalignment(NewFD);
15491 }
15492
15493 // In auto-retain/release, infer strong retension for fields of
15494 // retainable type.
15495 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
15496 NewFD->setInvalidDecl();
15497
15498 if (T.isObjCGCWeak())
15499 Diag(Loc, diag::warn_attribute_weak_on_field);
15500
15501 NewFD->setAccess(AS);
15502 return NewFD;
15503}
15504
15505bool Sema::CheckNontrivialField(FieldDecl *FD) {
15506 assert(FD)((FD) ? static_cast<void> (0) : __assert_fail ("FD", "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 15506, __PRETTY_FUNCTION__))
;
15507 assert(getLangOpts().CPlusPlus && "valid check only for C++")((getLangOpts().CPlusPlus && "valid check only for C++"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"valid check only for C++\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 15507, __PRETTY_FUNCTION__))
;
15508
15509 if (FD->isInvalidDecl() || FD->getType()->isDependentType())
15510 return false;
15511
15512 QualType EltTy = Context.getBaseElementType(FD->getType());
15513 if (const RecordType *RT = EltTy->getAs<RecordType>()) {
15514 CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
15515 if (RDecl->getDefinition()) {
15516 // We check for copy constructors before constructors
15517 // because otherwise we'll never get complaints about
15518 // copy constructors.
15519
15520 CXXSpecialMember member = CXXInvalid;
15521 // We're required to check for any non-trivial constructors. Since the
15522 // implicit default constructor is suppressed if there are any
15523 // user-declared constructors, we just need to check that there is a
15524 // trivial default constructor and a trivial copy constructor. (We don't
15525 // worry about move constructors here, since this is a C++98 check.)
15526 if (RDecl->hasNonTrivialCopyConstructor())
15527 member = CXXCopyConstructor;
15528 else if (!RDecl->hasTrivialDefaultConstructor())
15529 member = CXXDefaultConstructor;
15530 else if (RDecl->hasNonTrivialCopyAssignment())
15531 member = CXXCopyAssignment;
15532 else if (RDecl->hasNonTrivialDestructor())
15533 member = CXXDestructor;
15534
15535 if (member != CXXInvalid) {
15536 if (!getLangOpts().CPlusPlus11 &&
15537 getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
15538 // Objective-C++ ARC: it is an error to have a non-trivial field of
15539 // a union. However, system headers in Objective-C programs
15540 // occasionally have Objective-C lifetime objects within unions,
15541 // and rather than cause the program to fail, we make those
15542 // members unavailable.
15543 SourceLocation Loc = FD->getLocation();
15544 if (getSourceManager().isInSystemHeader(Loc)) {
15545 if (!FD->hasAttr<UnavailableAttr>())
15546 FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
15547 UnavailableAttr::IR_ARCFieldWithOwnership, Loc));
15548 return false;
15549 }
15550 }
15551
15552 Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
15553 diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
15554 diag::err_illegal_union_or_anon_struct_member)
15555 << FD->getParent()->isUnion() << FD->getDeclName() << member;
15556 DiagnoseNontrivial(RDecl, member);
15557 return !getLangOpts().CPlusPlus11;
15558 }
15559 }
15560 }
15561
15562 return false;
15563}
15564
15565/// TranslateIvarVisibility - Translate visibility from a token ID to an
15566/// AST enum value.
15567static ObjCIvarDecl::AccessControl
15568TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
15569 switch (ivarVisibility) {
15570 default: llvm_unreachable("Unknown visitibility kind")::llvm::llvm_unreachable_internal("Unknown visitibility kind"
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 15570)
;
15571 case tok::objc_private: return ObjCIvarDecl::Private;
15572 case tok::objc_public: return ObjCIvarDecl::Public;
15573 case tok::objc_protected: return ObjCIvarDecl::Protected;
15574 case tok::objc_package: return ObjCIvarDecl::Package;
15575 }
15576}
15577
15578/// ActOnIvar - Each ivar field of an objective-c class is passed into this
15579/// in order to create an IvarDecl object for it.
15580Decl *Sema::ActOnIvar(Scope *S,
15581 SourceLocation DeclStart,
15582 Declarator &D, Expr *BitfieldWidth,
15583 tok::ObjCKeywordKind Visibility) {
15584
15585 IdentifierInfo *II = D.getIdentifier();
15586 Expr *BitWidth = (Expr*)BitfieldWidth;
15587 SourceLocation Loc = DeclStart;
15588 if (II) Loc = D.getIdentifierLoc();
15589
15590 // FIXME: Unnamed fields can be handled in various different ways, for
15591 // example, unnamed unions inject all members into the struct namespace!
15592
15593 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
15594 QualType T = TInfo->getType();
15595
15596 if (BitWidth) {
15597 // 6.7.2.1p3, 6.7.2.1p4
15598 BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get();
15599 if (!BitWidth)
15600 D.setInvalidType();
15601 } else {
15602 // Not a bitfield.
15603
15604 // validate II.
15605
15606 }
15607 if (T->isReferenceType()) {
15608 Diag(Loc, diag::err_ivar_reference_type);
15609 D.setInvalidType();
15610 }
15611 // C99 6.7.2.1p8: A member of a structure or union may have any type other
15612 // than a variably modified type.
15613 else if (T->isVariablyModifiedType()) {
15614 Diag(Loc, diag::err_typecheck_ivar_variable_size);
15615 D.setInvalidType();
15616 }
15617
15618 // Get the visibility (access control) for this ivar.
15619 ObjCIvarDecl::AccessControl ac =
15620 Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
15621 : ObjCIvarDecl::None;
15622 // Must set ivar's DeclContext to its enclosing interface.
15623 ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
15624 if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
15625 return nullptr;
15626 ObjCContainerDecl *EnclosingContext;
15627 if (ObjCImplementationDecl *IMPDecl =
15628 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
15629 if (LangOpts.ObjCRuntime.isFragile()) {
15630 // Case of ivar declared in an implementation. Context is that of its class.
15631 EnclosingContext = IMPDecl->getClassInterface();
15632 assert(EnclosingContext && "Implementation has no class interface!")((EnclosingContext && "Implementation has no class interface!"
) ? static_cast<void> (0) : __assert_fail ("EnclosingContext && \"Implementation has no class interface!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 15632, __PRETTY_FUNCTION__))
;
15633 }
15634 else
15635 EnclosingContext = EnclosingDecl;
15636 } else {
15637 if (ObjCCategoryDecl *CDecl =
15638 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
15639 if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
15640 Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
15641 return nullptr;
15642 }
15643 }
15644 EnclosingContext = EnclosingDecl;
15645 }
15646
15647 // Construct the decl.
15648 ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
15649 DeclStart, Loc, II, T,
15650 TInfo, ac, (Expr *)BitfieldWidth);
15651
15652 if (II) {
15653 NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
15654 ForVisibleRedeclaration);
15655 if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
15656 && !isa<TagDecl>(PrevDecl)) {
15657 Diag(Loc, diag::err_duplicate_member) << II;
15658 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
15659 NewID->setInvalidDecl();
15660 }
15661 }
15662
15663 // Process attributes attached to the ivar.
15664 ProcessDeclAttributes(S, NewID, D);
15665
15666 if (D.isInvalidType())
15667 NewID->setInvalidDecl();
15668
15669 // In ARC, infer 'retaining' for ivars of retainable type.
15670 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
15671 NewID->setInvalidDecl();
15672
15673 if (D.getDeclSpec().isModulePrivateSpecified())
15674 NewID->setModulePrivate();
15675
15676 if (II) {
15677 // FIXME: When interfaces are DeclContexts, we'll need to add
15678 // these to the interface.
15679 S->AddDecl(NewID);
15680 IdResolver.AddDecl(NewID);
15681 }
15682
15683 if (LangOpts.ObjCRuntime.isNonFragile() &&
15684 !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
15685 Diag(Loc, diag::warn_ivars_in_interface);
15686
15687 return NewID;
15688}
15689
15690/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
15691/// class and class extensions. For every class \@interface and class
15692/// extension \@interface, if the last ivar is a bitfield of any type,
15693/// then add an implicit `char :0` ivar to the end of that interface.
15694void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
15695 SmallVectorImpl<Decl *> &AllIvarDecls) {
15696 if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
15697 return;
15698
15699 Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
15700 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
15701
15702 if (!Ivar->isBitField() || Ivar->isZeroLengthBitField(Context))
15703 return;
15704 ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
15705 if (!ID) {
15706 if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
15707 if (!CD->IsClassExtension())
15708 return;
15709 }
15710 // No need to add this to end of @implementation.
15711 else
15712 return;
15713 }
15714 // All conditions are met. Add a new bitfield to the tail end of ivars.
15715 llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
15716 Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
15717
15718 Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
15719 DeclLoc, DeclLoc, nullptr,
15720 Context.CharTy,
15721 Context.getTrivialTypeSourceInfo(Context.CharTy,
15722 DeclLoc),
15723 ObjCIvarDecl::Private, BW,
15724 true);
15725 AllIvarDecls.push_back(Ivar);
15726}
15727
15728void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
15729 ArrayRef<Decl *> Fields, SourceLocation LBrac,
15730 SourceLocation RBrac,
15731 const ParsedAttributesView &Attrs) {
15732 assert(EnclosingDecl && "missing record or interface decl")((EnclosingDecl && "missing record or interface decl"
) ? static_cast<void> (0) : __assert_fail ("EnclosingDecl && \"missing record or interface decl\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 15732, __PRETTY_FUNCTION__))
;
15733
15734 // If this is an Objective-C @implementation or category and we have
15735 // new fields here we should reset the layout of the interface since
15736 // it will now change.
15737 if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
15738 ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
15739 switch (DC->getKind()) {
15740 default: break;
15741 case Decl::ObjCCategory:
15742 Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
15743 break;
15744 case Decl::ObjCImplementation:
15745 Context.
15746 ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
15747 break;
15748 }
15749 }
15750
15751 RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
15752 CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(EnclosingDecl);
15753
15754 // Start counting up the number of named members; make sure to include
15755 // members of anonymous structs and unions in the total.
15756 unsigned NumNamedMembers = 0;
15757 if (Record) {
15758 for (const auto *I : Record->decls()) {
15759 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
15760 if (IFD->getDeclName())
15761 ++NumNamedMembers;
15762 }
15763 }
15764
15765 // Verify that all the fields are okay.
15766 SmallVector<FieldDecl*, 32> RecFields;
15767
15768 bool ObjCFieldLifetimeErrReported = false;
15769 for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
15770 i != end; ++i) {
15771 FieldDecl *FD = cast<FieldDecl>(*i);
15772
15773 // Get the type for the field.
15774 const Type *FDTy = FD->getType().getTypePtr();
15775
15776 if (!FD->isAnonymousStructOrUnion()) {
15777 // Remember all fields written by the user.
15778 RecFields.push_back(FD);
15779 }
15780
15781 // If the field is already invalid for some reason, don't emit more
15782 // diagnostics about it.
15783 if (FD->isInvalidDecl()) {
15784 EnclosingDecl->setInvalidDecl();
15785 continue;
15786 }
15787
15788 // C99 6.7.2.1p2:
15789 // A structure or union shall not contain a member with
15790 // incomplete or function type (hence, a structure shall not
15791 // contain an instance of itself, but may contain a pointer to
15792 // an instance of itself), except that the last member of a
15793 // structure with more than one named member may have incomplete
15794 // array type; such a structure (and any union containing,
15795 // possibly recursively, a member that is such a structure)
15796 // shall not be a member of a structure or an element of an
15797 // array.
15798 bool IsLastField = (i + 1 == Fields.end());
15799 if (FDTy->isFunctionType()) {
15800 // Field declared as a function.
15801 Diag(FD->getLocation(), diag::err_field_declared_as_function)
15802 << FD->getDeclName();
15803 FD->setInvalidDecl();
15804 EnclosingDecl->setInvalidDecl();
15805 continue;
15806 } else if (FDTy->isIncompleteArrayType() &&
15807 (Record || isa<ObjCContainerDecl>(EnclosingDecl))) {
15808 if (Record) {
15809 // Flexible array member.
15810 // Microsoft and g++ is more permissive regarding flexible array.
15811 // It will accept flexible array in union and also
15812 // as the sole element of a struct/class.
15813 unsigned DiagID = 0;
15814 if (!Record->isUnion() && !IsLastField) {
15815 Diag(FD->getLocation(), diag::err_flexible_array_not_at_end)
15816 << FD->getDeclName() << FD->getType() << Record->getTagKind();
15817 Diag((*(i + 1))->getLocation(), diag::note_next_field_declaration);
15818 FD->setInvalidDecl();
15819 EnclosingDecl->setInvalidDecl();
15820 continue;
15821 } else if (Record->isUnion())
15822 DiagID = getLangOpts().MicrosoftExt
15823 ? diag::ext_flexible_array_union_ms
15824 : getLangOpts().CPlusPlus
15825 ? diag::ext_flexible_array_union_gnu
15826 : diag::err_flexible_array_union;
15827 else if (NumNamedMembers < 1)
15828 DiagID = getLangOpts().MicrosoftExt
15829 ? diag::ext_flexible_array_empty_aggregate_ms
15830 : getLangOpts().CPlusPlus
15831 ? diag::ext_flexible_array_empty_aggregate_gnu
15832 : diag::err_flexible_array_empty_aggregate;
15833
15834 if (DiagID)
15835 Diag(FD->getLocation(), DiagID) << FD->getDeclName()
15836 << Record->getTagKind();
15837 // While the layout of types that contain virtual bases is not specified
15838 // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
15839 // virtual bases after the derived members. This would make a flexible
15840 // array member declared at the end of an object not adjacent to the end
15841 // of the type.
15842 if (CXXRecord && CXXRecord->getNumVBases() != 0)
15843 Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
15844 << FD->getDeclName() << Record->getTagKind();
15845 if (!getLangOpts().C99)
15846 Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
15847 << FD->getDeclName() << Record->getTagKind();
15848
15849 // If the element type has a non-trivial destructor, we would not
15850 // implicitly destroy the elements, so disallow it for now.
15851 //
15852 // FIXME: GCC allows this. We should probably either implicitly delete
15853 // the destructor of the containing class, or just allow this.
15854 QualType BaseElem = Context.getBaseElementType(FD->getType());
15855 if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
15856 Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
15857 << FD->getDeclName() << FD->getType();
15858 FD->setInvalidDecl();
15859 EnclosingDecl->setInvalidDecl();
15860 continue;
15861 }
15862 // Okay, we have a legal flexible array member at the end of the struct.
15863 Record->setHasFlexibleArrayMember(true);
15864 } else {
15865 // In ObjCContainerDecl ivars with incomplete array type are accepted,
15866 // unless they are followed by another ivar. That check is done
15867 // elsewhere, after synthesized ivars are known.
15868 }
15869 } else if (!FDTy->isDependentType() &&
15870 RequireCompleteType(FD->getLocation(), FD->getType(),
15871 diag::err_field_incomplete)) {
15872 // Incomplete type
15873 FD->setInvalidDecl();
15874 EnclosingDecl->setInvalidDecl();
15875 continue;
15876 } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
15877 if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) {
15878 // A type which contains a flexible array member is considered to be a
15879 // flexible array member.
15880 Record->setHasFlexibleArrayMember(true);
15881 if (!Record->isUnion()) {
15882 // If this is a struct/class and this is not the last element, reject
15883 // it. Note that GCC supports variable sized arrays in the middle of
15884 // structures.
15885 if (!IsLastField)
15886 Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
15887 << FD->getDeclName() << FD->getType();
15888 else {
15889 // We support flexible arrays at the end of structs in
15890 // other structs as an extension.
15891 Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
15892 << FD->getDeclName();
15893 }
15894 }
15895 }
15896 if (isa<ObjCContainerDecl>(EnclosingDecl) &&
15897 RequireNonAbstractType(FD->getLocation(), FD->getType(),
15898 diag::err_abstract_type_in_decl,
15899 AbstractIvarType)) {
15900 // Ivars can not have abstract class types
15901 FD->setInvalidDecl();
15902 }
15903 if (Record && FDTTy->getDecl()->hasObjectMember())
15904 Record->setHasObjectMember(true);
15905 if (Record && FDTTy->getDecl()->hasVolatileMember())
15906 Record->setHasVolatileMember(true);
15907 } else if (FDTy->isObjCObjectType()) {
15908 /// A field cannot be an Objective-c object
15909 Diag(FD->getLocation(), diag::err_statically_allocated_object)
15910 << FixItHint::CreateInsertion(FD->getLocation(), "*");
15911 QualType T = Context.getObjCObjectPointerType(FD->getType());
15912 FD->setType(T);
15913 } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() &&
15914 Record && !ObjCFieldLifetimeErrReported && Record->isUnion()) {
15915 // It's an error in ARC or Weak if a field has lifetime.
15916 // We don't want to report this in a system header, though,
15917 // so we just make the field unavailable.
15918 // FIXME: that's really not sufficient; we need to make the type
15919 // itself invalid to, say, initialize or copy.
15920 QualType T = FD->getType();
15921 if (T.hasNonTrivialObjCLifetime()) {
15922 SourceLocation loc = FD->getLocation();
15923 if (getSourceManager().isInSystemHeader(loc)) {
15924 if (!FD->hasAttr<UnavailableAttr>()) {
15925 FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
15926 UnavailableAttr::IR_ARCFieldWithOwnership, loc));
15927 }
15928 } else {
15929 Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
15930 << T->isBlockPointerType() << Record->getTagKind();
15931 }
15932 ObjCFieldLifetimeErrReported = true;
15933 }
15934 } else if (getLangOpts().ObjC &&
15935 getLangOpts().getGC() != LangOptions::NonGC &&
15936 Record && !Record->hasObjectMember()) {
15937 if (FD->getType()->isObjCObjectPointerType() ||
15938 FD->getType().isObjCGCStrong())
15939 Record->setHasObjectMember(true);
15940 else if (Context.getAsArrayType(FD->getType())) {
15941 QualType BaseType = Context.getBaseElementType(FD->getType());
15942 if (BaseType->isRecordType() &&
15943 BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
15944 Record->setHasObjectMember(true);
15945 else if (BaseType->isObjCObjectPointerType() ||
15946 BaseType.isObjCGCStrong())
15947 Record->setHasObjectMember(true);
15948 }
15949 }
15950
15951 if (Record && !getLangOpts().CPlusPlus && !FD->hasAttr<UnavailableAttr>()) {
15952 QualType FT = FD->getType();
15953 if (FT.isNonTrivialToPrimitiveDefaultInitialize())
15954 Record->setNonTrivialToPrimitiveDefaultInitialize(true);
15955 QualType::PrimitiveCopyKind PCK = FT.isNonTrivialToPrimitiveCopy();
15956 if (PCK != QualType::PCK_Trivial && PCK != QualType::PCK_VolatileTrivial)
15957 Record->setNonTrivialToPrimitiveCopy(true);
15958 if (FT.isDestructedType()) {
15959 Record->setNonTrivialToPrimitiveDestroy(true);
15960 Record->setParamDestroyedInCallee(true);
15961 }
15962
15963 if (const auto *RT = FT->getAs<RecordType>()) {
15964 if (RT->getDecl()->getArgPassingRestrictions() ==
15965 RecordDecl::APK_CanNeverPassInRegs)
15966 Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
15967 } else if (FT.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak)
15968 Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
15969 }
15970
15971 if (Record && FD->getType().isVolatileQualified())
15972 Record->setHasVolatileMember(true);
15973 // Keep track of the number of named members.
15974 if (FD->getIdentifier())
15975 ++NumNamedMembers;
15976 }
15977
15978 // Okay, we successfully defined 'Record'.
15979 if (Record) {
15980 bool Completed = false;
15981 if (CXXRecord) {
15982 if (!CXXRecord->isInvalidDecl()) {
15983 // Set access bits correctly on the directly-declared conversions.
15984 for (CXXRecordDecl::conversion_iterator
15985 I = CXXRecord->conversion_begin(),
15986 E = CXXRecord->conversion_end(); I != E; ++I)
15987 I.setAccess((*I)->getAccess());
15988 }
15989
15990 if (!CXXRecord->isDependentType()) {
15991 // Add any implicitly-declared members to this class.
15992 AddImplicitlyDeclaredMembersToClass(CXXRecord);
15993
15994 if (!CXXRecord->isInvalidDecl()) {
15995 // If we have virtual base classes, we may end up finding multiple
15996 // final overriders for a given virtual function. Check for this
15997 // problem now.
15998 if (CXXRecord->getNumVBases()) {
15999 CXXFinalOverriderMap FinalOverriders;
16000 CXXRecord->getFinalOverriders(FinalOverriders);
16001
16002 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
16003 MEnd = FinalOverriders.end();
16004 M != MEnd; ++M) {
16005 for (OverridingMethods::iterator SO = M->second.begin(),
16006 SOEnd = M->second.end();
16007 SO != SOEnd; ++SO) {
16008 assert(SO->second.size() > 0 &&((SO->second.size() > 0 && "Virtual function without overriding functions?"
) ? static_cast<void> (0) : __assert_fail ("SO->second.size() > 0 && \"Virtual function without overriding functions?\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 16009, __PRETTY_FUNCTION__))
16009 "Virtual function without overriding functions?")((SO->second.size() > 0 && "Virtual function without overriding functions?"
) ? static_cast<void> (0) : __assert_fail ("SO->second.size() > 0 && \"Virtual function without overriding functions?\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 16009, __PRETTY_FUNCTION__))
;
16010 if (SO->second.size() == 1)
16011 continue;
16012
16013 // C++ [class.virtual]p2:
16014 // In a derived class, if a virtual member function of a base
16015 // class subobject has more than one final overrider the
16016 // program is ill-formed.
16017 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
16018 << (const NamedDecl *)M->first << Record;
16019 Diag(M->first->getLocation(),
16020 diag::note_overridden_virtual_function);
16021 for (OverridingMethods::overriding_iterator
16022 OM = SO->second.begin(),
16023 OMEnd = SO->second.end();
16024 OM != OMEnd; ++OM)
16025 Diag(OM->Method->getLocation(), diag::note_final_overrider)
16026 << (const NamedDecl *)M->first << OM->Method->getParent();
16027
16028 Record->setInvalidDecl();
16029 }
16030 }
16031 CXXRecord->completeDefinition(&FinalOverriders);
16032 Completed = true;
16033 }
16034 }
16035 }
16036 }
16037
16038 if (!Completed)
16039 Record->completeDefinition();
16040
16041 // Handle attributes before checking the layout.
16042 ProcessDeclAttributeList(S, Record, Attrs);
16043
16044 // We may have deferred checking for a deleted destructor. Check now.
16045 if (CXXRecord) {
16046 auto *Dtor = CXXRecord->getDestructor();
16047 if (Dtor && Dtor->isImplicit() &&
16048 ShouldDeleteSpecialMember(Dtor, CXXDestructor)) {
16049 CXXRecord->setImplicitDestructorIsDeleted();
16050 SetDeclDeleted(Dtor, CXXRecord->getLocation());
16051 }
16052 }
16053
16054 if (Record->hasAttrs()) {
16055 CheckAlignasUnderalignment(Record);
16056
16057 if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
16058 checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
16059 IA->getRange(), IA->getBestCase(),
16060 IA->getSemanticSpelling());
16061 }
16062
16063 // Check if the structure/union declaration is a type that can have zero
16064 // size in C. For C this is a language extension, for C++ it may cause
16065 // compatibility problems.
16066 bool CheckForZeroSize;
16067 if (!getLangOpts().CPlusPlus) {
16068 CheckForZeroSize = true;
16069 } else {
16070 // For C++ filter out types that cannot be referenced in C code.
16071 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
16072 CheckForZeroSize =
16073 CXXRecord->getLexicalDeclContext()->isExternCContext() &&
16074 !CXXRecord->isDependentType() &&
16075 CXXRecord->isCLike();
16076 }
16077 if (CheckForZeroSize) {
16078 bool ZeroSize = true;
16079 bool IsEmpty = true;
16080 unsigned NonBitFields = 0;
16081 for (RecordDecl::field_iterator I = Record->field_begin(),
16082 E = Record->field_end();
16083 (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
16084 IsEmpty = false;
16085 if (I->isUnnamedBitfield()) {
16086 if (!I->isZeroLengthBitField(Context))
16087 ZeroSize = false;
16088 } else {
16089 ++NonBitFields;
16090 QualType FieldType = I->getType();
16091 if (FieldType->isIncompleteType() ||
16092 !Context.getTypeSizeInChars(FieldType).isZero())
16093 ZeroSize = false;
16094 }
16095 }
16096
16097 // Empty structs are an extension in C (C99 6.7.2.1p7). They are
16098 // allowed in C++, but warn if its declaration is inside
16099 // extern "C" block.
16100 if (ZeroSize) {
16101 Diag(RecLoc, getLangOpts().CPlusPlus ?
16102 diag::warn_zero_size_struct_union_in_extern_c :
16103 diag::warn_zero_size_struct_union_compat)
16104 << IsEmpty << Record->isUnion() << (NonBitFields > 1);
16105 }
16106
16107 // Structs without named members are extension in C (C99 6.7.2.1p7),
16108 // but are accepted by GCC.
16109 if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
16110 Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
16111 diag::ext_no_named_members_in_struct_union)
16112 << Record->isUnion();
16113 }
16114 }
16115 } else {
16116 ObjCIvarDecl **ClsFields =
16117 reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
16118 if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
16119 ID->setEndOfDefinitionLoc(RBrac);
16120 // Add ivar's to class's DeclContext.
16121 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
16122 ClsFields[i]->setLexicalDeclContext(ID);
16123 ID->addDecl(ClsFields[i]);
16124 }
16125 // Must enforce the rule that ivars in the base classes may not be
16126 // duplicates.
16127 if (ID->getSuperClass())
16128 DiagnoseDuplicateIvars(ID, ID->getSuperClass());
16129 } else if (ObjCImplementationDecl *IMPDecl =
16130 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
16131 assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl")((IMPDecl && "ActOnFields - missing ObjCImplementationDecl"
) ? static_cast<void> (0) : __assert_fail ("IMPDecl && \"ActOnFields - missing ObjCImplementationDecl\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 16131, __PRETTY_FUNCTION__))
;
16132 for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
16133 // Ivar declared in @implementation never belongs to the implementation.
16134 // Only it is in implementation's lexical context.
16135 ClsFields[I]->setLexicalDeclContext(IMPDecl);
16136 CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
16137 IMPDecl->setIvarLBraceLoc(LBrac);
16138 IMPDecl->setIvarRBraceLoc(RBrac);
16139 } else if (ObjCCategoryDecl *CDecl =
16140 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
16141 // case of ivars in class extension; all other cases have been
16142 // reported as errors elsewhere.
16143 // FIXME. Class extension does not have a LocEnd field.
16144 // CDecl->setLocEnd(RBrac);
16145 // Add ivar's to class extension's DeclContext.
16146 // Diagnose redeclaration of private ivars.
16147 ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
16148 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
16149 if (IDecl) {
16150 if (const ObjCIvarDecl *ClsIvar =
16151 IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
16152 Diag(ClsFields[i]->getLocation(),
16153 diag::err_duplicate_ivar_declaration);
16154 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
16155 continue;
16156 }
16157 for (const auto *Ext : IDecl->known_extensions()) {
16158 if (const ObjCIvarDecl *ClsExtIvar
16159 = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
16160 Diag(ClsFields[i]->getLocation(),
16161 diag::err_duplicate_ivar_declaration);
16162 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
16163 continue;
16164 }
16165 }
16166 }
16167 ClsFields[i]->setLexicalDeclContext(CDecl);
16168 CDecl->addDecl(ClsFields[i]);
16169 }
16170 CDecl->setIvarLBraceLoc(LBrac);
16171 CDecl->setIvarRBraceLoc(RBrac);
16172 }
16173 }
16174}
16175
16176/// Determine whether the given integral value is representable within
16177/// the given type T.
16178static bool isRepresentableIntegerValue(ASTContext &Context,
16179 llvm::APSInt &Value,
16180 QualType T) {
16181 assert((T->isIntegralType(Context) || T->isEnumeralType()) &&(((T->isIntegralType(Context) || T->isEnumeralType()) &&
"Integral type required!") ? static_cast<void> (0) : __assert_fail
("(T->isIntegralType(Context) || T->isEnumeralType()) && \"Integral type required!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 16182, __PRETTY_FUNCTION__))
16182 "Integral type required!")(((T->isIntegralType(Context) || T->isEnumeralType()) &&
"Integral type required!") ? static_cast<void> (0) : __assert_fail
("(T->isIntegralType(Context) || T->isEnumeralType()) && \"Integral type required!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 16182, __PRETTY_FUNCTION__))
;
16183 unsigned BitWidth = Context.getIntWidth(T);
16184
16185 if (Value.isUnsigned() || Value.isNonNegative()) {
16186 if (T->isSignedIntegerOrEnumerationType())
16187 --BitWidth;
16188 return Value.getActiveBits() <= BitWidth;
16189 }
16190 return Value.getMinSignedBits() <= BitWidth;
16191}
16192
16193// Given an integral type, return the next larger integral type
16194// (or a NULL type of no such type exists).
16195static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
16196 // FIXME: Int128/UInt128 support, which also needs to be introduced into
16197 // enum checking below.
16198 assert((T->isIntegralType(Context) ||(((T->isIntegralType(Context) || T->isEnumeralType()) &&
"Integral type required!") ? static_cast<void> (0) : __assert_fail
("(T->isIntegralType(Context) || T->isEnumeralType()) && \"Integral type required!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 16199, __PRETTY_FUNCTION__))
16199 T->isEnumeralType()) && "Integral type required!")(((T->isIntegralType(Context) || T->isEnumeralType()) &&
"Integral type required!") ? static_cast<void> (0) : __assert_fail
("(T->isIntegralType(Context) || T->isEnumeralType()) && \"Integral type required!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 16199, __PRETTY_FUNCTION__))
;
16200 const unsigned NumTypes = 4;
16201 QualType SignedIntegralTypes[NumTypes] = {
16202 Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
16203 };
16204 QualType UnsignedIntegralTypes[NumTypes] = {
16205 Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
16206 Context.UnsignedLongLongTy
16207 };
16208
16209 unsigned BitWidth = Context.getTypeSize(T);
16210 QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
16211 : UnsignedIntegralTypes;
16212 for (unsigned I = 0; I != NumTypes; ++I)
16213 if (Context.getTypeSize(Types[I]) > BitWidth)
16214 return Types[I];
16215
16216 return QualType();
16217}
16218
16219EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
16220 EnumConstantDecl *LastEnumConst,
16221 SourceLocation IdLoc,
16222 IdentifierInfo *Id,
16223 Expr *Val) {
16224 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
16225 llvm::APSInt EnumVal(IntWidth);
16226 QualType EltTy;
16227
16228 if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
16229 Val = nullptr;
16230
16231 if (Val)
16232 Val = DefaultLvalueConversion(Val).get();
16233
16234 if (Val) {
16235 if (Enum->isDependentType() || Val->isTypeDependent())
16236 EltTy = Context.DependentTy;
16237 else {
16238 if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
16239 !getLangOpts().MSVCCompat) {
16240 // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
16241 // constant-expression in the enumerator-definition shall be a converted
16242 // constant expression of the underlying type.
16243 EltTy = Enum->getIntegerType();
16244 ExprResult Converted =
16245 CheckConvertedConstantExpression(Val, EltTy, EnumVal,
16246 CCEK_Enumerator);
16247 if (Converted.isInvalid())
16248 Val = nullptr;
16249 else
16250 Val = Converted.get();
16251 } else if (!Val->isValueDependent() &&
16252 !(Val = VerifyIntegerConstantExpression(Val,
16253 &EnumVal).get())) {
16254 // C99 6.7.2.2p2: Make sure we have an integer constant expression.
16255 } else {
16256 if (Enum->isComplete()) {
16257 EltTy = Enum->getIntegerType();
16258
16259 // In Obj-C and Microsoft mode, require the enumeration value to be
16260 // representable in the underlying type of the enumeration. In C++11,
16261 // we perform a non-narrowing conversion as part of converted constant
16262 // expression checking.
16263 if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
16264 if (getLangOpts().MSVCCompat) {
16265 Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
16266 Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).get();
16267 } else
16268 Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
16269 } else
16270 Val = ImpCastExprToType(Val, EltTy,
16271 EltTy->isBooleanType() ?
16272 CK_IntegralToBoolean : CK_IntegralCast)
16273 .get();
16274 } else if (getLangOpts().CPlusPlus) {
16275 // C++11 [dcl.enum]p5:
16276 // If the underlying type is not fixed, the type of each enumerator
16277 // is the type of its initializing value:
16278 // - If an initializer is specified for an enumerator, the
16279 // initializing value has the same type as the expression.
16280 EltTy = Val->getType();
16281 } else {
16282 // C99 6.7.2.2p2:
16283 // The expression that defines the value of an enumeration constant
16284 // shall be an integer constant expression that has a value
16285 // representable as an int.
16286
16287 // Complain if the value is not representable in an int.
16288 if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
16289 Diag(IdLoc, diag::ext_enum_value_not_int)
16290 << EnumVal.toString(10) << Val->getSourceRange()
16291 << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
16292 else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
16293 // Force the type of the expression to 'int'.
16294 Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
16295 }
16296 EltTy = Val->getType();
16297 }
16298 }
16299 }
16300 }
16301
16302 if (!Val) {
16303 if (Enum->isDependentType())
16304 EltTy = Context.DependentTy;
16305 else if (!LastEnumConst) {
16306 // C++0x [dcl.enum]p5:
16307 // If the underlying type is not fixed, the type of each enumerator
16308 // is the type of its initializing value:
16309 // - If no initializer is specified for the first enumerator, the
16310 // initializing value has an unspecified integral type.
16311 //
16312 // GCC uses 'int' for its unspecified integral type, as does
16313 // C99 6.7.2.2p3.
16314 if (Enum->isFixed()) {
16315 EltTy = Enum->getIntegerType();
16316 }
16317 else {
16318 EltTy = Context.IntTy;
16319 }
16320 } else {
16321 // Assign the last value + 1.
16322 EnumVal = LastEnumConst->getInitVal();
16323 ++EnumVal;
16324 EltTy = LastEnumConst->getType();
16325
16326 // Check for overflow on increment.
16327 if (EnumVal < LastEnumConst->getInitVal()) {
16328 // C++0x [dcl.enum]p5:
16329 // If the underlying type is not fixed, the type of each enumerator
16330 // is the type of its initializing value:
16331 //
16332 // - Otherwise the type of the initializing value is the same as
16333 // the type of the initializing value of the preceding enumerator
16334 // unless the incremented value is not representable in that type,
16335 // in which case the type is an unspecified integral type
16336 // sufficient to contain the incremented value. If no such type
16337 // exists, the program is ill-formed.
16338 QualType T = getNextLargerIntegralType(Context, EltTy);
16339 if (T.isNull() || Enum->isFixed()) {
16340 // There is no integral type larger enough to represent this
16341 // value. Complain, then allow the value to wrap around.
16342 EnumVal = LastEnumConst->getInitVal();
16343 EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
16344 ++EnumVal;
16345 if (Enum->isFixed())
16346 // When the underlying type is fixed, this is ill-formed.
16347 Diag(IdLoc, diag::err_enumerator_wrapped)
16348 << EnumVal.toString(10)
16349 << EltTy;
16350 else
16351 Diag(IdLoc, diag::ext_enumerator_increment_too_large)
16352 << EnumVal.toString(10);
16353 } else {
16354 EltTy = T;
16355 }
16356
16357 // Retrieve the last enumerator's value, extent that type to the
16358 // type that is supposed to be large enough to represent the incremented
16359 // value, then increment.
16360 EnumVal = LastEnumConst->getInitVal();
16361 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
16362 EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
16363 ++EnumVal;
16364
16365 // If we're not in C++, diagnose the overflow of enumerator values,
16366 // which in C99 means that the enumerator value is not representable in
16367 // an int (C99 6.7.2.2p2). However, we support GCC's extension that
16368 // permits enumerator values that are representable in some larger
16369 // integral type.
16370 if (!getLangOpts().CPlusPlus && !T.isNull())
16371 Diag(IdLoc, diag::warn_enum_value_overflow);
16372 } else if (!getLangOpts().CPlusPlus &&
16373 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
16374 // Enforce C99 6.7.2.2p2 even when we compute the next value.
16375 Diag(IdLoc, diag::ext_enum_value_not_int)
16376 << EnumVal.toString(10) << 1;
16377 }
16378 }
16379 }
16380
16381 if (!EltTy->isDependentType()) {
16382 // Make the enumerator value match the signedness and size of the
16383 // enumerator's type.
16384 EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
16385 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
16386 }
16387
16388 return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
16389 Val, EnumVal);
16390}
16391
16392Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
16393 SourceLocation IILoc) {
16394 if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) ||
16395 !getLangOpts().CPlusPlus)
16396 return SkipBodyInfo();
16397
16398 // We have an anonymous enum definition. Look up the first enumerator to
16399 // determine if we should merge the definition with an existing one and
16400 // skip the body.
16401 NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName,
16402 forRedeclarationInCurContext());
16403 auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl);
16404 if (!PrevECD)
16405 return SkipBodyInfo();
16406
16407 EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext());
16408 NamedDecl *Hidden;
16409 if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) {
16410 SkipBodyInfo Skip;
16411 Skip.Previous = Hidden;
16412 return Skip;
16413 }
16414
16415 return SkipBodyInfo();
16416}
16417
16418Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
16419 SourceLocation IdLoc, IdentifierInfo *Id,
16420 const ParsedAttributesView &Attrs,
16421 SourceLocation EqualLoc, Expr *Val) {
16422 EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
16423 EnumConstantDecl *LastEnumConst =
16424 cast_or_null<EnumConstantDecl>(lastEnumConst);
16425
16426 // The scope passed in may not be a decl scope. Zip up the scope tree until
16427 // we find one that is.
16428 S = getNonFieldDeclScope(S);
16429
16430 // Verify that there isn't already something declared with this name in this
16431 // scope.
16432 LookupResult R(*this, Id, IdLoc, LookupOrdinaryName, ForVisibleRedeclaration);
16433 LookupName(R, S);
16434 NamedDecl *PrevDecl = R.getAsSingle<NamedDecl>();
16435
16436 if (PrevDecl && PrevDecl->isTemplateParameter()) {
16437 // Maybe we will complain about the shadowed template parameter.
16438 DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
16439 // Just pretend that we didn't see the previous declaration.
16440 PrevDecl = nullptr;
16441 }
16442
16443 // C++ [class.mem]p15:
16444 // If T is the name of a class, then each of the following shall have a name
16445 // different from T:
16446 // - every enumerator of every member of class T that is an unscoped
16447 // enumerated type
16448 if (getLangOpts().CPlusPlus && !TheEnumDecl->isScoped())
16449 DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(),
16450 DeclarationNameInfo(Id, IdLoc));
16451
16452 EnumConstantDecl *New =
16453 CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
16454 if (!New)
16455 return nullptr;
16456
16457 if (PrevDecl) {
16458 if (!TheEnumDecl->isScoped() && isa<ValueDecl>(PrevDecl)) {
16459 // Check for other kinds of shadowing not already handled.
16460 CheckShadow(New, PrevDecl, R);
16461 }
16462
16463 // When in C++, we may get a TagDecl with the same name; in this case the
16464 // enum constant will 'hide' the tag.
16465 assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&(((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
"Received TagDecl when not in C++!") ? static_cast<void>
(0) : __assert_fail ("(getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) && \"Received TagDecl when not in C++!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 16466, __PRETTY_FUNCTION__))
16466 "Received TagDecl when not in C++!")(((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
"Received TagDecl when not in C++!") ? static_cast<void>
(0) : __assert_fail ("(getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) && \"Received TagDecl when not in C++!\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 16466, __PRETTY_FUNCTION__))
;
16467 if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
16468 if (isa<EnumConstantDecl>(PrevDecl))
16469 Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
16470 else
16471 Diag(IdLoc, diag::err_redefinition) << Id;
16472 notePreviousDefinition(PrevDecl, IdLoc);
16473 return nullptr;
16474 }
16475 }
16476
16477 // Process attributes.
16478 ProcessDeclAttributeList(S, New, Attrs);
16479 AddPragmaAttributes(S, New);
16480
16481 // Register this decl in the current scope stack.
16482 New->setAccess(TheEnumDecl->getAccess());
16483 PushOnScopeChains(New, S);
16484
16485 ActOnDocumentableDecl(New);
16486
16487 return New;
16488}
16489
16490// Returns true when the enum initial expression does not trigger the
16491// duplicate enum warning. A few common cases are exempted as follows:
16492// Element2 = Element1
16493// Element2 = Element1 + 1
16494// Element2 = Element1 - 1
16495// Where Element2 and Element1 are from the same enum.
16496static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
16497 Expr *InitExpr = ECD->getInitExpr();
16498 if (!InitExpr)
16499 return true;
16500 InitExpr = InitExpr->IgnoreImpCasts();
16501
16502 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
16503 if (!BO->isAdditiveOp())
16504 return true;
16505 IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
16506 if (!IL)
16507 return true;
16508 if (IL->getValue() != 1)
16509 return true;
16510
16511 InitExpr = BO->getLHS();
16512 }
16513
16514 // This checks if the elements are from the same enum.
16515 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
16516 if (!DRE)
16517 return true;
16518
16519 EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
16520 if (!EnumConstant)
16521 return true;
16522
16523 if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
16524 Enum)
16525 return true;
16526
16527 return false;
16528}
16529
16530// Emits a warning when an element is implicitly set a value that
16531// a previous element has already been set to.
16532static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
16533 EnumDecl *Enum, QualType EnumType) {
16534 // Avoid anonymous enums
16535 if (!Enum->getIdentifier())
16536 return;
16537
16538 // Only check for small enums.
16539 if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
16540 return;
16541
16542 if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
16543 return;
16544
16545 typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
16546 typedef SmallVector<std::unique_ptr<ECDVector>, 3> DuplicatesVector;
16547
16548 typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
16549 typedef std::unordered_map<int64_t, DeclOrVector> ValueToVectorMap;
16550
16551 // Use int64_t as a key to avoid needing special handling for DenseMap keys.
16552 auto EnumConstantToKey = [](const EnumConstantDecl *D) {
16553 llvm::APSInt Val = D->getInitVal();
16554 return Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue();
16555 };
16556
16557 DuplicatesVector DupVector;
16558 ValueToVectorMap EnumMap;
16559
16560 // Populate the EnumMap with all values represented by enum constants without
16561 // an initializer.
16562 for (auto *Element : Elements) {
16563 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Element);
16564
16565 // Null EnumConstantDecl means a previous diagnostic has been emitted for
16566 // this constant. Skip this enum since it may be ill-formed.
16567 if (!ECD) {
16568 return;
16569 }
16570
16571 // Constants with initalizers are handled in the next loop.
16572 if (ECD->getInitExpr())
16573 continue;
16574
16575 // Duplicate values are handled in the next loop.
16576 EnumMap.insert({EnumConstantToKey(ECD), ECD});
16577 }
16578
16579 if (EnumMap.size() == 0)
16580 return;
16581
16582 // Create vectors for any values that has duplicates.
16583 for (auto *Element : Elements) {
16584 // The last loop returned if any constant was null.
16585 EnumConstantDecl *ECD = cast<EnumConstantDecl>(Element);
16586 if (!ValidDuplicateEnum(ECD, Enum))
16587 continue;
16588
16589 auto Iter = EnumMap.find(EnumConstantToKey(ECD));
16590 if (Iter == EnumMap.end())
16591 continue;
16592
16593 DeclOrVector& Entry = Iter->second;
16594 if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
16595 // Ensure constants are different.
16596 if (D == ECD)
16597 continue;
16598
16599 // Create new vector and push values onto it.
16600 auto Vec = llvm::make_unique<ECDVector>();
16601 Vec->push_back(D);
16602 Vec->push_back(ECD);
16603
16604 // Update entry to point to the duplicates vector.
16605 Entry = Vec.get();
16606
16607 // Store the vector somewhere we can consult later for quick emission of
16608 // diagnostics.
16609 DupVector.emplace_back(std::move(Vec));
16610 continue;
16611 }
16612
16613 ECDVector *Vec = Entry.get<ECDVector*>();
16614 // Make sure constants are not added more than once.
16615 if (*Vec->begin() == ECD)
16616 continue;
16617
16618 Vec->push_back(ECD);
16619 }
16620
16621 // Emit diagnostics.
16622 for (const auto &Vec : DupVector) {
16623 assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.")((Vec->size() > 1 && "ECDVector should have at least 2 elements."
) ? static_cast<void> (0) : __assert_fail ("Vec->size() > 1 && \"ECDVector should have at least 2 elements.\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 16623, __PRETTY_FUNCTION__))
;
16624
16625 // Emit warning for one enum constant.
16626 auto *FirstECD = Vec->front();
16627 S.Diag(FirstECD->getLocation(), diag::warn_duplicate_enum_values)
16628 << FirstECD << FirstECD->getInitVal().toString(10)
16629 << FirstECD->getSourceRange();
16630
16631 // Emit one note for each of the remaining enum constants with
16632 // the same value.
16633 for (auto *ECD : llvm::make_range(Vec->begin() + 1, Vec->end()))
16634 S.Diag(ECD->getLocation(), diag::note_duplicate_element)
16635 << ECD << ECD->getInitVal().toString(10)
16636 << ECD->getSourceRange();
16637 }
16638}
16639
16640bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
16641 bool AllowMask) const {
16642 assert(ED->isClosedFlag() && "looking for value in non-flag or open enum")((ED->isClosedFlag() && "looking for value in non-flag or open enum"
) ? static_cast<void> (0) : __assert_fail ("ED->isClosedFlag() && \"looking for value in non-flag or open enum\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 16642, __PRETTY_FUNCTION__))
;
16643 assert(ED->isCompleteDefinition() && "expected enum definition")((ED->isCompleteDefinition() && "expected enum definition"
) ? static_cast<void> (0) : __assert_fail ("ED->isCompleteDefinition() && \"expected enum definition\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 16643, __PRETTY_FUNCTION__))
;
16644
16645 auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt()));
16646 llvm::APInt &FlagBits = R.first->second;
16647
16648 if (R.second) {
16649 for (auto *E : ED->enumerators()) {
16650 const auto &EVal = E->getInitVal();
16651 // Only single-bit enumerators introduce new flag values.
16652 if (EVal.isPowerOf2())
16653 FlagBits = FlagBits.zextOrSelf(EVal.getBitWidth()) | EVal;
16654 }
16655 }
16656
16657 // A value is in a flag enum if either its bits are a subset of the enum's
16658 // flag bits (the first condition) or we are allowing masks and the same is
16659 // true of its complement (the second condition). When masks are allowed, we
16660 // allow the common idiom of ~(enum1 | enum2) to be a valid enum value.
16661 //
16662 // While it's true that any value could be used as a mask, the assumption is
16663 // that a mask will have all of the insignificant bits set. Anything else is
16664 // likely a logic error.
16665 llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth());
16666 return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val));
16667}
16668
16669void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange,
16670 Decl *EnumDeclX, ArrayRef<Decl *> Elements, Scope *S,
16671 const ParsedAttributesView &Attrs) {
16672 EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
16673 QualType EnumType = Context.getTypeDeclType(Enum);
16674
16675 ProcessDeclAttributeList(S, Enum, Attrs);
16676
16677 if (Enum->isDependentType()) {
16678 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
16679 EnumConstantDecl *ECD =
16680 cast_or_null<EnumConstantDecl>(Elements[i]);
16681 if (!ECD) continue;
16682
16683 ECD->setType(EnumType);
16684 }
16685
16686 Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
16687 return;
16688 }
16689
16690 // TODO: If the result value doesn't fit in an int, it must be a long or long
16691 // long value. ISO C does not support this, but GCC does as an extension,
16692 // emit a warning.
16693 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
16694 unsigned CharWidth = Context.getTargetInfo().getCharWidth();
16695 unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
16696
16697 // Verify that all the values are okay, compute the size of the values, and
16698 // reverse the list.
16699 unsigned NumNegativeBits = 0;
16700 unsigned NumPositiveBits = 0;
16701
16702 // Keep track of whether all elements have type int.
16703 bool AllElementsInt = true;
16704
16705 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
16706 EnumConstantDecl *ECD =
16707 cast_or_null<EnumConstantDecl>(Elements[i]);
16708 if (!ECD) continue; // Already issued a diagnostic.
16709
16710 const llvm::APSInt &InitVal = ECD->getInitVal();
16711
16712 // Keep track of the size of positive and negative values.
16713 if (InitVal.isUnsigned() || InitVal.isNonNegative())
16714 NumPositiveBits = std::max(NumPositiveBits,
16715 (unsigned)InitVal.getActiveBits());
16716 else
16717 NumNegativeBits = std::max(NumNegativeBits,
16718 (unsigned)InitVal.getMinSignedBits());
16719
16720 // Keep track of whether every enum element has type int (very common).
16721 if (AllElementsInt)
16722 AllElementsInt = ECD->getType() == Context.IntTy;
16723 }
16724
16725 // Figure out the type that should be used for this enum.
16726 QualType BestType;
16727 unsigned BestWidth;
16728
16729 // C++0x N3000 [conv.prom]p3:
16730 // An rvalue of an unscoped enumeration type whose underlying
16731 // type is not fixed can be converted to an rvalue of the first
16732 // of the following types that can represent all the values of
16733 // the enumeration: int, unsigned int, long int, unsigned long
16734 // int, long long int, or unsigned long long int.
16735 // C99 6.4.4.3p2:
16736 // An identifier declared as an enumeration constant has type int.
16737 // The C99 rule is modified by a gcc extension
16738 QualType BestPromotionType;
16739
16740 bool Packed = Enum->hasAttr<PackedAttr>();
16741 // -fshort-enums is the equivalent to specifying the packed attribute on all
16742 // enum definitions.
16743 if (LangOpts.ShortEnums)
16744 Packed = true;
16745
16746 // If the enum already has a type because it is fixed or dictated by the
16747 // target, promote that type instead of analyzing the enumerators.
16748 if (Enum->isComplete()) {
16749 BestType = Enum->getIntegerType();
16750 if (BestType->isPromotableIntegerType())
16751 BestPromotionType = Context.getPromotedIntegerType(BestType);
16752 else
16753 BestPromotionType = BestType;
16754
16755 BestWidth = Context.getIntWidth(BestType);
16756 }
16757 else if (NumNegativeBits) {
16758 // If there is a negative value, figure out the smallest integer type (of
16759 // int/long/longlong) that fits.
16760 // If it's packed, check also if it fits a char or a short.
16761 if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
16762 BestType = Context.SignedCharTy;
16763 BestWidth = CharWidth;
16764 } else if (Packed && NumNegativeBits <= ShortWidth &&
16765 NumPositiveBits < ShortWidth) {
16766 BestType = Context.ShortTy;
16767 BestWidth = ShortWidth;
16768 } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
16769 BestType = Context.IntTy;
16770 BestWidth = IntWidth;
16771 } else {
16772 BestWidth = Context.getTargetInfo().getLongWidth();
16773
16774 if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
16775 BestType = Context.LongTy;
16776 } else {
16777 BestWidth = Context.getTargetInfo().getLongLongWidth();
16778
16779 if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
16780 Diag(Enum->getLocation(), diag::ext_enum_too_large);
16781 BestType = Context.LongLongTy;
16782 }
16783 }
16784 BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
16785 } else {
16786 // If there is no negative value, figure out the smallest type that fits
16787 // all of the enumerator values.
16788 // If it's packed, check also if it fits a char or a short.
16789 if (Packed && NumPositiveBits <= CharWidth) {
16790 BestType = Context.UnsignedCharTy;
16791 BestPromotionType = Context.IntTy;
16792 BestWidth = CharWidth;
16793 } else if (Packed && NumPositiveBits <= ShortWidth) {
16794 BestType = Context.UnsignedShortTy;
16795 BestPromotionType = Context.IntTy;
16796 BestWidth = ShortWidth;
16797 } else if (NumPositiveBits <= IntWidth) {
16798 BestType = Context.UnsignedIntTy;
16799 BestWidth = IntWidth;
16800 BestPromotionType
16801 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
16802 ? Context.UnsignedIntTy : Context.IntTy;
16803 } else if (NumPositiveBits <=
16804 (BestWidth = Context.getTargetInfo().getLongWidth())) {
16805 BestType = Context.UnsignedLongTy;
16806 BestPromotionType
16807 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
16808 ? Context.UnsignedLongTy : Context.LongTy;
16809 } else {
16810 BestWidth = Context.getTargetInfo().getLongLongWidth();
16811 assert(NumPositiveBits <= BestWidth &&((NumPositiveBits <= BestWidth && "How could an initializer get larger than ULL?"
) ? static_cast<void> (0) : __assert_fail ("NumPositiveBits <= BestWidth && \"How could an initializer get larger than ULL?\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 16812, __PRETTY_FUNCTION__))
16812 "How could an initializer get larger than ULL?")((NumPositiveBits <= BestWidth && "How could an initializer get larger than ULL?"
) ? static_cast<void> (0) : __assert_fail ("NumPositiveBits <= BestWidth && \"How could an initializer get larger than ULL?\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 16812, __PRETTY_FUNCTION__))
;
16813 BestType = Context.UnsignedLongLongTy;
16814 BestPromotionType
16815 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
16816 ? Context.UnsignedLongLongTy : Context.LongLongTy;
16817 }
16818 }
16819
16820 // Loop over all of the enumerator constants, changing their types to match
16821 // the type of the enum if needed.
16822 for (auto *D : Elements) {
16823 auto *ECD = cast_or_null<EnumConstantDecl>(D);
16824 if (!ECD) continue; // Already issued a diagnostic.
16825
16826 // Standard C says the enumerators have int type, but we allow, as an
16827 // extension, the enumerators to be larger than int size. If each
16828 // enumerator value fits in an int, type it as an int, otherwise type it the
16829 // same as the enumerator decl itself. This means that in "enum { X = 1U }"
16830 // that X has type 'int', not 'unsigned'.
16831
16832 // Determine whether the value fits into an int.
16833 llvm::APSInt InitVal = ECD->getInitVal();
16834
16835 // If it fits into an integer type, force it. Otherwise force it to match
16836 // the enum decl type.
16837 QualType NewTy;
16838 unsigned NewWidth;
16839 bool NewSign;
16840 if (!getLangOpts().CPlusPlus &&
16841 !Enum->isFixed() &&
16842 isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
16843 NewTy = Context.IntTy;
16844 NewWidth = IntWidth;
16845 NewSign = true;
16846 } else if (ECD->getType() == BestType) {
16847 // Already the right type!
16848 if (getLangOpts().CPlusPlus)
16849 // C++ [dcl.enum]p4: Following the closing brace of an
16850 // enum-specifier, each enumerator has the type of its
16851 // enumeration.
16852 ECD->setType(EnumType);
16853 continue;
16854 } else {
16855 NewTy = BestType;
16856 NewWidth = BestWidth;
16857 NewSign = BestType->isSignedIntegerOrEnumerationType();
16858 }
16859
16860 // Adjust the APSInt value.
16861 InitVal = InitVal.extOrTrunc(NewWidth);
16862 InitVal.setIsSigned(NewSign);
16863 ECD->setInitVal(InitVal);
16864
16865 // Adjust the Expr initializer and type.
16866 if (ECD->getInitExpr() &&
16867 !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
16868 ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
16869 CK_IntegralCast,
16870 ECD->getInitExpr(),
16871 /*base paths*/ nullptr,
16872 VK_RValue));
16873 if (getLangOpts().CPlusPlus)
16874 // C++ [dcl.enum]p4: Following the closing brace of an
16875 // enum-specifier, each enumerator has the type of its
16876 // enumeration.
16877 ECD->setType(EnumType);
16878 else
16879 ECD->setType(NewTy);
16880 }
16881
16882 Enum->completeDefinition(BestType, BestPromotionType,
16883 NumPositiveBits, NumNegativeBits);
16884
16885 CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
16886
16887 if (Enum->isClosedFlag()) {
16888 for (Decl *D : Elements) {
16889 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D);
16890 if (!ECD) continue; // Already issued a diagnostic.
16891
16892 llvm::APSInt InitVal = ECD->getInitVal();
16893 if (InitVal != 0 && !InitVal.isPowerOf2() &&
16894 !IsValueInFlagEnum(Enum, InitVal, true))
16895 Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range)
16896 << ECD << Enum;
16897 }
16898 }
16899
16900 // Now that the enum type is defined, ensure it's not been underaligned.
16901 if (Enum->hasAttrs())
16902 CheckAlignasUnderalignment(Enum);
16903}
16904
16905Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
16906 SourceLocation StartLoc,
16907 SourceLocation EndLoc) {
16908 StringLiteral *AsmString = cast<StringLiteral>(expr);
16909
16910 FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
16911 AsmString, StartLoc,
16912 EndLoc);
16913 CurContext->addDecl(New);
16914 return New;
16915}
16916
16917static void checkModuleImportContext(Sema &S, Module *M,
16918 SourceLocation ImportLoc, DeclContext *DC,
16919 bool FromInclude = false) {
16920 SourceLocation ExternCLoc;
16921
16922 if (auto *LSD = dyn_cast<LinkageSpecDecl>(DC)) {
16923 switch (LSD->getLanguage()) {
16924 case LinkageSpecDecl::lang_c:
16925 if (ExternCLoc.isInvalid())
16926 ExternCLoc = LSD->getBeginLoc();
16927 break;
16928 case LinkageSpecDecl::lang_cxx:
16929 break;
16930 }
16931 DC = LSD->getParent();
16932 }
16933
16934 while (isa<LinkageSpecDecl>(DC) || isa<ExportDecl>(DC))
16935 DC = DC->getParent();
16936
16937 if (!isa<TranslationUnitDecl>(DC)) {
16938 S.Diag(ImportLoc, (FromInclude && S.isModuleVisible(M))
16939 ? diag::ext_module_import_not_at_top_level_noop
16940 : diag::err_module_import_not_at_top_level_fatal)
16941 << M->getFullModuleName() << DC;
16942 S.Diag(cast<Decl>(DC)->getBeginLoc(),
16943 diag::note_module_import_not_at_top_level)
16944 << DC;
16945 } else if (!M->IsExternC && ExternCLoc.isValid()) {
16946 S.Diag(ImportLoc, diag::ext_module_import_in_extern_c)
16947 << M->getFullModuleName();
16948 S.Diag(ExternCLoc, diag::note_extern_c_begins_here);
16949 }
16950}
16951
16952Sema::DeclGroupPtrTy Sema::ActOnModuleDecl(SourceLocation StartLoc,
16953 SourceLocation ModuleLoc,
16954 ModuleDeclKind MDK,
16955 ModuleIdPath Path) {
16956 assert(getLangOpts().ModulesTS &&((getLangOpts().ModulesTS && "should only have module decl in modules TS"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().ModulesTS && \"should only have module decl in modules TS\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 16957, __PRETTY_FUNCTION__))
16957 "should only have module decl in modules TS")((getLangOpts().ModulesTS && "should only have module decl in modules TS"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().ModulesTS && \"should only have module decl in modules TS\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 16957, __PRETTY_FUNCTION__))
;
16958
16959 // A module implementation unit requires that we are not compiling a module
16960 // of any kind. A module interface unit requires that we are not compiling a
16961 // module map.
16962 switch (getLangOpts().getCompilingModule()) {
16963 case LangOptions::CMK_None:
16964 // It's OK to compile a module interface as a normal translation unit.
16965 break;
16966
16967 case LangOptions::CMK_ModuleInterface:
16968 if (MDK != ModuleDeclKind::Implementation)
16969 break;
16970
16971 // We were asked to compile a module interface unit but this is a module
16972 // implementation unit. That indicates the 'export' is missing.
16973 Diag(ModuleLoc, diag::err_module_interface_implementation_mismatch)
16974 << FixItHint::CreateInsertion(ModuleLoc, "export ");
16975 MDK = ModuleDeclKind::Interface;
16976 break;
16977
16978 case LangOptions::CMK_ModuleMap:
16979 Diag(ModuleLoc, diag::err_module_decl_in_module_map_module);
16980 return nullptr;
16981
16982 case LangOptions::CMK_HeaderModule:
16983 Diag(ModuleLoc, diag::err_module_decl_in_header_module);
16984 return nullptr;
16985 }
16986
16987 assert(ModuleScopes.size() == 1 && "expected to be at global module scope")((ModuleScopes.size() == 1 && "expected to be at global module scope"
) ? static_cast<void> (0) : __assert_fail ("ModuleScopes.size() == 1 && \"expected to be at global module scope\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 16987, __PRETTY_FUNCTION__))
;
16988
16989 // FIXME: Most of this work should be done by the preprocessor rather than
16990 // here, in order to support macro import.
16991
16992 // Only one module-declaration is permitted per source file.
16993 if (ModuleScopes.back().Module->Kind == Module::ModuleInterfaceUnit) {
16994 Diag(ModuleLoc, diag::err_module_redeclaration);
16995 Diag(VisibleModules.getImportLoc(ModuleScopes.back().Module),
16996 diag::note_prev_module_declaration);
16997 return nullptr;
16998 }
16999
17000 // Flatten the dots in a module name. Unlike Clang's hierarchical module map
17001 // modules, the dots here are just another character that can appear in a
17002 // module name.
17003 std::string ModuleName;
17004 for (auto &Piece : Path) {
17005 if (!ModuleName.empty())
17006 ModuleName += ".";
17007 ModuleName += Piece.first->getName();
17008 }
17009
17010 // If a module name was explicitly specified on the command line, it must be
17011 // correct.
17012 if (!getLangOpts().CurrentModule.empty() &&
17013 getLangOpts().CurrentModule != ModuleName) {
17014 Diag(Path.front().second, diag::err_current_module_name_mismatch)
17015 << SourceRange(Path.front().second, Path.back().second)
17016 << getLangOpts().CurrentModule;
17017 return nullptr;
17018 }
17019 const_cast<LangOptions&>(getLangOpts()).CurrentModule = ModuleName;
17020
17021 auto &Map = PP.getHeaderSearchInfo().getModuleMap();
17022 Module *Mod;
17023
17024 switch (MDK) {
17025 case ModuleDeclKind::Interface: {
17026 // We can't have parsed or imported a definition of this module or parsed a
17027 // module map defining it already.
17028 if (auto *M = Map.findModule(ModuleName)) {
17029 Diag(Path[0].second, diag::err_module_redefinition) << ModuleName;
17030 if (M->DefinitionLoc.isValid())
17031 Diag(M->DefinitionLoc, diag::note_prev_module_definition);
17032 else if (const auto *FE = M->getASTFile())
17033 Diag(M->DefinitionLoc, diag::note_prev_module_definition_from_ast_file)
17034 << FE->getName();
17035 Mod = M;
17036 break;
17037 }
17038
17039 // Create a Module for the module that we're defining.
17040 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName,
17041 ModuleScopes.front().Module);
17042 assert(Mod && "module creation should not fail")((Mod && "module creation should not fail") ? static_cast
<void> (0) : __assert_fail ("Mod && \"module creation should not fail\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 17042, __PRETTY_FUNCTION__))
;
17043 break;
17044 }
17045
17046 case ModuleDeclKind::Partition:
17047 // FIXME: Check we are in a submodule of the named module.
17048 return nullptr;
17049
17050 case ModuleDeclKind::Implementation:
17051 std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc(
17052 PP.getIdentifierInfo(ModuleName), Path[0].second);
17053 Mod = getModuleLoader().loadModule(ModuleLoc, {ModuleNameLoc},
17054 Module::AllVisible,
17055 /*IsIncludeDirective=*/false);
17056 if (!Mod) {
17057 Diag(ModuleLoc, diag::err_module_not_defined) << ModuleName;
17058 // Create an empty module interface unit for error recovery.
17059 Mod = Map.createModuleForInterfaceUnit(ModuleLoc, ModuleName,
17060 ModuleScopes.front().Module);
17061 }
17062 break;
17063 }
17064
17065 // Switch from the global module to the named module.
17066 ModuleScopes.back().Module = Mod;
17067 ModuleScopes.back().ModuleInterface = MDK != ModuleDeclKind::Implementation;
17068 VisibleModules.setVisible(Mod, ModuleLoc);
17069
17070 // From now on, we have an owning module for all declarations we see.
17071 // However, those declarations are module-private unless explicitly
17072 // exported.
17073 auto *TU = Context.getTranslationUnitDecl();
17074 TU->setModuleOwnershipKind(Decl::ModuleOwnershipKind::ModulePrivate);
17075 TU->setLocalOwningModule(Mod);
17076
17077 // FIXME: Create a ModuleDecl.
17078 return nullptr;
17079}
17080
17081DeclResult Sema::ActOnModuleImport(SourceLocation StartLoc,
17082 SourceLocation ImportLoc,
17083 ModuleIdPath Path) {
17084 // Flatten the module path for a Modules TS module name.
17085 std::pair<IdentifierInfo *, SourceLocation> ModuleNameLoc;
17086 if (getLangOpts().ModulesTS) {
17087 std::string ModuleName;
17088 for (auto &Piece : Path) {
17089 if (!ModuleName.empty())
17090 ModuleName += ".";
17091 ModuleName += Piece.first->getName();
17092 }
17093 ModuleNameLoc = {PP.getIdentifierInfo(ModuleName), Path[0].second};
17094 Path = ModuleIdPath(ModuleNameLoc);
17095 }
17096
17097 Module *Mod =
17098 getModuleLoader().loadModule(ImportLoc, Path, Module::AllVisible,
17099 /*IsIncludeDirective=*/false);
17100 if (!Mod)
17101 return true;
17102
17103 VisibleModules.setVisible(Mod, ImportLoc);
17104
17105 checkModuleImportContext(*this, Mod, ImportLoc, CurContext);
17106
17107 // FIXME: we should support importing a submodule within a different submodule
17108 // of the same top-level module. Until we do, make it an error rather than
17109 // silently ignoring the import.
17110 // Import-from-implementation is valid in the Modules TS. FIXME: Should we
17111 // warn on a redundant import of the current module?
17112 if (Mod->getTopLevelModuleName() == getLangOpts().CurrentModule &&
17113 (getLangOpts().isCompilingModule() || !getLangOpts().ModulesTS))
17114 Diag(ImportLoc, getLangOpts().isCompilingModule()
17115 ? diag::err_module_self_import
17116 : diag::err_module_import_in_implementation)
17117 << Mod->getFullModuleName() << getLangOpts().CurrentModule;
17118
17119 SmallVector<SourceLocation, 2> IdentifierLocs;
17120 Module *ModCheck = Mod;
17121 for (unsigned I = 0, N = Path.size(); I != N; ++I) {
17122 // If we've run out of module parents, just drop the remaining identifiers.
17123 // We need the length to be consistent.
17124 if (!ModCheck)
17125 break;
17126 ModCheck = ModCheck->Parent;
17127
17128 IdentifierLocs.push_back(Path[I].second);
17129 }
17130
17131 ImportDecl *Import = ImportDecl::Create(Context, CurContext, StartLoc,
17132 Mod, IdentifierLocs);
17133 if (!ModuleScopes.empty())
17134 Context.addModuleInitializer(ModuleScopes.back().Module, Import);
17135 CurContext->addDecl(Import);
17136
17137 // Re-export the module if needed.
17138 if (Import->isExported() &&
17139 !ModuleScopes.empty() && ModuleScopes.back().ModuleInterface)
17140 getCurrentModule()->Exports.emplace_back(Mod, false);
17141
17142 return Import;
17143}
17144
17145void Sema::ActOnModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
17146 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true);
17147 BuildModuleInclude(DirectiveLoc, Mod);
17148}
17149
17150void Sema::BuildModuleInclude(SourceLocation DirectiveLoc, Module *Mod) {
17151 // Determine whether we're in the #include buffer for a module. The #includes
17152 // in that buffer do not qualify as module imports; they're just an
17153 // implementation detail of us building the module.
17154 //
17155 // FIXME: Should we even get ActOnModuleInclude calls for those?
17156 bool IsInModuleIncludes =
17157 TUKind == TU_Module &&
17158 getSourceManager().isWrittenInMainFile(DirectiveLoc);
17159
17160 bool ShouldAddImport = !IsInModuleIncludes;
17161
17162 // If this module import was due to an inclusion directive, create an
17163 // implicit import declaration to capture it in the AST.
17164 if (ShouldAddImport) {
17165 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
17166 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
17167 DirectiveLoc, Mod,
17168 DirectiveLoc);
17169 if (!ModuleScopes.empty())
17170 Context.addModuleInitializer(ModuleScopes.back().Module, ImportD);
17171 TU->addDecl(ImportD);
17172 Consumer.HandleImplicitImportDecl(ImportD);
17173 }
17174
17175 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, DirectiveLoc);
17176 VisibleModules.setVisible(Mod, DirectiveLoc);
17177}
17178
17179void Sema::ActOnModuleBegin(SourceLocation DirectiveLoc, Module *Mod) {
17180 checkModuleImportContext(*this, Mod, DirectiveLoc, CurContext, true);
17181
17182 ModuleScopes.push_back({});
17183 ModuleScopes.back().Module = Mod;
17184 if (getLangOpts().ModulesLocalVisibility)
17185 ModuleScopes.back().OuterVisibleModules = std::move(VisibleModules);
17186
17187 VisibleModules.setVisible(Mod, DirectiveLoc);
17188
17189 // The enclosing context is now part of this module.
17190 // FIXME: Consider creating a child DeclContext to hold the entities
17191 // lexically within the module.
17192 if (getLangOpts().trackLocalOwningModule()) {
17193 for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) {
17194 cast<Decl>(DC)->setModuleOwnershipKind(
17195 getLangOpts().ModulesLocalVisibility
17196 ? Decl::ModuleOwnershipKind::VisibleWhenImported
17197 : Decl::ModuleOwnershipKind::Visible);
17198 cast<Decl>(DC)->setLocalOwningModule(Mod);
17199 }
17200 }
17201}
17202
17203void Sema::ActOnModuleEnd(SourceLocation EomLoc, Module *Mod) {
17204 if (getLangOpts().ModulesLocalVisibility) {
17205 VisibleModules = std::move(ModuleScopes.back().OuterVisibleModules);
17206 // Leaving a module hides namespace names, so our visible namespace cache
17207 // is now out of date.
17208 VisibleNamespaceCache.clear();
17209 }
17210
17211 assert(!ModuleScopes.empty() && ModuleScopes.back().Module == Mod &&((!ModuleScopes.empty() && ModuleScopes.back().Module
== Mod && "left the wrong module scope") ? static_cast
<void> (0) : __assert_fail ("!ModuleScopes.empty() && ModuleScopes.back().Module == Mod && \"left the wrong module scope\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 17212, __PRETTY_FUNCTION__))
17212 "left the wrong module scope")((!ModuleScopes.empty() && ModuleScopes.back().Module
== Mod && "left the wrong module scope") ? static_cast
<void> (0) : __assert_fail ("!ModuleScopes.empty() && ModuleScopes.back().Module == Mod && \"left the wrong module scope\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 17212, __PRETTY_FUNCTION__))
;
17213 ModuleScopes.pop_back();
17214
17215 // We got to the end of processing a local module. Create an
17216 // ImportDecl as we would for an imported module.
17217 FileID File = getSourceManager().getFileID(EomLoc);
17218 SourceLocation DirectiveLoc;
17219 if (EomLoc == getSourceManager().getLocForEndOfFile(File)) {
17220 // We reached the end of a #included module header. Use the #include loc.
17221 assert(File != getSourceManager().getMainFileID() &&((File != getSourceManager().getMainFileID() && "end of submodule in main source file"
) ? static_cast<void> (0) : __assert_fail ("File != getSourceManager().getMainFileID() && \"end of submodule in main source file\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 17222, __PRETTY_FUNCTION__))
17222 "end of submodule in main source file")((File != getSourceManager().getMainFileID() && "end of submodule in main source file"
) ? static_cast<void> (0) : __assert_fail ("File != getSourceManager().getMainFileID() && \"end of submodule in main source file\""
, "/build/llvm-toolchain-snapshot-8~svn350071/tools/clang/lib/Sema/SemaDecl.cpp"
, 17222, __PRETTY_FUNCTION__))
;
17223 DirectiveLoc = getSourceManager().getIncludeLoc(File);
17224 } else {
17225 // We reached an EOM pragma. Use the pragma location.
17226 DirectiveLoc = EomLoc;
17227 }
17228 BuildModuleInclude(DirectiveLoc, Mod);
17229
17230 // Any further declarations are in whatever module we returned to.
17231 if (getLangOpts().trackLocalOwningModule()) {
17232 // The parser guarantees that this is the same context that we entered
17233 // the module within.
17234 for (auto *DC = CurContext; DC; DC = DC->getLexicalParent()) {
17235 cast<Decl>(DC)->setLocalOwningModule(getCurrentModule());
17236 if (!getCurrentModule())
17237 cast<Decl>(DC)->setModuleOwnershipKind(
17238 Decl::ModuleOwnershipKind::Unowned);
17239 }
17240 }
17241}
17242
17243void Sema::createImplicitModuleImportForErrorRecovery(SourceLocation Loc,
17244 Module *Mod) {
17245 // Bail if we're not allowed to implicitly import a module here.
17246 if (isSFINAEContext() || !getLangOpts().ModulesErrorRecovery ||
17247 VisibleModules.isVisible(Mod))
17248 return;
17249
17250 // Create the implicit import declaration.
17251 TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
17252 ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
17253 Loc, Mod, Loc);
17254 TU->addDecl(ImportD);
17255 Consumer.HandleImplicitImportDecl(ImportD);
17256
17257 // Make the module visible.
17258 getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc);
17259 VisibleModules.setVisible(Mod, Loc);
17260}
17261
17262/// We have parsed the start of an export declaration, including the '{'
17263/// (if present).
17264Decl *Sema::ActOnStartExportDecl(Scope *S, SourceLocation ExportLoc,
17265 SourceLocation LBraceLoc) {
17266 ExportDecl *D = ExportDecl::Create(Context, CurContext, ExportLoc);
17267
17268 // C++ Modules TS draft:
17269 // An export-declaration shall appear in the purview of a module other than
17270 // the global module.
17271 if (ModuleScopes.empty() || !ModuleScopes.back().ModuleInterface)
17272 Diag(ExportLoc, diag::err_export_not_in_module_interface);
17273
17274 // An export-declaration [...] shall not contain more than one
17275 // export keyword.
17276 //
17277 // The intent here is that an export-declaration cannot appear within another
17278 // export-declaration.
17279 if (D->isExported())
17280 Diag(ExportLoc, diag::err_export_within_export);
17281
17282 CurContext->addDecl(D);
17283 PushDeclContext(S, D);
17284 D->setModuleOwnershipKind(Decl::ModuleOwnershipKind::VisibleWhenImported);
17285 return D;
17286}
17287
17288/// Complete the definition of an export declaration.
17289Decl *Sema::ActOnFinishExportDecl(Scope *S, Decl *D, SourceLocation RBraceLoc) {
17290 auto *ED = cast<ExportDecl>(D);
17291 if (RBraceLoc.isValid())
17292 ED->setRBraceLoc(RBraceLoc);
17293
17294 // FIXME: Diagnose export of internal-linkage declaration (including
17295 // anonymous namespace).
17296
17297 PopDeclContext();
17298 return D;
17299}
17300
17301void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
17302 IdentifierInfo* AliasName,
17303 SourceLocation PragmaLoc,
17304 SourceLocation NameLoc,
17305 SourceLocation AliasNameLoc) {
17306 NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
17307 LookupOrdinaryName);
17308 AsmLabelAttr *Attr =
17309 AsmLabelAttr::CreateImplicit(Context, AliasName->getName(), AliasNameLoc);
17310
17311 // If a declaration that:
17312 // 1) declares a function or a variable
17313 // 2) has external linkage
17314 // already exists, add a label attribute to it.
17315 if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
17316 if (isDeclExternC(PrevDecl))
17317 PrevDecl->addAttr(Attr);
17318 else
17319 Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied)
17320 << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl;
17321 // Otherwise, add a label atttibute to ExtnameUndeclaredIdentifiers.
17322 } else
17323 (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr));
17324}
17325
17326void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
17327 SourceLocation PragmaLoc,
17328 SourceLocation NameLoc) {
17329 Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
17330
17331 if (PrevDecl) {
17332 PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc));
17333 } else {
17334 (void)WeakUndeclaredIdentifiers.insert(
17335 std::pair<IdentifierInfo*,WeakInfo>
17336 (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc)));
17337 }
17338}
17339
17340void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
17341 IdentifierInfo* AliasName,
17342 SourceLocation PragmaLoc,
17343 SourceLocation NameLoc,
17344 SourceLocation AliasNameLoc) {
17345 Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
17346 LookupOrdinaryName);
17347 WeakInfo W = WeakInfo(Name, NameLoc);
17348
17349 if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
17350 if (!PrevDecl->hasAttr<AliasAttr>())
17351 if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
17352 DeclApplyPragmaWeak(TUScope, ND, W);
17353 } else {
17354 (void)WeakUndeclaredIdentifiers.insert(
17355 std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
17356 }
17357}
17358
17359Decl *Sema::getObjCDeclContext() const {
17360 return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
17361}