Bug Summary

File:clang/lib/Sema/SemaDecl.cpp
Warning:line 3686, column 35
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaDecl.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -fhalf-no-semantic-interposition -mframe-pointer=none -relaxed-aliasing -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -fno-split-dwarf-inlining -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-12/lib/clang/12.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema -I /build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/include -I /build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/build-llvm/include -I /build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/llvm/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-12/lib/clang/12.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35=. -ferror-limit 19 -fvisibility-inlines-hidden -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2021-01-23-031613-20858-1 -x c++ /build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp

/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp

1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for declarations.
10//
11//===----------------------------------------------------------------------===//
12
13#include "TypeLocBuilder.h"
14#include "clang/AST/ASTConsumer.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTLambda.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/CommentDiagnostic.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/EvaluatedExprVisitor.h"
24#include "clang/AST/Expr.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/NonTrivialTypeVisitor.h"
27#include "clang/AST/StmtCXX.h"
28#include "clang/Basic/Builtins.h"
29#include "clang/Basic/PartialDiagnostic.h"
30#include "clang/Basic/SourceManager.h"
31#include "clang/Basic/TargetInfo.h"
32#include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
33#include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
34#include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
35#include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
36#include "clang/Sema/CXXFieldCollector.h"
37#include "clang/Sema/DeclSpec.h"
38#include "clang/Sema/DelayedDiagnostic.h"
39#include "clang/Sema/Initialization.h"
40#include "clang/Sema/Lookup.h"
41#include "clang/Sema/ParsedTemplate.h"
42#include "clang/Sema/Scope.h"
43#include "clang/Sema/ScopeInfo.h"
44#include "clang/Sema/SemaInternal.h"
45#include "clang/Sema/Template.h"
46#include "llvm/ADT/SmallString.h"
47#include "llvm/ADT/Triple.h"
48#include <algorithm>
49#include <cstring>
50#include <functional>
51#include <unordered_map>
52
53using namespace clang;
54using namespace sema;
55
56Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
57 if (OwnedType) {
58 Decl *Group[2] = { OwnedType, Ptr };
59 return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
60 }
61
62 return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
63}
64
65namespace {
66
67class TypeNameValidatorCCC final : public CorrectionCandidateCallback {
68 public:
69 TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false,
70 bool AllowTemplates = false,
71 bool AllowNonTemplates = true)
72 : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
73 AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) {
74 WantExpressionKeywords = false;
75 WantCXXNamedCasts = false;
76 WantRemainingKeywords = false;
77 }
78
79 bool ValidateCandidate(const TypoCorrection &candidate) override {
80 if (NamedDecl *ND = candidate.getCorrectionDecl()) {
81 if (!AllowInvalidDecl && ND->isInvalidDecl())
82 return false;
83
84 if (getAsTypeTemplateDecl(ND))
85 return AllowTemplates;
86
87 bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
88 if (!IsType)
89 return false;
90
91 if (AllowNonTemplates)
92 return true;
93
94 // An injected-class-name of a class template (specialization) is valid
95 // as a template or as a non-template.
96 if (AllowTemplates) {
97 auto *RD = dyn_cast<CXXRecordDecl>(ND);
98 if (!RD || !RD->isInjectedClassName())
99 return false;
100 RD = cast<CXXRecordDecl>(RD->getDeclContext());
101 return RD->getDescribedClassTemplate() ||
102 isa<ClassTemplateSpecializationDecl>(RD);
103 }
104
105 return false;
106 }
107
108 return !WantClassName && candidate.isKeyword();
109 }
110
111 std::unique_ptr<CorrectionCandidateCallback> clone() override {
112 return std::make_unique<TypeNameValidatorCCC>(*this);
113 }
114
115 private:
116 bool AllowInvalidDecl;
117 bool WantClassName;
118 bool AllowTemplates;
119 bool AllowNonTemplates;
120};
121
122} // end anonymous namespace
123
124/// Determine whether the token kind starts a simple-type-specifier.
125bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
126 switch (Kind) {
127 // FIXME: Take into account the current language when deciding whether a
128 // token kind is a valid type specifier
129 case tok::kw_short:
130 case tok::kw_long:
131 case tok::kw___int64:
132 case tok::kw___int128:
133 case tok::kw_signed:
134 case tok::kw_unsigned:
135 case tok::kw_void:
136 case tok::kw_char:
137 case tok::kw_int:
138 case tok::kw_half:
139 case tok::kw_float:
140 case tok::kw_double:
141 case tok::kw___bf16:
142 case tok::kw__Float16:
143 case tok::kw___float128:
144 case tok::kw_wchar_t:
145 case tok::kw_bool:
146 case tok::kw___underlying_type:
147 case tok::kw___auto_type:
148 return true;
149
150 case tok::annot_typename:
151 case tok::kw_char16_t:
152 case tok::kw_char32_t:
153 case tok::kw_typeof:
154 case tok::annot_decltype:
155 case tok::kw_decltype:
156 return getLangOpts().CPlusPlus;
157
158 case tok::kw_char8_t:
159 return getLangOpts().Char8;
160
161 default:
162 break;
163 }
164
165 return false;
166}
167
168namespace {
169enum class UnqualifiedTypeNameLookupResult {
170 NotFound,
171 FoundNonType,
172 FoundType
173};
174} // end anonymous namespace
175
176/// Tries to perform unqualified lookup of the type decls in bases for
177/// dependent class.
178/// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
179/// type decl, \a FoundType if only type decls are found.
180static UnqualifiedTypeNameLookupResult
181lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II,
182 SourceLocation NameLoc,
183 const CXXRecordDecl *RD) {
184 if (!RD->hasDefinition())
185 return UnqualifiedTypeNameLookupResult::NotFound;
186 // Look for type decls in base classes.
187 UnqualifiedTypeNameLookupResult FoundTypeDecl =
188 UnqualifiedTypeNameLookupResult::NotFound;
189 for (const auto &Base : RD->bases()) {
190 const CXXRecordDecl *BaseRD = nullptr;
191 if (auto *BaseTT = Base.getType()->getAs<TagType>())
192 BaseRD = BaseTT->getAsCXXRecordDecl();
193 else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) {
194 // Look for type decls in dependent base classes that have known primary
195 // templates.
196 if (!TST || !TST->isDependentType())
197 continue;
198 auto *TD = TST->getTemplateName().getAsTemplateDecl();
199 if (!TD)
200 continue;
201 if (auto *BasePrimaryTemplate =
202 dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) {
203 if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl())
204 BaseRD = BasePrimaryTemplate;
205 else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) {
206 if (const ClassTemplatePartialSpecializationDecl *PS =
207 CTD->findPartialSpecialization(Base.getType()))
208 if (PS->getCanonicalDecl() != RD->getCanonicalDecl())
209 BaseRD = PS;
210 }
211 }
212 }
213 if (BaseRD) {
214 for (NamedDecl *ND : BaseRD->lookup(&II)) {
215 if (!isa<TypeDecl>(ND))
216 return UnqualifiedTypeNameLookupResult::FoundNonType;
217 FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
218 }
219 if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) {
220 switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) {
221 case UnqualifiedTypeNameLookupResult::FoundNonType:
222 return UnqualifiedTypeNameLookupResult::FoundNonType;
223 case UnqualifiedTypeNameLookupResult::FoundType:
224 FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
225 break;
226 case UnqualifiedTypeNameLookupResult::NotFound:
227 break;
228 }
229 }
230 }
231 }
232
233 return FoundTypeDecl;
234}
235
236static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
237 const IdentifierInfo &II,
238 SourceLocation NameLoc) {
239 // Lookup in the parent class template context, if any.
240 const CXXRecordDecl *RD = nullptr;
241 UnqualifiedTypeNameLookupResult FoundTypeDecl =
242 UnqualifiedTypeNameLookupResult::NotFound;
243 for (DeclContext *DC = S.CurContext;
244 DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound;
245 DC = DC->getParent()) {
246 // Look for type decls in dependent base classes that have known primary
247 // templates.
248 RD = dyn_cast<CXXRecordDecl>(DC);
249 if (RD && RD->getDescribedClassTemplate())
250 FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD);
251 }
252 if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType)
253 return nullptr;
254
255 // We found some types in dependent base classes. Recover as if the user
256 // wrote 'typename MyClass::II' instead of 'II'. We'll fully resolve the
257 // lookup during template instantiation.
258 S.Diag(NameLoc, diag::ext_found_in_dependent_base) << &II;
259
260 ASTContext &Context = S.Context;
261 auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
262 cast<Type>(Context.getRecordType(RD)));
263 QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II);
264
265 CXXScopeSpec SS;
266 SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
267
268 TypeLocBuilder Builder;
269 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
270 DepTL.setNameLoc(NameLoc);
271 DepTL.setElaboratedKeywordLoc(SourceLocation());
272 DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
273 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
274}
275
276/// If the identifier refers to a type name within this scope,
277/// return the declaration of that type.
278///
279/// This routine performs ordinary name lookup of the identifier II
280/// within the given scope, with optional C++ scope specifier SS, to
281/// determine whether the name refers to a type. If so, returns an
282/// opaque pointer (actually a QualType) corresponding to that
283/// type. Otherwise, returns NULL.
284ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
285 Scope *S, CXXScopeSpec *SS,
286 bool isClassName, bool HasTrailingDot,
287 ParsedType ObjectTypePtr,
288 bool IsCtorOrDtorName,
289 bool WantNontrivialTypeSourceInfo,
290 bool IsClassTemplateDeductionContext,
291 IdentifierInfo **CorrectedII) {
292 // FIXME: Consider allowing this outside C++1z mode as an extension.
293 bool AllowDeducedTemplate = IsClassTemplateDeductionContext &&
294 getLangOpts().CPlusPlus17 && !IsCtorOrDtorName &&
295 !isClassName && !HasTrailingDot;
296
297 // Determine where we will perform name lookup.
298 DeclContext *LookupCtx = nullptr;
299 if (ObjectTypePtr) {
300 QualType ObjectType = ObjectTypePtr.get();
301 if (ObjectType->isRecordType())
302 LookupCtx = computeDeclContext(ObjectType);
303 } else if (SS && SS->isNotEmpty()) {
304 LookupCtx = computeDeclContext(*SS, false);
305
306 if (!LookupCtx) {
307 if (isDependentScopeSpecifier(*SS)) {
308 // C++ [temp.res]p3:
309 // A qualified-id that refers to a type and in which the
310 // nested-name-specifier depends on a template-parameter (14.6.2)
311 // shall be prefixed by the keyword typename to indicate that the
312 // qualified-id denotes a type, forming an
313 // elaborated-type-specifier (7.1.5.3).
314 //
315 // We therefore do not perform any name lookup if the result would
316 // refer to a member of an unknown specialization.
317 if (!isClassName && !IsCtorOrDtorName)
318 return nullptr;
319
320 // We know from the grammar that this name refers to a type,
321 // so build a dependent node to describe the type.
322 if (WantNontrivialTypeSourceInfo)
323 return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
324
325 NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
326 QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
327 II, NameLoc);
328 return ParsedType::make(T);
329 }
330
331 return nullptr;
332 }
333
334 if (!LookupCtx->isDependentContext() &&
335 RequireCompleteDeclContext(*SS, LookupCtx))
336 return nullptr;
337 }
338
339 // FIXME: LookupNestedNameSpecifierName isn't the right kind of
340 // lookup for class-names.
341 LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
342 LookupOrdinaryName;
343 LookupResult Result(*this, &II, NameLoc, Kind);
344 if (LookupCtx) {
345 // Perform "qualified" name lookup into the declaration context we
346 // computed, which is either the type of the base of a member access
347 // expression or the declaration context associated with a prior
348 // nested-name-specifier.
349 LookupQualifiedName(Result, LookupCtx);
350
351 if (ObjectTypePtr && Result.empty()) {
352 // C++ [basic.lookup.classref]p3:
353 // If the unqualified-id is ~type-name, the type-name is looked up
354 // in the context of the entire postfix-expression. If the type T of
355 // the object expression is of a class type C, the type-name is also
356 // looked up in the scope of class C. At least one of the lookups shall
357 // find a name that refers to (possibly cv-qualified) T.
358 LookupName(Result, S);
359 }
360 } else {
361 // Perform unqualified name lookup.
362 LookupName(Result, S);
363
364 // For unqualified lookup in a class template in MSVC mode, look into
365 // dependent base classes where the primary class template is known.
366 if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
367 if (ParsedType TypeInBase =
368 recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
369 return TypeInBase;
370 }
371 }
372
373 NamedDecl *IIDecl = nullptr;
374 switch (Result.getResultKind()) {
375 case LookupResult::NotFound:
376 case LookupResult::NotFoundInCurrentInstantiation:
377 if (CorrectedII) {
378 TypeNameValidatorCCC CCC(/*AllowInvalid=*/true, isClassName,
379 AllowDeducedTemplate);
380 TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(), Kind,
381 S, SS, CCC, CTK_ErrorRecovery);
382 IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
383 TemplateTy Template;
384 bool MemberOfUnknownSpecialization;
385 UnqualifiedId TemplateName;
386 TemplateName.setIdentifier(NewII, NameLoc);
387 NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
388 CXXScopeSpec NewSS, *NewSSPtr = SS;
389 if (SS && NNS) {
390 NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
391 NewSSPtr = &NewSS;
392 }
393 if (Correction && (NNS || NewII != &II) &&
394 // Ignore a correction to a template type as the to-be-corrected
395 // identifier is not a template (typo correction for template names
396 // is handled elsewhere).
397 !(getLangOpts().CPlusPlus && NewSSPtr &&
398 isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false,
399 Template, MemberOfUnknownSpecialization))) {
400 ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
401 isClassName, HasTrailingDot, ObjectTypePtr,
402 IsCtorOrDtorName,
403 WantNontrivialTypeSourceInfo,
404 IsClassTemplateDeductionContext);
405 if (Ty) {
406 diagnoseTypo(Correction,
407 PDiag(diag::err_unknown_type_or_class_name_suggest)
408 << Result.getLookupName() << isClassName);
409 if (SS && NNS)
410 SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
411 *CorrectedII = NewII;
412 return Ty;
413 }
414 }
415 }
416 // If typo correction failed or was not performed, fall through
417 LLVM_FALLTHROUGH[[gnu::fallthrough]];
418 case LookupResult::FoundOverloaded:
419 case LookupResult::FoundUnresolvedValue:
420 Result.suppressDiagnostics();
421 return nullptr;
422
423 case LookupResult::Ambiguous:
424 // Recover from type-hiding ambiguities by hiding the type. We'll
425 // do the lookup again when looking for an object, and we can
426 // diagnose the error then. If we don't do this, then the error
427 // about hiding the type will be immediately followed by an error
428 // that only makes sense if the identifier was treated like a type.
429 if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
430 Result.suppressDiagnostics();
431 return nullptr;
432 }
433
434 // Look to see if we have a type anywhere in the list of results.
435 for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
436 Res != ResEnd; ++Res) {
437 if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res) ||
438 (AllowDeducedTemplate && getAsTypeTemplateDecl(*Res))) {
439 if (!IIDecl || (*Res)->getLocation() < IIDecl->getLocation())
440 IIDecl = *Res;
441 }
442 }
443
444 if (!IIDecl) {
445 // None of the entities we found is a type, so there is no way
446 // to even assume that the result is a type. In this case, don't
447 // complain about the ambiguity. The parser will either try to
448 // perform this lookup again (e.g., as an object name), which
449 // will produce the ambiguity, or will complain that it expected
450 // a type name.
451 Result.suppressDiagnostics();
452 return nullptr;
453 }
454
455 // We found a type within the ambiguous lookup; diagnose the
456 // ambiguity and then return that type. This might be the right
457 // answer, or it might not be, but it suppresses any attempt to
458 // perform the name lookup again.
459 break;
460
461 case LookupResult::Found:
462 IIDecl = Result.getFoundDecl();
463 break;
464 }
465
466 assert(IIDecl && "Didn't find decl")((IIDecl && "Didn't find decl") ? static_cast<void
> (0) : __assert_fail ("IIDecl && \"Didn't find decl\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 466, __PRETTY_FUNCTION__))
;
467
468 QualType T;
469 if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
470 // C++ [class.qual]p2: A lookup that would find the injected-class-name
471 // instead names the constructors of the class, except when naming a class.
472 // This is ill-formed when we're not actually forming a ctor or dtor name.
473 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
474 auto *FoundRD = dyn_cast<CXXRecordDecl>(TD);
475 if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD &&
476 FoundRD->isInjectedClassName() &&
477 declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
478 Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor)
479 << &II << /*Type*/1;
480
481 DiagnoseUseOfDecl(IIDecl, NameLoc);
482
483 T = Context.getTypeDeclType(TD);
484 MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
485 } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
486 (void)DiagnoseUseOfDecl(IDecl, NameLoc);
487 if (!HasTrailingDot)
488 T = Context.getObjCInterfaceType(IDecl);
489 } else if (AllowDeducedTemplate) {
490 if (auto *TD = getAsTypeTemplateDecl(IIDecl))
491 T = Context.getDeducedTemplateSpecializationType(TemplateName(TD),
492 QualType(), false);
493 }
494
495 if (T.isNull()) {
496 // If it's not plausibly a type, suppress diagnostics.
497 Result.suppressDiagnostics();
498 return nullptr;
499 }
500
501 // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
502 // constructor or destructor name (in such a case, the scope specifier
503 // will be attached to the enclosing Expr or Decl node).
504 if (SS && SS->isNotEmpty() && !IsCtorOrDtorName &&
505 !isa<ObjCInterfaceDecl>(IIDecl)) {
506 if (WantNontrivialTypeSourceInfo) {
507 // Construct a type with type-source information.
508 TypeLocBuilder Builder;
509 Builder.pushTypeSpec(T).setNameLoc(NameLoc);
510
511 T = getElaboratedType(ETK_None, *SS, T);
512 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
513 ElabTL.setElaboratedKeywordLoc(SourceLocation());
514 ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
515 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
516 } else {
517 T = getElaboratedType(ETK_None, *SS, T);
518 }
519 }
520
521 return ParsedType::make(T);
522}
523
524// Builds a fake NNS for the given decl context.
525static NestedNameSpecifier *
526synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
527 for (;; DC = DC->getLookupParent()) {
528 DC = DC->getPrimaryContext();
529 auto *ND = dyn_cast<NamespaceDecl>(DC);
530 if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
531 return NestedNameSpecifier::Create(Context, nullptr, ND);
532 else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
533 return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
534 RD->getTypeForDecl());
535 else if (isa<TranslationUnitDecl>(DC))
536 return NestedNameSpecifier::GlobalSpecifier(Context);
537 }
538 llvm_unreachable("something isn't in TU scope?")::llvm::llvm_unreachable_internal("something isn't in TU scope?"
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 538)
;
539}
540
541/// Find the parent class with dependent bases of the innermost enclosing method
542/// context. Do not look for enclosing CXXRecordDecls directly, or we will end
543/// up allowing unqualified dependent type names at class-level, which MSVC
544/// correctly rejects.
545static const CXXRecordDecl *
546findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) {
547 for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) {
548 DC = DC->getPrimaryContext();
549 if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
550 if (MD->getParent()->hasAnyDependentBases())
551 return MD->getParent();
552 }
553 return nullptr;
554}
555
556ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
557 SourceLocation NameLoc,
558 bool IsTemplateTypeArg) {
559 assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode")((getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().MSVCCompat && \"shouldn't be called in non-MSVC mode\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 559, __PRETTY_FUNCTION__))
;
560
561 NestedNameSpecifier *NNS = nullptr;
562 if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) {
563 // If we weren't able to parse a default template argument, delay lookup
564 // until instantiation time by making a non-dependent DependentTypeName. We
565 // pretend we saw a NestedNameSpecifier referring to the current scope, and
566 // lookup is retried.
567 // FIXME: This hurts our diagnostic quality, since we get errors like "no
568 // type named 'Foo' in 'current_namespace'" when the user didn't write any
569 // name specifiers.
570 NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext);
571 Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
572 } else if (const CXXRecordDecl *RD =
573 findRecordWithDependentBasesOfEnclosingMethod(CurContext)) {
574 // Build a DependentNameType that will perform lookup into RD at
575 // instantiation time.
576 NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
577 RD->getTypeForDecl());
578
579 // Diagnose that this identifier was undeclared, and retry the lookup during
580 // template instantiation.
581 Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II
582 << RD;
583 } else {
584 // This is not a situation that we should recover from.
585 return ParsedType();
586 }
587
588 QualType T = Context.getDependentNameType(ETK_None, NNS, &II);
589
590 // Build type location information. We synthesized the qualifier, so we have
591 // to build a fake NestedNameSpecifierLoc.
592 NestedNameSpecifierLocBuilder NNSLocBuilder;
593 NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
594 NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
595
596 TypeLocBuilder Builder;
597 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
598 DepTL.setNameLoc(NameLoc);
599 DepTL.setElaboratedKeywordLoc(SourceLocation());
600 DepTL.setQualifierLoc(QualifierLoc);
601 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
602}
603
604/// isTagName() - This method is called *for error recovery purposes only*
605/// to determine if the specified name is a valid tag name ("struct foo"). If
606/// so, this returns the TST for the tag corresponding to it (TST_enum,
607/// TST_union, TST_struct, TST_interface, TST_class). This is used to diagnose
608/// cases in C where the user forgot to specify the tag.
609DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
610 // Do a tag name lookup in this scope.
611 LookupResult R(*this, &II, SourceLocation(), LookupTagName);
612 LookupName(R, S, false);
613 R.suppressDiagnostics();
614 if (R.getResultKind() == LookupResult::Found)
615 if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
616 switch (TD->getTagKind()) {
617 case TTK_Struct: return DeclSpec::TST_struct;
618 case TTK_Interface: return DeclSpec::TST_interface;
619 case TTK_Union: return DeclSpec::TST_union;
620 case TTK_Class: return DeclSpec::TST_class;
621 case TTK_Enum: return DeclSpec::TST_enum;
622 }
623 }
624
625 return DeclSpec::TST_unspecified;
626}
627
628/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
629/// if a CXXScopeSpec's type is equal to the type of one of the base classes
630/// then downgrade the missing typename error to a warning.
631/// This is needed for MSVC compatibility; Example:
632/// @code
633/// template<class T> class A {
634/// public:
635/// typedef int TYPE;
636/// };
637/// template<class T> class B : public A<T> {
638/// public:
639/// A<T>::TYPE a; // no typename required because A<T> is a base class.
640/// };
641/// @endcode
642bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
643 if (CurContext->isRecord()) {
644 if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super)
645 return true;
646
647 const Type *Ty = SS->getScopeRep()->getAsType();
648
649 CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
650 for (const auto &Base : RD->bases())
651 if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
652 return true;
653 return S->isFunctionPrototypeScope();
654 }
655 return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
656}
657
658void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
659 SourceLocation IILoc,
660 Scope *S,
661 CXXScopeSpec *SS,
662 ParsedType &SuggestedType,
663 bool IsTemplateName) {
664 // Don't report typename errors for editor placeholders.
665 if (II->isEditorPlaceholder())
666 return;
667 // We don't have anything to suggest (yet).
668 SuggestedType = nullptr;
669
670 // There may have been a typo in the name of the type. Look up typo
671 // results, in case we have something that we can suggest.
672 TypeNameValidatorCCC CCC(/*AllowInvalid=*/false, /*WantClass=*/false,
673 /*AllowTemplates=*/IsTemplateName,
674 /*AllowNonTemplates=*/!IsTemplateName);
675 if (TypoCorrection Corrected =
676 CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS,
677 CCC, CTK_ErrorRecovery)) {
678 // FIXME: Support error recovery for the template-name case.
679 bool CanRecover = !IsTemplateName;
680 if (Corrected.isKeyword()) {
681 // We corrected to a keyword.
682 diagnoseTypo(Corrected,
683 PDiag(IsTemplateName ? diag::err_no_template_suggest
684 : diag::err_unknown_typename_suggest)
685 << II);
686 II = Corrected.getCorrectionAsIdentifierInfo();
687 } else {
688 // We found a similarly-named type or interface; suggest that.
689 if (!SS || !SS->isSet()) {
690 diagnoseTypo(Corrected,
691 PDiag(IsTemplateName ? diag::err_no_template_suggest
692 : diag::err_unknown_typename_suggest)
693 << II, CanRecover);
694 } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
695 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
696 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
697 II->getName().equals(CorrectedStr);
698 diagnoseTypo(Corrected,
699 PDiag(IsTemplateName
700 ? diag::err_no_member_template_suggest
701 : diag::err_unknown_nested_typename_suggest)
702 << II << DC << DroppedSpecifier << SS->getRange(),
703 CanRecover);
704 } else {
705 llvm_unreachable("could not have corrected a typo here")::llvm::llvm_unreachable_internal("could not have corrected a typo here"
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 705)
;
706 }
707
708 if (!CanRecover)
709 return;
710
711 CXXScopeSpec tmpSS;
712 if (Corrected.getCorrectionSpecifier())
713 tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
714 SourceRange(IILoc));
715 // FIXME: Support class template argument deduction here.
716 SuggestedType =
717 getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S,
718 tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr,
719 /*IsCtorOrDtorName=*/false,
720 /*WantNontrivialTypeSourceInfo=*/true);
721 }
722 return;
723 }
724
725 if (getLangOpts().CPlusPlus && !IsTemplateName) {
726 // See if II is a class template that the user forgot to pass arguments to.
727 UnqualifiedId Name;
728 Name.setIdentifier(II, IILoc);
729 CXXScopeSpec EmptySS;
730 TemplateTy TemplateResult;
731 bool MemberOfUnknownSpecialization;
732 if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
733 Name, nullptr, true, TemplateResult,
734 MemberOfUnknownSpecialization) == TNK_Type_template) {
735 diagnoseMissingTemplateArguments(TemplateResult.get(), IILoc);
736 return;
737 }
738 }
739
740 // FIXME: Should we move the logic that tries to recover from a missing tag
741 // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
742
743 if (!SS || (!SS->isSet() && !SS->isInvalid()))
744 Diag(IILoc, IsTemplateName ? diag::err_no_template
745 : diag::err_unknown_typename)
746 << II;
747 else if (DeclContext *DC = computeDeclContext(*SS, false))
748 Diag(IILoc, IsTemplateName ? diag::err_no_member_template
749 : diag::err_typename_nested_not_found)
750 << II << DC << SS->getRange();
751 else if (SS->isValid() && SS->getScopeRep()->containsErrors()) {
752 SuggestedType =
753 ActOnTypenameType(S, SourceLocation(), *SS, *II, IILoc).get();
754 } else if (isDependentScopeSpecifier(*SS)) {
755 unsigned DiagID = diag::err_typename_missing;
756 if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
757 DiagID = diag::ext_typename_missing;
758
759 Diag(SS->getRange().getBegin(), DiagID)
760 << SS->getScopeRep() << II->getName()
761 << SourceRange(SS->getRange().getBegin(), IILoc)
762 << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
763 SuggestedType = ActOnTypenameType(S, SourceLocation(),
764 *SS, *II, IILoc).get();
765 } else {
766 assert(SS && SS->isInvalid() &&((SS && SS->isInvalid() && "Invalid scope specifier has already been diagnosed"
) ? static_cast<void> (0) : __assert_fail ("SS && SS->isInvalid() && \"Invalid scope specifier has already been diagnosed\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 767, __PRETTY_FUNCTION__))
767 "Invalid scope specifier has already been diagnosed")((SS && SS->isInvalid() && "Invalid scope specifier has already been diagnosed"
) ? static_cast<void> (0) : __assert_fail ("SS && SS->isInvalid() && \"Invalid scope specifier has already been diagnosed\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 767, __PRETTY_FUNCTION__))
;
768 }
769}
770
771/// Determine whether the given result set contains either a type name
772/// or
773static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
774 bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
775 NextToken.is(tok::less);
776
777 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
778 if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
779 return true;
780
781 if (CheckTemplate && isa<TemplateDecl>(*I))
782 return true;
783 }
784
785 return false;
786}
787
788static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
789 Scope *S, CXXScopeSpec &SS,
790 IdentifierInfo *&Name,
791 SourceLocation NameLoc) {
792 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
793 SemaRef.LookupParsedName(R, S, &SS);
794 if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
795 StringRef FixItTagName;
796 switch (Tag->getTagKind()) {
797 case TTK_Class:
798 FixItTagName = "class ";
799 break;
800
801 case TTK_Enum:
802 FixItTagName = "enum ";
803 break;
804
805 case TTK_Struct:
806 FixItTagName = "struct ";
807 break;
808
809 case TTK_Interface:
810 FixItTagName = "__interface ";
811 break;
812
813 case TTK_Union:
814 FixItTagName = "union ";
815 break;
816 }
817
818 StringRef TagName = FixItTagName.drop_back();
819 SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
820 << Name << TagName << SemaRef.getLangOpts().CPlusPlus
821 << FixItHint::CreateInsertion(NameLoc, FixItTagName);
822
823 for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
824 I != IEnd; ++I)
825 SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
826 << Name << TagName;
827
828 // Replace lookup results with just the tag decl.
829 Result.clear(Sema::LookupTagName);
830 SemaRef.LookupParsedName(Result, S, &SS);
831 return true;
832 }
833
834 return false;
835}
836
837/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
838static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
839 QualType T, SourceLocation NameLoc) {
840 ASTContext &Context = S.Context;
841
842 TypeLocBuilder Builder;
843 Builder.pushTypeSpec(T).setNameLoc(NameLoc);
844
845 T = S.getElaboratedType(ETK_None, SS, T);
846 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
847 ElabTL.setElaboratedKeywordLoc(SourceLocation());
848 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
849 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
850}
851
852Sema::NameClassification Sema::ClassifyName(Scope *S, CXXScopeSpec &SS,
853 IdentifierInfo *&Name,
854 SourceLocation NameLoc,
855 const Token &NextToken,
856 CorrectionCandidateCallback *CCC) {
857 DeclarationNameInfo NameInfo(Name, NameLoc);
858 ObjCMethodDecl *CurMethod = getCurMethodDecl();
859
860 assert(NextToken.isNot(tok::coloncolon) &&((NextToken.isNot(tok::coloncolon) && "parse nested name specifiers before calling ClassifyName"
) ? static_cast<void> (0) : __assert_fail ("NextToken.isNot(tok::coloncolon) && \"parse nested name specifiers before calling ClassifyName\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 861, __PRETTY_FUNCTION__))
861 "parse nested name specifiers before calling ClassifyName")((NextToken.isNot(tok::coloncolon) && "parse nested name specifiers before calling ClassifyName"
) ? static_cast<void> (0) : __assert_fail ("NextToken.isNot(tok::coloncolon) && \"parse nested name specifiers before calling ClassifyName\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 861, __PRETTY_FUNCTION__))
;
862 if (getLangOpts().CPlusPlus && SS.isSet() &&
863 isCurrentClassName(*Name, S, &SS)) {
864 // Per [class.qual]p2, this names the constructors of SS, not the
865 // injected-class-name. We don't have a classification for that.
866 // There's not much point caching this result, since the parser
867 // will reject it later.
868 return NameClassification::Unknown();
869 }
870
871 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
872 LookupParsedName(Result, S, &SS, !CurMethod);
873
874 if (SS.isInvalid())
875 return NameClassification::Error();
876
877 // For unqualified lookup in a class template in MSVC mode, look into
878 // dependent base classes where the primary class template is known.
879 if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
880 if (ParsedType TypeInBase =
881 recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
882 return TypeInBase;
883 }
884
885 // Perform lookup for Objective-C instance variables (including automatically
886 // synthesized instance variables), if we're in an Objective-C method.
887 // FIXME: This lookup really, really needs to be folded in to the normal
888 // unqualified lookup mechanism.
889 if (SS.isEmpty() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
890 DeclResult Ivar = LookupIvarInObjCMethod(Result, S, Name);
891 if (Ivar.isInvalid())
892 return NameClassification::Error();
893 if (Ivar.isUsable())
894 return NameClassification::NonType(cast<NamedDecl>(Ivar.get()));
895
896 // We defer builtin creation until after ivar lookup inside ObjC methods.
897 if (Result.empty())
898 LookupBuiltin(Result);
899 }
900
901 bool SecondTry = false;
902 bool IsFilteredTemplateName = false;
903
904Corrected:
905 switch (Result.getResultKind()) {
906 case LookupResult::NotFound:
907 // If an unqualified-id is followed by a '(', then we have a function
908 // call.
909 if (SS.isEmpty() && NextToken.is(tok::l_paren)) {
910 // In C++, this is an ADL-only call.
911 // FIXME: Reference?
912 if (getLangOpts().CPlusPlus)
913 return NameClassification::UndeclaredNonType();
914
915 // C90 6.3.2.2:
916 // If the expression that precedes the parenthesized argument list in a
917 // function call consists solely of an identifier, and if no
918 // declaration is visible for this identifier, the identifier is
919 // implicitly declared exactly as if, in the innermost block containing
920 // the function call, the declaration
921 //
922 // extern int identifier ();
923 //
924 // appeared.
925 //
926 // We also allow this in C99 as an extension.
927 if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S))
928 return NameClassification::NonType(D);
929 }
930
931 if (getLangOpts().CPlusPlus20 && SS.isEmpty() && NextToken.is(tok::less)) {
932 // In C++20 onwards, this could be an ADL-only call to a function
933 // template, and we're required to assume that this is a template name.
934 //
935 // FIXME: Find a way to still do typo correction in this case.
936 TemplateName Template =
937 Context.getAssumedTemplateName(NameInfo.getName());
938 return NameClassification::UndeclaredTemplate(Template);
939 }
940
941 // In C, we first see whether there is a tag type by the same name, in
942 // which case it's likely that the user just forgot to write "enum",
943 // "struct", or "union".
944 if (!getLangOpts().CPlusPlus && !SecondTry &&
945 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
946 break;
947 }
948
949 // Perform typo correction to determine if there is another name that is
950 // close to this name.
951 if (!SecondTry && CCC) {
952 SecondTry = true;
953 if (TypoCorrection Corrected =
954 CorrectTypo(Result.getLookupNameInfo(), Result.getLookupKind(), S,
955 &SS, *CCC, CTK_ErrorRecovery)) {
956 unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
957 unsigned QualifiedDiag = diag::err_no_member_suggest;
958
959 NamedDecl *FirstDecl = Corrected.getFoundDecl();
960 NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl();
961 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
962 UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
963 UnqualifiedDiag = diag::err_no_template_suggest;
964 QualifiedDiag = diag::err_no_member_template_suggest;
965 } else if (UnderlyingFirstDecl &&
966 (isa<TypeDecl>(UnderlyingFirstDecl) ||
967 isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
968 isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
969 UnqualifiedDiag = diag::err_unknown_typename_suggest;
970 QualifiedDiag = diag::err_unknown_nested_typename_suggest;
971 }
972
973 if (SS.isEmpty()) {
974 diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
975 } else {// FIXME: is this even reachable? Test it.
976 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
977 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
978 Name->getName().equals(CorrectedStr);
979 diagnoseTypo(Corrected, PDiag(QualifiedDiag)
980 << Name << computeDeclContext(SS, false)
981 << DroppedSpecifier << SS.getRange());
982 }
983
984 // Update the name, so that the caller has the new name.
985 Name = Corrected.getCorrectionAsIdentifierInfo();
986
987 // Typo correction corrected to a keyword.
988 if (Corrected.isKeyword())
989 return Name;
990
991 // Also update the LookupResult...
992 // FIXME: This should probably go away at some point
993 Result.clear();
994 Result.setLookupName(Corrected.getCorrection());
995 if (FirstDecl)
996 Result.addDecl(FirstDecl);
997
998 // If we found an Objective-C instance variable, let
999 // LookupInObjCMethod build the appropriate expression to
1000 // reference the ivar.
1001 // FIXME: This is a gross hack.
1002 if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
1003 DeclResult R =
1004 LookupIvarInObjCMethod(Result, S, Ivar->getIdentifier());
1005 if (R.isInvalid())
1006 return NameClassification::Error();
1007 if (R.isUsable())
1008 return NameClassification::NonType(Ivar);
1009 }
1010
1011 goto Corrected;
1012 }
1013 }
1014
1015 // We failed to correct; just fall through and let the parser deal with it.
1016 Result.suppressDiagnostics();
1017 return NameClassification::Unknown();
1018
1019 case LookupResult::NotFoundInCurrentInstantiation: {
1020 // We performed name lookup into the current instantiation, and there were
1021 // dependent bases, so we treat this result the same way as any other
1022 // dependent nested-name-specifier.
1023
1024 // C++ [temp.res]p2:
1025 // A name used in a template declaration or definition and that is
1026 // dependent on a template-parameter is assumed not to name a type
1027 // unless the applicable name lookup finds a type name or the name is
1028 // qualified by the keyword typename.
1029 //
1030 // FIXME: If the next token is '<', we might want to ask the parser to
1031 // perform some heroics to see if we actually have a
1032 // template-argument-list, which would indicate a missing 'template'
1033 // keyword here.
1034 return NameClassification::DependentNonType();
1035 }
1036
1037 case LookupResult::Found:
1038 case LookupResult::FoundOverloaded:
1039 case LookupResult::FoundUnresolvedValue:
1040 break;
1041
1042 case LookupResult::Ambiguous:
1043 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1044 hasAnyAcceptableTemplateNames(Result, /*AllowFunctionTemplates=*/true,
1045 /*AllowDependent=*/false)) {
1046 // C++ [temp.local]p3:
1047 // A lookup that finds an injected-class-name (10.2) can result in an
1048 // ambiguity in certain cases (for example, if it is found in more than
1049 // one base class). If all of the injected-class-names that are found
1050 // refer to specializations of the same class template, and if the name
1051 // is followed by a template-argument-list, the reference refers to the
1052 // class template itself and not a specialization thereof, and is not
1053 // ambiguous.
1054 //
1055 // This filtering can make an ambiguous result into an unambiguous one,
1056 // so try again after filtering out template names.
1057 FilterAcceptableTemplateNames(Result);
1058 if (!Result.isAmbiguous()) {
1059 IsFilteredTemplateName = true;
1060 break;
1061 }
1062 }
1063
1064 // Diagnose the ambiguity and return an error.
1065 return NameClassification::Error();
1066 }
1067
1068 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1069 (IsFilteredTemplateName ||
1070 hasAnyAcceptableTemplateNames(
1071 Result, /*AllowFunctionTemplates=*/true,
1072 /*AllowDependent=*/false,
1073 /*AllowNonTemplateFunctions*/ SS.isEmpty() &&
1074 getLangOpts().CPlusPlus20))) {
1075 // C++ [temp.names]p3:
1076 // After name lookup (3.4) finds that a name is a template-name or that
1077 // an operator-function-id or a literal- operator-id refers to a set of
1078 // overloaded functions any member of which is a function template if
1079 // this is followed by a <, the < is always taken as the delimiter of a
1080 // template-argument-list and never as the less-than operator.
1081 // C++2a [temp.names]p2:
1082 // A name is also considered to refer to a template if it is an
1083 // unqualified-id followed by a < and name lookup finds either one
1084 // or more functions or finds nothing.
1085 if (!IsFilteredTemplateName)
1086 FilterAcceptableTemplateNames(Result);
1087
1088 bool IsFunctionTemplate;
1089 bool IsVarTemplate;
1090 TemplateName Template;
1091 if (Result.end() - Result.begin() > 1) {
1092 IsFunctionTemplate = true;
1093 Template = Context.getOverloadedTemplateName(Result.begin(),
1094 Result.end());
1095 } else if (!Result.empty()) {
1096 auto *TD = cast<TemplateDecl>(getAsTemplateNameDecl(
1097 *Result.begin(), /*AllowFunctionTemplates=*/true,
1098 /*AllowDependent=*/false));
1099 IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
1100 IsVarTemplate = isa<VarTemplateDecl>(TD);
1101
1102 if (SS.isNotEmpty())
1103 Template =
1104 Context.getQualifiedTemplateName(SS.getScopeRep(),
1105 /*TemplateKeyword=*/false, TD);
1106 else
1107 Template = TemplateName(TD);
1108 } else {
1109 // All results were non-template functions. This is a function template
1110 // name.
1111 IsFunctionTemplate = true;
1112 Template = Context.getAssumedTemplateName(NameInfo.getName());
1113 }
1114
1115 if (IsFunctionTemplate) {
1116 // Function templates always go through overload resolution, at which
1117 // point we'll perform the various checks (e.g., accessibility) we need
1118 // to based on which function we selected.
1119 Result.suppressDiagnostics();
1120
1121 return NameClassification::FunctionTemplate(Template);
1122 }
1123
1124 return IsVarTemplate ? NameClassification::VarTemplate(Template)
1125 : NameClassification::TypeTemplate(Template);
1126 }
1127
1128 NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
1129 if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
1130 DiagnoseUseOfDecl(Type, NameLoc);
1131 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
1132 QualType T = Context.getTypeDeclType(Type);
1133 if (SS.isNotEmpty())
1134 return buildNestedType(*this, SS, T, NameLoc);
1135 return ParsedType::make(T);
1136 }
1137
1138 ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
1139 if (!Class) {
1140 // FIXME: It's unfortunate that we don't have a Type node for handling this.
1141 if (ObjCCompatibleAliasDecl *Alias =
1142 dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
1143 Class = Alias->getClassInterface();
1144 }
1145
1146 if (Class) {
1147 DiagnoseUseOfDecl(Class, NameLoc);
1148
1149 if (NextToken.is(tok::period)) {
1150 // Interface. <something> is parsed as a property reference expression.
1151 // Just return "unknown" as a fall-through for now.
1152 Result.suppressDiagnostics();
1153 return NameClassification::Unknown();
1154 }
1155
1156 QualType T = Context.getObjCInterfaceType(Class);
1157 return ParsedType::make(T);
1158 }
1159
1160 if (isa<ConceptDecl>(FirstDecl))
1161 return NameClassification::Concept(
1162 TemplateName(cast<TemplateDecl>(FirstDecl)));
1163
1164 // We can have a type template here if we're classifying a template argument.
1165 if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) &&
1166 !isa<VarTemplateDecl>(FirstDecl))
1167 return NameClassification::TypeTemplate(
1168 TemplateName(cast<TemplateDecl>(FirstDecl)));
1169
1170 // Check for a tag type hidden by a non-type decl in a few cases where it
1171 // seems likely a type is wanted instead of the non-type that was found.
1172 bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star);
1173 if ((NextToken.is(tok::identifier) ||
1174 (NextIsOp &&
1175 FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
1176 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
1177 TypeDecl *Type = Result.getAsSingle<TypeDecl>();
1178 DiagnoseUseOfDecl(Type, NameLoc);
1179 QualType T = Context.getTypeDeclType(Type);
1180 if (SS.isNotEmpty())
1181 return buildNestedType(*this, SS, T, NameLoc);
1182 return ParsedType::make(T);
1183 }
1184
1185 // If we already know which single declaration is referenced, just annotate
1186 // that declaration directly. Defer resolving even non-overloaded class
1187 // member accesses, as we need to defer certain access checks until we know
1188 // the context.
1189 bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1190 if (Result.isSingleResult() && !ADL && !FirstDecl->isCXXClassMember())
1191 return NameClassification::NonType(Result.getRepresentativeDecl());
1192
1193 // Otherwise, this is an overload set that we will need to resolve later.
1194 Result.suppressDiagnostics();
1195 return NameClassification::OverloadSet(UnresolvedLookupExpr::Create(
1196 Context, Result.getNamingClass(), SS.getWithLocInContext(Context),
1197 Result.getLookupNameInfo(), ADL, Result.isOverloadedResult(),
1198 Result.begin(), Result.end()));
1199}
1200
1201ExprResult
1202Sema::ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo *Name,
1203 SourceLocation NameLoc) {
1204 assert(getLangOpts().CPlusPlus && "ADL-only call in C?")((getLangOpts().CPlusPlus && "ADL-only call in C?") ?
static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"ADL-only call in C?\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 1204, __PRETTY_FUNCTION__))
;
1205 CXXScopeSpec SS;
1206 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
1207 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
1208}
1209
1210ExprResult
1211Sema::ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec &SS,
1212 IdentifierInfo *Name,
1213 SourceLocation NameLoc,
1214 bool IsAddressOfOperand) {
1215 DeclarationNameInfo NameInfo(Name, NameLoc);
1216 return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
1217 NameInfo, IsAddressOfOperand,
1218 /*TemplateArgs=*/nullptr);
1219}
1220
1221ExprResult Sema::ActOnNameClassifiedAsNonType(Scope *S, const CXXScopeSpec &SS,
1222 NamedDecl *Found,
1223 SourceLocation NameLoc,
1224 const Token &NextToken) {
1225 if (getCurMethodDecl() && SS.isEmpty())
1226 if (auto *Ivar = dyn_cast<ObjCIvarDecl>(Found->getUnderlyingDecl()))
1227 return BuildIvarRefExpr(S, NameLoc, Ivar);
1228
1229 // Reconstruct the lookup result.
1230 LookupResult Result(*this, Found->getDeclName(), NameLoc, LookupOrdinaryName);
1231 Result.addDecl(Found);
1232 Result.resolveKind();
1233
1234 bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1235 return BuildDeclarationNameExpr(SS, Result, ADL);
1236}
1237
1238ExprResult Sema::ActOnNameClassifiedAsOverloadSet(Scope *S, Expr *E) {
1239 // For an implicit class member access, transform the result into a member
1240 // access expression if necessary.
1241 auto *ULE = cast<UnresolvedLookupExpr>(E);
1242 if ((*ULE->decls_begin())->isCXXClassMember()) {
1243 CXXScopeSpec SS;
1244 SS.Adopt(ULE->getQualifierLoc());
1245
1246 // Reconstruct the lookup result.
1247 LookupResult Result(*this, ULE->getName(), ULE->getNameLoc(),
1248 LookupOrdinaryName);
1249 Result.setNamingClass(ULE->getNamingClass());
1250 for (auto I = ULE->decls_begin(), E = ULE->decls_end(); I != E; ++I)
1251 Result.addDecl(*I, I.getAccess());
1252 Result.resolveKind();
1253 return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
1254 nullptr, S);
1255 }
1256
1257 // Otherwise, this is already in the form we needed, and no further checks
1258 // are necessary.
1259 return ULE;
1260}
1261
1262Sema::TemplateNameKindForDiagnostics
1263Sema::getTemplateNameKindForDiagnostics(TemplateName Name) {
1264 auto *TD = Name.getAsTemplateDecl();
1265 if (!TD)
1266 return TemplateNameKindForDiagnostics::DependentTemplate;
1267 if (isa<ClassTemplateDecl>(TD))
1268 return TemplateNameKindForDiagnostics::ClassTemplate;
1269 if (isa<FunctionTemplateDecl>(TD))
1270 return TemplateNameKindForDiagnostics::FunctionTemplate;
1271 if (isa<VarTemplateDecl>(TD))
1272 return TemplateNameKindForDiagnostics::VarTemplate;
1273 if (isa<TypeAliasTemplateDecl>(TD))
1274 return TemplateNameKindForDiagnostics::AliasTemplate;
1275 if (isa<TemplateTemplateParmDecl>(TD))
1276 return TemplateNameKindForDiagnostics::TemplateTemplateParam;
1277 if (isa<ConceptDecl>(TD))
1278 return TemplateNameKindForDiagnostics::Concept;
1279 return TemplateNameKindForDiagnostics::DependentTemplate;
1280}
1281
1282void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
1283 assert(DC->getLexicalParent() == CurContext &&((DC->getLexicalParent() == CurContext && "The next DeclContext should be lexically contained in the current one."
) ? static_cast<void> (0) : __assert_fail ("DC->getLexicalParent() == CurContext && \"The next DeclContext should be lexically contained in the current one.\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 1284, __PRETTY_FUNCTION__))
1284 "The next DeclContext should be lexically contained in the current one.")((DC->getLexicalParent() == CurContext && "The next DeclContext should be lexically contained in the current one."
) ? static_cast<void> (0) : __assert_fail ("DC->getLexicalParent() == CurContext && \"The next DeclContext should be lexically contained in the current one.\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 1284, __PRETTY_FUNCTION__))
;
1285 CurContext = DC;
1286 S->setEntity(DC);
1287}
1288
1289void Sema::PopDeclContext() {
1290 assert(CurContext && "DeclContext imbalance!")((CurContext && "DeclContext imbalance!") ? static_cast
<void> (0) : __assert_fail ("CurContext && \"DeclContext imbalance!\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 1290, __PRETTY_FUNCTION__))
;
1291
1292 CurContext = CurContext->getLexicalParent();
1293 assert(CurContext && "Popped translation unit!")((CurContext && "Popped translation unit!") ? static_cast
<void> (0) : __assert_fail ("CurContext && \"Popped translation unit!\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 1293, __PRETTY_FUNCTION__))
;
1294}
1295
1296Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S,
1297 Decl *D) {
1298 // Unlike PushDeclContext, the context to which we return is not necessarily
1299 // the containing DC of TD, because the new context will be some pre-existing
1300 // TagDecl definition instead of a fresh one.
1301 auto Result = static_cast<SkippedDefinitionContext>(CurContext);
1302 CurContext = cast<TagDecl>(D)->getDefinition();
1303 assert(CurContext && "skipping definition of undefined tag")((CurContext && "skipping definition of undefined tag"
) ? static_cast<void> (0) : __assert_fail ("CurContext && \"skipping definition of undefined tag\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 1303, __PRETTY_FUNCTION__))
;
1304 // Start lookups from the parent of the current context; we don't want to look
1305 // into the pre-existing complete definition.
1306 S->setEntity(CurContext->getLookupParent());
1307 return Result;
1308}
1309
1310void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) {
1311 CurContext = static_cast<decltype(CurContext)>(Context);
1312}
1313
1314/// EnterDeclaratorContext - Used when we must lookup names in the context
1315/// of a declarator's nested name specifier.
1316///
1317void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
1318 // C++0x [basic.lookup.unqual]p13:
1319 // A name used in the definition of a static data member of class
1320 // X (after the qualified-id of the static member) is looked up as
1321 // if the name was used in a member function of X.
1322 // C++0x [basic.lookup.unqual]p14:
1323 // If a variable member of a namespace is defined outside of the
1324 // scope of its namespace then any name used in the definition of
1325 // the variable member (after the declarator-id) is looked up as
1326 // if the definition of the variable member occurred in its
1327 // namespace.
1328 // Both of these imply that we should push a scope whose context
1329 // is the semantic context of the declaration. We can't use
1330 // PushDeclContext here because that context is not necessarily
1331 // lexically contained in the current context. Fortunately,
1332 // the containing scope should have the appropriate information.
1333
1334 assert(!S->getEntity() && "scope already has entity")((!S->getEntity() && "scope already has entity") ?
static_cast<void> (0) : __assert_fail ("!S->getEntity() && \"scope already has entity\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 1334, __PRETTY_FUNCTION__))
;
1335
1336#ifndef NDEBUG
1337 Scope *Ancestor = S->getParent();
1338 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1339 assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch")((Ancestor->getEntity() == CurContext && "ancestor context mismatch"
) ? static_cast<void> (0) : __assert_fail ("Ancestor->getEntity() == CurContext && \"ancestor context mismatch\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 1339, __PRETTY_FUNCTION__))
;
1340#endif
1341
1342 CurContext = DC;
1343 S->setEntity(DC);
1344
1345 if (S->getParent()->isTemplateParamScope()) {
1346 // Also set the corresponding entities for all immediately-enclosing
1347 // template parameter scopes.
1348 EnterTemplatedContext(S->getParent(), DC);
1349 }
1350}
1351
1352void Sema::ExitDeclaratorContext(Scope *S) {
1353 assert(S->getEntity() == CurContext && "Context imbalance!")((S->getEntity() == CurContext && "Context imbalance!"
) ? static_cast<void> (0) : __assert_fail ("S->getEntity() == CurContext && \"Context imbalance!\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 1353, __PRETTY_FUNCTION__))
;
1354
1355 // Switch back to the lexical context. The safety of this is
1356 // enforced by an assert in EnterDeclaratorContext.
1357 Scope *Ancestor = S->getParent();
1358 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1359 CurContext = Ancestor->getEntity();
1360
1361 // We don't need to do anything with the scope, which is going to
1362 // disappear.
1363}
1364
1365void Sema::EnterTemplatedContext(Scope *S, DeclContext *DC) {
1366 assert(S->isTemplateParamScope() &&((S->isTemplateParamScope() && "expected to be initializing a template parameter scope"
) ? static_cast<void> (0) : __assert_fail ("S->isTemplateParamScope() && \"expected to be initializing a template parameter scope\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 1367, __PRETTY_FUNCTION__))
1367 "expected to be initializing a template parameter scope")((S->isTemplateParamScope() && "expected to be initializing a template parameter scope"
) ? static_cast<void> (0) : __assert_fail ("S->isTemplateParamScope() && \"expected to be initializing a template parameter scope\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 1367, __PRETTY_FUNCTION__))
;
1368
1369 // C++20 [temp.local]p7:
1370 // In the definition of a member of a class template that appears outside
1371 // of the class template definition, the name of a member of the class
1372 // template hides the name of a template-parameter of any enclosing class
1373 // templates (but not a template-parameter of the member if the member is a
1374 // class or function template).
1375 // C++20 [temp.local]p9:
1376 // In the definition of a class template or in the definition of a member
1377 // of such a template that appears outside of the template definition, for
1378 // each non-dependent base class (13.8.2.1), if the name of the base class
1379 // or the name of a member of the base class is the same as the name of a
1380 // template-parameter, the base class name or member name hides the
1381 // template-parameter name (6.4.10).
1382 //
1383 // This means that a template parameter scope should be searched immediately
1384 // after searching the DeclContext for which it is a template parameter
1385 // scope. For example, for
1386 // template<typename T> template<typename U> template<typename V>
1387 // void N::A<T>::B<U>::f(...)
1388 // we search V then B<U> (and base classes) then U then A<T> (and base
1389 // classes) then T then N then ::.
1390 unsigned ScopeDepth = getTemplateDepth(S);
1391 for (; S && S->isTemplateParamScope(); S = S->getParent(), --ScopeDepth) {
1392 DeclContext *SearchDCAfterScope = DC;
1393 for (; DC; DC = DC->getLookupParent()) {
1394 if (const TemplateParameterList *TPL =
1395 cast<Decl>(DC)->getDescribedTemplateParams()) {
1396 unsigned DCDepth = TPL->getDepth() + 1;
1397 if (DCDepth > ScopeDepth)
1398 continue;
1399 if (ScopeDepth == DCDepth)
1400 SearchDCAfterScope = DC = DC->getLookupParent();
1401 break;
1402 }
1403 }
1404 S->setLookupEntity(SearchDCAfterScope);
1405 }
1406}
1407
1408void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
1409 // We assume that the caller has already called
1410 // ActOnReenterTemplateScope so getTemplatedDecl() works.
1411 FunctionDecl *FD = D->getAsFunction();
1412 if (!FD)
1413 return;
1414
1415 // Same implementation as PushDeclContext, but enters the context
1416 // from the lexical parent, rather than the top-level class.
1417 assert(CurContext == FD->getLexicalParent() &&((CurContext == FD->getLexicalParent() && "The next DeclContext should be lexically contained in the current one."
) ? static_cast<void> (0) : __assert_fail ("CurContext == FD->getLexicalParent() && \"The next DeclContext should be lexically contained in the current one.\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 1418, __PRETTY_FUNCTION__))
1418 "The next DeclContext should be lexically contained in the current one.")((CurContext == FD->getLexicalParent() && "The next DeclContext should be lexically contained in the current one."
) ? static_cast<void> (0) : __assert_fail ("CurContext == FD->getLexicalParent() && \"The next DeclContext should be lexically contained in the current one.\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 1418, __PRETTY_FUNCTION__))
;
1419 CurContext = FD;
1420 S->setEntity(CurContext);
1421
1422 for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1423 ParmVarDecl *Param = FD->getParamDecl(P);
1424 // If the parameter has an identifier, then add it to the scope
1425 if (Param->getIdentifier()) {
1426 S->AddDecl(Param);
1427 IdResolver.AddDecl(Param);
1428 }
1429 }
1430}
1431
1432void Sema::ActOnExitFunctionContext() {
1433 // Same implementation as PopDeclContext, but returns to the lexical parent,
1434 // rather than the top-level class.
1435 assert(CurContext && "DeclContext imbalance!")((CurContext && "DeclContext imbalance!") ? static_cast
<void> (0) : __assert_fail ("CurContext && \"DeclContext imbalance!\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 1435, __PRETTY_FUNCTION__))
;
1436 CurContext = CurContext->getLexicalParent();
1437 assert(CurContext && "Popped translation unit!")((CurContext && "Popped translation unit!") ? static_cast
<void> (0) : __assert_fail ("CurContext && \"Popped translation unit!\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 1437, __PRETTY_FUNCTION__))
;
1438}
1439
1440/// Determine whether we allow overloading of the function
1441/// PrevDecl with another declaration.
1442///
1443/// This routine determines whether overloading is possible, not
1444/// whether some new function is actually an overload. It will return
1445/// true in C++ (where we can always provide overloads) or, as an
1446/// extension, in C when the previous function is already an
1447/// overloaded function declaration or has the "overloadable"
1448/// attribute.
1449static bool AllowOverloadingOfFunction(LookupResult &Previous,
1450 ASTContext &Context,
1451 const FunctionDecl *New) {
1452 if (Context.getLangOpts().CPlusPlus)
1453 return true;
1454
1455 if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1456 return true;
1457
1458 return Previous.getResultKind() == LookupResult::Found &&
1459 (Previous.getFoundDecl()->hasAttr<OverloadableAttr>() ||
1460 New->hasAttr<OverloadableAttr>());
1461}
1462
1463/// Add this decl to the scope shadowed decl chains.
1464void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1465 // Move up the scope chain until we find the nearest enclosing
1466 // non-transparent context. The declaration will be introduced into this
1467 // scope.
1468 while (S->getEntity() && S->getEntity()->isTransparentContext())
1469 S = S->getParent();
1470
1471 // Add scoped declarations into their context, so that they can be
1472 // found later. Declarations without a context won't be inserted
1473 // into any context.
1474 if (AddToContext)
1475 CurContext->addDecl(D);
1476
1477 // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1478 // are function-local declarations.
1479 if (getLangOpts().CPlusPlus && D->isOutOfLine() && !S->getFnParent())
1480 return;
1481
1482 // Template instantiations should also not be pushed into scope.
1483 if (isa<FunctionDecl>(D) &&
1484 cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1485 return;
1486
1487 // If this replaces anything in the current scope,
1488 IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1489 IEnd = IdResolver.end();
1490 for (; I != IEnd; ++I) {
1491 if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1492 S->RemoveDecl(*I);
1493 IdResolver.RemoveDecl(*I);
1494
1495 // Should only need to replace one decl.
1496 break;
1497 }
1498 }
1499
1500 S->AddDecl(D);
1501
1502 if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1503 // Implicitly-generated labels may end up getting generated in an order that
1504 // isn't strictly lexical, which breaks name lookup. Be careful to insert
1505 // the label at the appropriate place in the identifier chain.
1506 for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1507 DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1508 if (IDC == CurContext) {
1509 if (!S->isDeclScope(*I))
1510 continue;
1511 } else if (IDC->Encloses(CurContext))
1512 break;
1513 }
1514
1515 IdResolver.InsertDeclAfter(I, D);
1516 } else {
1517 IdResolver.AddDecl(D);
1518 }
1519}
1520
1521bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1522 bool AllowInlineNamespace) {
1523 return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
1524}
1525
1526Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1527 DeclContext *TargetDC = DC->getPrimaryContext();
1528 do {
1529 if (DeclContext *ScopeDC = S->getEntity())
1530 if (ScopeDC->getPrimaryContext() == TargetDC)
1531 return S;
1532 } while ((S = S->getParent()));
1533
1534 return nullptr;
1535}
1536
1537static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1538 DeclContext*,
1539 ASTContext&);
1540
1541/// Filters out lookup results that don't fall within the given scope
1542/// as determined by isDeclInScope.
1543void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
1544 bool ConsiderLinkage,
1545 bool AllowInlineNamespace) {
1546 LookupResult::Filter F = R.makeFilter();
1547 while (F.hasNext()) {
1548 NamedDecl *D = F.next();
1549
1550 if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
1551 continue;
1552
1553 if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
1554 continue;
1555
1556 F.erase();
1557 }
1558
1559 F.done();
1560}
1561
1562/// We've determined that \p New is a redeclaration of \p Old. Check that they
1563/// have compatible owning modules.
1564bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) {
1565 // FIXME: The Modules TS is not clear about how friend declarations are
1566 // to be treated. It's not meaningful to have different owning modules for
1567 // linkage in redeclarations of the same entity, so for now allow the
1568 // redeclaration and change the owning modules to match.
1569 if (New->getFriendObjectKind() &&
11
Calling 'Decl::getFriendObjectKind'
17
Returning from 'Decl::getFriendObjectKind'
19
Taking false branch
1570 Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) {
18
Assuming the condition is false
1571 New->setLocalOwningModule(Old->getOwningModule());
1572 makeMergedDefinitionVisible(New);
1573 return false;
1574 }
1575
1576 Module *NewM = New->getOwningModule();
1577 Module *OldM = Old->getOwningModule();
1578
1579 if (NewM
19.1
'NewM' is null
19.1
'NewM' is null
&& NewM->Kind == Module::PrivateModuleFragment)
1580 NewM = NewM->Parent;
1581 if (OldM
19.2
'OldM' is null
19.2
'OldM' is null
&& OldM->Kind == Module::PrivateModuleFragment)
1582 OldM = OldM->Parent;
1583
1584 if (NewM
19.3
'NewM' is equal to 'OldM'
19.3
'NewM' is equal to 'OldM'
== OldM)
20
Taking true branch
1585 return false;
21
Returning zero, which participates in a condition later
1586
1587 bool NewIsModuleInterface = NewM && NewM->isModulePurview();
1588 bool OldIsModuleInterface = OldM && OldM->isModulePurview();
1589 if (NewIsModuleInterface || OldIsModuleInterface) {
1590 // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]:
1591 // if a declaration of D [...] appears in the purview of a module, all
1592 // other such declarations shall appear in the purview of the same module
1593 Diag(New->getLocation(), diag::err_mismatched_owning_module)
1594 << New
1595 << NewIsModuleInterface
1596 << (NewIsModuleInterface ? NewM->getFullModuleName() : "")
1597 << OldIsModuleInterface
1598 << (OldIsModuleInterface ? OldM->getFullModuleName() : "");
1599 Diag(Old->getLocation(), diag::note_previous_declaration);
1600 New->setInvalidDecl();
1601 return true;
1602 }
1603
1604 return false;
1605}
1606
1607static bool isUsingDecl(NamedDecl *D) {
1608 return isa<UsingShadowDecl>(D) ||
1609 isa<UnresolvedUsingTypenameDecl>(D) ||
1610 isa<UnresolvedUsingValueDecl>(D);
1611}
1612
1613/// Removes using shadow declarations from the lookup results.
1614static void RemoveUsingDecls(LookupResult &R) {
1615 LookupResult::Filter F = R.makeFilter();
1616 while (F.hasNext())
1617 if (isUsingDecl(F.next()))
1618 F.erase();
1619
1620 F.done();
1621}
1622
1623/// Check for this common pattern:
1624/// @code
1625/// class S {
1626/// S(const S&); // DO NOT IMPLEMENT
1627/// void operator=(const S&); // DO NOT IMPLEMENT
1628/// };
1629/// @endcode
1630static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1631 // FIXME: Should check for private access too but access is set after we get
1632 // the decl here.
1633 if (D->doesThisDeclarationHaveABody())
1634 return false;
1635
1636 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1637 return CD->isCopyConstructor();
1638 return D->isCopyAssignmentOperator();
1639}
1640
1641// We need this to handle
1642//
1643// typedef struct {
1644// void *foo() { return 0; }
1645// } A;
1646//
1647// When we see foo we don't know if after the typedef we will get 'A' or '*A'
1648// for example. If 'A', foo will have external linkage. If we have '*A',
1649// foo will have no linkage. Since we can't know until we get to the end
1650// of the typedef, this function finds out if D might have non-external linkage.
1651// Callers should verify at the end of the TU if it D has external linkage or
1652// not.
1653bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1654 const DeclContext *DC = D->getDeclContext();
1655 while (!DC->isTranslationUnit()) {
1656 if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1657 if (!RD->hasNameForLinkage())
1658 return true;
1659 }
1660 DC = DC->getParent();
1661 }
1662
1663 return !D->isExternallyVisible();
1664}
1665
1666// FIXME: This needs to be refactored; some other isInMainFile users want
1667// these semantics.
1668static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1669 if (S.TUKind != TU_Complete)
1670 return false;
1671 return S.SourceMgr.isInMainFile(Loc);
1672}
1673
1674bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1675 assert(D)((D) ? static_cast<void> (0) : __assert_fail ("D", "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 1675, __PRETTY_FUNCTION__))
;
1676
1677 if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1678 return false;
1679
1680 // Ignore all entities declared within templates, and out-of-line definitions
1681 // of members of class templates.
1682 if (D->getDeclContext()->isDependentContext() ||
1683 D->getLexicalDeclContext()->isDependentContext())
1684 return false;
1685
1686 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1687 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1688 return false;
1689 // A non-out-of-line declaration of a member specialization was implicitly
1690 // instantiated; it's the out-of-line declaration that we're interested in.
1691 if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1692 FD->getMemberSpecializationInfo() && !FD->isOutOfLine())
1693 return false;
1694
1695 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1696 if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1697 return false;
1698 } else {
1699 // 'static inline' functions are defined in headers; don't warn.
1700 if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
1701 return false;
1702 }
1703
1704 if (FD->doesThisDeclarationHaveABody() &&
1705 Context.DeclMustBeEmitted(FD))
1706 return false;
1707 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1708 // Constants and utility variables are defined in headers with internal
1709 // linkage; don't warn. (Unlike functions, there isn't a convenient marker
1710 // like "inline".)
1711 if (!isMainFileLoc(*this, VD->getLocation()))
1712 return false;
1713
1714 if (Context.DeclMustBeEmitted(VD))
1715 return false;
1716
1717 if (VD->isStaticDataMember() &&
1718 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1719 return false;
1720 if (VD->isStaticDataMember() &&
1721 VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1722 VD->getMemberSpecializationInfo() && !VD->isOutOfLine())
1723 return false;
1724
1725 if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation()))
1726 return false;
1727 } else {
1728 return false;
1729 }
1730
1731 // Only warn for unused decls internal to the translation unit.
1732 // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1733 // for inline functions defined in the main source file, for instance.
1734 return mightHaveNonExternalLinkage(D);
1735}
1736
1737void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1738 if (!D)
1739 return;
1740
1741 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1742 const FunctionDecl *First = FD->getFirstDecl();
1743 if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1744 return; // First should already be in the vector.
1745 }
1746
1747 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1748 const VarDecl *First = VD->getFirstDecl();
1749 if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1750 return; // First should already be in the vector.
1751 }
1752
1753 if (ShouldWarnIfUnusedFileScopedDecl(D))
1754 UnusedFileScopedDecls.push_back(D);
1755}
1756
1757static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1758 if (D->isInvalidDecl())
1759 return false;
1760
1761 if (auto *DD = dyn_cast<DecompositionDecl>(D)) {
1762 // For a decomposition declaration, warn if none of the bindings are
1763 // referenced, instead of if the variable itself is referenced (which
1764 // it is, by the bindings' expressions).
1765 for (auto *BD : DD->bindings())
1766 if (BD->isReferenced())
1767 return false;
1768 } else if (!D->getDeclName()) {
1769 return false;
1770 } else if (D->isReferenced() || D->isUsed()) {
1771 return false;
1772 }
1773
1774 if (D->hasAttr<UnusedAttr>() || D->hasAttr<ObjCPreciseLifetimeAttr>())
1775 return false;
1776
1777 if (isa<LabelDecl>(D))
1778 return true;
1779
1780 // Except for labels, we only care about unused decls that are local to
1781 // functions.
1782 bool WithinFunction = D->getDeclContext()->isFunctionOrMethod();
1783 if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext()))
1784 // For dependent types, the diagnostic is deferred.
1785 WithinFunction =
1786 WithinFunction || (R->isLocalClass() && !R->isDependentType());
1787 if (!WithinFunction)
1788 return false;
1789
1790 if (isa<TypedefNameDecl>(D))
1791 return true;
1792
1793 // White-list anything that isn't a local variable.
1794 if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D))
1795 return false;
1796
1797 // Types of valid local variables should be complete, so this should succeed.
1798 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1799
1800 // White-list anything with an __attribute__((unused)) type.
1801 const auto *Ty = VD->getType().getTypePtr();
1802
1803 // Only look at the outermost level of typedef.
1804 if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1805 if (TT->getDecl()->hasAttr<UnusedAttr>())
1806 return false;
1807 }
1808
1809 // If we failed to complete the type for some reason, or if the type is
1810 // dependent, don't diagnose the variable.
1811 if (Ty->isIncompleteType() || Ty->isDependentType())
1812 return false;
1813
1814 // Look at the element type to ensure that the warning behaviour is
1815 // consistent for both scalars and arrays.
1816 Ty = Ty->getBaseElementTypeUnsafe();
1817
1818 if (const TagType *TT = Ty->getAs<TagType>()) {
1819 const TagDecl *Tag = TT->getDecl();
1820 if (Tag->hasAttr<UnusedAttr>())
1821 return false;
1822
1823 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1824 if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
1825 return false;
1826
1827 if (const Expr *Init = VD->getInit()) {
1828 if (const ExprWithCleanups *Cleanups =
1829 dyn_cast<ExprWithCleanups>(Init))
1830 Init = Cleanups->getSubExpr();
1831 const CXXConstructExpr *Construct =
1832 dyn_cast<CXXConstructExpr>(Init);
1833 if (Construct && !Construct->isElidable()) {
1834 CXXConstructorDecl *CD = Construct->getConstructor();
1835 if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() &&
1836 (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
1837 return false;
1838 }
1839
1840 // Suppress the warning if we don't know how this is constructed, and
1841 // it could possibly be non-trivial constructor.
1842 if (Init->isTypeDependent())
1843 for (const CXXConstructorDecl *Ctor : RD->ctors())
1844 if (!Ctor->isTrivial())
1845 return false;
1846 }
1847 }
1848 }
1849
1850 // TODO: __attribute__((unused)) templates?
1851 }
1852
1853 return true;
1854}
1855
1856static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1857 FixItHint &Hint) {
1858 if (isa<LabelDecl>(D)) {
1859 SourceLocation AfterColon = Lexer::findLocationAfterToken(
1860 D->getEndLoc(), tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(),
1861 true);
1862 if (AfterColon.isInvalid())
1863 return;
1864 Hint = FixItHint::CreateRemoval(
1865 CharSourceRange::getCharRange(D->getBeginLoc(), AfterColon));
1866 }
1867}
1868
1869void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) {
1870 if (D->getTypeForDecl()->isDependentType())
1871 return;
1872
1873 for (auto *TmpD : D->decls()) {
1874 if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD))
1875 DiagnoseUnusedDecl(T);
1876 else if(const auto *R = dyn_cast<RecordDecl>(TmpD))
1877 DiagnoseUnusedNestedTypedefs(R);
1878 }
1879}
1880
1881/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1882/// unless they are marked attr(unused).
1883void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1884 if (!ShouldDiagnoseUnusedDecl(D))
1885 return;
1886
1887 if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
1888 // typedefs can be referenced later on, so the diagnostics are emitted
1889 // at end-of-translation-unit.
1890 UnusedLocalTypedefNameCandidates.insert(TD);
1891 return;
1892 }
1893
1894 FixItHint Hint;
1895 GenerateFixForUnusedDecl(D, Context, Hint);
1896
1897 unsigned DiagID;
1898 if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1899 DiagID = diag::warn_unused_exception_param;
1900 else if (isa<LabelDecl>(D))
1901 DiagID = diag::warn_unused_label;
1902 else
1903 DiagID = diag::warn_unused_variable;
1904
1905 Diag(D->getLocation(), DiagID) << D << Hint;
1906}
1907
1908static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1909 // Verify that we have no forward references left. If so, there was a goto
1910 // or address of a label taken, but no definition of it. Label fwd
1911 // definitions are indicated with a null substmt which is also not a resolved
1912 // MS inline assembly label name.
1913 bool Diagnose = false;
1914 if (L->isMSAsmLabel())
1915 Diagnose = !L->isResolvedMSAsmLabel();
1916 else
1917 Diagnose = L->getStmt() == nullptr;
1918 if (Diagnose)
1919 S.Diag(L->getLocation(), diag::err_undeclared_label_use) << L;
1920}
1921
1922void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1923 S->mergeNRVOIntoParent();
1924
1925 if (S->decl_empty()) return;
1926 assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&(((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope
)) && "Scope shouldn't contain decls!") ? static_cast
<void> (0) : __assert_fail ("(S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && \"Scope shouldn't contain decls!\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 1927, __PRETTY_FUNCTION__))
1927 "Scope shouldn't contain decls!")(((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope
)) && "Scope shouldn't contain decls!") ? static_cast
<void> (0) : __assert_fail ("(S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && \"Scope shouldn't contain decls!\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 1927, __PRETTY_FUNCTION__))
;
1928
1929 for (auto *TmpD : S->decls()) {
1930 assert(TmpD && "This decl didn't get pushed??")((TmpD && "This decl didn't get pushed??") ? static_cast
<void> (0) : __assert_fail ("TmpD && \"This decl didn't get pushed??\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 1930, __PRETTY_FUNCTION__))
;
1931
1932 assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?")((isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?"
) ? static_cast<void> (0) : __assert_fail ("isa<NamedDecl>(TmpD) && \"Decl isn't NamedDecl?\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 1932, __PRETTY_FUNCTION__))
;
1933 NamedDecl *D = cast<NamedDecl>(TmpD);
1934
1935 // Diagnose unused variables in this scope.
1936 if (!S->hasUnrecoverableErrorOccurred()) {
1937 DiagnoseUnusedDecl(D);
1938 if (const auto *RD = dyn_cast<RecordDecl>(D))
1939 DiagnoseUnusedNestedTypedefs(RD);
1940 }
1941
1942 if (!D->getDeclName()) continue;
1943
1944 // If this was a forward reference to a label, verify it was defined.
1945 if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1946 CheckPoppedLabel(LD, *this);
1947
1948 // Remove this name from our lexical scope, and warn on it if we haven't
1949 // already.
1950 IdResolver.RemoveDecl(D);
1951 auto ShadowI = ShadowingDecls.find(D);
1952 if (ShadowI != ShadowingDecls.end()) {
1953 if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) {
1954 Diag(D->getLocation(), diag::warn_ctor_parm_shadows_field)
1955 << D << FD << FD->getParent();
1956 Diag(FD->getLocation(), diag::note_previous_declaration);
1957 }
1958 ShadowingDecls.erase(ShadowI);
1959 }
1960 }
1961}
1962
1963/// Look for an Objective-C class in the translation unit.
1964///
1965/// \param Id The name of the Objective-C class we're looking for. If
1966/// typo-correction fixes this name, the Id will be updated
1967/// to the fixed name.
1968///
1969/// \param IdLoc The location of the name in the translation unit.
1970///
1971/// \param DoTypoCorrection If true, this routine will attempt typo correction
1972/// if there is no class with the given name.
1973///
1974/// \returns The declaration of the named Objective-C class, or NULL if the
1975/// class could not be found.
1976ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1977 SourceLocation IdLoc,
1978 bool DoTypoCorrection) {
1979 // The third "scope" argument is 0 since we aren't enabling lazy built-in
1980 // creation from this context.
1981 NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1982
1983 if (!IDecl && DoTypoCorrection) {
1984 // Perform typo correction at the given location, but only if we
1985 // find an Objective-C class name.
1986 DeclFilterCCC<ObjCInterfaceDecl> CCC{};
1987 if (TypoCorrection C =
1988 CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
1989 TUScope, nullptr, CCC, CTK_ErrorRecovery)) {
1990 diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
1991 IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1992 Id = IDecl->getIdentifier();
1993 }
1994 }
1995 ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1996 // This routine must always return a class definition, if any.
1997 if (Def && Def->getDefinition())
1998 Def = Def->getDefinition();
1999 return Def;
2000}
2001
2002/// getNonFieldDeclScope - Retrieves the innermost scope, starting
2003/// from S, where a non-field would be declared. This routine copes
2004/// with the difference between C and C++ scoping rules in structs and
2005/// unions. For example, the following code is well-formed in C but
2006/// ill-formed in C++:
2007/// @code
2008/// struct S6 {
2009/// enum { BAR } e;
2010/// };
2011///
2012/// void test_S6() {
2013/// struct S6 a;
2014/// a.e = BAR;
2015/// }
2016/// @endcode
2017/// For the declaration of BAR, this routine will return a different
2018/// scope. The scope S will be the scope of the unnamed enumeration
2019/// within S6. In C++, this routine will return the scope associated
2020/// with S6, because the enumeration's scope is a transparent
2021/// context but structures can contain non-field names. In C, this
2022/// routine will return the translation unit scope, since the
2023/// enumeration's scope is a transparent context and structures cannot
2024/// contain non-field names.
2025Scope *Sema::getNonFieldDeclScope(Scope *S) {
2026 while (((S->getFlags() & Scope::DeclScope) == 0) ||
2027 (S->getEntity() && S->getEntity()->isTransparentContext()) ||
2028 (S->isClassScope() && !getLangOpts().CPlusPlus))
2029 S = S->getParent();
2030 return S;
2031}
2032
2033static StringRef getHeaderName(Builtin::Context &BuiltinInfo, unsigned ID,
2034 ASTContext::GetBuiltinTypeError Error) {
2035 switch (Error) {
2036 case ASTContext::GE_None:
2037 return "";
2038 case ASTContext::GE_Missing_type:
2039 return BuiltinInfo.getHeaderName(ID);
2040 case ASTContext::GE_Missing_stdio:
2041 return "stdio.h";
2042 case ASTContext::GE_Missing_setjmp:
2043 return "setjmp.h";
2044 case ASTContext::GE_Missing_ucontext:
2045 return "ucontext.h";
2046 }
2047 llvm_unreachable("unhandled error kind")::llvm::llvm_unreachable_internal("unhandled error kind", "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 2047)
;
2048}
2049
2050FunctionDecl *Sema::CreateBuiltin(IdentifierInfo *II, QualType Type,
2051 unsigned ID, SourceLocation Loc) {
2052 DeclContext *Parent = Context.getTranslationUnitDecl();
2053
2054 if (getLangOpts().CPlusPlus) {
2055 LinkageSpecDecl *CLinkageDecl = LinkageSpecDecl::Create(
2056 Context, Parent, Loc, Loc, LinkageSpecDecl::lang_c, false);
2057 CLinkageDecl->setImplicit();
2058 Parent->addDecl(CLinkageDecl);
2059 Parent = CLinkageDecl;
2060 }
2061
2062 FunctionDecl *New = FunctionDecl::Create(Context, Parent, Loc, Loc, II, Type,
2063 /*TInfo=*/nullptr, SC_Extern, false,
2064 Type->isFunctionProtoType());
2065 New->setImplicit();
2066 New->addAttr(BuiltinAttr::CreateImplicit(Context, ID));
2067
2068 // Create Decl objects for each parameter, adding them to the
2069 // FunctionDecl.
2070 if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(Type)) {
2071 SmallVector<ParmVarDecl *, 16> Params;
2072 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2073 ParmVarDecl *parm = ParmVarDecl::Create(
2074 Context, New, SourceLocation(), SourceLocation(), nullptr,
2075 FT->getParamType(i), /*TInfo=*/nullptr, SC_None, nullptr);
2076 parm->setScopeInfo(0, i);
2077 Params.push_back(parm);
2078 }
2079 New->setParams(Params);
2080 }
2081
2082 AddKnownFunctionAttributes(New);
2083 return New;
2084}
2085
2086/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
2087/// file scope. lazily create a decl for it. ForRedeclaration is true
2088/// if we're creating this built-in in anticipation of redeclaring the
2089/// built-in.
2090NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
2091 Scope *S, bool ForRedeclaration,
2092 SourceLocation Loc) {
2093 LookupNecessaryTypesForBuiltin(S, ID);
2094
2095 ASTContext::GetBuiltinTypeError Error;
2096 QualType R = Context.GetBuiltinType(ID, Error);
2097 if (Error) {
2098 if (!ForRedeclaration)
2099 return nullptr;
2100
2101 // If we have a builtin without an associated type we should not emit a
2102 // warning when we were not able to find a type for it.
2103 if (Error == ASTContext::GE_Missing_type ||
2104 Context.BuiltinInfo.allowTypeMismatch(ID))
2105 return nullptr;
2106
2107 // If we could not find a type for setjmp it is because the jmp_buf type was
2108 // not defined prior to the setjmp declaration.
2109 if (Error == ASTContext::GE_Missing_setjmp) {
2110 Diag(Loc, diag::warn_implicit_decl_no_jmp_buf)
2111 << Context.BuiltinInfo.getName(ID);
2112 return nullptr;
2113 }
2114
2115 // Generally, we emit a warning that the declaration requires the
2116 // appropriate header.
2117 Diag(Loc, diag::warn_implicit_decl_requires_sysheader)
2118 << getHeaderName(Context.BuiltinInfo, ID, Error)
2119 << Context.BuiltinInfo.getName(ID);
2120 return nullptr;
2121 }
2122
2123 if (!ForRedeclaration &&
2124 (Context.BuiltinInfo.isPredefinedLibFunction(ID) ||
2125 Context.BuiltinInfo.isHeaderDependentFunction(ID))) {
2126 Diag(Loc, diag::ext_implicit_lib_function_decl)
2127 << Context.BuiltinInfo.getName(ID) << R;
2128 if (const char *Header = Context.BuiltinInfo.getHeaderName(ID))
2129 Diag(Loc, diag::note_include_header_or_declare)
2130 << Header << Context.BuiltinInfo.getName(ID);
2131 }
2132
2133 if (R.isNull())
2134 return nullptr;
2135
2136 FunctionDecl *New = CreateBuiltin(II, R, ID, Loc);
2137 RegisterLocallyScopedExternCDecl(New, S);
2138
2139 // TUScope is the translation-unit scope to insert this function into.
2140 // FIXME: This is hideous. We need to teach PushOnScopeChains to
2141 // relate Scopes to DeclContexts, and probably eliminate CurContext
2142 // entirely, but we're not there yet.
2143 DeclContext *SavedContext = CurContext;
2144 CurContext = New->getDeclContext();
2145 PushOnScopeChains(New, TUScope);
2146 CurContext = SavedContext;
2147 return New;
2148}
2149
2150/// Typedef declarations don't have linkage, but they still denote the same
2151/// entity if their types are the same.
2152/// FIXME: This is notionally doing the same thing as ASTReaderDecl's
2153/// isSameEntity.
2154static void filterNonConflictingPreviousTypedefDecls(Sema &S,
2155 TypedefNameDecl *Decl,
2156 LookupResult &Previous) {
2157 // This is only interesting when modules are enabled.
2158 if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility)
2159 return;
2160
2161 // Empty sets are uninteresting.
2162 if (Previous.empty())
2163 return;
2164
2165 LookupResult::Filter Filter = Previous.makeFilter();
2166 while (Filter.hasNext()) {
2167 NamedDecl *Old = Filter.next();
2168
2169 // Non-hidden declarations are never ignored.
2170 if (S.isVisible(Old))
2171 continue;
2172
2173 // Declarations of the same entity are not ignored, even if they have
2174 // different linkages.
2175 if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2176 if (S.Context.hasSameType(OldTD->getUnderlyingType(),
2177 Decl->getUnderlyingType()))
2178 continue;
2179
2180 // If both declarations give a tag declaration a typedef name for linkage
2181 // purposes, then they declare the same entity.
2182 if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) &&
2183 Decl->getAnonDeclWithTypedefName())
2184 continue;
2185 }
2186
2187 Filter.erase();
2188 }
2189
2190 Filter.done();
2191}
2192
2193bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
2194 QualType OldType;
2195 if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
2196 OldType = OldTypedef->getUnderlyingType();
2197 else
2198 OldType = Context.getTypeDeclType(Old);
2199 QualType NewType = New->getUnderlyingType();
2200
2201 if (NewType->isVariablyModifiedType()) {
2202 // Must not redefine a typedef with a variably-modified type.
2203 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2204 Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
2205 << Kind << NewType;
2206 if (Old->getLocation().isValid())
2207 notePreviousDefinition(Old, New->getLocation());
2208 New->setInvalidDecl();
2209 return true;
2210 }
2211
2212 if (OldType != NewType &&
2213 !OldType->isDependentType() &&
2214 !NewType->isDependentType() &&
2215 !Context.hasSameType(OldType, NewType)) {
2216 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2217 Diag(New->getLocation(), diag::err_redefinition_different_typedef)
2218 << Kind << NewType << OldType;
2219 if (Old->getLocation().isValid())
2220 notePreviousDefinition(Old, New->getLocation());
2221 New->setInvalidDecl();
2222 return true;
2223 }
2224 return false;
2225}
2226
2227/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
2228/// same name and scope as a previous declaration 'Old'. Figure out
2229/// how to resolve this situation, merging decls or emitting
2230/// diagnostics as appropriate. If there was an error, set New to be invalid.
2231///
2232void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
2233 LookupResult &OldDecls) {
2234 // If the new decl is known invalid already, don't bother doing any
2235 // merging checks.
2236 if (New->isInvalidDecl()) return;
2237
2238 // Allow multiple definitions for ObjC built-in typedefs.
2239 // FIXME: Verify the underlying types are equivalent!
2240 if (getLangOpts().ObjC) {
2241 const IdentifierInfo *TypeID = New->getIdentifier();
2242 switch (TypeID->getLength()) {
2243 default: break;
2244 case 2:
2245 {
2246 if (!TypeID->isStr("id"))
2247 break;
2248 QualType T = New->getUnderlyingType();
2249 if (!T->isPointerType())
2250 break;
2251 if (!T->isVoidPointerType()) {
2252 QualType PT = T->castAs<PointerType>()->getPointeeType();
2253 if (!PT->isStructureType())
2254 break;
2255 }
2256 Context.setObjCIdRedefinitionType(T);
2257 // Install the built-in type for 'id', ignoring the current definition.
2258 New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
2259 return;
2260 }
2261 case 5:
2262 if (!TypeID->isStr("Class"))
2263 break;
2264 Context.setObjCClassRedefinitionType(New->getUnderlyingType());
2265 // Install the built-in type for 'Class', ignoring the current definition.
2266 New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
2267 return;
2268 case 3:
2269 if (!TypeID->isStr("SEL"))
2270 break;
2271 Context.setObjCSelRedefinitionType(New->getUnderlyingType());
2272 // Install the built-in type for 'SEL', ignoring the current definition.
2273 New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
2274 return;
2275 }
2276 // Fall through - the typedef name was not a builtin type.
2277 }
2278
2279 // Verify the old decl was also a type.
2280 TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
2281 if (!Old) {
2282 Diag(New->getLocation(), diag::err_redefinition_different_kind)
2283 << New->getDeclName();
2284
2285 NamedDecl *OldD = OldDecls.getRepresentativeDecl();
2286 if (OldD->getLocation().isValid())
2287 notePreviousDefinition(OldD, New->getLocation());
2288
2289 return New->setInvalidDecl();
2290 }
2291
2292 // If the old declaration is invalid, just give up here.
2293 if (Old->isInvalidDecl())
2294 return New->setInvalidDecl();
2295
2296 if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2297 auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
2298 auto *NewTag = New->getAnonDeclWithTypedefName();
2299 NamedDecl *Hidden = nullptr;
2300 if (OldTag && NewTag &&
2301 OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() &&
2302 !hasVisibleDefinition(OldTag, &Hidden)) {
2303 // There is a definition of this tag, but it is not visible. Use it
2304 // instead of our tag.
2305 New->setTypeForDecl(OldTD->getTypeForDecl());
2306 if (OldTD->isModed())
2307 New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(),
2308 OldTD->getUnderlyingType());
2309 else
2310 New->setTypeSourceInfo(OldTD->getTypeSourceInfo());
2311
2312 // Make the old tag definition visible.
2313 makeMergedDefinitionVisible(Hidden);
2314
2315 // If this was an unscoped enumeration, yank all of its enumerators
2316 // out of the scope.
2317 if (isa<EnumDecl>(NewTag)) {
2318 Scope *EnumScope = getNonFieldDeclScope(S);
2319 for (auto *D : NewTag->decls()) {
2320 auto *ED = cast<EnumConstantDecl>(D);
2321 assert(EnumScope->isDeclScope(ED))((EnumScope->isDeclScope(ED)) ? static_cast<void> (0
) : __assert_fail ("EnumScope->isDeclScope(ED)", "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 2321, __PRETTY_FUNCTION__))
;
2322 EnumScope->RemoveDecl(ED);
2323 IdResolver.RemoveDecl(ED);
2324 ED->getLexicalDeclContext()->removeDecl(ED);
2325 }
2326 }
2327 }
2328 }
2329
2330 // If the typedef types are not identical, reject them in all languages and
2331 // with any extensions enabled.
2332 if (isIncompatibleTypedef(Old, New))
2333 return;
2334
2335 // The types match. Link up the redeclaration chain and merge attributes if
2336 // the old declaration was a typedef.
2337 if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
2338 New->setPreviousDecl(Typedef);
2339 mergeDeclAttributes(New, Old);
2340 }
2341
2342 if (getLangOpts().MicrosoftExt)
2343 return;
2344
2345 if (getLangOpts().CPlusPlus) {
2346 // C++ [dcl.typedef]p2:
2347 // In a given non-class scope, a typedef specifier can be used to
2348 // redefine the name of any type declared in that scope to refer
2349 // to the type to which it already refers.
2350 if (!isa<CXXRecordDecl>(CurContext))
2351 return;
2352
2353 // C++0x [dcl.typedef]p4:
2354 // In a given class scope, a typedef specifier can be used to redefine
2355 // any class-name declared in that scope that is not also a typedef-name
2356 // to refer to the type to which it already refers.
2357 //
2358 // This wording came in via DR424, which was a correction to the
2359 // wording in DR56, which accidentally banned code like:
2360 //
2361 // struct S {
2362 // typedef struct A { } A;
2363 // };
2364 //
2365 // in the C++03 standard. We implement the C++0x semantics, which
2366 // allow the above but disallow
2367 //
2368 // struct S {
2369 // typedef int I;
2370 // typedef int I;
2371 // };
2372 //
2373 // since that was the intent of DR56.
2374 if (!isa<TypedefNameDecl>(Old))
2375 return;
2376
2377 Diag(New->getLocation(), diag::err_redefinition)
2378 << New->getDeclName();
2379 notePreviousDefinition(Old, New->getLocation());
2380 return New->setInvalidDecl();
2381 }
2382
2383 // Modules always permit redefinition of typedefs, as does C11.
2384 if (getLangOpts().Modules || getLangOpts().C11)
2385 return;
2386
2387 // If we have a redefinition of a typedef in C, emit a warning. This warning
2388 // is normally mapped to an error, but can be controlled with
2389 // -Wtypedef-redefinition. If either the original or the redefinition is
2390 // in a system header, don't emit this for compatibility with GCC.
2391 if (getDiagnostics().getSuppressSystemWarnings() &&
2392 // Some standard types are defined implicitly in Clang (e.g. OpenCL).
2393 (Old->isImplicit() ||
2394 Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
2395 Context.getSourceManager().isInSystemHeader(New->getLocation())))
2396 return;
2397
2398 Diag(New->getLocation(), diag::ext_redefinition_of_typedef)
2399 << New->getDeclName();
2400 notePreviousDefinition(Old, New->getLocation());
2401}
2402
2403/// DeclhasAttr - returns true if decl Declaration already has the target
2404/// attribute.
2405static bool DeclHasAttr(const Decl *D, const Attr *A) {
2406 const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
2407 const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
2408 for (const auto *i : D->attrs())
2409 if (i->getKind() == A->getKind()) {
2410 if (Ann) {
2411 if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
2412 return true;
2413 continue;
2414 }
2415 // FIXME: Don't hardcode this check
2416 if (OA && isa<OwnershipAttr>(i))
2417 return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
2418 return true;
2419 }
2420
2421 return false;
2422}
2423
2424static bool isAttributeTargetADefinition(Decl *D) {
2425 if (VarDecl *VD = dyn_cast<VarDecl>(D))
2426 return VD->isThisDeclarationADefinition();
2427 if (TagDecl *TD = dyn_cast<TagDecl>(D))
2428 return TD->isCompleteDefinition() || TD->isBeingDefined();
2429 return true;
2430}
2431
2432/// Merge alignment attributes from \p Old to \p New, taking into account the
2433/// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
2434///
2435/// \return \c true if any attributes were added to \p New.
2436static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
2437 // Look for alignas attributes on Old, and pick out whichever attribute
2438 // specifies the strictest alignment requirement.
2439 AlignedAttr *OldAlignasAttr = nullptr;
2440 AlignedAttr *OldStrictestAlignAttr = nullptr;
2441 unsigned OldAlign = 0;
2442 for (auto *I : Old->specific_attrs<AlignedAttr>()) {
2443 // FIXME: We have no way of representing inherited dependent alignments
2444 // in a case like:
2445 // template<int A, int B> struct alignas(A) X;
2446 // template<int A, int B> struct alignas(B) X {};
2447 // For now, we just ignore any alignas attributes which are not on the
2448 // definition in such a case.
2449 if (I->isAlignmentDependent())
2450 return false;
2451
2452 if (I->isAlignas())
2453 OldAlignasAttr = I;
2454
2455 unsigned Align = I->getAlignment(S.Context);
2456 if (Align > OldAlign) {
2457 OldAlign = Align;
2458 OldStrictestAlignAttr = I;
2459 }
2460 }
2461
2462 // Look for alignas attributes on New.
2463 AlignedAttr *NewAlignasAttr = nullptr;
2464 unsigned NewAlign = 0;
2465 for (auto *I : New->specific_attrs<AlignedAttr>()) {
2466 if (I->isAlignmentDependent())
2467 return false;
2468
2469 if (I->isAlignas())
2470 NewAlignasAttr = I;
2471
2472 unsigned Align = I->getAlignment(S.Context);
2473 if (Align > NewAlign)
2474 NewAlign = Align;
2475 }
2476
2477 if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
2478 // Both declarations have 'alignas' attributes. We require them to match.
2479 // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
2480 // fall short. (If two declarations both have alignas, they must both match
2481 // every definition, and so must match each other if there is a definition.)
2482
2483 // If either declaration only contains 'alignas(0)' specifiers, then it
2484 // specifies the natural alignment for the type.
2485 if (OldAlign == 0 || NewAlign == 0) {
2486 QualType Ty;
2487 if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
2488 Ty = VD->getType();
2489 else
2490 Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
2491
2492 if (OldAlign == 0)
2493 OldAlign = S.Context.getTypeAlign(Ty);
2494 if (NewAlign == 0)
2495 NewAlign = S.Context.getTypeAlign(Ty);
2496 }
2497
2498 if (OldAlign != NewAlign) {
2499 S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
2500 << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
2501 << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
2502 S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
2503 }
2504 }
2505
2506 if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
2507 // C++11 [dcl.align]p6:
2508 // if any declaration of an entity has an alignment-specifier,
2509 // every defining declaration of that entity shall specify an
2510 // equivalent alignment.
2511 // C11 6.7.5/7:
2512 // If the definition of an object does not have an alignment
2513 // specifier, any other declaration of that object shall also
2514 // have no alignment specifier.
2515 S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
2516 << OldAlignasAttr;
2517 S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
2518 << OldAlignasAttr;
2519 }
2520
2521 bool AnyAdded = false;
2522
2523 // Ensure we have an attribute representing the strictest alignment.
2524 if (OldAlign > NewAlign) {
2525 AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
2526 Clone->setInherited(true);
2527 New->addAttr(Clone);
2528 AnyAdded = true;
2529 }
2530
2531 // Ensure we have an alignas attribute if the old declaration had one.
2532 if (OldAlignasAttr && !NewAlignasAttr &&
2533 !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
2534 AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
2535 Clone->setInherited(true);
2536 New->addAttr(Clone);
2537 AnyAdded = true;
2538 }
2539
2540 return AnyAdded;
2541}
2542
2543static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
2544 const InheritableAttr *Attr,
2545 Sema::AvailabilityMergeKind AMK) {
2546 // This function copies an attribute Attr from a previous declaration to the
2547 // new declaration D if the new declaration doesn't itself have that attribute
2548 // yet or if that attribute allows duplicates.
2549 // If you're adding a new attribute that requires logic different from
2550 // "use explicit attribute on decl if present, else use attribute from
2551 // previous decl", for example if the attribute needs to be consistent
2552 // between redeclarations, you need to call a custom merge function here.
2553 InheritableAttr *NewAttr = nullptr;
2554 if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
2555 NewAttr = S.mergeAvailabilityAttr(
2556 D, *AA, AA->getPlatform(), AA->isImplicit(), AA->getIntroduced(),
2557 AA->getDeprecated(), AA->getObsoleted(), AA->getUnavailable(),
2558 AA->getMessage(), AA->getStrict(), AA->getReplacement(), AMK,
2559 AA->getPriority());
2560 else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
2561 NewAttr = S.mergeVisibilityAttr(D, *VA, VA->getVisibility());
2562 else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
2563 NewAttr = S.mergeTypeVisibilityAttr(D, *VA, VA->getVisibility());
2564 else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
2565 NewAttr = S.mergeDLLImportAttr(D, *ImportA);
2566 else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
2567 NewAttr = S.mergeDLLExportAttr(D, *ExportA);
2568 else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
2569 NewAttr = S.mergeFormatAttr(D, *FA, FA->getType(), FA->getFormatIdx(),
2570 FA->getFirstArg());
2571 else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
2572 NewAttr = S.mergeSectionAttr(D, *SA, SA->getName());
2573 else if (const auto *CSA = dyn_cast<CodeSegAttr>(Attr))
2574 NewAttr = S.mergeCodeSegAttr(D, *CSA, CSA->getName());
2575 else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
2576 NewAttr = S.mergeMSInheritanceAttr(D, *IA, IA->getBestCase(),
2577 IA->getInheritanceModel());
2578 else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr))
2579 NewAttr = S.mergeAlwaysInlineAttr(D, *AA,
2580 &S.Context.Idents.get(AA->getSpelling()));
2581 else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) &&
2582 (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) ||
2583 isa<CUDAGlobalAttr>(Attr))) {
2584 // CUDA target attributes are part of function signature for
2585 // overloading purposes and must not be merged.
2586 return false;
2587 } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr))
2588 NewAttr = S.mergeMinSizeAttr(D, *MA);
2589 else if (const auto *SNA = dyn_cast<SwiftNameAttr>(Attr))
2590 NewAttr = S.mergeSwiftNameAttr(D, *SNA, SNA->getName());
2591 else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr))
2592 NewAttr = S.mergeOptimizeNoneAttr(D, *OA);
2593 else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr))
2594 NewAttr = S.mergeInternalLinkageAttr(D, *InternalLinkageA);
2595 else if (const auto *CommonA = dyn_cast<CommonAttr>(Attr))
2596 NewAttr = S.mergeCommonAttr(D, *CommonA);
2597 else if (isa<AlignedAttr>(Attr))
2598 // AlignedAttrs are handled separately, because we need to handle all
2599 // such attributes on a declaration at the same time.
2600 NewAttr = nullptr;
2601 else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) &&
2602 (AMK == Sema::AMK_Override ||
2603 AMK == Sema::AMK_ProtocolImplementation))
2604 NewAttr = nullptr;
2605 else if (const auto *UA = dyn_cast<UuidAttr>(Attr))
2606 NewAttr = S.mergeUuidAttr(D, *UA, UA->getGuid(), UA->getGuidDecl());
2607 else if (const auto *SLHA = dyn_cast<SpeculativeLoadHardeningAttr>(Attr))
2608 NewAttr = S.mergeSpeculativeLoadHardeningAttr(D, *SLHA);
2609 else if (const auto *SLHA = dyn_cast<NoSpeculativeLoadHardeningAttr>(Attr))
2610 NewAttr = S.mergeNoSpeculativeLoadHardeningAttr(D, *SLHA);
2611 else if (const auto *IMA = dyn_cast<WebAssemblyImportModuleAttr>(Attr))
2612 NewAttr = S.mergeImportModuleAttr(D, *IMA);
2613 else if (const auto *INA = dyn_cast<WebAssemblyImportNameAttr>(Attr))
2614 NewAttr = S.mergeImportNameAttr(D, *INA);
2615 else if (const auto *TCBA = dyn_cast<EnforceTCBAttr>(Attr))
2616 NewAttr = S.mergeEnforceTCBAttr(D, *TCBA);
2617 else if (const auto *TCBLA = dyn_cast<EnforceTCBLeafAttr>(Attr))
2618 NewAttr = S.mergeEnforceTCBLeafAttr(D, *TCBLA);
2619 else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr))
2620 NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2621
2622 if (NewAttr) {
2623 NewAttr->setInherited(true);
2624 D->addAttr(NewAttr);
2625 if (isa<MSInheritanceAttr>(NewAttr))
2626 S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
2627 return true;
2628 }
2629
2630 return false;
2631}
2632
2633static const NamedDecl *getDefinition(const Decl *D) {
2634 if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2635 return TD->getDefinition();
2636 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2637 const VarDecl *Def = VD->getDefinition();
2638 if (Def)
2639 return Def;
2640 return VD->getActingDefinition();
2641 }
2642 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2643 const FunctionDecl *Def = nullptr;
2644 if (FD->isDefined(Def, true))
2645 return Def;
2646 }
2647 return nullptr;
2648}
2649
2650static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2651 for (const auto *Attribute : D->attrs())
2652 if (Attribute->getKind() == Kind)
2653 return true;
2654 return false;
2655}
2656
2657/// checkNewAttributesAfterDef - If we already have a definition, check that
2658/// there are no new attributes in this declaration.
2659static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2660 if (!New->hasAttrs())
2661 return;
2662
2663 const NamedDecl *Def = getDefinition(Old);
2664 if (!Def || Def == New)
2665 return;
2666
2667 AttrVec &NewAttributes = New->getAttrs();
2668 for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2669 const Attr *NewAttribute = NewAttributes[I];
2670
2671 if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) {
2672 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) {
2673 Sema::SkipBodyInfo SkipBody;
2674 S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody);
2675
2676 // If we're skipping this definition, drop the "alias" attribute.
2677 if (SkipBody.ShouldSkip) {
2678 NewAttributes.erase(NewAttributes.begin() + I);
2679 --E;
2680 continue;
2681 }
2682 } else {
2683 VarDecl *VD = cast<VarDecl>(New);
2684 unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
2685 VarDecl::TentativeDefinition
2686 ? diag::err_alias_after_tentative
2687 : diag::err_redefinition;
2688 S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
2689 if (Diag == diag::err_redefinition)
2690 S.notePreviousDefinition(Def, VD->getLocation());
2691 else
2692 S.Diag(Def->getLocation(), diag::note_previous_definition);
2693 VD->setInvalidDecl();
2694 }
2695 ++I;
2696 continue;
2697 }
2698
2699 if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
2700 // Tentative definitions are only interesting for the alias check above.
2701 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
2702 ++I;
2703 continue;
2704 }
2705 }
2706
2707 if (hasAttribute(Def, NewAttribute->getKind())) {
2708 ++I;
2709 continue; // regular attr merging will take care of validating this.
2710 }
2711
2712 if (isa<C11NoReturnAttr>(NewAttribute)) {
2713 // C's _Noreturn is allowed to be added to a function after it is defined.
2714 ++I;
2715 continue;
2716 } else if (isa<UuidAttr>(NewAttribute)) {
2717 // msvc will allow a subsequent definition to add an uuid to a class
2718 ++I;
2719 continue;
2720 } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2721 if (AA->isAlignas()) {
2722 // C++11 [dcl.align]p6:
2723 // if any declaration of an entity has an alignment-specifier,
2724 // every defining declaration of that entity shall specify an
2725 // equivalent alignment.
2726 // C11 6.7.5/7:
2727 // If the definition of an object does not have an alignment
2728 // specifier, any other declaration of that object shall also
2729 // have no alignment specifier.
2730 S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2731 << AA;
2732 S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2733 << AA;
2734 NewAttributes.erase(NewAttributes.begin() + I);
2735 --E;
2736 continue;
2737 }
2738 } else if (isa<LoaderUninitializedAttr>(NewAttribute)) {
2739 // If there is a C definition followed by a redeclaration with this
2740 // attribute then there are two different definitions. In C++, prefer the
2741 // standard diagnostics.
2742 if (!S.getLangOpts().CPlusPlus) {
2743 S.Diag(NewAttribute->getLocation(),
2744 diag::err_loader_uninitialized_redeclaration);
2745 S.Diag(Def->getLocation(), diag::note_previous_definition);
2746 NewAttributes.erase(NewAttributes.begin() + I);
2747 --E;
2748 continue;
2749 }
2750 } else if (isa<SelectAnyAttr>(NewAttribute) &&
2751 cast<VarDecl>(New)->isInline() &&
2752 !cast<VarDecl>(New)->isInlineSpecified()) {
2753 // Don't warn about applying selectany to implicitly inline variables.
2754 // Older compilers and language modes would require the use of selectany
2755 // to make such variables inline, and it would have no effect if we
2756 // honored it.
2757 ++I;
2758 continue;
2759 } else if (isa<OMPDeclareVariantAttr>(NewAttribute)) {
2760 // We allow to add OMP[Begin]DeclareVariantAttr to be added to
2761 // declarations after defintions.
2762 ++I;
2763 continue;
2764 }
2765
2766 S.Diag(NewAttribute->getLocation(),
2767 diag::warn_attribute_precede_definition);
2768 S.Diag(Def->getLocation(), diag::note_previous_definition);
2769 NewAttributes.erase(NewAttributes.begin() + I);
2770 --E;
2771 }
2772}
2773
2774static void diagnoseMissingConstinit(Sema &S, const VarDecl *InitDecl,
2775 const ConstInitAttr *CIAttr,
2776 bool AttrBeforeInit) {
2777 SourceLocation InsertLoc = InitDecl->getInnerLocStart();
2778
2779 // Figure out a good way to write this specifier on the old declaration.
2780 // FIXME: We should just use the spelling of CIAttr, but we don't preserve
2781 // enough of the attribute list spelling information to extract that without
2782 // heroics.
2783 std::string SuitableSpelling;
2784 if (S.getLangOpts().CPlusPlus20)
2785 SuitableSpelling = std::string(
2786 S.PP.getLastMacroWithSpelling(InsertLoc, {tok::kw_constinit}));
2787 if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11)
2788 SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling(
2789 InsertLoc, {tok::l_square, tok::l_square,
2790 S.PP.getIdentifierInfo("clang"), tok::coloncolon,
2791 S.PP.getIdentifierInfo("require_constant_initialization"),
2792 tok::r_square, tok::r_square}));
2793 if (SuitableSpelling.empty())
2794 SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling(
2795 InsertLoc, {tok::kw___attribute, tok::l_paren, tok::r_paren,
2796 S.PP.getIdentifierInfo("require_constant_initialization"),
2797 tok::r_paren, tok::r_paren}));
2798 if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus20)
2799 SuitableSpelling = "constinit";
2800 if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11)
2801 SuitableSpelling = "[[clang::require_constant_initialization]]";
2802 if (SuitableSpelling.empty())
2803 SuitableSpelling = "__attribute__((require_constant_initialization))";
2804 SuitableSpelling += " ";
2805
2806 if (AttrBeforeInit) {
2807 // extern constinit int a;
2808 // int a = 0; // error (missing 'constinit'), accepted as extension
2809 assert(CIAttr->isConstinit() && "should not diagnose this for attribute")((CIAttr->isConstinit() && "should not diagnose this for attribute"
) ? static_cast<void> (0) : __assert_fail ("CIAttr->isConstinit() && \"should not diagnose this for attribute\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 2809, __PRETTY_FUNCTION__))
;
2810 S.Diag(InitDecl->getLocation(), diag::ext_constinit_missing)
2811 << InitDecl << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling);
2812 S.Diag(CIAttr->getLocation(), diag::note_constinit_specified_here);
2813 } else {
2814 // int a = 0;
2815 // constinit extern int a; // error (missing 'constinit')
2816 S.Diag(CIAttr->getLocation(),
2817 CIAttr->isConstinit() ? diag::err_constinit_added_too_late
2818 : diag::warn_require_const_init_added_too_late)
2819 << FixItHint::CreateRemoval(SourceRange(CIAttr->getLocation()));
2820 S.Diag(InitDecl->getLocation(), diag::note_constinit_missing_here)
2821 << CIAttr->isConstinit()
2822 << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling);
2823 }
2824}
2825
2826/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
2827void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2828 AvailabilityMergeKind AMK) {
2829 if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
2830 UsedAttr *NewAttr = OldAttr->clone(Context);
2831 NewAttr->setInherited(true);
2832 New->addAttr(NewAttr);
2833 }
2834
2835 if (!Old->hasAttrs() && !New->hasAttrs())
2836 return;
2837
2838 // [dcl.constinit]p1:
2839 // If the [constinit] specifier is applied to any declaration of a
2840 // variable, it shall be applied to the initializing declaration.
2841 const auto *OldConstInit = Old->getAttr<ConstInitAttr>();
2842 const auto *NewConstInit = New->getAttr<ConstInitAttr>();
2843 if (bool(OldConstInit) != bool(NewConstInit)) {
2844 const auto *OldVD = cast<VarDecl>(Old);
2845 auto *NewVD = cast<VarDecl>(New);
2846
2847 // Find the initializing declaration. Note that we might not have linked
2848 // the new declaration into the redeclaration chain yet.
2849 const VarDecl *InitDecl = OldVD->getInitializingDeclaration();
2850 if (!InitDecl &&
2851 (NewVD->hasInit() || NewVD->isThisDeclarationADefinition()))
2852 InitDecl = NewVD;
2853
2854 if (InitDecl == NewVD) {
2855 // This is the initializing declaration. If it would inherit 'constinit',
2856 // that's ill-formed. (Note that we do not apply this to the attribute
2857 // form).
2858 if (OldConstInit && OldConstInit->isConstinit())
2859 diagnoseMissingConstinit(*this, NewVD, OldConstInit,
2860 /*AttrBeforeInit=*/true);
2861 } else if (NewConstInit) {
2862 // This is the first time we've been told that this declaration should
2863 // have a constant initializer. If we already saw the initializing
2864 // declaration, this is too late.
2865 if (InitDecl && InitDecl != NewVD) {
2866 diagnoseMissingConstinit(*this, InitDecl, NewConstInit,
2867 /*AttrBeforeInit=*/false);
2868 NewVD->dropAttr<ConstInitAttr>();
2869 }
2870 }
2871 }
2872
2873 // Attributes declared post-definition are currently ignored.
2874 checkNewAttributesAfterDef(*this, New, Old);
2875
2876 if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) {
2877 if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) {
2878 if (!OldA->isEquivalent(NewA)) {
2879 // This redeclaration changes __asm__ label.
2880 Diag(New->getLocation(), diag::err_different_asm_label);
2881 Diag(OldA->getLocation(), diag::note_previous_declaration);
2882 }
2883 } else if (Old->isUsed()) {
2884 // This redeclaration adds an __asm__ label to a declaration that has
2885 // already been ODR-used.
2886 Diag(New->getLocation(), diag::err_late_asm_label_name)
2887 << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange();
2888 }
2889 }
2890
2891 // Re-declaration cannot add abi_tag's.
2892 if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) {
2893 if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) {
2894 for (const auto &NewTag : NewAbiTagAttr->tags()) {
2895 if (std::find(OldAbiTagAttr->tags_begin(), OldAbiTagAttr->tags_end(),
2896 NewTag) == OldAbiTagAttr->tags_end()) {
2897 Diag(NewAbiTagAttr->getLocation(),
2898 diag::err_new_abi_tag_on_redeclaration)
2899 << NewTag;
2900 Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration);
2901 }
2902 }
2903 } else {
2904 Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration);
2905 Diag(Old->getLocation(), diag::note_previous_declaration);
2906 }
2907 }
2908
2909 // This redeclaration adds a section attribute.
2910 if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) {
2911 if (auto *VD = dyn_cast<VarDecl>(New)) {
2912 if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) {
2913 Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration);
2914 Diag(Old->getLocation(), diag::note_previous_declaration);
2915 }
2916 }
2917 }
2918
2919 // Redeclaration adds code-seg attribute.
2920 const auto *NewCSA = New->getAttr<CodeSegAttr>();
2921 if (NewCSA && !Old->hasAttr<CodeSegAttr>() &&
2922 !NewCSA->isImplicit() && isa<CXXMethodDecl>(New)) {
2923 Diag(New->getLocation(), diag::warn_mismatched_section)
2924 << 0 /*codeseg*/;
2925 Diag(Old->getLocation(), diag::note_previous_declaration);
2926 }
2927
2928 if (!Old->hasAttrs())
2929 return;
2930
2931 bool foundAny = New->hasAttrs();
2932
2933 // Ensure that any moving of objects within the allocated map is done before
2934 // we process them.
2935 if (!foundAny) New->setAttrs(AttrVec());
2936
2937 for (auto *I : Old->specific_attrs<InheritableAttr>()) {
2938 // Ignore deprecated/unavailable/availability attributes if requested.
2939 AvailabilityMergeKind LocalAMK = AMK_None;
2940 if (isa<DeprecatedAttr>(I) ||
2941 isa<UnavailableAttr>(I) ||
2942 isa<AvailabilityAttr>(I)) {
2943 switch (AMK) {
2944 case AMK_None:
2945 continue;
2946
2947 case AMK_Redeclaration:
2948 case AMK_Override:
2949 case AMK_ProtocolImplementation:
2950 LocalAMK = AMK;
2951 break;
2952 }
2953 }
2954
2955 // Already handled.
2956 if (isa<UsedAttr>(I))
2957 continue;
2958
2959 if (mergeDeclAttribute(*this, New, I, LocalAMK))
2960 foundAny = true;
2961 }
2962
2963 if (mergeAlignedAttrs(*this, New, Old))
2964 foundAny = true;
2965
2966 if (!foundAny) New->dropAttrs();
2967}
2968
2969/// mergeParamDeclAttributes - Copy attributes from the old parameter
2970/// to the new one.
2971static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2972 const ParmVarDecl *oldDecl,
2973 Sema &S) {
2974 // C++11 [dcl.attr.depend]p2:
2975 // The first declaration of a function shall specify the
2976 // carries_dependency attribute for its declarator-id if any declaration
2977 // of the function specifies the carries_dependency attribute.
2978 const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
2979 if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2980 S.Diag(CDA->getLocation(),
2981 diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2982 // Find the first declaration of the parameter.
2983 // FIXME: Should we build redeclaration chains for function parameters?
2984 const FunctionDecl *FirstFD =
2985 cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
2986 const ParmVarDecl *FirstVD =
2987 FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2988 S.Diag(FirstVD->getLocation(),
2989 diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2990 }
2991
2992 if (!oldDecl->hasAttrs())
2993 return;
2994
2995 bool foundAny = newDecl->hasAttrs();
2996
2997 // Ensure that any moving of objects within the allocated map is
2998 // done before we process them.
2999 if (!foundAny) newDecl->setAttrs(AttrVec());
3000
3001 for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
3002 if (!DeclHasAttr(newDecl, I)) {
3003 InheritableAttr *newAttr =
3004 cast<InheritableParamAttr>(I->clone(S.Context));
3005 newAttr->setInherited(true);
3006 newDecl->addAttr(newAttr);
3007 foundAny = true;
3008 }
3009 }
3010
3011 if (!foundAny) newDecl->dropAttrs();
3012}
3013
3014static void mergeParamDeclTypes(ParmVarDecl *NewParam,
3015 const ParmVarDecl *OldParam,
3016 Sema &S) {
3017 if (auto Oldnullability = OldParam->getType()->getNullability(S.Context)) {
3018 if (auto Newnullability = NewParam->getType()->getNullability(S.Context)) {
3019 if (*Oldnullability != *Newnullability) {
3020 S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr)
3021 << DiagNullabilityKind(
3022 *Newnullability,
3023 ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
3024 != 0))
3025 << DiagNullabilityKind(
3026 *Oldnullability,
3027 ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
3028 != 0));
3029 S.Diag(OldParam->getLocation(), diag::note_previous_declaration);
3030 }
3031 } else {
3032 QualType NewT = NewParam->getType();
3033 NewT = S.Context.getAttributedType(
3034 AttributedType::getNullabilityAttrKind(*Oldnullability),
3035 NewT, NewT);
3036 NewParam->setType(NewT);
3037 }
3038 }
3039}
3040
3041namespace {
3042
3043/// Used in MergeFunctionDecl to keep track of function parameters in
3044/// C.
3045struct GNUCompatibleParamWarning {
3046 ParmVarDecl *OldParm;
3047 ParmVarDecl *NewParm;
3048 QualType PromotedType;
3049};
3050
3051} // end anonymous namespace
3052
3053// Determine whether the previous declaration was a definition, implicit
3054// declaration, or a declaration.
3055template <typename T>
3056static std::pair<diag::kind, SourceLocation>
3057getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
3058 diag::kind PrevDiag;
3059 SourceLocation OldLocation = Old->getLocation();
3060 if (Old->isThisDeclarationADefinition())
3061 PrevDiag = diag::note_previous_definition;
3062 else if (Old->isImplicit()) {
3063 PrevDiag = diag::note_previous_implicit_declaration;
3064 if (OldLocation.isInvalid())
3065 OldLocation = New->getLocation();
3066 } else
3067 PrevDiag = diag::note_previous_declaration;
3068 return std::make_pair(PrevDiag, OldLocation);
3069}
3070
3071/// canRedefineFunction - checks if a function can be redefined. Currently,
3072/// only extern inline functions can be redefined, and even then only in
3073/// GNU89 mode.
3074static bool canRedefineFunction(const FunctionDecl *FD,
3075 const LangOptions& LangOpts) {
3076 return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
3077 !LangOpts.CPlusPlus &&
3078 FD->isInlineSpecified() &&
3079 FD->getStorageClass() == SC_Extern);
3080}
3081
3082const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
3083 const AttributedType *AT = T->getAs<AttributedType>();
3084 while (AT && !AT->isCallingConv())
3085 AT = AT->getModifiedType()->getAs<AttributedType>();
3086 return AT;
3087}
3088
3089template <typename T>
3090static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
3091 const DeclContext *DC = Old->getDeclContext();
3092 if (DC->isRecord())
47
Calling 'DeclContext::isRecord'
50
Returning from 'DeclContext::isRecord'
51
Taking false branch
3093 return false;
3094
3095 LanguageLinkage OldLinkage = Old->getLanguageLinkage();
3096 if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
52
Assuming 'OldLinkage' is not equal to CXXLanguageLinkage
3097 return true;
3098 if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
53
Assuming 'OldLinkage' is not equal to CLanguageLinkage
3099 return true;
3100 return false;
54
Returning zero, which participates in a condition later
3101}
3102
3103template<typename T> static bool isExternC(T *D) { return D->isExternC(); }
3104static bool isExternC(VarTemplateDecl *) { return false; }
3105
3106/// Check whether a redeclaration of an entity introduced by a
3107/// using-declaration is valid, given that we know it's not an overload
3108/// (nor a hidden tag declaration).
3109template<typename ExpectedDecl>
3110static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS,
3111 ExpectedDecl *New) {
3112 // C++11 [basic.scope.declarative]p4:
3113 // Given a set of declarations in a single declarative region, each of
3114 // which specifies the same unqualified name,
3115 // -- they shall all refer to the same entity, or all refer to functions
3116 // and function templates; or
3117 // -- exactly one declaration shall declare a class name or enumeration
3118 // name that is not a typedef name and the other declarations shall all
3119 // refer to the same variable or enumerator, or all refer to functions
3120 // and function templates; in this case the class name or enumeration
3121 // name is hidden (3.3.10).
3122
3123 // C++11 [namespace.udecl]p14:
3124 // If a function declaration in namespace scope or block scope has the
3125 // same name and the same parameter-type-list as a function introduced
3126 // by a using-declaration, and the declarations do not declare the same
3127 // function, the program is ill-formed.
3128
3129 auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl());
3130 if (Old &&
3131 !Old->getDeclContext()->getRedeclContext()->Equals(
3132 New->getDeclContext()->getRedeclContext()) &&
3133 !(isExternC(Old) && isExternC(New)))
3134 Old = nullptr;
3135
3136 if (!Old) {
3137 S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
3138 S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target);
3139 S.Diag(OldS->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
3140 return true;
3141 }
3142 return false;
3143}
3144
3145static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A,
3146 const FunctionDecl *B) {
3147 assert(A->getNumParams() == B->getNumParams())((A->getNumParams() == B->getNumParams()) ? static_cast
<void> (0) : __assert_fail ("A->getNumParams() == B->getNumParams()"
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 3147, __PRETTY_FUNCTION__))
;
3148
3149 auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) {
3150 const auto *AttrA = A->getAttr<PassObjectSizeAttr>();
3151 const auto *AttrB = B->getAttr<PassObjectSizeAttr>();
3152 if (AttrA == AttrB)
3153 return true;
3154 return AttrA && AttrB && AttrA->getType() == AttrB->getType() &&
3155 AttrA->isDynamic() == AttrB->isDynamic();
3156 };
3157
3158 return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq);
3159}
3160
3161/// If necessary, adjust the semantic declaration context for a qualified
3162/// declaration to name the correct inline namespace within the qualifier.
3163static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD,
3164 DeclaratorDecl *OldD) {
3165 // The only case where we need to update the DeclContext is when
3166 // redeclaration lookup for a qualified name finds a declaration
3167 // in an inline namespace within the context named by the qualifier:
3168 //
3169 // inline namespace N { int f(); }
3170 // int ::f(); // Sema DC needs adjusting from :: to N::.
3171 //
3172 // For unqualified declarations, the semantic context *can* change
3173 // along the redeclaration chain (for local extern declarations,
3174 // extern "C" declarations, and friend declarations in particular).
3175 if (!NewD->getQualifier())
3176 return;
3177
3178 // NewD is probably already in the right context.
3179 auto *NamedDC = NewD->getDeclContext()->getRedeclContext();
3180 auto *SemaDC = OldD->getDeclContext()->getRedeclContext();
3181 if (NamedDC->Equals(SemaDC))
3182 return;
3183
3184 assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) ||(((NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->
isInvalidDecl() || OldD->isInvalidDecl()) && "unexpected context for redeclaration"
) ? static_cast<void> (0) : __assert_fail ("(NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl()) && \"unexpected context for redeclaration\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 3186, __PRETTY_FUNCTION__))
3185 NewD->isInvalidDecl() || OldD->isInvalidDecl()) &&(((NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->
isInvalidDecl() || OldD->isInvalidDecl()) && "unexpected context for redeclaration"
) ? static_cast<void> (0) : __assert_fail ("(NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl()) && \"unexpected context for redeclaration\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 3186, __PRETTY_FUNCTION__))
3186 "unexpected context for redeclaration")(((NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->
isInvalidDecl() || OldD->isInvalidDecl()) && "unexpected context for redeclaration"
) ? static_cast<void> (0) : __assert_fail ("(NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl()) && \"unexpected context for redeclaration\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 3186, __PRETTY_FUNCTION__))
;
3187
3188 auto *LexDC = NewD->getLexicalDeclContext();
3189 auto FixSemaDC = [=](NamedDecl *D) {
3190 if (!D)
3191 return;
3192 D->setDeclContext(SemaDC);
3193 D->setLexicalDeclContext(LexDC);
3194 };
3195
3196 FixSemaDC(NewD);
3197 if (auto *FD = dyn_cast<FunctionDecl>(NewD))
3198 FixSemaDC(FD->getDescribedFunctionTemplate());
3199 else if (auto *VD = dyn_cast<VarDecl>(NewD))
3200 FixSemaDC(VD->getDescribedVarTemplate());
3201}
3202
3203/// MergeFunctionDecl - We just parsed a function 'New' from
3204/// declarator D which has the same name and scope as a previous
3205/// declaration 'Old'. Figure out how to resolve this situation,
3206/// merging decls or emitting diagnostics as appropriate.
3207///
3208/// In C++, New and Old must be declarations that are not
3209/// overloaded. Use IsOverload to determine whether New and Old are
3210/// overloaded, and to select the Old declaration that New should be
3211/// merged with.
3212///
3213/// Returns true if there was an error, false otherwise.
3214bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD,
3215 Scope *S, bool MergeTypeWithOld) {
3216 // Verify the old decl was also a function.
3217 FunctionDecl *Old = OldD->getAsFunction();
3218 if (!Old) {
1
Assuming 'Old' is non-null
2
Taking false branch
3219 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
3220 if (New->getFriendObjectKind()) {
3221 Diag(New->getLocation(), diag::err_using_decl_friend);
3222 Diag(Shadow->getTargetDecl()->getLocation(),
3223 diag::note_using_decl_target);
3224 Diag(Shadow->getUsingDecl()->getLocation(),
3225 diag::note_using_decl) << 0;
3226 return true;
3227 }
3228
3229 // Check whether the two declarations might declare the same function.
3230 if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New))
3231 return true;
3232 OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl());
3233 } else {
3234 Diag(New->getLocation(), diag::err_redefinition_different_kind)
3235 << New->getDeclName();
3236 notePreviousDefinition(OldD, New->getLocation());
3237 return true;
3238 }
3239 }
3240
3241 // If the old declaration is invalid, just give up here.
3242 if (Old->isInvalidDecl())
3
Assuming the condition is false
4
Taking false branch
3243 return true;
3244
3245 // Disallow redeclaration of some builtins.
3246 if (!getASTContext().canBuiltinBeRedeclared(Old)) {
5
Assuming the condition is false
6
Taking false branch
3247 Diag(New->getLocation(), diag::err_builtin_redeclare) << Old->getDeclName();
3248 Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
3249 << Old << Old->getType();
3250 return true;
3251 }
3252
3253 diag::kind PrevDiag;
3254 SourceLocation OldLocation;
3255 std::tie(PrevDiag, OldLocation) =
3256 getNoteDiagForInvalidRedeclaration(Old, New);
3257
3258 // Don't complain about this if we're in GNU89 mode and the old function
3259 // is an extern inline function.
3260 // Don't complain about specializations. They are not supposed to have
3261 // storage classes.
3262 if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
7
Assuming 'New' is not a 'CXXMethodDecl'
8
Assuming 'Old' is not a 'CXXMethodDecl'
3263 New->getStorageClass() == SC_Static &&
9
Assuming the condition is false
3264 Old->hasExternalFormalLinkage() &&
3265 !New->getTemplateSpecializationInfo() &&
3266 !canRedefineFunction(Old, getLangOpts())) {
3267 if (getLangOpts().MicrosoftExt) {
3268 Diag(New->getLocation(), diag::ext_static_non_static) << New;
3269 Diag(OldLocation, PrevDiag);
3270 } else {
3271 Diag(New->getLocation(), diag::err_static_non_static) << New;
3272 Diag(OldLocation, PrevDiag);
3273 return true;
3274 }
3275 }
3276
3277 if (New->hasAttr<InternalLinkageAttr>() &&
3278 !Old->hasAttr<InternalLinkageAttr>()) {
3279 Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
3280 << New->getDeclName();
3281 notePreviousDefinition(Old, New->getLocation());
3282 New->dropAttr<InternalLinkageAttr>();
3283 }
3284
3285 if (CheckRedeclarationModuleOwnership(New, Old))
10
Calling 'Sema::CheckRedeclarationModuleOwnership'
22
Returning from 'Sema::CheckRedeclarationModuleOwnership'
23
Taking false branch
3286 return true;
3287
3288 if (!getLangOpts().CPlusPlus) {
24
Assuming field 'CPlusPlus' is not equal to 0
25
Taking false branch
3289 bool OldOvl = Old->hasAttr<OverloadableAttr>();
3290 if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) {
3291 Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch)
3292 << New << OldOvl;
3293
3294 // Try our best to find a decl that actually has the overloadable
3295 // attribute for the note. In most cases (e.g. programs with only one
3296 // broken declaration/definition), this won't matter.
3297 //
3298 // FIXME: We could do this if we juggled some extra state in
3299 // OverloadableAttr, rather than just removing it.
3300 const Decl *DiagOld = Old;
3301 if (OldOvl) {
3302 auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) {
3303 const auto *A = D->getAttr<OverloadableAttr>();
3304 return A && !A->isImplicit();
3305 });
3306 // If we've implicitly added *all* of the overloadable attrs to this
3307 // chain, emitting a "previous redecl" note is pointless.
3308 DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter;
3309 }
3310
3311 if (DiagOld)
3312 Diag(DiagOld->getLocation(),
3313 diag::note_attribute_overloadable_prev_overload)
3314 << OldOvl;
3315
3316 if (OldOvl)
3317 New->addAttr(OverloadableAttr::CreateImplicit(Context));
3318 else
3319 New->dropAttr<OverloadableAttr>();
3320 }
3321 }
3322
3323 // If a function is first declared with a calling convention, but is later
3324 // declared or defined without one, all following decls assume the calling
3325 // convention of the first.
3326 //
3327 // It's OK if a function is first declared without a calling convention,
3328 // but is later declared or defined with the default calling convention.
3329 //
3330 // To test if either decl has an explicit calling convention, we look for
3331 // AttributedType sugar nodes on the type as written. If they are missing or
3332 // were canonicalized away, we assume the calling convention was implicit.
3333 //
3334 // Note also that we DO NOT return at this point, because we still have
3335 // other tests to run.
3336 QualType OldQType = Context.getCanonicalType(Old->getType());
3337 QualType NewQType = Context.getCanonicalType(New->getType());
3338 const FunctionType *OldType = cast<FunctionType>(OldQType);
3339 const FunctionType *NewType = cast<FunctionType>(NewQType);
3340 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
3341 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
3342 bool RequiresAdjustment = false;
3343
3344 if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
26
Assuming the condition is false
27
Taking false branch
3345 FunctionDecl *First = Old->getFirstDecl();
3346 const FunctionType *FT =
3347 First->getType().getCanonicalType()->castAs<FunctionType>();
3348 FunctionType::ExtInfo FI = FT->getExtInfo();
3349 bool NewCCExplicit = getCallingConvAttributedType(New->getType());
3350 if (!NewCCExplicit) {
3351 // Inherit the CC from the previous declaration if it was specified
3352 // there but not here.
3353 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3354 RequiresAdjustment = true;
3355 } else if (Old->getBuiltinID()) {
3356 // Builtin attribute isn't propagated to the new one yet at this point,
3357 // so we check if the old one is a builtin.
3358
3359 // Calling Conventions on a Builtin aren't really useful and setting a
3360 // default calling convention and cdecl'ing some builtin redeclarations is
3361 // common, so warn and ignore the calling convention on the redeclaration.
3362 Diag(New->getLocation(), diag::warn_cconv_unsupported)
3363 << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3364 << (int)CallingConventionIgnoredReason::BuiltinFunction;
3365 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3366 RequiresAdjustment = true;
3367 } else {
3368 // Calling conventions aren't compatible, so complain.
3369 bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
3370 Diag(New->getLocation(), diag::err_cconv_change)
3371 << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3372 << !FirstCCExplicit
3373 << (!FirstCCExplicit ? "" :
3374 FunctionType::getNameForCallConv(FI.getCC()));
3375
3376 // Put the note on the first decl, since it is the one that matters.
3377 Diag(First->getLocation(), diag::note_previous_declaration);
3378 return true;
3379 }
3380 }
3381
3382 // FIXME: diagnose the other way around?
3383 if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
28
Assuming the condition is false
3384 NewTypeInfo = NewTypeInfo.withNoReturn(true);
3385 RequiresAdjustment = true;
3386 }
3387
3388 // Merge regparm attribute.
3389 if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
29
Taking false branch
3390 OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
3391 if (NewTypeInfo.getHasRegParm()) {
3392 Diag(New->getLocation(), diag::err_regparm_mismatch)
3393 << NewType->getRegParmType()
3394 << OldType->getRegParmType();
3395 Diag(OldLocation, diag::note_previous_declaration);
3396 return true;
3397 }
3398
3399 NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
3400 RequiresAdjustment = true;
3401 }
3402
3403 // Merge ns_returns_retained attribute.
3404 if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
30
Assuming the condition is false
31
Taking false branch
3405 if (NewTypeInfo.getProducesResult()) {
3406 Diag(New->getLocation(), diag::err_function_attribute_mismatch)
3407 << "'ns_returns_retained'";
3408 Diag(OldLocation, diag::note_previous_declaration);
3409 return true;
3410 }
3411
3412 NewTypeInfo = NewTypeInfo.withProducesResult(true);
3413 RequiresAdjustment = true;
3414 }
3415
3416 if (OldTypeInfo.getNoCallerSavedRegs() !=
32
Assuming the condition is false
33
Taking false branch
3417 NewTypeInfo.getNoCallerSavedRegs()) {
3418 if (NewTypeInfo.getNoCallerSavedRegs()) {
3419 AnyX86NoCallerSavedRegistersAttr *Attr =
3420 New->getAttr<AnyX86NoCallerSavedRegistersAttr>();
3421 Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr;
3422 Diag(OldLocation, diag::note_previous_declaration);
3423 return true;
3424 }
3425
3426 NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true);
3427 RequiresAdjustment = true;
3428 }
3429
3430 if (RequiresAdjustment
33.1
'RequiresAdjustment' is false
33.1
'RequiresAdjustment' is false
) {
34
Taking false branch
3431 const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
3432 AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
3433 New->setType(QualType(AdjustedType, 0));
3434 NewQType = Context.getCanonicalType(New->getType());
3435 }
3436
3437 // If this redeclaration makes the function inline, we may need to add it to
3438 // UndefinedButUsed.
3439 if (!Old->isInlined() && New->isInlined() &&
35
Assuming the condition is false
3440 !New->hasAttr<GNUInlineAttr>() &&
3441 !getLangOpts().GNUInline &&
3442 Old->isUsed(false) &&
3443 !Old->isDefined() && !New->isThisDeclarationADefinition())
3444 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
3445 SourceLocation()));
3446
3447 // If this redeclaration makes it newly gnu_inline, we don't want to warn
3448 // about it.
3449 if (New->hasAttr<GNUInlineAttr>() &&
3450 Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
3451 UndefinedButUsed.erase(Old->getCanonicalDecl());
3452 }
3453
3454 // If pass_object_size params don't match up perfectly, this isn't a valid
3455 // redeclaration.
3456 if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() &&
36
Assuming the condition is false
3457 !hasIdenticalPassObjectSizeAttrs(Old, New)) {
3458 Diag(New->getLocation(), diag::err_different_pass_object_size_params)
3459 << New->getDeclName();
3460 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3461 return true;
3462 }
3463
3464 if (getLangOpts().CPlusPlus
36.1
Field 'CPlusPlus' is not equal to 0
36.1
Field 'CPlusPlus' is not equal to 0
) {
37
Taking true branch
3465 // C++1z [over.load]p2
3466 // Certain function declarations cannot be overloaded:
3467 // -- Function declarations that differ only in the return type,
3468 // the exception specification, or both cannot be overloaded.
3469
3470 // Check the exception specifications match. This may recompute the type of
3471 // both Old and New if it resolved exception specifications, so grab the
3472 // types again after this. Because this updates the type, we do this before
3473 // any of the other checks below, which may update the "de facto" NewQType
3474 // but do not necessarily update the type of New.
3475 if (CheckEquivalentExceptionSpec(Old, New))
38
Assuming the condition is false
39
Taking false branch
3476 return true;
3477 OldQType = Context.getCanonicalType(Old->getType());
3478 NewQType = Context.getCanonicalType(New->getType());
3479
3480 // Go back to the type source info to compare the declared return types,
3481 // per C++1y [dcl.type.auto]p13:
3482 // Redeclarations or specializations of a function or function template
3483 // with a declared return type that uses a placeholder type shall also
3484 // use that placeholder, not a deduced type.
3485 QualType OldDeclaredReturnType = Old->getDeclaredReturnType();
3486 QualType NewDeclaredReturnType = New->getDeclaredReturnType();
3487 if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
40
Assuming the condition is false
3488 canFullyTypeCheckRedeclaration(New, Old, NewDeclaredReturnType,
3489 OldDeclaredReturnType)) {
3490 QualType ResQT;
3491 if (NewDeclaredReturnType->isObjCObjectPointerType() &&
3492 OldDeclaredReturnType->isObjCObjectPointerType())
3493 // FIXME: This does the wrong thing for a deduced return type.
3494 ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
3495 if (ResQT.isNull()) {
3496 if (New->isCXXClassMember() && New->isOutOfLine())
3497 Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
3498 << New << New->getReturnTypeSourceRange();
3499 else
3500 Diag(New->getLocation(), diag::err_ovl_diff_return_type)
3501 << New->getReturnTypeSourceRange();
3502 Diag(OldLocation, PrevDiag) << Old << Old->getType()
3503 << Old->getReturnTypeSourceRange();
3504 return true;
3505 }
3506 else
3507 NewQType = ResQT;
3508 }
3509
3510 QualType OldReturnType = OldType->getReturnType();
3511 QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
3512 if (OldReturnType != NewReturnType) {
41
Taking false branch
3513 // If this function has a deduced return type and has already been
3514 // defined, copy the deduced value from the old declaration.
3515 AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
3516 if (OldAT && OldAT->isDeduced()) {
3517 New->setType(
3518 SubstAutoType(New->getType(),
3519 OldAT->isDependentType() ? Context.DependentTy
3520 : OldAT->getDeducedType()));
3521 NewQType = Context.getCanonicalType(
3522 SubstAutoType(NewQType,
3523 OldAT->isDependentType() ? Context.DependentTy
3524 : OldAT->getDeducedType()));
3525 }
3526 }
3527
3528 const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
42
Assuming 'Old' is not a 'CXXMethodDecl'
3529 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
43
Assuming 'New' is not a 'CXXMethodDecl'
3530 if (OldMethod
43.1
'OldMethod' is null
43.1
'OldMethod' is null
&& NewMethod) {
3531 // Preserve triviality.
3532 NewMethod->setTrivial(OldMethod->isTrivial());
3533
3534 // MSVC allows explicit template specialization at class scope:
3535 // 2 CXXMethodDecls referring to the same function will be injected.
3536 // We don't want a redeclaration error.
3537 bool IsClassScopeExplicitSpecialization =
3538 OldMethod->isFunctionTemplateSpecialization() &&
3539 NewMethod->isFunctionTemplateSpecialization();
3540 bool isFriend = NewMethod->getFriendObjectKind();
3541
3542 if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
3543 !IsClassScopeExplicitSpecialization) {
3544 // -- Member function declarations with the same name and the
3545 // same parameter types cannot be overloaded if any of them
3546 // is a static member function declaration.
3547 if (OldMethod->isStatic() != NewMethod->isStatic()) {
3548 Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
3549 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3550 return true;
3551 }
3552
3553 // C++ [class.mem]p1:
3554 // [...] A member shall not be declared twice in the
3555 // member-specification, except that a nested class or member
3556 // class template can be declared and then later defined.
3557 if (!inTemplateInstantiation()) {
3558 unsigned NewDiag;
3559 if (isa<CXXConstructorDecl>(OldMethod))
3560 NewDiag = diag::err_constructor_redeclared;
3561 else if (isa<CXXDestructorDecl>(NewMethod))
3562 NewDiag = diag::err_destructor_redeclared;
3563 else if (isa<CXXConversionDecl>(NewMethod))
3564 NewDiag = diag::err_conv_function_redeclared;
3565 else
3566 NewDiag = diag::err_member_redeclared;
3567
3568 Diag(New->getLocation(), NewDiag);
3569 } else {
3570 Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
3571 << New << New->getType();
3572 }
3573 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3574 return true;
3575
3576 // Complain if this is an explicit declaration of a special
3577 // member that was initially declared implicitly.
3578 //
3579 // As an exception, it's okay to befriend such methods in order
3580 // to permit the implicit constructor/destructor/operator calls.
3581 } else if (OldMethod->isImplicit()) {
3582 if (isFriend) {
3583 NewMethod->setImplicit();
3584 } else {
3585 Diag(NewMethod->getLocation(),
3586 diag::err_definition_of_implicitly_declared_member)
3587 << New << getSpecialMember(OldMethod);
3588 return true;
3589 }
3590 } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) {
3591 Diag(NewMethod->getLocation(),
3592 diag::err_definition_of_explicitly_defaulted_member)
3593 << getSpecialMember(OldMethod);
3594 return true;
3595 }
3596 }
3597
3598 // C++11 [dcl.attr.noreturn]p1:
3599 // The first declaration of a function shall specify the noreturn
3600 // attribute if any declaration of that function specifies the noreturn
3601 // attribute.
3602 const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>();
3603 if (NRA
43.2
'NRA' is null
43.2
'NRA' is null
&& !Old->hasAttr<CXX11NoReturnAttr>()) {
3604 Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl);
3605 Diag(Old->getFirstDecl()->getLocation(),
3606 diag::note_noreturn_missing_first_decl);
3607 }
3608
3609 // C++11 [dcl.attr.depend]p2:
3610 // The first declaration of a function shall specify the
3611 // carries_dependency attribute for its declarator-id if any declaration
3612 // of the function specifies the carries_dependency attribute.
3613 const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
3614 if (CDA
43.3
'CDA' is null
43.3
'CDA' is null
&& !Old->hasAttr<CarriesDependencyAttr>()) {
3615 Diag(CDA->getLocation(),
3616 diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
3617 Diag(Old->getFirstDecl()->getLocation(),
3618 diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
3619 }
3620
3621 // (C++98 8.3.5p3):
3622 // All declarations for a function shall agree exactly in both the
3623 // return type and the parameter-type-list.
3624 // We also want to respect all the extended bits except noreturn.
3625
3626 // noreturn should now match unless the old type info didn't have it.
3627 QualType OldQTypeForComparison = OldQType;
3628 if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
44
Assuming the condition is false
45
Taking false branch
3629 auto *OldType = OldQType->castAs<FunctionProtoType>();
3630 const FunctionType *OldTypeForComparison
3631 = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
3632 OldQTypeForComparison = QualType(OldTypeForComparison, 0);
3633 assert(OldQTypeForComparison.isCanonical())((OldQTypeForComparison.isCanonical()) ? static_cast<void>
(0) : __assert_fail ("OldQTypeForComparison.isCanonical()", "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 3633, __PRETTY_FUNCTION__))
;
3634 }
3635
3636 if (haveIncompatibleLanguageLinkages(Old, New)) {
46
Calling 'haveIncompatibleLanguageLinkages<clang::FunctionDecl>'
55
Returning from 'haveIncompatibleLanguageLinkages<clang::FunctionDecl>'
56
Taking false branch
3637 // As a special case, retain the language linkage from previous
3638 // declarations of a friend function as an extension.
3639 //
3640 // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
3641 // and is useful because there's otherwise no way to specify language
3642 // linkage within class scope.
3643 //
3644 // Check cautiously as the friend object kind isn't yet complete.
3645 if (New->getFriendObjectKind() != Decl::FOK_None) {
3646 Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
3647 Diag(OldLocation, PrevDiag);
3648 } else {
3649 Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3650 Diag(OldLocation, PrevDiag);
3651 return true;
3652 }
3653 }
3654
3655 // If the function types are compatible, merge the declarations. Ignore the
3656 // exception specifier because it was already checked above in
3657 // CheckEquivalentExceptionSpec, and we don't want follow-on diagnostics
3658 // about incompatible types under -fms-compatibility.
3659 if (Context.hasSameFunctionTypeIgnoringExceptionSpec(OldQTypeForComparison,
57
Assuming the condition is false
58
Taking false branch
3660 NewQType))
3661 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3662
3663 // If the types are imprecise (due to dependent constructs in friends or
3664 // local extern declarations), it's OK if they differ. We'll check again
3665 // during instantiation.
3666 if (!canFullyTypeCheckRedeclaration(New, Old, NewQType, OldQType))
59
Calling 'Sema::canFullyTypeCheckRedeclaration'
65
Returning from 'Sema::canFullyTypeCheckRedeclaration'
66
Taking false branch
3667 return false;
3668
3669 // Fall through for conflicting redeclarations and redefinitions.
3670 }
3671
3672 // C: Function types need to be compatible, not identical. This handles
3673 // duplicate function decls like "void f(int); void f(enum X);" properly.
3674 if (!getLangOpts().CPlusPlus &&
67
Assuming field 'CPlusPlus' is 0
69
Taking true branch
3675 Context.typesAreCompatible(OldQType, NewQType)) {
68
Assuming the condition is true
3676 const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
70
Assuming the object is not a 'FunctionType'
3677 const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
71
Assuming the object is not a 'FunctionType'
72
'NewFuncType' initialized to a null pointer value
3678 const FunctionProtoType *OldProto = nullptr;
3679 if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
73
Assuming 'MergeTypeWithOld' is true
74
Assuming 'NewFuncType' is a 'FunctionNoProtoType'
76
Taking true branch
3680 (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
75
Assuming 'OldProto' is non-null
3681 // The old declaration provided a function prototype, but the
3682 // new declaration does not. Merge in the prototype.
3683 assert(!OldProto->hasExceptionSpec() && "Exception spec in C")((!OldProto->hasExceptionSpec() && "Exception spec in C"
) ? static_cast<void> (0) : __assert_fail ("!OldProto->hasExceptionSpec() && \"Exception spec in C\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 3683, __PRETTY_FUNCTION__))
;
77
'?' condition is true
3684 SmallVector<QualType, 16> ParamTypes(OldProto->param_types());
3685 NewQType =
3686 Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes,
78
Called C++ object pointer is null
3687 OldProto->getExtProtoInfo());
3688 New->setType(NewQType);
3689 New->setHasInheritedPrototype();
3690
3691 // Synthesize parameters with the same types.
3692 SmallVector<ParmVarDecl*, 16> Params;
3693 for (const auto &ParamType : OldProto->param_types()) {
3694 ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(),
3695 SourceLocation(), nullptr,
3696 ParamType, /*TInfo=*/nullptr,
3697 SC_None, nullptr);
3698 Param->setScopeInfo(0, Params.size());
3699 Param->setImplicit();
3700 Params.push_back(Param);
3701 }
3702
3703 New->setParams(Params);
3704 }
3705
3706 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3707 }
3708
3709 // Check if the function types are compatible when pointer size address
3710 // spaces are ignored.
3711 if (Context.hasSameFunctionTypeIgnoringPtrSizes(OldQType, NewQType))
3712 return false;
3713
3714 // GNU C permits a K&R definition to follow a prototype declaration
3715 // if the declared types of the parameters in the K&R definition
3716 // match the types in the prototype declaration, even when the
3717 // promoted types of the parameters from the K&R definition differ
3718 // from the types in the prototype. GCC then keeps the types from
3719 // the prototype.
3720 //
3721 // If a variadic prototype is followed by a non-variadic K&R definition,
3722 // the K&R definition becomes variadic. This is sort of an edge case, but
3723 // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
3724 // C99 6.9.1p8.
3725 if (!getLangOpts().CPlusPlus &&
3726 Old->hasPrototype() && !New->hasPrototype() &&
3727 New->getType()->getAs<FunctionProtoType>() &&
3728 Old->getNumParams() == New->getNumParams()) {
3729 SmallVector<QualType, 16> ArgTypes;
3730 SmallVector<GNUCompatibleParamWarning, 16> Warnings;
3731 const FunctionProtoType *OldProto
3732 = Old->getType()->getAs<FunctionProtoType>();
3733 const FunctionProtoType *NewProto
3734 = New->getType()->getAs<FunctionProtoType>();
3735
3736 // Determine whether this is the GNU C extension.
3737 QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
3738 NewProto->getReturnType());
3739 bool LooseCompatible = !MergedReturn.isNull();
3740 for (unsigned Idx = 0, End = Old->getNumParams();
3741 LooseCompatible && Idx != End; ++Idx) {
3742 ParmVarDecl *OldParm = Old->getParamDecl(Idx);
3743 ParmVarDecl *NewParm = New->getParamDecl(Idx);
3744 if (Context.typesAreCompatible(OldParm->getType(),
3745 NewProto->getParamType(Idx))) {
3746 ArgTypes.push_back(NewParm->getType());
3747 } else if (Context.typesAreCompatible(OldParm->getType(),
3748 NewParm->getType(),
3749 /*CompareUnqualified=*/true)) {
3750 GNUCompatibleParamWarning Warn = { OldParm, NewParm,
3751 NewProto->getParamType(Idx) };
3752 Warnings.push_back(Warn);
3753 ArgTypes.push_back(NewParm->getType());
3754 } else
3755 LooseCompatible = false;
3756 }
3757
3758 if (LooseCompatible) {
3759 for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
3760 Diag(Warnings[Warn].NewParm->getLocation(),
3761 diag::ext_param_promoted_not_compatible_with_prototype)
3762 << Warnings[Warn].PromotedType
3763 << Warnings[Warn].OldParm->getType();
3764 if (Warnings[Warn].OldParm->getLocation().isValid())
3765 Diag(Warnings[Warn].OldParm->getLocation(),
3766 diag::note_previous_declaration);
3767 }
3768
3769 if (MergeTypeWithOld)
3770 New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
3771 OldProto->getExtProtoInfo()));
3772 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3773 }
3774
3775 // Fall through to diagnose conflicting types.
3776 }
3777
3778 // A function that has already been declared has been redeclared or
3779 // defined with a different type; show an appropriate diagnostic.
3780
3781 // If the previous declaration was an implicitly-generated builtin
3782 // declaration, then at the very least we should use a specialized note.
3783 unsigned BuiltinID;
3784 if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
3785 // If it's actually a library-defined builtin function like 'malloc'
3786 // or 'printf', just warn about the incompatible redeclaration.
3787 if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3788 Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
3789 Diag(OldLocation, diag::note_previous_builtin_declaration)
3790 << Old << Old->getType();
3791 return false;
3792 }
3793
3794 PrevDiag = diag::note_previous_builtin_declaration;
3795 }
3796
3797 Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
3798 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3799 return true;
3800}
3801
3802/// Completes the merge of two function declarations that are
3803/// known to be compatible.
3804///
3805/// This routine handles the merging of attributes and other
3806/// properties of function declarations from the old declaration to
3807/// the new declaration, once we know that New is in fact a
3808/// redeclaration of Old.
3809///
3810/// \returns false
3811bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
3812 Scope *S, bool MergeTypeWithOld) {
3813 // Merge the attributes
3814 mergeDeclAttributes(New, Old);
3815
3816 // Merge "pure" flag.
3817 if (Old->isPure())
3818 New->setPure();
3819
3820 // Merge "used" flag.
3821 if (Old->getMostRecentDecl()->isUsed(false))
3822 New->setIsUsed();
3823
3824 // Merge attributes from the parameters. These can mismatch with K&R
3825 // declarations.
3826 if (New->getNumParams() == Old->getNumParams())
3827 for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) {
3828 ParmVarDecl *NewParam = New->getParamDecl(i);
3829 ParmVarDecl *OldParam = Old->getParamDecl(i);
3830 mergeParamDeclAttributes(NewParam, OldParam, *this);
3831 mergeParamDeclTypes(NewParam, OldParam, *this);
3832 }
3833
3834 if (getLangOpts().CPlusPlus)
3835 return MergeCXXFunctionDecl(New, Old, S);
3836
3837 // Merge the function types so the we get the composite types for the return
3838 // and argument types. Per C11 6.2.7/4, only update the type if the old decl
3839 // was visible.
3840 QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
3841 if (!Merged.isNull() && MergeTypeWithOld)
3842 New->setType(Merged);
3843
3844 return false;
3845}
3846
3847void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
3848 ObjCMethodDecl *oldMethod) {
3849 // Merge the attributes, including deprecated/unavailable
3850 AvailabilityMergeKind MergeKind =
3851 isa<ObjCProtocolDecl>(oldMethod->getDeclContext())
3852 ? AMK_ProtocolImplementation
3853 : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
3854 : AMK_Override;
3855
3856 mergeDeclAttributes(newMethod, oldMethod, MergeKind);
3857
3858 // Merge attributes from the parameters.
3859 ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
3860 oe = oldMethod->param_end();
3861 for (ObjCMethodDecl::param_iterator
3862 ni = newMethod->param_begin(), ne = newMethod->param_end();
3863 ni != ne && oi != oe; ++ni, ++oi)
3864 mergeParamDeclAttributes(*ni, *oi, *this);
3865
3866 CheckObjCMethodOverride(newMethod, oldMethod);
3867}
3868
3869static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) {
3870 assert(!S.Context.hasSameType(New->getType(), Old->getType()))((!S.Context.hasSameType(New->getType(), Old->getType()
)) ? static_cast<void> (0) : __assert_fail ("!S.Context.hasSameType(New->getType(), Old->getType())"
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 3870, __PRETTY_FUNCTION__))
;
3871
3872 S.Diag(New->getLocation(), New->isThisDeclarationADefinition()
3873 ? diag::err_redefinition_different_type
3874 : diag::err_redeclaration_different_type)
3875 << New->getDeclName() << New->getType() << Old->getType();
3876
3877 diag::kind PrevDiag;
3878 SourceLocation OldLocation;
3879 std::tie(PrevDiag, OldLocation)
3880 = getNoteDiagForInvalidRedeclaration(Old, New);
3881 S.Diag(OldLocation, PrevDiag);
3882 New->setInvalidDecl();
3883}
3884
3885/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
3886/// scope as a previous declaration 'Old'. Figure out how to merge their types,
3887/// emitting diagnostics as appropriate.
3888///
3889/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
3890/// to here in AddInitializerToDecl. We can't check them before the initializer
3891/// is attached.
3892void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
3893 bool MergeTypeWithOld) {
3894 if (New->isInvalidDecl() || Old->isInvalidDecl())
3895 return;
3896
3897 QualType MergedT;
3898 if (getLangOpts().CPlusPlus) {
3899 if (New->getType()->isUndeducedType()) {
3900 // We don't know what the new type is until the initializer is attached.
3901 return;
3902 } else if (Context.hasSameType(New->getType(), Old->getType())) {
3903 // These could still be something that needs exception specs checked.
3904 return MergeVarDeclExceptionSpecs(New, Old);
3905 }
3906 // C++ [basic.link]p10:
3907 // [...] the types specified by all declarations referring to a given
3908 // object or function shall be identical, except that declarations for an
3909 // array object can specify array types that differ by the presence or
3910 // absence of a major array bound (8.3.4).
3911 else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) {
3912 const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
3913 const ArrayType *NewArray = Context.getAsArrayType(New->getType());
3914
3915 // We are merging a variable declaration New into Old. If it has an array
3916 // bound, and that bound differs from Old's bound, we should diagnose the
3917 // mismatch.
3918 if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) {
3919 for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD;
3920 PrevVD = PrevVD->getPreviousDecl()) {
3921 QualType PrevVDTy = PrevVD->getType();
3922 if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType())
3923 continue;
3924
3925 if (!Context.hasSameType(New->getType(), PrevVDTy))
3926 return diagnoseVarDeclTypeMismatch(*this, New, PrevVD);
3927 }
3928 }
3929
3930 if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) {
3931 if (Context.hasSameType(OldArray->getElementType(),
3932 NewArray->getElementType()))
3933 MergedT = New->getType();
3934 }
3935 // FIXME: Check visibility. New is hidden but has a complete type. If New
3936 // has no array bound, it should not inherit one from Old, if Old is not
3937 // visible.
3938 else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) {
3939 if (Context.hasSameType(OldArray->getElementType(),
3940 NewArray->getElementType()))
3941 MergedT = Old->getType();
3942 }
3943 }
3944 else if (New->getType()->isObjCObjectPointerType() &&
3945 Old->getType()->isObjCObjectPointerType()) {
3946 MergedT = Context.mergeObjCGCQualifiers(New->getType(),
3947 Old->getType());
3948 }
3949 } else {
3950 // C 6.2.7p2:
3951 // All declarations that refer to the same object or function shall have
3952 // compatible type.
3953 MergedT = Context.mergeTypes(New->getType(), Old->getType());
3954 }
3955 if (MergedT.isNull()) {
3956 // It's OK if we couldn't merge types if either type is dependent, for a
3957 // block-scope variable. In other cases (static data members of class
3958 // templates, variable templates, ...), we require the types to be
3959 // equivalent.
3960 // FIXME: The C++ standard doesn't say anything about this.
3961 if ((New->getType()->isDependentType() ||
3962 Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
3963 // If the old type was dependent, we can't merge with it, so the new type
3964 // becomes dependent for now. We'll reproduce the original type when we
3965 // instantiate the TypeSourceInfo for the variable.
3966 if (!New->getType()->isDependentType() && MergeTypeWithOld)
3967 New->setType(Context.DependentTy);
3968 return;
3969 }
3970 return diagnoseVarDeclTypeMismatch(*this, New, Old);
3971 }
3972
3973 // Don't actually update the type on the new declaration if the old
3974 // declaration was an extern declaration in a different scope.
3975 if (MergeTypeWithOld)
3976 New->setType(MergedT);
3977}
3978
3979static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
3980 LookupResult &Previous) {
3981 // C11 6.2.7p4:
3982 // For an identifier with internal or external linkage declared
3983 // in a scope in which a prior declaration of that identifier is
3984 // visible, if the prior declaration specifies internal or
3985 // external linkage, the type of the identifier at the later
3986 // declaration becomes the composite type.
3987 //
3988 // If the variable isn't visible, we do not merge with its type.
3989 if (Previous.isShadowed())
3990 return false;
3991
3992 if (S.getLangOpts().CPlusPlus) {
3993 // C++11 [dcl.array]p3:
3994 // If there is a preceding declaration of the entity in the same
3995 // scope in which the bound was specified, an omitted array bound
3996 // is taken to be the same as in that earlier declaration.
3997 return NewVD->isPreviousDeclInSameBlockScope() ||
3998 (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
3999 !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
4000 } else {
4001 // If the old declaration was function-local, don't merge with its
4002 // type unless we're in the same function.
4003 return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
4004 OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
4005 }
4006}
4007
4008/// MergeVarDecl - We just parsed a variable 'New' which has the same name
4009/// and scope as a previous declaration 'Old'. Figure out how to resolve this
4010/// situation, merging decls or emitting diagnostics as appropriate.
4011///
4012/// Tentative definition rules (C99 6.9.2p2) are checked by
4013/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
4014/// definitions here, since the initializer hasn't been attached.
4015///
4016void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
4017 // If the new decl is already invalid, don't do any other checking.
4018 if (New->isInvalidDecl())
4019 return;
4020
4021 if (!shouldLinkPossiblyHiddenDecl(Previous, New))
4022 return;
4023
4024 VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
4025
4026 // Verify the old decl was also a variable or variable template.
4027 VarDecl *Old = nullptr;
4028 VarTemplateDecl *OldTemplate = nullptr;
4029 if (Previous.isSingleResult()) {
4030 if (NewTemplate) {
4031 OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
4032 Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
4033
4034 if (auto *Shadow =
4035 dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
4036 if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate))
4037 return New->setInvalidDecl();
4038 } else {
4039 Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
4040
4041 if (auto *Shadow =
4042 dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
4043 if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New))
4044 return New->setInvalidDecl();
4045 }
4046 }
4047 if (!Old) {
4048 Diag(New->getLocation(), diag::err_redefinition_different_kind)
4049 << New->getDeclName();
4050 notePreviousDefinition(Previous.getRepresentativeDecl(),
4051 New->getLocation());
4052 return New->setInvalidDecl();
4053 }
4054
4055 // Ensure the template parameters are compatible.
4056 if (NewTemplate &&
4057 !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
4058 OldTemplate->getTemplateParameters(),
4059 /*Complain=*/true, TPL_TemplateMatch))
4060 return New->setInvalidDecl();
4061
4062 // C++ [class.mem]p1:
4063 // A member shall not be declared twice in the member-specification [...]
4064 //
4065 // Here, we need only consider static data members.
4066 if (Old->isStaticDataMember() && !New->isOutOfLine()) {
4067 Diag(New->getLocation(), diag::err_duplicate_member)
4068 << New->getIdentifier();
4069 Diag(Old->getLocation(), diag::note_previous_declaration);
4070 New->setInvalidDecl();
4071 }
4072
4073 mergeDeclAttributes(New, Old);
4074 // Warn if an already-declared variable is made a weak_import in a subsequent
4075 // declaration
4076 if (New->hasAttr<WeakImportAttr>() &&
4077 Old->getStorageClass() == SC_None &&
4078 !Old->hasAttr<WeakImportAttr>()) {
4079 Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
4080 notePreviousDefinition(Old, New->getLocation());
4081 // Remove weak_import attribute on new declaration.
4082 New->dropAttr<WeakImportAttr>();
4083 }
4084
4085 if (New->hasAttr<InternalLinkageAttr>() &&
4086 !Old->hasAttr<InternalLinkageAttr>()) {
4087 Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
4088 << New->getDeclName();
4089 notePreviousDefinition(Old, New->getLocation());
4090 New->dropAttr<InternalLinkageAttr>();
4091 }
4092
4093 // Merge the types.
4094 VarDecl *MostRecent = Old->getMostRecentDecl();
4095 if (MostRecent != Old) {
4096 MergeVarDeclTypes(New, MostRecent,
4097 mergeTypeWithPrevious(*this, New, MostRecent, Previous));
4098 if (New->isInvalidDecl())
4099 return;
4100 }
4101
4102 MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
4103 if (New->isInvalidDecl())
4104 return;
4105
4106 diag::kind PrevDiag;
4107 SourceLocation OldLocation;
4108 std::tie(PrevDiag, OldLocation) =
4109 getNoteDiagForInvalidRedeclaration(Old, New);
4110
4111 // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
4112 if (New->getStorageClass() == SC_Static &&
4113 !New->isStaticDataMember() &&
4114 Old->hasExternalFormalLinkage()) {
4115 if (getLangOpts().MicrosoftExt) {
4116 Diag(New->getLocation(), diag::ext_static_non_static)
4117 << New->getDeclName();
4118 Diag(OldLocation, PrevDiag);
4119 } else {
4120 Diag(New->getLocation(), diag::err_static_non_static)
4121 << New->getDeclName();
4122 Diag(OldLocation, PrevDiag);
4123 return New->setInvalidDecl();
4124 }
4125 }
4126 // C99 6.2.2p4:
4127 // For an identifier declared with the storage-class specifier
4128 // extern in a scope in which a prior declaration of that
4129 // identifier is visible,23) if the prior declaration specifies
4130 // internal or external linkage, the linkage of the identifier at
4131 // the later declaration is the same as the linkage specified at
4132 // the prior declaration. If no prior declaration is visible, or
4133 // if the prior declaration specifies no linkage, then the
4134 // identifier has external linkage.
4135 if (New->hasExternalStorage() && Old->hasLinkage())
4136 /* Okay */;
4137 else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
4138 !New->isStaticDataMember() &&
4139 Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
4140 Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
4141 Diag(OldLocation, PrevDiag);
4142 return New->setInvalidDecl();
4143 }
4144
4145 // Check if extern is followed by non-extern and vice-versa.
4146 if (New->hasExternalStorage() &&
4147 !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) {
4148 Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
4149 Diag(OldLocation, PrevDiag);
4150 return New->setInvalidDecl();
4151 }
4152 if (Old->hasLinkage() && New->isLocalVarDeclOrParm() &&
4153 !New->hasExternalStorage()) {
4154 Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
4155 Diag(OldLocation, PrevDiag);
4156 return New->setInvalidDecl();
4157 }
4158
4159 if (CheckRedeclarationModuleOwnership(New, Old))
4160 return;
4161
4162 // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
4163
4164 // FIXME: The test for external storage here seems wrong? We still
4165 // need to check for mismatches.
4166 if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
4167 // Don't complain about out-of-line definitions of static members.
4168 !(Old->getLexicalDeclContext()->isRecord() &&
4169 !New->getLexicalDeclContext()->isRecord())) {
4170 Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
4171 Diag(OldLocation, PrevDiag);
4172 return New->setInvalidDecl();
4173 }
4174
4175 if (New->isInline() && !Old->getMostRecentDecl()->isInline()) {
4176 if (VarDecl *Def = Old->getDefinition()) {
4177 // C++1z [dcl.fcn.spec]p4:
4178 // If the definition of a variable appears in a translation unit before
4179 // its first declaration as inline, the program is ill-formed.
4180 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
4181 Diag(Def->getLocation(), diag::note_previous_definition);
4182 }
4183 }
4184
4185 // If this redeclaration makes the variable inline, we may need to add it to
4186 // UndefinedButUsed.
4187 if (!Old->isInline() && New->isInline() && Old->isUsed(false) &&
4188 !Old->getDefinition() && !New->isThisDeclarationADefinition())
4189 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
4190 SourceLocation()));
4191
4192 if (New->getTLSKind() != Old->getTLSKind()) {
4193 if (!Old->getTLSKind()) {
4194 Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
4195 Diag(OldLocation, PrevDiag);
4196 } else if (!New->getTLSKind()) {
4197 Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
4198 Diag(OldLocation, PrevDiag);
4199 } else {
4200 // Do not allow redeclaration to change the variable between requiring
4201 // static and dynamic initialization.
4202 // FIXME: GCC allows this, but uses the TLS keyword on the first
4203 // declaration to determine the kind. Do we need to be compatible here?
4204 Diag(New->getLocation(), diag::err_thread_thread_different_kind)
4205 << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
4206 Diag(OldLocation, PrevDiag);
4207 }
4208 }
4209
4210 // C++ doesn't have tentative definitions, so go right ahead and check here.
4211 if (getLangOpts().CPlusPlus &&
4212 New->isThisDeclarationADefinition() == VarDecl::Definition) {
4213 if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() &&
4214 Old->getCanonicalDecl()->isConstexpr()) {
4215 // This definition won't be a definition any more once it's been merged.
4216 Diag(New->getLocation(),
4217 diag::warn_deprecated_redundant_constexpr_static_def);
4218 } else if (VarDecl *Def = Old->getDefinition()) {
4219 if (checkVarDeclRedefinition(Def, New))
4220 return;
4221 }
4222 }
4223
4224 if (haveIncompatibleLanguageLinkages(Old, New)) {
4225 Diag(New->getLocation(), diag::err_different_language_linkage) << New;
4226 Diag(OldLocation, PrevDiag);
4227 New->setInvalidDecl();
4228 return;
4229 }
4230
4231 // Merge "used" flag.
4232 if (Old->getMostRecentDecl()->isUsed(false))
4233 New->setIsUsed();
4234
4235 // Keep a chain of previous declarations.
4236 New->setPreviousDecl(Old);
4237 if (NewTemplate)
4238 NewTemplate->setPreviousDecl(OldTemplate);
4239 adjustDeclContextForDeclaratorDecl(New, Old);
4240
4241 // Inherit access appropriately.
4242 New->setAccess(Old->getAccess());
4243 if (NewTemplate)
4244 NewTemplate->setAccess(New->getAccess());
4245
4246 if (Old->isInline())
4247 New->setImplicitlyInline();
4248}
4249
4250void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) {
4251 SourceManager &SrcMgr = getSourceManager();
4252 auto FNewDecLoc = SrcMgr.getDecomposedLoc(New);
4253 auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation());
4254 auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first);
4255 auto *FOld = SrcMgr.getFileEntryForID(FOldDecLoc.first);
4256 auto &HSI = PP.getHeaderSearchInfo();
4257 StringRef HdrFilename =
4258 SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation()));
4259
4260 auto noteFromModuleOrInclude = [&](Module *Mod,
4261 SourceLocation IncLoc) -> bool {
4262 // Redefinition errors with modules are common with non modular mapped
4263 // headers, example: a non-modular header H in module A that also gets
4264 // included directly in a TU. Pointing twice to the same header/definition
4265 // is confusing, try to get better diagnostics when modules is on.
4266 if (IncLoc.isValid()) {
4267 if (Mod) {
4268 Diag(IncLoc, diag::note_redefinition_modules_same_file)
4269 << HdrFilename.str() << Mod->getFullModuleName();
4270 if (!Mod->DefinitionLoc.isInvalid())
4271 Diag(Mod->DefinitionLoc, diag::note_defined_here)
4272 << Mod->getFullModuleName();
4273 } else {
4274 Diag(IncLoc, diag::note_redefinition_include_same_file)
4275 << HdrFilename.str();
4276 }
4277 return true;
4278 }
4279
4280 return false;
4281 };
4282
4283 // Is it the same file and same offset? Provide more information on why
4284 // this leads to a redefinition error.
4285 if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) {
4286 SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first);
4287 SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first);
4288 bool EmittedDiag =
4289 noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc);
4290 EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc);
4291
4292 // If the header has no guards, emit a note suggesting one.
4293 if (FOld && !HSI.isFileMultipleIncludeGuarded(FOld))
4294 Diag(Old->getLocation(), diag::note_use_ifdef_guards);
4295
4296 if (EmittedDiag)
4297 return;
4298 }
4299
4300 // Redefinition coming from different files or couldn't do better above.
4301 if (Old->getLocation().isValid())
4302 Diag(Old->getLocation(), diag::note_previous_definition);
4303}
4304
4305/// We've just determined that \p Old and \p New both appear to be definitions
4306/// of the same variable. Either diagnose or fix the problem.
4307bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) {
4308 if (!hasVisibleDefinition(Old) &&
4309 (New->getFormalLinkage() == InternalLinkage ||
4310 New->isInline() ||
4311 New->getDescribedVarTemplate() ||
4312 New->getNumTemplateParameterLists() ||
4313 New->getDeclContext()->isDependentContext())) {
4314 // The previous definition is hidden, and multiple definitions are
4315 // permitted (in separate TUs). Demote this to a declaration.
4316 New->demoteThisDefinitionToDeclaration();
4317
4318 // Make the canonical definition visible.
4319 if (auto *OldTD = Old->getDescribedVarTemplate())
4320 makeMergedDefinitionVisible(OldTD);
4321 makeMergedDefinitionVisible(Old);
4322 return false;
4323 } else {
4324 Diag(New->getLocation(), diag::err_redefinition) << New;
4325 notePreviousDefinition(Old, New->getLocation());
4326 New->setInvalidDecl();
4327 return true;
4328 }
4329}
4330
4331/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4332/// no declarator (e.g. "struct foo;") is parsed.
4333Decl *
4334Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4335 RecordDecl *&AnonRecord) {
4336 return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg(), false,
4337 AnonRecord);
4338}
4339
4340// The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
4341// disambiguate entities defined in different scopes.
4342// While the VS2015 ABI fixes potential miscompiles, it is also breaks
4343// compatibility.
4344// We will pick our mangling number depending on which version of MSVC is being
4345// targeted.
4346static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) {
4347 return LO.isCompatibleWithMSVC(LangOptions::MSVC2015)
4348 ? S->getMSCurManglingNumber()
4349 : S->getMSLastManglingNumber();
4350}
4351
4352void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) {
4353 if (!Context.getLangOpts().CPlusPlus)
4354 return;
4355
4356 if (isa<CXXRecordDecl>(Tag->getParent())) {
4357 // If this tag is the direct child of a class, number it if
4358 // it is anonymous.
4359 if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
4360 return;
4361 MangleNumberingContext &MCtx =
4362 Context.getManglingNumberContext(Tag->getParent());
4363 Context.setManglingNumber(
4364 Tag, MCtx.getManglingNumber(
4365 Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4366 return;
4367 }
4368
4369 // If this tag isn't a direct child of a class, number it if it is local.
4370 MangleNumberingContext *MCtx;
4371 Decl *ManglingContextDecl;
4372 std::tie(MCtx, ManglingContextDecl) =
4373 getCurrentMangleNumberContext(Tag->getDeclContext());
4374 if (MCtx) {
4375 Context.setManglingNumber(
4376 Tag, MCtx->getManglingNumber(
4377 Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4378 }
4379}
4380
4381namespace {
4382struct NonCLikeKind {
4383 enum {
4384 None,
4385 BaseClass,
4386 DefaultMemberInit,
4387 Lambda,
4388 Friend,
4389 OtherMember,
4390 Invalid,
4391 } Kind = None;
4392 SourceRange Range;
4393
4394 explicit operator bool() { return Kind != None; }
4395};
4396}
4397
4398/// Determine whether a class is C-like, according to the rules of C++
4399/// [dcl.typedef] for anonymous classes with typedef names for linkage.
4400static NonCLikeKind getNonCLikeKindForAnonymousStruct(const CXXRecordDecl *RD) {
4401 if (RD->isInvalidDecl())
4402 return {NonCLikeKind::Invalid, {}};
4403
4404 // C++ [dcl.typedef]p9: [P1766R1]
4405 // An unnamed class with a typedef name for linkage purposes shall not
4406 //
4407 // -- have any base classes
4408 if (RD->getNumBases())
4409 return {NonCLikeKind::BaseClass,
4410 SourceRange(RD->bases_begin()->getBeginLoc(),
4411 RD->bases_end()[-1].getEndLoc())};
4412 bool Invalid = false;
4413 for (Decl *D : RD->decls()) {
4414 // Don't complain about things we already diagnosed.
4415 if (D->isInvalidDecl()) {
4416 Invalid = true;
4417 continue;
4418 }
4419
4420 // -- have any [...] default member initializers
4421 if (auto *FD = dyn_cast<FieldDecl>(D)) {
4422 if (FD->hasInClassInitializer()) {
4423 auto *Init = FD->getInClassInitializer();
4424 return {NonCLikeKind::DefaultMemberInit,
4425 Init ? Init->getSourceRange() : D->getSourceRange()};
4426 }
4427 continue;
4428 }
4429
4430 // FIXME: We don't allow friend declarations. This violates the wording of
4431 // P1766, but not the intent.
4432 if (isa<FriendDecl>(D))
4433 return {NonCLikeKind::Friend, D->getSourceRange()};
4434
4435 // -- declare any members other than non-static data members, member
4436 // enumerations, or member classes,
4437 if (isa<StaticAssertDecl>(D) || isa<IndirectFieldDecl>(D) ||
4438 isa<EnumDecl>(D))
4439 continue;
4440 auto *MemberRD = dyn_cast<CXXRecordDecl>(D);
4441 if (!MemberRD) {
4442 if (D->isImplicit())
4443 continue;
4444 return {NonCLikeKind::OtherMember, D->getSourceRange()};
4445 }
4446
4447 // -- contain a lambda-expression,
4448 if (MemberRD->isLambda())
4449 return {NonCLikeKind::Lambda, MemberRD->getSourceRange()};
4450
4451 // and all member classes shall also satisfy these requirements
4452 // (recursively).
4453 if (MemberRD->isThisDeclarationADefinition()) {
4454 if (auto Kind = getNonCLikeKindForAnonymousStruct(MemberRD))
4455 return Kind;
4456 }
4457 }
4458
4459 return {Invalid ? NonCLikeKind::Invalid : NonCLikeKind::None, {}};
4460}
4461
4462void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
4463 TypedefNameDecl *NewTD) {
4464 if (TagFromDeclSpec->isInvalidDecl())
4465 return;
4466
4467 // Do nothing if the tag already has a name for linkage purposes.
4468 if (TagFromDeclSpec->hasNameForLinkage())
4469 return;
4470
4471 // A well-formed anonymous tag must always be a TUK_Definition.
4472 assert(TagFromDeclSpec->isThisDeclarationADefinition())((TagFromDeclSpec->isThisDeclarationADefinition()) ? static_cast
<void> (0) : __assert_fail ("TagFromDeclSpec->isThisDeclarationADefinition()"
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 4472, __PRETTY_FUNCTION__))
;
4473
4474 // The type must match the tag exactly; no qualifiers allowed.
4475 if (!Context.hasSameType(NewTD->getUnderlyingType(),
4476 Context.getTagDeclType(TagFromDeclSpec))) {
4477 if (getLangOpts().CPlusPlus)
4478 Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD);
4479 return;
4480 }
4481
4482 // C++ [dcl.typedef]p9: [P1766R1, applied as DR]
4483 // An unnamed class with a typedef name for linkage purposes shall [be
4484 // C-like].
4485 //
4486 // FIXME: Also diagnose if we've already computed the linkage. That ideally
4487 // shouldn't happen, but there are constructs that the language rule doesn't
4488 // disallow for which we can't reasonably avoid computing linkage early.
4489 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TagFromDeclSpec);
4490 NonCLikeKind NonCLike = RD ? getNonCLikeKindForAnonymousStruct(RD)
4491 : NonCLikeKind();
4492 bool ChangesLinkage = TagFromDeclSpec->hasLinkageBeenComputed();
4493 if (NonCLike || ChangesLinkage) {
4494 if (NonCLike.Kind == NonCLikeKind::Invalid)
4495 return;
4496
4497 unsigned DiagID = diag::ext_non_c_like_anon_struct_in_typedef;
4498 if (ChangesLinkage) {
4499 // If the linkage changes, we can't accept this as an extension.
4500 if (NonCLike.Kind == NonCLikeKind::None)
4501 DiagID = diag::err_typedef_changes_linkage;
4502 else
4503 DiagID = diag::err_non_c_like_anon_struct_in_typedef;
4504 }
4505
4506 SourceLocation FixitLoc =
4507 getLocForEndOfToken(TagFromDeclSpec->getInnerLocStart());
4508 llvm::SmallString<40> TextToInsert;
4509 TextToInsert += ' ';
4510 TextToInsert += NewTD->getIdentifier()->getName();
4511
4512 Diag(FixitLoc, DiagID)
4513 << isa<TypeAliasDecl>(NewTD)
4514 << FixItHint::CreateInsertion(FixitLoc, TextToInsert);
4515 if (NonCLike.Kind != NonCLikeKind::None) {
4516 Diag(NonCLike.Range.getBegin(), diag::note_non_c_like_anon_struct)
4517 << NonCLike.Kind - 1 << NonCLike.Range;
4518 }
4519 Diag(NewTD->getLocation(), diag::note_typedef_for_linkage_here)
4520 << NewTD << isa<TypeAliasDecl>(NewTD);
4521
4522 if (ChangesLinkage)
4523 return;
4524 }
4525
4526 // Otherwise, set this as the anon-decl typedef for the tag.
4527 TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
4528}
4529
4530static unsigned GetDiagnosticTypeSpecifierID(DeclSpec::TST T) {
4531 switch (T) {
4532 case DeclSpec::TST_class:
4533 return 0;
4534 case DeclSpec::TST_struct:
4535 return 1;
4536 case DeclSpec::TST_interface:
4537 return 2;
4538 case DeclSpec::TST_union:
4539 return 3;
4540 case DeclSpec::TST_enum:
4541 return 4;
4542 default:
4543 llvm_unreachable("unexpected type specifier")::llvm::llvm_unreachable_internal("unexpected type specifier"
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 4543)
;
4544 }
4545}
4546
4547/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4548/// no declarator (e.g. "struct foo;") is parsed. It also accepts template
4549/// parameters to cope with template friend declarations.
4550Decl *
4551Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4552 MultiTemplateParamsArg TemplateParams,
4553 bool IsExplicitInstantiation,
4554 RecordDecl *&AnonRecord) {
4555 Decl *TagD = nullptr;
4556 TagDecl *Tag = nullptr;
4557 if (DS.getTypeSpecType() == DeclSpec::TST_class ||
4558 DS.getTypeSpecType() == DeclSpec::TST_struct ||
4559 DS.getTypeSpecType() == DeclSpec::TST_interface ||
4560 DS.getTypeSpecType() == DeclSpec::TST_union ||
4561 DS.getTypeSpecType() == DeclSpec::TST_enum) {
4562 TagD = DS.getRepAsDecl();
4563
4564 if (!TagD) // We probably had an error
4565 return nullptr;
4566
4567 // Note that the above type specs guarantee that the
4568 // type rep is a Decl, whereas in many of the others
4569 // it's a Type.
4570 if (isa<TagDecl>(TagD))
4571 Tag = cast<TagDecl>(TagD);
4572 else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
4573 Tag = CTD->getTemplatedDecl();
4574 }
4575
4576 if (Tag) {
4577 handleTagNumbering(Tag, S);
4578 Tag->setFreeStanding();
4579 if (Tag->isInvalidDecl())
4580 return Tag;
4581 }
4582
4583 if (unsigned TypeQuals = DS.getTypeQualifiers()) {
4584 // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
4585 // or incomplete types shall not be restrict-qualified."
4586 if (TypeQuals & DeclSpec::TQ_restrict)
4587 Diag(DS.getRestrictSpecLoc(),
4588 diag::err_typecheck_invalid_restrict_not_pointer_noarg)
4589 << DS.getSourceRange();
4590 }
4591
4592 if (DS.isInlineSpecified())
4593 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
4594 << getLangOpts().CPlusPlus17;
4595
4596 if (DS.hasConstexprSpecifier()) {
4597 // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
4598 // and definitions of functions and variables.
4599 // C++2a [dcl.constexpr]p1: The consteval specifier shall be applied only to
4600 // the declaration of a function or function template
4601 if (Tag)
4602 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
4603 << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType())
4604 << static_cast<int>(DS.getConstexprSpecifier());
4605 else
4606 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_wrong_decl_kind)
4607 << static_cast<int>(DS.getConstexprSpecifier());
4608 // Don't emit warnings after this error.
4609 return TagD;
4610 }
4611
4612 DiagnoseFunctionSpecifiers(DS);
4613
4614 if (DS.isFriendSpecified()) {
4615 // If we're dealing with a decl but not a TagDecl, assume that
4616 // whatever routines created it handled the friendship aspect.
4617 if (TagD && !Tag)
4618 return nullptr;
4619 return ActOnFriendTypeDecl(S, DS, TemplateParams);
4620 }
4621
4622 const CXXScopeSpec &SS = DS.getTypeSpecScope();
4623 bool IsExplicitSpecialization =
4624 !TemplateParams.empty() && TemplateParams.back()->size() == 0;
4625 if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
4626 !IsExplicitInstantiation && !IsExplicitSpecialization &&
4627 !isa<ClassTemplatePartialSpecializationDecl>(Tag)) {
4628 // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
4629 // nested-name-specifier unless it is an explicit instantiation
4630 // or an explicit specialization.
4631 //
4632 // FIXME: We allow class template partial specializations here too, per the
4633 // obvious intent of DR1819.
4634 //
4635 // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
4636 Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
4637 << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << SS.getRange();
4638 return nullptr;
4639 }
4640
4641 // Track whether this decl-specifier declares anything.
4642 bool DeclaresAnything = true;
4643
4644 // Handle anonymous struct definitions.
4645 if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
4646 if (!Record->getDeclName() && Record->isCompleteDefinition() &&
4647 DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
4648 if (getLangOpts().CPlusPlus ||
4649 Record->getDeclContext()->isRecord()) {
4650 // If CurContext is a DeclContext that can contain statements,
4651 // RecursiveASTVisitor won't visit the decls that
4652 // BuildAnonymousStructOrUnion() will put into CurContext.
4653 // Also store them here so that they can be part of the
4654 // DeclStmt that gets created in this case.
4655 // FIXME: Also return the IndirectFieldDecls created by
4656 // BuildAnonymousStructOr union, for the same reason?
4657 if (CurContext->isFunctionOrMethod())
4658 AnonRecord = Record;
4659 return BuildAnonymousStructOrUnion(S, DS, AS, Record,
4660 Context.getPrintingPolicy());
4661 }
4662
4663 DeclaresAnything = false;
4664 }
4665 }
4666
4667 // C11 6.7.2.1p2:
4668 // A struct-declaration that does not declare an anonymous structure or
4669 // anonymous union shall contain a struct-declarator-list.
4670 //
4671 // This rule also existed in C89 and C99; the grammar for struct-declaration
4672 // did not permit a struct-declaration without a struct-declarator-list.
4673 if (!getLangOpts().CPlusPlus && CurContext->isRecord() &&
4674 DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
4675 // Check for Microsoft C extension: anonymous struct/union member.
4676 // Handle 2 kinds of anonymous struct/union:
4677 // struct STRUCT;
4678 // union UNION;
4679 // and
4680 // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct.
4681 // UNION_TYPE; <- where UNION_TYPE is a typedef union.
4682 if ((Tag && Tag->getDeclName()) ||
4683 DS.getTypeSpecType() == DeclSpec::TST_typename) {
4684 RecordDecl *Record = nullptr;
4685 if (Tag)
4686 Record = dyn_cast<RecordDecl>(Tag);
4687 else if (const RecordType *RT =
4688 DS.getRepAsType().get()->getAsStructureType())
4689 Record = RT->getDecl();
4690 else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType())
4691 Record = UT->getDecl();
4692
4693 if (Record && getLangOpts().MicrosoftExt) {
4694 Diag(DS.getBeginLoc(), diag::ext_ms_anonymous_record)
4695 << Record->isUnion() << DS.getSourceRange();
4696 return BuildMicrosoftCAnonymousStruct(S, DS, Record);
4697 }
4698
4699 DeclaresAnything = false;
4700 }
4701 }
4702
4703 // Skip all the checks below if we have a type error.
4704 if (DS.getTypeSpecType() == DeclSpec::TST_error ||
4705 (TagD && TagD->isInvalidDecl()))
4706 return TagD;
4707
4708 if (getLangOpts().CPlusPlus &&
4709 DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
4710 if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
4711 if (Enum->enumerator_begin() == Enum->enumerator_end() &&
4712 !Enum->getIdentifier() && !Enum->isInvalidDecl())
4713 DeclaresAnything = false;
4714
4715 if (!DS.isMissingDeclaratorOk()) {
4716 // Customize diagnostic for a typedef missing a name.
4717 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
4718 Diag(DS.getBeginLoc(), diag::ext_typedef_without_a_name)
4719 << DS.getSourceRange();
4720 else
4721 DeclaresAnything = false;
4722 }
4723
4724 if (DS.isModulePrivateSpecified() &&
4725 Tag && Tag->getDeclContext()->isFunctionOrMethod())
4726 Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
4727 << Tag->getTagKind()
4728 << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
4729
4730 ActOnDocumentableDecl(TagD);
4731
4732 // C 6.7/2:
4733 // A declaration [...] shall declare at least a declarator [...], a tag,
4734 // or the members of an enumeration.
4735 // C++ [dcl.dcl]p3:
4736 // [If there are no declarators], and except for the declaration of an
4737 // unnamed bit-field, the decl-specifier-seq shall introduce one or more
4738 // names into the program, or shall redeclare a name introduced by a
4739 // previous declaration.
4740 if (!DeclaresAnything) {
4741 // In C, we allow this as a (popular) extension / bug. Don't bother
4742 // producing further diagnostics for redundant qualifiers after this.
4743 Diag(DS.getBeginLoc(), (IsExplicitInstantiation || !TemplateParams.empty())
4744 ? diag::err_no_declarators
4745 : diag::ext_no_declarators)
4746 << DS.getSourceRange();
4747 return TagD;
4748 }
4749
4750 // C++ [dcl.stc]p1:
4751 // If a storage-class-specifier appears in a decl-specifier-seq, [...] the
4752 // init-declarator-list of the declaration shall not be empty.
4753 // C++ [dcl.fct.spec]p1:
4754 // If a cv-qualifier appears in a decl-specifier-seq, the
4755 // init-declarator-list of the declaration shall not be empty.
4756 //
4757 // Spurious qualifiers here appear to be valid in C.
4758 unsigned DiagID = diag::warn_standalone_specifier;
4759 if (getLangOpts().CPlusPlus)
4760 DiagID = diag::ext_standalone_specifier;
4761
4762 // Note that a linkage-specification sets a storage class, but
4763 // 'extern "C" struct foo;' is actually valid and not theoretically
4764 // useless.
4765 if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
4766 if (SCS == DeclSpec::SCS_mutable)
4767 // Since mutable is not a viable storage class specifier in C, there is
4768 // no reason to treat it as an extension. Instead, diagnose as an error.
4769 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
4770 else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
4771 Diag(DS.getStorageClassSpecLoc(), DiagID)
4772 << DeclSpec::getSpecifierName(SCS);
4773 }
4774
4775 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
4776 Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
4777 << DeclSpec::getSpecifierName(TSCS);
4778 if (DS.getTypeQualifiers()) {
4779 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4780 Diag(DS.getConstSpecLoc(), DiagID) << "const";
4781 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4782 Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
4783 // Restrict is covered above.
4784 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4785 Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
4786 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
4787 Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned";
4788 }
4789
4790 // Warn about ignored type attributes, for example:
4791 // __attribute__((aligned)) struct A;
4792 // Attributes should be placed after tag to apply to type declaration.
4793 if (!DS.getAttributes().empty()) {
4794 DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
4795 if (TypeSpecType == DeclSpec::TST_class ||
4796 TypeSpecType == DeclSpec::TST_struct ||
4797 TypeSpecType == DeclSpec::TST_interface ||
4798 TypeSpecType == DeclSpec::TST_union ||
4799 TypeSpecType == DeclSpec::TST_enum) {
4800 for (const ParsedAttr &AL : DS.getAttributes())
4801 Diag(AL.getLoc(), diag::warn_declspec_attribute_ignored)
4802 << AL << GetDiagnosticTypeSpecifierID(TypeSpecType);
4803 }
4804 }
4805
4806 return TagD;
4807}
4808
4809/// We are trying to inject an anonymous member into the given scope;
4810/// check if there's an existing declaration that can't be overloaded.
4811///
4812/// \return true if this is a forbidden redeclaration
4813static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
4814 Scope *S,
4815 DeclContext *Owner,
4816 DeclarationName Name,
4817 SourceLocation NameLoc,
4818 bool IsUnion) {
4819 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
4820 Sema::ForVisibleRedeclaration);
4821 if (!SemaRef.LookupName(R, S)) return false;
4822
4823 // Pick a representative declaration.
4824 NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
4825 assert(PrevDecl && "Expected a non-null Decl")((PrevDecl && "Expected a non-null Decl") ? static_cast
<void> (0) : __assert_fail ("PrevDecl && \"Expected a non-null Decl\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 4825, __PRETTY_FUNCTION__))
;
4826
4827 if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
4828 return false;
4829
4830 SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl)
4831 << IsUnion << Name;
4832 SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4833
4834 return true;
4835}
4836
4837/// InjectAnonymousStructOrUnionMembers - Inject the members of the
4838/// anonymous struct or union AnonRecord into the owning context Owner
4839/// and scope S. This routine will be invoked just after we realize
4840/// that an unnamed union or struct is actually an anonymous union or
4841/// struct, e.g.,
4842///
4843/// @code
4844/// union {
4845/// int i;
4846/// float f;
4847/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
4848/// // f into the surrounding scope.x
4849/// @endcode
4850///
4851/// This routine is recursive, injecting the names of nested anonymous
4852/// structs/unions into the owning context and scope as well.
4853static bool
4854InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner,
4855 RecordDecl *AnonRecord, AccessSpecifier AS,
4856 SmallVectorImpl<NamedDecl *> &Chaining) {
4857 bool Invalid = false;
4858
4859 // Look every FieldDecl and IndirectFieldDecl with a name.
4860 for (auto *D : AnonRecord->decls()) {
4861 if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
4862 cast<NamedDecl>(D)->getDeclName()) {
4863 ValueDecl *VD = cast<ValueDecl>(D);
4864 if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
4865 VD->getLocation(),
4866 AnonRecord->isUnion())) {
4867 // C++ [class.union]p2:
4868 // The names of the members of an anonymous union shall be
4869 // distinct from the names of any other entity in the
4870 // scope in which the anonymous union is declared.
4871 Invalid = true;
4872 } else {
4873 // C++ [class.union]p2:
4874 // For the purpose of name lookup, after the anonymous union
4875 // definition, the members of the anonymous union are
4876 // considered to have been defined in the scope in which the
4877 // anonymous union is declared.
4878 unsigned OldChainingSize = Chaining.size();
4879 if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
4880 Chaining.append(IF->chain_begin(), IF->chain_end());
4881 else
4882 Chaining.push_back(VD);
4883
4884 assert(Chaining.size() >= 2)((Chaining.size() >= 2) ? static_cast<void> (0) : __assert_fail
("Chaining.size() >= 2", "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 4884, __PRETTY_FUNCTION__))
;
4885 NamedDecl **NamedChain =
4886 new (SemaRef.Context)NamedDecl*[Chaining.size()];
4887 for (unsigned i = 0; i < Chaining.size(); i++)
4888 NamedChain[i] = Chaining[i];
4889
4890 IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
4891 SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(),
4892 VD->getType(), {NamedChain, Chaining.size()});
4893
4894 for (const auto *Attr : VD->attrs())
4895 IndirectField->addAttr(Attr->clone(SemaRef.Context));
4896
4897 IndirectField->setAccess(AS);
4898 IndirectField->setImplicit();
4899 SemaRef.PushOnScopeChains(IndirectField, S);
4900
4901 // That includes picking up the appropriate access specifier.
4902 if (AS != AS_none) IndirectField->setAccess(AS);
4903
4904 Chaining.resize(OldChainingSize);
4905 }
4906 }
4907 }
4908
4909 return Invalid;
4910}
4911
4912/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
4913/// a VarDecl::StorageClass. Any error reporting is up to the caller:
4914/// illegal input values are mapped to SC_None.
4915static StorageClass
4916StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
4917 DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
4918 assert(StorageClassSpec != DeclSpec::SCS_typedef &&((StorageClassSpec != DeclSpec::SCS_typedef && "Parser allowed 'typedef' as storage class VarDecl."
) ? static_cast<void> (0) : __assert_fail ("StorageClassSpec != DeclSpec::SCS_typedef && \"Parser allowed 'typedef' as storage class VarDecl.\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 4919, __PRETTY_FUNCTION__))
4919 "Parser allowed 'typedef' as storage class VarDecl.")((StorageClassSpec != DeclSpec::SCS_typedef && "Parser allowed 'typedef' as storage class VarDecl."
) ? static_cast<void> (0) : __assert_fail ("StorageClassSpec != DeclSpec::SCS_typedef && \"Parser allowed 'typedef' as storage class VarDecl.\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 4919, __PRETTY_FUNCTION__))
;
4920 switch (StorageClassSpec) {
4921 case DeclSpec::SCS_unspecified: return SC_None;
4922 case DeclSpec::SCS_extern:
4923 if (DS.isExternInLinkageSpec())
4924 return SC_None;
4925 return SC_Extern;
4926 case DeclSpec::SCS_static: return SC_Static;
4927 case DeclSpec::SCS_auto: return SC_Auto;
4928 case DeclSpec::SCS_register: return SC_Register;
4929 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4930 // Illegal SCSs map to None: error reporting is up to the caller.
4931 case DeclSpec::SCS_mutable: // Fall through.
4932 case DeclSpec::SCS_typedef: return SC_None;
4933 }
4934 llvm_unreachable("unknown storage class specifier")::llvm::llvm_unreachable_internal("unknown storage class specifier"
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 4934)
;
4935}
4936
4937static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
4938 assert(Record->hasInClassInitializer())((Record->hasInClassInitializer()) ? static_cast<void>
(0) : __assert_fail ("Record->hasInClassInitializer()", "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 4938, __PRETTY_FUNCTION__))
;
4939
4940 for (const auto *I : Record->decls()) {
4941 const auto *FD = dyn_cast<FieldDecl>(I);
4942 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
4943 FD = IFD->getAnonField();
4944 if (FD && FD->hasInClassInitializer())
4945 return FD->getLocation();
4946 }
4947
4948 llvm_unreachable("couldn't find in-class initializer")::llvm::llvm_unreachable_internal("couldn't find in-class initializer"
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 4948)
;
4949}
4950
4951static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4952 SourceLocation DefaultInitLoc) {
4953 if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4954 return;
4955
4956 S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
4957 S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
4958}
4959
4960static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4961 CXXRecordDecl *AnonUnion) {
4962 if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4963 return;
4964
4965 checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
4966}
4967
4968/// BuildAnonymousStructOrUnion - Handle the declaration of an
4969/// anonymous structure or union. Anonymous unions are a C++ feature
4970/// (C++ [class.union]) and a C11 feature; anonymous structures
4971/// are a C11 feature and GNU C++ extension.
4972Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
4973 AccessSpecifier AS,
4974 RecordDecl *Record,
4975 const PrintingPolicy &Policy) {
4976 DeclContext *Owner = Record->getDeclContext();
4977
4978 // Diagnose whether this anonymous struct/union is an extension.
4979 if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
4980 Diag(Record->getLocation(), diag::ext_anonymous_union);
4981 else if (!Record->isUnion() && getLangOpts().CPlusPlus)
4982 Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
4983 else if (!Record->isUnion() && !getLangOpts().C11)
4984 Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
4985
4986 // C and C++ require different kinds of checks for anonymous
4987 // structs/unions.
4988 bool Invalid = false;
4989 if (getLangOpts().CPlusPlus) {
4990 const char *PrevSpec = nullptr;
4991 if (Record->isUnion()) {
4992 // C++ [class.union]p6:
4993 // C++17 [class.union.anon]p2:
4994 // Anonymous unions declared in a named namespace or in the
4995 // global namespace shall be declared static.
4996 unsigned DiagID;
4997 DeclContext *OwnerScope = Owner->getRedeclContext();
4998 if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
4999 (OwnerScope->isTranslationUnit() ||
5000 (OwnerScope->isNamespace() &&
5001 !cast<NamespaceDecl>(OwnerScope)->isAnonymousNamespace()))) {
5002 Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
5003 << FixItHint::CreateInsertion(Record->getLocation(), "static ");
5004
5005 // Recover by adding 'static'.
5006 DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
5007 PrevSpec, DiagID, Policy);
5008 }
5009 // C++ [class.union]p6:
5010 // A storage class is not allowed in a declaration of an
5011 // anonymous union in a class scope.
5012 else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
5013 isa<RecordDecl>(Owner)) {
5014 Diag(DS.getStorageClassSpecLoc(),
5015 diag::err_anonymous_union_with_storage_spec)
5016 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5017
5018 // Recover by removing the storage specifier.
5019 DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
5020 SourceLocation(),
5021 PrevSpec, DiagID, Context.getPrintingPolicy());
5022 }
5023 }
5024
5025 // Ignore const/volatile/restrict qualifiers.
5026 if (DS.getTypeQualifiers()) {
5027 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
5028 Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
5029 << Record->isUnion() << "const"
5030 << FixItHint::CreateRemoval(DS.getConstSpecLoc());
5031 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
5032 Diag(DS.getVolatileSpecLoc(),
5033 diag::ext_anonymous_struct_union_qualified)
5034 << Record->isUnion() << "volatile"
5035 << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
5036 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
5037 Diag(DS.getRestrictSpecLoc(),
5038 diag::ext_anonymous_struct_union_qualified)
5039 << Record->isUnion() << "restrict"
5040 << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
5041 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
5042 Diag(DS.getAtomicSpecLoc(),
5043 diag::ext_anonymous_struct_union_qualified)
5044 << Record->isUnion() << "_Atomic"
5045 << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
5046 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
5047 Diag(DS.getUnalignedSpecLoc(),
5048 diag::ext_anonymous_struct_union_qualified)
5049 << Record->isUnion() << "__unaligned"
5050 << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc());
5051
5052 DS.ClearTypeQualifiers();
5053 }
5054
5055 // C++ [class.union]p2:
5056 // The member-specification of an anonymous union shall only
5057 // define non-static data members. [Note: nested types and
5058 // functions cannot be declared within an anonymous union. ]
5059 for (auto *Mem : Record->decls()) {
5060 // Ignore invalid declarations; we already diagnosed them.
5061 if (Mem->isInvalidDecl())
5062 continue;
5063
5064 if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
5065 // C++ [class.union]p3:
5066 // An anonymous union shall not have private or protected
5067 // members (clause 11).
5068 assert(FD->getAccess() != AS_none)((FD->getAccess() != AS_none) ? static_cast<void> (0
) : __assert_fail ("FD->getAccess() != AS_none", "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 5068, __PRETTY_FUNCTION__))
;
5069 if (FD->getAccess() != AS_public) {
5070 Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
5071 << Record->isUnion() << (FD->getAccess() == AS_protected);
5072 Invalid = true;
5073 }
5074
5075 // C++ [class.union]p1
5076 // An object of a class with a non-trivial constructor, a non-trivial
5077 // copy constructor, a non-trivial destructor, or a non-trivial copy
5078 // assignment operator cannot be a member of a union, nor can an
5079 // array of such objects.
5080 if (CheckNontrivialField(FD))
5081 Invalid = true;
5082 } else if (Mem->isImplicit()) {
5083 // Any implicit members are fine.
5084 } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
5085 // This is a type that showed up in an
5086 // elaborated-type-specifier inside the anonymous struct or
5087 // union, but which actually declares a type outside of the
5088 // anonymous struct or union. It's okay.
5089 } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
5090 if (!MemRecord->isAnonymousStructOrUnion() &&
5091 MemRecord->getDeclName()) {
5092 // Visual C++ allows type definition in anonymous struct or union.
5093 if (getLangOpts().MicrosoftExt)
5094 Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
5095 << Record->isUnion();
5096 else {
5097 // This is a nested type declaration.
5098 Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
5099 << Record->isUnion();
5100 Invalid = true;
5101 }
5102 } else {
5103 // This is an anonymous type definition within another anonymous type.
5104 // This is a popular extension, provided by Plan9, MSVC and GCC, but
5105 // not part of standard C++.
5106 Diag(MemRecord->getLocation(),
5107 diag::ext_anonymous_record_with_anonymous_type)
5108 << Record->isUnion();
5109 }
5110 } else if (isa<AccessSpecDecl>(Mem)) {
5111 // Any access specifier is fine.
5112 } else if (isa<StaticAssertDecl>(Mem)) {
5113 // In C++1z, static_assert declarations are also fine.
5114 } else {
5115 // We have something that isn't a non-static data
5116 // member. Complain about it.
5117 unsigned DK = diag::err_anonymous_record_bad_member;
5118 if (isa<TypeDecl>(Mem))
5119 DK = diag::err_anonymous_record_with_type;
5120 else if (isa<FunctionDecl>(Mem))
5121 DK = diag::err_anonymous_record_with_function;
5122 else if (isa<VarDecl>(Mem))
5123 DK = diag::err_anonymous_record_with_static;
5124
5125 // Visual C++ allows type definition in anonymous struct or union.
5126 if (getLangOpts().MicrosoftExt &&
5127 DK == diag::err_anonymous_record_with_type)
5128 Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
5129 << Record->isUnion();
5130 else {
5131 Diag(Mem->getLocation(), DK) << Record->isUnion();
5132 Invalid = true;
5133 }
5134 }
5135 }
5136
5137 // C++11 [class.union]p8 (DR1460):
5138 // At most one variant member of a union may have a
5139 // brace-or-equal-initializer.
5140 if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
5141 Owner->isRecord())
5142 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
5143 cast<CXXRecordDecl>(Record));
5144 }
5145
5146 if (!Record->isUnion() && !Owner->isRecord()) {
5147 Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
5148 << getLangOpts().CPlusPlus;
5149 Invalid = true;
5150 }
5151
5152 // C++ [dcl.dcl]p3:
5153 // [If there are no declarators], and except for the declaration of an
5154 // unnamed bit-field, the decl-specifier-seq shall introduce one or more
5155 // names into the program
5156 // C++ [class.mem]p2:
5157 // each such member-declaration shall either declare at least one member
5158 // name of the class or declare at least one unnamed bit-field
5159 //
5160 // For C this is an error even for a named struct, and is diagnosed elsewhere.
5161 if (getLangOpts().CPlusPlus && Record->field_empty())
5162 Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange();
5163
5164 // Mock up a declarator.
5165 Declarator Dc(DS, DeclaratorContext::Member);
5166 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
5167 assert(TInfo && "couldn't build declarator info for anonymous struct/union")((TInfo && "couldn't build declarator info for anonymous struct/union"
) ? static_cast<void> (0) : __assert_fail ("TInfo && \"couldn't build declarator info for anonymous struct/union\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 5167, __PRETTY_FUNCTION__))
;
5168
5169 // Create a declaration for this anonymous struct/union.
5170 NamedDecl *Anon = nullptr;
5171 if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
5172 Anon = FieldDecl::Create(
5173 Context, OwningClass, DS.getBeginLoc(), Record->getLocation(),
5174 /*IdentifierInfo=*/nullptr, Context.getTypeDeclType(Record), TInfo,
5175 /*BitWidth=*/nullptr, /*Mutable=*/false,
5176 /*InitStyle=*/ICIS_NoInit);
5177 Anon->setAccess(AS);
5178 ProcessDeclAttributes(S, Anon, Dc);
5179
5180 if (getLangOpts().CPlusPlus)
5181 FieldCollector->Add(cast<FieldDecl>(Anon));
5182 } else {
5183 DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
5184 StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
5185 if (SCSpec == DeclSpec::SCS_mutable) {
5186 // mutable can only appear on non-static class members, so it's always
5187 // an error here
5188 Diag(Record->getLocation(), diag::err_mutable_nonmember);
5189 Invalid = true;
5190 SC = SC_None;
5191 }
5192
5193 assert(DS.getAttributes().empty() && "No attribute expected")((DS.getAttributes().empty() && "No attribute expected"
) ? static_cast<void> (0) : __assert_fail ("DS.getAttributes().empty() && \"No attribute expected\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 5193, __PRETTY_FUNCTION__))
;
5194 Anon = VarDecl::Create(Context, Owner, DS.getBeginLoc(),
5195 Record->getLocation(), /*IdentifierInfo=*/nullptr,
5196 Context.getTypeDeclType(Record), TInfo, SC);
5197
5198 // Default-initialize the implicit variable. This initialization will be
5199 // trivial in almost all cases, except if a union member has an in-class
5200 // initializer:
5201 // union { int n = 0; };
5202 ActOnUninitializedDecl(Anon);
5203 }
5204 Anon->setImplicit();
5205
5206 // Mark this as an anonymous struct/union type.
5207 Record->setAnonymousStructOrUnion(true);
5208
5209 // Add the anonymous struct/union object to the current
5210 // context. We'll be referencing this object when we refer to one of
5211 // its members.
5212 Owner->addDecl(Anon);
5213
5214 // Inject the members of the anonymous struct/union into the owning
5215 // context and into the identifier resolver chain for name lookup
5216 // purposes.
5217 SmallVector<NamedDecl*, 2> Chain;
5218 Chain.push_back(Anon);
5219
5220 if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, Chain))
5221 Invalid = true;
5222
5223 if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
5224 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
5225 MangleNumberingContext *MCtx;
5226 Decl *ManglingContextDecl;
5227 std::tie(MCtx, ManglingContextDecl) =
5228 getCurrentMangleNumberContext(NewVD->getDeclContext());
5229 if (MCtx) {
5230 Context.setManglingNumber(
5231 NewVD, MCtx->getManglingNumber(
5232 NewVD, getMSManglingNumber(getLangOpts(), S)));
5233 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
5234 }
5235 }
5236 }
5237
5238 if (Invalid)
5239 Anon->setInvalidDecl();
5240
5241 return Anon;
5242}
5243
5244/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
5245/// Microsoft C anonymous structure.
5246/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
5247/// Example:
5248///
5249/// struct A { int a; };
5250/// struct B { struct A; int b; };
5251///
5252/// void foo() {
5253/// B var;
5254/// var.a = 3;
5255/// }
5256///
5257Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
5258 RecordDecl *Record) {
5259 assert(Record && "expected a record!")((Record && "expected a record!") ? static_cast<void
> (0) : __assert_fail ("Record && \"expected a record!\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 5259, __PRETTY_FUNCTION__))
;
5260
5261 // Mock up a declarator.
5262 Declarator Dc(DS, DeclaratorContext::TypeName);
5263 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
5264 assert(TInfo && "couldn't build declarator info for anonymous struct")((TInfo && "couldn't build declarator info for anonymous struct"
) ? static_cast<void> (0) : __assert_fail ("TInfo && \"couldn't build declarator info for anonymous struct\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 5264, __PRETTY_FUNCTION__))
;
5265
5266 auto *ParentDecl = cast<RecordDecl>(CurContext);
5267 QualType RecTy = Context.getTypeDeclType(Record);
5268
5269 // Create a declaration for this anonymous struct.
5270 NamedDecl *Anon =
5271 FieldDecl::Create(Context, ParentDecl, DS.getBeginLoc(), DS.getBeginLoc(),
5272 /*IdentifierInfo=*/nullptr, RecTy, TInfo,
5273 /*BitWidth=*/nullptr, /*Mutable=*/false,
5274 /*InitStyle=*/ICIS_NoInit);
5275 Anon->setImplicit();
5276
5277 // Add the anonymous struct object to the current context.
5278 CurContext->addDecl(Anon);
5279
5280 // Inject the members of the anonymous struct into the current
5281 // context and into the identifier resolver chain for name lookup
5282 // purposes.
5283 SmallVector<NamedDecl*, 2> Chain;
5284 Chain.push_back(Anon);
5285
5286 RecordDecl *RecordDef = Record->getDefinition();
5287 if (RequireCompleteSizedType(Anon->getLocation(), RecTy,
5288 diag::err_field_incomplete_or_sizeless) ||
5289 InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef,
5290 AS_none, Chain)) {
5291 Anon->setInvalidDecl();
5292 ParentDecl->setInvalidDecl();
5293 }
5294
5295 return Anon;
5296}
5297
5298/// GetNameForDeclarator - Determine the full declaration name for the
5299/// given Declarator.
5300DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
5301 return GetNameFromUnqualifiedId(D.getName());
5302}
5303
5304/// Retrieves the declaration name from a parsed unqualified-id.
5305DeclarationNameInfo
5306Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
5307 DeclarationNameInfo NameInfo;
5308 NameInfo.setLoc(Name.StartLocation);
5309
5310 switch (Name.getKind()) {
5311
5312 case UnqualifiedIdKind::IK_ImplicitSelfParam:
5313 case UnqualifiedIdKind::IK_Identifier:
5314 NameInfo.setName(Name.Identifier);
5315 return NameInfo;
5316
5317 case UnqualifiedIdKind::IK_DeductionGuideName: {
5318 // C++ [temp.deduct.guide]p3:
5319 // The simple-template-id shall name a class template specialization.
5320 // The template-name shall be the same identifier as the template-name
5321 // of the simple-template-id.
5322 // These together intend to imply that the template-name shall name a
5323 // class template.
5324 // FIXME: template<typename T> struct X {};
5325 // template<typename T> using Y = X<T>;
5326 // Y(int) -> Y<int>;
5327 // satisfies these rules but does not name a class template.
5328 TemplateName TN = Name.TemplateName.get().get();
5329 auto *Template = TN.getAsTemplateDecl();
5330 if (!Template || !isa<ClassTemplateDecl>(Template)) {
5331 Diag(Name.StartLocation,
5332 diag::err_deduction_guide_name_not_class_template)
5333 << (int)getTemplateNameKindForDiagnostics(TN) << TN;
5334 if (Template)
5335 Diag(Template->getLocation(), diag::note_template_decl_here);
5336 return DeclarationNameInfo();
5337 }
5338
5339 NameInfo.setName(
5340 Context.DeclarationNames.getCXXDeductionGuideName(Template));
5341 return NameInfo;
5342 }
5343
5344 case UnqualifiedIdKind::IK_OperatorFunctionId:
5345 NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
5346 Name.OperatorFunctionId.Operator));
5347 NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc =
5348 Name.OperatorFunctionId.SymbolLocations[0].getRawEncoding();
5349 NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
5350 = Name.EndLocation.getRawEncoding();
5351 return NameInfo;
5352
5353 case UnqualifiedIdKind::IK_LiteralOperatorId:
5354 NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
5355 Name.Identifier));
5356 NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
5357 return NameInfo;
5358
5359 case UnqualifiedIdKind::IK_ConversionFunctionId: {
5360 TypeSourceInfo *TInfo;
5361 QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
5362 if (Ty.isNull())
5363 return DeclarationNameInfo();
5364 NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
5365 Context.getCanonicalType(Ty)));
5366 NameInfo.setNamedTypeInfo(TInfo);
5367 return NameInfo;
5368 }
5369
5370 case UnqualifiedIdKind::IK_ConstructorName: {
5371 TypeSourceInfo *TInfo;
5372 QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
5373 if (Ty.isNull())
5374 return DeclarationNameInfo();
5375 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5376 Context.getCanonicalType(Ty)));
5377 NameInfo.setNamedTypeInfo(TInfo);
5378 return NameInfo;
5379 }
5380
5381 case UnqualifiedIdKind::IK_ConstructorTemplateId: {
5382 // In well-formed code, we can only have a constructor
5383 // template-id that refers to the current context, so go there
5384 // to find the actual type being constructed.
5385 CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
5386 if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
5387 return DeclarationNameInfo();
5388
5389 // Determine the type of the class being constructed.
5390 QualType CurClassType = Context.getTypeDeclType(CurClass);
5391
5392 // FIXME: Check two things: that the template-id names the same type as
5393 // CurClassType, and that the template-id does not occur when the name
5394 // was qualified.
5395
5396 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5397 Context.getCanonicalType(CurClassType)));
5398 // FIXME: should we retrieve TypeSourceInfo?
5399 NameInfo.setNamedTypeInfo(nullptr);
5400 return NameInfo;
5401 }
5402
5403 case UnqualifiedIdKind::IK_DestructorName: {
5404 TypeSourceInfo *TInfo;
5405 QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
5406 if (Ty.isNull())
5407 return DeclarationNameInfo();
5408 NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
5409 Context.getCanonicalType(Ty)));
5410 NameInfo.setNamedTypeInfo(TInfo);
5411 return NameInfo;
5412 }
5413
5414 case UnqualifiedIdKind::IK_TemplateId: {
5415 TemplateName TName = Name.TemplateId->Template.get();
5416 SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
5417 return Context.getNameForTemplate(TName, TNameLoc);
5418 }
5419
5420 } // switch (Name.getKind())
5421
5422 llvm_unreachable("Unknown name kind")::llvm::llvm_unreachable_internal("Unknown name kind", "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 5422)
;
5423}
5424
5425static QualType getCoreType(QualType Ty) {
5426 do {
5427 if (Ty->isPointerType() || Ty->isReferenceType())
5428 Ty = Ty->getPointeeType();
5429 else if (Ty->isArrayType())
5430 Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
5431 else
5432 return Ty.withoutLocalFastQualifiers();
5433 } while (true);
5434}
5435
5436/// hasSimilarParameters - Determine whether the C++ functions Declaration
5437/// and Definition have "nearly" matching parameters. This heuristic is
5438/// used to improve diagnostics in the case where an out-of-line function
5439/// definition doesn't match any declaration within the class or namespace.
5440/// Also sets Params to the list of indices to the parameters that differ
5441/// between the declaration and the definition. If hasSimilarParameters
5442/// returns true and Params is empty, then all of the parameters match.
5443static bool hasSimilarParameters(ASTContext &Context,
5444 FunctionDecl *Declaration,
5445 FunctionDecl *Definition,
5446 SmallVectorImpl<unsigned> &Params) {
5447 Params.clear();
5448 if (Declaration->param_size() != Definition->param_size())
5449 return false;
5450 for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
5451 QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
5452 QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
5453
5454 // The parameter types are identical
5455 if (Context.hasSameUnqualifiedType(DefParamTy, DeclParamTy))
5456 continue;
5457
5458 QualType DeclParamBaseTy = getCoreType(DeclParamTy);
5459 QualType DefParamBaseTy = getCoreType(DefParamTy);
5460 const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
5461 const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
5462
5463 if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
5464 (DeclTyName && DeclTyName == DefTyName))
5465 Params.push_back(Idx);
5466 else // The two parameters aren't even close
5467 return false;
5468 }
5469
5470 return true;
5471}
5472
5473/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
5474/// declarator needs to be rebuilt in the current instantiation.
5475/// Any bits of declarator which appear before the name are valid for
5476/// consideration here. That's specifically the type in the decl spec
5477/// and the base type in any member-pointer chunks.
5478static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
5479 DeclarationName Name) {
5480 // The types we specifically need to rebuild are:
5481 // - typenames, typeofs, and decltypes
5482 // - types which will become injected class names
5483 // Of course, we also need to rebuild any type referencing such a
5484 // type. It's safest to just say "dependent", but we call out a
5485 // few cases here.
5486
5487 DeclSpec &DS = D.getMutableDeclSpec();
5488 switch (DS.getTypeSpecType()) {
5489 case DeclSpec::TST_typename:
5490 case DeclSpec::TST_typeofType:
5491 case DeclSpec::TST_underlyingType:
5492 case DeclSpec::TST_atomic: {
5493 // Grab the type from the parser.
5494 TypeSourceInfo *TSI = nullptr;
5495 QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
5496 if (T.isNull() || !T->isInstantiationDependentType()) break;
5497
5498 // Make sure there's a type source info. This isn't really much
5499 // of a waste; most dependent types should have type source info
5500 // attached already.
5501 if (!TSI)
5502 TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
5503
5504 // Rebuild the type in the current instantiation.
5505 TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
5506 if (!TSI) return true;
5507
5508 // Store the new type back in the decl spec.
5509 ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
5510 DS.UpdateTypeRep(LocType);
5511 break;
5512 }
5513
5514 case DeclSpec::TST_decltype:
5515 case DeclSpec::TST_typeofExpr: {
5516 Expr *E = DS.getRepAsExpr();
5517 ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
5518 if (Result.isInvalid()) return true;
5519 DS.UpdateExprRep(Result.get());
5520 break;
5521 }
5522
5523 default:
5524 // Nothing to do for these decl specs.
5525 break;
5526 }
5527
5528 // It doesn't matter what order we do this in.
5529 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
5530 DeclaratorChunk &Chunk = D.getTypeObject(I);
5531
5532 // The only type information in the declarator which can come
5533 // before the declaration name is the base type of a member
5534 // pointer.
5535 if (Chunk.Kind != DeclaratorChunk::MemberPointer)
5536 continue;
5537
5538 // Rebuild the scope specifier in-place.
5539 CXXScopeSpec &SS = Chunk.Mem.Scope();
5540 if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
5541 return true;
5542 }
5543
5544 return false;
5545}
5546
5547Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
5548 D.setFunctionDefinitionKind(FunctionDefinitionKind::Declaration);
5549 Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
5550
5551 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
5552 Dcl && Dcl->getDeclContext()->isFileContext())
5553 Dcl->setTopLevelDeclInObjCContainer();
5554
5555 if (getLangOpts().OpenCL)
5556 setCurrentOpenCLExtensionForDecl(Dcl);
5557
5558 return Dcl;
5559}
5560
5561/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
5562/// If T is the name of a class, then each of the following shall have a
5563/// name different from T:
5564/// - every static data member of class T;
5565/// - every member function of class T
5566/// - every member of class T that is itself a type;
5567/// \returns true if the declaration name violates these rules.
5568bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
5569 DeclarationNameInfo NameInfo) {
5570 DeclarationName Name = NameInfo.getName();
5571
5572 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC);
5573 while (Record && Record->isAnonymousStructOrUnion())
5574 Record = dyn_cast<CXXRecordDecl>(Record->getParent());
5575 if (Record && Record->getIdentifier() && Record->getDeclName() == Name) {
5576 Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
5577 return true;
5578 }
5579
5580 return false;
5581}
5582
5583/// Diagnose a declaration whose declarator-id has the given
5584/// nested-name-specifier.
5585///
5586/// \param SS The nested-name-specifier of the declarator-id.
5587///
5588/// \param DC The declaration context to which the nested-name-specifier
5589/// resolves.
5590///
5591/// \param Name The name of the entity being declared.
5592///
5593/// \param Loc The location of the name of the entity being declared.
5594///
5595/// \param IsTemplateId Whether the name is a (simple-)template-id, and thus
5596/// we're declaring an explicit / partial specialization / instantiation.
5597///
5598/// \returns true if we cannot safely recover from this error, false otherwise.
5599bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
5600 DeclarationName Name,
5601 SourceLocation Loc, bool IsTemplateId) {
5602 DeclContext *Cur = CurContext;
5603 while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
5604 Cur = Cur->getParent();
5605
5606 // If the user provided a superfluous scope specifier that refers back to the
5607 // class in which the entity is already declared, diagnose and ignore it.
5608 //
5609 // class X {
5610 // void X::f();
5611 // };
5612 //
5613 // Note, it was once ill-formed to give redundant qualification in all
5614 // contexts, but that rule was removed by DR482.
5615 if (Cur->Equals(DC)) {
5616 if (Cur->isRecord()) {
5617 Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
5618 : diag::err_member_extra_qualification)
5619 << Name << FixItHint::CreateRemoval(SS.getRange());
5620 SS.clear();
5621 } else {
5622 Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
5623 }
5624 return false;
5625 }
5626
5627 // Check whether the qualifying scope encloses the scope of the original
5628 // declaration. For a template-id, we perform the checks in
5629 // CheckTemplateSpecializationScope.
5630 if (!Cur->Encloses(DC) && !IsTemplateId) {
5631 if (Cur->isRecord())
5632 Diag(Loc, diag::err_member_qualification)
5633 << Name << SS.getRange();
5634 else if (isa<TranslationUnitDecl>(DC))
5635 Diag(Loc, diag::err_invalid_declarator_global_scope)
5636 << Name << SS.getRange();
5637 else if (isa<FunctionDecl>(Cur))
5638 Diag(Loc, diag::err_invalid_declarator_in_function)
5639 << Name << SS.getRange();
5640 else if (isa<BlockDecl>(Cur))
5641 Diag(Loc, diag::err_invalid_declarator_in_block)
5642 << Name << SS.getRange();
5643 else
5644 Diag(Loc, diag::err_invalid_declarator_scope)
5645 << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
5646
5647 return true;
5648 }
5649
5650 if (Cur->isRecord()) {
5651 // Cannot qualify members within a class.
5652 Diag(Loc, diag::err_member_qualification)
5653 << Name << SS.getRange();
5654 SS.clear();
5655
5656 // C++ constructors and destructors with incorrect scopes can break
5657 // our AST invariants by having the wrong underlying types. If
5658 // that's the case, then drop this declaration entirely.
5659 if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
5660 Name.getNameKind() == DeclarationName::CXXDestructorName) &&
5661 !Context.hasSameType(Name.getCXXNameType(),
5662 Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
5663 return true;
5664
5665 return false;
5666 }
5667
5668 // C++11 [dcl.meaning]p1:
5669 // [...] "The nested-name-specifier of the qualified declarator-id shall
5670 // not begin with a decltype-specifer"
5671 NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
5672 while (SpecLoc.getPrefix())
5673 SpecLoc = SpecLoc.getPrefix();
5674 if (dyn_cast_or_null<DecltypeType>(
5675 SpecLoc.getNestedNameSpecifier()->getAsType()))
5676 Diag(Loc, diag::err_decltype_in_declarator)
5677 << SpecLoc.getTypeLoc().getSourceRange();
5678
5679 return false;
5680}
5681
5682NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
5683 MultiTemplateParamsArg TemplateParamLists) {
5684 // TODO: consider using NameInfo for diagnostic.
5685 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5686 DeclarationName Name = NameInfo.getName();
5687
5688 // All of these full declarators require an identifier. If it doesn't have
5689 // one, the ParsedFreeStandingDeclSpec action should be used.
5690 if (D.isDecompositionDeclarator()) {
5691 return ActOnDecompositionDeclarator(S, D, TemplateParamLists);
5692 } else if (!Name) {
5693 if (!D.isInvalidType()) // Reject this if we think it is valid.
5694 Diag(D.getDeclSpec().getBeginLoc(), diag::err_declarator_need_ident)
5695 << D.getDeclSpec().getSourceRange() << D.getSourceRange();
5696 return nullptr;
5697 } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
5698 return nullptr;
5699
5700 // The scope passed in may not be a decl scope. Zip up the scope tree until
5701 // we find one that is.
5702 while ((S->getFlags() & Scope::DeclScope) == 0 ||
5703 (S->getFlags() & Scope::TemplateParamScope) != 0)
5704 S = S->getParent();
5705
5706 DeclContext *DC = CurContext;
5707 if (D.getCXXScopeSpec().isInvalid())
5708 D.setInvalidType();
5709 else if (D.getCXXScopeSpec().isSet()) {
5710 if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
5711 UPPC_DeclarationQualifier))
5712 return nullptr;
5713
5714 bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
5715 DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
5716 if (!DC || isa<EnumDecl>(DC)) {
5717 // If we could not compute the declaration context, it's because the
5718 // declaration context is dependent but does not refer to a class,
5719 // class template, or class template partial specialization. Complain
5720 // and return early, to avoid the coming semantic disaster.
5721 Diag(D.getIdentifierLoc(),
5722 diag::err_template_qualified_declarator_no_match)
5723 << D.getCXXScopeSpec().getScopeRep()
5724 << D.getCXXScopeSpec().getRange();
5725 return nullptr;
5726 }
5727 bool IsDependentContext = DC->isDependentContext();
5728
5729 if (!IsDependentContext &&
5730 RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
5731 return nullptr;
5732
5733 // If a class is incomplete, do not parse entities inside it.
5734 if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
5735 Diag(D.getIdentifierLoc(),
5736 diag::err_member_def_undefined_record)
5737 << Name << DC << D.getCXXScopeSpec().getRange();
5738 return nullptr;
5739 }
5740 if (!D.getDeclSpec().isFriendSpecified()) {
5741 if (diagnoseQualifiedDeclaration(
5742 D.getCXXScopeSpec(), DC, Name, D.getIdentifierLoc(),
5743 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId)) {
5744 if (DC->isRecord())
5745 return nullptr;
5746
5747 D.setInvalidType();
5748 }
5749 }
5750
5751 // Check whether we need to rebuild the type of the given
5752 // declaration in the current instantiation.
5753 if (EnteringContext && IsDependentContext &&
5754 TemplateParamLists.size() != 0) {
5755 ContextRAII SavedContext(*this, DC);
5756 if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
5757 D.setInvalidType();
5758 }
5759 }
5760
5761 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5762 QualType R = TInfo->getType();
5763
5764 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
5765 UPPC_DeclarationType))
5766 D.setInvalidType();
5767
5768 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
5769 forRedeclarationInCurContext());
5770
5771 // See if this is a redefinition of a variable in the same scope.
5772 if (!D.getCXXScopeSpec().isSet()) {
5773 bool IsLinkageLookup = false;
5774 bool CreateBuiltins = false;
5775
5776 // If the declaration we're planning to build will be a function
5777 // or object with linkage, then look for another declaration with
5778 // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
5779 //
5780 // If the declaration we're planning to build will be declared with
5781 // external linkage in the translation unit, create any builtin with
5782 // the same name.
5783 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
5784 /* Do nothing*/;
5785 else if (CurContext->isFunctionOrMethod() &&
5786 (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
5787 R->isFunctionType())) {
5788 IsLinkageLookup = true;
5789 CreateBuiltins =
5790 CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
5791 } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
5792 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
5793 CreateBuiltins = true;
5794
5795 if (IsLinkageLookup) {
5796 Previous.clear(LookupRedeclarationWithLinkage);
5797 Previous.setRedeclarationKind(ForExternalRedeclaration);
5798 }
5799
5800 LookupName(Previous, S, CreateBuiltins);
5801 } else { // Something like "int foo::x;"
5802 LookupQualifiedName(Previous, DC);
5803
5804 // C++ [dcl.meaning]p1:
5805 // When the declarator-id is qualified, the declaration shall refer to a
5806 // previously declared member of the class or namespace to which the
5807 // qualifier refers (or, in the case of a namespace, of an element of the
5808 // inline namespace set of that namespace (7.3.1)) or to a specialization
5809 // thereof; [...]
5810 //
5811 // Note that we already checked the context above, and that we do not have
5812 // enough information to make sure that Previous contains the declaration
5813 // we want to match. For example, given:
5814 //
5815 // class X {
5816 // void f();
5817 // void f(float);
5818 // };
5819 //
5820 // void X::f(int) { } // ill-formed
5821 //
5822 // In this case, Previous will point to the overload set
5823 // containing the two f's declared in X, but neither of them
5824 // matches.
5825
5826 // C++ [dcl.meaning]p1:
5827 // [...] the member shall not merely have been introduced by a
5828 // using-declaration in the scope of the class or namespace nominated by
5829 // the nested-name-specifier of the declarator-id.
5830 RemoveUsingDecls(Previous);
5831 }
5832
5833 if (Previous.isSingleResult() &&
5834 Previous.getFoundDecl()->isTemplateParameter()) {
5835 // Maybe we will complain about the shadowed template parameter.
5836 if (!D.isInvalidType())
5837 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
5838 Previous.getFoundDecl());
5839
5840 // Just pretend that we didn't see the previous declaration.
5841 Previous.clear();
5842 }
5843
5844 if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo))
5845 // Forget that the previous declaration is the injected-class-name.
5846 Previous.clear();
5847
5848 // In C++, the previous declaration we find might be a tag type
5849 // (class or enum). In this case, the new declaration will hide the
5850 // tag type. Note that this applies to functions, function templates, and
5851 // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates.
5852 if (Previous.isSingleTagDecl() &&
5853 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5854 (TemplateParamLists.size() == 0 || R->isFunctionType()))
5855 Previous.clear();
5856
5857 // Check that there are no default arguments other than in the parameters
5858 // of a function declaration (C++ only).
5859 if (getLangOpts().CPlusPlus)
5860 CheckExtraCXXDefaultArguments(D);
5861
5862 NamedDecl *New;
5863
5864 bool AddToScope = true;
5865 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
5866 if (TemplateParamLists.size()) {
5867 Diag(D.getIdentifierLoc(), diag::err_template_typedef);
5868 return nullptr;
5869 }
5870
5871 New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
5872 } else if (R->isFunctionType()) {
5873 New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
5874 TemplateParamLists,
5875 AddToScope);
5876 } else {
5877 New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
5878 AddToScope);
5879 }
5880
5881 if (!New)
5882 return nullptr;
5883
5884 // If this has an identifier and is not a function template specialization,
5885 // add it to the scope stack.
5886 if (New->getDeclName() && AddToScope)
5887 PushOnScopeChains(New, S);
5888
5889 if (isInOpenMPDeclareTargetContext())
5890 checkDeclIsAllowedInOpenMPTarget(nullptr, New);
5891
5892 return New;
5893}
5894
5895/// Helper method to turn variable array types into constant array
5896/// types in certain situations which would otherwise be errors (for
5897/// GCC compatibility).
5898static QualType TryToFixInvalidVariablyModifiedType(QualType T,
5899 ASTContext &Context,
5900 bool &SizeIsNegative,
5901 llvm::APSInt &Oversized) {
5902 // This method tries to turn a variable array into a constant
5903 // array even when the size isn't an ICE. This is necessary
5904 // for compatibility with code that depends on gcc's buggy
5905 // constant expression folding, like struct {char x[(int)(char*)2];}
5906 SizeIsNegative = false;
5907 Oversized = 0;
5908
5909 if (T->isDependentType())
5910 return QualType();
5911
5912 QualifierCollector Qs;
5913 const Type *Ty = Qs.strip(T);
5914
5915 if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
5916 QualType Pointee = PTy->getPointeeType();
5917 QualType FixedType =
5918 TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
5919 Oversized);
5920 if (FixedType.isNull()) return FixedType;
5921 FixedType = Context.getPointerType(FixedType);
5922 return Qs.apply(Context, FixedType);
5923 }
5924 if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
5925 QualType Inner = PTy->getInnerType();
5926 QualType FixedType =
5927 TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
5928 Oversized);
5929 if (FixedType.isNull()) return FixedType;
5930 FixedType = Context.getParenType(FixedType);
5931 return Qs.apply(Context, FixedType);
5932 }
5933
5934 const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
5935 if (!VLATy)
5936 return QualType();
5937
5938 QualType ElemTy = VLATy->getElementType();
5939 if (ElemTy->isVariablyModifiedType()) {
5940 ElemTy = TryToFixInvalidVariablyModifiedType(ElemTy, Context,
5941 SizeIsNegative, Oversized);
5942 if (ElemTy.isNull())
5943 return QualType();
5944 }
5945
5946 Expr::EvalResult Result;
5947 if (!VLATy->getSizeExpr() ||
5948 !VLATy->getSizeExpr()->EvaluateAsInt(Result, Context))
5949 return QualType();
5950
5951 llvm::APSInt Res = Result.Val.getInt();
5952
5953 // Check whether the array size is negative.
5954 if (Res.isSigned() && Res.isNegative()) {
5955 SizeIsNegative = true;
5956 return QualType();
5957 }
5958
5959 // Check whether the array is too large to be addressed.
5960 unsigned ActiveSizeBits =
5961 (!ElemTy->isDependentType() && !ElemTy->isVariablyModifiedType() &&
5962 !ElemTy->isIncompleteType() && !ElemTy->isUndeducedType())
5963 ? ConstantArrayType::getNumAddressingBits(Context, ElemTy, Res)
5964 : Res.getActiveBits();
5965 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
5966 Oversized = Res;
5967 return QualType();
5968 }
5969
5970 QualType FoldedArrayType = Context.getConstantArrayType(
5971 ElemTy, Res, VLATy->getSizeExpr(), ArrayType::Normal, 0);
5972 return Qs.apply(Context, FoldedArrayType);
5973}
5974
5975static void
5976FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
5977 SrcTL = SrcTL.getUnqualifiedLoc();
5978 DstTL = DstTL.getUnqualifiedLoc();
5979 if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
5980 PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
5981 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
5982 DstPTL.getPointeeLoc());
5983 DstPTL.setStarLoc(SrcPTL.getStarLoc());
5984 return;
5985 }
5986 if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
5987 ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
5988 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
5989 DstPTL.getInnerLoc());
5990 DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
5991 DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
5992 return;
5993 }
5994 ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
5995 ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
5996 TypeLoc SrcElemTL = SrcATL.getElementLoc();
5997 TypeLoc DstElemTL = DstATL.getElementLoc();
5998 if (VariableArrayTypeLoc SrcElemATL =
5999 SrcElemTL.getAs<VariableArrayTypeLoc>()) {
6000 ConstantArrayTypeLoc DstElemATL = DstElemTL.castAs<ConstantArrayTypeLoc>();
6001 FixInvalidVariablyModifiedTypeLoc(SrcElemATL, DstElemATL);
6002 } else {
6003 DstElemTL.initializeFullCopy(SrcElemTL);
6004 }
6005 DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
6006 DstATL.setSizeExpr(SrcATL.getSizeExpr());
6007 DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
6008}
6009
6010/// Helper method to turn variable array types into constant array
6011/// types in certain situations which would otherwise be errors (for
6012/// GCC compatibility).
6013static TypeSourceInfo*
6014TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
6015 ASTContext &Context,
6016 bool &SizeIsNegative,
6017 llvm::APSInt &Oversized) {
6018 QualType FixedTy
6019 = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
6020 SizeIsNegative, Oversized);
6021 if (FixedTy.isNull())
6022 return nullptr;
6023 TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
6024 FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
6025 FixedTInfo->getTypeLoc());
6026 return FixedTInfo;
6027}
6028
6029/// Attempt to fold a variable-sized type to a constant-sized type, returning
6030/// true if we were successful.
6031static bool tryToFixVariablyModifiedVarType(Sema &S, TypeSourceInfo *&TInfo,
6032 QualType &T, SourceLocation Loc,
6033 unsigned FailedFoldDiagID) {
6034 bool SizeIsNegative;
6035 llvm::APSInt Oversized;
6036 TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo(
6037 TInfo, S.Context, SizeIsNegative, Oversized);
6038 if (FixedTInfo) {
6039 S.Diag(Loc, diag::ext_vla_folded_to_constant);
6040 TInfo = FixedTInfo;
6041 T = FixedTInfo->getType();
6042 return true;
6043 }
6044
6045 if (SizeIsNegative)
6046 S.Diag(Loc, diag::err_typecheck_negative_array_size);
6047 else if (Oversized.getBoolValue())
6048 S.Diag(Loc, diag::err_array_too_large) << Oversized.toString(10);
6049 else if (FailedFoldDiagID)
6050 S.Diag(Loc, FailedFoldDiagID);
6051 return false;
6052}
6053
6054/// Register the given locally-scoped extern "C" declaration so
6055/// that it can be found later for redeclarations. We include any extern "C"
6056/// declaration that is not visible in the translation unit here, not just
6057/// function-scope declarations.
6058void
6059Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
6060 if (!getLangOpts().CPlusPlus &&
6061 ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
6062 // Don't need to track declarations in the TU in C.
6063 return;
6064
6065 // Note that we have a locally-scoped external with this name.
6066 Context.getExternCContextDecl()->makeDeclVisibleInContext(ND);
6067}
6068
6069NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
6070 // FIXME: We can have multiple results via __attribute__((overloadable)).
6071 auto Result = Context.getExternCContextDecl()->lookup(Name);
6072 return Result.empty() ? nullptr : *Result.begin();
6073}
6074
6075/// Diagnose function specifiers on a declaration of an identifier that
6076/// does not identify a function.
6077void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
6078 // FIXME: We should probably indicate the identifier in question to avoid
6079 // confusion for constructs like "virtual int a(), b;"
6080 if (DS.isVirtualSpecified())
6081 Diag(DS.getVirtualSpecLoc(),
6082 diag::err_virtual_non_function);
6083
6084 if (DS.hasExplicitSpecifier())
6085 Diag(DS.getExplicitSpecLoc(),
6086 diag::err_explicit_non_function);
6087
6088 if (DS.isNoreturnSpecified())
6089 Diag(DS.getNoreturnSpecLoc(),
6090 diag::err_noreturn_non_function);
6091}
6092
6093NamedDecl*
6094Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
6095 TypeSourceInfo *TInfo, LookupResult &Previous) {
6096 // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
6097 if (D.getCXXScopeSpec().isSet()) {
6098 Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
6099 << D.getCXXScopeSpec().getRange();
6100 D.setInvalidType();
6101 // Pretend we didn't see the scope specifier.
6102 DC = CurContext;
6103 Previous.clear();
6104 }
6105
6106 DiagnoseFunctionSpecifiers(D.getDeclSpec());
6107
6108 if (D.getDeclSpec().isInlineSpecified())
6109 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
6110 << getLangOpts().CPlusPlus17;
6111 if (D.getDeclSpec().hasConstexprSpecifier())
6112 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6113 << 1 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier());
6114
6115 if (D.getName().Kind != UnqualifiedIdKind::IK_Identifier) {
6116 if (D.getName().Kind == UnqualifiedIdKind::IK_DeductionGuideName)
6117 Diag(D.getName().StartLocation,
6118 diag::err_deduction_guide_invalid_specifier)
6119 << "typedef";
6120 else
6121 Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
6122 << D.getName().getSourceRange();
6123 return nullptr;
6124 }
6125
6126 TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
6127 if (!NewTD) return nullptr;
6128
6129 // Handle attributes prior to checking for duplicates in MergeVarDecl
6130 ProcessDeclAttributes(S, NewTD, D);
6131
6132 CheckTypedefForVariablyModifiedType(S, NewTD);
6133
6134 bool Redeclaration = D.isRedeclaration();
6135 NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
6136 D.setRedeclaration(Redeclaration);
6137 return ND;
6138}
6139
6140void
6141Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
6142 // C99 6.7.7p2: If a typedef name specifies a variably modified type
6143 // then it shall have block scope.
6144 // Note that variably modified types must be fixed before merging the decl so
6145 // that redeclarations will match.
6146 TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
6147 QualType T = TInfo->getType();
6148 if (T->isVariablyModifiedType()) {
6149 setFunctionHasBranchProtectedScope();
6150
6151 if (S->getFnParent() == nullptr) {
6152 bool SizeIsNegative;
6153 llvm::APSInt Oversized;
6154 TypeSourceInfo *FixedTInfo =
6155 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
6156 SizeIsNegative,
6157 Oversized);
6158 if (FixedTInfo) {
6159 Diag(NewTD->getLocation(), diag::ext_vla_folded_to_constant);
6160 NewTD->setTypeSourceInfo(FixedTInfo);
6161 } else {
6162 if (SizeIsNegative)
6163 Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
6164 else if (T->isVariableArrayType())
6165 Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
6166 else if (Oversized.getBoolValue())
6167 Diag(NewTD->getLocation(), diag::err_array_too_large)
6168 << Oversized.toString(10);
6169 else
6170 Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
6171 NewTD->setInvalidDecl();
6172 }
6173 }
6174 }
6175}
6176
6177/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
6178/// declares a typedef-name, either using the 'typedef' type specifier or via
6179/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
6180NamedDecl*
6181Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
6182 LookupResult &Previous, bool &Redeclaration) {
6183
6184 // Find the shadowed declaration before filtering for scope.
6185 NamedDecl *ShadowedDecl = getShadowedDeclaration(NewTD, Previous);
6186
6187 // Merge the decl with the existing one if appropriate. If the decl is
6188 // in an outer scope, it isn't the same thing.
6189 FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
6190 /*AllowInlineNamespace*/false);
6191 filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous);
6192 if (!Previous.empty()) {
6193 Redeclaration = true;
6194 MergeTypedefNameDecl(S, NewTD, Previous);
6195 } else {
6196 inferGslPointerAttribute(NewTD);
6197 }
6198
6199 if (ShadowedDecl && !Redeclaration)
6200 CheckShadow(NewTD, ShadowedDecl, Previous);
6201
6202 // If this is the C FILE type, notify the AST context.
6203 if (IdentifierInfo *II = NewTD->getIdentifier())
6204 if (!NewTD->isInvalidDecl() &&
6205 NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6206 if (II->isStr("FILE"))
6207 Context.setFILEDecl(NewTD);
6208 else if (II->isStr("jmp_buf"))
6209 Context.setjmp_bufDecl(NewTD);
6210 else if (II->isStr("sigjmp_buf"))
6211 Context.setsigjmp_bufDecl(NewTD);
6212 else if (II->isStr("ucontext_t"))
6213 Context.setucontext_tDecl(NewTD);
6214 }
6215
6216 return NewTD;
6217}
6218
6219/// Determines whether the given declaration is an out-of-scope
6220/// previous declaration.
6221///
6222/// This routine should be invoked when name lookup has found a
6223/// previous declaration (PrevDecl) that is not in the scope where a
6224/// new declaration by the same name is being introduced. If the new
6225/// declaration occurs in a local scope, previous declarations with
6226/// linkage may still be considered previous declarations (C99
6227/// 6.2.2p4-5, C++ [basic.link]p6).
6228///
6229/// \param PrevDecl the previous declaration found by name
6230/// lookup
6231///
6232/// \param DC the context in which the new declaration is being
6233/// declared.
6234///
6235/// \returns true if PrevDecl is an out-of-scope previous declaration
6236/// for a new delcaration with the same name.
6237static bool
6238isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
6239 ASTContext &Context) {
6240 if (!PrevDecl)
6241 return false;
6242
6243 if (!PrevDecl->hasLinkage())
6244 return false;
6245
6246 if (Context.getLangOpts().CPlusPlus) {
6247 // C++ [basic.link]p6:
6248 // If there is a visible declaration of an entity with linkage
6249 // having the same name and type, ignoring entities declared
6250 // outside the innermost enclosing namespace scope, the block
6251 // scope declaration declares that same entity and receives the
6252 // linkage of the previous declaration.
6253 DeclContext *OuterContext = DC->getRedeclContext();
6254 if (!OuterContext->isFunctionOrMethod())
6255 // This rule only applies to block-scope declarations.
6256 return false;
6257
6258 DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
6259 if (PrevOuterContext->isRecord())
6260 // We found a member function: ignore it.
6261 return false;
6262
6263 // Find the innermost enclosing namespace for the new and
6264 // previous declarations.
6265 OuterContext = OuterContext->getEnclosingNamespaceContext();
6266 PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
6267
6268 // The previous declaration is in a different namespace, so it
6269 // isn't the same function.
6270 if (!OuterContext->Equals(PrevOuterContext))
6271 return false;
6272 }
6273
6274 return true;
6275}
6276
6277static void SetNestedNameSpecifier(Sema &S, DeclaratorDecl *DD, Declarator &D) {
6278 CXXScopeSpec &SS = D.getCXXScopeSpec();
6279 if (!SS.isSet()) return;
6280 DD->setQualifierInfo(SS.getWithLocInContext(S.Context));
6281}
6282
6283bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
6284 QualType type = decl->getType();
6285 Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
6286 if (lifetime == Qualifiers::OCL_Autoreleasing) {
6287 // Various kinds of declaration aren't allowed to be __autoreleasing.
6288 unsigned kind = -1U;
6289 if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
6290 if (var->hasAttr<BlocksAttr>())
6291 kind = 0; // __block
6292 else if (!var->hasLocalStorage())
6293 kind = 1; // global
6294 } else if (isa<ObjCIvarDecl>(decl)) {
6295 kind = 3; // ivar
6296 } else if (isa<FieldDecl>(decl)) {
6297 kind = 2; // field
6298 }
6299
6300 if (kind != -1U) {
6301 Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
6302 << kind;
6303 }
6304 } else if (lifetime == Qualifiers::OCL_None) {
6305 // Try to infer lifetime.
6306 if (!type->isObjCLifetimeType())
6307 return false;
6308
6309 lifetime = type->getObjCARCImplicitLifetime();
6310 type = Context.getLifetimeQualifiedType(type, lifetime);
6311 decl->setType(type);
6312 }
6313
6314 if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
6315 // Thread-local variables cannot have lifetime.
6316 if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
6317 var->getTLSKind()) {
6318 Diag(var->getLocation(), diag::err_arc_thread_ownership)
6319 << var->getType();
6320 return true;
6321 }
6322 }
6323
6324 return false;
6325}
6326
6327void Sema::deduceOpenCLAddressSpace(ValueDecl *Decl) {
6328 if (Decl->getType().hasAddressSpace())
6329 return;
6330 if (Decl->getType()->isDependentType())
6331 return;
6332 if (VarDecl *Var = dyn_cast<VarDecl>(Decl)) {
6333 QualType Type = Var->getType();
6334 if (Type->isSamplerT() || Type->isVoidType())
6335 return;
6336 LangAS ImplAS = LangAS::opencl_private;
6337 if ((getLangOpts().OpenCLCPlusPlus || getLangOpts().OpenCLVersion >= 200) &&
6338 Var->hasGlobalStorage())
6339 ImplAS = LangAS::opencl_global;
6340 // If the original type from a decayed type is an array type and that array
6341 // type has no address space yet, deduce it now.
6342 if (auto DT = dyn_cast<DecayedType>(Type)) {
6343 auto OrigTy = DT->getOriginalType();
6344 if (!OrigTy.hasAddressSpace() && OrigTy->isArrayType()) {
6345 // Add the address space to the original array type and then propagate
6346 // that to the element type through `getAsArrayType`.
6347 OrigTy = Context.getAddrSpaceQualType(OrigTy, ImplAS);
6348 OrigTy = QualType(Context.getAsArrayType(OrigTy), 0);
6349 // Re-generate the decayed type.
6350 Type = Context.getDecayedType(OrigTy);
6351 }
6352 }
6353 Type = Context.getAddrSpaceQualType(Type, ImplAS);
6354 // Apply any qualifiers (including address space) from the array type to
6355 // the element type. This implements C99 6.7.3p8: "If the specification of
6356 // an array type includes any type qualifiers, the element type is so
6357 // qualified, not the array type."
6358 if (Type->isArrayType())
6359 Type = QualType(Context.getAsArrayType(Type), 0);
6360 Decl->setType(Type);
6361 }
6362}
6363
6364static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
6365 // Ensure that an auto decl is deduced otherwise the checks below might cache
6366 // the wrong linkage.
6367 assert(S.ParsingInitForAutoVars.count(&ND) == 0)((S.ParsingInitForAutoVars.count(&ND) == 0) ? static_cast
<void> (0) : __assert_fail ("S.ParsingInitForAutoVars.count(&ND) == 0"
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 6367, __PRETTY_FUNCTION__))
;
6368
6369 // 'weak' only applies to declarations with external linkage.
6370 if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
6371 if (!ND.isExternallyVisible()) {
6372 S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
6373 ND.dropAttr<WeakAttr>();
6374 }
6375 }
6376 if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
6377 if (ND.isExternallyVisible()) {
6378 S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
6379 ND.dropAttr<WeakRefAttr>();
6380 ND.dropAttr<AliasAttr>();
6381 }
6382 }
6383
6384 if (auto *VD = dyn_cast<VarDecl>(&ND)) {
6385 if (VD->hasInit()) {
6386 if (const auto *Attr = VD->getAttr<AliasAttr>()) {
6387 assert(VD->isThisDeclarationADefinition() &&((VD->isThisDeclarationADefinition() && !VD->isExternallyVisible
() && "Broken AliasAttr handled late!") ? static_cast
<void> (0) : __assert_fail ("VD->isThisDeclarationADefinition() && !VD->isExternallyVisible() && \"Broken AliasAttr handled late!\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 6388, __PRETTY_FUNCTION__))
6388 !VD->isExternallyVisible() && "Broken AliasAttr handled late!")((VD->isThisDeclarationADefinition() && !VD->isExternallyVisible
() && "Broken AliasAttr handled late!") ? static_cast
<void> (0) : __assert_fail ("VD->isThisDeclarationADefinition() && !VD->isExternallyVisible() && \"Broken AliasAttr handled late!\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 6388, __PRETTY_FUNCTION__))
;
6389 S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0;
6390 VD->dropAttr<AliasAttr>();
6391 }
6392 }
6393 }
6394
6395 // 'selectany' only applies to externally visible variable declarations.
6396 // It does not apply to functions.
6397 if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
6398 if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
6399 S.Diag(Attr->getLocation(),
6400 diag::err_attribute_selectany_non_extern_data);
6401 ND.dropAttr<SelectAnyAttr>();
6402 }
6403 }
6404
6405 if (const InheritableAttr *Attr = getDLLAttr(&ND)) {
6406 auto *VD = dyn_cast<VarDecl>(&ND);
6407 bool IsAnonymousNS = false;
6408 bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft();
6409 if (VD) {
6410 const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(VD->getDeclContext());
6411 while (NS && !IsAnonymousNS) {
6412 IsAnonymousNS = NS->isAnonymousNamespace();
6413 NS = dyn_cast<NamespaceDecl>(NS->getParent());
6414 }
6415 }
6416 // dll attributes require external linkage. Static locals may have external
6417 // linkage but still cannot be explicitly imported or exported.
6418 // In Microsoft mode, a variable defined in anonymous namespace must have
6419 // external linkage in order to be exported.
6420 bool AnonNSInMicrosoftMode = IsAnonymousNS && IsMicrosoft;
6421 if ((ND.isExternallyVisible() && AnonNSInMicrosoftMode) ||
6422 (!AnonNSInMicrosoftMode &&
6423 (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())))) {
6424 S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
6425 << &ND << Attr;
6426 ND.setInvalidDecl();
6427 }
6428 }
6429
6430 // Virtual functions cannot be marked as 'notail'.
6431 if (auto *Attr = ND.getAttr<NotTailCalledAttr>())
6432 if (auto *MD = dyn_cast<CXXMethodDecl>(&ND))
6433 if (MD->isVirtual()) {
6434 S.Diag(ND.getLocation(),
6435 diag::err_invalid_attribute_on_virtual_function)
6436 << Attr;
6437 ND.dropAttr<NotTailCalledAttr>();
6438 }
6439
6440 // Check the attributes on the function type, if any.
6441 if (const auto *FD = dyn_cast<FunctionDecl>(&ND)) {
6442 // Don't declare this variable in the second operand of the for-statement;
6443 // GCC miscompiles that by ending its lifetime before evaluating the
6444 // third operand. See gcc.gnu.org/PR86769.
6445 AttributedTypeLoc ATL;
6446 for (TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc();
6447 (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
6448 TL = ATL.getModifiedLoc()) {
6449 // The [[lifetimebound]] attribute can be applied to the implicit object
6450 // parameter of a non-static member function (other than a ctor or dtor)
6451 // by applying it to the function type.
6452 if (const auto *A = ATL.getAttrAs<LifetimeBoundAttr>()) {
6453 const auto *MD = dyn_cast<CXXMethodDecl>(FD);
6454 if (!MD || MD->isStatic()) {
6455 S.Diag(A->getLocation(), diag::err_lifetimebound_no_object_param)
6456 << !MD << A->getRange();
6457 } else if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) {
6458 S.Diag(A->getLocation(), diag::err_lifetimebound_ctor_dtor)
6459 << isa<CXXDestructorDecl>(MD) << A->getRange();
6460 }
6461 }
6462 }
6463 }
6464}
6465
6466static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
6467 NamedDecl *NewDecl,
6468 bool IsSpecialization,
6469 bool IsDefinition) {
6470 if (OldDecl->isInvalidDecl() || NewDecl->isInvalidDecl())
6471 return;
6472
6473 bool IsTemplate = false;
6474 if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) {
6475 OldDecl = OldTD->getTemplatedDecl();
6476 IsTemplate = true;
6477 if (!IsSpecialization)
6478 IsDefinition = false;
6479 }
6480 if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) {
6481 NewDecl = NewTD->getTemplatedDecl();
6482 IsTemplate = true;
6483 }
6484
6485 if (!OldDecl || !NewDecl)
6486 return;
6487
6488 const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
6489 const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
6490 const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
6491 const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
6492
6493 // dllimport and dllexport are inheritable attributes so we have to exclude
6494 // inherited attribute instances.
6495 bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
6496 (NewExportAttr && !NewExportAttr->isInherited());
6497
6498 // A redeclaration is not allowed to add a dllimport or dllexport attribute,
6499 // the only exception being explicit specializations.
6500 // Implicitly generated declarations are also excluded for now because there
6501 // is no other way to switch these to use dllimport or dllexport.
6502 bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
6503
6504 if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
6505 // Allow with a warning for free functions and global variables.
6506 bool JustWarn = false;
6507 if (!OldDecl->isCXXClassMember()) {
6508 auto *VD = dyn_cast<VarDecl>(OldDecl);
6509 if (VD && !VD->getDescribedVarTemplate())
6510 JustWarn = true;
6511 auto *FD = dyn_cast<FunctionDecl>(OldDecl);
6512 if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate)
6513 JustWarn = true;
6514 }
6515
6516 // We cannot change a declaration that's been used because IR has already
6517 // been emitted. Dllimported functions will still work though (modulo
6518 // address equality) as they can use the thunk.
6519 if (OldDecl->isUsed())
6520 if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr)
6521 JustWarn = false;
6522
6523 unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration
6524 : diag::err_attribute_dll_redeclaration;
6525 S.Diag(NewDecl->getLocation(), DiagID)
6526 << NewDecl
6527 << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
6528 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6529 if (!JustWarn) {
6530 NewDecl->setInvalidDecl();
6531 return;
6532 }
6533 }
6534
6535 // A redeclaration is not allowed to drop a dllimport attribute, the only
6536 // exceptions being inline function definitions (except for function
6537 // templates), local extern declarations, qualified friend declarations or
6538 // special MSVC extension: in the last case, the declaration is treated as if
6539 // it were marked dllexport.
6540 bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false;
6541 bool IsMicrosoftABI = S.Context.getTargetInfo().shouldDLLImportComdatSymbols();
6542 if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) {
6543 // Ignore static data because out-of-line definitions are diagnosed
6544 // separately.
6545 IsStaticDataMember = VD->isStaticDataMember();
6546 IsDefinition = VD->isThisDeclarationADefinition(S.Context) !=
6547 VarDecl::DeclarationOnly;
6548 } else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) {
6549 IsInline = FD->isInlined();
6550 IsQualifiedFriend = FD->getQualifier() &&
6551 FD->getFriendObjectKind() == Decl::FOK_Declared;
6552 }
6553
6554 if (OldImportAttr && !HasNewAttr &&
6555 (!IsInline || (IsMicrosoftABI && IsTemplate)) && !IsStaticDataMember &&
6556 !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) {
6557 if (IsMicrosoftABI && IsDefinition) {
6558 S.Diag(NewDecl->getLocation(),
6559 diag::warn_redeclaration_without_import_attribute)
6560 << NewDecl;
6561 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6562 NewDecl->dropAttr<DLLImportAttr>();
6563 NewDecl->addAttr(
6564 DLLExportAttr::CreateImplicit(S.Context, NewImportAttr->getRange()));
6565 } else {
6566 S.Diag(NewDecl->getLocation(),
6567 diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6568 << NewDecl << OldImportAttr;
6569 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6570 S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
6571 OldDecl->dropAttr<DLLImportAttr>();
6572 NewDecl->dropAttr<DLLImportAttr>();
6573 }
6574 } else if (IsInline && OldImportAttr && !IsMicrosoftABI) {
6575 // In MinGW, seeing a function declared inline drops the dllimport
6576 // attribute.
6577 OldDecl->dropAttr<DLLImportAttr>();
6578 NewDecl->dropAttr<DLLImportAttr>();
6579 S.Diag(NewDecl->getLocation(),
6580 diag::warn_dllimport_dropped_from_inline_function)
6581 << NewDecl << OldImportAttr;
6582 }
6583
6584 // A specialization of a class template member function is processed here
6585 // since it's a redeclaration. If the parent class is dllexport, the
6586 // specialization inherits that attribute. This doesn't happen automatically
6587 // since the parent class isn't instantiated until later.
6588 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDecl)) {
6589 if (MD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization &&
6590 !NewImportAttr && !NewExportAttr) {
6591 if (const DLLExportAttr *ParentExportAttr =
6592 MD->getParent()->getAttr<DLLExportAttr>()) {
6593 DLLExportAttr *NewAttr = ParentExportAttr->clone(S.Context);
6594 NewAttr->setInherited(true);
6595 NewDecl->addAttr(NewAttr);
6596 }
6597 }
6598 }
6599}
6600
6601/// Given that we are within the definition of the given function,
6602/// will that definition behave like C99's 'inline', where the
6603/// definition is discarded except for optimization purposes?
6604static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
6605 // Try to avoid calling GetGVALinkageForFunction.
6606
6607 // All cases of this require the 'inline' keyword.
6608 if (!FD->isInlined()) return false;
6609
6610 // This is only possible in C++ with the gnu_inline attribute.
6611 if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
6612 return false;
6613
6614 // Okay, go ahead and call the relatively-more-expensive function.
6615 return S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally;
6616}
6617
6618/// Determine whether a variable is extern "C" prior to attaching
6619/// an initializer. We can't just call isExternC() here, because that
6620/// will also compute and cache whether the declaration is externally
6621/// visible, which might change when we attach the initializer.
6622///
6623/// This can only be used if the declaration is known to not be a
6624/// redeclaration of an internal linkage declaration.
6625///
6626/// For instance:
6627///
6628/// auto x = []{};
6629///
6630/// Attaching the initializer here makes this declaration not externally
6631/// visible, because its type has internal linkage.
6632///
6633/// FIXME: This is a hack.
6634template<typename T>
6635static bool isIncompleteDeclExternC(Sema &S, const T *D) {
6636 if (S.getLangOpts().CPlusPlus) {
6637 // In C++, the overloadable attribute negates the effects of extern "C".
6638 if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
6639 return false;
6640
6641 // So do CUDA's host/device attributes.
6642 if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() ||
6643 D->template hasAttr<CUDAHostAttr>()))
6644 return false;
6645 }
6646 return D->isExternC();
6647}
6648
6649static bool shouldConsiderLinkage(const VarDecl *VD) {
6650 const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
6651 if (DC->isFunctionOrMethod() || isa<OMPDeclareReductionDecl>(DC) ||
6652 isa<OMPDeclareMapperDecl>(DC))
6653 return VD->hasExternalStorage();
6654 if (DC->isFileContext())
6655 return true;
6656 if (DC->isRecord())
6657 return false;
6658 if (isa<RequiresExprBodyDecl>(DC))
6659 return false;
6660 llvm_unreachable("Unexpected context")::llvm::llvm_unreachable_internal("Unexpected context", "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 6660)
;
6661}
6662
6663static bool shouldConsiderLinkage(const FunctionDecl *FD) {
6664 const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
6665 if (DC->isFileContext() || DC->isFunctionOrMethod() ||
6666 isa<OMPDeclareReductionDecl>(DC) || isa<OMPDeclareMapperDecl>(DC))
6667 return true;
6668 if (DC->isRecord())
6669 return false;
6670 llvm_unreachable("Unexpected context")::llvm::llvm_unreachable_internal("Unexpected context", "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 6670)
;
6671}
6672
6673static bool hasParsedAttr(Scope *S, const Declarator &PD,
6674 ParsedAttr::Kind Kind) {
6675 // Check decl attributes on the DeclSpec.
6676 if (PD.getDeclSpec().getAttributes().hasAttribute(Kind))
6677 return true;
6678
6679 // Walk the declarator structure, checking decl attributes that were in a type
6680 // position to the decl itself.
6681 for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
6682 if (PD.getTypeObject(I).getAttrs().hasAttribute(Kind))
6683 return true;
6684 }
6685
6686 // Finally, check attributes on the decl itself.
6687 return PD.getAttributes().hasAttribute(Kind);
6688}
6689
6690/// Adjust the \c DeclContext for a function or variable that might be a
6691/// function-local external declaration.
6692bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
6693 if (!DC->isFunctionOrMethod())
6694 return false;
6695
6696 // If this is a local extern function or variable declared within a function
6697 // template, don't add it into the enclosing namespace scope until it is
6698 // instantiated; it might have a dependent type right now.
6699 if (DC->isDependentContext())
6700 return true;
6701
6702 // C++11 [basic.link]p7:
6703 // When a block scope declaration of an entity with linkage is not found to
6704 // refer to some other declaration, then that entity is a member of the
6705 // innermost enclosing namespace.
6706 //
6707 // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
6708 // semantically-enclosing namespace, not a lexically-enclosing one.
6709 while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
6710 DC = DC->getParent();
6711 return true;
6712}
6713
6714/// Returns true if given declaration has external C language linkage.
6715static bool isDeclExternC(const Decl *D) {
6716 if (const auto *FD = dyn_cast<FunctionDecl>(D))
6717 return FD->isExternC();
6718 if (const auto *VD = dyn_cast<VarDecl>(D))
6719 return VD->isExternC();
6720
6721 llvm_unreachable("Unknown type of decl!")::llvm::llvm_unreachable_internal("Unknown type of decl!", "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 6721)
;
6722}
6723/// Returns true if there hasn't been any invalid type diagnosed.
6724static bool diagnoseOpenCLTypes(Scope *S, Sema &Se, Declarator &D,
6725 DeclContext *DC, QualType R) {
6726 // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument.
6727 // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function
6728 // argument.
6729 if (R->isImageType() || R->isPipeType()) {
6730 Se.Diag(D.getIdentifierLoc(),
6731 diag::err_opencl_type_can_only_be_used_as_function_parameter)
6732 << R;
6733 D.setInvalidType();
6734 return false;
6735 }
6736
6737 // OpenCL v1.2 s6.9.r:
6738 // The event type cannot be used to declare a program scope variable.
6739 // OpenCL v2.0 s6.9.q:
6740 // The clk_event_t and reserve_id_t types cannot be declared in program
6741 // scope.
6742 if (NULL__null == S->getParent()) {
6743 if (R->isReserveIDT() || R->isClkEventT() || R->isEventT()) {
6744 Se.Diag(D.getIdentifierLoc(),
6745 diag::err_invalid_type_for_program_scope_var)
6746 << R;
6747 D.setInvalidType();
6748 return false;
6749 }
6750 }
6751
6752 // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
6753 if (!Se.getOpenCLOptions().isEnabled("__cl_clang_function_pointers")) {
6754 QualType NR = R;
6755 while (NR->isPointerType() || NR->isMemberFunctionPointerType()) {
6756 if (NR->isFunctionPointerType() || NR->isMemberFunctionPointerType()) {
6757 Se.Diag(D.getIdentifierLoc(), diag::err_opencl_function_pointer);
6758 D.setInvalidType();
6759 return false;
6760 }
6761 NR = NR->getPointeeType();
6762 }
6763 }
6764
6765 if (!Se.getOpenCLOptions().isEnabled("cl_khr_fp16")) {
6766 // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
6767 // half array type (unless the cl_khr_fp16 extension is enabled).
6768 if (Se.Context.getBaseElementType(R)->isHalfType()) {
6769 Se.Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
6770 D.setInvalidType();
6771 return false;
6772 }
6773 }
6774
6775 // OpenCL v1.2 s6.9.r:
6776 // The event type cannot be used with the __local, __constant and __global
6777 // address space qualifiers.
6778 if (R->isEventT()) {
6779 if (R.getAddressSpace() != LangAS::opencl_private) {
6780 Se.Diag(D.getBeginLoc(), diag::err_event_t_addr_space_qual);
6781 D.setInvalidType();
6782 return false;
6783 }
6784 }
6785
6786 // C++ for OpenCL does not allow the thread_local storage qualifier.
6787 // OpenCL C does not support thread_local either, and
6788 // also reject all other thread storage class specifiers.
6789 DeclSpec::TSCS TSC = D.getDeclSpec().getThreadStorageClassSpec();
6790 if (TSC != TSCS_unspecified) {
6791 bool IsCXX = Se.getLangOpts().OpenCLCPlusPlus;
6792 Se.Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6793 diag::err_opencl_unknown_type_specifier)
6794 << IsCXX << Se.getLangOpts().getOpenCLVersionTuple().getAsString()
6795 << DeclSpec::getSpecifierName(TSC) << 1;
6796 D.setInvalidType();
6797 return false;
6798 }
6799
6800 if (R->isSamplerT()) {
6801 // OpenCL v1.2 s6.9.b p4:
6802 // The sampler type cannot be used with the __local and __global address
6803 // space qualifiers.
6804 if (R.getAddressSpace() == LangAS::opencl_local ||
6805 R.getAddressSpace() == LangAS::opencl_global) {
6806 Se.Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
6807 D.setInvalidType();
6808 }
6809
6810 // OpenCL v1.2 s6.12.14.1:
6811 // A global sampler must be declared with either the constant address
6812 // space qualifier or with the const qualifier.
6813 if (DC->isTranslationUnit() &&
6814 !(R.getAddressSpace() == LangAS::opencl_constant ||
6815 R.isConstQualified())) {
6816 Se.Diag(D.getIdentifierLoc(), diag::err_opencl_nonconst_global_sampler);
6817 D.setInvalidType();
6818 }
6819 if (D.isInvalidType())
6820 return false;
6821 }
6822 return true;
6823}
6824
6825NamedDecl *Sema::ActOnVariableDeclarator(
6826 Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo,
6827 LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists,
6828 bool &AddToScope, ArrayRef<BindingDecl *> Bindings) {
6829 QualType R = TInfo->getType();
6830 DeclarationName Name = GetNameForDeclarator(D).getName();
6831
6832 IdentifierInfo *II = Name.getAsIdentifierInfo();
6833
6834 if (D.isDecompositionDeclarator()) {
6835 // Take the name of the first declarator as our name for diagnostic
6836 // purposes.
6837 auto &Decomp = D.getDecompositionDeclarator();
6838 if (!Decomp.bindings().empty()) {
6839 II = Decomp.bindings()[0].Name;
6840 Name = II;
6841 }
6842 } else if (!II) {
6843 Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) << Name;
6844 return nullptr;
6845 }
6846
6847
6848 DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
6849 StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
6850
6851 // dllimport globals without explicit storage class are treated as extern. We
6852 // have to change the storage class this early to get the right DeclContext.
6853 if (SC == SC_None && !DC->isRecord() &&
6854 hasParsedAttr(S, D, ParsedAttr::AT_DLLImport) &&
6855 !hasParsedAttr(S, D, ParsedAttr::AT_DLLExport))
6856 SC = SC_Extern;
6857
6858 DeclContext *OriginalDC = DC;
6859 bool IsLocalExternDecl = SC == SC_Extern &&
6860 adjustContextForLocalExternDecl(DC);
6861
6862 if (SCSpec == DeclSpec::SCS_mutable) {
6863 // mutable can only appear on non-static class members, so it's always
6864 // an error here
6865 Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
6866 D.setInvalidType();
6867 SC = SC_None;
6868 }
6869
6870 if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
6871 !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
6872 D.getDeclSpec().getStorageClassSpecLoc())) {
6873 // In C++11, the 'register' storage class specifier is deprecated.
6874 // Suppress the warning in system macros, it's used in macros in some
6875 // popular C system headers, such as in glibc's htonl() macro.
6876 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6877 getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
6878 : diag::warn_deprecated_register)
6879 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6880 }
6881
6882 DiagnoseFunctionSpecifiers(D.getDeclSpec());
6883
6884 if (!DC->isRecord() && S->getFnParent() == nullptr) {
6885 // C99 6.9p2: The storage-class specifiers auto and register shall not
6886 // appear in the declaration specifiers in an external declaration.
6887 // Global Register+Asm is a GNU extension we support.
6888 if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
6889 Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
6890 D.setInvalidType();
6891 }
6892 }
6893
6894 // If this variable has a variable-modified type and an initializer, try to
6895 // fold to a constant-sized type. This is otherwise invalid.
6896 if (D.hasInitializer() && R->isVariablyModifiedType())
6897 tryToFixVariablyModifiedVarType(*this, TInfo, R, D.getIdentifierLoc(),
6898 /*DiagID=*/0);
6899
6900 bool IsMemberSpecialization = false;
6901 bool IsVariableTemplateSpecialization = false;
6902 bool IsPartialSpecialization = false;
6903 bool IsVariableTemplate = false;
6904 VarDecl *NewVD = nullptr;
6905 VarTemplateDecl *NewTemplate = nullptr;
6906 TemplateParameterList *TemplateParams = nullptr;
6907 if (!getLangOpts().CPlusPlus) {
6908 NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), D.getIdentifierLoc(),
6909 II, R, TInfo, SC);
6910
6911 if (R->getContainedDeducedType())
6912 ParsingInitForAutoVars.insert(NewVD);
6913
6914 if (D.isInvalidType())
6915 NewVD->setInvalidDecl();
6916
6917 if (NewVD->getType().hasNonTrivialToPrimitiveDestructCUnion() &&
6918 NewVD->hasLocalStorage())
6919 checkNonTrivialCUnion(NewVD->getType(), NewVD->getLocation(),
6920 NTCUC_AutoVar, NTCUK_Destruct);
6921 } else {
6922 bool Invalid = false;
6923
6924 if (DC->isRecord() && !CurContext->isRecord()) {
6925 // This is an out-of-line definition of a static data member.
6926 switch (SC) {
6927 case SC_None:
6928 break;
6929 case SC_Static:
6930 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6931 diag::err_static_out_of_line)
6932 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6933 break;
6934 case SC_Auto:
6935 case SC_Register:
6936 case SC_Extern:
6937 // [dcl.stc] p2: The auto or register specifiers shall be applied only
6938 // to names of variables declared in a block or to function parameters.
6939 // [dcl.stc] p6: The extern specifier cannot be used in the declaration
6940 // of class members
6941
6942 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6943 diag::err_storage_class_for_static_member)
6944 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6945 break;
6946 case SC_PrivateExtern:
6947 llvm_unreachable("C storage class in c++!")::llvm::llvm_unreachable_internal("C storage class in c++!", "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 6947)
;
6948 }
6949 }
6950
6951 if (SC == SC_Static && CurContext->isRecord()) {
6952 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
6953 // Walk up the enclosing DeclContexts to check for any that are
6954 // incompatible with static data members.
6955 const DeclContext *FunctionOrMethod = nullptr;
6956 const CXXRecordDecl *AnonStruct = nullptr;
6957 for (DeclContext *Ctxt = DC; Ctxt; Ctxt = Ctxt->getParent()) {
6958 if (Ctxt->isFunctionOrMethod()) {
6959 FunctionOrMethod = Ctxt;
6960 break;
6961 }
6962 const CXXRecordDecl *ParentDecl = dyn_cast<CXXRecordDecl>(Ctxt);
6963 if (ParentDecl && !ParentDecl->getDeclName()) {
6964 AnonStruct = ParentDecl;
6965 break;
6966 }
6967 }
6968 if (FunctionOrMethod) {
6969 // C++ [class.static.data]p5: A local class shall not have static data
6970 // members.
6971 Diag(D.getIdentifierLoc(),
6972 diag::err_static_data_member_not_allowed_in_local_class)
6973 << Name << RD->getDeclName() << RD->getTagKind();
6974 } else if (AnonStruct) {
6975 // C++ [class.static.data]p4: Unnamed classes and classes contained
6976 // directly or indirectly within unnamed classes shall not contain
6977 // static data members.
6978 Diag(D.getIdentifierLoc(),
6979 diag::err_static_data_member_not_allowed_in_anon_struct)
6980 << Name << AnonStruct->getTagKind();
6981 Invalid = true;
6982 } else if (RD->isUnion()) {
6983 // C++98 [class.union]p1: If a union contains a static data member,
6984 // the program is ill-formed. C++11 drops this restriction.
6985 Diag(D.getIdentifierLoc(),
6986 getLangOpts().CPlusPlus11
6987 ? diag::warn_cxx98_compat_static_data_member_in_union
6988 : diag::ext_static_data_member_in_union) << Name;
6989 }
6990 }
6991 }
6992
6993 // Match up the template parameter lists with the scope specifier, then
6994 // determine whether we have a template or a template specialization.
6995 bool InvalidScope = false;
6996 TemplateParams = MatchTemplateParametersToScopeSpecifier(
6997 D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
6998 D.getCXXScopeSpec(),
6999 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
7000 ? D.getName().TemplateId
7001 : nullptr,
7002 TemplateParamLists,
7003 /*never a friend*/ false, IsMemberSpecialization, InvalidScope);
7004 Invalid |= InvalidScope;
7005
7006 if (TemplateParams) {
7007 if (!TemplateParams->size() &&
7008 D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
7009 // There is an extraneous 'template<>' for this variable. Complain
7010 // about it, but allow the declaration of the variable.
7011 Diag(TemplateParams->getTemplateLoc(),
7012 diag::err_template_variable_noparams)
7013 << II
7014 << SourceRange(TemplateParams->getTemplateLoc(),
7015 TemplateParams->getRAngleLoc());
7016 TemplateParams = nullptr;
7017 } else {
7018 // Check that we can declare a template here.
7019 if (CheckTemplateDeclScope(S, TemplateParams))
7020 return nullptr;
7021
7022 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
7023 // This is an explicit specialization or a partial specialization.
7024 IsVariableTemplateSpecialization = true;
7025 IsPartialSpecialization = TemplateParams->size() > 0;
7026 } else { // if (TemplateParams->size() > 0)
7027 // This is a template declaration.
7028 IsVariableTemplate = true;
7029
7030 // Only C++1y supports variable templates (N3651).
7031 Diag(D.getIdentifierLoc(),
7032 getLangOpts().CPlusPlus14
7033 ? diag::warn_cxx11_compat_variable_template
7034 : diag::ext_variable_template);
7035 }
7036 }
7037 } else {
7038 // Check that we can declare a member specialization here.
7039 if (!TemplateParamLists.empty() && IsMemberSpecialization &&
7040 CheckTemplateDeclScope(S, TemplateParamLists.back()))
7041 return nullptr;
7042 assert((Invalid ||(((Invalid || D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId
) && "should have a 'template<>' for this decl"
) ? static_cast<void> (0) : __assert_fail ("(Invalid || D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) && \"should have a 'template<>' for this decl\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 7044, __PRETTY_FUNCTION__))
7043 D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) &&(((Invalid || D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId
) && "should have a 'template<>' for this decl"
) ? static_cast<void> (0) : __assert_fail ("(Invalid || D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) && \"should have a 'template<>' for this decl\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 7044, __PRETTY_FUNCTION__))
7044 "should have a 'template<>' for this decl")(((Invalid || D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId
) && "should have a 'template<>' for this decl"
) ? static_cast<void> (0) : __assert_fail ("(Invalid || D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) && \"should have a 'template<>' for this decl\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 7044, __PRETTY_FUNCTION__))
;
7045 }
7046
7047 if (IsVariableTemplateSpecialization) {
7048 SourceLocation TemplateKWLoc =
7049 TemplateParamLists.size() > 0
7050 ? TemplateParamLists[0]->getTemplateLoc()
7051 : SourceLocation();
7052 DeclResult Res = ActOnVarTemplateSpecialization(
7053 S, D, TInfo, TemplateKWLoc, TemplateParams, SC,
7054 IsPartialSpecialization);
7055 if (Res.isInvalid())
7056 return nullptr;
7057 NewVD = cast<VarDecl>(Res.get());
7058 AddToScope = false;
7059 } else if (D.isDecompositionDeclarator()) {
7060 NewVD = DecompositionDecl::Create(Context, DC, D.getBeginLoc(),
7061 D.getIdentifierLoc(), R, TInfo, SC,
7062 Bindings);
7063 } else
7064 NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(),
7065 D.getIdentifierLoc(), II, R, TInfo, SC);
7066
7067 // If this is supposed to be a variable template, create it as such.
7068 if (IsVariableTemplate) {
7069 NewTemplate =
7070 VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
7071 TemplateParams, NewVD);
7072 NewVD->setDescribedVarTemplate(NewTemplate);
7073 }
7074
7075 // If this decl has an auto type in need of deduction, make a note of the
7076 // Decl so we can diagnose uses of it in its own initializer.
7077 if (R->getContainedDeducedType())
7078 ParsingInitForAutoVars.insert(NewVD);
7079
7080 if (D.isInvalidType() || Invalid) {
7081 NewVD->setInvalidDecl();
7082 if (NewTemplate)
7083 NewTemplate->setInvalidDecl();
7084 }
7085
7086 SetNestedNameSpecifier(*this, NewVD, D);
7087
7088 // If we have any template parameter lists that don't directly belong to
7089 // the variable (matching the scope specifier), store them.
7090 unsigned VDTemplateParamLists = TemplateParams ? 1 : 0;
7091 if (TemplateParamLists.size() > VDTemplateParamLists)
7092 NewVD->setTemplateParameterListsInfo(
7093 Context, TemplateParamLists.drop_back(VDTemplateParamLists));
7094 }
7095
7096 if (D.getDeclSpec().isInlineSpecified()) {
7097 if (!getLangOpts().CPlusPlus) {
7098 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
7099 << 0;
7100 } else if (CurContext->isFunctionOrMethod()) {
7101 // 'inline' is not allowed on block scope variable declaration.
7102 Diag(D.getDeclSpec().getInlineSpecLoc(),
7103 diag::err_inline_declaration_block_scope) << Name
7104 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
7105 } else {
7106 Diag(D.getDeclSpec().getInlineSpecLoc(),
7107 getLangOpts().CPlusPlus17 ? diag::warn_cxx14_compat_inline_variable
7108 : diag::ext_inline_variable);
7109 NewVD->setInlineSpecified();
7110 }
7111 }
7112
7113 // Set the lexical context. If the declarator has a C++ scope specifier, the
7114 // lexical context will be different from the semantic context.
7115 NewVD->setLexicalDeclContext(CurContext);
7116 if (NewTemplate)
7117 NewTemplate->setLexicalDeclContext(CurContext);
7118
7119 if (IsLocalExternDecl) {
7120 if (D.isDecompositionDeclarator())
7121 for (auto *B : Bindings)
7122 B->setLocalExternDecl();
7123 else
7124 NewVD->setLocalExternDecl();
7125 }
7126
7127 bool EmitTLSUnsupportedError = false;
7128 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
7129 // C++11 [dcl.stc]p4:
7130 // When thread_local is applied to a variable of block scope the
7131 // storage-class-specifier static is implied if it does not appear
7132 // explicitly.
7133 // Core issue: 'static' is not implied if the variable is declared
7134 // 'extern'.
7135 if (NewVD->hasLocalStorage() &&
7136 (SCSpec != DeclSpec::SCS_unspecified ||
7137 TSCS != DeclSpec::TSCS_thread_local ||
7138 !DC->isFunctionOrMethod()))
7139 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7140 diag::err_thread_non_global)
7141 << DeclSpec::getSpecifierName(TSCS);
7142 else if (!Context.getTargetInfo().isTLSSupported()) {
7143 if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice ||
7144 getLangOpts().SYCLIsDevice) {
7145 // Postpone error emission until we've collected attributes required to
7146 // figure out whether it's a host or device variable and whether the
7147 // error should be ignored.
7148 EmitTLSUnsupportedError = true;
7149 // We still need to mark the variable as TLS so it shows up in AST with
7150 // proper storage class for other tools to use even if we're not going
7151 // to emit any code for it.
7152 NewVD->setTSCSpec(TSCS);
7153 } else
7154 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7155 diag::err_thread_unsupported);
7156 } else
7157 NewVD->setTSCSpec(TSCS);
7158 }
7159
7160 switch (D.getDeclSpec().getConstexprSpecifier()) {
7161 case ConstexprSpecKind::Unspecified:
7162 break;
7163
7164 case ConstexprSpecKind::Consteval:
7165 Diag(D.getDeclSpec().getConstexprSpecLoc(),
7166 diag::err_constexpr_wrong_decl_kind)
7167 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier());
7168 LLVM_FALLTHROUGH[[gnu::fallthrough]];
7169
7170 case ConstexprSpecKind::Constexpr:
7171 NewVD->setConstexpr(true);
7172 MaybeAddCUDAConstantAttr(NewVD);
7173 // C++1z [dcl.spec.constexpr]p1:
7174 // A static data member declared with the constexpr specifier is
7175 // implicitly an inline variable.
7176 if (NewVD->isStaticDataMember() &&
7177 (getLangOpts().CPlusPlus17 ||
7178 Context.getTargetInfo().getCXXABI().isMicrosoft()))
7179 NewVD->setImplicitlyInline();
7180 break;
7181
7182 case ConstexprSpecKind::Constinit:
7183 if (!NewVD->hasGlobalStorage())
7184 Diag(D.getDeclSpec().getConstexprSpecLoc(),
7185 diag::err_constinit_local_variable);
7186 else
7187 NewVD->addAttr(ConstInitAttr::Create(
7188 Context, D.getDeclSpec().getConstexprSpecLoc(),
7189 AttributeCommonInfo::AS_Keyword, ConstInitAttr::Keyword_constinit));
7190 break;
7191 }
7192
7193 // C99 6.7.4p3
7194 // An inline definition of a function with external linkage shall
7195 // not contain a definition of a modifiable object with static or
7196 // thread storage duration...
7197 // We only apply this when the function is required to be defined
7198 // elsewhere, i.e. when the function is not 'extern inline'. Note
7199 // that a local variable with thread storage duration still has to
7200 // be marked 'static'. Also note that it's possible to get these
7201 // semantics in C++ using __attribute__((gnu_inline)).
7202 if (SC == SC_Static && S->getFnParent() != nullptr &&
7203 !NewVD->getType().isConstQualified()) {
7204 FunctionDecl *CurFD = getCurFunctionDecl();
7205 if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
7206 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
7207 diag::warn_static_local_in_extern_inline);
7208 MaybeSuggestAddingStaticToDecl(CurFD);
7209 }
7210 }
7211
7212 if (D.getDeclSpec().isModulePrivateSpecified()) {
7213 if (IsVariableTemplateSpecialization)
7214 Diag(NewVD->getLocation(), diag::err_module_private_specialization)
7215 << (IsPartialSpecialization ? 1 : 0)
7216 << FixItHint::CreateRemoval(
7217 D.getDeclSpec().getModulePrivateSpecLoc());
7218 else if (IsMemberSpecialization)
7219 Diag(NewVD->getLocation(), diag::err_module_private_specialization)
7220 << 2
7221 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7222 else if (NewVD->hasLocalStorage())
7223 Diag(NewVD->getLocation(), diag::err_module_private_local)
7224 << 0 << NewVD
7225 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7226 << FixItHint::CreateRemoval(
7227 D.getDeclSpec().getModulePrivateSpecLoc());
7228 else {
7229 NewVD->setModulePrivate();
7230 if (NewTemplate)
7231 NewTemplate->setModulePrivate();
7232 for (auto *B : Bindings)
7233 B->setModulePrivate();
7234 }
7235 }
7236
7237 if (getLangOpts().OpenCL) {
7238
7239 deduceOpenCLAddressSpace(NewVD);
7240
7241 diagnoseOpenCLTypes(S, *this, D, DC, NewVD->getType());
7242 }
7243
7244 // Handle attributes prior to checking for duplicates in MergeVarDecl
7245 ProcessDeclAttributes(S, NewVD, D);
7246
7247 if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice ||
7248 getLangOpts().SYCLIsDevice) {
7249 if (EmitTLSUnsupportedError &&
7250 ((getLangOpts().CUDA && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) ||
7251 (getLangOpts().OpenMPIsDevice &&
7252 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(NewVD))))
7253 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
7254 diag::err_thread_unsupported);
7255
7256 if (EmitTLSUnsupportedError &&
7257 (LangOpts.SYCLIsDevice || (LangOpts.OpenMP && LangOpts.OpenMPIsDevice)))
7258 targetDiag(D.getIdentifierLoc(), diag::err_thread_unsupported);
7259 // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
7260 // storage [duration]."
7261 if (SC == SC_None && S->getFnParent() != nullptr &&
7262 (NewVD->hasAttr<CUDASharedAttr>() ||
7263 NewVD->hasAttr<CUDAConstantAttr>())) {
7264 NewVD->setStorageClass(SC_Static);
7265 }
7266 }
7267
7268 // Ensure that dllimport globals without explicit storage class are treated as
7269 // extern. The storage class is set above using parsed attributes. Now we can
7270 // check the VarDecl itself.
7271 assert(!NewVD->hasAttr<DLLImportAttr>() ||((!NewVD->hasAttr<DLLImportAttr>() || NewVD->getAttr
<DLLImportAttr>()->isInherited() || NewVD->isStaticDataMember
() || NewVD->getStorageClass() != SC_None) ? static_cast<
void> (0) : __assert_fail ("!NewVD->hasAttr<DLLImportAttr>() || NewVD->getAttr<DLLImportAttr>()->isInherited() || NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None"
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 7273, __PRETTY_FUNCTION__))
7272 NewVD->getAttr<DLLImportAttr>()->isInherited() ||((!NewVD->hasAttr<DLLImportAttr>() || NewVD->getAttr
<DLLImportAttr>()->isInherited() || NewVD->isStaticDataMember
() || NewVD->getStorageClass() != SC_None) ? static_cast<
void> (0) : __assert_fail ("!NewVD->hasAttr<DLLImportAttr>() || NewVD->getAttr<DLLImportAttr>()->isInherited() || NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None"
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 7273, __PRETTY_FUNCTION__))
7273 NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None)((!NewVD->hasAttr<DLLImportAttr>() || NewVD->getAttr
<DLLImportAttr>()->isInherited() || NewVD->isStaticDataMember
() || NewVD->getStorageClass() != SC_None) ? static_cast<
void> (0) : __assert_fail ("!NewVD->hasAttr<DLLImportAttr>() || NewVD->getAttr<DLLImportAttr>()->isInherited() || NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None"
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 7273, __PRETTY_FUNCTION__))
;
7274
7275 // In auto-retain/release, infer strong retension for variables of
7276 // retainable type.
7277 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
7278 NewVD->setInvalidDecl();
7279
7280 // Handle GNU asm-label extension (encoded as an attribute).
7281 if (Expr *E = (Expr*)D.getAsmLabel()) {
7282 // The parser guarantees this is a string.
7283 StringLiteral *SE = cast<StringLiteral>(E);
7284 StringRef Label = SE->getString();
7285 if (S->getFnParent() != nullptr) {
7286 switch (SC) {
7287 case SC_None:
7288 case SC_Auto:
7289 Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
7290 break;
7291 case SC_Register:
7292 // Local Named register
7293 if (!Context.getTargetInfo().isValidGCCRegisterName(Label) &&
7294 DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl()))
7295 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
7296 break;
7297 case SC_Static:
7298 case SC_Extern:
7299 case SC_PrivateExtern:
7300 break;
7301 }
7302 } else if (SC == SC_Register) {
7303 // Global Named register
7304 if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) {
7305 const auto &TI = Context.getTargetInfo();
7306 bool HasSizeMismatch;
7307
7308 if (!TI.isValidGCCRegisterName(Label))
7309 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
7310 else if (!TI.validateGlobalRegisterVariable(Label,
7311 Context.getTypeSize(R),
7312 HasSizeMismatch))
7313 Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label;
7314 else if (HasSizeMismatch)
7315 Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label;
7316 }
7317
7318 if (!R->isIntegralType(Context) && !R->isPointerType()) {
7319 Diag(D.getBeginLoc(), diag::err_asm_bad_register_type);
7320 NewVD->setInvalidDecl(true);
7321 }
7322 }
7323
7324 NewVD->addAttr(AsmLabelAttr::Create(Context, Label,
7325 /*IsLiteralLabel=*/true,
7326 SE->getStrTokenLoc(0)));
7327 } else if (!ExtnameUndeclaredIdentifiers.empty()) {
7328 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
7329 ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
7330 if (I != ExtnameUndeclaredIdentifiers.end()) {
7331 if (isDeclExternC(NewVD)) {
7332 NewVD->addAttr(I->second);
7333 ExtnameUndeclaredIdentifiers.erase(I);
7334 } else
7335 Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied)
7336 << /*Variable*/1 << NewVD;
7337 }
7338 }
7339
7340 // Find the shadowed declaration before filtering for scope.
7341 NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty()
7342 ? getShadowedDeclaration(NewVD, Previous)
7343 : nullptr;
7344
7345 // Don't consider existing declarations that are in a different
7346 // scope and are out-of-semantic-context declarations (if the new
7347 // declaration has linkage).
7348 FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
7349 D.getCXXScopeSpec().isNotEmpty() ||
7350 IsMemberSpecialization ||
7351 IsVariableTemplateSpecialization);
7352
7353 // Check whether the previous declaration is in the same block scope. This
7354 // affects whether we merge types with it, per C++11 [dcl.array]p3.
7355 if (getLangOpts().CPlusPlus &&
7356 NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
7357 NewVD->setPreviousDeclInSameBlockScope(
7358 Previous.isSingleResult() && !Previous.isShadowed() &&
7359 isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
7360
7361 if (!getLangOpts().CPlusPlus) {
7362 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
7363 } else {
7364 // If this is an explicit specialization of a static data member, check it.
7365 if (IsMemberSpecialization && !NewVD->isInvalidDecl() &&
7366 CheckMemberSpecialization(NewVD, Previous))
7367 NewVD->setInvalidDecl();
7368
7369 // Merge the decl with the existing one if appropriate.
7370 if (!Previous.empty()) {
7371 if (Previous.isSingleResult() &&
7372 isa<FieldDecl>(Previous.getFoundDecl()) &&
7373 D.getCXXScopeSpec().isSet()) {
7374 // The user tried to define a non-static data member
7375 // out-of-line (C++ [dcl.meaning]p1).
7376 Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
7377 << D.getCXXScopeSpec().getRange();
7378 Previous.clear();
7379 NewVD->setInvalidDecl();
7380 }
7381 } else if (D.getCXXScopeSpec().isSet()) {
7382 // No previous declaration in the qualifying scope.
7383 Diag(D.getIdentifierLoc(), diag::err_no_member)
7384 << Name << computeDeclContext(D.getCXXScopeSpec(), true)
7385 << D.getCXXScopeSpec().getRange();
7386 NewVD->setInvalidDecl();
7387 }
7388
7389 if (!IsVariableTemplateSpecialization)
7390 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
7391
7392 if (NewTemplate) {
7393 VarTemplateDecl *PrevVarTemplate =
7394 NewVD->getPreviousDecl()
7395 ? NewVD->getPreviousDecl()->getDescribedVarTemplate()
7396 : nullptr;
7397
7398 // Check the template parameter list of this declaration, possibly
7399 // merging in the template parameter list from the previous variable
7400 // template declaration.
7401 if (CheckTemplateParameterList(
7402 TemplateParams,
7403 PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
7404 : nullptr,
7405 (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
7406 DC->isDependentContext())
7407 ? TPC_ClassTemplateMember
7408 : TPC_VarTemplate))
7409 NewVD->setInvalidDecl();
7410
7411 // If we are providing an explicit specialization of a static variable
7412 // template, make a note of that.
7413 if (PrevVarTemplate &&
7414 PrevVarTemplate->getInstantiatedFromMemberTemplate())
7415 PrevVarTemplate->setMemberSpecialization();
7416 }
7417 }
7418
7419 // Diagnose shadowed variables iff this isn't a redeclaration.
7420 if (ShadowedDecl && !D.isRedeclaration())
7421 CheckShadow(NewVD, ShadowedDecl, Previous);
7422
7423 ProcessPragmaWeak(S, NewVD);
7424
7425 // If this is the first declaration of an extern C variable, update
7426 // the map of such variables.
7427 if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
7428 isIncompleteDeclExternC(*this, NewVD))
7429 RegisterLocallyScopedExternCDecl(NewVD, S);
7430
7431 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
7432 MangleNumberingContext *MCtx;
7433 Decl *ManglingContextDecl;
7434 std::tie(MCtx, ManglingContextDecl) =
7435 getCurrentMangleNumberContext(NewVD->getDeclContext());
7436 if (MCtx) {
7437 Context.setManglingNumber(
7438 NewVD, MCtx->getManglingNumber(
7439 NewVD, getMSManglingNumber(getLangOpts(), S)));
7440 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
7441 }
7442 }
7443
7444 // Special handling of variable named 'main'.
7445 if (Name.getAsIdentifierInfo() && Name.getAsIdentifierInfo()->isStr("main") &&
7446 NewVD->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
7447 !getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) {
7448
7449 // C++ [basic.start.main]p3
7450 // A program that declares a variable main at global scope is ill-formed.
7451 if (getLangOpts().CPlusPlus)
7452 Diag(D.getBeginLoc(), diag::err_main_global_variable);
7453
7454 // In C, and external-linkage variable named main results in undefined
7455 // behavior.
7456 else if (NewVD->hasExternalFormalLinkage())
7457 Diag(D.getBeginLoc(), diag::warn_main_redefined);
7458 }
7459
7460 if (D.isRedeclaration() && !Previous.empty()) {
7461 NamedDecl *Prev = Previous.getRepresentativeDecl();
7462 checkDLLAttributeRedeclaration(*this, Prev, NewVD, IsMemberSpecialization,
7463 D.isFunctionDefinition());
7464 }
7465
7466 if (NewTemplate) {
7467 if (NewVD->isInvalidDecl())
7468 NewTemplate->setInvalidDecl();
7469 ActOnDocumentableDecl(NewTemplate);
7470 return NewTemplate;
7471 }
7472
7473 if (IsMemberSpecialization && !NewVD->isInvalidDecl())
7474 CompleteMemberSpecialization(NewVD, Previous);
7475
7476 return NewVD;
7477}
7478
7479/// Enum describing the %select options in diag::warn_decl_shadow.
7480enum ShadowedDeclKind {
7481 SDK_Local,
7482 SDK_Global,
7483 SDK_StaticMember,
7484 SDK_Field,
7485 SDK_Typedef,
7486 SDK_Using
7487};
7488
7489/// Determine what kind of declaration we're shadowing.
7490static ShadowedDeclKind computeShadowedDeclKind(const NamedDecl *ShadowedDecl,
7491 const DeclContext *OldDC) {
7492 if (isa<TypeAliasDecl>(ShadowedDecl))
7493 return SDK_Using;
7494 else if (isa<TypedefDecl>(ShadowedDecl))
7495 return SDK_Typedef;
7496 else if (isa<RecordDecl>(OldDC))
7497 return isa<FieldDecl>(ShadowedDecl) ? SDK_Field : SDK_StaticMember;
7498
7499 return OldDC->isFileContext() ? SDK_Global : SDK_Local;
7500}
7501
7502/// Return the location of the capture if the given lambda captures the given
7503/// variable \p VD, or an invalid source location otherwise.
7504static SourceLocation getCaptureLocation(const LambdaScopeInfo *LSI,
7505 const VarDecl *VD) {
7506 for (const Capture &Capture : LSI->Captures) {
7507 if (Capture.isVariableCapture() && Capture.getVariable() == VD)
7508 return Capture.getLocation();
7509 }
7510 return SourceLocation();
7511}
7512
7513static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine &Diags,
7514 const LookupResult &R) {
7515 // Only diagnose if we're shadowing an unambiguous field or variable.
7516 if (R.getResultKind() != LookupResult::Found)
7517 return false;
7518
7519 // Return false if warning is ignored.
7520 return !Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc());
7521}
7522
7523/// Return the declaration shadowed by the given variable \p D, or null
7524/// if it doesn't shadow any declaration or shadowing warnings are disabled.
7525NamedDecl *Sema::getShadowedDeclaration(const VarDecl *D,
7526 const LookupResult &R) {
7527 if (!shouldWarnIfShadowedDecl(Diags, R))
7528 return nullptr;
7529
7530 // Don't diagnose declarations at file scope.
7531 if (D->hasGlobalStorage())
7532 return nullptr;
7533
7534 NamedDecl *ShadowedDecl = R.getFoundDecl();
7535 return isa<VarDecl>(ShadowedDecl) || isa<FieldDecl>(ShadowedDecl)
7536 ? ShadowedDecl
7537 : nullptr;
7538}
7539
7540/// Return the declaration shadowed by the given typedef \p D, or null
7541/// if it doesn't shadow any declaration or shadowing warnings are disabled.
7542NamedDecl *Sema::getShadowedDeclaration(const TypedefNameDecl *D,
7543 const LookupResult &R) {
7544 // Don't warn if typedef declaration is part of a class
7545 if (D->getDeclContext()->isRecord())
7546 return nullptr;
7547
7548 if (!shouldWarnIfShadowedDecl(Diags, R))
7549 return nullptr;
7550
7551 NamedDecl *ShadowedDecl = R.getFoundDecl();
7552 return isa<TypedefNameDecl>(ShadowedDecl) ? ShadowedDecl : nullptr;
7553}
7554
7555/// Diagnose variable or built-in function shadowing. Implements
7556/// -Wshadow.
7557///
7558/// This method is called whenever a VarDecl is added to a "useful"
7559/// scope.
7560///
7561/// \param ShadowedDecl the declaration that is shadowed by the given variable
7562/// \param R the lookup of the name
7563///
7564void Sema::CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl,
7565 const LookupResult &R) {
7566 DeclContext *NewDC = D->getDeclContext();
7567
7568 if (FieldDecl *FD = dyn_cast<FieldDecl>(ShadowedDecl)) {
7569 // Fields are not shadowed by variables in C++ static methods.
7570 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
7571 if (MD->isStatic())
7572 return;
7573
7574 // Fields shadowed by constructor parameters are a special case. Usually
7575 // the constructor initializes the field with the parameter.
7576 if (isa<CXXConstructorDecl>(NewDC))
7577 if (const auto PVD = dyn_cast<ParmVarDecl>(D)) {
7578 // Remember that this was shadowed so we can either warn about its
7579 // modification or its existence depending on warning settings.
7580 ShadowingDecls.insert({PVD->getCanonicalDecl(), FD});
7581 return;
7582 }
7583 }
7584
7585 if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
7586 if (shadowedVar->isExternC()) {
7587 // For shadowing external vars, make sure that we point to the global
7588 // declaration, not a locally scoped extern declaration.
7589 for (auto I : shadowedVar->redecls())
7590 if (I->isFileVarDecl()) {
7591 ShadowedDecl = I;
7592 break;
7593 }
7594 }
7595
7596 DeclContext *OldDC = ShadowedDecl->getDeclContext()->getRedeclContext();
7597
7598 unsigned WarningDiag = diag::warn_decl_shadow;
7599 SourceLocation CaptureLoc;
7600 if (isa<VarDecl>(D) && isa<VarDecl>(ShadowedDecl) && NewDC &&
7601 isa<CXXMethodDecl>(NewDC)) {
7602 if (const auto *RD = dyn_cast<CXXRecordDecl>(NewDC->getParent())) {
7603 if (RD->isLambda() && OldDC->Encloses(NewDC->getLexicalParent())) {
7604 if (RD->getLambdaCaptureDefault() == LCD_None) {
7605 // Try to avoid warnings for lambdas with an explicit capture list.
7606 const auto *LSI = cast<LambdaScopeInfo>(getCurFunction());
7607 // Warn only when the lambda captures the shadowed decl explicitly.
7608 CaptureLoc = getCaptureLocation(LSI, cast<VarDecl>(ShadowedDecl));
7609 if (CaptureLoc.isInvalid())
7610 WarningDiag = diag::warn_decl_shadow_uncaptured_local;
7611 } else {
7612 // Remember that this was shadowed so we can avoid the warning if the
7613 // shadowed decl isn't captured and the warning settings allow it.
7614 cast<LambdaScopeInfo>(getCurFunction())
7615 ->ShadowingDecls.push_back(
7616 {cast<VarDecl>(D), cast<VarDecl>(ShadowedDecl)});
7617 return;
7618 }
7619 }
7620
7621 if (cast<VarDecl>(ShadowedDecl)->hasLocalStorage()) {
7622 // A variable can't shadow a local variable in an enclosing scope, if
7623 // they are separated by a non-capturing declaration context.
7624 for (DeclContext *ParentDC = NewDC;
7625 ParentDC && !ParentDC->Equals(OldDC);
7626 ParentDC = getLambdaAwareParentOfDeclContext(ParentDC)) {
7627 // Only block literals, captured statements, and lambda expressions
7628 // can capture; other scopes don't.
7629 if (!isa<BlockDecl>(ParentDC) && !isa<CapturedDecl>(ParentDC) &&
7630 !isLambdaCallOperator(ParentDC)) {
7631 return;
7632 }
7633 }
7634 }
7635 }
7636 }
7637
7638 // Only warn about certain kinds of shadowing for class members.
7639 if (NewDC && NewDC->isRecord()) {
7640 // In particular, don't warn about shadowing non-class members.
7641 if (!OldDC->isRecord())
7642 return;
7643
7644 // TODO: should we warn about static data members shadowing
7645 // static data members from base classes?
7646
7647 // TODO: don't diagnose for inaccessible shadowed members.
7648 // This is hard to do perfectly because we might friend the
7649 // shadowing context, but that's just a false negative.
7650 }
7651
7652
7653 DeclarationName Name = R.getLookupName();
7654
7655 // Emit warning and note.
7656 if (getSourceManager().isInSystemMacro(R.getNameLoc()))
7657 return;
7658 ShadowedDeclKind Kind = computeShadowedDeclKind(ShadowedDecl, OldDC);
7659 Diag(R.getNameLoc(), WarningDiag) << Name << Kind << OldDC;
7660 if (!CaptureLoc.isInvalid())
7661 Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
7662 << Name << /*explicitly*/ 1;
7663 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7664}
7665
7666/// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD
7667/// when these variables are captured by the lambda.
7668void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo *LSI) {
7669 for (const auto &Shadow : LSI->ShadowingDecls) {
7670 const VarDecl *ShadowedDecl = Shadow.ShadowedDecl;
7671 // Try to avoid the warning when the shadowed decl isn't captured.
7672 SourceLocation CaptureLoc = getCaptureLocation(LSI, ShadowedDecl);
7673 const DeclContext *OldDC = ShadowedDecl->getDeclContext();
7674 Diag(Shadow.VD->getLocation(), CaptureLoc.isInvalid()
7675 ? diag::warn_decl_shadow_uncaptured_local
7676 : diag::warn_decl_shadow)
7677 << Shadow.VD->getDeclName()
7678 << computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC;
7679 if (!CaptureLoc.isInvalid())
7680 Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
7681 << Shadow.VD->getDeclName() << /*explicitly*/ 0;
7682 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7683 }
7684}
7685
7686/// Check -Wshadow without the advantage of a previous lookup.
7687void Sema::CheckShadow(Scope *S, VarDecl *D) {
7688 if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
7689 return;
7690
7691 LookupResult R(*this, D->getDeclName(), D->getLocation(),
7692 Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
7693 LookupName(R, S);
7694 if (NamedDecl *ShadowedDecl = getShadowedDeclaration(D, R))
7695 CheckShadow(D, ShadowedDecl, R);
7696}
7697
7698/// Check if 'E', which is an expression that is about to be modified, refers
7699/// to a constructor parameter that shadows a field.
7700void Sema::CheckShadowingDeclModification(Expr *E, SourceLocation Loc) {
7701 // Quickly ignore expressions that can't be shadowing ctor parameters.
7702 if (!getLangOpts().CPlusPlus || ShadowingDecls.empty())
7703 return;
7704 E = E->IgnoreParenImpCasts();
7705 auto *DRE = dyn_cast<DeclRefExpr>(E);
7706 if (!DRE)
7707 return;
7708 const NamedDecl *D = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
7709 auto I = ShadowingDecls.find(D);
7710 if (I == ShadowingDecls.end())
7711 return;
7712 const NamedDecl *ShadowedDecl = I->second;
7713 const DeclContext *OldDC = ShadowedDecl->getDeclContext();
7714 Diag(Loc, diag::warn_modifying_shadowing_decl) << D << OldDC;
7715 Diag(D->getLocation(), diag::note_var_declared_here) << D;
7716 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7717
7718 // Avoid issuing multiple warnings about the same decl.
7719 ShadowingDecls.erase(I);
7720}
7721
7722/// Check for conflict between this global or extern "C" declaration and
7723/// previous global or extern "C" declarations. This is only used in C++.
7724template<typename T>
7725static bool checkGlobalOrExternCConflict(
7726 Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
7727 assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"")((S.getLangOpts().CPlusPlus && "only C++ has extern \"C\""
) ? static_cast<void> (0) : __assert_fail ("S.getLangOpts().CPlusPlus && \"only C++ has extern \\\"C\\\"\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 7727, __PRETTY_FUNCTION__))
;
7728 NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
7729
7730 if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
7731 // The common case: this global doesn't conflict with any extern "C"
7732 // declaration.
7733 return false;
7734 }
7735
7736 if (Prev) {
7737 if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
7738 // Both the old and new declarations have C language linkage. This is a
7739 // redeclaration.
7740 Previous.clear();
7741 Previous.addDecl(Prev);
7742 return true;
7743 }
7744
7745 // This is a global, non-extern "C" declaration, and there is a previous
7746 // non-global extern "C" declaration. Diagnose if this is a variable
7747 // declaration.
7748 if (!isa<VarDecl>(ND))
7749 return false;
7750 } else {
7751 // The declaration is extern "C". Check for any declaration in the
7752 // translation unit which might conflict.
7753 if (IsGlobal) {
7754 // We have already performed the lookup into the translation unit.
7755 IsGlobal = false;
7756 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7757 I != E; ++I) {
7758 if (isa<VarDecl>(*I)) {
7759 Prev = *I;
7760 break;
7761 }
7762 }
7763 } else {
7764 DeclContext::lookup_result R =
7765 S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
7766 for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
7767 I != E; ++I) {
7768 if (isa<VarDecl>(*I)) {
7769 Prev = *I;
7770 break;
7771 }
7772 // FIXME: If we have any other entity with this name in global scope,
7773 // the declaration is ill-formed, but that is a defect: it breaks the
7774 // 'stat' hack, for instance. Only variables can have mangled name
7775 // clashes with extern "C" declarations, so only they deserve a
7776 // diagnostic.
7777 }
7778 }
7779
7780 if (!Prev)
7781 return false;
7782 }
7783
7784 // Use the first declaration's location to ensure we point at something which
7785 // is lexically inside an extern "C" linkage-spec.
7786 assert(Prev && "should have found a previous declaration to diagnose")((Prev && "should have found a previous declaration to diagnose"
) ? static_cast<void> (0) : __assert_fail ("Prev && \"should have found a previous declaration to diagnose\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 7786, __PRETTY_FUNCTION__))
;
7787 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
7788 Prev = FD->getFirstDecl();
7789 else
7790 Prev = cast<VarDecl>(Prev)->getFirstDecl();
7791
7792 S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
7793 << IsGlobal << ND;
7794 S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
7795 << IsGlobal;
7796 return false;
7797}
7798
7799/// Apply special rules for handling extern "C" declarations. Returns \c true
7800/// if we have found that this is a redeclaration of some prior entity.
7801///
7802/// Per C++ [dcl.link]p6:
7803/// Two declarations [for a function or variable] with C language linkage
7804/// with the same name that appear in different scopes refer to the same
7805/// [entity]. An entity with C language linkage shall not be declared with
7806/// the same name as an entity in global scope.
7807template<typename T>
7808static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
7809 LookupResult &Previous) {
7810 if (!S.getLangOpts().CPlusPlus) {
7811 // In C, when declaring a global variable, look for a corresponding 'extern'
7812 // variable declared in function scope. We don't need this in C++, because
7813 // we find local extern decls in the surrounding file-scope DeclContext.
7814 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
7815 if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
7816 Previous.clear();
7817 Previous.addDecl(Prev);
7818 return true;
7819 }
7820 }
7821 return false;
7822 }
7823
7824 // A declaration in the translation unit can conflict with an extern "C"
7825 // declaration.
7826 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
7827 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
7828
7829 // An extern "C" declaration can conflict with a declaration in the
7830 // translation unit or can be a redeclaration of an extern "C" declaration
7831 // in another scope.
7832 if (isIncompleteDeclExternC(S,ND))
7833 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
7834
7835 // Neither global nor extern "C": nothing to do.
7836 return false;
7837}
7838
7839void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
7840 // If the decl is already known invalid, don't check it.
7841 if (NewVD->isInvalidDecl())
7842 return;
7843
7844 QualType T = NewVD->getType();
7845
7846 // Defer checking an 'auto' type until its initializer is attached.
7847 if (T->isUndeducedType())
7848 return;
7849
7850 if (NewVD->hasAttrs())
7851 CheckAlignasUnderalignment(NewVD);
7852
7853 if (T->isObjCObjectType()) {
7854 Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
7855 << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
7856 T = Context.getObjCObjectPointerType(T);
7857 NewVD->setType(T);
7858 }
7859
7860 // Emit an error if an address space was applied to decl with local storage.
7861 // This includes arrays of objects with address space qualifiers, but not
7862 // automatic variables that point to other address spaces.
7863 // ISO/IEC TR 18037 S5.1.2
7864 if (!getLangOpts().OpenCL && NewVD->hasLocalStorage() &&
7865 T.getAddressSpace() != LangAS::Default) {
7866 Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 0;
7867 NewVD->setInvalidDecl();
7868 return;
7869 }
7870
7871 // OpenCL v1.2 s6.8 - The static qualifier is valid only in program
7872 // scope.
7873 if (getLangOpts().OpenCLVersion == 120 &&
7874 !getOpenCLOptions().isEnabled("cl_clang_storage_class_specifiers") &&
7875 NewVD->isStaticLocal()) {
7876 Diag(NewVD->getLocation(), diag::err_static_function_scope);
7877 NewVD->setInvalidDecl();
7878 return;
7879 }
7880
7881 if (getLangOpts().OpenCL) {
7882 // OpenCL v2.0 s6.12.5 - The __block storage type is not supported.
7883 if (NewVD->hasAttr<BlocksAttr>()) {
7884 Diag(NewVD->getLocation(), diag::err_opencl_block_storage_type);
7885 return;
7886 }
7887
7888 if (T->isBlockPointerType()) {
7889 // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and
7890 // can't use 'extern' storage class.
7891 if (!T.isConstQualified()) {
7892 Diag(NewVD->getLocation(), diag::err_opencl_invalid_block_declaration)
7893 << 0 /*const*/;
7894 NewVD->setInvalidDecl();
7895 return;
7896 }
7897 if (NewVD->hasExternalStorage()) {
7898 Diag(NewVD->getLocation(), diag::err_opencl_extern_block_declaration);
7899 NewVD->setInvalidDecl();
7900 return;
7901 }
7902 }
7903 // OpenCL C v1.2 s6.5 - All program scope variables must be declared in the
7904 // __constant address space.
7905 // OpenCL C v2.0 s6.5.1 - Variables defined at program scope and static
7906 // variables inside a function can also be declared in the global
7907 // address space.
7908 // C++ for OpenCL inherits rule from OpenCL C v2.0.
7909 // FIXME: Adding local AS in C++ for OpenCL might make sense.
7910 if (NewVD->isFileVarDecl() || NewVD->isStaticLocal() ||
7911 NewVD->hasExternalStorage()) {
7912 if (!T->isSamplerT() &&
7913 !T->isDependentType() &&
7914 !(T.getAddressSpace() == LangAS::opencl_constant ||
7915 (T.getAddressSpace() == LangAS::opencl_global &&
7916 (getLangOpts().OpenCLVersion == 200 ||
7917 getLangOpts().OpenCLCPlusPlus)))) {
7918 int Scope = NewVD->isStaticLocal() | NewVD->hasExternalStorage() << 1;
7919 if (getLangOpts().OpenCLVersion == 200 || getLangOpts().OpenCLCPlusPlus)
7920 Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
7921 << Scope << "global or constant";
7922 else
7923 Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
7924 << Scope << "constant";
7925 NewVD->setInvalidDecl();
7926 return;
7927 }
7928 } else {
7929 if (T.getAddressSpace() == LangAS::opencl_global) {
7930 Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7931 << 1 /*is any function*/ << "global";
7932 NewVD->setInvalidDecl();
7933 return;
7934 }
7935 if (T.getAddressSpace() == LangAS::opencl_constant ||
7936 T.getAddressSpace() == LangAS::opencl_local) {
7937 FunctionDecl *FD = getCurFunctionDecl();
7938 // OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables
7939 // in functions.
7940 if (FD && !FD->hasAttr<OpenCLKernelAttr>()) {
7941 if (T.getAddressSpace() == LangAS::opencl_constant)
7942 Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7943 << 0 /*non-kernel only*/ << "constant";
7944 else
7945 Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7946 << 0 /*non-kernel only*/ << "local";
7947 NewVD->setInvalidDecl();
7948 return;
7949 }
7950 // OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be
7951 // in the outermost scope of a kernel function.
7952 if (FD && FD->hasAttr<OpenCLKernelAttr>()) {
7953 if (!getCurScope()->isFunctionScope()) {
7954 if (T.getAddressSpace() == LangAS::opencl_constant)
7955 Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
7956 << "constant";
7957 else
7958 Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
7959 << "local";
7960 NewVD->setInvalidDecl();
7961 return;
7962 }
7963 }
7964 } else if (T.getAddressSpace() != LangAS::opencl_private &&
7965 // If we are parsing a template we didn't deduce an addr
7966 // space yet.
7967 T.getAddressSpace() != LangAS::Default) {
7968 // Do not allow other address spaces on automatic variable.
7969 Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 1;
7970 NewVD->setInvalidDecl();
7971 return;
7972 }
7973 }
7974 }
7975
7976 if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
7977 && !NewVD->hasAttr<BlocksAttr>()) {
7978 if (getLangOpts().getGC() != LangOptions::NonGC)
7979 Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
7980 else {
7981 assert(!getLangOpts().ObjCAutoRefCount)((!getLangOpts().ObjCAutoRefCount) ? static_cast<void> (
0) : __assert_fail ("!getLangOpts().ObjCAutoRefCount", "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 7981, __PRETTY_FUNCTION__))
;
7982 Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
7983 }
7984 }
7985
7986 bool isVM = T->isVariablyModifiedType();
7987 if (isVM || NewVD->hasAttr<CleanupAttr>() ||
7988 NewVD->hasAttr<BlocksAttr>())
7989 setFunctionHasBranchProtectedScope();
7990
7991 if ((isVM && NewVD->hasLinkage()) ||
7992 (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
7993 bool SizeIsNegative;
7994 llvm::APSInt Oversized;
7995 TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo(
7996 NewVD->getTypeSourceInfo(), Context, SizeIsNegative, Oversized);
7997 QualType FixedT;
7998 if (FixedTInfo && T == NewVD->getTypeSourceInfo()->getType())
7999 FixedT = FixedTInfo->getType();
8000 else if (FixedTInfo) {
8001 // Type and type-as-written are canonically different. We need to fix up
8002 // both types separately.
8003 FixedT = TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
8004 Oversized);
8005 }
8006 if ((!FixedTInfo || FixedT.isNull()) && T->isVariableArrayType()) {
8007 const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
8008 // FIXME: This won't give the correct result for
8009 // int a[10][n];
8010 SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
8011
8012 if (NewVD->isFileVarDecl())
8013 Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
8014 << SizeRange;
8015 else if (NewVD->isStaticLocal())
8016 Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
8017 << SizeRange;
8018 else
8019 Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
8020 << SizeRange;
8021 NewVD->setInvalidDecl();
8022 return;
8023 }
8024
8025 if (!FixedTInfo) {
8026 if (NewVD->isFileVarDecl())
8027 Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
8028 else
8029 Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
8030 NewVD->setInvalidDecl();
8031 return;
8032 }
8033
8034 Diag(NewVD->getLocation(), diag::ext_vla_folded_to_constant);
8035 NewVD->setType(FixedT);
8036 NewVD->setTypeSourceInfo(FixedTInfo);
8037 }
8038
8039 if (T->isVoidType()) {
8040 // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
8041 // of objects and functions.
8042 if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
8043 Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
8044 << T;
8045 NewVD->setInvalidDecl();
8046 return;
8047 }
8048 }
8049
8050 if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
8051 Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
8052 NewVD->setInvalidDecl();
8053 return;
8054 }
8055
8056 if (!NewVD->hasLocalStorage() && T->isSizelessType()) {
8057 Diag(NewVD->getLocation(), diag::err_sizeless_nonlocal) << T;
8058 NewVD->setInvalidDecl();
8059 return;
8060 }
8061
8062 if (isVM && NewVD->hasAttr<BlocksAttr>()) {
8063 Diag(NewVD->getLocation(), diag::err_block_on_vm);
8064 NewVD->setInvalidDecl();
8065 return;
8066 }
8067
8068 if (NewVD->isConstexpr() && !T->isDependentType() &&
8069 RequireLiteralType(NewVD->getLocation(), T,
8070 diag::err_constexpr_var_non_literal)) {
8071 NewVD->setInvalidDecl();
8072 return;
8073 }
8074
8075 // PPC MMA non-pointer types are not allowed as non-local variable types.
8076 if (Context.getTargetInfo().getTriple().isPPC64() &&
8077 !NewVD->isLocalVarDecl() &&
8078 CheckPPCMMAType(T, NewVD->getLocation())) {
8079 NewVD->setInvalidDecl();
8080 return;
8081 }
8082}
8083
8084/// Perform semantic checking on a newly-created variable
8085/// declaration.
8086///
8087/// This routine performs all of the type-checking required for a
8088/// variable declaration once it has been built. It is used both to
8089/// check variables after they have been parsed and their declarators
8090/// have been translated into a declaration, and to check variables
8091/// that have been instantiated from a template.
8092///
8093/// Sets NewVD->isInvalidDecl() if an error was encountered.
8094///
8095/// Returns true if the variable declaration is a redeclaration.
8096bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
8097 CheckVariableDeclarationType(NewVD);
8098
8099 // If the decl is already known invalid, don't check it.
8100 if (NewVD->isInvalidDecl())
8101 return false;
8102
8103 // If we did not find anything by this name, look for a non-visible
8104 // extern "C" declaration with the same name.
8105 if (Previous.empty() &&
8106 checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
8107 Previous.setShadowed();
8108
8109 if (!Previous.empty()) {
8110 MergeVarDecl(NewVD, Previous);
8111 return true;
8112 }
8113 return false;
8114}
8115
8116/// AddOverriddenMethods - See if a method overrides any in the base classes,
8117/// and if so, check that it's a valid override and remember it.
8118bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
8119 llvm::SmallPtrSet<const CXXMethodDecl*, 4> Overridden;
8120
8121 // Look for methods in base classes that this method might override.
8122 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false,
8123 /*DetectVirtual=*/false);
8124 auto VisitBase = [&] (const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
8125 CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl();
8126 DeclarationName Name = MD->getDeclName();
8127
8128 if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8129 // We really want to find the base class destructor here.
8130 QualType T = Context.getTypeDeclType(BaseRecord);
8131 CanQualType CT = Context.getCanonicalType(T);
8132 Name = Context.DeclarationNames.getCXXDestructorName(CT);
8133 }
8134
8135 for (NamedDecl *BaseND : BaseRecord->lookup(Name)) {
8136 CXXMethodDecl *BaseMD =
8137 dyn_cast<CXXMethodDecl>(BaseND->getCanonicalDecl());
8138 if (!BaseMD || !BaseMD->isVirtual() ||
8139 IsOverload(MD, BaseMD, /*UseMemberUsingDeclRules=*/false,
8140 /*ConsiderCudaAttrs=*/true,
8141 // C++2a [class.virtual]p2 does not consider requires
8142 // clauses when overriding.
8143 /*ConsiderRequiresClauses=*/false))
8144 continue;
8145
8146 if (Overridden.insert(BaseMD).second) {
8147 MD->addOverriddenMethod(BaseMD);
8148 CheckOverridingFunctionReturnType(MD, BaseMD);
8149 CheckOverridingFunctionAttributes(MD, BaseMD);
8150 CheckOverridingFunctionExceptionSpec(MD, BaseMD);
8151 CheckIfOverriddenFunctionIsMarkedFinal(MD, BaseMD);
8152 }
8153
8154 // A method can only override one function from each base class. We
8155 // don't track indirectly overridden methods from bases of bases.
8156 return true;
8157 }
8158
8159 return false;
8160 };
8161
8162 DC->lookupInBases(VisitBase, Paths);
8163 return !Overridden.empty();
8164}
8165
8166namespace {
8167 // Struct for holding all of the extra arguments needed by
8168 // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
8169 struct ActOnFDArgs {
8170 Scope *S;
8171 Declarator &D;
8172 MultiTemplateParamsArg TemplateParamLists;
8173 bool AddToScope;
8174 };
8175} // end anonymous namespace
8176
8177namespace {
8178
8179// Callback to only accept typo corrections that have a non-zero edit distance.
8180// Also only accept corrections that have the same parent decl.
8181class DifferentNameValidatorCCC final : public CorrectionCandidateCallback {
8182 public:
8183 DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
8184 CXXRecordDecl *Parent)
8185 : Context(Context), OriginalFD(TypoFD),
8186 ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}
8187
8188 bool ValidateCandidate(const TypoCorrection &candidate) override {
8189 if (candidate.getEditDistance() == 0)
8190 return false;
8191
8192 SmallVector<unsigned, 1> MismatchedParams;
8193 for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
8194 CDeclEnd = candidate.end();
8195 CDecl != CDeclEnd; ++CDecl) {
8196 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
8197
8198 if (FD && !FD->hasBody() &&
8199 hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
8200 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
8201 CXXRecordDecl *Parent = MD->getParent();
8202 if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
8203 return true;
8204 } else if (!ExpectedParent) {
8205 return true;
8206 }
8207 }
8208 }
8209
8210 return false;
8211 }
8212
8213 std::unique_ptr<CorrectionCandidateCallback> clone() override {
8214 return std::make_unique<DifferentNameValidatorCCC>(*this);
8215 }
8216
8217 private:
8218 ASTContext &Context;
8219 FunctionDecl *OriginalFD;
8220 CXXRecordDecl *ExpectedParent;
8221};
8222
8223} // end anonymous namespace
8224
8225void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl *F) {
8226 TypoCorrectedFunctionDefinitions.insert(F);
8227}
8228
8229/// Generate diagnostics for an invalid function redeclaration.
8230///
8231/// This routine handles generating the diagnostic messages for an invalid
8232/// function redeclaration, including finding possible similar declarations
8233/// or performing typo correction if there are no previous declarations with
8234/// the same name.
8235///
8236/// Returns a NamedDecl iff typo correction was performed and substituting in
8237/// the new declaration name does not cause new errors.
8238static NamedDecl *DiagnoseInvalidRedeclaration(
8239 Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
8240 ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
8241 DeclarationName Name = NewFD->getDeclName();
8242 DeclContext *NewDC = NewFD->getDeclContext();
8243 SmallVector<unsigned, 1> MismatchedParams;
8244 SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
8245 TypoCorrection Correction;
8246 bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
8247 unsigned DiagMsg =
8248 IsLocalFriend ? diag::err_no_matching_local_friend :
8249 NewFD->getFriendObjectKind() ? diag::err_qualified_friend_no_match :
8250 diag::err_member_decl_does_not_match;
8251 LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
8252 IsLocalFriend ? Sema::LookupLocalFriendName
8253 : Sema::LookupOrdinaryName,
8254 Sema::ForVisibleRedeclaration);
8255
8256 NewFD->setInvalidDecl();
8257 if (IsLocalFriend)
8258 SemaRef.LookupName(Prev, S);
8259 else
8260 SemaRef.LookupQualifiedName(Prev, NewDC);
8261 assert(!Prev.isAmbiguous() &&((!Prev.isAmbiguous() && "Cannot have an ambiguity in previous-declaration lookup"
) ? static_cast<void> (0) : __assert_fail ("!Prev.isAmbiguous() && \"Cannot have an ambiguity in previous-declaration lookup\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 8262, __PRETTY_FUNCTION__))
8262 "Cannot have an ambiguity in previous-declaration lookup")((!Prev.isAmbiguous() && "Cannot have an ambiguity in previous-declaration lookup"
) ? static_cast<void> (0) : __assert_fail ("!Prev.isAmbiguous() && \"Cannot have an ambiguity in previous-declaration lookup\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 8262, __PRETTY_FUNCTION__))
;
8263 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
8264 DifferentNameValidatorCCC CCC(SemaRef.Context, NewFD,
8265 MD ? MD->getParent() : nullptr);
8266 if (!Prev.empty()) {
8267 for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
8268 Func != FuncEnd; ++Func) {
8269 FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
8270 if (FD &&
8271 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
8272 // Add 1 to the index so that 0 can mean the mismatch didn't
8273 // involve a parameter
8274 unsigned ParamNum =
8275 MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
8276 NearMatches.push_back(std::make_pair(FD, ParamNum));
8277 }
8278 }
8279 // If the qualified name lookup yielded nothing, try typo correction
8280 } else if ((Correction = SemaRef.CorrectTypo(
8281 Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
8282 &ExtraArgs.D.getCXXScopeSpec(), CCC, Sema::CTK_ErrorRecovery,
8283 IsLocalFriend ? nullptr : NewDC))) {
8284 // Set up everything for the call to ActOnFunctionDeclarator
8285 ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
8286 ExtraArgs.D.getIdentifierLoc());
8287 Previous.clear();
8288 Previous.setLookupName(Correction.getCorrection());
8289 for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
8290 CDeclEnd = Correction.end();
8291 CDecl != CDeclEnd; ++CDecl) {
8292 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
8293 if (FD && !FD->hasBody() &&
8294 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
8295 Previous.addDecl(FD);
8296 }
8297 }
8298 bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
8299
8300 NamedDecl *Result;
8301 // Retry building the function declaration with the new previous
8302 // declarations, and with errors suppressed.
8303 {
8304 // Trap errors.
8305 Sema::SFINAETrap Trap(SemaRef);
8306
8307 // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
8308 // pieces need to verify the typo-corrected C++ declaration and hopefully
8309 // eliminate the need for the parameter pack ExtraArgs.
8310 Result = SemaRef.ActOnFunctionDeclarator(
8311 ExtraArgs.S, ExtraArgs.D,
8312 Correction.getCorrectionDecl()->getDeclContext(),
8313 NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
8314 ExtraArgs.AddToScope);
8315
8316 if (Trap.hasErrorOccurred())
8317 Result = nullptr;
8318 }
8319
8320 if (Result) {
8321 // Determine which correction we picked.
8322 Decl *Canonical = Result->getCanonicalDecl();
8323 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
8324 I != E; ++I)
8325 if ((*I)->getCanonicalDecl() == Canonical)
8326 Correction.setCorrectionDecl(*I);
8327
8328 // Let Sema know about the correction.
8329 SemaRef.MarkTypoCorrectedFunctionDefinition(Result);
8330 SemaRef.diagnoseTypo(
8331 Correction,
8332 SemaRef.PDiag(IsLocalFriend
8333 ? diag::err_no_matching_local_friend_suggest
8334 : diag::err_member_decl_does_not_match_suggest)
8335 << Name << NewDC << IsDefinition);
8336 return Result;
8337 }
8338
8339 // Pretend the typo correction never occurred
8340 ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
8341 ExtraArgs.D.getIdentifierLoc());
8342 ExtraArgs.D.setRedeclaration(wasRedeclaration);
8343 Previous.clear();
8344 Previous.setLookupName(Name);
8345 }
8346
8347 SemaRef.Diag(NewFD->getLocation(), DiagMsg)
8348 << Name << NewDC << IsDefinition << NewFD->getLocation();
8349
8350 bool NewFDisConst = false;
8351 if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
8352 NewFDisConst = NewMD->isConst();
8353
8354 for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
8355 NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
8356 NearMatch != NearMatchEnd; ++NearMatch) {
8357 FunctionDecl *FD = NearMatch->first;
8358 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
8359 bool FDisConst = MD && MD->isConst();
8360 bool IsMember = MD || !IsLocalFriend;
8361
8362 // FIXME: These notes are poorly worded for the local friend case.
8363 if (unsigned Idx = NearMatch->second) {
8364 ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
8365 SourceLocation Loc = FDParam->getTypeSpecStartLoc();
8366 if (Loc.isInvalid()) Loc = FD->getLocation();
8367 SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
8368 : diag::note_local_decl_close_param_match)
8369 << Idx << FDParam->getType()
8370 << NewFD->getParamDecl(Idx - 1)->getType();
8371 } else if (FDisConst != NewFDisConst) {
8372 SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
8373 << NewFDisConst << FD->getSourceRange().getEnd();
8374 } else
8375 SemaRef.Diag(FD->getLocation(),
8376 IsMember ? diag::note_member_def_close_match
8377 : diag::note_local_decl_close_match);
8378 }
8379 return nullptr;
8380}
8381
8382static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) {
8383 switch (D.getDeclSpec().getStorageClassSpec()) {
8384 default: llvm_unreachable("Unknown storage class!")::llvm::llvm_unreachable_internal("Unknown storage class!", "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 8384)
;
8385 case DeclSpec::SCS_auto:
8386 case DeclSpec::SCS_register:
8387 case DeclSpec::SCS_mutable:
8388 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
8389 diag::err_typecheck_sclass_func);
8390 D.getMutableDeclSpec().ClearStorageClassSpecs();
8391 D.setInvalidType();
8392 break;
8393 case DeclSpec::SCS_unspecified: break;
8394 case DeclSpec::SCS_extern:
8395 if (D.getDeclSpec().isExternInLinkageSpec())
8396 return SC_None;
8397 return SC_Extern;
8398 case DeclSpec::SCS_static: {
8399 if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
8400 // C99 6.7.1p5:
8401 // The declaration of an identifier for a function that has
8402 // block scope shall have no explicit storage-class specifier
8403 // other than extern
8404 // See also (C++ [dcl.stc]p4).
8405 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
8406 diag::err_static_block_func);
8407 break;
8408 } else
8409 return SC_Static;
8410 }
8411 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
8412 }
8413
8414 // No explicit storage class has already been returned
8415 return SC_None;
8416}
8417
8418static FunctionDecl *CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
8419 DeclContext *DC, QualType &R,
8420 TypeSourceInfo *TInfo,
8421 StorageClass SC,
8422 bool &IsVirtualOkay) {
8423 DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
8424 DeclarationName Name = NameInfo.getName();
8425
8426 FunctionDecl *NewFD = nullptr;
8427 bool isInline = D.getDeclSpec().isInlineSpecified();
8428
8429 if (!SemaRef.getLangOpts().CPlusPlus) {
8430 // Determine whether the function was written with a
8431 // prototype. This true when:
8432 // - there is a prototype in the declarator, or
8433 // - the type R of the function is some kind of typedef or other non-
8434 // attributed reference to a type name (which eventually refers to a
8435 // function type).
8436 bool HasPrototype =
8437 (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
8438 (!R->getAsAdjusted<FunctionType>() && R->isFunctionProtoType());
8439
8440 NewFD = FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), NameInfo,
8441 R, TInfo, SC, isInline, HasPrototype,
8442 ConstexprSpecKind::Unspecified,
8443 /*TrailingRequiresClause=*/nullptr);
8444 if (D.isInvalidType())
8445 NewFD->setInvalidDecl();
8446
8447 return NewFD;
8448 }
8449
8450 ExplicitSpecifier ExplicitSpecifier = D.getDeclSpec().getExplicitSpecifier();
8451
8452 ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier();
8453 if (ConstexprKind == ConstexprSpecKind::Constinit) {
8454 SemaRef.Diag(D.getDeclSpec().getConstexprSpecLoc(),
8455 diag::err_constexpr_wrong_decl_kind)
8456 << static_cast<int>(ConstexprKind);
8457 ConstexprKind = ConstexprSpecKind::Unspecified;
8458 D.getMutableDeclSpec().ClearConstexprSpec();
8459 }
8460 Expr *TrailingRequiresClause = D.getTrailingRequiresClause();
8461
8462 // Check that the return type is not an abstract class type.
8463 // For record types, this is done by the AbstractClassUsageDiagnoser once
8464 // the class has been completely parsed.
8465 if (!DC->isRecord() &&
8466 SemaRef.RequireNonAbstractType(
8467 D.getIdentifierLoc(), R->castAs<FunctionType>()->getReturnType(),
8468 diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType))
8469 D.setInvalidType();
8470
8471 if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
8472 // This is a C++ constructor declaration.
8473 assert(DC->isRecord() &&((DC->isRecord() && "Constructors can only be declared in a member context"
) ? static_cast<void> (0) : __assert_fail ("DC->isRecord() && \"Constructors can only be declared in a member context\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 8474, __PRETTY_FUNCTION__))
8474 "Constructors can only be declared in a member context")((DC->isRecord() && "Constructors can only be declared in a member context"
) ? static_cast<void> (0) : __assert_fail ("DC->isRecord() && \"Constructors can only be declared in a member context\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 8474, __PRETTY_FUNCTION__))
;
8475
8476 R = SemaRef.CheckConstructorDeclarator(D, R, SC);
8477 return CXXConstructorDecl::Create(
8478 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8479 TInfo, ExplicitSpecifier, isInline,
8480 /*isImplicitlyDeclared=*/false, ConstexprKind, InheritedConstructor(),
8481 TrailingRequiresClause);
8482
8483 } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8484 // This is a C++ destructor declaration.
8485 if (DC->isRecord()) {
8486 R = SemaRef.CheckDestructorDeclarator(D, R, SC);
8487 CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
8488 CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
8489 SemaRef.Context, Record, D.getBeginLoc(), NameInfo, R, TInfo,
8490 isInline, /*isImplicitlyDeclared=*/false, ConstexprKind,
8491 TrailingRequiresClause);
8492
8493 // If the destructor needs an implicit exception specification, set it
8494 // now. FIXME: It'd be nice to be able to create the right type to start
8495 // with, but the type needs to reference the destructor declaration.
8496 if (SemaRef.getLangOpts().CPlusPlus11)
8497 SemaRef.AdjustDestructorExceptionSpec(NewDD);
8498
8499 IsVirtualOkay = true;
8500 return NewDD;
8501
8502 } else {
8503 SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
8504 D.setInvalidType();
8505
8506 // Create a FunctionDecl to satisfy the function definition parsing
8507 // code path.
8508 return FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(),
8509 D.getIdentifierLoc(), Name, R, TInfo, SC,
8510 isInline,
8511 /*hasPrototype=*/true, ConstexprKind,
8512 TrailingRequiresClause);
8513 }
8514
8515 } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
8516 if (!DC->isRecord()) {
8517 SemaRef.Diag(D.getIdentifierLoc(),
8518 diag::err_conv_function_not_member);
8519 return nullptr;
8520 }
8521
8522 SemaRef.CheckConversionDeclarator(D, R, SC);
8523 if (D.isInvalidType())
8524 return nullptr;
8525
8526 IsVirtualOkay = true;
8527 return CXXConversionDecl::Create(
8528 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8529 TInfo, isInline, ExplicitSpecifier, ConstexprKind, SourceLocation(),
8530 TrailingRequiresClause);
8531
8532 } else if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
8533 if (TrailingRequiresClause)
8534 SemaRef.Diag(TrailingRequiresClause->getBeginLoc(),
8535 diag::err_trailing_requires_clause_on_deduction_guide)
8536 << TrailingRequiresClause->getSourceRange();
8537 SemaRef.CheckDeductionGuideDeclarator(D, R, SC);
8538
8539 return CXXDeductionGuideDecl::Create(SemaRef.Context, DC, D.getBeginLoc(),
8540 ExplicitSpecifier, NameInfo, R, TInfo,
8541 D.getEndLoc());
8542 } else if (DC->isRecord()) {
8543 // If the name of the function is the same as the name of the record,
8544 // then this must be an invalid constructor that has a return type.
8545 // (The parser checks for a return type and makes the declarator a
8546 // constructor if it has no return type).
8547 if (Name.getAsIdentifierInfo() &&
8548 Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
8549 SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
8550 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
8551 << SourceRange(D.getIdentifierLoc());
8552 return nullptr;
8553 }
8554
8555 // This is a C++ method declaration.
8556 CXXMethodDecl *Ret = CXXMethodDecl::Create(
8557 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8558 TInfo, SC, isInline, ConstexprKind, SourceLocation(),
8559 TrailingRequiresClause);
8560 IsVirtualOkay = !Ret->isStatic();
8561 return Ret;
8562 } else {
8563 bool isFriend =
8564 SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified();
8565 if (!isFriend && SemaRef.CurContext->isRecord())
8566 return nullptr;
8567
8568 // Determine whether the function was written with a
8569 // prototype. This true when:
8570 // - we're in C++ (where every function has a prototype),
8571 return FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), NameInfo,
8572 R, TInfo, SC, isInline, true /*HasPrototype*/,
8573 ConstexprKind, TrailingRequiresClause);
8574 }
8575}
8576
8577enum OpenCLParamType {
8578 ValidKernelParam,
8579 PtrPtrKernelParam,
8580 PtrKernelParam,
8581 InvalidAddrSpacePtrKernelParam,
8582 InvalidKernelParam,
8583 RecordKernelParam
8584};
8585
8586static bool isOpenCLSizeDependentType(ASTContext &C, QualType Ty) {
8587 // Size dependent types are just typedefs to normal integer types
8588 // (e.g. unsigned long), so we cannot distinguish them from other typedefs to
8589 // integers other than by their names.
8590 StringRef SizeTypeNames[] = {"size_t", "intptr_t", "uintptr_t", "ptrdiff_t"};
8591
8592 // Remove typedefs one by one until we reach a typedef
8593 // for a size dependent type.
8594 QualType DesugaredTy = Ty;
8595 do {
8596 ArrayRef<StringRef> Names(SizeTypeNames);
8597 auto Match = llvm::find(Names, DesugaredTy.getUnqualifiedType().getAsString());
8598 if (Names.end() != Match)
8599 return true;
8600
8601 Ty = DesugaredTy;
8602 DesugaredTy = Ty.getSingleStepDesugaredType(C);
8603 } while (DesugaredTy != Ty);
8604
8605 return false;
8606}
8607
8608static OpenCLParamType getOpenCLKernelParameterType(Sema &S, QualType PT) {
8609 if (PT->isPointerType()) {
8610 QualType PointeeType = PT->getPointeeType();
8611 if (PointeeType.getAddressSpace() == LangAS::opencl_generic ||
8612 PointeeType.getAddressSpace() == LangAS::opencl_private ||
8613 PointeeType.getAddressSpace() == LangAS::Default)
8614 return InvalidAddrSpacePtrKernelParam;
8615
8616 if (PointeeType->isPointerType()) {
8617 // This is a pointer to pointer parameter.
8618 // Recursively check inner type.
8619 OpenCLParamType ParamKind = getOpenCLKernelParameterType(S, PointeeType);
8620 if (ParamKind == InvalidAddrSpacePtrKernelParam ||
8621 ParamKind == InvalidKernelParam)
8622 return ParamKind;
8623
8624 return PtrPtrKernelParam;
8625 }
8626 return PtrKernelParam;
8627 }
8628
8629 // OpenCL v1.2 s6.9.k:
8630 // Arguments to kernel functions in a program cannot be declared with the
8631 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
8632 // uintptr_t or a struct and/or union that contain fields declared to be one
8633 // of these built-in scalar types.
8634 if (isOpenCLSizeDependentType(S.getASTContext(), PT))
8635 return InvalidKernelParam;
8636
8637 if (PT->isImageType())
8638 return PtrKernelParam;
8639
8640 if (PT->isBooleanType() || PT->isEventT() || PT->isReserveIDT())
8641 return InvalidKernelParam;
8642
8643 // OpenCL extension spec v1.2 s9.5:
8644 // This extension adds support for half scalar and vector types as built-in
8645 // types that can be used for arithmetic operations, conversions etc.
8646 if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16") && PT->isHalfType())
8647 return InvalidKernelParam;
8648
8649 if (PT->isRecordType())
8650 return RecordKernelParam;
8651
8652 // Look into an array argument to check if it has a forbidden type.
8653 if (PT->isArrayType()) {
8654 const Type *UnderlyingTy = PT->getPointeeOrArrayElementType();
8655 // Call ourself to check an underlying type of an array. Since the
8656 // getPointeeOrArrayElementType returns an innermost type which is not an
8657 // array, this recursive call only happens once.
8658 return getOpenCLKernelParameterType(S, QualType(UnderlyingTy, 0));
8659 }
8660
8661 return ValidKernelParam;
8662}
8663
8664static void checkIsValidOpenCLKernelParameter(
8665 Sema &S,
8666 Declarator &D,
8667 ParmVarDecl *Param,
8668 llvm::SmallPtrSetImpl<const Type *> &ValidTypes) {
8669 QualType PT = Param->getType();
8670
8671 // Cache the valid types we encounter to avoid rechecking structs that are
8672 // used again
8673 if (ValidTypes.count(PT.getTypePtr()))
8674 return;
8675
8676 switch (getOpenCLKernelParameterType(S, PT)) {
8677 case PtrPtrKernelParam:
8678 // OpenCL v3.0 s6.11.a:
8679 // A kernel function argument cannot be declared as a pointer to a pointer
8680 // type. [...] This restriction only applies to OpenCL C 1.2 or below.
8681 if (S.getLangOpts().OpenCLVersion < 120 &&
8682 !S.getLangOpts().OpenCLCPlusPlus) {
8683 S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
8684 D.setInvalidType();
8685 return;
8686 }
8687
8688 ValidTypes.insert(PT.getTypePtr());
8689 return;
8690
8691 case InvalidAddrSpacePtrKernelParam:
8692 // OpenCL v1.0 s6.5:
8693 // __kernel function arguments declared to be a pointer of a type can point
8694 // to one of the following address spaces only : __global, __local or
8695 // __constant.
8696 S.Diag(Param->getLocation(), diag::err_kernel_arg_address_space);
8697 D.setInvalidType();
8698 return;
8699
8700 // OpenCL v1.2 s6.9.k:
8701 // Arguments to kernel functions in a program cannot be declared with the
8702 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
8703 // uintptr_t or a struct and/or union that contain fields declared to be
8704 // one of these built-in scalar types.
8705
8706 case InvalidKernelParam:
8707 // OpenCL v1.2 s6.8 n:
8708 // A kernel function argument cannot be declared
8709 // of event_t type.
8710 // Do not diagnose half type since it is diagnosed as invalid argument
8711 // type for any function elsewhere.
8712 if (!PT->isHalfType()) {
8713 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
8714
8715 // Explain what typedefs are involved.
8716 const TypedefType *Typedef = nullptr;
8717 while ((Typedef = PT->getAs<TypedefType>())) {
8718 SourceLocation Loc = Typedef->getDecl()->getLocation();
8719 // SourceLocation may be invalid for a built-in type.
8720 if (Loc.isValid())
8721 S.Diag(Loc, diag::note_entity_declared_at) << PT;
8722 PT = Typedef->desugar();
8723 }
8724 }
8725
8726 D.setInvalidType();
8727 return;
8728
8729 case PtrKernelParam:
8730 case ValidKernelParam:
8731 ValidTypes.insert(PT.getTypePtr());
8732 return;
8733
8734 case RecordKernelParam:
8735 break;
8736 }
8737
8738 // Track nested structs we will inspect
8739 SmallVector<const Decl *, 4> VisitStack;
8740
8741 // Track where we are in the nested structs. Items will migrate from
8742 // VisitStack to HistoryStack as we do the DFS for bad field.
8743 SmallVector<const FieldDecl *, 4> HistoryStack;
8744 HistoryStack.push_back(nullptr);
8745
8746 // At this point we already handled everything except of a RecordType or
8747 // an ArrayType of a RecordType.
8748 assert((PT->isArrayType() || PT->isRecordType()) && "Unexpected type.")(((PT->isArrayType() || PT->isRecordType()) && "Unexpected type."
) ? static_cast<void> (0) : __assert_fail ("(PT->isArrayType() || PT->isRecordType()) && \"Unexpected type.\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 8748, __PRETTY_FUNCTION__))
;
8749 const RecordType *RecTy =
8750 PT->getPointeeOrArrayElementType()->getAs<RecordType>();
8751 const RecordDecl *OrigRecDecl = RecTy->getDecl();
8752
8753 VisitStack.push_back(RecTy->getDecl());
8754 assert(VisitStack.back() && "First decl null?")((VisitStack.back() && "First decl null?") ? static_cast
<void> (0) : __assert_fail ("VisitStack.back() && \"First decl null?\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 8754, __PRETTY_FUNCTION__))
;
8755
8756 do {
8757 const Decl *Next = VisitStack.pop_back_val();
8758 if (!Next) {
8759 assert(!HistoryStack.empty())((!HistoryStack.empty()) ? static_cast<void> (0) : __assert_fail
("!HistoryStack.empty()", "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 8759, __PRETTY_FUNCTION__))
;
8760 // Found a marker, we have gone up a level
8761 if (const FieldDecl *Hist = HistoryStack.pop_back_val())
8762 ValidTypes.insert(Hist->getType().getTypePtr());
8763
8764 continue;
8765 }
8766
8767 // Adds everything except the original parameter declaration (which is not a
8768 // field itself) to the history stack.
8769 const RecordDecl *RD;
8770 if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
8771 HistoryStack.push_back(Field);
8772
8773 QualType FieldTy = Field->getType();
8774 // Other field types (known to be valid or invalid) are handled while we
8775 // walk around RecordDecl::fields().
8776 assert((FieldTy->isArrayType() || FieldTy->isRecordType()) &&(((FieldTy->isArrayType() || FieldTy->isRecordType()) &&
"Unexpected type.") ? static_cast<void> (0) : __assert_fail
("(FieldTy->isArrayType() || FieldTy->isRecordType()) && \"Unexpected type.\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 8777, __PRETTY_FUNCTION__))
8777 "Unexpected type.")(((FieldTy->isArrayType() || FieldTy->isRecordType()) &&
"Unexpected type.") ? static_cast<void> (0) : __assert_fail
("(FieldTy->isArrayType() || FieldTy->isRecordType()) && \"Unexpected type.\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 8777, __PRETTY_FUNCTION__))
;
8778 const Type *FieldRecTy = FieldTy->getPointeeOrArrayElementType();
8779
8780 RD = FieldRecTy->castAs<RecordType>()->getDecl();
8781 } else {
8782 RD = cast<RecordDecl>(Next);
8783 }
8784
8785 // Add a null marker so we know when we've gone back up a level
8786 VisitStack.push_back(nullptr);
8787
8788 for (const auto *FD : RD->fields()) {
8789 QualType QT = FD->getType();
8790
8791 if (ValidTypes.count(QT.getTypePtr()))
8792 continue;
8793
8794 OpenCLParamType ParamType = getOpenCLKernelParameterType(S, QT);
8795 if (ParamType == ValidKernelParam)
8796 continue;
8797
8798 if (ParamType == RecordKernelParam) {
8799 VisitStack.push_back(FD);
8800 continue;
8801 }
8802
8803 // OpenCL v1.2 s6.9.p:
8804 // Arguments to kernel functions that are declared to be a struct or union
8805 // do not allow OpenCL objects to be passed as elements of the struct or
8806 // union.
8807 if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
8808 ParamType == InvalidAddrSpacePtrKernelParam) {
8809 S.Diag(Param->getLocation(),
8810 diag::err_record_with_pointers_kernel_param)
8811 << PT->isUnionType()
8812 << PT;
8813 } else {
8814 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
8815 }
8816
8817 S.Diag(OrigRecDecl->getLocation(), diag::note_within_field_of_type)
8818 << OrigRecDecl->getDeclName();
8819
8820 // We have an error, now let's go back up through history and show where
8821 // the offending field came from
8822 for (ArrayRef<const FieldDecl *>::const_iterator
8823 I = HistoryStack.begin() + 1,
8824 E = HistoryStack.end();
8825 I != E; ++I) {
8826 const FieldDecl *OuterField = *I;
8827 S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
8828 << OuterField->getType();
8829 }
8830
8831 S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
8832 << QT->isPointerType()
8833 << QT;
8834 D.setInvalidType();
8835 return;
8836 }
8837 } while (!VisitStack.empty());
8838}
8839
8840/// Find the DeclContext in which a tag is implicitly declared if we see an
8841/// elaborated type specifier in the specified context, and lookup finds
8842/// nothing.
8843static DeclContext *getTagInjectionContext(DeclContext *DC) {
8844 while (!DC->isFileContext() && !DC->isFunctionOrMethod())
8845 DC = DC->getParent();
8846 return DC;
8847}
8848
8849/// Find the Scope in which a tag is implicitly declared if we see an
8850/// elaborated type specifier in the specified context, and lookup finds
8851/// nothing.
8852static Scope *getTagInjectionScope(Scope *S, const LangOptions &LangOpts) {
8853 while (S->isClassScope() ||
8854 (LangOpts.CPlusPlus &&
8855 S->isFunctionPrototypeScope()) ||
8856 ((S->getFlags() & Scope::DeclScope) == 0) ||
8857 (S->getEntity() && S->getEntity()->isTransparentContext()))
8858 S = S->getParent();
8859 return S;
8860}
8861
8862NamedDecl*
8863Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
8864 TypeSourceInfo *TInfo, LookupResult &Previous,
8865 MultiTemplateParamsArg TemplateParamListsRef,
8866 bool &AddToScope) {
8867 QualType R = TInfo->getType();
8868
8869 assert(R->isFunctionType())((R->isFunctionType()) ? static_cast<void> (0) : __assert_fail
("R->isFunctionType()", "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 8869, __PRETTY_FUNCTION__))
;
8870 if (R.getCanonicalType()->castAs<FunctionType>()->getCmseNSCallAttr())
8871 Diag(D.getIdentifierLoc(), diag::err_function_decl_cmse_ns_call);
8872
8873 SmallVector<TemplateParameterList *, 4> TemplateParamLists;
8874 for (TemplateParameterList *TPL : TemplateParamListsRef)
8875 TemplateParamLists.push_back(TPL);
8876 if (TemplateParameterList *Invented = D.getInventedTemplateParameterList()) {
8877 if (!TemplateParamLists.empty() &&
8878 Invented->getDepth() == TemplateParamLists.back()->getDepth())
8879 TemplateParamLists.back() = Invented;
8880 else
8881 TemplateParamLists.push_back(Invented);
8882 }
8883
8884 // TODO: consider using NameInfo for diagnostic.
8885 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
8886 DeclarationName Name = NameInfo.getName();
8887 StorageClass SC = getFunctionStorageClass(*this, D);
8888
8889 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
8890 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
8891 diag::err_invalid_thread)
8892 << DeclSpec::getSpecifierName(TSCS);
8893
8894 if (D.isFirstDeclarationOfMember())
8895 adjustMemberFunctionCC(R, D.isStaticMember(), D.isCtorOrDtor(),
8896 D.getIdentifierLoc());
8897
8898 bool isFriend = false;
8899 FunctionTemplateDecl *FunctionTemplate = nullptr;
8900 bool isMemberSpecialization = false;
8901 bool isFunctionTemplateSpecialization = false;
8902
8903 bool isDependentClassScopeExplicitSpecialization = false;
8904 bool HasExplicitTemplateArgs = false;
8905 TemplateArgumentListInfo TemplateArgs;
8906
8907 bool isVirtualOkay = false;
8908
8909 DeclContext *OriginalDC = DC;
8910 bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
8911
8912 FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
8913 isVirtualOkay);
8914 if (!NewFD) return nullptr;
8915
8916 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
8917 NewFD->setTopLevelDeclInObjCContainer();
8918
8919 // Set the lexical context. If this is a function-scope declaration, or has a
8920 // C++ scope specifier, or is the object of a friend declaration, the lexical
8921 // context will be different from the semantic context.
8922 NewFD->setLexicalDeclContext(CurContext);
8923
8924 if (IsLocalExternDecl)
8925 NewFD->setLocalExternDecl();
8926
8927 if (getLangOpts().CPlusPlus) {
8928 bool isInline = D.getDeclSpec().isInlineSpecified();
8929 bool isVirtual = D.getDeclSpec().isVirtualSpecified();
8930 bool hasExplicit = D.getDeclSpec().hasExplicitSpecifier();
8931 isFriend = D.getDeclSpec().isFriendSpecified();
8932 if (isFriend && !isInline && D.isFunctionDefinition()) {
8933 // C++ [class.friend]p5
8934 // A function can be defined in a friend declaration of a
8935 // class . . . . Such a function is implicitly inline.
8936 NewFD->setImplicitlyInline();
8937 }
8938
8939 // If this is a method defined in an __interface, and is not a constructor
8940 // or an overloaded operator, then set the pure flag (isVirtual will already
8941 // return true).
8942 if (const CXXRecordDecl *Parent =
8943 dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
8944 if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
8945 NewFD->setPure(true);
8946
8947 // C++ [class.union]p2
8948 // A union can have member functions, but not virtual functions.
8949 if (isVirtual && Parent->isUnion())
8950 Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union);
8951 }
8952
8953 SetNestedNameSpecifier(*this, NewFD, D);
8954 isMemberSpecialization = false;
8955 isFunctionTemplateSpecialization = false;
8956 if (D.isInvalidType())
8957 NewFD->setInvalidDecl();
8958
8959 // Match up the template parameter lists with the scope specifier, then
8960 // determine whether we have a template or a template specialization.
8961 bool Invalid = false;
8962 TemplateParameterList *TemplateParams =
8963 MatchTemplateParametersToScopeSpecifier(
8964 D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
8965 D.getCXXScopeSpec(),
8966 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
8967 ? D.getName().TemplateId
8968 : nullptr,
8969 TemplateParamLists, isFriend, isMemberSpecialization,
8970 Invalid);
8971 if (TemplateParams) {
8972 // Check that we can declare a template here.
8973 if (CheckTemplateDeclScope(S, TemplateParams))
8974 NewFD->setInvalidDecl();
8975
8976 if (TemplateParams->size() > 0) {
8977 // This is a function template
8978
8979 // A destructor cannot be a template.
8980 if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8981 Diag(NewFD->getLocation(), diag::err_destructor_template);
8982 NewFD->setInvalidDecl();
8983 }
8984
8985 // If we're adding a template to a dependent context, we may need to
8986 // rebuilding some of the types used within the template parameter list,
8987 // now that we know what the current instantiation is.
8988 if (DC->isDependentContext()) {
8989 ContextRAII SavedContext(*this, DC);
8990 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
8991 Invalid = true;
8992 }
8993
8994 FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
8995 NewFD->getLocation(),
8996 Name, TemplateParams,
8997 NewFD);
8998 FunctionTemplate->setLexicalDeclContext(CurContext);
8999 NewFD->setDescribedFunctionTemplate(FunctionTemplate);
9000
9001 // For source fidelity, store the other template param lists.
9002 if (TemplateParamLists.size() > 1) {
9003 NewFD->setTemplateParameterListsInfo(Context,
9004 ArrayRef<TemplateParameterList *>(TemplateParamLists)
9005 .drop_back(1));
9006 }
9007 } else {
9008 // This is a function template specialization.
9009 isFunctionTemplateSpecialization = true;
9010 // For source fidelity, store all the template param lists.
9011 if (TemplateParamLists.size() > 0)
9012 NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
9013
9014 // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
9015 if (isFriend) {
9016 // We want to remove the "template<>", found here.
9017 SourceRange RemoveRange = TemplateParams->getSourceRange();
9018
9019 // If we remove the template<> and the name is not a
9020 // template-id, we're actually silently creating a problem:
9021 // the friend declaration will refer to an untemplated decl,
9022 // and clearly the user wants a template specialization. So
9023 // we need to insert '<>' after the name.
9024 SourceLocation InsertLoc;
9025 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
9026 InsertLoc = D.getName().getSourceRange().getEnd();
9027 InsertLoc = getLocForEndOfToken(InsertLoc);
9028 }
9029
9030 Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
9031 << Name << RemoveRange
9032 << FixItHint::CreateRemoval(RemoveRange)
9033 << FixItHint::CreateInsertion(InsertLoc, "<>");
9034 }
9035 }
9036 } else {
9037 // Check that we can declare a template here.
9038 if (!TemplateParamLists.empty() && isMemberSpecialization &&
9039 CheckTemplateDeclScope(S, TemplateParamLists.back()))
9040 NewFD->setInvalidDecl();
9041
9042 // All template param lists were matched against the scope specifier:
9043 // this is NOT (an explicit specialization of) a template.
9044 if (TemplateParamLists.size() > 0)
9045 // For source fidelity, store all the template param lists.
9046 NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
9047 }
9048
9049 if (Invalid) {
9050 NewFD->setInvalidDecl();
9051 if (FunctionTemplate)
9052 FunctionTemplate->setInvalidDecl();
9053 }
9054
9055 // C++ [dcl.fct.spec]p5:
9056 // The virtual specifier shall only be used in declarations of
9057 // nonstatic class member functions that appear within a
9058 // member-specification of a class declaration; see 10.3.
9059 //
9060 if (isVirtual && !NewFD->isInvalidDecl()) {
9061 if (!isVirtualOkay) {
9062 Diag(D.getDeclSpec().getVirtualSpecLoc(),
9063 diag::err_virtual_non_function);
9064 } else if (!CurContext->isRecord()) {
9065 // 'virtual' was specified outside of the class.
9066 Diag(D.getDeclSpec().getVirtualSpecLoc(),
9067 diag::err_virtual_out_of_class)
9068 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
9069 } else if (NewFD->getDescribedFunctionTemplate()) {
9070 // C++ [temp.mem]p3:
9071 // A member function template shall not be virtual.
9072 Diag(D.getDeclSpec().getVirtualSpecLoc(),
9073 diag::err_virtual_member_function_template)
9074 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
9075 } else {
9076 // Okay: Add virtual to the method.
9077 NewFD->setVirtualAsWritten(true);
9078 }
9079
9080 if (getLangOpts().CPlusPlus14 &&
9081 NewFD->getReturnType()->isUndeducedType())
9082 Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
9083 }
9084
9085 if (getLangOpts().CPlusPlus14 &&
9086 (NewFD->isDependentContext() ||
9087 (isFriend && CurContext->isDependentContext())) &&
9088 NewFD->getReturnType()->isUndeducedType()) {
9089 // If the function template is referenced directly (for instance, as a
9090 // member of the current instantiation), pretend it has a dependent type.
9091 // This is not really justified by the standard, but is the only sane
9092 // thing to do.
9093 // FIXME: For a friend function, we have not marked the function as being
9094 // a friend yet, so 'isDependentContext' on the FD doesn't work.
9095 const FunctionProtoType *FPT =
9096 NewFD->getType()->castAs<FunctionProtoType>();
9097 QualType Result =
9098 SubstAutoType(FPT->getReturnType(), Context.DependentTy);
9099 NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(),
9100 FPT->getExtProtoInfo()));
9101 }
9102
9103 // C++ [dcl.fct.spec]p3:
9104 // The inline specifier shall not appear on a block scope function
9105 // declaration.
9106 if (isInline && !NewFD->isInvalidDecl()) {
9107 if (CurContext->isFunctionOrMethod()) {
9108 // 'inline' is not allowed on block scope function declaration.
9109 Diag(D.getDeclSpec().getInlineSpecLoc(),
9110 diag::err_inline_declaration_block_scope) << Name
9111 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
9112 }
9113 }
9114
9115 // C++ [dcl.fct.spec]p6:
9116 // The explicit specifier shall be used only in the declaration of a
9117 // constructor or conversion function within its class definition;
9118 // see 12.3.1 and 12.3.2.
9119 if (hasExplicit && !NewFD->isInvalidDecl() &&
9120 !isa<CXXDeductionGuideDecl>(NewFD)) {
9121 if (!CurContext->isRecord()) {
9122 // 'explicit' was specified outside of the class.
9123 Diag(D.getDeclSpec().getExplicitSpecLoc(),
9124 diag::err_explicit_out_of_class)
9125 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange());
9126 } else if (!isa<CXXConstructorDecl>(NewFD) &&
9127 !isa<CXXConversionDecl>(NewFD)) {
9128 // 'explicit' was specified on a function that wasn't a constructor
9129 // or conversion function.
9130 Diag(D.getDeclSpec().getExplicitSpecLoc(),
9131 diag::err_explicit_non_ctor_or_conv_function)
9132 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange());
9133 }
9134 }
9135
9136 ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier();
9137 if (ConstexprKind != ConstexprSpecKind::Unspecified) {
9138 // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
9139 // are implicitly inline.
9140 NewFD->setImplicitlyInline();
9141
9142 // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
9143 // be either constructors or to return a literal type. Therefore,
9144 // destructors cannot be declared constexpr.
9145 if (isa<CXXDestructorDecl>(NewFD) &&
9146 (!getLangOpts().CPlusPlus20 ||
9147 ConstexprKind == ConstexprSpecKind::Consteval)) {
9148 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor)
9149 << static_cast<int>(ConstexprKind);
9150 NewFD->setConstexprKind(getLangOpts().CPlusPlus20
9151 ? ConstexprSpecKind::Unspecified
9152 : ConstexprSpecKind::Constexpr);
9153 }
9154 // C++20 [dcl.constexpr]p2: An allocation function, or a
9155 // deallocation function shall not be declared with the consteval
9156 // specifier.
9157 if (ConstexprKind == ConstexprSpecKind::Consteval &&
9158 (NewFD->getOverloadedOperator() == OO_New ||
9159 NewFD->getOverloadedOperator() == OO_Array_New ||
9160 NewFD->getOverloadedOperator() == OO_Delete ||
9161 NewFD->getOverloadedOperator() == OO_Array_Delete)) {
9162 Diag(D.getDeclSpec().getConstexprSpecLoc(),
9163 diag::err_invalid_consteval_decl_kind)
9164 << NewFD;
9165 NewFD->setConstexprKind(ConstexprSpecKind::Constexpr);
9166 }
9167 }
9168
9169 // If __module_private__ was specified, mark the function accordingly.
9170 if (D.getDeclSpec().isModulePrivateSpecified()) {
9171 if (isFunctionTemplateSpecialization) {
9172 SourceLocation ModulePrivateLoc
9173 = D.getDeclSpec().getModulePrivateSpecLoc();
9174 Diag(ModulePrivateLoc, diag::err_module_private_specialization)
9175 << 0
9176 << FixItHint::CreateRemoval(ModulePrivateLoc);
9177 } else {
9178 NewFD->setModulePrivate();
9179 if (FunctionTemplate)
9180 FunctionTemplate->setModulePrivate();
9181 }
9182 }
9183
9184 if (isFriend) {
9185 if (FunctionTemplate) {
9186 FunctionTemplate->setObjectOfFriendDecl();
9187 FunctionTemplate->setAccess(AS_public);
9188 }
9189 NewFD->setObjectOfFriendDecl();
9190 NewFD->setAccess(AS_public);
9191 }
9192
9193 // If a function is defined as defaulted or deleted, mark it as such now.
9194 // We'll do the relevant checks on defaulted / deleted functions later.
9195 switch (D.getFunctionDefinitionKind()) {
9196 case FunctionDefinitionKind::Declaration:
9197 case FunctionDefinitionKind::Definition:
9198 break;
9199
9200 case FunctionDefinitionKind::Defaulted:
9201 NewFD->setDefaulted();
9202 break;
9203
9204 case FunctionDefinitionKind::Deleted:
9205 NewFD->setDeletedAsWritten();
9206 break;
9207 }
9208
9209 if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
9210 D.isFunctionDefinition()) {
9211 // C++ [class.mfct]p2:
9212 // A member function may be defined (8.4) in its class definition, in
9213 // which case it is an inline member function (7.1.2)
9214 NewFD->setImplicitlyInline();
9215 }
9216
9217 if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
9218 !CurContext->isRecord()) {
9219 // C++ [class.static]p1:
9220 // A data or function member of a class may be declared static
9221 // in a class definition, in which case it is a static member of
9222 // the class.
9223
9224 // Complain about the 'static' specifier if it's on an out-of-line
9225 // member function definition.
9226
9227 // MSVC permits the use of a 'static' storage specifier on an out-of-line
9228 // member function template declaration and class member template
9229 // declaration (MSVC versions before 2015), warn about this.
9230 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
9231 ((!getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
9232 cast<CXXRecordDecl>(DC)->getDescribedClassTemplate()) ||
9233 (getLangOpts().MSVCCompat && NewFD->getDescribedFunctionTemplate()))
9234 ? diag::ext_static_out_of_line : diag::err_static_out_of_line)
9235 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
9236 }
9237
9238 // C++11 [except.spec]p15:
9239 // A deallocation function with no exception-specification is treated
9240 // as if it were specified with noexcept(true).
9241 const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
9242 if ((Name.getCXXOverloadedOperator() == OO_Delete ||
9243 Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
9244 getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec())
9245 NewFD->setType(Context.getFunctionType(
9246 FPT->getReturnType(), FPT->getParamTypes(),
9247 FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept)));
9248 }
9249
9250 // Filter out previous declarations that don't match the scope.
9251 FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
9252 D.getCXXScopeSpec().isNotEmpty() ||
9253 isMemberSpecialization ||
9254 isFunctionTemplateSpecialization);
9255
9256 // Handle GNU asm-label extension (encoded as an attribute).
9257 if (Expr *E = (Expr*) D.getAsmLabel()) {
9258 // The parser guarantees this is a string.
9259 StringLiteral *SE = cast<StringLiteral>(E);
9260 NewFD->addAttr(AsmLabelAttr::Create(Context, SE->getString(),
9261 /*IsLiteralLabel=*/true,
9262 SE->getStrTokenLoc(0)));
9263 } else if (!ExtnameUndeclaredIdentifiers.empty()) {
9264 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
9265 ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
9266 if (I != ExtnameUndeclaredIdentifiers.end()) {
9267 if (isDeclExternC(NewFD)) {
9268 NewFD->addAttr(I->second);
9269 ExtnameUndeclaredIdentifiers.erase(I);
9270 } else
9271 Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied)
9272 << /*Variable*/0 << NewFD;
9273 }
9274 }
9275
9276 // Copy the parameter declarations from the declarator D to the function
9277 // declaration NewFD, if they are available. First scavenge them into Params.
9278 SmallVector<ParmVarDecl*, 16> Params;
9279 unsigned FTIIdx;
9280 if (D.isFunctionDeclarator(FTIIdx)) {
9281 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(FTIIdx).Fun;
9282
9283 // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
9284 // function that takes no arguments, not a function that takes a
9285 // single void argument.
9286 // We let through "const void" here because Sema::GetTypeForDeclarator
9287 // already checks for that case.
9288 if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
9289 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
9290 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
9291 assert(Param->getDeclContext() != NewFD && "Was set before ?")((Param->getDeclContext() != NewFD && "Was set before ?"
) ? static_cast<void> (0) : __assert_fail ("Param->getDeclContext() != NewFD && \"Was set before ?\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 9291, __PRETTY_FUNCTION__))
;
9292 Param->setDeclContext(NewFD);
9293 Params.push_back(Param);
9294
9295 if (Param->isInvalidDecl())
9296 NewFD->setInvalidDecl();
9297 }
9298 }
9299
9300 if (!getLangOpts().CPlusPlus) {
9301 // In C, find all the tag declarations from the prototype and move them
9302 // into the function DeclContext. Remove them from the surrounding tag
9303 // injection context of the function, which is typically but not always
9304 // the TU.
9305 DeclContext *PrototypeTagContext =
9306 getTagInjectionContext(NewFD->getLexicalDeclContext());
9307 for (NamedDecl *NonParmDecl : FTI.getDeclsInPrototype()) {
9308 auto *TD = dyn_cast<TagDecl>(NonParmDecl);
9309
9310 // We don't want to reparent enumerators. Look at their parent enum
9311 // instead.
9312 if (!TD) {
9313 if (auto *ECD = dyn_cast<EnumConstantDecl>(NonParmDecl))
9314 TD = cast<EnumDecl>(ECD->getDeclContext());
9315 }
9316 if (!TD)
9317 continue;
9318 DeclContext *TagDC = TD->getLexicalDeclContext();
9319 if (!TagDC->containsDecl(TD))
9320 continue;
9321 TagDC->removeDecl(TD);
9322 TD->setDeclContext(NewFD);
9323 NewFD->addDecl(TD);
9324
9325 // Preserve the lexical DeclContext if it is not the surrounding tag
9326 // injection context of the FD. In this example, the semantic context of
9327 // E will be f and the lexical context will be S, while both the
9328 // semantic and lexical contexts of S will be f:
9329 // void f(struct S { enum E { a } f; } s);
9330 if (TagDC != PrototypeTagContext)
9331 TD->setLexicalDeclContext(TagDC);
9332 }
9333 }
9334 } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
9335 // When we're declaring a function with a typedef, typeof, etc as in the
9336 // following example, we'll need to synthesize (unnamed)
9337 // parameters for use in the declaration.
9338 //
9339 // @code
9340 // typedef void fn(int);
9341 // fn f;
9342 // @endcode
9343
9344 // Synthesize a parameter for each argument type.
9345 for (const auto &AI : FT->param_types()) {
9346 ParmVarDecl *Param =
9347 BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
9348 Param->setScopeInfo(0, Params.size());
9349 Params.push_back(Param);
9350 }
9351 } else {
9352 assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&((R->isFunctionNoProtoType() && NewFD->getNumParams
() == 0 && "Should not need args for typedef of non-prototype fn"
) ? static_cast<void> (0) : __assert_fail ("R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 && \"Should not need args for typedef of non-prototype fn\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 9353, __PRETTY_FUNCTION__))
9353 "Should not need args for typedef of non-prototype fn")((R->isFunctionNoProtoType() && NewFD->getNumParams
() == 0 && "Should not need args for typedef of non-prototype fn"
) ? static_cast<void> (0) : __assert_fail ("R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 && \"Should not need args for typedef of non-prototype fn\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 9353, __PRETTY_FUNCTION__))
;
9354 }
9355
9356 // Finally, we know we have the right number of parameters, install them.
9357 NewFD->setParams(Params);
9358
9359 if (D.getDeclSpec().isNoreturnSpecified())
9360 NewFD->addAttr(C11NoReturnAttr::Create(Context,
9361 D.getDeclSpec().getNoreturnSpecLoc(),
9362 AttributeCommonInfo::AS_Keyword));
9363
9364 // Functions returning a variably modified type violate C99 6.7.5.2p2
9365 // because all functions have linkage.
9366 if (!NewFD->isInvalidDecl() &&
9367 NewFD->getReturnType()->isVariablyModifiedType()) {
9368 Diag(NewFD->getLocation(), diag::err_vm_func_decl);
9369 NewFD->setInvalidDecl();
9370 }
9371
9372 // Apply an implicit SectionAttr if '#pragma clang section text' is active
9373 if (PragmaClangTextSection.Valid && D.isFunctionDefinition() &&
9374 !NewFD->hasAttr<SectionAttr>())
9375 NewFD->addAttr(PragmaClangTextSectionAttr::CreateImplicit(
9376 Context, PragmaClangTextSection.SectionName,
9377 PragmaClangTextSection.PragmaLocation, AttributeCommonInfo::AS_Pragma));
9378
9379 // Apply an implicit SectionAttr if #pragma code_seg is active.
9380 if (CodeSegStack.CurrentValue && D.isFunctionDefinition() &&
9381 !NewFD->hasAttr<SectionAttr>()) {
9382 NewFD->addAttr(SectionAttr::CreateImplicit(
9383 Context, CodeSegStack.CurrentValue->getString(),
9384 CodeSegStack.CurrentPragmaLocation, AttributeCommonInfo::AS_Pragma,
9385 SectionAttr::Declspec_allocate));
9386 if (UnifySection(CodeSegStack.CurrentValue->getString(),
9387 ASTContext::PSF_Implicit | ASTContext::PSF_Execute |
9388 ASTContext::PSF_Read,
9389 NewFD))
9390 NewFD->dropAttr<SectionAttr>();
9391 }
9392
9393 // Apply an implicit CodeSegAttr from class declspec or
9394 // apply an implicit SectionAttr from #pragma code_seg if active.
9395 if (!NewFD->hasAttr<CodeSegAttr>()) {
9396 if (Attr *SAttr = getImplicitCodeSegOrSectionAttrForFunction(NewFD,
9397 D.isFunctionDefinition())) {
9398 NewFD->addAttr(SAttr);
9399 }
9400 }
9401
9402 // Handle attributes.
9403 ProcessDeclAttributes(S, NewFD, D);
9404
9405 if (getLangOpts().OpenCL) {
9406 // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
9407 // type declaration will generate a compilation error.
9408 LangAS AddressSpace = NewFD->getReturnType().getAddressSpace();
9409 if (AddressSpace != LangAS::Default) {
9410 Diag(NewFD->getLocation(),
9411 diag::err_opencl_return_value_with_address_space);
9412 NewFD->setInvalidDecl();
9413 }
9414 }
9415
9416 if (!getLangOpts().CPlusPlus) {
9417 // Perform semantic checking on the function declaration.
9418 if (!NewFD->isInvalidDecl() && NewFD->isMain())
9419 CheckMain(NewFD, D.getDeclSpec());
9420
9421 if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
9422 CheckMSVCRTEntryPoint(NewFD);
9423
9424 if (!NewFD->isInvalidDecl())
9425 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
9426 isMemberSpecialization));
9427 else if (!Previous.empty())
9428 // Recover gracefully from an invalid redeclaration.
9429 D.setRedeclaration(true);
9430 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||(((NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous
.getResultKind() != LookupResult::FoundOverloaded) &&
"previous declaration set still overloaded") ? static_cast<
void> (0) : __assert_fail ("(NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 9432, __PRETTY_FUNCTION__))
9431 Previous.getResultKind() != LookupResult::FoundOverloaded) &&(((NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous
.getResultKind() != LookupResult::FoundOverloaded) &&
"previous declaration set still overloaded") ? static_cast<
void> (0) : __assert_fail ("(NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 9432, __PRETTY_FUNCTION__))
9432 "previous declaration set still overloaded")(((NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous
.getResultKind() != LookupResult::FoundOverloaded) &&
"previous declaration set still overloaded") ? static_cast<
void> (0) : __assert_fail ("(NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 9432, __PRETTY_FUNCTION__))
;
9433
9434 // Diagnose no-prototype function declarations with calling conventions that
9435 // don't support variadic calls. Only do this in C and do it after merging
9436 // possibly prototyped redeclarations.
9437 const FunctionType *FT = NewFD->getType()->castAs<FunctionType>();
9438 if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) {
9439 CallingConv CC = FT->getExtInfo().getCC();
9440 if (!supportsVariadicCall(CC)) {
9441 // Windows system headers sometimes accidentally use stdcall without
9442 // (void) parameters, so we relax this to a warning.
9443 int DiagID =
9444 CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr;
9445 Diag(NewFD->getLocation(), DiagID)
9446 << FunctionType::getNameForCallConv(CC);
9447 }
9448 }
9449
9450 if (NewFD->getReturnType().hasNonTrivialToPrimitiveDestructCUnion() ||
9451 NewFD->getReturnType().hasNonTrivialToPrimitiveCopyCUnion())
9452 checkNonTrivialCUnion(NewFD->getReturnType(),
9453 NewFD->getReturnTypeSourceRange().getBegin(),
9454 NTCUC_FunctionReturn, NTCUK_Destruct|NTCUK_Copy);
9455 } else {
9456 // C++11 [replacement.functions]p3:
9457 // The program's definitions shall not be specified as inline.
9458 //
9459 // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
9460 //
9461 // Suppress the diagnostic if the function is __attribute__((used)), since
9462 // that forces an external definition to be emitted.
9463 if (D.getDeclSpec().isInlineSpecified() &&
9464 NewFD->isReplaceableGlobalAllocationFunction() &&
9465 !NewFD->hasAttr<UsedAttr>())
9466 Diag(D.getDeclSpec().getInlineSpecLoc(),
9467 diag::ext_operator_new_delete_declared_inline)
9468 << NewFD->getDeclName();
9469
9470 // If the declarator is a template-id, translate the parser's template
9471 // argument list into our AST format.
9472 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
9473 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
9474 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
9475 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
9476 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
9477 TemplateId->NumArgs);
9478 translateTemplateArguments(TemplateArgsPtr,
9479 TemplateArgs);
9480
9481 HasExplicitTemplateArgs = true;
9482
9483 if (NewFD->isInvalidDecl()) {
9484 HasExplicitTemplateArgs = false;
9485 } else if (FunctionTemplate) {
9486 // Function template with explicit template arguments.
9487 Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
9488 << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
9489
9490 HasExplicitTemplateArgs = false;
9491 } else {
9492 assert((isFunctionTemplateSpecialization ||(((isFunctionTemplateSpecialization || D.getDeclSpec().isFriendSpecified
()) && "should have a 'template<>' for this decl"
) ? static_cast<void> (0) : __assert_fail ("(isFunctionTemplateSpecialization || D.getDeclSpec().isFriendSpecified()) && \"should have a 'template<>' for this decl\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 9494, __PRETTY_FUNCTION__))
9493 D.getDeclSpec().isFriendSpecified()) &&(((isFunctionTemplateSpecialization || D.getDeclSpec().isFriendSpecified
()) && "should have a 'template<>' for this decl"
) ? static_cast<void> (0) : __assert_fail ("(isFunctionTemplateSpecialization || D.getDeclSpec().isFriendSpecified()) && \"should have a 'template<>' for this decl\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 9494, __PRETTY_FUNCTION__))
9494 "should have a 'template<>' for this decl")(((isFunctionTemplateSpecialization || D.getDeclSpec().isFriendSpecified
()) && "should have a 'template<>' for this decl"
) ? static_cast<void> (0) : __assert_fail ("(isFunctionTemplateSpecialization || D.getDeclSpec().isFriendSpecified()) && \"should have a 'template<>' for this decl\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 9494, __PRETTY_FUNCTION__))
;
9495 // "friend void foo<>(int);" is an implicit specialization decl.
9496 isFunctionTemplateSpecialization = true;
9497 }
9498 } else if (isFriend && isFunctionTemplateSpecialization) {
9499 // This combination is only possible in a recovery case; the user
9500 // wrote something like:
9501 // template <> friend void foo(int);
9502 // which we're recovering from as if the user had written:
9503 // friend void foo<>(int);
9504 // Go ahead and fake up a template id.
9505 HasExplicitTemplateArgs = true;
9506 TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
9507 TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
9508 }
9509
9510 // We do not add HD attributes to specializations here because
9511 // they may have different constexpr-ness compared to their
9512 // templates and, after maybeAddCUDAHostDeviceAttrs() is applied,
9513 // may end up with different effective targets. Instead, a
9514 // specialization inherits its target attributes from its template
9515 // in the CheckFunctionTemplateSpecialization() call below.
9516 if (getLangOpts().CUDA && !isFunctionTemplateSpecialization)
9517 maybeAddCUDAHostDeviceAttrs(NewFD, Previous);
9518
9519 // If it's a friend (and only if it's a friend), it's possible
9520 // that either the specialized function type or the specialized
9521 // template is dependent, and therefore matching will fail. In
9522 // this case, don't check the specialization yet.
9523 if (isFunctionTemplateSpecialization && isFriend &&
9524 (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
9525 TemplateSpecializationType::anyInstantiationDependentTemplateArguments(
9526 TemplateArgs.arguments()))) {
9527 assert(HasExplicitTemplateArgs &&((HasExplicitTemplateArgs && "friend function specialization without template args"
) ? static_cast<void> (0) : __assert_fail ("HasExplicitTemplateArgs && \"friend function specialization without template args\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 9528, __PRETTY_FUNCTION__))
9528 "friend function specialization without template args")((HasExplicitTemplateArgs && "friend function specialization without template args"
) ? static_cast<void> (0) : __assert_fail ("HasExplicitTemplateArgs && \"friend function specialization without template args\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 9528, __PRETTY_FUNCTION__))
;
9529 if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
9530 Previous))
9531 NewFD->setInvalidDecl();
9532 } else if (isFunctionTemplateSpecialization) {
9533 if (CurContext->isDependentContext() && CurContext->isRecord()
9534 && !isFriend) {
9535 isDependentClassScopeExplicitSpecialization = true;
9536 } else if (!NewFD->isInvalidDecl() &&
9537 CheckFunctionTemplateSpecialization(
9538 NewFD, (HasExplicitTemplateArgs ? &TemplateArgs : nullptr),
9539 Previous))
9540 NewFD->setInvalidDecl();
9541
9542 // C++ [dcl.stc]p1:
9543 // A storage-class-specifier shall not be specified in an explicit
9544 // specialization (14.7.3)
9545 FunctionTemplateSpecializationInfo *Info =
9546 NewFD->getTemplateSpecializationInfo();
9547 if (Info && SC != SC_None) {
9548 if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
9549 Diag(NewFD->getLocation(),
9550 diag::err_explicit_specialization_inconsistent_storage_class)
9551 << SC
9552 << FixItHint::CreateRemoval(
9553 D.getDeclSpec().getStorageClassSpecLoc());
9554
9555 else
9556 Diag(NewFD->getLocation(),
9557 diag::ext_explicit_specialization_storage_class)
9558 << FixItHint::CreateRemoval(
9559 D.getDeclSpec().getStorageClassSpecLoc());
9560 }
9561 } else if (isMemberSpecialization && isa<CXXMethodDecl>(NewFD)) {
9562 if (CheckMemberSpecialization(NewFD, Previous))
9563 NewFD->setInvalidDecl();
9564 }
9565
9566 // Perform semantic checking on the function declaration.
9567 if (!isDependentClassScopeExplicitSpecialization) {
9568 if (!NewFD->isInvalidDecl() && NewFD->isMain())
9569 CheckMain(NewFD, D.getDeclSpec());
9570
9571 if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
9572 CheckMSVCRTEntryPoint(NewFD);
9573
9574 if (!NewFD->isInvalidDecl())
9575 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
9576 isMemberSpecialization));
9577 else if (!Previous.empty())
9578 // Recover gracefully from an invalid redeclaration.
9579 D.setRedeclaration(true);
9580 }
9581
9582 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||(((NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous
.getResultKind() != LookupResult::FoundOverloaded) &&
"previous declaration set still overloaded") ? static_cast<
void> (0) : __assert_fail ("(NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 9584, __PRETTY_FUNCTION__))
9583 Previous.getResultKind() != LookupResult::FoundOverloaded) &&(((NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous
.getResultKind() != LookupResult::FoundOverloaded) &&
"previous declaration set still overloaded") ? static_cast<
void> (0) : __assert_fail ("(NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 9584, __PRETTY_FUNCTION__))
9584 "previous declaration set still overloaded")(((NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous
.getResultKind() != LookupResult::FoundOverloaded) &&
"previous declaration set still overloaded") ? static_cast<
void> (0) : __assert_fail ("(NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 9584, __PRETTY_FUNCTION__))
;
9585
9586 NamedDecl *PrincipalDecl = (FunctionTemplate
9587 ? cast<NamedDecl>(FunctionTemplate)
9588 : NewFD);
9589
9590 if (isFriend && NewFD->getPreviousDecl()) {
9591 AccessSpecifier Access = AS_public;
9592 if (!NewFD->isInvalidDecl())
9593 Access = NewFD->getPreviousDecl()->getAccess();
9594
9595 NewFD->setAccess(Access);
9596 if (FunctionTemplate) FunctionTemplate->setAccess(Access);
9597 }
9598
9599 if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
9600 PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
9601 PrincipalDecl->setNonMemberOperator();
9602
9603 // If we have a function template, check the template parameter
9604 // list. This will check and merge default template arguments.
9605 if (FunctionTemplate) {
9606 FunctionTemplateDecl *PrevTemplate =
9607 FunctionTemplate->getPreviousDecl();
9608 CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
9609 PrevTemplate ? PrevTemplate->getTemplateParameters()
9610 : nullptr,
9611 D.getDeclSpec().isFriendSpecified()
9612 ? (D.isFunctionDefinition()
9613 ? TPC_FriendFunctionTemplateDefinition
9614 : TPC_FriendFunctionTemplate)
9615 : (D.getCXXScopeSpec().isSet() &&
9616 DC && DC->isRecord() &&
9617 DC->isDependentContext())
9618 ? TPC_ClassTemplateMember
9619 : TPC_FunctionTemplate);
9620 }
9621
9622 if (NewFD->isInvalidDecl()) {
9623 // Ignore all the rest of this.
9624 } else if (!D.isRedeclaration()) {
9625 struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
9626 AddToScope };
9627 // Fake up an access specifier if it's supposed to be a class member.
9628 if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
9629 NewFD->setAccess(AS_public);
9630
9631 // Qualified decls generally require a previous declaration.
9632 if (D.getCXXScopeSpec().isSet()) {
9633 // ...with the major exception of templated-scope or
9634 // dependent-scope friend declarations.
9635
9636 // TODO: we currently also suppress this check in dependent
9637 // contexts because (1) the parameter depth will be off when
9638 // matching friend templates and (2) we might actually be
9639 // selecting a friend based on a dependent factor. But there
9640 // are situations where these conditions don't apply and we
9641 // can actually do this check immediately.
9642 //
9643 // Unless the scope is dependent, it's always an error if qualified
9644 // redeclaration lookup found nothing at all. Diagnose that now;
9645 // nothing will diagnose that error later.
9646 if (isFriend &&
9647 (D.getCXXScopeSpec().getScopeRep()->isDependent() ||
9648 (!Previous.empty() && CurContext->isDependentContext()))) {
9649 // ignore these
9650 } else {
9651 // The user tried to provide an out-of-line definition for a
9652 // function that is a member of a class or namespace, but there
9653 // was no such member function declared (C++ [class.mfct]p2,
9654 // C++ [namespace.memdef]p2). For example:
9655 //
9656 // class X {
9657 // void f() const;
9658 // };
9659 //
9660 // void X::f() { } // ill-formed
9661 //
9662 // Complain about this problem, and attempt to suggest close
9663 // matches (e.g., those that differ only in cv-qualifiers and
9664 // whether the parameter types are references).
9665
9666 if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
9667 *this, Previous, NewFD, ExtraArgs, false, nullptr)) {
9668 AddToScope = ExtraArgs.AddToScope;
9669 return Result;
9670 }
9671 }
9672
9673 // Unqualified local friend declarations are required to resolve
9674 // to something.
9675 } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
9676 if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
9677 *this, Previous, NewFD, ExtraArgs, true, S)) {
9678 AddToScope = ExtraArgs.AddToScope;
9679 return Result;
9680 }
9681 }
9682 } else if (!D.isFunctionDefinition() &&
9683 isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
9684 !isFriend && !isFunctionTemplateSpecialization &&
9685 !isMemberSpecialization) {
9686 // An out-of-line member function declaration must also be a
9687 // definition (C++ [class.mfct]p2).
9688 // Note that this is not the case for explicit specializations of
9689 // function templates or member functions of class templates, per
9690 // C++ [temp.expl.spec]p2. We also allow these declarations as an
9691 // extension for compatibility with old SWIG code which likes to
9692 // generate them.
9693 Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
9694 << D.getCXXScopeSpec().getRange();
9695 }
9696 }
9697
9698 // If this is the first declaration of a library builtin function, add
9699 // attributes as appropriate.
9700 if (!D.isRedeclaration() &&
9701 NewFD->getDeclContext()->getRedeclContext()->isFileContext()) {
9702 if (IdentifierInfo *II = Previous.getLookupName().getAsIdentifierInfo()) {
9703 if (unsigned BuiltinID = II->getBuiltinID()) {
9704 if (NewFD->getLanguageLinkage() == CLanguageLinkage) {
9705 // Validate the type matches unless this builtin is specified as
9706 // matching regardless of its declared type.
9707 if (Context.BuiltinInfo.allowTypeMismatch(BuiltinID)) {
9708 NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID));
9709 } else {
9710 ASTContext::GetBuiltinTypeError Error;
9711 LookupNecessaryTypesForBuiltin(S, BuiltinID);
9712 QualType BuiltinType = Context.GetBuiltinType(BuiltinID, Error);
9713
9714 if (!Error && !BuiltinType.isNull() &&
9715 Context.hasSameFunctionTypeIgnoringExceptionSpec(
9716 NewFD->getType(), BuiltinType))
9717 NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID));
9718 }
9719 } else if (BuiltinID == Builtin::BI__GetExceptionInfo &&
9720 Context.getTargetInfo().getCXXABI().isMicrosoft()) {
9721 // FIXME: We should consider this a builtin only in the std namespace.
9722 NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID));
9723 }
9724 }
9725 }
9726 }
9727
9728 ProcessPragmaWeak(S, NewFD);
9729 checkAttributesAfterMerging(*this, *NewFD);
9730
9731 AddKnownFunctionAttributes(NewFD);
9732
9733 if (NewFD->hasAttr<OverloadableAttr>() &&
9734 !NewFD->getType()->getAs<FunctionProtoType>()) {
9735 Diag(NewFD->getLocation(),
9736 diag::err_attribute_overloadable_no_prototype)
9737 << NewFD;
9738
9739 // Turn this into a variadic function with no parameters.
9740 const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
9741 FunctionProtoType::ExtProtoInfo EPI(
9742 Context.getDefaultCallingConvention(true, false));
9743 EPI.Variadic = true;
9744 EPI.ExtInfo = FT->getExtInfo();
9745
9746 QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI);
9747 NewFD->setType(R);
9748 }
9749
9750 // If there's a #pragma GCC visibility in scope, and this isn't a class
9751 // member, set the visibility of this function.
9752 if (!DC->isRecord() && NewFD->isExternallyVisible())
9753 AddPushedVisibilityAttribute(NewFD);
9754
9755 // If there's a #pragma clang arc_cf_code_audited in scope, consider
9756 // marking the function.
9757 AddCFAuditedAttribute(NewFD);
9758
9759 // If this is a function definition, check if we have to apply optnone due to
9760 // a pragma.
9761 if(D.isFunctionDefinition())
9762 AddRangeBasedOptnone(NewFD);
9763
9764 // If this is the first declaration of an extern C variable, update
9765 // the map of such variables.
9766 if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
9767 isIncompleteDeclExternC(*this, NewFD))
9768 RegisterLocallyScopedExternCDecl(NewFD, S);
9769
9770 // Set this FunctionDecl's range up to the right paren.
9771 NewFD->setRangeEnd(D.getSourceRange().getEnd());
9772
9773 if (D.isRedeclaration() && !Previous.empty()) {
9774 NamedDecl *Prev = Previous.getRepresentativeDecl();
9775 checkDLLAttributeRedeclaration(*this, Prev, NewFD,
9776 isMemberSpecialization ||
9777 isFunctionTemplateSpecialization,
9778 D.isFunctionDefinition());
9779 }
9780
9781 if (getLangOpts().CUDA) {
9782 IdentifierInfo *II = NewFD->getIdentifier();
9783 if (II && II->isStr(getCudaConfigureFuncName()) &&
9784 !NewFD->isInvalidDecl() &&
9785 NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
9786 if (!R->getAs<FunctionType>()->getReturnType()->isScalarType())
9787 Diag(NewFD->getLocation(), diag::err_config_scalar_return)
9788 << getCudaConfigureFuncName();
9789 Context.setcudaConfigureCallDecl(NewFD);
9790 }
9791
9792 // Variadic functions, other than a *declaration* of printf, are not allowed
9793 // in device-side CUDA code, unless someone passed
9794 // -fcuda-allow-variadic-functions.
9795 if (!getLangOpts().CUDAAllowVariadicFunctions && NewFD->isVariadic() &&
9796 (NewFD->hasAttr<CUDADeviceAttr>() ||
9797 NewFD->hasAttr<CUDAGlobalAttr>()) &&
9798 !(II && II->isStr("printf") && NewFD->isExternC() &&
9799 !D.isFunctionDefinition())) {
9800 Diag(NewFD->getLocation(), diag::err_variadic_device_fn);
9801 }
9802 }
9803
9804 MarkUnusedFileScopedDecl(NewFD);
9805
9806
9807
9808 if (getLangOpts().OpenCL && NewFD->hasAttr<OpenCLKernelAttr>()) {
9809 // OpenCL v1.2 s6.8 static is invalid for kernel functions.
9810 if ((getLangOpts().OpenCLVersion >= 120)
9811 && (SC == SC_Static)) {
9812 Diag(D.getIdentifierLoc(), diag::err_static_kernel);
9813 D.setInvalidType();
9814 }
9815
9816 // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
9817 if (!NewFD->getReturnType()->isVoidType()) {
9818 SourceRange RTRange = NewFD->getReturnTypeSourceRange();
9819 Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
9820 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
9821 : FixItHint());
9822 D.setInvalidType();
9823 }
9824
9825 llvm::SmallPtrSet<const Type *, 16> ValidTypes;
9826 for (auto Param : NewFD->parameters())
9827 checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
9828
9829 if (getLangOpts().OpenCLCPlusPlus) {
9830 if (DC->isRecord()) {
9831 Diag(D.getIdentifierLoc(), diag::err_method_kernel);
9832 D.setInvalidType();
9833 }
9834 if (FunctionTemplate) {
9835 Diag(D.getIdentifierLoc(), diag::err_template_kernel);
9836 D.setInvalidType();
9837 }
9838 }
9839 }
9840
9841 if (getLangOpts().CPlusPlus) {
9842 if (FunctionTemplate) {
9843 if (NewFD->isInvalidDecl())
9844 FunctionTemplate->setInvalidDecl();
9845 return FunctionTemplate;
9846 }
9847
9848 if (isMemberSpecialization && !NewFD->isInvalidDecl())
9849 CompleteMemberSpecialization(NewFD, Previous);
9850 }
9851
9852 for (const ParmVarDecl *Param : NewFD->parameters()) {
9853 QualType PT = Param->getType();
9854
9855 // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value
9856 // types.
9857 if (getLangOpts().OpenCLVersion >= 200 || getLangOpts().OpenCLCPlusPlus) {
9858 if(const PipeType *PipeTy = PT->getAs<PipeType>()) {
9859 QualType ElemTy = PipeTy->getElementType();
9860 if (ElemTy->isReferenceType() || ElemTy->isPointerType()) {
9861 Diag(Param->getTypeSpecStartLoc(), diag::err_reference_pipe_type );
9862 D.setInvalidType();
9863 }
9864 }
9865 }
9866 }
9867
9868 // Here we have an function template explicit specialization at class scope.
9869 // The actual specialization will be postponed to template instatiation
9870 // time via the ClassScopeFunctionSpecializationDecl node.
9871 if (isDependentClassScopeExplicitSpecialization) {
9872 ClassScopeFunctionSpecializationDecl *NewSpec =
9873 ClassScopeFunctionSpecializationDecl::Create(
9874 Context, CurContext, NewFD->getLocation(),
9875 cast<CXXMethodDecl>(NewFD),
9876 HasExplicitTemplateArgs, TemplateArgs);
9877 CurContext->addDecl(NewSpec);
9878 AddToScope = false;
9879 }
9880
9881 // Diagnose availability attributes. Availability cannot be used on functions
9882 // that are run during load/unload.
9883 if (const auto *attr = NewFD->getAttr<AvailabilityAttr>()) {
9884 if (NewFD->hasAttr<ConstructorAttr>()) {
9885 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
9886 << 1;
9887 NewFD->dropAttr<AvailabilityAttr>();
9888 }
9889 if (NewFD->hasAttr<DestructorAttr>()) {
9890 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
9891 << 2;
9892 NewFD->dropAttr<AvailabilityAttr>();
9893 }
9894 }
9895
9896 // Diagnose no_builtin attribute on function declaration that are not a
9897 // definition.
9898 // FIXME: We should really be doing this in
9899 // SemaDeclAttr.cpp::handleNoBuiltinAttr, unfortunately we only have access to
9900 // the FunctionDecl and at this point of the code
9901 // FunctionDecl::isThisDeclarationADefinition() which always returns `false`
9902 // because Sema::ActOnStartOfFunctionDef has not been called yet.
9903 if (const auto *NBA = NewFD->getAttr<NoBuiltinAttr>())
9904 switch (D.getFunctionDefinitionKind()) {
9905 case FunctionDefinitionKind::Defaulted:
9906 case FunctionDefinitionKind::Deleted:
9907 Diag(NBA->getLocation(),
9908 diag::err_attribute_no_builtin_on_defaulted_deleted_function)
9909 << NBA->getSpelling();
9910 break;
9911 case FunctionDefinitionKind::Declaration:
9912 Diag(NBA->getLocation(), diag::err_attribute_no_builtin_on_non_definition)
9913 << NBA->getSpelling();
9914 break;
9915 case FunctionDefinitionKind::Definition:
9916 break;
9917 }
9918
9919 return NewFD;
9920}
9921
9922/// Return a CodeSegAttr from a containing class. The Microsoft docs say
9923/// when __declspec(code_seg) "is applied to a class, all member functions of
9924/// the class and nested classes -- this includes compiler-generated special
9925/// member functions -- are put in the specified segment."
9926/// The actual behavior is a little more complicated. The Microsoft compiler
9927/// won't check outer classes if there is an active value from #pragma code_seg.
9928/// The CodeSeg is always applied from the direct parent but only from outer
9929/// classes when the #pragma code_seg stack is empty. See:
9930/// https://reviews.llvm.org/D22931, the Microsoft feedback page is no longer
9931/// available since MS has removed the page.
9932static Attr *getImplicitCodeSegAttrFromClass(Sema &S, const FunctionDecl *FD) {
9933 const auto *Method = dyn_cast<CXXMethodDecl>(FD);
9934 if (!Method)
9935 return nullptr;
9936 const CXXRecordDecl *Parent = Method->getParent();
9937 if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
9938 Attr *NewAttr = SAttr->clone(S.getASTContext());
9939 NewAttr->setImplicit(true);
9940 return NewAttr;
9941 }
9942
9943 // The Microsoft compiler won't check outer classes for the CodeSeg
9944 // when the #pragma code_seg stack is active.
9945 if (S.CodeSegStack.CurrentValue)
9946 return nullptr;
9947
9948 while ((Parent = dyn_cast<CXXRecordDecl>(Parent->getParent()))) {
9949 if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
9950 Attr *NewAttr = SAttr->clone(S.getASTContext());
9951 NewAttr->setImplicit(true);
9952 return NewAttr;
9953 }
9954 }
9955 return nullptr;
9956}
9957
9958/// Returns an implicit CodeSegAttr if a __declspec(code_seg) is found on a
9959/// containing class. Otherwise it will return implicit SectionAttr if the
9960/// function is a definition and there is an active value on CodeSegStack
9961/// (from the current #pragma code-seg value).
9962///
9963/// \param FD Function being declared.
9964/// \param IsDefinition Whether it is a definition or just a declarartion.
9965/// \returns A CodeSegAttr or SectionAttr to apply to the function or
9966/// nullptr if no attribute should be added.
9967Attr *Sema::getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD,
9968 bool IsDefinition) {
9969 if (Attr *A = getImplicitCodeSegAttrFromClass(*this, FD))
9970 return A;
9971 if (!FD->hasAttr<SectionAttr>() && IsDefinition &&
9972 CodeSegStack.CurrentValue)
9973 return SectionAttr::CreateImplicit(
9974 getASTContext(), CodeSegStack.CurrentValue->getString(),
9975 CodeSegStack.CurrentPragmaLocation, AttributeCommonInfo::AS_Pragma,
9976 SectionAttr::Declspec_allocate);
9977 return nullptr;
9978}
9979
9980/// Determines if we can perform a correct type check for \p D as a
9981/// redeclaration of \p PrevDecl. If not, we can generally still perform a
9982/// best-effort check.
9983///
9984/// \param NewD The new declaration.
9985/// \param OldD The old declaration.
9986/// \param NewT The portion of the type of the new declaration to check.
9987/// \param OldT The portion of the type of the old declaration to check.
9988bool Sema::canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD,
9989 QualType NewT, QualType OldT) {
9990 if (!NewD->getLexicalDeclContext()->isDependentContext())
60
Assuming the condition is false
61
Taking false branch
9991 return true;
9992
9993 // For dependently-typed local extern declarations and friends, we can't
9994 // perform a correct type check in general until instantiation:
9995 //
9996 // int f();
9997 // template<typename T> void g() { T f(); }
9998 //
9999 // (valid if g() is only instantiated with T = int).
10000 if (NewT->isDependentType() &&
62
Assuming the condition is false
10001 (NewD->isLocalExternDecl() || NewD->getFriendObjectKind()))
10002 return false;
10003
10004 // Similarly, if the previous declaration was a dependent local extern
10005 // declaration, we don't really know its type yet.
10006 if (OldT->isDependentType() && OldD->isLocalExternDecl())
63
Assuming the condition is false
10007 return false;
10008
10009 return true;
64
Returning the value 1, which participates in a condition later
10010}
10011
10012/// Checks if the new declaration declared in dependent context must be
10013/// put in the same redeclaration chain as the specified declaration.
10014///
10015/// \param D Declaration that is checked.
10016/// \param PrevDecl Previous declaration found with proper lookup method for the
10017/// same declaration name.
10018/// \returns True if D must be added to the redeclaration chain which PrevDecl
10019/// belongs to.
10020///
10021bool Sema::shouldLinkDependentDeclWithPrevious(Decl *D, Decl *PrevDecl) {
10022 if (!D->getLexicalDeclContext()->isDependentContext())
10023 return true;
10024
10025 // Don't chain dependent friend function definitions until instantiation, to
10026 // permit cases like
10027 //
10028 // void func();
10029 // template<typename T> class C1 { friend void func() {} };
10030 // template<typename T> class C2 { friend void func() {} };
10031 //
10032 // ... which is valid if only one of C1 and C2 is ever instantiated.
10033 //
10034 // FIXME: This need only apply to function definitions. For now, we proxy
10035 // this by checking for a file-scope function. We do not want this to apply
10036 // to friend declarations nominating member functions, because that gets in
10037 // the way of access checks.
10038 if (D->getFriendObjectKind() && D->getDeclContext()->isFileContext())
10039 return false;
10040
10041 auto *VD = dyn_cast<ValueDecl>(D);
10042 auto *PrevVD = dyn_cast<ValueDecl>(PrevDecl);
10043 return !VD || !PrevVD ||
10044 canFullyTypeCheckRedeclaration(VD, PrevVD, VD->getType(),
10045 PrevVD->getType());
10046}
10047
10048/// Check the target attribute of the function for MultiVersion
10049/// validity.
10050///
10051/// Returns true if there was an error, false otherwise.
10052static bool CheckMultiVersionValue(Sema &S, const FunctionDecl *FD) {
10053 const auto *TA = FD->getAttr<TargetAttr>();
10054 assert(TA && "MultiVersion Candidate requires a target attribute")((TA && "MultiVersion Candidate requires a target attribute"
) ? static_cast<void> (0) : __assert_fail ("TA && \"MultiVersion Candidate requires a target attribute\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 10054, __PRETTY_FUNCTION__))
;
10055 ParsedTargetAttr ParseInfo = TA->parse();
10056 const TargetInfo &TargetInfo = S.Context.getTargetInfo();
10057 enum ErrType { Feature = 0, Architecture = 1 };
10058
10059 if (!ParseInfo.Architecture.empty() &&
10060 !TargetInfo.validateCpuIs(ParseInfo.Architecture)) {
10061 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
10062 << Architecture << ParseInfo.Architecture;
10063 return true;
10064 }
10065
10066 for (const auto &Feat : ParseInfo.Features) {
10067 auto BareFeat = StringRef{Feat}.substr(1);
10068 if (Feat[0] == '-') {
10069 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
10070 << Feature << ("no-" + BareFeat).str();
10071 return true;
10072 }
10073
10074 if (!TargetInfo.validateCpuSupports(BareFeat) ||
10075 !TargetInfo.isValidFeatureName(BareFeat)) {
10076 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
10077 << Feature << BareFeat;
10078 return true;
10079 }
10080 }
10081 return false;
10082}
10083
10084// Provide a white-list of attributes that are allowed to be combined with
10085// multiversion functions.
10086static bool AttrCompatibleWithMultiVersion(attr::Kind Kind,
10087 MultiVersionKind MVType) {
10088 // Note: this list/diagnosis must match the list in
10089 // checkMultiversionAttributesAllSame.
10090 switch (Kind) {
10091 default:
10092 return false;
10093 case attr::Used:
10094 return MVType == MultiVersionKind::Target;
10095 case attr::NonNull:
10096 case attr::NoThrow:
10097 return true;
10098 }
10099}
10100
10101static bool checkNonMultiVersionCompatAttributes(Sema &S,
10102 const FunctionDecl *FD,
10103 const FunctionDecl *CausedFD,
10104 MultiVersionKind MVType) {
10105 bool IsCPUSpecificCPUDispatchMVType =
10106 MVType == MultiVersionKind::CPUDispatch ||
10107 MVType == MultiVersionKind::CPUSpecific;
10108 const auto Diagnose = [FD, CausedFD, IsCPUSpecificCPUDispatchMVType](
10109 Sema &S, const Attr *A) {
10110 S.Diag(FD->getLocation(), diag::err_multiversion_disallowed_other_attr)
10111 << IsCPUSpecificCPUDispatchMVType << A;
10112 if (CausedFD)
10113 S.Diag(CausedFD->getLocation(), diag::note_multiversioning_caused_here);
10114 return true;
10115 };
10116
10117 for (const Attr *A : FD->attrs()) {
10118 switch (A->getKind()) {
10119 case attr::CPUDispatch:
10120 case attr::CPUSpecific:
10121 if (MVType != MultiVersionKind::CPUDispatch &&
10122 MVType != MultiVersionKind::CPUSpecific)
10123 return Diagnose(S, A);
10124 break;
10125 case attr::Target:
10126 if (MVType != MultiVersionKind::Target)
10127 return Diagnose(S, A);
10128 break;
10129 default:
10130 if (!AttrCompatibleWithMultiVersion(A->getKind(), MVType))
10131 return Diagnose(S, A);
10132 break;
10133 }
10134 }
10135 return false;
10136}
10137
10138bool Sema::areMultiversionVariantFunctionsCompatible(
10139 const FunctionDecl *OldFD, const FunctionDecl *NewFD,
10140 const PartialDiagnostic &NoProtoDiagID,
10141 const PartialDiagnosticAt &NoteCausedDiagIDAt,
10142 const PartialDiagnosticAt &NoSupportDiagIDAt,
10143 const PartialDiagnosticAt &DiffDiagIDAt, bool TemplatesSupported,
10144 bool ConstexprSupported, bool CLinkageMayDiffer) {
10145 enum DoesntSupport {
10146 FuncTemplates = 0,
10147 VirtFuncs = 1,
10148 DeducedReturn = 2,
10149 Constructors = 3,
10150 Destructors = 4,
10151 DeletedFuncs = 5,
10152 DefaultedFuncs = 6,
10153 ConstexprFuncs = 7,
10154 ConstevalFuncs = 8,
10155 };
10156 enum Different {
10157 CallingConv = 0,
10158 ReturnType = 1,
10159 ConstexprSpec = 2,
10160 InlineSpec = 3,
10161 StorageClass = 4,
10162 Linkage = 5,
10163 };
10164
10165 if (NoProtoDiagID.getDiagID() != 0 && OldFD &&
10166 !OldFD->getType()->getAs<FunctionProtoType>()) {
10167 Diag(OldFD->getLocation(), NoProtoDiagID);
10168 Diag(NoteCausedDiagIDAt.first, NoteCausedDiagIDAt.second);
10169 return true;
10170 }
10171
10172 if (NoProtoDiagID.getDiagID() != 0 &&
10173 !NewFD->getType()->getAs<FunctionProtoType>())
10174 return Diag(NewFD->getLocation(), NoProtoDiagID);
10175
10176 if (!TemplatesSupported &&
10177 NewFD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
10178 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10179 << FuncTemplates;
10180
10181 if (const auto *NewCXXFD = dyn_cast<CXXMethodDecl>(NewFD)) {
10182 if (NewCXXFD->isVirtual())
10183 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10184 << VirtFuncs;
10185
10186 if (isa<CXXConstructorDecl>(NewCXXFD))
10187 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10188 << Constructors;
10189
10190 if (isa<CXXDestructorDecl>(NewCXXFD))
10191 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10192 << Destructors;
10193 }
10194
10195 if (NewFD->isDeleted())
10196 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10197 << DeletedFuncs;
10198
10199 if (NewFD->isDefaulted())
10200 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10201 << DefaultedFuncs;
10202
10203 if (!ConstexprSupported && NewFD->isConstexpr())
10204 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10205 << (NewFD->isConsteval() ? ConstevalFuncs : ConstexprFuncs);
10206
10207 QualType NewQType = Context.getCanonicalType(NewFD->getType());
10208 const auto *NewType = cast<FunctionType>(NewQType);
10209 QualType NewReturnType = NewType->getReturnType();
10210
10211 if (NewReturnType->isUndeducedType())
10212 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
10213 << DeducedReturn;
10214
10215 // Ensure the return type is identical.
10216 if (OldFD) {
10217 QualType OldQType = Context.getCanonicalType(OldFD->getType());
10218 const auto *OldType = cast<FunctionType>(OldQType);
10219 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
10220 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
10221
10222 if (OldTypeInfo.getCC() != NewTypeInfo.getCC())
10223 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << CallingConv;
10224
10225 QualType OldReturnType = OldType->getReturnType();
10226
10227 if (OldReturnType != NewReturnType)
10228 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ReturnType;
10229
10230 if (OldFD->getConstexprKind() != NewFD->getConstexprKind())
10231 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ConstexprSpec;
10232
10233 if (OldFD->isInlineSpecified() != NewFD->isInlineSpecified())
10234 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << InlineSpec;
10235
10236 if (OldFD->getStorageClass() != NewFD->getStorageClass())
10237 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << StorageClass;
10238
10239 if (!CLinkageMayDiffer && OldFD->isExternC() != NewFD->isExternC())
10240 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << Linkage;
10241
10242 if (CheckEquivalentExceptionSpec(
10243 OldFD->getType()->getAs<FunctionProtoType>(), OldFD->getLocation(),
10244 NewFD->getType()->getAs<FunctionProtoType>(), NewFD->getLocation()))
10245 return true;
10246 }
10247 return false;
10248}
10249
10250static bool CheckMultiVersionAdditionalRules(Sema &S, const FunctionDecl *OldFD,
10251 const FunctionDecl *NewFD,
10252 bool CausesMV,
10253 MultiVersionKind MVType) {
10254 if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
10255 S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
10256 if (OldFD)
10257 S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
10258 return true;
10259 }
10260
10261 bool IsCPUSpecificCPUDispatchMVType =
10262 MVType == MultiVersionKind::CPUDispatch ||
10263 MVType == MultiVersionKind::CPUSpecific;
10264
10265 if (CausesMV && OldFD &&
10266 checkNonMultiVersionCompatAttributes(S, OldFD, NewFD, MVType))
10267 return true;
10268
10269 if (checkNonMultiVersionCompatAttributes(S, NewFD, nullptr, MVType))
10270 return true;
10271
10272 // Only allow transition to MultiVersion if it hasn't been used.
10273 if (OldFD && CausesMV && OldFD->isUsed(false))
10274 return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used);
10275
10276 return S.areMultiversionVariantFunctionsCompatible(
10277 OldFD, NewFD, S.PDiag(diag::err_multiversion_noproto),
10278 PartialDiagnosticAt(NewFD->getLocation(),
10279 S.PDiag(diag::note_multiversioning_caused_here)),
10280 PartialDiagnosticAt(NewFD->getLocation(),
10281 S.PDiag(diag::err_multiversion_doesnt_support)
10282 << IsCPUSpecificCPUDispatchMVType),
10283 PartialDiagnosticAt(NewFD->getLocation(),
10284 S.PDiag(diag::err_multiversion_diff)),
10285 /*TemplatesSupported=*/false,
10286 /*ConstexprSupported=*/!IsCPUSpecificCPUDispatchMVType,
10287 /*CLinkageMayDiffer=*/false);
10288}
10289
10290/// Check the validity of a multiversion function declaration that is the
10291/// first of its kind. Also sets the multiversion'ness' of the function itself.
10292///
10293/// This sets NewFD->isInvalidDecl() to true if there was an error.
10294///
10295/// Returns true if there was an error, false otherwise.
10296static bool CheckMultiVersionFirstFunction(Sema &S, FunctionDecl *FD,
10297 MultiVersionKind MVType,
10298 const TargetAttr *TA) {
10299 assert(MVType != MultiVersionKind::None &&((MVType != MultiVersionKind::None && "Function lacks multiversion attribute"
) ? static_cast<void> (0) : __assert_fail ("MVType != MultiVersionKind::None && \"Function lacks multiversion attribute\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 10300, __PRETTY_FUNCTION__))
10300 "Function lacks multiversion attribute")((MVType != MultiVersionKind::None && "Function lacks multiversion attribute"
) ? static_cast<void> (0) : __assert_fail ("MVType != MultiVersionKind::None && \"Function lacks multiversion attribute\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 10300, __PRETTY_FUNCTION__))
;
10301
10302 // Target only causes MV if it is default, otherwise this is a normal
10303 // function.
10304 if (MVType == MultiVersionKind::Target && !TA->isDefaultVersion())
10305 return false;
10306
10307 if (MVType == MultiVersionKind::Target && CheckMultiVersionValue(S, FD)) {
10308 FD->setInvalidDecl();
10309 return true;
10310 }
10311
10312 if (CheckMultiVersionAdditionalRules(S, nullptr, FD, true, MVType)) {
10313 FD->setInvalidDecl();
10314 return true;
10315 }
10316
10317 FD->setIsMultiVersion();
10318 return false;
10319}
10320
10321static bool PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl *FD) {
10322 for (const Decl *D = FD->getPreviousDecl(); D; D = D->getPreviousDecl()) {
10323 if (D->getAsFunction()->getMultiVersionKind() != MultiVersionKind::None)
10324 return true;
10325 }
10326
10327 return false;
10328}
10329
10330static bool CheckTargetCausesMultiVersioning(
10331 Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD, const TargetAttr *NewTA,
10332 bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious,
10333 LookupResult &Previous) {
10334 const auto *OldTA = OldFD->getAttr<TargetAttr>();
10335 ParsedTargetAttr NewParsed = NewTA->parse();
10336 // Sort order doesn't matter, it just needs to be consistent.
10337 llvm::sort(NewParsed.Features);
10338
10339 // If the old decl is NOT MultiVersioned yet, and we don't cause that
10340 // to change, this is a simple redeclaration.
10341 if (!NewTA->isDefaultVersion() &&
10342 (!OldTA || OldTA->getFeaturesStr() == NewTA->getFeaturesStr()))
10343 return false;
10344
10345 // Otherwise, this decl causes MultiVersioning.
10346 if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
10347 S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
10348 S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
10349 NewFD->setInvalidDecl();
10350 return true;
10351 }
10352
10353 if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, true,
10354 MultiVersionKind::Target)) {
10355 NewFD->setInvalidDecl();
10356 return true;
10357 }
10358
10359 if (CheckMultiVersionValue(S, NewFD)) {
10360 NewFD->setInvalidDecl();
10361 return true;
10362 }
10363
10364 // If this is 'default', permit the forward declaration.
10365 if (!OldFD->isMultiVersion() && !OldTA && NewTA->isDefaultVersion()) {
10366 Redeclaration = true;
10367 OldDecl = OldFD;
10368 OldFD->setIsMultiVersion();
10369 NewFD->setIsMultiVersion();
10370 return false;
10371 }
10372
10373 if (CheckMultiVersionValue(S, OldFD)) {
10374 S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
10375 NewFD->setInvalidDecl();
10376 return true;
10377 }
10378
10379 ParsedTargetAttr OldParsed = OldTA->parse(std::less<std::string>());
10380
10381 if (OldParsed == NewParsed) {
10382 S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
10383 S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
10384 NewFD->setInvalidDecl();
10385 return true;
10386 }
10387
10388 for (const auto *FD : OldFD->redecls()) {
10389 const auto *CurTA = FD->getAttr<TargetAttr>();
10390 // We allow forward declarations before ANY multiversioning attributes, but
10391 // nothing after the fact.
10392 if (PreviousDeclsHaveMultiVersionAttribute(FD) &&
10393 (!CurTA || CurTA->isInherited())) {
10394 S.Diag(FD->getLocation(), diag::err_multiversion_required_in_redecl)
10395 << 0;
10396 S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
10397 NewFD->setInvalidDecl();
10398 return true;
10399 }
10400 }
10401
10402 OldFD->setIsMultiVersion();
10403 NewFD->setIsMultiVersion();
10404 Redeclaration = false;
10405 MergeTypeWithPrevious = false;
10406 OldDecl = nullptr;
10407 Previous.clear();
10408 return false;
10409}
10410
10411/// Check the validity of a new function declaration being added to an existing
10412/// multiversioned declaration collection.
10413static bool CheckMultiVersionAdditionalDecl(
10414 Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD,
10415 MultiVersionKind NewMVType, const TargetAttr *NewTA,
10416 const CPUDispatchAttr *NewCPUDisp, const CPUSpecificAttr *NewCPUSpec,
10417 bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious,
10418 LookupResult &Previous) {
10419
10420 MultiVersionKind OldMVType = OldFD->getMultiVersionKind();
10421 // Disallow mixing of multiversioning types.
10422 if ((OldMVType == MultiVersionKind::Target &&
10423 NewMVType != MultiVersionKind::Target) ||
10424 (NewMVType == MultiVersionKind::Target &&
10425 OldMVType != MultiVersionKind::Target)) {
10426 S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
10427 S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
10428 NewFD->setInvalidDecl();
10429 return true;
10430 }
10431
10432 ParsedTargetAttr NewParsed;
10433 if (NewTA) {
10434 NewParsed = NewTA->parse();
10435 llvm::sort(NewParsed.Features);
10436 }
10437
10438 bool UseMemberUsingDeclRules =
10439 S.CurContext->isRecord() && !NewFD->getFriendObjectKind();
10440
10441 // Next, check ALL non-overloads to see if this is a redeclaration of a
10442 // previous member of the MultiVersion set.
10443 for (NamedDecl *ND : Previous) {
10444 FunctionDecl *CurFD = ND->getAsFunction();
10445 if (!CurFD)
10446 continue;
10447 if (S.IsOverload(NewFD, CurFD, UseMemberUsingDeclRules))
10448 continue;
10449
10450 if (NewMVType == MultiVersionKind::Target) {
10451 const auto *CurTA = CurFD->getAttr<TargetAttr>();
10452 if (CurTA->getFeaturesStr() == NewTA->getFeaturesStr()) {
10453 NewFD->setIsMultiVersion();
10454 Redeclaration = true;
10455 OldDecl = ND;
10456 return false;
10457 }
10458
10459 ParsedTargetAttr CurParsed = CurTA->parse(std::less<std::string>());
10460 if (CurParsed == NewParsed) {
10461 S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
10462 S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
10463 NewFD->setInvalidDecl();
10464 return true;
10465 }
10466 } else {
10467 const auto *CurCPUSpec = CurFD->getAttr<CPUSpecificAttr>();
10468 const auto *CurCPUDisp = CurFD->getAttr<CPUDispatchAttr>();
10469 // Handle CPUDispatch/CPUSpecific versions.
10470 // Only 1 CPUDispatch function is allowed, this will make it go through
10471 // the redeclaration errors.
10472 if (NewMVType == MultiVersionKind::CPUDispatch &&
10473 CurFD->hasAttr<CPUDispatchAttr>()) {
10474 if (CurCPUDisp->cpus_size() == NewCPUDisp->cpus_size() &&
10475 std::equal(
10476 CurCPUDisp->cpus_begin(), CurCPUDisp->cpus_end(),
10477 NewCPUDisp->cpus_begin(),
10478 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
10479 return Cur->getName() == New->getName();
10480 })) {
10481 NewFD->setIsMultiVersion();
10482 Redeclaration = true;
10483 OldDecl = ND;
10484 return false;
10485 }
10486
10487 // If the declarations don't match, this is an error condition.
10488 S.Diag(NewFD->getLocation(), diag::err_cpu_dispatch_mismatch);
10489 S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
10490 NewFD->setInvalidDecl();
10491 return true;
10492 }
10493 if (NewMVType == MultiVersionKind::CPUSpecific && CurCPUSpec) {
10494
10495 if (CurCPUSpec->cpus_size() == NewCPUSpec->cpus_size() &&
10496 std::equal(
10497 CurCPUSpec->cpus_begin(), CurCPUSpec->cpus_end(),
10498 NewCPUSpec->cpus_begin(),
10499 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
10500 return Cur->getName() == New->getName();
10501 })) {
10502 NewFD->setIsMultiVersion();
10503 Redeclaration = true;
10504 OldDecl = ND;
10505 return false;
10506 }
10507
10508 // Only 1 version of CPUSpecific is allowed for each CPU.
10509 for (const IdentifierInfo *CurII : CurCPUSpec->cpus()) {
10510 for (const IdentifierInfo *NewII : NewCPUSpec->cpus()) {
10511 if (CurII == NewII) {
10512 S.Diag(NewFD->getLocation(), diag::err_cpu_specific_multiple_defs)
10513 << NewII;
10514 S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
10515 NewFD->setInvalidDecl();
10516 return true;
10517 }
10518 }
10519 }
10520 }
10521 // If the two decls aren't the same MVType, there is no possible error
10522 // condition.
10523 }
10524 }
10525
10526 // Else, this is simply a non-redecl case. Checking the 'value' is only
10527 // necessary in the Target case, since The CPUSpecific/Dispatch cases are
10528 // handled in the attribute adding step.
10529 if (NewMVType == MultiVersionKind::Target &&
10530 CheckMultiVersionValue(S, NewFD)) {
10531 NewFD->setInvalidDecl();
10532 return true;
10533 }
10534
10535 if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD,
10536 !OldFD->isMultiVersion(), NewMVType)) {
10537 NewFD->setInvalidDecl();
10538 return true;
10539 }
10540
10541 // Permit forward declarations in the case where these two are compatible.
10542 if (!OldFD->isMultiVersion()) {
10543 OldFD->setIsMultiVersion();
10544 NewFD->setIsMultiVersion();
10545 Redeclaration = true;
10546 OldDecl = OldFD;
10547 return false;
10548 }
10549
10550 NewFD->setIsMultiVersion();
10551 Redeclaration = false;
10552 MergeTypeWithPrevious = false;
10553 OldDecl = nullptr;
10554 Previous.clear();
10555 return false;
10556}
10557
10558
10559/// Check the validity of a mulitversion function declaration.
10560/// Also sets the multiversion'ness' of the function itself.
10561///
10562/// This sets NewFD->isInvalidDecl() to true if there was an error.
10563///
10564/// Returns true if there was an error, false otherwise.
10565static bool CheckMultiVersionFunction(Sema &S, FunctionDecl *NewFD,
10566 bool &Redeclaration, NamedDecl *&OldDecl,
10567 bool &MergeTypeWithPrevious,
10568 LookupResult &Previous) {
10569 const auto *NewTA = NewFD->getAttr<TargetAttr>();
10570 const auto *NewCPUDisp = NewFD->getAttr<CPUDispatchAttr>();
10571 const auto *NewCPUSpec = NewFD->getAttr<CPUSpecificAttr>();
10572
10573 // Mixing Multiversioning types is prohibited.
10574 if ((NewTA && NewCPUDisp) || (NewTA && NewCPUSpec) ||
10575 (NewCPUDisp && NewCPUSpec)) {
10576 S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
10577 NewFD->setInvalidDecl();
10578 return true;
10579 }
10580
10581 MultiVersionKind MVType = NewFD->getMultiVersionKind();
10582
10583 // Main isn't allowed to become a multiversion function, however it IS
10584 // permitted to have 'main' be marked with the 'target' optimization hint.
10585 if (NewFD->isMain()) {
10586 if ((MVType == MultiVersionKind::Target && NewTA->isDefaultVersion()) ||
10587 MVType == MultiVersionKind::CPUDispatch ||
10588 MVType == MultiVersionKind::CPUSpecific) {
10589 S.Diag(NewFD->getLocation(), diag::err_multiversion_not_allowed_on_main);
10590 NewFD->setInvalidDecl();
10591 return true;
10592 }
10593 return false;
10594 }
10595
10596 if (!OldDecl || !OldDecl->getAsFunction() ||
10597 OldDecl->getDeclContext()->getRedeclContext() !=
10598 NewFD->getDeclContext()->getRedeclContext()) {
10599 // If there's no previous declaration, AND this isn't attempting to cause
10600 // multiversioning, this isn't an error condition.
10601 if (MVType == MultiVersionKind::None)
10602 return false;
10603 return CheckMultiVersionFirstFunction(S, NewFD, MVType, NewTA);
10604 }
10605
10606 FunctionDecl *OldFD = OldDecl->getAsFunction();
10607
10608 if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::None)
10609 return false;
10610
10611 if (OldFD->isMultiVersion() && MVType == MultiVersionKind::None) {
10612 S.Diag(NewFD->getLocation(), diag::err_multiversion_required_in_redecl)
10613 << (OldFD->getMultiVersionKind() != MultiVersionKind::Target);
10614 NewFD->setInvalidDecl();
10615 return true;
10616 }
10617
10618 // Handle the target potentially causes multiversioning case.
10619 if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::Target)
10620 return CheckTargetCausesMultiVersioning(S, OldFD, NewFD, NewTA,
10621 Redeclaration, OldDecl,
10622 MergeTypeWithPrevious, Previous);
10623
10624 // At this point, we have a multiversion function decl (in OldFD) AND an
10625 // appropriate attribute in the current function decl. Resolve that these are
10626 // still compatible with previous declarations.
10627 return CheckMultiVersionAdditionalDecl(
10628 S, OldFD, NewFD, MVType, NewTA, NewCPUDisp, NewCPUSpec, Redeclaration,
10629 OldDecl, MergeTypeWithPrevious, Previous);
10630}
10631
10632/// Perform semantic checking of a new function declaration.
10633///
10634/// Performs semantic analysis of the new function declaration
10635/// NewFD. This routine performs all semantic checking that does not
10636/// require the actual declarator involved in the declaration, and is
10637/// used both for the declaration of functions as they are parsed
10638/// (called via ActOnDeclarator) and for the declaration of functions
10639/// that have been instantiated via C++ template instantiation (called
10640/// via InstantiateDecl).
10641///
10642/// \param IsMemberSpecialization whether this new function declaration is
10643/// a member specialization (that replaces any definition provided by the
10644/// previous declaration).
10645///
10646/// This sets NewFD->isInvalidDecl() to true if there was an error.
10647///
10648/// \returns true if the function declaration is a redeclaration.
10649bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
10650 LookupResult &Previous,
10651 bool IsMemberSpecialization) {
10652 assert(!NewFD->getReturnType()->isVariablyModifiedType() &&((!NewFD->getReturnType()->isVariablyModifiedType() &&
"Variably modified return types are not handled here") ? static_cast
<void> (0) : __assert_fail ("!NewFD->getReturnType()->isVariablyModifiedType() && \"Variably modified return types are not handled here\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 10653, __PRETTY_FUNCTION__))
10653 "Variably modified return types are not handled here")((!NewFD->getReturnType()->isVariablyModifiedType() &&
"Variably modified return types are not handled here") ? static_cast
<void> (0) : __assert_fail ("!NewFD->getReturnType()->isVariablyModifiedType() && \"Variably modified return types are not handled here\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 10653, __PRETTY_FUNCTION__))
;
10654
10655 // Determine whether the type of this function should be merged with
10656 // a previous visible declaration. This never happens for functions in C++,
10657 // and always happens in C if the previous declaration was visible.
10658 bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
10659 !Previous.isShadowed();
10660
10661 bool Redeclaration = false;
10662 NamedDecl *OldDecl = nullptr;
10663 bool MayNeedOverloadableChecks = false;
10664
10665 // Merge or overload the declaration with an existing declaration of
10666 // the same name, if appropriate.
10667 if (!Previous.empty()) {
10668 // Determine whether NewFD is an overload of PrevDecl or
10669 // a declaration that requires merging. If it's an overload,
10670 // there's no more work to do here; we'll just add the new
10671 // function to the scope.
10672 if (!AllowOverloadingOfFunction(Previous, Context, NewFD)) {
10673 NamedDecl *Candidate = Previous.getRepresentativeDecl();
10674 if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
10675 Redeclaration = true;
10676 OldDecl = Candidate;
10677 }
10678 } else {
10679 MayNeedOverloadableChecks = true;
10680 switch (CheckOverload(S, NewFD, Previous, OldDecl,
10681 /*NewIsUsingDecl*/ false)) {
10682 case Ovl_Match:
10683 Redeclaration = true;
10684 break;
10685
10686 case Ovl_NonFunction:
10687 Redeclaration = true;
10688 break;
10689
10690 case Ovl_Overload:
10691 Redeclaration = false;
10692 break;
10693 }
10694 }
10695 }
10696
10697 // Check for a previous extern "C" declaration with this name.
10698 if (!Redeclaration &&
10699 checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
10700 if (!Previous.empty()) {
10701 // This is an extern "C" declaration with the same name as a previous
10702 // declaration, and thus redeclares that entity...
10703 Redeclaration = true;
10704 OldDecl = Previous.getFoundDecl();
10705 MergeTypeWithPrevious = false;
10706
10707 // ... except in the presence of __attribute__((overloadable)).
10708 if (OldDecl->hasAttr<OverloadableAttr>() ||
10709 NewFD->hasAttr<OverloadableAttr>()) {
10710 if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
10711 MayNeedOverloadableChecks = true;
10712 Redeclaration = false;
10713 OldDecl = nullptr;
10714 }
10715 }
10716 }
10717 }
10718
10719 if (CheckMultiVersionFunction(*this, NewFD, Redeclaration, OldDecl,
10720 MergeTypeWithPrevious, Previous))
10721 return Redeclaration;
10722
10723 // PPC MMA non-pointer types are not allowed as function return types.
10724 if (Context.getTargetInfo().getTriple().isPPC64() &&
10725 CheckPPCMMAType(NewFD->getReturnType(), NewFD->getLocation())) {
10726 NewFD->setInvalidDecl();
10727 }
10728
10729 // C++11 [dcl.constexpr]p8:
10730 // A constexpr specifier for a non-static member function that is not
10731 // a constructor declares that member function to be const.
10732 //
10733 // This needs to be delayed until we know whether this is an out-of-line
10734 // definition of a static member function.
10735 //
10736 // This rule is not present in C++1y, so we produce a backwards
10737 // compatibility warning whenever it happens in C++11.
10738 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
10739 if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() &&
10740 !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
10741 !isa<CXXDestructorDecl>(MD) && !MD->getMethodQualifiers().hasConst()) {
10742 CXXMethodDecl *OldMD = nullptr;
10743 if (OldDecl)
10744 OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction());
10745 if (!OldMD || !OldMD->isStatic()) {
10746 const FunctionProtoType *FPT =
10747 MD->getType()->castAs<FunctionProtoType>();
10748 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
10749 EPI.TypeQuals.addConst();
10750 MD->setType(Context.getFunctionType(FPT->getReturnType(),
10751 FPT->getParamTypes(), EPI));
10752
10753 // Warn that we did this, if we're not performing template instantiation.
10754 // In that case, we'll have warned already when the template was defined.
10755 if (!inTemplateInstantiation()) {
10756 SourceLocation AddConstLoc;
10757 if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
10758 .IgnoreParens().getAs<FunctionTypeLoc>())
10759 AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());
10760
10761 Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const)
10762 << FixItHint::CreateInsertion(AddConstLoc, " const");
10763 }
10764 }
10765 }
10766
10767 if (Redeclaration) {
10768 // NewFD and OldDecl represent declarations that need to be
10769 // merged.
10770 if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) {
10771 NewFD->setInvalidDecl();
10772 return Redeclaration;
10773 }
10774
10775 Previous.clear();
10776 Previous.addDecl(OldDecl);
10777
10778 if (FunctionTemplateDecl *OldTemplateDecl =
10779 dyn_cast<FunctionTemplateDecl>(OldDecl)) {
10780 auto *OldFD = OldTemplateDecl->getTemplatedDecl();
10781 FunctionTemplateDecl *NewTemplateDecl
10782 = NewFD->getDescribedFunctionTemplate();
10783 assert(NewTemplateDecl && "Template/non-template mismatch")((NewTemplateDecl && "Template/non-template mismatch"
) ? static_cast<void> (0) : __assert_fail ("NewTemplateDecl && \"Template/non-template mismatch\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 10783, __PRETTY_FUNCTION__))
;
10784
10785 // The call to MergeFunctionDecl above may have created some state in
10786 // NewTemplateDecl that needs to be merged with OldTemplateDecl before we
10787 // can add it as a redeclaration.
10788 NewTemplateDecl->mergePrevDecl(OldTemplateDecl);
10789
10790 NewFD->setPreviousDeclaration(OldFD);
10791 adjustDeclContextForDeclaratorDecl(NewFD, OldFD);
10792 if (NewFD->isCXXClassMember()) {
10793 NewFD->setAccess(OldTemplateDecl->getAccess());
10794 NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
10795 }
10796
10797 // If this is an explicit specialization of a member that is a function
10798 // template, mark it as a member specialization.
10799 if (IsMemberSpecialization &&
10800 NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
10801 NewTemplateDecl->setMemberSpecialization();
10802 assert(OldTemplateDecl->isMemberSpecialization())((OldTemplateDecl->isMemberSpecialization()) ? static_cast
<void> (0) : __assert_fail ("OldTemplateDecl->isMemberSpecialization()"
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 10802, __PRETTY_FUNCTION__))
;
10803 // Explicit specializations of a member template do not inherit deleted
10804 // status from the parent member template that they are specializing.
10805 if (OldFD->isDeleted()) {
10806 // FIXME: This assert will not hold in the presence of modules.
10807 assert(OldFD->getCanonicalDecl() == OldFD)((OldFD->getCanonicalDecl() == OldFD) ? static_cast<void
> (0) : __assert_fail ("OldFD->getCanonicalDecl() == OldFD"
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 10807, __PRETTY_FUNCTION__))
;
10808 // FIXME: We need an update record for this AST mutation.
10809 OldFD->setDeletedAsWritten(false);
10810 }
10811 }
10812
10813 } else {
10814 if (shouldLinkDependentDeclWithPrevious(NewFD, OldDecl)) {
10815 auto *OldFD = cast<FunctionDecl>(OldDecl);
10816 // This needs to happen first so that 'inline' propagates.
10817 NewFD->setPreviousDeclaration(OldFD);
10818 adjustDeclContextForDeclaratorDecl(NewFD, OldFD);
10819 if (NewFD->isCXXClassMember())
10820 NewFD->setAccess(OldFD->getAccess());
10821 }
10822 }
10823 } else if (!getLangOpts().CPlusPlus && MayNeedOverloadableChecks &&
10824 !NewFD->getAttr<OverloadableAttr>()) {
10825 assert((Previous.empty() ||(((Previous.empty() || llvm::any_of(Previous, [](const NamedDecl
*ND) { return ND->hasAttr<OverloadableAttr>(); })) &&
"Non-redecls shouldn't happen without overloadable present")
? static_cast<void> (0) : __assert_fail ("(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr<OverloadableAttr>(); })) && \"Non-redecls shouldn't happen without overloadable present\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 10830, __PRETTY_FUNCTION__))
10826 llvm::any_of(Previous,(((Previous.empty() || llvm::any_of(Previous, [](const NamedDecl
*ND) { return ND->hasAttr<OverloadableAttr>(); })) &&
"Non-redecls shouldn't happen without overloadable present")
? static_cast<void> (0) : __assert_fail ("(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr<OverloadableAttr>(); })) && \"Non-redecls shouldn't happen without overloadable present\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 10830, __PRETTY_FUNCTION__))
10827 [](const NamedDecl *ND) {(((Previous.empty() || llvm::any_of(Previous, [](const NamedDecl
*ND) { return ND->hasAttr<OverloadableAttr>(); })) &&
"Non-redecls shouldn't happen without overloadable present")
? static_cast<void> (0) : __assert_fail ("(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr<OverloadableAttr>(); })) && \"Non-redecls shouldn't happen without overloadable present\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 10830, __PRETTY_FUNCTION__))
10828 return ND->hasAttr<OverloadableAttr>();(((Previous.empty() || llvm::any_of(Previous, [](const NamedDecl
*ND) { return ND->hasAttr<OverloadableAttr>(); })) &&
"Non-redecls shouldn't happen without overloadable present")
? static_cast<void> (0) : __assert_fail ("(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr<OverloadableAttr>(); })) && \"Non-redecls shouldn't happen without overloadable present\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 10830, __PRETTY_FUNCTION__))
10829 })) &&(((Previous.empty() || llvm::any_of(Previous, [](const NamedDecl
*ND) { return ND->hasAttr<OverloadableAttr>(); })) &&
"Non-redecls shouldn't happen without overloadable present")
? static_cast<void> (0) : __assert_fail ("(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr<OverloadableAttr>(); })) && \"Non-redecls shouldn't happen without overloadable present\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 10830, __PRETTY_FUNCTION__))
10830 "Non-redecls shouldn't happen without overloadable present")(((Previous.empty() || llvm::any_of(Previous, [](const NamedDecl
*ND) { return ND->hasAttr<OverloadableAttr>(); })) &&
"Non-redecls shouldn't happen without overloadable present")
? static_cast<void> (0) : __assert_fail ("(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr<OverloadableAttr>(); })) && \"Non-redecls shouldn't happen without overloadable present\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 10830, __PRETTY_FUNCTION__))
;
10831
10832 auto OtherUnmarkedIter = llvm::find_if(Previous, [](const NamedDecl *ND) {
10833 const auto *FD = dyn_cast<FunctionDecl>(ND);
10834 return FD && !FD->hasAttr<OverloadableAttr>();
10835 });
10836
10837 if (OtherUnmarkedIter != Previous.end()) {
10838 Diag(NewFD->getLocation(),
10839 diag::err_attribute_overloadable_multiple_unmarked_overloads);
10840 Diag((*OtherUnmarkedIter)->getLocation(),
10841 diag::note_attribute_overloadable_prev_overload)
10842 << false;
10843
10844 NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
10845 }
10846 }
10847
10848 if (LangOpts.OpenMP)
10849 ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(NewFD);
10850
10851 // Semantic checking for this function declaration (in isolation).
10852
10853 if (getLangOpts().CPlusPlus) {
10854 // C++-specific checks.
10855 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
10856 CheckConstructor(Constructor);
10857 } else if (CXXDestructorDecl *Destructor =
10858 dyn_cast<CXXDestructorDecl>(NewFD)) {
10859 CXXRecordDecl *Record = Destructor->getParent();
10860 QualType ClassType = Context.getTypeDeclType(Record);
10861
10862 // FIXME: Shouldn't we be able to perform this check even when the class
10863 // type is dependent? Both gcc and edg can handle that.
10864 if (!ClassType->isDependentType()) {
10865 DeclarationName Name
10866 = Context.DeclarationNames.getCXXDestructorName(
10867 Context.getCanonicalType(ClassType));
10868 if (NewFD->getDeclName() != Name) {
10869 Diag(NewFD->getLocation(), diag::err_destructor_name);
10870 NewFD->setInvalidDecl();
10871 return Redeclaration;
10872 }
10873 }
10874 } else if (auto *Guide = dyn_cast<CXXDeductionGuideDecl>(NewFD)) {
10875 if (auto *TD = Guide->getDescribedFunctionTemplate())
10876 CheckDeductionGuideTemplate(TD);
10877
10878 // A deduction guide is not on the list of entities that can be
10879 // explicitly specialized.
10880 if (Guide->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
10881 Diag(Guide->getBeginLoc(), diag::err_deduction_guide_specialized)
10882 << /*explicit specialization*/ 1;
10883 }
10884
10885 // Find any virtual functions that this function overrides.
10886 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
10887 if (!Method->isFunctionTemplateSpecialization() &&
10888 !Method->getDescribedFunctionTemplate() &&
10889 Method->isCanonicalDecl()) {
10890 AddOverriddenMethods(Method->getParent(), Method);
10891 }
10892 if (Method->isVirtual() && NewFD->getTrailingRequiresClause())
10893 // C++2a [class.virtual]p6
10894 // A virtual method shall not have a requires-clause.
10895 Diag(NewFD->getTrailingRequiresClause()->getBeginLoc(),
10896 diag::err_constrained_virtual_method);
10897
10898 if (Method->isStatic())
10899 checkThisInStaticMemberFunctionType(Method);
10900 }
10901
10902 if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(NewFD))
10903 ActOnConversionDeclarator(Conversion);
10904
10905 // Extra checking for C++ overloaded operators (C++ [over.oper]).
10906 if (NewFD->isOverloadedOperator() &&
10907 CheckOverloadedOperatorDeclaration(NewFD)) {
10908 NewFD->setInvalidDecl();
10909 return Redeclaration;
10910 }
10911
10912 // Extra checking for C++0x literal operators (C++0x [over.literal]).
10913 if (NewFD->getLiteralIdentifier() &&
10914 CheckLiteralOperatorDeclaration(NewFD)) {
10915 NewFD->setInvalidDecl();
10916 return Redeclaration;
10917 }
10918
10919 // In C++, check default arguments now that we have merged decls. Unless
10920 // the lexical context is the class, because in this case this is done
10921 // during delayed parsing anyway.
10922 if (!CurContext->isRecord())
10923 CheckCXXDefaultArguments(NewFD);
10924
10925 // If this function declares a builtin function, check the type of this
10926 // declaration against the expected type for the builtin.
10927 if (unsigned BuiltinID = NewFD->getBuiltinID()) {
10928 ASTContext::GetBuiltinTypeError Error;
10929 LookupNecessaryTypesForBuiltin(S, BuiltinID);
10930 QualType T = Context.GetBuiltinType(BuiltinID, Error);
10931 // If the type of the builtin differs only in its exception
10932 // specification, that's OK.
10933 // FIXME: If the types do differ in this way, it would be better to
10934 // retain the 'noexcept' form of the type.
10935 if (!T.isNull() &&
10936 !Context.hasSameFunctionTypeIgnoringExceptionSpec(T,
10937 NewFD->getType()))
10938 // The type of this function differs from the type of the builtin,
10939 // so forget about the builtin entirely.
10940 Context.BuiltinInfo.forgetBuiltin(BuiltinID, Context.Idents);
10941 }
10942
10943 // If this function is declared as being extern "C", then check to see if
10944 // the function returns a UDT (class, struct, or union type) that is not C
10945 // compatible, and if it does, warn the user.
10946 // But, issue any diagnostic on the first declaration only.
10947 if (Previous.empty() && NewFD->isExternC()) {
10948 QualType R = NewFD->getReturnType();
10949 if (R->isIncompleteType() && !R->isVoidType())
10950 Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
10951 << NewFD << R;
10952 else if (!R.isPODType(Context) && !R->isVoidType() &&
10953 !R->isObjCObjectPointerType())
10954 Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
10955 }
10956
10957 // C++1z [dcl.fct]p6:
10958 // [...] whether the function has a non-throwing exception-specification
10959 // [is] part of the function type
10960 //
10961 // This results in an ABI break between C++14 and C++17 for functions whose
10962 // declared type includes an exception-specification in a parameter or
10963 // return type. (Exception specifications on the function itself are OK in
10964 // most cases, and exception specifications are not permitted in most other
10965 // contexts where they could make it into a mangling.)
10966 if (!getLangOpts().CPlusPlus17 && !NewFD->getPrimaryTemplate()) {
10967 auto HasNoexcept = [&](QualType T) -> bool {
10968 // Strip off declarator chunks that could be between us and a function
10969 // type. We don't need to look far, exception specifications are very
10970 // restricted prior to C++17.
10971 if (auto *RT = T->getAs<ReferenceType>())
10972 T = RT->getPointeeType();
10973 else if (T->isAnyPointerType())
10974 T = T->getPointeeType();
10975 else if (auto *MPT = T->getAs<MemberPointerType>())
10976 T = MPT->getPointeeType();
10977 if (auto *FPT = T->getAs<FunctionProtoType>())
10978 if (FPT->isNothrow())
10979 return true;
10980 return false;
10981 };
10982
10983 auto *FPT = NewFD->getType()->castAs<FunctionProtoType>();
10984 bool AnyNoexcept = HasNoexcept(FPT->getReturnType());
10985 for (QualType T : FPT->param_types())
10986 AnyNoexcept |= HasNoexcept(T);
10987 if (AnyNoexcept)
10988 Diag(NewFD->getLocation(),
10989 diag::warn_cxx17_compat_exception_spec_in_signature)
10990 << NewFD;
10991 }
10992
10993 if (!Redeclaration && LangOpts.CUDA)
10994 checkCUDATargetOverload(NewFD, Previous);
10995 }
10996 return Redeclaration;
10997}
10998
10999void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
11000 // C++11 [basic.start.main]p3:
11001 // A program that [...] declares main to be inline, static or
11002 // constexpr is ill-formed.
11003 // C11 6.7.4p4: In a hosted environment, no function specifier(s) shall
11004 // appear in a declaration of main.
11005 // static main is not an error under C99, but we should warn about it.
11006 // We accept _Noreturn main as an extension.
11007 if (FD->getStorageClass() == SC_Static)
11008 Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
11009 ? diag::err_static_main : diag::warn_static_main)
11010 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
11011 if (FD->isInlineSpecified())
11012 Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
11013 << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
11014 if (DS.isNoreturnSpecified()) {
11015 SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
11016 SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
11017 Diag(NoreturnLoc, diag::ext_noreturn_main);
11018 Diag(NoreturnLoc, diag::note_main_remove_noreturn)
11019 << FixItHint::CreateRemoval(NoreturnRange);
11020 }
11021 if (FD->isConstexpr()) {
11022 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
11023 << FD->isConsteval()
11024 << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
11025 FD->setConstexprKind(ConstexprSpecKind::Unspecified);
11026 }
11027
11028 if (getLangOpts().OpenCL) {
11029 Diag(FD->getLocation(), diag::err_opencl_no_main)
11030 << FD->hasAttr<OpenCLKernelAttr>();
11031 FD->setInvalidDecl();
11032 return;
11033 }
11034
11035 QualType T = FD->getType();
11036 assert(T->isFunctionType() && "function decl is not of function type")((T->isFunctionType() && "function decl is not of function type"
) ? static_cast<void> (0) : __assert_fail ("T->isFunctionType() && \"function decl is not of function type\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 11036, __PRETTY_FUNCTION__))
;
11037 const FunctionType* FT = T->castAs<FunctionType>();
11038
11039 // Set default calling convention for main()
11040 if (FT->getCallConv() != CC_C) {
11041 FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(CC_C));
11042 FD->setType(QualType(FT, 0));
11043 T = Context.getCanonicalType(FD->getType());
11044 }
11045
11046 if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
11047 // In C with GNU extensions we allow main() to have non-integer return
11048 // type, but we should warn about the extension, and we disable the
11049 // implicit-return-zero rule.
11050
11051 // GCC in C mode accepts qualified 'int'.
11052 if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
11053 FD->setHasImplicitReturnZero(true);
11054 else {
11055 Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
11056 SourceRange RTRange = FD->getReturnTypeSourceRange();
11057 if (RTRange.isValid())
11058 Diag(RTRange.getBegin(), diag::note_main_change_return_type)
11059 << FixItHint::CreateReplacement(RTRange, "int");
11060 }
11061 } else {
11062 // In C and C++, main magically returns 0 if you fall off the end;
11063 // set the flag which tells us that.
11064 // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
11065
11066 // All the standards say that main() should return 'int'.
11067 if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
11068 FD->setHasImplicitReturnZero(true);
11069 else {
11070 // Otherwise, this is just a flat-out error.
11071 SourceRange RTRange = FD->getReturnTypeSourceRange();
11072 Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
11073 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
11074 : FixItHint());
11075 FD->setInvalidDecl(true);
11076 }
11077 }
11078
11079 // Treat protoless main() as nullary.
11080 if (isa<FunctionNoProtoType>(FT)) return;
11081
11082 const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
11083 unsigned nparams = FTP->getNumParams();
11084 assert(FD->getNumParams() == nparams)((FD->getNumParams() == nparams) ? static_cast<void>
(0) : __assert_fail ("FD->getNumParams() == nparams", "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 11084, __PRETTY_FUNCTION__))
;
11085
11086 bool HasExtraParameters = (nparams > 3);
11087
11088 if (FTP->isVariadic()) {
11089 Diag(FD->getLocation(), diag::ext_variadic_main);
11090 // FIXME: if we had information about the location of the ellipsis, we
11091 // could add a FixIt hint to remove it as a parameter.
11092 }
11093
11094 // Darwin passes an undocumented fourth argument of type char**. If
11095 // other platforms start sprouting these, the logic below will start
11096 // getting shifty.
11097 if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
11098 HasExtraParameters = false;
11099
11100 if (HasExtraParameters) {
11101 Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
11102 FD->setInvalidDecl(true);
11103 nparams = 3;
11104 }
11105
11106 // FIXME: a lot of the following diagnostics would be improved
11107 // if we had some location information about types.
11108
11109 QualType CharPP =
11110 Context.getPointerType(Context.getPointerType(Context.CharTy));
11111 QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
11112
11113 for (unsigned i = 0; i < nparams; ++i) {
11114 QualType AT = FTP->getParamType(i);
11115
11116 bool mismatch = true;
11117
11118 if (Context.hasSameUnqualifiedType(AT, Expected[i]))
11119 mismatch = false;
11120 else if (Expected[i] == CharPP) {
11121 // As an extension, the following forms are okay:
11122 // char const **
11123 // char const * const *
11124 // char * const *
11125
11126 QualifierCollector qs;
11127 const PointerType* PT;
11128 if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
11129 (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
11130 Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
11131 Context.CharTy)) {
11132 qs.removeConst();
11133 mismatch = !qs.empty();
11134 }
11135 }
11136
11137 if (mismatch) {
11138 Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
11139 // TODO: suggest replacing given type with expected type
11140 FD->setInvalidDecl(true);
11141 }
11142 }
11143
11144 if (nparams == 1 && !FD->isInvalidDecl()) {
11145 Diag(FD->getLocation(), diag::warn_main_one_arg);
11146 }
11147
11148 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
11149 Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
11150 FD->setInvalidDecl();
11151 }
11152}
11153
11154void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
11155 QualType T = FD->getType();
11156 assert(T->isFunctionType() && "function decl is not of function type")((T->isFunctionType() && "function decl is not of function type"
) ? static_cast<void> (0) : __assert_fail ("T->isFunctionType() && \"function decl is not of function type\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 11156, __PRETTY_FUNCTION__))
;
11157 const FunctionType *FT = T->castAs<FunctionType>();
11158
11159 // Set an implicit return of 'zero' if the function can return some integral,
11160 // enumeration, pointer or nullptr type.
11161 if (FT->getReturnType()->isIntegralOrEnumerationType() ||
11162 FT->getReturnType()->isAnyPointerType() ||
11163 FT->getReturnType()->isNullPtrType())
11164 // DllMain is exempt because a return value of zero means it failed.
11165 if (FD->getName() != "DllMain")
11166 FD->setHasImplicitReturnZero(true);
11167
11168 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
11169 Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
11170 FD->setInvalidDecl();
11171 }
11172}
11173
11174bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
11175 // FIXME: Need strict checking. In C89, we need to check for
11176 // any assignment, increment, decrement, function-calls, or
11177 // commas outside of a sizeof. In C99, it's the same list,
11178 // except that the aforementioned are allowed in unevaluated
11179 // expressions. Everything else falls under the
11180 // "may accept other forms of constant expressions" exception.
11181 //
11182 // Regular C++ code will not end up here (exceptions: language extensions,
11183 // OpenCL C++ etc), so the constant expression rules there don't matter.
11184 if (Init->isValueDependent()) {
11185 assert(Init->containsErrors() &&((Init->containsErrors() && "Dependent code should only occur in error-recovery path."
) ? static_cast<void> (0) : __assert_fail ("Init->containsErrors() && \"Dependent code should only occur in error-recovery path.\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 11186, __PRETTY_FUNCTION__))
11186 "Dependent code should only occur in error-recovery path.")((Init->containsErrors() && "Dependent code should only occur in error-recovery path."
) ? static_cast<void> (0) : __assert_fail ("Init->containsErrors() && \"Dependent code should only occur in error-recovery path.\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 11186, __PRETTY_FUNCTION__))
;
11187 return true;
11188 }
11189 const Expr *Culprit;
11190 if (Init->isConstantInitializer(Context, false, &Culprit))
11191 return false;
11192 Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant)
11193 << Culprit->getSourceRange();
11194 return true;
11195}
11196
11197namespace {
11198 // Visits an initialization expression to see if OrigDecl is evaluated in
11199 // its own initialization and throws a warning if it does.
11200 class SelfReferenceChecker
11201 : public EvaluatedExprVisitor<SelfReferenceChecker> {
11202 Sema &S;
11203 Decl *OrigDecl;
11204 bool isRecordType;
11205 bool isPODType;
11206 bool isReferenceType;
11207
11208 bool isInitList;
11209 llvm::SmallVector<unsigned, 4> InitFieldIndex;
11210
11211 public:
11212 typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
11213
11214 SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
11215 S(S), OrigDecl(OrigDecl) {
11216 isPODType = false;
11217 isRecordType = false;
11218 isReferenceType = false;
11219 isInitList = false;
11220 if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
11221 isPODType = VD->getType().isPODType(S.Context);
11222 isRecordType = VD->getType()->isRecordType();
11223 isReferenceType = VD->getType()->isReferenceType();
11224 }
11225 }
11226
11227 // For most expressions, just call the visitor. For initializer lists,
11228 // track the index of the field being initialized since fields are
11229 // initialized in order allowing use of previously initialized fields.
11230 void CheckExpr(Expr *E) {
11231 InitListExpr *InitList = dyn_cast<InitListExpr>(E);
11232 if (!InitList) {
11233 Visit(E);
11234 return;
11235 }
11236
11237 // Track and increment the index here.
11238 isInitList = true;
11239 InitFieldIndex.push_back(0);
11240 for (auto Child : InitList->children()) {
11241 CheckExpr(cast<Expr>(Child));
11242 ++InitFieldIndex.back();
11243 }
11244 InitFieldIndex.pop_back();
11245 }
11246
11247 // Returns true if MemberExpr is checked and no further checking is needed.
11248 // Returns false if additional checking is required.
11249 bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) {
11250 llvm::SmallVector<FieldDecl*, 4> Fields;
11251 Expr *Base = E;
11252 bool ReferenceField = false;
11253
11254 // Get the field members used.
11255 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
11256 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
11257 if (!FD)
11258 return false;
11259 Fields.push_back(FD);
11260 if (FD->getType()->isReferenceType())
11261 ReferenceField = true;
11262 Base = ME->getBase()->IgnoreParenImpCasts();
11263 }
11264
11265 // Keep checking only if the base Decl is the same.
11266 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base);
11267 if (!DRE || DRE->getDecl() != OrigDecl)
11268 return false;
11269
11270 // A reference field can be bound to an unininitialized field.
11271 if (CheckReference && !ReferenceField)
11272 return true;
11273
11274 // Convert FieldDecls to their index number.
11275 llvm::SmallVector<unsigned, 4> UsedFieldIndex;
11276 for (const FieldDecl *I : llvm::reverse(Fields))
11277 UsedFieldIndex.push_back(I->getFieldIndex());
11278
11279 // See if a warning is needed by checking the first difference in index
11280 // numbers. If field being used has index less than the field being
11281 // initialized, then the use is safe.
11282 for (auto UsedIter = UsedFieldIndex.begin(),
11283 UsedEnd = UsedFieldIndex.end(),
11284 OrigIter = InitFieldIndex.begin(),
11285 OrigEnd = InitFieldIndex.end();
11286 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
11287 if (*UsedIter < *OrigIter)
11288 return true;
11289 if (*UsedIter > *OrigIter)
11290 break;
11291 }
11292
11293 // TODO: Add a different warning which will print the field names.
11294 HandleDeclRefExpr(DRE);
11295 return true;
11296 }
11297
11298 // For most expressions, the cast is directly above the DeclRefExpr.
11299 // For conditional operators, the cast can be outside the conditional
11300 // operator if both expressions are DeclRefExpr's.
11301 void HandleValue(Expr *E) {
11302 E = E->IgnoreParens();
11303 if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
11304 HandleDeclRefExpr(DRE);
11305 return;
11306 }
11307
11308 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
11309 Visit(CO->getCond());
11310 HandleValue(CO->getTrueExpr());
11311 HandleValue(CO->getFalseExpr());
11312 return;
11313 }
11314
11315 if (BinaryConditionalOperator *BCO =
11316 dyn_cast<BinaryConditionalOperator>(E)) {
11317 Visit(BCO->getCond());
11318 HandleValue(BCO->getFalseExpr());
11319 return;
11320 }
11321
11322 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
11323 HandleValue(OVE->getSourceExpr());
11324 return;
11325 }
11326
11327 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
11328 if (BO->getOpcode() == BO_Comma) {
11329 Visit(BO->getLHS());
11330 HandleValue(BO->getRHS());
11331 return;
11332 }
11333 }
11334
11335 if (isa<MemberExpr>(E)) {
11336 if (isInitList) {
11337 if (CheckInitListMemberExpr(cast<MemberExpr>(E),
11338 false /*CheckReference*/))
11339 return;
11340 }
11341
11342 Expr *Base = E->IgnoreParenImpCasts();
11343 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
11344 // Check for static member variables and don't warn on them.
11345 if (!isa<FieldDecl>(ME->getMemberDecl()))
11346 return;
11347 Base = ME->getBase()->IgnoreParenImpCasts();
11348 }
11349 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
11350 HandleDeclRefExpr(DRE);
11351 return;
11352 }
11353
11354 Visit(E);
11355 }
11356
11357 // Reference types not handled in HandleValue are handled here since all
11358 // uses of references are bad, not just r-value uses.
11359 void VisitDeclRefExpr(DeclRefExpr *E) {
11360 if (isReferenceType)
11361 HandleDeclRefExpr(E);
11362 }
11363
11364 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
11365 if (E->getCastKind() == CK_LValueToRValue) {
11366 HandleValue(E->getSubExpr());
11367 return;
11368 }
11369
11370 Inherited::VisitImplicitCastExpr(E);
11371 }
11372
11373 void VisitMemberExpr(MemberExpr *E) {
11374 if (isInitList) {
11375 if (CheckInitListMemberExpr(E, true /*CheckReference*/))
11376 return;
11377 }
11378
11379 // Don't warn on arrays since they can be treated as pointers.
11380 if (E->getType()->canDecayToPointerType()) return;
11381
11382 // Warn when a non-static method call is followed by non-static member
11383 // field accesses, which is followed by a DeclRefExpr.
11384 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
11385 bool Warn = (MD && !MD->isStatic());
11386 Expr *Base = E->getBase()->IgnoreParenImpCasts();
11387 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
11388 if (!isa<FieldDecl>(ME->getMemberDecl()))
11389 Warn = false;
11390 Base = ME->getBase()->IgnoreParenImpCasts();
11391 }
11392
11393 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
11394 if (Warn)
11395 HandleDeclRefExpr(DRE);
11396 return;
11397 }
11398
11399 // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
11400 // Visit that expression.
11401 Visit(Base);
11402 }
11403
11404 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
11405 Expr *Callee = E->getCallee();
11406
11407 if (isa<UnresolvedLookupExpr>(Callee))
11408 return Inherited::VisitCXXOperatorCallExpr(E);
11409
11410 Visit(Callee);
11411 for (auto Arg: E->arguments())
11412 HandleValue(Arg->IgnoreParenImpCasts());
11413 }
11414
11415 void VisitUnaryOperator(UnaryOperator *E) {
11416 // For POD record types, addresses of its own members are well-defined.
11417 if (E->getOpcode() == UO_AddrOf && isRecordType &&
11418 isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
11419 if (!isPODType)
11420 HandleValue(E->getSubExpr());
11421 return;
11422 }
11423
11424 if (E->isIncrementDecrementOp()) {
11425 HandleValue(E->getSubExpr());
11426 return;
11427 }
11428
11429 Inherited::VisitUnaryOperator(E);
11430 }
11431
11432 void VisitObjCMessageExpr(ObjCMessageExpr *E) {}
11433
11434 void VisitCXXConstructExpr(CXXConstructExpr *E) {
11435 if (E->getConstructor()->isCopyConstructor()) {
11436 Expr *ArgExpr = E->getArg(0);
11437 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
11438 if (ILE->getNumInits() == 1)
11439 ArgExpr = ILE->getInit(0);
11440 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
11441 if (ICE->getCastKind() == CK_NoOp)
11442 ArgExpr = ICE->getSubExpr();
11443 HandleValue(ArgExpr);
11444 return;
11445 }
11446 Inherited::VisitCXXConstructExpr(E);
11447 }
11448
11449 void VisitCallExpr(CallExpr *E) {
11450 // Treat std::move as a use.
11451 if (E->isCallToStdMove()) {
11452 HandleValue(E->getArg(0));
11453 return;
11454 }
11455
11456 Inherited::VisitCallExpr(E);
11457 }
11458
11459 void VisitBinaryOperator(BinaryOperator *E) {
11460 if (E->isCompoundAssignmentOp()) {
11461 HandleValue(E->getLHS());
11462 Visit(E->getRHS());
11463 return;
11464 }
11465
11466 Inherited::VisitBinaryOperator(E);
11467 }
11468
11469 // A custom visitor for BinaryConditionalOperator is needed because the
11470 // regular visitor would check the condition and true expression separately
11471 // but both point to the same place giving duplicate diagnostics.
11472 void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
11473 Visit(E->getCond());
11474 Visit(E->getFalseExpr());
11475 }
11476
11477 void HandleDeclRefExpr(DeclRefExpr *DRE) {
11478 Decl* ReferenceDecl = DRE->getDecl();
11479 if (OrigDecl != ReferenceDecl) return;
11480 unsigned diag;
11481 if (isReferenceType) {
11482 diag = diag::warn_uninit_self_reference_in_reference_init;
11483 } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
11484 diag = diag::warn_static_self_reference_in_init;
11485 } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) ||
11486 isa<NamespaceDecl>(OrigDecl->getDeclContext()) ||
11487 DRE->getDecl()->getType()->isRecordType()) {
11488 diag = diag::warn_uninit_self_reference_in_init;
11489 } else {
11490 // Local variables will be handled by the CFG analysis.
11491 return;
11492 }
11493
11494 S.DiagRuntimeBehavior(DRE->getBeginLoc(), DRE,
11495 S.PDiag(diag)
11496 << DRE->getDecl() << OrigDecl->getLocation()
11497 << DRE->getSourceRange());
11498 }
11499 };
11500
11501 /// CheckSelfReference - Warns if OrigDecl is used in expression E.
11502 static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
11503 bool DirectInit) {
11504 // Parameters arguments are occassionially constructed with itself,
11505 // for instance, in recursive functions. Skip them.
11506 if (isa<ParmVarDecl>(OrigDecl))
11507 return;
11508
11509 E = E->IgnoreParens();
11510
11511 // Skip checking T a = a where T is not a record or reference type.
11512 // Doing so is a way to silence uninitialized warnings.
11513 if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
11514 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
11515 if (ICE->getCastKind() == CK_LValueToRValue)
11516 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
11517 if (DRE->getDecl() == OrigDecl)
11518 return;
11519
11520 SelfReferenceChecker(S, OrigDecl).CheckExpr(E);
11521 }
11522} // end anonymous namespace
11523
11524namespace {
11525 // Simple wrapper to add the name of a variable or (if no variable is
11526 // available) a DeclarationName into a diagnostic.
11527 struct VarDeclOrName {
11528 VarDecl *VDecl;
11529 DeclarationName Name;
11530
11531 friend const Sema::SemaDiagnosticBuilder &
11532 operator<<(const Sema::SemaDiagnosticBuilder &Diag, VarDeclOrName VN) {
11533 return VN.VDecl ? Diag << VN.VDecl : Diag << VN.Name;
11534 }
11535 };
11536} // end anonymous namespace
11537
11538QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl,
11539 DeclarationName Name, QualType Type,
11540 TypeSourceInfo *TSI,
11541 SourceRange Range, bool DirectInit,
11542 Expr *Init) {
11543 bool IsInitCapture = !VDecl;
11544 assert((!VDecl || !VDecl->isInitCapture()) &&(((!VDecl || !VDecl->isInitCapture()) && "init captures are expected to be deduced prior to initialization"
) ? static_cast<void> (0) : __assert_fail ("(!VDecl || !VDecl->isInitCapture()) && \"init captures are expected to be deduced prior to initialization\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 11545, __PRETTY_FUNCTION__))
11545 "init captures are expected to be deduced prior to initialization")(((!VDecl || !VDecl->isInitCapture()) && "init captures are expected to be deduced prior to initialization"
) ? static_cast<void> (0) : __assert_fail ("(!VDecl || !VDecl->isInitCapture()) && \"init captures are expected to be deduced prior to initialization\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 11545, __PRETTY_FUNCTION__))
;
11546
11547 VarDeclOrName VN{VDecl, Name};
11548
11549 DeducedType *Deduced = Type->getContainedDeducedType();
11550 assert(Deduced && "deduceVarTypeFromInitializer for non-deduced type")((Deduced && "deduceVarTypeFromInitializer for non-deduced type"
) ? static_cast<void> (0) : __assert_fail ("Deduced && \"deduceVarTypeFromInitializer for non-deduced type\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 11550, __PRETTY_FUNCTION__))
;
11551
11552 // C++11 [dcl.spec.auto]p3
11553 if (!Init) {
11554 assert(VDecl && "no init for init capture deduction?")((VDecl && "no init for init capture deduction?") ? static_cast
<void> (0) : __assert_fail ("VDecl && \"no init for init capture deduction?\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 11554, __PRETTY_FUNCTION__))
;
11555
11556 // Except for class argument deduction, and then for an initializing
11557 // declaration only, i.e. no static at class scope or extern.
11558 if (!isa<DeducedTemplateSpecializationType>(Deduced) ||
11559 VDecl->hasExternalStorage() ||
11560 VDecl->isStaticDataMember()) {
11561 Diag(VDecl->getLocation(), diag::err_auto_var_requires_init)
11562 << VDecl->getDeclName() << Type;
11563 return QualType();
11564 }
11565 }
11566
11567 ArrayRef<Expr*> DeduceInits;
11568 if (Init)
11569 DeduceInits = Init;
11570
11571 if (DirectInit) {
11572 if (auto *PL = dyn_cast_or_null<ParenListExpr>(Init))
11573 DeduceInits = PL->exprs();
11574 }
11575
11576 if (isa<DeducedTemplateSpecializationType>(Deduced)) {
11577 assert(VDecl && "non-auto type for init capture deduction?")((VDecl && "non-auto type for init capture deduction?"
) ? static_cast<void> (0) : __assert_fail ("VDecl && \"non-auto type for init capture deduction?\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 11577, __PRETTY_FUNCTION__))
;
11578 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
11579 InitializationKind Kind = InitializationKind::CreateForInit(
11580 VDecl->getLocation(), DirectInit, Init);
11581 // FIXME: Initialization should not be taking a mutable list of inits.
11582 SmallVector<Expr*, 8> InitsCopy(DeduceInits.begin(), DeduceInits.end());
11583 return DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind,
11584 InitsCopy);
11585 }
11586
11587 if (DirectInit) {
11588 if (auto *IL = dyn_cast<InitListExpr>(Init))
11589 DeduceInits = IL->inits();
11590 }
11591
11592 // Deduction only works if we have exactly one source expression.
11593 if (DeduceInits.empty()) {
11594 // It isn't possible to write this directly, but it is possible to
11595 // end up in this situation with "auto x(some_pack...);"
11596 Diag(Init->getBeginLoc(), IsInitCapture
11597 ? diag::err_init_capture_no_expression
11598 : diag::err_auto_var_init_no_expression)
11599 << VN << Type << Range;
11600 return QualType();
11601 }
11602
11603 if (DeduceInits.size() > 1) {
11604 Diag(DeduceInits[1]->getBeginLoc(),
11605 IsInitCapture ? diag::err_init_capture_multiple_expressions
11606 : diag::err_auto_var_init_multiple_expressions)
11607 << VN << Type << Range;
11608 return QualType();
11609 }
11610
11611 Expr *DeduceInit = DeduceInits[0];
11612 if (DirectInit && isa<InitListExpr>(DeduceInit)) {
11613 Diag(Init->getBeginLoc(), IsInitCapture
11614 ? diag::err_init_capture_paren_braces
11615 : diag::err_auto_var_init_paren_braces)
11616 << isa<InitListExpr>(Init) << VN << Type << Range;
11617 return QualType();
11618 }
11619
11620 // Expressions default to 'id' when we're in a debugger.
11621 bool DefaultedAnyToId = false;
11622 if (getLangOpts().DebuggerCastResultToId &&
11623 Init->getType() == Context.UnknownAnyTy && !IsInitCapture) {
11624 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
11625 if (Result.isInvalid()) {
11626 return QualType();
11627 }
11628 Init = Result.get();
11629 DefaultedAnyToId = true;
11630 }
11631
11632 // C++ [dcl.decomp]p1:
11633 // If the assignment-expression [...] has array type A and no ref-qualifier
11634 // is present, e has type cv A
11635 if (VDecl && isa<DecompositionDecl>(VDecl) &&
11636 Context.hasSameUnqualifiedType(Type, Context.getAutoDeductType()) &&
11637 DeduceInit->getType()->isConstantArrayType())
11638 return Context.getQualifiedType(DeduceInit->getType(),
11639 Type.getQualifiers());
11640
11641 QualType DeducedType;
11642 if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) {
11643 if (!IsInitCapture)
11644 DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
11645 else if (isa<InitListExpr>(Init))
11646 Diag(Range.getBegin(),
11647 diag::err_init_capture_deduction_failure_from_init_list)
11648 << VN
11649 << (DeduceInit->getType().isNull() ? TSI->getType()
11650 : DeduceInit->getType())
11651 << DeduceInit->getSourceRange();
11652 else
11653 Diag(Range.getBegin(), diag::err_init_capture_deduction_failure)
11654 << VN << TSI->getType()
11655 << (DeduceInit->getType().isNull() ? TSI->getType()
11656 : DeduceInit->getType())
11657 << DeduceInit->getSourceRange();
11658 }
11659
11660 // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
11661 // 'id' instead of a specific object type prevents most of our usual
11662 // checks.
11663 // We only want to warn outside of template instantiations, though:
11664 // inside a template, the 'id' could have come from a parameter.
11665 if (!inTemplateInstantiation() && !DefaultedAnyToId && !IsInitCapture &&
11666 !DeducedType.isNull() && DeducedType->isObjCIdType()) {
11667 SourceLocation Loc = TSI->getTypeLoc().getBeginLoc();
11668 Diag(Loc, diag::warn_auto_var_is_id) << VN << Range;
11669 }
11670
11671 return DeducedType;
11672}
11673
11674bool Sema::DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit,
11675 Expr *Init) {
11676 assert(!Init || !Init->containsErrors())((!Init || !Init->containsErrors()) ? static_cast<void>
(0) : __assert_fail ("!Init || !Init->containsErrors()", "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 11676, __PRETTY_FUNCTION__))
;
11677 QualType DeducedType = deduceVarTypeFromInitializer(
11678 VDecl, VDecl->getDeclName(), VDecl->getType(), VDecl->getTypeSourceInfo(),
11679 VDecl->getSourceRange(), DirectInit, Init);
11680 if (DeducedType.isNull()) {
11681 VDecl->setInvalidDecl();
11682 return true;
11683 }
11684
11685 VDecl->setType(DeducedType);
11686 assert(VDecl->isLinkageValid())((VDecl->isLinkageValid()) ? static_cast<void> (0) :
__assert_fail ("VDecl->isLinkageValid()", "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 11686, __PRETTY_FUNCTION__))
;
11687
11688 // In ARC, infer lifetime.
11689 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
11690 VDecl->setInvalidDecl();
11691
11692 if (getLangOpts().OpenCL)
11693 deduceOpenCLAddressSpace(VDecl);
11694
11695 // If this is a redeclaration, check that the type we just deduced matches
11696 // the previously declared type.
11697 if (VarDecl *Old = VDecl->getPreviousDecl()) {
11698 // We never need to merge the type, because we cannot form an incomplete
11699 // array of auto, nor deduce such a type.
11700 MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false);
11701 }
11702
11703 // Check the deduced type is valid for a variable declaration.
11704 CheckVariableDeclarationType(VDecl);
11705 return VDecl->isInvalidDecl();
11706}
11707
11708void Sema::checkNonTrivialCUnionInInitializer(const Expr *Init,
11709 SourceLocation Loc) {
11710 if (auto *EWC = dyn_cast<ExprWithCleanups>(Init))
11711 Init = EWC->getSubExpr();
11712
11713 if (auto *CE = dyn_cast<ConstantExpr>(Init))
11714 Init = CE->getSubExpr();
11715
11716 QualType InitType = Init->getType();
11717 assert((InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||(((InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion()
|| InitType.hasNonTrivialToPrimitiveCopyCUnion()) &&
"shouldn't be called if type doesn't have a non-trivial C struct"
) ? static_cast<void> (0) : __assert_fail ("(InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || InitType.hasNonTrivialToPrimitiveCopyCUnion()) && \"shouldn't be called if type doesn't have a non-trivial C struct\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 11719, __PRETTY_FUNCTION__))
11718 InitType.hasNonTrivialToPrimitiveCopyCUnion()) &&(((InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion()
|| InitType.hasNonTrivialToPrimitiveCopyCUnion()) &&
"shouldn't be called if type doesn't have a non-trivial C struct"
) ? static_cast<void> (0) : __assert_fail ("(InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || InitType.hasNonTrivialToPrimitiveCopyCUnion()) && \"shouldn't be called if type doesn't have a non-trivial C struct\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 11719, __PRETTY_FUNCTION__))
11719 "shouldn't be called if type doesn't have a non-trivial C struct")(((InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion()
|| InitType.hasNonTrivialToPrimitiveCopyCUnion()) &&
"shouldn't be called if type doesn't have a non-trivial C struct"
) ? static_cast<void> (0) : __assert_fail ("(InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || InitType.hasNonTrivialToPrimitiveCopyCUnion()) && \"shouldn't be called if type doesn't have a non-trivial C struct\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 11719, __PRETTY_FUNCTION__))
;
11720 if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
11721 for (auto I : ILE->inits()) {
11722 if (!I->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() &&
11723 !I->getType().hasNonTrivialToPrimitiveCopyCUnion())
11724 continue;
11725 SourceLocation SL = I->getExprLoc();
11726 checkNonTrivialCUnionInInitializer(I, SL.isValid() ? SL : Loc);
11727 }
11728 return;
11729 }
11730
11731 if (isa<ImplicitValueInitExpr>(Init)) {
11732 if (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
11733 checkNonTrivialCUnion(InitType, Loc, NTCUC_DefaultInitializedObject,
11734 NTCUK_Init);
11735 } else {
11736 // Assume all other explicit initializers involving copying some existing
11737 // object.
11738 // TODO: ignore any explicit initializers where we can guarantee
11739 // copy-elision.
11740 if (InitType.hasNonTrivialToPrimitiveCopyCUnion())
11741 checkNonTrivialCUnion(InitType, Loc, NTCUC_CopyInit, NTCUK_Copy);
11742 }
11743}
11744
11745namespace {
11746
11747bool shouldIgnoreForRecordTriviality(const FieldDecl *FD) {
11748 // Ignore unavailable fields. A field can be marked as unavailable explicitly
11749 // in the source code or implicitly by the compiler if it is in a union
11750 // defined in a system header and has non-trivial ObjC ownership
11751 // qualifications. We don't want those fields to participate in determining
11752 // whether the containing union is non-trivial.
11753 return FD->hasAttr<UnavailableAttr>();
11754}
11755
11756struct DiagNonTrivalCUnionDefaultInitializeVisitor
11757 : DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor,
11758 void> {
11759 using Super =
11760 DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor,
11761 void>;
11762
11763 DiagNonTrivalCUnionDefaultInitializeVisitor(
11764 QualType OrigTy, SourceLocation OrigLoc,
11765 Sema::NonTrivialCUnionContext UseContext, Sema &S)
11766 : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
11767
11768 void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType QT,
11769 const FieldDecl *FD, bool InNonTrivialUnion) {
11770 if (const auto *AT = S.Context.getAsArrayType(QT))
11771 return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
11772 InNonTrivialUnion);
11773 return Super::visitWithKind(PDIK, QT, FD, InNonTrivialUnion);
11774 }
11775
11776 void visitARCStrong(QualType QT, const FieldDecl *FD,
11777 bool InNonTrivialUnion) {
11778 if (InNonTrivialUnion)
11779 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11780 << 1 << 0 << QT << FD->getName();
11781 }
11782
11783 void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11784 if (InNonTrivialUnion)
11785 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11786 << 1 << 0 << QT << FD->getName();
11787 }
11788
11789 void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11790 const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
11791 if (RD->isUnion()) {
11792 if (OrigLoc.isValid()) {
11793 bool IsUnion = false;
11794 if (auto *OrigRD = OrigTy->getAsRecordDecl())
11795 IsUnion = OrigRD->isUnion();
11796 S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
11797 << 0 << OrigTy << IsUnion << UseContext;
11798 // Reset OrigLoc so that this diagnostic is emitted only once.
11799 OrigLoc = SourceLocation();
11800 }
11801 InNonTrivialUnion = true;
11802 }
11803
11804 if (InNonTrivialUnion)
11805 S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
11806 << 0 << 0 << QT.getUnqualifiedType() << "";
11807
11808 for (const FieldDecl *FD : RD->fields())
11809 if (!shouldIgnoreForRecordTriviality(FD))
11810 asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
11811 }
11812
11813 void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
11814
11815 // The non-trivial C union type or the struct/union type that contains a
11816 // non-trivial C union.
11817 QualType OrigTy;
11818 SourceLocation OrigLoc;
11819 Sema::NonTrivialCUnionContext UseContext;
11820 Sema &S;
11821};
11822
11823struct DiagNonTrivalCUnionDestructedTypeVisitor
11824 : DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void> {
11825 using Super =
11826 DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void>;
11827
11828 DiagNonTrivalCUnionDestructedTypeVisitor(
11829 QualType OrigTy, SourceLocation OrigLoc,
11830 Sema::NonTrivialCUnionContext UseContext, Sema &S)
11831 : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
11832
11833 void visitWithKind(QualType::DestructionKind DK, QualType QT,
11834 const FieldDecl *FD, bool InNonTrivialUnion) {
11835 if (const auto *AT = S.Context.getAsArrayType(QT))
11836 return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
11837 InNonTrivialUnion);
11838 return Super::visitWithKind(DK, QT, FD, InNonTrivialUnion);
11839 }
11840
11841 void visitARCStrong(QualType QT, const FieldDecl *FD,
11842 bool InNonTrivialUnion) {
11843 if (InNonTrivialUnion)
11844 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11845 << 1 << 1 << QT << FD->getName();
11846 }
11847
11848 void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11849 if (InNonTrivialUnion)
11850 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11851 << 1 << 1 << QT << FD->getName();
11852 }
11853
11854 void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11855 const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
11856 if (RD->isUnion()) {
11857 if (OrigLoc.isValid()) {
11858 bool IsUnion = false;
11859 if (auto *OrigRD = OrigTy->getAsRecordDecl())
11860 IsUnion = OrigRD->isUnion();
11861 S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
11862 << 1 << OrigTy << IsUnion << UseContext;
11863 // Reset OrigLoc so that this diagnostic is emitted only once.
11864 OrigLoc = SourceLocation();
11865 }
11866 InNonTrivialUnion = true;
11867 }
11868
11869 if (InNonTrivialUnion)
11870 S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
11871 << 0 << 1 << QT.getUnqualifiedType() << "";
11872
11873 for (const FieldDecl *FD : RD->fields())
11874 if (!shouldIgnoreForRecordTriviality(FD))
11875 asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
11876 }
11877
11878 void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
11879 void visitCXXDestructor(QualType QT, const FieldDecl *FD,
11880 bool InNonTrivialUnion) {}
11881
11882 // The non-trivial C union type or the struct/union type that contains a
11883 // non-trivial C union.
11884 QualType OrigTy;
11885 SourceLocation OrigLoc;
11886 Sema::NonTrivialCUnionContext UseContext;
11887 Sema &S;
11888};
11889
11890struct DiagNonTrivalCUnionCopyVisitor
11891 : CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void> {
11892 using Super = CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void>;
11893
11894 DiagNonTrivalCUnionCopyVisitor(QualType OrigTy, SourceLocation OrigLoc,
11895 Sema::NonTrivialCUnionContext UseContext,
11896 Sema &S)
11897 : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
11898
11899 void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType QT,
11900 const FieldDecl *FD, bool InNonTrivialUnion) {
11901 if (const auto *AT = S.Context.getAsArrayType(QT))
11902 return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
11903 InNonTrivialUnion);
11904 return Super::visitWithKind(PCK, QT, FD, InNonTrivialUnion);
11905 }
11906
11907 void visitARCStrong(QualType QT, const FieldDecl *FD,
11908 bool InNonTrivialUnion) {
11909 if (InNonTrivialUnion)
11910 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11911 << 1 << 2 << QT << FD->getName();
11912 }
11913
11914 void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11915 if (InNonTrivialUnion)
11916 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11917 << 1 << 2 << QT << FD->getName();
11918 }
11919
11920 void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11921 const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
11922 if (RD->isUnion()) {
11923 if (OrigLoc.isValid()) {
11924 bool IsUnion = false;
11925 if (auto *OrigRD = OrigTy->getAsRecordDecl())
11926 IsUnion = OrigRD->isUnion();
11927 S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
11928 << 2 << OrigTy << IsUnion << UseContext;
11929 // Reset OrigLoc so that this diagnostic is emitted only once.
11930 OrigLoc = SourceLocation();
11931 }
11932 InNonTrivialUnion = true;
11933 }
11934
11935 if (InNonTrivialUnion)
11936 S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
11937 << 0 << 2 << QT.getUnqualifiedType() << "";
11938
11939 for (const FieldDecl *FD : RD->fields())
11940 if (!shouldIgnoreForRecordTriviality(FD))
11941 asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
11942 }
11943
11944 void preVisit(QualType::PrimitiveCopyKind PCK, QualType QT,
11945 const FieldDecl *FD, bool InNonTrivialUnion) {}
11946 void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
11947 void visitVolatileTrivial(QualType QT, const FieldDecl *FD,
11948 bool InNonTrivialUnion) {}
11949
11950 // The non-trivial C union type or the struct/union type that contains a
11951 // non-trivial C union.
11952 QualType OrigTy;
11953 SourceLocation OrigLoc;
11954 Sema::NonTrivialCUnionContext UseContext;
11955 Sema &S;
11956};
11957
11958} // namespace
11959
11960void Sema::checkNonTrivialCUnion(QualType QT, SourceLocation Loc,
11961 NonTrivialCUnionContext UseContext,
11962 unsigned NonTrivialKind) {
11963 assert((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||(((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || QT
.hasNonTrivialToPrimitiveDestructCUnion() || QT.hasNonTrivialToPrimitiveCopyCUnion
()) && "shouldn't be called if type doesn't have a non-trivial C union"
) ? static_cast<void> (0) : __assert_fail ("(QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || QT.hasNonTrivialToPrimitiveDestructCUnion() || QT.hasNonTrivialToPrimitiveCopyCUnion()) && \"shouldn't be called if type doesn't have a non-trivial C union\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 11966, __PRETTY_FUNCTION__))
11964 QT.hasNonTrivialToPrimitiveDestructCUnion() ||(((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || QT
.hasNonTrivialToPrimitiveDestructCUnion() || QT.hasNonTrivialToPrimitiveCopyCUnion
()) && "shouldn't be called if type doesn't have a non-trivial C union"
) ? static_cast<void> (0) : __assert_fail ("(QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || QT.hasNonTrivialToPrimitiveDestructCUnion() || QT.hasNonTrivialToPrimitiveCopyCUnion()) && \"shouldn't be called if type doesn't have a non-trivial C union\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 11966, __PRETTY_FUNCTION__))
11965 QT.hasNonTrivialToPrimitiveCopyCUnion()) &&(((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || QT
.hasNonTrivialToPrimitiveDestructCUnion() || QT.hasNonTrivialToPrimitiveCopyCUnion
()) && "shouldn't be called if type doesn't have a non-trivial C union"
) ? static_cast<void> (0) : __assert_fail ("(QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || QT.hasNonTrivialToPrimitiveDestructCUnion() || QT.hasNonTrivialToPrimitiveCopyCUnion()) && \"shouldn't be called if type doesn't have a non-trivial C union\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 11966, __PRETTY_FUNCTION__))
11966 "shouldn't be called if type doesn't have a non-trivial C union")(((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || QT
.hasNonTrivialToPrimitiveDestructCUnion() || QT.hasNonTrivialToPrimitiveCopyCUnion
()) && "shouldn't be called if type doesn't have a non-trivial C union"
) ? static_cast<void> (0) : __assert_fail ("(QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || QT.hasNonTrivialToPrimitiveDestructCUnion() || QT.hasNonTrivialToPrimitiveCopyCUnion()) && \"shouldn't be called if type doesn't have a non-trivial C union\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 11966, __PRETTY_FUNCTION__))
;
11967
11968 if ((NonTrivialKind & NTCUK_Init) &&
11969 QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
11970 DiagNonTrivalCUnionDefaultInitializeVisitor(QT, Loc, UseContext, *this)
11971 .visit(QT, nullptr, false);
11972 if ((NonTrivialKind & NTCUK_Destruct) &&
11973 QT.hasNonTrivialToPrimitiveDestructCUnion())
11974 DiagNonTrivalCUnionDestructedTypeVisitor(QT, Loc, UseContext, *this)
11975 .visit(QT, nullptr, false);
11976 if ((NonTrivialKind & NTCUK_Copy) && QT.hasNonTrivialToPrimitiveCopyCUnion())
11977 DiagNonTrivalCUnionCopyVisitor(QT, Loc, UseContext, *this)
11978 .visit(QT, nullptr, false);
11979}
11980
11981/// AddInitializerToDecl - Adds the initializer Init to the
11982/// declaration dcl. If DirectInit is true, this is C++ direct
11983/// initialization rather than copy initialization.
11984void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
11985 // If there is no declaration, there was an error parsing it. Just ignore
11986 // the initializer.
11987 if (!RealDecl || RealDecl->isInvalidDecl()) {
11988 CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl));
11989 return;
11990 }
11991
11992 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
11993 // Pure-specifiers are handled in ActOnPureSpecifier.
11994 Diag(Method->getLocation(), diag::err_member_function_initialization)
11995 << Method->getDeclName() << Init->getSourceRange();
11996 Method->setInvalidDecl();
11997 return;
11998 }
11999
12000 VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
12001 if (!VDecl) {
12002 assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here")((!isa<FieldDecl>(RealDecl) && "field init shouldn't get here"
) ? static_cast<void> (0) : __assert_fail ("!isa<FieldDecl>(RealDecl) && \"field init shouldn't get here\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 12002, __PRETTY_FUNCTION__))
;
12003 Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
12004 RealDecl->setInvalidDecl();
12005 return;
12006 }
12007
12008 // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
12009 if (VDecl->getType()->isUndeducedType()) {
12010 // Attempt typo correction early so that the type of the init expression can
12011 // be deduced based on the chosen correction if the original init contains a
12012 // TypoExpr.
12013 ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl);
12014 if (!Res.isUsable()) {
12015 // There are unresolved typos in Init, just drop them.
12016 // FIXME: improve the recovery strategy to preserve the Init.
12017 RealDecl->setInvalidDecl();
12018 return;
12019 }
12020 if (Res.get()->containsErrors()) {
12021 // Invalidate the decl as we don't know the type for recovery-expr yet.
12022 RealDecl->setInvalidDecl();
12023 VDecl->setInit(Res.get());
12024 return;
12025 }
12026 Init = Res.get();
12027
12028 if (DeduceVariableDeclarationType(VDecl, DirectInit, Init))
12029 return;
12030 }
12031
12032 // dllimport cannot be used on variable definitions.
12033 if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
12034 Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
12035 VDecl->setInvalidDecl();
12036 return;
12037 }
12038
12039 if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
12040 // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
12041 Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
12042 VDecl->setInvalidDecl();
12043 return;
12044 }
12045
12046 if (!VDecl->getType()->isDependentType()) {
12047 // A definition must end up with a complete type, which means it must be
12048 // complete with the restriction that an array type might be completed by
12049 // the initializer; note that later code assumes this restriction.
12050 QualType BaseDeclType = VDecl->getType();
12051 if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
12052 BaseDeclType = Array->getElementType();
12053 if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
12054 diag::err_typecheck_decl_incomplete_type)) {
12055 RealDecl->setInvalidDecl();
12056 return;
12057 }
12058
12059 // The variable can not have an abstract class type.
12060 if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
12061 diag::err_abstract_type_in_decl,
12062 AbstractVariableType))
12063 VDecl->setInvalidDecl();
12064 }
12065
12066 // If adding the initializer will turn this declaration into a definition,
12067 // and we already have a definition for this variable, diagnose or otherwise
12068 // handle the situation.
12069 VarDecl *Def;
12070 if ((Def = VDecl->getDefinition()) && Def != VDecl &&
12071 (!VDecl->isStaticDataMember() || VDecl->isOutOfLine()) &&
12072 !VDecl->isThisDeclarationADemotedDefinition() &&
12073 checkVarDeclRedefinition(Def, VDecl))
12074 return;
12075
12076 if (getLangOpts().CPlusPlus) {
12077 // C++ [class.static.data]p4
12078 // If a static data member is of const integral or const
12079 // enumeration type, its declaration in the class definition can
12080 // specify a constant-initializer which shall be an integral
12081 // constant expression (5.19). In that case, the member can appear
12082 // in integral constant expressions. The member shall still be
12083 // defined in a namespace scope if it is used in the program and the
12084 // namespace scope definition shall not contain an initializer.
12085 //
12086 // We already performed a redefinition check above, but for static
12087 // data members we also need to check whether there was an in-class
12088 // declaration with an initializer.
12089 if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) {
12090 Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
12091 << VDecl->getDeclName();
12092 Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(),
12093 diag::note_previous_initializer)
12094 << 0;
12095 return;
12096 }
12097
12098 if (VDecl->hasLocalStorage())
12099 setFunctionHasBranchProtectedScope();
12100
12101 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
12102 VDecl->setInvalidDecl();
12103 return;
12104 }
12105 }
12106
12107 // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
12108 // a kernel function cannot be initialized."
12109 if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) {
12110 Diag(VDecl->getLocation(), diag::err_local_cant_init);
12111 VDecl->setInvalidDecl();
12112 return;
12113 }
12114
12115 // The LoaderUninitialized attribute acts as a definition (of undef).
12116 if (VDecl->hasAttr<LoaderUninitializedAttr>()) {
12117 Diag(VDecl->getLocation(), diag::err_loader_uninitialized_cant_init);
12118 VDecl->setInvalidDecl();
12119 return;
12120 }
12121
12122 // Get the decls type and save a reference for later, since
12123 // CheckInitializerTypes may change it.
12124 QualType DclT = VDecl->getType(), SavT = DclT;
12125
12126 // Expressions default to 'id' when we're in a debugger
12127 // and we are assigning it to a variable of Objective-C pointer type.
12128 if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
12129 Init->getType() == Context.UnknownAnyTy) {
12130 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
12131 if (Result.isInvalid()) {
12132 VDecl->setInvalidDecl();
12133 return;
12134 }
12135 Init = Result.get();
12136 }
12137
12138 // Perform the initialization.
12139 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
12140 if (!VDecl->isInvalidDecl()) {
12141 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
12142 InitializationKind Kind = InitializationKind::CreateForInit(
12143 VDecl->getLocation(), DirectInit, Init);
12144
12145 MultiExprArg Args = Init;
12146 if (CXXDirectInit)
12147 Args = MultiExprArg(CXXDirectInit->getExprs(),
12148 CXXDirectInit->getNumExprs());
12149
12150 // Try to correct any TypoExprs in the initialization arguments.
12151 for (size_t Idx = 0; Idx < Args.size(); ++Idx) {
12152 ExprResult Res = CorrectDelayedTyposInExpr(
12153 Args[Idx], VDecl, /*RecoverUncorrectedTypos=*/true,
12154 [this, Entity, Kind](Expr *E) {
12155 InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E));
12156 return Init.Failed() ? ExprError() : E;
12157 });
12158 if (Res.isInvalid()) {
12159 VDecl->setInvalidDecl();
12160 } else if (Res.get() != Args[Idx]) {
12161 Args[Idx] = Res.get();
12162 }
12163 }
12164 if (VDecl->isInvalidDecl())
12165 return;
12166
12167 InitializationSequence InitSeq(*this, Entity, Kind, Args,
12168 /*TopLevelOfInitList=*/false,
12169 /*TreatUnavailableAsInvalid=*/false);
12170 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
12171 if (Result.isInvalid()) {
12172 // If the provied initializer fails to initialize the var decl,
12173 // we attach a recovery expr for better recovery.
12174 auto RecoveryExpr =
12175 CreateRecoveryExpr(Init->getBeginLoc(), Init->getEndLoc(), Args);
12176 if (RecoveryExpr.get())
12177 VDecl->setInit(RecoveryExpr.get());
12178 return;
12179 }
12180
12181 Init = Result.getAs<Expr>();
12182 }
12183
12184 // Check for self-references within variable initializers.
12185 // Variables declared within a function/method body (except for references)
12186 // are handled by a dataflow analysis.
12187 // This is undefined behavior in C++, but valid in C.
12188 if (getLangOpts().CPlusPlus) {
12189 if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
12190 VDecl->getType()->isReferenceType()) {
12191 CheckSelfReference(*this, RealDecl, Init, DirectInit);
12192 }
12193 }
12194
12195 // If the type changed, it means we had an incomplete type that was
12196 // completed by the initializer. For example:
12197 // int ary[] = { 1, 3, 5 };
12198 // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
12199 if (!VDecl->isInvalidDecl() && (DclT != SavT))
12200 VDecl->setType(DclT);
12201
12202 if (!VDecl->isInvalidDecl()) {
12203 checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
12204
12205 if (VDecl->hasAttr<BlocksAttr>())
12206 checkRetainCycles(VDecl, Init);
12207
12208 // It is safe to assign a weak reference into a strong variable.
12209 // Although this code can still have problems:
12210 // id x = self.weakProp;
12211 // id y = self.weakProp;
12212 // we do not warn to warn spuriously when 'x' and 'y' are on separate
12213 // paths through the function. This should be revisited if
12214 // -Wrepeated-use-of-weak is made flow-sensitive.
12215 if (FunctionScopeInfo *FSI = getCurFunction())
12216 if ((VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
12217 VDecl->getType().isNonWeakInMRRWithObjCWeak(Context)) &&
12218 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
12219 Init->getBeginLoc()))
12220 FSI->markSafeWeakUse(Init);
12221 }
12222
12223 // The initialization is usually a full-expression.
12224 //
12225 // FIXME: If this is a braced initialization of an aggregate, it is not
12226 // an expression, and each individual field initializer is a separate
12227 // full-expression. For instance, in:
12228 //
12229 // struct Temp { ~Temp(); };
12230 // struct S { S(Temp); };
12231 // struct T { S a, b; } t = { Temp(), Temp() }
12232 //
12233 // we should destroy the first Temp before constructing the second.
12234 ExprResult Result =
12235 ActOnFinishFullExpr(Init, VDecl->getLocation(),
12236 /*DiscardedValue*/ false, VDecl->isConstexpr());
12237 if (Result.isInvalid()) {
12238 VDecl->setInvalidDecl();
12239 return;
12240 }
12241 Init = Result.get();
12242
12243 // Attach the initializer to the decl.
12244 VDecl->setInit(Init);
12245
12246 if (VDecl->isLocalVarDecl()) {
12247 // Don't check the initializer if the declaration is malformed.
12248 if (VDecl->isInvalidDecl()) {
12249 // do nothing
12250
12251 // OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized.
12252 // This is true even in C++ for OpenCL.
12253 } else if (VDecl->getType().getAddressSpace() == LangAS::opencl_constant) {
12254 CheckForConstantInitializer(Init, DclT);
12255
12256 // Otherwise, C++ does not restrict the initializer.
12257 } else if (getLangOpts().CPlusPlus) {
12258 // do nothing
12259
12260 // C99 6.7.8p4: All the expressions in an initializer for an object that has
12261 // static storage duration shall be constant expressions or string literals.
12262 } else if (VDecl->getStorageClass() == SC_Static) {
12263 CheckForConstantInitializer(Init, DclT);
12264
12265 // C89 is stricter than C99 for aggregate initializers.
12266 // C89 6.5.7p3: All the expressions [...] in an initializer list
12267 // for an object that has aggregate or union type shall be
12268 // constant expressions.
12269 } else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
12270 isa<InitListExpr>(Init)) {
12271 const Expr *Culprit;
12272 if (!Init->isConstantInitializer(Context, false, &Culprit)) {
12273 Diag(Culprit->getExprLoc(),
12274 diag::ext_aggregate_init_not_constant)
12275 << Culprit->getSourceRange();
12276 }
12277 }
12278
12279 if (auto *E = dyn_cast<ExprWithCleanups>(Init))
12280 if (auto *BE = dyn_cast<BlockExpr>(E->getSubExpr()->IgnoreParens()))
12281 if (VDecl->hasLocalStorage())
12282 BE->getBlockDecl()->setCanAvoidCopyToHeap();
12283 } else if (VDecl->isStaticDataMember() && !VDecl->isInline() &&
12284 VDecl->getLexicalDeclContext()->isRecord()) {
12285 // This is an in-class initialization for a static data member, e.g.,
12286 //
12287 // struct S {
12288 // static const int value = 17;
12289 // };
12290
12291 // C++ [class.mem]p4:
12292 // A member-declarator can contain a constant-initializer only
12293 // if it declares a static member (9.4) of const integral or
12294 // const enumeration type, see 9.4.2.
12295 //
12296 // C++11 [class.static.data]p3:
12297 // If a non-volatile non-inline const static data member is of integral
12298 // or enumeration type, its declaration in the class definition can
12299 // specify a brace-or-equal-initializer in which every initializer-clause
12300 // that is an assignment-expression is a constant expression. A static
12301 // data member of literal type can be declared in the class definition
12302 // with the constexpr specifier; if so, its declaration shall specify a
12303 // brace-or-equal-initializer in which every initializer-clause that is
12304 // an assignment-expression is a constant expression.
12305
12306 // Do nothing on dependent types.
12307 if (DclT->isDependentType()) {
12308
12309 // Allow any 'static constexpr' members, whether or not they are of literal
12310 // type. We separately check that every constexpr variable is of literal
12311 // type.
12312 } else if (VDecl->isConstexpr()) {
12313
12314 // Require constness.
12315 } else if (!DclT.isConstQualified()) {
12316 Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
12317 << Init->getSourceRange();
12318 VDecl->setInvalidDecl();
12319
12320 // We allow integer constant expressions in all cases.
12321 } else if (DclT->isIntegralOrEnumerationType()) {
12322 // Check whether the expression is a constant expression.
12323 SourceLocation Loc;
12324 if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
12325 // In C++11, a non-constexpr const static data member with an
12326 // in-class initializer cannot be volatile.
12327 Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
12328 else if (Init->isValueDependent())
12329 ; // Nothing to check.
12330 else if (Init->isIntegerConstantExpr(Context, &Loc))
12331 ; // Ok, it's an ICE!
12332 else if (Init->getType()->isScopedEnumeralType() &&
12333 Init->isCXX11ConstantExpr(Context))
12334 ; // Ok, it is a scoped-enum constant expression.
12335 else if (Init->isEvaluatable(Context)) {
12336 // If we can constant fold the initializer through heroics, accept it,
12337 // but report this as a use of an extension for -pedantic.
12338 Diag(Loc, diag::ext_in_class_initializer_non_constant)
12339 << Init->getSourceRange();
12340 } else {
12341 // Otherwise, this is some crazy unknown case. Report the issue at the
12342 // location provided by the isIntegerConstantExpr failed check.
12343 Diag(Loc, diag::err_in_class_initializer_non_constant)
12344 << Init->getSourceRange();
12345 VDecl->setInvalidDecl();
12346 }
12347
12348 // We allow foldable floating-point constants as an extension.
12349 } else if (DclT->isFloatingType()) { // also permits complex, which is ok
12350 // In C++98, this is a GNU extension. In C++11, it is not, but we support
12351 // it anyway and provide a fixit to add the 'constexpr'.
12352 if (getLangOpts().CPlusPlus11) {
12353 Diag(VDecl->getLocation(),
12354 diag::ext_in_class_initializer_float_type_cxx11)
12355 << DclT << Init->getSourceRange();
12356 Diag(VDecl->getBeginLoc(),
12357 diag::note_in_class_initializer_float_type_cxx11)
12358 << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
12359 } else {
12360 Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
12361 << DclT << Init->getSourceRange();
12362
12363 if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
12364 Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
12365 << Init->getSourceRange();
12366 VDecl->setInvalidDecl();
12367 }
12368 }
12369
12370 // Suggest adding 'constexpr' in C++11 for literal types.
12371 } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
12372 Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
12373 << DclT << Init->getSourceRange()
12374 << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
12375 VDecl->setConstexpr(true);
12376
12377 } else {
12378 Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
12379 << DclT << Init->getSourceRange();
12380 VDecl->setInvalidDecl();
12381 }
12382 } else if (VDecl->isFileVarDecl()) {
12383 // In C, extern is typically used to avoid tentative definitions when
12384 // declaring variables in headers, but adding an intializer makes it a
12385 // definition. This is somewhat confusing, so GCC and Clang both warn on it.
12386 // In C++, extern is often used to give implictly static const variables
12387 // external linkage, so don't warn in that case. If selectany is present,
12388 // this might be header code intended for C and C++ inclusion, so apply the
12389 // C++ rules.
12390 if (VDecl->getStorageClass() == SC_Extern &&
12391 ((!getLangOpts().CPlusPlus && !VDecl->hasAttr<SelectAnyAttr>()) ||
12392 !Context.getBaseElementType(VDecl->getType()).isConstQualified()) &&
12393 !(getLangOpts().CPlusPlus && VDecl->isExternC()) &&
12394 !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
12395 Diag(VDecl->getLocation(), diag::warn_extern_init);
12396
12397 // In Microsoft C++ mode, a const variable defined in namespace scope has
12398 // external linkage by default if the variable is declared with
12399 // __declspec(dllexport).
12400 if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
12401 getLangOpts().CPlusPlus && VDecl->getType().isConstQualified() &&
12402 VDecl->hasAttr<DLLExportAttr>() && VDecl->getDefinition())
12403 VDecl->setStorageClass(SC_Extern);
12404
12405 // C99 6.7.8p4. All file scoped initializers need to be constant.
12406 if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
12407 CheckForConstantInitializer(Init, DclT);
12408 }
12409
12410 QualType InitType = Init->getType();
12411 if (!InitType.isNull() &&
12412 (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
12413 InitType.hasNonTrivialToPrimitiveCopyCUnion()))
12414 checkNonTrivialCUnionInInitializer(Init, Init->getExprLoc());
12415
12416 // We will represent direct-initialization similarly to copy-initialization:
12417 // int x(1); -as-> int x = 1;
12418 // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
12419 //
12420 // Clients that want to distinguish between the two forms, can check for
12421 // direct initializer using VarDecl::getInitStyle().
12422 // A major benefit is that clients that don't particularly care about which
12423 // exactly form was it (like the CodeGen) can handle both cases without
12424 // special case code.
12425
12426 // C++ 8.5p11:
12427 // The form of initialization (using parentheses or '=') is generally
12428 // insignificant, but does matter when the entity being initialized has a
12429 // class type.
12430 if (CXXDirectInit) {
12431 assert(DirectInit && "Call-style initializer must be direct init.")((DirectInit && "Call-style initializer must be direct init."
) ? static_cast<void> (0) : __assert_fail ("DirectInit && \"Call-style initializer must be direct init.\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 12431, __PRETTY_FUNCTION__))
;
12432 VDecl->setInitStyle(VarDecl::CallInit);
12433 } else if (DirectInit) {
12434 // This must be list-initialization. No other way is direct-initialization.
12435 VDecl->setInitStyle(VarDecl::ListInit);
12436 }
12437
12438 if (LangOpts.OpenMP && VDecl->isFileVarDecl())
12439 DeclsToCheckForDeferredDiags.push_back(VDecl);
12440 CheckCompleteVariableDeclaration(VDecl);
12441}
12442
12443/// ActOnInitializerError - Given that there was an error parsing an
12444/// initializer for the given declaration, try to return to some form
12445/// of sanity.
12446void Sema::ActOnInitializerError(Decl *D) {
12447 // Our main concern here is re-establishing invariants like "a
12448 // variable's type is either dependent or complete".
12449 if (!D || D->isInvalidDecl()) return;
12450
12451 VarDecl *VD = dyn_cast<VarDecl>(D);
12452 if (!VD) return;
12453
12454 // Bindings are not usable if we can't make sense of the initializer.
12455 if (auto *DD = dyn_cast<DecompositionDecl>(D))
12456 for (auto *BD : DD->bindings())
12457 BD->setInvalidDecl();
12458
12459 // Auto types are meaningless if we can't make sense of the initializer.
12460 if (VD->getType()->isUndeducedType()) {
12461 D->setInvalidDecl();
12462 return;
12463 }
12464
12465 QualType Ty = VD->getType();
12466 if (Ty->isDependentType()) return;
12467
12468 // Require a complete type.
12469 if (RequireCompleteType(VD->getLocation(),
12470 Context.getBaseElementType(Ty),
12471 diag::err_typecheck_decl_incomplete_type)) {
12472 VD->setInvalidDecl();
12473 return;
12474 }
12475
12476 // Require a non-abstract type.
12477 if (RequireNonAbstractType(VD->getLocation(), Ty,
12478 diag::err_abstract_type_in_decl,
12479 AbstractVariableType)) {
12480 VD->setInvalidDecl();
12481 return;
12482 }
12483
12484 // Don't bother complaining about constructors or destructors,
12485 // though.
12486}
12487
12488void Sema::ActOnUninitializedDecl(Decl *RealDecl) {
12489 // If there is no declaration, there was an error parsing it. Just ignore it.
12490 if (!RealDecl)
12491 return;
12492
12493 if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
12494 QualType Type = Var->getType();
12495
12496 // C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory.
12497 if (isa<DecompositionDecl>(RealDecl)) {
12498 Diag(Var->getLocation(), diag::err_decomp_decl_requires_init) << Var;
12499 Var->setInvalidDecl();
12500 return;
12501 }
12502
12503 if (Type->isUndeducedType() &&
12504 DeduceVariableDeclarationType(Var, false, nullptr))
12505 return;
12506
12507 // C++11 [class.static.data]p3: A static data member can be declared with
12508 // the constexpr specifier; if so, its declaration shall specify
12509 // a brace-or-equal-initializer.
12510 // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
12511 // the definition of a variable [...] or the declaration of a static data
12512 // member.
12513 if (Var->isConstexpr() && !Var->isThisDeclarationADefinition() &&
12514 !Var->isThisDeclarationADemotedDefinition()) {
12515 if (Var->isStaticDataMember()) {
12516 // C++1z removes the relevant rule; the in-class declaration is always
12517 // a definition there.
12518 if (!getLangOpts().CPlusPlus17 &&
12519 !Context.getTargetInfo().getCXXABI().isMicrosoft()) {
12520 Diag(Var->getLocation(),
12521 diag::err_constexpr_static_mem_var_requires_init)
12522 << Var;
12523 Var->setInvalidDecl();
12524 return;
12525 }
12526 } else {
12527 Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
12528 Var->setInvalidDecl();
12529 return;
12530 }
12531 }
12532
12533 // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
12534 // be initialized.
12535 if (!Var->isInvalidDecl() &&
12536 Var->getType().getAddressSpace() == LangAS::opencl_constant &&
12537 Var->getStorageClass() != SC_Extern && !Var->getInit()) {
12538 Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
12539 Var->setInvalidDecl();
12540 return;
12541 }
12542
12543 if (!Var->isInvalidDecl() && RealDecl->hasAttr<LoaderUninitializedAttr>()) {
12544 if (Var->getStorageClass() == SC_Extern) {
12545 Diag(Var->getLocation(), diag::err_loader_uninitialized_extern_decl)
12546 << Var;
12547 Var->setInvalidDecl();
12548 return;
12549 }
12550 if (RequireCompleteType(Var->getLocation(), Var->getType(),
12551 diag::err_typecheck_decl_incomplete_type)) {
12552 Var->setInvalidDecl();
12553 return;
12554 }
12555 if (CXXRecordDecl *RD = Var->getType()->getAsCXXRecordDecl()) {
12556 if (!RD->hasTrivialDefaultConstructor()) {
12557 Diag(Var->getLocation(), diag::err_loader_uninitialized_trivial_ctor);
12558 Var->setInvalidDecl();
12559 return;
12560 }
12561 }
12562 }
12563
12564 VarDecl::DefinitionKind DefKind = Var->isThisDeclarationADefinition();
12565 if (!Var->isInvalidDecl() && DefKind != VarDecl::DeclarationOnly &&
12566 Var->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion())
12567 checkNonTrivialCUnion(Var->getType(), Var->getLocation(),
12568 NTCUC_DefaultInitializedObject, NTCUK_Init);
12569
12570
12571 switch (DefKind) {
12572 case VarDecl::Definition:
12573 if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
12574 break;
12575
12576 // We have an out-of-line definition of a static data member
12577 // that has an in-class initializer, so we type-check this like
12578 // a declaration.
12579 //
12580 LLVM_FALLTHROUGH[[gnu::fallthrough]];
12581
12582 case VarDecl::DeclarationOnly:
12583 // It's only a declaration.
12584
12585 // Block scope. C99 6.7p7: If an identifier for an object is
12586 // declared with no linkage (C99 6.2.2p6), the type for the
12587 // object shall be complete.
12588 if (!Type->isDependentType() && Var->isLocalVarDecl() &&
12589 !Var->hasLinkage() && !Var->isInvalidDecl() &&
12590 RequireCompleteType(Var->getLocation(), Type,
12591 diag::err_typecheck_decl_incomplete_type))
12592 Var->setInvalidDecl();
12593
12594 // Make sure that the type is not abstract.
12595 if (!Type->isDependentType() && !Var->isInvalidDecl() &&
12596 RequireNonAbstractType(Var->getLocation(), Type,
12597 diag::err_abstract_type_in_decl,
12598 AbstractVariableType))
12599 Var->setInvalidDecl();
12600 if (!Type->isDependentType() && !Var->isInvalidDecl() &&
12601 Var->getStorageClass() == SC_PrivateExtern) {
12602 Diag(Var->getLocation(), diag::warn_private_extern);
12603 Diag(Var->getLocation(), diag::note_private_extern);
12604 }
12605
12606 if (Context.getTargetInfo().allowDebugInfoForExternalVar() &&
12607 !Var->isInvalidDecl() && !getLangOpts().CPlusPlus)
12608 ExternalDeclarations.push_back(Var);
12609
12610 return;
12611
12612 case VarDecl::TentativeDefinition:
12613 // File scope. C99 6.9.2p2: A declaration of an identifier for an
12614 // object that has file scope without an initializer, and without a
12615 // storage-class specifier or with the storage-class specifier "static",
12616 // constitutes a tentative definition. Note: A tentative definition with
12617 // external linkage is valid (C99 6.2.2p5).
12618 if (!Var->isInvalidDecl()) {
12619 if (const IncompleteArrayType *ArrayT
12620 = Context.getAsIncompleteArrayType(Type)) {
12621 if (RequireCompleteSizedType(
12622 Var->getLocation(), ArrayT->getElementType(),
12623 diag::err_array_incomplete_or_sizeless_type))
12624 Var->setInvalidDecl();
12625 } else if (Var->getStorageClass() == SC_Static) {
12626 // C99 6.9.2p3: If the declaration of an identifier for an object is
12627 // a tentative definition and has internal linkage (C99 6.2.2p3), the
12628 // declared type shall not be an incomplete type.
12629 // NOTE: code such as the following
12630 // static struct s;
12631 // struct s { int a; };
12632 // is accepted by gcc. Hence here we issue a warning instead of
12633 // an error and we do not invalidate the static declaration.
12634 // NOTE: to avoid multiple warnings, only check the first declaration.
12635 if (Var->isFirstDecl())
12636 RequireCompleteType(Var->getLocation(), Type,
12637 diag::ext_typecheck_decl_incomplete_type);
12638 }
12639 }
12640
12641 // Record the tentative definition; we're done.
12642 if (!Var->isInvalidDecl())
12643 TentativeDefinitions.push_back(Var);
12644 return;
12645 }
12646
12647 // Provide a specific diagnostic for uninitialized variable
12648 // definitions with incomplete array type.
12649 if (Type->isIncompleteArrayType()) {
12650 Diag(Var->getLocation(),
12651 diag::err_typecheck_incomplete_array_needs_initializer);
12652 Var->setInvalidDecl();
12653 return;
12654 }
12655
12656 // Provide a specific diagnostic for uninitialized variable
12657 // definitions with reference type.
12658 if (Type->isReferenceType()) {
12659 Diag(Var->getLocation(), diag::err_reference_var_requires_init)
12660 << Var << SourceRange(Var->getLocation(), Var->getLocation());
12661 Var->setInvalidDecl();
12662 return;
12663 }
12664
12665 // Do not attempt to type-check the default initializer for a
12666 // variable with dependent type.
12667 if (Type->isDependentType())
12668 return;
12669
12670 if (Var->isInvalidDecl())
12671 return;
12672
12673 if (!Var->hasAttr<AliasAttr>()) {
12674 if (RequireCompleteType(Var->getLocation(),
12675 Context.getBaseElementType(Type),
12676 diag::err_typecheck_decl_incomplete_type)) {
12677 Var->setInvalidDecl();
12678 return;
12679 }
12680 } else {
12681 return;
12682 }
12683
12684 // The variable can not have an abstract class type.
12685 if (RequireNonAbstractType(Var->getLocation(), Type,
12686 diag::err_abstract_type_in_decl,
12687 AbstractVariableType)) {
12688 Var->setInvalidDecl();
12689 return;
12690 }
12691
12692 // Check for jumps past the implicit initializer. C++0x
12693 // clarifies that this applies to a "variable with automatic
12694 // storage duration", not a "local variable".
12695 // C++11 [stmt.dcl]p3
12696 // A program that jumps from a point where a variable with automatic
12697 // storage duration is not in scope to a point where it is in scope is
12698 // ill-formed unless the variable has scalar type, class type with a
12699 // trivial default constructor and a trivial destructor, a cv-qualified
12700 // version of one of these types, or an array of one of the preceding
12701 // types and is declared without an initializer.
12702 if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
12703 if (const RecordType *Record
12704 = Context.getBaseElementType(Type)->getAs<RecordType>()) {
12705 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
12706 // Mark the function (if we're in one) for further checking even if the
12707 // looser rules of C++11 do not require such checks, so that we can
12708 // diagnose incompatibilities with C++98.
12709 if (!CXXRecord->isPOD())
12710 setFunctionHasBranchProtectedScope();
12711 }
12712 }
12713 // In OpenCL, we can't initialize objects in the __local address space,
12714 // even implicitly, so don't synthesize an implicit initializer.
12715 if (getLangOpts().OpenCL &&
12716 Var->getType().getAddressSpace() == LangAS::opencl_local)
12717 return;
12718 // C++03 [dcl.init]p9:
12719 // If no initializer is specified for an object, and the
12720 // object is of (possibly cv-qualified) non-POD class type (or
12721 // array thereof), the object shall be default-initialized; if
12722 // the object is of const-qualified type, the underlying class
12723 // type shall have a user-declared default
12724 // constructor. Otherwise, if no initializer is specified for
12725 // a non- static object, the object and its subobjects, if
12726 // any, have an indeterminate initial value); if the object
12727 // or any of its subobjects are of const-qualified type, the
12728 // program is ill-formed.
12729 // C++0x [dcl.init]p11:
12730 // If no initializer is specified for an object, the object is
12731 // default-initialized; [...].
12732 InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
12733 InitializationKind Kind
12734 = InitializationKind::CreateDefault(Var->getLocation());
12735
12736 InitializationSequence InitSeq(*this, Entity, Kind, None);
12737 ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
12738
12739 if (Init.get()) {
12740 Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
12741 // This is important for template substitution.
12742 Var->setInitStyle(VarDecl::CallInit);
12743 } else if (Init.isInvalid()) {
12744 // If default-init fails, attach a recovery-expr initializer to track
12745 // that initialization was attempted and failed.
12746 auto RecoveryExpr =
12747 CreateRecoveryExpr(Var->getLocation(), Var->getLocation(), {});
12748 if (RecoveryExpr.get())
12749 Var->setInit(RecoveryExpr.get());
12750 }
12751
12752 CheckCompleteVariableDeclaration(Var);
12753 }
12754}
12755
12756void Sema::ActOnCXXForRangeDecl(Decl *D) {
12757 // If there is no declaration, there was an error parsing it. Ignore it.
12758 if (!D)
12759 return;
12760
12761 VarDecl *VD = dyn_cast<VarDecl>(D);
12762 if (!VD) {
12763 Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
12764 D->setInvalidDecl();
12765 return;
12766 }
12767
12768 VD->setCXXForRangeDecl(true);
12769
12770 // for-range-declaration cannot be given a storage class specifier.
12771 int Error = -1;
12772 switch (VD->getStorageClass()) {
12773 case SC_None:
12774 break;
12775 case SC_Extern:
12776 Error = 0;
12777 break;
12778 case SC_Static:
12779 Error = 1;
12780 break;
12781 case SC_PrivateExtern:
12782 Error = 2;
12783 break;
12784 case SC_Auto:
12785 Error = 3;
12786 break;
12787 case SC_Register:
12788 Error = 4;
12789 break;
12790 }
12791
12792 // for-range-declaration cannot be given a storage class specifier con't.
12793 switch (VD->getTSCSpec()) {
12794 case TSCS_thread_local:
12795 Error = 6;
12796 break;
12797 case TSCS___thread:
12798 case TSCS__Thread_local:
12799 case TSCS_unspecified:
12800 break;
12801 }
12802
12803 if (Error != -1) {
12804 Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
12805 << VD << Error;
12806 D->setInvalidDecl();
12807 }
12808}
12809
12810StmtResult
12811Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
12812 IdentifierInfo *Ident,
12813 ParsedAttributes &Attrs,
12814 SourceLocation AttrEnd) {
12815 // C++1y [stmt.iter]p1:
12816 // A range-based for statement of the form
12817 // for ( for-range-identifier : for-range-initializer ) statement
12818 // is equivalent to
12819 // for ( auto&& for-range-identifier : for-range-initializer ) statement
12820 DeclSpec DS(Attrs.getPool().getFactory());
12821
12822 const char *PrevSpec;
12823 unsigned DiagID;
12824 DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
12825 getPrintingPolicy());
12826
12827 Declarator D(DS, DeclaratorContext::ForInit);
12828 D.SetIdentifier(Ident, IdentLoc);
12829 D.takeAttributes(Attrs, AttrEnd);
12830
12831 D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/ false),
12832 IdentLoc);
12833 Decl *Var = ActOnDeclarator(S, D);
12834 cast<VarDecl>(Var)->setCXXForRangeDecl(true);
12835 FinalizeDeclaration(Var);
12836 return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
12837 AttrEnd.isValid() ? AttrEnd : IdentLoc);
12838}
12839
12840void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
12841 if (var->isInvalidDecl()) return;
12842
12843 if (getLangOpts().OpenCL) {
12844 // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an
12845 // initialiser
12846 if (var->getTypeSourceInfo()->getType()->isBlockPointerType() &&
12847 !var->hasInit()) {
12848 Diag(var->getLocation(), diag::err_opencl_invalid_block_declaration)
12849 << 1 /*Init*/;
12850 var->setInvalidDecl();
12851 return;
12852 }
12853 }
12854
12855 // In Objective-C, don't allow jumps past the implicit initialization of a
12856 // local retaining variable.
12857 if (getLangOpts().ObjC &&
12858 var->hasLocalStorage()) {
12859 switch (var->getType().getObjCLifetime()) {
12860 case Qualifiers::OCL_None:
12861 case Qualifiers::OCL_ExplicitNone:
12862 case Qualifiers::OCL_Autoreleasing:
12863 break;
12864
12865 case Qualifiers::OCL_Weak:
12866 case Qualifiers::OCL_Strong:
12867 setFunctionHasBranchProtectedScope();
12868 break;
12869 }
12870 }
12871
12872 if (var->hasLocalStorage() &&
12873 var->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
12874 setFunctionHasBranchProtectedScope();
12875
12876 // Warn about externally-visible variables being defined without a
12877 // prior declaration. We only want to do this for global
12878 // declarations, but we also specifically need to avoid doing it for
12879 // class members because the linkage of an anonymous class can
12880 // change if it's later given a typedef name.
12881 if (var->isThisDeclarationADefinition() &&
12882 var->getDeclContext()->getRedeclContext()->isFileContext() &&
12883 var->isExternallyVisible() && var->hasLinkage() &&
12884 !var->isInline() && !var->getDescribedVarTemplate() &&
12885 !isa<VarTemplatePartialSpecializationDecl>(var) &&
12886 !isTemplateInstantiation(var->getTemplateSpecializationKind()) &&
12887 !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
12888 var->getLocation())) {
12889 // Find a previous declaration that's not a definition.
12890 VarDecl *prev = var->getPreviousDecl();
12891 while (prev && prev->isThisDeclarationADefinition())
12892 prev = prev->getPreviousDecl();
12893
12894 if (!prev) {
12895 Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
12896 Diag(var->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage)
12897 << /* variable */ 0;
12898 }
12899 }
12900
12901 // Cache the result of checking for constant initialization.
12902 Optional<bool> CacheHasConstInit;
12903 const Expr *CacheCulprit = nullptr;
12904 auto checkConstInit = [&]() mutable {
12905 if (!CacheHasConstInit)
12906 CacheHasConstInit = var->getInit()->isConstantInitializer(
12907 Context, var->getType()->isReferenceType(), &CacheCulprit);
12908 return *CacheHasConstInit;
12909 };
12910
12911 if (var->getTLSKind() == VarDecl::TLS_Static) {
12912 if (var->getType().isDestructedType()) {
12913 // GNU C++98 edits for __thread, [basic.start.term]p3:
12914 // The type of an object with thread storage duration shall not
12915 // have a non-trivial destructor.
12916 Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
12917 if (getLangOpts().CPlusPlus11)
12918 Diag(var->getLocation(), diag::note_use_thread_local);
12919 } else if (getLangOpts().CPlusPlus && var->hasInit()) {
12920 if (!checkConstInit()) {
12921 // GNU C++98 edits for __thread, [basic.start.init]p4:
12922 // An object of thread storage duration shall not require dynamic
12923 // initialization.
12924 // FIXME: Need strict checking here.
12925 Diag(CacheCulprit->getExprLoc(), diag::err_thread_dynamic_init)
12926 << CacheCulprit->getSourceRange();
12927 if (getLangOpts().CPlusPlus11)
12928 Diag(var->getLocation(), diag::note_use_thread_local);
12929 }
12930 }
12931 }
12932
12933 // Apply section attributes and pragmas to global variables.
12934 bool GlobalStorage = var->hasGlobalStorage();
12935 if (GlobalStorage && var->isThisDeclarationADefinition() &&
12936 !inTemplateInstantiation()) {
12937 PragmaStack<StringLiteral *> *Stack = nullptr;
12938 int SectionFlags = ASTContext::PSF_Read;
12939 if (var->getType().isConstQualified())
12940 Stack = &ConstSegStack;
12941 else if (!var->getInit()) {
12942 Stack = &BSSSegStack;
12943 SectionFlags |= ASTContext::PSF_Write;
12944 } else {
12945 Stack = &DataSegStack;
12946 SectionFlags |= ASTContext::PSF_Write;
12947 }
12948 if (const SectionAttr *SA = var->getAttr<SectionAttr>()) {
12949 if (SA->getSyntax() == AttributeCommonInfo::AS_Declspec)
12950 SectionFlags |= ASTContext::PSF_Implicit;
12951 UnifySection(SA->getName(), SectionFlags, var);
12952 } else if (Stack->CurrentValue) {
12953 SectionFlags |= ASTContext::PSF_Implicit;
12954 auto SectionName = Stack->CurrentValue->getString();
12955 var->addAttr(SectionAttr::CreateImplicit(
12956 Context, SectionName, Stack->CurrentPragmaLocation,
12957 AttributeCommonInfo::AS_Pragma, SectionAttr::Declspec_allocate));
12958 if (UnifySection(SectionName, SectionFlags, var))
12959 var->dropAttr<SectionAttr>();
12960 }
12961
12962 // Apply the init_seg attribute if this has an initializer. If the
12963 // initializer turns out to not be dynamic, we'll end up ignoring this
12964 // attribute.
12965 if (CurInitSeg && var->getInit())
12966 var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(),
12967 CurInitSegLoc,
12968 AttributeCommonInfo::AS_Pragma));
12969 }
12970
12971 if (!var->getType()->isStructureType() && var->hasInit() &&
12972 isa<InitListExpr>(var->getInit())) {
12973 const auto *ILE = cast<InitListExpr>(var->getInit());
12974 unsigned NumInits = ILE->getNumInits();
12975 if (NumInits > 2)
12976 for (unsigned I = 0; I < NumInits; ++I) {
12977 const auto *Init = ILE->getInit(I);
12978 if (!Init)
12979 break;
12980 const auto *SL = dyn_cast<StringLiteral>(Init->IgnoreImpCasts());
12981 if (!SL)
12982 break;
12983
12984 unsigned NumConcat = SL->getNumConcatenated();
12985 // Diagnose missing comma in string array initialization.
12986 // Do not warn when all the elements in the initializer are concatenated
12987 // together. Do not warn for macros too.
12988 if (NumConcat == 2 && !SL->getBeginLoc().isMacroID()) {
12989 bool OnlyOneMissingComma = true;
12990 for (unsigned J = I + 1; J < NumInits; ++J) {
12991 const auto *Init = ILE->getInit(J);
12992 if (!Init)
12993 break;
12994 const auto *SLJ = dyn_cast<StringLiteral>(Init->IgnoreImpCasts());
12995 if (!SLJ || SLJ->getNumConcatenated() > 1) {
12996 OnlyOneMissingComma = false;
12997 break;
12998 }
12999 }
13000
13001 if (OnlyOneMissingComma) {
13002 SmallVector<FixItHint, 1> Hints;
13003 for (unsigned i = 0; i < NumConcat - 1; ++i)
13004 Hints.push_back(FixItHint::CreateInsertion(
13005 PP.getLocForEndOfToken(SL->getStrTokenLoc(i)), ","));
13006
13007 Diag(SL->getStrTokenLoc(1),
13008 diag::warn_concatenated_literal_array_init)
13009 << Hints;
13010 Diag(SL->getBeginLoc(),
13011 diag::note_concatenated_string_literal_silence);
13012 }
13013 // In any case, stop now.
13014 break;
13015 }
13016 }
13017 }
13018
13019 // All the following checks are C++ only.
13020 if (!getLangOpts().CPlusPlus) {
13021 // If this variable must be emitted, add it as an initializer for the
13022 // current module.
13023 if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
13024 Context.addModuleInitializer(ModuleScopes.back().Module, var);
13025 return;
13026 }
13027
13028 QualType type = var->getType();
13029
13030 if (var->hasAttr<BlocksAttr>())
13031 getCurFunction()->addByrefBlockVar(var);
13032
13033 Expr *Init = var->getInit();
13034 bool IsGlobal = GlobalStorage && !var->isStaticLocal();
13035 QualType baseType = Context.getBaseElementType(type);
13036
13037 // Check whether the initializer is sufficiently constant.
13038 if (!type->isDependentType() && Init && !Init->isValueDependent() &&
13039 (GlobalStorage || var->isConstexpr() ||
13040 var->mightBeUsableInConstantExpressions(Context))) {
13041 // If this variable might have a constant initializer or might be usable in
13042 // constant expressions, check whether or not it actually is now. We can't
13043 // do this lazily, because the result might depend on things that change
13044 // later, such as which constexpr functions happen to be defined.
13045 SmallVector<PartialDiagnosticAt, 8> Notes;
13046 bool HasConstInit;
13047 if (!getLangOpts().CPlusPlus11) {
13048 // Prior to C++11, in contexts where a constant initializer is required,
13049 // the set of valid constant initializers is described by syntactic rules
13050 // in [expr.const]p2-6.
13051 // FIXME: Stricter checking for these rules would be useful for constinit /
13052 // -Wglobal-constructors.
13053 HasConstInit = checkConstInit();
13054
13055 // Compute and cache the constant value, and remember that we have a
13056 // constant initializer.
13057 if (HasConstInit) {
13058 (void)var->checkForConstantInitialization(Notes);
13059 Notes.clear();
13060 } else if (CacheCulprit) {
13061 Notes.emplace_back(CacheCulprit->getExprLoc(),
13062 PDiag(diag::note_invalid_subexpr_in_const_expr));
13063 Notes.back().second << CacheCulprit->getSourceRange();
13064 }
13065 } else {
13066 // Evaluate the initializer to see if it's a constant initializer.
13067 HasConstInit = var->checkForConstantInitialization(Notes);
13068 }
13069
13070 if (HasConstInit) {
13071 // FIXME: Consider replacing the initializer with a ConstantExpr.
13072 } else if (var->isConstexpr()) {
13073 SourceLocation DiagLoc = var->getLocation();
13074 // If the note doesn't add any useful information other than a source
13075 // location, fold it into the primary diagnostic.
13076 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
13077 diag::note_invalid_subexpr_in_const_expr) {
13078 DiagLoc = Notes[0].first;
13079 Notes.clear();
13080 }
13081 Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
13082 << var << Init->getSourceRange();
13083 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
13084 Diag(Notes[I].first, Notes[I].second);
13085 } else if (GlobalStorage && var->hasAttr<ConstInitAttr>()) {
13086 auto *Attr = var->getAttr<ConstInitAttr>();
13087 Diag(var->getLocation(), diag::err_require_constant_init_failed)
13088 << Init->getSourceRange();
13089 Diag(Attr->getLocation(), diag::note_declared_required_constant_init_here)
13090 << Attr->getRange() << Attr->isConstinit();
13091 for (auto &it : Notes)
13092 Diag(it.first, it.second);
13093 } else if (IsGlobal &&
13094 !getDiagnostics().isIgnored(diag::warn_global_constructor,
13095 var->getLocation())) {
13096 // Warn about globals which don't have a constant initializer. Don't
13097 // warn about globals with a non-trivial destructor because we already
13098 // warned about them.
13099 CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
13100 if (!(RD && !RD->hasTrivialDestructor())) {
13101 // checkConstInit() here permits trivial default initialization even in
13102 // C++11 onwards, where such an initializer is not a constant initializer
13103 // but nonetheless doesn't require a global constructor.
13104 if (!checkConstInit())
13105 Diag(var->getLocation(), diag::warn_global_constructor)
13106 << Init->getSourceRange();
13107 }
13108 }
13109 }
13110
13111 // Require the destructor.
13112 if (!type->isDependentType())
13113 if (const RecordType *recordType = baseType->getAs<RecordType>())
13114 FinalizeVarWithDestructor(var, recordType);
13115
13116 // If this variable must be emitted, add it as an initializer for the current
13117 // module.
13118 if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
13119 Context.addModuleInitializer(ModuleScopes.back().Module, var);
13120
13121 // Build the bindings if this is a structured binding declaration.
13122 if (auto *DD = dyn_cast<DecompositionDecl>(var))
13123 CheckCompleteDecompositionDeclaration(DD);
13124}
13125
13126/// Determines if a variable's alignment is dependent.
13127static bool hasDependentAlignment(VarDecl *VD) {
13128 if (VD->getType()->isDependentType())
13129 return true;
13130 for (auto *I : VD->specific_attrs<AlignedAttr>())
13131 if (I->isAlignmentDependent())
13132 return true;
13133 return false;
13134}
13135
13136/// Check if VD needs to be dllexport/dllimport due to being in a
13137/// dllexport/import function.
13138void Sema::CheckStaticLocalForDllExport(VarDecl *VD) {
13139 assert(VD->isStaticLocal())((VD->isStaticLocal()) ? static_cast<void> (0) : __assert_fail
("VD->isStaticLocal()", "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 13139, __PRETTY_FUNCTION__))
;
13140
13141 auto *FD = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
13142
13143 // Find outermost function when VD is in lambda function.
13144 while (FD && !getDLLAttr(FD) &&
13145 !FD->hasAttr<DLLExportStaticLocalAttr>() &&
13146 !FD->hasAttr<DLLImportStaticLocalAttr>()) {
13147 FD = dyn_cast_or_null<FunctionDecl>(FD->getParentFunctionOrMethod());
13148 }
13149
13150 if (!FD)
13151 return;
13152
13153 // Static locals inherit dll attributes from their function.
13154 if (Attr *A = getDLLAttr(FD)) {
13155 auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
13156 NewAttr->setInherited(true);
13157 VD->addAttr(NewAttr);
13158 } else if (Attr *A = FD->getAttr<DLLExportStaticLocalAttr>()) {
13159 auto *NewAttr = DLLExportAttr::CreateImplicit(getASTContext(), *A);
13160 NewAttr->setInherited(true);
13161 VD->addAttr(NewAttr);
13162
13163 // Export this function to enforce exporting this static variable even
13164 // if it is not used in this compilation unit.
13165 if (!FD->hasAttr<DLLExportAttr>())
13166 FD->addAttr(NewAttr);
13167
13168 } else if (Attr *A = FD->getAttr<DLLImportStaticLocalAttr>()) {
13169 auto *NewAttr = DLLImportAttr::CreateImplicit(getASTContext(), *A);
13170 NewAttr->setInherited(true);
13171 VD->addAttr(NewAttr);
13172 }
13173}
13174
13175/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
13176/// any semantic actions necessary after any initializer has been attached.
13177void Sema::FinalizeDeclaration(Decl *ThisDecl) {
13178 // Note that we are no longer parsing the initializer for this declaration.
13179 ParsingInitForAutoVars.erase(ThisDecl);
13180
13181 VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
13182 if (!VD)
13183 return;
13184
13185 // Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active
13186 if (VD->hasGlobalStorage() && VD->isThisDeclarationADefinition() &&
13187 !inTemplateInstantiation() && !VD->hasAttr<SectionAttr>()) {
13188 if (PragmaClangBSSSection.Valid)
13189 VD->addAttr(PragmaClangBSSSectionAttr::CreateImplicit(
13190 Context, PragmaClangBSSSection.SectionName,
13191 PragmaClangBSSSection.PragmaLocation,
13192 AttributeCommonInfo::AS_Pragma));
13193 if (PragmaClangDataSection.Valid)
13194 VD->addAttr(PragmaClangDataSectionAttr::CreateImplicit(
13195 Context, PragmaClangDataSection.SectionName,
13196 PragmaClangDataSection.PragmaLocation,
13197 AttributeCommonInfo::AS_Pragma));
13198 if (PragmaClangRodataSection.Valid)
13199 VD->addAttr(PragmaClangRodataSectionAttr::CreateImplicit(
13200 Context, PragmaClangRodataSection.SectionName,
13201 PragmaClangRodataSection.PragmaLocation,
13202 AttributeCommonInfo::AS_Pragma));
13203 if (PragmaClangRelroSection.Valid)
13204 VD->addAttr(PragmaClangRelroSectionAttr::CreateImplicit(
13205 Context, PragmaClangRelroSection.SectionName,
13206 PragmaClangRelroSection.PragmaLocation,
13207 AttributeCommonInfo::AS_Pragma));
13208 }
13209
13210 if (auto *DD = dyn_cast<DecompositionDecl>(ThisDecl)) {
13211 for (auto *BD : DD->bindings()) {
13212 FinalizeDeclaration(BD);
13213 }
13214 }
13215
13216 checkAttributesAfterMerging(*this, *VD);
13217
13218 // Perform TLS alignment check here after attributes attached to the variable
13219 // which may affect the alignment have been processed. Only perform the check
13220 // if the target has a maximum TLS alignment (zero means no constraints).
13221 if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) {
13222 // Protect the check so that it's not performed on dependent types and
13223 // dependent alignments (we can't determine the alignment in that case).
13224 if (VD->getTLSKind() && !hasDependentAlignment(VD) &&
13225 !VD->isInvalidDecl()) {
13226 CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign);
13227 if (Context.getDeclAlign(VD) > MaxAlignChars) {
13228 Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
13229 << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD
13230 << (unsigned)MaxAlignChars.getQuantity();
13231 }
13232 }
13233 }
13234
13235 if (VD->isStaticLocal())
13236 CheckStaticLocalForDllExport(VD);
13237
13238 // Perform check for initializers of device-side global variables.
13239 // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA
13240 // 7.5). We must also apply the same checks to all __shared__
13241 // variables whether they are local or not. CUDA also allows
13242 // constant initializers for __constant__ and __device__ variables.
13243 if (getLangOpts().CUDA)
13244 checkAllowedCUDAInitializer(VD);
13245
13246 // Grab the dllimport or dllexport attribute off of the VarDecl.
13247 const InheritableAttr *DLLAttr = getDLLAttr(VD);
13248
13249 // Imported static data members cannot be defined out-of-line.
13250 if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) {
13251 if (VD->isStaticDataMember() && VD->isOutOfLine() &&
13252 VD->isThisDeclarationADefinition()) {
13253 // We allow definitions of dllimport class template static data members
13254 // with a warning.
13255 CXXRecordDecl *Context =
13256 cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
13257 bool IsClassTemplateMember =
13258 isa<ClassTemplatePartialSpecializationDecl>(Context) ||
13259 Context->getDescribedClassTemplate();
13260
13261 Diag(VD->getLocation(),
13262 IsClassTemplateMember
13263 ? diag::warn_attribute_dllimport_static_field_definition
13264 : diag::err_attribute_dllimport_static_field_definition);
13265 Diag(IA->getLocation(), diag::note_attribute);
13266 if (!IsClassTemplateMember)
13267 VD->setInvalidDecl();
13268 }
13269 }
13270
13271 // dllimport/dllexport variables cannot be thread local, their TLS index
13272 // isn't exported with the variable.
13273 if (DLLAttr && VD->getTLSKind()) {
13274 auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
13275 if (F && getDLLAttr(F)) {
13276 assert(VD->isStaticLocal())((VD->isStaticLocal()) ? static_cast<void> (0) : __assert_fail
("VD->isStaticLocal()", "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 13276, __PRETTY_FUNCTION__))
;
13277 // But if this is a static local in a dlimport/dllexport function, the
13278 // function will never be inlined, which means the var would never be
13279 // imported, so having it marked import/export is safe.
13280 } else {
13281 Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD
13282 << DLLAttr;
13283 VD->setInvalidDecl();
13284 }
13285 }
13286
13287 if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
13288 if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
13289 Diag(Attr->getLocation(), diag::warn_attribute_ignored) << Attr;
13290 VD->dropAttr<UsedAttr>();
13291 }
13292 }
13293
13294 const DeclContext *DC = VD->getDeclContext();
13295 // If there's a #pragma GCC visibility in scope, and this isn't a class
13296 // member, set the visibility of this variable.
13297 if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
13298 AddPushedVisibilityAttribute(VD);
13299
13300 // FIXME: Warn on unused var template partial specializations.
13301 if (VD->isFileVarDecl() && !isa<VarTemplatePartialSpecializationDecl>(VD))
13302 MarkUnusedFileScopedDecl(VD);
13303
13304 // Now we have parsed the initializer and can update the table of magic
13305 // tag values.
13306 if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
13307 !VD->getType()->isIntegralOrEnumerationType())
13308 return;
13309
13310 for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
13311 const Expr *MagicValueExpr = VD->getInit();
13312 if (!MagicValueExpr) {
13313 continue;
13314 }
13315 Optional<llvm::APSInt> MagicValueInt;
13316 if (!(MagicValueInt = MagicValueExpr->getIntegerConstantExpr(Context))) {
13317 Diag(I->getRange().getBegin(),
13318 diag::err_type_tag_for_datatype_not_ice)
13319 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
13320 continue;
13321 }
13322 if (MagicValueInt->getActiveBits() > 64) {
13323 Diag(I->getRange().getBegin(),
13324 diag::err_type_tag_for_datatype_too_large)
13325 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
13326 continue;
13327 }
13328 uint64_t MagicValue = MagicValueInt->getZExtValue();
13329 RegisterTypeTagForDatatype(I->getArgumentKind(),
13330 MagicValue,
13331 I->getMatchingCType(),
13332 I->getLayoutCompatible(),
13333 I->getMustBeNull());
13334 }
13335}
13336
13337static bool hasDeducedAuto(DeclaratorDecl *DD) {
13338 auto *VD = dyn_cast<VarDecl>(DD);
13339 return VD && !VD->getType()->hasAutoForTrailingReturnType();
13340}
13341
13342Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
13343 ArrayRef<Decl *> Group) {
13344 SmallVector<Decl*, 8> Decls;
13345
13346 if (DS.isTypeSpecOwned())
13347 Decls.push_back(DS.getRepAsDecl());
13348
13349 DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
13350 DecompositionDecl *FirstDecompDeclaratorInGroup = nullptr;
13351 bool DiagnosedMultipleDecomps = false;
13352 DeclaratorDecl *FirstNonDeducedAutoInGroup = nullptr;
13353 bool DiagnosedNonDeducedAuto = false;
13354
13355 for (unsigned i = 0, e = Group.size(); i != e; ++i) {
13356 if (Decl *D = Group[i]) {
13357 // For declarators, there are some additional syntactic-ish checks we need
13358 // to perform.
13359 if (auto *DD = dyn_cast<DeclaratorDecl>(D)) {
13360 if (!FirstDeclaratorInGroup)
13361 FirstDeclaratorInGroup = DD;
13362 if (!FirstDecompDeclaratorInGroup)
13363 FirstDecompDeclaratorInGroup = dyn_cast<DecompositionDecl>(D);
13364 if (!FirstNonDeducedAutoInGroup && DS.hasAutoTypeSpec() &&
13365 !hasDeducedAuto(DD))
13366 FirstNonDeducedAutoInGroup = DD;
13367
13368 if (FirstDeclaratorInGroup != DD) {
13369 // A decomposition declaration cannot be combined with any other
13370 // declaration in the same group.
13371 if (FirstDecompDeclaratorInGroup && !DiagnosedMultipleDecomps) {
13372 Diag(FirstDecompDeclaratorInGroup->getLocation(),
13373 diag::err_decomp_decl_not_alone)
13374 << FirstDeclaratorInGroup->getSourceRange()
13375 << DD->getSourceRange();
13376 DiagnosedMultipleDecomps = true;
13377 }
13378
13379 // A declarator that uses 'auto' in any way other than to declare a
13380 // variable with a deduced type cannot be combined with any other
13381 // declarator in the same group.
13382 if (FirstNonDeducedAutoInGroup && !DiagnosedNonDeducedAuto) {
13383 Diag(FirstNonDeducedAutoInGroup->getLocation(),
13384 diag::err_auto_non_deduced_not_alone)
13385 << FirstNonDeducedAutoInGroup->getType()
13386 ->hasAutoForTrailingReturnType()
13387 << FirstDeclaratorInGroup->getSourceRange()
13388 << DD->getSourceRange();
13389 DiagnosedNonDeducedAuto = true;
13390 }
13391 }
13392 }
13393
13394 Decls.push_back(D);
13395 }
13396 }
13397
13398 if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
13399 if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
13400 handleTagNumbering(Tag, S);
13401 if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() &&
13402 getLangOpts().CPlusPlus)
13403 Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup);
13404 }
13405 }
13406
13407 return BuildDeclaratorGroup(Decls);
13408}
13409
13410/// BuildDeclaratorGroup - convert a list of declarations into a declaration
13411/// group, performing any necessary semantic checking.
13412Sema::DeclGroupPtrTy
13413Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group) {
13414 // C++14 [dcl.spec.auto]p7: (DR1347)
13415 // If the type that replaces the placeholder type is not the same in each
13416 // deduction, the program is ill-formed.
13417 if (Group.size() > 1) {
13418 QualType Deduced;
13419 VarDecl *DeducedDecl = nullptr;
13420 for (unsigned i = 0, e = Group.size(); i != e; ++i) {
13421 VarDecl *D = dyn_cast<VarDecl>(Group[i]);
13422 if (!D || D->isInvalidDecl())
13423 break;
13424 DeducedType *DT = D->getType()->getContainedDeducedType();
13425 if (!DT || DT->getDeducedType().isNull())
13426 continue;
13427 if (Deduced.isNull()) {
13428 Deduced = DT->getDeducedType();
13429 DeducedDecl = D;
13430 } else if (!Context.hasSameType(DT->getDeducedType(), Deduced)) {
13431 auto *AT = dyn_cast<AutoType>(DT);
13432 auto Dia = Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
13433 diag::err_auto_different_deductions)
13434 << (AT ? (unsigned)AT->getKeyword() : 3) << Deduced
13435 << DeducedDecl->getDeclName() << DT->getDeducedType()
13436 << D->getDeclName();
13437 if (DeducedDecl->hasInit())
13438 Dia << DeducedDecl->getInit()->getSourceRange();
13439 if (D->getInit())
13440 Dia << D->getInit()->getSourceRange();
13441 D->setInvalidDecl();
13442 break;
13443 }
13444 }
13445 }
13446
13447 ActOnDocumentableDecls(Group);
13448
13449 return DeclGroupPtrTy::make(
13450 DeclGroupRef::Create(Context, Group.data(), Group.size()));
13451}
13452
13453void Sema::ActOnDocumentableDecl(Decl *D) {
13454 ActOnDocumentableDecls(D);
13455}
13456
13457void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
13458 // Don't parse the comment if Doxygen diagnostics are ignored.
13459 if (Group.empty() || !Group[0])
13460 return;
13461
13462 if (Diags.isIgnored(diag::warn_doc_param_not_found,
13463 Group[0]->getLocation()) &&
13464 Diags.isIgnored(diag::warn_unknown_comment_command_name,
13465 Group[0]->getLocation()))
13466 return;
13467
13468 if (Group.size() >= 2) {
13469 // This is a decl group. Normally it will contain only declarations
13470 // produced from declarator list. But in case we have any definitions or
13471 // additional declaration references:
13472 // 'typedef struct S {} S;'
13473 // 'typedef struct S *S;'
13474 // 'struct S *pS;'
13475 // FinalizeDeclaratorGroup adds these as separate declarations.
13476 Decl *MaybeTagDecl = Group[0];
13477 if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
13478 Group = Group.slice(1);
13479 }
13480 }
13481
13482 // FIMXE: We assume every Decl in the group is in the same file.
13483 // This is false when preprocessor constructs the group from decls in
13484 // different files (e. g. macros or #include).
13485 Context.attachCommentsToJustParsedDecls(Group, &getPreprocessor());
13486}
13487
13488/// Common checks for a parameter-declaration that should apply to both function
13489/// parameters and non-type template parameters.
13490void Sema::CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D) {
13491 // Check that there are no default arguments inside the type of this
13492 // parameter.
13493 if (getLangOpts().CPlusPlus)
13494 CheckExtraCXXDefaultArguments(D);
13495
13496 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
13497 if (D.getCXXScopeSpec().isSet()) {
13498 Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
13499 << D.getCXXScopeSpec().getRange();
13500 }
13501
13502 // [dcl.meaning]p1: An unqualified-id occurring in a declarator-id shall be a
13503 // simple identifier except [...irrelevant cases...].
13504 switch (D.getName().getKind()) {
13505 case UnqualifiedIdKind::IK_Identifier:
13506 break;
13507
13508 case UnqualifiedIdKind::IK_OperatorFunctionId:
13509 case UnqualifiedIdKind::IK_ConversionFunctionId:
13510 case UnqualifiedIdKind::IK_LiteralOperatorId:
13511 case UnqualifiedIdKind::IK_ConstructorName:
13512 case UnqualifiedIdKind::IK_DestructorName:
13513 case UnqualifiedIdKind::IK_ImplicitSelfParam:
13514 case UnqualifiedIdKind::IK_DeductionGuideName:
13515 Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
13516 << GetNameForDeclarator(D).getName();
13517 break;
13518
13519 case UnqualifiedIdKind::IK_TemplateId:
13520 case UnqualifiedIdKind::IK_ConstructorTemplateId:
13521 // GetNameForDeclarator would not produce a useful name in this case.
13522 Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name_template_id);
13523 break;
13524 }
13525}
13526
13527/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
13528/// to introduce parameters into function prototype scope.
13529Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
13530 const DeclSpec &DS = D.getDeclSpec();
13531
13532 // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
13533
13534 // C++03 [dcl.stc]p2 also permits 'auto'.
13535 StorageClass SC = SC_None;
13536 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
13537 SC = SC_Register;
13538 // In C++11, the 'register' storage class specifier is deprecated.
13539 // In C++17, it is not allowed, but we tolerate it as an extension.
13540 if (getLangOpts().CPlusPlus11) {
13541 Diag(DS.getStorageClassSpecLoc(),
13542 getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
13543 : diag::warn_deprecated_register)
13544 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
13545 }
13546 } else if (getLangOpts().CPlusPlus &&
13547 DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
13548 SC = SC_Auto;
13549 } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
13550 Diag(DS.getStorageClassSpecLoc(),
13551 diag::err_invalid_storage_class_in_func_decl);
13552 D.getMutableDeclSpec().ClearStorageClassSpecs();
13553 }
13554
13555 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
13556 Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
13557 << DeclSpec::getSpecifierName(TSCS);
13558 if (DS.isInlineSpecified())
13559 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
13560 << getLangOpts().CPlusPlus17;
13561 if (DS.hasConstexprSpecifier())
13562 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
13563 << 0 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier());
13564
13565 DiagnoseFunctionSpecifiers(DS);
13566
13567 CheckFunctionOrTemplateParamDeclarator(S, D);
13568
13569 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
13570 QualType parmDeclType = TInfo->getType();
13571
13572 // Check for redeclaration of parameters, e.g. int foo(int x, int x);
13573 IdentifierInfo *II = D.getIdentifier();
13574 if (II) {
13575 LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
13576 ForVisibleRedeclaration);
13577 LookupName(R, S);
13578 if (R.isSingleResult()) {
13579 NamedDecl *PrevDecl = R.getFoundDecl();
13580 if (PrevDecl->isTemplateParameter()) {
13581 // Maybe we will complain about the shadowed template parameter.
13582 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
13583 // Just pretend that we didn't see the previous declaration.
13584 PrevDecl = nullptr;
13585 } else if (S->isDeclScope(PrevDecl)) {
13586 Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
13587 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
13588
13589 // Recover by removing the name
13590 II = nullptr;
13591 D.SetIdentifier(nullptr, D.getIdentifierLoc());
13592 D.setInvalidType(true);
13593 }
13594 }
13595 }
13596
13597 // Temporarily put parameter variables in the translation unit, not
13598 // the enclosing context. This prevents them from accidentally
13599 // looking like class members in C++.
13600 ParmVarDecl *New =
13601 CheckParameter(Context.getTranslationUnitDecl(), D.getBeginLoc(),
13602 D.getIdentifierLoc(), II, parmDeclType, TInfo, SC);
13603
13604 if (D.isInvalidType())
13605 New->setInvalidDecl();
13606
13607 assert(S->isFunctionPrototypeScope())((S->isFunctionPrototypeScope()) ? static_cast<void>
(0) : __assert_fail ("S->isFunctionPrototypeScope()", "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 13607, __PRETTY_FUNCTION__))
;
13608 assert(S->getFunctionPrototypeDepth() >= 1)((S->getFunctionPrototypeDepth() >= 1) ? static_cast<
void> (0) : __assert_fail ("S->getFunctionPrototypeDepth() >= 1"
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 13608, __PRETTY_FUNCTION__))
;
13609 New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
13610 S->getNextFunctionPrototypeIndex());
13611
13612 // Add the parameter declaration into this scope.
13613 S->AddDecl(New);
13614 if (II)
13615 IdResolver.AddDecl(New);
13616
13617 ProcessDeclAttributes(S, New, D);
13618
13619 if (D.getDeclSpec().isModulePrivateSpecified())
13620 Diag(New->getLocation(), diag::err_module_private_local)
13621 << 1 << New << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
13622 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
13623
13624 if (New->hasAttr<BlocksAttr>()) {
13625 Diag(New->getLocation(), diag::err_block_on_nonlocal);
13626 }
13627
13628 if (getLangOpts().OpenCL)
13629 deduceOpenCLAddressSpace(New);
13630
13631 return New;
13632}
13633
13634/// Synthesizes a variable for a parameter arising from a
13635/// typedef.
13636ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
13637 SourceLocation Loc,
13638 QualType T) {
13639 /* FIXME: setting StartLoc == Loc.
13640 Would it be worth to modify callers so as to provide proper source
13641 location for the unnamed parameters, embedding the parameter's type? */
13642 ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
13643 T, Context.getTrivialTypeSourceInfo(T, Loc),
13644 SC_None, nullptr);
13645 Param->setImplicit();
13646 return Param;
13647}
13648
13649void Sema::DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters) {
13650 // Don't diagnose unused-parameter errors in template instantiations; we
13651 // will already have done so in the template itself.
13652 if (inTemplateInstantiation())
13653 return;
13654
13655 for (const ParmVarDecl *Parameter : Parameters) {
13656 if (!Parameter->isReferenced() && Parameter->getDeclName() &&
13657 !Parameter->hasAttr<UnusedAttr>()) {
13658 Diag(Parameter->getLocation(), diag::warn_unused_parameter)
13659 << Parameter->getDeclName();
13660 }
13661 }
13662}
13663
13664void Sema::DiagnoseSizeOfParametersAndReturnValue(
13665 ArrayRef<ParmVarDecl *> Parameters, QualType ReturnTy, NamedDecl *D) {
13666 if (LangOpts.NumLargeByValueCopy == 0) // No check.
13667 return;
13668
13669 // Warn if the return value is pass-by-value and larger than the specified
13670 // threshold.
13671 if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
13672 unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
13673 if (Size > LangOpts.NumLargeByValueCopy)
13674 Diag(D->getLocation(), diag::warn_return_value_size) << D << Size;
13675 }
13676
13677 // Warn if any parameter is pass-by-value and larger than the specified
13678 // threshold.
13679 for (const ParmVarDecl *Parameter : Parameters) {
13680 QualType T = Parameter->getType();
13681 if (T->isDependentType() || !T.isPODType(Context))
13682 continue;
13683 unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
13684 if (Size > LangOpts.NumLargeByValueCopy)
13685 Diag(Parameter->getLocation(), diag::warn_parameter_size)
13686 << Parameter << Size;
13687 }
13688}
13689
13690ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
13691 SourceLocation NameLoc, IdentifierInfo *Name,
13692 QualType T, TypeSourceInfo *TSInfo,
13693 StorageClass SC) {
13694 // In ARC, infer a lifetime qualifier for appropriate parameter types.
13695 if (getLangOpts().ObjCAutoRefCount &&
13696 T.getObjCLifetime() == Qualifiers::OCL_None &&
13697 T->isObjCLifetimeType()) {
13698
13699 Qualifiers::ObjCLifetime lifetime;
13700
13701 // Special cases for arrays:
13702 // - if it's const, use __unsafe_unretained
13703 // - otherwise, it's an error
13704 if (T->isArrayType()) {
13705 if (!T.isConstQualified()) {
13706 if (DelayedDiagnostics.shouldDelayDiagnostics())
13707 DelayedDiagnostics.add(
13708 sema::DelayedDiagnostic::makeForbiddenType(
13709 NameLoc, diag::err_arc_array_param_no_ownership, T, false));
13710 else
13711 Diag(NameLoc, diag::err_arc_array_param_no_ownership)
13712 << TSInfo->getTypeLoc().getSourceRange();
13713 }
13714 lifetime = Qualifiers::OCL_ExplicitNone;
13715 } else {
13716 lifetime = T->getObjCARCImplicitLifetime();
13717 }
13718 T = Context.getLifetimeQualifiedType(T, lifetime);
13719 }
13720
13721 ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
13722 Context.getAdjustedParameterType(T),
13723 TSInfo, SC, nullptr);
13724
13725 // Make a note if we created a new pack in the scope of a lambda, so that
13726 // we know that references to that pack must also be expanded within the
13727 // lambda scope.
13728 if (New->isParameterPack())
13729 if (auto *LSI = getEnclosingLambda())
13730 LSI->LocalPacks.push_back(New);
13731
13732 if (New->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
13733 New->getType().hasNonTrivialToPrimitiveCopyCUnion())
13734 checkNonTrivialCUnion(New->getType(), New->getLocation(),
13735 NTCUC_FunctionParam, NTCUK_Destruct|NTCUK_Copy);
13736
13737 // Parameters can not be abstract class types.
13738 // For record types, this is done by the AbstractClassUsageDiagnoser once
13739 // the class has been completely parsed.
13740 if (!CurContext->isRecord() &&
13741 RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
13742 AbstractParamType))
13743 New->setInvalidDecl();
13744
13745 // Parameter declarators cannot be interface types. All ObjC objects are
13746 // passed by reference.
13747 if (T->isObjCObjectType()) {
13748 SourceLocation TypeEndLoc =
13749 getLocForEndOfToken(TSInfo->getTypeLoc().getEndLoc());
13750 Diag(NameLoc,
13751 diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
13752 << FixItHint::CreateInsertion(TypeEndLoc, "*");
13753 T = Context.getObjCObjectPointerType(T);
13754 New->setType(T);
13755 }
13756
13757 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
13758 // duration shall not be qualified by an address-space qualifier."
13759 // Since all parameters have automatic store duration, they can not have
13760 // an address space.
13761 if (T.getAddressSpace() != LangAS::Default &&
13762 // OpenCL allows function arguments declared to be an array of a type
13763 // to be qualified with an address space.
13764 !(getLangOpts().OpenCL &&
13765 (T->isArrayType() || T.getAddressSpace() == LangAS::opencl_private))) {
13766 Diag(NameLoc, diag::err_arg_with_address_space);
13767 New->setInvalidDecl();
13768 }
13769
13770 // PPC MMA non-pointer types are not allowed as function argument types.
13771 if (Context.getTargetInfo().getTriple().isPPC64() &&
13772 CheckPPCMMAType(New->getOriginalType(), New->getLocation())) {
13773 New->setInvalidDecl();
13774 }
13775
13776 return New;
13777}
13778
13779void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
13780 SourceLocation LocAfterDecls) {
13781 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
13782
13783 // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
13784 // for a K&R function.
13785 if (!FTI.hasPrototype) {
13786 for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
13787 --i;
13788 if (FTI.Params[i].Param == nullptr) {
13789 SmallString<256> Code;
13790 llvm::raw_svector_ostream(Code)
13791 << " int " << FTI.Params[i].Ident->getName() << ";\n";
13792 Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
13793 << FTI.Params[i].Ident
13794 << FixItHint::CreateInsertion(LocAfterDecls, Code);
13795
13796 // Implicitly declare the argument as type 'int' for lack of a better
13797 // type.
13798 AttributeFactory attrs;
13799 DeclSpec DS(attrs);
13800 const char* PrevSpec; // unused
13801 unsigned DiagID; // unused
13802 DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
13803 DiagID, Context.getPrintingPolicy());
13804 // Use the identifier location for the type source range.
13805 DS.SetRangeStart(FTI.Params[i].IdentLoc);
13806 DS.SetRangeEnd(FTI.Params[i].IdentLoc);
13807 Declarator ParamD(DS, DeclaratorContext::KNRTypeList);
13808 ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
13809 FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
13810 }
13811 }
13812 }
13813}
13814
13815Decl *
13816Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D,
13817 MultiTemplateParamsArg TemplateParameterLists,
13818 SkipBodyInfo *SkipBody) {
13819 assert(getCurFunctionDecl() == nullptr && "Function parsing confused")((getCurFunctionDecl() == nullptr && "Function parsing confused"
) ? static_cast<void> (0) : __assert_fail ("getCurFunctionDecl() == nullptr && \"Function parsing confused\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 13819, __PRETTY_FUNCTION__))
;
13820 assert(D.isFunctionDeclarator() && "Not a function declarator!")((D.isFunctionDeclarator() && "Not a function declarator!"
) ? static_cast<void> (0) : __assert_fail ("D.isFunctionDeclarator() && \"Not a function declarator!\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 13820, __PRETTY_FUNCTION__))
;
13821 Scope *ParentScope = FnBodyScope->getParent();
13822
13823 // Check if we are in an `omp begin/end declare variant` scope. If we are, and
13824 // we define a non-templated function definition, we will create a declaration
13825 // instead (=BaseFD), and emit the definition with a mangled name afterwards.
13826 // The base function declaration will have the equivalent of an `omp declare
13827 // variant` annotation which specifies the mangled definition as a
13828 // specialization function under the OpenMP context defined as part of the
13829 // `omp begin declare variant`.
13830 SmallVector<FunctionDecl *, 4> Bases;
13831 if (LangOpts.OpenMP && isInOpenMPDeclareVariantScope())
13832 ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope(
13833 ParentScope, D, TemplateParameterLists, Bases);
13834
13835 D.setFunctionDefinitionKind(FunctionDefinitionKind::Definition);
13836 Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists);
13837 Decl *Dcl = ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody);
13838
13839 if (!Bases.empty())
13840 ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(Dcl, Bases);
13841
13842 return Dcl;
13843}
13844
13845void Sema::ActOnFinishInlineFunctionDef(FunctionDecl *D) {
13846 Consumer.HandleInlineFunctionDefinition(D);
13847}
13848
13849static bool
13850ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
13851 const FunctionDecl *&PossiblePrototype) {
13852 // Don't warn about invalid declarations.
13853 if (FD->isInvalidDecl())
13854 return false;
13855
13856 // Or declarations that aren't global.
13857 if (!FD->isGlobal())
13858 return false;
13859
13860 // Don't warn about C++ member functions.
13861 if (isa<CXXMethodDecl>(FD))
13862 return false;
13863
13864 // Don't warn about 'main'.
13865 if (isa<TranslationUnitDecl>(FD->getDeclContext()->getRedeclContext()))
13866 if (IdentifierInfo *II = FD->getIdentifier())
13867 if (II->isStr("main"))
13868 return false;
13869
13870 // Don't warn about inline functions.
13871 if (FD->isInlined())
13872 return false;
13873
13874 // Don't warn about function templates.
13875 if (FD->getDescribedFunctionTemplate())
13876 return false;
13877
13878 // Don't warn about function template specializations.
13879 if (FD->isFunctionTemplateSpecialization())
13880 return false;
13881
13882 // Don't warn for OpenCL kernels.
13883 if (FD->hasAttr<OpenCLKernelAttr>())
13884 return false;
13885
13886 // Don't warn on explicitly deleted functions.
13887 if (FD->isDeleted())
13888 return false;
13889
13890 for (const FunctionDecl *Prev = FD->getPreviousDecl();
13891 Prev; Prev = Prev->getPreviousDecl()) {
13892 // Ignore any declarations that occur in function or method
13893 // scope, because they aren't visible from the header.
13894 if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
13895 continue;
13896
13897 PossiblePrototype = Prev;
13898 return Prev->getType()->isFunctionNoProtoType();
13899 }
13900
13901 return true;
13902}
13903
13904void
13905Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
13906 const FunctionDecl *EffectiveDefinition,
13907 SkipBodyInfo *SkipBody) {
13908 const FunctionDecl *Definition = EffectiveDefinition;
13909 if (!Definition &&
13910 !FD->isDefined(Definition, /*CheckForPendingFriendDefinition*/ true))
13911 return;
13912
13913 if (Definition->getFriendObjectKind() != Decl::FOK_None) {
13914 if (FunctionDecl *OrigDef = Definition->getInstantiatedFromMemberFunction()) {
13915 if (FunctionDecl *OrigFD = FD->getInstantiatedFromMemberFunction()) {
13916 // A merged copy of the same function, instantiated as a member of
13917 // the same class, is OK.
13918 if (declaresSameEntity(OrigFD, OrigDef) &&
13919 declaresSameEntity(cast<Decl>(Definition->getLexicalDeclContext()),
13920 cast<Decl>(FD->getLexicalDeclContext())))
13921 return;
13922 }
13923 }
13924 }
13925
13926 if (canRedefineFunction(Definition, getLangOpts()))
13927 return;
13928
13929 // Don't emit an error when this is redefinition of a typo-corrected
13930 // definition.
13931 if (TypoCorrectedFunctionDefinitions.count(Definition))
13932 return;
13933
13934 // If we don't have a visible definition of the function, and it's inline or
13935 // a template, skip the new definition.
13936 if (SkipBody && !hasVisibleDefinition(Definition) &&
13937 (Definition->getFormalLinkage() == InternalLinkage ||
13938 Definition->isInlined() ||
13939 Definition->getDescribedFunctionTemplate() ||
13940 Definition->getNumTemplateParameterLists())) {
13941 SkipBody->ShouldSkip = true;
13942 SkipBody->Previous = const_cast<FunctionDecl*>(Definition);
13943 if (auto *TD = Definition->getDescribedFunctionTemplate())
13944 makeMergedDefinitionVisible(TD);
13945 makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition));
13946 return;
13947 }
13948
13949 if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
13950 Definition->getStorageClass() == SC_Extern)
13951 Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
13952 << FD << getLangOpts().CPlusPlus;
13953 else
13954 Diag(FD->getLocation(), diag::err_redefinition) << FD;
13955
13956 Diag(Definition->getLocation(), diag::note_previous_definition);
13957 FD->setInvalidDecl();
13958}
13959
13960static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator,
13961 Sema &S) {
13962 CXXRecordDecl *const LambdaClass = CallOperator->getParent();
13963
13964 LambdaScopeInfo *LSI = S.PushLambdaScope();
13965 LSI->CallOperator = CallOperator;
13966 LSI->Lambda = LambdaClass;
13967 LSI->ReturnType = CallOperator->getReturnType();
13968 const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
13969
13970 if (LCD == LCD_None)
13971 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
13972 else if (LCD == LCD_ByCopy)
13973 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
13974 else if (LCD == LCD_ByRef)
13975 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
13976 DeclarationNameInfo DNI = CallOperator->getNameInfo();
13977
13978 LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
13979 LSI->Mutable = !CallOperator->isConst();
13980
13981 // Add the captures to the LSI so they can be noted as already
13982 // captured within tryCaptureVar.
13983 auto I = LambdaClass->field_begin();
13984 for (const auto &C : LambdaClass->captures()) {
13985 if (C.capturesVariable()) {
13986 VarDecl *VD = C.getCapturedVar();
13987 if (VD->isInitCapture())
13988 S.CurrentInstantiationScope->InstantiatedLocal(VD, VD);
13989 const bool ByRef = C.getCaptureKind() == LCK_ByRef;
13990 LSI->addCapture(VD, /*IsBlock*/false, ByRef,
13991 /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(),
13992 /*EllipsisLoc*/C.isPackExpansion()
13993 ? C.getEllipsisLoc() : SourceLocation(),
13994 I->getType(), /*Invalid*/false);
13995
13996 } else if (C.capturesThis()) {
13997 LSI->addThisCapture(/*Nested*/ false, C.getLocation(), I->getType(),
13998 C.getCaptureKind() == LCK_StarThis);
13999 } else {
14000 LSI->addVLATypeCapture(C.getLocation(), I->getCapturedVLAType(),
14001 I->getType());
14002 }
14003 ++I;
14004 }
14005}
14006
14007Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D,
14008 SkipBodyInfo *SkipBody) {
14009 if (!D) {
14010 // Parsing the function declaration failed in some way. Push on a fake scope
14011 // anyway so we can try to parse the function body.
14012 PushFunctionScope();
14013 PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
14014 return D;
14015 }
14016
14017 FunctionDecl *FD = nullptr;
14018
14019 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
14020 FD = FunTmpl->getTemplatedDecl();
14021 else
14022 FD = cast<FunctionDecl>(D);
14023
14024 // Do not push if it is a lambda because one is already pushed when building
14025 // the lambda in ActOnStartOfLambdaDefinition().
14026 if (!isLambdaCallOperator(FD))
14027 PushExpressionEvaluationContext(
14028 FD->isConsteval() ? ExpressionEvaluationContext::ConstantEvaluated
14029 : ExprEvalContexts.back().Context);
14030
14031 // Check for defining attributes before the check for redefinition.
14032 if (const auto *Attr = FD->getAttr<AliasAttr>()) {
14033 Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 0;
14034 FD->dropAttr<AliasAttr>();
14035 FD->setInvalidDecl();
14036 }
14037 if (const auto *Attr = FD->getAttr<IFuncAttr>()) {
14038 Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 1;
14039 FD->dropAttr<IFuncAttr>();
14040 FD->setInvalidDecl();
14041 }
14042
14043 if (auto *Ctor = dyn_cast<CXXConstructorDecl>(FD)) {
14044 if (Ctor->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
14045 Ctor->isDefaultConstructor() &&
14046 Context.getTargetInfo().getCXXABI().isMicrosoft()) {
14047 // If this is an MS ABI dllexport default constructor, instantiate any
14048 // default arguments.
14049 InstantiateDefaultCtorDefaultArgs(Ctor);
14050 }
14051 }
14052
14053 // See if this is a redefinition. If 'will have body' (or similar) is already
14054 // set, then these checks were already performed when it was set.
14055 if (!FD->willHaveBody() && !FD->isLateTemplateParsed() &&
14056 !FD->isThisDeclarationInstantiatedFromAFriendDefinition()) {
14057 CheckForFunctionRedefinition(FD, nullptr, SkipBody);
14058
14059 // If we're skipping the body, we're done. Don't enter the scope.
14060 if (SkipBody && SkipBody->ShouldSkip)
14061 return D;
14062 }
14063
14064 // Mark this function as "will have a body eventually". This lets users to
14065 // call e.g. isInlineDefinitionExternallyVisible while we're still parsing
14066 // this function.
14067 FD->setWillHaveBody();
14068
14069 // If we are instantiating a generic lambda call operator, push
14070 // a LambdaScopeInfo onto the function stack. But use the information
14071 // that's already been calculated (ActOnLambdaExpr) to prime the current
14072 // LambdaScopeInfo.
14073 // When the template operator is being specialized, the LambdaScopeInfo,
14074 // has to be properly restored so that tryCaptureVariable doesn't try
14075 // and capture any new variables. In addition when calculating potential
14076 // captures during transformation of nested lambdas, it is necessary to
14077 // have the LSI properly restored.
14078 if (isGenericLambdaCallOperatorSpecialization(FD)) {
14079 assert(inTemplateInstantiation() &&((inTemplateInstantiation() && "There should be an active template instantiation on the stack "
"when instantiating a generic lambda!") ? static_cast<void
> (0) : __assert_fail ("inTemplateInstantiation() && \"There should be an active template instantiation on the stack \" \"when instantiating a generic lambda!\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 14081, __PRETTY_FUNCTION__))
14080 "There should be an active template instantiation on the stack "((inTemplateInstantiation() && "There should be an active template instantiation on the stack "
"when instantiating a generic lambda!") ? static_cast<void
> (0) : __assert_fail ("inTemplateInstantiation() && \"There should be an active template instantiation on the stack \" \"when instantiating a generic lambda!\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 14081, __PRETTY_FUNCTION__))
14081 "when instantiating a generic lambda!")((inTemplateInstantiation() && "There should be an active template instantiation on the stack "
"when instantiating a generic lambda!") ? static_cast<void
> (0) : __assert_fail ("inTemplateInstantiation() && \"There should be an active template instantiation on the stack \" \"when instantiating a generic lambda!\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 14081, __PRETTY_FUNCTION__))
;
14082 RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this);
14083 } else {
14084 // Enter a new function scope
14085 PushFunctionScope();
14086 }
14087
14088 // Builtin functions cannot be defined.
14089 if (unsigned BuiltinID = FD->getBuiltinID()) {
14090 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
14091 !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
14092 Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
14093 FD->setInvalidDecl();
14094 }
14095 }
14096
14097 // The return type of a function definition must be complete
14098 // (C99 6.9.1p3, C++ [dcl.fct]p6).
14099 QualType ResultType = FD->getReturnType();
14100 if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
14101 !FD->isInvalidDecl() &&
14102 RequireCompleteType(FD->getLocation(), ResultType,
14103 diag::err_func_def_incomplete_result))
14104 FD->setInvalidDecl();
14105
14106 if (FnBodyScope)
14107 PushDeclContext(FnBodyScope, FD);
14108
14109 // Check the validity of our function parameters
14110 CheckParmsForFunctionDef(FD->parameters(),
14111 /*CheckParameterNames=*/true);
14112
14113 // Add non-parameter declarations already in the function to the current
14114 // scope.
14115 if (FnBodyScope) {
14116 for (Decl *NPD : FD->decls()) {
14117 auto *NonParmDecl = dyn_cast<NamedDecl>(NPD);
14118 if (!NonParmDecl)
14119 continue;
14120 assert(!isa<ParmVarDecl>(NonParmDecl) &&((!isa<ParmVarDecl>(NonParmDecl) && "parameters should not be in newly created FD yet"
) ? static_cast<void> (0) : __assert_fail ("!isa<ParmVarDecl>(NonParmDecl) && \"parameters should not be in newly created FD yet\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 14121, __PRETTY_FUNCTION__))
14121 "parameters should not be in newly created FD yet")((!isa<ParmVarDecl>(NonParmDecl) && "parameters should not be in newly created FD yet"
) ? static_cast<void> (0) : __assert_fail ("!isa<ParmVarDecl>(NonParmDecl) && \"parameters should not be in newly created FD yet\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 14121, __PRETTY_FUNCTION__))
;
14122
14123 // If the decl has a name, make it accessible in the current scope.
14124 if (NonParmDecl->getDeclName())
14125 PushOnScopeChains(NonParmDecl, FnBodyScope, /*AddToContext=*/false);
14126
14127 // Similarly, dive into enums and fish their constants out, making them
14128 // accessible in this scope.
14129 if (auto *ED = dyn_cast<EnumDecl>(NonParmDecl)) {
14130 for (auto *EI : ED->enumerators())
14131 PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
14132 }
14133 }
14134 }
14135
14136 // Introduce our parameters into the function scope
14137 for (auto Param : FD->parameters()) {
14138 Param->setOwningFunction(FD);
14139
14140 // If this has an identifier, add it to the scope stack.
14141 if (Param->getIdentifier() && FnBodyScope) {
14142 CheckShadow(FnBodyScope, Param);
14143
14144 PushOnScopeChains(Param, FnBodyScope);
14145 }
14146 }
14147
14148 // Ensure that the function's exception specification is instantiated.
14149 if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
14150 ResolveExceptionSpec(D->getLocation(), FPT);
14151
14152 // dllimport cannot be applied to non-inline function definitions.
14153 if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
14154 !FD->isTemplateInstantiation()) {
14155 assert(!FD->hasAttr<DLLExportAttr>())((!FD->hasAttr<DLLExportAttr>()) ? static_cast<void
> (0) : __assert_fail ("!FD->hasAttr<DLLExportAttr>()"
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 14155, __PRETTY_FUNCTION__))
;
14156 Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
14157 FD->setInvalidDecl();
14158 return D;
14159 }
14160 // We want to attach documentation to original Decl (which might be
14161 // a function template).
14162 ActOnDocumentableDecl(D);
14163 if (getCurLexicalContext()->isObjCContainer() &&
14164 getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
14165 getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
14166 Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);
14167
14168 return D;
14169}
14170
14171/// Given the set of return statements within a function body,
14172/// compute the variables that are subject to the named return value
14173/// optimization.
14174///
14175/// Each of the variables that is subject to the named return value
14176/// optimization will be marked as NRVO variables in the AST, and any
14177/// return statement that has a marked NRVO variable as its NRVO candidate can
14178/// use the named return value optimization.
14179///
14180/// This function applies a very simplistic algorithm for NRVO: if every return
14181/// statement in the scope of a variable has the same NRVO candidate, that
14182/// candidate is an NRVO variable.
14183void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
14184 ReturnStmt **Returns = Scope->Returns.data();
14185
14186 for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
14187 if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
14188 if (!NRVOCandidate->isNRVOVariable())
14189 Returns[I]->setNRVOCandidate(nullptr);
14190 }
14191 }
14192}
14193
14194bool Sema::canDelayFunctionBody(const Declarator &D) {
14195 // We can't delay parsing the body of a constexpr function template (yet).
14196 if (D.getDeclSpec().hasConstexprSpecifier())
14197 return false;
14198
14199 // We can't delay parsing the body of a function template with a deduced
14200 // return type (yet).
14201 if (D.getDeclSpec().hasAutoTypeSpec()) {
14202 // If the placeholder introduces a non-deduced trailing return type,
14203 // we can still delay parsing it.
14204 if (D.getNumTypeObjects()) {
14205 const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
14206 if (Outer.Kind == DeclaratorChunk::Function &&
14207 Outer.Fun.hasTrailingReturnType()) {
14208 QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
14209 return Ty.isNull() || !Ty->isUndeducedType();
14210 }
14211 }
14212 return false;
14213 }
14214
14215 return true;
14216}
14217
14218bool Sema::canSkipFunctionBody(Decl *D) {
14219 // We cannot skip the body of a function (or function template) which is
14220 // constexpr, since we may need to evaluate its body in order to parse the
14221 // rest of the file.
14222 // We cannot skip the body of a function with an undeduced return type,
14223 // because any callers of that function need to know the type.
14224 if (const FunctionDecl *FD = D->getAsFunction()) {
14225 if (FD->isConstexpr())
14226 return false;
14227 // We can't simply call Type::isUndeducedType here, because inside template
14228 // auto can be deduced to a dependent type, which is not considered
14229 // "undeduced".
14230 if (FD->getReturnType()->getContainedDeducedType())
14231 return false;
14232 }
14233 return Consumer.shouldSkipFunctionBody(D);
14234}
14235
14236Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
14237 if (!Decl)
14238 return nullptr;
14239 if (FunctionDecl *FD = Decl->getAsFunction())
14240 FD->setHasSkippedBody();
14241 else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl))
14242 MD->setHasSkippedBody();
14243 return Decl;
14244}
14245
14246Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
14247 return ActOnFinishFunctionBody(D, BodyArg, false);
14248}
14249
14250/// RAII object that pops an ExpressionEvaluationContext when exiting a function
14251/// body.
14252class ExitFunctionBodyRAII {
14253public:
14254 ExitFunctionBodyRAII(Sema &S, bool IsLambda) : S(S), IsLambda(IsLambda) {}
14255 ~ExitFunctionBodyRAII() {
14256 if (!IsLambda)
14257 S.PopExpressionEvaluationContext();
14258 }
14259
14260private:
14261 Sema &S;
14262 bool IsLambda = false;
14263};
14264
14265static void diagnoseImplicitlyRetainedSelf(Sema &S) {
14266 llvm::DenseMap<const BlockDecl *, bool> EscapeInfo;
14267
14268 auto IsOrNestedInEscapingBlock = [&](const BlockDecl *BD) {
14269 if (EscapeInfo.count(BD))
14270 return EscapeInfo[BD];
14271
14272 bool R = false;
14273 const BlockDecl *CurBD = BD;
14274
14275 do {
14276 R = !CurBD->doesNotEscape();
14277 if (R)
14278 break;
14279 CurBD = CurBD->getParent()->getInnermostBlockDecl();
14280 } while (CurBD);
14281
14282 return EscapeInfo[BD] = R;
14283 };
14284
14285 // If the location where 'self' is implicitly retained is inside a escaping
14286 // block, emit a diagnostic.
14287 for (const std::pair<SourceLocation, const BlockDecl *> &P :
14288 S.ImplicitlyRetainedSelfLocs)
14289 if (IsOrNestedInEscapingBlock(P.second))
14290 S.Diag(P.first, diag::warn_implicitly_retains_self)
14291 << FixItHint::CreateInsertion(P.first, "self->");
14292}
14293
14294Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
14295 bool IsInstantiation) {
14296 FunctionScopeInfo *FSI = getCurFunction();
14297 FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;
14298
14299 if (FSI->UsesFPIntrin && !FD->hasAttr<StrictFPAttr>())
14300 FD->addAttr(StrictFPAttr::CreateImplicit(Context));
14301
14302 sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
14303 sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;
14304
14305 if (getLangOpts().Coroutines && FSI->isCoroutine())
14306 CheckCompletedCoroutineBody(FD, Body);
14307
14308 // Do not call PopExpressionEvaluationContext() if it is a lambda because one
14309 // is already popped when finishing the lambda in BuildLambdaExpr(). This is
14310 // meant to pop the context added in ActOnStartOfFunctionDef().
14311 ExitFunctionBodyRAII ExitRAII(*this, isLambdaCallOperator(FD));
14312
14313 if (FD) {
14314 FD->setBody(Body);
14315 FD->setWillHaveBody(false);
14316
14317 if (getLangOpts().CPlusPlus14) {
14318 if (!FD->isInvalidDecl() && Body && !FD->isDependentContext() &&
14319 FD->getReturnType()->isUndeducedType()) {
14320 // If the function has a deduced result type but contains no 'return'
14321 // statements, the result type as written must be exactly 'auto', and
14322 // the deduced result type is 'void'.
14323 if (!FD->getReturnType()->getAs<AutoType>()) {
14324 Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
14325 << FD->getReturnType();
14326 FD->setInvalidDecl();
14327 } else {
14328 // Substitute 'void' for the 'auto' in the type.
14329 TypeLoc ResultType = getReturnTypeLoc(FD);
14330 Context.adjustDeducedFunctionResultType(
14331 FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
14332 }
14333 }
14334 } else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) {
14335 // In C++11, we don't use 'auto' deduction rules for lambda call
14336 // operators because we don't support return type deduction.
14337 auto *LSI = getCurLambda();
14338 if (LSI->HasImplicitReturnType) {
14339 deduceClosureReturnType(*LSI);
14340
14341 // C++11 [expr.prim.lambda]p4:
14342 // [...] if there are no return statements in the compound-statement
14343 // [the deduced type is] the type void
14344 QualType RetType =
14345 LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType;
14346
14347 // Update the return type to the deduced type.
14348 const auto *Proto = FD->getType()->castAs<FunctionProtoType>();
14349 FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(),
14350 Proto->getExtProtoInfo()));
14351 }
14352 }
14353
14354 // If the function implicitly returns zero (like 'main') or is naked,
14355 // don't complain about missing return statements.
14356 if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
14357 WP.disableCheckFallThrough();
14358
14359 // MSVC permits the use of pure specifier (=0) on function definition,
14360 // defined at class scope, warn about this non-standard construct.
14361 if (getLangOpts().MicrosoftExt && FD->isPure() && !FD->isOutOfLine())
14362 Diag(FD->getLocation(), diag::ext_pure_function_definition);
14363
14364 if (!FD->isInvalidDecl()) {
14365 // Don't diagnose unused parameters of defaulted or deleted functions.
14366 if (!FD->isDeleted() && !FD->isDefaulted() && !FD->hasSkippedBody())
14367 DiagnoseUnusedParameters(FD->parameters());
14368 DiagnoseSizeOfParametersAndReturnValue(FD->parameters(),
14369 FD->getReturnType(), FD);
14370
14371 // If this is a structor, we need a vtable.
14372 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
14373 MarkVTableUsed(FD->getLocation(), Constructor->getParent());
14374 else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(FD))
14375 MarkVTableUsed(FD->getLocation(), Destructor->getParent());
14376
14377 // Try to apply the named return value optimization. We have to check
14378 // if we can do this here because lambdas keep return statements around
14379 // to deduce an implicit return type.
14380 if (FD->getReturnType()->isRecordType() &&
14381 (!getLangOpts().CPlusPlus || !FD->isDependentContext()))
14382 computeNRVO(Body, FSI);
14383 }
14384
14385 // GNU warning -Wmissing-prototypes:
14386 // Warn if a global function is defined without a previous
14387 // prototype declaration. This warning is issued even if the
14388 // definition itself provides a prototype. The aim is to detect
14389 // global functions that fail to be declared in header files.
14390 const FunctionDecl *PossiblePrototype = nullptr;
14391 if (ShouldWarnAboutMissingPrototype(FD, PossiblePrototype)) {
14392 Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
14393
14394 if (PossiblePrototype) {
14395 // We found a declaration that is not a prototype,
14396 // but that could be a zero-parameter prototype
14397 if (TypeSourceInfo *TI = PossiblePrototype->getTypeSourceInfo()) {
14398 TypeLoc TL = TI->getTypeLoc();
14399 if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
14400 Diag(PossiblePrototype->getLocation(),
14401 diag::note_declaration_not_a_prototype)
14402 << (FD->getNumParams() != 0)
14403 << (FD->getNumParams() == 0
14404 ? FixItHint::CreateInsertion(FTL.getRParenLoc(), "void")
14405 : FixItHint{});
14406 }
14407 } else {
14408 // Returns true if the token beginning at this Loc is `const`.
14409 auto isLocAtConst = [&](SourceLocation Loc, const SourceManager &SM,
14410 const LangOptions &LangOpts) {
14411 std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
14412 if (LocInfo.first.isInvalid())
14413 return false;
14414
14415 bool Invalid = false;
14416 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
14417 if (Invalid)
14418 return false;
14419
14420 if (LocInfo.second > Buffer.size())
14421 return false;
14422
14423 const char *LexStart = Buffer.data() + LocInfo.second;
14424 StringRef StartTok(LexStart, Buffer.size() - LocInfo.second);
14425
14426 return StartTok.consume_front("const") &&
14427 (StartTok.empty() || isWhitespace(StartTok[0]) ||
14428 StartTok.startswith("/*") || StartTok.startswith("//"));
14429 };
14430
14431 auto findBeginLoc = [&]() {
14432 // If the return type has `const` qualifier, we want to insert
14433 // `static` before `const` (and not before the typename).
14434 if ((FD->getReturnType()->isAnyPointerType() &&
14435 FD->getReturnType()->getPointeeType().isConstQualified()) ||
14436 FD->getReturnType().isConstQualified()) {
14437 // But only do this if we can determine where the `const` is.
14438
14439 if (isLocAtConst(FD->getBeginLoc(), getSourceManager(),
14440 getLangOpts()))
14441
14442 return FD->getBeginLoc();
14443 }
14444 return FD->getTypeSpecStartLoc();
14445 };
14446 Diag(FD->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage)
14447 << /* function */ 1
14448 << (FD->getStorageClass() == SC_None
14449 ? FixItHint::CreateInsertion(findBeginLoc(), "static ")
14450 : FixItHint{});
14451 }
14452
14453 // GNU warning -Wstrict-prototypes
14454 // Warn if K&R function is defined without a previous declaration.
14455 // This warning is issued only if the definition itself does not provide
14456 // a prototype. Only K&R definitions do not provide a prototype.
14457 if (!FD->hasWrittenPrototype()) {
14458 TypeSourceInfo *TI = FD->getTypeSourceInfo();
14459 TypeLoc TL = TI->getTypeLoc();
14460 FunctionTypeLoc FTL = TL.getAsAdjusted<FunctionTypeLoc>();
14461 Diag(FTL.getLParenLoc(), diag::warn_strict_prototypes) << 2;
14462 }
14463 }
14464
14465 // Warn on CPUDispatch with an actual body.
14466 if (FD->isMultiVersion() && FD->hasAttr<CPUDispatchAttr>() && Body)
14467 if (const auto *CmpndBody = dyn_cast<CompoundStmt>(Body))
14468 if (!CmpndBody->body_empty())
14469 Diag(CmpndBody->body_front()->getBeginLoc(),
14470 diag::warn_dispatch_body_ignored);
14471
14472 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
14473 const CXXMethodDecl *KeyFunction;
14474 if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) &&
14475 MD->isVirtual() &&
14476 (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) &&
14477 MD == KeyFunction->getCanonicalDecl()) {
14478 // Update the key-function state if necessary for this ABI.
14479 if (FD->isInlined() &&
14480 !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
14481 Context.setNonKeyFunction(MD);
14482
14483 // If the newly-chosen key function is already defined, then we
14484 // need to mark the vtable as used retroactively.
14485 KeyFunction = Context.getCurrentKeyFunction(MD->getParent());
14486 const FunctionDecl *Definition;
14487 if (KeyFunction && KeyFunction->isDefined(Definition))
14488 MarkVTableUsed(Definition->getLocation(), MD->getParent(), true);
14489 } else {
14490 // We just defined they key function; mark the vtable as used.
14491 MarkVTableUsed(FD->getLocation(), MD->getParent(), true);
14492 }
14493 }
14494 }
14495
14496 assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&(((FD == getCurFunctionDecl() || getCurLambda()->CallOperator
== FD) && "Function parsing confused") ? static_cast
<void> (0) : __assert_fail ("(FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) && \"Function parsing confused\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 14497, __PRETTY_FUNCTION__))
14497 "Function parsing confused")(((FD == getCurFunctionDecl() || getCurLambda()->CallOperator
== FD) && "Function parsing confused") ? static_cast
<void> (0) : __assert_fail ("(FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) && \"Function parsing confused\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 14497, __PRETTY_FUNCTION__))
;
14498 } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
14499 assert(MD == getCurMethodDecl() && "Method parsing confused")((MD == getCurMethodDecl() && "Method parsing confused"
) ? static_cast<void> (0) : __assert_fail ("MD == getCurMethodDecl() && \"Method parsing confused\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 14499, __PRETTY_FUNCTION__))
;
14500 MD->setBody(Body);
14501 if (!MD->isInvalidDecl()) {
14502 DiagnoseSizeOfParametersAndReturnValue(MD->parameters(),
14503 MD->getReturnType(), MD);
14504
14505 if (Body)
14506 computeNRVO(Body, FSI);
14507 }
14508 if (FSI->ObjCShouldCallSuper) {
14509 Diag(MD->getEndLoc(), diag::warn_objc_missing_super_call)
14510 << MD->getSelector().getAsString();
14511 FSI->ObjCShouldCallSuper = false;
14512 }
14513 if (FSI->ObjCWarnForNoDesignatedInitChain) {
14514 const ObjCMethodDecl *InitMethod = nullptr;
14515 bool isDesignated =
14516 MD->isDesignatedInitializerForTheInterface(&InitMethod);
14517 assert(isDesignated && InitMethod)((isDesignated && InitMethod) ? static_cast<void>
(0) : __assert_fail ("isDesignated && InitMethod", "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 14517, __PRETTY_FUNCTION__))
;
14518 (void)isDesignated;
14519
14520 auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
14521 auto IFace = MD->getClassInterface();
14522 if (!IFace)
14523 return false;
14524 auto SuperD = IFace->getSuperClass();
14525 if (!SuperD)
14526 return false;
14527 return SuperD->getIdentifier() ==
14528 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
14529 };
14530 // Don't issue this warning for unavailable inits or direct subclasses
14531 // of NSObject.
14532 if (!MD->isUnavailable() && !superIsNSObject(MD)) {
14533 Diag(MD->getLocation(),
14534 diag::warn_objc_designated_init_missing_super_call);
14535 Diag(InitMethod->getLocation(),
14536 diag::note_objc_designated_init_marked_here);
14537 }
14538 FSI->ObjCWarnForNoDesignatedInitChain = false;
14539 }
14540 if (FSI->ObjCWarnForNoInitDelegation) {
14541 // Don't issue this warning for unavaialable inits.
14542 if (!MD->isUnavailable())
14543 Diag(MD->getLocation(),
14544 diag::warn_objc_secondary_init_missing_init_call);
14545 FSI->ObjCWarnForNoInitDelegation = false;
14546 }
14547
14548 diagnoseImplicitlyRetainedSelf(*this);
14549 } else {
14550 // Parsing the function declaration failed in some way. Pop the fake scope
14551 // we pushed on.
14552 PopFunctionScopeInfo(ActivePolicy, dcl);
14553 return nullptr;
14554 }
14555
14556 if (Body && FSI->HasPotentialAvailabilityViolations)
14557 DiagnoseUnguardedAvailabilityViolations(dcl);
14558
14559 assert(!FSI->ObjCShouldCallSuper &&((!FSI->ObjCShouldCallSuper && "This should only be set for ObjC methods, which should have been "
"handled in the block above.") ? static_cast<void> (0)
: __assert_fail ("!FSI->ObjCShouldCallSuper && \"This should only be set for ObjC methods, which should have been \" \"handled in the block above.\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 14561, __PRETTY_FUNCTION__))
14560 "This should only be set for ObjC methods, which should have been "((!FSI->ObjCShouldCallSuper && "This should only be set for ObjC methods, which should have been "
"handled in the block above.") ? static_cast<void> (0)
: __assert_fail ("!FSI->ObjCShouldCallSuper && \"This should only be set for ObjC methods, which should have been \" \"handled in the block above.\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 14561, __PRETTY_FUNCTION__))
14561 "handled in the block above.")((!FSI->ObjCShouldCallSuper && "This should only be set for ObjC methods, which should have been "
"handled in the block above.") ? static_cast<void> (0)
: __assert_fail ("!FSI->ObjCShouldCallSuper && \"This should only be set for ObjC methods, which should have been \" \"handled in the block above.\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 14561, __PRETTY_FUNCTION__))
;
14562
14563 // Verify and clean out per-function state.
14564 if (Body && (!FD || !FD->isDefaulted())) {
14565 // C++ constructors that have function-try-blocks can't have return
14566 // statements in the handlers of that block. (C++ [except.handle]p14)
14567 // Verify this.
14568 if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
14569 DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
14570
14571 // Verify that gotos and switch cases don't jump into scopes illegally.
14572 if (FSI->NeedsScopeChecking() &&
14573 !PP.isCodeCompletionEnabled())
14574 DiagnoseInvalidJumps(Body);
14575
14576 if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
14577 if (!Destructor->getParent()->isDependentType())
14578 CheckDestructor(Destructor);
14579
14580 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
14581 Destructor->getParent());
14582 }
14583
14584 // If any errors have occurred, clear out any temporaries that may have
14585 // been leftover. This ensures that these temporaries won't be picked up for
14586 // deletion in some later function.
14587 if (hasUncompilableErrorOccurred() ||
14588 getDiagnostics().getSuppressAllDiagnostics()) {
14589 DiscardCleanupsInEvaluationContext();
14590 }
14591 if (!hasUncompilableErrorOccurred() &&
14592 !isa<FunctionTemplateDecl>(dcl)) {
14593 // Since the body is valid, issue any analysis-based warnings that are
14594 // enabled.
14595 ActivePolicy = &WP;
14596 }
14597
14598 if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
14599 !CheckConstexprFunctionDefinition(FD, CheckConstexprKind::Diagnose))
14600 FD->setInvalidDecl();
14601
14602 if (FD && FD->hasAttr<NakedAttr>()) {
14603 for (const Stmt *S : Body->children()) {
14604 // Allow local register variables without initializer as they don't
14605 // require prologue.
14606 bool RegisterVariables = false;
14607 if (auto *DS = dyn_cast<DeclStmt>(S)) {
14608 for (const auto *Decl : DS->decls()) {
14609 if (const auto *Var = dyn_cast<VarDecl>(Decl)) {
14610 RegisterVariables =
14611 Var->hasAttr<AsmLabelAttr>() && !Var->hasInit();
14612 if (!RegisterVariables)
14613 break;
14614 }
14615 }
14616 }
14617 if (RegisterVariables)
14618 continue;
14619 if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) {
14620 Diag(S->getBeginLoc(), diag::err_non_asm_stmt_in_naked_function);
14621 Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
14622 FD->setInvalidDecl();
14623 break;
14624 }
14625 }
14626 }
14627
14628 assert(ExprCleanupObjects.size() ==((ExprCleanupObjects.size() == ExprEvalContexts.back().NumCleanupObjects
&& "Leftover temporaries in function") ? static_cast
<void> (0) : __assert_fail ("ExprCleanupObjects.size() == ExprEvalContexts.back().NumCleanupObjects && \"Leftover temporaries in function\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 14630, __PRETTY_FUNCTION__))
14629 ExprEvalContexts.back().NumCleanupObjects &&((ExprCleanupObjects.size() == ExprEvalContexts.back().NumCleanupObjects
&& "Leftover temporaries in function") ? static_cast
<void> (0) : __assert_fail ("ExprCleanupObjects.size() == ExprEvalContexts.back().NumCleanupObjects && \"Leftover temporaries in function\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 14630, __PRETTY_FUNCTION__))
14630 "Leftover temporaries in function")((ExprCleanupObjects.size() == ExprEvalContexts.back().NumCleanupObjects
&& "Leftover temporaries in function") ? static_cast
<void> (0) : __assert_fail ("ExprCleanupObjects.size() == ExprEvalContexts.back().NumCleanupObjects && \"Leftover temporaries in function\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 14630, __PRETTY_FUNCTION__))
;
14631 assert(!Cleanup.exprNeedsCleanups() && "Unaccounted cleanups in function")((!Cleanup.exprNeedsCleanups() && "Unaccounted cleanups in function"
) ? static_cast<void> (0) : __assert_fail ("!Cleanup.exprNeedsCleanups() && \"Unaccounted cleanups in function\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 14631, __PRETTY_FUNCTION__))
;
14632 assert(MaybeODRUseExprs.empty() &&((MaybeODRUseExprs.empty() && "Leftover expressions for odr-use checking"
) ? static_cast<void> (0) : __assert_fail ("MaybeODRUseExprs.empty() && \"Leftover expressions for odr-use checking\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 14633, __PRETTY_FUNCTION__))
14633 "Leftover expressions for odr-use checking")((MaybeODRUseExprs.empty() && "Leftover expressions for odr-use checking"
) ? static_cast<void> (0) : __assert_fail ("MaybeODRUseExprs.empty() && \"Leftover expressions for odr-use checking\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 14633, __PRETTY_FUNCTION__))
;
14634 }
14635
14636 if (!IsInstantiation)
14637 PopDeclContext();
14638
14639 PopFunctionScopeInfo(ActivePolicy, dcl);
14640 // If any errors have occurred, clear out any temporaries that may have
14641 // been leftover. This ensures that these temporaries won't be picked up for
14642 // deletion in some later function.
14643 if (hasUncompilableErrorOccurred()) {
14644 DiscardCleanupsInEvaluationContext();
14645 }
14646
14647 if (FD && (LangOpts.OpenMP || LangOpts.CUDA || LangOpts.SYCLIsDevice)) {
14648 auto ES = getEmissionStatus(FD);
14649 if (ES == Sema::FunctionEmissionStatus::Emitted ||
14650 ES == Sema::FunctionEmissionStatus::Unknown)
14651 DeclsToCheckForDeferredDiags.push_back(FD);
14652 }
14653
14654 return dcl;
14655}
14656
14657/// When we finish delayed parsing of an attribute, we must attach it to the
14658/// relevant Decl.
14659void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
14660 ParsedAttributes &Attrs) {
14661 // Always attach attributes to the underlying decl.
14662 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
14663 D = TD->getTemplatedDecl();
14664 ProcessDeclAttributeList(S, D, Attrs);
14665
14666 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
14667 if (Method->isStatic())
14668 checkThisInStaticMemberFunctionAttributes(Method);
14669}
14670
14671/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
14672/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
14673NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
14674 IdentifierInfo &II, Scope *S) {
14675 // Find the scope in which the identifier is injected and the corresponding
14676 // DeclContext.
14677 // FIXME: C89 does not say what happens if there is no enclosing block scope.
14678 // In that case, we inject the declaration into the translation unit scope
14679 // instead.
14680 Scope *BlockScope = S;
14681 while (!BlockScope->isCompoundStmtScope() && BlockScope->getParent())
14682 BlockScope = BlockScope->getParent();
14683
14684 Scope *ContextScope = BlockScope;
14685 while (!ContextScope->getEntity())
14686 ContextScope = ContextScope->getParent();
14687 ContextRAII SavedContext(*this, ContextScope->getEntity());
14688
14689 // Before we produce a declaration for an implicitly defined
14690 // function, see whether there was a locally-scoped declaration of
14691 // this name as a function or variable. If so, use that
14692 // (non-visible) declaration, and complain about it.
14693 NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II);
14694 if (ExternCPrev) {
14695 // We still need to inject the function into the enclosing block scope so
14696 // that later (non-call) uses can see it.
14697 PushOnScopeChains(ExternCPrev, BlockScope, /*AddToContext*/false);
14698
14699 // C89 footnote 38:
14700 // If in fact it is not defined as having type "function returning int",
14701 // the behavior is undefined.
14702 if (!isa<FunctionDecl>(ExternCPrev) ||
14703 !Context.typesAreCompatible(
14704 cast<FunctionDecl>(ExternCPrev)->getType(),
14705 Context.getFunctionNoProtoType(Context.IntTy))) {
14706 Diag(Loc, diag::ext_use_out_of_scope_declaration)
14707 << ExternCPrev << !getLangOpts().C99;
14708 Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
14709 return ExternCPrev;
14710 }
14711 }
14712
14713 // Extension in C99. Legal in C90, but warn about it.
14714 unsigned diag_id;
14715 if (II.getName().startswith("__builtin_"))
14716 diag_id = diag::warn_builtin_unknown;
14717 // OpenCL v2.0 s6.9.u - Implicit function declaration is not supported.
14718 else if (getLangOpts().OpenCL)
14719 diag_id = diag::err_opencl_implicit_function_decl;
14720 else if (getLangOpts().C99)
14721 diag_id = diag::ext_implicit_function_decl;
14722 else
14723 diag_id = diag::warn_implicit_function_decl;
14724 Diag(Loc, diag_id) << &II;
14725
14726 // If we found a prior declaration of this function, don't bother building
14727 // another one. We've already pushed that one into scope, so there's nothing
14728 // more to do.
14729 if (ExternCPrev)
14730 return ExternCPrev;
14731
14732 // Because typo correction is expensive, only do it if the implicit
14733 // function declaration is going to be treated as an error.
14734 if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
14735 TypoCorrection Corrected;
14736 DeclFilterCCC<FunctionDecl> CCC{};
14737 if (S && (Corrected =
14738 CorrectTypo(DeclarationNameInfo(&II, Loc), LookupOrdinaryName,
14739 S, nullptr, CCC, CTK_NonError)))
14740 diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
14741 /*ErrorRecovery*/false);
14742 }
14743
14744 // Set a Declarator for the implicit definition: int foo();
14745 const char *Dummy;
14746 AttributeFactory attrFactory;
14747 DeclSpec DS(attrFactory);
14748 unsigned DiagID;
14749 bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
14750 Context.getPrintingPolicy());
14751 (void)Error; // Silence warning.
14752 assert(!Error && "Error setting up implicit decl!")((!Error && "Error setting up implicit decl!") ? static_cast
<void> (0) : __assert_fail ("!Error && \"Error setting up implicit decl!\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 14752, __PRETTY_FUNCTION__))
;
14753 SourceLocation NoLoc;
14754 Declarator D(DS, DeclaratorContext::Block);
14755 D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
14756 /*IsAmbiguous=*/false,
14757 /*LParenLoc=*/NoLoc,
14758 /*Params=*/nullptr,
14759 /*NumParams=*/0,
14760 /*EllipsisLoc=*/NoLoc,
14761 /*RParenLoc=*/NoLoc,
14762 /*RefQualifierIsLvalueRef=*/true,
14763 /*RefQualifierLoc=*/NoLoc,
14764 /*MutableLoc=*/NoLoc, EST_None,
14765 /*ESpecRange=*/SourceRange(),
14766 /*Exceptions=*/nullptr,
14767 /*ExceptionRanges=*/nullptr,
14768 /*NumExceptions=*/0,
14769 /*NoexceptExpr=*/nullptr,
14770 /*ExceptionSpecTokens=*/nullptr,
14771 /*DeclsInPrototype=*/None, Loc,
14772 Loc, D),
14773 std::move(DS.getAttributes()), SourceLocation());
14774 D.SetIdentifier(&II, Loc);
14775
14776 // Insert this function into the enclosing block scope.
14777 FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(BlockScope, D));
14778 FD->setImplicit();
14779
14780 AddKnownFunctionAttributes(FD);
14781
14782 return FD;
14783}
14784
14785/// If this function is a C++ replaceable global allocation function
14786/// (C++2a [basic.stc.dynamic.allocation], C++2a [new.delete]),
14787/// adds any function attributes that we know a priori based on the standard.
14788///
14789/// We need to check for duplicate attributes both here and where user-written
14790/// attributes are applied to declarations.
14791void Sema::AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(
14792 FunctionDecl *FD) {
14793 if (FD->isInvalidDecl())
14794 return;
14795
14796 if (FD->getDeclName().getCXXOverloadedOperator() != OO_New &&
14797 FD->getDeclName().getCXXOverloadedOperator() != OO_Array_New)
14798 return;
14799
14800 Optional<unsigned> AlignmentParam;
14801 bool IsNothrow = false;
14802 if (!FD->isReplaceableGlobalAllocationFunction(&AlignmentParam, &IsNothrow))
14803 return;
14804
14805 // C++2a [basic.stc.dynamic.allocation]p4:
14806 // An allocation function that has a non-throwing exception specification
14807 // indicates failure by returning a null pointer value. Any other allocation
14808 // function never returns a null pointer value and indicates failure only by
14809 // throwing an exception [...]
14810 if (!IsNothrow && !FD->hasAttr<ReturnsNonNullAttr>())
14811 FD->addAttr(ReturnsNonNullAttr::CreateImplicit(Context, FD->getLocation()));
14812
14813 // C++2a [basic.stc.dynamic.allocation]p2:
14814 // An allocation function attempts to allocate the requested amount of
14815 // storage. [...] If the request succeeds, the value returned by a
14816 // replaceable allocation function is a [...] pointer value p0 different
14817 // from any previously returned value p1 [...]
14818 //
14819 // However, this particular information is being added in codegen,
14820 // because there is an opt-out switch for it (-fno-assume-sane-operator-new)
14821
14822 // C++2a [basic.stc.dynamic.allocation]p2:
14823 // An allocation function attempts to allocate the requested amount of
14824 // storage. If it is successful, it returns the address of the start of a
14825 // block of storage whose length in bytes is at least as large as the
14826 // requested size.
14827 if (!FD->hasAttr<AllocSizeAttr>()) {
14828 FD->addAttr(AllocSizeAttr::CreateImplicit(
14829 Context, /*ElemSizeParam=*/ParamIdx(1, FD),
14830 /*NumElemsParam=*/ParamIdx(), FD->getLocation()));
14831 }
14832
14833 // C++2a [basic.stc.dynamic.allocation]p3:
14834 // For an allocation function [...], the pointer returned on a successful
14835 // call shall represent the address of storage that is aligned as follows:
14836 // (3.1) If the allocation function takes an argument of type
14837 // std​::​align_­val_­t, the storage will have the alignment
14838 // specified by the value of this argument.
14839 if (AlignmentParam.hasValue() && !FD->hasAttr<AllocAlignAttr>()) {
14840 FD->addAttr(AllocAlignAttr::CreateImplicit(
14841 Context, ParamIdx(AlignmentParam.getValue(), FD), FD->getLocation()));
14842 }
14843
14844 // FIXME:
14845 // C++2a [basic.stc.dynamic.allocation]p3:
14846 // For an allocation function [...], the pointer returned on a successful
14847 // call shall represent the address of storage that is aligned as follows:
14848 // (3.2) Otherwise, if the allocation function is named operator new[],
14849 // the storage is aligned for any object that does not have
14850 // new-extended alignment ([basic.align]) and is no larger than the
14851 // requested size.
14852 // (3.3) Otherwise, the storage is aligned for any object that does not
14853 // have new-extended alignment and is of the requested size.
14854}
14855
14856/// Adds any function attributes that we know a priori based on
14857/// the declaration of this function.
14858///
14859/// These attributes can apply both to implicitly-declared builtins
14860/// (like __builtin___printf_chk) or to library-declared functions
14861/// like NSLog or printf.
14862///
14863/// We need to check for duplicate attributes both here and where user-written
14864/// attributes are applied to declarations.
14865void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
14866 if (FD->isInvalidDecl())
14867 return;
14868
14869 // If this is a built-in function, map its builtin attributes to
14870 // actual attributes.
14871 if (unsigned BuiltinID = FD->getBuiltinID()) {
14872 // Handle printf-formatting attributes.
14873 unsigned FormatIdx;
14874 bool HasVAListArg;
14875 if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
14876 if (!FD->hasAttr<FormatAttr>()) {
14877 const char *fmt = "printf";
14878 unsigned int NumParams = FD->getNumParams();
14879 if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
14880 FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
14881 fmt = "NSString";
14882 FD->addAttr(FormatAttr::CreateImplicit(Context,
14883 &Context.Idents.get(fmt),
14884 FormatIdx+1,
14885 HasVAListArg ? 0 : FormatIdx+2,
14886 FD->getLocation()));
14887 }
14888 }
14889 if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
14890 HasVAListArg)) {
14891 if (!FD->hasAttr<FormatAttr>())
14892 FD->addAttr(FormatAttr::CreateImplicit(Context,
14893 &Context.Idents.get("scanf"),
14894 FormatIdx+1,
14895 HasVAListArg ? 0 : FormatIdx+2,
14896 FD->getLocation()));
14897 }
14898
14899 // Handle automatically recognized callbacks.
14900 SmallVector<int, 4> Encoding;
14901 if (!FD->hasAttr<CallbackAttr>() &&
14902 Context.BuiltinInfo.performsCallback(BuiltinID, Encoding))
14903 FD->addAttr(CallbackAttr::CreateImplicit(
14904 Context, Encoding.data(), Encoding.size(), FD->getLocation()));
14905
14906 // Mark const if we don't care about errno and that is the only thing
14907 // preventing the function from being const. This allows IRgen to use LLVM
14908 // intrinsics for such functions.
14909 if (!getLangOpts().MathErrno && !FD->hasAttr<ConstAttr>() &&
14910 Context.BuiltinInfo.isConstWithoutErrno(BuiltinID))
14911 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
14912
14913 // We make "fma" on some platforms const because we know it does not set
14914 // errno in those environments even though it could set errno based on the
14915 // C standard.
14916 const llvm::Triple &Trip = Context.getTargetInfo().getTriple();
14917 if ((Trip.isGNUEnvironment() || Trip.isAndroid() || Trip.isOSMSVCRT()) &&
14918 !FD->hasAttr<ConstAttr>()) {
14919 switch (BuiltinID) {
14920 case Builtin::BI__builtin_fma:
14921 case Builtin::BI__builtin_fmaf:
14922 case Builtin::BI__builtin_fmal:
14923 case Builtin::BIfma:
14924 case Builtin::BIfmaf:
14925 case Builtin::BIfmal:
14926 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
14927 break;
14928 default:
14929 break;
14930 }
14931 }
14932
14933 if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
14934 !FD->hasAttr<ReturnsTwiceAttr>())
14935 FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
14936 FD->getLocation()));
14937 if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
14938 FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
14939 if (Context.BuiltinInfo.isPure(BuiltinID) && !FD->hasAttr<PureAttr>())
14940 FD->addAttr(PureAttr::CreateImplicit(Context, FD->getLocation()));
14941 if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
14942 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
14943 if (getLangOpts().CUDA && Context.BuiltinInfo.isTSBuiltin(BuiltinID) &&
14944 !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) {
14945 // Add the appropriate attribute, depending on the CUDA compilation mode
14946 // and which target the builtin belongs to. For example, during host
14947 // compilation, aux builtins are __device__, while the rest are __host__.
14948 if (getLangOpts().CUDAIsDevice !=
14949 Context.BuiltinInfo.isAuxBuiltinID(BuiltinID))
14950 FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation()));
14951 else
14952 FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation()));
14953 }
14954 }
14955
14956 AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(FD);
14957
14958 // If C++ exceptions are enabled but we are told extern "C" functions cannot
14959 // throw, add an implicit nothrow attribute to any extern "C" function we come
14960 // across.
14961 if (getLangOpts().CXXExceptions && getLangOpts().ExternCNoUnwind &&
14962 FD->isExternC() && !FD->hasAttr<NoThrowAttr>()) {
14963 const auto *FPT = FD->getType()->getAs<FunctionProtoType>();
14964 if (!FPT || FPT->getExceptionSpecType() == EST_None)
14965 FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
14966 }
14967
14968 IdentifierInfo *Name = FD->getIdentifier();
14969 if (!Name)
14970 return;
14971 if ((!getLangOpts().CPlusPlus &&
14972 FD->getDeclContext()->isTranslationUnit()) ||
14973 (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
14974 cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
14975 LinkageSpecDecl::lang_c)) {
14976 // Okay: this could be a libc/libm/Objective-C function we know
14977 // about.
14978 } else
14979 return;
14980
14981 if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
14982 // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
14983 // target-specific builtins, perhaps?
14984 if (!FD->hasAttr<FormatAttr>())
14985 FD->addAttr(FormatAttr::CreateImplicit(Context,
14986 &Context.Idents.get("printf"), 2,
14987 Name->isStr("vasprintf") ? 0 : 3,
14988 FD->getLocation()));
14989 }
14990
14991 if (Name->isStr("__CFStringMakeConstantString")) {
14992 // We already have a __builtin___CFStringMakeConstantString,
14993 // but builds that use -fno-constant-cfstrings don't go through that.
14994 if (!FD->hasAttr<FormatArgAttr>())
14995 FD->addAttr(FormatArgAttr::CreateImplicit(Context, ParamIdx(1, FD),
14996 FD->getLocation()));
14997 }
14998}
14999
15000TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
15001 TypeSourceInfo *TInfo) {
15002 assert(D.getIdentifier() && "Wrong callback for declspec without declarator")((D.getIdentifier() && "Wrong callback for declspec without declarator"
) ? static_cast<void> (0) : __assert_fail ("D.getIdentifier() && \"Wrong callback for declspec without declarator\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 15002, __PRETTY_FUNCTION__))
;
15003 assert(!T.isNull() && "GetTypeForDeclarator() returned null type")((!T.isNull() && "GetTypeForDeclarator() returned null type"
) ? static_cast<void> (0) : __assert_fail ("!T.isNull() && \"GetTypeForDeclarator() returned null type\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 15003, __PRETTY_FUNCTION__))
;
15004
15005 if (!TInfo) {
15006 assert(D.isInvalidType() && "no declarator info for valid type")((D.isInvalidType() && "no declarator info for valid type"
) ? static_cast<void> (0) : __assert_fail ("D.isInvalidType() && \"no declarator info for valid type\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 15006, __PRETTY_FUNCTION__))
;
15007 TInfo = Context.getTrivialTypeSourceInfo(T);
15008 }
15009
15010 // Scope manipulation handled by caller.
15011 TypedefDecl *NewTD =
15012 TypedefDecl::Create(Context, CurContext, D.getBeginLoc(),
15013 D.getIdentifierLoc(), D.getIdentifier(), TInfo);
15014
15015 // Bail out immediately if we have an invalid declaration.
15016 if (D.isInvalidType()) {
15017 NewTD->setInvalidDecl();
15018 return NewTD;
15019 }
15020
15021 if (D.getDeclSpec().isModulePrivateSpecified()) {
15022 if (CurContext->isFunctionOrMethod())
15023 Diag(NewTD->getLocation(), diag::err_module_private_local)
15024 << 2 << NewTD
15025 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
15026 << FixItHint::CreateRemoval(
15027 D.getDeclSpec().getModulePrivateSpecLoc());
15028 else
15029 NewTD->setModulePrivate();
15030 }
15031
15032 // C++ [dcl.typedef]p8:
15033 // If the typedef declaration defines an unnamed class (or
15034 // enum), the first typedef-name declared by the declaration
15035 // to be that class type (or enum type) is used to denote the
15036 // class type (or enum type) for linkage purposes only.
15037 // We need to check whether the type was declared in the declaration.
15038 switch (D.getDeclSpec().getTypeSpecType()) {
15039 case TST_enum:
15040 case TST_struct:
15041 case TST_interface:
15042 case TST_union:
15043 case TST_class: {
15044 TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
15045 setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD);
15046 break;
15047 }
15048
15049 default:
15050 break;
15051 }
15052
15053 return NewTD;
15054}
15055
15056/// Check that this is a valid underlying type for an enum declaration.
15057bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
15058 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
15059 QualType T = TI->getType();
15060
15061 if (T->isDependentType())
15062 return false;
15063
15064 // This doesn't use 'isIntegralType' despite the error message mentioning
15065 // integral type because isIntegralType would also allow enum types in C.
15066 if (const BuiltinType *BT = T->getAs<BuiltinType>())
15067 if (BT->isInteger())
15068 return false;
15069
15070 if (T->isExtIntType())
15071 return false;
15072
15073 return Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
15074}
15075
15076/// Check whether this is a valid redeclaration of a previous enumeration.
15077/// \return true if the redeclaration was invalid.
15078bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
15079 QualType EnumUnderlyingTy, bool IsFixed,
15080 const EnumDecl *Prev) {
15081 if (IsScoped != Prev->isScoped()) {
15082 Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
15083 << Prev->isScoped();
15084 Diag(Prev->getLocation(), diag::note_previous_declaration);
15085 return true;
15086 }
15087
15088 if (IsFixed && Prev->isFixed()) {
15089 if (!EnumUnderlyingTy->isDependentType() &&
15090 !Prev->getIntegerType()->isDependentType() &&
15091 !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
15092 Prev->getIntegerType())) {
15093 // TODO: Highlight the underlying type of the redeclaration.
15094 Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
15095 << EnumUnderlyingTy << Prev->getIntegerType();
15096 Diag(Prev->getLocation(), diag::note_previous_declaration)
15097 << Prev->getIntegerTypeRange();
15098 return true;
15099 }
15100 } else if (IsFixed != Prev->isFixed()) {
15101 Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
15102 << Prev->isFixed();
15103 Diag(Prev->getLocation(), diag::note_previous_declaration);
15104 return true;
15105 }
15106
15107 return false;
15108}
15109
15110/// Get diagnostic %select index for tag kind for
15111/// redeclaration diagnostic message.
15112/// WARNING: Indexes apply to particular diagnostics only!
15113///
15114/// \returns diagnostic %select index.
15115static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
15116 switch (Tag) {
15117 case TTK_Struct: return 0;
15118 case TTK_Interface: return 1;
15119 case TTK_Class: return 2;
15120 default: llvm_unreachable("Invalid tag kind for redecl diagnostic!")::llvm::llvm_unreachable_internal("Invalid tag kind for redecl diagnostic!"
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 15120)
;
15121 }
15122}
15123
15124/// Determine if tag kind is a class-key compatible with
15125/// class for redeclaration (class, struct, or __interface).
15126///
15127/// \returns true iff the tag kind is compatible.
15128static bool isClassCompatTagKind(TagTypeKind Tag)
15129{
15130 return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
15131}
15132
15133Sema::NonTagKind Sema::getNonTagTypeDeclKind(const Decl *PrevDecl,
15134 TagTypeKind TTK) {
15135 if (isa<TypedefDecl>(PrevDecl))
15136 return NTK_Typedef;
15137 else if (isa<TypeAliasDecl>(PrevDecl))
15138 return NTK_TypeAlias;
15139 else if (isa<ClassTemplateDecl>(PrevDecl))
15140 return NTK_Template;
15141 else if (isa<TypeAliasTemplateDecl>(PrevDecl))
15142 return NTK_TypeAliasTemplate;
15143 else if (isa<TemplateTemplateParmDecl>(PrevDecl))
15144 return NTK_TemplateTemplateArgument;
15145 switch (TTK) {
15146 case TTK_Struct:
15147 case TTK_Interface:
15148 case TTK_Class:
15149 return getLangOpts().CPlusPlus ? NTK_NonClass : NTK_NonStruct;
15150 case TTK_Union:
15151 return NTK_NonUnion;
15152 case TTK_Enum:
15153 return NTK_NonEnum;
15154 }
15155 llvm_unreachable("invalid TTK")::llvm::llvm_unreachable_internal("invalid TTK", "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 15155)
;
15156}
15157
15158/// Determine whether a tag with a given kind is acceptable
15159/// as a redeclaration of the given tag declaration.
15160///
15161/// \returns true if the new tag kind is acceptable, false otherwise.
15162bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
15163 TagTypeKind NewTag, bool isDefinition,
15164 SourceLocation NewTagLoc,
15165 const IdentifierInfo *Name) {
15166 // C++ [dcl.type.elab]p3:
15167 // The class-key or enum keyword present in the
15168 // elaborated-type-specifier shall agree in kind with the
15169 // declaration to which the name in the elaborated-type-specifier
15170 // refers. This rule also applies to the form of
15171 // elaborated-type-specifier that declares a class-name or
15172 // friend class since it can be construed as referring to the
15173 // definition of the class. Thus, in any
15174 // elaborated-type-specifier, the enum keyword shall be used to
15175 // refer to an enumeration (7.2), the union class-key shall be
15176 // used to refer to a union (clause 9), and either the class or
15177 // struct class-key shall be used to refer to a class (clause 9)
15178 // declared using the class or struct class-key.
15179 TagTypeKind OldTag = Previous->getTagKind();
15180 if (OldTag != NewTag &&
15181 !(isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)))
15182 return false;
15183
15184 // Tags are compatible, but we might still want to warn on mismatched tags.
15185 // Non-class tags can't be mismatched at this point.
15186 if (!isClassCompatTagKind(NewTag))
15187 return true;
15188
15189 // Declarations for which -Wmismatched-tags is disabled are entirely ignored
15190 // by our warning analysis. We don't want to warn about mismatches with (eg)
15191 // declarations in system headers that are designed to be specialized, but if
15192 // a user asks us to warn, we should warn if their code contains mismatched
15193 // declarations.
15194 auto IsIgnoredLoc = [&](SourceLocation Loc) {
15195 return getDiagnostics().isIgnored(diag::warn_struct_class_tag_mismatch,
15196 Loc);
15197 };
15198 if (IsIgnoredLoc(NewTagLoc))
15199 return true;
15200
15201 auto IsIgnored = [&](const TagDecl *Tag) {
15202 return IsIgnoredLoc(Tag->getLocation());
15203 };
15204 while (IsIgnored(Previous)) {
15205 Previous = Previous->getPreviousDecl();
15206 if (!Previous)
15207 return true;
15208 OldTag = Previous->getTagKind();
15209 }
15210
15211 bool isTemplate = false;
15212 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
15213 isTemplate = Record->getDescribedClassTemplate();
15214
15215 if (inTemplateInstantiation()) {
15216 if (OldTag != NewTag) {
15217 // In a template instantiation, do not offer fix-its for tag mismatches
15218 // since they usually mess up the template instead of fixing the problem.
15219 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
15220 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
15221 << getRedeclDiagFromTagKind(OldTag);
15222 // FIXME: Note previous location?
15223 }
15224 return true;
15225 }
15226
15227 if (isDefinition) {
15228 // On definitions, check all previous tags and issue a fix-it for each
15229 // one that doesn't match the current tag.
15230 if (Previous->getDefinition()) {
15231 // Don't suggest fix-its for redefinitions.
15232 return true;
15233 }
15234
15235 bool previousMismatch = false;
15236 for (const TagDecl *I : Previous->redecls()) {
15237 if (I->getTagKind() != NewTag) {
15238 // Ignore previous declarations for which the warning was disabled.
15239 if (IsIgnored(I))
15240 continue;
15241
15242 if (!previousMismatch) {
15243 previousMismatch = true;
15244 Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
15245 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
15246 << getRedeclDiagFromTagKind(I->getTagKind());
15247 }
15248 Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
15249 << getRedeclDiagFromTagKind(NewTag)
15250 << FixItHint::CreateReplacement(I->getInnerLocStart(),
15251 TypeWithKeyword::getTagTypeKindName(NewTag));
15252 }
15253 }
15254 return true;
15255 }
15256
15257 // Identify the prevailing tag kind: this is the kind of the definition (if
15258 // there is a non-ignored definition), or otherwise the kind of the prior
15259 // (non-ignored) declaration.
15260 const TagDecl *PrevDef = Previous->getDefinition();
15261 if (PrevDef && IsIgnored(PrevDef))
15262 PrevDef = nullptr;
15263 const TagDecl *Redecl = PrevDef ? PrevDef : Previous;
15264 if (Redecl->getTagKind() != NewTag) {
15265 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
15266 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
15267 << getRedeclDiagFromTagKind(OldTag);
15268 Diag(Redecl->getLocation(), diag::note_previous_use);
15269
15270 // If there is a previous definition, suggest a fix-it.
15271 if (PrevDef) {
15272 Diag(NewTagLoc, diag::note_struct_class_suggestion)
15273 << getRedeclDiagFromTagKind(Redecl->getTagKind())
15274 << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
15275 TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
15276 }
15277 }
15278
15279 return true;
15280}
15281
15282/// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
15283/// from an outer enclosing namespace or file scope inside a friend declaration.
15284/// This should provide the commented out code in the following snippet:
15285/// namespace N {
15286/// struct X;
15287/// namespace M {
15288/// struct Y { friend struct /*N::*/ X; };
15289/// }
15290/// }
15291static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S,
15292 SourceLocation NameLoc) {
15293 // While the decl is in a namespace, do repeated lookup of that name and see
15294 // if we get the same namespace back. If we do not, continue until
15295 // translation unit scope, at which point we have a fully qualified NNS.
15296 SmallVector<IdentifierInfo *, 4> Namespaces;
15297 DeclContext *DC = ND->getDeclContext()->getRedeclContext();
15298 for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
15299 // This tag should be declared in a namespace, which can only be enclosed by
15300 // other namespaces. Bail if there's an anonymous namespace in the chain.
15301 NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC);
15302 if (!Namespace || Namespace->isAnonymousNamespace())
15303 return FixItHint();
15304 IdentifierInfo *II = Namespace->getIdentifier();
15305 Namespaces.push_back(II);
15306 NamedDecl *Lookup = SemaRef.LookupSingleName(
15307 S, II, NameLoc, Sema::LookupNestedNameSpecifierName);
15308 if (Lookup == Namespace)
15309 break;
15310 }
15311
15312 // Once we have all the namespaces, reverse them to go outermost first, and
15313 // build an NNS.
15314 SmallString<64> Insertion;
15315 llvm::raw_svector_ostream OS(Insertion);
15316 if (DC->isTranslationUnit())
15317 OS << "::";
15318 std::reverse(Namespaces.begin(), Namespaces.end());
15319 for (auto *II : Namespaces)
15320 OS << II->getName() << "::";
15321 return FixItHint::CreateInsertion(NameLoc, Insertion);
15322}
15323
15324/// Determine whether a tag originally declared in context \p OldDC can
15325/// be redeclared with an unqualified name in \p NewDC (assuming name lookup
15326/// found a declaration in \p OldDC as a previous decl, perhaps through a
15327/// using-declaration).
15328static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC,
15329 DeclContext *NewDC) {
15330 OldDC = OldDC->getRedeclContext();
15331 NewDC = NewDC->getRedeclContext();
15332
15333 if (OldDC->Equals(NewDC))
15334 return true;
15335
15336 // In MSVC mode, we allow a redeclaration if the contexts are related (either
15337 // encloses the other).
15338 if (S.getLangOpts().MSVCCompat &&
15339 (OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC)))
15340 return true;
15341
15342 return false;
15343}
15344
15345/// This is invoked when we see 'struct foo' or 'struct {'. In the
15346/// former case, Name will be non-null. In the later case, Name will be null.
15347/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
15348/// reference/declaration/definition of a tag.
15349///
15350/// \param IsTypeSpecifier \c true if this is a type-specifier (or
15351/// trailing-type-specifier) other than one in an alias-declaration.
15352///
15353/// \param SkipBody If non-null, will be set to indicate if the caller should
15354/// skip the definition of this tag and treat it as if it were a declaration.
15355Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
15356 SourceLocation KWLoc, CXXScopeSpec &SS,
15357 IdentifierInfo *Name, SourceLocation NameLoc,
15358 const ParsedAttributesView &Attrs, AccessSpecifier AS,
15359 SourceLocation ModulePrivateLoc,
15360 MultiTemplateParamsArg TemplateParameterLists,
15361 bool &OwnedDecl, bool &IsDependent,
15362 SourceLocation ScopedEnumKWLoc,
15363 bool ScopedEnumUsesClassTag, TypeResult UnderlyingType,
15364 bool IsTypeSpecifier, bool IsTemplateParamOrArg,
15365 SkipBodyInfo *SkipBody) {
15366 // If this is not a definition, it must have a name.
15367 IdentifierInfo *OrigName = Name;
15368 assert((Name != nullptr || TUK == TUK_Definition) &&(((Name != nullptr || TUK == TUK_Definition) && "Nameless record must be a definition!"
) ? static_cast<void> (0) : __assert_fail ("(Name != nullptr || TUK == TUK_Definition) && \"Nameless record must be a definition!\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 15369, __PRETTY_FUNCTION__))
15369 "Nameless record must be a definition!")(((Name != nullptr || TUK == TUK_Definition) && "Nameless record must be a definition!"
) ? static_cast<void> (0) : __assert_fail ("(Name != nullptr || TUK == TUK_Definition) && \"Nameless record must be a definition!\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 15369, __PRETTY_FUNCTION__))
;
15370 assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference)((TemplateParameterLists.size() == 0 || TUK != TUK_Reference)
? static_cast<void> (0) : __assert_fail ("TemplateParameterLists.size() == 0 || TUK != TUK_Reference"
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 15370, __PRETTY_FUNCTION__))
;
15371
15372 OwnedDecl = false;
15373 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
15374 bool ScopedEnum = ScopedEnumKWLoc.isValid();
15375
15376 // FIXME: Check member specializations more carefully.
15377 bool isMemberSpecialization = false;
15378 bool Invalid = false;
15379
15380 // We only need to do this matching if we have template parameters
15381 // or a scope specifier, which also conveniently avoids this work
15382 // for non-C++ cases.
15383 if (TemplateParameterLists.size() > 0 ||
15384 (SS.isNotEmpty() && TUK != TUK_Reference)) {
15385 if (TemplateParameterList *TemplateParams =
15386 MatchTemplateParametersToScopeSpecifier(
15387 KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
15388 TUK == TUK_Friend, isMemberSpecialization, Invalid)) {
15389 if (Kind == TTK_Enum) {
15390 Diag(KWLoc, diag::err_enum_template);
15391 return nullptr;
15392 }
15393
15394 if (TemplateParams->size() > 0) {
15395 // This is a declaration or definition of a class template (which may
15396 // be a member of another template).
15397
15398 if (Invalid)
15399 return nullptr;
15400
15401 OwnedDecl = false;
15402 DeclResult Result = CheckClassTemplate(
15403 S, TagSpec, TUK, KWLoc, SS, Name, NameLoc, Attrs, TemplateParams,
15404 AS, ModulePrivateLoc,
15405 /*FriendLoc*/ SourceLocation(), TemplateParameterLists.size() - 1,
15406 TemplateParameterLists.data(), SkipBody);
15407 return Result.get();
15408 } else {
15409 // The "template<>" header is extraneous.
15410 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
15411 << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
15412 isMemberSpecialization = true;
15413 }
15414 }
15415
15416 if (!TemplateParameterLists.empty() && isMemberSpecialization &&
15417 CheckTemplateDeclScope(S, TemplateParameterLists.back()))
15418 return nullptr;
15419 }
15420
15421 // Figure out the underlying type if this a enum declaration. We need to do
15422 // this early, because it's needed to detect if this is an incompatible
15423 // redeclaration.
15424 llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
15425 bool IsFixed = !UnderlyingType.isUnset() || ScopedEnum;
15426
15427 if (Kind == TTK_Enum) {
15428 if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) {
15429 // No underlying type explicitly specified, or we failed to parse the
15430 // type, default to int.
15431 EnumUnderlying = Context.IntTy.getTypePtr();
15432 } else if (UnderlyingType.get()) {
15433 // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
15434 // integral type; any cv-qualification is ignored.
15435 TypeSourceInfo *TI = nullptr;
15436 GetTypeFromParser(UnderlyingType.get(), &TI);
15437 EnumUnderlying = TI;
15438
15439 if (CheckEnumUnderlyingType(TI))
15440 // Recover by falling back to int.
15441 EnumUnderlying = Context.IntTy.getTypePtr();
15442
15443 if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
15444 UPPC_FixedUnderlyingType))
15445 EnumUnderlying = Context.IntTy.getTypePtr();
15446
15447 } else if (Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment()) {
15448 // For MSVC ABI compatibility, unfixed enums must use an underlying type
15449 // of 'int'. However, if this is an unfixed forward declaration, don't set
15450 // the underlying type unless the user enables -fms-compatibility. This
15451 // makes unfixed forward declared enums incomplete and is more conforming.
15452 if (TUK == TUK_Definition || getLangOpts().MSVCCompat)
15453 EnumUnderlying = Context.IntTy.getTypePtr();
15454 }
15455 }
15456
15457 DeclContext *SearchDC = CurContext;
15458 DeclContext *DC = CurContext;
15459 bool isStdBadAlloc = false;
15460 bool isStdAlignValT = false;
15461
15462 RedeclarationKind Redecl = forRedeclarationInCurContext();
15463 if (TUK == TUK_Friend || TUK == TUK_Reference)
15464 Redecl = NotForRedeclaration;
15465
15466 /// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C
15467 /// implemented asks for structural equivalence checking, the returned decl
15468 /// here is passed back to the parser, allowing the tag body to be parsed.
15469 auto createTagFromNewDecl = [&]() -> TagDecl * {
15470 assert(!getLangOpts().CPlusPlus && "not meant for C++ usage")((!getLangOpts().CPlusPlus && "not meant for C++ usage"
) ? static_cast<void> (0) : __assert_fail ("!getLangOpts().CPlusPlus && \"not meant for C++ usage\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 15470, __PRETTY_FUNCTION__))
;
15471 // If there is an identifier, use the location of the identifier as the
15472 // location of the decl, otherwise use the location of the struct/union
15473 // keyword.
15474 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
15475 TagDecl *New = nullptr;
15476
15477 if (Kind == TTK_Enum) {
15478 New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, nullptr,
15479 ScopedEnum, ScopedEnumUsesClassTag, IsFixed);
15480 // If this is an undefined enum, bail.
15481 if (TUK != TUK_Definition && !Invalid)
15482 return nullptr;
15483 if (EnumUnderlying) {
15484 EnumDecl *ED = cast<EnumDecl>(New);
15485 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo *>())
15486 ED->setIntegerTypeSourceInfo(TI);
15487 else
15488 ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0));
15489 ED->setPromotionType(ED->getIntegerType());
15490 }
15491 } else { // struct/union
15492 New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
15493 nullptr);
15494 }
15495
15496 if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
15497 // Add alignment attributes if necessary; these attributes are checked
15498 // when the ASTContext lays out the structure.
15499 //
15500 // It is important for implementing the correct semantics that this
15501 // happen here (in ActOnTag). The #pragma pack stack is
15502 // maintained as a result of parser callbacks which can occur at
15503 // many points during the parsing of a struct declaration (because
15504 // the #pragma tokens are effectively skipped over during the
15505 // parsing of the struct).
15506 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
15507 AddAlignmentAttributesForRecord(RD);
15508 AddMsStructLayoutForRecord(RD);
15509 }
15510 }
15511 New->setLexicalDeclContext(CurContext);
15512 return New;
15513 };
15514
15515 LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
15516 if (Name && SS.isNotEmpty()) {
15517 // We have a nested-name tag ('struct foo::bar').
15518
15519 // Check for invalid 'foo::'.
15520 if (SS.isInvalid()) {
15521 Name = nullptr;
15522 goto CreateNewDecl;
15523 }
15524
15525 // If this is a friend or a reference to a class in a dependent
15526 // context, don't try to make a decl for it.
15527 if (TUK == TUK_Friend || TUK == TUK_Reference) {
15528 DC = computeDeclContext(SS, false);
15529 if (!DC) {
15530 IsDependent = true;
15531 return nullptr;
15532 }
15533 } else {
15534 DC = computeDeclContext(SS, true);
15535 if (!DC) {
15536 Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
15537 << SS.getRange();
15538 return nullptr;
15539 }
15540 }
15541
15542 if (RequireCompleteDeclContext(SS, DC))
15543 return nullptr;
15544
15545 SearchDC = DC;
15546 // Look-up name inside 'foo::'.
15547 LookupQualifiedName(Previous, DC);
15548
15549 if (Previous.isAmbiguous())
15550 return nullptr;
15551
15552 if (Previous.empty()) {
15553 // Name lookup did not find anything. However, if the
15554 // nested-name-specifier refers to the current instantiation,
15555 // and that current instantiation has any dependent base
15556 // classes, we might find something at instantiation time: treat
15557 // this as a dependent elaborated-type-specifier.
15558 // But this only makes any sense for reference-like lookups.
15559 if (Previous.wasNotFoundInCurrentInstantiation() &&
15560 (TUK == TUK_Reference || TUK == TUK_Friend)) {
15561 IsDependent = true;
15562 return nullptr;
15563 }
15564
15565 // A tag 'foo::bar' must already exist.
15566 Diag(NameLoc, diag::err_not_tag_in_scope)
15567 << Kind << Name << DC << SS.getRange();
15568 Name = nullptr;
15569 Invalid = true;
15570 goto CreateNewDecl;
15571 }
15572 } else if (Name) {
15573 // C++14 [class.mem]p14:
15574 // If T is the name of a class, then each of the following shall have a
15575 // name different from T:
15576 // -- every member of class T that is itself a type
15577 if (TUK != TUK_Reference && TUK != TUK_Friend &&
15578 DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc)))
15579 return nullptr;
15580
15581 // If this is a named struct, check to see if there was a previous forward
15582 // declaration or definition.
15583 // FIXME: We're looking into outer scopes here, even when we
15584 // shouldn't be. Doing so can result in ambiguities that we
15585 // shouldn't be diagnosing.
15586 LookupName(Previous, S);
15587
15588 // When declaring or defining a tag, ignore ambiguities introduced
15589 // by types using'ed into this scope.
15590 if (Previous.isAmbiguous() &&
15591 (TUK == TUK_Definition || TUK == TUK_Declaration)) {
15592 LookupResult::Filter F = Previous.makeFilter();
15593 while (F.hasNext()) {
15594 NamedDecl *ND = F.next();
15595 if (!ND->getDeclContext()->getRedeclContext()->Equals(
15596 SearchDC->getRedeclContext()))
15597 F.erase();
15598 }
15599 F.done();
15600 }
15601
15602 // C++11 [namespace.memdef]p3:
15603 // If the name in a friend declaration is neither qualified nor
15604 // a template-id and the declaration is a function or an
15605 // elaborated-type-specifier, the lookup to determine whether
15606 // the entity has been previously declared shall not consider
15607 // any scopes outside the innermost enclosing namespace.
15608 //
15609 // MSVC doesn't implement the above rule for types, so a friend tag
15610 // declaration may be a redeclaration of a type declared in an enclosing
15611 // scope. They do implement this rule for friend functions.
15612 //
15613 // Does it matter that this should be by scope instead of by
15614 // semantic context?
15615 if (!Previous.empty() && TUK == TUK_Friend) {
15616 DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
15617 LookupResult::Filter F = Previous.makeFilter();
15618 bool FriendSawTagOutsideEnclosingNamespace = false;
15619 while (F.hasNext()) {
15620 NamedDecl *ND = F.next();
15621 DeclContext *DC = ND->getDeclContext()->getRedeclContext();
15622 if (DC->isFileContext() &&
15623 !EnclosingNS->Encloses(ND->getDeclContext())) {
15624 if (getLangOpts().MSVCCompat)
15625 FriendSawTagOutsideEnclosingNamespace = true;
15626 else
15627 F.erase();
15628 }
15629 }
15630 F.done();
15631
15632 // Diagnose this MSVC extension in the easy case where lookup would have
15633 // unambiguously found something outside the enclosing namespace.
15634 if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) {
15635 NamedDecl *ND = Previous.getFoundDecl();
15636 Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace)
15637 << createFriendTagNNSFixIt(*this, ND, S, NameLoc);
15638 }
15639 }
15640
15641 // Note: there used to be some attempt at recovery here.
15642 if (Previous.isAmbiguous())
15643 return nullptr;
15644
15645 if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
15646 // FIXME: This makes sure that we ignore the contexts associated
15647 // with C structs, unions, and enums when looking for a matching
15648 // tag declaration or definition. See the similar lookup tweak
15649 // in Sema::LookupName; is there a better way to deal with this?
15650 while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
15651 SearchDC = SearchDC->getParent();
15652 }
15653 }
15654
15655 if (Previous.isSingleResult() &&
15656 Previous.getFoundDecl()->isTemplateParameter()) {
15657 // Maybe we will complain about the shadowed template parameter.
15658 DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
15659 // Just pretend that we didn't see the previous declaration.
15660 Previous.clear();
15661 }
15662
15663 if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
15664 DC->Equals(getStdNamespace())) {
15665 if (Name->isStr("bad_alloc")) {
15666 // This is a declaration of or a reference to "std::bad_alloc".
15667 isStdBadAlloc = true;
15668
15669 // If std::bad_alloc has been implicitly declared (but made invisible to
15670 // name lookup), fill in this implicit declaration as the previous
15671 // declaration, so that the declarations get chained appropriately.
15672 if (Previous.empty() && StdBadAlloc)
15673 Previous.addDecl(getStdBadAlloc());
15674 } else if (Name->isStr("align_val_t")) {
15675 isStdAlignValT = true;
15676 if (Previous.empty() && StdAlignValT)
15677 Previous.addDecl(getStdAlignValT());
15678 }
15679 }
15680
15681 // If we didn't find a previous declaration, and this is a reference
15682 // (or friend reference), move to the correct scope. In C++, we
15683 // also need to do a redeclaration lookup there, just in case
15684 // there's a shadow friend decl.
15685 if (Name && Previous.empty() &&
15686 (TUK == TUK_Reference || TUK == TUK_Friend || IsTemplateParamOrArg)) {
15687 if (Invalid) goto CreateNewDecl;
15688 assert(SS.isEmpty())((SS.isEmpty()) ? static_cast<void> (0) : __assert_fail
("SS.isEmpty()", "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 15688, __PRETTY_FUNCTION__))
;
15689
15690 if (TUK == TUK_Reference || IsTemplateParamOrArg) {
15691 // C++ [basic.scope.pdecl]p5:
15692 // -- for an elaborated-type-specifier of the form
15693 //
15694 // class-key identifier
15695 //
15696 // if the elaborated-type-specifier is used in the
15697 // decl-specifier-seq or parameter-declaration-clause of a
15698 // function defined in namespace scope, the identifier is
15699 // declared as a class-name in the namespace that contains
15700 // the declaration; otherwise, except as a friend
15701 // declaration, the identifier is declared in the smallest
15702 // non-class, non-function-prototype scope that contains the
15703 // declaration.
15704 //
15705 // C99 6.7.2.3p8 has a similar (but not identical!) provision for
15706 // C structs and unions.
15707 //
15708 // It is an error in C++ to declare (rather than define) an enum
15709 // type, including via an elaborated type specifier. We'll
15710 // diagnose that later; for now, declare the enum in the same
15711 // scope as we would have picked for any other tag type.
15712 //
15713 // GNU C also supports this behavior as part of its incomplete
15714 // enum types extension, while GNU C++ does not.
15715 //
15716 // Find the context where we'll be declaring the tag.
15717 // FIXME: We would like to maintain the current DeclContext as the
15718 // lexical context,
15719 SearchDC = getTagInjectionContext(SearchDC);
15720
15721 // Find the scope where we'll be declaring the tag.
15722 S = getTagInjectionScope(S, getLangOpts());
15723 } else {
15724 assert(TUK == TUK_Friend)((TUK == TUK_Friend) ? static_cast<void> (0) : __assert_fail
("TUK == TUK_Friend", "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 15724, __PRETTY_FUNCTION__))
;
15725 // C++ [namespace.memdef]p3:
15726 // If a friend declaration in a non-local class first declares a
15727 // class or function, the friend class or function is a member of
15728 // the innermost enclosing namespace.
15729 SearchDC = SearchDC->getEnclosingNamespaceContext();
15730 }
15731
15732 // In C++, we need to do a redeclaration lookup to properly
15733 // diagnose some problems.
15734 // FIXME: redeclaration lookup is also used (with and without C++) to find a
15735 // hidden declaration so that we don't get ambiguity errors when using a
15736 // type declared by an elaborated-type-specifier. In C that is not correct
15737 // and we should instead merge compatible types found by lookup.
15738 if (getLangOpts().CPlusPlus) {
15739 // FIXME: This can perform qualified lookups into function contexts,
15740 // which are meaningless.
15741 Previous.setRedeclarationKind(forRedeclarationInCurContext());
15742 LookupQualifiedName(Previous, SearchDC);
15743 } else {
15744 Previous.setRedeclarationKind(forRedeclarationInCurContext());
15745 LookupName(Previous, S);
15746 }
15747 }
15748
15749 // If we have a known previous declaration to use, then use it.
15750 if (Previous.empty() && SkipBody && SkipBody->Previous)
15751 Previous.addDecl(SkipBody->Previous);
15752
15753 if (!Previous.empty()) {
15754 NamedDecl *PrevDecl = Previous.getFoundDecl();
15755 NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl();
15756
15757 // It's okay to have a tag decl in the same scope as a typedef
15758 // which hides a tag decl in the same scope. Finding this
15759 // insanity with a redeclaration lookup can only actually happen
15760 // in C++.
15761 //
15762 // This is also okay for elaborated-type-specifiers, which is
15763 // technically forbidden by the current standard but which is
15764 // okay according to the likely resolution of an open issue;
15765 // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
15766 if (getLangOpts().CPlusPlus) {
15767 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
15768 if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
15769 TagDecl *Tag = TT->getDecl();
15770 if (Tag->getDeclName() == Name &&
15771 Tag->getDeclContext()->getRedeclContext()
15772 ->Equals(TD->getDeclContext()->getRedeclContext())) {
15773 PrevDecl = Tag;
15774 Previous.clear();
15775 Previous.addDecl(Tag);
15776 Previous.resolveKind();
15777 }
15778 }
15779 }
15780 }
15781
15782 // If this is a redeclaration of a using shadow declaration, it must
15783 // declare a tag in the same context. In MSVC mode, we allow a
15784 // redefinition if either context is within the other.
15785 if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) {
15786 auto *OldTag = dyn_cast<TagDecl>(PrevDecl);
15787 if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend &&
15788 isDeclInScope(Shadow, SearchDC, S, isMemberSpecialization) &&
15789 !(OldTag && isAcceptableTagRedeclContext(
15790 *this, OldTag->getDeclContext(), SearchDC))) {
15791 Diag(KWLoc, diag::err_using_decl_conflict_reverse);
15792 Diag(Shadow->getTargetDecl()->getLocation(),
15793 diag::note_using_decl_target);
15794 Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl)
15795 << 0;
15796 // Recover by ignoring the old declaration.
15797 Previous.clear();
15798 goto CreateNewDecl;
15799 }
15800 }
15801
15802 if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
15803 // If this is a use of a previous tag, or if the tag is already declared
15804 // in the same scope (so that the definition/declaration completes or
15805 // rementions the tag), reuse the decl.
15806 if (TUK == TUK_Reference || TUK == TUK_Friend ||
15807 isDeclInScope(DirectPrevDecl, SearchDC, S,
15808 SS.isNotEmpty() || isMemberSpecialization)) {
15809 // Make sure that this wasn't declared as an enum and now used as a
15810 // struct or something similar.
15811 if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
15812 TUK == TUK_Definition, KWLoc,
15813 Name)) {
15814 bool SafeToContinue
15815 = (PrevTagDecl->getTagKind() != TTK_Enum &&
15816 Kind != TTK_Enum);
15817 if (SafeToContinue)
15818 Diag(KWLoc, diag::err_use_with_wrong_tag)
15819 << Name
15820 << FixItHint::CreateReplacement(SourceRange(KWLoc),
15821 PrevTagDecl->getKindName());
15822 else
15823 Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
15824 Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
15825
15826 if (SafeToContinue)
15827 Kind = PrevTagDecl->getTagKind();
15828 else {
15829 // Recover by making this an anonymous redefinition.
15830 Name = nullptr;
15831 Previous.clear();
15832 Invalid = true;
15833 }
15834 }
15835
15836 if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
15837 const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
15838 if (TUK == TUK_Reference || TUK == TUK_Friend)
15839 return PrevTagDecl;
15840
15841 QualType EnumUnderlyingTy;
15842 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
15843 EnumUnderlyingTy = TI->getType().getUnqualifiedType();
15844 else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
15845 EnumUnderlyingTy = QualType(T, 0);
15846
15847 // All conflicts with previous declarations are recovered by
15848 // returning the previous declaration, unless this is a definition,
15849 // in which case we want the caller to bail out.
15850 if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
15851 ScopedEnum, EnumUnderlyingTy,
15852 IsFixed, PrevEnum))
15853 return TUK == TUK_Declaration ? PrevTagDecl : nullptr;
15854 }
15855
15856 // C++11 [class.mem]p1:
15857 // A member shall not be declared twice in the member-specification,
15858 // except that a nested class or member class template can be declared
15859 // and then later defined.
15860 if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
15861 S->isDeclScope(PrevDecl)) {
15862 Diag(NameLoc, diag::ext_member_redeclared);
15863 Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
15864 }
15865
15866 if (!Invalid) {
15867 // If this is a use, just return the declaration we found, unless
15868 // we have attributes.
15869 if (TUK == TUK_Reference || TUK == TUK_Friend) {
15870 if (!Attrs.empty()) {
15871 // FIXME: Diagnose these attributes. For now, we create a new
15872 // declaration to hold them.
15873 } else if (TUK == TUK_Reference &&
15874 (PrevTagDecl->getFriendObjectKind() ==
15875 Decl::FOK_Undeclared ||
15876 PrevDecl->getOwningModule() != getCurrentModule()) &&
15877 SS.isEmpty()) {
15878 // This declaration is a reference to an existing entity, but
15879 // has different visibility from that entity: it either makes
15880 // a friend visible or it makes a type visible in a new module.
15881 // In either case, create a new declaration. We only do this if
15882 // the declaration would have meant the same thing if no prior
15883 // declaration were found, that is, if it was found in the same
15884 // scope where we would have injected a declaration.
15885 if (!getTagInjectionContext(CurContext)->getRedeclContext()
15886 ->Equals(PrevDecl->getDeclContext()->getRedeclContext()))
15887 return PrevTagDecl;
15888 // This is in the injected scope, create a new declaration in
15889 // that scope.
15890 S = getTagInjectionScope(S, getLangOpts());
15891 } else {
15892 return PrevTagDecl;
15893 }
15894 }
15895
15896 // Diagnose attempts to redefine a tag.
15897 if (TUK == TUK_Definition) {
15898 if (NamedDecl *Def = PrevTagDecl->getDefinition()) {
15899 // If we're defining a specialization and the previous definition
15900 // is from an implicit instantiation, don't emit an error
15901 // here; we'll catch this in the general case below.
15902 bool IsExplicitSpecializationAfterInstantiation = false;
15903 if (isMemberSpecialization) {
15904 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
15905 IsExplicitSpecializationAfterInstantiation =
15906 RD->getTemplateSpecializationKind() !=
15907 TSK_ExplicitSpecialization;
15908 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
15909 IsExplicitSpecializationAfterInstantiation =
15910 ED->getTemplateSpecializationKind() !=
15911 TSK_ExplicitSpecialization;
15912 }
15913
15914 // Note that clang allows ODR-like semantics for ObjC/C, i.e., do
15915 // not keep more that one definition around (merge them). However,
15916 // ensure the decl passes the structural compatibility check in
15917 // C11 6.2.7/1 (or 6.1.2.6/1 in C89).
15918 NamedDecl *Hidden = nullptr;
15919 if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
15920 // There is a definition of this tag, but it is not visible. We
15921 // explicitly make use of C++'s one definition rule here, and
15922 // assume that this definition is identical to the hidden one
15923 // we already have. Make the existing definition visible and
15924 // use it in place of this one.
15925 if (!getLangOpts().CPlusPlus) {
15926 // Postpone making the old definition visible until after we
15927 // complete parsing the new one and do the structural
15928 // comparison.
15929 SkipBody->CheckSameAsPrevious = true;
15930 SkipBody->New = createTagFromNewDecl();
15931 SkipBody->Previous = Def;
15932 return Def;
15933 } else {
15934 SkipBody->ShouldSkip = true;
15935 SkipBody->Previous = Def;
15936 makeMergedDefinitionVisible(Hidden);
15937 // Carry on and handle it like a normal definition. We'll
15938 // skip starting the definitiion later.
15939 }
15940 } else if (!IsExplicitSpecializationAfterInstantiation) {
15941 // A redeclaration in function prototype scope in C isn't
15942 // visible elsewhere, so merely issue a warning.
15943 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
15944 Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
15945 else
15946 Diag(NameLoc, diag::err_redefinition) << Name;
15947 notePreviousDefinition(Def,
15948 NameLoc.isValid() ? NameLoc : KWLoc);
15949 // If this is a redefinition, recover by making this
15950 // struct be anonymous, which will make any later
15951 // references get the previous definition.
15952 Name = nullptr;
15953 Previous.clear();
15954 Invalid = true;
15955 }
15956 } else {
15957 // If the type is currently being defined, complain
15958 // about a nested redefinition.
15959 auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl();
15960 if (TD->isBeingDefined()) {
15961 Diag(NameLoc, diag::err_nested_redefinition) << Name;
15962 Diag(PrevTagDecl->getLocation(),
15963 diag::note_previous_definition);
15964 Name = nullptr;
15965 Previous.clear();
15966 Invalid = true;
15967 }
15968 }
15969
15970 // Okay, this is definition of a previously declared or referenced
15971 // tag. We're going to create a new Decl for it.
15972 }
15973
15974 // Okay, we're going to make a redeclaration. If this is some kind
15975 // of reference, make sure we build the redeclaration in the same DC
15976 // as the original, and ignore the current access specifier.
15977 if (TUK == TUK_Friend || TUK == TUK_Reference) {
15978 SearchDC = PrevTagDecl->getDeclContext();
15979 AS = AS_none;
15980 }
15981 }
15982 // If we get here we have (another) forward declaration or we
15983 // have a definition. Just create a new decl.
15984
15985 } else {
15986 // If we get here, this is a definition of a new tag type in a nested
15987 // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
15988 // new decl/type. We set PrevDecl to NULL so that the entities
15989 // have distinct types.
15990 Previous.clear();
15991 }
15992 // If we get here, we're going to create a new Decl. If PrevDecl
15993 // is non-NULL, it's a definition of the tag declared by
15994 // PrevDecl. If it's NULL, we have a new definition.
15995
15996 // Otherwise, PrevDecl is not a tag, but was found with tag
15997 // lookup. This is only actually possible in C++, where a few
15998 // things like templates still live in the tag namespace.
15999 } else {
16000 // Use a better diagnostic if an elaborated-type-specifier
16001 // found the wrong kind of type on the first
16002 // (non-redeclaration) lookup.
16003 if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
16004 !Previous.isForRedeclaration()) {
16005 NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
16006 Diag(NameLoc, diag::err_tag_reference_non_tag) << PrevDecl << NTK
16007 << Kind;
16008 Diag(PrevDecl->getLocation(), diag::note_declared_at);
16009 Invalid = true;
16010
16011 // Otherwise, only diagnose if the declaration is in scope.
16012 } else if (!isDeclInScope(DirectPrevDecl, SearchDC, S,
16013 SS.isNotEmpty() || isMemberSpecialization)) {
16014 // do nothing
16015
16016 // Diagnose implicit declarations introduced by elaborated types.
16017 } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
16018 NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
16019 Diag(NameLoc, diag::err_tag_reference_conflict) << NTK;
16020 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
16021 Invalid = true;
16022
16023 // Otherwise it's a declaration. Call out a particularly common
16024 // case here.
16025 } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
16026 unsigned Kind = 0;
16027 if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
16028 Diag(NameLoc, diag::err_tag_definition_of_typedef)
16029 << Name << Kind << TND->getUnderlyingType();
16030 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
16031 Invalid = true;
16032
16033 // Otherwise, diagnose.
16034 } else {
16035 // The tag name clashes with something else in the target scope,
16036 // issue an error and recover by making this tag be anonymous.
16037 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
16038 notePreviousDefinition(PrevDecl, NameLoc);
16039 Name = nullptr;
16040 Invalid = true;
16041 }
16042
16043 // The existing declaration isn't relevant to us; we're in a
16044 // new scope, so clear out the previous declaration.
16045 Previous.clear();
16046 }
16047 }
16048
16049CreateNewDecl:
16050
16051 TagDecl *PrevDecl = nullptr;
16052 if (Previous.isSingleResult())
16053 PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
16054
16055 // If there is an identifier, use the location of the identifier as the
16056 // location of the decl, otherwise use the location of the struct/union
16057 // keyword.
16058 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
16059
16060 // Otherwise, create a new declaration. If there is a previous
16061 // declaration of the same entity, the two will be linked via
16062 // PrevDecl.
16063 TagDecl *New;
16064
16065 if (Kind == TTK_Enum) {
16066 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
16067 // enum X { A, B, C } D; D should chain to X.
16068 New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
16069 cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
16070 ScopedEnumUsesClassTag, IsFixed);
16071
16072 if (isStdAlignValT && (!StdAlignValT || getStdAlignValT()->isImplicit()))
16073 StdAlignValT = cast<EnumDecl>(New);
16074
16075 // If this is an undefined enum, warn.
16076 if (TUK != TUK_Definition && !Invalid) {
16077 TagDecl *Def;
16078 if (IsFixed && cast<EnumDecl>(New)->isFixed()) {
16079 // C++0x: 7.2p2: opaque-enum-declaration.
16080 // Conflicts are diagnosed above. Do nothing.
16081 }
16082 else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
16083 Diag(Loc, diag::ext_forward_ref_enum_def)
16084 << New;
16085 Diag(Def->getLocation(), diag::note_previous_definition);
16086 } else {
16087 unsigned DiagID = diag::ext_forward_ref_enum;
16088 if (getLangOpts().MSVCCompat)
16089 DiagID = diag::ext_ms_forward_ref_enum;
16090 else if (getLangOpts().CPlusPlus)
16091 DiagID = diag::err_forward_ref_enum;
16092 Diag(Loc, DiagID);
16093 }
16094 }
16095
16096 if (EnumUnderlying) {
16097 EnumDecl *ED = cast<EnumDecl>(New);
16098 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
16099 ED->setIntegerTypeSourceInfo(TI);
16100 else
16101 ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
16102 ED->setPromotionType(ED->getIntegerType());
16103 assert(ED->isComplete() && "enum with type should be complete")((ED->isComplete() && "enum with type should be complete"
) ? static_cast<void> (0) : __assert_fail ("ED->isComplete() && \"enum with type should be complete\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 16103, __PRETTY_FUNCTION__))
;
16104 }
16105 } else {
16106 // struct/union/class
16107
16108 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
16109 // struct X { int A; } D; D should chain to X.
16110 if (getLangOpts().CPlusPlus) {
16111 // FIXME: Look for a way to use RecordDecl for simple structs.
16112 New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
16113 cast_or_null<CXXRecordDecl>(PrevDecl));
16114
16115 if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
16116 StdBadAlloc = cast<CXXRecordDecl>(New);
16117 } else
16118 New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
16119 cast_or_null<RecordDecl>(PrevDecl));
16120 }
16121
16122 // C++11 [dcl.type]p3:
16123 // A type-specifier-seq shall not define a class or enumeration [...].
16124 if (getLangOpts().CPlusPlus && (IsTypeSpecifier || IsTemplateParamOrArg) &&
16125 TUK == TUK_Definition) {
16126 Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
16127 << Context.getTagDeclType(New);
16128 Invalid = true;
16129 }
16130
16131 if (!Invalid && getLangOpts().CPlusPlus && TUK == TUK_Definition &&
16132 DC->getDeclKind() == Decl::Enum) {
16133 Diag(New->getLocation(), diag::err_type_defined_in_enum)
16134 << Context.getTagDeclType(New);
16135 Invalid = true;
16136 }
16137
16138 // Maybe add qualifier info.
16139 if (SS.isNotEmpty()) {
16140 if (SS.isSet()) {
16141 // If this is either a declaration or a definition, check the
16142 // nested-name-specifier against the current context.
16143 if ((TUK == TUK_Definition || TUK == TUK_Declaration) &&
16144 diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc,
16145 isMemberSpecialization))
16146 Invalid = true;
16147
16148 New->setQualifierInfo(SS.getWithLocInContext(Context));
16149 if (TemplateParameterLists.size() > 0) {
16150 New->setTemplateParameterListsInfo(Context, TemplateParameterLists);
16151 }
16152 }
16153 else
16154 Invalid = true;
16155 }
16156
16157 if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
16158 // Add alignment attributes if necessary; these attributes are checked when
16159 // the ASTContext lays out the structure.
16160 //
16161 // It is important for implementing the correct semantics that this
16162 // happen here (in ActOnTag). The #pragma pack stack is
16163 // maintained as a result of parser callbacks which can occur at
16164 // many points during the parsing of a struct declaration (because
16165 // the #pragma tokens are effectively skipped over during the
16166 // parsing of the struct).
16167 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
16168 AddAlignmentAttributesForRecord(RD);
16169 AddMsStructLayoutForRecord(RD);
16170 }
16171 }
16172
16173 if (ModulePrivateLoc.isValid()) {
16174 if (isMemberSpecialization)
16175 Diag(New->getLocation(), diag::err_module_private_specialization)
16176 << 2
16177 << FixItHint::CreateRemoval(ModulePrivateLoc);
16178 // __module_private__ does not apply to local classes. However, we only
16179 // diagnose this as an error when the declaration specifiers are
16180 // freestanding. Here, we just ignore the __module_private__.
16181 else if (!SearchDC->isFunctionOrMethod())
16182 New->setModulePrivate();
16183 }
16184
16185 // If this is a specialization of a member class (of a class template),
16186 // check the specialization.
16187 if (isMemberSpecialization && CheckMemberSpecialization(New, Previous))
16188 Invalid = true;
16189
16190 // If we're declaring or defining a tag in function prototype scope in C,
16191 // note that this type can only be used within the function and add it to
16192 // the list of decls to inject into the function definition scope.
16193 if ((Name || Kind == TTK_Enum) &&
16194 getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
16195 if (getLangOpts().CPlusPlus) {
16196 // C++ [dcl.fct]p6:
16197 // Types shall not be defined in return or parameter types.
16198 if (TUK == TUK_Definition && !IsTypeSpecifier) {
16199 Diag(Loc, diag::err_type_defined_in_param_type)
16200 << Name;
16201 Invalid = true;
16202 }
16203 } else if (!PrevDecl) {
16204 Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
16205 }
16206 }
16207
16208 if (Invalid)
16209 New->setInvalidDecl();
16210
16211 // Set the lexical context. If the tag has a C++ scope specifier, the
16212 // lexical context will be different from the semantic context.
16213 New->setLexicalDeclContext(CurContext);
16214
16215 // Mark this as a friend decl if applicable.
16216 // In Microsoft mode, a friend declaration also acts as a forward
16217 // declaration so we always pass true to setObjectOfFriendDecl to make
16218 // the tag name visible.
16219 if (TUK == TUK_Friend)
16220 New->setObjectOfFriendDecl(getLangOpts().MSVCCompat);
16221
16222 // Set the access specifier.
16223 if (!Invalid && SearchDC->isRecord())
16224 SetMemberAccessSpecifier(New, PrevDecl, AS);
16225
16226 if (PrevDecl)
16227 CheckRedeclarationModuleOwnership(New, PrevDecl);
16228
16229 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
16230 New->startDefinition();
16231
16232 ProcessDeclAttributeList(S, New, Attrs);
16233 AddPragmaAttributes(S, New);
16234
16235 // If this has an identifier, add it to the scope stack.
16236 if (TUK == TUK_Friend) {
16237 // We might be replacing an existing declaration in the lookup tables;
16238 // if so, borrow its access specifier.
16239 if (PrevDecl)
16240 New->setAccess(PrevDecl->getAccess());
16241
16242 DeclContext *DC = New->getDeclContext()->getRedeclContext();
16243 DC->makeDeclVisibleInContext(New);
16244 if (Name) // can be null along some error paths
16245 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
16246 PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
16247 } else if (Name) {
16248 S = getNonFieldDeclScope(S);
16249 PushOnScopeChains(New, S, true);
16250 } else {
16251 CurContext->addDecl(New);
16252 }
16253
16254 // If this is the C FILE type, notify the AST context.
16255 if (IdentifierInfo *II = New->getIdentifier())
16256 if (!New->isInvalidDecl() &&
16257 New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
16258 II->isStr("FILE"))
16259 Context.setFILEDecl(New);
16260
16261 if (PrevDecl)
16262 mergeDeclAttributes(New, PrevDecl);
16263
16264 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(New))
16265 inferGslOwnerPointerAttribute(CXXRD);
16266
16267 // If there's a #pragma GCC visibility in scope, set the visibility of this
16268 // record.
16269 AddPushedVisibilityAttribute(New);
16270
16271 if (isMemberSpecialization && !New->isInvalidDecl())
16272 CompleteMemberSpecialization(New, Previous);
16273
16274 OwnedDecl = true;
16275 // In C++, don't return an invalid declaration. We can't recover well from
16276 // the cases where we make the type anonymous.
16277 if (Invalid && getLangOpts().CPlusPlus) {
16278 if (New->isBeingDefined())
16279 if (auto RD = dyn_cast<RecordDecl>(New))
16280 RD->completeDefinition();
16281 return nullptr;
16282 } else if (SkipBody && SkipBody->ShouldSkip) {
16283 return SkipBody->Previous;
16284 } else {
16285 return New;
16286 }
16287}
16288
16289void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
16290 AdjustDeclIfTemplate(TagD);
16291 TagDecl *Tag = cast<TagDecl>(TagD);
16292
16293 // Enter the tag context.
16294 PushDeclContext(S, Tag);
16295
16296 ActOnDocumentableDecl(TagD);
16297
16298 // If there's a #pragma GCC visibility in scope, set the visibility of this
16299 // record.
16300 AddPushedVisibilityAttribute(Tag);
16301}
16302
16303bool Sema::ActOnDuplicateDefinition(DeclSpec &DS, Decl *Prev,
16304 SkipBodyInfo &SkipBody) {
16305 if (!hasStructuralCompatLayout(Prev, SkipBody.New))
16306 return false;
16307
16308 // Make the previous decl visible.
16309 makeMergedDefinitionVisible(SkipBody.Previous);
16310 return true;
16311}
16312
16313Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
16314 assert(isa<ObjCContainerDecl>(IDecl) &&((isa<ObjCContainerDecl>(IDecl) && "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl"
) ? static_cast<void> (0) : __assert_fail ("isa<ObjCContainerDecl>(IDecl) && \"ActOnObjCContainerStartDefinition - Not ObjCContainerDecl\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 16315, __PRETTY_FUNCTION__))
16315 "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl")((isa<ObjCContainerDecl>(IDecl) && "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl"
) ? static_cast<void> (0) : __assert_fail ("isa<ObjCContainerDecl>(IDecl) && \"ActOnObjCContainerStartDefinition - Not ObjCContainerDecl\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 16315, __PRETTY_FUNCTION__))
;
16316 DeclContext *OCD = cast<DeclContext>(IDecl);
16317 assert(OCD->getLexicalParent() == CurContext &&((OCD->getLexicalParent() == CurContext && "The next DeclContext should be lexically contained in the current one."
) ? static_cast<void> (0) : __assert_fail ("OCD->getLexicalParent() == CurContext && \"The next DeclContext should be lexically contained in the current one.\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 16318, __PRETTY_FUNCTION__))
16318 "The next DeclContext should be lexically contained in the current one.")((OCD->getLexicalParent() == CurContext && "The next DeclContext should be lexically contained in the current one."
) ? static_cast<void> (0) : __assert_fail ("OCD->getLexicalParent() == CurContext && \"The next DeclContext should be lexically contained in the current one.\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 16318, __PRETTY_FUNCTION__))
;
16319 CurContext = OCD;
16320 return IDecl;
16321}
16322
16323void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
16324 SourceLocation FinalLoc,
16325 bool IsFinalSpelledSealed,
16326 SourceLocation LBraceLoc) {
16327 AdjustDeclIfTemplate(TagD);
16328 CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
16329
16330 FieldCollector->StartClass();
16331
16332 if (!Record->getIdentifier())
16333 return;
16334
16335 if (FinalLoc.isValid())
16336 Record->addAttr(FinalAttr::Create(
16337 Context, FinalLoc, AttributeCommonInfo::AS_Keyword,
16338 static_cast<FinalAttr::Spelling>(IsFinalSpelledSealed)));
16339
16340 // C++ [class]p2:
16341 // [...] The class-name is also inserted into the scope of the
16342 // class itself; this is known as the injected-class-name. For
16343 // purposes of access checking, the injected-class-name is treated
16344 // as if it were a public member name.
16345 CXXRecordDecl *InjectedClassName = CXXRecordDecl::Create(
16346 Context, Record->getTagKind(), CurContext, Record->getBeginLoc(),
16347 Record->getLocation(), Record->getIdentifier(),
16348 /*PrevDecl=*/nullptr,
16349 /*DelayTypeCreation=*/true);
16350 Context.getTypeDeclType(InjectedClassName, Record);
16351 InjectedClassName->setImplicit();
16352 InjectedClassName->setAccess(AS_public);
16353 if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
16354 InjectedClassName->setDescribedClassTemplate(Template);
16355 PushOnScopeChains(InjectedClassName, S);
16356 assert(InjectedClassName->isInjectedClassName() &&((InjectedClassName->isInjectedClassName() && "Broken injected-class-name"
) ? static_cast<void> (0) : __assert_fail ("InjectedClassName->isInjectedClassName() && \"Broken injected-class-name\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 16357, __PRETTY_FUNCTION__))
16357 "Broken injected-class-name")((InjectedClassName->isInjectedClassName() && "Broken injected-class-name"
) ? static_cast<void> (0) : __assert_fail ("InjectedClassName->isInjectedClassName() && \"Broken injected-class-name\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 16357, __PRETTY_FUNCTION__))
;
16358}
16359
16360void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
16361 SourceRange BraceRange) {
16362 AdjustDeclIfTemplate(TagD);
16363 TagDecl *Tag = cast<TagDecl>(TagD);
16364 Tag->setBraceRange(BraceRange);
16365
16366 // Make sure we "complete" the definition even it is invalid.
16367 if (Tag->isBeingDefined()) {
16368 assert(Tag->isInvalidDecl() && "We should already have completed it")((Tag->isInvalidDecl() && "We should already have completed it"
) ? static_cast<void> (0) : __assert_fail ("Tag->isInvalidDecl() && \"We should already have completed it\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 16368, __PRETTY_FUNCTION__))
;
16369 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
16370 RD->completeDefinition();
16371 }
16372
16373 if (isa<CXXRecordDecl>(Tag)) {
16374 FieldCollector->FinishClass();
16375 }
16376
16377 // Exit this scope of this tag's definition.
16378 PopDeclContext();
16379
16380 if (getCurLexicalContext()->isObjCContainer() &&
16381 Tag->getDeclContext()->isFileContext())
16382 Tag->setTopLevelDeclInObjCContainer();
16383
16384 // Notify the consumer that we've defined a tag.
16385 if (!Tag->isInvalidDecl())
16386 Consumer.HandleTagDeclDefinition(Tag);
16387}
16388
16389void Sema::ActOnObjCContainerFinishDefinition() {
16390 // Exit this scope of this interface definition.
16391 PopDeclContext();
16392}
16393
16394void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
16395 assert(DC == CurContext && "Mismatch of container contexts")((DC == CurContext && "Mismatch of container contexts"
) ? static_cast<void> (0) : __assert_fail ("DC == CurContext && \"Mismatch of container contexts\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 16395, __PRETTY_FUNCTION__))
;
16396 OriginalLexicalContext = DC;
16397 ActOnObjCContainerFinishDefinition();
16398}
16399
16400void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
16401 ActOnObjCContainerStartDefinition(cast<Decl>(DC));
16402 OriginalLexicalContext = nullptr;
16403}
16404
16405void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
16406 AdjustDeclIfTemplate(TagD);
16407 TagDecl *Tag = cast<TagDecl>(TagD);
16408 Tag->setInvalidDecl();
16409
16410 // Make sure we "complete" the definition even it is invalid.
16411 if (Tag->isBeingDefined()) {
16412 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
16413 RD->completeDefinition();
16414 }
16415
16416 // We're undoing ActOnTagStartDefinition here, not
16417 // ActOnStartCXXMemberDeclarations, so we don't have to mess with
16418 // the FieldCollector.
16419
16420 PopDeclContext();
16421}
16422
16423// Note that FieldName may be null for anonymous bitfields.
16424ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
16425 IdentifierInfo *FieldName,
16426 QualType FieldTy, bool IsMsStruct,
16427 Expr *BitWidth, bool *ZeroWidth) {
16428 assert(BitWidth)((BitWidth) ? static_cast<void> (0) : __assert_fail ("BitWidth"
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 16428, __PRETTY_FUNCTION__))
;
16429 if (BitWidth->containsErrors())
16430 return ExprError();
16431
16432 // Default to true; that shouldn't confuse checks for emptiness
16433 if (ZeroWidth)
16434 *ZeroWidth = true;
16435
16436 // C99 6.7.2.1p4 - verify the field type.
16437 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
16438 if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
16439 // Handle incomplete and sizeless types with a specific error.
16440 if (RequireCompleteSizedType(FieldLoc, FieldTy,
16441 diag::err_field_incomplete_or_sizeless))
16442 return ExprError();
16443 if (FieldName)
16444 return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
16445 << FieldName << FieldTy << BitWidth->getSourceRange();
16446 return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
16447 << FieldTy << BitWidth->getSourceRange();
16448 } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
16449 UPPC_BitFieldWidth))
16450 return ExprError();
16451
16452 // If the bit-width is type- or value-dependent, don't try to check
16453 // it now.
16454 if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
16455 return BitWidth;
16456
16457 llvm::APSInt Value;
16458 ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value, AllowFold);
16459 if (ICE.isInvalid())
16460 return ICE;
16461 BitWidth = ICE.get();
16462
16463 if (Value != 0 && ZeroWidth)
16464 *ZeroWidth = false;
16465
16466 // Zero-width bitfield is ok for anonymous field.
16467 if (Value == 0 && FieldName)
16468 return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
16469
16470 if (Value.isSigned() && Value.isNegative()) {
16471 if (FieldName)
16472 return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
16473 << FieldName << Value.toString(10);
16474 return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
16475 << Value.toString(10);
16476 }
16477
16478 // The size of the bit-field must not exceed our maximum permitted object
16479 // size.
16480 if (Value.getActiveBits() > ConstantArrayType::getMaxSizeBits(Context)) {
16481 return Diag(FieldLoc, diag::err_bitfield_too_wide)
16482 << !FieldName << FieldName << Value.toString(10);
16483 }
16484
16485 if (!FieldTy->isDependentType()) {
16486 uint64_t TypeStorageSize = Context.getTypeSize(FieldTy);
16487 uint64_t TypeWidth = Context.getIntWidth(FieldTy);
16488 bool BitfieldIsOverwide = Value.ugt(TypeWidth);
16489
16490 // Over-wide bitfields are an error in C or when using the MSVC bitfield
16491 // ABI.
16492 bool CStdConstraintViolation =
16493 BitfieldIsOverwide && !getLangOpts().CPlusPlus;
16494 bool MSBitfieldViolation =
16495 Value.ugt(TypeStorageSize) &&
16496 (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft());
16497 if (CStdConstraintViolation || MSBitfieldViolation) {
16498 unsigned DiagWidth =
16499 CStdConstraintViolation ? TypeWidth : TypeStorageSize;
16500 if (FieldName)
16501 return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width)
16502 << FieldName << Value.toString(10)
16503 << !CStdConstraintViolation << DiagWidth;
16504
16505 return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_width)
16506 << Value.toString(10) << !CStdConstraintViolation
16507 << DiagWidth;
16508 }
16509
16510 // Warn on types where the user might conceivably expect to get all
16511 // specified bits as value bits: that's all integral types other than
16512 // 'bool'.
16513 if (BitfieldIsOverwide && !FieldTy->isBooleanType() && FieldName) {
16514 Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width)
16515 << FieldName << Value.toString(10)
16516 << (unsigned)TypeWidth;
16517 }
16518 }
16519
16520 return BitWidth;
16521}
16522
16523/// ActOnField - Each field of a C struct/union is passed into this in order
16524/// to create a FieldDecl object for it.
16525Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
16526 Declarator &D, Expr *BitfieldWidth) {
16527 FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
16528 DeclStart, D, static_cast<Expr*>(BitfieldWidth),
16529 /*InitStyle=*/ICIS_NoInit, AS_public);
16530 return Res;
16531}
16532
16533/// HandleField - Analyze a field of a C struct or a C++ data member.
16534///
16535FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
16536 SourceLocation DeclStart,
16537 Declarator &D, Expr *BitWidth,
16538 InClassInitStyle InitStyle,
16539 AccessSpecifier AS) {
16540 if (D.isDecompositionDeclarator()) {
16541 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
16542 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
16543 << Decomp.getSourceRange();
16544 return nullptr;
16545 }
16546
16547 IdentifierInfo *II = D.getIdentifier();
16548 SourceLocation Loc = DeclStart;
16549 if (II) Loc = D.getIdentifierLoc();
16550
16551 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
16552 QualType T = TInfo->getType();
16553 if (getLangOpts().CPlusPlus) {
16554 CheckExtraCXXDefaultArguments(D);
16555
16556 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
16557 UPPC_DataMemberType)) {
16558 D.setInvalidType();
16559 T = Context.IntTy;
16560 TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
16561 }
16562 }
16563
16564 DiagnoseFunctionSpecifiers(D.getDeclSpec());
16565
16566 if (D.getDeclSpec().isInlineSpecified())
16567 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
16568 << getLangOpts().CPlusPlus17;
16569 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
16570 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
16571 diag::err_invalid_thread)
16572 << DeclSpec::getSpecifierName(TSCS);
16573
16574 // Check to see if this name was declared as a member previously
16575 NamedDecl *PrevDecl = nullptr;
16576 LookupResult Previous(*this, II, Loc, LookupMemberName,
16577 ForVisibleRedeclaration);
16578 LookupName(Previous, S);
16579 switch (Previous.getResultKind()) {
16580 case LookupResult::Found:
16581 case LookupResult::FoundUnresolvedValue:
16582 PrevDecl = Previous.getAsSingle<NamedDecl>();
16583 break;
16584
16585 case LookupResult::FoundOverloaded:
16586 PrevDecl = Previous.getRepresentativeDecl();
16587 break;
16588
16589 case LookupResult::NotFound:
16590 case LookupResult::NotFoundInCurrentInstantiation:
16591 case LookupResult::Ambiguous:
16592 break;
16593 }
16594 Previous.suppressDiagnostics();
16595
16596 if (PrevDecl && PrevDecl->isTemplateParameter()) {
16597 // Maybe we will complain about the shadowed template parameter.
16598 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
16599 // Just pretend that we didn't see the previous declaration.
16600 PrevDecl = nullptr;
16601 }
16602
16603 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
16604 PrevDecl = nullptr;
16605
16606 bool Mutable
16607 = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
16608 SourceLocation TSSL = D.getBeginLoc();
16609 FieldDecl *NewFD
16610 = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
16611 TSSL, AS, PrevDecl, &D);
16612
16613 if (NewFD->isInvalidDecl())
16614 Record->setInvalidDecl();
16615
16616 if (D.getDeclSpec().isModulePrivateSpecified())
16617 NewFD->setModulePrivate();
16618
16619 if (NewFD->isInvalidDecl() && PrevDecl) {
16620 // Don't introduce NewFD into scope; there's already something
16621 // with the same name in the same scope.
16622 } else if (II) {
16623 PushOnScopeChains(NewFD, S);
16624 } else
16625 Record->addDecl(NewFD);
16626
16627 return NewFD;
16628}
16629
16630/// Build a new FieldDecl and check its well-formedness.
16631///
16632/// This routine builds a new FieldDecl given the fields name, type,
16633/// record, etc. \p PrevDecl should refer to any previous declaration
16634/// with the same name and in the same scope as the field to be
16635/// created.
16636///
16637/// \returns a new FieldDecl.
16638///
16639/// \todo The Declarator argument is a hack. It will be removed once
16640FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
16641 TypeSourceInfo *TInfo,
16642 RecordDecl *Record, SourceLocation Loc,
16643 bool Mutable, Expr *BitWidth,
16644 InClassInitStyle InitStyle,
16645 SourceLocation TSSL,
16646 AccessSpecifier AS, NamedDecl *PrevDecl,
16647 Declarator *D) {
16648 IdentifierInfo *II = Name.getAsIdentifierInfo();
16649 bool InvalidDecl = false;
16650 if (D) InvalidDecl = D->isInvalidType();
16651
16652 // If we receive a broken type, recover by assuming 'int' and
16653 // marking this declaration as invalid.
16654 if (T.isNull() || T->containsErrors()) {
16655 InvalidDecl = true;
16656 T = Context.IntTy;
16657 }
16658
16659 QualType EltTy = Context.getBaseElementType(T);
16660 if (!EltTy->isDependentType() && !EltTy->containsErrors()) {
16661 if (RequireCompleteSizedType(Loc, EltTy,
16662 diag::err_field_incomplete_or_sizeless)) {
16663 // Fields of incomplete type force their record to be invalid.
16664 Record->setInvalidDecl();
16665 InvalidDecl = true;
16666 } else {
16667 NamedDecl *Def;
16668 EltTy->isIncompleteType(&Def);
16669 if (Def && Def->isInvalidDecl()) {
16670 Record->setInvalidDecl();
16671 InvalidDecl = true;
16672 }
16673 }
16674 }
16675
16676 // TR 18037 does not allow fields to be declared with address space
16677 if (T.hasAddressSpace() || T->isDependentAddressSpaceType() ||
16678 T->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) {
16679 Diag(Loc, diag::err_field_with_address_space);
16680 Record->setInvalidDecl();
16681 InvalidDecl = true;
16682 }
16683
16684 if (LangOpts.OpenCL) {
16685 // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be
16686 // used as structure or union field: image, sampler, event or block types.
16687 if (T->isEventT() || T->isImageType() || T->isSamplerT() ||
16688 T->isBlockPointerType()) {
16689 Diag(Loc, diag::err_opencl_type_struct_or_union_field) << T;
16690 Record->setInvalidDecl();
16691 InvalidDecl = true;
16692 }
16693 // OpenCL v1.2 s6.9.c: bitfields are not supported.
16694 if (BitWidth) {
16695 Diag(Loc, diag::err_opencl_bitfields);
16696 InvalidDecl = true;
16697 }
16698 }
16699
16700 // Anonymous bit-fields cannot be cv-qualified (CWG 2229).
16701 if (!InvalidDecl && getLangOpts().CPlusPlus && !II && BitWidth &&
16702 T.hasQualifiers()) {
16703 InvalidDecl = true;
16704 Diag(Loc, diag::err_anon_bitfield_qualifiers);
16705 }
16706
16707 // C99 6.7.2.1p8: A member of a structure or union may have any type other
16708 // than a variably modified type.
16709 if (!InvalidDecl && T->isVariablyModifiedType()) {
16710 if (!tryToFixVariablyModifiedVarType(
16711 *this, TInfo, T, Loc, diag::err_typecheck_field_variable_size))
16712 InvalidDecl = true;
16713 }
16714
16715 // Fields can not have abstract class types
16716 if (!InvalidDecl && RequireNonAbstractType(Loc, T,
16717 diag::err_abstract_type_in_decl,
16718 AbstractFieldType))
16719 InvalidDecl = true;
16720
16721 bool ZeroWidth = false;
16722 if (InvalidDecl)
16723 BitWidth = nullptr;
16724 // If this is declared as a bit-field, check the bit-field.
16725 if (BitWidth) {
16726 BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
16727 &ZeroWidth).get();
16728 if (!BitWidth) {
16729 InvalidDecl = true;
16730 BitWidth = nullptr;
16731 ZeroWidth = false;
16732 }
16733 }
16734
16735 // Check that 'mutable' is consistent with the type of the declaration.
16736 if (!InvalidDecl && Mutable) {
16737 unsigned DiagID = 0;
16738 if (T->isReferenceType())
16739 DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference
16740 : diag::err_mutable_reference;
16741 else if (T.isConstQualified())
16742 DiagID = diag::err_mutable_const;
16743
16744 if (DiagID) {
16745 SourceLocation ErrLoc = Loc;
16746 if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
16747 ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
16748 Diag(ErrLoc, DiagID);
16749 if (DiagID != diag::ext_mutable_reference) {
16750 Mutable = false;
16751 InvalidDecl = true;
16752 }
16753 }
16754 }
16755
16756 // C++11 [class.union]p8 (DR1460):
16757 // At most one variant member of a union may have a
16758 // brace-or-equal-initializer.
16759 if (InitStyle != ICIS_NoInit)
16760 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);
16761
16762 FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
16763 BitWidth, Mutable, InitStyle);
16764 if (InvalidDecl)
16765 NewFD->setInvalidDecl();
16766
16767 if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
16768 Diag(Loc, diag::err_duplicate_member) << II;
16769 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
16770 NewFD->setInvalidDecl();
16771 }
16772
16773 if (!InvalidDecl && getLangOpts().CPlusPlus) {
16774 if (Record->isUnion()) {
16775 if (const RecordType *RT = EltTy->getAs<RecordType>()) {
16776 CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
16777 if (RDecl->getDefinition()) {
16778 // C++ [class.union]p1: An object of a class with a non-trivial
16779 // constructor, a non-trivial copy constructor, a non-trivial
16780 // destructor, or a non-trivial copy assignment operator
16781 // cannot be a member of a union, nor can an array of such
16782 // objects.
16783 if (CheckNontrivialField(NewFD))
16784 NewFD->setInvalidDecl();
16785 }
16786 }
16787
16788 // C++ [class.union]p1: If a union contains a member of reference type,
16789 // the program is ill-formed, except when compiling with MSVC extensions
16790 // enabled.
16791 if (EltTy->isReferenceType()) {
16792 Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
16793 diag::ext_union_member_of_reference_type :
16794 diag::err_union_member_of_reference_type)
16795 << NewFD->getDeclName() << EltTy;
16796 if (!getLangOpts().MicrosoftExt)
16797 NewFD->setInvalidDecl();
16798 }
16799 }
16800 }
16801
16802 // FIXME: We need to pass in the attributes given an AST
16803 // representation, not a parser representation.
16804 if (D) {
16805 // FIXME: The current scope is almost... but not entirely... correct here.
16806 ProcessDeclAttributes(getCurScope(), NewFD, *D);
16807
16808 if (NewFD->hasAttrs())
16809 CheckAlignasUnderalignment(NewFD);
16810 }
16811
16812 // In auto-retain/release, infer strong retension for fields of
16813 // retainable type.
16814 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
16815 NewFD->setInvalidDecl();
16816
16817 if (T.isObjCGCWeak())
16818 Diag(Loc, diag::warn_attribute_weak_on_field);
16819
16820 // PPC MMA non-pointer types are not allowed as field types.
16821 if (Context.getTargetInfo().getTriple().isPPC64() &&
16822 CheckPPCMMAType(T, NewFD->getLocation()))
16823 NewFD->setInvalidDecl();
16824
16825 NewFD->setAccess(AS);
16826 return NewFD;
16827}
16828
16829bool Sema::CheckNontrivialField(FieldDecl *FD) {
16830 assert(FD)((FD) ? static_cast<void> (0) : __assert_fail ("FD", "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 16830, __PRETTY_FUNCTION__))
;
16831 assert(getLangOpts().CPlusPlus && "valid check only for C++")((getLangOpts().CPlusPlus && "valid check only for C++"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"valid check only for C++\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 16831, __PRETTY_FUNCTION__))
;
16832
16833 if (FD->isInvalidDecl() || FD->getType()->isDependentType())
16834 return false;
16835
16836 QualType EltTy = Context.getBaseElementType(FD->getType());
16837 if (const RecordType *RT = EltTy->getAs<RecordType>()) {
16838 CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
16839 if (RDecl->getDefinition()) {
16840 // We check for copy constructors before constructors
16841 // because otherwise we'll never get complaints about
16842 // copy constructors.
16843
16844 CXXSpecialMember member = CXXInvalid;
16845 // We're required to check for any non-trivial constructors. Since the
16846 // implicit default constructor is suppressed if there are any
16847 // user-declared constructors, we just need to check that there is a
16848 // trivial default constructor and a trivial copy constructor. (We don't
16849 // worry about move constructors here, since this is a C++98 check.)
16850 if (RDecl->hasNonTrivialCopyConstructor())
16851 member = CXXCopyConstructor;
16852 else if (!RDecl->hasTrivialDefaultConstructor())
16853 member = CXXDefaultConstructor;
16854 else if (RDecl->hasNonTrivialCopyAssignment())
16855 member = CXXCopyAssignment;
16856 else if (RDecl->hasNonTrivialDestructor())
16857 member = CXXDestructor;
16858
16859 if (member != CXXInvalid) {
16860 if (!getLangOpts().CPlusPlus11 &&
16861 getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
16862 // Objective-C++ ARC: it is an error to have a non-trivial field of
16863 // a union. However, system headers in Objective-C programs
16864 // occasionally have Objective-C lifetime objects within unions,
16865 // and rather than cause the program to fail, we make those
16866 // members unavailable.
16867 SourceLocation Loc = FD->getLocation();
16868 if (getSourceManager().isInSystemHeader(Loc)) {
16869 if (!FD->hasAttr<UnavailableAttr>())
16870 FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
16871 UnavailableAttr::IR_ARCFieldWithOwnership, Loc));
16872 return false;
16873 }
16874 }
16875
16876 Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
16877 diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
16878 diag::err_illegal_union_or_anon_struct_member)
16879 << FD->getParent()->isUnion() << FD->getDeclName() << member;
16880 DiagnoseNontrivial(RDecl, member);
16881 return !getLangOpts().CPlusPlus11;
16882 }
16883 }
16884 }
16885
16886 return false;
16887}
16888
16889/// TranslateIvarVisibility - Translate visibility from a token ID to an
16890/// AST enum value.
16891static ObjCIvarDecl::AccessControl
16892TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
16893 switch (ivarVisibility) {
16894 default: llvm_unreachable("Unknown visitibility kind")::llvm::llvm_unreachable_internal("Unknown visitibility kind"
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 16894)
;
16895 case tok::objc_private: return ObjCIvarDecl::Private;
16896 case tok::objc_public: return ObjCIvarDecl::Public;
16897 case tok::objc_protected: return ObjCIvarDecl::Protected;
16898 case tok::objc_package: return ObjCIvarDecl::Package;
16899 }
16900}
16901
16902/// ActOnIvar - Each ivar field of an objective-c class is passed into this
16903/// in order to create an IvarDecl object for it.
16904Decl *Sema::ActOnIvar(Scope *S,
16905 SourceLocation DeclStart,
16906 Declarator &D, Expr *BitfieldWidth,
16907 tok::ObjCKeywordKind Visibility) {
16908
16909 IdentifierInfo *II = D.getIdentifier();
16910 Expr *BitWidth = (Expr*)BitfieldWidth;
16911 SourceLocation Loc = DeclStart;
16912 if (II) Loc = D.getIdentifierLoc();
16913
16914 // FIXME: Unnamed fields can be handled in various different ways, for
16915 // example, unnamed unions inject all members into the struct namespace!
16916
16917 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
16918 QualType T = TInfo->getType();
16919
16920 if (BitWidth) {
16921 // 6.7.2.1p3, 6.7.2.1p4
16922 BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get();
16923 if (!BitWidth)
16924 D.setInvalidType();
16925 } else {
16926 // Not a bitfield.
16927
16928 // validate II.
16929
16930 }
16931 if (T->isReferenceType()) {
16932 Diag(Loc, diag::err_ivar_reference_type);
16933 D.setInvalidType();
16934 }
16935 // C99 6.7.2.1p8: A member of a structure or union may have any type other
16936 // than a variably modified type.
16937 else if (T->isVariablyModifiedType()) {
16938 if (!tryToFixVariablyModifiedVarType(
16939 *this, TInfo, T, Loc, diag::err_typecheck_ivar_variable_size))
16940 D.setInvalidType();
16941 }
16942
16943 // Get the visibility (access control) for this ivar.
16944 ObjCIvarDecl::AccessControl ac =
16945 Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
16946 : ObjCIvarDecl::None;
16947 // Must set ivar's DeclContext to its enclosing interface.
16948 ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
16949 if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
16950 return nullptr;
16951 ObjCContainerDecl *EnclosingContext;
16952 if (ObjCImplementationDecl *IMPDecl =
16953 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
16954 if (LangOpts.ObjCRuntime.isFragile()) {
16955 // Case of ivar declared in an implementation. Context is that of its class.
16956 EnclosingContext = IMPDecl->getClassInterface();
16957 assert(EnclosingContext && "Implementation has no class interface!")((EnclosingContext && "Implementation has no class interface!"
) ? static_cast<void> (0) : __assert_fail ("EnclosingContext && \"Implementation has no class interface!\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 16957, __PRETTY_FUNCTION__))
;
16958 }
16959 else
16960 EnclosingContext = EnclosingDecl;
16961 } else {
16962 if (ObjCCategoryDecl *CDecl =
16963 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
16964 if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
16965 Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
16966 return nullptr;
16967 }
16968 }
16969 EnclosingContext = EnclosingDecl;
16970 }
16971
16972 // Construct the decl.
16973 ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
16974 DeclStart, Loc, II, T,
16975 TInfo, ac, (Expr *)BitfieldWidth);
16976
16977 if (II) {
16978 NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
16979 ForVisibleRedeclaration);
16980 if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
16981 && !isa<TagDecl>(PrevDecl)) {
16982 Diag(Loc, diag::err_duplicate_member) << II;
16983 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
16984 NewID->setInvalidDecl();
16985 }
16986 }
16987
16988 // Process attributes attached to the ivar.
16989 ProcessDeclAttributes(S, NewID, D);
16990
16991 if (D.isInvalidType())
16992 NewID->setInvalidDecl();
16993
16994 // In ARC, infer 'retaining' for ivars of retainable type.
16995 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
16996 NewID->setInvalidDecl();
16997
16998 if (D.getDeclSpec().isModulePrivateSpecified())
16999 NewID->setModulePrivate();
17000
17001 if (II) {
17002 // FIXME: When interfaces are DeclContexts, we'll need to add
17003 // these to the interface.
17004 S->AddDecl(NewID);
17005 IdResolver.AddDecl(NewID);
17006 }
17007
17008 if (LangOpts.ObjCRuntime.isNonFragile() &&
17009 !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
17010 Diag(Loc, diag::warn_ivars_in_interface);
17011
17012 return NewID;
17013}
17014
17015/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
17016/// class and class extensions. For every class \@interface and class
17017/// extension \@interface, if the last ivar is a bitfield of any type,
17018/// then add an implicit `char :0` ivar to the end of that interface.
17019void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
17020 SmallVectorImpl<Decl *> &AllIvarDecls) {
17021 if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
17022 return;
17023
17024 Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
17025 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
17026
17027 if (!Ivar->isBitField() || Ivar->isZeroLengthBitField(Context))
17028 return;
17029 ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
17030 if (!ID) {
17031 if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
17032 if (!CD->IsClassExtension())
17033 return;
17034 }
17035 // No need to add this to end of @implementation.
17036 else
17037 return;
17038 }
17039 // All conditions are met. Add a new bitfield to the tail end of ivars.
17040 llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
17041 Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
17042
17043 Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
17044 DeclLoc, DeclLoc, nullptr,
17045 Context.CharTy,
17046 Context.getTrivialTypeSourceInfo(Context.CharTy,
17047 DeclLoc),
17048 ObjCIvarDecl::Private, BW,
17049 true);
17050 AllIvarDecls.push_back(Ivar);
17051}
17052
17053void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
17054 ArrayRef<Decl *> Fields, SourceLocation LBrac,
17055 SourceLocation RBrac,
17056 const ParsedAttributesView &Attrs) {
17057 assert(EnclosingDecl && "missing record or interface decl")((EnclosingDecl && "missing record or interface decl"
) ? static_cast<void> (0) : __assert_fail ("EnclosingDecl && \"missing record or interface decl\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 17057, __PRETTY_FUNCTION__))
;
17058
17059 // If this is an Objective-C @implementation or category and we have
17060 // new fields here we should reset the layout of the interface since
17061 // it will now change.
17062 if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
17063 ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
17064 switch (DC->getKind()) {
17065 default: break;
17066 case Decl::ObjCCategory:
17067 Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
17068 break;
17069 case Decl::ObjCImplementation:
17070 Context.
17071 ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
17072 break;
17073 }
17074 }
17075
17076 RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
17077 CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(EnclosingDecl);
17078
17079 // Start counting up the number of named members; make sure to include
17080 // members of anonymous structs and unions in the total.
17081 unsigned NumNamedMembers = 0;
17082 if (Record) {
17083 for (const auto *I : Record->decls()) {
17084 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
17085 if (IFD->getDeclName())
17086 ++NumNamedMembers;
17087 }
17088 }
17089
17090 // Verify that all the fields are okay.
17091 SmallVector<FieldDecl*, 32> RecFields;
17092
17093 for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
17094 i != end; ++i) {
17095 FieldDecl *FD = cast<FieldDecl>(*i);
17096
17097 // Get the type for the field.
17098 const Type *FDTy = FD->getType().getTypePtr();
17099
17100 if (!FD->isAnonymousStructOrUnion()) {
17101 // Remember all fields written by the user.
17102 RecFields.push_back(FD);
17103 }
17104
17105 // If the field is already invalid for some reason, don't emit more
17106 // diagnostics about it.
17107 if (FD->isInvalidDecl()) {
17108 EnclosingDecl->setInvalidDecl();
17109 continue;
17110 }
17111
17112 // C99 6.7.2.1p2:
17113 // A structure or union shall not contain a member with
17114 // incomplete or function type (hence, a structure shall not
17115 // contain an instance of itself, but may contain a pointer to
17116 // an instance of itself), except that the last member of a
17117 // structure with more than one named member may have incomplete
17118 // array type; such a structure (and any union containing,
17119 // possibly recursively, a member that is such a structure)
17120 // shall not be a member of a structure or an element of an
17121 // array.
17122 bool IsLastField = (i + 1 == Fields.end());
17123 if (FDTy->isFunctionType()) {
17124 // Field declared as a function.
17125 Diag(FD->getLocation(), diag::err_field_declared_as_function)
17126 << FD->getDeclName();
17127 FD->setInvalidDecl();
17128 EnclosingDecl->setInvalidDecl();
17129 continue;
17130 } else if (FDTy->isIncompleteArrayType() &&
17131 (Record || isa<ObjCContainerDecl>(EnclosingDecl))) {
17132 if (Record) {
17133 // Flexible array member.
17134 // Microsoft and g++ is more permissive regarding flexible array.
17135 // It will accept flexible array in union and also
17136 // as the sole element of a struct/class.
17137 unsigned DiagID = 0;
17138 if (!Record->isUnion() && !IsLastField) {
17139 Diag(FD->getLocation(), diag::err_flexible_array_not_at_end)
17140 << FD->getDeclName() << FD->getType() << Record->getTagKind();
17141 Diag((*(i + 1))->getLocation(), diag::note_next_field_declaration);
17142 FD->setInvalidDecl();
17143 EnclosingDecl->setInvalidDecl();
17144 continue;
17145 } else if (Record->isUnion())
17146 DiagID = getLangOpts().MicrosoftExt
17147 ? diag::ext_flexible_array_union_ms
17148 : getLangOpts().CPlusPlus
17149 ? diag::ext_flexible_array_union_gnu
17150 : diag::err_flexible_array_union;
17151 else if (NumNamedMembers < 1)
17152 DiagID = getLangOpts().MicrosoftExt
17153 ? diag::ext_flexible_array_empty_aggregate_ms
17154 : getLangOpts().CPlusPlus
17155 ? diag::ext_flexible_array_empty_aggregate_gnu
17156 : diag::err_flexible_array_empty_aggregate;
17157
17158 if (DiagID)
17159 Diag(FD->getLocation(), DiagID) << FD->getDeclName()
17160 << Record->getTagKind();
17161 // While the layout of types that contain virtual bases is not specified
17162 // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
17163 // virtual bases after the derived members. This would make a flexible
17164 // array member declared at the end of an object not adjacent to the end
17165 // of the type.
17166 if (CXXRecord && CXXRecord->getNumVBases() != 0)
17167 Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
17168 << FD->getDeclName() << Record->getTagKind();
17169 if (!getLangOpts().C99)
17170 Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
17171 << FD->getDeclName() << Record->getTagKind();
17172
17173 // If the element type has a non-trivial destructor, we would not
17174 // implicitly destroy the elements, so disallow it for now.
17175 //
17176 // FIXME: GCC allows this. We should probably either implicitly delete
17177 // the destructor of the containing class, or just allow this.
17178 QualType BaseElem = Context.getBaseElementType(FD->getType());
17179 if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
17180 Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
17181 << FD->getDeclName() << FD->getType();
17182 FD->setInvalidDecl();
17183 EnclosingDecl->setInvalidDecl();
17184 continue;
17185 }
17186 // Okay, we have a legal flexible array member at the end of the struct.
17187 Record->setHasFlexibleArrayMember(true);
17188 } else {
17189 // In ObjCContainerDecl ivars with incomplete array type are accepted,
17190 // unless they are followed by another ivar. That check is done
17191 // elsewhere, after synthesized ivars are known.
17192 }
17193 } else if (!FDTy->isDependentType() &&
17194 RequireCompleteSizedType(
17195 FD->getLocation(), FD->getType(),
17196 diag::err_field_incomplete_or_sizeless)) {
17197 // Incomplete type
17198 FD->setInvalidDecl();
17199 EnclosingDecl->setInvalidDecl();
17200 continue;
17201 } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
17202 if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) {
17203 // A type which contains a flexible array member is considered to be a
17204 // flexible array member.
17205 Record->setHasFlexibleArrayMember(true);
17206 if (!Record->isUnion()) {
17207 // If this is a struct/class and this is not the last element, reject
17208 // it. Note that GCC supports variable sized arrays in the middle of
17209 // structures.
17210 if (!IsLastField)
17211 Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
17212 << FD->getDeclName() << FD->getType();
17213 else {
17214 // We support flexible arrays at the end of structs in
17215 // other structs as an extension.
17216 Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
17217 << FD->getDeclName();
17218 }
17219 }
17220 }
17221 if (isa<ObjCContainerDecl>(EnclosingDecl) &&
17222 RequireNonAbstractType(FD->getLocation(), FD->getType(),
17223 diag::err_abstract_type_in_decl,
17224 AbstractIvarType)) {
17225 // Ivars can not have abstract class types
17226 FD->setInvalidDecl();
17227 }
17228 if (Record && FDTTy->getDecl()->hasObjectMember())
17229 Record->setHasObjectMember(true);
17230 if (Record && FDTTy->getDecl()->hasVolatileMember())
17231 Record->setHasVolatileMember(true);
17232 } else if (FDTy->isObjCObjectType()) {
17233 /// A field cannot be an Objective-c object
17234 Diag(FD->getLocation(), diag::err_statically_allocated_object)
17235 << FixItHint::CreateInsertion(FD->getLocation(), "*");
17236 QualType T = Context.getObjCObjectPointerType(FD->getType());
17237 FD->setType(T);
17238 } else if (Record && Record->isUnion() &&
17239 FD->getType().hasNonTrivialObjCLifetime() &&
17240 getSourceManager().isInSystemHeader(FD->getLocation()) &&
17241 !getLangOpts().CPlusPlus && !FD->hasAttr<UnavailableAttr>() &&
17242 (FD->getType().getObjCLifetime() != Qualifiers::OCL_Strong ||
17243 !Context.hasDirectOwnershipQualifier(FD->getType()))) {
17244 // For backward compatibility, fields of C unions declared in system
17245 // headers that have non-trivial ObjC ownership qualifications are marked
17246 // as unavailable unless the qualifier is explicit and __strong. This can
17247 // break ABI compatibility between programs compiled with ARC and MRR, but
17248 // is a better option than rejecting programs using those unions under
17249 // ARC.
17250 FD->addAttr(UnavailableAttr::CreateImplicit(
17251 Context, "", UnavailableAttr::IR_ARCFieldWithOwnership,
17252 FD->getLocation()));
17253 } else if (getLangOpts().ObjC &&
17254 getLangOpts().getGC() != LangOptions::NonGC && Record &&
17255 !Record->hasObjectMember()) {
17256 if (FD->getType()->isObjCObjectPointerType() ||
17257 FD->getType().isObjCGCStrong())
17258 Record->setHasObjectMember(true);
17259 else if (Context.getAsArrayType(FD->getType())) {
17260 QualType BaseType = Context.getBaseElementType(FD->getType());
17261 if (BaseType->isRecordType() &&
17262 BaseType->castAs<RecordType>()->getDecl()->hasObjectMember())
17263 Record->setHasObjectMember(true);
17264 else if (BaseType->isObjCObjectPointerType() ||
17265 BaseType.isObjCGCStrong())
17266 Record->setHasObjectMember(true);
17267 }
17268 }
17269
17270 if (Record && !getLangOpts().CPlusPlus &&
17271 !shouldIgnoreForRecordTriviality(FD)) {
17272 QualType FT = FD->getType();
17273 if (FT.isNonTrivialToPrimitiveDefaultInitialize()) {
17274 Record->setNonTrivialToPrimitiveDefaultInitialize(true);
17275 if (FT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
17276 Record->isUnion())
17277 Record->setHasNonTrivialToPrimitiveDefaultInitializeCUnion(true);
17278 }
17279 QualType::PrimitiveCopyKind PCK = FT.isNonTrivialToPrimitiveCopy();
17280 if (PCK != QualType::PCK_Trivial && PCK != QualType::PCK_VolatileTrivial) {
17281 Record->setNonTrivialToPrimitiveCopy(true);
17282 if (FT.hasNonTrivialToPrimitiveCopyCUnion() || Record->isUnion())
17283 Record->setHasNonTrivialToPrimitiveCopyCUnion(true);
17284 }
17285 if (FT.isDestructedType()) {
17286 Record->setNonTrivialToPrimitiveDestroy(true);
17287 Record->setParamDestroyedInCallee(true);
17288 if (FT.hasNonTrivialToPrimitiveDestructCUnion() || Record->isUnion())
17289 Record->setHasNonTrivialToPrimitiveDestructCUnion(true);
17290 }
17291
17292 if (const auto *RT = FT->getAs<RecordType>()) {
17293 if (RT->getDecl()->getArgPassingRestrictions() ==
17294 RecordDecl::APK_CanNeverPassInRegs)
17295 Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
17296 } else if (FT.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak)
17297 Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
17298 }
17299
17300 if (Record && FD->getType().isVolatileQualified())
17301 Record->setHasVolatileMember(true);
17302 // Keep track of the number of named members.
17303 if (FD->getIdentifier())
17304 ++NumNamedMembers;
17305 }
17306
17307 // Okay, we successfully defined 'Record'.
17308 if (Record) {
17309 bool Completed = false;
17310 if (CXXRecord) {
17311 if (!CXXRecord->isInvalidDecl()) {
17312 // Set access bits correctly on the directly-declared conversions.
17313 for (CXXRecordDecl::conversion_iterator
17314 I = CXXRecord->conversion_begin(),
17315 E = CXXRecord->conversion_end(); I != E; ++I)
17316 I.setAccess((*I)->getAccess());
17317 }
17318
17319 // Add any implicitly-declared members to this class.
17320 AddImplicitlyDeclaredMembersToClass(CXXRecord);
17321
17322 if (!CXXRecord->isDependentType()) {
17323 if (!CXXRecord->isInvalidDecl()) {
17324 // If we have virtual base classes, we may end up finding multiple
17325 // final overriders for a given virtual function. Check for this
17326 // problem now.
17327 if (CXXRecord->getNumVBases()) {
17328 CXXFinalOverriderMap FinalOverriders;
17329 CXXRecord->getFinalOverriders(FinalOverriders);
17330
17331 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
17332 MEnd = FinalOverriders.end();
17333 M != MEnd; ++M) {
17334 for (OverridingMethods::iterator SO = M->second.begin(),
17335 SOEnd = M->second.end();
17336 SO != SOEnd; ++SO) {
17337 assert(SO->second.size() > 0 &&((SO->second.size() > 0 && "Virtual function without overriding functions?"
) ? static_cast<void> (0) : __assert_fail ("SO->second.size() > 0 && \"Virtual function without overriding functions?\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 17338, __PRETTY_FUNCTION__))
17338 "Virtual function without overriding functions?")((SO->second.size() > 0 && "Virtual function without overriding functions?"
) ? static_cast<void> (0) : __assert_fail ("SO->second.size() > 0 && \"Virtual function without overriding functions?\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 17338, __PRETTY_FUNCTION__))
;
17339 if (SO->second.size() == 1)
17340 continue;
17341
17342 // C++ [class.virtual]p2:
17343 // In a derived class, if a virtual member function of a base
17344 // class subobject has more than one final overrider the
17345 // program is ill-formed.
17346 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
17347 << (const NamedDecl *)M->first << Record;
17348 Diag(M->first->getLocation(),
17349 diag::note_overridden_virtual_function);
17350 for (OverridingMethods::overriding_iterator
17351 OM = SO->second.begin(),
17352 OMEnd = SO->second.end();
17353 OM != OMEnd; ++OM)
17354 Diag(OM->Method->getLocation(), diag::note_final_overrider)
17355 << (const NamedDecl *)M->first << OM->Method->getParent();
17356
17357 Record->setInvalidDecl();
17358 }
17359 }
17360 CXXRecord->completeDefinition(&FinalOverriders);
17361 Completed = true;
17362 }
17363 }
17364 }
17365 }
17366
17367 if (!Completed)
17368 Record->completeDefinition();
17369
17370 // Handle attributes before checking the layout.
17371 ProcessDeclAttributeList(S, Record, Attrs);
17372
17373 // We may have deferred checking for a deleted destructor. Check now.
17374 if (CXXRecord) {
17375 auto *Dtor = CXXRecord->getDestructor();
17376 if (Dtor && Dtor->isImplicit() &&
17377 ShouldDeleteSpecialMember(Dtor, CXXDestructor)) {
17378 CXXRecord->setImplicitDestructorIsDeleted();
17379 SetDeclDeleted(Dtor, CXXRecord->getLocation());
17380 }
17381 }
17382
17383 if (Record->hasAttrs()) {
17384 CheckAlignasUnderalignment(Record);
17385
17386 if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
17387 checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
17388 IA->getRange(), IA->getBestCase(),
17389 IA->getInheritanceModel());
17390 }
17391
17392 // Check if the structure/union declaration is a type that can have zero
17393 // size in C. For C this is a language extension, for C++ it may cause
17394 // compatibility problems.
17395 bool CheckForZeroSize;
17396 if (!getLangOpts().CPlusPlus) {
17397 CheckForZeroSize = true;
17398 } else {
17399 // For C++ filter out types that cannot be referenced in C code.
17400 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
17401 CheckForZeroSize =
17402 CXXRecord->getLexicalDeclContext()->isExternCContext() &&
17403 !CXXRecord->isDependentType() && !inTemplateInstantiation() &&
17404 CXXRecord->isCLike();
17405 }
17406 if (CheckForZeroSize) {
17407 bool ZeroSize = true;
17408 bool IsEmpty = true;
17409 unsigned NonBitFields = 0;
17410 for (RecordDecl::field_iterator I = Record->field_begin(),
17411 E = Record->field_end();
17412 (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
17413 IsEmpty = false;
17414 if (I->isUnnamedBitfield()) {
17415 if (!I->isZeroLengthBitField(Context))
17416 ZeroSize = false;
17417 } else {
17418 ++NonBitFields;
17419 QualType FieldType = I->getType();
17420 if (FieldType->isIncompleteType() ||
17421 !Context.getTypeSizeInChars(FieldType).isZero())
17422 ZeroSize = false;
17423 }
17424 }
17425
17426 // Empty structs are an extension in C (C99 6.7.2.1p7). They are
17427 // allowed in C++, but warn if its declaration is inside
17428 // extern "C" block.
17429 if (ZeroSize) {
17430 Diag(RecLoc, getLangOpts().CPlusPlus ?
17431 diag::warn_zero_size_struct_union_in_extern_c :
17432 diag::warn_zero_size_struct_union_compat)
17433 << IsEmpty << Record->isUnion() << (NonBitFields > 1);
17434 }
17435
17436 // Structs without named members are extension in C (C99 6.7.2.1p7),
17437 // but are accepted by GCC.
17438 if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
17439 Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
17440 diag::ext_no_named_members_in_struct_union)
17441 << Record->isUnion();
17442 }
17443 }
17444 } else {
17445 ObjCIvarDecl **ClsFields =
17446 reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
17447 if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
17448 ID->setEndOfDefinitionLoc(RBrac);
17449 // Add ivar's to class's DeclContext.
17450 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
17451 ClsFields[i]->setLexicalDeclContext(ID);
17452 ID->addDecl(ClsFields[i]);
17453 }
17454 // Must enforce the rule that ivars in the base classes may not be
17455 // duplicates.
17456 if (ID->getSuperClass())
17457 DiagnoseDuplicateIvars(ID, ID->getSuperClass());
17458 } else if (ObjCImplementationDecl *IMPDecl =
17459 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
17460 assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl")((IMPDecl && "ActOnFields - missing ObjCImplementationDecl"
) ? static_cast<void> (0) : __assert_fail ("IMPDecl && \"ActOnFields - missing ObjCImplementationDecl\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 17460, __PRETTY_FUNCTION__))
;
17461 for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
17462 // Ivar declared in @implementation never belongs to the implementation.
17463 // Only it is in implementation's lexical context.
17464 ClsFields[I]->setLexicalDeclContext(IMPDecl);
17465 CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
17466 IMPDecl->setIvarLBraceLoc(LBrac);
17467 IMPDecl->setIvarRBraceLoc(RBrac);
17468 } else if (ObjCCategoryDecl *CDecl =
17469 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
17470 // case of ivars in class extension; all other cases have been
17471 // reported as errors elsewhere.
17472 // FIXME. Class extension does not have a LocEnd field.
17473 // CDecl->setLocEnd(RBrac);
17474 // Add ivar's to class extension's DeclContext.
17475 // Diagnose redeclaration of private ivars.
17476 ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
17477 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
17478 if (IDecl) {
17479 if (const ObjCIvarDecl *ClsIvar =
17480 IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
17481 Diag(ClsFields[i]->getLocation(),
17482 diag::err_duplicate_ivar_declaration);
17483 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
17484 continue;
17485 }
17486 for (const auto *Ext : IDecl->known_extensions()) {
17487 if (const ObjCIvarDecl *ClsExtIvar
17488 = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
17489 Diag(ClsFields[i]->getLocation(),
17490 diag::err_duplicate_ivar_declaration);
17491 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
17492 continue;
17493 }
17494 }
17495 }
17496 ClsFields[i]->setLexicalDeclContext(CDecl);
17497 CDecl->addDecl(ClsFields[i]);
17498 }
17499 CDecl->setIvarLBraceLoc(LBrac);
17500 CDecl->setIvarRBraceLoc(RBrac);
17501 }
17502 }
17503}
17504
17505/// Determine whether the given integral value is representable within
17506/// the given type T.
17507static bool isRepresentableIntegerValue(ASTContext &Context,
17508 llvm::APSInt &Value,
17509 QualType T) {
17510 assert((T->isIntegralType(Context) || T->isEnumeralType()) &&(((T->isIntegralType(Context) || T->isEnumeralType()) &&
"Integral type required!") ? static_cast<void> (0) : __assert_fail
("(T->isIntegralType(Context) || T->isEnumeralType()) && \"Integral type required!\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 17511, __PRETTY_FUNCTION__))
17511 "Integral type required!")(((T->isIntegralType(Context) || T->isEnumeralType()) &&
"Integral type required!") ? static_cast<void> (0) : __assert_fail
("(T->isIntegralType(Context) || T->isEnumeralType()) && \"Integral type required!\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 17511, __PRETTY_FUNCTION__))
;
17512 unsigned BitWidth = Context.getIntWidth(T);
17513
17514 if (Value.isUnsigned() || Value.isNonNegative()) {
17515 if (T->isSignedIntegerOrEnumerationType())
17516 --BitWidth;
17517 return Value.getActiveBits() <= BitWidth;
17518 }
17519 return Value.getMinSignedBits() <= BitWidth;
17520}
17521
17522// Given an integral type, return the next larger integral type
17523// (or a NULL type of no such type exists).
17524static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
17525 // FIXME: Int128/UInt128 support, which also needs to be introduced into
17526 // enum checking below.
17527 assert((T->isIntegralType(Context) ||(((T->isIntegralType(Context) || T->isEnumeralType()) &&
"Integral type required!") ? static_cast<void> (0) : __assert_fail
("(T->isIntegralType(Context) || T->isEnumeralType()) && \"Integral type required!\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 17528, __PRETTY_FUNCTION__))
17528 T->isEnumeralType()) && "Integral type required!")(((T->isIntegralType(Context) || T->isEnumeralType()) &&
"Integral type required!") ? static_cast<void> (0) : __assert_fail
("(T->isIntegralType(Context) || T->isEnumeralType()) && \"Integral type required!\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 17528, __PRETTY_FUNCTION__))
;
17529 const unsigned NumTypes = 4;
17530 QualType SignedIntegralTypes[NumTypes] = {
17531 Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
17532 };
17533 QualType UnsignedIntegralTypes[NumTypes] = {
17534 Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
17535 Context.UnsignedLongLongTy
17536 };
17537
17538 unsigned BitWidth = Context.getTypeSize(T);
17539 QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
17540 : UnsignedIntegralTypes;
17541 for (unsigned I = 0; I != NumTypes; ++I)
17542 if (Context.getTypeSize(Types[I]) > BitWidth)
17543 return Types[I];
17544
17545 return QualType();
17546}
17547
17548EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
17549 EnumConstantDecl *LastEnumConst,
17550 SourceLocation IdLoc,
17551 IdentifierInfo *Id,
17552 Expr *Val) {
17553 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
17554 llvm::APSInt EnumVal(IntWidth);
17555 QualType EltTy;
17556
17557 if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
17558 Val = nullptr;
17559
17560 if (Val)
17561 Val = DefaultLvalueConversion(Val).get();
17562
17563 if (Val) {
17564 if (Enum->isDependentType() || Val->isTypeDependent())
17565 EltTy = Context.DependentTy;
17566 else {
17567 // FIXME: We don't allow folding in C++11 mode for an enum with a fixed
17568 // underlying type, but do allow it in all other contexts.
17569 if (getLangOpts().CPlusPlus11 && Enum->isFixed()) {
17570 // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
17571 // constant-expression in the enumerator-definition shall be a converted
17572 // constant expression of the underlying type.
17573 EltTy = Enum->getIntegerType();
17574 ExprResult Converted =
17575 CheckConvertedConstantExpression(Val, EltTy, EnumVal,
17576 CCEK_Enumerator);
17577 if (Converted.isInvalid())
17578 Val = nullptr;
17579 else
17580 Val = Converted.get();
17581 } else if (!Val->isValueDependent() &&
17582 !(Val =
17583 VerifyIntegerConstantExpression(Val, &EnumVal, AllowFold)
17584 .get())) {
17585 // C99 6.7.2.2p2: Make sure we have an integer constant expression.
17586 } else {
17587 if (Enum->isComplete()) {
17588 EltTy = Enum->getIntegerType();
17589
17590 // In Obj-C and Microsoft mode, require the enumeration value to be
17591 // representable in the underlying type of the enumeration. In C++11,
17592 // we perform a non-narrowing conversion as part of converted constant
17593 // expression checking.
17594 if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
17595 if (Context.getTargetInfo()
17596 .getTriple()
17597 .isWindowsMSVCEnvironment()) {
17598 Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
17599 } else {
17600 Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
17601 }
17602 }
17603
17604 // Cast to the underlying type.
17605 Val = ImpCastExprToType(Val, EltTy,
17606 EltTy->isBooleanType() ? CK_IntegralToBoolean
17607 : CK_IntegralCast)
17608 .get();
17609 } else if (getLangOpts().CPlusPlus) {
17610 // C++11 [dcl.enum]p5:
17611 // If the underlying type is not fixed, the type of each enumerator
17612 // is the type of its initializing value:
17613 // - If an initializer is specified for an enumerator, the
17614 // initializing value has the same type as the expression.
17615 EltTy = Val->getType();
17616 } else {
17617 // C99 6.7.2.2p2:
17618 // The expression that defines the value of an enumeration constant
17619 // shall be an integer constant expression that has a value
17620 // representable as an int.
17621
17622 // Complain if the value is not representable in an int.
17623 if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
17624 Diag(IdLoc, diag::ext_enum_value_not_int)
17625 << EnumVal.toString(10) << Val->getSourceRange()
17626 << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
17627 else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
17628 // Force the type of the expression to 'int'.
17629 Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
17630 }
17631 EltTy = Val->getType();
17632 }
17633 }
17634 }
17635 }
17636
17637 if (!Val) {
17638 if (Enum->isDependentType())
17639 EltTy = Context.DependentTy;
17640 else if (!LastEnumConst) {
17641 // C++0x [dcl.enum]p5:
17642 // If the underlying type is not fixed, the type of each enumerator
17643 // is the type of its initializing value:
17644 // - If no initializer is specified for the first enumerator, the
17645 // initializing value has an unspecified integral type.
17646 //
17647 // GCC uses 'int' for its unspecified integral type, as does
17648 // C99 6.7.2.2p3.
17649 if (Enum->isFixed()) {
17650 EltTy = Enum->getIntegerType();
17651 }
17652 else {
17653 EltTy = Context.IntTy;
17654 }
17655 } else {
17656 // Assign the last value + 1.
17657 EnumVal = LastEnumConst->getInitVal();
17658 ++EnumVal;
17659 EltTy = LastEnumConst->getType();
17660
17661 // Check for overflow on increment.
17662 if (EnumVal < LastEnumConst->getInitVal()) {
17663 // C++0x [dcl.enum]p5:
17664 // If the underlying type is not fixed, the type of each enumerator
17665 // is the type of its initializing value:
17666 //
17667 // - Otherwise the type of the initializing value is the same as
17668 // the type of the initializing value of the preceding enumerator
17669 // unless the incremented value is not representable in that type,
17670 // in which case the type is an unspecified integral type
17671 // sufficient to contain the incremented value. If no such type
17672 // exists, the program is ill-formed.
17673 QualType T = getNextLargerIntegralType(Context, EltTy);
17674 if (T.isNull() || Enum->isFixed()) {
17675 // There is no integral type larger enough to represent this
17676 // value. Complain, then allow the value to wrap around.
17677 EnumVal = LastEnumConst->getInitVal();
17678 EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
17679 ++EnumVal;
17680 if (Enum->isFixed())
17681 // When the underlying type is fixed, this is ill-formed.
17682 Diag(IdLoc, diag::err_enumerator_wrapped)
17683 << EnumVal.toString(10)
17684 << EltTy;
17685 else
17686 Diag(IdLoc, diag::ext_enumerator_increment_too_large)
17687 << EnumVal.toString(10);
17688 } else {
17689 EltTy = T;
17690 }
17691
17692 // Retrieve the last enumerator's value, extent that type to the
17693 // type that is supposed to be large enough to represent the incremented
17694 // value, then increment.
17695 EnumVal = LastEnumConst->getInitVal();
17696 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
17697 EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
17698 ++EnumVal;
17699
17700 // If we're not in C++, diagnose the overflow of enumerator values,
17701 // which in C99 means that the enumerator value is not representable in
17702 // an int (C99 6.7.2.2p2). However, we support GCC's extension that
17703 // permits enumerator values that are representable in some larger
17704 // integral type.
17705 if (!getLangOpts().CPlusPlus && !T.isNull())
17706 Diag(IdLoc, diag::warn_enum_value_overflow);
17707 } else if (!getLangOpts().CPlusPlus &&
17708 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
17709 // Enforce C99 6.7.2.2p2 even when we compute the next value.
17710 Diag(IdLoc, diag::ext_enum_value_not_int)
17711 << EnumVal.toString(10) << 1;
17712 }
17713 }
17714 }
17715
17716 if (!EltTy->isDependentType()) {
17717 // Make the enumerator value match the signedness and size of the
17718 // enumerator's type.
17719 EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
17720 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
17721 }
17722
17723 return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
17724 Val, EnumVal);
17725}
17726
17727Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
17728 SourceLocation IILoc) {
17729 if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) ||
17730 !getLangOpts().CPlusPlus)
17731 return SkipBodyInfo();
17732
17733 // We have an anonymous enum definition. Look up the first enumerator to
17734 // determine if we should merge the definition with an existing one and
17735 // skip the body.
17736 NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName,
17737 forRedeclarationInCurContext());
17738 auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl);
17739 if (!PrevECD)
17740 return SkipBodyInfo();
17741
17742 EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext());
17743 NamedDecl *Hidden;
17744 if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) {
17745 SkipBodyInfo Skip;
17746 Skip.Previous = Hidden;
17747 return Skip;
17748 }
17749
17750 return SkipBodyInfo();
17751}
17752
17753Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
17754 SourceLocation IdLoc, IdentifierInfo *Id,
17755 const ParsedAttributesView &Attrs,
17756 SourceLocation EqualLoc, Expr *Val) {
17757 EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
17758 EnumConstantDecl *LastEnumConst =
17759 cast_or_null<EnumConstantDecl>(lastEnumConst);
17760
17761 // The scope passed in may not be a decl scope. Zip up the scope tree until
17762 // we find one that is.
17763 S = getNonFieldDeclScope(S);
17764
17765 // Verify that there isn't already something declared with this name in this
17766 // scope.
17767 LookupResult R(*this, Id, IdLoc, LookupOrdinaryName, ForVisibleRedeclaration);
17768 LookupName(R, S);
17769 NamedDecl *PrevDecl = R.getAsSingle<NamedDecl>();
17770
17771 if (PrevDecl && PrevDecl->isTemplateParameter()) {
17772 // Maybe we will complain about the shadowed template parameter.
17773 DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
17774 // Just pretend that we didn't see the previous declaration.
17775 PrevDecl = nullptr;
17776 }
17777
17778 // C++ [class.mem]p15:
17779 // If T is the name of a class, then each of the following shall have a name
17780 // different from T:
17781 // - every enumerator of every member of class T that is an unscoped
17782 // enumerated type
17783 if (getLangOpts().CPlusPlus && !TheEnumDecl->isScoped())
17784 DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(),
17785 DeclarationNameInfo(Id, IdLoc));
17786
17787 EnumConstantDecl *New =
17788 CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
17789 if (!New)
17790 return nullptr;
17791
17792 if (PrevDecl) {
17793 if (!TheEnumDecl->isScoped() && isa<ValueDecl>(PrevDecl)) {
17794 // Check for other kinds of shadowing not already handled.
17795 CheckShadow(New, PrevDecl, R);
17796 }
17797
17798 // When in C++, we may get a TagDecl with the same name; in this case the
17799 // enum constant will 'hide' the tag.
17800 assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&(((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
"Received TagDecl when not in C++!") ? static_cast<void>
(0) : __assert_fail ("(getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) && \"Received TagDecl when not in C++!\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 17801, __PRETTY_FUNCTION__))
17801 "Received TagDecl when not in C++!")(((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
"Received TagDecl when not in C++!") ? static_cast<void>
(0) : __assert_fail ("(getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) && \"Received TagDecl when not in C++!\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 17801, __PRETTY_FUNCTION__))
;
17802 if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
17803 if (isa<EnumConstantDecl>(PrevDecl))
17804 Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
17805 else
17806 Diag(IdLoc, diag::err_redefinition) << Id;
17807 notePreviousDefinition(PrevDecl, IdLoc);
17808 return nullptr;
17809 }
17810 }
17811
17812 // Process attributes.
17813 ProcessDeclAttributeList(S, New, Attrs);
17814 AddPragmaAttributes(S, New);
17815
17816 // Register this decl in the current scope stack.
17817 New->setAccess(TheEnumDecl->getAccess());
17818 PushOnScopeChains(New, S);
17819
17820 ActOnDocumentableDecl(New);
17821
17822 return New;
17823}
17824
17825// Returns true when the enum initial expression does not trigger the
17826// duplicate enum warning. A few common cases are exempted as follows:
17827// Element2 = Element1
17828// Element2 = Element1 + 1
17829// Element2 = Element1 - 1
17830// Where Element2 and Element1 are from the same enum.
17831static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
17832 Expr *InitExpr = ECD->getInitExpr();
17833 if (!InitExpr)
17834 return true;
17835 InitExpr = InitExpr->IgnoreImpCasts();
17836
17837 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
17838 if (!BO->isAdditiveOp())
17839 return true;
17840 IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
17841 if (!IL)
17842 return true;
17843 if (IL->getValue() != 1)
17844 return true;
17845
17846 InitExpr = BO->getLHS();
17847 }
17848
17849 // This checks if the elements are from the same enum.
17850 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
17851 if (!DRE)
17852 return true;
17853
17854 EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
17855 if (!EnumConstant)
17856 return true;
17857
17858 if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
17859 Enum)
17860 return true;
17861
17862 return false;
17863}
17864
17865// Emits a warning when an element is implicitly set a value that
17866// a previous element has already been set to.
17867static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
17868 EnumDecl *Enum, QualType EnumType) {
17869 // Avoid anonymous enums
17870 if (!Enum->getIdentifier())
17871 return;
17872
17873 // Only check for small enums.
17874 if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
17875 return;
17876
17877 if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
17878 return;
17879
17880 typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
17881 typedef SmallVector<std::unique_ptr<ECDVector>, 3> DuplicatesVector;
17882
17883 typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
17884
17885 // DenseMaps cannot contain the all ones int64_t value, so use unordered_map.
17886 typedef std::unordered_map<int64_t, DeclOrVector> ValueToVectorMap;
17887
17888 // Use int64_t as a key to avoid needing special handling for map keys.
17889 auto EnumConstantToKey = [](const EnumConstantDecl *D) {
17890 llvm::APSInt Val = D->getInitVal();
17891 return Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue();
17892 };
17893
17894 DuplicatesVector DupVector;
17895 ValueToVectorMap EnumMap;
17896
17897 // Populate the EnumMap with all values represented by enum constants without
17898 // an initializer.
17899 for (auto *Element : Elements) {
17900 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Element);
17901
17902 // Null EnumConstantDecl means a previous diagnostic has been emitted for
17903 // this constant. Skip this enum since it may be ill-formed.
17904 if (!ECD) {
17905 return;
17906 }
17907
17908 // Constants with initalizers are handled in the next loop.
17909 if (ECD->getInitExpr())
17910 continue;
17911
17912 // Duplicate values are handled in the next loop.
17913 EnumMap.insert({EnumConstantToKey(ECD), ECD});
17914 }
17915
17916 if (EnumMap.size() == 0)
17917 return;
17918
17919 // Create vectors for any values that has duplicates.
17920 for (auto *Element : Elements) {
17921 // The last loop returned if any constant was null.
17922 EnumConstantDecl *ECD = cast<EnumConstantDecl>(Element);
17923 if (!ValidDuplicateEnum(ECD, Enum))
17924 continue;
17925
17926 auto Iter = EnumMap.find(EnumConstantToKey(ECD));
17927 if (Iter == EnumMap.end())
17928 continue;
17929
17930 DeclOrVector& Entry = Iter->second;
17931 if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
17932 // Ensure constants are different.
17933 if (D == ECD)
17934 continue;
17935
17936 // Create new vector and push values onto it.
17937 auto Vec = std::make_unique<ECDVector>();
17938 Vec->push_back(D);
17939 Vec->push_back(ECD);
17940
17941 // Update entry to point to the duplicates vector.
17942 Entry = Vec.get();
17943
17944 // Store the vector somewhere we can consult later for quick emission of
17945 // diagnostics.
17946 DupVector.emplace_back(std::move(Vec));
17947 continue;
17948 }
17949
17950 ECDVector *Vec = Entry.get<ECDVector*>();
17951 // Make sure constants are not added more than once.
17952 if (*Vec->begin() == ECD)
17953 continue;
17954
17955 Vec->push_back(ECD);
17956 }
17957
17958 // Emit diagnostics.
17959 for (const auto &Vec : DupVector) {
17960 assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.")((Vec->size() > 1 && "ECDVector should have at least 2 elements."
) ? static_cast<void> (0) : __assert_fail ("Vec->size() > 1 && \"ECDVector should have at least 2 elements.\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 17960, __PRETTY_FUNCTION__))
;
17961
17962 // Emit warning for one enum constant.
17963 auto *FirstECD = Vec->front();
17964 S.Diag(FirstECD->getLocation(), diag::warn_duplicate_enum_values)
17965 << FirstECD << FirstECD->getInitVal().toString(10)
17966 << FirstECD->getSourceRange();
17967
17968 // Emit one note for each of the remaining enum constants with
17969 // the same value.
17970 for (auto *ECD : llvm::make_range(Vec->begin() + 1, Vec->end()))
17971 S.Diag(ECD->getLocation(), diag::note_duplicate_element)
17972 << ECD << ECD->getInitVal().toString(10)
17973 << ECD->getSourceRange();
17974 }
17975}
17976
17977bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
17978 bool AllowMask) const {
17979 assert(ED->isClosedFlag() && "looking for value in non-flag or open enum")((ED->isClosedFlag() && "looking for value in non-flag or open enum"
) ? static_cast<void> (0) : __assert_fail ("ED->isClosedFlag() && \"looking for value in non-flag or open enum\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 17979, __PRETTY_FUNCTION__))
;
17980 assert(ED->isCompleteDefinition() && "expected enum definition")((ED->isCompleteDefinition() && "expected enum definition"
) ? static_cast<void> (0) : __assert_fail ("ED->isCompleteDefinition() && \"expected enum definition\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 17980, __PRETTY_FUNCTION__))
;
17981
17982 auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt()));
17983 llvm::APInt &FlagBits = R.first->second;
17984
17985 if (R.second) {
17986 for (auto *E : ED->enumerators()) {
17987 const auto &EVal = E->getInitVal();
17988 // Only single-bit enumerators introduce new flag values.
17989 if (EVal.isPowerOf2())
17990 FlagBits = FlagBits.zextOrSelf(EVal.getBitWidth()) | EVal;
17991 }
17992 }
17993
17994 // A value is in a flag enum if either its bits are a subset of the enum's
17995 // flag bits (the first condition) or we are allowing masks and the same is
17996 // true of its complement (the second condition). When masks are allowed, we
17997 // allow the common idiom of ~(enum1 | enum2) to be a valid enum value.
17998 //
17999 // While it's true that any value could be used as a mask, the assumption is
18000 // that a mask will have all of the insignificant bits set. Anything else is
18001 // likely a logic error.
18002 llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth());
18003 return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val));
18004}
18005
18006void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange,
18007 Decl *EnumDeclX, ArrayRef<Decl *> Elements, Scope *S,
18008 const ParsedAttributesView &Attrs) {
18009 EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
18010 QualType EnumType = Context.getTypeDeclType(Enum);
18011
18012 ProcessDeclAttributeList(S, Enum, Attrs);
18013
18014 if (Enum->isDependentType()) {
18015 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
18016 EnumConstantDecl *ECD =
18017 cast_or_null<EnumConstantDecl>(Elements[i]);
18018 if (!ECD) continue;
18019
18020 ECD->setType(EnumType);
18021 }
18022
18023 Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
18024 return;
18025 }
18026
18027 // TODO: If the result value doesn't fit in an int, it must be a long or long
18028 // long value. ISO C does not support this, but GCC does as an extension,
18029 // emit a warning.
18030 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
18031 unsigned CharWidth = Context.getTargetInfo().getCharWidth();
18032 unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
18033
18034 // Verify that all the values are okay, compute the size of the values, and
18035 // reverse the list.
18036 unsigned NumNegativeBits = 0;
18037 unsigned NumPositiveBits = 0;
18038
18039 // Keep track of whether all elements have type int.
18040 bool AllElementsInt = true;
18041
18042 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
18043 EnumConstantDecl *ECD =
18044 cast_or_null<EnumConstantDecl>(Elements[i]);
18045 if (!ECD) continue; // Already issued a diagnostic.
18046
18047 const llvm::APSInt &InitVal = ECD->getInitVal();
18048
18049 // Keep track of the size of positive and negative values.
18050 if (InitVal.isUnsigned() || InitVal.isNonNegative())
18051 NumPositiveBits = std::max(NumPositiveBits,
18052 (unsigned)InitVal.getActiveBits());
18053 else
18054 NumNegativeBits = std::max(NumNegativeBits,
18055 (unsigned)InitVal.getMinSignedBits());
18056
18057 // Keep track of whether every enum element has type int (very common).
18058 if (AllElementsInt)
18059 AllElementsInt = ECD->getType() == Context.IntTy;
18060 }
18061
18062 // Figure out the type that should be used for this enum.
18063 QualType BestType;
18064 unsigned BestWidth;
18065
18066 // C++0x N3000 [conv.prom]p3:
18067 // An rvalue of an unscoped enumeration type whose underlying
18068 // type is not fixed can be converted to an rvalue of the first
18069 // of the following types that can represent all the values of
18070 // the enumeration: int, unsigned int, long int, unsigned long
18071 // int, long long int, or unsigned long long int.
18072 // C99 6.4.4.3p2:
18073 // An identifier declared as an enumeration constant has type int.
18074 // The C99 rule is modified by a gcc extension
18075 QualType BestPromotionType;
18076
18077 bool Packed = Enum->hasAttr<PackedAttr>();
18078 // -fshort-enums is the equivalent to specifying the packed attribute on all
18079 // enum definitions.
18080 if (LangOpts.ShortEnums)
18081 Packed = true;
18082
18083 // If the enum already has a type because it is fixed or dictated by the
18084 // target, promote that type instead of analyzing the enumerators.
18085 if (Enum->isComplete()) {
18086 BestType = Enum->getIntegerType();
18087 if (BestType->isPromotableIntegerType())
18088 BestPromotionType = Context.getPromotedIntegerType(BestType);
18089 else
18090 BestPromotionType = BestType;
18091
18092 BestWidth = Context.getIntWidth(BestType);
18093 }
18094 else if (NumNegativeBits) {
18095 // If there is a negative value, figure out the smallest integer type (of
18096 // int/long/longlong) that fits.
18097 // If it's packed, check also if it fits a char or a short.
18098 if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
18099 BestType = Context.SignedCharTy;
18100 BestWidth = CharWidth;
18101 } else if (Packed && NumNegativeBits <= ShortWidth &&
18102 NumPositiveBits < ShortWidth) {
18103 BestType = Context.ShortTy;
18104 BestWidth = ShortWidth;
18105 } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
18106 BestType = Context.IntTy;
18107 BestWidth = IntWidth;
18108 } else {
18109 BestWidth = Context.getTargetInfo().getLongWidth();
18110
18111 if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
18112 BestType = Context.LongTy;
18113 } else {
18114 BestWidth = Context.getTargetInfo().getLongLongWidth();
18115
18116 if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
18117 Diag(Enum->getLocation(), diag::ext_enum_too_large);
18118 BestType = Context.LongLongTy;
18119 }
18120 }
18121 BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
18122 } else {
18123 // If there is no negative value, figure out the smallest type that fits
18124 // all of the enumerator values.
18125 // If it's packed, check also if it fits a char or a short.
18126 if (Packed && NumPositiveBits <= CharWidth) {
18127 BestType = Context.UnsignedCharTy;
18128 BestPromotionType = Context.IntTy;
18129 BestWidth = CharWidth;
18130 } else if (Packed && NumPositiveBits <= ShortWidth) {
18131 BestType = Context.UnsignedShortTy;
18132 BestPromotionType = Context.IntTy;
18133 BestWidth = ShortWidth;
18134 } else if (NumPositiveBits <= IntWidth) {
18135 BestType = Context.UnsignedIntTy;
18136 BestWidth = IntWidth;
18137 BestPromotionType
18138 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
18139 ? Context.UnsignedIntTy : Context.IntTy;
18140 } else if (NumPositiveBits <=
18141 (BestWidth = Context.getTargetInfo().getLongWidth())) {
18142 BestType = Context.UnsignedLongTy;
18143 BestPromotionType
18144 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
18145 ? Context.UnsignedLongTy : Context.LongTy;
18146 } else {
18147 BestWidth = Context.getTargetInfo().getLongLongWidth();
18148 assert(NumPositiveBits <= BestWidth &&((NumPositiveBits <= BestWidth && "How could an initializer get larger than ULL?"
) ? static_cast<void> (0) : __assert_fail ("NumPositiveBits <= BestWidth && \"How could an initializer get larger than ULL?\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 18149, __PRETTY_FUNCTION__))
18149 "How could an initializer get larger than ULL?")((NumPositiveBits <= BestWidth && "How could an initializer get larger than ULL?"
) ? static_cast<void> (0) : __assert_fail ("NumPositiveBits <= BestWidth && \"How could an initializer get larger than ULL?\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/lib/Sema/SemaDecl.cpp"
, 18149, __PRETTY_FUNCTION__))
;
18150 BestType = Context.UnsignedLongLongTy;
18151 BestPromotionType
18152 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
18153 ? Context.UnsignedLongLongTy : Context.LongLongTy;
18154 }
18155 }
18156
18157 // Loop over all of the enumerator constants, changing their types to match
18158 // the type of the enum if needed.
18159 for (auto *D : Elements) {
18160 auto *ECD = cast_or_null<EnumConstantDecl>(D);
18161 if (!ECD) continue; // Already issued a diagnostic.
18162
18163 // Standard C says the enumerators have int type, but we allow, as an
18164 // extension, the enumerators to be larger than int size. If each
18165 // enumerator value fits in an int, type it as an int, otherwise type it the
18166 // same as the enumerator decl itself. This means that in "enum { X = 1U }"
18167 // that X has type 'int', not 'unsigned'.
18168
18169 // Determine whether the value fits into an int.
18170 llvm::APSInt InitVal = ECD->getInitVal();
18171
18172 // If it fits into an integer type, force it. Otherwise force it to match
18173 // the enum decl type.
18174 QualType NewTy;
18175 unsigned NewWidth;
18176 bool NewSign;
18177 if (!getLangOpts().CPlusPlus &&
18178 !Enum->isFixed() &&
18179 isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
18180 NewTy = Context.IntTy;
18181 NewWidth = IntWidth;
18182 NewSign = true;
18183 } else if (ECD->getType() == BestType) {
18184 // Already the right type!
18185 if (getLangOpts().CPlusPlus)
18186 // C++ [dcl.enum]p4: Following the closing brace of an
18187 // enum-specifier, each enumerator has the type of its
18188 // enumeration.
18189 ECD->setType(EnumType);
18190 continue;
18191 } else {
18192 NewTy = BestType;
18193 NewWidth = BestWidth;
18194 NewSign = BestType->isSignedIntegerOrEnumerationType();
18195 }
18196
18197 // Adjust the APSInt value.
18198 InitVal = InitVal.extOrTrunc(NewWidth);
18199 InitVal.setIsSigned(NewSign);
18200 ECD->setInitVal(InitVal);
18201
18202 // Adjust the Expr initializer and type.
18203 if (ECD->getInitExpr() &&
18204 !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
18205 ECD->setInitExpr(ImplicitCastExpr::Create(
18206 Context, NewTy, CK_IntegralCast, ECD->getInitExpr(),
18207 /*base paths*/ nullptr, VK_RValue, FPOptionsOverride()));
18208 if (getLangOpts().CPlusPlus)
18209 // C++ [dcl.enum]p4: Following the closing brace of an
18210 // enum-specifier, each enumerator has the type of its
18211 // enumeration.
18212 ECD->setType(EnumType);
18213 else
18214 ECD->setType(NewTy);
18215 }
18216
18217 Enum->completeDefinition(BestType, BestPromotionType,
18218 NumPositiveBits, NumNegativeBits);
18219
18220 CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
18221
18222 if (Enum->isClosedFlag()) {
18223 for (Decl *D : Elements) {
18224 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D);
18225 if (!ECD) continue; // Already issued a diagnostic.
18226
18227 llvm::APSInt InitVal = ECD->getInitVal();
18228 if (InitVal != 0 && !InitVal.isPowerOf2() &&
18229 !IsValueInFlagEnum(Enum, InitVal, true))
18230 Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range)
18231 << ECD << Enum;
18232 }
18233 }
18234
18235 // Now that the enum type is defined, ensure it's not been underaligned.
18236 if (Enum->hasAttrs())
18237 CheckAlignasUnderalignment(Enum);
18238}
18239
18240Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
18241 SourceLocation StartLoc,
18242 SourceLocation EndLoc) {
18243 StringLiteral *AsmString = cast<StringLiteral>(expr);
18244
18245 FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
18246 AsmString, StartLoc,
18247 EndLoc);
18248 CurContext->addDecl(New);
18249 return New;
18250}
18251
18252void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
18253 IdentifierInfo* AliasName,
18254 SourceLocation PragmaLoc,
18255 SourceLocation NameLoc,
18256 SourceLocation AliasNameLoc) {
18257 NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
18258 LookupOrdinaryName);
18259 AttributeCommonInfo Info(AliasName, SourceRange(AliasNameLoc),
18260 AttributeCommonInfo::AS_Pragma);
18261 AsmLabelAttr *Attr = AsmLabelAttr::CreateImplicit(
18262 Context, AliasName->getName(), /*LiteralLabel=*/true, Info);
18263
18264 // If a declaration that:
18265 // 1) declares a function or a variable
18266 // 2) has external linkage
18267 // already exists, add a label attribute to it.
18268 if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
18269 if (isDeclExternC(PrevDecl))
18270 PrevDecl->addAttr(Attr);
18271 else
18272 Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied)
18273 << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl;
18274 // Otherwise, add a label atttibute to ExtnameUndeclaredIdentifiers.
18275 } else
18276 (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr));
18277}
18278
18279void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
18280 SourceLocation PragmaLoc,
18281 SourceLocation NameLoc) {
18282 Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
18283
18284 if (PrevDecl) {
18285 PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc, AttributeCommonInfo::AS_Pragma));
18286 } else {
18287 (void)WeakUndeclaredIdentifiers.insert(
18288 std::pair<IdentifierInfo*,WeakInfo>
18289 (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc)));
18290 }
18291}
18292
18293void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
18294 IdentifierInfo* AliasName,
18295 SourceLocation PragmaLoc,
18296 SourceLocation NameLoc,
18297 SourceLocation AliasNameLoc) {
18298 Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
18299 LookupOrdinaryName);
18300 WeakInfo W = WeakInfo(Name, NameLoc);
18301
18302 if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
18303 if (!PrevDecl->hasAttr<AliasAttr>())
18304 if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
18305 DeclApplyPragmaWeak(TUScope, ND, W);
18306 } else {
18307 (void)WeakUndeclaredIdentifiers.insert(
18308 std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
18309 }
18310}
18311
18312Decl *Sema::getObjCDeclContext() const {
18313 return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
18314}
18315
18316Sema::FunctionEmissionStatus Sema::getEmissionStatus(FunctionDecl *FD,
18317 bool Final) {
18318 // SYCL functions can be template, so we check if they have appropriate
18319 // attribute prior to checking if it is a template.
18320 if (LangOpts.SYCLIsDevice && FD->hasAttr<SYCLKernelAttr>())
18321 return FunctionEmissionStatus::Emitted;
18322
18323 // Templates are emitted when they're instantiated.
18324 if (FD->isDependentContext())
18325 return FunctionEmissionStatus::TemplateDiscarded;
18326
18327 FunctionEmissionStatus OMPES = FunctionEmissionStatus::Unknown;
18328 if (LangOpts.OpenMPIsDevice) {
18329 Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
18330 OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl());
18331 if (DevTy.hasValue()) {
18332 if (*DevTy == OMPDeclareTargetDeclAttr::DT_Host)
18333 OMPES = FunctionEmissionStatus::OMPDiscarded;
18334 else if (*DevTy == OMPDeclareTargetDeclAttr::DT_NoHost ||
18335 *DevTy == OMPDeclareTargetDeclAttr::DT_Any) {
18336 OMPES = FunctionEmissionStatus::Emitted;
18337 }
18338 }
18339 } else if (LangOpts.OpenMP) {
18340 // In OpenMP 4.5 all the functions are host functions.
18341 if (LangOpts.OpenMP <= 45) {
18342 OMPES = FunctionEmissionStatus::Emitted;
18343 } else {
18344 Optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy =
18345 OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl());
18346 // In OpenMP 5.0 or above, DevTy may be changed later by
18347 // #pragma omp declare target to(*) device_type(*). Therefore DevTy
18348 // having no value does not imply host. The emission status will be
18349 // checked again at the end of compilation unit.
18350 if (DevTy.hasValue()) {
18351 if (*DevTy == OMPDeclareTargetDeclAttr::DT_NoHost) {
18352 OMPES = FunctionEmissionStatus::OMPDiscarded;
18353 } else if (*DevTy == OMPDeclareTargetDeclAttr::DT_Host ||
18354 *DevTy == OMPDeclareTargetDeclAttr::DT_Any)
18355 OMPES = FunctionEmissionStatus::Emitted;
18356 } else if (Final)
18357 OMPES = FunctionEmissionStatus::Emitted;
18358 }
18359 }
18360 if (OMPES == FunctionEmissionStatus::OMPDiscarded ||
18361 (OMPES == FunctionEmissionStatus::Emitted && !LangOpts.CUDA))
18362 return OMPES;
18363
18364 if (LangOpts.CUDA) {
18365 // When compiling for device, host functions are never emitted. Similarly,
18366 // when compiling for host, device and global functions are never emitted.
18367 // (Technically, we do emit a host-side stub for global functions, but this
18368 // doesn't count for our purposes here.)
18369 Sema::CUDAFunctionTarget T = IdentifyCUDATarget(FD);
18370 if (LangOpts.CUDAIsDevice && T == Sema::CFT_Host)
18371 return FunctionEmissionStatus::CUDADiscarded;
18372 if (!LangOpts.CUDAIsDevice &&
18373 (T == Sema::CFT_Device || T == Sema::CFT_Global))
18374 return FunctionEmissionStatus::CUDADiscarded;
18375
18376 // Check whether this function is externally visible -- if so, it's
18377 // known-emitted.
18378 //
18379 // We have to check the GVA linkage of the function's *definition* -- if we
18380 // only have a declaration, we don't know whether or not the function will
18381 // be emitted, because (say) the definition could include "inline".
18382 FunctionDecl *Def = FD->getDefinition();
18383
18384 if (Def &&
18385 !isDiscardableGVALinkage(getASTContext().GetGVALinkageForFunction(Def))
18386 && (!LangOpts.OpenMP || OMPES == FunctionEmissionStatus::Emitted))
18387 return FunctionEmissionStatus::Emitted;
18388 }
18389
18390 // Otherwise, the function is known-emitted if it's in our set of
18391 // known-emitted functions.
18392 return FunctionEmissionStatus::Unknown;
18393}
18394
18395bool Sema::shouldIgnoreInHostDeviceCheck(FunctionDecl *Callee) {
18396 // Host-side references to a __global__ function refer to the stub, so the
18397 // function itself is never emitted and therefore should not be marked.
18398 // If we have host fn calls kernel fn calls host+device, the HD function
18399 // does not get instantiated on the host. We model this by omitting at the
18400 // call to the kernel from the callgraph. This ensures that, when compiling
18401 // for host, only HD functions actually called from the host get marked as
18402 // known-emitted.
18403 return LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
18404 IdentifyCUDATarget(Callee) == CFT_Global;
18405}

/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/include/clang/AST/DeclBase.h

1//===- DeclBase.h - Base Classes for representing declarations --*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file defines the Decl and DeclContext interfaces.
10//
11//===----------------------------------------------------------------------===//
12
13#ifndef LLVM_CLANG_AST_DECLBASE_H
14#define LLVM_CLANG_AST_DECLBASE_H
15
16#include "clang/AST/ASTDumperUtils.h"
17#include "clang/AST/AttrIterator.h"
18#include "clang/AST/DeclarationName.h"
19#include "clang/Basic/IdentifierTable.h"
20#include "clang/Basic/LLVM.h"
21#include "clang/Basic/SourceLocation.h"
22#include "clang/Basic/Specifiers.h"
23#include "llvm/ADT/ArrayRef.h"
24#include "llvm/ADT/PointerIntPair.h"
25#include "llvm/ADT/PointerUnion.h"
26#include "llvm/ADT/iterator.h"
27#include "llvm/ADT/iterator_range.h"
28#include "llvm/Support/Casting.h"
29#include "llvm/Support/Compiler.h"
30#include "llvm/Support/PrettyStackTrace.h"
31#include "llvm/Support/VersionTuple.h"
32#include <algorithm>
33#include <cassert>
34#include <cstddef>
35#include <iterator>
36#include <string>
37#include <type_traits>
38#include <utility>
39
40namespace clang {
41
42class ASTContext;
43class ASTMutationListener;
44class Attr;
45class BlockDecl;
46class DeclContext;
47class ExternalSourceSymbolAttr;
48class FunctionDecl;
49class FunctionType;
50class IdentifierInfo;
51enum Linkage : unsigned char;
52class LinkageSpecDecl;
53class Module;
54class NamedDecl;
55class ObjCCategoryDecl;
56class ObjCCategoryImplDecl;
57class ObjCContainerDecl;
58class ObjCImplDecl;
59class ObjCImplementationDecl;
60class ObjCInterfaceDecl;
61class ObjCMethodDecl;
62class ObjCProtocolDecl;
63struct PrintingPolicy;
64class RecordDecl;
65class SourceManager;
66class Stmt;
67class StoredDeclsMap;
68class TemplateDecl;
69class TemplateParameterList;
70class TranslationUnitDecl;
71class UsingDirectiveDecl;
72
73/// Captures the result of checking the availability of a
74/// declaration.
75enum AvailabilityResult {
76 AR_Available = 0,
77 AR_NotYetIntroduced,
78 AR_Deprecated,
79 AR_Unavailable
80};
81
82/// Decl - This represents one declaration (or definition), e.g. a variable,
83/// typedef, function, struct, etc.
84///
85/// Note: There are objects tacked on before the *beginning* of Decl
86/// (and its subclasses) in its Decl::operator new(). Proper alignment
87/// of all subclasses (not requiring more than the alignment of Decl) is
88/// asserted in DeclBase.cpp.
89class alignas(8) Decl {
90public:
91 /// Lists the kind of concrete classes of Decl.
92 enum Kind {
93#define DECL(DERIVED, BASE) DERIVED,
94#define ABSTRACT_DECL(DECL)
95#define DECL_RANGE(BASE, START, END) \
96 first##BASE = START, last##BASE = END,
97#define LAST_DECL_RANGE(BASE, START, END) \
98 first##BASE = START, last##BASE = END
99#include "clang/AST/DeclNodes.inc"
100 };
101
102 /// A placeholder type used to construct an empty shell of a
103 /// decl-derived type that will be filled in later (e.g., by some
104 /// deserialization method).
105 struct EmptyShell {};
106
107 /// IdentifierNamespace - The different namespaces in which
108 /// declarations may appear. According to C99 6.2.3, there are
109 /// four namespaces, labels, tags, members and ordinary
110 /// identifiers. C++ describes lookup completely differently:
111 /// certain lookups merely "ignore" certain kinds of declarations,
112 /// usually based on whether the declaration is of a type, etc.
113 ///
114 /// These are meant as bitmasks, so that searches in
115 /// C++ can look into the "tag" namespace during ordinary lookup.
116 ///
117 /// Decl currently provides 15 bits of IDNS bits.
118 enum IdentifierNamespace {
119 /// Labels, declared with 'x:' and referenced with 'goto x'.
120 IDNS_Label = 0x0001,
121
122 /// Tags, declared with 'struct foo;' and referenced with
123 /// 'struct foo'. All tags are also types. This is what
124 /// elaborated-type-specifiers look for in C.
125 /// This also contains names that conflict with tags in the
126 /// same scope but that are otherwise ordinary names (non-type
127 /// template parameters and indirect field declarations).
128 IDNS_Tag = 0x0002,
129
130 /// Types, declared with 'struct foo', typedefs, etc.
131 /// This is what elaborated-type-specifiers look for in C++,
132 /// but note that it's ill-formed to find a non-tag.
133 IDNS_Type = 0x0004,
134
135 /// Members, declared with object declarations within tag
136 /// definitions. In C, these can only be found by "qualified"
137 /// lookup in member expressions. In C++, they're found by
138 /// normal lookup.
139 IDNS_Member = 0x0008,
140
141 /// Namespaces, declared with 'namespace foo {}'.
142 /// Lookup for nested-name-specifiers find these.
143 IDNS_Namespace = 0x0010,
144
145 /// Ordinary names. In C, everything that's not a label, tag,
146 /// member, or function-local extern ends up here.
147 IDNS_Ordinary = 0x0020,
148
149 /// Objective C \@protocol.
150 IDNS_ObjCProtocol = 0x0040,
151
152 /// This declaration is a friend function. A friend function
153 /// declaration is always in this namespace but may also be in
154 /// IDNS_Ordinary if it was previously declared.
155 IDNS_OrdinaryFriend = 0x0080,
156
157 /// This declaration is a friend class. A friend class
158 /// declaration is always in this namespace but may also be in
159 /// IDNS_Tag|IDNS_Type if it was previously declared.
160 IDNS_TagFriend = 0x0100,
161
162 /// This declaration is a using declaration. A using declaration
163 /// *introduces* a number of other declarations into the current
164 /// scope, and those declarations use the IDNS of their targets,
165 /// but the actual using declarations go in this namespace.
166 IDNS_Using = 0x0200,
167
168 /// This declaration is a C++ operator declared in a non-class
169 /// context. All such operators are also in IDNS_Ordinary.
170 /// C++ lexical operator lookup looks for these.
171 IDNS_NonMemberOperator = 0x0400,
172
173 /// This declaration is a function-local extern declaration of a
174 /// variable or function. This may also be IDNS_Ordinary if it
175 /// has been declared outside any function. These act mostly like
176 /// invisible friend declarations, but are also visible to unqualified
177 /// lookup within the scope of the declaring function.
178 IDNS_LocalExtern = 0x0800,
179
180 /// This declaration is an OpenMP user defined reduction construction.
181 IDNS_OMPReduction = 0x1000,
182
183 /// This declaration is an OpenMP user defined mapper.
184 IDNS_OMPMapper = 0x2000,
185 };
186
187 /// ObjCDeclQualifier - 'Qualifiers' written next to the return and
188 /// parameter types in method declarations. Other than remembering
189 /// them and mangling them into the method's signature string, these
190 /// are ignored by the compiler; they are consumed by certain
191 /// remote-messaging frameworks.
192 ///
193 /// in, inout, and out are mutually exclusive and apply only to
194 /// method parameters. bycopy and byref are mutually exclusive and
195 /// apply only to method parameters (?). oneway applies only to
196 /// results. All of these expect their corresponding parameter to
197 /// have a particular type. None of this is currently enforced by
198 /// clang.
199 ///
200 /// This should be kept in sync with ObjCDeclSpec::ObjCDeclQualifier.
201 enum ObjCDeclQualifier {
202 OBJC_TQ_None = 0x0,
203 OBJC_TQ_In = 0x1,
204 OBJC_TQ_Inout = 0x2,
205 OBJC_TQ_Out = 0x4,
206 OBJC_TQ_Bycopy = 0x8,
207 OBJC_TQ_Byref = 0x10,
208 OBJC_TQ_Oneway = 0x20,
209
210 /// The nullability qualifier is set when the nullability of the
211 /// result or parameter was expressed via a context-sensitive
212 /// keyword.
213 OBJC_TQ_CSNullability = 0x40
214 };
215
216 /// The kind of ownership a declaration has, for visibility purposes.
217 /// This enumeration is designed such that higher values represent higher
218 /// levels of name hiding.
219 enum class ModuleOwnershipKind : unsigned {
220 /// This declaration is not owned by a module.
221 Unowned,
222
223 /// This declaration has an owning module, but is globally visible
224 /// (typically because its owning module is visible and we know that
225 /// modules cannot later become hidden in this compilation).
226 /// After serialization and deserialization, this will be converted
227 /// to VisibleWhenImported.
228 Visible,
229
230 /// This declaration has an owning module, and is visible when that
231 /// module is imported.
232 VisibleWhenImported,
233
234 /// This declaration has an owning module, but is only visible to
235 /// lookups that occur within that module.
236 ModulePrivate
237 };
238
239protected:
240 /// The next declaration within the same lexical
241 /// DeclContext. These pointers form the linked list that is
242 /// traversed via DeclContext's decls_begin()/decls_end().
243 ///
244 /// The extra two bits are used for the ModuleOwnershipKind.
245 llvm::PointerIntPair<Decl *, 2, ModuleOwnershipKind> NextInContextAndBits;
246
247private:
248 friend class DeclContext;
249
250 struct MultipleDC {
251 DeclContext *SemanticDC;
252 DeclContext *LexicalDC;
253 };
254
255 /// DeclCtx - Holds either a DeclContext* or a MultipleDC*.
256 /// For declarations that don't contain C++ scope specifiers, it contains
257 /// the DeclContext where the Decl was declared.
258 /// For declarations with C++ scope specifiers, it contains a MultipleDC*
259 /// with the context where it semantically belongs (SemanticDC) and the
260 /// context where it was lexically declared (LexicalDC).
261 /// e.g.:
262 ///
263 /// namespace A {
264 /// void f(); // SemanticDC == LexicalDC == 'namespace A'
265 /// }
266 /// void A::f(); // SemanticDC == namespace 'A'
267 /// // LexicalDC == global namespace
268 llvm::PointerUnion<DeclContext*, MultipleDC*> DeclCtx;
269
270 bool isInSemaDC() const { return DeclCtx.is<DeclContext*>(); }
271 bool isOutOfSemaDC() const { return DeclCtx.is<MultipleDC*>(); }
272
273 MultipleDC *getMultipleDC() const {
274 return DeclCtx.get<MultipleDC*>();
275 }
276
277 DeclContext *getSemanticDC() const {
278 return DeclCtx.get<DeclContext*>();
279 }
280
281 /// Loc - The location of this decl.
282 SourceLocation Loc;
283
284 /// DeclKind - This indicates which class this is.
285 unsigned DeclKind : 7;
286
287 /// InvalidDecl - This indicates a semantic error occurred.
288 unsigned InvalidDecl : 1;
289
290 /// HasAttrs - This indicates whether the decl has attributes or not.
291 unsigned HasAttrs : 1;
292
293 /// Implicit - Whether this declaration was implicitly generated by
294 /// the implementation rather than explicitly written by the user.
295 unsigned Implicit : 1;
296
297 /// Whether this declaration was "used", meaning that a definition is
298 /// required.
299 unsigned Used : 1;
300
301 /// Whether this declaration was "referenced".
302 /// The difference with 'Used' is whether the reference appears in a
303 /// evaluated context or not, e.g. functions used in uninstantiated templates
304 /// are regarded as "referenced" but not "used".
305 unsigned Referenced : 1;
306
307 /// Whether this declaration is a top-level declaration (function,
308 /// global variable, etc.) that is lexically inside an objc container
309 /// definition.
310 unsigned TopLevelDeclInObjCContainer : 1;
311
312 /// Whether statistic collection is enabled.
313 static bool StatisticsEnabled;
314
315protected:
316 friend class ASTDeclReader;
317 friend class ASTDeclWriter;
318 friend class ASTNodeImporter;
319 friend class ASTReader;
320 friend class CXXClassMemberWrapper;
321 friend class LinkageComputer;
322 template<typename decl_type> friend class Redeclarable;
323
324 /// Access - Used by C++ decls for the access specifier.
325 // NOTE: VC++ treats enums as signed, avoid using the AccessSpecifier enum
326 unsigned Access : 2;
327
328 /// Whether this declaration was loaded from an AST file.
329 unsigned FromASTFile : 1;
330
331 /// IdentifierNamespace - This specifies what IDNS_* namespace this lives in.
332 unsigned IdentifierNamespace : 14;
333
334 /// If 0, we have not computed the linkage of this declaration.
335 /// Otherwise, it is the linkage + 1.
336 mutable unsigned CacheValidAndLinkage : 3;
337
338 /// Allocate memory for a deserialized declaration.
339 ///
340 /// This routine must be used to allocate memory for any declaration that is
341 /// deserialized from a module file.
342 ///
343 /// \param Size The size of the allocated object.
344 /// \param Ctx The context in which we will allocate memory.
345 /// \param ID The global ID of the deserialized declaration.
346 /// \param Extra The amount of extra space to allocate after the object.
347 void *operator new(std::size_t Size, const ASTContext &Ctx, unsigned ID,
348 std::size_t Extra = 0);
349
350 /// Allocate memory for a non-deserialized declaration.
351 void *operator new(std::size_t Size, const ASTContext &Ctx,
352 DeclContext *Parent, std::size_t Extra = 0);
353
354private:
355 bool AccessDeclContextSanity() const;
356
357 /// Get the module ownership kind to use for a local lexical child of \p DC,
358 /// which may be either a local or (rarely) an imported declaration.
359 static ModuleOwnershipKind getModuleOwnershipKindForChildOf(DeclContext *DC) {
360 if (DC) {
361 auto *D = cast<Decl>(DC);
362 auto MOK = D->getModuleOwnershipKind();
363 if (MOK != ModuleOwnershipKind::Unowned &&
364 (!D->isFromASTFile() || D->hasLocalOwningModuleStorage()))
365 return MOK;
366 // If D is not local and we have no local module storage, then we don't
367 // need to track module ownership at all.
368 }
369 return ModuleOwnershipKind::Unowned;
370 }
371
372public:
373 Decl() = delete;
374 Decl(const Decl&) = delete;
375 Decl(Decl &&) = delete;
376 Decl &operator=(const Decl&) = delete;
377 Decl &operator=(Decl&&) = delete;
378
379protected:
380 Decl(Kind DK, DeclContext *DC, SourceLocation L)
381 : NextInContextAndBits(nullptr, getModuleOwnershipKindForChildOf(DC)),
382 DeclCtx(DC), Loc(L), DeclKind(DK), InvalidDecl(false), HasAttrs(false),
383 Implicit(false), Used(false), Referenced(false),
384 TopLevelDeclInObjCContainer(false), Access(AS_none), FromASTFile(0),
385 IdentifierNamespace(getIdentifierNamespaceForKind(DK)),
386 CacheValidAndLinkage(0) {
387 if (StatisticsEnabled) add(DK);
388 }
389
390 Decl(Kind DK, EmptyShell Empty)
391 : DeclKind(DK), InvalidDecl(false), HasAttrs(false), Implicit(false),
392 Used(false), Referenced(false), TopLevelDeclInObjCContainer(false),
393 Access(AS_none), FromASTFile(0),
394 IdentifierNamespace(getIdentifierNamespaceForKind(DK)),
395 CacheValidAndLinkage(0) {
396 if (StatisticsEnabled) add(DK);
397 }
398
399 virtual ~Decl();
400
401 /// Update a potentially out-of-date declaration.
402 void updateOutOfDate(IdentifierInfo &II) const;
403
404 Linkage getCachedLinkage() const {
405 return Linkage(CacheValidAndLinkage - 1);
406 }
407
408 void setCachedLinkage(Linkage L) const {
409 CacheValidAndLinkage = L + 1;
410 }
411
412 bool hasCachedLinkage() const {
413 return CacheValidAndLinkage;
414 }
415
416public:
417 /// Source range that this declaration covers.
418 virtual SourceRange getSourceRange() const LLVM_READONLY__attribute__((__pure__)) {
419 return SourceRange(getLocation(), getLocation());
420 }
421
422 SourceLocation getBeginLoc() const LLVM_READONLY__attribute__((__pure__)) {
423 return getSourceRange().getBegin();
424 }
425
426 SourceLocation getEndLoc() const LLVM_READONLY__attribute__((__pure__)) {
427 return getSourceRange().getEnd();
428 }
429
430 SourceLocation getLocation() const { return Loc; }
431 void setLocation(SourceLocation L) { Loc = L; }
432
433 Kind getKind() const { return static_cast<Kind>(DeclKind); }
434 const char *getDeclKindName() const;
435
436 Decl *getNextDeclInContext() { return NextInContextAndBits.getPointer(); }
437 const Decl *getNextDeclInContext() const {return NextInContextAndBits.getPointer();}
438
439 DeclContext *getDeclContext() {
440 if (isInSemaDC())
441 return getSemanticDC();
442 return getMultipleDC()->SemanticDC;
443 }
444 const DeclContext *getDeclContext() const {
445 return const_cast<Decl*>(this)->getDeclContext();
446 }
447
448 /// Find the innermost non-closure ancestor of this declaration,
449 /// walking up through blocks, lambdas, etc. If that ancestor is
450 /// not a code context (!isFunctionOrMethod()), returns null.
451 ///
452 /// A declaration may be its own non-closure context.
453 Decl *getNonClosureContext();
454 const Decl *getNonClosureContext() const {
455 return const_cast<Decl*>(this)->getNonClosureContext();
456 }
457
458 TranslationUnitDecl *getTranslationUnitDecl();
459 const TranslationUnitDecl *getTranslationUnitDecl() const {
460 return const_cast<Decl*>(this)->getTranslationUnitDecl();
461 }
462
463 bool isInAnonymousNamespace() const;
464
465 bool isInStdNamespace() const;
466
467 ASTContext &getASTContext() const LLVM_READONLY__attribute__((__pure__));
468
469 /// Helper to get the language options from the ASTContext.
470 /// Defined out of line to avoid depending on ASTContext.h.
471 const LangOptions &getLangOpts() const LLVM_READONLY__attribute__((__pure__));
472
473 void setAccess(AccessSpecifier AS) {
474 Access = AS;
475 assert(AccessDeclContextSanity())((AccessDeclContextSanity()) ? static_cast<void> (0) : __assert_fail
("AccessDeclContextSanity()", "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/include/clang/AST/DeclBase.h"
, 475, __PRETTY_FUNCTION__))
;
476 }
477
478 AccessSpecifier getAccess() const {
479 assert(AccessDeclContextSanity())((AccessDeclContextSanity()) ? static_cast<void> (0) : __assert_fail
("AccessDeclContextSanity()", "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/include/clang/AST/DeclBase.h"
, 479, __PRETTY_FUNCTION__))
;
480 return AccessSpecifier(Access);
481 }
482
483 /// Retrieve the access specifier for this declaration, even though
484 /// it may not yet have been properly set.
485 AccessSpecifier getAccessUnsafe() const {
486 return AccessSpecifier(Access);
487 }
488
489 bool hasAttrs() const { return HasAttrs; }
490
491 void setAttrs(const AttrVec& Attrs) {
492 return setAttrsImpl(Attrs, getASTContext());
493 }
494
495 AttrVec &getAttrs() {
496 return const_cast<AttrVec&>(const_cast<const Decl*>(this)->getAttrs());
497 }
498
499 const AttrVec &getAttrs() const;
500 void dropAttrs();
501 void addAttr(Attr *A);
502
503 using attr_iterator = AttrVec::const_iterator;
504 using attr_range = llvm::iterator_range<attr_iterator>;
505
506 attr_range attrs() const {
507 return attr_range(attr_begin(), attr_end());
508 }
509
510 attr_iterator attr_begin() const {
511 return hasAttrs() ? getAttrs().begin() : nullptr;
512 }
513 attr_iterator attr_end() const {
514 return hasAttrs() ? getAttrs().end() : nullptr;
515 }
516
517 template <typename T>
518 void dropAttr() {
519 if (!HasAttrs) return;
520
521 AttrVec &Vec = getAttrs();
522 llvm::erase_if(Vec, [](Attr *A) { return isa<T>(A); });
523
524 if (Vec.empty())
525 HasAttrs = false;
526 }
527
528 template <typename T>
529 llvm::iterator_range<specific_attr_iterator<T>> specific_attrs() const {
530 return llvm::make_range(specific_attr_begin<T>(), specific_attr_end<T>());
531 }
532
533 template <typename T>
534 specific_attr_iterator<T> specific_attr_begin() const {
535 return specific_attr_iterator<T>(attr_begin());
536 }
537
538 template <typename T>
539 specific_attr_iterator<T> specific_attr_end() const {
540 return specific_attr_iterator<T>(attr_end());
541 }
542
543 template<typename T> T *getAttr() const {
544 return hasAttrs() ? getSpecificAttr<T>(getAttrs()) : nullptr;
545 }
546
547 template<typename T> bool hasAttr() const {
548 return hasAttrs() && hasSpecificAttr<T>(getAttrs());
549 }
550
551 /// getMaxAlignment - return the maximum alignment specified by attributes
552 /// on this decl, 0 if there are none.
553 unsigned getMaxAlignment() const;
554
555 /// setInvalidDecl - Indicates the Decl had a semantic error. This
556 /// allows for graceful error recovery.
557 void setInvalidDecl(bool Invalid = true);
558 bool isInvalidDecl() const { return (bool) InvalidDecl; }
559
560 /// isImplicit - Indicates whether the declaration was implicitly
561 /// generated by the implementation. If false, this declaration
562 /// was written explicitly in the source code.
563 bool isImplicit() const { return Implicit; }
564 void setImplicit(bool I = true) { Implicit = I; }
565
566 /// Whether *any* (re-)declaration of the entity was used, meaning that
567 /// a definition is required.
568 ///
569 /// \param CheckUsedAttr When true, also consider the "used" attribute
570 /// (in addition to the "used" bit set by \c setUsed()) when determining
571 /// whether the function is used.
572 bool isUsed(bool CheckUsedAttr = true) const;
573
574 /// Set whether the declaration is used, in the sense of odr-use.
575 ///
576 /// This should only be used immediately after creating a declaration.
577 /// It intentionally doesn't notify any listeners.
578 void setIsUsed() { getCanonicalDecl()->Used = true; }
579
580 /// Mark the declaration used, in the sense of odr-use.
581 ///
582 /// This notifies any mutation listeners in addition to setting a bit
583 /// indicating the declaration is used.
584 void markUsed(ASTContext &C);
585
586 /// Whether any declaration of this entity was referenced.
587 bool isReferenced() const;
588
589 /// Whether this declaration was referenced. This should not be relied
590 /// upon for anything other than debugging.
591 bool isThisDeclarationReferenced() const { return Referenced; }
592
593 void setReferenced(bool R = true) { Referenced = R; }
594
595 /// Whether this declaration is a top-level declaration (function,
596 /// global variable, etc.) that is lexically inside an objc container
597 /// definition.
598 bool isTopLevelDeclInObjCContainer() const {
599 return TopLevelDeclInObjCContainer;
600 }
601
602 void setTopLevelDeclInObjCContainer(bool V = true) {
603 TopLevelDeclInObjCContainer = V;
604 }
605
606 /// Looks on this and related declarations for an applicable
607 /// external source symbol attribute.
608 ExternalSourceSymbolAttr *getExternalSourceSymbolAttr() const;
609
610 /// Whether this declaration was marked as being private to the
611 /// module in which it was defined.
612 bool isModulePrivate() const {
613 return getModuleOwnershipKind() == ModuleOwnershipKind::ModulePrivate;
614 }
615
616 /// Return true if this declaration has an attribute which acts as
617 /// definition of the entity, such as 'alias' or 'ifunc'.
618 bool hasDefiningAttr() const;
619
620 /// Return this declaration's defining attribute if it has one.
621 const Attr *getDefiningAttr() const;
622
623protected:
624 /// Specify that this declaration was marked as being private
625 /// to the module in which it was defined.
626 void setModulePrivate() {
627 // The module-private specifier has no effect on unowned declarations.
628 // FIXME: We should track this in some way for source fidelity.
629 if (getModuleOwnershipKind() == ModuleOwnershipKind::Unowned)
630 return;
631 setModuleOwnershipKind(ModuleOwnershipKind::ModulePrivate);
632 }
633
634public:
635 /// Set the FromASTFile flag. This indicates that this declaration
636 /// was deserialized and not parsed from source code and enables
637 /// features such as module ownership information.
638 void setFromASTFile() {
639 FromASTFile = true;
640 }
641
642 /// Set the owning module ID. This may only be called for
643 /// deserialized Decls.
644 void setOwningModuleID(unsigned ID) {
645 assert(isFromASTFile() && "Only works on a deserialized declaration")((isFromASTFile() && "Only works on a deserialized declaration"
) ? static_cast<void> (0) : __assert_fail ("isFromASTFile() && \"Only works on a deserialized declaration\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/include/clang/AST/DeclBase.h"
, 645, __PRETTY_FUNCTION__))
;
646 *((unsigned*)this - 2) = ID;
647 }
648
649public:
650 /// Determine the availability of the given declaration.
651 ///
652 /// This routine will determine the most restrictive availability of
653 /// the given declaration (e.g., preferring 'unavailable' to
654 /// 'deprecated').
655 ///
656 /// \param Message If non-NULL and the result is not \c
657 /// AR_Available, will be set to a (possibly empty) message
658 /// describing why the declaration has not been introduced, is
659 /// deprecated, or is unavailable.
660 ///
661 /// \param EnclosingVersion The version to compare with. If empty, assume the
662 /// deployment target version.
663 ///
664 /// \param RealizedPlatform If non-NULL and the availability result is found
665 /// in an available attribute it will set to the platform which is written in
666 /// the available attribute.
667 AvailabilityResult
668 getAvailability(std::string *Message = nullptr,
669 VersionTuple EnclosingVersion = VersionTuple(),
670 StringRef *RealizedPlatform = nullptr) const;
671
672 /// Retrieve the version of the target platform in which this
673 /// declaration was introduced.
674 ///
675 /// \returns An empty version tuple if this declaration has no 'introduced'
676 /// availability attributes, or the version tuple that's specified in the
677 /// attribute otherwise.
678 VersionTuple getVersionIntroduced() const;
679
680 /// Determine whether this declaration is marked 'deprecated'.
681 ///
682 /// \param Message If non-NULL and the declaration is deprecated,
683 /// this will be set to the message describing why the declaration
684 /// was deprecated (which may be empty).
685 bool isDeprecated(std::string *Message = nullptr) const {
686 return getAvailability(Message) == AR_Deprecated;
687 }
688
689 /// Determine whether this declaration is marked 'unavailable'.
690 ///
691 /// \param Message If non-NULL and the declaration is unavailable,
692 /// this will be set to the message describing why the declaration
693 /// was made unavailable (which may be empty).
694 bool isUnavailable(std::string *Message = nullptr) const {
695 return getAvailability(Message) == AR_Unavailable;
696 }
697
698 /// Determine whether this is a weak-imported symbol.
699 ///
700 /// Weak-imported symbols are typically marked with the
701 /// 'weak_import' attribute, but may also be marked with an
702 /// 'availability' attribute where we're targing a platform prior to
703 /// the introduction of this feature.
704 bool isWeakImported() const;
705
706 /// Determines whether this symbol can be weak-imported,
707 /// e.g., whether it would be well-formed to add the weak_import
708 /// attribute.
709 ///
710 /// \param IsDefinition Set to \c true to indicate that this
711 /// declaration cannot be weak-imported because it has a definition.
712 bool canBeWeakImported(bool &IsDefinition) const;
713
714 /// Determine whether this declaration came from an AST file (such as
715 /// a precompiled header or module) rather than having been parsed.
716 bool isFromASTFile() const { return FromASTFile; }
717
718 /// Retrieve the global declaration ID associated with this
719 /// declaration, which specifies where this Decl was loaded from.
720 unsigned getGlobalID() const {
721 if (isFromASTFile())
722 return *((const unsigned*)this - 1);
723 return 0;
724 }
725
726 /// Retrieve the global ID of the module that owns this particular
727 /// declaration.
728 unsigned getOwningModuleID() const {
729 if (isFromASTFile())
730 return *((const unsigned*)this - 2);
731 return 0;
732 }
733
734private:
735 Module *getOwningModuleSlow() const;
736
737protected:
738 bool hasLocalOwningModuleStorage() const;
739
740public:
741 /// Get the imported owning module, if this decl is from an imported
742 /// (non-local) module.
743 Module *getImportedOwningModule() const {
744 if (!isFromASTFile() || !hasOwningModule())
745 return nullptr;
746
747 return getOwningModuleSlow();
748 }
749
750 /// Get the local owning module, if known. Returns nullptr if owner is
751 /// not yet known or declaration is not from a module.
752 Module *getLocalOwningModule() const {
753 if (isFromASTFile() || !hasOwningModule())
754 return nullptr;
755
756 assert(hasLocalOwningModuleStorage() &&((hasLocalOwningModuleStorage() && "owned local decl but no local module storage"
) ? static_cast<void> (0) : __assert_fail ("hasLocalOwningModuleStorage() && \"owned local decl but no local module storage\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/include/clang/AST/DeclBase.h"
, 757, __PRETTY_FUNCTION__))
757 "owned local decl but no local module storage")((hasLocalOwningModuleStorage() && "owned local decl but no local module storage"
) ? static_cast<void> (0) : __assert_fail ("hasLocalOwningModuleStorage() && \"owned local decl but no local module storage\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/include/clang/AST/DeclBase.h"
, 757, __PRETTY_FUNCTION__))
;
758 return reinterpret_cast<Module *const *>(this)[-1];
759 }
760 void setLocalOwningModule(Module *M) {
761 assert(!isFromASTFile() && hasOwningModule() &&((!isFromASTFile() && hasOwningModule() && hasLocalOwningModuleStorage
() && "should not have a cached owning module") ? static_cast
<void> (0) : __assert_fail ("!isFromASTFile() && hasOwningModule() && hasLocalOwningModuleStorage() && \"should not have a cached owning module\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/include/clang/AST/DeclBase.h"
, 763, __PRETTY_FUNCTION__))
762 hasLocalOwningModuleStorage() &&((!isFromASTFile() && hasOwningModule() && hasLocalOwningModuleStorage
() && "should not have a cached owning module") ? static_cast
<void> (0) : __assert_fail ("!isFromASTFile() && hasOwningModule() && hasLocalOwningModuleStorage() && \"should not have a cached owning module\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/include/clang/AST/DeclBase.h"
, 763, __PRETTY_FUNCTION__))
763 "should not have a cached owning module")((!isFromASTFile() && hasOwningModule() && hasLocalOwningModuleStorage
() && "should not have a cached owning module") ? static_cast
<void> (0) : __assert_fail ("!isFromASTFile() && hasOwningModule() && hasLocalOwningModuleStorage() && \"should not have a cached owning module\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/include/clang/AST/DeclBase.h"
, 763, __PRETTY_FUNCTION__))
;
764 reinterpret_cast<Module **>(this)[-1] = M;
765 }
766
767 /// Is this declaration owned by some module?
768 bool hasOwningModule() const {
769 return getModuleOwnershipKind() != ModuleOwnershipKind::Unowned;
770 }
771
772 /// Get the module that owns this declaration (for visibility purposes).
773 Module *getOwningModule() const {
774 return isFromASTFile() ? getImportedOwningModule() : getLocalOwningModule();
775 }
776
777 /// Get the module that owns this declaration for linkage purposes.
778 /// There only ever is such a module under the C++ Modules TS.
779 ///
780 /// \param IgnoreLinkage Ignore the linkage of the entity; assume that
781 /// all declarations in a global module fragment are unowned.
782 Module *getOwningModuleForLinkage(bool IgnoreLinkage = false) const;
783
784 /// Determine whether this declaration is definitely visible to name lookup,
785 /// independent of whether the owning module is visible.
786 /// Note: The declaration may be visible even if this returns \c false if the
787 /// owning module is visible within the query context. This is a low-level
788 /// helper function; most code should be calling Sema::isVisible() instead.
789 bool isUnconditionallyVisible() const {
790 return (int)getModuleOwnershipKind() <= (int)ModuleOwnershipKind::Visible;
791 }
792
793 /// Set that this declaration is globally visible, even if it came from a
794 /// module that is not visible.
795 void setVisibleDespiteOwningModule() {
796 if (!isUnconditionallyVisible())
797 setModuleOwnershipKind(ModuleOwnershipKind::Visible);
798 }
799
800 /// Get the kind of module ownership for this declaration.
801 ModuleOwnershipKind getModuleOwnershipKind() const {
802 return NextInContextAndBits.getInt();
803 }
804
805 /// Set whether this declaration is hidden from name lookup.
806 void setModuleOwnershipKind(ModuleOwnershipKind MOK) {
807 assert(!(getModuleOwnershipKind() == ModuleOwnershipKind::Unowned &&((!(getModuleOwnershipKind() == ModuleOwnershipKind::Unowned &&
MOK != ModuleOwnershipKind::Unowned && !isFromASTFile
() && !hasLocalOwningModuleStorage()) && "no storage available for owning module for this declaration"
) ? static_cast<void> (0) : __assert_fail ("!(getModuleOwnershipKind() == ModuleOwnershipKind::Unowned && MOK != ModuleOwnershipKind::Unowned && !isFromASTFile() && !hasLocalOwningModuleStorage()) && \"no storage available for owning module for this declaration\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/include/clang/AST/DeclBase.h"
, 810, __PRETTY_FUNCTION__))
808 MOK != ModuleOwnershipKind::Unowned && !isFromASTFile() &&((!(getModuleOwnershipKind() == ModuleOwnershipKind::Unowned &&
MOK != ModuleOwnershipKind::Unowned && !isFromASTFile
() && !hasLocalOwningModuleStorage()) && "no storage available for owning module for this declaration"
) ? static_cast<void> (0) : __assert_fail ("!(getModuleOwnershipKind() == ModuleOwnershipKind::Unowned && MOK != ModuleOwnershipKind::Unowned && !isFromASTFile() && !hasLocalOwningModuleStorage()) && \"no storage available for owning module for this declaration\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/include/clang/AST/DeclBase.h"
, 810, __PRETTY_FUNCTION__))
809 !hasLocalOwningModuleStorage()) &&((!(getModuleOwnershipKind() == ModuleOwnershipKind::Unowned &&
MOK != ModuleOwnershipKind::Unowned && !isFromASTFile
() && !hasLocalOwningModuleStorage()) && "no storage available for owning module for this declaration"
) ? static_cast<void> (0) : __assert_fail ("!(getModuleOwnershipKind() == ModuleOwnershipKind::Unowned && MOK != ModuleOwnershipKind::Unowned && !isFromASTFile() && !hasLocalOwningModuleStorage()) && \"no storage available for owning module for this declaration\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/include/clang/AST/DeclBase.h"
, 810, __PRETTY_FUNCTION__))
810 "no storage available for owning module for this declaration")((!(getModuleOwnershipKind() == ModuleOwnershipKind::Unowned &&
MOK != ModuleOwnershipKind::Unowned && !isFromASTFile
() && !hasLocalOwningModuleStorage()) && "no storage available for owning module for this declaration"
) ? static_cast<void> (0) : __assert_fail ("!(getModuleOwnershipKind() == ModuleOwnershipKind::Unowned && MOK != ModuleOwnershipKind::Unowned && !isFromASTFile() && !hasLocalOwningModuleStorage()) && \"no storage available for owning module for this declaration\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/include/clang/AST/DeclBase.h"
, 810, __PRETTY_FUNCTION__))
;
811 NextInContextAndBits.setInt(MOK);
812 }
813
814 unsigned getIdentifierNamespace() const {
815 return IdentifierNamespace;
816 }
817
818 bool isInIdentifierNamespace(unsigned NS) const {
819 return getIdentifierNamespace() & NS;
820 }
821
822 static unsigned getIdentifierNamespaceForKind(Kind DK);
823
824 bool hasTagIdentifierNamespace() const {
825 return isTagIdentifierNamespace(getIdentifierNamespace());
826 }
827
828 static bool isTagIdentifierNamespace(unsigned NS) {
829 // TagDecls have Tag and Type set and may also have TagFriend.
830 return (NS & ~IDNS_TagFriend) == (IDNS_Tag | IDNS_Type);
831 }
832
833 /// getLexicalDeclContext - The declaration context where this Decl was
834 /// lexically declared (LexicalDC). May be different from
835 /// getDeclContext() (SemanticDC).
836 /// e.g.:
837 ///
838 /// namespace A {
839 /// void f(); // SemanticDC == LexicalDC == 'namespace A'
840 /// }
841 /// void A::f(); // SemanticDC == namespace 'A'
842 /// // LexicalDC == global namespace
843 DeclContext *getLexicalDeclContext() {
844 if (isInSemaDC())
845 return getSemanticDC();
846 return getMultipleDC()->LexicalDC;
847 }
848 const DeclContext *getLexicalDeclContext() const {
849 return const_cast<Decl*>(this)->getLexicalDeclContext();
850 }
851
852 /// Determine whether this declaration is declared out of line (outside its
853 /// semantic context).
854 virtual bool isOutOfLine() const;
855
856 /// setDeclContext - Set both the semantic and lexical DeclContext
857 /// to DC.
858 void setDeclContext(DeclContext *DC);
859
860 void setLexicalDeclContext(DeclContext *DC);
861
862 /// Determine whether this declaration is a templated entity (whether it is
863 // within the scope of a template parameter).
864 bool isTemplated() const;
865
866 /// Determine the number of levels of template parameter surrounding this
867 /// declaration.
868 unsigned getTemplateDepth() const;
869
870 /// isDefinedOutsideFunctionOrMethod - This predicate returns true if this
871 /// scoped decl is defined outside the current function or method. This is
872 /// roughly global variables and functions, but also handles enums (which
873 /// could be defined inside or outside a function etc).
874 bool isDefinedOutsideFunctionOrMethod() const {
875 return getParentFunctionOrMethod() == nullptr;
876 }
877
878 /// Determine whether a substitution into this declaration would occur as
879 /// part of a substitution into a dependent local scope. Such a substitution
880 /// transitively substitutes into all constructs nested within this
881 /// declaration.
882 ///
883 /// This recognizes non-defining declarations as well as members of local
884 /// classes and lambdas:
885 /// \code
886 /// template<typename T> void foo() { void bar(); }
887 /// template<typename T> void foo2() { class ABC { void bar(); }; }
888 /// template<typename T> inline int x = [](){ return 0; }();
889 /// \endcode
890 bool isInLocalScopeForInstantiation() const;
891
892 /// If this decl is defined inside a function/method/block it returns
893 /// the corresponding DeclContext, otherwise it returns null.
894 const DeclContext *getParentFunctionOrMethod() const;
895 DeclContext *getParentFunctionOrMethod() {
896 return const_cast<DeclContext*>(
897 const_cast<const Decl*>(this)->getParentFunctionOrMethod());
898 }
899
900 /// Retrieves the "canonical" declaration of the given declaration.
901 virtual Decl *getCanonicalDecl() { return this; }
902 const Decl *getCanonicalDecl() const {
903 return const_cast<Decl*>(this)->getCanonicalDecl();
904 }
905
906 /// Whether this particular Decl is a canonical one.
907 bool isCanonicalDecl() const { return getCanonicalDecl() == this; }
908
909protected:
910 /// Returns the next redeclaration or itself if this is the only decl.
911 ///
912 /// Decl subclasses that can be redeclared should override this method so that
913 /// Decl::redecl_iterator can iterate over them.
914 virtual Decl *getNextRedeclarationImpl() { return this; }
915
916 /// Implementation of getPreviousDecl(), to be overridden by any
917 /// subclass that has a redeclaration chain.
918 virtual Decl *getPreviousDeclImpl() { return nullptr; }
919
920 /// Implementation of getMostRecentDecl(), to be overridden by any
921 /// subclass that has a redeclaration chain.
922 virtual Decl *getMostRecentDeclImpl() { return this; }
923
924public:
925 /// Iterates through all the redeclarations of the same decl.
926 class redecl_iterator {
927 /// Current - The current declaration.
928 Decl *Current = nullptr;
929 Decl *Starter;
930
931 public:
932 using value_type = Decl *;
933 using reference = const value_type &;
934 using pointer = const value_type *;
935 using iterator_category = std::forward_iterator_tag;
936 using difference_type = std::ptrdiff_t;
937
938 redecl_iterator() = default;
939 explicit redecl_iterator(Decl *C) : Current(C), Starter(C) {}
940
941 reference operator*() const { return Current; }
942 value_type operator->() const { return Current; }
943
944 redecl_iterator& operator++() {
945 assert(Current && "Advancing while iterator has reached end")((Current && "Advancing while iterator has reached end"
) ? static_cast<void> (0) : __assert_fail ("Current && \"Advancing while iterator has reached end\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/include/clang/AST/DeclBase.h"
, 945, __PRETTY_FUNCTION__))
;
946 // Get either previous decl or latest decl.
947 Decl *Next = Current->getNextRedeclarationImpl();
948 assert(Next && "Should return next redeclaration or itself, never null!")((Next && "Should return next redeclaration or itself, never null!"
) ? static_cast<void> (0) : __assert_fail ("Next && \"Should return next redeclaration or itself, never null!\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/include/clang/AST/DeclBase.h"
, 948, __PRETTY_FUNCTION__))
;
949 Current = (Next != Starter) ? Next : nullptr;
950 return *this;
951 }
952
953 redecl_iterator operator++(int) {
954 redecl_iterator tmp(*this);
955 ++(*this);
956 return tmp;
957 }
958
959 friend bool operator==(redecl_iterator x, redecl_iterator y) {
960 return x.Current == y.Current;
961 }
962
963 friend bool operator!=(redecl_iterator x, redecl_iterator y) {
964 return x.Current != y.Current;
965 }
966 };
967
968 using redecl_range = llvm::iterator_range<redecl_iterator>;
969
970 /// Returns an iterator range for all the redeclarations of the same
971 /// decl. It will iterate at least once (when this decl is the only one).
972 redecl_range redecls() const {
973 return redecl_range(redecls_begin(), redecls_end());
974 }
975
976 redecl_iterator redecls_begin() const {
977 return redecl_iterator(const_cast<Decl *>(this));
978 }
979
980 redecl_iterator redecls_end() const { return redecl_iterator(); }
981
982 /// Retrieve the previous declaration that declares the same entity
983 /// as this declaration, or NULL if there is no previous declaration.
984 Decl *getPreviousDecl() { return getPreviousDeclImpl(); }
985
986 /// Retrieve the previous declaration that declares the same entity
987 /// as this declaration, or NULL if there is no previous declaration.
988 const Decl *getPreviousDecl() const {
989 return const_cast<Decl *>(this)->getPreviousDeclImpl();
990 }
991
992 /// True if this is the first declaration in its redeclaration chain.
993 bool isFirstDecl() const {
994 return getPreviousDecl() == nullptr;
995 }
996
997 /// Retrieve the most recent declaration that declares the same entity
998 /// as this declaration (which may be this declaration).
999 Decl *getMostRecentDecl() { return getMostRecentDeclImpl(); }
1000
1001 /// Retrieve the most recent declaration that declares the same entity
1002 /// as this declaration (which may be this declaration).
1003 const Decl *getMostRecentDecl() const {
1004 return const_cast<Decl *>(this)->getMostRecentDeclImpl();
1005 }
1006
1007 /// getBody - If this Decl represents a declaration for a body of code,
1008 /// such as a function or method definition, this method returns the
1009 /// top-level Stmt* of that body. Otherwise this method returns null.
1010 virtual Stmt* getBody() const { return nullptr; }
1011
1012 /// Returns true if this \c Decl represents a declaration for a body of
1013 /// code, such as a function or method definition.
1014 /// Note that \c hasBody can also return true if any redeclaration of this
1015 /// \c Decl represents a declaration for a body of code.
1016 virtual bool hasBody() const { return getBody() != nullptr; }
1017
1018 /// getBodyRBrace - Gets the right brace of the body, if a body exists.
1019 /// This works whether the body is a CompoundStmt or a CXXTryStmt.
1020 SourceLocation getBodyRBrace() const;
1021
1022 // global temp stats (until we have a per-module visitor)
1023 static void add(Kind k);
1024 static void EnableStatistics();
1025 static void PrintStats();
1026
1027 /// isTemplateParameter - Determines whether this declaration is a
1028 /// template parameter.
1029 bool isTemplateParameter() const;
1030
1031 /// isTemplateParameter - Determines whether this declaration is a
1032 /// template parameter pack.
1033 bool isTemplateParameterPack() const;
1034
1035 /// Whether this declaration is a parameter pack.
1036 bool isParameterPack() const;
1037
1038 /// returns true if this declaration is a template
1039 bool isTemplateDecl() const;
1040
1041 /// Whether this declaration is a function or function template.
1042 bool isFunctionOrFunctionTemplate() const {
1043 return (DeclKind >= Decl::firstFunction &&
1044 DeclKind <= Decl::lastFunction) ||
1045 DeclKind == FunctionTemplate;
1046 }
1047
1048 /// If this is a declaration that describes some template, this
1049 /// method returns that template declaration.
1050 ///
1051 /// Note that this returns nullptr for partial specializations, because they
1052 /// are not modeled as TemplateDecls. Use getDescribedTemplateParams to handle
1053 /// those cases.
1054 TemplateDecl *getDescribedTemplate() const;
1055
1056 /// If this is a declaration that describes some template or partial
1057 /// specialization, this returns the corresponding template parameter list.
1058 const TemplateParameterList *getDescribedTemplateParams() const;
1059
1060 /// Returns the function itself, or the templated function if this is a
1061 /// function template.
1062 FunctionDecl *getAsFunction() LLVM_READONLY__attribute__((__pure__));
1063
1064 const FunctionDecl *getAsFunction() const {
1065 return const_cast<Decl *>(this)->getAsFunction();
1066 }
1067
1068 /// Changes the namespace of this declaration to reflect that it's
1069 /// a function-local extern declaration.
1070 ///
1071 /// These declarations appear in the lexical context of the extern
1072 /// declaration, but in the semantic context of the enclosing namespace
1073 /// scope.
1074 void setLocalExternDecl() {
1075 Decl *Prev = getPreviousDecl();
1076 IdentifierNamespace &= ~IDNS_Ordinary;
1077
1078 // It's OK for the declaration to still have the "invisible friend" flag or
1079 // the "conflicts with tag declarations in this scope" flag for the outer
1080 // scope.
1081 assert((IdentifierNamespace & ~(IDNS_OrdinaryFriend | IDNS_Tag)) == 0 &&(((IdentifierNamespace & ~(IDNS_OrdinaryFriend | IDNS_Tag
)) == 0 && "namespace is not ordinary") ? static_cast
<void> (0) : __assert_fail ("(IdentifierNamespace & ~(IDNS_OrdinaryFriend | IDNS_Tag)) == 0 && \"namespace is not ordinary\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/include/clang/AST/DeclBase.h"
, 1082, __PRETTY_FUNCTION__))
1082 "namespace is not ordinary")(((IdentifierNamespace & ~(IDNS_OrdinaryFriend | IDNS_Tag
)) == 0 && "namespace is not ordinary") ? static_cast
<void> (0) : __assert_fail ("(IdentifierNamespace & ~(IDNS_OrdinaryFriend | IDNS_Tag)) == 0 && \"namespace is not ordinary\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/include/clang/AST/DeclBase.h"
, 1082, __PRETTY_FUNCTION__))
;
1083
1084 IdentifierNamespace |= IDNS_LocalExtern;
1085 if (Prev && Prev->getIdentifierNamespace() & IDNS_Ordinary)
1086 IdentifierNamespace |= IDNS_Ordinary;
1087 }
1088
1089 /// Determine whether this is a block-scope declaration with linkage.
1090 /// This will either be a local variable declaration declared 'extern', or a
1091 /// local function declaration.
1092 bool isLocalExternDecl() {
1093 return IdentifierNamespace & IDNS_LocalExtern;
1094 }
1095
1096 /// Changes the namespace of this declaration to reflect that it's
1097 /// the object of a friend declaration.
1098 ///
1099 /// These declarations appear in the lexical context of the friending
1100 /// class, but in the semantic context of the actual entity. This property
1101 /// applies only to a specific decl object; other redeclarations of the
1102 /// same entity may not (and probably don't) share this property.
1103 void setObjectOfFriendDecl(bool PerformFriendInjection = false) {
1104 unsigned OldNS = IdentifierNamespace;
1105 assert((OldNS & (IDNS_Tag | IDNS_Ordinary |(((OldNS & (IDNS_Tag | IDNS_Ordinary | IDNS_TagFriend | IDNS_OrdinaryFriend
| IDNS_LocalExtern | IDNS_NonMemberOperator)) && "namespace includes neither ordinary nor tag"
) ? static_cast<void> (0) : __assert_fail ("(OldNS & (IDNS_Tag | IDNS_Ordinary | IDNS_TagFriend | IDNS_OrdinaryFriend | IDNS_LocalExtern | IDNS_NonMemberOperator)) && \"namespace includes neither ordinary nor tag\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/include/clang/AST/DeclBase.h"
, 1108, __PRETTY_FUNCTION__))
1106 IDNS_TagFriend | IDNS_OrdinaryFriend |(((OldNS & (IDNS_Tag | IDNS_Ordinary | IDNS_TagFriend | IDNS_OrdinaryFriend
| IDNS_LocalExtern | IDNS_NonMemberOperator)) && "namespace includes neither ordinary nor tag"
) ? static_cast<void> (0) : __assert_fail ("(OldNS & (IDNS_Tag | IDNS_Ordinary | IDNS_TagFriend | IDNS_OrdinaryFriend | IDNS_LocalExtern | IDNS_NonMemberOperator)) && \"namespace includes neither ordinary nor tag\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/include/clang/AST/DeclBase.h"
, 1108, __PRETTY_FUNCTION__))
1107 IDNS_LocalExtern | IDNS_NonMemberOperator)) &&(((OldNS & (IDNS_Tag | IDNS_Ordinary | IDNS_TagFriend | IDNS_OrdinaryFriend
| IDNS_LocalExtern | IDNS_NonMemberOperator)) && "namespace includes neither ordinary nor tag"
) ? static_cast<void> (0) : __assert_fail ("(OldNS & (IDNS_Tag | IDNS_Ordinary | IDNS_TagFriend | IDNS_OrdinaryFriend | IDNS_LocalExtern | IDNS_NonMemberOperator)) && \"namespace includes neither ordinary nor tag\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/include/clang/AST/DeclBase.h"
, 1108, __PRETTY_FUNCTION__))
1108 "namespace includes neither ordinary nor tag")(((OldNS & (IDNS_Tag | IDNS_Ordinary | IDNS_TagFriend | IDNS_OrdinaryFriend
| IDNS_LocalExtern | IDNS_NonMemberOperator)) && "namespace includes neither ordinary nor tag"
) ? static_cast<void> (0) : __assert_fail ("(OldNS & (IDNS_Tag | IDNS_Ordinary | IDNS_TagFriend | IDNS_OrdinaryFriend | IDNS_LocalExtern | IDNS_NonMemberOperator)) && \"namespace includes neither ordinary nor tag\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/include/clang/AST/DeclBase.h"
, 1108, __PRETTY_FUNCTION__))
;
1109 assert(!(OldNS & ~(IDNS_Tag | IDNS_Ordinary | IDNS_Type |((!(OldNS & ~(IDNS_Tag | IDNS_Ordinary | IDNS_Type | IDNS_TagFriend
| IDNS_OrdinaryFriend | IDNS_LocalExtern | IDNS_NonMemberOperator
)) && "namespace includes other than ordinary or tag"
) ? static_cast<void> (0) : __assert_fail ("!(OldNS & ~(IDNS_Tag | IDNS_Ordinary | IDNS_Type | IDNS_TagFriend | IDNS_OrdinaryFriend | IDNS_LocalExtern | IDNS_NonMemberOperator)) && \"namespace includes other than ordinary or tag\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/include/clang/AST/DeclBase.h"
, 1112, __PRETTY_FUNCTION__))
1110 IDNS_TagFriend | IDNS_OrdinaryFriend |((!(OldNS & ~(IDNS_Tag | IDNS_Ordinary | IDNS_Type | IDNS_TagFriend
| IDNS_OrdinaryFriend | IDNS_LocalExtern | IDNS_NonMemberOperator
)) && "namespace includes other than ordinary or tag"
) ? static_cast<void> (0) : __assert_fail ("!(OldNS & ~(IDNS_Tag | IDNS_Ordinary | IDNS_Type | IDNS_TagFriend | IDNS_OrdinaryFriend | IDNS_LocalExtern | IDNS_NonMemberOperator)) && \"namespace includes other than ordinary or tag\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/include/clang/AST/DeclBase.h"
, 1112, __PRETTY_FUNCTION__))
1111 IDNS_LocalExtern | IDNS_NonMemberOperator)) &&((!(OldNS & ~(IDNS_Tag | IDNS_Ordinary | IDNS_Type | IDNS_TagFriend
| IDNS_OrdinaryFriend | IDNS_LocalExtern | IDNS_NonMemberOperator
)) && "namespace includes other than ordinary or tag"
) ? static_cast<void> (0) : __assert_fail ("!(OldNS & ~(IDNS_Tag | IDNS_Ordinary | IDNS_Type | IDNS_TagFriend | IDNS_OrdinaryFriend | IDNS_LocalExtern | IDNS_NonMemberOperator)) && \"namespace includes other than ordinary or tag\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/include/clang/AST/DeclBase.h"
, 1112, __PRETTY_FUNCTION__))
1112 "namespace includes other than ordinary or tag")((!(OldNS & ~(IDNS_Tag | IDNS_Ordinary | IDNS_Type | IDNS_TagFriend
| IDNS_OrdinaryFriend | IDNS_LocalExtern | IDNS_NonMemberOperator
)) && "namespace includes other than ordinary or tag"
) ? static_cast<void> (0) : __assert_fail ("!(OldNS & ~(IDNS_Tag | IDNS_Ordinary | IDNS_Type | IDNS_TagFriend | IDNS_OrdinaryFriend | IDNS_LocalExtern | IDNS_NonMemberOperator)) && \"namespace includes other than ordinary or tag\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/include/clang/AST/DeclBase.h"
, 1112, __PRETTY_FUNCTION__))
;
1113
1114 Decl *Prev = getPreviousDecl();
1115 IdentifierNamespace &= ~(IDNS_Ordinary | IDNS_Tag | IDNS_Type);
1116
1117 if (OldNS & (IDNS_Tag | IDNS_TagFriend)) {
1118 IdentifierNamespace |= IDNS_TagFriend;
1119 if (PerformFriendInjection ||
1120 (Prev && Prev->getIdentifierNamespace() & IDNS_Tag))
1121 IdentifierNamespace |= IDNS_Tag | IDNS_Type;
1122 }
1123
1124 if (OldNS & (IDNS_Ordinary | IDNS_OrdinaryFriend |
1125 IDNS_LocalExtern | IDNS_NonMemberOperator)) {
1126 IdentifierNamespace |= IDNS_OrdinaryFriend;
1127 if (PerformFriendInjection ||
1128 (Prev && Prev->getIdentifierNamespace() & IDNS_Ordinary))
1129 IdentifierNamespace |= IDNS_Ordinary;
1130 }
1131 }
1132
1133 enum FriendObjectKind {
1134 FOK_None, ///< Not a friend object.
1135 FOK_Declared, ///< A friend of a previously-declared entity.
1136 FOK_Undeclared ///< A friend of a previously-undeclared entity.
1137 };
1138
1139 /// Determines whether this declaration is the object of a
1140 /// friend declaration and, if so, what kind.
1141 ///
1142 /// There is currently no direct way to find the associated FriendDecl.
1143 FriendObjectKind getFriendObjectKind() const {
1144 unsigned mask =
1145 (IdentifierNamespace & (IDNS_TagFriend | IDNS_OrdinaryFriend));
1146 if (!mask) return FOK_None;
12
Assuming 'mask' is not equal to 0, which participates in a condition later
13
Taking false branch
1147 return (IdentifierNamespace & (IDNS_Tag | IDNS_Ordinary) ? FOK_Declared
14
Assuming the condition is false
15
'?' condition is false
16
Returning the value 2, which participates in a condition later
1148 : FOK_Undeclared);
1149 }
1150
1151 /// Specifies that this declaration is a C++ overloaded non-member.
1152 void setNonMemberOperator() {
1153 assert(getKind() == Function || getKind() == FunctionTemplate)((getKind() == Function || getKind() == FunctionTemplate) ? static_cast
<void> (0) : __assert_fail ("getKind() == Function || getKind() == FunctionTemplate"
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/include/clang/AST/DeclBase.h"
, 1153, __PRETTY_FUNCTION__))
;
1154 assert((IdentifierNamespace & IDNS_Ordinary) &&(((IdentifierNamespace & IDNS_Ordinary) && "visible non-member operators should be in ordinary namespace"
) ? static_cast<void> (0) : __assert_fail ("(IdentifierNamespace & IDNS_Ordinary) && \"visible non-member operators should be in ordinary namespace\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/include/clang/AST/DeclBase.h"
, 1155, __PRETTY_FUNCTION__))
1155 "visible non-member operators should be in ordinary namespace")(((IdentifierNamespace & IDNS_Ordinary) && "visible non-member operators should be in ordinary namespace"
) ? static_cast<void> (0) : __assert_fail ("(IdentifierNamespace & IDNS_Ordinary) && \"visible non-member operators should be in ordinary namespace\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/include/clang/AST/DeclBase.h"
, 1155, __PRETTY_FUNCTION__))
;
1156 IdentifierNamespace |= IDNS_NonMemberOperator;
1157 }
1158
1159 static bool classofKind(Kind K) { return true; }
1160 static DeclContext *castToDeclContext(const Decl *);
1161 static Decl *castFromDeclContext(const DeclContext *);
1162
1163 void print(raw_ostream &Out, unsigned Indentation = 0,
1164 bool PrintInstantiation = false) const;
1165 void print(raw_ostream &Out, const PrintingPolicy &Policy,
1166 unsigned Indentation = 0, bool PrintInstantiation = false) const;
1167 static void printGroup(Decl** Begin, unsigned NumDecls,
1168 raw_ostream &Out, const PrintingPolicy &Policy,
1169 unsigned Indentation = 0);
1170
1171 // Debuggers don't usually respect default arguments.
1172 void dump() const;
1173
1174 // Same as dump(), but forces color printing.
1175 void dumpColor() const;
1176
1177 void dump(raw_ostream &Out, bool Deserialize = false,
1178 ASTDumpOutputFormat OutputFormat = ADOF_Default) const;
1179
1180 /// \return Unique reproducible object identifier
1181 int64_t getID() const;
1182
1183 /// Looks through the Decl's underlying type to extract a FunctionType
1184 /// when possible. Will return null if the type underlying the Decl does not
1185 /// have a FunctionType.
1186 const FunctionType *getFunctionType(bool BlocksToo = true) const;
1187
1188private:
1189 void setAttrsImpl(const AttrVec& Attrs, ASTContext &Ctx);
1190 void setDeclContextsImpl(DeclContext *SemaDC, DeclContext *LexicalDC,
1191 ASTContext &Ctx);
1192
1193protected:
1194 ASTMutationListener *getASTMutationListener() const;
1195};
1196
1197/// Determine whether two declarations declare the same entity.
1198inline bool declaresSameEntity(const Decl *D1, const Decl *D2) {
1199 if (!D1 || !D2)
1200 return false;
1201
1202 if (D1 == D2)
1203 return true;
1204
1205 return D1->getCanonicalDecl() == D2->getCanonicalDecl();
1206}
1207
1208/// PrettyStackTraceDecl - If a crash occurs, indicate that it happened when
1209/// doing something to a specific decl.
1210class PrettyStackTraceDecl : public llvm::PrettyStackTraceEntry {
1211 const Decl *TheDecl;
1212 SourceLocation Loc;
1213 SourceManager &SM;
1214 const char *Message;
1215
1216public:
1217 PrettyStackTraceDecl(const Decl *theDecl, SourceLocation L,
1218 SourceManager &sm, const char *Msg)
1219 : TheDecl(theDecl), Loc(L), SM(sm), Message(Msg) {}
1220
1221 void print(raw_ostream &OS) const override;
1222};
1223
1224/// The results of name lookup within a DeclContext. This is either a
1225/// single result (with no stable storage) or a collection of results (with
1226/// stable storage provided by the lookup table).
1227class DeclContextLookupResult {
1228 using ResultTy = ArrayRef<NamedDecl *>;
1229
1230 ResultTy Result;
1231
1232 // If there is only one lookup result, it would be invalidated by
1233 // reallocations of the name table, so store it separately.
1234 NamedDecl *Single = nullptr;
1235
1236 static NamedDecl *const SingleElementDummyList;
1237
1238public:
1239 DeclContextLookupResult() = default;
1240 DeclContextLookupResult(ArrayRef<NamedDecl *> Result)
1241 : Result(Result) {}
1242 DeclContextLookupResult(NamedDecl *Single)
1243 : Result(SingleElementDummyList), Single(Single) {}
1244
1245 class iterator;
1246
1247 using IteratorBase =
1248 llvm::iterator_adaptor_base<iterator, ResultTy::iterator,
1249 std::random_access_iterator_tag, NamedDecl *>;
1250
1251 class iterator : public IteratorBase {
1252 value_type SingleElement;
1253
1254 public:
1255 explicit iterator(pointer Pos, value_type Single = nullptr)
1256 : IteratorBase(Pos), SingleElement(Single) {}
1257
1258 reference operator*() const {
1259 return SingleElement ? SingleElement : IteratorBase::operator*();
1260 }
1261 };
1262
1263 using const_iterator = iterator;
1264 using pointer = iterator::pointer;
1265 using reference = iterator::reference;
1266
1267 iterator begin() const { return iterator(Result.begin(), Single); }
1268 iterator end() const { return iterator(Result.end(), Single); }
1269
1270 bool empty() const { return Result.empty(); }
1271 pointer data() const { return Single ? &Single : Result.data(); }
1272 size_t size() const { return Single ? 1 : Result.size(); }
1273 reference front() const { return Single ? Single : Result.front(); }
1274 reference back() const { return Single ? Single : Result.back(); }
1275 reference operator[](size_t N) const { return Single ? Single : Result[N]; }
1276
1277 // FIXME: Remove this from the interface
1278 DeclContextLookupResult slice(size_t N) const {
1279 DeclContextLookupResult Sliced = Result.slice(N);
1280 Sliced.Single = Single;
1281 return Sliced;
1282 }
1283};
1284
1285/// DeclContext - This is used only as base class of specific decl types that
1286/// can act as declaration contexts. These decls are (only the top classes
1287/// that directly derive from DeclContext are mentioned, not their subclasses):
1288///
1289/// TranslationUnitDecl
1290/// ExternCContext
1291/// NamespaceDecl
1292/// TagDecl
1293/// OMPDeclareReductionDecl
1294/// OMPDeclareMapperDecl
1295/// FunctionDecl
1296/// ObjCMethodDecl
1297/// ObjCContainerDecl
1298/// LinkageSpecDecl
1299/// ExportDecl
1300/// BlockDecl
1301/// CapturedDecl
1302class DeclContext {
1303 /// For makeDeclVisibleInContextImpl
1304 friend class ASTDeclReader;
1305 /// For reconcileExternalVisibleStorage, CreateStoredDeclsMap,
1306 /// hasNeedToReconcileExternalVisibleStorage
1307 friend class ExternalASTSource;
1308 /// For CreateStoredDeclsMap
1309 friend class DependentDiagnostic;
1310 /// For hasNeedToReconcileExternalVisibleStorage,
1311 /// hasLazyLocalLexicalLookups, hasLazyExternalLexicalLookups
1312 friend class ASTWriter;
1313
1314 // We use uint64_t in the bit-fields below since some bit-fields
1315 // cross the unsigned boundary and this breaks the packing.
1316
1317 /// Stores the bits used by DeclContext.
1318 /// If modified NumDeclContextBit, the ctor of DeclContext and the accessor
1319 /// methods in DeclContext should be updated appropriately.
1320 class DeclContextBitfields {
1321 friend class DeclContext;
1322 /// DeclKind - This indicates which class this is.
1323 uint64_t DeclKind : 7;
1324
1325 /// Whether this declaration context also has some external
1326 /// storage that contains additional declarations that are lexically
1327 /// part of this context.
1328 mutable uint64_t ExternalLexicalStorage : 1;
1329
1330 /// Whether this declaration context also has some external
1331 /// storage that contains additional declarations that are visible
1332 /// in this context.
1333 mutable uint64_t ExternalVisibleStorage : 1;
1334
1335 /// Whether this declaration context has had externally visible
1336 /// storage added since the last lookup. In this case, \c LookupPtr's
1337 /// invariant may not hold and needs to be fixed before we perform
1338 /// another lookup.
1339 mutable uint64_t NeedToReconcileExternalVisibleStorage : 1;
1340
1341 /// If \c true, this context may have local lexical declarations
1342 /// that are missing from the lookup table.
1343 mutable uint64_t HasLazyLocalLexicalLookups : 1;
1344
1345 /// If \c true, the external source may have lexical declarations
1346 /// that are missing from the lookup table.
1347 mutable uint64_t HasLazyExternalLexicalLookups : 1;
1348
1349 /// If \c true, lookups should only return identifier from
1350 /// DeclContext scope (for example TranslationUnit). Used in
1351 /// LookupQualifiedName()
1352 mutable uint64_t UseQualifiedLookup : 1;
1353 };
1354
1355 /// Number of bits in DeclContextBitfields.
1356 enum { NumDeclContextBits = 13 };
1357
1358 /// Stores the bits used by TagDecl.
1359 /// If modified NumTagDeclBits and the accessor
1360 /// methods in TagDecl should be updated appropriately.
1361 class TagDeclBitfields {
1362 friend class TagDecl;
1363 /// For the bits in DeclContextBitfields
1364 uint64_t : NumDeclContextBits;
1365
1366 /// The TagKind enum.
1367 uint64_t TagDeclKind : 3;
1368
1369 /// True if this is a definition ("struct foo {};"), false if it is a
1370 /// declaration ("struct foo;"). It is not considered a definition
1371 /// until the definition has been fully processed.
1372 uint64_t IsCompleteDefinition : 1;
1373
1374 /// True if this is currently being defined.
1375 uint64_t IsBeingDefined : 1;
1376
1377 /// True if this tag declaration is "embedded" (i.e., defined or declared
1378 /// for the very first time) in the syntax of a declarator.
1379 uint64_t IsEmbeddedInDeclarator : 1;
1380
1381 /// True if this tag is free standing, e.g. "struct foo;".
1382 uint64_t IsFreeStanding : 1;
1383
1384 /// Indicates whether it is possible for declarations of this kind
1385 /// to have an out-of-date definition.
1386 ///
1387 /// This option is only enabled when modules are enabled.
1388 uint64_t MayHaveOutOfDateDef : 1;
1389
1390 /// Has the full definition of this type been required by a use somewhere in
1391 /// the TU.
1392 uint64_t IsCompleteDefinitionRequired : 1;
1393 };
1394
1395 /// Number of non-inherited bits in TagDeclBitfields.
1396 enum { NumTagDeclBits = 9 };
1397
1398 /// Stores the bits used by EnumDecl.
1399 /// If modified NumEnumDeclBit and the accessor
1400 /// methods in EnumDecl should be updated appropriately.
1401 class EnumDeclBitfields {
1402 friend class EnumDecl;
1403 /// For the bits in DeclContextBitfields.
1404 uint64_t : NumDeclContextBits;
1405 /// For the bits in TagDeclBitfields.
1406 uint64_t : NumTagDeclBits;
1407
1408 /// Width in bits required to store all the non-negative
1409 /// enumerators of this enum.
1410 uint64_t NumPositiveBits : 8;
1411
1412 /// Width in bits required to store all the negative
1413 /// enumerators of this enum.
1414 uint64_t NumNegativeBits : 8;
1415
1416 /// True if this tag declaration is a scoped enumeration. Only
1417 /// possible in C++11 mode.
1418 uint64_t IsScoped : 1;
1419
1420 /// If this tag declaration is a scoped enum,
1421 /// then this is true if the scoped enum was declared using the class
1422 /// tag, false if it was declared with the struct tag. No meaning is
1423 /// associated if this tag declaration is not a scoped enum.
1424 uint64_t IsScopedUsingClassTag : 1;
1425
1426 /// True if this is an enumeration with fixed underlying type. Only
1427 /// possible in C++11, Microsoft extensions, or Objective C mode.
1428 uint64_t IsFixed : 1;
1429
1430 /// True if a valid hash is stored in ODRHash.
1431 uint64_t HasODRHash : 1;
1432 };
1433
1434 /// Number of non-inherited bits in EnumDeclBitfields.
1435 enum { NumEnumDeclBits = 20 };
1436
1437 /// Stores the bits used by RecordDecl.
1438 /// If modified NumRecordDeclBits and the accessor
1439 /// methods in RecordDecl should be updated appropriately.
1440 class RecordDeclBitfields {
1441 friend class RecordDecl;
1442 /// For the bits in DeclContextBitfields.
1443 uint64_t : NumDeclContextBits;
1444 /// For the bits in TagDeclBitfields.
1445 uint64_t : NumTagDeclBits;
1446
1447 /// This is true if this struct ends with a flexible
1448 /// array member (e.g. int X[]) or if this union contains a struct that does.
1449 /// If so, this cannot be contained in arrays or other structs as a member.
1450 uint64_t HasFlexibleArrayMember : 1;
1451
1452 /// Whether this is the type of an anonymous struct or union.
1453 uint64_t AnonymousStructOrUnion : 1;
1454
1455 /// This is true if this struct has at least one member
1456 /// containing an Objective-C object pointer type.
1457 uint64_t HasObjectMember : 1;
1458
1459 /// This is true if struct has at least one member of
1460 /// 'volatile' type.
1461 uint64_t HasVolatileMember : 1;
1462
1463 /// Whether the field declarations of this record have been loaded
1464 /// from external storage. To avoid unnecessary deserialization of
1465 /// methods/nested types we allow deserialization of just the fields
1466 /// when needed.
1467 mutable uint64_t LoadedFieldsFromExternalStorage : 1;
1468
1469 /// Basic properties of non-trivial C structs.
1470 uint64_t NonTrivialToPrimitiveDefaultInitialize : 1;
1471 uint64_t NonTrivialToPrimitiveCopy : 1;
1472 uint64_t NonTrivialToPrimitiveDestroy : 1;
1473
1474 /// The following bits indicate whether this is or contains a C union that
1475 /// is non-trivial to default-initialize, destruct, or copy. These bits
1476 /// imply the associated basic non-triviality predicates declared above.
1477 uint64_t HasNonTrivialToPrimitiveDefaultInitializeCUnion : 1;
1478 uint64_t HasNonTrivialToPrimitiveDestructCUnion : 1;
1479 uint64_t HasNonTrivialToPrimitiveCopyCUnion : 1;
1480
1481 /// Indicates whether this struct is destroyed in the callee.
1482 uint64_t ParamDestroyedInCallee : 1;
1483
1484 /// Represents the way this type is passed to a function.
1485 uint64_t ArgPassingRestrictions : 2;
1486 };
1487
1488 /// Number of non-inherited bits in RecordDeclBitfields.
1489 enum { NumRecordDeclBits = 14 };
1490
1491 /// Stores the bits used by OMPDeclareReductionDecl.
1492 /// If modified NumOMPDeclareReductionDeclBits and the accessor
1493 /// methods in OMPDeclareReductionDecl should be updated appropriately.
1494 class OMPDeclareReductionDeclBitfields {
1495 friend class OMPDeclareReductionDecl;
1496 /// For the bits in DeclContextBitfields
1497 uint64_t : NumDeclContextBits;
1498
1499 /// Kind of initializer,
1500 /// function call or omp_priv<init_expr> initializtion.
1501 uint64_t InitializerKind : 2;
1502 };
1503
1504 /// Number of non-inherited bits in OMPDeclareReductionDeclBitfields.
1505 enum { NumOMPDeclareReductionDeclBits = 2 };
1506
1507 /// Stores the bits used by FunctionDecl.
1508 /// If modified NumFunctionDeclBits and the accessor
1509 /// methods in FunctionDecl and CXXDeductionGuideDecl
1510 /// (for IsCopyDeductionCandidate) should be updated appropriately.
1511 class FunctionDeclBitfields {
1512 friend class FunctionDecl;
1513 /// For IsCopyDeductionCandidate
1514 friend class CXXDeductionGuideDecl;
1515 /// For the bits in DeclContextBitfields.
1516 uint64_t : NumDeclContextBits;
1517
1518 uint64_t SClass : 3;
1519 uint64_t IsInline : 1;
1520 uint64_t IsInlineSpecified : 1;
1521
1522 uint64_t IsVirtualAsWritten : 1;
1523 uint64_t IsPure : 1;
1524 uint64_t HasInheritedPrototype : 1;
1525 uint64_t HasWrittenPrototype : 1;
1526 uint64_t IsDeleted : 1;
1527 /// Used by CXXMethodDecl
1528 uint64_t IsTrivial : 1;
1529
1530 /// This flag indicates whether this function is trivial for the purpose of
1531 /// calls. This is meaningful only when this function is a copy/move
1532 /// constructor or a destructor.
1533 uint64_t IsTrivialForCall : 1;
1534
1535 uint64_t IsDefaulted : 1;
1536 uint64_t IsExplicitlyDefaulted : 1;
1537 uint64_t HasDefaultedFunctionInfo : 1;
1538 uint64_t HasImplicitReturnZero : 1;
1539 uint64_t IsLateTemplateParsed : 1;
1540
1541 /// Kind of contexpr specifier as defined by ConstexprSpecKind.
1542 uint64_t ConstexprKind : 2;
1543 uint64_t InstantiationIsPending : 1;
1544
1545 /// Indicates if the function uses __try.
1546 uint64_t UsesSEHTry : 1;
1547
1548 /// Indicates if the function was a definition
1549 /// but its body was skipped.
1550 uint64_t HasSkippedBody : 1;
1551
1552 /// Indicates if the function declaration will
1553 /// have a body, once we're done parsing it.
1554 uint64_t WillHaveBody : 1;
1555
1556 /// Indicates that this function is a multiversioned
1557 /// function using attribute 'target'.
1558 uint64_t IsMultiVersion : 1;
1559
1560 /// [C++17] Only used by CXXDeductionGuideDecl. Indicates that
1561 /// the Deduction Guide is the implicitly generated 'copy
1562 /// deduction candidate' (is used during overload resolution).
1563 uint64_t IsCopyDeductionCandidate : 1;
1564
1565 /// Store the ODRHash after first calculation.
1566 uint64_t HasODRHash : 1;
1567
1568 /// Indicates if the function uses Floating Point Constrained Intrinsics
1569 uint64_t UsesFPIntrin : 1;
1570 };
1571
1572 /// Number of non-inherited bits in FunctionDeclBitfields.
1573 enum { NumFunctionDeclBits = 27 };
1574
1575 /// Stores the bits used by CXXConstructorDecl. If modified
1576 /// NumCXXConstructorDeclBits and the accessor
1577 /// methods in CXXConstructorDecl should be updated appropriately.
1578 class CXXConstructorDeclBitfields {
1579 friend class CXXConstructorDecl;
1580 /// For the bits in DeclContextBitfields.
1581 uint64_t : NumDeclContextBits;
1582 /// For the bits in FunctionDeclBitfields.
1583 uint64_t : NumFunctionDeclBits;
1584
1585 /// 24 bits to fit in the remaining available space.
1586 /// Note that this makes CXXConstructorDeclBitfields take
1587 /// exactly 64 bits and thus the width of NumCtorInitializers
1588 /// will need to be shrunk if some bit is added to NumDeclContextBitfields,
1589 /// NumFunctionDeclBitfields or CXXConstructorDeclBitfields.
1590 uint64_t NumCtorInitializers : 21;
1591 uint64_t IsInheritingConstructor : 1;
1592
1593 /// Whether this constructor has a trail-allocated explicit specifier.
1594 uint64_t HasTrailingExplicitSpecifier : 1;
1595 /// If this constructor does't have a trail-allocated explicit specifier.
1596 /// Whether this constructor is explicit specified.
1597 uint64_t IsSimpleExplicit : 1;
1598 };
1599
1600 /// Number of non-inherited bits in CXXConstructorDeclBitfields.
1601 enum {
1602 NumCXXConstructorDeclBits = 64 - NumDeclContextBits - NumFunctionDeclBits
1603 };
1604
1605 /// Stores the bits used by ObjCMethodDecl.
1606 /// If modified NumObjCMethodDeclBits and the accessor
1607 /// methods in ObjCMethodDecl should be updated appropriately.
1608 class ObjCMethodDeclBitfields {
1609 friend class ObjCMethodDecl;
1610
1611 /// For the bits in DeclContextBitfields.
1612 uint64_t : NumDeclContextBits;
1613
1614 /// The conventional meaning of this method; an ObjCMethodFamily.
1615 /// This is not serialized; instead, it is computed on demand and
1616 /// cached.
1617 mutable uint64_t Family : ObjCMethodFamilyBitWidth;
1618
1619 /// instance (true) or class (false) method.
1620 uint64_t IsInstance : 1;
1621 uint64_t IsVariadic : 1;
1622
1623 /// True if this method is the getter or setter for an explicit property.
1624 uint64_t IsPropertyAccessor : 1;
1625
1626 /// True if this method is a synthesized property accessor stub.
1627 uint64_t IsSynthesizedAccessorStub : 1;
1628
1629 /// Method has a definition.
1630 uint64_t IsDefined : 1;
1631
1632 /// Method redeclaration in the same interface.
1633 uint64_t IsRedeclaration : 1;
1634
1635 /// Is redeclared in the same interface.
1636 mutable uint64_t HasRedeclaration : 1;
1637
1638 /// \@required/\@optional
1639 uint64_t DeclImplementation : 2;
1640
1641 /// in, inout, etc.
1642 uint64_t objcDeclQualifier : 7;
1643
1644 /// Indicates whether this method has a related result type.
1645 uint64_t RelatedResultType : 1;
1646
1647 /// Whether the locations of the selector identifiers are in a
1648 /// "standard" position, a enum SelectorLocationsKind.
1649 uint64_t SelLocsKind : 2;
1650
1651 /// Whether this method overrides any other in the class hierarchy.
1652 ///
1653 /// A method is said to override any method in the class's
1654 /// base classes, its protocols, or its categories' protocols, that has
1655 /// the same selector and is of the same kind (class or instance).
1656 /// A method in an implementation is not considered as overriding the same
1657 /// method in the interface or its categories.
1658 uint64_t IsOverriding : 1;
1659
1660 /// Indicates if the method was a definition but its body was skipped.
1661 uint64_t HasSkippedBody : 1;
1662 };
1663
1664 /// Number of non-inherited bits in ObjCMethodDeclBitfields.
1665 enum { NumObjCMethodDeclBits = 24 };
1666
1667 /// Stores the bits used by ObjCContainerDecl.
1668 /// If modified NumObjCContainerDeclBits and the accessor
1669 /// methods in ObjCContainerDecl should be updated appropriately.
1670 class ObjCContainerDeclBitfields {
1671 friend class ObjCContainerDecl;
1672 /// For the bits in DeclContextBitfields
1673 uint32_t : NumDeclContextBits;
1674
1675 // Not a bitfield but this saves space.
1676 // Note that ObjCContainerDeclBitfields is full.
1677 SourceLocation AtStart;
1678 };
1679
1680 /// Number of non-inherited bits in ObjCContainerDeclBitfields.
1681 /// Note that here we rely on the fact that SourceLocation is 32 bits
1682 /// wide. We check this with the static_assert in the ctor of DeclContext.
1683 enum { NumObjCContainerDeclBits = 64 - NumDeclContextBits };
1684
1685 /// Stores the bits used by LinkageSpecDecl.
1686 /// If modified NumLinkageSpecDeclBits and the accessor
1687 /// methods in LinkageSpecDecl should be updated appropriately.
1688 class LinkageSpecDeclBitfields {
1689 friend class LinkageSpecDecl;
1690 /// For the bits in DeclContextBitfields.
1691 uint64_t : NumDeclContextBits;
1692
1693 /// The language for this linkage specification with values
1694 /// in the enum LinkageSpecDecl::LanguageIDs.
1695 uint64_t Language : 3;
1696
1697 /// True if this linkage spec has braces.
1698 /// This is needed so that hasBraces() returns the correct result while the
1699 /// linkage spec body is being parsed. Once RBraceLoc has been set this is
1700 /// not used, so it doesn't need to be serialized.
1701 uint64_t HasBraces : 1;
1702 };
1703
1704 /// Number of non-inherited bits in LinkageSpecDeclBitfields.
1705 enum { NumLinkageSpecDeclBits = 4 };
1706
1707 /// Stores the bits used by BlockDecl.
1708 /// If modified NumBlockDeclBits and the accessor
1709 /// methods in BlockDecl should be updated appropriately.
1710 class BlockDeclBitfields {
1711 friend class BlockDecl;
1712 /// For the bits in DeclContextBitfields.
1713 uint64_t : NumDeclContextBits;
1714
1715 uint64_t IsVariadic : 1;
1716 uint64_t CapturesCXXThis : 1;
1717 uint64_t BlockMissingReturnType : 1;
1718 uint64_t IsConversionFromLambda : 1;
1719
1720 /// A bit that indicates this block is passed directly to a function as a
1721 /// non-escaping parameter.
1722 uint64_t DoesNotEscape : 1;
1723
1724 /// A bit that indicates whether it's possible to avoid coying this block to
1725 /// the heap when it initializes or is assigned to a local variable with
1726 /// automatic storage.
1727 uint64_t CanAvoidCopyToHeap : 1;
1728 };
1729
1730 /// Number of non-inherited bits in BlockDeclBitfields.
1731 enum { NumBlockDeclBits = 5 };
1732
1733 /// Pointer to the data structure used to lookup declarations
1734 /// within this context (or a DependentStoredDeclsMap if this is a
1735 /// dependent context). We maintain the invariant that, if the map
1736 /// contains an entry for a DeclarationName (and we haven't lazily
1737 /// omitted anything), then it contains all relevant entries for that
1738 /// name (modulo the hasExternalDecls() flag).
1739 mutable StoredDeclsMap *LookupPtr = nullptr;
1740
1741protected:
1742 /// This anonymous union stores the bits belonging to DeclContext and classes
1743 /// deriving from it. The goal is to use otherwise wasted
1744 /// space in DeclContext to store data belonging to derived classes.
1745 /// The space saved is especially significient when pointers are aligned
1746 /// to 8 bytes. In this case due to alignment requirements we have a
1747 /// little less than 8 bytes free in DeclContext which we can use.
1748 /// We check that none of the classes in this union is larger than
1749 /// 8 bytes with static_asserts in the ctor of DeclContext.
1750 union {
1751 DeclContextBitfields DeclContextBits;
1752 TagDeclBitfields TagDeclBits;
1753 EnumDeclBitfields EnumDeclBits;
1754 RecordDeclBitfields RecordDeclBits;
1755 OMPDeclareReductionDeclBitfields OMPDeclareReductionDeclBits;
1756 FunctionDeclBitfields FunctionDeclBits;
1757 CXXConstructorDeclBitfields CXXConstructorDeclBits;
1758 ObjCMethodDeclBitfields ObjCMethodDeclBits;
1759 ObjCContainerDeclBitfields ObjCContainerDeclBits;
1760 LinkageSpecDeclBitfields LinkageSpecDeclBits;
1761 BlockDeclBitfields BlockDeclBits;
1762
1763 static_assert(sizeof(DeclContextBitfields) <= 8,
1764 "DeclContextBitfields is larger than 8 bytes!");
1765 static_assert(sizeof(TagDeclBitfields) <= 8,
1766 "TagDeclBitfields is larger than 8 bytes!");
1767 static_assert(sizeof(EnumDeclBitfields) <= 8,
1768 "EnumDeclBitfields is larger than 8 bytes!");
1769 static_assert(sizeof(RecordDeclBitfields) <= 8,
1770 "RecordDeclBitfields is larger than 8 bytes!");
1771 static_assert(sizeof(OMPDeclareReductionDeclBitfields) <= 8,
1772 "OMPDeclareReductionDeclBitfields is larger than 8 bytes!");
1773 static_assert(sizeof(FunctionDeclBitfields) <= 8,
1774 "FunctionDeclBitfields is larger than 8 bytes!");
1775 static_assert(sizeof(CXXConstructorDeclBitfields) <= 8,
1776 "CXXConstructorDeclBitfields is larger than 8 bytes!");
1777 static_assert(sizeof(ObjCMethodDeclBitfields) <= 8,
1778 "ObjCMethodDeclBitfields is larger than 8 bytes!");
1779 static_assert(sizeof(ObjCContainerDeclBitfields) <= 8,
1780 "ObjCContainerDeclBitfields is larger than 8 bytes!");
1781 static_assert(sizeof(LinkageSpecDeclBitfields) <= 8,
1782 "LinkageSpecDeclBitfields is larger than 8 bytes!");
1783 static_assert(sizeof(BlockDeclBitfields) <= 8,
1784 "BlockDeclBitfields is larger than 8 bytes!");
1785 };
1786
1787 /// FirstDecl - The first declaration stored within this declaration
1788 /// context.
1789 mutable Decl *FirstDecl = nullptr;
1790
1791 /// LastDecl - The last declaration stored within this declaration
1792 /// context. FIXME: We could probably cache this value somewhere
1793 /// outside of the DeclContext, to reduce the size of DeclContext by
1794 /// another pointer.
1795 mutable Decl *LastDecl = nullptr;
1796
1797 /// Build up a chain of declarations.
1798 ///
1799 /// \returns the first/last pair of declarations.
1800 static std::pair<Decl *, Decl *>
1801 BuildDeclChain(ArrayRef<Decl*> Decls, bool FieldsAlreadyLoaded);
1802
1803 DeclContext(Decl::Kind K);
1804
1805public:
1806 ~DeclContext();
1807
1808 Decl::Kind getDeclKind() const {
1809 return static_cast<Decl::Kind>(DeclContextBits.DeclKind);
1810 }
1811
1812 const char *getDeclKindName() const;
1813
1814 /// getParent - Returns the containing DeclContext.
1815 DeclContext *getParent() {
1816 return cast<Decl>(this)->getDeclContext();
1817 }
1818 const DeclContext *getParent() const {
1819 return const_cast<DeclContext*>(this)->getParent();
1820 }
1821
1822 /// getLexicalParent - Returns the containing lexical DeclContext. May be
1823 /// different from getParent, e.g.:
1824 ///
1825 /// namespace A {
1826 /// struct S;
1827 /// }
1828 /// struct A::S {}; // getParent() == namespace 'A'
1829 /// // getLexicalParent() == translation unit
1830 ///
1831 DeclContext *getLexicalParent() {
1832 return cast<Decl>(this)->getLexicalDeclContext();
1833 }
1834 const DeclContext *getLexicalParent() const {
1835 return const_cast<DeclContext*>(this)->getLexicalParent();
1836 }
1837
1838 DeclContext *getLookupParent();
1839
1840 const DeclContext *getLookupParent() const {
1841 return const_cast<DeclContext*>(this)->getLookupParent();
1842 }
1843
1844 ASTContext &getParentASTContext() const {
1845 return cast<Decl>(this)->getASTContext();
1846 }
1847
1848 bool isClosure() const { return getDeclKind() == Decl::Block; }
1849
1850 /// Return this DeclContext if it is a BlockDecl. Otherwise, return the
1851 /// innermost enclosing BlockDecl or null if there are no enclosing blocks.
1852 const BlockDecl *getInnermostBlockDecl() const;
1853
1854 bool isObjCContainer() const {
1855 switch (getDeclKind()) {
1856 case Decl::ObjCCategory:
1857 case Decl::ObjCCategoryImpl:
1858 case Decl::ObjCImplementation:
1859 case Decl::ObjCInterface:
1860 case Decl::ObjCProtocol:
1861 return true;
1862 default:
1863 return false;
1864 }
1865 }
1866
1867 bool isFunctionOrMethod() const {
1868 switch (getDeclKind()) {
1869 case Decl::Block:
1870 case Decl::Captured:
1871 case Decl::ObjCMethod:
1872 return true;
1873 default:
1874 return getDeclKind() >= Decl::firstFunction &&
1875 getDeclKind() <= Decl::lastFunction;
1876 }
1877 }
1878
1879 /// Test whether the context supports looking up names.
1880 bool isLookupContext() const {
1881 return !isFunctionOrMethod() && getDeclKind() != Decl::LinkageSpec &&
1882 getDeclKind() != Decl::Export;
1883 }
1884
1885 bool isFileContext() const {
1886 return getDeclKind() == Decl::TranslationUnit ||
1887 getDeclKind() == Decl::Namespace;
1888 }
1889
1890 bool isTranslationUnit() const {
1891 return getDeclKind() == Decl::TranslationUnit;
1892 }
1893
1894 bool isRecord() const {
1895 return getDeclKind() >= Decl::firstRecord &&
48
Assuming the condition is false
49
Returning zero, which participates in a condition later
1896 getDeclKind() <= Decl::lastRecord;
1897 }
1898
1899 bool isNamespace() const { return getDeclKind() == Decl::Namespace; }
1900
1901 bool isStdNamespace() const;
1902
1903 bool isInlineNamespace() const;
1904
1905 /// Determines whether this context is dependent on a
1906 /// template parameter.
1907 bool isDependentContext() const;
1908
1909 /// isTransparentContext - Determines whether this context is a
1910 /// "transparent" context, meaning that the members declared in this
1911 /// context are semantically declared in the nearest enclosing
1912 /// non-transparent (opaque) context but are lexically declared in
1913 /// this context. For example, consider the enumerators of an
1914 /// enumeration type:
1915 /// @code
1916 /// enum E {
1917 /// Val1
1918 /// };
1919 /// @endcode
1920 /// Here, E is a transparent context, so its enumerator (Val1) will
1921 /// appear (semantically) that it is in the same context of E.
1922 /// Examples of transparent contexts include: enumerations (except for
1923 /// C++0x scoped enums), and C++ linkage specifications.
1924 bool isTransparentContext() const;
1925
1926 /// Determines whether this context or some of its ancestors is a
1927 /// linkage specification context that specifies C linkage.
1928 bool isExternCContext() const;
1929
1930 /// Retrieve the nearest enclosing C linkage specification context.
1931 const LinkageSpecDecl *getExternCContext() const;
1932
1933 /// Determines whether this context or some of its ancestors is a
1934 /// linkage specification context that specifies C++ linkage.
1935 bool isExternCXXContext() const;
1936
1937 /// Determine whether this declaration context is equivalent
1938 /// to the declaration context DC.
1939 bool Equals(const DeclContext *DC) const {
1940 return DC && this->getPrimaryContext() == DC->getPrimaryContext();
1941 }
1942
1943 /// Determine whether this declaration context encloses the
1944 /// declaration context DC.
1945 bool Encloses(const DeclContext *DC) const;
1946
1947 /// Find the nearest non-closure ancestor of this context,
1948 /// i.e. the innermost semantic parent of this context which is not
1949 /// a closure. A context may be its own non-closure ancestor.
1950 Decl *getNonClosureAncestor();
1951 const Decl *getNonClosureAncestor() const {
1952 return const_cast<DeclContext*>(this)->getNonClosureAncestor();
1953 }
1954
1955 /// getPrimaryContext - There may be many different
1956 /// declarations of the same entity (including forward declarations
1957 /// of classes, multiple definitions of namespaces, etc.), each with
1958 /// a different set of declarations. This routine returns the
1959 /// "primary" DeclContext structure, which will contain the
1960 /// information needed to perform name lookup into this context.
1961 DeclContext *getPrimaryContext();
1962 const DeclContext *getPrimaryContext() const {
1963 return const_cast<DeclContext*>(this)->getPrimaryContext();
1964 }
1965
1966 /// getRedeclContext - Retrieve the context in which an entity conflicts with
1967 /// other entities of the same name, or where it is a redeclaration if the
1968 /// two entities are compatible. This skips through transparent contexts.
1969 DeclContext *getRedeclContext();
1970 const DeclContext *getRedeclContext() const {
1971 return const_cast<DeclContext *>(this)->getRedeclContext();
1972 }
1973
1974 /// Retrieve the nearest enclosing namespace context.
1975 DeclContext *getEnclosingNamespaceContext();
1976 const DeclContext *getEnclosingNamespaceContext() const {
1977 return const_cast<DeclContext *>(this)->getEnclosingNamespaceContext();
1978 }
1979
1980 /// Retrieve the outermost lexically enclosing record context.
1981 RecordDecl *getOuterLexicalRecordContext();
1982 const RecordDecl *getOuterLexicalRecordContext() const {
1983 return const_cast<DeclContext *>(this)->getOuterLexicalRecordContext();
1984 }
1985
1986 /// Test if this context is part of the enclosing namespace set of
1987 /// the context NS, as defined in C++0x [namespace.def]p9. If either context
1988 /// isn't a namespace, this is equivalent to Equals().
1989 ///
1990 /// The enclosing namespace set of a namespace is the namespace and, if it is
1991 /// inline, its enclosing namespace, recursively.
1992 bool InEnclosingNamespaceSetOf(const DeclContext *NS) const;
1993
1994 /// Collects all of the declaration contexts that are semantically
1995 /// connected to this declaration context.
1996 ///
1997 /// For declaration contexts that have multiple semantically connected but
1998 /// syntactically distinct contexts, such as C++ namespaces, this routine
1999 /// retrieves the complete set of such declaration contexts in source order.
2000 /// For example, given:
2001 ///
2002 /// \code
2003 /// namespace N {
2004 /// int x;
2005 /// }
2006 /// namespace N {
2007 /// int y;
2008 /// }
2009 /// \endcode
2010 ///
2011 /// The \c Contexts parameter will contain both definitions of N.
2012 ///
2013 /// \param Contexts Will be cleared and set to the set of declaration
2014 /// contexts that are semanticaly connected to this declaration context,
2015 /// in source order, including this context (which may be the only result,
2016 /// for non-namespace contexts).
2017 void collectAllContexts(SmallVectorImpl<DeclContext *> &Contexts);
2018
2019 /// decl_iterator - Iterates through the declarations stored
2020 /// within this context.
2021 class decl_iterator {
2022 /// Current - The current declaration.
2023 Decl *Current = nullptr;
2024
2025 public:
2026 using value_type = Decl *;
2027 using reference = const value_type &;
2028 using pointer = const value_type *;
2029 using iterator_category = std::forward_iterator_tag;
2030 using difference_type = std::ptrdiff_t;
2031
2032 decl_iterator() = default;
2033 explicit decl_iterator(Decl *C) : Current(C) {}
2034
2035 reference operator*() const { return Current; }
2036
2037 // This doesn't meet the iterator requirements, but it's convenient
2038 value_type operator->() const { return Current; }
2039
2040 decl_iterator& operator++() {
2041 Current = Current->getNextDeclInContext();
2042 return *this;
2043 }
2044
2045 decl_iterator operator++(int) {
2046 decl_iterator tmp(*this);
2047 ++(*this);
2048 return tmp;
2049 }
2050
2051 friend bool operator==(decl_iterator x, decl_iterator y) {
2052 return x.Current == y.Current;
2053 }
2054
2055 friend bool operator!=(decl_iterator x, decl_iterator y) {
2056 return x.Current != y.Current;
2057 }
2058 };
2059
2060 using decl_range = llvm::iterator_range<decl_iterator>;
2061
2062 /// decls_begin/decls_end - Iterate over the declarations stored in
2063 /// this context.
2064 decl_range decls() const { return decl_range(decls_begin(), decls_end()); }
2065 decl_iterator decls_begin() const;
2066 decl_iterator decls_end() const { return decl_iterator(); }
2067 bool decls_empty() const;
2068
2069 /// noload_decls_begin/end - Iterate over the declarations stored in this
2070 /// context that are currently loaded; don't attempt to retrieve anything
2071 /// from an external source.
2072 decl_range noload_decls() const {
2073 return decl_range(noload_decls_begin(), noload_decls_end());
2074 }
2075 decl_iterator noload_decls_begin() const { return decl_iterator(FirstDecl); }
2076 decl_iterator noload_decls_end() const { return decl_iterator(); }
2077
2078 /// specific_decl_iterator - Iterates over a subrange of
2079 /// declarations stored in a DeclContext, providing only those that
2080 /// are of type SpecificDecl (or a class derived from it). This
2081 /// iterator is used, for example, to provide iteration over just
2082 /// the fields within a RecordDecl (with SpecificDecl = FieldDecl).
2083 template<typename SpecificDecl>
2084 class specific_decl_iterator {
2085 /// Current - The current, underlying declaration iterator, which
2086 /// will either be NULL or will point to a declaration of
2087 /// type SpecificDecl.
2088 DeclContext::decl_iterator Current;
2089
2090 /// SkipToNextDecl - Advances the current position up to the next
2091 /// declaration of type SpecificDecl that also meets the criteria
2092 /// required by Acceptable.
2093 void SkipToNextDecl() {
2094 while (*Current && !isa<SpecificDecl>(*Current))
2095 ++Current;
2096 }
2097
2098 public:
2099 using value_type = SpecificDecl *;
2100 // TODO: Add reference and pointer types (with some appropriate proxy type)
2101 // if we ever have a need for them.
2102 using reference = void;
2103 using pointer = void;
2104 using difference_type =
2105 std::iterator_traits<DeclContext::decl_iterator>::difference_type;
2106 using iterator_category = std::forward_iterator_tag;
2107
2108 specific_decl_iterator() = default;
2109
2110 /// specific_decl_iterator - Construct a new iterator over a
2111 /// subset of the declarations the range [C,
2112 /// end-of-declarations). If A is non-NULL, it is a pointer to a
2113 /// member function of SpecificDecl that should return true for
2114 /// all of the SpecificDecl instances that will be in the subset
2115 /// of iterators. For example, if you want Objective-C instance
2116 /// methods, SpecificDecl will be ObjCMethodDecl and A will be
2117 /// &ObjCMethodDecl::isInstanceMethod.
2118 explicit specific_decl_iterator(DeclContext::decl_iterator C) : Current(C) {
2119 SkipToNextDecl();
2120 }
2121
2122 value_type operator*() const { return cast<SpecificDecl>(*Current); }
2123
2124 // This doesn't meet the iterator requirements, but it's convenient
2125 value_type operator->() const { return **this; }
2126
2127 specific_decl_iterator& operator++() {
2128 ++Current;
2129 SkipToNextDecl();
2130 return *this;
2131 }
2132
2133 specific_decl_iterator operator++(int) {
2134 specific_decl_iterator tmp(*this);
2135 ++(*this);
2136 return tmp;
2137 }
2138
2139 friend bool operator==(const specific_decl_iterator& x,
2140 const specific_decl_iterator& y) {
2141 return x.Current == y.Current;
2142 }
2143
2144 friend bool operator!=(const specific_decl_iterator& x,
2145 const specific_decl_iterator& y) {
2146 return x.Current != y.Current;
2147 }
2148 };
2149
2150 /// Iterates over a filtered subrange of declarations stored
2151 /// in a DeclContext.
2152 ///
2153 /// This iterator visits only those declarations that are of type
2154 /// SpecificDecl (or a class derived from it) and that meet some
2155 /// additional run-time criteria. This iterator is used, for
2156 /// example, to provide access to the instance methods within an
2157 /// Objective-C interface (with SpecificDecl = ObjCMethodDecl and
2158 /// Acceptable = ObjCMethodDecl::isInstanceMethod).
2159 template<typename SpecificDecl, bool (SpecificDecl::*Acceptable)() const>
2160 class filtered_decl_iterator {
2161 /// Current - The current, underlying declaration iterator, which
2162 /// will either be NULL or will point to a declaration of
2163 /// type SpecificDecl.
2164 DeclContext::decl_iterator Current;
2165
2166 /// SkipToNextDecl - Advances the current position up to the next
2167 /// declaration of type SpecificDecl that also meets the criteria
2168 /// required by Acceptable.
2169 void SkipToNextDecl() {
2170 while (*Current &&
2171 (!isa<SpecificDecl>(*Current) ||
2172 (Acceptable && !(cast<SpecificDecl>(*Current)->*Acceptable)())))
2173 ++Current;
2174 }
2175
2176 public:
2177 using value_type = SpecificDecl *;
2178 // TODO: Add reference and pointer types (with some appropriate proxy type)
2179 // if we ever have a need for them.
2180 using reference = void;
2181 using pointer = void;
2182 using difference_type =
2183 std::iterator_traits<DeclContext::decl_iterator>::difference_type;
2184 using iterator_category = std::forward_iterator_tag;
2185
2186 filtered_decl_iterator() = default;
2187
2188 /// filtered_decl_iterator - Construct a new iterator over a
2189 /// subset of the declarations the range [C,
2190 /// end-of-declarations). If A is non-NULL, it is a pointer to a
2191 /// member function of SpecificDecl that should return true for
2192 /// all of the SpecificDecl instances that will be in the subset
2193 /// of iterators. For example, if you want Objective-C instance
2194 /// methods, SpecificDecl will be ObjCMethodDecl and A will be
2195 /// &ObjCMethodDecl::isInstanceMethod.
2196 explicit filtered_decl_iterator(DeclContext::decl_iterator C) : Current(C) {
2197 SkipToNextDecl();
2198 }
2199
2200 value_type operator*() const { return cast<SpecificDecl>(*Current); }
2201 value_type operator->() const { return cast<SpecificDecl>(*Current); }
2202
2203 filtered_decl_iterator& operator++() {
2204 ++Current;
2205 SkipToNextDecl();
2206 return *this;
2207 }
2208
2209 filtered_decl_iterator operator++(int) {
2210 filtered_decl_iterator tmp(*this);
2211 ++(*this);
2212 return tmp;
2213 }
2214
2215 friend bool operator==(const filtered_decl_iterator& x,
2216 const filtered_decl_iterator& y) {
2217 return x.Current == y.Current;
2218 }
2219
2220 friend bool operator!=(const filtered_decl_iterator& x,
2221 const filtered_decl_iterator& y) {
2222 return x.Current != y.Current;
2223 }
2224 };
2225
2226 /// Add the declaration D into this context.
2227 ///
2228 /// This routine should be invoked when the declaration D has first
2229 /// been declared, to place D into the context where it was
2230 /// (lexically) defined. Every declaration must be added to one
2231 /// (and only one!) context, where it can be visited via
2232 /// [decls_begin(), decls_end()). Once a declaration has been added
2233 /// to its lexical context, the corresponding DeclContext owns the
2234 /// declaration.
2235 ///
2236 /// If D is also a NamedDecl, it will be made visible within its
2237 /// semantic context via makeDeclVisibleInContext.
2238 void addDecl(Decl *D);
2239
2240 /// Add the declaration D into this context, but suppress
2241 /// searches for external declarations with the same name.
2242 ///
2243 /// Although analogous in function to addDecl, this removes an
2244 /// important check. This is only useful if the Decl is being
2245 /// added in response to an external search; in all other cases,
2246 /// addDecl() is the right function to use.
2247 /// See the ASTImporter for use cases.
2248 void addDeclInternal(Decl *D);
2249
2250 /// Add the declaration D to this context without modifying
2251 /// any lookup tables.
2252 ///
2253 /// This is useful for some operations in dependent contexts where
2254 /// the semantic context might not be dependent; this basically
2255 /// only happens with friends.
2256 void addHiddenDecl(Decl *D);
2257
2258 /// Removes a declaration from this context.
2259 void removeDecl(Decl *D);
2260
2261 /// Checks whether a declaration is in this context.
2262 bool containsDecl(Decl *D) const;
2263
2264 /// Checks whether a declaration is in this context.
2265 /// This also loads the Decls from the external source before the check.
2266 bool containsDeclAndLoad(Decl *D) const;
2267
2268 using lookup_result = DeclContextLookupResult;
2269 using lookup_iterator = lookup_result::iterator;
2270
2271 /// lookup - Find the declarations (if any) with the given Name in
2272 /// this context. Returns a range of iterators that contains all of
2273 /// the declarations with this name, with object, function, member,
2274 /// and enumerator names preceding any tag name. Note that this
2275 /// routine will not look into parent contexts.
2276 lookup_result lookup(DeclarationName Name) const;
2277
2278 /// Find the declarations with the given name that are visible
2279 /// within this context; don't attempt to retrieve anything from an
2280 /// external source.
2281 lookup_result noload_lookup(DeclarationName Name);
2282
2283 /// A simplistic name lookup mechanism that performs name lookup
2284 /// into this declaration context without consulting the external source.
2285 ///
2286 /// This function should almost never be used, because it subverts the
2287 /// usual relationship between a DeclContext and the external source.
2288 /// See the ASTImporter for the (few, but important) use cases.
2289 ///
2290 /// FIXME: This is very inefficient; replace uses of it with uses of
2291 /// noload_lookup.
2292 void localUncachedLookup(DeclarationName Name,
2293 SmallVectorImpl<NamedDecl *> &Results);
2294
2295 /// Makes a declaration visible within this context.
2296 ///
2297 /// This routine makes the declaration D visible to name lookup
2298 /// within this context and, if this is a transparent context,
2299 /// within its parent contexts up to the first enclosing
2300 /// non-transparent context. Making a declaration visible within a
2301 /// context does not transfer ownership of a declaration, and a
2302 /// declaration can be visible in many contexts that aren't its
2303 /// lexical context.
2304 ///
2305 /// If D is a redeclaration of an existing declaration that is
2306 /// visible from this context, as determined by
2307 /// NamedDecl::declarationReplaces, the previous declaration will be
2308 /// replaced with D.
2309 void makeDeclVisibleInContext(NamedDecl *D);
2310
2311 /// all_lookups_iterator - An iterator that provides a view over the results
2312 /// of looking up every possible name.
2313 class all_lookups_iterator;
2314
2315 using lookups_range = llvm::iterator_range<all_lookups_iterator>;
2316
2317 lookups_range lookups() const;
2318 // Like lookups(), but avoids loading external declarations.
2319 // If PreserveInternalState, avoids building lookup data structures too.
2320 lookups_range noload_lookups(bool PreserveInternalState) const;
2321
2322 /// Iterators over all possible lookups within this context.
2323 all_lookups_iterator lookups_begin() const;
2324 all_lookups_iterator lookups_end() const;
2325
2326 /// Iterators over all possible lookups within this context that are
2327 /// currently loaded; don't attempt to retrieve anything from an external
2328 /// source.
2329 all_lookups_iterator noload_lookups_begin() const;
2330 all_lookups_iterator noload_lookups_end() const;
2331
2332 struct udir_iterator;
2333
2334 using udir_iterator_base =
2335 llvm::iterator_adaptor_base<udir_iterator, lookup_iterator,
2336 std::random_access_iterator_tag,
2337 UsingDirectiveDecl *>;
2338
2339 struct udir_iterator : udir_iterator_base {
2340 udir_iterator(lookup_iterator I) : udir_iterator_base(I) {}
2341
2342 UsingDirectiveDecl *operator*() const;
2343 };
2344
2345 using udir_range = llvm::iterator_range<udir_iterator>;
2346
2347 udir_range using_directives() const;
2348
2349 // These are all defined in DependentDiagnostic.h.
2350 class ddiag_iterator;
2351
2352 using ddiag_range = llvm::iterator_range<DeclContext::ddiag_iterator>;
2353
2354 inline ddiag_range ddiags() const;
2355
2356 // Low-level accessors
2357
2358 /// Mark that there are external lexical declarations that we need
2359 /// to include in our lookup table (and that are not available as external
2360 /// visible lookups). These extra lookup results will be found by walking
2361 /// the lexical declarations of this context. This should be used only if
2362 /// setHasExternalLexicalStorage() has been called on any decl context for
2363 /// which this is the primary context.
2364 void setMustBuildLookupTable() {
2365 assert(this == getPrimaryContext() &&((this == getPrimaryContext() && "should only be called on primary context"
) ? static_cast<void> (0) : __assert_fail ("this == getPrimaryContext() && \"should only be called on primary context\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/include/clang/AST/DeclBase.h"
, 2366, __PRETTY_FUNCTION__))
2366 "should only be called on primary context")((this == getPrimaryContext() && "should only be called on primary context"
) ? static_cast<void> (0) : __assert_fail ("this == getPrimaryContext() && \"should only be called on primary context\""
, "/build/llvm-toolchain-snapshot-12~++20210122100613+fdab28edef35/clang/include/clang/AST/DeclBase.h"
, 2366, __PRETTY_FUNCTION__))
;
2367 DeclContextBits.HasLazyExternalLexicalLookups = true;
2368 }
2369
2370 /// Retrieve the internal representation of the lookup structure.
2371 /// This may omit some names if we are lazily building the structure.
2372 StoredDeclsMap *getLookupPtr() const { return LookupPtr; }
2373
2374 /// Ensure the lookup structure is fully-built and return it.
2375 StoredDeclsMap *buildLookup();
2376
2377 /// Whether this DeclContext has external storage containing
2378 /// additional declarations that are lexically in this context.
2379 bool hasExternalLexicalStorage() const {
2380 return DeclContextBits.ExternalLexicalStorage;
2381 }
2382
2383 /// State whether this DeclContext has external storage for
2384 /// declarations lexically in this context.
2385 void setHasExternalLexicalStorage(bool ES = true) const {
2386 DeclContextBits.ExternalLexicalStorage = ES;
2387 }
2388
2389 /// Whether this DeclContext has external storage containing
2390 /// additional declarations that are visible in this context.
2391 bool hasExternalVisibleStorage() const {
2392 return DeclContextBits.ExternalVisibleStorage;
2393 }
2394
2395 /// State whether this DeclContext has external storage for
2396 /// declarations visible in this context.
2397 void setHasExternalVisibleStorage(bool ES = true) const {
2398 DeclContextBits.ExternalVisibleStorage = ES;
2399 if (ES && LookupPtr)
2400 DeclContextBits.NeedToReconcileExternalVisibleStorage = true;
2401 }
2402
2403 /// Determine whether the given declaration is stored in the list of
2404 /// declarations lexically within this context.
2405 bool isDeclInLexicalTraversal(const Decl *D) const {
2406 return D && (D->NextInContextAndBits.getPointer() || D == FirstDecl ||
2407 D == LastDecl);
2408 }
2409
2410 bool setUseQualifiedLookup(bool use = true) const {
2411 bool old_value = DeclContextBits.UseQualifiedLookup;
2412 DeclContextBits.UseQualifiedLookup = use;
2413 return old_value;
2414 }
2415
2416 bool shouldUseQualifiedLookup() const {
2417 return DeclContextBits.UseQualifiedLookup;
2418 }
2419
2420 static bool classof(const Decl *D);
2421 static bool classof(const DeclContext *D) { return true; }
2422
2423 void dumpDeclContext() const;
2424 void dumpLookups() const;
2425 void dumpLookups(llvm::raw_ostream &OS, bool DumpDecls = false,
2426 bool Deserialize = false) const;
2427
2428private:
2429 /// Whether this declaration context has had externally visible
2430 /// storage added since the last lookup. In this case, \c LookupPtr's
2431 /// invariant may not hold and needs to be fixed before we perform
2432 /// another lookup.
2433 bool hasNeedToReconcileExternalVisibleStorage() const {
2434 return DeclContextBits.NeedToReconcileExternalVisibleStorage;
2435 }
2436
2437 /// State that this declaration context has had externally visible
2438 /// storage added since the last lookup. In this case, \c LookupPtr's
2439 /// invariant may not hold and needs to be fixed before we perform
2440 /// another lookup.
2441 void setNeedToReconcileExternalVisibleStorage(bool Need = true) const {
2442 DeclContextBits.NeedToReconcileExternalVisibleStorage = Need;
2443 }
2444
2445 /// If \c true, this context may have local lexical declarations
2446 /// that are missing from the lookup table.
2447 bool hasLazyLocalLexicalLookups() const {
2448 return DeclContextBits.HasLazyLocalLexicalLookups;
2449 }
2450
2451 /// If \c true, this context may have local lexical declarations
2452 /// that are missing from the lookup table.
2453 void setHasLazyLocalLexicalLookups(bool HasLLLL = true) const {
2454 DeclContextBits.HasLazyLocalLexicalLookups = HasLLLL;
2455 }
2456
2457 /// If \c true, the external source may have lexical declarations
2458 /// that are missing from the lookup table.
2459 bool hasLazyExternalLexicalLookups() const {
2460 return DeclContextBits.HasLazyExternalLexicalLookups;
2461 }
2462
2463 /// If \c true, the external source may have lexical declarations
2464 /// that are missing from the lookup table.
2465 void setHasLazyExternalLexicalLookups(bool HasLELL = true) const {
2466 DeclContextBits.HasLazyExternalLexicalLookups = HasLELL;
2467 }
2468
2469 void reconcileExternalVisibleStorage() const;
2470 bool LoadLexicalDeclsFromExternalStorage() const;
2471
2472 /// Makes a declaration visible within this context, but
2473 /// suppresses searches for external declarations with the same
2474 /// name.
2475 ///
2476 /// Analogous to makeDeclVisibleInContext, but for the exclusive
2477 /// use of addDeclInternal().
2478 void makeDeclVisibleInContextInternal(NamedDecl *D);
2479
2480 StoredDeclsMap *CreateStoredDeclsMap(ASTContext &C) const;
2481
2482 void loadLazyLocalLexicalLookups();
2483 void buildLookupImpl(DeclContext *DCtx, bool Internal);
2484 void makeDeclVisibleInContextWithFlags(NamedDecl *D, bool Internal,
2485 bool Rediscoverable);
2486 void makeDeclVisibleInContextImpl(NamedDecl *D, bool Internal);
2487};
2488
2489inline bool Decl::isTemplateParameter() const {
2490 return getKind() == TemplateTypeParm || getKind() == NonTypeTemplateParm ||
2491 getKind() == TemplateTemplateParm;
2492}
2493
2494// Specialization selected when ToTy is not a known subclass of DeclContext.
2495template <class ToTy,
2496 bool IsKnownSubtype = ::std::is_base_of<DeclContext, ToTy>::value>
2497struct cast_convert_decl_context {
2498 static const ToTy *doit(const DeclContext *Val) {
2499 return static_cast<const ToTy*>(Decl::castFromDeclContext(Val));
2500 }
2501
2502 static ToTy *doit(DeclContext *Val) {
2503 return static_cast<ToTy*>(Decl::castFromDeclContext(Val));
2504 }
2505};
2506
2507// Specialization selected when ToTy is a known subclass of DeclContext.
2508template <class ToTy>
2509struct cast_convert_decl_context<ToTy, true> {
2510 static const ToTy *doit(const DeclContext *Val) {
2511 return static_cast<const ToTy*>(Val);
2512 }
2513
2514 static ToTy *doit(DeclContext *Val) {
2515 return static_cast<ToTy*>(Val);
2516 }
2517};
2518
2519} // namespace clang
2520
2521namespace llvm {
2522
2523/// isa<T>(DeclContext*)
2524template <typename To>
2525struct isa_impl<To, ::clang::DeclContext> {
2526 static bool doit(const ::clang::DeclContext &Val) {
2527 return To::classofKind(Val.getDeclKind());
2528 }
2529};
2530
2531/// cast<T>(DeclContext*)
2532template<class ToTy>
2533struct cast_convert_val<ToTy,
2534 const ::clang::DeclContext,const ::clang::DeclContext> {
2535 static const ToTy &doit(const ::clang::DeclContext &Val) {
2536 return *::clang::cast_convert_decl_context<ToTy>::doit(&Val);
2537 }
2538};
2539
2540template<class ToTy>
2541struct cast_convert_val<ToTy, ::clang::DeclContext, ::clang::DeclContext> {
2542 static ToTy &doit(::clang::DeclContext &Val) {
2543 return *::clang::cast_convert_decl_context<ToTy>::doit(&Val);
2544 }
2545};
2546
2547template<class ToTy>
2548struct cast_convert_val<ToTy,
2549 const ::clang::DeclContext*, const ::clang::DeclContext*> {
2550 static const ToTy *doit(const ::clang::DeclContext *Val) {
2551 return ::clang::cast_convert_decl_context<ToTy>::doit(Val);
2552 }
2553};
2554
2555template<class ToTy>
2556struct cast_convert_val<ToTy, ::clang::DeclContext*, ::clang::DeclContext*> {
2557 static ToTy *doit(::clang::DeclContext *Val) {
2558 return ::clang::cast_convert_decl_context<ToTy>::doit(Val);
2559 }
2560};
2561
2562/// Implement cast_convert_val for Decl -> DeclContext conversions.
2563template<class FromTy>
2564struct cast_convert_val< ::clang::DeclContext, FromTy, FromTy> {
2565 static ::clang::DeclContext &doit(const FromTy &Val) {
2566 return *FromTy::castToDeclContext(&Val);
2567 }
2568};
2569
2570template<class FromTy>
2571struct cast_convert_val< ::clang::DeclContext, FromTy*, FromTy*> {
2572 static ::clang::DeclContext *doit(const FromTy *Val) {
2573 return FromTy::castToDeclContext(Val);
2574 }
2575};
2576
2577template<class FromTy>
2578struct cast_convert_val< const ::clang::DeclContext, FromTy, FromTy> {
2579 static const ::clang::DeclContext &doit(const FromTy &Val) {
2580 return *FromTy::castToDeclContext(&Val);
2581 }
2582};
2583
2584template<class FromTy>
2585struct cast_convert_val< const ::clang::DeclContext, FromTy*, FromTy*> {
2586 static const ::clang::DeclContext *doit(const FromTy *Val) {
2587 return FromTy::castToDeclContext(Val);
2588 }
2589};
2590
2591} // namespace llvm
2592
2593#endif // LLVM_CLANG_AST_DECLBASE_H