Bug Summary

File:tools/clang/lib/Sema/SemaDecl.cpp
Warning:line 2175, column 25
Called C++ object pointer is null

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaDecl.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -mthread-model posix -mframe-pointer=none -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-10/lib/clang/10.0.0 -D CLANG_VENDOR="Debian " -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-10~svn373517/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include -I /build/llvm-toolchain-snapshot-10~svn373517/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-10~svn373517/build-llvm/include -I /build/llvm-toolchain-snapshot-10~svn373517/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/x86_64-linux-gnu/c++/6.3.0 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/6.3.0/../../../../include/c++/6.3.0/backward -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-10/lib/clang/10.0.0/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-comment -std=c++14 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-10~svn373517/build-llvm/tools/clang/lib/Sema -fdebug-prefix-map=/build/llvm-toolchain-snapshot-10~svn373517=. -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -stack-protector 2 -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -faddrsig -o /tmp/scan-build-2019-10-02-234743-9763-1 -x c++ /build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp

/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp

1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements semantic analysis for declarations.
10//
11//===----------------------------------------------------------------------===//
12
13#include "TypeLocBuilder.h"
14#include "clang/AST/ASTConsumer.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTLambda.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/CharUnits.h"
19#include "clang/AST/CommentDiagnostic.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/EvaluatedExprVisitor.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/NonTrivialTypeVisitor.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/Basic/Builtins.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/SourceManager.h"
30#include "clang/Basic/TargetInfo.h"
31#include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex
32#include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
33#include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex
34#include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled()
35#include "clang/Sema/CXXFieldCollector.h"
36#include "clang/Sema/DeclSpec.h"
37#include "clang/Sema/DelayedDiagnostic.h"
38#include "clang/Sema/Initialization.h"
39#include "clang/Sema/Lookup.h"
40#include "clang/Sema/ParsedTemplate.h"
41#include "clang/Sema/Scope.h"
42#include "clang/Sema/ScopeInfo.h"
43#include "clang/Sema/SemaInternal.h"
44#include "clang/Sema/Template.h"
45#include "llvm/ADT/SmallString.h"
46#include "llvm/ADT/Triple.h"
47#include <algorithm>
48#include <cstring>
49#include <functional>
50
51using namespace clang;
52using namespace sema;
53
54Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
55 if (OwnedType) {
56 Decl *Group[2] = { OwnedType, Ptr };
57 return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
58 }
59
60 return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
61}
62
63namespace {
64
65class TypeNameValidatorCCC final : public CorrectionCandidateCallback {
66 public:
67 TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false,
68 bool AllowTemplates = false,
69 bool AllowNonTemplates = true)
70 : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass),
71 AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) {
72 WantExpressionKeywords = false;
73 WantCXXNamedCasts = false;
74 WantRemainingKeywords = false;
75 }
76
77 bool ValidateCandidate(const TypoCorrection &candidate) override {
78 if (NamedDecl *ND = candidate.getCorrectionDecl()) {
79 if (!AllowInvalidDecl && ND->isInvalidDecl())
80 return false;
81
82 if (getAsTypeTemplateDecl(ND))
83 return AllowTemplates;
84
85 bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND);
86 if (!IsType)
87 return false;
88
89 if (AllowNonTemplates)
90 return true;
91
92 // An injected-class-name of a class template (specialization) is valid
93 // as a template or as a non-template.
94 if (AllowTemplates) {
95 auto *RD = dyn_cast<CXXRecordDecl>(ND);
96 if (!RD || !RD->isInjectedClassName())
97 return false;
98 RD = cast<CXXRecordDecl>(RD->getDeclContext());
99 return RD->getDescribedClassTemplate() ||
100 isa<ClassTemplateSpecializationDecl>(RD);
101 }
102
103 return false;
104 }
105
106 return !WantClassName && candidate.isKeyword();
107 }
108
109 std::unique_ptr<CorrectionCandidateCallback> clone() override {
110 return std::make_unique<TypeNameValidatorCCC>(*this);
111 }
112
113 private:
114 bool AllowInvalidDecl;
115 bool WantClassName;
116 bool AllowTemplates;
117 bool AllowNonTemplates;
118};
119
120} // end anonymous namespace
121
122/// Determine whether the token kind starts a simple-type-specifier.
123bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
124 switch (Kind) {
125 // FIXME: Take into account the current language when deciding whether a
126 // token kind is a valid type specifier
127 case tok::kw_short:
128 case tok::kw_long:
129 case tok::kw___int64:
130 case tok::kw___int128:
131 case tok::kw_signed:
132 case tok::kw_unsigned:
133 case tok::kw_void:
134 case tok::kw_char:
135 case tok::kw_int:
136 case tok::kw_half:
137 case tok::kw_float:
138 case tok::kw_double:
139 case tok::kw__Float16:
140 case tok::kw___float128:
141 case tok::kw_wchar_t:
142 case tok::kw_bool:
143 case tok::kw___underlying_type:
144 case tok::kw___auto_type:
145 return true;
146
147 case tok::annot_typename:
148 case tok::kw_char16_t:
149 case tok::kw_char32_t:
150 case tok::kw_typeof:
151 case tok::annot_decltype:
152 case tok::kw_decltype:
153 return getLangOpts().CPlusPlus;
154
155 case tok::kw_char8_t:
156 return getLangOpts().Char8;
157
158 default:
159 break;
160 }
161
162 return false;
163}
164
165namespace {
166enum class UnqualifiedTypeNameLookupResult {
167 NotFound,
168 FoundNonType,
169 FoundType
170};
171} // end anonymous namespace
172
173/// Tries to perform unqualified lookup of the type decls in bases for
174/// dependent class.
175/// \return \a NotFound if no any decls is found, \a FoundNotType if found not a
176/// type decl, \a FoundType if only type decls are found.
177static UnqualifiedTypeNameLookupResult
178lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II,
179 SourceLocation NameLoc,
180 const CXXRecordDecl *RD) {
181 if (!RD->hasDefinition())
182 return UnqualifiedTypeNameLookupResult::NotFound;
183 // Look for type decls in base classes.
184 UnqualifiedTypeNameLookupResult FoundTypeDecl =
185 UnqualifiedTypeNameLookupResult::NotFound;
186 for (const auto &Base : RD->bases()) {
187 const CXXRecordDecl *BaseRD = nullptr;
188 if (auto *BaseTT = Base.getType()->getAs<TagType>())
189 BaseRD = BaseTT->getAsCXXRecordDecl();
190 else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) {
191 // Look for type decls in dependent base classes that have known primary
192 // templates.
193 if (!TST || !TST->isDependentType())
194 continue;
195 auto *TD = TST->getTemplateName().getAsTemplateDecl();
196 if (!TD)
197 continue;
198 if (auto *BasePrimaryTemplate =
199 dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) {
200 if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl())
201 BaseRD = BasePrimaryTemplate;
202 else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) {
203 if (const ClassTemplatePartialSpecializationDecl *PS =
204 CTD->findPartialSpecialization(Base.getType()))
205 if (PS->getCanonicalDecl() != RD->getCanonicalDecl())
206 BaseRD = PS;
207 }
208 }
209 }
210 if (BaseRD) {
211 for (NamedDecl *ND : BaseRD->lookup(&II)) {
212 if (!isa<TypeDecl>(ND))
213 return UnqualifiedTypeNameLookupResult::FoundNonType;
214 FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
215 }
216 if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) {
217 switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) {
218 case UnqualifiedTypeNameLookupResult::FoundNonType:
219 return UnqualifiedTypeNameLookupResult::FoundNonType;
220 case UnqualifiedTypeNameLookupResult::FoundType:
221 FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType;
222 break;
223 case UnqualifiedTypeNameLookupResult::NotFound:
224 break;
225 }
226 }
227 }
228 }
229
230 return FoundTypeDecl;
231}
232
233static ParsedType recoverFromTypeInKnownDependentBase(Sema &S,
234 const IdentifierInfo &II,
235 SourceLocation NameLoc) {
236 // Lookup in the parent class template context, if any.
237 const CXXRecordDecl *RD = nullptr;
238 UnqualifiedTypeNameLookupResult FoundTypeDecl =
239 UnqualifiedTypeNameLookupResult::NotFound;
240 for (DeclContext *DC = S.CurContext;
241 DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound;
242 DC = DC->getParent()) {
243 // Look for type decls in dependent base classes that have known primary
244 // templates.
245 RD = dyn_cast<CXXRecordDecl>(DC);
246 if (RD && RD->getDescribedClassTemplate())
247 FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD);
248 }
249 if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType)
250 return nullptr;
251
252 // We found some types in dependent base classes. Recover as if the user
253 // wrote 'typename MyClass::II' instead of 'II'. We'll fully resolve the
254 // lookup during template instantiation.
255 S.Diag(NameLoc, diag::ext_found_via_dependent_bases_lookup) << &II;
256
257 ASTContext &Context = S.Context;
258 auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false,
259 cast<Type>(Context.getRecordType(RD)));
260 QualType T = Context.getDependentNameType(ETK_Typename, NNS, &II);
261
262 CXXScopeSpec SS;
263 SS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
264
265 TypeLocBuilder Builder;
266 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
267 DepTL.setNameLoc(NameLoc);
268 DepTL.setElaboratedKeywordLoc(SourceLocation());
269 DepTL.setQualifierLoc(SS.getWithLocInContext(Context));
270 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
271}
272
273/// If the identifier refers to a type name within this scope,
274/// return the declaration of that type.
275///
276/// This routine performs ordinary name lookup of the identifier II
277/// within the given scope, with optional C++ scope specifier SS, to
278/// determine whether the name refers to a type. If so, returns an
279/// opaque pointer (actually a QualType) corresponding to that
280/// type. Otherwise, returns NULL.
281ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
282 Scope *S, CXXScopeSpec *SS,
283 bool isClassName, bool HasTrailingDot,
284 ParsedType ObjectTypePtr,
285 bool IsCtorOrDtorName,
286 bool WantNontrivialTypeSourceInfo,
287 bool IsClassTemplateDeductionContext,
288 IdentifierInfo **CorrectedII) {
289 // FIXME: Consider allowing this outside C++1z mode as an extension.
290 bool AllowDeducedTemplate = IsClassTemplateDeductionContext &&
291 getLangOpts().CPlusPlus17 && !IsCtorOrDtorName &&
292 !isClassName && !HasTrailingDot;
293
294 // Determine where we will perform name lookup.
295 DeclContext *LookupCtx = nullptr;
296 if (ObjectTypePtr) {
297 QualType ObjectType = ObjectTypePtr.get();
298 if (ObjectType->isRecordType())
299 LookupCtx = computeDeclContext(ObjectType);
300 } else if (SS && SS->isNotEmpty()) {
301 LookupCtx = computeDeclContext(*SS, false);
302
303 if (!LookupCtx) {
304 if (isDependentScopeSpecifier(*SS)) {
305 // C++ [temp.res]p3:
306 // A qualified-id that refers to a type and in which the
307 // nested-name-specifier depends on a template-parameter (14.6.2)
308 // shall be prefixed by the keyword typename to indicate that the
309 // qualified-id denotes a type, forming an
310 // elaborated-type-specifier (7.1.5.3).
311 //
312 // We therefore do not perform any name lookup if the result would
313 // refer to a member of an unknown specialization.
314 if (!isClassName && !IsCtorOrDtorName)
315 return nullptr;
316
317 // We know from the grammar that this name refers to a type,
318 // so build a dependent node to describe the type.
319 if (WantNontrivialTypeSourceInfo)
320 return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
321
322 NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
323 QualType T = CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
324 II, NameLoc);
325 return ParsedType::make(T);
326 }
327
328 return nullptr;
329 }
330
331 if (!LookupCtx->isDependentContext() &&
332 RequireCompleteDeclContext(*SS, LookupCtx))
333 return nullptr;
334 }
335
336 // FIXME: LookupNestedNameSpecifierName isn't the right kind of
337 // lookup for class-names.
338 LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
339 LookupOrdinaryName;
340 LookupResult Result(*this, &II, NameLoc, Kind);
341 if (LookupCtx) {
342 // Perform "qualified" name lookup into the declaration context we
343 // computed, which is either the type of the base of a member access
344 // expression or the declaration context associated with a prior
345 // nested-name-specifier.
346 LookupQualifiedName(Result, LookupCtx);
347
348 if (ObjectTypePtr && Result.empty()) {
349 // C++ [basic.lookup.classref]p3:
350 // If the unqualified-id is ~type-name, the type-name is looked up
351 // in the context of the entire postfix-expression. If the type T of
352 // the object expression is of a class type C, the type-name is also
353 // looked up in the scope of class C. At least one of the lookups shall
354 // find a name that refers to (possibly cv-qualified) T.
355 LookupName(Result, S);
356 }
357 } else {
358 // Perform unqualified name lookup.
359 LookupName(Result, S);
360
361 // For unqualified lookup in a class template in MSVC mode, look into
362 // dependent base classes where the primary class template is known.
363 if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) {
364 if (ParsedType TypeInBase =
365 recoverFromTypeInKnownDependentBase(*this, II, NameLoc))
366 return TypeInBase;
367 }
368 }
369
370 NamedDecl *IIDecl = nullptr;
371 switch (Result.getResultKind()) {
372 case LookupResult::NotFound:
373 case LookupResult::NotFoundInCurrentInstantiation:
374 if (CorrectedII) {
375 TypeNameValidatorCCC CCC(/*AllowInvalid=*/true, isClassName,
376 AllowDeducedTemplate);
377 TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(), Kind,
378 S, SS, CCC, CTK_ErrorRecovery);
379 IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
380 TemplateTy Template;
381 bool MemberOfUnknownSpecialization;
382 UnqualifiedId TemplateName;
383 TemplateName.setIdentifier(NewII, NameLoc);
384 NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
385 CXXScopeSpec NewSS, *NewSSPtr = SS;
386 if (SS && NNS) {
387 NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
388 NewSSPtr = &NewSS;
389 }
390 if (Correction && (NNS || NewII != &II) &&
391 // Ignore a correction to a template type as the to-be-corrected
392 // identifier is not a template (typo correction for template names
393 // is handled elsewhere).
394 !(getLangOpts().CPlusPlus && NewSSPtr &&
395 isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false,
396 Template, MemberOfUnknownSpecialization))) {
397 ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
398 isClassName, HasTrailingDot, ObjectTypePtr,
399 IsCtorOrDtorName,
400 WantNontrivialTypeSourceInfo,
401 IsClassTemplateDeductionContext);
402 if (Ty) {
403 diagnoseTypo(Correction,
404 PDiag(diag::err_unknown_type_or_class_name_suggest)
405 << Result.getLookupName() << isClassName);
406 if (SS && NNS)
407 SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
408 *CorrectedII = NewII;
409 return Ty;
410 }
411 }
412 }
413 // If typo correction failed or was not performed, fall through
414 LLVM_FALLTHROUGH[[gnu::fallthrough]];
415 case LookupResult::FoundOverloaded:
416 case LookupResult::FoundUnresolvedValue:
417 Result.suppressDiagnostics();
418 return nullptr;
419
420 case LookupResult::Ambiguous:
421 // Recover from type-hiding ambiguities by hiding the type. We'll
422 // do the lookup again when looking for an object, and we can
423 // diagnose the error then. If we don't do this, then the error
424 // about hiding the type will be immediately followed by an error
425 // that only makes sense if the identifier was treated like a type.
426 if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
427 Result.suppressDiagnostics();
428 return nullptr;
429 }
430
431 // Look to see if we have a type anywhere in the list of results.
432 for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
433 Res != ResEnd; ++Res) {
434 if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res) ||
435 (AllowDeducedTemplate && getAsTypeTemplateDecl(*Res))) {
436 if (!IIDecl ||
437 (*Res)->getLocation().getRawEncoding() <
438 IIDecl->getLocation().getRawEncoding())
439 IIDecl = *Res;
440 }
441 }
442
443 if (!IIDecl) {
444 // None of the entities we found is a type, so there is no way
445 // to even assume that the result is a type. In this case, don't
446 // complain about the ambiguity. The parser will either try to
447 // perform this lookup again (e.g., as an object name), which
448 // will produce the ambiguity, or will complain that it expected
449 // a type name.
450 Result.suppressDiagnostics();
451 return nullptr;
452 }
453
454 // We found a type within the ambiguous lookup; diagnose the
455 // ambiguity and then return that type. This might be the right
456 // answer, or it might not be, but it suppresses any attempt to
457 // perform the name lookup again.
458 break;
459
460 case LookupResult::Found:
461 IIDecl = Result.getFoundDecl();
462 break;
463 }
464
465 assert(IIDecl && "Didn't find decl")((IIDecl && "Didn't find decl") ? static_cast<void
> (0) : __assert_fail ("IIDecl && \"Didn't find decl\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 465, __PRETTY_FUNCTION__))
;
466
467 QualType T;
468 if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
469 // C++ [class.qual]p2: A lookup that would find the injected-class-name
470 // instead names the constructors of the class, except when naming a class.
471 // This is ill-formed when we're not actually forming a ctor or dtor name.
472 auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx);
473 auto *FoundRD = dyn_cast<CXXRecordDecl>(TD);
474 if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD &&
475 FoundRD->isInjectedClassName() &&
476 declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent())))
477 Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor)
478 << &II << /*Type*/1;
479
480 DiagnoseUseOfDecl(IIDecl, NameLoc);
481
482 T = Context.getTypeDeclType(TD);
483 MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
484 } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
485 (void)DiagnoseUseOfDecl(IDecl, NameLoc);
486 if (!HasTrailingDot)
487 T = Context.getObjCInterfaceType(IDecl);
488 } else if (AllowDeducedTemplate) {
489 if (auto *TD = getAsTypeTemplateDecl(IIDecl))
490 T = Context.getDeducedTemplateSpecializationType(TemplateName(TD),
491 QualType(), false);
492 }
493
494 if (T.isNull()) {
495 // If it's not plausibly a type, suppress diagnostics.
496 Result.suppressDiagnostics();
497 return nullptr;
498 }
499
500 // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
501 // constructor or destructor name (in such a case, the scope specifier
502 // will be attached to the enclosing Expr or Decl node).
503 if (SS && SS->isNotEmpty() && !IsCtorOrDtorName &&
504 !isa<ObjCInterfaceDecl>(IIDecl)) {
505 if (WantNontrivialTypeSourceInfo) {
506 // Construct a type with type-source information.
507 TypeLocBuilder Builder;
508 Builder.pushTypeSpec(T).setNameLoc(NameLoc);
509
510 T = getElaboratedType(ETK_None, *SS, T);
511 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
512 ElabTL.setElaboratedKeywordLoc(SourceLocation());
513 ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
514 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
515 } else {
516 T = getElaboratedType(ETK_None, *SS, T);
517 }
518 }
519
520 return ParsedType::make(T);
521}
522
523// Builds a fake NNS for the given decl context.
524static NestedNameSpecifier *
525synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) {
526 for (;; DC = DC->getLookupParent()) {
527 DC = DC->getPrimaryContext();
528 auto *ND = dyn_cast<NamespaceDecl>(DC);
529 if (ND && !ND->isInline() && !ND->isAnonymousNamespace())
530 return NestedNameSpecifier::Create(Context, nullptr, ND);
531 else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
532 return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
533 RD->getTypeForDecl());
534 else if (isa<TranslationUnitDecl>(DC))
535 return NestedNameSpecifier::GlobalSpecifier(Context);
536 }
537 llvm_unreachable("something isn't in TU scope?")::llvm::llvm_unreachable_internal("something isn't in TU scope?"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 537)
;
538}
539
540/// Find the parent class with dependent bases of the innermost enclosing method
541/// context. Do not look for enclosing CXXRecordDecls directly, or we will end
542/// up allowing unqualified dependent type names at class-level, which MSVC
543/// correctly rejects.
544static const CXXRecordDecl *
545findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) {
546 for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) {
547 DC = DC->getPrimaryContext();
548 if (const auto *MD = dyn_cast<CXXMethodDecl>(DC))
549 if (MD->getParent()->hasAnyDependentBases())
550 return MD->getParent();
551 }
552 return nullptr;
553}
554
555ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II,
556 SourceLocation NameLoc,
557 bool IsTemplateTypeArg) {
558 assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode")((getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().MSVCCompat && \"shouldn't be called in non-MSVC mode\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 558, __PRETTY_FUNCTION__))
;
559
560 NestedNameSpecifier *NNS = nullptr;
561 if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) {
562 // If we weren't able to parse a default template argument, delay lookup
563 // until instantiation time by making a non-dependent DependentTypeName. We
564 // pretend we saw a NestedNameSpecifier referring to the current scope, and
565 // lookup is retried.
566 // FIXME: This hurts our diagnostic quality, since we get errors like "no
567 // type named 'Foo' in 'current_namespace'" when the user didn't write any
568 // name specifiers.
569 NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext);
570 Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II;
571 } else if (const CXXRecordDecl *RD =
572 findRecordWithDependentBasesOfEnclosingMethod(CurContext)) {
573 // Build a DependentNameType that will perform lookup into RD at
574 // instantiation time.
575 NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(),
576 RD->getTypeForDecl());
577
578 // Diagnose that this identifier was undeclared, and retry the lookup during
579 // template instantiation.
580 Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II
581 << RD;
582 } else {
583 // This is not a situation that we should recover from.
584 return ParsedType();
585 }
586
587 QualType T = Context.getDependentNameType(ETK_None, NNS, &II);
588
589 // Build type location information. We synthesized the qualifier, so we have
590 // to build a fake NestedNameSpecifierLoc.
591 NestedNameSpecifierLocBuilder NNSLocBuilder;
592 NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc));
593 NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context);
594
595 TypeLocBuilder Builder;
596 DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T);
597 DepTL.setNameLoc(NameLoc);
598 DepTL.setElaboratedKeywordLoc(SourceLocation());
599 DepTL.setQualifierLoc(QualifierLoc);
600 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
601}
602
603/// isTagName() - This method is called *for error recovery purposes only*
604/// to determine if the specified name is a valid tag name ("struct foo"). If
605/// so, this returns the TST for the tag corresponding to it (TST_enum,
606/// TST_union, TST_struct, TST_interface, TST_class). This is used to diagnose
607/// cases in C where the user forgot to specify the tag.
608DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
609 // Do a tag name lookup in this scope.
610 LookupResult R(*this, &II, SourceLocation(), LookupTagName);
611 LookupName(R, S, false);
612 R.suppressDiagnostics();
613 if (R.getResultKind() == LookupResult::Found)
614 if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
615 switch (TD->getTagKind()) {
616 case TTK_Struct: return DeclSpec::TST_struct;
617 case TTK_Interface: return DeclSpec::TST_interface;
618 case TTK_Union: return DeclSpec::TST_union;
619 case TTK_Class: return DeclSpec::TST_class;
620 case TTK_Enum: return DeclSpec::TST_enum;
621 }
622 }
623
624 return DeclSpec::TST_unspecified;
625}
626
627/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
628/// if a CXXScopeSpec's type is equal to the type of one of the base classes
629/// then downgrade the missing typename error to a warning.
630/// This is needed for MSVC compatibility; Example:
631/// @code
632/// template<class T> class A {
633/// public:
634/// typedef int TYPE;
635/// };
636/// template<class T> class B : public A<T> {
637/// public:
638/// A<T>::TYPE a; // no typename required because A<T> is a base class.
639/// };
640/// @endcode
641bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
642 if (CurContext->isRecord()) {
643 if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super)
644 return true;
645
646 const Type *Ty = SS->getScopeRep()->getAsType();
647
648 CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
649 for (const auto &Base : RD->bases())
650 if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType()))
651 return true;
652 return S->isFunctionPrototypeScope();
653 }
654 return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
655}
656
657void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
658 SourceLocation IILoc,
659 Scope *S,
660 CXXScopeSpec *SS,
661 ParsedType &SuggestedType,
662 bool IsTemplateName) {
663 // Don't report typename errors for editor placeholders.
664 if (II->isEditorPlaceholder())
665 return;
666 // We don't have anything to suggest (yet).
667 SuggestedType = nullptr;
668
669 // There may have been a typo in the name of the type. Look up typo
670 // results, in case we have something that we can suggest.
671 TypeNameValidatorCCC CCC(/*AllowInvalid=*/false, /*WantClass=*/false,
672 /*AllowTemplates=*/IsTemplateName,
673 /*AllowNonTemplates=*/!IsTemplateName);
674 if (TypoCorrection Corrected =
675 CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS,
676 CCC, CTK_ErrorRecovery)) {
677 // FIXME: Support error recovery for the template-name case.
678 bool CanRecover = !IsTemplateName;
679 if (Corrected.isKeyword()) {
680 // We corrected to a keyword.
681 diagnoseTypo(Corrected,
682 PDiag(IsTemplateName ? diag::err_no_template_suggest
683 : diag::err_unknown_typename_suggest)
684 << II);
685 II = Corrected.getCorrectionAsIdentifierInfo();
686 } else {
687 // We found a similarly-named type or interface; suggest that.
688 if (!SS || !SS->isSet()) {
689 diagnoseTypo(Corrected,
690 PDiag(IsTemplateName ? diag::err_no_template_suggest
691 : diag::err_unknown_typename_suggest)
692 << II, CanRecover);
693 } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
694 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
695 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
696 II->getName().equals(CorrectedStr);
697 diagnoseTypo(Corrected,
698 PDiag(IsTemplateName
699 ? diag::err_no_member_template_suggest
700 : diag::err_unknown_nested_typename_suggest)
701 << II << DC << DroppedSpecifier << SS->getRange(),
702 CanRecover);
703 } else {
704 llvm_unreachable("could not have corrected a typo here")::llvm::llvm_unreachable_internal("could not have corrected a typo here"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 704)
;
705 }
706
707 if (!CanRecover)
708 return;
709
710 CXXScopeSpec tmpSS;
711 if (Corrected.getCorrectionSpecifier())
712 tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
713 SourceRange(IILoc));
714 // FIXME: Support class template argument deduction here.
715 SuggestedType =
716 getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S,
717 tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr,
718 /*IsCtorOrDtorName=*/false,
719 /*WantNontrivialTypeSourceInfo=*/true);
720 }
721 return;
722 }
723
724 if (getLangOpts().CPlusPlus && !IsTemplateName) {
725 // See if II is a class template that the user forgot to pass arguments to.
726 UnqualifiedId Name;
727 Name.setIdentifier(II, IILoc);
728 CXXScopeSpec EmptySS;
729 TemplateTy TemplateResult;
730 bool MemberOfUnknownSpecialization;
731 if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
732 Name, nullptr, true, TemplateResult,
733 MemberOfUnknownSpecialization) == TNK_Type_template) {
734 diagnoseMissingTemplateArguments(TemplateResult.get(), IILoc);
735 return;
736 }
737 }
738
739 // FIXME: Should we move the logic that tries to recover from a missing tag
740 // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
741
742 if (!SS || (!SS->isSet() && !SS->isInvalid()))
743 Diag(IILoc, IsTemplateName ? diag::err_no_template
744 : diag::err_unknown_typename)
745 << II;
746 else if (DeclContext *DC = computeDeclContext(*SS, false))
747 Diag(IILoc, IsTemplateName ? diag::err_no_member_template
748 : diag::err_typename_nested_not_found)
749 << II << DC << SS->getRange();
750 else if (isDependentScopeSpecifier(*SS)) {
751 unsigned DiagID = diag::err_typename_missing;
752 if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S))
753 DiagID = diag::ext_typename_missing;
754
755 Diag(SS->getRange().getBegin(), DiagID)
756 << SS->getScopeRep() << II->getName()
757 << SourceRange(SS->getRange().getBegin(), IILoc)
758 << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
759 SuggestedType = ActOnTypenameType(S, SourceLocation(),
760 *SS, *II, IILoc).get();
761 } else {
762 assert(SS && SS->isInvalid() &&((SS && SS->isInvalid() && "Invalid scope specifier has already been diagnosed"
) ? static_cast<void> (0) : __assert_fail ("SS && SS->isInvalid() && \"Invalid scope specifier has already been diagnosed\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 763, __PRETTY_FUNCTION__))
763 "Invalid scope specifier has already been diagnosed")((SS && SS->isInvalid() && "Invalid scope specifier has already been diagnosed"
) ? static_cast<void> (0) : __assert_fail ("SS && SS->isInvalid() && \"Invalid scope specifier has already been diagnosed\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 763, __PRETTY_FUNCTION__))
;
764 }
765}
766
767/// Determine whether the given result set contains either a type name
768/// or
769static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
770 bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
771 NextToken.is(tok::less);
772
773 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
774 if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
775 return true;
776
777 if (CheckTemplate && isa<TemplateDecl>(*I))
778 return true;
779 }
780
781 return false;
782}
783
784static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
785 Scope *S, CXXScopeSpec &SS,
786 IdentifierInfo *&Name,
787 SourceLocation NameLoc) {
788 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
789 SemaRef.LookupParsedName(R, S, &SS);
790 if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
791 StringRef FixItTagName;
792 switch (Tag->getTagKind()) {
793 case TTK_Class:
794 FixItTagName = "class ";
795 break;
796
797 case TTK_Enum:
798 FixItTagName = "enum ";
799 break;
800
801 case TTK_Struct:
802 FixItTagName = "struct ";
803 break;
804
805 case TTK_Interface:
806 FixItTagName = "__interface ";
807 break;
808
809 case TTK_Union:
810 FixItTagName = "union ";
811 break;
812 }
813
814 StringRef TagName = FixItTagName.drop_back();
815 SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
816 << Name << TagName << SemaRef.getLangOpts().CPlusPlus
817 << FixItHint::CreateInsertion(NameLoc, FixItTagName);
818
819 for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
820 I != IEnd; ++I)
821 SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
822 << Name << TagName;
823
824 // Replace lookup results with just the tag decl.
825 Result.clear(Sema::LookupTagName);
826 SemaRef.LookupParsedName(Result, S, &SS);
827 return true;
828 }
829
830 return false;
831}
832
833/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
834static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
835 QualType T, SourceLocation NameLoc) {
836 ASTContext &Context = S.Context;
837
838 TypeLocBuilder Builder;
839 Builder.pushTypeSpec(T).setNameLoc(NameLoc);
840
841 T = S.getElaboratedType(ETK_None, SS, T);
842 ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
843 ElabTL.setElaboratedKeywordLoc(SourceLocation());
844 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
845 return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
846}
847
848Sema::NameClassification
849Sema::ClassifyName(Scope *S, CXXScopeSpec &SS, IdentifierInfo *&Name,
850 SourceLocation NameLoc, const Token &NextToken,
851 bool IsAddressOfOperand, CorrectionCandidateCallback *CCC) {
852 DeclarationNameInfo NameInfo(Name, NameLoc);
853 ObjCMethodDecl *CurMethod = getCurMethodDecl();
854
855 if (NextToken.is(tok::coloncolon)) {
856 NestedNameSpecInfo IdInfo(Name, NameLoc, NextToken.getLocation());
857 BuildCXXNestedNameSpecifier(S, IdInfo, false, SS, nullptr, false);
858 } else if (getLangOpts().CPlusPlus && SS.isSet() &&
859 isCurrentClassName(*Name, S, &SS)) {
860 // Per [class.qual]p2, this names the constructors of SS, not the
861 // injected-class-name. We don't have a classification for that.
862 // There's not much point caching this result, since the parser
863 // will reject it later.
864 return NameClassification::Unknown();
865 }
866
867 LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
868 LookupParsedName(Result, S, &SS, !CurMethod);
869
870 // For unqualified lookup in a class template in MSVC mode, look into
871 // dependent base classes where the primary class template is known.
872 if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) {
873 if (ParsedType TypeInBase =
874 recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc))
875 return TypeInBase;
876 }
877
878 // Perform lookup for Objective-C instance variables (including automatically
879 // synthesized instance variables), if we're in an Objective-C method.
880 // FIXME: This lookup really, really needs to be folded in to the normal
881 // unqualified lookup mechanism.
882 if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
883 ExprResult E = LookupInObjCMethod(Result, S, Name, true);
884 if (E.get() || E.isInvalid())
885 return E;
886 }
887
888 bool SecondTry = false;
889 bool IsFilteredTemplateName = false;
890
891Corrected:
892 switch (Result.getResultKind()) {
893 case LookupResult::NotFound:
894 // If an unqualified-id is followed by a '(', then we have a function
895 // call.
896 if (!SS.isSet() && NextToken.is(tok::l_paren)) {
897 // In C++, this is an ADL-only call.
898 // FIXME: Reference?
899 if (getLangOpts().CPlusPlus)
900 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
901
902 // C90 6.3.2.2:
903 // If the expression that precedes the parenthesized argument list in a
904 // function call consists solely of an identifier, and if no
905 // declaration is visible for this identifier, the identifier is
906 // implicitly declared exactly as if, in the innermost block containing
907 // the function call, the declaration
908 //
909 // extern int identifier ();
910 //
911 // appeared.
912 //
913 // We also allow this in C99 as an extension.
914 if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
915 Result.addDecl(D);
916 Result.resolveKind();
917 return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
918 }
919 }
920
921 if (getLangOpts().CPlusPlus2a && !SS.isSet() && NextToken.is(tok::less)) {
922 // In C++20 onwards, this could be an ADL-only call to a function
923 // template, and we're required to assume that this is a template name.
924 //
925 // FIXME: Find a way to still do typo correction in this case.
926 TemplateName Template =
927 Context.getAssumedTemplateName(NameInfo.getName());
928 return NameClassification::UndeclaredTemplate(Template);
929 }
930
931 // In C, we first see whether there is a tag type by the same name, in
932 // which case it's likely that the user just forgot to write "enum",
933 // "struct", or "union".
934 if (!getLangOpts().CPlusPlus && !SecondTry &&
935 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
936 break;
937 }
938
939 // Perform typo correction to determine if there is another name that is
940 // close to this name.
941 if (!SecondTry && CCC) {
942 SecondTry = true;
943 if (TypoCorrection Corrected =
944 CorrectTypo(Result.getLookupNameInfo(), Result.getLookupKind(), S,
945 &SS, *CCC, CTK_ErrorRecovery)) {
946 unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
947 unsigned QualifiedDiag = diag::err_no_member_suggest;
948
949 NamedDecl *FirstDecl = Corrected.getFoundDecl();
950 NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl();
951 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
952 UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
953 UnqualifiedDiag = diag::err_no_template_suggest;
954 QualifiedDiag = diag::err_no_member_template_suggest;
955 } else if (UnderlyingFirstDecl &&
956 (isa<TypeDecl>(UnderlyingFirstDecl) ||
957 isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
958 isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
959 UnqualifiedDiag = diag::err_unknown_typename_suggest;
960 QualifiedDiag = diag::err_unknown_nested_typename_suggest;
961 }
962
963 if (SS.isEmpty()) {
964 diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
965 } else {// FIXME: is this even reachable? Test it.
966 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
967 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
968 Name->getName().equals(CorrectedStr);
969 diagnoseTypo(Corrected, PDiag(QualifiedDiag)
970 << Name << computeDeclContext(SS, false)
971 << DroppedSpecifier << SS.getRange());
972 }
973
974 // Update the name, so that the caller has the new name.
975 Name = Corrected.getCorrectionAsIdentifierInfo();
976
977 // Typo correction corrected to a keyword.
978 if (Corrected.isKeyword())
979 return Name;
980
981 // Also update the LookupResult...
982 // FIXME: This should probably go away at some point
983 Result.clear();
984 Result.setLookupName(Corrected.getCorrection());
985 if (FirstDecl)
986 Result.addDecl(FirstDecl);
987
988 // If we found an Objective-C instance variable, let
989 // LookupInObjCMethod build the appropriate expression to
990 // reference the ivar.
991 // FIXME: This is a gross hack.
992 if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
993 Result.clear();
994 ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
995 return E;
996 }
997
998 goto Corrected;
999 }
1000 }
1001
1002 // We failed to correct; just fall through and let the parser deal with it.
1003 Result.suppressDiagnostics();
1004 return NameClassification::Unknown();
1005
1006 case LookupResult::NotFoundInCurrentInstantiation: {
1007 // We performed name lookup into the current instantiation, and there were
1008 // dependent bases, so we treat this result the same way as any other
1009 // dependent nested-name-specifier.
1010
1011 // C++ [temp.res]p2:
1012 // A name used in a template declaration or definition and that is
1013 // dependent on a template-parameter is assumed not to name a type
1014 // unless the applicable name lookup finds a type name or the name is
1015 // qualified by the keyword typename.
1016 //
1017 // FIXME: If the next token is '<', we might want to ask the parser to
1018 // perform some heroics to see if we actually have a
1019 // template-argument-list, which would indicate a missing 'template'
1020 // keyword here.
1021 return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
1022 NameInfo, IsAddressOfOperand,
1023 /*TemplateArgs=*/nullptr);
1024 }
1025
1026 case LookupResult::Found:
1027 case LookupResult::FoundOverloaded:
1028 case LookupResult::FoundUnresolvedValue:
1029 break;
1030
1031 case LookupResult::Ambiguous:
1032 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1033 hasAnyAcceptableTemplateNames(Result, /*AllowFunctionTemplates=*/true,
1034 /*AllowDependent=*/false)) {
1035 // C++ [temp.local]p3:
1036 // A lookup that finds an injected-class-name (10.2) can result in an
1037 // ambiguity in certain cases (for example, if it is found in more than
1038 // one base class). If all of the injected-class-names that are found
1039 // refer to specializations of the same class template, and if the name
1040 // is followed by a template-argument-list, the reference refers to the
1041 // class template itself and not a specialization thereof, and is not
1042 // ambiguous.
1043 //
1044 // This filtering can make an ambiguous result into an unambiguous one,
1045 // so try again after filtering out template names.
1046 FilterAcceptableTemplateNames(Result);
1047 if (!Result.isAmbiguous()) {
1048 IsFilteredTemplateName = true;
1049 break;
1050 }
1051 }
1052
1053 // Diagnose the ambiguity and return an error.
1054 return NameClassification::Error();
1055 }
1056
1057 if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
1058 (IsFilteredTemplateName ||
1059 hasAnyAcceptableTemplateNames(
1060 Result, /*AllowFunctionTemplates=*/true,
1061 /*AllowDependent=*/false,
1062 /*AllowNonTemplateFunctions*/ !SS.isSet() &&
1063 getLangOpts().CPlusPlus2a))) {
1064 // C++ [temp.names]p3:
1065 // After name lookup (3.4) finds that a name is a template-name or that
1066 // an operator-function-id or a literal- operator-id refers to a set of
1067 // overloaded functions any member of which is a function template if
1068 // this is followed by a <, the < is always taken as the delimiter of a
1069 // template-argument-list and never as the less-than operator.
1070 // C++2a [temp.names]p2:
1071 // A name is also considered to refer to a template if it is an
1072 // unqualified-id followed by a < and name lookup finds either one
1073 // or more functions or finds nothing.
1074 if (!IsFilteredTemplateName)
1075 FilterAcceptableTemplateNames(Result);
1076
1077 bool IsFunctionTemplate;
1078 bool IsVarTemplate;
1079 TemplateName Template;
1080 if (Result.end() - Result.begin() > 1) {
1081 IsFunctionTemplate = true;
1082 Template = Context.getOverloadedTemplateName(Result.begin(),
1083 Result.end());
1084 } else if (!Result.empty()) {
1085 auto *TD = cast<TemplateDecl>(getAsTemplateNameDecl(
1086 *Result.begin(), /*AllowFunctionTemplates=*/true,
1087 /*AllowDependent=*/false));
1088 IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
1089 IsVarTemplate = isa<VarTemplateDecl>(TD);
1090
1091 if (SS.isSet() && !SS.isInvalid())
1092 Template =
1093 Context.getQualifiedTemplateName(SS.getScopeRep(),
1094 /*TemplateKeyword=*/false, TD);
1095 else
1096 Template = TemplateName(TD);
1097 } else {
1098 // All results were non-template functions. This is a function template
1099 // name.
1100 IsFunctionTemplate = true;
1101 Template = Context.getAssumedTemplateName(NameInfo.getName());
1102 }
1103
1104 if (IsFunctionTemplate) {
1105 // Function templates always go through overload resolution, at which
1106 // point we'll perform the various checks (e.g., accessibility) we need
1107 // to based on which function we selected.
1108 Result.suppressDiagnostics();
1109
1110 return NameClassification::FunctionTemplate(Template);
1111 }
1112
1113 return IsVarTemplate ? NameClassification::VarTemplate(Template)
1114 : NameClassification::TypeTemplate(Template);
1115 }
1116
1117 NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
1118 if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
1119 DiagnoseUseOfDecl(Type, NameLoc);
1120 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
1121 QualType T = Context.getTypeDeclType(Type);
1122 if (SS.isNotEmpty())
1123 return buildNestedType(*this, SS, T, NameLoc);
1124 return ParsedType::make(T);
1125 }
1126
1127 ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
1128 if (!Class) {
1129 // FIXME: It's unfortunate that we don't have a Type node for handling this.
1130 if (ObjCCompatibleAliasDecl *Alias =
1131 dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
1132 Class = Alias->getClassInterface();
1133 }
1134
1135 if (Class) {
1136 DiagnoseUseOfDecl(Class, NameLoc);
1137
1138 if (NextToken.is(tok::period)) {
1139 // Interface. <something> is parsed as a property reference expression.
1140 // Just return "unknown" as a fall-through for now.
1141 Result.suppressDiagnostics();
1142 return NameClassification::Unknown();
1143 }
1144
1145 QualType T = Context.getObjCInterfaceType(Class);
1146 return ParsedType::make(T);
1147 }
1148
1149 // We can have a type template here if we're classifying a template argument.
1150 if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) &&
1151 !isa<VarTemplateDecl>(FirstDecl))
1152 return NameClassification::TypeTemplate(
1153 TemplateName(cast<TemplateDecl>(FirstDecl)));
1154
1155 // Check for a tag type hidden by a non-type decl in a few cases where it
1156 // seems likely a type is wanted instead of the non-type that was found.
1157 bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star);
1158 if ((NextToken.is(tok::identifier) ||
1159 (NextIsOp &&
1160 FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) &&
1161 isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
1162 TypeDecl *Type = Result.getAsSingle<TypeDecl>();
1163 DiagnoseUseOfDecl(Type, NameLoc);
1164 QualType T = Context.getTypeDeclType(Type);
1165 if (SS.isNotEmpty())
1166 return buildNestedType(*this, SS, T, NameLoc);
1167 return ParsedType::make(T);
1168 }
1169
1170 if (FirstDecl->isCXXClassMember())
1171 return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result,
1172 nullptr, S);
1173
1174 bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
1175 return BuildDeclarationNameExpr(SS, Result, ADL);
1176}
1177
1178Sema::TemplateNameKindForDiagnostics
1179Sema::getTemplateNameKindForDiagnostics(TemplateName Name) {
1180 auto *TD = Name.getAsTemplateDecl();
1181 if (!TD)
1182 return TemplateNameKindForDiagnostics::DependentTemplate;
1183 if (isa<ClassTemplateDecl>(TD))
1184 return TemplateNameKindForDiagnostics::ClassTemplate;
1185 if (isa<FunctionTemplateDecl>(TD))
1186 return TemplateNameKindForDiagnostics::FunctionTemplate;
1187 if (isa<VarTemplateDecl>(TD))
1188 return TemplateNameKindForDiagnostics::VarTemplate;
1189 if (isa<TypeAliasTemplateDecl>(TD))
1190 return TemplateNameKindForDiagnostics::AliasTemplate;
1191 if (isa<TemplateTemplateParmDecl>(TD))
1192 return TemplateNameKindForDiagnostics::TemplateTemplateParam;
1193 if (isa<ConceptDecl>(TD))
1194 return TemplateNameKindForDiagnostics::Concept;
1195 return TemplateNameKindForDiagnostics::DependentTemplate;
1196}
1197
1198// Determines the context to return to after temporarily entering a
1199// context. This depends in an unnecessarily complicated way on the
1200// exact ordering of callbacks from the parser.
1201DeclContext *Sema::getContainingDC(DeclContext *DC) {
1202
1203 // Functions defined inline within classes aren't parsed until we've
1204 // finished parsing the top-level class, so the top-level class is
1205 // the context we'll need to return to.
1206 // A Lambda call operator whose parent is a class must not be treated
1207 // as an inline member function. A Lambda can be used legally
1208 // either as an in-class member initializer or a default argument. These
1209 // are parsed once the class has been marked complete and so the containing
1210 // context would be the nested class (when the lambda is defined in one);
1211 // If the class is not complete, then the lambda is being used in an
1212 // ill-formed fashion (such as to specify the width of a bit-field, or
1213 // in an array-bound) - in which case we still want to return the
1214 // lexically containing DC (which could be a nested class).
1215 if (isa<FunctionDecl>(DC) && !isLambdaCallOperator(DC)) {
1216 DC = DC->getLexicalParent();
1217
1218 // A function not defined within a class will always return to its
1219 // lexical context.
1220 if (!isa<CXXRecordDecl>(DC))
1221 return DC;
1222
1223 // A C++ inline method/friend is parsed *after* the topmost class
1224 // it was declared in is fully parsed ("complete"); the topmost
1225 // class is the context we need to return to.
1226 while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
1227 DC = RD;
1228
1229 // Return the declaration context of the topmost class the inline method is
1230 // declared in.
1231 return DC;
1232 }
1233
1234 return DC->getLexicalParent();
1235}
1236
1237void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
1238 assert(getContainingDC(DC) == CurContext &&((getContainingDC(DC) == CurContext && "The next DeclContext should be lexically contained in the current one."
) ? static_cast<void> (0) : __assert_fail ("getContainingDC(DC) == CurContext && \"The next DeclContext should be lexically contained in the current one.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 1239, __PRETTY_FUNCTION__))
1239 "The next DeclContext should be lexically contained in the current one.")((getContainingDC(DC) == CurContext && "The next DeclContext should be lexically contained in the current one."
) ? static_cast<void> (0) : __assert_fail ("getContainingDC(DC) == CurContext && \"The next DeclContext should be lexically contained in the current one.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 1239, __PRETTY_FUNCTION__))
;
1240 CurContext = DC;
1241 S->setEntity(DC);
1242}
1243
1244void Sema::PopDeclContext() {
1245 assert(CurContext && "DeclContext imbalance!")((CurContext && "DeclContext imbalance!") ? static_cast
<void> (0) : __assert_fail ("CurContext && \"DeclContext imbalance!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 1245, __PRETTY_FUNCTION__))
;
1246
1247 CurContext = getContainingDC(CurContext);
1248 assert(CurContext && "Popped translation unit!")((CurContext && "Popped translation unit!") ? static_cast
<void> (0) : __assert_fail ("CurContext && \"Popped translation unit!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 1248, __PRETTY_FUNCTION__))
;
1249}
1250
1251Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S,
1252 Decl *D) {
1253 // Unlike PushDeclContext, the context to which we return is not necessarily
1254 // the containing DC of TD, because the new context will be some pre-existing
1255 // TagDecl definition instead of a fresh one.
1256 auto Result = static_cast<SkippedDefinitionContext>(CurContext);
1257 CurContext = cast<TagDecl>(D)->getDefinition();
1258 assert(CurContext && "skipping definition of undefined tag")((CurContext && "skipping definition of undefined tag"
) ? static_cast<void> (0) : __assert_fail ("CurContext && \"skipping definition of undefined tag\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 1258, __PRETTY_FUNCTION__))
;
1259 // Start lookups from the parent of the current context; we don't want to look
1260 // into the pre-existing complete definition.
1261 S->setEntity(CurContext->getLookupParent());
1262 return Result;
1263}
1264
1265void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) {
1266 CurContext = static_cast<decltype(CurContext)>(Context);
1267}
1268
1269/// EnterDeclaratorContext - Used when we must lookup names in the context
1270/// of a declarator's nested name specifier.
1271///
1272void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
1273 // C++0x [basic.lookup.unqual]p13:
1274 // A name used in the definition of a static data member of class
1275 // X (after the qualified-id of the static member) is looked up as
1276 // if the name was used in a member function of X.
1277 // C++0x [basic.lookup.unqual]p14:
1278 // If a variable member of a namespace is defined outside of the
1279 // scope of its namespace then any name used in the definition of
1280 // the variable member (after the declarator-id) is looked up as
1281 // if the definition of the variable member occurred in its
1282 // namespace.
1283 // Both of these imply that we should push a scope whose context
1284 // is the semantic context of the declaration. We can't use
1285 // PushDeclContext here because that context is not necessarily
1286 // lexically contained in the current context. Fortunately,
1287 // the containing scope should have the appropriate information.
1288
1289 assert(!S->getEntity() && "scope already has entity")((!S->getEntity() && "scope already has entity") ?
static_cast<void> (0) : __assert_fail ("!S->getEntity() && \"scope already has entity\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 1289, __PRETTY_FUNCTION__))
;
1290
1291#ifndef NDEBUG
1292 Scope *Ancestor = S->getParent();
1293 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1294 assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch")((Ancestor->getEntity() == CurContext && "ancestor context mismatch"
) ? static_cast<void> (0) : __assert_fail ("Ancestor->getEntity() == CurContext && \"ancestor context mismatch\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 1294, __PRETTY_FUNCTION__))
;
1295#endif
1296
1297 CurContext = DC;
1298 S->setEntity(DC);
1299}
1300
1301void Sema::ExitDeclaratorContext(Scope *S) {
1302 assert(S->getEntity() == CurContext && "Context imbalance!")((S->getEntity() == CurContext && "Context imbalance!"
) ? static_cast<void> (0) : __assert_fail ("S->getEntity() == CurContext && \"Context imbalance!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 1302, __PRETTY_FUNCTION__))
;
1303
1304 // Switch back to the lexical context. The safety of this is
1305 // enforced by an assert in EnterDeclaratorContext.
1306 Scope *Ancestor = S->getParent();
1307 while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
1308 CurContext = Ancestor->getEntity();
1309
1310 // We don't need to do anything with the scope, which is going to
1311 // disappear.
1312}
1313
1314void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
1315 // We assume that the caller has already called
1316 // ActOnReenterTemplateScope so getTemplatedDecl() works.
1317 FunctionDecl *FD = D->getAsFunction();
1318 if (!FD)
1319 return;
1320
1321 // Same implementation as PushDeclContext, but enters the context
1322 // from the lexical parent, rather than the top-level class.
1323 assert(CurContext == FD->getLexicalParent() &&((CurContext == FD->getLexicalParent() && "The next DeclContext should be lexically contained in the current one."
) ? static_cast<void> (0) : __assert_fail ("CurContext == FD->getLexicalParent() && \"The next DeclContext should be lexically contained in the current one.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 1324, __PRETTY_FUNCTION__))
1324 "The next DeclContext should be lexically contained in the current one.")((CurContext == FD->getLexicalParent() && "The next DeclContext should be lexically contained in the current one."
) ? static_cast<void> (0) : __assert_fail ("CurContext == FD->getLexicalParent() && \"The next DeclContext should be lexically contained in the current one.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 1324, __PRETTY_FUNCTION__))
;
1325 CurContext = FD;
1326 S->setEntity(CurContext);
1327
1328 for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
1329 ParmVarDecl *Param = FD->getParamDecl(P);
1330 // If the parameter has an identifier, then add it to the scope
1331 if (Param->getIdentifier()) {
1332 S->AddDecl(Param);
1333 IdResolver.AddDecl(Param);
1334 }
1335 }
1336}
1337
1338void Sema::ActOnExitFunctionContext() {
1339 // Same implementation as PopDeclContext, but returns to the lexical parent,
1340 // rather than the top-level class.
1341 assert(CurContext && "DeclContext imbalance!")((CurContext && "DeclContext imbalance!") ? static_cast
<void> (0) : __assert_fail ("CurContext && \"DeclContext imbalance!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 1341, __PRETTY_FUNCTION__))
;
1342 CurContext = CurContext->getLexicalParent();
1343 assert(CurContext && "Popped translation unit!")((CurContext && "Popped translation unit!") ? static_cast
<void> (0) : __assert_fail ("CurContext && \"Popped translation unit!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 1343, __PRETTY_FUNCTION__))
;
1344}
1345
1346/// Determine whether we allow overloading of the function
1347/// PrevDecl with another declaration.
1348///
1349/// This routine determines whether overloading is possible, not
1350/// whether some new function is actually an overload. It will return
1351/// true in C++ (where we can always provide overloads) or, as an
1352/// extension, in C when the previous function is already an
1353/// overloaded function declaration or has the "overloadable"
1354/// attribute.
1355static bool AllowOverloadingOfFunction(LookupResult &Previous,
1356 ASTContext &Context,
1357 const FunctionDecl *New) {
1358 if (Context.getLangOpts().CPlusPlus)
1359 return true;
1360
1361 if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1362 return true;
1363
1364 return Previous.getResultKind() == LookupResult::Found &&
1365 (Previous.getFoundDecl()->hasAttr<OverloadableAttr>() ||
1366 New->hasAttr<OverloadableAttr>());
1367}
1368
1369/// Add this decl to the scope shadowed decl chains.
1370void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1371 // Move up the scope chain until we find the nearest enclosing
1372 // non-transparent context. The declaration will be introduced into this
1373 // scope.
1374 while (S->getEntity() && S->getEntity()->isTransparentContext())
1375 S = S->getParent();
1376
1377 // Add scoped declarations into their context, so that they can be
1378 // found later. Declarations without a context won't be inserted
1379 // into any context.
1380 if (AddToContext)
1381 CurContext->addDecl(D);
1382
1383 // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1384 // are function-local declarations.
1385 if (getLangOpts().CPlusPlus && D->isOutOfLine() &&
1386 !D->getDeclContext()->getRedeclContext()->Equals(
1387 D->getLexicalDeclContext()->getRedeclContext()) &&
1388 !D->getLexicalDeclContext()->isFunctionOrMethod())
1389 return;
1390
1391 // Template instantiations should also not be pushed into scope.
1392 if (isa<FunctionDecl>(D) &&
1393 cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1394 return;
1395
1396 // If this replaces anything in the current scope,
1397 IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1398 IEnd = IdResolver.end();
1399 for (; I != IEnd; ++I) {
1400 if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1401 S->RemoveDecl(*I);
1402 IdResolver.RemoveDecl(*I);
1403
1404 // Should only need to replace one decl.
1405 break;
1406 }
1407 }
1408
1409 S->AddDecl(D);
1410
1411 if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1412 // Implicitly-generated labels may end up getting generated in an order that
1413 // isn't strictly lexical, which breaks name lookup. Be careful to insert
1414 // the label at the appropriate place in the identifier chain.
1415 for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1416 DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1417 if (IDC == CurContext) {
1418 if (!S->isDeclScope(*I))
1419 continue;
1420 } else if (IDC->Encloses(CurContext))
1421 break;
1422 }
1423
1424 IdResolver.InsertDeclAfter(I, D);
1425 } else {
1426 IdResolver.AddDecl(D);
1427 }
1428}
1429
1430bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1431 bool AllowInlineNamespace) {
1432 return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace);
1433}
1434
1435Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1436 DeclContext *TargetDC = DC->getPrimaryContext();
1437 do {
1438 if (DeclContext *ScopeDC = S->getEntity())
1439 if (ScopeDC->getPrimaryContext() == TargetDC)
1440 return S;
1441 } while ((S = S->getParent()));
1442
1443 return nullptr;
1444}
1445
1446static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1447 DeclContext*,
1448 ASTContext&);
1449
1450/// Filters out lookup results that don't fall within the given scope
1451/// as determined by isDeclInScope.
1452void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S,
1453 bool ConsiderLinkage,
1454 bool AllowInlineNamespace) {
1455 LookupResult::Filter F = R.makeFilter();
1456 while (F.hasNext()) {
1457 NamedDecl *D = F.next();
1458
1459 if (isDeclInScope(D, Ctx, S, AllowInlineNamespace))
1460 continue;
1461
1462 if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context))
1463 continue;
1464
1465 F.erase();
1466 }
1467
1468 F.done();
1469}
1470
1471/// We've determined that \p New is a redeclaration of \p Old. Check that they
1472/// have compatible owning modules.
1473bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) {
1474 // FIXME: The Modules TS is not clear about how friend declarations are
1475 // to be treated. It's not meaningful to have different owning modules for
1476 // linkage in redeclarations of the same entity, so for now allow the
1477 // redeclaration and change the owning modules to match.
1478 if (New->getFriendObjectKind() &&
1479 Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) {
1480 New->setLocalOwningModule(Old->getOwningModule());
1481 makeMergedDefinitionVisible(New);
1482 return false;
1483 }
1484
1485 Module *NewM = New->getOwningModule();
1486 Module *OldM = Old->getOwningModule();
1487
1488 if (NewM && NewM->Kind == Module::PrivateModuleFragment)
1489 NewM = NewM->Parent;
1490 if (OldM && OldM->Kind == Module::PrivateModuleFragment)
1491 OldM = OldM->Parent;
1492
1493 if (NewM == OldM)
1494 return false;
1495
1496 bool NewIsModuleInterface = NewM && NewM->isModulePurview();
1497 bool OldIsModuleInterface = OldM && OldM->isModulePurview();
1498 if (NewIsModuleInterface || OldIsModuleInterface) {
1499 // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]:
1500 // if a declaration of D [...] appears in the purview of a module, all
1501 // other such declarations shall appear in the purview of the same module
1502 Diag(New->getLocation(), diag::err_mismatched_owning_module)
1503 << New
1504 << NewIsModuleInterface
1505 << (NewIsModuleInterface ? NewM->getFullModuleName() : "")
1506 << OldIsModuleInterface
1507 << (OldIsModuleInterface ? OldM->getFullModuleName() : "");
1508 Diag(Old->getLocation(), diag::note_previous_declaration);
1509 New->setInvalidDecl();
1510 return true;
1511 }
1512
1513 return false;
1514}
1515
1516static bool isUsingDecl(NamedDecl *D) {
1517 return isa<UsingShadowDecl>(D) ||
1518 isa<UnresolvedUsingTypenameDecl>(D) ||
1519 isa<UnresolvedUsingValueDecl>(D);
1520}
1521
1522/// Removes using shadow declarations from the lookup results.
1523static void RemoveUsingDecls(LookupResult &R) {
1524 LookupResult::Filter F = R.makeFilter();
1525 while (F.hasNext())
1526 if (isUsingDecl(F.next()))
1527 F.erase();
1528
1529 F.done();
1530}
1531
1532/// Check for this common pattern:
1533/// @code
1534/// class S {
1535/// S(const S&); // DO NOT IMPLEMENT
1536/// void operator=(const S&); // DO NOT IMPLEMENT
1537/// };
1538/// @endcode
1539static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1540 // FIXME: Should check for private access too but access is set after we get
1541 // the decl here.
1542 if (D->doesThisDeclarationHaveABody())
1543 return false;
1544
1545 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1546 return CD->isCopyConstructor();
1547 return D->isCopyAssignmentOperator();
1548}
1549
1550// We need this to handle
1551//
1552// typedef struct {
1553// void *foo() { return 0; }
1554// } A;
1555//
1556// When we see foo we don't know if after the typedef we will get 'A' or '*A'
1557// for example. If 'A', foo will have external linkage. If we have '*A',
1558// foo will have no linkage. Since we can't know until we get to the end
1559// of the typedef, this function finds out if D might have non-external linkage.
1560// Callers should verify at the end of the TU if it D has external linkage or
1561// not.
1562bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1563 const DeclContext *DC = D->getDeclContext();
1564 while (!DC->isTranslationUnit()) {
1565 if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1566 if (!RD->hasNameForLinkage())
1567 return true;
1568 }
1569 DC = DC->getParent();
1570 }
1571
1572 return !D->isExternallyVisible();
1573}
1574
1575// FIXME: This needs to be refactored; some other isInMainFile users want
1576// these semantics.
1577static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1578 if (S.TUKind != TU_Complete)
1579 return false;
1580 return S.SourceMgr.isInMainFile(Loc);
1581}
1582
1583bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1584 assert(D)((D) ? static_cast<void> (0) : __assert_fail ("D", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 1584, __PRETTY_FUNCTION__))
;
1585
1586 if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1587 return false;
1588
1589 // Ignore all entities declared within templates, and out-of-line definitions
1590 // of members of class templates.
1591 if (D->getDeclContext()->isDependentContext() ||
1592 D->getLexicalDeclContext()->isDependentContext())
1593 return false;
1594
1595 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1596 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1597 return false;
1598 // A non-out-of-line declaration of a member specialization was implicitly
1599 // instantiated; it's the out-of-line declaration that we're interested in.
1600 if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1601 FD->getMemberSpecializationInfo() && !FD->isOutOfLine())
1602 return false;
1603
1604 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1605 if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1606 return false;
1607 } else {
1608 // 'static inline' functions are defined in headers; don't warn.
1609 if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation()))
1610 return false;
1611 }
1612
1613 if (FD->doesThisDeclarationHaveABody() &&
1614 Context.DeclMustBeEmitted(FD))
1615 return false;
1616 } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1617 // Constants and utility variables are defined in headers with internal
1618 // linkage; don't warn. (Unlike functions, there isn't a convenient marker
1619 // like "inline".)
1620 if (!isMainFileLoc(*this, VD->getLocation()))
1621 return false;
1622
1623 if (Context.DeclMustBeEmitted(VD))
1624 return false;
1625
1626 if (VD->isStaticDataMember() &&
1627 VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1628 return false;
1629 if (VD->isStaticDataMember() &&
1630 VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization &&
1631 VD->getMemberSpecializationInfo() && !VD->isOutOfLine())
1632 return false;
1633
1634 if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation()))
1635 return false;
1636 } else {
1637 return false;
1638 }
1639
1640 // Only warn for unused decls internal to the translation unit.
1641 // FIXME: This seems like a bogus check; it suppresses -Wunused-function
1642 // for inline functions defined in the main source file, for instance.
1643 return mightHaveNonExternalLinkage(D);
1644}
1645
1646void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1647 if (!D)
1648 return;
1649
1650 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1651 const FunctionDecl *First = FD->getFirstDecl();
1652 if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1653 return; // First should already be in the vector.
1654 }
1655
1656 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1657 const VarDecl *First = VD->getFirstDecl();
1658 if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1659 return; // First should already be in the vector.
1660 }
1661
1662 if (ShouldWarnIfUnusedFileScopedDecl(D))
1663 UnusedFileScopedDecls.push_back(D);
1664}
1665
1666static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1667 if (D->isInvalidDecl())
1668 return false;
1669
1670 bool Referenced = false;
1671 if (auto *DD = dyn_cast<DecompositionDecl>(D)) {
1672 // For a decomposition declaration, warn if none of the bindings are
1673 // referenced, instead of if the variable itself is referenced (which
1674 // it is, by the bindings' expressions).
1675 for (auto *BD : DD->bindings()) {
1676 if (BD->isReferenced()) {
1677 Referenced = true;
1678 break;
1679 }
1680 }
1681 } else if (!D->getDeclName()) {
1682 return false;
1683 } else if (D->isReferenced() || D->isUsed()) {
1684 Referenced = true;
1685 }
1686
1687 if (Referenced || D->hasAttr<UnusedAttr>() ||
1688 D->hasAttr<ObjCPreciseLifetimeAttr>())
1689 return false;
1690
1691 if (isa<LabelDecl>(D))
1692 return true;
1693
1694 // Except for labels, we only care about unused decls that are local to
1695 // functions.
1696 bool WithinFunction = D->getDeclContext()->isFunctionOrMethod();
1697 if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext()))
1698 // For dependent types, the diagnostic is deferred.
1699 WithinFunction =
1700 WithinFunction || (R->isLocalClass() && !R->isDependentType());
1701 if (!WithinFunction)
1702 return false;
1703
1704 if (isa<TypedefNameDecl>(D))
1705 return true;
1706
1707 // White-list anything that isn't a local variable.
1708 if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D))
1709 return false;
1710
1711 // Types of valid local variables should be complete, so this should succeed.
1712 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1713
1714 // White-list anything with an __attribute__((unused)) type.
1715 const auto *Ty = VD->getType().getTypePtr();
1716
1717 // Only look at the outermost level of typedef.
1718 if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1719 if (TT->getDecl()->hasAttr<UnusedAttr>())
1720 return false;
1721 }
1722
1723 // If we failed to complete the type for some reason, or if the type is
1724 // dependent, don't diagnose the variable.
1725 if (Ty->isIncompleteType() || Ty->isDependentType())
1726 return false;
1727
1728 // Look at the element type to ensure that the warning behaviour is
1729 // consistent for both scalars and arrays.
1730 Ty = Ty->getBaseElementTypeUnsafe();
1731
1732 if (const TagType *TT = Ty->getAs<TagType>()) {
1733 const TagDecl *Tag = TT->getDecl();
1734 if (Tag->hasAttr<UnusedAttr>())
1735 return false;
1736
1737 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1738 if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
1739 return false;
1740
1741 if (const Expr *Init = VD->getInit()) {
1742 if (const ExprWithCleanups *Cleanups =
1743 dyn_cast<ExprWithCleanups>(Init))
1744 Init = Cleanups->getSubExpr();
1745 const CXXConstructExpr *Construct =
1746 dyn_cast<CXXConstructExpr>(Init);
1747 if (Construct && !Construct->isElidable()) {
1748 CXXConstructorDecl *CD = Construct->getConstructor();
1749 if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() &&
1750 (VD->getInit()->isValueDependent() || !VD->evaluateValue()))
1751 return false;
1752 }
1753 }
1754 }
1755 }
1756
1757 // TODO: __attribute__((unused)) templates?
1758 }
1759
1760 return true;
1761}
1762
1763static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1764 FixItHint &Hint) {
1765 if (isa<LabelDecl>(D)) {
1766 SourceLocation AfterColon = Lexer::findLocationAfterToken(
1767 D->getEndLoc(), tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(),
1768 true);
1769 if (AfterColon.isInvalid())
1770 return;
1771 Hint = FixItHint::CreateRemoval(
1772 CharSourceRange::getCharRange(D->getBeginLoc(), AfterColon));
1773 }
1774}
1775
1776void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) {
1777 if (D->getTypeForDecl()->isDependentType())
1778 return;
1779
1780 for (auto *TmpD : D->decls()) {
1781 if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD))
1782 DiagnoseUnusedDecl(T);
1783 else if(const auto *R = dyn_cast<RecordDecl>(TmpD))
1784 DiagnoseUnusedNestedTypedefs(R);
1785 }
1786}
1787
1788/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1789/// unless they are marked attr(unused).
1790void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1791 if (!ShouldDiagnoseUnusedDecl(D))
1792 return;
1793
1794 if (auto *TD = dyn_cast<TypedefNameDecl>(D)) {
1795 // typedefs can be referenced later on, so the diagnostics are emitted
1796 // at end-of-translation-unit.
1797 UnusedLocalTypedefNameCandidates.insert(TD);
1798 return;
1799 }
1800
1801 FixItHint Hint;
1802 GenerateFixForUnusedDecl(D, Context, Hint);
1803
1804 unsigned DiagID;
1805 if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1806 DiagID = diag::warn_unused_exception_param;
1807 else if (isa<LabelDecl>(D))
1808 DiagID = diag::warn_unused_label;
1809 else
1810 DiagID = diag::warn_unused_variable;
1811
1812 Diag(D->getLocation(), DiagID) << D << Hint;
1813}
1814
1815static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1816 // Verify that we have no forward references left. If so, there was a goto
1817 // or address of a label taken, but no definition of it. Label fwd
1818 // definitions are indicated with a null substmt which is also not a resolved
1819 // MS inline assembly label name.
1820 bool Diagnose = false;
1821 if (L->isMSAsmLabel())
1822 Diagnose = !L->isResolvedMSAsmLabel();
1823 else
1824 Diagnose = L->getStmt() == nullptr;
1825 if (Diagnose)
1826 S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1827}
1828
1829void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1830 S->mergeNRVOIntoParent();
1831
1832 if (S->decl_empty()) return;
1833 assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&(((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope
)) && "Scope shouldn't contain decls!") ? static_cast
<void> (0) : __assert_fail ("(S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && \"Scope shouldn't contain decls!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 1834, __PRETTY_FUNCTION__))
1834 "Scope shouldn't contain decls!")(((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope
)) && "Scope shouldn't contain decls!") ? static_cast
<void> (0) : __assert_fail ("(S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && \"Scope shouldn't contain decls!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 1834, __PRETTY_FUNCTION__))
;
1835
1836 for (auto *TmpD : S->decls()) {
1837 assert(TmpD && "This decl didn't get pushed??")((TmpD && "This decl didn't get pushed??") ? static_cast
<void> (0) : __assert_fail ("TmpD && \"This decl didn't get pushed??\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 1837, __PRETTY_FUNCTION__))
;
1838
1839 assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?")((isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?"
) ? static_cast<void> (0) : __assert_fail ("isa<NamedDecl>(TmpD) && \"Decl isn't NamedDecl?\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 1839, __PRETTY_FUNCTION__))
;
1840 NamedDecl *D = cast<NamedDecl>(TmpD);
1841
1842 // Diagnose unused variables in this scope.
1843 if (!S->hasUnrecoverableErrorOccurred()) {
1844 DiagnoseUnusedDecl(D);
1845 if (const auto *RD = dyn_cast<RecordDecl>(D))
1846 DiagnoseUnusedNestedTypedefs(RD);
1847 }
1848
1849 if (!D->getDeclName()) continue;
1850
1851 // If this was a forward reference to a label, verify it was defined.
1852 if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1853 CheckPoppedLabel(LD, *this);
1854
1855 // Remove this name from our lexical scope, and warn on it if we haven't
1856 // already.
1857 IdResolver.RemoveDecl(D);
1858 auto ShadowI = ShadowingDecls.find(D);
1859 if (ShadowI != ShadowingDecls.end()) {
1860 if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) {
1861 Diag(D->getLocation(), diag::warn_ctor_parm_shadows_field)
1862 << D << FD << FD->getParent();
1863 Diag(FD->getLocation(), diag::note_previous_declaration);
1864 }
1865 ShadowingDecls.erase(ShadowI);
1866 }
1867 }
1868}
1869
1870/// Look for an Objective-C class in the translation unit.
1871///
1872/// \param Id The name of the Objective-C class we're looking for. If
1873/// typo-correction fixes this name, the Id will be updated
1874/// to the fixed name.
1875///
1876/// \param IdLoc The location of the name in the translation unit.
1877///
1878/// \param DoTypoCorrection If true, this routine will attempt typo correction
1879/// if there is no class with the given name.
1880///
1881/// \returns The declaration of the named Objective-C class, or NULL if the
1882/// class could not be found.
1883ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1884 SourceLocation IdLoc,
1885 bool DoTypoCorrection) {
1886 // The third "scope" argument is 0 since we aren't enabling lazy built-in
1887 // creation from this context.
1888 NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1889
1890 if (!IDecl && DoTypoCorrection) {
1891 // Perform typo correction at the given location, but only if we
1892 // find an Objective-C class name.
1893 DeclFilterCCC<ObjCInterfaceDecl> CCC{};
1894 if (TypoCorrection C =
1895 CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
1896 TUScope, nullptr, CCC, CTK_ErrorRecovery)) {
1897 diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
1898 IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1899 Id = IDecl->getIdentifier();
1900 }
1901 }
1902 ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1903 // This routine must always return a class definition, if any.
1904 if (Def && Def->getDefinition())
1905 Def = Def->getDefinition();
1906 return Def;
1907}
1908
1909/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1910/// from S, where a non-field would be declared. This routine copes
1911/// with the difference between C and C++ scoping rules in structs and
1912/// unions. For example, the following code is well-formed in C but
1913/// ill-formed in C++:
1914/// @code
1915/// struct S6 {
1916/// enum { BAR } e;
1917/// };
1918///
1919/// void test_S6() {
1920/// struct S6 a;
1921/// a.e = BAR;
1922/// }
1923/// @endcode
1924/// For the declaration of BAR, this routine will return a different
1925/// scope. The scope S will be the scope of the unnamed enumeration
1926/// within S6. In C++, this routine will return the scope associated
1927/// with S6, because the enumeration's scope is a transparent
1928/// context but structures can contain non-field names. In C, this
1929/// routine will return the translation unit scope, since the
1930/// enumeration's scope is a transparent context and structures cannot
1931/// contain non-field names.
1932Scope *Sema::getNonFieldDeclScope(Scope *S) {
1933 while (((S->getFlags() & Scope::DeclScope) == 0) ||
1934 (S->getEntity() && S->getEntity()->isTransparentContext()) ||
1935 (S->isClassScope() && !getLangOpts().CPlusPlus))
1936 S = S->getParent();
1937 return S;
1938}
1939
1940/// Looks up the declaration of "struct objc_super" and
1941/// saves it for later use in building builtin declaration of
1942/// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1943/// pre-existing declaration exists no action takes place.
1944static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1945 IdentifierInfo *II) {
1946 if (!II->isStr("objc_msgSendSuper"))
1947 return;
1948 ASTContext &Context = ThisSema.Context;
1949
1950 LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1951 SourceLocation(), Sema::LookupTagName);
1952 ThisSema.LookupName(Result, S);
1953 if (Result.getResultKind() == LookupResult::Found)
1954 if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1955 Context.setObjCSuperType(Context.getTagDeclType(TD));
1956}
1957
1958static StringRef getHeaderName(Builtin::Context &BuiltinInfo, unsigned ID,
1959 ASTContext::GetBuiltinTypeError Error) {
1960 switch (Error) {
1961 case ASTContext::GE_None:
1962 return "";
1963 case ASTContext::GE_Missing_type:
1964 return BuiltinInfo.getHeaderName(ID);
1965 case ASTContext::GE_Missing_stdio:
1966 return "stdio.h";
1967 case ASTContext::GE_Missing_setjmp:
1968 return "setjmp.h";
1969 case ASTContext::GE_Missing_ucontext:
1970 return "ucontext.h";
1971 }
1972 llvm_unreachable("unhandled error kind")::llvm::llvm_unreachable_internal("unhandled error kind", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 1972)
;
1973}
1974
1975/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1976/// file scope. lazily create a decl for it. ForRedeclaration is true
1977/// if we're creating this built-in in anticipation of redeclaring the
1978/// built-in.
1979NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID,
1980 Scope *S, bool ForRedeclaration,
1981 SourceLocation Loc) {
1982 LookupPredefedObjCSuperType(*this, S, II);
1983
1984 ASTContext::GetBuiltinTypeError Error;
1985 QualType R = Context.GetBuiltinType(ID, Error);
1986 if (Error) {
1987 if (!ForRedeclaration)
1988 return nullptr;
1989
1990 // If we have a builtin without an associated type we should not emit a
1991 // warning when we were not able to find a type for it.
1992 if (Error == ASTContext::GE_Missing_type)
1993 return nullptr;
1994
1995 // If we could not find a type for setjmp it is because the jmp_buf type was
1996 // not defined prior to the setjmp declaration.
1997 if (Error == ASTContext::GE_Missing_setjmp) {
1998 Diag(Loc, diag::warn_implicit_decl_no_jmp_buf)
1999 << Context.BuiltinInfo.getName(ID);
2000 return nullptr;
2001 }
2002
2003 // Generally, we emit a warning that the declaration requires the
2004 // appropriate header.
2005 Diag(Loc, diag::warn_implicit_decl_requires_sysheader)
2006 << getHeaderName(Context.BuiltinInfo, ID, Error)
2007 << Context.BuiltinInfo.getName(ID);
2008 return nullptr;
2009 }
2010
2011 if (!ForRedeclaration &&
2012 (Context.BuiltinInfo.isPredefinedLibFunction(ID) ||
2013 Context.BuiltinInfo.isHeaderDependentFunction(ID))) {
2014 Diag(Loc, diag::ext_implicit_lib_function_decl)
2015 << Context.BuiltinInfo.getName(ID) << R;
2016 if (Context.BuiltinInfo.getHeaderName(ID) &&
2017 !Diags.isIgnored(diag::ext_implicit_lib_function_decl, Loc))
2018 Diag(Loc, diag::note_include_header_or_declare)
2019 << Context.BuiltinInfo.getHeaderName(ID)
2020 << Context.BuiltinInfo.getName(ID);
2021 }
2022
2023 if (R.isNull())
2024 return nullptr;
2025
2026 DeclContext *Parent = Context.getTranslationUnitDecl();
2027 if (getLangOpts().CPlusPlus) {
2028 LinkageSpecDecl *CLinkageDecl =
2029 LinkageSpecDecl::Create(Context, Parent, Loc, Loc,
2030 LinkageSpecDecl::lang_c, false);
2031 CLinkageDecl->setImplicit();
2032 Parent->addDecl(CLinkageDecl);
2033 Parent = CLinkageDecl;
2034 }
2035
2036 FunctionDecl *New = FunctionDecl::Create(Context,
2037 Parent,
2038 Loc, Loc, II, R, /*TInfo=*/nullptr,
2039 SC_Extern,
2040 false,
2041 R->isFunctionProtoType());
2042 New->setImplicit();
2043
2044 // Create Decl objects for each parameter, adding them to the
2045 // FunctionDecl.
2046 if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
2047 SmallVector<ParmVarDecl*, 16> Params;
2048 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2049 ParmVarDecl *parm =
2050 ParmVarDecl::Create(Context, New, SourceLocation(), SourceLocation(),
2051 nullptr, FT->getParamType(i), /*TInfo=*/nullptr,
2052 SC_None, nullptr);
2053 parm->setScopeInfo(0, i);
2054 Params.push_back(parm);
2055 }
2056 New->setParams(Params);
2057 }
2058
2059 AddKnownFunctionAttributes(New);
2060 RegisterLocallyScopedExternCDecl(New, S);
2061
2062 // TUScope is the translation-unit scope to insert this function into.
2063 // FIXME: This is hideous. We need to teach PushOnScopeChains to
2064 // relate Scopes to DeclContexts, and probably eliminate CurContext
2065 // entirely, but we're not there yet.
2066 DeclContext *SavedContext = CurContext;
2067 CurContext = Parent;
2068 PushOnScopeChains(New, TUScope);
2069 CurContext = SavedContext;
2070 return New;
2071}
2072
2073/// Typedef declarations don't have linkage, but they still denote the same
2074/// entity if their types are the same.
2075/// FIXME: This is notionally doing the same thing as ASTReaderDecl's
2076/// isSameEntity.
2077static void filterNonConflictingPreviousTypedefDecls(Sema &S,
2078 TypedefNameDecl *Decl,
2079 LookupResult &Previous) {
2080 // This is only interesting when modules are enabled.
2081 if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility)
45
Assuming field 'Modules' is not equal to 0
2082 return;
2083
2084 // Empty sets are uninteresting.
2085 if (Previous.empty())
46
Assuming the condition is true
47
Taking true branch
2086 return;
48
Returning without writing to 'Decl->InvalidDecl', which participates in a condition later
2087
2088 LookupResult::Filter Filter = Previous.makeFilter();
2089 while (Filter.hasNext()) {
2090 NamedDecl *Old = Filter.next();
2091
2092 // Non-hidden declarations are never ignored.
2093 if (S.isVisible(Old))
2094 continue;
2095
2096 // Declarations of the same entity are not ignored, even if they have
2097 // different linkages.
2098 if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2099 if (S.Context.hasSameType(OldTD->getUnderlyingType(),
2100 Decl->getUnderlyingType()))
2101 continue;
2102
2103 // If both declarations give a tag declaration a typedef name for linkage
2104 // purposes, then they declare the same entity.
2105 if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) &&
2106 Decl->getAnonDeclWithTypedefName())
2107 continue;
2108 }
2109
2110 Filter.erase();
2111 }
2112
2113 Filter.done();
2114}
2115
2116bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
2117 QualType OldType;
2118 if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
2119 OldType = OldTypedef->getUnderlyingType();
2120 else
2121 OldType = Context.getTypeDeclType(Old);
2122 QualType NewType = New->getUnderlyingType();
2123
2124 if (NewType->isVariablyModifiedType()) {
2125 // Must not redefine a typedef with a variably-modified type.
2126 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2127 Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
2128 << Kind << NewType;
2129 if (Old->getLocation().isValid())
2130 notePreviousDefinition(Old, New->getLocation());
2131 New->setInvalidDecl();
2132 return true;
2133 }
2134
2135 if (OldType != NewType &&
2136 !OldType->isDependentType() &&
2137 !NewType->isDependentType() &&
2138 !Context.hasSameType(OldType, NewType)) {
2139 int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
2140 Diag(New->getLocation(), diag::err_redefinition_different_typedef)
2141 << Kind << NewType << OldType;
2142 if (Old->getLocation().isValid())
2143 notePreviousDefinition(Old, New->getLocation());
2144 New->setInvalidDecl();
2145 return true;
2146 }
2147 return false;
2148}
2149
2150/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
2151/// same name and scope as a previous declaration 'Old'. Figure out
2152/// how to resolve this situation, merging decls or emitting
2153/// diagnostics as appropriate. If there was an error, set New to be invalid.
2154///
2155void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New,
2156 LookupResult &OldDecls) {
2157 // If the new decl is known invalid already, don't bother doing any
2158 // merging checks.
2159 if (New->isInvalidDecl()) return;
53
Assuming the condition is false
54
Taking false branch
2160
2161 // Allow multiple definitions for ObjC built-in typedefs.
2162 // FIXME: Verify the underlying types are equivalent!
2163 if (getLangOpts().ObjC) {
55
Assuming field 'ObjC' is not equal to 0
56
Taking true branch
2164 const IdentifierInfo *TypeID = New->getIdentifier();
2165 switch (TypeID->getLength()) {
57
Control jumps to 'case 2:' at line 2167
2166 default: break;
2167 case 2:
2168 {
2169 if (!TypeID->isStr("id"))
58
Assuming the condition is false
59
Taking false branch
2170 break;
2171 QualType T = New->getUnderlyingType();
2172 if (!T->isPointerType())
60
Calling 'Type::isPointerType'
63
Returning from 'Type::isPointerType'
64
Taking false branch
2173 break;
2174 if (!T->isVoidPointerType()) {
65
Assuming the condition is true
66
Taking true branch
2175 QualType PT = T->getAs<PointerType>()->getPointeeType();
67
Assuming the object is not a 'PointerType'
68
Called C++ object pointer is null
2176 if (!PT->isStructureType())
2177 break;
2178 }
2179 Context.setObjCIdRedefinitionType(T);
2180 // Install the built-in type for 'id', ignoring the current definition.
2181 New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
2182 return;
2183 }
2184 case 5:
2185 if (!TypeID->isStr("Class"))
2186 break;
2187 Context.setObjCClassRedefinitionType(New->getUnderlyingType());
2188 // Install the built-in type for 'Class', ignoring the current definition.
2189 New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
2190 return;
2191 case 3:
2192 if (!TypeID->isStr("SEL"))
2193 break;
2194 Context.setObjCSelRedefinitionType(New->getUnderlyingType());
2195 // Install the built-in type for 'SEL', ignoring the current definition.
2196 New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
2197 return;
2198 }
2199 // Fall through - the typedef name was not a builtin type.
2200 }
2201
2202 // Verify the old decl was also a type.
2203 TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
2204 if (!Old) {
2205 Diag(New->getLocation(), diag::err_redefinition_different_kind)
2206 << New->getDeclName();
2207
2208 NamedDecl *OldD = OldDecls.getRepresentativeDecl();
2209 if (OldD->getLocation().isValid())
2210 notePreviousDefinition(OldD, New->getLocation());
2211
2212 return New->setInvalidDecl();
2213 }
2214
2215 // If the old declaration is invalid, just give up here.
2216 if (Old->isInvalidDecl())
2217 return New->setInvalidDecl();
2218
2219 if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) {
2220 auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true);
2221 auto *NewTag = New->getAnonDeclWithTypedefName();
2222 NamedDecl *Hidden = nullptr;
2223 if (OldTag && NewTag &&
2224 OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() &&
2225 !hasVisibleDefinition(OldTag, &Hidden)) {
2226 // There is a definition of this tag, but it is not visible. Use it
2227 // instead of our tag.
2228 New->setTypeForDecl(OldTD->getTypeForDecl());
2229 if (OldTD->isModed())
2230 New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(),
2231 OldTD->getUnderlyingType());
2232 else
2233 New->setTypeSourceInfo(OldTD->getTypeSourceInfo());
2234
2235 // Make the old tag definition visible.
2236 makeMergedDefinitionVisible(Hidden);
2237
2238 // If this was an unscoped enumeration, yank all of its enumerators
2239 // out of the scope.
2240 if (isa<EnumDecl>(NewTag)) {
2241 Scope *EnumScope = getNonFieldDeclScope(S);
2242 for (auto *D : NewTag->decls()) {
2243 auto *ED = cast<EnumConstantDecl>(D);
2244 assert(EnumScope->isDeclScope(ED))((EnumScope->isDeclScope(ED)) ? static_cast<void> (0
) : __assert_fail ("EnumScope->isDeclScope(ED)", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 2244, __PRETTY_FUNCTION__))
;
2245 EnumScope->RemoveDecl(ED);
2246 IdResolver.RemoveDecl(ED);
2247 ED->getLexicalDeclContext()->removeDecl(ED);
2248 }
2249 }
2250 }
2251 }
2252
2253 // If the typedef types are not identical, reject them in all languages and
2254 // with any extensions enabled.
2255 if (isIncompatibleTypedef(Old, New))
2256 return;
2257
2258 // The types match. Link up the redeclaration chain and merge attributes if
2259 // the old declaration was a typedef.
2260 if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
2261 New->setPreviousDecl(Typedef);
2262 mergeDeclAttributes(New, Old);
2263 }
2264
2265 if (getLangOpts().MicrosoftExt)
2266 return;
2267
2268 if (getLangOpts().CPlusPlus) {
2269 // C++ [dcl.typedef]p2:
2270 // In a given non-class scope, a typedef specifier can be used to
2271 // redefine the name of any type declared in that scope to refer
2272 // to the type to which it already refers.
2273 if (!isa<CXXRecordDecl>(CurContext))
2274 return;
2275
2276 // C++0x [dcl.typedef]p4:
2277 // In a given class scope, a typedef specifier can be used to redefine
2278 // any class-name declared in that scope that is not also a typedef-name
2279 // to refer to the type to which it already refers.
2280 //
2281 // This wording came in via DR424, which was a correction to the
2282 // wording in DR56, which accidentally banned code like:
2283 //
2284 // struct S {
2285 // typedef struct A { } A;
2286 // };
2287 //
2288 // in the C++03 standard. We implement the C++0x semantics, which
2289 // allow the above but disallow
2290 //
2291 // struct S {
2292 // typedef int I;
2293 // typedef int I;
2294 // };
2295 //
2296 // since that was the intent of DR56.
2297 if (!isa<TypedefNameDecl>(Old))
2298 return;
2299
2300 Diag(New->getLocation(), diag::err_redefinition)
2301 << New->getDeclName();
2302 notePreviousDefinition(Old, New->getLocation());
2303 return New->setInvalidDecl();
2304 }
2305
2306 // Modules always permit redefinition of typedefs, as does C11.
2307 if (getLangOpts().Modules || getLangOpts().C11)
2308 return;
2309
2310 // If we have a redefinition of a typedef in C, emit a warning. This warning
2311 // is normally mapped to an error, but can be controlled with
2312 // -Wtypedef-redefinition. If either the original or the redefinition is
2313 // in a system header, don't emit this for compatibility with GCC.
2314 if (getDiagnostics().getSuppressSystemWarnings() &&
2315 // Some standard types are defined implicitly in Clang (e.g. OpenCL).
2316 (Old->isImplicit() ||
2317 Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
2318 Context.getSourceManager().isInSystemHeader(New->getLocation())))
2319 return;
2320
2321 Diag(New->getLocation(), diag::ext_redefinition_of_typedef)
2322 << New->getDeclName();
2323 notePreviousDefinition(Old, New->getLocation());
2324}
2325
2326/// DeclhasAttr - returns true if decl Declaration already has the target
2327/// attribute.
2328static bool DeclHasAttr(const Decl *D, const Attr *A) {
2329 const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
2330 const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
2331 for (const auto *i : D->attrs())
2332 if (i->getKind() == A->getKind()) {
2333 if (Ann) {
2334 if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation())
2335 return true;
2336 continue;
2337 }
2338 // FIXME: Don't hardcode this check
2339 if (OA && isa<OwnershipAttr>(i))
2340 return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind();
2341 return true;
2342 }
2343
2344 return false;
2345}
2346
2347static bool isAttributeTargetADefinition(Decl *D) {
2348 if (VarDecl *VD = dyn_cast<VarDecl>(D))
2349 return VD->isThisDeclarationADefinition();
2350 if (TagDecl *TD = dyn_cast<TagDecl>(D))
2351 return TD->isCompleteDefinition() || TD->isBeingDefined();
2352 return true;
2353}
2354
2355/// Merge alignment attributes from \p Old to \p New, taking into account the
2356/// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
2357///
2358/// \return \c true if any attributes were added to \p New.
2359static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
2360 // Look for alignas attributes on Old, and pick out whichever attribute
2361 // specifies the strictest alignment requirement.
2362 AlignedAttr *OldAlignasAttr = nullptr;
2363 AlignedAttr *OldStrictestAlignAttr = nullptr;
2364 unsigned OldAlign = 0;
2365 for (auto *I : Old->specific_attrs<AlignedAttr>()) {
2366 // FIXME: We have no way of representing inherited dependent alignments
2367 // in a case like:
2368 // template<int A, int B> struct alignas(A) X;
2369 // template<int A, int B> struct alignas(B) X {};
2370 // For now, we just ignore any alignas attributes which are not on the
2371 // definition in such a case.
2372 if (I->isAlignmentDependent())
2373 return false;
2374
2375 if (I->isAlignas())
2376 OldAlignasAttr = I;
2377
2378 unsigned Align = I->getAlignment(S.Context);
2379 if (Align > OldAlign) {
2380 OldAlign = Align;
2381 OldStrictestAlignAttr = I;
2382 }
2383 }
2384
2385 // Look for alignas attributes on New.
2386 AlignedAttr *NewAlignasAttr = nullptr;
2387 unsigned NewAlign = 0;
2388 for (auto *I : New->specific_attrs<AlignedAttr>()) {
2389 if (I->isAlignmentDependent())
2390 return false;
2391
2392 if (I->isAlignas())
2393 NewAlignasAttr = I;
2394
2395 unsigned Align = I->getAlignment(S.Context);
2396 if (Align > NewAlign)
2397 NewAlign = Align;
2398 }
2399
2400 if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
2401 // Both declarations have 'alignas' attributes. We require them to match.
2402 // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
2403 // fall short. (If two declarations both have alignas, they must both match
2404 // every definition, and so must match each other if there is a definition.)
2405
2406 // If either declaration only contains 'alignas(0)' specifiers, then it
2407 // specifies the natural alignment for the type.
2408 if (OldAlign == 0 || NewAlign == 0) {
2409 QualType Ty;
2410 if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
2411 Ty = VD->getType();
2412 else
2413 Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
2414
2415 if (OldAlign == 0)
2416 OldAlign = S.Context.getTypeAlign(Ty);
2417 if (NewAlign == 0)
2418 NewAlign = S.Context.getTypeAlign(Ty);
2419 }
2420
2421 if (OldAlign != NewAlign) {
2422 S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
2423 << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
2424 << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
2425 S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
2426 }
2427 }
2428
2429 if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
2430 // C++11 [dcl.align]p6:
2431 // if any declaration of an entity has an alignment-specifier,
2432 // every defining declaration of that entity shall specify an
2433 // equivalent alignment.
2434 // C11 6.7.5/7:
2435 // If the definition of an object does not have an alignment
2436 // specifier, any other declaration of that object shall also
2437 // have no alignment specifier.
2438 S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
2439 << OldAlignasAttr;
2440 S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
2441 << OldAlignasAttr;
2442 }
2443
2444 bool AnyAdded = false;
2445
2446 // Ensure we have an attribute representing the strictest alignment.
2447 if (OldAlign > NewAlign) {
2448 AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
2449 Clone->setInherited(true);
2450 New->addAttr(Clone);
2451 AnyAdded = true;
2452 }
2453
2454 // Ensure we have an alignas attribute if the old declaration had one.
2455 if (OldAlignasAttr && !NewAlignasAttr &&
2456 !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
2457 AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
2458 Clone->setInherited(true);
2459 New->addAttr(Clone);
2460 AnyAdded = true;
2461 }
2462
2463 return AnyAdded;
2464}
2465
2466static bool mergeDeclAttribute(Sema &S, NamedDecl *D,
2467 const InheritableAttr *Attr,
2468 Sema::AvailabilityMergeKind AMK) {
2469 // This function copies an attribute Attr from a previous declaration to the
2470 // new declaration D if the new declaration doesn't itself have that attribute
2471 // yet or if that attribute allows duplicates.
2472 // If you're adding a new attribute that requires logic different from
2473 // "use explicit attribute on decl if present, else use attribute from
2474 // previous decl", for example if the attribute needs to be consistent
2475 // between redeclarations, you need to call a custom merge function here.
2476 InheritableAttr *NewAttr = nullptr;
2477 if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr))
2478 NewAttr = S.mergeAvailabilityAttr(
2479 D, *AA, AA->getPlatform(), AA->isImplicit(), AA->getIntroduced(),
2480 AA->getDeprecated(), AA->getObsoleted(), AA->getUnavailable(),
2481 AA->getMessage(), AA->getStrict(), AA->getReplacement(), AMK,
2482 AA->getPriority());
2483 else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr))
2484 NewAttr = S.mergeVisibilityAttr(D, *VA, VA->getVisibility());
2485 else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr))
2486 NewAttr = S.mergeTypeVisibilityAttr(D, *VA, VA->getVisibility());
2487 else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr))
2488 NewAttr = S.mergeDLLImportAttr(D, *ImportA);
2489 else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr))
2490 NewAttr = S.mergeDLLExportAttr(D, *ExportA);
2491 else if (const auto *FA = dyn_cast<FormatAttr>(Attr))
2492 NewAttr = S.mergeFormatAttr(D, *FA, FA->getType(), FA->getFormatIdx(),
2493 FA->getFirstArg());
2494 else if (const auto *SA = dyn_cast<SectionAttr>(Attr))
2495 NewAttr = S.mergeSectionAttr(D, *SA, SA->getName());
2496 else if (const auto *CSA = dyn_cast<CodeSegAttr>(Attr))
2497 NewAttr = S.mergeCodeSegAttr(D, *CSA, CSA->getName());
2498 else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr))
2499 NewAttr = S.mergeMSInheritanceAttr(D, *IA, IA->getBestCase(),
2500 IA->getSemanticSpelling());
2501 else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr))
2502 NewAttr = S.mergeAlwaysInlineAttr(D, *AA,
2503 &S.Context.Idents.get(AA->getSpelling()));
2504 else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) &&
2505 (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) ||
2506 isa<CUDAGlobalAttr>(Attr))) {
2507 // CUDA target attributes are part of function signature for
2508 // overloading purposes and must not be merged.
2509 return false;
2510 } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr))
2511 NewAttr = S.mergeMinSizeAttr(D, *MA);
2512 else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr))
2513 NewAttr = S.mergeOptimizeNoneAttr(D, *OA);
2514 else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr))
2515 NewAttr = S.mergeInternalLinkageAttr(D, *InternalLinkageA);
2516 else if (const auto *CommonA = dyn_cast<CommonAttr>(Attr))
2517 NewAttr = S.mergeCommonAttr(D, *CommonA);
2518 else if (isa<AlignedAttr>(Attr))
2519 // AlignedAttrs are handled separately, because we need to handle all
2520 // such attributes on a declaration at the same time.
2521 NewAttr = nullptr;
2522 else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) &&
2523 (AMK == Sema::AMK_Override ||
2524 AMK == Sema::AMK_ProtocolImplementation))
2525 NewAttr = nullptr;
2526 else if (const auto *UA = dyn_cast<UuidAttr>(Attr))
2527 NewAttr = S.mergeUuidAttr(D, *UA, UA->getGuid());
2528 else if (const auto *SLHA = dyn_cast<SpeculativeLoadHardeningAttr>(Attr))
2529 NewAttr = S.mergeSpeculativeLoadHardeningAttr(D, *SLHA);
2530 else if (const auto *SLHA = dyn_cast<NoSpeculativeLoadHardeningAttr>(Attr))
2531 NewAttr = S.mergeNoSpeculativeLoadHardeningAttr(D, *SLHA);
2532 else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr))
2533 NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2534
2535 if (NewAttr) {
2536 NewAttr->setInherited(true);
2537 D->addAttr(NewAttr);
2538 if (isa<MSInheritanceAttr>(NewAttr))
2539 S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
2540 return true;
2541 }
2542
2543 return false;
2544}
2545
2546static const NamedDecl *getDefinition(const Decl *D) {
2547 if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2548 return TD->getDefinition();
2549 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
2550 const VarDecl *Def = VD->getDefinition();
2551 if (Def)
2552 return Def;
2553 return VD->getActingDefinition();
2554 }
2555 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
2556 return FD->getDefinition();
2557 return nullptr;
2558}
2559
2560static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2561 for (const auto *Attribute : D->attrs())
2562 if (Attribute->getKind() == Kind)
2563 return true;
2564 return false;
2565}
2566
2567/// checkNewAttributesAfterDef - If we already have a definition, check that
2568/// there are no new attributes in this declaration.
2569static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2570 if (!New->hasAttrs())
2571 return;
2572
2573 const NamedDecl *Def = getDefinition(Old);
2574 if (!Def || Def == New)
2575 return;
2576
2577 AttrVec &NewAttributes = New->getAttrs();
2578 for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2579 const Attr *NewAttribute = NewAttributes[I];
2580
2581 if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) {
2582 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) {
2583 Sema::SkipBodyInfo SkipBody;
2584 S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody);
2585
2586 // If we're skipping this definition, drop the "alias" attribute.
2587 if (SkipBody.ShouldSkip) {
2588 NewAttributes.erase(NewAttributes.begin() + I);
2589 --E;
2590 continue;
2591 }
2592 } else {
2593 VarDecl *VD = cast<VarDecl>(New);
2594 unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() ==
2595 VarDecl::TentativeDefinition
2596 ? diag::err_alias_after_tentative
2597 : diag::err_redefinition;
2598 S.Diag(VD->getLocation(), Diag) << VD->getDeclName();
2599 if (Diag == diag::err_redefinition)
2600 S.notePreviousDefinition(Def, VD->getLocation());
2601 else
2602 S.Diag(Def->getLocation(), diag::note_previous_definition);
2603 VD->setInvalidDecl();
2604 }
2605 ++I;
2606 continue;
2607 }
2608
2609 if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) {
2610 // Tentative definitions are only interesting for the alias check above.
2611 if (VD->isThisDeclarationADefinition() != VarDecl::Definition) {
2612 ++I;
2613 continue;
2614 }
2615 }
2616
2617 if (hasAttribute(Def, NewAttribute->getKind())) {
2618 ++I;
2619 continue; // regular attr merging will take care of validating this.
2620 }
2621
2622 if (isa<C11NoReturnAttr>(NewAttribute)) {
2623 // C's _Noreturn is allowed to be added to a function after it is defined.
2624 ++I;
2625 continue;
2626 } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2627 if (AA->isAlignas()) {
2628 // C++11 [dcl.align]p6:
2629 // if any declaration of an entity has an alignment-specifier,
2630 // every defining declaration of that entity shall specify an
2631 // equivalent alignment.
2632 // C11 6.7.5/7:
2633 // If the definition of an object does not have an alignment
2634 // specifier, any other declaration of that object shall also
2635 // have no alignment specifier.
2636 S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2637 << AA;
2638 S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2639 << AA;
2640 NewAttributes.erase(NewAttributes.begin() + I);
2641 --E;
2642 continue;
2643 }
2644 } else if (isa<SelectAnyAttr>(NewAttribute) &&
2645 cast<VarDecl>(New)->isInline() &&
2646 !cast<VarDecl>(New)->isInlineSpecified()) {
2647 // Don't warn about applying selectany to implicitly inline variables.
2648 // Older compilers and language modes would require the use of selectany
2649 // to make such variables inline, and it would have no effect if we
2650 // honored it.
2651 ++I;
2652 continue;
2653 }
2654
2655 S.Diag(NewAttribute->getLocation(),
2656 diag::warn_attribute_precede_definition);
2657 S.Diag(Def->getLocation(), diag::note_previous_definition);
2658 NewAttributes.erase(NewAttributes.begin() + I);
2659 --E;
2660 }
2661}
2662
2663static void diagnoseMissingConstinit(Sema &S, const VarDecl *InitDecl,
2664 const ConstInitAttr *CIAttr,
2665 bool AttrBeforeInit) {
2666 SourceLocation InsertLoc = InitDecl->getInnerLocStart();
2667
2668 // Figure out a good way to write this specifier on the old declaration.
2669 // FIXME: We should just use the spelling of CIAttr, but we don't preserve
2670 // enough of the attribute list spelling information to extract that without
2671 // heroics.
2672 std::string SuitableSpelling;
2673 if (S.getLangOpts().CPlusPlus2a)
2674 SuitableSpelling =
2675 S.PP.getLastMacroWithSpelling(InsertLoc, {tok::kw_constinit});
2676 if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11)
2677 SuitableSpelling = S.PP.getLastMacroWithSpelling(
2678 InsertLoc,
2679 {tok::l_square, tok::l_square, S.PP.getIdentifierInfo("clang"),
2680 tok::coloncolon,
2681 S.PP.getIdentifierInfo("require_constant_initialization"),
2682 tok::r_square, tok::r_square});
2683 if (SuitableSpelling.empty())
2684 SuitableSpelling = S.PP.getLastMacroWithSpelling(
2685 InsertLoc,
2686 {tok::kw___attribute, tok::l_paren, tok::r_paren,
2687 S.PP.getIdentifierInfo("require_constant_initialization"),
2688 tok::r_paren, tok::r_paren});
2689 if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus2a)
2690 SuitableSpelling = "constinit";
2691 if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11)
2692 SuitableSpelling = "[[clang::require_constant_initialization]]";
2693 if (SuitableSpelling.empty())
2694 SuitableSpelling = "__attribute__((require_constant_initialization))";
2695 SuitableSpelling += " ";
2696
2697 if (AttrBeforeInit) {
2698 // extern constinit int a;
2699 // int a = 0; // error (missing 'constinit'), accepted as extension
2700 assert(CIAttr->isConstinit() && "should not diagnose this for attribute")((CIAttr->isConstinit() && "should not diagnose this for attribute"
) ? static_cast<void> (0) : __assert_fail ("CIAttr->isConstinit() && \"should not diagnose this for attribute\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 2700, __PRETTY_FUNCTION__))
;
2701 S.Diag(InitDecl->getLocation(), diag::ext_constinit_missing)
2702 << InitDecl << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling);
2703 S.Diag(CIAttr->getLocation(), diag::note_constinit_specified_here);
2704 } else {
2705 // int a = 0;
2706 // constinit extern int a; // error (missing 'constinit')
2707 S.Diag(CIAttr->getLocation(),
2708 CIAttr->isConstinit() ? diag::err_constinit_added_too_late
2709 : diag::warn_require_const_init_added_too_late)
2710 << FixItHint::CreateRemoval(SourceRange(CIAttr->getLocation()));
2711 S.Diag(InitDecl->getLocation(), diag::note_constinit_missing_here)
2712 << CIAttr->isConstinit()
2713 << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling);
2714 }
2715}
2716
2717/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
2718void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2719 AvailabilityMergeKind AMK) {
2720 if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) {
2721 UsedAttr *NewAttr = OldAttr->clone(Context);
2722 NewAttr->setInherited(true);
2723 New->addAttr(NewAttr);
2724 }
2725
2726 if (!Old->hasAttrs() && !New->hasAttrs())
2727 return;
2728
2729 // [dcl.constinit]p1:
2730 // If the [constinit] specifier is applied to any declaration of a
2731 // variable, it shall be applied to the initializing declaration.
2732 const auto *OldConstInit = Old->getAttr<ConstInitAttr>();
2733 const auto *NewConstInit = New->getAttr<ConstInitAttr>();
2734 if (bool(OldConstInit) != bool(NewConstInit)) {
2735 const auto *OldVD = cast<VarDecl>(Old);
2736 auto *NewVD = cast<VarDecl>(New);
2737
2738 // Find the initializing declaration. Note that we might not have linked
2739 // the new declaration into the redeclaration chain yet.
2740 const VarDecl *InitDecl = OldVD->getInitializingDeclaration();
2741 if (!InitDecl &&
2742 (NewVD->hasInit() || NewVD->isThisDeclarationADefinition()))
2743 InitDecl = NewVD;
2744
2745 if (InitDecl == NewVD) {
2746 // This is the initializing declaration. If it would inherit 'constinit',
2747 // that's ill-formed. (Note that we do not apply this to the attribute
2748 // form).
2749 if (OldConstInit && OldConstInit->isConstinit())
2750 diagnoseMissingConstinit(*this, NewVD, OldConstInit,
2751 /*AttrBeforeInit=*/true);
2752 } else if (NewConstInit) {
2753 // This is the first time we've been told that this declaration should
2754 // have a constant initializer. If we already saw the initializing
2755 // declaration, this is too late.
2756 if (InitDecl && InitDecl != NewVD) {
2757 diagnoseMissingConstinit(*this, InitDecl, NewConstInit,
2758 /*AttrBeforeInit=*/false);
2759 NewVD->dropAttr<ConstInitAttr>();
2760 }
2761 }
2762 }
2763
2764 // Attributes declared post-definition are currently ignored.
2765 checkNewAttributesAfterDef(*this, New, Old);
2766
2767 if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) {
2768 if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) {
2769 if (!OldA->isEquivalent(NewA)) {
2770 // This redeclaration changes __asm__ label.
2771 Diag(New->getLocation(), diag::err_different_asm_label);
2772 Diag(OldA->getLocation(), diag::note_previous_declaration);
2773 }
2774 } else if (Old->isUsed()) {
2775 // This redeclaration adds an __asm__ label to a declaration that has
2776 // already been ODR-used.
2777 Diag(New->getLocation(), diag::err_late_asm_label_name)
2778 << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange();
2779 }
2780 }
2781
2782 // Re-declaration cannot add abi_tag's.
2783 if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) {
2784 if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) {
2785 for (const auto &NewTag : NewAbiTagAttr->tags()) {
2786 if (std::find(OldAbiTagAttr->tags_begin(), OldAbiTagAttr->tags_end(),
2787 NewTag) == OldAbiTagAttr->tags_end()) {
2788 Diag(NewAbiTagAttr->getLocation(),
2789 diag::err_new_abi_tag_on_redeclaration)
2790 << NewTag;
2791 Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration);
2792 }
2793 }
2794 } else {
2795 Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration);
2796 Diag(Old->getLocation(), diag::note_previous_declaration);
2797 }
2798 }
2799
2800 // This redeclaration adds a section attribute.
2801 if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) {
2802 if (auto *VD = dyn_cast<VarDecl>(New)) {
2803 if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) {
2804 Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration);
2805 Diag(Old->getLocation(), diag::note_previous_declaration);
2806 }
2807 }
2808 }
2809
2810 // Redeclaration adds code-seg attribute.
2811 const auto *NewCSA = New->getAttr<CodeSegAttr>();
2812 if (NewCSA && !Old->hasAttr<CodeSegAttr>() &&
2813 !NewCSA->isImplicit() && isa<CXXMethodDecl>(New)) {
2814 Diag(New->getLocation(), diag::warn_mismatched_section)
2815 << 0 /*codeseg*/;
2816 Diag(Old->getLocation(), diag::note_previous_declaration);
2817 }
2818
2819 if (!Old->hasAttrs())
2820 return;
2821
2822 bool foundAny = New->hasAttrs();
2823
2824 // Ensure that any moving of objects within the allocated map is done before
2825 // we process them.
2826 if (!foundAny) New->setAttrs(AttrVec());
2827
2828 for (auto *I : Old->specific_attrs<InheritableAttr>()) {
2829 // Ignore deprecated/unavailable/availability attributes if requested.
2830 AvailabilityMergeKind LocalAMK = AMK_None;
2831 if (isa<DeprecatedAttr>(I) ||
2832 isa<UnavailableAttr>(I) ||
2833 isa<AvailabilityAttr>(I)) {
2834 switch (AMK) {
2835 case AMK_None:
2836 continue;
2837
2838 case AMK_Redeclaration:
2839 case AMK_Override:
2840 case AMK_ProtocolImplementation:
2841 LocalAMK = AMK;
2842 break;
2843 }
2844 }
2845
2846 // Already handled.
2847 if (isa<UsedAttr>(I))
2848 continue;
2849
2850 if (mergeDeclAttribute(*this, New, I, LocalAMK))
2851 foundAny = true;
2852 }
2853
2854 if (mergeAlignedAttrs(*this, New, Old))
2855 foundAny = true;
2856
2857 if (!foundAny) New->dropAttrs();
2858}
2859
2860/// mergeParamDeclAttributes - Copy attributes from the old parameter
2861/// to the new one.
2862static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2863 const ParmVarDecl *oldDecl,
2864 Sema &S) {
2865 // C++11 [dcl.attr.depend]p2:
2866 // The first declaration of a function shall specify the
2867 // carries_dependency attribute for its declarator-id if any declaration
2868 // of the function specifies the carries_dependency attribute.
2869 const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>();
2870 if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2871 S.Diag(CDA->getLocation(),
2872 diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2873 // Find the first declaration of the parameter.
2874 // FIXME: Should we build redeclaration chains for function parameters?
2875 const FunctionDecl *FirstFD =
2876 cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
2877 const ParmVarDecl *FirstVD =
2878 FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2879 S.Diag(FirstVD->getLocation(),
2880 diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2881 }
2882
2883 if (!oldDecl->hasAttrs())
2884 return;
2885
2886 bool foundAny = newDecl->hasAttrs();
2887
2888 // Ensure that any moving of objects within the allocated map is
2889 // done before we process them.
2890 if (!foundAny) newDecl->setAttrs(AttrVec());
2891
2892 for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) {
2893 if (!DeclHasAttr(newDecl, I)) {
2894 InheritableAttr *newAttr =
2895 cast<InheritableParamAttr>(I->clone(S.Context));
2896 newAttr->setInherited(true);
2897 newDecl->addAttr(newAttr);
2898 foundAny = true;
2899 }
2900 }
2901
2902 if (!foundAny) newDecl->dropAttrs();
2903}
2904
2905static void mergeParamDeclTypes(ParmVarDecl *NewParam,
2906 const ParmVarDecl *OldParam,
2907 Sema &S) {
2908 if (auto Oldnullability = OldParam->getType()->getNullability(S.Context)) {
2909 if (auto Newnullability = NewParam->getType()->getNullability(S.Context)) {
2910 if (*Oldnullability != *Newnullability) {
2911 S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr)
2912 << DiagNullabilityKind(
2913 *Newnullability,
2914 ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2915 != 0))
2916 << DiagNullabilityKind(
2917 *Oldnullability,
2918 ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability)
2919 != 0));
2920 S.Diag(OldParam->getLocation(), diag::note_previous_declaration);
2921 }
2922 } else {
2923 QualType NewT = NewParam->getType();
2924 NewT = S.Context.getAttributedType(
2925 AttributedType::getNullabilityAttrKind(*Oldnullability),
2926 NewT, NewT);
2927 NewParam->setType(NewT);
2928 }
2929 }
2930}
2931
2932namespace {
2933
2934/// Used in MergeFunctionDecl to keep track of function parameters in
2935/// C.
2936struct GNUCompatibleParamWarning {
2937 ParmVarDecl *OldParm;
2938 ParmVarDecl *NewParm;
2939 QualType PromotedType;
2940};
2941
2942} // end anonymous namespace
2943
2944/// getSpecialMember - get the special member enum for a method.
2945Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2946 if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2947 if (Ctor->isDefaultConstructor())
2948 return Sema::CXXDefaultConstructor;
2949
2950 if (Ctor->isCopyConstructor())
2951 return Sema::CXXCopyConstructor;
2952
2953 if (Ctor->isMoveConstructor())
2954 return Sema::CXXMoveConstructor;
2955 } else if (isa<CXXDestructorDecl>(MD)) {
2956 return Sema::CXXDestructor;
2957 } else if (MD->isCopyAssignmentOperator()) {
2958 return Sema::CXXCopyAssignment;
2959 } else if (MD->isMoveAssignmentOperator()) {
2960 return Sema::CXXMoveAssignment;
2961 }
2962
2963 return Sema::CXXInvalid;
2964}
2965
2966// Determine whether the previous declaration was a definition, implicit
2967// declaration, or a declaration.
2968template <typename T>
2969static std::pair<diag::kind, SourceLocation>
2970getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) {
2971 diag::kind PrevDiag;
2972 SourceLocation OldLocation = Old->getLocation();
2973 if (Old->isThisDeclarationADefinition())
2974 PrevDiag = diag::note_previous_definition;
2975 else if (Old->isImplicit()) {
2976 PrevDiag = diag::note_previous_implicit_declaration;
2977 if (OldLocation.isInvalid())
2978 OldLocation = New->getLocation();
2979 } else
2980 PrevDiag = diag::note_previous_declaration;
2981 return std::make_pair(PrevDiag, OldLocation);
2982}
2983
2984/// canRedefineFunction - checks if a function can be redefined. Currently,
2985/// only extern inline functions can be redefined, and even then only in
2986/// GNU89 mode.
2987static bool canRedefineFunction(const FunctionDecl *FD,
2988 const LangOptions& LangOpts) {
2989 return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2990 !LangOpts.CPlusPlus &&
2991 FD->isInlineSpecified() &&
2992 FD->getStorageClass() == SC_Extern);
2993}
2994
2995const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
2996 const AttributedType *AT = T->getAs<AttributedType>();
2997 while (AT && !AT->isCallingConv())
2998 AT = AT->getModifiedType()->getAs<AttributedType>();
2999 return AT;
3000}
3001
3002template <typename T>
3003static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
3004 const DeclContext *DC = Old->getDeclContext();
3005 if (DC->isRecord())
3006 return false;
3007
3008 LanguageLinkage OldLinkage = Old->getLanguageLinkage();
3009 if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
3010 return true;
3011 if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
3012 return true;
3013 return false;
3014}
3015
3016template<typename T> static bool isExternC(T *D) { return D->isExternC(); }
3017static bool isExternC(VarTemplateDecl *) { return false; }
3018
3019/// Check whether a redeclaration of an entity introduced by a
3020/// using-declaration is valid, given that we know it's not an overload
3021/// (nor a hidden tag declaration).
3022template<typename ExpectedDecl>
3023static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS,
3024 ExpectedDecl *New) {
3025 // C++11 [basic.scope.declarative]p4:
3026 // Given a set of declarations in a single declarative region, each of
3027 // which specifies the same unqualified name,
3028 // -- they shall all refer to the same entity, or all refer to functions
3029 // and function templates; or
3030 // -- exactly one declaration shall declare a class name or enumeration
3031 // name that is not a typedef name and the other declarations shall all
3032 // refer to the same variable or enumerator, or all refer to functions
3033 // and function templates; in this case the class name or enumeration
3034 // name is hidden (3.3.10).
3035
3036 // C++11 [namespace.udecl]p14:
3037 // If a function declaration in namespace scope or block scope has the
3038 // same name and the same parameter-type-list as a function introduced
3039 // by a using-declaration, and the declarations do not declare the same
3040 // function, the program is ill-formed.
3041
3042 auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl());
3043 if (Old &&
3044 !Old->getDeclContext()->getRedeclContext()->Equals(
3045 New->getDeclContext()->getRedeclContext()) &&
3046 !(isExternC(Old) && isExternC(New)))
3047 Old = nullptr;
3048
3049 if (!Old) {
3050 S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
3051 S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target);
3052 S.Diag(OldS->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
3053 return true;
3054 }
3055 return false;
3056}
3057
3058static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A,
3059 const FunctionDecl *B) {
3060 assert(A->getNumParams() == B->getNumParams())((A->getNumParams() == B->getNumParams()) ? static_cast
<void> (0) : __assert_fail ("A->getNumParams() == B->getNumParams()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 3060, __PRETTY_FUNCTION__))
;
3061
3062 auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) {
3063 const auto *AttrA = A->getAttr<PassObjectSizeAttr>();
3064 const auto *AttrB = B->getAttr<PassObjectSizeAttr>();
3065 if (AttrA == AttrB)
3066 return true;
3067 return AttrA && AttrB && AttrA->getType() == AttrB->getType() &&
3068 AttrA->isDynamic() == AttrB->isDynamic();
3069 };
3070
3071 return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq);
3072}
3073
3074/// If necessary, adjust the semantic declaration context for a qualified
3075/// declaration to name the correct inline namespace within the qualifier.
3076static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD,
3077 DeclaratorDecl *OldD) {
3078 // The only case where we need to update the DeclContext is when
3079 // redeclaration lookup for a qualified name finds a declaration
3080 // in an inline namespace within the context named by the qualifier:
3081 //
3082 // inline namespace N { int f(); }
3083 // int ::f(); // Sema DC needs adjusting from :: to N::.
3084 //
3085 // For unqualified declarations, the semantic context *can* change
3086 // along the redeclaration chain (for local extern declarations,
3087 // extern "C" declarations, and friend declarations in particular).
3088 if (!NewD->getQualifier())
3089 return;
3090
3091 // NewD is probably already in the right context.
3092 auto *NamedDC = NewD->getDeclContext()->getRedeclContext();
3093 auto *SemaDC = OldD->getDeclContext()->getRedeclContext();
3094 if (NamedDC->Equals(SemaDC))
3095 return;
3096
3097 assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) ||(((NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->
isInvalidDecl() || OldD->isInvalidDecl()) && "unexpected context for redeclaration"
) ? static_cast<void> (0) : __assert_fail ("(NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl()) && \"unexpected context for redeclaration\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 3099, __PRETTY_FUNCTION__))
3098 NewD->isInvalidDecl() || OldD->isInvalidDecl()) &&(((NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->
isInvalidDecl() || OldD->isInvalidDecl()) && "unexpected context for redeclaration"
) ? static_cast<void> (0) : __assert_fail ("(NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl()) && \"unexpected context for redeclaration\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 3099, __PRETTY_FUNCTION__))
3099 "unexpected context for redeclaration")(((NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->
isInvalidDecl() || OldD->isInvalidDecl()) && "unexpected context for redeclaration"
) ? static_cast<void> (0) : __assert_fail ("(NamedDC->InEnclosingNamespaceSetOf(SemaDC) || NewD->isInvalidDecl() || OldD->isInvalidDecl()) && \"unexpected context for redeclaration\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 3099, __PRETTY_FUNCTION__))
;
3100
3101 auto *LexDC = NewD->getLexicalDeclContext();
3102 auto FixSemaDC = [=](NamedDecl *D) {
3103 if (!D)
3104 return;
3105 D->setDeclContext(SemaDC);
3106 D->setLexicalDeclContext(LexDC);
3107 };
3108
3109 FixSemaDC(NewD);
3110 if (auto *FD = dyn_cast<FunctionDecl>(NewD))
3111 FixSemaDC(FD->getDescribedFunctionTemplate());
3112 else if (auto *VD = dyn_cast<VarDecl>(NewD))
3113 FixSemaDC(VD->getDescribedVarTemplate());
3114}
3115
3116/// MergeFunctionDecl - We just parsed a function 'New' from
3117/// declarator D which has the same name and scope as a previous
3118/// declaration 'Old'. Figure out how to resolve this situation,
3119/// merging decls or emitting diagnostics as appropriate.
3120///
3121/// In C++, New and Old must be declarations that are not
3122/// overloaded. Use IsOverload to determine whether New and Old are
3123/// overloaded, and to select the Old declaration that New should be
3124/// merged with.
3125///
3126/// Returns true if there was an error, false otherwise.
3127bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD,
3128 Scope *S, bool MergeTypeWithOld) {
3129 // Verify the old decl was also a function.
3130 FunctionDecl *Old = OldD->getAsFunction();
3131 if (!Old) {
3132 if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
3133 if (New->getFriendObjectKind()) {
3134 Diag(New->getLocation(), diag::err_using_decl_friend);
3135 Diag(Shadow->getTargetDecl()->getLocation(),
3136 diag::note_using_decl_target);
3137 Diag(Shadow->getUsingDecl()->getLocation(),
3138 diag::note_using_decl) << 0;
3139 return true;
3140 }
3141
3142 // Check whether the two declarations might declare the same function.
3143 if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New))
3144 return true;
3145 OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl());
3146 } else {
3147 Diag(New->getLocation(), diag::err_redefinition_different_kind)
3148 << New->getDeclName();
3149 notePreviousDefinition(OldD, New->getLocation());
3150 return true;
3151 }
3152 }
3153
3154 // If the old declaration is invalid, just give up here.
3155 if (Old->isInvalidDecl())
3156 return true;
3157
3158 // Disallow redeclaration of some builtins.
3159 if (!getASTContext().canBuiltinBeRedeclared(Old)) {
3160 Diag(New->getLocation(), diag::err_builtin_redeclare) << Old->getDeclName();
3161 Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
3162 << Old << Old->getType();
3163 return true;
3164 }
3165
3166 diag::kind PrevDiag;
3167 SourceLocation OldLocation;
3168 std::tie(PrevDiag, OldLocation) =
3169 getNoteDiagForInvalidRedeclaration(Old, New);
3170
3171 // Don't complain about this if we're in GNU89 mode and the old function
3172 // is an extern inline function.
3173 // Don't complain about specializations. They are not supposed to have
3174 // storage classes.
3175 if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
3176 New->getStorageClass() == SC_Static &&
3177 Old->hasExternalFormalLinkage() &&
3178 !New->getTemplateSpecializationInfo() &&
3179 !canRedefineFunction(Old, getLangOpts())) {
3180 if (getLangOpts().MicrosoftExt) {
3181 Diag(New->getLocation(), diag::ext_static_non_static) << New;
3182 Diag(OldLocation, PrevDiag);
3183 } else {
3184 Diag(New->getLocation(), diag::err_static_non_static) << New;
3185 Diag(OldLocation, PrevDiag);
3186 return true;
3187 }
3188 }
3189
3190 if (New->hasAttr<InternalLinkageAttr>() &&
3191 !Old->hasAttr<InternalLinkageAttr>()) {
3192 Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
3193 << New->getDeclName();
3194 notePreviousDefinition(Old, New->getLocation());
3195 New->dropAttr<InternalLinkageAttr>();
3196 }
3197
3198 if (CheckRedeclarationModuleOwnership(New, Old))
3199 return true;
3200
3201 if (!getLangOpts().CPlusPlus) {
3202 bool OldOvl = Old->hasAttr<OverloadableAttr>();
3203 if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) {
3204 Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch)
3205 << New << OldOvl;
3206
3207 // Try our best to find a decl that actually has the overloadable
3208 // attribute for the note. In most cases (e.g. programs with only one
3209 // broken declaration/definition), this won't matter.
3210 //
3211 // FIXME: We could do this if we juggled some extra state in
3212 // OverloadableAttr, rather than just removing it.
3213 const Decl *DiagOld = Old;
3214 if (OldOvl) {
3215 auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) {
3216 const auto *A = D->getAttr<OverloadableAttr>();
3217 return A && !A->isImplicit();
3218 });
3219 // If we've implicitly added *all* of the overloadable attrs to this
3220 // chain, emitting a "previous redecl" note is pointless.
3221 DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter;
3222 }
3223
3224 if (DiagOld)
3225 Diag(DiagOld->getLocation(),
3226 diag::note_attribute_overloadable_prev_overload)
3227 << OldOvl;
3228
3229 if (OldOvl)
3230 New->addAttr(OverloadableAttr::CreateImplicit(Context));
3231 else
3232 New->dropAttr<OverloadableAttr>();
3233 }
3234 }
3235
3236 // If a function is first declared with a calling convention, but is later
3237 // declared or defined without one, all following decls assume the calling
3238 // convention of the first.
3239 //
3240 // It's OK if a function is first declared without a calling convention,
3241 // but is later declared or defined with the default calling convention.
3242 //
3243 // To test if either decl has an explicit calling convention, we look for
3244 // AttributedType sugar nodes on the type as written. If they are missing or
3245 // were canonicalized away, we assume the calling convention was implicit.
3246 //
3247 // Note also that we DO NOT return at this point, because we still have
3248 // other tests to run.
3249 QualType OldQType = Context.getCanonicalType(Old->getType());
3250 QualType NewQType = Context.getCanonicalType(New->getType());
3251 const FunctionType *OldType = cast<FunctionType>(OldQType);
3252 const FunctionType *NewType = cast<FunctionType>(NewQType);
3253 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
3254 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
3255 bool RequiresAdjustment = false;
3256
3257 if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
3258 FunctionDecl *First = Old->getFirstDecl();
3259 const FunctionType *FT =
3260 First->getType().getCanonicalType()->castAs<FunctionType>();
3261 FunctionType::ExtInfo FI = FT->getExtInfo();
3262 bool NewCCExplicit = getCallingConvAttributedType(New->getType());
3263 if (!NewCCExplicit) {
3264 // Inherit the CC from the previous declaration if it was specified
3265 // there but not here.
3266 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3267 RequiresAdjustment = true;
3268 } else if (New->getBuiltinID()) {
3269 // Calling Conventions on a Builtin aren't really useful and setting a
3270 // default calling convention and cdecl'ing some builtin redeclarations is
3271 // common, so warn and ignore the calling convention on the redeclaration.
3272 Diag(New->getLocation(), diag::warn_cconv_unsupported)
3273 << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3274 << (int)CallingConventionIgnoredReason::BuiltinFunction;
3275 NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
3276 RequiresAdjustment = true;
3277 } else {
3278 // Calling conventions aren't compatible, so complain.
3279 bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
3280 Diag(New->getLocation(), diag::err_cconv_change)
3281 << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
3282 << !FirstCCExplicit
3283 << (!FirstCCExplicit ? "" :
3284 FunctionType::getNameForCallConv(FI.getCC()));
3285
3286 // Put the note on the first decl, since it is the one that matters.
3287 Diag(First->getLocation(), diag::note_previous_declaration);
3288 return true;
3289 }
3290 }
3291
3292 // FIXME: diagnose the other way around?
3293 if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
3294 NewTypeInfo = NewTypeInfo.withNoReturn(true);
3295 RequiresAdjustment = true;
3296 }
3297
3298 // Merge regparm attribute.
3299 if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
3300 OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
3301 if (NewTypeInfo.getHasRegParm()) {
3302 Diag(New->getLocation(), diag::err_regparm_mismatch)
3303 << NewType->getRegParmType()
3304 << OldType->getRegParmType();
3305 Diag(OldLocation, diag::note_previous_declaration);
3306 return true;
3307 }
3308
3309 NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
3310 RequiresAdjustment = true;
3311 }
3312
3313 // Merge ns_returns_retained attribute.
3314 if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
3315 if (NewTypeInfo.getProducesResult()) {
3316 Diag(New->getLocation(), diag::err_function_attribute_mismatch)
3317 << "'ns_returns_retained'";
3318 Diag(OldLocation, diag::note_previous_declaration);
3319 return true;
3320 }
3321
3322 NewTypeInfo = NewTypeInfo.withProducesResult(true);
3323 RequiresAdjustment = true;
3324 }
3325
3326 if (OldTypeInfo.getNoCallerSavedRegs() !=
3327 NewTypeInfo.getNoCallerSavedRegs()) {
3328 if (NewTypeInfo.getNoCallerSavedRegs()) {
3329 AnyX86NoCallerSavedRegistersAttr *Attr =
3330 New->getAttr<AnyX86NoCallerSavedRegistersAttr>();
3331 Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr;
3332 Diag(OldLocation, diag::note_previous_declaration);
3333 return true;
3334 }
3335
3336 NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true);
3337 RequiresAdjustment = true;
3338 }
3339
3340 if (RequiresAdjustment) {
3341 const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
3342 AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
3343 New->setType(QualType(AdjustedType, 0));
3344 NewQType = Context.getCanonicalType(New->getType());
3345 }
3346
3347 // If this redeclaration makes the function inline, we may need to add it to
3348 // UndefinedButUsed.
3349 if (!Old->isInlined() && New->isInlined() &&
3350 !New->hasAttr<GNUInlineAttr>() &&
3351 !getLangOpts().GNUInline &&
3352 Old->isUsed(false) &&
3353 !Old->isDefined() && !New->isThisDeclarationADefinition())
3354 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
3355 SourceLocation()));
3356
3357 // If this redeclaration makes it newly gnu_inline, we don't want to warn
3358 // about it.
3359 if (New->hasAttr<GNUInlineAttr>() &&
3360 Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
3361 UndefinedButUsed.erase(Old->getCanonicalDecl());
3362 }
3363
3364 // If pass_object_size params don't match up perfectly, this isn't a valid
3365 // redeclaration.
3366 if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() &&
3367 !hasIdenticalPassObjectSizeAttrs(Old, New)) {
3368 Diag(New->getLocation(), diag::err_different_pass_object_size_params)
3369 << New->getDeclName();
3370 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3371 return true;
3372 }
3373
3374 if (getLangOpts().CPlusPlus) {
3375 // C++1z [over.load]p2
3376 // Certain function declarations cannot be overloaded:
3377 // -- Function declarations that differ only in the return type,
3378 // the exception specification, or both cannot be overloaded.
3379
3380 // Check the exception specifications match. This may recompute the type of
3381 // both Old and New if it resolved exception specifications, so grab the
3382 // types again after this. Because this updates the type, we do this before
3383 // any of the other checks below, which may update the "de facto" NewQType
3384 // but do not necessarily update the type of New.
3385 if (CheckEquivalentExceptionSpec(Old, New))
3386 return true;
3387 OldQType = Context.getCanonicalType(Old->getType());
3388 NewQType = Context.getCanonicalType(New->getType());
3389
3390 // Go back to the type source info to compare the declared return types,
3391 // per C++1y [dcl.type.auto]p13:
3392 // Redeclarations or specializations of a function or function template
3393 // with a declared return type that uses a placeholder type shall also
3394 // use that placeholder, not a deduced type.
3395 QualType OldDeclaredReturnType = Old->getDeclaredReturnType();
3396 QualType NewDeclaredReturnType = New->getDeclaredReturnType();
3397 if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
3398 canFullyTypeCheckRedeclaration(New, Old, NewDeclaredReturnType,
3399 OldDeclaredReturnType)) {
3400 QualType ResQT;
3401 if (NewDeclaredReturnType->isObjCObjectPointerType() &&
3402 OldDeclaredReturnType->isObjCObjectPointerType())
3403 // FIXME: This does the wrong thing for a deduced return type.
3404 ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
3405 if (ResQT.isNull()) {
3406 if (New->isCXXClassMember() && New->isOutOfLine())
3407 Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type)
3408 << New << New->getReturnTypeSourceRange();
3409 else
3410 Diag(New->getLocation(), diag::err_ovl_diff_return_type)
3411 << New->getReturnTypeSourceRange();
3412 Diag(OldLocation, PrevDiag) << Old << Old->getType()
3413 << Old->getReturnTypeSourceRange();
3414 return true;
3415 }
3416 else
3417 NewQType = ResQT;
3418 }
3419
3420 QualType OldReturnType = OldType->getReturnType();
3421 QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType();
3422 if (OldReturnType != NewReturnType) {
3423 // If this function has a deduced return type and has already been
3424 // defined, copy the deduced value from the old declaration.
3425 AutoType *OldAT = Old->getReturnType()->getContainedAutoType();
3426 if (OldAT && OldAT->isDeduced()) {
3427 New->setType(
3428 SubstAutoType(New->getType(),
3429 OldAT->isDependentType() ? Context.DependentTy
3430 : OldAT->getDeducedType()));
3431 NewQType = Context.getCanonicalType(
3432 SubstAutoType(NewQType,
3433 OldAT->isDependentType() ? Context.DependentTy
3434 : OldAT->getDeducedType()));
3435 }
3436 }
3437
3438 const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
3439 CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
3440 if (OldMethod && NewMethod) {
3441 // Preserve triviality.
3442 NewMethod->setTrivial(OldMethod->isTrivial());
3443
3444 // MSVC allows explicit template specialization at class scope:
3445 // 2 CXXMethodDecls referring to the same function will be injected.
3446 // We don't want a redeclaration error.
3447 bool IsClassScopeExplicitSpecialization =
3448 OldMethod->isFunctionTemplateSpecialization() &&
3449 NewMethod->isFunctionTemplateSpecialization();
3450 bool isFriend = NewMethod->getFriendObjectKind();
3451
3452 if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
3453 !IsClassScopeExplicitSpecialization) {
3454 // -- Member function declarations with the same name and the
3455 // same parameter types cannot be overloaded if any of them
3456 // is a static member function declaration.
3457 if (OldMethod->isStatic() != NewMethod->isStatic()) {
3458 Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
3459 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3460 return true;
3461 }
3462
3463 // C++ [class.mem]p1:
3464 // [...] A member shall not be declared twice in the
3465 // member-specification, except that a nested class or member
3466 // class template can be declared and then later defined.
3467 if (!inTemplateInstantiation()) {
3468 unsigned NewDiag;
3469 if (isa<CXXConstructorDecl>(OldMethod))
3470 NewDiag = diag::err_constructor_redeclared;
3471 else if (isa<CXXDestructorDecl>(NewMethod))
3472 NewDiag = diag::err_destructor_redeclared;
3473 else if (isa<CXXConversionDecl>(NewMethod))
3474 NewDiag = diag::err_conv_function_redeclared;
3475 else
3476 NewDiag = diag::err_member_redeclared;
3477
3478 Diag(New->getLocation(), NewDiag);
3479 } else {
3480 Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
3481 << New << New->getType();
3482 }
3483 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3484 return true;
3485
3486 // Complain if this is an explicit declaration of a special
3487 // member that was initially declared implicitly.
3488 //
3489 // As an exception, it's okay to befriend such methods in order
3490 // to permit the implicit constructor/destructor/operator calls.
3491 } else if (OldMethod->isImplicit()) {
3492 if (isFriend) {
3493 NewMethod->setImplicit();
3494 } else {
3495 Diag(NewMethod->getLocation(),
3496 diag::err_definition_of_implicitly_declared_member)
3497 << New << getSpecialMember(OldMethod);
3498 return true;
3499 }
3500 } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) {
3501 Diag(NewMethod->getLocation(),
3502 diag::err_definition_of_explicitly_defaulted_member)
3503 << getSpecialMember(OldMethod);
3504 return true;
3505 }
3506 }
3507
3508 // C++11 [dcl.attr.noreturn]p1:
3509 // The first declaration of a function shall specify the noreturn
3510 // attribute if any declaration of that function specifies the noreturn
3511 // attribute.
3512 const CXX11NoReturnAttr *NRA = New->getAttr<CXX11NoReturnAttr>();
3513 if (NRA && !Old->hasAttr<CXX11NoReturnAttr>()) {
3514 Diag(NRA->getLocation(), diag::err_noreturn_missing_on_first_decl);
3515 Diag(Old->getFirstDecl()->getLocation(),
3516 diag::note_noreturn_missing_first_decl);
3517 }
3518
3519 // C++11 [dcl.attr.depend]p2:
3520 // The first declaration of a function shall specify the
3521 // carries_dependency attribute for its declarator-id if any declaration
3522 // of the function specifies the carries_dependency attribute.
3523 const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>();
3524 if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) {
3525 Diag(CDA->getLocation(),
3526 diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
3527 Diag(Old->getFirstDecl()->getLocation(),
3528 diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
3529 }
3530
3531 // (C++98 8.3.5p3):
3532 // All declarations for a function shall agree exactly in both the
3533 // return type and the parameter-type-list.
3534 // We also want to respect all the extended bits except noreturn.
3535
3536 // noreturn should now match unless the old type info didn't have it.
3537 QualType OldQTypeForComparison = OldQType;
3538 if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
3539 auto *OldType = OldQType->castAs<FunctionProtoType>();
3540 const FunctionType *OldTypeForComparison
3541 = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
3542 OldQTypeForComparison = QualType(OldTypeForComparison, 0);
3543 assert(OldQTypeForComparison.isCanonical())((OldQTypeForComparison.isCanonical()) ? static_cast<void>
(0) : __assert_fail ("OldQTypeForComparison.isCanonical()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 3543, __PRETTY_FUNCTION__))
;
3544 }
3545
3546 if (haveIncompatibleLanguageLinkages(Old, New)) {
3547 // As a special case, retain the language linkage from previous
3548 // declarations of a friend function as an extension.
3549 //
3550 // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC
3551 // and is useful because there's otherwise no way to specify language
3552 // linkage within class scope.
3553 //
3554 // Check cautiously as the friend object kind isn't yet complete.
3555 if (New->getFriendObjectKind() != Decl::FOK_None) {
3556 Diag(New->getLocation(), diag::ext_retained_language_linkage) << New;
3557 Diag(OldLocation, PrevDiag);
3558 } else {
3559 Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3560 Diag(OldLocation, PrevDiag);
3561 return true;
3562 }
3563 }
3564
3565 // If the function types are compatible, merge the declarations. Ignore the
3566 // exception specifier because it was already checked above in
3567 // CheckEquivalentExceptionSpec, and we don't want follow-on diagnostics
3568 // about incompatible types under -fms-compatibility.
3569 if (Context.hasSameFunctionTypeIgnoringExceptionSpec(OldQTypeForComparison,
3570 NewQType))
3571 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3572
3573 // If the types are imprecise (due to dependent constructs in friends or
3574 // local extern declarations), it's OK if they differ. We'll check again
3575 // during instantiation.
3576 if (!canFullyTypeCheckRedeclaration(New, Old, NewQType, OldQType))
3577 return false;
3578
3579 // Fall through for conflicting redeclarations and redefinitions.
3580 }
3581
3582 // C: Function types need to be compatible, not identical. This handles
3583 // duplicate function decls like "void f(int); void f(enum X);" properly.
3584 if (!getLangOpts().CPlusPlus &&
3585 Context.typesAreCompatible(OldQType, NewQType)) {
3586 const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
3587 const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
3588 const FunctionProtoType *OldProto = nullptr;
3589 if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
3590 (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
3591 // The old declaration provided a function prototype, but the
3592 // new declaration does not. Merge in the prototype.
3593 assert(!OldProto->hasExceptionSpec() && "Exception spec in C")((!OldProto->hasExceptionSpec() && "Exception spec in C"
) ? static_cast<void> (0) : __assert_fail ("!OldProto->hasExceptionSpec() && \"Exception spec in C\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 3593, __PRETTY_FUNCTION__))
;
3594 SmallVector<QualType, 16> ParamTypes(OldProto->param_types());
3595 NewQType =
3596 Context.getFunctionType(NewFuncType->getReturnType(), ParamTypes,
3597 OldProto->getExtProtoInfo());
3598 New->setType(NewQType);
3599 New->setHasInheritedPrototype();
3600
3601 // Synthesize parameters with the same types.
3602 SmallVector<ParmVarDecl*, 16> Params;
3603 for (const auto &ParamType : OldProto->param_types()) {
3604 ParmVarDecl *Param = ParmVarDecl::Create(Context, New, SourceLocation(),
3605 SourceLocation(), nullptr,
3606 ParamType, /*TInfo=*/nullptr,
3607 SC_None, nullptr);
3608 Param->setScopeInfo(0, Params.size());
3609 Param->setImplicit();
3610 Params.push_back(Param);
3611 }
3612
3613 New->setParams(Params);
3614 }
3615
3616 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3617 }
3618
3619 // GNU C permits a K&R definition to follow a prototype declaration
3620 // if the declared types of the parameters in the K&R definition
3621 // match the types in the prototype declaration, even when the
3622 // promoted types of the parameters from the K&R definition differ
3623 // from the types in the prototype. GCC then keeps the types from
3624 // the prototype.
3625 //
3626 // If a variadic prototype is followed by a non-variadic K&R definition,
3627 // the K&R definition becomes variadic. This is sort of an edge case, but
3628 // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
3629 // C99 6.9.1p8.
3630 if (!getLangOpts().CPlusPlus &&
3631 Old->hasPrototype() && !New->hasPrototype() &&
3632 New->getType()->getAs<FunctionProtoType>() &&
3633 Old->getNumParams() == New->getNumParams()) {
3634 SmallVector<QualType, 16> ArgTypes;
3635 SmallVector<GNUCompatibleParamWarning, 16> Warnings;
3636 const FunctionProtoType *OldProto
3637 = Old->getType()->getAs<FunctionProtoType>();
3638 const FunctionProtoType *NewProto
3639 = New->getType()->getAs<FunctionProtoType>();
3640
3641 // Determine whether this is the GNU C extension.
3642 QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(),
3643 NewProto->getReturnType());
3644 bool LooseCompatible = !MergedReturn.isNull();
3645 for (unsigned Idx = 0, End = Old->getNumParams();
3646 LooseCompatible && Idx != End; ++Idx) {
3647 ParmVarDecl *OldParm = Old->getParamDecl(Idx);
3648 ParmVarDecl *NewParm = New->getParamDecl(Idx);
3649 if (Context.typesAreCompatible(OldParm->getType(),
3650 NewProto->getParamType(Idx))) {
3651 ArgTypes.push_back(NewParm->getType());
3652 } else if (Context.typesAreCompatible(OldParm->getType(),
3653 NewParm->getType(),
3654 /*CompareUnqualified=*/true)) {
3655 GNUCompatibleParamWarning Warn = { OldParm, NewParm,
3656 NewProto->getParamType(Idx) };
3657 Warnings.push_back(Warn);
3658 ArgTypes.push_back(NewParm->getType());
3659 } else
3660 LooseCompatible = false;
3661 }
3662
3663 if (LooseCompatible) {
3664 for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
3665 Diag(Warnings[Warn].NewParm->getLocation(),
3666 diag::ext_param_promoted_not_compatible_with_prototype)
3667 << Warnings[Warn].PromotedType
3668 << Warnings[Warn].OldParm->getType();
3669 if (Warnings[Warn].OldParm->getLocation().isValid())
3670 Diag(Warnings[Warn].OldParm->getLocation(),
3671 diag::note_previous_declaration);
3672 }
3673
3674 if (MergeTypeWithOld)
3675 New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
3676 OldProto->getExtProtoInfo()));
3677 return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
3678 }
3679
3680 // Fall through to diagnose conflicting types.
3681 }
3682
3683 // A function that has already been declared has been redeclared or
3684 // defined with a different type; show an appropriate diagnostic.
3685
3686 // If the previous declaration was an implicitly-generated builtin
3687 // declaration, then at the very least we should use a specialized note.
3688 unsigned BuiltinID;
3689 if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
3690 // If it's actually a library-defined builtin function like 'malloc'
3691 // or 'printf', just warn about the incompatible redeclaration.
3692 if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3693 Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
3694 Diag(OldLocation, diag::note_previous_builtin_declaration)
3695 << Old << Old->getType();
3696
3697 // If this is a global redeclaration, just forget hereafter
3698 // about the "builtin-ness" of the function.
3699 //
3700 // Doing this for local extern declarations is problematic. If
3701 // the builtin declaration remains visible, a second invalid
3702 // local declaration will produce a hard error; if it doesn't
3703 // remain visible, a single bogus local redeclaration (which is
3704 // actually only a warning) could break all the downstream code.
3705 if (!New->getLexicalDeclContext()->isFunctionOrMethod())
3706 New->getIdentifier()->revertBuiltin();
3707
3708 return false;
3709 }
3710
3711 PrevDiag = diag::note_previous_builtin_declaration;
3712 }
3713
3714 Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
3715 Diag(OldLocation, PrevDiag) << Old << Old->getType();
3716 return true;
3717}
3718
3719/// Completes the merge of two function declarations that are
3720/// known to be compatible.
3721///
3722/// This routine handles the merging of attributes and other
3723/// properties of function declarations from the old declaration to
3724/// the new declaration, once we know that New is in fact a
3725/// redeclaration of Old.
3726///
3727/// \returns false
3728bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
3729 Scope *S, bool MergeTypeWithOld) {
3730 // Merge the attributes
3731 mergeDeclAttributes(New, Old);
3732
3733 // Merge "pure" flag.
3734 if (Old->isPure())
3735 New->setPure();
3736
3737 // Merge "used" flag.
3738 if (Old->getMostRecentDecl()->isUsed(false))
3739 New->setIsUsed();
3740
3741 // Merge attributes from the parameters. These can mismatch with K&R
3742 // declarations.
3743 if (New->getNumParams() == Old->getNumParams())
3744 for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) {
3745 ParmVarDecl *NewParam = New->getParamDecl(i);
3746 ParmVarDecl *OldParam = Old->getParamDecl(i);
3747 mergeParamDeclAttributes(NewParam, OldParam, *this);
3748 mergeParamDeclTypes(NewParam, OldParam, *this);
3749 }
3750
3751 if (getLangOpts().CPlusPlus)
3752 return MergeCXXFunctionDecl(New, Old, S);
3753
3754 // Merge the function types so the we get the composite types for the return
3755 // and argument types. Per C11 6.2.7/4, only update the type if the old decl
3756 // was visible.
3757 QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
3758 if (!Merged.isNull() && MergeTypeWithOld)
3759 New->setType(Merged);
3760
3761 return false;
3762}
3763
3764void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
3765 ObjCMethodDecl *oldMethod) {
3766 // Merge the attributes, including deprecated/unavailable
3767 AvailabilityMergeKind MergeKind =
3768 isa<ObjCProtocolDecl>(oldMethod->getDeclContext())
3769 ? AMK_ProtocolImplementation
3770 : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
3771 : AMK_Override;
3772
3773 mergeDeclAttributes(newMethod, oldMethod, MergeKind);
3774
3775 // Merge attributes from the parameters.
3776 ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
3777 oe = oldMethod->param_end();
3778 for (ObjCMethodDecl::param_iterator
3779 ni = newMethod->param_begin(), ne = newMethod->param_end();
3780 ni != ne && oi != oe; ++ni, ++oi)
3781 mergeParamDeclAttributes(*ni, *oi, *this);
3782
3783 CheckObjCMethodOverride(newMethod, oldMethod);
3784}
3785
3786static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) {
3787 assert(!S.Context.hasSameType(New->getType(), Old->getType()))((!S.Context.hasSameType(New->getType(), Old->getType()
)) ? static_cast<void> (0) : __assert_fail ("!S.Context.hasSameType(New->getType(), Old->getType())"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 3787, __PRETTY_FUNCTION__))
;
3788
3789 S.Diag(New->getLocation(), New->isThisDeclarationADefinition()
3790 ? diag::err_redefinition_different_type
3791 : diag::err_redeclaration_different_type)
3792 << New->getDeclName() << New->getType() << Old->getType();
3793
3794 diag::kind PrevDiag;
3795 SourceLocation OldLocation;
3796 std::tie(PrevDiag, OldLocation)
3797 = getNoteDiagForInvalidRedeclaration(Old, New);
3798 S.Diag(OldLocation, PrevDiag);
3799 New->setInvalidDecl();
3800}
3801
3802/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
3803/// scope as a previous declaration 'Old'. Figure out how to merge their types,
3804/// emitting diagnostics as appropriate.
3805///
3806/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
3807/// to here in AddInitializerToDecl. We can't check them before the initializer
3808/// is attached.
3809void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
3810 bool MergeTypeWithOld) {
3811 if (New->isInvalidDecl() || Old->isInvalidDecl())
3812 return;
3813
3814 QualType MergedT;
3815 if (getLangOpts().CPlusPlus) {
3816 if (New->getType()->isUndeducedType()) {
3817 // We don't know what the new type is until the initializer is attached.
3818 return;
3819 } else if (Context.hasSameType(New->getType(), Old->getType())) {
3820 // These could still be something that needs exception specs checked.
3821 return MergeVarDeclExceptionSpecs(New, Old);
3822 }
3823 // C++ [basic.link]p10:
3824 // [...] the types specified by all declarations referring to a given
3825 // object or function shall be identical, except that declarations for an
3826 // array object can specify array types that differ by the presence or
3827 // absence of a major array bound (8.3.4).
3828 else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) {
3829 const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
3830 const ArrayType *NewArray = Context.getAsArrayType(New->getType());
3831
3832 // We are merging a variable declaration New into Old. If it has an array
3833 // bound, and that bound differs from Old's bound, we should diagnose the
3834 // mismatch.
3835 if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) {
3836 for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD;
3837 PrevVD = PrevVD->getPreviousDecl()) {
3838 const ArrayType *PrevVDTy = Context.getAsArrayType(PrevVD->getType());
3839 if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType())
3840 continue;
3841
3842 if (!Context.hasSameType(NewArray, PrevVDTy))
3843 return diagnoseVarDeclTypeMismatch(*this, New, PrevVD);
3844 }
3845 }
3846
3847 if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) {
3848 if (Context.hasSameType(OldArray->getElementType(),
3849 NewArray->getElementType()))
3850 MergedT = New->getType();
3851 }
3852 // FIXME: Check visibility. New is hidden but has a complete type. If New
3853 // has no array bound, it should not inherit one from Old, if Old is not
3854 // visible.
3855 else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) {
3856 if (Context.hasSameType(OldArray->getElementType(),
3857 NewArray->getElementType()))
3858 MergedT = Old->getType();
3859 }
3860 }
3861 else if (New->getType()->isObjCObjectPointerType() &&
3862 Old->getType()->isObjCObjectPointerType()) {
3863 MergedT = Context.mergeObjCGCQualifiers(New->getType(),
3864 Old->getType());
3865 }
3866 } else {
3867 // C 6.2.7p2:
3868 // All declarations that refer to the same object or function shall have
3869 // compatible type.
3870 MergedT = Context.mergeTypes(New->getType(), Old->getType());
3871 }
3872 if (MergedT.isNull()) {
3873 // It's OK if we couldn't merge types if either type is dependent, for a
3874 // block-scope variable. In other cases (static data members of class
3875 // templates, variable templates, ...), we require the types to be
3876 // equivalent.
3877 // FIXME: The C++ standard doesn't say anything about this.
3878 if ((New->getType()->isDependentType() ||
3879 Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
3880 // If the old type was dependent, we can't merge with it, so the new type
3881 // becomes dependent for now. We'll reproduce the original type when we
3882 // instantiate the TypeSourceInfo for the variable.
3883 if (!New->getType()->isDependentType() && MergeTypeWithOld)
3884 New->setType(Context.DependentTy);
3885 return;
3886 }
3887 return diagnoseVarDeclTypeMismatch(*this, New, Old);
3888 }
3889
3890 // Don't actually update the type on the new declaration if the old
3891 // declaration was an extern declaration in a different scope.
3892 if (MergeTypeWithOld)
3893 New->setType(MergedT);
3894}
3895
3896static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
3897 LookupResult &Previous) {
3898 // C11 6.2.7p4:
3899 // For an identifier with internal or external linkage declared
3900 // in a scope in which a prior declaration of that identifier is
3901 // visible, if the prior declaration specifies internal or
3902 // external linkage, the type of the identifier at the later
3903 // declaration becomes the composite type.
3904 //
3905 // If the variable isn't visible, we do not merge with its type.
3906 if (Previous.isShadowed())
3907 return false;
3908
3909 if (S.getLangOpts().CPlusPlus) {
3910 // C++11 [dcl.array]p3:
3911 // If there is a preceding declaration of the entity in the same
3912 // scope in which the bound was specified, an omitted array bound
3913 // is taken to be the same as in that earlier declaration.
3914 return NewVD->isPreviousDeclInSameBlockScope() ||
3915 (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
3916 !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
3917 } else {
3918 // If the old declaration was function-local, don't merge with its
3919 // type unless we're in the same function.
3920 return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
3921 OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
3922 }
3923}
3924
3925/// MergeVarDecl - We just parsed a variable 'New' which has the same name
3926/// and scope as a previous declaration 'Old'. Figure out how to resolve this
3927/// situation, merging decls or emitting diagnostics as appropriate.
3928///
3929/// Tentative definition rules (C99 6.9.2p2) are checked by
3930/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
3931/// definitions here, since the initializer hasn't been attached.
3932///
3933void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
3934 // If the new decl is already invalid, don't do any other checking.
3935 if (New->isInvalidDecl())
3936 return;
3937
3938 if (!shouldLinkPossiblyHiddenDecl(Previous, New))
3939 return;
3940
3941 VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate();
3942
3943 // Verify the old decl was also a variable or variable template.
3944 VarDecl *Old = nullptr;
3945 VarTemplateDecl *OldTemplate = nullptr;
3946 if (Previous.isSingleResult()) {
3947 if (NewTemplate) {
3948 OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl());
3949 Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr;
3950
3951 if (auto *Shadow =
3952 dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
3953 if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate))
3954 return New->setInvalidDecl();
3955 } else {
3956 Old = dyn_cast<VarDecl>(Previous.getFoundDecl());
3957
3958 if (auto *Shadow =
3959 dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl()))
3960 if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New))
3961 return New->setInvalidDecl();
3962 }
3963 }
3964 if (!Old) {
3965 Diag(New->getLocation(), diag::err_redefinition_different_kind)
3966 << New->getDeclName();
3967 notePreviousDefinition(Previous.getRepresentativeDecl(),
3968 New->getLocation());
3969 return New->setInvalidDecl();
3970 }
3971
3972 // Ensure the template parameters are compatible.
3973 if (NewTemplate &&
3974 !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(),
3975 OldTemplate->getTemplateParameters(),
3976 /*Complain=*/true, TPL_TemplateMatch))
3977 return New->setInvalidDecl();
3978
3979 // C++ [class.mem]p1:
3980 // A member shall not be declared twice in the member-specification [...]
3981 //
3982 // Here, we need only consider static data members.
3983 if (Old->isStaticDataMember() && !New->isOutOfLine()) {
3984 Diag(New->getLocation(), diag::err_duplicate_member)
3985 << New->getIdentifier();
3986 Diag(Old->getLocation(), diag::note_previous_declaration);
3987 New->setInvalidDecl();
3988 }
3989
3990 mergeDeclAttributes(New, Old);
3991 // Warn if an already-declared variable is made a weak_import in a subsequent
3992 // declaration
3993 if (New->hasAttr<WeakImportAttr>() &&
3994 Old->getStorageClass() == SC_None &&
3995 !Old->hasAttr<WeakImportAttr>()) {
3996 Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
3997 notePreviousDefinition(Old, New->getLocation());
3998 // Remove weak_import attribute on new declaration.
3999 New->dropAttr<WeakImportAttr>();
4000 }
4001
4002 if (New->hasAttr<InternalLinkageAttr>() &&
4003 !Old->hasAttr<InternalLinkageAttr>()) {
4004 Diag(New->getLocation(), diag::err_internal_linkage_redeclaration)
4005 << New->getDeclName();
4006 notePreviousDefinition(Old, New->getLocation());
4007 New->dropAttr<InternalLinkageAttr>();
4008 }
4009
4010 // Merge the types.
4011 VarDecl *MostRecent = Old->getMostRecentDecl();
4012 if (MostRecent != Old) {
4013 MergeVarDeclTypes(New, MostRecent,
4014 mergeTypeWithPrevious(*this, New, MostRecent, Previous));
4015 if (New->isInvalidDecl())
4016 return;
4017 }
4018
4019 MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
4020 if (New->isInvalidDecl())
4021 return;
4022
4023 diag::kind PrevDiag;
4024 SourceLocation OldLocation;
4025 std::tie(PrevDiag, OldLocation) =
4026 getNoteDiagForInvalidRedeclaration(Old, New);
4027
4028 // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
4029 if (New->getStorageClass() == SC_Static &&
4030 !New->isStaticDataMember() &&
4031 Old->hasExternalFormalLinkage()) {
4032 if (getLangOpts().MicrosoftExt) {
4033 Diag(New->getLocation(), diag::ext_static_non_static)
4034 << New->getDeclName();
4035 Diag(OldLocation, PrevDiag);
4036 } else {
4037 Diag(New->getLocation(), diag::err_static_non_static)
4038 << New->getDeclName();
4039 Diag(OldLocation, PrevDiag);
4040 return New->setInvalidDecl();
4041 }
4042 }
4043 // C99 6.2.2p4:
4044 // For an identifier declared with the storage-class specifier
4045 // extern in a scope in which a prior declaration of that
4046 // identifier is visible,23) if the prior declaration specifies
4047 // internal or external linkage, the linkage of the identifier at
4048 // the later declaration is the same as the linkage specified at
4049 // the prior declaration. If no prior declaration is visible, or
4050 // if the prior declaration specifies no linkage, then the
4051 // identifier has external linkage.
4052 if (New->hasExternalStorage() && Old->hasLinkage())
4053 /* Okay */;
4054 else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
4055 !New->isStaticDataMember() &&
4056 Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
4057 Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
4058 Diag(OldLocation, PrevDiag);
4059 return New->setInvalidDecl();
4060 }
4061
4062 // Check if extern is followed by non-extern and vice-versa.
4063 if (New->hasExternalStorage() &&
4064 !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) {
4065 Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
4066 Diag(OldLocation, PrevDiag);
4067 return New->setInvalidDecl();
4068 }
4069 if (Old->hasLinkage() && New->isLocalVarDeclOrParm() &&
4070 !New->hasExternalStorage()) {
4071 Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
4072 Diag(OldLocation, PrevDiag);
4073 return New->setInvalidDecl();
4074 }
4075
4076 if (CheckRedeclarationModuleOwnership(New, Old))
4077 return;
4078
4079 // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
4080
4081 // FIXME: The test for external storage here seems wrong? We still
4082 // need to check for mismatches.
4083 if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
4084 // Don't complain about out-of-line definitions of static members.
4085 !(Old->getLexicalDeclContext()->isRecord() &&
4086 !New->getLexicalDeclContext()->isRecord())) {
4087 Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
4088 Diag(OldLocation, PrevDiag);
4089 return New->setInvalidDecl();
4090 }
4091
4092 if (New->isInline() && !Old->getMostRecentDecl()->isInline()) {
4093 if (VarDecl *Def = Old->getDefinition()) {
4094 // C++1z [dcl.fcn.spec]p4:
4095 // If the definition of a variable appears in a translation unit before
4096 // its first declaration as inline, the program is ill-formed.
4097 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
4098 Diag(Def->getLocation(), diag::note_previous_definition);
4099 }
4100 }
4101
4102 // If this redeclaration makes the variable inline, we may need to add it to
4103 // UndefinedButUsed.
4104 if (!Old->isInline() && New->isInline() && Old->isUsed(false) &&
4105 !Old->getDefinition() && !New->isThisDeclarationADefinition())
4106 UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
4107 SourceLocation()));
4108
4109 if (New->getTLSKind() != Old->getTLSKind()) {
4110 if (!Old->getTLSKind()) {
4111 Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
4112 Diag(OldLocation, PrevDiag);
4113 } else if (!New->getTLSKind()) {
4114 Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
4115 Diag(OldLocation, PrevDiag);
4116 } else {
4117 // Do not allow redeclaration to change the variable between requiring
4118 // static and dynamic initialization.
4119 // FIXME: GCC allows this, but uses the TLS keyword on the first
4120 // declaration to determine the kind. Do we need to be compatible here?
4121 Diag(New->getLocation(), diag::err_thread_thread_different_kind)
4122 << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
4123 Diag(OldLocation, PrevDiag);
4124 }
4125 }
4126
4127 // C++ doesn't have tentative definitions, so go right ahead and check here.
4128 if (getLangOpts().CPlusPlus &&
4129 New->isThisDeclarationADefinition() == VarDecl::Definition) {
4130 if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() &&
4131 Old->getCanonicalDecl()->isConstexpr()) {
4132 // This definition won't be a definition any more once it's been merged.
4133 Diag(New->getLocation(),
4134 diag::warn_deprecated_redundant_constexpr_static_def);
4135 } else if (VarDecl *Def = Old->getDefinition()) {
4136 if (checkVarDeclRedefinition(Def, New))
4137 return;
4138 }
4139 }
4140
4141 if (haveIncompatibleLanguageLinkages(Old, New)) {
4142 Diag(New->getLocation(), diag::err_different_language_linkage) << New;
4143 Diag(OldLocation, PrevDiag);
4144 New->setInvalidDecl();
4145 return;
4146 }
4147
4148 // Merge "used" flag.
4149 if (Old->getMostRecentDecl()->isUsed(false))
4150 New->setIsUsed();
4151
4152 // Keep a chain of previous declarations.
4153 New->setPreviousDecl(Old);
4154 if (NewTemplate)
4155 NewTemplate->setPreviousDecl(OldTemplate);
4156 adjustDeclContextForDeclaratorDecl(New, Old);
4157
4158 // Inherit access appropriately.
4159 New->setAccess(Old->getAccess());
4160 if (NewTemplate)
4161 NewTemplate->setAccess(New->getAccess());
4162
4163 if (Old->isInline())
4164 New->setImplicitlyInline();
4165}
4166
4167void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) {
4168 SourceManager &SrcMgr = getSourceManager();
4169 auto FNewDecLoc = SrcMgr.getDecomposedLoc(New);
4170 auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation());
4171 auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first);
4172 auto *FOld = SrcMgr.getFileEntryForID(FOldDecLoc.first);
4173 auto &HSI = PP.getHeaderSearchInfo();
4174 StringRef HdrFilename =
4175 SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation()));
4176
4177 auto noteFromModuleOrInclude = [&](Module *Mod,
4178 SourceLocation IncLoc) -> bool {
4179 // Redefinition errors with modules are common with non modular mapped
4180 // headers, example: a non-modular header H in module A that also gets
4181 // included directly in a TU. Pointing twice to the same header/definition
4182 // is confusing, try to get better diagnostics when modules is on.
4183 if (IncLoc.isValid()) {
4184 if (Mod) {
4185 Diag(IncLoc, diag::note_redefinition_modules_same_file)
4186 << HdrFilename.str() << Mod->getFullModuleName();
4187 if (!Mod->DefinitionLoc.isInvalid())
4188 Diag(Mod->DefinitionLoc, diag::note_defined_here)
4189 << Mod->getFullModuleName();
4190 } else {
4191 Diag(IncLoc, diag::note_redefinition_include_same_file)
4192 << HdrFilename.str();
4193 }
4194 return true;
4195 }
4196
4197 return false;
4198 };
4199
4200 // Is it the same file and same offset? Provide more information on why
4201 // this leads to a redefinition error.
4202 if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) {
4203 SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first);
4204 SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first);
4205 bool EmittedDiag =
4206 noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc);
4207 EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc);
4208
4209 // If the header has no guards, emit a note suggesting one.
4210 if (FOld && !HSI.isFileMultipleIncludeGuarded(FOld))
4211 Diag(Old->getLocation(), diag::note_use_ifdef_guards);
4212
4213 if (EmittedDiag)
4214 return;
4215 }
4216
4217 // Redefinition coming from different files or couldn't do better above.
4218 if (Old->getLocation().isValid())
4219 Diag(Old->getLocation(), diag::note_previous_definition);
4220}
4221
4222/// We've just determined that \p Old and \p New both appear to be definitions
4223/// of the same variable. Either diagnose or fix the problem.
4224bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) {
4225 if (!hasVisibleDefinition(Old) &&
4226 (New->getFormalLinkage() == InternalLinkage ||
4227 New->isInline() ||
4228 New->getDescribedVarTemplate() ||
4229 New->getNumTemplateParameterLists() ||
4230 New->getDeclContext()->isDependentContext())) {
4231 // The previous definition is hidden, and multiple definitions are
4232 // permitted (in separate TUs). Demote this to a declaration.
4233 New->demoteThisDefinitionToDeclaration();
4234
4235 // Make the canonical definition visible.
4236 if (auto *OldTD = Old->getDescribedVarTemplate())
4237 makeMergedDefinitionVisible(OldTD);
4238 makeMergedDefinitionVisible(Old);
4239 return false;
4240 } else {
4241 Diag(New->getLocation(), diag::err_redefinition) << New;
4242 notePreviousDefinition(Old, New->getLocation());
4243 New->setInvalidDecl();
4244 return true;
4245 }
4246}
4247
4248/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4249/// no declarator (e.g. "struct foo;") is parsed.
4250Decl *
4251Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4252 RecordDecl *&AnonRecord) {
4253 return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg(), false,
4254 AnonRecord);
4255}
4256
4257// The MS ABI changed between VS2013 and VS2015 with regard to numbers used to
4258// disambiguate entities defined in different scopes.
4259// While the VS2015 ABI fixes potential miscompiles, it is also breaks
4260// compatibility.
4261// We will pick our mangling number depending on which version of MSVC is being
4262// targeted.
4263static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) {
4264 return LO.isCompatibleWithMSVC(LangOptions::MSVC2015)
4265 ? S->getMSCurManglingNumber()
4266 : S->getMSLastManglingNumber();
4267}
4268
4269void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) {
4270 if (!Context.getLangOpts().CPlusPlus)
4271 return;
4272
4273 if (isa<CXXRecordDecl>(Tag->getParent())) {
4274 // If this tag is the direct child of a class, number it if
4275 // it is anonymous.
4276 if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
4277 return;
4278 MangleNumberingContext &MCtx =
4279 Context.getManglingNumberContext(Tag->getParent());
4280 Context.setManglingNumber(
4281 Tag, MCtx.getManglingNumber(
4282 Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4283 return;
4284 }
4285
4286 // If this tag isn't a direct child of a class, number it if it is local.
4287 Decl *ManglingContextDecl;
4288 if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
4289 Tag->getDeclContext(), ManglingContextDecl)) {
4290 Context.setManglingNumber(
4291 Tag, MCtx->getManglingNumber(
4292 Tag, getMSManglingNumber(getLangOpts(), TagScope)));
4293 }
4294}
4295
4296void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec,
4297 TypedefNameDecl *NewTD) {
4298 if (TagFromDeclSpec->isInvalidDecl())
4299 return;
4300
4301 // Do nothing if the tag already has a name for linkage purposes.
4302 if (TagFromDeclSpec->hasNameForLinkage())
4303 return;
4304
4305 // A well-formed anonymous tag must always be a TUK_Definition.
4306 assert(TagFromDeclSpec->isThisDeclarationADefinition())((TagFromDeclSpec->isThisDeclarationADefinition()) ? static_cast
<void> (0) : __assert_fail ("TagFromDeclSpec->isThisDeclarationADefinition()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 4306, __PRETTY_FUNCTION__))
;
4307
4308 // The type must match the tag exactly; no qualifiers allowed.
4309 if (!Context.hasSameType(NewTD->getUnderlyingType(),
4310 Context.getTagDeclType(TagFromDeclSpec))) {
4311 if (getLangOpts().CPlusPlus)
4312 Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD);
4313 return;
4314 }
4315
4316 // If we've already computed linkage for the anonymous tag, then
4317 // adding a typedef name for the anonymous decl can change that
4318 // linkage, which might be a serious problem. Diagnose this as
4319 // unsupported and ignore the typedef name. TODO: we should
4320 // pursue this as a language defect and establish a formal rule
4321 // for how to handle it.
4322 if (TagFromDeclSpec->hasLinkageBeenComputed()) {
4323 Diag(NewTD->getLocation(), diag::err_typedef_changes_linkage);
4324
4325 SourceLocation tagLoc = TagFromDeclSpec->getInnerLocStart();
4326 tagLoc = getLocForEndOfToken(tagLoc);
4327
4328 llvm::SmallString<40> textToInsert;
4329 textToInsert += ' ';
4330 textToInsert += NewTD->getIdentifier()->getName();
4331 Diag(tagLoc, diag::note_typedef_changes_linkage)
4332 << FixItHint::CreateInsertion(tagLoc, textToInsert);
4333 return;
4334 }
4335
4336 // Otherwise, set this is the anon-decl typedef for the tag.
4337 TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
4338}
4339
4340static unsigned GetDiagnosticTypeSpecifierID(DeclSpec::TST T) {
4341 switch (T) {
4342 case DeclSpec::TST_class:
4343 return 0;
4344 case DeclSpec::TST_struct:
4345 return 1;
4346 case DeclSpec::TST_interface:
4347 return 2;
4348 case DeclSpec::TST_union:
4349 return 3;
4350 case DeclSpec::TST_enum:
4351 return 4;
4352 default:
4353 llvm_unreachable("unexpected type specifier")::llvm::llvm_unreachable_internal("unexpected type specifier"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 4353)
;
4354 }
4355}
4356
4357/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
4358/// no declarator (e.g. "struct foo;") is parsed. It also accepts template
4359/// parameters to cope with template friend declarations.
4360Decl *
4361Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, DeclSpec &DS,
4362 MultiTemplateParamsArg TemplateParams,
4363 bool IsExplicitInstantiation,
4364 RecordDecl *&AnonRecord) {
4365 Decl *TagD = nullptr;
4366 TagDecl *Tag = nullptr;
4367 if (DS.getTypeSpecType() == DeclSpec::TST_class ||
4368 DS.getTypeSpecType() == DeclSpec::TST_struct ||
4369 DS.getTypeSpecType() == DeclSpec::TST_interface ||
4370 DS.getTypeSpecType() == DeclSpec::TST_union ||
4371 DS.getTypeSpecType() == DeclSpec::TST_enum) {
4372 TagD = DS.getRepAsDecl();
4373
4374 if (!TagD) // We probably had an error
4375 return nullptr;
4376
4377 // Note that the above type specs guarantee that the
4378 // type rep is a Decl, whereas in many of the others
4379 // it's a Type.
4380 if (isa<TagDecl>(TagD))
4381 Tag = cast<TagDecl>(TagD);
4382 else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
4383 Tag = CTD->getTemplatedDecl();
4384 }
4385
4386 if (Tag) {
4387 handleTagNumbering(Tag, S);
4388 Tag->setFreeStanding();
4389 if (Tag->isInvalidDecl())
4390 return Tag;
4391 }
4392
4393 if (unsigned TypeQuals = DS.getTypeQualifiers()) {
4394 // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
4395 // or incomplete types shall not be restrict-qualified."
4396 if (TypeQuals & DeclSpec::TQ_restrict)
4397 Diag(DS.getRestrictSpecLoc(),
4398 diag::err_typecheck_invalid_restrict_not_pointer_noarg)
4399 << DS.getSourceRange();
4400 }
4401
4402 if (DS.isInlineSpecified())
4403 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
4404 << getLangOpts().CPlusPlus17;
4405
4406 if (DS.hasConstexprSpecifier()) {
4407 // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
4408 // and definitions of functions and variables.
4409 // C++2a [dcl.constexpr]p1: The consteval specifier shall be applied only to
4410 // the declaration of a function or function template
4411 if (Tag)
4412 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
4413 << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType())
4414 << DS.getConstexprSpecifier();
4415 else
4416 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_wrong_decl_kind)
4417 << DS.getConstexprSpecifier();
4418 // Don't emit warnings after this error.
4419 return TagD;
4420 }
4421
4422 DiagnoseFunctionSpecifiers(DS);
4423
4424 if (DS.isFriendSpecified()) {
4425 // If we're dealing with a decl but not a TagDecl, assume that
4426 // whatever routines created it handled the friendship aspect.
4427 if (TagD && !Tag)
4428 return nullptr;
4429 return ActOnFriendTypeDecl(S, DS, TemplateParams);
4430 }
4431
4432 const CXXScopeSpec &SS = DS.getTypeSpecScope();
4433 bool IsExplicitSpecialization =
4434 !TemplateParams.empty() && TemplateParams.back()->size() == 0;
4435 if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
4436 !IsExplicitInstantiation && !IsExplicitSpecialization &&
4437 !isa<ClassTemplatePartialSpecializationDecl>(Tag)) {
4438 // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
4439 // nested-name-specifier unless it is an explicit instantiation
4440 // or an explicit specialization.
4441 //
4442 // FIXME: We allow class template partial specializations here too, per the
4443 // obvious intent of DR1819.
4444 //
4445 // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
4446 Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
4447 << GetDiagnosticTypeSpecifierID(DS.getTypeSpecType()) << SS.getRange();
4448 return nullptr;
4449 }
4450
4451 // Track whether this decl-specifier declares anything.
4452 bool DeclaresAnything = true;
4453
4454 // Handle anonymous struct definitions.
4455 if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
4456 if (!Record->getDeclName() && Record->isCompleteDefinition() &&
4457 DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
4458 if (getLangOpts().CPlusPlus ||
4459 Record->getDeclContext()->isRecord()) {
4460 // If CurContext is a DeclContext that can contain statements,
4461 // RecursiveASTVisitor won't visit the decls that
4462 // BuildAnonymousStructOrUnion() will put into CurContext.
4463 // Also store them here so that they can be part of the
4464 // DeclStmt that gets created in this case.
4465 // FIXME: Also return the IndirectFieldDecls created by
4466 // BuildAnonymousStructOr union, for the same reason?
4467 if (CurContext->isFunctionOrMethod())
4468 AnonRecord = Record;
4469 return BuildAnonymousStructOrUnion(S, DS, AS, Record,
4470 Context.getPrintingPolicy());
4471 }
4472
4473 DeclaresAnything = false;
4474 }
4475 }
4476
4477 // C11 6.7.2.1p2:
4478 // A struct-declaration that does not declare an anonymous structure or
4479 // anonymous union shall contain a struct-declarator-list.
4480 //
4481 // This rule also existed in C89 and C99; the grammar for struct-declaration
4482 // did not permit a struct-declaration without a struct-declarator-list.
4483 if (!getLangOpts().CPlusPlus && CurContext->isRecord() &&
4484 DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
4485 // Check for Microsoft C extension: anonymous struct/union member.
4486 // Handle 2 kinds of anonymous struct/union:
4487 // struct STRUCT;
4488 // union UNION;
4489 // and
4490 // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct.
4491 // UNION_TYPE; <- where UNION_TYPE is a typedef union.
4492 if ((Tag && Tag->getDeclName()) ||
4493 DS.getTypeSpecType() == DeclSpec::TST_typename) {
4494 RecordDecl *Record = nullptr;
4495 if (Tag)
4496 Record = dyn_cast<RecordDecl>(Tag);
4497 else if (const RecordType *RT =
4498 DS.getRepAsType().get()->getAsStructureType())
4499 Record = RT->getDecl();
4500 else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType())
4501 Record = UT->getDecl();
4502
4503 if (Record && getLangOpts().MicrosoftExt) {
4504 Diag(DS.getBeginLoc(), diag::ext_ms_anonymous_record)
4505 << Record->isUnion() << DS.getSourceRange();
4506 return BuildMicrosoftCAnonymousStruct(S, DS, Record);
4507 }
4508
4509 DeclaresAnything = false;
4510 }
4511 }
4512
4513 // Skip all the checks below if we have a type error.
4514 if (DS.getTypeSpecType() == DeclSpec::TST_error ||
4515 (TagD && TagD->isInvalidDecl()))
4516 return TagD;
4517
4518 if (getLangOpts().CPlusPlus &&
4519 DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
4520 if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
4521 if (Enum->enumerator_begin() == Enum->enumerator_end() &&
4522 !Enum->getIdentifier() && !Enum->isInvalidDecl())
4523 DeclaresAnything = false;
4524
4525 if (!DS.isMissingDeclaratorOk()) {
4526 // Customize diagnostic for a typedef missing a name.
4527 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
4528 Diag(DS.getBeginLoc(), diag::ext_typedef_without_a_name)
4529 << DS.getSourceRange();
4530 else
4531 DeclaresAnything = false;
4532 }
4533
4534 if (DS.isModulePrivateSpecified() &&
4535 Tag && Tag->getDeclContext()->isFunctionOrMethod())
4536 Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
4537 << Tag->getTagKind()
4538 << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
4539
4540 ActOnDocumentableDecl(TagD);
4541
4542 // C 6.7/2:
4543 // A declaration [...] shall declare at least a declarator [...], a tag,
4544 // or the members of an enumeration.
4545 // C++ [dcl.dcl]p3:
4546 // [If there are no declarators], and except for the declaration of an
4547 // unnamed bit-field, the decl-specifier-seq shall introduce one or more
4548 // names into the program, or shall redeclare a name introduced by a
4549 // previous declaration.
4550 if (!DeclaresAnything) {
4551 // In C, we allow this as a (popular) extension / bug. Don't bother
4552 // producing further diagnostics for redundant qualifiers after this.
4553 Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange();
4554 return TagD;
4555 }
4556
4557 // C++ [dcl.stc]p1:
4558 // If a storage-class-specifier appears in a decl-specifier-seq, [...] the
4559 // init-declarator-list of the declaration shall not be empty.
4560 // C++ [dcl.fct.spec]p1:
4561 // If a cv-qualifier appears in a decl-specifier-seq, the
4562 // init-declarator-list of the declaration shall not be empty.
4563 //
4564 // Spurious qualifiers here appear to be valid in C.
4565 unsigned DiagID = diag::warn_standalone_specifier;
4566 if (getLangOpts().CPlusPlus)
4567 DiagID = diag::ext_standalone_specifier;
4568
4569 // Note that a linkage-specification sets a storage class, but
4570 // 'extern "C" struct foo;' is actually valid and not theoretically
4571 // useless.
4572 if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
4573 if (SCS == DeclSpec::SCS_mutable)
4574 // Since mutable is not a viable storage class specifier in C, there is
4575 // no reason to treat it as an extension. Instead, diagnose as an error.
4576 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember);
4577 else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
4578 Diag(DS.getStorageClassSpecLoc(), DiagID)
4579 << DeclSpec::getSpecifierName(SCS);
4580 }
4581
4582 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
4583 Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
4584 << DeclSpec::getSpecifierName(TSCS);
4585 if (DS.getTypeQualifiers()) {
4586 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4587 Diag(DS.getConstSpecLoc(), DiagID) << "const";
4588 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4589 Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
4590 // Restrict is covered above.
4591 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4592 Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
4593 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
4594 Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned";
4595 }
4596
4597 // Warn about ignored type attributes, for example:
4598 // __attribute__((aligned)) struct A;
4599 // Attributes should be placed after tag to apply to type declaration.
4600 if (!DS.getAttributes().empty()) {
4601 DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
4602 if (TypeSpecType == DeclSpec::TST_class ||
4603 TypeSpecType == DeclSpec::TST_struct ||
4604 TypeSpecType == DeclSpec::TST_interface ||
4605 TypeSpecType == DeclSpec::TST_union ||
4606 TypeSpecType == DeclSpec::TST_enum) {
4607 for (const ParsedAttr &AL : DS.getAttributes())
4608 Diag(AL.getLoc(), diag::warn_declspec_attribute_ignored)
4609 << AL << GetDiagnosticTypeSpecifierID(TypeSpecType);
4610 }
4611 }
4612
4613 return TagD;
4614}
4615
4616/// We are trying to inject an anonymous member into the given scope;
4617/// check if there's an existing declaration that can't be overloaded.
4618///
4619/// \return true if this is a forbidden redeclaration
4620static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
4621 Scope *S,
4622 DeclContext *Owner,
4623 DeclarationName Name,
4624 SourceLocation NameLoc,
4625 bool IsUnion) {
4626 LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
4627 Sema::ForVisibleRedeclaration);
4628 if (!SemaRef.LookupName(R, S)) return false;
4629
4630 // Pick a representative declaration.
4631 NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
4632 assert(PrevDecl && "Expected a non-null Decl")((PrevDecl && "Expected a non-null Decl") ? static_cast
<void> (0) : __assert_fail ("PrevDecl && \"Expected a non-null Decl\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 4632, __PRETTY_FUNCTION__))
;
4633
4634 if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
4635 return false;
4636
4637 SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl)
4638 << IsUnion << Name;
4639 SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4640
4641 return true;
4642}
4643
4644/// InjectAnonymousStructOrUnionMembers - Inject the members of the
4645/// anonymous struct or union AnonRecord into the owning context Owner
4646/// and scope S. This routine will be invoked just after we realize
4647/// that an unnamed union or struct is actually an anonymous union or
4648/// struct, e.g.,
4649///
4650/// @code
4651/// union {
4652/// int i;
4653/// float f;
4654/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
4655/// // f into the surrounding scope.x
4656/// @endcode
4657///
4658/// This routine is recursive, injecting the names of nested anonymous
4659/// structs/unions into the owning context and scope as well.
4660static bool
4661InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner,
4662 RecordDecl *AnonRecord, AccessSpecifier AS,
4663 SmallVectorImpl<NamedDecl *> &Chaining) {
4664 bool Invalid = false;
4665
4666 // Look every FieldDecl and IndirectFieldDecl with a name.
4667 for (auto *D : AnonRecord->decls()) {
4668 if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) &&
4669 cast<NamedDecl>(D)->getDeclName()) {
4670 ValueDecl *VD = cast<ValueDecl>(D);
4671 if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
4672 VD->getLocation(),
4673 AnonRecord->isUnion())) {
4674 // C++ [class.union]p2:
4675 // The names of the members of an anonymous union shall be
4676 // distinct from the names of any other entity in the
4677 // scope in which the anonymous union is declared.
4678 Invalid = true;
4679 } else {
4680 // C++ [class.union]p2:
4681 // For the purpose of name lookup, after the anonymous union
4682 // definition, the members of the anonymous union are
4683 // considered to have been defined in the scope in which the
4684 // anonymous union is declared.
4685 unsigned OldChainingSize = Chaining.size();
4686 if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
4687 Chaining.append(IF->chain_begin(), IF->chain_end());
4688 else
4689 Chaining.push_back(VD);
4690
4691 assert(Chaining.size() >= 2)((Chaining.size() >= 2) ? static_cast<void> (0) : __assert_fail
("Chaining.size() >= 2", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 4691, __PRETTY_FUNCTION__))
;
4692 NamedDecl **NamedChain =
4693 new (SemaRef.Context)NamedDecl*[Chaining.size()];
4694 for (unsigned i = 0; i < Chaining.size(); i++)
4695 NamedChain[i] = Chaining[i];
4696
4697 IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create(
4698 SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(),
4699 VD->getType(), {NamedChain, Chaining.size()});
4700
4701 for (const auto *Attr : VD->attrs())
4702 IndirectField->addAttr(Attr->clone(SemaRef.Context));
4703
4704 IndirectField->setAccess(AS);
4705 IndirectField->setImplicit();
4706 SemaRef.PushOnScopeChains(IndirectField, S);
4707
4708 // That includes picking up the appropriate access specifier.
4709 if (AS != AS_none) IndirectField->setAccess(AS);
4710
4711 Chaining.resize(OldChainingSize);
4712 }
4713 }
4714 }
4715
4716 return Invalid;
4717}
4718
4719/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
4720/// a VarDecl::StorageClass. Any error reporting is up to the caller:
4721/// illegal input values are mapped to SC_None.
4722static StorageClass
4723StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
4724 DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
4725 assert(StorageClassSpec != DeclSpec::SCS_typedef &&((StorageClassSpec != DeclSpec::SCS_typedef && "Parser allowed 'typedef' as storage class VarDecl."
) ? static_cast<void> (0) : __assert_fail ("StorageClassSpec != DeclSpec::SCS_typedef && \"Parser allowed 'typedef' as storage class VarDecl.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 4726, __PRETTY_FUNCTION__))
4726 "Parser allowed 'typedef' as storage class VarDecl.")((StorageClassSpec != DeclSpec::SCS_typedef && "Parser allowed 'typedef' as storage class VarDecl."
) ? static_cast<void> (0) : __assert_fail ("StorageClassSpec != DeclSpec::SCS_typedef && \"Parser allowed 'typedef' as storage class VarDecl.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 4726, __PRETTY_FUNCTION__))
;
4727 switch (StorageClassSpec) {
4728 case DeclSpec::SCS_unspecified: return SC_None;
4729 case DeclSpec::SCS_extern:
4730 if (DS.isExternInLinkageSpec())
4731 return SC_None;
4732 return SC_Extern;
4733 case DeclSpec::SCS_static: return SC_Static;
4734 case DeclSpec::SCS_auto: return SC_Auto;
4735 case DeclSpec::SCS_register: return SC_Register;
4736 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4737 // Illegal SCSs map to None: error reporting is up to the caller.
4738 case DeclSpec::SCS_mutable: // Fall through.
4739 case DeclSpec::SCS_typedef: return SC_None;
4740 }
4741 llvm_unreachable("unknown storage class specifier")::llvm::llvm_unreachable_internal("unknown storage class specifier"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 4741)
;
4742}
4743
4744static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) {
4745 assert(Record->hasInClassInitializer())((Record->hasInClassInitializer()) ? static_cast<void>
(0) : __assert_fail ("Record->hasInClassInitializer()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 4745, __PRETTY_FUNCTION__))
;
4746
4747 for (const auto *I : Record->decls()) {
4748 const auto *FD = dyn_cast<FieldDecl>(I);
4749 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
4750 FD = IFD->getAnonField();
4751 if (FD && FD->hasInClassInitializer())
4752 return FD->getLocation();
4753 }
4754
4755 llvm_unreachable("couldn't find in-class initializer")::llvm::llvm_unreachable_internal("couldn't find in-class initializer"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 4755)
;
4756}
4757
4758static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4759 SourceLocation DefaultInitLoc) {
4760 if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4761 return;
4762
4763 S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization);
4764 S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0;
4765}
4766
4767static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent,
4768 CXXRecordDecl *AnonUnion) {
4769 if (!Parent->isUnion() || !Parent->hasInClassInitializer())
4770 return;
4771
4772 checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion));
4773}
4774
4775/// BuildAnonymousStructOrUnion - Handle the declaration of an
4776/// anonymous structure or union. Anonymous unions are a C++ feature
4777/// (C++ [class.union]) and a C11 feature; anonymous structures
4778/// are a C11 feature and GNU C++ extension.
4779Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
4780 AccessSpecifier AS,
4781 RecordDecl *Record,
4782 const PrintingPolicy &Policy) {
4783 DeclContext *Owner = Record->getDeclContext();
4784
4785 // Diagnose whether this anonymous struct/union is an extension.
4786 if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
4787 Diag(Record->getLocation(), diag::ext_anonymous_union);
4788 else if (!Record->isUnion() && getLangOpts().CPlusPlus)
4789 Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
4790 else if (!Record->isUnion() && !getLangOpts().C11)
4791 Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
4792
4793 // C and C++ require different kinds of checks for anonymous
4794 // structs/unions.
4795 bool Invalid = false;
4796 if (getLangOpts().CPlusPlus) {
4797 const char *PrevSpec = nullptr;
4798 if (Record->isUnion()) {
4799 // C++ [class.union]p6:
4800 // C++17 [class.union.anon]p2:
4801 // Anonymous unions declared in a named namespace or in the
4802 // global namespace shall be declared static.
4803 unsigned DiagID;
4804 DeclContext *OwnerScope = Owner->getRedeclContext();
4805 if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
4806 (OwnerScope->isTranslationUnit() ||
4807 (OwnerScope->isNamespace() &&
4808 !cast<NamespaceDecl>(OwnerScope)->isAnonymousNamespace()))) {
4809 Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
4810 << FixItHint::CreateInsertion(Record->getLocation(), "static ");
4811
4812 // Recover by adding 'static'.
4813 DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
4814 PrevSpec, DiagID, Policy);
4815 }
4816 // C++ [class.union]p6:
4817 // A storage class is not allowed in a declaration of an
4818 // anonymous union in a class scope.
4819 else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
4820 isa<RecordDecl>(Owner)) {
4821 Diag(DS.getStorageClassSpecLoc(),
4822 diag::err_anonymous_union_with_storage_spec)
4823 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
4824
4825 // Recover by removing the storage specifier.
4826 DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
4827 SourceLocation(),
4828 PrevSpec, DiagID, Context.getPrintingPolicy());
4829 }
4830 }
4831
4832 // Ignore const/volatile/restrict qualifiers.
4833 if (DS.getTypeQualifiers()) {
4834 if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
4835 Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
4836 << Record->isUnion() << "const"
4837 << FixItHint::CreateRemoval(DS.getConstSpecLoc());
4838 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
4839 Diag(DS.getVolatileSpecLoc(),
4840 diag::ext_anonymous_struct_union_qualified)
4841 << Record->isUnion() << "volatile"
4842 << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
4843 if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
4844 Diag(DS.getRestrictSpecLoc(),
4845 diag::ext_anonymous_struct_union_qualified)
4846 << Record->isUnion() << "restrict"
4847 << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
4848 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
4849 Diag(DS.getAtomicSpecLoc(),
4850 diag::ext_anonymous_struct_union_qualified)
4851 << Record->isUnion() << "_Atomic"
4852 << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
4853 if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned)
4854 Diag(DS.getUnalignedSpecLoc(),
4855 diag::ext_anonymous_struct_union_qualified)
4856 << Record->isUnion() << "__unaligned"
4857 << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc());
4858
4859 DS.ClearTypeQualifiers();
4860 }
4861
4862 // C++ [class.union]p2:
4863 // The member-specification of an anonymous union shall only
4864 // define non-static data members. [Note: nested types and
4865 // functions cannot be declared within an anonymous union. ]
4866 for (auto *Mem : Record->decls()) {
4867 if (auto *FD = dyn_cast<FieldDecl>(Mem)) {
4868 // C++ [class.union]p3:
4869 // An anonymous union shall not have private or protected
4870 // members (clause 11).
4871 assert(FD->getAccess() != AS_none)((FD->getAccess() != AS_none) ? static_cast<void> (0
) : __assert_fail ("FD->getAccess() != AS_none", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 4871, __PRETTY_FUNCTION__))
;
4872 if (FD->getAccess() != AS_public) {
4873 Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
4874 << Record->isUnion() << (FD->getAccess() == AS_protected);
4875 Invalid = true;
4876 }
4877
4878 // C++ [class.union]p1
4879 // An object of a class with a non-trivial constructor, a non-trivial
4880 // copy constructor, a non-trivial destructor, or a non-trivial copy
4881 // assignment operator cannot be a member of a union, nor can an
4882 // array of such objects.
4883 if (CheckNontrivialField(FD))
4884 Invalid = true;
4885 } else if (Mem->isImplicit()) {
4886 // Any implicit members are fine.
4887 } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) {
4888 // This is a type that showed up in an
4889 // elaborated-type-specifier inside the anonymous struct or
4890 // union, but which actually declares a type outside of the
4891 // anonymous struct or union. It's okay.
4892 } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) {
4893 if (!MemRecord->isAnonymousStructOrUnion() &&
4894 MemRecord->getDeclName()) {
4895 // Visual C++ allows type definition in anonymous struct or union.
4896 if (getLangOpts().MicrosoftExt)
4897 Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
4898 << Record->isUnion();
4899 else {
4900 // This is a nested type declaration.
4901 Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
4902 << Record->isUnion();
4903 Invalid = true;
4904 }
4905 } else {
4906 // This is an anonymous type definition within another anonymous type.
4907 // This is a popular extension, provided by Plan9, MSVC and GCC, but
4908 // not part of standard C++.
4909 Diag(MemRecord->getLocation(),
4910 diag::ext_anonymous_record_with_anonymous_type)
4911 << Record->isUnion();
4912 }
4913 } else if (isa<AccessSpecDecl>(Mem)) {
4914 // Any access specifier is fine.
4915 } else if (isa<StaticAssertDecl>(Mem)) {
4916 // In C++1z, static_assert declarations are also fine.
4917 } else {
4918 // We have something that isn't a non-static data
4919 // member. Complain about it.
4920 unsigned DK = diag::err_anonymous_record_bad_member;
4921 if (isa<TypeDecl>(Mem))
4922 DK = diag::err_anonymous_record_with_type;
4923 else if (isa<FunctionDecl>(Mem))
4924 DK = diag::err_anonymous_record_with_function;
4925 else if (isa<VarDecl>(Mem))
4926 DK = diag::err_anonymous_record_with_static;
4927
4928 // Visual C++ allows type definition in anonymous struct or union.
4929 if (getLangOpts().MicrosoftExt &&
4930 DK == diag::err_anonymous_record_with_type)
4931 Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type)
4932 << Record->isUnion();
4933 else {
4934 Diag(Mem->getLocation(), DK) << Record->isUnion();
4935 Invalid = true;
4936 }
4937 }
4938 }
4939
4940 // C++11 [class.union]p8 (DR1460):
4941 // At most one variant member of a union may have a
4942 // brace-or-equal-initializer.
4943 if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() &&
4944 Owner->isRecord())
4945 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner),
4946 cast<CXXRecordDecl>(Record));
4947 }
4948
4949 if (!Record->isUnion() && !Owner->isRecord()) {
4950 Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
4951 << getLangOpts().CPlusPlus;
4952 Invalid = true;
4953 }
4954
4955 // C++ [dcl.dcl]p3:
4956 // [If there are no declarators], and except for the declaration of an
4957 // unnamed bit-field, the decl-specifier-seq shall introduce one or more
4958 // names into the program
4959 // C++ [class.mem]p2:
4960 // each such member-declaration shall either declare at least one member
4961 // name of the class or declare at least one unnamed bit-field
4962 //
4963 // For C this is an error even for a named struct, and is diagnosed elsewhere.
4964 if (getLangOpts().CPlusPlus && Record->field_empty())
4965 Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange();
4966
4967 // Mock up a declarator.
4968 Declarator Dc(DS, DeclaratorContext::MemberContext);
4969 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
4970 assert(TInfo && "couldn't build declarator info for anonymous struct/union")((TInfo && "couldn't build declarator info for anonymous struct/union"
) ? static_cast<void> (0) : __assert_fail ("TInfo && \"couldn't build declarator info for anonymous struct/union\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 4970, __PRETTY_FUNCTION__))
;
4971
4972 // Create a declaration for this anonymous struct/union.
4973 NamedDecl *Anon = nullptr;
4974 if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
4975 Anon = FieldDecl::Create(
4976 Context, OwningClass, DS.getBeginLoc(), Record->getLocation(),
4977 /*IdentifierInfo=*/nullptr, Context.getTypeDeclType(Record), TInfo,
4978 /*BitWidth=*/nullptr, /*Mutable=*/false,
4979 /*InitStyle=*/ICIS_NoInit);
4980 Anon->setAccess(AS);
4981 if (getLangOpts().CPlusPlus)
4982 FieldCollector->Add(cast<FieldDecl>(Anon));
4983 } else {
4984 DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
4985 StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
4986 if (SCSpec == DeclSpec::SCS_mutable) {
4987 // mutable can only appear on non-static class members, so it's always
4988 // an error here
4989 Diag(Record->getLocation(), diag::err_mutable_nonmember);
4990 Invalid = true;
4991 SC = SC_None;
4992 }
4993
4994 Anon = VarDecl::Create(Context, Owner, DS.getBeginLoc(),
4995 Record->getLocation(), /*IdentifierInfo=*/nullptr,
4996 Context.getTypeDeclType(Record), TInfo, SC);
4997
4998 // Default-initialize the implicit variable. This initialization will be
4999 // trivial in almost all cases, except if a union member has an in-class
5000 // initializer:
5001 // union { int n = 0; };
5002 ActOnUninitializedDecl(Anon);
5003 }
5004 Anon->setImplicit();
5005
5006 // Mark this as an anonymous struct/union type.
5007 Record->setAnonymousStructOrUnion(true);
5008
5009 // Add the anonymous struct/union object to the current
5010 // context. We'll be referencing this object when we refer to one of
5011 // its members.
5012 Owner->addDecl(Anon);
5013
5014 // Inject the members of the anonymous struct/union into the owning
5015 // context and into the identifier resolver chain for name lookup
5016 // purposes.
5017 SmallVector<NamedDecl*, 2> Chain;
5018 Chain.push_back(Anon);
5019
5020 if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, Chain))
5021 Invalid = true;
5022
5023 if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) {
5024 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
5025 Decl *ManglingContextDecl;
5026 if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
5027 NewVD->getDeclContext(), ManglingContextDecl)) {
5028 Context.setManglingNumber(
5029 NewVD, MCtx->getManglingNumber(
5030 NewVD, getMSManglingNumber(getLangOpts(), S)));
5031 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
5032 }
5033 }
5034 }
5035
5036 if (Invalid)
5037 Anon->setInvalidDecl();
5038
5039 return Anon;
5040}
5041
5042/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
5043/// Microsoft C anonymous structure.
5044/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
5045/// Example:
5046///
5047/// struct A { int a; };
5048/// struct B { struct A; int b; };
5049///
5050/// void foo() {
5051/// B var;
5052/// var.a = 3;
5053/// }
5054///
5055Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
5056 RecordDecl *Record) {
5057 assert(Record && "expected a record!")((Record && "expected a record!") ? static_cast<void
> (0) : __assert_fail ("Record && \"expected a record!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 5057, __PRETTY_FUNCTION__))
;
5058
5059 // Mock up a declarator.
5060 Declarator Dc(DS, DeclaratorContext::TypeNameContext);
5061 TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
5062 assert(TInfo && "couldn't build declarator info for anonymous struct")((TInfo && "couldn't build declarator info for anonymous struct"
) ? static_cast<void> (0) : __assert_fail ("TInfo && \"couldn't build declarator info for anonymous struct\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 5062, __PRETTY_FUNCTION__))
;
5063
5064 auto *ParentDecl = cast<RecordDecl>(CurContext);
5065 QualType RecTy = Context.getTypeDeclType(Record);
5066
5067 // Create a declaration for this anonymous struct.
5068 NamedDecl *Anon =
5069 FieldDecl::Create(Context, ParentDecl, DS.getBeginLoc(), DS.getBeginLoc(),
5070 /*IdentifierInfo=*/nullptr, RecTy, TInfo,
5071 /*BitWidth=*/nullptr, /*Mutable=*/false,
5072 /*InitStyle=*/ICIS_NoInit);
5073 Anon->setImplicit();
5074
5075 // Add the anonymous struct object to the current context.
5076 CurContext->addDecl(Anon);
5077
5078 // Inject the members of the anonymous struct into the current
5079 // context and into the identifier resolver chain for name lookup
5080 // purposes.
5081 SmallVector<NamedDecl*, 2> Chain;
5082 Chain.push_back(Anon);
5083
5084 RecordDecl *RecordDef = Record->getDefinition();
5085 if (RequireCompleteType(Anon->getLocation(), RecTy,
5086 diag::err_field_incomplete) ||
5087 InjectAnonymousStructOrUnionMembers(*this, S, CurContext, RecordDef,
5088 AS_none, Chain)) {
5089 Anon->setInvalidDecl();
5090 ParentDecl->setInvalidDecl();
5091 }
5092
5093 return Anon;
5094}
5095
5096/// GetNameForDeclarator - Determine the full declaration name for the
5097/// given Declarator.
5098DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
5099 return GetNameFromUnqualifiedId(D.getName());
5100}
5101
5102/// Retrieves the declaration name from a parsed unqualified-id.
5103DeclarationNameInfo
5104Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
5105 DeclarationNameInfo NameInfo;
5106 NameInfo.setLoc(Name.StartLocation);
5107
5108 switch (Name.getKind()) {
5109
5110 case UnqualifiedIdKind::IK_ImplicitSelfParam:
5111 case UnqualifiedIdKind::IK_Identifier:
5112 NameInfo.setName(Name.Identifier);
5113 return NameInfo;
5114
5115 case UnqualifiedIdKind::IK_DeductionGuideName: {
5116 // C++ [temp.deduct.guide]p3:
5117 // The simple-template-id shall name a class template specialization.
5118 // The template-name shall be the same identifier as the template-name
5119 // of the simple-template-id.
5120 // These together intend to imply that the template-name shall name a
5121 // class template.
5122 // FIXME: template<typename T> struct X {};
5123 // template<typename T> using Y = X<T>;
5124 // Y(int) -> Y<int>;
5125 // satisfies these rules but does not name a class template.
5126 TemplateName TN = Name.TemplateName.get().get();
5127 auto *Template = TN.getAsTemplateDecl();
5128 if (!Template || !isa<ClassTemplateDecl>(Template)) {
5129 Diag(Name.StartLocation,
5130 diag::err_deduction_guide_name_not_class_template)
5131 << (int)getTemplateNameKindForDiagnostics(TN) << TN;
5132 if (Template)
5133 Diag(Template->getLocation(), diag::note_template_decl_here);
5134 return DeclarationNameInfo();
5135 }
5136
5137 NameInfo.setName(
5138 Context.DeclarationNames.getCXXDeductionGuideName(Template));
5139 return NameInfo;
5140 }
5141
5142 case UnqualifiedIdKind::IK_OperatorFunctionId:
5143 NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
5144 Name.OperatorFunctionId.Operator));
5145 NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
5146 = Name.OperatorFunctionId.SymbolLocations[0];
5147 NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
5148 = Name.EndLocation.getRawEncoding();
5149 return NameInfo;
5150
5151 case UnqualifiedIdKind::IK_LiteralOperatorId:
5152 NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
5153 Name.Identifier));
5154 NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
5155 return NameInfo;
5156
5157 case UnqualifiedIdKind::IK_ConversionFunctionId: {
5158 TypeSourceInfo *TInfo;
5159 QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
5160 if (Ty.isNull())
5161 return DeclarationNameInfo();
5162 NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
5163 Context.getCanonicalType(Ty)));
5164 NameInfo.setNamedTypeInfo(TInfo);
5165 return NameInfo;
5166 }
5167
5168 case UnqualifiedIdKind::IK_ConstructorName: {
5169 TypeSourceInfo *TInfo;
5170 QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
5171 if (Ty.isNull())
5172 return DeclarationNameInfo();
5173 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5174 Context.getCanonicalType(Ty)));
5175 NameInfo.setNamedTypeInfo(TInfo);
5176 return NameInfo;
5177 }
5178
5179 case UnqualifiedIdKind::IK_ConstructorTemplateId: {
5180 // In well-formed code, we can only have a constructor
5181 // template-id that refers to the current context, so go there
5182 // to find the actual type being constructed.
5183 CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
5184 if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
5185 return DeclarationNameInfo();
5186
5187 // Determine the type of the class being constructed.
5188 QualType CurClassType = Context.getTypeDeclType(CurClass);
5189
5190 // FIXME: Check two things: that the template-id names the same type as
5191 // CurClassType, and that the template-id does not occur when the name
5192 // was qualified.
5193
5194 NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
5195 Context.getCanonicalType(CurClassType)));
5196 // FIXME: should we retrieve TypeSourceInfo?
5197 NameInfo.setNamedTypeInfo(nullptr);
5198 return NameInfo;
5199 }
5200
5201 case UnqualifiedIdKind::IK_DestructorName: {
5202 TypeSourceInfo *TInfo;
5203 QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
5204 if (Ty.isNull())
5205 return DeclarationNameInfo();
5206 NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
5207 Context.getCanonicalType(Ty)));
5208 NameInfo.setNamedTypeInfo(TInfo);
5209 return NameInfo;
5210 }
5211
5212 case UnqualifiedIdKind::IK_TemplateId: {
5213 TemplateName TName = Name.TemplateId->Template.get();
5214 SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
5215 return Context.getNameForTemplate(TName, TNameLoc);
5216 }
5217
5218 } // switch (Name.getKind())
5219
5220 llvm_unreachable("Unknown name kind")::llvm::llvm_unreachable_internal("Unknown name kind", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 5220)
;
5221}
5222
5223static QualType getCoreType(QualType Ty) {
5224 do {
5225 if (Ty->isPointerType() || Ty->isReferenceType())
5226 Ty = Ty->getPointeeType();
5227 else if (Ty->isArrayType())
5228 Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
5229 else
5230 return Ty.withoutLocalFastQualifiers();
5231 } while (true);
5232}
5233
5234/// hasSimilarParameters - Determine whether the C++ functions Declaration
5235/// and Definition have "nearly" matching parameters. This heuristic is
5236/// used to improve diagnostics in the case where an out-of-line function
5237/// definition doesn't match any declaration within the class or namespace.
5238/// Also sets Params to the list of indices to the parameters that differ
5239/// between the declaration and the definition. If hasSimilarParameters
5240/// returns true and Params is empty, then all of the parameters match.
5241static bool hasSimilarParameters(ASTContext &Context,
5242 FunctionDecl *Declaration,
5243 FunctionDecl *Definition,
5244 SmallVectorImpl<unsigned> &Params) {
5245 Params.clear();
5246 if (Declaration->param_size() != Definition->param_size())
5247 return false;
5248 for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
5249 QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
5250 QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
5251
5252 // The parameter types are identical
5253 if (Context.hasSameUnqualifiedType(DefParamTy, DeclParamTy))
5254 continue;
5255
5256 QualType DeclParamBaseTy = getCoreType(DeclParamTy);
5257 QualType DefParamBaseTy = getCoreType(DefParamTy);
5258 const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
5259 const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
5260
5261 if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
5262 (DeclTyName && DeclTyName == DefTyName))
5263 Params.push_back(Idx);
5264 else // The two parameters aren't even close
5265 return false;
5266 }
5267
5268 return true;
5269}
5270
5271/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
5272/// declarator needs to be rebuilt in the current instantiation.
5273/// Any bits of declarator which appear before the name are valid for
5274/// consideration here. That's specifically the type in the decl spec
5275/// and the base type in any member-pointer chunks.
5276static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
5277 DeclarationName Name) {
5278 // The types we specifically need to rebuild are:
5279 // - typenames, typeofs, and decltypes
5280 // - types which will become injected class names
5281 // Of course, we also need to rebuild any type referencing such a
5282 // type. It's safest to just say "dependent", but we call out a
5283 // few cases here.
5284
5285 DeclSpec &DS = D.getMutableDeclSpec();
5286 switch (DS.getTypeSpecType()) {
5287 case DeclSpec::TST_typename:
5288 case DeclSpec::TST_typeofType:
5289 case DeclSpec::TST_underlyingType:
5290 case DeclSpec::TST_atomic: {
5291 // Grab the type from the parser.
5292 TypeSourceInfo *TSI = nullptr;
5293 QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
5294 if (T.isNull() || !T->isDependentType()) break;
5295
5296 // Make sure there's a type source info. This isn't really much
5297 // of a waste; most dependent types should have type source info
5298 // attached already.
5299 if (!TSI)
5300 TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
5301
5302 // Rebuild the type in the current instantiation.
5303 TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
5304 if (!TSI) return true;
5305
5306 // Store the new type back in the decl spec.
5307 ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
5308 DS.UpdateTypeRep(LocType);
5309 break;
5310 }
5311
5312 case DeclSpec::TST_decltype:
5313 case DeclSpec::TST_typeofExpr: {
5314 Expr *E = DS.getRepAsExpr();
5315 ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
5316 if (Result.isInvalid()) return true;
5317 DS.UpdateExprRep(Result.get());
5318 break;
5319 }
5320
5321 default:
5322 // Nothing to do for these decl specs.
5323 break;
5324 }
5325
5326 // It doesn't matter what order we do this in.
5327 for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
5328 DeclaratorChunk &Chunk = D.getTypeObject(I);
5329
5330 // The only type information in the declarator which can come
5331 // before the declaration name is the base type of a member
5332 // pointer.
5333 if (Chunk.Kind != DeclaratorChunk::MemberPointer)
5334 continue;
5335
5336 // Rebuild the scope specifier in-place.
5337 CXXScopeSpec &SS = Chunk.Mem.Scope();
5338 if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
5339 return true;
5340 }
5341
5342 return false;
5343}
5344
5345Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
5346 D.setFunctionDefinitionKind(FDK_Declaration);
5347 Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
5348
5349 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
5350 Dcl && Dcl->getDeclContext()->isFileContext())
5351 Dcl->setTopLevelDeclInObjCContainer();
5352
5353 if (getLangOpts().OpenCL)
5354 setCurrentOpenCLExtensionForDecl(Dcl);
5355
5356 return Dcl;
5357}
5358
5359/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
5360/// If T is the name of a class, then each of the following shall have a
5361/// name different from T:
5362/// - every static data member of class T;
5363/// - every member function of class T
5364/// - every member of class T that is itself a type;
5365/// \returns true if the declaration name violates these rules.
5366bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
5367 DeclarationNameInfo NameInfo) {
5368 DeclarationName Name = NameInfo.getName();
5369
5370 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC);
5371 while (Record && Record->isAnonymousStructOrUnion())
5372 Record = dyn_cast<CXXRecordDecl>(Record->getParent());
5373 if (Record && Record->getIdentifier() && Record->getDeclName() == Name) {
5374 Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
5375 return true;
5376 }
5377
5378 return false;
5379}
5380
5381/// Diagnose a declaration whose declarator-id has the given
5382/// nested-name-specifier.
5383///
5384/// \param SS The nested-name-specifier of the declarator-id.
5385///
5386/// \param DC The declaration context to which the nested-name-specifier
5387/// resolves.
5388///
5389/// \param Name The name of the entity being declared.
5390///
5391/// \param Loc The location of the name of the entity being declared.
5392///
5393/// \param IsTemplateId Whether the name is a (simple-)template-id, and thus
5394/// we're declaring an explicit / partial specialization / instantiation.
5395///
5396/// \returns true if we cannot safely recover from this error, false otherwise.
5397bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
5398 DeclarationName Name,
5399 SourceLocation Loc, bool IsTemplateId) {
5400 DeclContext *Cur = CurContext;
5401 while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
5402 Cur = Cur->getParent();
5403
5404 // If the user provided a superfluous scope specifier that refers back to the
5405 // class in which the entity is already declared, diagnose and ignore it.
5406 //
5407 // class X {
5408 // void X::f();
5409 // };
5410 //
5411 // Note, it was once ill-formed to give redundant qualification in all
5412 // contexts, but that rule was removed by DR482.
5413 if (Cur->Equals(DC)) {
5414 if (Cur->isRecord()) {
5415 Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification
5416 : diag::err_member_extra_qualification)
5417 << Name << FixItHint::CreateRemoval(SS.getRange());
5418 SS.clear();
5419 } else {
5420 Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name;
5421 }
5422 return false;
5423 }
5424
5425 // Check whether the qualifying scope encloses the scope of the original
5426 // declaration. For a template-id, we perform the checks in
5427 // CheckTemplateSpecializationScope.
5428 if (!Cur->Encloses(DC) && !IsTemplateId) {
5429 if (Cur->isRecord())
5430 Diag(Loc, diag::err_member_qualification)
5431 << Name << SS.getRange();
5432 else if (isa<TranslationUnitDecl>(DC))
5433 Diag(Loc, diag::err_invalid_declarator_global_scope)
5434 << Name << SS.getRange();
5435 else if (isa<FunctionDecl>(Cur))
5436 Diag(Loc, diag::err_invalid_declarator_in_function)
5437 << Name << SS.getRange();
5438 else if (isa<BlockDecl>(Cur))
5439 Diag(Loc, diag::err_invalid_declarator_in_block)
5440 << Name << SS.getRange();
5441 else
5442 Diag(Loc, diag::err_invalid_declarator_scope)
5443 << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
5444
5445 return true;
5446 }
5447
5448 if (Cur->isRecord()) {
5449 // Cannot qualify members within a class.
5450 Diag(Loc, diag::err_member_qualification)
5451 << Name << SS.getRange();
5452 SS.clear();
5453
5454 // C++ constructors and destructors with incorrect scopes can break
5455 // our AST invariants by having the wrong underlying types. If
5456 // that's the case, then drop this declaration entirely.
5457 if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
5458 Name.getNameKind() == DeclarationName::CXXDestructorName) &&
5459 !Context.hasSameType(Name.getCXXNameType(),
5460 Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
5461 return true;
5462
5463 return false;
5464 }
5465
5466 // C++11 [dcl.meaning]p1:
5467 // [...] "The nested-name-specifier of the qualified declarator-id shall
5468 // not begin with a decltype-specifer"
5469 NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
5470 while (SpecLoc.getPrefix())
5471 SpecLoc = SpecLoc.getPrefix();
5472 if (dyn_cast_or_null<DecltypeType>(
5473 SpecLoc.getNestedNameSpecifier()->getAsType()))
5474 Diag(Loc, diag::err_decltype_in_declarator)
5475 << SpecLoc.getTypeLoc().getSourceRange();
5476
5477 return false;
5478}
5479
5480NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
5481 MultiTemplateParamsArg TemplateParamLists) {
5482 // TODO: consider using NameInfo for diagnostic.
5483 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5484 DeclarationName Name = NameInfo.getName();
5485
5486 // All of these full declarators require an identifier. If it doesn't have
5487 // one, the ParsedFreeStandingDeclSpec action should be used.
5488 if (D.isDecompositionDeclarator()) {
5
Taking false branch
5489 return ActOnDecompositionDeclarator(S, D, TemplateParamLists);
5490 } else if (!Name) {
6
Taking false branch
5491 if (!D.isInvalidType()) // Reject this if we think it is valid.
5492 Diag(D.getDeclSpec().getBeginLoc(), diag::err_declarator_need_ident)
5493 << D.getDeclSpec().getSourceRange() << D.getSourceRange();
5494 return nullptr;
5495 } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
7
Assuming the condition is false
8
Taking false branch
5496 return nullptr;
5497
5498 // The scope passed in may not be a decl scope. Zip up the scope tree until
5499 // we find one that is.
5500 while ((S->getFlags() & Scope::DeclScope) == 0 ||
9
Assuming the condition is false
11
Loop condition is false. Execution continues on line 5504
5501 (S->getFlags() & Scope::TemplateParamScope) != 0)
10
Assuming the condition is false
5502 S = S->getParent();
5503
5504 DeclContext *DC = CurContext;
5505 if (D.getCXXScopeSpec().isInvalid())
12
Taking false branch
5506 D.setInvalidType();
5507 else if (D.getCXXScopeSpec().isSet()) {
13
Taking false branch
5508 if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
5509 UPPC_DeclarationQualifier))
5510 return nullptr;
5511
5512 bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
5513 DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
5514 if (!DC || isa<EnumDecl>(DC)) {
5515 // If we could not compute the declaration context, it's because the
5516 // declaration context is dependent but does not refer to a class,
5517 // class template, or class template partial specialization. Complain
5518 // and return early, to avoid the coming semantic disaster.
5519 Diag(D.getIdentifierLoc(),
5520 diag::err_template_qualified_declarator_no_match)
5521 << D.getCXXScopeSpec().getScopeRep()
5522 << D.getCXXScopeSpec().getRange();
5523 return nullptr;
5524 }
5525 bool IsDependentContext = DC->isDependentContext();
5526
5527 if (!IsDependentContext &&
5528 RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
5529 return nullptr;
5530
5531 // If a class is incomplete, do not parse entities inside it.
5532 if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
5533 Diag(D.getIdentifierLoc(),
5534 diag::err_member_def_undefined_record)
5535 << Name << DC << D.getCXXScopeSpec().getRange();
5536 return nullptr;
5537 }
5538 if (!D.getDeclSpec().isFriendSpecified()) {
5539 if (diagnoseQualifiedDeclaration(
5540 D.getCXXScopeSpec(), DC, Name, D.getIdentifierLoc(),
5541 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId)) {
5542 if (DC->isRecord())
5543 return nullptr;
5544
5545 D.setInvalidType();
5546 }
5547 }
5548
5549 // Check whether we need to rebuild the type of the given
5550 // declaration in the current instantiation.
5551 if (EnteringContext && IsDependentContext &&
5552 TemplateParamLists.size() != 0) {
5553 ContextRAII SavedContext(*this, DC);
5554 if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
5555 D.setInvalidType();
5556 }
5557 }
5558
5559 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5560 QualType R = TInfo->getType();
5561
5562 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
14
Assuming the condition is false
15
Taking false branch
5563 UPPC_DeclarationType))
5564 D.setInvalidType();
5565
5566 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
5567 forRedeclarationInCurContext());
5568
5569 // See if this is a redefinition of a variable in the same scope.
5570 if (!D.getCXXScopeSpec().isSet()) {
16
Taking true branch
5571 bool IsLinkageLookup = false;
5572 bool CreateBuiltins = false;
5573
5574 // If the declaration we're planning to build will be a function
5575 // or object with linkage, then look for another declaration with
5576 // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
5577 //
5578 // If the declaration we're planning to build will be declared with
5579 // external linkage in the translation unit, create any builtin with
5580 // the same name.
5581 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
17
Assuming the condition is false
18
Taking false branch
5582 /* Do nothing*/;
5583 else if (CurContext->isFunctionOrMethod() &&
5584 (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
5585 R->isFunctionType())) {
5586 IsLinkageLookup = true;
5587 CreateBuiltins =
5588 CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
5589 } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
5590 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
5591 CreateBuiltins = true;
5592
5593 if (IsLinkageLookup
18.1
'IsLinkageLookup' is false
18.1
'IsLinkageLookup' is false
) {
19
Taking false branch
5594 Previous.clear(LookupRedeclarationWithLinkage);
5595 Previous.setRedeclarationKind(ForExternalRedeclaration);
5596 }
5597
5598 LookupName(Previous, S, CreateBuiltins);
5599 } else { // Something like "int foo::x;"
5600 LookupQualifiedName(Previous, DC);
5601
5602 // C++ [dcl.meaning]p1:
5603 // When the declarator-id is qualified, the declaration shall refer to a
5604 // previously declared member of the class or namespace to which the
5605 // qualifier refers (or, in the case of a namespace, of an element of the
5606 // inline namespace set of that namespace (7.3.1)) or to a specialization
5607 // thereof; [...]
5608 //
5609 // Note that we already checked the context above, and that we do not have
5610 // enough information to make sure that Previous contains the declaration
5611 // we want to match. For example, given:
5612 //
5613 // class X {
5614 // void f();
5615 // void f(float);
5616 // };
5617 //
5618 // void X::f(int) { } // ill-formed
5619 //
5620 // In this case, Previous will point to the overload set
5621 // containing the two f's declared in X, but neither of them
5622 // matches.
5623
5624 // C++ [dcl.meaning]p1:
5625 // [...] the member shall not merely have been introduced by a
5626 // using-declaration in the scope of the class or namespace nominated by
5627 // the nested-name-specifier of the declarator-id.
5628 RemoveUsingDecls(Previous);
5629 }
5630
5631 if (Previous.isSingleResult() &&
20
Assuming the condition is false
5632 Previous.getFoundDecl()->isTemplateParameter()) {
5633 // Maybe we will complain about the shadowed template parameter.
5634 if (!D.isInvalidType())
5635 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
5636 Previous.getFoundDecl());
5637
5638 // Just pretend that we didn't see the previous declaration.
5639 Previous.clear();
5640 }
5641
5642 if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo))
21
Taking false branch
5643 // Forget that the previous declaration is the injected-class-name.
5644 Previous.clear();
5645
5646 // In C++, the previous declaration we find might be a tag type
5647 // (class or enum). In this case, the new declaration will hide the
5648 // tag type. Note that this applies to functions, function templates, and
5649 // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates.
5650 if (Previous.isSingleTagDecl() &&
22
Assuming the condition is false
5651 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
5652 (TemplateParamLists.size() == 0 || R->isFunctionType()))
5653 Previous.clear();
5654
5655 // Check that there are no default arguments other than in the parameters
5656 // of a function declaration (C++ only).
5657 if (getLangOpts().CPlusPlus)
23
Assuming field 'CPlusPlus' is not equal to 0
24
Taking true branch
5658 CheckExtraCXXDefaultArguments(D);
5659
5660 NamedDecl *New;
5661
5662 bool AddToScope = true;
5663 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
25
Assuming the condition is true
26
Taking true branch
5664 if (TemplateParamLists.size()) {
27
Assuming the condition is false
28
Taking false branch
5665 Diag(D.getIdentifierLoc(), diag::err_template_typedef);
5666 return nullptr;
5667 }
5668
5669 New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
29
Calling 'Sema::ActOnTypedefDeclarator'
5670 } else if (R->isFunctionType()) {
5671 New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
5672 TemplateParamLists,
5673 AddToScope);
5674 } else {
5675 New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
5676 AddToScope);
5677 }
5678
5679 if (!New)
5680 return nullptr;
5681
5682 // If this has an identifier and is not a function template specialization,
5683 // add it to the scope stack.
5684 if (New->getDeclName() && AddToScope)
5685 PushOnScopeChains(New, S);
5686
5687 if (isInOpenMPDeclareTargetContext())
5688 checkDeclIsAllowedInOpenMPTarget(nullptr, New);
5689
5690 return New;
5691}
5692
5693/// Helper method to turn variable array types into constant array
5694/// types in certain situations which would otherwise be errors (for
5695/// GCC compatibility).
5696static QualType TryToFixInvalidVariablyModifiedType(QualType T,
5697 ASTContext &Context,
5698 bool &SizeIsNegative,
5699 llvm::APSInt &Oversized) {
5700 // This method tries to turn a variable array into a constant
5701 // array even when the size isn't an ICE. This is necessary
5702 // for compatibility with code that depends on gcc's buggy
5703 // constant expression folding, like struct {char x[(int)(char*)2];}
5704 SizeIsNegative = false;
5705 Oversized = 0;
5706
5707 if (T->isDependentType())
5708 return QualType();
5709
5710 QualifierCollector Qs;
5711 const Type *Ty = Qs.strip(T);
5712
5713 if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
5714 QualType Pointee = PTy->getPointeeType();
5715 QualType FixedType =
5716 TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
5717 Oversized);
5718 if (FixedType.isNull()) return FixedType;
5719 FixedType = Context.getPointerType(FixedType);
5720 return Qs.apply(Context, FixedType);
5721 }
5722 if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
5723 QualType Inner = PTy->getInnerType();
5724 QualType FixedType =
5725 TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
5726 Oversized);
5727 if (FixedType.isNull()) return FixedType;
5728 FixedType = Context.getParenType(FixedType);
5729 return Qs.apply(Context, FixedType);
5730 }
5731
5732 const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
5733 if (!VLATy)
5734 return QualType();
5735 // FIXME: We should probably handle this case
5736 if (VLATy->getElementType()->isVariablyModifiedType())
5737 return QualType();
5738
5739 Expr::EvalResult Result;
5740 if (!VLATy->getSizeExpr() ||
5741 !VLATy->getSizeExpr()->EvaluateAsInt(Result, Context))
5742 return QualType();
5743
5744 llvm::APSInt Res = Result.Val.getInt();
5745
5746 // Check whether the array size is negative.
5747 if (Res.isSigned() && Res.isNegative()) {
5748 SizeIsNegative = true;
5749 return QualType();
5750 }
5751
5752 // Check whether the array is too large to be addressed.
5753 unsigned ActiveSizeBits
5754 = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
5755 Res);
5756 if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
5757 Oversized = Res;
5758 return QualType();
5759 }
5760
5761 return Context.getConstantArrayType(VLATy->getElementType(),
5762 Res, ArrayType::Normal, 0);
5763}
5764
5765static void
5766FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
5767 SrcTL = SrcTL.getUnqualifiedLoc();
5768 DstTL = DstTL.getUnqualifiedLoc();
5769 if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
5770 PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
5771 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
5772 DstPTL.getPointeeLoc());
5773 DstPTL.setStarLoc(SrcPTL.getStarLoc());
5774 return;
5775 }
5776 if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
5777 ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
5778 FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
5779 DstPTL.getInnerLoc());
5780 DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
5781 DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
5782 return;
5783 }
5784 ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
5785 ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
5786 TypeLoc SrcElemTL = SrcATL.getElementLoc();
5787 TypeLoc DstElemTL = DstATL.getElementLoc();
5788 DstElemTL.initializeFullCopy(SrcElemTL);
5789 DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
5790 DstATL.setSizeExpr(SrcATL.getSizeExpr());
5791 DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
5792}
5793
5794/// Helper method to turn variable array types into constant array
5795/// types in certain situations which would otherwise be errors (for
5796/// GCC compatibility).
5797static TypeSourceInfo*
5798TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
5799 ASTContext &Context,
5800 bool &SizeIsNegative,
5801 llvm::APSInt &Oversized) {
5802 QualType FixedTy
5803 = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
5804 SizeIsNegative, Oversized);
5805 if (FixedTy.isNull())
5806 return nullptr;
5807 TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
5808 FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
5809 FixedTInfo->getTypeLoc());
5810 return FixedTInfo;
5811}
5812
5813/// Register the given locally-scoped extern "C" declaration so
5814/// that it can be found later for redeclarations. We include any extern "C"
5815/// declaration that is not visible in the translation unit here, not just
5816/// function-scope declarations.
5817void
5818Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
5819 if (!getLangOpts().CPlusPlus &&
5820 ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
5821 // Don't need to track declarations in the TU in C.
5822 return;
5823
5824 // Note that we have a locally-scoped external with this name.
5825 Context.getExternCContextDecl()->makeDeclVisibleInContext(ND);
5826}
5827
5828NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
5829 // FIXME: We can have multiple results via __attribute__((overloadable)).
5830 auto Result = Context.getExternCContextDecl()->lookup(Name);
5831 return Result.empty() ? nullptr : *Result.begin();
5832}
5833
5834/// Diagnose function specifiers on a declaration of an identifier that
5835/// does not identify a function.
5836void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
5837 // FIXME: We should probably indicate the identifier in question to avoid
5838 // confusion for constructs like "virtual int a(), b;"
5839 if (DS.isVirtualSpecified())
5840 Diag(DS.getVirtualSpecLoc(),
5841 diag::err_virtual_non_function);
5842
5843 if (DS.hasExplicitSpecifier())
5844 Diag(DS.getExplicitSpecLoc(),
5845 diag::err_explicit_non_function);
5846
5847 if (DS.isNoreturnSpecified())
5848 Diag(DS.getNoreturnSpecLoc(),
5849 diag::err_noreturn_non_function);
5850}
5851
5852NamedDecl*
5853Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
5854 TypeSourceInfo *TInfo, LookupResult &Previous) {
5855 // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
5856 if (D.getCXXScopeSpec().isSet()) {
30
Taking false branch
5857 Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
5858 << D.getCXXScopeSpec().getRange();
5859 D.setInvalidType();
5860 // Pretend we didn't see the scope specifier.
5861 DC = CurContext;
5862 Previous.clear();
5863 }
5864
5865 DiagnoseFunctionSpecifiers(D.getDeclSpec());
5866
5867 if (D.getDeclSpec().isInlineSpecified())
31
Assuming the condition is false
32
Taking false branch
5868 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
5869 << getLangOpts().CPlusPlus17;
5870 if (D.getDeclSpec().hasConstexprSpecifier())
33
Taking false branch
5871 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
5872 << 1 << D.getDeclSpec().getConstexprSpecifier();
5873
5874 if (D.getName().Kind != UnqualifiedIdKind::IK_Identifier) {
34
Assuming field 'Kind' is equal to IK_Identifier
35
Taking false branch
5875 if (D.getName().Kind == UnqualifiedIdKind::IK_DeductionGuideName)
5876 Diag(D.getName().StartLocation,
5877 diag::err_deduction_guide_invalid_specifier)
5878 << "typedef";
5879 else
5880 Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
5881 << D.getName().getSourceRange();
5882 return nullptr;
5883 }
5884
5885 TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
5886 if (!NewTD) return nullptr;
36
Assuming 'NewTD' is non-null
37
Taking false branch
5887
5888 // Handle attributes prior to checking for duplicates in MergeVarDecl
5889 ProcessDeclAttributes(S, NewTD, D);
5890
5891 CheckTypedefForVariablyModifiedType(S, NewTD);
38
Calling 'Sema::CheckTypedefForVariablyModifiedType'
42
Returning from 'Sema::CheckTypedefForVariablyModifiedType'
5892
5893 bool Redeclaration = D.isRedeclaration();
5894 NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
43
Calling 'Sema::ActOnTypedefNameDecl'
5895 D.setRedeclaration(Redeclaration);
5896 return ND;
5897}
5898
5899void
5900Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
5901 // C99 6.7.7p2: If a typedef name specifies a variably modified type
5902 // then it shall have block scope.
5903 // Note that variably modified types must be fixed before merging the decl so
5904 // that redeclarations will match.
5905 TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
5906 QualType T = TInfo->getType();
5907 if (T->isVariablyModifiedType()) {
39
Assuming the condition is false
40
Taking false branch
5908 setFunctionHasBranchProtectedScope();
5909
5910 if (S->getFnParent() == nullptr) {
5911 bool SizeIsNegative;
5912 llvm::APSInt Oversized;
5913 TypeSourceInfo *FixedTInfo =
5914 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
5915 SizeIsNegative,
5916 Oversized);
5917 if (FixedTInfo) {
5918 Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
5919 NewTD->setTypeSourceInfo(FixedTInfo);
5920 } else {
5921 if (SizeIsNegative)
5922 Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
5923 else if (T->isVariableArrayType())
5924 Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
5925 else if (Oversized.getBoolValue())
5926 Diag(NewTD->getLocation(), diag::err_array_too_large)
5927 << Oversized.toString(10);
5928 else
5929 Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
5930 NewTD->setInvalidDecl();
5931 }
5932 }
5933 }
5934}
41
Returning without writing to 'NewTD->InvalidDecl', which participates in a condition later
5935
5936/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
5937/// declares a typedef-name, either using the 'typedef' type specifier or via
5938/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
5939NamedDecl*
5940Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
5941 LookupResult &Previous, bool &Redeclaration) {
5942
5943 // Find the shadowed declaration before filtering for scope.
5944 NamedDecl *ShadowedDecl = getShadowedDeclaration(NewTD, Previous);
5945
5946 // Merge the decl with the existing one if appropriate. If the decl is
5947 // in an outer scope, it isn't the same thing.
5948 FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false,
5949 /*AllowInlineNamespace*/false);
5950 filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous);
44
Calling 'filterNonConflictingPreviousTypedefDecls'
49
Returning from 'filterNonConflictingPreviousTypedefDecls'
5951 if (!Previous.empty()) {
50
Assuming the condition is true
51
Taking true branch
5952 Redeclaration = true;
5953 MergeTypedefNameDecl(S, NewTD, Previous);
52
Calling 'Sema::MergeTypedefNameDecl'
5954 } else {
5955 inferGslPointerAttribute(NewTD);
5956 }
5957
5958 if (ShadowedDecl && !Redeclaration)
5959 CheckShadow(NewTD, ShadowedDecl, Previous);
5960
5961 // If this is the C FILE type, notify the AST context.
5962 if (IdentifierInfo *II = NewTD->getIdentifier())
5963 if (!NewTD->isInvalidDecl() &&
5964 NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5965 if (II->isStr("FILE"))
5966 Context.setFILEDecl(NewTD);
5967 else if (II->isStr("jmp_buf"))
5968 Context.setjmp_bufDecl(NewTD);
5969 else if (II->isStr("sigjmp_buf"))
5970 Context.setsigjmp_bufDecl(NewTD);
5971 else if (II->isStr("ucontext_t"))
5972 Context.setucontext_tDecl(NewTD);
5973 }
5974
5975 return NewTD;
5976}
5977
5978/// Determines whether the given declaration is an out-of-scope
5979/// previous declaration.
5980///
5981/// This routine should be invoked when name lookup has found a
5982/// previous declaration (PrevDecl) that is not in the scope where a
5983/// new declaration by the same name is being introduced. If the new
5984/// declaration occurs in a local scope, previous declarations with
5985/// linkage may still be considered previous declarations (C99
5986/// 6.2.2p4-5, C++ [basic.link]p6).
5987///
5988/// \param PrevDecl the previous declaration found by name
5989/// lookup
5990///
5991/// \param DC the context in which the new declaration is being
5992/// declared.
5993///
5994/// \returns true if PrevDecl is an out-of-scope previous declaration
5995/// for a new delcaration with the same name.
5996static bool
5997isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
5998 ASTContext &Context) {
5999 if (!PrevDecl)
6000 return false;
6001
6002 if (!PrevDecl->hasLinkage())
6003 return false;
6004
6005 if (Context.getLangOpts().CPlusPlus) {
6006 // C++ [basic.link]p6:
6007 // If there is a visible declaration of an entity with linkage
6008 // having the same name and type, ignoring entities declared
6009 // outside the innermost enclosing namespace scope, the block
6010 // scope declaration declares that same entity and receives the
6011 // linkage of the previous declaration.
6012 DeclContext *OuterContext = DC->getRedeclContext();
6013 if (!OuterContext->isFunctionOrMethod())
6014 // This rule only applies to block-scope declarations.
6015 return false;
6016
6017 DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
6018 if (PrevOuterContext->isRecord())
6019 // We found a member function: ignore it.
6020 return false;
6021
6022 // Find the innermost enclosing namespace for the new and
6023 // previous declarations.
6024 OuterContext = OuterContext->getEnclosingNamespaceContext();
6025 PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
6026
6027 // The previous declaration is in a different namespace, so it
6028 // isn't the same function.
6029 if (!OuterContext->Equals(PrevOuterContext))
6030 return false;
6031 }
6032
6033 return true;
6034}
6035
6036static void SetNestedNameSpecifier(Sema &S, DeclaratorDecl *DD, Declarator &D) {
6037 CXXScopeSpec &SS = D.getCXXScopeSpec();
6038 if (!SS.isSet()) return;
6039 DD->setQualifierInfo(SS.getWithLocInContext(S.Context));
6040}
6041
6042bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
6043 QualType type = decl->getType();
6044 Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
6045 if (lifetime == Qualifiers::OCL_Autoreleasing) {
6046 // Various kinds of declaration aren't allowed to be __autoreleasing.
6047 unsigned kind = -1U;
6048 if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
6049 if (var->hasAttr<BlocksAttr>())
6050 kind = 0; // __block
6051 else if (!var->hasLocalStorage())
6052 kind = 1; // global
6053 } else if (isa<ObjCIvarDecl>(decl)) {
6054 kind = 3; // ivar
6055 } else if (isa<FieldDecl>(decl)) {
6056 kind = 2; // field
6057 }
6058
6059 if (kind != -1U) {
6060 Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
6061 << kind;
6062 }
6063 } else if (lifetime == Qualifiers::OCL_None) {
6064 // Try to infer lifetime.
6065 if (!type->isObjCLifetimeType())
6066 return false;
6067
6068 lifetime = type->getObjCARCImplicitLifetime();
6069 type = Context.getLifetimeQualifiedType(type, lifetime);
6070 decl->setType(type);
6071 }
6072
6073 if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
6074 // Thread-local variables cannot have lifetime.
6075 if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
6076 var->getTLSKind()) {
6077 Diag(var->getLocation(), diag::err_arc_thread_ownership)
6078 << var->getType();
6079 return true;
6080 }
6081 }
6082
6083 return false;
6084}
6085
6086static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
6087 // Ensure that an auto decl is deduced otherwise the checks below might cache
6088 // the wrong linkage.
6089 assert(S.ParsingInitForAutoVars.count(&ND) == 0)((S.ParsingInitForAutoVars.count(&ND) == 0) ? static_cast
<void> (0) : __assert_fail ("S.ParsingInitForAutoVars.count(&ND) == 0"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 6089, __PRETTY_FUNCTION__))
;
6090
6091 // 'weak' only applies to declarations with external linkage.
6092 if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
6093 if (!ND.isExternallyVisible()) {
6094 S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
6095 ND.dropAttr<WeakAttr>();
6096 }
6097 }
6098 if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
6099 if (ND.isExternallyVisible()) {
6100 S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
6101 ND.dropAttr<WeakRefAttr>();
6102 ND.dropAttr<AliasAttr>();
6103 }
6104 }
6105
6106 if (auto *VD = dyn_cast<VarDecl>(&ND)) {
6107 if (VD->hasInit()) {
6108 if (const auto *Attr = VD->getAttr<AliasAttr>()) {
6109 assert(VD->isThisDeclarationADefinition() &&((VD->isThisDeclarationADefinition() && !VD->isExternallyVisible
() && "Broken AliasAttr handled late!") ? static_cast
<void> (0) : __assert_fail ("VD->isThisDeclarationADefinition() && !VD->isExternallyVisible() && \"Broken AliasAttr handled late!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 6110, __PRETTY_FUNCTION__))
6110 !VD->isExternallyVisible() && "Broken AliasAttr handled late!")((VD->isThisDeclarationADefinition() && !VD->isExternallyVisible
() && "Broken AliasAttr handled late!") ? static_cast
<void> (0) : __assert_fail ("VD->isThisDeclarationADefinition() && !VD->isExternallyVisible() && \"Broken AliasAttr handled late!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 6110, __PRETTY_FUNCTION__))
;
6111 S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0;
6112 VD->dropAttr<AliasAttr>();
6113 }
6114 }
6115 }
6116
6117 // 'selectany' only applies to externally visible variable declarations.
6118 // It does not apply to functions.
6119 if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
6120 if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
6121 S.Diag(Attr->getLocation(),
6122 diag::err_attribute_selectany_non_extern_data);
6123 ND.dropAttr<SelectAnyAttr>();
6124 }
6125 }
6126
6127 if (const InheritableAttr *Attr = getDLLAttr(&ND)) {
6128 auto *VD = dyn_cast<VarDecl>(&ND);
6129 bool IsAnonymousNS = false;
6130 bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft();
6131 if (VD) {
6132 const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(VD->getDeclContext());
6133 while (NS && !IsAnonymousNS) {
6134 IsAnonymousNS = NS->isAnonymousNamespace();
6135 NS = dyn_cast<NamespaceDecl>(NS->getParent());
6136 }
6137 }
6138 // dll attributes require external linkage. Static locals may have external
6139 // linkage but still cannot be explicitly imported or exported.
6140 // In Microsoft mode, a variable defined in anonymous namespace must have
6141 // external linkage in order to be exported.
6142 bool AnonNSInMicrosoftMode = IsAnonymousNS && IsMicrosoft;
6143 if ((ND.isExternallyVisible() && AnonNSInMicrosoftMode) ||
6144 (!AnonNSInMicrosoftMode &&
6145 (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())))) {
6146 S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern)
6147 << &ND << Attr;
6148 ND.setInvalidDecl();
6149 }
6150 }
6151
6152 // Virtual functions cannot be marked as 'notail'.
6153 if (auto *Attr = ND.getAttr<NotTailCalledAttr>())
6154 if (auto *MD = dyn_cast<CXXMethodDecl>(&ND))
6155 if (MD->isVirtual()) {
6156 S.Diag(ND.getLocation(),
6157 diag::err_invalid_attribute_on_virtual_function)
6158 << Attr;
6159 ND.dropAttr<NotTailCalledAttr>();
6160 }
6161
6162 // Check the attributes on the function type, if any.
6163 if (const auto *FD = dyn_cast<FunctionDecl>(&ND)) {
6164 // Don't declare this variable in the second operand of the for-statement;
6165 // GCC miscompiles that by ending its lifetime before evaluating the
6166 // third operand. See gcc.gnu.org/PR86769.
6167 AttributedTypeLoc ATL;
6168 for (TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc();
6169 (ATL = TL.getAsAdjusted<AttributedTypeLoc>());
6170 TL = ATL.getModifiedLoc()) {
6171 // The [[lifetimebound]] attribute can be applied to the implicit object
6172 // parameter of a non-static member function (other than a ctor or dtor)
6173 // by applying it to the function type.
6174 if (const auto *A = ATL.getAttrAs<LifetimeBoundAttr>()) {
6175 const auto *MD = dyn_cast<CXXMethodDecl>(FD);
6176 if (!MD || MD->isStatic()) {
6177 S.Diag(A->getLocation(), diag::err_lifetimebound_no_object_param)
6178 << !MD << A->getRange();
6179 } else if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) {
6180 S.Diag(A->getLocation(), diag::err_lifetimebound_ctor_dtor)
6181 << isa<CXXDestructorDecl>(MD) << A->getRange();
6182 }
6183 }
6184 }
6185 }
6186}
6187
6188static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl,
6189 NamedDecl *NewDecl,
6190 bool IsSpecialization,
6191 bool IsDefinition) {
6192 if (OldDecl->isInvalidDecl() || NewDecl->isInvalidDecl())
6193 return;
6194
6195 bool IsTemplate = false;
6196 if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) {
6197 OldDecl = OldTD->getTemplatedDecl();
6198 IsTemplate = true;
6199 if (!IsSpecialization)
6200 IsDefinition = false;
6201 }
6202 if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) {
6203 NewDecl = NewTD->getTemplatedDecl();
6204 IsTemplate = true;
6205 }
6206
6207 if (!OldDecl || !NewDecl)
6208 return;
6209
6210 const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>();
6211 const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>();
6212 const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>();
6213 const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>();
6214
6215 // dllimport and dllexport are inheritable attributes so we have to exclude
6216 // inherited attribute instances.
6217 bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) ||
6218 (NewExportAttr && !NewExportAttr->isInherited());
6219
6220 // A redeclaration is not allowed to add a dllimport or dllexport attribute,
6221 // the only exception being explicit specializations.
6222 // Implicitly generated declarations are also excluded for now because there
6223 // is no other way to switch these to use dllimport or dllexport.
6224 bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr;
6225
6226 if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) {
6227 // Allow with a warning for free functions and global variables.
6228 bool JustWarn = false;
6229 if (!OldDecl->isCXXClassMember()) {
6230 auto *VD = dyn_cast<VarDecl>(OldDecl);
6231 if (VD && !VD->getDescribedVarTemplate())
6232 JustWarn = true;
6233 auto *FD = dyn_cast<FunctionDecl>(OldDecl);
6234 if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate)
6235 JustWarn = true;
6236 }
6237
6238 // We cannot change a declaration that's been used because IR has already
6239 // been emitted. Dllimported functions will still work though (modulo
6240 // address equality) as they can use the thunk.
6241 if (OldDecl->isUsed())
6242 if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr)
6243 JustWarn = false;
6244
6245 unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration
6246 : diag::err_attribute_dll_redeclaration;
6247 S.Diag(NewDecl->getLocation(), DiagID)
6248 << NewDecl
6249 << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr);
6250 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6251 if (!JustWarn) {
6252 NewDecl->setInvalidDecl();
6253 return;
6254 }
6255 }
6256
6257 // A redeclaration is not allowed to drop a dllimport attribute, the only
6258 // exceptions being inline function definitions (except for function
6259 // templates), local extern declarations, qualified friend declarations or
6260 // special MSVC extension: in the last case, the declaration is treated as if
6261 // it were marked dllexport.
6262 bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false;
6263 bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft();
6264 if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) {
6265 // Ignore static data because out-of-line definitions are diagnosed
6266 // separately.
6267 IsStaticDataMember = VD->isStaticDataMember();
6268 IsDefinition = VD->isThisDeclarationADefinition(S.Context) !=
6269 VarDecl::DeclarationOnly;
6270 } else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) {
6271 IsInline = FD->isInlined();
6272 IsQualifiedFriend = FD->getQualifier() &&
6273 FD->getFriendObjectKind() == Decl::FOK_Declared;
6274 }
6275
6276 if (OldImportAttr && !HasNewAttr &&
6277 (!IsInline || (IsMicrosoft && IsTemplate)) && !IsStaticDataMember &&
6278 !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) {
6279 if (IsMicrosoft && IsDefinition) {
6280 S.Diag(NewDecl->getLocation(),
6281 diag::warn_redeclaration_without_import_attribute)
6282 << NewDecl;
6283 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6284 NewDecl->dropAttr<DLLImportAttr>();
6285 NewDecl->addAttr(
6286 DLLExportAttr::CreateImplicit(S.Context, NewImportAttr->getRange()));
6287 } else {
6288 S.Diag(NewDecl->getLocation(),
6289 diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6290 << NewDecl << OldImportAttr;
6291 S.Diag(OldDecl->getLocation(), diag::note_previous_declaration);
6292 S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute);
6293 OldDecl->dropAttr<DLLImportAttr>();
6294 NewDecl->dropAttr<DLLImportAttr>();
6295 }
6296 } else if (IsInline && OldImportAttr && !IsMicrosoft) {
6297 // In MinGW, seeing a function declared inline drops the dllimport
6298 // attribute.
6299 OldDecl->dropAttr<DLLImportAttr>();
6300 NewDecl->dropAttr<DLLImportAttr>();
6301 S.Diag(NewDecl->getLocation(),
6302 diag::warn_dllimport_dropped_from_inline_function)
6303 << NewDecl << OldImportAttr;
6304 }
6305
6306 // A specialization of a class template member function is processed here
6307 // since it's a redeclaration. If the parent class is dllexport, the
6308 // specialization inherits that attribute. This doesn't happen automatically
6309 // since the parent class isn't instantiated until later.
6310 if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDecl)) {
6311 if (MD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization &&
6312 !NewImportAttr && !NewExportAttr) {
6313 if (const DLLExportAttr *ParentExportAttr =
6314 MD->getParent()->getAttr<DLLExportAttr>()) {
6315 DLLExportAttr *NewAttr = ParentExportAttr->clone(S.Context);
6316 NewAttr->setInherited(true);
6317 NewDecl->addAttr(NewAttr);
6318 }
6319 }
6320 }
6321}
6322
6323/// Given that we are within the definition of the given function,
6324/// will that definition behave like C99's 'inline', where the
6325/// definition is discarded except for optimization purposes?
6326static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
6327 // Try to avoid calling GetGVALinkageForFunction.
6328
6329 // All cases of this require the 'inline' keyword.
6330 if (!FD->isInlined()) return false;
6331
6332 // This is only possible in C++ with the gnu_inline attribute.
6333 if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
6334 return false;
6335
6336 // Okay, go ahead and call the relatively-more-expensive function.
6337 return S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally;
6338}
6339
6340/// Determine whether a variable is extern "C" prior to attaching
6341/// an initializer. We can't just call isExternC() here, because that
6342/// will also compute and cache whether the declaration is externally
6343/// visible, which might change when we attach the initializer.
6344///
6345/// This can only be used if the declaration is known to not be a
6346/// redeclaration of an internal linkage declaration.
6347///
6348/// For instance:
6349///
6350/// auto x = []{};
6351///
6352/// Attaching the initializer here makes this declaration not externally
6353/// visible, because its type has internal linkage.
6354///
6355/// FIXME: This is a hack.
6356template<typename T>
6357static bool isIncompleteDeclExternC(Sema &S, const T *D) {
6358 if (S.getLangOpts().CPlusPlus) {
6359 // In C++, the overloadable attribute negates the effects of extern "C".
6360 if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
6361 return false;
6362
6363 // So do CUDA's host/device attributes.
6364 if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() ||
6365 D->template hasAttr<CUDAHostAttr>()))
6366 return false;
6367 }
6368 return D->isExternC();
6369}
6370
6371static bool shouldConsiderLinkage(const VarDecl *VD) {
6372 const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
6373 if (DC->isFunctionOrMethod() || isa<OMPDeclareReductionDecl>(DC) ||
6374 isa<OMPDeclareMapperDecl>(DC))
6375 return VD->hasExternalStorage();
6376 if (DC->isFileContext())
6377 return true;
6378 if (DC->isRecord())
6379 return false;
6380 llvm_unreachable("Unexpected context")::llvm::llvm_unreachable_internal("Unexpected context", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 6380)
;
6381}
6382
6383static bool shouldConsiderLinkage(const FunctionDecl *FD) {
6384 const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
6385 if (DC->isFileContext() || DC->isFunctionOrMethod() ||
6386 isa<OMPDeclareReductionDecl>(DC) || isa<OMPDeclareMapperDecl>(DC))
6387 return true;
6388 if (DC->isRecord())
6389 return false;
6390 llvm_unreachable("Unexpected context")::llvm::llvm_unreachable_internal("Unexpected context", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 6390)
;
6391}
6392
6393static bool hasParsedAttr(Scope *S, const Declarator &PD,
6394 ParsedAttr::Kind Kind) {
6395 // Check decl attributes on the DeclSpec.
6396 if (PD.getDeclSpec().getAttributes().hasAttribute(Kind))
6397 return true;
6398
6399 // Walk the declarator structure, checking decl attributes that were in a type
6400 // position to the decl itself.
6401 for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) {
6402 if (PD.getTypeObject(I).getAttrs().hasAttribute(Kind))
6403 return true;
6404 }
6405
6406 // Finally, check attributes on the decl itself.
6407 return PD.getAttributes().hasAttribute(Kind);
6408}
6409
6410/// Adjust the \c DeclContext for a function or variable that might be a
6411/// function-local external declaration.
6412bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
6413 if (!DC->isFunctionOrMethod())
6414 return false;
6415
6416 // If this is a local extern function or variable declared within a function
6417 // template, don't add it into the enclosing namespace scope until it is
6418 // instantiated; it might have a dependent type right now.
6419 if (DC->isDependentContext())
6420 return true;
6421
6422 // C++11 [basic.link]p7:
6423 // When a block scope declaration of an entity with linkage is not found to
6424 // refer to some other declaration, then that entity is a member of the
6425 // innermost enclosing namespace.
6426 //
6427 // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
6428 // semantically-enclosing namespace, not a lexically-enclosing one.
6429 while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
6430 DC = DC->getParent();
6431 return true;
6432}
6433
6434/// Returns true if given declaration has external C language linkage.
6435static bool isDeclExternC(const Decl *D) {
6436 if (const auto *FD = dyn_cast<FunctionDecl>(D))
6437 return FD->isExternC();
6438 if (const auto *VD = dyn_cast<VarDecl>(D))
6439 return VD->isExternC();
6440
6441 llvm_unreachable("Unknown type of decl!")::llvm::llvm_unreachable_internal("Unknown type of decl!", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 6441)
;
6442}
6443
6444NamedDecl *Sema::ActOnVariableDeclarator(
6445 Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo,
6446 LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists,
6447 bool &AddToScope, ArrayRef<BindingDecl *> Bindings) {
6448 QualType R = TInfo->getType();
6449 DeclarationName Name = GetNameForDeclarator(D).getName();
6450
6451 IdentifierInfo *II = Name.getAsIdentifierInfo();
6452
6453 if (D.isDecompositionDeclarator()) {
6454 // Take the name of the first declarator as our name for diagnostic
6455 // purposes.
6456 auto &Decomp = D.getDecompositionDeclarator();
6457 if (!Decomp.bindings().empty()) {
6458 II = Decomp.bindings()[0].Name;
6459 Name = II;
6460 }
6461 } else if (!II) {
6462 Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) << Name;
6463 return nullptr;
6464 }
6465
6466 if (getLangOpts().OpenCL) {
6467 // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument.
6468 // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function
6469 // argument.
6470 if (R->isImageType() || R->isPipeType()) {
6471 Diag(D.getIdentifierLoc(),
6472 diag::err_opencl_type_can_only_be_used_as_function_parameter)
6473 << R;
6474 D.setInvalidType();
6475 return nullptr;
6476 }
6477
6478 // OpenCL v1.2 s6.9.r:
6479 // The event type cannot be used to declare a program scope variable.
6480 // OpenCL v2.0 s6.9.q:
6481 // The clk_event_t and reserve_id_t types cannot be declared in program scope.
6482 if (NULL__null == S->getParent()) {
6483 if (R->isReserveIDT() || R->isClkEventT() || R->isEventT()) {
6484 Diag(D.getIdentifierLoc(),
6485 diag::err_invalid_type_for_program_scope_var) << R;
6486 D.setInvalidType();
6487 return nullptr;
6488 }
6489 }
6490
6491 // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed.
6492 QualType NR = R;
6493 while (NR->isPointerType()) {
6494 if (NR->isFunctionPointerType()) {
6495 Diag(D.getIdentifierLoc(), diag::err_opencl_function_pointer);
6496 D.setInvalidType();
6497 break;
6498 }
6499 NR = NR->getPointeeType();
6500 }
6501
6502 if (!getOpenCLOptions().isEnabled("cl_khr_fp16")) {
6503 // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
6504 // half array type (unless the cl_khr_fp16 extension is enabled).
6505 if (Context.getBaseElementType(R)->isHalfType()) {
6506 Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
6507 D.setInvalidType();
6508 }
6509 }
6510
6511 if (R->isSamplerT()) {
6512 // OpenCL v1.2 s6.9.b p4:
6513 // The sampler type cannot be used with the __local and __global address
6514 // space qualifiers.
6515 if (R.getAddressSpace() == LangAS::opencl_local ||
6516 R.getAddressSpace() == LangAS::opencl_global) {
6517 Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
6518 }
6519
6520 // OpenCL v1.2 s6.12.14.1:
6521 // A global sampler must be declared with either the constant address
6522 // space qualifier or with the const qualifier.
6523 if (DC->isTranslationUnit() &&
6524 !(R.getAddressSpace() == LangAS::opencl_constant ||
6525 R.isConstQualified())) {
6526 Diag(D.getIdentifierLoc(), diag::err_opencl_nonconst_global_sampler);
6527 D.setInvalidType();
6528 }
6529 }
6530
6531 // OpenCL v1.2 s6.9.r:
6532 // The event type cannot be used with the __local, __constant and __global
6533 // address space qualifiers.
6534 if (R->isEventT()) {
6535 if (R.getAddressSpace() != LangAS::opencl_private) {
6536 Diag(D.getBeginLoc(), diag::err_event_t_addr_space_qual);
6537 D.setInvalidType();
6538 }
6539 }
6540
6541 // C++ for OpenCL does not allow the thread_local storage qualifier.
6542 // OpenCL C does not support thread_local either, and
6543 // also reject all other thread storage class specifiers.
6544 DeclSpec::TSCS TSC = D.getDeclSpec().getThreadStorageClassSpec();
6545 if (TSC != TSCS_unspecified) {
6546 bool IsCXX = getLangOpts().OpenCLCPlusPlus;
6547 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6548 diag::err_opencl_unknown_type_specifier)
6549 << IsCXX << getLangOpts().getOpenCLVersionTuple().getAsString()
6550 << DeclSpec::getSpecifierName(TSC) << 1;
6551 D.setInvalidType();
6552 return nullptr;
6553 }
6554 }
6555
6556 DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
6557 StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
6558
6559 // dllimport globals without explicit storage class are treated as extern. We
6560 // have to change the storage class this early to get the right DeclContext.
6561 if (SC == SC_None && !DC->isRecord() &&
6562 hasParsedAttr(S, D, ParsedAttr::AT_DLLImport) &&
6563 !hasParsedAttr(S, D, ParsedAttr::AT_DLLExport))
6564 SC = SC_Extern;
6565
6566 DeclContext *OriginalDC = DC;
6567 bool IsLocalExternDecl = SC == SC_Extern &&
6568 adjustContextForLocalExternDecl(DC);
6569
6570 if (SCSpec == DeclSpec::SCS_mutable) {
6571 // mutable can only appear on non-static class members, so it's always
6572 // an error here
6573 Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
6574 D.setInvalidType();
6575 SC = SC_None;
6576 }
6577
6578 if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
6579 !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
6580 D.getDeclSpec().getStorageClassSpecLoc())) {
6581 // In C++11, the 'register' storage class specifier is deprecated.
6582 // Suppress the warning in system macros, it's used in macros in some
6583 // popular C system headers, such as in glibc's htonl() macro.
6584 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6585 getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
6586 : diag::warn_deprecated_register)
6587 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6588 }
6589
6590 DiagnoseFunctionSpecifiers(D.getDeclSpec());
6591
6592 if (!DC->isRecord() && S->getFnParent() == nullptr) {
6593 // C99 6.9p2: The storage-class specifiers auto and register shall not
6594 // appear in the declaration specifiers in an external declaration.
6595 // Global Register+Asm is a GNU extension we support.
6596 if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) {
6597 Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
6598 D.setInvalidType();
6599 }
6600 }
6601
6602 bool IsMemberSpecialization = false;
6603 bool IsVariableTemplateSpecialization = false;
6604 bool IsPartialSpecialization = false;
6605 bool IsVariableTemplate = false;
6606 VarDecl *NewVD = nullptr;
6607 VarTemplateDecl *NewTemplate = nullptr;
6608 TemplateParameterList *TemplateParams = nullptr;
6609 if (!getLangOpts().CPlusPlus) {
6610 NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), D.getIdentifierLoc(),
6611 II, R, TInfo, SC);
6612
6613 if (R->getContainedDeducedType())
6614 ParsingInitForAutoVars.insert(NewVD);
6615
6616 if (D.isInvalidType())
6617 NewVD->setInvalidDecl();
6618
6619 if (NewVD->getType().hasNonTrivialToPrimitiveDestructCUnion() &&
6620 NewVD->hasLocalStorage())
6621 checkNonTrivialCUnion(NewVD->getType(), NewVD->getLocation(),
6622 NTCUC_AutoVar, NTCUK_Destruct);
6623 } else {
6624 bool Invalid = false;
6625
6626 if (DC->isRecord() && !CurContext->isRecord()) {
6627 // This is an out-of-line definition of a static data member.
6628 switch (SC) {
6629 case SC_None:
6630 break;
6631 case SC_Static:
6632 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6633 diag::err_static_out_of_line)
6634 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6635 break;
6636 case SC_Auto:
6637 case SC_Register:
6638 case SC_Extern:
6639 // [dcl.stc] p2: The auto or register specifiers shall be applied only
6640 // to names of variables declared in a block or to function parameters.
6641 // [dcl.stc] p6: The extern specifier cannot be used in the declaration
6642 // of class members
6643
6644 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6645 diag::err_storage_class_for_static_member)
6646 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6647 break;
6648 case SC_PrivateExtern:
6649 llvm_unreachable("C storage class in c++!")::llvm::llvm_unreachable_internal("C storage class in c++!", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 6649)
;
6650 }
6651 }
6652
6653 if (SC == SC_Static && CurContext->isRecord()) {
6654 if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
6655 if (RD->isLocalClass())
6656 Diag(D.getIdentifierLoc(),
6657 diag::err_static_data_member_not_allowed_in_local_class)
6658 << Name << RD->getDeclName();
6659
6660 // C++98 [class.union]p1: If a union contains a static data member,
6661 // the program is ill-formed. C++11 drops this restriction.
6662 if (RD->isUnion())
6663 Diag(D.getIdentifierLoc(),
6664 getLangOpts().CPlusPlus11
6665 ? diag::warn_cxx98_compat_static_data_member_in_union
6666 : diag::ext_static_data_member_in_union) << Name;
6667 // We conservatively disallow static data members in anonymous structs.
6668 else if (!RD->getDeclName())
6669 Diag(D.getIdentifierLoc(),
6670 diag::err_static_data_member_not_allowed_in_anon_struct)
6671 << Name << RD->isUnion();
6672 }
6673 }
6674
6675 // Match up the template parameter lists with the scope specifier, then
6676 // determine whether we have a template or a template specialization.
6677 TemplateParams = MatchTemplateParametersToScopeSpecifier(
6678 D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
6679 D.getCXXScopeSpec(),
6680 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
6681 ? D.getName().TemplateId
6682 : nullptr,
6683 TemplateParamLists,
6684 /*never a friend*/ false, IsMemberSpecialization, Invalid);
6685
6686 if (TemplateParams) {
6687 if (!TemplateParams->size() &&
6688 D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
6689 // There is an extraneous 'template<>' for this variable. Complain
6690 // about it, but allow the declaration of the variable.
6691 Diag(TemplateParams->getTemplateLoc(),
6692 diag::err_template_variable_noparams)
6693 << II
6694 << SourceRange(TemplateParams->getTemplateLoc(),
6695 TemplateParams->getRAngleLoc());
6696 TemplateParams = nullptr;
6697 } else {
6698 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
6699 // This is an explicit specialization or a partial specialization.
6700 // FIXME: Check that we can declare a specialization here.
6701 IsVariableTemplateSpecialization = true;
6702 IsPartialSpecialization = TemplateParams->size() > 0;
6703 } else { // if (TemplateParams->size() > 0)
6704 // This is a template declaration.
6705 IsVariableTemplate = true;
6706
6707 // Check that we can declare a template here.
6708 if (CheckTemplateDeclScope(S, TemplateParams))
6709 return nullptr;
6710
6711 // Only C++1y supports variable templates (N3651).
6712 Diag(D.getIdentifierLoc(),
6713 getLangOpts().CPlusPlus14
6714 ? diag::warn_cxx11_compat_variable_template
6715 : diag::ext_variable_template);
6716 }
6717 }
6718 } else {
6719 assert((Invalid ||(((Invalid || D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId
) && "should have a 'template<>' for this decl"
) ? static_cast<void> (0) : __assert_fail ("(Invalid || D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) && \"should have a 'template<>' for this decl\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 6721, __PRETTY_FUNCTION__))
6720 D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) &&(((Invalid || D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId
) && "should have a 'template<>' for this decl"
) ? static_cast<void> (0) : __assert_fail ("(Invalid || D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) && \"should have a 'template<>' for this decl\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 6721, __PRETTY_FUNCTION__))
6721 "should have a 'template<>' for this decl")(((Invalid || D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId
) && "should have a 'template<>' for this decl"
) ? static_cast<void> (0) : __assert_fail ("(Invalid || D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) && \"should have a 'template<>' for this decl\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 6721, __PRETTY_FUNCTION__))
;
6722 }
6723
6724 if (IsVariableTemplateSpecialization) {
6725 SourceLocation TemplateKWLoc =
6726 TemplateParamLists.size() > 0
6727 ? TemplateParamLists[0]->getTemplateLoc()
6728 : SourceLocation();
6729 DeclResult Res = ActOnVarTemplateSpecialization(
6730 S, D, TInfo, TemplateKWLoc, TemplateParams, SC,
6731 IsPartialSpecialization);
6732 if (Res.isInvalid())
6733 return nullptr;
6734 NewVD = cast<VarDecl>(Res.get());
6735 AddToScope = false;
6736 } else if (D.isDecompositionDeclarator()) {
6737 NewVD = DecompositionDecl::Create(Context, DC, D.getBeginLoc(),
6738 D.getIdentifierLoc(), R, TInfo, SC,
6739 Bindings);
6740 } else
6741 NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(),
6742 D.getIdentifierLoc(), II, R, TInfo, SC);
6743
6744 // If this is supposed to be a variable template, create it as such.
6745 if (IsVariableTemplate) {
6746 NewTemplate =
6747 VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
6748 TemplateParams, NewVD);
6749 NewVD->setDescribedVarTemplate(NewTemplate);
6750 }
6751
6752 // If this decl has an auto type in need of deduction, make a note of the
6753 // Decl so we can diagnose uses of it in its own initializer.
6754 if (R->getContainedDeducedType())
6755 ParsingInitForAutoVars.insert(NewVD);
6756
6757 if (D.isInvalidType() || Invalid) {
6758 NewVD->setInvalidDecl();
6759 if (NewTemplate)
6760 NewTemplate->setInvalidDecl();
6761 }
6762
6763 SetNestedNameSpecifier(*this, NewVD, D);
6764
6765 // If we have any template parameter lists that don't directly belong to
6766 // the variable (matching the scope specifier), store them.
6767 unsigned VDTemplateParamLists = TemplateParams ? 1 : 0;
6768 if (TemplateParamLists.size() > VDTemplateParamLists)
6769 NewVD->setTemplateParameterListsInfo(
6770 Context, TemplateParamLists.drop_back(VDTemplateParamLists));
6771 }
6772
6773 if (D.getDeclSpec().isInlineSpecified()) {
6774 if (!getLangOpts().CPlusPlus) {
6775 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
6776 << 0;
6777 } else if (CurContext->isFunctionOrMethod()) {
6778 // 'inline' is not allowed on block scope variable declaration.
6779 Diag(D.getDeclSpec().getInlineSpecLoc(),
6780 diag::err_inline_declaration_block_scope) << Name
6781 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6782 } else {
6783 Diag(D.getDeclSpec().getInlineSpecLoc(),
6784 getLangOpts().CPlusPlus17 ? diag::warn_cxx14_compat_inline_variable
6785 : diag::ext_inline_variable);
6786 NewVD->setInlineSpecified();
6787 }
6788 }
6789
6790 // Set the lexical context. If the declarator has a C++ scope specifier, the
6791 // lexical context will be different from the semantic context.
6792 NewVD->setLexicalDeclContext(CurContext);
6793 if (NewTemplate)
6794 NewTemplate->setLexicalDeclContext(CurContext);
6795
6796 if (IsLocalExternDecl) {
6797 if (D.isDecompositionDeclarator())
6798 for (auto *B : Bindings)
6799 B->setLocalExternDecl();
6800 else
6801 NewVD->setLocalExternDecl();
6802 }
6803
6804 bool EmitTLSUnsupportedError = false;
6805 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
6806 // C++11 [dcl.stc]p4:
6807 // When thread_local is applied to a variable of block scope the
6808 // storage-class-specifier static is implied if it does not appear
6809 // explicitly.
6810 // Core issue: 'static' is not implied if the variable is declared
6811 // 'extern'.
6812 if (NewVD->hasLocalStorage() &&
6813 (SCSpec != DeclSpec::SCS_unspecified ||
6814 TSCS != DeclSpec::TSCS_thread_local ||
6815 !DC->isFunctionOrMethod()))
6816 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6817 diag::err_thread_non_global)
6818 << DeclSpec::getSpecifierName(TSCS);
6819 else if (!Context.getTargetInfo().isTLSSupported()) {
6820 if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) {
6821 // Postpone error emission until we've collected attributes required to
6822 // figure out whether it's a host or device variable and whether the
6823 // error should be ignored.
6824 EmitTLSUnsupportedError = true;
6825 // We still need to mark the variable as TLS so it shows up in AST with
6826 // proper storage class for other tools to use even if we're not going
6827 // to emit any code for it.
6828 NewVD->setTSCSpec(TSCS);
6829 } else
6830 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6831 diag::err_thread_unsupported);
6832 } else
6833 NewVD->setTSCSpec(TSCS);
6834 }
6835
6836 switch (D.getDeclSpec().getConstexprSpecifier()) {
6837 case CSK_unspecified:
6838 break;
6839
6840 case CSK_consteval:
6841 Diag(D.getDeclSpec().getConstexprSpecLoc(),
6842 diag::err_constexpr_wrong_decl_kind)
6843 << D.getDeclSpec().getConstexprSpecifier();
6844 LLVM_FALLTHROUGH[[gnu::fallthrough]];
6845
6846 case CSK_constexpr:
6847 NewVD->setConstexpr(true);
6848 // C++1z [dcl.spec.constexpr]p1:
6849 // A static data member declared with the constexpr specifier is
6850 // implicitly an inline variable.
6851 if (NewVD->isStaticDataMember() &&
6852 (getLangOpts().CPlusPlus17 ||
6853 Context.getTargetInfo().getCXXABI().isMicrosoft()))
6854 NewVD->setImplicitlyInline();
6855 break;
6856
6857 case CSK_constinit:
6858 if (!NewVD->hasGlobalStorage())
6859 Diag(D.getDeclSpec().getConstexprSpecLoc(),
6860 diag::err_constinit_local_variable);
6861 else
6862 NewVD->addAttr(ConstInitAttr::Create(
6863 Context, D.getDeclSpec().getConstexprSpecLoc(),
6864 AttributeCommonInfo::AS_Keyword, ConstInitAttr::Keyword_constinit));
6865 break;
6866 }
6867
6868 // C99 6.7.4p3
6869 // An inline definition of a function with external linkage shall
6870 // not contain a definition of a modifiable object with static or
6871 // thread storage duration...
6872 // We only apply this when the function is required to be defined
6873 // elsewhere, i.e. when the function is not 'extern inline'. Note
6874 // that a local variable with thread storage duration still has to
6875 // be marked 'static'. Also note that it's possible to get these
6876 // semantics in C++ using __attribute__((gnu_inline)).
6877 if (SC == SC_Static && S->getFnParent() != nullptr &&
6878 !NewVD->getType().isConstQualified()) {
6879 FunctionDecl *CurFD = getCurFunctionDecl();
6880 if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
6881 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6882 diag::warn_static_local_in_extern_inline);
6883 MaybeSuggestAddingStaticToDecl(CurFD);
6884 }
6885 }
6886
6887 if (D.getDeclSpec().isModulePrivateSpecified()) {
6888 if (IsVariableTemplateSpecialization)
6889 Diag(NewVD->getLocation(), diag::err_module_private_specialization)
6890 << (IsPartialSpecialization ? 1 : 0)
6891 << FixItHint::CreateRemoval(
6892 D.getDeclSpec().getModulePrivateSpecLoc());
6893 else if (IsMemberSpecialization)
6894 Diag(NewVD->getLocation(), diag::err_module_private_specialization)
6895 << 2
6896 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6897 else if (NewVD->hasLocalStorage())
6898 Diag(NewVD->getLocation(), diag::err_module_private_local)
6899 << 0 << NewVD->getDeclName()
6900 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6901 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6902 else {
6903 NewVD->setModulePrivate();
6904 if (NewTemplate)
6905 NewTemplate->setModulePrivate();
6906 for (auto *B : Bindings)
6907 B->setModulePrivate();
6908 }
6909 }
6910
6911 // Handle attributes prior to checking for duplicates in MergeVarDecl
6912 ProcessDeclAttributes(S, NewVD, D);
6913
6914 if (getLangOpts().CUDA || getLangOpts().OpenMPIsDevice) {
6915 if (EmitTLSUnsupportedError &&
6916 ((getLangOpts().CUDA && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) ||
6917 (getLangOpts().OpenMPIsDevice &&
6918 OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(NewVD))))
6919 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6920 diag::err_thread_unsupported);
6921 // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
6922 // storage [duration]."
6923 if (SC == SC_None && S->getFnParent() != nullptr &&
6924 (NewVD->hasAttr<CUDASharedAttr>() ||
6925 NewVD->hasAttr<CUDAConstantAttr>())) {
6926 NewVD->setStorageClass(SC_Static);
6927 }
6928 }
6929
6930 // Ensure that dllimport globals without explicit storage class are treated as
6931 // extern. The storage class is set above using parsed attributes. Now we can
6932 // check the VarDecl itself.
6933 assert(!NewVD->hasAttr<DLLImportAttr>() ||((!NewVD->hasAttr<DLLImportAttr>() || NewVD->getAttr
<DLLImportAttr>()->isInherited() || NewVD->isStaticDataMember
() || NewVD->getStorageClass() != SC_None) ? static_cast<
void> (0) : __assert_fail ("!NewVD->hasAttr<DLLImportAttr>() || NewVD->getAttr<DLLImportAttr>()->isInherited() || NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 6935, __PRETTY_FUNCTION__))
6934 NewVD->getAttr<DLLImportAttr>()->isInherited() ||((!NewVD->hasAttr<DLLImportAttr>() || NewVD->getAttr
<DLLImportAttr>()->isInherited() || NewVD->isStaticDataMember
() || NewVD->getStorageClass() != SC_None) ? static_cast<
void> (0) : __assert_fail ("!NewVD->hasAttr<DLLImportAttr>() || NewVD->getAttr<DLLImportAttr>()->isInherited() || NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 6935, __PRETTY_FUNCTION__))
6935 NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None)((!NewVD->hasAttr<DLLImportAttr>() || NewVD->getAttr
<DLLImportAttr>()->isInherited() || NewVD->isStaticDataMember
() || NewVD->getStorageClass() != SC_None) ? static_cast<
void> (0) : __assert_fail ("!NewVD->hasAttr<DLLImportAttr>() || NewVD->getAttr<DLLImportAttr>()->isInherited() || NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 6935, __PRETTY_FUNCTION__))
;
6936
6937 // In auto-retain/release, infer strong retension for variables of
6938 // retainable type.
6939 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
6940 NewVD->setInvalidDecl();
6941
6942 // Handle GNU asm-label extension (encoded as an attribute).
6943 if (Expr *E = (Expr*)D.getAsmLabel()) {
6944 // The parser guarantees this is a string.
6945 StringLiteral *SE = cast<StringLiteral>(E);
6946 StringRef Label = SE->getString();
6947 if (S->getFnParent() != nullptr) {
6948 switch (SC) {
6949 case SC_None:
6950 case SC_Auto:
6951 Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
6952 break;
6953 case SC_Register:
6954 // Local Named register
6955 if (!Context.getTargetInfo().isValidGCCRegisterName(Label) &&
6956 DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl()))
6957 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
6958 break;
6959 case SC_Static:
6960 case SC_Extern:
6961 case SC_PrivateExtern:
6962 break;
6963 }
6964 } else if (SC == SC_Register) {
6965 // Global Named register
6966 if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) {
6967 const auto &TI = Context.getTargetInfo();
6968 bool HasSizeMismatch;
6969
6970 if (!TI.isValidGCCRegisterName(Label))
6971 Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
6972 else if (!TI.validateGlobalRegisterVariable(Label,
6973 Context.getTypeSize(R),
6974 HasSizeMismatch))
6975 Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label;
6976 else if (HasSizeMismatch)
6977 Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label;
6978 }
6979
6980 if (!R->isIntegralType(Context) && !R->isPointerType()) {
6981 Diag(D.getBeginLoc(), diag::err_asm_bad_register_type);
6982 NewVD->setInvalidDecl(true);
6983 }
6984 }
6985
6986 NewVD->addAttr(::new (Context) AsmLabelAttr(
6987 Context, SE->getStrTokenLoc(0), Label, /*IsLiteralLabel=*/true));
6988 } else if (!ExtnameUndeclaredIdentifiers.empty()) {
6989 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
6990 ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
6991 if (I != ExtnameUndeclaredIdentifiers.end()) {
6992 if (isDeclExternC(NewVD)) {
6993 NewVD->addAttr(I->second);
6994 ExtnameUndeclaredIdentifiers.erase(I);
6995 } else
6996 Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied)
6997 << /*Variable*/1 << NewVD;
6998 }
6999 }
7000
7001 // Find the shadowed declaration before filtering for scope.
7002 NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty()
7003 ? getShadowedDeclaration(NewVD, Previous)
7004 : nullptr;
7005
7006 // Don't consider existing declarations that are in a different
7007 // scope and are out-of-semantic-context declarations (if the new
7008 // declaration has linkage).
7009 FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
7010 D.getCXXScopeSpec().isNotEmpty() ||
7011 IsMemberSpecialization ||
7012 IsVariableTemplateSpecialization);
7013
7014 // Check whether the previous declaration is in the same block scope. This
7015 // affects whether we merge types with it, per C++11 [dcl.array]p3.
7016 if (getLangOpts().CPlusPlus &&
7017 NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
7018 NewVD->setPreviousDeclInSameBlockScope(
7019 Previous.isSingleResult() && !Previous.isShadowed() &&
7020 isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
7021
7022 if (!getLangOpts().CPlusPlus) {
7023 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
7024 } else {
7025 // If this is an explicit specialization of a static data member, check it.
7026 if (IsMemberSpecialization && !NewVD->isInvalidDecl() &&
7027 CheckMemberSpecialization(NewVD, Previous))
7028 NewVD->setInvalidDecl();
7029
7030 // Merge the decl with the existing one if appropriate.
7031 if (!Previous.empty()) {
7032 if (Previous.isSingleResult() &&
7033 isa<FieldDecl>(Previous.getFoundDecl()) &&
7034 D.getCXXScopeSpec().isSet()) {
7035 // The user tried to define a non-static data member
7036 // out-of-line (C++ [dcl.meaning]p1).
7037 Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
7038 << D.getCXXScopeSpec().getRange();
7039 Previous.clear();
7040 NewVD->setInvalidDecl();
7041 }
7042 } else if (D.getCXXScopeSpec().isSet()) {
7043 // No previous declaration in the qualifying scope.
7044 Diag(D.getIdentifierLoc(), diag::err_no_member)
7045 << Name << computeDeclContext(D.getCXXScopeSpec(), true)
7046 << D.getCXXScopeSpec().getRange();
7047 NewVD->setInvalidDecl();
7048 }
7049
7050 if (!IsVariableTemplateSpecialization)
7051 D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
7052
7053 if (NewTemplate) {
7054 VarTemplateDecl *PrevVarTemplate =
7055 NewVD->getPreviousDecl()
7056 ? NewVD->getPreviousDecl()->getDescribedVarTemplate()
7057 : nullptr;
7058
7059 // Check the template parameter list of this declaration, possibly
7060 // merging in the template parameter list from the previous variable
7061 // template declaration.
7062 if (CheckTemplateParameterList(
7063 TemplateParams,
7064 PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
7065 : nullptr,
7066 (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
7067 DC->isDependentContext())
7068 ? TPC_ClassTemplateMember
7069 : TPC_VarTemplate))
7070 NewVD->setInvalidDecl();
7071
7072 // If we are providing an explicit specialization of a static variable
7073 // template, make a note of that.
7074 if (PrevVarTemplate &&
7075 PrevVarTemplate->getInstantiatedFromMemberTemplate())
7076 PrevVarTemplate->setMemberSpecialization();
7077 }
7078 }
7079
7080 // Diagnose shadowed variables iff this isn't a redeclaration.
7081 if (ShadowedDecl && !D.isRedeclaration())
7082 CheckShadow(NewVD, ShadowedDecl, Previous);
7083
7084 ProcessPragmaWeak(S, NewVD);
7085
7086 // If this is the first declaration of an extern C variable, update
7087 // the map of such variables.
7088 if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
7089 isIncompleteDeclExternC(*this, NewVD))
7090 RegisterLocallyScopedExternCDecl(NewVD, S);
7091
7092 if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
7093 Decl *ManglingContextDecl;
7094 if (MangleNumberingContext *MCtx = getCurrentMangleNumberContext(
7095 NewVD->getDeclContext(), ManglingContextDecl)) {
7096 Context.setManglingNumber(
7097 NewVD, MCtx->getManglingNumber(
7098 NewVD, getMSManglingNumber(getLangOpts(), S)));
7099 Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD));
7100 }
7101 }
7102
7103 // Special handling of variable named 'main'.
7104 if (Name.getAsIdentifierInfo() && Name.getAsIdentifierInfo()->isStr("main") &&
7105 NewVD->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
7106 !getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) {
7107
7108 // C++ [basic.start.main]p3
7109 // A program that declares a variable main at global scope is ill-formed.
7110 if (getLangOpts().CPlusPlus)
7111 Diag(D.getBeginLoc(), diag::err_main_global_variable);
7112
7113 // In C, and external-linkage variable named main results in undefined
7114 // behavior.
7115 else if (NewVD->hasExternalFormalLinkage())
7116 Diag(D.getBeginLoc(), diag::warn_main_redefined);
7117 }
7118
7119 if (D.isRedeclaration() && !Previous.empty()) {
7120 NamedDecl *Prev = Previous.getRepresentativeDecl();
7121 checkDLLAttributeRedeclaration(*this, Prev, NewVD, IsMemberSpecialization,
7122 D.isFunctionDefinition());
7123 }
7124
7125 if (NewTemplate) {
7126 if (NewVD->isInvalidDecl())
7127 NewTemplate->setInvalidDecl();
7128 ActOnDocumentableDecl(NewTemplate);
7129 return NewTemplate;
7130 }
7131
7132 if (IsMemberSpecialization && !NewVD->isInvalidDecl())
7133 CompleteMemberSpecialization(NewVD, Previous);
7134
7135 return NewVD;
7136}
7137
7138/// Enum describing the %select options in diag::warn_decl_shadow.
7139enum ShadowedDeclKind {
7140 SDK_Local,
7141 SDK_Global,
7142 SDK_StaticMember,
7143 SDK_Field,
7144 SDK_Typedef,
7145 SDK_Using
7146};
7147
7148/// Determine what kind of declaration we're shadowing.
7149static ShadowedDeclKind computeShadowedDeclKind(const NamedDecl *ShadowedDecl,
7150 const DeclContext *OldDC) {
7151 if (isa<TypeAliasDecl>(ShadowedDecl))
7152 return SDK_Using;
7153 else if (isa<TypedefDecl>(ShadowedDecl))
7154 return SDK_Typedef;
7155 else if (isa<RecordDecl>(OldDC))
7156 return isa<FieldDecl>(ShadowedDecl) ? SDK_Field : SDK_StaticMember;
7157
7158 return OldDC->isFileContext() ? SDK_Global : SDK_Local;
7159}
7160
7161/// Return the location of the capture if the given lambda captures the given
7162/// variable \p VD, or an invalid source location otherwise.
7163static SourceLocation getCaptureLocation(const LambdaScopeInfo *LSI,
7164 const VarDecl *VD) {
7165 for (const Capture &Capture : LSI->Captures) {
7166 if (Capture.isVariableCapture() && Capture.getVariable() == VD)
7167 return Capture.getLocation();
7168 }
7169 return SourceLocation();
7170}
7171
7172static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine &Diags,
7173 const LookupResult &R) {
7174 // Only diagnose if we're shadowing an unambiguous field or variable.
7175 if (R.getResultKind() != LookupResult::Found)
7176 return false;
7177
7178 // Return false if warning is ignored.
7179 return !Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc());
7180}
7181
7182/// Return the declaration shadowed by the given variable \p D, or null
7183/// if it doesn't shadow any declaration or shadowing warnings are disabled.
7184NamedDecl *Sema::getShadowedDeclaration(const VarDecl *D,
7185 const LookupResult &R) {
7186 if (!shouldWarnIfShadowedDecl(Diags, R))
7187 return nullptr;
7188
7189 // Don't diagnose declarations at file scope.
7190 if (D->hasGlobalStorage())
7191 return nullptr;
7192
7193 NamedDecl *ShadowedDecl = R.getFoundDecl();
7194 return isa<VarDecl>(ShadowedDecl) || isa<FieldDecl>(ShadowedDecl)
7195 ? ShadowedDecl
7196 : nullptr;
7197}
7198
7199/// Return the declaration shadowed by the given typedef \p D, or null
7200/// if it doesn't shadow any declaration or shadowing warnings are disabled.
7201NamedDecl *Sema::getShadowedDeclaration(const TypedefNameDecl *D,
7202 const LookupResult &R) {
7203 // Don't warn if typedef declaration is part of a class
7204 if (D->getDeclContext()->isRecord())
7205 return nullptr;
7206
7207 if (!shouldWarnIfShadowedDecl(Diags, R))
7208 return nullptr;
7209
7210 NamedDecl *ShadowedDecl = R.getFoundDecl();
7211 return isa<TypedefNameDecl>(ShadowedDecl) ? ShadowedDecl : nullptr;
7212}
7213
7214/// Diagnose variable or built-in function shadowing. Implements
7215/// -Wshadow.
7216///
7217/// This method is called whenever a VarDecl is added to a "useful"
7218/// scope.
7219///
7220/// \param ShadowedDecl the declaration that is shadowed by the given variable
7221/// \param R the lookup of the name
7222///
7223void Sema::CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl,
7224 const LookupResult &R) {
7225 DeclContext *NewDC = D->getDeclContext();
7226
7227 if (FieldDecl *FD = dyn_cast<FieldDecl>(ShadowedDecl)) {
7228 // Fields are not shadowed by variables in C++ static methods.
7229 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
7230 if (MD->isStatic())
7231 return;
7232
7233 // Fields shadowed by constructor parameters are a special case. Usually
7234 // the constructor initializes the field with the parameter.
7235 if (isa<CXXConstructorDecl>(NewDC))
7236 if (const auto PVD = dyn_cast<ParmVarDecl>(D)) {
7237 // Remember that this was shadowed so we can either warn about its
7238 // modification or its existence depending on warning settings.
7239 ShadowingDecls.insert({PVD->getCanonicalDecl(), FD});
7240 return;
7241 }
7242 }
7243
7244 if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
7245 if (shadowedVar->isExternC()) {
7246 // For shadowing external vars, make sure that we point to the global
7247 // declaration, not a locally scoped extern declaration.
7248 for (auto I : shadowedVar->redecls())
7249 if (I->isFileVarDecl()) {
7250 ShadowedDecl = I;
7251 break;
7252 }
7253 }
7254
7255 DeclContext *OldDC = ShadowedDecl->getDeclContext()->getRedeclContext();
7256
7257 unsigned WarningDiag = diag::warn_decl_shadow;
7258 SourceLocation CaptureLoc;
7259 if (isa<VarDecl>(D) && isa<VarDecl>(ShadowedDecl) && NewDC &&
7260 isa<CXXMethodDecl>(NewDC)) {
7261 if (const auto *RD = dyn_cast<CXXRecordDecl>(NewDC->getParent())) {
7262 if (RD->isLambda() && OldDC->Encloses(NewDC->getLexicalParent())) {
7263 if (RD->getLambdaCaptureDefault() == LCD_None) {
7264 // Try to avoid warnings for lambdas with an explicit capture list.
7265 const auto *LSI = cast<LambdaScopeInfo>(getCurFunction());
7266 // Warn only when the lambda captures the shadowed decl explicitly.
7267 CaptureLoc = getCaptureLocation(LSI, cast<VarDecl>(ShadowedDecl));
7268 if (CaptureLoc.isInvalid())
7269 WarningDiag = diag::warn_decl_shadow_uncaptured_local;
7270 } else {
7271 // Remember that this was shadowed so we can avoid the warning if the
7272 // shadowed decl isn't captured and the warning settings allow it.
7273 cast<LambdaScopeInfo>(getCurFunction())
7274 ->ShadowingDecls.push_back(
7275 {cast<VarDecl>(D), cast<VarDecl>(ShadowedDecl)});
7276 return;
7277 }
7278 }
7279
7280 if (cast<VarDecl>(ShadowedDecl)->hasLocalStorage()) {
7281 // A variable can't shadow a local variable in an enclosing scope, if
7282 // they are separated by a non-capturing declaration context.
7283 for (DeclContext *ParentDC = NewDC;
7284 ParentDC && !ParentDC->Equals(OldDC);
7285 ParentDC = getLambdaAwareParentOfDeclContext(ParentDC)) {
7286 // Only block literals, captured statements, and lambda expressions
7287 // can capture; other scopes don't.
7288 if (!isa<BlockDecl>(ParentDC) && !isa<CapturedDecl>(ParentDC) &&
7289 !isLambdaCallOperator(ParentDC)) {
7290 return;
7291 }
7292 }
7293 }
7294 }
7295 }
7296
7297 // Only warn about certain kinds of shadowing for class members.
7298 if (NewDC && NewDC->isRecord()) {
7299 // In particular, don't warn about shadowing non-class members.
7300 if (!OldDC->isRecord())
7301 return;
7302
7303 // TODO: should we warn about static data members shadowing
7304 // static data members from base classes?
7305
7306 // TODO: don't diagnose for inaccessible shadowed members.
7307 // This is hard to do perfectly because we might friend the
7308 // shadowing context, but that's just a false negative.
7309 }
7310
7311
7312 DeclarationName Name = R.getLookupName();
7313
7314 // Emit warning and note.
7315 if (getSourceManager().isInSystemMacro(R.getNameLoc()))
7316 return;
7317 ShadowedDeclKind Kind = computeShadowedDeclKind(ShadowedDecl, OldDC);
7318 Diag(R.getNameLoc(), WarningDiag) << Name << Kind << OldDC;
7319 if (!CaptureLoc.isInvalid())
7320 Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
7321 << Name << /*explicitly*/ 1;
7322 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7323}
7324
7325/// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD
7326/// when these variables are captured by the lambda.
7327void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo *LSI) {
7328 for (const auto &Shadow : LSI->ShadowingDecls) {
7329 const VarDecl *ShadowedDecl = Shadow.ShadowedDecl;
7330 // Try to avoid the warning when the shadowed decl isn't captured.
7331 SourceLocation CaptureLoc = getCaptureLocation(LSI, ShadowedDecl);
7332 const DeclContext *OldDC = ShadowedDecl->getDeclContext();
7333 Diag(Shadow.VD->getLocation(), CaptureLoc.isInvalid()
7334 ? diag::warn_decl_shadow_uncaptured_local
7335 : diag::warn_decl_shadow)
7336 << Shadow.VD->getDeclName()
7337 << computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC;
7338 if (!CaptureLoc.isInvalid())
7339 Diag(CaptureLoc, diag::note_var_explicitly_captured_here)
7340 << Shadow.VD->getDeclName() << /*explicitly*/ 0;
7341 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7342 }
7343}
7344
7345/// Check -Wshadow without the advantage of a previous lookup.
7346void Sema::CheckShadow(Scope *S, VarDecl *D) {
7347 if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation()))
7348 return;
7349
7350 LookupResult R(*this, D->getDeclName(), D->getLocation(),
7351 Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration);
7352 LookupName(R, S);
7353 if (NamedDecl *ShadowedDecl = getShadowedDeclaration(D, R))
7354 CheckShadow(D, ShadowedDecl, R);
7355}
7356
7357/// Check if 'E', which is an expression that is about to be modified, refers
7358/// to a constructor parameter that shadows a field.
7359void Sema::CheckShadowingDeclModification(Expr *E, SourceLocation Loc) {
7360 // Quickly ignore expressions that can't be shadowing ctor parameters.
7361 if (!getLangOpts().CPlusPlus || ShadowingDecls.empty())
7362 return;
7363 E = E->IgnoreParenImpCasts();
7364 auto *DRE = dyn_cast<DeclRefExpr>(E);
7365 if (!DRE)
7366 return;
7367 const NamedDecl *D = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl());
7368 auto I = ShadowingDecls.find(D);
7369 if (I == ShadowingDecls.end())
7370 return;
7371 const NamedDecl *ShadowedDecl = I->second;
7372 const DeclContext *OldDC = ShadowedDecl->getDeclContext();
7373 Diag(Loc, diag::warn_modifying_shadowing_decl) << D << OldDC;
7374 Diag(D->getLocation(), diag::note_var_declared_here) << D;
7375 Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
7376
7377 // Avoid issuing multiple warnings about the same decl.
7378 ShadowingDecls.erase(I);
7379}
7380
7381/// Check for conflict between this global or extern "C" declaration and
7382/// previous global or extern "C" declarations. This is only used in C++.
7383template<typename T>
7384static bool checkGlobalOrExternCConflict(
7385 Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
7386 assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"")((S.getLangOpts().CPlusPlus && "only C++ has extern \"C\""
) ? static_cast<void> (0) : __assert_fail ("S.getLangOpts().CPlusPlus && \"only C++ has extern \\\"C\\\"\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 7386, __PRETTY_FUNCTION__))
;
7387 NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
7388
7389 if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
7390 // The common case: this global doesn't conflict with any extern "C"
7391 // declaration.
7392 return false;
7393 }
7394
7395 if (Prev) {
7396 if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
7397 // Both the old and new declarations have C language linkage. This is a
7398 // redeclaration.
7399 Previous.clear();
7400 Previous.addDecl(Prev);
7401 return true;
7402 }
7403
7404 // This is a global, non-extern "C" declaration, and there is a previous
7405 // non-global extern "C" declaration. Diagnose if this is a variable
7406 // declaration.
7407 if (!isa<VarDecl>(ND))
7408 return false;
7409 } else {
7410 // The declaration is extern "C". Check for any declaration in the
7411 // translation unit which might conflict.
7412 if (IsGlobal) {
7413 // We have already performed the lookup into the translation unit.
7414 IsGlobal = false;
7415 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7416 I != E; ++I) {
7417 if (isa<VarDecl>(*I)) {
7418 Prev = *I;
7419 break;
7420 }
7421 }
7422 } else {
7423 DeclContext::lookup_result R =
7424 S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
7425 for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
7426 I != E; ++I) {
7427 if (isa<VarDecl>(*I)) {
7428 Prev = *I;
7429 break;
7430 }
7431 // FIXME: If we have any other entity with this name in global scope,
7432 // the declaration is ill-formed, but that is a defect: it breaks the
7433 // 'stat' hack, for instance. Only variables can have mangled name
7434 // clashes with extern "C" declarations, so only they deserve a
7435 // diagnostic.
7436 }
7437 }
7438
7439 if (!Prev)
7440 return false;
7441 }
7442
7443 // Use the first declaration's location to ensure we point at something which
7444 // is lexically inside an extern "C" linkage-spec.
7445 assert(Prev && "should have found a previous declaration to diagnose")((Prev && "should have found a previous declaration to diagnose"
) ? static_cast<void> (0) : __assert_fail ("Prev && \"should have found a previous declaration to diagnose\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 7445, __PRETTY_FUNCTION__))
;
7446 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
7447 Prev = FD->getFirstDecl();
7448 else
7449 Prev = cast<VarDecl>(Prev)->getFirstDecl();
7450
7451 S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
7452 << IsGlobal << ND;
7453 S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
7454 << IsGlobal;
7455 return false;
7456}
7457
7458/// Apply special rules for handling extern "C" declarations. Returns \c true
7459/// if we have found that this is a redeclaration of some prior entity.
7460///
7461/// Per C++ [dcl.link]p6:
7462/// Two declarations [for a function or variable] with C language linkage
7463/// with the same name that appear in different scopes refer to the same
7464/// [entity]. An entity with C language linkage shall not be declared with
7465/// the same name as an entity in global scope.
7466template<typename T>
7467static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
7468 LookupResult &Previous) {
7469 if (!S.getLangOpts().CPlusPlus) {
7470 // In C, when declaring a global variable, look for a corresponding 'extern'
7471 // variable declared in function scope. We don't need this in C++, because
7472 // we find local extern decls in the surrounding file-scope DeclContext.
7473 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
7474 if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
7475 Previous.clear();
7476 Previous.addDecl(Prev);
7477 return true;
7478 }
7479 }
7480 return false;
7481 }
7482
7483 // A declaration in the translation unit can conflict with an extern "C"
7484 // declaration.
7485 if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
7486 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
7487
7488 // An extern "C" declaration can conflict with a declaration in the
7489 // translation unit or can be a redeclaration of an extern "C" declaration
7490 // in another scope.
7491 if (isIncompleteDeclExternC(S,ND))
7492 return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
7493
7494 // Neither global nor extern "C": nothing to do.
7495 return false;
7496}
7497
7498void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
7499 // If the decl is already known invalid, don't check it.
7500 if (NewVD->isInvalidDecl())
7501 return;
7502
7503 QualType T = NewVD->getType();
7504
7505 // Defer checking an 'auto' type until its initializer is attached.
7506 if (T->isUndeducedType())
7507 return;
7508
7509 if (NewVD->hasAttrs())
7510 CheckAlignasUnderalignment(NewVD);
7511
7512 if (T->isObjCObjectType()) {
7513 Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
7514 << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
7515 T = Context.getObjCObjectPointerType(T);
7516 NewVD->setType(T);
7517 }
7518
7519 // Emit an error if an address space was applied to decl with local storage.
7520 // This includes arrays of objects with address space qualifiers, but not
7521 // automatic variables that point to other address spaces.
7522 // ISO/IEC TR 18037 S5.1.2
7523 if (!getLangOpts().OpenCL && NewVD->hasLocalStorage() &&
7524 T.getAddressSpace() != LangAS::Default) {
7525 Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 0;
7526 NewVD->setInvalidDecl();
7527 return;
7528 }
7529
7530 // OpenCL v1.2 s6.8 - The static qualifier is valid only in program
7531 // scope.
7532 if (getLangOpts().OpenCLVersion == 120 &&
7533 !getOpenCLOptions().isEnabled("cl_clang_storage_class_specifiers") &&
7534 NewVD->isStaticLocal()) {
7535 Diag(NewVD->getLocation(), diag::err_static_function_scope);
7536 NewVD->setInvalidDecl();
7537 return;
7538 }
7539
7540 if (getLangOpts().OpenCL) {
7541 // OpenCL v2.0 s6.12.5 - The __block storage type is not supported.
7542 if (NewVD->hasAttr<BlocksAttr>()) {
7543 Diag(NewVD->getLocation(), diag::err_opencl_block_storage_type);
7544 return;
7545 }
7546
7547 if (T->isBlockPointerType()) {
7548 // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and
7549 // can't use 'extern' storage class.
7550 if (!T.isConstQualified()) {
7551 Diag(NewVD->getLocation(), diag::err_opencl_invalid_block_declaration)
7552 << 0 /*const*/;
7553 NewVD->setInvalidDecl();
7554 return;
7555 }
7556 if (NewVD->hasExternalStorage()) {
7557 Diag(NewVD->getLocation(), diag::err_opencl_extern_block_declaration);
7558 NewVD->setInvalidDecl();
7559 return;
7560 }
7561 }
7562 // OpenCL C v1.2 s6.5 - All program scope variables must be declared in the
7563 // __constant address space.
7564 // OpenCL C v2.0 s6.5.1 - Variables defined at program scope and static
7565 // variables inside a function can also be declared in the global
7566 // address space.
7567 // C++ for OpenCL inherits rule from OpenCL C v2.0.
7568 // FIXME: Adding local AS in C++ for OpenCL might make sense.
7569 if (NewVD->isFileVarDecl() || NewVD->isStaticLocal() ||
7570 NewVD->hasExternalStorage()) {
7571 if (!T->isSamplerT() &&
7572 !(T.getAddressSpace() == LangAS::opencl_constant ||
7573 (T.getAddressSpace() == LangAS::opencl_global &&
7574 (getLangOpts().OpenCLVersion == 200 ||
7575 getLangOpts().OpenCLCPlusPlus)))) {
7576 int Scope = NewVD->isStaticLocal() | NewVD->hasExternalStorage() << 1;
7577 if (getLangOpts().OpenCLVersion == 200 || getLangOpts().OpenCLCPlusPlus)
7578 Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
7579 << Scope << "global or constant";
7580 else
7581 Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space)
7582 << Scope << "constant";
7583 NewVD->setInvalidDecl();
7584 return;
7585 }
7586 } else {
7587 if (T.getAddressSpace() == LangAS::opencl_global) {
7588 Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7589 << 1 /*is any function*/ << "global";
7590 NewVD->setInvalidDecl();
7591 return;
7592 }
7593 if (T.getAddressSpace() == LangAS::opencl_constant ||
7594 T.getAddressSpace() == LangAS::opencl_local) {
7595 FunctionDecl *FD = getCurFunctionDecl();
7596 // OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables
7597 // in functions.
7598 if (FD && !FD->hasAttr<OpenCLKernelAttr>()) {
7599 if (T.getAddressSpace() == LangAS::opencl_constant)
7600 Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7601 << 0 /*non-kernel only*/ << "constant";
7602 else
7603 Diag(NewVD->getLocation(), diag::err_opencl_function_variable)
7604 << 0 /*non-kernel only*/ << "local";
7605 NewVD->setInvalidDecl();
7606 return;
7607 }
7608 // OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be
7609 // in the outermost scope of a kernel function.
7610 if (FD && FD->hasAttr<OpenCLKernelAttr>()) {
7611 if (!getCurScope()->isFunctionScope()) {
7612 if (T.getAddressSpace() == LangAS::opencl_constant)
7613 Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
7614 << "constant";
7615 else
7616 Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope)
7617 << "local";
7618 NewVD->setInvalidDecl();
7619 return;
7620 }
7621 }
7622 } else if (T.getAddressSpace() != LangAS::opencl_private &&
7623 // If we are parsing a template we didn't deduce an addr
7624 // space yet.
7625 T.getAddressSpace() != LangAS::Default) {
7626 // Do not allow other address spaces on automatic variable.
7627 Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 1;
7628 NewVD->setInvalidDecl();
7629 return;
7630 }
7631 }
7632 }
7633
7634 if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
7635 && !NewVD->hasAttr<BlocksAttr>()) {
7636 if (getLangOpts().getGC() != LangOptions::NonGC)
7637 Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
7638 else {
7639 assert(!getLangOpts().ObjCAutoRefCount)((!getLangOpts().ObjCAutoRefCount) ? static_cast<void> (
0) : __assert_fail ("!getLangOpts().ObjCAutoRefCount", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 7639, __PRETTY_FUNCTION__))
;
7640 Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
7641 }
7642 }
7643
7644 bool isVM = T->isVariablyModifiedType();
7645 if (isVM || NewVD->hasAttr<CleanupAttr>() ||
7646 NewVD->hasAttr<BlocksAttr>())
7647 setFunctionHasBranchProtectedScope();
7648
7649 if ((isVM && NewVD->hasLinkage()) ||
7650 (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
7651 bool SizeIsNegative;
7652 llvm::APSInt Oversized;
7653 TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo(
7654 NewVD->getTypeSourceInfo(), Context, SizeIsNegative, Oversized);
7655 QualType FixedT;
7656 if (FixedTInfo && T == NewVD->getTypeSourceInfo()->getType())
7657 FixedT = FixedTInfo->getType();
7658 else if (FixedTInfo) {
7659 // Type and type-as-written are canonically different. We need to fix up
7660 // both types separately.
7661 FixedT = TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
7662 Oversized);
7663 }
7664 if ((!FixedTInfo || FixedT.isNull()) && T->isVariableArrayType()) {
7665 const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
7666 // FIXME: This won't give the correct result for
7667 // int a[10][n];
7668 SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
7669
7670 if (NewVD->isFileVarDecl())
7671 Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
7672 << SizeRange;
7673 else if (NewVD->isStaticLocal())
7674 Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
7675 << SizeRange;
7676 else
7677 Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
7678 << SizeRange;
7679 NewVD->setInvalidDecl();
7680 return;
7681 }
7682
7683 if (!FixedTInfo) {
7684 if (NewVD->isFileVarDecl())
7685 Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
7686 else
7687 Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
7688 NewVD->setInvalidDecl();
7689 return;
7690 }
7691
7692 Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
7693 NewVD->setType(FixedT);
7694 NewVD->setTypeSourceInfo(FixedTInfo);
7695 }
7696
7697 if (T->isVoidType()) {
7698 // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
7699 // of objects and functions.
7700 if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
7701 Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
7702 << T;
7703 NewVD->setInvalidDecl();
7704 return;
7705 }
7706 }
7707
7708 if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
7709 Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
7710 NewVD->setInvalidDecl();
7711 return;
7712 }
7713
7714 if (isVM && NewVD->hasAttr<BlocksAttr>()) {
7715 Diag(NewVD->getLocation(), diag::err_block_on_vm);
7716 NewVD->setInvalidDecl();
7717 return;
7718 }
7719
7720 if (NewVD->isConstexpr() && !T->isDependentType() &&
7721 RequireLiteralType(NewVD->getLocation(), T,
7722 diag::err_constexpr_var_non_literal)) {
7723 NewVD->setInvalidDecl();
7724 return;
7725 }
7726}
7727
7728/// Perform semantic checking on a newly-created variable
7729/// declaration.
7730///
7731/// This routine performs all of the type-checking required for a
7732/// variable declaration once it has been built. It is used both to
7733/// check variables after they have been parsed and their declarators
7734/// have been translated into a declaration, and to check variables
7735/// that have been instantiated from a template.
7736///
7737/// Sets NewVD->isInvalidDecl() if an error was encountered.
7738///
7739/// Returns true if the variable declaration is a redeclaration.
7740bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
7741 CheckVariableDeclarationType(NewVD);
7742
7743 // If the decl is already known invalid, don't check it.
7744 if (NewVD->isInvalidDecl())
7745 return false;
7746
7747 // If we did not find anything by this name, look for a non-visible
7748 // extern "C" declaration with the same name.
7749 if (Previous.empty() &&
7750 checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
7751 Previous.setShadowed();
7752
7753 if (!Previous.empty()) {
7754 MergeVarDecl(NewVD, Previous);
7755 return true;
7756 }
7757 return false;
7758}
7759
7760namespace {
7761struct FindOverriddenMethod {
7762 Sema *S;
7763 CXXMethodDecl *Method;
7764
7765 /// Member lookup function that determines whether a given C++
7766 /// method overrides a method in a base class, to be used with
7767 /// CXXRecordDecl::lookupInBases().
7768 bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
7769 RecordDecl *BaseRecord =
7770 Specifier->getType()->getAs<RecordType>()->getDecl();
7771
7772 DeclarationName Name = Method->getDeclName();
7773
7774 // FIXME: Do we care about other names here too?
7775 if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
7776 // We really want to find the base class destructor here.
7777 QualType T = S->Context.getTypeDeclType(BaseRecord);
7778 CanQualType CT = S->Context.getCanonicalType(T);
7779
7780 Name = S->Context.DeclarationNames.getCXXDestructorName(CT);
7781 }
7782
7783 for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty();
7784 Path.Decls = Path.Decls.slice(1)) {
7785 NamedDecl *D = Path.Decls.front();
7786 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
7787 if (MD->isVirtual() && !S->IsOverload(Method, MD, false))
7788 return true;
7789 }
7790 }
7791
7792 return false;
7793 }
7794};
7795
7796enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
7797} // end anonymous namespace
7798
7799/// Report an error regarding overriding, along with any relevant
7800/// overridden methods.
7801///
7802/// \param DiagID the primary error to report.
7803/// \param MD the overriding method.
7804/// \param OEK which overrides to include as notes.
7805static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
7806 OverrideErrorKind OEK = OEK_All) {
7807 S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
7808 for (const CXXMethodDecl *O : MD->overridden_methods()) {
7809 // This check (& the OEK parameter) could be replaced by a predicate, but
7810 // without lambdas that would be overkill. This is still nicer than writing
7811 // out the diag loop 3 times.
7812 if ((OEK == OEK_All) ||
7813 (OEK == OEK_NonDeleted && !O->isDeleted()) ||
7814 (OEK == OEK_Deleted && O->isDeleted()))
7815 S.Diag(O->getLocation(), diag::note_overridden_virtual_function);
7816 }
7817}
7818
7819/// AddOverriddenMethods - See if a method overrides any in the base classes,
7820/// and if so, check that it's a valid override and remember it.
7821bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
7822 // Look for methods in base classes that this method might override.
7823 CXXBasePaths Paths;
7824 FindOverriddenMethod FOM;
7825 FOM.Method = MD;
7826 FOM.S = this;
7827 bool hasDeletedOverridenMethods = false;
7828 bool hasNonDeletedOverridenMethods = false;
7829 bool AddedAny = false;
7830 if (DC->lookupInBases(FOM, Paths)) {
7831 for (auto *I : Paths.found_decls()) {
7832 if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(I)) {
7833 MD->addOverriddenMethod(OldMD->getCanonicalDecl());
7834 if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
7835 !CheckOverridingFunctionAttributes(MD, OldMD) &&
7836 !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
7837 !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
7838 hasDeletedOverridenMethods |= OldMD->isDeleted();
7839 hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
7840 AddedAny = true;
7841 }
7842 }
7843 }
7844 }
7845
7846 if (hasDeletedOverridenMethods && !MD->isDeleted()) {
7847 ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
7848 }
7849 if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
7850 ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
7851 }
7852
7853 return AddedAny;
7854}
7855
7856namespace {
7857 // Struct for holding all of the extra arguments needed by
7858 // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
7859 struct ActOnFDArgs {
7860 Scope *S;
7861 Declarator &D;
7862 MultiTemplateParamsArg TemplateParamLists;
7863 bool AddToScope;
7864 };
7865} // end anonymous namespace
7866
7867namespace {
7868
7869// Callback to only accept typo corrections that have a non-zero edit distance.
7870// Also only accept corrections that have the same parent decl.
7871class DifferentNameValidatorCCC final : public CorrectionCandidateCallback {
7872 public:
7873 DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
7874 CXXRecordDecl *Parent)
7875 : Context(Context), OriginalFD(TypoFD),
7876 ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {}
7877
7878 bool ValidateCandidate(const TypoCorrection &candidate) override {
7879 if (candidate.getEditDistance() == 0)
7880 return false;
7881
7882 SmallVector<unsigned, 1> MismatchedParams;
7883 for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
7884 CDeclEnd = candidate.end();
7885 CDecl != CDeclEnd; ++CDecl) {
7886 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
7887
7888 if (FD && !FD->hasBody() &&
7889 hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
7890 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
7891 CXXRecordDecl *Parent = MD->getParent();
7892 if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
7893 return true;
7894 } else if (!ExpectedParent) {
7895 return true;
7896 }
7897 }
7898 }
7899
7900 return false;
7901 }
7902
7903 std::unique_ptr<CorrectionCandidateCallback> clone() override {
7904 return std::make_unique<DifferentNameValidatorCCC>(*this);
7905 }
7906
7907 private:
7908 ASTContext &Context;
7909 FunctionDecl *OriginalFD;
7910 CXXRecordDecl *ExpectedParent;
7911};
7912
7913} // end anonymous namespace
7914
7915void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl *F) {
7916 TypoCorrectedFunctionDefinitions.insert(F);
7917}
7918
7919/// Generate diagnostics for an invalid function redeclaration.
7920///
7921/// This routine handles generating the diagnostic messages for an invalid
7922/// function redeclaration, including finding possible similar declarations
7923/// or performing typo correction if there are no previous declarations with
7924/// the same name.
7925///
7926/// Returns a NamedDecl iff typo correction was performed and substituting in
7927/// the new declaration name does not cause new errors.
7928static NamedDecl *DiagnoseInvalidRedeclaration(
7929 Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
7930 ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
7931 DeclarationName Name = NewFD->getDeclName();
7932 DeclContext *NewDC = NewFD->getDeclContext();
7933 SmallVector<unsigned, 1> MismatchedParams;
7934 SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
7935 TypoCorrection Correction;
7936 bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
7937 unsigned DiagMsg =
7938 IsLocalFriend ? diag::err_no_matching_local_friend :
7939 NewFD->getFriendObjectKind() ? diag::err_qualified_friend_no_match :
7940 diag::err_member_decl_does_not_match;
7941 LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
7942 IsLocalFriend ? Sema::LookupLocalFriendName
7943 : Sema::LookupOrdinaryName,
7944 Sema::ForVisibleRedeclaration);
7945
7946 NewFD->setInvalidDecl();
7947 if (IsLocalFriend)
7948 SemaRef.LookupName(Prev, S);
7949 else
7950 SemaRef.LookupQualifiedName(Prev, NewDC);
7951 assert(!Prev.isAmbiguous() &&((!Prev.isAmbiguous() && "Cannot have an ambiguity in previous-declaration lookup"
) ? static_cast<void> (0) : __assert_fail ("!Prev.isAmbiguous() && \"Cannot have an ambiguity in previous-declaration lookup\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 7952, __PRETTY_FUNCTION__))
7952 "Cannot have an ambiguity in previous-declaration lookup")((!Prev.isAmbiguous() && "Cannot have an ambiguity in previous-declaration lookup"
) ? static_cast<void> (0) : __assert_fail ("!Prev.isAmbiguous() && \"Cannot have an ambiguity in previous-declaration lookup\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 7952, __PRETTY_FUNCTION__))
;
7953 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
7954 DifferentNameValidatorCCC CCC(SemaRef.Context, NewFD,
7955 MD ? MD->getParent() : nullptr);
7956 if (!Prev.empty()) {
7957 for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
7958 Func != FuncEnd; ++Func) {
7959 FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
7960 if (FD &&
7961 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
7962 // Add 1 to the index so that 0 can mean the mismatch didn't
7963 // involve a parameter
7964 unsigned ParamNum =
7965 MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
7966 NearMatches.push_back(std::make_pair(FD, ParamNum));
7967 }
7968 }
7969 // If the qualified name lookup yielded nothing, try typo correction
7970 } else if ((Correction = SemaRef.CorrectTypo(
7971 Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
7972 &ExtraArgs.D.getCXXScopeSpec(), CCC, Sema::CTK_ErrorRecovery,
7973 IsLocalFriend ? nullptr : NewDC))) {
7974 // Set up everything for the call to ActOnFunctionDeclarator
7975 ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
7976 ExtraArgs.D.getIdentifierLoc());
7977 Previous.clear();
7978 Previous.setLookupName(Correction.getCorrection());
7979 for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
7980 CDeclEnd = Correction.end();
7981 CDecl != CDeclEnd; ++CDecl) {
7982 FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
7983 if (FD && !FD->hasBody() &&
7984 hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
7985 Previous.addDecl(FD);
7986 }
7987 }
7988 bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
7989
7990 NamedDecl *Result;
7991 // Retry building the function declaration with the new previous
7992 // declarations, and with errors suppressed.
7993 {
7994 // Trap errors.
7995 Sema::SFINAETrap Trap(SemaRef);
7996
7997 // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
7998 // pieces need to verify the typo-corrected C++ declaration and hopefully
7999 // eliminate the need for the parameter pack ExtraArgs.
8000 Result = SemaRef.ActOnFunctionDeclarator(
8001 ExtraArgs.S, ExtraArgs.D,
8002 Correction.getCorrectionDecl()->getDeclContext(),
8003 NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
8004 ExtraArgs.AddToScope);
8005
8006 if (Trap.hasErrorOccurred())
8007 Result = nullptr;
8008 }
8009
8010 if (Result) {
8011 // Determine which correction we picked.
8012 Decl *Canonical = Result->getCanonicalDecl();
8013 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
8014 I != E; ++I)
8015 if ((*I)->getCanonicalDecl() == Canonical)
8016 Correction.setCorrectionDecl(*I);
8017
8018 // Let Sema know about the correction.
8019 SemaRef.MarkTypoCorrectedFunctionDefinition(Result);
8020 SemaRef.diagnoseTypo(
8021 Correction,
8022 SemaRef.PDiag(IsLocalFriend
8023 ? diag::err_no_matching_local_friend_suggest
8024 : diag::err_member_decl_does_not_match_suggest)
8025 << Name << NewDC << IsDefinition);
8026 return Result;
8027 }
8028
8029 // Pretend the typo correction never occurred
8030 ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
8031 ExtraArgs.D.getIdentifierLoc());
8032 ExtraArgs.D.setRedeclaration(wasRedeclaration);
8033 Previous.clear();
8034 Previous.setLookupName(Name);
8035 }
8036
8037 SemaRef.Diag(NewFD->getLocation(), DiagMsg)
8038 << Name << NewDC << IsDefinition << NewFD->getLocation();
8039
8040 bool NewFDisConst = false;
8041 if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
8042 NewFDisConst = NewMD->isConst();
8043
8044 for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
8045 NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
8046 NearMatch != NearMatchEnd; ++NearMatch) {
8047 FunctionDecl *FD = NearMatch->first;
8048 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
8049 bool FDisConst = MD && MD->isConst();
8050 bool IsMember = MD || !IsLocalFriend;
8051
8052 // FIXME: These notes are poorly worded for the local friend case.
8053 if (unsigned Idx = NearMatch->second) {
8054 ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
8055 SourceLocation Loc = FDParam->getTypeSpecStartLoc();
8056 if (Loc.isInvalid()) Loc = FD->getLocation();
8057 SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
8058 : diag::note_local_decl_close_param_match)
8059 << Idx << FDParam->getType()
8060 << NewFD->getParamDecl(Idx - 1)->getType();
8061 } else if (FDisConst != NewFDisConst) {
8062 SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
8063 << NewFDisConst << FD->getSourceRange().getEnd();
8064 } else
8065 SemaRef.Diag(FD->getLocation(),
8066 IsMember ? diag::note_member_def_close_match
8067 : diag::note_local_decl_close_match);
8068 }
8069 return nullptr;
8070}
8071
8072static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) {
8073 switch (D.getDeclSpec().getStorageClassSpec()) {
8074 default: llvm_unreachable("Unknown storage class!")::llvm::llvm_unreachable_internal("Unknown storage class!", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 8074)
;
8075 case DeclSpec::SCS_auto:
8076 case DeclSpec::SCS_register:
8077 case DeclSpec::SCS_mutable:
8078 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
8079 diag::err_typecheck_sclass_func);
8080 D.getMutableDeclSpec().ClearStorageClassSpecs();
8081 D.setInvalidType();
8082 break;
8083 case DeclSpec::SCS_unspecified: break;
8084 case DeclSpec::SCS_extern:
8085 if (D.getDeclSpec().isExternInLinkageSpec())
8086 return SC_None;
8087 return SC_Extern;
8088 case DeclSpec::SCS_static: {
8089 if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
8090 // C99 6.7.1p5:
8091 // The declaration of an identifier for a function that has
8092 // block scope shall have no explicit storage-class specifier
8093 // other than extern
8094 // See also (C++ [dcl.stc]p4).
8095 SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
8096 diag::err_static_block_func);
8097 break;
8098 } else
8099 return SC_Static;
8100 }
8101 case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
8102 }
8103
8104 // No explicit storage class has already been returned
8105 return SC_None;
8106}
8107
8108static FunctionDecl *CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
8109 DeclContext *DC, QualType &R,
8110 TypeSourceInfo *TInfo,
8111 StorageClass SC,
8112 bool &IsVirtualOkay) {
8113 DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
8114 DeclarationName Name = NameInfo.getName();
8115
8116 FunctionDecl *NewFD = nullptr;
8117 bool isInline = D.getDeclSpec().isInlineSpecified();
8118
8119 if (!SemaRef.getLangOpts().CPlusPlus) {
8120 // Determine whether the function was written with a
8121 // prototype. This true when:
8122 // - there is a prototype in the declarator, or
8123 // - the type R of the function is some kind of typedef or other non-
8124 // attributed reference to a type name (which eventually refers to a
8125 // function type).
8126 bool HasPrototype =
8127 (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
8128 (!R->getAsAdjusted<FunctionType>() && R->isFunctionProtoType());
8129
8130 NewFD = FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), NameInfo,
8131 R, TInfo, SC, isInline, HasPrototype,
8132 CSK_unspecified);
8133 if (D.isInvalidType())
8134 NewFD->setInvalidDecl();
8135
8136 return NewFD;
8137 }
8138
8139 ExplicitSpecifier ExplicitSpecifier = D.getDeclSpec().getExplicitSpecifier();
8140
8141 ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier();
8142 if (ConstexprKind == CSK_constinit) {
8143 SemaRef.Diag(D.getDeclSpec().getConstexprSpecLoc(),
8144 diag::err_constexpr_wrong_decl_kind)
8145 << ConstexprKind;
8146 ConstexprKind = CSK_unspecified;
8147 D.getMutableDeclSpec().ClearConstexprSpec();
8148 }
8149
8150 // Check that the return type is not an abstract class type.
8151 // For record types, this is done by the AbstractClassUsageDiagnoser once
8152 // the class has been completely parsed.
8153 if (!DC->isRecord() &&
8154 SemaRef.RequireNonAbstractType(
8155 D.getIdentifierLoc(), R->getAs<FunctionType>()->getReturnType(),
8156 diag::err_abstract_type_in_decl, SemaRef.AbstractReturnType))
8157 D.setInvalidType();
8158
8159 if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
8160 // This is a C++ constructor declaration.
8161 assert(DC->isRecord() &&((DC->isRecord() && "Constructors can only be declared in a member context"
) ? static_cast<void> (0) : __assert_fail ("DC->isRecord() && \"Constructors can only be declared in a member context\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 8162, __PRETTY_FUNCTION__))
8162 "Constructors can only be declared in a member context")((DC->isRecord() && "Constructors can only be declared in a member context"
) ? static_cast<void> (0) : __assert_fail ("DC->isRecord() && \"Constructors can only be declared in a member context\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 8162, __PRETTY_FUNCTION__))
;
8163
8164 R = SemaRef.CheckConstructorDeclarator(D, R, SC);
8165 return CXXConstructorDecl::Create(
8166 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8167 TInfo, ExplicitSpecifier, isInline,
8168 /*isImplicitlyDeclared=*/false, ConstexprKind);
8169
8170 } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8171 // This is a C++ destructor declaration.
8172 if (DC->isRecord()) {
8173 R = SemaRef.CheckDestructorDeclarator(D, R, SC);
8174 CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
8175 CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
8176 SemaRef.Context, Record, D.getBeginLoc(), NameInfo, R, TInfo,
8177 isInline,
8178 /*isImplicitlyDeclared=*/false, ConstexprKind);
8179
8180 // If the destructor needs an implicit exception specification, set it
8181 // now. FIXME: It'd be nice to be able to create the right type to start
8182 // with, but the type needs to reference the destructor declaration.
8183 if (SemaRef.getLangOpts().CPlusPlus11)
8184 SemaRef.AdjustDestructorExceptionSpec(NewDD);
8185
8186 IsVirtualOkay = true;
8187 return NewDD;
8188
8189 } else {
8190 SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
8191 D.setInvalidType();
8192
8193 // Create a FunctionDecl to satisfy the function definition parsing
8194 // code path.
8195 return FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(),
8196 D.getIdentifierLoc(), Name, R, TInfo, SC,
8197 isInline,
8198 /*hasPrototype=*/true, ConstexprKind);
8199 }
8200
8201 } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
8202 if (!DC->isRecord()) {
8203 SemaRef.Diag(D.getIdentifierLoc(),
8204 diag::err_conv_function_not_member);
8205 return nullptr;
8206 }
8207
8208 SemaRef.CheckConversionDeclarator(D, R, SC);
8209 IsVirtualOkay = true;
8210 return CXXConversionDecl::Create(
8211 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8212 TInfo, isInline, ExplicitSpecifier, ConstexprKind, SourceLocation());
8213
8214 } else if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) {
8215 SemaRef.CheckDeductionGuideDeclarator(D, R, SC);
8216
8217 return CXXDeductionGuideDecl::Create(SemaRef.Context, DC, D.getBeginLoc(),
8218 ExplicitSpecifier, NameInfo, R, TInfo,
8219 D.getEndLoc());
8220 } else if (DC->isRecord()) {
8221 // If the name of the function is the same as the name of the record,
8222 // then this must be an invalid constructor that has a return type.
8223 // (The parser checks for a return type and makes the declarator a
8224 // constructor if it has no return type).
8225 if (Name.getAsIdentifierInfo() &&
8226 Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
8227 SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
8228 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
8229 << SourceRange(D.getIdentifierLoc());
8230 return nullptr;
8231 }
8232
8233 // This is a C++ method declaration.
8234 CXXMethodDecl *Ret = CXXMethodDecl::Create(
8235 SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R,
8236 TInfo, SC, isInline, ConstexprKind, SourceLocation());
8237 IsVirtualOkay = !Ret->isStatic();
8238 return Ret;
8239 } else {
8240 bool isFriend =
8241 SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified();
8242 if (!isFriend && SemaRef.CurContext->isRecord())
8243 return nullptr;
8244
8245 // Determine whether the function was written with a
8246 // prototype. This true when:
8247 // - we're in C++ (where every function has a prototype),
8248 return FunctionDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), NameInfo,
8249 R, TInfo, SC, isInline, true /*HasPrototype*/,
8250 ConstexprKind);
8251 }
8252}
8253
8254enum OpenCLParamType {
8255 ValidKernelParam,
8256 PtrPtrKernelParam,
8257 PtrKernelParam,
8258 InvalidAddrSpacePtrKernelParam,
8259 InvalidKernelParam,
8260 RecordKernelParam
8261};
8262
8263static bool isOpenCLSizeDependentType(ASTContext &C, QualType Ty) {
8264 // Size dependent types are just typedefs to normal integer types
8265 // (e.g. unsigned long), so we cannot distinguish them from other typedefs to
8266 // integers other than by their names.
8267 StringRef SizeTypeNames[] = {"size_t", "intptr_t", "uintptr_t", "ptrdiff_t"};
8268
8269 // Remove typedefs one by one until we reach a typedef
8270 // for a size dependent type.
8271 QualType DesugaredTy = Ty;
8272 do {
8273 ArrayRef<StringRef> Names(SizeTypeNames);
8274 auto Match = llvm::find(Names, DesugaredTy.getAsString());
8275 if (Names.end() != Match)
8276 return true;
8277
8278 Ty = DesugaredTy;
8279 DesugaredTy = Ty.getSingleStepDesugaredType(C);
8280 } while (DesugaredTy != Ty);
8281
8282 return false;
8283}
8284
8285static OpenCLParamType getOpenCLKernelParameterType(Sema &S, QualType PT) {
8286 if (PT->isPointerType()) {
8287 QualType PointeeType = PT->getPointeeType();
8288 if (PointeeType->isPointerType())
8289 return PtrPtrKernelParam;
8290 if (PointeeType.getAddressSpace() == LangAS::opencl_generic ||
8291 PointeeType.getAddressSpace() == LangAS::opencl_private ||
8292 PointeeType.getAddressSpace() == LangAS::Default)
8293 return InvalidAddrSpacePtrKernelParam;
8294 return PtrKernelParam;
8295 }
8296
8297 // OpenCL v1.2 s6.9.k:
8298 // Arguments to kernel functions in a program cannot be declared with the
8299 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
8300 // uintptr_t or a struct and/or union that contain fields declared to be one
8301 // of these built-in scalar types.
8302 if (isOpenCLSizeDependentType(S.getASTContext(), PT))
8303 return InvalidKernelParam;
8304
8305 if (PT->isImageType())
8306 return PtrKernelParam;
8307
8308 if (PT->isBooleanType() || PT->isEventT() || PT->isReserveIDT())
8309 return InvalidKernelParam;
8310
8311 // OpenCL extension spec v1.2 s9.5:
8312 // This extension adds support for half scalar and vector types as built-in
8313 // types that can be used for arithmetic operations, conversions etc.
8314 if (!S.getOpenCLOptions().isEnabled("cl_khr_fp16") && PT->isHalfType())
8315 return InvalidKernelParam;
8316
8317 if (PT->isRecordType())
8318 return RecordKernelParam;
8319
8320 // Look into an array argument to check if it has a forbidden type.
8321 if (PT->isArrayType()) {
8322 const Type *UnderlyingTy = PT->getPointeeOrArrayElementType();
8323 // Call ourself to check an underlying type of an array. Since the
8324 // getPointeeOrArrayElementType returns an innermost type which is not an
8325 // array, this recursive call only happens once.
8326 return getOpenCLKernelParameterType(S, QualType(UnderlyingTy, 0));
8327 }
8328
8329 return ValidKernelParam;
8330}
8331
8332static void checkIsValidOpenCLKernelParameter(
8333 Sema &S,
8334 Declarator &D,
8335 ParmVarDecl *Param,
8336 llvm::SmallPtrSetImpl<const Type *> &ValidTypes) {
8337 QualType PT = Param->getType();
8338
8339 // Cache the valid types we encounter to avoid rechecking structs that are
8340 // used again
8341 if (ValidTypes.count(PT.getTypePtr()))
8342 return;
8343
8344 switch (getOpenCLKernelParameterType(S, PT)) {
8345 case PtrPtrKernelParam:
8346 // OpenCL v1.2 s6.9.a:
8347 // A kernel function argument cannot be declared as a
8348 // pointer to a pointer type.
8349 S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
8350 D.setInvalidType();
8351 return;
8352
8353 case InvalidAddrSpacePtrKernelParam:
8354 // OpenCL v1.0 s6.5:
8355 // __kernel function arguments declared to be a pointer of a type can point
8356 // to one of the following address spaces only : __global, __local or
8357 // __constant.
8358 S.Diag(Param->getLocation(), diag::err_kernel_arg_address_space);
8359 D.setInvalidType();
8360 return;
8361
8362 // OpenCL v1.2 s6.9.k:
8363 // Arguments to kernel functions in a program cannot be declared with the
8364 // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
8365 // uintptr_t or a struct and/or union that contain fields declared to be
8366 // one of these built-in scalar types.
8367
8368 case InvalidKernelParam:
8369 // OpenCL v1.2 s6.8 n:
8370 // A kernel function argument cannot be declared
8371 // of event_t type.
8372 // Do not diagnose half type since it is diagnosed as invalid argument
8373 // type for any function elsewhere.
8374 if (!PT->isHalfType()) {
8375 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
8376
8377 // Explain what typedefs are involved.
8378 const TypedefType *Typedef = nullptr;
8379 while ((Typedef = PT->getAs<TypedefType>())) {
8380 SourceLocation Loc = Typedef->getDecl()->getLocation();
8381 // SourceLocation may be invalid for a built-in type.
8382 if (Loc.isValid())
8383 S.Diag(Loc, diag::note_entity_declared_at) << PT;
8384 PT = Typedef->desugar();
8385 }
8386 }
8387
8388 D.setInvalidType();
8389 return;
8390
8391 case PtrKernelParam:
8392 case ValidKernelParam:
8393 ValidTypes.insert(PT.getTypePtr());
8394 return;
8395
8396 case RecordKernelParam:
8397 break;
8398 }
8399
8400 // Track nested structs we will inspect
8401 SmallVector<const Decl *, 4> VisitStack;
8402
8403 // Track where we are in the nested structs. Items will migrate from
8404 // VisitStack to HistoryStack as we do the DFS for bad field.
8405 SmallVector<const FieldDecl *, 4> HistoryStack;
8406 HistoryStack.push_back(nullptr);
8407
8408 // At this point we already handled everything except of a RecordType or
8409 // an ArrayType of a RecordType.
8410 assert((PT->isArrayType() || PT->isRecordType()) && "Unexpected type.")(((PT->isArrayType() || PT->isRecordType()) && "Unexpected type."
) ? static_cast<void> (0) : __assert_fail ("(PT->isArrayType() || PT->isRecordType()) && \"Unexpected type.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 8410, __PRETTY_FUNCTION__))
;
8411 const RecordType *RecTy =
8412 PT->getPointeeOrArrayElementType()->getAs<RecordType>();
8413 const RecordDecl *OrigRecDecl = RecTy->getDecl();
8414
8415 VisitStack.push_back(RecTy->getDecl());
8416 assert(VisitStack.back() && "First decl null?")((VisitStack.back() && "First decl null?") ? static_cast
<void> (0) : __assert_fail ("VisitStack.back() && \"First decl null?\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 8416, __PRETTY_FUNCTION__))
;
8417
8418 do {
8419 const Decl *Next = VisitStack.pop_back_val();
8420 if (!Next) {
8421 assert(!HistoryStack.empty())((!HistoryStack.empty()) ? static_cast<void> (0) : __assert_fail
("!HistoryStack.empty()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 8421, __PRETTY_FUNCTION__))
;
8422 // Found a marker, we have gone up a level
8423 if (const FieldDecl *Hist = HistoryStack.pop_back_val())
8424 ValidTypes.insert(Hist->getType().getTypePtr());
8425
8426 continue;
8427 }
8428
8429 // Adds everything except the original parameter declaration (which is not a
8430 // field itself) to the history stack.
8431 const RecordDecl *RD;
8432 if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
8433 HistoryStack.push_back(Field);
8434
8435 QualType FieldTy = Field->getType();
8436 // Other field types (known to be valid or invalid) are handled while we
8437 // walk around RecordDecl::fields().
8438 assert((FieldTy->isArrayType() || FieldTy->isRecordType()) &&(((FieldTy->isArrayType() || FieldTy->isRecordType()) &&
"Unexpected type.") ? static_cast<void> (0) : __assert_fail
("(FieldTy->isArrayType() || FieldTy->isRecordType()) && \"Unexpected type.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 8439, __PRETTY_FUNCTION__))
8439 "Unexpected type.")(((FieldTy->isArrayType() || FieldTy->isRecordType()) &&
"Unexpected type.") ? static_cast<void> (0) : __assert_fail
("(FieldTy->isArrayType() || FieldTy->isRecordType()) && \"Unexpected type.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 8439, __PRETTY_FUNCTION__))
;
8440 const Type *FieldRecTy = FieldTy->getPointeeOrArrayElementType();
8441
8442 RD = FieldRecTy->castAs<RecordType>()->getDecl();
8443 } else {
8444 RD = cast<RecordDecl>(Next);
8445 }
8446
8447 // Add a null marker so we know when we've gone back up a level
8448 VisitStack.push_back(nullptr);
8449
8450 for (const auto *FD : RD->fields()) {
8451 QualType QT = FD->getType();
8452
8453 if (ValidTypes.count(QT.getTypePtr()))
8454 continue;
8455
8456 OpenCLParamType ParamType = getOpenCLKernelParameterType(S, QT);
8457 if (ParamType == ValidKernelParam)
8458 continue;
8459
8460 if (ParamType == RecordKernelParam) {
8461 VisitStack.push_back(FD);
8462 continue;
8463 }
8464
8465 // OpenCL v1.2 s6.9.p:
8466 // Arguments to kernel functions that are declared to be a struct or union
8467 // do not allow OpenCL objects to be passed as elements of the struct or
8468 // union.
8469 if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam ||
8470 ParamType == InvalidAddrSpacePtrKernelParam) {
8471 S.Diag(Param->getLocation(),
8472 diag::err_record_with_pointers_kernel_param)
8473 << PT->isUnionType()
8474 << PT;
8475 } else {
8476 S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
8477 }
8478
8479 S.Diag(OrigRecDecl->getLocation(), diag::note_within_field_of_type)
8480 << OrigRecDecl->getDeclName();
8481
8482 // We have an error, now let's go back up through history and show where
8483 // the offending field came from
8484 for (ArrayRef<const FieldDecl *>::const_iterator
8485 I = HistoryStack.begin() + 1,
8486 E = HistoryStack.end();
8487 I != E; ++I) {
8488 const FieldDecl *OuterField = *I;
8489 S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
8490 << OuterField->getType();
8491 }
8492
8493 S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
8494 << QT->isPointerType()
8495 << QT;
8496 D.setInvalidType();
8497 return;
8498 }
8499 } while (!VisitStack.empty());
8500}
8501
8502/// Find the DeclContext in which a tag is implicitly declared if we see an
8503/// elaborated type specifier in the specified context, and lookup finds
8504/// nothing.
8505static DeclContext *getTagInjectionContext(DeclContext *DC) {
8506 while (!DC->isFileContext() && !DC->isFunctionOrMethod())
8507 DC = DC->getParent();
8508 return DC;
8509}
8510
8511/// Find the Scope in which a tag is implicitly declared if we see an
8512/// elaborated type specifier in the specified context, and lookup finds
8513/// nothing.
8514static Scope *getTagInjectionScope(Scope *S, const LangOptions &LangOpts) {
8515 while (S->isClassScope() ||
8516 (LangOpts.CPlusPlus &&
8517 S->isFunctionPrototypeScope()) ||
8518 ((S->getFlags() & Scope::DeclScope) == 0) ||
8519 (S->getEntity() && S->getEntity()->isTransparentContext()))
8520 S = S->getParent();
8521 return S;
8522}
8523
8524NamedDecl*
8525Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
8526 TypeSourceInfo *TInfo, LookupResult &Previous,
8527 MultiTemplateParamsArg TemplateParamLists,
8528 bool &AddToScope) {
8529 QualType R = TInfo->getType();
8530
8531 assert(R->isFunctionType())((R->isFunctionType()) ? static_cast<void> (0) : __assert_fail
("R->isFunctionType()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 8531, __PRETTY_FUNCTION__))
;
8532
8533 // TODO: consider using NameInfo for diagnostic.
8534 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
8535 DeclarationName Name = NameInfo.getName();
8536 StorageClass SC = getFunctionStorageClass(*this, D);
8537
8538 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
8539 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
8540 diag::err_invalid_thread)
8541 << DeclSpec::getSpecifierName(TSCS);
8542
8543 if (D.isFirstDeclarationOfMember())
8544 adjustMemberFunctionCC(R, D.isStaticMember(), D.isCtorOrDtor(),
8545 D.getIdentifierLoc());
8546
8547 bool isFriend = false;
8548 FunctionTemplateDecl *FunctionTemplate = nullptr;
8549 bool isMemberSpecialization = false;
8550 bool isFunctionTemplateSpecialization = false;
8551
8552 bool isDependentClassScopeExplicitSpecialization = false;
8553 bool HasExplicitTemplateArgs = false;
8554 TemplateArgumentListInfo TemplateArgs;
8555
8556 bool isVirtualOkay = false;
8557
8558 DeclContext *OriginalDC = DC;
8559 bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
8560
8561 FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
8562 isVirtualOkay);
8563 if (!NewFD) return nullptr;
8564
8565 if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
8566 NewFD->setTopLevelDeclInObjCContainer();
8567
8568 // Set the lexical context. If this is a function-scope declaration, or has a
8569 // C++ scope specifier, or is the object of a friend declaration, the lexical
8570 // context will be different from the semantic context.
8571 NewFD->setLexicalDeclContext(CurContext);
8572
8573 if (IsLocalExternDecl)
8574 NewFD->setLocalExternDecl();
8575
8576 if (getLangOpts().CPlusPlus) {
8577 bool isInline = D.getDeclSpec().isInlineSpecified();
8578 bool isVirtual = D.getDeclSpec().isVirtualSpecified();
8579 bool hasExplicit = D.getDeclSpec().hasExplicitSpecifier();
8580 isFriend = D.getDeclSpec().isFriendSpecified();
8581 if (isFriend && !isInline && D.isFunctionDefinition()) {
8582 // C++ [class.friend]p5
8583 // A function can be defined in a friend declaration of a
8584 // class . . . . Such a function is implicitly inline.
8585 NewFD->setImplicitlyInline();
8586 }
8587
8588 // If this is a method defined in an __interface, and is not a constructor
8589 // or an overloaded operator, then set the pure flag (isVirtual will already
8590 // return true).
8591 if (const CXXRecordDecl *Parent =
8592 dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
8593 if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
8594 NewFD->setPure(true);
8595
8596 // C++ [class.union]p2
8597 // A union can have member functions, but not virtual functions.
8598 if (isVirtual && Parent->isUnion())
8599 Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union);
8600 }
8601
8602 SetNestedNameSpecifier(*this, NewFD, D);
8603 isMemberSpecialization = false;
8604 isFunctionTemplateSpecialization = false;
8605 if (D.isInvalidType())
8606 NewFD->setInvalidDecl();
8607
8608 // Match up the template parameter lists with the scope specifier, then
8609 // determine whether we have a template or a template specialization.
8610 bool Invalid = false;
8611 if (TemplateParameterList *TemplateParams =
8612 MatchTemplateParametersToScopeSpecifier(
8613 D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(),
8614 D.getCXXScopeSpec(),
8615 D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId
8616 ? D.getName().TemplateId
8617 : nullptr,
8618 TemplateParamLists, isFriend, isMemberSpecialization,
8619 Invalid)) {
8620 if (TemplateParams->size() > 0) {
8621 // This is a function template
8622
8623 // Check that we can declare a template here.
8624 if (CheckTemplateDeclScope(S, TemplateParams))
8625 NewFD->setInvalidDecl();
8626
8627 // A destructor cannot be a template.
8628 if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
8629 Diag(NewFD->getLocation(), diag::err_destructor_template);
8630 NewFD->setInvalidDecl();
8631 }
8632
8633 // If we're adding a template to a dependent context, we may need to
8634 // rebuilding some of the types used within the template parameter list,
8635 // now that we know what the current instantiation is.
8636 if (DC->isDependentContext()) {
8637 ContextRAII SavedContext(*this, DC);
8638 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
8639 Invalid = true;
8640 }
8641
8642 FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
8643 NewFD->getLocation(),
8644 Name, TemplateParams,
8645 NewFD);
8646 FunctionTemplate->setLexicalDeclContext(CurContext);
8647 NewFD->setDescribedFunctionTemplate(FunctionTemplate);
8648
8649 // For source fidelity, store the other template param lists.
8650 if (TemplateParamLists.size() > 1) {
8651 NewFD->setTemplateParameterListsInfo(Context,
8652 TemplateParamLists.drop_back(1));
8653 }
8654 } else {
8655 // This is a function template specialization.
8656 isFunctionTemplateSpecialization = true;
8657 // For source fidelity, store all the template param lists.
8658 if (TemplateParamLists.size() > 0)
8659 NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
8660
8661 // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
8662 if (isFriend) {
8663 // We want to remove the "template<>", found here.
8664 SourceRange RemoveRange = TemplateParams->getSourceRange();
8665
8666 // If we remove the template<> and the name is not a
8667 // template-id, we're actually silently creating a problem:
8668 // the friend declaration will refer to an untemplated decl,
8669 // and clearly the user wants a template specialization. So
8670 // we need to insert '<>' after the name.
8671 SourceLocation InsertLoc;
8672 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
8673 InsertLoc = D.getName().getSourceRange().getEnd();
8674 InsertLoc = getLocForEndOfToken(InsertLoc);
8675 }
8676
8677 Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
8678 << Name << RemoveRange
8679 << FixItHint::CreateRemoval(RemoveRange)
8680 << FixItHint::CreateInsertion(InsertLoc, "<>");
8681 }
8682 }
8683 } else {
8684 // All template param lists were matched against the scope specifier:
8685 // this is NOT (an explicit specialization of) a template.
8686 if (TemplateParamLists.size() > 0)
8687 // For source fidelity, store all the template param lists.
8688 NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists);
8689 }
8690
8691 if (Invalid) {
8692 NewFD->setInvalidDecl();
8693 if (FunctionTemplate)
8694 FunctionTemplate->setInvalidDecl();
8695 }
8696
8697 // C++ [dcl.fct.spec]p5:
8698 // The virtual specifier shall only be used in declarations of
8699 // nonstatic class member functions that appear within a
8700 // member-specification of a class declaration; see 10.3.
8701 //
8702 if (isVirtual && !NewFD->isInvalidDecl()) {
8703 if (!isVirtualOkay) {
8704 Diag(D.getDeclSpec().getVirtualSpecLoc(),
8705 diag::err_virtual_non_function);
8706 } else if (!CurContext->isRecord()) {
8707 // 'virtual' was specified outside of the class.
8708 Diag(D.getDeclSpec().getVirtualSpecLoc(),
8709 diag::err_virtual_out_of_class)
8710 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
8711 } else if (NewFD->getDescribedFunctionTemplate()) {
8712 // C++ [temp.mem]p3:
8713 // A member function template shall not be virtual.
8714 Diag(D.getDeclSpec().getVirtualSpecLoc(),
8715 diag::err_virtual_member_function_template)
8716 << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
8717 } else {
8718 // Okay: Add virtual to the method.
8719 NewFD->setVirtualAsWritten(true);
8720 }
8721
8722 if (getLangOpts().CPlusPlus14 &&
8723 NewFD->getReturnType()->isUndeducedType())
8724 Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
8725 }
8726
8727 if (getLangOpts().CPlusPlus14 &&
8728 (NewFD->isDependentContext() ||
8729 (isFriend && CurContext->isDependentContext())) &&
8730 NewFD->getReturnType()->isUndeducedType()) {
8731 // If the function template is referenced directly (for instance, as a
8732 // member of the current instantiation), pretend it has a dependent type.
8733 // This is not really justified by the standard, but is the only sane
8734 // thing to do.
8735 // FIXME: For a friend function, we have not marked the function as being
8736 // a friend yet, so 'isDependentContext' on the FD doesn't work.
8737 const FunctionProtoType *FPT =
8738 NewFD->getType()->castAs<FunctionProtoType>();
8739 QualType Result =
8740 SubstAutoType(FPT->getReturnType(), Context.DependentTy);
8741 NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(),
8742 FPT->getExtProtoInfo()));
8743 }
8744
8745 // C++ [dcl.fct.spec]p3:
8746 // The inline specifier shall not appear on a block scope function
8747 // declaration.
8748 if (isInline && !NewFD->isInvalidDecl()) {
8749 if (CurContext->isFunctionOrMethod()) {
8750 // 'inline' is not allowed on block scope function declaration.
8751 Diag(D.getDeclSpec().getInlineSpecLoc(),
8752 diag::err_inline_declaration_block_scope) << Name
8753 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
8754 }
8755 }
8756
8757 // C++ [dcl.fct.spec]p6:
8758 // The explicit specifier shall be used only in the declaration of a
8759 // constructor or conversion function within its class definition;
8760 // see 12.3.1 and 12.3.2.
8761 if (hasExplicit && !NewFD->isInvalidDecl() &&
8762 !isa<CXXDeductionGuideDecl>(NewFD)) {
8763 if (!CurContext->isRecord()) {
8764 // 'explicit' was specified outside of the class.
8765 Diag(D.getDeclSpec().getExplicitSpecLoc(),
8766 diag::err_explicit_out_of_class)
8767 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange());
8768 } else if (!isa<CXXConstructorDecl>(NewFD) &&
8769 !isa<CXXConversionDecl>(NewFD)) {
8770 // 'explicit' was specified on a function that wasn't a constructor
8771 // or conversion function.
8772 Diag(D.getDeclSpec().getExplicitSpecLoc(),
8773 diag::err_explicit_non_ctor_or_conv_function)
8774 << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange());
8775 }
8776 }
8777
8778 if (ConstexprSpecKind ConstexprKind =
8779 D.getDeclSpec().getConstexprSpecifier()) {
8780 // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
8781 // are implicitly inline.
8782 NewFD->setImplicitlyInline();
8783
8784 // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
8785 // be either constructors or to return a literal type. Therefore,
8786 // destructors cannot be declared constexpr.
8787 if (isa<CXXDestructorDecl>(NewFD) && !getLangOpts().CPlusPlus2a) {
8788 Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor)
8789 << ConstexprKind;
8790 }
8791 }
8792
8793 // If __module_private__ was specified, mark the function accordingly.
8794 if (D.getDeclSpec().isModulePrivateSpecified()) {
8795 if (isFunctionTemplateSpecialization) {
8796 SourceLocation ModulePrivateLoc
8797 = D.getDeclSpec().getModulePrivateSpecLoc();
8798 Diag(ModulePrivateLoc, diag::err_module_private_specialization)
8799 << 0
8800 << FixItHint::CreateRemoval(ModulePrivateLoc);
8801 } else {
8802 NewFD->setModulePrivate();
8803 if (FunctionTemplate)
8804 FunctionTemplate->setModulePrivate();
8805 }
8806 }
8807
8808 if (isFriend) {
8809 if (FunctionTemplate) {
8810 FunctionTemplate->setObjectOfFriendDecl();
8811 FunctionTemplate->setAccess(AS_public);
8812 }
8813 NewFD->setObjectOfFriendDecl();
8814 NewFD->setAccess(AS_public);
8815 }
8816
8817 // If a function is defined as defaulted or deleted, mark it as such now.
8818 // FIXME: Does this ever happen? ActOnStartOfFunctionDef forces the function
8819 // definition kind to FDK_Definition.
8820 switch (D.getFunctionDefinitionKind()) {
8821 case FDK_Declaration:
8822 case FDK_Definition:
8823 break;
8824
8825 case FDK_Defaulted:
8826 NewFD->setDefaulted();
8827 break;
8828
8829 case FDK_Deleted:
8830 NewFD->setDeletedAsWritten();
8831 break;
8832 }
8833
8834 if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
8835 D.isFunctionDefinition()) {
8836 // C++ [class.mfct]p2:
8837 // A member function may be defined (8.4) in its class definition, in
8838 // which case it is an inline member function (7.1.2)
8839 NewFD->setImplicitlyInline();
8840 }
8841
8842 if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
8843 !CurContext->isRecord()) {
8844 // C++ [class.static]p1:
8845 // A data or function member of a class may be declared static
8846 // in a class definition, in which case it is a static member of
8847 // the class.
8848
8849 // Complain about the 'static' specifier if it's on an out-of-line
8850 // member function definition.
8851
8852 // MSVC permits the use of a 'static' storage specifier on an out-of-line
8853 // member function template declaration and class member template
8854 // declaration (MSVC versions before 2015), warn about this.
8855 Diag(D.getDeclSpec().getStorageClassSpecLoc(),
8856 ((!getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
8857 cast<CXXRecordDecl>(DC)->getDescribedClassTemplate()) ||
8858 (getLangOpts().MSVCCompat && NewFD->getDescribedFunctionTemplate()))
8859 ? diag::ext_static_out_of_line : diag::err_static_out_of_line)
8860 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
8861 }
8862
8863 // C++11 [except.spec]p15:
8864 // A deallocation function with no exception-specification is treated
8865 // as if it were specified with noexcept(true).
8866 const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
8867 if ((Name.getCXXOverloadedOperator() == OO_Delete ||
8868 Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
8869 getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec())
8870 NewFD->setType(Context.getFunctionType(
8871 FPT->getReturnType(), FPT->getParamTypes(),
8872 FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept)));
8873 }
8874
8875 // Filter out previous declarations that don't match the scope.
8876 FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
8877 D.getCXXScopeSpec().isNotEmpty() ||
8878 isMemberSpecialization ||
8879 isFunctionTemplateSpecialization);
8880
8881 // Handle GNU asm-label extension (encoded as an attribute).
8882 if (Expr *E = (Expr*) D.getAsmLabel()) {
8883 // The parser guarantees this is a string.
8884 StringLiteral *SE = cast<StringLiteral>(E);
8885 NewFD->addAttr(::new (Context)
8886 AsmLabelAttr(Context, SE->getStrTokenLoc(0),
8887 SE->getString(), /*IsLiteralLabel=*/true));
8888 } else if (!ExtnameUndeclaredIdentifiers.empty()) {
8889 llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
8890 ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
8891 if (I != ExtnameUndeclaredIdentifiers.end()) {
8892 if (isDeclExternC(NewFD)) {
8893 NewFD->addAttr(I->second);
8894 ExtnameUndeclaredIdentifiers.erase(I);
8895 } else
8896 Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied)
8897 << /*Variable*/0 << NewFD;
8898 }
8899 }
8900
8901 // Copy the parameter declarations from the declarator D to the function
8902 // declaration NewFD, if they are available. First scavenge them into Params.
8903 SmallVector<ParmVarDecl*, 16> Params;
8904 unsigned FTIIdx;
8905 if (D.isFunctionDeclarator(FTIIdx)) {
8906 DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(FTIIdx).Fun;
8907
8908 // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
8909 // function that takes no arguments, not a function that takes a
8910 // single void argument.
8911 // We let through "const void" here because Sema::GetTypeForDeclarator
8912 // already checks for that case.
8913 if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) {
8914 for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) {
8915 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
8916 assert(Param->getDeclContext() != NewFD && "Was set before ?")((Param->getDeclContext() != NewFD && "Was set before ?"
) ? static_cast<void> (0) : __assert_fail ("Param->getDeclContext() != NewFD && \"Was set before ?\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 8916, __PRETTY_FUNCTION__))
;
8917 Param->setDeclContext(NewFD);
8918 Params.push_back(Param);
8919
8920 if (Param->isInvalidDecl())
8921 NewFD->setInvalidDecl();
8922 }
8923 }
8924
8925 if (!getLangOpts().CPlusPlus) {
8926 // In C, find all the tag declarations from the prototype and move them
8927 // into the function DeclContext. Remove them from the surrounding tag
8928 // injection context of the function, which is typically but not always
8929 // the TU.
8930 DeclContext *PrototypeTagContext =
8931 getTagInjectionContext(NewFD->getLexicalDeclContext());
8932 for (NamedDecl *NonParmDecl : FTI.getDeclsInPrototype()) {
8933 auto *TD = dyn_cast<TagDecl>(NonParmDecl);
8934
8935 // We don't want to reparent enumerators. Look at their parent enum
8936 // instead.
8937 if (!TD) {
8938 if (auto *ECD = dyn_cast<EnumConstantDecl>(NonParmDecl))
8939 TD = cast<EnumDecl>(ECD->getDeclContext());
8940 }
8941 if (!TD)
8942 continue;
8943 DeclContext *TagDC = TD->getLexicalDeclContext();
8944 if (!TagDC->containsDecl(TD))
8945 continue;
8946 TagDC->removeDecl(TD);
8947 TD->setDeclContext(NewFD);
8948 NewFD->addDecl(TD);
8949
8950 // Preserve the lexical DeclContext if it is not the surrounding tag
8951 // injection context of the FD. In this example, the semantic context of
8952 // E will be f and the lexical context will be S, while both the
8953 // semantic and lexical contexts of S will be f:
8954 // void f(struct S { enum E { a } f; } s);
8955 if (TagDC != PrototypeTagContext)
8956 TD->setLexicalDeclContext(TagDC);
8957 }
8958 }
8959 } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
8960 // When we're declaring a function with a typedef, typeof, etc as in the
8961 // following example, we'll need to synthesize (unnamed)
8962 // parameters for use in the declaration.
8963 //
8964 // @code
8965 // typedef void fn(int);
8966 // fn f;
8967 // @endcode
8968
8969 // Synthesize a parameter for each argument type.
8970 for (const auto &AI : FT->param_types()) {
8971 ParmVarDecl *Param =
8972 BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI);
8973 Param->setScopeInfo(0, Params.size());
8974 Params.push_back(Param);
8975 }
8976 } else {
8977 assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&((R->isFunctionNoProtoType() && NewFD->getNumParams
() == 0 && "Should not need args for typedef of non-prototype fn"
) ? static_cast<void> (0) : __assert_fail ("R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 && \"Should not need args for typedef of non-prototype fn\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 8978, __PRETTY_FUNCTION__))
8978 "Should not need args for typedef of non-prototype fn")((R->isFunctionNoProtoType() && NewFD->getNumParams
() == 0 && "Should not need args for typedef of non-prototype fn"
) ? static_cast<void> (0) : __assert_fail ("R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 && \"Should not need args for typedef of non-prototype fn\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 8978, __PRETTY_FUNCTION__))
;
8979 }
8980
8981 // Finally, we know we have the right number of parameters, install them.
8982 NewFD->setParams(Params);
8983
8984 if (D.getDeclSpec().isNoreturnSpecified())
8985 NewFD->addAttr(C11NoReturnAttr::Create(Context,
8986 D.getDeclSpec().getNoreturnSpecLoc(),
8987 AttributeCommonInfo::AS_Keyword));
8988
8989 // Functions returning a variably modified type violate C99 6.7.5.2p2
8990 // because all functions have linkage.
8991 if (!NewFD->isInvalidDecl() &&
8992 NewFD->getReturnType()->isVariablyModifiedType()) {
8993 Diag(NewFD->getLocation(), diag::err_vm_func_decl);
8994 NewFD->setInvalidDecl();
8995 }
8996
8997 // Apply an implicit SectionAttr if '#pragma clang section text' is active
8998 if (PragmaClangTextSection.Valid && D.isFunctionDefinition() &&
8999 !NewFD->hasAttr<SectionAttr>())
9000 NewFD->addAttr(PragmaClangTextSectionAttr::CreateImplicit(
9001 Context, PragmaClangTextSection.SectionName,
9002 PragmaClangTextSection.PragmaLocation, AttributeCommonInfo::AS_Pragma));
9003
9004 // Apply an implicit SectionAttr if #pragma code_seg is active.
9005 if (CodeSegStack.CurrentValue && D.isFunctionDefinition() &&
9006 !NewFD->hasAttr<SectionAttr>()) {
9007 NewFD->addAttr(SectionAttr::CreateImplicit(
9008 Context, CodeSegStack.CurrentValue->getString(),
9009 CodeSegStack.CurrentPragmaLocation, AttributeCommonInfo::AS_Pragma,
9010 SectionAttr::Declspec_allocate));
9011 if (UnifySection(CodeSegStack.CurrentValue->getString(),
9012 ASTContext::PSF_Implicit | ASTContext::PSF_Execute |
9013 ASTContext::PSF_Read,
9014 NewFD))
9015 NewFD->dropAttr<SectionAttr>();
9016 }
9017
9018 // Apply an implicit CodeSegAttr from class declspec or
9019 // apply an implicit SectionAttr from #pragma code_seg if active.
9020 if (!NewFD->hasAttr<CodeSegAttr>()) {
9021 if (Attr *SAttr = getImplicitCodeSegOrSectionAttrForFunction(NewFD,
9022 D.isFunctionDefinition())) {
9023 NewFD->addAttr(SAttr);
9024 }
9025 }
9026
9027 // Handle attributes.
9028 ProcessDeclAttributes(S, NewFD, D);
9029
9030 if (getLangOpts().OpenCL) {
9031 // OpenCL v1.1 s6.5: Using an address space qualifier in a function return
9032 // type declaration will generate a compilation error.
9033 LangAS AddressSpace = NewFD->getReturnType().getAddressSpace();
9034 if (AddressSpace != LangAS::Default) {
9035 Diag(NewFD->getLocation(),
9036 diag::err_opencl_return_value_with_address_space);
9037 NewFD->setInvalidDecl();
9038 }
9039 }
9040
9041 if (!getLangOpts().CPlusPlus) {
9042 // Perform semantic checking on the function declaration.
9043 if (!NewFD->isInvalidDecl() && NewFD->isMain())
9044 CheckMain(NewFD, D.getDeclSpec());
9045
9046 if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
9047 CheckMSVCRTEntryPoint(NewFD);
9048
9049 if (!NewFD->isInvalidDecl())
9050 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
9051 isMemberSpecialization));
9052 else if (!Previous.empty())
9053 // Recover gracefully from an invalid redeclaration.
9054 D.setRedeclaration(true);
9055 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||(((NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous
.getResultKind() != LookupResult::FoundOverloaded) &&
"previous declaration set still overloaded") ? static_cast<
void> (0) : __assert_fail ("(NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 9057, __PRETTY_FUNCTION__))
9056 Previous.getResultKind() != LookupResult::FoundOverloaded) &&(((NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous
.getResultKind() != LookupResult::FoundOverloaded) &&
"previous declaration set still overloaded") ? static_cast<
void> (0) : __assert_fail ("(NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 9057, __PRETTY_FUNCTION__))
9057 "previous declaration set still overloaded")(((NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous
.getResultKind() != LookupResult::FoundOverloaded) &&
"previous declaration set still overloaded") ? static_cast<
void> (0) : __assert_fail ("(NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 9057, __PRETTY_FUNCTION__))
;
9058
9059 // Diagnose no-prototype function declarations with calling conventions that
9060 // don't support variadic calls. Only do this in C and do it after merging
9061 // possibly prototyped redeclarations.
9062 const FunctionType *FT = NewFD->getType()->castAs<FunctionType>();
9063 if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) {
9064 CallingConv CC = FT->getExtInfo().getCC();
9065 if (!supportsVariadicCall(CC)) {
9066 // Windows system headers sometimes accidentally use stdcall without
9067 // (void) parameters, so we relax this to a warning.
9068 int DiagID =
9069 CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr;
9070 Diag(NewFD->getLocation(), DiagID)
9071 << FunctionType::getNameForCallConv(CC);
9072 }
9073 }
9074
9075 if (NewFD->getReturnType().hasNonTrivialToPrimitiveDestructCUnion() ||
9076 NewFD->getReturnType().hasNonTrivialToPrimitiveCopyCUnion())
9077 checkNonTrivialCUnion(NewFD->getReturnType(),
9078 NewFD->getReturnTypeSourceRange().getBegin(),
9079 NTCUC_FunctionReturn, NTCUK_Destruct|NTCUK_Copy);
9080 } else {
9081 // C++11 [replacement.functions]p3:
9082 // The program's definitions shall not be specified as inline.
9083 //
9084 // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
9085 //
9086 // Suppress the diagnostic if the function is __attribute__((used)), since
9087 // that forces an external definition to be emitted.
9088 if (D.getDeclSpec().isInlineSpecified() &&
9089 NewFD->isReplaceableGlobalAllocationFunction() &&
9090 !NewFD->hasAttr<UsedAttr>())
9091 Diag(D.getDeclSpec().getInlineSpecLoc(),
9092 diag::ext_operator_new_delete_declared_inline)
9093 << NewFD->getDeclName();
9094
9095 // If the declarator is a template-id, translate the parser's template
9096 // argument list into our AST format.
9097 if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) {
9098 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
9099 TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
9100 TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
9101 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
9102 TemplateId->NumArgs);
9103 translateTemplateArguments(TemplateArgsPtr,
9104 TemplateArgs);
9105
9106 HasExplicitTemplateArgs = true;
9107
9108 if (NewFD->isInvalidDecl()) {
9109 HasExplicitTemplateArgs = false;
9110 } else if (FunctionTemplate) {
9111 // Function template with explicit template arguments.
9112 Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
9113 << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
9114
9115 HasExplicitTemplateArgs = false;
9116 } else {
9117 assert((isFunctionTemplateSpecialization ||(((isFunctionTemplateSpecialization || D.getDeclSpec().isFriendSpecified
()) && "should have a 'template<>' for this decl"
) ? static_cast<void> (0) : __assert_fail ("(isFunctionTemplateSpecialization || D.getDeclSpec().isFriendSpecified()) && \"should have a 'template<>' for this decl\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 9119, __PRETTY_FUNCTION__))
9118 D.getDeclSpec().isFriendSpecified()) &&(((isFunctionTemplateSpecialization || D.getDeclSpec().isFriendSpecified
()) && "should have a 'template<>' for this decl"
) ? static_cast<void> (0) : __assert_fail ("(isFunctionTemplateSpecialization || D.getDeclSpec().isFriendSpecified()) && \"should have a 'template<>' for this decl\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 9119, __PRETTY_FUNCTION__))
9119 "should have a 'template<>' for this decl")(((isFunctionTemplateSpecialization || D.getDeclSpec().isFriendSpecified
()) && "should have a 'template<>' for this decl"
) ? static_cast<void> (0) : __assert_fail ("(isFunctionTemplateSpecialization || D.getDeclSpec().isFriendSpecified()) && \"should have a 'template<>' for this decl\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 9119, __PRETTY_FUNCTION__))
;
9120 // "friend void foo<>(int);" is an implicit specialization decl.
9121 isFunctionTemplateSpecialization = true;
9122 }
9123 } else if (isFriend && isFunctionTemplateSpecialization) {
9124 // This combination is only possible in a recovery case; the user
9125 // wrote something like:
9126 // template <> friend void foo(int);
9127 // which we're recovering from as if the user had written:
9128 // friend void foo<>(int);
9129 // Go ahead and fake up a template id.
9130 HasExplicitTemplateArgs = true;
9131 TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
9132 TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
9133 }
9134
9135 // We do not add HD attributes to specializations here because
9136 // they may have different constexpr-ness compared to their
9137 // templates and, after maybeAddCUDAHostDeviceAttrs() is applied,
9138 // may end up with different effective targets. Instead, a
9139 // specialization inherits its target attributes from its template
9140 // in the CheckFunctionTemplateSpecialization() call below.
9141 if (getLangOpts().CUDA && !isFunctionTemplateSpecialization)
9142 maybeAddCUDAHostDeviceAttrs(NewFD, Previous);
9143
9144 // If it's a friend (and only if it's a friend), it's possible
9145 // that either the specialized function type or the specialized
9146 // template is dependent, and therefore matching will fail. In
9147 // this case, don't check the specialization yet.
9148 bool InstantiationDependent = false;
9149 if (isFunctionTemplateSpecialization && isFriend &&
9150 (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
9151 TemplateSpecializationType::anyDependentTemplateArguments(
9152 TemplateArgs,
9153 InstantiationDependent))) {
9154 assert(HasExplicitTemplateArgs &&((HasExplicitTemplateArgs && "friend function specialization without template args"
) ? static_cast<void> (0) : __assert_fail ("HasExplicitTemplateArgs && \"friend function specialization without template args\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 9155, __PRETTY_FUNCTION__))
9155 "friend function specialization without template args")((HasExplicitTemplateArgs && "friend function specialization without template args"
) ? static_cast<void> (0) : __assert_fail ("HasExplicitTemplateArgs && \"friend function specialization without template args\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 9155, __PRETTY_FUNCTION__))
;
9156 if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
9157 Previous))
9158 NewFD->setInvalidDecl();
9159 } else if (isFunctionTemplateSpecialization) {
9160 if (CurContext->isDependentContext() && CurContext->isRecord()
9161 && !isFriend) {
9162 isDependentClassScopeExplicitSpecialization = true;
9163 } else if (!NewFD->isInvalidDecl() &&
9164 CheckFunctionTemplateSpecialization(
9165 NewFD, (HasExplicitTemplateArgs ? &TemplateArgs : nullptr),
9166 Previous))
9167 NewFD->setInvalidDecl();
9168
9169 // C++ [dcl.stc]p1:
9170 // A storage-class-specifier shall not be specified in an explicit
9171 // specialization (14.7.3)
9172 FunctionTemplateSpecializationInfo *Info =
9173 NewFD->getTemplateSpecializationInfo();
9174 if (Info && SC != SC_None) {
9175 if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
9176 Diag(NewFD->getLocation(),
9177 diag::err_explicit_specialization_inconsistent_storage_class)
9178 << SC
9179 << FixItHint::CreateRemoval(
9180 D.getDeclSpec().getStorageClassSpecLoc());
9181
9182 else
9183 Diag(NewFD->getLocation(),
9184 diag::ext_explicit_specialization_storage_class)
9185 << FixItHint::CreateRemoval(
9186 D.getDeclSpec().getStorageClassSpecLoc());
9187 }
9188 } else if (isMemberSpecialization && isa<CXXMethodDecl>(NewFD)) {
9189 if (CheckMemberSpecialization(NewFD, Previous))
9190 NewFD->setInvalidDecl();
9191 }
9192
9193 // Perform semantic checking on the function declaration.
9194 if (!isDependentClassScopeExplicitSpecialization) {
9195 if (!NewFD->isInvalidDecl() && NewFD->isMain())
9196 CheckMain(NewFD, D.getDeclSpec());
9197
9198 if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
9199 CheckMSVCRTEntryPoint(NewFD);
9200
9201 if (!NewFD->isInvalidDecl())
9202 D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
9203 isMemberSpecialization));
9204 else if (!Previous.empty())
9205 // Recover gracefully from an invalid redeclaration.
9206 D.setRedeclaration(true);
9207 }
9208
9209 assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||(((NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous
.getResultKind() != LookupResult::FoundOverloaded) &&
"previous declaration set still overloaded") ? static_cast<
void> (0) : __assert_fail ("(NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 9211, __PRETTY_FUNCTION__))
9210 Previous.getResultKind() != LookupResult::FoundOverloaded) &&(((NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous
.getResultKind() != LookupResult::FoundOverloaded) &&
"previous declaration set still overloaded") ? static_cast<
void> (0) : __assert_fail ("(NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 9211, __PRETTY_FUNCTION__))
9211 "previous declaration set still overloaded")(((NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous
.getResultKind() != LookupResult::FoundOverloaded) &&
"previous declaration set still overloaded") ? static_cast<
void> (0) : __assert_fail ("(NewFD->isInvalidDecl() || !D.isRedeclaration() || Previous.getResultKind() != LookupResult::FoundOverloaded) && \"previous declaration set still overloaded\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 9211, __PRETTY_FUNCTION__))
;
9212
9213 NamedDecl *PrincipalDecl = (FunctionTemplate
9214 ? cast<NamedDecl>(FunctionTemplate)
9215 : NewFD);
9216
9217 if (isFriend && NewFD->getPreviousDecl()) {
9218 AccessSpecifier Access = AS_public;
9219 if (!NewFD->isInvalidDecl())
9220 Access = NewFD->getPreviousDecl()->getAccess();
9221
9222 NewFD->setAccess(Access);
9223 if (FunctionTemplate) FunctionTemplate->setAccess(Access);
9224 }
9225
9226 if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
9227 PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
9228 PrincipalDecl->setNonMemberOperator();
9229
9230 // If we have a function template, check the template parameter
9231 // list. This will check and merge default template arguments.
9232 if (FunctionTemplate) {
9233 FunctionTemplateDecl *PrevTemplate =
9234 FunctionTemplate->getPreviousDecl();
9235 CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
9236 PrevTemplate ? PrevTemplate->getTemplateParameters()
9237 : nullptr,
9238 D.getDeclSpec().isFriendSpecified()
9239 ? (D.isFunctionDefinition()
9240 ? TPC_FriendFunctionTemplateDefinition
9241 : TPC_FriendFunctionTemplate)
9242 : (D.getCXXScopeSpec().isSet() &&
9243 DC && DC->isRecord() &&
9244 DC->isDependentContext())
9245 ? TPC_ClassTemplateMember
9246 : TPC_FunctionTemplate);
9247 }
9248
9249 if (NewFD->isInvalidDecl()) {
9250 // Ignore all the rest of this.
9251 } else if (!D.isRedeclaration()) {
9252 struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
9253 AddToScope };
9254 // Fake up an access specifier if it's supposed to be a class member.
9255 if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
9256 NewFD->setAccess(AS_public);
9257
9258 // Qualified decls generally require a previous declaration.
9259 if (D.getCXXScopeSpec().isSet()) {
9260 // ...with the major exception of templated-scope or
9261 // dependent-scope friend declarations.
9262
9263 // TODO: we currently also suppress this check in dependent
9264 // contexts because (1) the parameter depth will be off when
9265 // matching friend templates and (2) we might actually be
9266 // selecting a friend based on a dependent factor. But there
9267 // are situations where these conditions don't apply and we
9268 // can actually do this check immediately.
9269 //
9270 // Unless the scope is dependent, it's always an error if qualified
9271 // redeclaration lookup found nothing at all. Diagnose that now;
9272 // nothing will diagnose that error later.
9273 if (isFriend &&
9274 (D.getCXXScopeSpec().getScopeRep()->isDependent() ||
9275 (!Previous.empty() && CurContext->isDependentContext()))) {
9276 // ignore these
9277 } else {
9278 // The user tried to provide an out-of-line definition for a
9279 // function that is a member of a class or namespace, but there
9280 // was no such member function declared (C++ [class.mfct]p2,
9281 // C++ [namespace.memdef]p2). For example:
9282 //
9283 // class X {
9284 // void f() const;
9285 // };
9286 //
9287 // void X::f() { } // ill-formed
9288 //
9289 // Complain about this problem, and attempt to suggest close
9290 // matches (e.g., those that differ only in cv-qualifiers and
9291 // whether the parameter types are references).
9292
9293 if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
9294 *this, Previous, NewFD, ExtraArgs, false, nullptr)) {
9295 AddToScope = ExtraArgs.AddToScope;
9296 return Result;
9297 }
9298 }
9299
9300 // Unqualified local friend declarations are required to resolve
9301 // to something.
9302 } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
9303 if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
9304 *this, Previous, NewFD, ExtraArgs, true, S)) {
9305 AddToScope = ExtraArgs.AddToScope;
9306 return Result;
9307 }
9308 }
9309 } else if (!D.isFunctionDefinition() &&
9310 isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() &&
9311 !isFriend && !isFunctionTemplateSpecialization &&
9312 !isMemberSpecialization) {
9313 // An out-of-line member function declaration must also be a
9314 // definition (C++ [class.mfct]p2).
9315 // Note that this is not the case for explicit specializations of
9316 // function templates or member functions of class templates, per
9317 // C++ [temp.expl.spec]p2. We also allow these declarations as an
9318 // extension for compatibility with old SWIG code which likes to
9319 // generate them.
9320 Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
9321 << D.getCXXScopeSpec().getRange();
9322 }
9323 }
9324
9325 ProcessPragmaWeak(S, NewFD);
9326 checkAttributesAfterMerging(*this, *NewFD);
9327
9328 AddKnownFunctionAttributes(NewFD);
9329
9330 if (NewFD->hasAttr<OverloadableAttr>() &&
9331 !NewFD->getType()->getAs<FunctionProtoType>()) {
9332 Diag(NewFD->getLocation(),
9333 diag::err_attribute_overloadable_no_prototype)
9334 << NewFD;
9335
9336 // Turn this into a variadic function with no parameters.
9337 const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
9338 FunctionProtoType::ExtProtoInfo EPI(
9339 Context.getDefaultCallingConvention(true, false));
9340 EPI.Variadic = true;
9341 EPI.ExtInfo = FT->getExtInfo();
9342
9343 QualType R = Context.getFunctionType(FT->getReturnType(), None, EPI);
9344 NewFD->setType(R);
9345 }
9346
9347 // If there's a #pragma GCC visibility in scope, and this isn't a class
9348 // member, set the visibility of this function.
9349 if (!DC->isRecord() && NewFD->isExternallyVisible())
9350 AddPushedVisibilityAttribute(NewFD);
9351
9352 // If there's a #pragma clang arc_cf_code_audited in scope, consider
9353 // marking the function.
9354 AddCFAuditedAttribute(NewFD);
9355
9356 // If this is a function definition, check if we have to apply optnone due to
9357 // a pragma.
9358 if(D.isFunctionDefinition())
9359 AddRangeBasedOptnone(NewFD);
9360
9361 // If this is the first declaration of an extern C variable, update
9362 // the map of such variables.
9363 if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
9364 isIncompleteDeclExternC(*this, NewFD))
9365 RegisterLocallyScopedExternCDecl(NewFD, S);
9366
9367 // Set this FunctionDecl's range up to the right paren.
9368 NewFD->setRangeEnd(D.getSourceRange().getEnd());
9369
9370 if (D.isRedeclaration() && !Previous.empty()) {
9371 NamedDecl *Prev = Previous.getRepresentativeDecl();
9372 checkDLLAttributeRedeclaration(*this, Prev, NewFD,
9373 isMemberSpecialization ||
9374 isFunctionTemplateSpecialization,
9375 D.isFunctionDefinition());
9376 }
9377
9378 if (getLangOpts().CUDA) {
9379 IdentifierInfo *II = NewFD->getIdentifier();
9380 if (II && II->isStr(getCudaConfigureFuncName()) &&
9381 !NewFD->isInvalidDecl() &&
9382 NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
9383 if (!R->getAs<FunctionType>()->getReturnType()->isScalarType())
9384 Diag(NewFD->getLocation(), diag::err_config_scalar_return)
9385 << getCudaConfigureFuncName();
9386 Context.setcudaConfigureCallDecl(NewFD);
9387 }
9388
9389 // Variadic functions, other than a *declaration* of printf, are not allowed
9390 // in device-side CUDA code, unless someone passed
9391 // -fcuda-allow-variadic-functions.
9392 if (!getLangOpts().CUDAAllowVariadicFunctions && NewFD->isVariadic() &&
9393 (NewFD->hasAttr<CUDADeviceAttr>() ||
9394 NewFD->hasAttr<CUDAGlobalAttr>()) &&
9395 !(II && II->isStr("printf") && NewFD->isExternC() &&
9396 !D.isFunctionDefinition())) {
9397 Diag(NewFD->getLocation(), diag::err_variadic_device_fn);
9398 }
9399 }
9400
9401 MarkUnusedFileScopedDecl(NewFD);
9402
9403
9404
9405 if (getLangOpts().OpenCL && NewFD->hasAttr<OpenCLKernelAttr>()) {
9406 // OpenCL v1.2 s6.8 static is invalid for kernel functions.
9407 if ((getLangOpts().OpenCLVersion >= 120)
9408 && (SC == SC_Static)) {
9409 Diag(D.getIdentifierLoc(), diag::err_static_kernel);
9410 D.setInvalidType();
9411 }
9412
9413 // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
9414 if (!NewFD->getReturnType()->isVoidType()) {
9415 SourceRange RTRange = NewFD->getReturnTypeSourceRange();
9416 Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type)
9417 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
9418 : FixItHint());
9419 D.setInvalidType();
9420 }
9421
9422 llvm::SmallPtrSet<const Type *, 16> ValidTypes;
9423 for (auto Param : NewFD->parameters())
9424 checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
9425
9426 if (getLangOpts().OpenCLCPlusPlus) {
9427 if (DC->isRecord()) {
9428 Diag(D.getIdentifierLoc(), diag::err_method_kernel);
9429 D.setInvalidType();
9430 }
9431 if (FunctionTemplate) {
9432 Diag(D.getIdentifierLoc(), diag::err_template_kernel);
9433 D.setInvalidType();
9434 }
9435 }
9436 }
9437
9438 if (getLangOpts().CPlusPlus) {
9439 if (FunctionTemplate) {
9440 if (NewFD->isInvalidDecl())
9441 FunctionTemplate->setInvalidDecl();
9442 return FunctionTemplate;
9443 }
9444
9445 if (isMemberSpecialization && !NewFD->isInvalidDecl())
9446 CompleteMemberSpecialization(NewFD, Previous);
9447 }
9448
9449 for (const ParmVarDecl *Param : NewFD->parameters()) {
9450 QualType PT = Param->getType();
9451
9452 // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value
9453 // types.
9454 if (getLangOpts().OpenCLVersion >= 200 || getLangOpts().OpenCLCPlusPlus) {
9455 if(const PipeType *PipeTy = PT->getAs<PipeType>()) {
9456 QualType ElemTy = PipeTy->getElementType();
9457 if (ElemTy->isReferenceType() || ElemTy->isPointerType()) {
9458 Diag(Param->getTypeSpecStartLoc(), diag::err_reference_pipe_type );
9459 D.setInvalidType();
9460 }
9461 }
9462 }
9463 }
9464
9465 // Here we have an function template explicit specialization at class scope.
9466 // The actual specialization will be postponed to template instatiation
9467 // time via the ClassScopeFunctionSpecializationDecl node.
9468 if (isDependentClassScopeExplicitSpecialization) {
9469 ClassScopeFunctionSpecializationDecl *NewSpec =
9470 ClassScopeFunctionSpecializationDecl::Create(
9471 Context, CurContext, NewFD->getLocation(),
9472 cast<CXXMethodDecl>(NewFD),
9473 HasExplicitTemplateArgs, TemplateArgs);
9474 CurContext->addDecl(NewSpec);
9475 AddToScope = false;
9476 }
9477
9478 // Diagnose availability attributes. Availability cannot be used on functions
9479 // that are run during load/unload.
9480 if (const auto *attr = NewFD->getAttr<AvailabilityAttr>()) {
9481 if (NewFD->hasAttr<ConstructorAttr>()) {
9482 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
9483 << 1;
9484 NewFD->dropAttr<AvailabilityAttr>();
9485 }
9486 if (NewFD->hasAttr<DestructorAttr>()) {
9487 Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
9488 << 2;
9489 NewFD->dropAttr<AvailabilityAttr>();
9490 }
9491 }
9492
9493 return NewFD;
9494}
9495
9496/// Return a CodeSegAttr from a containing class. The Microsoft docs say
9497/// when __declspec(code_seg) "is applied to a class, all member functions of
9498/// the class and nested classes -- this includes compiler-generated special
9499/// member functions -- are put in the specified segment."
9500/// The actual behavior is a little more complicated. The Microsoft compiler
9501/// won't check outer classes if there is an active value from #pragma code_seg.
9502/// The CodeSeg is always applied from the direct parent but only from outer
9503/// classes when the #pragma code_seg stack is empty. See:
9504/// https://reviews.llvm.org/D22931, the Microsoft feedback page is no longer
9505/// available since MS has removed the page.
9506static Attr *getImplicitCodeSegAttrFromClass(Sema &S, const FunctionDecl *FD) {
9507 const auto *Method = dyn_cast<CXXMethodDecl>(FD);
9508 if (!Method)
9509 return nullptr;
9510 const CXXRecordDecl *Parent = Method->getParent();
9511 if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
9512 Attr *NewAttr = SAttr->clone(S.getASTContext());
9513 NewAttr->setImplicit(true);
9514 return NewAttr;
9515 }
9516
9517 // The Microsoft compiler won't check outer classes for the CodeSeg
9518 // when the #pragma code_seg stack is active.
9519 if (S.CodeSegStack.CurrentValue)
9520 return nullptr;
9521
9522 while ((Parent = dyn_cast<CXXRecordDecl>(Parent->getParent()))) {
9523 if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) {
9524 Attr *NewAttr = SAttr->clone(S.getASTContext());
9525 NewAttr->setImplicit(true);
9526 return NewAttr;
9527 }
9528 }
9529 return nullptr;
9530}
9531
9532/// Returns an implicit CodeSegAttr if a __declspec(code_seg) is found on a
9533/// containing class. Otherwise it will return implicit SectionAttr if the
9534/// function is a definition and there is an active value on CodeSegStack
9535/// (from the current #pragma code-seg value).
9536///
9537/// \param FD Function being declared.
9538/// \param IsDefinition Whether it is a definition or just a declarartion.
9539/// \returns A CodeSegAttr or SectionAttr to apply to the function or
9540/// nullptr if no attribute should be added.
9541Attr *Sema::getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD,
9542 bool IsDefinition) {
9543 if (Attr *A = getImplicitCodeSegAttrFromClass(*this, FD))
9544 return A;
9545 if (!FD->hasAttr<SectionAttr>() && IsDefinition &&
9546 CodeSegStack.CurrentValue)
9547 return SectionAttr::CreateImplicit(
9548 getASTContext(), CodeSegStack.CurrentValue->getString(),
9549 CodeSegStack.CurrentPragmaLocation, AttributeCommonInfo::AS_Pragma,
9550 SectionAttr::Declspec_allocate);
9551 return nullptr;
9552}
9553
9554/// Determines if we can perform a correct type check for \p D as a
9555/// redeclaration of \p PrevDecl. If not, we can generally still perform a
9556/// best-effort check.
9557///
9558/// \param NewD The new declaration.
9559/// \param OldD The old declaration.
9560/// \param NewT The portion of the type of the new declaration to check.
9561/// \param OldT The portion of the type of the old declaration to check.
9562bool Sema::canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD,
9563 QualType NewT, QualType OldT) {
9564 if (!NewD->getLexicalDeclContext()->isDependentContext())
9565 return true;
9566
9567 // For dependently-typed local extern declarations and friends, we can't
9568 // perform a correct type check in general until instantiation:
9569 //
9570 // int f();
9571 // template<typename T> void g() { T f(); }
9572 //
9573 // (valid if g() is only instantiated with T = int).
9574 if (NewT->isDependentType() &&
9575 (NewD->isLocalExternDecl() || NewD->getFriendObjectKind()))
9576 return false;
9577
9578 // Similarly, if the previous declaration was a dependent local extern
9579 // declaration, we don't really know its type yet.
9580 if (OldT->isDependentType() && OldD->isLocalExternDecl())
9581 return false;
9582
9583 return true;
9584}
9585
9586/// Checks if the new declaration declared in dependent context must be
9587/// put in the same redeclaration chain as the specified declaration.
9588///
9589/// \param D Declaration that is checked.
9590/// \param PrevDecl Previous declaration found with proper lookup method for the
9591/// same declaration name.
9592/// \returns True if D must be added to the redeclaration chain which PrevDecl
9593/// belongs to.
9594///
9595bool Sema::shouldLinkDependentDeclWithPrevious(Decl *D, Decl *PrevDecl) {
9596 if (!D->getLexicalDeclContext()->isDependentContext())
9597 return true;
9598
9599 // Don't chain dependent friend function definitions until instantiation, to
9600 // permit cases like
9601 //
9602 // void func();
9603 // template<typename T> class C1 { friend void func() {} };
9604 // template<typename T> class C2 { friend void func() {} };
9605 //
9606 // ... which is valid if only one of C1 and C2 is ever instantiated.
9607 //
9608 // FIXME: This need only apply to function definitions. For now, we proxy
9609 // this by checking for a file-scope function. We do not want this to apply
9610 // to friend declarations nominating member functions, because that gets in
9611 // the way of access checks.
9612 if (D->getFriendObjectKind() && D->getDeclContext()->isFileContext())
9613 return false;
9614
9615 auto *VD = dyn_cast<ValueDecl>(D);
9616 auto *PrevVD = dyn_cast<ValueDecl>(PrevDecl);
9617 return !VD || !PrevVD ||
9618 canFullyTypeCheckRedeclaration(VD, PrevVD, VD->getType(),
9619 PrevVD->getType());
9620}
9621
9622/// Check the target attribute of the function for MultiVersion
9623/// validity.
9624///
9625/// Returns true if there was an error, false otherwise.
9626static bool CheckMultiVersionValue(Sema &S, const FunctionDecl *FD) {
9627 const auto *TA = FD->getAttr<TargetAttr>();
9628 assert(TA && "MultiVersion Candidate requires a target attribute")((TA && "MultiVersion Candidate requires a target attribute"
) ? static_cast<void> (0) : __assert_fail ("TA && \"MultiVersion Candidate requires a target attribute\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 9628, __PRETTY_FUNCTION__))
;
9629 TargetAttr::ParsedTargetAttr ParseInfo = TA->parse();
9630 const TargetInfo &TargetInfo = S.Context.getTargetInfo();
9631 enum ErrType { Feature = 0, Architecture = 1 };
9632
9633 if (!ParseInfo.Architecture.empty() &&
9634 !TargetInfo.validateCpuIs(ParseInfo.Architecture)) {
9635 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
9636 << Architecture << ParseInfo.Architecture;
9637 return true;
9638 }
9639
9640 for (const auto &Feat : ParseInfo.Features) {
9641 auto BareFeat = StringRef{Feat}.substr(1);
9642 if (Feat[0] == '-') {
9643 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
9644 << Feature << ("no-" + BareFeat).str();
9645 return true;
9646 }
9647
9648 if (!TargetInfo.validateCpuSupports(BareFeat) ||
9649 !TargetInfo.isValidFeatureName(BareFeat)) {
9650 S.Diag(FD->getLocation(), diag::err_bad_multiversion_option)
9651 << Feature << BareFeat;
9652 return true;
9653 }
9654 }
9655 return false;
9656}
9657
9658static bool HasNonMultiVersionAttributes(const FunctionDecl *FD,
9659 MultiVersionKind MVType) {
9660 for (const Attr *A : FD->attrs()) {
9661 switch (A->getKind()) {
9662 case attr::CPUDispatch:
9663 case attr::CPUSpecific:
9664 if (MVType != MultiVersionKind::CPUDispatch &&
9665 MVType != MultiVersionKind::CPUSpecific)
9666 return true;
9667 break;
9668 case attr::Target:
9669 if (MVType != MultiVersionKind::Target)
9670 return true;
9671 break;
9672 default:
9673 return true;
9674 }
9675 }
9676 return false;
9677}
9678
9679bool Sema::areMultiversionVariantFunctionsCompatible(
9680 const FunctionDecl *OldFD, const FunctionDecl *NewFD,
9681 const PartialDiagnostic &NoProtoDiagID,
9682 const PartialDiagnosticAt &NoteCausedDiagIDAt,
9683 const PartialDiagnosticAt &NoSupportDiagIDAt,
9684 const PartialDiagnosticAt &DiffDiagIDAt, bool TemplatesSupported,
9685 bool ConstexprSupported) {
9686 enum DoesntSupport {
9687 FuncTemplates = 0,
9688 VirtFuncs = 1,
9689 DeducedReturn = 2,
9690 Constructors = 3,
9691 Destructors = 4,
9692 DeletedFuncs = 5,
9693 DefaultedFuncs = 6,
9694 ConstexprFuncs = 7,
9695 ConstevalFuncs = 8,
9696 };
9697 enum Different {
9698 CallingConv = 0,
9699 ReturnType = 1,
9700 ConstexprSpec = 2,
9701 InlineSpec = 3,
9702 StorageClass = 4,
9703 Linkage = 5,
9704 };
9705
9706 if (OldFD && !OldFD->getType()->getAs<FunctionProtoType>()) {
9707 Diag(OldFD->getLocation(), NoProtoDiagID);
9708 Diag(NoteCausedDiagIDAt.first, NoteCausedDiagIDAt.second);
9709 return true;
9710 }
9711
9712 if (!NewFD->getType()->getAs<FunctionProtoType>())
9713 return Diag(NewFD->getLocation(), NoProtoDiagID);
9714
9715 if (!TemplatesSupported &&
9716 NewFD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
9717 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
9718 << FuncTemplates;
9719
9720 if (const auto *NewCXXFD = dyn_cast<CXXMethodDecl>(NewFD)) {
9721 if (NewCXXFD->isVirtual())
9722 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
9723 << VirtFuncs;
9724
9725 if (isa<CXXConstructorDecl>(NewCXXFD))
9726 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
9727 << Constructors;
9728
9729 if (isa<CXXDestructorDecl>(NewCXXFD))
9730 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
9731 << Destructors;
9732 }
9733
9734 if (NewFD->isDeleted())
9735 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
9736 << DeletedFuncs;
9737
9738 if (NewFD->isDefaulted())
9739 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
9740 << DefaultedFuncs;
9741
9742 if (!ConstexprSupported && NewFD->isConstexpr())
9743 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
9744 << (NewFD->isConsteval() ? ConstevalFuncs : ConstexprFuncs);
9745
9746 QualType NewQType = Context.getCanonicalType(NewFD->getType());
9747 const auto *NewType = cast<FunctionType>(NewQType);
9748 QualType NewReturnType = NewType->getReturnType();
9749
9750 if (NewReturnType->isUndeducedType())
9751 return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second)
9752 << DeducedReturn;
9753
9754 // Ensure the return type is identical.
9755 if (OldFD) {
9756 QualType OldQType = Context.getCanonicalType(OldFD->getType());
9757 const auto *OldType = cast<FunctionType>(OldQType);
9758 FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
9759 FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
9760
9761 if (OldTypeInfo.getCC() != NewTypeInfo.getCC())
9762 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << CallingConv;
9763
9764 QualType OldReturnType = OldType->getReturnType();
9765
9766 if (OldReturnType != NewReturnType)
9767 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ReturnType;
9768
9769 if (OldFD->getConstexprKind() != NewFD->getConstexprKind())
9770 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ConstexprSpec;
9771
9772 if (OldFD->isInlineSpecified() != NewFD->isInlineSpecified())
9773 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << InlineSpec;
9774
9775 if (OldFD->getStorageClass() != NewFD->getStorageClass())
9776 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << StorageClass;
9777
9778 if (OldFD->isExternC() != NewFD->isExternC())
9779 return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << Linkage;
9780
9781 if (CheckEquivalentExceptionSpec(
9782 OldFD->getType()->getAs<FunctionProtoType>(), OldFD->getLocation(),
9783 NewFD->getType()->getAs<FunctionProtoType>(), NewFD->getLocation()))
9784 return true;
9785 }
9786 return false;
9787}
9788
9789static bool CheckMultiVersionAdditionalRules(Sema &S, const FunctionDecl *OldFD,
9790 const FunctionDecl *NewFD,
9791 bool CausesMV,
9792 MultiVersionKind MVType) {
9793 if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
9794 S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
9795 if (OldFD)
9796 S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
9797 return true;
9798 }
9799
9800 bool IsCPUSpecificCPUDispatchMVType =
9801 MVType == MultiVersionKind::CPUDispatch ||
9802 MVType == MultiVersionKind::CPUSpecific;
9803
9804 // For now, disallow all other attributes. These should be opt-in, but
9805 // an analysis of all of them is a future FIXME.
9806 if (CausesMV && OldFD && HasNonMultiVersionAttributes(OldFD, MVType)) {
9807 S.Diag(OldFD->getLocation(), diag::err_multiversion_no_other_attrs)
9808 << IsCPUSpecificCPUDispatchMVType;
9809 S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
9810 return true;
9811 }
9812
9813 if (HasNonMultiVersionAttributes(NewFD, MVType))
9814 return S.Diag(NewFD->getLocation(), diag::err_multiversion_no_other_attrs)
9815 << IsCPUSpecificCPUDispatchMVType;
9816
9817 // Only allow transition to MultiVersion if it hasn't been used.
9818 if (OldFD && CausesMV && OldFD->isUsed(false))
9819 return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used);
9820
9821 return S.areMultiversionVariantFunctionsCompatible(
9822 OldFD, NewFD, S.PDiag(diag::err_multiversion_noproto),
9823 PartialDiagnosticAt(NewFD->getLocation(),
9824 S.PDiag(diag::note_multiversioning_caused_here)),
9825 PartialDiagnosticAt(NewFD->getLocation(),
9826 S.PDiag(diag::err_multiversion_doesnt_support)
9827 << IsCPUSpecificCPUDispatchMVType),
9828 PartialDiagnosticAt(NewFD->getLocation(),
9829 S.PDiag(diag::err_multiversion_diff)),
9830 /*TemplatesSupported=*/false,
9831 /*ConstexprSupported=*/!IsCPUSpecificCPUDispatchMVType);
9832}
9833
9834/// Check the validity of a multiversion function declaration that is the
9835/// first of its kind. Also sets the multiversion'ness' of the function itself.
9836///
9837/// This sets NewFD->isInvalidDecl() to true if there was an error.
9838///
9839/// Returns true if there was an error, false otherwise.
9840static bool CheckMultiVersionFirstFunction(Sema &S, FunctionDecl *FD,
9841 MultiVersionKind MVType,
9842 const TargetAttr *TA) {
9843 assert(MVType != MultiVersionKind::None &&((MVType != MultiVersionKind::None && "Function lacks multiversion attribute"
) ? static_cast<void> (0) : __assert_fail ("MVType != MultiVersionKind::None && \"Function lacks multiversion attribute\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 9844, __PRETTY_FUNCTION__))
9844 "Function lacks multiversion attribute")((MVType != MultiVersionKind::None && "Function lacks multiversion attribute"
) ? static_cast<void> (0) : __assert_fail ("MVType != MultiVersionKind::None && \"Function lacks multiversion attribute\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 9844, __PRETTY_FUNCTION__))
;
9845
9846 // Target only causes MV if it is default, otherwise this is a normal
9847 // function.
9848 if (MVType == MultiVersionKind::Target && !TA->isDefaultVersion())
9849 return false;
9850
9851 if (MVType == MultiVersionKind::Target && CheckMultiVersionValue(S, FD)) {
9852 FD->setInvalidDecl();
9853 return true;
9854 }
9855
9856 if (CheckMultiVersionAdditionalRules(S, nullptr, FD, true, MVType)) {
9857 FD->setInvalidDecl();
9858 return true;
9859 }
9860
9861 FD->setIsMultiVersion();
9862 return false;
9863}
9864
9865static bool PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl *FD) {
9866 for (const Decl *D = FD->getPreviousDecl(); D; D = D->getPreviousDecl()) {
9867 if (D->getAsFunction()->getMultiVersionKind() != MultiVersionKind::None)
9868 return true;
9869 }
9870
9871 return false;
9872}
9873
9874static bool CheckTargetCausesMultiVersioning(
9875 Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD, const TargetAttr *NewTA,
9876 bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious,
9877 LookupResult &Previous) {
9878 const auto *OldTA = OldFD->getAttr<TargetAttr>();
9879 TargetAttr::ParsedTargetAttr NewParsed = NewTA->parse();
9880 // Sort order doesn't matter, it just needs to be consistent.
9881 llvm::sort(NewParsed.Features);
9882
9883 // If the old decl is NOT MultiVersioned yet, and we don't cause that
9884 // to change, this is a simple redeclaration.
9885 if (!NewTA->isDefaultVersion() &&
9886 (!OldTA || OldTA->getFeaturesStr() == NewTA->getFeaturesStr()))
9887 return false;
9888
9889 // Otherwise, this decl causes MultiVersioning.
9890 if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) {
9891 S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported);
9892 S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
9893 NewFD->setInvalidDecl();
9894 return true;
9895 }
9896
9897 if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, true,
9898 MultiVersionKind::Target)) {
9899 NewFD->setInvalidDecl();
9900 return true;
9901 }
9902
9903 if (CheckMultiVersionValue(S, NewFD)) {
9904 NewFD->setInvalidDecl();
9905 return true;
9906 }
9907
9908 // If this is 'default', permit the forward declaration.
9909 if (!OldFD->isMultiVersion() && !OldTA && NewTA->isDefaultVersion()) {
9910 Redeclaration = true;
9911 OldDecl = OldFD;
9912 OldFD->setIsMultiVersion();
9913 NewFD->setIsMultiVersion();
9914 return false;
9915 }
9916
9917 if (CheckMultiVersionValue(S, OldFD)) {
9918 S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
9919 NewFD->setInvalidDecl();
9920 return true;
9921 }
9922
9923 TargetAttr::ParsedTargetAttr OldParsed =
9924 OldTA->parse(std::less<std::string>());
9925
9926 if (OldParsed == NewParsed) {
9927 S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
9928 S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
9929 NewFD->setInvalidDecl();
9930 return true;
9931 }
9932
9933 for (const auto *FD : OldFD->redecls()) {
9934 const auto *CurTA = FD->getAttr<TargetAttr>();
9935 // We allow forward declarations before ANY multiversioning attributes, but
9936 // nothing after the fact.
9937 if (PreviousDeclsHaveMultiVersionAttribute(FD) &&
9938 (!CurTA || CurTA->isInherited())) {
9939 S.Diag(FD->getLocation(), diag::err_multiversion_required_in_redecl)
9940 << 0;
9941 S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here);
9942 NewFD->setInvalidDecl();
9943 return true;
9944 }
9945 }
9946
9947 OldFD->setIsMultiVersion();
9948 NewFD->setIsMultiVersion();
9949 Redeclaration = false;
9950 MergeTypeWithPrevious = false;
9951 OldDecl = nullptr;
9952 Previous.clear();
9953 return false;
9954}
9955
9956/// Check the validity of a new function declaration being added to an existing
9957/// multiversioned declaration collection.
9958static bool CheckMultiVersionAdditionalDecl(
9959 Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD,
9960 MultiVersionKind NewMVType, const TargetAttr *NewTA,
9961 const CPUDispatchAttr *NewCPUDisp, const CPUSpecificAttr *NewCPUSpec,
9962 bool &Redeclaration, NamedDecl *&OldDecl, bool &MergeTypeWithPrevious,
9963 LookupResult &Previous) {
9964
9965 MultiVersionKind OldMVType = OldFD->getMultiVersionKind();
9966 // Disallow mixing of multiversioning types.
9967 if ((OldMVType == MultiVersionKind::Target &&
9968 NewMVType != MultiVersionKind::Target) ||
9969 (NewMVType == MultiVersionKind::Target &&
9970 OldMVType != MultiVersionKind::Target)) {
9971 S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
9972 S.Diag(OldFD->getLocation(), diag::note_previous_declaration);
9973 NewFD->setInvalidDecl();
9974 return true;
9975 }
9976
9977 TargetAttr::ParsedTargetAttr NewParsed;
9978 if (NewTA) {
9979 NewParsed = NewTA->parse();
9980 llvm::sort(NewParsed.Features);
9981 }
9982
9983 bool UseMemberUsingDeclRules =
9984 S.CurContext->isRecord() && !NewFD->getFriendObjectKind();
9985
9986 // Next, check ALL non-overloads to see if this is a redeclaration of a
9987 // previous member of the MultiVersion set.
9988 for (NamedDecl *ND : Previous) {
9989 FunctionDecl *CurFD = ND->getAsFunction();
9990 if (!CurFD)
9991 continue;
9992 if (S.IsOverload(NewFD, CurFD, UseMemberUsingDeclRules))
9993 continue;
9994
9995 if (NewMVType == MultiVersionKind::Target) {
9996 const auto *CurTA = CurFD->getAttr<TargetAttr>();
9997 if (CurTA->getFeaturesStr() == NewTA->getFeaturesStr()) {
9998 NewFD->setIsMultiVersion();
9999 Redeclaration = true;
10000 OldDecl = ND;
10001 return false;
10002 }
10003
10004 TargetAttr::ParsedTargetAttr CurParsed =
10005 CurTA->parse(std::less<std::string>());
10006 if (CurParsed == NewParsed) {
10007 S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate);
10008 S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
10009 NewFD->setInvalidDecl();
10010 return true;
10011 }
10012 } else {
10013 const auto *CurCPUSpec = CurFD->getAttr<CPUSpecificAttr>();
10014 const auto *CurCPUDisp = CurFD->getAttr<CPUDispatchAttr>();
10015 // Handle CPUDispatch/CPUSpecific versions.
10016 // Only 1 CPUDispatch function is allowed, this will make it go through
10017 // the redeclaration errors.
10018 if (NewMVType == MultiVersionKind::CPUDispatch &&
10019 CurFD->hasAttr<CPUDispatchAttr>()) {
10020 if (CurCPUDisp->cpus_size() == NewCPUDisp->cpus_size() &&
10021 std::equal(
10022 CurCPUDisp->cpus_begin(), CurCPUDisp->cpus_end(),
10023 NewCPUDisp->cpus_begin(),
10024 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
10025 return Cur->getName() == New->getName();
10026 })) {
10027 NewFD->setIsMultiVersion();
10028 Redeclaration = true;
10029 OldDecl = ND;
10030 return false;
10031 }
10032
10033 // If the declarations don't match, this is an error condition.
10034 S.Diag(NewFD->getLocation(), diag::err_cpu_dispatch_mismatch);
10035 S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
10036 NewFD->setInvalidDecl();
10037 return true;
10038 }
10039 if (NewMVType == MultiVersionKind::CPUSpecific && CurCPUSpec) {
10040
10041 if (CurCPUSpec->cpus_size() == NewCPUSpec->cpus_size() &&
10042 std::equal(
10043 CurCPUSpec->cpus_begin(), CurCPUSpec->cpus_end(),
10044 NewCPUSpec->cpus_begin(),
10045 [](const IdentifierInfo *Cur, const IdentifierInfo *New) {
10046 return Cur->getName() == New->getName();
10047 })) {
10048 NewFD->setIsMultiVersion();
10049 Redeclaration = true;
10050 OldDecl = ND;
10051 return false;
10052 }
10053
10054 // Only 1 version of CPUSpecific is allowed for each CPU.
10055 for (const IdentifierInfo *CurII : CurCPUSpec->cpus()) {
10056 for (const IdentifierInfo *NewII : NewCPUSpec->cpus()) {
10057 if (CurII == NewII) {
10058 S.Diag(NewFD->getLocation(), diag::err_cpu_specific_multiple_defs)
10059 << NewII;
10060 S.Diag(CurFD->getLocation(), diag::note_previous_declaration);
10061 NewFD->setInvalidDecl();
10062 return true;
10063 }
10064 }
10065 }
10066 }
10067 // If the two decls aren't the same MVType, there is no possible error
10068 // condition.
10069 }
10070 }
10071
10072 // Else, this is simply a non-redecl case. Checking the 'value' is only
10073 // necessary in the Target case, since The CPUSpecific/Dispatch cases are
10074 // handled in the attribute adding step.
10075 if (NewMVType == MultiVersionKind::Target &&
10076 CheckMultiVersionValue(S, NewFD)) {
10077 NewFD->setInvalidDecl();
10078 return true;
10079 }
10080
10081 if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD,
10082 !OldFD->isMultiVersion(), NewMVType)) {
10083 NewFD->setInvalidDecl();
10084 return true;
10085 }
10086
10087 // Permit forward declarations in the case where these two are compatible.
10088 if (!OldFD->isMultiVersion()) {
10089 OldFD->setIsMultiVersion();
10090 NewFD->setIsMultiVersion();
10091 Redeclaration = true;
10092 OldDecl = OldFD;
10093 return false;
10094 }
10095
10096 NewFD->setIsMultiVersion();
10097 Redeclaration = false;
10098 MergeTypeWithPrevious = false;
10099 OldDecl = nullptr;
10100 Previous.clear();
10101 return false;
10102}
10103
10104
10105/// Check the validity of a mulitversion function declaration.
10106/// Also sets the multiversion'ness' of the function itself.
10107///
10108/// This sets NewFD->isInvalidDecl() to true if there was an error.
10109///
10110/// Returns true if there was an error, false otherwise.
10111static bool CheckMultiVersionFunction(Sema &S, FunctionDecl *NewFD,
10112 bool &Redeclaration, NamedDecl *&OldDecl,
10113 bool &MergeTypeWithPrevious,
10114 LookupResult &Previous) {
10115 const auto *NewTA = NewFD->getAttr<TargetAttr>();
10116 const auto *NewCPUDisp = NewFD->getAttr<CPUDispatchAttr>();
10117 const auto *NewCPUSpec = NewFD->getAttr<CPUSpecificAttr>();
10118
10119 // Mixing Multiversioning types is prohibited.
10120 if ((NewTA && NewCPUDisp) || (NewTA && NewCPUSpec) ||
10121 (NewCPUDisp && NewCPUSpec)) {
10122 S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed);
10123 NewFD->setInvalidDecl();
10124 return true;
10125 }
10126
10127 MultiVersionKind MVType = NewFD->getMultiVersionKind();
10128
10129 // Main isn't allowed to become a multiversion function, however it IS
10130 // permitted to have 'main' be marked with the 'target' optimization hint.
10131 if (NewFD->isMain()) {
10132 if ((MVType == MultiVersionKind::Target && NewTA->isDefaultVersion()) ||
10133 MVType == MultiVersionKind::CPUDispatch ||
10134 MVType == MultiVersionKind::CPUSpecific) {
10135 S.Diag(NewFD->getLocation(), diag::err_multiversion_not_allowed_on_main);
10136 NewFD->setInvalidDecl();
10137 return true;
10138 }
10139 return false;
10140 }
10141
10142 if (!OldDecl || !OldDecl->getAsFunction() ||
10143 OldDecl->getDeclContext()->getRedeclContext() !=
10144 NewFD->getDeclContext()->getRedeclContext()) {
10145 // If there's no previous declaration, AND this isn't attempting to cause
10146 // multiversioning, this isn't an error condition.
10147 if (MVType == MultiVersionKind::None)
10148 return false;
10149 return CheckMultiVersionFirstFunction(S, NewFD, MVType, NewTA);
10150 }
10151
10152 FunctionDecl *OldFD = OldDecl->getAsFunction();
10153
10154 if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::None)
10155 return false;
10156
10157 if (OldFD->isMultiVersion() && MVType == MultiVersionKind::None) {
10158 S.Diag(NewFD->getLocation(), diag::err_multiversion_required_in_redecl)
10159 << (OldFD->getMultiVersionKind() != MultiVersionKind::Target);
10160 NewFD->setInvalidDecl();
10161 return true;
10162 }
10163
10164 // Handle the target potentially causes multiversioning case.
10165 if (!OldFD->isMultiVersion() && MVType == MultiVersionKind::Target)
10166 return CheckTargetCausesMultiVersioning(S, OldFD, NewFD, NewTA,
10167 Redeclaration, OldDecl,
10168 MergeTypeWithPrevious, Previous);
10169
10170 // At this point, we have a multiversion function decl (in OldFD) AND an
10171 // appropriate attribute in the current function decl. Resolve that these are
10172 // still compatible with previous declarations.
10173 return CheckMultiVersionAdditionalDecl(
10174 S, OldFD, NewFD, MVType, NewTA, NewCPUDisp, NewCPUSpec, Redeclaration,
10175 OldDecl, MergeTypeWithPrevious, Previous);
10176}
10177
10178/// Perform semantic checking of a new function declaration.
10179///
10180/// Performs semantic analysis of the new function declaration
10181/// NewFD. This routine performs all semantic checking that does not
10182/// require the actual declarator involved in the declaration, and is
10183/// used both for the declaration of functions as they are parsed
10184/// (called via ActOnDeclarator) and for the declaration of functions
10185/// that have been instantiated via C++ template instantiation (called
10186/// via InstantiateDecl).
10187///
10188/// \param IsMemberSpecialization whether this new function declaration is
10189/// a member specialization (that replaces any definition provided by the
10190/// previous declaration).
10191///
10192/// This sets NewFD->isInvalidDecl() to true if there was an error.
10193///
10194/// \returns true if the function declaration is a redeclaration.
10195bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
10196 LookupResult &Previous,
10197 bool IsMemberSpecialization) {
10198 assert(!NewFD->getReturnType()->isVariablyModifiedType() &&((!NewFD->getReturnType()->isVariablyModifiedType() &&
"Variably modified return types are not handled here") ? static_cast
<void> (0) : __assert_fail ("!NewFD->getReturnType()->isVariablyModifiedType() && \"Variably modified return types are not handled here\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 10199, __PRETTY_FUNCTION__))
10199 "Variably modified return types are not handled here")((!NewFD->getReturnType()->isVariablyModifiedType() &&
"Variably modified return types are not handled here") ? static_cast
<void> (0) : __assert_fail ("!NewFD->getReturnType()->isVariablyModifiedType() && \"Variably modified return types are not handled here\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 10199, __PRETTY_FUNCTION__))
;
10200
10201 // Determine whether the type of this function should be merged with
10202 // a previous visible declaration. This never happens for functions in C++,
10203 // and always happens in C if the previous declaration was visible.
10204 bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
10205 !Previous.isShadowed();
10206
10207 bool Redeclaration = false;
10208 NamedDecl *OldDecl = nullptr;
10209 bool MayNeedOverloadableChecks = false;
10210
10211 // Merge or overload the declaration with an existing declaration of
10212 // the same name, if appropriate.
10213 if (!Previous.empty()) {
10214 // Determine whether NewFD is an overload of PrevDecl or
10215 // a declaration that requires merging. If it's an overload,
10216 // there's no more work to do here; we'll just add the new
10217 // function to the scope.
10218 if (!AllowOverloadingOfFunction(Previous, Context, NewFD)) {
10219 NamedDecl *Candidate = Previous.getRepresentativeDecl();
10220 if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
10221 Redeclaration = true;
10222 OldDecl = Candidate;
10223 }
10224 } else {
10225 MayNeedOverloadableChecks = true;
10226 switch (CheckOverload(S, NewFD, Previous, OldDecl,
10227 /*NewIsUsingDecl*/ false)) {
10228 case Ovl_Match:
10229 Redeclaration = true;
10230 break;
10231
10232 case Ovl_NonFunction:
10233 Redeclaration = true;
10234 break;
10235
10236 case Ovl_Overload:
10237 Redeclaration = false;
10238 break;
10239 }
10240 }
10241 }
10242
10243 // Check for a previous extern "C" declaration with this name.
10244 if (!Redeclaration &&
10245 checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
10246 if (!Previous.empty()) {
10247 // This is an extern "C" declaration with the same name as a previous
10248 // declaration, and thus redeclares that entity...
10249 Redeclaration = true;
10250 OldDecl = Previous.getFoundDecl();
10251 MergeTypeWithPrevious = false;
10252
10253 // ... except in the presence of __attribute__((overloadable)).
10254 if (OldDecl->hasAttr<OverloadableAttr>() ||
10255 NewFD->hasAttr<OverloadableAttr>()) {
10256 if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
10257 MayNeedOverloadableChecks = true;
10258 Redeclaration = false;
10259 OldDecl = nullptr;
10260 }
10261 }
10262 }
10263 }
10264
10265 if (CheckMultiVersionFunction(*this, NewFD, Redeclaration, OldDecl,
10266 MergeTypeWithPrevious, Previous))
10267 return Redeclaration;
10268
10269 // C++11 [dcl.constexpr]p8:
10270 // A constexpr specifier for a non-static member function that is not
10271 // a constructor declares that member function to be const.
10272 //
10273 // This needs to be delayed until we know whether this is an out-of-line
10274 // definition of a static member function.
10275 //
10276 // This rule is not present in C++1y, so we produce a backwards
10277 // compatibility warning whenever it happens in C++11.
10278 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
10279 if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() &&
10280 !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
10281 !isa<CXXDestructorDecl>(MD) && !MD->getMethodQualifiers().hasConst()) {
10282 CXXMethodDecl *OldMD = nullptr;
10283 if (OldDecl)
10284 OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction());
10285 if (!OldMD || !OldMD->isStatic()) {
10286 const FunctionProtoType *FPT =
10287 MD->getType()->castAs<FunctionProtoType>();
10288 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
10289 EPI.TypeQuals.addConst();
10290 MD->setType(Context.getFunctionType(FPT->getReturnType(),
10291 FPT->getParamTypes(), EPI));
10292
10293 // Warn that we did this, if we're not performing template instantiation.
10294 // In that case, we'll have warned already when the template was defined.
10295 if (!inTemplateInstantiation()) {
10296 SourceLocation AddConstLoc;
10297 if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
10298 .IgnoreParens().getAs<FunctionTypeLoc>())
10299 AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc());
10300
10301 Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const)
10302 << FixItHint::CreateInsertion(AddConstLoc, " const");
10303 }
10304 }
10305 }
10306
10307 if (Redeclaration) {
10308 // NewFD and OldDecl represent declarations that need to be
10309 // merged.
10310 if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) {
10311 NewFD->setInvalidDecl();
10312 return Redeclaration;
10313 }
10314
10315 Previous.clear();
10316 Previous.addDecl(OldDecl);
10317
10318 if (FunctionTemplateDecl *OldTemplateDecl =
10319 dyn_cast<FunctionTemplateDecl>(OldDecl)) {
10320 auto *OldFD = OldTemplateDecl->getTemplatedDecl();
10321 FunctionTemplateDecl *NewTemplateDecl
10322 = NewFD->getDescribedFunctionTemplate();
10323 assert(NewTemplateDecl && "Template/non-template mismatch")((NewTemplateDecl && "Template/non-template mismatch"
) ? static_cast<void> (0) : __assert_fail ("NewTemplateDecl && \"Template/non-template mismatch\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 10323, __PRETTY_FUNCTION__))
;
10324
10325 // The call to MergeFunctionDecl above may have created some state in
10326 // NewTemplateDecl that needs to be merged with OldTemplateDecl before we
10327 // can add it as a redeclaration.
10328 NewTemplateDecl->mergePrevDecl(OldTemplateDecl);
10329
10330 NewFD->setPreviousDeclaration(OldFD);
10331 adjustDeclContextForDeclaratorDecl(NewFD, OldFD);
10332 if (NewFD->isCXXClassMember()) {
10333 NewFD->setAccess(OldTemplateDecl->getAccess());
10334 NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
10335 }
10336
10337 // If this is an explicit specialization of a member that is a function
10338 // template, mark it as a member specialization.
10339 if (IsMemberSpecialization &&
10340 NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
10341 NewTemplateDecl->setMemberSpecialization();
10342 assert(OldTemplateDecl->isMemberSpecialization())((OldTemplateDecl->isMemberSpecialization()) ? static_cast
<void> (0) : __assert_fail ("OldTemplateDecl->isMemberSpecialization()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 10342, __PRETTY_FUNCTION__))
;
10343 // Explicit specializations of a member template do not inherit deleted
10344 // status from the parent member template that they are specializing.
10345 if (OldFD->isDeleted()) {
10346 // FIXME: This assert will not hold in the presence of modules.
10347 assert(OldFD->getCanonicalDecl() == OldFD)((OldFD->getCanonicalDecl() == OldFD) ? static_cast<void
> (0) : __assert_fail ("OldFD->getCanonicalDecl() == OldFD"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 10347, __PRETTY_FUNCTION__))
;
10348 // FIXME: We need an update record for this AST mutation.
10349 OldFD->setDeletedAsWritten(false);
10350 }
10351 }
10352
10353 } else {
10354 if (shouldLinkDependentDeclWithPrevious(NewFD, OldDecl)) {
10355 auto *OldFD = cast<FunctionDecl>(OldDecl);
10356 // This needs to happen first so that 'inline' propagates.
10357 NewFD->setPreviousDeclaration(OldFD);
10358 adjustDeclContextForDeclaratorDecl(NewFD, OldFD);
10359 if (NewFD->isCXXClassMember())
10360 NewFD->setAccess(OldFD->getAccess());
10361 }
10362 }
10363 } else if (!getLangOpts().CPlusPlus && MayNeedOverloadableChecks &&
10364 !NewFD->getAttr<OverloadableAttr>()) {
10365 assert((Previous.empty() ||(((Previous.empty() || llvm::any_of(Previous, [](const NamedDecl
*ND) { return ND->hasAttr<OverloadableAttr>(); })) &&
"Non-redecls shouldn't happen without overloadable present")
? static_cast<void> (0) : __assert_fail ("(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr<OverloadableAttr>(); })) && \"Non-redecls shouldn't happen without overloadable present\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 10370, __PRETTY_FUNCTION__))
10366 llvm::any_of(Previous,(((Previous.empty() || llvm::any_of(Previous, [](const NamedDecl
*ND) { return ND->hasAttr<OverloadableAttr>(); })) &&
"Non-redecls shouldn't happen without overloadable present")
? static_cast<void> (0) : __assert_fail ("(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr<OverloadableAttr>(); })) && \"Non-redecls shouldn't happen without overloadable present\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 10370, __PRETTY_FUNCTION__))
10367 [](const NamedDecl *ND) {(((Previous.empty() || llvm::any_of(Previous, [](const NamedDecl
*ND) { return ND->hasAttr<OverloadableAttr>(); })) &&
"Non-redecls shouldn't happen without overloadable present")
? static_cast<void> (0) : __assert_fail ("(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr<OverloadableAttr>(); })) && \"Non-redecls shouldn't happen without overloadable present\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 10370, __PRETTY_FUNCTION__))
10368 return ND->hasAttr<OverloadableAttr>();(((Previous.empty() || llvm::any_of(Previous, [](const NamedDecl
*ND) { return ND->hasAttr<OverloadableAttr>(); })) &&
"Non-redecls shouldn't happen without overloadable present")
? static_cast<void> (0) : __assert_fail ("(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr<OverloadableAttr>(); })) && \"Non-redecls shouldn't happen without overloadable present\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 10370, __PRETTY_FUNCTION__))
10369 })) &&(((Previous.empty() || llvm::any_of(Previous, [](const NamedDecl
*ND) { return ND->hasAttr<OverloadableAttr>(); })) &&
"Non-redecls shouldn't happen without overloadable present")
? static_cast<void> (0) : __assert_fail ("(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr<OverloadableAttr>(); })) && \"Non-redecls shouldn't happen without overloadable present\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 10370, __PRETTY_FUNCTION__))
10370 "Non-redecls shouldn't happen without overloadable present")(((Previous.empty() || llvm::any_of(Previous, [](const NamedDecl
*ND) { return ND->hasAttr<OverloadableAttr>(); })) &&
"Non-redecls shouldn't happen without overloadable present")
? static_cast<void> (0) : __assert_fail ("(Previous.empty() || llvm::any_of(Previous, [](const NamedDecl *ND) { return ND->hasAttr<OverloadableAttr>(); })) && \"Non-redecls shouldn't happen without overloadable present\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 10370, __PRETTY_FUNCTION__))
;
10371
10372 auto OtherUnmarkedIter = llvm::find_if(Previous, [](const NamedDecl *ND) {
10373 const auto *FD = dyn_cast<FunctionDecl>(ND);
10374 return FD && !FD->hasAttr<OverloadableAttr>();
10375 });
10376
10377 if (OtherUnmarkedIter != Previous.end()) {
10378 Diag(NewFD->getLocation(),
10379 diag::err_attribute_overloadable_multiple_unmarked_overloads);
10380 Diag((*OtherUnmarkedIter)->getLocation(),
10381 diag::note_attribute_overloadable_prev_overload)
10382 << false;
10383
10384 NewFD->addAttr(OverloadableAttr::CreateImplicit(Context));
10385 }
10386 }
10387
10388 // Semantic checking for this function declaration (in isolation).
10389
10390 if (getLangOpts().CPlusPlus) {
10391 // C++-specific checks.
10392 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
10393 CheckConstructor(Constructor);
10394 } else if (CXXDestructorDecl *Destructor =
10395 dyn_cast<CXXDestructorDecl>(NewFD)) {
10396 CXXRecordDecl *Record = Destructor->getParent();
10397 QualType ClassType = Context.getTypeDeclType(Record);
10398
10399 // FIXME: Shouldn't we be able to perform this check even when the class
10400 // type is dependent? Both gcc and edg can handle that.
10401 if (!ClassType->isDependentType()) {
10402 DeclarationName Name
10403 = Context.DeclarationNames.getCXXDestructorName(
10404 Context.getCanonicalType(ClassType));
10405 if (NewFD->getDeclName() != Name) {
10406 Diag(NewFD->getLocation(), diag::err_destructor_name);
10407 NewFD->setInvalidDecl();
10408 return Redeclaration;
10409 }
10410 }
10411 } else if (CXXConversionDecl *Conversion
10412 = dyn_cast<CXXConversionDecl>(NewFD)) {
10413 ActOnConversionDeclarator(Conversion);
10414 } else if (auto *Guide = dyn_cast<CXXDeductionGuideDecl>(NewFD)) {
10415 if (auto *TD = Guide->getDescribedFunctionTemplate())
10416 CheckDeductionGuideTemplate(TD);
10417
10418 // A deduction guide is not on the list of entities that can be
10419 // explicitly specialized.
10420 if (Guide->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
10421 Diag(Guide->getBeginLoc(), diag::err_deduction_guide_specialized)
10422 << /*explicit specialization*/ 1;
10423 }
10424
10425 // Find any virtual functions that this function overrides.
10426 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
10427 if (!Method->isFunctionTemplateSpecialization() &&
10428 !Method->getDescribedFunctionTemplate() &&
10429 Method->isCanonicalDecl()) {
10430 if (AddOverriddenMethods(Method->getParent(), Method)) {
10431 // If the function was marked as "static", we have a problem.
10432 if (NewFD->getStorageClass() == SC_Static) {
10433 ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
10434 }
10435 }
10436 }
10437
10438 if (Method->isStatic())
10439 checkThisInStaticMemberFunctionType(Method);
10440 }
10441
10442 // Extra checking for C++ overloaded operators (C++ [over.oper]).
10443 if (NewFD->isOverloadedOperator() &&
10444 CheckOverloadedOperatorDeclaration(NewFD)) {
10445 NewFD->setInvalidDecl();
10446 return Redeclaration;
10447 }
10448
10449 // Extra checking for C++0x literal operators (C++0x [over.literal]).
10450 if (NewFD->getLiteralIdentifier() &&
10451 CheckLiteralOperatorDeclaration(NewFD)) {
10452 NewFD->setInvalidDecl();
10453 return Redeclaration;
10454 }
10455
10456 // In C++, check default arguments now that we have merged decls. Unless
10457 // the lexical context is the class, because in this case this is done
10458 // during delayed parsing anyway.
10459 if (!CurContext->isRecord())
10460 CheckCXXDefaultArguments(NewFD);
10461
10462 // If this function declares a builtin function, check the type of this
10463 // declaration against the expected type for the builtin.
10464 if (unsigned BuiltinID = NewFD->getBuiltinID()) {
10465 ASTContext::GetBuiltinTypeError Error;
10466 LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
10467 QualType T = Context.GetBuiltinType(BuiltinID, Error);
10468 // If the type of the builtin differs only in its exception
10469 // specification, that's OK.
10470 // FIXME: If the types do differ in this way, it would be better to
10471 // retain the 'noexcept' form of the type.
10472 if (!T.isNull() &&
10473 !Context.hasSameFunctionTypeIgnoringExceptionSpec(T,
10474 NewFD->getType()))
10475 // The type of this function differs from the type of the builtin,
10476 // so forget about the builtin entirely.
10477 Context.BuiltinInfo.forgetBuiltin(BuiltinID, Context.Idents);
10478 }
10479
10480 // If this function is declared as being extern "C", then check to see if
10481 // the function returns a UDT (class, struct, or union type) that is not C
10482 // compatible, and if it does, warn the user.
10483 // But, issue any diagnostic on the first declaration only.
10484 if (Previous.empty() && NewFD->isExternC()) {
10485 QualType R = NewFD->getReturnType();
10486 if (R->isIncompleteType() && !R->isVoidType())
10487 Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
10488 << NewFD << R;
10489 else if (!R.isPODType(Context) && !R->isVoidType() &&
10490 !R->isObjCObjectPointerType())
10491 Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
10492 }
10493
10494 // C++1z [dcl.fct]p6:
10495 // [...] whether the function has a non-throwing exception-specification
10496 // [is] part of the function type
10497 //
10498 // This results in an ABI break between C++14 and C++17 for functions whose
10499 // declared type includes an exception-specification in a parameter or
10500 // return type. (Exception specifications on the function itself are OK in
10501 // most cases, and exception specifications are not permitted in most other
10502 // contexts where they could make it into a mangling.)
10503 if (!getLangOpts().CPlusPlus17 && !NewFD->getPrimaryTemplate()) {
10504 auto HasNoexcept = [&](QualType T) -> bool {
10505 // Strip off declarator chunks that could be between us and a function
10506 // type. We don't need to look far, exception specifications are very
10507 // restricted prior to C++17.
10508 if (auto *RT = T->getAs<ReferenceType>())
10509 T = RT->getPointeeType();
10510 else if (T->isAnyPointerType())
10511 T = T->getPointeeType();
10512 else if (auto *MPT = T->getAs<MemberPointerType>())
10513 T = MPT->getPointeeType();
10514 if (auto *FPT = T->getAs<FunctionProtoType>())
10515 if (FPT->isNothrow())
10516 return true;
10517 return false;
10518 };
10519
10520 auto *FPT = NewFD->getType()->castAs<FunctionProtoType>();
10521 bool AnyNoexcept = HasNoexcept(FPT->getReturnType());
10522 for (QualType T : FPT->param_types())
10523 AnyNoexcept |= HasNoexcept(T);
10524 if (AnyNoexcept)
10525 Diag(NewFD->getLocation(),
10526 diag::warn_cxx17_compat_exception_spec_in_signature)
10527 << NewFD;
10528 }
10529
10530 if (!Redeclaration && LangOpts.CUDA)
10531 checkCUDATargetOverload(NewFD, Previous);
10532 }
10533 return Redeclaration;
10534}
10535
10536void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
10537 // C++11 [basic.start.main]p3:
10538 // A program that [...] declares main to be inline, static or
10539 // constexpr is ill-formed.
10540 // C11 6.7.4p4: In a hosted environment, no function specifier(s) shall
10541 // appear in a declaration of main.
10542 // static main is not an error under C99, but we should warn about it.
10543 // We accept _Noreturn main as an extension.
10544 if (FD->getStorageClass() == SC_Static)
10545 Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
10546 ? diag::err_static_main : diag::warn_static_main)
10547 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
10548 if (FD->isInlineSpecified())
10549 Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
10550 << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
10551 if (DS.isNoreturnSpecified()) {
10552 SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
10553 SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc));
10554 Diag(NoreturnLoc, diag::ext_noreturn_main);
10555 Diag(NoreturnLoc, diag::note_main_remove_noreturn)
10556 << FixItHint::CreateRemoval(NoreturnRange);
10557 }
10558 if (FD->isConstexpr()) {
10559 Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
10560 << FD->isConsteval()
10561 << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
10562 FD->setConstexprKind(CSK_unspecified);
10563 }
10564
10565 if (getLangOpts().OpenCL) {
10566 Diag(FD->getLocation(), diag::err_opencl_no_main)
10567 << FD->hasAttr<OpenCLKernelAttr>();
10568 FD->setInvalidDecl();
10569 return;
10570 }
10571
10572 QualType T = FD->getType();
10573 assert(T->isFunctionType() && "function decl is not of function type")((T->isFunctionType() && "function decl is not of function type"
) ? static_cast<void> (0) : __assert_fail ("T->isFunctionType() && \"function decl is not of function type\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 10573, __PRETTY_FUNCTION__))
;
10574 const FunctionType* FT = T->castAs<FunctionType>();
10575
10576 // Set default calling convention for main()
10577 if (FT->getCallConv() != CC_C) {
10578 FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(CC_C));
10579 FD->setType(QualType(FT, 0));
10580 T = Context.getCanonicalType(FD->getType());
10581 }
10582
10583 if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
10584 // In C with GNU extensions we allow main() to have non-integer return
10585 // type, but we should warn about the extension, and we disable the
10586 // implicit-return-zero rule.
10587
10588 // GCC in C mode accepts qualified 'int'.
10589 if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy))
10590 FD->setHasImplicitReturnZero(true);
10591 else {
10592 Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
10593 SourceRange RTRange = FD->getReturnTypeSourceRange();
10594 if (RTRange.isValid())
10595 Diag(RTRange.getBegin(), diag::note_main_change_return_type)
10596 << FixItHint::CreateReplacement(RTRange, "int");
10597 }
10598 } else {
10599 // In C and C++, main magically returns 0 if you fall off the end;
10600 // set the flag which tells us that.
10601 // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
10602
10603 // All the standards say that main() should return 'int'.
10604 if (Context.hasSameType(FT->getReturnType(), Context.IntTy))
10605 FD->setHasImplicitReturnZero(true);
10606 else {
10607 // Otherwise, this is just a flat-out error.
10608 SourceRange RTRange = FD->getReturnTypeSourceRange();
10609 Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
10610 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int")
10611 : FixItHint());
10612 FD->setInvalidDecl(true);
10613 }
10614 }
10615
10616 // Treat protoless main() as nullary.
10617 if (isa<FunctionNoProtoType>(FT)) return;
10618
10619 const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
10620 unsigned nparams = FTP->getNumParams();
10621 assert(FD->getNumParams() == nparams)((FD->getNumParams() == nparams) ? static_cast<void>
(0) : __assert_fail ("FD->getNumParams() == nparams", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 10621, __PRETTY_FUNCTION__))
;
10622
10623 bool HasExtraParameters = (nparams > 3);
10624
10625 if (FTP->isVariadic()) {
10626 Diag(FD->getLocation(), diag::ext_variadic_main);
10627 // FIXME: if we had information about the location of the ellipsis, we
10628 // could add a FixIt hint to remove it as a parameter.
10629 }
10630
10631 // Darwin passes an undocumented fourth argument of type char**. If
10632 // other platforms start sprouting these, the logic below will start
10633 // getting shifty.
10634 if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
10635 HasExtraParameters = false;
10636
10637 if (HasExtraParameters) {
10638 Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
10639 FD->setInvalidDecl(true);
10640 nparams = 3;
10641 }
10642
10643 // FIXME: a lot of the following diagnostics would be improved
10644 // if we had some location information about types.
10645
10646 QualType CharPP =
10647 Context.getPointerType(Context.getPointerType(Context.CharTy));
10648 QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
10649
10650 for (unsigned i = 0; i < nparams; ++i) {
10651 QualType AT = FTP->getParamType(i);
10652
10653 bool mismatch = true;
10654
10655 if (Context.hasSameUnqualifiedType(AT, Expected[i]))
10656 mismatch = false;
10657 else if (Expected[i] == CharPP) {
10658 // As an extension, the following forms are okay:
10659 // char const **
10660 // char const * const *
10661 // char * const *
10662
10663 QualifierCollector qs;
10664 const PointerType* PT;
10665 if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
10666 (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
10667 Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
10668 Context.CharTy)) {
10669 qs.removeConst();
10670 mismatch = !qs.empty();
10671 }
10672 }
10673
10674 if (mismatch) {
10675 Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
10676 // TODO: suggest replacing given type with expected type
10677 FD->setInvalidDecl(true);
10678 }
10679 }
10680
10681 if (nparams == 1 && !FD->isInvalidDecl()) {
10682 Diag(FD->getLocation(), diag::warn_main_one_arg);
10683 }
10684
10685 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
10686 Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
10687 FD->setInvalidDecl();
10688 }
10689}
10690
10691void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
10692 QualType T = FD->getType();
10693 assert(T->isFunctionType() && "function decl is not of function type")((T->isFunctionType() && "function decl is not of function type"
) ? static_cast<void> (0) : __assert_fail ("T->isFunctionType() && \"function decl is not of function type\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 10693, __PRETTY_FUNCTION__))
;
10694 const FunctionType *FT = T->castAs<FunctionType>();
10695
10696 // Set an implicit return of 'zero' if the function can return some integral,
10697 // enumeration, pointer or nullptr type.
10698 if (FT->getReturnType()->isIntegralOrEnumerationType() ||
10699 FT->getReturnType()->isAnyPointerType() ||
10700 FT->getReturnType()->isNullPtrType())
10701 // DllMain is exempt because a return value of zero means it failed.
10702 if (FD->getName() != "DllMain")
10703 FD->setHasImplicitReturnZero(true);
10704
10705 if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
10706 Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD;
10707 FD->setInvalidDecl();
10708 }
10709}
10710
10711bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
10712 // FIXME: Need strict checking. In C89, we need to check for
10713 // any assignment, increment, decrement, function-calls, or
10714 // commas outside of a sizeof. In C99, it's the same list,
10715 // except that the aforementioned are allowed in unevaluated
10716 // expressions. Everything else falls under the
10717 // "may accept other forms of constant expressions" exception.
10718 // (We never end up here for C++, so the constant expression
10719 // rules there don't matter.)
10720 const Expr *Culprit;
10721 if (Init->isConstantInitializer(Context, false, &Culprit))
10722 return false;
10723 Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant)
10724 << Culprit->getSourceRange();
10725 return true;
10726}
10727
10728namespace {
10729 // Visits an initialization expression to see if OrigDecl is evaluated in
10730 // its own initialization and throws a warning if it does.
10731 class SelfReferenceChecker
10732 : public EvaluatedExprVisitor<SelfReferenceChecker> {
10733 Sema &S;
10734 Decl *OrigDecl;
10735 bool isRecordType;
10736 bool isPODType;
10737 bool isReferenceType;
10738
10739 bool isInitList;
10740 llvm::SmallVector<unsigned, 4> InitFieldIndex;
10741
10742 public:
10743 typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
10744
10745 SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
10746 S(S), OrigDecl(OrigDecl) {
10747 isPODType = false;
10748 isRecordType = false;
10749 isReferenceType = false;
10750 isInitList = false;
10751 if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
10752 isPODType = VD->getType().isPODType(S.Context);
10753 isRecordType = VD->getType()->isRecordType();
10754 isReferenceType = VD->getType()->isReferenceType();
10755 }
10756 }
10757
10758 // For most expressions, just call the visitor. For initializer lists,
10759 // track the index of the field being initialized since fields are
10760 // initialized in order allowing use of previously initialized fields.
10761 void CheckExpr(Expr *E) {
10762 InitListExpr *InitList = dyn_cast<InitListExpr>(E);
10763 if (!InitList) {
10764 Visit(E);
10765 return;
10766 }
10767
10768 // Track and increment the index here.
10769 isInitList = true;
10770 InitFieldIndex.push_back(0);
10771 for (auto Child : InitList->children()) {
10772 CheckExpr(cast<Expr>(Child));
10773 ++InitFieldIndex.back();
10774 }
10775 InitFieldIndex.pop_back();
10776 }
10777
10778 // Returns true if MemberExpr is checked and no further checking is needed.
10779 // Returns false if additional checking is required.
10780 bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) {
10781 llvm::SmallVector<FieldDecl*, 4> Fields;
10782 Expr *Base = E;
10783 bool ReferenceField = false;
10784
10785 // Get the field members used.
10786 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
10787 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
10788 if (!FD)
10789 return false;
10790 Fields.push_back(FD);
10791 if (FD->getType()->isReferenceType())
10792 ReferenceField = true;
10793 Base = ME->getBase()->IgnoreParenImpCasts();
10794 }
10795
10796 // Keep checking only if the base Decl is the same.
10797 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base);
10798 if (!DRE || DRE->getDecl() != OrigDecl)
10799 return false;
10800
10801 // A reference field can be bound to an unininitialized field.
10802 if (CheckReference && !ReferenceField)
10803 return true;
10804
10805 // Convert FieldDecls to their index number.
10806 llvm::SmallVector<unsigned, 4> UsedFieldIndex;
10807 for (const FieldDecl *I : llvm::reverse(Fields))
10808 UsedFieldIndex.push_back(I->getFieldIndex());
10809
10810 // See if a warning is needed by checking the first difference in index
10811 // numbers. If field being used has index less than the field being
10812 // initialized, then the use is safe.
10813 for (auto UsedIter = UsedFieldIndex.begin(),
10814 UsedEnd = UsedFieldIndex.end(),
10815 OrigIter = InitFieldIndex.begin(),
10816 OrigEnd = InitFieldIndex.end();
10817 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
10818 if (*UsedIter < *OrigIter)
10819 return true;
10820 if (*UsedIter > *OrigIter)
10821 break;
10822 }
10823
10824 // TODO: Add a different warning which will print the field names.
10825 HandleDeclRefExpr(DRE);
10826 return true;
10827 }
10828
10829 // For most expressions, the cast is directly above the DeclRefExpr.
10830 // For conditional operators, the cast can be outside the conditional
10831 // operator if both expressions are DeclRefExpr's.
10832 void HandleValue(Expr *E) {
10833 E = E->IgnoreParens();
10834 if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
10835 HandleDeclRefExpr(DRE);
10836 return;
10837 }
10838
10839 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
10840 Visit(CO->getCond());
10841 HandleValue(CO->getTrueExpr());
10842 HandleValue(CO->getFalseExpr());
10843 return;
10844 }
10845
10846 if (BinaryConditionalOperator *BCO =
10847 dyn_cast<BinaryConditionalOperator>(E)) {
10848 Visit(BCO->getCond());
10849 HandleValue(BCO->getFalseExpr());
10850 return;
10851 }
10852
10853 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
10854 HandleValue(OVE->getSourceExpr());
10855 return;
10856 }
10857
10858 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
10859 if (BO->getOpcode() == BO_Comma) {
10860 Visit(BO->getLHS());
10861 HandleValue(BO->getRHS());
10862 return;
10863 }
10864 }
10865
10866 if (isa<MemberExpr>(E)) {
10867 if (isInitList) {
10868 if (CheckInitListMemberExpr(cast<MemberExpr>(E),
10869 false /*CheckReference*/))
10870 return;
10871 }
10872
10873 Expr *Base = E->IgnoreParenImpCasts();
10874 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
10875 // Check for static member variables and don't warn on them.
10876 if (!isa<FieldDecl>(ME->getMemberDecl()))
10877 return;
10878 Base = ME->getBase()->IgnoreParenImpCasts();
10879 }
10880 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
10881 HandleDeclRefExpr(DRE);
10882 return;
10883 }
10884
10885 Visit(E);
10886 }
10887
10888 // Reference types not handled in HandleValue are handled here since all
10889 // uses of references are bad, not just r-value uses.
10890 void VisitDeclRefExpr(DeclRefExpr *E) {
10891 if (isReferenceType)
10892 HandleDeclRefExpr(E);
10893 }
10894
10895 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
10896 if (E->getCastKind() == CK_LValueToRValue) {
10897 HandleValue(E->getSubExpr());
10898 return;
10899 }
10900
10901 Inherited::VisitImplicitCastExpr(E);
10902 }
10903
10904 void VisitMemberExpr(MemberExpr *E) {
10905 if (isInitList) {
10906 if (CheckInitListMemberExpr(E, true /*CheckReference*/))
10907 return;
10908 }
10909
10910 // Don't warn on arrays since they can be treated as pointers.
10911 if (E->getType()->canDecayToPointerType()) return;
10912
10913 // Warn when a non-static method call is followed by non-static member
10914 // field accesses, which is followed by a DeclRefExpr.
10915 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
10916 bool Warn = (MD && !MD->isStatic());
10917 Expr *Base = E->getBase()->IgnoreParenImpCasts();
10918 while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
10919 if (!isa<FieldDecl>(ME->getMemberDecl()))
10920 Warn = false;
10921 Base = ME->getBase()->IgnoreParenImpCasts();
10922 }
10923
10924 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
10925 if (Warn)
10926 HandleDeclRefExpr(DRE);
10927 return;
10928 }
10929
10930 // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
10931 // Visit that expression.
10932 Visit(Base);
10933 }
10934
10935 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
10936 Expr *Callee = E->getCallee();
10937
10938 if (isa<UnresolvedLookupExpr>(Callee))
10939 return Inherited::VisitCXXOperatorCallExpr(E);
10940
10941 Visit(Callee);
10942 for (auto Arg: E->arguments())
10943 HandleValue(Arg->IgnoreParenImpCasts());
10944 }
10945
10946 void VisitUnaryOperator(UnaryOperator *E) {
10947 // For POD record types, addresses of its own members are well-defined.
10948 if (E->getOpcode() == UO_AddrOf && isRecordType &&
10949 isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
10950 if (!isPODType)
10951 HandleValue(E->getSubExpr());
10952 return;
10953 }
10954
10955 if (E->isIncrementDecrementOp()) {
10956 HandleValue(E->getSubExpr());
10957 return;
10958 }
10959
10960 Inherited::VisitUnaryOperator(E);
10961 }
10962
10963 void VisitObjCMessageExpr(ObjCMessageExpr *E) {}
10964
10965 void VisitCXXConstructExpr(CXXConstructExpr *E) {
10966 if (E->getConstructor()->isCopyConstructor()) {
10967 Expr *ArgExpr = E->getArg(0);
10968 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
10969 if (ILE->getNumInits() == 1)
10970 ArgExpr = ILE->getInit(0);
10971 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
10972 if (ICE->getCastKind() == CK_NoOp)
10973 ArgExpr = ICE->getSubExpr();
10974 HandleValue(ArgExpr);
10975 return;
10976 }
10977 Inherited::VisitCXXConstructExpr(E);
10978 }
10979
10980 void VisitCallExpr(CallExpr *E) {
10981 // Treat std::move as a use.
10982 if (E->isCallToStdMove()) {
10983 HandleValue(E->getArg(0));
10984 return;
10985 }
10986
10987 Inherited::VisitCallExpr(E);
10988 }
10989
10990 void VisitBinaryOperator(BinaryOperator *E) {
10991 if (E->isCompoundAssignmentOp()) {
10992 HandleValue(E->getLHS());
10993 Visit(E->getRHS());
10994 return;
10995 }
10996
10997 Inherited::VisitBinaryOperator(E);
10998 }
10999
11000 // A custom visitor for BinaryConditionalOperator is needed because the
11001 // regular visitor would check the condition and true expression separately
11002 // but both point to the same place giving duplicate diagnostics.
11003 void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) {
11004 Visit(E->getCond());
11005 Visit(E->getFalseExpr());
11006 }
11007
11008 void HandleDeclRefExpr(DeclRefExpr *DRE) {
11009 Decl* ReferenceDecl = DRE->getDecl();
11010 if (OrigDecl != ReferenceDecl) return;
11011 unsigned diag;
11012 if (isReferenceType) {
11013 diag = diag::warn_uninit_self_reference_in_reference_init;
11014 } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
11015 diag = diag::warn_static_self_reference_in_init;
11016 } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) ||
11017 isa<NamespaceDecl>(OrigDecl->getDeclContext()) ||
11018 DRE->getDecl()->getType()->isRecordType()) {
11019 diag = diag::warn_uninit_self_reference_in_init;
11020 } else {
11021 // Local variables will be handled by the CFG analysis.
11022 return;
11023 }
11024
11025 S.DiagRuntimeBehavior(DRE->getBeginLoc(), DRE,
11026 S.PDiag(diag)
11027 << DRE->getDecl() << OrigDecl->getLocation()
11028 << DRE->getSourceRange());
11029 }
11030 };
11031
11032 /// CheckSelfReference - Warns if OrigDecl is used in expression E.
11033 static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
11034 bool DirectInit) {
11035 // Parameters arguments are occassionially constructed with itself,
11036 // for instance, in recursive functions. Skip them.
11037 if (isa<ParmVarDecl>(OrigDecl))
11038 return;
11039
11040 E = E->IgnoreParens();
11041
11042 // Skip checking T a = a where T is not a record or reference type.
11043 // Doing so is a way to silence uninitialized warnings.
11044 if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
11045 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
11046 if (ICE->getCastKind() == CK_LValueToRValue)
11047 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
11048 if (DRE->getDecl() == OrigDecl)
11049 return;
11050
11051 SelfReferenceChecker(S, OrigDecl).CheckExpr(E);
11052 }
11053} // end anonymous namespace
11054
11055namespace {
11056 // Simple wrapper to add the name of a variable or (if no variable is
11057 // available) a DeclarationName into a diagnostic.
11058 struct VarDeclOrName {
11059 VarDecl *VDecl;
11060 DeclarationName Name;
11061
11062 friend const Sema::SemaDiagnosticBuilder &
11063 operator<<(const Sema::SemaDiagnosticBuilder &Diag, VarDeclOrName VN) {
11064 return VN.VDecl ? Diag << VN.VDecl : Diag << VN.Name;
11065 }
11066 };
11067} // end anonymous namespace
11068
11069QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl,
11070 DeclarationName Name, QualType Type,
11071 TypeSourceInfo *TSI,
11072 SourceRange Range, bool DirectInit,
11073 Expr *Init) {
11074 bool IsInitCapture = !VDecl;
11075 assert((!VDecl || !VDecl->isInitCapture()) &&(((!VDecl || !VDecl->isInitCapture()) && "init captures are expected to be deduced prior to initialization"
) ? static_cast<void> (0) : __assert_fail ("(!VDecl || !VDecl->isInitCapture()) && \"init captures are expected to be deduced prior to initialization\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 11076, __PRETTY_FUNCTION__))
11076 "init captures are expected to be deduced prior to initialization")(((!VDecl || !VDecl->isInitCapture()) && "init captures are expected to be deduced prior to initialization"
) ? static_cast<void> (0) : __assert_fail ("(!VDecl || !VDecl->isInitCapture()) && \"init captures are expected to be deduced prior to initialization\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 11076, __PRETTY_FUNCTION__))
;
11077
11078 VarDeclOrName VN{VDecl, Name};
11079
11080 DeducedType *Deduced = Type->getContainedDeducedType();
11081 assert(Deduced && "deduceVarTypeFromInitializer for non-deduced type")((Deduced && "deduceVarTypeFromInitializer for non-deduced type"
) ? static_cast<void> (0) : __assert_fail ("Deduced && \"deduceVarTypeFromInitializer for non-deduced type\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 11081, __PRETTY_FUNCTION__))
;
11082
11083 // C++11 [dcl.spec.auto]p3
11084 if (!Init) {
11085 assert(VDecl && "no init for init capture deduction?")((VDecl && "no init for init capture deduction?") ? static_cast
<void> (0) : __assert_fail ("VDecl && \"no init for init capture deduction?\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 11085, __PRETTY_FUNCTION__))
;
11086
11087 // Except for class argument deduction, and then for an initializing
11088 // declaration only, i.e. no static at class scope or extern.
11089 if (!isa<DeducedTemplateSpecializationType>(Deduced) ||
11090 VDecl->hasExternalStorage() ||
11091 VDecl->isStaticDataMember()) {
11092 Diag(VDecl->getLocation(), diag::err_auto_var_requires_init)
11093 << VDecl->getDeclName() << Type;
11094 return QualType();
11095 }
11096 }
11097
11098 ArrayRef<Expr*> DeduceInits;
11099 if (Init)
11100 DeduceInits = Init;
11101
11102 if (DirectInit) {
11103 if (auto *PL = dyn_cast_or_null<ParenListExpr>(Init))
11104 DeduceInits = PL->exprs();
11105 }
11106
11107 if (isa<DeducedTemplateSpecializationType>(Deduced)) {
11108 assert(VDecl && "non-auto type for init capture deduction?")((VDecl && "non-auto type for init capture deduction?"
) ? static_cast<void> (0) : __assert_fail ("VDecl && \"non-auto type for init capture deduction?\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 11108, __PRETTY_FUNCTION__))
;
11109 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
11110 InitializationKind Kind = InitializationKind::CreateForInit(
11111 VDecl->getLocation(), DirectInit, Init);
11112 // FIXME: Initialization should not be taking a mutable list of inits.
11113 SmallVector<Expr*, 8> InitsCopy(DeduceInits.begin(), DeduceInits.end());
11114 return DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind,
11115 InitsCopy);
11116 }
11117
11118 if (DirectInit) {
11119 if (auto *IL = dyn_cast<InitListExpr>(Init))
11120 DeduceInits = IL->inits();
11121 }
11122
11123 // Deduction only works if we have exactly one source expression.
11124 if (DeduceInits.empty()) {
11125 // It isn't possible to write this directly, but it is possible to
11126 // end up in this situation with "auto x(some_pack...);"
11127 Diag(Init->getBeginLoc(), IsInitCapture
11128 ? diag::err_init_capture_no_expression
11129 : diag::err_auto_var_init_no_expression)
11130 << VN << Type << Range;
11131 return QualType();
11132 }
11133
11134 if (DeduceInits.size() > 1) {
11135 Diag(DeduceInits[1]->getBeginLoc(),
11136 IsInitCapture ? diag::err_init_capture_multiple_expressions
11137 : diag::err_auto_var_init_multiple_expressions)
11138 << VN << Type << Range;
11139 return QualType();
11140 }
11141
11142 Expr *DeduceInit = DeduceInits[0];
11143 if (DirectInit && isa<InitListExpr>(DeduceInit)) {
11144 Diag(Init->getBeginLoc(), IsInitCapture
11145 ? diag::err_init_capture_paren_braces
11146 : diag::err_auto_var_init_paren_braces)
11147 << isa<InitListExpr>(Init) << VN << Type << Range;
11148 return QualType();
11149 }
11150
11151 // Expressions default to 'id' when we're in a debugger.
11152 bool DefaultedAnyToId = false;
11153 if (getLangOpts().DebuggerCastResultToId &&
11154 Init->getType() == Context.UnknownAnyTy && !IsInitCapture) {
11155 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
11156 if (Result.isInvalid()) {
11157 return QualType();
11158 }
11159 Init = Result.get();
11160 DefaultedAnyToId = true;
11161 }
11162
11163 // C++ [dcl.decomp]p1:
11164 // If the assignment-expression [...] has array type A and no ref-qualifier
11165 // is present, e has type cv A
11166 if (VDecl && isa<DecompositionDecl>(VDecl) &&
11167 Context.hasSameUnqualifiedType(Type, Context.getAutoDeductType()) &&
11168 DeduceInit->getType()->isConstantArrayType())
11169 return Context.getQualifiedType(DeduceInit->getType(),
11170 Type.getQualifiers());
11171
11172 QualType DeducedType;
11173 if (DeduceAutoType(TSI, DeduceInit, DeducedType) == DAR_Failed) {
11174 if (!IsInitCapture)
11175 DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
11176 else if (isa<InitListExpr>(Init))
11177 Diag(Range.getBegin(),
11178 diag::err_init_capture_deduction_failure_from_init_list)
11179 << VN
11180 << (DeduceInit->getType().isNull() ? TSI->getType()
11181 : DeduceInit->getType())
11182 << DeduceInit->getSourceRange();
11183 else
11184 Diag(Range.getBegin(), diag::err_init_capture_deduction_failure)
11185 << VN << TSI->getType()
11186 << (DeduceInit->getType().isNull() ? TSI->getType()
11187 : DeduceInit->getType())
11188 << DeduceInit->getSourceRange();
11189 }
11190
11191 // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
11192 // 'id' instead of a specific object type prevents most of our usual
11193 // checks.
11194 // We only want to warn outside of template instantiations, though:
11195 // inside a template, the 'id' could have come from a parameter.
11196 if (!inTemplateInstantiation() && !DefaultedAnyToId && !IsInitCapture &&
11197 !DeducedType.isNull() && DeducedType->isObjCIdType()) {
11198 SourceLocation Loc = TSI->getTypeLoc().getBeginLoc();
11199 Diag(Loc, diag::warn_auto_var_is_id) << VN << Range;
11200 }
11201
11202 return DeducedType;
11203}
11204
11205bool Sema::DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit,
11206 Expr *Init) {
11207 QualType DeducedType = deduceVarTypeFromInitializer(
11208 VDecl, VDecl->getDeclName(), VDecl->getType(), VDecl->getTypeSourceInfo(),
11209 VDecl->getSourceRange(), DirectInit, Init);
11210 if (DeducedType.isNull()) {
11211 VDecl->setInvalidDecl();
11212 return true;
11213 }
11214
11215 VDecl->setType(DeducedType);
11216 assert(VDecl->isLinkageValid())((VDecl->isLinkageValid()) ? static_cast<void> (0) :
__assert_fail ("VDecl->isLinkageValid()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 11216, __PRETTY_FUNCTION__))
;
11217
11218 // In ARC, infer lifetime.
11219 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
11220 VDecl->setInvalidDecl();
11221
11222 // If this is a redeclaration, check that the type we just deduced matches
11223 // the previously declared type.
11224 if (VarDecl *Old = VDecl->getPreviousDecl()) {
11225 // We never need to merge the type, because we cannot form an incomplete
11226 // array of auto, nor deduce such a type.
11227 MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false);
11228 }
11229
11230 // Check the deduced type is valid for a variable declaration.
11231 CheckVariableDeclarationType(VDecl);
11232 return VDecl->isInvalidDecl();
11233}
11234
11235void Sema::checkNonTrivialCUnionInInitializer(const Expr *Init,
11236 SourceLocation Loc) {
11237 if (auto *CE = dyn_cast<ConstantExpr>(Init))
11238 Init = CE->getSubExpr();
11239
11240 QualType InitType = Init->getType();
11241 assert((InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||(((InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion()
|| InitType.hasNonTrivialToPrimitiveCopyCUnion()) &&
"shouldn't be called if type doesn't have a non-trivial C struct"
) ? static_cast<void> (0) : __assert_fail ("(InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || InitType.hasNonTrivialToPrimitiveCopyCUnion()) && \"shouldn't be called if type doesn't have a non-trivial C struct\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 11243, __PRETTY_FUNCTION__))
11242 InitType.hasNonTrivialToPrimitiveCopyCUnion()) &&(((InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion()
|| InitType.hasNonTrivialToPrimitiveCopyCUnion()) &&
"shouldn't be called if type doesn't have a non-trivial C struct"
) ? static_cast<void> (0) : __assert_fail ("(InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || InitType.hasNonTrivialToPrimitiveCopyCUnion()) && \"shouldn't be called if type doesn't have a non-trivial C struct\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 11243, __PRETTY_FUNCTION__))
11243 "shouldn't be called if type doesn't have a non-trivial C struct")(((InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion()
|| InitType.hasNonTrivialToPrimitiveCopyCUnion()) &&
"shouldn't be called if type doesn't have a non-trivial C struct"
) ? static_cast<void> (0) : __assert_fail ("(InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || InitType.hasNonTrivialToPrimitiveCopyCUnion()) && \"shouldn't be called if type doesn't have a non-trivial C struct\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 11243, __PRETTY_FUNCTION__))
;
11244 if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
11245 for (auto I : ILE->inits()) {
11246 if (!I->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() &&
11247 !I->getType().hasNonTrivialToPrimitiveCopyCUnion())
11248 continue;
11249 SourceLocation SL = I->getExprLoc();
11250 checkNonTrivialCUnionInInitializer(I, SL.isValid() ? SL : Loc);
11251 }
11252 return;
11253 }
11254
11255 if (isa<ImplicitValueInitExpr>(Init)) {
11256 if (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
11257 checkNonTrivialCUnion(InitType, Loc, NTCUC_DefaultInitializedObject,
11258 NTCUK_Init);
11259 } else {
11260 // Assume all other explicit initializers involving copying some existing
11261 // object.
11262 // TODO: ignore any explicit initializers where we can guarantee
11263 // copy-elision.
11264 if (InitType.hasNonTrivialToPrimitiveCopyCUnion())
11265 checkNonTrivialCUnion(InitType, Loc, NTCUC_CopyInit, NTCUK_Copy);
11266 }
11267}
11268
11269namespace {
11270
11271bool shouldIgnoreForRecordTriviality(const FieldDecl *FD) {
11272 // Ignore unavailable fields. A field can be marked as unavailable explicitly
11273 // in the source code or implicitly by the compiler if it is in a union
11274 // defined in a system header and has non-trivial ObjC ownership
11275 // qualifications. We don't want those fields to participate in determining
11276 // whether the containing union is non-trivial.
11277 return FD->hasAttr<UnavailableAttr>();
11278}
11279
11280struct DiagNonTrivalCUnionDefaultInitializeVisitor
11281 : DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor,
11282 void> {
11283 using Super =
11284 DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor,
11285 void>;
11286
11287 DiagNonTrivalCUnionDefaultInitializeVisitor(
11288 QualType OrigTy, SourceLocation OrigLoc,
11289 Sema::NonTrivialCUnionContext UseContext, Sema &S)
11290 : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
11291
11292 void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType QT,
11293 const FieldDecl *FD, bool InNonTrivialUnion) {
11294 if (const auto *AT = S.Context.getAsArrayType(QT))
11295 return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
11296 InNonTrivialUnion);
11297 return Super::visitWithKind(PDIK, QT, FD, InNonTrivialUnion);
11298 }
11299
11300 void visitARCStrong(QualType QT, const FieldDecl *FD,
11301 bool InNonTrivialUnion) {
11302 if (InNonTrivialUnion)
11303 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11304 << 1 << 0 << QT << FD->getName();
11305 }
11306
11307 void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11308 if (InNonTrivialUnion)
11309 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11310 << 1 << 0 << QT << FD->getName();
11311 }
11312
11313 void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11314 const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
11315 if (RD->isUnion()) {
11316 if (OrigLoc.isValid()) {
11317 bool IsUnion = false;
11318 if (auto *OrigRD = OrigTy->getAsRecordDecl())
11319 IsUnion = OrigRD->isUnion();
11320 S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
11321 << 0 << OrigTy << IsUnion << UseContext;
11322 // Reset OrigLoc so that this diagnostic is emitted only once.
11323 OrigLoc = SourceLocation();
11324 }
11325 InNonTrivialUnion = true;
11326 }
11327
11328 if (InNonTrivialUnion)
11329 S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
11330 << 0 << 0 << QT.getUnqualifiedType() << "";
11331
11332 for (const FieldDecl *FD : RD->fields())
11333 if (!shouldIgnoreForRecordTriviality(FD))
11334 asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
11335 }
11336
11337 void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
11338
11339 // The non-trivial C union type or the struct/union type that contains a
11340 // non-trivial C union.
11341 QualType OrigTy;
11342 SourceLocation OrigLoc;
11343 Sema::NonTrivialCUnionContext UseContext;
11344 Sema &S;
11345};
11346
11347struct DiagNonTrivalCUnionDestructedTypeVisitor
11348 : DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void> {
11349 using Super =
11350 DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void>;
11351
11352 DiagNonTrivalCUnionDestructedTypeVisitor(
11353 QualType OrigTy, SourceLocation OrigLoc,
11354 Sema::NonTrivialCUnionContext UseContext, Sema &S)
11355 : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
11356
11357 void visitWithKind(QualType::DestructionKind DK, QualType QT,
11358 const FieldDecl *FD, bool InNonTrivialUnion) {
11359 if (const auto *AT = S.Context.getAsArrayType(QT))
11360 return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
11361 InNonTrivialUnion);
11362 return Super::visitWithKind(DK, QT, FD, InNonTrivialUnion);
11363 }
11364
11365 void visitARCStrong(QualType QT, const FieldDecl *FD,
11366 bool InNonTrivialUnion) {
11367 if (InNonTrivialUnion)
11368 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11369 << 1 << 1 << QT << FD->getName();
11370 }
11371
11372 void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11373 if (InNonTrivialUnion)
11374 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11375 << 1 << 1 << QT << FD->getName();
11376 }
11377
11378 void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11379 const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
11380 if (RD->isUnion()) {
11381 if (OrigLoc.isValid()) {
11382 bool IsUnion = false;
11383 if (auto *OrigRD = OrigTy->getAsRecordDecl())
11384 IsUnion = OrigRD->isUnion();
11385 S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
11386 << 1 << OrigTy << IsUnion << UseContext;
11387 // Reset OrigLoc so that this diagnostic is emitted only once.
11388 OrigLoc = SourceLocation();
11389 }
11390 InNonTrivialUnion = true;
11391 }
11392
11393 if (InNonTrivialUnion)
11394 S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
11395 << 0 << 1 << QT.getUnqualifiedType() << "";
11396
11397 for (const FieldDecl *FD : RD->fields())
11398 if (!shouldIgnoreForRecordTriviality(FD))
11399 asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
11400 }
11401
11402 void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
11403 void visitCXXDestructor(QualType QT, const FieldDecl *FD,
11404 bool InNonTrivialUnion) {}
11405
11406 // The non-trivial C union type or the struct/union type that contains a
11407 // non-trivial C union.
11408 QualType OrigTy;
11409 SourceLocation OrigLoc;
11410 Sema::NonTrivialCUnionContext UseContext;
11411 Sema &S;
11412};
11413
11414struct DiagNonTrivalCUnionCopyVisitor
11415 : CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void> {
11416 using Super = CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void>;
11417
11418 DiagNonTrivalCUnionCopyVisitor(QualType OrigTy, SourceLocation OrigLoc,
11419 Sema::NonTrivialCUnionContext UseContext,
11420 Sema &S)
11421 : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {}
11422
11423 void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType QT,
11424 const FieldDecl *FD, bool InNonTrivialUnion) {
11425 if (const auto *AT = S.Context.getAsArrayType(QT))
11426 return this->asDerived().visit(S.Context.getBaseElementType(AT), FD,
11427 InNonTrivialUnion);
11428 return Super::visitWithKind(PCK, QT, FD, InNonTrivialUnion);
11429 }
11430
11431 void visitARCStrong(QualType QT, const FieldDecl *FD,
11432 bool InNonTrivialUnion) {
11433 if (InNonTrivialUnion)
11434 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11435 << 1 << 2 << QT << FD->getName();
11436 }
11437
11438 void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11439 if (InNonTrivialUnion)
11440 S.Diag(FD->getLocation(), diag::note_non_trivial_c_union)
11441 << 1 << 2 << QT << FD->getName();
11442 }
11443
11444 void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {
11445 const RecordDecl *RD = QT->castAs<RecordType>()->getDecl();
11446 if (RD->isUnion()) {
11447 if (OrigLoc.isValid()) {
11448 bool IsUnion = false;
11449 if (auto *OrigRD = OrigTy->getAsRecordDecl())
11450 IsUnion = OrigRD->isUnion();
11451 S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context)
11452 << 2 << OrigTy << IsUnion << UseContext;
11453 // Reset OrigLoc so that this diagnostic is emitted only once.
11454 OrigLoc = SourceLocation();
11455 }
11456 InNonTrivialUnion = true;
11457 }
11458
11459 if (InNonTrivialUnion)
11460 S.Diag(RD->getLocation(), diag::note_non_trivial_c_union)
11461 << 0 << 2 << QT.getUnqualifiedType() << "";
11462
11463 for (const FieldDecl *FD : RD->fields())
11464 if (!shouldIgnoreForRecordTriviality(FD))
11465 asDerived().visit(FD->getType(), FD, InNonTrivialUnion);
11466 }
11467
11468 void preVisit(QualType::PrimitiveCopyKind PCK, QualType QT,
11469 const FieldDecl *FD, bool InNonTrivialUnion) {}
11470 void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {}
11471 void visitVolatileTrivial(QualType QT, const FieldDecl *FD,
11472 bool InNonTrivialUnion) {}
11473
11474 // The non-trivial C union type or the struct/union type that contains a
11475 // non-trivial C union.
11476 QualType OrigTy;
11477 SourceLocation OrigLoc;
11478 Sema::NonTrivialCUnionContext UseContext;
11479 Sema &S;
11480};
11481
11482} // namespace
11483
11484void Sema::checkNonTrivialCUnion(QualType QT, SourceLocation Loc,
11485 NonTrivialCUnionContext UseContext,
11486 unsigned NonTrivialKind) {
11487 assert((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||(((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || QT
.hasNonTrivialToPrimitiveDestructCUnion() || QT.hasNonTrivialToPrimitiveCopyCUnion
()) && "shouldn't be called if type doesn't have a non-trivial C union"
) ? static_cast<void> (0) : __assert_fail ("(QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || QT.hasNonTrivialToPrimitiveDestructCUnion() || QT.hasNonTrivialToPrimitiveCopyCUnion()) && \"shouldn't be called if type doesn't have a non-trivial C union\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 11490, __PRETTY_FUNCTION__))
11488 QT.hasNonTrivialToPrimitiveDestructCUnion() ||(((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || QT
.hasNonTrivialToPrimitiveDestructCUnion() || QT.hasNonTrivialToPrimitiveCopyCUnion
()) && "shouldn't be called if type doesn't have a non-trivial C union"
) ? static_cast<void> (0) : __assert_fail ("(QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || QT.hasNonTrivialToPrimitiveDestructCUnion() || QT.hasNonTrivialToPrimitiveCopyCUnion()) && \"shouldn't be called if type doesn't have a non-trivial C union\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 11490, __PRETTY_FUNCTION__))
11489 QT.hasNonTrivialToPrimitiveCopyCUnion()) &&(((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || QT
.hasNonTrivialToPrimitiveDestructCUnion() || QT.hasNonTrivialToPrimitiveCopyCUnion
()) && "shouldn't be called if type doesn't have a non-trivial C union"
) ? static_cast<void> (0) : __assert_fail ("(QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || QT.hasNonTrivialToPrimitiveDestructCUnion() || QT.hasNonTrivialToPrimitiveCopyCUnion()) && \"shouldn't be called if type doesn't have a non-trivial C union\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 11490, __PRETTY_FUNCTION__))
11490 "shouldn't be called if type doesn't have a non-trivial C union")(((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || QT
.hasNonTrivialToPrimitiveDestructCUnion() || QT.hasNonTrivialToPrimitiveCopyCUnion
()) && "shouldn't be called if type doesn't have a non-trivial C union"
) ? static_cast<void> (0) : __assert_fail ("(QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || QT.hasNonTrivialToPrimitiveDestructCUnion() || QT.hasNonTrivialToPrimitiveCopyCUnion()) && \"shouldn't be called if type doesn't have a non-trivial C union\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 11490, __PRETTY_FUNCTION__))
;
11491
11492 if ((NonTrivialKind & NTCUK_Init) &&
11493 QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion())
11494 DiagNonTrivalCUnionDefaultInitializeVisitor(QT, Loc, UseContext, *this)
11495 .visit(QT, nullptr, false);
11496 if ((NonTrivialKind & NTCUK_Destruct) &&
11497 QT.hasNonTrivialToPrimitiveDestructCUnion())
11498 DiagNonTrivalCUnionDestructedTypeVisitor(QT, Loc, UseContext, *this)
11499 .visit(QT, nullptr, false);
11500 if ((NonTrivialKind & NTCUK_Copy) && QT.hasNonTrivialToPrimitiveCopyCUnion())
11501 DiagNonTrivalCUnionCopyVisitor(QT, Loc, UseContext, *this)
11502 .visit(QT, nullptr, false);
11503}
11504
11505/// AddInitializerToDecl - Adds the initializer Init to the
11506/// declaration dcl. If DirectInit is true, this is C++ direct
11507/// initialization rather than copy initialization.
11508void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
11509 // If there is no declaration, there was an error parsing it. Just ignore
11510 // the initializer.
11511 if (!RealDecl || RealDecl->isInvalidDecl()) {
11512 CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl));
11513 return;
11514 }
11515
11516 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
11517 // Pure-specifiers are handled in ActOnPureSpecifier.
11518 Diag(Method->getLocation(), diag::err_member_function_initialization)
11519 << Method->getDeclName() << Init->getSourceRange();
11520 Method->setInvalidDecl();
11521 return;
11522 }
11523
11524 VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
11525 if (!VDecl) {
11526 assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here")((!isa<FieldDecl>(RealDecl) && "field init shouldn't get here"
) ? static_cast<void> (0) : __assert_fail ("!isa<FieldDecl>(RealDecl) && \"field init shouldn't get here\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 11526, __PRETTY_FUNCTION__))
;
11527 Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
11528 RealDecl->setInvalidDecl();
11529 return;
11530 }
11531
11532 // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
11533 if (VDecl->getType()->isUndeducedType()) {
11534 // Attempt typo correction early so that the type of the init expression can
11535 // be deduced based on the chosen correction if the original init contains a
11536 // TypoExpr.
11537 ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl);
11538 if (!Res.isUsable()) {
11539 RealDecl->setInvalidDecl();
11540 return;
11541 }
11542 Init = Res.get();
11543
11544 if (DeduceVariableDeclarationType(VDecl, DirectInit, Init))
11545 return;
11546 }
11547
11548 // dllimport cannot be used on variable definitions.
11549 if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) {
11550 Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition);
11551 VDecl->setInvalidDecl();
11552 return;
11553 }
11554
11555 if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
11556 // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
11557 Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
11558 VDecl->setInvalidDecl();
11559 return;
11560 }
11561
11562 if (!VDecl->getType()->isDependentType()) {
11563 // A definition must end up with a complete type, which means it must be
11564 // complete with the restriction that an array type might be completed by
11565 // the initializer; note that later code assumes this restriction.
11566 QualType BaseDeclType = VDecl->getType();
11567 if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
11568 BaseDeclType = Array->getElementType();
11569 if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
11570 diag::err_typecheck_decl_incomplete_type)) {
11571 RealDecl->setInvalidDecl();
11572 return;
11573 }
11574
11575 // The variable can not have an abstract class type.
11576 if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
11577 diag::err_abstract_type_in_decl,
11578 AbstractVariableType))
11579 VDecl->setInvalidDecl();
11580 }
11581
11582 // If adding the initializer will turn this declaration into a definition,
11583 // and we already have a definition for this variable, diagnose or otherwise
11584 // handle the situation.
11585 VarDecl *Def;
11586 if ((Def = VDecl->getDefinition()) && Def != VDecl &&
11587 (!VDecl->isStaticDataMember() || VDecl->isOutOfLine()) &&
11588 !VDecl->isThisDeclarationADemotedDefinition() &&
11589 checkVarDeclRedefinition(Def, VDecl))
11590 return;
11591
11592 if (getLangOpts().CPlusPlus) {
11593 // C++ [class.static.data]p4
11594 // If a static data member is of const integral or const
11595 // enumeration type, its declaration in the class definition can
11596 // specify a constant-initializer which shall be an integral
11597 // constant expression (5.19). In that case, the member can appear
11598 // in integral constant expressions. The member shall still be
11599 // defined in a namespace scope if it is used in the program and the
11600 // namespace scope definition shall not contain an initializer.
11601 //
11602 // We already performed a redefinition check above, but for static
11603 // data members we also need to check whether there was an in-class
11604 // declaration with an initializer.
11605 if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) {
11606 Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization)
11607 << VDecl->getDeclName();
11608 Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(),
11609 diag::note_previous_initializer)
11610 << 0;
11611 return;
11612 }
11613
11614 if (VDecl->hasLocalStorage())
11615 setFunctionHasBranchProtectedScope();
11616
11617 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
11618 VDecl->setInvalidDecl();
11619 return;
11620 }
11621 }
11622
11623 // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
11624 // a kernel function cannot be initialized."
11625 if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) {
11626 Diag(VDecl->getLocation(), diag::err_local_cant_init);
11627 VDecl->setInvalidDecl();
11628 return;
11629 }
11630
11631 // Get the decls type and save a reference for later, since
11632 // CheckInitializerTypes may change it.
11633 QualType DclT = VDecl->getType(), SavT = DclT;
11634
11635 // Expressions default to 'id' when we're in a debugger
11636 // and we are assigning it to a variable of Objective-C pointer type.
11637 if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
11638 Init->getType() == Context.UnknownAnyTy) {
11639 ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
11640 if (Result.isInvalid()) {
11641 VDecl->setInvalidDecl();
11642 return;
11643 }
11644 Init = Result.get();
11645 }
11646
11647 // Perform the initialization.
11648 ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
11649 if (!VDecl->isInvalidDecl()) {
11650 InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
11651 InitializationKind Kind = InitializationKind::CreateForInit(
11652 VDecl->getLocation(), DirectInit, Init);
11653
11654 MultiExprArg Args = Init;
11655 if (CXXDirectInit)
11656 Args = MultiExprArg(CXXDirectInit->getExprs(),
11657 CXXDirectInit->getNumExprs());
11658
11659 // Try to correct any TypoExprs in the initialization arguments.
11660 for (size_t Idx = 0; Idx < Args.size(); ++Idx) {
11661 ExprResult Res = CorrectDelayedTyposInExpr(
11662 Args[Idx], VDecl, [this, Entity, Kind](Expr *E) {
11663 InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E));
11664 return Init.Failed() ? ExprError() : E;
11665 });
11666 if (Res.isInvalid()) {
11667 VDecl->setInvalidDecl();
11668 } else if (Res.get() != Args[Idx]) {
11669 Args[Idx] = Res.get();
11670 }
11671 }
11672 if (VDecl->isInvalidDecl())
11673 return;
11674
11675 InitializationSequence InitSeq(*this, Entity, Kind, Args,
11676 /*TopLevelOfInitList=*/false,
11677 /*TreatUnavailableAsInvalid=*/false);
11678 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
11679 if (Result.isInvalid()) {
11680 VDecl->setInvalidDecl();
11681 return;
11682 }
11683
11684 Init = Result.getAs<Expr>();
11685 }
11686
11687 // Check for self-references within variable initializers.
11688 // Variables declared within a function/method body (except for references)
11689 // are handled by a dataflow analysis.
11690 // This is undefined behavior in C++, but valid in C.
11691 if (getLangOpts().CPlusPlus) {
11692 if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
11693 VDecl->getType()->isReferenceType()) {
11694 CheckSelfReference(*this, RealDecl, Init, DirectInit);
11695 }
11696 }
11697
11698 // If the type changed, it means we had an incomplete type that was
11699 // completed by the initializer. For example:
11700 // int ary[] = { 1, 3, 5 };
11701 // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
11702 if (!VDecl->isInvalidDecl() && (DclT != SavT))
11703 VDecl->setType(DclT);
11704
11705 if (!VDecl->isInvalidDecl()) {
11706 checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
11707
11708 if (VDecl->hasAttr<BlocksAttr>())
11709 checkRetainCycles(VDecl, Init);
11710
11711 // It is safe to assign a weak reference into a strong variable.
11712 // Although this code can still have problems:
11713 // id x = self.weakProp;
11714 // id y = self.weakProp;
11715 // we do not warn to warn spuriously when 'x' and 'y' are on separate
11716 // paths through the function. This should be revisited if
11717 // -Wrepeated-use-of-weak is made flow-sensitive.
11718 if (FunctionScopeInfo *FSI = getCurFunction())
11719 if ((VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong ||
11720 VDecl->getType().isNonWeakInMRRWithObjCWeak(Context)) &&
11721 !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak,
11722 Init->getBeginLoc()))
11723 FSI->markSafeWeakUse(Init);
11724 }
11725
11726 // The initialization is usually a full-expression.
11727 //
11728 // FIXME: If this is a braced initialization of an aggregate, it is not
11729 // an expression, and each individual field initializer is a separate
11730 // full-expression. For instance, in:
11731 //
11732 // struct Temp { ~Temp(); };
11733 // struct S { S(Temp); };
11734 // struct T { S a, b; } t = { Temp(), Temp() }
11735 //
11736 // we should destroy the first Temp before constructing the second.
11737 ExprResult Result =
11738 ActOnFinishFullExpr(Init, VDecl->getLocation(),
11739 /*DiscardedValue*/ false, VDecl->isConstexpr());
11740 if (Result.isInvalid()) {
11741 VDecl->setInvalidDecl();
11742 return;
11743 }
11744 Init = Result.get();
11745
11746 // Attach the initializer to the decl.
11747 VDecl->setInit(Init);
11748
11749 if (VDecl->isLocalVarDecl()) {
11750 // Don't check the initializer if the declaration is malformed.
11751 if (VDecl->isInvalidDecl()) {
11752 // do nothing
11753
11754 // OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized.
11755 // This is true even in C++ for OpenCL.
11756 } else if (VDecl->getType().getAddressSpace() == LangAS::opencl_constant) {
11757 CheckForConstantInitializer(Init, DclT);
11758
11759 // Otherwise, C++ does not restrict the initializer.
11760 } else if (getLangOpts().CPlusPlus) {
11761 // do nothing
11762
11763 // C99 6.7.8p4: All the expressions in an initializer for an object that has
11764 // static storage duration shall be constant expressions or string literals.
11765 } else if (VDecl->getStorageClass() == SC_Static) {
11766 CheckForConstantInitializer(Init, DclT);
11767
11768 // C89 is stricter than C99 for aggregate initializers.
11769 // C89 6.5.7p3: All the expressions [...] in an initializer list
11770 // for an object that has aggregate or union type shall be
11771 // constant expressions.
11772 } else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
11773 isa<InitListExpr>(Init)) {
11774 const Expr *Culprit;
11775 if (!Init->isConstantInitializer(Context, false, &Culprit)) {
11776 Diag(Culprit->getExprLoc(),
11777 diag::ext_aggregate_init_not_constant)
11778 << Culprit->getSourceRange();
11779 }
11780 }
11781
11782 if (auto *E = dyn_cast<ExprWithCleanups>(Init))
11783 if (auto *BE = dyn_cast<BlockExpr>(E->getSubExpr()->IgnoreParens()))
11784 if (VDecl->hasLocalStorage())
11785 BE->getBlockDecl()->setCanAvoidCopyToHeap();
11786 } else if (VDecl->isStaticDataMember() && !VDecl->isInline() &&
11787 VDecl->getLexicalDeclContext()->isRecord()) {
11788 // This is an in-class initialization for a static data member, e.g.,
11789 //
11790 // struct S {
11791 // static const int value = 17;
11792 // };
11793
11794 // C++ [class.mem]p4:
11795 // A member-declarator can contain a constant-initializer only
11796 // if it declares a static member (9.4) of const integral or
11797 // const enumeration type, see 9.4.2.
11798 //
11799 // C++11 [class.static.data]p3:
11800 // If a non-volatile non-inline const static data member is of integral
11801 // or enumeration type, its declaration in the class definition can
11802 // specify a brace-or-equal-initializer in which every initializer-clause
11803 // that is an assignment-expression is a constant expression. A static
11804 // data member of literal type can be declared in the class definition
11805 // with the constexpr specifier; if so, its declaration shall specify a
11806 // brace-or-equal-initializer in which every initializer-clause that is
11807 // an assignment-expression is a constant expression.
11808
11809 // Do nothing on dependent types.
11810 if (DclT->isDependentType()) {
11811
11812 // Allow any 'static constexpr' members, whether or not they are of literal
11813 // type. We separately check that every constexpr variable is of literal
11814 // type.
11815 } else if (VDecl->isConstexpr()) {
11816
11817 // Require constness.
11818 } else if (!DclT.isConstQualified()) {
11819 Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
11820 << Init->getSourceRange();
11821 VDecl->setInvalidDecl();
11822
11823 // We allow integer constant expressions in all cases.
11824 } else if (DclT->isIntegralOrEnumerationType()) {
11825 // Check whether the expression is a constant expression.
11826 SourceLocation Loc;
11827 if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
11828 // In C++11, a non-constexpr const static data member with an
11829 // in-class initializer cannot be volatile.
11830 Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
11831 else if (Init->isValueDependent())
11832 ; // Nothing to check.
11833 else if (Init->isIntegerConstantExpr(Context, &Loc))
11834 ; // Ok, it's an ICE!
11835 else if (Init->getType()->isScopedEnumeralType() &&
11836 Init->isCXX11ConstantExpr(Context))
11837 ; // Ok, it is a scoped-enum constant expression.
11838 else if (Init->isEvaluatable(Context)) {
11839 // If we can constant fold the initializer through heroics, accept it,
11840 // but report this as a use of an extension for -pedantic.
11841 Diag(Loc, diag::ext_in_class_initializer_non_constant)
11842 << Init->getSourceRange();
11843 } else {
11844 // Otherwise, this is some crazy unknown case. Report the issue at the
11845 // location provided by the isIntegerConstantExpr failed check.
11846 Diag(Loc, diag::err_in_class_initializer_non_constant)
11847 << Init->getSourceRange();
11848 VDecl->setInvalidDecl();
11849 }
11850
11851 // We allow foldable floating-point constants as an extension.
11852 } else if (DclT->isFloatingType()) { // also permits complex, which is ok
11853 // In C++98, this is a GNU extension. In C++11, it is not, but we support
11854 // it anyway and provide a fixit to add the 'constexpr'.
11855 if (getLangOpts().CPlusPlus11) {
11856 Diag(VDecl->getLocation(),
11857 diag::ext_in_class_initializer_float_type_cxx11)
11858 << DclT << Init->getSourceRange();
11859 Diag(VDecl->getBeginLoc(),
11860 diag::note_in_class_initializer_float_type_cxx11)
11861 << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
11862 } else {
11863 Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
11864 << DclT << Init->getSourceRange();
11865
11866 if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
11867 Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
11868 << Init->getSourceRange();
11869 VDecl->setInvalidDecl();
11870 }
11871 }
11872
11873 // Suggest adding 'constexpr' in C++11 for literal types.
11874 } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
11875 Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
11876 << DclT << Init->getSourceRange()
11877 << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr ");
11878 VDecl->setConstexpr(true);
11879
11880 } else {
11881 Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
11882 << DclT << Init->getSourceRange();
11883 VDecl->setInvalidDecl();
11884 }
11885 } else if (VDecl->isFileVarDecl()) {
11886 // In C, extern is typically used to avoid tentative definitions when
11887 // declaring variables in headers, but adding an intializer makes it a
11888 // definition. This is somewhat confusing, so GCC and Clang both warn on it.
11889 // In C++, extern is often used to give implictly static const variables
11890 // external linkage, so don't warn in that case. If selectany is present,
11891 // this might be header code intended for C and C++ inclusion, so apply the
11892 // C++ rules.
11893 if (VDecl->getStorageClass() == SC_Extern &&
11894 ((!getLangOpts().CPlusPlus && !VDecl->hasAttr<SelectAnyAttr>()) ||
11895 !Context.getBaseElementType(VDecl->getType()).isConstQualified()) &&
11896 !(getLangOpts().CPlusPlus && VDecl->isExternC()) &&
11897 !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
11898 Diag(VDecl->getLocation(), diag::warn_extern_init);
11899
11900 // In Microsoft C++ mode, a const variable defined in namespace scope has
11901 // external linkage by default if the variable is declared with
11902 // __declspec(dllexport).
11903 if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
11904 getLangOpts().CPlusPlus && VDecl->getType().isConstQualified() &&
11905 VDecl->hasAttr<DLLExportAttr>() && VDecl->getDefinition())
11906 VDecl->setStorageClass(SC_Extern);
11907
11908 // C99 6.7.8p4. All file scoped initializers need to be constant.
11909 if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
11910 CheckForConstantInitializer(Init, DclT);
11911 }
11912
11913 QualType InitType = Init->getType();
11914 if (!InitType.isNull() &&
11915 (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
11916 InitType.hasNonTrivialToPrimitiveCopyCUnion()))
11917 checkNonTrivialCUnionInInitializer(Init, Init->getExprLoc());
11918
11919 // We will represent direct-initialization similarly to copy-initialization:
11920 // int x(1); -as-> int x = 1;
11921 // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
11922 //
11923 // Clients that want to distinguish between the two forms, can check for
11924 // direct initializer using VarDecl::getInitStyle().
11925 // A major benefit is that clients that don't particularly care about which
11926 // exactly form was it (like the CodeGen) can handle both cases without
11927 // special case code.
11928
11929 // C++ 8.5p11:
11930 // The form of initialization (using parentheses or '=') is generally
11931 // insignificant, but does matter when the entity being initialized has a
11932 // class type.
11933 if (CXXDirectInit) {
11934 assert(DirectInit && "Call-style initializer must be direct init.")((DirectInit && "Call-style initializer must be direct init."
) ? static_cast<void> (0) : __assert_fail ("DirectInit && \"Call-style initializer must be direct init.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 11934, __PRETTY_FUNCTION__))
;
11935 VDecl->setInitStyle(VarDecl::CallInit);
11936 } else if (DirectInit) {
11937 // This must be list-initialization. No other way is direct-initialization.
11938 VDecl->setInitStyle(VarDecl::ListInit);
11939 }
11940
11941 CheckCompleteVariableDeclaration(VDecl);
11942}
11943
11944/// ActOnInitializerError - Given that there was an error parsing an
11945/// initializer for the given declaration, try to return to some form
11946/// of sanity.
11947void Sema::ActOnInitializerError(Decl *D) {
11948 // Our main concern here is re-establishing invariants like "a
11949 // variable's type is either dependent or complete".
11950 if (!D || D->isInvalidDecl()) return;
11951
11952 VarDecl *VD = dyn_cast<VarDecl>(D);
11953 if (!VD) return;
11954
11955 // Bindings are not usable if we can't make sense of the initializer.
11956 if (auto *DD = dyn_cast<DecompositionDecl>(D))
11957 for (auto *BD : DD->bindings())
11958 BD->setInvalidDecl();
11959
11960 // Auto types are meaningless if we can't make sense of the initializer.
11961 if (ParsingInitForAutoVars.count(D)) {
11962 D->setInvalidDecl();
11963 return;
11964 }
11965
11966 QualType Ty = VD->getType();
11967 if (Ty->isDependentType()) return;
11968
11969 // Require a complete type.
11970 if (RequireCompleteType(VD->getLocation(),
11971 Context.getBaseElementType(Ty),
11972 diag::err_typecheck_decl_incomplete_type)) {
11973 VD->setInvalidDecl();
11974 return;
11975 }
11976
11977 // Require a non-abstract type.
11978 if (RequireNonAbstractType(VD->getLocation(), Ty,
11979 diag::err_abstract_type_in_decl,
11980 AbstractVariableType)) {
11981 VD->setInvalidDecl();
11982 return;
11983 }
11984
11985 // Don't bother complaining about constructors or destructors,
11986 // though.
11987}
11988
11989void Sema::ActOnUninitializedDecl(Decl *RealDecl) {
11990 // If there is no declaration, there was an error parsing it. Just ignore it.
11991 if (!RealDecl)
11992 return;
11993
11994 if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
11995 QualType Type = Var->getType();
11996
11997 // C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory.
11998 if (isa<DecompositionDecl>(RealDecl)) {
11999 Diag(Var->getLocation(), diag::err_decomp_decl_requires_init) << Var;
12000 Var->setInvalidDecl();
12001 return;
12002 }
12003
12004 if (Type->isUndeducedType() &&
12005 DeduceVariableDeclarationType(Var, false, nullptr))
12006 return;
12007
12008 // C++11 [class.static.data]p3: A static data member can be declared with
12009 // the constexpr specifier; if so, its declaration shall specify
12010 // a brace-or-equal-initializer.
12011 // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
12012 // the definition of a variable [...] or the declaration of a static data
12013 // member.
12014 if (Var->isConstexpr() && !Var->isThisDeclarationADefinition() &&
12015 !Var->isThisDeclarationADemotedDefinition()) {
12016 if (Var->isStaticDataMember()) {
12017 // C++1z removes the relevant rule; the in-class declaration is always
12018 // a definition there.
12019 if (!getLangOpts().CPlusPlus17 &&
12020 !Context.getTargetInfo().getCXXABI().isMicrosoft()) {
12021 Diag(Var->getLocation(),
12022 diag::err_constexpr_static_mem_var_requires_init)
12023 << Var->getDeclName();
12024 Var->setInvalidDecl();
12025 return;
12026 }
12027 } else {
12028 Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
12029 Var->setInvalidDecl();
12030 return;
12031 }
12032 }
12033
12034 // OpenCL v1.1 s6.5.3: variables declared in the constant address space must
12035 // be initialized.
12036 if (!Var->isInvalidDecl() &&
12037 Var->getType().getAddressSpace() == LangAS::opencl_constant &&
12038 Var->getStorageClass() != SC_Extern && !Var->getInit()) {
12039 Diag(Var->getLocation(), diag::err_opencl_constant_no_init);
12040 Var->setInvalidDecl();
12041 return;
12042 }
12043
12044 VarDecl::DefinitionKind DefKind = Var->isThisDeclarationADefinition();
12045 if (!Var->isInvalidDecl() && DefKind != VarDecl::DeclarationOnly &&
12046 Var->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion())
12047 checkNonTrivialCUnion(Var->getType(), Var->getLocation(),
12048 NTCUC_DefaultInitializedObject, NTCUK_Init);
12049
12050
12051 switch (DefKind) {
12052 case VarDecl::Definition:
12053 if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
12054 break;
12055
12056 // We have an out-of-line definition of a static data member
12057 // that has an in-class initializer, so we type-check this like
12058 // a declaration.
12059 //
12060 LLVM_FALLTHROUGH[[gnu::fallthrough]];
12061
12062 case VarDecl::DeclarationOnly:
12063 // It's only a declaration.
12064
12065 // Block scope. C99 6.7p7: If an identifier for an object is
12066 // declared with no linkage (C99 6.2.2p6), the type for the
12067 // object shall be complete.
12068 if (!Type->isDependentType() && Var->isLocalVarDecl() &&
12069 !Var->hasLinkage() && !Var->isInvalidDecl() &&
12070 RequireCompleteType(Var->getLocation(), Type,
12071 diag::err_typecheck_decl_incomplete_type))
12072 Var->setInvalidDecl();
12073
12074 // Make sure that the type is not abstract.
12075 if (!Type->isDependentType() && !Var->isInvalidDecl() &&
12076 RequireNonAbstractType(Var->getLocation(), Type,
12077 diag::err_abstract_type_in_decl,
12078 AbstractVariableType))
12079 Var->setInvalidDecl();
12080 if (!Type->isDependentType() && !Var->isInvalidDecl() &&
12081 Var->getStorageClass() == SC_PrivateExtern) {
12082 Diag(Var->getLocation(), diag::warn_private_extern);
12083 Diag(Var->getLocation(), diag::note_private_extern);
12084 }
12085
12086 return;
12087
12088 case VarDecl::TentativeDefinition:
12089 // File scope. C99 6.9.2p2: A declaration of an identifier for an
12090 // object that has file scope without an initializer, and without a
12091 // storage-class specifier or with the storage-class specifier "static",
12092 // constitutes a tentative definition. Note: A tentative definition with
12093 // external linkage is valid (C99 6.2.2p5).
12094 if (!Var->isInvalidDecl()) {
12095 if (const IncompleteArrayType *ArrayT
12096 = Context.getAsIncompleteArrayType(Type)) {
12097 if (RequireCompleteType(Var->getLocation(),
12098 ArrayT->getElementType(),
12099 diag::err_illegal_decl_array_incomplete_type))
12100 Var->setInvalidDecl();
12101 } else if (Var->getStorageClass() == SC_Static) {
12102 // C99 6.9.2p3: If the declaration of an identifier for an object is
12103 // a tentative definition and has internal linkage (C99 6.2.2p3), the
12104 // declared type shall not be an incomplete type.
12105 // NOTE: code such as the following
12106 // static struct s;
12107 // struct s { int a; };
12108 // is accepted by gcc. Hence here we issue a warning instead of
12109 // an error and we do not invalidate the static declaration.
12110 // NOTE: to avoid multiple warnings, only check the first declaration.
12111 if (Var->isFirstDecl())
12112 RequireCompleteType(Var->getLocation(), Type,
12113 diag::ext_typecheck_decl_incomplete_type);
12114 }
12115 }
12116
12117 // Record the tentative definition; we're done.
12118 if (!Var->isInvalidDecl())
12119 TentativeDefinitions.push_back(Var);
12120 return;
12121 }
12122
12123 // Provide a specific diagnostic for uninitialized variable
12124 // definitions with incomplete array type.
12125 if (Type->isIncompleteArrayType()) {
12126 Diag(Var->getLocation(),
12127 diag::err_typecheck_incomplete_array_needs_initializer);
12128 Var->setInvalidDecl();
12129 return;
12130 }
12131
12132 // Provide a specific diagnostic for uninitialized variable
12133 // definitions with reference type.
12134 if (Type->isReferenceType()) {
12135 Diag(Var->getLocation(), diag::err_reference_var_requires_init)
12136 << Var->getDeclName()
12137 << SourceRange(Var->getLocation(), Var->getLocation());
12138 Var->setInvalidDecl();
12139 return;
12140 }
12141
12142 // Do not attempt to type-check the default initializer for a
12143 // variable with dependent type.
12144 if (Type->isDependentType())
12145 return;
12146
12147 if (Var->isInvalidDecl())
12148 return;
12149
12150 if (!Var->hasAttr<AliasAttr>()) {
12151 if (RequireCompleteType(Var->getLocation(),
12152 Context.getBaseElementType(Type),
12153 diag::err_typecheck_decl_incomplete_type)) {
12154 Var->setInvalidDecl();
12155 return;
12156 }
12157 } else {
12158 return;
12159 }
12160
12161 // The variable can not have an abstract class type.
12162 if (RequireNonAbstractType(Var->getLocation(), Type,
12163 diag::err_abstract_type_in_decl,
12164 AbstractVariableType)) {
12165 Var->setInvalidDecl();
12166 return;
12167 }
12168
12169 // Check for jumps past the implicit initializer. C++0x
12170 // clarifies that this applies to a "variable with automatic
12171 // storage duration", not a "local variable".
12172 // C++11 [stmt.dcl]p3
12173 // A program that jumps from a point where a variable with automatic
12174 // storage duration is not in scope to a point where it is in scope is
12175 // ill-formed unless the variable has scalar type, class type with a
12176 // trivial default constructor and a trivial destructor, a cv-qualified
12177 // version of one of these types, or an array of one of the preceding
12178 // types and is declared without an initializer.
12179 if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
12180 if (const RecordType *Record
12181 = Context.getBaseElementType(Type)->getAs<RecordType>()) {
12182 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
12183 // Mark the function (if we're in one) for further checking even if the
12184 // looser rules of C++11 do not require such checks, so that we can
12185 // diagnose incompatibilities with C++98.
12186 if (!CXXRecord->isPOD())
12187 setFunctionHasBranchProtectedScope();
12188 }
12189 }
12190 // In OpenCL, we can't initialize objects in the __local address space,
12191 // even implicitly, so don't synthesize an implicit initializer.
12192 if (getLangOpts().OpenCL &&
12193 Var->getType().getAddressSpace() == LangAS::opencl_local)
12194 return;
12195 // C++03 [dcl.init]p9:
12196 // If no initializer is specified for an object, and the
12197 // object is of (possibly cv-qualified) non-POD class type (or
12198 // array thereof), the object shall be default-initialized; if
12199 // the object is of const-qualified type, the underlying class
12200 // type shall have a user-declared default
12201 // constructor. Otherwise, if no initializer is specified for
12202 // a non- static object, the object and its subobjects, if
12203 // any, have an indeterminate initial value); if the object
12204 // or any of its subobjects are of const-qualified type, the
12205 // program is ill-formed.
12206 // C++0x [dcl.init]p11:
12207 // If no initializer is specified for an object, the object is
12208 // default-initialized; [...].
12209 InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
12210 InitializationKind Kind
12211 = InitializationKind::CreateDefault(Var->getLocation());
12212
12213 InitializationSequence InitSeq(*this, Entity, Kind, None);
12214 ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
12215 if (Init.isInvalid())
12216 Var->setInvalidDecl();
12217 else if (Init.get()) {
12218 Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
12219 // This is important for template substitution.
12220 Var->setInitStyle(VarDecl::CallInit);
12221 }
12222
12223 CheckCompleteVariableDeclaration(Var);
12224 }
12225}
12226
12227void Sema::ActOnCXXForRangeDecl(Decl *D) {
12228 // If there is no declaration, there was an error parsing it. Ignore it.
12229 if (!D)
12230 return;
12231
12232 VarDecl *VD = dyn_cast<VarDecl>(D);
12233 if (!VD) {
12234 Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
12235 D->setInvalidDecl();
12236 return;
12237 }
12238
12239 VD->setCXXForRangeDecl(true);
12240
12241 // for-range-declaration cannot be given a storage class specifier.
12242 int Error = -1;
12243 switch (VD->getStorageClass()) {
12244 case SC_None:
12245 break;
12246 case SC_Extern:
12247 Error = 0;
12248 break;
12249 case SC_Static:
12250 Error = 1;
12251 break;
12252 case SC_PrivateExtern:
12253 Error = 2;
12254 break;
12255 case SC_Auto:
12256 Error = 3;
12257 break;
12258 case SC_Register:
12259 Error = 4;
12260 break;
12261 }
12262 if (Error != -1) {
12263 Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
12264 << VD->getDeclName() << Error;
12265 D->setInvalidDecl();
12266 }
12267}
12268
12269StmtResult
12270Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc,
12271 IdentifierInfo *Ident,
12272 ParsedAttributes &Attrs,
12273 SourceLocation AttrEnd) {
12274 // C++1y [stmt.iter]p1:
12275 // A range-based for statement of the form
12276 // for ( for-range-identifier : for-range-initializer ) statement
12277 // is equivalent to
12278 // for ( auto&& for-range-identifier : for-range-initializer ) statement
12279 DeclSpec DS(Attrs.getPool().getFactory());
12280
12281 const char *PrevSpec;
12282 unsigned DiagID;
12283 DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID,
12284 getPrintingPolicy());
12285
12286 Declarator D(DS, DeclaratorContext::ForContext);
12287 D.SetIdentifier(Ident, IdentLoc);
12288 D.takeAttributes(Attrs, AttrEnd);
12289
12290 D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/ false),
12291 IdentLoc);
12292 Decl *Var = ActOnDeclarator(S, D);
12293 cast<VarDecl>(Var)->setCXXForRangeDecl(true);
12294 FinalizeDeclaration(Var);
12295 return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc,
12296 AttrEnd.isValid() ? AttrEnd : IdentLoc);
12297}
12298
12299void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
12300 if (var->isInvalidDecl()) return;
12301
12302 if (getLangOpts().OpenCL) {
12303 // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an
12304 // initialiser
12305 if (var->getTypeSourceInfo()->getType()->isBlockPointerType() &&
12306 !var->hasInit()) {
12307 Diag(var->getLocation(), diag::err_opencl_invalid_block_declaration)
12308 << 1 /*Init*/;
12309 var->setInvalidDecl();
12310 return;
12311 }
12312 }
12313
12314 // In Objective-C, don't allow jumps past the implicit initialization of a
12315 // local retaining variable.
12316 if (getLangOpts().ObjC &&
12317 var->hasLocalStorage()) {
12318 switch (var->getType().getObjCLifetime()) {
12319 case Qualifiers::OCL_None:
12320 case Qualifiers::OCL_ExplicitNone:
12321 case Qualifiers::OCL_Autoreleasing:
12322 break;
12323
12324 case Qualifiers::OCL_Weak:
12325 case Qualifiers::OCL_Strong:
12326 setFunctionHasBranchProtectedScope();
12327 break;
12328 }
12329 }
12330
12331 if (var->hasLocalStorage() &&
12332 var->getType().isDestructedType() == QualType::DK_nontrivial_c_struct)
12333 setFunctionHasBranchProtectedScope();
12334
12335 // Warn about externally-visible variables being defined without a
12336 // prior declaration. We only want to do this for global
12337 // declarations, but we also specifically need to avoid doing it for
12338 // class members because the linkage of an anonymous class can
12339 // change if it's later given a typedef name.
12340 if (var->isThisDeclarationADefinition() &&
12341 var->getDeclContext()->getRedeclContext()->isFileContext() &&
12342 var->isExternallyVisible() && var->hasLinkage() &&
12343 !var->isInline() && !var->getDescribedVarTemplate() &&
12344 !isTemplateInstantiation(var->getTemplateSpecializationKind()) &&
12345 !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations,
12346 var->getLocation())) {
12347 // Find a previous declaration that's not a definition.
12348 VarDecl *prev = var->getPreviousDecl();
12349 while (prev && prev->isThisDeclarationADefinition())
12350 prev = prev->getPreviousDecl();
12351
12352 if (!prev) {
12353 Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
12354 Diag(var->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage)
12355 << /* variable */ 0;
12356 }
12357 }
12358
12359 // Cache the result of checking for constant initialization.
12360 Optional<bool> CacheHasConstInit;
12361 const Expr *CacheCulprit = nullptr;
12362 auto checkConstInit = [&]() mutable {
12363 if (!CacheHasConstInit)
12364 CacheHasConstInit = var->getInit()->isConstantInitializer(
12365 Context, var->getType()->isReferenceType(), &CacheCulprit);
12366 return *CacheHasConstInit;
12367 };
12368
12369 if (var->getTLSKind() == VarDecl::TLS_Static) {
12370 if (var->getType().isDestructedType()) {
12371 // GNU C++98 edits for __thread, [basic.start.term]p3:
12372 // The type of an object with thread storage duration shall not
12373 // have a non-trivial destructor.
12374 Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
12375 if (getLangOpts().CPlusPlus11)
12376 Diag(var->getLocation(), diag::note_use_thread_local);
12377 } else if (getLangOpts().CPlusPlus && var->hasInit()) {
12378 if (!checkConstInit()) {
12379 // GNU C++98 edits for __thread, [basic.start.init]p4:
12380 // An object of thread storage duration shall not require dynamic
12381 // initialization.
12382 // FIXME: Need strict checking here.
12383 Diag(CacheCulprit->getExprLoc(), diag::err_thread_dynamic_init)
12384 << CacheCulprit->getSourceRange();
12385 if (getLangOpts().CPlusPlus11)
12386 Diag(var->getLocation(), diag::note_use_thread_local);
12387 }
12388 }
12389 }
12390
12391 // Apply section attributes and pragmas to global variables.
12392 bool GlobalStorage = var->hasGlobalStorage();
12393 if (GlobalStorage && var->isThisDeclarationADefinition() &&
12394 !inTemplateInstantiation()) {
12395 PragmaStack<StringLiteral *> *Stack = nullptr;
12396 int SectionFlags = ASTContext::PSF_Implicit | ASTContext::PSF_Read;
12397 if (var->getType().isConstQualified())
12398 Stack = &ConstSegStack;
12399 else if (!var->getInit()) {
12400 Stack = &BSSSegStack;
12401 SectionFlags |= ASTContext::PSF_Write;
12402 } else {
12403 Stack = &DataSegStack;
12404 SectionFlags |= ASTContext::PSF_Write;
12405 }
12406 if (Stack->CurrentValue && !var->hasAttr<SectionAttr>())
12407 var->addAttr(SectionAttr::CreateImplicit(
12408 Context, Stack->CurrentValue->getString(),
12409 Stack->CurrentPragmaLocation, AttributeCommonInfo::AS_Pragma,
12410 SectionAttr::Declspec_allocate));
12411 if (const SectionAttr *SA = var->getAttr<SectionAttr>())
12412 if (UnifySection(SA->getName(), SectionFlags, var))
12413 var->dropAttr<SectionAttr>();
12414
12415 // Apply the init_seg attribute if this has an initializer. If the
12416 // initializer turns out to not be dynamic, we'll end up ignoring this
12417 // attribute.
12418 if (CurInitSeg && var->getInit())
12419 var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(),
12420 CurInitSegLoc,
12421 AttributeCommonInfo::AS_Pragma));
12422 }
12423
12424 // All the following checks are C++ only.
12425 if (!getLangOpts().CPlusPlus) {
12426 // If this variable must be emitted, add it as an initializer for the
12427 // current module.
12428 if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
12429 Context.addModuleInitializer(ModuleScopes.back().Module, var);
12430 return;
12431 }
12432
12433 if (auto *DD = dyn_cast<DecompositionDecl>(var))
12434 CheckCompleteDecompositionDeclaration(DD);
12435
12436 QualType type = var->getType();
12437 if (type->isDependentType()) return;
12438
12439 if (var->hasAttr<BlocksAttr>())
12440 getCurFunction()->addByrefBlockVar(var);
12441
12442 Expr *Init = var->getInit();
12443 bool IsGlobal = GlobalStorage && !var->isStaticLocal();
12444 QualType baseType = Context.getBaseElementType(type);
12445
12446 if (Init && !Init->isValueDependent()) {
12447 if (var->isConstexpr()) {
12448 SmallVector<PartialDiagnosticAt, 8> Notes;
12449 if (!var->evaluateValue(Notes) || !var->isInitICE()) {
12450 SourceLocation DiagLoc = var->getLocation();
12451 // If the note doesn't add any useful information other than a source
12452 // location, fold it into the primary diagnostic.
12453 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
12454 diag::note_invalid_subexpr_in_const_expr) {
12455 DiagLoc = Notes[0].first;
12456 Notes.clear();
12457 }
12458 Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
12459 << var << Init->getSourceRange();
12460 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
12461 Diag(Notes[I].first, Notes[I].second);
12462 }
12463 } else if (var->mightBeUsableInConstantExpressions(Context)) {
12464 // Check whether the initializer of a const variable of integral or
12465 // enumeration type is an ICE now, since we can't tell whether it was
12466 // initialized by a constant expression if we check later.
12467 var->checkInitIsICE();
12468 }
12469
12470 // Don't emit further diagnostics about constexpr globals since they
12471 // were just diagnosed.
12472 if (!var->isConstexpr() && GlobalStorage && var->hasAttr<ConstInitAttr>()) {
12473 // FIXME: Need strict checking in C++03 here.
12474 bool DiagErr = getLangOpts().CPlusPlus11
12475 ? !var->checkInitIsICE() : !checkConstInit();
12476 if (DiagErr) {
12477 auto *Attr = var->getAttr<ConstInitAttr>();
12478 Diag(var->getLocation(), diag::err_require_constant_init_failed)
12479 << Init->getSourceRange();
12480 Diag(Attr->getLocation(),
12481 diag::note_declared_required_constant_init_here)
12482 << Attr->getRange() << Attr->isConstinit();
12483 if (getLangOpts().CPlusPlus11) {
12484 APValue Value;
12485 SmallVector<PartialDiagnosticAt, 8> Notes;
12486 Init->EvaluateAsInitializer(Value, getASTContext(), var, Notes);
12487 for (auto &it : Notes)
12488 Diag(it.first, it.second);
12489 } else {
12490 Diag(CacheCulprit->getExprLoc(),
12491 diag::note_invalid_subexpr_in_const_expr)
12492 << CacheCulprit->getSourceRange();
12493 }
12494 }
12495 }
12496 else if (!var->isConstexpr() && IsGlobal &&
12497 !getDiagnostics().isIgnored(diag::warn_global_constructor,
12498 var->getLocation())) {
12499 // Warn about globals which don't have a constant initializer. Don't
12500 // warn about globals with a non-trivial destructor because we already
12501 // warned about them.
12502 CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
12503 if (!(RD && !RD->hasTrivialDestructor())) {
12504 if (!checkConstInit())
12505 Diag(var->getLocation(), diag::warn_global_constructor)
12506 << Init->getSourceRange();
12507 }
12508 }
12509 }
12510
12511 // Require the destructor.
12512 if (const RecordType *recordType = baseType->getAs<RecordType>())
12513 FinalizeVarWithDestructor(var, recordType);
12514
12515 // If this variable must be emitted, add it as an initializer for the current
12516 // module.
12517 if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty())
12518 Context.addModuleInitializer(ModuleScopes.back().Module, var);
12519}
12520
12521/// Determines if a variable's alignment is dependent.
12522static bool hasDependentAlignment(VarDecl *VD) {
12523 if (VD->getType()->isDependentType())
12524 return true;
12525 for (auto *I : VD->specific_attrs<AlignedAttr>())
12526 if (I->isAlignmentDependent())
12527 return true;
12528 return false;
12529}
12530
12531/// Check if VD needs to be dllexport/dllimport due to being in a
12532/// dllexport/import function.
12533void Sema::CheckStaticLocalForDllExport(VarDecl *VD) {
12534 assert(VD->isStaticLocal())((VD->isStaticLocal()) ? static_cast<void> (0) : __assert_fail
("VD->isStaticLocal()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 12534, __PRETTY_FUNCTION__))
;
12535
12536 auto *FD = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
12537
12538 // Find outermost function when VD is in lambda function.
12539 while (FD && !getDLLAttr(FD) &&
12540 !FD->hasAttr<DLLExportStaticLocalAttr>() &&
12541 !FD->hasAttr<DLLImportStaticLocalAttr>()) {
12542 FD = dyn_cast_or_null<FunctionDecl>(FD->getParentFunctionOrMethod());
12543 }
12544
12545 if (!FD)
12546 return;
12547
12548 // Static locals inherit dll attributes from their function.
12549 if (Attr *A = getDLLAttr(FD)) {
12550 auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext()));
12551 NewAttr->setInherited(true);
12552 VD->addAttr(NewAttr);
12553 } else if (Attr *A = FD->getAttr<DLLExportStaticLocalAttr>()) {
12554 auto *NewAttr = DLLExportAttr::CreateImplicit(getASTContext(), *A);
12555 NewAttr->setInherited(true);
12556 VD->addAttr(NewAttr);
12557
12558 // Export this function to enforce exporting this static variable even
12559 // if it is not used in this compilation unit.
12560 if (!FD->hasAttr<DLLExportAttr>())
12561 FD->addAttr(NewAttr);
12562
12563 } else if (Attr *A = FD->getAttr<DLLImportStaticLocalAttr>()) {
12564 auto *NewAttr = DLLImportAttr::CreateImplicit(getASTContext(), *A);
12565 NewAttr->setInherited(true);
12566 VD->addAttr(NewAttr);
12567 }
12568}
12569
12570/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
12571/// any semantic actions necessary after any initializer has been attached.
12572void Sema::FinalizeDeclaration(Decl *ThisDecl) {
12573 // Note that we are no longer parsing the initializer for this declaration.
12574 ParsingInitForAutoVars.erase(ThisDecl);
12575
12576 VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
12577 if (!VD)
12578 return;
12579
12580 // Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active
12581 if (VD->hasGlobalStorage() && VD->isThisDeclarationADefinition() &&
12582 !inTemplateInstantiation() && !VD->hasAttr<SectionAttr>()) {
12583 if (PragmaClangBSSSection.Valid)
12584 VD->addAttr(PragmaClangBSSSectionAttr::CreateImplicit(
12585 Context, PragmaClangBSSSection.SectionName,
12586 PragmaClangBSSSection.PragmaLocation,
12587 AttributeCommonInfo::AS_Pragma));
12588 if (PragmaClangDataSection.Valid)
12589 VD->addAttr(PragmaClangDataSectionAttr::CreateImplicit(
12590 Context, PragmaClangDataSection.SectionName,
12591 PragmaClangDataSection.PragmaLocation,
12592 AttributeCommonInfo::AS_Pragma));
12593 if (PragmaClangRodataSection.Valid)
12594 VD->addAttr(PragmaClangRodataSectionAttr::CreateImplicit(
12595 Context, PragmaClangRodataSection.SectionName,
12596 PragmaClangRodataSection.PragmaLocation,
12597 AttributeCommonInfo::AS_Pragma));
12598 }
12599
12600 if (auto *DD = dyn_cast<DecompositionDecl>(ThisDecl)) {
12601 for (auto *BD : DD->bindings()) {
12602 FinalizeDeclaration(BD);
12603 }
12604 }
12605
12606 checkAttributesAfterMerging(*this, *VD);
12607
12608 // Perform TLS alignment check here after attributes attached to the variable
12609 // which may affect the alignment have been processed. Only perform the check
12610 // if the target has a maximum TLS alignment (zero means no constraints).
12611 if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) {
12612 // Protect the check so that it's not performed on dependent types and
12613 // dependent alignments (we can't determine the alignment in that case).
12614 if (VD->getTLSKind() && !hasDependentAlignment(VD) &&
12615 !VD->isInvalidDecl()) {
12616 CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign);
12617 if (Context.getDeclAlign(VD) > MaxAlignChars) {
12618 Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
12619 << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD
12620 << (unsigned)MaxAlignChars.getQuantity();
12621 }
12622 }
12623 }
12624
12625 if (VD->isStaticLocal()) {
12626 CheckStaticLocalForDllExport(VD);
12627
12628 if (dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod())) {
12629 // CUDA 8.0 E.3.9.4: Within the body of a __device__ or __global__
12630 // function, only __shared__ variables or variables without any device
12631 // memory qualifiers may be declared with static storage class.
12632 // Note: It is unclear how a function-scope non-const static variable
12633 // without device memory qualifier is implemented, therefore only static
12634 // const variable without device memory qualifier is allowed.
12635 [&]() {
12636 if (!getLangOpts().CUDA)
12637 return;
12638 if (VD->hasAttr<CUDASharedAttr>())
12639 return;
12640 if (VD->getType().isConstQualified() &&
12641 !(VD->hasAttr<CUDADeviceAttr>() || VD->hasAttr<CUDAConstantAttr>()))
12642 return;
12643 if (CUDADiagIfDeviceCode(VD->getLocation(),
12644 diag::err_device_static_local_var)
12645 << CurrentCUDATarget())
12646 VD->setInvalidDecl();
12647 }();
12648 }
12649 }
12650
12651 // Perform check for initializers of device-side global variables.
12652 // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA
12653 // 7.5). We must also apply the same checks to all __shared__
12654 // variables whether they are local or not. CUDA also allows
12655 // constant initializers for __constant__ and __device__ variables.
12656 if (getLangOpts().CUDA)
12657 checkAllowedCUDAInitializer(VD);
12658
12659 // Grab the dllimport or dllexport attribute off of the VarDecl.
12660 const InheritableAttr *DLLAttr = getDLLAttr(VD);
12661
12662 // Imported static data members cannot be defined out-of-line.
12663 if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) {
12664 if (VD->isStaticDataMember() && VD->isOutOfLine() &&
12665 VD->isThisDeclarationADefinition()) {
12666 // We allow definitions of dllimport class template static data members
12667 // with a warning.
12668 CXXRecordDecl *Context =
12669 cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext());
12670 bool IsClassTemplateMember =
12671 isa<ClassTemplatePartialSpecializationDecl>(Context) ||
12672 Context->getDescribedClassTemplate();
12673
12674 Diag(VD->getLocation(),
12675 IsClassTemplateMember
12676 ? diag::warn_attribute_dllimport_static_field_definition
12677 : diag::err_attribute_dllimport_static_field_definition);
12678 Diag(IA->getLocation(), diag::note_attribute);
12679 if (!IsClassTemplateMember)
12680 VD->setInvalidDecl();
12681 }
12682 }
12683
12684 // dllimport/dllexport variables cannot be thread local, their TLS index
12685 // isn't exported with the variable.
12686 if (DLLAttr && VD->getTLSKind()) {
12687 auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod());
12688 if (F && getDLLAttr(F)) {
12689 assert(VD->isStaticLocal())((VD->isStaticLocal()) ? static_cast<void> (0) : __assert_fail
("VD->isStaticLocal()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 12689, __PRETTY_FUNCTION__))
;
12690 // But if this is a static local in a dlimport/dllexport function, the
12691 // function will never be inlined, which means the var would never be
12692 // imported, so having it marked import/export is safe.
12693 } else {
12694 Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD
12695 << DLLAttr;
12696 VD->setInvalidDecl();
12697 }
12698 }
12699
12700 if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
12701 if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
12702 Diag(Attr->getLocation(), diag::warn_attribute_ignored) << Attr;
12703 VD->dropAttr<UsedAttr>();
12704 }
12705 }
12706
12707 const DeclContext *DC = VD->getDeclContext();
12708 // If there's a #pragma GCC visibility in scope, and this isn't a class
12709 // member, set the visibility of this variable.
12710 if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible())
12711 AddPushedVisibilityAttribute(VD);
12712
12713 // FIXME: Warn on unused var template partial specializations.
12714 if (VD->isFileVarDecl() && !isa<VarTemplatePartialSpecializationDecl>(VD))
12715 MarkUnusedFileScopedDecl(VD);
12716
12717 // Now we have parsed the initializer and can update the table of magic
12718 // tag values.
12719 if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
12720 !VD->getType()->isIntegralOrEnumerationType())
12721 return;
12722
12723 for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) {
12724 const Expr *MagicValueExpr = VD->getInit();
12725 if (!MagicValueExpr) {
12726 continue;
12727 }
12728 llvm::APSInt MagicValueInt;
12729 if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
12730 Diag(I->getRange().getBegin(),
12731 diag::err_type_tag_for_datatype_not_ice)
12732 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
12733 continue;
12734 }
12735 if (MagicValueInt.getActiveBits() > 64) {
12736 Diag(I->getRange().getBegin(),
12737 diag::err_type_tag_for_datatype_too_large)
12738 << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
12739 continue;
12740 }
12741 uint64_t MagicValue = MagicValueInt.getZExtValue();
12742 RegisterTypeTagForDatatype(I->getArgumentKind(),
12743 MagicValue,
12744 I->getMatchingCType(),
12745 I->getLayoutCompatible(),
12746 I->getMustBeNull());
12747 }
12748}
12749
12750static bool hasDeducedAuto(DeclaratorDecl *DD) {
12751 auto *VD = dyn_cast<VarDecl>(DD);
12752 return VD && !VD->getType()->hasAutoForTrailingReturnType();
12753}
12754
12755Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
12756 ArrayRef<Decl *> Group) {
12757 SmallVector<Decl*, 8> Decls;
12758
12759 if (DS.isTypeSpecOwned())
12760 Decls.push_back(DS.getRepAsDecl());
12761
12762 DeclaratorDecl *FirstDeclaratorInGroup = nullptr;
12763 DecompositionDecl *FirstDecompDeclaratorInGroup = nullptr;
12764 bool DiagnosedMultipleDecomps = false;
12765 DeclaratorDecl *FirstNonDeducedAutoInGroup = nullptr;
12766 bool DiagnosedNonDeducedAuto = false;
12767
12768 for (unsigned i = 0, e = Group.size(); i != e; ++i) {
12769 if (Decl *D = Group[i]) {
12770 // For declarators, there are some additional syntactic-ish checks we need
12771 // to perform.
12772 if (auto *DD = dyn_cast<DeclaratorDecl>(D)) {
12773 if (!FirstDeclaratorInGroup)
12774 FirstDeclaratorInGroup = DD;
12775 if (!FirstDecompDeclaratorInGroup)
12776 FirstDecompDeclaratorInGroup = dyn_cast<DecompositionDecl>(D);
12777 if (!FirstNonDeducedAutoInGroup && DS.hasAutoTypeSpec() &&
12778 !hasDeducedAuto(DD))
12779 FirstNonDeducedAutoInGroup = DD;
12780
12781 if (FirstDeclaratorInGroup != DD) {
12782 // A decomposition declaration cannot be combined with any other
12783 // declaration in the same group.
12784 if (FirstDecompDeclaratorInGroup && !DiagnosedMultipleDecomps) {
12785 Diag(FirstDecompDeclaratorInGroup->getLocation(),
12786 diag::err_decomp_decl_not_alone)
12787 << FirstDeclaratorInGroup->getSourceRange()
12788 << DD->getSourceRange();
12789 DiagnosedMultipleDecomps = true;
12790 }
12791
12792 // A declarator that uses 'auto' in any way other than to declare a
12793 // variable with a deduced type cannot be combined with any other
12794 // declarator in the same group.
12795 if (FirstNonDeducedAutoInGroup && !DiagnosedNonDeducedAuto) {
12796 Diag(FirstNonDeducedAutoInGroup->getLocation(),
12797 diag::err_auto_non_deduced_not_alone)
12798 << FirstNonDeducedAutoInGroup->getType()
12799 ->hasAutoForTrailingReturnType()
12800 << FirstDeclaratorInGroup->getSourceRange()
12801 << DD->getSourceRange();
12802 DiagnosedNonDeducedAuto = true;
12803 }
12804 }
12805 }
12806
12807 Decls.push_back(D);
12808 }
12809 }
12810
12811 if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
12812 if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
12813 handleTagNumbering(Tag, S);
12814 if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() &&
12815 getLangOpts().CPlusPlus)
12816 Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup);
12817 }
12818 }
12819
12820 return BuildDeclaratorGroup(Decls);
12821}
12822
12823/// BuildDeclaratorGroup - convert a list of declarations into a declaration
12824/// group, performing any necessary semantic checking.
12825Sema::DeclGroupPtrTy
12826Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group) {
12827 // C++14 [dcl.spec.auto]p7: (DR1347)
12828 // If the type that replaces the placeholder type is not the same in each
12829 // deduction, the program is ill-formed.
12830 if (Group.size() > 1) {
12831 QualType Deduced;
12832 VarDecl *DeducedDecl = nullptr;
12833 for (unsigned i = 0, e = Group.size(); i != e; ++i) {
12834 VarDecl *D = dyn_cast<VarDecl>(Group[i]);
12835 if (!D || D->isInvalidDecl())
12836 break;
12837 DeducedType *DT = D->getType()->getContainedDeducedType();
12838 if (!DT || DT->getDeducedType().isNull())
12839 continue;
12840 if (Deduced.isNull()) {
12841 Deduced = DT->getDeducedType();
12842 DeducedDecl = D;
12843 } else if (!Context.hasSameType(DT->getDeducedType(), Deduced)) {
12844 auto *AT = dyn_cast<AutoType>(DT);
12845 Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
12846 diag::err_auto_different_deductions)
12847 << (AT ? (unsigned)AT->getKeyword() : 3)
12848 << Deduced << DeducedDecl->getDeclName()
12849 << DT->getDeducedType() << D->getDeclName()
12850 << DeducedDecl->getInit()->getSourceRange()
12851 << D->getInit()->getSourceRange();
12852 D->setInvalidDecl();
12853 break;
12854 }
12855 }
12856 }
12857
12858 ActOnDocumentableDecls(Group);
12859
12860 return DeclGroupPtrTy::make(
12861 DeclGroupRef::Create(Context, Group.data(), Group.size()));
12862}
12863
12864void Sema::ActOnDocumentableDecl(Decl *D) {
12865 ActOnDocumentableDecls(D);
12866}
12867
12868void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
12869 // Don't parse the comment if Doxygen diagnostics are ignored.
12870 if (Group.empty() || !Group[0])
12871 return;
12872
12873 if (Diags.isIgnored(diag::warn_doc_param_not_found,
12874 Group[0]->getLocation()) &&
12875 Diags.isIgnored(diag::warn_unknown_comment_command_name,
12876 Group[0]->getLocation()))
12877 return;
12878
12879 if (Group.size() >= 2) {
12880 // This is a decl group. Normally it will contain only declarations
12881 // produced from declarator list. But in case we have any definitions or
12882 // additional declaration references:
12883 // 'typedef struct S {} S;'
12884 // 'typedef struct S *S;'
12885 // 'struct S *pS;'
12886 // FinalizeDeclaratorGroup adds these as separate declarations.
12887 Decl *MaybeTagDecl = Group[0];
12888 if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
12889 Group = Group.slice(1);
12890 }
12891 }
12892
12893 // FIMXE: We assume every Decl in the group is in the same file.
12894 // This is false when preprocessor constructs the group from decls in
12895 // different files (e. g. macros or #include).
12896 Context.attachCommentsToJustParsedDecls(Group, &getPreprocessor());
12897}
12898
12899/// Common checks for a parameter-declaration that should apply to both function
12900/// parameters and non-type template parameters.
12901void Sema::CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D) {
12902 // Check that there are no default arguments inside the type of this
12903 // parameter.
12904 if (getLangOpts().CPlusPlus)
12905 CheckExtraCXXDefaultArguments(D);
12906
12907 // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
12908 if (D.getCXXScopeSpec().isSet()) {
12909 Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
12910 << D.getCXXScopeSpec().getRange();
12911 }
12912
12913 // [dcl.meaning]p1: An unqualified-id occurring in a declarator-id shall be a
12914 // simple identifier except [...irrelevant cases...].
12915 switch (D.getName().getKind()) {
12916 case UnqualifiedIdKind::IK_Identifier:
12917 break;
12918
12919 case UnqualifiedIdKind::IK_OperatorFunctionId:
12920 case UnqualifiedIdKind::IK_ConversionFunctionId:
12921 case UnqualifiedIdKind::IK_LiteralOperatorId:
12922 case UnqualifiedIdKind::IK_ConstructorName:
12923 case UnqualifiedIdKind::IK_DestructorName:
12924 case UnqualifiedIdKind::IK_ImplicitSelfParam:
12925 case UnqualifiedIdKind::IK_DeductionGuideName:
12926 Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
12927 << GetNameForDeclarator(D).getName();
12928 break;
12929
12930 case UnqualifiedIdKind::IK_TemplateId:
12931 case UnqualifiedIdKind::IK_ConstructorTemplateId:
12932 // GetNameForDeclarator would not produce a useful name in this case.
12933 Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name_template_id);
12934 break;
12935 }
12936}
12937
12938/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
12939/// to introduce parameters into function prototype scope.
12940Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
12941 const DeclSpec &DS = D.getDeclSpec();
12942
12943 // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
12944
12945 // C++03 [dcl.stc]p2 also permits 'auto'.
12946 StorageClass SC = SC_None;
12947 if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
12948 SC = SC_Register;
12949 // In C++11, the 'register' storage class specifier is deprecated.
12950 // In C++17, it is not allowed, but we tolerate it as an extension.
12951 if (getLangOpts().CPlusPlus11) {
12952 Diag(DS.getStorageClassSpecLoc(),
12953 getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class
12954 : diag::warn_deprecated_register)
12955 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
12956 }
12957 } else if (getLangOpts().CPlusPlus &&
12958 DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
12959 SC = SC_Auto;
12960 } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
12961 Diag(DS.getStorageClassSpecLoc(),
12962 diag::err_invalid_storage_class_in_func_decl);
12963 D.getMutableDeclSpec().ClearStorageClassSpecs();
12964 }
12965
12966 if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
12967 Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
12968 << DeclSpec::getSpecifierName(TSCS);
12969 if (DS.isInlineSpecified())
12970 Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
12971 << getLangOpts().CPlusPlus17;
12972 if (DS.hasConstexprSpecifier())
12973 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
12974 << 0 << D.getDeclSpec().getConstexprSpecifier();
12975
12976 DiagnoseFunctionSpecifiers(DS);
12977
12978 CheckFunctionOrTemplateParamDeclarator(S, D);
12979
12980 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
12981 QualType parmDeclType = TInfo->getType();
12982
12983 // Check for redeclaration of parameters, e.g. int foo(int x, int x);
12984 IdentifierInfo *II = D.getIdentifier();
12985 if (II) {
12986 LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
12987 ForVisibleRedeclaration);
12988 LookupName(R, S);
12989 if (R.isSingleResult()) {
12990 NamedDecl *PrevDecl = R.getFoundDecl();
12991 if (PrevDecl->isTemplateParameter()) {
12992 // Maybe we will complain about the shadowed template parameter.
12993 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
12994 // Just pretend that we didn't see the previous declaration.
12995 PrevDecl = nullptr;
12996 } else if (S->isDeclScope(PrevDecl)) {
12997 Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
12998 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
12999
13000 // Recover by removing the name
13001 II = nullptr;
13002 D.SetIdentifier(nullptr, D.getIdentifierLoc());
13003 D.setInvalidType(true);
13004 }
13005 }
13006 }
13007
13008 // Temporarily put parameter variables in the translation unit, not
13009 // the enclosing context. This prevents them from accidentally
13010 // looking like class members in C++.
13011 ParmVarDecl *New =
13012 CheckParameter(Context.getTranslationUnitDecl(), D.getBeginLoc(),
13013 D.getIdentifierLoc(), II, parmDeclType, TInfo, SC);
13014
13015 if (D.isInvalidType())
13016 New->setInvalidDecl();
13017
13018 assert(S->isFunctionPrototypeScope())((S->isFunctionPrototypeScope()) ? static_cast<void>
(0) : __assert_fail ("S->isFunctionPrototypeScope()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 13018, __PRETTY_FUNCTION__))
;
13019 assert(S->getFunctionPrototypeDepth() >= 1)((S->getFunctionPrototypeDepth() >= 1) ? static_cast<
void> (0) : __assert_fail ("S->getFunctionPrototypeDepth() >= 1"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 13019, __PRETTY_FUNCTION__))
;
13020 New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
13021 S->getNextFunctionPrototypeIndex());
13022
13023 // Add the parameter declaration into this scope.
13024 S->AddDecl(New);
13025 if (II)
13026 IdResolver.AddDecl(New);
13027
13028 ProcessDeclAttributes(S, New, D);
13029
13030 if (D.getDeclSpec().isModulePrivateSpecified())
13031 Diag(New->getLocation(), diag::err_module_private_local)
13032 << 1 << New->getDeclName()
13033 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
13034 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
13035
13036 if (New->hasAttr<BlocksAttr>()) {
13037 Diag(New->getLocation(), diag::err_block_on_nonlocal);
13038 }
13039 return New;
13040}
13041
13042/// Synthesizes a variable for a parameter arising from a
13043/// typedef.
13044ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
13045 SourceLocation Loc,
13046 QualType T) {
13047 /* FIXME: setting StartLoc == Loc.
13048 Would it be worth to modify callers so as to provide proper source
13049 location for the unnamed parameters, embedding the parameter's type? */
13050 ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr,
13051 T, Context.getTrivialTypeSourceInfo(T, Loc),
13052 SC_None, nullptr);
13053 Param->setImplicit();
13054 return Param;
13055}
13056
13057void Sema::DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters) {
13058 // Don't diagnose unused-parameter errors in template instantiations; we
13059 // will already have done so in the template itself.
13060 if (inTemplateInstantiation())
13061 return;
13062
13063 for (const ParmVarDecl *Parameter : Parameters) {
13064 if (!Parameter->isReferenced() && Parameter->getDeclName() &&
13065 !Parameter->hasAttr<UnusedAttr>()) {
13066 Diag(Parameter->getLocation(), diag::warn_unused_parameter)
13067 << Parameter->getDeclName();
13068 }
13069 }
13070}
13071
13072void Sema::DiagnoseSizeOfParametersAndReturnValue(
13073 ArrayRef<ParmVarDecl *> Parameters, QualType ReturnTy, NamedDecl *D) {
13074 if (LangOpts.NumLargeByValueCopy == 0) // No check.
13075 return;
13076
13077 // Warn if the return value is pass-by-value and larger than the specified
13078 // threshold.
13079 if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
13080 unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
13081 if (Size > LangOpts.NumLargeByValueCopy)
13082 Diag(D->getLocation(), diag::warn_return_value_size)
13083 << D->getDeclName() << Size;
13084 }
13085
13086 // Warn if any parameter is pass-by-value and larger than the specified
13087 // threshold.
13088 for (const ParmVarDecl *Parameter : Parameters) {
13089 QualType T = Parameter->getType();
13090 if (T->isDependentType() || !T.isPODType(Context))
13091 continue;
13092 unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
13093 if (Size > LangOpts.NumLargeByValueCopy)
13094 Diag(Parameter->getLocation(), diag::warn_parameter_size)
13095 << Parameter->getDeclName() << Size;
13096 }
13097}
13098
13099ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
13100 SourceLocation NameLoc, IdentifierInfo *Name,
13101 QualType T, TypeSourceInfo *TSInfo,
13102 StorageClass SC) {
13103 // In ARC, infer a lifetime qualifier for appropriate parameter types.
13104 if (getLangOpts().ObjCAutoRefCount &&
13105 T.getObjCLifetime() == Qualifiers::OCL_None &&
13106 T->isObjCLifetimeType()) {
13107
13108 Qualifiers::ObjCLifetime lifetime;
13109
13110 // Special cases for arrays:
13111 // - if it's const, use __unsafe_unretained
13112 // - otherwise, it's an error
13113 if (T->isArrayType()) {
13114 if (!T.isConstQualified()) {
13115 if (DelayedDiagnostics.shouldDelayDiagnostics())
13116 DelayedDiagnostics.add(
13117 sema::DelayedDiagnostic::makeForbiddenType(
13118 NameLoc, diag::err_arc_array_param_no_ownership, T, false));
13119 else
13120 Diag(NameLoc, diag::err_arc_array_param_no_ownership)
13121 << TSInfo->getTypeLoc().getSourceRange();
13122 }
13123 lifetime = Qualifiers::OCL_ExplicitNone;
13124 } else {
13125 lifetime = T->getObjCARCImplicitLifetime();
13126 }
13127 T = Context.getLifetimeQualifiedType(T, lifetime);
13128 }
13129
13130 ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
13131 Context.getAdjustedParameterType(T),
13132 TSInfo, SC, nullptr);
13133
13134 // Make a note if we created a new pack in the scope of a lambda, so that
13135 // we know that references to that pack must also be expanded within the
13136 // lambda scope.
13137 if (New->isParameterPack())
13138 if (auto *LSI = getEnclosingLambda())
13139 LSI->LocalPacks.push_back(New);
13140
13141 if (New->getType().hasNonTrivialToPrimitiveDestructCUnion() ||
13142 New->getType().hasNonTrivialToPrimitiveCopyCUnion())
13143 checkNonTrivialCUnion(New->getType(), New->getLocation(),
13144 NTCUC_FunctionParam, NTCUK_Destruct|NTCUK_Copy);
13145
13146 // Parameters can not be abstract class types.
13147 // For record types, this is done by the AbstractClassUsageDiagnoser once
13148 // the class has been completely parsed.
13149 if (!CurContext->isRecord() &&
13150 RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
13151 AbstractParamType))
13152 New->setInvalidDecl();
13153
13154 // Parameter declarators cannot be interface types. All ObjC objects are
13155 // passed by reference.
13156 if (T->isObjCObjectType()) {
13157 SourceLocation TypeEndLoc =
13158 getLocForEndOfToken(TSInfo->getTypeLoc().getEndLoc());
13159 Diag(NameLoc,
13160 diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
13161 << FixItHint::CreateInsertion(TypeEndLoc, "*");
13162 T = Context.getObjCObjectPointerType(T);
13163 New->setType(T);
13164 }
13165
13166 // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
13167 // duration shall not be qualified by an address-space qualifier."
13168 // Since all parameters have automatic store duration, they can not have
13169 // an address space.
13170 if (T.getAddressSpace() != LangAS::Default &&
13171 // OpenCL allows function arguments declared to be an array of a type
13172 // to be qualified with an address space.
13173 !(getLangOpts().OpenCL &&
13174 (T->isArrayType() || T.getAddressSpace() == LangAS::opencl_private))) {
13175 Diag(NameLoc, diag::err_arg_with_address_space);
13176 New->setInvalidDecl();
13177 }
13178
13179 return New;
13180}
13181
13182void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
13183 SourceLocation LocAfterDecls) {
13184 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
13185
13186 // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
13187 // for a K&R function.
13188 if (!FTI.hasPrototype) {
13189 for (int i = FTI.NumParams; i != 0; /* decrement in loop */) {
13190 --i;
13191 if (FTI.Params[i].Param == nullptr) {
13192 SmallString<256> Code;
13193 llvm::raw_svector_ostream(Code)
13194 << " int " << FTI.Params[i].Ident->getName() << ";\n";
13195 Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared)
13196 << FTI.Params[i].Ident
13197 << FixItHint::CreateInsertion(LocAfterDecls, Code);
13198
13199 // Implicitly declare the argument as type 'int' for lack of a better
13200 // type.
13201 AttributeFactory attrs;
13202 DeclSpec DS(attrs);
13203 const char* PrevSpec; // unused
13204 unsigned DiagID; // unused
13205 DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec,
13206 DiagID, Context.getPrintingPolicy());
13207 // Use the identifier location for the type source range.
13208 DS.SetRangeStart(FTI.Params[i].IdentLoc);
13209 DS.SetRangeEnd(FTI.Params[i].IdentLoc);
13210 Declarator ParamD(DS, DeclaratorContext::KNRTypeListContext);
13211 ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc);
13212 FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD);
13213 }
13214 }
13215 }
13216}
13217
13218Decl *
13219Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D,
13220 MultiTemplateParamsArg TemplateParameterLists,
13221 SkipBodyInfo *SkipBody) {
13222 assert(getCurFunctionDecl() == nullptr && "Function parsing confused")((getCurFunctionDecl() == nullptr && "Function parsing confused"
) ? static_cast<void> (0) : __assert_fail ("getCurFunctionDecl() == nullptr && \"Function parsing confused\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 13222, __PRETTY_FUNCTION__))
;
1
Assuming the condition is true
2
'?' condition is true
13223 assert(D.isFunctionDeclarator() && "Not a function declarator!")((D.isFunctionDeclarator() && "Not a function declarator!"
) ? static_cast<void> (0) : __assert_fail ("D.isFunctionDeclarator() && \"Not a function declarator!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 13223, __PRETTY_FUNCTION__))
;
3
'?' condition is true
13224 Scope *ParentScope = FnBodyScope->getParent();
13225
13226 D.setFunctionDefinitionKind(FDK_Definition);
13227 Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists);
4
Calling 'Sema::HandleDeclarator'
13228 return ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody);
13229}
13230
13231void Sema::ActOnFinishInlineFunctionDef(FunctionDecl *D) {
13232 Consumer.HandleInlineFunctionDefinition(D);
13233}
13234
13235static bool
13236ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
13237 const FunctionDecl *&PossiblePrototype) {
13238 // Don't warn about invalid declarations.
13239 if (FD->isInvalidDecl())
13240 return false;
13241
13242 // Or declarations that aren't global.
13243 if (!FD->isGlobal())
13244 return false;
13245
13246 // Don't warn about C++ member functions.
13247 if (isa<CXXMethodDecl>(FD))
13248 return false;
13249
13250 // Don't warn about 'main'.
13251 if (FD->isMain())
13252 return false;
13253
13254 // Don't warn about inline functions.
13255 if (FD->isInlined())
13256 return false;
13257
13258 // Don't warn about function templates.
13259 if (FD->getDescribedFunctionTemplate())
13260 return false;
13261
13262 // Don't warn about function template specializations.
13263 if (FD->isFunctionTemplateSpecialization())
13264 return false;
13265
13266 // Don't warn for OpenCL kernels.
13267 if (FD->hasAttr<OpenCLKernelAttr>())
13268 return false;
13269
13270 // Don't warn on explicitly deleted functions.
13271 if (FD->isDeleted())
13272 return false;
13273
13274 for (const FunctionDecl *Prev = FD->getPreviousDecl();
13275 Prev; Prev = Prev->getPreviousDecl()) {
13276 // Ignore any declarations that occur in function or method
13277 // scope, because they aren't visible from the header.
13278 if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
13279 continue;
13280
13281 PossiblePrototype = Prev;
13282 return Prev->getType()->isFunctionNoProtoType();
13283 }
13284
13285 return true;
13286}
13287
13288void
13289Sema::CheckForFunctionRedefinition(FunctionDecl *FD,
13290 const FunctionDecl *EffectiveDefinition,
13291 SkipBodyInfo *SkipBody) {
13292 const FunctionDecl *Definition = EffectiveDefinition;
13293 if (!Definition && !FD->isDefined(Definition) && !FD->isCXXClassMember()) {
13294 // If this is a friend function defined in a class template, it does not
13295 // have a body until it is used, nevertheless it is a definition, see
13296 // [temp.inst]p2:
13297 //
13298 // ... for the purpose of determining whether an instantiated redeclaration
13299 // is valid according to [basic.def.odr] and [class.mem], a declaration that
13300 // corresponds to a definition in the template is considered to be a
13301 // definition.
13302 //
13303 // The following code must produce redefinition error:
13304 //
13305 // template<typename T> struct C20 { friend void func_20() {} };
13306 // C20<int> c20i;
13307 // void func_20() {}
13308 //
13309 for (auto I : FD->redecls()) {
13310 if (I != FD && !I->isInvalidDecl() &&
13311 I->getFriendObjectKind() != Decl::FOK_None) {
13312 if (FunctionDecl *Original = I->getInstantiatedFromMemberFunction()) {
13313 if (FunctionDecl *OrigFD = FD->getInstantiatedFromMemberFunction()) {
13314 // A merged copy of the same function, instantiated as a member of
13315 // the same class, is OK.
13316 if (declaresSameEntity(OrigFD, Original) &&
13317 declaresSameEntity(cast<Decl>(I->getLexicalDeclContext()),
13318 cast<Decl>(FD->getLexicalDeclContext())))
13319 continue;
13320 }
13321
13322 if (Original->isThisDeclarationADefinition()) {
13323 Definition = I;
13324 break;
13325 }
13326 }
13327 }
13328 }
13329 }
13330
13331 if (!Definition)
13332 // Similar to friend functions a friend function template may be a
13333 // definition and do not have a body if it is instantiated in a class
13334 // template.
13335 if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate()) {
13336 for (auto I : FTD->redecls()) {
13337 auto D = cast<FunctionTemplateDecl>(I);
13338 if (D != FTD) {
13339 assert(!D->isThisDeclarationADefinition() &&((!D->isThisDeclarationADefinition() && "More than one definition in redeclaration chain"
) ? static_cast<void> (0) : __assert_fail ("!D->isThisDeclarationADefinition() && \"More than one definition in redeclaration chain\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 13340, __PRETTY_FUNCTION__))
13340 "More than one definition in redeclaration chain")((!D->isThisDeclarationADefinition() && "More than one definition in redeclaration chain"
) ? static_cast<void> (0) : __assert_fail ("!D->isThisDeclarationADefinition() && \"More than one definition in redeclaration chain\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 13340, __PRETTY_FUNCTION__))
;
13341 if (D->getFriendObjectKind() != Decl::FOK_None)
13342 if (FunctionTemplateDecl *FT =
13343 D->getInstantiatedFromMemberTemplate()) {
13344 if (FT->isThisDeclarationADefinition()) {
13345 Definition = D->getTemplatedDecl();
13346 break;
13347 }
13348 }
13349 }
13350 }
13351 }
13352
13353 if (!Definition)
13354 return;
13355
13356 if (canRedefineFunction(Definition, getLangOpts()))
13357 return;
13358
13359 // Don't emit an error when this is redefinition of a typo-corrected
13360 // definition.
13361 if (TypoCorrectedFunctionDefinitions.count(Definition))
13362 return;
13363
13364 // If we don't have a visible definition of the function, and it's inline or
13365 // a template, skip the new definition.
13366 if (SkipBody && !hasVisibleDefinition(Definition) &&
13367 (Definition->getFormalLinkage() == InternalLinkage ||
13368 Definition->isInlined() ||
13369 Definition->getDescribedFunctionTemplate() ||
13370 Definition->getNumTemplateParameterLists())) {
13371 SkipBody->ShouldSkip = true;
13372 SkipBody->Previous = const_cast<FunctionDecl*>(Definition);
13373 if (auto *TD = Definition->getDescribedFunctionTemplate())
13374 makeMergedDefinitionVisible(TD);
13375 makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition));
13376 return;
13377 }
13378
13379 if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
13380 Definition->getStorageClass() == SC_Extern)
13381 Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
13382 << FD->getDeclName() << getLangOpts().CPlusPlus;
13383 else
13384 Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
13385
13386 Diag(Definition->getLocation(), diag::note_previous_definition);
13387 FD->setInvalidDecl();
13388}
13389
13390static void RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator,
13391 Sema &S) {
13392 CXXRecordDecl *const LambdaClass = CallOperator->getParent();
13393
13394 LambdaScopeInfo *LSI = S.PushLambdaScope();
13395 LSI->CallOperator = CallOperator;
13396 LSI->Lambda = LambdaClass;
13397 LSI->ReturnType = CallOperator->getReturnType();
13398 const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault();
13399
13400 if (LCD == LCD_None)
13401 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
13402 else if (LCD == LCD_ByCopy)
13403 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
13404 else if (LCD == LCD_ByRef)
13405 LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
13406 DeclarationNameInfo DNI = CallOperator->getNameInfo();
13407
13408 LSI->IntroducerRange = DNI.getCXXOperatorNameRange();
13409 LSI->Mutable = !CallOperator->isConst();
13410
13411 // Add the captures to the LSI so they can be noted as already
13412 // captured within tryCaptureVar.
13413 auto I = LambdaClass->field_begin();
13414 for (const auto &C : LambdaClass->captures()) {
13415 if (C.capturesVariable()) {
13416 VarDecl *VD = C.getCapturedVar();
13417 if (VD->isInitCapture())
13418 S.CurrentInstantiationScope->InstantiatedLocal(VD, VD);
13419 QualType CaptureType = VD->getType();
13420 const bool ByRef = C.getCaptureKind() == LCK_ByRef;
13421 LSI->addCapture(VD, /*IsBlock*/false, ByRef,
13422 /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(),
13423 /*EllipsisLoc*/C.isPackExpansion()
13424 ? C.getEllipsisLoc() : SourceLocation(),
13425 CaptureType, /*Invalid*/false);
13426
13427 } else if (C.capturesThis()) {
13428 LSI->addThisCapture(/*Nested*/ false, C.getLocation(), I->getType(),
13429 C.getCaptureKind() == LCK_StarThis);
13430 } else {
13431 LSI->addVLATypeCapture(C.getLocation(), I->getCapturedVLAType(),
13432 I->getType());
13433 }
13434 ++I;
13435 }
13436}
13437
13438Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D,
13439 SkipBodyInfo *SkipBody) {
13440 if (!D) {
13441 // Parsing the function declaration failed in some way. Push on a fake scope
13442 // anyway so we can try to parse the function body.
13443 PushFunctionScope();
13444 PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
13445 return D;
13446 }
13447
13448 FunctionDecl *FD = nullptr;
13449
13450 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
13451 FD = FunTmpl->getTemplatedDecl();
13452 else
13453 FD = cast<FunctionDecl>(D);
13454
13455 // Do not push if it is a lambda because one is already pushed when building
13456 // the lambda in ActOnStartOfLambdaDefinition().
13457 if (!isLambdaCallOperator(FD))
13458 PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
13459
13460 // Check for defining attributes before the check for redefinition.
13461 if (const auto *Attr = FD->getAttr<AliasAttr>()) {
13462 Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 0;
13463 FD->dropAttr<AliasAttr>();
13464 FD->setInvalidDecl();
13465 }
13466 if (const auto *Attr = FD->getAttr<IFuncAttr>()) {
13467 Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 1;
13468 FD->dropAttr<IFuncAttr>();
13469 FD->setInvalidDecl();
13470 }
13471
13472 // See if this is a redefinition. If 'will have body' is already set, then
13473 // these checks were already performed when it was set.
13474 if (!FD->willHaveBody() && !FD->isLateTemplateParsed()) {
13475 CheckForFunctionRedefinition(FD, nullptr, SkipBody);
13476
13477 // If we're skipping the body, we're done. Don't enter the scope.
13478 if (SkipBody && SkipBody->ShouldSkip)
13479 return D;
13480 }
13481
13482 // Mark this function as "will have a body eventually". This lets users to
13483 // call e.g. isInlineDefinitionExternallyVisible while we're still parsing
13484 // this function.
13485 FD->setWillHaveBody();
13486
13487 // If we are instantiating a generic lambda call operator, push
13488 // a LambdaScopeInfo onto the function stack. But use the information
13489 // that's already been calculated (ActOnLambdaExpr) to prime the current
13490 // LambdaScopeInfo.
13491 // When the template operator is being specialized, the LambdaScopeInfo,
13492 // has to be properly restored so that tryCaptureVariable doesn't try
13493 // and capture any new variables. In addition when calculating potential
13494 // captures during transformation of nested lambdas, it is necessary to
13495 // have the LSI properly restored.
13496 if (isGenericLambdaCallOperatorSpecialization(FD)) {
13497 assert(inTemplateInstantiation() &&((inTemplateInstantiation() && "There should be an active template instantiation on the stack "
"when instantiating a generic lambda!") ? static_cast<void
> (0) : __assert_fail ("inTemplateInstantiation() && \"There should be an active template instantiation on the stack \" \"when instantiating a generic lambda!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 13499, __PRETTY_FUNCTION__))
13498 "There should be an active template instantiation on the stack "((inTemplateInstantiation() && "There should be an active template instantiation on the stack "
"when instantiating a generic lambda!") ? static_cast<void
> (0) : __assert_fail ("inTemplateInstantiation() && \"There should be an active template instantiation on the stack \" \"when instantiating a generic lambda!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 13499, __PRETTY_FUNCTION__))
13499 "when instantiating a generic lambda!")((inTemplateInstantiation() && "There should be an active template instantiation on the stack "
"when instantiating a generic lambda!") ? static_cast<void
> (0) : __assert_fail ("inTemplateInstantiation() && \"There should be an active template instantiation on the stack \" \"when instantiating a generic lambda!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 13499, __PRETTY_FUNCTION__))
;
13500 RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D), *this);
13501 } else {
13502 // Enter a new function scope
13503 PushFunctionScope();
13504 }
13505
13506 // Builtin functions cannot be defined.
13507 if (unsigned BuiltinID = FD->getBuiltinID()) {
13508 if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
13509 !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
13510 Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
13511 FD->setInvalidDecl();
13512 }
13513 }
13514
13515 // The return type of a function definition must be complete
13516 // (C99 6.9.1p3, C++ [dcl.fct]p6).
13517 QualType ResultType = FD->getReturnType();
13518 if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
13519 !FD->isInvalidDecl() &&
13520 RequireCompleteType(FD->getLocation(), ResultType,
13521 diag::err_func_def_incomplete_result))
13522 FD->setInvalidDecl();
13523
13524 if (FnBodyScope)
13525 PushDeclContext(FnBodyScope, FD);
13526
13527 // Check the validity of our function parameters
13528 CheckParmsForFunctionDef(FD->parameters(),
13529 /*CheckParameterNames=*/true);
13530
13531 // Add non-parameter declarations already in the function to the current
13532 // scope.
13533 if (FnBodyScope) {
13534 for (Decl *NPD : FD->decls()) {
13535 auto *NonParmDecl = dyn_cast<NamedDecl>(NPD);
13536 if (!NonParmDecl)
13537 continue;
13538 assert(!isa<ParmVarDecl>(NonParmDecl) &&((!isa<ParmVarDecl>(NonParmDecl) && "parameters should not be in newly created FD yet"
) ? static_cast<void> (0) : __assert_fail ("!isa<ParmVarDecl>(NonParmDecl) && \"parameters should not be in newly created FD yet\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 13539, __PRETTY_FUNCTION__))
13539 "parameters should not be in newly created FD yet")((!isa<ParmVarDecl>(NonParmDecl) && "parameters should not be in newly created FD yet"
) ? static_cast<void> (0) : __assert_fail ("!isa<ParmVarDecl>(NonParmDecl) && \"parameters should not be in newly created FD yet\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 13539, __PRETTY_FUNCTION__))
;
13540
13541 // If the decl has a name, make it accessible in the current scope.
13542 if (NonParmDecl->getDeclName())
13543 PushOnScopeChains(NonParmDecl, FnBodyScope, /*AddToContext=*/false);
13544
13545 // Similarly, dive into enums and fish their constants out, making them
13546 // accessible in this scope.
13547 if (auto *ED = dyn_cast<EnumDecl>(NonParmDecl)) {
13548 for (auto *EI : ED->enumerators())
13549 PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false);
13550 }
13551 }
13552 }
13553
13554 // Introduce our parameters into the function scope
13555 for (auto Param : FD->parameters()) {
13556 Param->setOwningFunction(FD);
13557
13558 // If this has an identifier, add it to the scope stack.
13559 if (Param->getIdentifier() && FnBodyScope) {
13560 CheckShadow(FnBodyScope, Param);
13561
13562 PushOnScopeChains(Param, FnBodyScope);
13563 }
13564 }
13565
13566 // Ensure that the function's exception specification is instantiated.
13567 if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
13568 ResolveExceptionSpec(D->getLocation(), FPT);
13569
13570 // dllimport cannot be applied to non-inline function definitions.
13571 if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() &&
13572 !FD->isTemplateInstantiation()) {
13573 assert(!FD->hasAttr<DLLExportAttr>())((!FD->hasAttr<DLLExportAttr>()) ? static_cast<void
> (0) : __assert_fail ("!FD->hasAttr<DLLExportAttr>()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 13573, __PRETTY_FUNCTION__))
;
13574 Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition);
13575 FD->setInvalidDecl();
13576 return D;
13577 }
13578 // We want to attach documentation to original Decl (which might be
13579 // a function template).
13580 ActOnDocumentableDecl(D);
13581 if (getCurLexicalContext()->isObjCContainer() &&
13582 getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl &&
13583 getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation)
13584 Diag(FD->getLocation(), diag::warn_function_def_in_objc_container);
13585
13586 return D;
13587}
13588
13589/// Given the set of return statements within a function body,
13590/// compute the variables that are subject to the named return value
13591/// optimization.
13592///
13593/// Each of the variables that is subject to the named return value
13594/// optimization will be marked as NRVO variables in the AST, and any
13595/// return statement that has a marked NRVO variable as its NRVO candidate can
13596/// use the named return value optimization.
13597///
13598/// This function applies a very simplistic algorithm for NRVO: if every return
13599/// statement in the scope of a variable has the same NRVO candidate, that
13600/// candidate is an NRVO variable.
13601void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
13602 ReturnStmt **Returns = Scope->Returns.data();
13603
13604 for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
13605 if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) {
13606 if (!NRVOCandidate->isNRVOVariable())
13607 Returns[I]->setNRVOCandidate(nullptr);
13608 }
13609 }
13610}
13611
13612bool Sema::canDelayFunctionBody(const Declarator &D) {
13613 // We can't delay parsing the body of a constexpr function template (yet).
13614 if (D.getDeclSpec().hasConstexprSpecifier())
13615 return false;
13616
13617 // We can't delay parsing the body of a function template with a deduced
13618 // return type (yet).
13619 if (D.getDeclSpec().hasAutoTypeSpec()) {
13620 // If the placeholder introduces a non-deduced trailing return type,
13621 // we can still delay parsing it.
13622 if (D.getNumTypeObjects()) {
13623 const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1);
13624 if (Outer.Kind == DeclaratorChunk::Function &&
13625 Outer.Fun.hasTrailingReturnType()) {
13626 QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType());
13627 return Ty.isNull() || !Ty->isUndeducedType();
13628 }
13629 }
13630 return false;
13631 }
13632
13633 return true;
13634}
13635
13636bool Sema::canSkipFunctionBody(Decl *D) {
13637 // We cannot skip the body of a function (or function template) which is
13638 // constexpr, since we may need to evaluate its body in order to parse the
13639 // rest of the file.
13640 // We cannot skip the body of a function with an undeduced return type,
13641 // because any callers of that function need to know the type.
13642 if (const FunctionDecl *FD = D->getAsFunction()) {
13643 if (FD->isConstexpr())
13644 return false;
13645 // We can't simply call Type::isUndeducedType here, because inside template
13646 // auto can be deduced to a dependent type, which is not considered
13647 // "undeduced".
13648 if (FD->getReturnType()->getContainedDeducedType())
13649 return false;
13650 }
13651 return Consumer.shouldSkipFunctionBody(D);
13652}
13653
13654Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
13655 if (!Decl)
13656 return nullptr;
13657 if (FunctionDecl *FD = Decl->getAsFunction())
13658 FD->setHasSkippedBody();
13659 else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl))
13660 MD->setHasSkippedBody();
13661 return Decl;
13662}
13663
13664Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
13665 return ActOnFinishFunctionBody(D, BodyArg, false);
13666}
13667
13668/// RAII object that pops an ExpressionEvaluationContext when exiting a function
13669/// body.
13670class ExitFunctionBodyRAII {
13671public:
13672 ExitFunctionBodyRAII(Sema &S, bool IsLambda) : S(S), IsLambda(IsLambda) {}
13673 ~ExitFunctionBodyRAII() {
13674 if (!IsLambda)
13675 S.PopExpressionEvaluationContext();
13676 }
13677
13678private:
13679 Sema &S;
13680 bool IsLambda = false;
13681};
13682
13683static void diagnoseImplicitlyRetainedSelf(Sema &S) {
13684 llvm::DenseMap<const BlockDecl *, bool> EscapeInfo;
13685
13686 auto IsOrNestedInEscapingBlock = [&](const BlockDecl *BD) {
13687 if (EscapeInfo.count(BD))
13688 return EscapeInfo[BD];
13689
13690 bool R = false;
13691 const BlockDecl *CurBD = BD;
13692
13693 do {
13694 R = !CurBD->doesNotEscape();
13695 if (R)
13696 break;
13697 CurBD = CurBD->getParent()->getInnermostBlockDecl();
13698 } while (CurBD);
13699
13700 return EscapeInfo[BD] = R;
13701 };
13702
13703 // If the location where 'self' is implicitly retained is inside a escaping
13704 // block, emit a diagnostic.
13705 for (const std::pair<SourceLocation, const BlockDecl *> &P :
13706 S.ImplicitlyRetainedSelfLocs)
13707 if (IsOrNestedInEscapingBlock(P.second))
13708 S.Diag(P.first, diag::warn_implicitly_retains_self)
13709 << FixItHint::CreateInsertion(P.first, "self->");
13710}
13711
13712Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
13713 bool IsInstantiation) {
13714 FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr;
13715
13716 sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
13717 sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr;
13718
13719 if (getLangOpts().Coroutines && getCurFunction()->isCoroutine())
13720 CheckCompletedCoroutineBody(FD, Body);
13721
13722 // Do not call PopExpressionEvaluationContext() if it is a lambda because one
13723 // is already popped when finishing the lambda in BuildLambdaExpr(). This is
13724 // meant to pop the context added in ActOnStartOfFunctionDef().
13725 ExitFunctionBodyRAII ExitRAII(*this, isLambdaCallOperator(FD));
13726
13727 if (FD) {
13728 FD->setBody(Body);
13729 FD->setWillHaveBody(false);
13730
13731 if (getLangOpts().CPlusPlus14) {
13732 if (!FD->isInvalidDecl() && Body && !FD->isDependentContext() &&
13733 FD->getReturnType()->isUndeducedType()) {
13734 // If the function has a deduced result type but contains no 'return'
13735 // statements, the result type as written must be exactly 'auto', and
13736 // the deduced result type is 'void'.
13737 if (!FD->getReturnType()->getAs<AutoType>()) {
13738 Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
13739 << FD->getReturnType();
13740 FD->setInvalidDecl();
13741 } else {
13742 // Substitute 'void' for the 'auto' in the type.
13743 TypeLoc ResultType = getReturnTypeLoc(FD);
13744 Context.adjustDeducedFunctionResultType(
13745 FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
13746 }
13747 }
13748 } else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) {
13749 // In C++11, we don't use 'auto' deduction rules for lambda call
13750 // operators because we don't support return type deduction.
13751 auto *LSI = getCurLambda();
13752 if (LSI->HasImplicitReturnType) {
13753 deduceClosureReturnType(*LSI);
13754
13755 // C++11 [expr.prim.lambda]p4:
13756 // [...] if there are no return statements in the compound-statement
13757 // [the deduced type is] the type void
13758 QualType RetType =
13759 LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType;
13760
13761 // Update the return type to the deduced type.
13762 const FunctionProtoType *Proto =
13763 FD->getType()->getAs<FunctionProtoType>();
13764 FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(),
13765 Proto->getExtProtoInfo()));
13766 }
13767 }
13768
13769 // If the function implicitly returns zero (like 'main') or is naked,
13770 // don't complain about missing return statements.
13771 if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
13772 WP.disableCheckFallThrough();
13773
13774 // MSVC permits the use of pure specifier (=0) on function definition,
13775 // defined at class scope, warn about this non-standard construct.
13776 if (getLangOpts().MicrosoftExt && FD->isPure() && !FD->isOutOfLine())
13777 Diag(FD->getLocation(), diag::ext_pure_function_definition);
13778
13779 if (!FD->isInvalidDecl()) {
13780 // Don't diagnose unused parameters of defaulted or deleted functions.
13781 if (!FD->isDeleted() && !FD->isDefaulted() && !FD->hasSkippedBody())
13782 DiagnoseUnusedParameters(FD->parameters());
13783 DiagnoseSizeOfParametersAndReturnValue(FD->parameters(),
13784 FD->getReturnType(), FD);
13785
13786 // If this is a structor, we need a vtable.
13787 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
13788 MarkVTableUsed(FD->getLocation(), Constructor->getParent());
13789 else if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(FD))
13790 MarkVTableUsed(FD->getLocation(), Destructor->getParent());
13791
13792 // Try to apply the named return value optimization. We have to check
13793 // if we can do this here because lambdas keep return statements around
13794 // to deduce an implicit return type.
13795 if (FD->getReturnType()->isRecordType() &&
13796 (!getLangOpts().CPlusPlus || !FD->isDependentContext()))
13797 computeNRVO(Body, getCurFunction());
13798 }
13799
13800 // GNU warning -Wmissing-prototypes:
13801 // Warn if a global function is defined without a previous
13802 // prototype declaration. This warning is issued even if the
13803 // definition itself provides a prototype. The aim is to detect
13804 // global functions that fail to be declared in header files.
13805 const FunctionDecl *PossiblePrototype = nullptr;
13806 if (ShouldWarnAboutMissingPrototype(FD, PossiblePrototype)) {
13807 Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
13808
13809 if (PossiblePrototype) {
13810 // We found a declaration that is not a prototype,
13811 // but that could be a zero-parameter prototype
13812 if (TypeSourceInfo *TI = PossiblePrototype->getTypeSourceInfo()) {
13813 TypeLoc TL = TI->getTypeLoc();
13814 if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
13815 Diag(PossiblePrototype->getLocation(),
13816 diag::note_declaration_not_a_prototype)
13817 << (FD->getNumParams() != 0)
13818 << (FD->getNumParams() == 0
13819 ? FixItHint::CreateInsertion(FTL.getRParenLoc(), "void")
13820 : FixItHint{});
13821 }
13822 } else {
13823 Diag(FD->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage)
13824 << /* function */ 1
13825 << (FD->getStorageClass() == SC_None
13826 ? FixItHint::CreateInsertion(FD->getTypeSpecStartLoc(),
13827 "static ")
13828 : FixItHint{});
13829 }
13830
13831 // GNU warning -Wstrict-prototypes
13832 // Warn if K&R function is defined without a previous declaration.
13833 // This warning is issued only if the definition itself does not provide
13834 // a prototype. Only K&R definitions do not provide a prototype.
13835 // An empty list in a function declarator that is part of a definition
13836 // of that function specifies that the function has no parameters
13837 // (C99 6.7.5.3p14)
13838 if (!FD->hasWrittenPrototype() && FD->getNumParams() > 0 &&
13839 !LangOpts.CPlusPlus) {
13840 TypeSourceInfo *TI = FD->getTypeSourceInfo();
13841 TypeLoc TL = TI->getTypeLoc();
13842 FunctionTypeLoc FTL = TL.getAsAdjusted<FunctionTypeLoc>();
13843 Diag(FTL.getLParenLoc(), diag::warn_strict_prototypes) << 2;
13844 }
13845 }
13846
13847 // Warn on CPUDispatch with an actual body.
13848 if (FD->isMultiVersion() && FD->hasAttr<CPUDispatchAttr>() && Body)
13849 if (const auto *CmpndBody = dyn_cast<CompoundStmt>(Body))
13850 if (!CmpndBody->body_empty())
13851 Diag(CmpndBody->body_front()->getBeginLoc(),
13852 diag::warn_dispatch_body_ignored);
13853
13854 if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) {
13855 const CXXMethodDecl *KeyFunction;
13856 if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) &&
13857 MD->isVirtual() &&
13858 (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) &&
13859 MD == KeyFunction->getCanonicalDecl()) {
13860 // Update the key-function state if necessary for this ABI.
13861 if (FD->isInlined() &&
13862 !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
13863 Context.setNonKeyFunction(MD);
13864
13865 // If the newly-chosen key function is already defined, then we
13866 // need to mark the vtable as used retroactively.
13867 KeyFunction = Context.getCurrentKeyFunction(MD->getParent());
13868 const FunctionDecl *Definition;
13869 if (KeyFunction && KeyFunction->isDefined(Definition))
13870 MarkVTableUsed(Definition->getLocation(), MD->getParent(), true);
13871 } else {
13872 // We just defined they key function; mark the vtable as used.
13873 MarkVTableUsed(FD->getLocation(), MD->getParent(), true);
13874 }
13875 }
13876 }
13877
13878 assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&(((FD == getCurFunctionDecl() || getCurLambda()->CallOperator
== FD) && "Function parsing confused") ? static_cast
<void> (0) : __assert_fail ("(FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) && \"Function parsing confused\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 13879, __PRETTY_FUNCTION__))
13879 "Function parsing confused")(((FD == getCurFunctionDecl() || getCurLambda()->CallOperator
== FD) && "Function parsing confused") ? static_cast
<void> (0) : __assert_fail ("(FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) && \"Function parsing confused\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 13879, __PRETTY_FUNCTION__))
;
13880 } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
13881 assert(MD == getCurMethodDecl() && "Method parsing confused")((MD == getCurMethodDecl() && "Method parsing confused"
) ? static_cast<void> (0) : __assert_fail ("MD == getCurMethodDecl() && \"Method parsing confused\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 13881, __PRETTY_FUNCTION__))
;
13882 MD->setBody(Body);
13883 if (!MD->isInvalidDecl()) {
13884 DiagnoseSizeOfParametersAndReturnValue(MD->parameters(),
13885 MD->getReturnType(), MD);
13886
13887 if (Body)
13888 computeNRVO(Body, getCurFunction());
13889 }
13890 if (getCurFunction()->ObjCShouldCallSuper) {
13891 Diag(MD->getEndLoc(), diag::warn_objc_missing_super_call)
13892 << MD->getSelector().getAsString();
13893 getCurFunction()->ObjCShouldCallSuper = false;
13894 }
13895 if (getCurFunction()->ObjCWarnForNoDesignatedInitChain) {
13896 const ObjCMethodDecl *InitMethod = nullptr;
13897 bool isDesignated =
13898 MD->isDesignatedInitializerForTheInterface(&InitMethod);
13899 assert(isDesignated && InitMethod)((isDesignated && InitMethod) ? static_cast<void>
(0) : __assert_fail ("isDesignated && InitMethod", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 13899, __PRETTY_FUNCTION__))
;
13900 (void)isDesignated;
13901
13902 auto superIsNSObject = [&](const ObjCMethodDecl *MD) {
13903 auto IFace = MD->getClassInterface();
13904 if (!IFace)
13905 return false;
13906 auto SuperD = IFace->getSuperClass();
13907 if (!SuperD)
13908 return false;
13909 return SuperD->getIdentifier() ==
13910 NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject);
13911 };
13912 // Don't issue this warning for unavailable inits or direct subclasses
13913 // of NSObject.
13914 if (!MD->isUnavailable() && !superIsNSObject(MD)) {
13915 Diag(MD->getLocation(),
13916 diag::warn_objc_designated_init_missing_super_call);
13917 Diag(InitMethod->getLocation(),
13918 diag::note_objc_designated_init_marked_here);
13919 }
13920 getCurFunction()->ObjCWarnForNoDesignatedInitChain = false;
13921 }
13922 if (getCurFunction()->ObjCWarnForNoInitDelegation) {
13923 // Don't issue this warning for unavaialable inits.
13924 if (!MD->isUnavailable())
13925 Diag(MD->getLocation(),
13926 diag::warn_objc_secondary_init_missing_init_call);
13927 getCurFunction()->ObjCWarnForNoInitDelegation = false;
13928 }
13929
13930 diagnoseImplicitlyRetainedSelf(*this);
13931 } else {
13932 // Parsing the function declaration failed in some way. Pop the fake scope
13933 // we pushed on.
13934 PopFunctionScopeInfo(ActivePolicy, dcl);
13935 return nullptr;
13936 }
13937
13938 if (Body && getCurFunction()->HasPotentialAvailabilityViolations)
13939 DiagnoseUnguardedAvailabilityViolations(dcl);
13940
13941 assert(!getCurFunction()->ObjCShouldCallSuper &&((!getCurFunction()->ObjCShouldCallSuper && "This should only be set for ObjC methods, which should have been "
"handled in the block above.") ? static_cast<void> (0)
: __assert_fail ("!getCurFunction()->ObjCShouldCallSuper && \"This should only be set for ObjC methods, which should have been \" \"handled in the block above.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 13943, __PRETTY_FUNCTION__))
13942 "This should only be set for ObjC methods, which should have been "((!getCurFunction()->ObjCShouldCallSuper && "This should only be set for ObjC methods, which should have been "
"handled in the block above.") ? static_cast<void> (0)
: __assert_fail ("!getCurFunction()->ObjCShouldCallSuper && \"This should only be set for ObjC methods, which should have been \" \"handled in the block above.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 13943, __PRETTY_FUNCTION__))
13943 "handled in the block above.")((!getCurFunction()->ObjCShouldCallSuper && "This should only be set for ObjC methods, which should have been "
"handled in the block above.") ? static_cast<void> (0)
: __assert_fail ("!getCurFunction()->ObjCShouldCallSuper && \"This should only be set for ObjC methods, which should have been \" \"handled in the block above.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 13943, __PRETTY_FUNCTION__))
;
13944
13945 // Verify and clean out per-function state.
13946 if (Body && (!FD || !FD->isDefaulted())) {
13947 // C++ constructors that have function-try-blocks can't have return
13948 // statements in the handlers of that block. (C++ [except.handle]p14)
13949 // Verify this.
13950 if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
13951 DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
13952
13953 // Verify that gotos and switch cases don't jump into scopes illegally.
13954 if (getCurFunction()->NeedsScopeChecking() &&
13955 !PP.isCodeCompletionEnabled())
13956 DiagnoseInvalidJumps(Body);
13957
13958 if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
13959 if (!Destructor->getParent()->isDependentType())
13960 CheckDestructor(Destructor);
13961
13962 MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
13963 Destructor->getParent());
13964 }
13965
13966 // If any errors have occurred, clear out any temporaries that may have
13967 // been leftover. This ensures that these temporaries won't be picked up for
13968 // deletion in some later function.
13969 if (getDiagnostics().hasErrorOccurred() ||
13970 getDiagnostics().getSuppressAllDiagnostics()) {
13971 DiscardCleanupsInEvaluationContext();
13972 }
13973 if (!getDiagnostics().hasUncompilableErrorOccurred() &&
13974 !isa<FunctionTemplateDecl>(dcl)) {
13975 // Since the body is valid, issue any analysis-based warnings that are
13976 // enabled.
13977 ActivePolicy = &WP;
13978 }
13979
13980 if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
13981 !CheckConstexprFunctionDefinition(FD, CheckConstexprKind::Diagnose))
13982 FD->setInvalidDecl();
13983
13984 if (FD && FD->hasAttr<NakedAttr>()) {
13985 for (const Stmt *S : Body->children()) {
13986 // Allow local register variables without initializer as they don't
13987 // require prologue.
13988 bool RegisterVariables = false;
13989 if (auto *DS = dyn_cast<DeclStmt>(S)) {
13990 for (const auto *Decl : DS->decls()) {
13991 if (const auto *Var = dyn_cast<VarDecl>(Decl)) {
13992 RegisterVariables =
13993 Var->hasAttr<AsmLabelAttr>() && !Var->hasInit();
13994 if (!RegisterVariables)
13995 break;
13996 }
13997 }
13998 }
13999 if (RegisterVariables)
14000 continue;
14001 if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) {
14002 Diag(S->getBeginLoc(), diag::err_non_asm_stmt_in_naked_function);
14003 Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
14004 FD->setInvalidDecl();
14005 break;
14006 }
14007 }
14008 }
14009
14010 assert(ExprCleanupObjects.size() ==((ExprCleanupObjects.size() == ExprEvalContexts.back().NumCleanupObjects
&& "Leftover temporaries in function") ? static_cast
<void> (0) : __assert_fail ("ExprCleanupObjects.size() == ExprEvalContexts.back().NumCleanupObjects && \"Leftover temporaries in function\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 14012, __PRETTY_FUNCTION__))
14011 ExprEvalContexts.back().NumCleanupObjects &&((ExprCleanupObjects.size() == ExprEvalContexts.back().NumCleanupObjects
&& "Leftover temporaries in function") ? static_cast
<void> (0) : __assert_fail ("ExprCleanupObjects.size() == ExprEvalContexts.back().NumCleanupObjects && \"Leftover temporaries in function\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 14012, __PRETTY_FUNCTION__))
14012 "Leftover temporaries in function")((ExprCleanupObjects.size() == ExprEvalContexts.back().NumCleanupObjects
&& "Leftover temporaries in function") ? static_cast
<void> (0) : __assert_fail ("ExprCleanupObjects.size() == ExprEvalContexts.back().NumCleanupObjects && \"Leftover temporaries in function\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 14012, __PRETTY_FUNCTION__))
;
14013 assert(!Cleanup.exprNeedsCleanups() && "Unaccounted cleanups in function")((!Cleanup.exprNeedsCleanups() && "Unaccounted cleanups in function"
) ? static_cast<void> (0) : __assert_fail ("!Cleanup.exprNeedsCleanups() && \"Unaccounted cleanups in function\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 14013, __PRETTY_FUNCTION__))
;
14014 assert(MaybeODRUseExprs.empty() &&((MaybeODRUseExprs.empty() && "Leftover expressions for odr-use checking"
) ? static_cast<void> (0) : __assert_fail ("MaybeODRUseExprs.empty() && \"Leftover expressions for odr-use checking\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 14015, __PRETTY_FUNCTION__))
14015 "Leftover expressions for odr-use checking")((MaybeODRUseExprs.empty() && "Leftover expressions for odr-use checking"
) ? static_cast<void> (0) : __assert_fail ("MaybeODRUseExprs.empty() && \"Leftover expressions for odr-use checking\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 14015, __PRETTY_FUNCTION__))
;
14016 }
14017
14018 if (!IsInstantiation)
14019 PopDeclContext();
14020
14021 PopFunctionScopeInfo(ActivePolicy, dcl);
14022 // If any errors have occurred, clear out any temporaries that may have
14023 // been leftover. This ensures that these temporaries won't be picked up for
14024 // deletion in some later function.
14025 if (getDiagnostics().hasErrorOccurred()) {
14026 DiscardCleanupsInEvaluationContext();
14027 }
14028
14029 return dcl;
14030}
14031
14032/// When we finish delayed parsing of an attribute, we must attach it to the
14033/// relevant Decl.
14034void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
14035 ParsedAttributes &Attrs) {
14036 // Always attach attributes to the underlying decl.
14037 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
14038 D = TD->getTemplatedDecl();
14039 ProcessDeclAttributeList(S, D, Attrs);
14040
14041 if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
14042 if (Method->isStatic())
14043 checkThisInStaticMemberFunctionAttributes(Method);
14044}
14045
14046/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
14047/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
14048NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
14049 IdentifierInfo &II, Scope *S) {
14050 // Find the scope in which the identifier is injected and the corresponding
14051 // DeclContext.
14052 // FIXME: C89 does not say what happens if there is no enclosing block scope.
14053 // In that case, we inject the declaration into the translation unit scope
14054 // instead.
14055 Scope *BlockScope = S;
14056 while (!BlockScope->isCompoundStmtScope() && BlockScope->getParent())
14057 BlockScope = BlockScope->getParent();
14058
14059 Scope *ContextScope = BlockScope;
14060 while (!ContextScope->getEntity())
14061 ContextScope = ContextScope->getParent();
14062 ContextRAII SavedContext(*this, ContextScope->getEntity());
14063
14064 // Before we produce a declaration for an implicitly defined
14065 // function, see whether there was a locally-scoped declaration of
14066 // this name as a function or variable. If so, use that
14067 // (non-visible) declaration, and complain about it.
14068 NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II);
14069 if (ExternCPrev) {
14070 // We still need to inject the function into the enclosing block scope so
14071 // that later (non-call) uses can see it.
14072 PushOnScopeChains(ExternCPrev, BlockScope, /*AddToContext*/false);
14073
14074 // C89 footnote 38:
14075 // If in fact it is not defined as having type "function returning int",
14076 // the behavior is undefined.
14077 if (!isa<FunctionDecl>(ExternCPrev) ||
14078 !Context.typesAreCompatible(
14079 cast<FunctionDecl>(ExternCPrev)->getType(),
14080 Context.getFunctionNoProtoType(Context.IntTy))) {
14081 Diag(Loc, diag::ext_use_out_of_scope_declaration)
14082 << ExternCPrev << !getLangOpts().C99;
14083 Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
14084 return ExternCPrev;
14085 }
14086 }
14087
14088 // Extension in C99. Legal in C90, but warn about it.
14089 unsigned diag_id;
14090 if (II.getName().startswith("__builtin_"))
14091 diag_id = diag::warn_builtin_unknown;
14092 // OpenCL v2.0 s6.9.u - Implicit function declaration is not supported.
14093 else if (getLangOpts().OpenCL)
14094 diag_id = diag::err_opencl_implicit_function_decl;
14095 else if (getLangOpts().C99)
14096 diag_id = diag::ext_implicit_function_decl;
14097 else
14098 diag_id = diag::warn_implicit_function_decl;
14099 Diag(Loc, diag_id) << &II;
14100
14101 // If we found a prior declaration of this function, don't bother building
14102 // another one. We've already pushed that one into scope, so there's nothing
14103 // more to do.
14104 if (ExternCPrev)
14105 return ExternCPrev;
14106
14107 // Because typo correction is expensive, only do it if the implicit
14108 // function declaration is going to be treated as an error.
14109 if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
14110 TypoCorrection Corrected;
14111 DeclFilterCCC<FunctionDecl> CCC{};
14112 if (S && (Corrected =
14113 CorrectTypo(DeclarationNameInfo(&II, Loc), LookupOrdinaryName,
14114 S, nullptr, CCC, CTK_NonError)))
14115 diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
14116 /*ErrorRecovery*/false);
14117 }
14118
14119 // Set a Declarator for the implicit definition: int foo();
14120 const char *Dummy;
14121 AttributeFactory attrFactory;
14122 DeclSpec DS(attrFactory);
14123 unsigned DiagID;
14124 bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID,
14125 Context.getPrintingPolicy());
14126 (void)Error; // Silence warning.
14127 assert(!Error && "Error setting up implicit decl!")((!Error && "Error setting up implicit decl!") ? static_cast
<void> (0) : __assert_fail ("!Error && \"Error setting up implicit decl!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 14127, __PRETTY_FUNCTION__))
;
14128 SourceLocation NoLoc;
14129 Declarator D(DS, DeclaratorContext::BlockContext);
14130 D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
14131 /*IsAmbiguous=*/false,
14132 /*LParenLoc=*/NoLoc,
14133 /*Params=*/nullptr,
14134 /*NumParams=*/0,
14135 /*EllipsisLoc=*/NoLoc,
14136 /*RParenLoc=*/NoLoc,
14137 /*RefQualifierIsLvalueRef=*/true,
14138 /*RefQualifierLoc=*/NoLoc,
14139 /*MutableLoc=*/NoLoc, EST_None,
14140 /*ESpecRange=*/SourceRange(),
14141 /*Exceptions=*/nullptr,
14142 /*ExceptionRanges=*/nullptr,
14143 /*NumExceptions=*/0,
14144 /*NoexceptExpr=*/nullptr,
14145 /*ExceptionSpecTokens=*/nullptr,
14146 /*DeclsInPrototype=*/None, Loc,
14147 Loc, D),
14148 std::move(DS.getAttributes()), SourceLocation());
14149 D.SetIdentifier(&II, Loc);
14150
14151 // Insert this function into the enclosing block scope.
14152 FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(BlockScope, D));
14153 FD->setImplicit();
14154
14155 AddKnownFunctionAttributes(FD);
14156
14157 return FD;
14158}
14159
14160/// Adds any function attributes that we know a priori based on
14161/// the declaration of this function.
14162///
14163/// These attributes can apply both to implicitly-declared builtins
14164/// (like __builtin___printf_chk) or to library-declared functions
14165/// like NSLog or printf.
14166///
14167/// We need to check for duplicate attributes both here and where user-written
14168/// attributes are applied to declarations.
14169void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
14170 if (FD->isInvalidDecl())
14171 return;
14172
14173 // If this is a built-in function, map its builtin attributes to
14174 // actual attributes.
14175 if (unsigned BuiltinID = FD->getBuiltinID()) {
14176 // Handle printf-formatting attributes.
14177 unsigned FormatIdx;
14178 bool HasVAListArg;
14179 if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
14180 if (!FD->hasAttr<FormatAttr>()) {
14181 const char *fmt = "printf";
14182 unsigned int NumParams = FD->getNumParams();
14183 if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
14184 FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
14185 fmt = "NSString";
14186 FD->addAttr(FormatAttr::CreateImplicit(Context,
14187 &Context.Idents.get(fmt),
14188 FormatIdx+1,
14189 HasVAListArg ? 0 : FormatIdx+2,
14190 FD->getLocation()));
14191 }
14192 }
14193 if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
14194 HasVAListArg)) {
14195 if (!FD->hasAttr<FormatAttr>())
14196 FD->addAttr(FormatAttr::CreateImplicit(Context,
14197 &Context.Idents.get("scanf"),
14198 FormatIdx+1,
14199 HasVAListArg ? 0 : FormatIdx+2,
14200 FD->getLocation()));
14201 }
14202
14203 // Handle automatically recognized callbacks.
14204 SmallVector<int, 4> Encoding;
14205 if (!FD->hasAttr<CallbackAttr>() &&
14206 Context.BuiltinInfo.performsCallback(BuiltinID, Encoding))
14207 FD->addAttr(CallbackAttr::CreateImplicit(
14208 Context, Encoding.data(), Encoding.size(), FD->getLocation()));
14209
14210 // Mark const if we don't care about errno and that is the only thing
14211 // preventing the function from being const. This allows IRgen to use LLVM
14212 // intrinsics for such functions.
14213 if (!getLangOpts().MathErrno && !FD->hasAttr<ConstAttr>() &&
14214 Context.BuiltinInfo.isConstWithoutErrno(BuiltinID))
14215 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
14216
14217 // We make "fma" on some platforms const because we know it does not set
14218 // errno in those environments even though it could set errno based on the
14219 // C standard.
14220 const llvm::Triple &Trip = Context.getTargetInfo().getTriple();
14221 if ((Trip.isGNUEnvironment() || Trip.isAndroid() || Trip.isOSMSVCRT()) &&
14222 !FD->hasAttr<ConstAttr>()) {
14223 switch (BuiltinID) {
14224 case Builtin::BI__builtin_fma:
14225 case Builtin::BI__builtin_fmaf:
14226 case Builtin::BI__builtin_fmal:
14227 case Builtin::BIfma:
14228 case Builtin::BIfmaf:
14229 case Builtin::BIfmal:
14230 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
14231 break;
14232 default:
14233 break;
14234 }
14235 }
14236
14237 if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
14238 !FD->hasAttr<ReturnsTwiceAttr>())
14239 FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context,
14240 FD->getLocation()));
14241 if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>())
14242 FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
14243 if (Context.BuiltinInfo.isPure(BuiltinID) && !FD->hasAttr<PureAttr>())
14244 FD->addAttr(PureAttr::CreateImplicit(Context, FD->getLocation()));
14245 if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>())
14246 FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation()));
14247 if (getLangOpts().CUDA && Context.BuiltinInfo.isTSBuiltin(BuiltinID) &&
14248 !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) {
14249 // Add the appropriate attribute, depending on the CUDA compilation mode
14250 // and which target the builtin belongs to. For example, during host
14251 // compilation, aux builtins are __device__, while the rest are __host__.
14252 if (getLangOpts().CUDAIsDevice !=
14253 Context.BuiltinInfo.isAuxBuiltinID(BuiltinID))
14254 FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation()));
14255 else
14256 FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation()));
14257 }
14258 }
14259
14260 // If C++ exceptions are enabled but we are told extern "C" functions cannot
14261 // throw, add an implicit nothrow attribute to any extern "C" function we come
14262 // across.
14263 if (getLangOpts().CXXExceptions && getLangOpts().ExternCNoUnwind &&
14264 FD->isExternC() && !FD->hasAttr<NoThrowAttr>()) {
14265 const auto *FPT = FD->getType()->getAs<FunctionProtoType>();
14266 if (!FPT || FPT->getExceptionSpecType() == EST_None)
14267 FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation()));
14268 }
14269
14270 IdentifierInfo *Name = FD->getIdentifier();
14271 if (!Name)
14272 return;
14273 if ((!getLangOpts().CPlusPlus &&
14274 FD->getDeclContext()->isTranslationUnit()) ||
14275 (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
14276 cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
14277 LinkageSpecDecl::lang_c)) {
14278 // Okay: this could be a libc/libm/Objective-C function we know
14279 // about.
14280 } else
14281 return;
14282
14283 if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
14284 // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
14285 // target-specific builtins, perhaps?
14286 if (!FD->hasAttr<FormatAttr>())
14287 FD->addAttr(FormatAttr::CreateImplicit(Context,
14288 &Context.Idents.get("printf"), 2,
14289 Name->isStr("vasprintf") ? 0 : 3,
14290 FD->getLocation()));
14291 }
14292
14293 if (Name->isStr("__CFStringMakeConstantString")) {
14294 // We already have a __builtin___CFStringMakeConstantString,
14295 // but builds that use -fno-constant-cfstrings don't go through that.
14296 if (!FD->hasAttr<FormatArgAttr>())
14297 FD->addAttr(FormatArgAttr::CreateImplicit(Context, ParamIdx(1, FD),
14298 FD->getLocation()));
14299 }
14300}
14301
14302TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
14303 TypeSourceInfo *TInfo) {
14304 assert(D.getIdentifier() && "Wrong callback for declspec without declarator")((D.getIdentifier() && "Wrong callback for declspec without declarator"
) ? static_cast<void> (0) : __assert_fail ("D.getIdentifier() && \"Wrong callback for declspec without declarator\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 14304, __PRETTY_FUNCTION__))
;
14305 assert(!T.isNull() && "GetTypeForDeclarator() returned null type")((!T.isNull() && "GetTypeForDeclarator() returned null type"
) ? static_cast<void> (0) : __assert_fail ("!T.isNull() && \"GetTypeForDeclarator() returned null type\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 14305, __PRETTY_FUNCTION__))
;
14306
14307 if (!TInfo) {
14308 assert(D.isInvalidType() && "no declarator info for valid type")((D.isInvalidType() && "no declarator info for valid type"
) ? static_cast<void> (0) : __assert_fail ("D.isInvalidType() && \"no declarator info for valid type\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 14308, __PRETTY_FUNCTION__))
;
14309 TInfo = Context.getTrivialTypeSourceInfo(T);
14310 }
14311
14312 // Scope manipulation handled by caller.
14313 TypedefDecl *NewTD =
14314 TypedefDecl::Create(Context, CurContext, D.getBeginLoc(),
14315 D.getIdentifierLoc(), D.getIdentifier(), TInfo);
14316
14317 // Bail out immediately if we have an invalid declaration.
14318 if (D.isInvalidType()) {
14319 NewTD->setInvalidDecl();
14320 return NewTD;
14321 }
14322
14323 if (D.getDeclSpec().isModulePrivateSpecified()) {
14324 if (CurContext->isFunctionOrMethod())
14325 Diag(NewTD->getLocation(), diag::err_module_private_local)
14326 << 2 << NewTD->getDeclName()
14327 << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
14328 << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
14329 else
14330 NewTD->setModulePrivate();
14331 }
14332
14333 // C++ [dcl.typedef]p8:
14334 // If the typedef declaration defines an unnamed class (or
14335 // enum), the first typedef-name declared by the declaration
14336 // to be that class type (or enum type) is used to denote the
14337 // class type (or enum type) for linkage purposes only.
14338 // We need to check whether the type was declared in the declaration.
14339 switch (D.getDeclSpec().getTypeSpecType()) {
14340 case TST_enum:
14341 case TST_struct:
14342 case TST_interface:
14343 case TST_union:
14344 case TST_class: {
14345 TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
14346 setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD);
14347 break;
14348 }
14349
14350 default:
14351 break;
14352 }
14353
14354 return NewTD;
14355}
14356
14357/// Check that this is a valid underlying type for an enum declaration.
14358bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
14359 SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
14360 QualType T = TI->getType();
14361
14362 if (T->isDependentType())
14363 return false;
14364
14365 if (const BuiltinType *BT = T->getAs<BuiltinType>())
14366 if (BT->isInteger())
14367 return false;
14368
14369 Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
14370 return true;
14371}
14372
14373/// Check whether this is a valid redeclaration of a previous enumeration.
14374/// \return true if the redeclaration was invalid.
14375bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
14376 QualType EnumUnderlyingTy, bool IsFixed,
14377 const EnumDecl *Prev) {
14378 if (IsScoped != Prev->isScoped()) {
14379 Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
14380 << Prev->isScoped();
14381 Diag(Prev->getLocation(), diag::note_previous_declaration);
14382 return true;
14383 }
14384
14385 if (IsFixed && Prev->isFixed()) {
14386 if (!EnumUnderlyingTy->isDependentType() &&
14387 !Prev->getIntegerType()->isDependentType() &&
14388 !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
14389 Prev->getIntegerType())) {
14390 // TODO: Highlight the underlying type of the redeclaration.
14391 Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
14392 << EnumUnderlyingTy << Prev->getIntegerType();
14393 Diag(Prev->getLocation(), diag::note_previous_declaration)
14394 << Prev->getIntegerTypeRange();
14395 return true;
14396 }
14397 } else if (IsFixed != Prev->isFixed()) {
14398 Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
14399 << Prev->isFixed();
14400 Diag(Prev->getLocation(), diag::note_previous_declaration);
14401 return true;
14402 }
14403
14404 return false;
14405}
14406
14407/// Get diagnostic %select index for tag kind for
14408/// redeclaration diagnostic message.
14409/// WARNING: Indexes apply to particular diagnostics only!
14410///
14411/// \returns diagnostic %select index.
14412static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
14413 switch (Tag) {
14414 case TTK_Struct: return 0;
14415 case TTK_Interface: return 1;
14416 case TTK_Class: return 2;
14417 default: llvm_unreachable("Invalid tag kind for redecl diagnostic!")::llvm::llvm_unreachable_internal("Invalid tag kind for redecl diagnostic!"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 14417)
;
14418 }
14419}
14420
14421/// Determine if tag kind is a class-key compatible with
14422/// class for redeclaration (class, struct, or __interface).
14423///
14424/// \returns true iff the tag kind is compatible.
14425static bool isClassCompatTagKind(TagTypeKind Tag)
14426{
14427 return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
14428}
14429
14430Sema::NonTagKind Sema::getNonTagTypeDeclKind(const Decl *PrevDecl,
14431 TagTypeKind TTK) {
14432 if (isa<TypedefDecl>(PrevDecl))
14433 return NTK_Typedef;
14434 else if (isa<TypeAliasDecl>(PrevDecl))
14435 return NTK_TypeAlias;
14436 else if (isa<ClassTemplateDecl>(PrevDecl))
14437 return NTK_Template;
14438 else if (isa<TypeAliasTemplateDecl>(PrevDecl))
14439 return NTK_TypeAliasTemplate;
14440 else if (isa<TemplateTemplateParmDecl>(PrevDecl))
14441 return NTK_TemplateTemplateArgument;
14442 switch (TTK) {
14443 case TTK_Struct:
14444 case TTK_Interface:
14445 case TTK_Class:
14446 return getLangOpts().CPlusPlus ? NTK_NonClass : NTK_NonStruct;
14447 case TTK_Union:
14448 return NTK_NonUnion;
14449 case TTK_Enum:
14450 return NTK_NonEnum;
14451 }
14452 llvm_unreachable("invalid TTK")::llvm::llvm_unreachable_internal("invalid TTK", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 14452)
;
14453}
14454
14455/// Determine whether a tag with a given kind is acceptable
14456/// as a redeclaration of the given tag declaration.
14457///
14458/// \returns true if the new tag kind is acceptable, false otherwise.
14459bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
14460 TagTypeKind NewTag, bool isDefinition,
14461 SourceLocation NewTagLoc,
14462 const IdentifierInfo *Name) {
14463 // C++ [dcl.type.elab]p3:
14464 // The class-key or enum keyword present in the
14465 // elaborated-type-specifier shall agree in kind with the
14466 // declaration to which the name in the elaborated-type-specifier
14467 // refers. This rule also applies to the form of
14468 // elaborated-type-specifier that declares a class-name or
14469 // friend class since it can be construed as referring to the
14470 // definition of the class. Thus, in any
14471 // elaborated-type-specifier, the enum keyword shall be used to
14472 // refer to an enumeration (7.2), the union class-key shall be
14473 // used to refer to a union (clause 9), and either the class or
14474 // struct class-key shall be used to refer to a class (clause 9)
14475 // declared using the class or struct class-key.
14476 TagTypeKind OldTag = Previous->getTagKind();
14477 if (OldTag != NewTag &&
14478 !(isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)))
14479 return false;
14480
14481 // Tags are compatible, but we might still want to warn on mismatched tags.
14482 // Non-class tags can't be mismatched at this point.
14483 if (!isClassCompatTagKind(NewTag))
14484 return true;
14485
14486 // Declarations for which -Wmismatched-tags is disabled are entirely ignored
14487 // by our warning analysis. We don't want to warn about mismatches with (eg)
14488 // declarations in system headers that are designed to be specialized, but if
14489 // a user asks us to warn, we should warn if their code contains mismatched
14490 // declarations.
14491 auto IsIgnoredLoc = [&](SourceLocation Loc) {
14492 return getDiagnostics().isIgnored(diag::warn_struct_class_tag_mismatch,
14493 Loc);
14494 };
14495 if (IsIgnoredLoc(NewTagLoc))
14496 return true;
14497
14498 auto IsIgnored = [&](const TagDecl *Tag) {
14499 return IsIgnoredLoc(Tag->getLocation());
14500 };
14501 while (IsIgnored(Previous)) {
14502 Previous = Previous->getPreviousDecl();
14503 if (!Previous)
14504 return true;
14505 OldTag = Previous->getTagKind();
14506 }
14507
14508 bool isTemplate = false;
14509 if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
14510 isTemplate = Record->getDescribedClassTemplate();
14511
14512 if (inTemplateInstantiation()) {
14513 if (OldTag != NewTag) {
14514 // In a template instantiation, do not offer fix-its for tag mismatches
14515 // since they usually mess up the template instead of fixing the problem.
14516 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
14517 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
14518 << getRedeclDiagFromTagKind(OldTag);
14519 // FIXME: Note previous location?
14520 }
14521 return true;
14522 }
14523
14524 if (isDefinition) {
14525 // On definitions, check all previous tags and issue a fix-it for each
14526 // one that doesn't match the current tag.
14527 if (Previous->getDefinition()) {
14528 // Don't suggest fix-its for redefinitions.
14529 return true;
14530 }
14531
14532 bool previousMismatch = false;
14533 for (const TagDecl *I : Previous->redecls()) {
14534 if (I->getTagKind() != NewTag) {
14535 // Ignore previous declarations for which the warning was disabled.
14536 if (IsIgnored(I))
14537 continue;
14538
14539 if (!previousMismatch) {
14540 previousMismatch = true;
14541 Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
14542 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
14543 << getRedeclDiagFromTagKind(I->getTagKind());
14544 }
14545 Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
14546 << getRedeclDiagFromTagKind(NewTag)
14547 << FixItHint::CreateReplacement(I->getInnerLocStart(),
14548 TypeWithKeyword::getTagTypeKindName(NewTag));
14549 }
14550 }
14551 return true;
14552 }
14553
14554 // Identify the prevailing tag kind: this is the kind of the definition (if
14555 // there is a non-ignored definition), or otherwise the kind of the prior
14556 // (non-ignored) declaration.
14557 const TagDecl *PrevDef = Previous->getDefinition();
14558 if (PrevDef && IsIgnored(PrevDef))
14559 PrevDef = nullptr;
14560 const TagDecl *Redecl = PrevDef ? PrevDef : Previous;
14561 if (Redecl->getTagKind() != NewTag) {
14562 Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
14563 << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name
14564 << getRedeclDiagFromTagKind(OldTag);
14565 Diag(Redecl->getLocation(), diag::note_previous_use);
14566
14567 // If there is a previous definition, suggest a fix-it.
14568 if (PrevDef) {
14569 Diag(NewTagLoc, diag::note_struct_class_suggestion)
14570 << getRedeclDiagFromTagKind(Redecl->getTagKind())
14571 << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
14572 TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
14573 }
14574 }
14575
14576 return true;
14577}
14578
14579/// Add a minimal nested name specifier fixit hint to allow lookup of a tag name
14580/// from an outer enclosing namespace or file scope inside a friend declaration.
14581/// This should provide the commented out code in the following snippet:
14582/// namespace N {
14583/// struct X;
14584/// namespace M {
14585/// struct Y { friend struct /*N::*/ X; };
14586/// }
14587/// }
14588static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S,
14589 SourceLocation NameLoc) {
14590 // While the decl is in a namespace, do repeated lookup of that name and see
14591 // if we get the same namespace back. If we do not, continue until
14592 // translation unit scope, at which point we have a fully qualified NNS.
14593 SmallVector<IdentifierInfo *, 4> Namespaces;
14594 DeclContext *DC = ND->getDeclContext()->getRedeclContext();
14595 for (; !DC->isTranslationUnit(); DC = DC->getParent()) {
14596 // This tag should be declared in a namespace, which can only be enclosed by
14597 // other namespaces. Bail if there's an anonymous namespace in the chain.
14598 NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC);
14599 if (!Namespace || Namespace->isAnonymousNamespace())
14600 return FixItHint();
14601 IdentifierInfo *II = Namespace->getIdentifier();
14602 Namespaces.push_back(II);
14603 NamedDecl *Lookup = SemaRef.LookupSingleName(
14604 S, II, NameLoc, Sema::LookupNestedNameSpecifierName);
14605 if (Lookup == Namespace)
14606 break;
14607 }
14608
14609 // Once we have all the namespaces, reverse them to go outermost first, and
14610 // build an NNS.
14611 SmallString<64> Insertion;
14612 llvm::raw_svector_ostream OS(Insertion);
14613 if (DC->isTranslationUnit())
14614 OS << "::";
14615 std::reverse(Namespaces.begin(), Namespaces.end());
14616 for (auto *II : Namespaces)
14617 OS << II->getName() << "::";
14618 return FixItHint::CreateInsertion(NameLoc, Insertion);
14619}
14620
14621/// Determine whether a tag originally declared in context \p OldDC can
14622/// be redeclared with an unqualified name in \p NewDC (assuming name lookup
14623/// found a declaration in \p OldDC as a previous decl, perhaps through a
14624/// using-declaration).
14625static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC,
14626 DeclContext *NewDC) {
14627 OldDC = OldDC->getRedeclContext();
14628 NewDC = NewDC->getRedeclContext();
14629
14630 if (OldDC->Equals(NewDC))
14631 return true;
14632
14633 // In MSVC mode, we allow a redeclaration if the contexts are related (either
14634 // encloses the other).
14635 if (S.getLangOpts().MSVCCompat &&
14636 (OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC)))
14637 return true;
14638
14639 return false;
14640}
14641
14642/// This is invoked when we see 'struct foo' or 'struct {'. In the
14643/// former case, Name will be non-null. In the later case, Name will be null.
14644/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
14645/// reference/declaration/definition of a tag.
14646///
14647/// \param IsTypeSpecifier \c true if this is a type-specifier (or
14648/// trailing-type-specifier) other than one in an alias-declaration.
14649///
14650/// \param SkipBody If non-null, will be set to indicate if the caller should
14651/// skip the definition of this tag and treat it as if it were a declaration.
14652Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
14653 SourceLocation KWLoc, CXXScopeSpec &SS,
14654 IdentifierInfo *Name, SourceLocation NameLoc,
14655 const ParsedAttributesView &Attrs, AccessSpecifier AS,
14656 SourceLocation ModulePrivateLoc,
14657 MultiTemplateParamsArg TemplateParameterLists,
14658 bool &OwnedDecl, bool &IsDependent,
14659 SourceLocation ScopedEnumKWLoc,
14660 bool ScopedEnumUsesClassTag, TypeResult UnderlyingType,
14661 bool IsTypeSpecifier, bool IsTemplateParamOrArg,
14662 SkipBodyInfo *SkipBody) {
14663 // If this is not a definition, it must have a name.
14664 IdentifierInfo *OrigName = Name;
14665 assert((Name != nullptr || TUK == TUK_Definition) &&(((Name != nullptr || TUK == TUK_Definition) && "Nameless record must be a definition!"
) ? static_cast<void> (0) : __assert_fail ("(Name != nullptr || TUK == TUK_Definition) && \"Nameless record must be a definition!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 14666, __PRETTY_FUNCTION__))
14666 "Nameless record must be a definition!")(((Name != nullptr || TUK == TUK_Definition) && "Nameless record must be a definition!"
) ? static_cast<void> (0) : __assert_fail ("(Name != nullptr || TUK == TUK_Definition) && \"Nameless record must be a definition!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 14666, __PRETTY_FUNCTION__))
;
14667 assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference)((TemplateParameterLists.size() == 0 || TUK != TUK_Reference)
? static_cast<void> (0) : __assert_fail ("TemplateParameterLists.size() == 0 || TUK != TUK_Reference"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 14667, __PRETTY_FUNCTION__))
;
14668
14669 OwnedDecl = false;
14670 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
14671 bool ScopedEnum = ScopedEnumKWLoc.isValid();
14672
14673 // FIXME: Check member specializations more carefully.
14674 bool isMemberSpecialization = false;
14675 bool Invalid = false;
14676
14677 // We only need to do this matching if we have template parameters
14678 // or a scope specifier, which also conveniently avoids this work
14679 // for non-C++ cases.
14680 if (TemplateParameterLists.size() > 0 ||
14681 (SS.isNotEmpty() && TUK != TUK_Reference)) {
14682 if (TemplateParameterList *TemplateParams =
14683 MatchTemplateParametersToScopeSpecifier(
14684 KWLoc, NameLoc, SS, nullptr, TemplateParameterLists,
14685 TUK == TUK_Friend, isMemberSpecialization, Invalid)) {
14686 if (Kind == TTK_Enum) {
14687 Diag(KWLoc, diag::err_enum_template);
14688 return nullptr;
14689 }
14690
14691 if (TemplateParams->size() > 0) {
14692 // This is a declaration or definition of a class template (which may
14693 // be a member of another template).
14694
14695 if (Invalid)
14696 return nullptr;
14697
14698 OwnedDecl = false;
14699 DeclResult Result = CheckClassTemplate(
14700 S, TagSpec, TUK, KWLoc, SS, Name, NameLoc, Attrs, TemplateParams,
14701 AS, ModulePrivateLoc,
14702 /*FriendLoc*/ SourceLocation(), TemplateParameterLists.size() - 1,
14703 TemplateParameterLists.data(), SkipBody);
14704 return Result.get();
14705 } else {
14706 // The "template<>" header is extraneous.
14707 Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
14708 << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
14709 isMemberSpecialization = true;
14710 }
14711 }
14712 }
14713
14714 // Figure out the underlying type if this a enum declaration. We need to do
14715 // this early, because it's needed to detect if this is an incompatible
14716 // redeclaration.
14717 llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
14718 bool IsFixed = !UnderlyingType.isUnset() || ScopedEnum;
14719
14720 if (Kind == TTK_Enum) {
14721 if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) {
14722 // No underlying type explicitly specified, or we failed to parse the
14723 // type, default to int.
14724 EnumUnderlying = Context.IntTy.getTypePtr();
14725 } else if (UnderlyingType.get()) {
14726 // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
14727 // integral type; any cv-qualification is ignored.
14728 TypeSourceInfo *TI = nullptr;
14729 GetTypeFromParser(UnderlyingType.get(), &TI);
14730 EnumUnderlying = TI;
14731
14732 if (CheckEnumUnderlyingType(TI))
14733 // Recover by falling back to int.
14734 EnumUnderlying = Context.IntTy.getTypePtr();
14735
14736 if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
14737 UPPC_FixedUnderlyingType))
14738 EnumUnderlying = Context.IntTy.getTypePtr();
14739
14740 } else if (Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment()) {
14741 // For MSVC ABI compatibility, unfixed enums must use an underlying type
14742 // of 'int'. However, if this is an unfixed forward declaration, don't set
14743 // the underlying type unless the user enables -fms-compatibility. This
14744 // makes unfixed forward declared enums incomplete and is more conforming.
14745 if (TUK == TUK_Definition || getLangOpts().MSVCCompat)
14746 EnumUnderlying = Context.IntTy.getTypePtr();
14747 }
14748 }
14749
14750 DeclContext *SearchDC = CurContext;
14751 DeclContext *DC = CurContext;
14752 bool isStdBadAlloc = false;
14753 bool isStdAlignValT = false;
14754
14755 RedeclarationKind Redecl = forRedeclarationInCurContext();
14756 if (TUK == TUK_Friend || TUK == TUK_Reference)
14757 Redecl = NotForRedeclaration;
14758
14759 /// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C
14760 /// implemented asks for structural equivalence checking, the returned decl
14761 /// here is passed back to the parser, allowing the tag body to be parsed.
14762 auto createTagFromNewDecl = [&]() -> TagDecl * {
14763 assert(!getLangOpts().CPlusPlus && "not meant for C++ usage")((!getLangOpts().CPlusPlus && "not meant for C++ usage"
) ? static_cast<void> (0) : __assert_fail ("!getLangOpts().CPlusPlus && \"not meant for C++ usage\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 14763, __PRETTY_FUNCTION__))
;
14764 // If there is an identifier, use the location of the identifier as the
14765 // location of the decl, otherwise use the location of the struct/union
14766 // keyword.
14767 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
14768 TagDecl *New = nullptr;
14769
14770 if (Kind == TTK_Enum) {
14771 New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, nullptr,
14772 ScopedEnum, ScopedEnumUsesClassTag, IsFixed);
14773 // If this is an undefined enum, bail.
14774 if (TUK != TUK_Definition && !Invalid)
14775 return nullptr;
14776 if (EnumUnderlying) {
14777 EnumDecl *ED = cast<EnumDecl>(New);
14778 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo *>())
14779 ED->setIntegerTypeSourceInfo(TI);
14780 else
14781 ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0));
14782 ED->setPromotionType(ED->getIntegerType());
14783 }
14784 } else { // struct/union
14785 New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
14786 nullptr);
14787 }
14788
14789 if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
14790 // Add alignment attributes if necessary; these attributes are checked
14791 // when the ASTContext lays out the structure.
14792 //
14793 // It is important for implementing the correct semantics that this
14794 // happen here (in ActOnTag). The #pragma pack stack is
14795 // maintained as a result of parser callbacks which can occur at
14796 // many points during the parsing of a struct declaration (because
14797 // the #pragma tokens are effectively skipped over during the
14798 // parsing of the struct).
14799 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
14800 AddAlignmentAttributesForRecord(RD);
14801 AddMsStructLayoutForRecord(RD);
14802 }
14803 }
14804 New->setLexicalDeclContext(CurContext);
14805 return New;
14806 };
14807
14808 LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
14809 if (Name && SS.isNotEmpty()) {
14810 // We have a nested-name tag ('struct foo::bar').
14811
14812 // Check for invalid 'foo::'.
14813 if (SS.isInvalid()) {
14814 Name = nullptr;
14815 goto CreateNewDecl;
14816 }
14817
14818 // If this is a friend or a reference to a class in a dependent
14819 // context, don't try to make a decl for it.
14820 if (TUK == TUK_Friend || TUK == TUK_Reference) {
14821 DC = computeDeclContext(SS, false);
14822 if (!DC) {
14823 IsDependent = true;
14824 return nullptr;
14825 }
14826 } else {
14827 DC = computeDeclContext(SS, true);
14828 if (!DC) {
14829 Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
14830 << SS.getRange();
14831 return nullptr;
14832 }
14833 }
14834
14835 if (RequireCompleteDeclContext(SS, DC))
14836 return nullptr;
14837
14838 SearchDC = DC;
14839 // Look-up name inside 'foo::'.
14840 LookupQualifiedName(Previous, DC);
14841
14842 if (Previous.isAmbiguous())
14843 return nullptr;
14844
14845 if (Previous.empty()) {
14846 // Name lookup did not find anything. However, if the
14847 // nested-name-specifier refers to the current instantiation,
14848 // and that current instantiation has any dependent base
14849 // classes, we might find something at instantiation time: treat
14850 // this as a dependent elaborated-type-specifier.
14851 // But this only makes any sense for reference-like lookups.
14852 if (Previous.wasNotFoundInCurrentInstantiation() &&
14853 (TUK == TUK_Reference || TUK == TUK_Friend)) {
14854 IsDependent = true;
14855 return nullptr;
14856 }
14857
14858 // A tag 'foo::bar' must already exist.
14859 Diag(NameLoc, diag::err_not_tag_in_scope)
14860 << Kind << Name << DC << SS.getRange();
14861 Name = nullptr;
14862 Invalid = true;
14863 goto CreateNewDecl;
14864 }
14865 } else if (Name) {
14866 // C++14 [class.mem]p14:
14867 // If T is the name of a class, then each of the following shall have a
14868 // name different from T:
14869 // -- every member of class T that is itself a type
14870 if (TUK != TUK_Reference && TUK != TUK_Friend &&
14871 DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc)))
14872 return nullptr;
14873
14874 // If this is a named struct, check to see if there was a previous forward
14875 // declaration or definition.
14876 // FIXME: We're looking into outer scopes here, even when we
14877 // shouldn't be. Doing so can result in ambiguities that we
14878 // shouldn't be diagnosing.
14879 LookupName(Previous, S);
14880
14881 // When declaring or defining a tag, ignore ambiguities introduced
14882 // by types using'ed into this scope.
14883 if (Previous.isAmbiguous() &&
14884 (TUK == TUK_Definition || TUK == TUK_Declaration)) {
14885 LookupResult::Filter F = Previous.makeFilter();
14886 while (F.hasNext()) {
14887 NamedDecl *ND = F.next();
14888 if (!ND->getDeclContext()->getRedeclContext()->Equals(
14889 SearchDC->getRedeclContext()))
14890 F.erase();
14891 }
14892 F.done();
14893 }
14894
14895 // C++11 [namespace.memdef]p3:
14896 // If the name in a friend declaration is neither qualified nor
14897 // a template-id and the declaration is a function or an
14898 // elaborated-type-specifier, the lookup to determine whether
14899 // the entity has been previously declared shall not consider
14900 // any scopes outside the innermost enclosing namespace.
14901 //
14902 // MSVC doesn't implement the above rule for types, so a friend tag
14903 // declaration may be a redeclaration of a type declared in an enclosing
14904 // scope. They do implement this rule for friend functions.
14905 //
14906 // Does it matter that this should be by scope instead of by
14907 // semantic context?
14908 if (!Previous.empty() && TUK == TUK_Friend) {
14909 DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
14910 LookupResult::Filter F = Previous.makeFilter();
14911 bool FriendSawTagOutsideEnclosingNamespace = false;
14912 while (F.hasNext()) {
14913 NamedDecl *ND = F.next();
14914 DeclContext *DC = ND->getDeclContext()->getRedeclContext();
14915 if (DC->isFileContext() &&
14916 !EnclosingNS->Encloses(ND->getDeclContext())) {
14917 if (getLangOpts().MSVCCompat)
14918 FriendSawTagOutsideEnclosingNamespace = true;
14919 else
14920 F.erase();
14921 }
14922 }
14923 F.done();
14924
14925 // Diagnose this MSVC extension in the easy case where lookup would have
14926 // unambiguously found something outside the enclosing namespace.
14927 if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) {
14928 NamedDecl *ND = Previous.getFoundDecl();
14929 Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace)
14930 << createFriendTagNNSFixIt(*this, ND, S, NameLoc);
14931 }
14932 }
14933
14934 // Note: there used to be some attempt at recovery here.
14935 if (Previous.isAmbiguous())
14936 return nullptr;
14937
14938 if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
14939 // FIXME: This makes sure that we ignore the contexts associated
14940 // with C structs, unions, and enums when looking for a matching
14941 // tag declaration or definition. See the similar lookup tweak
14942 // in Sema::LookupName; is there a better way to deal with this?
14943 while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
14944 SearchDC = SearchDC->getParent();
14945 }
14946 }
14947
14948 if (Previous.isSingleResult() &&
14949 Previous.getFoundDecl()->isTemplateParameter()) {
14950 // Maybe we will complain about the shadowed template parameter.
14951 DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
14952 // Just pretend that we didn't see the previous declaration.
14953 Previous.clear();
14954 }
14955
14956 if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
14957 DC->Equals(getStdNamespace())) {
14958 if (Name->isStr("bad_alloc")) {
14959 // This is a declaration of or a reference to "std::bad_alloc".
14960 isStdBadAlloc = true;
14961
14962 // If std::bad_alloc has been implicitly declared (but made invisible to
14963 // name lookup), fill in this implicit declaration as the previous
14964 // declaration, so that the declarations get chained appropriately.
14965 if (Previous.empty() && StdBadAlloc)
14966 Previous.addDecl(getStdBadAlloc());
14967 } else if (Name->isStr("align_val_t")) {
14968 isStdAlignValT = true;
14969 if (Previous.empty() && StdAlignValT)
14970 Previous.addDecl(getStdAlignValT());
14971 }
14972 }
14973
14974 // If we didn't find a previous declaration, and this is a reference
14975 // (or friend reference), move to the correct scope. In C++, we
14976 // also need to do a redeclaration lookup there, just in case
14977 // there's a shadow friend decl.
14978 if (Name && Previous.empty() &&
14979 (TUK == TUK_Reference || TUK == TUK_Friend || IsTemplateParamOrArg)) {
14980 if (Invalid) goto CreateNewDecl;
14981 assert(SS.isEmpty())((SS.isEmpty()) ? static_cast<void> (0) : __assert_fail
("SS.isEmpty()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 14981, __PRETTY_FUNCTION__))
;
14982
14983 if (TUK == TUK_Reference || IsTemplateParamOrArg) {
14984 // C++ [basic.scope.pdecl]p5:
14985 // -- for an elaborated-type-specifier of the form
14986 //
14987 // class-key identifier
14988 //
14989 // if the elaborated-type-specifier is used in the
14990 // decl-specifier-seq or parameter-declaration-clause of a
14991 // function defined in namespace scope, the identifier is
14992 // declared as a class-name in the namespace that contains
14993 // the declaration; otherwise, except as a friend
14994 // declaration, the identifier is declared in the smallest
14995 // non-class, non-function-prototype scope that contains the
14996 // declaration.
14997 //
14998 // C99 6.7.2.3p8 has a similar (but not identical!) provision for
14999 // C structs and unions.
15000 //
15001 // It is an error in C++ to declare (rather than define) an enum
15002 // type, including via an elaborated type specifier. We'll
15003 // diagnose that later; for now, declare the enum in the same
15004 // scope as we would have picked for any other tag type.
15005 //
15006 // GNU C also supports this behavior as part of its incomplete
15007 // enum types extension, while GNU C++ does not.
15008 //
15009 // Find the context where we'll be declaring the tag.
15010 // FIXME: We would like to maintain the current DeclContext as the
15011 // lexical context,
15012 SearchDC = getTagInjectionContext(SearchDC);
15013
15014 // Find the scope where we'll be declaring the tag.
15015 S = getTagInjectionScope(S, getLangOpts());
15016 } else {
15017 assert(TUK == TUK_Friend)((TUK == TUK_Friend) ? static_cast<void> (0) : __assert_fail
("TUK == TUK_Friend", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 15017, __PRETTY_FUNCTION__))
;
15018 // C++ [namespace.memdef]p3:
15019 // If a friend declaration in a non-local class first declares a
15020 // class or function, the friend class or function is a member of
15021 // the innermost enclosing namespace.
15022 SearchDC = SearchDC->getEnclosingNamespaceContext();
15023 }
15024
15025 // In C++, we need to do a redeclaration lookup to properly
15026 // diagnose some problems.
15027 // FIXME: redeclaration lookup is also used (with and without C++) to find a
15028 // hidden declaration so that we don't get ambiguity errors when using a
15029 // type declared by an elaborated-type-specifier. In C that is not correct
15030 // and we should instead merge compatible types found by lookup.
15031 if (getLangOpts().CPlusPlus) {
15032 Previous.setRedeclarationKind(forRedeclarationInCurContext());
15033 LookupQualifiedName(Previous, SearchDC);
15034 } else {
15035 Previous.setRedeclarationKind(forRedeclarationInCurContext());
15036 LookupName(Previous, S);
15037 }
15038 }
15039
15040 // If we have a known previous declaration to use, then use it.
15041 if (Previous.empty() && SkipBody && SkipBody->Previous)
15042 Previous.addDecl(SkipBody->Previous);
15043
15044 if (!Previous.empty()) {
15045 NamedDecl *PrevDecl = Previous.getFoundDecl();
15046 NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl();
15047
15048 // It's okay to have a tag decl in the same scope as a typedef
15049 // which hides a tag decl in the same scope. Finding this
15050 // insanity with a redeclaration lookup can only actually happen
15051 // in C++.
15052 //
15053 // This is also okay for elaborated-type-specifiers, which is
15054 // technically forbidden by the current standard but which is
15055 // okay according to the likely resolution of an open issue;
15056 // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
15057 if (getLangOpts().CPlusPlus) {
15058 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
15059 if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
15060 TagDecl *Tag = TT->getDecl();
15061 if (Tag->getDeclName() == Name &&
15062 Tag->getDeclContext()->getRedeclContext()
15063 ->Equals(TD->getDeclContext()->getRedeclContext())) {
15064 PrevDecl = Tag;
15065 Previous.clear();
15066 Previous.addDecl(Tag);
15067 Previous.resolveKind();
15068 }
15069 }
15070 }
15071 }
15072
15073 // If this is a redeclaration of a using shadow declaration, it must
15074 // declare a tag in the same context. In MSVC mode, we allow a
15075 // redefinition if either context is within the other.
15076 if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) {
15077 auto *OldTag = dyn_cast<TagDecl>(PrevDecl);
15078 if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend &&
15079 isDeclInScope(Shadow, SearchDC, S, isMemberSpecialization) &&
15080 !(OldTag && isAcceptableTagRedeclContext(
15081 *this, OldTag->getDeclContext(), SearchDC))) {
15082 Diag(KWLoc, diag::err_using_decl_conflict_reverse);
15083 Diag(Shadow->getTargetDecl()->getLocation(),
15084 diag::note_using_decl_target);
15085 Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl)
15086 << 0;
15087 // Recover by ignoring the old declaration.
15088 Previous.clear();
15089 goto CreateNewDecl;
15090 }
15091 }
15092
15093 if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
15094 // If this is a use of a previous tag, or if the tag is already declared
15095 // in the same scope (so that the definition/declaration completes or
15096 // rementions the tag), reuse the decl.
15097 if (TUK == TUK_Reference || TUK == TUK_Friend ||
15098 isDeclInScope(DirectPrevDecl, SearchDC, S,
15099 SS.isNotEmpty() || isMemberSpecialization)) {
15100 // Make sure that this wasn't declared as an enum and now used as a
15101 // struct or something similar.
15102 if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
15103 TUK == TUK_Definition, KWLoc,
15104 Name)) {
15105 bool SafeToContinue
15106 = (PrevTagDecl->getTagKind() != TTK_Enum &&
15107 Kind != TTK_Enum);
15108 if (SafeToContinue)
15109 Diag(KWLoc, diag::err_use_with_wrong_tag)
15110 << Name
15111 << FixItHint::CreateReplacement(SourceRange(KWLoc),
15112 PrevTagDecl->getKindName());
15113 else
15114 Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
15115 Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
15116
15117 if (SafeToContinue)
15118 Kind = PrevTagDecl->getTagKind();
15119 else {
15120 // Recover by making this an anonymous redefinition.
15121 Name = nullptr;
15122 Previous.clear();
15123 Invalid = true;
15124 }
15125 }
15126
15127 if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
15128 const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
15129
15130 // If this is an elaborated-type-specifier for a scoped enumeration,
15131 // the 'class' keyword is not necessary and not permitted.
15132 if (TUK == TUK_Reference || TUK == TUK_Friend) {
15133 if (ScopedEnum)
15134 Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
15135 << PrevEnum->isScoped()
15136 << FixItHint::CreateRemoval(ScopedEnumKWLoc);
15137 return PrevTagDecl;
15138 }
15139
15140 QualType EnumUnderlyingTy;
15141 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
15142 EnumUnderlyingTy = TI->getType().getUnqualifiedType();
15143 else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
15144 EnumUnderlyingTy = QualType(T, 0);
15145
15146 // All conflicts with previous declarations are recovered by
15147 // returning the previous declaration, unless this is a definition,
15148 // in which case we want the caller to bail out.
15149 if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
15150 ScopedEnum, EnumUnderlyingTy,
15151 IsFixed, PrevEnum))
15152 return TUK == TUK_Declaration ? PrevTagDecl : nullptr;
15153 }
15154
15155 // C++11 [class.mem]p1:
15156 // A member shall not be declared twice in the member-specification,
15157 // except that a nested class or member class template can be declared
15158 // and then later defined.
15159 if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
15160 S->isDeclScope(PrevDecl)) {
15161 Diag(NameLoc, diag::ext_member_redeclared);
15162 Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
15163 }
15164
15165 if (!Invalid) {
15166 // If this is a use, just return the declaration we found, unless
15167 // we have attributes.
15168 if (TUK == TUK_Reference || TUK == TUK_Friend) {
15169 if (!Attrs.empty()) {
15170 // FIXME: Diagnose these attributes. For now, we create a new
15171 // declaration to hold them.
15172 } else if (TUK == TUK_Reference &&
15173 (PrevTagDecl->getFriendObjectKind() ==
15174 Decl::FOK_Undeclared ||
15175 PrevDecl->getOwningModule() != getCurrentModule()) &&
15176 SS.isEmpty()) {
15177 // This declaration is a reference to an existing entity, but
15178 // has different visibility from that entity: it either makes
15179 // a friend visible or it makes a type visible in a new module.
15180 // In either case, create a new declaration. We only do this if
15181 // the declaration would have meant the same thing if no prior
15182 // declaration were found, that is, if it was found in the same
15183 // scope where we would have injected a declaration.
15184 if (!getTagInjectionContext(CurContext)->getRedeclContext()
15185 ->Equals(PrevDecl->getDeclContext()->getRedeclContext()))
15186 return PrevTagDecl;
15187 // This is in the injected scope, create a new declaration in
15188 // that scope.
15189 S = getTagInjectionScope(S, getLangOpts());
15190 } else {
15191 return PrevTagDecl;
15192 }
15193 }
15194
15195 // Diagnose attempts to redefine a tag.
15196 if (TUK == TUK_Definition) {
15197 if (NamedDecl *Def = PrevTagDecl->getDefinition()) {
15198 // If we're defining a specialization and the previous definition
15199 // is from an implicit instantiation, don't emit an error
15200 // here; we'll catch this in the general case below.
15201 bool IsExplicitSpecializationAfterInstantiation = false;
15202 if (isMemberSpecialization) {
15203 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
15204 IsExplicitSpecializationAfterInstantiation =
15205 RD->getTemplateSpecializationKind() !=
15206 TSK_ExplicitSpecialization;
15207 else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
15208 IsExplicitSpecializationAfterInstantiation =
15209 ED->getTemplateSpecializationKind() !=
15210 TSK_ExplicitSpecialization;
15211 }
15212
15213 // Note that clang allows ODR-like semantics for ObjC/C, i.e., do
15214 // not keep more that one definition around (merge them). However,
15215 // ensure the decl passes the structural compatibility check in
15216 // C11 6.2.7/1 (or 6.1.2.6/1 in C89).
15217 NamedDecl *Hidden = nullptr;
15218 if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
15219 // There is a definition of this tag, but it is not visible. We
15220 // explicitly make use of C++'s one definition rule here, and
15221 // assume that this definition is identical to the hidden one
15222 // we already have. Make the existing definition visible and
15223 // use it in place of this one.
15224 if (!getLangOpts().CPlusPlus) {
15225 // Postpone making the old definition visible until after we
15226 // complete parsing the new one and do the structural
15227 // comparison.
15228 SkipBody->CheckSameAsPrevious = true;
15229 SkipBody->New = createTagFromNewDecl();
15230 SkipBody->Previous = Def;
15231 return Def;
15232 } else {
15233 SkipBody->ShouldSkip = true;
15234 SkipBody->Previous = Def;
15235 makeMergedDefinitionVisible(Hidden);
15236 // Carry on and handle it like a normal definition. We'll
15237 // skip starting the definitiion later.
15238 }
15239 } else if (!IsExplicitSpecializationAfterInstantiation) {
15240 // A redeclaration in function prototype scope in C isn't
15241 // visible elsewhere, so merely issue a warning.
15242 if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
15243 Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
15244 else
15245 Diag(NameLoc, diag::err_redefinition) << Name;
15246 notePreviousDefinition(Def,
15247 NameLoc.isValid() ? NameLoc : KWLoc);
15248 // If this is a redefinition, recover by making this
15249 // struct be anonymous, which will make any later
15250 // references get the previous definition.
15251 Name = nullptr;
15252 Previous.clear();
15253 Invalid = true;
15254 }
15255 } else {
15256 // If the type is currently being defined, complain
15257 // about a nested redefinition.
15258 auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl();
15259 if (TD->isBeingDefined()) {
15260 Diag(NameLoc, diag::err_nested_redefinition) << Name;
15261 Diag(PrevTagDecl->getLocation(),
15262 diag::note_previous_definition);
15263 Name = nullptr;
15264 Previous.clear();
15265 Invalid = true;
15266 }
15267 }
15268
15269 // Okay, this is definition of a previously declared or referenced
15270 // tag. We're going to create a new Decl for it.
15271 }
15272
15273 // Okay, we're going to make a redeclaration. If this is some kind
15274 // of reference, make sure we build the redeclaration in the same DC
15275 // as the original, and ignore the current access specifier.
15276 if (TUK == TUK_Friend || TUK == TUK_Reference) {
15277 SearchDC = PrevTagDecl->getDeclContext();
15278 AS = AS_none;
15279 }
15280 }
15281 // If we get here we have (another) forward declaration or we
15282 // have a definition. Just create a new decl.
15283
15284 } else {
15285 // If we get here, this is a definition of a new tag type in a nested
15286 // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
15287 // new decl/type. We set PrevDecl to NULL so that the entities
15288 // have distinct types.
15289 Previous.clear();
15290 }
15291 // If we get here, we're going to create a new Decl. If PrevDecl
15292 // is non-NULL, it's a definition of the tag declared by
15293 // PrevDecl. If it's NULL, we have a new definition.
15294
15295 // Otherwise, PrevDecl is not a tag, but was found with tag
15296 // lookup. This is only actually possible in C++, where a few
15297 // things like templates still live in the tag namespace.
15298 } else {
15299 // Use a better diagnostic if an elaborated-type-specifier
15300 // found the wrong kind of type on the first
15301 // (non-redeclaration) lookup.
15302 if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
15303 !Previous.isForRedeclaration()) {
15304 NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
15305 Diag(NameLoc, diag::err_tag_reference_non_tag) << PrevDecl << NTK
15306 << Kind;
15307 Diag(PrevDecl->getLocation(), diag::note_declared_at);
15308 Invalid = true;
15309
15310 // Otherwise, only diagnose if the declaration is in scope.
15311 } else if (!isDeclInScope(DirectPrevDecl, SearchDC, S,
15312 SS.isNotEmpty() || isMemberSpecialization)) {
15313 // do nothing
15314
15315 // Diagnose implicit declarations introduced by elaborated types.
15316 } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
15317 NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind);
15318 Diag(NameLoc, diag::err_tag_reference_conflict) << NTK;
15319 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
15320 Invalid = true;
15321
15322 // Otherwise it's a declaration. Call out a particularly common
15323 // case here.
15324 } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
15325 unsigned Kind = 0;
15326 if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
15327 Diag(NameLoc, diag::err_tag_definition_of_typedef)
15328 << Name << Kind << TND->getUnderlyingType();
15329 Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
15330 Invalid = true;
15331
15332 // Otherwise, diagnose.
15333 } else {
15334 // The tag name clashes with something else in the target scope,
15335 // issue an error and recover by making this tag be anonymous.
15336 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
15337 notePreviousDefinition(PrevDecl, NameLoc);
15338 Name = nullptr;
15339 Invalid = true;
15340 }
15341
15342 // The existing declaration isn't relevant to us; we're in a
15343 // new scope, so clear out the previous declaration.
15344 Previous.clear();
15345 }
15346 }
15347
15348CreateNewDecl:
15349
15350 TagDecl *PrevDecl = nullptr;
15351 if (Previous.isSingleResult())
15352 PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
15353
15354 // If there is an identifier, use the location of the identifier as the
15355 // location of the decl, otherwise use the location of the struct/union
15356 // keyword.
15357 SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
15358
15359 // Otherwise, create a new declaration. If there is a previous
15360 // declaration of the same entity, the two will be linked via
15361 // PrevDecl.
15362 TagDecl *New;
15363
15364 if (Kind == TTK_Enum) {
15365 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
15366 // enum X { A, B, C } D; D should chain to X.
15367 New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
15368 cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
15369 ScopedEnumUsesClassTag, IsFixed);
15370
15371 if (isStdAlignValT && (!StdAlignValT || getStdAlignValT()->isImplicit()))
15372 StdAlignValT = cast<EnumDecl>(New);
15373
15374 // If this is an undefined enum, warn.
15375 if (TUK != TUK_Definition && !Invalid) {
15376 TagDecl *Def;
15377 if (IsFixed && cast<EnumDecl>(New)->isFixed()) {
15378 // C++0x: 7.2p2: opaque-enum-declaration.
15379 // Conflicts are diagnosed above. Do nothing.
15380 }
15381 else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
15382 Diag(Loc, diag::ext_forward_ref_enum_def)
15383 << New;
15384 Diag(Def->getLocation(), diag::note_previous_definition);
15385 } else {
15386 unsigned DiagID = diag::ext_forward_ref_enum;
15387 if (getLangOpts().MSVCCompat)
15388 DiagID = diag::ext_ms_forward_ref_enum;
15389 else if (getLangOpts().CPlusPlus)
15390 DiagID = diag::err_forward_ref_enum;
15391 Diag(Loc, DiagID);
15392 }
15393 }
15394
15395 if (EnumUnderlying) {
15396 EnumDecl *ED = cast<EnumDecl>(New);
15397 if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
15398 ED->setIntegerTypeSourceInfo(TI);
15399 else
15400 ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
15401 ED->setPromotionType(ED->getIntegerType());
15402 assert(ED->isComplete() && "enum with type should be complete")((ED->isComplete() && "enum with type should be complete"
) ? static_cast<void> (0) : __assert_fail ("ED->isComplete() && \"enum with type should be complete\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 15402, __PRETTY_FUNCTION__))
;
15403 }
15404 } else {
15405 // struct/union/class
15406
15407 // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
15408 // struct X { int A; } D; D should chain to X.
15409 if (getLangOpts().CPlusPlus) {
15410 // FIXME: Look for a way to use RecordDecl for simple structs.
15411 New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
15412 cast_or_null<CXXRecordDecl>(PrevDecl));
15413
15414 if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
15415 StdBadAlloc = cast<CXXRecordDecl>(New);
15416 } else
15417 New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
15418 cast_or_null<RecordDecl>(PrevDecl));
15419 }
15420
15421 // C++11 [dcl.type]p3:
15422 // A type-specifier-seq shall not define a class or enumeration [...].
15423 if (getLangOpts().CPlusPlus && (IsTypeSpecifier || IsTemplateParamOrArg) &&
15424 TUK == TUK_Definition) {
15425 Diag(New->getLocation(), diag::err_type_defined_in_type_specifier)
15426 << Context.getTagDeclType(New);
15427 Invalid = true;
15428 }
15429
15430 if (!Invalid && getLangOpts().CPlusPlus && TUK == TUK_Definition &&
15431 DC->getDeclKind() == Decl::Enum) {
15432 Diag(New->getLocation(), diag::err_type_defined_in_enum)
15433 << Context.getTagDeclType(New);
15434 Invalid = true;
15435 }
15436
15437 // Maybe add qualifier info.
15438 if (SS.isNotEmpty()) {
15439 if (SS.isSet()) {
15440 // If this is either a declaration or a definition, check the
15441 // nested-name-specifier against the current context.
15442 if ((TUK == TUK_Definition || TUK == TUK_Declaration) &&
15443 diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc,
15444 isMemberSpecialization))
15445 Invalid = true;
15446
15447 New->setQualifierInfo(SS.getWithLocInContext(Context));
15448 if (TemplateParameterLists.size() > 0) {
15449 New->setTemplateParameterListsInfo(Context, TemplateParameterLists);
15450 }
15451 }
15452 else
15453 Invalid = true;
15454 }
15455
15456 if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
15457 // Add alignment attributes if necessary; these attributes are checked when
15458 // the ASTContext lays out the structure.
15459 //
15460 // It is important for implementing the correct semantics that this
15461 // happen here (in ActOnTag). The #pragma pack stack is
15462 // maintained as a result of parser callbacks which can occur at
15463 // many points during the parsing of a struct declaration (because
15464 // the #pragma tokens are effectively skipped over during the
15465 // parsing of the struct).
15466 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) {
15467 AddAlignmentAttributesForRecord(RD);
15468 AddMsStructLayoutForRecord(RD);
15469 }
15470 }
15471
15472 if (ModulePrivateLoc.isValid()) {
15473 if (isMemberSpecialization)
15474 Diag(New->getLocation(), diag::err_module_private_specialization)
15475 << 2
15476 << FixItHint::CreateRemoval(ModulePrivateLoc);
15477 // __module_private__ does not apply to local classes. However, we only
15478 // diagnose this as an error when the declaration specifiers are
15479 // freestanding. Here, we just ignore the __module_private__.
15480 else if (!SearchDC->isFunctionOrMethod())
15481 New->setModulePrivate();
15482 }
15483
15484 // If this is a specialization of a member class (of a class template),
15485 // check the specialization.
15486 if (isMemberSpecialization && CheckMemberSpecialization(New, Previous))
15487 Invalid = true;
15488
15489 // If we're declaring or defining a tag in function prototype scope in C,
15490 // note that this type can only be used within the function and add it to
15491 // the list of decls to inject into the function definition scope.
15492 if ((Name || Kind == TTK_Enum) &&
15493 getNonFieldDeclScope(S)->isFunctionPrototypeScope()) {
15494 if (getLangOpts().CPlusPlus) {
15495 // C++ [dcl.fct]p6:
15496 // Types shall not be defined in return or parameter types.
15497 if (TUK == TUK_Definition && !IsTypeSpecifier) {
15498 Diag(Loc, diag::err_type_defined_in_param_type)
15499 << Name;
15500 Invalid = true;
15501 }
15502 } else if (!PrevDecl) {
15503 Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
15504 }
15505 }
15506
15507 if (Invalid)
15508 New->setInvalidDecl();
15509
15510 // Set the lexical context. If the tag has a C++ scope specifier, the
15511 // lexical context will be different from the semantic context.
15512 New->setLexicalDeclContext(CurContext);
15513
15514 // Mark this as a friend decl if applicable.
15515 // In Microsoft mode, a friend declaration also acts as a forward
15516 // declaration so we always pass true to setObjectOfFriendDecl to make
15517 // the tag name visible.
15518 if (TUK == TUK_Friend)
15519 New->setObjectOfFriendDecl(getLangOpts().MSVCCompat);
15520
15521 // Set the access specifier.
15522 if (!Invalid && SearchDC->isRecord())
15523 SetMemberAccessSpecifier(New, PrevDecl, AS);
15524
15525 if (PrevDecl)
15526 CheckRedeclarationModuleOwnership(New, PrevDecl);
15527
15528 if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip))
15529 New->startDefinition();
15530
15531 ProcessDeclAttributeList(S, New, Attrs);
15532 AddPragmaAttributes(S, New);
15533
15534 // If this has an identifier, add it to the scope stack.
15535 if (TUK == TUK_Friend) {
15536 // We might be replacing an existing declaration in the lookup tables;
15537 // if so, borrow its access specifier.
15538 if (PrevDecl)
15539 New->setAccess(PrevDecl->getAccess());
15540
15541 DeclContext *DC = New->getDeclContext()->getRedeclContext();
15542 DC->makeDeclVisibleInContext(New);
15543 if (Name) // can be null along some error paths
15544 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
15545 PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
15546 } else if (Name) {
15547 S = getNonFieldDeclScope(S);
15548 PushOnScopeChains(New, S, true);
15549 } else {
15550 CurContext->addDecl(New);
15551 }
15552
15553 // If this is the C FILE type, notify the AST context.
15554 if (IdentifierInfo *II = New->getIdentifier())
15555 if (!New->isInvalidDecl() &&
15556 New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
15557 II->isStr("FILE"))
15558 Context.setFILEDecl(New);
15559
15560 if (PrevDecl)
15561 mergeDeclAttributes(New, PrevDecl);
15562
15563 if (auto *CXXRD = dyn_cast<CXXRecordDecl>(New))
15564 inferGslOwnerPointerAttribute(CXXRD);
15565
15566 // If there's a #pragma GCC visibility in scope, set the visibility of this
15567 // record.
15568 AddPushedVisibilityAttribute(New);
15569
15570 if (isMemberSpecialization && !New->isInvalidDecl())
15571 CompleteMemberSpecialization(New, Previous);
15572
15573 OwnedDecl = true;
15574 // In C++, don't return an invalid declaration. We can't recover well from
15575 // the cases where we make the type anonymous.
15576 if (Invalid && getLangOpts().CPlusPlus) {
15577 if (New->isBeingDefined())
15578 if (auto RD = dyn_cast<RecordDecl>(New))
15579 RD->completeDefinition();
15580 return nullptr;
15581 } else if (SkipBody && SkipBody->ShouldSkip) {
15582 return SkipBody->Previous;
15583 } else {
15584 return New;
15585 }
15586}
15587
15588void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
15589 AdjustDeclIfTemplate(TagD);
15590 TagDecl *Tag = cast<TagDecl>(TagD);
15591
15592 // Enter the tag context.
15593 PushDeclContext(S, Tag);
15594
15595 ActOnDocumentableDecl(TagD);
15596
15597 // If there's a #pragma GCC visibility in scope, set the visibility of this
15598 // record.
15599 AddPushedVisibilityAttribute(Tag);
15600}
15601
15602bool Sema::ActOnDuplicateDefinition(DeclSpec &DS, Decl *Prev,
15603 SkipBodyInfo &SkipBody) {
15604 if (!hasStructuralCompatLayout(Prev, SkipBody.New))
15605 return false;
15606
15607 // Make the previous decl visible.
15608 makeMergedDefinitionVisible(SkipBody.Previous);
15609 return true;
15610}
15611
15612Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
15613 assert(isa<ObjCContainerDecl>(IDecl) &&((isa<ObjCContainerDecl>(IDecl) && "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl"
) ? static_cast<void> (0) : __assert_fail ("isa<ObjCContainerDecl>(IDecl) && \"ActOnObjCContainerStartDefinition - Not ObjCContainerDecl\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 15614, __PRETTY_FUNCTION__))
15614 "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl")((isa<ObjCContainerDecl>(IDecl) && "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl"
) ? static_cast<void> (0) : __assert_fail ("isa<ObjCContainerDecl>(IDecl) && \"ActOnObjCContainerStartDefinition - Not ObjCContainerDecl\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 15614, __PRETTY_FUNCTION__))
;
15615 DeclContext *OCD = cast<DeclContext>(IDecl);
15616 assert(getContainingDC(OCD) == CurContext &&((getContainingDC(OCD) == CurContext && "The next DeclContext should be lexically contained in the current one."
) ? static_cast<void> (0) : __assert_fail ("getContainingDC(OCD) == CurContext && \"The next DeclContext should be lexically contained in the current one.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 15617, __PRETTY_FUNCTION__))
15617 "The next DeclContext should be lexically contained in the current one.")((getContainingDC(OCD) == CurContext && "The next DeclContext should be lexically contained in the current one."
) ? static_cast<void> (0) : __assert_fail ("getContainingDC(OCD) == CurContext && \"The next DeclContext should be lexically contained in the current one.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 15617, __PRETTY_FUNCTION__))
;
15618 CurContext = OCD;
15619 return IDecl;
15620}
15621
15622void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
15623 SourceLocation FinalLoc,
15624 bool IsFinalSpelledSealed,
15625 SourceLocation LBraceLoc) {
15626 AdjustDeclIfTemplate(TagD);
15627 CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
15628
15629 FieldCollector->StartClass();
15630
15631 if (!Record->getIdentifier())
15632 return;
15633
15634 if (FinalLoc.isValid())
15635 Record->addAttr(FinalAttr::Create(
15636 Context, FinalLoc, AttributeCommonInfo::AS_Keyword,
15637 static_cast<FinalAttr::Spelling>(IsFinalSpelledSealed)));
15638
15639 // C++ [class]p2:
15640 // [...] The class-name is also inserted into the scope of the
15641 // class itself; this is known as the injected-class-name. For
15642 // purposes of access checking, the injected-class-name is treated
15643 // as if it were a public member name.
15644 CXXRecordDecl *InjectedClassName = CXXRecordDecl::Create(
15645 Context, Record->getTagKind(), CurContext, Record->getBeginLoc(),
15646 Record->getLocation(), Record->getIdentifier(),
15647 /*PrevDecl=*/nullptr,
15648 /*DelayTypeCreation=*/true);
15649 Context.getTypeDeclType(InjectedClassName, Record);
15650 InjectedClassName->setImplicit();
15651 InjectedClassName->setAccess(AS_public);
15652 if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
15653 InjectedClassName->setDescribedClassTemplate(Template);
15654 PushOnScopeChains(InjectedClassName, S);
15655 assert(InjectedClassName->isInjectedClassName() &&((InjectedClassName->isInjectedClassName() && "Broken injected-class-name"
) ? static_cast<void> (0) : __assert_fail ("InjectedClassName->isInjectedClassName() && \"Broken injected-class-name\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 15656, __PRETTY_FUNCTION__))
15656 "Broken injected-class-name")((InjectedClassName->isInjectedClassName() && "Broken injected-class-name"
) ? static_cast<void> (0) : __assert_fail ("InjectedClassName->isInjectedClassName() && \"Broken injected-class-name\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 15656, __PRETTY_FUNCTION__))
;
15657}
15658
15659void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
15660 SourceRange BraceRange) {
15661 AdjustDeclIfTemplate(TagD);
15662 TagDecl *Tag = cast<TagDecl>(TagD);
15663 Tag->setBraceRange(BraceRange);
15664
15665 // Make sure we "complete" the definition even it is invalid.
15666 if (Tag->isBeingDefined()) {
15667 assert(Tag->isInvalidDecl() && "We should already have completed it")((Tag->isInvalidDecl() && "We should already have completed it"
) ? static_cast<void> (0) : __assert_fail ("Tag->isInvalidDecl() && \"We should already have completed it\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 15667, __PRETTY_FUNCTION__))
;
15668 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
15669 RD->completeDefinition();
15670 }
15671
15672 if (isa<CXXRecordDecl>(Tag)) {
15673 FieldCollector->FinishClass();
15674 }
15675
15676 // Exit this scope of this tag's definition.
15677 PopDeclContext();
15678
15679 if (getCurLexicalContext()->isObjCContainer() &&
15680 Tag->getDeclContext()->isFileContext())
15681 Tag->setTopLevelDeclInObjCContainer();
15682
15683 // Notify the consumer that we've defined a tag.
15684 if (!Tag->isInvalidDecl())
15685 Consumer.HandleTagDeclDefinition(Tag);
15686}
15687
15688void Sema::ActOnObjCContainerFinishDefinition() {
15689 // Exit this scope of this interface definition.
15690 PopDeclContext();
15691}
15692
15693void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
15694 assert(DC == CurContext && "Mismatch of container contexts")((DC == CurContext && "Mismatch of container contexts"
) ? static_cast<void> (0) : __assert_fail ("DC == CurContext && \"Mismatch of container contexts\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 15694, __PRETTY_FUNCTION__))
;
15695 OriginalLexicalContext = DC;
15696 ActOnObjCContainerFinishDefinition();
15697}
15698
15699void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
15700 ActOnObjCContainerStartDefinition(cast<Decl>(DC));
15701 OriginalLexicalContext = nullptr;
15702}
15703
15704void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
15705 AdjustDeclIfTemplate(TagD);
15706 TagDecl *Tag = cast<TagDecl>(TagD);
15707 Tag->setInvalidDecl();
15708
15709 // Make sure we "complete" the definition even it is invalid.
15710 if (Tag->isBeingDefined()) {
15711 if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
15712 RD->completeDefinition();
15713 }
15714
15715 // We're undoing ActOnTagStartDefinition here, not
15716 // ActOnStartCXXMemberDeclarations, so we don't have to mess with
15717 // the FieldCollector.
15718
15719 PopDeclContext();
15720}
15721
15722// Note that FieldName may be null for anonymous bitfields.
15723ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
15724 IdentifierInfo *FieldName,
15725 QualType FieldTy, bool IsMsStruct,
15726 Expr *BitWidth, bool *ZeroWidth) {
15727 // Default to true; that shouldn't confuse checks for emptiness
15728 if (ZeroWidth)
15729 *ZeroWidth = true;
15730
15731 // C99 6.7.2.1p4 - verify the field type.
15732 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
15733 if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
15734 // Handle incomplete types with specific error.
15735 if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
15736 return ExprError();
15737 if (FieldName)
15738 return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
15739 << FieldName << FieldTy << BitWidth->getSourceRange();
15740 return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
15741 << FieldTy << BitWidth->getSourceRange();
15742 } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
15743 UPPC_BitFieldWidth))
15744 return ExprError();
15745
15746 // If the bit-width is type- or value-dependent, don't try to check
15747 // it now.
15748 if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
15749 return BitWidth;
15750
15751 llvm::APSInt Value;
15752 ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
15753 if (ICE.isInvalid())
15754 return ICE;
15755 BitWidth = ICE.get();
15756
15757 if (Value != 0 && ZeroWidth)
15758 *ZeroWidth = false;
15759
15760 // Zero-width bitfield is ok for anonymous field.
15761 if (Value == 0 && FieldName)
15762 return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
15763
15764 if (Value.isSigned() && Value.isNegative()) {
15765 if (FieldName)
15766 return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
15767 << FieldName << Value.toString(10);
15768 return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
15769 << Value.toString(10);
15770 }
15771
15772 if (!FieldTy->isDependentType()) {
15773 uint64_t TypeStorageSize = Context.getTypeSize(FieldTy);
15774 uint64_t TypeWidth = Context.getIntWidth(FieldTy);
15775 bool BitfieldIsOverwide = Value.ugt(TypeWidth);
15776
15777 // Over-wide bitfields are an error in C or when using the MSVC bitfield
15778 // ABI.
15779 bool CStdConstraintViolation =
15780 BitfieldIsOverwide && !getLangOpts().CPlusPlus;
15781 bool MSBitfieldViolation =
15782 Value.ugt(TypeStorageSize) &&
15783 (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft());
15784 if (CStdConstraintViolation || MSBitfieldViolation) {
15785 unsigned DiagWidth =
15786 CStdConstraintViolation ? TypeWidth : TypeStorageSize;
15787 if (FieldName)
15788 return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width)
15789 << FieldName << (unsigned)Value.getZExtValue()
15790 << !CStdConstraintViolation << DiagWidth;
15791
15792 return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_width)
15793 << (unsigned)Value.getZExtValue() << !CStdConstraintViolation
15794 << DiagWidth;
15795 }
15796
15797 // Warn on types where the user might conceivably expect to get all
15798 // specified bits as value bits: that's all integral types other than
15799 // 'bool'.
15800 if (BitfieldIsOverwide && !FieldTy->isBooleanType()) {
15801 if (FieldName)
15802 Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width)
15803 << FieldName << (unsigned)Value.getZExtValue()
15804 << (unsigned)TypeWidth;
15805 else
15806 Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_width)
15807 << (unsigned)Value.getZExtValue() << (unsigned)TypeWidth;
15808 }
15809 }
15810
15811 return BitWidth;
15812}
15813
15814/// ActOnField - Each field of a C struct/union is passed into this in order
15815/// to create a FieldDecl object for it.
15816Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
15817 Declarator &D, Expr *BitfieldWidth) {
15818 FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
15819 DeclStart, D, static_cast<Expr*>(BitfieldWidth),
15820 /*InitStyle=*/ICIS_NoInit, AS_public);
15821 return Res;
15822}
15823
15824/// HandleField - Analyze a field of a C struct or a C++ data member.
15825///
15826FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
15827 SourceLocation DeclStart,
15828 Declarator &D, Expr *BitWidth,
15829 InClassInitStyle InitStyle,
15830 AccessSpecifier AS) {
15831 if (D.isDecompositionDeclarator()) {
15832 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
15833 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
15834 << Decomp.getSourceRange();
15835 return nullptr;
15836 }
15837
15838 IdentifierInfo *II = D.getIdentifier();
15839 SourceLocation Loc = DeclStart;
15840 if (II) Loc = D.getIdentifierLoc();
15841
15842 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
15843 QualType T = TInfo->getType();
15844 if (getLangOpts().CPlusPlus) {
15845 CheckExtraCXXDefaultArguments(D);
15846
15847 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
15848 UPPC_DataMemberType)) {
15849 D.setInvalidType();
15850 T = Context.IntTy;
15851 TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
15852 }
15853 }
15854
15855 DiagnoseFunctionSpecifiers(D.getDeclSpec());
15856
15857 if (D.getDeclSpec().isInlineSpecified())
15858 Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function)
15859 << getLangOpts().CPlusPlus17;
15860 if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
15861 Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
15862 diag::err_invalid_thread)
15863 << DeclSpec::getSpecifierName(TSCS);
15864
15865 // Check to see if this name was declared as a member previously
15866 NamedDecl *PrevDecl = nullptr;
15867 LookupResult Previous(*this, II, Loc, LookupMemberName,
15868 ForVisibleRedeclaration);
15869 LookupName(Previous, S);
15870 switch (Previous.getResultKind()) {
15871 case LookupResult::Found:
15872 case LookupResult::FoundUnresolvedValue:
15873 PrevDecl = Previous.getAsSingle<NamedDecl>();
15874 break;
15875
15876 case LookupResult::FoundOverloaded:
15877 PrevDecl = Previous.getRepresentativeDecl();
15878 break;
15879
15880 case LookupResult::NotFound:
15881 case LookupResult::NotFoundInCurrentInstantiation:
15882 case LookupResult::Ambiguous:
15883 break;
15884 }
15885 Previous.suppressDiagnostics();
15886
15887 if (PrevDecl && PrevDecl->isTemplateParameter()) {
15888 // Maybe we will complain about the shadowed template parameter.
15889 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
15890 // Just pretend that we didn't see the previous declaration.
15891 PrevDecl = nullptr;
15892 }
15893
15894 if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
15895 PrevDecl = nullptr;
15896
15897 bool Mutable
15898 = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
15899 SourceLocation TSSL = D.getBeginLoc();
15900 FieldDecl *NewFD
15901 = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
15902 TSSL, AS, PrevDecl, &D);
15903
15904 if (NewFD->isInvalidDecl())
15905 Record->setInvalidDecl();
15906
15907 if (D.getDeclSpec().isModulePrivateSpecified())
15908 NewFD->setModulePrivate();
15909
15910 if (NewFD->isInvalidDecl() && PrevDecl) {
15911 // Don't introduce NewFD into scope; there's already something
15912 // with the same name in the same scope.
15913 } else if (II) {
15914 PushOnScopeChains(NewFD, S);
15915 } else
15916 Record->addDecl(NewFD);
15917
15918 return NewFD;
15919}
15920
15921/// Build a new FieldDecl and check its well-formedness.
15922///
15923/// This routine builds a new FieldDecl given the fields name, type,
15924/// record, etc. \p PrevDecl should refer to any previous declaration
15925/// with the same name and in the same scope as the field to be
15926/// created.
15927///
15928/// \returns a new FieldDecl.
15929///
15930/// \todo The Declarator argument is a hack. It will be removed once
15931FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
15932 TypeSourceInfo *TInfo,
15933 RecordDecl *Record, SourceLocation Loc,
15934 bool Mutable, Expr *BitWidth,
15935 InClassInitStyle InitStyle,
15936 SourceLocation TSSL,
15937 AccessSpecifier AS, NamedDecl *PrevDecl,
15938 Declarator *D) {
15939 IdentifierInfo *II = Name.getAsIdentifierInfo();
15940 bool InvalidDecl = false;
15941 if (D) InvalidDecl = D->isInvalidType();
15942
15943 // If we receive a broken type, recover by assuming 'int' and
15944 // marking this declaration as invalid.
15945 if (T.isNull()) {
15946 InvalidDecl = true;
15947 T = Context.IntTy;
15948 }
15949
15950 QualType EltTy = Context.getBaseElementType(T);
15951 if (!EltTy->isDependentType()) {
15952 if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
15953 // Fields of incomplete type force their record to be invalid.
15954 Record->setInvalidDecl();
15955 InvalidDecl = true;
15956 } else {
15957 NamedDecl *Def;
15958 EltTy->isIncompleteType(&Def);
15959 if (Def && Def->isInvalidDecl()) {
15960 Record->setInvalidDecl();
15961 InvalidDecl = true;
15962 }
15963 }
15964 }
15965
15966 // TR 18037 does not allow fields to be declared with address space
15967 if (T.getQualifiers().hasAddressSpace() || T->isDependentAddressSpaceType() ||
15968 T->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) {
15969 Diag(Loc, diag::err_field_with_address_space);
15970 Record->setInvalidDecl();
15971 InvalidDecl = true;
15972 }
15973
15974 if (LangOpts.OpenCL) {
15975 // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be
15976 // used as structure or union field: image, sampler, event or block types.
15977 if (T->isEventT() || T->isImageType() || T->isSamplerT() ||
15978 T->isBlockPointerType()) {
15979 Diag(Loc, diag::err_opencl_type_struct_or_union_field) << T;
15980 Record->setInvalidDecl();
15981 InvalidDecl = true;
15982 }
15983 // OpenCL v1.2 s6.9.c: bitfields are not supported.
15984 if (BitWidth) {
15985 Diag(Loc, diag::err_opencl_bitfields);
15986 InvalidDecl = true;
15987 }
15988 }
15989
15990 // Anonymous bit-fields cannot be cv-qualified (CWG 2229).
15991 if (!InvalidDecl && getLangOpts().CPlusPlus && !II && BitWidth &&
15992 T.hasQualifiers()) {
15993 InvalidDecl = true;
15994 Diag(Loc, diag::err_anon_bitfield_qualifiers);
15995 }
15996
15997 // C99 6.7.2.1p8: A member of a structure or union may have any type other
15998 // than a variably modified type.
15999 if (!InvalidDecl && T->isVariablyModifiedType()) {
16000 bool SizeIsNegative;
16001 llvm::APSInt Oversized;
16002
16003 TypeSourceInfo *FixedTInfo =
16004 TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
16005 SizeIsNegative,
16006 Oversized);
16007 if (FixedTInfo) {
16008 Diag(Loc, diag::warn_illegal_constant_array_size);
16009 TInfo = FixedTInfo;
16010 T = FixedTInfo->getType();
16011 } else {
16012 if (SizeIsNegative)
16013 Diag(Loc, diag::err_typecheck_negative_array_size);
16014 else if (Oversized.getBoolValue())
16015 Diag(Loc, diag::err_array_too_large)
16016 << Oversized.toString(10);
16017 else
16018 Diag(Loc, diag::err_typecheck_field_variable_size);
16019 InvalidDecl = true;
16020 }
16021 }
16022
16023 // Fields can not have abstract class types
16024 if (!InvalidDecl && RequireNonAbstractType(Loc, T,
16025 diag::err_abstract_type_in_decl,
16026 AbstractFieldType))
16027 InvalidDecl = true;
16028
16029 bool ZeroWidth = false;
16030 if (InvalidDecl)
16031 BitWidth = nullptr;
16032 // If this is declared as a bit-field, check the bit-field.
16033 if (BitWidth) {
16034 BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
16035 &ZeroWidth).get();
16036 if (!BitWidth) {
16037 InvalidDecl = true;
16038 BitWidth = nullptr;
16039 ZeroWidth = false;
16040 }
16041 }
16042
16043 // Check that 'mutable' is consistent with the type of the declaration.
16044 if (!InvalidDecl && Mutable) {
16045 unsigned DiagID = 0;
16046 if (T->isReferenceType())
16047 DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference
16048 : diag::err_mutable_reference;
16049 else if (T.isConstQualified())
16050 DiagID = diag::err_mutable_const;
16051
16052 if (DiagID) {
16053 SourceLocation ErrLoc = Loc;
16054 if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
16055 ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
16056 Diag(ErrLoc, DiagID);
16057 if (DiagID != diag::ext_mutable_reference) {
16058 Mutable = false;
16059 InvalidDecl = true;
16060 }
16061 }
16062 }
16063
16064 // C++11 [class.union]p8 (DR1460):
16065 // At most one variant member of a union may have a
16066 // brace-or-equal-initializer.
16067 if (InitStyle != ICIS_NoInit)
16068 checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc);
16069
16070 FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
16071 BitWidth, Mutable, InitStyle);
16072 if (InvalidDecl)
16073 NewFD->setInvalidDecl();
16074
16075 if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
16076 Diag(Loc, diag::err_duplicate_member) << II;
16077 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
16078 NewFD->setInvalidDecl();
16079 }
16080
16081 if (!InvalidDecl && getLangOpts().CPlusPlus) {
16082 if (Record->isUnion()) {
16083 if (const RecordType *RT = EltTy->getAs<RecordType>()) {
16084 CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
16085 if (RDecl->getDefinition()) {
16086 // C++ [class.union]p1: An object of a class with a non-trivial
16087 // constructor, a non-trivial copy constructor, a non-trivial
16088 // destructor, or a non-trivial copy assignment operator
16089 // cannot be a member of a union, nor can an array of such
16090 // objects.
16091 if (CheckNontrivialField(NewFD))
16092 NewFD->setInvalidDecl();
16093 }
16094 }
16095
16096 // C++ [class.union]p1: If a union contains a member of reference type,
16097 // the program is ill-formed, except when compiling with MSVC extensions
16098 // enabled.
16099 if (EltTy->isReferenceType()) {
16100 Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
16101 diag::ext_union_member_of_reference_type :
16102 diag::err_union_member_of_reference_type)
16103 << NewFD->getDeclName() << EltTy;
16104 if (!getLangOpts().MicrosoftExt)
16105 NewFD->setInvalidDecl();
16106 }
16107 }
16108 }
16109
16110 // FIXME: We need to pass in the attributes given an AST
16111 // representation, not a parser representation.
16112 if (D) {
16113 // FIXME: The current scope is almost... but not entirely... correct here.
16114 ProcessDeclAttributes(getCurScope(), NewFD, *D);
16115
16116 if (NewFD->hasAttrs())
16117 CheckAlignasUnderalignment(NewFD);
16118 }
16119
16120 // In auto-retain/release, infer strong retension for fields of
16121 // retainable type.
16122 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
16123 NewFD->setInvalidDecl();
16124
16125 if (T.isObjCGCWeak())
16126 Diag(Loc, diag::warn_attribute_weak_on_field);
16127
16128 NewFD->setAccess(AS);
16129 return NewFD;
16130}
16131
16132bool Sema::CheckNontrivialField(FieldDecl *FD) {
16133 assert(FD)((FD) ? static_cast<void> (0) : __assert_fail ("FD", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 16133, __PRETTY_FUNCTION__))
;
16134 assert(getLangOpts().CPlusPlus && "valid check only for C++")((getLangOpts().CPlusPlus && "valid check only for C++"
) ? static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"valid check only for C++\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 16134, __PRETTY_FUNCTION__))
;
16135
16136 if (FD->isInvalidDecl() || FD->getType()->isDependentType())
16137 return false;
16138
16139 QualType EltTy = Context.getBaseElementType(FD->getType());
16140 if (const RecordType *RT = EltTy->getAs<RecordType>()) {
16141 CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
16142 if (RDecl->getDefinition()) {
16143 // We check for copy constructors before constructors
16144 // because otherwise we'll never get complaints about
16145 // copy constructors.
16146
16147 CXXSpecialMember member = CXXInvalid;
16148 // We're required to check for any non-trivial constructors. Since the
16149 // implicit default constructor is suppressed if there are any
16150 // user-declared constructors, we just need to check that there is a
16151 // trivial default constructor and a trivial copy constructor. (We don't
16152 // worry about move constructors here, since this is a C++98 check.)
16153 if (RDecl->hasNonTrivialCopyConstructor())
16154 member = CXXCopyConstructor;
16155 else if (!RDecl->hasTrivialDefaultConstructor())
16156 member = CXXDefaultConstructor;
16157 else if (RDecl->hasNonTrivialCopyAssignment())
16158 member = CXXCopyAssignment;
16159 else if (RDecl->hasNonTrivialDestructor())
16160 member = CXXDestructor;
16161
16162 if (member != CXXInvalid) {
16163 if (!getLangOpts().CPlusPlus11 &&
16164 getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
16165 // Objective-C++ ARC: it is an error to have a non-trivial field of
16166 // a union. However, system headers in Objective-C programs
16167 // occasionally have Objective-C lifetime objects within unions,
16168 // and rather than cause the program to fail, we make those
16169 // members unavailable.
16170 SourceLocation Loc = FD->getLocation();
16171 if (getSourceManager().isInSystemHeader(Loc)) {
16172 if (!FD->hasAttr<UnavailableAttr>())
16173 FD->addAttr(UnavailableAttr::CreateImplicit(Context, "",
16174 UnavailableAttr::IR_ARCFieldWithOwnership, Loc));
16175 return false;
16176 }
16177 }
16178
16179 Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
16180 diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
16181 diag::err_illegal_union_or_anon_struct_member)
16182 << FD->getParent()->isUnion() << FD->getDeclName() << member;
16183 DiagnoseNontrivial(RDecl, member);
16184 return !getLangOpts().CPlusPlus11;
16185 }
16186 }
16187 }
16188
16189 return false;
16190}
16191
16192/// TranslateIvarVisibility - Translate visibility from a token ID to an
16193/// AST enum value.
16194static ObjCIvarDecl::AccessControl
16195TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
16196 switch (ivarVisibility) {
16197 default: llvm_unreachable("Unknown visitibility kind")::llvm::llvm_unreachable_internal("Unknown visitibility kind"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 16197)
;
16198 case tok::objc_private: return ObjCIvarDecl::Private;
16199 case tok::objc_public: return ObjCIvarDecl::Public;
16200 case tok::objc_protected: return ObjCIvarDecl::Protected;
16201 case tok::objc_package: return ObjCIvarDecl::Package;
16202 }
16203}
16204
16205/// ActOnIvar - Each ivar field of an objective-c class is passed into this
16206/// in order to create an IvarDecl object for it.
16207Decl *Sema::ActOnIvar(Scope *S,
16208 SourceLocation DeclStart,
16209 Declarator &D, Expr *BitfieldWidth,
16210 tok::ObjCKeywordKind Visibility) {
16211
16212 IdentifierInfo *II = D.getIdentifier();
16213 Expr *BitWidth = (Expr*)BitfieldWidth;
16214 SourceLocation Loc = DeclStart;
16215 if (II) Loc = D.getIdentifierLoc();
16216
16217 // FIXME: Unnamed fields can be handled in various different ways, for
16218 // example, unnamed unions inject all members into the struct namespace!
16219
16220 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
16221 QualType T = TInfo->getType();
16222
16223 if (BitWidth) {
16224 // 6.7.2.1p3, 6.7.2.1p4
16225 BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get();
16226 if (!BitWidth)
16227 D.setInvalidType();
16228 } else {
16229 // Not a bitfield.
16230
16231 // validate II.
16232
16233 }
16234 if (T->isReferenceType()) {
16235 Diag(Loc, diag::err_ivar_reference_type);
16236 D.setInvalidType();
16237 }
16238 // C99 6.7.2.1p8: A member of a structure or union may have any type other
16239 // than a variably modified type.
16240 else if (T->isVariablyModifiedType()) {
16241 Diag(Loc, diag::err_typecheck_ivar_variable_size);
16242 D.setInvalidType();
16243 }
16244
16245 // Get the visibility (access control) for this ivar.
16246 ObjCIvarDecl::AccessControl ac =
16247 Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
16248 : ObjCIvarDecl::None;
16249 // Must set ivar's DeclContext to its enclosing interface.
16250 ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
16251 if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
16252 return nullptr;
16253 ObjCContainerDecl *EnclosingContext;
16254 if (ObjCImplementationDecl *IMPDecl =
16255 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
16256 if (LangOpts.ObjCRuntime.isFragile()) {
16257 // Case of ivar declared in an implementation. Context is that of its class.
16258 EnclosingContext = IMPDecl->getClassInterface();
16259 assert(EnclosingContext && "Implementation has no class interface!")((EnclosingContext && "Implementation has no class interface!"
) ? static_cast<void> (0) : __assert_fail ("EnclosingContext && \"Implementation has no class interface!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 16259, __PRETTY_FUNCTION__))
;
16260 }
16261 else
16262 EnclosingContext = EnclosingDecl;
16263 } else {
16264 if (ObjCCategoryDecl *CDecl =
16265 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
16266 if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
16267 Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
16268 return nullptr;
16269 }
16270 }
16271 EnclosingContext = EnclosingDecl;
16272 }
16273
16274 // Construct the decl.
16275 ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
16276 DeclStart, Loc, II, T,
16277 TInfo, ac, (Expr *)BitfieldWidth);
16278
16279 if (II) {
16280 NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
16281 ForVisibleRedeclaration);
16282 if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
16283 && !isa<TagDecl>(PrevDecl)) {
16284 Diag(Loc, diag::err_duplicate_member) << II;
16285 Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
16286 NewID->setInvalidDecl();
16287 }
16288 }
16289
16290 // Process attributes attached to the ivar.
16291 ProcessDeclAttributes(S, NewID, D);
16292
16293 if (D.isInvalidType())
16294 NewID->setInvalidDecl();
16295
16296 // In ARC, infer 'retaining' for ivars of retainable type.
16297 if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
16298 NewID->setInvalidDecl();
16299
16300 if (D.getDeclSpec().isModulePrivateSpecified())
16301 NewID->setModulePrivate();
16302
16303 if (II) {
16304 // FIXME: When interfaces are DeclContexts, we'll need to add
16305 // these to the interface.
16306 S->AddDecl(NewID);
16307 IdResolver.AddDecl(NewID);
16308 }
16309
16310 if (LangOpts.ObjCRuntime.isNonFragile() &&
16311 !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
16312 Diag(Loc, diag::warn_ivars_in_interface);
16313
16314 return NewID;
16315}
16316
16317/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
16318/// class and class extensions. For every class \@interface and class
16319/// extension \@interface, if the last ivar is a bitfield of any type,
16320/// then add an implicit `char :0` ivar to the end of that interface.
16321void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
16322 SmallVectorImpl<Decl *> &AllIvarDecls) {
16323 if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
16324 return;
16325
16326 Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
16327 ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
16328
16329 if (!Ivar->isBitField() || Ivar->isZeroLengthBitField(Context))
16330 return;
16331 ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
16332 if (!ID) {
16333 if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
16334 if (!CD->IsClassExtension())
16335 return;
16336 }
16337 // No need to add this to end of @implementation.
16338 else
16339 return;
16340 }
16341 // All conditions are met. Add a new bitfield to the tail end of ivars.
16342 llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
16343 Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
16344
16345 Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
16346 DeclLoc, DeclLoc, nullptr,
16347 Context.CharTy,
16348 Context.getTrivialTypeSourceInfo(Context.CharTy,
16349 DeclLoc),
16350 ObjCIvarDecl::Private, BW,
16351 true);
16352 AllIvarDecls.push_back(Ivar);
16353}
16354
16355void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
16356 ArrayRef<Decl *> Fields, SourceLocation LBrac,
16357 SourceLocation RBrac,
16358 const ParsedAttributesView &Attrs) {
16359 assert(EnclosingDecl && "missing record or interface decl")((EnclosingDecl && "missing record or interface decl"
) ? static_cast<void> (0) : __assert_fail ("EnclosingDecl && \"missing record or interface decl\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 16359, __PRETTY_FUNCTION__))
;
16360
16361 // If this is an Objective-C @implementation or category and we have
16362 // new fields here we should reset the layout of the interface since
16363 // it will now change.
16364 if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
16365 ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
16366 switch (DC->getKind()) {
16367 default: break;
16368 case Decl::ObjCCategory:
16369 Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
16370 break;
16371 case Decl::ObjCImplementation:
16372 Context.
16373 ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
16374 break;
16375 }
16376 }
16377
16378 RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
16379 CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(EnclosingDecl);
16380
16381 // Start counting up the number of named members; make sure to include
16382 // members of anonymous structs and unions in the total.
16383 unsigned NumNamedMembers = 0;
16384 if (Record) {
16385 for (const auto *I : Record->decls()) {
16386 if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I))
16387 if (IFD->getDeclName())
16388 ++NumNamedMembers;
16389 }
16390 }
16391
16392 // Verify that all the fields are okay.
16393 SmallVector<FieldDecl*, 32> RecFields;
16394
16395 for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
16396 i != end; ++i) {
16397 FieldDecl *FD = cast<FieldDecl>(*i);
16398
16399 // Get the type for the field.
16400 const Type *FDTy = FD->getType().getTypePtr();
16401
16402 if (!FD->isAnonymousStructOrUnion()) {
16403 // Remember all fields written by the user.
16404 RecFields.push_back(FD);
16405 }
16406
16407 // If the field is already invalid for some reason, don't emit more
16408 // diagnostics about it.
16409 if (FD->isInvalidDecl()) {
16410 EnclosingDecl->setInvalidDecl();
16411 continue;
16412 }
16413
16414 // C99 6.7.2.1p2:
16415 // A structure or union shall not contain a member with
16416 // incomplete or function type (hence, a structure shall not
16417 // contain an instance of itself, but may contain a pointer to
16418 // an instance of itself), except that the last member of a
16419 // structure with more than one named member may have incomplete
16420 // array type; such a structure (and any union containing,
16421 // possibly recursively, a member that is such a structure)
16422 // shall not be a member of a structure or an element of an
16423 // array.
16424 bool IsLastField = (i + 1 == Fields.end());
16425 if (FDTy->isFunctionType()) {
16426 // Field declared as a function.
16427 Diag(FD->getLocation(), diag::err_field_declared_as_function)
16428 << FD->getDeclName();
16429 FD->setInvalidDecl();
16430 EnclosingDecl->setInvalidDecl();
16431 continue;
16432 } else if (FDTy->isIncompleteArrayType() &&
16433 (Record || isa<ObjCContainerDecl>(EnclosingDecl))) {
16434 if (Record) {
16435 // Flexible array member.
16436 // Microsoft and g++ is more permissive regarding flexible array.
16437 // It will accept flexible array in union and also
16438 // as the sole element of a struct/class.
16439 unsigned DiagID = 0;
16440 if (!Record->isUnion() && !IsLastField) {
16441 Diag(FD->getLocation(), diag::err_flexible_array_not_at_end)
16442 << FD->getDeclName() << FD->getType() << Record->getTagKind();
16443 Diag((*(i + 1))->getLocation(), diag::note_next_field_declaration);
16444 FD->setInvalidDecl();
16445 EnclosingDecl->setInvalidDecl();
16446 continue;
16447 } else if (Record->isUnion())
16448 DiagID = getLangOpts().MicrosoftExt
16449 ? diag::ext_flexible_array_union_ms
16450 : getLangOpts().CPlusPlus
16451 ? diag::ext_flexible_array_union_gnu
16452 : diag::err_flexible_array_union;
16453 else if (NumNamedMembers < 1)
16454 DiagID = getLangOpts().MicrosoftExt
16455 ? diag::ext_flexible_array_empty_aggregate_ms
16456 : getLangOpts().CPlusPlus
16457 ? diag::ext_flexible_array_empty_aggregate_gnu
16458 : diag::err_flexible_array_empty_aggregate;
16459
16460 if (DiagID)
16461 Diag(FD->getLocation(), DiagID) << FD->getDeclName()
16462 << Record->getTagKind();
16463 // While the layout of types that contain virtual bases is not specified
16464 // by the C++ standard, both the Itanium and Microsoft C++ ABIs place
16465 // virtual bases after the derived members. This would make a flexible
16466 // array member declared at the end of an object not adjacent to the end
16467 // of the type.
16468 if (CXXRecord && CXXRecord->getNumVBases() != 0)
16469 Diag(FD->getLocation(), diag::err_flexible_array_virtual_base)
16470 << FD->getDeclName() << Record->getTagKind();
16471 if (!getLangOpts().C99)
16472 Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
16473 << FD->getDeclName() << Record->getTagKind();
16474
16475 // If the element type has a non-trivial destructor, we would not
16476 // implicitly destroy the elements, so disallow it for now.
16477 //
16478 // FIXME: GCC allows this. We should probably either implicitly delete
16479 // the destructor of the containing class, or just allow this.
16480 QualType BaseElem = Context.getBaseElementType(FD->getType());
16481 if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) {
16482 Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor)
16483 << FD->getDeclName() << FD->getType();
16484 FD->setInvalidDecl();
16485 EnclosingDecl->setInvalidDecl();
16486 continue;
16487 }
16488 // Okay, we have a legal flexible array member at the end of the struct.
16489 Record->setHasFlexibleArrayMember(true);
16490 } else {
16491 // In ObjCContainerDecl ivars with incomplete array type are accepted,
16492 // unless they are followed by another ivar. That check is done
16493 // elsewhere, after synthesized ivars are known.
16494 }
16495 } else if (!FDTy->isDependentType() &&
16496 RequireCompleteType(FD->getLocation(), FD->getType(),
16497 diag::err_field_incomplete)) {
16498 // Incomplete type
16499 FD->setInvalidDecl();
16500 EnclosingDecl->setInvalidDecl();
16501 continue;
16502 } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
16503 if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) {
16504 // A type which contains a flexible array member is considered to be a
16505 // flexible array member.
16506 Record->setHasFlexibleArrayMember(true);
16507 if (!Record->isUnion()) {
16508 // If this is a struct/class and this is not the last element, reject
16509 // it. Note that GCC supports variable sized arrays in the middle of
16510 // structures.
16511 if (!IsLastField)
16512 Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
16513 << FD->getDeclName() << FD->getType();
16514 else {
16515 // We support flexible arrays at the end of structs in
16516 // other structs as an extension.
16517 Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
16518 << FD->getDeclName();
16519 }
16520 }
16521 }
16522 if (isa<ObjCContainerDecl>(EnclosingDecl) &&
16523 RequireNonAbstractType(FD->getLocation(), FD->getType(),
16524 diag::err_abstract_type_in_decl,
16525 AbstractIvarType)) {
16526 // Ivars can not have abstract class types
16527 FD->setInvalidDecl();
16528 }
16529 if (Record && FDTTy->getDecl()->hasObjectMember())
16530 Record->setHasObjectMember(true);
16531 if (Record && FDTTy->getDecl()->hasVolatileMember())
16532 Record->setHasVolatileMember(true);
16533 } else if (FDTy->isObjCObjectType()) {
16534 /// A field cannot be an Objective-c object
16535 Diag(FD->getLocation(), diag::err_statically_allocated_object)
16536 << FixItHint::CreateInsertion(FD->getLocation(), "*");
16537 QualType T = Context.getObjCObjectPointerType(FD->getType());
16538 FD->setType(T);
16539 } else if (Record && Record->isUnion() &&
16540 FD->getType().hasNonTrivialObjCLifetime() &&
16541 getSourceManager().isInSystemHeader(FD->getLocation()) &&
16542 !getLangOpts().CPlusPlus && !FD->hasAttr<UnavailableAttr>() &&
16543 (FD->getType().getObjCLifetime() != Qualifiers::OCL_Strong ||
16544 !Context.hasDirectOwnershipQualifier(FD->getType()))) {
16545 // For backward compatibility, fields of C unions declared in system
16546 // headers that have non-trivial ObjC ownership qualifications are marked
16547 // as unavailable unless the qualifier is explicit and __strong. This can
16548 // break ABI compatibility between programs compiled with ARC and MRR, but
16549 // is a better option than rejecting programs using those unions under
16550 // ARC.
16551 FD->addAttr(UnavailableAttr::CreateImplicit(
16552 Context, "", UnavailableAttr::IR_ARCFieldWithOwnership,
16553 FD->getLocation()));
16554 } else if (getLangOpts().ObjC &&
16555 getLangOpts().getGC() != LangOptions::NonGC &&
16556 Record && !Record->hasObjectMember()) {
16557 if (FD->getType()->isObjCObjectPointerType() ||
16558 FD->getType().isObjCGCStrong())
16559 Record->setHasObjectMember(true);
16560 else if (Context.getAsArrayType(FD->getType())) {
16561 QualType BaseType = Context.getBaseElementType(FD->getType());
16562 if (BaseType->isRecordType() &&
16563 BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
16564 Record->setHasObjectMember(true);
16565 else if (BaseType->isObjCObjectPointerType() ||
16566 BaseType.isObjCGCStrong())
16567 Record->setHasObjectMember(true);
16568 }
16569 }
16570
16571 if (Record && !getLangOpts().CPlusPlus &&
16572 !shouldIgnoreForRecordTriviality(FD)) {
16573 QualType FT = FD->getType();
16574 if (FT.isNonTrivialToPrimitiveDefaultInitialize()) {
16575 Record->setNonTrivialToPrimitiveDefaultInitialize(true);
16576 if (FT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() ||
16577 Record->isUnion())
16578 Record->setHasNonTrivialToPrimitiveDefaultInitializeCUnion(true);
16579 }
16580 QualType::PrimitiveCopyKind PCK = FT.isNonTrivialToPrimitiveCopy();
16581 if (PCK != QualType::PCK_Trivial && PCK != QualType::PCK_VolatileTrivial) {
16582 Record->setNonTrivialToPrimitiveCopy(true);
16583 if (FT.hasNonTrivialToPrimitiveCopyCUnion() || Record->isUnion())
16584 Record->setHasNonTrivialToPrimitiveCopyCUnion(true);
16585 }
16586 if (FT.isDestructedType()) {
16587 Record->setNonTrivialToPrimitiveDestroy(true);
16588 Record->setParamDestroyedInCallee(true);
16589 if (FT.hasNonTrivialToPrimitiveDestructCUnion() || Record->isUnion())
16590 Record->setHasNonTrivialToPrimitiveDestructCUnion(true);
16591 }
16592
16593 if (const auto *RT = FT->getAs<RecordType>()) {
16594 if (RT->getDecl()->getArgPassingRestrictions() ==
16595 RecordDecl::APK_CanNeverPassInRegs)
16596 Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
16597 } else if (FT.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak)
16598 Record->setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs);
16599 }
16600
16601 if (Record && FD->getType().isVolatileQualified())
16602 Record->setHasVolatileMember(true);
16603 // Keep track of the number of named members.
16604 if (FD->getIdentifier())
16605 ++NumNamedMembers;
16606 }
16607
16608 // Okay, we successfully defined 'Record'.
16609 if (Record) {
16610 bool Completed = false;
16611 if (CXXRecord) {
16612 if (!CXXRecord->isInvalidDecl()) {
16613 // Set access bits correctly on the directly-declared conversions.
16614 for (CXXRecordDecl::conversion_iterator
16615 I = CXXRecord->conversion_begin(),
16616 E = CXXRecord->conversion_end(); I != E; ++I)
16617 I.setAccess((*I)->getAccess());
16618 }
16619
16620 if (!CXXRecord->isDependentType()) {
16621 // Add any implicitly-declared members to this class.
16622 AddImplicitlyDeclaredMembersToClass(CXXRecord);
16623
16624 if (!CXXRecord->isInvalidDecl()) {
16625 // If we have virtual base classes, we may end up finding multiple
16626 // final overriders for a given virtual function. Check for this
16627 // problem now.
16628 if (CXXRecord->getNumVBases()) {
16629 CXXFinalOverriderMap FinalOverriders;
16630 CXXRecord->getFinalOverriders(FinalOverriders);
16631
16632 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
16633 MEnd = FinalOverriders.end();
16634 M != MEnd; ++M) {
16635 for (OverridingMethods::iterator SO = M->second.begin(),
16636 SOEnd = M->second.end();
16637 SO != SOEnd; ++SO) {
16638 assert(SO->second.size() > 0 &&((SO->second.size() > 0 && "Virtual function without overriding functions?"
) ? static_cast<void> (0) : __assert_fail ("SO->second.size() > 0 && \"Virtual function without overriding functions?\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 16639, __PRETTY_FUNCTION__))
16639 "Virtual function without overriding functions?")((SO->second.size() > 0 && "Virtual function without overriding functions?"
) ? static_cast<void> (0) : __assert_fail ("SO->second.size() > 0 && \"Virtual function without overriding functions?\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 16639, __PRETTY_FUNCTION__))
;
16640 if (SO->second.size() == 1)
16641 continue;
16642
16643 // C++ [class.virtual]p2:
16644 // In a derived class, if a virtual member function of a base
16645 // class subobject has more than one final overrider the
16646 // program is ill-formed.
16647 Diag(Record->getLocation(), diag::err_multiple_final_overriders)
16648 << (const NamedDecl *)M->first << Record;
16649 Diag(M->first->getLocation(),
16650 diag::note_overridden_virtual_function);
16651 for (OverridingMethods::overriding_iterator
16652 OM = SO->second.begin(),
16653 OMEnd = SO->second.end();
16654 OM != OMEnd; ++OM)
16655 Diag(OM->Method->getLocation(), diag::note_final_overrider)
16656 << (const NamedDecl *)M->first << OM->Method->getParent();
16657
16658 Record->setInvalidDecl();
16659 }
16660 }
16661 CXXRecord->completeDefinition(&FinalOverriders);
16662 Completed = true;
16663 }
16664 }
16665 }
16666 }
16667
16668 if (!Completed)
16669 Record->completeDefinition();
16670
16671 // Handle attributes before checking the layout.
16672 ProcessDeclAttributeList(S, Record, Attrs);
16673
16674 // We may have deferred checking for a deleted destructor. Check now.
16675 if (CXXRecord) {
16676 auto *Dtor = CXXRecord->getDestructor();
16677 if (Dtor && Dtor->isImplicit() &&
16678 ShouldDeleteSpecialMember(Dtor, CXXDestructor)) {
16679 CXXRecord->setImplicitDestructorIsDeleted();
16680 SetDeclDeleted(Dtor, CXXRecord->getLocation());
16681 }
16682 }
16683
16684 if (Record->hasAttrs()) {
16685 CheckAlignasUnderalignment(Record);
16686
16687 if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>())
16688 checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record),
16689 IA->getRange(), IA->getBestCase(),
16690 IA->getSemanticSpelling());
16691 }
16692
16693 // Check if the structure/union declaration is a type that can have zero
16694 // size in C. For C this is a language extension, for C++ it may cause
16695 // compatibility problems.
16696 bool CheckForZeroSize;
16697 if (!getLangOpts().CPlusPlus) {
16698 CheckForZeroSize = true;
16699 } else {
16700 // For C++ filter out types that cannot be referenced in C code.
16701 CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
16702 CheckForZeroSize =
16703 CXXRecord->getLexicalDeclContext()->isExternCContext() &&
16704 !CXXRecord->isDependentType() &&
16705 CXXRecord->isCLike();
16706 }
16707 if (CheckForZeroSize) {
16708 bool ZeroSize = true;
16709 bool IsEmpty = true;
16710 unsigned NonBitFields = 0;
16711 for (RecordDecl::field_iterator I = Record->field_begin(),
16712 E = Record->field_end();
16713 (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
16714 IsEmpty = false;
16715 if (I->isUnnamedBitfield()) {
16716 if (!I->isZeroLengthBitField(Context))
16717 ZeroSize = false;
16718 } else {
16719 ++NonBitFields;
16720 QualType FieldType = I->getType();
16721 if (FieldType->isIncompleteType() ||
16722 !Context.getTypeSizeInChars(FieldType).isZero())
16723 ZeroSize = false;
16724 }
16725 }
16726
16727 // Empty structs are an extension in C (C99 6.7.2.1p7). They are
16728 // allowed in C++, but warn if its declaration is inside
16729 // extern "C" block.
16730 if (ZeroSize) {
16731 Diag(RecLoc, getLangOpts().CPlusPlus ?
16732 diag::warn_zero_size_struct_union_in_extern_c :
16733 diag::warn_zero_size_struct_union_compat)
16734 << IsEmpty << Record->isUnion() << (NonBitFields > 1);
16735 }
16736
16737 // Structs without named members are extension in C (C99 6.7.2.1p7),
16738 // but are accepted by GCC.
16739 if (NonBitFields == 0 && !getLangOpts().CPlusPlus) {
16740 Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union :
16741 diag::ext_no_named_members_in_struct_union)
16742 << Record->isUnion();
16743 }
16744 }
16745 } else {
16746 ObjCIvarDecl **ClsFields =
16747 reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
16748 if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
16749 ID->setEndOfDefinitionLoc(RBrac);
16750 // Add ivar's to class's DeclContext.
16751 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
16752 ClsFields[i]->setLexicalDeclContext(ID);
16753 ID->addDecl(ClsFields[i]);
16754 }
16755 // Must enforce the rule that ivars in the base classes may not be
16756 // duplicates.
16757 if (ID->getSuperClass())
16758 DiagnoseDuplicateIvars(ID, ID->getSuperClass());
16759 } else if (ObjCImplementationDecl *IMPDecl =
16760 dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
16761 assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl")((IMPDecl && "ActOnFields - missing ObjCImplementationDecl"
) ? static_cast<void> (0) : __assert_fail ("IMPDecl && \"ActOnFields - missing ObjCImplementationDecl\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 16761, __PRETTY_FUNCTION__))
;
16762 for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
16763 // Ivar declared in @implementation never belongs to the implementation.
16764 // Only it is in implementation's lexical context.
16765 ClsFields[I]->setLexicalDeclContext(IMPDecl);
16766 CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
16767 IMPDecl->setIvarLBraceLoc(LBrac);
16768 IMPDecl->setIvarRBraceLoc(RBrac);
16769 } else if (ObjCCategoryDecl *CDecl =
16770 dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
16771 // case of ivars in class extension; all other cases have been
16772 // reported as errors elsewhere.
16773 // FIXME. Class extension does not have a LocEnd field.
16774 // CDecl->setLocEnd(RBrac);
16775 // Add ivar's to class extension's DeclContext.
16776 // Diagnose redeclaration of private ivars.
16777 ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
16778 for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
16779 if (IDecl) {
16780 if (const ObjCIvarDecl *ClsIvar =
16781 IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
16782 Diag(ClsFields[i]->getLocation(),
16783 diag::err_duplicate_ivar_declaration);
16784 Diag(ClsIvar->getLocation(), diag::note_previous_definition);
16785 continue;
16786 }
16787 for (const auto *Ext : IDecl->known_extensions()) {
16788 if (const ObjCIvarDecl *ClsExtIvar
16789 = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
16790 Diag(ClsFields[i]->getLocation(),
16791 diag::err_duplicate_ivar_declaration);
16792 Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
16793 continue;
16794 }
16795 }
16796 }
16797 ClsFields[i]->setLexicalDeclContext(CDecl);
16798 CDecl->addDecl(ClsFields[i]);
16799 }
16800 CDecl->setIvarLBraceLoc(LBrac);
16801 CDecl->setIvarRBraceLoc(RBrac);
16802 }
16803 }
16804}
16805
16806/// Determine whether the given integral value is representable within
16807/// the given type T.
16808static bool isRepresentableIntegerValue(ASTContext &Context,
16809 llvm::APSInt &Value,
16810 QualType T) {
16811 assert((T->isIntegralType(Context) || T->isEnumeralType()) &&(((T->isIntegralType(Context) || T->isEnumeralType()) &&
"Integral type required!") ? static_cast<void> (0) : __assert_fail
("(T->isIntegralType(Context) || T->isEnumeralType()) && \"Integral type required!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 16812, __PRETTY_FUNCTION__))
16812 "Integral type required!")(((T->isIntegralType(Context) || T->isEnumeralType()) &&
"Integral type required!") ? static_cast<void> (0) : __assert_fail
("(T->isIntegralType(Context) || T->isEnumeralType()) && \"Integral type required!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 16812, __PRETTY_FUNCTION__))
;
16813 unsigned BitWidth = Context.getIntWidth(T);
16814
16815 if (Value.isUnsigned() || Value.isNonNegative()) {
16816 if (T->isSignedIntegerOrEnumerationType())
16817 --BitWidth;
16818 return Value.getActiveBits() <= BitWidth;
16819 }
16820 return Value.getMinSignedBits() <= BitWidth;
16821}
16822
16823// Given an integral type, return the next larger integral type
16824// (or a NULL type of no such type exists).
16825static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
16826 // FIXME: Int128/UInt128 support, which also needs to be introduced into
16827 // enum checking below.
16828 assert((T->isIntegralType(Context) ||(((T->isIntegralType(Context) || T->isEnumeralType()) &&
"Integral type required!") ? static_cast<void> (0) : __assert_fail
("(T->isIntegralType(Context) || T->isEnumeralType()) && \"Integral type required!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 16829, __PRETTY_FUNCTION__))
16829 T->isEnumeralType()) && "Integral type required!")(((T->isIntegralType(Context) || T->isEnumeralType()) &&
"Integral type required!") ? static_cast<void> (0) : __assert_fail
("(T->isIntegralType(Context) || T->isEnumeralType()) && \"Integral type required!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 16829, __PRETTY_FUNCTION__))
;
16830 const unsigned NumTypes = 4;
16831 QualType SignedIntegralTypes[NumTypes] = {
16832 Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
16833 };
16834 QualType UnsignedIntegralTypes[NumTypes] = {
16835 Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
16836 Context.UnsignedLongLongTy
16837 };
16838
16839 unsigned BitWidth = Context.getTypeSize(T);
16840 QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
16841 : UnsignedIntegralTypes;
16842 for (unsigned I = 0; I != NumTypes; ++I)
16843 if (Context.getTypeSize(Types[I]) > BitWidth)
16844 return Types[I];
16845
16846 return QualType();
16847}
16848
16849EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
16850 EnumConstantDecl *LastEnumConst,
16851 SourceLocation IdLoc,
16852 IdentifierInfo *Id,
16853 Expr *Val) {
16854 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
16855 llvm::APSInt EnumVal(IntWidth);
16856 QualType EltTy;
16857
16858 if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
16859 Val = nullptr;
16860
16861 if (Val)
16862 Val = DefaultLvalueConversion(Val).get();
16863
16864 if (Val) {
16865 if (Enum->isDependentType() || Val->isTypeDependent())
16866 EltTy = Context.DependentTy;
16867 else {
16868 if (getLangOpts().CPlusPlus11 && Enum->isFixed()) {
16869 // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
16870 // constant-expression in the enumerator-definition shall be a converted
16871 // constant expression of the underlying type.
16872 EltTy = Enum->getIntegerType();
16873 ExprResult Converted =
16874 CheckConvertedConstantExpression(Val, EltTy, EnumVal,
16875 CCEK_Enumerator);
16876 if (Converted.isInvalid())
16877 Val = nullptr;
16878 else
16879 Val = Converted.get();
16880 } else if (!Val->isValueDependent() &&
16881 !(Val = VerifyIntegerConstantExpression(Val,
16882 &EnumVal).get())) {
16883 // C99 6.7.2.2p2: Make sure we have an integer constant expression.
16884 } else {
16885 if (Enum->isComplete()) {
16886 EltTy = Enum->getIntegerType();
16887
16888 // In Obj-C and Microsoft mode, require the enumeration value to be
16889 // representable in the underlying type of the enumeration. In C++11,
16890 // we perform a non-narrowing conversion as part of converted constant
16891 // expression checking.
16892 if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
16893 if (Context.getTargetInfo()
16894 .getTriple()
16895 .isWindowsMSVCEnvironment()) {
16896 Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
16897 } else {
16898 Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
16899 }
16900 }
16901
16902 // Cast to the underlying type.
16903 Val = ImpCastExprToType(Val, EltTy,
16904 EltTy->isBooleanType() ? CK_IntegralToBoolean
16905 : CK_IntegralCast)
16906 .get();
16907 } else if (getLangOpts().CPlusPlus) {
16908 // C++11 [dcl.enum]p5:
16909 // If the underlying type is not fixed, the type of each enumerator
16910 // is the type of its initializing value:
16911 // - If an initializer is specified for an enumerator, the
16912 // initializing value has the same type as the expression.
16913 EltTy = Val->getType();
16914 } else {
16915 // C99 6.7.2.2p2:
16916 // The expression that defines the value of an enumeration constant
16917 // shall be an integer constant expression that has a value
16918 // representable as an int.
16919
16920 // Complain if the value is not representable in an int.
16921 if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
16922 Diag(IdLoc, diag::ext_enum_value_not_int)
16923 << EnumVal.toString(10) << Val->getSourceRange()
16924 << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
16925 else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
16926 // Force the type of the expression to 'int'.
16927 Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get();
16928 }
16929 EltTy = Val->getType();
16930 }
16931 }
16932 }
16933 }
16934
16935 if (!Val) {
16936 if (Enum->isDependentType())
16937 EltTy = Context.DependentTy;
16938 else if (!LastEnumConst) {
16939 // C++0x [dcl.enum]p5:
16940 // If the underlying type is not fixed, the type of each enumerator
16941 // is the type of its initializing value:
16942 // - If no initializer is specified for the first enumerator, the
16943 // initializing value has an unspecified integral type.
16944 //
16945 // GCC uses 'int' for its unspecified integral type, as does
16946 // C99 6.7.2.2p3.
16947 if (Enum->isFixed()) {
16948 EltTy = Enum->getIntegerType();
16949 }
16950 else {
16951 EltTy = Context.IntTy;
16952 }
16953 } else {
16954 // Assign the last value + 1.
16955 EnumVal = LastEnumConst->getInitVal();
16956 ++EnumVal;
16957 EltTy = LastEnumConst->getType();
16958
16959 // Check for overflow on increment.
16960 if (EnumVal < LastEnumConst->getInitVal()) {
16961 // C++0x [dcl.enum]p5:
16962 // If the underlying type is not fixed, the type of each enumerator
16963 // is the type of its initializing value:
16964 //
16965 // - Otherwise the type of the initializing value is the same as
16966 // the type of the initializing value of the preceding enumerator
16967 // unless the incremented value is not representable in that type,
16968 // in which case the type is an unspecified integral type
16969 // sufficient to contain the incremented value. If no such type
16970 // exists, the program is ill-formed.
16971 QualType T = getNextLargerIntegralType(Context, EltTy);
16972 if (T.isNull() || Enum->isFixed()) {
16973 // There is no integral type larger enough to represent this
16974 // value. Complain, then allow the value to wrap around.
16975 EnumVal = LastEnumConst->getInitVal();
16976 EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
16977 ++EnumVal;
16978 if (Enum->isFixed())
16979 // When the underlying type is fixed, this is ill-formed.
16980 Diag(IdLoc, diag::err_enumerator_wrapped)
16981 << EnumVal.toString(10)
16982 << EltTy;
16983 else
16984 Diag(IdLoc, diag::ext_enumerator_increment_too_large)
16985 << EnumVal.toString(10);
16986 } else {
16987 EltTy = T;
16988 }
16989
16990 // Retrieve the last enumerator's value, extent that type to the
16991 // type that is supposed to be large enough to represent the incremented
16992 // value, then increment.
16993 EnumVal = LastEnumConst->getInitVal();
16994 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
16995 EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
16996 ++EnumVal;
16997
16998 // If we're not in C++, diagnose the overflow of enumerator values,
16999 // which in C99 means that the enumerator value is not representable in
17000 // an int (C99 6.7.2.2p2). However, we support GCC's extension that
17001 // permits enumerator values that are representable in some larger
17002 // integral type.
17003 if (!getLangOpts().CPlusPlus && !T.isNull())
17004 Diag(IdLoc, diag::warn_enum_value_overflow);
17005 } else if (!getLangOpts().CPlusPlus &&
17006 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
17007 // Enforce C99 6.7.2.2p2 even when we compute the next value.
17008 Diag(IdLoc, diag::ext_enum_value_not_int)
17009 << EnumVal.toString(10) << 1;
17010 }
17011 }
17012 }
17013
17014 if (!EltTy->isDependentType()) {
17015 // Make the enumerator value match the signedness and size of the
17016 // enumerator's type.
17017 EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
17018 EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
17019 }
17020
17021 return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
17022 Val, EnumVal);
17023}
17024
17025Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II,
17026 SourceLocation IILoc) {
17027 if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) ||
17028 !getLangOpts().CPlusPlus)
17029 return SkipBodyInfo();
17030
17031 // We have an anonymous enum definition. Look up the first enumerator to
17032 // determine if we should merge the definition with an existing one and
17033 // skip the body.
17034 NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName,
17035 forRedeclarationInCurContext());
17036 auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl);
17037 if (!PrevECD)
17038 return SkipBodyInfo();
17039
17040 EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext());
17041 NamedDecl *Hidden;
17042 if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) {
17043 SkipBodyInfo Skip;
17044 Skip.Previous = Hidden;
17045 return Skip;
17046 }
17047
17048 return SkipBodyInfo();
17049}
17050
17051Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
17052 SourceLocation IdLoc, IdentifierInfo *Id,
17053 const ParsedAttributesView &Attrs,
17054 SourceLocation EqualLoc, Expr *Val) {
17055 EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
17056 EnumConstantDecl *LastEnumConst =
17057 cast_or_null<EnumConstantDecl>(lastEnumConst);
17058
17059 // The scope passed in may not be a decl scope. Zip up the scope tree until
17060 // we find one that is.
17061 S = getNonFieldDeclScope(S);
17062
17063 // Verify that there isn't already something declared with this name in this
17064 // scope.
17065 LookupResult R(*this, Id, IdLoc, LookupOrdinaryName, ForVisibleRedeclaration);
17066 LookupName(R, S);
17067 NamedDecl *PrevDecl = R.getAsSingle<NamedDecl>();
17068
17069 if (PrevDecl && PrevDecl->isTemplateParameter()) {
17070 // Maybe we will complain about the shadowed template parameter.
17071 DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
17072 // Just pretend that we didn't see the previous declaration.
17073 PrevDecl = nullptr;
17074 }
17075
17076 // C++ [class.mem]p15:
17077 // If T is the name of a class, then each of the following shall have a name
17078 // different from T:
17079 // - every enumerator of every member of class T that is an unscoped
17080 // enumerated type
17081 if (getLangOpts().CPlusPlus && !TheEnumDecl->isScoped())
17082 DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(),
17083 DeclarationNameInfo(Id, IdLoc));
17084
17085 EnumConstantDecl *New =
17086 CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
17087 if (!New)
17088 return nullptr;
17089
17090 if (PrevDecl) {
17091 if (!TheEnumDecl->isScoped() && isa<ValueDecl>(PrevDecl)) {
17092 // Check for other kinds of shadowing not already handled.
17093 CheckShadow(New, PrevDecl, R);
17094 }
17095
17096 // When in C++, we may get a TagDecl with the same name; in this case the
17097 // enum constant will 'hide' the tag.
17098 assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&(((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
"Received TagDecl when not in C++!") ? static_cast<void>
(0) : __assert_fail ("(getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) && \"Received TagDecl when not in C++!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 17099, __PRETTY_FUNCTION__))
17099 "Received TagDecl when not in C++!")(((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
"Received TagDecl when not in C++!") ? static_cast<void>
(0) : __assert_fail ("(getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) && \"Received TagDecl when not in C++!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 17099, __PRETTY_FUNCTION__))
;
17100 if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
17101 if (isa<EnumConstantDecl>(PrevDecl))
17102 Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
17103 else
17104 Diag(IdLoc, diag::err_redefinition) << Id;
17105 notePreviousDefinition(PrevDecl, IdLoc);
17106 return nullptr;
17107 }
17108 }
17109
17110 // Process attributes.
17111 ProcessDeclAttributeList(S, New, Attrs);
17112 AddPragmaAttributes(S, New);
17113
17114 // Register this decl in the current scope stack.
17115 New->setAccess(TheEnumDecl->getAccess());
17116 PushOnScopeChains(New, S);
17117
17118 ActOnDocumentableDecl(New);
17119
17120 return New;
17121}
17122
17123// Returns true when the enum initial expression does not trigger the
17124// duplicate enum warning. A few common cases are exempted as follows:
17125// Element2 = Element1
17126// Element2 = Element1 + 1
17127// Element2 = Element1 - 1
17128// Where Element2 and Element1 are from the same enum.
17129static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
17130 Expr *InitExpr = ECD->getInitExpr();
17131 if (!InitExpr)
17132 return true;
17133 InitExpr = InitExpr->IgnoreImpCasts();
17134
17135 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
17136 if (!BO->isAdditiveOp())
17137 return true;
17138 IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
17139 if (!IL)
17140 return true;
17141 if (IL->getValue() != 1)
17142 return true;
17143
17144 InitExpr = BO->getLHS();
17145 }
17146
17147 // This checks if the elements are from the same enum.
17148 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
17149 if (!DRE)
17150 return true;
17151
17152 EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
17153 if (!EnumConstant)
17154 return true;
17155
17156 if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
17157 Enum)
17158 return true;
17159
17160 return false;
17161}
17162
17163// Emits a warning when an element is implicitly set a value that
17164// a previous element has already been set to.
17165static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
17166 EnumDecl *Enum, QualType EnumType) {
17167 // Avoid anonymous enums
17168 if (!Enum->getIdentifier())
17169 return;
17170
17171 // Only check for small enums.
17172 if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
17173 return;
17174
17175 if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation()))
17176 return;
17177
17178 typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
17179 typedef SmallVector<std::unique_ptr<ECDVector>, 3> DuplicatesVector;
17180
17181 typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
17182 typedef std::unordered_map<int64_t, DeclOrVector> ValueToVectorMap;
17183
17184 // Use int64_t as a key to avoid needing special handling for DenseMap keys.
17185 auto EnumConstantToKey = [](const EnumConstantDecl *D) {
17186 llvm::APSInt Val = D->getInitVal();
17187 return Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue();
17188 };
17189
17190 DuplicatesVector DupVector;
17191 ValueToVectorMap EnumMap;
17192
17193 // Populate the EnumMap with all values represented by enum constants without
17194 // an initializer.
17195 for (auto *Element : Elements) {
17196 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Element);
17197
17198 // Null EnumConstantDecl means a previous diagnostic has been emitted for
17199 // this constant. Skip this enum since it may be ill-formed.
17200 if (!ECD) {
17201 return;
17202 }
17203
17204 // Constants with initalizers are handled in the next loop.
17205 if (ECD->getInitExpr())
17206 continue;
17207
17208 // Duplicate values are handled in the next loop.
17209 EnumMap.insert({EnumConstantToKey(ECD), ECD});
17210 }
17211
17212 if (EnumMap.size() == 0)
17213 return;
17214
17215 // Create vectors for any values that has duplicates.
17216 for (auto *Element : Elements) {
17217 // The last loop returned if any constant was null.
17218 EnumConstantDecl *ECD = cast<EnumConstantDecl>(Element);
17219 if (!ValidDuplicateEnum(ECD, Enum))
17220 continue;
17221
17222 auto Iter = EnumMap.find(EnumConstantToKey(ECD));
17223 if (Iter == EnumMap.end())
17224 continue;
17225
17226 DeclOrVector& Entry = Iter->second;
17227 if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
17228 // Ensure constants are different.
17229 if (D == ECD)
17230 continue;
17231
17232 // Create new vector and push values onto it.
17233 auto Vec = std::make_unique<ECDVector>();
17234 Vec->push_back(D);
17235 Vec->push_back(ECD);
17236
17237 // Update entry to point to the duplicates vector.
17238 Entry = Vec.get();
17239
17240 // Store the vector somewhere we can consult later for quick emission of
17241 // diagnostics.
17242 DupVector.emplace_back(std::move(Vec));
17243 continue;
17244 }
17245
17246 ECDVector *Vec = Entry.get<ECDVector*>();
17247 // Make sure constants are not added more than once.
17248 if (*Vec->begin() == ECD)
17249 continue;
17250
17251 Vec->push_back(ECD);
17252 }
17253
17254 // Emit diagnostics.
17255 for (const auto &Vec : DupVector) {
17256 assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.")((Vec->size() > 1 && "ECDVector should have at least 2 elements."
) ? static_cast<void> (0) : __assert_fail ("Vec->size() > 1 && \"ECDVector should have at least 2 elements.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 17256, __PRETTY_FUNCTION__))
;
17257
17258 // Emit warning for one enum constant.
17259 auto *FirstECD = Vec->front();
17260 S.Diag(FirstECD->getLocation(), diag::warn_duplicate_enum_values)
17261 << FirstECD << FirstECD->getInitVal().toString(10)
17262 << FirstECD->getSourceRange();
17263
17264 // Emit one note for each of the remaining enum constants with
17265 // the same value.
17266 for (auto *ECD : llvm::make_range(Vec->begin() + 1, Vec->end()))
17267 S.Diag(ECD->getLocation(), diag::note_duplicate_element)
17268 << ECD << ECD->getInitVal().toString(10)
17269 << ECD->getSourceRange();
17270 }
17271}
17272
17273bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val,
17274 bool AllowMask) const {
17275 assert(ED->isClosedFlag() && "looking for value in non-flag or open enum")((ED->isClosedFlag() && "looking for value in non-flag or open enum"
) ? static_cast<void> (0) : __assert_fail ("ED->isClosedFlag() && \"looking for value in non-flag or open enum\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 17275, __PRETTY_FUNCTION__))
;
17276 assert(ED->isCompleteDefinition() && "expected enum definition")((ED->isCompleteDefinition() && "expected enum definition"
) ? static_cast<void> (0) : __assert_fail ("ED->isCompleteDefinition() && \"expected enum definition\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 17276, __PRETTY_FUNCTION__))
;
17277
17278 auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt()));
17279 llvm::APInt &FlagBits = R.first->second;
17280
17281 if (R.second) {
17282 for (auto *E : ED->enumerators()) {
17283 const auto &EVal = E->getInitVal();
17284 // Only single-bit enumerators introduce new flag values.
17285 if (EVal.isPowerOf2())
17286 FlagBits = FlagBits.zextOrSelf(EVal.getBitWidth()) | EVal;
17287 }
17288 }
17289
17290 // A value is in a flag enum if either its bits are a subset of the enum's
17291 // flag bits (the first condition) or we are allowing masks and the same is
17292 // true of its complement (the second condition). When masks are allowed, we
17293 // allow the common idiom of ~(enum1 | enum2) to be a valid enum value.
17294 //
17295 // While it's true that any value could be used as a mask, the assumption is
17296 // that a mask will have all of the insignificant bits set. Anything else is
17297 // likely a logic error.
17298 llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth());
17299 return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val));
17300}
17301
17302void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange,
17303 Decl *EnumDeclX, ArrayRef<Decl *> Elements, Scope *S,
17304 const ParsedAttributesView &Attrs) {
17305 EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
17306 QualType EnumType = Context.getTypeDeclType(Enum);
17307
17308 ProcessDeclAttributeList(S, Enum, Attrs);
17309
17310 if (Enum->isDependentType()) {
17311 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
17312 EnumConstantDecl *ECD =
17313 cast_or_null<EnumConstantDecl>(Elements[i]);
17314 if (!ECD) continue;
17315
17316 ECD->setType(EnumType);
17317 }
17318
17319 Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
17320 return;
17321 }
17322
17323 // TODO: If the result value doesn't fit in an int, it must be a long or long
17324 // long value. ISO C does not support this, but GCC does as an extension,
17325 // emit a warning.
17326 unsigned IntWidth = Context.getTargetInfo().getIntWidth();
17327 unsigned CharWidth = Context.getTargetInfo().getCharWidth();
17328 unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
17329
17330 // Verify that all the values are okay, compute the size of the values, and
17331 // reverse the list.
17332 unsigned NumNegativeBits = 0;
17333 unsigned NumPositiveBits = 0;
17334
17335 // Keep track of whether all elements have type int.
17336 bool AllElementsInt = true;
17337
17338 for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
17339 EnumConstantDecl *ECD =
17340 cast_or_null<EnumConstantDecl>(Elements[i]);
17341 if (!ECD) continue; // Already issued a diagnostic.
17342
17343 const llvm::APSInt &InitVal = ECD->getInitVal();
17344
17345 // Keep track of the size of positive and negative values.
17346 if (InitVal.isUnsigned() || InitVal.isNonNegative())
17347 NumPositiveBits = std::max(NumPositiveBits,
17348 (unsigned)InitVal.getActiveBits());
17349 else
17350 NumNegativeBits = std::max(NumNegativeBits,
17351 (unsigned)InitVal.getMinSignedBits());
17352
17353 // Keep track of whether every enum element has type int (very common).
17354 if (AllElementsInt)
17355 AllElementsInt = ECD->getType() == Context.IntTy;
17356 }
17357
17358 // Figure out the type that should be used for this enum.
17359 QualType BestType;
17360 unsigned BestWidth;
17361
17362 // C++0x N3000 [conv.prom]p3:
17363 // An rvalue of an unscoped enumeration type whose underlying
17364 // type is not fixed can be converted to an rvalue of the first
17365 // of the following types that can represent all the values of
17366 // the enumeration: int, unsigned int, long int, unsigned long
17367 // int, long long int, or unsigned long long int.
17368 // C99 6.4.4.3p2:
17369 // An identifier declared as an enumeration constant has type int.
17370 // The C99 rule is modified by a gcc extension
17371 QualType BestPromotionType;
17372
17373 bool Packed = Enum->hasAttr<PackedAttr>();
17374 // -fshort-enums is the equivalent to specifying the packed attribute on all
17375 // enum definitions.
17376 if (LangOpts.ShortEnums)
17377 Packed = true;
17378
17379 // If the enum already has a type because it is fixed or dictated by the
17380 // target, promote that type instead of analyzing the enumerators.
17381 if (Enum->isComplete()) {
17382 BestType = Enum->getIntegerType();
17383 if (BestType->isPromotableIntegerType())
17384 BestPromotionType = Context.getPromotedIntegerType(BestType);
17385 else
17386 BestPromotionType = BestType;
17387
17388 BestWidth = Context.getIntWidth(BestType);
17389 }
17390 else if (NumNegativeBits) {
17391 // If there is a negative value, figure out the smallest integer type (of
17392 // int/long/longlong) that fits.
17393 // If it's packed, check also if it fits a char or a short.
17394 if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
17395 BestType = Context.SignedCharTy;
17396 BestWidth = CharWidth;
17397 } else if (Packed && NumNegativeBits <= ShortWidth &&
17398 NumPositiveBits < ShortWidth) {
17399 BestType = Context.ShortTy;
17400 BestWidth = ShortWidth;
17401 } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
17402 BestType = Context.IntTy;
17403 BestWidth = IntWidth;
17404 } else {
17405 BestWidth = Context.getTargetInfo().getLongWidth();
17406
17407 if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
17408 BestType = Context.LongTy;
17409 } else {
17410 BestWidth = Context.getTargetInfo().getLongLongWidth();
17411
17412 if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
17413 Diag(Enum->getLocation(), diag::ext_enum_too_large);
17414 BestType = Context.LongLongTy;
17415 }
17416 }
17417 BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
17418 } else {
17419 // If there is no negative value, figure out the smallest type that fits
17420 // all of the enumerator values.
17421 // If it's packed, check also if it fits a char or a short.
17422 if (Packed && NumPositiveBits <= CharWidth) {
17423 BestType = Context.UnsignedCharTy;
17424 BestPromotionType = Context.IntTy;
17425 BestWidth = CharWidth;
17426 } else if (Packed && NumPositiveBits <= ShortWidth) {
17427 BestType = Context.UnsignedShortTy;
17428 BestPromotionType = Context.IntTy;
17429 BestWidth = ShortWidth;
17430 } else if (NumPositiveBits <= IntWidth) {
17431 BestType = Context.UnsignedIntTy;
17432 BestWidth = IntWidth;
17433 BestPromotionType
17434 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
17435 ? Context.UnsignedIntTy : Context.IntTy;
17436 } else if (NumPositiveBits <=
17437 (BestWidth = Context.getTargetInfo().getLongWidth())) {
17438 BestType = Context.UnsignedLongTy;
17439 BestPromotionType
17440 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
17441 ? Context.UnsignedLongTy : Context.LongTy;
17442 } else {
17443 BestWidth = Context.getTargetInfo().getLongLongWidth();
17444 assert(NumPositiveBits <= BestWidth &&((NumPositiveBits <= BestWidth && "How could an initializer get larger than ULL?"
) ? static_cast<void> (0) : __assert_fail ("NumPositiveBits <= BestWidth && \"How could an initializer get larger than ULL?\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 17445, __PRETTY_FUNCTION__))
17445 "How could an initializer get larger than ULL?")((NumPositiveBits <= BestWidth && "How could an initializer get larger than ULL?"
) ? static_cast<void> (0) : __assert_fail ("NumPositiveBits <= BestWidth && \"How could an initializer get larger than ULL?\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/lib/Sema/SemaDecl.cpp"
, 17445, __PRETTY_FUNCTION__))
;
17446 BestType = Context.UnsignedLongLongTy;
17447 BestPromotionType
17448 = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
17449 ? Context.UnsignedLongLongTy : Context.LongLongTy;
17450 }
17451 }
17452
17453 // Loop over all of the enumerator constants, changing their types to match
17454 // the type of the enum if needed.
17455 for (auto *D : Elements) {
17456 auto *ECD = cast_or_null<EnumConstantDecl>(D);
17457 if (!ECD) continue; // Already issued a diagnostic.
17458
17459 // Standard C says the enumerators have int type, but we allow, as an
17460 // extension, the enumerators to be larger than int size. If each
17461 // enumerator value fits in an int, type it as an int, otherwise type it the
17462 // same as the enumerator decl itself. This means that in "enum { X = 1U }"
17463 // that X has type 'int', not 'unsigned'.
17464
17465 // Determine whether the value fits into an int.
17466 llvm::APSInt InitVal = ECD->getInitVal();
17467
17468 // If it fits into an integer type, force it. Otherwise force it to match
17469 // the enum decl type.
17470 QualType NewTy;
17471 unsigned NewWidth;
17472 bool NewSign;
17473 if (!getLangOpts().CPlusPlus &&
17474 !Enum->isFixed() &&
17475 isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
17476 NewTy = Context.IntTy;
17477 NewWidth = IntWidth;
17478 NewSign = true;
17479 } else if (ECD->getType() == BestType) {
17480 // Already the right type!
17481 if (getLangOpts().CPlusPlus)
17482 // C++ [dcl.enum]p4: Following the closing brace of an
17483 // enum-specifier, each enumerator has the type of its
17484 // enumeration.
17485 ECD->setType(EnumType);
17486 continue;
17487 } else {
17488 NewTy = BestType;
17489 NewWidth = BestWidth;
17490 NewSign = BestType->isSignedIntegerOrEnumerationType();
17491 }
17492
17493 // Adjust the APSInt value.
17494 InitVal = InitVal.extOrTrunc(NewWidth);
17495 InitVal.setIsSigned(NewSign);
17496 ECD->setInitVal(InitVal);
17497
17498 // Adjust the Expr initializer and type.
17499 if (ECD->getInitExpr() &&
17500 !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
17501 ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
17502 CK_IntegralCast,
17503 ECD->getInitExpr(),
17504 /*base paths*/ nullptr,
17505 VK_RValue));
17506 if (getLangOpts().CPlusPlus)
17507 // C++ [dcl.enum]p4: Following the closing brace of an
17508 // enum-specifier, each enumerator has the type of its
17509 // enumeration.
17510 ECD->setType(EnumType);
17511 else
17512 ECD->setType(NewTy);
17513 }
17514
17515 Enum->completeDefinition(BestType, BestPromotionType,
17516 NumPositiveBits, NumNegativeBits);
17517
17518 CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
17519
17520 if (Enum->isClosedFlag()) {
17521 for (Decl *D : Elements) {
17522 EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D);
17523 if (!ECD) continue; // Already issued a diagnostic.
17524
17525 llvm::APSInt InitVal = ECD->getInitVal();
17526 if (InitVal != 0 && !InitVal.isPowerOf2() &&
17527 !IsValueInFlagEnum(Enum, InitVal, true))
17528 Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range)
17529 << ECD << Enum;
17530 }
17531 }
17532
17533 // Now that the enum type is defined, ensure it's not been underaligned.
17534 if (Enum->hasAttrs())
17535 CheckAlignasUnderalignment(Enum);
17536}
17537
17538Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
17539 SourceLocation StartLoc,
17540 SourceLocation EndLoc) {
17541 StringLiteral *AsmString = cast<StringLiteral>(expr);
17542
17543 FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
17544 AsmString, StartLoc,
17545 EndLoc);
17546 CurContext->addDecl(New);
17547 return New;
17548}
17549
17550void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
17551 IdentifierInfo* AliasName,
17552 SourceLocation PragmaLoc,
17553 SourceLocation NameLoc,
17554 SourceLocation AliasNameLoc) {
17555 NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
17556 LookupOrdinaryName);
17557 AttributeCommonInfo Info(AliasName, SourceRange(AliasNameLoc),
17558 AttributeCommonInfo::AS_Pragma);
17559 AsmLabelAttr *Attr = AsmLabelAttr::CreateImplicit(
17560 Context, AliasName->getName(), /*LiteralLabel=*/true, Info);
17561
17562 // If a declaration that:
17563 // 1) declares a function or a variable
17564 // 2) has external linkage
17565 // already exists, add a label attribute to it.
17566 if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
17567 if (isDeclExternC(PrevDecl))
17568 PrevDecl->addAttr(Attr);
17569 else
17570 Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied)
17571 << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl;
17572 // Otherwise, add a label atttibute to ExtnameUndeclaredIdentifiers.
17573 } else
17574 (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr));
17575}
17576
17577void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
17578 SourceLocation PragmaLoc,
17579 SourceLocation NameLoc) {
17580 Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
17581
17582 if (PrevDecl) {
17583 PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc, AttributeCommonInfo::AS_Pragma));
17584 } else {
17585 (void)WeakUndeclaredIdentifiers.insert(
17586 std::pair<IdentifierInfo*,WeakInfo>
17587 (Name, WeakInfo((IdentifierInfo*)nullptr, NameLoc)));
17588 }
17589}
17590
17591void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
17592 IdentifierInfo* AliasName,
17593 SourceLocation PragmaLoc,
17594 SourceLocation NameLoc,
17595 SourceLocation AliasNameLoc) {
17596 Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
17597 LookupOrdinaryName);
17598 WeakInfo W = WeakInfo(Name, NameLoc);
17599
17600 if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) {
17601 if (!PrevDecl->hasAttr<AliasAttr>())
17602 if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
17603 DeclApplyPragmaWeak(TUScope, ND, W);
17604 } else {
17605 (void)WeakUndeclaredIdentifiers.insert(
17606 std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
17607 }
17608}
17609
17610Decl *Sema::getObjCDeclContext() const {
17611 return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
17612}

/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h

1//===- Type.h - C Language Family Type Representation -----------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9/// \file
10/// C Language Family Type Representation
11///
12/// This file defines the clang::Type interface and subclasses, used to
13/// represent types for languages in the C family.
14//
15//===----------------------------------------------------------------------===//
16
17#ifndef LLVM_CLANG_AST_TYPE_H
18#define LLVM_CLANG_AST_TYPE_H
19
20#include "clang/AST/NestedNameSpecifier.h"
21#include "clang/AST/TemplateName.h"
22#include "clang/Basic/AddressSpaces.h"
23#include "clang/Basic/AttrKinds.h"
24#include "clang/Basic/Diagnostic.h"
25#include "clang/Basic/ExceptionSpecificationType.h"
26#include "clang/Basic/LLVM.h"
27#include "clang/Basic/Linkage.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/SourceLocation.h"
30#include "clang/Basic/Specifiers.h"
31#include "clang/Basic/Visibility.h"
32#include "llvm/ADT/APInt.h"
33#include "llvm/ADT/APSInt.h"
34#include "llvm/ADT/ArrayRef.h"
35#include "llvm/ADT/FoldingSet.h"
36#include "llvm/ADT/None.h"
37#include "llvm/ADT/Optional.h"
38#include "llvm/ADT/PointerIntPair.h"
39#include "llvm/ADT/PointerUnion.h"
40#include "llvm/ADT/StringRef.h"
41#include "llvm/ADT/Twine.h"
42#include "llvm/ADT/iterator_range.h"
43#include "llvm/Support/Casting.h"
44#include "llvm/Support/Compiler.h"
45#include "llvm/Support/ErrorHandling.h"
46#include "llvm/Support/PointerLikeTypeTraits.h"
47#include "llvm/Support/type_traits.h"
48#include "llvm/Support/TrailingObjects.h"
49#include <cassert>
50#include <cstddef>
51#include <cstdint>
52#include <cstring>
53#include <string>
54#include <type_traits>
55#include <utility>
56
57namespace clang {
58
59class ExtQuals;
60class QualType;
61class TagDecl;
62class Type;
63
64enum {
65 TypeAlignmentInBits = 4,
66 TypeAlignment = 1 << TypeAlignmentInBits
67};
68
69} // namespace clang
70
71namespace llvm {
72
73 template <typename T>
74 struct PointerLikeTypeTraits;
75 template<>
76 struct PointerLikeTypeTraits< ::clang::Type*> {
77 static inline void *getAsVoidPointer(::clang::Type *P) { return P; }
78
79 static inline ::clang::Type *getFromVoidPointer(void *P) {
80 return static_cast< ::clang::Type*>(P);
81 }
82
83 enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
84 };
85
86 template<>
87 struct PointerLikeTypeTraits< ::clang::ExtQuals*> {
88 static inline void *getAsVoidPointer(::clang::ExtQuals *P) { return P; }
89
90 static inline ::clang::ExtQuals *getFromVoidPointer(void *P) {
91 return static_cast< ::clang::ExtQuals*>(P);
92 }
93
94 enum { NumLowBitsAvailable = clang::TypeAlignmentInBits };
95 };
96
97} // namespace llvm
98
99namespace clang {
100
101class ASTContext;
102template <typename> class CanQual;
103class CXXRecordDecl;
104class DeclContext;
105class EnumDecl;
106class Expr;
107class ExtQualsTypeCommonBase;
108class FunctionDecl;
109class IdentifierInfo;
110class NamedDecl;
111class ObjCInterfaceDecl;
112class ObjCProtocolDecl;
113class ObjCTypeParamDecl;
114struct PrintingPolicy;
115class RecordDecl;
116class Stmt;
117class TagDecl;
118class TemplateArgument;
119class TemplateArgumentListInfo;
120class TemplateArgumentLoc;
121class TemplateTypeParmDecl;
122class TypedefNameDecl;
123class UnresolvedUsingTypenameDecl;
124
125using CanQualType = CanQual<Type>;
126
127// Provide forward declarations for all of the *Type classes.
128#define TYPE(Class, Base) class Class##Type;
129#include "clang/AST/TypeNodes.inc"
130
131/// The collection of all-type qualifiers we support.
132/// Clang supports five independent qualifiers:
133/// * C99: const, volatile, and restrict
134/// * MS: __unaligned
135/// * Embedded C (TR18037): address spaces
136/// * Objective C: the GC attributes (none, weak, or strong)
137class Qualifiers {
138public:
139 enum TQ { // NOTE: These flags must be kept in sync with DeclSpec::TQ.
140 Const = 0x1,
141 Restrict = 0x2,
142 Volatile = 0x4,
143 CVRMask = Const | Volatile | Restrict
144 };
145
146 enum GC {
147 GCNone = 0,
148 Weak,
149 Strong
150 };
151
152 enum ObjCLifetime {
153 /// There is no lifetime qualification on this type.
154 OCL_None,
155
156 /// This object can be modified without requiring retains or
157 /// releases.
158 OCL_ExplicitNone,
159
160 /// Assigning into this object requires the old value to be
161 /// released and the new value to be retained. The timing of the
162 /// release of the old value is inexact: it may be moved to
163 /// immediately after the last known point where the value is
164 /// live.
165 OCL_Strong,
166
167 /// Reading or writing from this object requires a barrier call.
168 OCL_Weak,
169
170 /// Assigning into this object requires a lifetime extension.
171 OCL_Autoreleasing
172 };
173
174 enum {
175 /// The maximum supported address space number.
176 /// 23 bits should be enough for anyone.
177 MaxAddressSpace = 0x7fffffu,
178
179 /// The width of the "fast" qualifier mask.
180 FastWidth = 3,
181
182 /// The fast qualifier mask.
183 FastMask = (1 << FastWidth) - 1
184 };
185
186 /// Returns the common set of qualifiers while removing them from
187 /// the given sets.
188 static Qualifiers removeCommonQualifiers(Qualifiers &L, Qualifiers &R) {
189 // If both are only CVR-qualified, bit operations are sufficient.
190 if (!(L.Mask & ~CVRMask) && !(R.Mask & ~CVRMask)) {
191 Qualifiers Q;
192 Q.Mask = L.Mask & R.Mask;
193 L.Mask &= ~Q.Mask;
194 R.Mask &= ~Q.Mask;
195 return Q;
196 }
197
198 Qualifiers Q;
199 unsigned CommonCRV = L.getCVRQualifiers() & R.getCVRQualifiers();
200 Q.addCVRQualifiers(CommonCRV);
201 L.removeCVRQualifiers(CommonCRV);
202 R.removeCVRQualifiers(CommonCRV);
203
204 if (L.getObjCGCAttr() == R.getObjCGCAttr()) {
205 Q.setObjCGCAttr(L.getObjCGCAttr());
206 L.removeObjCGCAttr();
207 R.removeObjCGCAttr();
208 }
209
210 if (L.getObjCLifetime() == R.getObjCLifetime()) {
211 Q.setObjCLifetime(L.getObjCLifetime());
212 L.removeObjCLifetime();
213 R.removeObjCLifetime();
214 }
215
216 if (L.getAddressSpace() == R.getAddressSpace()) {
217 Q.setAddressSpace(L.getAddressSpace());
218 L.removeAddressSpace();
219 R.removeAddressSpace();
220 }
221 return Q;
222 }
223
224 static Qualifiers fromFastMask(unsigned Mask) {
225 Qualifiers Qs;
226 Qs.addFastQualifiers(Mask);
227 return Qs;
228 }
229
230 static Qualifiers fromCVRMask(unsigned CVR) {
231 Qualifiers Qs;
232 Qs.addCVRQualifiers(CVR);
233 return Qs;
234 }
235
236 static Qualifiers fromCVRUMask(unsigned CVRU) {
237 Qualifiers Qs;
238 Qs.addCVRUQualifiers(CVRU);
239 return Qs;
240 }
241
242 // Deserialize qualifiers from an opaque representation.
243 static Qualifiers fromOpaqueValue(unsigned opaque) {
244 Qualifiers Qs;
245 Qs.Mask = opaque;
246 return Qs;
247 }
248
249 // Serialize these qualifiers into an opaque representation.
250 unsigned getAsOpaqueValue() const {
251 return Mask;
252 }
253
254 bool hasConst() const { return Mask & Const; }
255 bool hasOnlyConst() const { return Mask == Const; }
256 void removeConst() { Mask &= ~Const; }
257 void addConst() { Mask |= Const; }
258
259 bool hasVolatile() const { return Mask & Volatile; }
260 bool hasOnlyVolatile() const { return Mask == Volatile; }
261 void removeVolatile() { Mask &= ~Volatile; }
262 void addVolatile() { Mask |= Volatile; }
263
264 bool hasRestrict() const { return Mask & Restrict; }
265 bool hasOnlyRestrict() const { return Mask == Restrict; }
266 void removeRestrict() { Mask &= ~Restrict; }
267 void addRestrict() { Mask |= Restrict; }
268
269 bool hasCVRQualifiers() const { return getCVRQualifiers(); }
270 unsigned getCVRQualifiers() const { return Mask & CVRMask; }
271 unsigned getCVRUQualifiers() const { return Mask & (CVRMask | UMask); }
272
273 void setCVRQualifiers(unsigned mask) {
274 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 274, __PRETTY_FUNCTION__))
;
275 Mask = (Mask & ~CVRMask) | mask;
276 }
277 void removeCVRQualifiers(unsigned mask) {
278 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 278, __PRETTY_FUNCTION__))
;
279 Mask &= ~mask;
280 }
281 void removeCVRQualifiers() {
282 removeCVRQualifiers(CVRMask);
283 }
284 void addCVRQualifiers(unsigned mask) {
285 assert(!(mask & ~CVRMask) && "bitmask contains non-CVR bits")((!(mask & ~CVRMask) && "bitmask contains non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask) && \"bitmask contains non-CVR bits\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 285, __PRETTY_FUNCTION__))
;
286 Mask |= mask;
287 }
288 void addCVRUQualifiers(unsigned mask) {
289 assert(!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits")((!(mask & ~CVRMask & ~UMask) && "bitmask contains non-CVRU bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~CVRMask & ~UMask) && \"bitmask contains non-CVRU bits\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 289, __PRETTY_FUNCTION__))
;
290 Mask |= mask;
291 }
292
293 bool hasUnaligned() const { return Mask & UMask; }
294 void setUnaligned(bool flag) {
295 Mask = (Mask & ~UMask) | (flag ? UMask : 0);
296 }
297 void removeUnaligned() { Mask &= ~UMask; }
298 void addUnaligned() { Mask |= UMask; }
299
300 bool hasObjCGCAttr() const { return Mask & GCAttrMask; }
301 GC getObjCGCAttr() const { return GC((Mask & GCAttrMask) >> GCAttrShift); }
302 void setObjCGCAttr(GC type) {
303 Mask = (Mask & ~GCAttrMask) | (type << GCAttrShift);
304 }
305 void removeObjCGCAttr() { setObjCGCAttr(GCNone); }
306 void addObjCGCAttr(GC type) {
307 assert(type)((type) ? static_cast<void> (0) : __assert_fail ("type"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 307, __PRETTY_FUNCTION__))
;
308 setObjCGCAttr(type);
309 }
310 Qualifiers withoutObjCGCAttr() const {
311 Qualifiers qs = *this;
312 qs.removeObjCGCAttr();
313 return qs;
314 }
315 Qualifiers withoutObjCLifetime() const {
316 Qualifiers qs = *this;
317 qs.removeObjCLifetime();
318 return qs;
319 }
320 Qualifiers withoutAddressSpace() const {
321 Qualifiers qs = *this;
322 qs.removeAddressSpace();
323 return qs;
324 }
325
326 bool hasObjCLifetime() const { return Mask & LifetimeMask; }
327 ObjCLifetime getObjCLifetime() const {
328 return ObjCLifetime((Mask & LifetimeMask) >> LifetimeShift);
329 }
330 void setObjCLifetime(ObjCLifetime type) {
331 Mask = (Mask & ~LifetimeMask) | (type << LifetimeShift);
332 }
333 void removeObjCLifetime() { setObjCLifetime(OCL_None); }
334 void addObjCLifetime(ObjCLifetime type) {
335 assert(type)((type) ? static_cast<void> (0) : __assert_fail ("type"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 335, __PRETTY_FUNCTION__))
;
336 assert(!hasObjCLifetime())((!hasObjCLifetime()) ? static_cast<void> (0) : __assert_fail
("!hasObjCLifetime()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 336, __PRETTY_FUNCTION__))
;
337 Mask |= (type << LifetimeShift);
338 }
339
340 /// True if the lifetime is neither None or ExplicitNone.
341 bool hasNonTrivialObjCLifetime() const {
342 ObjCLifetime lifetime = getObjCLifetime();
343 return (lifetime > OCL_ExplicitNone);
344 }
345
346 /// True if the lifetime is either strong or weak.
347 bool hasStrongOrWeakObjCLifetime() const {
348 ObjCLifetime lifetime = getObjCLifetime();
349 return (lifetime == OCL_Strong || lifetime == OCL_Weak);
350 }
351
352 bool hasAddressSpace() const { return Mask & AddressSpaceMask; }
353 LangAS getAddressSpace() const {
354 return static_cast<LangAS>(Mask >> AddressSpaceShift);
355 }
356 bool hasTargetSpecificAddressSpace() const {
357 return isTargetAddressSpace(getAddressSpace());
358 }
359 /// Get the address space attribute value to be printed by diagnostics.
360 unsigned getAddressSpaceAttributePrintValue() const {
361 auto Addr = getAddressSpace();
362 // This function is not supposed to be used with language specific
363 // address spaces. If that happens, the diagnostic message should consider
364 // printing the QualType instead of the address space value.
365 assert(Addr == LangAS::Default || hasTargetSpecificAddressSpace())((Addr == LangAS::Default || hasTargetSpecificAddressSpace())
? static_cast<void> (0) : __assert_fail ("Addr == LangAS::Default || hasTargetSpecificAddressSpace()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 365, __PRETTY_FUNCTION__))
;
366 if (Addr != LangAS::Default)
367 return toTargetAddressSpace(Addr);
368 // TODO: The diagnostic messages where Addr may be 0 should be fixed
369 // since it cannot differentiate the situation where 0 denotes the default
370 // address space or user specified __attribute__((address_space(0))).
371 return 0;
372 }
373 void setAddressSpace(LangAS space) {
374 assert((unsigned)space <= MaxAddressSpace)(((unsigned)space <= MaxAddressSpace) ? static_cast<void
> (0) : __assert_fail ("(unsigned)space <= MaxAddressSpace"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 374, __PRETTY_FUNCTION__))
;
375 Mask = (Mask & ~AddressSpaceMask)
376 | (((uint32_t) space) << AddressSpaceShift);
377 }
378 void removeAddressSpace() { setAddressSpace(LangAS::Default); }
379 void addAddressSpace(LangAS space) {
380 assert(space != LangAS::Default)((space != LangAS::Default) ? static_cast<void> (0) : __assert_fail
("space != LangAS::Default", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 380, __PRETTY_FUNCTION__))
;
381 setAddressSpace(space);
382 }
383
384 // Fast qualifiers are those that can be allocated directly
385 // on a QualType object.
386 bool hasFastQualifiers() const { return getFastQualifiers(); }
387 unsigned getFastQualifiers() const { return Mask & FastMask; }
388 void setFastQualifiers(unsigned mask) {
389 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 389, __PRETTY_FUNCTION__))
;
390 Mask = (Mask & ~FastMask) | mask;
391 }
392 void removeFastQualifiers(unsigned mask) {
393 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 393, __PRETTY_FUNCTION__))
;
394 Mask &= ~mask;
395 }
396 void removeFastQualifiers() {
397 removeFastQualifiers(FastMask);
398 }
399 void addFastQualifiers(unsigned mask) {
400 assert(!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits")((!(mask & ~FastMask) && "bitmask contains non-fast qualifier bits"
) ? static_cast<void> (0) : __assert_fail ("!(mask & ~FastMask) && \"bitmask contains non-fast qualifier bits\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 400, __PRETTY_FUNCTION__))
;
401 Mask |= mask;
402 }
403
404 /// Return true if the set contains any qualifiers which require an ExtQuals
405 /// node to be allocated.
406 bool hasNonFastQualifiers() const { return Mask & ~FastMask; }
407 Qualifiers getNonFastQualifiers() const {
408 Qualifiers Quals = *this;
409 Quals.setFastQualifiers(0);
410 return Quals;
411 }
412
413 /// Return true if the set contains any qualifiers.
414 bool hasQualifiers() const { return Mask; }
415 bool empty() const { return !Mask; }
416
417 /// Add the qualifiers from the given set to this set.
418 void addQualifiers(Qualifiers Q) {
419 // If the other set doesn't have any non-boolean qualifiers, just
420 // bit-or it in.
421 if (!(Q.Mask & ~CVRMask))
422 Mask |= Q.Mask;
423 else {
424 Mask |= (Q.Mask & CVRMask);
425 if (Q.hasAddressSpace())
426 addAddressSpace(Q.getAddressSpace());
427 if (Q.hasObjCGCAttr())
428 addObjCGCAttr(Q.getObjCGCAttr());
429 if (Q.hasObjCLifetime())
430 addObjCLifetime(Q.getObjCLifetime());
431 }
432 }
433
434 /// Remove the qualifiers from the given set from this set.
435 void removeQualifiers(Qualifiers Q) {
436 // If the other set doesn't have any non-boolean qualifiers, just
437 // bit-and the inverse in.
438 if (!(Q.Mask & ~CVRMask))
439 Mask &= ~Q.Mask;
440 else {
441 Mask &= ~(Q.Mask & CVRMask);
442 if (getObjCGCAttr() == Q.getObjCGCAttr())
443 removeObjCGCAttr();
444 if (getObjCLifetime() == Q.getObjCLifetime())
445 removeObjCLifetime();
446 if (getAddressSpace() == Q.getAddressSpace())
447 removeAddressSpace();
448 }
449 }
450
451 /// Add the qualifiers from the given set to this set, given that
452 /// they don't conflict.
453 void addConsistentQualifiers(Qualifiers qs) {
454 assert(getAddressSpace() == qs.getAddressSpace() ||((getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace
() || !qs.hasAddressSpace()) ? static_cast<void> (0) : __assert_fail
("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 455, __PRETTY_FUNCTION__))
455 !hasAddressSpace() || !qs.hasAddressSpace())((getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace
() || !qs.hasAddressSpace()) ? static_cast<void> (0) : __assert_fail
("getAddressSpace() == qs.getAddressSpace() || !hasAddressSpace() || !qs.hasAddressSpace()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 455, __PRETTY_FUNCTION__))
;
456 assert(getObjCGCAttr() == qs.getObjCGCAttr() ||((getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() ||
!qs.hasObjCGCAttr()) ? static_cast<void> (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 457, __PRETTY_FUNCTION__))
457 !hasObjCGCAttr() || !qs.hasObjCGCAttr())((getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() ||
!qs.hasObjCGCAttr()) ? static_cast<void> (0) : __assert_fail
("getObjCGCAttr() == qs.getObjCGCAttr() || !hasObjCGCAttr() || !qs.hasObjCGCAttr()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 457, __PRETTY_FUNCTION__))
;
458 assert(getObjCLifetime() == qs.getObjCLifetime() ||((getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime
() || !qs.hasObjCLifetime()) ? static_cast<void> (0) : __assert_fail
("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 459, __PRETTY_FUNCTION__))
459 !hasObjCLifetime() || !qs.hasObjCLifetime())((getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime
() || !qs.hasObjCLifetime()) ? static_cast<void> (0) : __assert_fail
("getObjCLifetime() == qs.getObjCLifetime() || !hasObjCLifetime() || !qs.hasObjCLifetime()"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 459, __PRETTY_FUNCTION__))
;
460 Mask |= qs.Mask;
461 }
462
463 /// Returns true if address space A is equal to or a superset of B.
464 /// OpenCL v2.0 defines conversion rules (OpenCLC v2.0 s6.5.5) and notion of
465 /// overlapping address spaces.
466 /// CL1.1 or CL1.2:
467 /// every address space is a superset of itself.
468 /// CL2.0 adds:
469 /// __generic is a superset of any address space except for __constant.
470 static bool isAddressSpaceSupersetOf(LangAS A, LangAS B) {
471 // Address spaces must match exactly.
472 return A == B ||
473 // Otherwise in OpenCLC v2.0 s6.5.5: every address space except
474 // for __constant can be used as __generic.
475 (A == LangAS::opencl_generic && B != LangAS::opencl_constant);
476 }
477
478 /// Returns true if the address space in these qualifiers is equal to or
479 /// a superset of the address space in the argument qualifiers.
480 bool isAddressSpaceSupersetOf(Qualifiers other) const {
481 return isAddressSpaceSupersetOf(getAddressSpace(), other.getAddressSpace());
482 }
483
484 /// Determines if these qualifiers compatibly include another set.
485 /// Generally this answers the question of whether an object with the other
486 /// qualifiers can be safely used as an object with these qualifiers.
487 bool compatiblyIncludes(Qualifiers other) const {
488 return isAddressSpaceSupersetOf(other) &&
489 // ObjC GC qualifiers can match, be added, or be removed, but can't
490 // be changed.
491 (getObjCGCAttr() == other.getObjCGCAttr() || !hasObjCGCAttr() ||
492 !other.hasObjCGCAttr()) &&
493 // ObjC lifetime qualifiers must match exactly.
494 getObjCLifetime() == other.getObjCLifetime() &&
495 // CVR qualifiers may subset.
496 (((Mask & CVRMask) | (other.Mask & CVRMask)) == (Mask & CVRMask)) &&
497 // U qualifier may superset.
498 (!other.hasUnaligned() || hasUnaligned());
499 }
500
501 /// Determines if these qualifiers compatibly include another set of
502 /// qualifiers from the narrow perspective of Objective-C ARC lifetime.
503 ///
504 /// One set of Objective-C lifetime qualifiers compatibly includes the other
505 /// if the lifetime qualifiers match, or if both are non-__weak and the
506 /// including set also contains the 'const' qualifier, or both are non-__weak
507 /// and one is None (which can only happen in non-ARC modes).
508 bool compatiblyIncludesObjCLifetime(Qualifiers other) const {
509 if (getObjCLifetime() == other.getObjCLifetime())
510 return true;
511
512 if (getObjCLifetime() == OCL_Weak || other.getObjCLifetime() == OCL_Weak)
513 return false;
514
515 if (getObjCLifetime() == OCL_None || other.getObjCLifetime() == OCL_None)
516 return true;
517
518 return hasConst();
519 }
520
521 /// Determine whether this set of qualifiers is a strict superset of
522 /// another set of qualifiers, not considering qualifier compatibility.
523 bool isStrictSupersetOf(Qualifiers Other) const;
524
525 bool operator==(Qualifiers Other) const { return Mask == Other.Mask; }
526 bool operator!=(Qualifiers Other) const { return Mask != Other.Mask; }
527
528 explicit operator bool() const { return hasQualifiers(); }
529
530 Qualifiers &operator+=(Qualifiers R) {
531 addQualifiers(R);
532 return *this;
533 }
534
535 // Union two qualifier sets. If an enumerated qualifier appears
536 // in both sets, use the one from the right.
537 friend Qualifiers operator+(Qualifiers L, Qualifiers R) {
538 L += R;
539 return L;
540 }
541
542 Qualifiers &operator-=(Qualifiers R) {
543 removeQualifiers(R);
544 return *this;
545 }
546
547 /// Compute the difference between two qualifier sets.
548 friend Qualifiers operator-(Qualifiers L, Qualifiers R) {
549 L -= R;
550 return L;
551 }
552
553 std::string getAsString() const;
554 std::string getAsString(const PrintingPolicy &Policy) const;
555
556 bool isEmptyWhenPrinted(const PrintingPolicy &Policy) const;
557 void print(raw_ostream &OS, const PrintingPolicy &Policy,
558 bool appendSpaceIfNonEmpty = false) const;
559
560 void Profile(llvm::FoldingSetNodeID &ID) const {
561 ID.AddInteger(Mask);
562 }
563
564private:
565 // bits: |0 1 2|3|4 .. 5|6 .. 8|9 ... 31|
566 // |C R V|U|GCAttr|Lifetime|AddressSpace|
567 uint32_t Mask = 0;
568
569 static const uint32_t UMask = 0x8;
570 static const uint32_t UShift = 3;
571 static const uint32_t GCAttrMask = 0x30;
572 static const uint32_t GCAttrShift = 4;
573 static const uint32_t LifetimeMask = 0x1C0;
574 static const uint32_t LifetimeShift = 6;
575 static const uint32_t AddressSpaceMask =
576 ~(CVRMask | UMask | GCAttrMask | LifetimeMask);
577 static const uint32_t AddressSpaceShift = 9;
578};
579
580/// A std::pair-like structure for storing a qualified type split
581/// into its local qualifiers and its locally-unqualified type.
582struct SplitQualType {
583 /// The locally-unqualified type.
584 const Type *Ty = nullptr;
585
586 /// The local qualifiers.
587 Qualifiers Quals;
588
589 SplitQualType() = default;
590 SplitQualType(const Type *ty, Qualifiers qs) : Ty(ty), Quals(qs) {}
591
592 SplitQualType getSingleStepDesugaredType() const; // end of this file
593
594 // Make std::tie work.
595 std::pair<const Type *,Qualifiers> asPair() const {
596 return std::pair<const Type *, Qualifiers>(Ty, Quals);
597 }
598
599 friend bool operator==(SplitQualType a, SplitQualType b) {
600 return a.Ty == b.Ty && a.Quals == b.Quals;
601 }
602 friend bool operator!=(SplitQualType a, SplitQualType b) {
603 return a.Ty != b.Ty || a.Quals != b.Quals;
604 }
605};
606
607/// The kind of type we are substituting Objective-C type arguments into.
608///
609/// The kind of substitution affects the replacement of type parameters when
610/// no concrete type information is provided, e.g., when dealing with an
611/// unspecialized type.
612enum class ObjCSubstitutionContext {
613 /// An ordinary type.
614 Ordinary,
615
616 /// The result type of a method or function.
617 Result,
618
619 /// The parameter type of a method or function.
620 Parameter,
621
622 /// The type of a property.
623 Property,
624
625 /// The superclass of a type.
626 Superclass,
627};
628
629/// A (possibly-)qualified type.
630///
631/// For efficiency, we don't store CV-qualified types as nodes on their
632/// own: instead each reference to a type stores the qualifiers. This
633/// greatly reduces the number of nodes we need to allocate for types (for
634/// example we only need one for 'int', 'const int', 'volatile int',
635/// 'const volatile int', etc).
636///
637/// As an added efficiency bonus, instead of making this a pair, we
638/// just store the two bits we care about in the low bits of the
639/// pointer. To handle the packing/unpacking, we make QualType be a
640/// simple wrapper class that acts like a smart pointer. A third bit
641/// indicates whether there are extended qualifiers present, in which
642/// case the pointer points to a special structure.
643class QualType {
644 friend class QualifierCollector;
645
646 // Thankfully, these are efficiently composable.
647 llvm::PointerIntPair<llvm::PointerUnion<const Type *, const ExtQuals *>,
648 Qualifiers::FastWidth> Value;
649
650 const ExtQuals *getExtQualsUnsafe() const {
651 return Value.getPointer().get<const ExtQuals*>();
652 }
653
654 const Type *getTypePtrUnsafe() const {
655 return Value.getPointer().get<const Type*>();
656 }
657
658 const ExtQualsTypeCommonBase *getCommonPtr() const {
659 assert(!isNull() && "Cannot retrieve a NULL type pointer")((!isNull() && "Cannot retrieve a NULL type pointer")
? static_cast<void> (0) : __assert_fail ("!isNull() && \"Cannot retrieve a NULL type pointer\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 659, __PRETTY_FUNCTION__))
;
660 auto CommonPtrVal = reinterpret_cast<uintptr_t>(Value.getOpaqueValue());
661 CommonPtrVal &= ~(uintptr_t)((1 << TypeAlignmentInBits) - 1);
662 return reinterpret_cast<ExtQualsTypeCommonBase*>(CommonPtrVal);
663 }
664
665public:
666 QualType() = default;
667 QualType(const Type *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
668 QualType(const ExtQuals *Ptr, unsigned Quals) : Value(Ptr, Quals) {}
669
670 unsigned getLocalFastQualifiers() const { return Value.getInt(); }
671 void setLocalFastQualifiers(unsigned Quals) { Value.setInt(Quals); }
672
673 /// Retrieves a pointer to the underlying (unqualified) type.
674 ///
675 /// This function requires that the type not be NULL. If the type might be
676 /// NULL, use the (slightly less efficient) \c getTypePtrOrNull().
677 const Type *getTypePtr() const;
678
679 const Type *getTypePtrOrNull() const;
680
681 /// Retrieves a pointer to the name of the base type.
682 const IdentifierInfo *getBaseTypeIdentifier() const;
683
684 /// Divides a QualType into its unqualified type and a set of local
685 /// qualifiers.
686 SplitQualType split() const;
687
688 void *getAsOpaquePtr() const { return Value.getOpaqueValue(); }
689
690 static QualType getFromOpaquePtr(const void *Ptr) {
691 QualType T;
692 T.Value.setFromOpaqueValue(const_cast<void*>(Ptr));
693 return T;
694 }
695
696 const Type &operator*() const {
697 return *getTypePtr();
698 }
699
700 const Type *operator->() const {
701 return getTypePtr();
702 }
703
704 bool isCanonical() const;
705 bool isCanonicalAsParam() const;
706
707 /// Return true if this QualType doesn't point to a type yet.
708 bool isNull() const {
709 return Value.getPointer().isNull();
710 }
711
712 /// Determine whether this particular QualType instance has the
713 /// "const" qualifier set, without looking through typedefs that may have
714 /// added "const" at a different level.
715 bool isLocalConstQualified() const {
716 return (getLocalFastQualifiers() & Qualifiers::Const);
717 }
718
719 /// Determine whether this type is const-qualified.
720 bool isConstQualified() const;
721
722 /// Determine whether this particular QualType instance has the
723 /// "restrict" qualifier set, without looking through typedefs that may have
724 /// added "restrict" at a different level.
725 bool isLocalRestrictQualified() const {
726 return (getLocalFastQualifiers() & Qualifiers::Restrict);
727 }
728
729 /// Determine whether this type is restrict-qualified.
730 bool isRestrictQualified() const;
731
732 /// Determine whether this particular QualType instance has the
733 /// "volatile" qualifier set, without looking through typedefs that may have
734 /// added "volatile" at a different level.
735 bool isLocalVolatileQualified() const {
736 return (getLocalFastQualifiers() & Qualifiers::Volatile);
737 }
738
739 /// Determine whether this type is volatile-qualified.
740 bool isVolatileQualified() const;
741
742 /// Determine whether this particular QualType instance has any
743 /// qualifiers, without looking through any typedefs that might add
744 /// qualifiers at a different level.
745 bool hasLocalQualifiers() const {
746 return getLocalFastQualifiers() || hasLocalNonFastQualifiers();
747 }
748
749 /// Determine whether this type has any qualifiers.
750 bool hasQualifiers() const;
751
752 /// Determine whether this particular QualType instance has any
753 /// "non-fast" qualifiers, e.g., those that are stored in an ExtQualType
754 /// instance.
755 bool hasLocalNonFastQualifiers() const {
756 return Value.getPointer().is<const ExtQuals*>();
757 }
758
759 /// Retrieve the set of qualifiers local to this particular QualType
760 /// instance, not including any qualifiers acquired through typedefs or
761 /// other sugar.
762 Qualifiers getLocalQualifiers() const;
763
764 /// Retrieve the set of qualifiers applied to this type.
765 Qualifiers getQualifiers() const;
766
767 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
768 /// local to this particular QualType instance, not including any qualifiers
769 /// acquired through typedefs or other sugar.
770 unsigned getLocalCVRQualifiers() const {
771 return getLocalFastQualifiers();
772 }
773
774 /// Retrieve the set of CVR (const-volatile-restrict) qualifiers
775 /// applied to this type.
776 unsigned getCVRQualifiers() const;
777
778 bool isConstant(const ASTContext& Ctx) const {
779 return QualType::isConstant(*this, Ctx);
780 }
781
782 /// Determine whether this is a Plain Old Data (POD) type (C++ 3.9p10).
783 bool isPODType(const ASTContext &Context) const;
784
785 /// Return true if this is a POD type according to the rules of the C++98
786 /// standard, regardless of the current compilation's language.
787 bool isCXX98PODType(const ASTContext &Context) const;
788
789 /// Return true if this is a POD type according to the more relaxed rules
790 /// of the C++11 standard, regardless of the current compilation's language.
791 /// (C++0x [basic.types]p9). Note that, unlike
792 /// CXXRecordDecl::isCXX11StandardLayout, this takes DRs into account.
793 bool isCXX11PODType(const ASTContext &Context) const;
794
795 /// Return true if this is a trivial type per (C++0x [basic.types]p9)
796 bool isTrivialType(const ASTContext &Context) const;
797
798 /// Return true if this is a trivially copyable type (C++0x [basic.types]p9)
799 bool isTriviallyCopyableType(const ASTContext &Context) const;
800
801
802 /// Returns true if it is a class and it might be dynamic.
803 bool mayBeDynamicClass() const;
804
805 /// Returns true if it is not a class or if the class might not be dynamic.
806 bool mayBeNotDynamicClass() const;
807
808 // Don't promise in the API that anything besides 'const' can be
809 // easily added.
810
811 /// Add the `const` type qualifier to this QualType.
812 void addConst() {
813 addFastQualifiers(Qualifiers::Const);
814 }
815 QualType withConst() const {
816 return withFastQualifiers(Qualifiers::Const);
817 }
818
819 /// Add the `volatile` type qualifier to this QualType.
820 void addVolatile() {
821 addFastQualifiers(Qualifiers::Volatile);
822 }
823 QualType withVolatile() const {
824 return withFastQualifiers(Qualifiers::Volatile);
825 }
826
827 /// Add the `restrict` qualifier to this QualType.
828 void addRestrict() {
829 addFastQualifiers(Qualifiers::Restrict);
830 }
831 QualType withRestrict() const {
832 return withFastQualifiers(Qualifiers::Restrict);
833 }
834
835 QualType withCVRQualifiers(unsigned CVR) const {
836 return withFastQualifiers(CVR);
837 }
838
839 void addFastQualifiers(unsigned TQs) {
840 assert(!(TQs & ~Qualifiers::FastMask)((!(TQs & ~Qualifiers::FastMask) && "non-fast qualifier bits set in mask!"
) ? static_cast<void> (0) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 841, __PRETTY_FUNCTION__))
841 && "non-fast qualifier bits set in mask!")((!(TQs & ~Qualifiers::FastMask) && "non-fast qualifier bits set in mask!"
) ? static_cast<void> (0) : __assert_fail ("!(TQs & ~Qualifiers::FastMask) && \"non-fast qualifier bits set in mask!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 841, __PRETTY_FUNCTION__))
;
842 Value.setInt(Value.getInt() | TQs);
843 }
844
845 void removeLocalConst();
846 void removeLocalVolatile();
847 void removeLocalRestrict();
848 void removeLocalCVRQualifiers(unsigned Mask);
849
850 void removeLocalFastQualifiers() { Value.setInt(0); }
851 void removeLocalFastQualifiers(unsigned Mask) {
852 assert(!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers")((!(Mask & ~Qualifiers::FastMask) && "mask has non-fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!(Mask & ~Qualifiers::FastMask) && \"mask has non-fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 852, __PRETTY_FUNCTION__))
;
853 Value.setInt(Value.getInt() & ~Mask);
854 }
855
856 // Creates a type with the given qualifiers in addition to any
857 // qualifiers already on this type.
858 QualType withFastQualifiers(unsigned TQs) const {
859 QualType T = *this;
860 T.addFastQualifiers(TQs);
861 return T;
862 }
863
864 // Creates a type with exactly the given fast qualifiers, removing
865 // any existing fast qualifiers.
866 QualType withExactLocalFastQualifiers(unsigned TQs) const {
867 return withoutLocalFastQualifiers().withFastQualifiers(TQs);
868 }
869
870 // Removes fast qualifiers, but leaves any extended qualifiers in place.
871 QualType withoutLocalFastQualifiers() const {
872 QualType T = *this;
873 T.removeLocalFastQualifiers();
874 return T;
875 }
876
877 QualType getCanonicalType() const;
878
879 /// Return this type with all of the instance-specific qualifiers
880 /// removed, but without removing any qualifiers that may have been applied
881 /// through typedefs.
882 QualType getLocalUnqualifiedType() const { return QualType(getTypePtr(), 0); }
883
884 /// Retrieve the unqualified variant of the given type,
885 /// removing as little sugar as possible.
886 ///
887 /// This routine looks through various kinds of sugar to find the
888 /// least-desugared type that is unqualified. For example, given:
889 ///
890 /// \code
891 /// typedef int Integer;
892 /// typedef const Integer CInteger;
893 /// typedef CInteger DifferenceType;
894 /// \endcode
895 ///
896 /// Executing \c getUnqualifiedType() on the type \c DifferenceType will
897 /// desugar until we hit the type \c Integer, which has no qualifiers on it.
898 ///
899 /// The resulting type might still be qualified if it's sugar for an array
900 /// type. To strip qualifiers even from within a sugared array type, use
901 /// ASTContext::getUnqualifiedArrayType.
902 inline QualType getUnqualifiedType() const;
903
904 /// Retrieve the unqualified variant of the given type, removing as little
905 /// sugar as possible.
906 ///
907 /// Like getUnqualifiedType(), but also returns the set of
908 /// qualifiers that were built up.
909 ///
910 /// The resulting type might still be qualified if it's sugar for an array
911 /// type. To strip qualifiers even from within a sugared array type, use
912 /// ASTContext::getUnqualifiedArrayType.
913 inline SplitQualType getSplitUnqualifiedType() const;
914
915 /// Determine whether this type is more qualified than the other
916 /// given type, requiring exact equality for non-CVR qualifiers.
917 bool isMoreQualifiedThan(QualType Other) const;
918
919 /// Determine whether this type is at least as qualified as the other
920 /// given type, requiring exact equality for non-CVR qualifiers.
921 bool isAtLeastAsQualifiedAs(QualType Other) const;
922
923 QualType getNonReferenceType() const;
924
925 /// Determine the type of a (typically non-lvalue) expression with the
926 /// specified result type.
927 ///
928 /// This routine should be used for expressions for which the return type is
929 /// explicitly specified (e.g., in a cast or call) and isn't necessarily
930 /// an lvalue. It removes a top-level reference (since there are no
931 /// expressions of reference type) and deletes top-level cvr-qualifiers
932 /// from non-class types (in C++) or all types (in C).
933 QualType getNonLValueExprType(const ASTContext &Context) const;
934
935 /// Return the specified type with any "sugar" removed from
936 /// the type. This takes off typedefs, typeof's etc. If the outer level of
937 /// the type is already concrete, it returns it unmodified. This is similar
938 /// to getting the canonical type, but it doesn't remove *all* typedefs. For
939 /// example, it returns "T*" as "T*", (not as "int*"), because the pointer is
940 /// concrete.
941 ///
942 /// Qualifiers are left in place.
943 QualType getDesugaredType(const ASTContext &Context) const {
944 return getDesugaredType(*this, Context);
945 }
946
947 SplitQualType getSplitDesugaredType() const {
948 return getSplitDesugaredType(*this);
949 }
950
951 /// Return the specified type with one level of "sugar" removed from
952 /// the type.
953 ///
954 /// This routine takes off the first typedef, typeof, etc. If the outer level
955 /// of the type is already concrete, it returns it unmodified.
956 QualType getSingleStepDesugaredType(const ASTContext &Context) const {
957 return getSingleStepDesugaredTypeImpl(*this, Context);
958 }
959
960 /// Returns the specified type after dropping any
961 /// outer-level parentheses.
962 QualType IgnoreParens() const {
963 if (isa<ParenType>(*this))
964 return QualType::IgnoreParens(*this);
965 return *this;
966 }
967
968 /// Indicate whether the specified types and qualifiers are identical.
969 friend bool operator==(const QualType &LHS, const QualType &RHS) {
970 return LHS.Value == RHS.Value;
971 }
972 friend bool operator!=(const QualType &LHS, const QualType &RHS) {
973 return LHS.Value != RHS.Value;
974 }
975 friend bool operator<(const QualType &LHS, const QualType &RHS) {
976 return LHS.Value < RHS.Value;
977 }
978
979 static std::string getAsString(SplitQualType split,
980 const PrintingPolicy &Policy) {
981 return getAsString(split.Ty, split.Quals, Policy);
982 }
983 static std::string getAsString(const Type *ty, Qualifiers qs,
984 const PrintingPolicy &Policy);
985
986 std::string getAsString() const;
987 std::string getAsString(const PrintingPolicy &Policy) const;
988
989 void print(raw_ostream &OS, const PrintingPolicy &Policy,
990 const Twine &PlaceHolder = Twine(),
991 unsigned Indentation = 0) const;
992
993 static void print(SplitQualType split, raw_ostream &OS,
994 const PrintingPolicy &policy, const Twine &PlaceHolder,
995 unsigned Indentation = 0) {
996 return print(split.Ty, split.Quals, OS, policy, PlaceHolder, Indentation);
997 }
998
999 static void print(const Type *ty, Qualifiers qs,
1000 raw_ostream &OS, const PrintingPolicy &policy,
1001 const Twine &PlaceHolder,
1002 unsigned Indentation = 0);
1003
1004 void getAsStringInternal(std::string &Str,
1005 const PrintingPolicy &Policy) const;
1006
1007 static void getAsStringInternal(SplitQualType split, std::string &out,
1008 const PrintingPolicy &policy) {
1009 return getAsStringInternal(split.Ty, split.Quals, out, policy);
1010 }
1011
1012 static void getAsStringInternal(const Type *ty, Qualifiers qs,
1013 std::string &out,
1014 const PrintingPolicy &policy);
1015
1016 class StreamedQualTypeHelper {
1017 const QualType &T;
1018 const PrintingPolicy &Policy;
1019 const Twine &PlaceHolder;
1020 unsigned Indentation;
1021
1022 public:
1023 StreamedQualTypeHelper(const QualType &T, const PrintingPolicy &Policy,
1024 const Twine &PlaceHolder, unsigned Indentation)
1025 : T(T), Policy(Policy), PlaceHolder(PlaceHolder),
1026 Indentation(Indentation) {}
1027
1028 friend raw_ostream &operator<<(raw_ostream &OS,
1029 const StreamedQualTypeHelper &SQT) {
1030 SQT.T.print(OS, SQT.Policy, SQT.PlaceHolder, SQT.Indentation);
1031 return OS;
1032 }
1033 };
1034
1035 StreamedQualTypeHelper stream(const PrintingPolicy &Policy,
1036 const Twine &PlaceHolder = Twine(),
1037 unsigned Indentation = 0) const {
1038 return StreamedQualTypeHelper(*this, Policy, PlaceHolder, Indentation);
1039 }
1040
1041 void dump(const char *s) const;
1042 void dump() const;
1043 void dump(llvm::raw_ostream &OS) const;
1044
1045 void Profile(llvm::FoldingSetNodeID &ID) const {
1046 ID.AddPointer(getAsOpaquePtr());
1047 }
1048
1049 /// Return the address space of this type.
1050 inline LangAS getAddressSpace() const;
1051
1052 /// Returns gc attribute of this type.
1053 inline Qualifiers::GC getObjCGCAttr() const;
1054
1055 /// true when Type is objc's weak.
1056 bool isObjCGCWeak() const {
1057 return getObjCGCAttr() == Qualifiers::Weak;
1058 }
1059
1060 /// true when Type is objc's strong.
1061 bool isObjCGCStrong() const {
1062 return getObjCGCAttr() == Qualifiers::Strong;
1063 }
1064
1065 /// Returns lifetime attribute of this type.
1066 Qualifiers::ObjCLifetime getObjCLifetime() const {
1067 return getQualifiers().getObjCLifetime();
1068 }
1069
1070 bool hasNonTrivialObjCLifetime() const {
1071 return getQualifiers().hasNonTrivialObjCLifetime();
1072 }
1073
1074 bool hasStrongOrWeakObjCLifetime() const {
1075 return getQualifiers().hasStrongOrWeakObjCLifetime();
1076 }
1077
1078 // true when Type is objc's weak and weak is enabled but ARC isn't.
1079 bool isNonWeakInMRRWithObjCWeak(const ASTContext &Context) const;
1080
1081 enum PrimitiveDefaultInitializeKind {
1082 /// The type does not fall into any of the following categories. Note that
1083 /// this case is zero-valued so that values of this enum can be used as a
1084 /// boolean condition for non-triviality.
1085 PDIK_Trivial,
1086
1087 /// The type is an Objective-C retainable pointer type that is qualified
1088 /// with the ARC __strong qualifier.
1089 PDIK_ARCStrong,
1090
1091 /// The type is an Objective-C retainable pointer type that is qualified
1092 /// with the ARC __weak qualifier.
1093 PDIK_ARCWeak,
1094
1095 /// The type is a struct containing a field whose type is not PCK_Trivial.
1096 PDIK_Struct
1097 };
1098
1099 /// Functions to query basic properties of non-trivial C struct types.
1100
1101 /// Check if this is a non-trivial type that would cause a C struct
1102 /// transitively containing this type to be non-trivial to default initialize
1103 /// and return the kind.
1104 PrimitiveDefaultInitializeKind
1105 isNonTrivialToPrimitiveDefaultInitialize() const;
1106
1107 enum PrimitiveCopyKind {
1108 /// The type does not fall into any of the following categories. Note that
1109 /// this case is zero-valued so that values of this enum can be used as a
1110 /// boolean condition for non-triviality.
1111 PCK_Trivial,
1112
1113 /// The type would be trivial except that it is volatile-qualified. Types
1114 /// that fall into one of the other non-trivial cases may additionally be
1115 /// volatile-qualified.
1116 PCK_VolatileTrivial,
1117
1118 /// The type is an Objective-C retainable pointer type that is qualified
1119 /// with the ARC __strong qualifier.
1120 PCK_ARCStrong,
1121
1122 /// The type is an Objective-C retainable pointer type that is qualified
1123 /// with the ARC __weak qualifier.
1124 PCK_ARCWeak,
1125
1126 /// The type is a struct containing a field whose type is neither
1127 /// PCK_Trivial nor PCK_VolatileTrivial.
1128 /// Note that a C++ struct type does not necessarily match this; C++ copying
1129 /// semantics are too complex to express here, in part because they depend
1130 /// on the exact constructor or assignment operator that is chosen by
1131 /// overload resolution to do the copy.
1132 PCK_Struct
1133 };
1134
1135 /// Check if this is a non-trivial type that would cause a C struct
1136 /// transitively containing this type to be non-trivial to copy and return the
1137 /// kind.
1138 PrimitiveCopyKind isNonTrivialToPrimitiveCopy() const;
1139
1140 /// Check if this is a non-trivial type that would cause a C struct
1141 /// transitively containing this type to be non-trivial to destructively
1142 /// move and return the kind. Destructive move in this context is a C++-style
1143 /// move in which the source object is placed in a valid but unspecified state
1144 /// after it is moved, as opposed to a truly destructive move in which the
1145 /// source object is placed in an uninitialized state.
1146 PrimitiveCopyKind isNonTrivialToPrimitiveDestructiveMove() const;
1147
1148 enum DestructionKind {
1149 DK_none,
1150 DK_cxx_destructor,
1151 DK_objc_strong_lifetime,
1152 DK_objc_weak_lifetime,
1153 DK_nontrivial_c_struct
1154 };
1155
1156 /// Returns a nonzero value if objects of this type require
1157 /// non-trivial work to clean up after. Non-zero because it's
1158 /// conceivable that qualifiers (objc_gc(weak)?) could make
1159 /// something require destruction.
1160 DestructionKind isDestructedType() const {
1161 return isDestructedTypeImpl(*this);
1162 }
1163
1164 /// Check if this is or contains a C union that is non-trivial to
1165 /// default-initialize, which is a union that has a member that is non-trivial
1166 /// to default-initialize. If this returns true,
1167 /// isNonTrivialToPrimitiveDefaultInitialize returns PDIK_Struct.
1168 bool hasNonTrivialToPrimitiveDefaultInitializeCUnion() const;
1169
1170 /// Check if this is or contains a C union that is non-trivial to destruct,
1171 /// which is a union that has a member that is non-trivial to destruct. If
1172 /// this returns true, isDestructedType returns DK_nontrivial_c_struct.
1173 bool hasNonTrivialToPrimitiveDestructCUnion() const;
1174
1175 /// Check if this is or contains a C union that is non-trivial to copy, which
1176 /// is a union that has a member that is non-trivial to copy. If this returns
1177 /// true, isNonTrivialToPrimitiveCopy returns PCK_Struct.
1178 bool hasNonTrivialToPrimitiveCopyCUnion() const;
1179
1180 /// Determine whether expressions of the given type are forbidden
1181 /// from being lvalues in C.
1182 ///
1183 /// The expression types that are forbidden to be lvalues are:
1184 /// - 'void', but not qualified void
1185 /// - function types
1186 ///
1187 /// The exact rule here is C99 6.3.2.1:
1188 /// An lvalue is an expression with an object type or an incomplete
1189 /// type other than void.
1190 bool isCForbiddenLValueType() const;
1191
1192 /// Substitute type arguments for the Objective-C type parameters used in the
1193 /// subject type.
1194 ///
1195 /// \param ctx ASTContext in which the type exists.
1196 ///
1197 /// \param typeArgs The type arguments that will be substituted for the
1198 /// Objective-C type parameters in the subject type, which are generally
1199 /// computed via \c Type::getObjCSubstitutions. If empty, the type
1200 /// parameters will be replaced with their bounds or id/Class, as appropriate
1201 /// for the context.
1202 ///
1203 /// \param context The context in which the subject type was written.
1204 ///
1205 /// \returns the resulting type.
1206 QualType substObjCTypeArgs(ASTContext &ctx,
1207 ArrayRef<QualType> typeArgs,
1208 ObjCSubstitutionContext context) const;
1209
1210 /// Substitute type arguments from an object type for the Objective-C type
1211 /// parameters used in the subject type.
1212 ///
1213 /// This operation combines the computation of type arguments for
1214 /// substitution (\c Type::getObjCSubstitutions) with the actual process of
1215 /// substitution (\c QualType::substObjCTypeArgs) for the convenience of
1216 /// callers that need to perform a single substitution in isolation.
1217 ///
1218 /// \param objectType The type of the object whose member type we're
1219 /// substituting into. For example, this might be the receiver of a message
1220 /// or the base of a property access.
1221 ///
1222 /// \param dc The declaration context from which the subject type was
1223 /// retrieved, which indicates (for example) which type parameters should
1224 /// be substituted.
1225 ///
1226 /// \param context The context in which the subject type was written.
1227 ///
1228 /// \returns the subject type after replacing all of the Objective-C type
1229 /// parameters with their corresponding arguments.
1230 QualType substObjCMemberType(QualType objectType,
1231 const DeclContext *dc,
1232 ObjCSubstitutionContext context) const;
1233
1234 /// Strip Objective-C "__kindof" types from the given type.
1235 QualType stripObjCKindOfType(const ASTContext &ctx) const;
1236
1237 /// Remove all qualifiers including _Atomic.
1238 QualType getAtomicUnqualifiedType() const;
1239
1240private:
1241 // These methods are implemented in a separate translation unit;
1242 // "static"-ize them to avoid creating temporary QualTypes in the
1243 // caller.
1244 static bool isConstant(QualType T, const ASTContext& Ctx);
1245 static QualType getDesugaredType(QualType T, const ASTContext &Context);
1246 static SplitQualType getSplitDesugaredType(QualType T);
1247 static SplitQualType getSplitUnqualifiedTypeImpl(QualType type);
1248 static QualType getSingleStepDesugaredTypeImpl(QualType type,
1249 const ASTContext &C);
1250 static QualType IgnoreParens(QualType T);
1251 static DestructionKind isDestructedTypeImpl(QualType type);
1252
1253 /// Check if \param RD is or contains a non-trivial C union.
1254 static bool hasNonTrivialToPrimitiveDefaultInitializeCUnion(const RecordDecl *RD);
1255 static bool hasNonTrivialToPrimitiveDestructCUnion(const RecordDecl *RD);
1256 static bool hasNonTrivialToPrimitiveCopyCUnion(const RecordDecl *RD);
1257};
1258
1259} // namespace clang
1260
1261namespace llvm {
1262
1263/// Implement simplify_type for QualType, so that we can dyn_cast from QualType
1264/// to a specific Type class.
1265template<> struct simplify_type< ::clang::QualType> {
1266 using SimpleType = const ::clang::Type *;
1267
1268 static SimpleType getSimplifiedValue(::clang::QualType Val) {
1269 return Val.getTypePtr();
1270 }
1271};
1272
1273// Teach SmallPtrSet that QualType is "basically a pointer".
1274template<>
1275struct PointerLikeTypeTraits<clang::QualType> {
1276 static inline void *getAsVoidPointer(clang::QualType P) {
1277 return P.getAsOpaquePtr();
1278 }
1279
1280 static inline clang::QualType getFromVoidPointer(void *P) {
1281 return clang::QualType::getFromOpaquePtr(P);
1282 }
1283
1284 // Various qualifiers go in low bits.
1285 enum { NumLowBitsAvailable = 0 };
1286};
1287
1288} // namespace llvm
1289
1290namespace clang {
1291
1292/// Base class that is common to both the \c ExtQuals and \c Type
1293/// classes, which allows \c QualType to access the common fields between the
1294/// two.
1295class ExtQualsTypeCommonBase {
1296 friend class ExtQuals;
1297 friend class QualType;
1298 friend class Type;
1299
1300 /// The "base" type of an extended qualifiers type (\c ExtQuals) or
1301 /// a self-referential pointer (for \c Type).
1302 ///
1303 /// This pointer allows an efficient mapping from a QualType to its
1304 /// underlying type pointer.
1305 const Type *const BaseType;
1306
1307 /// The canonical type of this type. A QualType.
1308 QualType CanonicalType;
1309
1310 ExtQualsTypeCommonBase(const Type *baseType, QualType canon)
1311 : BaseType(baseType), CanonicalType(canon) {}
1312};
1313
1314/// We can encode up to four bits in the low bits of a
1315/// type pointer, but there are many more type qualifiers that we want
1316/// to be able to apply to an arbitrary type. Therefore we have this
1317/// struct, intended to be heap-allocated and used by QualType to
1318/// store qualifiers.
1319///
1320/// The current design tags the 'const', 'restrict', and 'volatile' qualifiers
1321/// in three low bits on the QualType pointer; a fourth bit records whether
1322/// the pointer is an ExtQuals node. The extended qualifiers (address spaces,
1323/// Objective-C GC attributes) are much more rare.
1324class ExtQuals : public ExtQualsTypeCommonBase, public llvm::FoldingSetNode {
1325 // NOTE: changing the fast qualifiers should be straightforward as
1326 // long as you don't make 'const' non-fast.
1327 // 1. Qualifiers:
1328 // a) Modify the bitmasks (Qualifiers::TQ and DeclSpec::TQ).
1329 // Fast qualifiers must occupy the low-order bits.
1330 // b) Update Qualifiers::FastWidth and FastMask.
1331 // 2. QualType:
1332 // a) Update is{Volatile,Restrict}Qualified(), defined inline.
1333 // b) Update remove{Volatile,Restrict}, defined near the end of
1334 // this header.
1335 // 3. ASTContext:
1336 // a) Update get{Volatile,Restrict}Type.
1337
1338 /// The immutable set of qualifiers applied by this node. Always contains
1339 /// extended qualifiers.
1340 Qualifiers Quals;
1341
1342 ExtQuals *this_() { return this; }
1343
1344public:
1345 ExtQuals(const Type *baseType, QualType canon, Qualifiers quals)
1346 : ExtQualsTypeCommonBase(baseType,
1347 canon.isNull() ? QualType(this_(), 0) : canon),
1348 Quals(quals) {
1349 assert(Quals.hasNonFastQualifiers()((Quals.hasNonFastQualifiers() && "ExtQuals created with no fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("Quals.hasNonFastQualifiers() && \"ExtQuals created with no fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 1350, __PRETTY_FUNCTION__))
1350 && "ExtQuals created with no fast qualifiers")((Quals.hasNonFastQualifiers() && "ExtQuals created with no fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("Quals.hasNonFastQualifiers() && \"ExtQuals created with no fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 1350, __PRETTY_FUNCTION__))
;
1351 assert(!Quals.hasFastQualifiers()((!Quals.hasFastQualifiers() && "ExtQuals created with fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasFastQualifiers() && \"ExtQuals created with fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 1352, __PRETTY_FUNCTION__))
1352 && "ExtQuals created with fast qualifiers")((!Quals.hasFastQualifiers() && "ExtQuals created with fast qualifiers"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasFastQualifiers() && \"ExtQuals created with fast qualifiers\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 1352, __PRETTY_FUNCTION__))
;
1353 }
1354
1355 Qualifiers getQualifiers() const { return Quals; }
1356
1357 bool hasObjCGCAttr() const { return Quals.hasObjCGCAttr(); }
1358 Qualifiers::GC getObjCGCAttr() const { return Quals.getObjCGCAttr(); }
1359
1360 bool hasObjCLifetime() const { return Quals.hasObjCLifetime(); }
1361 Qualifiers::ObjCLifetime getObjCLifetime() const {
1362 return Quals.getObjCLifetime();
1363 }
1364
1365 bool hasAddressSpace() const { return Quals.hasAddressSpace(); }
1366 LangAS getAddressSpace() const { return Quals.getAddressSpace(); }
1367
1368 const Type *getBaseType() const { return BaseType; }
1369
1370public:
1371 void Profile(llvm::FoldingSetNodeID &ID) const {
1372 Profile(ID, getBaseType(), Quals);
1373 }
1374
1375 static void Profile(llvm::FoldingSetNodeID &ID,
1376 const Type *BaseType,
1377 Qualifiers Quals) {
1378 assert(!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!")((!Quals.hasFastQualifiers() && "fast qualifiers in ExtQuals hash!"
) ? static_cast<void> (0) : __assert_fail ("!Quals.hasFastQualifiers() && \"fast qualifiers in ExtQuals hash!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 1378, __PRETTY_FUNCTION__))
;
1379 ID.AddPointer(BaseType);
1380 Quals.Profile(ID);
1381 }
1382};
1383
1384/// The kind of C++11 ref-qualifier associated with a function type.
1385/// This determines whether a member function's "this" object can be an
1386/// lvalue, rvalue, or neither.
1387enum RefQualifierKind {
1388 /// No ref-qualifier was provided.
1389 RQ_None = 0,
1390
1391 /// An lvalue ref-qualifier was provided (\c &).
1392 RQ_LValue,
1393
1394 /// An rvalue ref-qualifier was provided (\c &&).
1395 RQ_RValue
1396};
1397
1398/// Which keyword(s) were used to create an AutoType.
1399enum class AutoTypeKeyword {
1400 /// auto
1401 Auto,
1402
1403 /// decltype(auto)
1404 DecltypeAuto,
1405
1406 /// __auto_type (GNU extension)
1407 GNUAutoType
1408};
1409
1410/// The base class of the type hierarchy.
1411///
1412/// A central concept with types is that each type always has a canonical
1413/// type. A canonical type is the type with any typedef names stripped out
1414/// of it or the types it references. For example, consider:
1415///
1416/// typedef int foo;
1417/// typedef foo* bar;
1418/// 'int *' 'foo *' 'bar'
1419///
1420/// There will be a Type object created for 'int'. Since int is canonical, its
1421/// CanonicalType pointer points to itself. There is also a Type for 'foo' (a
1422/// TypedefType). Its CanonicalType pointer points to the 'int' Type. Next
1423/// there is a PointerType that represents 'int*', which, like 'int', is
1424/// canonical. Finally, there is a PointerType type for 'foo*' whose canonical
1425/// type is 'int*', and there is a TypedefType for 'bar', whose canonical type
1426/// is also 'int*'.
1427///
1428/// Non-canonical types are useful for emitting diagnostics, without losing
1429/// information about typedefs being used. Canonical types are useful for type
1430/// comparisons (they allow by-pointer equality tests) and useful for reasoning
1431/// about whether something has a particular form (e.g. is a function type),
1432/// because they implicitly, recursively, strip all typedefs out of a type.
1433///
1434/// Types, once created, are immutable.
1435///
1436class alignas(8) Type : public ExtQualsTypeCommonBase {
1437public:
1438 enum TypeClass {
1439#define TYPE(Class, Base) Class,
1440#define LAST_TYPE(Class) TypeLast = Class
1441#define ABSTRACT_TYPE(Class, Base)
1442#include "clang/AST/TypeNodes.inc"
1443 };
1444
1445private:
1446 /// Bitfields required by the Type class.
1447 class TypeBitfields {
1448 friend class Type;
1449 template <class T> friend class TypePropertyCache;
1450
1451 /// TypeClass bitfield - Enum that specifies what subclass this belongs to.
1452 unsigned TC : 8;
1453
1454 /// Whether this type is a dependent type (C++ [temp.dep.type]).
1455 unsigned Dependent : 1;
1456
1457 /// Whether this type somehow involves a template parameter, even
1458 /// if the resolution of the type does not depend on a template parameter.
1459 unsigned InstantiationDependent : 1;
1460
1461 /// Whether this type is a variably-modified type (C99 6.7.5).
1462 unsigned VariablyModified : 1;
1463
1464 /// Whether this type contains an unexpanded parameter pack
1465 /// (for C++11 variadic templates).
1466 unsigned ContainsUnexpandedParameterPack : 1;
1467
1468 /// True if the cache (i.e. the bitfields here starting with
1469 /// 'Cache') is valid.
1470 mutable unsigned CacheValid : 1;
1471
1472 /// Linkage of this type.
1473 mutable unsigned CachedLinkage : 3;
1474
1475 /// Whether this type involves and local or unnamed types.
1476 mutable unsigned CachedLocalOrUnnamed : 1;
1477
1478 /// Whether this type comes from an AST file.
1479 mutable unsigned FromAST : 1;
1480
1481 bool isCacheValid() const {
1482 return CacheValid;
1483 }
1484
1485 Linkage getLinkage() const {
1486 assert(isCacheValid() && "getting linkage from invalid cache")((isCacheValid() && "getting linkage from invalid cache"
) ? static_cast<void> (0) : __assert_fail ("isCacheValid() && \"getting linkage from invalid cache\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 1486, __PRETTY_FUNCTION__))
;
1487 return static_cast<Linkage>(CachedLinkage);
1488 }
1489
1490 bool hasLocalOrUnnamedType() const {
1491 assert(isCacheValid() && "getting linkage from invalid cache")((isCacheValid() && "getting linkage from invalid cache"
) ? static_cast<void> (0) : __assert_fail ("isCacheValid() && \"getting linkage from invalid cache\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 1491, __PRETTY_FUNCTION__))
;
1492 return CachedLocalOrUnnamed;
1493 }
1494 };
1495 enum { NumTypeBits = 18 };
1496
1497protected:
1498 // These classes allow subclasses to somewhat cleanly pack bitfields
1499 // into Type.
1500
1501 class ArrayTypeBitfields {
1502 friend class ArrayType;
1503
1504 unsigned : NumTypeBits;
1505
1506 /// CVR qualifiers from declarations like
1507 /// 'int X[static restrict 4]'. For function parameters only.
1508 unsigned IndexTypeQuals : 3;
1509
1510 /// Storage class qualifiers from declarations like
1511 /// 'int X[static restrict 4]'. For function parameters only.
1512 /// Actually an ArrayType::ArraySizeModifier.
1513 unsigned SizeModifier : 3;
1514 };
1515
1516 class BuiltinTypeBitfields {
1517 friend class BuiltinType;
1518
1519 unsigned : NumTypeBits;
1520
1521 /// The kind (BuiltinType::Kind) of builtin type this is.
1522 unsigned Kind : 8;
1523 };
1524
1525 /// FunctionTypeBitfields store various bits belonging to FunctionProtoType.
1526 /// Only common bits are stored here. Additional uncommon bits are stored
1527 /// in a trailing object after FunctionProtoType.
1528 class FunctionTypeBitfields {
1529 friend class FunctionProtoType;
1530 friend class FunctionType;
1531
1532 unsigned : NumTypeBits;
1533
1534 /// Extra information which affects how the function is called, like
1535 /// regparm and the calling convention.
1536 unsigned ExtInfo : 12;
1537
1538 /// The ref-qualifier associated with a \c FunctionProtoType.
1539 ///
1540 /// This is a value of type \c RefQualifierKind.
1541 unsigned RefQualifier : 2;
1542
1543 /// Used only by FunctionProtoType, put here to pack with the
1544 /// other bitfields.
1545 /// The qualifiers are part of FunctionProtoType because...
1546 ///
1547 /// C++ 8.3.5p4: The return type, the parameter type list and the
1548 /// cv-qualifier-seq, [...], are part of the function type.
1549 unsigned FastTypeQuals : Qualifiers::FastWidth;
1550 /// Whether this function has extended Qualifiers.
1551 unsigned HasExtQuals : 1;
1552
1553 /// The number of parameters this function has, not counting '...'.
1554 /// According to [implimits] 8 bits should be enough here but this is
1555 /// somewhat easy to exceed with metaprogramming and so we would like to
1556 /// keep NumParams as wide as reasonably possible.
1557 unsigned NumParams : 16;
1558
1559 /// The type of exception specification this function has.
1560 unsigned ExceptionSpecType : 4;
1561
1562 /// Whether this function has extended parameter information.
1563 unsigned HasExtParameterInfos : 1;
1564
1565 /// Whether the function is variadic.
1566 unsigned Variadic : 1;
1567
1568 /// Whether this function has a trailing return type.
1569 unsigned HasTrailingReturn : 1;
1570 };
1571
1572 class ObjCObjectTypeBitfields {
1573 friend class ObjCObjectType;
1574
1575 unsigned : NumTypeBits;
1576
1577 /// The number of type arguments stored directly on this object type.
1578 unsigned NumTypeArgs : 7;
1579
1580 /// The number of protocols stored directly on this object type.
1581 unsigned NumProtocols : 6;
1582
1583 /// Whether this is a "kindof" type.
1584 unsigned IsKindOf : 1;
1585 };
1586
1587 class ReferenceTypeBitfields {
1588 friend class ReferenceType;
1589
1590 unsigned : NumTypeBits;
1591
1592 /// True if the type was originally spelled with an lvalue sigil.
1593 /// This is never true of rvalue references but can also be false
1594 /// on lvalue references because of C++0x [dcl.typedef]p9,
1595 /// as follows:
1596 ///
1597 /// typedef int &ref; // lvalue, spelled lvalue
1598 /// typedef int &&rvref; // rvalue
1599 /// ref &a; // lvalue, inner ref, spelled lvalue
1600 /// ref &&a; // lvalue, inner ref
1601 /// rvref &a; // lvalue, inner ref, spelled lvalue
1602 /// rvref &&a; // rvalue, inner ref
1603 unsigned SpelledAsLValue : 1;
1604
1605 /// True if the inner type is a reference type. This only happens
1606 /// in non-canonical forms.
1607 unsigned InnerRef : 1;
1608 };
1609
1610 class TypeWithKeywordBitfields {
1611 friend class TypeWithKeyword;
1612
1613 unsigned : NumTypeBits;
1614
1615 /// An ElaboratedTypeKeyword. 8 bits for efficient access.
1616 unsigned Keyword : 8;
1617 };
1618
1619 enum { NumTypeWithKeywordBits = 8 };
1620
1621 class ElaboratedTypeBitfields {
1622 friend class ElaboratedType;
1623
1624 unsigned : NumTypeBits;
1625 unsigned : NumTypeWithKeywordBits;
1626
1627 /// Whether the ElaboratedType has a trailing OwnedTagDecl.
1628 unsigned HasOwnedTagDecl : 1;
1629 };
1630
1631 class VectorTypeBitfields {
1632 friend class VectorType;
1633 friend class DependentVectorType;
1634
1635 unsigned : NumTypeBits;
1636
1637 /// The kind of vector, either a generic vector type or some
1638 /// target-specific vector type such as for AltiVec or Neon.
1639 unsigned VecKind : 3;
1640
1641 /// The number of elements in the vector.
1642 unsigned NumElements : 29 - NumTypeBits;
1643
1644 enum { MaxNumElements = (1 << (29 - NumTypeBits)) - 1 };
1645 };
1646
1647 class AttributedTypeBitfields {
1648 friend class AttributedType;
1649
1650 unsigned : NumTypeBits;
1651
1652 /// An AttributedType::Kind
1653 unsigned AttrKind : 32 - NumTypeBits;
1654 };
1655
1656 class AutoTypeBitfields {
1657 friend class AutoType;
1658
1659 unsigned : NumTypeBits;
1660
1661 /// Was this placeholder type spelled as 'auto', 'decltype(auto)',
1662 /// or '__auto_type'? AutoTypeKeyword value.
1663 unsigned Keyword : 2;
1664 };
1665
1666 class SubstTemplateTypeParmPackTypeBitfields {
1667 friend class SubstTemplateTypeParmPackType;
1668
1669 unsigned : NumTypeBits;
1670
1671 /// The number of template arguments in \c Arguments, which is
1672 /// expected to be able to hold at least 1024 according to [implimits].
1673 /// However as this limit is somewhat easy to hit with template
1674 /// metaprogramming we'd prefer to keep it as large as possible.
1675 /// At the moment it has been left as a non-bitfield since this type
1676 /// safely fits in 64 bits as an unsigned, so there is no reason to
1677 /// introduce the performance impact of a bitfield.
1678 unsigned NumArgs;
1679 };
1680
1681 class TemplateSpecializationTypeBitfields {
1682 friend class TemplateSpecializationType;
1683
1684 unsigned : NumTypeBits;
1685
1686 /// Whether this template specialization type is a substituted type alias.
1687 unsigned TypeAlias : 1;
1688
1689 /// The number of template arguments named in this class template
1690 /// specialization, which is expected to be able to hold at least 1024
1691 /// according to [implimits]. However, as this limit is somewhat easy to
1692 /// hit with template metaprogramming we'd prefer to keep it as large
1693 /// as possible. At the moment it has been left as a non-bitfield since
1694 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1695 /// to introduce the performance impact of a bitfield.
1696 unsigned NumArgs;
1697 };
1698
1699 class DependentTemplateSpecializationTypeBitfields {
1700 friend class DependentTemplateSpecializationType;
1701
1702 unsigned : NumTypeBits;
1703 unsigned : NumTypeWithKeywordBits;
1704
1705 /// The number of template arguments named in this class template
1706 /// specialization, which is expected to be able to hold at least 1024
1707 /// according to [implimits]. However, as this limit is somewhat easy to
1708 /// hit with template metaprogramming we'd prefer to keep it as large
1709 /// as possible. At the moment it has been left as a non-bitfield since
1710 /// this type safely fits in 64 bits as an unsigned, so there is no reason
1711 /// to introduce the performance impact of a bitfield.
1712 unsigned NumArgs;
1713 };
1714
1715 class PackExpansionTypeBitfields {
1716 friend class PackExpansionType;
1717
1718 unsigned : NumTypeBits;
1719
1720 /// The number of expansions that this pack expansion will
1721 /// generate when substituted (+1), which is expected to be able to
1722 /// hold at least 1024 according to [implimits]. However, as this limit
1723 /// is somewhat easy to hit with template metaprogramming we'd prefer to
1724 /// keep it as large as possible. At the moment it has been left as a
1725 /// non-bitfield since this type safely fits in 64 bits as an unsigned, so
1726 /// there is no reason to introduce the performance impact of a bitfield.
1727 ///
1728 /// This field will only have a non-zero value when some of the parameter
1729 /// packs that occur within the pattern have been substituted but others
1730 /// have not.
1731 unsigned NumExpansions;
1732 };
1733
1734 union {
1735 TypeBitfields TypeBits;
1736 ArrayTypeBitfields ArrayTypeBits;
1737 AttributedTypeBitfields AttributedTypeBits;
1738 AutoTypeBitfields AutoTypeBits;
1739 BuiltinTypeBitfields BuiltinTypeBits;
1740 FunctionTypeBitfields FunctionTypeBits;
1741 ObjCObjectTypeBitfields ObjCObjectTypeBits;
1742 ReferenceTypeBitfields ReferenceTypeBits;
1743 TypeWithKeywordBitfields TypeWithKeywordBits;
1744 ElaboratedTypeBitfields ElaboratedTypeBits;
1745 VectorTypeBitfields VectorTypeBits;
1746 SubstTemplateTypeParmPackTypeBitfields SubstTemplateTypeParmPackTypeBits;
1747 TemplateSpecializationTypeBitfields TemplateSpecializationTypeBits;
1748 DependentTemplateSpecializationTypeBitfields
1749 DependentTemplateSpecializationTypeBits;
1750 PackExpansionTypeBitfields PackExpansionTypeBits;
1751
1752 static_assert(sizeof(TypeBitfields) <= 8,
1753 "TypeBitfields is larger than 8 bytes!");
1754 static_assert(sizeof(ArrayTypeBitfields) <= 8,
1755 "ArrayTypeBitfields is larger than 8 bytes!");
1756 static_assert(sizeof(AttributedTypeBitfields) <= 8,
1757 "AttributedTypeBitfields is larger than 8 bytes!");
1758 static_assert(sizeof(AutoTypeBitfields) <= 8,
1759 "AutoTypeBitfields is larger than 8 bytes!");
1760 static_assert(sizeof(BuiltinTypeBitfields) <= 8,
1761 "BuiltinTypeBitfields is larger than 8 bytes!");
1762 static_assert(sizeof(FunctionTypeBitfields) <= 8,
1763 "FunctionTypeBitfields is larger than 8 bytes!");
1764 static_assert(sizeof(ObjCObjectTypeBitfields) <= 8,
1765 "ObjCObjectTypeBitfields is larger than 8 bytes!");
1766 static_assert(sizeof(ReferenceTypeBitfields) <= 8,
1767 "ReferenceTypeBitfields is larger than 8 bytes!");
1768 static_assert(sizeof(TypeWithKeywordBitfields) <= 8,
1769 "TypeWithKeywordBitfields is larger than 8 bytes!");
1770 static_assert(sizeof(ElaboratedTypeBitfields) <= 8,
1771 "ElaboratedTypeBitfields is larger than 8 bytes!");
1772 static_assert(sizeof(VectorTypeBitfields) <= 8,
1773 "VectorTypeBitfields is larger than 8 bytes!");
1774 static_assert(sizeof(SubstTemplateTypeParmPackTypeBitfields) <= 8,
1775 "SubstTemplateTypeParmPackTypeBitfields is larger"
1776 " than 8 bytes!");
1777 static_assert(sizeof(TemplateSpecializationTypeBitfields) <= 8,
1778 "TemplateSpecializationTypeBitfields is larger"
1779 " than 8 bytes!");
1780 static_assert(sizeof(DependentTemplateSpecializationTypeBitfields) <= 8,
1781 "DependentTemplateSpecializationTypeBitfields is larger"
1782 " than 8 bytes!");
1783 static_assert(sizeof(PackExpansionTypeBitfields) <= 8,
1784 "PackExpansionTypeBitfields is larger than 8 bytes");
1785 };
1786
1787private:
1788 template <class T> friend class TypePropertyCache;
1789
1790 /// Set whether this type comes from an AST file.
1791 void setFromAST(bool V = true) const {
1792 TypeBits.FromAST = V;
1793 }
1794
1795protected:
1796 friend class ASTContext;
1797
1798 Type(TypeClass tc, QualType canon, bool Dependent,
1799 bool InstantiationDependent, bool VariablyModified,
1800 bool ContainsUnexpandedParameterPack)
1801 : ExtQualsTypeCommonBase(this,
1802 canon.isNull() ? QualType(this_(), 0) : canon) {
1803 TypeBits.TC = tc;
1804 TypeBits.Dependent = Dependent;
1805 TypeBits.InstantiationDependent = Dependent || InstantiationDependent;
1806 TypeBits.VariablyModified = VariablyModified;
1807 TypeBits.ContainsUnexpandedParameterPack = ContainsUnexpandedParameterPack;
1808 TypeBits.CacheValid = false;
1809 TypeBits.CachedLocalOrUnnamed = false;
1810 TypeBits.CachedLinkage = NoLinkage;
1811 TypeBits.FromAST = false;
1812 }
1813
1814 // silence VC++ warning C4355: 'this' : used in base member initializer list
1815 Type *this_() { return this; }
1816
1817 void setDependent(bool D = true) {
1818 TypeBits.Dependent = D;
1819 if (D)
1820 TypeBits.InstantiationDependent = true;
1821 }
1822
1823 void setInstantiationDependent(bool D = true) {
1824 TypeBits.InstantiationDependent = D; }
1825
1826 void setVariablyModified(bool VM = true) { TypeBits.VariablyModified = VM; }
1827
1828 void setContainsUnexpandedParameterPack(bool PP = true) {
1829 TypeBits.ContainsUnexpandedParameterPack = PP;
1830 }
1831
1832public:
1833 friend class ASTReader;
1834 friend class ASTWriter;
1835
1836 Type(const Type &) = delete;
1837 Type(Type &&) = delete;
1838 Type &operator=(const Type &) = delete;
1839 Type &operator=(Type &&) = delete;
1840
1841 TypeClass getTypeClass() const { return static_cast<TypeClass>(TypeBits.TC); }
1842
1843 /// Whether this type comes from an AST file.
1844 bool isFromAST() const { return TypeBits.FromAST; }
1845
1846 /// Whether this type is or contains an unexpanded parameter
1847 /// pack, used to support C++0x variadic templates.
1848 ///
1849 /// A type that contains a parameter pack shall be expanded by the
1850 /// ellipsis operator at some point. For example, the typedef in the
1851 /// following example contains an unexpanded parameter pack 'T':
1852 ///
1853 /// \code
1854 /// template<typename ...T>
1855 /// struct X {
1856 /// typedef T* pointer_types; // ill-formed; T is a parameter pack.
1857 /// };
1858 /// \endcode
1859 ///
1860 /// Note that this routine does not specify which
1861 bool containsUnexpandedParameterPack() const {
1862 return TypeBits.ContainsUnexpandedParameterPack;
1863 }
1864
1865 /// Determines if this type would be canonical if it had no further
1866 /// qualification.
1867 bool isCanonicalUnqualified() const {
1868 return CanonicalType == QualType(this, 0);
1869 }
1870
1871 /// Pull a single level of sugar off of this locally-unqualified type.
1872 /// Users should generally prefer SplitQualType::getSingleStepDesugaredType()
1873 /// or QualType::getSingleStepDesugaredType(const ASTContext&).
1874 QualType getLocallyUnqualifiedSingleStepDesugaredType() const;
1875
1876 /// Types are partitioned into 3 broad categories (C99 6.2.5p1):
1877 /// object types, function types, and incomplete types.
1878
1879 /// Return true if this is an incomplete type.
1880 /// A type that can describe objects, but which lacks information needed to
1881 /// determine its size (e.g. void, or a fwd declared struct). Clients of this
1882 /// routine will need to determine if the size is actually required.
1883 ///
1884 /// Def If non-null, and the type refers to some kind of declaration
1885 /// that can be completed (such as a C struct, C++ class, or Objective-C
1886 /// class), will be set to the declaration.
1887 bool isIncompleteType(NamedDecl **Def = nullptr) const;
1888
1889 /// Return true if this is an incomplete or object
1890 /// type, in other words, not a function type.
1891 bool isIncompleteOrObjectType() const {
1892 return !isFunctionType();
1893 }
1894
1895 /// Determine whether this type is an object type.
1896 bool isObjectType() const {
1897 // C++ [basic.types]p8:
1898 // An object type is a (possibly cv-qualified) type that is not a
1899 // function type, not a reference type, and not a void type.
1900 return !isReferenceType() && !isFunctionType() && !isVoidType();
1901 }
1902
1903 /// Return true if this is a literal type
1904 /// (C++11 [basic.types]p10)
1905 bool isLiteralType(const ASTContext &Ctx) const;
1906
1907 /// Test if this type is a standard-layout type.
1908 /// (C++0x [basic.type]p9)
1909 bool isStandardLayoutType() const;
1910
1911 /// Helper methods to distinguish type categories. All type predicates
1912 /// operate on the canonical type, ignoring typedefs and qualifiers.
1913
1914 /// Returns true if the type is a builtin type.
1915 bool isBuiltinType() const;
1916
1917 /// Test for a particular builtin type.
1918 bool isSpecificBuiltinType(unsigned K) const;
1919
1920 /// Test for a type which does not represent an actual type-system type but
1921 /// is instead used as a placeholder for various convenient purposes within
1922 /// Clang. All such types are BuiltinTypes.
1923 bool isPlaceholderType() const;
1924 const BuiltinType *getAsPlaceholderType() const;
1925
1926 /// Test for a specific placeholder type.
1927 bool isSpecificPlaceholderType(unsigned K) const;
1928
1929 /// Test for a placeholder type other than Overload; see
1930 /// BuiltinType::isNonOverloadPlaceholderType.
1931 bool isNonOverloadPlaceholderType() const;
1932
1933 /// isIntegerType() does *not* include complex integers (a GCC extension).
1934 /// isComplexIntegerType() can be used to test for complex integers.
1935 bool isIntegerType() const; // C99 6.2.5p17 (int, char, bool, enum)
1936 bool isEnumeralType() const;
1937
1938 /// Determine whether this type is a scoped enumeration type.
1939 bool isScopedEnumeralType() const;
1940 bool isBooleanType() const;
1941 bool isCharType() const;
1942 bool isWideCharType() const;
1943 bool isChar8Type() const;
1944 bool isChar16Type() const;
1945 bool isChar32Type() const;
1946 bool isAnyCharacterType() const;
1947 bool isIntegralType(const ASTContext &Ctx) const;
1948
1949 /// Determine whether this type is an integral or enumeration type.
1950 bool isIntegralOrEnumerationType() const;
1951
1952 /// Determine whether this type is an integral or unscoped enumeration type.
1953 bool isIntegralOrUnscopedEnumerationType() const;
1954
1955 /// Floating point categories.
1956 bool isRealFloatingType() const; // C99 6.2.5p10 (float, double, long double)
1957 /// isComplexType() does *not* include complex integers (a GCC extension).
1958 /// isComplexIntegerType() can be used to test for complex integers.
1959 bool isComplexType() const; // C99 6.2.5p11 (complex)
1960 bool isAnyComplexType() const; // C99 6.2.5p11 (complex) + Complex Int.
1961 bool isFloatingType() const; // C99 6.2.5p11 (real floating + complex)
1962 bool isHalfType() const; // OpenCL 6.1.1.1, NEON (IEEE 754-2008 half)
1963 bool isFloat16Type() const; // C11 extension ISO/IEC TS 18661
1964 bool isFloat128Type() const;
1965 bool isRealType() const; // C99 6.2.5p17 (real floating + integer)
1966 bool isArithmeticType() const; // C99 6.2.5p18 (integer + floating)
1967 bool isVoidType() const; // C99 6.2.5p19
1968 bool isScalarType() const; // C99 6.2.5p21 (arithmetic + pointers)
1969 bool isAggregateType() const;
1970 bool isFundamentalType() const;
1971 bool isCompoundType() const;
1972
1973 // Type Predicates: Check to see if this type is structurally the specified
1974 // type, ignoring typedefs and qualifiers.
1975 bool isFunctionType() const;
1976 bool isFunctionNoProtoType() const { return getAs<FunctionNoProtoType>(); }
1977 bool isFunctionProtoType() const { return getAs<FunctionProtoType>(); }
1978 bool isPointerType() const;
1979 bool isAnyPointerType() const; // Any C pointer or ObjC object pointer
1980 bool isBlockPointerType() const;
1981 bool isVoidPointerType() const;
1982 bool isReferenceType() const;
1983 bool isLValueReferenceType() const;
1984 bool isRValueReferenceType() const;
1985 bool isFunctionPointerType() const;
1986 bool isFunctionReferenceType() const;
1987 bool isMemberPointerType() const;
1988 bool isMemberFunctionPointerType() const;
1989 bool isMemberDataPointerType() const;
1990 bool isArrayType() const;
1991 bool isConstantArrayType() const;
1992 bool isIncompleteArrayType() const;
1993 bool isVariableArrayType() const;
1994 bool isDependentSizedArrayType() const;
1995 bool isRecordType() const;
1996 bool isClassType() const;
1997 bool isStructureType() const;
1998 bool isObjCBoxableRecordType() const;
1999 bool isInterfaceType() const;
2000 bool isStructureOrClassType() const;
2001 bool isUnionType() const;
2002 bool isComplexIntegerType() const; // GCC _Complex integer type.
2003 bool isVectorType() const; // GCC vector type.
2004 bool isExtVectorType() const; // Extended vector type.
2005 bool isDependentAddressSpaceType() const; // value-dependent address space qualifier
2006 bool isObjCObjectPointerType() const; // pointer to ObjC object
2007 bool isObjCRetainableType() const; // ObjC object or block pointer
2008 bool isObjCLifetimeType() const; // (array of)* retainable type
2009 bool isObjCIndirectLifetimeType() const; // (pointer to)* lifetime type
2010 bool isObjCNSObjectType() const; // __attribute__((NSObject))
2011 bool isObjCIndependentClassType() const; // __attribute__((objc_independent_class))
2012 // FIXME: change this to 'raw' interface type, so we can used 'interface' type
2013 // for the common case.
2014 bool isObjCObjectType() const; // NSString or typeof(*(id)0)
2015 bool isObjCQualifiedInterfaceType() const; // NSString<foo>
2016 bool isObjCQualifiedIdType() const; // id<foo>
2017 bool isObjCQualifiedClassType() const; // Class<foo>
2018 bool isObjCObjectOrInterfaceType() const;
2019 bool isObjCIdType() const; // id
2020 bool isDecltypeType() const;
2021 /// Was this type written with the special inert-in-ARC __unsafe_unretained
2022 /// qualifier?
2023 ///
2024 /// This approximates the answer to the following question: if this
2025 /// translation unit were compiled in ARC, would this type be qualified
2026 /// with __unsafe_unretained?
2027 bool isObjCInertUnsafeUnretainedType() const {
2028 return hasAttr(attr::ObjCInertUnsafeUnretained);
2029 }
2030
2031 /// Whether the type is Objective-C 'id' or a __kindof type of an
2032 /// object type, e.g., __kindof NSView * or __kindof id
2033 /// <NSCopying>.
2034 ///
2035 /// \param bound Will be set to the bound on non-id subtype types,
2036 /// which will be (possibly specialized) Objective-C class type, or
2037 /// null for 'id.
2038 bool isObjCIdOrObjectKindOfType(const ASTContext &ctx,
2039 const ObjCObjectType *&bound) const;
2040
2041 bool isObjCClassType() const; // Class
2042
2043 /// Whether the type is Objective-C 'Class' or a __kindof type of an
2044 /// Class type, e.g., __kindof Class <NSCopying>.
2045 ///
2046 /// Unlike \c isObjCIdOrObjectKindOfType, there is no relevant bound
2047 /// here because Objective-C's type system cannot express "a class
2048 /// object for a subclass of NSFoo".
2049 bool isObjCClassOrClassKindOfType() const;
2050
2051 bool isBlockCompatibleObjCPointerType(ASTContext &ctx) const;
2052 bool isObjCSelType() const; // Class
2053 bool isObjCBuiltinType() const; // 'id' or 'Class'
2054 bool isObjCARCBridgableType() const;
2055 bool isCARCBridgableType() const;
2056 bool isTemplateTypeParmType() const; // C++ template type parameter
2057 bool isNullPtrType() const; // C++11 std::nullptr_t
2058 bool isNothrowT() const; // C++ std::nothrow_t
2059 bool isAlignValT() const; // C++17 std::align_val_t
2060 bool isStdByteType() const; // C++17 std::byte
2061 bool isAtomicType() const; // C11 _Atomic()
2062
2063#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
2064 bool is##Id##Type() const;
2065#include "clang/Basic/OpenCLImageTypes.def"
2066
2067 bool isImageType() const; // Any OpenCL image type
2068
2069 bool isSamplerT() const; // OpenCL sampler_t
2070 bool isEventT() const; // OpenCL event_t
2071 bool isClkEventT() const; // OpenCL clk_event_t
2072 bool isQueueT() const; // OpenCL queue_t
2073 bool isReserveIDT() const; // OpenCL reserve_id_t
2074
2075#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
2076 bool is##Id##Type() const;
2077#include "clang/Basic/OpenCLExtensionTypes.def"
2078 // Type defined in cl_intel_device_side_avc_motion_estimation OpenCL extension
2079 bool isOCLIntelSubgroupAVCType() const;
2080 bool isOCLExtOpaqueType() const; // Any OpenCL extension type
2081
2082 bool isPipeType() const; // OpenCL pipe type
2083 bool isOpenCLSpecificType() const; // Any OpenCL specific type
2084
2085 /// Determines if this type, which must satisfy
2086 /// isObjCLifetimeType(), is implicitly __unsafe_unretained rather
2087 /// than implicitly __strong.
2088 bool isObjCARCImplicitlyUnretainedType() const;
2089
2090 /// Return the implicit lifetime for this type, which must not be dependent.
2091 Qualifiers::ObjCLifetime getObjCARCImplicitLifetime() const;
2092
2093 enum ScalarTypeKind {
2094 STK_CPointer,
2095 STK_BlockPointer,
2096 STK_ObjCObjectPointer,
2097 STK_MemberPointer,
2098 STK_Bool,
2099 STK_Integral,
2100 STK_Floating,
2101 STK_IntegralComplex,
2102 STK_FloatingComplex,
2103 STK_FixedPoint
2104 };
2105
2106 /// Given that this is a scalar type, classify it.
2107 ScalarTypeKind getScalarTypeKind() const;
2108
2109 /// Whether this type is a dependent type, meaning that its definition
2110 /// somehow depends on a template parameter (C++ [temp.dep.type]).
2111 bool isDependentType() const { return TypeBits.Dependent; }
2112
2113 /// Determine whether this type is an instantiation-dependent type,
2114 /// meaning that the type involves a template parameter (even if the
2115 /// definition does not actually depend on the type substituted for that
2116 /// template parameter).
2117 bool isInstantiationDependentType() const {
2118 return TypeBits.InstantiationDependent;
2119 }
2120
2121 /// Determine whether this type is an undeduced type, meaning that
2122 /// it somehow involves a C++11 'auto' type or similar which has not yet been
2123 /// deduced.
2124 bool isUndeducedType() const;
2125
2126 /// Whether this type is a variably-modified type (C99 6.7.5).
2127 bool isVariablyModifiedType() const { return TypeBits.VariablyModified; }
2128
2129 /// Whether this type involves a variable-length array type
2130 /// with a definite size.
2131 bool hasSizedVLAType() const;
2132
2133 /// Whether this type is or contains a local or unnamed type.
2134 bool hasUnnamedOrLocalType() const;
2135
2136 bool isOverloadableType() const;
2137
2138 /// Determine wither this type is a C++ elaborated-type-specifier.
2139 bool isElaboratedTypeSpecifier() const;
2140
2141 bool canDecayToPointerType() const;
2142
2143 /// Whether this type is represented natively as a pointer. This includes
2144 /// pointers, references, block pointers, and Objective-C interface,
2145 /// qualified id, and qualified interface types, as well as nullptr_t.
2146 bool hasPointerRepresentation() const;
2147
2148 /// Whether this type can represent an objective pointer type for the
2149 /// purpose of GC'ability
2150 bool hasObjCPointerRepresentation() const;
2151
2152 /// Determine whether this type has an integer representation
2153 /// of some sort, e.g., it is an integer type or a vector.
2154 bool hasIntegerRepresentation() const;
2155
2156 /// Determine whether this type has an signed integer representation
2157 /// of some sort, e.g., it is an signed integer type or a vector.
2158 bool hasSignedIntegerRepresentation() const;
2159
2160 /// Determine whether this type has an unsigned integer representation
2161 /// of some sort, e.g., it is an unsigned integer type or a vector.
2162 bool hasUnsignedIntegerRepresentation() const;
2163
2164 /// Determine whether this type has a floating-point representation
2165 /// of some sort, e.g., it is a floating-point type or a vector thereof.
2166 bool hasFloatingRepresentation() const;
2167
2168 // Type Checking Functions: Check to see if this type is structurally the
2169 // specified type, ignoring typedefs and qualifiers, and return a pointer to
2170 // the best type we can.
2171 const RecordType *getAsStructureType() const;
2172 /// NOTE: getAs*ArrayType are methods on ASTContext.
2173 const RecordType *getAsUnionType() const;
2174 const ComplexType *getAsComplexIntegerType() const; // GCC complex int type.
2175 const ObjCObjectType *getAsObjCInterfaceType() const;
2176
2177 // The following is a convenience method that returns an ObjCObjectPointerType
2178 // for object declared using an interface.
2179 const ObjCObjectPointerType *getAsObjCInterfacePointerType() const;
2180 const ObjCObjectPointerType *getAsObjCQualifiedIdType() const;
2181 const ObjCObjectPointerType *getAsObjCQualifiedClassType() const;
2182 const ObjCObjectType *getAsObjCQualifiedInterfaceType() const;
2183
2184 /// Retrieves the CXXRecordDecl that this type refers to, either
2185 /// because the type is a RecordType or because it is the injected-class-name
2186 /// type of a class template or class template partial specialization.
2187 CXXRecordDecl *getAsCXXRecordDecl() const;
2188
2189 /// Retrieves the RecordDecl this type refers to.
2190 RecordDecl *getAsRecordDecl() const;
2191
2192 /// Retrieves the TagDecl that this type refers to, either
2193 /// because the type is a TagType or because it is the injected-class-name
2194 /// type of a class template or class template partial specialization.
2195 TagDecl *getAsTagDecl() const;
2196
2197 /// If this is a pointer or reference to a RecordType, return the
2198 /// CXXRecordDecl that the type refers to.
2199 ///
2200 /// If this is not a pointer or reference, or the type being pointed to does
2201 /// not refer to a CXXRecordDecl, returns NULL.
2202 const CXXRecordDecl *getPointeeCXXRecordDecl() const;
2203
2204 /// Get the DeducedType whose type will be deduced for a variable with
2205 /// an initializer of this type. This looks through declarators like pointer
2206 /// types, but not through decltype or typedefs.
2207 DeducedType *getContainedDeducedType() const;
2208
2209 /// Get the AutoType whose type will be deduced for a variable with
2210 /// an initializer of this type. This looks through declarators like pointer
2211 /// types, but not through decltype or typedefs.
2212 AutoType *getContainedAutoType() const {
2213 return dyn_cast_or_null<AutoType>(getContainedDeducedType());
2214 }
2215
2216 /// Determine whether this type was written with a leading 'auto'
2217 /// corresponding to a trailing return type (possibly for a nested
2218 /// function type within a pointer to function type or similar).
2219 bool hasAutoForTrailingReturnType() const;
2220
2221 /// Member-template getAs<specific type>'. Look through sugar for
2222 /// an instance of \<specific type>. This scheme will eventually
2223 /// replace the specific getAsXXXX methods above.
2224 ///
2225 /// There are some specializations of this member template listed
2226 /// immediately following this class.
2227 template <typename T> const T *getAs() const;
2228
2229 /// Member-template getAsAdjusted<specific type>. Look through specific kinds
2230 /// of sugar (parens, attributes, etc) for an instance of \<specific type>.
2231 /// This is used when you need to walk over sugar nodes that represent some
2232 /// kind of type adjustment from a type that was written as a \<specific type>
2233 /// to another type that is still canonically a \<specific type>.
2234 template <typename T> const T *getAsAdjusted() const;
2235
2236 /// A variant of getAs<> for array types which silently discards
2237 /// qualifiers from the outermost type.
2238 const ArrayType *getAsArrayTypeUnsafe() const;
2239
2240 /// Member-template castAs<specific type>. Look through sugar for
2241 /// the underlying instance of \<specific type>.
2242 ///
2243 /// This method has the same relationship to getAs<T> as cast<T> has
2244 /// to dyn_cast<T>; which is to say, the underlying type *must*
2245 /// have the intended type, and this method will never return null.
2246 template <typename T> const T *castAs() const;
2247
2248 /// A variant of castAs<> for array type which silently discards
2249 /// qualifiers from the outermost type.
2250 const ArrayType *castAsArrayTypeUnsafe() const;
2251
2252 /// Determine whether this type had the specified attribute applied to it
2253 /// (looking through top-level type sugar).
2254 bool hasAttr(attr::Kind AK) const;
2255
2256 /// Get the base element type of this type, potentially discarding type
2257 /// qualifiers. This should never be used when type qualifiers
2258 /// are meaningful.
2259 const Type *getBaseElementTypeUnsafe() const;
2260
2261 /// If this is an array type, return the element type of the array,
2262 /// potentially with type qualifiers missing.
2263 /// This should never be used when type qualifiers are meaningful.
2264 const Type *getArrayElementTypeNoTypeQual() const;
2265
2266 /// If this is a pointer type, return the pointee type.
2267 /// If this is an array type, return the array element type.
2268 /// This should never be used when type qualifiers are meaningful.
2269 const Type *getPointeeOrArrayElementType() const;
2270
2271 /// If this is a pointer, ObjC object pointer, or block
2272 /// pointer, this returns the respective pointee.
2273 QualType getPointeeType() const;
2274
2275 /// Return the specified type with any "sugar" removed from the type,
2276 /// removing any typedefs, typeofs, etc., as well as any qualifiers.
2277 const Type *getUnqualifiedDesugaredType() const;
2278
2279 /// More type predicates useful for type checking/promotion
2280 bool isPromotableIntegerType() const; // C99 6.3.1.1p2
2281
2282 /// Return true if this is an integer type that is
2283 /// signed, according to C99 6.2.5p4 [char, signed char, short, int, long..],
2284 /// or an enum decl which has a signed representation.
2285 bool isSignedIntegerType() const;
2286
2287 /// Return true if this is an integer type that is
2288 /// unsigned, according to C99 6.2.5p6 [which returns true for _Bool],
2289 /// or an enum decl which has an unsigned representation.
2290 bool isUnsignedIntegerType() const;
2291
2292 /// Determines whether this is an integer type that is signed or an
2293 /// enumeration types whose underlying type is a signed integer type.
2294 bool isSignedIntegerOrEnumerationType() const;
2295
2296 /// Determines whether this is an integer type that is unsigned or an
2297 /// enumeration types whose underlying type is a unsigned integer type.
2298 bool isUnsignedIntegerOrEnumerationType() const;
2299
2300 /// Return true if this is a fixed point type according to
2301 /// ISO/IEC JTC1 SC22 WG14 N1169.
2302 bool isFixedPointType() const;
2303
2304 /// Return true if this is a fixed point or integer type.
2305 bool isFixedPointOrIntegerType() const;
2306
2307 /// Return true if this is a saturated fixed point type according to
2308 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2309 bool isSaturatedFixedPointType() const;
2310
2311 /// Return true if this is a saturated fixed point type according to
2312 /// ISO/IEC JTC1 SC22 WG14 N1169. This type can be signed or unsigned.
2313 bool isUnsaturatedFixedPointType() const;
2314
2315 /// Return true if this is a fixed point type that is signed according
2316 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2317 bool isSignedFixedPointType() const;
2318
2319 /// Return true if this is a fixed point type that is unsigned according
2320 /// to ISO/IEC JTC1 SC22 WG14 N1169. This type can also be saturated.
2321 bool isUnsignedFixedPointType() const;
2322
2323 /// Return true if this is not a variable sized type,
2324 /// according to the rules of C99 6.7.5p3. It is not legal to call this on
2325 /// incomplete types.
2326 bool isConstantSizeType() const;
2327
2328 /// Returns true if this type can be represented by some
2329 /// set of type specifiers.
2330 bool isSpecifierType() const;
2331
2332 /// Determine the linkage of this type.
2333 Linkage getLinkage() const;
2334
2335 /// Determine the visibility of this type.
2336 Visibility getVisibility() const {
2337 return getLinkageAndVisibility().getVisibility();
2338 }
2339
2340 /// Return true if the visibility was explicitly set is the code.
2341 bool isVisibilityExplicit() const {
2342 return getLinkageAndVisibility().isVisibilityExplicit();
2343 }
2344
2345 /// Determine the linkage and visibility of this type.
2346 LinkageInfo getLinkageAndVisibility() const;
2347
2348 /// True if the computed linkage is valid. Used for consistency
2349 /// checking. Should always return true.
2350 bool isLinkageValid() const;
2351
2352 /// Determine the nullability of the given type.
2353 ///
2354 /// Note that nullability is only captured as sugar within the type
2355 /// system, not as part of the canonical type, so nullability will
2356 /// be lost by canonicalization and desugaring.
2357 Optional<NullabilityKind> getNullability(const ASTContext &context) const;
2358
2359 /// Determine whether the given type can have a nullability
2360 /// specifier applied to it, i.e., if it is any kind of pointer type.
2361 ///
2362 /// \param ResultIfUnknown The value to return if we don't yet know whether
2363 /// this type can have nullability because it is dependent.
2364 bool canHaveNullability(bool ResultIfUnknown = true) const;
2365
2366 /// Retrieve the set of substitutions required when accessing a member
2367 /// of the Objective-C receiver type that is declared in the given context.
2368 ///
2369 /// \c *this is the type of the object we're operating on, e.g., the
2370 /// receiver for a message send or the base of a property access, and is
2371 /// expected to be of some object or object pointer type.
2372 ///
2373 /// \param dc The declaration context for which we are building up a
2374 /// substitution mapping, which should be an Objective-C class, extension,
2375 /// category, or method within.
2376 ///
2377 /// \returns an array of type arguments that can be substituted for
2378 /// the type parameters of the given declaration context in any type described
2379 /// within that context, or an empty optional to indicate that no
2380 /// substitution is required.
2381 Optional<ArrayRef<QualType>>
2382 getObjCSubstitutions(const DeclContext *dc) const;
2383
2384 /// Determines if this is an ObjC interface type that may accept type
2385 /// parameters.
2386 bool acceptsObjCTypeParams() const;
2387
2388 const char *getTypeClassName() const;
2389
2390 QualType getCanonicalTypeInternal() const {
2391 return CanonicalType;
2392 }
2393
2394 CanQualType getCanonicalTypeUnqualified() const; // in CanonicalType.h
2395 void dump() const;
2396 void dump(llvm::raw_ostream &OS) const;
2397};
2398
2399/// This will check for a TypedefType by removing any existing sugar
2400/// until it reaches a TypedefType or a non-sugared type.
2401template <> const TypedefType *Type::getAs() const;
2402
2403/// This will check for a TemplateSpecializationType by removing any
2404/// existing sugar until it reaches a TemplateSpecializationType or a
2405/// non-sugared type.
2406template <> const TemplateSpecializationType *Type::getAs() const;
2407
2408/// This will check for an AttributedType by removing any existing sugar
2409/// until it reaches an AttributedType or a non-sugared type.
2410template <> const AttributedType *Type::getAs() const;
2411
2412// We can do canonical leaf types faster, because we don't have to
2413// worry about preserving child type decoration.
2414#define TYPE(Class, Base)
2415#define LEAF_TYPE(Class) \
2416template <> inline const Class##Type *Type::getAs() const { \
2417 return dyn_cast<Class##Type>(CanonicalType); \
2418} \
2419template <> inline const Class##Type *Type::castAs() const { \
2420 return cast<Class##Type>(CanonicalType); \
2421}
2422#include "clang/AST/TypeNodes.inc"
2423
2424/// This class is used for builtin types like 'int'. Builtin
2425/// types are always canonical and have a literal name field.
2426class BuiltinType : public Type {
2427public:
2428 enum Kind {
2429// OpenCL image types
2430#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) Id,
2431#include "clang/Basic/OpenCLImageTypes.def"
2432// OpenCL extension types
2433#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) Id,
2434#include "clang/Basic/OpenCLExtensionTypes.def"
2435// SVE Types
2436#define SVE_TYPE(Name, Id, SingletonId) Id,
2437#include "clang/Basic/AArch64SVEACLETypes.def"
2438// All other builtin types
2439#define BUILTIN_TYPE(Id, SingletonId) Id,
2440#define LAST_BUILTIN_TYPE(Id) LastKind = Id
2441#include "clang/AST/BuiltinTypes.def"
2442 };
2443
2444private:
2445 friend class ASTContext; // ASTContext creates these.
2446
2447 BuiltinType(Kind K)
2448 : Type(Builtin, QualType(), /*Dependent=*/(K == Dependent),
2449 /*InstantiationDependent=*/(K == Dependent),
2450 /*VariablyModified=*/false,
2451 /*Unexpanded parameter pack=*/false) {
2452 BuiltinTypeBits.Kind = K;
2453 }
2454
2455public:
2456 Kind getKind() const { return static_cast<Kind>(BuiltinTypeBits.Kind); }
2457 StringRef getName(const PrintingPolicy &Policy) const;
2458
2459 const char *getNameAsCString(const PrintingPolicy &Policy) const {
2460 // The StringRef is null-terminated.
2461 StringRef str = getName(Policy);
2462 assert(!str.empty() && str.data()[str.size()] == '\0')((!str.empty() && str.data()[str.size()] == '\0') ? static_cast
<void> (0) : __assert_fail ("!str.empty() && str.data()[str.size()] == '\\0'"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 2462, __PRETTY_FUNCTION__))
;
2463 return str.data();
2464 }
2465
2466 bool isSugared() const { return false; }
2467 QualType desugar() const { return QualType(this, 0); }
2468
2469 bool isInteger() const {
2470 return getKind() >= Bool && getKind() <= Int128;
2471 }
2472
2473 bool isSignedInteger() const {
2474 return getKind() >= Char_S && getKind() <= Int128;
2475 }
2476
2477 bool isUnsignedInteger() const {
2478 return getKind() >= Bool && getKind() <= UInt128;
2479 }
2480
2481 bool isFloatingPoint() const {
2482 return getKind() >= Half && getKind() <= Float128;
2483 }
2484
2485 /// Determines whether the given kind corresponds to a placeholder type.
2486 static bool isPlaceholderTypeKind(Kind K) {
2487 return K >= Overload;
2488 }
2489
2490 /// Determines whether this type is a placeholder type, i.e. a type
2491 /// which cannot appear in arbitrary positions in a fully-formed
2492 /// expression.
2493 bool isPlaceholderType() const {
2494 return isPlaceholderTypeKind(getKind());
2495 }
2496
2497 /// Determines whether this type is a placeholder type other than
2498 /// Overload. Most placeholder types require only syntactic
2499 /// information about their context in order to be resolved (e.g.
2500 /// whether it is a call expression), which means they can (and
2501 /// should) be resolved in an earlier "phase" of analysis.
2502 /// Overload expressions sometimes pick up further information
2503 /// from their context, like whether the context expects a
2504 /// specific function-pointer type, and so frequently need
2505 /// special treatment.
2506 bool isNonOverloadPlaceholderType() const {
2507 return getKind() > Overload;
2508 }
2509
2510 static bool classof(const Type *T) { return T->getTypeClass() == Builtin; }
2511};
2512
2513/// Complex values, per C99 6.2.5p11. This supports the C99 complex
2514/// types (_Complex float etc) as well as the GCC integer complex extensions.
2515class ComplexType : public Type, public llvm::FoldingSetNode {
2516 friend class ASTContext; // ASTContext creates these.
2517
2518 QualType ElementType;
2519
2520 ComplexType(QualType Element, QualType CanonicalPtr)
2521 : Type(Complex, CanonicalPtr, Element->isDependentType(),
2522 Element->isInstantiationDependentType(),
2523 Element->isVariablyModifiedType(),
2524 Element->containsUnexpandedParameterPack()),
2525 ElementType(Element) {}
2526
2527public:
2528 QualType getElementType() const { return ElementType; }
2529
2530 bool isSugared() const { return false; }
2531 QualType desugar() const { return QualType(this, 0); }
2532
2533 void Profile(llvm::FoldingSetNodeID &ID) {
2534 Profile(ID, getElementType());
2535 }
2536
2537 static void Profile(llvm::FoldingSetNodeID &ID, QualType Element) {
2538 ID.AddPointer(Element.getAsOpaquePtr());
2539 }
2540
2541 static bool classof(const Type *T) { return T->getTypeClass() == Complex; }
2542};
2543
2544/// Sugar for parentheses used when specifying types.
2545class ParenType : public Type, public llvm::FoldingSetNode {
2546 friend class ASTContext; // ASTContext creates these.
2547
2548 QualType Inner;
2549
2550 ParenType(QualType InnerType, QualType CanonType)
2551 : Type(Paren, CanonType, InnerType->isDependentType(),
2552 InnerType->isInstantiationDependentType(),
2553 InnerType->isVariablyModifiedType(),
2554 InnerType->containsUnexpandedParameterPack()),
2555 Inner(InnerType) {}
2556
2557public:
2558 QualType getInnerType() const { return Inner; }
2559
2560 bool isSugared() const { return true; }
2561 QualType desugar() const { return getInnerType(); }
2562
2563 void Profile(llvm::FoldingSetNodeID &ID) {
2564 Profile(ID, getInnerType());
2565 }
2566
2567 static void Profile(llvm::FoldingSetNodeID &ID, QualType Inner) {
2568 Inner.Profile(ID);
2569 }
2570
2571 static bool classof(const Type *T) { return T->getTypeClass() == Paren; }
2572};
2573
2574/// PointerType - C99 6.7.5.1 - Pointer Declarators.
2575class PointerType : public Type, public llvm::FoldingSetNode {
2576 friend class ASTContext; // ASTContext creates these.
2577
2578 QualType PointeeType;
2579
2580 PointerType(QualType Pointee, QualType CanonicalPtr)
2581 : Type(Pointer, CanonicalPtr, Pointee->isDependentType(),
2582 Pointee->isInstantiationDependentType(),
2583 Pointee->isVariablyModifiedType(),
2584 Pointee->containsUnexpandedParameterPack()),
2585 PointeeType(Pointee) {}
2586
2587public:
2588 QualType getPointeeType() const { return PointeeType; }
2589
2590 /// Returns true if address spaces of pointers overlap.
2591 /// OpenCL v2.0 defines conversion rules for pointers to different
2592 /// address spaces (OpenCLC v2.0 s6.5.5) and notion of overlapping
2593 /// address spaces.
2594 /// CL1.1 or CL1.2:
2595 /// address spaces overlap iff they are they same.
2596 /// CL2.0 adds:
2597 /// __generic overlaps with any address space except for __constant.
2598 bool isAddressSpaceOverlapping(const PointerType &other) const {
2599 Qualifiers thisQuals = PointeeType.getQualifiers();
2600 Qualifiers otherQuals = other.getPointeeType().getQualifiers();
2601 // Address spaces overlap if at least one of them is a superset of another
2602 return thisQuals.isAddressSpaceSupersetOf(otherQuals) ||
2603 otherQuals.isAddressSpaceSupersetOf(thisQuals);
2604 }
2605
2606 bool isSugared() const { return false; }
2607 QualType desugar() const { return QualType(this, 0); }
2608
2609 void Profile(llvm::FoldingSetNodeID &ID) {
2610 Profile(ID, getPointeeType());
2611 }
2612
2613 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2614 ID.AddPointer(Pointee.getAsOpaquePtr());
2615 }
2616
2617 static bool classof(const Type *T) { return T->getTypeClass() == Pointer; }
2618};
2619
2620/// Represents a type which was implicitly adjusted by the semantic
2621/// engine for arbitrary reasons. For example, array and function types can
2622/// decay, and function types can have their calling conventions adjusted.
2623class AdjustedType : public Type, public llvm::FoldingSetNode {
2624 QualType OriginalTy;
2625 QualType AdjustedTy;
2626
2627protected:
2628 friend class ASTContext; // ASTContext creates these.
2629
2630 AdjustedType(TypeClass TC, QualType OriginalTy, QualType AdjustedTy,
2631 QualType CanonicalPtr)
2632 : Type(TC, CanonicalPtr, OriginalTy->isDependentType(),
2633 OriginalTy->isInstantiationDependentType(),
2634 OriginalTy->isVariablyModifiedType(),
2635 OriginalTy->containsUnexpandedParameterPack()),
2636 OriginalTy(OriginalTy), AdjustedTy(AdjustedTy) {}
2637
2638public:
2639 QualType getOriginalType() const { return OriginalTy; }
2640 QualType getAdjustedType() const { return AdjustedTy; }
2641
2642 bool isSugared() const { return true; }
2643 QualType desugar() const { return AdjustedTy; }
2644
2645 void Profile(llvm::FoldingSetNodeID &ID) {
2646 Profile(ID, OriginalTy, AdjustedTy);
2647 }
2648
2649 static void Profile(llvm::FoldingSetNodeID &ID, QualType Orig, QualType New) {
2650 ID.AddPointer(Orig.getAsOpaquePtr());
2651 ID.AddPointer(New.getAsOpaquePtr());
2652 }
2653
2654 static bool classof(const Type *T) {
2655 return T->getTypeClass() == Adjusted || T->getTypeClass() == Decayed;
2656 }
2657};
2658
2659/// Represents a pointer type decayed from an array or function type.
2660class DecayedType : public AdjustedType {
2661 friend class ASTContext; // ASTContext creates these.
2662
2663 inline
2664 DecayedType(QualType OriginalType, QualType Decayed, QualType Canonical);
2665
2666public:
2667 QualType getDecayedType() const { return getAdjustedType(); }
2668
2669 inline QualType getPointeeType() const;
2670
2671 static bool classof(const Type *T) { return T->getTypeClass() == Decayed; }
2672};
2673
2674/// Pointer to a block type.
2675/// This type is to represent types syntactically represented as
2676/// "void (^)(int)", etc. Pointee is required to always be a function type.
2677class BlockPointerType : public Type, public llvm::FoldingSetNode {
2678 friend class ASTContext; // ASTContext creates these.
2679
2680 // Block is some kind of pointer type
2681 QualType PointeeType;
2682
2683 BlockPointerType(QualType Pointee, QualType CanonicalCls)
2684 : Type(BlockPointer, CanonicalCls, Pointee->isDependentType(),
2685 Pointee->isInstantiationDependentType(),
2686 Pointee->isVariablyModifiedType(),
2687 Pointee->containsUnexpandedParameterPack()),
2688 PointeeType(Pointee) {}
2689
2690public:
2691 // Get the pointee type. Pointee is required to always be a function type.
2692 QualType getPointeeType() const { return PointeeType; }
2693
2694 bool isSugared() const { return false; }
2695 QualType desugar() const { return QualType(this, 0); }
2696
2697 void Profile(llvm::FoldingSetNodeID &ID) {
2698 Profile(ID, getPointeeType());
2699 }
2700
2701 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee) {
2702 ID.AddPointer(Pointee.getAsOpaquePtr());
2703 }
2704
2705 static bool classof(const Type *T) {
2706 return T->getTypeClass() == BlockPointer;
2707 }
2708};
2709
2710/// Base for LValueReferenceType and RValueReferenceType
2711class ReferenceType : public Type, public llvm::FoldingSetNode {
2712 QualType PointeeType;
2713
2714protected:
2715 ReferenceType(TypeClass tc, QualType Referencee, QualType CanonicalRef,
2716 bool SpelledAsLValue)
2717 : Type(tc, CanonicalRef, Referencee->isDependentType(),
2718 Referencee->isInstantiationDependentType(),
2719 Referencee->isVariablyModifiedType(),
2720 Referencee->containsUnexpandedParameterPack()),
2721 PointeeType(Referencee) {
2722 ReferenceTypeBits.SpelledAsLValue = SpelledAsLValue;
2723 ReferenceTypeBits.InnerRef = Referencee->isReferenceType();
2724 }
2725
2726public:
2727 bool isSpelledAsLValue() const { return ReferenceTypeBits.SpelledAsLValue; }
2728 bool isInnerRef() const { return ReferenceTypeBits.InnerRef; }
2729
2730 QualType getPointeeTypeAsWritten() const { return PointeeType; }
2731
2732 QualType getPointeeType() const {
2733 // FIXME: this might strip inner qualifiers; okay?
2734 const ReferenceType *T = this;
2735 while (T->isInnerRef())
2736 T = T->PointeeType->castAs<ReferenceType>();
2737 return T->PointeeType;
2738 }
2739
2740 void Profile(llvm::FoldingSetNodeID &ID) {
2741 Profile(ID, PointeeType, isSpelledAsLValue());
2742 }
2743
2744 static void Profile(llvm::FoldingSetNodeID &ID,
2745 QualType Referencee,
2746 bool SpelledAsLValue) {
2747 ID.AddPointer(Referencee.getAsOpaquePtr());
2748 ID.AddBoolean(SpelledAsLValue);
2749 }
2750
2751 static bool classof(const Type *T) {
2752 return T->getTypeClass() == LValueReference ||
2753 T->getTypeClass() == RValueReference;
2754 }
2755};
2756
2757/// An lvalue reference type, per C++11 [dcl.ref].
2758class LValueReferenceType : public ReferenceType {
2759 friend class ASTContext; // ASTContext creates these
2760
2761 LValueReferenceType(QualType Referencee, QualType CanonicalRef,
2762 bool SpelledAsLValue)
2763 : ReferenceType(LValueReference, Referencee, CanonicalRef,
2764 SpelledAsLValue) {}
2765
2766public:
2767 bool isSugared() const { return false; }
2768 QualType desugar() const { return QualType(this, 0); }
2769
2770 static bool classof(const Type *T) {
2771 return T->getTypeClass() == LValueReference;
2772 }
2773};
2774
2775/// An rvalue reference type, per C++11 [dcl.ref].
2776class RValueReferenceType : public ReferenceType {
2777 friend class ASTContext; // ASTContext creates these
2778
2779 RValueReferenceType(QualType Referencee, QualType CanonicalRef)
2780 : ReferenceType(RValueReference, Referencee, CanonicalRef, false) {}
2781
2782public:
2783 bool isSugared() const { return false; }
2784 QualType desugar() const { return QualType(this, 0); }
2785
2786 static bool classof(const Type *T) {
2787 return T->getTypeClass() == RValueReference;
2788 }
2789};
2790
2791/// A pointer to member type per C++ 8.3.3 - Pointers to members.
2792///
2793/// This includes both pointers to data members and pointer to member functions.
2794class MemberPointerType : public Type, public llvm::FoldingSetNode {
2795 friend class ASTContext; // ASTContext creates these.
2796
2797 QualType PointeeType;
2798
2799 /// The class of which the pointee is a member. Must ultimately be a
2800 /// RecordType, but could be a typedef or a template parameter too.
2801 const Type *Class;
2802
2803 MemberPointerType(QualType Pointee, const Type *Cls, QualType CanonicalPtr)
2804 : Type(MemberPointer, CanonicalPtr,
2805 Cls->isDependentType() || Pointee->isDependentType(),
2806 (Cls->isInstantiationDependentType() ||
2807 Pointee->isInstantiationDependentType()),
2808 Pointee->isVariablyModifiedType(),
2809 (Cls->containsUnexpandedParameterPack() ||
2810 Pointee->containsUnexpandedParameterPack())),
2811 PointeeType(Pointee), Class(Cls) {}
2812
2813public:
2814 QualType getPointeeType() const { return PointeeType; }
2815
2816 /// Returns true if the member type (i.e. the pointee type) is a
2817 /// function type rather than a data-member type.
2818 bool isMemberFunctionPointer() const {
2819 return PointeeType->isFunctionProtoType();
2820 }
2821
2822 /// Returns true if the member type (i.e. the pointee type) is a
2823 /// data type rather than a function type.
2824 bool isMemberDataPointer() const {
2825 return !PointeeType->isFunctionProtoType();
2826 }
2827
2828 const Type *getClass() const { return Class; }
2829 CXXRecordDecl *getMostRecentCXXRecordDecl() const;
2830
2831 bool isSugared() const { return false; }
2832 QualType desugar() const { return QualType(this, 0); }
2833
2834 void Profile(llvm::FoldingSetNodeID &ID) {
2835 Profile(ID, getPointeeType(), getClass());
2836 }
2837
2838 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pointee,
2839 const Type *Class) {
2840 ID.AddPointer(Pointee.getAsOpaquePtr());
2841 ID.AddPointer(Class);
2842 }
2843
2844 static bool classof(const Type *T) {
2845 return T->getTypeClass() == MemberPointer;
2846 }
2847};
2848
2849/// Represents an array type, per C99 6.7.5.2 - Array Declarators.
2850class ArrayType : public Type, public llvm::FoldingSetNode {
2851public:
2852 /// Capture whether this is a normal array (e.g. int X[4])
2853 /// an array with a static size (e.g. int X[static 4]), or an array
2854 /// with a star size (e.g. int X[*]).
2855 /// 'static' is only allowed on function parameters.
2856 enum ArraySizeModifier {
2857 Normal, Static, Star
2858 };
2859
2860private:
2861 /// The element type of the array.
2862 QualType ElementType;
2863
2864protected:
2865 friend class ASTContext; // ASTContext creates these.
2866
2867 // C++ [temp.dep.type]p1:
2868 // A type is dependent if it is...
2869 // - an array type constructed from any dependent type or whose
2870 // size is specified by a constant expression that is
2871 // value-dependent,
2872 ArrayType(TypeClass tc, QualType et, QualType can,
2873 ArraySizeModifier sm, unsigned tq,
2874 bool ContainsUnexpandedParameterPack)
2875 : Type(tc, can, et->isDependentType() || tc == DependentSizedArray,
2876 et->isInstantiationDependentType() || tc == DependentSizedArray,
2877 (tc == VariableArray || et->isVariablyModifiedType()),
2878 ContainsUnexpandedParameterPack),
2879 ElementType(et) {
2880 ArrayTypeBits.IndexTypeQuals = tq;
2881 ArrayTypeBits.SizeModifier = sm;
2882 }
2883
2884public:
2885 QualType getElementType() const { return ElementType; }
2886
2887 ArraySizeModifier getSizeModifier() const {
2888 return ArraySizeModifier(ArrayTypeBits.SizeModifier);
2889 }
2890
2891 Qualifiers getIndexTypeQualifiers() const {
2892 return Qualifiers::fromCVRMask(getIndexTypeCVRQualifiers());
2893 }
2894
2895 unsigned getIndexTypeCVRQualifiers() const {
2896 return ArrayTypeBits.IndexTypeQuals;
2897 }
2898
2899 static bool classof(const Type *T) {
2900 return T->getTypeClass() == ConstantArray ||
2901 T->getTypeClass() == VariableArray ||
2902 T->getTypeClass() == IncompleteArray ||
2903 T->getTypeClass() == DependentSizedArray;
2904 }
2905};
2906
2907/// Represents the canonical version of C arrays with a specified constant size.
2908/// For example, the canonical type for 'int A[4 + 4*100]' is a
2909/// ConstantArrayType where the element type is 'int' and the size is 404.
2910class ConstantArrayType : public ArrayType {
2911 llvm::APInt Size; // Allows us to unique the type.
2912
2913 ConstantArrayType(QualType et, QualType can, const llvm::APInt &size,
2914 ArraySizeModifier sm, unsigned tq)
2915 : ArrayType(ConstantArray, et, can, sm, tq,
2916 et->containsUnexpandedParameterPack()),
2917 Size(size) {}
2918
2919protected:
2920 friend class ASTContext; // ASTContext creates these.
2921
2922 ConstantArrayType(TypeClass tc, QualType et, QualType can,
2923 const llvm::APInt &size, ArraySizeModifier sm, unsigned tq)
2924 : ArrayType(tc, et, can, sm, tq, et->containsUnexpandedParameterPack()),
2925 Size(size) {}
2926
2927public:
2928 const llvm::APInt &getSize() const { return Size; }
2929 bool isSugared() const { return false; }
2930 QualType desugar() const { return QualType(this, 0); }
2931
2932 /// Determine the number of bits required to address a member of
2933 // an array with the given element type and number of elements.
2934 static unsigned getNumAddressingBits(const ASTContext &Context,
2935 QualType ElementType,
2936 const llvm::APInt &NumElements);
2937
2938 /// Determine the maximum number of active bits that an array's size
2939 /// can require, which limits the maximum size of the array.
2940 static unsigned getMaxSizeBits(const ASTContext &Context);
2941
2942 void Profile(llvm::FoldingSetNodeID &ID) {
2943 Profile(ID, getElementType(), getSize(),
2944 getSizeModifier(), getIndexTypeCVRQualifiers());
2945 }
2946
2947 static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2948 const llvm::APInt &ArraySize, ArraySizeModifier SizeMod,
2949 unsigned TypeQuals) {
2950 ID.AddPointer(ET.getAsOpaquePtr());
2951 ID.AddInteger(ArraySize.getZExtValue());
2952 ID.AddInteger(SizeMod);
2953 ID.AddInteger(TypeQuals);
2954 }
2955
2956 static bool classof(const Type *T) {
2957 return T->getTypeClass() == ConstantArray;
2958 }
2959};
2960
2961/// Represents a C array with an unspecified size. For example 'int A[]' has
2962/// an IncompleteArrayType where the element type is 'int' and the size is
2963/// unspecified.
2964class IncompleteArrayType : public ArrayType {
2965 friend class ASTContext; // ASTContext creates these.
2966
2967 IncompleteArrayType(QualType et, QualType can,
2968 ArraySizeModifier sm, unsigned tq)
2969 : ArrayType(IncompleteArray, et, can, sm, tq,
2970 et->containsUnexpandedParameterPack()) {}
2971
2972public:
2973 friend class StmtIteratorBase;
2974
2975 bool isSugared() const { return false; }
2976 QualType desugar() const { return QualType(this, 0); }
2977
2978 static bool classof(const Type *T) {
2979 return T->getTypeClass() == IncompleteArray;
2980 }
2981
2982 void Profile(llvm::FoldingSetNodeID &ID) {
2983 Profile(ID, getElementType(), getSizeModifier(),
2984 getIndexTypeCVRQualifiers());
2985 }
2986
2987 static void Profile(llvm::FoldingSetNodeID &ID, QualType ET,
2988 ArraySizeModifier SizeMod, unsigned TypeQuals) {
2989 ID.AddPointer(ET.getAsOpaquePtr());
2990 ID.AddInteger(SizeMod);
2991 ID.AddInteger(TypeQuals);
2992 }
2993};
2994
2995/// Represents a C array with a specified size that is not an
2996/// integer-constant-expression. For example, 'int s[x+foo()]'.
2997/// Since the size expression is an arbitrary expression, we store it as such.
2998///
2999/// Note: VariableArrayType's aren't uniqued (since the expressions aren't) and
3000/// should not be: two lexically equivalent variable array types could mean
3001/// different things, for example, these variables do not have the same type
3002/// dynamically:
3003///
3004/// void foo(int x) {
3005/// int Y[x];
3006/// ++x;
3007/// int Z[x];
3008/// }
3009class VariableArrayType : public ArrayType {
3010 friend class ASTContext; // ASTContext creates these.
3011
3012 /// An assignment-expression. VLA's are only permitted within
3013 /// a function block.
3014 Stmt *SizeExpr;
3015
3016 /// The range spanned by the left and right array brackets.
3017 SourceRange Brackets;
3018
3019 VariableArrayType(QualType et, QualType can, Expr *e,
3020 ArraySizeModifier sm, unsigned tq,
3021 SourceRange brackets)
3022 : ArrayType(VariableArray, et, can, sm, tq,
3023 et->containsUnexpandedParameterPack()),
3024 SizeExpr((Stmt*) e), Brackets(brackets) {}
3025
3026public:
3027 friend class StmtIteratorBase;
3028
3029 Expr *getSizeExpr() const {
3030 // We use C-style casts instead of cast<> here because we do not wish
3031 // to have a dependency of Type.h on Stmt.h/Expr.h.
3032 return (Expr*) SizeExpr;
3033 }
3034
3035 SourceRange getBracketsRange() const { return Brackets; }
3036 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3037 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3038
3039 bool isSugared() const { return false; }
3040 QualType desugar() const { return QualType(this, 0); }
3041
3042 static bool classof(const Type *T) {
3043 return T->getTypeClass() == VariableArray;
3044 }
3045
3046 void Profile(llvm::FoldingSetNodeID &ID) {
3047 llvm_unreachable("Cannot unique VariableArrayTypes.")::llvm::llvm_unreachable_internal("Cannot unique VariableArrayTypes."
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 3047)
;
3048 }
3049};
3050
3051/// Represents an array type in C++ whose size is a value-dependent expression.
3052///
3053/// For example:
3054/// \code
3055/// template<typename T, int Size>
3056/// class array {
3057/// T data[Size];
3058/// };
3059/// \endcode
3060///
3061/// For these types, we won't actually know what the array bound is
3062/// until template instantiation occurs, at which point this will
3063/// become either a ConstantArrayType or a VariableArrayType.
3064class DependentSizedArrayType : public ArrayType {
3065 friend class ASTContext; // ASTContext creates these.
3066
3067 const ASTContext &Context;
3068
3069 /// An assignment expression that will instantiate to the
3070 /// size of the array.
3071 ///
3072 /// The expression itself might be null, in which case the array
3073 /// type will have its size deduced from an initializer.
3074 Stmt *SizeExpr;
3075
3076 /// The range spanned by the left and right array brackets.
3077 SourceRange Brackets;
3078
3079 DependentSizedArrayType(const ASTContext &Context, QualType et, QualType can,
3080 Expr *e, ArraySizeModifier sm, unsigned tq,
3081 SourceRange brackets);
3082
3083public:
3084 friend class StmtIteratorBase;
3085
3086 Expr *getSizeExpr() const {
3087 // We use C-style casts instead of cast<> here because we do not wish
3088 // to have a dependency of Type.h on Stmt.h/Expr.h.
3089 return (Expr*) SizeExpr;
3090 }
3091
3092 SourceRange getBracketsRange() const { return Brackets; }
3093 SourceLocation getLBracketLoc() const { return Brackets.getBegin(); }
3094 SourceLocation getRBracketLoc() const { return Brackets.getEnd(); }
3095
3096 bool isSugared() const { return false; }
3097 QualType desugar() const { return QualType(this, 0); }
3098
3099 static bool classof(const Type *T) {
3100 return T->getTypeClass() == DependentSizedArray;
3101 }
3102
3103 void Profile(llvm::FoldingSetNodeID &ID) {
3104 Profile(ID, Context, getElementType(),
3105 getSizeModifier(), getIndexTypeCVRQualifiers(), getSizeExpr());
3106 }
3107
3108 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3109 QualType ET, ArraySizeModifier SizeMod,
3110 unsigned TypeQuals, Expr *E);
3111};
3112
3113/// Represents an extended address space qualifier where the input address space
3114/// value is dependent. Non-dependent address spaces are not represented with a
3115/// special Type subclass; they are stored on an ExtQuals node as part of a QualType.
3116///
3117/// For example:
3118/// \code
3119/// template<typename T, int AddrSpace>
3120/// class AddressSpace {
3121/// typedef T __attribute__((address_space(AddrSpace))) type;
3122/// }
3123/// \endcode
3124class DependentAddressSpaceType : public Type, public llvm::FoldingSetNode {
3125 friend class ASTContext;
3126
3127 const ASTContext &Context;
3128 Expr *AddrSpaceExpr;
3129 QualType PointeeType;
3130 SourceLocation loc;
3131
3132 DependentAddressSpaceType(const ASTContext &Context, QualType PointeeType,
3133 QualType can, Expr *AddrSpaceExpr,
3134 SourceLocation loc);
3135
3136public:
3137 Expr *getAddrSpaceExpr() const { return AddrSpaceExpr; }
3138 QualType getPointeeType() const { return PointeeType; }
3139 SourceLocation getAttributeLoc() const { return loc; }
3140
3141 bool isSugared() const { return false; }
3142 QualType desugar() const { return QualType(this, 0); }
3143
3144 static bool classof(const Type *T) {
3145 return T->getTypeClass() == DependentAddressSpace;
3146 }
3147
3148 void Profile(llvm::FoldingSetNodeID &ID) {
3149 Profile(ID, Context, getPointeeType(), getAddrSpaceExpr());
3150 }
3151
3152 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3153 QualType PointeeType, Expr *AddrSpaceExpr);
3154};
3155
3156/// Represents an extended vector type where either the type or size is
3157/// dependent.
3158///
3159/// For example:
3160/// \code
3161/// template<typename T, int Size>
3162/// class vector {
3163/// typedef T __attribute__((ext_vector_type(Size))) type;
3164/// }
3165/// \endcode
3166class DependentSizedExtVectorType : public Type, public llvm::FoldingSetNode {
3167 friend class ASTContext;
3168
3169 const ASTContext &Context;
3170 Expr *SizeExpr;
3171
3172 /// The element type of the array.
3173 QualType ElementType;
3174
3175 SourceLocation loc;
3176
3177 DependentSizedExtVectorType(const ASTContext &Context, QualType ElementType,
3178 QualType can, Expr *SizeExpr, SourceLocation loc);
3179
3180public:
3181 Expr *getSizeExpr() const { return SizeExpr; }
3182 QualType getElementType() const { return ElementType; }
3183 SourceLocation getAttributeLoc() const { return loc; }
3184
3185 bool isSugared() const { return false; }
3186 QualType desugar() const { return QualType(this, 0); }
3187
3188 static bool classof(const Type *T) {
3189 return T->getTypeClass() == DependentSizedExtVector;
3190 }
3191
3192 void Profile(llvm::FoldingSetNodeID &ID) {
3193 Profile(ID, Context, getElementType(), getSizeExpr());
3194 }
3195
3196 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3197 QualType ElementType, Expr *SizeExpr);
3198};
3199
3200
3201/// Represents a GCC generic vector type. This type is created using
3202/// __attribute__((vector_size(n)), where "n" specifies the vector size in
3203/// bytes; or from an Altivec __vector or vector declaration.
3204/// Since the constructor takes the number of vector elements, the
3205/// client is responsible for converting the size into the number of elements.
3206class VectorType : public Type, public llvm::FoldingSetNode {
3207public:
3208 enum VectorKind {
3209 /// not a target-specific vector type
3210 GenericVector,
3211
3212 /// is AltiVec vector
3213 AltiVecVector,
3214
3215 /// is AltiVec 'vector Pixel'
3216 AltiVecPixel,
3217
3218 /// is AltiVec 'vector bool ...'
3219 AltiVecBool,
3220
3221 /// is ARM Neon vector
3222 NeonVector,
3223
3224 /// is ARM Neon polynomial vector
3225 NeonPolyVector
3226 };
3227
3228protected:
3229 friend class ASTContext; // ASTContext creates these.
3230
3231 /// The element type of the vector.
3232 QualType ElementType;
3233
3234 VectorType(QualType vecType, unsigned nElements, QualType canonType,
3235 VectorKind vecKind);
3236
3237 VectorType(TypeClass tc, QualType vecType, unsigned nElements,
3238 QualType canonType, VectorKind vecKind);
3239
3240public:
3241 QualType getElementType() const { return ElementType; }
3242 unsigned getNumElements() const { return VectorTypeBits.NumElements; }
3243
3244 static bool isVectorSizeTooLarge(unsigned NumElements) {
3245 return NumElements > VectorTypeBitfields::MaxNumElements;
3246 }
3247
3248 bool isSugared() const { return false; }
3249 QualType desugar() const { return QualType(this, 0); }
3250
3251 VectorKind getVectorKind() const {
3252 return VectorKind(VectorTypeBits.VecKind);
3253 }
3254
3255 void Profile(llvm::FoldingSetNodeID &ID) {
3256 Profile(ID, getElementType(), getNumElements(),
3257 getTypeClass(), getVectorKind());
3258 }
3259
3260 static void Profile(llvm::FoldingSetNodeID &ID, QualType ElementType,
3261 unsigned NumElements, TypeClass TypeClass,
3262 VectorKind VecKind) {
3263 ID.AddPointer(ElementType.getAsOpaquePtr());
3264 ID.AddInteger(NumElements);
3265 ID.AddInteger(TypeClass);
3266 ID.AddInteger(VecKind);
3267 }
3268
3269 static bool classof(const Type *T) {
3270 return T->getTypeClass() == Vector || T->getTypeClass() == ExtVector;
3271 }
3272};
3273
3274/// Represents a vector type where either the type or size is dependent.
3275////
3276/// For example:
3277/// \code
3278/// template<typename T, int Size>
3279/// class vector {
3280/// typedef T __attribute__((vector_size(Size))) type;
3281/// }
3282/// \endcode
3283class DependentVectorType : public Type, public llvm::FoldingSetNode {
3284 friend class ASTContext;
3285
3286 const ASTContext &Context;
3287 QualType ElementType;
3288 Expr *SizeExpr;
3289 SourceLocation Loc;
3290
3291 DependentVectorType(const ASTContext &Context, QualType ElementType,
3292 QualType CanonType, Expr *SizeExpr,
3293 SourceLocation Loc, VectorType::VectorKind vecKind);
3294
3295public:
3296 Expr *getSizeExpr() const { return SizeExpr; }
3297 QualType getElementType() const { return ElementType; }
3298 SourceLocation getAttributeLoc() const { return Loc; }
3299 VectorType::VectorKind getVectorKind() const {
3300 return VectorType::VectorKind(VectorTypeBits.VecKind);
3301 }
3302
3303 bool isSugared() const { return false; }
3304 QualType desugar() const { return QualType(this, 0); }
3305
3306 static bool classof(const Type *T) {
3307 return T->getTypeClass() == DependentVector;
3308 }
3309
3310 void Profile(llvm::FoldingSetNodeID &ID) {
3311 Profile(ID, Context, getElementType(), getSizeExpr(), getVectorKind());
3312 }
3313
3314 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
3315 QualType ElementType, const Expr *SizeExpr,
3316 VectorType::VectorKind VecKind);
3317};
3318
3319/// ExtVectorType - Extended vector type. This type is created using
3320/// __attribute__((ext_vector_type(n)), where "n" is the number of elements.
3321/// Unlike vector_size, ext_vector_type is only allowed on typedef's. This
3322/// class enables syntactic extensions, like Vector Components for accessing
3323/// points (as .xyzw), colors (as .rgba), and textures (modeled after OpenGL
3324/// Shading Language).
3325class ExtVectorType : public VectorType {
3326 friend class ASTContext; // ASTContext creates these.
3327
3328 ExtVectorType(QualType vecType, unsigned nElements, QualType canonType)
3329 : VectorType(ExtVector, vecType, nElements, canonType, GenericVector) {}
3330
3331public:
3332 static int getPointAccessorIdx(char c) {
3333 switch (c) {
3334 default: return -1;
3335 case 'x': case 'r': return 0;
3336 case 'y': case 'g': return 1;
3337 case 'z': case 'b': return 2;
3338 case 'w': case 'a': return 3;
3339 }
3340 }
3341
3342 static int getNumericAccessorIdx(char c) {
3343 switch (c) {
3344 default: return -1;
3345 case '0': return 0;
3346 case '1': return 1;
3347 case '2': return 2;
3348 case '3': return 3;
3349 case '4': return 4;
3350 case '5': return 5;
3351 case '6': return 6;
3352 case '7': return 7;
3353 case '8': return 8;
3354 case '9': return 9;
3355 case 'A':
3356 case 'a': return 10;
3357 case 'B':
3358 case 'b': return 11;
3359 case 'C':
3360 case 'c': return 12;
3361 case 'D':
3362 case 'd': return 13;
3363 case 'E':
3364 case 'e': return 14;
3365 case 'F':
3366 case 'f': return 15;
3367 }
3368 }
3369
3370 static int getAccessorIdx(char c, bool isNumericAccessor) {
3371 if (isNumericAccessor)
3372 return getNumericAccessorIdx(c);
3373 else
3374 return getPointAccessorIdx(c);
3375 }
3376
3377 bool isAccessorWithinNumElements(char c, bool isNumericAccessor) const {
3378 if (int idx = getAccessorIdx(c, isNumericAccessor)+1)
3379 return unsigned(idx-1) < getNumElements();
3380 return false;
3381 }
3382
3383 bool isSugared() const { return false; }
3384 QualType desugar() const { return QualType(this, 0); }
3385
3386 static bool classof(const Type *T) {
3387 return T->getTypeClass() == ExtVector;
3388 }
3389};
3390
3391/// FunctionType - C99 6.7.5.3 - Function Declarators. This is the common base
3392/// class of FunctionNoProtoType and FunctionProtoType.
3393class FunctionType : public Type {
3394 // The type returned by the function.
3395 QualType ResultType;
3396
3397public:
3398 /// Interesting information about a specific parameter that can't simply
3399 /// be reflected in parameter's type. This is only used by FunctionProtoType
3400 /// but is in FunctionType to make this class available during the
3401 /// specification of the bases of FunctionProtoType.
3402 ///
3403 /// It makes sense to model language features this way when there's some
3404 /// sort of parameter-specific override (such as an attribute) that
3405 /// affects how the function is called. For example, the ARC ns_consumed
3406 /// attribute changes whether a parameter is passed at +0 (the default)
3407 /// or +1 (ns_consumed). This must be reflected in the function type,
3408 /// but isn't really a change to the parameter type.
3409 ///
3410 /// One serious disadvantage of modelling language features this way is
3411 /// that they generally do not work with language features that attempt
3412 /// to destructure types. For example, template argument deduction will
3413 /// not be able to match a parameter declared as
3414 /// T (*)(U)
3415 /// against an argument of type
3416 /// void (*)(__attribute__((ns_consumed)) id)
3417 /// because the substitution of T=void, U=id into the former will
3418 /// not produce the latter.
3419 class ExtParameterInfo {
3420 enum {
3421 ABIMask = 0x0F,
3422 IsConsumed = 0x10,
3423 HasPassObjSize = 0x20,
3424 IsNoEscape = 0x40,
3425 };
3426 unsigned char Data = 0;
3427
3428 public:
3429 ExtParameterInfo() = default;
3430
3431 /// Return the ABI treatment of this parameter.
3432 ParameterABI getABI() const { return ParameterABI(Data & ABIMask); }
3433 ExtParameterInfo withABI(ParameterABI kind) const {
3434 ExtParameterInfo copy = *this;
3435 copy.Data = (copy.Data & ~ABIMask) | unsigned(kind);
3436 return copy;
3437 }
3438
3439 /// Is this parameter considered "consumed" by Objective-C ARC?
3440 /// Consumed parameters must have retainable object type.
3441 bool isConsumed() const { return (Data & IsConsumed); }
3442 ExtParameterInfo withIsConsumed(bool consumed) const {
3443 ExtParameterInfo copy = *this;
3444 if (consumed)
3445 copy.Data |= IsConsumed;
3446 else
3447 copy.Data &= ~IsConsumed;
3448 return copy;
3449 }
3450
3451 bool hasPassObjectSize() const { return Data & HasPassObjSize; }
3452 ExtParameterInfo withHasPassObjectSize() const {
3453 ExtParameterInfo Copy = *this;
3454 Copy.Data |= HasPassObjSize;
3455 return Copy;
3456 }
3457
3458 bool isNoEscape() const { return Data & IsNoEscape; }
3459 ExtParameterInfo withIsNoEscape(bool NoEscape) const {
3460 ExtParameterInfo Copy = *this;
3461 if (NoEscape)
3462 Copy.Data |= IsNoEscape;
3463 else
3464 Copy.Data &= ~IsNoEscape;
3465 return Copy;
3466 }
3467
3468 unsigned char getOpaqueValue() const { return Data; }
3469 static ExtParameterInfo getFromOpaqueValue(unsigned char data) {
3470 ExtParameterInfo result;
3471 result.Data = data;
3472 return result;
3473 }
3474
3475 friend bool operator==(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3476 return lhs.Data == rhs.Data;
3477 }
3478
3479 friend bool operator!=(ExtParameterInfo lhs, ExtParameterInfo rhs) {
3480 return lhs.Data != rhs.Data;
3481 }
3482 };
3483
3484 /// A class which abstracts out some details necessary for
3485 /// making a call.
3486 ///
3487 /// It is not actually used directly for storing this information in
3488 /// a FunctionType, although FunctionType does currently use the
3489 /// same bit-pattern.
3490 ///
3491 // If you add a field (say Foo), other than the obvious places (both,
3492 // constructors, compile failures), what you need to update is
3493 // * Operator==
3494 // * getFoo
3495 // * withFoo
3496 // * functionType. Add Foo, getFoo.
3497 // * ASTContext::getFooType
3498 // * ASTContext::mergeFunctionTypes
3499 // * FunctionNoProtoType::Profile
3500 // * FunctionProtoType::Profile
3501 // * TypePrinter::PrintFunctionProto
3502 // * AST read and write
3503 // * Codegen
3504 class ExtInfo {
3505 friend class FunctionType;
3506
3507 // Feel free to rearrange or add bits, but if you go over 12,
3508 // you'll need to adjust both the Bits field below and
3509 // Type::FunctionTypeBitfields.
3510
3511 // | CC |noreturn|produces|nocallersavedregs|regparm|nocfcheck|
3512 // |0 .. 4| 5 | 6 | 7 |8 .. 10| 11 |
3513 //
3514 // regparm is either 0 (no regparm attribute) or the regparm value+1.
3515 enum { CallConvMask = 0x1F };
3516 enum { NoReturnMask = 0x20 };
3517 enum { ProducesResultMask = 0x40 };
3518 enum { NoCallerSavedRegsMask = 0x80 };
3519 enum { NoCfCheckMask = 0x800 };
3520 enum {
3521 RegParmMask = ~(CallConvMask | NoReturnMask | ProducesResultMask |
3522 NoCallerSavedRegsMask | NoCfCheckMask),
3523 RegParmOffset = 8
3524 }; // Assumed to be the last field
3525 uint16_t Bits = CC_C;
3526
3527 ExtInfo(unsigned Bits) : Bits(static_cast<uint16_t>(Bits)) {}
3528
3529 public:
3530 // Constructor with no defaults. Use this when you know that you
3531 // have all the elements (when reading an AST file for example).
3532 ExtInfo(bool noReturn, bool hasRegParm, unsigned regParm, CallingConv cc,
3533 bool producesResult, bool noCallerSavedRegs, bool NoCfCheck) {
3534 assert((!hasRegParm || regParm < 7) && "Invalid regparm value")(((!hasRegParm || regParm < 7) && "Invalid regparm value"
) ? static_cast<void> (0) : __assert_fail ("(!hasRegParm || regParm < 7) && \"Invalid regparm value\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 3534, __PRETTY_FUNCTION__))
;
3535 Bits = ((unsigned)cc) | (noReturn ? NoReturnMask : 0) |
3536 (producesResult ? ProducesResultMask : 0) |
3537 (noCallerSavedRegs ? NoCallerSavedRegsMask : 0) |
3538 (hasRegParm ? ((regParm + 1) << RegParmOffset) : 0) |
3539 (NoCfCheck ? NoCfCheckMask : 0);
3540 }
3541
3542 // Constructor with all defaults. Use when for example creating a
3543 // function known to use defaults.
3544 ExtInfo() = default;
3545
3546 // Constructor with just the calling convention, which is an important part
3547 // of the canonical type.
3548 ExtInfo(CallingConv CC) : Bits(CC) {}
3549
3550 bool getNoReturn() const { return Bits & NoReturnMask; }
3551 bool getProducesResult() const { return Bits & ProducesResultMask; }
3552 bool getNoCallerSavedRegs() const { return Bits & NoCallerSavedRegsMask; }
3553 bool getNoCfCheck() const { return Bits & NoCfCheckMask; }
3554 bool getHasRegParm() const { return (Bits >> RegParmOffset) != 0; }
3555
3556 unsigned getRegParm() const {
3557 unsigned RegParm = (Bits & RegParmMask) >> RegParmOffset;
3558 if (RegParm > 0)
3559 --RegParm;
3560 return RegParm;
3561 }
3562
3563 CallingConv getCC() const { return CallingConv(Bits & CallConvMask); }
3564
3565 bool operator==(ExtInfo Other) const {
3566 return Bits == Other.Bits;
3567 }
3568 bool operator!=(ExtInfo Other) const {
3569 return Bits != Other.Bits;
3570 }
3571
3572 // Note that we don't have setters. That is by design, use
3573 // the following with methods instead of mutating these objects.
3574
3575 ExtInfo withNoReturn(bool noReturn) const {
3576 if (noReturn)
3577 return ExtInfo(Bits | NoReturnMask);
3578 else
3579 return ExtInfo(Bits & ~NoReturnMask);
3580 }
3581
3582 ExtInfo withProducesResult(bool producesResult) const {
3583 if (producesResult)
3584 return ExtInfo(Bits | ProducesResultMask);
3585 else
3586 return ExtInfo(Bits & ~ProducesResultMask);
3587 }
3588
3589 ExtInfo withNoCallerSavedRegs(bool noCallerSavedRegs) const {
3590 if (noCallerSavedRegs)
3591 return ExtInfo(Bits | NoCallerSavedRegsMask);
3592 else
3593 return ExtInfo(Bits & ~NoCallerSavedRegsMask);
3594 }
3595
3596 ExtInfo withNoCfCheck(bool noCfCheck) const {
3597 if (noCfCheck)
3598 return ExtInfo(Bits | NoCfCheckMask);
3599 else
3600 return ExtInfo(Bits & ~NoCfCheckMask);
3601 }
3602
3603 ExtInfo withRegParm(unsigned RegParm) const {
3604 assert(RegParm < 7 && "Invalid regparm value")((RegParm < 7 && "Invalid regparm value") ? static_cast
<void> (0) : __assert_fail ("RegParm < 7 && \"Invalid regparm value\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 3604, __PRETTY_FUNCTION__))
;
3605 return ExtInfo((Bits & ~RegParmMask) |
3606 ((RegParm + 1) << RegParmOffset));
3607 }
3608
3609 ExtInfo withCallingConv(CallingConv cc) const {
3610 return ExtInfo((Bits & ~CallConvMask) | (unsigned) cc);
3611 }
3612
3613 void Profile(llvm::FoldingSetNodeID &ID) const {
3614 ID.AddInteger(Bits);
3615 }
3616 };
3617
3618 /// A simple holder for a QualType representing a type in an
3619 /// exception specification. Unfortunately needed by FunctionProtoType
3620 /// because TrailingObjects cannot handle repeated types.
3621 struct ExceptionType { QualType Type; };
3622
3623 /// A simple holder for various uncommon bits which do not fit in
3624 /// FunctionTypeBitfields. Aligned to alignof(void *) to maintain the
3625 /// alignment of subsequent objects in TrailingObjects. You must update
3626 /// hasExtraBitfields in FunctionProtoType after adding extra data here.
3627 struct alignas(void *) FunctionTypeExtraBitfields {
3628 /// The number of types in the exception specification.
3629 /// A whole unsigned is not needed here and according to
3630 /// [implimits] 8 bits would be enough here.
3631 unsigned NumExceptionType;
3632 };
3633
3634protected:
3635 FunctionType(TypeClass tc, QualType res,
3636 QualType Canonical, bool Dependent,
3637 bool InstantiationDependent,
3638 bool VariablyModified, bool ContainsUnexpandedParameterPack,
3639 ExtInfo Info)
3640 : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
3641 ContainsUnexpandedParameterPack),
3642 ResultType(res) {
3643 FunctionTypeBits.ExtInfo = Info.Bits;
3644 }
3645
3646 Qualifiers getFastTypeQuals() const {
3647 return Qualifiers::fromFastMask(FunctionTypeBits.FastTypeQuals);
3648 }
3649
3650public:
3651 QualType getReturnType() const { return ResultType; }
3652
3653 bool getHasRegParm() const { return getExtInfo().getHasRegParm(); }
3654 unsigned getRegParmType() const { return getExtInfo().getRegParm(); }
3655
3656 /// Determine whether this function type includes the GNU noreturn
3657 /// attribute. The C++11 [[noreturn]] attribute does not affect the function
3658 /// type.
3659 bool getNoReturnAttr() const { return getExtInfo().getNoReturn(); }
3660
3661 CallingConv getCallConv() const { return getExtInfo().getCC(); }
3662 ExtInfo getExtInfo() const { return ExtInfo(FunctionTypeBits.ExtInfo); }
3663
3664 static_assert((~Qualifiers::FastMask & Qualifiers::CVRMask) == 0,
3665 "Const, volatile and restrict are assumed to be a subset of "
3666 "the fast qualifiers.");
3667
3668 bool isConst() const { return getFastTypeQuals().hasConst(); }
3669 bool isVolatile() const { return getFastTypeQuals().hasVolatile(); }
3670 bool isRestrict() const { return getFastTypeQuals().hasRestrict(); }
3671
3672 /// Determine the type of an expression that calls a function of
3673 /// this type.
3674 QualType getCallResultType(const ASTContext &Context) const {
3675 return getReturnType().getNonLValueExprType(Context);
3676 }
3677
3678 static StringRef getNameForCallConv(CallingConv CC);
3679
3680 static bool classof(const Type *T) {
3681 return T->getTypeClass() == FunctionNoProto ||
3682 T->getTypeClass() == FunctionProto;
3683 }
3684};
3685
3686/// Represents a K&R-style 'int foo()' function, which has
3687/// no information available about its arguments.
3688class FunctionNoProtoType : public FunctionType, public llvm::FoldingSetNode {
3689 friend class ASTContext; // ASTContext creates these.
3690
3691 FunctionNoProtoType(QualType Result, QualType Canonical, ExtInfo Info)
3692 : FunctionType(FunctionNoProto, Result, Canonical,
3693 /*Dependent=*/false, /*InstantiationDependent=*/false,
3694 Result->isVariablyModifiedType(),
3695 /*ContainsUnexpandedParameterPack=*/false, Info) {}
3696
3697public:
3698 // No additional state past what FunctionType provides.
3699
3700 bool isSugared() const { return false; }
3701 QualType desugar() const { return QualType(this, 0); }
3702
3703 void Profile(llvm::FoldingSetNodeID &ID) {
3704 Profile(ID, getReturnType(), getExtInfo());
3705 }
3706
3707 static void Profile(llvm::FoldingSetNodeID &ID, QualType ResultType,
3708 ExtInfo Info) {
3709 Info.Profile(ID);
3710 ID.AddPointer(ResultType.getAsOpaquePtr());
3711 }
3712
3713 static bool classof(const Type *T) {
3714 return T->getTypeClass() == FunctionNoProto;
3715 }
3716};
3717
3718/// Represents a prototype with parameter type info, e.g.
3719/// 'int foo(int)' or 'int foo(void)'. 'void' is represented as having no
3720/// parameters, not as having a single void parameter. Such a type can have
3721/// an exception specification, but this specification is not part of the
3722/// canonical type. FunctionProtoType has several trailing objects, some of
3723/// which optional. For more information about the trailing objects see
3724/// the first comment inside FunctionProtoType.
3725class FunctionProtoType final
3726 : public FunctionType,
3727 public llvm::FoldingSetNode,
3728 private llvm::TrailingObjects<
3729 FunctionProtoType, QualType, FunctionType::FunctionTypeExtraBitfields,
3730 FunctionType::ExceptionType, Expr *, FunctionDecl *,
3731 FunctionType::ExtParameterInfo, Qualifiers> {
3732 friend class ASTContext; // ASTContext creates these.
3733 friend TrailingObjects;
3734
3735 // FunctionProtoType is followed by several trailing objects, some of
3736 // which optional. They are in order:
3737 //
3738 // * An array of getNumParams() QualType holding the parameter types.
3739 // Always present. Note that for the vast majority of FunctionProtoType,
3740 // these will be the only trailing objects.
3741 //
3742 // * Optionally if some extra data is stored in FunctionTypeExtraBitfields
3743 // (see FunctionTypeExtraBitfields and FunctionTypeBitfields):
3744 // a single FunctionTypeExtraBitfields. Present if and only if
3745 // hasExtraBitfields() is true.
3746 //
3747 // * Optionally exactly one of:
3748 // * an array of getNumExceptions() ExceptionType,
3749 // * a single Expr *,
3750 // * a pair of FunctionDecl *,
3751 // * a single FunctionDecl *
3752 // used to store information about the various types of exception
3753 // specification. See getExceptionSpecSize for the details.
3754 //
3755 // * Optionally an array of getNumParams() ExtParameterInfo holding
3756 // an ExtParameterInfo for each of the parameters. Present if and
3757 // only if hasExtParameterInfos() is true.
3758 //
3759 // * Optionally a Qualifiers object to represent extra qualifiers that can't
3760 // be represented by FunctionTypeBitfields.FastTypeQuals. Present if and only
3761 // if hasExtQualifiers() is true.
3762 //
3763 // The optional FunctionTypeExtraBitfields has to be before the data
3764 // related to the exception specification since it contains the number
3765 // of exception types.
3766 //
3767 // We put the ExtParameterInfos last. If all were equal, it would make
3768 // more sense to put these before the exception specification, because
3769 // it's much easier to skip past them compared to the elaborate switch
3770 // required to skip the exception specification. However, all is not
3771 // equal; ExtParameterInfos are used to model very uncommon features,
3772 // and it's better not to burden the more common paths.
3773
3774public:
3775 /// Holds information about the various types of exception specification.
3776 /// ExceptionSpecInfo is not stored as such in FunctionProtoType but is
3777 /// used to group together the various bits of information about the
3778 /// exception specification.
3779 struct ExceptionSpecInfo {
3780 /// The kind of exception specification this is.
3781 ExceptionSpecificationType Type = EST_None;
3782
3783 /// Explicitly-specified list of exception types.
3784 ArrayRef<QualType> Exceptions;
3785
3786 /// Noexcept expression, if this is a computed noexcept specification.
3787 Expr *NoexceptExpr = nullptr;
3788
3789 /// The function whose exception specification this is, for
3790 /// EST_Unevaluated and EST_Uninstantiated.
3791 FunctionDecl *SourceDecl = nullptr;
3792
3793 /// The function template whose exception specification this is instantiated
3794 /// from, for EST_Uninstantiated.
3795 FunctionDecl *SourceTemplate = nullptr;
3796
3797 ExceptionSpecInfo() = default;
3798
3799 ExceptionSpecInfo(ExceptionSpecificationType EST) : Type(EST) {}
3800 };
3801
3802 /// Extra information about a function prototype. ExtProtoInfo is not
3803 /// stored as such in FunctionProtoType but is used to group together
3804 /// the various bits of extra information about a function prototype.
3805 struct ExtProtoInfo {
3806 FunctionType::ExtInfo ExtInfo;
3807 bool Variadic : 1;
3808 bool HasTrailingReturn : 1;
3809 Qualifiers TypeQuals;
3810 RefQualifierKind RefQualifier = RQ_None;
3811 ExceptionSpecInfo ExceptionSpec;
3812 const ExtParameterInfo *ExtParameterInfos = nullptr;
3813
3814 ExtProtoInfo() : Variadic(false), HasTrailingReturn(false) {}
3815
3816 ExtProtoInfo(CallingConv CC)
3817 : ExtInfo(CC), Variadic(false), HasTrailingReturn(false) {}
3818
3819 ExtProtoInfo withExceptionSpec(const ExceptionSpecInfo &ESI) {
3820 ExtProtoInfo Result(*this);
3821 Result.ExceptionSpec = ESI;
3822 return Result;
3823 }
3824 };
3825
3826private:
3827 unsigned numTrailingObjects(OverloadToken<QualType>) const {
3828 return getNumParams();
3829 }
3830
3831 unsigned numTrailingObjects(OverloadToken<FunctionTypeExtraBitfields>) const {
3832 return hasExtraBitfields();
3833 }
3834
3835 unsigned numTrailingObjects(OverloadToken<ExceptionType>) const {
3836 return getExceptionSpecSize().NumExceptionType;
3837 }
3838
3839 unsigned numTrailingObjects(OverloadToken<Expr *>) const {
3840 return getExceptionSpecSize().NumExprPtr;
3841 }
3842
3843 unsigned numTrailingObjects(OverloadToken<FunctionDecl *>) const {
3844 return getExceptionSpecSize().NumFunctionDeclPtr;
3845 }
3846
3847 unsigned numTrailingObjects(OverloadToken<ExtParameterInfo>) const {
3848 return hasExtParameterInfos() ? getNumParams() : 0;
3849 }
3850
3851 /// Determine whether there are any argument types that
3852 /// contain an unexpanded parameter pack.
3853 static bool containsAnyUnexpandedParameterPack(const QualType *ArgArray,
3854 unsigned numArgs) {
3855 for (unsigned Idx = 0; Idx < numArgs; ++Idx)
3856 if (ArgArray[Idx]->containsUnexpandedParameterPack())
3857 return true;
3858
3859 return false;
3860 }
3861
3862 FunctionProtoType(QualType result, ArrayRef<QualType> params,
3863 QualType canonical, const ExtProtoInfo &epi);
3864
3865 /// This struct is returned by getExceptionSpecSize and is used to
3866 /// translate an ExceptionSpecificationType to the number and kind
3867 /// of trailing objects related to the exception specification.
3868 struct ExceptionSpecSizeHolder {
3869 unsigned NumExceptionType;
3870 unsigned NumExprPtr;
3871 unsigned NumFunctionDeclPtr;
3872 };
3873
3874 /// Return the number and kind of trailing objects
3875 /// related to the exception specification.
3876 static ExceptionSpecSizeHolder
3877 getExceptionSpecSize(ExceptionSpecificationType EST, unsigned NumExceptions) {
3878 switch (EST) {
3879 case EST_None:
3880 case EST_DynamicNone:
3881 case EST_MSAny:
3882 case EST_BasicNoexcept:
3883 case EST_Unparsed:
3884 case EST_NoThrow:
3885 return {0, 0, 0};
3886
3887 case EST_Dynamic:
3888 return {NumExceptions, 0, 0};
3889
3890 case EST_DependentNoexcept:
3891 case EST_NoexceptFalse:
3892 case EST_NoexceptTrue:
3893 return {0, 1, 0};
3894
3895 case EST_Uninstantiated:
3896 return {0, 0, 2};
3897
3898 case EST_Unevaluated:
3899 return {0, 0, 1};
3900 }
3901 llvm_unreachable("bad exception specification kind")::llvm::llvm_unreachable_internal("bad exception specification kind"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 3901)
;
3902 }
3903
3904 /// Return the number and kind of trailing objects
3905 /// related to the exception specification.
3906 ExceptionSpecSizeHolder getExceptionSpecSize() const {
3907 return getExceptionSpecSize(getExceptionSpecType(), getNumExceptions());
3908 }
3909
3910 /// Whether the trailing FunctionTypeExtraBitfields is present.
3911 static bool hasExtraBitfields(ExceptionSpecificationType EST) {
3912 // If the exception spec type is EST_Dynamic then we have > 0 exception
3913 // types and the exact number is stored in FunctionTypeExtraBitfields.
3914 return EST == EST_Dynamic;
3915 }
3916
3917 /// Whether the trailing FunctionTypeExtraBitfields is present.
3918 bool hasExtraBitfields() const {
3919 return hasExtraBitfields(getExceptionSpecType());
3920 }
3921
3922 bool hasExtQualifiers() const {
3923 return FunctionTypeBits.HasExtQuals;
3924 }
3925
3926public:
3927 unsigned getNumParams() const { return FunctionTypeBits.NumParams; }
3928
3929 QualType getParamType(unsigned i) const {
3930 assert(i < getNumParams() && "invalid parameter index")((i < getNumParams() && "invalid parameter index")
? static_cast<void> (0) : __assert_fail ("i < getNumParams() && \"invalid parameter index\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 3930, __PRETTY_FUNCTION__))
;
3931 return param_type_begin()[i];
3932 }
3933
3934 ArrayRef<QualType> getParamTypes() const {
3935 return llvm::makeArrayRef(param_type_begin(), param_type_end());
3936 }
3937
3938 ExtProtoInfo getExtProtoInfo() const {
3939 ExtProtoInfo EPI;
3940 EPI.ExtInfo = getExtInfo();
3941 EPI.Variadic = isVariadic();
3942 EPI.HasTrailingReturn = hasTrailingReturn();
3943 EPI.ExceptionSpec.Type = getExceptionSpecType();
3944 EPI.TypeQuals = getMethodQuals();
3945 EPI.RefQualifier = getRefQualifier();
3946 if (EPI.ExceptionSpec.Type == EST_Dynamic) {
3947 EPI.ExceptionSpec.Exceptions = exceptions();
3948 } else if (isComputedNoexcept(EPI.ExceptionSpec.Type)) {
3949 EPI.ExceptionSpec.NoexceptExpr = getNoexceptExpr();
3950 } else if (EPI.ExceptionSpec.Type == EST_Uninstantiated) {
3951 EPI.ExceptionSpec.SourceDecl = getExceptionSpecDecl();
3952 EPI.ExceptionSpec.SourceTemplate = getExceptionSpecTemplate();
3953 } else if (EPI.ExceptionSpec.Type == EST_Unevaluated) {
3954 EPI.ExceptionSpec.SourceDecl = getExceptionSpecDecl();
3955 }
3956 EPI.ExtParameterInfos = getExtParameterInfosOrNull();
3957 return EPI;
3958 }
3959
3960 /// Get the kind of exception specification on this function.
3961 ExceptionSpecificationType getExceptionSpecType() const {
3962 return static_cast<ExceptionSpecificationType>(
3963 FunctionTypeBits.ExceptionSpecType);
3964 }
3965
3966 /// Return whether this function has any kind of exception spec.
3967 bool hasExceptionSpec() const { return getExceptionSpecType() != EST_None; }
3968
3969 /// Return whether this function has a dynamic (throw) exception spec.
3970 bool hasDynamicExceptionSpec() const {
3971 return isDynamicExceptionSpec(getExceptionSpecType());
3972 }
3973
3974 /// Return whether this function has a noexcept exception spec.
3975 bool hasNoexceptExceptionSpec() const {
3976 return isNoexceptExceptionSpec(getExceptionSpecType());
3977 }
3978
3979 /// Return whether this function has a dependent exception spec.
3980 bool hasDependentExceptionSpec() const;
3981
3982 /// Return whether this function has an instantiation-dependent exception
3983 /// spec.
3984 bool hasInstantiationDependentExceptionSpec() const;
3985
3986 /// Return the number of types in the exception specification.
3987 unsigned getNumExceptions() const {
3988 return getExceptionSpecType() == EST_Dynamic
3989 ? getTrailingObjects<FunctionTypeExtraBitfields>()
3990 ->NumExceptionType
3991 : 0;
3992 }
3993
3994 /// Return the ith exception type, where 0 <= i < getNumExceptions().
3995 QualType getExceptionType(unsigned i) const {
3996 assert(i < getNumExceptions() && "Invalid exception number!")((i < getNumExceptions() && "Invalid exception number!"
) ? static_cast<void> (0) : __assert_fail ("i < getNumExceptions() && \"Invalid exception number!\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 3996, __PRETTY_FUNCTION__))
;
3997 return exception_begin()[i];
3998 }
3999
4000 /// Return the expression inside noexcept(expression), or a null pointer
4001 /// if there is none (because the exception spec is not of this form).
4002 Expr *getNoexceptExpr() const {
4003 if (!isComputedNoexcept(getExceptionSpecType()))
4004 return nullptr;
4005 return *getTrailingObjects<Expr *>();
4006 }
4007
4008 /// If this function type has an exception specification which hasn't
4009 /// been determined yet (either because it has not been evaluated or because
4010 /// it has not been instantiated), this is the function whose exception
4011 /// specification is represented by this type.
4012 FunctionDecl *getExceptionSpecDecl() const {
4013 if (getExceptionSpecType() != EST_Uninstantiated &&
4014 getExceptionSpecType() != EST_Unevaluated)
4015 return nullptr;
4016 return getTrailingObjects<FunctionDecl *>()[0];
4017 }
4018
4019 /// If this function type has an uninstantiated exception
4020 /// specification, this is the function whose exception specification
4021 /// should be instantiated to find the exception specification for
4022 /// this type.
4023 FunctionDecl *getExceptionSpecTemplate() const {
4024 if (getExceptionSpecType() != EST_Uninstantiated)
4025 return nullptr;
4026 return getTrailingObjects<FunctionDecl *>()[1];
4027 }
4028
4029 /// Determine whether this function type has a non-throwing exception
4030 /// specification.
4031 CanThrowResult canThrow() const;
4032
4033 /// Determine whether this function type has a non-throwing exception
4034 /// specification. If this depends on template arguments, returns
4035 /// \c ResultIfDependent.
4036 bool isNothrow(bool ResultIfDependent = false) const {
4037 return ResultIfDependent ? canThrow() != CT_Can : canThrow() == CT_Cannot;
4038 }
4039
4040 /// Whether this function prototype is variadic.
4041 bool isVariadic() const { return FunctionTypeBits.Variadic; }
4042
4043 /// Determines whether this function prototype contains a
4044 /// parameter pack at the end.
4045 ///
4046 /// A function template whose last parameter is a parameter pack can be
4047 /// called with an arbitrary number of arguments, much like a variadic
4048 /// function.
4049 bool isTemplateVariadic() const;
4050
4051 /// Whether this function prototype has a trailing return type.
4052 bool hasTrailingReturn() const { return FunctionTypeBits.HasTrailingReturn; }
4053
4054 Qualifiers getMethodQuals() const {
4055 if (hasExtQualifiers())
4056 return *getTrailingObjects<Qualifiers>();
4057 else
4058 return getFastTypeQuals();
4059 }
4060
4061 /// Retrieve the ref-qualifier associated with this function type.
4062 RefQualifierKind getRefQualifier() const {
4063 return static_cast<RefQualifierKind>(FunctionTypeBits.RefQualifier);
4064 }
4065
4066 using param_type_iterator = const QualType *;
4067 using param_type_range = llvm::iterator_range<param_type_iterator>;
4068
4069 param_type_range param_types() const {
4070 return param_type_range(param_type_begin(), param_type_end());
4071 }
4072
4073 param_type_iterator param_type_begin() const {
4074 return getTrailingObjects<QualType>();
4075 }
4076
4077 param_type_iterator param_type_end() const {
4078 return param_type_begin() + getNumParams();
4079 }
4080
4081 using exception_iterator = const QualType *;
4082
4083 ArrayRef<QualType> exceptions() const {
4084 return llvm::makeArrayRef(exception_begin(), exception_end());
4085 }
4086
4087 exception_iterator exception_begin() const {
4088 return reinterpret_cast<exception_iterator>(
4089 getTrailingObjects<ExceptionType>());
4090 }
4091
4092 exception_iterator exception_end() const {
4093 return exception_begin() + getNumExceptions();
4094 }
4095
4096 /// Is there any interesting extra information for any of the parameters
4097 /// of this function type?
4098 bool hasExtParameterInfos() const {
4099 return FunctionTypeBits.HasExtParameterInfos;
4100 }
4101
4102 ArrayRef<ExtParameterInfo> getExtParameterInfos() const {
4103 assert(hasExtParameterInfos())((hasExtParameterInfos()) ? static_cast<void> (0) : __assert_fail
("hasExtParameterInfos()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 4103, __PRETTY_FUNCTION__))
;
4104 return ArrayRef<ExtParameterInfo>(getTrailingObjects<ExtParameterInfo>(),
4105 getNumParams());
4106 }
4107
4108 /// Return a pointer to the beginning of the array of extra parameter
4109 /// information, if present, or else null if none of the parameters
4110 /// carry it. This is equivalent to getExtProtoInfo().ExtParameterInfos.
4111 const ExtParameterInfo *getExtParameterInfosOrNull() const {
4112 if (!hasExtParameterInfos())
4113 return nullptr;
4114 return getTrailingObjects<ExtParameterInfo>();
4115 }
4116
4117 ExtParameterInfo getExtParameterInfo(unsigned I) const {
4118 assert(I < getNumParams() && "parameter index out of range")((I < getNumParams() && "parameter index out of range"
) ? static_cast<void> (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 4118, __PRETTY_FUNCTION__))
;
4119 if (hasExtParameterInfos())
4120 return getTrailingObjects<ExtParameterInfo>()[I];
4121 return ExtParameterInfo();
4122 }
4123
4124 ParameterABI getParameterABI(unsigned I) const {
4125 assert(I < getNumParams() && "parameter index out of range")((I < getNumParams() && "parameter index out of range"
) ? static_cast<void> (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 4125, __PRETTY_FUNCTION__))
;
4126 if (hasExtParameterInfos())
4127 return getTrailingObjects<ExtParameterInfo>()[I].getABI();
4128 return ParameterABI::Ordinary;
4129 }
4130
4131 bool isParamConsumed(unsigned I) const {
4132 assert(I < getNumParams() && "parameter index out of range")((I < getNumParams() && "parameter index out of range"
) ? static_cast<void> (0) : __assert_fail ("I < getNumParams() && \"parameter index out of range\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 4132, __PRETTY_FUNCTION__))
;
4133 if (hasExtParameterInfos())
4134 return getTrailingObjects<ExtParameterInfo>()[I].isConsumed();
4135 return false;
4136 }
4137
4138 bool isSugared() const { return false; }
4139 QualType desugar() const { return QualType(this, 0); }
4140
4141 void printExceptionSpecification(raw_ostream &OS,
4142 const PrintingPolicy &Policy) const;
4143
4144 static bool classof(const Type *T) {
4145 return T->getTypeClass() == FunctionProto;
4146 }
4147
4148 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx);
4149 static void Profile(llvm::FoldingSetNodeID &ID, QualType Result,
4150 param_type_iterator ArgTys, unsigned NumArgs,
4151 const ExtProtoInfo &EPI, const ASTContext &Context,
4152 bool Canonical);
4153};
4154
4155/// Represents the dependent type named by a dependently-scoped
4156/// typename using declaration, e.g.
4157/// using typename Base<T>::foo;
4158///
4159/// Template instantiation turns these into the underlying type.
4160class UnresolvedUsingType : public Type {
4161 friend class ASTContext; // ASTContext creates these.
4162
4163 UnresolvedUsingTypenameDecl *Decl;
4164
4165 UnresolvedUsingType(const UnresolvedUsingTypenameDecl *D)
4166 : Type(UnresolvedUsing, QualType(), true, true, false,
4167 /*ContainsUnexpandedParameterPack=*/false),
4168 Decl(const_cast<UnresolvedUsingTypenameDecl*>(D)) {}
4169
4170public:
4171 UnresolvedUsingTypenameDecl *getDecl() const { return Decl; }
4172
4173 bool isSugared() const { return false; }
4174 QualType desugar() const { return QualType(this, 0); }
4175
4176 static bool classof(const Type *T) {
4177 return T->getTypeClass() == UnresolvedUsing;
4178 }
4179
4180 void Profile(llvm::FoldingSetNodeID &ID) {
4181 return Profile(ID, Decl);
4182 }
4183
4184 static void Profile(llvm::FoldingSetNodeID &ID,
4185 UnresolvedUsingTypenameDecl *D) {
4186 ID.AddPointer(D);
4187 }
4188};
4189
4190class TypedefType : public Type {
4191 TypedefNameDecl *Decl;
4192
4193protected:
4194 friend class ASTContext; // ASTContext creates these.
4195
4196 TypedefType(TypeClass tc, const TypedefNameDecl *D, QualType can)
4197 : Type(tc, can, can->isDependentType(),
4198 can->isInstantiationDependentType(),
4199 can->isVariablyModifiedType(),
4200 /*ContainsUnexpandedParameterPack=*/false),
4201 Decl(const_cast<TypedefNameDecl*>(D)) {
4202 assert(!isa<TypedefType>(can) && "Invalid canonical type")((!isa<TypedefType>(can) && "Invalid canonical type"
) ? static_cast<void> (0) : __assert_fail ("!isa<TypedefType>(can) && \"Invalid canonical type\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 4202, __PRETTY_FUNCTION__))
;
4203 }
4204
4205public:
4206 TypedefNameDecl *getDecl() const { return Decl; }
4207
4208 bool isSugared() const { return true; }
4209 QualType desugar() const;
4210
4211 static bool classof(const Type *T) { return T->getTypeClass() == Typedef; }
4212};
4213
4214/// Sugar type that represents a type that was qualified by a qualifier written
4215/// as a macro invocation.
4216class MacroQualifiedType : public Type {
4217 friend class ASTContext; // ASTContext creates these.
4218
4219 QualType UnderlyingTy;
4220 const IdentifierInfo *MacroII;
4221
4222 MacroQualifiedType(QualType UnderlyingTy, QualType CanonTy,
4223 const IdentifierInfo *MacroII)
4224 : Type(MacroQualified, CanonTy, UnderlyingTy->isDependentType(),
4225 UnderlyingTy->isInstantiationDependentType(),
4226 UnderlyingTy->isVariablyModifiedType(),
4227 UnderlyingTy->containsUnexpandedParameterPack()),
4228 UnderlyingTy(UnderlyingTy), MacroII(MacroII) {
4229 assert(isa<AttributedType>(UnderlyingTy) &&((isa<AttributedType>(UnderlyingTy) && "Expected a macro qualified type to only wrap attributed types."
) ? static_cast<void> (0) : __assert_fail ("isa<AttributedType>(UnderlyingTy) && \"Expected a macro qualified type to only wrap attributed types.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 4230, __PRETTY_FUNCTION__))
4230 "Expected a macro qualified type to only wrap attributed types.")((isa<AttributedType>(UnderlyingTy) && "Expected a macro qualified type to only wrap attributed types."
) ? static_cast<void> (0) : __assert_fail ("isa<AttributedType>(UnderlyingTy) && \"Expected a macro qualified type to only wrap attributed types.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 4230, __PRETTY_FUNCTION__))
;
4231 }
4232
4233public:
4234 const IdentifierInfo *getMacroIdentifier() const { return MacroII; }
4235 QualType getUnderlyingType() const { return UnderlyingTy; }
4236
4237 /// Return this attributed type's modified type with no qualifiers attached to
4238 /// it.
4239 QualType getModifiedType() const;
4240
4241 bool isSugared() const { return true; }
4242 QualType desugar() const;
4243
4244 static bool classof(const Type *T) {
4245 return T->getTypeClass() == MacroQualified;
4246 }
4247};
4248
4249/// Represents a `typeof` (or __typeof__) expression (a GCC extension).
4250class TypeOfExprType : public Type {
4251 Expr *TOExpr;
4252
4253protected:
4254 friend class ASTContext; // ASTContext creates these.
4255
4256 TypeOfExprType(Expr *E, QualType can = QualType());
4257
4258public:
4259 Expr *getUnderlyingExpr() const { return TOExpr; }
4260
4261 /// Remove a single level of sugar.
4262 QualType desugar() const;
4263
4264 /// Returns whether this type directly provides sugar.
4265 bool isSugared() const;
4266
4267 static bool classof(const Type *T) { return T->getTypeClass() == TypeOfExpr; }
4268};
4269
4270/// Internal representation of canonical, dependent
4271/// `typeof(expr)` types.
4272///
4273/// This class is used internally by the ASTContext to manage
4274/// canonical, dependent types, only. Clients will only see instances
4275/// of this class via TypeOfExprType nodes.
4276class DependentTypeOfExprType
4277 : public TypeOfExprType, public llvm::FoldingSetNode {
4278 const ASTContext &Context;
4279
4280public:
4281 DependentTypeOfExprType(const ASTContext &Context, Expr *E)
4282 : TypeOfExprType(E), Context(Context) {}
4283
4284 void Profile(llvm::FoldingSetNodeID &ID) {
4285 Profile(ID, Context, getUnderlyingExpr());
4286 }
4287
4288 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4289 Expr *E);
4290};
4291
4292/// Represents `typeof(type)`, a GCC extension.
4293class TypeOfType : public Type {
4294 friend class ASTContext; // ASTContext creates these.
4295
4296 QualType TOType;
4297
4298 TypeOfType(QualType T, QualType can)
4299 : Type(TypeOf, can, T->isDependentType(),
4300 T->isInstantiationDependentType(),
4301 T->isVariablyModifiedType(),
4302 T->containsUnexpandedParameterPack()),
4303 TOType(T) {
4304 assert(!isa<TypedefType>(can) && "Invalid canonical type")((!isa<TypedefType>(can) && "Invalid canonical type"
) ? static_cast<void> (0) : __assert_fail ("!isa<TypedefType>(can) && \"Invalid canonical type\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 4304, __PRETTY_FUNCTION__))
;
4305 }
4306
4307public:
4308 QualType getUnderlyingType() const { return TOType; }
4309
4310 /// Remove a single level of sugar.
4311 QualType desugar() const { return getUnderlyingType(); }
4312
4313 /// Returns whether this type directly provides sugar.
4314 bool isSugared() const { return true; }
4315
4316 static bool classof(const Type *T) { return T->getTypeClass() == TypeOf; }
4317};
4318
4319/// Represents the type `decltype(expr)` (C++11).
4320class DecltypeType : public Type {
4321 Expr *E;
4322 QualType UnderlyingType;
4323
4324protected:
4325 friend class ASTContext; // ASTContext creates these.
4326
4327 DecltypeType(Expr *E, QualType underlyingType, QualType can = QualType());
4328
4329public:
4330 Expr *getUnderlyingExpr() const { return E; }
4331 QualType getUnderlyingType() const { return UnderlyingType; }
4332
4333 /// Remove a single level of sugar.
4334 QualType desugar() const;
4335
4336 /// Returns whether this type directly provides sugar.
4337 bool isSugared() const;
4338
4339 static bool classof(const Type *T) { return T->getTypeClass() == Decltype; }
4340};
4341
4342/// Internal representation of canonical, dependent
4343/// decltype(expr) types.
4344///
4345/// This class is used internally by the ASTContext to manage
4346/// canonical, dependent types, only. Clients will only see instances
4347/// of this class via DecltypeType nodes.
4348class DependentDecltypeType : public DecltypeType, public llvm::FoldingSetNode {
4349 const ASTContext &Context;
4350
4351public:
4352 DependentDecltypeType(const ASTContext &Context, Expr *E);
4353
4354 void Profile(llvm::FoldingSetNodeID &ID) {
4355 Profile(ID, Context, getUnderlyingExpr());
4356 }
4357
4358 static void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context,
4359 Expr *E);
4360};
4361
4362/// A unary type transform, which is a type constructed from another.
4363class UnaryTransformType : public Type {
4364public:
4365 enum UTTKind {
4366 EnumUnderlyingType
4367 };
4368
4369private:
4370 /// The untransformed type.
4371 QualType BaseType;
4372
4373 /// The transformed type if not dependent, otherwise the same as BaseType.
4374 QualType UnderlyingType;
4375
4376 UTTKind UKind;
4377
4378protected:
4379 friend class ASTContext;
4380
4381 UnaryTransformType(QualType BaseTy, QualType UnderlyingTy, UTTKind UKind,
4382 QualType CanonicalTy);
4383
4384public:
4385 bool isSugared() const { return !isDependentType(); }
4386 QualType desugar() const { return UnderlyingType; }
4387
4388 QualType getUnderlyingType() const { return UnderlyingType; }
4389 QualType getBaseType() const { return BaseType; }
4390
4391 UTTKind getUTTKind() const { return UKind; }
4392
4393 static bool classof(const Type *T) {
4394 return T->getTypeClass() == UnaryTransform;
4395 }
4396};
4397
4398/// Internal representation of canonical, dependent
4399/// __underlying_type(type) types.
4400///
4401/// This class is used internally by the ASTContext to manage
4402/// canonical, dependent types, only. Clients will only see instances
4403/// of this class via UnaryTransformType nodes.
4404class DependentUnaryTransformType : public UnaryTransformType,
4405 public llvm::FoldingSetNode {
4406public:
4407 DependentUnaryTransformType(const ASTContext &C, QualType BaseType,
4408 UTTKind UKind);
4409
4410 void Profile(llvm::FoldingSetNodeID &ID) {
4411 Profile(ID, getBaseType(), getUTTKind());
4412 }
4413
4414 static void Profile(llvm::FoldingSetNodeID &ID, QualType BaseType,
4415 UTTKind UKind) {
4416 ID.AddPointer(BaseType.getAsOpaquePtr());
4417 ID.AddInteger((unsigned)UKind);
4418 }
4419};
4420
4421class TagType : public Type {
4422 friend class ASTReader;
4423
4424 /// Stores the TagDecl associated with this type. The decl may point to any
4425 /// TagDecl that declares the entity.
4426 TagDecl *decl;
4427
4428protected:
4429 TagType(TypeClass TC, const TagDecl *D, QualType can);
4430
4431public:
4432 TagDecl *getDecl() const;
4433
4434 /// Determines whether this type is in the process of being defined.
4435 bool isBeingDefined() const;
4436
4437 static bool classof(const Type *T) {
4438 return T->getTypeClass() == Enum || T->getTypeClass() == Record;
4439 }
4440};
4441
4442/// A helper class that allows the use of isa/cast/dyncast
4443/// to detect TagType objects of structs/unions/classes.
4444class RecordType : public TagType {
4445protected:
4446 friend class ASTContext; // ASTContext creates these.
4447
4448 explicit RecordType(const RecordDecl *D)
4449 : TagType(Record, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4450 explicit RecordType(TypeClass TC, RecordDecl *D)
4451 : TagType(TC, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4452
4453public:
4454 RecordDecl *getDecl() const {
4455 return reinterpret_cast<RecordDecl*>(TagType::getDecl());
4456 }
4457
4458 /// Recursively check all fields in the record for const-ness. If any field
4459 /// is declared const, return true. Otherwise, return false.
4460 bool hasConstFields() const;
4461
4462 bool isSugared() const { return false; }
4463 QualType desugar() const { return QualType(this, 0); }
4464
4465 static bool classof(const Type *T) { return T->getTypeClass() == Record; }
4466};
4467
4468/// A helper class that allows the use of isa/cast/dyncast
4469/// to detect TagType objects of enums.
4470class EnumType : public TagType {
4471 friend class ASTContext; // ASTContext creates these.
4472
4473 explicit EnumType(const EnumDecl *D)
4474 : TagType(Enum, reinterpret_cast<const TagDecl*>(D), QualType()) {}
4475
4476public:
4477 EnumDecl *getDecl() const {
4478 return reinterpret_cast<EnumDecl*>(TagType::getDecl());
4479 }
4480
4481 bool isSugared() const { return false; }
4482 QualType desugar() const { return QualType(this, 0); }
4483
4484 static bool classof(const Type *T) { return T->getTypeClass() == Enum; }
4485};
4486
4487/// An attributed type is a type to which a type attribute has been applied.
4488///
4489/// The "modified type" is the fully-sugared type to which the attributed
4490/// type was applied; generally it is not canonically equivalent to the
4491/// attributed type. The "equivalent type" is the minimally-desugared type
4492/// which the type is canonically equivalent to.
4493///
4494/// For example, in the following attributed type:
4495/// int32_t __attribute__((vector_size(16)))
4496/// - the modified type is the TypedefType for int32_t
4497/// - the equivalent type is VectorType(16, int32_t)
4498/// - the canonical type is VectorType(16, int)
4499class AttributedType : public Type, public llvm::FoldingSetNode {
4500public:
4501 using Kind = attr::Kind;
4502
4503private:
4504 friend class ASTContext; // ASTContext creates these
4505
4506 QualType ModifiedType;
4507 QualType EquivalentType;
4508
4509 AttributedType(QualType canon, attr::Kind attrKind, QualType modified,
4510 QualType equivalent)
4511 : Type(Attributed, canon, equivalent->isDependentType(),
4512 equivalent->isInstantiationDependentType(),
4513 equivalent->isVariablyModifiedType(),
4514 equivalent->containsUnexpandedParameterPack()),
4515 ModifiedType(modified), EquivalentType(equivalent) {
4516 AttributedTypeBits.AttrKind = attrKind;
4517 }
4518
4519public:
4520 Kind getAttrKind() const {
4521 return static_cast<Kind>(AttributedTypeBits.AttrKind);
4522 }
4523
4524 QualType getModifiedType() const { return ModifiedType; }
4525 QualType getEquivalentType() const { return EquivalentType; }
4526
4527 bool isSugared() const { return true; }
4528 QualType desugar() const { return getEquivalentType(); }
4529
4530 /// Does this attribute behave like a type qualifier?
4531 ///
4532 /// A type qualifier adjusts a type to provide specialized rules for
4533 /// a specific object, like the standard const and volatile qualifiers.
4534 /// This includes attributes controlling things like nullability,
4535 /// address spaces, and ARC ownership. The value of the object is still
4536 /// largely described by the modified type.
4537 ///
4538 /// In contrast, many type attributes "rewrite" their modified type to
4539 /// produce a fundamentally different type, not necessarily related in any
4540 /// formalizable way to the original type. For example, calling convention
4541 /// and vector attributes are not simple type qualifiers.
4542 ///
4543 /// Type qualifiers are often, but not always, reflected in the canonical
4544 /// type.
4545 bool isQualifier() const;
4546
4547 bool isMSTypeSpec() const;
4548
4549 bool isCallingConv() const;
4550
4551 llvm::Optional<NullabilityKind> getImmediateNullability() const;
4552
4553 /// Retrieve the attribute kind corresponding to the given
4554 /// nullability kind.
4555 static Kind getNullabilityAttrKind(NullabilityKind kind) {
4556 switch (kind) {
4557 case NullabilityKind::NonNull:
4558 return attr::TypeNonNull;
4559
4560 case NullabilityKind::Nullable:
4561 return attr::TypeNullable;
4562
4563 case NullabilityKind::Unspecified:
4564 return attr::TypeNullUnspecified;
4565 }
4566 llvm_unreachable("Unknown nullability kind.")::llvm::llvm_unreachable_internal("Unknown nullability kind."
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 4566)
;
4567 }
4568
4569 /// Strip off the top-level nullability annotation on the given
4570 /// type, if it's there.
4571 ///
4572 /// \param T The type to strip. If the type is exactly an
4573 /// AttributedType specifying nullability (without looking through
4574 /// type sugar), the nullability is returned and this type changed
4575 /// to the underlying modified type.
4576 ///
4577 /// \returns the top-level nullability, if present.
4578 static Optional<NullabilityKind> stripOuterNullability(QualType &T);
4579
4580 void Profile(llvm::FoldingSetNodeID &ID) {
4581 Profile(ID, getAttrKind(), ModifiedType, EquivalentType);
4582 }
4583
4584 static void Profile(llvm::FoldingSetNodeID &ID, Kind attrKind,
4585 QualType modified, QualType equivalent) {
4586 ID.AddInteger(attrKind);
4587 ID.AddPointer(modified.getAsOpaquePtr());
4588 ID.AddPointer(equivalent.getAsOpaquePtr());
4589 }
4590
4591 static bool classof(const Type *T) {
4592 return T->getTypeClass() == Attributed;
4593 }
4594};
4595
4596class TemplateTypeParmType : public Type, public llvm::FoldingSetNode {
4597 friend class ASTContext; // ASTContext creates these
4598
4599 // Helper data collector for canonical types.
4600 struct CanonicalTTPTInfo {
4601 unsigned Depth : 15;
4602 unsigned ParameterPack : 1;
4603 unsigned Index : 16;
4604 };
4605
4606 union {
4607 // Info for the canonical type.
4608 CanonicalTTPTInfo CanTTPTInfo;
4609
4610 // Info for the non-canonical type.
4611 TemplateTypeParmDecl *TTPDecl;
4612 };
4613
4614 /// Build a non-canonical type.
4615 TemplateTypeParmType(TemplateTypeParmDecl *TTPDecl, QualType Canon)
4616 : Type(TemplateTypeParm, Canon, /*Dependent=*/true,
4617 /*InstantiationDependent=*/true,
4618 /*VariablyModified=*/false,
4619 Canon->containsUnexpandedParameterPack()),
4620 TTPDecl(TTPDecl) {}
4621
4622 /// Build the canonical type.
4623 TemplateTypeParmType(unsigned D, unsigned I, bool PP)
4624 : Type(TemplateTypeParm, QualType(this, 0),
4625 /*Dependent=*/true,
4626 /*InstantiationDependent=*/true,
4627 /*VariablyModified=*/false, PP) {
4628 CanTTPTInfo.Depth = D;
4629 CanTTPTInfo.Index = I;
4630 CanTTPTInfo.ParameterPack = PP;
4631 }
4632
4633 const CanonicalTTPTInfo& getCanTTPTInfo() const {
4634 QualType Can = getCanonicalTypeInternal();
4635 return Can->castAs<TemplateTypeParmType>()->CanTTPTInfo;
4636 }
4637
4638public:
4639 unsigned getDepth() const { return getCanTTPTInfo().Depth; }
4640 unsigned getIndex() const { return getCanTTPTInfo().Index; }
4641 bool isParameterPack() const { return getCanTTPTInfo().ParameterPack; }
4642
4643 TemplateTypeParmDecl *getDecl() const {
4644 return isCanonicalUnqualified() ? nullptr : TTPDecl;
4645 }
4646
4647 IdentifierInfo *getIdentifier() const;
4648
4649 bool isSugared() const { return false; }
4650 QualType desugar() const { return QualType(this, 0); }
4651
4652 void Profile(llvm::FoldingSetNodeID &ID) {
4653 Profile(ID, getDepth(), getIndex(), isParameterPack(), getDecl());
4654 }
4655
4656 static void Profile(llvm::FoldingSetNodeID &ID, unsigned Depth,
4657 unsigned Index, bool ParameterPack,
4658 TemplateTypeParmDecl *TTPDecl) {
4659 ID.AddInteger(Depth);
4660 ID.AddInteger(Index);
4661 ID.AddBoolean(ParameterPack);
4662 ID.AddPointer(TTPDecl);
4663 }
4664
4665 static bool classof(const Type *T) {
4666 return T->getTypeClass() == TemplateTypeParm;
4667 }
4668};
4669
4670/// Represents the result of substituting a type for a template
4671/// type parameter.
4672///
4673/// Within an instantiated template, all template type parameters have
4674/// been replaced with these. They are used solely to record that a
4675/// type was originally written as a template type parameter;
4676/// therefore they are never canonical.
4677class SubstTemplateTypeParmType : public Type, public llvm::FoldingSetNode {
4678 friend class ASTContext;
4679
4680 // The original type parameter.
4681 const TemplateTypeParmType *Replaced;
4682
4683 SubstTemplateTypeParmType(const TemplateTypeParmType *Param, QualType Canon)
4684 : Type(SubstTemplateTypeParm, Canon, Canon->isDependentType(),
4685 Canon->isInstantiationDependentType(),
4686 Canon->isVariablyModifiedType(),
4687 Canon->containsUnexpandedParameterPack()),
4688 Replaced(Param) {}
4689
4690public:
4691 /// Gets the template parameter that was substituted for.
4692 const TemplateTypeParmType *getReplacedParameter() const {
4693 return Replaced;
4694 }
4695
4696 /// Gets the type that was substituted for the template
4697 /// parameter.
4698 QualType getReplacementType() const {
4699 return getCanonicalTypeInternal();
4700 }
4701
4702 bool isSugared() const { return true; }
4703 QualType desugar() const { return getReplacementType(); }
4704
4705 void Profile(llvm::FoldingSetNodeID &ID) {
4706 Profile(ID, getReplacedParameter(), getReplacementType());
4707 }
4708
4709 static void Profile(llvm::FoldingSetNodeID &ID,
4710 const TemplateTypeParmType *Replaced,
4711 QualType Replacement) {
4712 ID.AddPointer(Replaced);
4713 ID.AddPointer(Replacement.getAsOpaquePtr());
4714 }
4715
4716 static bool classof(const Type *T) {
4717 return T->getTypeClass() == SubstTemplateTypeParm;
4718 }
4719};
4720
4721/// Represents the result of substituting a set of types for a template
4722/// type parameter pack.
4723///
4724/// When a pack expansion in the source code contains multiple parameter packs
4725/// and those parameter packs correspond to different levels of template
4726/// parameter lists, this type node is used to represent a template type
4727/// parameter pack from an outer level, which has already had its argument pack
4728/// substituted but that still lives within a pack expansion that itself
4729/// could not be instantiated. When actually performing a substitution into
4730/// that pack expansion (e.g., when all template parameters have corresponding
4731/// arguments), this type will be replaced with the \c SubstTemplateTypeParmType
4732/// at the current pack substitution index.
4733class SubstTemplateTypeParmPackType : public Type, public llvm::FoldingSetNode {
4734 friend class ASTContext;
4735
4736 /// The original type parameter.
4737 const TemplateTypeParmType *Replaced;
4738
4739 /// A pointer to the set of template arguments that this
4740 /// parameter pack is instantiated with.
4741 const TemplateArgument *Arguments;
4742
4743 SubstTemplateTypeParmPackType(const TemplateTypeParmType *Param,
4744 QualType Canon,
4745 const TemplateArgument &ArgPack);
4746
4747public:
4748 IdentifierInfo *getIdentifier() const { return Replaced->getIdentifier(); }
4749
4750 /// Gets the template parameter that was substituted for.
4751 const TemplateTypeParmType *getReplacedParameter() const {
4752 return Replaced;
4753 }
4754
4755 unsigned getNumArgs() const {
4756 return SubstTemplateTypeParmPackTypeBits.NumArgs;
4757 }
4758
4759 bool isSugared() const { return false; }
4760 QualType desugar() const { return QualType(this, 0); }
4761
4762 TemplateArgument getArgumentPack() const;
4763
4764 void Profile(llvm::FoldingSetNodeID &ID);
4765 static void Profile(llvm::FoldingSetNodeID &ID,
4766 const TemplateTypeParmType *Replaced,
4767 const TemplateArgument &ArgPack);
4768
4769 static bool classof(const Type *T) {
4770 return T->getTypeClass() == SubstTemplateTypeParmPack;
4771 }
4772};
4773
4774/// Common base class for placeholders for types that get replaced by
4775/// placeholder type deduction: C++11 auto, C++14 decltype(auto), C++17 deduced
4776/// class template types, and (eventually) constrained type names from the C++
4777/// Concepts TS.
4778///
4779/// These types are usually a placeholder for a deduced type. However, before
4780/// the initializer is attached, or (usually) if the initializer is
4781/// type-dependent, there is no deduced type and the type is canonical. In
4782/// the latter case, it is also a dependent type.
4783class DeducedType : public Type {
4784protected:
4785 DeducedType(TypeClass TC, QualType DeducedAsType, bool IsDependent,
4786 bool IsInstantiationDependent, bool ContainsParameterPack)
4787 : Type(TC,
4788 // FIXME: Retain the sugared deduced type?
4789 DeducedAsType.isNull() ? QualType(this, 0)
4790 : DeducedAsType.getCanonicalType(),
4791 IsDependent, IsInstantiationDependent,
4792 /*VariablyModified=*/false, ContainsParameterPack) {
4793 if (!DeducedAsType.isNull()) {
4794 if (DeducedAsType->isDependentType())
4795 setDependent();
4796 if (DeducedAsType->isInstantiationDependentType())
4797 setInstantiationDependent();
4798 if (DeducedAsType->containsUnexpandedParameterPack())
4799 setContainsUnexpandedParameterPack();
4800 }
4801 }
4802
4803public:
4804 bool isSugared() const { return !isCanonicalUnqualified(); }
4805 QualType desugar() const { return getCanonicalTypeInternal(); }
4806
4807 /// Get the type deduced for this placeholder type, or null if it's
4808 /// either not been deduced or was deduced to a dependent type.
4809 QualType getDeducedType() const {
4810 return !isCanonicalUnqualified() ? getCanonicalTypeInternal() : QualType();
4811 }
4812 bool isDeduced() const {
4813 return !isCanonicalUnqualified() || isDependentType();
4814 }
4815
4816 static bool classof(const Type *T) {
4817 return T->getTypeClass() == Auto ||
4818 T->getTypeClass() == DeducedTemplateSpecialization;
4819 }
4820};
4821
4822/// Represents a C++11 auto or C++14 decltype(auto) type.
4823class AutoType : public DeducedType, public llvm::FoldingSetNode {
4824 friend class ASTContext; // ASTContext creates these
4825
4826 AutoType(QualType DeducedAsType, AutoTypeKeyword Keyword,
4827 bool IsDeducedAsDependent, bool IsDeducedAsPack)
4828 : DeducedType(Auto, DeducedAsType, IsDeducedAsDependent,
4829 IsDeducedAsDependent, IsDeducedAsPack) {
4830 AutoTypeBits.Keyword = (unsigned)Keyword;
4831 }
4832
4833public:
4834 bool isDecltypeAuto() const {
4835 return getKeyword() == AutoTypeKeyword::DecltypeAuto;
4836 }
4837
4838 AutoTypeKeyword getKeyword() const {
4839 return (AutoTypeKeyword)AutoTypeBits.Keyword;
4840 }
4841
4842 void Profile(llvm::FoldingSetNodeID &ID) {
4843 Profile(ID, getDeducedType(), getKeyword(), isDependentType(),
4844 containsUnexpandedParameterPack());
4845 }
4846
4847 static void Profile(llvm::FoldingSetNodeID &ID, QualType Deduced,
4848 AutoTypeKeyword Keyword, bool IsDependent, bool IsPack) {
4849 ID.AddPointer(Deduced.getAsOpaquePtr());
4850 ID.AddInteger((unsigned)Keyword);
4851 ID.AddBoolean(IsDependent);
4852 ID.AddBoolean(IsPack);
4853 }
4854
4855 static bool classof(const Type *T) {
4856 return T->getTypeClass() == Auto;
4857 }
4858};
4859
4860/// Represents a C++17 deduced template specialization type.
4861class DeducedTemplateSpecializationType : public DeducedType,
4862 public llvm::FoldingSetNode {
4863 friend class ASTContext; // ASTContext creates these
4864
4865 /// The name of the template whose arguments will be deduced.
4866 TemplateName Template;
4867
4868 DeducedTemplateSpecializationType(TemplateName Template,
4869 QualType DeducedAsType,
4870 bool IsDeducedAsDependent)
4871 : DeducedType(DeducedTemplateSpecialization, DeducedAsType,
4872 IsDeducedAsDependent || Template.isDependent(),
4873 IsDeducedAsDependent || Template.isInstantiationDependent(),
4874 Template.containsUnexpandedParameterPack()),
4875 Template(Template) {}
4876
4877public:
4878 /// Retrieve the name of the template that we are deducing.
4879 TemplateName getTemplateName() const { return Template;}
4880
4881 void Profile(llvm::FoldingSetNodeID &ID) {
4882 Profile(ID, getTemplateName(), getDeducedType(), isDependentType());
4883 }
4884
4885 static void Profile(llvm::FoldingSetNodeID &ID, TemplateName Template,
4886 QualType Deduced, bool IsDependent) {
4887 Template.Profile(ID);
4888 ID.AddPointer(Deduced.getAsOpaquePtr());
4889 ID.AddBoolean(IsDependent);
4890 }
4891
4892 static bool classof(const Type *T) {
4893 return T->getTypeClass() == DeducedTemplateSpecialization;
4894 }
4895};
4896
4897/// Represents a type template specialization; the template
4898/// must be a class template, a type alias template, or a template
4899/// template parameter. A template which cannot be resolved to one of
4900/// these, e.g. because it is written with a dependent scope
4901/// specifier, is instead represented as a
4902/// @c DependentTemplateSpecializationType.
4903///
4904/// A non-dependent template specialization type is always "sugar",
4905/// typically for a \c RecordType. For example, a class template
4906/// specialization type of \c vector<int> will refer to a tag type for
4907/// the instantiation \c std::vector<int, std::allocator<int>>
4908///
4909/// Template specializations are dependent if either the template or
4910/// any of the template arguments are dependent, in which case the
4911/// type may also be canonical.
4912///
4913/// Instances of this type are allocated with a trailing array of
4914/// TemplateArguments, followed by a QualType representing the
4915/// non-canonical aliased type when the template is a type alias
4916/// template.
4917class alignas(8) TemplateSpecializationType
4918 : public Type,
4919 public llvm::FoldingSetNode {
4920 friend class ASTContext; // ASTContext creates these
4921
4922 /// The name of the template being specialized. This is
4923 /// either a TemplateName::Template (in which case it is a
4924 /// ClassTemplateDecl*, a TemplateTemplateParmDecl*, or a
4925 /// TypeAliasTemplateDecl*), a
4926 /// TemplateName::SubstTemplateTemplateParmPack, or a
4927 /// TemplateName::SubstTemplateTemplateParm (in which case the
4928 /// replacement must, recursively, be one of these).
4929 TemplateName Template;
4930
4931 TemplateSpecializationType(TemplateName T,
4932 ArrayRef<TemplateArgument> Args,
4933 QualType Canon,
4934 QualType Aliased);
4935
4936public:
4937 /// Determine whether any of the given template arguments are dependent.
4938 static bool anyDependentTemplateArguments(ArrayRef<TemplateArgumentLoc> Args,
4939 bool &InstantiationDependent);
4940
4941 static bool anyDependentTemplateArguments(const TemplateArgumentListInfo &,
4942 bool &InstantiationDependent);
4943
4944 /// True if this template specialization type matches a current
4945 /// instantiation in the context in which it is found.
4946 bool isCurrentInstantiation() const {
4947 return isa<InjectedClassNameType>(getCanonicalTypeInternal());
4948 }
4949
4950 /// Determine if this template specialization type is for a type alias
4951 /// template that has been substituted.
4952 ///
4953 /// Nearly every template specialization type whose template is an alias
4954 /// template will be substituted. However, this is not the case when
4955 /// the specialization contains a pack expansion but the template alias
4956 /// does not have a corresponding parameter pack, e.g.,
4957 ///
4958 /// \code
4959 /// template<typename T, typename U, typename V> struct S;
4960 /// template<typename T, typename U> using A = S<T, int, U>;
4961 /// template<typename... Ts> struct X {
4962 /// typedef A<Ts...> type; // not a type alias
4963 /// };
4964 /// \endcode
4965 bool isTypeAlias() const { return TemplateSpecializationTypeBits.TypeAlias; }
4966
4967 /// Get the aliased type, if this is a specialization of a type alias
4968 /// template.
4969 QualType getAliasedType() const {
4970 assert(isTypeAlias() && "not a type alias template specialization")((isTypeAlias() && "not a type alias template specialization"
) ? static_cast<void> (0) : __assert_fail ("isTypeAlias() && \"not a type alias template specialization\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 4970, __PRETTY_FUNCTION__))
;
4971 return *reinterpret_cast<const QualType*>(end());
4972 }
4973
4974 using iterator = const TemplateArgument *;
4975
4976 iterator begin() const { return getArgs(); }
4977 iterator end() const; // defined inline in TemplateBase.h
4978
4979 /// Retrieve the name of the template that we are specializing.
4980 TemplateName getTemplateName() const { return Template; }
4981
4982 /// Retrieve the template arguments.
4983 const TemplateArgument *getArgs() const {
4984 return reinterpret_cast<const TemplateArgument *>(this + 1);
4985 }
4986
4987 /// Retrieve the number of template arguments.
4988 unsigned getNumArgs() const {
4989 return TemplateSpecializationTypeBits.NumArgs;
4990 }
4991
4992 /// Retrieve a specific template argument as a type.
4993 /// \pre \c isArgType(Arg)
4994 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
4995
4996 ArrayRef<TemplateArgument> template_arguments() const {
4997 return {getArgs(), getNumArgs()};
4998 }
4999
5000 bool isSugared() const {
5001 return !isDependentType() || isCurrentInstantiation() || isTypeAlias();
5002 }
5003
5004 QualType desugar() const {
5005 return isTypeAlias() ? getAliasedType() : getCanonicalTypeInternal();
5006 }
5007
5008 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Ctx) {
5009 Profile(ID, Template, template_arguments(), Ctx);
5010 if (isTypeAlias())
5011 getAliasedType().Profile(ID);
5012 }
5013
5014 static void Profile(llvm::FoldingSetNodeID &ID, TemplateName T,
5015 ArrayRef<TemplateArgument> Args,
5016 const ASTContext &Context);
5017
5018 static bool classof(const Type *T) {
5019 return T->getTypeClass() == TemplateSpecialization;
5020 }
5021};
5022
5023/// Print a template argument list, including the '<' and '>'
5024/// enclosing the template arguments.
5025void printTemplateArgumentList(raw_ostream &OS,
5026 ArrayRef<TemplateArgument> Args,
5027 const PrintingPolicy &Policy);
5028
5029void printTemplateArgumentList(raw_ostream &OS,
5030 ArrayRef<TemplateArgumentLoc> Args,
5031 const PrintingPolicy &Policy);
5032
5033void printTemplateArgumentList(raw_ostream &OS,
5034 const TemplateArgumentListInfo &Args,
5035 const PrintingPolicy &Policy);
5036
5037/// The injected class name of a C++ class template or class
5038/// template partial specialization. Used to record that a type was
5039/// spelled with a bare identifier rather than as a template-id; the
5040/// equivalent for non-templated classes is just RecordType.
5041///
5042/// Injected class name types are always dependent. Template
5043/// instantiation turns these into RecordTypes.
5044///
5045/// Injected class name types are always canonical. This works
5046/// because it is impossible to compare an injected class name type
5047/// with the corresponding non-injected template type, for the same
5048/// reason that it is impossible to directly compare template
5049/// parameters from different dependent contexts: injected class name
5050/// types can only occur within the scope of a particular templated
5051/// declaration, and within that scope every template specialization
5052/// will canonicalize to the injected class name (when appropriate
5053/// according to the rules of the language).
5054class InjectedClassNameType : public Type {
5055 friend class ASTContext; // ASTContext creates these.
5056 friend class ASTNodeImporter;
5057 friend class ASTReader; // FIXME: ASTContext::getInjectedClassNameType is not
5058 // currently suitable for AST reading, too much
5059 // interdependencies.
5060
5061 CXXRecordDecl *Decl;
5062
5063 /// The template specialization which this type represents.
5064 /// For example, in
5065 /// template <class T> class A { ... };
5066 /// this is A<T>, whereas in
5067 /// template <class X, class Y> class A<B<X,Y> > { ... };
5068 /// this is A<B<X,Y> >.
5069 ///
5070 /// It is always unqualified, always a template specialization type,
5071 /// and always dependent.
5072 QualType InjectedType;
5073
5074 InjectedClassNameType(CXXRecordDecl *D, QualType TST)
5075 : Type(InjectedClassName, QualType(), /*Dependent=*/true,
5076 /*InstantiationDependent=*/true,
5077 /*VariablyModified=*/false,
5078 /*ContainsUnexpandedParameterPack=*/false),
5079 Decl(D), InjectedType(TST) {
5080 assert(isa<TemplateSpecializationType>(TST))((isa<TemplateSpecializationType>(TST)) ? static_cast<
void> (0) : __assert_fail ("isa<TemplateSpecializationType>(TST)"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 5080, __PRETTY_FUNCTION__))
;
5081 assert(!TST.hasQualifiers())((!TST.hasQualifiers()) ? static_cast<void> (0) : __assert_fail
("!TST.hasQualifiers()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 5081, __PRETTY_FUNCTION__))
;
5082 assert(TST->isDependentType())((TST->isDependentType()) ? static_cast<void> (0) : __assert_fail
("TST->isDependentType()", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 5082, __PRETTY_FUNCTION__))
;
5083 }
5084
5085public:
5086 QualType getInjectedSpecializationType() const { return InjectedType; }
5087
5088 const TemplateSpecializationType *getInjectedTST() const {
5089 return cast<TemplateSpecializationType>(InjectedType.getTypePtr());
5090 }
5091
5092 TemplateName getTemplateName() const {
5093 return getInjectedTST()->getTemplateName();
5094 }
5095
5096 CXXRecordDecl *getDecl() const;
5097
5098 bool isSugared() const { return false; }
5099 QualType desugar() const { return QualType(this, 0); }
5100
5101 static bool classof(const Type *T) {
5102 return T->getTypeClass() == InjectedClassName;
5103 }
5104};
5105
5106/// The kind of a tag type.
5107enum TagTypeKind {
5108 /// The "struct" keyword.
5109 TTK_Struct,
5110
5111 /// The "__interface" keyword.
5112 TTK_Interface,
5113
5114 /// The "union" keyword.
5115 TTK_Union,
5116
5117 /// The "class" keyword.
5118 TTK_Class,
5119
5120 /// The "enum" keyword.
5121 TTK_Enum
5122};
5123
5124/// The elaboration keyword that precedes a qualified type name or
5125/// introduces an elaborated-type-specifier.
5126enum ElaboratedTypeKeyword {
5127 /// The "struct" keyword introduces the elaborated-type-specifier.
5128 ETK_Struct,
5129
5130 /// The "__interface" keyword introduces the elaborated-type-specifier.
5131 ETK_Interface,
5132
5133 /// The "union" keyword introduces the elaborated-type-specifier.
5134 ETK_Union,
5135
5136 /// The "class" keyword introduces the elaborated-type-specifier.
5137 ETK_Class,
5138
5139 /// The "enum" keyword introduces the elaborated-type-specifier.
5140 ETK_Enum,
5141
5142 /// The "typename" keyword precedes the qualified type name, e.g.,
5143 /// \c typename T::type.
5144 ETK_Typename,
5145
5146 /// No keyword precedes the qualified type name.
5147 ETK_None
5148};
5149
5150/// A helper class for Type nodes having an ElaboratedTypeKeyword.
5151/// The keyword in stored in the free bits of the base class.
5152/// Also provides a few static helpers for converting and printing
5153/// elaborated type keyword and tag type kind enumerations.
5154class TypeWithKeyword : public Type {
5155protected:
5156 TypeWithKeyword(ElaboratedTypeKeyword Keyword, TypeClass tc,
5157 QualType Canonical, bool Dependent,
5158 bool InstantiationDependent, bool VariablyModified,
5159 bool ContainsUnexpandedParameterPack)
5160 : Type(tc, Canonical, Dependent, InstantiationDependent, VariablyModified,
5161 ContainsUnexpandedParameterPack) {
5162 TypeWithKeywordBits.Keyword = Keyword;
5163 }
5164
5165public:
5166 ElaboratedTypeKeyword getKeyword() const {
5167 return static_cast<ElaboratedTypeKeyword>(TypeWithKeywordBits.Keyword);
5168 }
5169
5170 /// Converts a type specifier (DeclSpec::TST) into an elaborated type keyword.
5171 static ElaboratedTypeKeyword getKeywordForTypeSpec(unsigned TypeSpec);
5172
5173 /// Converts a type specifier (DeclSpec::TST) into a tag type kind.
5174 /// It is an error to provide a type specifier which *isn't* a tag kind here.
5175 static TagTypeKind getTagTypeKindForTypeSpec(unsigned TypeSpec);
5176
5177 /// Converts a TagTypeKind into an elaborated type keyword.
5178 static ElaboratedTypeKeyword getKeywordForTagTypeKind(TagTypeKind Tag);
5179
5180 /// Converts an elaborated type keyword into a TagTypeKind.
5181 /// It is an error to provide an elaborated type keyword
5182 /// which *isn't* a tag kind here.
5183 static TagTypeKind getTagTypeKindForKeyword(ElaboratedTypeKeyword Keyword);
5184
5185 static bool KeywordIsTagTypeKind(ElaboratedTypeKeyword Keyword);
5186
5187 static StringRef getKeywordName(ElaboratedTypeKeyword Keyword);
5188
5189 static StringRef getTagTypeKindName(TagTypeKind Kind) {
5190 return getKeywordName(getKeywordForTagTypeKind(Kind));
5191 }
5192
5193 class CannotCastToThisType {};
5194 static CannotCastToThisType classof(const Type *);
5195};
5196
5197/// Represents a type that was referred to using an elaborated type
5198/// keyword, e.g., struct S, or via a qualified name, e.g., N::M::type,
5199/// or both.
5200///
5201/// This type is used to keep track of a type name as written in the
5202/// source code, including tag keywords and any nested-name-specifiers.
5203/// The type itself is always "sugar", used to express what was written
5204/// in the source code but containing no additional semantic information.
5205class ElaboratedType final
5206 : public TypeWithKeyword,
5207 public llvm::FoldingSetNode,
5208 private llvm::TrailingObjects<ElaboratedType, TagDecl *> {
5209 friend class ASTContext; // ASTContext creates these
5210 friend TrailingObjects;
5211
5212 /// The nested name specifier containing the qualifier.
5213 NestedNameSpecifier *NNS;
5214
5215 /// The type that this qualified name refers to.
5216 QualType NamedType;
5217
5218 /// The (re)declaration of this tag type owned by this occurrence is stored
5219 /// as a trailing object if there is one. Use getOwnedTagDecl to obtain
5220 /// it, or obtain a null pointer if there is none.
5221
5222 ElaboratedType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5223 QualType NamedType, QualType CanonType, TagDecl *OwnedTagDecl)
5224 : TypeWithKeyword(Keyword, Elaborated, CanonType,
5225 NamedType->isDependentType(),
5226 NamedType->isInstantiationDependentType(),
5227 NamedType->isVariablyModifiedType(),
5228 NamedType->containsUnexpandedParameterPack()),
5229 NNS(NNS), NamedType(NamedType) {
5230 ElaboratedTypeBits.HasOwnedTagDecl = false;
5231 if (OwnedTagDecl) {
5232 ElaboratedTypeBits.HasOwnedTagDecl = true;
5233 *getTrailingObjects<TagDecl *>() = OwnedTagDecl;
5234 }
5235 assert(!(Keyword == ETK_None && NNS == nullptr) &&((!(Keyword == ETK_None && NNS == nullptr) &&
"ElaboratedType cannot have elaborated type keyword " "and name qualifier both null."
) ? static_cast<void> (0) : __assert_fail ("!(Keyword == ETK_None && NNS == nullptr) && \"ElaboratedType cannot have elaborated type keyword \" \"and name qualifier both null.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 5237, __PRETTY_FUNCTION__))
5236 "ElaboratedType cannot have elaborated type keyword "((!(Keyword == ETK_None && NNS == nullptr) &&
"ElaboratedType cannot have elaborated type keyword " "and name qualifier both null."
) ? static_cast<void> (0) : __assert_fail ("!(Keyword == ETK_None && NNS == nullptr) && \"ElaboratedType cannot have elaborated type keyword \" \"and name qualifier both null.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 5237, __PRETTY_FUNCTION__))
5237 "and name qualifier both null.")((!(Keyword == ETK_None && NNS == nullptr) &&
"ElaboratedType cannot have elaborated type keyword " "and name qualifier both null."
) ? static_cast<void> (0) : __assert_fail ("!(Keyword == ETK_None && NNS == nullptr) && \"ElaboratedType cannot have elaborated type keyword \" \"and name qualifier both null.\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 5237, __PRETTY_FUNCTION__))
;
5238 }
5239
5240public:
5241 /// Retrieve the qualification on this type.
5242 NestedNameSpecifier *getQualifier() const { return NNS; }
5243
5244 /// Retrieve the type named by the qualified-id.
5245 QualType getNamedType() const { return NamedType; }
5246
5247 /// Remove a single level of sugar.
5248 QualType desugar() const { return getNamedType(); }
5249
5250 /// Returns whether this type directly provides sugar.
5251 bool isSugared() const { return true; }
5252
5253 /// Return the (re)declaration of this type owned by this occurrence of this
5254 /// type, or nullptr if there is none.
5255 TagDecl *getOwnedTagDecl() const {
5256 return ElaboratedTypeBits.HasOwnedTagDecl ? *getTrailingObjects<TagDecl *>()
5257 : nullptr;
5258 }
5259
5260 void Profile(llvm::FoldingSetNodeID &ID) {
5261 Profile(ID, getKeyword(), NNS, NamedType, getOwnedTagDecl());
5262 }
5263
5264 static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
5265 NestedNameSpecifier *NNS, QualType NamedType,
5266 TagDecl *OwnedTagDecl) {
5267 ID.AddInteger(Keyword);
5268 ID.AddPointer(NNS);
5269 NamedType.Profile(ID);
5270 ID.AddPointer(OwnedTagDecl);
5271 }
5272
5273 static bool classof(const Type *T) { return T->getTypeClass() == Elaborated; }
5274};
5275
5276/// Represents a qualified type name for which the type name is
5277/// dependent.
5278///
5279/// DependentNameType represents a class of dependent types that involve a
5280/// possibly dependent nested-name-specifier (e.g., "T::") followed by a
5281/// name of a type. The DependentNameType may start with a "typename" (for a
5282/// typename-specifier), "class", "struct", "union", or "enum" (for a
5283/// dependent elaborated-type-specifier), or nothing (in contexts where we
5284/// know that we must be referring to a type, e.g., in a base class specifier).
5285/// Typically the nested-name-specifier is dependent, but in MSVC compatibility
5286/// mode, this type is used with non-dependent names to delay name lookup until
5287/// instantiation.
5288class DependentNameType : public TypeWithKeyword, public llvm::FoldingSetNode {
5289 friend class ASTContext; // ASTContext creates these
5290
5291 /// The nested name specifier containing the qualifier.
5292 NestedNameSpecifier *NNS;
5293
5294 /// The type that this typename specifier refers to.
5295 const IdentifierInfo *Name;
5296
5297 DependentNameType(ElaboratedTypeKeyword Keyword, NestedNameSpecifier *NNS,
5298 const IdentifierInfo *Name, QualType CanonType)
5299 : TypeWithKeyword(Keyword, DependentName, CanonType, /*Dependent=*/true,
5300 /*InstantiationDependent=*/true,
5301 /*VariablyModified=*/false,
5302 NNS->containsUnexpandedParameterPack()),
5303 NNS(NNS), Name(Name) {}
5304
5305public:
5306 /// Retrieve the qualification on this type.
5307 NestedNameSpecifier *getQualifier() const { return NNS; }
5308
5309 /// Retrieve the type named by the typename specifier as an identifier.
5310 ///
5311 /// This routine will return a non-NULL identifier pointer when the
5312 /// form of the original typename was terminated by an identifier,
5313 /// e.g., "typename T::type".
5314 const IdentifierInfo *getIdentifier() const {
5315 return Name;
5316 }
5317
5318 bool isSugared() const { return false; }
5319 QualType desugar() const { return QualType(this, 0); }
5320
5321 void Profile(llvm::FoldingSetNodeID &ID) {
5322 Profile(ID, getKeyword(), NNS, Name);
5323 }
5324
5325 static void Profile(llvm::FoldingSetNodeID &ID, ElaboratedTypeKeyword Keyword,
5326 NestedNameSpecifier *NNS, const IdentifierInfo *Name) {
5327 ID.AddInteger(Keyword);
5328 ID.AddPointer(NNS);
5329 ID.AddPointer(Name);
5330 }
5331
5332 static bool classof(const Type *T) {
5333 return T->getTypeClass() == DependentName;
5334 }
5335};
5336
5337/// Represents a template specialization type whose template cannot be
5338/// resolved, e.g.
5339/// A<T>::template B<T>
5340class alignas(8) DependentTemplateSpecializationType
5341 : public TypeWithKeyword,
5342 public llvm::FoldingSetNode {
5343 friend class ASTContext; // ASTContext creates these
5344
5345 /// The nested name specifier containing the qualifier.
5346 NestedNameSpecifier *NNS;
5347
5348 /// The identifier of the template.
5349 const IdentifierInfo *Name;
5350
5351 DependentTemplateSpecializationType(ElaboratedTypeKeyword Keyword,
5352 NestedNameSpecifier *NNS,
5353 const IdentifierInfo *Name,
5354 ArrayRef<TemplateArgument> Args,
5355 QualType Canon);
5356
5357 const TemplateArgument *getArgBuffer() const {
5358 return reinterpret_cast<const TemplateArgument*>(this+1);
5359 }
5360
5361 TemplateArgument *getArgBuffer() {
5362 return reinterpret_cast<TemplateArgument*>(this+1);
5363 }
5364
5365public:
5366 NestedNameSpecifier *getQualifier() const { return NNS; }
5367 const IdentifierInfo *getIdentifier() const { return Name; }
5368
5369 /// Retrieve the template arguments.
5370 const TemplateArgument *getArgs() const {
5371 return getArgBuffer();
5372 }
5373
5374 /// Retrieve the number of template arguments.
5375 unsigned getNumArgs() const {
5376 return DependentTemplateSpecializationTypeBits.NumArgs;
5377 }
5378
5379 const TemplateArgument &getArg(unsigned Idx) const; // in TemplateBase.h
5380
5381 ArrayRef<TemplateArgument> template_arguments() const {
5382 return {getArgs(), getNumArgs()};
5383 }
5384
5385 using iterator = const TemplateArgument *;
5386
5387 iterator begin() const { return getArgs(); }
5388 iterator end() const; // inline in TemplateBase.h
5389
5390 bool isSugared() const { return false; }
5391 QualType desugar() const { return QualType(this, 0); }
5392
5393 void Profile(llvm::FoldingSetNodeID &ID, const ASTContext &Context) {
5394 Profile(ID, Context, getKeyword(), NNS, Name, {getArgs(), getNumArgs()});
5395 }
5396
5397 static void Profile(llvm::FoldingSetNodeID &ID,
5398 const ASTContext &Context,
5399 ElaboratedTypeKeyword Keyword,
5400 NestedNameSpecifier *Qualifier,
5401 const IdentifierInfo *Name,
5402 ArrayRef<TemplateArgument> Args);
5403
5404 static bool classof(const Type *T) {
5405 return T->getTypeClass() == DependentTemplateSpecialization;
5406 }
5407};
5408
5409/// Represents a pack expansion of types.
5410///
5411/// Pack expansions are part of C++11 variadic templates. A pack
5412/// expansion contains a pattern, which itself contains one or more
5413/// "unexpanded" parameter packs. When instantiated, a pack expansion
5414/// produces a series of types, each instantiated from the pattern of
5415/// the expansion, where the Ith instantiation of the pattern uses the
5416/// Ith arguments bound to each of the unexpanded parameter packs. The
5417/// pack expansion is considered to "expand" these unexpanded
5418/// parameter packs.
5419///
5420/// \code
5421/// template<typename ...Types> struct tuple;
5422///
5423/// template<typename ...Types>
5424/// struct tuple_of_references {
5425/// typedef tuple<Types&...> type;
5426/// };
5427/// \endcode
5428///
5429/// Here, the pack expansion \c Types&... is represented via a
5430/// PackExpansionType whose pattern is Types&.
5431class PackExpansionType : public Type, public llvm::FoldingSetNode {
5432 friend class ASTContext; // ASTContext creates these
5433
5434 /// The pattern of the pack expansion.
5435 QualType Pattern;
5436
5437 PackExpansionType(QualType Pattern, QualType Canon,
5438 Optional<unsigned> NumExpansions)
5439 : Type(PackExpansion, Canon, /*Dependent=*/Pattern->isDependentType(),
5440 /*InstantiationDependent=*/true,
5441 /*VariablyModified=*/Pattern->isVariablyModifiedType(),
5442 /*ContainsUnexpandedParameterPack=*/false),
5443 Pattern(Pattern) {
5444 PackExpansionTypeBits.NumExpansions =
5445 NumExpansions ? *NumExpansions + 1 : 0;
5446 }
5447
5448public:
5449 /// Retrieve the pattern of this pack expansion, which is the
5450 /// type that will be repeatedly instantiated when instantiating the
5451 /// pack expansion itself.
5452 QualType getPattern() const { return Pattern; }
5453
5454 /// Retrieve the number of expansions that this pack expansion will
5455 /// generate, if known.
5456 Optional<unsigned> getNumExpansions() const {
5457 if (PackExpansionTypeBits.NumExpansions)
5458 return PackExpansionTypeBits.NumExpansions - 1;
5459 return None;
5460 }
5461
5462 bool isSugared() const { return !Pattern->isDependentType(); }
5463 QualType desugar() const { return isSugared() ? Pattern : QualType(this, 0); }
5464
5465 void Profile(llvm::FoldingSetNodeID &ID) {
5466 Profile(ID, getPattern(), getNumExpansions());
5467 }
5468
5469 static void Profile(llvm::FoldingSetNodeID &ID, QualType Pattern,
5470 Optional<unsigned> NumExpansions) {
5471 ID.AddPointer(Pattern.getAsOpaquePtr());
5472 ID.AddBoolean(NumExpansions.hasValue());
5473 if (NumExpansions)
5474 ID.AddInteger(*NumExpansions);
5475 }
5476
5477 static bool classof(const Type *T) {
5478 return T->getTypeClass() == PackExpansion;
5479 }
5480};
5481
5482/// This class wraps the list of protocol qualifiers. For types that can
5483/// take ObjC protocol qualifers, they can subclass this class.
5484template <class T>
5485class ObjCProtocolQualifiers {
5486protected:
5487 ObjCProtocolQualifiers() = default;
5488
5489 ObjCProtocolDecl * const *getProtocolStorage() const {
5490 return const_cast<ObjCProtocolQualifiers*>(this)->getProtocolStorage();
5491 }
5492
5493 ObjCProtocolDecl **getProtocolStorage() {
5494 return static_cast<T*>(this)->getProtocolStorageImpl();
5495 }
5496
5497 void setNumProtocols(unsigned N) {
5498 static_cast<T*>(this)->setNumProtocolsImpl(N);
5499 }
5500
5501 void initialize(ArrayRef<ObjCProtocolDecl *> protocols) {
5502 setNumProtocols(protocols.size());
5503 assert(getNumProtocols() == protocols.size() &&((getNumProtocols() == protocols.size() && "bitfield overflow in protocol count"
) ? static_cast<void> (0) : __assert_fail ("getNumProtocols() == protocols.size() && \"bitfield overflow in protocol count\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 5504, __PRETTY_FUNCTION__))
5504 "bitfield overflow in protocol count")((getNumProtocols() == protocols.size() && "bitfield overflow in protocol count"
) ? static_cast<void> (0) : __assert_fail ("getNumProtocols() == protocols.size() && \"bitfield overflow in protocol count\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 5504, __PRETTY_FUNCTION__))
;
5505 if (!protocols.empty())
5506 memcpy(getProtocolStorage(), protocols.data(),
5507 protocols.size() * sizeof(ObjCProtocolDecl*));
5508 }
5509
5510public:
5511 using qual_iterator = ObjCProtocolDecl * const *;
5512 using qual_range = llvm::iterator_range<qual_iterator>;
5513
5514 qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
5515 qual_iterator qual_begin() const { return getProtocolStorage(); }
5516 qual_iterator qual_end() const { return qual_begin() + getNumProtocols(); }
5517
5518 bool qual_empty() const { return getNumProtocols() == 0; }
5519
5520 /// Return the number of qualifying protocols in this type, or 0 if
5521 /// there are none.
5522 unsigned getNumProtocols() const {
5523 return static_cast<const T*>(this)->getNumProtocolsImpl();
5524 }
5525
5526 /// Fetch a protocol by index.
5527 ObjCProtocolDecl *getProtocol(unsigned I) const {
5528 assert(I < getNumProtocols() && "Out-of-range protocol access")((I < getNumProtocols() && "Out-of-range protocol access"
) ? static_cast<void> (0) : __assert_fail ("I < getNumProtocols() && \"Out-of-range protocol access\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 5528, __PRETTY_FUNCTION__))
;
5529 return qual_begin()[I];
5530 }
5531
5532 /// Retrieve all of the protocol qualifiers.
5533 ArrayRef<ObjCProtocolDecl *> getProtocols() const {
5534 return ArrayRef<ObjCProtocolDecl *>(qual_begin(), getNumProtocols());
5535 }
5536};
5537
5538/// Represents a type parameter type in Objective C. It can take
5539/// a list of protocols.
5540class ObjCTypeParamType : public Type,
5541 public ObjCProtocolQualifiers<ObjCTypeParamType>,
5542 public llvm::FoldingSetNode {
5543 friend class ASTContext;
5544 friend class ObjCProtocolQualifiers<ObjCTypeParamType>;
5545
5546 /// The number of protocols stored on this type.
5547 unsigned NumProtocols : 6;
5548
5549 ObjCTypeParamDecl *OTPDecl;
5550
5551 /// The protocols are stored after the ObjCTypeParamType node. In the
5552 /// canonical type, the list of protocols are sorted alphabetically
5553 /// and uniqued.
5554 ObjCProtocolDecl **getProtocolStorageImpl();
5555
5556 /// Return the number of qualifying protocols in this interface type,
5557 /// or 0 if there are none.
5558 unsigned getNumProtocolsImpl() const {
5559 return NumProtocols;
5560 }
5561
5562 void setNumProtocolsImpl(unsigned N) {
5563 NumProtocols = N;
5564 }
5565
5566 ObjCTypeParamType(const ObjCTypeParamDecl *D,
5567 QualType can,
5568 ArrayRef<ObjCProtocolDecl *> protocols);
5569
5570public:
5571 bool isSugared() const { return true; }
5572 QualType desugar() const { return getCanonicalTypeInternal(); }
5573
5574 static bool classof(const Type *T) {
5575 return T->getTypeClass() == ObjCTypeParam;
5576 }
5577
5578 void Profile(llvm::FoldingSetNodeID &ID);
5579 static void Profile(llvm::FoldingSetNodeID &ID,
5580 const ObjCTypeParamDecl *OTPDecl,
5581 ArrayRef<ObjCProtocolDecl *> protocols);
5582
5583 ObjCTypeParamDecl *getDecl() const { return OTPDecl; }
5584};
5585
5586/// Represents a class type in Objective C.
5587///
5588/// Every Objective C type is a combination of a base type, a set of
5589/// type arguments (optional, for parameterized classes) and a list of
5590/// protocols.
5591///
5592/// Given the following declarations:
5593/// \code
5594/// \@class C<T>;
5595/// \@protocol P;
5596/// \endcode
5597///
5598/// 'C' is an ObjCInterfaceType C. It is sugar for an ObjCObjectType
5599/// with base C and no protocols.
5600///
5601/// 'C<P>' is an unspecialized ObjCObjectType with base C and protocol list [P].
5602/// 'C<C*>' is a specialized ObjCObjectType with type arguments 'C*' and no
5603/// protocol list.
5604/// 'C<C*><P>' is a specialized ObjCObjectType with base C, type arguments 'C*',
5605/// and protocol list [P].
5606///
5607/// 'id' is a TypedefType which is sugar for an ObjCObjectPointerType whose
5608/// pointee is an ObjCObjectType with base BuiltinType::ObjCIdType
5609/// and no protocols.
5610///
5611/// 'id<P>' is an ObjCObjectPointerType whose pointee is an ObjCObjectType
5612/// with base BuiltinType::ObjCIdType and protocol list [P]. Eventually
5613/// this should get its own sugar class to better represent the source.
5614class ObjCObjectType : public Type,
5615 public ObjCProtocolQualifiers<ObjCObjectType> {
5616 friend class ObjCProtocolQualifiers<ObjCObjectType>;
5617
5618 // ObjCObjectType.NumTypeArgs - the number of type arguments stored
5619 // after the ObjCObjectPointerType node.
5620 // ObjCObjectType.NumProtocols - the number of protocols stored
5621 // after the type arguments of ObjCObjectPointerType node.
5622 //
5623 // These protocols are those written directly on the type. If
5624 // protocol qualifiers ever become additive, the iterators will need
5625 // to get kindof complicated.
5626 //
5627 // In the canonical object type, these are sorted alphabetically
5628 // and uniqued.
5629
5630 /// Either a BuiltinType or an InterfaceType or sugar for either.
5631 QualType BaseType;
5632
5633 /// Cached superclass type.
5634 mutable llvm::PointerIntPair<const ObjCObjectType *, 1, bool>
5635 CachedSuperClassType;
5636
5637 QualType *getTypeArgStorage();
5638 const QualType *getTypeArgStorage() const {
5639 return const_cast<ObjCObjectType *>(this)->getTypeArgStorage();
5640 }
5641
5642 ObjCProtocolDecl **getProtocolStorageImpl();
5643 /// Return the number of qualifying protocols in this interface type,
5644 /// or 0 if there are none.
5645 unsigned getNumProtocolsImpl() const {
5646 return ObjCObjectTypeBits.NumProtocols;
5647 }
5648 void setNumProtocolsImpl(unsigned N) {
5649 ObjCObjectTypeBits.NumProtocols = N;
5650 }
5651
5652protected:
5653 enum Nonce_ObjCInterface { Nonce_ObjCInterface };
5654
5655 ObjCObjectType(QualType Canonical, QualType Base,
5656 ArrayRef<QualType> typeArgs,
5657 ArrayRef<ObjCProtocolDecl *> protocols,
5658 bool isKindOf);
5659
5660 ObjCObjectType(enum Nonce_ObjCInterface)
5661 : Type(ObjCInterface, QualType(), false, false, false, false),
5662 BaseType(QualType(this_(), 0)) {
5663 ObjCObjectTypeBits.NumProtocols = 0;
5664 ObjCObjectTypeBits.NumTypeArgs = 0;
5665 ObjCObjectTypeBits.IsKindOf = 0;
5666 }
5667
5668 void computeSuperClassTypeSlow() const;
5669
5670public:
5671 /// Gets the base type of this object type. This is always (possibly
5672 /// sugar for) one of:
5673 /// - the 'id' builtin type (as opposed to the 'id' type visible to the
5674 /// user, which is a typedef for an ObjCObjectPointerType)
5675 /// - the 'Class' builtin type (same caveat)
5676 /// - an ObjCObjectType (currently always an ObjCInterfaceType)
5677 QualType getBaseType() const { return BaseType; }
5678
5679 bool isObjCId() const {
5680 return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCId);
5681 }
5682
5683 bool isObjCClass() const {
5684 return getBaseType()->isSpecificBuiltinType(BuiltinType::ObjCClass);
5685 }
5686
5687 bool isObjCUnqualifiedId() const { return qual_empty() && isObjCId(); }
5688 bool isObjCUnqualifiedClass() const { return qual_empty() && isObjCClass(); }
5689 bool isObjCUnqualifiedIdOrClass() const {
5690 if (!qual_empty()) return false;
5691 if (const BuiltinType *T = getBaseType()->getAs<BuiltinType>())
5692 return T->getKind() == BuiltinType::ObjCId ||
5693 T->getKind() == BuiltinType::ObjCClass;
5694 return false;
5695 }
5696 bool isObjCQualifiedId() const { return !qual_empty() && isObjCId(); }
5697 bool isObjCQualifiedClass() const { return !qual_empty() && isObjCClass(); }
5698
5699 /// Gets the interface declaration for this object type, if the base type
5700 /// really is an interface.
5701 ObjCInterfaceDecl *getInterface() const;
5702
5703 /// Determine whether this object type is "specialized", meaning
5704 /// that it has type arguments.
5705 bool isSpecialized() const;
5706
5707 /// Determine whether this object type was written with type arguments.
5708 bool isSpecializedAsWritten() const {
5709 return ObjCObjectTypeBits.NumTypeArgs > 0;
5710 }
5711
5712 /// Determine whether this object type is "unspecialized", meaning
5713 /// that it has no type arguments.
5714 bool isUnspecialized() const { return !isSpecialized(); }
5715
5716 /// Determine whether this object type is "unspecialized" as
5717 /// written, meaning that it has no type arguments.
5718 bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
5719
5720 /// Retrieve the type arguments of this object type (semantically).
5721 ArrayRef<QualType> getTypeArgs() const;
5722
5723 /// Retrieve the type arguments of this object type as they were
5724 /// written.
5725 ArrayRef<QualType> getTypeArgsAsWritten() const {
5726 return llvm::makeArrayRef(getTypeArgStorage(),
5727 ObjCObjectTypeBits.NumTypeArgs);
5728 }
5729
5730 /// Whether this is a "__kindof" type as written.
5731 bool isKindOfTypeAsWritten() const { return ObjCObjectTypeBits.IsKindOf; }
5732
5733 /// Whether this ia a "__kindof" type (semantically).
5734 bool isKindOfType() const;
5735
5736 /// Retrieve the type of the superclass of this object type.
5737 ///
5738 /// This operation substitutes any type arguments into the
5739 /// superclass of the current class type, potentially producing a
5740 /// specialization of the superclass type. Produces a null type if
5741 /// there is no superclass.
5742 QualType getSuperClassType() const {
5743 if (!CachedSuperClassType.getInt())
5744 computeSuperClassTypeSlow();
5745
5746 assert(CachedSuperClassType.getInt() && "Superclass not set?")((CachedSuperClassType.getInt() && "Superclass not set?"
) ? static_cast<void> (0) : __assert_fail ("CachedSuperClassType.getInt() && \"Superclass not set?\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 5746, __PRETTY_FUNCTION__))
;
5747 return QualType(CachedSuperClassType.getPointer(), 0);
5748 }
5749
5750 /// Strip off the Objective-C "kindof" type and (with it) any
5751 /// protocol qualifiers.
5752 QualType stripObjCKindOfTypeAndQuals(const ASTContext &ctx) const;
5753
5754 bool isSugared() const { return false; }
5755 QualType desugar() const { return QualType(this, 0); }
5756
5757 static bool classof(const Type *T) {
5758 return T->getTypeClass() == ObjCObject ||
5759 T->getTypeClass() == ObjCInterface;
5760 }
5761};
5762
5763/// A class providing a concrete implementation
5764/// of ObjCObjectType, so as to not increase the footprint of
5765/// ObjCInterfaceType. Code outside of ASTContext and the core type
5766/// system should not reference this type.
5767class ObjCObjectTypeImpl : public ObjCObjectType, public llvm::FoldingSetNode {
5768 friend class ASTContext;
5769
5770 // If anyone adds fields here, ObjCObjectType::getProtocolStorage()
5771 // will need to be modified.
5772
5773 ObjCObjectTypeImpl(QualType Canonical, QualType Base,
5774 ArrayRef<QualType> typeArgs,
5775 ArrayRef<ObjCProtocolDecl *> protocols,
5776 bool isKindOf)
5777 : ObjCObjectType(Canonical, Base, typeArgs, protocols, isKindOf) {}
5778
5779public:
5780 void Profile(llvm::FoldingSetNodeID &ID);
5781 static void Profile(llvm::FoldingSetNodeID &ID,
5782 QualType Base,
5783 ArrayRef<QualType> typeArgs,
5784 ArrayRef<ObjCProtocolDecl *> protocols,
5785 bool isKindOf);
5786};
5787
5788inline QualType *ObjCObjectType::getTypeArgStorage() {
5789 return reinterpret_cast<QualType *>(static_cast<ObjCObjectTypeImpl*>(this)+1);
5790}
5791
5792inline ObjCProtocolDecl **ObjCObjectType::getProtocolStorageImpl() {
5793 return reinterpret_cast<ObjCProtocolDecl**>(
5794 getTypeArgStorage() + ObjCObjectTypeBits.NumTypeArgs);
5795}
5796
5797inline ObjCProtocolDecl **ObjCTypeParamType::getProtocolStorageImpl() {
5798 return reinterpret_cast<ObjCProtocolDecl**>(
5799 static_cast<ObjCTypeParamType*>(this)+1);
5800}
5801
5802/// Interfaces are the core concept in Objective-C for object oriented design.
5803/// They basically correspond to C++ classes. There are two kinds of interface
5804/// types: normal interfaces like `NSString`, and qualified interfaces, which
5805/// are qualified with a protocol list like `NSString<NSCopyable, NSAmazing>`.
5806///
5807/// ObjCInterfaceType guarantees the following properties when considered
5808/// as a subtype of its superclass, ObjCObjectType:
5809/// - There are no protocol qualifiers. To reinforce this, code which
5810/// tries to invoke the protocol methods via an ObjCInterfaceType will
5811/// fail to compile.
5812/// - It is its own base type. That is, if T is an ObjCInterfaceType*,
5813/// T->getBaseType() == QualType(T, 0).
5814class ObjCInterfaceType : public ObjCObjectType {
5815 friend class ASTContext; // ASTContext creates these.
5816 friend class ASTReader;
5817 friend class ObjCInterfaceDecl;
5818
5819 mutable ObjCInterfaceDecl *Decl;
5820
5821 ObjCInterfaceType(const ObjCInterfaceDecl *D)
5822 : ObjCObjectType(Nonce_ObjCInterface),
5823 Decl(const_cast<ObjCInterfaceDecl*>(D)) {}
5824
5825public:
5826 /// Get the declaration of this interface.
5827 ObjCInterfaceDecl *getDecl() const { return Decl; }
5828
5829 bool isSugared() const { return false; }
5830 QualType desugar() const { return QualType(this, 0); }
5831
5832 static bool classof(const Type *T) {
5833 return T->getTypeClass() == ObjCInterface;
5834 }
5835
5836 // Nonsense to "hide" certain members of ObjCObjectType within this
5837 // class. People asking for protocols on an ObjCInterfaceType are
5838 // not going to get what they want: ObjCInterfaceTypes are
5839 // guaranteed to have no protocols.
5840 enum {
5841 qual_iterator,
5842 qual_begin,
5843 qual_end,
5844 getNumProtocols,
5845 getProtocol
5846 };
5847};
5848
5849inline ObjCInterfaceDecl *ObjCObjectType::getInterface() const {
5850 QualType baseType = getBaseType();
5851 while (const auto *ObjT = baseType->getAs<ObjCObjectType>()) {
5852 if (const auto *T = dyn_cast<ObjCInterfaceType>(ObjT))
5853 return T->getDecl();
5854
5855 baseType = ObjT->getBaseType();
5856 }
5857
5858 return nullptr;
5859}
5860
5861/// Represents a pointer to an Objective C object.
5862///
5863/// These are constructed from pointer declarators when the pointee type is
5864/// an ObjCObjectType (or sugar for one). In addition, the 'id' and 'Class'
5865/// types are typedefs for these, and the protocol-qualified types 'id<P>'
5866/// and 'Class<P>' are translated into these.
5867///
5868/// Pointers to pointers to Objective C objects are still PointerTypes;
5869/// only the first level of pointer gets it own type implementation.
5870class ObjCObjectPointerType : public Type, public llvm::FoldingSetNode {
5871 friend class ASTContext; // ASTContext creates these.
5872
5873 QualType PointeeType;
5874
5875 ObjCObjectPointerType(QualType Canonical, QualType Pointee)
5876 : Type(ObjCObjectPointer, Canonical,
5877 Pointee->isDependentType(),
5878 Pointee->isInstantiationDependentType(),
5879 Pointee->isVariablyModifiedType(),
5880 Pointee->containsUnexpandedParameterPack()),
5881 PointeeType(Pointee) {}
5882
5883public:
5884 /// Gets the type pointed to by this ObjC pointer.
5885 /// The result will always be an ObjCObjectType or sugar thereof.
5886 QualType getPointeeType() const { return PointeeType; }
5887
5888 /// Gets the type pointed to by this ObjC pointer. Always returns non-null.
5889 ///
5890 /// This method is equivalent to getPointeeType() except that
5891 /// it discards any typedefs (or other sugar) between this
5892 /// type and the "outermost" object type. So for:
5893 /// \code
5894 /// \@class A; \@protocol P; \@protocol Q;
5895 /// typedef A<P> AP;
5896 /// typedef A A1;
5897 /// typedef A1<P> A1P;
5898 /// typedef A1P<Q> A1PQ;
5899 /// \endcode
5900 /// For 'A*', getObjectType() will return 'A'.
5901 /// For 'A<P>*', getObjectType() will return 'A<P>'.
5902 /// For 'AP*', getObjectType() will return 'A<P>'.
5903 /// For 'A1*', getObjectType() will return 'A'.
5904 /// For 'A1<P>*', getObjectType() will return 'A1<P>'.
5905 /// For 'A1P*', getObjectType() will return 'A1<P>'.
5906 /// For 'A1PQ*', getObjectType() will return 'A1<Q>', because
5907 /// adding protocols to a protocol-qualified base discards the
5908 /// old qualifiers (for now). But if it didn't, getObjectType()
5909 /// would return 'A1P<Q>' (and we'd have to make iterating over
5910 /// qualifiers more complicated).
5911 const ObjCObjectType *getObjectType() const {
5912 return PointeeType->castAs<ObjCObjectType>();
5913 }
5914
5915 /// If this pointer points to an Objective C
5916 /// \@interface type, gets the type for that interface. Any protocol
5917 /// qualifiers on the interface are ignored.
5918 ///
5919 /// \return null if the base type for this pointer is 'id' or 'Class'
5920 const ObjCInterfaceType *getInterfaceType() const;
5921
5922 /// If this pointer points to an Objective \@interface
5923 /// type, gets the declaration for that interface.
5924 ///
5925 /// \return null if the base type for this pointer is 'id' or 'Class'
5926 ObjCInterfaceDecl *getInterfaceDecl() const {
5927 return getObjectType()->getInterface();
5928 }
5929
5930 /// True if this is equivalent to the 'id' type, i.e. if
5931 /// its object type is the primitive 'id' type with no protocols.
5932 bool isObjCIdType() const {
5933 return getObjectType()->isObjCUnqualifiedId();
5934 }
5935
5936 /// True if this is equivalent to the 'Class' type,
5937 /// i.e. if its object tive is the primitive 'Class' type with no protocols.
5938 bool isObjCClassType() const {
5939 return getObjectType()->isObjCUnqualifiedClass();
5940 }
5941
5942 /// True if this is equivalent to the 'id' or 'Class' type,
5943 bool isObjCIdOrClassType() const {
5944 return getObjectType()->isObjCUnqualifiedIdOrClass();
5945 }
5946
5947 /// True if this is equivalent to 'id<P>' for some non-empty set of
5948 /// protocols.
5949 bool isObjCQualifiedIdType() const {
5950 return getObjectType()->isObjCQualifiedId();
5951 }
5952
5953 /// True if this is equivalent to 'Class<P>' for some non-empty set of
5954 /// protocols.
5955 bool isObjCQualifiedClassType() const {
5956 return getObjectType()->isObjCQualifiedClass();
5957 }
5958
5959 /// Whether this is a "__kindof" type.
5960 bool isKindOfType() const { return getObjectType()->isKindOfType(); }
5961
5962 /// Whether this type is specialized, meaning that it has type arguments.
5963 bool isSpecialized() const { return getObjectType()->isSpecialized(); }
5964
5965 /// Whether this type is specialized, meaning that it has type arguments.
5966 bool isSpecializedAsWritten() const {
5967 return getObjectType()->isSpecializedAsWritten();
5968 }
5969
5970 /// Whether this type is unspecialized, meaning that is has no type arguments.
5971 bool isUnspecialized() const { return getObjectType()->isUnspecialized(); }
5972
5973 /// Determine whether this object type is "unspecialized" as
5974 /// written, meaning that it has no type arguments.
5975 bool isUnspecializedAsWritten() const { return !isSpecializedAsWritten(); }
5976
5977 /// Retrieve the type arguments for this type.
5978 ArrayRef<QualType> getTypeArgs() const {
5979 return getObjectType()->getTypeArgs();
5980 }
5981
5982 /// Retrieve the type arguments for this type.
5983 ArrayRef<QualType> getTypeArgsAsWritten() const {
5984 return getObjectType()->getTypeArgsAsWritten();
5985 }
5986
5987 /// An iterator over the qualifiers on the object type. Provided
5988 /// for convenience. This will always iterate over the full set of
5989 /// protocols on a type, not just those provided directly.
5990 using qual_iterator = ObjCObjectType::qual_iterator;
5991 using qual_range = llvm::iterator_range<qual_iterator>;
5992
5993 qual_range quals() const { return qual_range(qual_begin(), qual_end()); }
5994
5995 qual_iterator qual_begin() const {
5996 return getObjectType()->qual_begin();
5997 }
5998
5999 qual_iterator qual_end() const {
6000 return getObjectType()->qual_end();
6001 }
6002
6003 bool qual_empty() const { return getObjectType()->qual_empty(); }
6004
6005 /// Return the number of qualifying protocols on the object type.
6006 unsigned getNumProtocols() const {
6007 return getObjectType()->getNumProtocols();
6008 }
6009
6010 /// Retrieve a qualifying protocol by index on the object type.
6011 ObjCProtocolDecl *getProtocol(unsigned I) const {
6012 return getObjectType()->getProtocol(I);
6013 }
6014
6015 bool isSugared() const { return false; }
6016 QualType desugar() const { return QualType(this, 0); }
6017
6018 /// Retrieve the type of the superclass of this object pointer type.
6019 ///
6020 /// This operation substitutes any type arguments into the
6021 /// superclass of the current class type, potentially producing a
6022 /// pointer to a specialization of the superclass type. Produces a
6023 /// null type if there is no superclass.
6024 QualType getSuperClassType() const;
6025
6026 /// Strip off the Objective-C "kindof" type and (with it) any
6027 /// protocol qualifiers.
6028 const ObjCObjectPointerType *stripObjCKindOfTypeAndQuals(
6029 const ASTContext &ctx) const;
6030
6031 void Profile(llvm::FoldingSetNodeID &ID) {
6032 Profile(ID, getPointeeType());
6033 }
6034
6035 static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
6036 ID.AddPointer(T.getAsOpaquePtr());
6037 }
6038
6039 static bool classof(const Type *T) {
6040 return T->getTypeClass() == ObjCObjectPointer;
6041 }
6042};
6043
6044class AtomicType : public Type, public llvm::FoldingSetNode {
6045 friend class ASTContext; // ASTContext creates these.
6046
6047 QualType ValueType;
6048
6049 AtomicType(QualType ValTy, QualType Canonical)
6050 : Type(Atomic, Canonical, ValTy->isDependentType(),
6051 ValTy->isInstantiationDependentType(),
6052 ValTy->isVariablyModifiedType(),
6053 ValTy->containsUnexpandedParameterPack()),
6054 ValueType(ValTy) {}
6055
6056public:
6057 /// Gets the type contained by this atomic type, i.e.
6058 /// the type returned by performing an atomic load of this atomic type.
6059 QualType getValueType() const { return ValueType; }
6060
6061 bool isSugared() const { return false; }
6062 QualType desugar() const { return QualType(this, 0); }
6063
6064 void Profile(llvm::FoldingSetNodeID &ID) {
6065 Profile(ID, getValueType());
6066 }
6067
6068 static void Profile(llvm::FoldingSetNodeID &ID, QualType T) {
6069 ID.AddPointer(T.getAsOpaquePtr());
6070 }
6071
6072 static bool classof(const Type *T) {
6073 return T->getTypeClass() == Atomic;
6074 }
6075};
6076
6077/// PipeType - OpenCL20.
6078class PipeType : public Type, public llvm::FoldingSetNode {
6079 friend class ASTContext; // ASTContext creates these.
6080
6081 QualType ElementType;
6082 bool isRead;
6083
6084 PipeType(QualType elemType, QualType CanonicalPtr, bool isRead)
6085 : Type(Pipe, CanonicalPtr, elemType->isDependentType(),
6086 elemType->isInstantiationDependentType(),
6087 elemType->isVariablyModifiedType(),
6088 elemType->containsUnexpandedParameterPack()),
6089 ElementType(elemType), isRead(isRead) {}
6090
6091public:
6092 QualType getElementType() const { return ElementType; }
6093
6094 bool isSugared() const { return false; }
6095
6096 QualType desugar() const { return QualType(this, 0); }
6097
6098 void Profile(llvm::FoldingSetNodeID &ID) {
6099 Profile(ID, getElementType(), isReadOnly());
6100 }
6101
6102 static void Profile(llvm::FoldingSetNodeID &ID, QualType T, bool isRead) {
6103 ID.AddPointer(T.getAsOpaquePtr());
6104 ID.AddBoolean(isRead);
6105 }
6106
6107 static bool classof(const Type *T) {
6108 return T->getTypeClass() == Pipe;
6109 }
6110
6111 bool isReadOnly() const { return isRead; }
6112};
6113
6114/// A qualifier set is used to build a set of qualifiers.
6115class QualifierCollector : public Qualifiers {
6116public:
6117 QualifierCollector(Qualifiers Qs = Qualifiers()) : Qualifiers(Qs) {}
6118
6119 /// Collect any qualifiers on the given type and return an
6120 /// unqualified type. The qualifiers are assumed to be consistent
6121 /// with those already in the type.
6122 const Type *strip(QualType type) {
6123 addFastQualifiers(type.getLocalFastQualifiers());
6124 if (!type.hasLocalNonFastQualifiers())
6125 return type.getTypePtrUnsafe();
6126
6127 const ExtQuals *extQuals = type.getExtQualsUnsafe();
6128 addConsistentQualifiers(extQuals->getQualifiers());
6129 return extQuals->getBaseType();
6130 }
6131
6132 /// Apply the collected qualifiers to the given type.
6133 QualType apply(const ASTContext &Context, QualType QT) const;
6134
6135 /// Apply the collected qualifiers to the given type.
6136 QualType apply(const ASTContext &Context, const Type* T) const;
6137};
6138
6139// Inline function definitions.
6140
6141inline SplitQualType SplitQualType::getSingleStepDesugaredType() const {
6142 SplitQualType desugar =
6143 Ty->getLocallyUnqualifiedSingleStepDesugaredType().split();
6144 desugar.Quals.addConsistentQualifiers(Quals);
6145 return desugar;
6146}
6147
6148inline const Type *QualType::getTypePtr() const {
6149 return getCommonPtr()->BaseType;
6150}
6151
6152inline const Type *QualType::getTypePtrOrNull() const {
6153 return (isNull() ? nullptr : getCommonPtr()->BaseType);
6154}
6155
6156inline SplitQualType QualType::split() const {
6157 if (!hasLocalNonFastQualifiers())
6158 return SplitQualType(getTypePtrUnsafe(),
6159 Qualifiers::fromFastMask(getLocalFastQualifiers()));
6160
6161 const ExtQuals *eq = getExtQualsUnsafe();
6162 Qualifiers qs = eq->getQualifiers();
6163 qs.addFastQualifiers(getLocalFastQualifiers());
6164 return SplitQualType(eq->getBaseType(), qs);
6165}
6166
6167inline Qualifiers QualType::getLocalQualifiers() const {
6168 Qualifiers Quals;
6169 if (hasLocalNonFastQualifiers())
6170 Quals = getExtQualsUnsafe()->getQualifiers();
6171 Quals.addFastQualifiers(getLocalFastQualifiers());
6172 return Quals;
6173}
6174
6175inline Qualifiers QualType::getQualifiers() const {
6176 Qualifiers quals = getCommonPtr()->CanonicalType.getLocalQualifiers();
6177 quals.addFastQualifiers(getLocalFastQualifiers());
6178 return quals;
6179}
6180
6181inline unsigned QualType::getCVRQualifiers() const {
6182 unsigned cvr = getCommonPtr()->CanonicalType.getLocalCVRQualifiers();
6183 cvr |= getLocalCVRQualifiers();
6184 return cvr;
6185}
6186
6187inline QualType QualType::getCanonicalType() const {
6188 QualType canon = getCommonPtr()->CanonicalType;
6189 return canon.withFastQualifiers(getLocalFastQualifiers());
6190}
6191
6192inline bool QualType::isCanonical() const {
6193 return getTypePtr()->isCanonicalUnqualified();
6194}
6195
6196inline bool QualType::isCanonicalAsParam() const {
6197 if (!isCanonical()) return false;
6198 if (hasLocalQualifiers()) return false;
6199
6200 const Type *T = getTypePtr();
6201 if (T->isVariablyModifiedType() && T->hasSizedVLAType())
6202 return false;
6203
6204 return !isa<FunctionType>(T) && !isa<ArrayType>(T);
6205}
6206
6207inline bool QualType::isConstQualified() const {
6208 return isLocalConstQualified() ||
6209 getCommonPtr()->CanonicalType.isLocalConstQualified();
6210}
6211
6212inline bool QualType::isRestrictQualified() const {
6213 return isLocalRestrictQualified() ||
6214 getCommonPtr()->CanonicalType.isLocalRestrictQualified();
6215}
6216
6217
6218inline bool QualType::isVolatileQualified() const {
6219 return isLocalVolatileQualified() ||
6220 getCommonPtr()->CanonicalType.isLocalVolatileQualified();
6221}
6222
6223inline bool QualType::hasQualifiers() const {
6224 return hasLocalQualifiers() ||
6225 getCommonPtr()->CanonicalType.hasLocalQualifiers();
6226}
6227
6228inline QualType QualType::getUnqualifiedType() const {
6229 if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
6230 return QualType(getTypePtr(), 0);
6231
6232 return QualType(getSplitUnqualifiedTypeImpl(*this).Ty, 0);
6233}
6234
6235inline SplitQualType QualType::getSplitUnqualifiedType() const {
6236 if (!getTypePtr()->getCanonicalTypeInternal().hasLocalQualifiers())
6237 return split();
6238
6239 return getSplitUnqualifiedTypeImpl(*this);
6240}
6241
6242inline void QualType::removeLocalConst() {
6243 removeLocalFastQualifiers(Qualifiers::Const);
6244}
6245
6246inline void QualType::removeLocalRestrict() {
6247 removeLocalFastQualifiers(Qualifiers::Restrict);
6248}
6249
6250inline void QualType::removeLocalVolatile() {
6251 removeLocalFastQualifiers(Qualifiers::Volatile);
6252}
6253
6254inline void QualType::removeLocalCVRQualifiers(unsigned Mask) {
6255 assert(!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits")((!(Mask & ~Qualifiers::CVRMask) && "mask has non-CVR bits"
) ? static_cast<void> (0) : __assert_fail ("!(Mask & ~Qualifiers::CVRMask) && \"mask has non-CVR bits\""
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 6255, __PRETTY_FUNCTION__))
;
6256 static_assert((int)Qualifiers::CVRMask == (int)Qualifiers::FastMask,
6257 "Fast bits differ from CVR bits!");
6258
6259 // Fast path: we don't need to touch the slow qualifiers.
6260 removeLocalFastQualifiers(Mask);
6261}
6262
6263/// Return the address space of this type.
6264inline LangAS QualType::getAddressSpace() const {
6265 return getQualifiers().getAddressSpace();
6266}
6267
6268/// Return the gc attribute of this type.
6269inline Qualifiers::GC QualType::getObjCGCAttr() const {
6270 return getQualifiers().getObjCGCAttr();
6271}
6272
6273inline bool QualType::hasNonTrivialToPrimitiveDefaultInitializeCUnion() const {
6274 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6275 return hasNonTrivialToPrimitiveDefaultInitializeCUnion(RD);
6276 return false;
6277}
6278
6279inline bool QualType::hasNonTrivialToPrimitiveDestructCUnion() const {
6280 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6281 return hasNonTrivialToPrimitiveDestructCUnion(RD);
6282 return false;
6283}
6284
6285inline bool QualType::hasNonTrivialToPrimitiveCopyCUnion() const {
6286 if (auto *RD = getTypePtr()->getBaseElementTypeUnsafe()->getAsRecordDecl())
6287 return hasNonTrivialToPrimitiveCopyCUnion(RD);
6288 return false;
6289}
6290
6291inline FunctionType::ExtInfo getFunctionExtInfo(const Type &t) {
6292 if (const auto *PT = t.getAs<PointerType>()) {
6293 if (const auto *FT = PT->getPointeeType()->getAs<FunctionType>())
6294 return FT->getExtInfo();
6295 } else if (const auto *FT = t.getAs<FunctionType>())
6296 return FT->getExtInfo();
6297
6298 return FunctionType::ExtInfo();
6299}
6300
6301inline FunctionType::ExtInfo getFunctionExtInfo(QualType t) {
6302 return getFunctionExtInfo(*t);
6303}
6304
6305/// Determine whether this type is more
6306/// qualified than the Other type. For example, "const volatile int"
6307/// is more qualified than "const int", "volatile int", and
6308/// "int". However, it is not more qualified than "const volatile
6309/// int".
6310inline bool QualType::isMoreQualifiedThan(QualType other) const {
6311 Qualifiers MyQuals = getQualifiers();
6312 Qualifiers OtherQuals = other.getQualifiers();
6313 return (MyQuals != OtherQuals && MyQuals.compatiblyIncludes(OtherQuals));
6314}
6315
6316/// Determine whether this type is at last
6317/// as qualified as the Other type. For example, "const volatile
6318/// int" is at least as qualified as "const int", "volatile int",
6319/// "int", and "const volatile int".
6320inline bool QualType::isAtLeastAsQualifiedAs(QualType other) const {
6321 Qualifiers OtherQuals = other.getQualifiers();
6322
6323 // Ignore __unaligned qualifier if this type is a void.
6324 if (getUnqualifiedType()->isVoidType())
6325 OtherQuals.removeUnaligned();
6326
6327 return getQualifiers().compatiblyIncludes(OtherQuals);
6328}
6329
6330/// If Type is a reference type (e.g., const
6331/// int&), returns the type that the reference refers to ("const
6332/// int"). Otherwise, returns the type itself. This routine is used
6333/// throughout Sema to implement C++ 5p6:
6334///
6335/// If an expression initially has the type "reference to T" (8.3.2,
6336/// 8.5.3), the type is adjusted to "T" prior to any further
6337/// analysis, the expression designates the object or function
6338/// denoted by the reference, and the expression is an lvalue.
6339inline QualType QualType::getNonReferenceType() const {
6340 if (const auto *RefType = (*this)->getAs<ReferenceType>())
6341 return RefType->getPointeeType();
6342 else
6343 return *this;
6344}
6345
6346inline bool QualType::isCForbiddenLValueType() const {
6347 return ((getTypePtr()->isVoidType() && !hasQualifiers()) ||
6348 getTypePtr()->isFunctionType());
6349}
6350
6351/// Tests whether the type is categorized as a fundamental type.
6352///
6353/// \returns True for types specified in C++0x [basic.fundamental].
6354inline bool Type::isFundamentalType() const {
6355 return isVoidType() ||
6356 isNullPtrType() ||
6357 // FIXME: It's really annoying that we don't have an
6358 // 'isArithmeticType()' which agrees with the standard definition.
6359 (isArithmeticType() && !isEnumeralType());
6360}
6361
6362/// Tests whether the type is categorized as a compound type.
6363///
6364/// \returns True for types specified in C++0x [basic.compound].
6365inline bool Type::isCompoundType() const {
6366 // C++0x [basic.compound]p1:
6367 // Compound types can be constructed in the following ways:
6368 // -- arrays of objects of a given type [...];
6369 return isArrayType() ||
6370 // -- functions, which have parameters of given types [...];
6371 isFunctionType() ||
6372 // -- pointers to void or objects or functions [...];
6373 isPointerType() ||
6374 // -- references to objects or functions of a given type. [...]
6375 isReferenceType() ||
6376 // -- classes containing a sequence of objects of various types, [...];
6377 isRecordType() ||
6378 // -- unions, which are classes capable of containing objects of different
6379 // types at different times;
6380 isUnionType() ||
6381 // -- enumerations, which comprise a set of named constant values. [...];
6382 isEnumeralType() ||
6383 // -- pointers to non-static class members, [...].
6384 isMemberPointerType();
6385}
6386
6387inline bool Type::isFunctionType() const {
6388 return isa<FunctionType>(CanonicalType);
6389}
6390
6391inline bool Type::isPointerType() const {
6392 return isa<PointerType>(CanonicalType);
61
Assuming field 'CanonicalType' is a 'PointerType'
62
Returning the value 1, which participates in a condition later
6393}
6394
6395inline bool Type::isAnyPointerType() const {
6396 return isPointerType() || isObjCObjectPointerType();
6397}
6398
6399inline bool Type::isBlockPointerType() const {
6400 return isa<BlockPointerType>(CanonicalType);
6401}
6402
6403inline bool Type::isReferenceType() const {
6404 return isa<ReferenceType>(CanonicalType);
6405}
6406
6407inline bool Type::isLValueReferenceType() const {
6408 return isa<LValueReferenceType>(CanonicalType);
6409}
6410
6411inline bool Type::isRValueReferenceType() const {
6412 return isa<RValueReferenceType>(CanonicalType);
6413}
6414
6415inline bool Type::isFunctionPointerType() const {
6416 if (const auto *T = getAs<PointerType>())
6417 return T->getPointeeType()->isFunctionType();
6418 else
6419 return false;
6420}
6421
6422inline bool Type::isFunctionReferenceType() const {
6423 if (const auto *T = getAs<ReferenceType>())
6424 return T->getPointeeType()->isFunctionType();
6425 else
6426 return false;
6427}
6428
6429inline bool Type::isMemberPointerType() const {
6430 return isa<MemberPointerType>(CanonicalType);
6431}
6432
6433inline bool Type::isMemberFunctionPointerType() const {
6434 if (const auto *T = getAs<MemberPointerType>())
6435 return T->isMemberFunctionPointer();
6436 else
6437 return false;
6438}
6439
6440inline bool Type::isMemberDataPointerType() const {
6441 if (const auto *T = getAs<MemberPointerType>())
6442 return T->isMemberDataPointer();
6443 else
6444 return false;
6445}
6446
6447inline bool Type::isArrayType() const {
6448 return isa<ArrayType>(CanonicalType);
6449}
6450
6451inline bool Type::isConstantArrayType() const {
6452 return isa<ConstantArrayType>(CanonicalType);
6453}
6454
6455inline bool Type::isIncompleteArrayType() const {
6456 return isa<IncompleteArrayType>(CanonicalType);
6457}
6458
6459inline bool Type::isVariableArrayType() const {
6460 return isa<VariableArrayType>(CanonicalType);
6461}
6462
6463inline bool Type::isDependentSizedArrayType() const {
6464 return isa<DependentSizedArrayType>(CanonicalType);
6465}
6466
6467inline bool Type::isBuiltinType() const {
6468 return isa<BuiltinType>(CanonicalType);
6469}
6470
6471inline bool Type::isRecordType() const {
6472 return isa<RecordType>(CanonicalType);
6473}
6474
6475inline bool Type::isEnumeralType() const {
6476 return isa<EnumType>(CanonicalType);
6477}
6478
6479inline bool Type::isAnyComplexType() const {
6480 return isa<ComplexType>(CanonicalType);
6481}
6482
6483inline bool Type::isVectorType() const {
6484 return isa<VectorType>(CanonicalType);
6485}
6486
6487inline bool Type::isExtVectorType() const {
6488 return isa<ExtVectorType>(CanonicalType);
6489}
6490
6491inline bool Type::isDependentAddressSpaceType() const {
6492 return isa<DependentAddressSpaceType>(CanonicalType);
6493}
6494
6495inline bool Type::isObjCObjectPointerType() const {
6496 return isa<ObjCObjectPointerType>(CanonicalType);
6497}
6498
6499inline bool Type::isObjCObjectType() const {
6500 return isa<ObjCObjectType>(CanonicalType);
6501}
6502
6503inline bool Type::isObjCObjectOrInterfaceType() const {
6504 return isa<ObjCInterfaceType>(CanonicalType) ||
6505 isa<ObjCObjectType>(CanonicalType);
6506}
6507
6508inline bool Type::isAtomicType() const {
6509 return isa<AtomicType>(CanonicalType);
6510}
6511
6512inline bool Type::isObjCQualifiedIdType() const {
6513 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6514 return OPT->isObjCQualifiedIdType();
6515 return false;
6516}
6517
6518inline bool Type::isObjCQualifiedClassType() const {
6519 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6520 return OPT->isObjCQualifiedClassType();
6521 return false;
6522}
6523
6524inline bool Type::isObjCIdType() const {
6525 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6526 return OPT->isObjCIdType();
6527 return false;
6528}
6529
6530inline bool Type::isObjCClassType() const {
6531 if (const auto *OPT = getAs<ObjCObjectPointerType>())
6532 return OPT->isObjCClassType();
6533 return false;
6534}
6535
6536inline bool Type::isObjCSelType() const {
6537 if (const auto *OPT = getAs<PointerType>())
6538 return OPT->getPointeeType()->isSpecificBuiltinType(BuiltinType::ObjCSel);
6539 return false;
6540}
6541
6542inline bool Type::isObjCBuiltinType() const {
6543 return isObjCIdType() || isObjCClassType() || isObjCSelType();
6544}
6545
6546inline bool Type::isDecltypeType() const {
6547 return isa<DecltypeType>(this);
6548}
6549
6550#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \
6551 inline bool Type::is##Id##Type() const { \
6552 return isSpecificBuiltinType(BuiltinType::Id); \
6553 }
6554#include "clang/Basic/OpenCLImageTypes.def"
6555
6556inline bool Type::isSamplerT() const {
6557 return isSpecificBuiltinType(BuiltinType::OCLSampler);
6558}
6559
6560inline bool Type::isEventT() const {
6561 return isSpecificBuiltinType(BuiltinType::OCLEvent);
6562}
6563
6564inline bool Type::isClkEventT() const {
6565 return isSpecificBuiltinType(BuiltinType::OCLClkEvent);
6566}
6567
6568inline bool Type::isQueueT() const {
6569 return isSpecificBuiltinType(BuiltinType::OCLQueue);
6570}
6571
6572inline bool Type::isReserveIDT() const {
6573 return isSpecificBuiltinType(BuiltinType::OCLReserveID);
6574}
6575
6576inline bool Type::isImageType() const {
6577#define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) is##Id##Type() ||
6578 return
6579#include "clang/Basic/OpenCLImageTypes.def"
6580 false; // end boolean or operation
6581}
6582
6583inline bool Type::isPipeType() const {
6584 return isa<PipeType>(CanonicalType);
6585}
6586
6587#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \
6588 inline bool Type::is##Id##Type() const { \
6589 return isSpecificBuiltinType(BuiltinType::Id); \
6590 }
6591#include "clang/Basic/OpenCLExtensionTypes.def"
6592
6593inline bool Type::isOCLIntelSubgroupAVCType() const {
6594#define INTEL_SUBGROUP_AVC_TYPE(ExtType, Id) \
6595 isOCLIntelSubgroupAVC##Id##Type() ||
6596 return
6597#include "clang/Basic/OpenCLExtensionTypes.def"
6598 false; // end of boolean or operation
6599}
6600
6601inline bool Type::isOCLExtOpaqueType() const {
6602#define EXT_OPAQUE_TYPE(ExtType, Id, Ext) is##Id##Type() ||
6603 return
6604#include "clang/Basic/OpenCLExtensionTypes.def"
6605 false; // end of boolean or operation
6606}
6607
6608inline bool Type::isOpenCLSpecificType() const {
6609 return isSamplerT() || isEventT() || isImageType() || isClkEventT() ||
6610 isQueueT() || isReserveIDT() || isPipeType() || isOCLExtOpaqueType();
6611}
6612
6613inline bool Type::isTemplateTypeParmType() const {
6614 return isa<TemplateTypeParmType>(CanonicalType);
6615}
6616
6617inline bool Type::isSpecificBuiltinType(unsigned K) const {
6618 if (const BuiltinType *BT = getAs<BuiltinType>())
6619 if (BT->getKind() == (BuiltinType::Kind) K)
6620 return true;
6621 return false;
6622}
6623
6624inline bool Type::isPlaceholderType() const {
6625 if (const auto *BT = dyn_cast<BuiltinType>(this))
6626 return BT->isPlaceholderType();
6627 return false;
6628}
6629
6630inline const BuiltinType *Type::getAsPlaceholderType() const {
6631 if (const auto *BT = dyn_cast<BuiltinType>(this))
6632 if (BT->isPlaceholderType())
6633 return BT;
6634 return nullptr;
6635}
6636
6637inline bool Type::isSpecificPlaceholderType(unsigned K) const {
6638 assert(BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K))((BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K)) ?
static_cast<void> (0) : __assert_fail ("BuiltinType::isPlaceholderTypeKind((BuiltinType::Kind) K)"
, "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 6638, __PRETTY_FUNCTION__))
;
6639 if (const auto *BT = dyn_cast<BuiltinType>(this))
6640 return (BT->getKind() == (BuiltinType::Kind) K);
6641 return false;
6642}
6643
6644inline bool Type::isNonOverloadPlaceholderType() const {
6645 if (const auto *BT = dyn_cast<BuiltinType>(this))
6646 return BT->isNonOverloadPlaceholderType();
6647 return false;
6648}
6649
6650inline bool Type::isVoidType() const {
6651 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6652 return BT->getKind() == BuiltinType::Void;
6653 return false;
6654}
6655
6656inline bool Type::isHalfType() const {
6657 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6658 return BT->getKind() == BuiltinType::Half;
6659 // FIXME: Should we allow complex __fp16? Probably not.
6660 return false;
6661}
6662
6663inline bool Type::isFloat16Type() const {
6664 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6665 return BT->getKind() == BuiltinType::Float16;
6666 return false;
6667}
6668
6669inline bool Type::isFloat128Type() const {
6670 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6671 return BT->getKind() == BuiltinType::Float128;
6672 return false;
6673}
6674
6675inline bool Type::isNullPtrType() const {
6676 if (const auto *BT = getAs<BuiltinType>())
6677 return BT->getKind() == BuiltinType::NullPtr;
6678 return false;
6679}
6680
6681bool IsEnumDeclComplete(EnumDecl *);
6682bool IsEnumDeclScoped(EnumDecl *);
6683
6684inline bool Type::isIntegerType() const {
6685 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6686 return BT->getKind() >= BuiltinType::Bool &&
6687 BT->getKind() <= BuiltinType::Int128;
6688 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType)) {
6689 // Incomplete enum types are not treated as integer types.
6690 // FIXME: In C++, enum types are never integer types.
6691 return IsEnumDeclComplete(ET->getDecl()) &&
6692 !IsEnumDeclScoped(ET->getDecl());
6693 }
6694 return false;
6695}
6696
6697inline bool Type::isFixedPointType() const {
6698 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
6699 return BT->getKind() >= BuiltinType::ShortAccum &&
6700 BT->getKind() <= BuiltinType::SatULongFract;
6701 }
6702 return false;
6703}
6704
6705inline bool Type::isFixedPointOrIntegerType() const {
6706 return isFixedPointType() || isIntegerType();
6707}
6708
6709inline bool Type::isSaturatedFixedPointType() const {
6710 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
6711 return BT->getKind() >= BuiltinType::SatShortAccum &&
6712 BT->getKind() <= BuiltinType::SatULongFract;
6713 }
6714 return false;
6715}
6716
6717inline bool Type::isUnsaturatedFixedPointType() const {
6718 return isFixedPointType() && !isSaturatedFixedPointType();
6719}
6720
6721inline bool Type::isSignedFixedPointType() const {
6722 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType)) {
6723 return ((BT->getKind() >= BuiltinType::ShortAccum &&
6724 BT->getKind() <= BuiltinType::LongAccum) ||
6725 (BT->getKind() >= BuiltinType::ShortFract &&
6726 BT->getKind() <= BuiltinType::LongFract) ||
6727 (BT->getKind() >= BuiltinType::SatShortAccum &&
6728 BT->getKind() <= BuiltinType::SatLongAccum) ||
6729 (BT->getKind() >= BuiltinType::SatShortFract &&
6730 BT->getKind() <= BuiltinType::SatLongFract));
6731 }
6732 return false;
6733}
6734
6735inline bool Type::isUnsignedFixedPointType() const {
6736 return isFixedPointType() && !isSignedFixedPointType();
6737}
6738
6739inline bool Type::isScalarType() const {
6740 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6741 return BT->getKind() > BuiltinType::Void &&
6742 BT->getKind() <= BuiltinType::NullPtr;
6743 if (const EnumType *ET = dyn_cast<EnumType>(CanonicalType))
6744 // Enums are scalar types, but only if they are defined. Incomplete enums
6745 // are not treated as scalar types.
6746 return IsEnumDeclComplete(ET->getDecl());
6747 return isa<PointerType>(CanonicalType) ||
6748 isa<BlockPointerType>(CanonicalType) ||
6749 isa<MemberPointerType>(CanonicalType) ||
6750 isa<ComplexType>(CanonicalType) ||
6751 isa<ObjCObjectPointerType>(CanonicalType);
6752}
6753
6754inline bool Type::isIntegralOrEnumerationType() const {
6755 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6756 return BT->getKind() >= BuiltinType::Bool &&
6757 BT->getKind() <= BuiltinType::Int128;
6758
6759 // Check for a complete enum type; incomplete enum types are not properly an
6760 // enumeration type in the sense required here.
6761 if (const auto *ET = dyn_cast<EnumType>(CanonicalType))
6762 return IsEnumDeclComplete(ET->getDecl());
6763
6764 return false;
6765}
6766
6767inline bool Type::isBooleanType() const {
6768 if (const auto *BT = dyn_cast<BuiltinType>(CanonicalType))
6769 return BT->getKind() == BuiltinType::Bool;
6770 return false;
6771}
6772
6773inline bool Type::isUndeducedType() const {
6774 auto *DT = getContainedDeducedType();
6775 return DT && !DT->isDeduced();
6776}
6777
6778/// Determines whether this is a type for which one can define
6779/// an overloaded operator.
6780inline bool Type::isOverloadableType() const {
6781 return isDependentType() || isRecordType() || isEnumeralType();
6782}
6783
6784/// Determines whether this type can decay to a pointer type.
6785inline bool Type::canDecayToPointerType() const {
6786 return isFunctionType() || isArrayType();
6787}
6788
6789inline bool Type::hasPointerRepresentation() const {
6790 return (isPointerType() || isReferenceType() || isBlockPointerType() ||
6791 isObjCObjectPointerType() || isNullPtrType());
6792}
6793
6794inline bool Type::hasObjCPointerRepresentation() const {
6795 return isObjCObjectPointerType();
6796}
6797
6798inline const Type *Type::getBaseElementTypeUnsafe() const {
6799 const Type *type = this;
6800 while (const ArrayType *arrayType = type->getAsArrayTypeUnsafe())
6801 type = arrayType->getElementType().getTypePtr();
6802 return type;
6803}
6804
6805inline const Type *Type::getPointeeOrArrayElementType() const {
6806 const Type *type = this;
6807 if (type->isAnyPointerType())
6808 return type->getPointeeType().getTypePtr();
6809 else if (type->isArrayType())
6810 return type->getBaseElementTypeUnsafe();
6811 return type;
6812}
6813
6814/// Insertion operator for diagnostics. This allows sending Qualifiers into a
6815/// diagnostic with <<.
6816inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
6817 Qualifiers Q) {
6818 DB.AddTaggedVal(Q.getAsOpaqueValue(),
6819 DiagnosticsEngine::ArgumentKind::ak_qual);
6820 return DB;
6821}
6822
6823/// Insertion operator for partial diagnostics. This allows sending Qualifiers
6824/// into a diagnostic with <<.
6825inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
6826 Qualifiers Q) {
6827 PD.AddTaggedVal(Q.getAsOpaqueValue(),
6828 DiagnosticsEngine::ArgumentKind::ak_qual);
6829 return PD;
6830}
6831
6832/// Insertion operator for diagnostics. This allows sending QualType's into a
6833/// diagnostic with <<.
6834inline const DiagnosticBuilder &operator<<(const DiagnosticBuilder &DB,
6835 QualType T) {
6836 DB.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
6837 DiagnosticsEngine::ak_qualtype);
6838 return DB;
6839}
6840
6841/// Insertion operator for partial diagnostics. This allows sending QualType's
6842/// into a diagnostic with <<.
6843inline const PartialDiagnostic &operator<<(const PartialDiagnostic &PD,
6844 QualType T) {
6845 PD.AddTaggedVal(reinterpret_cast<intptr_t>(T.getAsOpaquePtr()),
6846 DiagnosticsEngine::ak_qualtype);
6847 return PD;
6848}
6849
6850// Helper class template that is used by Type::getAs to ensure that one does
6851// not try to look through a qualified type to get to an array type.
6852template <typename T>
6853using TypeIsArrayType =
6854 std::integral_constant<bool, std::is_same<T, ArrayType>::value ||
6855 std::is_base_of<ArrayType, T>::value>;
6856
6857// Member-template getAs<specific type>'.
6858template <typename T> const T *Type::getAs() const {
6859 static_assert(!TypeIsArrayType<T>::value,
6860 "ArrayType cannot be used with getAs!");
6861
6862 // If this is directly a T type, return it.
6863 if (const auto *Ty = dyn_cast<T>(this))
6864 return Ty;
6865
6866 // If the canonical form of this type isn't the right kind, reject it.
6867 if (!isa<T>(CanonicalType))
6868 return nullptr;
6869
6870 // If this is a typedef for the type, strip the typedef off without
6871 // losing all typedef information.
6872 return cast<T>(getUnqualifiedDesugaredType());
6873}
6874
6875template <typename T> const T *Type::getAsAdjusted() const {
6876 static_assert(!TypeIsArrayType<T>::value, "ArrayType cannot be used with getAsAdjusted!");
6877
6878 // If this is directly a T type, return it.
6879 if (const auto *Ty = dyn_cast<T>(this))
6880 return Ty;
6881
6882 // If the canonical form of this type isn't the right kind, reject it.
6883 if (!isa<T>(CanonicalType))
6884 return nullptr;
6885
6886 // Strip off type adjustments that do not modify the underlying nature of the
6887 // type.
6888 const Type *Ty = this;
6889 while (Ty) {
6890 if (const auto *A = dyn_cast<AttributedType>(Ty))
6891 Ty = A->getModifiedType().getTypePtr();
6892 else if (const auto *E = dyn_cast<ElaboratedType>(Ty))
6893 Ty = E->desugar().getTypePtr();
6894 else if (const auto *P = dyn_cast<ParenType>(Ty))
6895 Ty = P->desugar().getTypePtr();
6896 else if (const auto *A = dyn_cast<AdjustedType>(Ty))
6897 Ty = A->desugar().getTypePtr();
6898 else if (const auto *M = dyn_cast<MacroQualifiedType>(Ty))
6899 Ty = M->desugar().getTypePtr();
6900 else
6901 break;
6902 }
6903
6904 // Just because the canonical type is correct does not mean we can use cast<>,
6905 // since we may not have stripped off all the sugar down to the base type.
6906 return dyn_cast<T>(Ty);
6907}
6908
6909inline const ArrayType *Type::getAsArrayTypeUnsafe() const {
6910 // If this is directly an array type, return it.
6911 if (const auto *arr = dyn_cast<ArrayType>(this))
6912 return arr;
6913
6914 // If the canonical form of this type isn't the right kind, reject it.
6915 if (!isa<ArrayType>(CanonicalType))
6916 return nullptr;
6917
6918 // If this is a typedef for the type, strip the typedef off without
6919 // losing all typedef information.
6920 return cast<ArrayType>(getUnqualifiedDesugaredType());
6921}
6922
6923template <typename T> const T *Type::castAs() const {
6924 static_assert(!TypeIsArrayType<T>::value,
6925 "ArrayType cannot be used with castAs!");
6926
6927 if (const auto *ty = dyn_cast<T>(this)) return ty;
6928 assert(isa<T>(CanonicalType))((isa<T>(CanonicalType)) ? static_cast<void> (0) :
__assert_fail ("isa<T>(CanonicalType)", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 6928, __PRETTY_FUNCTION__))
;
6929 return cast<T>(getUnqualifiedDesugaredType());
6930}
6931
6932inline const ArrayType *Type::castAsArrayTypeUnsafe() const {
6933 assert(isa<ArrayType>(CanonicalType))((isa<ArrayType>(CanonicalType)) ? static_cast<void>
(0) : __assert_fail ("isa<ArrayType>(CanonicalType)", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 6933, __PRETTY_FUNCTION__))
;
6934 if (const auto *arr = dyn_cast<ArrayType>(this)) return arr;
6935 return cast<ArrayType>(getUnqualifiedDesugaredType());
6936}
6937
6938DecayedType::DecayedType(QualType OriginalType, QualType DecayedPtr,
6939 QualType CanonicalPtr)
6940 : AdjustedType(Decayed, OriginalType, DecayedPtr, CanonicalPtr) {
6941#ifndef NDEBUG
6942 QualType Adjusted = getAdjustedType();
6943 (void)AttributedType::stripOuterNullability(Adjusted);
6944 assert(isa<PointerType>(Adjusted))((isa<PointerType>(Adjusted)) ? static_cast<void>
(0) : __assert_fail ("isa<PointerType>(Adjusted)", "/build/llvm-toolchain-snapshot-10~svn373517/tools/clang/include/clang/AST/Type.h"
, 6944, __PRETTY_FUNCTION__))
;
6945#endif
6946}
6947
6948QualType DecayedType::getPointeeType() const {
6949 QualType Decayed = getDecayedType();
6950 (void)AttributedType::stripOuterNullability(Decayed);
6951 return cast<PointerType>(Decayed)->getPointeeType();
6952}
6953
6954// Get the decimal string representation of a fixed point type, represented
6955// as a scaled integer.
6956// TODO: At some point, we should change the arguments to instead just accept an
6957// APFixedPoint instead of APSInt and scale.
6958void FixedPointValueToString(SmallVectorImpl<char> &Str, llvm::APSInt Val,
6959 unsigned Scale);
6960
6961} // namespace clang
6962
6963#endif // LLVM_CLANG_AST_TYPE_H