Bug Summary

File:build-llvm/tools/clang/include/clang/AST/Attrs.inc
Warning:line 521, column 9
Null pointer passed as an argument to a 'nonnull' parameter

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -triple x86_64-pc-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name SemaDeclAttr.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-eagerly-assume -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -mrelocation-model pic -pic-level 2 -mthread-model posix -relaxed-aliasing -fmath-errno -masm-verbose -mconstructor-aliases -munwind-tables -fuse-init-array -target-cpu x86-64 -dwarf-column-info -debugger-tuning=gdb -momit-leaf-frame-pointer -ffunction-sections -fdata-sections -resource-dir /usr/lib/llvm-7/lib/clang/7.0.0 -D _DEBUG -D _GNU_SOURCE -D __STDC_CONSTANT_MACROS -D __STDC_FORMAT_MACROS -D __STDC_LIMIT_MACROS -I /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema -I /build/llvm-toolchain-snapshot-7~svn338205/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/include -I /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/include -I /build/llvm-toolchain-snapshot-7~svn338205/include -U NDEBUG -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/c++/8 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/x86_64-linux-gnu/c++/8 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/x86_64-linux-gnu/c++/8 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/c++/8/backward -internal-isystem /usr/include/clang/7.0.0/include/ -internal-isystem /usr/local/include -internal-isystem /usr/lib/llvm-7/lib/clang/7.0.0/include -internal-externc-isystem /usr/lib/gcc/x86_64-linux-gnu/8/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-parameter -Wwrite-strings -Wno-missing-field-initializers -Wno-long-long -Wno-maybe-uninitialized -Wno-class-memaccess -Wno-comment -std=c++11 -fdeprecated-macro -fdebug-compilation-dir /build/llvm-toolchain-snapshot-7~svn338205/build-llvm/tools/clang/lib/Sema -ferror-limit 19 -fmessage-length 0 -fvisibility-inlines-hidden -fobjc-runtime=gcc -fno-common -fdiagnostics-show-option -vectorize-loops -vectorize-slp -analyzer-output=html -analyzer-config stable-report-filename=true -o /tmp/scan-build-2018-07-29-043837-17923-1 -x c++ /build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclAttr.cpp -faddrsig

/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclAttr.cpp

1//===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements decl-related attribute processing.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTConsumer.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTMutationListener.h"
17#include "clang/AST/CXXInheritance.h"
18#include "clang/AST/DeclCXX.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/Mangle.h"
24#include "clang/AST/RecursiveASTVisitor.h"
25#include "clang/Basic/CharInfo.h"
26#include "clang/Basic/SourceManager.h"
27#include "clang/Basic/TargetInfo.h"
28#include "clang/Lex/Preprocessor.h"
29#include "clang/Sema/DeclSpec.h"
30#include "clang/Sema/DelayedDiagnostic.h"
31#include "clang/Sema/Initialization.h"
32#include "clang/Sema/Lookup.h"
33#include "clang/Sema/Scope.h"
34#include "clang/Sema/ScopeInfo.h"
35#include "clang/Sema/SemaInternal.h"
36#include "llvm/ADT/STLExtras.h"
37#include "llvm/ADT/StringExtras.h"
38#include "llvm/Support/MathExtras.h"
39
40using namespace clang;
41using namespace sema;
42
43namespace AttributeLangSupport {
44 enum LANG {
45 C,
46 Cpp,
47 ObjC
48 };
49} // end namespace AttributeLangSupport
50
51//===----------------------------------------------------------------------===//
52// Helper functions
53//===----------------------------------------------------------------------===//
54
55/// isFunctionOrMethod - Return true if the given decl has function
56/// type (function or function-typed variable) or an Objective-C
57/// method.
58static bool isFunctionOrMethod(const Decl *D) {
59 return (D->getFunctionType() != nullptr) || isa<ObjCMethodDecl>(D);
60}
61
62/// Return true if the given decl has function type (function or
63/// function-typed variable) or an Objective-C method or a block.
64static bool isFunctionOrMethodOrBlock(const Decl *D) {
65 return isFunctionOrMethod(D) || isa<BlockDecl>(D);
66}
67
68/// Return true if the given decl has a declarator that should have
69/// been processed by Sema::GetTypeForDeclarator.
70static bool hasDeclarator(const Decl *D) {
71 // In some sense, TypedefDecl really *ought* to be a DeclaratorDecl.
72 return isa<DeclaratorDecl>(D) || isa<BlockDecl>(D) || isa<TypedefNameDecl>(D) ||
73 isa<ObjCPropertyDecl>(D);
74}
75
76/// hasFunctionProto - Return true if the given decl has a argument
77/// information. This decl should have already passed
78/// isFunctionOrMethod or isFunctionOrMethodOrBlock.
79static bool hasFunctionProto(const Decl *D) {
80 if (const FunctionType *FnTy = D->getFunctionType())
81 return isa<FunctionProtoType>(FnTy);
82 return isa<ObjCMethodDecl>(D) || isa<BlockDecl>(D);
83}
84
85/// getFunctionOrMethodNumParams - Return number of function or method
86/// parameters. It is an error to call this on a K&R function (use
87/// hasFunctionProto first).
88static unsigned getFunctionOrMethodNumParams(const Decl *D) {
89 if (const FunctionType *FnTy = D->getFunctionType())
90 return cast<FunctionProtoType>(FnTy)->getNumParams();
91 if (const auto *BD = dyn_cast<BlockDecl>(D))
92 return BD->getNumParams();
93 return cast<ObjCMethodDecl>(D)->param_size();
94}
95
96static QualType getFunctionOrMethodParamType(const Decl *D, unsigned Idx) {
97 if (const FunctionType *FnTy = D->getFunctionType())
98 return cast<FunctionProtoType>(FnTy)->getParamType(Idx);
99 if (const auto *BD = dyn_cast<BlockDecl>(D))
100 return BD->getParamDecl(Idx)->getType();
101
102 return cast<ObjCMethodDecl>(D)->parameters()[Idx]->getType();
103}
104
105static SourceRange getFunctionOrMethodParamRange(const Decl *D, unsigned Idx) {
106 if (const auto *FD = dyn_cast<FunctionDecl>(D))
107 return FD->getParamDecl(Idx)->getSourceRange();
108 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
109 return MD->parameters()[Idx]->getSourceRange();
110 if (const auto *BD = dyn_cast<BlockDecl>(D))
111 return BD->getParamDecl(Idx)->getSourceRange();
112 return SourceRange();
113}
114
115static QualType getFunctionOrMethodResultType(const Decl *D) {
116 if (const FunctionType *FnTy = D->getFunctionType())
117 return FnTy->getReturnType();
118 return cast<ObjCMethodDecl>(D)->getReturnType();
119}
120
121static SourceRange getFunctionOrMethodResultSourceRange(const Decl *D) {
122 if (const auto *FD = dyn_cast<FunctionDecl>(D))
123 return FD->getReturnTypeSourceRange();
124 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
125 return MD->getReturnTypeSourceRange();
126 return SourceRange();
127}
128
129static bool isFunctionOrMethodVariadic(const Decl *D) {
130 if (const FunctionType *FnTy = D->getFunctionType())
131 return cast<FunctionProtoType>(FnTy)->isVariadic();
132 if (const auto *BD = dyn_cast<BlockDecl>(D))
133 return BD->isVariadic();
134 return cast<ObjCMethodDecl>(D)->isVariadic();
135}
136
137static bool isInstanceMethod(const Decl *D) {
138 if (const auto *MethodDecl = dyn_cast<CXXMethodDecl>(D))
139 return MethodDecl->isInstance();
140 return false;
141}
142
143static inline bool isNSStringType(QualType T, ASTContext &Ctx) {
144 const auto *PT = T->getAs<ObjCObjectPointerType>();
145 if (!PT)
146 return false;
147
148 ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface();
149 if (!Cls)
150 return false;
151
152 IdentifierInfo* ClsName = Cls->getIdentifier();
153
154 // FIXME: Should we walk the chain of classes?
155 return ClsName == &Ctx.Idents.get("NSString") ||
156 ClsName == &Ctx.Idents.get("NSMutableString");
157}
158
159static inline bool isCFStringType(QualType T, ASTContext &Ctx) {
160 const auto *PT = T->getAs<PointerType>();
161 if (!PT)
162 return false;
163
164 const auto *RT = PT->getPointeeType()->getAs<RecordType>();
165 if (!RT)
166 return false;
167
168 const RecordDecl *RD = RT->getDecl();
169 if (RD->getTagKind() != TTK_Struct)
170 return false;
171
172 return RD->getIdentifier() == &Ctx.Idents.get("__CFString");
173}
174
175static unsigned getNumAttributeArgs(const ParsedAttr &AL) {
176 // FIXME: Include the type in the argument list.
177 return AL.getNumArgs() + AL.hasParsedType();
178}
179
180template <typename Compare>
181static bool checkAttributeNumArgsImpl(Sema &S, const ParsedAttr &AL,
182 unsigned Num, unsigned Diag,
183 Compare Comp) {
184 if (Comp(getNumAttributeArgs(AL), Num)) {
185 S.Diag(AL.getLoc(), Diag) << AL.getName() << Num;
186 return false;
187 }
188
189 return true;
190}
191
192/// Check if the attribute has exactly as many args as Num. May
193/// output an error.
194static bool checkAttributeNumArgs(Sema &S, const ParsedAttr &AL, unsigned Num) {
195 return checkAttributeNumArgsImpl(S, AL, Num,
196 diag::err_attribute_wrong_number_arguments,
197 std::not_equal_to<unsigned>());
198}
199
200/// Check if the attribute has at least as many args as Num. May
201/// output an error.
202static bool checkAttributeAtLeastNumArgs(Sema &S, const ParsedAttr &AL,
203 unsigned Num) {
204 return checkAttributeNumArgsImpl(S, AL, Num,
205 diag::err_attribute_too_few_arguments,
206 std::less<unsigned>());
207}
208
209/// Check if the attribute has at most as many args as Num. May
210/// output an error.
211static bool checkAttributeAtMostNumArgs(Sema &S, const ParsedAttr &AL,
212 unsigned Num) {
213 return checkAttributeNumArgsImpl(S, AL, Num,
214 diag::err_attribute_too_many_arguments,
215 std::greater<unsigned>());
216}
217
218/// A helper function to provide Attribute Location for the Attr types
219/// AND the ParsedAttr.
220template <typename AttrInfo>
221static typename std::enable_if<std::is_base_of<Attr, AttrInfo>::value,
222 SourceLocation>::type
223getAttrLoc(const AttrInfo &AL) {
224 return AL.getLocation();
225}
226static SourceLocation getAttrLoc(const ParsedAttr &AL) { return AL.getLoc(); }
227
228/// A helper function to provide Attribute Name for the Attr types
229/// AND the ParsedAttr.
230template <typename AttrInfo>
231static typename std::enable_if<std::is_base_of<Attr, AttrInfo>::value,
232 const AttrInfo *>::type
233getAttrName(const AttrInfo &AL) {
234 return &AL;
235}
236static const IdentifierInfo *getAttrName(const ParsedAttr &AL) {
237 return AL.getName();
238}
239
240/// If Expr is a valid integer constant, get the value of the integer
241/// expression and return success or failure. May output an error.
242template <typename AttrInfo>
243static bool checkUInt32Argument(Sema &S, const AttrInfo &AI, const Expr *Expr,
244 uint32_t &Val, unsigned Idx = UINT_MAX(2147483647 *2U +1U)) {
245 llvm::APSInt I(32);
246 if (Expr->isTypeDependent() || Expr->isValueDependent() ||
247 !Expr->isIntegerConstantExpr(I, S.Context)) {
248 if (Idx != UINT_MAX(2147483647 *2U +1U))
249 S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type)
250 << getAttrName(AI) << Idx << AANT_ArgumentIntegerConstant
251 << Expr->getSourceRange();
252 else
253 S.Diag(getAttrLoc(AI), diag::err_attribute_argument_type)
254 << getAttrName(AI) << AANT_ArgumentIntegerConstant
255 << Expr->getSourceRange();
256 return false;
257 }
258
259 if (!I.isIntN(32)) {
260 S.Diag(Expr->getExprLoc(), diag::err_ice_too_large)
261 << I.toString(10, false) << 32 << /* Unsigned */ 1;
262 return false;
263 }
264
265 Val = (uint32_t)I.getZExtValue();
266 return true;
267}
268
269/// Wrapper around checkUInt32Argument, with an extra check to be sure
270/// that the result will fit into a regular (signed) int. All args have the same
271/// purpose as they do in checkUInt32Argument.
272template <typename AttrInfo>
273static bool checkPositiveIntArgument(Sema &S, const AttrInfo &AI, const Expr *Expr,
274 int &Val, unsigned Idx = UINT_MAX(2147483647 *2U +1U)) {
275 uint32_t UVal;
276 if (!checkUInt32Argument(S, AI, Expr, UVal, Idx))
277 return false;
278
279 if (UVal > (uint32_t)std::numeric_limits<int>::max()) {
280 llvm::APSInt I(32); // for toString
281 I = UVal;
282 S.Diag(Expr->getExprLoc(), diag::err_ice_too_large)
283 << I.toString(10, false) << 32 << /* Unsigned */ 0;
284 return false;
285 }
286
287 Val = UVal;
288 return true;
289}
290
291/// Diagnose mutually exclusive attributes when present on a given
292/// declaration. Returns true if diagnosed.
293template <typename AttrTy>
294static bool checkAttrMutualExclusion(Sema &S, Decl *D, SourceRange Range,
295 IdentifierInfo *Ident) {
296 if (const auto *A = D->getAttr<AttrTy>()) {
297 S.Diag(Range.getBegin(), diag::err_attributes_are_not_compatible) << Ident
298 << A;
299 S.Diag(A->getLocation(), diag::note_conflicting_attribute);
300 return true;
301 }
302 return false;
303}
304
305/// Check if IdxExpr is a valid parameter index for a function or
306/// instance method D. May output an error.
307///
308/// \returns true if IdxExpr is a valid index.
309template <typename AttrInfo>
310static bool checkFunctionOrMethodParameterIndex(
311 Sema &S, const Decl *D, const AttrInfo &AI, unsigned AttrArgNum,
312 const Expr *IdxExpr, ParamIdx &Idx, bool CanIndexImplicitThis = false) {
313 assert(isFunctionOrMethodOrBlock(D))(static_cast <bool> (isFunctionOrMethodOrBlock(D)) ? void
(0) : __assert_fail ("isFunctionOrMethodOrBlock(D)", "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclAttr.cpp"
, 313, __extension__ __PRETTY_FUNCTION__))
;
314
315 // In C++ the implicit 'this' function parameter also counts.
316 // Parameters are counted from one.
317 bool HP = hasFunctionProto(D);
318 bool HasImplicitThisParam = isInstanceMethod(D);
319 bool IV = HP && isFunctionOrMethodVariadic(D);
320 unsigned NumParams =
321 (HP ? getFunctionOrMethodNumParams(D) : 0) + HasImplicitThisParam;
322
323 llvm::APSInt IdxInt;
324 if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() ||
325 !IdxExpr->isIntegerConstantExpr(IdxInt, S.Context)) {
326 S.Diag(getAttrLoc(AI), diag::err_attribute_argument_n_type)
327 << getAttrName(AI) << AttrArgNum << AANT_ArgumentIntegerConstant
328 << IdxExpr->getSourceRange();
329 return false;
330 }
331
332 unsigned IdxSource = IdxInt.getLimitedValue(UINT_MAX(2147483647 *2U +1U));
333 if (IdxSource < 1 || (!IV && IdxSource > NumParams)) {
334 S.Diag(getAttrLoc(AI), diag::err_attribute_argument_out_of_bounds)
335 << getAttrName(AI) << AttrArgNum << IdxExpr->getSourceRange();
336 return false;
337 }
338 if (HasImplicitThisParam && !CanIndexImplicitThis) {
339 if (IdxSource == 1) {
340 S.Diag(getAttrLoc(AI),
341 diag::err_attribute_invalid_implicit_this_argument)
342 << getAttrName(AI) << IdxExpr->getSourceRange();
343 return false;
344 }
345 }
346
347 Idx = ParamIdx(IdxSource, D);
348 return true;
349}
350
351/// Check if the argument \p ArgNum of \p Attr is a ASCII string literal.
352/// If not emit an error and return false. If the argument is an identifier it
353/// will emit an error with a fixit hint and treat it as if it was a string
354/// literal.
355bool Sema::checkStringLiteralArgumentAttr(const ParsedAttr &AL, unsigned ArgNum,
356 StringRef &Str,
357 SourceLocation *ArgLocation) {
358 // Look for identifiers. If we have one emit a hint to fix it to a literal.
359 if (AL.isArgIdent(ArgNum)) {
360 IdentifierLoc *Loc = AL.getArgAsIdent(ArgNum);
361 Diag(Loc->Loc, diag::err_attribute_argument_type)
362 << AL.getName() << AANT_ArgumentString
363 << FixItHint::CreateInsertion(Loc->Loc, "\"")
364 << FixItHint::CreateInsertion(getLocForEndOfToken(Loc->Loc), "\"");
365 Str = Loc->Ident->getName();
366 if (ArgLocation)
367 *ArgLocation = Loc->Loc;
368 return true;
369 }
370
371 // Now check for an actual string literal.
372 Expr *ArgExpr = AL.getArgAsExpr(ArgNum);
373 const auto *Literal = dyn_cast<StringLiteral>(ArgExpr->IgnoreParenCasts());
374 if (ArgLocation)
375 *ArgLocation = ArgExpr->getLocStart();
376
377 if (!Literal || !Literal->isAscii()) {
378 Diag(ArgExpr->getLocStart(), diag::err_attribute_argument_type)
379 << AL.getName() << AANT_ArgumentString;
380 return false;
381 }
382
383 Str = Literal->getString();
384 return true;
385}
386
387/// Applies the given attribute to the Decl without performing any
388/// additional semantic checking.
389template <typename AttrType>
390static void handleSimpleAttribute(Sema &S, Decl *D, const ParsedAttr &AL) {
391 D->addAttr(::new (S.Context) AttrType(AL.getRange(), S.Context,
392 AL.getAttributeSpellingListIndex()));
393}
394
395template <typename AttrType>
396static void handleSimpleAttributeWithExclusions(Sema &S, Decl *D,
397 const ParsedAttr &AL) {
398 handleSimpleAttribute<AttrType>(S, D, AL);
399}
400
401/// Applies the given attribute to the Decl so long as the Decl doesn't
402/// already have one of the given incompatible attributes.
403template <typename AttrType, typename IncompatibleAttrType,
404 typename... IncompatibleAttrTypes>
405static void handleSimpleAttributeWithExclusions(Sema &S, Decl *D,
406 const ParsedAttr &AL) {
407 if (checkAttrMutualExclusion<IncompatibleAttrType>(S, D, AL.getRange(),
408 AL.getName()))
409 return;
410 handleSimpleAttributeWithExclusions<AttrType, IncompatibleAttrTypes...>(S, D,
411 AL);
412}
413
414/// Check if the passed-in expression is of type int or bool.
415static bool isIntOrBool(Expr *Exp) {
416 QualType QT = Exp->getType();
417 return QT->isBooleanType() || QT->isIntegerType();
418}
419
420
421// Check to see if the type is a smart pointer of some kind. We assume
422// it's a smart pointer if it defines both operator-> and operator*.
423static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordType* RT) {
424 DeclContextLookupResult Res1 = RT->getDecl()->lookup(
425 S.Context.DeclarationNames.getCXXOperatorName(OO_Star));
426 if (Res1.empty())
427 return false;
428
429 DeclContextLookupResult Res2 = RT->getDecl()->lookup(
430 S.Context.DeclarationNames.getCXXOperatorName(OO_Arrow));
431 if (Res2.empty())
432 return false;
433
434 return true;
435}
436
437/// Check if passed in Decl is a pointer type.
438/// Note that this function may produce an error message.
439/// \return true if the Decl is a pointer type; false otherwise
440static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D,
441 const ParsedAttr &AL) {
442 const auto *VD = cast<ValueDecl>(D);
443 QualType QT = VD->getType();
444 if (QT->isAnyPointerType())
445 return true;
446
447 if (const auto *RT = QT->getAs<RecordType>()) {
448 // If it's an incomplete type, it could be a smart pointer; skip it.
449 // (We don't want to force template instantiation if we can avoid it,
450 // since that would alter the order in which templates are instantiated.)
451 if (RT->isIncompleteType())
452 return true;
453
454 if (threadSafetyCheckIsSmartPointer(S, RT))
455 return true;
456 }
457
458 S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_pointer)
459 << AL.getName() << QT;
460 return false;
461}
462
463/// Checks that the passed in QualType either is of RecordType or points
464/// to RecordType. Returns the relevant RecordType, null if it does not exit.
465static const RecordType *getRecordType(QualType QT) {
466 if (const auto *RT = QT->getAs<RecordType>())
467 return RT;
468
469 // Now check if we point to record type.
470 if (const auto *PT = QT->getAs<PointerType>())
471 return PT->getPointeeType()->getAs<RecordType>();
472
473 return nullptr;
474}
475
476static bool checkRecordTypeForCapability(Sema &S, QualType Ty) {
477 const RecordType *RT = getRecordType(Ty);
478
479 if (!RT)
480 return false;
481
482 // Don't check for the capability if the class hasn't been defined yet.
483 if (RT->isIncompleteType())
484 return true;
485
486 // Allow smart pointers to be used as capability objects.
487 // FIXME -- Check the type that the smart pointer points to.
488 if (threadSafetyCheckIsSmartPointer(S, RT))
489 return true;
490
491 // Check if the record itself has a capability.
492 RecordDecl *RD = RT->getDecl();
493 if (RD->hasAttr<CapabilityAttr>())
494 return true;
495
496 // Else check if any base classes have a capability.
497 if (const auto *CRD = dyn_cast<CXXRecordDecl>(RD)) {
498 CXXBasePaths BPaths(false, false);
499 if (CRD->lookupInBases([](const CXXBaseSpecifier *BS, CXXBasePath &) {
500 const auto *Type = BS->getType()->getAs<RecordType>();
501 return Type->getDecl()->hasAttr<CapabilityAttr>();
502 }, BPaths))
503 return true;
504 }
505 return false;
506}
507
508static bool checkTypedefTypeForCapability(QualType Ty) {
509 const auto *TD = Ty->getAs<TypedefType>();
510 if (!TD)
511 return false;
512
513 TypedefNameDecl *TN = TD->getDecl();
514 if (!TN)
515 return false;
516
517 return TN->hasAttr<CapabilityAttr>();
518}
519
520static bool typeHasCapability(Sema &S, QualType Ty) {
521 if (checkTypedefTypeForCapability(Ty))
522 return true;
523
524 if (checkRecordTypeForCapability(S, Ty))
525 return true;
526
527 return false;
528}
529
530static bool isCapabilityExpr(Sema &S, const Expr *Ex) {
531 // Capability expressions are simple expressions involving the boolean logic
532 // operators &&, || or !, a simple DeclRefExpr, CastExpr or a ParenExpr. Once
533 // a DeclRefExpr is found, its type should be checked to determine whether it
534 // is a capability or not.
535
536 if (const auto *E = dyn_cast<CastExpr>(Ex))
537 return isCapabilityExpr(S, E->getSubExpr());
538 else if (const auto *E = dyn_cast<ParenExpr>(Ex))
539 return isCapabilityExpr(S, E->getSubExpr());
540 else if (const auto *E = dyn_cast<UnaryOperator>(Ex)) {
541 if (E->getOpcode() == UO_LNot || E->getOpcode() == UO_AddrOf ||
542 E->getOpcode() == UO_Deref)
543 return isCapabilityExpr(S, E->getSubExpr());
544 return false;
545 } else if (const auto *E = dyn_cast<BinaryOperator>(Ex)) {
546 if (E->getOpcode() == BO_LAnd || E->getOpcode() == BO_LOr)
547 return isCapabilityExpr(S, E->getLHS()) &&
548 isCapabilityExpr(S, E->getRHS());
549 return false;
550 }
551
552 return typeHasCapability(S, Ex->getType());
553}
554
555/// Checks that all attribute arguments, starting from Sidx, resolve to
556/// a capability object.
557/// \param Sidx The attribute argument index to start checking with.
558/// \param ParamIdxOk Whether an argument can be indexing into a function
559/// parameter list.
560static void checkAttrArgsAreCapabilityObjs(Sema &S, Decl *D,
561 const ParsedAttr &AL,
562 SmallVectorImpl<Expr *> &Args,
563 int Sidx = 0,
564 bool ParamIdxOk = false) {
565 for (unsigned Idx = Sidx; Idx < AL.getNumArgs(); ++Idx) {
566 Expr *ArgExp = AL.getArgAsExpr(Idx);
567
568 if (ArgExp->isTypeDependent()) {
569 // FIXME -- need to check this again on template instantiation
570 Args.push_back(ArgExp);
571 continue;
572 }
573
574 if (const auto *StrLit = dyn_cast<StringLiteral>(ArgExp)) {
575 if (StrLit->getLength() == 0 ||
576 (StrLit->isAscii() && StrLit->getString() == StringRef("*"))) {
577 // Pass empty strings to the analyzer without warnings.
578 // Treat "*" as the universal lock.
579 Args.push_back(ArgExp);
580 continue;
581 }
582
583 // We allow constant strings to be used as a placeholder for expressions
584 // that are not valid C++ syntax, but warn that they are ignored.
585 S.Diag(AL.getLoc(), diag::warn_thread_attribute_ignored) << AL.getName();
586 Args.push_back(ArgExp);
587 continue;
588 }
589
590 QualType ArgTy = ArgExp->getType();
591
592 // A pointer to member expression of the form &MyClass::mu is treated
593 // specially -- we need to look at the type of the member.
594 if (const auto *UOp = dyn_cast<UnaryOperator>(ArgExp))
595 if (UOp->getOpcode() == UO_AddrOf)
596 if (const auto *DRE = dyn_cast<DeclRefExpr>(UOp->getSubExpr()))
597 if (DRE->getDecl()->isCXXInstanceMember())
598 ArgTy = DRE->getDecl()->getType();
599
600 // First see if we can just cast to record type, or pointer to record type.
601 const RecordType *RT = getRecordType(ArgTy);
602
603 // Now check if we index into a record type function param.
604 if(!RT && ParamIdxOk) {
605 const auto *FD = dyn_cast<FunctionDecl>(D);
606 const auto *IL = dyn_cast<IntegerLiteral>(ArgExp);
607 if(FD && IL) {
608 unsigned int NumParams = FD->getNumParams();
609 llvm::APInt ArgValue = IL->getValue();
610 uint64_t ParamIdxFromOne = ArgValue.getZExtValue();
611 uint64_t ParamIdxFromZero = ParamIdxFromOne - 1;
612 if (!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) {
613 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_range)
614 << AL.getName() << Idx + 1 << NumParams;
615 continue;
616 }
617 ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType();
618 }
619 }
620
621 // If the type does not have a capability, see if the components of the
622 // expression have capabilities. This allows for writing C code where the
623 // capability may be on the type, and the expression is a capability
624 // boolean logic expression. Eg) requires_capability(A || B && !C)
625 if (!typeHasCapability(S, ArgTy) && !isCapabilityExpr(S, ArgExp))
626 S.Diag(AL.getLoc(), diag::warn_thread_attribute_argument_not_lockable)
627 << AL.getName() << ArgTy;
628
629 Args.push_back(ArgExp);
630 }
631}
632
633//===----------------------------------------------------------------------===//
634// Attribute Implementations
635//===----------------------------------------------------------------------===//
636
637static void handlePtGuardedVarAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
638 if (!threadSafetyCheckIsPointer(S, D, AL))
639 return;
640
641 D->addAttr(::new (S.Context)
642 PtGuardedVarAttr(AL.getRange(), S.Context,
643 AL.getAttributeSpellingListIndex()));
644}
645
646static bool checkGuardedByAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
647 Expr *&Arg) {
648 SmallVector<Expr *, 1> Args;
649 // check that all arguments are lockable objects
650 checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
651 unsigned Size = Args.size();
652 if (Size != 1)
653 return false;
654
655 Arg = Args[0];
656
657 return true;
658}
659
660static void handleGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
661 Expr *Arg = nullptr;
662 if (!checkGuardedByAttrCommon(S, D, AL, Arg))
663 return;
664
665 D->addAttr(::new (S.Context) GuardedByAttr(
666 AL.getRange(), S.Context, Arg, AL.getAttributeSpellingListIndex()));
667}
668
669static void handlePtGuardedByAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
670 Expr *Arg = nullptr;
671 if (!checkGuardedByAttrCommon(S, D, AL, Arg))
672 return;
673
674 if (!threadSafetyCheckIsPointer(S, D, AL))
675 return;
676
677 D->addAttr(::new (S.Context) PtGuardedByAttr(
678 AL.getRange(), S.Context, Arg, AL.getAttributeSpellingListIndex()));
679}
680
681static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
682 SmallVectorImpl<Expr *> &Args) {
683 if (!checkAttributeAtLeastNumArgs(S, AL, 1))
684 return false;
685
686 // Check that this attribute only applies to lockable types.
687 QualType QT = cast<ValueDecl>(D)->getType();
688 if (!QT->isDependentType() && !typeHasCapability(S, QT)) {
689 S.Diag(AL.getLoc(), diag::warn_thread_attribute_decl_not_lockable)
690 << AL.getName();
691 return false;
692 }
693
694 // Check that all arguments are lockable objects.
695 checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
696 if (Args.empty())
697 return false;
698
699 return true;
700}
701
702static void handleAcquiredAfterAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
703 SmallVector<Expr *, 1> Args;
704 if (!checkAcquireOrderAttrCommon(S, D, AL, Args))
705 return;
706
707 Expr **StartArg = &Args[0];
708 D->addAttr(::new (S.Context) AcquiredAfterAttr(
709 AL.getRange(), S.Context, StartArg, Args.size(),
710 AL.getAttributeSpellingListIndex()));
711}
712
713static void handleAcquiredBeforeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
714 SmallVector<Expr *, 1> Args;
715 if (!checkAcquireOrderAttrCommon(S, D, AL, Args))
716 return;
717
718 Expr **StartArg = &Args[0];
719 D->addAttr(::new (S.Context) AcquiredBeforeAttr(
720 AL.getRange(), S.Context, StartArg, Args.size(),
721 AL.getAttributeSpellingListIndex()));
722}
723
724static bool checkLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
725 SmallVectorImpl<Expr *> &Args) {
726 // zero or more arguments ok
727 // check that all arguments are lockable objects
728 checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, /*ParamIdxOk=*/true);
729
730 return true;
731}
732
733static void handleAssertSharedLockAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
734 SmallVector<Expr *, 1> Args;
735 if (!checkLockFunAttrCommon(S, D, AL, Args))
736 return;
737
738 unsigned Size = Args.size();
739 Expr **StartArg = Size == 0 ? nullptr : &Args[0];
740 D->addAttr(::new (S.Context)
741 AssertSharedLockAttr(AL.getRange(), S.Context, StartArg, Size,
742 AL.getAttributeSpellingListIndex()));
743}
744
745static void handleAssertExclusiveLockAttr(Sema &S, Decl *D,
746 const ParsedAttr &AL) {
747 SmallVector<Expr *, 1> Args;
748 if (!checkLockFunAttrCommon(S, D, AL, Args))
749 return;
750
751 unsigned Size = Args.size();
752 Expr **StartArg = Size == 0 ? nullptr : &Args[0];
753 D->addAttr(::new (S.Context) AssertExclusiveLockAttr(
754 AL.getRange(), S.Context, StartArg, Size,
755 AL.getAttributeSpellingListIndex()));
756}
757
758/// Checks to be sure that the given parameter number is in bounds, and
759/// is an integral type. Will emit appropriate diagnostics if this returns
760/// false.
761///
762/// AttrArgNo is used to actually retrieve the argument, so it's base-0.
763template <typename AttrInfo>
764static bool checkParamIsIntegerType(Sema &S, const FunctionDecl *FD,
765 const AttrInfo &AI, unsigned AttrArgNo) {
766 assert(AI.isArgExpr(AttrArgNo) && "Expected expression argument")(static_cast <bool> (AI.isArgExpr(AttrArgNo) &&
"Expected expression argument") ? void (0) : __assert_fail (
"AI.isArgExpr(AttrArgNo) && \"Expected expression argument\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclAttr.cpp"
, 766, __extension__ __PRETTY_FUNCTION__))
;
767 Expr *AttrArg = AI.getArgAsExpr(AttrArgNo);
768 ParamIdx Idx;
769 if (!checkFunctionOrMethodParameterIndex(S, FD, AI, AttrArgNo + 1, AttrArg,
770 Idx))
771 return false;
772
773 const ParmVarDecl *Param = FD->getParamDecl(Idx.getASTIndex());
774 if (!Param->getType()->isIntegerType() && !Param->getType()->isCharType()) {
775 SourceLocation SrcLoc = AttrArg->getLocStart();
776 S.Diag(SrcLoc, diag::err_attribute_integers_only)
777 << getAttrName(AI) << Param->getSourceRange();
778 return false;
779 }
780 return true;
781}
782
783static void handleAllocSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
784 if (!checkAttributeAtLeastNumArgs(S, AL, 1) ||
785 !checkAttributeAtMostNumArgs(S, AL, 2))
786 return;
787
788 const auto *FD = cast<FunctionDecl>(D);
789 if (!FD->getReturnType()->isPointerType()) {
790 S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only)
791 << AL.getName();
792 return;
793 }
794
795 const Expr *SizeExpr = AL.getArgAsExpr(0);
796 int SizeArgNoVal;
797 // Parameter indices are 1-indexed, hence Index=1
798 if (!checkPositiveIntArgument(S, AL, SizeExpr, SizeArgNoVal, /*Index=*/1))
799 return;
800 if (!checkParamIsIntegerType(S, FD, AL, /*AttrArgNo=*/0))
801 return;
802 ParamIdx SizeArgNo(SizeArgNoVal, D);
803
804 ParamIdx NumberArgNo;
805 if (AL.getNumArgs() == 2) {
806 const Expr *NumberExpr = AL.getArgAsExpr(1);
807 int Val;
808 // Parameter indices are 1-based, hence Index=2
809 if (!checkPositiveIntArgument(S, AL, NumberExpr, Val, /*Index=*/2))
810 return;
811 if (!checkParamIsIntegerType(S, FD, AL, /*AttrArgNo=*/1))
812 return;
813 NumberArgNo = ParamIdx(Val, D);
814 }
815
816 D->addAttr(::new (S.Context)
817 AllocSizeAttr(AL.getRange(), S.Context, SizeArgNo, NumberArgNo,
818 AL.getAttributeSpellingListIndex()));
819}
820
821static bool checkTryLockFunAttrCommon(Sema &S, Decl *D, const ParsedAttr &AL,
822 SmallVectorImpl<Expr *> &Args) {
823 if (!checkAttributeAtLeastNumArgs(S, AL, 1))
824 return false;
825
826 if (!isIntOrBool(AL.getArgAsExpr(0))) {
827 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
828 << AL.getName() << 1 << AANT_ArgumentIntOrBool;
829 return false;
830 }
831
832 // check that all arguments are lockable objects
833 checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 1);
834
835 return true;
836}
837
838static void handleSharedTrylockFunctionAttr(Sema &S, Decl *D,
839 const ParsedAttr &AL) {
840 SmallVector<Expr*, 2> Args;
841 if (!checkTryLockFunAttrCommon(S, D, AL, Args))
842 return;
843
844 D->addAttr(::new (S.Context) SharedTrylockFunctionAttr(
845 AL.getRange(), S.Context, AL.getArgAsExpr(0), Args.data(), Args.size(),
846 AL.getAttributeSpellingListIndex()));
847}
848
849static void handleExclusiveTrylockFunctionAttr(Sema &S, Decl *D,
850 const ParsedAttr &AL) {
851 SmallVector<Expr*, 2> Args;
852 if (!checkTryLockFunAttrCommon(S, D, AL, Args))
853 return;
854
855 D->addAttr(::new (S.Context) ExclusiveTrylockFunctionAttr(
856 AL.getRange(), S.Context, AL.getArgAsExpr(0), Args.data(),
857 Args.size(), AL.getAttributeSpellingListIndex()));
858}
859
860static void handleLockReturnedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
861 // check that the argument is lockable object
862 SmallVector<Expr*, 1> Args;
863 checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
864 unsigned Size = Args.size();
865 if (Size == 0)
866 return;
867
868 D->addAttr(::new (S.Context)
869 LockReturnedAttr(AL.getRange(), S.Context, Args[0],
870 AL.getAttributeSpellingListIndex()));
871}
872
873static void handleLocksExcludedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
874 if (!checkAttributeAtLeastNumArgs(S, AL, 1))
875 return;
876
877 // check that all arguments are lockable objects
878 SmallVector<Expr*, 1> Args;
879 checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
880 unsigned Size = Args.size();
881 if (Size == 0)
882 return;
883 Expr **StartArg = &Args[0];
884
885 D->addAttr(::new (S.Context)
886 LocksExcludedAttr(AL.getRange(), S.Context, StartArg, Size,
887 AL.getAttributeSpellingListIndex()));
888}
889
890static bool checkFunctionConditionAttr(Sema &S, Decl *D, const ParsedAttr &AL,
891 Expr *&Cond, StringRef &Msg) {
892 Cond = AL.getArgAsExpr(0);
893 if (!Cond->isTypeDependent()) {
894 ExprResult Converted = S.PerformContextuallyConvertToBool(Cond);
895 if (Converted.isInvalid())
896 return false;
897 Cond = Converted.get();
898 }
899
900 if (!S.checkStringLiteralArgumentAttr(AL, 1, Msg))
901 return false;
902
903 if (Msg.empty())
904 Msg = "<no message provided>";
905
906 SmallVector<PartialDiagnosticAt, 8> Diags;
907 if (isa<FunctionDecl>(D) && !Cond->isValueDependent() &&
908 !Expr::isPotentialConstantExprUnevaluated(Cond, cast<FunctionDecl>(D),
909 Diags)) {
910 S.Diag(AL.getLoc(), diag::err_attr_cond_never_constant_expr)
911 << AL.getName();
912 for (const PartialDiagnosticAt &PDiag : Diags)
913 S.Diag(PDiag.first, PDiag.second);
914 return false;
915 }
916 return true;
917}
918
919static void handleEnableIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
920 S.Diag(AL.getLoc(), diag::ext_clang_enable_if);
921
922 Expr *Cond;
923 StringRef Msg;
924 if (checkFunctionConditionAttr(S, D, AL, Cond, Msg))
925 D->addAttr(::new (S.Context)
926 EnableIfAttr(AL.getRange(), S.Context, Cond, Msg,
927 AL.getAttributeSpellingListIndex()));
928}
929
930namespace {
931/// Determines if a given Expr references any of the given function's
932/// ParmVarDecls, or the function's implicit `this` parameter (if applicable).
933class ArgumentDependenceChecker
934 : public RecursiveASTVisitor<ArgumentDependenceChecker> {
935#ifndef NDEBUG
936 const CXXRecordDecl *ClassType;
937#endif
938 llvm::SmallPtrSet<const ParmVarDecl *, 16> Parms;
939 bool Result;
940
941public:
942 ArgumentDependenceChecker(const FunctionDecl *FD) {
943#ifndef NDEBUG
944 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
945 ClassType = MD->getParent();
946 else
947 ClassType = nullptr;
948#endif
949 Parms.insert(FD->param_begin(), FD->param_end());
950 }
951
952 bool referencesArgs(Expr *E) {
953 Result = false;
954 TraverseStmt(E);
955 return Result;
956 }
957
958 bool VisitCXXThisExpr(CXXThisExpr *E) {
959 assert(E->getType()->getPointeeCXXRecordDecl() == ClassType &&(static_cast <bool> (E->getType()->getPointeeCXXRecordDecl
() == ClassType && "`this` doesn't refer to the enclosing class?"
) ? void (0) : __assert_fail ("E->getType()->getPointeeCXXRecordDecl() == ClassType && \"`this` doesn't refer to the enclosing class?\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclAttr.cpp"
, 960, __extension__ __PRETTY_FUNCTION__))
960 "`this` doesn't refer to the enclosing class?")(static_cast <bool> (E->getType()->getPointeeCXXRecordDecl
() == ClassType && "`this` doesn't refer to the enclosing class?"
) ? void (0) : __assert_fail ("E->getType()->getPointeeCXXRecordDecl() == ClassType && \"`this` doesn't refer to the enclosing class?\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclAttr.cpp"
, 960, __extension__ __PRETTY_FUNCTION__))
;
961 Result = true;
962 return false;
963 }
964
965 bool VisitDeclRefExpr(DeclRefExpr *DRE) {
966 if (const auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
967 if (Parms.count(PVD)) {
968 Result = true;
969 return false;
970 }
971 return true;
972 }
973};
974}
975
976static void handleDiagnoseIfAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
977 S.Diag(AL.getLoc(), diag::ext_clang_diagnose_if);
978
979 Expr *Cond;
980 StringRef Msg;
981 if (!checkFunctionConditionAttr(S, D, AL, Cond, Msg))
982 return;
983
984 StringRef DiagTypeStr;
985 if (!S.checkStringLiteralArgumentAttr(AL, 2, DiagTypeStr))
986 return;
987
988 DiagnoseIfAttr::DiagnosticType DiagType;
989 if (!DiagnoseIfAttr::ConvertStrToDiagnosticType(DiagTypeStr, DiagType)) {
990 S.Diag(AL.getArgAsExpr(2)->getLocStart(),
991 diag::err_diagnose_if_invalid_diagnostic_type);
992 return;
993 }
994
995 bool ArgDependent = false;
996 if (const auto *FD = dyn_cast<FunctionDecl>(D))
997 ArgDependent = ArgumentDependenceChecker(FD).referencesArgs(Cond);
998 D->addAttr(::new (S.Context) DiagnoseIfAttr(
999 AL.getRange(), S.Context, Cond, Msg, DiagType, ArgDependent,
1000 cast<NamedDecl>(D), AL.getAttributeSpellingListIndex()));
1001}
1002
1003static void handlePassObjectSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1004 if (D->hasAttr<PassObjectSizeAttr>()) {
1005 S.Diag(D->getLocStart(), diag::err_attribute_only_once_per_parameter)
1006 << AL.getName();
1007 return;
1008 }
1009
1010 Expr *E = AL.getArgAsExpr(0);
1011 uint32_t Type;
1012 if (!checkUInt32Argument(S, AL, E, Type, /*Idx=*/1))
1013 return;
1014
1015 // pass_object_size's argument is passed in as the second argument of
1016 // __builtin_object_size. So, it has the same constraints as that second
1017 // argument; namely, it must be in the range [0, 3].
1018 if (Type > 3) {
1019 S.Diag(E->getLocStart(), diag::err_attribute_argument_outof_range)
1020 << AL.getName() << 0 << 3 << E->getSourceRange();
1021 return;
1022 }
1023
1024 // pass_object_size is only supported on constant pointer parameters; as a
1025 // kindness to users, we allow the parameter to be non-const for declarations.
1026 // At this point, we have no clue if `D` belongs to a function declaration or
1027 // definition, so we defer the constness check until later.
1028 if (!cast<ParmVarDecl>(D)->getType()->isPointerType()) {
1029 S.Diag(D->getLocStart(), diag::err_attribute_pointers_only)
1030 << AL.getName() << 1;
1031 return;
1032 }
1033
1034 D->addAttr(::new (S.Context) PassObjectSizeAttr(
1035 AL.getRange(), S.Context, (int)Type, AL.getAttributeSpellingListIndex()));
1036}
1037
1038static void handleConsumableAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1039 ConsumableAttr::ConsumedState DefaultState;
1040
1041 if (AL.isArgIdent(0)) {
1042 IdentifierLoc *IL = AL.getArgAsIdent(0);
1043 if (!ConsumableAttr::ConvertStrToConsumedState(IL->Ident->getName(),
1044 DefaultState)) {
1045 S.Diag(IL->Loc, diag::warn_attribute_type_not_supported)
1046 << AL.getName() << IL->Ident;
1047 return;
1048 }
1049 } else {
1050 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1051 << AL.getName() << AANT_ArgumentIdentifier;
1052 return;
1053 }
1054
1055 D->addAttr(::new (S.Context)
1056 ConsumableAttr(AL.getRange(), S.Context, DefaultState,
1057 AL.getAttributeSpellingListIndex()));
1058}
1059
1060static bool checkForConsumableClass(Sema &S, const CXXMethodDecl *MD,
1061 const ParsedAttr &AL) {
1062 ASTContext &CurrContext = S.getASTContext();
1063 QualType ThisType = MD->getThisType(CurrContext)->getPointeeType();
1064
1065 if (const CXXRecordDecl *RD = ThisType->getAsCXXRecordDecl()) {
1066 if (!RD->hasAttr<ConsumableAttr>()) {
1067 S.Diag(AL.getLoc(), diag::warn_attr_on_unconsumable_class) <<
1068 RD->getNameAsString();
1069
1070 return false;
1071 }
1072 }
1073
1074 return true;
1075}
1076
1077static void handleCallableWhenAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1078 if (!checkAttributeAtLeastNumArgs(S, AL, 1))
1079 return;
1080
1081 if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
1082 return;
1083
1084 SmallVector<CallableWhenAttr::ConsumedState, 3> States;
1085 for (unsigned ArgIndex = 0; ArgIndex < AL.getNumArgs(); ++ArgIndex) {
1086 CallableWhenAttr::ConsumedState CallableState;
1087
1088 StringRef StateString;
1089 SourceLocation Loc;
1090 if (AL.isArgIdent(ArgIndex)) {
1091 IdentifierLoc *Ident = AL.getArgAsIdent(ArgIndex);
1092 StateString = Ident->Ident->getName();
1093 Loc = Ident->Loc;
1094 } else {
1095 if (!S.checkStringLiteralArgumentAttr(AL, ArgIndex, StateString, &Loc))
1096 return;
1097 }
1098
1099 if (!CallableWhenAttr::ConvertStrToConsumedState(StateString,
1100 CallableState)) {
1101 S.Diag(Loc, diag::warn_attribute_type_not_supported)
1102 << AL.getName() << StateString;
1103 return;
1104 }
1105
1106 States.push_back(CallableState);
1107 }
1108
1109 D->addAttr(::new (S.Context)
1110 CallableWhenAttr(AL.getRange(), S.Context, States.data(),
1111 States.size(), AL.getAttributeSpellingListIndex()));
1112}
1113
1114static void handleParamTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1115 ParamTypestateAttr::ConsumedState ParamState;
1116
1117 if (AL.isArgIdent(0)) {
1118 IdentifierLoc *Ident = AL.getArgAsIdent(0);
1119 StringRef StateString = Ident->Ident->getName();
1120
1121 if (!ParamTypestateAttr::ConvertStrToConsumedState(StateString,
1122 ParamState)) {
1123 S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported)
1124 << AL.getName() << StateString;
1125 return;
1126 }
1127 } else {
1128 S.Diag(AL.getLoc(), diag::err_attribute_argument_type) <<
1129 AL.getName() << AANT_ArgumentIdentifier;
1130 return;
1131 }
1132
1133 // FIXME: This check is currently being done in the analysis. It can be
1134 // enabled here only after the parser propagates attributes at
1135 // template specialization definition, not declaration.
1136 //QualType ReturnType = cast<ParmVarDecl>(D)->getType();
1137 //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
1138 //
1139 //if (!RD || !RD->hasAttr<ConsumableAttr>()) {
1140 // S.Diag(AL.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
1141 // ReturnType.getAsString();
1142 // return;
1143 //}
1144
1145 D->addAttr(::new (S.Context)
1146 ParamTypestateAttr(AL.getRange(), S.Context, ParamState,
1147 AL.getAttributeSpellingListIndex()));
1148}
1149
1150static void handleReturnTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1151 ReturnTypestateAttr::ConsumedState ReturnState;
1152
1153 if (AL.isArgIdent(0)) {
1154 IdentifierLoc *IL = AL.getArgAsIdent(0);
1155 if (!ReturnTypestateAttr::ConvertStrToConsumedState(IL->Ident->getName(),
1156 ReturnState)) {
1157 S.Diag(IL->Loc, diag::warn_attribute_type_not_supported)
1158 << AL.getName() << IL->Ident;
1159 return;
1160 }
1161 } else {
1162 S.Diag(AL.getLoc(), diag::err_attribute_argument_type) <<
1163 AL.getName() << AANT_ArgumentIdentifier;
1164 return;
1165 }
1166
1167 // FIXME: This check is currently being done in the analysis. It can be
1168 // enabled here only after the parser propagates attributes at
1169 // template specialization definition, not declaration.
1170 //QualType ReturnType;
1171 //
1172 //if (const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D)) {
1173 // ReturnType = Param->getType();
1174 //
1175 //} else if (const CXXConstructorDecl *Constructor =
1176 // dyn_cast<CXXConstructorDecl>(D)) {
1177 // ReturnType = Constructor->getThisType(S.getASTContext())->getPointeeType();
1178 //
1179 //} else {
1180 //
1181 // ReturnType = cast<FunctionDecl>(D)->getCallResultType();
1182 //}
1183 //
1184 //const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
1185 //
1186 //if (!RD || !RD->hasAttr<ConsumableAttr>()) {
1187 // S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
1188 // ReturnType.getAsString();
1189 // return;
1190 //}
1191
1192 D->addAttr(::new (S.Context)
1193 ReturnTypestateAttr(AL.getRange(), S.Context, ReturnState,
1194 AL.getAttributeSpellingListIndex()));
1195}
1196
1197static void handleSetTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1198 if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
1199 return;
1200
1201 SetTypestateAttr::ConsumedState NewState;
1202 if (AL.isArgIdent(0)) {
1203 IdentifierLoc *Ident = AL.getArgAsIdent(0);
1204 StringRef Param = Ident->Ident->getName();
1205 if (!SetTypestateAttr::ConvertStrToConsumedState(Param, NewState)) {
1206 S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported)
1207 << AL.getName() << Param;
1208 return;
1209 }
1210 } else {
1211 S.Diag(AL.getLoc(), diag::err_attribute_argument_type) <<
1212 AL.getName() << AANT_ArgumentIdentifier;
1213 return;
1214 }
1215
1216 D->addAttr(::new (S.Context)
1217 SetTypestateAttr(AL.getRange(), S.Context, NewState,
1218 AL.getAttributeSpellingListIndex()));
1219}
1220
1221static void handleTestTypestateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1222 if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), AL))
1223 return;
1224
1225 TestTypestateAttr::ConsumedState TestState;
1226 if (AL.isArgIdent(0)) {
1227 IdentifierLoc *Ident = AL.getArgAsIdent(0);
1228 StringRef Param = Ident->Ident->getName();
1229 if (!TestTypestateAttr::ConvertStrToConsumedState(Param, TestState)) {
1230 S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported)
1231 << AL.getName() << Param;
1232 return;
1233 }
1234 } else {
1235 S.Diag(AL.getLoc(), diag::err_attribute_argument_type) <<
1236 AL.getName() << AANT_ArgumentIdentifier;
1237 return;
1238 }
1239
1240 D->addAttr(::new (S.Context)
1241 TestTypestateAttr(AL.getRange(), S.Context, TestState,
1242 AL.getAttributeSpellingListIndex()));
1243}
1244
1245static void handleExtVectorTypeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1246 // Remember this typedef decl, we will need it later for diagnostics.
1247 S.ExtVectorDecls.push_back(cast<TypedefNameDecl>(D));
1248}
1249
1250static void handlePackedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1251 if (auto *TD = dyn_cast<TagDecl>(D))
1252 TD->addAttr(::new (S.Context) PackedAttr(AL.getRange(), S.Context,
1253 AL.getAttributeSpellingListIndex()));
1254 else if (auto *FD = dyn_cast<FieldDecl>(D)) {
1255 bool BitfieldByteAligned = (!FD->getType()->isDependentType() &&
1256 !FD->getType()->isIncompleteType() &&
1257 FD->isBitField() &&
1258 S.Context.getTypeAlign(FD->getType()) <= 8);
1259
1260 if (S.getASTContext().getTargetInfo().getTriple().isPS4()) {
1261 if (BitfieldByteAligned)
1262 // The PS4 target needs to maintain ABI backwards compatibility.
1263 S.Diag(AL.getLoc(), diag::warn_attribute_ignored_for_field_of_type)
1264 << AL.getName() << FD->getType();
1265 else
1266 FD->addAttr(::new (S.Context) PackedAttr(
1267 AL.getRange(), S.Context, AL.getAttributeSpellingListIndex()));
1268 } else {
1269 // Report warning about changed offset in the newer compiler versions.
1270 if (BitfieldByteAligned)
1271 S.Diag(AL.getLoc(), diag::warn_attribute_packed_for_bitfield);
1272
1273 FD->addAttr(::new (S.Context) PackedAttr(
1274 AL.getRange(), S.Context, AL.getAttributeSpellingListIndex()));
1275 }
1276
1277 } else
1278 S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL.getName();
1279}
1280
1281static bool checkIBOutletCommon(Sema &S, Decl *D, const ParsedAttr &AL) {
1282 // The IBOutlet/IBOutletCollection attributes only apply to instance
1283 // variables or properties of Objective-C classes. The outlet must also
1284 // have an object reference type.
1285 if (const auto *VD = dyn_cast<ObjCIvarDecl>(D)) {
1286 if (!VD->getType()->getAs<ObjCObjectPointerType>()) {
1287 S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type)
1288 << AL.getName() << VD->getType() << 0;
1289 return false;
1290 }
1291 }
1292 else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) {
1293 if (!PD->getType()->getAs<ObjCObjectPointerType>()) {
1294 S.Diag(AL.getLoc(), diag::warn_iboutlet_object_type)
1295 << AL.getName() << PD->getType() << 1;
1296 return false;
1297 }
1298 }
1299 else {
1300 S.Diag(AL.getLoc(), diag::warn_attribute_iboutlet) << AL.getName();
1301 return false;
1302 }
1303
1304 return true;
1305}
1306
1307static void handleIBOutlet(Sema &S, Decl *D, const ParsedAttr &AL) {
1308 if (!checkIBOutletCommon(S, D, AL))
1309 return;
1310
1311 D->addAttr(::new (S.Context)
1312 IBOutletAttr(AL.getRange(), S.Context,
1313 AL.getAttributeSpellingListIndex()));
1314}
1315
1316static void handleIBOutletCollection(Sema &S, Decl *D, const ParsedAttr &AL) {
1317
1318 // The iboutletcollection attribute can have zero or one arguments.
1319 if (AL.getNumArgs() > 1) {
1320 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
1321 << AL.getName() << 1;
1322 return;
1323 }
1324
1325 if (!checkIBOutletCommon(S, D, AL))
1326 return;
1327
1328 ParsedType PT;
1329
1330 if (AL.hasParsedType())
1331 PT = AL.getTypeArg();
1332 else {
1333 PT = S.getTypeName(S.Context.Idents.get("NSObject"), AL.getLoc(),
1334 S.getScopeForContext(D->getDeclContext()->getParent()));
1335 if (!PT) {
1336 S.Diag(AL.getLoc(), diag::err_iboutletcollection_type) << "NSObject";
1337 return;
1338 }
1339 }
1340
1341 TypeSourceInfo *QTLoc = nullptr;
1342 QualType QT = S.GetTypeFromParser(PT, &QTLoc);
1343 if (!QTLoc)
1344 QTLoc = S.Context.getTrivialTypeSourceInfo(QT, AL.getLoc());
1345
1346 // Diagnose use of non-object type in iboutletcollection attribute.
1347 // FIXME. Gnu attribute extension ignores use of builtin types in
1348 // attributes. So, __attribute__((iboutletcollection(char))) will be
1349 // treated as __attribute__((iboutletcollection())).
1350 if (!QT->isObjCIdType() && !QT->isObjCObjectType()) {
1351 S.Diag(AL.getLoc(),
1352 QT->isBuiltinType() ? diag::err_iboutletcollection_builtintype
1353 : diag::err_iboutletcollection_type) << QT;
1354 return;
1355 }
1356
1357 D->addAttr(::new (S.Context)
1358 IBOutletCollectionAttr(AL.getRange(), S.Context, QTLoc,
1359 AL.getAttributeSpellingListIndex()));
1360}
1361
1362bool Sema::isValidPointerAttrType(QualType T, bool RefOkay) {
1363 if (RefOkay) {
1364 if (T->isReferenceType())
1365 return true;
1366 } else {
1367 T = T.getNonReferenceType();
1368 }
1369
1370 // The nonnull attribute, and other similar attributes, can be applied to a
1371 // transparent union that contains a pointer type.
1372 if (const RecordType *UT = T->getAsUnionType()) {
1373 if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) {
1374 RecordDecl *UD = UT->getDecl();
1375 for (const auto *I : UD->fields()) {
1376 QualType QT = I->getType();
1377 if (QT->isAnyPointerType() || QT->isBlockPointerType())
1378 return true;
1379 }
1380 }
1381 }
1382
1383 return T->isAnyPointerType() || T->isBlockPointerType();
1384}
1385
1386static bool attrNonNullArgCheck(Sema &S, QualType T, const ParsedAttr &AL,
1387 SourceRange AttrParmRange,
1388 SourceRange TypeRange,
1389 bool isReturnValue = false) {
1390 if (!S.isValidPointerAttrType(T)) {
1391 if (isReturnValue)
1392 S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only)
1393 << AL.getName() << AttrParmRange << TypeRange;
1394 else
1395 S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only)
1396 << AL.getName() << AttrParmRange << TypeRange << 0;
1397 return false;
1398 }
1399 return true;
1400}
1401
1402static void handleNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1403 SmallVector<ParamIdx, 8> NonNullArgs;
1404 for (unsigned I = 0; I < AL.getNumArgs(); ++I) {
1405 Expr *Ex = AL.getArgAsExpr(I);
1406 ParamIdx Idx;
1407 if (!checkFunctionOrMethodParameterIndex(S, D, AL, I + 1, Ex, Idx))
1408 return;
1409
1410 // Is the function argument a pointer type?
1411 if (Idx.getASTIndex() < getFunctionOrMethodNumParams(D) &&
1412 !attrNonNullArgCheck(
1413 S, getFunctionOrMethodParamType(D, Idx.getASTIndex()), AL,
1414 Ex->getSourceRange(),
1415 getFunctionOrMethodParamRange(D, Idx.getASTIndex())))
1416 continue;
1417
1418 NonNullArgs.push_back(Idx);
1419 }
1420
1421 // If no arguments were specified to __attribute__((nonnull)) then all pointer
1422 // arguments have a nonnull attribute; warn if there aren't any. Skip this
1423 // check if the attribute came from a macro expansion or a template
1424 // instantiation.
1425 if (NonNullArgs.empty() && AL.getLoc().isFileID() &&
1426 !S.inTemplateInstantiation()) {
1427 bool AnyPointers = isFunctionOrMethodVariadic(D);
1428 for (unsigned I = 0, E = getFunctionOrMethodNumParams(D);
1429 I != E && !AnyPointers; ++I) {
1430 QualType T = getFunctionOrMethodParamType(D, I);
1431 if (T->isDependentType() || S.isValidPointerAttrType(T))
1432 AnyPointers = true;
1433 }
1434
1435 if (!AnyPointers)
1436 S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_no_pointers);
1437 }
1438
1439 ParamIdx *Start = NonNullArgs.data();
1440 unsigned Size = NonNullArgs.size();
1441 llvm::array_pod_sort(Start, Start + Size);
1442 D->addAttr(::new (S.Context)
1443 NonNullAttr(AL.getRange(), S.Context, Start, Size,
1444 AL.getAttributeSpellingListIndex()));
1445}
1446
1447static void handleNonNullAttrParameter(Sema &S, ParmVarDecl *D,
1448 const ParsedAttr &AL) {
1449 if (AL.getNumArgs() > 0) {
1450 if (D->getFunctionType()) {
1451 handleNonNullAttr(S, D, AL);
1452 } else {
1453 S.Diag(AL.getLoc(), diag::warn_attribute_nonnull_parm_no_args)
1454 << D->getSourceRange();
1455 }
1456 return;
1457 }
1458
1459 // Is the argument a pointer type?
1460 if (!attrNonNullArgCheck(S, D->getType(), AL, SourceRange(),
1461 D->getSourceRange()))
1462 return;
1463
1464 D->addAttr(::new (S.Context)
1465 NonNullAttr(AL.getRange(), S.Context, nullptr, 0,
1466 AL.getAttributeSpellingListIndex()));
1467}
1468
1469static void handleReturnsNonNullAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1470 QualType ResultType = getFunctionOrMethodResultType(D);
1471 SourceRange SR = getFunctionOrMethodResultSourceRange(D);
1472 if (!attrNonNullArgCheck(S, ResultType, AL, SourceRange(), SR,
1473 /* isReturnValue */ true))
1474 return;
1475
1476 D->addAttr(::new (S.Context)
1477 ReturnsNonNullAttr(AL.getRange(), S.Context,
1478 AL.getAttributeSpellingListIndex()));
1479}
1480
1481static void handleNoEscapeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1482 if (D->isInvalidDecl())
1483 return;
1484
1485 // noescape only applies to pointer types.
1486 QualType T = cast<ParmVarDecl>(D)->getType();
1487 if (!S.isValidPointerAttrType(T, /* RefOkay */ true)) {
1488 S.Diag(AL.getLoc(), diag::warn_attribute_pointers_only)
1489 << AL.getName() << AL.getRange() << 0;
1490 return;
1491 }
1492
1493 D->addAttr(::new (S.Context) NoEscapeAttr(
1494 AL.getRange(), S.Context, AL.getAttributeSpellingListIndex()));
1495}
1496
1497static void handleAssumeAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1498 Expr *E = AL.getArgAsExpr(0),
1499 *OE = AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr;
1500 S.AddAssumeAlignedAttr(AL.getRange(), D, E, OE,
1501 AL.getAttributeSpellingListIndex());
1502}
1503
1504static void handleAllocAlignAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1505 S.AddAllocAlignAttr(AL.getRange(), D, AL.getArgAsExpr(0),
1506 AL.getAttributeSpellingListIndex());
1507}
1508
1509void Sema::AddAssumeAlignedAttr(SourceRange AttrRange, Decl *D, Expr *E,
1510 Expr *OE, unsigned SpellingListIndex) {
1511 QualType ResultType = getFunctionOrMethodResultType(D);
1512 SourceRange SR = getFunctionOrMethodResultSourceRange(D);
1513
1514 AssumeAlignedAttr TmpAttr(AttrRange, Context, E, OE, SpellingListIndex);
1515 SourceLocation AttrLoc = AttrRange.getBegin();
1516
1517 if (!isValidPointerAttrType(ResultType, /* RefOkay */ true)) {
1518 Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only)
1519 << &TmpAttr << AttrRange << SR;
1520 return;
1521 }
1522
1523 if (!E->isValueDependent()) {
1524 llvm::APSInt I(64);
1525 if (!E->isIntegerConstantExpr(I, Context)) {
1526 if (OE)
1527 Diag(AttrLoc, diag::err_attribute_argument_n_type)
1528 << &TmpAttr << 1 << AANT_ArgumentIntegerConstant
1529 << E->getSourceRange();
1530 else
1531 Diag(AttrLoc, diag::err_attribute_argument_type)
1532 << &TmpAttr << AANT_ArgumentIntegerConstant
1533 << E->getSourceRange();
1534 return;
1535 }
1536
1537 if (!I.isPowerOf2()) {
1538 Diag(AttrLoc, diag::err_alignment_not_power_of_two)
1539 << E->getSourceRange();
1540 return;
1541 }
1542 }
1543
1544 if (OE) {
1545 if (!OE->isValueDependent()) {
1546 llvm::APSInt I(64);
1547 if (!OE->isIntegerConstantExpr(I, Context)) {
1548 Diag(AttrLoc, diag::err_attribute_argument_n_type)
1549 << &TmpAttr << 2 << AANT_ArgumentIntegerConstant
1550 << OE->getSourceRange();
1551 return;
1552 }
1553 }
1554 }
1555
1556 D->addAttr(::new (Context)
1557 AssumeAlignedAttr(AttrRange, Context, E, OE, SpellingListIndex));
1558}
1559
1560void Sema::AddAllocAlignAttr(SourceRange AttrRange, Decl *D, Expr *ParamExpr,
1561 unsigned SpellingListIndex) {
1562 QualType ResultType = getFunctionOrMethodResultType(D);
1563
1564 AllocAlignAttr TmpAttr(AttrRange, Context, ParamIdx(), SpellingListIndex);
1565 SourceLocation AttrLoc = AttrRange.getBegin();
1566
1567 if (!ResultType->isDependentType() &&
1568 !isValidPointerAttrType(ResultType, /* RefOkay */ true)) {
1569 Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only)
1570 << &TmpAttr << AttrRange << getFunctionOrMethodResultSourceRange(D);
1571 return;
1572 }
1573
1574 ParamIdx Idx;
1575 const auto *FuncDecl = cast<FunctionDecl>(D);
1576 if (!checkFunctionOrMethodParameterIndex(*this, FuncDecl, TmpAttr,
1577 /*AttrArgNo=*/1, ParamExpr, Idx))
1578 return;
1579
1580 QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex());
1581 if (!Ty->isDependentType() && !Ty->isIntegralType(Context)) {
1582 Diag(ParamExpr->getLocStart(), diag::err_attribute_integers_only)
1583 << &TmpAttr
1584 << FuncDecl->getParamDecl(Idx.getASTIndex())->getSourceRange();
1585 return;
1586 }
1587
1588 D->addAttr(::new (Context)
1589 AllocAlignAttr(AttrRange, Context, Idx, SpellingListIndex));
1590}
1591
1592/// Normalize the attribute, __foo__ becomes foo.
1593/// Returns true if normalization was applied.
1594static bool normalizeName(StringRef &AttrName) {
1595 if (AttrName.size() > 4 && AttrName.startswith("__") &&
1596 AttrName.endswith("__")) {
1597 AttrName = AttrName.drop_front(2).drop_back(2);
1598 return true;
1599 }
1600 return false;
1601}
1602
1603static void handleOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1604 // This attribute must be applied to a function declaration. The first
1605 // argument to the attribute must be an identifier, the name of the resource,
1606 // for example: malloc. The following arguments must be argument indexes, the
1607 // arguments must be of integer type for Returns, otherwise of pointer type.
1608 // The difference between Holds and Takes is that a pointer may still be used
1609 // after being held. free() should be __attribute((ownership_takes)), whereas
1610 // a list append function may well be __attribute((ownership_holds)).
1611
1612 if (!AL.isArgIdent(0)) {
1613 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
1614 << AL.getName() << 1 << AANT_ArgumentIdentifier;
1615 return;
1616 }
1617
1618 // Figure out our Kind.
1619 OwnershipAttr::OwnershipKind K =
1620 OwnershipAttr(AL.getLoc(), S.Context, nullptr, nullptr, 0,
1621 AL.getAttributeSpellingListIndex()).getOwnKind();
1622
1623 // Check arguments.
1624 switch (K) {
1625 case OwnershipAttr::Takes:
1626 case OwnershipAttr::Holds:
1627 if (AL.getNumArgs() < 2) {
1628 S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments)
1629 << AL.getName() << 2;
1630 return;
1631 }
1632 break;
1633 case OwnershipAttr::Returns:
1634 if (AL.getNumArgs() > 2) {
1635 S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments)
1636 << AL.getName() << 1;
1637 return;
1638 }
1639 break;
1640 }
1641
1642 IdentifierInfo *Module = AL.getArgAsIdent(0)->Ident;
1643
1644 StringRef ModuleName = Module->getName();
1645 if (normalizeName(ModuleName)) {
1646 Module = &S.PP.getIdentifierTable().get(ModuleName);
1647 }
1648
1649 SmallVector<ParamIdx, 8> OwnershipArgs;
1650 for (unsigned i = 1; i < AL.getNumArgs(); ++i) {
1651 Expr *Ex = AL.getArgAsExpr(i);
1652 ParamIdx Idx;
1653 if (!checkFunctionOrMethodParameterIndex(S, D, AL, i, Ex, Idx))
1654 return;
1655
1656 // Is the function argument a pointer type?
1657 QualType T = getFunctionOrMethodParamType(D, Idx.getASTIndex());
1658 int Err = -1; // No error
1659 switch (K) {
1660 case OwnershipAttr::Takes:
1661 case OwnershipAttr::Holds:
1662 if (!T->isAnyPointerType() && !T->isBlockPointerType())
1663 Err = 0;
1664 break;
1665 case OwnershipAttr::Returns:
1666 if (!T->isIntegerType())
1667 Err = 1;
1668 break;
1669 }
1670 if (-1 != Err) {
1671 S.Diag(AL.getLoc(), diag::err_ownership_type) << AL.getName() << Err
1672 << Ex->getSourceRange();
1673 return;
1674 }
1675
1676 // Check we don't have a conflict with another ownership attribute.
1677 for (const auto *I : D->specific_attrs<OwnershipAttr>()) {
1678 // Cannot have two ownership attributes of different kinds for the same
1679 // index.
1680 if (I->getOwnKind() != K && I->args_end() !=
1681 std::find(I->args_begin(), I->args_end(), Idx)) {
1682 S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
1683 << AL.getName() << I;
1684 return;
1685 } else if (K == OwnershipAttr::Returns &&
1686 I->getOwnKind() == OwnershipAttr::Returns) {
1687 // A returns attribute conflicts with any other returns attribute using
1688 // a different index.
1689 if (std::find(I->args_begin(), I->args_end(), Idx) == I->args_end()) {
1690 S.Diag(I->getLocation(), diag::err_ownership_returns_index_mismatch)
1691 << I->args_begin()->getSourceIndex();
1692 if (I->args_size())
1693 S.Diag(AL.getLoc(), diag::note_ownership_returns_index_mismatch)
1694 << Idx.getSourceIndex() << Ex->getSourceRange();
1695 return;
1696 }
1697 }
1698 }
1699 OwnershipArgs.push_back(Idx);
1700 }
1701
1702 ParamIdx *Start = OwnershipArgs.data();
1703 unsigned Size = OwnershipArgs.size();
1704 llvm::array_pod_sort(Start, Start + Size);
1705 D->addAttr(::new (S.Context)
1706 OwnershipAttr(AL.getLoc(), S.Context, Module, Start, Size,
1707 AL.getAttributeSpellingListIndex()));
1708}
1709
1710static void handleWeakRefAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1711 // Check the attribute arguments.
1712 if (AL.getNumArgs() > 1) {
1713 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
1714 << AL.getName() << 1;
1715 return;
1716 }
1717
1718 // gcc rejects
1719 // class c {
1720 // static int a __attribute__((weakref ("v2")));
1721 // static int b() __attribute__((weakref ("f3")));
1722 // };
1723 // and ignores the attributes of
1724 // void f(void) {
1725 // static int a __attribute__((weakref ("v2")));
1726 // }
1727 // we reject them
1728 const DeclContext *Ctx = D->getDeclContext()->getRedeclContext();
1729 if (!Ctx->isFileContext()) {
1730 S.Diag(AL.getLoc(), diag::err_attribute_weakref_not_global_context)
1731 << cast<NamedDecl>(D);
1732 return;
1733 }
1734
1735 // The GCC manual says
1736 //
1737 // At present, a declaration to which `weakref' is attached can only
1738 // be `static'.
1739 //
1740 // It also says
1741 //
1742 // Without a TARGET,
1743 // given as an argument to `weakref' or to `alias', `weakref' is
1744 // equivalent to `weak'.
1745 //
1746 // gcc 4.4.1 will accept
1747 // int a7 __attribute__((weakref));
1748 // as
1749 // int a7 __attribute__((weak));
1750 // This looks like a bug in gcc. We reject that for now. We should revisit
1751 // it if this behaviour is actually used.
1752
1753 // GCC rejects
1754 // static ((alias ("y"), weakref)).
1755 // Should we? How to check that weakref is before or after alias?
1756
1757 // FIXME: it would be good for us to keep the WeakRefAttr as-written instead
1758 // of transforming it into an AliasAttr. The WeakRefAttr never uses the
1759 // StringRef parameter it was given anyway.
1760 StringRef Str;
1761 if (AL.getNumArgs() && S.checkStringLiteralArgumentAttr(AL, 0, Str))
1762 // GCC will accept anything as the argument of weakref. Should we
1763 // check for an existing decl?
1764 D->addAttr(::new (S.Context) AliasAttr(AL.getRange(), S.Context, Str,
1765 AL.getAttributeSpellingListIndex()));
1766
1767 D->addAttr(::new (S.Context)
1768 WeakRefAttr(AL.getRange(), S.Context,
1769 AL.getAttributeSpellingListIndex()));
1770}
1771
1772static void handleIFuncAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1773 StringRef Str;
1774 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
1775 return;
1776
1777 // Aliases should be on declarations, not definitions.
1778 const auto *FD = cast<FunctionDecl>(D);
1779 if (FD->isThisDeclarationADefinition()) {
1780 S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 1;
1781 return;
1782 }
1783
1784 D->addAttr(::new (S.Context) IFuncAttr(AL.getRange(), S.Context, Str,
1785 AL.getAttributeSpellingListIndex()));
1786}
1787
1788static void handleAliasAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1789 StringRef Str;
1790 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
1791 return;
1792
1793 if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
1794 S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_darwin);
1795 return;
1796 }
1797 if (S.Context.getTargetInfo().getTriple().isNVPTX()) {
1798 S.Diag(AL.getLoc(), diag::err_alias_not_supported_on_nvptx);
1799 }
1800
1801 // Aliases should be on declarations, not definitions.
1802 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
1803 if (FD->isThisDeclarationADefinition()) {
1804 S.Diag(AL.getLoc(), diag::err_alias_is_definition) << FD << 0;
1805 return;
1806 }
1807 } else {
1808 const auto *VD = cast<VarDecl>(D);
1809 if (VD->isThisDeclarationADefinition() && VD->isExternallyVisible()) {
1810 S.Diag(AL.getLoc(), diag::err_alias_is_definition) << VD << 0;
1811 return;
1812 }
1813 }
1814
1815 // FIXME: check if target symbol exists in current file
1816
1817 D->addAttr(::new (S.Context) AliasAttr(AL.getRange(), S.Context, Str,
1818 AL.getAttributeSpellingListIndex()));
1819}
1820
1821static void handleTLSModelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1822 StringRef Model;
1823 SourceLocation LiteralLoc;
1824 // Check that it is a string.
1825 if (!S.checkStringLiteralArgumentAttr(AL, 0, Model, &LiteralLoc))
1826 return;
1827
1828 // Check that the value.
1829 if (Model != "global-dynamic" && Model != "local-dynamic"
1830 && Model != "initial-exec" && Model != "local-exec") {
1831 S.Diag(LiteralLoc, diag::err_attr_tlsmodel_arg);
1832 return;
1833 }
1834
1835 D->addAttr(::new (S.Context)
1836 TLSModelAttr(AL.getRange(), S.Context, Model,
1837 AL.getAttributeSpellingListIndex()));
1838}
1839
1840static void handleRestrictAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1841 QualType ResultType = getFunctionOrMethodResultType(D);
1842 if (ResultType->isAnyPointerType() || ResultType->isBlockPointerType()) {
1843 D->addAttr(::new (S.Context) RestrictAttr(
1844 AL.getRange(), S.Context, AL.getAttributeSpellingListIndex()));
1845 return;
1846 }
1847
1848 S.Diag(AL.getLoc(), diag::warn_attribute_return_pointers_only)
1849 << AL.getName() << getFunctionOrMethodResultSourceRange(D);
1850}
1851
1852static void handleCPUSpecificAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1853 FunctionDecl *FD = cast<FunctionDecl>(D);
1854 if (!checkAttributeAtLeastNumArgs(S, AL, 1))
1855 return;
1856
1857 SmallVector<IdentifierInfo *, 8> CPUs;
1858 for (unsigned ArgNo = 0; ArgNo < getNumAttributeArgs(AL); ++ArgNo) {
1859 if (!AL.isArgIdent(ArgNo)) {
1860 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
1861 << AL.getName() << AANT_ArgumentIdentifier;
1862 return;
1863 }
1864
1865 IdentifierLoc *CPUArg = AL.getArgAsIdent(ArgNo);
1866 StringRef CPUName = CPUArg->Ident->getName().trim();
1867
1868 if (!S.Context.getTargetInfo().validateCPUSpecificCPUDispatch(CPUName)) {
1869 S.Diag(CPUArg->Loc, diag::err_invalid_cpu_specific_dispatch_value)
1870 << CPUName << (AL.getKind() == ParsedAttr::AT_CPUDispatch);
1871 return;
1872 }
1873
1874 const TargetInfo &Target = S.Context.getTargetInfo();
1875 if (llvm::any_of(CPUs, [CPUName, &Target](const IdentifierInfo *Cur) {
1876 return Target.CPUSpecificManglingCharacter(CPUName) ==
1877 Target.CPUSpecificManglingCharacter(Cur->getName());
1878 })) {
1879 S.Diag(AL.getLoc(), diag::warn_multiversion_duplicate_entries);
1880 return;
1881 }
1882 CPUs.push_back(CPUArg->Ident);
1883 }
1884
1885 FD->setIsMultiVersion(true);
1886 if (AL.getKind() == ParsedAttr::AT_CPUSpecific)
1887 D->addAttr(::new (S.Context) CPUSpecificAttr(
1888 AL.getRange(), S.Context, CPUs.data(), CPUs.size(),
1889 AL.getAttributeSpellingListIndex()));
1890 else
1891 D->addAttr(::new (S.Context) CPUDispatchAttr(
1892 AL.getRange(), S.Context, CPUs.data(), CPUs.size(),
1893 AL.getAttributeSpellingListIndex()));
1894}
1895
1896static void handleCommonAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1897 if (S.LangOpts.CPlusPlus) {
1898 S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
1899 << AL.getName() << AttributeLangSupport::Cpp;
1900 return;
1901 }
1902
1903 if (CommonAttr *CA = S.mergeCommonAttr(D, AL.getRange(), AL.getName(),
1904 AL.getAttributeSpellingListIndex()))
1905 D->addAttr(CA);
1906}
1907
1908static void handleNakedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1909 if (checkAttrMutualExclusion<DisableTailCallsAttr>(S, D, AL.getRange(),
1910 AL.getName()))
1911 return;
1912
1913 if (AL.isDeclspecAttribute()) {
1914 const auto &Triple = S.getASTContext().getTargetInfo().getTriple();
1915 const auto &Arch = Triple.getArch();
1916 if (Arch != llvm::Triple::x86 &&
1917 (Arch != llvm::Triple::arm && Arch != llvm::Triple::thumb)) {
1918 S.Diag(AL.getLoc(), diag::err_attribute_not_supported_on_arch)
1919 << AL.getName() << Triple.getArchName();
1920 return;
1921 }
1922 }
1923
1924 D->addAttr(::new (S.Context) NakedAttr(AL.getRange(), S.Context,
1925 AL.getAttributeSpellingListIndex()));
1926}
1927
1928static void handleNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) {
1929 if (hasDeclarator(D)) return;
1930
1931 if (!isa<ObjCMethodDecl>(D)) {
1932 S.Diag(Attrs.getLoc(), diag::warn_attribute_wrong_decl_type)
1933 << Attrs.getName() << ExpectedFunctionOrMethod;
1934 return;
1935 }
1936
1937 D->addAttr(::new (S.Context) NoReturnAttr(
1938 Attrs.getRange(), S.Context, Attrs.getAttributeSpellingListIndex()));
1939}
1940
1941static void handleNoCfCheckAttr(Sema &S, Decl *D, const ParsedAttr &Attrs) {
1942 if (!S.getLangOpts().CFProtectionBranch)
1943 S.Diag(Attrs.getLoc(), diag::warn_nocf_check_attribute_ignored);
1944 else
1945 handleSimpleAttribute<AnyX86NoCfCheckAttr>(S, D, Attrs);
1946}
1947
1948bool Sema::CheckAttrNoArgs(const ParsedAttr &Attrs) {
1949 if (!checkAttributeNumArgs(*this, Attrs, 0)) {
1950 Attrs.setInvalid();
1951 return true;
1952 }
1953
1954 return false;
1955}
1956
1957bool Sema::CheckAttrTarget(const ParsedAttr &AL) {
1958 // Check whether the attribute is valid on the current target.
1959 if (!AL.existsInTarget(Context.getTargetInfo())) {
1960 Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored) << AL.getName();
1961 AL.setInvalid();
1962 return true;
1963 }
1964
1965 return false;
1966}
1967
1968static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1969
1970 // The checking path for 'noreturn' and 'analyzer_noreturn' are different
1971 // because 'analyzer_noreturn' does not impact the type.
1972 if (!isFunctionOrMethodOrBlock(D)) {
1973 ValueDecl *VD = dyn_cast<ValueDecl>(D);
1974 if (!VD || (!VD->getType()->isBlockPointerType() &&
1975 !VD->getType()->isFunctionPointerType())) {
1976 S.Diag(AL.getLoc(),
1977 AL.isCXX11Attribute() ? diag::err_attribute_wrong_decl_type
1978 : diag::warn_attribute_wrong_decl_type)
1979 << AL.getName() << ExpectedFunctionMethodOrBlock;
1980 return;
1981 }
1982 }
1983
1984 D->addAttr(::new (S.Context)
1985 AnalyzerNoReturnAttr(AL.getRange(), S.Context,
1986 AL.getAttributeSpellingListIndex()));
1987}
1988
1989// PS3 PPU-specific.
1990static void handleVecReturnAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
1991 /*
1992 Returning a Vector Class in Registers
1993
1994 According to the PPU ABI specifications, a class with a single member of
1995 vector type is returned in memory when used as the return value of a
1996 function.
1997 This results in inefficient code when implementing vector classes. To return
1998 the value in a single vector register, add the vecreturn attribute to the
1999 class definition. This attribute is also applicable to struct types.
2000
2001 Example:
2002
2003 struct Vector
2004 {
2005 __vector float xyzw;
2006 } __attribute__((vecreturn));
2007
2008 Vector Add(Vector lhs, Vector rhs)
2009 {
2010 Vector result;
2011 result.xyzw = vec_add(lhs.xyzw, rhs.xyzw);
2012 return result; // This will be returned in a register
2013 }
2014 */
2015 if (VecReturnAttr *A = D->getAttr<VecReturnAttr>()) {
2016 S.Diag(AL.getLoc(), diag::err_repeat_attribute) << A;
2017 return;
2018 }
2019
2020 const auto *R = cast<RecordDecl>(D);
2021 int count = 0;
2022
2023 if (!isa<CXXRecordDecl>(R)) {
2024 S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
2025 return;
2026 }
2027
2028 if (!cast<CXXRecordDecl>(R)->isPOD()) {
2029 S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_pod_record);
2030 return;
2031 }
2032
2033 for (const auto *I : R->fields()) {
2034 if ((count == 1) || !I->getType()->isVectorType()) {
2035 S.Diag(AL.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
2036 return;
2037 }
2038 count++;
2039 }
2040
2041 D->addAttr(::new (S.Context) VecReturnAttr(
2042 AL.getRange(), S.Context, AL.getAttributeSpellingListIndex()));
2043}
2044
2045static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D,
2046 const ParsedAttr &AL) {
2047 if (isa<ParmVarDecl>(D)) {
2048 // [[carries_dependency]] can only be applied to a parameter if it is a
2049 // parameter of a function declaration or lambda.
2050 if (!(Scope->getFlags() & clang::Scope::FunctionDeclarationScope)) {
2051 S.Diag(AL.getLoc(),
2052 diag::err_carries_dependency_param_not_function_decl);
2053 return;
2054 }
2055 }
2056
2057 D->addAttr(::new (S.Context) CarriesDependencyAttr(
2058 AL.getRange(), S.Context,
2059 AL.getAttributeSpellingListIndex()));
2060}
2061
2062static void handleUnusedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2063 bool IsCXX17Attr = AL.isCXX11Attribute() && !AL.getScopeName();
2064
2065 // If this is spelled as the standard C++17 attribute, but not in C++17, warn
2066 // about using it as an extension.
2067 if (!S.getLangOpts().CPlusPlus17 && IsCXX17Attr)
2068 S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL.getName();
2069
2070 D->addAttr(::new (S.Context) UnusedAttr(
2071 AL.getRange(), S.Context, AL.getAttributeSpellingListIndex()));
2072}
2073
2074static void handleConstructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2075 uint32_t priority = ConstructorAttr::DefaultPriority;
2076 if (AL.getNumArgs() &&
2077 !checkUInt32Argument(S, AL, AL.getArgAsExpr(0), priority))
2078 return;
2079
2080 D->addAttr(::new (S.Context)
2081 ConstructorAttr(AL.getRange(), S.Context, priority,
2082 AL.getAttributeSpellingListIndex()));
2083}
2084
2085static void handleDestructorAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2086 uint32_t priority = DestructorAttr::DefaultPriority;
2087 if (AL.getNumArgs() &&
2088 !checkUInt32Argument(S, AL, AL.getArgAsExpr(0), priority))
2089 return;
2090
2091 D->addAttr(::new (S.Context)
2092 DestructorAttr(AL.getRange(), S.Context, priority,
2093 AL.getAttributeSpellingListIndex()));
2094}
2095
2096template <typename AttrTy>
2097static void handleAttrWithMessage(Sema &S, Decl *D, const ParsedAttr &AL) {
2098 // Handle the case where the attribute has a text message.
2099 StringRef Str;
2100 if (AL.getNumArgs() == 1 && !S.checkStringLiteralArgumentAttr(AL, 0, Str))
2101 return;
2102
2103 D->addAttr(::new (S.Context) AttrTy(AL.getRange(), S.Context, Str,
2104 AL.getAttributeSpellingListIndex()));
2105}
2106
2107static void handleObjCSuppresProtocolAttr(Sema &S, Decl *D,
2108 const ParsedAttr &AL) {
2109 if (!cast<ObjCProtocolDecl>(D)->isThisDeclarationADefinition()) {
2110 S.Diag(AL.getLoc(), diag::err_objc_attr_protocol_requires_definition)
2111 << AL.getName() << AL.getRange();
2112 return;
2113 }
2114
2115 D->addAttr(::new (S.Context)
2116 ObjCExplicitProtocolImplAttr(AL.getRange(), S.Context,
2117 AL.getAttributeSpellingListIndex()));
2118}
2119
2120static bool checkAvailabilityAttr(Sema &S, SourceRange Range,
2121 IdentifierInfo *Platform,
2122 VersionTuple Introduced,
2123 VersionTuple Deprecated,
2124 VersionTuple Obsoleted) {
2125 StringRef PlatformName
2126 = AvailabilityAttr::getPrettyPlatformName(Platform->getName());
2127 if (PlatformName.empty())
2128 PlatformName = Platform->getName();
2129
2130 // Ensure that Introduced <= Deprecated <= Obsoleted (although not all
2131 // of these steps are needed).
2132 if (!Introduced.empty() && !Deprecated.empty() &&
2133 !(Introduced <= Deprecated)) {
2134 S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2135 << 1 << PlatformName << Deprecated.getAsString()
2136 << 0 << Introduced.getAsString();
2137 return true;
2138 }
2139
2140 if (!Introduced.empty() && !Obsoleted.empty() &&
2141 !(Introduced <= Obsoleted)) {
2142 S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2143 << 2 << PlatformName << Obsoleted.getAsString()
2144 << 0 << Introduced.getAsString();
2145 return true;
2146 }
2147
2148 if (!Deprecated.empty() && !Obsoleted.empty() &&
2149 !(Deprecated <= Obsoleted)) {
2150 S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2151 << 2 << PlatformName << Obsoleted.getAsString()
2152 << 1 << Deprecated.getAsString();
2153 return true;
2154 }
2155
2156 return false;
2157}
2158
2159/// Check whether the two versions match.
2160///
2161/// If either version tuple is empty, then they are assumed to match. If
2162/// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y.
2163static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y,
2164 bool BeforeIsOkay) {
2165 if (X.empty() || Y.empty())
2166 return true;
2167
2168 if (X == Y)
2169 return true;
2170
2171 if (BeforeIsOkay && X < Y)
2172 return true;
2173
2174 return false;
2175}
2176
2177AvailabilityAttr *Sema::mergeAvailabilityAttr(NamedDecl *D, SourceRange Range,
2178 IdentifierInfo *Platform,
2179 bool Implicit,
2180 VersionTuple Introduced,
2181 VersionTuple Deprecated,
2182 VersionTuple Obsoleted,
2183 bool IsUnavailable,
2184 StringRef Message,
2185 bool IsStrict,
2186 StringRef Replacement,
2187 AvailabilityMergeKind AMK,
2188 unsigned AttrSpellingListIndex) {
2189 VersionTuple MergedIntroduced = Introduced;
2190 VersionTuple MergedDeprecated = Deprecated;
2191 VersionTuple MergedObsoleted = Obsoleted;
2192 bool FoundAny = false;
2193 bool OverrideOrImpl = false;
2194 switch (AMK) {
2195 case AMK_None:
2196 case AMK_Redeclaration:
2197 OverrideOrImpl = false;
2198 break;
2199
2200 case AMK_Override:
2201 case AMK_ProtocolImplementation:
2202 OverrideOrImpl = true;
2203 break;
2204 }
2205
2206 if (D->hasAttrs()) {
2207 AttrVec &Attrs = D->getAttrs();
2208 for (unsigned i = 0, e = Attrs.size(); i != e;) {
2209 const auto *OldAA = dyn_cast<AvailabilityAttr>(Attrs[i]);
2210 if (!OldAA) {
2211 ++i;
2212 continue;
2213 }
2214
2215 IdentifierInfo *OldPlatform = OldAA->getPlatform();
2216 if (OldPlatform != Platform) {
2217 ++i;
2218 continue;
2219 }
2220
2221 // If there is an existing availability attribute for this platform that
2222 // is explicit and the new one is implicit use the explicit one and
2223 // discard the new implicit attribute.
2224 if (!OldAA->isImplicit() && Implicit) {
2225 return nullptr;
2226 }
2227
2228 // If there is an existing attribute for this platform that is implicit
2229 // and the new attribute is explicit then erase the old one and
2230 // continue processing the attributes.
2231 if (!Implicit && OldAA->isImplicit()) {
2232 Attrs.erase(Attrs.begin() + i);
2233 --e;
2234 continue;
2235 }
2236
2237 FoundAny = true;
2238 VersionTuple OldIntroduced = OldAA->getIntroduced();
2239 VersionTuple OldDeprecated = OldAA->getDeprecated();
2240 VersionTuple OldObsoleted = OldAA->getObsoleted();
2241 bool OldIsUnavailable = OldAA->getUnavailable();
2242
2243 if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl) ||
2244 !versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl) ||
2245 !versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl) ||
2246 !(OldIsUnavailable == IsUnavailable ||
2247 (OverrideOrImpl && !OldIsUnavailable && IsUnavailable))) {
2248 if (OverrideOrImpl) {
2249 int Which = -1;
2250 VersionTuple FirstVersion;
2251 VersionTuple SecondVersion;
2252 if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl)) {
2253 Which = 0;
2254 FirstVersion = OldIntroduced;
2255 SecondVersion = Introduced;
2256 } else if (!versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl)) {
2257 Which = 1;
2258 FirstVersion = Deprecated;
2259 SecondVersion = OldDeprecated;
2260 } else if (!versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl)) {
2261 Which = 2;
2262 FirstVersion = Obsoleted;
2263 SecondVersion = OldObsoleted;
2264 }
2265
2266 if (Which == -1) {
2267 Diag(OldAA->getLocation(),
2268 diag::warn_mismatched_availability_override_unavail)
2269 << AvailabilityAttr::getPrettyPlatformName(Platform->getName())
2270 << (AMK == AMK_Override);
2271 } else {
2272 Diag(OldAA->getLocation(),
2273 diag::warn_mismatched_availability_override)
2274 << Which
2275 << AvailabilityAttr::getPrettyPlatformName(Platform->getName())
2276 << FirstVersion.getAsString() << SecondVersion.getAsString()
2277 << (AMK == AMK_Override);
2278 }
2279 if (AMK == AMK_Override)
2280 Diag(Range.getBegin(), diag::note_overridden_method);
2281 else
2282 Diag(Range.getBegin(), diag::note_protocol_method);
2283 } else {
2284 Diag(OldAA->getLocation(), diag::warn_mismatched_availability);
2285 Diag(Range.getBegin(), diag::note_previous_attribute);
2286 }
2287
2288 Attrs.erase(Attrs.begin() + i);
2289 --e;
2290 continue;
2291 }
2292
2293 VersionTuple MergedIntroduced2 = MergedIntroduced;
2294 VersionTuple MergedDeprecated2 = MergedDeprecated;
2295 VersionTuple MergedObsoleted2 = MergedObsoleted;
2296
2297 if (MergedIntroduced2.empty())
2298 MergedIntroduced2 = OldIntroduced;
2299 if (MergedDeprecated2.empty())
2300 MergedDeprecated2 = OldDeprecated;
2301 if (MergedObsoleted2.empty())
2302 MergedObsoleted2 = OldObsoleted;
2303
2304 if (checkAvailabilityAttr(*this, OldAA->getRange(), Platform,
2305 MergedIntroduced2, MergedDeprecated2,
2306 MergedObsoleted2)) {
2307 Attrs.erase(Attrs.begin() + i);
2308 --e;
2309 continue;
2310 }
2311
2312 MergedIntroduced = MergedIntroduced2;
2313 MergedDeprecated = MergedDeprecated2;
2314 MergedObsoleted = MergedObsoleted2;
2315 ++i;
2316 }
2317 }
2318
2319 if (FoundAny &&
2320 MergedIntroduced == Introduced &&
2321 MergedDeprecated == Deprecated &&
2322 MergedObsoleted == Obsoleted)
2323 return nullptr;
2324
2325 // Only create a new attribute if !OverrideOrImpl, but we want to do
2326 // the checking.
2327 if (!checkAvailabilityAttr(*this, Range, Platform, MergedIntroduced,
2328 MergedDeprecated, MergedObsoleted) &&
2329 !OverrideOrImpl) {
2330 auto *Avail = ::new (Context) AvailabilityAttr(Range, Context, Platform,
2331 Introduced, Deprecated,
2332 Obsoleted, IsUnavailable, Message,
2333 IsStrict, Replacement,
2334 AttrSpellingListIndex);
2335 Avail->setImplicit(Implicit);
2336 return Avail;
2337 }
2338 return nullptr;
2339}
2340
2341static void handleAvailabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2342 if (!checkAttributeNumArgs(S, AL, 1))
2343 return;
2344 IdentifierLoc *Platform = AL.getArgAsIdent(0);
2345 unsigned Index = AL.getAttributeSpellingListIndex();
2346
2347 IdentifierInfo *II = Platform->Ident;
2348 if (AvailabilityAttr::getPrettyPlatformName(II->getName()).empty())
2349 S.Diag(Platform->Loc, diag::warn_availability_unknown_platform)
2350 << Platform->Ident;
2351
2352 auto *ND = dyn_cast<NamedDecl>(D);
2353 if (!ND) // We warned about this already, so just return.
2354 return;
2355
2356 AvailabilityChange Introduced = AL.getAvailabilityIntroduced();
2357 AvailabilityChange Deprecated = AL.getAvailabilityDeprecated();
2358 AvailabilityChange Obsoleted = AL.getAvailabilityObsoleted();
2359 bool IsUnavailable = AL.getUnavailableLoc().isValid();
2360 bool IsStrict = AL.getStrictLoc().isValid();
2361 StringRef Str;
2362 if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getMessageExpr()))
2363 Str = SE->getString();
2364 StringRef Replacement;
2365 if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getReplacementExpr()))
2366 Replacement = SE->getString();
2367
2368 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(ND, AL.getRange(), II,
2369 false/*Implicit*/,
2370 Introduced.Version,
2371 Deprecated.Version,
2372 Obsoleted.Version,
2373 IsUnavailable, Str,
2374 IsStrict, Replacement,
2375 Sema::AMK_None,
2376 Index);
2377 if (NewAttr)
2378 D->addAttr(NewAttr);
2379
2380 // Transcribe "ios" to "watchos" (and add a new attribute) if the versioning
2381 // matches before the start of the watchOS platform.
2382 if (S.Context.getTargetInfo().getTriple().isWatchOS()) {
2383 IdentifierInfo *NewII = nullptr;
2384 if (II->getName() == "ios")
2385 NewII = &S.Context.Idents.get("watchos");
2386 else if (II->getName() == "ios_app_extension")
2387 NewII = &S.Context.Idents.get("watchos_app_extension");
2388
2389 if (NewII) {
2390 auto adjustWatchOSVersion = [](VersionTuple Version) -> VersionTuple {
2391 if (Version.empty())
2392 return Version;
2393 auto Major = Version.getMajor();
2394 auto NewMajor = Major >= 9 ? Major - 7 : 0;
2395 if (NewMajor >= 2) {
2396 if (Version.getMinor().hasValue()) {
2397 if (Version.getSubminor().hasValue())
2398 return VersionTuple(NewMajor, Version.getMinor().getValue(),
2399 Version.getSubminor().getValue());
2400 else
2401 return VersionTuple(NewMajor, Version.getMinor().getValue());
2402 }
2403 }
2404
2405 return VersionTuple(2, 0);
2406 };
2407
2408 auto NewIntroduced = adjustWatchOSVersion(Introduced.Version);
2409 auto NewDeprecated = adjustWatchOSVersion(Deprecated.Version);
2410 auto NewObsoleted = adjustWatchOSVersion(Obsoleted.Version);
2411
2412 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(ND,
2413 AL.getRange(),
2414 NewII,
2415 true/*Implicit*/,
2416 NewIntroduced,
2417 NewDeprecated,
2418 NewObsoleted,
2419 IsUnavailable, Str,
2420 IsStrict,
2421 Replacement,
2422 Sema::AMK_None,
2423 Index);
2424 if (NewAttr)
2425 D->addAttr(NewAttr);
2426 }
2427 } else if (S.Context.getTargetInfo().getTriple().isTvOS()) {
2428 // Transcribe "ios" to "tvos" (and add a new attribute) if the versioning
2429 // matches before the start of the tvOS platform.
2430 IdentifierInfo *NewII = nullptr;
2431 if (II->getName() == "ios")
2432 NewII = &S.Context.Idents.get("tvos");
2433 else if (II->getName() == "ios_app_extension")
2434 NewII = &S.Context.Idents.get("tvos_app_extension");
2435
2436 if (NewII) {
2437 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(ND,
2438 AL.getRange(),
2439 NewII,
2440 true/*Implicit*/,
2441 Introduced.Version,
2442 Deprecated.Version,
2443 Obsoleted.Version,
2444 IsUnavailable, Str,
2445 IsStrict,
2446 Replacement,
2447 Sema::AMK_None,
2448 Index);
2449 if (NewAttr)
2450 D->addAttr(NewAttr);
2451 }
2452 }
2453}
2454
2455static void handleExternalSourceSymbolAttr(Sema &S, Decl *D,
2456 const ParsedAttr &AL) {
2457 if (!checkAttributeAtLeastNumArgs(S, AL, 1))
2458 return;
2459 assert(checkAttributeAtMostNumArgs(S, AL, 3) &&(static_cast <bool> (checkAttributeAtMostNumArgs(S, AL,
3) && "Invalid number of arguments in an external_source_symbol attribute"
) ? void (0) : __assert_fail ("checkAttributeAtMostNumArgs(S, AL, 3) && \"Invalid number of arguments in an external_source_symbol attribute\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclAttr.cpp"
, 2460, __extension__ __PRETTY_FUNCTION__))
2460 "Invalid number of arguments in an external_source_symbol attribute")(static_cast <bool> (checkAttributeAtMostNumArgs(S, AL,
3) && "Invalid number of arguments in an external_source_symbol attribute"
) ? void (0) : __assert_fail ("checkAttributeAtMostNumArgs(S, AL, 3) && \"Invalid number of arguments in an external_source_symbol attribute\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclAttr.cpp"
, 2460, __extension__ __PRETTY_FUNCTION__))
;
2461
2462 StringRef Language;
2463 if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getArgAsExpr(0)))
2464 Language = SE->getString();
2465 StringRef DefinedIn;
2466 if (const auto *SE = dyn_cast_or_null<StringLiteral>(AL.getArgAsExpr(1)))
2467 DefinedIn = SE->getString();
2468 bool IsGeneratedDeclaration = AL.getArgAsIdent(2) != nullptr;
2469
2470 D->addAttr(::new (S.Context) ExternalSourceSymbolAttr(
2471 AL.getRange(), S.Context, Language, DefinedIn, IsGeneratedDeclaration,
2472 AL.getAttributeSpellingListIndex()));
2473}
2474
2475template <class T>
2476static T *mergeVisibilityAttr(Sema &S, Decl *D, SourceRange range,
2477 typename T::VisibilityType value,
2478 unsigned attrSpellingListIndex) {
2479 T *existingAttr = D->getAttr<T>();
2480 if (existingAttr) {
2481 typename T::VisibilityType existingValue = existingAttr->getVisibility();
2482 if (existingValue == value)
2483 return nullptr;
2484 S.Diag(existingAttr->getLocation(), diag::err_mismatched_visibility);
2485 S.Diag(range.getBegin(), diag::note_previous_attribute);
2486 D->dropAttr<T>();
2487 }
2488 return ::new (S.Context) T(range, S.Context, value, attrSpellingListIndex);
2489}
2490
2491VisibilityAttr *Sema::mergeVisibilityAttr(Decl *D, SourceRange Range,
2492 VisibilityAttr::VisibilityType Vis,
2493 unsigned AttrSpellingListIndex) {
2494 return ::mergeVisibilityAttr<VisibilityAttr>(*this, D, Range, Vis,
2495 AttrSpellingListIndex);
2496}
2497
2498TypeVisibilityAttr *Sema::mergeTypeVisibilityAttr(Decl *D, SourceRange Range,
2499 TypeVisibilityAttr::VisibilityType Vis,
2500 unsigned AttrSpellingListIndex) {
2501 return ::mergeVisibilityAttr<TypeVisibilityAttr>(*this, D, Range, Vis,
2502 AttrSpellingListIndex);
2503}
2504
2505static void handleVisibilityAttr(Sema &S, Decl *D, const ParsedAttr &AL,
2506 bool isTypeVisibility) {
2507 // Visibility attributes don't mean anything on a typedef.
2508 if (isa<TypedefNameDecl>(D)) {
2509 S.Diag(AL.getRange().getBegin(), diag::warn_attribute_ignored)
2510 << AL.getName();
2511 return;
2512 }
2513
2514 // 'type_visibility' can only go on a type or namespace.
2515 if (isTypeVisibility &&
2516 !(isa<TagDecl>(D) ||
2517 isa<ObjCInterfaceDecl>(D) ||
2518 isa<NamespaceDecl>(D))) {
2519 S.Diag(AL.getRange().getBegin(), diag::err_attribute_wrong_decl_type)
2520 << AL.getName() << ExpectedTypeOrNamespace;
2521 return;
2522 }
2523
2524 // Check that the argument is a string literal.
2525 StringRef TypeStr;
2526 SourceLocation LiteralLoc;
2527 if (!S.checkStringLiteralArgumentAttr(AL, 0, TypeStr, &LiteralLoc))
2528 return;
2529
2530 VisibilityAttr::VisibilityType type;
2531 if (!VisibilityAttr::ConvertStrToVisibilityType(TypeStr, type)) {
2532 S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported)
2533 << AL.getName() << TypeStr;
2534 return;
2535 }
2536
2537 // Complain about attempts to use protected visibility on targets
2538 // (like Darwin) that don't support it.
2539 if (type == VisibilityAttr::Protected &&
2540 !S.Context.getTargetInfo().hasProtectedVisibility()) {
2541 S.Diag(AL.getLoc(), diag::warn_attribute_protected_visibility);
2542 type = VisibilityAttr::Default;
2543 }
2544
2545 unsigned Index = AL.getAttributeSpellingListIndex();
2546 Attr *newAttr;
2547 if (isTypeVisibility) {
2548 newAttr = S.mergeTypeVisibilityAttr(D, AL.getRange(),
2549 (TypeVisibilityAttr::VisibilityType) type,
2550 Index);
2551 } else {
2552 newAttr = S.mergeVisibilityAttr(D, AL.getRange(), type, Index);
2553 }
2554 if (newAttr)
2555 D->addAttr(newAttr);
2556}
2557
2558static void handleObjCMethodFamilyAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2559 const auto *M = cast<ObjCMethodDecl>(D);
2560 if (!AL.isArgIdent(0)) {
2561 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
2562 << AL.getName() << 1 << AANT_ArgumentIdentifier;
2563 return;
2564 }
2565
2566 IdentifierLoc *IL = AL.getArgAsIdent(0);
2567 ObjCMethodFamilyAttr::FamilyKind F;
2568 if (!ObjCMethodFamilyAttr::ConvertStrToFamilyKind(IL->Ident->getName(), F)) {
2569 S.Diag(IL->Loc, diag::warn_attribute_type_not_supported)
2570 << AL.getName() << IL->Ident;
2571 return;
2572 }
2573
2574 if (F == ObjCMethodFamilyAttr::OMF_init &&
2575 !M->getReturnType()->isObjCObjectPointerType()) {
2576 S.Diag(M->getLocation(), diag::err_init_method_bad_return_type)
2577 << M->getReturnType();
2578 // Ignore the attribute.
2579 return;
2580 }
2581
2582 D->addAttr(new (S.Context) ObjCMethodFamilyAttr(
2583 AL.getRange(), S.Context, F, AL.getAttributeSpellingListIndex()));
2584}
2585
2586static void handleObjCNSObject(Sema &S, Decl *D, const ParsedAttr &AL) {
2587 if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
2588 QualType T = TD->getUnderlyingType();
2589 if (!T->isCARCBridgableType()) {
2590 S.Diag(TD->getLocation(), diag::err_nsobject_attribute);
2591 return;
2592 }
2593 }
2594 else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D)) {
2595 QualType T = PD->getType();
2596 if (!T->isCARCBridgableType()) {
2597 S.Diag(PD->getLocation(), diag::err_nsobject_attribute);
2598 return;
2599 }
2600 }
2601 else {
2602 // It is okay to include this attribute on properties, e.g.:
2603 //
2604 // @property (retain, nonatomic) struct Bork *Q __attribute__((NSObject));
2605 //
2606 // In this case it follows tradition and suppresses an error in the above
2607 // case.
2608 S.Diag(D->getLocation(), diag::warn_nsobject_attribute);
2609 }
2610 D->addAttr(::new (S.Context)
2611 ObjCNSObjectAttr(AL.getRange(), S.Context,
2612 AL.getAttributeSpellingListIndex()));
2613}
2614
2615static void handleObjCIndependentClass(Sema &S, Decl *D, const ParsedAttr &AL) {
2616 if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
2617 QualType T = TD->getUnderlyingType();
2618 if (!T->isObjCObjectPointerType()) {
2619 S.Diag(TD->getLocation(), diag::warn_ptr_independentclass_attribute);
2620 return;
2621 }
2622 } else {
2623 S.Diag(D->getLocation(), diag::warn_independentclass_attribute);
2624 return;
2625 }
2626 D->addAttr(::new (S.Context)
2627 ObjCIndependentClassAttr(AL.getRange(), S.Context,
2628 AL.getAttributeSpellingListIndex()));
2629}
2630
2631static void handleBlocksAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2632 if (!AL.isArgIdent(0)) {
2633 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
2634 << AL.getName() << 1 << AANT_ArgumentIdentifier;
2635 return;
2636 }
2637
2638 IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
2639 BlocksAttr::BlockType type;
2640 if (!BlocksAttr::ConvertStrToBlockType(II->getName(), type)) {
2641 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
2642 << AL.getName() << II;
2643 return;
2644 }
2645
2646 D->addAttr(::new (S.Context)
2647 BlocksAttr(AL.getRange(), S.Context, type,
2648 AL.getAttributeSpellingListIndex()));
2649}
2650
2651static void handleSentinelAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2652 unsigned sentinel = (unsigned)SentinelAttr::DefaultSentinel;
2653 if (AL.getNumArgs() > 0) {
2654 Expr *E = AL.getArgAsExpr(0);
2655 llvm::APSInt Idx(32);
2656 if (E->isTypeDependent() || E->isValueDependent() ||
2657 !E->isIntegerConstantExpr(Idx, S.Context)) {
2658 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
2659 << AL.getName() << 1 << AANT_ArgumentIntegerConstant
2660 << E->getSourceRange();
2661 return;
2662 }
2663
2664 if (Idx.isSigned() && Idx.isNegative()) {
2665 S.Diag(AL.getLoc(), diag::err_attribute_sentinel_less_than_zero)
2666 << E->getSourceRange();
2667 return;
2668 }
2669
2670 sentinel = Idx.getZExtValue();
2671 }
2672
2673 unsigned nullPos = (unsigned)SentinelAttr::DefaultNullPos;
2674 if (AL.getNumArgs() > 1) {
2675 Expr *E = AL.getArgAsExpr(1);
2676 llvm::APSInt Idx(32);
2677 if (E->isTypeDependent() || E->isValueDependent() ||
2678 !E->isIntegerConstantExpr(Idx, S.Context)) {
2679 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
2680 << AL.getName() << 2 << AANT_ArgumentIntegerConstant
2681 << E->getSourceRange();
2682 return;
2683 }
2684 nullPos = Idx.getZExtValue();
2685
2686 if ((Idx.isSigned() && Idx.isNegative()) || nullPos > 1) {
2687 // FIXME: This error message could be improved, it would be nice
2688 // to say what the bounds actually are.
2689 S.Diag(AL.getLoc(), diag::err_attribute_sentinel_not_zero_or_one)
2690 << E->getSourceRange();
2691 return;
2692 }
2693 }
2694
2695 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2696 const FunctionType *FT = FD->getType()->castAs<FunctionType>();
2697 if (isa<FunctionNoProtoType>(FT)) {
2698 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_named_arguments);
2699 return;
2700 }
2701
2702 if (!cast<FunctionProtoType>(FT)->isVariadic()) {
2703 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
2704 return;
2705 }
2706 } else if (const auto *MD = dyn_cast<ObjCMethodDecl>(D)) {
2707 if (!MD->isVariadic()) {
2708 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
2709 return;
2710 }
2711 } else if (const auto *BD = dyn_cast<BlockDecl>(D)) {
2712 if (!BD->isVariadic()) {
2713 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1;
2714 return;
2715 }
2716 } else if (const auto *V = dyn_cast<VarDecl>(D)) {
2717 QualType Ty = V->getType();
2718 if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
2719 const FunctionType *FT = Ty->isFunctionPointerType()
2720 ? D->getFunctionType()
2721 : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
2722 if (!cast<FunctionProtoType>(FT)->isVariadic()) {
2723 int m = Ty->isFunctionPointerType() ? 0 : 1;
2724 S.Diag(AL.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m;
2725 return;
2726 }
2727 } else {
2728 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
2729 << AL.getName() << ExpectedFunctionMethodOrBlock;
2730 return;
2731 }
2732 } else {
2733 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
2734 << AL.getName() << ExpectedFunctionMethodOrBlock;
2735 return;
2736 }
2737 D->addAttr(::new (S.Context)
2738 SentinelAttr(AL.getRange(), S.Context, sentinel, nullPos,
2739 AL.getAttributeSpellingListIndex()));
2740}
2741
2742static void handleWarnUnusedResult(Sema &S, Decl *D, const ParsedAttr &AL) {
2743 if (D->getFunctionType() &&
2744 D->getFunctionType()->getReturnType()->isVoidType()) {
2745 S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method)
2746 << AL.getName() << 0;
2747 return;
2748 }
2749 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
2750 if (MD->getReturnType()->isVoidType()) {
2751 S.Diag(AL.getLoc(), diag::warn_attribute_void_function_method)
2752 << AL.getName() << 1;
2753 return;
2754 }
2755
2756 // If this is spelled as the standard C++17 attribute, but not in C++17, warn
2757 // about using it as an extension.
2758 if (!S.getLangOpts().CPlusPlus17 && AL.isCXX11Attribute() &&
2759 !AL.getScopeName())
2760 S.Diag(AL.getLoc(), diag::ext_cxx17_attr) << AL.getName();
2761
2762 D->addAttr(::new (S.Context)
2763 WarnUnusedResultAttr(AL.getRange(), S.Context,
2764 AL.getAttributeSpellingListIndex()));
2765}
2766
2767static void handleWeakImportAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2768 // weak_import only applies to variable & function declarations.
2769 bool isDef = false;
2770 if (!D->canBeWeakImported(isDef)) {
2771 if (isDef)
2772 S.Diag(AL.getLoc(), diag::warn_attribute_invalid_on_definition)
2773 << "weak_import";
2774 else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) ||
2775 (S.Context.getTargetInfo().getTriple().isOSDarwin() &&
2776 (isa<ObjCInterfaceDecl>(D) || isa<EnumDecl>(D)))) {
2777 // Nothing to warn about here.
2778 } else
2779 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
2780 << AL.getName() << ExpectedVariableOrFunction;
2781
2782 return;
2783 }
2784
2785 D->addAttr(::new (S.Context)
2786 WeakImportAttr(AL.getRange(), S.Context,
2787 AL.getAttributeSpellingListIndex()));
2788}
2789
2790// Handles reqd_work_group_size and work_group_size_hint.
2791template <typename WorkGroupAttr>
2792static void handleWorkGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) {
2793 uint32_t WGSize[3];
2794 for (unsigned i = 0; i < 3; ++i) {
2795 const Expr *E = AL.getArgAsExpr(i);
2796 if (!checkUInt32Argument(S, AL, E, WGSize[i], i))
2797 return;
2798 if (WGSize[i] == 0) {
2799 S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero)
2800 << AL.getName() << E->getSourceRange();
2801 return;
2802 }
2803 }
2804
2805 WorkGroupAttr *Existing = D->getAttr<WorkGroupAttr>();
2806 if (Existing && !(Existing->getXDim() == WGSize[0] &&
2807 Existing->getYDim() == WGSize[1] &&
2808 Existing->getZDim() == WGSize[2]))
2809 S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL.getName();
2810
2811 D->addAttr(::new (S.Context) WorkGroupAttr(AL.getRange(), S.Context,
2812 WGSize[0], WGSize[1], WGSize[2],
2813 AL.getAttributeSpellingListIndex()));
2814}
2815
2816// Handles intel_reqd_sub_group_size.
2817static void handleSubGroupSize(Sema &S, Decl *D, const ParsedAttr &AL) {
2818 uint32_t SGSize;
2819 const Expr *E = AL.getArgAsExpr(0);
2820 if (!checkUInt32Argument(S, AL, E, SGSize))
2821 return;
2822 if (SGSize == 0) {
2823 S.Diag(AL.getLoc(), diag::err_attribute_argument_is_zero)
2824 << AL.getName() << E->getSourceRange();
2825 return;
2826 }
2827
2828 OpenCLIntelReqdSubGroupSizeAttr *Existing =
2829 D->getAttr<OpenCLIntelReqdSubGroupSizeAttr>();
2830 if (Existing && Existing->getSubGroupSize() != SGSize)
2831 S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL.getName();
2832
2833 D->addAttr(::new (S.Context) OpenCLIntelReqdSubGroupSizeAttr(
2834 AL.getRange(), S.Context, SGSize,
2835 AL.getAttributeSpellingListIndex()));
2836}
2837
2838static void handleVecTypeHint(Sema &S, Decl *D, const ParsedAttr &AL) {
2839 if (!AL.hasParsedType()) {
2840 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
2841 << AL.getName() << 1;
2842 return;
2843 }
2844
2845 TypeSourceInfo *ParmTSI = nullptr;
2846 QualType ParmType = S.GetTypeFromParser(AL.getTypeArg(), &ParmTSI);
2847 assert(ParmTSI && "no type source info for attribute argument")(static_cast <bool> (ParmTSI && "no type source info for attribute argument"
) ? void (0) : __assert_fail ("ParmTSI && \"no type source info for attribute argument\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclAttr.cpp"
, 2847, __extension__ __PRETTY_FUNCTION__))
;
2848
2849 if (!ParmType->isExtVectorType() && !ParmType->isFloatingType() &&
2850 (ParmType->isBooleanType() ||
2851 !ParmType->isIntegralType(S.getASTContext()))) {
2852 S.Diag(AL.getLoc(), diag::err_attribute_argument_vec_type_hint)
2853 << ParmType;
2854 return;
2855 }
2856
2857 if (VecTypeHintAttr *A = D->getAttr<VecTypeHintAttr>()) {
2858 if (!S.Context.hasSameType(A->getTypeHint(), ParmType)) {
2859 S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL.getName();
2860 return;
2861 }
2862 }
2863
2864 D->addAttr(::new (S.Context) VecTypeHintAttr(AL.getLoc(), S.Context,
2865 ParmTSI,
2866 AL.getAttributeSpellingListIndex()));
2867}
2868
2869SectionAttr *Sema::mergeSectionAttr(Decl *D, SourceRange Range,
2870 StringRef Name,
2871 unsigned AttrSpellingListIndex) {
2872 // Explicit or partial specializations do not inherit
2873 // the section attribute from the primary template.
2874 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2875 if (AttrSpellingListIndex == SectionAttr::Declspec_allocate &&
2876 FD->isFunctionTemplateSpecialization())
2877 return nullptr;
2878 }
2879 if (SectionAttr *ExistingAttr = D->getAttr<SectionAttr>()) {
2880 if (ExistingAttr->getName() == Name)
2881 return nullptr;
2882 Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section)
2883 << 1 /*section*/;
2884 Diag(Range.getBegin(), diag::note_previous_attribute);
2885 return nullptr;
2886 }
2887 return ::new (Context) SectionAttr(Range, Context, Name,
2888 AttrSpellingListIndex);
2889}
2890
2891bool Sema::checkSectionName(SourceLocation LiteralLoc, StringRef SecName) {
2892 std::string Error = Context.getTargetInfo().isValidSectionSpecifier(SecName);
2893 if (!Error.empty()) {
2894 Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target) << Error
2895 << 1 /*'section'*/;
2896 return false;
2897 }
2898 return true;
2899}
2900
2901static void handleSectionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2902 // Make sure that there is a string literal as the sections's single
2903 // argument.
2904 StringRef Str;
2905 SourceLocation LiteralLoc;
2906 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc))
2907 return;
2908
2909 if (!S.checkSectionName(LiteralLoc, Str))
2910 return;
2911
2912 // If the target wants to validate the section specifier, make it happen.
2913 std::string Error = S.Context.getTargetInfo().isValidSectionSpecifier(Str);
2914 if (!Error.empty()) {
2915 S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target)
2916 << Error;
2917 return;
2918 }
2919
2920 unsigned Index = AL.getAttributeSpellingListIndex();
2921 SectionAttr *NewAttr = S.mergeSectionAttr(D, AL.getRange(), Str, Index);
2922 if (NewAttr)
2923 D->addAttr(NewAttr);
2924}
2925
2926static bool checkCodeSegName(Sema&S, SourceLocation LiteralLoc, StringRef CodeSegName) {
2927 std::string Error = S.Context.getTargetInfo().isValidSectionSpecifier(CodeSegName);
2928 if (!Error.empty()) {
2929 S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target) << Error
2930 << 0 /*'code-seg'*/;
2931 return false;
2932 }
2933 return true;
2934}
2935
2936CodeSegAttr *Sema::mergeCodeSegAttr(Decl *D, SourceRange Range,
2937 StringRef Name,
2938 unsigned AttrSpellingListIndex) {
2939 // Explicit or partial specializations do not inherit
2940 // the code_seg attribute from the primary template.
2941 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
2942 if (FD->isFunctionTemplateSpecialization())
2943 return nullptr;
2944 }
2945 if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) {
2946 if (ExistingAttr->getName() == Name)
2947 return nullptr;
2948 Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section)
2949 << 0 /*codeseg*/;
2950 Diag(Range.getBegin(), diag::note_previous_attribute);
2951 return nullptr;
2952 }
2953 return ::new (Context) CodeSegAttr(Range, Context, Name,
2954 AttrSpellingListIndex);
2955}
2956
2957static void handleCodeSegAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
2958 StringRef Str;
2959 SourceLocation LiteralLoc;
2960 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc))
2961 return;
2962 if (!checkCodeSegName(S, LiteralLoc, Str))
2963 return;
2964 if (const auto *ExistingAttr = D->getAttr<CodeSegAttr>()) {
2965 if (!ExistingAttr->isImplicit()) {
2966 S.Diag(AL.getLoc(),
2967 ExistingAttr->getName() == Str
2968 ? diag::warn_duplicate_codeseg_attribute
2969 : diag::err_conflicting_codeseg_attribute);
2970 return;
2971 }
2972 D->dropAttr<CodeSegAttr>();
2973 }
2974 if (CodeSegAttr *CSA = S.mergeCodeSegAttr(D, AL.getRange(), Str,
2975 AL.getAttributeSpellingListIndex()))
2976 D->addAttr(CSA);
2977}
2978
2979// Check for things we'd like to warn about. Multiversioning issues are
2980// handled later in the process, once we know how many exist.
2981bool Sema::checkTargetAttr(SourceLocation LiteralLoc, StringRef AttrStr) {
2982 enum FirstParam { Unsupported, Duplicate };
2983 enum SecondParam { None, Architecture };
2984 for (auto Str : {"tune=", "fpmath="})
2985 if (AttrStr.find(Str) != StringRef::npos)
2986 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
2987 << Unsupported << None << Str;
2988
2989 TargetAttr::ParsedTargetAttr ParsedAttrs = TargetAttr::parse(AttrStr);
2990
2991 if (!ParsedAttrs.Architecture.empty() &&
2992 !Context.getTargetInfo().isValidCPUName(ParsedAttrs.Architecture))
2993 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
2994 << Unsupported << Architecture << ParsedAttrs.Architecture;
2995
2996 if (ParsedAttrs.DuplicateArchitecture)
2997 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
2998 << Duplicate << None << "arch=";
2999
3000 for (const auto &Feature : ParsedAttrs.Features) {
3001 auto CurFeature = StringRef(Feature).drop_front(); // remove + or -.
3002 if (!Context.getTargetInfo().isValidFeatureName(CurFeature))
3003 return Diag(LiteralLoc, diag::warn_unsupported_target_attribute)
3004 << Unsupported << None << CurFeature;
3005 }
3006
3007 return false;
3008}
3009
3010static void handleTargetAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3011 StringRef Str;
3012 SourceLocation LiteralLoc;
3013 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &LiteralLoc) ||
3014 S.checkTargetAttr(LiteralLoc, Str))
3015 return;
3016
3017 unsigned Index = AL.getAttributeSpellingListIndex();
3018 TargetAttr *NewAttr =
3019 ::new (S.Context) TargetAttr(AL.getRange(), S.Context, Str, Index);
3020 D->addAttr(NewAttr);
3021}
3022
3023static void handleMinVectorWidthAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3024 Expr *E = AL.getArgAsExpr(0);
3025 uint32_t VecWidth;
3026 if (!checkUInt32Argument(S, AL, E, VecWidth)) {
3027 AL.setInvalid();
3028 return;
3029 }
3030
3031 MinVectorWidthAttr *Existing = D->getAttr<MinVectorWidthAttr>();
3032 if (Existing && Existing->getVectorWidth() != VecWidth) {
3033 S.Diag(AL.getLoc(), diag::warn_duplicate_attribute) << AL.getName();
3034 return;
3035 }
3036
3037 D->addAttr(::new (S.Context)
3038 MinVectorWidthAttr(AL.getRange(), S.Context, VecWidth,
3039 AL.getAttributeSpellingListIndex()));
3040}
3041
3042static void handleCleanupAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3043 Expr *E = AL.getArgAsExpr(0);
3044 SourceLocation Loc = E->getExprLoc();
3045 FunctionDecl *FD = nullptr;
3046 DeclarationNameInfo NI;
3047
3048 // gcc only allows for simple identifiers. Since we support more than gcc, we
3049 // will warn the user.
3050 if (auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3051 if (DRE->hasQualifier())
3052 S.Diag(Loc, diag::warn_cleanup_ext);
3053 FD = dyn_cast<FunctionDecl>(DRE->getDecl());
3054 NI = DRE->getNameInfo();
3055 if (!FD) {
3056 S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 1
3057 << NI.getName();
3058 return;
3059 }
3060 } else if (auto *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
3061 if (ULE->hasExplicitTemplateArgs())
3062 S.Diag(Loc, diag::warn_cleanup_ext);
3063 FD = S.ResolveSingleFunctionTemplateSpecialization(ULE, true);
3064 NI = ULE->getNameInfo();
3065 if (!FD) {
3066 S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 2
3067 << NI.getName();
3068 if (ULE->getType() == S.Context.OverloadTy)
3069 S.NoteAllOverloadCandidates(ULE);
3070 return;
3071 }
3072 } else {
3073 S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 0;
3074 return;
3075 }
3076
3077 if (FD->getNumParams() != 1) {
3078 S.Diag(Loc, diag::err_attribute_cleanup_func_must_take_one_arg)
3079 << NI.getName();
3080 return;
3081 }
3082
3083 // We're currently more strict than GCC about what function types we accept.
3084 // If this ever proves to be a problem it should be easy to fix.
3085 QualType Ty = S.Context.getPointerType(cast<VarDecl>(D)->getType());
3086 QualType ParamTy = FD->getParamDecl(0)->getType();
3087 if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(),
3088 ParamTy, Ty) != Sema::Compatible) {
3089 S.Diag(Loc, diag::err_attribute_cleanup_func_arg_incompatible_type)
3090 << NI.getName() << ParamTy << Ty;
3091 return;
3092 }
3093
3094 D->addAttr(::new (S.Context)
3095 CleanupAttr(AL.getRange(), S.Context, FD,
3096 AL.getAttributeSpellingListIndex()));
3097}
3098
3099static void handleEnumExtensibilityAttr(Sema &S, Decl *D,
3100 const ParsedAttr &AL) {
3101 if (!AL.isArgIdent(0)) {
3102 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
3103 << AL.getName() << 0 << AANT_ArgumentIdentifier;
3104 return;
3105 }
3106
3107 EnumExtensibilityAttr::Kind ExtensibilityKind;
3108 IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
3109 if (!EnumExtensibilityAttr::ConvertStrToKind(II->getName(),
3110 ExtensibilityKind)) {
3111 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
3112 << AL.getName() << II;
3113 return;
3114 }
3115
3116 D->addAttr(::new (S.Context) EnumExtensibilityAttr(
3117 AL.getRange(), S.Context, ExtensibilityKind,
3118 AL.getAttributeSpellingListIndex()));
3119}
3120
3121/// Handle __attribute__((format_arg((idx)))) attribute based on
3122/// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
3123static void handleFormatArgAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3124 Expr *IdxExpr = AL.getArgAsExpr(0);
3125 ParamIdx Idx;
3126 if (!checkFunctionOrMethodParameterIndex(S, D, AL, 1, IdxExpr, Idx))
3127 return;
3128
3129 // Make sure the format string is really a string.
3130 QualType Ty = getFunctionOrMethodParamType(D, Idx.getASTIndex());
3131
3132 bool NotNSStringTy = !isNSStringType(Ty, S.Context);
3133 if (NotNSStringTy &&
3134 !isCFStringType(Ty, S.Context) &&
3135 (!Ty->isPointerType() ||
3136 !Ty->getAs<PointerType>()->getPointeeType()->isCharType())) {
3137 S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3138 << "a string type" << IdxExpr->getSourceRange()
3139 << getFunctionOrMethodParamRange(D, 0);
3140 return;
3141 }
3142 Ty = getFunctionOrMethodResultType(D);
3143 if (!isNSStringType(Ty, S.Context) &&
3144 !isCFStringType(Ty, S.Context) &&
3145 (!Ty->isPointerType() ||
3146 !Ty->getAs<PointerType>()->getPointeeType()->isCharType())) {
3147 S.Diag(AL.getLoc(), diag::err_format_attribute_result_not)
3148 << (NotNSStringTy ? "string type" : "NSString")
3149 << IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0);
3150 return;
3151 }
3152
3153 D->addAttr(::new (S.Context) FormatArgAttr(
3154 AL.getRange(), S.Context, Idx, AL.getAttributeSpellingListIndex()));
3155}
3156
3157enum FormatAttrKind {
3158 CFStringFormat,
3159 NSStringFormat,
3160 StrftimeFormat,
3161 SupportedFormat,
3162 IgnoredFormat,
3163 InvalidFormat
3164};
3165
3166/// getFormatAttrKind - Map from format attribute names to supported format
3167/// types.
3168static FormatAttrKind getFormatAttrKind(StringRef Format) {
3169 return llvm::StringSwitch<FormatAttrKind>(Format)
3170 // Check for formats that get handled specially.
3171 .Case("NSString", NSStringFormat)
3172 .Case("CFString", CFStringFormat)
3173 .Case("strftime", StrftimeFormat)
3174
3175 // Otherwise, check for supported formats.
3176 .Cases("scanf", "printf", "printf0", "strfmon", SupportedFormat)
3177 .Cases("cmn_err", "vcmn_err", "zcmn_err", SupportedFormat)
3178 .Case("kprintf", SupportedFormat) // OpenBSD.
3179 .Case("freebsd_kprintf", SupportedFormat) // FreeBSD.
3180 .Case("os_trace", SupportedFormat)
3181 .Case("os_log", SupportedFormat)
3182
3183 .Cases("gcc_diag", "gcc_cdiag", "gcc_cxxdiag", "gcc_tdiag", IgnoredFormat)
3184 .Default(InvalidFormat);
3185}
3186
3187/// Handle __attribute__((init_priority(priority))) attributes based on
3188/// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html
3189static void handleInitPriorityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3190 if (!S.getLangOpts().CPlusPlus) {
3191 S.Diag(AL.getLoc(), diag::warn_attribute_ignored) << AL.getName();
3192 return;
3193 }
3194
3195 if (S.getCurFunctionOrMethodDecl()) {
3196 S.Diag(AL.getLoc(), diag::err_init_priority_object_attr);
3197 AL.setInvalid();
3198 return;
3199 }
3200 QualType T = cast<VarDecl>(D)->getType();
3201 if (S.Context.getAsArrayType(T))
3202 T = S.Context.getBaseElementType(T);
3203 if (!T->getAs<RecordType>()) {
3204 S.Diag(AL.getLoc(), diag::err_init_priority_object_attr);
3205 AL.setInvalid();
3206 return;
3207 }
3208
3209 Expr *E = AL.getArgAsExpr(0);
3210 uint32_t prioritynum;
3211 if (!checkUInt32Argument(S, AL, E, prioritynum)) {
3212 AL.setInvalid();
3213 return;
3214 }
3215
3216 if (prioritynum < 101 || prioritynum > 65535) {
3217 S.Diag(AL.getLoc(), diag::err_attribute_argument_outof_range)
3218 << E->getSourceRange() << AL.getName() << 101 << 65535;
3219 AL.setInvalid();
3220 return;
3221 }
3222 D->addAttr(::new (S.Context)
3223 InitPriorityAttr(AL.getRange(), S.Context, prioritynum,
3224 AL.getAttributeSpellingListIndex()));
3225}
3226
3227FormatAttr *Sema::mergeFormatAttr(Decl *D, SourceRange Range,
3228 IdentifierInfo *Format, int FormatIdx,
3229 int FirstArg,
3230 unsigned AttrSpellingListIndex) {
3231 // Check whether we already have an equivalent format attribute.
3232 for (auto *F : D->specific_attrs<FormatAttr>()) {
3233 if (F->getType() == Format &&
3234 F->getFormatIdx() == FormatIdx &&
3235 F->getFirstArg() == FirstArg) {
3236 // If we don't have a valid location for this attribute, adopt the
3237 // location.
3238 if (F->getLocation().isInvalid())
3239 F->setRange(Range);
3240 return nullptr;
3241 }
3242 }
3243
3244 return ::new (Context) FormatAttr(Range, Context, Format, FormatIdx,
3245 FirstArg, AttrSpellingListIndex);
3246}
3247
3248/// Handle __attribute__((format(type,idx,firstarg))) attributes based on
3249/// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
3250static void handleFormatAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3251 if (!AL.isArgIdent(0)) {
3252 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
3253 << AL.getName() << 1 << AANT_ArgumentIdentifier;
3254 return;
3255 }
3256
3257 // In C++ the implicit 'this' function parameter also counts, and they are
3258 // counted from one.
3259 bool HasImplicitThisParam = isInstanceMethod(D);
3260 unsigned NumArgs = getFunctionOrMethodNumParams(D) + HasImplicitThisParam;
3261
3262 IdentifierInfo *II = AL.getArgAsIdent(0)->Ident;
3263 StringRef Format = II->getName();
3264
3265 if (normalizeName(Format)) {
3266 // If we've modified the string name, we need a new identifier for it.
3267 II = &S.Context.Idents.get(Format);
3268 }
3269
3270 // Check for supported formats.
3271 FormatAttrKind Kind = getFormatAttrKind(Format);
3272
3273 if (Kind == IgnoredFormat)
3274 return;
3275
3276 if (Kind == InvalidFormat) {
3277 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
3278 << AL.getName() << II->getName();
3279 return;
3280 }
3281
3282 // checks for the 2nd argument
3283 Expr *IdxExpr = AL.getArgAsExpr(1);
3284 uint32_t Idx;
3285 if (!checkUInt32Argument(S, AL, IdxExpr, Idx, 2))
3286 return;
3287
3288 if (Idx < 1 || Idx > NumArgs) {
3289 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3290 << AL.getName() << 2 << IdxExpr->getSourceRange();
3291 return;
3292 }
3293
3294 // FIXME: Do we need to bounds check?
3295 unsigned ArgIdx = Idx - 1;
3296
3297 if (HasImplicitThisParam) {
3298 if (ArgIdx == 0) {
3299 S.Diag(AL.getLoc(),
3300 diag::err_format_attribute_implicit_this_format_string)
3301 << IdxExpr->getSourceRange();
3302 return;
3303 }
3304 ArgIdx--;
3305 }
3306
3307 // make sure the format string is really a string
3308 QualType Ty = getFunctionOrMethodParamType(D, ArgIdx);
3309
3310 if (Kind == CFStringFormat) {
3311 if (!isCFStringType(Ty, S.Context)) {
3312 S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3313 << "a CFString" << IdxExpr->getSourceRange()
3314 << getFunctionOrMethodParamRange(D, ArgIdx);
3315 return;
3316 }
3317 } else if (Kind == NSStringFormat) {
3318 // FIXME: do we need to check if the type is NSString*? What are the
3319 // semantics?
3320 if (!isNSStringType(Ty, S.Context)) {
3321 S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3322 << "an NSString" << IdxExpr->getSourceRange()
3323 << getFunctionOrMethodParamRange(D, ArgIdx);
3324 return;
3325 }
3326 } else if (!Ty->isPointerType() ||
3327 !Ty->getAs<PointerType>()->getPointeeType()->isCharType()) {
3328 S.Diag(AL.getLoc(), diag::err_format_attribute_not)
3329 << "a string type" << IdxExpr->getSourceRange()
3330 << getFunctionOrMethodParamRange(D, ArgIdx);
3331 return;
3332 }
3333
3334 // check the 3rd argument
3335 Expr *FirstArgExpr = AL.getArgAsExpr(2);
3336 uint32_t FirstArg;
3337 if (!checkUInt32Argument(S, AL, FirstArgExpr, FirstArg, 3))
3338 return;
3339
3340 // check if the function is variadic if the 3rd argument non-zero
3341 if (FirstArg != 0) {
3342 if (isFunctionOrMethodVariadic(D)) {
3343 ++NumArgs; // +1 for ...
3344 } else {
3345 S.Diag(D->getLocation(), diag::err_format_attribute_requires_variadic);
3346 return;
3347 }
3348 }
3349
3350 // strftime requires FirstArg to be 0 because it doesn't read from any
3351 // variable the input is just the current time + the format string.
3352 if (Kind == StrftimeFormat) {
3353 if (FirstArg != 0) {
3354 S.Diag(AL.getLoc(), diag::err_format_strftime_third_parameter)
3355 << FirstArgExpr->getSourceRange();
3356 return;
3357 }
3358 // if 0 it disables parameter checking (to use with e.g. va_list)
3359 } else if (FirstArg != 0 && FirstArg != NumArgs) {
3360 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
3361 << AL.getName() << 3 << FirstArgExpr->getSourceRange();
3362 return;
3363 }
3364
3365 FormatAttr *NewAttr = S.mergeFormatAttr(D, AL.getRange(), II,
3366 Idx, FirstArg,
3367 AL.getAttributeSpellingListIndex());
3368 if (NewAttr)
3369 D->addAttr(NewAttr);
3370}
3371
3372static void handleTransparentUnionAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3373 // Try to find the underlying union declaration.
3374 RecordDecl *RD = nullptr;
3375 const auto *TD = dyn_cast<TypedefNameDecl>(D);
3376 if (TD && TD->getUnderlyingType()->isUnionType())
3377 RD = TD->getUnderlyingType()->getAsUnionType()->getDecl();
3378 else
3379 RD = dyn_cast<RecordDecl>(D);
3380
3381 if (!RD || !RD->isUnion()) {
3382 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
3383 << AL.getName() << ExpectedUnion;
3384 return;
3385 }
3386
3387 if (!RD->isCompleteDefinition()) {
3388 if (!RD->isBeingDefined())
3389 S.Diag(AL.getLoc(),
3390 diag::warn_transparent_union_attribute_not_definition);
3391 return;
3392 }
3393
3394 RecordDecl::field_iterator Field = RD->field_begin(),
3395 FieldEnd = RD->field_end();
3396 if (Field == FieldEnd) {
3397 S.Diag(AL.getLoc(), diag::warn_transparent_union_attribute_zero_fields);
3398 return;
3399 }
3400
3401 FieldDecl *FirstField = *Field;
3402 QualType FirstType = FirstField->getType();
3403 if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) {
3404 S.Diag(FirstField->getLocation(),
3405 diag::warn_transparent_union_attribute_floating)
3406 << FirstType->isVectorType() << FirstType;
3407 return;
3408 }
3409
3410 if (FirstType->isIncompleteType())
3411 return;
3412 uint64_t FirstSize = S.Context.getTypeSize(FirstType);
3413 uint64_t FirstAlign = S.Context.getTypeAlign(FirstType);
3414 for (; Field != FieldEnd; ++Field) {
3415 QualType FieldType = Field->getType();
3416 if (FieldType->isIncompleteType())
3417 return;
3418 // FIXME: this isn't fully correct; we also need to test whether the
3419 // members of the union would all have the same calling convention as the
3420 // first member of the union. Checking just the size and alignment isn't
3421 // sufficient (consider structs passed on the stack instead of in registers
3422 // as an example).
3423 if (S.Context.getTypeSize(FieldType) != FirstSize ||
3424 S.Context.getTypeAlign(FieldType) > FirstAlign) {
3425 // Warn if we drop the attribute.
3426 bool isSize = S.Context.getTypeSize(FieldType) != FirstSize;
3427 unsigned FieldBits = isSize? S.Context.getTypeSize(FieldType)
3428 : S.Context.getTypeAlign(FieldType);
3429 S.Diag(Field->getLocation(),
3430 diag::warn_transparent_union_attribute_field_size_align)
3431 << isSize << Field->getDeclName() << FieldBits;
3432 unsigned FirstBits = isSize? FirstSize : FirstAlign;
3433 S.Diag(FirstField->getLocation(),
3434 diag::note_transparent_union_first_field_size_align)
3435 << isSize << FirstBits;
3436 return;
3437 }
3438 }
3439
3440 RD->addAttr(::new (S.Context)
3441 TransparentUnionAttr(AL.getRange(), S.Context,
3442 AL.getAttributeSpellingListIndex()));
3443}
3444
3445static void handleAnnotateAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3446 // Make sure that there is a string literal as the annotation's single
3447 // argument.
3448 StringRef Str;
3449 if (!S.checkStringLiteralArgumentAttr(AL, 0, Str))
3450 return;
3451
3452 // Don't duplicate annotations that are already set.
3453 for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
3454 if (I->getAnnotation() == Str)
3455 return;
3456 }
3457
3458 D->addAttr(::new (S.Context)
3459 AnnotateAttr(AL.getRange(), S.Context, Str,
3460 AL.getAttributeSpellingListIndex()));
3461}
3462
3463static void handleAlignValueAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3464 S.AddAlignValueAttr(AL.getRange(), D, AL.getArgAsExpr(0),
3465 AL.getAttributeSpellingListIndex());
3466}
3467
3468void Sema::AddAlignValueAttr(SourceRange AttrRange, Decl *D, Expr *E,
3469 unsigned SpellingListIndex) {
3470 AlignValueAttr TmpAttr(AttrRange, Context, E, SpellingListIndex);
3471 SourceLocation AttrLoc = AttrRange.getBegin();
3472
3473 QualType T;
3474 if (const auto *TD = dyn_cast<TypedefNameDecl>(D))
3475 T = TD->getUnderlyingType();
3476 else if (const auto *VD = dyn_cast<ValueDecl>(D))
3477 T = VD->getType();
3478 else
3479 llvm_unreachable("Unknown decl type for align_value")::llvm::llvm_unreachable_internal("Unknown decl type for align_value"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclAttr.cpp"
, 3479)
;
3480
3481 if (!T->isDependentType() && !T->isAnyPointerType() &&
3482 !T->isReferenceType() && !T->isMemberPointerType()) {
3483 Diag(AttrLoc, diag::warn_attribute_pointer_or_reference_only)
3484 << &TmpAttr /*TmpAttr.getName()*/ << T << D->getSourceRange();
3485 return;
3486 }
3487
3488 if (!E->isValueDependent()) {
3489 llvm::APSInt Alignment;
3490 ExprResult ICE
3491 = VerifyIntegerConstantExpression(E, &Alignment,
3492 diag::err_align_value_attribute_argument_not_int,
3493 /*AllowFold*/ false);
3494 if (ICE.isInvalid())
3495 return;
3496
3497 if (!Alignment.isPowerOf2()) {
3498 Diag(AttrLoc, diag::err_alignment_not_power_of_two)
3499 << E->getSourceRange();
3500 return;
3501 }
3502
3503 D->addAttr(::new (Context)
3504 AlignValueAttr(AttrRange, Context, ICE.get(),
3505 SpellingListIndex));
3506 return;
3507 }
3508
3509 // Save dependent expressions in the AST to be instantiated.
3510 D->addAttr(::new (Context) AlignValueAttr(TmpAttr));
3511}
3512
3513static void handleAlignedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3514 // check the attribute arguments.
3515 if (AL.getNumArgs() > 1) {
3516 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
3517 << AL.getName() << 1;
3518 return;
3519 }
3520
3521 if (AL.getNumArgs() == 0) {
3522 D->addAttr(::new (S.Context) AlignedAttr(AL.getRange(), S.Context,
3523 true, nullptr, AL.getAttributeSpellingListIndex()));
3524 return;
3525 }
3526
3527 Expr *E = AL.getArgAsExpr(0);
3528 if (AL.isPackExpansion() && !E->containsUnexpandedParameterPack()) {
3529 S.Diag(AL.getEllipsisLoc(),
3530 diag::err_pack_expansion_without_parameter_packs);
3531 return;
3532 }
3533
3534 if (!AL.isPackExpansion() && S.DiagnoseUnexpandedParameterPack(E))
3535 return;
3536
3537 S.AddAlignedAttr(AL.getRange(), D, E, AL.getAttributeSpellingListIndex(),
3538 AL.isPackExpansion());
3539}
3540
3541void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, Expr *E,
3542 unsigned SpellingListIndex, bool IsPackExpansion) {
3543 AlignedAttr TmpAttr(AttrRange, Context, true, E, SpellingListIndex);
3544 SourceLocation AttrLoc = AttrRange.getBegin();
3545
3546 // C++11 alignas(...) and C11 _Alignas(...) have additional requirements.
3547 if (TmpAttr.isAlignas()) {
3548 // C++11 [dcl.align]p1:
3549 // An alignment-specifier may be applied to a variable or to a class
3550 // data member, but it shall not be applied to a bit-field, a function
3551 // parameter, the formal parameter of a catch clause, or a variable
3552 // declared with the register storage class specifier. An
3553 // alignment-specifier may also be applied to the declaration of a class
3554 // or enumeration type.
3555 // C11 6.7.5/2:
3556 // An alignment attribute shall not be specified in a declaration of
3557 // a typedef, or a bit-field, or a function, or a parameter, or an
3558 // object declared with the register storage-class specifier.
3559 int DiagKind = -1;
3560 if (isa<ParmVarDecl>(D)) {
3561 DiagKind = 0;
3562 } else if (const auto *VD = dyn_cast<VarDecl>(D)) {
3563 if (VD->getStorageClass() == SC_Register)
3564 DiagKind = 1;
3565 if (VD->isExceptionVariable())
3566 DiagKind = 2;
3567 } else if (const auto *FD = dyn_cast<FieldDecl>(D)) {
3568 if (FD->isBitField())
3569 DiagKind = 3;
3570 } else if (!isa<TagDecl>(D)) {
3571 Diag(AttrLoc, diag::err_attribute_wrong_decl_type) << &TmpAttr
3572 << (TmpAttr.isC11() ? ExpectedVariableOrField
3573 : ExpectedVariableFieldOrTag);
3574 return;
3575 }
3576 if (DiagKind != -1) {
3577 Diag(AttrLoc, diag::err_alignas_attribute_wrong_decl_type)
3578 << &TmpAttr << DiagKind;
3579 return;
3580 }
3581 }
3582
3583 if (E->isValueDependent()) {
3584 // We can't support a dependent alignment on a non-dependent type,
3585 // because we have no way to model that a type is "alignment-dependent"
3586 // but not dependent in any other way.
3587 if (const auto *TND = dyn_cast<TypedefNameDecl>(D)) {
3588 if (!TND->getUnderlyingType()->isDependentType()) {
3589 Diag(AttrLoc, diag::err_alignment_dependent_typedef_name)
3590 << E->getSourceRange();
3591 return;
3592 }
3593 }
3594
3595 // Save dependent expressions in the AST to be instantiated.
3596 AlignedAttr *AA = ::new (Context) AlignedAttr(TmpAttr);
3597 AA->setPackExpansion(IsPackExpansion);
3598 D->addAttr(AA);
3599 return;
3600 }
3601
3602 // FIXME: Cache the number on the AL object?
3603 llvm::APSInt Alignment;
3604 ExprResult ICE
3605 = VerifyIntegerConstantExpression(E, &Alignment,
3606 diag::err_aligned_attribute_argument_not_int,
3607 /*AllowFold*/ false);
3608 if (ICE.isInvalid())
3609 return;
3610
3611 uint64_t AlignVal = Alignment.getZExtValue();
3612
3613 // C++11 [dcl.align]p2:
3614 // -- if the constant expression evaluates to zero, the alignment
3615 // specifier shall have no effect
3616 // C11 6.7.5p6:
3617 // An alignment specification of zero has no effect.
3618 if (!(TmpAttr.isAlignas() && !Alignment)) {
3619 if (!llvm::isPowerOf2_64(AlignVal)) {
3620 Diag(AttrLoc, diag::err_alignment_not_power_of_two)
3621 << E->getSourceRange();
3622 return;
3623 }
3624 }
3625
3626 // Alignment calculations can wrap around if it's greater than 2**28.
3627 unsigned MaxValidAlignment =
3628 Context.getTargetInfo().getTriple().isOSBinFormatCOFF() ? 8192
3629 : 268435456;
3630 if (AlignVal > MaxValidAlignment) {
3631 Diag(AttrLoc, diag::err_attribute_aligned_too_great) << MaxValidAlignment
3632 << E->getSourceRange();
3633 return;
3634 }
3635
3636 if (Context.getTargetInfo().isTLSSupported()) {
3637 unsigned MaxTLSAlign =
3638 Context.toCharUnitsFromBits(Context.getTargetInfo().getMaxTLSAlign())
3639 .getQuantity();
3640 const auto *VD = dyn_cast<VarDecl>(D);
3641 if (MaxTLSAlign && AlignVal > MaxTLSAlign && VD &&
3642 VD->getTLSKind() != VarDecl::TLS_None) {
3643 Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
3644 << (unsigned)AlignVal << VD << MaxTLSAlign;
3645 return;
3646 }
3647 }
3648
3649 AlignedAttr *AA = ::new (Context) AlignedAttr(AttrRange, Context, true,
3650 ICE.get(), SpellingListIndex);
3651 AA->setPackExpansion(IsPackExpansion);
3652 D->addAttr(AA);
3653}
3654
3655void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, TypeSourceInfo *TS,
3656 unsigned SpellingListIndex, bool IsPackExpansion) {
3657 // FIXME: Cache the number on the AL object if non-dependent?
3658 // FIXME: Perform checking of type validity
3659 AlignedAttr *AA = ::new (Context) AlignedAttr(AttrRange, Context, false, TS,
3660 SpellingListIndex);
3661 AA->setPackExpansion(IsPackExpansion);
3662 D->addAttr(AA);
3663}
3664
3665void Sema::CheckAlignasUnderalignment(Decl *D) {
3666 assert(D->hasAttrs() && "no attributes on decl")(static_cast <bool> (D->hasAttrs() && "no attributes on decl"
) ? void (0) : __assert_fail ("D->hasAttrs() && \"no attributes on decl\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclAttr.cpp"
, 3666, __extension__ __PRETTY_FUNCTION__))
;
3667
3668 QualType UnderlyingTy, DiagTy;
3669 if (const auto *VD = dyn_cast<ValueDecl>(D)) {
3670 UnderlyingTy = DiagTy = VD->getType();
3671 } else {
3672 UnderlyingTy = DiagTy = Context.getTagDeclType(cast<TagDecl>(D));
3673 if (const auto *ED = dyn_cast<EnumDecl>(D))
3674 UnderlyingTy = ED->getIntegerType();
3675 }
3676 if (DiagTy->isDependentType() || DiagTy->isIncompleteType())
3677 return;
3678
3679 // C++11 [dcl.align]p5, C11 6.7.5/4:
3680 // The combined effect of all alignment attributes in a declaration shall
3681 // not specify an alignment that is less strict than the alignment that
3682 // would otherwise be required for the entity being declared.
3683 AlignedAttr *AlignasAttr = nullptr;
3684 unsigned Align = 0;
3685 for (auto *I : D->specific_attrs<AlignedAttr>()) {
3686 if (I->isAlignmentDependent())
3687 return;
3688 if (I->isAlignas())
3689 AlignasAttr = I;
3690 Align = std::max(Align, I->getAlignment(Context));
3691 }
3692
3693 if (AlignasAttr && Align) {
3694 CharUnits RequestedAlign = Context.toCharUnitsFromBits(Align);
3695 CharUnits NaturalAlign = Context.getTypeAlignInChars(UnderlyingTy);
3696 if (NaturalAlign > RequestedAlign)
3697 Diag(AlignasAttr->getLocation(), diag::err_alignas_underaligned)
3698 << DiagTy << (unsigned)NaturalAlign.getQuantity();
3699 }
3700}
3701
3702bool Sema::checkMSInheritanceAttrOnDefinition(
3703 CXXRecordDecl *RD, SourceRange Range, bool BestCase,
3704 MSInheritanceAttr::Spelling SemanticSpelling) {
3705 assert(RD->hasDefinition() && "RD has no definition!")(static_cast <bool> (RD->hasDefinition() && "RD has no definition!"
) ? void (0) : __assert_fail ("RD->hasDefinition() && \"RD has no definition!\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclAttr.cpp"
, 3705, __extension__ __PRETTY_FUNCTION__))
;
3706
3707 // We may not have seen base specifiers or any virtual methods yet. We will
3708 // have to wait until the record is defined to catch any mismatches.
3709 if (!RD->getDefinition()->isCompleteDefinition())
3710 return false;
3711
3712 // The unspecified model never matches what a definition could need.
3713 if (SemanticSpelling == MSInheritanceAttr::Keyword_unspecified_inheritance)
3714 return false;
3715
3716 if (BestCase) {
3717 if (RD->calculateInheritanceModel() == SemanticSpelling)
3718 return false;
3719 } else {
3720 if (RD->calculateInheritanceModel() <= SemanticSpelling)
3721 return false;
3722 }
3723
3724 Diag(Range.getBegin(), diag::err_mismatched_ms_inheritance)
3725 << 0 /*definition*/;
3726 Diag(RD->getDefinition()->getLocation(), diag::note_defined_here)
3727 << RD->getNameAsString();
3728 return true;
3729}
3730
3731/// parseModeAttrArg - Parses attribute mode string and returns parsed type
3732/// attribute.
3733static void parseModeAttrArg(Sema &S, StringRef Str, unsigned &DestWidth,
3734 bool &IntegerMode, bool &ComplexMode) {
3735 IntegerMode = true;
3736 ComplexMode = false;
3737 switch (Str.size()) {
3738 case 2:
3739 switch (Str[0]) {
3740 case 'Q':
3741 DestWidth = 8;
3742 break;
3743 case 'H':
3744 DestWidth = 16;
3745 break;
3746 case 'S':
3747 DestWidth = 32;
3748 break;
3749 case 'D':
3750 DestWidth = 64;
3751 break;
3752 case 'X':
3753 DestWidth = 96;
3754 break;
3755 case 'T':
3756 DestWidth = 128;
3757 break;
3758 }
3759 if (Str[1] == 'F') {
3760 IntegerMode = false;
3761 } else if (Str[1] == 'C') {
3762 IntegerMode = false;
3763 ComplexMode = true;
3764 } else if (Str[1] != 'I') {
3765 DestWidth = 0;
3766 }
3767 break;
3768 case 4:
3769 // FIXME: glibc uses 'word' to define register_t; this is narrower than a
3770 // pointer on PIC16 and other embedded platforms.
3771 if (Str == "word")
3772 DestWidth = S.Context.getTargetInfo().getRegisterWidth();
3773 else if (Str == "byte")
3774 DestWidth = S.Context.getTargetInfo().getCharWidth();
3775 break;
3776 case 7:
3777 if (Str == "pointer")
3778 DestWidth = S.Context.getTargetInfo().getPointerWidth(0);
3779 break;
3780 case 11:
3781 if (Str == "unwind_word")
3782 DestWidth = S.Context.getTargetInfo().getUnwindWordWidth();
3783 break;
3784 }
3785}
3786
3787/// handleModeAttr - This attribute modifies the width of a decl with primitive
3788/// type.
3789///
3790/// Despite what would be logical, the mode attribute is a decl attribute, not a
3791/// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be
3792/// HImode, not an intermediate pointer.
3793static void handleModeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3794 // This attribute isn't documented, but glibc uses it. It changes
3795 // the width of an int or unsigned int to the specified size.
3796 if (!AL.isArgIdent(0)) {
3797 S.Diag(AL.getLoc(), diag::err_attribute_argument_type) << AL.getName()
3798 << AANT_ArgumentIdentifier;
3799 return;
3800 }
3801
3802 IdentifierInfo *Name = AL.getArgAsIdent(0)->Ident;
3803
3804 S.AddModeAttr(AL.getRange(), D, Name, AL.getAttributeSpellingListIndex());
3805}
3806
3807void Sema::AddModeAttr(SourceRange AttrRange, Decl *D, IdentifierInfo *Name,
3808 unsigned SpellingListIndex, bool InInstantiation) {
3809 StringRef Str = Name->getName();
3810 normalizeName(Str);
3811 SourceLocation AttrLoc = AttrRange.getBegin();
3812
3813 unsigned DestWidth = 0;
3814 bool IntegerMode = true;
3815 bool ComplexMode = false;
3816 llvm::APInt VectorSize(64, 0);
3817 if (Str.size() >= 4 && Str[0] == 'V') {
3818 // Minimal length of vector mode is 4: 'V' + NUMBER(>=1) + TYPE(>=2).
3819 size_t StrSize = Str.size();
3820 size_t VectorStringLength = 0;
3821 while ((VectorStringLength + 1) < StrSize &&
3822 isdigit(Str[VectorStringLength + 1]))
3823 ++VectorStringLength;
3824 if (VectorStringLength &&
3825 !Str.substr(1, VectorStringLength).getAsInteger(10, VectorSize) &&
3826 VectorSize.isPowerOf2()) {
3827 parseModeAttrArg(*this, Str.substr(VectorStringLength + 1), DestWidth,
3828 IntegerMode, ComplexMode);
3829 // Avoid duplicate warning from template instantiation.
3830 if (!InInstantiation)
3831 Diag(AttrLoc, diag::warn_vector_mode_deprecated);
3832 } else {
3833 VectorSize = 0;
3834 }
3835 }
3836
3837 if (!VectorSize)
3838 parseModeAttrArg(*this, Str, DestWidth, IntegerMode, ComplexMode);
3839
3840 // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t
3841 // and friends, at least with glibc.
3842 // FIXME: Make sure floating-point mappings are accurate
3843 // FIXME: Support XF and TF types
3844 if (!DestWidth) {
3845 Diag(AttrLoc, diag::err_machine_mode) << 0 /*Unknown*/ << Name;
3846 return;
3847 }
3848
3849 QualType OldTy;
3850 if (const auto *TD = dyn_cast<TypedefNameDecl>(D))
3851 OldTy = TD->getUnderlyingType();
3852 else if (const auto *ED = dyn_cast<EnumDecl>(D)) {
3853 // Something like 'typedef enum { X } __attribute__((mode(XX))) T;'.
3854 // Try to get type from enum declaration, default to int.
3855 OldTy = ED->getIntegerType();
3856 if (OldTy.isNull())
3857 OldTy = Context.IntTy;
3858 } else
3859 OldTy = cast<ValueDecl>(D)->getType();
3860
3861 if (OldTy->isDependentType()) {
3862 D->addAttr(::new (Context)
3863 ModeAttr(AttrRange, Context, Name, SpellingListIndex));
3864 return;
3865 }
3866
3867 // Base type can also be a vector type (see PR17453).
3868 // Distinguish between base type and base element type.
3869 QualType OldElemTy = OldTy;
3870 if (const auto *VT = OldTy->getAs<VectorType>())
3871 OldElemTy = VT->getElementType();
3872
3873 // GCC allows 'mode' attribute on enumeration types (even incomplete), except
3874 // for vector modes. So, 'enum X __attribute__((mode(QI)));' forms a complete
3875 // type, 'enum { A } __attribute__((mode(V4SI)))' is rejected.
3876 if ((isa<EnumDecl>(D) || OldElemTy->getAs<EnumType>()) &&
3877 VectorSize.getBoolValue()) {
3878 Diag(AttrLoc, diag::err_enum_mode_vector_type) << Name << AttrRange;
3879 return;
3880 }
3881 bool IntegralOrAnyEnumType =
3882 OldElemTy->isIntegralOrEnumerationType() || OldElemTy->getAs<EnumType>();
3883
3884 if (!OldElemTy->getAs<BuiltinType>() && !OldElemTy->isComplexType() &&
3885 !IntegralOrAnyEnumType)
3886 Diag(AttrLoc, diag::err_mode_not_primitive);
3887 else if (IntegerMode) {
3888 if (!IntegralOrAnyEnumType)
3889 Diag(AttrLoc, diag::err_mode_wrong_type);
3890 } else if (ComplexMode) {
3891 if (!OldElemTy->isComplexType())
3892 Diag(AttrLoc, diag::err_mode_wrong_type);
3893 } else {
3894 if (!OldElemTy->isFloatingType())
3895 Diag(AttrLoc, diag::err_mode_wrong_type);
3896 }
3897
3898 QualType NewElemTy;
3899
3900 if (IntegerMode)
3901 NewElemTy = Context.getIntTypeForBitwidth(DestWidth,
3902 OldElemTy->isSignedIntegerType());
3903 else
3904 NewElemTy = Context.getRealTypeForBitwidth(DestWidth);
3905
3906 if (NewElemTy.isNull()) {
3907 Diag(AttrLoc, diag::err_machine_mode) << 1 /*Unsupported*/ << Name;
3908 return;
3909 }
3910
3911 if (ComplexMode) {
3912 NewElemTy = Context.getComplexType(NewElemTy);
3913 }
3914
3915 QualType NewTy = NewElemTy;
3916 if (VectorSize.getBoolValue()) {
3917 NewTy = Context.getVectorType(NewTy, VectorSize.getZExtValue(),
3918 VectorType::GenericVector);
3919 } else if (const auto *OldVT = OldTy->getAs<VectorType>()) {
3920 // Complex machine mode does not support base vector types.
3921 if (ComplexMode) {
3922 Diag(AttrLoc, diag::err_complex_mode_vector_type);
3923 return;
3924 }
3925 unsigned NumElements = Context.getTypeSize(OldElemTy) *
3926 OldVT->getNumElements() /
3927 Context.getTypeSize(NewElemTy);
3928 NewTy =
3929 Context.getVectorType(NewElemTy, NumElements, OldVT->getVectorKind());
3930 }
3931
3932 if (NewTy.isNull()) {
3933 Diag(AttrLoc, diag::err_mode_wrong_type);
3934 return;
3935 }
3936
3937 // Install the new type.
3938 if (auto *TD = dyn_cast<TypedefNameDecl>(D))
3939 TD->setModedTypeSourceInfo(TD->getTypeSourceInfo(), NewTy);
3940 else if (auto *ED = dyn_cast<EnumDecl>(D))
3941 ED->setIntegerType(NewTy);
3942 else
3943 cast<ValueDecl>(D)->setType(NewTy);
3944
3945 D->addAttr(::new (Context)
3946 ModeAttr(AttrRange, Context, Name, SpellingListIndex));
3947}
3948
3949static void handleNoDebugAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
3950 D->addAttr(::new (S.Context)
3951 NoDebugAttr(AL.getRange(), S.Context,
3952 AL.getAttributeSpellingListIndex()));
3953}
3954
3955AlwaysInlineAttr *Sema::mergeAlwaysInlineAttr(Decl *D, SourceRange Range,
3956 IdentifierInfo *Ident,
3957 unsigned AttrSpellingListIndex) {
3958 if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
3959 Diag(Range.getBegin(), diag::warn_attribute_ignored) << Ident;
3960 Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
3961 return nullptr;
3962 }
3963
3964 if (D->hasAttr<AlwaysInlineAttr>())
3965 return nullptr;
3966
3967 return ::new (Context) AlwaysInlineAttr(Range, Context,
3968 AttrSpellingListIndex);
3969}
3970
3971CommonAttr *Sema::mergeCommonAttr(Decl *D, SourceRange Range,
3972 IdentifierInfo *Ident,
3973 unsigned AttrSpellingListIndex) {
3974 if (checkAttrMutualExclusion<InternalLinkageAttr>(*this, D, Range, Ident))
3975 return nullptr;
3976
3977 return ::new (Context) CommonAttr(Range, Context, AttrSpellingListIndex);
3978}
3979
3980InternalLinkageAttr *
3981Sema::mergeInternalLinkageAttr(Decl *D, SourceRange Range,
3982 IdentifierInfo *Ident,
3983 unsigned AttrSpellingListIndex) {
3984 if (const auto *VD = dyn_cast<VarDecl>(D)) {
3985 // Attribute applies to Var but not any subclass of it (like ParmVar,
3986 // ImplicitParm or VarTemplateSpecialization).
3987 if (VD->getKind() != Decl::Var) {
3988 Diag(Range.getBegin(), diag::warn_attribute_wrong_decl_type)
3989 << Ident << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass
3990 : ExpectedVariableOrFunction);
3991 return nullptr;
3992 }
3993 // Attribute does not apply to non-static local variables.
3994 if (VD->hasLocalStorage()) {
3995 Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage);
3996 return nullptr;
3997 }
3998 }
3999
4000 if (checkAttrMutualExclusion<CommonAttr>(*this, D, Range, Ident))
4001 return nullptr;
4002
4003 return ::new (Context)
4004 InternalLinkageAttr(Range, Context, AttrSpellingListIndex);
4005}
4006
4007MinSizeAttr *Sema::mergeMinSizeAttr(Decl *D, SourceRange Range,
4008 unsigned AttrSpellingListIndex) {
4009 if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
4010 Diag(Range.getBegin(), diag::warn_attribute_ignored) << "'minsize'";
4011 Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
4012 return nullptr;
4013 }
4014
4015 if (D->hasAttr<MinSizeAttr>())
4016 return nullptr;
4017
4018 return ::new (Context) MinSizeAttr(Range, Context, AttrSpellingListIndex);
4019}
4020
4021OptimizeNoneAttr *Sema::mergeOptimizeNoneAttr(Decl *D, SourceRange Range,
4022 unsigned AttrSpellingListIndex) {
4023 if (AlwaysInlineAttr *Inline = D->getAttr<AlwaysInlineAttr>()) {
4024 Diag(Inline->getLocation(), diag::warn_attribute_ignored) << Inline;
4025 Diag(Range.getBegin(), diag::note_conflicting_attribute);
4026 D->dropAttr<AlwaysInlineAttr>();
4027 }
4028 if (MinSizeAttr *MinSize = D->getAttr<MinSizeAttr>()) {
4029 Diag(MinSize->getLocation(), diag::warn_attribute_ignored) << MinSize;
4030 Diag(Range.getBegin(), diag::note_conflicting_attribute);
4031 D->dropAttr<MinSizeAttr>();
4032 }
4033
4034 if (D->hasAttr<OptimizeNoneAttr>())
4035 return nullptr;
4036
4037 return ::new (Context) OptimizeNoneAttr(Range, Context,
4038 AttrSpellingListIndex);
4039}
4040
4041static void handleAlwaysInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4042 if (checkAttrMutualExclusion<NotTailCalledAttr>(S, D, AL.getRange(),
4043 AL.getName()))
4044 return;
4045
4046 if (AlwaysInlineAttr *Inline = S.mergeAlwaysInlineAttr(
4047 D, AL.getRange(), AL.getName(),
4048 AL.getAttributeSpellingListIndex()))
4049 D->addAttr(Inline);
4050}
4051
4052static void handleMinSizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4053 if (MinSizeAttr *MinSize = S.mergeMinSizeAttr(
4054 D, AL.getRange(), AL.getAttributeSpellingListIndex()))
4055 D->addAttr(MinSize);
4056}
4057
4058static void handleOptimizeNoneAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4059 if (OptimizeNoneAttr *Optnone = S.mergeOptimizeNoneAttr(
4060 D, AL.getRange(), AL.getAttributeSpellingListIndex()))
4061 D->addAttr(Optnone);
4062}
4063
4064static void handleConstantAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4065 if (checkAttrMutualExclusion<CUDASharedAttr>(S, D, AL.getRange(),
4066 AL.getName()))
4067 return;
4068 const auto *VD = cast<VarDecl>(D);
4069 if (!VD->hasGlobalStorage()) {
4070 S.Diag(AL.getLoc(), diag::err_cuda_nonglobal_constant);
4071 return;
4072 }
4073 D->addAttr(::new (S.Context) CUDAConstantAttr(
4074 AL.getRange(), S.Context, AL.getAttributeSpellingListIndex()));
4075}
4076
4077static void handleSharedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4078 if (checkAttrMutualExclusion<CUDAConstantAttr>(S, D, AL.getRange(),
4079 AL.getName()))
4080 return;
4081 const auto *VD = cast<VarDecl>(D);
4082 // extern __shared__ is only allowed on arrays with no length (e.g.
4083 // "int x[]").
4084 if (!S.getLangOpts().CUDARelocatableDeviceCode && VD->hasExternalStorage() &&
4085 !isa<IncompleteArrayType>(VD->getType())) {
4086 S.Diag(AL.getLoc(), diag::err_cuda_extern_shared) << VD;
4087 return;
4088 }
4089 if (S.getLangOpts().CUDA && VD->hasLocalStorage() &&
4090 S.CUDADiagIfHostCode(AL.getLoc(), diag::err_cuda_host_shared)
4091 << S.CurrentCUDATarget())
4092 return;
4093 D->addAttr(::new (S.Context) CUDASharedAttr(
4094 AL.getRange(), S.Context, AL.getAttributeSpellingListIndex()));
4095}
4096
4097static void handleGlobalAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4098 if (checkAttrMutualExclusion<CUDADeviceAttr>(S, D, AL.getRange(),
4099 AL.getName()) ||
4100 checkAttrMutualExclusion<CUDAHostAttr>(S, D, AL.getRange(),
4101 AL.getName())) {
4102 return;
4103 }
4104 const auto *FD = cast<FunctionDecl>(D);
4105 if (!FD->getReturnType()->isVoidType()) {
4106 SourceRange RTRange = FD->getReturnTypeSourceRange();
4107 S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
4108 << FD->getType()
4109 << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
4110 : FixItHint());
4111 return;
4112 }
4113 if (const auto *Method = dyn_cast<CXXMethodDecl>(FD)) {
4114 if (Method->isInstance()) {
4115 S.Diag(Method->getLocStart(), diag::err_kern_is_nonstatic_method)
4116 << Method;
4117 return;
4118 }
4119 S.Diag(Method->getLocStart(), diag::warn_kern_is_method) << Method;
4120 }
4121 // Only warn for "inline" when compiling for host, to cut down on noise.
4122 if (FD->isInlineSpecified() && !S.getLangOpts().CUDAIsDevice)
4123 S.Diag(FD->getLocStart(), diag::warn_kern_is_inline) << FD;
4124
4125 D->addAttr(::new (S.Context)
4126 CUDAGlobalAttr(AL.getRange(), S.Context,
4127 AL.getAttributeSpellingListIndex()));
4128}
4129
4130static void handleGNUInlineAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4131 const auto *Fn = cast<FunctionDecl>(D);
4132 if (!Fn->isInlineSpecified()) {
4133 S.Diag(AL.getLoc(), diag::warn_gnu_inline_attribute_requires_inline);
4134 return;
4135 }
4136
4137 D->addAttr(::new (S.Context)
4138 GNUInlineAttr(AL.getRange(), S.Context,
4139 AL.getAttributeSpellingListIndex()));
4140}
4141
4142static void handleCallConvAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4143 if (hasDeclarator(D)) return;
4144
4145 // Diagnostic is emitted elsewhere: here we store the (valid) AL
4146 // in the Decl node for syntactic reasoning, e.g., pretty-printing.
4147 CallingConv CC;
4148 if (S.CheckCallingConvAttr(AL, CC, /*FD*/nullptr))
4149 return;
4150
4151 if (!isa<ObjCMethodDecl>(D)) {
4152 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
4153 << AL.getName() << ExpectedFunctionOrMethod;
4154 return;
4155 }
4156
4157 switch (AL.getKind()) {
4158 case ParsedAttr::AT_FastCall:
4159 D->addAttr(::new (S.Context)
4160 FastCallAttr(AL.getRange(), S.Context,
4161 AL.getAttributeSpellingListIndex()));
4162 return;
4163 case ParsedAttr::AT_StdCall:
4164 D->addAttr(::new (S.Context)
4165 StdCallAttr(AL.getRange(), S.Context,
4166 AL.getAttributeSpellingListIndex()));
4167 return;
4168 case ParsedAttr::AT_ThisCall:
4169 D->addAttr(::new (S.Context)
4170 ThisCallAttr(AL.getRange(), S.Context,
4171 AL.getAttributeSpellingListIndex()));
4172 return;
4173 case ParsedAttr::AT_CDecl:
4174 D->addAttr(::new (S.Context)
4175 CDeclAttr(AL.getRange(), S.Context,
4176 AL.getAttributeSpellingListIndex()));
4177 return;
4178 case ParsedAttr::AT_Pascal:
4179 D->addAttr(::new (S.Context)
4180 PascalAttr(AL.getRange(), S.Context,
4181 AL.getAttributeSpellingListIndex()));
4182 return;
4183 case ParsedAttr::AT_SwiftCall:
4184 D->addAttr(::new (S.Context)
4185 SwiftCallAttr(AL.getRange(), S.Context,
4186 AL.getAttributeSpellingListIndex()));
4187 return;
4188 case ParsedAttr::AT_VectorCall:
4189 D->addAttr(::new (S.Context)
4190 VectorCallAttr(AL.getRange(), S.Context,
4191 AL.getAttributeSpellingListIndex()));
4192 return;
4193 case ParsedAttr::AT_MSABI:
4194 D->addAttr(::new (S.Context)
4195 MSABIAttr(AL.getRange(), S.Context,
4196 AL.getAttributeSpellingListIndex()));
4197 return;
4198 case ParsedAttr::AT_SysVABI:
4199 D->addAttr(::new (S.Context)
4200 SysVABIAttr(AL.getRange(), S.Context,
4201 AL.getAttributeSpellingListIndex()));
4202 return;
4203 case ParsedAttr::AT_RegCall:
4204 D->addAttr(::new (S.Context) RegCallAttr(
4205 AL.getRange(), S.Context, AL.getAttributeSpellingListIndex()));
4206 return;
4207 case ParsedAttr::AT_Pcs: {
4208 PcsAttr::PCSType PCS;
4209 switch (CC) {
4210 case CC_AAPCS:
4211 PCS = PcsAttr::AAPCS;
4212 break;
4213 case CC_AAPCS_VFP:
4214 PCS = PcsAttr::AAPCS_VFP;
4215 break;
4216 default:
4217 llvm_unreachable("unexpected calling convention in pcs attribute")::llvm::llvm_unreachable_internal("unexpected calling convention in pcs attribute"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclAttr.cpp"
, 4217)
;
4218 }
4219
4220 D->addAttr(::new (S.Context)
4221 PcsAttr(AL.getRange(), S.Context, PCS,
4222 AL.getAttributeSpellingListIndex()));
4223 return;
4224 }
4225 case ParsedAttr::AT_IntelOclBicc:
4226 D->addAttr(::new (S.Context)
4227 IntelOclBiccAttr(AL.getRange(), S.Context,
4228 AL.getAttributeSpellingListIndex()));
4229 return;
4230 case ParsedAttr::AT_PreserveMost:
4231 D->addAttr(::new (S.Context) PreserveMostAttr(
4232 AL.getRange(), S.Context, AL.getAttributeSpellingListIndex()));
4233 return;
4234 case ParsedAttr::AT_PreserveAll:
4235 D->addAttr(::new (S.Context) PreserveAllAttr(
4236 AL.getRange(), S.Context, AL.getAttributeSpellingListIndex()));
4237 return;
4238 default:
4239 llvm_unreachable("unexpected attribute kind")::llvm::llvm_unreachable_internal("unexpected attribute kind"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclAttr.cpp"
, 4239)
;
4240 }
4241}
4242
4243static void handleSuppressAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4244 if (!checkAttributeAtLeastNumArgs(S, AL, 1))
4245 return;
4246
4247 std::vector<StringRef> DiagnosticIdentifiers;
4248 for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
4249 StringRef RuleName;
4250
4251 if (!S.checkStringLiteralArgumentAttr(AL, I, RuleName, nullptr))
4252 return;
4253
4254 // FIXME: Warn if the rule name is unknown. This is tricky because only
4255 // clang-tidy knows about available rules.
4256 DiagnosticIdentifiers.push_back(RuleName);
4257 }
4258 D->addAttr(::new (S.Context) SuppressAttr(
4259 AL.getRange(), S.Context, DiagnosticIdentifiers.data(),
4260 DiagnosticIdentifiers.size(), AL.getAttributeSpellingListIndex()));
4261}
4262
4263bool Sema::CheckCallingConvAttr(const ParsedAttr &Attrs, CallingConv &CC,
4264 const FunctionDecl *FD) {
4265 if (Attrs.isInvalid())
4266 return true;
4267
4268 if (Attrs.hasProcessingCache()) {
4269 CC = (CallingConv) Attrs.getProcessingCache();
4270 return false;
4271 }
4272
4273 unsigned ReqArgs = Attrs.getKind() == ParsedAttr::AT_Pcs ? 1 : 0;
4274 if (!checkAttributeNumArgs(*this, Attrs, ReqArgs)) {
4275 Attrs.setInvalid();
4276 return true;
4277 }
4278
4279 // TODO: diagnose uses of these conventions on the wrong target.
4280 switch (Attrs.getKind()) {
4281 case ParsedAttr::AT_CDecl:
4282 CC = CC_C;
4283 break;
4284 case ParsedAttr::AT_FastCall:
4285 CC = CC_X86FastCall;
4286 break;
4287 case ParsedAttr::AT_StdCall:
4288 CC = CC_X86StdCall;
4289 break;
4290 case ParsedAttr::AT_ThisCall:
4291 CC = CC_X86ThisCall;
4292 break;
4293 case ParsedAttr::AT_Pascal:
4294 CC = CC_X86Pascal;
4295 break;
4296 case ParsedAttr::AT_SwiftCall:
4297 CC = CC_Swift;
4298 break;
4299 case ParsedAttr::AT_VectorCall:
4300 CC = CC_X86VectorCall;
4301 break;
4302 case ParsedAttr::AT_RegCall:
4303 CC = CC_X86RegCall;
4304 break;
4305 case ParsedAttr::AT_MSABI:
4306 CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_C :
4307 CC_Win64;
4308 break;
4309 case ParsedAttr::AT_SysVABI:
4310 CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_X86_64SysV :
4311 CC_C;
4312 break;
4313 case ParsedAttr::AT_Pcs: {
4314 StringRef StrRef;
4315 if (!checkStringLiteralArgumentAttr(Attrs, 0, StrRef)) {
4316 Attrs.setInvalid();
4317 return true;
4318 }
4319 if (StrRef == "aapcs") {
4320 CC = CC_AAPCS;
4321 break;
4322 } else if (StrRef == "aapcs-vfp") {
4323 CC = CC_AAPCS_VFP;
4324 break;
4325 }
4326
4327 Attrs.setInvalid();
4328 Diag(Attrs.getLoc(), diag::err_invalid_pcs);
4329 return true;
4330 }
4331 case ParsedAttr::AT_IntelOclBicc:
4332 CC = CC_IntelOclBicc;
4333 break;
4334 case ParsedAttr::AT_PreserveMost:
4335 CC = CC_PreserveMost;
4336 break;
4337 case ParsedAttr::AT_PreserveAll:
4338 CC = CC_PreserveAll;
4339 break;
4340 default: llvm_unreachable("unexpected attribute kind")::llvm::llvm_unreachable_internal("unexpected attribute kind"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclAttr.cpp"
, 4340)
;
4341 }
4342
4343 const TargetInfo &TI = Context.getTargetInfo();
4344 TargetInfo::CallingConvCheckResult A = TI.checkCallingConvention(CC);
4345 if (A != TargetInfo::CCCR_OK) {
4346 if (A == TargetInfo::CCCR_Warning)
4347 Diag(Attrs.getLoc(), diag::warn_cconv_ignored) << Attrs.getName();
4348
4349 // This convention is not valid for the target. Use the default function or
4350 // method calling convention.
4351 bool IsCXXMethod = false, IsVariadic = false;
4352 if (FD) {
4353 IsCXXMethod = FD->isCXXInstanceMember();
4354 IsVariadic = FD->isVariadic();
4355 }
4356 CC = Context.getDefaultCallingConvention(IsVariadic, IsCXXMethod);
4357 }
4358
4359 Attrs.setProcessingCache((unsigned) CC);
4360 return false;
4361}
4362
4363/// Pointer-like types in the default address space.
4364static bool isValidSwiftContextType(QualType Ty) {
4365 if (!Ty->hasPointerRepresentation())
4366 return Ty->isDependentType();
4367 return Ty->getPointeeType().getAddressSpace() == LangAS::Default;
4368}
4369
4370/// Pointers and references in the default address space.
4371static bool isValidSwiftIndirectResultType(QualType Ty) {
4372 if (const auto *PtrType = Ty->getAs<PointerType>()) {
4373 Ty = PtrType->getPointeeType();
4374 } else if (const auto *RefType = Ty->getAs<ReferenceType>()) {
4375 Ty = RefType->getPointeeType();
4376 } else {
4377 return Ty->isDependentType();
4378 }
4379 return Ty.getAddressSpace() == LangAS::Default;
4380}
4381
4382/// Pointers and references to pointers in the default address space.
4383static bool isValidSwiftErrorResultType(QualType Ty) {
4384 if (const auto *PtrType = Ty->getAs<PointerType>()) {
4385 Ty = PtrType->getPointeeType();
4386 } else if (const auto *RefType = Ty->getAs<ReferenceType>()) {
4387 Ty = RefType->getPointeeType();
4388 } else {
4389 return Ty->isDependentType();
4390 }
4391 if (!Ty.getQualifiers().empty())
4392 return false;
4393 return isValidSwiftContextType(Ty);
4394}
4395
4396static void handleParameterABIAttr(Sema &S, Decl *D, const ParsedAttr &Attrs,
4397 ParameterABI Abi) {
4398 S.AddParameterABIAttr(Attrs.getRange(), D, Abi,
4399 Attrs.getAttributeSpellingListIndex());
4400}
4401
4402void Sema::AddParameterABIAttr(SourceRange range, Decl *D, ParameterABI abi,
4403 unsigned spellingIndex) {
4404
4405 QualType type = cast<ParmVarDecl>(D)->getType();
4406
4407 if (auto existingAttr = D->getAttr<ParameterABIAttr>()) {
4408 if (existingAttr->getABI() != abi) {
4409 Diag(range.getBegin(), diag::err_attributes_are_not_compatible)
4410 << getParameterABISpelling(abi) << existingAttr;
4411 Diag(existingAttr->getLocation(), diag::note_conflicting_attribute);
4412 return;
4413 }
4414 }
4415
4416 switch (abi) {
4417 case ParameterABI::Ordinary:
4418 llvm_unreachable("explicit attribute for ordinary parameter ABI?")::llvm::llvm_unreachable_internal("explicit attribute for ordinary parameter ABI?"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclAttr.cpp"
, 4418)
;
4419
4420 case ParameterABI::SwiftContext:
4421 if (!isValidSwiftContextType(type)) {
4422 Diag(range.getBegin(), diag::err_swift_abi_parameter_wrong_type)
4423 << getParameterABISpelling(abi)
4424 << /*pointer to pointer */ 0 << type;
4425 }
4426 D->addAttr(::new (Context)
4427 SwiftContextAttr(range, Context, spellingIndex));
4428 return;
4429
4430 case ParameterABI::SwiftErrorResult:
4431 if (!isValidSwiftErrorResultType(type)) {
4432 Diag(range.getBegin(), diag::err_swift_abi_parameter_wrong_type)
4433 << getParameterABISpelling(abi)
4434 << /*pointer to pointer */ 1 << type;
4435 }
4436 D->addAttr(::new (Context)
4437 SwiftErrorResultAttr(range, Context, spellingIndex));
4438 return;
4439
4440 case ParameterABI::SwiftIndirectResult:
4441 if (!isValidSwiftIndirectResultType(type)) {
4442 Diag(range.getBegin(), diag::err_swift_abi_parameter_wrong_type)
4443 << getParameterABISpelling(abi)
4444 << /*pointer*/ 0 << type;
4445 }
4446 D->addAttr(::new (Context)
4447 SwiftIndirectResultAttr(range, Context, spellingIndex));
4448 return;
4449 }
4450 llvm_unreachable("bad parameter ABI attribute")::llvm::llvm_unreachable_internal("bad parameter ABI attribute"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclAttr.cpp"
, 4450)
;
4451}
4452
4453/// Checks a regparm attribute, returning true if it is ill-formed and
4454/// otherwise setting numParams to the appropriate value.
4455bool Sema::CheckRegparmAttr(const ParsedAttr &AL, unsigned &numParams) {
4456 if (AL.isInvalid())
4457 return true;
4458
4459 if (!checkAttributeNumArgs(*this, AL, 1)) {
4460 AL.setInvalid();
4461 return true;
4462 }
4463
4464 uint32_t NP;
4465 Expr *NumParamsExpr = AL.getArgAsExpr(0);
4466 if (!checkUInt32Argument(*this, AL, NumParamsExpr, NP)) {
4467 AL.setInvalid();
4468 return true;
4469 }
4470
4471 if (Context.getTargetInfo().getRegParmMax() == 0) {
4472 Diag(AL.getLoc(), diag::err_attribute_regparm_wrong_platform)
4473 << NumParamsExpr->getSourceRange();
4474 AL.setInvalid();
4475 return true;
4476 }
4477
4478 numParams = NP;
4479 if (numParams > Context.getTargetInfo().getRegParmMax()) {
4480 Diag(AL.getLoc(), diag::err_attribute_regparm_invalid_number)
4481 << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange();
4482 AL.setInvalid();
4483 return true;
4484 }
4485
4486 return false;
4487}
4488
4489// Checks whether an argument of launch_bounds attribute is
4490// acceptable, performs implicit conversion to Rvalue, and returns
4491// non-nullptr Expr result on success. Otherwise, it returns nullptr
4492// and may output an error.
4493static Expr *makeLaunchBoundsArgExpr(Sema &S, Expr *E,
4494 const CUDALaunchBoundsAttr &AL,
4495 const unsigned Idx) {
4496 if (S.DiagnoseUnexpandedParameterPack(E))
4497 return nullptr;
4498
4499 // Accept template arguments for now as they depend on something else.
4500 // We'll get to check them when they eventually get instantiated.
4501 if (E->isValueDependent())
4502 return E;
4503
4504 llvm::APSInt I(64);
4505 if (!E->isIntegerConstantExpr(I, S.Context)) {
4506 S.Diag(E->getExprLoc(), diag::err_attribute_argument_n_type)
4507 << &AL << Idx << AANT_ArgumentIntegerConstant << E->getSourceRange();
4508 return nullptr;
4509 }
4510 // Make sure we can fit it in 32 bits.
4511 if (!I.isIntN(32)) {
4512 S.Diag(E->getExprLoc(), diag::err_ice_too_large) << I.toString(10, false)
4513 << 32 << /* Unsigned */ 1;
4514 return nullptr;
4515 }
4516 if (I < 0)
4517 S.Diag(E->getExprLoc(), diag::warn_attribute_argument_n_negative)
4518 << &AL << Idx << E->getSourceRange();
4519
4520 // We may need to perform implicit conversion of the argument.
4521 InitializedEntity Entity = InitializedEntity::InitializeParameter(
4522 S.Context, S.Context.getConstType(S.Context.IntTy), /*consume*/ false);
4523 ExprResult ValArg = S.PerformCopyInitialization(Entity, SourceLocation(), E);
4524 assert(!ValArg.isInvalid() &&(static_cast <bool> (!ValArg.isInvalid() && "Unexpected PerformCopyInitialization() failure."
) ? void (0) : __assert_fail ("!ValArg.isInvalid() && \"Unexpected PerformCopyInitialization() failure.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclAttr.cpp"
, 4525, __extension__ __PRETTY_FUNCTION__))
4525 "Unexpected PerformCopyInitialization() failure.")(static_cast <bool> (!ValArg.isInvalid() && "Unexpected PerformCopyInitialization() failure."
) ? void (0) : __assert_fail ("!ValArg.isInvalid() && \"Unexpected PerformCopyInitialization() failure.\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclAttr.cpp"
, 4525, __extension__ __PRETTY_FUNCTION__))
;
4526
4527 return ValArg.getAs<Expr>();
4528}
4529
4530void Sema::AddLaunchBoundsAttr(SourceRange AttrRange, Decl *D, Expr *MaxThreads,
4531 Expr *MinBlocks, unsigned SpellingListIndex) {
4532 CUDALaunchBoundsAttr TmpAttr(AttrRange, Context, MaxThreads, MinBlocks,
4533 SpellingListIndex);
4534 MaxThreads = makeLaunchBoundsArgExpr(*this, MaxThreads, TmpAttr, 0);
4535 if (MaxThreads == nullptr)
4536 return;
4537
4538 if (MinBlocks) {
4539 MinBlocks = makeLaunchBoundsArgExpr(*this, MinBlocks, TmpAttr, 1);
4540 if (MinBlocks == nullptr)
4541 return;
4542 }
4543
4544 D->addAttr(::new (Context) CUDALaunchBoundsAttr(
4545 AttrRange, Context, MaxThreads, MinBlocks, SpellingListIndex));
4546}
4547
4548static void handleLaunchBoundsAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4549 if (!checkAttributeAtLeastNumArgs(S, AL, 1) ||
4550 !checkAttributeAtMostNumArgs(S, AL, 2))
4551 return;
4552
4553 S.AddLaunchBoundsAttr(AL.getRange(), D, AL.getArgAsExpr(0),
4554 AL.getNumArgs() > 1 ? AL.getArgAsExpr(1) : nullptr,
4555 AL.getAttributeSpellingListIndex());
4556}
4557
4558static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D,
4559 const ParsedAttr &AL) {
4560 if (!AL.isArgIdent(0)) {
4561 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
4562 << AL.getName() << /* arg num = */ 1 << AANT_ArgumentIdentifier;
4563 return;
4564 }
4565
4566 ParamIdx ArgumentIdx;
4567 if (!checkFunctionOrMethodParameterIndex(S, D, AL, 2, AL.getArgAsExpr(1),
4568 ArgumentIdx))
4569 return;
4570
4571 ParamIdx TypeTagIdx;
4572 if (!checkFunctionOrMethodParameterIndex(S, D, AL, 3, AL.getArgAsExpr(2),
4573 TypeTagIdx))
4574 return;
4575
4576 bool IsPointer = AL.getName()->getName() == "pointer_with_type_tag";
4577 if (IsPointer) {
4578 // Ensure that buffer has a pointer type.
4579 unsigned ArgumentIdxAST = ArgumentIdx.getASTIndex();
4580 if (ArgumentIdxAST >= getFunctionOrMethodNumParams(D) ||
4581 !getFunctionOrMethodParamType(D, ArgumentIdxAST)->isPointerType())
4582 S.Diag(AL.getLoc(), diag::err_attribute_pointers_only)
4583 << AL.getName() << 0;
4584 }
4585
4586 D->addAttr(::new (S.Context) ArgumentWithTypeTagAttr(
4587 AL.getRange(), S.Context, AL.getArgAsIdent(0)->Ident, ArgumentIdx,
4588 TypeTagIdx, IsPointer, AL.getAttributeSpellingListIndex()));
4589}
4590
4591static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D,
4592 const ParsedAttr &AL) {
4593 if (!AL.isArgIdent(0)) {
4594 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
4595 << AL.getName() << 1 << AANT_ArgumentIdentifier;
4596 return;
4597 }
4598
4599 if (!checkAttributeNumArgs(S, AL, 1))
4600 return;
4601
4602 if (!isa<VarDecl>(D)) {
4603 S.Diag(AL.getLoc(), diag::err_attribute_wrong_decl_type)
4604 << AL.getName() << ExpectedVariable;
4605 return;
4606 }
4607
4608 IdentifierInfo *PointerKind = AL.getArgAsIdent(0)->Ident;
4609 TypeSourceInfo *MatchingCTypeLoc = nullptr;
4610 S.GetTypeFromParser(AL.getMatchingCType(), &MatchingCTypeLoc);
4611 assert(MatchingCTypeLoc && "no type source info for attribute argument")(static_cast <bool> (MatchingCTypeLoc && "no type source info for attribute argument"
) ? void (0) : __assert_fail ("MatchingCTypeLoc && \"no type source info for attribute argument\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclAttr.cpp"
, 4611, __extension__ __PRETTY_FUNCTION__))
;
4612
4613 D->addAttr(::new (S.Context)
4614 TypeTagForDatatypeAttr(AL.getRange(), S.Context, PointerKind,
4615 MatchingCTypeLoc,
4616 AL.getLayoutCompatible(),
4617 AL.getMustBeNull(),
4618 AL.getAttributeSpellingListIndex()));
4619}
4620
4621static void handleXRayLogArgsAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4622 ParamIdx ArgCount;
4623
4624 if (!checkFunctionOrMethodParameterIndex(S, D, AL, 1, AL.getArgAsExpr(0),
4625 ArgCount,
4626 true /* CanIndexImplicitThis */))
4627 return;
4628
4629 // ArgCount isn't a parameter index [0;n), it's a count [1;n]
4630 D->addAttr(::new (S.Context) XRayLogArgsAttr(
4631 AL.getRange(), S.Context, ArgCount.getSourceIndex(),
4632 AL.getAttributeSpellingListIndex()));
4633}
4634
4635//===----------------------------------------------------------------------===//
4636// Checker-specific attribute handlers.
4637//===----------------------------------------------------------------------===//
4638
4639static bool isValidSubjectOfNSReturnsRetainedAttribute(QualType QT) {
4640 return QT->isDependentType() || QT->isObjCRetainableType();
4641}
4642
4643static bool isValidSubjectOfNSAttribute(Sema &S, QualType QT) {
4644 return QT->isDependentType() || QT->isObjCObjectPointerType() ||
4645 S.Context.isObjCNSObjectType(QT);
4646}
4647
4648static bool isValidSubjectOfCFAttribute(Sema &S, QualType QT) {
4649 return QT->isDependentType() || QT->isPointerType() ||
4650 isValidSubjectOfNSAttribute(S, QT);
4651}
4652
4653static void handleNSConsumedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4654 S.AddNSConsumedAttr(AL.getRange(), D, AL.getAttributeSpellingListIndex(),
4655 AL.getKind() == ParsedAttr::AT_NSConsumed,
4656 /*template instantiation*/ false);
4657}
4658
4659void Sema::AddNSConsumedAttr(SourceRange AttrRange, Decl *D,
4660 unsigned SpellingIndex, bool IsNSConsumed,
4661 bool IsTemplateInstantiation) {
4662 const auto *Param = cast<ParmVarDecl>(D);
4663 bool TypeOK;
4664
4665 if (IsNSConsumed)
4666 TypeOK = isValidSubjectOfNSAttribute(*this, Param->getType());
4667 else
4668 TypeOK = isValidSubjectOfCFAttribute(*this, Param->getType());
4669
4670 if (!TypeOK) {
4671 // These attributes are normally just advisory, but in ARC, ns_consumed
4672 // is significant. Allow non-dependent code to contain inappropriate
4673 // attributes even in ARC, but require template instantiations to be
4674 // set up correctly.
4675 Diag(D->getLocStart(), (IsTemplateInstantiation && IsNSConsumed &&
4676 getLangOpts().ObjCAutoRefCount
4677 ? diag::err_ns_attribute_wrong_parameter_type
4678 : diag::warn_ns_attribute_wrong_parameter_type))
4679 << AttrRange << (IsNSConsumed ? "ns_consumed" : "cf_consumed")
4680 << (IsNSConsumed ? /*objc pointers*/ 0 : /*cf pointers*/ 1);
4681 return;
4682 }
4683
4684 if (IsNSConsumed)
4685 D->addAttr(::new (Context)
4686 NSConsumedAttr(AttrRange, Context, SpellingIndex));
4687 else
4688 D->addAttr(::new (Context)
4689 CFConsumedAttr(AttrRange, Context, SpellingIndex));
4690}
4691
4692bool Sema::checkNSReturnsRetainedReturnType(SourceLocation Loc, QualType QT) {
4693 if (isValidSubjectOfNSReturnsRetainedAttribute(QT))
4694 return false;
4695
4696 Diag(Loc, diag::warn_ns_attribute_wrong_return_type)
4697 << "'ns_returns_retained'" << 0 << 0;
4698 return true;
4699}
4700
4701static void handleNSReturnsRetainedAttr(Sema &S, Decl *D,
4702 const ParsedAttr &AL) {
4703 QualType ReturnType;
4704
4705 if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
4706 ReturnType = MD->getReturnType();
4707 else if (S.getLangOpts().ObjCAutoRefCount && hasDeclarator(D) &&
4708 (AL.getKind() == ParsedAttr::AT_NSReturnsRetained))
4709 return; // ignore: was handled as a type attribute
4710 else if (const auto *PD = dyn_cast<ObjCPropertyDecl>(D))
4711 ReturnType = PD->getType();
4712 else if (const auto *FD = dyn_cast<FunctionDecl>(D))
4713 ReturnType = FD->getReturnType();
4714 else if (const auto *Param = dyn_cast<ParmVarDecl>(D)) {
4715 ReturnType = Param->getType()->getPointeeType();
4716 if (ReturnType.isNull()) {
4717 S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_parameter_type)
4718 << AL.getName() << /*pointer-to-CF*/2
4719 << AL.getRange();
4720 return;
4721 }
4722 } else if (AL.isUsedAsTypeAttr()) {
4723 return;
4724 } else {
4725 AttributeDeclKind ExpectedDeclKind;
4726 switch (AL.getKind()) {
4727 default: llvm_unreachable("invalid ownership attribute")::llvm::llvm_unreachable_internal("invalid ownership attribute"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclAttr.cpp"
, 4727)
;
4728 case ParsedAttr::AT_NSReturnsRetained:
4729 case ParsedAttr::AT_NSReturnsAutoreleased:
4730 case ParsedAttr::AT_NSReturnsNotRetained:
4731 ExpectedDeclKind = ExpectedFunctionOrMethod;
4732 break;
4733
4734 case ParsedAttr::AT_CFReturnsRetained:
4735 case ParsedAttr::AT_CFReturnsNotRetained:
4736 ExpectedDeclKind = ExpectedFunctionMethodOrParameter;
4737 break;
4738 }
4739 S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type)
4740 << AL.getRange() << AL.getName() << ExpectedDeclKind;
4741 return;
4742 }
4743
4744 bool TypeOK;
4745 bool Cf;
4746 switch (AL.getKind()) {
4747 default: llvm_unreachable("invalid ownership attribute")::llvm::llvm_unreachable_internal("invalid ownership attribute"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclAttr.cpp"
, 4747)
;
4748 case ParsedAttr::AT_NSReturnsRetained:
4749 TypeOK = isValidSubjectOfNSReturnsRetainedAttribute(ReturnType);
4750 Cf = false;
4751 break;
4752
4753 case ParsedAttr::AT_NSReturnsAutoreleased:
4754 case ParsedAttr::AT_NSReturnsNotRetained:
4755 TypeOK = isValidSubjectOfNSAttribute(S, ReturnType);
4756 Cf = false;
4757 break;
4758
4759 case ParsedAttr::AT_CFReturnsRetained:
4760 case ParsedAttr::AT_CFReturnsNotRetained:
4761 TypeOK = isValidSubjectOfCFAttribute(S, ReturnType);
4762 Cf = true;
4763 break;
4764 }
4765
4766 if (!TypeOK) {
4767 if (AL.isUsedAsTypeAttr())
4768 return;
4769
4770 if (isa<ParmVarDecl>(D)) {
4771 S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_parameter_type)
4772 << AL.getName() << /*pointer-to-CF*/2
4773 << AL.getRange();
4774 } else {
4775 // Needs to be kept in sync with warn_ns_attribute_wrong_return_type.
4776 enum : unsigned {
4777 Function,
4778 Method,
4779 Property
4780 } SubjectKind = Function;
4781 if (isa<ObjCMethodDecl>(D))
4782 SubjectKind = Method;
4783 else if (isa<ObjCPropertyDecl>(D))
4784 SubjectKind = Property;
4785 S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_return_type)
4786 << AL.getName() << SubjectKind << Cf
4787 << AL.getRange();
4788 }
4789 return;
4790 }
4791
4792 switch (AL.getKind()) {
4793 default:
4794 llvm_unreachable("invalid ownership attribute")::llvm::llvm_unreachable_internal("invalid ownership attribute"
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclAttr.cpp"
, 4794)
;
4795 case ParsedAttr::AT_NSReturnsAutoreleased:
4796 D->addAttr(::new (S.Context) NSReturnsAutoreleasedAttr(
4797 AL.getRange(), S.Context, AL.getAttributeSpellingListIndex()));
4798 return;
4799 case ParsedAttr::AT_CFReturnsNotRetained:
4800 D->addAttr(::new (S.Context) CFReturnsNotRetainedAttr(
4801 AL.getRange(), S.Context, AL.getAttributeSpellingListIndex()));
4802 return;
4803 case ParsedAttr::AT_NSReturnsNotRetained:
4804 D->addAttr(::new (S.Context) NSReturnsNotRetainedAttr(
4805 AL.getRange(), S.Context, AL.getAttributeSpellingListIndex()));
4806 return;
4807 case ParsedAttr::AT_CFReturnsRetained:
4808 D->addAttr(::new (S.Context) CFReturnsRetainedAttr(
4809 AL.getRange(), S.Context, AL.getAttributeSpellingListIndex()));
4810 return;
4811 case ParsedAttr::AT_NSReturnsRetained:
4812 D->addAttr(::new (S.Context) NSReturnsRetainedAttr(
4813 AL.getRange(), S.Context, AL.getAttributeSpellingListIndex()));
4814 return;
4815 };
4816}
4817
4818static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D,
4819 const ParsedAttr &Attrs) {
4820 const int EP_ObjCMethod = 1;
4821 const int EP_ObjCProperty = 2;
4822
4823 SourceLocation loc = Attrs.getLoc();
4824 QualType resultType;
4825 if (isa<ObjCMethodDecl>(D))
4826 resultType = cast<ObjCMethodDecl>(D)->getReturnType();
4827 else
4828 resultType = cast<ObjCPropertyDecl>(D)->getType();
4829
4830 if (!resultType->isReferenceType() &&
4831 (!resultType->isPointerType() || resultType->isObjCRetainableType())) {
4832 S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_return_type)
4833 << SourceRange(loc)
4834 << Attrs.getName()
4835 << (isa<ObjCMethodDecl>(D) ? EP_ObjCMethod : EP_ObjCProperty)
4836 << /*non-retainable pointer*/ 2;
4837
4838 // Drop the attribute.
4839 return;
4840 }
4841
4842 D->addAttr(::new (S.Context) ObjCReturnsInnerPointerAttr(
4843 Attrs.getRange(), S.Context, Attrs.getAttributeSpellingListIndex()));
4844}
4845
4846static void handleObjCRequiresSuperAttr(Sema &S, Decl *D,
4847 const ParsedAttr &Attrs) {
4848 const auto *Method = cast<ObjCMethodDecl>(D);
4849
4850 const DeclContext *DC = Method->getDeclContext();
4851 if (const auto *PDecl = dyn_cast_or_null<ObjCProtocolDecl>(DC)) {
4852 S.Diag(D->getLocStart(), diag::warn_objc_requires_super_protocol)
4853 << Attrs.getName() << 0;
4854 S.Diag(PDecl->getLocation(), diag::note_protocol_decl);
4855 return;
4856 }
4857 if (Method->getMethodFamily() == OMF_dealloc) {
4858 S.Diag(D->getLocStart(), diag::warn_objc_requires_super_protocol)
4859 << Attrs.getName() << 1;
4860 return;
4861 }
4862
4863 D->addAttr(::new (S.Context) ObjCRequiresSuperAttr(
4864 Attrs.getRange(), S.Context, Attrs.getAttributeSpellingListIndex()));
4865}
4866
4867static void handleObjCBridgeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4868 IdentifierLoc *Parm = AL.isArgIdent(0) ? AL.getArgAsIdent(0) : nullptr;
4869
4870 if (!Parm) {
4871 S.Diag(D->getLocStart(), diag::err_objc_attr_not_id) << AL.getName() << 0;
4872 return;
4873 }
4874
4875 // Typedefs only allow objc_bridge(id) and have some additional checking.
4876 if (const auto *TD = dyn_cast<TypedefNameDecl>(D)) {
4877 if (!Parm->Ident->isStr("id")) {
4878 S.Diag(AL.getLoc(), diag::err_objc_attr_typedef_not_id)
4879 << AL.getName();
4880 return;
4881 }
4882
4883 // Only allow 'cv void *'.
4884 QualType T = TD->getUnderlyingType();
4885 if (!T->isVoidPointerType()) {
4886 S.Diag(AL.getLoc(), diag::err_objc_attr_typedef_not_void_pointer);
4887 return;
4888 }
4889 }
4890
4891 D->addAttr(::new (S.Context)
4892 ObjCBridgeAttr(AL.getRange(), S.Context, Parm->Ident,
4893 AL.getAttributeSpellingListIndex()));
4894}
4895
4896static void handleObjCBridgeMutableAttr(Sema &S, Decl *D,
4897 const ParsedAttr &AL) {
4898 IdentifierLoc *Parm = AL.isArgIdent(0) ? AL.getArgAsIdent(0) : nullptr;
4899
4900 if (!Parm) {
4901 S.Diag(D->getLocStart(), diag::err_objc_attr_not_id) << AL.getName() << 0;
4902 return;
4903 }
4904
4905 D->addAttr(::new (S.Context)
4906 ObjCBridgeMutableAttr(AL.getRange(), S.Context, Parm->Ident,
4907 AL.getAttributeSpellingListIndex()));
4908}
4909
4910static void handleObjCBridgeRelatedAttr(Sema &S, Decl *D,
4911 const ParsedAttr &AL) {
4912 IdentifierInfo *RelatedClass =
4913 AL.isArgIdent(0) ? AL.getArgAsIdent(0)->Ident : nullptr;
4914 if (!RelatedClass) {
4915 S.Diag(D->getLocStart(), diag::err_objc_attr_not_id) << AL.getName() << 0;
4916 return;
4917 }
4918 IdentifierInfo *ClassMethod =
4919 AL.getArgAsIdent(1) ? AL.getArgAsIdent(1)->Ident : nullptr;
4920 IdentifierInfo *InstanceMethod =
4921 AL.getArgAsIdent(2) ? AL.getArgAsIdent(2)->Ident : nullptr;
4922 D->addAttr(::new (S.Context)
4923 ObjCBridgeRelatedAttr(AL.getRange(), S.Context, RelatedClass,
4924 ClassMethod, InstanceMethod,
4925 AL.getAttributeSpellingListIndex()));
4926}
4927
4928static void handleObjCDesignatedInitializer(Sema &S, Decl *D,
4929 const ParsedAttr &AL) {
4930 ObjCInterfaceDecl *IFace;
4931 if (auto *CatDecl = dyn_cast<ObjCCategoryDecl>(D->getDeclContext()))
4932 IFace = CatDecl->getClassInterface();
4933 else
4934 IFace = cast<ObjCInterfaceDecl>(D->getDeclContext());
4935
4936 if (!IFace)
4937 return;
4938
4939 IFace->setHasDesignatedInitializers();
4940 D->addAttr(::new (S.Context)
4941 ObjCDesignatedInitializerAttr(AL.getRange(), S.Context,
4942 AL.getAttributeSpellingListIndex()));
4943}
4944
4945static void handleObjCRuntimeName(Sema &S, Decl *D, const ParsedAttr &AL) {
4946 StringRef MetaDataName;
4947 if (!S.checkStringLiteralArgumentAttr(AL, 0, MetaDataName))
4948 return;
4949 D->addAttr(::new (S.Context)
4950 ObjCRuntimeNameAttr(AL.getRange(), S.Context,
4951 MetaDataName,
4952 AL.getAttributeSpellingListIndex()));
4953}
4954
4955// When a user wants to use objc_boxable with a union or struct
4956// but they don't have access to the declaration (legacy/third-party code)
4957// then they can 'enable' this feature with a typedef:
4958// typedef struct __attribute((objc_boxable)) legacy_struct legacy_struct;
4959static void handleObjCBoxable(Sema &S, Decl *D, const ParsedAttr &AL) {
4960 bool notify = false;
4961
4962 auto *RD = dyn_cast<RecordDecl>(D);
4963 if (RD && RD->getDefinition()) {
4964 RD = RD->getDefinition();
4965 notify = true;
4966 }
4967
4968 if (RD) {
4969 ObjCBoxableAttr *BoxableAttr = ::new (S.Context)
4970 ObjCBoxableAttr(AL.getRange(), S.Context,
4971 AL.getAttributeSpellingListIndex());
4972 RD->addAttr(BoxableAttr);
4973 if (notify) {
4974 // we need to notify ASTReader/ASTWriter about
4975 // modification of existing declaration
4976 if (ASTMutationListener *L = S.getASTMutationListener())
4977 L->AddedAttributeToRecord(BoxableAttr, RD);
4978 }
4979 }
4980}
4981
4982static void handleObjCOwnershipAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
4983 if (hasDeclarator(D)) return;
4984
4985 S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
4986 << AL.getRange() << AL.getName() << ExpectedVariable;
4987}
4988
4989static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D,
4990 const ParsedAttr &AL) {
4991 const auto *VD = cast<ValueDecl>(D);
4992 QualType QT = VD->getType();
4993
4994 if (!QT->isDependentType() &&
4995 !QT->isObjCLifetimeType()) {
4996 S.Diag(AL.getLoc(), diag::err_objc_precise_lifetime_bad_type)
4997 << QT;
4998 return;
4999 }
5000
5001 Qualifiers::ObjCLifetime Lifetime = QT.getObjCLifetime();
5002
5003 // If we have no lifetime yet, check the lifetime we're presumably
5004 // going to infer.
5005 if (Lifetime == Qualifiers::OCL_None && !QT->isDependentType())
5006 Lifetime = QT->getObjCARCImplicitLifetime();
5007
5008 switch (Lifetime) {
5009 case Qualifiers::OCL_None:
5010 assert(QT->isDependentType() &&(static_cast <bool> (QT->isDependentType() &&
"didn't infer lifetime for non-dependent type?") ? void (0) :
__assert_fail ("QT->isDependentType() && \"didn't infer lifetime for non-dependent type?\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclAttr.cpp"
, 5011, __extension__ __PRETTY_FUNCTION__))
5011 "didn't infer lifetime for non-dependent type?")(static_cast <bool> (QT->isDependentType() &&
"didn't infer lifetime for non-dependent type?") ? void (0) :
__assert_fail ("QT->isDependentType() && \"didn't infer lifetime for non-dependent type?\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclAttr.cpp"
, 5011, __extension__ __PRETTY_FUNCTION__))
;
5012 break;
5013
5014 case Qualifiers::OCL_Weak: // meaningful
5015 case Qualifiers::OCL_Strong: // meaningful
5016 break;
5017
5018 case Qualifiers::OCL_ExplicitNone:
5019 case Qualifiers::OCL_Autoreleasing:
5020 S.Diag(AL.getLoc(), diag::warn_objc_precise_lifetime_meaningless)
5021 << (Lifetime == Qualifiers::OCL_Autoreleasing);
5022 break;
5023 }
5024
5025 D->addAttr(::new (S.Context)
5026 ObjCPreciseLifetimeAttr(AL.getRange(), S.Context,
5027 AL.getAttributeSpellingListIndex()));
5028}
5029
5030//===----------------------------------------------------------------------===//
5031// Microsoft specific attribute handlers.
5032//===----------------------------------------------------------------------===//
5033
5034UuidAttr *Sema::mergeUuidAttr(Decl *D, SourceRange Range,
5035 unsigned AttrSpellingListIndex, StringRef Uuid) {
5036 if (const auto *UA = D->getAttr<UuidAttr>()) {
5037 if (UA->getGuid().equals_lower(Uuid))
5038 return nullptr;
5039 Diag(UA->getLocation(), diag::err_mismatched_uuid);
5040 Diag(Range.getBegin(), diag::note_previous_uuid);
5041 D->dropAttr<UuidAttr>();
5042 }
5043
5044 return ::new (Context) UuidAttr(Range, Context, Uuid, AttrSpellingListIndex);
5045}
5046
5047static void handleUuidAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5048 if (!S.LangOpts.CPlusPlus) {
5049 S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
5050 << AL.getName() << AttributeLangSupport::C;
5051 return;
5052 }
5053
5054 StringRef StrRef;
5055 SourceLocation LiteralLoc;
5056 if (!S.checkStringLiteralArgumentAttr(AL, 0, StrRef, &LiteralLoc))
5057 return;
5058
5059 // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or
5060 // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}", normalize to the former.
5061 if (StrRef.size() == 38 && StrRef.front() == '{' && StrRef.back() == '}')
5062 StrRef = StrRef.drop_front().drop_back();
5063
5064 // Validate GUID length.
5065 if (StrRef.size() != 36) {
5066 S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
5067 return;
5068 }
5069
5070 for (unsigned i = 0; i < 36; ++i) {
5071 if (i == 8 || i == 13 || i == 18 || i == 23) {
5072 if (StrRef[i] != '-') {
5073 S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
5074 return;
5075 }
5076 } else if (!isHexDigit(StrRef[i])) {
5077 S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
5078 return;
5079 }
5080 }
5081
5082 // FIXME: It'd be nice to also emit a fixit removing uuid(...) (and, if it's
5083 // the only thing in the [] list, the [] too), and add an insertion of
5084 // __declspec(uuid(...)). But sadly, neither the SourceLocs of the commas
5085 // separating attributes nor of the [ and the ] are in the AST.
5086 // Cf "SourceLocations of attribute list delimiters - [[ ... , ... ]] etc"
5087 // on cfe-dev.
5088 if (AL.isMicrosoftAttribute()) // Check for [uuid(...)] spelling.
5089 S.Diag(AL.getLoc(), diag::warn_atl_uuid_deprecated);
5090
5091 UuidAttr *UA = S.mergeUuidAttr(D, AL.getRange(),
5092 AL.getAttributeSpellingListIndex(), StrRef);
5093 if (UA)
5094 D->addAttr(UA);
5095}
5096
5097static void handleMSInheritanceAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5098 if (!S.LangOpts.CPlusPlus) {
5099 S.Diag(AL.getLoc(), diag::err_attribute_not_supported_in_lang)
5100 << AL.getName() << AttributeLangSupport::C;
5101 return;
5102 }
5103 MSInheritanceAttr *IA = S.mergeMSInheritanceAttr(
5104 D, AL.getRange(), /*BestCase=*/true,
5105 AL.getAttributeSpellingListIndex(),
5106 (MSInheritanceAttr::Spelling)AL.getSemanticSpelling());
5107 if (IA) {
5108 D->addAttr(IA);
5109 S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
5110 }
5111}
5112
5113static void handleDeclspecThreadAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5114 const auto *VD = cast<VarDecl>(D);
5115 if (!S.Context.getTargetInfo().isTLSSupported()) {
5116 S.Diag(AL.getLoc(), diag::err_thread_unsupported);
5117 return;
5118 }
5119 if (VD->getTSCSpec() != TSCS_unspecified) {
5120 S.Diag(AL.getLoc(), diag::err_declspec_thread_on_thread_variable);
5121 return;
5122 }
5123 if (VD->hasLocalStorage()) {
5124 S.Diag(AL.getLoc(), diag::err_thread_non_global) << "__declspec(thread)";
5125 return;
5126 }
5127 D->addAttr(::new (S.Context) ThreadAttr(AL.getRange(), S.Context,
5128 AL.getAttributeSpellingListIndex()));
5129}
5130
5131static void handleAbiTagAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5132 SmallVector<StringRef, 4> Tags;
5133 for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
5134 StringRef Tag;
5135 if (!S.checkStringLiteralArgumentAttr(AL, I, Tag))
5136 return;
5137 Tags.push_back(Tag);
5138 }
5139
5140 if (const auto *NS = dyn_cast<NamespaceDecl>(D)) {
5141 if (!NS->isInline()) {
5142 S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 0;
5143 return;
5144 }
5145 if (NS->isAnonymousNamespace()) {
5146 S.Diag(AL.getLoc(), diag::warn_attr_abi_tag_namespace) << 1;
5147 return;
5148 }
5149 if (AL.getNumArgs() == 0)
5150 Tags.push_back(NS->getName());
5151 } else if (!checkAttributeAtLeastNumArgs(S, AL, 1))
5152 return;
5153
5154 // Store tags sorted and without duplicates.
5155 llvm::sort(Tags.begin(), Tags.end());
5156 Tags.erase(std::unique(Tags.begin(), Tags.end()), Tags.end());
5157
5158 D->addAttr(::new (S.Context)
5159 AbiTagAttr(AL.getRange(), S.Context, Tags.data(), Tags.size(),
5160 AL.getAttributeSpellingListIndex()));
5161}
5162
5163static void handleARMInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5164 // Check the attribute arguments.
5165 if (AL.getNumArgs() > 1) {
5166 S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments)
5167 << AL.getName() << 1;
5168 return;
5169 }
5170
5171 StringRef Str;
5172 SourceLocation ArgLoc;
5173
5174 if (AL.getNumArgs() == 0)
5175 Str = "";
5176 else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
5177 return;
5178
5179 ARMInterruptAttr::InterruptType Kind;
5180 if (!ARMInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
5181 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
5182 << AL.getName() << Str << ArgLoc;
5183 return;
5184 }
5185
5186 unsigned Index = AL.getAttributeSpellingListIndex();
5187 D->addAttr(::new (S.Context)
5188 ARMInterruptAttr(AL.getLoc(), S.Context, Kind, Index));
5189}
5190
5191static void handleMSP430InterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5192 if (!checkAttributeNumArgs(S, AL, 1))
5193 return;
5194
5195 if (!AL.isArgExpr(0)) {
5196 S.Diag(AL.getLoc(), diag::err_attribute_argument_type) << AL.getName()
5197 << AANT_ArgumentIntegerConstant;
5198 return;
5199 }
5200
5201 // FIXME: Check for decl - it should be void ()(void).
5202
5203 Expr *NumParamsExpr = static_cast<Expr *>(AL.getArgAsExpr(0));
5204 llvm::APSInt NumParams(32);
5205 if (!NumParamsExpr->isIntegerConstantExpr(NumParams, S.Context)) {
5206 S.Diag(AL.getLoc(), diag::err_attribute_argument_type)
5207 << AL.getName() << AANT_ArgumentIntegerConstant
5208 << NumParamsExpr->getSourceRange();
5209 return;
5210 }
5211
5212 unsigned Num = NumParams.getLimitedValue(255);
5213 if ((Num & 1) || Num > 30) {
5214 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
5215 << AL.getName() << (int)NumParams.getSExtValue()
5216 << NumParamsExpr->getSourceRange();
5217 return;
5218 }
5219
5220 D->addAttr(::new (S.Context)
5221 MSP430InterruptAttr(AL.getLoc(), S.Context, Num,
5222 AL.getAttributeSpellingListIndex()));
5223 D->addAttr(UsedAttr::CreateImplicit(S.Context));
5224}
5225
5226static void handleMipsInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5227 // Only one optional argument permitted.
5228 if (AL.getNumArgs() > 1) {
5229 S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments)
5230 << AL.getName() << 1;
5231 return;
5232 }
5233
5234 StringRef Str;
5235 SourceLocation ArgLoc;
5236
5237 if (AL.getNumArgs() == 0)
5238 Str = "";
5239 else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
5240 return;
5241
5242 // Semantic checks for a function with the 'interrupt' attribute for MIPS:
5243 // a) Must be a function.
5244 // b) Must have no parameters.
5245 // c) Must have the 'void' return type.
5246 // d) Cannot have the 'mips16' attribute, as that instruction set
5247 // lacks the 'eret' instruction.
5248 // e) The attribute itself must either have no argument or one of the
5249 // valid interrupt types, see [MipsInterruptDocs].
5250
5251 if (!isFunctionOrMethod(D)) {
5252 S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
5253 << "'interrupt'" << ExpectedFunctionOrMethod;
5254 return;
5255 }
5256
5257 if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) {
5258 S.Diag(D->getLocation(), diag::warn_mips_interrupt_attribute)
5259 << 0;
5260 return;
5261 }
5262
5263 if (!getFunctionOrMethodResultType(D)->isVoidType()) {
5264 S.Diag(D->getLocation(), diag::warn_mips_interrupt_attribute)
5265 << 1;
5266 return;
5267 }
5268
5269 if (checkAttrMutualExclusion<Mips16Attr>(S, D, AL.getRange(),
5270 AL.getName()))
5271 return;
5272
5273 MipsInterruptAttr::InterruptType Kind;
5274 if (!MipsInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
5275 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
5276 << AL.getName() << "'" + std::string(Str) + "'";
5277 return;
5278 }
5279
5280 D->addAttr(::new (S.Context) MipsInterruptAttr(
5281 AL.getLoc(), S.Context, Kind, AL.getAttributeSpellingListIndex()));
5282}
5283
5284static void handleAnyX86InterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5285 // Semantic checks for a function with the 'interrupt' attribute.
5286 // a) Must be a function.
5287 // b) Must have the 'void' return type.
5288 // c) Must take 1 or 2 arguments.
5289 // d) The 1st argument must be a pointer.
5290 // e) The 2nd argument (if any) must be an unsigned integer.
5291 if (!isFunctionOrMethod(D) || !hasFunctionProto(D) || isInstanceMethod(D) ||
5292 CXXMethodDecl::isStaticOverloadedOperator(
5293 cast<NamedDecl>(D)->getDeclName().getCXXOverloadedOperator())) {
5294 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
5295 << AL.getName() << ExpectedFunctionWithProtoType;
5296 return;
5297 }
5298 // Interrupt handler must have void return type.
5299 if (!getFunctionOrMethodResultType(D)->isVoidType()) {
5300 S.Diag(getFunctionOrMethodResultSourceRange(D).getBegin(),
5301 diag::err_anyx86_interrupt_attribute)
5302 << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
5303 ? 0
5304 : 1)
5305 << 0;
5306 return;
5307 }
5308 // Interrupt handler must have 1 or 2 parameters.
5309 unsigned NumParams = getFunctionOrMethodNumParams(D);
5310 if (NumParams < 1 || NumParams > 2) {
5311 S.Diag(D->getLocStart(), diag::err_anyx86_interrupt_attribute)
5312 << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
5313 ? 0
5314 : 1)
5315 << 1;
5316 return;
5317 }
5318 // The first argument must be a pointer.
5319 if (!getFunctionOrMethodParamType(D, 0)->isPointerType()) {
5320 S.Diag(getFunctionOrMethodParamRange(D, 0).getBegin(),
5321 diag::err_anyx86_interrupt_attribute)
5322 << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
5323 ? 0
5324 : 1)
5325 << 2;
5326 return;
5327 }
5328 // The second argument, if present, must be an unsigned integer.
5329 unsigned TypeSize =
5330 S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86_64
5331 ? 64
5332 : 32;
5333 if (NumParams == 2 &&
5334 (!getFunctionOrMethodParamType(D, 1)->isUnsignedIntegerType() ||
5335 S.Context.getTypeSize(getFunctionOrMethodParamType(D, 1)) != TypeSize)) {
5336 S.Diag(getFunctionOrMethodParamRange(D, 1).getBegin(),
5337 diag::err_anyx86_interrupt_attribute)
5338 << (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
5339 ? 0
5340 : 1)
5341 << 3 << S.Context.getIntTypeForBitwidth(TypeSize, /*Signed=*/false);
5342 return;
5343 }
5344 D->addAttr(::new (S.Context) AnyX86InterruptAttr(
5345 AL.getLoc(), S.Context, AL.getAttributeSpellingListIndex()));
5346 D->addAttr(UsedAttr::CreateImplicit(S.Context));
5347}
5348
5349static void handleAVRInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5350 if (!isFunctionOrMethod(D)) {
5351 S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
5352 << "'interrupt'" << ExpectedFunction;
5353 return;
5354 }
5355
5356 if (!checkAttributeNumArgs(S, AL, 0))
5357 return;
5358
5359 handleSimpleAttribute<AVRInterruptAttr>(S, D, AL);
5360}
5361
5362static void handleAVRSignalAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5363 if (!isFunctionOrMethod(D)) {
5364 S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
5365 << "'signal'" << ExpectedFunction;
5366 return;
5367 }
5368
5369 if (!checkAttributeNumArgs(S, AL, 0))
5370 return;
5371
5372 handleSimpleAttribute<AVRSignalAttr>(S, D, AL);
5373}
5374
5375
5376static void handleRISCVInterruptAttr(Sema &S, Decl *D,
5377 const ParsedAttr &AL) {
5378 // Warn about repeated attributes.
5379 if (const auto *A = D->getAttr<RISCVInterruptAttr>()) {
5380 S.Diag(AL.getRange().getBegin(),
5381 diag::warn_riscv_repeated_interrupt_attribute);
5382 S.Diag(A->getLocation(), diag::note_riscv_repeated_interrupt_attribute);
5383 return;
5384 }
5385
5386 // Check the attribute argument. Argument is optional.
5387 if (!checkAttributeAtMostNumArgs(S, AL, 1))
5388 return;
5389
5390 StringRef Str;
5391 SourceLocation ArgLoc;
5392
5393 // 'machine'is the default interrupt mode.
5394 if (AL.getNumArgs() == 0)
5395 Str = "machine";
5396 else if (!S.checkStringLiteralArgumentAttr(AL, 0, Str, &ArgLoc))
5397 return;
5398
5399 // Semantic checks for a function with the 'interrupt' attribute:
5400 // - Must be a function.
5401 // - Must have no parameters.
5402 // - Must have the 'void' return type.
5403 // - The attribute itself must either have no argument or one of the
5404 // valid interrupt types, see [RISCVInterruptDocs].
5405
5406 if (D->getFunctionType() == nullptr) {
5407 S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
5408 << "'interrupt'" << ExpectedFunction;
5409 return;
5410 }
5411
5412 if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) {
5413 S.Diag(D->getLocation(), diag::warn_riscv_interrupt_attribute) << 0;
5414 return;
5415 }
5416
5417 if (!getFunctionOrMethodResultType(D)->isVoidType()) {
5418 S.Diag(D->getLocation(), diag::warn_riscv_interrupt_attribute) << 1;
5419 return;
5420 }
5421
5422 RISCVInterruptAttr::InterruptType Kind;
5423 if (!RISCVInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
5424 S.Diag(AL.getLoc(), diag::warn_attribute_type_not_supported)
5425 << AL.getName() << Str << ArgLoc;
5426 return;
5427 }
5428
5429 D->addAttr(::new (S.Context) RISCVInterruptAttr(
5430 AL.getLoc(), S.Context, Kind, AL.getAttributeSpellingListIndex()));
5431}
5432
5433static void handleInterruptAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5434 // Dispatch the interrupt attribute based on the current target.
5435 switch (S.Context.getTargetInfo().getTriple().getArch()) {
5436 case llvm::Triple::msp430:
5437 handleMSP430InterruptAttr(S, D, AL);
5438 break;
5439 case llvm::Triple::mipsel:
5440 case llvm::Triple::mips:
5441 handleMipsInterruptAttr(S, D, AL);
5442 break;
5443 case llvm::Triple::x86:
5444 case llvm::Triple::x86_64:
5445 handleAnyX86InterruptAttr(S, D, AL);
5446 break;
5447 case llvm::Triple::avr:
5448 handleAVRInterruptAttr(S, D, AL);
5449 break;
5450 case llvm::Triple::riscv32:
5451 case llvm::Triple::riscv64:
5452 handleRISCVInterruptAttr(S, D, AL);
5453 break;
5454 default:
5455 handleARMInterruptAttr(S, D, AL);
5456 break;
5457 }
5458}
5459
5460static void handleAMDGPUFlatWorkGroupSizeAttr(Sema &S, Decl *D,
5461 const ParsedAttr &AL) {
5462 uint32_t Min = 0;
5463 Expr *MinExpr = AL.getArgAsExpr(0);
5464 if (!checkUInt32Argument(S, AL, MinExpr, Min))
5465 return;
5466
5467 uint32_t Max = 0;
5468 Expr *MaxExpr = AL.getArgAsExpr(1);
5469 if (!checkUInt32Argument(S, AL, MaxExpr, Max))
5470 return;
5471
5472 if (Min == 0 && Max != 0) {
5473 S.Diag(AL.getLoc(), diag::err_attribute_argument_invalid)
5474 << AL.getName() << 0;
5475 return;
5476 }
5477 if (Min > Max) {
5478 S.Diag(AL.getLoc(), diag::err_attribute_argument_invalid)
5479 << AL.getName() << 1;
5480 return;
5481 }
5482
5483 D->addAttr(::new (S.Context)
5484 AMDGPUFlatWorkGroupSizeAttr(AL.getLoc(), S.Context, Min, Max,
5485 AL.getAttributeSpellingListIndex()));
5486}
5487
5488static void handleAMDGPUWavesPerEUAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5489 uint32_t Min = 0;
5490 Expr *MinExpr = AL.getArgAsExpr(0);
5491 if (!checkUInt32Argument(S, AL, MinExpr, Min))
5492 return;
5493
5494 uint32_t Max = 0;
5495 if (AL.getNumArgs() == 2) {
5496 Expr *MaxExpr = AL.getArgAsExpr(1);
5497 if (!checkUInt32Argument(S, AL, MaxExpr, Max))
5498 return;
5499 }
5500
5501 if (Min == 0 && Max != 0) {
5502 S.Diag(AL.getLoc(), diag::err_attribute_argument_invalid)
5503 << AL.getName() << 0;
5504 return;
5505 }
5506 if (Max != 0 && Min > Max) {
5507 S.Diag(AL.getLoc(), diag::err_attribute_argument_invalid)
5508 << AL.getName() << 1;
5509 return;
5510 }
5511
5512 D->addAttr(::new (S.Context)
5513 AMDGPUWavesPerEUAttr(AL.getLoc(), S.Context, Min, Max,
5514 AL.getAttributeSpellingListIndex()));
5515}
5516
5517static void handleAMDGPUNumSGPRAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5518 uint32_t NumSGPR = 0;
5519 Expr *NumSGPRExpr = AL.getArgAsExpr(0);
5520 if (!checkUInt32Argument(S, AL, NumSGPRExpr, NumSGPR))
5521 return;
5522
5523 D->addAttr(::new (S.Context)
5524 AMDGPUNumSGPRAttr(AL.getLoc(), S.Context, NumSGPR,
5525 AL.getAttributeSpellingListIndex()));
5526}
5527
5528static void handleAMDGPUNumVGPRAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5529 uint32_t NumVGPR = 0;
5530 Expr *NumVGPRExpr = AL.getArgAsExpr(0);
5531 if (!checkUInt32Argument(S, AL, NumVGPRExpr, NumVGPR))
5532 return;
5533
5534 D->addAttr(::new (S.Context)
5535 AMDGPUNumVGPRAttr(AL.getLoc(), S.Context, NumVGPR,
5536 AL.getAttributeSpellingListIndex()));
5537}
5538
5539static void handleX86ForceAlignArgPointerAttr(Sema &S, Decl *D,
5540 const ParsedAttr &AL) {
5541 // If we try to apply it to a function pointer, don't warn, but don't
5542 // do anything, either. It doesn't matter anyway, because there's nothing
5543 // special about calling a force_align_arg_pointer function.
5544 const auto *VD = dyn_cast<ValueDecl>(D);
5545 if (VD && VD->getType()->isFunctionPointerType())
5546 return;
5547 // Also don't warn on function pointer typedefs.
5548 const auto *TD = dyn_cast<TypedefNameDecl>(D);
5549 if (TD && (TD->getUnderlyingType()->isFunctionPointerType() ||
5550 TD->getUnderlyingType()->isFunctionType()))
5551 return;
5552 // Attribute can only be applied to function types.
5553 if (!isa<FunctionDecl>(D)) {
5554 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
5555 << AL.getName() << ExpectedFunction;
5556 return;
5557 }
5558
5559 D->addAttr(::new (S.Context)
5560 X86ForceAlignArgPointerAttr(AL.getRange(), S.Context,
5561 AL.getAttributeSpellingListIndex()));
5562}
5563
5564static void handleLayoutVersion(Sema &S, Decl *D, const ParsedAttr &AL) {
5565 uint32_t Version;
5566 Expr *VersionExpr = static_cast<Expr *>(AL.getArgAsExpr(0));
5567 if (!checkUInt32Argument(S, AL, AL.getArgAsExpr(0), Version))
5568 return;
5569
5570 // TODO: Investigate what happens with the next major version of MSVC.
5571 if (Version != LangOptions::MSVC2015) {
5572 S.Diag(AL.getLoc(), diag::err_attribute_argument_out_of_bounds)
5573 << AL.getName() << Version << VersionExpr->getSourceRange();
5574 return;
5575 }
5576
5577 D->addAttr(::new (S.Context)
5578 LayoutVersionAttr(AL.getRange(), S.Context, Version,
5579 AL.getAttributeSpellingListIndex()));
5580}
5581
5582DLLImportAttr *Sema::mergeDLLImportAttr(Decl *D, SourceRange Range,
5583 unsigned AttrSpellingListIndex) {
5584 if (D->hasAttr<DLLExportAttr>()) {
5585 Diag(Range.getBegin(), diag::warn_attribute_ignored) << "'dllimport'";
5586 return nullptr;
5587 }
5588
5589 if (D->hasAttr<DLLImportAttr>())
5590 return nullptr;
5591
5592 return ::new (Context) DLLImportAttr(Range, Context, AttrSpellingListIndex);
5593}
5594
5595DLLExportAttr *Sema::mergeDLLExportAttr(Decl *D, SourceRange Range,
5596 unsigned AttrSpellingListIndex) {
5597 if (DLLImportAttr *Import = D->getAttr<DLLImportAttr>()) {
5598 Diag(Import->getLocation(), diag::warn_attribute_ignored) << Import;
5599 D->dropAttr<DLLImportAttr>();
5600 }
5601
5602 if (D->hasAttr<DLLExportAttr>())
5603 return nullptr;
5604
5605 return ::new (Context) DLLExportAttr(Range, Context, AttrSpellingListIndex);
5606}
5607
5608static void handleDLLAttr(Sema &S, Decl *D, const ParsedAttr &A) {
5609 if (isa<ClassTemplatePartialSpecializationDecl>(D) &&
5610 S.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5611 S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored)
5612 << A.getName();
5613 return;
5614 }
5615
5616 if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
5617 if (FD->isInlined() && A.getKind() == ParsedAttr::AT_DLLImport &&
5618 !S.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5619 // MinGW doesn't allow dllimport on inline functions.
5620 S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored_on_inline)
5621 << A.getName();
5622 return;
5623 }
5624 }
5625
5626 if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
5627 if (S.Context.getTargetInfo().getCXXABI().isMicrosoft() &&
5628 MD->getParent()->isLambda()) {
5629 S.Diag(A.getRange().getBegin(), diag::err_attribute_dll_lambda) << A.getName();
5630 return;
5631 }
5632 }
5633
5634 unsigned Index = A.getAttributeSpellingListIndex();
5635 Attr *NewAttr = A.getKind() == ParsedAttr::AT_DLLExport
5636 ? (Attr *)S.mergeDLLExportAttr(D, A.getRange(), Index)
5637 : (Attr *)S.mergeDLLImportAttr(D, A.getRange(), Index);
5638 if (NewAttr)
5639 D->addAttr(NewAttr);
5640}
5641
5642MSInheritanceAttr *
5643Sema::mergeMSInheritanceAttr(Decl *D, SourceRange Range, bool BestCase,
5644 unsigned AttrSpellingListIndex,
5645 MSInheritanceAttr::Spelling SemanticSpelling) {
5646 if (MSInheritanceAttr *IA = D->getAttr<MSInheritanceAttr>()) {
5647 if (IA->getSemanticSpelling() == SemanticSpelling)
5648 return nullptr;
5649 Diag(IA->getLocation(), diag::err_mismatched_ms_inheritance)
5650 << 1 /*previous declaration*/;
5651 Diag(Range.getBegin(), diag::note_previous_ms_inheritance);
5652 D->dropAttr<MSInheritanceAttr>();
5653 }
5654
5655 auto *RD = cast<CXXRecordDecl>(D);
5656 if (RD->hasDefinition()) {
5657 if (checkMSInheritanceAttrOnDefinition(RD, Range, BestCase,
5658 SemanticSpelling)) {
5659 return nullptr;
5660 }
5661 } else {
5662 if (isa<ClassTemplatePartialSpecializationDecl>(RD)) {
5663 Diag(Range.getBegin(), diag::warn_ignored_ms_inheritance)
5664 << 1 /*partial specialization*/;
5665 return nullptr;
5666 }
5667 if (RD->getDescribedClassTemplate()) {
5668 Diag(Range.getBegin(), diag::warn_ignored_ms_inheritance)
5669 << 0 /*primary template*/;
5670 return nullptr;
5671 }
5672 }
5673
5674 return ::new (Context)
5675 MSInheritanceAttr(Range, Context, BestCase, AttrSpellingListIndex);
5676}
5677
5678static void handleCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5679 // The capability attributes take a single string parameter for the name of
5680 // the capability they represent. The lockable attribute does not take any
5681 // parameters. However, semantically, both attributes represent the same
5682 // concept, and so they use the same semantic attribute. Eventually, the
5683 // lockable attribute will be removed.
5684 //
5685 // For backward compatibility, any capability which has no specified string
5686 // literal will be considered a "mutex."
5687 StringRef N("mutex");
5688 SourceLocation LiteralLoc;
5689 if (AL.getKind() == ParsedAttr::AT_Capability &&
5690 !S.checkStringLiteralArgumentAttr(AL, 0, N, &LiteralLoc))
5691 return;
5692
5693 // Currently, there are only two names allowed for a capability: role and
5694 // mutex (case insensitive). Diagnose other capability names.
5695 if (!N.equals_lower("mutex") && !N.equals_lower("role"))
5696 S.Diag(LiteralLoc, diag::warn_invalid_capability_name) << N;
5697
5698 D->addAttr(::new (S.Context) CapabilityAttr(AL.getRange(), S.Context, N,
5699 AL.getAttributeSpellingListIndex()));
5700}
5701
5702static void handleAssertCapabilityAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5703 SmallVector<Expr*, 1> Args;
5704 if (!checkLockFunAttrCommon(S, D, AL, Args))
5705 return;
5706
5707 D->addAttr(::new (S.Context) AssertCapabilityAttr(AL.getRange(), S.Context,
5708 Args.data(), Args.size(),
5709 AL.getAttributeSpellingListIndex()));
5710}
5711
5712static void handleAcquireCapabilityAttr(Sema &S, Decl *D,
5713 const ParsedAttr &AL) {
5714 SmallVector<Expr*, 1> Args;
5715 if (!checkLockFunAttrCommon(S, D, AL, Args))
5716 return;
5717
5718 D->addAttr(::new (S.Context) AcquireCapabilityAttr(AL.getRange(),
5719 S.Context,
5720 Args.data(), Args.size(),
5721 AL.getAttributeSpellingListIndex()));
5722}
5723
5724static void handleTryAcquireCapabilityAttr(Sema &S, Decl *D,
5725 const ParsedAttr &AL) {
5726 SmallVector<Expr*, 2> Args;
5727 if (!checkTryLockFunAttrCommon(S, D, AL, Args))
5728 return;
5729
5730 D->addAttr(::new (S.Context) TryAcquireCapabilityAttr(AL.getRange(),
5731 S.Context,
5732 AL.getArgAsExpr(0),
5733 Args.data(),
5734 Args.size(),
5735 AL.getAttributeSpellingListIndex()));
5736}
5737
5738static void handleReleaseCapabilityAttr(Sema &S, Decl *D,
5739 const ParsedAttr &AL) {
5740 // Check that all arguments are lockable objects.
5741 SmallVector<Expr *, 1> Args;
5742 checkAttrArgsAreCapabilityObjs(S, D, AL, Args, 0, true);
5743
5744 D->addAttr(::new (S.Context) ReleaseCapabilityAttr(
5745 AL.getRange(), S.Context, Args.data(), Args.size(),
5746 AL.getAttributeSpellingListIndex()));
5747}
5748
5749static void handleRequiresCapabilityAttr(Sema &S, Decl *D,
5750 const ParsedAttr &AL) {
5751 if (!checkAttributeAtLeastNumArgs(S, AL, 1))
5752 return;
5753
5754 // check that all arguments are lockable objects
5755 SmallVector<Expr*, 1> Args;
5756 checkAttrArgsAreCapabilityObjs(S, D, AL, Args);
5757 if (Args.empty())
5758 return;
5759
5760 RequiresCapabilityAttr *RCA = ::new (S.Context)
5761 RequiresCapabilityAttr(AL.getRange(), S.Context, Args.data(),
5762 Args.size(), AL.getAttributeSpellingListIndex());
5763
5764 D->addAttr(RCA);
5765}
5766
5767static void handleDeprecatedAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5768 if (const auto *NSD = dyn_cast<NamespaceDecl>(D)) {
5769 if (NSD->isAnonymousNamespace()) {
5770 S.Diag(AL.getLoc(), diag::warn_deprecated_anonymous_namespace);
5771 // Do not want to attach the attribute to the namespace because that will
5772 // cause confusing diagnostic reports for uses of declarations within the
5773 // namespace.
5774 return;
5775 }
5776 }
5777
5778 // Handle the cases where the attribute has a text message.
5779 StringRef Str, Replacement;
5780 if (AL.isArgExpr(0) && AL.getArgAsExpr(0) &&
5781 !S.checkStringLiteralArgumentAttr(AL, 0, Str))
5782 return;
5783
5784 // Only support a single optional message for Declspec and CXX11.
5785 if (AL.isDeclspecAttribute() || AL.isCXX11Attribute())
5786 checkAttributeAtMostNumArgs(S, AL, 1);
5787 else if (AL.isArgExpr(1) && AL.getArgAsExpr(1) &&
5788 !S.checkStringLiteralArgumentAttr(AL, 1, Replacement))
5789 return;
5790
5791 if (!S.getLangOpts().CPlusPlus14)
5792 if (AL.isCXX11Attribute() &&
5793 !(AL.hasScope() && AL.getScopeName()->isStr("gnu")))
5794 S.Diag(AL.getLoc(), diag::ext_cxx14_attr) << AL.getName();
5795
5796 D->addAttr(::new (S.Context)
5797 DeprecatedAttr(AL.getRange(), S.Context, Str, Replacement,
5798 AL.getAttributeSpellingListIndex()));
5799}
5800
5801static bool isGlobalVar(const Decl *D) {
5802 if (const auto *S = dyn_cast<VarDecl>(D))
5803 return S->hasGlobalStorage();
5804 return false;
5805}
5806
5807static void handleNoSanitizeAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5808 if (!checkAttributeAtLeastNumArgs(S, AL, 1))
5809 return;
5810
5811 std::vector<StringRef> Sanitizers;
5812
5813 for (unsigned I = 0, E = AL.getNumArgs(); I != E; ++I) {
5814 StringRef SanitizerName;
5815 SourceLocation LiteralLoc;
5816
5817 if (!S.checkStringLiteralArgumentAttr(AL, I, SanitizerName, &LiteralLoc))
5818 return;
5819
5820 if (parseSanitizerValue(SanitizerName, /*AllowGroups=*/true) == 0)
5821 S.Diag(LiteralLoc, diag::warn_unknown_sanitizer_ignored) << SanitizerName;
5822 else if (isGlobalVar(D) && SanitizerName != "address")
5823 S.Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
5824 << AL.getName() << ExpectedFunctionOrMethod;
5825 Sanitizers.push_back(SanitizerName);
5826 }
5827
5828 D->addAttr(::new (S.Context) NoSanitizeAttr(
5829 AL.getRange(), S.Context, Sanitizers.data(), Sanitizers.size(),
5830 AL.getAttributeSpellingListIndex()));
5831}
5832
5833static void handleNoSanitizeSpecificAttr(Sema &S, Decl *D,
5834 const ParsedAttr &AL) {
5835 StringRef AttrName = AL.getName()->getName();
5836 normalizeName(AttrName);
5837 StringRef SanitizerName = llvm::StringSwitch<StringRef>(AttrName)
5838 .Case("no_address_safety_analysis", "address")
5839 .Case("no_sanitize_address", "address")
5840 .Case("no_sanitize_thread", "thread")
5841 .Case("no_sanitize_memory", "memory");
5842 if (isGlobalVar(D) && SanitizerName != "address")
5843 S.Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
5844 << AL.getName() << ExpectedFunction;
5845 D->addAttr(::new (S.Context)
5846 NoSanitizeAttr(AL.getRange(), S.Context, &SanitizerName, 1,
5847 AL.getAttributeSpellingListIndex()));
5848}
5849
5850static void handleInternalLinkageAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5851 if (InternalLinkageAttr *Internal =
5852 S.mergeInternalLinkageAttr(D, AL.getRange(), AL.getName(),
5853 AL.getAttributeSpellingListIndex()))
5854 D->addAttr(Internal);
5855}
5856
5857static void handleOpenCLNoSVMAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5858 if (S.LangOpts.OpenCLVersion != 200)
5859 S.Diag(AL.getLoc(), diag::err_attribute_requires_opencl_version)
5860 << AL.getName() << "2.0" << 0;
5861 else
5862 S.Diag(AL.getLoc(), diag::warn_opencl_attr_deprecated_ignored)
5863 << AL.getName() << "2.0";
5864}
5865
5866/// Handles semantic checking for features that are common to all attributes,
5867/// such as checking whether a parameter was properly specified, or the correct
5868/// number of arguments were passed, etc.
5869static bool handleCommonAttributeFeatures(Sema &S, Decl *D,
5870 const ParsedAttr &AL) {
5871 // Several attributes carry different semantics than the parsing requires, so
5872 // those are opted out of the common argument checks.
5873 //
5874 // We also bail on unknown and ignored attributes because those are handled
5875 // as part of the target-specific handling logic.
5876 if (AL.getKind() == ParsedAttr::UnknownAttribute)
5877 return false;
5878 // Check whether the attribute requires specific language extensions to be
5879 // enabled.
5880 if (!AL.diagnoseLangOpts(S))
5881 return true;
5882 // Check whether the attribute appertains to the given subject.
5883 if (!AL.diagnoseAppertainsTo(S, D))
5884 return true;
5885 if (AL.hasCustomParsing())
5886 return false;
5887
5888 if (AL.getMinArgs() == AL.getMaxArgs()) {
5889 // If there are no optional arguments, then checking for the argument count
5890 // is trivial.
5891 if (!checkAttributeNumArgs(S, AL, AL.getMinArgs()))
5892 return true;
5893 } else {
5894 // There are optional arguments, so checking is slightly more involved.
5895 if (AL.getMinArgs() &&
5896 !checkAttributeAtLeastNumArgs(S, AL, AL.getMinArgs()))
5897 return true;
5898 else if (!AL.hasVariadicArg() && AL.getMaxArgs() &&
5899 !checkAttributeAtMostNumArgs(S, AL, AL.getMaxArgs()))
5900 return true;
5901 }
5902
5903 if (S.CheckAttrTarget(AL))
5904 return true;
5905
5906 return false;
5907}
5908
5909static void handleOpenCLAccessAttr(Sema &S, Decl *D, const ParsedAttr &AL) {
5910 if (D->isInvalidDecl())
5911 return;
5912
5913 // Check if there is only one access qualifier.
5914 if (D->hasAttr<OpenCLAccessAttr>()) {
5915 S.Diag(AL.getLoc(), diag::err_opencl_multiple_access_qualifiers)
5916 << D->getSourceRange();
5917 D->setInvalidDecl(true);
5918 return;
5919 }
5920
5921 // OpenCL v2.0 s6.6 - read_write can be used for image types to specify that an
5922 // image object can be read and written.
5923 // OpenCL v2.0 s6.13.6 - A kernel cannot read from and write to the same pipe
5924 // object. Using the read_write (or __read_write) qualifier with the pipe
5925 // qualifier is a compilation error.
5926 if (const auto *PDecl = dyn_cast<ParmVarDecl>(D)) {
5927 const Type *DeclTy = PDecl->getType().getCanonicalType().getTypePtr();
5928 if (AL.getName()->getName().find("read_write") != StringRef::npos) {
5929 if (S.getLangOpts().OpenCLVersion < 200 || DeclTy->isPipeType()) {
5930 S.Diag(AL.getLoc(), diag::err_opencl_invalid_read_write)
5931 << AL.getName() << PDecl->getType() << DeclTy->isImageType();
5932 D->setInvalidDecl(true);
5933 return;
5934 }
5935 }
5936 }
5937
5938 D->addAttr(::new (S.Context) OpenCLAccessAttr(
5939 AL.getRange(), S.Context, AL.getAttributeSpellingListIndex()));
5940}
5941
5942//===----------------------------------------------------------------------===//
5943// Top Level Sema Entry Points
5944//===----------------------------------------------------------------------===//
5945
5946/// ProcessDeclAttribute - Apply the specific attribute to the specified decl if
5947/// the attribute applies to decls. If the attribute is a type attribute, just
5948/// silently ignore it if a GNU attribute.
5949static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D,
5950 const ParsedAttr &AL,
5951 bool IncludeCXX11Attributes) {
5952 if (AL.isInvalid() || AL.getKind() == ParsedAttr::IgnoredAttribute)
5953 return;
5954
5955 // Ignore C++11 attributes on declarator chunks: they appertain to the type
5956 // instead.
5957 if (AL.isCXX11Attribute() && !IncludeCXX11Attributes)
5958 return;
5959
5960 // Unknown attributes are automatically warned on. Target-specific attributes
5961 // which do not apply to the current target architecture are treated as
5962 // though they were unknown attributes.
5963 if (AL.getKind() == ParsedAttr::UnknownAttribute ||
5964 !AL.existsInTarget(S.Context.getTargetInfo())) {
5965 S.Diag(AL.getLoc(), AL.isDeclspecAttribute()
5966 ? diag::warn_unhandled_ms_attribute_ignored
5967 : diag::warn_unknown_attribute_ignored)
5968 << AL.getName();
5969 return;
5970 }
5971
5972 if (handleCommonAttributeFeatures(S, D, AL))
5973 return;
5974
5975 switch (AL.getKind()) {
5976 default:
5977 if (!AL.isStmtAttr()) {
5978 // Type attributes are handled elsewhere; silently move on.
5979 assert(AL.isTypeAttr() && "Non-type attribute not handled")(static_cast <bool> (AL.isTypeAttr() && "Non-type attribute not handled"
) ? void (0) : __assert_fail ("AL.isTypeAttr() && \"Non-type attribute not handled\""
, "/build/llvm-toolchain-snapshot-7~svn338205/tools/clang/lib/Sema/SemaDeclAttr.cpp"
, 5979, __extension__ __PRETTY_FUNCTION__))
;
5980 break;
5981 }
5982 S.Diag(AL.getLoc(), diag::err_stmt_attribute_invalid_on_decl)
5983 << AL.getName() << D->getLocation();
5984 break;
5985 case ParsedAttr::AT_Interrupt:
5986 handleInterruptAttr(S, D, AL);
5987 break;
5988 case ParsedAttr::AT_X86ForceAlignArgPointer:
5989 handleX86ForceAlignArgPointerAttr(S, D, AL);
5990 break;
5991 case ParsedAttr::AT_DLLExport:
5992 case ParsedAttr::AT_DLLImport:
5993 handleDLLAttr(S, D, AL);
5994 break;
5995 case ParsedAttr::AT_Mips16:
5996 handleSimpleAttributeWithExclusions<Mips16Attr, MicroMipsAttr,
5997 MipsInterruptAttr>(S, D, AL);
5998 break;
5999 case ParsedAttr::AT_NoMips16:
6000 handleSimpleAttribute<NoMips16Attr>(S, D, AL);
6001 break;
6002 case ParsedAttr::AT_MicroMips:
6003 handleSimpleAttributeWithExclusions<MicroMipsAttr, Mips16Attr>(S, D, AL);
6004 break;
6005 case ParsedAttr::AT_NoMicroMips:
6006 handleSimpleAttribute<NoMicroMipsAttr>(S, D, AL);
6007 break;
6008 case ParsedAttr::AT_MipsLongCall:
6009 handleSimpleAttributeWithExclusions<MipsLongCallAttr, MipsShortCallAttr>(
6010 S, D, AL);
6011 break;
6012 case ParsedAttr::AT_MipsShortCall:
6013 handleSimpleAttributeWithExclusions<MipsShortCallAttr, MipsLongCallAttr>(
6014 S, D, AL);
6015 break;
6016 case ParsedAttr::AT_AMDGPUFlatWorkGroupSize:
6017 handleAMDGPUFlatWorkGroupSizeAttr(S, D, AL);
6018 break;
6019 case ParsedAttr::AT_AMDGPUWavesPerEU:
6020 handleAMDGPUWavesPerEUAttr(S, D, AL);
6021 break;
6022 case ParsedAttr::AT_AMDGPUNumSGPR:
6023 handleAMDGPUNumSGPRAttr(S, D, AL);
6024 break;
6025 case ParsedAttr::AT_AMDGPUNumVGPR:
6026 handleAMDGPUNumVGPRAttr(S, D, AL);
6027 break;
6028 case ParsedAttr::AT_AVRSignal:
6029 handleAVRSignalAttr(S, D, AL);
6030 break;
6031 case ParsedAttr::AT_IBAction:
6032 handleSimpleAttribute<IBActionAttr>(S, D, AL);
6033 break;
6034 case ParsedAttr::AT_IBOutlet:
6035 handleIBOutlet(S, D, AL);
6036 break;
6037 case ParsedAttr::AT_IBOutletCollection:
6038 handleIBOutletCollection(S, D, AL);
6039 break;
6040 case ParsedAttr::AT_IFunc:
6041 handleIFuncAttr(S, D, AL);
6042 break;
6043 case ParsedAttr::AT_Alias:
6044 handleAliasAttr(S, D, AL);
6045 break;
6046 case ParsedAttr::AT_Aligned:
6047 handleAlignedAttr(S, D, AL);
6048 break;
6049 case ParsedAttr::AT_AlignValue:
6050 handleAlignValueAttr(S, D, AL);
6051 break;
6052 case ParsedAttr::AT_AllocSize:
6053 handleAllocSizeAttr(S, D, AL);
6054 break;
6055 case ParsedAttr::AT_AlwaysInline:
6056 handleAlwaysInlineAttr(S, D, AL);
6057 break;
6058 case ParsedAttr::AT_Artificial:
6059 handleSimpleAttribute<ArtificialAttr>(S, D, AL);
6060 break;
6061 case ParsedAttr::AT_AnalyzerNoReturn:
6062 handleAnalyzerNoReturnAttr(S, D, AL);
6063 break;
6064 case ParsedAttr::AT_TLSModel:
6065 handleTLSModelAttr(S, D, AL);
6066 break;
6067 case ParsedAttr::AT_Annotate:
6068 handleAnnotateAttr(S, D, AL);
6069 break;
6070 case ParsedAttr::AT_Availability:
6071 handleAvailabilityAttr(S, D, AL);
6072 break;
6073 case ParsedAttr::AT_CarriesDependency:
6074 handleDependencyAttr(S, scope, D, AL);
6075 break;
6076 case ParsedAttr::AT_CPUDispatch:
6077 case ParsedAttr::AT_CPUSpecific:
6078 handleCPUSpecificAttr(S, D, AL);
6079 break;
6080 case ParsedAttr::AT_Common:
6081 handleCommonAttr(S, D, AL);
6082 break;
6083 case ParsedAttr::AT_CUDAConstant:
6084 handleConstantAttr(S, D, AL);
6085 break;
6086 case ParsedAttr::AT_PassObjectSize:
6087 handlePassObjectSizeAttr(S, D, AL);
6088 break;
6089 case ParsedAttr::AT_Constructor:
6090 handleConstructorAttr(S, D, AL);
6091 break;
6092 case ParsedAttr::AT_CXX11NoReturn:
6093 handleSimpleAttribute<CXX11NoReturnAttr>(S, D, AL);
6094 break;
6095 case ParsedAttr::AT_Deprecated:
6096 handleDeprecatedAttr(S, D, AL);
6097 break;
6098 case ParsedAttr::AT_Destructor:
6099 handleDestructorAttr(S, D, AL);
6100 break;
6101 case ParsedAttr::AT_EnableIf:
6102 handleEnableIfAttr(S, D, AL);
6103 break;
6104 case ParsedAttr::AT_DiagnoseIf:
6105 handleDiagnoseIfAttr(S, D, AL);
6106 break;
6107 case ParsedAttr::AT_ExtVectorType:
6108 handleExtVectorTypeAttr(S, D, AL);
6109 break;
6110 case ParsedAttr::AT_ExternalSourceSymbol:
6111 handleExternalSourceSymbolAttr(S, D, AL);
6112 break;
6113 case ParsedAttr::AT_MinSize:
6114 handleMinSizeAttr(S, D, AL);
6115 break;
6116 case ParsedAttr::AT_OptimizeNone:
6117 handleOptimizeNoneAttr(S, D, AL);
6118 break;
6119 case ParsedAttr::AT_FlagEnum:
6120 handleSimpleAttribute<FlagEnumAttr>(S, D, AL);
6121 break;
6122 case ParsedAttr::AT_EnumExtensibility:
6123 handleEnumExtensibilityAttr(S, D, AL);
6124 break;
6125 case ParsedAttr::AT_Flatten:
6126 handleSimpleAttribute<FlattenAttr>(S, D, AL);
6127 break;
6128 case ParsedAttr::AT_Format:
6129 handleFormatAttr(S, D, AL);
6130 break;
6131 case ParsedAttr::AT_FormatArg:
6132 handleFormatArgAttr(S, D, AL);
6133 break;
6134 case ParsedAttr::AT_CUDAGlobal:
6135 handleGlobalAttr(S, D, AL);
6136 break;
6137 case ParsedAttr::AT_CUDADevice:
6138 handleSimpleAttributeWithExclusions<CUDADeviceAttr, CUDAGlobalAttr>(S, D,
6139 AL);
6140 break;
6141 case ParsedAttr::AT_CUDAHost:
6142 handleSimpleAttributeWithExclusions<CUDAHostAttr, CUDAGlobalAttr>(S, D, AL);
6143 break;
6144 case ParsedAttr::AT_GNUInline:
6145 handleGNUInlineAttr(S, D, AL);
6146 break;
6147 case ParsedAttr::AT_CUDALaunchBounds:
6148 handleLaunchBoundsAttr(S, D, AL);
6149 break;
6150 case ParsedAttr::AT_Restrict:
6151 handleRestrictAttr(S, D, AL);
6152 break;
6153 case ParsedAttr::AT_MayAlias:
6154 handleSimpleAttribute<MayAliasAttr>(S, D, AL);
6155 break;
6156 case ParsedAttr::AT_Mode:
6157 handleModeAttr(S, D, AL);
6158 break;
6159 case ParsedAttr::AT_NoAlias:
6160 handleSimpleAttribute<NoAliasAttr>(S, D, AL);
6161 break;
6162 case ParsedAttr::AT_NoCommon:
6163 handleSimpleAttribute<NoCommonAttr>(S, D, AL);
6164 break;
6165 case ParsedAttr::AT_NoSplitStack:
6166 handleSimpleAttribute<NoSplitStackAttr>(S, D, AL);
6167 break;
6168 case ParsedAttr::AT_NonNull:
6169 if (auto *PVD = dyn_cast<ParmVarDecl>(D))
6170 handleNonNullAttrParameter(S, PVD, AL);
6171 else
6172 handleNonNullAttr(S, D, AL);
6173 break;
6174 case ParsedAttr::AT_ReturnsNonNull:
6175 handleReturnsNonNullAttr(S, D, AL);
6176 break;
6177 case ParsedAttr::AT_NoEscape:
6178 handleNoEscapeAttr(S, D, AL);
6179 break;
6180 case ParsedAttr::AT_AssumeAligned:
6181 handleAssumeAlignedAttr(S, D, AL);
6182 break;
6183 case ParsedAttr::AT_AllocAlign:
6184 handleAllocAlignAttr(S, D, AL);
6185 break;
6186 case ParsedAttr::AT_Overloadable:
6187 handleSimpleAttribute<OverloadableAttr>(S, D, AL);
6188 break;
6189 case ParsedAttr::AT_Ownership:
6190 handleOwnershipAttr(S, D, AL);
6191 break;
6192 case ParsedAttr::AT_Cold:
6193 handleSimpleAttributeWithExclusions<ColdAttr, HotAttr>(S, D, AL);
6194 break;
6195 case ParsedAttr::AT_Hot:
6196 handleSimpleAttributeWithExclusions<HotAttr, ColdAttr>(S, D, AL);
6197 break;
6198 case ParsedAttr::AT_Naked:
6199 handleNakedAttr(S, D, AL);
6200 break;
6201 case ParsedAttr::AT_NoReturn:
6202 handleNoReturnAttr(S, D, AL);
6203 break;
6204 case ParsedAttr::AT_AnyX86NoCfCheck:
6205 handleNoCfCheckAttr(S, D, AL);
6206 break;
6207 case ParsedAttr::AT_NoThrow:
6208 handleSimpleAttribute<NoThrowAttr>(S, D, AL);
6209 break;
6210 case ParsedAttr::AT_CUDAShared:
6211 handleSharedAttr(S, D, AL);
6212 break;
6213 case ParsedAttr::AT_VecReturn:
6214 handleVecReturnAttr(S, D, AL);
6215 break;
6216 case ParsedAttr::AT_ObjCOwnership:
6217 handleObjCOwnershipAttr(S, D, AL);
6218 break;
6219 case ParsedAttr::AT_ObjCPreciseLifetime:
6220 handleObjCPreciseLifetimeAttr(S, D, AL);
6221 break;
6222 case ParsedAttr::AT_ObjCReturnsInnerPointer:
6223 handleObjCReturnsInnerPointerAttr(S, D, AL);
6224 break;
6225 case ParsedAttr::AT_ObjCRequiresSuper:
6226 handleObjCRequiresSuperAttr(S, D, AL);
6227 break;
6228 case ParsedAttr::AT_ObjCBridge:
6229 handleObjCBridgeAttr(S, D, AL);
6230 break;
6231 case ParsedAttr::AT_ObjCBridgeMutable:
6232 handleObjCBridgeMutableAttr(S, D, AL);
6233 break;
6234 case ParsedAttr::AT_ObjCBridgeRelated:
6235 handleObjCBridgeRelatedAttr(S, D, AL);
6236 break;
6237 case ParsedAttr::AT_ObjCDesignatedInitializer:
6238 handleObjCDesignatedInitializer(S, D, AL);
6239 break;
6240 case ParsedAttr::AT_ObjCRuntimeName:
6241 handleObjCRuntimeName(S, D, AL);
6242 break;
6243 case ParsedAttr::AT_ObjCRuntimeVisible:
6244 handleSimpleAttribute<ObjCRuntimeVisibleAttr>(S, D, AL);
6245 break;
6246 case ParsedAttr::AT_ObjCBoxable:
6247 handleObjCBoxable(S, D, AL);
6248 break;
6249 case ParsedAttr::AT_CFAuditedTransfer:
6250 handleSimpleAttributeWithExclusions<CFAuditedTransferAttr,
6251 CFUnknownTransferAttr>(S, D, AL);
6252 break;
6253 case ParsedAttr::AT_CFUnknownTransfer:
6254 handleSimpleAttributeWithExclusions<CFUnknownTransferAttr,
6255 CFAuditedTransferAttr>(S, D, AL);
6256 break;
6257 case ParsedAttr::AT_CFConsumed:
6258 case ParsedAttr::AT_NSConsumed:
6259 handleNSConsumedAttr(S, D, AL);
6260 break;
6261 case ParsedAttr::AT_NSConsumesSelf:
6262 handleSimpleAttribute<NSConsumesSelfAttr>(S, D, AL);
6263 break;
6264 case ParsedAttr::AT_NSReturnsAutoreleased:
6265 case ParsedAttr::AT_NSReturnsNotRetained:
6266 case ParsedAttr::AT_CFReturnsNotRetained:
6267 case ParsedAttr::AT_NSReturnsRetained: