Bug Summary

File:tools/clang/lib/Sema/SemaDeclCXX.cpp
Warning:line 9963, column 7
Value stored to 'Redeclaration' is never read

Annotated Source Code

1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTConsumer.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTLambda.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/EvaluatedExprVisitor.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/AST/TypeLoc.h"
26#include "clang/AST/TypeOrdering.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/TargetInfo.h"
29#include "clang/Lex/LiteralSupport.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/CXXFieldCollector.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/Initialization.h"
34#include "clang/Sema/Lookup.h"
35#include "clang/Sema/ParsedTemplate.h"
36#include "clang/Sema/Scope.h"
37#include "clang/Sema/ScopeInfo.h"
38#include "clang/Sema/SemaInternal.h"
39#include "clang/Sema/Template.h"
40#include "llvm/ADT/STLExtras.h"
41#include "llvm/ADT/SmallString.h"
42#include "llvm/ADT/StringExtras.h"
43#include <map>
44#include <set>
45
46using namespace clang;
47
48//===----------------------------------------------------------------------===//
49// CheckDefaultArgumentVisitor
50//===----------------------------------------------------------------------===//
51
52namespace {
53 /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
54 /// the default argument of a parameter to determine whether it
55 /// contains any ill-formed subexpressions. For example, this will
56 /// diagnose the use of local variables or parameters within the
57 /// default argument expression.
58 class CheckDefaultArgumentVisitor
59 : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
60 Expr *DefaultArg;
61 Sema *S;
62
63 public:
64 CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
65 : DefaultArg(defarg), S(s) {}
66
67 bool VisitExpr(Expr *Node);
68 bool VisitDeclRefExpr(DeclRefExpr *DRE);
69 bool VisitCXXThisExpr(CXXThisExpr *ThisE);
70 bool VisitLambdaExpr(LambdaExpr *Lambda);
71 bool VisitPseudoObjectExpr(PseudoObjectExpr *POE);
72 };
73
74 /// VisitExpr - Visit all of the children of this expression.
75 bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
76 bool IsInvalid = false;
77 for (Stmt *SubStmt : Node->children())
78 IsInvalid |= Visit(SubStmt);
79 return IsInvalid;
80 }
81
82 /// VisitDeclRefExpr - Visit a reference to a declaration, to
83 /// determine whether this declaration can be used in the default
84 /// argument expression.
85 bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
86 NamedDecl *Decl = DRE->getDecl();
87 if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
88 // C++ [dcl.fct.default]p9
89 // Default arguments are evaluated each time the function is
90 // called. The order of evaluation of function arguments is
91 // unspecified. Consequently, parameters of a function shall not
92 // be used in default argument expressions, even if they are not
93 // evaluated. Parameters of a function declared before a default
94 // argument expression are in scope and can hide namespace and
95 // class member names.
96 return S->Diag(DRE->getLocStart(),
97 diag::err_param_default_argument_references_param)
98 << Param->getDeclName() << DefaultArg->getSourceRange();
99 } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
100 // C++ [dcl.fct.default]p7
101 // Local variables shall not be used in default argument
102 // expressions.
103 if (VDecl->isLocalVarDecl())
104 return S->Diag(DRE->getLocStart(),
105 diag::err_param_default_argument_references_local)
106 << VDecl->getDeclName() << DefaultArg->getSourceRange();
107 }
108
109 return false;
110 }
111
112 /// VisitCXXThisExpr - Visit a C++ "this" expression.
113 bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
114 // C++ [dcl.fct.default]p8:
115 // The keyword this shall not be used in a default argument of a
116 // member function.
117 return S->Diag(ThisE->getLocStart(),
118 diag::err_param_default_argument_references_this)
119 << ThisE->getSourceRange();
120 }
121
122 bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
123 bool Invalid = false;
124 for (PseudoObjectExpr::semantics_iterator
125 i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) {
126 Expr *E = *i;
127
128 // Look through bindings.
129 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
130 E = OVE->getSourceExpr();
131 assert(E && "pseudo-object binding without source expression?")((E && "pseudo-object binding without source expression?"
) ? static_cast<void> (0) : __assert_fail ("E && \"pseudo-object binding without source expression?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 131, __PRETTY_FUNCTION__))
;
132 }
133
134 Invalid |= Visit(E);
135 }
136 return Invalid;
137 }
138
139 bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
140 // C++11 [expr.lambda.prim]p13:
141 // A lambda-expression appearing in a default argument shall not
142 // implicitly or explicitly capture any entity.
143 if (Lambda->capture_begin() == Lambda->capture_end())
144 return false;
145
146 return S->Diag(Lambda->getLocStart(),
147 diag::err_lambda_capture_default_arg);
148 }
149}
150
151void
152Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
153 const CXXMethodDecl *Method) {
154 // If we have an MSAny spec already, don't bother.
155 if (!Method || ComputedEST == EST_MSAny)
156 return;
157
158 const FunctionProtoType *Proto
159 = Method->getType()->getAs<FunctionProtoType>();
160 Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
161 if (!Proto)
162 return;
163
164 ExceptionSpecificationType EST = Proto->getExceptionSpecType();
165
166 // If we have a throw-all spec at this point, ignore the function.
167 if (ComputedEST == EST_None)
168 return;
169
170 switch(EST) {
171 // If this function can throw any exceptions, make a note of that.
172 case EST_MSAny:
173 case EST_None:
174 ClearExceptions();
175 ComputedEST = EST;
176 return;
177 // FIXME: If the call to this decl is using any of its default arguments, we
178 // need to search them for potentially-throwing calls.
179 // If this function has a basic noexcept, it doesn't affect the outcome.
180 case EST_BasicNoexcept:
181 return;
182 // If we're still at noexcept(true) and there's a nothrow() callee,
183 // change to that specification.
184 case EST_DynamicNone:
185 if (ComputedEST == EST_BasicNoexcept)
186 ComputedEST = EST_DynamicNone;
187 return;
188 // Check out noexcept specs.
189 case EST_ComputedNoexcept:
190 {
191 FunctionProtoType::NoexceptResult NR =
192 Proto->getNoexceptSpec(Self->Context);
193 assert(NR != FunctionProtoType::NR_NoNoexcept &&((NR != FunctionProtoType::NR_NoNoexcept && "Must have noexcept result for EST_ComputedNoexcept."
) ? static_cast<void> (0) : __assert_fail ("NR != FunctionProtoType::NR_NoNoexcept && \"Must have noexcept result for EST_ComputedNoexcept.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 194, __PRETTY_FUNCTION__))
194 "Must have noexcept result for EST_ComputedNoexcept.")((NR != FunctionProtoType::NR_NoNoexcept && "Must have noexcept result for EST_ComputedNoexcept."
) ? static_cast<void> (0) : __assert_fail ("NR != FunctionProtoType::NR_NoNoexcept && \"Must have noexcept result for EST_ComputedNoexcept.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 194, __PRETTY_FUNCTION__))
;
195 assert(NR != FunctionProtoType::NR_Dependent &&((NR != FunctionProtoType::NR_Dependent && "Should not generate implicit declarations for dependent cases, "
"and don't know how to handle them anyway.") ? static_cast<
void> (0) : __assert_fail ("NR != FunctionProtoType::NR_Dependent && \"Should not generate implicit declarations for dependent cases, \" \"and don't know how to handle them anyway.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 197, __PRETTY_FUNCTION__))
196 "Should not generate implicit declarations for dependent cases, "((NR != FunctionProtoType::NR_Dependent && "Should not generate implicit declarations for dependent cases, "
"and don't know how to handle them anyway.") ? static_cast<
void> (0) : __assert_fail ("NR != FunctionProtoType::NR_Dependent && \"Should not generate implicit declarations for dependent cases, \" \"and don't know how to handle them anyway.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 197, __PRETTY_FUNCTION__))
197 "and don't know how to handle them anyway.")((NR != FunctionProtoType::NR_Dependent && "Should not generate implicit declarations for dependent cases, "
"and don't know how to handle them anyway.") ? static_cast<
void> (0) : __assert_fail ("NR != FunctionProtoType::NR_Dependent && \"Should not generate implicit declarations for dependent cases, \" \"and don't know how to handle them anyway.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 197, __PRETTY_FUNCTION__))
;
198 // noexcept(false) -> no spec on the new function
199 if (NR == FunctionProtoType::NR_Throw) {
200 ClearExceptions();
201 ComputedEST = EST_None;
202 }
203 // noexcept(true) won't change anything either.
204 return;
205 }
206 default:
207 break;
208 }
209 assert(EST == EST_Dynamic && "EST case not considered earlier.")((EST == EST_Dynamic && "EST case not considered earlier."
) ? static_cast<void> (0) : __assert_fail ("EST == EST_Dynamic && \"EST case not considered earlier.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 209, __PRETTY_FUNCTION__))
;
210 assert(ComputedEST != EST_None &&((ComputedEST != EST_None && "Shouldn't collect exceptions when throw-all is guaranteed."
) ? static_cast<void> (0) : __assert_fail ("ComputedEST != EST_None && \"Shouldn't collect exceptions when throw-all is guaranteed.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 211, __PRETTY_FUNCTION__))
211 "Shouldn't collect exceptions when throw-all is guaranteed.")((ComputedEST != EST_None && "Shouldn't collect exceptions when throw-all is guaranteed."
) ? static_cast<void> (0) : __assert_fail ("ComputedEST != EST_None && \"Shouldn't collect exceptions when throw-all is guaranteed.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 211, __PRETTY_FUNCTION__))
;
212 ComputedEST = EST_Dynamic;
213 // Record the exceptions in this function's exception specification.
214 for (const auto &E : Proto->exceptions())
215 if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second)
216 Exceptions.push_back(E);
217}
218
219void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
220 if (!E || ComputedEST == EST_MSAny)
221 return;
222
223 // FIXME:
224 //
225 // C++0x [except.spec]p14:
226 // [An] implicit exception-specification specifies the type-id T if and
227 // only if T is allowed by the exception-specification of a function directly
228 // invoked by f's implicit definition; f shall allow all exceptions if any
229 // function it directly invokes allows all exceptions, and f shall allow no
230 // exceptions if every function it directly invokes allows no exceptions.
231 //
232 // Note in particular that if an implicit exception-specification is generated
233 // for a function containing a throw-expression, that specification can still
234 // be noexcept(true).
235 //
236 // Note also that 'directly invoked' is not defined in the standard, and there
237 // is no indication that we should only consider potentially-evaluated calls.
238 //
239 // Ultimately we should implement the intent of the standard: the exception
240 // specification should be the set of exceptions which can be thrown by the
241 // implicit definition. For now, we assume that any non-nothrow expression can
242 // throw any exception.
243
244 if (Self->canThrow(E))
245 ComputedEST = EST_None;
246}
247
248bool
249Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
250 SourceLocation EqualLoc) {
251 if (RequireCompleteType(Param->getLocation(), Param->getType(),
252 diag::err_typecheck_decl_incomplete_type)) {
253 Param->setInvalidDecl();
254 return true;
255 }
256
257 // C++ [dcl.fct.default]p5
258 // A default argument expression is implicitly converted (clause
259 // 4) to the parameter type. The default argument expression has
260 // the same semantic constraints as the initializer expression in
261 // a declaration of a variable of the parameter type, using the
262 // copy-initialization semantics (8.5).
263 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
264 Param);
265 InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
266 EqualLoc);
267 InitializationSequence InitSeq(*this, Entity, Kind, Arg);
268 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
269 if (Result.isInvalid())
270 return true;
271 Arg = Result.getAs<Expr>();
272
273 CheckCompletedExpr(Arg, EqualLoc);
274 Arg = MaybeCreateExprWithCleanups(Arg);
275
276 // Okay: add the default argument to the parameter
277 Param->setDefaultArg(Arg);
278
279 // We have already instantiated this parameter; provide each of the
280 // instantiations with the uninstantiated default argument.
281 UnparsedDefaultArgInstantiationsMap::iterator InstPos
282 = UnparsedDefaultArgInstantiations.find(Param);
283 if (InstPos != UnparsedDefaultArgInstantiations.end()) {
284 for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
285 InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
286
287 // We're done tracking this parameter's instantiations.
288 UnparsedDefaultArgInstantiations.erase(InstPos);
289 }
290
291 return false;
292}
293
294/// ActOnParamDefaultArgument - Check whether the default argument
295/// provided for a function parameter is well-formed. If so, attach it
296/// to the parameter declaration.
297void
298Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
299 Expr *DefaultArg) {
300 if (!param || !DefaultArg)
301 return;
302
303 ParmVarDecl *Param = cast<ParmVarDecl>(param);
304 UnparsedDefaultArgLocs.erase(Param);
305
306 // Default arguments are only permitted in C++
307 if (!getLangOpts().CPlusPlus) {
308 Diag(EqualLoc, diag::err_param_default_argument)
309 << DefaultArg->getSourceRange();
310 Param->setInvalidDecl();
311 return;
312 }
313
314 // Check for unexpanded parameter packs.
315 if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
316 Param->setInvalidDecl();
317 return;
318 }
319
320 // C++11 [dcl.fct.default]p3
321 // A default argument expression [...] shall not be specified for a
322 // parameter pack.
323 if (Param->isParameterPack()) {
324 Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack)
325 << DefaultArg->getSourceRange();
326 return;
327 }
328
329 // Check that the default argument is well-formed
330 CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
331 if (DefaultArgChecker.Visit(DefaultArg)) {
332 Param->setInvalidDecl();
333 return;
334 }
335
336 SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
337}
338
339/// ActOnParamUnparsedDefaultArgument - We've seen a default
340/// argument for a function parameter, but we can't parse it yet
341/// because we're inside a class definition. Note that this default
342/// argument will be parsed later.
343void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
344 SourceLocation EqualLoc,
345 SourceLocation ArgLoc) {
346 if (!param)
347 return;
348
349 ParmVarDecl *Param = cast<ParmVarDecl>(param);
350 Param->setUnparsedDefaultArg();
351 UnparsedDefaultArgLocs[Param] = ArgLoc;
352}
353
354/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
355/// the default argument for the parameter param failed.
356void Sema::ActOnParamDefaultArgumentError(Decl *param,
357 SourceLocation EqualLoc) {
358 if (!param)
359 return;
360
361 ParmVarDecl *Param = cast<ParmVarDecl>(param);
362 Param->setInvalidDecl();
363 UnparsedDefaultArgLocs.erase(Param);
364 Param->setDefaultArg(new(Context)
365 OpaqueValueExpr(EqualLoc,
366 Param->getType().getNonReferenceType(),
367 VK_RValue));
368}
369
370/// CheckExtraCXXDefaultArguments - Check for any extra default
371/// arguments in the declarator, which is not a function declaration
372/// or definition and therefore is not permitted to have default
373/// arguments. This routine should be invoked for every declarator
374/// that is not a function declaration or definition.
375void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
376 // C++ [dcl.fct.default]p3
377 // A default argument expression shall be specified only in the
378 // parameter-declaration-clause of a function declaration or in a
379 // template-parameter (14.1). It shall not be specified for a
380 // parameter pack. If it is specified in a
381 // parameter-declaration-clause, it shall not occur within a
382 // declarator or abstract-declarator of a parameter-declaration.
383 bool MightBeFunction = D.isFunctionDeclarationContext();
384 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
385 DeclaratorChunk &chunk = D.getTypeObject(i);
386 if (chunk.Kind == DeclaratorChunk::Function) {
387 if (MightBeFunction) {
388 // This is a function declaration. It can have default arguments, but
389 // keep looking in case its return type is a function type with default
390 // arguments.
391 MightBeFunction = false;
392 continue;
393 }
394 for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e;
395 ++argIdx) {
396 ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param);
397 if (Param->hasUnparsedDefaultArg()) {
398 std::unique_ptr<CachedTokens> Toks =
399 std::move(chunk.Fun.Params[argIdx].DefaultArgTokens);
400 SourceRange SR;
401 if (Toks->size() > 1)
402 SR = SourceRange((*Toks)[1].getLocation(),
403 Toks->back().getLocation());
404 else
405 SR = UnparsedDefaultArgLocs[Param];
406 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
407 << SR;
408 } else if (Param->getDefaultArg()) {
409 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
410 << Param->getDefaultArg()->getSourceRange();
411 Param->setDefaultArg(nullptr);
412 }
413 }
414 } else if (chunk.Kind != DeclaratorChunk::Paren) {
415 MightBeFunction = false;
416 }
417 }
418}
419
420static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
421 for (unsigned NumParams = FD->getNumParams(); NumParams > 0; --NumParams) {
422 const ParmVarDecl *PVD = FD->getParamDecl(NumParams-1);
423 if (!PVD->hasDefaultArg())
424 return false;
425 if (!PVD->hasInheritedDefaultArg())
426 return true;
427 }
428 return false;
429}
430
431/// MergeCXXFunctionDecl - Merge two declarations of the same C++
432/// function, once we already know that they have the same
433/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
434/// error, false otherwise.
435bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
436 Scope *S) {
437 bool Invalid = false;
438
439 // The declaration context corresponding to the scope is the semantic
440 // parent, unless this is a local function declaration, in which case
441 // it is that surrounding function.
442 DeclContext *ScopeDC = New->isLocalExternDecl()
443 ? New->getLexicalDeclContext()
444 : New->getDeclContext();
445
446 // Find the previous declaration for the purpose of default arguments.
447 FunctionDecl *PrevForDefaultArgs = Old;
448 for (/**/; PrevForDefaultArgs;
449 // Don't bother looking back past the latest decl if this is a local
450 // extern declaration; nothing else could work.
451 PrevForDefaultArgs = New->isLocalExternDecl()
452 ? nullptr
453 : PrevForDefaultArgs->getPreviousDecl()) {
454 // Ignore hidden declarations.
455 if (!LookupResult::isVisible(*this, PrevForDefaultArgs))
456 continue;
457
458 if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) &&
459 !New->isCXXClassMember()) {
460 // Ignore default arguments of old decl if they are not in
461 // the same scope and this is not an out-of-line definition of
462 // a member function.
463 continue;
464 }
465
466 if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) {
467 // If only one of these is a local function declaration, then they are
468 // declared in different scopes, even though isDeclInScope may think
469 // they're in the same scope. (If both are local, the scope check is
470 // sufficent, and if neither is local, then they are in the same scope.)
471 continue;
472 }
473
474 // We found the right previous declaration.
475 break;
476 }
477
478 // C++ [dcl.fct.default]p4:
479 // For non-template functions, default arguments can be added in
480 // later declarations of a function in the same
481 // scope. Declarations in different scopes have completely
482 // distinct sets of default arguments. That is, declarations in
483 // inner scopes do not acquire default arguments from
484 // declarations in outer scopes, and vice versa. In a given
485 // function declaration, all parameters subsequent to a
486 // parameter with a default argument shall have default
487 // arguments supplied in this or previous declarations. A
488 // default argument shall not be redefined by a later
489 // declaration (not even to the same value).
490 //
491 // C++ [dcl.fct.default]p6:
492 // Except for member functions of class templates, the default arguments
493 // in a member function definition that appears outside of the class
494 // definition are added to the set of default arguments provided by the
495 // member function declaration in the class definition.
496 for (unsigned p = 0, NumParams = PrevForDefaultArgs
497 ? PrevForDefaultArgs->getNumParams()
498 : 0;
499 p < NumParams; ++p) {
500 ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(p);
501 ParmVarDecl *NewParam = New->getParamDecl(p);
502
503 bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false;
504 bool NewParamHasDfl = NewParam->hasDefaultArg();
505
506 if (OldParamHasDfl && NewParamHasDfl) {
507 unsigned DiagDefaultParamID =
508 diag::err_param_default_argument_redefinition;
509
510 // MSVC accepts that default parameters be redefined for member functions
511 // of template class. The new default parameter's value is ignored.
512 Invalid = true;
513 if (getLangOpts().MicrosoftExt) {
514 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(New);
515 if (MD && MD->getParent()->getDescribedClassTemplate()) {
516 // Merge the old default argument into the new parameter.
517 NewParam->setHasInheritedDefaultArg();
518 if (OldParam->hasUninstantiatedDefaultArg())
519 NewParam->setUninstantiatedDefaultArg(
520 OldParam->getUninstantiatedDefaultArg());
521 else
522 NewParam->setDefaultArg(OldParam->getInit());
523 DiagDefaultParamID = diag::ext_param_default_argument_redefinition;
524 Invalid = false;
525 }
526 }
527
528 // FIXME: If we knew where the '=' was, we could easily provide a fix-it
529 // hint here. Alternatively, we could walk the type-source information
530 // for NewParam to find the last source location in the type... but it
531 // isn't worth the effort right now. This is the kind of test case that
532 // is hard to get right:
533 // int f(int);
534 // void g(int (*fp)(int) = f);
535 // void g(int (*fp)(int) = &f);
536 Diag(NewParam->getLocation(), DiagDefaultParamID)
537 << NewParam->getDefaultArgRange();
538
539 // Look for the function declaration where the default argument was
540 // actually written, which may be a declaration prior to Old.
541 for (auto Older = PrevForDefaultArgs;
542 OldParam->hasInheritedDefaultArg(); /**/) {
543 Older = Older->getPreviousDecl();
544 OldParam = Older->getParamDecl(p);
545 }
546
547 Diag(OldParam->getLocation(), diag::note_previous_definition)
548 << OldParam->getDefaultArgRange();
549 } else if (OldParamHasDfl) {
550 // Merge the old default argument into the new parameter.
551 // It's important to use getInit() here; getDefaultArg()
552 // strips off any top-level ExprWithCleanups.
553 NewParam->setHasInheritedDefaultArg();
554 if (OldParam->hasUnparsedDefaultArg())
555 NewParam->setUnparsedDefaultArg();
556 else if (OldParam->hasUninstantiatedDefaultArg())
557 NewParam->setUninstantiatedDefaultArg(
558 OldParam->getUninstantiatedDefaultArg());
559 else
560 NewParam->setDefaultArg(OldParam->getInit());
561 } else if (NewParamHasDfl) {
562 if (New->getDescribedFunctionTemplate()) {
563 // Paragraph 4, quoted above, only applies to non-template functions.
564 Diag(NewParam->getLocation(),
565 diag::err_param_default_argument_template_redecl)
566 << NewParam->getDefaultArgRange();
567 Diag(PrevForDefaultArgs->getLocation(),
568 diag::note_template_prev_declaration)
569 << false;
570 } else if (New->getTemplateSpecializationKind()
571 != TSK_ImplicitInstantiation &&
572 New->getTemplateSpecializationKind() != TSK_Undeclared) {
573 // C++ [temp.expr.spec]p21:
574 // Default function arguments shall not be specified in a declaration
575 // or a definition for one of the following explicit specializations:
576 // - the explicit specialization of a function template;
577 // - the explicit specialization of a member function template;
578 // - the explicit specialization of a member function of a class
579 // template where the class template specialization to which the
580 // member function specialization belongs is implicitly
581 // instantiated.
582 Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
583 << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
584 << New->getDeclName()
585 << NewParam->getDefaultArgRange();
586 } else if (New->getDeclContext()->isDependentContext()) {
587 // C++ [dcl.fct.default]p6 (DR217):
588 // Default arguments for a member function of a class template shall
589 // be specified on the initial declaration of the member function
590 // within the class template.
591 //
592 // Reading the tea leaves a bit in DR217 and its reference to DR205
593 // leads me to the conclusion that one cannot add default function
594 // arguments for an out-of-line definition of a member function of a
595 // dependent type.
596 int WhichKind = 2;
597 if (CXXRecordDecl *Record
598 = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
599 if (Record->getDescribedClassTemplate())
600 WhichKind = 0;
601 else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
602 WhichKind = 1;
603 else
604 WhichKind = 2;
605 }
606
607 Diag(NewParam->getLocation(),
608 diag::err_param_default_argument_member_template_redecl)
609 << WhichKind
610 << NewParam->getDefaultArgRange();
611 }
612 }
613 }
614
615 // DR1344: If a default argument is added outside a class definition and that
616 // default argument makes the function a special member function, the program
617 // is ill-formed. This can only happen for constructors.
618 if (isa<CXXConstructorDecl>(New) &&
619 New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
620 CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
621 OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
622 if (NewSM != OldSM) {
623 ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
624 assert(NewParam->hasDefaultArg())((NewParam->hasDefaultArg()) ? static_cast<void> (0)
: __assert_fail ("NewParam->hasDefaultArg()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 624, __PRETTY_FUNCTION__))
;
625 Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
626 << NewParam->getDefaultArgRange() << NewSM;
627 Diag(Old->getLocation(), diag::note_previous_declaration);
628 }
629 }
630
631 const FunctionDecl *Def;
632 // C++11 [dcl.constexpr]p1: If any declaration of a function or function
633 // template has a constexpr specifier then all its declarations shall
634 // contain the constexpr specifier.
635 if (New->isConstexpr() != Old->isConstexpr()) {
636 Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
637 << New << New->isConstexpr();
638 Diag(Old->getLocation(), diag::note_previous_declaration);
639 Invalid = true;
640 } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() &&
641 Old->isDefined(Def)) {
642 // C++11 [dcl.fcn.spec]p4:
643 // If the definition of a function appears in a translation unit before its
644 // first declaration as inline, the program is ill-formed.
645 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
646 Diag(Def->getLocation(), diag::note_previous_definition);
647 Invalid = true;
648 }
649
650 // FIXME: It's not clear what should happen if multiple declarations of a
651 // deduction guide have different explicitness. For now at least we simply
652 // reject any case where the explicitness changes.
653 auto *NewGuide = dyn_cast<CXXDeductionGuideDecl>(New);
654 if (NewGuide && NewGuide->isExplicitSpecified() !=
655 cast<CXXDeductionGuideDecl>(Old)->isExplicitSpecified()) {
656 Diag(New->getLocation(), diag::err_deduction_guide_explicit_mismatch)
657 << NewGuide->isExplicitSpecified();
658 Diag(Old->getLocation(), diag::note_previous_declaration);
659 }
660
661 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default
662 // argument expression, that declaration shall be a definition and shall be
663 // the only declaration of the function or function template in the
664 // translation unit.
665 if (Old->getFriendObjectKind() == Decl::FOK_Undeclared &&
666 functionDeclHasDefaultArgument(Old)) {
667 Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
668 Diag(Old->getLocation(), diag::note_previous_declaration);
669 Invalid = true;
670 }
671
672 return Invalid;
673}
674
675NamedDecl *
676Sema::ActOnDecompositionDeclarator(Scope *S, Declarator &D,
677 MultiTemplateParamsArg TemplateParamLists) {
678 assert(D.isDecompositionDeclarator())((D.isDecompositionDeclarator()) ? static_cast<void> (0
) : __assert_fail ("D.isDecompositionDeclarator()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 678, __PRETTY_FUNCTION__))
;
679 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
680
681 // The syntax only allows a decomposition declarator as a simple-declaration
682 // or a for-range-declaration, but we parse it in more cases than that.
683 if (!D.mayHaveDecompositionDeclarator()) {
684 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
685 << Decomp.getSourceRange();
686 return nullptr;
687 }
688
689 if (!TemplateParamLists.empty()) {
690 // FIXME: There's no rule against this, but there are also no rules that
691 // would actually make it usable, so we reject it for now.
692 Diag(TemplateParamLists.front()->getTemplateLoc(),
693 diag::err_decomp_decl_template);
694 return nullptr;
695 }
696
697 Diag(Decomp.getLSquareLoc(), getLangOpts().CPlusPlus1z
698 ? diag::warn_cxx14_compat_decomp_decl
699 : diag::ext_decomp_decl)
700 << Decomp.getSourceRange();
701
702 // The semantic context is always just the current context.
703 DeclContext *const DC = CurContext;
704
705 // C++1z [dcl.dcl]/8:
706 // The decl-specifier-seq shall contain only the type-specifier auto
707 // and cv-qualifiers.
708 auto &DS = D.getDeclSpec();
709 {
710 SmallVector<StringRef, 8> BadSpecifiers;
711 SmallVector<SourceLocation, 8> BadSpecifierLocs;
712 if (auto SCS = DS.getStorageClassSpec()) {
713 BadSpecifiers.push_back(DeclSpec::getSpecifierName(SCS));
714 BadSpecifierLocs.push_back(DS.getStorageClassSpecLoc());
715 }
716 if (auto TSCS = DS.getThreadStorageClassSpec()) {
717 BadSpecifiers.push_back(DeclSpec::getSpecifierName(TSCS));
718 BadSpecifierLocs.push_back(DS.getThreadStorageClassSpecLoc());
719 }
720 if (DS.isConstexprSpecified()) {
721 BadSpecifiers.push_back("constexpr");
722 BadSpecifierLocs.push_back(DS.getConstexprSpecLoc());
723 }
724 if (DS.isInlineSpecified()) {
725 BadSpecifiers.push_back("inline");
726 BadSpecifierLocs.push_back(DS.getInlineSpecLoc());
727 }
728 if (!BadSpecifiers.empty()) {
729 auto &&Err = Diag(BadSpecifierLocs.front(), diag::err_decomp_decl_spec);
730 Err << (int)BadSpecifiers.size()
731 << llvm::join(BadSpecifiers.begin(), BadSpecifiers.end(), " ");
732 // Don't add FixItHints to remove the specifiers; we do still respect
733 // them when building the underlying variable.
734 for (auto Loc : BadSpecifierLocs)
735 Err << SourceRange(Loc, Loc);
736 }
737 // We can't recover from it being declared as a typedef.
738 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
739 return nullptr;
740 }
741
742 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
743 QualType R = TInfo->getType();
744
745 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
746 UPPC_DeclarationType))
747 D.setInvalidType();
748
749 // The syntax only allows a single ref-qualifier prior to the decomposition
750 // declarator. No other declarator chunks are permitted. Also check the type
751 // specifier here.
752 if (DS.getTypeSpecType() != DeclSpec::TST_auto ||
753 D.hasGroupingParens() || D.getNumTypeObjects() > 1 ||
754 (D.getNumTypeObjects() == 1 &&
755 D.getTypeObject(0).Kind != DeclaratorChunk::Reference)) {
756 Diag(Decomp.getLSquareLoc(),
757 (D.hasGroupingParens() ||
758 (D.getNumTypeObjects() &&
759 D.getTypeObject(0).Kind == DeclaratorChunk::Paren))
760 ? diag::err_decomp_decl_parens
761 : diag::err_decomp_decl_type)
762 << R;
763
764 // In most cases, there's no actual problem with an explicitly-specified
765 // type, but a function type won't work here, and ActOnVariableDeclarator
766 // shouldn't be called for such a type.
767 if (R->isFunctionType())
768 D.setInvalidType();
769 }
770
771 // Build the BindingDecls.
772 SmallVector<BindingDecl*, 8> Bindings;
773
774 // Build the BindingDecls.
775 for (auto &B : D.getDecompositionDeclarator().bindings()) {
776 // Check for name conflicts.
777 DeclarationNameInfo NameInfo(B.Name, B.NameLoc);
778 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
779 ForRedeclaration);
780 LookupName(Previous, S,
781 /*CreateBuiltins*/DC->getRedeclContext()->isTranslationUnit());
782
783 // It's not permitted to shadow a template parameter name.
784 if (Previous.isSingleResult() &&
785 Previous.getFoundDecl()->isTemplateParameter()) {
786 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
787 Previous.getFoundDecl());
788 Previous.clear();
789 }
790
791 bool ConsiderLinkage = DC->isFunctionOrMethod() &&
792 DS.getStorageClassSpec() == DeclSpec::SCS_extern;
793 FilterLookupForScope(Previous, DC, S, ConsiderLinkage,
794 /*AllowInlineNamespace*/false);
795 if (!Previous.empty()) {
796 auto *Old = Previous.getRepresentativeDecl();
797 Diag(B.NameLoc, diag::err_redefinition) << B.Name;
798 Diag(Old->getLocation(), diag::note_previous_definition);
799 }
800
801 auto *BD = BindingDecl::Create(Context, DC, B.NameLoc, B.Name);
802 PushOnScopeChains(BD, S, true);
803 Bindings.push_back(BD);
804 ParsingInitForAutoVars.insert(BD);
805 }
806
807 // There are no prior lookup results for the variable itself, because it
808 // is unnamed.
809 DeclarationNameInfo NameInfo((IdentifierInfo *)nullptr,
810 Decomp.getLSquareLoc());
811 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
812
813 // Build the variable that holds the non-decomposed object.
814 bool AddToScope = true;
815 NamedDecl *New =
816 ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
817 MultiTemplateParamsArg(), AddToScope, Bindings);
818 CurContext->addHiddenDecl(New);
819
820 if (isInOpenMPDeclareTargetContext())
821 checkDeclIsAllowedInOpenMPTarget(nullptr, New);
822
823 return New;
824}
825
826static bool checkSimpleDecomposition(
827 Sema &S, ArrayRef<BindingDecl *> Bindings, ValueDecl *Src,
828 QualType DecompType, const llvm::APSInt &NumElems, QualType ElemType,
829 llvm::function_ref<ExprResult(SourceLocation, Expr *, unsigned)> GetInit) {
830 if ((int64_t)Bindings.size() != NumElems) {
831 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
832 << DecompType << (unsigned)Bindings.size() << NumElems.toString(10)
833 << (NumElems < Bindings.size());
834 return true;
835 }
836
837 unsigned I = 0;
838 for (auto *B : Bindings) {
839 SourceLocation Loc = B->getLocation();
840 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
841 if (E.isInvalid())
842 return true;
843 E = GetInit(Loc, E.get(), I++);
844 if (E.isInvalid())
845 return true;
846 B->setBinding(ElemType, E.get());
847 }
848
849 return false;
850}
851
852static bool checkArrayLikeDecomposition(Sema &S,
853 ArrayRef<BindingDecl *> Bindings,
854 ValueDecl *Src, QualType DecompType,
855 const llvm::APSInt &NumElems,
856 QualType ElemType) {
857 return checkSimpleDecomposition(
858 S, Bindings, Src, DecompType, NumElems, ElemType,
859 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
860 ExprResult E = S.ActOnIntegerConstant(Loc, I);
861 if (E.isInvalid())
862 return ExprError();
863 return S.CreateBuiltinArraySubscriptExpr(Base, Loc, E.get(), Loc);
864 });
865}
866
867static bool checkArrayDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
868 ValueDecl *Src, QualType DecompType,
869 const ConstantArrayType *CAT) {
870 return checkArrayLikeDecomposition(S, Bindings, Src, DecompType,
871 llvm::APSInt(CAT->getSize()),
872 CAT->getElementType());
873}
874
875static bool checkVectorDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
876 ValueDecl *Src, QualType DecompType,
877 const VectorType *VT) {
878 return checkArrayLikeDecomposition(
879 S, Bindings, Src, DecompType, llvm::APSInt::get(VT->getNumElements()),
880 S.Context.getQualifiedType(VT->getElementType(),
881 DecompType.getQualifiers()));
882}
883
884static bool checkComplexDecomposition(Sema &S,
885 ArrayRef<BindingDecl *> Bindings,
886 ValueDecl *Src, QualType DecompType,
887 const ComplexType *CT) {
888 return checkSimpleDecomposition(
889 S, Bindings, Src, DecompType, llvm::APSInt::get(2),
890 S.Context.getQualifiedType(CT->getElementType(),
891 DecompType.getQualifiers()),
892 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
893 return S.CreateBuiltinUnaryOp(Loc, I ? UO_Imag : UO_Real, Base);
894 });
895}
896
897static std::string printTemplateArgs(const PrintingPolicy &PrintingPolicy,
898 TemplateArgumentListInfo &Args) {
899 SmallString<128> SS;
900 llvm::raw_svector_ostream OS(SS);
901 bool First = true;
902 for (auto &Arg : Args.arguments()) {
903 if (!First)
904 OS << ", ";
905 Arg.getArgument().print(PrintingPolicy, OS);
906 First = false;
907 }
908 return OS.str();
909}
910
911static bool lookupStdTypeTraitMember(Sema &S, LookupResult &TraitMemberLookup,
912 SourceLocation Loc, StringRef Trait,
913 TemplateArgumentListInfo &Args,
914 unsigned DiagID) {
915 auto DiagnoseMissing = [&] {
916 if (DiagID)
917 S.Diag(Loc, DiagID) << printTemplateArgs(S.Context.getPrintingPolicy(),
918 Args);
919 return true;
920 };
921
922 // FIXME: Factor out duplication with lookupPromiseType in SemaCoroutine.
923 NamespaceDecl *Std = S.getStdNamespace();
924 if (!Std)
925 return DiagnoseMissing();
926
927 // Look up the trait itself, within namespace std. We can diagnose various
928 // problems with this lookup even if we've been asked to not diagnose a
929 // missing specialization, because this can only fail if the user has been
930 // declaring their own names in namespace std or we don't support the
931 // standard library implementation in use.
932 LookupResult Result(S, &S.PP.getIdentifierTable().get(Trait),
933 Loc, Sema::LookupOrdinaryName);
934 if (!S.LookupQualifiedName(Result, Std))
935 return DiagnoseMissing();
936 if (Result.isAmbiguous())
937 return true;
938
939 ClassTemplateDecl *TraitTD = Result.getAsSingle<ClassTemplateDecl>();
940 if (!TraitTD) {
941 Result.suppressDiagnostics();
942 NamedDecl *Found = *Result.begin();
943 S.Diag(Loc, diag::err_std_type_trait_not_class_template) << Trait;
944 S.Diag(Found->getLocation(), diag::note_declared_at);
945 return true;
946 }
947
948 // Build the template-id.
949 QualType TraitTy = S.CheckTemplateIdType(TemplateName(TraitTD), Loc, Args);
950 if (TraitTy.isNull())
951 return true;
952 if (!S.isCompleteType(Loc, TraitTy)) {
953 if (DiagID)
954 S.RequireCompleteType(
955 Loc, TraitTy, DiagID,
956 printTemplateArgs(S.Context.getPrintingPolicy(), Args));
957 return true;
958 }
959
960 CXXRecordDecl *RD = TraitTy->getAsCXXRecordDecl();
961 assert(RD && "specialization of class template is not a class?")((RD && "specialization of class template is not a class?"
) ? static_cast<void> (0) : __assert_fail ("RD && \"specialization of class template is not a class?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 961, __PRETTY_FUNCTION__))
;
962
963 // Look up the member of the trait type.
964 S.LookupQualifiedName(TraitMemberLookup, RD);
965 return TraitMemberLookup.isAmbiguous();
966}
967
968static TemplateArgumentLoc
969getTrivialIntegralTemplateArgument(Sema &S, SourceLocation Loc, QualType T,
970 uint64_t I) {
971 TemplateArgument Arg(S.Context, S.Context.MakeIntValue(I, T), T);
972 return S.getTrivialTemplateArgumentLoc(Arg, T, Loc);
973}
974
975static TemplateArgumentLoc
976getTrivialTypeTemplateArgument(Sema &S, SourceLocation Loc, QualType T) {
977 return S.getTrivialTemplateArgumentLoc(TemplateArgument(T), QualType(), Loc);
978}
979
980namespace { enum class IsTupleLike { TupleLike, NotTupleLike, Error }; }
981
982static IsTupleLike isTupleLike(Sema &S, SourceLocation Loc, QualType T,
983 llvm::APSInt &Size) {
984 EnterExpressionEvaluationContext ContextRAII(S, Sema::ConstantEvaluated);
985
986 DeclarationName Value = S.PP.getIdentifierInfo("value");
987 LookupResult R(S, Value, Loc, Sema::LookupOrdinaryName);
988
989 // Form template argument list for tuple_size<T>.
990 TemplateArgumentListInfo Args(Loc, Loc);
991 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
992
993 // If there's no tuple_size specialization, it's not tuple-like.
994 if (lookupStdTypeTraitMember(S, R, Loc, "tuple_size", Args, /*DiagID*/0))
995 return IsTupleLike::NotTupleLike;
996
997 // If we get this far, we've committed to the tuple interpretation, but
998 // we can still fail if there actually isn't a usable ::value.
999
1000 struct ICEDiagnoser : Sema::VerifyICEDiagnoser {
1001 LookupResult &R;
1002 TemplateArgumentListInfo &Args;
1003 ICEDiagnoser(LookupResult &R, TemplateArgumentListInfo &Args)
1004 : R(R), Args(Args) {}
1005 void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
1006 S.Diag(Loc, diag::err_decomp_decl_std_tuple_size_not_constant)
1007 << printTemplateArgs(S.Context.getPrintingPolicy(), Args);
1008 }
1009 } Diagnoser(R, Args);
1010
1011 if (R.empty()) {
1012 Diagnoser.diagnoseNotICE(S, Loc, SourceRange());
1013 return IsTupleLike::Error;
1014 }
1015
1016 ExprResult E =
1017 S.BuildDeclarationNameExpr(CXXScopeSpec(), R, /*NeedsADL*/false);
1018 if (E.isInvalid())
1019 return IsTupleLike::Error;
1020
1021 E = S.VerifyIntegerConstantExpression(E.get(), &Size, Diagnoser, false);
1022 if (E.isInvalid())
1023 return IsTupleLike::Error;
1024
1025 return IsTupleLike::TupleLike;
1026}
1027
1028/// \return std::tuple_element<I, T>::type.
1029static QualType getTupleLikeElementType(Sema &S, SourceLocation Loc,
1030 unsigned I, QualType T) {
1031 // Form template argument list for tuple_element<I, T>.
1032 TemplateArgumentListInfo Args(Loc, Loc);
1033 Args.addArgument(
1034 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1035 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
1036
1037 DeclarationName TypeDN = S.PP.getIdentifierInfo("type");
1038 LookupResult R(S, TypeDN, Loc, Sema::LookupOrdinaryName);
1039 if (lookupStdTypeTraitMember(
1040 S, R, Loc, "tuple_element", Args,
1041 diag::err_decomp_decl_std_tuple_element_not_specialized))
1042 return QualType();
1043
1044 auto *TD = R.getAsSingle<TypeDecl>();
1045 if (!TD) {
1046 R.suppressDiagnostics();
1047 S.Diag(Loc, diag::err_decomp_decl_std_tuple_element_not_specialized)
1048 << printTemplateArgs(S.Context.getPrintingPolicy(), Args);
1049 if (!R.empty())
1050 S.Diag(R.getRepresentativeDecl()->getLocation(), diag::note_declared_at);
1051 return QualType();
1052 }
1053
1054 return S.Context.getTypeDeclType(TD);
1055}
1056
1057namespace {
1058struct BindingDiagnosticTrap {
1059 Sema &S;
1060 DiagnosticErrorTrap Trap;
1061 BindingDecl *BD;
1062
1063 BindingDiagnosticTrap(Sema &S, BindingDecl *BD)
1064 : S(S), Trap(S.Diags), BD(BD) {}
1065 ~BindingDiagnosticTrap() {
1066 if (Trap.hasErrorOccurred())
1067 S.Diag(BD->getLocation(), diag::note_in_binding_decl_init) << BD;
1068 }
1069};
1070}
1071
1072static bool checkTupleLikeDecomposition(Sema &S,
1073 ArrayRef<BindingDecl *> Bindings,
1074 VarDecl *Src, QualType DecompType,
1075 const llvm::APSInt &TupleSize) {
1076 if ((int64_t)Bindings.size() != TupleSize) {
1077 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1078 << DecompType << (unsigned)Bindings.size() << TupleSize.toString(10)
1079 << (TupleSize < Bindings.size());
1080 return true;
1081 }
1082
1083 if (Bindings.empty())
1084 return false;
1085
1086 DeclarationName GetDN = S.PP.getIdentifierInfo("get");
1087
1088 // [dcl.decomp]p3:
1089 // The unqualified-id get is looked up in the scope of E by class member
1090 // access lookup
1091 LookupResult MemberGet(S, GetDN, Src->getLocation(), Sema::LookupMemberName);
1092 bool UseMemberGet = false;
1093 if (S.isCompleteType(Src->getLocation(), DecompType)) {
1094 if (auto *RD = DecompType->getAsCXXRecordDecl())
1095 S.LookupQualifiedName(MemberGet, RD);
1096 if (MemberGet.isAmbiguous())
1097 return true;
1098 UseMemberGet = !MemberGet.empty();
1099 S.FilterAcceptableTemplateNames(MemberGet);
1100 }
1101
1102 unsigned I = 0;
1103 for (auto *B : Bindings) {
1104 BindingDiagnosticTrap Trap(S, B);
1105 SourceLocation Loc = B->getLocation();
1106
1107 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1108 if (E.isInvalid())
1109 return true;
1110
1111 // e is an lvalue if the type of the entity is an lvalue reference and
1112 // an xvalue otherwise
1113 if (!Src->getType()->isLValueReferenceType())
1114 E = ImplicitCastExpr::Create(S.Context, E.get()->getType(), CK_NoOp,
1115 E.get(), nullptr, VK_XValue);
1116
1117 TemplateArgumentListInfo Args(Loc, Loc);
1118 Args.addArgument(
1119 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1120
1121 if (UseMemberGet) {
1122 // if [lookup of member get] finds at least one declaration, the
1123 // initializer is e.get<i-1>().
1124 E = S.BuildMemberReferenceExpr(E.get(), DecompType, Loc, false,
1125 CXXScopeSpec(), SourceLocation(), nullptr,
1126 MemberGet, &Args, nullptr);
1127 if (E.isInvalid())
1128 return true;
1129
1130 E = S.ActOnCallExpr(nullptr, E.get(), Loc, None, Loc);
1131 } else {
1132 // Otherwise, the initializer is get<i-1>(e), where get is looked up
1133 // in the associated namespaces.
1134 Expr *Get = UnresolvedLookupExpr::Create(
1135 S.Context, nullptr, NestedNameSpecifierLoc(), SourceLocation(),
1136 DeclarationNameInfo(GetDN, Loc), /*RequiresADL*/true, &Args,
1137 UnresolvedSetIterator(), UnresolvedSetIterator());
1138
1139 Expr *Arg = E.get();
1140 E = S.ActOnCallExpr(nullptr, Get, Loc, Arg, Loc);
1141 }
1142 if (E.isInvalid())
1143 return true;
1144 Expr *Init = E.get();
1145
1146 // Given the type T designated by std::tuple_element<i - 1, E>::type,
1147 QualType T = getTupleLikeElementType(S, Loc, I, DecompType);
1148 if (T.isNull())
1149 return true;
1150
1151 // each vi is a variable of type "reference to T" initialized with the
1152 // initializer, where the reference is an lvalue reference if the
1153 // initializer is an lvalue and an rvalue reference otherwise
1154 QualType RefType =
1155 S.BuildReferenceType(T, E.get()->isLValue(), Loc, B->getDeclName());
1156 if (RefType.isNull())
1157 return true;
1158 auto *RefVD = VarDecl::Create(
1159 S.Context, Src->getDeclContext(), Loc, Loc,
1160 B->getDeclName().getAsIdentifierInfo(), RefType,
1161 S.Context.getTrivialTypeSourceInfo(T, Loc), Src->getStorageClass());
1162 RefVD->setLexicalDeclContext(Src->getLexicalDeclContext());
1163 RefVD->setTSCSpec(Src->getTSCSpec());
1164 RefVD->setImplicit();
1165 if (Src->isInlineSpecified())
1166 RefVD->setInlineSpecified();
1167 RefVD->getLexicalDeclContext()->addHiddenDecl(RefVD);
1168
1169 InitializedEntity Entity = InitializedEntity::InitializeBinding(RefVD);
1170 InitializationKind Kind = InitializationKind::CreateCopy(Loc, Loc);
1171 InitializationSequence Seq(S, Entity, Kind, Init);
1172 E = Seq.Perform(S, Entity, Kind, Init);
1173 if (E.isInvalid())
1174 return true;
1175 E = S.ActOnFinishFullExpr(E.get(), Loc);
1176 if (E.isInvalid())
1177 return true;
1178 RefVD->setInit(E.get());
1179 RefVD->checkInitIsICE();
1180
1181 E = S.BuildDeclarationNameExpr(CXXScopeSpec(),
1182 DeclarationNameInfo(B->getDeclName(), Loc),
1183 RefVD);
1184 if (E.isInvalid())
1185 return true;
1186
1187 B->setBinding(T, E.get());
1188 I++;
1189 }
1190
1191 return false;
1192}
1193
1194/// Find the base class to decompose in a built-in decomposition of a class type.
1195/// This base class search is, unfortunately, not quite like any other that we
1196/// perform anywhere else in C++.
1197static const CXXRecordDecl *findDecomposableBaseClass(Sema &S,
1198 SourceLocation Loc,
1199 const CXXRecordDecl *RD,
1200 CXXCastPath &BasePath) {
1201 auto BaseHasFields = [](const CXXBaseSpecifier *Specifier,
1202 CXXBasePath &Path) {
1203 return Specifier->getType()->getAsCXXRecordDecl()->hasDirectFields();
1204 };
1205
1206 const CXXRecordDecl *ClassWithFields = nullptr;
1207 if (RD->hasDirectFields())
1208 // [dcl.decomp]p4:
1209 // Otherwise, all of E's non-static data members shall be public direct
1210 // members of E ...
1211 ClassWithFields = RD;
1212 else {
1213 // ... or of ...
1214 CXXBasePaths Paths;
1215 Paths.setOrigin(const_cast<CXXRecordDecl*>(RD));
1216 if (!RD->lookupInBases(BaseHasFields, Paths)) {
1217 // If no classes have fields, just decompose RD itself. (This will work
1218 // if and only if zero bindings were provided.)
1219 return RD;
1220 }
1221
1222 CXXBasePath *BestPath = nullptr;
1223 for (auto &P : Paths) {
1224 if (!BestPath)
1225 BestPath = &P;
1226 else if (!S.Context.hasSameType(P.back().Base->getType(),
1227 BestPath->back().Base->getType())) {
1228 // ... the same ...
1229 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1230 << false << RD << BestPath->back().Base->getType()
1231 << P.back().Base->getType();
1232 return nullptr;
1233 } else if (P.Access < BestPath->Access) {
1234 BestPath = &P;
1235 }
1236 }
1237
1238 // ... unambiguous ...
1239 QualType BaseType = BestPath->back().Base->getType();
1240 if (Paths.isAmbiguous(S.Context.getCanonicalType(BaseType))) {
1241 S.Diag(Loc, diag::err_decomp_decl_ambiguous_base)
1242 << RD << BaseType << S.getAmbiguousPathsDisplayString(Paths);
1243 return nullptr;
1244 }
1245
1246 // ... public base class of E.
1247 if (BestPath->Access != AS_public) {
1248 S.Diag(Loc, diag::err_decomp_decl_non_public_base)
1249 << RD << BaseType;
1250 for (auto &BS : *BestPath) {
1251 if (BS.Base->getAccessSpecifier() != AS_public) {
1252 S.Diag(BS.Base->getLocStart(), diag::note_access_constrained_by_path)
1253 << (BS.Base->getAccessSpecifier() == AS_protected)
1254 << (BS.Base->getAccessSpecifierAsWritten() == AS_none);
1255 break;
1256 }
1257 }
1258 return nullptr;
1259 }
1260
1261 ClassWithFields = BaseType->getAsCXXRecordDecl();
1262 S.BuildBasePathArray(Paths, BasePath);
1263 }
1264
1265 // The above search did not check whether the selected class itself has base
1266 // classes with fields, so check that now.
1267 CXXBasePaths Paths;
1268 if (ClassWithFields->lookupInBases(BaseHasFields, Paths)) {
1269 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1270 << (ClassWithFields == RD) << RD << ClassWithFields
1271 << Paths.front().back().Base->getType();
1272 return nullptr;
1273 }
1274
1275 return ClassWithFields;
1276}
1277
1278static bool checkMemberDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
1279 ValueDecl *Src, QualType DecompType,
1280 const CXXRecordDecl *RD) {
1281 CXXCastPath BasePath;
1282 RD = findDecomposableBaseClass(S, Src->getLocation(), RD, BasePath);
1283 if (!RD)
1284 return true;
1285 QualType BaseType = S.Context.getQualifiedType(S.Context.getRecordType(RD),
1286 DecompType.getQualifiers());
1287
1288 auto DiagnoseBadNumberOfBindings = [&]() -> bool {
1289 unsigned NumFields =
1290 std::count_if(RD->field_begin(), RD->field_end(),
1291 [](FieldDecl *FD) { return !FD->isUnnamedBitfield(); });
1292 assert(Bindings.size() != NumFields)((Bindings.size() != NumFields) ? static_cast<void> (0)
: __assert_fail ("Bindings.size() != NumFields", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1292, __PRETTY_FUNCTION__))
;
1293 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1294 << DecompType << (unsigned)Bindings.size() << NumFields
1295 << (NumFields < Bindings.size());
1296 return true;
1297 };
1298
1299 // all of E's non-static data members shall be public [...] members,
1300 // E shall not have an anonymous union member, ...
1301 unsigned I = 0;
1302 for (auto *FD : RD->fields()) {
1303 if (FD->isUnnamedBitfield())
1304 continue;
1305
1306 if (FD->isAnonymousStructOrUnion()) {
1307 S.Diag(Src->getLocation(), diag::err_decomp_decl_anon_union_member)
1308 << DecompType << FD->getType()->isUnionType();
1309 S.Diag(FD->getLocation(), diag::note_declared_at);
1310 return true;
1311 }
1312
1313 // We have a real field to bind.
1314 if (I >= Bindings.size())
1315 return DiagnoseBadNumberOfBindings();
1316 auto *B = Bindings[I++];
1317
1318 SourceLocation Loc = B->getLocation();
1319 if (FD->getAccess() != AS_public) {
1320 S.Diag(Loc, diag::err_decomp_decl_non_public_member) << FD << DecompType;
1321
1322 // Determine whether the access specifier was explicit.
1323 bool Implicit = true;
1324 for (const auto *D : RD->decls()) {
1325 if (declaresSameEntity(D, FD))
1326 break;
1327 if (isa<AccessSpecDecl>(D)) {
1328 Implicit = false;
1329 break;
1330 }
1331 }
1332
1333 S.Diag(FD->getLocation(), diag::note_access_natural)
1334 << (FD->getAccess() == AS_protected) << Implicit;
1335 return true;
1336 }
1337
1338 // Initialize the binding to Src.FD.
1339 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1340 if (E.isInvalid())
1341 return true;
1342 E = S.ImpCastExprToType(E.get(), BaseType, CK_UncheckedDerivedToBase,
1343 VK_LValue, &BasePath);
1344 if (E.isInvalid())
1345 return true;
1346 E = S.BuildFieldReferenceExpr(E.get(), /*IsArrow*/ false, Loc,
1347 CXXScopeSpec(), FD,
1348 DeclAccessPair::make(FD, FD->getAccess()),
1349 DeclarationNameInfo(FD->getDeclName(), Loc));
1350 if (E.isInvalid())
1351 return true;
1352
1353 // If the type of the member is T, the referenced type is cv T, where cv is
1354 // the cv-qualification of the decomposition expression.
1355 //
1356 // FIXME: We resolve a defect here: if the field is mutable, we do not add
1357 // 'const' to the type of the field.
1358 Qualifiers Q = DecompType.getQualifiers();
1359 if (FD->isMutable())
1360 Q.removeConst();
1361 B->setBinding(S.BuildQualifiedType(FD->getType(), Loc, Q), E.get());
1362 }
1363
1364 if (I != Bindings.size())
1365 return DiagnoseBadNumberOfBindings();
1366
1367 return false;
1368}
1369
1370void Sema::CheckCompleteDecompositionDeclaration(DecompositionDecl *DD) {
1371 QualType DecompType = DD->getType();
1372
1373 // If the type of the decomposition is dependent, then so is the type of
1374 // each binding.
1375 if (DecompType->isDependentType()) {
1376 for (auto *B : DD->bindings())
1377 B->setType(Context.DependentTy);
1378 return;
1379 }
1380
1381 DecompType = DecompType.getNonReferenceType();
1382 ArrayRef<BindingDecl*> Bindings = DD->bindings();
1383
1384 // C++1z [dcl.decomp]/2:
1385 // If E is an array type [...]
1386 // As an extension, we also support decomposition of built-in complex and
1387 // vector types.
1388 if (auto *CAT = Context.getAsConstantArrayType(DecompType)) {
1389 if (checkArrayDecomposition(*this, Bindings, DD, DecompType, CAT))
1390 DD->setInvalidDecl();
1391 return;
1392 }
1393 if (auto *VT = DecompType->getAs<VectorType>()) {
1394 if (checkVectorDecomposition(*this, Bindings, DD, DecompType, VT))
1395 DD->setInvalidDecl();
1396 return;
1397 }
1398 if (auto *CT = DecompType->getAs<ComplexType>()) {
1399 if (checkComplexDecomposition(*this, Bindings, DD, DecompType, CT))
1400 DD->setInvalidDecl();
1401 return;
1402 }
1403
1404 // C++1z [dcl.decomp]/3:
1405 // if the expression std::tuple_size<E>::value is a well-formed integral
1406 // constant expression, [...]
1407 llvm::APSInt TupleSize(32);
1408 switch (isTupleLike(*this, DD->getLocation(), DecompType, TupleSize)) {
1409 case IsTupleLike::Error:
1410 DD->setInvalidDecl();
1411 return;
1412
1413 case IsTupleLike::TupleLike:
1414 if (checkTupleLikeDecomposition(*this, Bindings, DD, DecompType, TupleSize))
1415 DD->setInvalidDecl();
1416 return;
1417
1418 case IsTupleLike::NotTupleLike:
1419 break;
1420 }
1421
1422 // C++1z [dcl.dcl]/8:
1423 // [E shall be of array or non-union class type]
1424 CXXRecordDecl *RD = DecompType->getAsCXXRecordDecl();
1425 if (!RD || RD->isUnion()) {
1426 Diag(DD->getLocation(), diag::err_decomp_decl_unbindable_type)
1427 << DD << !RD << DecompType;
1428 DD->setInvalidDecl();
1429 return;
1430 }
1431
1432 // C++1z [dcl.decomp]/4:
1433 // all of E's non-static data members shall be [...] direct members of
1434 // E or of the same unambiguous public base class of E, ...
1435 if (checkMemberDecomposition(*this, Bindings, DD, DecompType, RD))
1436 DD->setInvalidDecl();
1437}
1438
1439/// \brief Merge the exception specifications of two variable declarations.
1440///
1441/// This is called when there's a redeclaration of a VarDecl. The function
1442/// checks if the redeclaration might have an exception specification and
1443/// validates compatibility and merges the specs if necessary.
1444void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
1445 // Shortcut if exceptions are disabled.
1446 if (!getLangOpts().CXXExceptions)
1447 return;
1448
1449 assert(Context.hasSameType(New->getType(), Old->getType()) &&((Context.hasSameType(New->getType(), Old->getType()) &&
"Should only be called if types are otherwise the same.") ? static_cast
<void> (0) : __assert_fail ("Context.hasSameType(New->getType(), Old->getType()) && \"Should only be called if types are otherwise the same.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1450, __PRETTY_FUNCTION__))
1450 "Should only be called if types are otherwise the same.")((Context.hasSameType(New->getType(), Old->getType()) &&
"Should only be called if types are otherwise the same.") ? static_cast
<void> (0) : __assert_fail ("Context.hasSameType(New->getType(), Old->getType()) && \"Should only be called if types are otherwise the same.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1450, __PRETTY_FUNCTION__))
;
1451
1452 QualType NewType = New->getType();
1453 QualType OldType = Old->getType();
1454
1455 // We're only interested in pointers and references to functions, as well
1456 // as pointers to member functions.
1457 if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
1458 NewType = R->getPointeeType();
1459 OldType = OldType->getAs<ReferenceType>()->getPointeeType();
1460 } else if (const PointerType *P = NewType->getAs<PointerType>()) {
1461 NewType = P->getPointeeType();
1462 OldType = OldType->getAs<PointerType>()->getPointeeType();
1463 } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
1464 NewType = M->getPointeeType();
1465 OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
1466 }
1467
1468 if (!NewType->isFunctionProtoType())
1469 return;
1470
1471 // There's lots of special cases for functions. For function pointers, system
1472 // libraries are hopefully not as broken so that we don't need these
1473 // workarounds.
1474 if (CheckEquivalentExceptionSpec(
1475 OldType->getAs<FunctionProtoType>(), Old->getLocation(),
1476 NewType->getAs<FunctionProtoType>(), New->getLocation())) {
1477 New->setInvalidDecl();
1478 }
1479}
1480
1481/// CheckCXXDefaultArguments - Verify that the default arguments for a
1482/// function declaration are well-formed according to C++
1483/// [dcl.fct.default].
1484void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
1485 unsigned NumParams = FD->getNumParams();
1486 unsigned p;
1487
1488 // Find first parameter with a default argument
1489 for (p = 0; p < NumParams; ++p) {
1490 ParmVarDecl *Param = FD->getParamDecl(p);
1491 if (Param->hasDefaultArg())
1492 break;
1493 }
1494
1495 // C++11 [dcl.fct.default]p4:
1496 // In a given function declaration, each parameter subsequent to a parameter
1497 // with a default argument shall have a default argument supplied in this or
1498 // a previous declaration or shall be a function parameter pack. A default
1499 // argument shall not be redefined by a later declaration (not even to the
1500 // same value).
1501 unsigned LastMissingDefaultArg = 0;
1502 for (; p < NumParams; ++p) {
1503 ParmVarDecl *Param = FD->getParamDecl(p);
1504 if (!Param->hasDefaultArg() && !Param->isParameterPack()) {
1505 if (Param->isInvalidDecl())
1506 /* We already complained about this parameter. */;
1507 else if (Param->getIdentifier())
1508 Diag(Param->getLocation(),
1509 diag::err_param_default_argument_missing_name)
1510 << Param->getIdentifier();
1511 else
1512 Diag(Param->getLocation(),
1513 diag::err_param_default_argument_missing);
1514
1515 LastMissingDefaultArg = p;
1516 }
1517 }
1518
1519 if (LastMissingDefaultArg > 0) {
1520 // Some default arguments were missing. Clear out all of the
1521 // default arguments up to (and including) the last missing
1522 // default argument, so that we leave the function parameters
1523 // in a semantically valid state.
1524 for (p = 0; p <= LastMissingDefaultArg; ++p) {
1525 ParmVarDecl *Param = FD->getParamDecl(p);
1526 if (Param->hasDefaultArg()) {
1527 Param->setDefaultArg(nullptr);
1528 }
1529 }
1530 }
1531}
1532
1533// CheckConstexprParameterTypes - Check whether a function's parameter types
1534// are all literal types. If so, return true. If not, produce a suitable
1535// diagnostic and return false.
1536static bool CheckConstexprParameterTypes(Sema &SemaRef,
1537 const FunctionDecl *FD) {
1538 unsigned ArgIndex = 0;
1539 const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
1540 for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(),
1541 e = FT->param_type_end();
1542 i != e; ++i, ++ArgIndex) {
1543 const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
1544 SourceLocation ParamLoc = PD->getLocation();
1545 if (!(*i)->isDependentType() &&
1546 SemaRef.RequireLiteralType(ParamLoc, *i,
1547 diag::err_constexpr_non_literal_param,
1548 ArgIndex+1, PD->getSourceRange(),
1549 isa<CXXConstructorDecl>(FD)))
1550 return false;
1551 }
1552 return true;
1553}
1554
1555/// \brief Get diagnostic %select index for tag kind for
1556/// record diagnostic message.
1557/// WARNING: Indexes apply to particular diagnostics only!
1558///
1559/// \returns diagnostic %select index.
1560static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
1561 switch (Tag) {
1562 case TTK_Struct: return 0;
1563 case TTK_Interface: return 1;
1564 case TTK_Class: return 2;
1565 default: llvm_unreachable("Invalid tag kind for record diagnostic!")::llvm::llvm_unreachable_internal("Invalid tag kind for record diagnostic!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1565)
;
1566 }
1567}
1568
1569// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
1570// the requirements of a constexpr function definition or a constexpr
1571// constructor definition. If so, return true. If not, produce appropriate
1572// diagnostics and return false.
1573//
1574// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
1575bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
1576 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
1577 if (MD && MD->isInstance()) {
1578 // C++11 [dcl.constexpr]p4:
1579 // The definition of a constexpr constructor shall satisfy the following
1580 // constraints:
1581 // - the class shall not have any virtual base classes;
1582 const CXXRecordDecl *RD = MD->getParent();
1583 if (RD->getNumVBases()) {
1584 Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
1585 << isa<CXXConstructorDecl>(NewFD)
1586 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
1587 for (const auto &I : RD->vbases())
1588 Diag(I.getLocStart(),
1589 diag::note_constexpr_virtual_base_here) << I.getSourceRange();
1590 return false;
1591 }
1592 }
1593
1594 if (!isa<CXXConstructorDecl>(NewFD)) {
1595 // C++11 [dcl.constexpr]p3:
1596 // The definition of a constexpr function shall satisfy the following
1597 // constraints:
1598 // - it shall not be virtual;
1599 const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
1600 if (Method && Method->isVirtual()) {
1601 Method = Method->getCanonicalDecl();
1602 Diag(Method->getLocation(), diag::err_constexpr_virtual);
1603
1604 // If it's not obvious why this function is virtual, find an overridden
1605 // function which uses the 'virtual' keyword.
1606 const CXXMethodDecl *WrittenVirtual = Method;
1607 while (!WrittenVirtual->isVirtualAsWritten())
1608 WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
1609 if (WrittenVirtual != Method)
1610 Diag(WrittenVirtual->getLocation(),
1611 diag::note_overridden_virtual_function);
1612 return false;
1613 }
1614
1615 // - its return type shall be a literal type;
1616 QualType RT = NewFD->getReturnType();
1617 if (!RT->isDependentType() &&
1618 RequireLiteralType(NewFD->getLocation(), RT,
1619 diag::err_constexpr_non_literal_return))
1620 return false;
1621 }
1622
1623 // - each of its parameter types shall be a literal type;
1624 if (!CheckConstexprParameterTypes(*this, NewFD))
1625 return false;
1626
1627 return true;
1628}
1629
1630/// Check the given declaration statement is legal within a constexpr function
1631/// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
1632///
1633/// \return true if the body is OK (maybe only as an extension), false if we
1634/// have diagnosed a problem.
1635static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
1636 DeclStmt *DS, SourceLocation &Cxx1yLoc) {
1637 // C++11 [dcl.constexpr]p3 and p4:
1638 // The definition of a constexpr function(p3) or constructor(p4) [...] shall
1639 // contain only
1640 for (const auto *DclIt : DS->decls()) {
1641 switch (DclIt->getKind()) {
1642 case Decl::StaticAssert:
1643 case Decl::Using:
1644 case Decl::UsingShadow:
1645 case Decl::UsingDirective:
1646 case Decl::UnresolvedUsingTypename:
1647 case Decl::UnresolvedUsingValue:
1648 // - static_assert-declarations
1649 // - using-declarations,
1650 // - using-directives,
1651 continue;
1652
1653 case Decl::Typedef:
1654 case Decl::TypeAlias: {
1655 // - typedef declarations and alias-declarations that do not define
1656 // classes or enumerations,
1657 const auto *TN = cast<TypedefNameDecl>(DclIt);
1658 if (TN->getUnderlyingType()->isVariablyModifiedType()) {
1659 // Don't allow variably-modified types in constexpr functions.
1660 TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
1661 SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
1662 << TL.getSourceRange() << TL.getType()
1663 << isa<CXXConstructorDecl>(Dcl);
1664 return false;
1665 }
1666 continue;
1667 }
1668
1669 case Decl::Enum:
1670 case Decl::CXXRecord:
1671 // C++1y allows types to be defined, not just declared.
1672 if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition())
1673 SemaRef.Diag(DS->getLocStart(),
1674 SemaRef.getLangOpts().CPlusPlus14
1675 ? diag::warn_cxx11_compat_constexpr_type_definition
1676 : diag::ext_constexpr_type_definition)
1677 << isa<CXXConstructorDecl>(Dcl);
1678 continue;
1679
1680 case Decl::EnumConstant:
1681 case Decl::IndirectField:
1682 case Decl::ParmVar:
1683 // These can only appear with other declarations which are banned in
1684 // C++11 and permitted in C++1y, so ignore them.
1685 continue;
1686
1687 case Decl::Var:
1688 case Decl::Decomposition: {
1689 // C++1y [dcl.constexpr]p3 allows anything except:
1690 // a definition of a variable of non-literal type or of static or
1691 // thread storage duration or for which no initialization is performed.
1692 const auto *VD = cast<VarDecl>(DclIt);
1693 if (VD->isThisDeclarationADefinition()) {
1694 if (VD->isStaticLocal()) {
1695 SemaRef.Diag(VD->getLocation(),
1696 diag::err_constexpr_local_var_static)
1697 << isa<CXXConstructorDecl>(Dcl)
1698 << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
1699 return false;
1700 }
1701 if (!VD->getType()->isDependentType() &&
1702 SemaRef.RequireLiteralType(
1703 VD->getLocation(), VD->getType(),
1704 diag::err_constexpr_local_var_non_literal_type,
1705 isa<CXXConstructorDecl>(Dcl)))
1706 return false;
1707 if (!VD->getType()->isDependentType() &&
1708 !VD->hasInit() && !VD->isCXXForRangeDecl()) {
1709 SemaRef.Diag(VD->getLocation(),
1710 diag::err_constexpr_local_var_no_init)
1711 << isa<CXXConstructorDecl>(Dcl);
1712 return false;
1713 }
1714 }
1715 SemaRef.Diag(VD->getLocation(),
1716 SemaRef.getLangOpts().CPlusPlus14
1717 ? diag::warn_cxx11_compat_constexpr_local_var
1718 : diag::ext_constexpr_local_var)
1719 << isa<CXXConstructorDecl>(Dcl);
1720 continue;
1721 }
1722
1723 case Decl::NamespaceAlias:
1724 case Decl::Function:
1725 // These are disallowed in C++11 and permitted in C++1y. Allow them
1726 // everywhere as an extension.
1727 if (!Cxx1yLoc.isValid())
1728 Cxx1yLoc = DS->getLocStart();
1729 continue;
1730
1731 default:
1732 SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
1733 << isa<CXXConstructorDecl>(Dcl);
1734 return false;
1735 }
1736 }
1737
1738 return true;
1739}
1740
1741/// Check that the given field is initialized within a constexpr constructor.
1742///
1743/// \param Dcl The constexpr constructor being checked.
1744/// \param Field The field being checked. This may be a member of an anonymous
1745/// struct or union nested within the class being checked.
1746/// \param Inits All declarations, including anonymous struct/union members and
1747/// indirect members, for which any initialization was provided.
1748/// \param Diagnosed Set to true if an error is produced.
1749static void CheckConstexprCtorInitializer(Sema &SemaRef,
1750 const FunctionDecl *Dcl,
1751 FieldDecl *Field,
1752 llvm::SmallSet<Decl*, 16> &Inits,
1753 bool &Diagnosed) {
1754 if (Field->isInvalidDecl())
1755 return;
1756
1757 if (Field->isUnnamedBitfield())
1758 return;
1759
1760 // Anonymous unions with no variant members and empty anonymous structs do not
1761 // need to be explicitly initialized. FIXME: Anonymous structs that contain no
1762 // indirect fields don't need initializing.
1763 if (Field->isAnonymousStructOrUnion() &&
1764 (Field->getType()->isUnionType()
1765 ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers()
1766 : Field->getType()->getAsCXXRecordDecl()->isEmpty()))
1767 return;
1768
1769 if (!Inits.count(Field)) {
1770 if (!Diagnosed) {
1771 SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
1772 Diagnosed = true;
1773 }
1774 SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
1775 } else if (Field->isAnonymousStructOrUnion()) {
1776 const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
1777 for (auto *I : RD->fields())
1778 // If an anonymous union contains an anonymous struct of which any member
1779 // is initialized, all members must be initialized.
1780 if (!RD->isUnion() || Inits.count(I))
1781 CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed);
1782 }
1783}
1784
1785/// Check the provided statement is allowed in a constexpr function
1786/// definition.
1787static bool
1788CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
1789 SmallVectorImpl<SourceLocation> &ReturnStmts,
1790 SourceLocation &Cxx1yLoc) {
1791 // - its function-body shall be [...] a compound-statement that contains only
1792 switch (S->getStmtClass()) {
1793 case Stmt::NullStmtClass:
1794 // - null statements,
1795 return true;
1796
1797 case Stmt::DeclStmtClass:
1798 // - static_assert-declarations
1799 // - using-declarations,
1800 // - using-directives,
1801 // - typedef declarations and alias-declarations that do not define
1802 // classes or enumerations,
1803 if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc))
1804 return false;
1805 return true;
1806
1807 case Stmt::ReturnStmtClass:
1808 // - and exactly one return statement;
1809 if (isa<CXXConstructorDecl>(Dcl)) {
1810 // C++1y allows return statements in constexpr constructors.
1811 if (!Cxx1yLoc.isValid())
1812 Cxx1yLoc = S->getLocStart();
1813 return true;
1814 }
1815
1816 ReturnStmts.push_back(S->getLocStart());
1817 return true;
1818
1819 case Stmt::CompoundStmtClass: {
1820 // C++1y allows compound-statements.
1821 if (!Cxx1yLoc.isValid())
1822 Cxx1yLoc = S->getLocStart();
1823
1824 CompoundStmt *CompStmt = cast<CompoundStmt>(S);
1825 for (auto *BodyIt : CompStmt->body()) {
1826 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts,
1827 Cxx1yLoc))
1828 return false;
1829 }
1830 return true;
1831 }
1832
1833 case Stmt::AttributedStmtClass:
1834 if (!Cxx1yLoc.isValid())
1835 Cxx1yLoc = S->getLocStart();
1836 return true;
1837
1838 case Stmt::IfStmtClass: {
1839 // C++1y allows if-statements.
1840 if (!Cxx1yLoc.isValid())
1841 Cxx1yLoc = S->getLocStart();
1842
1843 IfStmt *If = cast<IfStmt>(S);
1844 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
1845 Cxx1yLoc))
1846 return false;
1847 if (If->getElse() &&
1848 !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
1849 Cxx1yLoc))
1850 return false;
1851 return true;
1852 }
1853
1854 case Stmt::WhileStmtClass:
1855 case Stmt::DoStmtClass:
1856 case Stmt::ForStmtClass:
1857 case Stmt::CXXForRangeStmtClass:
1858 case Stmt::ContinueStmtClass:
1859 // C++1y allows all of these. We don't allow them as extensions in C++11,
1860 // because they don't make sense without variable mutation.
1861 if (!SemaRef.getLangOpts().CPlusPlus14)
1862 break;
1863 if (!Cxx1yLoc.isValid())
1864 Cxx1yLoc = S->getLocStart();
1865 for (Stmt *SubStmt : S->children())
1866 if (SubStmt &&
1867 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
1868 Cxx1yLoc))
1869 return false;
1870 return true;
1871
1872 case Stmt::SwitchStmtClass:
1873 case Stmt::CaseStmtClass:
1874 case Stmt::DefaultStmtClass:
1875 case Stmt::BreakStmtClass:
1876 // C++1y allows switch-statements, and since they don't need variable
1877 // mutation, we can reasonably allow them in C++11 as an extension.
1878 if (!Cxx1yLoc.isValid())
1879 Cxx1yLoc = S->getLocStart();
1880 for (Stmt *SubStmt : S->children())
1881 if (SubStmt &&
1882 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
1883 Cxx1yLoc))
1884 return false;
1885 return true;
1886
1887 default:
1888 if (!isa<Expr>(S))
1889 break;
1890
1891 // C++1y allows expression-statements.
1892 if (!Cxx1yLoc.isValid())
1893 Cxx1yLoc = S->getLocStart();
1894 return true;
1895 }
1896
1897 SemaRef.Diag(S->getLocStart(), diag::err_constexpr_body_invalid_stmt)
1898 << isa<CXXConstructorDecl>(Dcl);
1899 return false;
1900}
1901
1902/// Check the body for the given constexpr function declaration only contains
1903/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
1904///
1905/// \return true if the body is OK, false if we have diagnosed a problem.
1906bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
1907 if (isa<CXXTryStmt>(Body)) {
1908 // C++11 [dcl.constexpr]p3:
1909 // The definition of a constexpr function shall satisfy the following
1910 // constraints: [...]
1911 // - its function-body shall be = delete, = default, or a
1912 // compound-statement
1913 //
1914 // C++11 [dcl.constexpr]p4:
1915 // In the definition of a constexpr constructor, [...]
1916 // - its function-body shall not be a function-try-block;
1917 Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
1918 << isa<CXXConstructorDecl>(Dcl);
1919 return false;
1920 }
1921
1922 SmallVector<SourceLocation, 4> ReturnStmts;
1923
1924 // - its function-body shall be [...] a compound-statement that contains only
1925 // [... list of cases ...]
1926 CompoundStmt *CompBody = cast<CompoundStmt>(Body);
1927 SourceLocation Cxx1yLoc;
1928 for (auto *BodyIt : CompBody->body()) {
1929 if (!CheckConstexprFunctionStmt(*this, Dcl, BodyIt, ReturnStmts, Cxx1yLoc))
1930 return false;
1931 }
1932
1933 if (Cxx1yLoc.isValid())
1934 Diag(Cxx1yLoc,
1935 getLangOpts().CPlusPlus14
1936 ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
1937 : diag::ext_constexpr_body_invalid_stmt)
1938 << isa<CXXConstructorDecl>(Dcl);
1939
1940 if (const CXXConstructorDecl *Constructor
1941 = dyn_cast<CXXConstructorDecl>(Dcl)) {
1942 const CXXRecordDecl *RD = Constructor->getParent();
1943 // DR1359:
1944 // - every non-variant non-static data member and base class sub-object
1945 // shall be initialized;
1946 // DR1460:
1947 // - if the class is a union having variant members, exactly one of them
1948 // shall be initialized;
1949 if (RD->isUnion()) {
1950 if (Constructor->getNumCtorInitializers() == 0 &&
1951 RD->hasVariantMembers()) {
1952 Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
1953 return false;
1954 }
1955 } else if (!Constructor->isDependentContext() &&
1956 !Constructor->isDelegatingConstructor()) {
1957 assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases")((RD->getNumVBases() == 0 && "constexpr ctor with virtual bases"
) ? static_cast<void> (0) : __assert_fail ("RD->getNumVBases() == 0 && \"constexpr ctor with virtual bases\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1957, __PRETTY_FUNCTION__))
;
1958
1959 // Skip detailed checking if we have enough initializers, and we would
1960 // allow at most one initializer per member.
1961 bool AnyAnonStructUnionMembers = false;
1962 unsigned Fields = 0;
1963 for (CXXRecordDecl::field_iterator I = RD->field_begin(),
1964 E = RD->field_end(); I != E; ++I, ++Fields) {
1965 if (I->isAnonymousStructOrUnion()) {
1966 AnyAnonStructUnionMembers = true;
1967 break;
1968 }
1969 }
1970 // DR1460:
1971 // - if the class is a union-like class, but is not a union, for each of
1972 // its anonymous union members having variant members, exactly one of
1973 // them shall be initialized;
1974 if (AnyAnonStructUnionMembers ||
1975 Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
1976 // Check initialization of non-static data members. Base classes are
1977 // always initialized so do not need to be checked. Dependent bases
1978 // might not have initializers in the member initializer list.
1979 llvm::SmallSet<Decl*, 16> Inits;
1980 for (const auto *I: Constructor->inits()) {
1981 if (FieldDecl *FD = I->getMember())
1982 Inits.insert(FD);
1983 else if (IndirectFieldDecl *ID = I->getIndirectMember())
1984 Inits.insert(ID->chain_begin(), ID->chain_end());
1985 }
1986
1987 bool Diagnosed = false;
1988 for (auto *I : RD->fields())
1989 CheckConstexprCtorInitializer(*this, Dcl, I, Inits, Diagnosed);
1990 if (Diagnosed)
1991 return false;
1992 }
1993 }
1994 } else {
1995 if (ReturnStmts.empty()) {
1996 // C++1y doesn't require constexpr functions to contain a 'return'
1997 // statement. We still do, unless the return type might be void, because
1998 // otherwise if there's no return statement, the function cannot
1999 // be used in a core constant expression.
2000 bool OK = getLangOpts().CPlusPlus14 &&
2001 (Dcl->getReturnType()->isVoidType() ||
2002 Dcl->getReturnType()->isDependentType());
2003 Diag(Dcl->getLocation(),
2004 OK ? diag::warn_cxx11_compat_constexpr_body_no_return
2005 : diag::err_constexpr_body_no_return);
2006 if (!OK)
2007 return false;
2008 } else if (ReturnStmts.size() > 1) {
2009 Diag(ReturnStmts.back(),
2010 getLangOpts().CPlusPlus14
2011 ? diag::warn_cxx11_compat_constexpr_body_multiple_return
2012 : diag::ext_constexpr_body_multiple_return);
2013 for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
2014 Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
2015 }
2016 }
2017
2018 // C++11 [dcl.constexpr]p5:
2019 // if no function argument values exist such that the function invocation
2020 // substitution would produce a constant expression, the program is
2021 // ill-formed; no diagnostic required.
2022 // C++11 [dcl.constexpr]p3:
2023 // - every constructor call and implicit conversion used in initializing the
2024 // return value shall be one of those allowed in a constant expression.
2025 // C++11 [dcl.constexpr]p4:
2026 // - every constructor involved in initializing non-static data members and
2027 // base class sub-objects shall be a constexpr constructor.
2028 SmallVector<PartialDiagnosticAt, 8> Diags;
2029 if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
2030 Diag(Dcl->getLocation(), diag::ext_constexpr_function_never_constant_expr)
2031 << isa<CXXConstructorDecl>(Dcl);
2032 for (size_t I = 0, N = Diags.size(); I != N; ++I)
2033 Diag(Diags[I].first, Diags[I].second);
2034 // Don't return false here: we allow this for compatibility in
2035 // system headers.
2036 }
2037
2038 return true;
2039}
2040
2041/// isCurrentClassName - Determine whether the identifier II is the
2042/// name of the class type currently being defined. In the case of
2043/// nested classes, this will only return true if II is the name of
2044/// the innermost class.
2045bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
2046 const CXXScopeSpec *SS) {
2047 assert(getLangOpts().CPlusPlus && "No class names in C!")((getLangOpts().CPlusPlus && "No class names in C!") ?
static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"No class names in C!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2047, __PRETTY_FUNCTION__))
;
2048
2049 CXXRecordDecl *CurDecl;
2050 if (SS && SS->isSet() && !SS->isInvalid()) {
2051 DeclContext *DC = computeDeclContext(*SS, true);
2052 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
2053 } else
2054 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
2055
2056 if (CurDecl && CurDecl->getIdentifier())
2057 return &II == CurDecl->getIdentifier();
2058 return false;
2059}
2060
2061/// \brief Determine whether the identifier II is a typo for the name of
2062/// the class type currently being defined. If so, update it to the identifier
2063/// that should have been used.
2064bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) {
2065 assert(getLangOpts().CPlusPlus && "No class names in C!")((getLangOpts().CPlusPlus && "No class names in C!") ?
static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"No class names in C!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2065, __PRETTY_FUNCTION__))
;
2066
2067 if (!getLangOpts().SpellChecking)
2068 return false;
2069
2070 CXXRecordDecl *CurDecl;
2071 if (SS && SS->isSet() && !SS->isInvalid()) {
2072 DeclContext *DC = computeDeclContext(*SS, true);
2073 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
2074 } else
2075 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
2076
2077 if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() &&
2078 3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName())
2079 < II->getLength()) {
2080 II = CurDecl->getIdentifier();
2081 return true;
2082 }
2083
2084 return false;
2085}
2086
2087/// \brief Determine whether the given class is a base class of the given
2088/// class, including looking at dependent bases.
2089static bool findCircularInheritance(const CXXRecordDecl *Class,
2090 const CXXRecordDecl *Current) {
2091 SmallVector<const CXXRecordDecl*, 8> Queue;
2092
2093 Class = Class->getCanonicalDecl();
2094 while (true) {
2095 for (const auto &I : Current->bases()) {
2096 CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
2097 if (!Base)
2098 continue;
2099
2100 Base = Base->getDefinition();
2101 if (!Base)
2102 continue;
2103
2104 if (Base->getCanonicalDecl() == Class)
2105 return true;
2106
2107 Queue.push_back(Base);
2108 }
2109
2110 if (Queue.empty())
2111 return false;
2112
2113 Current = Queue.pop_back_val();
2114 }
2115
2116 return false;
2117}
2118
2119/// \brief Check the validity of a C++ base class specifier.
2120///
2121/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
2122/// and returns NULL otherwise.
2123CXXBaseSpecifier *
2124Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
2125 SourceRange SpecifierRange,
2126 bool Virtual, AccessSpecifier Access,
2127 TypeSourceInfo *TInfo,
2128 SourceLocation EllipsisLoc) {
2129 QualType BaseType = TInfo->getType();
2130
2131 // C++ [class.union]p1:
2132 // A union shall not have base classes.
2133 if (Class->isUnion()) {
2134 Diag(Class->getLocation(), diag::err_base_clause_on_union)
2135 << SpecifierRange;
2136 return nullptr;
2137 }
2138
2139 if (EllipsisLoc.isValid() &&
2140 !TInfo->getType()->containsUnexpandedParameterPack()) {
2141 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2142 << TInfo->getTypeLoc().getSourceRange();
2143 EllipsisLoc = SourceLocation();
2144 }
2145
2146 SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
2147
2148 if (BaseType->isDependentType()) {
2149 // Make sure that we don't have circular inheritance among our dependent
2150 // bases. For non-dependent bases, the check for completeness below handles
2151 // this.
2152 if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
2153 if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
2154 ((BaseDecl = BaseDecl->getDefinition()) &&
2155 findCircularInheritance(Class, BaseDecl))) {
2156 Diag(BaseLoc, diag::err_circular_inheritance)
2157 << BaseType << Context.getTypeDeclType(Class);
2158
2159 if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
2160 Diag(BaseDecl->getLocation(), diag::note_previous_decl)
2161 << BaseType;
2162
2163 return nullptr;
2164 }
2165 }
2166
2167 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2168 Class->getTagKind() == TTK_Class,
2169 Access, TInfo, EllipsisLoc);
2170 }
2171
2172 // Base specifiers must be record types.
2173 if (!BaseType->isRecordType()) {
2174 Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
2175 return nullptr;
2176 }
2177
2178 // C++ [class.union]p1:
2179 // A union shall not be used as a base class.
2180 if (BaseType->isUnionType()) {
2181 Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
2182 return nullptr;
2183 }
2184
2185 // For the MS ABI, propagate DLL attributes to base class templates.
2186 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2187 if (Attr *ClassAttr = getDLLAttr(Class)) {
2188 if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
2189 BaseType->getAsCXXRecordDecl())) {
2190 propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseTemplate,
2191 BaseLoc);
2192 }
2193 }
2194 }
2195
2196 // C++ [class.derived]p2:
2197 // The class-name in a base-specifier shall not be an incompletely
2198 // defined class.
2199 if (RequireCompleteType(BaseLoc, BaseType,
2200 diag::err_incomplete_base_class, SpecifierRange)) {
2201 Class->setInvalidDecl();
2202 return nullptr;
2203 }
2204
2205 // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
2206 RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
2207 assert(BaseDecl && "Record type has no declaration")((BaseDecl && "Record type has no declaration") ? static_cast
<void> (0) : __assert_fail ("BaseDecl && \"Record type has no declaration\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2207, __PRETTY_FUNCTION__))
;
2208 BaseDecl = BaseDecl->getDefinition();
2209 assert(BaseDecl && "Base type is not incomplete, but has no definition")((BaseDecl && "Base type is not incomplete, but has no definition"
) ? static_cast<void> (0) : __assert_fail ("BaseDecl && \"Base type is not incomplete, but has no definition\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2209, __PRETTY_FUNCTION__))
;
2210 CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
2211 assert(CXXBaseDecl && "Base type is not a C++ type")((CXXBaseDecl && "Base type is not a C++ type") ? static_cast
<void> (0) : __assert_fail ("CXXBaseDecl && \"Base type is not a C++ type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2211, __PRETTY_FUNCTION__))
;
2212
2213 // A class which contains a flexible array member is not suitable for use as a
2214 // base class:
2215 // - If the layout determines that a base comes before another base,
2216 // the flexible array member would index into the subsequent base.
2217 // - If the layout determines that base comes before the derived class,
2218 // the flexible array member would index into the derived class.
2219 if (CXXBaseDecl->hasFlexibleArrayMember()) {
2220 Diag(BaseLoc, diag::err_base_class_has_flexible_array_member)
2221 << CXXBaseDecl->getDeclName();
2222 return nullptr;
2223 }
2224
2225 // C++ [class]p3:
2226 // If a class is marked final and it appears as a base-type-specifier in
2227 // base-clause, the program is ill-formed.
2228 if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) {
2229 Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
2230 << CXXBaseDecl->getDeclName()
2231 << FA->isSpelledAsSealed();
2232 Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at)
2233 << CXXBaseDecl->getDeclName() << FA->getRange();
2234 return nullptr;
2235 }
2236
2237 if (BaseDecl->isInvalidDecl())
2238 Class->setInvalidDecl();
2239
2240 // Create the base specifier.
2241 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2242 Class->getTagKind() == TTK_Class,
2243 Access, TInfo, EllipsisLoc);
2244}
2245
2246/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
2247/// one entry in the base class list of a class specifier, for
2248/// example:
2249/// class foo : public bar, virtual private baz {
2250/// 'public bar' and 'virtual private baz' are each base-specifiers.
2251BaseResult
2252Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
2253 ParsedAttributes &Attributes,
2254 bool Virtual, AccessSpecifier Access,
2255 ParsedType basetype, SourceLocation BaseLoc,
2256 SourceLocation EllipsisLoc) {
2257 if (!classdecl)
2258 return true;
2259
2260 AdjustDeclIfTemplate(classdecl);
2261 CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
2262 if (!Class)
2263 return true;
2264
2265 // We haven't yet attached the base specifiers.
2266 Class->setIsParsingBaseSpecifiers();
2267
2268 // We do not support any C++11 attributes on base-specifiers yet.
2269 // Diagnose any attributes we see.
2270 if (!Attributes.empty()) {
2271 for (AttributeList *Attr = Attributes.getList(); Attr;
2272 Attr = Attr->getNext()) {
2273 if (Attr->isInvalid() ||
2274 Attr->getKind() == AttributeList::IgnoredAttribute)
2275 continue;
2276 Diag(Attr->getLoc(),
2277 Attr->getKind() == AttributeList::UnknownAttribute
2278 ? diag::warn_unknown_attribute_ignored
2279 : diag::err_base_specifier_attribute)
2280 << Attr->getName();
2281 }
2282 }
2283
2284 TypeSourceInfo *TInfo = nullptr;
2285 GetTypeFromParser(basetype, &TInfo);
2286
2287 if (EllipsisLoc.isInvalid() &&
2288 DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
2289 UPPC_BaseType))
2290 return true;
2291
2292 if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
2293 Virtual, Access, TInfo,
2294 EllipsisLoc))
2295 return BaseSpec;
2296 else
2297 Class->setInvalidDecl();
2298
2299 return true;
2300}
2301
2302/// Use small set to collect indirect bases. As this is only used
2303/// locally, there's no need to abstract the small size parameter.
2304typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet;
2305
2306/// \brief Recursively add the bases of Type. Don't add Type itself.
2307static void
2308NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set,
2309 const QualType &Type)
2310{
2311 // Even though the incoming type is a base, it might not be
2312 // a class -- it could be a template parm, for instance.
2313 if (auto Rec = Type->getAs<RecordType>()) {
2314 auto Decl = Rec->getAsCXXRecordDecl();
2315
2316 // Iterate over its bases.
2317 for (const auto &BaseSpec : Decl->bases()) {
2318 QualType Base = Context.getCanonicalType(BaseSpec.getType())
2319 .getUnqualifiedType();
2320 if (Set.insert(Base).second)
2321 // If we've not already seen it, recurse.
2322 NoteIndirectBases(Context, Set, Base);
2323 }
2324 }
2325}
2326
2327/// \brief Performs the actual work of attaching the given base class
2328/// specifiers to a C++ class.
2329bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class,
2330 MutableArrayRef<CXXBaseSpecifier *> Bases) {
2331 if (Bases.empty())
2332 return false;
2333
2334 // Used to keep track of which base types we have already seen, so
2335 // that we can properly diagnose redundant direct base types. Note
2336 // that the key is always the unqualified canonical type of the base
2337 // class.
2338 std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
2339
2340 // Used to track indirect bases so we can see if a direct base is
2341 // ambiguous.
2342 IndirectBaseSet IndirectBaseTypes;
2343
2344 // Copy non-redundant base specifiers into permanent storage.
2345 unsigned NumGoodBases = 0;
2346 bool Invalid = false;
2347 for (unsigned idx = 0; idx < Bases.size(); ++idx) {
2348 QualType NewBaseType
2349 = Context.getCanonicalType(Bases[idx]->getType());
2350 NewBaseType = NewBaseType.getLocalUnqualifiedType();
2351
2352 CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
2353 if (KnownBase) {
2354 // C++ [class.mi]p3:
2355 // A class shall not be specified as a direct base class of a
2356 // derived class more than once.
2357 Diag(Bases[idx]->getLocStart(),
2358 diag::err_duplicate_base_class)
2359 << KnownBase->getType()
2360 << Bases[idx]->getSourceRange();
2361
2362 // Delete the duplicate base class specifier; we're going to
2363 // overwrite its pointer later.
2364 Context.Deallocate(Bases[idx]);
2365
2366 Invalid = true;
2367 } else {
2368 // Okay, add this new base class.
2369 KnownBase = Bases[idx];
2370 Bases[NumGoodBases++] = Bases[idx];
2371
2372 // Note this base's direct & indirect bases, if there could be ambiguity.
2373 if (Bases.size() > 1)
2374 NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType);
2375
2376 if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
2377 const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2378 if (Class->isInterface() &&
2379 (!RD->isInterface() ||
2380 KnownBase->getAccessSpecifier() != AS_public)) {
2381 // The Microsoft extension __interface does not permit bases that
2382 // are not themselves public interfaces.
2383 Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
2384 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getName()
2385 << RD->getSourceRange();
2386 Invalid = true;
2387 }
2388 if (RD->hasAttr<WeakAttr>())
2389 Class->addAttr(WeakAttr::CreateImplicit(Context));
2390 }
2391 }
2392 }
2393
2394 // Attach the remaining base class specifiers to the derived class.
2395 Class->setBases(Bases.data(), NumGoodBases);
2396
2397 for (unsigned idx = 0; idx < NumGoodBases; ++idx) {
2398 // Check whether this direct base is inaccessible due to ambiguity.
2399 QualType BaseType = Bases[idx]->getType();
2400 CanQualType CanonicalBase = Context.getCanonicalType(BaseType)
2401 .getUnqualifiedType();
2402
2403 if (IndirectBaseTypes.count(CanonicalBase)) {
2404 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2405 /*DetectVirtual=*/true);
2406 bool found
2407 = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths);
2408 assert(found)((found) ? static_cast<void> (0) : __assert_fail ("found"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2408, __PRETTY_FUNCTION__))
;
2409 (void)found;
2410
2411 if (Paths.isAmbiguous(CanonicalBase))
2412 Diag(Bases[idx]->getLocStart (), diag::warn_inaccessible_base_class)
2413 << BaseType << getAmbiguousPathsDisplayString(Paths)
2414 << Bases[idx]->getSourceRange();
2415 else
2416 assert(Bases[idx]->isVirtual())((Bases[idx]->isVirtual()) ? static_cast<void> (0) :
__assert_fail ("Bases[idx]->isVirtual()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2416, __PRETTY_FUNCTION__))
;
2417 }
2418
2419 // Delete the base class specifier, since its data has been copied
2420 // into the CXXRecordDecl.
2421 Context.Deallocate(Bases[idx]);
2422 }
2423
2424 return Invalid;
2425}
2426
2427/// ActOnBaseSpecifiers - Attach the given base specifiers to the
2428/// class, after checking whether there are any duplicate base
2429/// classes.
2430void Sema::ActOnBaseSpecifiers(Decl *ClassDecl,
2431 MutableArrayRef<CXXBaseSpecifier *> Bases) {
2432 if (!ClassDecl || Bases.empty())
2433 return;
2434
2435 AdjustDeclIfTemplate(ClassDecl);
2436 AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases);
2437}
2438
2439/// \brief Determine whether the type \p Derived is a C++ class that is
2440/// derived from the type \p Base.
2441bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) {
2442 if (!getLangOpts().CPlusPlus)
2443 return false;
2444
2445 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
2446 if (!DerivedRD)
2447 return false;
2448
2449 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
2450 if (!BaseRD)
2451 return false;
2452
2453 // If either the base or the derived type is invalid, don't try to
2454 // check whether one is derived from the other.
2455 if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
2456 return false;
2457
2458 // FIXME: In a modules build, do we need the entire path to be visible for us
2459 // to be able to use the inheritance relationship?
2460 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
2461 return false;
2462
2463 return DerivedRD->isDerivedFrom(BaseRD);
2464}
2465
2466/// \brief Determine whether the type \p Derived is a C++ class that is
2467/// derived from the type \p Base.
2468bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base,
2469 CXXBasePaths &Paths) {
2470 if (!getLangOpts().CPlusPlus)
2471 return false;
2472
2473 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
2474 if (!DerivedRD)
2475 return false;
2476
2477 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
2478 if (!BaseRD)
2479 return false;
2480
2481 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
2482 return false;
2483
2484 return DerivedRD->isDerivedFrom(BaseRD, Paths);
2485}
2486
2487void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
2488 CXXCastPath &BasePathArray) {
2489 assert(BasePathArray.empty() && "Base path array must be empty!")((BasePathArray.empty() && "Base path array must be empty!"
) ? static_cast<void> (0) : __assert_fail ("BasePathArray.empty() && \"Base path array must be empty!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2489, __PRETTY_FUNCTION__))
;
2490 assert(Paths.isRecordingPaths() && "Must record paths!")((Paths.isRecordingPaths() && "Must record paths!") ?
static_cast<void> (0) : __assert_fail ("Paths.isRecordingPaths() && \"Must record paths!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2490, __PRETTY_FUNCTION__))
;
2491
2492 const CXXBasePath &Path = Paths.front();
2493
2494 // We first go backward and check if we have a virtual base.
2495 // FIXME: It would be better if CXXBasePath had the base specifier for
2496 // the nearest virtual base.
2497 unsigned Start = 0;
2498 for (unsigned I = Path.size(); I != 0; --I) {
2499 if (Path[I - 1].Base->isVirtual()) {
2500 Start = I - 1;
2501 break;
2502 }
2503 }
2504
2505 // Now add all bases.
2506 for (unsigned I = Start, E = Path.size(); I != E; ++I)
2507 BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
2508}
2509
2510/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
2511/// conversion (where Derived and Base are class types) is
2512/// well-formed, meaning that the conversion is unambiguous (and
2513/// that all of the base classes are accessible). Returns true
2514/// and emits a diagnostic if the code is ill-formed, returns false
2515/// otherwise. Loc is the location where this routine should point to
2516/// if there is an error, and Range is the source range to highlight
2517/// if there is an error.
2518///
2519/// If either InaccessibleBaseID or AmbigiousBaseConvID are 0, then the
2520/// diagnostic for the respective type of error will be suppressed, but the
2521/// check for ill-formed code will still be performed.
2522bool
2523Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
2524 unsigned InaccessibleBaseID,
2525 unsigned AmbigiousBaseConvID,
2526 SourceLocation Loc, SourceRange Range,
2527 DeclarationName Name,
2528 CXXCastPath *BasePath,
2529 bool IgnoreAccess) {
2530 // First, determine whether the path from Derived to Base is
2531 // ambiguous. This is slightly more expensive than checking whether
2532 // the Derived to Base conversion exists, because here we need to
2533 // explore multiple paths to determine if there is an ambiguity.
2534 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2535 /*DetectVirtual=*/false);
2536 bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
2537 assert(DerivationOkay &&((DerivationOkay && "Can only be used with a derived-to-base conversion"
) ? static_cast<void> (0) : __assert_fail ("DerivationOkay && \"Can only be used with a derived-to-base conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2538, __PRETTY_FUNCTION__))
2538 "Can only be used with a derived-to-base conversion")((DerivationOkay && "Can only be used with a derived-to-base conversion"
) ? static_cast<void> (0) : __assert_fail ("DerivationOkay && \"Can only be used with a derived-to-base conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2538, __PRETTY_FUNCTION__))
;
2539 (void)DerivationOkay;
2540
2541 if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
2542 if (!IgnoreAccess) {
2543 // Check that the base class can be accessed.
2544 switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
2545 InaccessibleBaseID)) {
2546 case AR_inaccessible:
2547 return true;
2548 case AR_accessible:
2549 case AR_dependent:
2550 case AR_delayed:
2551 break;
2552 }
2553 }
2554
2555 // Build a base path if necessary.
2556 if (BasePath)
2557 BuildBasePathArray(Paths, *BasePath);
2558 return false;
2559 }
2560
2561 if (AmbigiousBaseConvID) {
2562 // We know that the derived-to-base conversion is ambiguous, and
2563 // we're going to produce a diagnostic. Perform the derived-to-base
2564 // search just one more time to compute all of the possible paths so
2565 // that we can print them out. This is more expensive than any of
2566 // the previous derived-to-base checks we've done, but at this point
2567 // performance isn't as much of an issue.
2568 Paths.clear();
2569 Paths.setRecordingPaths(true);
2570 bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
2571 assert(StillOkay && "Can only be used with a derived-to-base conversion")((StillOkay && "Can only be used with a derived-to-base conversion"
) ? static_cast<void> (0) : __assert_fail ("StillOkay && \"Can only be used with a derived-to-base conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2571, __PRETTY_FUNCTION__))
;
2572 (void)StillOkay;
2573
2574 // Build up a textual representation of the ambiguous paths, e.g.,
2575 // D -> B -> A, that will be used to illustrate the ambiguous
2576 // conversions in the diagnostic. We only print one of the paths
2577 // to each base class subobject.
2578 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2579
2580 Diag(Loc, AmbigiousBaseConvID)
2581 << Derived << Base << PathDisplayStr << Range << Name;
2582 }
2583 return true;
2584}
2585
2586bool
2587Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
2588 SourceLocation Loc, SourceRange Range,
2589 CXXCastPath *BasePath,
2590 bool IgnoreAccess) {
2591 return CheckDerivedToBaseConversion(
2592 Derived, Base, diag::err_upcast_to_inaccessible_base,
2593 diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(),
2594 BasePath, IgnoreAccess);
2595}
2596
2597
2598/// @brief Builds a string representing ambiguous paths from a
2599/// specific derived class to different subobjects of the same base
2600/// class.
2601///
2602/// This function builds a string that can be used in error messages
2603/// to show the different paths that one can take through the
2604/// inheritance hierarchy to go from the derived class to different
2605/// subobjects of a base class. The result looks something like this:
2606/// @code
2607/// struct D -> struct B -> struct A
2608/// struct D -> struct C -> struct A
2609/// @endcode
2610std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
2611 std::string PathDisplayStr;
2612 std::set<unsigned> DisplayedPaths;
2613 for (CXXBasePaths::paths_iterator Path = Paths.begin();
2614 Path != Paths.end(); ++Path) {
2615 if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
2616 // We haven't displayed a path to this particular base
2617 // class subobject yet.
2618 PathDisplayStr += "\n ";
2619 PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
2620 for (CXXBasePath::const_iterator Element = Path->begin();
2621 Element != Path->end(); ++Element)
2622 PathDisplayStr += " -> " + Element->Base->getType().getAsString();
2623 }
2624 }
2625
2626 return PathDisplayStr;
2627}
2628
2629//===----------------------------------------------------------------------===//
2630// C++ class member Handling
2631//===----------------------------------------------------------------------===//
2632
2633/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
2634bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
2635 SourceLocation ASLoc,
2636 SourceLocation ColonLoc,
2637 AttributeList *Attrs) {
2638 assert(Access != AS_none && "Invalid kind for syntactic access specifier!")((Access != AS_none && "Invalid kind for syntactic access specifier!"
) ? static_cast<void> (0) : __assert_fail ("Access != AS_none && \"Invalid kind for syntactic access specifier!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2638, __PRETTY_FUNCTION__))
;
2639 AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
2640 ASLoc, ColonLoc);
2641 CurContext->addHiddenDecl(ASDecl);
2642 return ProcessAccessDeclAttributeList(ASDecl, Attrs);
2643}
2644
2645/// CheckOverrideControl - Check C++11 override control semantics.
2646void Sema::CheckOverrideControl(NamedDecl *D) {
2647 if (D->isInvalidDecl())
2648 return;
2649
2650 // We only care about "override" and "final" declarations.
2651 if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>())
2652 return;
2653
2654 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
2655
2656 // We can't check dependent instance methods.
2657 if (MD && MD->isInstance() &&
2658 (MD->getParent()->hasAnyDependentBases() ||
2659 MD->getType()->isDependentType()))
2660 return;
2661
2662 if (MD && !MD->isVirtual()) {
2663 // If we have a non-virtual method, check if if hides a virtual method.
2664 // (In that case, it's most likely the method has the wrong type.)
2665 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
2666 FindHiddenVirtualMethods(MD, OverloadedMethods);
2667
2668 if (!OverloadedMethods.empty()) {
2669 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
2670 Diag(OA->getLocation(),
2671 diag::override_keyword_hides_virtual_member_function)
2672 << "override" << (OverloadedMethods.size() > 1);
2673 } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
2674 Diag(FA->getLocation(),
2675 diag::override_keyword_hides_virtual_member_function)
2676 << (FA->isSpelledAsSealed() ? "sealed" : "final")
2677 << (OverloadedMethods.size() > 1);
2678 }
2679 NoteHiddenVirtualMethods(MD, OverloadedMethods);
2680 MD->setInvalidDecl();
2681 return;
2682 }
2683 // Fall through into the general case diagnostic.
2684 // FIXME: We might want to attempt typo correction here.
2685 }
2686
2687 if (!MD || !MD->isVirtual()) {
2688 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
2689 Diag(OA->getLocation(),
2690 diag::override_keyword_only_allowed_on_virtual_member_functions)
2691 << "override" << FixItHint::CreateRemoval(OA->getLocation());
2692 D->dropAttr<OverrideAttr>();
2693 }
2694 if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
2695 Diag(FA->getLocation(),
2696 diag::override_keyword_only_allowed_on_virtual_member_functions)
2697 << (FA->isSpelledAsSealed() ? "sealed" : "final")
2698 << FixItHint::CreateRemoval(FA->getLocation());
2699 D->dropAttr<FinalAttr>();
2700 }
2701 return;
2702 }
2703
2704 // C++11 [class.virtual]p5:
2705 // If a function is marked with the virt-specifier override and
2706 // does not override a member function of a base class, the program is
2707 // ill-formed.
2708 bool HasOverriddenMethods =
2709 MD->begin_overridden_methods() != MD->end_overridden_methods();
2710 if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
2711 Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
2712 << MD->getDeclName();
2713}
2714
2715void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D) {
2716 if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>())
2717 return;
2718 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
2719 if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>())
2720 return;
2721
2722 SourceLocation Loc = MD->getLocation();
2723 SourceLocation SpellingLoc = Loc;
2724 if (getSourceManager().isMacroArgExpansion(Loc))
2725 SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).first;
2726 SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc);
2727 if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc))
2728 return;
2729
2730 if (MD->size_overridden_methods() > 0) {
2731 unsigned DiagID = isa<CXXDestructorDecl>(MD)
2732 ? diag::warn_destructor_marked_not_override_overriding
2733 : diag::warn_function_marked_not_override_overriding;
2734 Diag(MD->getLocation(), DiagID) << MD->getDeclName();
2735 const CXXMethodDecl *OMD = *MD->begin_overridden_methods();
2736 Diag(OMD->getLocation(), diag::note_overridden_virtual_function);
2737 }
2738}
2739
2740/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
2741/// function overrides a virtual member function marked 'final', according to
2742/// C++11 [class.virtual]p4.
2743bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
2744 const CXXMethodDecl *Old) {
2745 FinalAttr *FA = Old->getAttr<FinalAttr>();
2746 if (!FA)
2747 return false;
2748
2749 Diag(New->getLocation(), diag::err_final_function_overridden)
2750 << New->getDeclName()
2751 << FA->isSpelledAsSealed();
2752 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
2753 return true;
2754}
2755
2756static bool InitializationHasSideEffects(const FieldDecl &FD) {
2757 const Type *T = FD.getType()->getBaseElementTypeUnsafe();
2758 // FIXME: Destruction of ObjC lifetime types has side-effects.
2759 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
2760 return !RD->isCompleteDefinition() ||
2761 !RD->hasTrivialDefaultConstructor() ||
2762 !RD->hasTrivialDestructor();
2763 return false;
2764}
2765
2766static AttributeList *getMSPropertyAttr(AttributeList *list) {
2767 for (AttributeList *it = list; it != nullptr; it = it->getNext())
2768 if (it->isDeclspecPropertyAttribute())
2769 return it;
2770 return nullptr;
2771}
2772
2773// Check if there is a field shadowing.
2774void Sema::CheckShadowInheritedFields(const SourceLocation &Loc,
2775 DeclarationName FieldName,
2776 const CXXRecordDecl *RD) {
2777 if (Diags.isIgnored(diag::warn_shadow_field, Loc))
2778 return;
2779
2780 // To record a shadowed field in a base
2781 std::map<CXXRecordDecl*, NamedDecl*> Bases;
2782 auto FieldShadowed = [&](const CXXBaseSpecifier *Specifier,
2783 CXXBasePath &Path) {
2784 const auto Base = Specifier->getType()->getAsCXXRecordDecl();
2785 // Record an ambiguous path directly
2786 if (Bases.find(Base) != Bases.end())
2787 return true;
2788 for (const auto Field : Base->lookup(FieldName)) {
2789 if ((isa<FieldDecl>(Field) || isa<IndirectFieldDecl>(Field)) &&
2790 Field->getAccess() != AS_private) {
2791 assert(Field->getAccess() != AS_none)((Field->getAccess() != AS_none) ? static_cast<void>
(0) : __assert_fail ("Field->getAccess() != AS_none", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2791, __PRETTY_FUNCTION__))
;
2792 assert(Bases.find(Base) == Bases.end())((Bases.find(Base) == Bases.end()) ? static_cast<void> (
0) : __assert_fail ("Bases.find(Base) == Bases.end()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2792, __PRETTY_FUNCTION__))
;
2793 Bases[Base] = Field;
2794 return true;
2795 }
2796 }
2797 return false;
2798 };
2799
2800 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2801 /*DetectVirtual=*/true);
2802 if (!RD->lookupInBases(FieldShadowed, Paths))
2803 return;
2804
2805 for (const auto &P : Paths) {
2806 auto Base = P.back().Base->getType()->getAsCXXRecordDecl();
2807 auto It = Bases.find(Base);
2808 // Skip duplicated bases
2809 if (It == Bases.end())
2810 continue;
2811 auto BaseField = It->second;
2812 assert(BaseField->getAccess() != AS_private)((BaseField->getAccess() != AS_private) ? static_cast<void
> (0) : __assert_fail ("BaseField->getAccess() != AS_private"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2812, __PRETTY_FUNCTION__))
;
2813 if (AS_none !=
2814 CXXRecordDecl::MergeAccess(P.Access, BaseField->getAccess())) {
2815 Diag(Loc, diag::warn_shadow_field)
2816 << FieldName.getAsString() << RD->getName() << Base->getName();
2817 Diag(BaseField->getLocation(), diag::note_shadow_field);
2818 Bases.erase(It);
2819 }
2820 }
2821}
2822
2823/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
2824/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
2825/// bitfield width if there is one, 'InitExpr' specifies the initializer if
2826/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
2827/// present (but parsing it has been deferred).
2828NamedDecl *
2829Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
2830 MultiTemplateParamsArg TemplateParameterLists,
2831 Expr *BW, const VirtSpecifiers &VS,
2832 InClassInitStyle InitStyle) {
2833 const DeclSpec &DS = D.getDeclSpec();
2834 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2835 DeclarationName Name = NameInfo.getName();
2836 SourceLocation Loc = NameInfo.getLoc();
2837
2838 // For anonymous bitfields, the location should point to the type.
2839 if (Loc.isInvalid())
2840 Loc = D.getLocStart();
2841
2842 Expr *BitWidth = static_cast<Expr*>(BW);
2843
2844 assert(isa<CXXRecordDecl>(CurContext))((isa<CXXRecordDecl>(CurContext)) ? static_cast<void
> (0) : __assert_fail ("isa<CXXRecordDecl>(CurContext)"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2844, __PRETTY_FUNCTION__))
;
2845 assert(!DS.isFriendSpecified())((!DS.isFriendSpecified()) ? static_cast<void> (0) : __assert_fail
("!DS.isFriendSpecified()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2845, __PRETTY_FUNCTION__))
;
2846
2847 bool isFunc = D.isDeclarationOfFunction();
2848
2849 if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
2850 // The Microsoft extension __interface only permits public member functions
2851 // and prohibits constructors, destructors, operators, non-public member
2852 // functions, static methods and data members.
2853 unsigned InvalidDecl;
2854 bool ShowDeclName = true;
2855 if (!isFunc)
2856 InvalidDecl = (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) ? 0 : 1;
2857 else if (AS != AS_public)
2858 InvalidDecl = 2;
2859 else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
2860 InvalidDecl = 3;
2861 else switch (Name.getNameKind()) {
2862 case DeclarationName::CXXConstructorName:
2863 InvalidDecl = 4;
2864 ShowDeclName = false;
2865 break;
2866
2867 case DeclarationName::CXXDestructorName:
2868 InvalidDecl = 5;
2869 ShowDeclName = false;
2870 break;
2871
2872 case DeclarationName::CXXOperatorName:
2873 case DeclarationName::CXXConversionFunctionName:
2874 InvalidDecl = 6;
2875 break;
2876
2877 default:
2878 InvalidDecl = 0;
2879 break;
2880 }
2881
2882 if (InvalidDecl) {
2883 if (ShowDeclName)
2884 Diag(Loc, diag::err_invalid_member_in_interface)
2885 << (InvalidDecl-1) << Name;
2886 else
2887 Diag(Loc, diag::err_invalid_member_in_interface)
2888 << (InvalidDecl-1) << "";
2889 return nullptr;
2890 }
2891 }
2892
2893 // C++ 9.2p6: A member shall not be declared to have automatic storage
2894 // duration (auto, register) or with the extern storage-class-specifier.
2895 // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
2896 // data members and cannot be applied to names declared const or static,
2897 // and cannot be applied to reference members.
2898 switch (DS.getStorageClassSpec()) {
2899 case DeclSpec::SCS_unspecified:
2900 case DeclSpec::SCS_typedef:
2901 case DeclSpec::SCS_static:
2902 break;
2903 case DeclSpec::SCS_mutable:
2904 if (isFunc) {
2905 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
2906
2907 // FIXME: It would be nicer if the keyword was ignored only for this
2908 // declarator. Otherwise we could get follow-up errors.
2909 D.getMutableDeclSpec().ClearStorageClassSpecs();
2910 }
2911 break;
2912 default:
2913 Diag(DS.getStorageClassSpecLoc(),
2914 diag::err_storageclass_invalid_for_member);
2915 D.getMutableDeclSpec().ClearStorageClassSpecs();
2916 break;
2917 }
2918
2919 bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
2920 DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
2921 !isFunc);
2922
2923 if (DS.isConstexprSpecified() && isInstField) {
2924 SemaDiagnosticBuilder B =
2925 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
2926 SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
2927 if (InitStyle == ICIS_NoInit) {
2928 B << 0 << 0;
2929 if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const)
2930 B << FixItHint::CreateRemoval(ConstexprLoc);
2931 else {
2932 B << FixItHint::CreateReplacement(ConstexprLoc, "const");
2933 D.getMutableDeclSpec().ClearConstexprSpec();
2934 const char *PrevSpec;
2935 unsigned DiagID;
2936 bool Failed = D.getMutableDeclSpec().SetTypeQual(
2937 DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts());
2938 (void)Failed;
2939 assert(!Failed && "Making a constexpr member const shouldn't fail")((!Failed && "Making a constexpr member const shouldn't fail"
) ? static_cast<void> (0) : __assert_fail ("!Failed && \"Making a constexpr member const shouldn't fail\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2939, __PRETTY_FUNCTION__))
;
2940 }
2941 } else {
2942 B << 1;
2943 const char *PrevSpec;
2944 unsigned DiagID;
2945 if (D.getMutableDeclSpec().SetStorageClassSpec(
2946 *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID,
2947 Context.getPrintingPolicy())) {
2948 assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&((DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
"This is the only DeclSpec that should fail to be applied") ?
static_cast<void> (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_mutable && \"This is the only DeclSpec that should fail to be applied\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2949, __PRETTY_FUNCTION__))
2949 "This is the only DeclSpec that should fail to be applied")((DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
"This is the only DeclSpec that should fail to be applied") ?
static_cast<void> (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_mutable && \"This is the only DeclSpec that should fail to be applied\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2949, __PRETTY_FUNCTION__))
;
2950 B << 1;
2951 } else {
2952 B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
2953 isInstField = false;
2954 }
2955 }
2956 }
2957
2958 NamedDecl *Member;
2959 if (isInstField) {
2960 CXXScopeSpec &SS = D.getCXXScopeSpec();
2961
2962 // Data members must have identifiers for names.
2963 if (!Name.isIdentifier()) {
2964 Diag(Loc, diag::err_bad_variable_name)
2965 << Name;
2966 return nullptr;
2967 }
2968
2969 IdentifierInfo *II = Name.getAsIdentifierInfo();
2970
2971 // Member field could not be with "template" keyword.
2972 // So TemplateParameterLists should be empty in this case.
2973 if (TemplateParameterLists.size()) {
2974 TemplateParameterList* TemplateParams = TemplateParameterLists[0];
2975 if (TemplateParams->size()) {
2976 // There is no such thing as a member field template.
2977 Diag(D.getIdentifierLoc(), diag::err_template_member)
2978 << II
2979 << SourceRange(TemplateParams->getTemplateLoc(),
2980 TemplateParams->getRAngleLoc());
2981 } else {
2982 // There is an extraneous 'template<>' for this member.
2983 Diag(TemplateParams->getTemplateLoc(),
2984 diag::err_template_member_noparams)
2985 << II
2986 << SourceRange(TemplateParams->getTemplateLoc(),
2987 TemplateParams->getRAngleLoc());
2988 }
2989 return nullptr;
2990 }
2991
2992 if (SS.isSet() && !SS.isInvalid()) {
2993 // The user provided a superfluous scope specifier inside a class
2994 // definition:
2995 //
2996 // class X {
2997 // int X::member;
2998 // };
2999 if (DeclContext *DC = computeDeclContext(SS, false))
3000 diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
3001 else
3002 Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3003 << Name << SS.getRange();
3004
3005 SS.clear();
3006 }
3007
3008 AttributeList *MSPropertyAttr =
3009 getMSPropertyAttr(D.getDeclSpec().getAttributes().getList());
3010 if (MSPropertyAttr) {
3011 Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3012 BitWidth, InitStyle, AS, MSPropertyAttr);
3013 if (!Member)
3014 return nullptr;
3015 isInstField = false;
3016 } else {
3017 Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3018 BitWidth, InitStyle, AS);
3019 if (!Member)
3020 return nullptr;
3021 }
3022
3023 CheckShadowInheritedFields(Loc, Name, cast<CXXRecordDecl>(CurContext));
3024 } else {
3025 Member = HandleDeclarator(S, D, TemplateParameterLists);
3026 if (!Member)
3027 return nullptr;
3028
3029 // Non-instance-fields can't have a bitfield.
3030 if (BitWidth) {
3031 if (Member->isInvalidDecl()) {
3032 // don't emit another diagnostic.
3033 } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) {
3034 // C++ 9.6p3: A bit-field shall not be a static member.
3035 // "static member 'A' cannot be a bit-field"
3036 Diag(Loc, diag::err_static_not_bitfield)
3037 << Name << BitWidth->getSourceRange();
3038 } else if (isa<TypedefDecl>(Member)) {
3039 // "typedef member 'x' cannot be a bit-field"
3040 Diag(Loc, diag::err_typedef_not_bitfield)
3041 << Name << BitWidth->getSourceRange();
3042 } else {
3043 // A function typedef ("typedef int f(); f a;").
3044 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3045 Diag(Loc, diag::err_not_integral_type_bitfield)
3046 << Name << cast<ValueDecl>(Member)->getType()
3047 << BitWidth->getSourceRange();
3048 }
3049
3050 BitWidth = nullptr;
3051 Member->setInvalidDecl();
3052 }
3053
3054 Member->setAccess(AS);
3055
3056 // If we have declared a member function template or static data member
3057 // template, set the access of the templated declaration as well.
3058 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
3059 FunTmpl->getTemplatedDecl()->setAccess(AS);
3060 else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member))
3061 VarTmpl->getTemplatedDecl()->setAccess(AS);
3062 }
3063
3064 if (VS.isOverrideSpecified())
3065 Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context, 0));
3066 if (VS.isFinalSpecified())
3067 Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context,
3068 VS.isFinalSpelledSealed()));
3069
3070 if (VS.getLastLocation().isValid()) {
3071 // Update the end location of a method that has a virt-specifiers.
3072 if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
3073 MD->setRangeEnd(VS.getLastLocation());
3074 }
3075
3076 CheckOverrideControl(Member);
3077
3078 assert((Name || isInstField) && "No identifier for non-field ?")(((Name || isInstField) && "No identifier for non-field ?"
) ? static_cast<void> (0) : __assert_fail ("(Name || isInstField) && \"No identifier for non-field ?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3078, __PRETTY_FUNCTION__))
;
3079
3080 if (isInstField) {
3081 FieldDecl *FD = cast<FieldDecl>(Member);
3082 FieldCollector->Add(FD);
3083
3084 if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) {
3085 // Remember all explicit private FieldDecls that have a name, no side
3086 // effects and are not part of a dependent type declaration.
3087 if (!FD->isImplicit() && FD->getDeclName() &&
3088 FD->getAccess() == AS_private &&
3089 !FD->hasAttr<UnusedAttr>() &&
3090 !FD->getParent()->isDependentContext() &&
3091 !InitializationHasSideEffects(*FD))
3092 UnusedPrivateFields.insert(FD);
3093 }
3094 }
3095
3096 return Member;
3097}
3098
3099namespace {
3100 class UninitializedFieldVisitor
3101 : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
3102 Sema &S;
3103 // List of Decls to generate a warning on. Also remove Decls that become
3104 // initialized.
3105 llvm::SmallPtrSetImpl<ValueDecl*> &Decls;
3106 // List of base classes of the record. Classes are removed after their
3107 // initializers.
3108 llvm::SmallPtrSetImpl<QualType> &BaseClasses;
3109 // Vector of decls to be removed from the Decl set prior to visiting the
3110 // nodes. These Decls may have been initialized in the prior initializer.
3111 llvm::SmallVector<ValueDecl*, 4> DeclsToRemove;
3112 // If non-null, add a note to the warning pointing back to the constructor.
3113 const CXXConstructorDecl *Constructor;
3114 // Variables to hold state when processing an initializer list. When
3115 // InitList is true, special case initialization of FieldDecls matching
3116 // InitListFieldDecl.
3117 bool InitList;
3118 FieldDecl *InitListFieldDecl;
3119 llvm::SmallVector<unsigned, 4> InitFieldIndex;
3120
3121 public:
3122 typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
3123 UninitializedFieldVisitor(Sema &S,
3124 llvm::SmallPtrSetImpl<ValueDecl*> &Decls,
3125 llvm::SmallPtrSetImpl<QualType> &BaseClasses)
3126 : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses),
3127 Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {}
3128
3129 // Returns true if the use of ME is not an uninitialized use.
3130 bool IsInitListMemberExprInitialized(MemberExpr *ME,
3131 bool CheckReferenceOnly) {
3132 llvm::SmallVector<FieldDecl*, 4> Fields;
3133 bool ReferenceField = false;
3134 while (ME) {
3135 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
3136 if (!FD)
3137 return false;
3138 Fields.push_back(FD);
3139 if (FD->getType()->isReferenceType())
3140 ReferenceField = true;
3141 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts());
3142 }
3143
3144 // Binding a reference to an unintialized field is not an
3145 // uninitialized use.
3146 if (CheckReferenceOnly && !ReferenceField)
3147 return true;
3148
3149 llvm::SmallVector<unsigned, 4> UsedFieldIndex;
3150 // Discard the first field since it is the field decl that is being
3151 // initialized.
3152 for (auto I = Fields.rbegin() + 1, E = Fields.rend(); I != E; ++I) {
3153 UsedFieldIndex.push_back((*I)->getFieldIndex());
3154 }
3155
3156 for (auto UsedIter = UsedFieldIndex.begin(),
3157 UsedEnd = UsedFieldIndex.end(),
3158 OrigIter = InitFieldIndex.begin(),
3159 OrigEnd = InitFieldIndex.end();
3160 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
3161 if (*UsedIter < *OrigIter)
3162 return true;
3163 if (*UsedIter > *OrigIter)
3164 break;
3165 }
3166
3167 return false;
3168 }
3169
3170 void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly,
3171 bool AddressOf) {
3172 if (isa<EnumConstantDecl>(ME->getMemberDecl()))
3173 return;
3174
3175 // FieldME is the inner-most MemberExpr that is not an anonymous struct
3176 // or union.
3177 MemberExpr *FieldME = ME;
3178
3179 bool AllPODFields = FieldME->getType().isPODType(S.Context);
3180
3181 Expr *Base = ME;
3182 while (MemberExpr *SubME =
3183 dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) {
3184
3185 if (isa<VarDecl>(SubME->getMemberDecl()))
3186 return;
3187
3188 if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl()))
3189 if (!FD->isAnonymousStructOrUnion())
3190 FieldME = SubME;
3191
3192 if (!FieldME->getType().isPODType(S.Context))
3193 AllPODFields = false;
3194
3195 Base = SubME->getBase();
3196 }
3197
3198 if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts()))
3199 return;
3200
3201 if (AddressOf && AllPODFields)
3202 return;
3203
3204 ValueDecl* FoundVD = FieldME->getMemberDecl();
3205
3206 if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) {
3207 while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) {
3208 BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr());
3209 }
3210
3211 if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) {
3212 QualType T = BaseCast->getType();
3213 if (T->isPointerType() &&
3214 BaseClasses.count(T->getPointeeType())) {
3215 S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit)
3216 << T->getPointeeType() << FoundVD;
3217 }
3218 }
3219 }
3220
3221 if (!Decls.count(FoundVD))
3222 return;
3223
3224 const bool IsReference = FoundVD->getType()->isReferenceType();
3225
3226 if (InitList && !AddressOf && FoundVD == InitListFieldDecl) {
3227 // Special checking for initializer lists.
3228 if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) {
3229 return;
3230 }
3231 } else {
3232 // Prevent double warnings on use of unbounded references.
3233 if (CheckReferenceOnly && !IsReference)
3234 return;
3235 }
3236
3237 unsigned diag = IsReference
3238 ? diag::warn_reference_field_is_uninit
3239 : diag::warn_field_is_uninit;
3240 S.Diag(FieldME->getExprLoc(), diag) << FoundVD;
3241 if (Constructor)
3242 S.Diag(Constructor->getLocation(),
3243 diag::note_uninit_in_this_constructor)
3244 << (Constructor->isDefaultConstructor() && Constructor->isImplicit());
3245
3246 }
3247
3248 void HandleValue(Expr *E, bool AddressOf) {
3249 E = E->IgnoreParens();
3250
3251 if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
3252 HandleMemberExpr(ME, false /*CheckReferenceOnly*/,
3253 AddressOf /*AddressOf*/);
3254 return;
3255 }
3256
3257 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
3258 Visit(CO->getCond());
3259 HandleValue(CO->getTrueExpr(), AddressOf);
3260 HandleValue(CO->getFalseExpr(), AddressOf);
3261 return;
3262 }
3263
3264 if (BinaryConditionalOperator *BCO =
3265 dyn_cast<BinaryConditionalOperator>(E)) {
3266 Visit(BCO->getCond());
3267 HandleValue(BCO->getFalseExpr(), AddressOf);
3268 return;
3269 }
3270
3271 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
3272 HandleValue(OVE->getSourceExpr(), AddressOf);
3273 return;
3274 }
3275
3276 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3277 switch (BO->getOpcode()) {
3278 default:
3279 break;
3280 case(BO_PtrMemD):
3281 case(BO_PtrMemI):
3282 HandleValue(BO->getLHS(), AddressOf);
3283 Visit(BO->getRHS());
3284 return;
3285 case(BO_Comma):
3286 Visit(BO->getLHS());
3287 HandleValue(BO->getRHS(), AddressOf);
3288 return;
3289 }
3290 }
3291
3292 Visit(E);
3293 }
3294
3295 void CheckInitListExpr(InitListExpr *ILE) {
3296 InitFieldIndex.push_back(0);
3297 for (auto Child : ILE->children()) {
3298 if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) {
3299 CheckInitListExpr(SubList);
3300 } else {
3301 Visit(Child);
3302 }
3303 ++InitFieldIndex.back();
3304 }
3305 InitFieldIndex.pop_back();
3306 }
3307
3308 void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor,
3309 FieldDecl *Field, const Type *BaseClass) {
3310 // Remove Decls that may have been initialized in the previous
3311 // initializer.
3312 for (ValueDecl* VD : DeclsToRemove)
3313 Decls.erase(VD);
3314 DeclsToRemove.clear();
3315
3316 Constructor = FieldConstructor;
3317 InitListExpr *ILE = dyn_cast<InitListExpr>(E);
3318
3319 if (ILE && Field) {
3320 InitList = true;
3321 InitListFieldDecl = Field;
3322 InitFieldIndex.clear();
3323 CheckInitListExpr(ILE);
3324 } else {
3325 InitList = false;
3326 Visit(E);
3327 }
3328
3329 if (Field)
3330 Decls.erase(Field);
3331 if (BaseClass)
3332 BaseClasses.erase(BaseClass->getCanonicalTypeInternal());
3333 }
3334
3335 void VisitMemberExpr(MemberExpr *ME) {
3336 // All uses of unbounded reference fields will warn.
3337 HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/);
3338 }
3339
3340 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
3341 if (E->getCastKind() == CK_LValueToRValue) {
3342 HandleValue(E->getSubExpr(), false /*AddressOf*/);
3343 return;
3344 }
3345
3346 Inherited::VisitImplicitCastExpr(E);
3347 }
3348
3349 void VisitCXXConstructExpr(CXXConstructExpr *E) {
3350 if (E->getConstructor()->isCopyConstructor()) {
3351 Expr *ArgExpr = E->getArg(0);
3352 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
3353 if (ILE->getNumInits() == 1)
3354 ArgExpr = ILE->getInit(0);
3355 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
3356 if (ICE->getCastKind() == CK_NoOp)
3357 ArgExpr = ICE->getSubExpr();
3358 HandleValue(ArgExpr, false /*AddressOf*/);
3359 return;
3360 }
3361 Inherited::VisitCXXConstructExpr(E);
3362 }
3363
3364 void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3365 Expr *Callee = E->getCallee();
3366 if (isa<MemberExpr>(Callee)) {
3367 HandleValue(Callee, false /*AddressOf*/);
3368 for (auto Arg : E->arguments())
3369 Visit(Arg);
3370 return;
3371 }
3372
3373 Inherited::VisitCXXMemberCallExpr(E);
3374 }
3375
3376 void VisitCallExpr(CallExpr *E) {
3377 // Treat std::move as a use.
3378 if (E->getNumArgs() == 1) {
3379 if (FunctionDecl *FD = E->getDirectCallee()) {
3380 if (FD->isInStdNamespace() && FD->getIdentifier() &&
3381 FD->getIdentifier()->isStr("move")) {
3382 HandleValue(E->getArg(0), false /*AddressOf*/);
3383 return;
3384 }
3385 }
3386 }
3387
3388 Inherited::VisitCallExpr(E);
3389 }
3390
3391 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
3392 Expr *Callee = E->getCallee();
3393
3394 if (isa<UnresolvedLookupExpr>(Callee))
3395 return Inherited::VisitCXXOperatorCallExpr(E);
3396
3397 Visit(Callee);
3398 for (auto Arg : E->arguments())
3399 HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/);
3400 }
3401
3402 void VisitBinaryOperator(BinaryOperator *E) {
3403 // If a field assignment is detected, remove the field from the
3404 // uninitiailized field set.
3405 if (E->getOpcode() == BO_Assign)
3406 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS()))
3407 if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3408 if (!FD->getType()->isReferenceType())
3409 DeclsToRemove.push_back(FD);
3410
3411 if (E->isCompoundAssignmentOp()) {
3412 HandleValue(E->getLHS(), false /*AddressOf*/);
3413 Visit(E->getRHS());
3414 return;
3415 }
3416
3417 Inherited::VisitBinaryOperator(E);
3418 }
3419
3420 void VisitUnaryOperator(UnaryOperator *E) {
3421 if (E->isIncrementDecrementOp()) {
3422 HandleValue(E->getSubExpr(), false /*AddressOf*/);
3423 return;
3424 }
3425 if (E->getOpcode() == UO_AddrOf) {
3426 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) {
3427 HandleValue(ME->getBase(), true /*AddressOf*/);
3428 return;
3429 }
3430 }
3431
3432 Inherited::VisitUnaryOperator(E);
3433 }
3434 };
3435
3436 // Diagnose value-uses of fields to initialize themselves, e.g.
3437 // foo(foo)
3438 // where foo is not also a parameter to the constructor.
3439 // Also diagnose across field uninitialized use such as
3440 // x(y), y(x)
3441 // TODO: implement -Wuninitialized and fold this into that framework.
3442 static void DiagnoseUninitializedFields(
3443 Sema &SemaRef, const CXXConstructorDecl *Constructor) {
3444
3445 if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit,
3446 Constructor->getLocation())) {
3447 return;
3448 }
3449
3450 if (Constructor->isInvalidDecl())
3451 return;
3452
3453 const CXXRecordDecl *RD = Constructor->getParent();
3454
3455 if (RD->getDescribedClassTemplate())
3456 return;
3457
3458 // Holds fields that are uninitialized.
3459 llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields;
3460
3461 // At the beginning, all fields are uninitialized.
3462 for (auto *I : RD->decls()) {
3463 if (auto *FD = dyn_cast<FieldDecl>(I)) {
3464 UninitializedFields.insert(FD);
3465 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) {
3466 UninitializedFields.insert(IFD->getAnonField());
3467 }
3468 }
3469
3470 llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses;
3471 for (auto I : RD->bases())
3472 UninitializedBaseClasses.insert(I.getType().getCanonicalType());
3473
3474 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
3475 return;
3476
3477 UninitializedFieldVisitor UninitializedChecker(SemaRef,
3478 UninitializedFields,
3479 UninitializedBaseClasses);
3480
3481 for (const auto *FieldInit : Constructor->inits()) {
3482 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
3483 break;
3484
3485 Expr *InitExpr = FieldInit->getInit();
3486 if (!InitExpr)
3487 continue;
3488
3489 if (CXXDefaultInitExpr *Default =
3490 dyn_cast<CXXDefaultInitExpr>(InitExpr)) {
3491 InitExpr = Default->getExpr();
3492 if (!InitExpr)
3493 continue;
3494 // In class initializers will point to the constructor.
3495 UninitializedChecker.CheckInitializer(InitExpr, Constructor,
3496 FieldInit->getAnyMember(),
3497 FieldInit->getBaseClass());
3498 } else {
3499 UninitializedChecker.CheckInitializer(InitExpr, nullptr,
3500 FieldInit->getAnyMember(),
3501 FieldInit->getBaseClass());
3502 }
3503 }
3504 }
3505} // namespace
3506
3507/// \brief Enter a new C++ default initializer scope. After calling this, the
3508/// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if
3509/// parsing or instantiating the initializer failed.
3510void Sema::ActOnStartCXXInClassMemberInitializer() {
3511 // Create a synthetic function scope to represent the call to the constructor
3512 // that notionally surrounds a use of this initializer.
3513 PushFunctionScope();
3514}
3515
3516/// \brief This is invoked after parsing an in-class initializer for a
3517/// non-static C++ class member, and after instantiating an in-class initializer
3518/// in a class template. Such actions are deferred until the class is complete.
3519void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D,
3520 SourceLocation InitLoc,
3521 Expr *InitExpr) {
3522 // Pop the notional constructor scope we created earlier.
3523 PopFunctionScopeInfo(nullptr, D);
3524
3525 FieldDecl *FD = dyn_cast<FieldDecl>(D);
3526 assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) &&(((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle
() != ICIS_NoInit) && "must set init style when field is created"
) ? static_cast<void> (0) : __assert_fail ("(isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) && \"must set init style when field is created\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3527, __PRETTY_FUNCTION__))
3527 "must set init style when field is created")(((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle
() != ICIS_NoInit) && "must set init style when field is created"
) ? static_cast<void> (0) : __assert_fail ("(isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) && \"must set init style when field is created\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3527, __PRETTY_FUNCTION__))
;
3528
3529 if (!InitExpr) {
3530 D->setInvalidDecl();
3531 if (FD)
3532 FD->removeInClassInitializer();
3533 return;
3534 }
3535
3536 if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
3537 FD->setInvalidDecl();
3538 FD->removeInClassInitializer();
3539 return;
3540 }
3541
3542 ExprResult Init = InitExpr;
3543 if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
3544 InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
3545 InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
3546 ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
3547 : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
3548 InitializationSequence Seq(*this, Entity, Kind, InitExpr);
3549 Init = Seq.Perform(*this, Entity, Kind, InitExpr);
3550 if (Init.isInvalid()) {
3551 FD->setInvalidDecl();
3552 return;
3553 }
3554 }
3555
3556 // C++11 [class.base.init]p7:
3557 // The initialization of each base and member constitutes a
3558 // full-expression.
3559 Init = ActOnFinishFullExpr(Init.get(), InitLoc);
3560 if (Init.isInvalid()) {
3561 FD->setInvalidDecl();
3562 return;
3563 }
3564
3565 InitExpr = Init.get();
3566
3567 FD->setInClassInitializer(InitExpr);
3568}
3569
3570/// \brief Find the direct and/or virtual base specifiers that
3571/// correspond to the given base type, for use in base initialization
3572/// within a constructor.
3573static bool FindBaseInitializer(Sema &SemaRef,
3574 CXXRecordDecl *ClassDecl,
3575 QualType BaseType,
3576 const CXXBaseSpecifier *&DirectBaseSpec,
3577 const CXXBaseSpecifier *&VirtualBaseSpec) {
3578 // First, check for a direct base class.
3579 DirectBaseSpec = nullptr;
3580 for (const auto &Base : ClassDecl->bases()) {
3581 if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) {
3582 // We found a direct base of this type. That's what we're
3583 // initializing.
3584 DirectBaseSpec = &Base;
3585 break;
3586 }
3587 }
3588
3589 // Check for a virtual base class.
3590 // FIXME: We might be able to short-circuit this if we know in advance that
3591 // there are no virtual bases.
3592 VirtualBaseSpec = nullptr;
3593 if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
3594 // We haven't found a base yet; search the class hierarchy for a
3595 // virtual base class.
3596 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3597 /*DetectVirtual=*/false);
3598 if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(),
3599 SemaRef.Context.getTypeDeclType(ClassDecl),
3600 BaseType, Paths)) {
3601 for (CXXBasePaths::paths_iterator Path = Paths.begin();
3602 Path != Paths.end(); ++Path) {
3603 if (Path->back().Base->isVirtual()) {
3604 VirtualBaseSpec = Path->back().Base;
3605 break;
3606 }
3607 }
3608 }
3609 }
3610
3611 return DirectBaseSpec || VirtualBaseSpec;
3612}
3613
3614/// \brief Handle a C++ member initializer using braced-init-list syntax.
3615MemInitResult
3616Sema::ActOnMemInitializer(Decl *ConstructorD,
3617 Scope *S,
3618 CXXScopeSpec &SS,
3619 IdentifierInfo *MemberOrBase,
3620 ParsedType TemplateTypeTy,
3621 const DeclSpec &DS,
3622 SourceLocation IdLoc,
3623 Expr *InitList,
3624 SourceLocation EllipsisLoc) {
3625 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
3626 DS, IdLoc, InitList,
3627 EllipsisLoc);
3628}
3629
3630/// \brief Handle a C++ member initializer using parentheses syntax.
3631MemInitResult
3632Sema::ActOnMemInitializer(Decl *ConstructorD,
3633 Scope *S,
3634 CXXScopeSpec &SS,
3635 IdentifierInfo *MemberOrBase,
3636 ParsedType TemplateTypeTy,
3637 const DeclSpec &DS,
3638 SourceLocation IdLoc,
3639 SourceLocation LParenLoc,
3640 ArrayRef<Expr *> Args,
3641 SourceLocation RParenLoc,
3642 SourceLocation EllipsisLoc) {
3643 Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
3644 Args, RParenLoc);
3645 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
3646 DS, IdLoc, List, EllipsisLoc);
3647}
3648
3649namespace {
3650
3651// Callback to only accept typo corrections that can be a valid C++ member
3652// intializer: either a non-static field member or a base class.
3653class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
3654public:
3655 explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
3656 : ClassDecl(ClassDecl) {}
3657
3658 bool ValidateCandidate(const TypoCorrection &candidate) override {
3659 if (NamedDecl *ND = candidate.getCorrectionDecl()) {
3660 if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
3661 return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
3662 return isa<TypeDecl>(ND);
3663 }
3664 return false;
3665 }
3666
3667private:
3668 CXXRecordDecl *ClassDecl;
3669};
3670
3671}
3672
3673/// \brief Handle a C++ member initializer.
3674MemInitResult
3675Sema::BuildMemInitializer(Decl *ConstructorD,
3676 Scope *S,
3677 CXXScopeSpec &SS,
3678 IdentifierInfo *MemberOrBase,
3679 ParsedType TemplateTypeTy,
3680 const DeclSpec &DS,
3681 SourceLocation IdLoc,
3682 Expr *Init,
3683 SourceLocation EllipsisLoc) {
3684 ExprResult Res = CorrectDelayedTyposInExpr(Init);
3685 if (!Res.isUsable())
3686 return true;
3687 Init = Res.get();
3688
3689 if (!ConstructorD)
3690 return true;
3691
3692 AdjustDeclIfTemplate(ConstructorD);
3693
3694 CXXConstructorDecl *Constructor
3695 = dyn_cast<CXXConstructorDecl>(ConstructorD);
3696 if (!Constructor) {
3697 // The user wrote a constructor initializer on a function that is
3698 // not a C++ constructor. Ignore the error for now, because we may
3699 // have more member initializers coming; we'll diagnose it just
3700 // once in ActOnMemInitializers.
3701 return true;
3702 }
3703
3704 CXXRecordDecl *ClassDecl = Constructor->getParent();
3705
3706 // C++ [class.base.init]p2:
3707 // Names in a mem-initializer-id are looked up in the scope of the
3708 // constructor's class and, if not found in that scope, are looked
3709 // up in the scope containing the constructor's definition.
3710 // [Note: if the constructor's class contains a member with the
3711 // same name as a direct or virtual base class of the class, a
3712 // mem-initializer-id naming the member or base class and composed
3713 // of a single identifier refers to the class member. A
3714 // mem-initializer-id for the hidden base class may be specified
3715 // using a qualified name. ]
3716 if (!SS.getScopeRep() && !TemplateTypeTy) {
3717 // Look for a member, first.
3718 DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase);
3719 if (!Result.empty()) {
3720 ValueDecl *Member;
3721 if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
3722 (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) {
3723 if (EllipsisLoc.isValid())
3724 Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
3725 << MemberOrBase
3726 << SourceRange(IdLoc, Init->getSourceRange().getEnd());
3727
3728 return BuildMemberInitializer(Member, Init, IdLoc);
3729 }
3730 }
3731 }
3732 // It didn't name a member, so see if it names a class.
3733 QualType BaseType;
3734 TypeSourceInfo *TInfo = nullptr;
3735
3736 if (TemplateTypeTy) {
3737 BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
3738 } else if (DS.getTypeSpecType() == TST_decltype) {
3739 BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
3740 } else if (DS.getTypeSpecType() == TST_decltype_auto) {
3741 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
3742 return true;
3743 } else {
3744 LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
3745 LookupParsedName(R, S, &SS);
3746
3747 TypeDecl *TyD = R.getAsSingle<TypeDecl>();
3748 if (!TyD) {
3749 if (R.isAmbiguous()) return true;
3750
3751 // We don't want access-control diagnostics here.
3752 R.suppressDiagnostics();
3753
3754 if (SS.isSet() && isDependentScopeSpecifier(SS)) {
3755 bool NotUnknownSpecialization = false;
3756 DeclContext *DC = computeDeclContext(SS, false);
3757 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
3758 NotUnknownSpecialization = !Record->hasAnyDependentBases();
3759
3760 if (!NotUnknownSpecialization) {
3761 // When the scope specifier can refer to a member of an unknown
3762 // specialization, we take it as a type name.
3763 BaseType = CheckTypenameType(ETK_None, SourceLocation(),
3764 SS.getWithLocInContext(Context),
3765 *MemberOrBase, IdLoc);
3766 if (BaseType.isNull())
3767 return true;
3768
3769 R.clear();
3770 R.setLookupName(MemberOrBase);
3771 }
3772 }
3773
3774 // If no results were found, try to correct typos.
3775 TypoCorrection Corr;
3776 if (R.empty() && BaseType.isNull() &&
3777 (Corr = CorrectTypo(
3778 R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
3779 llvm::make_unique<MemInitializerValidatorCCC>(ClassDecl),
3780 CTK_ErrorRecovery, ClassDecl))) {
3781 if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
3782 // We have found a non-static data member with a similar
3783 // name to what was typed; complain and initialize that
3784 // member.
3785 diagnoseTypo(Corr,
3786 PDiag(diag::err_mem_init_not_member_or_class_suggest)
3787 << MemberOrBase << true);
3788 return BuildMemberInitializer(Member, Init, IdLoc);
3789 } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
3790 const CXXBaseSpecifier *DirectBaseSpec;
3791 const CXXBaseSpecifier *VirtualBaseSpec;
3792 if (FindBaseInitializer(*this, ClassDecl,
3793 Context.getTypeDeclType(Type),
3794 DirectBaseSpec, VirtualBaseSpec)) {
3795 // We have found a direct or virtual base class with a
3796 // similar name to what was typed; complain and initialize
3797 // that base class.
3798 diagnoseTypo(Corr,
3799 PDiag(diag::err_mem_init_not_member_or_class_suggest)
3800 << MemberOrBase << false,
3801 PDiag() /*Suppress note, we provide our own.*/);
3802
3803 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec
3804 : VirtualBaseSpec;
3805 Diag(BaseSpec->getLocStart(),
3806 diag::note_base_class_specified_here)
3807 << BaseSpec->getType()
3808 << BaseSpec->getSourceRange();
3809
3810 TyD = Type;
3811 }
3812 }
3813 }
3814
3815 if (!TyD && BaseType.isNull()) {
3816 Diag(IdLoc, diag::err_mem_init_not_member_or_class)
3817 << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
3818 return true;
3819 }
3820 }
3821
3822 if (BaseType.isNull()) {
3823 BaseType = Context.getTypeDeclType(TyD);
3824 MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false);
3825 if (SS.isSet()) {
3826 BaseType = Context.getElaboratedType(ETK_None, SS.getScopeRep(),
3827 BaseType);
3828 TInfo = Context.CreateTypeSourceInfo(BaseType);
3829 ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>();
3830 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
3831 TL.setElaboratedKeywordLoc(SourceLocation());
3832 TL.setQualifierLoc(SS.getWithLocInContext(Context));
3833 }
3834 }
3835 }
3836
3837 if (!TInfo)
3838 TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
3839
3840 return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
3841}
3842
3843/// Checks a member initializer expression for cases where reference (or
3844/// pointer) members are bound to by-value parameters (or their addresses).
3845static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
3846 Expr *Init,
3847 SourceLocation IdLoc) {
3848 QualType MemberTy = Member->getType();
3849
3850 // We only handle pointers and references currently.
3851 // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
3852 if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
3853 return;
3854
3855 const bool IsPointer = MemberTy->isPointerType();
3856 if (IsPointer) {
3857 if (const UnaryOperator *Op
3858 = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
3859 // The only case we're worried about with pointers requires taking the
3860 // address.
3861 if (Op->getOpcode() != UO_AddrOf)
3862 return;
3863
3864 Init = Op->getSubExpr();
3865 } else {
3866 // We only handle address-of expression initializers for pointers.
3867 return;
3868 }
3869 }
3870
3871 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
3872 // We only warn when referring to a non-reference parameter declaration.
3873 const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
3874 if (!Parameter || Parameter->getType()->isReferenceType())
3875 return;
3876
3877 S.Diag(Init->getExprLoc(),
3878 IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
3879 : diag::warn_bind_ref_member_to_parameter)
3880 << Member << Parameter << Init->getSourceRange();
3881 } else {
3882 // Other initializers are fine.
3883 return;
3884 }
3885
3886 S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
3887 << (unsigned)IsPointer;
3888}
3889
3890MemInitResult
3891Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
3892 SourceLocation IdLoc) {
3893 FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
3894 IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
3895 assert((DirectMember || IndirectMember) &&(((DirectMember || IndirectMember) && "Member must be a FieldDecl or IndirectFieldDecl"
) ? static_cast<void> (0) : __assert_fail ("(DirectMember || IndirectMember) && \"Member must be a FieldDecl or IndirectFieldDecl\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3896, __PRETTY_FUNCTION__))
3896 "Member must be a FieldDecl or IndirectFieldDecl")(((DirectMember || IndirectMember) && "Member must be a FieldDecl or IndirectFieldDecl"
) ? static_cast<void> (0) : __assert_fail ("(DirectMember || IndirectMember) && \"Member must be a FieldDecl or IndirectFieldDecl\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3896, __PRETTY_FUNCTION__))
;
3897
3898 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
3899 return true;
3900
3901 if (Member->isInvalidDecl())
3902 return true;
3903
3904 MultiExprArg Args;
3905 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
3906 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
3907 } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
3908 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
3909 } else {
3910 // Template instantiation doesn't reconstruct ParenListExprs for us.
3911 Args = Init;
3912 }
3913
3914 SourceRange InitRange = Init->getSourceRange();
3915
3916 if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
3917 // Can't check initialization for a member of dependent type or when
3918 // any of the arguments are type-dependent expressions.
3919 DiscardCleanupsInEvaluationContext();
3920 } else {
3921 bool InitList = false;
3922 if (isa<InitListExpr>(Init)) {
3923 InitList = true;
3924 Args = Init;
3925 }
3926
3927 // Initialize the member.
3928 InitializedEntity MemberEntity =
3929 DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr)
3930 : InitializedEntity::InitializeMember(IndirectMember,
3931 nullptr);
3932 InitializationKind Kind =
3933 InitList ? InitializationKind::CreateDirectList(IdLoc)
3934 : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
3935 InitRange.getEnd());
3936
3937 InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
3938 ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args,
3939 nullptr);
3940 if (MemberInit.isInvalid())
3941 return true;
3942
3943 CheckForDanglingReferenceOrPointer(*this, Member, MemberInit.get(), IdLoc);
3944
3945 // C++11 [class.base.init]p7:
3946 // The initialization of each base and member constitutes a
3947 // full-expression.
3948 MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin());
3949 if (MemberInit.isInvalid())
3950 return true;
3951
3952 Init = MemberInit.get();
3953 }
3954
3955 if (DirectMember) {
3956 return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
3957 InitRange.getBegin(), Init,
3958 InitRange.getEnd());
3959 } else {
3960 return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
3961 InitRange.getBegin(), Init,
3962 InitRange.getEnd());
3963 }
3964}
3965
3966MemInitResult
3967Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
3968 CXXRecordDecl *ClassDecl) {
3969 SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
3970 if (!LangOpts.CPlusPlus11)
3971 return Diag(NameLoc, diag::err_delegating_ctor)
3972 << TInfo->getTypeLoc().getLocalSourceRange();
3973 Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
3974
3975 bool InitList = true;
3976 MultiExprArg Args = Init;
3977 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
3978 InitList = false;
3979 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
3980 }
3981
3982 SourceRange InitRange = Init->getSourceRange();
3983 // Initialize the object.
3984 InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
3985 QualType(ClassDecl->getTypeForDecl(), 0));
3986 InitializationKind Kind =
3987 InitList ? InitializationKind::CreateDirectList(NameLoc)
3988 : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
3989 InitRange.getEnd());
3990 InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
3991 ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
3992 Args, nullptr);
3993 if (DelegationInit.isInvalid())
3994 return true;
3995
3996 assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&((cast<CXXConstructExpr>(DelegationInit.get())->getConstructor
() && "Delegating constructor with no target?") ? static_cast
<void> (0) : __assert_fail ("cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() && \"Delegating constructor with no target?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3997, __PRETTY_FUNCTION__))
3997 "Delegating constructor with no target?")((cast<CXXConstructExpr>(DelegationInit.get())->getConstructor
() && "Delegating constructor with no target?") ? static_cast
<void> (0) : __assert_fail ("cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() && \"Delegating constructor with no target?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3997, __PRETTY_FUNCTION__))
;
3998
3999 // C++11 [class.base.init]p7:
4000 // The initialization of each base and member constitutes a
4001 // full-expression.
4002 DelegationInit = ActOnFinishFullExpr(DelegationInit.get(),
4003 InitRange.getBegin());
4004 if (DelegationInit.isInvalid())
4005 return true;
4006
4007 // If we are in a dependent context, template instantiation will
4008 // perform this type-checking again. Just save the arguments that we
4009 // received in a ParenListExpr.
4010 // FIXME: This isn't quite ideal, since our ASTs don't capture all
4011 // of the information that we have about the base
4012 // initializer. However, deconstructing the ASTs is a dicey process,
4013 // and this approach is far more likely to get the corner cases right.
4014 if (CurContext->isDependentContext())
4015 DelegationInit = Init;
4016
4017 return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
4018 DelegationInit.getAs<Expr>(),
4019 InitRange.getEnd());
4020}
4021
4022MemInitResult
4023Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
4024 Expr *Init, CXXRecordDecl *ClassDecl,
4025 SourceLocation EllipsisLoc) {
4026 SourceLocation BaseLoc
4027 = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
4028
4029 if (!BaseType->isDependentType() && !BaseType->isRecordType())
4030 return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
4031 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4032
4033 // C++ [class.base.init]p2:
4034 // [...] Unless the mem-initializer-id names a nonstatic data
4035 // member of the constructor's class or a direct or virtual base
4036 // of that class, the mem-initializer is ill-formed. A
4037 // mem-initializer-list can initialize a base class using any
4038 // name that denotes that base class type.
4039 bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
4040
4041 SourceRange InitRange = Init->getSourceRange();
4042 if (EllipsisLoc.isValid()) {
4043 // This is a pack expansion.
4044 if (!BaseType->containsUnexpandedParameterPack()) {
4045 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
4046 << SourceRange(BaseLoc, InitRange.getEnd());
4047
4048 EllipsisLoc = SourceLocation();
4049 }
4050 } else {
4051 // Check for any unexpanded parameter packs.
4052 if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
4053 return true;
4054
4055 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
4056 return true;
4057 }
4058
4059 // Check for direct and virtual base classes.
4060 const CXXBaseSpecifier *DirectBaseSpec = nullptr;
4061 const CXXBaseSpecifier *VirtualBaseSpec = nullptr;
4062 if (!Dependent) {
4063 if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
4064 BaseType))
4065 return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
4066
4067 FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
4068 VirtualBaseSpec);
4069
4070 // C++ [base.class.init]p2:
4071 // Unless the mem-initializer-id names a nonstatic data member of the
4072 // constructor's class or a direct or virtual base of that class, the
4073 // mem-initializer is ill-formed.
4074 if (!DirectBaseSpec && !VirtualBaseSpec) {
4075 // If the class has any dependent bases, then it's possible that
4076 // one of those types will resolve to the same type as
4077 // BaseType. Therefore, just treat this as a dependent base
4078 // class initialization. FIXME: Should we try to check the
4079 // initialization anyway? It seems odd.
4080 if (ClassDecl->hasAnyDependentBases())
4081 Dependent = true;
4082 else
4083 return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
4084 << BaseType << Context.getTypeDeclType(ClassDecl)
4085 << BaseTInfo->getTypeLoc().getLocalSourceRange();
4086 }
4087 }
4088
4089 if (Dependent) {
4090 DiscardCleanupsInEvaluationContext();
4091
4092 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4093 /*IsVirtual=*/false,
4094 InitRange.getBegin(), Init,
4095 InitRange.getEnd(), EllipsisLoc);
4096 }
4097
4098 // C++ [base.class.init]p2:
4099 // If a mem-initializer-id is ambiguous because it designates both
4100 // a direct non-virtual base class and an inherited virtual base
4101 // class, the mem-initializer is ill-formed.
4102 if (DirectBaseSpec && VirtualBaseSpec)
4103 return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
4104 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4105
4106 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec;
4107 if (!BaseSpec)
4108 BaseSpec = VirtualBaseSpec;
4109
4110 // Initialize the base.
4111 bool InitList = true;
4112 MultiExprArg Args = Init;
4113 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4114 InitList = false;
4115 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4116 }
4117
4118 InitializedEntity BaseEntity =
4119 InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
4120 InitializationKind Kind =
4121 InitList ? InitializationKind::CreateDirectList(BaseLoc)
4122 : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
4123 InitRange.getEnd());
4124 InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
4125 ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr);
4126 if (BaseInit.isInvalid())
4127 return true;
4128
4129 // C++11 [class.base.init]p7:
4130 // The initialization of each base and member constitutes a
4131 // full-expression.
4132 BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin());
4133 if (BaseInit.isInvalid())
4134 return true;
4135
4136 // If we are in a dependent context, template instantiation will
4137 // perform this type-checking again. Just save the arguments that we
4138 // received in a ParenListExpr.
4139 // FIXME: This isn't quite ideal, since our ASTs don't capture all
4140 // of the information that we have about the base
4141 // initializer. However, deconstructing the ASTs is a dicey process,
4142 // and this approach is far more likely to get the corner cases right.
4143 if (CurContext->isDependentContext())
4144 BaseInit = Init;
4145
4146 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4147 BaseSpec->isVirtual(),
4148 InitRange.getBegin(),
4149 BaseInit.getAs<Expr>(),
4150 InitRange.getEnd(), EllipsisLoc);
4151}
4152
4153// Create a static_cast\<T&&>(expr).
4154static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
4155 if (T.isNull()) T = E->getType();
4156 QualType TargetType = SemaRef.BuildReferenceType(
4157 T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
4158 SourceLocation ExprLoc = E->getLocStart();
4159 TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
4160 TargetType, ExprLoc);
4161
4162 return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
4163 SourceRange(ExprLoc, ExprLoc),
4164 E->getSourceRange()).get();
4165}
4166
4167/// ImplicitInitializerKind - How an implicit base or member initializer should
4168/// initialize its base or member.
4169enum ImplicitInitializerKind {
4170 IIK_Default,
4171 IIK_Copy,
4172 IIK_Move,
4173 IIK_Inherit
4174};
4175
4176static bool
4177BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4178 ImplicitInitializerKind ImplicitInitKind,
4179 CXXBaseSpecifier *BaseSpec,
4180 bool IsInheritedVirtualBase,
4181 CXXCtorInitializer *&CXXBaseInit) {
4182 InitializedEntity InitEntity
4183 = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
4184 IsInheritedVirtualBase);
4185
4186 ExprResult BaseInit;
4187
4188 switch (ImplicitInitKind) {
4189 case IIK_Inherit:
4190 case IIK_Default: {
4191 InitializationKind InitKind
4192 = InitializationKind::CreateDefault(Constructor->getLocation());
4193 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
4194 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
4195 break;
4196 }
4197
4198 case IIK_Move:
4199 case IIK_Copy: {
4200 bool Moving = ImplicitInitKind == IIK_Move;
4201 ParmVarDecl *Param = Constructor->getParamDecl(0);
4202 QualType ParamType = Param->getType().getNonReferenceType();
4203
4204 Expr *CopyCtorArg =
4205 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4206 SourceLocation(), Param, false,
4207 Constructor->getLocation(), ParamType,
4208 VK_LValue, nullptr);
4209
4210 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
4211
4212 // Cast to the base class to avoid ambiguities.
4213 QualType ArgTy =
4214 SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
4215 ParamType.getQualifiers());
4216
4217 if (Moving) {
4218 CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
4219 }
4220
4221 CXXCastPath BasePath;
4222 BasePath.push_back(BaseSpec);
4223 CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
4224 CK_UncheckedDerivedToBase,
4225 Moving ? VK_XValue : VK_LValue,
4226 &BasePath).get();
4227
4228 InitializationKind InitKind
4229 = InitializationKind::CreateDirect(Constructor->getLocation(),
4230 SourceLocation(), SourceLocation());
4231 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
4232 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
4233 break;
4234 }
4235 }
4236
4237 BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
4238 if (BaseInit.isInvalid())
4239 return true;
4240
4241 CXXBaseInit =
4242 new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4243 SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
4244 SourceLocation()),
4245 BaseSpec->isVirtual(),
4246 SourceLocation(),
4247 BaseInit.getAs<Expr>(),
4248 SourceLocation(),
4249 SourceLocation());
4250
4251 return false;
4252}
4253
4254static bool RefersToRValueRef(Expr *MemRef) {
4255 ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
4256 return Referenced->getType()->isRValueReferenceType();
4257}
4258
4259static bool
4260BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4261 ImplicitInitializerKind ImplicitInitKind,
4262 FieldDecl *Field, IndirectFieldDecl *Indirect,
4263 CXXCtorInitializer *&CXXMemberInit) {
4264 if (Field->isInvalidDecl())
4265 return true;
4266
4267 SourceLocation Loc = Constructor->getLocation();
4268
4269 if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
4270 bool Moving = ImplicitInitKind == IIK_Move;
4271 ParmVarDecl *Param = Constructor->getParamDecl(0);
4272 QualType ParamType = Param->getType().getNonReferenceType();
4273
4274 // Suppress copying zero-width bitfields.
4275 if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
4276 return false;
4277
4278 Expr *MemberExprBase =
4279 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4280 SourceLocation(), Param, false,
4281 Loc, ParamType, VK_LValue, nullptr);
4282
4283 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
4284
4285 if (Moving) {
4286 MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
4287 }
4288
4289 // Build a reference to this field within the parameter.
4290 CXXScopeSpec SS;
4291 LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
4292 Sema::LookupMemberName);
4293 MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
4294 : cast<ValueDecl>(Field), AS_public);
4295 MemberLookup.resolveKind();
4296 ExprResult CtorArg
4297 = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
4298 ParamType, Loc,
4299 /*IsArrow=*/false,
4300 SS,
4301 /*TemplateKWLoc=*/SourceLocation(),
4302 /*FirstQualifierInScope=*/nullptr,
4303 MemberLookup,
4304 /*TemplateArgs=*/nullptr,
4305 /*S*/nullptr);
4306 if (CtorArg.isInvalid())
4307 return true;
4308
4309 // C++11 [class.copy]p15:
4310 // - if a member m has rvalue reference type T&&, it is direct-initialized
4311 // with static_cast<T&&>(x.m);
4312 if (RefersToRValueRef(CtorArg.get())) {
4313 CtorArg = CastForMoving(SemaRef, CtorArg.get());
4314 }
4315
4316 InitializedEntity Entity =
4317 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
4318 /*Implicit*/ true)
4319 : InitializedEntity::InitializeMember(Field, nullptr,
4320 /*Implicit*/ true);
4321
4322 // Direct-initialize to use the copy constructor.
4323 InitializationKind InitKind =
4324 InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
4325
4326 Expr *CtorArgE = CtorArg.getAs<Expr>();
4327 InitializationSequence InitSeq(SemaRef, Entity, InitKind, CtorArgE);
4328 ExprResult MemberInit =
4329 InitSeq.Perform(SemaRef, Entity, InitKind, MultiExprArg(&CtorArgE, 1));
4330 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
4331 if (MemberInit.isInvalid())
4332 return true;
4333
4334 if (Indirect)
4335 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
4336 SemaRef.Context, Indirect, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
4337 else
4338 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
4339 SemaRef.Context, Field, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
4340 return false;
4341 }
4342
4343 assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&(((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit
) && "Unhandled implicit init kind!") ? static_cast<
void> (0) : __assert_fail ("(ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && \"Unhandled implicit init kind!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4344, __PRETTY_FUNCTION__))
4344 "Unhandled implicit init kind!")(((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit
) && "Unhandled implicit init kind!") ? static_cast<
void> (0) : __assert_fail ("(ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && \"Unhandled implicit init kind!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4344, __PRETTY_FUNCTION__))
;
4345
4346 QualType FieldBaseElementType =
4347 SemaRef.Context.getBaseElementType(Field->getType());
4348
4349 if (FieldBaseElementType->isRecordType()) {
4350 InitializedEntity InitEntity =
4351 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
4352 /*Implicit*/ true)
4353 : InitializedEntity::InitializeMember(Field, nullptr,
4354 /*Implicit*/ true);
4355 InitializationKind InitKind =
4356 InitializationKind::CreateDefault(Loc);
4357
4358 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
4359 ExprResult MemberInit =
4360 InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
4361
4362 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
4363 if (MemberInit.isInvalid())
4364 return true;
4365
4366 if (Indirect)
4367 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4368 Indirect, Loc,
4369 Loc,
4370 MemberInit.get(),
4371 Loc);
4372 else
4373 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4374 Field, Loc, Loc,
4375 MemberInit.get(),
4376 Loc);
4377 return false;
4378 }
4379
4380 if (!Field->getParent()->isUnion()) {
4381 if (FieldBaseElementType->isReferenceType()) {
4382 SemaRef.Diag(Constructor->getLocation(),
4383 diag::err_uninitialized_member_in_ctor)
4384 << (int)Constructor->isImplicit()
4385 << SemaRef.Context.getTagDeclType(Constructor->getParent())
4386 << 0 << Field->getDeclName();
4387 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
4388 return true;
4389 }
4390
4391 if (FieldBaseElementType.isConstQualified()) {
4392 SemaRef.Diag(Constructor->getLocation(),
4393 diag::err_uninitialized_member_in_ctor)
4394 << (int)Constructor->isImplicit()
4395 << SemaRef.Context.getTagDeclType(Constructor->getParent())
4396 << 1 << Field->getDeclName();
4397 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
4398 return true;
4399 }
4400 }
4401
4402 if (SemaRef.getLangOpts().ObjCAutoRefCount &&
4403 FieldBaseElementType->isObjCRetainableType() &&
4404 FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_None &&
4405 FieldBaseElementType.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) {
4406 // ARC:
4407 // Default-initialize Objective-C pointers to NULL.
4408 CXXMemberInit
4409 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
4410 Loc, Loc,
4411 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
4412 Loc);
4413 return false;
4414 }
4415
4416 // Nothing to initialize.
4417 CXXMemberInit = nullptr;
4418 return false;
4419}
4420
4421namespace {
4422struct BaseAndFieldInfo {
4423 Sema &S;
4424 CXXConstructorDecl *Ctor;
4425 bool AnyErrorsInInits;
4426 ImplicitInitializerKind IIK;
4427 llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
4428 SmallVector<CXXCtorInitializer*, 8> AllToInit;
4429 llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember;
4430
4431 BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
4432 : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
4433 bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
4434 if (Ctor->getInheritedConstructor())
4435 IIK = IIK_Inherit;
4436 else if (Generated && Ctor->isCopyConstructor())
4437 IIK = IIK_Copy;
4438 else if (Generated && Ctor->isMoveConstructor())
4439 IIK = IIK_Move;
4440 else
4441 IIK = IIK_Default;
4442 }
4443
4444 bool isImplicitCopyOrMove() const {
4445 switch (IIK) {
4446 case IIK_Copy:
4447 case IIK_Move:
4448 return true;
4449
4450 case IIK_Default:
4451 case IIK_Inherit:
4452 return false;
4453 }
4454
4455 llvm_unreachable("Invalid ImplicitInitializerKind!")::llvm::llvm_unreachable_internal("Invalid ImplicitInitializerKind!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4455)
;
4456 }
4457
4458 bool addFieldInitializer(CXXCtorInitializer *Init) {
4459 AllToInit.push_back(Init);
4460
4461 // Check whether this initializer makes the field "used".
4462 if (Init->getInit()->HasSideEffects(S.Context))
4463 S.UnusedPrivateFields.remove(Init->getAnyMember());
4464
4465 return false;
4466 }
4467
4468 bool isInactiveUnionMember(FieldDecl *Field) {
4469 RecordDecl *Record = Field->getParent();
4470 if (!Record->isUnion())
4471 return false;
4472
4473 if (FieldDecl *Active =
4474 ActiveUnionMember.lookup(Record->getCanonicalDecl()))
4475 return Active != Field->getCanonicalDecl();
4476
4477 // In an implicit copy or move constructor, ignore any in-class initializer.
4478 if (isImplicitCopyOrMove())
4479 return true;
4480
4481 // If there's no explicit initialization, the field is active only if it
4482 // has an in-class initializer...
4483 if (Field->hasInClassInitializer())
4484 return false;
4485 // ... or it's an anonymous struct or union whose class has an in-class
4486 // initializer.
4487 if (!Field->isAnonymousStructOrUnion())
4488 return true;
4489 CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl();
4490 return !FieldRD->hasInClassInitializer();
4491 }
4492
4493 /// \brief Determine whether the given field is, or is within, a union member
4494 /// that is inactive (because there was an initializer given for a different
4495 /// member of the union, or because the union was not initialized at all).
4496 bool isWithinInactiveUnionMember(FieldDecl *Field,
4497 IndirectFieldDecl *Indirect) {
4498 if (!Indirect)
4499 return isInactiveUnionMember(Field);
4500
4501 for (auto *C : Indirect->chain()) {
4502 FieldDecl *Field = dyn_cast<FieldDecl>(C);
4503 if (Field && isInactiveUnionMember(Field))
4504 return true;
4505 }
4506 return false;
4507 }
4508};
4509}
4510
4511/// \brief Determine whether the given type is an incomplete or zero-lenfgth
4512/// array type.
4513static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
4514 if (T->isIncompleteArrayType())
4515 return true;
4516
4517 while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
4518 if (!ArrayT->getSize())
4519 return true;
4520
4521 T = ArrayT->getElementType();
4522 }
4523
4524 return false;
4525}
4526
4527static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
4528 FieldDecl *Field,
4529 IndirectFieldDecl *Indirect = nullptr) {
4530 if (Field->isInvalidDecl())
4531 return false;
4532
4533 // Overwhelmingly common case: we have a direct initializer for this field.
4534 if (CXXCtorInitializer *Init =
4535 Info.AllBaseFields.lookup(Field->getCanonicalDecl()))
4536 return Info.addFieldInitializer(Init);
4537
4538 // C++11 [class.base.init]p8:
4539 // if the entity is a non-static data member that has a
4540 // brace-or-equal-initializer and either
4541 // -- the constructor's class is a union and no other variant member of that
4542 // union is designated by a mem-initializer-id or
4543 // -- the constructor's class is not a union, and, if the entity is a member
4544 // of an anonymous union, no other member of that union is designated by
4545 // a mem-initializer-id,
4546 // the entity is initialized as specified in [dcl.init].
4547 //
4548 // We also apply the same rules to handle anonymous structs within anonymous
4549 // unions.
4550 if (Info.isWithinInactiveUnionMember(Field, Indirect))
4551 return false;
4552
4553 if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
4554 ExprResult DIE =
4555 SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field);
4556 if (DIE.isInvalid())
4557 return true;
4558 CXXCtorInitializer *Init;
4559 if (Indirect)
4560 Init = new (SemaRef.Context)
4561 CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(),
4562 SourceLocation(), DIE.get(), SourceLocation());
4563 else
4564 Init = new (SemaRef.Context)
4565 CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(),
4566 SourceLocation(), DIE.get(), SourceLocation());
4567 return Info.addFieldInitializer(Init);
4568 }
4569
4570 // Don't initialize incomplete or zero-length arrays.
4571 if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
4572 return false;
4573
4574 // Don't try to build an implicit initializer if there were semantic
4575 // errors in any of the initializers (and therefore we might be
4576 // missing some that the user actually wrote).
4577 if (Info.AnyErrorsInInits)
4578 return false;
4579
4580 CXXCtorInitializer *Init = nullptr;
4581 if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
4582 Indirect, Init))
4583 return true;
4584
4585 if (!Init)
4586 return false;
4587
4588 return Info.addFieldInitializer(Init);
4589}
4590
4591bool
4592Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
4593 CXXCtorInitializer *Initializer) {
4594 assert(Initializer->isDelegatingInitializer())((Initializer->isDelegatingInitializer()) ? static_cast<
void> (0) : __assert_fail ("Initializer->isDelegatingInitializer()"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4594, __PRETTY_FUNCTION__))
;
4595 Constructor->setNumCtorInitializers(1);
4596 CXXCtorInitializer **initializer =
4597 new (Context) CXXCtorInitializer*[1];
4598 memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
4599 Constructor->setCtorInitializers(initializer);
4600
4601 if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
4602 MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
4603 DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
4604 }
4605
4606 DelegatingCtorDecls.push_back(Constructor);
4607
4608 DiagnoseUninitializedFields(*this, Constructor);
4609
4610 return false;
4611}
4612
4613bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
4614 ArrayRef<CXXCtorInitializer *> Initializers) {
4615 if (Constructor->isDependentContext()) {
4616 // Just store the initializers as written, they will be checked during
4617 // instantiation.
4618 if (!Initializers.empty()) {
4619 Constructor->setNumCtorInitializers(Initializers.size());
4620 CXXCtorInitializer **baseOrMemberInitializers =
4621 new (Context) CXXCtorInitializer*[Initializers.size()];
4622 memcpy(baseOrMemberInitializers, Initializers.data(),
4623 Initializers.size() * sizeof(CXXCtorInitializer*));
4624 Constructor->setCtorInitializers(baseOrMemberInitializers);
4625 }
4626
4627 // Let template instantiation know whether we had errors.
4628 if (AnyErrors)
4629 Constructor->setInvalidDecl();
4630
4631 return false;
4632 }
4633
4634 BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
4635
4636 // We need to build the initializer AST according to order of construction
4637 // and not what user specified in the Initializers list.
4638 CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
4639 if (!ClassDecl)
4640 return true;
4641
4642 bool HadError = false;
4643
4644 for (unsigned i = 0; i < Initializers.size(); i++) {
4645 CXXCtorInitializer *Member = Initializers[i];
4646
4647 if (Member->isBaseInitializer())
4648 Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
4649 else {
4650 Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member;
4651
4652 if (IndirectFieldDecl *F = Member->getIndirectMember()) {
4653 for (auto *C : F->chain()) {
4654 FieldDecl *FD = dyn_cast<FieldDecl>(C);
4655 if (FD && FD->getParent()->isUnion())
4656 Info.ActiveUnionMember.insert(std::make_pair(
4657 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
4658 }
4659 } else if (FieldDecl *FD = Member->getMember()) {
4660 if (FD->getParent()->isUnion())
4661 Info.ActiveUnionMember.insert(std::make_pair(
4662 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
4663 }
4664 }
4665 }
4666
4667 // Keep track of the direct virtual bases.
4668 llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
4669 for (auto &I : ClassDecl->bases()) {
4670 if (I.isVirtual())
4671 DirectVBases.insert(&I);
4672 }
4673
4674 // Push virtual bases before others.
4675 for (auto &VBase : ClassDecl->vbases()) {
4676 if (CXXCtorInitializer *Value
4677 = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) {
4678 // [class.base.init]p7, per DR257:
4679 // A mem-initializer where the mem-initializer-id names a virtual base
4680 // class is ignored during execution of a constructor of any class that
4681 // is not the most derived class.
4682 if (ClassDecl->isAbstract()) {
4683 // FIXME: Provide a fixit to remove the base specifier. This requires
4684 // tracking the location of the associated comma for a base specifier.
4685 Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored)
4686 << VBase.getType() << ClassDecl;
4687 DiagnoseAbstractType(ClassDecl);
4688 }
4689
4690 Info.AllToInit.push_back(Value);
4691 } else if (!AnyErrors && !ClassDecl->isAbstract()) {
4692 // [class.base.init]p8, per DR257:
4693 // If a given [...] base class is not named by a mem-initializer-id
4694 // [...] and the entity is not a virtual base class of an abstract
4695 // class, then [...] the entity is default-initialized.
4696 bool IsInheritedVirtualBase = !DirectVBases.count(&VBase);
4697 CXXCtorInitializer *CXXBaseInit;
4698 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
4699 &VBase, IsInheritedVirtualBase,
4700 CXXBaseInit)) {
4701 HadError = true;
4702 continue;
4703 }
4704
4705 Info.AllToInit.push_back(CXXBaseInit);
4706 }
4707 }
4708
4709 // Non-virtual bases.
4710 for (auto &Base : ClassDecl->bases()) {
4711 // Virtuals are in the virtual base list and already constructed.
4712 if (Base.isVirtual())
4713 continue;
4714
4715 if (CXXCtorInitializer *Value
4716 = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) {
4717 Info.AllToInit.push_back(Value);
4718 } else if (!AnyErrors) {
4719 CXXCtorInitializer *CXXBaseInit;
4720 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
4721 &Base, /*IsInheritedVirtualBase=*/false,
4722 CXXBaseInit)) {
4723 HadError = true;
4724 continue;
4725 }
4726
4727 Info.AllToInit.push_back(CXXBaseInit);
4728 }
4729 }
4730
4731 // Fields.
4732 for (auto *Mem : ClassDecl->decls()) {
4733 if (auto *F = dyn_cast<FieldDecl>(Mem)) {
4734 // C++ [class.bit]p2:
4735 // A declaration for a bit-field that omits the identifier declares an
4736 // unnamed bit-field. Unnamed bit-fields are not members and cannot be
4737 // initialized.
4738 if (F->isUnnamedBitfield())
4739 continue;
4740
4741 // If we're not generating the implicit copy/move constructor, then we'll
4742 // handle anonymous struct/union fields based on their individual
4743 // indirect fields.
4744 if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
4745 continue;
4746
4747 if (CollectFieldInitializer(*this, Info, F))
4748 HadError = true;
4749 continue;
4750 }
4751
4752 // Beyond this point, we only consider default initialization.
4753 if (Info.isImplicitCopyOrMove())
4754 continue;
4755
4756 if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) {
4757 if (F->getType()->isIncompleteArrayType()) {
4758 assert(ClassDecl->hasFlexibleArrayMember() &&((ClassDecl->hasFlexibleArrayMember() && "Incomplete array type is not valid"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4759, __PRETTY_FUNCTION__))
4759 "Incomplete array type is not valid")((ClassDecl->hasFlexibleArrayMember() && "Incomplete array type is not valid"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4759, __PRETTY_FUNCTION__))
;
4760 continue;
4761 }
4762
4763 // Initialize each field of an anonymous struct individually.
4764 if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
4765 HadError = true;
4766
4767 continue;
4768 }
4769 }
4770
4771 unsigned NumInitializers = Info.AllToInit.size();
4772 if (NumInitializers > 0) {
4773 Constructor->setNumCtorInitializers(NumInitializers);
4774 CXXCtorInitializer **baseOrMemberInitializers =
4775 new (Context) CXXCtorInitializer*[NumInitializers];
4776 memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
4777 NumInitializers * sizeof(CXXCtorInitializer*));
4778 Constructor->setCtorInitializers(baseOrMemberInitializers);
4779
4780 // Constructors implicitly reference the base and member
4781 // destructors.
4782 MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
4783 Constructor->getParent());
4784 }
4785
4786 return HadError;
4787}
4788
4789static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
4790 if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
4791 const RecordDecl *RD = RT->getDecl();
4792 if (RD->isAnonymousStructOrUnion()) {
4793 for (auto *Field : RD->fields())
4794 PopulateKeysForFields(Field, IdealInits);
4795 return;
4796 }
4797 }
4798 IdealInits.push_back(Field->getCanonicalDecl());
4799}
4800
4801static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
4802 return Context.getCanonicalType(BaseType).getTypePtr();
4803}
4804
4805static const void *GetKeyForMember(ASTContext &Context,
4806 CXXCtorInitializer *Member) {
4807 if (!Member->isAnyMemberInitializer())
4808 return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
4809
4810 return Member->getAnyMember()->getCanonicalDecl();
4811}
4812
4813static void DiagnoseBaseOrMemInitializerOrder(
4814 Sema &SemaRef, const CXXConstructorDecl *Constructor,
4815 ArrayRef<CXXCtorInitializer *> Inits) {
4816 if (Constructor->getDeclContext()->isDependentContext())
4817 return;
4818
4819 // Don't check initializers order unless the warning is enabled at the
4820 // location of at least one initializer.
4821 bool ShouldCheckOrder = false;
4822 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
4823 CXXCtorInitializer *Init = Inits[InitIndex];
4824 if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order,
4825 Init->getSourceLocation())) {
4826 ShouldCheckOrder = true;
4827 break;
4828 }
4829 }
4830 if (!ShouldCheckOrder)
4831 return;
4832
4833 // Build the list of bases and members in the order that they'll
4834 // actually be initialized. The explicit initializers should be in
4835 // this same order but may be missing things.
4836 SmallVector<const void*, 32> IdealInitKeys;
4837
4838 const CXXRecordDecl *ClassDecl = Constructor->getParent();
4839
4840 // 1. Virtual bases.
4841 for (const auto &VBase : ClassDecl->vbases())
4842 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType()));
4843
4844 // 2. Non-virtual bases.
4845 for (const auto &Base : ClassDecl->bases()) {
4846 if (Base.isVirtual())
4847 continue;
4848 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType()));
4849 }
4850
4851 // 3. Direct fields.
4852 for (auto *Field : ClassDecl->fields()) {
4853 if (Field->isUnnamedBitfield())
4854 continue;
4855
4856 PopulateKeysForFields(Field, IdealInitKeys);
4857 }
4858
4859 unsigned NumIdealInits = IdealInitKeys.size();
4860 unsigned IdealIndex = 0;
4861
4862 CXXCtorInitializer *PrevInit = nullptr;
4863 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
4864 CXXCtorInitializer *Init = Inits[InitIndex];
4865 const void *InitKey = GetKeyForMember(SemaRef.Context, Init);
4866
4867 // Scan forward to try to find this initializer in the idealized
4868 // initializers list.
4869 for (; IdealIndex != NumIdealInits; ++IdealIndex)
4870 if (InitKey == IdealInitKeys[IdealIndex])
4871 break;
4872
4873 // If we didn't find this initializer, it must be because we
4874 // scanned past it on a previous iteration. That can only
4875 // happen if we're out of order; emit a warning.
4876 if (IdealIndex == NumIdealInits && PrevInit) {
4877 Sema::SemaDiagnosticBuilder D =
4878 SemaRef.Diag(PrevInit->getSourceLocation(),
4879 diag::warn_initializer_out_of_order);
4880
4881 if (PrevInit->isAnyMemberInitializer())
4882 D << 0 << PrevInit->getAnyMember()->getDeclName();
4883 else
4884 D << 1 << PrevInit->getTypeSourceInfo()->getType();
4885
4886 if (Init->isAnyMemberInitializer())
4887 D << 0 << Init->getAnyMember()->getDeclName();
4888 else
4889 D << 1 << Init->getTypeSourceInfo()->getType();
4890
4891 // Move back to the initializer's location in the ideal list.
4892 for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
4893 if (InitKey == IdealInitKeys[IdealIndex])
4894 break;
4895
4896 assert(IdealIndex < NumIdealInits &&((IdealIndex < NumIdealInits && "initializer not found in initializer list"
) ? static_cast<void> (0) : __assert_fail ("IdealIndex < NumIdealInits && \"initializer not found in initializer list\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4897, __PRETTY_FUNCTION__))
4897 "initializer not found in initializer list")((IdealIndex < NumIdealInits && "initializer not found in initializer list"
) ? static_cast<void> (0) : __assert_fail ("IdealIndex < NumIdealInits && \"initializer not found in initializer list\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4897, __PRETTY_FUNCTION__))
;
4898 }
4899
4900 PrevInit = Init;
4901 }
4902}
4903
4904namespace {
4905bool CheckRedundantInit(Sema &S,
4906 CXXCtorInitializer *Init,
4907 CXXCtorInitializer *&PrevInit) {
4908 if (!PrevInit) {
4909 PrevInit = Init;
4910 return false;
4911 }
4912
4913 if (FieldDecl *Field = Init->getAnyMember())
4914 S.Diag(Init->getSourceLocation(),
4915 diag::err_multiple_mem_initialization)
4916 << Field->getDeclName()
4917 << Init->getSourceRange();
4918 else {
4919 const Type *BaseClass = Init->getBaseClass();
4920 assert(BaseClass && "neither field nor base")((BaseClass && "neither field nor base") ? static_cast
<void> (0) : __assert_fail ("BaseClass && \"neither field nor base\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4920, __PRETTY_FUNCTION__))
;
4921 S.Diag(Init->getSourceLocation(),
4922 diag::err_multiple_base_initialization)
4923 << QualType(BaseClass, 0)
4924 << Init->getSourceRange();
4925 }
4926 S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
4927 << 0 << PrevInit->getSourceRange();
4928
4929 return true;
4930}
4931
4932typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
4933typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
4934
4935bool CheckRedundantUnionInit(Sema &S,
4936 CXXCtorInitializer *Init,
4937 RedundantUnionMap &Unions) {
4938 FieldDecl *Field = Init->getAnyMember();
4939 RecordDecl *Parent = Field->getParent();
4940 NamedDecl *Child = Field;
4941
4942 while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
4943 if (Parent->isUnion()) {
4944 UnionEntry &En = Unions[Parent];
4945 if (En.first && En.first != Child) {
4946 S.Diag(Init->getSourceLocation(),
4947 diag::err_multiple_mem_union_initialization)
4948 << Field->getDeclName()
4949 << Init->getSourceRange();
4950 S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
4951 << 0 << En.second->getSourceRange();
4952 return true;
4953 }
4954 if (!En.first) {
4955 En.first = Child;
4956 En.second = Init;
4957 }
4958 if (!Parent->isAnonymousStructOrUnion())
4959 return false;
4960 }
4961
4962 Child = Parent;
4963 Parent = cast<RecordDecl>(Parent->getDeclContext());
4964 }
4965
4966 return false;
4967}
4968}
4969
4970/// ActOnMemInitializers - Handle the member initializers for a constructor.
4971void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
4972 SourceLocation ColonLoc,
4973 ArrayRef<CXXCtorInitializer*> MemInits,
4974 bool AnyErrors) {
4975 if (!ConstructorDecl)
4976 return;
4977
4978 AdjustDeclIfTemplate(ConstructorDecl);
4979
4980 CXXConstructorDecl *Constructor
4981 = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
4982
4983 if (!Constructor) {
4984 Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
4985 return;
4986 }
4987
4988 // Mapping for the duplicate initializers check.
4989 // For member initializers, this is keyed with a FieldDecl*.
4990 // For base initializers, this is keyed with a Type*.
4991 llvm::DenseMap<const void *, CXXCtorInitializer *> Members;
4992
4993 // Mapping for the inconsistent anonymous-union initializers check.
4994 RedundantUnionMap MemberUnions;
4995
4996 bool HadError = false;
4997 for (unsigned i = 0; i < MemInits.size(); i++) {
4998 CXXCtorInitializer *Init = MemInits[i];
4999
5000 // Set the source order index.
5001 Init->setSourceOrder(i);
5002
5003 if (Init->isAnyMemberInitializer()) {
5004 const void *Key = GetKeyForMember(Context, Init);
5005 if (CheckRedundantInit(*this, Init, Members[Key]) ||
5006 CheckRedundantUnionInit(*this, Init, MemberUnions))
5007 HadError = true;
5008 } else if (Init->isBaseInitializer()) {
5009 const void *Key = GetKeyForMember(Context, Init);
5010 if (CheckRedundantInit(*this, Init, Members[Key]))
5011 HadError = true;
5012 } else {
5013 assert(Init->isDelegatingInitializer())((Init->isDelegatingInitializer()) ? static_cast<void>
(0) : __assert_fail ("Init->isDelegatingInitializer()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5013, __PRETTY_FUNCTION__))
;
5014 // This must be the only initializer
5015 if (MemInits.size() != 1) {
5016 Diag(Init->getSourceLocation(),
5017 diag::err_delegating_initializer_alone)
5018 << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
5019 // We will treat this as being the only initializer.
5020 }
5021 SetDelegatingInitializer(Constructor, MemInits[i]);
5022 // Return immediately as the initializer is set.
5023 return;
5024 }
5025 }
5026
5027 if (HadError)
5028 return;
5029
5030 DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
5031
5032 SetCtorInitializers(Constructor, AnyErrors, MemInits);
5033
5034 DiagnoseUninitializedFields(*this, Constructor);
5035}
5036
5037void
5038Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
5039 CXXRecordDecl *ClassDecl) {
5040 // Ignore dependent contexts. Also ignore unions, since their members never
5041 // have destructors implicitly called.
5042 if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
5043 return;
5044
5045 // FIXME: all the access-control diagnostics are positioned on the
5046 // field/base declaration. That's probably good; that said, the
5047 // user might reasonably want to know why the destructor is being
5048 // emitted, and we currently don't say.
5049
5050 // Non-static data members.
5051 for (auto *Field : ClassDecl->fields()) {
5052 if (Field->isInvalidDecl())
5053 continue;
5054
5055 // Don't destroy incomplete or zero-length arrays.
5056 if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
5057 continue;
5058
5059 QualType FieldType = Context.getBaseElementType(Field->getType());
5060
5061 const RecordType* RT = FieldType->getAs<RecordType>();
5062 if (!RT)
5063 continue;
5064
5065 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5066 if (FieldClassDecl->isInvalidDecl())
5067 continue;
5068 if (FieldClassDecl->hasIrrelevantDestructor())
5069 continue;
5070 // The destructor for an implicit anonymous union member is never invoked.
5071 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
5072 continue;
5073
5074 CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
5075 assert(Dtor && "No dtor found for FieldClassDecl!")((Dtor && "No dtor found for FieldClassDecl!") ? static_cast
<void> (0) : __assert_fail ("Dtor && \"No dtor found for FieldClassDecl!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5075, __PRETTY_FUNCTION__))
;
5076 CheckDestructorAccess(Field->getLocation(), Dtor,
5077 PDiag(diag::err_access_dtor_field)
5078 << Field->getDeclName()
5079 << FieldType);
5080
5081 MarkFunctionReferenced(Location, Dtor);
5082 DiagnoseUseOfDecl(Dtor, Location);
5083 }
5084
5085 // We only potentially invoke the destructors of potentially constructed
5086 // subobjects.
5087 bool VisitVirtualBases = !ClassDecl->isAbstract();
5088
5089 llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
5090
5091 // Bases.
5092 for (const auto &Base : ClassDecl->bases()) {
5093 // Bases are always records in a well-formed non-dependent class.
5094 const RecordType *RT = Base.getType()->getAs<RecordType>();
5095
5096 // Remember direct virtual bases.
5097 if (Base.isVirtual()) {
5098 if (!VisitVirtualBases)
5099 continue;
5100 DirectVirtualBases.insert(RT);
5101 }
5102
5103 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5104 // If our base class is invalid, we probably can't get its dtor anyway.
5105 if (BaseClassDecl->isInvalidDecl())
5106 continue;
5107 if (BaseClassDecl->hasIrrelevantDestructor())
5108 continue;
5109
5110 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5111 assert(Dtor && "No dtor found for BaseClassDecl!")((Dtor && "No dtor found for BaseClassDecl!") ? static_cast
<void> (0) : __assert_fail ("Dtor && \"No dtor found for BaseClassDecl!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5111, __PRETTY_FUNCTION__))
;
5112
5113 // FIXME: caret should be on the start of the class name
5114 CheckDestructorAccess(Base.getLocStart(), Dtor,
5115 PDiag(diag::err_access_dtor_base)
5116 << Base.getType()
5117 << Base.getSourceRange(),
5118 Context.getTypeDeclType(ClassDecl));
5119
5120 MarkFunctionReferenced(Location, Dtor);
5121 DiagnoseUseOfDecl(Dtor, Location);
5122 }
5123
5124 if (!VisitVirtualBases)
5125 return;
5126
5127 // Virtual bases.
5128 for (const auto &VBase : ClassDecl->vbases()) {
5129 // Bases are always records in a well-formed non-dependent class.
5130 const RecordType *RT = VBase.getType()->castAs<RecordType>();
5131
5132 // Ignore direct virtual bases.
5133 if (DirectVirtualBases.count(RT))
5134 continue;
5135
5136 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5137 // If our base class is invalid, we probably can't get its dtor anyway.
5138 if (BaseClassDecl->isInvalidDecl())
5139 continue;
5140 if (BaseClassDecl->hasIrrelevantDestructor())
5141 continue;
5142
5143 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5144 assert(Dtor && "No dtor found for BaseClassDecl!")((Dtor && "No dtor found for BaseClassDecl!") ? static_cast
<void> (0) : __assert_fail ("Dtor && \"No dtor found for BaseClassDecl!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5144, __PRETTY_FUNCTION__))
;
5145 if (CheckDestructorAccess(
5146 ClassDecl->getLocation(), Dtor,
5147 PDiag(diag::err_access_dtor_vbase)
5148 << Context.getTypeDeclType(ClassDecl) << VBase.getType(),
5149 Context.getTypeDeclType(ClassDecl)) ==
5150 AR_accessible) {
5151 CheckDerivedToBaseConversion(
5152 Context.getTypeDeclType(ClassDecl), VBase.getType(),
5153 diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
5154 SourceRange(), DeclarationName(), nullptr);
5155 }
5156
5157 MarkFunctionReferenced(Location, Dtor);
5158 DiagnoseUseOfDecl(Dtor, Location);
5159 }
5160}
5161
5162void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
5163 if (!CDtorDecl)
5164 return;
5165
5166 if (CXXConstructorDecl *Constructor
5167 = dyn_cast<CXXConstructorDecl>(CDtorDecl)) {
5168 SetCtorInitializers(Constructor, /*AnyErrors=*/false);
5169 DiagnoseUninitializedFields(*this, Constructor);
5170 }
5171}
5172
5173bool Sema::isAbstractType(SourceLocation Loc, QualType T) {
5174 if (!getLangOpts().CPlusPlus)
5175 return false;
5176
5177 const auto *RD = Context.getBaseElementType(T)->getAsCXXRecordDecl();
5178 if (!RD)
5179 return false;
5180
5181 // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a
5182 // class template specialization here, but doing so breaks a lot of code.
5183
5184 // We can't answer whether something is abstract until it has a
5185 // definition. If it's currently being defined, we'll walk back
5186 // over all the declarations when we have a full definition.
5187 const CXXRecordDecl *Def = RD->getDefinition();
5188 if (!Def || Def->isBeingDefined())
5189 return false;
5190
5191 return RD->isAbstract();
5192}
5193
5194bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
5195 TypeDiagnoser &Diagnoser) {
5196 if (!isAbstractType(Loc, T))
5197 return false;
5198
5199 T = Context.getBaseElementType(T);
5200 Diagnoser.diagnose(*this, Loc, T);
5201 DiagnoseAbstractType(T->getAsCXXRecordDecl());
5202 return true;
5203}
5204
5205void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
5206 // Check if we've already emitted the list of pure virtual functions
5207 // for this class.
5208 if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
5209 return;
5210
5211 // If the diagnostic is suppressed, don't emit the notes. We're only
5212 // going to emit them once, so try to attach them to a diagnostic we're
5213 // actually going to show.
5214 if (Diags.isLastDiagnosticIgnored())
5215 return;
5216
5217 CXXFinalOverriderMap FinalOverriders;
5218 RD->getFinalOverriders(FinalOverriders);
5219
5220 // Keep a set of seen pure methods so we won't diagnose the same method
5221 // more than once.
5222 llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
5223
5224 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
5225 MEnd = FinalOverriders.end();
5226 M != MEnd;
5227 ++M) {
5228 for (OverridingMethods::iterator SO = M->second.begin(),
5229 SOEnd = M->second.end();
5230 SO != SOEnd; ++SO) {
5231 // C++ [class.abstract]p4:
5232 // A class is abstract if it contains or inherits at least one
5233 // pure virtual function for which the final overrider is pure
5234 // virtual.
5235
5236 //
5237 if (SO->second.size() != 1)
5238 continue;
5239
5240 if (!SO->second.front().Method->isPure())
5241 continue;
5242
5243 if (!SeenPureMethods.insert(SO->second.front().Method).second)
5244 continue;
5245
5246 Diag(SO->second.front().Method->getLocation(),
5247 diag::note_pure_virtual_function)
5248 << SO->second.front().Method->getDeclName() << RD->getDeclName();
5249 }
5250 }
5251
5252 if (!PureVirtualClassDiagSet)
5253 PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
5254 PureVirtualClassDiagSet->insert(RD);
5255}
5256
5257namespace {
5258struct AbstractUsageInfo {
5259 Sema &S;
5260 CXXRecordDecl *Record;
5261 CanQualType AbstractType;
5262 bool Invalid;
5263
5264 AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
5265 : S(S), Record(Record),
5266 AbstractType(S.Context.getCanonicalType(
5267 S.Context.getTypeDeclType(Record))),
5268 Invalid(false) {}
5269
5270 void DiagnoseAbstractType() {
5271 if (Invalid) return;
5272 S.DiagnoseAbstractType(Record);
5273 Invalid = true;
5274 }
5275
5276 void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
5277};
5278
5279struct CheckAbstractUsage {
5280 AbstractUsageInfo &Info;
5281 const NamedDecl *Ctx;
5282
5283 CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
5284 : Info(Info), Ctx(Ctx) {}
5285
5286 void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
5287 switch (TL.getTypeLocClass()) {
5288#define ABSTRACT_TYPELOC(CLASS, PARENT)
5289#define TYPELOC(CLASS, PARENT) \
5290 case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
5291#include "clang/AST/TypeLocNodes.def"
5292 }
5293 }
5294
5295 void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5296 Visit(TL.getReturnLoc(), Sema::AbstractReturnType);
5297 for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) {
5298 if (!TL.getParam(I))
5299 continue;
5300
5301 TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo();
5302 if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
5303 }
5304 }
5305
5306 void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5307 Visit(TL.getElementLoc(), Sema::AbstractArrayType);
5308 }
5309
5310 void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5311 // Visit the type parameters from a permissive context.
5312 for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
5313 TemplateArgumentLoc TAL = TL.getArgLoc(I);
5314 if (TAL.getArgument().getKind() == TemplateArgument::Type)
5315 if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
5316 Visit(TSI->getTypeLoc(), Sema::AbstractNone);
5317 // TODO: other template argument types?
5318 }
5319 }
5320
5321 // Visit pointee types from a permissive context.
5322#define CheckPolymorphic(Type)void Check(Type TL, Sema::AbstractDiagSelID Sel) { Visit(TL.getNextTypeLoc
(), Sema::AbstractNone); }
\
5323 void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
5324 Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
5325 }
5326 CheckPolymorphic(PointerTypeLoc)void Check(PointerTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit
(TL.getNextTypeLoc(), Sema::AbstractNone); }
5327 CheckPolymorphic(ReferenceTypeLoc)void Check(ReferenceTypeLoc TL, Sema::AbstractDiagSelID Sel) {
Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5328 CheckPolymorphic(MemberPointerTypeLoc)void Check(MemberPointerTypeLoc TL, Sema::AbstractDiagSelID Sel
) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5329 CheckPolymorphic(BlockPointerTypeLoc)void Check(BlockPointerTypeLoc TL, Sema::AbstractDiagSelID Sel
) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5330 CheckPolymorphic(AtomicTypeLoc)void Check(AtomicTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit
(TL.getNextTypeLoc(), Sema::AbstractNone); }
5331
5332 /// Handle all the types we haven't given a more specific
5333 /// implementation for above.
5334 void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
5335 // Every other kind of type that we haven't called out already
5336 // that has an inner type is either (1) sugar or (2) contains that
5337 // inner type in some way as a subobject.
5338 if (TypeLoc Next = TL.getNextTypeLoc())
5339 return Visit(Next, Sel);
5340
5341 // If there's no inner type and we're in a permissive context,
5342 // don't diagnose.
5343 if (Sel == Sema::AbstractNone) return;
5344
5345 // Check whether the type matches the abstract type.
5346 QualType T = TL.getType();
5347 if (T->isArrayType()) {
5348 Sel = Sema::AbstractArrayType;
5349 T = Info.S.Context.getBaseElementType(T);
5350 }
5351 CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
5352 if (CT != Info.AbstractType) return;
5353
5354 // It matched; do some magic.
5355 if (Sel == Sema::AbstractArrayType) {
5356 Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
5357 << T << TL.getSourceRange();
5358 } else {
5359 Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
5360 << Sel << T << TL.getSourceRange();
5361 }
5362 Info.DiagnoseAbstractType();
5363 }
5364};
5365
5366void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
5367 Sema::AbstractDiagSelID Sel) {
5368 CheckAbstractUsage(*this, D).Visit(TL, Sel);
5369}
5370
5371}
5372
5373/// Check for invalid uses of an abstract type in a method declaration.
5374static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
5375 CXXMethodDecl *MD) {
5376 // No need to do the check on definitions, which require that
5377 // the return/param types be complete.
5378 if (MD->doesThisDeclarationHaveABody())
5379 return;
5380
5381 // For safety's sake, just ignore it if we don't have type source
5382 // information. This should never happen for non-implicit methods,
5383 // but...
5384 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
5385 Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
5386}
5387
5388/// Check for invalid uses of an abstract type within a class definition.
5389static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
5390 CXXRecordDecl *RD) {
5391 for (auto *D : RD->decls()) {
5392 if (D->isImplicit()) continue;
5393
5394 // Methods and method templates.
5395 if (isa<CXXMethodDecl>(D)) {
5396 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
5397 } else if (isa<FunctionTemplateDecl>(D)) {
5398 FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
5399 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
5400
5401 // Fields and static variables.
5402 } else if (isa<FieldDecl>(D)) {
5403 FieldDecl *FD = cast<FieldDecl>(D);
5404 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
5405 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
5406 } else if (isa<VarDecl>(D)) {
5407 VarDecl *VD = cast<VarDecl>(D);
5408 if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
5409 Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
5410
5411 // Nested classes and class templates.
5412 } else if (isa<CXXRecordDecl>(D)) {
5413 CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
5414 } else if (isa<ClassTemplateDecl>(D)) {
5415 CheckAbstractClassUsage(Info,
5416 cast<ClassTemplateDecl>(D)->getTemplatedDecl());
5417 }
5418 }
5419}
5420
5421static void ReferenceDllExportedMethods(Sema &S, CXXRecordDecl *Class) {
5422 Attr *ClassAttr = getDLLAttr(Class);
5423 if (!ClassAttr)
5424 return;
5425
5426 assert(ClassAttr->getKind() == attr::DLLExport)((ClassAttr->getKind() == attr::DLLExport) ? static_cast<
void> (0) : __assert_fail ("ClassAttr->getKind() == attr::DLLExport"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5426, __PRETTY_FUNCTION__))
;
5427
5428 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
5429
5430 if (TSK == TSK_ExplicitInstantiationDeclaration)
5431 // Don't go any further if this is just an explicit instantiation
5432 // declaration.
5433 return;
5434
5435 for (Decl *Member : Class->decls()) {
5436 auto *MD = dyn_cast<CXXMethodDecl>(Member);
5437 if (!MD)
5438 continue;
5439
5440 if (Member->getAttr<DLLExportAttr>()) {
5441 if (MD->isUserProvided()) {
5442 // Instantiate non-default class member functions ...
5443
5444 // .. except for certain kinds of template specializations.
5445 if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited())
5446 continue;
5447
5448 S.MarkFunctionReferenced(Class->getLocation(), MD);
5449
5450 // The function will be passed to the consumer when its definition is
5451 // encountered.
5452 } else if (!MD->isTrivial() || MD->isExplicitlyDefaulted() ||
5453 MD->isCopyAssignmentOperator() ||
5454 MD->isMoveAssignmentOperator()) {
5455 // Synthesize and instantiate non-trivial implicit methods, explicitly
5456 // defaulted methods, and the copy and move assignment operators. The
5457 // latter are exported even if they are trivial, because the address of
5458 // an operator can be taken and should compare equal accross libraries.
5459 DiagnosticErrorTrap Trap(S.Diags);
5460 S.MarkFunctionReferenced(Class->getLocation(), MD);
5461 if (Trap.hasErrorOccurred()) {
5462 S.Diag(ClassAttr->getLocation(), diag::note_due_to_dllexported_class)
5463 << Class->getName() << !S.getLangOpts().CPlusPlus11;
5464 break;
5465 }
5466
5467 // There is no later point when we will see the definition of this
5468 // function, so pass it to the consumer now.
5469 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD));
5470 }
5471 }
5472 }
5473}
5474
5475static void checkForMultipleExportedDefaultConstructors(Sema &S,
5476 CXXRecordDecl *Class) {
5477 // Only the MS ABI has default constructor closures, so we don't need to do
5478 // this semantic checking anywhere else.
5479 if (!S.Context.getTargetInfo().getCXXABI().isMicrosoft())
5480 return;
5481
5482 CXXConstructorDecl *LastExportedDefaultCtor = nullptr;
5483 for (Decl *Member : Class->decls()) {
5484 // Look for exported default constructors.
5485 auto *CD = dyn_cast<CXXConstructorDecl>(Member);
5486 if (!CD || !CD->isDefaultConstructor())
5487 continue;
5488 auto *Attr = CD->getAttr<DLLExportAttr>();
5489 if (!Attr)
5490 continue;
5491
5492 // If the class is non-dependent, mark the default arguments as ODR-used so
5493 // that we can properly codegen the constructor closure.
5494 if (!Class->isDependentContext()) {
5495 for (ParmVarDecl *PD : CD->parameters()) {
5496 (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), CD, PD);
5497 S.DiscardCleanupsInEvaluationContext();
5498 }
5499 }
5500
5501 if (LastExportedDefaultCtor) {
5502 S.Diag(LastExportedDefaultCtor->getLocation(),
5503 diag::err_attribute_dll_ambiguous_default_ctor)
5504 << Class;
5505 S.Diag(CD->getLocation(), diag::note_entity_declared_at)
5506 << CD->getDeclName();
5507 return;
5508 }
5509 LastExportedDefaultCtor = CD;
5510 }
5511}
5512
5513/// \brief Check class-level dllimport/dllexport attribute.
5514void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) {
5515 Attr *ClassAttr = getDLLAttr(Class);
5516
5517 // MSVC inherits DLL attributes to partial class template specializations.
5518 if (Context.getTargetInfo().getCXXABI().isMicrosoft() && !ClassAttr) {
5519 if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) {
5520 if (Attr *TemplateAttr =
5521 getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) {
5522 auto *A = cast<InheritableAttr>(TemplateAttr->clone(getASTContext()));
5523 A->setInherited(true);
5524 ClassAttr = A;
5525 }
5526 }
5527 }
5528
5529 if (!ClassAttr)
5530 return;
5531
5532 if (!Class->isExternallyVisible()) {
5533 Diag(Class->getLocation(), diag::err_attribute_dll_not_extern)
5534 << Class << ClassAttr;
5535 return;
5536 }
5537
5538 if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
5539 !ClassAttr->isInherited()) {
5540 // Diagnose dll attributes on members of class with dll attribute.
5541 for (Decl *Member : Class->decls()) {
5542 if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member))
5543 continue;
5544 InheritableAttr *MemberAttr = getDLLAttr(Member);
5545 if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl())
5546 continue;
5547
5548 Diag(MemberAttr->getLocation(),
5549 diag::err_attribute_dll_member_of_dll_class)
5550 << MemberAttr << ClassAttr;
5551 Diag(ClassAttr->getLocation(), diag::note_previous_attribute);
5552 Member->setInvalidDecl();
5553 }
5554 }
5555
5556 if (Class->getDescribedClassTemplate())
5557 // Don't inherit dll attribute until the template is instantiated.
5558 return;
5559
5560 // The class is either imported or exported.
5561 const bool ClassExported = ClassAttr->getKind() == attr::DLLExport;
5562
5563 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
5564
5565 // Ignore explicit dllexport on explicit class template instantiation declarations.
5566 if (ClassExported && !ClassAttr->isInherited() &&
5567 TSK == TSK_ExplicitInstantiationDeclaration) {
5568 Class->dropAttr<DLLExportAttr>();
5569 return;
5570 }
5571
5572 // Force declaration of implicit members so they can inherit the attribute.
5573 ForceDeclarationOfImplicitMembers(Class);
5574
5575 // FIXME: MSVC's docs say all bases must be exportable, but this doesn't
5576 // seem to be true in practice?
5577
5578 for (Decl *Member : Class->decls()) {
5579 VarDecl *VD = dyn_cast<VarDecl>(Member);
5580 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
5581
5582 // Only methods and static fields inherit the attributes.
5583 if (!VD && !MD)
5584 continue;
5585
5586 if (MD) {
5587 // Don't process deleted methods.
5588 if (MD->isDeleted())
5589 continue;
5590
5591 if (MD->isInlined()) {
5592 // MinGW does not import or export inline methods.
5593 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
5594 !Context.getTargetInfo().getTriple().isWindowsItaniumEnvironment())
5595 continue;
5596
5597 // MSVC versions before 2015 don't export the move assignment operators
5598 // and move constructor, so don't attempt to import/export them if
5599 // we have a definition.
5600 auto *Ctor = dyn_cast<CXXConstructorDecl>(MD);
5601 if ((MD->isMoveAssignmentOperator() ||
5602 (Ctor && Ctor->isMoveConstructor())) &&
5603 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015))
5604 continue;
5605
5606 // MSVC2015 doesn't export trivial defaulted x-tor but copy assign
5607 // operator is exported anyway.
5608 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
5609 (Ctor || isa<CXXDestructorDecl>(MD)) && MD->isTrivial())
5610 continue;
5611 }
5612 }
5613
5614 if (!cast<NamedDecl>(Member)->isExternallyVisible())
5615 continue;
5616
5617 if (!getDLLAttr(Member)) {
5618 auto *NewAttr =
5619 cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
5620 NewAttr->setInherited(true);
5621 Member->addAttr(NewAttr);
5622 }
5623 }
5624
5625 if (ClassExported)
5626 DelayedDllExportClasses.push_back(Class);
5627}
5628
5629/// \brief Perform propagation of DLL attributes from a derived class to a
5630/// templated base class for MS compatibility.
5631void Sema::propagateDLLAttrToBaseClassTemplate(
5632 CXXRecordDecl *Class, Attr *ClassAttr,
5633 ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) {
5634 if (getDLLAttr(
5635 BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) {
5636 // If the base class template has a DLL attribute, don't try to change it.
5637 return;
5638 }
5639
5640 auto TSK = BaseTemplateSpec->getSpecializationKind();
5641 if (!getDLLAttr(BaseTemplateSpec) &&
5642 (TSK == TSK_Undeclared || TSK == TSK_ExplicitInstantiationDeclaration ||
5643 TSK == TSK_ImplicitInstantiation)) {
5644 // The template hasn't been instantiated yet (or it has, but only as an
5645 // explicit instantiation declaration or implicit instantiation, which means
5646 // we haven't codegenned any members yet), so propagate the attribute.
5647 auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
5648 NewAttr->setInherited(true);
5649 BaseTemplateSpec->addAttr(NewAttr);
5650
5651 // If the template is already instantiated, checkDLLAttributeRedeclaration()
5652 // needs to be run again to work see the new attribute. Otherwise this will
5653 // get run whenever the template is instantiated.
5654 if (TSK != TSK_Undeclared)
5655 checkClassLevelDLLAttribute(BaseTemplateSpec);
5656
5657 return;
5658 }
5659
5660 if (getDLLAttr(BaseTemplateSpec)) {
5661 // The template has already been specialized or instantiated with an
5662 // attribute, explicitly or through propagation. We should not try to change
5663 // it.
5664 return;
5665 }
5666
5667 // The template was previously instantiated or explicitly specialized without
5668 // a dll attribute, It's too late for us to add an attribute, so warn that
5669 // this is unsupported.
5670 Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class)
5671 << BaseTemplateSpec->isExplicitSpecialization();
5672 Diag(ClassAttr->getLocation(), diag::note_attribute);
5673 if (BaseTemplateSpec->isExplicitSpecialization()) {
5674 Diag(BaseTemplateSpec->getLocation(),
5675 diag::note_template_class_explicit_specialization_was_here)
5676 << BaseTemplateSpec;
5677 } else {
5678 Diag(BaseTemplateSpec->getPointOfInstantiation(),
5679 diag::note_template_class_instantiation_was_here)
5680 << BaseTemplateSpec;
5681 }
5682}
5683
5684static void DefineImplicitSpecialMember(Sema &S, CXXMethodDecl *MD,
5685 SourceLocation DefaultLoc) {
5686 switch (S.getSpecialMember(MD)) {
5687 case Sema::CXXDefaultConstructor:
5688 S.DefineImplicitDefaultConstructor(DefaultLoc,
5689 cast<CXXConstructorDecl>(MD));
5690 break;
5691 case Sema::CXXCopyConstructor:
5692 S.DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
5693 break;
5694 case Sema::CXXCopyAssignment:
5695 S.DefineImplicitCopyAssignment(DefaultLoc, MD);
5696 break;
5697 case Sema::CXXDestructor:
5698 S.DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(MD));
5699 break;
5700 case Sema::CXXMoveConstructor:
5701 S.DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
5702 break;
5703 case Sema::CXXMoveAssignment:
5704 S.DefineImplicitMoveAssignment(DefaultLoc, MD);
5705 break;
5706 case Sema::CXXInvalid:
5707 llvm_unreachable("Invalid special member.")::llvm::llvm_unreachable_internal("Invalid special member.", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5707)
;
5708 }
5709}
5710
5711/// \brief Perform semantic checks on a class definition that has been
5712/// completing, introducing implicitly-declared members, checking for
5713/// abstract types, etc.
5714void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
5715 if (!Record)
5716 return;
5717
5718 if (Record->isAbstract() && !Record->isInvalidDecl()) {
5719 AbstractUsageInfo Info(*this, Record);
5720 CheckAbstractClassUsage(Info, Record);
5721 }
5722
5723 // If this is not an aggregate type and has no user-declared constructor,
5724 // complain about any non-static data members of reference or const scalar
5725 // type, since they will never get initializers.
5726 if (!Record->isInvalidDecl() && !Record->isDependentType() &&
5727 !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
5728 !Record->isLambda()) {
5729 bool Complained = false;
5730 for (const auto *F : Record->fields()) {
5731 if (F->hasInClassInitializer() || F->isUnnamedBitfield())
5732 continue;
5733
5734 if (F->getType()->isReferenceType() ||
5735 (F->getType().isConstQualified() && F->getType()->isScalarType())) {
5736 if (!Complained) {
5737 Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
5738 << Record->getTagKind() << Record;
5739 Complained = true;
5740 }
5741
5742 Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
5743 << F->getType()->isReferenceType()
5744 << F->getDeclName();
5745 }
5746 }
5747 }
5748
5749 if (Record->getIdentifier()) {
5750 // C++ [class.mem]p13:
5751 // If T is the name of a class, then each of the following shall have a
5752 // name different from T:
5753 // - every member of every anonymous union that is a member of class T.
5754 //
5755 // C++ [class.mem]p14:
5756 // In addition, if class T has a user-declared constructor (12.1), every
5757 // non-static data member of class T shall have a name different from T.
5758 DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
5759 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
5760 ++I) {
5761 NamedDecl *D = *I;
5762 if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
5763 isa<IndirectFieldDecl>(D)) {
5764 Diag(D->getLocation(), diag::err_member_name_of_class)
5765 << D->getDeclName();
5766 break;
5767 }
5768 }
5769 }
5770
5771 // Warn if the class has virtual methods but non-virtual public destructor.
5772 if (Record->isPolymorphic() && !Record->isDependentType()) {
5773 CXXDestructorDecl *dtor = Record->getDestructor();
5774 if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) &&
5775 !Record->hasAttr<FinalAttr>())
5776 Diag(dtor ? dtor->getLocation() : Record->getLocation(),
5777 diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
5778 }
5779
5780 if (Record->isAbstract()) {
5781 if (FinalAttr *FA = Record->getAttr<FinalAttr>()) {
5782 Diag(Record->getLocation(), diag::warn_abstract_final_class)
5783 << FA->isSpelledAsSealed();
5784 DiagnoseAbstractType(Record);
5785 }
5786 }
5787
5788 bool HasMethodWithOverrideControl = false,
5789 HasOverridingMethodWithoutOverrideControl = false;
5790 if (!Record->isDependentType()) {
5791 for (auto *M : Record->methods()) {
5792 // See if a method overloads virtual methods in a base
5793 // class without overriding any.
5794 if (!M->isStatic())
5795 DiagnoseHiddenVirtualMethods(M);
5796 if (M->hasAttr<OverrideAttr>())
5797 HasMethodWithOverrideControl = true;
5798 else if (M->size_overridden_methods() > 0)
5799 HasOverridingMethodWithoutOverrideControl = true;
5800 // Check whether the explicitly-defaulted special members are valid.
5801 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted())
5802 CheckExplicitlyDefaultedSpecialMember(M);
5803
5804 // For an explicitly defaulted or deleted special member, we defer
5805 // determining triviality until the class is complete. That time is now!
5806 CXXSpecialMember CSM = getSpecialMember(M);
5807 if (!M->isImplicit() && !M->isUserProvided()) {
5808 if (CSM != CXXInvalid) {
5809 M->setTrivial(SpecialMemberIsTrivial(M, CSM));
5810
5811 // Inform the class that we've finished declaring this member.
5812 Record->finishedDefaultedOrDeletedMember(M);
5813 }
5814 }
5815
5816 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted() &&
5817 M->hasAttr<DLLExportAttr>()) {
5818 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
5819 M->isTrivial() &&
5820 (CSM == CXXDefaultConstructor || CSM == CXXCopyConstructor ||
5821 CSM == CXXDestructor))
5822 M->dropAttr<DLLExportAttr>();
5823
5824 if (M->hasAttr<DLLExportAttr>()) {
5825 DefineImplicitSpecialMember(*this, M, M->getLocation());
5826 ActOnFinishInlineFunctionDef(M);
5827 }
5828 }
5829 }
5830 }
5831
5832 if (HasMethodWithOverrideControl &&
5833 HasOverridingMethodWithoutOverrideControl) {
5834 // At least one method has the 'override' control declared.
5835 // Diagnose all other overridden methods which do not have 'override' specified on them.
5836 for (auto *M : Record->methods())
5837 DiagnoseAbsenceOfOverrideControl(M);
5838 }
5839
5840 // ms_struct is a request to use the same ABI rules as MSVC. Check
5841 // whether this class uses any C++ features that are implemented
5842 // completely differently in MSVC, and if so, emit a diagnostic.
5843 // That diagnostic defaults to an error, but we allow projects to
5844 // map it down to a warning (or ignore it). It's a fairly common
5845 // practice among users of the ms_struct pragma to mass-annotate
5846 // headers, sweeping up a bunch of types that the project doesn't
5847 // really rely on MSVC-compatible layout for. We must therefore
5848 // support "ms_struct except for C++ stuff" as a secondary ABI.
5849 if (Record->isMsStruct(Context) &&
5850 (Record->isPolymorphic() || Record->getNumBases())) {
5851 Diag(Record->getLocation(), diag::warn_cxx_ms_struct);
5852 }
5853
5854 checkClassLevelDLLAttribute(Record);
5855}
5856
5857/// Look up the special member function that would be called by a special
5858/// member function for a subobject of class type.
5859///
5860/// \param Class The class type of the subobject.
5861/// \param CSM The kind of special member function.
5862/// \param FieldQuals If the subobject is a field, its cv-qualifiers.
5863/// \param ConstRHS True if this is a copy operation with a const object
5864/// on its RHS, that is, if the argument to the outer special member
5865/// function is 'const' and this is not a field marked 'mutable'.
5866static Sema::SpecialMemberOverloadResult lookupCallFromSpecialMember(
5867 Sema &S, CXXRecordDecl *Class, Sema::CXXSpecialMember CSM,
5868 unsigned FieldQuals, bool ConstRHS) {
5869 unsigned LHSQuals = 0;
5870 if (CSM == Sema::CXXCopyAssignment || CSM == Sema::CXXMoveAssignment)
5871 LHSQuals = FieldQuals;
5872
5873 unsigned RHSQuals = FieldQuals;
5874 if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
5875 RHSQuals = 0;
5876 else if (ConstRHS)
5877 RHSQuals |= Qualifiers::Const;
5878
5879 return S.LookupSpecialMember(Class, CSM,
5880 RHSQuals & Qualifiers::Const,
5881 RHSQuals & Qualifiers::Volatile,
5882 false,
5883 LHSQuals & Qualifiers::Const,
5884 LHSQuals & Qualifiers::Volatile);
5885}
5886
5887class Sema::InheritedConstructorInfo {
5888 Sema &S;
5889 SourceLocation UseLoc;
5890
5891 /// A mapping from the base classes through which the constructor was
5892 /// inherited to the using shadow declaration in that base class (or a null
5893 /// pointer if the constructor was declared in that base class).
5894 llvm::DenseMap<CXXRecordDecl *, ConstructorUsingShadowDecl *>
5895 InheritedFromBases;
5896
5897public:
5898 InheritedConstructorInfo(Sema &S, SourceLocation UseLoc,
5899 ConstructorUsingShadowDecl *Shadow)
5900 : S(S), UseLoc(UseLoc) {
5901 bool DiagnosedMultipleConstructedBases = false;
5902 CXXRecordDecl *ConstructedBase = nullptr;
5903 UsingDecl *ConstructedBaseUsing = nullptr;
5904
5905 // Find the set of such base class subobjects and check that there's a
5906 // unique constructed subobject.
5907 for (auto *D : Shadow->redecls()) {
5908 auto *DShadow = cast<ConstructorUsingShadowDecl>(D);
5909 auto *DNominatedBase = DShadow->getNominatedBaseClass();
5910 auto *DConstructedBase = DShadow->getConstructedBaseClass();
5911
5912 InheritedFromBases.insert(
5913 std::make_pair(DNominatedBase->getCanonicalDecl(),
5914 DShadow->getNominatedBaseClassShadowDecl()));
5915 if (DShadow->constructsVirtualBase())
5916 InheritedFromBases.insert(
5917 std::make_pair(DConstructedBase->getCanonicalDecl(),
5918 DShadow->getConstructedBaseClassShadowDecl()));
5919 else
5920 assert(DNominatedBase == DConstructedBase)((DNominatedBase == DConstructedBase) ? static_cast<void>
(0) : __assert_fail ("DNominatedBase == DConstructedBase", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5920, __PRETTY_FUNCTION__))
;
5921
5922 // [class.inhctor.init]p2:
5923 // If the constructor was inherited from multiple base class subobjects
5924 // of type B, the program is ill-formed.
5925 if (!ConstructedBase) {
5926 ConstructedBase = DConstructedBase;
5927 ConstructedBaseUsing = D->getUsingDecl();
5928 } else if (ConstructedBase != DConstructedBase &&
5929 !Shadow->isInvalidDecl()) {
5930 if (!DiagnosedMultipleConstructedBases) {
5931 S.Diag(UseLoc, diag::err_ambiguous_inherited_constructor)
5932 << Shadow->getTargetDecl();
5933 S.Diag(ConstructedBaseUsing->getLocation(),
5934 diag::note_ambiguous_inherited_constructor_using)
5935 << ConstructedBase;
5936 DiagnosedMultipleConstructedBases = true;
5937 }
5938 S.Diag(D->getUsingDecl()->getLocation(),
5939 diag::note_ambiguous_inherited_constructor_using)
5940 << DConstructedBase;
5941 }
5942 }
5943
5944 if (DiagnosedMultipleConstructedBases)
5945 Shadow->setInvalidDecl();
5946 }
5947
5948 /// Find the constructor to use for inherited construction of a base class,
5949 /// and whether that base class constructor inherits the constructor from a
5950 /// virtual base class (in which case it won't actually invoke it).
5951 std::pair<CXXConstructorDecl *, bool>
5952 findConstructorForBase(CXXRecordDecl *Base, CXXConstructorDecl *Ctor) const {
5953 auto It = InheritedFromBases.find(Base->getCanonicalDecl());
5954 if (It == InheritedFromBases.end())
5955 return std::make_pair(nullptr, false);
5956
5957 // This is an intermediary class.
5958 if (It->second)
5959 return std::make_pair(
5960 S.findInheritingConstructor(UseLoc, Ctor, It->second),
5961 It->second->constructsVirtualBase());
5962
5963 // This is the base class from which the constructor was inherited.
5964 return std::make_pair(Ctor, false);
5965 }
5966};
5967
5968/// Is the special member function which would be selected to perform the
5969/// specified operation on the specified class type a constexpr constructor?
5970static bool
5971specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
5972 Sema::CXXSpecialMember CSM, unsigned Quals,
5973 bool ConstRHS,
5974 CXXConstructorDecl *InheritedCtor = nullptr,
5975 Sema::InheritedConstructorInfo *Inherited = nullptr) {
5976 // If we're inheriting a constructor, see if we need to call it for this base
5977 // class.
5978 if (InheritedCtor) {
5979 assert(CSM == Sema::CXXDefaultConstructor)((CSM == Sema::CXXDefaultConstructor) ? static_cast<void>
(0) : __assert_fail ("CSM == Sema::CXXDefaultConstructor", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5979, __PRETTY_FUNCTION__))
;
5980 auto BaseCtor =
5981 Inherited->findConstructorForBase(ClassDecl, InheritedCtor).first;
5982 if (BaseCtor)
5983 return BaseCtor->isConstexpr();
5984 }
5985
5986 if (CSM == Sema::CXXDefaultConstructor)
5987 return ClassDecl->hasConstexprDefaultConstructor();
5988
5989 Sema::SpecialMemberOverloadResult SMOR =
5990 lookupCallFromSpecialMember(S, ClassDecl, CSM, Quals, ConstRHS);
5991 if (!SMOR.getMethod())
5992 // A constructor we wouldn't select can't be "involved in initializing"
5993 // anything.
5994 return true;
5995 return SMOR.getMethod()->isConstexpr();
5996}
5997
5998/// Determine whether the specified special member function would be constexpr
5999/// if it were implicitly defined.
6000static bool defaultedSpecialMemberIsConstexpr(
6001 Sema &S, CXXRecordDecl *ClassDecl, Sema::CXXSpecialMember CSM,
6002 bool ConstArg, CXXConstructorDecl *InheritedCtor = nullptr,
6003 Sema::InheritedConstructorInfo *Inherited = nullptr) {
6004 if (!S.getLangOpts().CPlusPlus11)
6005 return false;
6006
6007 // C++11 [dcl.constexpr]p4:
6008 // In the definition of a constexpr constructor [...]
6009 bool Ctor = true;
6010 switch (CSM) {
6011 case Sema::CXXDefaultConstructor:
6012 if (Inherited)
6013 break;
6014 // Since default constructor lookup is essentially trivial (and cannot
6015 // involve, for instance, template instantiation), we compute whether a
6016 // defaulted default constructor is constexpr directly within CXXRecordDecl.
6017 //
6018 // This is important for performance; we need to know whether the default
6019 // constructor is constexpr to determine whether the type is a literal type.
6020 return ClassDecl->defaultedDefaultConstructorIsConstexpr();
6021
6022 case Sema::CXXCopyConstructor:
6023 case Sema::CXXMoveConstructor:
6024 // For copy or move constructors, we need to perform overload resolution.
6025 break;
6026
6027 case Sema::CXXCopyAssignment:
6028 case Sema::CXXMoveAssignment:
6029 if (!S.getLangOpts().CPlusPlus14)
6030 return false;
6031 // In C++1y, we need to perform overload resolution.
6032 Ctor = false;
6033 break;
6034
6035 case Sema::CXXDestructor:
6036 case Sema::CXXInvalid:
6037 return false;
6038 }
6039
6040 // -- if the class is a non-empty union, or for each non-empty anonymous
6041 // union member of a non-union class, exactly one non-static data member
6042 // shall be initialized; [DR1359]
6043 //
6044 // If we squint, this is guaranteed, since exactly one non-static data member
6045 // will be initialized (if the constructor isn't deleted), we just don't know
6046 // which one.
6047 if (Ctor && ClassDecl->isUnion())
6048 return CSM == Sema::CXXDefaultConstructor
6049 ? ClassDecl->hasInClassInitializer() ||
6050 !ClassDecl->hasVariantMembers()
6051 : true;
6052
6053 // -- the class shall not have any virtual base classes;
6054 if (Ctor && ClassDecl->getNumVBases())
6055 return false;
6056
6057 // C++1y [class.copy]p26:
6058 // -- [the class] is a literal type, and
6059 if (!Ctor && !ClassDecl->isLiteral())
6060 return false;
6061
6062 // -- every constructor involved in initializing [...] base class
6063 // sub-objects shall be a constexpr constructor;
6064 // -- the assignment operator selected to copy/move each direct base
6065 // class is a constexpr function, and
6066 for (const auto &B : ClassDecl->bases()) {
6067 const RecordType *BaseType = B.getType()->getAs<RecordType>();
6068 if (!BaseType) continue;
6069
6070 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6071 if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, 0, ConstArg,
6072 InheritedCtor, Inherited))
6073 return false;
6074 }
6075
6076 // -- every constructor involved in initializing non-static data members
6077 // [...] shall be a constexpr constructor;
6078 // -- every non-static data member and base class sub-object shall be
6079 // initialized
6080 // -- for each non-static data member of X that is of class type (or array
6081 // thereof), the assignment operator selected to copy/move that member is
6082 // a constexpr function
6083 for (const auto *F : ClassDecl->fields()) {
6084 if (F->isInvalidDecl())
6085 continue;
6086 if (CSM == Sema::CXXDefaultConstructor && F->hasInClassInitializer())
6087 continue;
6088 QualType BaseType = S.Context.getBaseElementType(F->getType());
6089 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
6090 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6091 if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM,
6092 BaseType.getCVRQualifiers(),
6093 ConstArg && !F->isMutable()))
6094 return false;
6095 } else if (CSM == Sema::CXXDefaultConstructor) {
6096 return false;
6097 }
6098 }
6099
6100 // All OK, it's constexpr!
6101 return true;
6102}
6103
6104static Sema::ImplicitExceptionSpecification
6105ComputeDefaultedSpecialMemberExceptionSpec(
6106 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
6107 Sema::InheritedConstructorInfo *ICI);
6108
6109static Sema::ImplicitExceptionSpecification
6110computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
6111 auto CSM = S.getSpecialMember(MD);
6112 if (CSM != Sema::CXXInvalid)
6113 return ComputeDefaultedSpecialMemberExceptionSpec(S, Loc, MD, CSM, nullptr);
6114
6115 auto *CD = cast<CXXConstructorDecl>(MD);
6116 assert(CD->getInheritedConstructor() &&((CD->getInheritedConstructor() && "only special members have implicit exception specs"
) ? static_cast<void> (0) : __assert_fail ("CD->getInheritedConstructor() && \"only special members have implicit exception specs\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6117, __PRETTY_FUNCTION__))
6117 "only special members have implicit exception specs")((CD->getInheritedConstructor() && "only special members have implicit exception specs"
) ? static_cast<void> (0) : __assert_fail ("CD->getInheritedConstructor() && \"only special members have implicit exception specs\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6117, __PRETTY_FUNCTION__))
;
6118 Sema::InheritedConstructorInfo ICI(
6119 S, Loc, CD->getInheritedConstructor().getShadowDecl());
6120 return ComputeDefaultedSpecialMemberExceptionSpec(
6121 S, Loc, CD, Sema::CXXDefaultConstructor, &ICI);
6122}
6123
6124static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S,
6125 CXXMethodDecl *MD) {
6126 FunctionProtoType::ExtProtoInfo EPI;
6127
6128 // Build an exception specification pointing back at this member.
6129 EPI.ExceptionSpec.Type = EST_Unevaluated;
6130 EPI.ExceptionSpec.SourceDecl = MD;
6131
6132 // Set the calling convention to the default for C++ instance methods.
6133 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(
6134 S.Context.getDefaultCallingConvention(/*IsVariadic=*/false,
6135 /*IsCXXMethod=*/true));
6136 return EPI;
6137}
6138
6139void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
6140 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
6141 if (FPT->getExceptionSpecType() != EST_Unevaluated)
6142 return;
6143
6144 // Evaluate the exception specification.
6145 auto IES = computeImplicitExceptionSpec(*this, Loc, MD);
6146 auto ESI = IES.getExceptionSpec();
6147
6148 // Update the type of the special member to use it.
6149 UpdateExceptionSpec(MD, ESI);
6150
6151 // A user-provided destructor can be defined outside the class. When that
6152 // happens, be sure to update the exception specification on both
6153 // declarations.
6154 const FunctionProtoType *CanonicalFPT =
6155 MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
6156 if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
6157 UpdateExceptionSpec(MD->getCanonicalDecl(), ESI);
6158}
6159
6160void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
6161 CXXRecordDecl *RD = MD->getParent();
6162 CXXSpecialMember CSM = getSpecialMember(MD);
6163
6164 assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&((MD->isExplicitlyDefaulted() && CSM != CXXInvalid
&& "not an explicitly-defaulted special member") ? static_cast
<void> (0) : __assert_fail ("MD->isExplicitlyDefaulted() && CSM != CXXInvalid && \"not an explicitly-defaulted special member\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6165, __PRETTY_FUNCTION__))
6165 "not an explicitly-defaulted special member")((MD->isExplicitlyDefaulted() && CSM != CXXInvalid
&& "not an explicitly-defaulted special member") ? static_cast
<void> (0) : __assert_fail ("MD->isExplicitlyDefaulted() && CSM != CXXInvalid && \"not an explicitly-defaulted special member\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6165, __PRETTY_FUNCTION__))
;
6166
6167 // Whether this was the first-declared instance of the constructor.
6168 // This affects whether we implicitly add an exception spec and constexpr.
6169 bool First = MD == MD->getCanonicalDecl();
6170
6171 bool HadError = false;
6172
6173 // C++11 [dcl.fct.def.default]p1:
6174 // A function that is explicitly defaulted shall
6175 // -- be a special member function (checked elsewhere),
6176 // -- have the same type (except for ref-qualifiers, and except that a
6177 // copy operation can take a non-const reference) as an implicit
6178 // declaration, and
6179 // -- not have default arguments.
6180 unsigned ExpectedParams = 1;
6181 if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
6182 ExpectedParams = 0;
6183 if (MD->getNumParams() != ExpectedParams) {
6184 // This also checks for default arguments: a copy or move constructor with a
6185 // default argument is classified as a default constructor, and assignment
6186 // operations and destructors can't have default arguments.
6187 Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
6188 << CSM << MD->getSourceRange();
6189 HadError = true;
6190 } else if (MD->isVariadic()) {
6191 Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
6192 << CSM << MD->getSourceRange();
6193 HadError = true;
6194 }
6195
6196 const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
6197
6198 bool CanHaveConstParam = false;
6199 if (CSM == CXXCopyConstructor)
6200 CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
6201 else if (CSM == CXXCopyAssignment)
6202 CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
6203
6204 QualType ReturnType = Context.VoidTy;
6205 if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
6206 // Check for return type matching.
6207 ReturnType = Type->getReturnType();
6208 QualType ExpectedReturnType =
6209 Context.getLValueReferenceType(Context.getTypeDeclType(RD));
6210 if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
6211 Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
6212 << (CSM == CXXMoveAssignment) << ExpectedReturnType;
6213 HadError = true;
6214 }
6215
6216 // A defaulted special member cannot have cv-qualifiers.
6217 if (Type->getTypeQuals()) {
6218 Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
6219 << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus14;
6220 HadError = true;
6221 }
6222 }
6223
6224 // Check for parameter type matching.
6225 QualType ArgType = ExpectedParams ? Type->getParamType(0) : QualType();
6226 bool HasConstParam = false;
6227 if (ExpectedParams && ArgType->isReferenceType()) {
6228 // Argument must be reference to possibly-const T.
6229 QualType ReferentType = ArgType->getPointeeType();
6230 HasConstParam = ReferentType.isConstQualified();
6231
6232 if (ReferentType.isVolatileQualified()) {
6233 Diag(MD->getLocation(),
6234 diag::err_defaulted_special_member_volatile_param) << CSM;
6235 HadError = true;
6236 }
6237
6238 if (HasConstParam && !CanHaveConstParam) {
6239 if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
6240 Diag(MD->getLocation(),
6241 diag::err_defaulted_special_member_copy_const_param)
6242 << (CSM == CXXCopyAssignment);
6243 // FIXME: Explain why this special member can't be const.
6244 } else {
6245 Diag(MD->getLocation(),
6246 diag::err_defaulted_special_member_move_const_param)
6247 << (CSM == CXXMoveAssignment);
6248 }
6249 HadError = true;
6250 }
6251 } else if (ExpectedParams) {
6252 // A copy assignment operator can take its argument by value, but a
6253 // defaulted one cannot.
6254 assert(CSM == CXXCopyAssignment && "unexpected non-ref argument")((CSM == CXXCopyAssignment && "unexpected non-ref argument"
) ? static_cast<void> (0) : __assert_fail ("CSM == CXXCopyAssignment && \"unexpected non-ref argument\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6254, __PRETTY_FUNCTION__))
;
6255 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
6256 HadError = true;
6257 }
6258
6259 // C++11 [dcl.fct.def.default]p2:
6260 // An explicitly-defaulted function may be declared constexpr only if it
6261 // would have been implicitly declared as constexpr,
6262 // Do not apply this rule to members of class templates, since core issue 1358
6263 // makes such functions always instantiate to constexpr functions. For
6264 // functions which cannot be constexpr (for non-constructors in C++11 and for
6265 // destructors in C++1y), this is checked elsewhere.
6266 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
6267 HasConstParam);
6268 if ((getLangOpts().CPlusPlus14 ? !isa<CXXDestructorDecl>(MD)
6269 : isa<CXXConstructorDecl>(MD)) &&
6270 MD->isConstexpr() && !Constexpr &&
6271 MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
6272 Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
6273 // FIXME: Explain why the special member can't be constexpr.
6274 HadError = true;
6275 }
6276
6277 // and may have an explicit exception-specification only if it is compatible
6278 // with the exception-specification on the implicit declaration.
6279 if (Type->hasExceptionSpec()) {
6280 // Delay the check if this is the first declaration of the special member,
6281 // since we may not have parsed some necessary in-class initializers yet.
6282 if (First) {
6283 // If the exception specification needs to be instantiated, do so now,
6284 // before we clobber it with an EST_Unevaluated specification below.
6285 if (Type->getExceptionSpecType() == EST_Uninstantiated) {
6286 InstantiateExceptionSpec(MD->getLocStart(), MD);
6287 Type = MD->getType()->getAs<FunctionProtoType>();
6288 }
6289 DelayedDefaultedMemberExceptionSpecs.push_back(std::make_pair(MD, Type));
6290 } else
6291 CheckExplicitlyDefaultedMemberExceptionSpec(MD, Type);
6292 }
6293
6294 // If a function is explicitly defaulted on its first declaration,
6295 if (First) {
6296 // -- it is implicitly considered to be constexpr if the implicit
6297 // definition would be,
6298 MD->setConstexpr(Constexpr);
6299
6300 // -- it is implicitly considered to have the same exception-specification
6301 // as if it had been implicitly declared,
6302 FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
6303 EPI.ExceptionSpec.Type = EST_Unevaluated;
6304 EPI.ExceptionSpec.SourceDecl = MD;
6305 MD->setType(Context.getFunctionType(ReturnType,
6306 llvm::makeArrayRef(&ArgType,
6307 ExpectedParams),
6308 EPI));
6309 }
6310
6311 if (ShouldDeleteSpecialMember(MD, CSM)) {
6312 if (First) {
6313 SetDeclDeleted(MD, MD->getLocation());
6314 } else {
6315 // C++11 [dcl.fct.def.default]p4:
6316 // [For a] user-provided explicitly-defaulted function [...] if such a
6317 // function is implicitly defined as deleted, the program is ill-formed.
6318 Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
6319 ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true);
6320 HadError = true;
6321 }
6322 }
6323
6324 if (HadError)
6325 MD->setInvalidDecl();
6326}
6327
6328/// Check whether the exception specification provided for an
6329/// explicitly-defaulted special member matches the exception specification
6330/// that would have been generated for an implicit special member, per
6331/// C++11 [dcl.fct.def.default]p2.
6332void Sema::CheckExplicitlyDefaultedMemberExceptionSpec(
6333 CXXMethodDecl *MD, const FunctionProtoType *SpecifiedType) {
6334 // If the exception specification was explicitly specified but hadn't been
6335 // parsed when the method was defaulted, grab it now.
6336 if (SpecifiedType->getExceptionSpecType() == EST_Unparsed)
6337 SpecifiedType =
6338 MD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
6339
6340 // Compute the implicit exception specification.
6341 CallingConv CC = Context.getDefaultCallingConvention(/*IsVariadic=*/false,
6342 /*IsCXXMethod=*/true);
6343 FunctionProtoType::ExtProtoInfo EPI(CC);
6344 auto IES = computeImplicitExceptionSpec(*this, MD->getLocation(), MD);
6345 EPI.ExceptionSpec = IES.getExceptionSpec();
6346 const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
6347 Context.getFunctionType(Context.VoidTy, None, EPI));
6348
6349 // Ensure that it matches.
6350 CheckEquivalentExceptionSpec(
6351 PDiag(diag::err_incorrect_defaulted_exception_spec)
6352 << getSpecialMember(MD), PDiag(),
6353 ImplicitType, SourceLocation(),
6354 SpecifiedType, MD->getLocation());
6355}
6356
6357void Sema::CheckDelayedMemberExceptionSpecs() {
6358 decltype(DelayedExceptionSpecChecks) Checks;
6359 decltype(DelayedDefaultedMemberExceptionSpecs) Specs;
6360
6361 std::swap(Checks, DelayedExceptionSpecChecks);
6362 std::swap(Specs, DelayedDefaultedMemberExceptionSpecs);
6363
6364 // Perform any deferred checking of exception specifications for virtual
6365 // destructors.
6366 for (auto &Check : Checks)
6367 CheckOverridingFunctionExceptionSpec(Check.first, Check.second);
6368
6369 // Check that any explicitly-defaulted methods have exception specifications
6370 // compatible with their implicit exception specifications.
6371 for (auto &Spec : Specs)
6372 CheckExplicitlyDefaultedMemberExceptionSpec(Spec.first, Spec.second);
6373}
6374
6375namespace {
6376/// CRTP base class for visiting operations performed by a special member
6377/// function (or inherited constructor).
6378template<typename Derived>
6379struct SpecialMemberVisitor {
6380 Sema &S;
6381 CXXMethodDecl *MD;
6382 Sema::CXXSpecialMember CSM;
6383 Sema::InheritedConstructorInfo *ICI;
6384
6385 // Properties of the special member, computed for convenience.
6386 bool IsConstructor = false, IsAssignment = false, ConstArg = false;
6387
6388 SpecialMemberVisitor(Sema &S, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
6389 Sema::InheritedConstructorInfo *ICI)
6390 : S(S), MD(MD), CSM(CSM), ICI(ICI) {
6391 switch (CSM) {
6392 case Sema::CXXDefaultConstructor:
6393 case Sema::CXXCopyConstructor:
6394 case Sema::CXXMoveConstructor:
6395 IsConstructor = true;
6396 break;
6397 case Sema::CXXCopyAssignment:
6398 case Sema::CXXMoveAssignment:
6399 IsAssignment = true;
6400 break;
6401 case Sema::CXXDestructor:
6402 break;
6403 case Sema::CXXInvalid:
6404 llvm_unreachable("invalid special member kind")::llvm::llvm_unreachable_internal("invalid special member kind"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6404)
;
6405 }
6406
6407 if (MD->getNumParams()) {
6408 if (const ReferenceType *RT =
6409 MD->getParamDecl(0)->getType()->getAs<ReferenceType>())
6410 ConstArg = RT->getPointeeType().isConstQualified();
6411 }
6412 }
6413
6414 Derived &getDerived() { return static_cast<Derived&>(*this); }
6415
6416 /// Is this a "move" special member?
6417 bool isMove() const {
6418 return CSM == Sema::CXXMoveConstructor || CSM == Sema::CXXMoveAssignment;
6419 }
6420
6421 /// Look up the corresponding special member in the given class.
6422 Sema::SpecialMemberOverloadResult lookupIn(CXXRecordDecl *Class,
6423 unsigned Quals, bool IsMutable) {
6424 return lookupCallFromSpecialMember(S, Class, CSM, Quals,
6425 ConstArg && !IsMutable);
6426 }
6427
6428 /// Look up the constructor for the specified base class to see if it's
6429 /// overridden due to this being an inherited constructor.
6430 Sema::SpecialMemberOverloadResult lookupInheritedCtor(CXXRecordDecl *Class) {
6431 if (!ICI)
6432 return {};
6433 assert(CSM == Sema::CXXDefaultConstructor)((CSM == Sema::CXXDefaultConstructor) ? static_cast<void>
(0) : __assert_fail ("CSM == Sema::CXXDefaultConstructor", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6433, __PRETTY_FUNCTION__))
;
6434 auto *BaseCtor =
6435 cast<CXXConstructorDecl>(MD)->getInheritedConstructor().getConstructor();
6436 if (auto *MD = ICI->findConstructorForBase(Class, BaseCtor).first)
6437 return MD;
6438 return {};
6439 }
6440
6441 /// A base or member subobject.
6442 typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
6443
6444 /// Get the location to use for a subobject in diagnostics.
6445 static SourceLocation getSubobjectLoc(Subobject Subobj) {
6446 // FIXME: For an indirect virtual base, the direct base leading to
6447 // the indirect virtual base would be a more useful choice.
6448 if (auto *B = Subobj.dyn_cast<CXXBaseSpecifier*>())
6449 return B->getBaseTypeLoc();
6450 else
6451 return Subobj.get<FieldDecl*>()->getLocation();
6452 }
6453
6454 enum BasesToVisit {
6455 /// Visit all non-virtual (direct) bases.
6456 VisitNonVirtualBases,
6457 /// Visit all direct bases, virtual or not.
6458 VisitDirectBases,
6459 /// Visit all non-virtual bases, and all virtual bases if the class
6460 /// is not abstract.
6461 VisitPotentiallyConstructedBases,
6462 /// Visit all direct or virtual bases.
6463 VisitAllBases
6464 };
6465
6466 // Visit the bases and members of the class.
6467 bool visit(BasesToVisit Bases) {
6468 CXXRecordDecl *RD = MD->getParent();
6469
6470 if (Bases == VisitPotentiallyConstructedBases)
6471 Bases = RD->isAbstract() ? VisitNonVirtualBases : VisitAllBases;
6472
6473 for (auto &B : RD->bases())
6474 if ((Bases == VisitDirectBases || !B.isVirtual()) &&
6475 getDerived().visitBase(&B))
6476 return true;
6477
6478 if (Bases == VisitAllBases)
6479 for (auto &B : RD->vbases())
6480 if (getDerived().visitBase(&B))
6481 return true;
6482
6483 for (auto *F : RD->fields())
6484 if (!F->isInvalidDecl() && !F->isUnnamedBitfield() &&
6485 getDerived().visitField(F))
6486 return true;
6487
6488 return false;
6489 }
6490};
6491}
6492
6493namespace {
6494struct SpecialMemberDeletionInfo
6495 : SpecialMemberVisitor<SpecialMemberDeletionInfo> {
6496 bool Diagnose;
6497
6498 SourceLocation Loc;
6499
6500 bool AllFieldsAreConst;
6501
6502 SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
6503 Sema::CXXSpecialMember CSM,
6504 Sema::InheritedConstructorInfo *ICI, bool Diagnose)
6505 : SpecialMemberVisitor(S, MD, CSM, ICI), Diagnose(Diagnose),
6506 Loc(MD->getLocation()), AllFieldsAreConst(true) {}
6507
6508 bool inUnion() const { return MD->getParent()->isUnion(); }
6509
6510 Sema::CXXSpecialMember getEffectiveCSM() {
6511 return ICI ? Sema::CXXInvalid : CSM;
6512 }
6513
6514 bool visitBase(CXXBaseSpecifier *Base) { return shouldDeleteForBase(Base); }
6515 bool visitField(FieldDecl *Field) { return shouldDeleteForField(Field); }
6516
6517 bool shouldDeleteForBase(CXXBaseSpecifier *Base);
6518 bool shouldDeleteForField(FieldDecl *FD);
6519 bool shouldDeleteForAllConstMembers();
6520
6521 bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
6522 unsigned Quals);
6523 bool shouldDeleteForSubobjectCall(Subobject Subobj,
6524 Sema::SpecialMemberOverloadResult SMOR,
6525 bool IsDtorCallInCtor);
6526
6527 bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
6528};
6529}
6530
6531/// Is the given special member inaccessible when used on the given
6532/// sub-object.
6533bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
6534 CXXMethodDecl *target) {
6535 /// If we're operating on a base class, the object type is the
6536 /// type of this special member.
6537 QualType objectTy;
6538 AccessSpecifier access = target->getAccess();
6539 if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
6540 objectTy = S.Context.getTypeDeclType(MD->getParent());
6541 access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
6542
6543 // If we're operating on a field, the object type is the type of the field.
6544 } else {
6545 objectTy = S.Context.getTypeDeclType(target->getParent());
6546 }
6547
6548 return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
6549}
6550
6551/// Check whether we should delete a special member due to the implicit
6552/// definition containing a call to a special member of a subobject.
6553bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
6554 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR,
6555 bool IsDtorCallInCtor) {
6556 CXXMethodDecl *Decl = SMOR.getMethod();
6557 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
6558
6559 int DiagKind = -1;
6560
6561 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
6562 DiagKind = !Decl ? 0 : 1;
6563 else if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
6564 DiagKind = 2;
6565 else if (!isAccessible(Subobj, Decl))
6566 DiagKind = 3;
6567 else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
6568 !Decl->isTrivial()) {
6569 // A member of a union must have a trivial corresponding special member.
6570 // As a weird special case, a destructor call from a union's constructor
6571 // must be accessible and non-deleted, but need not be trivial. Such a
6572 // destructor is never actually called, but is semantically checked as
6573 // if it were.
6574 DiagKind = 4;
6575 }
6576
6577 if (DiagKind == -1)
6578 return false;
6579
6580 if (Diagnose) {
6581 if (Field) {
6582 S.Diag(Field->getLocation(),
6583 diag::note_deleted_special_member_class_subobject)
6584 << getEffectiveCSM() << MD->getParent() << /*IsField*/true
6585 << Field << DiagKind << IsDtorCallInCtor;
6586 } else {
6587 CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
6588 S.Diag(Base->getLocStart(),
6589 diag::note_deleted_special_member_class_subobject)
6590 << getEffectiveCSM() << MD->getParent() << /*IsField*/false
6591 << Base->getType() << DiagKind << IsDtorCallInCtor;
6592 }
6593
6594 if (DiagKind == 1)
6595 S.NoteDeletedFunction(Decl);
6596 // FIXME: Explain inaccessibility if DiagKind == 3.
6597 }
6598
6599 return true;
6600}
6601
6602/// Check whether we should delete a special member function due to having a
6603/// direct or virtual base class or non-static data member of class type M.
6604bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
6605 CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
6606 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
6607 bool IsMutable = Field && Field->isMutable();
6608
6609 // C++11 [class.ctor]p5:
6610 // -- any direct or virtual base class, or non-static data member with no
6611 // brace-or-equal-initializer, has class type M (or array thereof) and
6612 // either M has no default constructor or overload resolution as applied
6613 // to M's default constructor results in an ambiguity or in a function
6614 // that is deleted or inaccessible
6615 // C++11 [class.copy]p11, C++11 [class.copy]p23:
6616 // -- a direct or virtual base class B that cannot be copied/moved because
6617 // overload resolution, as applied to B's corresponding special member,
6618 // results in an ambiguity or a function that is deleted or inaccessible
6619 // from the defaulted special member
6620 // C++11 [class.dtor]p5:
6621 // -- any direct or virtual base class [...] has a type with a destructor
6622 // that is deleted or inaccessible
6623 if (!(CSM == Sema::CXXDefaultConstructor &&
6624 Field && Field->hasInClassInitializer()) &&
6625 shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable),
6626 false))
6627 return true;
6628
6629 // C++11 [class.ctor]p5, C++11 [class.copy]p11:
6630 // -- any direct or virtual base class or non-static data member has a
6631 // type with a destructor that is deleted or inaccessible
6632 if (IsConstructor) {
6633 Sema::SpecialMemberOverloadResult SMOR =
6634 S.LookupSpecialMember(Class, Sema::CXXDestructor,
6635 false, false, false, false, false);
6636 if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
6637 return true;
6638 }
6639
6640 return false;
6641}
6642
6643/// Check whether we should delete a special member function due to the class
6644/// having a particular direct or virtual base class.
6645bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
6646 CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
6647 // If program is correct, BaseClass cannot be null, but if it is, the error
6648 // must be reported elsewhere.
6649 if (!BaseClass)
6650 return false;
6651 // If we have an inheriting constructor, check whether we're calling an
6652 // inherited constructor instead of a default constructor.
6653 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass);
6654 if (auto *BaseCtor = SMOR.getMethod()) {
6655 // Note that we do not check access along this path; other than that,
6656 // this is the same as shouldDeleteForSubobjectCall(Base, BaseCtor, false);
6657 // FIXME: Check that the base has a usable destructor! Sink this into
6658 // shouldDeleteForClassSubobject.
6659 if (BaseCtor->isDeleted() && Diagnose) {
6660 S.Diag(Base->getLocStart(),
6661 diag::note_deleted_special_member_class_subobject)
6662 << getEffectiveCSM() << MD->getParent() << /*IsField*/false
6663 << Base->getType() << /*Deleted*/1 << /*IsDtorCallInCtor*/false;
6664 S.NoteDeletedFunction(BaseCtor);
6665 }
6666 return BaseCtor->isDeleted();
6667 }
6668 return shouldDeleteForClassSubobject(BaseClass, Base, 0);
6669}
6670
6671/// Check whether we should delete a special member function due to the class
6672/// having a particular non-static data member.
6673bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
6674 QualType FieldType = S.Context.getBaseElementType(FD->getType());
6675 CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
6676
6677 if (CSM == Sema::CXXDefaultConstructor) {
6678 // For a default constructor, all references must be initialized in-class
6679 // and, if a union, it must have a non-const member.
6680 if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
6681 if (Diagnose)
6682 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
6683 << !!ICI << MD->getParent() << FD << FieldType << /*Reference*/0;
6684 return true;
6685 }
6686 // C++11 [class.ctor]p5: any non-variant non-static data member of
6687 // const-qualified type (or array thereof) with no
6688 // brace-or-equal-initializer does not have a user-provided default
6689 // constructor.
6690 if (!inUnion() && FieldType.isConstQualified() &&
6691 !FD->hasInClassInitializer() &&
6692 (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
6693 if (Diagnose)
6694 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
6695 << !!ICI << MD->getParent() << FD << FD->getType() << /*Const*/1;
6696 return true;
6697 }
6698
6699 if (inUnion() && !FieldType.isConstQualified())
6700 AllFieldsAreConst = false;
6701 } else if (CSM == Sema::CXXCopyConstructor) {
6702 // For a copy constructor, data members must not be of rvalue reference
6703 // type.
6704 if (FieldType->isRValueReferenceType()) {
6705 if (Diagnose)
6706 S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
6707 << MD->getParent() << FD << FieldType;
6708 return true;
6709 }
6710 } else if (IsAssignment) {
6711 // For an assignment operator, data members must not be of reference type.
6712 if (FieldType->isReferenceType()) {
6713 if (Diagnose)
6714 S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
6715 << isMove() << MD->getParent() << FD << FieldType << /*Reference*/0;
6716 return true;
6717 }
6718 if (!FieldRecord && FieldType.isConstQualified()) {
6719 // C++11 [class.copy]p23:
6720 // -- a non-static data member of const non-class type (or array thereof)
6721 if (Diagnose)
6722 S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
6723 << isMove() << MD->getParent() << FD << FD->getType() << /*Const*/1;
6724 return true;
6725 }
6726 }
6727
6728 if (FieldRecord) {
6729 // Some additional restrictions exist on the variant members.
6730 if (!inUnion() && FieldRecord->isUnion() &&
6731 FieldRecord->isAnonymousStructOrUnion()) {
6732 bool AllVariantFieldsAreConst = true;
6733
6734 // FIXME: Handle anonymous unions declared within anonymous unions.
6735 for (auto *UI : FieldRecord->fields()) {
6736 QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
6737
6738 if (!UnionFieldType.isConstQualified())
6739 AllVariantFieldsAreConst = false;
6740
6741 CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
6742 if (UnionFieldRecord &&
6743 shouldDeleteForClassSubobject(UnionFieldRecord, UI,
6744 UnionFieldType.getCVRQualifiers()))
6745 return true;
6746 }
6747
6748 // At least one member in each anonymous union must be non-const
6749 if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
6750 !FieldRecord->field_empty()) {
6751 if (Diagnose)
6752 S.Diag(FieldRecord->getLocation(),
6753 diag::note_deleted_default_ctor_all_const)
6754 << !!ICI << MD->getParent() << /*anonymous union*/1;
6755 return true;
6756 }
6757
6758 // Don't check the implicit member of the anonymous union type.
6759 // This is technically non-conformant, but sanity demands it.
6760 return false;
6761 }
6762
6763 if (shouldDeleteForClassSubobject(FieldRecord, FD,
6764 FieldType.getCVRQualifiers()))
6765 return true;
6766 }
6767
6768 return false;
6769}
6770
6771/// C++11 [class.ctor] p5:
6772/// A defaulted default constructor for a class X is defined as deleted if
6773/// X is a union and all of its variant members are of const-qualified type.
6774bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
6775 // This is a silly definition, because it gives an empty union a deleted
6776 // default constructor. Don't do that.
6777 if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst) {
6778 bool AnyFields = false;
6779 for (auto *F : MD->getParent()->fields())
6780 if ((AnyFields = !F->isUnnamedBitfield()))
6781 break;
6782 if (!AnyFields)
6783 return false;
6784 if (Diagnose)
6785 S.Diag(MD->getParent()->getLocation(),
6786 diag::note_deleted_default_ctor_all_const)
6787 << !!ICI << MD->getParent() << /*not anonymous union*/0;
6788 return true;
6789 }
6790 return false;
6791}
6792
6793/// Determine whether a defaulted special member function should be defined as
6794/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
6795/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
6796bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
6797 InheritedConstructorInfo *ICI,
6798 bool Diagnose) {
6799 if (MD->isInvalidDecl())
6800 return false;
6801 CXXRecordDecl *RD = MD->getParent();
6802 assert(!RD->isDependentType() && "do deletion after instantiation")((!RD->isDependentType() && "do deletion after instantiation"
) ? static_cast<void> (0) : __assert_fail ("!RD->isDependentType() && \"do deletion after instantiation\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6802, __PRETTY_FUNCTION__))
;
6803 if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
6804 return false;
6805
6806 // C++11 [expr.lambda.prim]p19:
6807 // The closure type associated with a lambda-expression has a
6808 // deleted (8.4.3) default constructor and a deleted copy
6809 // assignment operator.
6810 if (RD->isLambda() &&
6811 (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
6812 if (Diagnose)
6813 Diag(RD->getLocation(), diag::note_lambda_decl);
6814 return true;
6815 }
6816
6817 // For an anonymous struct or union, the copy and assignment special members
6818 // will never be used, so skip the check. For an anonymous union declared at
6819 // namespace scope, the constructor and destructor are used.
6820 if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
6821 RD->isAnonymousStructOrUnion())
6822 return false;
6823
6824 // C++11 [class.copy]p7, p18:
6825 // If the class definition declares a move constructor or move assignment
6826 // operator, an implicitly declared copy constructor or copy assignment
6827 // operator is defined as deleted.
6828 if (MD->isImplicit() &&
6829 (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
6830 CXXMethodDecl *UserDeclaredMove = nullptr;
6831
6832 // In Microsoft mode up to MSVC 2013, a user-declared move only causes the
6833 // deletion of the corresponding copy operation, not both copy operations.
6834 // MSVC 2015 has adopted the standards conforming behavior.
6835 bool DeletesOnlyMatchingCopy =
6836 getLangOpts().MSVCCompat &&
6837 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015);
6838
6839 if (RD->hasUserDeclaredMoveConstructor() &&
6840 (!DeletesOnlyMatchingCopy || CSM == CXXCopyConstructor)) {
6841 if (!Diagnose) return true;
6842
6843 // Find any user-declared move constructor.
6844 for (auto *I : RD->ctors()) {
6845 if (I->isMoveConstructor()) {
6846 UserDeclaredMove = I;
6847 break;
6848 }
6849 }
6850 assert(UserDeclaredMove)((UserDeclaredMove) ? static_cast<void> (0) : __assert_fail
("UserDeclaredMove", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6850, __PRETTY_FUNCTION__))
;
6851 } else if (RD->hasUserDeclaredMoveAssignment() &&
6852 (!DeletesOnlyMatchingCopy || CSM == CXXCopyAssignment)) {
6853 if (!Diagnose) return true;
6854
6855 // Find any user-declared move assignment operator.
6856 for (auto *I : RD->methods()) {
6857 if (I->isMoveAssignmentOperator()) {
6858 UserDeclaredMove = I;
6859 break;
6860 }
6861 }
6862 assert(UserDeclaredMove)((UserDeclaredMove) ? static_cast<void> (0) : __assert_fail
("UserDeclaredMove", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6862, __PRETTY_FUNCTION__))
;
6863 }
6864
6865 if (UserDeclaredMove) {
6866 Diag(UserDeclaredMove->getLocation(),
6867 diag::note_deleted_copy_user_declared_move)
6868 << (CSM == CXXCopyAssignment) << RD
6869 << UserDeclaredMove->isMoveAssignmentOperator();
6870 return true;
6871 }
6872 }
6873
6874 // Do access control from the special member function
6875 ContextRAII MethodContext(*this, MD);
6876
6877 // C++11 [class.dtor]p5:
6878 // -- for a virtual destructor, lookup of the non-array deallocation function
6879 // results in an ambiguity or in a function that is deleted or inaccessible
6880 if (CSM == CXXDestructor && MD->isVirtual()) {
6881 FunctionDecl *OperatorDelete = nullptr;
6882 DeclarationName Name =
6883 Context.DeclarationNames.getCXXOperatorName(OO_Delete);
6884 if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
6885 OperatorDelete, /*Diagnose*/false)) {
6886 if (Diagnose)
6887 Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
6888 return true;
6889 }
6890 }
6891
6892 SpecialMemberDeletionInfo SMI(*this, MD, CSM, ICI, Diagnose);
6893
6894 // Per DR1611, do not consider virtual bases of constructors of abstract
6895 // classes, since we are not going to construct them.
6896 // Per DR1658, do not consider virtual bases of destructors of abstract
6897 // classes either.
6898 // Per DR2180, for assignment operators we only assign (and thus only
6899 // consider) direct bases.
6900 if (SMI.visit(SMI.IsAssignment ? SMI.VisitDirectBases
6901 : SMI.VisitPotentiallyConstructedBases))
6902 return true;
6903
6904 if (SMI.shouldDeleteForAllConstMembers())
6905 return true;
6906
6907 if (getLangOpts().CUDA) {
6908 // We should delete the special member in CUDA mode if target inference
6909 // failed.
6910 return inferCUDATargetForImplicitSpecialMember(RD, CSM, MD, SMI.ConstArg,
6911 Diagnose);
6912 }
6913
6914 return false;
6915}
6916
6917/// Perform lookup for a special member of the specified kind, and determine
6918/// whether it is trivial. If the triviality can be determined without the
6919/// lookup, skip it. This is intended for use when determining whether a
6920/// special member of a containing object is trivial, and thus does not ever
6921/// perform overload resolution for default constructors.
6922///
6923/// If \p Selected is not \c NULL, \c *Selected will be filled in with the
6924/// member that was most likely to be intended to be trivial, if any.
6925static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
6926 Sema::CXXSpecialMember CSM, unsigned Quals,
6927 bool ConstRHS, CXXMethodDecl **Selected) {
6928 if (Selected)
6929 *Selected = nullptr;
6930
6931 switch (CSM) {
6932 case Sema::CXXInvalid:
6933 llvm_unreachable("not a special member")::llvm::llvm_unreachable_internal("not a special member", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6933)
;
6934
6935 case Sema::CXXDefaultConstructor:
6936 // C++11 [class.ctor]p5:
6937 // A default constructor is trivial if:
6938 // - all the [direct subobjects] have trivial default constructors
6939 //
6940 // Note, no overload resolution is performed in this case.
6941 if (RD->hasTrivialDefaultConstructor())
6942 return true;
6943
6944 if (Selected) {
6945 // If there's a default constructor which could have been trivial, dig it
6946 // out. Otherwise, if there's any user-provided default constructor, point
6947 // to that as an example of why there's not a trivial one.
6948 CXXConstructorDecl *DefCtor = nullptr;
6949 if (RD->needsImplicitDefaultConstructor())
6950 S.DeclareImplicitDefaultConstructor(RD);
6951 for (auto *CI : RD->ctors()) {
6952 if (!CI->isDefaultConstructor())
6953 continue;
6954 DefCtor = CI;
6955 if (!DefCtor->isUserProvided())
6956 break;
6957 }
6958
6959 *Selected = DefCtor;
6960 }
6961
6962 return false;
6963
6964 case Sema::CXXDestructor:
6965 // C++11 [class.dtor]p5:
6966 // A destructor is trivial if:
6967 // - all the direct [subobjects] have trivial destructors
6968 if (RD->hasTrivialDestructor())
6969 return true;
6970
6971 if (Selected) {
6972 if (RD->needsImplicitDestructor())
6973 S.DeclareImplicitDestructor(RD);
6974 *Selected = RD->getDestructor();
6975 }
6976
6977 return false;
6978
6979 case Sema::CXXCopyConstructor:
6980 // C++11 [class.copy]p12:
6981 // A copy constructor is trivial if:
6982 // - the constructor selected to copy each direct [subobject] is trivial
6983 if (RD->hasTrivialCopyConstructor()) {
6984 if (Quals == Qualifiers::Const)
6985 // We must either select the trivial copy constructor or reach an
6986 // ambiguity; no need to actually perform overload resolution.
6987 return true;
6988 } else if (!Selected) {
6989 return false;
6990 }
6991 // In C++98, we are not supposed to perform overload resolution here, but we
6992 // treat that as a language defect, as suggested on cxx-abi-dev, to treat
6993 // cases like B as having a non-trivial copy constructor:
6994 // struct A { template<typename T> A(T&); };
6995 // struct B { mutable A a; };
6996 goto NeedOverloadResolution;
6997
6998 case Sema::CXXCopyAssignment:
6999 // C++11 [class.copy]p25:
7000 // A copy assignment operator is trivial if:
7001 // - the assignment operator selected to copy each direct [subobject] is
7002 // trivial
7003 if (RD->hasTrivialCopyAssignment()) {
7004 if (Quals == Qualifiers::Const)
7005 return true;
7006 } else if (!Selected) {
7007 return false;
7008 }
7009 // In C++98, we are not supposed to perform overload resolution here, but we
7010 // treat that as a language defect.
7011 goto NeedOverloadResolution;
7012
7013 case Sema::CXXMoveConstructor:
7014 case Sema::CXXMoveAssignment:
7015 NeedOverloadResolution:
7016 Sema::SpecialMemberOverloadResult SMOR =
7017 lookupCallFromSpecialMember(S, RD, CSM, Quals, ConstRHS);
7018
7019 // The standard doesn't describe how to behave if the lookup is ambiguous.
7020 // We treat it as not making the member non-trivial, just like the standard
7021 // mandates for the default constructor. This should rarely matter, because
7022 // the member will also be deleted.
7023 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
7024 return true;
7025
7026 if (!SMOR.getMethod()) {
7027 assert(SMOR.getKind() ==((SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted
) ? static_cast<void> (0) : __assert_fail ("SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7028, __PRETTY_FUNCTION__))
7028 Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)((SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted
) ? static_cast<void> (0) : __assert_fail ("SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7028, __PRETTY_FUNCTION__))
;
7029 return false;
7030 }
7031
7032 // We deliberately don't check if we found a deleted special member. We're
7033 // not supposed to!
7034 if (Selected)
7035 *Selected = SMOR.getMethod();
7036 return SMOR.getMethod()->isTrivial();
7037 }
7038
7039 llvm_unreachable("unknown special method kind")::llvm::llvm_unreachable_internal("unknown special method kind"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7039)
;
7040}
7041
7042static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
7043 for (auto *CI : RD->ctors())
7044 if (!CI->isImplicit())
7045 return CI;
7046
7047 // Look for constructor templates.
7048 typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
7049 for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
7050 if (CXXConstructorDecl *CD =
7051 dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
7052 return CD;
7053 }
7054
7055 return nullptr;
7056}
7057
7058/// The kind of subobject we are checking for triviality. The values of this
7059/// enumeration are used in diagnostics.
7060enum TrivialSubobjectKind {
7061 /// The subobject is a base class.
7062 TSK_BaseClass,
7063 /// The subobject is a non-static data member.
7064 TSK_Field,
7065 /// The object is actually the complete object.
7066 TSK_CompleteObject
7067};
7068
7069/// Check whether the special member selected for a given type would be trivial.
7070static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
7071 QualType SubType, bool ConstRHS,
7072 Sema::CXXSpecialMember CSM,
7073 TrivialSubobjectKind Kind,
7074 bool Diagnose) {
7075 CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
7076 if (!SubRD)
7077 return true;
7078
7079 CXXMethodDecl *Selected;
7080 if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
7081 ConstRHS, Diagnose ? &Selected : nullptr))
7082 return true;
7083
7084 if (Diagnose) {
7085 if (ConstRHS)
7086 SubType.addConst();
7087
7088 if (!Selected && CSM == Sema::CXXDefaultConstructor) {
7089 S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
7090 << Kind << SubType.getUnqualifiedType();
7091 if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
7092 S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
7093 } else if (!Selected)
7094 S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
7095 << Kind << SubType.getUnqualifiedType() << CSM << SubType;
7096 else if (Selected->isUserProvided()) {
7097 if (Kind == TSK_CompleteObject)
7098 S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
7099 << Kind << SubType.getUnqualifiedType() << CSM;
7100 else {
7101 S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
7102 << Kind << SubType.getUnqualifiedType() << CSM;
7103 S.Diag(Selected->getLocation(), diag::note_declared_at);
7104 }
7105 } else {
7106 if (Kind != TSK_CompleteObject)
7107 S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
7108 << Kind << SubType.getUnqualifiedType() << CSM;
7109
7110 // Explain why the defaulted or deleted special member isn't trivial.
7111 S.SpecialMemberIsTrivial(Selected, CSM, Diagnose);
7112 }
7113 }
7114
7115 return false;
7116}
7117
7118/// Check whether the members of a class type allow a special member to be
7119/// trivial.
7120static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
7121 Sema::CXXSpecialMember CSM,
7122 bool ConstArg, bool Diagnose) {
7123 for (const auto *FI : RD->fields()) {
7124 if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
7125 continue;
7126
7127 QualType FieldType = S.Context.getBaseElementType(FI->getType());
7128
7129 // Pretend anonymous struct or union members are members of this class.
7130 if (FI->isAnonymousStructOrUnion()) {
7131 if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
7132 CSM, ConstArg, Diagnose))
7133 return false;
7134 continue;
7135 }
7136
7137 // C++11 [class.ctor]p5:
7138 // A default constructor is trivial if [...]
7139 // -- no non-static data member of its class has a
7140 // brace-or-equal-initializer
7141 if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
7142 if (Diagnose)
7143 S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << FI;
7144 return false;
7145 }
7146
7147 // Objective C ARC 4.3.5:
7148 // [...] nontrivally ownership-qualified types are [...] not trivially
7149 // default constructible, copy constructible, move constructible, copy
7150 // assignable, move assignable, or destructible [...]
7151 if (S.getLangOpts().ObjCAutoRefCount &&
7152 FieldType.hasNonTrivialObjCLifetime()) {
7153 if (Diagnose)
7154 S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
7155 << RD << FieldType.getObjCLifetime();
7156 return false;
7157 }
7158
7159 bool ConstRHS = ConstArg && !FI->isMutable();
7160 if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS,
7161 CSM, TSK_Field, Diagnose))
7162 return false;
7163 }
7164
7165 return true;
7166}
7167
7168/// Diagnose why the specified class does not have a trivial special member of
7169/// the given kind.
7170void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
7171 QualType Ty = Context.getRecordType(RD);
7172
7173 bool ConstArg = (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment);
7174 checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM,
7175 TSK_CompleteObject, /*Diagnose*/true);
7176}
7177
7178/// Determine whether a defaulted or deleted special member function is trivial,
7179/// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
7180/// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
7181bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
7182 bool Diagnose) {
7183 assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough")((!MD->isUserProvided() && CSM != CXXInvalid &&
"not special enough") ? static_cast<void> (0) : __assert_fail
("!MD->isUserProvided() && CSM != CXXInvalid && \"not special enough\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7183, __PRETTY_FUNCTION__))
;
7184
7185 CXXRecordDecl *RD = MD->getParent();
7186
7187 bool ConstArg = false;
7188
7189 // C++11 [class.copy]p12, p25: [DR1593]
7190 // A [special member] is trivial if [...] its parameter-type-list is
7191 // equivalent to the parameter-type-list of an implicit declaration [...]
7192 switch (CSM) {
7193 case CXXDefaultConstructor:
7194 case CXXDestructor:
7195 // Trivial default constructors and destructors cannot have parameters.
7196 break;
7197
7198 case CXXCopyConstructor:
7199 case CXXCopyAssignment: {
7200 // Trivial copy operations always have const, non-volatile parameter types.
7201 ConstArg = true;
7202 const ParmVarDecl *Param0 = MD->getParamDecl(0);
7203 const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
7204 if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
7205 if (Diagnose)
7206 Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
7207 << Param0->getSourceRange() << Param0->getType()
7208 << Context.getLValueReferenceType(
7209 Context.getRecordType(RD).withConst());
7210 return false;
7211 }
7212 break;
7213 }
7214
7215 case CXXMoveConstructor:
7216 case CXXMoveAssignment: {
7217 // Trivial move operations always have non-cv-qualified parameters.
7218 const ParmVarDecl *Param0 = MD->getParamDecl(0);
7219 const RValueReferenceType *RT =
7220 Param0->getType()->getAs<RValueReferenceType>();
7221 if (!RT || RT->getPointeeType().getCVRQualifiers()) {
7222 if (Diagnose)
7223 Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
7224 << Param0->getSourceRange() << Param0->getType()
7225 << Context.getRValueReferenceType(Context.getRecordType(RD));
7226 return false;
7227 }
7228 break;
7229 }
7230
7231 case CXXInvalid:
7232 llvm_unreachable("not a special member")::llvm::llvm_unreachable_internal("not a special member", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7232)
;
7233 }
7234
7235 if (MD->getMinRequiredArguments() < MD->getNumParams()) {
7236 if (Diagnose)
7237 Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
7238 diag::note_nontrivial_default_arg)
7239 << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
7240 return false;
7241 }
7242 if (MD->isVariadic()) {
7243 if (Diagnose)
7244 Diag(MD->getLocation(), diag::note_nontrivial_variadic);
7245 return false;
7246 }
7247
7248 // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
7249 // A copy/move [constructor or assignment operator] is trivial if
7250 // -- the [member] selected to copy/move each direct base class subobject
7251 // is trivial
7252 //
7253 // C++11 [class.copy]p12, C++11 [class.copy]p25:
7254 // A [default constructor or destructor] is trivial if
7255 // -- all the direct base classes have trivial [default constructors or
7256 // destructors]
7257 for (const auto &BI : RD->bases())
7258 if (!checkTrivialSubobjectCall(*this, BI.getLocStart(), BI.getType(),
7259 ConstArg, CSM, TSK_BaseClass, Diagnose))
7260 return false;
7261
7262 // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
7263 // A copy/move [constructor or assignment operator] for a class X is
7264 // trivial if
7265 // -- for each non-static data member of X that is of class type (or array
7266 // thereof), the constructor selected to copy/move that member is
7267 // trivial
7268 //
7269 // C++11 [class.copy]p12, C++11 [class.copy]p25:
7270 // A [default constructor or destructor] is trivial if
7271 // -- for all of the non-static data members of its class that are of class
7272 // type (or array thereof), each such class has a trivial [default
7273 // constructor or destructor]
7274 if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, Diagnose))
7275 return false;
7276
7277 // C++11 [class.dtor]p5:
7278 // A destructor is trivial if [...]
7279 // -- the destructor is not virtual
7280 if (CSM == CXXDestructor && MD->isVirtual()) {
7281 if (Diagnose)
7282 Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
7283 return false;
7284 }
7285
7286 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
7287 // A [special member] for class X is trivial if [...]
7288 // -- class X has no virtual functions and no virtual base classes
7289 if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
7290 if (!Diagnose)
7291 return false;
7292
7293 if (RD->getNumVBases()) {
7294 // Check for virtual bases. We already know that the corresponding
7295 // member in all bases is trivial, so vbases must all be direct.
7296 CXXBaseSpecifier &BS = *RD->vbases_begin();
7297 assert(BS.isVirtual())((BS.isVirtual()) ? static_cast<void> (0) : __assert_fail
("BS.isVirtual()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7297, __PRETTY_FUNCTION__))
;
7298 Diag(BS.getLocStart(), diag::note_nontrivial_has_virtual) << RD << 1;
7299 return false;
7300 }
7301
7302 // Must have a virtual method.
7303 for (const auto *MI : RD->methods()) {
7304 if (MI->isVirtual()) {
7305 SourceLocation MLoc = MI->getLocStart();
7306 Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
7307 return false;
7308 }
7309 }
7310
7311 llvm_unreachable("dynamic class with no vbases and no virtual functions")::llvm::llvm_unreachable_internal("dynamic class with no vbases and no virtual functions"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7311)
;
7312 }
7313
7314 // Looks like it's trivial!
7315 return true;
7316}
7317
7318namespace {
7319struct FindHiddenVirtualMethod {
7320 Sema *S;
7321 CXXMethodDecl *Method;
7322 llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
7323 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
7324
7325private:
7326 /// Check whether any most overriden method from MD in Methods
7327 static bool CheckMostOverridenMethods(
7328 const CXXMethodDecl *MD,
7329 const llvm::SmallPtrSetImpl<const CXXMethodDecl *> &Methods) {
7330 if (MD->size_overridden_methods() == 0)
7331 return Methods.count(MD->getCanonicalDecl());
7332 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
7333 E = MD->end_overridden_methods();
7334 I != E; ++I)
7335 if (CheckMostOverridenMethods(*I, Methods))
7336 return true;
7337 return false;
7338 }
7339
7340public:
7341 /// Member lookup function that determines whether a given C++
7342 /// method overloads virtual methods in a base class without overriding any,
7343 /// to be used with CXXRecordDecl::lookupInBases().
7344 bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
7345 RecordDecl *BaseRecord =
7346 Specifier->getType()->getAs<RecordType>()->getDecl();
7347
7348 DeclarationName Name = Method->getDeclName();
7349 assert(Name.getNameKind() == DeclarationName::Identifier)((Name.getNameKind() == DeclarationName::Identifier) ? static_cast
<void> (0) : __assert_fail ("Name.getNameKind() == DeclarationName::Identifier"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn298304/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7349, __PRETTY_FUNCTION__))
;
7350
7351 bool foundSameNameMethod = false;
7352 SmallVector<CXXMethodDecl *, 8> overloadedMethods;
7353 for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty();
7354 Path.Decls = Path.Decls.slice(1)) {
7355 NamedDecl *D = Path.Decls.front();
7356 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
7357 MD = MD->getCanonicalDecl();
7358 foundSameNameMethod = true;
7359 // Interested only in hidden virtual methods.
7360 if (!MD->isVirtual())
7361 continue;
7362 // If the method we are checking overrides a method from its base
7363 // don't warn about the other overloaded methods. Clang deviates from
7364 // GCC by only diagnosing overloads of inherited virtual functions that
7365 // do not override any other virtual functions in the base. GCC's
7366 // -Woverloaded-virtual diagnoses any derived function hiding a virtual
7367 // function from a base class. These cases may be better served by a
7368 // warning (not specific to virtual functions) on call sites when the
7369 // call would select a different function from the base class, were it
7370 // visible.
7371 // See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example.
7372 if (!S->IsOverload(Method, MD, false))
7373 return true;
7374 // Collect the overload only if its hidden.
7375 if (!CheckMostOverridenMethods(MD, OverridenAndUsingBaseMethods))
7376 overloadedMethods.push_back(MD);
7377 }
7378 }
7379
7380 if (foundSameNameMethod)
7381 OverloadedMethods.append(overloadedMethods.begin(),
7382 overloadedMethods.end());
7383 return foundSameNameMethod;
7384 }
7385};
7386} // end anonymous namespace
7387
7388/// \brief Add the most overriden methods from MD to Methods
7389static void AddMostOverridenMethods(const CXXMethodDecl *MD,
7390 llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) {
7391 if (MD->size_overridden_methods() == 0)
7392 Methods.insert(MD->getCanonicalDecl());
7393 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
7394 E = MD->end_overridden_methods();
7395 I != E; ++I)
7396 AddMostOverridenMethods(*I, Methods);
7397}
7398
7399/// \brief Check if a method overloads virtual methods in a base class without
7400/// overriding any.
7401void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD,
7402 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
7403 if (!MD->getDeclName().isIdentifier())
7404 return;
7405
7406 CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
7407 /*bool RecordPaths=*/false,
7408 /*bool DetectVirtual=*/false);
7409 FindHiddenVirtualMethod FHVM;
7410 FHVM.Method = MD;
7411 FHVM.S = this;
7412
7413 // Keep the base methods that were overriden or introduced in the subclass
7414 // by 'using' in a set. A base method not in this set is hidden.
7415 CXXRecordDecl *DC = MD->getParent();
7416 DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
7417 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
7418 NamedDecl *ND = *I;
7419 if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
7420 ND = shad->getTargetDecl();
7421 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
7422 AddMostOverridenMethods(MD, FHVM.OverridenAndUsingBaseMethods);
7423 }
7424
7425 if (DC->lookupInBases(FHVM, Paths))
7426 OverloadedMethods = FHVM.OverloadedMethods;
7427}
7428
7429void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD,
7430 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
7431 for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) {
7432 CXXMethodDecl *overloadedMD = OverloadedMethods[i];
7433 PartialDiagnostic PD = PDiag(
7434 diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
7435 HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
7436 Diag(overloadedMD->getLocation(), PD);
7437 }
7438}
7439
7440/// \brief Diagnose methods which overload virtual methods in a base class
7441/// without overriding any.
7442void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) {
7443 if (MD->isInvalidDecl())
7444 return;
7445
7446 if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation()))
7447 return;
7448
7449 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
7450 FindHiddenVirtualMethods(MD, OverloadedMethods);
7451 if (!OverloadedMethods.empty()) {
7452 Diag(MD->getLocation(), diag::warn_overloaded_virtual)
7453 << MD << (OverloadedMethods.size() > 1);
7454
7455 NoteHiddenVirtualMethods(MD, OverloadedMethods);
7456 }
7457}
7458
7459void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
7460 Decl *TagDecl,
7461 SourceLocation LBrac,
7462 SourceLocation RBrac,
7463 AttributeList *AttrList) {
7464 if (!TagDecl)
7465 return;
7466
7467 AdjustDeclIfTemplate(TagDecl);
7468
7469 for (const AttributeList* l = AttrList; l; l = l->getNext()) {
7470 if (l->getKind() != AttributeList::AT_Visibility)
7471 continue;
7472 l->setInvalid();
7473 Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
7474 l->getName();
7475 }
7476
7477 ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
7478 // strict aliasing violation!
7479 reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
7480 FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
7481
7482 CheckCompletedCXXClass(
7483 dyn_cast_or_null<CXXRecordDecl>(TagDecl));
7484}
7485
7486/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
7487/// special functions, such as the default constructor, copy
7488/// constructor, or destructor, to the given C++ class (C++
7489/// [special]p1). This routine can only be executed just before the
7490/// definition of the class is complete.
7491void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
7492 if (ClassDecl->needsImplicitDefaultConstructor()) {
7493 ++ASTContext::NumImplicitDefaultConstructors;
7494
7495 if (ClassDecl->hasInheritedConstructor())
7496 DeclareImplicitDefaultConstructor(ClassDecl);
7497 }
7498
7499 if (ClassDecl->needsImplicitCopyConstructor()) {
7500 ++ASTContext::NumImplicitCopyConstructors;
7501
7502 // If the properties or semantics of the copy constructor couldn't be
7503 // determined while the class was being declared, force a declaration
7504 // of it now.
7505 if (ClassDecl->needsOverloadResolutionForCopyConstructor() ||
7506 ClassDecl->hasInheritedConstructor())
7507 DeclareImplicitCopyConstructor(ClassDecl);
7508 // For the MS ABI we need to know whether the copy ctor is deleted. A
7509 // prerequisite for deleting the implicit copy ctor is that the class has a
7510 // move ctor or move assignment that is either user-declared or whose
7511 // semantics are inherited from a subobject. FIXME: We should provide a more
7512 // direct way for CodeGen to ask whether the constructor was deleted.
7513 else if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
7514 (ClassDecl->hasUserDeclaredMoveConstructor() ||
7515 ClassDecl->needsOverloadResolutionForMoveConstructor() ||
7516 ClassDecl->hasUserDeclaredMoveAssignment() ||
7517 ClassDecl->needsOverloadResolutionForMoveAssignment()))
7518 DeclareImplicitCopyConstructor(ClassDecl);
7519 }
7520
7521 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) {
7522 ++ASTContext::NumImplicitMoveConstructors;
7523
7524 if (ClassDecl->needsOverloadResolutionForMoveConstructor() ||
7525 ClassDecl->hasInheritedConstructor())
7526 DeclareImplicitMoveConstructor(ClassDecl);
7527 }
7528
7529 if (ClassDecl->needsImplicitCopyAssignment()) {
7530 ++ASTContext::NumImplicitCopyAssignmentOperators;
7531
7532 // If we have a dynamic class, then the copy assignment operator may be
7533 // virtual, so we have to declare it immediately. This ensures that, e.g.,
7534 // it shows up in the right place in the vtable and that we diagnose
7535 // problems with the implicit exception specification.
7536 if (ClassDecl->isDynamicClass() ||
7537 ClassDecl->needsOverloadResolutionForCopyAssignment() ||
7538 ClassDecl->hasInheritedAssignment())
7539 DeclareImplicitCopyAssignment(ClassDecl);
7540 }
7541
7542 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
7543 ++ASTContext::NumImplicitMoveAssignmentOperators;
7544
7545 // Likewise for the move assignment operator.
7546 if (ClassDecl->isDynamicClass() ||
7547 ClassDecl->needsOverloadResolutionForMoveAssignment() ||
7548 ClassDecl->hasInheritedAssignment())
7549 DeclareImplicitMoveAssignment(ClassDecl);
7550 }
7551
7552 if (ClassDecl->needsImplicitDestructor()) {
7553 ++ASTContext::NumImplicitDestructors;
7554
7555 // If we have a dynamic class, then the destructor may be virtual, so we
7556 // have to declare the destructor immediately. This ensures that, e.g., it
7557 // shows up in the right place in the vtable and that we diagnose problems
7558 // with the implicit exception specification.
7559 if (ClassDecl->isDynamicClass() ||
7560 ClassDecl->needsOverloadResolutionForDestructor())
7561 DeclareImplicitDestructor(ClassDecl);
7562 }
7563}
7564
7565unsigned Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
7566 if (!D)
7567 return 0;
7568
7569 // The order of template parameters is not important here. All names
7570 // get added to the same scope.
7571 SmallVector<TemplateParameterList *, 4> ParameterLists;
7572
7573 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
7574 D = TD->getTemplatedDecl();
7575
7576 if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
7577 ParameterLists.push_back(PSD->getTemplateParameters());
7578
7579 if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) {
7580 for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i)
7581 ParameterLists.push_back(DD->getTemplateParameterList(i));
7582
7583 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7584 if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
7585 ParameterLists.push_back(FTD->getTemplateParameters());
7586 }
7587 }
7588
7589 if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
7590 for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i)
7591 ParameterLists.push_back(TD->getTemplateParameterList(i));
7592
7593 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) {
7594 if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate())
7595 ParameterLists.push_back(CTD->getTemplateParameters());
7596 }
7597 }
7598
7599 unsigned Count = 0;
7600 for (TemplateParameterList *Params : ParameterLists) {
7601 if (Params->size() > 0)
7602 // Ignore explicit specializations; they don't contribute to the template
7603 // depth.
7604 ++Count;
7605 for (NamedDecl *Param : *Params) {
7606 if (Param->getDeclName()) {
7607 S->AddDecl(Param);
7608 IdResolver.AddDecl(Param);
7609 }
7610 }
7611 }
7612
7613 return Count;
7614}
7615
7616void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
7617 if (!RecordD) return;
7618 AdjustDeclIfTemplate(RecordD);
7619 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
7620 PushDeclContext(S, Record);
7621}
7622
7623void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
7624 if (!RecordD) return;
7625 PopDeclContext();
7626}
7627
7628/// This is used to implement the constant expression evaluation part of the
7629/// attribute enable_if extension. There is nothing in standard C++ which would
7630/// require reentering parameters.
7631void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) {
7632 if (!Param)
7633 return;
7634
7635 S->AddDecl(Param);
7636 if (Param->getDeclName())
7637 IdResolver.AddDecl(Param);
7638}
7639
7640/// ActOnStartDelayedCXXMethodDeclaration - We have completed
7641/// parsing a top-level (non-nested) C++ class, and we are now
7642/// parsing those parts of the given Method declaration that could
7643/// not be parsed earlier (C++ [class.mem]p2), such as default
7644/// arguments. This action should enter the scope of the given
7645/// Method declaration as if we had just parsed the qualified method
7646/// name. However, it should not bring the parameters into scope;
7647/// that will be performed by ActOnDelayedCXXMethodParameter.
7648void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
7649}
7650
7651/// ActOnDelayedCXXMethodParameter - We've already started a delayed
7652/// C++ method declaration. We're (re-)introducing the given
7653/// function parameter into scope for use in parsing later parts of
7654/// the method declaration. For example, we could see an
7655/// ActOnParamDefaultArgument event for this parameter.
7656void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
7657 if (!ParamD)
7658 return;
7659
7660 ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
7661
7662 // If this parameter has an unparsed default argument, clear it out
7663 // to make way for the parsed default argument.
7664 if (Param->hasUnparsedDefaultArg())
7665 Param->setDefaultArg(nullptr);
7666
7667 S->AddDecl(Param);
7668 if (Param->getDeclName())
7669 IdResolver.AddDecl(Param);
7670}
7671
7672/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
7673/// processing the delayed method declaration for Method. The method
7674/// declaration is now considered finished. There may be a separate
7675/// ActOnStartOfFunctionDef action later (not necessarily
7676/// immediately!) for this method, if it was also defined inside the
7677/// class body.
7678void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
7679 if (!MethodD)
7680 return;
7681
7682 AdjustDeclIfTemplate(MethodD);
7683
7684 FunctionDecl *Method = cast<FunctionDecl>(MethodD);
7685
7686 // Now that we have our default arguments, check the constructor
7687 // again. It could produce additional diagnostics or affect whether
7688 // the class has implicitly-declared destructors, among other
7689 // things.
7690 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
7691 CheckConstructor(Constructor);
7692
7693 // Check the default arguments, which we may have added.
7694 if (!Method->isInvalidDecl())
7695 CheckCXXDefaultArguments(Method);
7696}
7697
7698/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
7699/// the well-formedness of the constructor declarator @p D with type @p
7700/// R. If there are any errors in the declarator, this routine will
7701/// emit diagnostics and set the invalid bit to true. In any case, the type
7702/// will be updated to reflect a well-formed type for the constructor and
7703/// returned.
7704QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
7705 StorageClass &SC) {
7706 bool isVirtual = D.getDeclSpec().isVirtualSpecified();
7707
7708 // C++ [class.ctor]p3:
7709 // A constructor shall not be virtual (10.3) or static (9.4). A
7710 // constructor can be invoked for a const, volatile or const
7711 // volatile object. A constructor shall not be declared const,
7712 // volatile, or const volatile (9.3.2).
7713 if (isVirtual) {
7714 if (!D.isInvalidType())
7715 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
7716 << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
7717 << SourceRange(D.getIdentifierLoc());
7718 D.setInvalidType();
7719 }
7720 if (SC == SC_Static) {
7721 if (!D.isInvalidType())
7722 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
7723 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
7724 << SourceRange(D.getIdentifierLoc());
7725 D.setInvalidType();
7726 SC = SC_None;
7727 }
7728
7729 if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
7730 diagnoseIgnoredQualifiers(
7731 diag::err_constructor_return_type, TypeQuals, SourceLocation(),
7732 D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(),
7733 D.getDeclSpec().getRestrictSpecLoc(),
7734 D.getDeclSpec().getAtomicSpecLoc());
7735 D.setInvalidType();
7736 }
7737
7738 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7739 if (FTI.TypeQuals != 0) {
7740 if (FTI.TypeQuals & Qualifiers::Const)
7741 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
7742 << "const" << SourceRange(D.getIdentifierLoc());
7743 if (FTI.TypeQuals & Qualifiers::Volatile)
7744 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
7745 << "volatile" << SourceRange(D.getIdentifierLoc());
7746 if (FTI.TypeQuals & Qualifiers::Restrict)
7747 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
7748 << "restrict" << SourceRange(D.getIdentifierLoc());
7749 D.setInvalidType();
7750 }
7751
7752 // C++0x [class.ctor]p4:
7753 // A constructor shall not be declared with a ref-qualifier.
7754 if (FTI.hasRefQualifier()) {
7755 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
7756 << FTI.RefQualifierIsLValueRef
7757 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
7758 D.setInvalidType();
7759 }
7760
7761 // Rebuild the function type "R" without any type qualifiers (in
7762 // case any of the errors above fired) and with "void" as the
7763 // return type, since constructors don't have return types.
7764 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
7765 if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType())
7766 return R;
7767
7768 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
7769 EPI.TypeQuals = 0;
7770 EPI.RefQualifier = RQ_None;
7771
7772 return Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(), EPI);
7773}
7774
7775/// CheckConstructor - Checks a fully-formed constructor for
7776/// well-formedness, issuing any diagnostics required. Returns true if
7777/// the constructor declarator is invalid.
7778void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
7779 CXXRecordDecl *ClassDecl
7780 = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
7781 if (!ClassDecl)
7782 return Constructor->setInvalidDecl();
7783
7784 // C++ [class.copy]p3:
7785 // A declaration of a constructor for a class X is ill-formed if
7786 // its first parameter is of type (optionally cv-qualified) X and
7787 // either there are no other parameters or else all other
7788 // parameters have default arguments.
7789 if (!Constructor->isInvalidDecl() &&
7790 ((Constructor->getNumParams() == 1) ||
7791 (Constructor->getNumParams() > 1 &&
7792 Constructor->getParamDecl(1)->hasDefaultArg())) &&
7793 Constructor->getTemplateSpecializationKind()
7794 != TSK_ImplicitInstantiation) {
7795 QualType ParamType = Constructor->getParamDecl(0)->getType();
7796 QualType ClassTy = Context.getTagDeclType(ClassDecl);
7797 if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
7798 SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
7799 const char *ConstRef
7800 = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
7801 : " const &";
7802 Diag(ParamLoc, diag::err_constructor_byvalue_arg)
7803 << FixItHint::CreateInsertion(ParamLoc, ConstRef);
7804
7805 // FIXME: Rather that making the constructor invalid, we should endeavor
7806 // to fix the type.
7807 Constructor->setInvalidDecl();
7808 }
7809 }
7810}
7811
7812/// CheckDestructor - Checks a fully-formed destructor definition for
7813/// well-formedness, issuing any diagnostics required. Returns true
7814/// on error.
7815bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
7816 CXXRecordDecl *RD = Destructor->getParent();
7817
7818 if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) {
7819 SourceLocation Loc;
7820
7821 if (!Destructor->isImplicit())
7822 Loc = Destructor->getLocation();
7823 else
7824 Loc = RD->getLocation();
7825
7826 // If we have a virtual destructor, look up the deallocation function
7827 if (FunctionDecl *OperatorDelete =
7828 FindDeallocationFunctionForDestructor(Loc, RD)) {
7829 MarkFunctionReferenced(Loc, OperatorDelete);
7830 Destructor->setOperatorDelete(OperatorDelete);
7831 }
7832 }
7833
7834 return false;
7835}
7836
7837/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
7838/// the well-formednes of the destructor declarator @p D with type @p
7839/// R. If there are any errors in the declarator, this routine will
7840/// emit diagnostics and set the declarator to invalid. Even if this happens,
7841/// will be updated to reflect a well-formed type for the destructor and
7842/// returned.
7843QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
7844 StorageClass& SC) {
7845 // C++ [class.dtor]p1:
7846 // [...] A typedef-name that names a class is a class-name
7847 // (7.1.3); however, a typedef-name that names a class shall not
7848 // be used as the identifier in the declarator for a destructor
7849 // declaration.
7850 QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
7851 if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
7852 Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
7853 << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
7854 else if (const TemplateSpecializationType *TST =
7855 DeclaratorType->getAs<TemplateSpecializationType>())
7856 if (TST->isTypeAlias())
7857 Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
7858 << DeclaratorType << 1;
7859
7860 // C++ [class.dtor]p2:
7861 // A destructor is used to destroy objects of its class type. A
7862 // destructor takes no parameters, and no return type can be
7863 // specified for it (not even void). The address of a destructor
7864 // shall not be taken. A destructor shall not be static. A
7865 // destructor can be invoked for a const, volatile or const
7866 // volatile object. A destructor shall not be declared const,
7867 // volatile or const volatile (9.3.2).
7868 if (SC == SC_Static) {
7869 if (!D.isInvalidType())
7870 Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
7871 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
7872 << SourceRange(D.getIdentifierLoc())
7873 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7874
7875 SC = SC_None;
7876 }
7877 if (!D.isInvalidType()) {
7878 // Destructors don't have return types, but the parser will
7879 // happily parse something like:
7880 //
7881 // class X {
7882 // float ~X();
7883 // };
7884 //
7885 // The return type will be eliminated later.
7886 if (D.getDeclSpec().hasTypeSpecifier())
7887 Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
7888 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
7889 << SourceRange(D.getIdentifierLoc());
7890 else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
7891 diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals,
7892 SourceLocation(),
7893 D.getDeclSpec().getConstSpecLoc(),
7894 D.getDeclSpec().getVolatileSpecLoc(),
7895 D.getDeclSpec().getRestrictSpecLoc(),
7896 D.getDeclSpec().getAtomicSpecLoc());
7897 D.setInvalidType();
7898 }
7899 }
7900
7901 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7902 if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
7903 if (FTI.TypeQuals & Qualifiers::Const)
7904 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
7905 << "const" << SourceRange(D.getIdentifierLoc());
7906 if (FTI.TypeQuals & Qualifiers::Volatile)
7907 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
7908 << "volatile" << SourceRange(D.getIdentifierLoc());
7909 if (FTI.TypeQuals & Qualifiers::Restrict)
7910 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
7911 << "restrict" << SourceRange(D.getIdentifierLoc());
7912 D.setInvalidType();
7913 }
7914
7915 // C++0x [class.dtor]p2:
7916 // A destructor shall not be declared with a ref-qualifier.
7917 if (FTI.hasRefQualifier()) {
7918 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
7919 << FTI.RefQualifierIsLValueRef
7920 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
7921 D.setInvalidType();
7922 }
7923
7924 // Make sure we don't have any parameters.
7925 if (FTIHasNonVoidParameters(FTI)) {
7926 Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
7927
7928 // Delete the parameters.
7929 FTI.freeParams();
7930 D.setInvalidType();
7931 }
7932
7933 // Make sure the destructor isn't variadic.
7934 if (FTI.isVariadic) {
7935 Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
7936 D.setInvalidType();
7937 }
7938
7939 // Rebuild the function type "R" without any type qualifiers or
7940 // parameters (in case any of the errors above fired) and with
7941 // "void" as the return type, since destructors don't have return
7942 // types.
7943 if (!D.isInvalidType())
7944 return R;
7945
7946 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
7947 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
7948 EPI.Variadic = false;
7949 EPI.TypeQuals = 0;
7950 EPI.RefQualifier = RQ_None;
7951 return Context.getFunctionType(Context.VoidTy, None, EPI);
7952}
7953
7954static void extendLeft(SourceRange &R, SourceRange Before) {
7955 if (Before.isInvalid())
7956 return;
7957 R.setBegin(Before.getBegin());
7958 if (R.getEnd().isInvalid())
7959 R.setEnd(Before.getEnd());
7960}
7961
7962static void extendRight(SourceRange &R, SourceRange After) {
7963 if (After.isInvalid())
7964 return;
7965 if (R.getBegin().isInvalid())
7966 R.setBegin(After.getBegin());
7967 R.setEnd(After.getEnd());
7968}
7969
7970/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
7971/// well-formednes of the conversion function declarator @p D with
7972/// type @p R. If there are any errors in the declarator, this routine
7973/// will emit diagnostics and return true. Otherwise, it will return
7974/// false. Either way, the type @p R will be updated to reflect a
7975/// well-formed type for the conversion operator.
7976void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
7977 StorageClass& SC) {
7978 // C++ [class.conv.fct]p1:
7979 // Neither parameter types nor return type can be specified. The
7980 // type of a conversion function (8.3.5) is "function taking no
7981 // parameter returning conversion-type-id."
7982 if (SC == SC_Static) {
7983 if (!D.isInvalidType())
7984 Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
7985 << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
7986 << D.getName().getSourceRange();
7987 D.setInvalidType();
7988 SC = SC_None;
7989 }
7990
7991 TypeSourceInfo *ConvTSI = nullptr;
7992 QualType ConvType =
7993 GetTypeFromParser(D.getName().ConversionFunctionId, &ConvTSI);
7994
7995 if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
7996 // Conversion functions don't have return types, but the parser will
7997 // happily parse something like:
7998 //
7999 // class X {
8000 // float operator bool();
8001 // };
8002 //
8003 // The return type will be changed later anyway.
8004 Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
8005 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
8006 << SourceRange(D.getIdentifierLoc());
8007 D.setInvalidType();
8008 }
8009
8010 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
8011
8012 // Make sure we don't have any parameters.
8013 if (Proto->getNumParams() > 0) {
8014 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
8015
8016 // Delete the parameters.
8017 D.getFunctionTypeInfo().freeParams();
8018 D.setInvalidType();
8019 } else if (Proto->isVariadic()) {
8020 Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
8021 D.setInvalidType();
8022 }
8023
8024 // Diagnose "&operator bool()" and other such nonsense. This
8025 // is actually a gcc extension which we don't support.
8026 if (Proto->getReturnType() != ConvType) {
8027 bool NeedsTypedef = false;
8028 SourceRange Before, After;
8029
8030 // Walk the chunks and extract information on them for our diagnostic.
8031 bool PastFunctionChunk = false;
8032 for (auto &Chunk : D.type_objects()) {
8033 switch (Chunk.Kind) {
8034 case DeclaratorChunk::Function:
8035 if (!PastFunctionChunk) {
8036 if (Chunk.Fun.HasTrailingReturnType) {
8037 TypeSourceInfo *TRT = nullptr;
8038 GetTypeFromParser(Chunk.Fun.getTrailingReturnType(), &TRT);
8039 if (TRT) extendRight(After, TRT->getTypeLoc().getSourceRange());
8040 }
8041 PastFunctionChunk = true;
8042 break;
8043 }
8044 // Fall through.
8045 case DeclaratorChunk::Array:
8046 NeedsTypedef = true;
8047 extendRight(After, Chunk.getSourceRange());
8048 break;
8049
8050 case DeclaratorChunk::Pointer:
8051 case DeclaratorChunk::BlockPointer:
8052 case DeclaratorChunk::Reference:
8053 case DeclaratorChunk::MemberPointer:
8054 case DeclaratorChunk::Pipe:
8055 extendLeft(Before, Chunk.getSourceRange());
8056 break;
8057
8058 case DeclaratorChunk::Paren:
8059 extendLeft(Before, Chunk.Loc);
8060 extendRight(After, Chunk.EndLoc);
8061 break;
8062 }
8063 }
8064
8065 SourceLocation Loc = Before.isValid() ? Before.getBegin() :
8066 After.isValid() ? After.getBegin() :
8067 D.getIdentifierLoc();
8068 auto &&DB = Diag(Loc, diag::err_conv_function_with_complex_decl);
8069 DB << Before << After;
8070
8071 if (!NeedsTypedef) {
8072 DB << /*don't need a typedef*/0;
8073
8074 // If we can provide a correct fix-it hint, do so.
8075 if (After.isInvalid() && ConvTSI) {
8076 SourceLocation InsertLoc =
8077 getLocForEndOfToken(ConvTSI->getTypeLoc().getLocEnd());
8078 DB << FixItHint::CreateInsertion(InsertLoc, " ")
8079 << FixItHint::CreateInsertionFromRange(
8080 InsertLoc, CharSourceRange::getTokenRange(Before))
8081 << FixItHint::CreateRemoval(Before);
8082 }
8083 } else if (!Proto->getReturnType()->isDependentType()) {
8084 DB <<