Bug Summary

File:tools/clang/lib/Sema/SemaDeclCXX.cpp
Warning:line 9982, column 7
Value stored to 'Redeclaration' is never read

Annotated Source Code

1//===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements semantic analysis for C++ declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/AST/ASTConsumer.h"
15#include "clang/AST/ASTContext.h"
16#include "clang/AST/ASTLambda.h"
17#include "clang/AST/ASTMutationListener.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/EvaluatedExprVisitor.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/RecordLayout.h"
23#include "clang/AST/RecursiveASTVisitor.h"
24#include "clang/AST/StmtVisitor.h"
25#include "clang/AST/TypeLoc.h"
26#include "clang/AST/TypeOrdering.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/TargetInfo.h"
29#include "clang/Lex/LiteralSupport.h"
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Sema/CXXFieldCollector.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/Initialization.h"
34#include "clang/Sema/Lookup.h"
35#include "clang/Sema/ParsedTemplate.h"
36#include "clang/Sema/Scope.h"
37#include "clang/Sema/ScopeInfo.h"
38#include "clang/Sema/SemaInternal.h"
39#include "clang/Sema/Template.h"
40#include "llvm/ADT/STLExtras.h"
41#include "llvm/ADT/SmallString.h"
42#include "llvm/ADT/StringExtras.h"
43#include <map>
44#include <set>
45
46using namespace clang;
47
48//===----------------------------------------------------------------------===//
49// CheckDefaultArgumentVisitor
50//===----------------------------------------------------------------------===//
51
52namespace {
53 /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses
54 /// the default argument of a parameter to determine whether it
55 /// contains any ill-formed subexpressions. For example, this will
56 /// diagnose the use of local variables or parameters within the
57 /// default argument expression.
58 class CheckDefaultArgumentVisitor
59 : public StmtVisitor<CheckDefaultArgumentVisitor, bool> {
60 Expr *DefaultArg;
61 Sema *S;
62
63 public:
64 CheckDefaultArgumentVisitor(Expr *defarg, Sema *s)
65 : DefaultArg(defarg), S(s) {}
66
67 bool VisitExpr(Expr *Node);
68 bool VisitDeclRefExpr(DeclRefExpr *DRE);
69 bool VisitCXXThisExpr(CXXThisExpr *ThisE);
70 bool VisitLambdaExpr(LambdaExpr *Lambda);
71 bool VisitPseudoObjectExpr(PseudoObjectExpr *POE);
72 };
73
74 /// VisitExpr - Visit all of the children of this expression.
75 bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) {
76 bool IsInvalid = false;
77 for (Stmt *SubStmt : Node->children())
78 IsInvalid |= Visit(SubStmt);
79 return IsInvalid;
80 }
81
82 /// VisitDeclRefExpr - Visit a reference to a declaration, to
83 /// determine whether this declaration can be used in the default
84 /// argument expression.
85 bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) {
86 NamedDecl *Decl = DRE->getDecl();
87 if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) {
88 // C++ [dcl.fct.default]p9
89 // Default arguments are evaluated each time the function is
90 // called. The order of evaluation of function arguments is
91 // unspecified. Consequently, parameters of a function shall not
92 // be used in default argument expressions, even if they are not
93 // evaluated. Parameters of a function declared before a default
94 // argument expression are in scope and can hide namespace and
95 // class member names.
96 return S->Diag(DRE->getLocStart(),
97 diag::err_param_default_argument_references_param)
98 << Param->getDeclName() << DefaultArg->getSourceRange();
99 } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) {
100 // C++ [dcl.fct.default]p7
101 // Local variables shall not be used in default argument
102 // expressions.
103 if (VDecl->isLocalVarDecl())
104 return S->Diag(DRE->getLocStart(),
105 diag::err_param_default_argument_references_local)
106 << VDecl->getDeclName() << DefaultArg->getSourceRange();
107 }
108
109 return false;
110 }
111
112 /// VisitCXXThisExpr - Visit a C++ "this" expression.
113 bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) {
114 // C++ [dcl.fct.default]p8:
115 // The keyword this shall not be used in a default argument of a
116 // member function.
117 return S->Diag(ThisE->getLocStart(),
118 diag::err_param_default_argument_references_this)
119 << ThisE->getSourceRange();
120 }
121
122 bool CheckDefaultArgumentVisitor::VisitPseudoObjectExpr(PseudoObjectExpr *POE) {
123 bool Invalid = false;
124 for (PseudoObjectExpr::semantics_iterator
125 i = POE->semantics_begin(), e = POE->semantics_end(); i != e; ++i) {
126 Expr *E = *i;
127
128 // Look through bindings.
129 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
130 E = OVE->getSourceExpr();
131 assert(E && "pseudo-object binding without source expression?")((E && "pseudo-object binding without source expression?"
) ? static_cast<void> (0) : __assert_fail ("E && \"pseudo-object binding without source expression?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 131, __PRETTY_FUNCTION__))
;
132 }
133
134 Invalid |= Visit(E);
135 }
136 return Invalid;
137 }
138
139 bool CheckDefaultArgumentVisitor::VisitLambdaExpr(LambdaExpr *Lambda) {
140 // C++11 [expr.lambda.prim]p13:
141 // A lambda-expression appearing in a default argument shall not
142 // implicitly or explicitly capture any entity.
143 if (Lambda->capture_begin() == Lambda->capture_end())
144 return false;
145
146 return S->Diag(Lambda->getLocStart(),
147 diag::err_lambda_capture_default_arg);
148 }
149}
150
151void
152Sema::ImplicitExceptionSpecification::CalledDecl(SourceLocation CallLoc,
153 const CXXMethodDecl *Method) {
154 // If we have an MSAny spec already, don't bother.
155 if (!Method || ComputedEST == EST_MSAny)
156 return;
157
158 const FunctionProtoType *Proto
159 = Method->getType()->getAs<FunctionProtoType>();
160 Proto = Self->ResolveExceptionSpec(CallLoc, Proto);
161 if (!Proto)
162 return;
163
164 ExceptionSpecificationType EST = Proto->getExceptionSpecType();
165
166 // If we have a throw-all spec at this point, ignore the function.
167 if (ComputedEST == EST_None)
168 return;
169
170 switch(EST) {
171 // If this function can throw any exceptions, make a note of that.
172 case EST_MSAny:
173 case EST_None:
174 ClearExceptions();
175 ComputedEST = EST;
176 return;
177 // FIXME: If the call to this decl is using any of its default arguments, we
178 // need to search them for potentially-throwing calls.
179 // If this function has a basic noexcept, it doesn't affect the outcome.
180 case EST_BasicNoexcept:
181 return;
182 // If we're still at noexcept(true) and there's a nothrow() callee,
183 // change to that specification.
184 case EST_DynamicNone:
185 if (ComputedEST == EST_BasicNoexcept)
186 ComputedEST = EST_DynamicNone;
187 return;
188 // Check out noexcept specs.
189 case EST_ComputedNoexcept:
190 {
191 FunctionProtoType::NoexceptResult NR =
192 Proto->getNoexceptSpec(Self->Context);
193 assert(NR != FunctionProtoType::NR_NoNoexcept &&((NR != FunctionProtoType::NR_NoNoexcept && "Must have noexcept result for EST_ComputedNoexcept."
) ? static_cast<void> (0) : __assert_fail ("NR != FunctionProtoType::NR_NoNoexcept && \"Must have noexcept result for EST_ComputedNoexcept.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 194, __PRETTY_FUNCTION__))
194 "Must have noexcept result for EST_ComputedNoexcept.")((NR != FunctionProtoType::NR_NoNoexcept && "Must have noexcept result for EST_ComputedNoexcept."
) ? static_cast<void> (0) : __assert_fail ("NR != FunctionProtoType::NR_NoNoexcept && \"Must have noexcept result for EST_ComputedNoexcept.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 194, __PRETTY_FUNCTION__))
;
195 assert(NR != FunctionProtoType::NR_Dependent &&((NR != FunctionProtoType::NR_Dependent && "Should not generate implicit declarations for dependent cases, "
"and don't know how to handle them anyway.") ? static_cast<
void> (0) : __assert_fail ("NR != FunctionProtoType::NR_Dependent && \"Should not generate implicit declarations for dependent cases, \" \"and don't know how to handle them anyway.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 197, __PRETTY_FUNCTION__))
196 "Should not generate implicit declarations for dependent cases, "((NR != FunctionProtoType::NR_Dependent && "Should not generate implicit declarations for dependent cases, "
"and don't know how to handle them anyway.") ? static_cast<
void> (0) : __assert_fail ("NR != FunctionProtoType::NR_Dependent && \"Should not generate implicit declarations for dependent cases, \" \"and don't know how to handle them anyway.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 197, __PRETTY_FUNCTION__))
197 "and don't know how to handle them anyway.")((NR != FunctionProtoType::NR_Dependent && "Should not generate implicit declarations for dependent cases, "
"and don't know how to handle them anyway.") ? static_cast<
void> (0) : __assert_fail ("NR != FunctionProtoType::NR_Dependent && \"Should not generate implicit declarations for dependent cases, \" \"and don't know how to handle them anyway.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 197, __PRETTY_FUNCTION__))
;
198 // noexcept(false) -> no spec on the new function
199 if (NR == FunctionProtoType::NR_Throw) {
200 ClearExceptions();
201 ComputedEST = EST_None;
202 }
203 // noexcept(true) won't change anything either.
204 return;
205 }
206 default:
207 break;
208 }
209 assert(EST == EST_Dynamic && "EST case not considered earlier.")((EST == EST_Dynamic && "EST case not considered earlier."
) ? static_cast<void> (0) : __assert_fail ("EST == EST_Dynamic && \"EST case not considered earlier.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 209, __PRETTY_FUNCTION__))
;
210 assert(ComputedEST != EST_None &&((ComputedEST != EST_None && "Shouldn't collect exceptions when throw-all is guaranteed."
) ? static_cast<void> (0) : __assert_fail ("ComputedEST != EST_None && \"Shouldn't collect exceptions when throw-all is guaranteed.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 211, __PRETTY_FUNCTION__))
211 "Shouldn't collect exceptions when throw-all is guaranteed.")((ComputedEST != EST_None && "Shouldn't collect exceptions when throw-all is guaranteed."
) ? static_cast<void> (0) : __assert_fail ("ComputedEST != EST_None && \"Shouldn't collect exceptions when throw-all is guaranteed.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 211, __PRETTY_FUNCTION__))
;
212 ComputedEST = EST_Dynamic;
213 // Record the exceptions in this function's exception specification.
214 for (const auto &E : Proto->exceptions())
215 if (ExceptionsSeen.insert(Self->Context.getCanonicalType(E)).second)
216 Exceptions.push_back(E);
217}
218
219void Sema::ImplicitExceptionSpecification::CalledExpr(Expr *E) {
220 if (!E || ComputedEST == EST_MSAny)
221 return;
222
223 // FIXME:
224 //
225 // C++0x [except.spec]p14:
226 // [An] implicit exception-specification specifies the type-id T if and
227 // only if T is allowed by the exception-specification of a function directly
228 // invoked by f's implicit definition; f shall allow all exceptions if any
229 // function it directly invokes allows all exceptions, and f shall allow no
230 // exceptions if every function it directly invokes allows no exceptions.
231 //
232 // Note in particular that if an implicit exception-specification is generated
233 // for a function containing a throw-expression, that specification can still
234 // be noexcept(true).
235 //
236 // Note also that 'directly invoked' is not defined in the standard, and there
237 // is no indication that we should only consider potentially-evaluated calls.
238 //
239 // Ultimately we should implement the intent of the standard: the exception
240 // specification should be the set of exceptions which can be thrown by the
241 // implicit definition. For now, we assume that any non-nothrow expression can
242 // throw any exception.
243
244 if (Self->canThrow(E))
245 ComputedEST = EST_None;
246}
247
248bool
249Sema::SetParamDefaultArgument(ParmVarDecl *Param, Expr *Arg,
250 SourceLocation EqualLoc) {
251 if (RequireCompleteType(Param->getLocation(), Param->getType(),
252 diag::err_typecheck_decl_incomplete_type)) {
253 Param->setInvalidDecl();
254 return true;
255 }
256
257 // C++ [dcl.fct.default]p5
258 // A default argument expression is implicitly converted (clause
259 // 4) to the parameter type. The default argument expression has
260 // the same semantic constraints as the initializer expression in
261 // a declaration of a variable of the parameter type, using the
262 // copy-initialization semantics (8.5).
263 InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
264 Param);
265 InitializationKind Kind = InitializationKind::CreateCopy(Param->getLocation(),
266 EqualLoc);
267 InitializationSequence InitSeq(*this, Entity, Kind, Arg);
268 ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Arg);
269 if (Result.isInvalid())
270 return true;
271 Arg = Result.getAs<Expr>();
272
273 CheckCompletedExpr(Arg, EqualLoc);
274 Arg = MaybeCreateExprWithCleanups(Arg);
275
276 // Okay: add the default argument to the parameter
277 Param->setDefaultArg(Arg);
278
279 // We have already instantiated this parameter; provide each of the
280 // instantiations with the uninstantiated default argument.
281 UnparsedDefaultArgInstantiationsMap::iterator InstPos
282 = UnparsedDefaultArgInstantiations.find(Param);
283 if (InstPos != UnparsedDefaultArgInstantiations.end()) {
284 for (unsigned I = 0, N = InstPos->second.size(); I != N; ++I)
285 InstPos->second[I]->setUninstantiatedDefaultArg(Arg);
286
287 // We're done tracking this parameter's instantiations.
288 UnparsedDefaultArgInstantiations.erase(InstPos);
289 }
290
291 return false;
292}
293
294/// ActOnParamDefaultArgument - Check whether the default argument
295/// provided for a function parameter is well-formed. If so, attach it
296/// to the parameter declaration.
297void
298Sema::ActOnParamDefaultArgument(Decl *param, SourceLocation EqualLoc,
299 Expr *DefaultArg) {
300 if (!param || !DefaultArg)
301 return;
302
303 ParmVarDecl *Param = cast<ParmVarDecl>(param);
304 UnparsedDefaultArgLocs.erase(Param);
305
306 // Default arguments are only permitted in C++
307 if (!getLangOpts().CPlusPlus) {
308 Diag(EqualLoc, diag::err_param_default_argument)
309 << DefaultArg->getSourceRange();
310 Param->setInvalidDecl();
311 return;
312 }
313
314 // Check for unexpanded parameter packs.
315 if (DiagnoseUnexpandedParameterPack(DefaultArg, UPPC_DefaultArgument)) {
316 Param->setInvalidDecl();
317 return;
318 }
319
320 // C++11 [dcl.fct.default]p3
321 // A default argument expression [...] shall not be specified for a
322 // parameter pack.
323 if (Param->isParameterPack()) {
324 Diag(EqualLoc, diag::err_param_default_argument_on_parameter_pack)
325 << DefaultArg->getSourceRange();
326 return;
327 }
328
329 // Check that the default argument is well-formed
330 CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg, this);
331 if (DefaultArgChecker.Visit(DefaultArg)) {
332 Param->setInvalidDecl();
333 return;
334 }
335
336 SetParamDefaultArgument(Param, DefaultArg, EqualLoc);
337}
338
339/// ActOnParamUnparsedDefaultArgument - We've seen a default
340/// argument for a function parameter, but we can't parse it yet
341/// because we're inside a class definition. Note that this default
342/// argument will be parsed later.
343void Sema::ActOnParamUnparsedDefaultArgument(Decl *param,
344 SourceLocation EqualLoc,
345 SourceLocation ArgLoc) {
346 if (!param)
347 return;
348
349 ParmVarDecl *Param = cast<ParmVarDecl>(param);
350 Param->setUnparsedDefaultArg();
351 UnparsedDefaultArgLocs[Param] = ArgLoc;
352}
353
354/// ActOnParamDefaultArgumentError - Parsing or semantic analysis of
355/// the default argument for the parameter param failed.
356void Sema::ActOnParamDefaultArgumentError(Decl *param,
357 SourceLocation EqualLoc) {
358 if (!param)
359 return;
360
361 ParmVarDecl *Param = cast<ParmVarDecl>(param);
362 Param->setInvalidDecl();
363 UnparsedDefaultArgLocs.erase(Param);
364 Param->setDefaultArg(new(Context)
365 OpaqueValueExpr(EqualLoc,
366 Param->getType().getNonReferenceType(),
367 VK_RValue));
368}
369
370/// CheckExtraCXXDefaultArguments - Check for any extra default
371/// arguments in the declarator, which is not a function declaration
372/// or definition and therefore is not permitted to have default
373/// arguments. This routine should be invoked for every declarator
374/// that is not a function declaration or definition.
375void Sema::CheckExtraCXXDefaultArguments(Declarator &D) {
376 // C++ [dcl.fct.default]p3
377 // A default argument expression shall be specified only in the
378 // parameter-declaration-clause of a function declaration or in a
379 // template-parameter (14.1). It shall not be specified for a
380 // parameter pack. If it is specified in a
381 // parameter-declaration-clause, it shall not occur within a
382 // declarator or abstract-declarator of a parameter-declaration.
383 bool MightBeFunction = D.isFunctionDeclarationContext();
384 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) {
385 DeclaratorChunk &chunk = D.getTypeObject(i);
386 if (chunk.Kind == DeclaratorChunk::Function) {
387 if (MightBeFunction) {
388 // This is a function declaration. It can have default arguments, but
389 // keep looking in case its return type is a function type with default
390 // arguments.
391 MightBeFunction = false;
392 continue;
393 }
394 for (unsigned argIdx = 0, e = chunk.Fun.NumParams; argIdx != e;
395 ++argIdx) {
396 ParmVarDecl *Param = cast<ParmVarDecl>(chunk.Fun.Params[argIdx].Param);
397 if (Param->hasUnparsedDefaultArg()) {
398 std::unique_ptr<CachedTokens> Toks =
399 std::move(chunk.Fun.Params[argIdx].DefaultArgTokens);
400 SourceRange SR;
401 if (Toks->size() > 1)
402 SR = SourceRange((*Toks)[1].getLocation(),
403 Toks->back().getLocation());
404 else
405 SR = UnparsedDefaultArgLocs[Param];
406 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
407 << SR;
408 } else if (Param->getDefaultArg()) {
409 Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc)
410 << Param->getDefaultArg()->getSourceRange();
411 Param->setDefaultArg(nullptr);
412 }
413 }
414 } else if (chunk.Kind != DeclaratorChunk::Paren) {
415 MightBeFunction = false;
416 }
417 }
418}
419
420static bool functionDeclHasDefaultArgument(const FunctionDecl *FD) {
421 for (unsigned NumParams = FD->getNumParams(); NumParams > 0; --NumParams) {
422 const ParmVarDecl *PVD = FD->getParamDecl(NumParams-1);
423 if (!PVD->hasDefaultArg())
424 return false;
425 if (!PVD->hasInheritedDefaultArg())
426 return true;
427 }
428 return false;
429}
430
431/// MergeCXXFunctionDecl - Merge two declarations of the same C++
432/// function, once we already know that they have the same
433/// type. Subroutine of MergeFunctionDecl. Returns true if there was an
434/// error, false otherwise.
435bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old,
436 Scope *S) {
437 bool Invalid = false;
438
439 // The declaration context corresponding to the scope is the semantic
440 // parent, unless this is a local function declaration, in which case
441 // it is that surrounding function.
442 DeclContext *ScopeDC = New->isLocalExternDecl()
443 ? New->getLexicalDeclContext()
444 : New->getDeclContext();
445
446 // Find the previous declaration for the purpose of default arguments.
447 FunctionDecl *PrevForDefaultArgs = Old;
448 for (/**/; PrevForDefaultArgs;
449 // Don't bother looking back past the latest decl if this is a local
450 // extern declaration; nothing else could work.
451 PrevForDefaultArgs = New->isLocalExternDecl()
452 ? nullptr
453 : PrevForDefaultArgs->getPreviousDecl()) {
454 // Ignore hidden declarations.
455 if (!LookupResult::isVisible(*this, PrevForDefaultArgs))
456 continue;
457
458 if (S && !isDeclInScope(PrevForDefaultArgs, ScopeDC, S) &&
459 !New->isCXXClassMember()) {
460 // Ignore default arguments of old decl if they are not in
461 // the same scope and this is not an out-of-line definition of
462 // a member function.
463 continue;
464 }
465
466 if (PrevForDefaultArgs->isLocalExternDecl() != New->isLocalExternDecl()) {
467 // If only one of these is a local function declaration, then they are
468 // declared in different scopes, even though isDeclInScope may think
469 // they're in the same scope. (If both are local, the scope check is
470 // sufficient, and if neither is local, then they are in the same scope.)
471 continue;
472 }
473
474 // We found the right previous declaration.
475 break;
476 }
477
478 // C++ [dcl.fct.default]p4:
479 // For non-template functions, default arguments can be added in
480 // later declarations of a function in the same
481 // scope. Declarations in different scopes have completely
482 // distinct sets of default arguments. That is, declarations in
483 // inner scopes do not acquire default arguments from
484 // declarations in outer scopes, and vice versa. In a given
485 // function declaration, all parameters subsequent to a
486 // parameter with a default argument shall have default
487 // arguments supplied in this or previous declarations. A
488 // default argument shall not be redefined by a later
489 // declaration (not even to the same value).
490 //
491 // C++ [dcl.fct.default]p6:
492 // Except for member functions of class templates, the default arguments
493 // in a member function definition that appears outside of the class
494 // definition are added to the set of default arguments provided by the
495 // member function declaration in the class definition.
496 for (unsigned p = 0, NumParams = PrevForDefaultArgs
497 ? PrevForDefaultArgs->getNumParams()
498 : 0;
499 p < NumParams; ++p) {
500 ParmVarDecl *OldParam = PrevForDefaultArgs->getParamDecl(p);
501 ParmVarDecl *NewParam = New->getParamDecl(p);
502
503 bool OldParamHasDfl = OldParam ? OldParam->hasDefaultArg() : false;
504 bool NewParamHasDfl = NewParam->hasDefaultArg();
505
506 if (OldParamHasDfl && NewParamHasDfl) {
507 unsigned DiagDefaultParamID =
508 diag::err_param_default_argument_redefinition;
509
510 // MSVC accepts that default parameters be redefined for member functions
511 // of template class. The new default parameter's value is ignored.
512 Invalid = true;
513 if (getLangOpts().MicrosoftExt) {
514 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(New);
515 if (MD && MD->getParent()->getDescribedClassTemplate()) {
516 // Merge the old default argument into the new parameter.
517 NewParam->setHasInheritedDefaultArg();
518 if (OldParam->hasUninstantiatedDefaultArg())
519 NewParam->setUninstantiatedDefaultArg(
520 OldParam->getUninstantiatedDefaultArg());
521 else
522 NewParam->setDefaultArg(OldParam->getInit());
523 DiagDefaultParamID = diag::ext_param_default_argument_redefinition;
524 Invalid = false;
525 }
526 }
527
528 // FIXME: If we knew where the '=' was, we could easily provide a fix-it
529 // hint here. Alternatively, we could walk the type-source information
530 // for NewParam to find the last source location in the type... but it
531 // isn't worth the effort right now. This is the kind of test case that
532 // is hard to get right:
533 // int f(int);
534 // void g(int (*fp)(int) = f);
535 // void g(int (*fp)(int) = &f);
536 Diag(NewParam->getLocation(), DiagDefaultParamID)
537 << NewParam->getDefaultArgRange();
538
539 // Look for the function declaration where the default argument was
540 // actually written, which may be a declaration prior to Old.
541 for (auto Older = PrevForDefaultArgs;
542 OldParam->hasInheritedDefaultArg(); /**/) {
543 Older = Older->getPreviousDecl();
544 OldParam = Older->getParamDecl(p);
545 }
546
547 Diag(OldParam->getLocation(), diag::note_previous_definition)
548 << OldParam->getDefaultArgRange();
549 } else if (OldParamHasDfl) {
550 // Merge the old default argument into the new parameter unless the new
551 // function is a friend declaration in a template class. In the latter
552 // case the default arguments will be inherited when the friend
553 // declaration will be instantiated.
554 if (New->getFriendObjectKind() == Decl::FOK_None ||
555 !New->getLexicalDeclContext()->isDependentContext()) {
556 // It's important to use getInit() here; getDefaultArg()
557 // strips off any top-level ExprWithCleanups.
558 NewParam->setHasInheritedDefaultArg();
559 if (OldParam->hasUnparsedDefaultArg())
560 NewParam->setUnparsedDefaultArg();
561 else if (OldParam->hasUninstantiatedDefaultArg())
562 NewParam->setUninstantiatedDefaultArg(
563 OldParam->getUninstantiatedDefaultArg());
564 else
565 NewParam->setDefaultArg(OldParam->getInit());
566 }
567 } else if (NewParamHasDfl) {
568 if (New->getDescribedFunctionTemplate()) {
569 // Paragraph 4, quoted above, only applies to non-template functions.
570 Diag(NewParam->getLocation(),
571 diag::err_param_default_argument_template_redecl)
572 << NewParam->getDefaultArgRange();
573 Diag(PrevForDefaultArgs->getLocation(),
574 diag::note_template_prev_declaration)
575 << false;
576 } else if (New->getTemplateSpecializationKind()
577 != TSK_ImplicitInstantiation &&
578 New->getTemplateSpecializationKind() != TSK_Undeclared) {
579 // C++ [temp.expr.spec]p21:
580 // Default function arguments shall not be specified in a declaration
581 // or a definition for one of the following explicit specializations:
582 // - the explicit specialization of a function template;
583 // - the explicit specialization of a member function template;
584 // - the explicit specialization of a member function of a class
585 // template where the class template specialization to which the
586 // member function specialization belongs is implicitly
587 // instantiated.
588 Diag(NewParam->getLocation(), diag::err_template_spec_default_arg)
589 << (New->getTemplateSpecializationKind() ==TSK_ExplicitSpecialization)
590 << New->getDeclName()
591 << NewParam->getDefaultArgRange();
592 } else if (New->getDeclContext()->isDependentContext()) {
593 // C++ [dcl.fct.default]p6 (DR217):
594 // Default arguments for a member function of a class template shall
595 // be specified on the initial declaration of the member function
596 // within the class template.
597 //
598 // Reading the tea leaves a bit in DR217 and its reference to DR205
599 // leads me to the conclusion that one cannot add default function
600 // arguments for an out-of-line definition of a member function of a
601 // dependent type.
602 int WhichKind = 2;
603 if (CXXRecordDecl *Record
604 = dyn_cast<CXXRecordDecl>(New->getDeclContext())) {
605 if (Record->getDescribedClassTemplate())
606 WhichKind = 0;
607 else if (isa<ClassTemplatePartialSpecializationDecl>(Record))
608 WhichKind = 1;
609 else
610 WhichKind = 2;
611 }
612
613 Diag(NewParam->getLocation(),
614 diag::err_param_default_argument_member_template_redecl)
615 << WhichKind
616 << NewParam->getDefaultArgRange();
617 }
618 }
619 }
620
621 // DR1344: If a default argument is added outside a class definition and that
622 // default argument makes the function a special member function, the program
623 // is ill-formed. This can only happen for constructors.
624 if (isa<CXXConstructorDecl>(New) &&
625 New->getMinRequiredArguments() < Old->getMinRequiredArguments()) {
626 CXXSpecialMember NewSM = getSpecialMember(cast<CXXMethodDecl>(New)),
627 OldSM = getSpecialMember(cast<CXXMethodDecl>(Old));
628 if (NewSM != OldSM) {
629 ParmVarDecl *NewParam = New->getParamDecl(New->getMinRequiredArguments());
630 assert(NewParam->hasDefaultArg())((NewParam->hasDefaultArg()) ? static_cast<void> (0)
: __assert_fail ("NewParam->hasDefaultArg()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 630, __PRETTY_FUNCTION__))
;
631 Diag(NewParam->getLocation(), diag::err_default_arg_makes_ctor_special)
632 << NewParam->getDefaultArgRange() << NewSM;
633 Diag(Old->getLocation(), diag::note_previous_declaration);
634 }
635 }
636
637 const FunctionDecl *Def;
638 // C++11 [dcl.constexpr]p1: If any declaration of a function or function
639 // template has a constexpr specifier then all its declarations shall
640 // contain the constexpr specifier.
641 if (New->isConstexpr() != Old->isConstexpr()) {
642 Diag(New->getLocation(), diag::err_constexpr_redecl_mismatch)
643 << New << New->isConstexpr();
644 Diag(Old->getLocation(), diag::note_previous_declaration);
645 Invalid = true;
646 } else if (!Old->getMostRecentDecl()->isInlined() && New->isInlined() &&
647 Old->isDefined(Def) &&
648 // If a friend function is inlined but does not have 'inline'
649 // specifier, it is a definition. Do not report attribute conflict
650 // in this case, redefinition will be diagnosed later.
651 (New->isInlineSpecified() ||
652 New->getFriendObjectKind() == Decl::FOK_None)) {
653 // C++11 [dcl.fcn.spec]p4:
654 // If the definition of a function appears in a translation unit before its
655 // first declaration as inline, the program is ill-formed.
656 Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New;
657 Diag(Def->getLocation(), diag::note_previous_definition);
658 Invalid = true;
659 }
660
661 // FIXME: It's not clear what should happen if multiple declarations of a
662 // deduction guide have different explicitness. For now at least we simply
663 // reject any case where the explicitness changes.
664 auto *NewGuide = dyn_cast<CXXDeductionGuideDecl>(New);
665 if (NewGuide && NewGuide->isExplicitSpecified() !=
666 cast<CXXDeductionGuideDecl>(Old)->isExplicitSpecified()) {
667 Diag(New->getLocation(), diag::err_deduction_guide_explicit_mismatch)
668 << NewGuide->isExplicitSpecified();
669 Diag(Old->getLocation(), diag::note_previous_declaration);
670 }
671
672 // C++11 [dcl.fct.default]p4: If a friend declaration specifies a default
673 // argument expression, that declaration shall be a definition and shall be
674 // the only declaration of the function or function template in the
675 // translation unit.
676 if (Old->getFriendObjectKind() == Decl::FOK_Undeclared &&
677 functionDeclHasDefaultArgument(Old)) {
678 Diag(New->getLocation(), diag::err_friend_decl_with_def_arg_redeclared);
679 Diag(Old->getLocation(), diag::note_previous_declaration);
680 Invalid = true;
681 }
682
683 return Invalid;
684}
685
686NamedDecl *
687Sema::ActOnDecompositionDeclarator(Scope *S, Declarator &D,
688 MultiTemplateParamsArg TemplateParamLists) {
689 assert(D.isDecompositionDeclarator())((D.isDecompositionDeclarator()) ? static_cast<void> (0
) : __assert_fail ("D.isDecompositionDeclarator()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 689, __PRETTY_FUNCTION__))
;
690 const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator();
691
692 // The syntax only allows a decomposition declarator as a simple-declaration
693 // or a for-range-declaration, but we parse it in more cases than that.
694 if (!D.mayHaveDecompositionDeclarator()) {
695 Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context)
696 << Decomp.getSourceRange();
697 return nullptr;
698 }
699
700 if (!TemplateParamLists.empty()) {
701 // FIXME: There's no rule against this, but there are also no rules that
702 // would actually make it usable, so we reject it for now.
703 Diag(TemplateParamLists.front()->getTemplateLoc(),
704 diag::err_decomp_decl_template);
705 return nullptr;
706 }
707
708 Diag(Decomp.getLSquareLoc(), getLangOpts().CPlusPlus1z
709 ? diag::warn_cxx14_compat_decomp_decl
710 : diag::ext_decomp_decl)
711 << Decomp.getSourceRange();
712
713 // The semantic context is always just the current context.
714 DeclContext *const DC = CurContext;
715
716 // C++1z [dcl.dcl]/8:
717 // The decl-specifier-seq shall contain only the type-specifier auto
718 // and cv-qualifiers.
719 auto &DS = D.getDeclSpec();
720 {
721 SmallVector<StringRef, 8> BadSpecifiers;
722 SmallVector<SourceLocation, 8> BadSpecifierLocs;
723 if (auto SCS = DS.getStorageClassSpec()) {
724 BadSpecifiers.push_back(DeclSpec::getSpecifierName(SCS));
725 BadSpecifierLocs.push_back(DS.getStorageClassSpecLoc());
726 }
727 if (auto TSCS = DS.getThreadStorageClassSpec()) {
728 BadSpecifiers.push_back(DeclSpec::getSpecifierName(TSCS));
729 BadSpecifierLocs.push_back(DS.getThreadStorageClassSpecLoc());
730 }
731 if (DS.isConstexprSpecified()) {
732 BadSpecifiers.push_back("constexpr");
733 BadSpecifierLocs.push_back(DS.getConstexprSpecLoc());
734 }
735 if (DS.isInlineSpecified()) {
736 BadSpecifiers.push_back("inline");
737 BadSpecifierLocs.push_back(DS.getInlineSpecLoc());
738 }
739 if (!BadSpecifiers.empty()) {
740 auto &&Err = Diag(BadSpecifierLocs.front(), diag::err_decomp_decl_spec);
741 Err << (int)BadSpecifiers.size()
742 << llvm::join(BadSpecifiers.begin(), BadSpecifiers.end(), " ");
743 // Don't add FixItHints to remove the specifiers; we do still respect
744 // them when building the underlying variable.
745 for (auto Loc : BadSpecifierLocs)
746 Err << SourceRange(Loc, Loc);
747 }
748 // We can't recover from it being declared as a typedef.
749 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
750 return nullptr;
751 }
752
753 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
754 QualType R = TInfo->getType();
755
756 if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
757 UPPC_DeclarationType))
758 D.setInvalidType();
759
760 // The syntax only allows a single ref-qualifier prior to the decomposition
761 // declarator. No other declarator chunks are permitted. Also check the type
762 // specifier here.
763 if (DS.getTypeSpecType() != DeclSpec::TST_auto ||
764 D.hasGroupingParens() || D.getNumTypeObjects() > 1 ||
765 (D.getNumTypeObjects() == 1 &&
766 D.getTypeObject(0).Kind != DeclaratorChunk::Reference)) {
767 Diag(Decomp.getLSquareLoc(),
768 (D.hasGroupingParens() ||
769 (D.getNumTypeObjects() &&
770 D.getTypeObject(0).Kind == DeclaratorChunk::Paren))
771 ? diag::err_decomp_decl_parens
772 : diag::err_decomp_decl_type)
773 << R;
774
775 // In most cases, there's no actual problem with an explicitly-specified
776 // type, but a function type won't work here, and ActOnVariableDeclarator
777 // shouldn't be called for such a type.
778 if (R->isFunctionType())
779 D.setInvalidType();
780 }
781
782 // Build the BindingDecls.
783 SmallVector<BindingDecl*, 8> Bindings;
784
785 // Build the BindingDecls.
786 for (auto &B : D.getDecompositionDeclarator().bindings()) {
787 // Check for name conflicts.
788 DeclarationNameInfo NameInfo(B.Name, B.NameLoc);
789 LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
790 ForRedeclaration);
791 LookupName(Previous, S,
792 /*CreateBuiltins*/DC->getRedeclContext()->isTranslationUnit());
793
794 // It's not permitted to shadow a template parameter name.
795 if (Previous.isSingleResult() &&
796 Previous.getFoundDecl()->isTemplateParameter()) {
797 DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
798 Previous.getFoundDecl());
799 Previous.clear();
800 }
801
802 bool ConsiderLinkage = DC->isFunctionOrMethod() &&
803 DS.getStorageClassSpec() == DeclSpec::SCS_extern;
804 FilterLookupForScope(Previous, DC, S, ConsiderLinkage,
805 /*AllowInlineNamespace*/false);
806 if (!Previous.empty()) {
807 auto *Old = Previous.getRepresentativeDecl();
808 Diag(B.NameLoc, diag::err_redefinition) << B.Name;
809 Diag(Old->getLocation(), diag::note_previous_definition);
810 }
811
812 auto *BD = BindingDecl::Create(Context, DC, B.NameLoc, B.Name);
813 PushOnScopeChains(BD, S, true);
814 Bindings.push_back(BD);
815 ParsingInitForAutoVars.insert(BD);
816 }
817
818 // There are no prior lookup results for the variable itself, because it
819 // is unnamed.
820 DeclarationNameInfo NameInfo((IdentifierInfo *)nullptr,
821 Decomp.getLSquareLoc());
822 LookupResult Previous(*this, NameInfo, LookupOrdinaryName, ForRedeclaration);
823
824 // Build the variable that holds the non-decomposed object.
825 bool AddToScope = true;
826 NamedDecl *New =
827 ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
828 MultiTemplateParamsArg(), AddToScope, Bindings);
829 CurContext->addHiddenDecl(New);
830
831 if (isInOpenMPDeclareTargetContext())
832 checkDeclIsAllowedInOpenMPTarget(nullptr, New);
833
834 return New;
835}
836
837static bool checkSimpleDecomposition(
838 Sema &S, ArrayRef<BindingDecl *> Bindings, ValueDecl *Src,
839 QualType DecompType, const llvm::APSInt &NumElems, QualType ElemType,
840 llvm::function_ref<ExprResult(SourceLocation, Expr *, unsigned)> GetInit) {
841 if ((int64_t)Bindings.size() != NumElems) {
842 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
843 << DecompType << (unsigned)Bindings.size() << NumElems.toString(10)
844 << (NumElems < Bindings.size());
845 return true;
846 }
847
848 unsigned I = 0;
849 for (auto *B : Bindings) {
850 SourceLocation Loc = B->getLocation();
851 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
852 if (E.isInvalid())
853 return true;
854 E = GetInit(Loc, E.get(), I++);
855 if (E.isInvalid())
856 return true;
857 B->setBinding(ElemType, E.get());
858 }
859
860 return false;
861}
862
863static bool checkArrayLikeDecomposition(Sema &S,
864 ArrayRef<BindingDecl *> Bindings,
865 ValueDecl *Src, QualType DecompType,
866 const llvm::APSInt &NumElems,
867 QualType ElemType) {
868 return checkSimpleDecomposition(
869 S, Bindings, Src, DecompType, NumElems, ElemType,
870 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
871 ExprResult E = S.ActOnIntegerConstant(Loc, I);
872 if (E.isInvalid())
873 return ExprError();
874 return S.CreateBuiltinArraySubscriptExpr(Base, Loc, E.get(), Loc);
875 });
876}
877
878static bool checkArrayDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
879 ValueDecl *Src, QualType DecompType,
880 const ConstantArrayType *CAT) {
881 return checkArrayLikeDecomposition(S, Bindings, Src, DecompType,
882 llvm::APSInt(CAT->getSize()),
883 CAT->getElementType());
884}
885
886static bool checkVectorDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
887 ValueDecl *Src, QualType DecompType,
888 const VectorType *VT) {
889 return checkArrayLikeDecomposition(
890 S, Bindings, Src, DecompType, llvm::APSInt::get(VT->getNumElements()),
891 S.Context.getQualifiedType(VT->getElementType(),
892 DecompType.getQualifiers()));
893}
894
895static bool checkComplexDecomposition(Sema &S,
896 ArrayRef<BindingDecl *> Bindings,
897 ValueDecl *Src, QualType DecompType,
898 const ComplexType *CT) {
899 return checkSimpleDecomposition(
900 S, Bindings, Src, DecompType, llvm::APSInt::get(2),
901 S.Context.getQualifiedType(CT->getElementType(),
902 DecompType.getQualifiers()),
903 [&](SourceLocation Loc, Expr *Base, unsigned I) -> ExprResult {
904 return S.CreateBuiltinUnaryOp(Loc, I ? UO_Imag : UO_Real, Base);
905 });
906}
907
908static std::string printTemplateArgs(const PrintingPolicy &PrintingPolicy,
909 TemplateArgumentListInfo &Args) {
910 SmallString<128> SS;
911 llvm::raw_svector_ostream OS(SS);
912 bool First = true;
913 for (auto &Arg : Args.arguments()) {
914 if (!First)
915 OS << ", ";
916 Arg.getArgument().print(PrintingPolicy, OS);
917 First = false;
918 }
919 return OS.str();
920}
921
922static bool lookupStdTypeTraitMember(Sema &S, LookupResult &TraitMemberLookup,
923 SourceLocation Loc, StringRef Trait,
924 TemplateArgumentListInfo &Args,
925 unsigned DiagID) {
926 auto DiagnoseMissing = [&] {
927 if (DiagID)
928 S.Diag(Loc, DiagID) << printTemplateArgs(S.Context.getPrintingPolicy(),
929 Args);
930 return true;
931 };
932
933 // FIXME: Factor out duplication with lookupPromiseType in SemaCoroutine.
934 NamespaceDecl *Std = S.getStdNamespace();
935 if (!Std)
936 return DiagnoseMissing();
937
938 // Look up the trait itself, within namespace std. We can diagnose various
939 // problems with this lookup even if we've been asked to not diagnose a
940 // missing specialization, because this can only fail if the user has been
941 // declaring their own names in namespace std or we don't support the
942 // standard library implementation in use.
943 LookupResult Result(S, &S.PP.getIdentifierTable().get(Trait),
944 Loc, Sema::LookupOrdinaryName);
945 if (!S.LookupQualifiedName(Result, Std))
946 return DiagnoseMissing();
947 if (Result.isAmbiguous())
948 return true;
949
950 ClassTemplateDecl *TraitTD = Result.getAsSingle<ClassTemplateDecl>();
951 if (!TraitTD) {
952 Result.suppressDiagnostics();
953 NamedDecl *Found = *Result.begin();
954 S.Diag(Loc, diag::err_std_type_trait_not_class_template) << Trait;
955 S.Diag(Found->getLocation(), diag::note_declared_at);
956 return true;
957 }
958
959 // Build the template-id.
960 QualType TraitTy = S.CheckTemplateIdType(TemplateName(TraitTD), Loc, Args);
961 if (TraitTy.isNull())
962 return true;
963 if (!S.isCompleteType(Loc, TraitTy)) {
964 if (DiagID)
965 S.RequireCompleteType(
966 Loc, TraitTy, DiagID,
967 printTemplateArgs(S.Context.getPrintingPolicy(), Args));
968 return true;
969 }
970
971 CXXRecordDecl *RD = TraitTy->getAsCXXRecordDecl();
972 assert(RD && "specialization of class template is not a class?")((RD && "specialization of class template is not a class?"
) ? static_cast<void> (0) : __assert_fail ("RD && \"specialization of class template is not a class?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 972, __PRETTY_FUNCTION__))
;
973
974 // Look up the member of the trait type.
975 S.LookupQualifiedName(TraitMemberLookup, RD);
976 return TraitMemberLookup.isAmbiguous();
977}
978
979static TemplateArgumentLoc
980getTrivialIntegralTemplateArgument(Sema &S, SourceLocation Loc, QualType T,
981 uint64_t I) {
982 TemplateArgument Arg(S.Context, S.Context.MakeIntValue(I, T), T);
983 return S.getTrivialTemplateArgumentLoc(Arg, T, Loc);
984}
985
986static TemplateArgumentLoc
987getTrivialTypeTemplateArgument(Sema &S, SourceLocation Loc, QualType T) {
988 return S.getTrivialTemplateArgumentLoc(TemplateArgument(T), QualType(), Loc);
989}
990
991namespace { enum class IsTupleLike { TupleLike, NotTupleLike, Error }; }
992
993static IsTupleLike isTupleLike(Sema &S, SourceLocation Loc, QualType T,
994 llvm::APSInt &Size) {
995 EnterExpressionEvaluationContext ContextRAII(
996 S, Sema::ExpressionEvaluationContext::ConstantEvaluated);
997
998 DeclarationName Value = S.PP.getIdentifierInfo("value");
999 LookupResult R(S, Value, Loc, Sema::LookupOrdinaryName);
1000
1001 // Form template argument list for tuple_size<T>.
1002 TemplateArgumentListInfo Args(Loc, Loc);
1003 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
1004
1005 // If there's no tuple_size specialization, it's not tuple-like.
1006 if (lookupStdTypeTraitMember(S, R, Loc, "tuple_size", Args, /*DiagID*/0))
1007 return IsTupleLike::NotTupleLike;
1008
1009 // If we get this far, we've committed to the tuple interpretation, but
1010 // we can still fail if there actually isn't a usable ::value.
1011
1012 struct ICEDiagnoser : Sema::VerifyICEDiagnoser {
1013 LookupResult &R;
1014 TemplateArgumentListInfo &Args;
1015 ICEDiagnoser(LookupResult &R, TemplateArgumentListInfo &Args)
1016 : R(R), Args(Args) {}
1017 void diagnoseNotICE(Sema &S, SourceLocation Loc, SourceRange SR) {
1018 S.Diag(Loc, diag::err_decomp_decl_std_tuple_size_not_constant)
1019 << printTemplateArgs(S.Context.getPrintingPolicy(), Args);
1020 }
1021 } Diagnoser(R, Args);
1022
1023 if (R.empty()) {
1024 Diagnoser.diagnoseNotICE(S, Loc, SourceRange());
1025 return IsTupleLike::Error;
1026 }
1027
1028 ExprResult E =
1029 S.BuildDeclarationNameExpr(CXXScopeSpec(), R, /*NeedsADL*/false);
1030 if (E.isInvalid())
1031 return IsTupleLike::Error;
1032
1033 E = S.VerifyIntegerConstantExpression(E.get(), &Size, Diagnoser, false);
1034 if (E.isInvalid())
1035 return IsTupleLike::Error;
1036
1037 return IsTupleLike::TupleLike;
1038}
1039
1040/// \return std::tuple_element<I, T>::type.
1041static QualType getTupleLikeElementType(Sema &S, SourceLocation Loc,
1042 unsigned I, QualType T) {
1043 // Form template argument list for tuple_element<I, T>.
1044 TemplateArgumentListInfo Args(Loc, Loc);
1045 Args.addArgument(
1046 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1047 Args.addArgument(getTrivialTypeTemplateArgument(S, Loc, T));
1048
1049 DeclarationName TypeDN = S.PP.getIdentifierInfo("type");
1050 LookupResult R(S, TypeDN, Loc, Sema::LookupOrdinaryName);
1051 if (lookupStdTypeTraitMember(
1052 S, R, Loc, "tuple_element", Args,
1053 diag::err_decomp_decl_std_tuple_element_not_specialized))
1054 return QualType();
1055
1056 auto *TD = R.getAsSingle<TypeDecl>();
1057 if (!TD) {
1058 R.suppressDiagnostics();
1059 S.Diag(Loc, diag::err_decomp_decl_std_tuple_element_not_specialized)
1060 << printTemplateArgs(S.Context.getPrintingPolicy(), Args);
1061 if (!R.empty())
1062 S.Diag(R.getRepresentativeDecl()->getLocation(), diag::note_declared_at);
1063 return QualType();
1064 }
1065
1066 return S.Context.getTypeDeclType(TD);
1067}
1068
1069namespace {
1070struct BindingDiagnosticTrap {
1071 Sema &S;
1072 DiagnosticErrorTrap Trap;
1073 BindingDecl *BD;
1074
1075 BindingDiagnosticTrap(Sema &S, BindingDecl *BD)
1076 : S(S), Trap(S.Diags), BD(BD) {}
1077 ~BindingDiagnosticTrap() {
1078 if (Trap.hasErrorOccurred())
1079 S.Diag(BD->getLocation(), diag::note_in_binding_decl_init) << BD;
1080 }
1081};
1082}
1083
1084static bool checkTupleLikeDecomposition(Sema &S,
1085 ArrayRef<BindingDecl *> Bindings,
1086 VarDecl *Src, QualType DecompType,
1087 const llvm::APSInt &TupleSize) {
1088 if ((int64_t)Bindings.size() != TupleSize) {
1089 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1090 << DecompType << (unsigned)Bindings.size() << TupleSize.toString(10)
1091 << (TupleSize < Bindings.size());
1092 return true;
1093 }
1094
1095 if (Bindings.empty())
1096 return false;
1097
1098 DeclarationName GetDN = S.PP.getIdentifierInfo("get");
1099
1100 // [dcl.decomp]p3:
1101 // The unqualified-id get is looked up in the scope of E by class member
1102 // access lookup
1103 LookupResult MemberGet(S, GetDN, Src->getLocation(), Sema::LookupMemberName);
1104 bool UseMemberGet = false;
1105 if (S.isCompleteType(Src->getLocation(), DecompType)) {
1106 if (auto *RD = DecompType->getAsCXXRecordDecl())
1107 S.LookupQualifiedName(MemberGet, RD);
1108 if (MemberGet.isAmbiguous())
1109 return true;
1110 UseMemberGet = !MemberGet.empty();
1111 S.FilterAcceptableTemplateNames(MemberGet);
1112 }
1113
1114 unsigned I = 0;
1115 for (auto *B : Bindings) {
1116 BindingDiagnosticTrap Trap(S, B);
1117 SourceLocation Loc = B->getLocation();
1118
1119 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1120 if (E.isInvalid())
1121 return true;
1122
1123 // e is an lvalue if the type of the entity is an lvalue reference and
1124 // an xvalue otherwise
1125 if (!Src->getType()->isLValueReferenceType())
1126 E = ImplicitCastExpr::Create(S.Context, E.get()->getType(), CK_NoOp,
1127 E.get(), nullptr, VK_XValue);
1128
1129 TemplateArgumentListInfo Args(Loc, Loc);
1130 Args.addArgument(
1131 getTrivialIntegralTemplateArgument(S, Loc, S.Context.getSizeType(), I));
1132
1133 if (UseMemberGet) {
1134 // if [lookup of member get] finds at least one declaration, the
1135 // initializer is e.get<i-1>().
1136 E = S.BuildMemberReferenceExpr(E.get(), DecompType, Loc, false,
1137 CXXScopeSpec(), SourceLocation(), nullptr,
1138 MemberGet, &Args, nullptr);
1139 if (E.isInvalid())
1140 return true;
1141
1142 E = S.ActOnCallExpr(nullptr, E.get(), Loc, None, Loc);
1143 } else {
1144 // Otherwise, the initializer is get<i-1>(e), where get is looked up
1145 // in the associated namespaces.
1146 Expr *Get = UnresolvedLookupExpr::Create(
1147 S.Context, nullptr, NestedNameSpecifierLoc(), SourceLocation(),
1148 DeclarationNameInfo(GetDN, Loc), /*RequiresADL*/true, &Args,
1149 UnresolvedSetIterator(), UnresolvedSetIterator());
1150
1151 Expr *Arg = E.get();
1152 E = S.ActOnCallExpr(nullptr, Get, Loc, Arg, Loc);
1153 }
1154 if (E.isInvalid())
1155 return true;
1156 Expr *Init = E.get();
1157
1158 // Given the type T designated by std::tuple_element<i - 1, E>::type,
1159 QualType T = getTupleLikeElementType(S, Loc, I, DecompType);
1160 if (T.isNull())
1161 return true;
1162
1163 // each vi is a variable of type "reference to T" initialized with the
1164 // initializer, where the reference is an lvalue reference if the
1165 // initializer is an lvalue and an rvalue reference otherwise
1166 QualType RefType =
1167 S.BuildReferenceType(T, E.get()->isLValue(), Loc, B->getDeclName());
1168 if (RefType.isNull())
1169 return true;
1170 auto *RefVD = VarDecl::Create(
1171 S.Context, Src->getDeclContext(), Loc, Loc,
1172 B->getDeclName().getAsIdentifierInfo(), RefType,
1173 S.Context.getTrivialTypeSourceInfo(T, Loc), Src->getStorageClass());
1174 RefVD->setLexicalDeclContext(Src->getLexicalDeclContext());
1175 RefVD->setTSCSpec(Src->getTSCSpec());
1176 RefVD->setImplicit();
1177 if (Src->isInlineSpecified())
1178 RefVD->setInlineSpecified();
1179 RefVD->getLexicalDeclContext()->addHiddenDecl(RefVD);
1180
1181 InitializedEntity Entity = InitializedEntity::InitializeBinding(RefVD);
1182 InitializationKind Kind = InitializationKind::CreateCopy(Loc, Loc);
1183 InitializationSequence Seq(S, Entity, Kind, Init);
1184 E = Seq.Perform(S, Entity, Kind, Init);
1185 if (E.isInvalid())
1186 return true;
1187 E = S.ActOnFinishFullExpr(E.get(), Loc);
1188 if (E.isInvalid())
1189 return true;
1190 RefVD->setInit(E.get());
1191 RefVD->checkInitIsICE();
1192
1193 E = S.BuildDeclarationNameExpr(CXXScopeSpec(),
1194 DeclarationNameInfo(B->getDeclName(), Loc),
1195 RefVD);
1196 if (E.isInvalid())
1197 return true;
1198
1199 B->setBinding(T, E.get());
1200 I++;
1201 }
1202
1203 return false;
1204}
1205
1206/// Find the base class to decompose in a built-in decomposition of a class type.
1207/// This base class search is, unfortunately, not quite like any other that we
1208/// perform anywhere else in C++.
1209static const CXXRecordDecl *findDecomposableBaseClass(Sema &S,
1210 SourceLocation Loc,
1211 const CXXRecordDecl *RD,
1212 CXXCastPath &BasePath) {
1213 auto BaseHasFields = [](const CXXBaseSpecifier *Specifier,
1214 CXXBasePath &Path) {
1215 return Specifier->getType()->getAsCXXRecordDecl()->hasDirectFields();
1216 };
1217
1218 const CXXRecordDecl *ClassWithFields = nullptr;
1219 if (RD->hasDirectFields())
1220 // [dcl.decomp]p4:
1221 // Otherwise, all of E's non-static data members shall be public direct
1222 // members of E ...
1223 ClassWithFields = RD;
1224 else {
1225 // ... or of ...
1226 CXXBasePaths Paths;
1227 Paths.setOrigin(const_cast<CXXRecordDecl*>(RD));
1228 if (!RD->lookupInBases(BaseHasFields, Paths)) {
1229 // If no classes have fields, just decompose RD itself. (This will work
1230 // if and only if zero bindings were provided.)
1231 return RD;
1232 }
1233
1234 CXXBasePath *BestPath = nullptr;
1235 for (auto &P : Paths) {
1236 if (!BestPath)
1237 BestPath = &P;
1238 else if (!S.Context.hasSameType(P.back().Base->getType(),
1239 BestPath->back().Base->getType())) {
1240 // ... the same ...
1241 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1242 << false << RD << BestPath->back().Base->getType()
1243 << P.back().Base->getType();
1244 return nullptr;
1245 } else if (P.Access < BestPath->Access) {
1246 BestPath = &P;
1247 }
1248 }
1249
1250 // ... unambiguous ...
1251 QualType BaseType = BestPath->back().Base->getType();
1252 if (Paths.isAmbiguous(S.Context.getCanonicalType(BaseType))) {
1253 S.Diag(Loc, diag::err_decomp_decl_ambiguous_base)
1254 << RD << BaseType << S.getAmbiguousPathsDisplayString(Paths);
1255 return nullptr;
1256 }
1257
1258 // ... public base class of E.
1259 if (BestPath->Access != AS_public) {
1260 S.Diag(Loc, diag::err_decomp_decl_non_public_base)
1261 << RD << BaseType;
1262 for (auto &BS : *BestPath) {
1263 if (BS.Base->getAccessSpecifier() != AS_public) {
1264 S.Diag(BS.Base->getLocStart(), diag::note_access_constrained_by_path)
1265 << (BS.Base->getAccessSpecifier() == AS_protected)
1266 << (BS.Base->getAccessSpecifierAsWritten() == AS_none);
1267 break;
1268 }
1269 }
1270 return nullptr;
1271 }
1272
1273 ClassWithFields = BaseType->getAsCXXRecordDecl();
1274 S.BuildBasePathArray(Paths, BasePath);
1275 }
1276
1277 // The above search did not check whether the selected class itself has base
1278 // classes with fields, so check that now.
1279 CXXBasePaths Paths;
1280 if (ClassWithFields->lookupInBases(BaseHasFields, Paths)) {
1281 S.Diag(Loc, diag::err_decomp_decl_multiple_bases_with_members)
1282 << (ClassWithFields == RD) << RD << ClassWithFields
1283 << Paths.front().back().Base->getType();
1284 return nullptr;
1285 }
1286
1287 return ClassWithFields;
1288}
1289
1290static bool checkMemberDecomposition(Sema &S, ArrayRef<BindingDecl*> Bindings,
1291 ValueDecl *Src, QualType DecompType,
1292 const CXXRecordDecl *RD) {
1293 CXXCastPath BasePath;
1294 RD = findDecomposableBaseClass(S, Src->getLocation(), RD, BasePath);
1295 if (!RD)
1296 return true;
1297 QualType BaseType = S.Context.getQualifiedType(S.Context.getRecordType(RD),
1298 DecompType.getQualifiers());
1299
1300 auto DiagnoseBadNumberOfBindings = [&]() -> bool {
1301 unsigned NumFields =
1302 std::count_if(RD->field_begin(), RD->field_end(),
1303 [](FieldDecl *FD) { return !FD->isUnnamedBitfield(); });
1304 assert(Bindings.size() != NumFields)((Bindings.size() != NumFields) ? static_cast<void> (0)
: __assert_fail ("Bindings.size() != NumFields", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1304, __PRETTY_FUNCTION__))
;
1305 S.Diag(Src->getLocation(), diag::err_decomp_decl_wrong_number_bindings)
1306 << DecompType << (unsigned)Bindings.size() << NumFields
1307 << (NumFields < Bindings.size());
1308 return true;
1309 };
1310
1311 // all of E's non-static data members shall be public [...] members,
1312 // E shall not have an anonymous union member, ...
1313 unsigned I = 0;
1314 for (auto *FD : RD->fields()) {
1315 if (FD->isUnnamedBitfield())
1316 continue;
1317
1318 if (FD->isAnonymousStructOrUnion()) {
1319 S.Diag(Src->getLocation(), diag::err_decomp_decl_anon_union_member)
1320 << DecompType << FD->getType()->isUnionType();
1321 S.Diag(FD->getLocation(), diag::note_declared_at);
1322 return true;
1323 }
1324
1325 // We have a real field to bind.
1326 if (I >= Bindings.size())
1327 return DiagnoseBadNumberOfBindings();
1328 auto *B = Bindings[I++];
1329
1330 SourceLocation Loc = B->getLocation();
1331 if (FD->getAccess() != AS_public) {
1332 S.Diag(Loc, diag::err_decomp_decl_non_public_member) << FD << DecompType;
1333
1334 // Determine whether the access specifier was explicit.
1335 bool Implicit = true;
1336 for (const auto *D : RD->decls()) {
1337 if (declaresSameEntity(D, FD))
1338 break;
1339 if (isa<AccessSpecDecl>(D)) {
1340 Implicit = false;
1341 break;
1342 }
1343 }
1344
1345 S.Diag(FD->getLocation(), diag::note_access_natural)
1346 << (FD->getAccess() == AS_protected) << Implicit;
1347 return true;
1348 }
1349
1350 // Initialize the binding to Src.FD.
1351 ExprResult E = S.BuildDeclRefExpr(Src, DecompType, VK_LValue, Loc);
1352 if (E.isInvalid())
1353 return true;
1354 E = S.ImpCastExprToType(E.get(), BaseType, CK_UncheckedDerivedToBase,
1355 VK_LValue, &BasePath);
1356 if (E.isInvalid())
1357 return true;
1358 E = S.BuildFieldReferenceExpr(E.get(), /*IsArrow*/ false, Loc,
1359 CXXScopeSpec(), FD,
1360 DeclAccessPair::make(FD, FD->getAccess()),
1361 DeclarationNameInfo(FD->getDeclName(), Loc));
1362 if (E.isInvalid())
1363 return true;
1364
1365 // If the type of the member is T, the referenced type is cv T, where cv is
1366 // the cv-qualification of the decomposition expression.
1367 //
1368 // FIXME: We resolve a defect here: if the field is mutable, we do not add
1369 // 'const' to the type of the field.
1370 Qualifiers Q = DecompType.getQualifiers();
1371 if (FD->isMutable())
1372 Q.removeConst();
1373 B->setBinding(S.BuildQualifiedType(FD->getType(), Loc, Q), E.get());
1374 }
1375
1376 if (I != Bindings.size())
1377 return DiagnoseBadNumberOfBindings();
1378
1379 return false;
1380}
1381
1382void Sema::CheckCompleteDecompositionDeclaration(DecompositionDecl *DD) {
1383 QualType DecompType = DD->getType();
1384
1385 // If the type of the decomposition is dependent, then so is the type of
1386 // each binding.
1387 if (DecompType->isDependentType()) {
1388 for (auto *B : DD->bindings())
1389 B->setType(Context.DependentTy);
1390 return;
1391 }
1392
1393 DecompType = DecompType.getNonReferenceType();
1394 ArrayRef<BindingDecl*> Bindings = DD->bindings();
1395
1396 // C++1z [dcl.decomp]/2:
1397 // If E is an array type [...]
1398 // As an extension, we also support decomposition of built-in complex and
1399 // vector types.
1400 if (auto *CAT = Context.getAsConstantArrayType(DecompType)) {
1401 if (checkArrayDecomposition(*this, Bindings, DD, DecompType, CAT))
1402 DD->setInvalidDecl();
1403 return;
1404 }
1405 if (auto *VT = DecompType->getAs<VectorType>()) {
1406 if (checkVectorDecomposition(*this, Bindings, DD, DecompType, VT))
1407 DD->setInvalidDecl();
1408 return;
1409 }
1410 if (auto *CT = DecompType->getAs<ComplexType>()) {
1411 if (checkComplexDecomposition(*this, Bindings, DD, DecompType, CT))
1412 DD->setInvalidDecl();
1413 return;
1414 }
1415
1416 // C++1z [dcl.decomp]/3:
1417 // if the expression std::tuple_size<E>::value is a well-formed integral
1418 // constant expression, [...]
1419 llvm::APSInt TupleSize(32);
1420 switch (isTupleLike(*this, DD->getLocation(), DecompType, TupleSize)) {
1421 case IsTupleLike::Error:
1422 DD->setInvalidDecl();
1423 return;
1424
1425 case IsTupleLike::TupleLike:
1426 if (checkTupleLikeDecomposition(*this, Bindings, DD, DecompType, TupleSize))
1427 DD->setInvalidDecl();
1428 return;
1429
1430 case IsTupleLike::NotTupleLike:
1431 break;
1432 }
1433
1434 // C++1z [dcl.dcl]/8:
1435 // [E shall be of array or non-union class type]
1436 CXXRecordDecl *RD = DecompType->getAsCXXRecordDecl();
1437 if (!RD || RD->isUnion()) {
1438 Diag(DD->getLocation(), diag::err_decomp_decl_unbindable_type)
1439 << DD << !RD << DecompType;
1440 DD->setInvalidDecl();
1441 return;
1442 }
1443
1444 // C++1z [dcl.decomp]/4:
1445 // all of E's non-static data members shall be [...] direct members of
1446 // E or of the same unambiguous public base class of E, ...
1447 if (checkMemberDecomposition(*this, Bindings, DD, DecompType, RD))
1448 DD->setInvalidDecl();
1449}
1450
1451/// \brief Merge the exception specifications of two variable declarations.
1452///
1453/// This is called when there's a redeclaration of a VarDecl. The function
1454/// checks if the redeclaration might have an exception specification and
1455/// validates compatibility and merges the specs if necessary.
1456void Sema::MergeVarDeclExceptionSpecs(VarDecl *New, VarDecl *Old) {
1457 // Shortcut if exceptions are disabled.
1458 if (!getLangOpts().CXXExceptions)
1459 return;
1460
1461 assert(Context.hasSameType(New->getType(), Old->getType()) &&((Context.hasSameType(New->getType(), Old->getType()) &&
"Should only be called if types are otherwise the same.") ? static_cast
<void> (0) : __assert_fail ("Context.hasSameType(New->getType(), Old->getType()) && \"Should only be called if types are otherwise the same.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1462, __PRETTY_FUNCTION__))
1462 "Should only be called if types are otherwise the same.")((Context.hasSameType(New->getType(), Old->getType()) &&
"Should only be called if types are otherwise the same.") ? static_cast
<void> (0) : __assert_fail ("Context.hasSameType(New->getType(), Old->getType()) && \"Should only be called if types are otherwise the same.\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1462, __PRETTY_FUNCTION__))
;
1463
1464 QualType NewType = New->getType();
1465 QualType OldType = Old->getType();
1466
1467 // We're only interested in pointers and references to functions, as well
1468 // as pointers to member functions.
1469 if (const ReferenceType *R = NewType->getAs<ReferenceType>()) {
1470 NewType = R->getPointeeType();
1471 OldType = OldType->getAs<ReferenceType>()->getPointeeType();
1472 } else if (const PointerType *P = NewType->getAs<PointerType>()) {
1473 NewType = P->getPointeeType();
1474 OldType = OldType->getAs<PointerType>()->getPointeeType();
1475 } else if (const MemberPointerType *M = NewType->getAs<MemberPointerType>()) {
1476 NewType = M->getPointeeType();
1477 OldType = OldType->getAs<MemberPointerType>()->getPointeeType();
1478 }
1479
1480 if (!NewType->isFunctionProtoType())
1481 return;
1482
1483 // There's lots of special cases for functions. For function pointers, system
1484 // libraries are hopefully not as broken so that we don't need these
1485 // workarounds.
1486 if (CheckEquivalentExceptionSpec(
1487 OldType->getAs<FunctionProtoType>(), Old->getLocation(),
1488 NewType->getAs<FunctionProtoType>(), New->getLocation())) {
1489 New->setInvalidDecl();
1490 }
1491}
1492
1493/// CheckCXXDefaultArguments - Verify that the default arguments for a
1494/// function declaration are well-formed according to C++
1495/// [dcl.fct.default].
1496void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) {
1497 unsigned NumParams = FD->getNumParams();
1498 unsigned p;
1499
1500 // Find first parameter with a default argument
1501 for (p = 0; p < NumParams; ++p) {
1502 ParmVarDecl *Param = FD->getParamDecl(p);
1503 if (Param->hasDefaultArg())
1504 break;
1505 }
1506
1507 // C++11 [dcl.fct.default]p4:
1508 // In a given function declaration, each parameter subsequent to a parameter
1509 // with a default argument shall have a default argument supplied in this or
1510 // a previous declaration or shall be a function parameter pack. A default
1511 // argument shall not be redefined by a later declaration (not even to the
1512 // same value).
1513 unsigned LastMissingDefaultArg = 0;
1514 for (; p < NumParams; ++p) {
1515 ParmVarDecl *Param = FD->getParamDecl(p);
1516 if (!Param->hasDefaultArg() && !Param->isParameterPack()) {
1517 if (Param->isInvalidDecl())
1518 /* We already complained about this parameter. */;
1519 else if (Param->getIdentifier())
1520 Diag(Param->getLocation(),
1521 diag::err_param_default_argument_missing_name)
1522 << Param->getIdentifier();
1523 else
1524 Diag(Param->getLocation(),
1525 diag::err_param_default_argument_missing);
1526
1527 LastMissingDefaultArg = p;
1528 }
1529 }
1530
1531 if (LastMissingDefaultArg > 0) {
1532 // Some default arguments were missing. Clear out all of the
1533 // default arguments up to (and including) the last missing
1534 // default argument, so that we leave the function parameters
1535 // in a semantically valid state.
1536 for (p = 0; p <= LastMissingDefaultArg; ++p) {
1537 ParmVarDecl *Param = FD->getParamDecl(p);
1538 if (Param->hasDefaultArg()) {
1539 Param->setDefaultArg(nullptr);
1540 }
1541 }
1542 }
1543}
1544
1545// CheckConstexprParameterTypes - Check whether a function's parameter types
1546// are all literal types. If so, return true. If not, produce a suitable
1547// diagnostic and return false.
1548static bool CheckConstexprParameterTypes(Sema &SemaRef,
1549 const FunctionDecl *FD) {
1550 unsigned ArgIndex = 0;
1551 const FunctionProtoType *FT = FD->getType()->getAs<FunctionProtoType>();
1552 for (FunctionProtoType::param_type_iterator i = FT->param_type_begin(),
1553 e = FT->param_type_end();
1554 i != e; ++i, ++ArgIndex) {
1555 const ParmVarDecl *PD = FD->getParamDecl(ArgIndex);
1556 SourceLocation ParamLoc = PD->getLocation();
1557 if (!(*i)->isDependentType() &&
1558 SemaRef.RequireLiteralType(ParamLoc, *i,
1559 diag::err_constexpr_non_literal_param,
1560 ArgIndex+1, PD->getSourceRange(),
1561 isa<CXXConstructorDecl>(FD)))
1562 return false;
1563 }
1564 return true;
1565}
1566
1567/// \brief Get diagnostic %select index for tag kind for
1568/// record diagnostic message.
1569/// WARNING: Indexes apply to particular diagnostics only!
1570///
1571/// \returns diagnostic %select index.
1572static unsigned getRecordDiagFromTagKind(TagTypeKind Tag) {
1573 switch (Tag) {
1574 case TTK_Struct: return 0;
1575 case TTK_Interface: return 1;
1576 case TTK_Class: return 2;
1577 default: llvm_unreachable("Invalid tag kind for record diagnostic!")::llvm::llvm_unreachable_internal("Invalid tag kind for record diagnostic!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1577)
;
1578 }
1579}
1580
1581// CheckConstexprFunctionDecl - Check whether a function declaration satisfies
1582// the requirements of a constexpr function definition or a constexpr
1583// constructor definition. If so, return true. If not, produce appropriate
1584// diagnostics and return false.
1585//
1586// This implements C++11 [dcl.constexpr]p3,4, as amended by DR1360.
1587bool Sema::CheckConstexprFunctionDecl(const FunctionDecl *NewFD) {
1588 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
1589 if (MD && MD->isInstance()) {
1590 // C++11 [dcl.constexpr]p4:
1591 // The definition of a constexpr constructor shall satisfy the following
1592 // constraints:
1593 // - the class shall not have any virtual base classes;
1594 const CXXRecordDecl *RD = MD->getParent();
1595 if (RD->getNumVBases()) {
1596 Diag(NewFD->getLocation(), diag::err_constexpr_virtual_base)
1597 << isa<CXXConstructorDecl>(NewFD)
1598 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getNumVBases();
1599 for (const auto &I : RD->vbases())
1600 Diag(I.getLocStart(),
1601 diag::note_constexpr_virtual_base_here) << I.getSourceRange();
1602 return false;
1603 }
1604 }
1605
1606 if (!isa<CXXConstructorDecl>(NewFD)) {
1607 // C++11 [dcl.constexpr]p3:
1608 // The definition of a constexpr function shall satisfy the following
1609 // constraints:
1610 // - it shall not be virtual;
1611 const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD);
1612 if (Method && Method->isVirtual()) {
1613 Method = Method->getCanonicalDecl();
1614 Diag(Method->getLocation(), diag::err_constexpr_virtual);
1615
1616 // If it's not obvious why this function is virtual, find an overridden
1617 // function which uses the 'virtual' keyword.
1618 const CXXMethodDecl *WrittenVirtual = Method;
1619 while (!WrittenVirtual->isVirtualAsWritten())
1620 WrittenVirtual = *WrittenVirtual->begin_overridden_methods();
1621 if (WrittenVirtual != Method)
1622 Diag(WrittenVirtual->getLocation(),
1623 diag::note_overridden_virtual_function);
1624 return false;
1625 }
1626
1627 // - its return type shall be a literal type;
1628 QualType RT = NewFD->getReturnType();
1629 if (!RT->isDependentType() &&
1630 RequireLiteralType(NewFD->getLocation(), RT,
1631 diag::err_constexpr_non_literal_return))
1632 return false;
1633 }
1634
1635 // - each of its parameter types shall be a literal type;
1636 if (!CheckConstexprParameterTypes(*this, NewFD))
1637 return false;
1638
1639 return true;
1640}
1641
1642/// Check the given declaration statement is legal within a constexpr function
1643/// body. C++11 [dcl.constexpr]p3,p4, and C++1y [dcl.constexpr]p3.
1644///
1645/// \return true if the body is OK (maybe only as an extension), false if we
1646/// have diagnosed a problem.
1647static bool CheckConstexprDeclStmt(Sema &SemaRef, const FunctionDecl *Dcl,
1648 DeclStmt *DS, SourceLocation &Cxx1yLoc) {
1649 // C++11 [dcl.constexpr]p3 and p4:
1650 // The definition of a constexpr function(p3) or constructor(p4) [...] shall
1651 // contain only
1652 for (const auto *DclIt : DS->decls()) {
1653 switch (DclIt->getKind()) {
1654 case Decl::StaticAssert:
1655 case Decl::Using:
1656 case Decl::UsingShadow:
1657 case Decl::UsingDirective:
1658 case Decl::UnresolvedUsingTypename:
1659 case Decl::UnresolvedUsingValue:
1660 // - static_assert-declarations
1661 // - using-declarations,
1662 // - using-directives,
1663 continue;
1664
1665 case Decl::Typedef:
1666 case Decl::TypeAlias: {
1667 // - typedef declarations and alias-declarations that do not define
1668 // classes or enumerations,
1669 const auto *TN = cast<TypedefNameDecl>(DclIt);
1670 if (TN->getUnderlyingType()->isVariablyModifiedType()) {
1671 // Don't allow variably-modified types in constexpr functions.
1672 TypeLoc TL = TN->getTypeSourceInfo()->getTypeLoc();
1673 SemaRef.Diag(TL.getBeginLoc(), diag::err_constexpr_vla)
1674 << TL.getSourceRange() << TL.getType()
1675 << isa<CXXConstructorDecl>(Dcl);
1676 return false;
1677 }
1678 continue;
1679 }
1680
1681 case Decl::Enum:
1682 case Decl::CXXRecord:
1683 // C++1y allows types to be defined, not just declared.
1684 if (cast<TagDecl>(DclIt)->isThisDeclarationADefinition())
1685 SemaRef.Diag(DS->getLocStart(),
1686 SemaRef.getLangOpts().CPlusPlus14
1687 ? diag::warn_cxx11_compat_constexpr_type_definition
1688 : diag::ext_constexpr_type_definition)
1689 << isa<CXXConstructorDecl>(Dcl);
1690 continue;
1691
1692 case Decl::EnumConstant:
1693 case Decl::IndirectField:
1694 case Decl::ParmVar:
1695 // These can only appear with other declarations which are banned in
1696 // C++11 and permitted in C++1y, so ignore them.
1697 continue;
1698
1699 case Decl::Var:
1700 case Decl::Decomposition: {
1701 // C++1y [dcl.constexpr]p3 allows anything except:
1702 // a definition of a variable of non-literal type or of static or
1703 // thread storage duration or for which no initialization is performed.
1704 const auto *VD = cast<VarDecl>(DclIt);
1705 if (VD->isThisDeclarationADefinition()) {
1706 if (VD->isStaticLocal()) {
1707 SemaRef.Diag(VD->getLocation(),
1708 diag::err_constexpr_local_var_static)
1709 << isa<CXXConstructorDecl>(Dcl)
1710 << (VD->getTLSKind() == VarDecl::TLS_Dynamic);
1711 return false;
1712 }
1713 if (!VD->getType()->isDependentType() &&
1714 SemaRef.RequireLiteralType(
1715 VD->getLocation(), VD->getType(),
1716 diag::err_constexpr_local_var_non_literal_type,
1717 isa<CXXConstructorDecl>(Dcl)))
1718 return false;
1719 if (!VD->getType()->isDependentType() &&
1720 !VD->hasInit() && !VD->isCXXForRangeDecl()) {
1721 SemaRef.Diag(VD->getLocation(),
1722 diag::err_constexpr_local_var_no_init)
1723 << isa<CXXConstructorDecl>(Dcl);
1724 return false;
1725 }
1726 }
1727 SemaRef.Diag(VD->getLocation(),
1728 SemaRef.getLangOpts().CPlusPlus14
1729 ? diag::warn_cxx11_compat_constexpr_local_var
1730 : diag::ext_constexpr_local_var)
1731 << isa<CXXConstructorDecl>(Dcl);
1732 continue;
1733 }
1734
1735 case Decl::NamespaceAlias:
1736 case Decl::Function:
1737 // These are disallowed in C++11 and permitted in C++1y. Allow them
1738 // everywhere as an extension.
1739 if (!Cxx1yLoc.isValid())
1740 Cxx1yLoc = DS->getLocStart();
1741 continue;
1742
1743 default:
1744 SemaRef.Diag(DS->getLocStart(), diag::err_constexpr_body_invalid_stmt)
1745 << isa<CXXConstructorDecl>(Dcl);
1746 return false;
1747 }
1748 }
1749
1750 return true;
1751}
1752
1753/// Check that the given field is initialized within a constexpr constructor.
1754///
1755/// \param Dcl The constexpr constructor being checked.
1756/// \param Field The field being checked. This may be a member of an anonymous
1757/// struct or union nested within the class being checked.
1758/// \param Inits All declarations, including anonymous struct/union members and
1759/// indirect members, for which any initialization was provided.
1760/// \param Diagnosed Set to true if an error is produced.
1761static void CheckConstexprCtorInitializer(Sema &SemaRef,
1762 const FunctionDecl *Dcl,
1763 FieldDecl *Field,
1764 llvm::SmallSet<Decl*, 16> &Inits,
1765 bool &Diagnosed) {
1766 if (Field->isInvalidDecl())
1767 return;
1768
1769 if (Field->isUnnamedBitfield())
1770 return;
1771
1772 // Anonymous unions with no variant members and empty anonymous structs do not
1773 // need to be explicitly initialized. FIXME: Anonymous structs that contain no
1774 // indirect fields don't need initializing.
1775 if (Field->isAnonymousStructOrUnion() &&
1776 (Field->getType()->isUnionType()
1777 ? !Field->getType()->getAsCXXRecordDecl()->hasVariantMembers()
1778 : Field->getType()->getAsCXXRecordDecl()->isEmpty()))
1779 return;
1780
1781 if (!Inits.count(Field)) {
1782 if (!Diagnosed) {
1783 SemaRef.Diag(Dcl->getLocation(), diag::err_constexpr_ctor_missing_init);
1784 Diagnosed = true;
1785 }
1786 SemaRef.Diag(Field->getLocation(), diag::note_constexpr_ctor_missing_init);
1787 } else if (Field->isAnonymousStructOrUnion()) {
1788 const RecordDecl *RD = Field->getType()->castAs<RecordType>()->getDecl();
1789 for (auto *I : RD->fields())
1790 // If an anonymous union contains an anonymous struct of which any member
1791 // is initialized, all members must be initialized.
1792 if (!RD->isUnion() || Inits.count(I))
1793 CheckConstexprCtorInitializer(SemaRef, Dcl, I, Inits, Diagnosed);
1794 }
1795}
1796
1797/// Check the provided statement is allowed in a constexpr function
1798/// definition.
1799static bool
1800CheckConstexprFunctionStmt(Sema &SemaRef, const FunctionDecl *Dcl, Stmt *S,
1801 SmallVectorImpl<SourceLocation> &ReturnStmts,
1802 SourceLocation &Cxx1yLoc) {
1803 // - its function-body shall be [...] a compound-statement that contains only
1804 switch (S->getStmtClass()) {
1805 case Stmt::NullStmtClass:
1806 // - null statements,
1807 return true;
1808
1809 case Stmt::DeclStmtClass:
1810 // - static_assert-declarations
1811 // - using-declarations,
1812 // - using-directives,
1813 // - typedef declarations and alias-declarations that do not define
1814 // classes or enumerations,
1815 if (!CheckConstexprDeclStmt(SemaRef, Dcl, cast<DeclStmt>(S), Cxx1yLoc))
1816 return false;
1817 return true;
1818
1819 case Stmt::ReturnStmtClass:
1820 // - and exactly one return statement;
1821 if (isa<CXXConstructorDecl>(Dcl)) {
1822 // C++1y allows return statements in constexpr constructors.
1823 if (!Cxx1yLoc.isValid())
1824 Cxx1yLoc = S->getLocStart();
1825 return true;
1826 }
1827
1828 ReturnStmts.push_back(S->getLocStart());
1829 return true;
1830
1831 case Stmt::CompoundStmtClass: {
1832 // C++1y allows compound-statements.
1833 if (!Cxx1yLoc.isValid())
1834 Cxx1yLoc = S->getLocStart();
1835
1836 CompoundStmt *CompStmt = cast<CompoundStmt>(S);
1837 for (auto *BodyIt : CompStmt->body()) {
1838 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, BodyIt, ReturnStmts,
1839 Cxx1yLoc))
1840 return false;
1841 }
1842 return true;
1843 }
1844
1845 case Stmt::AttributedStmtClass:
1846 if (!Cxx1yLoc.isValid())
1847 Cxx1yLoc = S->getLocStart();
1848 return true;
1849
1850 case Stmt::IfStmtClass: {
1851 // C++1y allows if-statements.
1852 if (!Cxx1yLoc.isValid())
1853 Cxx1yLoc = S->getLocStart();
1854
1855 IfStmt *If = cast<IfStmt>(S);
1856 if (!CheckConstexprFunctionStmt(SemaRef, Dcl, If->getThen(), ReturnStmts,
1857 Cxx1yLoc))
1858 return false;
1859 if (If->getElse() &&
1860 !CheckConstexprFunctionStmt(SemaRef, Dcl, If->getElse(), ReturnStmts,
1861 Cxx1yLoc))
1862 return false;
1863 return true;
1864 }
1865
1866 case Stmt::WhileStmtClass:
1867 case Stmt::DoStmtClass:
1868 case Stmt::ForStmtClass:
1869 case Stmt::CXXForRangeStmtClass:
1870 case Stmt::ContinueStmtClass:
1871 // C++1y allows all of these. We don't allow them as extensions in C++11,
1872 // because they don't make sense without variable mutation.
1873 if (!SemaRef.getLangOpts().CPlusPlus14)
1874 break;
1875 if (!Cxx1yLoc.isValid())
1876 Cxx1yLoc = S->getLocStart();
1877 for (Stmt *SubStmt : S->children())
1878 if (SubStmt &&
1879 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
1880 Cxx1yLoc))
1881 return false;
1882 return true;
1883
1884 case Stmt::SwitchStmtClass:
1885 case Stmt::CaseStmtClass:
1886 case Stmt::DefaultStmtClass:
1887 case Stmt::BreakStmtClass:
1888 // C++1y allows switch-statements, and since they don't need variable
1889 // mutation, we can reasonably allow them in C++11 as an extension.
1890 if (!Cxx1yLoc.isValid())
1891 Cxx1yLoc = S->getLocStart();
1892 for (Stmt *SubStmt : S->children())
1893 if (SubStmt &&
1894 !CheckConstexprFunctionStmt(SemaRef, Dcl, SubStmt, ReturnStmts,
1895 Cxx1yLoc))
1896 return false;
1897 return true;
1898
1899 default:
1900 if (!isa<Expr>(S))
1901 break;
1902
1903 // C++1y allows expression-statements.
1904 if (!Cxx1yLoc.isValid())
1905 Cxx1yLoc = S->getLocStart();
1906 return true;
1907 }
1908
1909 SemaRef.Diag(S->getLocStart(), diag::err_constexpr_body_invalid_stmt)
1910 << isa<CXXConstructorDecl>(Dcl);
1911 return false;
1912}
1913
1914/// Check the body for the given constexpr function declaration only contains
1915/// the permitted types of statement. C++11 [dcl.constexpr]p3,p4.
1916///
1917/// \return true if the body is OK, false if we have diagnosed a problem.
1918bool Sema::CheckConstexprFunctionBody(const FunctionDecl *Dcl, Stmt *Body) {
1919 if (isa<CXXTryStmt>(Body)) {
1920 // C++11 [dcl.constexpr]p3:
1921 // The definition of a constexpr function shall satisfy the following
1922 // constraints: [...]
1923 // - its function-body shall be = delete, = default, or a
1924 // compound-statement
1925 //
1926 // C++11 [dcl.constexpr]p4:
1927 // In the definition of a constexpr constructor, [...]
1928 // - its function-body shall not be a function-try-block;
1929 Diag(Body->getLocStart(), diag::err_constexpr_function_try_block)
1930 << isa<CXXConstructorDecl>(Dcl);
1931 return false;
1932 }
1933
1934 SmallVector<SourceLocation, 4> ReturnStmts;
1935
1936 // - its function-body shall be [...] a compound-statement that contains only
1937 // [... list of cases ...]
1938 CompoundStmt *CompBody = cast<CompoundStmt>(Body);
1939 SourceLocation Cxx1yLoc;
1940 for (auto *BodyIt : CompBody->body()) {
1941 if (!CheckConstexprFunctionStmt(*this, Dcl, BodyIt, ReturnStmts, Cxx1yLoc))
1942 return false;
1943 }
1944
1945 if (Cxx1yLoc.isValid())
1946 Diag(Cxx1yLoc,
1947 getLangOpts().CPlusPlus14
1948 ? diag::warn_cxx11_compat_constexpr_body_invalid_stmt
1949 : diag::ext_constexpr_body_invalid_stmt)
1950 << isa<CXXConstructorDecl>(Dcl);
1951
1952 if (const CXXConstructorDecl *Constructor
1953 = dyn_cast<CXXConstructorDecl>(Dcl)) {
1954 const CXXRecordDecl *RD = Constructor->getParent();
1955 // DR1359:
1956 // - every non-variant non-static data member and base class sub-object
1957 // shall be initialized;
1958 // DR1460:
1959 // - if the class is a union having variant members, exactly one of them
1960 // shall be initialized;
1961 if (RD->isUnion()) {
1962 if (Constructor->getNumCtorInitializers() == 0 &&
1963 RD->hasVariantMembers()) {
1964 Diag(Dcl->getLocation(), diag::err_constexpr_union_ctor_no_init);
1965 return false;
1966 }
1967 } else if (!Constructor->isDependentContext() &&
1968 !Constructor->isDelegatingConstructor()) {
1969 assert(RD->getNumVBases() == 0 && "constexpr ctor with virtual bases")((RD->getNumVBases() == 0 && "constexpr ctor with virtual bases"
) ? static_cast<void> (0) : __assert_fail ("RD->getNumVBases() == 0 && \"constexpr ctor with virtual bases\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 1969, __PRETTY_FUNCTION__))
;
1970
1971 // Skip detailed checking if we have enough initializers, and we would
1972 // allow at most one initializer per member.
1973 bool AnyAnonStructUnionMembers = false;
1974 unsigned Fields = 0;
1975 for (CXXRecordDecl::field_iterator I = RD->field_begin(),
1976 E = RD->field_end(); I != E; ++I, ++Fields) {
1977 if (I->isAnonymousStructOrUnion()) {
1978 AnyAnonStructUnionMembers = true;
1979 break;
1980 }
1981 }
1982 // DR1460:
1983 // - if the class is a union-like class, but is not a union, for each of
1984 // its anonymous union members having variant members, exactly one of
1985 // them shall be initialized;
1986 if (AnyAnonStructUnionMembers ||
1987 Constructor->getNumCtorInitializers() != RD->getNumBases() + Fields) {
1988 // Check initialization of non-static data members. Base classes are
1989 // always initialized so do not need to be checked. Dependent bases
1990 // might not have initializers in the member initializer list.
1991 llvm::SmallSet<Decl*, 16> Inits;
1992 for (const auto *I: Constructor->inits()) {
1993 if (FieldDecl *FD = I->getMember())
1994 Inits.insert(FD);
1995 else if (IndirectFieldDecl *ID = I->getIndirectMember())
1996 Inits.insert(ID->chain_begin(), ID->chain_end());
1997 }
1998
1999 bool Diagnosed = false;
2000 for (auto *I : RD->fields())
2001 CheckConstexprCtorInitializer(*this, Dcl, I, Inits, Diagnosed);
2002 if (Diagnosed)
2003 return false;
2004 }
2005 }
2006 } else {
2007 if (ReturnStmts.empty()) {
2008 // C++1y doesn't require constexpr functions to contain a 'return'
2009 // statement. We still do, unless the return type might be void, because
2010 // otherwise if there's no return statement, the function cannot
2011 // be used in a core constant expression.
2012 bool OK = getLangOpts().CPlusPlus14 &&
2013 (Dcl->getReturnType()->isVoidType() ||
2014 Dcl->getReturnType()->isDependentType());
2015 Diag(Dcl->getLocation(),
2016 OK ? diag::warn_cxx11_compat_constexpr_body_no_return
2017 : diag::err_constexpr_body_no_return);
2018 if (!OK)
2019 return false;
2020 } else if (ReturnStmts.size() > 1) {
2021 Diag(ReturnStmts.back(),
2022 getLangOpts().CPlusPlus14
2023 ? diag::warn_cxx11_compat_constexpr_body_multiple_return
2024 : diag::ext_constexpr_body_multiple_return);
2025 for (unsigned I = 0; I < ReturnStmts.size() - 1; ++I)
2026 Diag(ReturnStmts[I], diag::note_constexpr_body_previous_return);
2027 }
2028 }
2029
2030 // C++11 [dcl.constexpr]p5:
2031 // if no function argument values exist such that the function invocation
2032 // substitution would produce a constant expression, the program is
2033 // ill-formed; no diagnostic required.
2034 // C++11 [dcl.constexpr]p3:
2035 // - every constructor call and implicit conversion used in initializing the
2036 // return value shall be one of those allowed in a constant expression.
2037 // C++11 [dcl.constexpr]p4:
2038 // - every constructor involved in initializing non-static data members and
2039 // base class sub-objects shall be a constexpr constructor.
2040 SmallVector<PartialDiagnosticAt, 8> Diags;
2041 if (!Expr::isPotentialConstantExpr(Dcl, Diags)) {
2042 Diag(Dcl->getLocation(), diag::ext_constexpr_function_never_constant_expr)
2043 << isa<CXXConstructorDecl>(Dcl);
2044 for (size_t I = 0, N = Diags.size(); I != N; ++I)
2045 Diag(Diags[I].first, Diags[I].second);
2046 // Don't return false here: we allow this for compatibility in
2047 // system headers.
2048 }
2049
2050 return true;
2051}
2052
2053/// isCurrentClassName - Determine whether the identifier II is the
2054/// name of the class type currently being defined. In the case of
2055/// nested classes, this will only return true if II is the name of
2056/// the innermost class.
2057bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *,
2058 const CXXScopeSpec *SS) {
2059 assert(getLangOpts().CPlusPlus && "No class names in C!")((getLangOpts().CPlusPlus && "No class names in C!") ?
static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"No class names in C!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2059, __PRETTY_FUNCTION__))
;
2060
2061 CXXRecordDecl *CurDecl;
2062 if (SS && SS->isSet() && !SS->isInvalid()) {
2063 DeclContext *DC = computeDeclContext(*SS, true);
2064 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
2065 } else
2066 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
2067
2068 if (CurDecl && CurDecl->getIdentifier())
2069 return &II == CurDecl->getIdentifier();
2070 return false;
2071}
2072
2073/// \brief Determine whether the identifier II is a typo for the name of
2074/// the class type currently being defined. If so, update it to the identifier
2075/// that should have been used.
2076bool Sema::isCurrentClassNameTypo(IdentifierInfo *&II, const CXXScopeSpec *SS) {
2077 assert(getLangOpts().CPlusPlus && "No class names in C!")((getLangOpts().CPlusPlus && "No class names in C!") ?
static_cast<void> (0) : __assert_fail ("getLangOpts().CPlusPlus && \"No class names in C!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2077, __PRETTY_FUNCTION__))
;
2078
2079 if (!getLangOpts().SpellChecking)
2080 return false;
2081
2082 CXXRecordDecl *CurDecl;
2083 if (SS && SS->isSet() && !SS->isInvalid()) {
2084 DeclContext *DC = computeDeclContext(*SS, true);
2085 CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC);
2086 } else
2087 CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext);
2088
2089 if (CurDecl && CurDecl->getIdentifier() && II != CurDecl->getIdentifier() &&
2090 3 * II->getName().edit_distance(CurDecl->getIdentifier()->getName())
2091 < II->getLength()) {
2092 II = CurDecl->getIdentifier();
2093 return true;
2094 }
2095
2096 return false;
2097}
2098
2099/// \brief Determine whether the given class is a base class of the given
2100/// class, including looking at dependent bases.
2101static bool findCircularInheritance(const CXXRecordDecl *Class,
2102 const CXXRecordDecl *Current) {
2103 SmallVector<const CXXRecordDecl*, 8> Queue;
2104
2105 Class = Class->getCanonicalDecl();
2106 while (true) {
2107 for (const auto &I : Current->bases()) {
2108 CXXRecordDecl *Base = I.getType()->getAsCXXRecordDecl();
2109 if (!Base)
2110 continue;
2111
2112 Base = Base->getDefinition();
2113 if (!Base)
2114 continue;
2115
2116 if (Base->getCanonicalDecl() == Class)
2117 return true;
2118
2119 Queue.push_back(Base);
2120 }
2121
2122 if (Queue.empty())
2123 return false;
2124
2125 Current = Queue.pop_back_val();
2126 }
2127
2128 return false;
2129}
2130
2131/// \brief Check the validity of a C++ base class specifier.
2132///
2133/// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics
2134/// and returns NULL otherwise.
2135CXXBaseSpecifier *
2136Sema::CheckBaseSpecifier(CXXRecordDecl *Class,
2137 SourceRange SpecifierRange,
2138 bool Virtual, AccessSpecifier Access,
2139 TypeSourceInfo *TInfo,
2140 SourceLocation EllipsisLoc) {
2141 QualType BaseType = TInfo->getType();
2142
2143 // C++ [class.union]p1:
2144 // A union shall not have base classes.
2145 if (Class->isUnion()) {
2146 Diag(Class->getLocation(), diag::err_base_clause_on_union)
2147 << SpecifierRange;
2148 return nullptr;
2149 }
2150
2151 if (EllipsisLoc.isValid() &&
2152 !TInfo->getType()->containsUnexpandedParameterPack()) {
2153 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
2154 << TInfo->getTypeLoc().getSourceRange();
2155 EllipsisLoc = SourceLocation();
2156 }
2157
2158 SourceLocation BaseLoc = TInfo->getTypeLoc().getBeginLoc();
2159
2160 if (BaseType->isDependentType()) {
2161 // Make sure that we don't have circular inheritance among our dependent
2162 // bases. For non-dependent bases, the check for completeness below handles
2163 // this.
2164 if (CXXRecordDecl *BaseDecl = BaseType->getAsCXXRecordDecl()) {
2165 if (BaseDecl->getCanonicalDecl() == Class->getCanonicalDecl() ||
2166 ((BaseDecl = BaseDecl->getDefinition()) &&
2167 findCircularInheritance(Class, BaseDecl))) {
2168 Diag(BaseLoc, diag::err_circular_inheritance)
2169 << BaseType << Context.getTypeDeclType(Class);
2170
2171 if (BaseDecl->getCanonicalDecl() != Class->getCanonicalDecl())
2172 Diag(BaseDecl->getLocation(), diag::note_previous_decl)
2173 << BaseType;
2174
2175 return nullptr;
2176 }
2177 }
2178
2179 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2180 Class->getTagKind() == TTK_Class,
2181 Access, TInfo, EllipsisLoc);
2182 }
2183
2184 // Base specifiers must be record types.
2185 if (!BaseType->isRecordType()) {
2186 Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange;
2187 return nullptr;
2188 }
2189
2190 // C++ [class.union]p1:
2191 // A union shall not be used as a base class.
2192 if (BaseType->isUnionType()) {
2193 Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange;
2194 return nullptr;
2195 }
2196
2197 // For the MS ABI, propagate DLL attributes to base class templates.
2198 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
2199 if (Attr *ClassAttr = getDLLAttr(Class)) {
2200 if (auto *BaseTemplate = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
2201 BaseType->getAsCXXRecordDecl())) {
2202 propagateDLLAttrToBaseClassTemplate(Class, ClassAttr, BaseTemplate,
2203 BaseLoc);
2204 }
2205 }
2206 }
2207
2208 // C++ [class.derived]p2:
2209 // The class-name in a base-specifier shall not be an incompletely
2210 // defined class.
2211 if (RequireCompleteType(BaseLoc, BaseType,
2212 diag::err_incomplete_base_class, SpecifierRange)) {
2213 Class->setInvalidDecl();
2214 return nullptr;
2215 }
2216
2217 // If the base class is polymorphic or isn't empty, the new one is/isn't, too.
2218 RecordDecl *BaseDecl = BaseType->getAs<RecordType>()->getDecl();
2219 assert(BaseDecl && "Record type has no declaration")((BaseDecl && "Record type has no declaration") ? static_cast
<void> (0) : __assert_fail ("BaseDecl && \"Record type has no declaration\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2219, __PRETTY_FUNCTION__))
;
2220 BaseDecl = BaseDecl->getDefinition();
2221 assert(BaseDecl && "Base type is not incomplete, but has no definition")((BaseDecl && "Base type is not incomplete, but has no definition"
) ? static_cast<void> (0) : __assert_fail ("BaseDecl && \"Base type is not incomplete, but has no definition\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2221, __PRETTY_FUNCTION__))
;
2222 CXXRecordDecl *CXXBaseDecl = cast<CXXRecordDecl>(BaseDecl);
2223 assert(CXXBaseDecl && "Base type is not a C++ type")((CXXBaseDecl && "Base type is not a C++ type") ? static_cast
<void> (0) : __assert_fail ("CXXBaseDecl && \"Base type is not a C++ type\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2223, __PRETTY_FUNCTION__))
;
2224
2225 // A class which contains a flexible array member is not suitable for use as a
2226 // base class:
2227 // - If the layout determines that a base comes before another base,
2228 // the flexible array member would index into the subsequent base.
2229 // - If the layout determines that base comes before the derived class,
2230 // the flexible array member would index into the derived class.
2231 if (CXXBaseDecl->hasFlexibleArrayMember()) {
2232 Diag(BaseLoc, diag::err_base_class_has_flexible_array_member)
2233 << CXXBaseDecl->getDeclName();
2234 return nullptr;
2235 }
2236
2237 // C++ [class]p3:
2238 // If a class is marked final and it appears as a base-type-specifier in
2239 // base-clause, the program is ill-formed.
2240 if (FinalAttr *FA = CXXBaseDecl->getAttr<FinalAttr>()) {
2241 Diag(BaseLoc, diag::err_class_marked_final_used_as_base)
2242 << CXXBaseDecl->getDeclName()
2243 << FA->isSpelledAsSealed();
2244 Diag(CXXBaseDecl->getLocation(), diag::note_entity_declared_at)
2245 << CXXBaseDecl->getDeclName() << FA->getRange();
2246 return nullptr;
2247 }
2248
2249 if (BaseDecl->isInvalidDecl())
2250 Class->setInvalidDecl();
2251
2252 // Create the base specifier.
2253 return new (Context) CXXBaseSpecifier(SpecifierRange, Virtual,
2254 Class->getTagKind() == TTK_Class,
2255 Access, TInfo, EllipsisLoc);
2256}
2257
2258/// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is
2259/// one entry in the base class list of a class specifier, for
2260/// example:
2261/// class foo : public bar, virtual private baz {
2262/// 'public bar' and 'virtual private baz' are each base-specifiers.
2263BaseResult
2264Sema::ActOnBaseSpecifier(Decl *classdecl, SourceRange SpecifierRange,
2265 ParsedAttributes &Attributes,
2266 bool Virtual, AccessSpecifier Access,
2267 ParsedType basetype, SourceLocation BaseLoc,
2268 SourceLocation EllipsisLoc) {
2269 if (!classdecl)
2270 return true;
2271
2272 AdjustDeclIfTemplate(classdecl);
2273 CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(classdecl);
2274 if (!Class)
2275 return true;
2276
2277 // We haven't yet attached the base specifiers.
2278 Class->setIsParsingBaseSpecifiers();
2279
2280 // We do not support any C++11 attributes on base-specifiers yet.
2281 // Diagnose any attributes we see.
2282 if (!Attributes.empty()) {
2283 for (AttributeList *Attr = Attributes.getList(); Attr;
2284 Attr = Attr->getNext()) {
2285 if (Attr->isInvalid() ||
2286 Attr->getKind() == AttributeList::IgnoredAttribute)
2287 continue;
2288 Diag(Attr->getLoc(),
2289 Attr->getKind() == AttributeList::UnknownAttribute
2290 ? diag::warn_unknown_attribute_ignored
2291 : diag::err_base_specifier_attribute)
2292 << Attr->getName();
2293 }
2294 }
2295
2296 TypeSourceInfo *TInfo = nullptr;
2297 GetTypeFromParser(basetype, &TInfo);
2298
2299 if (EllipsisLoc.isInvalid() &&
2300 DiagnoseUnexpandedParameterPack(SpecifierRange.getBegin(), TInfo,
2301 UPPC_BaseType))
2302 return true;
2303
2304 if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange,
2305 Virtual, Access, TInfo,
2306 EllipsisLoc))
2307 return BaseSpec;
2308 else
2309 Class->setInvalidDecl();
2310
2311 return true;
2312}
2313
2314/// Use small set to collect indirect bases. As this is only used
2315/// locally, there's no need to abstract the small size parameter.
2316typedef llvm::SmallPtrSet<QualType, 4> IndirectBaseSet;
2317
2318/// \brief Recursively add the bases of Type. Don't add Type itself.
2319static void
2320NoteIndirectBases(ASTContext &Context, IndirectBaseSet &Set,
2321 const QualType &Type)
2322{
2323 // Even though the incoming type is a base, it might not be
2324 // a class -- it could be a template parm, for instance.
2325 if (auto Rec = Type->getAs<RecordType>()) {
2326 auto Decl = Rec->getAsCXXRecordDecl();
2327
2328 // Iterate over its bases.
2329 for (const auto &BaseSpec : Decl->bases()) {
2330 QualType Base = Context.getCanonicalType(BaseSpec.getType())
2331 .getUnqualifiedType();
2332 if (Set.insert(Base).second)
2333 // If we've not already seen it, recurse.
2334 NoteIndirectBases(Context, Set, Base);
2335 }
2336 }
2337}
2338
2339/// \brief Performs the actual work of attaching the given base class
2340/// specifiers to a C++ class.
2341bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class,
2342 MutableArrayRef<CXXBaseSpecifier *> Bases) {
2343 if (Bases.empty())
2344 return false;
2345
2346 // Used to keep track of which base types we have already seen, so
2347 // that we can properly diagnose redundant direct base types. Note
2348 // that the key is always the unqualified canonical type of the base
2349 // class.
2350 std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes;
2351
2352 // Used to track indirect bases so we can see if a direct base is
2353 // ambiguous.
2354 IndirectBaseSet IndirectBaseTypes;
2355
2356 // Copy non-redundant base specifiers into permanent storage.
2357 unsigned NumGoodBases = 0;
2358 bool Invalid = false;
2359 for (unsigned idx = 0; idx < Bases.size(); ++idx) {
2360 QualType NewBaseType
2361 = Context.getCanonicalType(Bases[idx]->getType());
2362 NewBaseType = NewBaseType.getLocalUnqualifiedType();
2363
2364 CXXBaseSpecifier *&KnownBase = KnownBaseTypes[NewBaseType];
2365 if (KnownBase) {
2366 // C++ [class.mi]p3:
2367 // A class shall not be specified as a direct base class of a
2368 // derived class more than once.
2369 Diag(Bases[idx]->getLocStart(),
2370 diag::err_duplicate_base_class)
2371 << KnownBase->getType()
2372 << Bases[idx]->getSourceRange();
2373
2374 // Delete the duplicate base class specifier; we're going to
2375 // overwrite its pointer later.
2376 Context.Deallocate(Bases[idx]);
2377
2378 Invalid = true;
2379 } else {
2380 // Okay, add this new base class.
2381 KnownBase = Bases[idx];
2382 Bases[NumGoodBases++] = Bases[idx];
2383
2384 // Note this base's direct & indirect bases, if there could be ambiguity.
2385 if (Bases.size() > 1)
2386 NoteIndirectBases(Context, IndirectBaseTypes, NewBaseType);
2387
2388 if (const RecordType *Record = NewBaseType->getAs<RecordType>()) {
2389 const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl());
2390 if (Class->isInterface() &&
2391 (!RD->isInterface() ||
2392 KnownBase->getAccessSpecifier() != AS_public)) {
2393 // The Microsoft extension __interface does not permit bases that
2394 // are not themselves public interfaces.
2395 Diag(KnownBase->getLocStart(), diag::err_invalid_base_in_interface)
2396 << getRecordDiagFromTagKind(RD->getTagKind()) << RD->getName()
2397 << RD->getSourceRange();
2398 Invalid = true;
2399 }
2400 if (RD->hasAttr<WeakAttr>())
2401 Class->addAttr(WeakAttr::CreateImplicit(Context));
2402 }
2403 }
2404 }
2405
2406 // Attach the remaining base class specifiers to the derived class.
2407 Class->setBases(Bases.data(), NumGoodBases);
2408
2409 for (unsigned idx = 0; idx < NumGoodBases; ++idx) {
2410 // Check whether this direct base is inaccessible due to ambiguity.
2411 QualType BaseType = Bases[idx]->getType();
2412 CanQualType CanonicalBase = Context.getCanonicalType(BaseType)
2413 .getUnqualifiedType();
2414
2415 if (IndirectBaseTypes.count(CanonicalBase)) {
2416 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2417 /*DetectVirtual=*/true);
2418 bool found
2419 = Class->isDerivedFrom(CanonicalBase->getAsCXXRecordDecl(), Paths);
2420 assert(found)((found) ? static_cast<void> (0) : __assert_fail ("found"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2420, __PRETTY_FUNCTION__))
;
2421 (void)found;
2422
2423 if (Paths.isAmbiguous(CanonicalBase))
2424 Diag(Bases[idx]->getLocStart (), diag::warn_inaccessible_base_class)
2425 << BaseType << getAmbiguousPathsDisplayString(Paths)
2426 << Bases[idx]->getSourceRange();
2427 else
2428 assert(Bases[idx]->isVirtual())((Bases[idx]->isVirtual()) ? static_cast<void> (0) :
__assert_fail ("Bases[idx]->isVirtual()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2428, __PRETTY_FUNCTION__))
;
2429 }
2430
2431 // Delete the base class specifier, since its data has been copied
2432 // into the CXXRecordDecl.
2433 Context.Deallocate(Bases[idx]);
2434 }
2435
2436 return Invalid;
2437}
2438
2439/// ActOnBaseSpecifiers - Attach the given base specifiers to the
2440/// class, after checking whether there are any duplicate base
2441/// classes.
2442void Sema::ActOnBaseSpecifiers(Decl *ClassDecl,
2443 MutableArrayRef<CXXBaseSpecifier *> Bases) {
2444 if (!ClassDecl || Bases.empty())
2445 return;
2446
2447 AdjustDeclIfTemplate(ClassDecl);
2448 AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl), Bases);
2449}
2450
2451/// \brief Determine whether the type \p Derived is a C++ class that is
2452/// derived from the type \p Base.
2453bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base) {
2454 if (!getLangOpts().CPlusPlus)
2455 return false;
2456
2457 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
2458 if (!DerivedRD)
2459 return false;
2460
2461 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
2462 if (!BaseRD)
2463 return false;
2464
2465 // If either the base or the derived type is invalid, don't try to
2466 // check whether one is derived from the other.
2467 if (BaseRD->isInvalidDecl() || DerivedRD->isInvalidDecl())
2468 return false;
2469
2470 // FIXME: In a modules build, do we need the entire path to be visible for us
2471 // to be able to use the inheritance relationship?
2472 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
2473 return false;
2474
2475 return DerivedRD->isDerivedFrom(BaseRD);
2476}
2477
2478/// \brief Determine whether the type \p Derived is a C++ class that is
2479/// derived from the type \p Base.
2480bool Sema::IsDerivedFrom(SourceLocation Loc, QualType Derived, QualType Base,
2481 CXXBasePaths &Paths) {
2482 if (!getLangOpts().CPlusPlus)
2483 return false;
2484
2485 CXXRecordDecl *DerivedRD = Derived->getAsCXXRecordDecl();
2486 if (!DerivedRD)
2487 return false;
2488
2489 CXXRecordDecl *BaseRD = Base->getAsCXXRecordDecl();
2490 if (!BaseRD)
2491 return false;
2492
2493 if (!isCompleteType(Loc, Derived) && !DerivedRD->isBeingDefined())
2494 return false;
2495
2496 return DerivedRD->isDerivedFrom(BaseRD, Paths);
2497}
2498
2499void Sema::BuildBasePathArray(const CXXBasePaths &Paths,
2500 CXXCastPath &BasePathArray) {
2501 assert(BasePathArray.empty() && "Base path array must be empty!")((BasePathArray.empty() && "Base path array must be empty!"
) ? static_cast<void> (0) : __assert_fail ("BasePathArray.empty() && \"Base path array must be empty!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2501, __PRETTY_FUNCTION__))
;
2502 assert(Paths.isRecordingPaths() && "Must record paths!")((Paths.isRecordingPaths() && "Must record paths!") ?
static_cast<void> (0) : __assert_fail ("Paths.isRecordingPaths() && \"Must record paths!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2502, __PRETTY_FUNCTION__))
;
2503
2504 const CXXBasePath &Path = Paths.front();
2505
2506 // We first go backward and check if we have a virtual base.
2507 // FIXME: It would be better if CXXBasePath had the base specifier for
2508 // the nearest virtual base.
2509 unsigned Start = 0;
2510 for (unsigned I = Path.size(); I != 0; --I) {
2511 if (Path[I - 1].Base->isVirtual()) {
2512 Start = I - 1;
2513 break;
2514 }
2515 }
2516
2517 // Now add all bases.
2518 for (unsigned I = Start, E = Path.size(); I != E; ++I)
2519 BasePathArray.push_back(const_cast<CXXBaseSpecifier*>(Path[I].Base));
2520}
2521
2522/// CheckDerivedToBaseConversion - Check whether the Derived-to-Base
2523/// conversion (where Derived and Base are class types) is
2524/// well-formed, meaning that the conversion is unambiguous (and
2525/// that all of the base classes are accessible). Returns true
2526/// and emits a diagnostic if the code is ill-formed, returns false
2527/// otherwise. Loc is the location where this routine should point to
2528/// if there is an error, and Range is the source range to highlight
2529/// if there is an error.
2530///
2531/// If either InaccessibleBaseID or AmbigiousBaseConvID are 0, then the
2532/// diagnostic for the respective type of error will be suppressed, but the
2533/// check for ill-formed code will still be performed.
2534bool
2535Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
2536 unsigned InaccessibleBaseID,
2537 unsigned AmbigiousBaseConvID,
2538 SourceLocation Loc, SourceRange Range,
2539 DeclarationName Name,
2540 CXXCastPath *BasePath,
2541 bool IgnoreAccess) {
2542 // First, determine whether the path from Derived to Base is
2543 // ambiguous. This is slightly more expensive than checking whether
2544 // the Derived to Base conversion exists, because here we need to
2545 // explore multiple paths to determine if there is an ambiguity.
2546 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2547 /*DetectVirtual=*/false);
2548 bool DerivationOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
2549 assert(DerivationOkay &&((DerivationOkay && "Can only be used with a derived-to-base conversion"
) ? static_cast<void> (0) : __assert_fail ("DerivationOkay && \"Can only be used with a derived-to-base conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2550, __PRETTY_FUNCTION__))
2550 "Can only be used with a derived-to-base conversion")((DerivationOkay && "Can only be used with a derived-to-base conversion"
) ? static_cast<void> (0) : __assert_fail ("DerivationOkay && \"Can only be used with a derived-to-base conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2550, __PRETTY_FUNCTION__))
;
2551 (void)DerivationOkay;
2552
2553 if (!Paths.isAmbiguous(Context.getCanonicalType(Base).getUnqualifiedType())) {
2554 if (!IgnoreAccess) {
2555 // Check that the base class can be accessed.
2556 switch (CheckBaseClassAccess(Loc, Base, Derived, Paths.front(),
2557 InaccessibleBaseID)) {
2558 case AR_inaccessible:
2559 return true;
2560 case AR_accessible:
2561 case AR_dependent:
2562 case AR_delayed:
2563 break;
2564 }
2565 }
2566
2567 // Build a base path if necessary.
2568 if (BasePath)
2569 BuildBasePathArray(Paths, *BasePath);
2570 return false;
2571 }
2572
2573 if (AmbigiousBaseConvID) {
2574 // We know that the derived-to-base conversion is ambiguous, and
2575 // we're going to produce a diagnostic. Perform the derived-to-base
2576 // search just one more time to compute all of the possible paths so
2577 // that we can print them out. This is more expensive than any of
2578 // the previous derived-to-base checks we've done, but at this point
2579 // performance isn't as much of an issue.
2580 Paths.clear();
2581 Paths.setRecordingPaths(true);
2582 bool StillOkay = IsDerivedFrom(Loc, Derived, Base, Paths);
2583 assert(StillOkay && "Can only be used with a derived-to-base conversion")((StillOkay && "Can only be used with a derived-to-base conversion"
) ? static_cast<void> (0) : __assert_fail ("StillOkay && \"Can only be used with a derived-to-base conversion\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2583, __PRETTY_FUNCTION__))
;
2584 (void)StillOkay;
2585
2586 // Build up a textual representation of the ambiguous paths, e.g.,
2587 // D -> B -> A, that will be used to illustrate the ambiguous
2588 // conversions in the diagnostic. We only print one of the paths
2589 // to each base class subobject.
2590 std::string PathDisplayStr = getAmbiguousPathsDisplayString(Paths);
2591
2592 Diag(Loc, AmbigiousBaseConvID)
2593 << Derived << Base << PathDisplayStr << Range << Name;
2594 }
2595 return true;
2596}
2597
2598bool
2599Sema::CheckDerivedToBaseConversion(QualType Derived, QualType Base,
2600 SourceLocation Loc, SourceRange Range,
2601 CXXCastPath *BasePath,
2602 bool IgnoreAccess) {
2603 return CheckDerivedToBaseConversion(
2604 Derived, Base, diag::err_upcast_to_inaccessible_base,
2605 diag::err_ambiguous_derived_to_base_conv, Loc, Range, DeclarationName(),
2606 BasePath, IgnoreAccess);
2607}
2608
2609
2610/// @brief Builds a string representing ambiguous paths from a
2611/// specific derived class to different subobjects of the same base
2612/// class.
2613///
2614/// This function builds a string that can be used in error messages
2615/// to show the different paths that one can take through the
2616/// inheritance hierarchy to go from the derived class to different
2617/// subobjects of a base class. The result looks something like this:
2618/// @code
2619/// struct D -> struct B -> struct A
2620/// struct D -> struct C -> struct A
2621/// @endcode
2622std::string Sema::getAmbiguousPathsDisplayString(CXXBasePaths &Paths) {
2623 std::string PathDisplayStr;
2624 std::set<unsigned> DisplayedPaths;
2625 for (CXXBasePaths::paths_iterator Path = Paths.begin();
2626 Path != Paths.end(); ++Path) {
2627 if (DisplayedPaths.insert(Path->back().SubobjectNumber).second) {
2628 // We haven't displayed a path to this particular base
2629 // class subobject yet.
2630 PathDisplayStr += "\n ";
2631 PathDisplayStr += Context.getTypeDeclType(Paths.getOrigin()).getAsString();
2632 for (CXXBasePath::const_iterator Element = Path->begin();
2633 Element != Path->end(); ++Element)
2634 PathDisplayStr += " -> " + Element->Base->getType().getAsString();
2635 }
2636 }
2637
2638 return PathDisplayStr;
2639}
2640
2641//===----------------------------------------------------------------------===//
2642// C++ class member Handling
2643//===----------------------------------------------------------------------===//
2644
2645/// ActOnAccessSpecifier - Parsed an access specifier followed by a colon.
2646bool Sema::ActOnAccessSpecifier(AccessSpecifier Access,
2647 SourceLocation ASLoc,
2648 SourceLocation ColonLoc,
2649 AttributeList *Attrs) {
2650 assert(Access != AS_none && "Invalid kind for syntactic access specifier!")((Access != AS_none && "Invalid kind for syntactic access specifier!"
) ? static_cast<void> (0) : __assert_fail ("Access != AS_none && \"Invalid kind for syntactic access specifier!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2650, __PRETTY_FUNCTION__))
;
2651 AccessSpecDecl *ASDecl = AccessSpecDecl::Create(Context, Access, CurContext,
2652 ASLoc, ColonLoc);
2653 CurContext->addHiddenDecl(ASDecl);
2654 return ProcessAccessDeclAttributeList(ASDecl, Attrs);
2655}
2656
2657/// CheckOverrideControl - Check C++11 override control semantics.
2658void Sema::CheckOverrideControl(NamedDecl *D) {
2659 if (D->isInvalidDecl())
2660 return;
2661
2662 // We only care about "override" and "final" declarations.
2663 if (!D->hasAttr<OverrideAttr>() && !D->hasAttr<FinalAttr>())
2664 return;
2665
2666 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
2667
2668 // We can't check dependent instance methods.
2669 if (MD && MD->isInstance() &&
2670 (MD->getParent()->hasAnyDependentBases() ||
2671 MD->getType()->isDependentType()))
2672 return;
2673
2674 if (MD && !MD->isVirtual()) {
2675 // If we have a non-virtual method, check if if hides a virtual method.
2676 // (In that case, it's most likely the method has the wrong type.)
2677 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
2678 FindHiddenVirtualMethods(MD, OverloadedMethods);
2679
2680 if (!OverloadedMethods.empty()) {
2681 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
2682 Diag(OA->getLocation(),
2683 diag::override_keyword_hides_virtual_member_function)
2684 << "override" << (OverloadedMethods.size() > 1);
2685 } else if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
2686 Diag(FA->getLocation(),
2687 diag::override_keyword_hides_virtual_member_function)
2688 << (FA->isSpelledAsSealed() ? "sealed" : "final")
2689 << (OverloadedMethods.size() > 1);
2690 }
2691 NoteHiddenVirtualMethods(MD, OverloadedMethods);
2692 MD->setInvalidDecl();
2693 return;
2694 }
2695 // Fall through into the general case diagnostic.
2696 // FIXME: We might want to attempt typo correction here.
2697 }
2698
2699 if (!MD || !MD->isVirtual()) {
2700 if (OverrideAttr *OA = D->getAttr<OverrideAttr>()) {
2701 Diag(OA->getLocation(),
2702 diag::override_keyword_only_allowed_on_virtual_member_functions)
2703 << "override" << FixItHint::CreateRemoval(OA->getLocation());
2704 D->dropAttr<OverrideAttr>();
2705 }
2706 if (FinalAttr *FA = D->getAttr<FinalAttr>()) {
2707 Diag(FA->getLocation(),
2708 diag::override_keyword_only_allowed_on_virtual_member_functions)
2709 << (FA->isSpelledAsSealed() ? "sealed" : "final")
2710 << FixItHint::CreateRemoval(FA->getLocation());
2711 D->dropAttr<FinalAttr>();
2712 }
2713 return;
2714 }
2715
2716 // C++11 [class.virtual]p5:
2717 // If a function is marked with the virt-specifier override and
2718 // does not override a member function of a base class, the program is
2719 // ill-formed.
2720 bool HasOverriddenMethods =
2721 MD->begin_overridden_methods() != MD->end_overridden_methods();
2722 if (MD->hasAttr<OverrideAttr>() && !HasOverriddenMethods)
2723 Diag(MD->getLocation(), diag::err_function_marked_override_not_overriding)
2724 << MD->getDeclName();
2725}
2726
2727void Sema::DiagnoseAbsenceOfOverrideControl(NamedDecl *D) {
2728 if (D->isInvalidDecl() || D->hasAttr<OverrideAttr>())
2729 return;
2730 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D);
2731 if (!MD || MD->isImplicit() || MD->hasAttr<FinalAttr>())
2732 return;
2733
2734 SourceLocation Loc = MD->getLocation();
2735 SourceLocation SpellingLoc = Loc;
2736 if (getSourceManager().isMacroArgExpansion(Loc))
2737 SpellingLoc = getSourceManager().getImmediateExpansionRange(Loc).first;
2738 SpellingLoc = getSourceManager().getSpellingLoc(SpellingLoc);
2739 if (SpellingLoc.isValid() && getSourceManager().isInSystemHeader(SpellingLoc))
2740 return;
2741
2742 if (MD->size_overridden_methods() > 0) {
2743 unsigned DiagID = isa<CXXDestructorDecl>(MD)
2744 ? diag::warn_destructor_marked_not_override_overriding
2745 : diag::warn_function_marked_not_override_overriding;
2746 Diag(MD->getLocation(), DiagID) << MD->getDeclName();
2747 const CXXMethodDecl *OMD = *MD->begin_overridden_methods();
2748 Diag(OMD->getLocation(), diag::note_overridden_virtual_function);
2749 }
2750}
2751
2752/// CheckIfOverriddenFunctionIsMarkedFinal - Checks whether a virtual member
2753/// function overrides a virtual member function marked 'final', according to
2754/// C++11 [class.virtual]p4.
2755bool Sema::CheckIfOverriddenFunctionIsMarkedFinal(const CXXMethodDecl *New,
2756 const CXXMethodDecl *Old) {
2757 FinalAttr *FA = Old->getAttr<FinalAttr>();
2758 if (!FA)
2759 return false;
2760
2761 Diag(New->getLocation(), diag::err_final_function_overridden)
2762 << New->getDeclName()
2763 << FA->isSpelledAsSealed();
2764 Diag(Old->getLocation(), diag::note_overridden_virtual_function);
2765 return true;
2766}
2767
2768static bool InitializationHasSideEffects(const FieldDecl &FD) {
2769 const Type *T = FD.getType()->getBaseElementTypeUnsafe();
2770 // FIXME: Destruction of ObjC lifetime types has side-effects.
2771 if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
2772 return !RD->isCompleteDefinition() ||
2773 !RD->hasTrivialDefaultConstructor() ||
2774 !RD->hasTrivialDestructor();
2775 return false;
2776}
2777
2778static AttributeList *getMSPropertyAttr(AttributeList *list) {
2779 for (AttributeList *it = list; it != nullptr; it = it->getNext())
2780 if (it->isDeclspecPropertyAttribute())
2781 return it;
2782 return nullptr;
2783}
2784
2785// Check if there is a field shadowing.
2786void Sema::CheckShadowInheritedFields(const SourceLocation &Loc,
2787 DeclarationName FieldName,
2788 const CXXRecordDecl *RD) {
2789 if (Diags.isIgnored(diag::warn_shadow_field, Loc))
2790 return;
2791
2792 // To record a shadowed field in a base
2793 std::map<CXXRecordDecl*, NamedDecl*> Bases;
2794 auto FieldShadowed = [&](const CXXBaseSpecifier *Specifier,
2795 CXXBasePath &Path) {
2796 const auto Base = Specifier->getType()->getAsCXXRecordDecl();
2797 // Record an ambiguous path directly
2798 if (Bases.find(Base) != Bases.end())
2799 return true;
2800 for (const auto Field : Base->lookup(FieldName)) {
2801 if ((isa<FieldDecl>(Field) || isa<IndirectFieldDecl>(Field)) &&
2802 Field->getAccess() != AS_private) {
2803 assert(Field->getAccess() != AS_none)((Field->getAccess() != AS_none) ? static_cast<void>
(0) : __assert_fail ("Field->getAccess() != AS_none", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2803, __PRETTY_FUNCTION__))
;
2804 assert(Bases.find(Base) == Bases.end())((Bases.find(Base) == Bases.end()) ? static_cast<void> (
0) : __assert_fail ("Bases.find(Base) == Bases.end()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2804, __PRETTY_FUNCTION__))
;
2805 Bases[Base] = Field;
2806 return true;
2807 }
2808 }
2809 return false;
2810 };
2811
2812 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
2813 /*DetectVirtual=*/true);
2814 if (!RD->lookupInBases(FieldShadowed, Paths))
2815 return;
2816
2817 for (const auto &P : Paths) {
2818 auto Base = P.back().Base->getType()->getAsCXXRecordDecl();
2819 auto It = Bases.find(Base);
2820 // Skip duplicated bases
2821 if (It == Bases.end())
2822 continue;
2823 auto BaseField = It->second;
2824 assert(BaseField->getAccess() != AS_private)((BaseField->getAccess() != AS_private) ? static_cast<void
> (0) : __assert_fail ("BaseField->getAccess() != AS_private"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2824, __PRETTY_FUNCTION__))
;
2825 if (AS_none !=
2826 CXXRecordDecl::MergeAccess(P.Access, BaseField->getAccess())) {
2827 Diag(Loc, diag::warn_shadow_field)
2828 << FieldName.getAsString() << RD->getName() << Base->getName();
2829 Diag(BaseField->getLocation(), diag::note_shadow_field);
2830 Bases.erase(It);
2831 }
2832 }
2833}
2834
2835/// ActOnCXXMemberDeclarator - This is invoked when a C++ class member
2836/// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the
2837/// bitfield width if there is one, 'InitExpr' specifies the initializer if
2838/// one has been parsed, and 'InitStyle' is set if an in-class initializer is
2839/// present (but parsing it has been deferred).
2840NamedDecl *
2841Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D,
2842 MultiTemplateParamsArg TemplateParameterLists,
2843 Expr *BW, const VirtSpecifiers &VS,
2844 InClassInitStyle InitStyle) {
2845 const DeclSpec &DS = D.getDeclSpec();
2846 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2847 DeclarationName Name = NameInfo.getName();
2848 SourceLocation Loc = NameInfo.getLoc();
2849
2850 // For anonymous bitfields, the location should point to the type.
2851 if (Loc.isInvalid())
2852 Loc = D.getLocStart();
2853
2854 Expr *BitWidth = static_cast<Expr*>(BW);
2855
2856 assert(isa<CXXRecordDecl>(CurContext))((isa<CXXRecordDecl>(CurContext)) ? static_cast<void
> (0) : __assert_fail ("isa<CXXRecordDecl>(CurContext)"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2856, __PRETTY_FUNCTION__))
;
2857 assert(!DS.isFriendSpecified())((!DS.isFriendSpecified()) ? static_cast<void> (0) : __assert_fail
("!DS.isFriendSpecified()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2857, __PRETTY_FUNCTION__))
;
2858
2859 bool isFunc = D.isDeclarationOfFunction();
2860
2861 if (cast<CXXRecordDecl>(CurContext)->isInterface()) {
2862 // The Microsoft extension __interface only permits public member functions
2863 // and prohibits constructors, destructors, operators, non-public member
2864 // functions, static methods and data members.
2865 unsigned InvalidDecl;
2866 bool ShowDeclName = true;
2867 if (!isFunc)
2868 InvalidDecl = (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) ? 0 : 1;
2869 else if (AS != AS_public)
2870 InvalidDecl = 2;
2871 else if (DS.getStorageClassSpec() == DeclSpec::SCS_static)
2872 InvalidDecl = 3;
2873 else switch (Name.getNameKind()) {
2874 case DeclarationName::CXXConstructorName:
2875 InvalidDecl = 4;
2876 ShowDeclName = false;
2877 break;
2878
2879 case DeclarationName::CXXDestructorName:
2880 InvalidDecl = 5;
2881 ShowDeclName = false;
2882 break;
2883
2884 case DeclarationName::CXXOperatorName:
2885 case DeclarationName::CXXConversionFunctionName:
2886 InvalidDecl = 6;
2887 break;
2888
2889 default:
2890 InvalidDecl = 0;
2891 break;
2892 }
2893
2894 if (InvalidDecl) {
2895 if (ShowDeclName)
2896 Diag(Loc, diag::err_invalid_member_in_interface)
2897 << (InvalidDecl-1) << Name;
2898 else
2899 Diag(Loc, diag::err_invalid_member_in_interface)
2900 << (InvalidDecl-1) << "";
2901 return nullptr;
2902 }
2903 }
2904
2905 // C++ 9.2p6: A member shall not be declared to have automatic storage
2906 // duration (auto, register) or with the extern storage-class-specifier.
2907 // C++ 7.1.1p8: The mutable specifier can be applied only to names of class
2908 // data members and cannot be applied to names declared const or static,
2909 // and cannot be applied to reference members.
2910 switch (DS.getStorageClassSpec()) {
2911 case DeclSpec::SCS_unspecified:
2912 case DeclSpec::SCS_typedef:
2913 case DeclSpec::SCS_static:
2914 break;
2915 case DeclSpec::SCS_mutable:
2916 if (isFunc) {
2917 Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function);
2918
2919 // FIXME: It would be nicer if the keyword was ignored only for this
2920 // declarator. Otherwise we could get follow-up errors.
2921 D.getMutableDeclSpec().ClearStorageClassSpecs();
2922 }
2923 break;
2924 default:
2925 Diag(DS.getStorageClassSpecLoc(),
2926 diag::err_storageclass_invalid_for_member);
2927 D.getMutableDeclSpec().ClearStorageClassSpecs();
2928 break;
2929 }
2930
2931 bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified ||
2932 DS.getStorageClassSpec() == DeclSpec::SCS_mutable) &&
2933 !isFunc);
2934
2935 if (DS.isConstexprSpecified() && isInstField) {
2936 SemaDiagnosticBuilder B =
2937 Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr_member);
2938 SourceLocation ConstexprLoc = DS.getConstexprSpecLoc();
2939 if (InitStyle == ICIS_NoInit) {
2940 B << 0 << 0;
2941 if (D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const)
2942 B << FixItHint::CreateRemoval(ConstexprLoc);
2943 else {
2944 B << FixItHint::CreateReplacement(ConstexprLoc, "const");
2945 D.getMutableDeclSpec().ClearConstexprSpec();
2946 const char *PrevSpec;
2947 unsigned DiagID;
2948 bool Failed = D.getMutableDeclSpec().SetTypeQual(
2949 DeclSpec::TQ_const, ConstexprLoc, PrevSpec, DiagID, getLangOpts());
2950 (void)Failed;
2951 assert(!Failed && "Making a constexpr member const shouldn't fail")((!Failed && "Making a constexpr member const shouldn't fail"
) ? static_cast<void> (0) : __assert_fail ("!Failed && \"Making a constexpr member const shouldn't fail\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2951, __PRETTY_FUNCTION__))
;
2952 }
2953 } else {
2954 B << 1;
2955 const char *PrevSpec;
2956 unsigned DiagID;
2957 if (D.getMutableDeclSpec().SetStorageClassSpec(
2958 *this, DeclSpec::SCS_static, ConstexprLoc, PrevSpec, DiagID,
2959 Context.getPrintingPolicy())) {
2960 assert(DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&((DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
"This is the only DeclSpec that should fail to be applied") ?
static_cast<void> (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_mutable && \"This is the only DeclSpec that should fail to be applied\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2961, __PRETTY_FUNCTION__))
2961 "This is the only DeclSpec that should fail to be applied")((DS.getStorageClassSpec() == DeclSpec::SCS_mutable &&
"This is the only DeclSpec that should fail to be applied") ?
static_cast<void> (0) : __assert_fail ("DS.getStorageClassSpec() == DeclSpec::SCS_mutable && \"This is the only DeclSpec that should fail to be applied\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 2961, __PRETTY_FUNCTION__))
;
2962 B << 1;
2963 } else {
2964 B << 0 << FixItHint::CreateInsertion(ConstexprLoc, "static ");
2965 isInstField = false;
2966 }
2967 }
2968 }
2969
2970 NamedDecl *Member;
2971 if (isInstField) {
2972 CXXScopeSpec &SS = D.getCXXScopeSpec();
2973
2974 // Data members must have identifiers for names.
2975 if (!Name.isIdentifier()) {
2976 Diag(Loc, diag::err_bad_variable_name)
2977 << Name;
2978 return nullptr;
2979 }
2980
2981 IdentifierInfo *II = Name.getAsIdentifierInfo();
2982
2983 // Member field could not be with "template" keyword.
2984 // So TemplateParameterLists should be empty in this case.
2985 if (TemplateParameterLists.size()) {
2986 TemplateParameterList* TemplateParams = TemplateParameterLists[0];
2987 if (TemplateParams->size()) {
2988 // There is no such thing as a member field template.
2989 Diag(D.getIdentifierLoc(), diag::err_template_member)
2990 << II
2991 << SourceRange(TemplateParams->getTemplateLoc(),
2992 TemplateParams->getRAngleLoc());
2993 } else {
2994 // There is an extraneous 'template<>' for this member.
2995 Diag(TemplateParams->getTemplateLoc(),
2996 diag::err_template_member_noparams)
2997 << II
2998 << SourceRange(TemplateParams->getTemplateLoc(),
2999 TemplateParams->getRAngleLoc());
3000 }
3001 return nullptr;
3002 }
3003
3004 if (SS.isSet() && !SS.isInvalid()) {
3005 // The user provided a superfluous scope specifier inside a class
3006 // definition:
3007 //
3008 // class X {
3009 // int X::member;
3010 // };
3011 if (DeclContext *DC = computeDeclContext(SS, false))
3012 diagnoseQualifiedDeclaration(SS, DC, Name, D.getIdentifierLoc());
3013 else
3014 Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3015 << Name << SS.getRange();
3016
3017 SS.clear();
3018 }
3019
3020 AttributeList *MSPropertyAttr =
3021 getMSPropertyAttr(D.getDeclSpec().getAttributes().getList());
3022 if (MSPropertyAttr) {
3023 Member = HandleMSProperty(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3024 BitWidth, InitStyle, AS, MSPropertyAttr);
3025 if (!Member)
3026 return nullptr;
3027 isInstField = false;
3028 } else {
3029 Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D,
3030 BitWidth, InitStyle, AS);
3031 if (!Member)
3032 return nullptr;
3033 }
3034
3035 CheckShadowInheritedFields(Loc, Name, cast<CXXRecordDecl>(CurContext));
3036 } else {
3037 Member = HandleDeclarator(S, D, TemplateParameterLists);
3038 if (!Member)
3039 return nullptr;
3040
3041 // Non-instance-fields can't have a bitfield.
3042 if (BitWidth) {
3043 if (Member->isInvalidDecl()) {
3044 // don't emit another diagnostic.
3045 } else if (isa<VarDecl>(Member) || isa<VarTemplateDecl>(Member)) {
3046 // C++ 9.6p3: A bit-field shall not be a static member.
3047 // "static member 'A' cannot be a bit-field"
3048 Diag(Loc, diag::err_static_not_bitfield)
3049 << Name << BitWidth->getSourceRange();
3050 } else if (isa<TypedefDecl>(Member)) {
3051 // "typedef member 'x' cannot be a bit-field"
3052 Diag(Loc, diag::err_typedef_not_bitfield)
3053 << Name << BitWidth->getSourceRange();
3054 } else {
3055 // A function typedef ("typedef int f(); f a;").
3056 // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3057 Diag(Loc, diag::err_not_integral_type_bitfield)
3058 << Name << cast<ValueDecl>(Member)->getType()
3059 << BitWidth->getSourceRange();
3060 }
3061
3062 BitWidth = nullptr;
3063 Member->setInvalidDecl();
3064 }
3065
3066 Member->setAccess(AS);
3067
3068 // If we have declared a member function template or static data member
3069 // template, set the access of the templated declaration as well.
3070 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Member))
3071 FunTmpl->getTemplatedDecl()->setAccess(AS);
3072 else if (VarTemplateDecl *VarTmpl = dyn_cast<VarTemplateDecl>(Member))
3073 VarTmpl->getTemplatedDecl()->setAccess(AS);
3074 }
3075
3076 if (VS.isOverrideSpecified())
3077 Member->addAttr(new (Context) OverrideAttr(VS.getOverrideLoc(), Context, 0));
3078 if (VS.isFinalSpecified())
3079 Member->addAttr(new (Context) FinalAttr(VS.getFinalLoc(), Context,
3080 VS.isFinalSpelledSealed()));
3081
3082 if (VS.getLastLocation().isValid()) {
3083 // Update the end location of a method that has a virt-specifiers.
3084 if (CXXMethodDecl *MD = dyn_cast_or_null<CXXMethodDecl>(Member))
3085 MD->setRangeEnd(VS.getLastLocation());
3086 }
3087
3088 CheckOverrideControl(Member);
3089
3090 assert((Name || isInstField) && "No identifier for non-field ?")(((Name || isInstField) && "No identifier for non-field ?"
) ? static_cast<void> (0) : __assert_fail ("(Name || isInstField) && \"No identifier for non-field ?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3090, __PRETTY_FUNCTION__))
;
3091
3092 if (isInstField) {
3093 FieldDecl *FD = cast<FieldDecl>(Member);
3094 FieldCollector->Add(FD);
3095
3096 if (!Diags.isIgnored(diag::warn_unused_private_field, FD->getLocation())) {
3097 // Remember all explicit private FieldDecls that have a name, no side
3098 // effects and are not part of a dependent type declaration.
3099 if (!FD->isImplicit() && FD->getDeclName() &&
3100 FD->getAccess() == AS_private &&
3101 !FD->hasAttr<UnusedAttr>() &&
3102 !FD->getParent()->isDependentContext() &&
3103 !InitializationHasSideEffects(*FD))
3104 UnusedPrivateFields.insert(FD);
3105 }
3106 }
3107
3108 return Member;
3109}
3110
3111namespace {
3112 class UninitializedFieldVisitor
3113 : public EvaluatedExprVisitor<UninitializedFieldVisitor> {
3114 Sema &S;
3115 // List of Decls to generate a warning on. Also remove Decls that become
3116 // initialized.
3117 llvm::SmallPtrSetImpl<ValueDecl*> &Decls;
3118 // List of base classes of the record. Classes are removed after their
3119 // initializers.
3120 llvm::SmallPtrSetImpl<QualType> &BaseClasses;
3121 // Vector of decls to be removed from the Decl set prior to visiting the
3122 // nodes. These Decls may have been initialized in the prior initializer.
3123 llvm::SmallVector<ValueDecl*, 4> DeclsToRemove;
3124 // If non-null, add a note to the warning pointing back to the constructor.
3125 const CXXConstructorDecl *Constructor;
3126 // Variables to hold state when processing an initializer list. When
3127 // InitList is true, special case initialization of FieldDecls matching
3128 // InitListFieldDecl.
3129 bool InitList;
3130 FieldDecl *InitListFieldDecl;
3131 llvm::SmallVector<unsigned, 4> InitFieldIndex;
3132
3133 public:
3134 typedef EvaluatedExprVisitor<UninitializedFieldVisitor> Inherited;
3135 UninitializedFieldVisitor(Sema &S,
3136 llvm::SmallPtrSetImpl<ValueDecl*> &Decls,
3137 llvm::SmallPtrSetImpl<QualType> &BaseClasses)
3138 : Inherited(S.Context), S(S), Decls(Decls), BaseClasses(BaseClasses),
3139 Constructor(nullptr), InitList(false), InitListFieldDecl(nullptr) {}
3140
3141 // Returns true if the use of ME is not an uninitialized use.
3142 bool IsInitListMemberExprInitialized(MemberExpr *ME,
3143 bool CheckReferenceOnly) {
3144 llvm::SmallVector<FieldDecl*, 4> Fields;
3145 bool ReferenceField = false;
3146 while (ME) {
3147 FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
3148 if (!FD)
3149 return false;
3150 Fields.push_back(FD);
3151 if (FD->getType()->isReferenceType())
3152 ReferenceField = true;
3153 ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParenImpCasts());
3154 }
3155
3156 // Binding a reference to an unintialized field is not an
3157 // uninitialized use.
3158 if (CheckReferenceOnly && !ReferenceField)
3159 return true;
3160
3161 llvm::SmallVector<unsigned, 4> UsedFieldIndex;
3162 // Discard the first field since it is the field decl that is being
3163 // initialized.
3164 for (auto I = Fields.rbegin() + 1, E = Fields.rend(); I != E; ++I) {
3165 UsedFieldIndex.push_back((*I)->getFieldIndex());
3166 }
3167
3168 for (auto UsedIter = UsedFieldIndex.begin(),
3169 UsedEnd = UsedFieldIndex.end(),
3170 OrigIter = InitFieldIndex.begin(),
3171 OrigEnd = InitFieldIndex.end();
3172 UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) {
3173 if (*UsedIter < *OrigIter)
3174 return true;
3175 if (*UsedIter > *OrigIter)
3176 break;
3177 }
3178
3179 return false;
3180 }
3181
3182 void HandleMemberExpr(MemberExpr *ME, bool CheckReferenceOnly,
3183 bool AddressOf) {
3184 if (isa<EnumConstantDecl>(ME->getMemberDecl()))
3185 return;
3186
3187 // FieldME is the inner-most MemberExpr that is not an anonymous struct
3188 // or union.
3189 MemberExpr *FieldME = ME;
3190
3191 bool AllPODFields = FieldME->getType().isPODType(S.Context);
3192
3193 Expr *Base = ME;
3194 while (MemberExpr *SubME =
3195 dyn_cast<MemberExpr>(Base->IgnoreParenImpCasts())) {
3196
3197 if (isa<VarDecl>(SubME->getMemberDecl()))
3198 return;
3199
3200 if (FieldDecl *FD = dyn_cast<FieldDecl>(SubME->getMemberDecl()))
3201 if (!FD->isAnonymousStructOrUnion())
3202 FieldME = SubME;
3203
3204 if (!FieldME->getType().isPODType(S.Context))
3205 AllPODFields = false;
3206
3207 Base = SubME->getBase();
3208 }
3209
3210 if (!isa<CXXThisExpr>(Base->IgnoreParenImpCasts()))
3211 return;
3212
3213 if (AddressOf && AllPODFields)
3214 return;
3215
3216 ValueDecl* FoundVD = FieldME->getMemberDecl();
3217
3218 if (ImplicitCastExpr *BaseCast = dyn_cast<ImplicitCastExpr>(Base)) {
3219 while (isa<ImplicitCastExpr>(BaseCast->getSubExpr())) {
3220 BaseCast = cast<ImplicitCastExpr>(BaseCast->getSubExpr());
3221 }
3222
3223 if (BaseCast->getCastKind() == CK_UncheckedDerivedToBase) {
3224 QualType T = BaseCast->getType();
3225 if (T->isPointerType() &&
3226 BaseClasses.count(T->getPointeeType())) {
3227 S.Diag(FieldME->getExprLoc(), diag::warn_base_class_is_uninit)
3228 << T->getPointeeType() << FoundVD;
3229 }
3230 }
3231 }
3232
3233 if (!Decls.count(FoundVD))
3234 return;
3235
3236 const bool IsReference = FoundVD->getType()->isReferenceType();
3237
3238 if (InitList && !AddressOf && FoundVD == InitListFieldDecl) {
3239 // Special checking for initializer lists.
3240 if (IsInitListMemberExprInitialized(ME, CheckReferenceOnly)) {
3241 return;
3242 }
3243 } else {
3244 // Prevent double warnings on use of unbounded references.
3245 if (CheckReferenceOnly && !IsReference)
3246 return;
3247 }
3248
3249 unsigned diag = IsReference
3250 ? diag::warn_reference_field_is_uninit
3251 : diag::warn_field_is_uninit;
3252 S.Diag(FieldME->getExprLoc(), diag) << FoundVD;
3253 if (Constructor)
3254 S.Diag(Constructor->getLocation(),
3255 diag::note_uninit_in_this_constructor)
3256 << (Constructor->isDefaultConstructor() && Constructor->isImplicit());
3257
3258 }
3259
3260 void HandleValue(Expr *E, bool AddressOf) {
3261 E = E->IgnoreParens();
3262
3263 if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
3264 HandleMemberExpr(ME, false /*CheckReferenceOnly*/,
3265 AddressOf /*AddressOf*/);
3266 return;
3267 }
3268
3269 if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
3270 Visit(CO->getCond());
3271 HandleValue(CO->getTrueExpr(), AddressOf);
3272 HandleValue(CO->getFalseExpr(), AddressOf);
3273 return;
3274 }
3275
3276 if (BinaryConditionalOperator *BCO =
3277 dyn_cast<BinaryConditionalOperator>(E)) {
3278 Visit(BCO->getCond());
3279 HandleValue(BCO->getFalseExpr(), AddressOf);
3280 return;
3281 }
3282
3283 if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) {
3284 HandleValue(OVE->getSourceExpr(), AddressOf);
3285 return;
3286 }
3287
3288 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
3289 switch (BO->getOpcode()) {
3290 default:
3291 break;
3292 case(BO_PtrMemD):
3293 case(BO_PtrMemI):
3294 HandleValue(BO->getLHS(), AddressOf);
3295 Visit(BO->getRHS());
3296 return;
3297 case(BO_Comma):
3298 Visit(BO->getLHS());
3299 HandleValue(BO->getRHS(), AddressOf);
3300 return;
3301 }
3302 }
3303
3304 Visit(E);
3305 }
3306
3307 void CheckInitListExpr(InitListExpr *ILE) {
3308 InitFieldIndex.push_back(0);
3309 for (auto Child : ILE->children()) {
3310 if (InitListExpr *SubList = dyn_cast<InitListExpr>(Child)) {
3311 CheckInitListExpr(SubList);
3312 } else {
3313 Visit(Child);
3314 }
3315 ++InitFieldIndex.back();
3316 }
3317 InitFieldIndex.pop_back();
3318 }
3319
3320 void CheckInitializer(Expr *E, const CXXConstructorDecl *FieldConstructor,
3321 FieldDecl *Field, const Type *BaseClass) {
3322 // Remove Decls that may have been initialized in the previous
3323 // initializer.
3324 for (ValueDecl* VD : DeclsToRemove)
3325 Decls.erase(VD);
3326 DeclsToRemove.clear();
3327
3328 Constructor = FieldConstructor;
3329 InitListExpr *ILE = dyn_cast<InitListExpr>(E);
3330
3331 if (ILE && Field) {
3332 InitList = true;
3333 InitListFieldDecl = Field;
3334 InitFieldIndex.clear();
3335 CheckInitListExpr(ILE);
3336 } else {
3337 InitList = false;
3338 Visit(E);
3339 }
3340
3341 if (Field)
3342 Decls.erase(Field);
3343 if (BaseClass)
3344 BaseClasses.erase(BaseClass->getCanonicalTypeInternal());
3345 }
3346
3347 void VisitMemberExpr(MemberExpr *ME) {
3348 // All uses of unbounded reference fields will warn.
3349 HandleMemberExpr(ME, true /*CheckReferenceOnly*/, false /*AddressOf*/);
3350 }
3351
3352 void VisitImplicitCastExpr(ImplicitCastExpr *E) {
3353 if (E->getCastKind() == CK_LValueToRValue) {
3354 HandleValue(E->getSubExpr(), false /*AddressOf*/);
3355 return;
3356 }
3357
3358 Inherited::VisitImplicitCastExpr(E);
3359 }
3360
3361 void VisitCXXConstructExpr(CXXConstructExpr *E) {
3362 if (E->getConstructor()->isCopyConstructor()) {
3363 Expr *ArgExpr = E->getArg(0);
3364 if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr))
3365 if (ILE->getNumInits() == 1)
3366 ArgExpr = ILE->getInit(0);
3367 if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
3368 if (ICE->getCastKind() == CK_NoOp)
3369 ArgExpr = ICE->getSubExpr();
3370 HandleValue(ArgExpr, false /*AddressOf*/);
3371 return;
3372 }
3373 Inherited::VisitCXXConstructExpr(E);
3374 }
3375
3376 void VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3377 Expr *Callee = E->getCallee();
3378 if (isa<MemberExpr>(Callee)) {
3379 HandleValue(Callee, false /*AddressOf*/);
3380 for (auto Arg : E->arguments())
3381 Visit(Arg);
3382 return;
3383 }
3384
3385 Inherited::VisitCXXMemberCallExpr(E);
3386 }
3387
3388 void VisitCallExpr(CallExpr *E) {
3389 // Treat std::move as a use.
3390 if (E->getNumArgs() == 1) {
3391 if (FunctionDecl *FD = E->getDirectCallee()) {
3392 if (FD->isInStdNamespace() && FD->getIdentifier() &&
3393 FD->getIdentifier()->isStr("move")) {
3394 HandleValue(E->getArg(0), false /*AddressOf*/);
3395 return;
3396 }
3397 }
3398 }
3399
3400 Inherited::VisitCallExpr(E);
3401 }
3402
3403 void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
3404 Expr *Callee = E->getCallee();
3405
3406 if (isa<UnresolvedLookupExpr>(Callee))
3407 return Inherited::VisitCXXOperatorCallExpr(E);
3408
3409 Visit(Callee);
3410 for (auto Arg : E->arguments())
3411 HandleValue(Arg->IgnoreParenImpCasts(), false /*AddressOf*/);
3412 }
3413
3414 void VisitBinaryOperator(BinaryOperator *E) {
3415 // If a field assignment is detected, remove the field from the
3416 // uninitiailized field set.
3417 if (E->getOpcode() == BO_Assign)
3418 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getLHS()))
3419 if (FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()))
3420 if (!FD->getType()->isReferenceType())
3421 DeclsToRemove.push_back(FD);
3422
3423 if (E->isCompoundAssignmentOp()) {
3424 HandleValue(E->getLHS(), false /*AddressOf*/);
3425 Visit(E->getRHS());
3426 return;
3427 }
3428
3429 Inherited::VisitBinaryOperator(E);
3430 }
3431
3432 void VisitUnaryOperator(UnaryOperator *E) {
3433 if (E->isIncrementDecrementOp()) {
3434 HandleValue(E->getSubExpr(), false /*AddressOf*/);
3435 return;
3436 }
3437 if (E->getOpcode() == UO_AddrOf) {
3438 if (MemberExpr *ME = dyn_cast<MemberExpr>(E->getSubExpr())) {
3439 HandleValue(ME->getBase(), true /*AddressOf*/);
3440 return;
3441 }
3442 }
3443
3444 Inherited::VisitUnaryOperator(E);
3445 }
3446 };
3447
3448 // Diagnose value-uses of fields to initialize themselves, e.g.
3449 // foo(foo)
3450 // where foo is not also a parameter to the constructor.
3451 // Also diagnose across field uninitialized use such as
3452 // x(y), y(x)
3453 // TODO: implement -Wuninitialized and fold this into that framework.
3454 static void DiagnoseUninitializedFields(
3455 Sema &SemaRef, const CXXConstructorDecl *Constructor) {
3456
3457 if (SemaRef.getDiagnostics().isIgnored(diag::warn_field_is_uninit,
3458 Constructor->getLocation())) {
3459 return;
3460 }
3461
3462 if (Constructor->isInvalidDecl())
3463 return;
3464
3465 const CXXRecordDecl *RD = Constructor->getParent();
3466
3467 if (RD->getDescribedClassTemplate())
3468 return;
3469
3470 // Holds fields that are uninitialized.
3471 llvm::SmallPtrSet<ValueDecl*, 4> UninitializedFields;
3472
3473 // At the beginning, all fields are uninitialized.
3474 for (auto *I : RD->decls()) {
3475 if (auto *FD = dyn_cast<FieldDecl>(I)) {
3476 UninitializedFields.insert(FD);
3477 } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(I)) {
3478 UninitializedFields.insert(IFD->getAnonField());
3479 }
3480 }
3481
3482 llvm::SmallPtrSet<QualType, 4> UninitializedBaseClasses;
3483 for (auto I : RD->bases())
3484 UninitializedBaseClasses.insert(I.getType().getCanonicalType());
3485
3486 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
3487 return;
3488
3489 UninitializedFieldVisitor UninitializedChecker(SemaRef,
3490 UninitializedFields,
3491 UninitializedBaseClasses);
3492
3493 for (const auto *FieldInit : Constructor->inits()) {
3494 if (UninitializedFields.empty() && UninitializedBaseClasses.empty())
3495 break;
3496
3497 Expr *InitExpr = FieldInit->getInit();
3498 if (!InitExpr)
3499 continue;
3500
3501 if (CXXDefaultInitExpr *Default =
3502 dyn_cast<CXXDefaultInitExpr>(InitExpr)) {
3503 InitExpr = Default->getExpr();
3504 if (!InitExpr)
3505 continue;
3506 // In class initializers will point to the constructor.
3507 UninitializedChecker.CheckInitializer(InitExpr, Constructor,
3508 FieldInit->getAnyMember(),
3509 FieldInit->getBaseClass());
3510 } else {
3511 UninitializedChecker.CheckInitializer(InitExpr, nullptr,
3512 FieldInit->getAnyMember(),
3513 FieldInit->getBaseClass());
3514 }
3515 }
3516 }
3517} // namespace
3518
3519/// \brief Enter a new C++ default initializer scope. After calling this, the
3520/// caller must call \ref ActOnFinishCXXInClassMemberInitializer, even if
3521/// parsing or instantiating the initializer failed.
3522void Sema::ActOnStartCXXInClassMemberInitializer() {
3523 // Create a synthetic function scope to represent the call to the constructor
3524 // that notionally surrounds a use of this initializer.
3525 PushFunctionScope();
3526}
3527
3528/// \brief This is invoked after parsing an in-class initializer for a
3529/// non-static C++ class member, and after instantiating an in-class initializer
3530/// in a class template. Such actions are deferred until the class is complete.
3531void Sema::ActOnFinishCXXInClassMemberInitializer(Decl *D,
3532 SourceLocation InitLoc,
3533 Expr *InitExpr) {
3534 // Pop the notional constructor scope we created earlier.
3535 PopFunctionScopeInfo(nullptr, D);
3536
3537 FieldDecl *FD = dyn_cast<FieldDecl>(D);
3538 assert((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) &&(((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle
() != ICIS_NoInit) && "must set init style when field is created"
) ? static_cast<void> (0) : __assert_fail ("(isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) && \"must set init style when field is created\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3539, __PRETTY_FUNCTION__))
3539 "must set init style when field is created")(((isa<MSPropertyDecl>(D) || FD->getInClassInitStyle
() != ICIS_NoInit) && "must set init style when field is created"
) ? static_cast<void> (0) : __assert_fail ("(isa<MSPropertyDecl>(D) || FD->getInClassInitStyle() != ICIS_NoInit) && \"must set init style when field is created\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3539, __PRETTY_FUNCTION__))
;
3540
3541 if (!InitExpr) {
3542 D->setInvalidDecl();
3543 if (FD)
3544 FD->removeInClassInitializer();
3545 return;
3546 }
3547
3548 if (DiagnoseUnexpandedParameterPack(InitExpr, UPPC_Initializer)) {
3549 FD->setInvalidDecl();
3550 FD->removeInClassInitializer();
3551 return;
3552 }
3553
3554 ExprResult Init = InitExpr;
3555 if (!FD->getType()->isDependentType() && !InitExpr->isTypeDependent()) {
3556 InitializedEntity Entity = InitializedEntity::InitializeMember(FD);
3557 InitializationKind Kind = FD->getInClassInitStyle() == ICIS_ListInit
3558 ? InitializationKind::CreateDirectList(InitExpr->getLocStart())
3559 : InitializationKind::CreateCopy(InitExpr->getLocStart(), InitLoc);
3560 InitializationSequence Seq(*this, Entity, Kind, InitExpr);
3561 Init = Seq.Perform(*this, Entity, Kind, InitExpr);
3562 if (Init.isInvalid()) {
3563 FD->setInvalidDecl();
3564 return;
3565 }
3566 }
3567
3568 // C++11 [class.base.init]p7:
3569 // The initialization of each base and member constitutes a
3570 // full-expression.
3571 Init = ActOnFinishFullExpr(Init.get(), InitLoc);
3572 if (Init.isInvalid()) {
3573 FD->setInvalidDecl();
3574 return;
3575 }
3576
3577 InitExpr = Init.get();
3578
3579 FD->setInClassInitializer(InitExpr);
3580}
3581
3582/// \brief Find the direct and/or virtual base specifiers that
3583/// correspond to the given base type, for use in base initialization
3584/// within a constructor.
3585static bool FindBaseInitializer(Sema &SemaRef,
3586 CXXRecordDecl *ClassDecl,
3587 QualType BaseType,
3588 const CXXBaseSpecifier *&DirectBaseSpec,
3589 const CXXBaseSpecifier *&VirtualBaseSpec) {
3590 // First, check for a direct base class.
3591 DirectBaseSpec = nullptr;
3592 for (const auto &Base : ClassDecl->bases()) {
3593 if (SemaRef.Context.hasSameUnqualifiedType(BaseType, Base.getType())) {
3594 // We found a direct base of this type. That's what we're
3595 // initializing.
3596 DirectBaseSpec = &Base;
3597 break;
3598 }
3599 }
3600
3601 // Check for a virtual base class.
3602 // FIXME: We might be able to short-circuit this if we know in advance that
3603 // there are no virtual bases.
3604 VirtualBaseSpec = nullptr;
3605 if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) {
3606 // We haven't found a base yet; search the class hierarchy for a
3607 // virtual base class.
3608 CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true,
3609 /*DetectVirtual=*/false);
3610 if (SemaRef.IsDerivedFrom(ClassDecl->getLocation(),
3611 SemaRef.Context.getTypeDeclType(ClassDecl),
3612 BaseType, Paths)) {
3613 for (CXXBasePaths::paths_iterator Path = Paths.begin();
3614 Path != Paths.end(); ++Path) {
3615 if (Path->back().Base->isVirtual()) {
3616 VirtualBaseSpec = Path->back().Base;
3617 break;
3618 }
3619 }
3620 }
3621 }
3622
3623 return DirectBaseSpec || VirtualBaseSpec;
3624}
3625
3626/// \brief Handle a C++ member initializer using braced-init-list syntax.
3627MemInitResult
3628Sema::ActOnMemInitializer(Decl *ConstructorD,
3629 Scope *S,
3630 CXXScopeSpec &SS,
3631 IdentifierInfo *MemberOrBase,
3632 ParsedType TemplateTypeTy,
3633 const DeclSpec &DS,
3634 SourceLocation IdLoc,
3635 Expr *InitList,
3636 SourceLocation EllipsisLoc) {
3637 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
3638 DS, IdLoc, InitList,
3639 EllipsisLoc);
3640}
3641
3642/// \brief Handle a C++ member initializer using parentheses syntax.
3643MemInitResult
3644Sema::ActOnMemInitializer(Decl *ConstructorD,
3645 Scope *S,
3646 CXXScopeSpec &SS,
3647 IdentifierInfo *MemberOrBase,
3648 ParsedType TemplateTypeTy,
3649 const DeclSpec &DS,
3650 SourceLocation IdLoc,
3651 SourceLocation LParenLoc,
3652 ArrayRef<Expr *> Args,
3653 SourceLocation RParenLoc,
3654 SourceLocation EllipsisLoc) {
3655 Expr *List = new (Context) ParenListExpr(Context, LParenLoc,
3656 Args, RParenLoc);
3657 return BuildMemInitializer(ConstructorD, S, SS, MemberOrBase, TemplateTypeTy,
3658 DS, IdLoc, List, EllipsisLoc);
3659}
3660
3661namespace {
3662
3663// Callback to only accept typo corrections that can be a valid C++ member
3664// intializer: either a non-static field member or a base class.
3665class MemInitializerValidatorCCC : public CorrectionCandidateCallback {
3666public:
3667 explicit MemInitializerValidatorCCC(CXXRecordDecl *ClassDecl)
3668 : ClassDecl(ClassDecl) {}
3669
3670 bool ValidateCandidate(const TypoCorrection &candidate) override {
3671 if (NamedDecl *ND = candidate.getCorrectionDecl()) {
3672 if (FieldDecl *Member = dyn_cast<FieldDecl>(ND))
3673 return Member->getDeclContext()->getRedeclContext()->Equals(ClassDecl);
3674 return isa<TypeDecl>(ND);
3675 }
3676 return false;
3677 }
3678
3679private:
3680 CXXRecordDecl *ClassDecl;
3681};
3682
3683}
3684
3685/// \brief Handle a C++ member initializer.
3686MemInitResult
3687Sema::BuildMemInitializer(Decl *ConstructorD,
3688 Scope *S,
3689 CXXScopeSpec &SS,
3690 IdentifierInfo *MemberOrBase,
3691 ParsedType TemplateTypeTy,
3692 const DeclSpec &DS,
3693 SourceLocation IdLoc,
3694 Expr *Init,
3695 SourceLocation EllipsisLoc) {
3696 ExprResult Res = CorrectDelayedTyposInExpr(Init);
3697 if (!Res.isUsable())
3698 return true;
3699 Init = Res.get();
3700
3701 if (!ConstructorD)
3702 return true;
3703
3704 AdjustDeclIfTemplate(ConstructorD);
3705
3706 CXXConstructorDecl *Constructor
3707 = dyn_cast<CXXConstructorDecl>(ConstructorD);
3708 if (!Constructor) {
3709 // The user wrote a constructor initializer on a function that is
3710 // not a C++ constructor. Ignore the error for now, because we may
3711 // have more member initializers coming; we'll diagnose it just
3712 // once in ActOnMemInitializers.
3713 return true;
3714 }
3715
3716 CXXRecordDecl *ClassDecl = Constructor->getParent();
3717
3718 // C++ [class.base.init]p2:
3719 // Names in a mem-initializer-id are looked up in the scope of the
3720 // constructor's class and, if not found in that scope, are looked
3721 // up in the scope containing the constructor's definition.
3722 // [Note: if the constructor's class contains a member with the
3723 // same name as a direct or virtual base class of the class, a
3724 // mem-initializer-id naming the member or base class and composed
3725 // of a single identifier refers to the class member. A
3726 // mem-initializer-id for the hidden base class may be specified
3727 // using a qualified name. ]
3728 if (!SS.getScopeRep() && !TemplateTypeTy) {
3729 // Look for a member, first.
3730 DeclContext::lookup_result Result = ClassDecl->lookup(MemberOrBase);
3731 if (!Result.empty()) {
3732 ValueDecl *Member;
3733 if ((Member = dyn_cast<FieldDecl>(Result.front())) ||
3734 (Member = dyn_cast<IndirectFieldDecl>(Result.front()))) {
3735 if (EllipsisLoc.isValid())
3736 Diag(EllipsisLoc, diag::err_pack_expansion_member_init)
3737 << MemberOrBase
3738 << SourceRange(IdLoc, Init->getSourceRange().getEnd());
3739
3740 return BuildMemberInitializer(Member, Init, IdLoc);
3741 }
3742 }
3743 }
3744 // It didn't name a member, so see if it names a class.
3745 QualType BaseType;
3746 TypeSourceInfo *TInfo = nullptr;
3747
3748 if (TemplateTypeTy) {
3749 BaseType = GetTypeFromParser(TemplateTypeTy, &TInfo);
3750 } else if (DS.getTypeSpecType() == TST_decltype) {
3751 BaseType = BuildDecltypeType(DS.getRepAsExpr(), DS.getTypeSpecTypeLoc());
3752 } else if (DS.getTypeSpecType() == TST_decltype_auto) {
3753 Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid);
3754 return true;
3755 } else {
3756 LookupResult R(*this, MemberOrBase, IdLoc, LookupOrdinaryName);
3757 LookupParsedName(R, S, &SS);
3758
3759 TypeDecl *TyD = R.getAsSingle<TypeDecl>();
3760 if (!TyD) {
3761 if (R.isAmbiguous()) return true;
3762
3763 // We don't want access-control diagnostics here.
3764 R.suppressDiagnostics();
3765
3766 if (SS.isSet() && isDependentScopeSpecifier(SS)) {
3767 bool NotUnknownSpecialization = false;
3768 DeclContext *DC = computeDeclContext(SS, false);
3769 if (CXXRecordDecl *Record = dyn_cast_or_null<CXXRecordDecl>(DC))
3770 NotUnknownSpecialization = !Record->hasAnyDependentBases();
3771
3772 if (!NotUnknownSpecialization) {
3773 // When the scope specifier can refer to a member of an unknown
3774 // specialization, we take it as a type name.
3775 BaseType = CheckTypenameType(ETK_None, SourceLocation(),
3776 SS.getWithLocInContext(Context),
3777 *MemberOrBase, IdLoc);
3778 if (BaseType.isNull())
3779 return true;
3780
3781 TInfo = Context.CreateTypeSourceInfo(BaseType);
3782 DependentNameTypeLoc TL =
3783 TInfo->getTypeLoc().castAs<DependentNameTypeLoc>();
3784 if (!TL.isNull()) {
3785 TL.setNameLoc(IdLoc);
3786 TL.setElaboratedKeywordLoc(SourceLocation());
3787 TL.setQualifierLoc(SS.getWithLocInContext(Context));
3788 }
3789
3790 R.clear();
3791 R.setLookupName(MemberOrBase);
3792 }
3793 }
3794
3795 // If no results were found, try to correct typos.
3796 TypoCorrection Corr;
3797 if (R.empty() && BaseType.isNull() &&
3798 (Corr = CorrectTypo(
3799 R.getLookupNameInfo(), R.getLookupKind(), S, &SS,
3800 llvm::make_unique<MemInitializerValidatorCCC>(ClassDecl),
3801 CTK_ErrorRecovery, ClassDecl))) {
3802 if (FieldDecl *Member = Corr.getCorrectionDeclAs<FieldDecl>()) {
3803 // We have found a non-static data member with a similar
3804 // name to what was typed; complain and initialize that
3805 // member.
3806 diagnoseTypo(Corr,
3807 PDiag(diag::err_mem_init_not_member_or_class_suggest)
3808 << MemberOrBase << true);
3809 return BuildMemberInitializer(Member, Init, IdLoc);
3810 } else if (TypeDecl *Type = Corr.getCorrectionDeclAs<TypeDecl>()) {
3811 const CXXBaseSpecifier *DirectBaseSpec;
3812 const CXXBaseSpecifier *VirtualBaseSpec;
3813 if (FindBaseInitializer(*this, ClassDecl,
3814 Context.getTypeDeclType(Type),
3815 DirectBaseSpec, VirtualBaseSpec)) {
3816 // We have found a direct or virtual base class with a
3817 // similar name to what was typed; complain and initialize
3818 // that base class.
3819 diagnoseTypo(Corr,
3820 PDiag(diag::err_mem_init_not_member_or_class_suggest)
3821 << MemberOrBase << false,
3822 PDiag() /*Suppress note, we provide our own.*/);
3823
3824 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec ? DirectBaseSpec
3825 : VirtualBaseSpec;
3826 Diag(BaseSpec->getLocStart(),
3827 diag::note_base_class_specified_here)
3828 << BaseSpec->getType()
3829 << BaseSpec->getSourceRange();
3830
3831 TyD = Type;
3832 }
3833 }
3834 }
3835
3836 if (!TyD && BaseType.isNull()) {
3837 Diag(IdLoc, diag::err_mem_init_not_member_or_class)
3838 << MemberOrBase << SourceRange(IdLoc,Init->getSourceRange().getEnd());
3839 return true;
3840 }
3841 }
3842
3843 if (BaseType.isNull()) {
3844 BaseType = Context.getTypeDeclType(TyD);
3845 MarkAnyDeclReferenced(TyD->getLocation(), TyD, /*OdrUse=*/false);
3846 if (SS.isSet()) {
3847 BaseType = Context.getElaboratedType(ETK_None, SS.getScopeRep(),
3848 BaseType);
3849 TInfo = Context.CreateTypeSourceInfo(BaseType);
3850 ElaboratedTypeLoc TL = TInfo->getTypeLoc().castAs<ElaboratedTypeLoc>();
3851 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
3852 TL.setElaboratedKeywordLoc(SourceLocation());
3853 TL.setQualifierLoc(SS.getWithLocInContext(Context));
3854 }
3855 }
3856 }
3857
3858 if (!TInfo)
3859 TInfo = Context.getTrivialTypeSourceInfo(BaseType, IdLoc);
3860
3861 return BuildBaseInitializer(BaseType, TInfo, Init, ClassDecl, EllipsisLoc);
3862}
3863
3864/// Checks a member initializer expression for cases where reference (or
3865/// pointer) members are bound to by-value parameters (or their addresses).
3866static void CheckForDanglingReferenceOrPointer(Sema &S, ValueDecl *Member,
3867 Expr *Init,
3868 SourceLocation IdLoc) {
3869 QualType MemberTy = Member->getType();
3870
3871 // We only handle pointers and references currently.
3872 // FIXME: Would this be relevant for ObjC object pointers? Or block pointers?
3873 if (!MemberTy->isReferenceType() && !MemberTy->isPointerType())
3874 return;
3875
3876 const bool IsPointer = MemberTy->isPointerType();
3877 if (IsPointer) {
3878 if (const UnaryOperator *Op
3879 = dyn_cast<UnaryOperator>(Init->IgnoreParenImpCasts())) {
3880 // The only case we're worried about with pointers requires taking the
3881 // address.
3882 if (Op->getOpcode() != UO_AddrOf)
3883 return;
3884
3885 Init = Op->getSubExpr();
3886 } else {
3887 // We only handle address-of expression initializers for pointers.
3888 return;
3889 }
3890 }
3891
3892 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init->IgnoreParens())) {
3893 // We only warn when referring to a non-reference parameter declaration.
3894 const ParmVarDecl *Parameter = dyn_cast<ParmVarDecl>(DRE->getDecl());
3895 if (!Parameter || Parameter->getType()->isReferenceType())
3896 return;
3897
3898 S.Diag(Init->getExprLoc(),
3899 IsPointer ? diag::warn_init_ptr_member_to_parameter_addr
3900 : diag::warn_bind_ref_member_to_parameter)
3901 << Member << Parameter << Init->getSourceRange();
3902 } else {
3903 // Other initializers are fine.
3904 return;
3905 }
3906
3907 S.Diag(Member->getLocation(), diag::note_ref_or_ptr_member_declared_here)
3908 << (unsigned)IsPointer;
3909}
3910
3911MemInitResult
3912Sema::BuildMemberInitializer(ValueDecl *Member, Expr *Init,
3913 SourceLocation IdLoc) {
3914 FieldDecl *DirectMember = dyn_cast<FieldDecl>(Member);
3915 IndirectFieldDecl *IndirectMember = dyn_cast<IndirectFieldDecl>(Member);
3916 assert((DirectMember || IndirectMember) &&(((DirectMember || IndirectMember) && "Member must be a FieldDecl or IndirectFieldDecl"
) ? static_cast<void> (0) : __assert_fail ("(DirectMember || IndirectMember) && \"Member must be a FieldDecl or IndirectFieldDecl\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3917, __PRETTY_FUNCTION__))
3917 "Member must be a FieldDecl or IndirectFieldDecl")(((DirectMember || IndirectMember) && "Member must be a FieldDecl or IndirectFieldDecl"
) ? static_cast<void> (0) : __assert_fail ("(DirectMember || IndirectMember) && \"Member must be a FieldDecl or IndirectFieldDecl\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 3917, __PRETTY_FUNCTION__))
;
3918
3919 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
3920 return true;
3921
3922 if (Member->isInvalidDecl())
3923 return true;
3924
3925 MultiExprArg Args;
3926 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
3927 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
3928 } else if (InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
3929 Args = MultiExprArg(InitList->getInits(), InitList->getNumInits());
3930 } else {
3931 // Template instantiation doesn't reconstruct ParenListExprs for us.
3932 Args = Init;
3933 }
3934
3935 SourceRange InitRange = Init->getSourceRange();
3936
3937 if (Member->getType()->isDependentType() || Init->isTypeDependent()) {
3938 // Can't check initialization for a member of dependent type or when
3939 // any of the arguments are type-dependent expressions.
3940 DiscardCleanupsInEvaluationContext();
3941 } else {
3942 bool InitList = false;
3943 if (isa<InitListExpr>(Init)) {
3944 InitList = true;
3945 Args = Init;
3946 }
3947
3948 // Initialize the member.
3949 InitializedEntity MemberEntity =
3950 DirectMember ? InitializedEntity::InitializeMember(DirectMember, nullptr)
3951 : InitializedEntity::InitializeMember(IndirectMember,
3952 nullptr);
3953 InitializationKind Kind =
3954 InitList ? InitializationKind::CreateDirectList(IdLoc)
3955 : InitializationKind::CreateDirect(IdLoc, InitRange.getBegin(),
3956 InitRange.getEnd());
3957
3958 InitializationSequence InitSeq(*this, MemberEntity, Kind, Args);
3959 ExprResult MemberInit = InitSeq.Perform(*this, MemberEntity, Kind, Args,
3960 nullptr);
3961 if (MemberInit.isInvalid())
3962 return true;
3963
3964 CheckForDanglingReferenceOrPointer(*this, Member, MemberInit.get(), IdLoc);
3965
3966 // C++11 [class.base.init]p7:
3967 // The initialization of each base and member constitutes a
3968 // full-expression.
3969 MemberInit = ActOnFinishFullExpr(MemberInit.get(), InitRange.getBegin());
3970 if (MemberInit.isInvalid())
3971 return true;
3972
3973 Init = MemberInit.get();
3974 }
3975
3976 if (DirectMember) {
3977 return new (Context) CXXCtorInitializer(Context, DirectMember, IdLoc,
3978 InitRange.getBegin(), Init,
3979 InitRange.getEnd());
3980 } else {
3981 return new (Context) CXXCtorInitializer(Context, IndirectMember, IdLoc,
3982 InitRange.getBegin(), Init,
3983 InitRange.getEnd());
3984 }
3985}
3986
3987MemInitResult
3988Sema::BuildDelegatingInitializer(TypeSourceInfo *TInfo, Expr *Init,
3989 CXXRecordDecl *ClassDecl) {
3990 SourceLocation NameLoc = TInfo->getTypeLoc().getLocalSourceRange().getBegin();
3991 if (!LangOpts.CPlusPlus11)
3992 return Diag(NameLoc, diag::err_delegating_ctor)
3993 << TInfo->getTypeLoc().getLocalSourceRange();
3994 Diag(NameLoc, diag::warn_cxx98_compat_delegating_ctor);
3995
3996 bool InitList = true;
3997 MultiExprArg Args = Init;
3998 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
3999 InitList = false;
4000 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4001 }
4002
4003 SourceRange InitRange = Init->getSourceRange();
4004 // Initialize the object.
4005 InitializedEntity DelegationEntity = InitializedEntity::InitializeDelegation(
4006 QualType(ClassDecl->getTypeForDecl(), 0));
4007 InitializationKind Kind =
4008 InitList ? InitializationKind::CreateDirectList(NameLoc)
4009 : InitializationKind::CreateDirect(NameLoc, InitRange.getBegin(),
4010 InitRange.getEnd());
4011 InitializationSequence InitSeq(*this, DelegationEntity, Kind, Args);
4012 ExprResult DelegationInit = InitSeq.Perform(*this, DelegationEntity, Kind,
4013 Args, nullptr);
4014 if (DelegationInit.isInvalid())
4015 return true;
4016
4017 assert(cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() &&((cast<CXXConstructExpr>(DelegationInit.get())->getConstructor
() && "Delegating constructor with no target?") ? static_cast
<void> (0) : __assert_fail ("cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() && \"Delegating constructor with no target?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4018, __PRETTY_FUNCTION__))
4018 "Delegating constructor with no target?")((cast<CXXConstructExpr>(DelegationInit.get())->getConstructor
() && "Delegating constructor with no target?") ? static_cast
<void> (0) : __assert_fail ("cast<CXXConstructExpr>(DelegationInit.get())->getConstructor() && \"Delegating constructor with no target?\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4018, __PRETTY_FUNCTION__))
;
4019
4020 // C++11 [class.base.init]p7:
4021 // The initialization of each base and member constitutes a
4022 // full-expression.
4023 DelegationInit = ActOnFinishFullExpr(DelegationInit.get(),
4024 InitRange.getBegin());
4025 if (DelegationInit.isInvalid())
4026 return true;
4027
4028 // If we are in a dependent context, template instantiation will
4029 // perform this type-checking again. Just save the arguments that we
4030 // received in a ParenListExpr.
4031 // FIXME: This isn't quite ideal, since our ASTs don't capture all
4032 // of the information that we have about the base
4033 // initializer. However, deconstructing the ASTs is a dicey process,
4034 // and this approach is far more likely to get the corner cases right.
4035 if (CurContext->isDependentContext())
4036 DelegationInit = Init;
4037
4038 return new (Context) CXXCtorInitializer(Context, TInfo, InitRange.getBegin(),
4039 DelegationInit.getAs<Expr>(),
4040 InitRange.getEnd());
4041}
4042
4043MemInitResult
4044Sema::BuildBaseInitializer(QualType BaseType, TypeSourceInfo *BaseTInfo,
4045 Expr *Init, CXXRecordDecl *ClassDecl,
4046 SourceLocation EllipsisLoc) {
4047 SourceLocation BaseLoc
4048 = BaseTInfo->getTypeLoc().getLocalSourceRange().getBegin();
4049
4050 if (!BaseType->isDependentType() && !BaseType->isRecordType())
4051 return Diag(BaseLoc, diag::err_base_init_does_not_name_class)
4052 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4053
4054 // C++ [class.base.init]p2:
4055 // [...] Unless the mem-initializer-id names a nonstatic data
4056 // member of the constructor's class or a direct or virtual base
4057 // of that class, the mem-initializer is ill-formed. A
4058 // mem-initializer-list can initialize a base class using any
4059 // name that denotes that base class type.
4060 bool Dependent = BaseType->isDependentType() || Init->isTypeDependent();
4061
4062 SourceRange InitRange = Init->getSourceRange();
4063 if (EllipsisLoc.isValid()) {
4064 // This is a pack expansion.
4065 if (!BaseType->containsUnexpandedParameterPack()) {
4066 Diag(EllipsisLoc, diag::err_pack_expansion_without_parameter_packs)
4067 << SourceRange(BaseLoc, InitRange.getEnd());
4068
4069 EllipsisLoc = SourceLocation();
4070 }
4071 } else {
4072 // Check for any unexpanded parameter packs.
4073 if (DiagnoseUnexpandedParameterPack(BaseLoc, BaseTInfo, UPPC_Initializer))
4074 return true;
4075
4076 if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer))
4077 return true;
4078 }
4079
4080 // Check for direct and virtual base classes.
4081 const CXXBaseSpecifier *DirectBaseSpec = nullptr;
4082 const CXXBaseSpecifier *VirtualBaseSpec = nullptr;
4083 if (!Dependent) {
4084 if (Context.hasSameUnqualifiedType(QualType(ClassDecl->getTypeForDecl(),0),
4085 BaseType))
4086 return BuildDelegatingInitializer(BaseTInfo, Init, ClassDecl);
4087
4088 FindBaseInitializer(*this, ClassDecl, BaseType, DirectBaseSpec,
4089 VirtualBaseSpec);
4090
4091 // C++ [base.class.init]p2:
4092 // Unless the mem-initializer-id names a nonstatic data member of the
4093 // constructor's class or a direct or virtual base of that class, the
4094 // mem-initializer is ill-formed.
4095 if (!DirectBaseSpec && !VirtualBaseSpec) {
4096 // If the class has any dependent bases, then it's possible that
4097 // one of those types will resolve to the same type as
4098 // BaseType. Therefore, just treat this as a dependent base
4099 // class initialization. FIXME: Should we try to check the
4100 // initialization anyway? It seems odd.
4101 if (ClassDecl->hasAnyDependentBases())
4102 Dependent = true;
4103 else
4104 return Diag(BaseLoc, diag::err_not_direct_base_or_virtual)
4105 << BaseType << Context.getTypeDeclType(ClassDecl)
4106 << BaseTInfo->getTypeLoc().getLocalSourceRange();
4107 }
4108 }
4109
4110 if (Dependent) {
4111 DiscardCleanupsInEvaluationContext();
4112
4113 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4114 /*IsVirtual=*/false,
4115 InitRange.getBegin(), Init,
4116 InitRange.getEnd(), EllipsisLoc);
4117 }
4118
4119 // C++ [base.class.init]p2:
4120 // If a mem-initializer-id is ambiguous because it designates both
4121 // a direct non-virtual base class and an inherited virtual base
4122 // class, the mem-initializer is ill-formed.
4123 if (DirectBaseSpec && VirtualBaseSpec)
4124 return Diag(BaseLoc, diag::err_base_init_direct_and_virtual)
4125 << BaseType << BaseTInfo->getTypeLoc().getLocalSourceRange();
4126
4127 const CXXBaseSpecifier *BaseSpec = DirectBaseSpec;
4128 if (!BaseSpec)
4129 BaseSpec = VirtualBaseSpec;
4130
4131 // Initialize the base.
4132 bool InitList = true;
4133 MultiExprArg Args = Init;
4134 if (ParenListExpr *ParenList = dyn_cast<ParenListExpr>(Init)) {
4135 InitList = false;
4136 Args = MultiExprArg(ParenList->getExprs(), ParenList->getNumExprs());
4137 }
4138
4139 InitializedEntity BaseEntity =
4140 InitializedEntity::InitializeBase(Context, BaseSpec, VirtualBaseSpec);
4141 InitializationKind Kind =
4142 InitList ? InitializationKind::CreateDirectList(BaseLoc)
4143 : InitializationKind::CreateDirect(BaseLoc, InitRange.getBegin(),
4144 InitRange.getEnd());
4145 InitializationSequence InitSeq(*this, BaseEntity, Kind, Args);
4146 ExprResult BaseInit = InitSeq.Perform(*this, BaseEntity, Kind, Args, nullptr);
4147 if (BaseInit.isInvalid())
4148 return true;
4149
4150 // C++11 [class.base.init]p7:
4151 // The initialization of each base and member constitutes a
4152 // full-expression.
4153 BaseInit = ActOnFinishFullExpr(BaseInit.get(), InitRange.getBegin());
4154 if (BaseInit.isInvalid())
4155 return true;
4156
4157 // If we are in a dependent context, template instantiation will
4158 // perform this type-checking again. Just save the arguments that we
4159 // received in a ParenListExpr.
4160 // FIXME: This isn't quite ideal, since our ASTs don't capture all
4161 // of the information that we have about the base
4162 // initializer. However, deconstructing the ASTs is a dicey process,
4163 // and this approach is far more likely to get the corner cases right.
4164 if (CurContext->isDependentContext())
4165 BaseInit = Init;
4166
4167 return new (Context) CXXCtorInitializer(Context, BaseTInfo,
4168 BaseSpec->isVirtual(),
4169 InitRange.getBegin(),
4170 BaseInit.getAs<Expr>(),
4171 InitRange.getEnd(), EllipsisLoc);
4172}
4173
4174// Create a static_cast\<T&&>(expr).
4175static Expr *CastForMoving(Sema &SemaRef, Expr *E, QualType T = QualType()) {
4176 if (T.isNull()) T = E->getType();
4177 QualType TargetType = SemaRef.BuildReferenceType(
4178 T, /*SpelledAsLValue*/false, SourceLocation(), DeclarationName());
4179 SourceLocation ExprLoc = E->getLocStart();
4180 TypeSourceInfo *TargetLoc = SemaRef.Context.getTrivialTypeSourceInfo(
4181 TargetType, ExprLoc);
4182
4183 return SemaRef.BuildCXXNamedCast(ExprLoc, tok::kw_static_cast, TargetLoc, E,
4184 SourceRange(ExprLoc, ExprLoc),
4185 E->getSourceRange()).get();
4186}
4187
4188/// ImplicitInitializerKind - How an implicit base or member initializer should
4189/// initialize its base or member.
4190enum ImplicitInitializerKind {
4191 IIK_Default,
4192 IIK_Copy,
4193 IIK_Move,
4194 IIK_Inherit
4195};
4196
4197static bool
4198BuildImplicitBaseInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4199 ImplicitInitializerKind ImplicitInitKind,
4200 CXXBaseSpecifier *BaseSpec,
4201 bool IsInheritedVirtualBase,
4202 CXXCtorInitializer *&CXXBaseInit) {
4203 InitializedEntity InitEntity
4204 = InitializedEntity::InitializeBase(SemaRef.Context, BaseSpec,
4205 IsInheritedVirtualBase);
4206
4207 ExprResult BaseInit;
4208
4209 switch (ImplicitInitKind) {
4210 case IIK_Inherit:
4211 case IIK_Default: {
4212 InitializationKind InitKind
4213 = InitializationKind::CreateDefault(Constructor->getLocation());
4214 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
4215 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
4216 break;
4217 }
4218
4219 case IIK_Move:
4220 case IIK_Copy: {
4221 bool Moving = ImplicitInitKind == IIK_Move;
4222 ParmVarDecl *Param = Constructor->getParamDecl(0);
4223 QualType ParamType = Param->getType().getNonReferenceType();
4224
4225 Expr *CopyCtorArg =
4226 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4227 SourceLocation(), Param, false,
4228 Constructor->getLocation(), ParamType,
4229 VK_LValue, nullptr);
4230
4231 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(CopyCtorArg));
4232
4233 // Cast to the base class to avoid ambiguities.
4234 QualType ArgTy =
4235 SemaRef.Context.getQualifiedType(BaseSpec->getType().getUnqualifiedType(),
4236 ParamType.getQualifiers());
4237
4238 if (Moving) {
4239 CopyCtorArg = CastForMoving(SemaRef, CopyCtorArg);
4240 }
4241
4242 CXXCastPath BasePath;
4243 BasePath.push_back(BaseSpec);
4244 CopyCtorArg = SemaRef.ImpCastExprToType(CopyCtorArg, ArgTy,
4245 CK_UncheckedDerivedToBase,
4246 Moving ? VK_XValue : VK_LValue,
4247 &BasePath).get();
4248
4249 InitializationKind InitKind
4250 = InitializationKind::CreateDirect(Constructor->getLocation(),
4251 SourceLocation(), SourceLocation());
4252 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, CopyCtorArg);
4253 BaseInit = InitSeq.Perform(SemaRef, InitEntity, InitKind, CopyCtorArg);
4254 break;
4255 }
4256 }
4257
4258 BaseInit = SemaRef.MaybeCreateExprWithCleanups(BaseInit);
4259 if (BaseInit.isInvalid())
4260 return true;
4261
4262 CXXBaseInit =
4263 new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4264 SemaRef.Context.getTrivialTypeSourceInfo(BaseSpec->getType(),
4265 SourceLocation()),
4266 BaseSpec->isVirtual(),
4267 SourceLocation(),
4268 BaseInit.getAs<Expr>(),
4269 SourceLocation(),
4270 SourceLocation());
4271
4272 return false;
4273}
4274
4275static bool RefersToRValueRef(Expr *MemRef) {
4276 ValueDecl *Referenced = cast<MemberExpr>(MemRef)->getMemberDecl();
4277 return Referenced->getType()->isRValueReferenceType();
4278}
4279
4280static bool
4281BuildImplicitMemberInitializer(Sema &SemaRef, CXXConstructorDecl *Constructor,
4282 ImplicitInitializerKind ImplicitInitKind,
4283 FieldDecl *Field, IndirectFieldDecl *Indirect,
4284 CXXCtorInitializer *&CXXMemberInit) {
4285 if (Field->isInvalidDecl())
4286 return true;
4287
4288 SourceLocation Loc = Constructor->getLocation();
4289
4290 if (ImplicitInitKind == IIK_Copy || ImplicitInitKind == IIK_Move) {
4291 bool Moving = ImplicitInitKind == IIK_Move;
4292 ParmVarDecl *Param = Constructor->getParamDecl(0);
4293 QualType ParamType = Param->getType().getNonReferenceType();
4294
4295 // Suppress copying zero-width bitfields.
4296 if (Field->isBitField() && Field->getBitWidthValue(SemaRef.Context) == 0)
4297 return false;
4298
4299 Expr *MemberExprBase =
4300 DeclRefExpr::Create(SemaRef.Context, NestedNameSpecifierLoc(),
4301 SourceLocation(), Param, false,
4302 Loc, ParamType, VK_LValue, nullptr);
4303
4304 SemaRef.MarkDeclRefReferenced(cast<DeclRefExpr>(MemberExprBase));
4305
4306 if (Moving) {
4307 MemberExprBase = CastForMoving(SemaRef, MemberExprBase);
4308 }
4309
4310 // Build a reference to this field within the parameter.
4311 CXXScopeSpec SS;
4312 LookupResult MemberLookup(SemaRef, Field->getDeclName(), Loc,
4313 Sema::LookupMemberName);
4314 MemberLookup.addDecl(Indirect ? cast<ValueDecl>(Indirect)
4315 : cast<ValueDecl>(Field), AS_public);
4316 MemberLookup.resolveKind();
4317 ExprResult CtorArg
4318 = SemaRef.BuildMemberReferenceExpr(MemberExprBase,
4319 ParamType, Loc,
4320 /*IsArrow=*/false,
4321 SS,
4322 /*TemplateKWLoc=*/SourceLocation(),
4323 /*FirstQualifierInScope=*/nullptr,
4324 MemberLookup,
4325 /*TemplateArgs=*/nullptr,
4326 /*S*/nullptr);
4327 if (CtorArg.isInvalid())
4328 return true;
4329
4330 // C++11 [class.copy]p15:
4331 // - if a member m has rvalue reference type T&&, it is direct-initialized
4332 // with static_cast<T&&>(x.m);
4333 if (RefersToRValueRef(CtorArg.get())) {
4334 CtorArg = CastForMoving(SemaRef, CtorArg.get());
4335 }
4336
4337 InitializedEntity Entity =
4338 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
4339 /*Implicit*/ true)
4340 : InitializedEntity::InitializeMember(Field, nullptr,
4341 /*Implicit*/ true);
4342
4343 // Direct-initialize to use the copy constructor.
4344 InitializationKind InitKind =
4345 InitializationKind::CreateDirect(Loc, SourceLocation(), SourceLocation());
4346
4347 Expr *CtorArgE = CtorArg.getAs<Expr>();
4348 InitializationSequence InitSeq(SemaRef, Entity, InitKind, CtorArgE);
4349 ExprResult MemberInit =
4350 InitSeq.Perform(SemaRef, Entity, InitKind, MultiExprArg(&CtorArgE, 1));
4351 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
4352 if (MemberInit.isInvalid())
4353 return true;
4354
4355 if (Indirect)
4356 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
4357 SemaRef.Context, Indirect, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
4358 else
4359 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(
4360 SemaRef.Context, Field, Loc, Loc, MemberInit.getAs<Expr>(), Loc);
4361 return false;
4362 }
4363
4364 assert((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) &&(((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit
) && "Unhandled implicit init kind!") ? static_cast<
void> (0) : __assert_fail ("(ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && \"Unhandled implicit init kind!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4365, __PRETTY_FUNCTION__))
4365 "Unhandled implicit init kind!")(((ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit
) && "Unhandled implicit init kind!") ? static_cast<
void> (0) : __assert_fail ("(ImplicitInitKind == IIK_Default || ImplicitInitKind == IIK_Inherit) && \"Unhandled implicit init kind!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4365, __PRETTY_FUNCTION__))
;
4366
4367 QualType FieldBaseElementType =
4368 SemaRef.Context.getBaseElementType(Field->getType());
4369
4370 if (FieldBaseElementType->isRecordType()) {
4371 InitializedEntity InitEntity =
4372 Indirect ? InitializedEntity::InitializeMember(Indirect, nullptr,
4373 /*Implicit*/ true)
4374 : InitializedEntity::InitializeMember(Field, nullptr,
4375 /*Implicit*/ true);
4376 InitializationKind InitKind =
4377 InitializationKind::CreateDefault(Loc);
4378
4379 InitializationSequence InitSeq(SemaRef, InitEntity, InitKind, None);
4380 ExprResult MemberInit =
4381 InitSeq.Perform(SemaRef, InitEntity, InitKind, None);
4382
4383 MemberInit = SemaRef.MaybeCreateExprWithCleanups(MemberInit);
4384 if (MemberInit.isInvalid())
4385 return true;
4386
4387 if (Indirect)
4388 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4389 Indirect, Loc,
4390 Loc,
4391 MemberInit.get(),
4392 Loc);
4393 else
4394 CXXMemberInit = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context,
4395 Field, Loc, Loc,
4396 MemberInit.get(),
4397 Loc);
4398 return false;
4399 }
4400
4401 if (!Field->getParent()->isUnion()) {
4402 if (FieldBaseElementType->isReferenceType()) {
4403 SemaRef.Diag(Constructor->getLocation(),
4404 diag::err_uninitialized_member_in_ctor)
4405 << (int)Constructor->isImplicit()
4406 << SemaRef.Context.getTagDeclType(Constructor->getParent())
4407 << 0 << Field->getDeclName();
4408 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
4409 return true;
4410 }
4411
4412 if (FieldBaseElementType.isConstQualified()) {
4413 SemaRef.Diag(Constructor->getLocation(),
4414 diag::err_uninitialized_member_in_ctor)
4415 << (int)Constructor->isImplicit()
4416 << SemaRef.Context.getTagDeclType(Constructor->getParent())
4417 << 1 << Field->getDeclName();
4418 SemaRef.Diag(Field->getLocation(), diag::note_declared_at);
4419 return true;
4420 }
4421 }
4422
4423 if (FieldBaseElementType.hasNonTrivialObjCLifetime()) {
4424 // ARC and Weak:
4425 // Default-initialize Objective-C pointers to NULL.
4426 CXXMemberInit
4427 = new (SemaRef.Context) CXXCtorInitializer(SemaRef.Context, Field,
4428 Loc, Loc,
4429 new (SemaRef.Context) ImplicitValueInitExpr(Field->getType()),
4430 Loc);
4431 return false;
4432 }
4433
4434 // Nothing to initialize.
4435 CXXMemberInit = nullptr;
4436 return false;
4437}
4438
4439namespace {
4440struct BaseAndFieldInfo {
4441 Sema &S;
4442 CXXConstructorDecl *Ctor;
4443 bool AnyErrorsInInits;
4444 ImplicitInitializerKind IIK;
4445 llvm::DenseMap<const void *, CXXCtorInitializer*> AllBaseFields;
4446 SmallVector<CXXCtorInitializer*, 8> AllToInit;
4447 llvm::DenseMap<TagDecl*, FieldDecl*> ActiveUnionMember;
4448
4449 BaseAndFieldInfo(Sema &S, CXXConstructorDecl *Ctor, bool ErrorsInInits)
4450 : S(S), Ctor(Ctor), AnyErrorsInInits(ErrorsInInits) {
4451 bool Generated = Ctor->isImplicit() || Ctor->isDefaulted();
4452 if (Ctor->getInheritedConstructor())
4453 IIK = IIK_Inherit;
4454 else if (Generated && Ctor->isCopyConstructor())
4455 IIK = IIK_Copy;
4456 else if (Generated && Ctor->isMoveConstructor())
4457 IIK = IIK_Move;
4458 else
4459 IIK = IIK_Default;
4460 }
4461
4462 bool isImplicitCopyOrMove() const {
4463 switch (IIK) {
4464 case IIK_Copy:
4465 case IIK_Move:
4466 return true;
4467
4468 case IIK_Default:
4469 case IIK_Inherit:
4470 return false;
4471 }
4472
4473 llvm_unreachable("Invalid ImplicitInitializerKind!")::llvm::llvm_unreachable_internal("Invalid ImplicitInitializerKind!"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4473)
;
4474 }
4475
4476 bool addFieldInitializer(CXXCtorInitializer *Init) {
4477 AllToInit.push_back(Init);
4478
4479 // Check whether this initializer makes the field "used".
4480 if (Init->getInit()->HasSideEffects(S.Context))
4481 S.UnusedPrivateFields.remove(Init->getAnyMember());
4482
4483 return false;
4484 }
4485
4486 bool isInactiveUnionMember(FieldDecl *Field) {
4487 RecordDecl *Record = Field->getParent();
4488 if (!Record->isUnion())
4489 return false;
4490
4491 if (FieldDecl *Active =
4492 ActiveUnionMember.lookup(Record->getCanonicalDecl()))
4493 return Active != Field->getCanonicalDecl();
4494
4495 // In an implicit copy or move constructor, ignore any in-class initializer.
4496 if (isImplicitCopyOrMove())
4497 return true;
4498
4499 // If there's no explicit initialization, the field is active only if it
4500 // has an in-class initializer...
4501 if (Field->hasInClassInitializer())
4502 return false;
4503 // ... or it's an anonymous struct or union whose class has an in-class
4504 // initializer.
4505 if (!Field->isAnonymousStructOrUnion())
4506 return true;
4507 CXXRecordDecl *FieldRD = Field->getType()->getAsCXXRecordDecl();
4508 return !FieldRD->hasInClassInitializer();
4509 }
4510
4511 /// \brief Determine whether the given field is, or is within, a union member
4512 /// that is inactive (because there was an initializer given for a different
4513 /// member of the union, or because the union was not initialized at all).
4514 bool isWithinInactiveUnionMember(FieldDecl *Field,
4515 IndirectFieldDecl *Indirect) {
4516 if (!Indirect)
4517 return isInactiveUnionMember(Field);
4518
4519 for (auto *C : Indirect->chain()) {
4520 FieldDecl *Field = dyn_cast<FieldDecl>(C);
4521 if (Field && isInactiveUnionMember(Field))
4522 return true;
4523 }
4524 return false;
4525 }
4526};
4527}
4528
4529/// \brief Determine whether the given type is an incomplete or zero-lenfgth
4530/// array type.
4531static bool isIncompleteOrZeroLengthArrayType(ASTContext &Context, QualType T) {
4532 if (T->isIncompleteArrayType())
4533 return true;
4534
4535 while (const ConstantArrayType *ArrayT = Context.getAsConstantArrayType(T)) {
4536 if (!ArrayT->getSize())
4537 return true;
4538
4539 T = ArrayT->getElementType();
4540 }
4541
4542 return false;
4543}
4544
4545static bool CollectFieldInitializer(Sema &SemaRef, BaseAndFieldInfo &Info,
4546 FieldDecl *Field,
4547 IndirectFieldDecl *Indirect = nullptr) {
4548 if (Field->isInvalidDecl())
4549 return false;
4550
4551 // Overwhelmingly common case: we have a direct initializer for this field.
4552 if (CXXCtorInitializer *Init =
4553 Info.AllBaseFields.lookup(Field->getCanonicalDecl()))
4554 return Info.addFieldInitializer(Init);
4555
4556 // C++11 [class.base.init]p8:
4557 // if the entity is a non-static data member that has a
4558 // brace-or-equal-initializer and either
4559 // -- the constructor's class is a union and no other variant member of that
4560 // union is designated by a mem-initializer-id or
4561 // -- the constructor's class is not a union, and, if the entity is a member
4562 // of an anonymous union, no other member of that union is designated by
4563 // a mem-initializer-id,
4564 // the entity is initialized as specified in [dcl.init].
4565 //
4566 // We also apply the same rules to handle anonymous structs within anonymous
4567 // unions.
4568 if (Info.isWithinInactiveUnionMember(Field, Indirect))
4569 return false;
4570
4571 if (Field->hasInClassInitializer() && !Info.isImplicitCopyOrMove()) {
4572 ExprResult DIE =
4573 SemaRef.BuildCXXDefaultInitExpr(Info.Ctor->getLocation(), Field);
4574 if (DIE.isInvalid())
4575 return true;
4576 CXXCtorInitializer *Init;
4577 if (Indirect)
4578 Init = new (SemaRef.Context)
4579 CXXCtorInitializer(SemaRef.Context, Indirect, SourceLocation(),
4580 SourceLocation(), DIE.get(), SourceLocation());
4581 else
4582 Init = new (SemaRef.Context)
4583 CXXCtorInitializer(SemaRef.Context, Field, SourceLocation(),
4584 SourceLocation(), DIE.get(), SourceLocation());
4585 return Info.addFieldInitializer(Init);
4586 }
4587
4588 // Don't initialize incomplete or zero-length arrays.
4589 if (isIncompleteOrZeroLengthArrayType(SemaRef.Context, Field->getType()))
4590 return false;
4591
4592 // Don't try to build an implicit initializer if there were semantic
4593 // errors in any of the initializers (and therefore we might be
4594 // missing some that the user actually wrote).
4595 if (Info.AnyErrorsInInits)
4596 return false;
4597
4598 CXXCtorInitializer *Init = nullptr;
4599 if (BuildImplicitMemberInitializer(Info.S, Info.Ctor, Info.IIK, Field,
4600 Indirect, Init))
4601 return true;
4602
4603 if (!Init)
4604 return false;
4605
4606 return Info.addFieldInitializer(Init);
4607}
4608
4609bool
4610Sema::SetDelegatingInitializer(CXXConstructorDecl *Constructor,
4611 CXXCtorInitializer *Initializer) {
4612 assert(Initializer->isDelegatingInitializer())((Initializer->isDelegatingInitializer()) ? static_cast<
void> (0) : __assert_fail ("Initializer->isDelegatingInitializer()"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4612, __PRETTY_FUNCTION__))
;
4613 Constructor->setNumCtorInitializers(1);
4614 CXXCtorInitializer **initializer =
4615 new (Context) CXXCtorInitializer*[1];
4616 memcpy(initializer, &Initializer, sizeof (CXXCtorInitializer*));
4617 Constructor->setCtorInitializers(initializer);
4618
4619 if (CXXDestructorDecl *Dtor = LookupDestructor(Constructor->getParent())) {
4620 MarkFunctionReferenced(Initializer->getSourceLocation(), Dtor);
4621 DiagnoseUseOfDecl(Dtor, Initializer->getSourceLocation());
4622 }
4623
4624 DelegatingCtorDecls.push_back(Constructor);
4625
4626 DiagnoseUninitializedFields(*this, Constructor);
4627
4628 return false;
4629}
4630
4631bool Sema::SetCtorInitializers(CXXConstructorDecl *Constructor, bool AnyErrors,
4632 ArrayRef<CXXCtorInitializer *> Initializers) {
4633 if (Constructor->isDependentContext()) {
4634 // Just store the initializers as written, they will be checked during
4635 // instantiation.
4636 if (!Initializers.empty()) {
4637 Constructor->setNumCtorInitializers(Initializers.size());
4638 CXXCtorInitializer **baseOrMemberInitializers =
4639 new (Context) CXXCtorInitializer*[Initializers.size()];
4640 memcpy(baseOrMemberInitializers, Initializers.data(),
4641 Initializers.size() * sizeof(CXXCtorInitializer*));
4642 Constructor->setCtorInitializers(baseOrMemberInitializers);
4643 }
4644
4645 // Let template instantiation know whether we had errors.
4646 if (AnyErrors)
4647 Constructor->setInvalidDecl();
4648
4649 return false;
4650 }
4651
4652 BaseAndFieldInfo Info(*this, Constructor, AnyErrors);
4653
4654 // We need to build the initializer AST according to order of construction
4655 // and not what user specified in the Initializers list.
4656 CXXRecordDecl *ClassDecl = Constructor->getParent()->getDefinition();
4657 if (!ClassDecl)
4658 return true;
4659
4660 bool HadError = false;
4661
4662 for (unsigned i = 0; i < Initializers.size(); i++) {
4663 CXXCtorInitializer *Member = Initializers[i];
4664
4665 if (Member->isBaseInitializer())
4666 Info.AllBaseFields[Member->getBaseClass()->getAs<RecordType>()] = Member;
4667 else {
4668 Info.AllBaseFields[Member->getAnyMember()->getCanonicalDecl()] = Member;
4669
4670 if (IndirectFieldDecl *F = Member->getIndirectMember()) {
4671 for (auto *C : F->chain()) {
4672 FieldDecl *FD = dyn_cast<FieldDecl>(C);
4673 if (FD && FD->getParent()->isUnion())
4674 Info.ActiveUnionMember.insert(std::make_pair(
4675 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
4676 }
4677 } else if (FieldDecl *FD = Member->getMember()) {
4678 if (FD->getParent()->isUnion())
4679 Info.ActiveUnionMember.insert(std::make_pair(
4680 FD->getParent()->getCanonicalDecl(), FD->getCanonicalDecl()));
4681 }
4682 }
4683 }
4684
4685 // Keep track of the direct virtual bases.
4686 llvm::SmallPtrSet<CXXBaseSpecifier *, 16> DirectVBases;
4687 for (auto &I : ClassDecl->bases()) {
4688 if (I.isVirtual())
4689 DirectVBases.insert(&I);
4690 }
4691
4692 // Push virtual bases before others.
4693 for (auto &VBase : ClassDecl->vbases()) {
4694 if (CXXCtorInitializer *Value
4695 = Info.AllBaseFields.lookup(VBase.getType()->getAs<RecordType>())) {
4696 // [class.base.init]p7, per DR257:
4697 // A mem-initializer where the mem-initializer-id names a virtual base
4698 // class is ignored during execution of a constructor of any class that
4699 // is not the most derived class.
4700 if (ClassDecl->isAbstract()) {
4701 // FIXME: Provide a fixit to remove the base specifier. This requires
4702 // tracking the location of the associated comma for a base specifier.
4703 Diag(Value->getSourceLocation(), diag::warn_abstract_vbase_init_ignored)
4704 << VBase.getType() << ClassDecl;
4705 DiagnoseAbstractType(ClassDecl);
4706 }
4707
4708 Info.AllToInit.push_back(Value);
4709 } else if (!AnyErrors && !ClassDecl->isAbstract()) {
4710 // [class.base.init]p8, per DR257:
4711 // If a given [...] base class is not named by a mem-initializer-id
4712 // [...] and the entity is not a virtual base class of an abstract
4713 // class, then [...] the entity is default-initialized.
4714 bool IsInheritedVirtualBase = !DirectVBases.count(&VBase);
4715 CXXCtorInitializer *CXXBaseInit;
4716 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
4717 &VBase, IsInheritedVirtualBase,
4718 CXXBaseInit)) {
4719 HadError = true;
4720 continue;
4721 }
4722
4723 Info.AllToInit.push_back(CXXBaseInit);
4724 }
4725 }
4726
4727 // Non-virtual bases.
4728 for (auto &Base : ClassDecl->bases()) {
4729 // Virtuals are in the virtual base list and already constructed.
4730 if (Base.isVirtual())
4731 continue;
4732
4733 if (CXXCtorInitializer *Value
4734 = Info.AllBaseFields.lookup(Base.getType()->getAs<RecordType>())) {
4735 Info.AllToInit.push_back(Value);
4736 } else if (!AnyErrors) {
4737 CXXCtorInitializer *CXXBaseInit;
4738 if (BuildImplicitBaseInitializer(*this, Constructor, Info.IIK,
4739 &Base, /*IsInheritedVirtualBase=*/false,
4740 CXXBaseInit)) {
4741 HadError = true;
4742 continue;
4743 }
4744
4745 Info.AllToInit.push_back(CXXBaseInit);
4746 }
4747 }
4748
4749 // Fields.
4750 for (auto *Mem : ClassDecl->decls()) {
4751 if (auto *F = dyn_cast<FieldDecl>(Mem)) {
4752 // C++ [class.bit]p2:
4753 // A declaration for a bit-field that omits the identifier declares an
4754 // unnamed bit-field. Unnamed bit-fields are not members and cannot be
4755 // initialized.
4756 if (F->isUnnamedBitfield())
4757 continue;
4758
4759 // If we're not generating the implicit copy/move constructor, then we'll
4760 // handle anonymous struct/union fields based on their individual
4761 // indirect fields.
4762 if (F->isAnonymousStructOrUnion() && !Info.isImplicitCopyOrMove())
4763 continue;
4764
4765 if (CollectFieldInitializer(*this, Info, F))
4766 HadError = true;
4767 continue;
4768 }
4769
4770 // Beyond this point, we only consider default initialization.
4771 if (Info.isImplicitCopyOrMove())
4772 continue;
4773
4774 if (auto *F = dyn_cast<IndirectFieldDecl>(Mem)) {
4775 if (F->getType()->isIncompleteArrayType()) {
4776 assert(ClassDecl->hasFlexibleArrayMember() &&((ClassDecl->hasFlexibleArrayMember() && "Incomplete array type is not valid"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4777, __PRETTY_FUNCTION__))
4777 "Incomplete array type is not valid")((ClassDecl->hasFlexibleArrayMember() && "Incomplete array type is not valid"
) ? static_cast<void> (0) : __assert_fail ("ClassDecl->hasFlexibleArrayMember() && \"Incomplete array type is not valid\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4777, __PRETTY_FUNCTION__))
;
4778 continue;
4779 }
4780
4781 // Initialize each field of an anonymous struct individually.
4782 if (CollectFieldInitializer(*this, Info, F->getAnonField(), F))
4783 HadError = true;
4784
4785 continue;
4786 }
4787 }
4788
4789 unsigned NumInitializers = Info.AllToInit.size();
4790 if (NumInitializers > 0) {
4791 Constructor->setNumCtorInitializers(NumInitializers);
4792 CXXCtorInitializer **baseOrMemberInitializers =
4793 new (Context) CXXCtorInitializer*[NumInitializers];
4794 memcpy(baseOrMemberInitializers, Info.AllToInit.data(),
4795 NumInitializers * sizeof(CXXCtorInitializer*));
4796 Constructor->setCtorInitializers(baseOrMemberInitializers);
4797
4798 // Constructors implicitly reference the base and member
4799 // destructors.
4800 MarkBaseAndMemberDestructorsReferenced(Constructor->getLocation(),
4801 Constructor->getParent());
4802 }
4803
4804 return HadError;
4805}
4806
4807static void PopulateKeysForFields(FieldDecl *Field, SmallVectorImpl<const void*> &IdealInits) {
4808 if (const RecordType *RT = Field->getType()->getAs<RecordType>()) {
4809 const RecordDecl *RD = RT->getDecl();
4810 if (RD->isAnonymousStructOrUnion()) {
4811 for (auto *Field : RD->fields())
4812 PopulateKeysForFields(Field, IdealInits);
4813 return;
4814 }
4815 }
4816 IdealInits.push_back(Field->getCanonicalDecl());
4817}
4818
4819static const void *GetKeyForBase(ASTContext &Context, QualType BaseType) {
4820 return Context.getCanonicalType(BaseType).getTypePtr();
4821}
4822
4823static const void *GetKeyForMember(ASTContext &Context,
4824 CXXCtorInitializer *Member) {
4825 if (!Member->isAnyMemberInitializer())
4826 return GetKeyForBase(Context, QualType(Member->getBaseClass(), 0));
4827
4828 return Member->getAnyMember()->getCanonicalDecl();
4829}
4830
4831static void DiagnoseBaseOrMemInitializerOrder(
4832 Sema &SemaRef, const CXXConstructorDecl *Constructor,
4833 ArrayRef<CXXCtorInitializer *> Inits) {
4834 if (Constructor->getDeclContext()->isDependentContext())
4835 return;
4836
4837 // Don't check initializers order unless the warning is enabled at the
4838 // location of at least one initializer.
4839 bool ShouldCheckOrder = false;
4840 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
4841 CXXCtorInitializer *Init = Inits[InitIndex];
4842 if (!SemaRef.Diags.isIgnored(diag::warn_initializer_out_of_order,
4843 Init->getSourceLocation())) {
4844 ShouldCheckOrder = true;
4845 break;
4846 }
4847 }
4848 if (!ShouldCheckOrder)
4849 return;
4850
4851 // Build the list of bases and members in the order that they'll
4852 // actually be initialized. The explicit initializers should be in
4853 // this same order but may be missing things.
4854 SmallVector<const void*, 32> IdealInitKeys;
4855
4856 const CXXRecordDecl *ClassDecl = Constructor->getParent();
4857
4858 // 1. Virtual bases.
4859 for (const auto &VBase : ClassDecl->vbases())
4860 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, VBase.getType()));
4861
4862 // 2. Non-virtual bases.
4863 for (const auto &Base : ClassDecl->bases()) {
4864 if (Base.isVirtual())
4865 continue;
4866 IdealInitKeys.push_back(GetKeyForBase(SemaRef.Context, Base.getType()));
4867 }
4868
4869 // 3. Direct fields.
4870 for (auto *Field : ClassDecl->fields()) {
4871 if (Field->isUnnamedBitfield())
4872 continue;
4873
4874 PopulateKeysForFields(Field, IdealInitKeys);
4875 }
4876
4877 unsigned NumIdealInits = IdealInitKeys.size();
4878 unsigned IdealIndex = 0;
4879
4880 CXXCtorInitializer *PrevInit = nullptr;
4881 for (unsigned InitIndex = 0; InitIndex != Inits.size(); ++InitIndex) {
4882 CXXCtorInitializer *Init = Inits[InitIndex];
4883 const void *InitKey = GetKeyForMember(SemaRef.Context, Init);
4884
4885 // Scan forward to try to find this initializer in the idealized
4886 // initializers list.
4887 for (; IdealIndex != NumIdealInits; ++IdealIndex)
4888 if (InitKey == IdealInitKeys[IdealIndex])
4889 break;
4890
4891 // If we didn't find this initializer, it must be because we
4892 // scanned past it on a previous iteration. That can only
4893 // happen if we're out of order; emit a warning.
4894 if (IdealIndex == NumIdealInits && PrevInit) {
4895 Sema::SemaDiagnosticBuilder D =
4896 SemaRef.Diag(PrevInit->getSourceLocation(),
4897 diag::warn_initializer_out_of_order);
4898
4899 if (PrevInit->isAnyMemberInitializer())
4900 D << 0 << PrevInit->getAnyMember()->getDeclName();
4901 else
4902 D << 1 << PrevInit->getTypeSourceInfo()->getType();
4903
4904 if (Init->isAnyMemberInitializer())
4905 D << 0 << Init->getAnyMember()->getDeclName();
4906 else
4907 D << 1 << Init->getTypeSourceInfo()->getType();
4908
4909 // Move back to the initializer's location in the ideal list.
4910 for (IdealIndex = 0; IdealIndex != NumIdealInits; ++IdealIndex)
4911 if (InitKey == IdealInitKeys[IdealIndex])
4912 break;
4913
4914 assert(IdealIndex < NumIdealInits &&((IdealIndex < NumIdealInits && "initializer not found in initializer list"
) ? static_cast<void> (0) : __assert_fail ("IdealIndex < NumIdealInits && \"initializer not found in initializer list\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4915, __PRETTY_FUNCTION__))
4915 "initializer not found in initializer list")((IdealIndex < NumIdealInits && "initializer not found in initializer list"
) ? static_cast<void> (0) : __assert_fail ("IdealIndex < NumIdealInits && \"initializer not found in initializer list\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4915, __PRETTY_FUNCTION__))
;
4916 }
4917
4918 PrevInit = Init;
4919 }
4920}
4921
4922namespace {
4923bool CheckRedundantInit(Sema &S,
4924 CXXCtorInitializer *Init,
4925 CXXCtorInitializer *&PrevInit) {
4926 if (!PrevInit) {
4927 PrevInit = Init;
4928 return false;
4929 }
4930
4931 if (FieldDecl *Field = Init->getAnyMember())
4932 S.Diag(Init->getSourceLocation(),
4933 diag::err_multiple_mem_initialization)
4934 << Field->getDeclName()
4935 << Init->getSourceRange();
4936 else {
4937 const Type *BaseClass = Init->getBaseClass();
4938 assert(BaseClass && "neither field nor base")((BaseClass && "neither field nor base") ? static_cast
<void> (0) : __assert_fail ("BaseClass && \"neither field nor base\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 4938, __PRETTY_FUNCTION__))
;
4939 S.Diag(Init->getSourceLocation(),
4940 diag::err_multiple_base_initialization)
4941 << QualType(BaseClass, 0)
4942 << Init->getSourceRange();
4943 }
4944 S.Diag(PrevInit->getSourceLocation(), diag::note_previous_initializer)
4945 << 0 << PrevInit->getSourceRange();
4946
4947 return true;
4948}
4949
4950typedef std::pair<NamedDecl *, CXXCtorInitializer *> UnionEntry;
4951typedef llvm::DenseMap<RecordDecl*, UnionEntry> RedundantUnionMap;
4952
4953bool CheckRedundantUnionInit(Sema &S,
4954 CXXCtorInitializer *Init,
4955 RedundantUnionMap &Unions) {
4956 FieldDecl *Field = Init->getAnyMember();
4957 RecordDecl *Parent = Field->getParent();
4958 NamedDecl *Child = Field;
4959
4960 while (Parent->isAnonymousStructOrUnion() || Parent->isUnion()) {
4961 if (Parent->isUnion()) {
4962 UnionEntry &En = Unions[Parent];
4963 if (En.first && En.first != Child) {
4964 S.Diag(Init->getSourceLocation(),
4965 diag::err_multiple_mem_union_initialization)
4966 << Field->getDeclName()
4967 << Init->getSourceRange();
4968 S.Diag(En.second->getSourceLocation(), diag::note_previous_initializer)
4969 << 0 << En.second->getSourceRange();
4970 return true;
4971 }
4972 if (!En.first) {
4973 En.first = Child;
4974 En.second = Init;
4975 }
4976 if (!Parent->isAnonymousStructOrUnion())
4977 return false;
4978 }
4979
4980 Child = Parent;
4981 Parent = cast<RecordDecl>(Parent->getDeclContext());
4982 }
4983
4984 return false;
4985}
4986}
4987
4988/// ActOnMemInitializers - Handle the member initializers for a constructor.
4989void Sema::ActOnMemInitializers(Decl *ConstructorDecl,
4990 SourceLocation ColonLoc,
4991 ArrayRef<CXXCtorInitializer*> MemInits,
4992 bool AnyErrors) {
4993 if (!ConstructorDecl)
4994 return;
4995
4996 AdjustDeclIfTemplate(ConstructorDecl);
4997
4998 CXXConstructorDecl *Constructor
4999 = dyn_cast<CXXConstructorDecl>(ConstructorDecl);
5000
5001 if (!Constructor) {
5002 Diag(ColonLoc, diag::err_only_constructors_take_base_inits);
5003 return;
5004 }
5005
5006 // Mapping for the duplicate initializers check.
5007 // For member initializers, this is keyed with a FieldDecl*.
5008 // For base initializers, this is keyed with a Type*.
5009 llvm::DenseMap<const void *, CXXCtorInitializer *> Members;
5010
5011 // Mapping for the inconsistent anonymous-union initializers check.
5012 RedundantUnionMap MemberUnions;
5013
5014 bool HadError = false;
5015 for (unsigned i = 0; i < MemInits.size(); i++) {
5016 CXXCtorInitializer *Init = MemInits[i];
5017
5018 // Set the source order index.
5019 Init->setSourceOrder(i);
5020
5021 if (Init->isAnyMemberInitializer()) {
5022 const void *Key = GetKeyForMember(Context, Init);
5023 if (CheckRedundantInit(*this, Init, Members[Key]) ||
5024 CheckRedundantUnionInit(*this, Init, MemberUnions))
5025 HadError = true;
5026 } else if (Init->isBaseInitializer()) {
5027 const void *Key = GetKeyForMember(Context, Init);
5028 if (CheckRedundantInit(*this, Init, Members[Key]))
5029 HadError = true;
5030 } else {
5031 assert(Init->isDelegatingInitializer())((Init->isDelegatingInitializer()) ? static_cast<void>
(0) : __assert_fail ("Init->isDelegatingInitializer()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5031, __PRETTY_FUNCTION__))
;
5032 // This must be the only initializer
5033 if (MemInits.size() != 1) {
5034 Diag(Init->getSourceLocation(),
5035 diag::err_delegating_initializer_alone)
5036 << Init->getSourceRange() << MemInits[i ? 0 : 1]->getSourceRange();
5037 // We will treat this as being the only initializer.
5038 }
5039 SetDelegatingInitializer(Constructor, MemInits[i]);
5040 // Return immediately as the initializer is set.
5041 return;
5042 }
5043 }
5044
5045 if (HadError)
5046 return;
5047
5048 DiagnoseBaseOrMemInitializerOrder(*this, Constructor, MemInits);
5049
5050 SetCtorInitializers(Constructor, AnyErrors, MemInits);
5051
5052 DiagnoseUninitializedFields(*this, Constructor);
5053}
5054
5055void
5056Sema::MarkBaseAndMemberDestructorsReferenced(SourceLocation Location,
5057 CXXRecordDecl *ClassDecl) {
5058 // Ignore dependent contexts. Also ignore unions, since their members never
5059 // have destructors implicitly called.
5060 if (ClassDecl->isDependentContext() || ClassDecl->isUnion())
5061 return;
5062
5063 // FIXME: all the access-control diagnostics are positioned on the
5064 // field/base declaration. That's probably good; that said, the
5065 // user might reasonably want to know why the destructor is being
5066 // emitted, and we currently don't say.
5067
5068 // Non-static data members.
5069 for (auto *Field : ClassDecl->fields()) {
5070 if (Field->isInvalidDecl())
5071 continue;
5072
5073 // Don't destroy incomplete or zero-length arrays.
5074 if (isIncompleteOrZeroLengthArrayType(Context, Field->getType()))
5075 continue;
5076
5077 QualType FieldType = Context.getBaseElementType(Field->getType());
5078
5079 const RecordType* RT = FieldType->getAs<RecordType>();
5080 if (!RT)
5081 continue;
5082
5083 CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5084 if (FieldClassDecl->isInvalidDecl())
5085 continue;
5086 if (FieldClassDecl->hasIrrelevantDestructor())
5087 continue;
5088 // The destructor for an implicit anonymous union member is never invoked.
5089 if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
5090 continue;
5091
5092 CXXDestructorDecl *Dtor = LookupDestructor(FieldClassDecl);
5093 assert(Dtor && "No dtor found for FieldClassDecl!")((Dtor && "No dtor found for FieldClassDecl!") ? static_cast
<void> (0) : __assert_fail ("Dtor && \"No dtor found for FieldClassDecl!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5093, __PRETTY_FUNCTION__))
;
5094 CheckDestructorAccess(Field->getLocation(), Dtor,
5095 PDiag(diag::err_access_dtor_field)
5096 << Field->getDeclName()
5097 << FieldType);
5098
5099 MarkFunctionReferenced(Location, Dtor);
5100 DiagnoseUseOfDecl(Dtor, Location);
5101 }
5102
5103 // We only potentially invoke the destructors of potentially constructed
5104 // subobjects.
5105 bool VisitVirtualBases = !ClassDecl->isAbstract();
5106
5107 llvm::SmallPtrSet<const RecordType *, 8> DirectVirtualBases;
5108
5109 // Bases.
5110 for (const auto &Base : ClassDecl->bases()) {
5111 // Bases are always records in a well-formed non-dependent class.
5112 const RecordType *RT = Base.getType()->getAs<RecordType>();
5113
5114 // Remember direct virtual bases.
5115 if (Base.isVirtual()) {
5116 if (!VisitVirtualBases)
5117 continue;
5118 DirectVirtualBases.insert(RT);
5119 }
5120
5121 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5122 // If our base class is invalid, we probably can't get its dtor anyway.
5123 if (BaseClassDecl->isInvalidDecl())
5124 continue;
5125 if (BaseClassDecl->hasIrrelevantDestructor())
5126 continue;
5127
5128 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5129 assert(Dtor && "No dtor found for BaseClassDecl!")((Dtor && "No dtor found for BaseClassDecl!") ? static_cast
<void> (0) : __assert_fail ("Dtor && \"No dtor found for BaseClassDecl!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5129, __PRETTY_FUNCTION__))
;
5130
5131 // FIXME: caret should be on the start of the class name
5132 CheckDestructorAccess(Base.getLocStart(), Dtor,
5133 PDiag(diag::err_access_dtor_base)
5134 << Base.getType()
5135 << Base.getSourceRange(),
5136 Context.getTypeDeclType(ClassDecl));
5137
5138 MarkFunctionReferenced(Location, Dtor);
5139 DiagnoseUseOfDecl(Dtor, Location);
5140 }
5141
5142 if (!VisitVirtualBases)
5143 return;
5144
5145 // Virtual bases.
5146 for (const auto &VBase : ClassDecl->vbases()) {
5147 // Bases are always records in a well-formed non-dependent class.
5148 const RecordType *RT = VBase.getType()->castAs<RecordType>();
5149
5150 // Ignore direct virtual bases.
5151 if (DirectVirtualBases.count(RT))
5152 continue;
5153
5154 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(RT->getDecl());
5155 // If our base class is invalid, we probably can't get its dtor anyway.
5156 if (BaseClassDecl->isInvalidDecl())
5157 continue;
5158 if (BaseClassDecl->hasIrrelevantDestructor())
5159 continue;
5160
5161 CXXDestructorDecl *Dtor = LookupDestructor(BaseClassDecl);
5162 assert(Dtor && "No dtor found for BaseClassDecl!")((Dtor && "No dtor found for BaseClassDecl!") ? static_cast
<void> (0) : __assert_fail ("Dtor && \"No dtor found for BaseClassDecl!\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5162, __PRETTY_FUNCTION__))
;
5163 if (CheckDestructorAccess(
5164 ClassDecl->getLocation(), Dtor,
5165 PDiag(diag::err_access_dtor_vbase)
5166 << Context.getTypeDeclType(ClassDecl) << VBase.getType(),
5167 Context.getTypeDeclType(ClassDecl)) ==
5168 AR_accessible) {
5169 CheckDerivedToBaseConversion(
5170 Context.getTypeDeclType(ClassDecl), VBase.getType(),
5171 diag::err_access_dtor_vbase, 0, ClassDecl->getLocation(),
5172 SourceRange(), DeclarationName(), nullptr);
5173 }
5174
5175 MarkFunctionReferenced(Location, Dtor);
5176 DiagnoseUseOfDecl(Dtor, Location);
5177 }
5178}
5179
5180void Sema::ActOnDefaultCtorInitializers(Decl *CDtorDecl) {
5181 if (!CDtorDecl)
5182 return;
5183
5184 if (CXXConstructorDecl *Constructor
5185 = dyn_cast<CXXConstructorDecl>(CDtorDecl)) {
5186 SetCtorInitializers(Constructor, /*AnyErrors=*/false);
5187 DiagnoseUninitializedFields(*this, Constructor);
5188 }
5189}
5190
5191bool Sema::isAbstractType(SourceLocation Loc, QualType T) {
5192 if (!getLangOpts().CPlusPlus)
5193 return false;
5194
5195 const auto *RD = Context.getBaseElementType(T)->getAsCXXRecordDecl();
5196 if (!RD)
5197 return false;
5198
5199 // FIXME: Per [temp.inst]p1, we are supposed to trigger instantiation of a
5200 // class template specialization here, but doing so breaks a lot of code.
5201
5202 // We can't answer whether something is abstract until it has a
5203 // definition. If it's currently being defined, we'll walk back
5204 // over all the declarations when we have a full definition.
5205 const CXXRecordDecl *Def = RD->getDefinition();
5206 if (!Def || Def->isBeingDefined())
5207 return false;
5208
5209 return RD->isAbstract();
5210}
5211
5212bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T,
5213 TypeDiagnoser &Diagnoser) {
5214 if (!isAbstractType(Loc, T))
5215 return false;
5216
5217 T = Context.getBaseElementType(T);
5218 Diagnoser.diagnose(*this, Loc, T);
5219 DiagnoseAbstractType(T->getAsCXXRecordDecl());
5220 return true;
5221}
5222
5223void Sema::DiagnoseAbstractType(const CXXRecordDecl *RD) {
5224 // Check if we've already emitted the list of pure virtual functions
5225 // for this class.
5226 if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD))
5227 return;
5228
5229 // If the diagnostic is suppressed, don't emit the notes. We're only
5230 // going to emit them once, so try to attach them to a diagnostic we're
5231 // actually going to show.
5232 if (Diags.isLastDiagnosticIgnored())
5233 return;
5234
5235 CXXFinalOverriderMap FinalOverriders;
5236 RD->getFinalOverriders(FinalOverriders);
5237
5238 // Keep a set of seen pure methods so we won't diagnose the same method
5239 // more than once.
5240 llvm::SmallPtrSet<const CXXMethodDecl *, 8> SeenPureMethods;
5241
5242 for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
5243 MEnd = FinalOverriders.end();
5244 M != MEnd;
5245 ++M) {
5246 for (OverridingMethods::iterator SO = M->second.begin(),
5247 SOEnd = M->second.end();
5248 SO != SOEnd; ++SO) {
5249 // C++ [class.abstract]p4:
5250 // A class is abstract if it contains or inherits at least one
5251 // pure virtual function for which the final overrider is pure
5252 // virtual.
5253
5254 //
5255 if (SO->second.size() != 1)
5256 continue;
5257
5258 if (!SO->second.front().Method->isPure())
5259 continue;
5260
5261 if (!SeenPureMethods.insert(SO->second.front().Method).second)
5262 continue;
5263
5264 Diag(SO->second.front().Method->getLocation(),
5265 diag::note_pure_virtual_function)
5266 << SO->second.front().Method->getDeclName() << RD->getDeclName();
5267 }
5268 }
5269
5270 if (!PureVirtualClassDiagSet)
5271 PureVirtualClassDiagSet.reset(new RecordDeclSetTy);
5272 PureVirtualClassDiagSet->insert(RD);
5273}
5274
5275namespace {
5276struct AbstractUsageInfo {
5277 Sema &S;
5278 CXXRecordDecl *Record;
5279 CanQualType AbstractType;
5280 bool Invalid;
5281
5282 AbstractUsageInfo(Sema &S, CXXRecordDecl *Record)
5283 : S(S), Record(Record),
5284 AbstractType(S.Context.getCanonicalType(
5285 S.Context.getTypeDeclType(Record))),
5286 Invalid(false) {}
5287
5288 void DiagnoseAbstractType() {
5289 if (Invalid) return;
5290 S.DiagnoseAbstractType(Record);
5291 Invalid = true;
5292 }
5293
5294 void CheckType(const NamedDecl *D, TypeLoc TL, Sema::AbstractDiagSelID Sel);
5295};
5296
5297struct CheckAbstractUsage {
5298 AbstractUsageInfo &Info;
5299 const NamedDecl *Ctx;
5300
5301 CheckAbstractUsage(AbstractUsageInfo &Info, const NamedDecl *Ctx)
5302 : Info(Info), Ctx(Ctx) {}
5303
5304 void Visit(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
5305 switch (TL.getTypeLocClass()) {
5306#define ABSTRACT_TYPELOC(CLASS, PARENT)
5307#define TYPELOC(CLASS, PARENT) \
5308 case TypeLoc::CLASS: Check(TL.castAs<CLASS##TypeLoc>(), Sel); break;
5309#include "clang/AST/TypeLocNodes.def"
5310 }
5311 }
5312
5313 void Check(FunctionProtoTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5314 Visit(TL.getReturnLoc(), Sema::AbstractReturnType);
5315 for (unsigned I = 0, E = TL.getNumParams(); I != E; ++I) {
5316 if (!TL.getParam(I))
5317 continue;
5318
5319 TypeSourceInfo *TSI = TL.getParam(I)->getTypeSourceInfo();
5320 if (TSI) Visit(TSI->getTypeLoc(), Sema::AbstractParamType);
5321 }
5322 }
5323
5324 void Check(ArrayTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5325 Visit(TL.getElementLoc(), Sema::AbstractArrayType);
5326 }
5327
5328 void Check(TemplateSpecializationTypeLoc TL, Sema::AbstractDiagSelID Sel) {
5329 // Visit the type parameters from a permissive context.
5330 for (unsigned I = 0, E = TL.getNumArgs(); I != E; ++I) {
5331 TemplateArgumentLoc TAL = TL.getArgLoc(I);
5332 if (TAL.getArgument().getKind() == TemplateArgument::Type)
5333 if (TypeSourceInfo *TSI = TAL.getTypeSourceInfo())
5334 Visit(TSI->getTypeLoc(), Sema::AbstractNone);
5335 // TODO: other template argument types?
5336 }
5337 }
5338
5339 // Visit pointee types from a permissive context.
5340#define CheckPolymorphic(Type)void Check(Type TL, Sema::AbstractDiagSelID Sel) { Visit(TL.getNextTypeLoc
(), Sema::AbstractNone); }
\
5341 void Check(Type TL, Sema::AbstractDiagSelID Sel) { \
5342 Visit(TL.getNextTypeLoc(), Sema::AbstractNone); \
5343 }
5344 CheckPolymorphic(PointerTypeLoc)void Check(PointerTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit
(TL.getNextTypeLoc(), Sema::AbstractNone); }
5345 CheckPolymorphic(ReferenceTypeLoc)void Check(ReferenceTypeLoc TL, Sema::AbstractDiagSelID Sel) {
Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5346 CheckPolymorphic(MemberPointerTypeLoc)void Check(MemberPointerTypeLoc TL, Sema::AbstractDiagSelID Sel
) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5347 CheckPolymorphic(BlockPointerTypeLoc)void Check(BlockPointerTypeLoc TL, Sema::AbstractDiagSelID Sel
) { Visit(TL.getNextTypeLoc(), Sema::AbstractNone); }
5348 CheckPolymorphic(AtomicTypeLoc)void Check(AtomicTypeLoc TL, Sema::AbstractDiagSelID Sel) { Visit
(TL.getNextTypeLoc(), Sema::AbstractNone); }
5349
5350 /// Handle all the types we haven't given a more specific
5351 /// implementation for above.
5352 void Check(TypeLoc TL, Sema::AbstractDiagSelID Sel) {
5353 // Every other kind of type that we haven't called out already
5354 // that has an inner type is either (1) sugar or (2) contains that
5355 // inner type in some way as a subobject.
5356 if (TypeLoc Next = TL.getNextTypeLoc())
5357 return Visit(Next, Sel);
5358
5359 // If there's no inner type and we're in a permissive context,
5360 // don't diagnose.
5361 if (Sel == Sema::AbstractNone) return;
5362
5363 // Check whether the type matches the abstract type.
5364 QualType T = TL.getType();
5365 if (T->isArrayType()) {
5366 Sel = Sema::AbstractArrayType;
5367 T = Info.S.Context.getBaseElementType(T);
5368 }
5369 CanQualType CT = T->getCanonicalTypeUnqualified().getUnqualifiedType();
5370 if (CT != Info.AbstractType) return;
5371
5372 // It matched; do some magic.
5373 if (Sel == Sema::AbstractArrayType) {
5374 Info.S.Diag(Ctx->getLocation(), diag::err_array_of_abstract_type)
5375 << T << TL.getSourceRange();
5376 } else {
5377 Info.S.Diag(Ctx->getLocation(), diag::err_abstract_type_in_decl)
5378 << Sel << T << TL.getSourceRange();
5379 }
5380 Info.DiagnoseAbstractType();
5381 }
5382};
5383
5384void AbstractUsageInfo::CheckType(const NamedDecl *D, TypeLoc TL,
5385 Sema::AbstractDiagSelID Sel) {
5386 CheckAbstractUsage(*this, D).Visit(TL, Sel);
5387}
5388
5389}
5390
5391/// Check for invalid uses of an abstract type in a method declaration.
5392static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
5393 CXXMethodDecl *MD) {
5394 // No need to do the check on definitions, which require that
5395 // the return/param types be complete.
5396 if (MD->doesThisDeclarationHaveABody())
5397 return;
5398
5399 // For safety's sake, just ignore it if we don't have type source
5400 // information. This should never happen for non-implicit methods,
5401 // but...
5402 if (TypeSourceInfo *TSI = MD->getTypeSourceInfo())
5403 Info.CheckType(MD, TSI->getTypeLoc(), Sema::AbstractNone);
5404}
5405
5406/// Check for invalid uses of an abstract type within a class definition.
5407static void CheckAbstractClassUsage(AbstractUsageInfo &Info,
5408 CXXRecordDecl *RD) {
5409 for (auto *D : RD->decls()) {
5410 if (D->isImplicit()) continue;
5411
5412 // Methods and method templates.
5413 if (isa<CXXMethodDecl>(D)) {
5414 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(D));
5415 } else if (isa<FunctionTemplateDecl>(D)) {
5416 FunctionDecl *FD = cast<FunctionTemplateDecl>(D)->getTemplatedDecl();
5417 CheckAbstractClassUsage(Info, cast<CXXMethodDecl>(FD));
5418
5419 // Fields and static variables.
5420 } else if (isa<FieldDecl>(D)) {
5421 FieldDecl *FD = cast<FieldDecl>(D);
5422 if (TypeSourceInfo *TSI = FD->getTypeSourceInfo())
5423 Info.CheckType(FD, TSI->getTypeLoc(), Sema::AbstractFieldType);
5424 } else if (isa<VarDecl>(D)) {
5425 VarDecl *VD = cast<VarDecl>(D);
5426 if (TypeSourceInfo *TSI = VD->getTypeSourceInfo())
5427 Info.CheckType(VD, TSI->getTypeLoc(), Sema::AbstractVariableType);
5428
5429 // Nested classes and class templates.
5430 } else if (isa<CXXRecordDecl>(D)) {
5431 CheckAbstractClassUsage(Info, cast<CXXRecordDecl>(D));
5432 } else if (isa<ClassTemplateDecl>(D)) {
5433 CheckAbstractClassUsage(Info,
5434 cast<ClassTemplateDecl>(D)->getTemplatedDecl());
5435 }
5436 }
5437}
5438
5439static void ReferenceDllExportedMethods(Sema &S, CXXRecordDecl *Class) {
5440 Attr *ClassAttr = getDLLAttr(Class);
5441 if (!ClassAttr)
5442 return;
5443
5444 assert(ClassAttr->getKind() == attr::DLLExport)((ClassAttr->getKind() == attr::DLLExport) ? static_cast<
void> (0) : __assert_fail ("ClassAttr->getKind() == attr::DLLExport"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5444, __PRETTY_FUNCTION__))
;
5445
5446 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
5447
5448 if (TSK == TSK_ExplicitInstantiationDeclaration)
5449 // Don't go any further if this is just an explicit instantiation
5450 // declaration.
5451 return;
5452
5453 for (Decl *Member : Class->decls()) {
5454 auto *MD = dyn_cast<CXXMethodDecl>(Member);
5455 if (!MD)
5456 continue;
5457
5458 if (Member->getAttr<DLLExportAttr>()) {
5459 if (MD->isUserProvided()) {
5460 // Instantiate non-default class member functions ...
5461
5462 // .. except for certain kinds of template specializations.
5463 if (TSK == TSK_ImplicitInstantiation && !ClassAttr->isInherited())
5464 continue;
5465
5466 S.MarkFunctionReferenced(Class->getLocation(), MD);
5467
5468 // The function will be passed to the consumer when its definition is
5469 // encountered.
5470 } else if (!MD->isTrivial() || MD->isExplicitlyDefaulted() ||
5471 MD->isCopyAssignmentOperator() ||
5472 MD->isMoveAssignmentOperator()) {
5473 // Synthesize and instantiate non-trivial implicit methods, explicitly
5474 // defaulted methods, and the copy and move assignment operators. The
5475 // latter are exported even if they are trivial, because the address of
5476 // an operator can be taken and should compare equal across libraries.
5477 DiagnosticErrorTrap Trap(S.Diags);
5478 S.MarkFunctionReferenced(Class->getLocation(), MD);
5479 if (Trap.hasErrorOccurred()) {
5480 S.Diag(ClassAttr->getLocation(), diag::note_due_to_dllexported_class)
5481 << Class->getName() << !S.getLangOpts().CPlusPlus11;
5482 break;
5483 }
5484
5485 // There is no later point when we will see the definition of this
5486 // function, so pass it to the consumer now.
5487 S.Consumer.HandleTopLevelDecl(DeclGroupRef(MD));
5488 }
5489 }
5490 }
5491}
5492
5493static void checkForMultipleExportedDefaultConstructors(Sema &S,
5494 CXXRecordDecl *Class) {
5495 // Only the MS ABI has default constructor closures, so we don't need to do
5496 // this semantic checking anywhere else.
5497 if (!S.Context.getTargetInfo().getCXXABI().isMicrosoft())
5498 return;
5499
5500 CXXConstructorDecl *LastExportedDefaultCtor = nullptr;
5501 for (Decl *Member : Class->decls()) {
5502 // Look for exported default constructors.
5503 auto *CD = dyn_cast<CXXConstructorDecl>(Member);
5504 if (!CD || !CD->isDefaultConstructor())
5505 continue;
5506 auto *Attr = CD->getAttr<DLLExportAttr>();
5507 if (!Attr)
5508 continue;
5509
5510 // If the class is non-dependent, mark the default arguments as ODR-used so
5511 // that we can properly codegen the constructor closure.
5512 if (!Class->isDependentContext()) {
5513 for (ParmVarDecl *PD : CD->parameters()) {
5514 (void)S.CheckCXXDefaultArgExpr(Attr->getLocation(), CD, PD);
5515 S.DiscardCleanupsInEvaluationContext();
5516 }
5517 }
5518
5519 if (LastExportedDefaultCtor) {
5520 S.Diag(LastExportedDefaultCtor->getLocation(),
5521 diag::err_attribute_dll_ambiguous_default_ctor)
5522 << Class;
5523 S.Diag(CD->getLocation(), diag::note_entity_declared_at)
5524 << CD->getDeclName();
5525 return;
5526 }
5527 LastExportedDefaultCtor = CD;
5528 }
5529}
5530
5531/// \brief Check class-level dllimport/dllexport attribute.
5532void Sema::checkClassLevelDLLAttribute(CXXRecordDecl *Class) {
5533 Attr *ClassAttr = getDLLAttr(Class);
5534
5535 // MSVC inherits DLL attributes to partial class template specializations.
5536 if (Context.getTargetInfo().getCXXABI().isMicrosoft() && !ClassAttr) {
5537 if (auto *Spec = dyn_cast<ClassTemplatePartialSpecializationDecl>(Class)) {
5538 if (Attr *TemplateAttr =
5539 getDLLAttr(Spec->getSpecializedTemplate()->getTemplatedDecl())) {
5540 auto *A = cast<InheritableAttr>(TemplateAttr->clone(getASTContext()));
5541 A->setInherited(true);
5542 ClassAttr = A;
5543 }
5544 }
5545 }
5546
5547 if (!ClassAttr)
5548 return;
5549
5550 if (!Class->isExternallyVisible()) {
5551 Diag(Class->getLocation(), diag::err_attribute_dll_not_extern)
5552 << Class << ClassAttr;
5553 return;
5554 }
5555
5556 if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
5557 !ClassAttr->isInherited()) {
5558 // Diagnose dll attributes on members of class with dll attribute.
5559 for (Decl *Member : Class->decls()) {
5560 if (!isa<VarDecl>(Member) && !isa<CXXMethodDecl>(Member))
5561 continue;
5562 InheritableAttr *MemberAttr = getDLLAttr(Member);
5563 if (!MemberAttr || MemberAttr->isInherited() || Member->isInvalidDecl())
5564 continue;
5565
5566 Diag(MemberAttr->getLocation(),
5567 diag::err_attribute_dll_member_of_dll_class)
5568 << MemberAttr << ClassAttr;
5569 Diag(ClassAttr->getLocation(), diag::note_previous_attribute);
5570 Member->setInvalidDecl();
5571 }
5572 }
5573
5574 if (Class->getDescribedClassTemplate())
5575 // Don't inherit dll attribute until the template is instantiated.
5576 return;
5577
5578 // The class is either imported or exported.
5579 const bool ClassExported = ClassAttr->getKind() == attr::DLLExport;
5580
5581 TemplateSpecializationKind TSK = Class->getTemplateSpecializationKind();
5582
5583 // Ignore explicit dllexport on explicit class template instantiation declarations.
5584 if (ClassExported && !ClassAttr->isInherited() &&
5585 TSK == TSK_ExplicitInstantiationDeclaration) {
5586 Class->dropAttr<DLLExportAttr>();
5587 return;
5588 }
5589
5590 // Force declaration of implicit members so they can inherit the attribute.
5591 ForceDeclarationOfImplicitMembers(Class);
5592
5593 // FIXME: MSVC's docs say all bases must be exportable, but this doesn't
5594 // seem to be true in practice?
5595
5596 for (Decl *Member : Class->decls()) {
5597 VarDecl *VD = dyn_cast<VarDecl>(Member);
5598 CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Member);
5599
5600 // Only methods and static fields inherit the attributes.
5601 if (!VD && !MD)
5602 continue;
5603
5604 if (MD) {
5605 // Don't process deleted methods.
5606 if (MD->isDeleted())
5607 continue;
5608
5609 if (MD->isInlined()) {
5610 // MinGW does not import or export inline methods.
5611 if (!Context.getTargetInfo().getCXXABI().isMicrosoft() &&
5612 !Context.getTargetInfo().getTriple().isWindowsItaniumEnvironment())
5613 continue;
5614
5615 // MSVC versions before 2015 don't export the move assignment operators
5616 // and move constructor, so don't attempt to import/export them if
5617 // we have a definition.
5618 auto *Ctor = dyn_cast<CXXConstructorDecl>(MD);
5619 if ((MD->isMoveAssignmentOperator() ||
5620 (Ctor && Ctor->isMoveConstructor())) &&
5621 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015))
5622 continue;
5623
5624 // MSVC2015 doesn't export trivial defaulted x-tor but copy assign
5625 // operator is exported anyway.
5626 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
5627 (Ctor || isa<CXXDestructorDecl>(MD)) && MD->isTrivial())
5628 continue;
5629 }
5630 }
5631
5632 if (!cast<NamedDecl>(Member)->isExternallyVisible())
5633 continue;
5634
5635 if (!getDLLAttr(Member)) {
5636 auto *NewAttr =
5637 cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
5638 NewAttr->setInherited(true);
5639 Member->addAttr(NewAttr);
5640 }
5641 }
5642
5643 if (ClassExported)
5644 DelayedDllExportClasses.push_back(Class);
5645}
5646
5647/// \brief Perform propagation of DLL attributes from a derived class to a
5648/// templated base class for MS compatibility.
5649void Sema::propagateDLLAttrToBaseClassTemplate(
5650 CXXRecordDecl *Class, Attr *ClassAttr,
5651 ClassTemplateSpecializationDecl *BaseTemplateSpec, SourceLocation BaseLoc) {
5652 if (getDLLAttr(
5653 BaseTemplateSpec->getSpecializedTemplate()->getTemplatedDecl())) {
5654 // If the base class template has a DLL attribute, don't try to change it.
5655 return;
5656 }
5657
5658 auto TSK = BaseTemplateSpec->getSpecializationKind();
5659 if (!getDLLAttr(BaseTemplateSpec) &&
5660 (TSK == TSK_Undeclared || TSK == TSK_ExplicitInstantiationDeclaration ||
5661 TSK == TSK_ImplicitInstantiation)) {
5662 // The template hasn't been instantiated yet (or it has, but only as an
5663 // explicit instantiation declaration or implicit instantiation, which means
5664 // we haven't codegenned any members yet), so propagate the attribute.
5665 auto *NewAttr = cast<InheritableAttr>(ClassAttr->clone(getASTContext()));
5666 NewAttr->setInherited(true);
5667 BaseTemplateSpec->addAttr(NewAttr);
5668
5669 // If the template is already instantiated, checkDLLAttributeRedeclaration()
5670 // needs to be run again to work see the new attribute. Otherwise this will
5671 // get run whenever the template is instantiated.
5672 if (TSK != TSK_Undeclared)
5673 checkClassLevelDLLAttribute(BaseTemplateSpec);
5674
5675 return;
5676 }
5677
5678 if (getDLLAttr(BaseTemplateSpec)) {
5679 // The template has already been specialized or instantiated with an
5680 // attribute, explicitly or through propagation. We should not try to change
5681 // it.
5682 return;
5683 }
5684
5685 // The template was previously instantiated or explicitly specialized without
5686 // a dll attribute, It's too late for us to add an attribute, so warn that
5687 // this is unsupported.
5688 Diag(BaseLoc, diag::warn_attribute_dll_instantiated_base_class)
5689 << BaseTemplateSpec->isExplicitSpecialization();
5690 Diag(ClassAttr->getLocation(), diag::note_attribute);
5691 if (BaseTemplateSpec->isExplicitSpecialization()) {
5692 Diag(BaseTemplateSpec->getLocation(),
5693 diag::note_template_class_explicit_specialization_was_here)
5694 << BaseTemplateSpec;
5695 } else {
5696 Diag(BaseTemplateSpec->getPointOfInstantiation(),
5697 diag::note_template_class_instantiation_was_here)
5698 << BaseTemplateSpec;
5699 }
5700}
5701
5702static void DefineImplicitSpecialMember(Sema &S, CXXMethodDecl *MD,
5703 SourceLocation DefaultLoc) {
5704 switch (S.getSpecialMember(MD)) {
5705 case Sema::CXXDefaultConstructor:
5706 S.DefineImplicitDefaultConstructor(DefaultLoc,
5707 cast<CXXConstructorDecl>(MD));
5708 break;
5709 case Sema::CXXCopyConstructor:
5710 S.DefineImplicitCopyConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
5711 break;
5712 case Sema::CXXCopyAssignment:
5713 S.DefineImplicitCopyAssignment(DefaultLoc, MD);
5714 break;
5715 case Sema::CXXDestructor:
5716 S.DefineImplicitDestructor(DefaultLoc, cast<CXXDestructorDecl>(MD));
5717 break;
5718 case Sema::CXXMoveConstructor:
5719 S.DefineImplicitMoveConstructor(DefaultLoc, cast<CXXConstructorDecl>(MD));
5720 break;
5721 case Sema::CXXMoveAssignment:
5722 S.DefineImplicitMoveAssignment(DefaultLoc, MD);
5723 break;
5724 case Sema::CXXInvalid:
5725 llvm_unreachable("Invalid special member.")::llvm::llvm_unreachable_internal("Invalid special member.", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5725)
;
5726 }
5727}
5728
5729/// \brief Perform semantic checks on a class definition that has been
5730/// completing, introducing implicitly-declared members, checking for
5731/// abstract types, etc.
5732void Sema::CheckCompletedCXXClass(CXXRecordDecl *Record) {
5733 if (!Record)
5734 return;
5735
5736 if (Record->isAbstract() && !Record->isInvalidDecl()) {
5737 AbstractUsageInfo Info(*this, Record);
5738 CheckAbstractClassUsage(Info, Record);
5739 }
5740
5741 // If this is not an aggregate type and has no user-declared constructor,
5742 // complain about any non-static data members of reference or const scalar
5743 // type, since they will never get initializers.
5744 if (!Record->isInvalidDecl() && !Record->isDependentType() &&
5745 !Record->isAggregate() && !Record->hasUserDeclaredConstructor() &&
5746 !Record->isLambda()) {
5747 bool Complained = false;
5748 for (const auto *F : Record->fields()) {
5749 if (F->hasInClassInitializer() || F->isUnnamedBitfield())
5750 continue;
5751
5752 if (F->getType()->isReferenceType() ||
5753 (F->getType().isConstQualified() && F->getType()->isScalarType())) {
5754 if (!Complained) {
5755 Diag(Record->getLocation(), diag::warn_no_constructor_for_refconst)
5756 << Record->getTagKind() << Record;
5757 Complained = true;
5758 }
5759
5760 Diag(F->getLocation(), diag::note_refconst_member_not_initialized)
5761 << F->getType()->isReferenceType()
5762 << F->getDeclName();
5763 }
5764 }
5765 }
5766
5767 if (Record->getIdentifier()) {
5768 // C++ [class.mem]p13:
5769 // If T is the name of a class, then each of the following shall have a
5770 // name different from T:
5771 // - every member of every anonymous union that is a member of class T.
5772 //
5773 // C++ [class.mem]p14:
5774 // In addition, if class T has a user-declared constructor (12.1), every
5775 // non-static data member of class T shall have a name different from T.
5776 DeclContext::lookup_result R = Record->lookup(Record->getDeclName());
5777 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E;
5778 ++I) {
5779 NamedDecl *D = *I;
5780 if ((isa<FieldDecl>(D) && Record->hasUserDeclaredConstructor()) ||
5781 isa<IndirectFieldDecl>(D)) {
5782 Diag(D->getLocation(), diag::err_member_name_of_class)
5783 << D->getDeclName();
5784 break;
5785 }
5786 }
5787 }
5788
5789 // Warn if the class has virtual methods but non-virtual public destructor.
5790 if (Record->isPolymorphic() && !Record->isDependentType()) {
5791 CXXDestructorDecl *dtor = Record->getDestructor();
5792 if ((!dtor || (!dtor->isVirtual() && dtor->getAccess() == AS_public)) &&
5793 !Record->hasAttr<FinalAttr>())
5794 Diag(dtor ? dtor->getLocation() : Record->getLocation(),
5795 diag::warn_non_virtual_dtor) << Context.getRecordType(Record);
5796 }
5797
5798 if (Record->isAbstract()) {
5799 if (FinalAttr *FA = Record->getAttr<FinalAttr>()) {
5800 Diag(Record->getLocation(), diag::warn_abstract_final_class)
5801 << FA->isSpelledAsSealed();
5802 DiagnoseAbstractType(Record);
5803 }
5804 }
5805
5806 bool HasMethodWithOverrideControl = false,
5807 HasOverridingMethodWithoutOverrideControl = false;
5808 if (!Record->isDependentType()) {
5809 for (auto *M : Record->methods()) {
5810 // See if a method overloads virtual methods in a base
5811 // class without overriding any.
5812 if (!M->isStatic())
5813 DiagnoseHiddenVirtualMethods(M);
5814 if (M->hasAttr<OverrideAttr>())
5815 HasMethodWithOverrideControl = true;
5816 else if (M->size_overridden_methods() > 0)
5817 HasOverridingMethodWithoutOverrideControl = true;
5818 // Check whether the explicitly-defaulted special members are valid.
5819 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted())
5820 CheckExplicitlyDefaultedSpecialMember(M);
5821
5822 // For an explicitly defaulted or deleted special member, we defer
5823 // determining triviality until the class is complete. That time is now!
5824 CXXSpecialMember CSM = getSpecialMember(M);
5825 if (!M->isImplicit() && !M->isUserProvided()) {
5826 if (CSM != CXXInvalid) {
5827 M->setTrivial(SpecialMemberIsTrivial(M, CSM));
5828
5829 // Inform the class that we've finished declaring this member.
5830 Record->finishedDefaultedOrDeletedMember(M);
5831 }
5832 }
5833
5834 if (!M->isInvalidDecl() && M->isExplicitlyDefaulted() &&
5835 M->hasAttr<DLLExportAttr>()) {
5836 if (getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) &&
5837 M->isTrivial() &&
5838 (CSM == CXXDefaultConstructor || CSM == CXXCopyConstructor ||
5839 CSM == CXXDestructor))
5840 M->dropAttr<DLLExportAttr>();
5841
5842 if (M->hasAttr<DLLExportAttr>()) {
5843 DefineImplicitSpecialMember(*this, M, M->getLocation());
5844 ActOnFinishInlineFunctionDef(M);
5845 }
5846 }
5847 }
5848 }
5849
5850 if (HasMethodWithOverrideControl &&
5851 HasOverridingMethodWithoutOverrideControl) {
5852 // At least one method has the 'override' control declared.
5853 // Diagnose all other overridden methods which do not have 'override' specified on them.
5854 for (auto *M : Record->methods())
5855 DiagnoseAbsenceOfOverrideControl(M);
5856 }
5857
5858 // ms_struct is a request to use the same ABI rules as MSVC. Check
5859 // whether this class uses any C++ features that are implemented
5860 // completely differently in MSVC, and if so, emit a diagnostic.
5861 // That diagnostic defaults to an error, but we allow projects to
5862 // map it down to a warning (or ignore it). It's a fairly common
5863 // practice among users of the ms_struct pragma to mass-annotate
5864 // headers, sweeping up a bunch of types that the project doesn't
5865 // really rely on MSVC-compatible layout for. We must therefore
5866 // support "ms_struct except for C++ stuff" as a secondary ABI.
5867 if (Record->isMsStruct(Context) &&
5868 (Record->isPolymorphic() || Record->getNumBases())) {
5869 Diag(Record->getLocation(), diag::warn_cxx_ms_struct);
5870 }
5871
5872 checkClassLevelDLLAttribute(Record);
5873}
5874
5875/// Look up the special member function that would be called by a special
5876/// member function for a subobject of class type.
5877///
5878/// \param Class The class type of the subobject.
5879/// \param CSM The kind of special member function.
5880/// \param FieldQuals If the subobject is a field, its cv-qualifiers.
5881/// \param ConstRHS True if this is a copy operation with a const object
5882/// on its RHS, that is, if the argument to the outer special member
5883/// function is 'const' and this is not a field marked 'mutable'.
5884static Sema::SpecialMemberOverloadResult lookupCallFromSpecialMember(
5885 Sema &S, CXXRecordDecl *Class, Sema::CXXSpecialMember CSM,
5886 unsigned FieldQuals, bool ConstRHS) {
5887 unsigned LHSQuals = 0;
5888 if (CSM == Sema::CXXCopyAssignment || CSM == Sema::CXXMoveAssignment)
5889 LHSQuals = FieldQuals;
5890
5891 unsigned RHSQuals = FieldQuals;
5892 if (CSM == Sema::CXXDefaultConstructor || CSM == Sema::CXXDestructor)
5893 RHSQuals = 0;
5894 else if (ConstRHS)
5895 RHSQuals |= Qualifiers::Const;
5896
5897 return S.LookupSpecialMember(Class, CSM,
5898 RHSQuals & Qualifiers::Const,
5899 RHSQuals & Qualifiers::Volatile,
5900 false,
5901 LHSQuals & Qualifiers::Const,
5902 LHSQuals & Qualifiers::Volatile);
5903}
5904
5905class Sema::InheritedConstructorInfo {
5906 Sema &S;
5907 SourceLocation UseLoc;
5908
5909 /// A mapping from the base classes through which the constructor was
5910 /// inherited to the using shadow declaration in that base class (or a null
5911 /// pointer if the constructor was declared in that base class).
5912 llvm::DenseMap<CXXRecordDecl *, ConstructorUsingShadowDecl *>
5913 InheritedFromBases;
5914
5915public:
5916 InheritedConstructorInfo(Sema &S, SourceLocation UseLoc,
5917 ConstructorUsingShadowDecl *Shadow)
5918 : S(S), UseLoc(UseLoc) {
5919 bool DiagnosedMultipleConstructedBases = false;
5920 CXXRecordDecl *ConstructedBase = nullptr;
5921 UsingDecl *ConstructedBaseUsing = nullptr;
5922
5923 // Find the set of such base class subobjects and check that there's a
5924 // unique constructed subobject.
5925 for (auto *D : Shadow->redecls()) {
5926 auto *DShadow = cast<ConstructorUsingShadowDecl>(D);
5927 auto *DNominatedBase = DShadow->getNominatedBaseClass();
5928 auto *DConstructedBase = DShadow->getConstructedBaseClass();
5929
5930 InheritedFromBases.insert(
5931 std::make_pair(DNominatedBase->getCanonicalDecl(),
5932 DShadow->getNominatedBaseClassShadowDecl()));
5933 if (DShadow->constructsVirtualBase())
5934 InheritedFromBases.insert(
5935 std::make_pair(DConstructedBase->getCanonicalDecl(),
5936 DShadow->getConstructedBaseClassShadowDecl()));
5937 else
5938 assert(DNominatedBase == DConstructedBase)((DNominatedBase == DConstructedBase) ? static_cast<void>
(0) : __assert_fail ("DNominatedBase == DConstructedBase", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5938, __PRETTY_FUNCTION__))
;
5939
5940 // [class.inhctor.init]p2:
5941 // If the constructor was inherited from multiple base class subobjects
5942 // of type B, the program is ill-formed.
5943 if (!ConstructedBase) {
5944 ConstructedBase = DConstructedBase;
5945 ConstructedBaseUsing = D->getUsingDecl();
5946 } else if (ConstructedBase != DConstructedBase &&
5947 !Shadow->isInvalidDecl()) {
5948 if (!DiagnosedMultipleConstructedBases) {
5949 S.Diag(UseLoc, diag::err_ambiguous_inherited_constructor)
5950 << Shadow->getTargetDecl();
5951 S.Diag(ConstructedBaseUsing->getLocation(),
5952 diag::note_ambiguous_inherited_constructor_using)
5953 << ConstructedBase;
5954 DiagnosedMultipleConstructedBases = true;
5955 }
5956 S.Diag(D->getUsingDecl()->getLocation(),
5957 diag::note_ambiguous_inherited_constructor_using)
5958 << DConstructedBase;
5959 }
5960 }
5961
5962 if (DiagnosedMultipleConstructedBases)
5963 Shadow->setInvalidDecl();
5964 }
5965
5966 /// Find the constructor to use for inherited construction of a base class,
5967 /// and whether that base class constructor inherits the constructor from a
5968 /// virtual base class (in which case it won't actually invoke it).
5969 std::pair<CXXConstructorDecl *, bool>
5970 findConstructorForBase(CXXRecordDecl *Base, CXXConstructorDecl *Ctor) const {
5971 auto It = InheritedFromBases.find(Base->getCanonicalDecl());
5972 if (It == InheritedFromBases.end())
5973 return std::make_pair(nullptr, false);
5974
5975 // This is an intermediary class.
5976 if (It->second)
5977 return std::make_pair(
5978 S.findInheritingConstructor(UseLoc, Ctor, It->second),
5979 It->second->constructsVirtualBase());
5980
5981 // This is the base class from which the constructor was inherited.
5982 return std::make_pair(Ctor, false);
5983 }
5984};
5985
5986/// Is the special member function which would be selected to perform the
5987/// specified operation on the specified class type a constexpr constructor?
5988static bool
5989specialMemberIsConstexpr(Sema &S, CXXRecordDecl *ClassDecl,
5990 Sema::CXXSpecialMember CSM, unsigned Quals,
5991 bool ConstRHS,
5992 CXXConstructorDecl *InheritedCtor = nullptr,
5993 Sema::InheritedConstructorInfo *Inherited = nullptr) {
5994 // If we're inheriting a constructor, see if we need to call it for this base
5995 // class.
5996 if (InheritedCtor) {
5997 assert(CSM == Sema::CXXDefaultConstructor)((CSM == Sema::CXXDefaultConstructor) ? static_cast<void>
(0) : __assert_fail ("CSM == Sema::CXXDefaultConstructor", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 5997, __PRETTY_FUNCTION__))
;
5998 auto BaseCtor =
5999 Inherited->findConstructorForBase(ClassDecl, InheritedCtor).first;
6000 if (BaseCtor)
6001 return BaseCtor->isConstexpr();
6002 }
6003
6004 if (CSM == Sema::CXXDefaultConstructor)
6005 return ClassDecl->hasConstexprDefaultConstructor();
6006
6007 Sema::SpecialMemberOverloadResult SMOR =
6008 lookupCallFromSpecialMember(S, ClassDecl, CSM, Quals, ConstRHS);
6009 if (!SMOR.getMethod())
6010 // A constructor we wouldn't select can't be "involved in initializing"
6011 // anything.
6012 return true;
6013 return SMOR.getMethod()->isConstexpr();
6014}
6015
6016/// Determine whether the specified special member function would be constexpr
6017/// if it were implicitly defined.
6018static bool defaultedSpecialMemberIsConstexpr(
6019 Sema &S, CXXRecordDecl *ClassDecl, Sema::CXXSpecialMember CSM,
6020 bool ConstArg, CXXConstructorDecl *InheritedCtor = nullptr,
6021 Sema::InheritedConstructorInfo *Inherited = nullptr) {
6022 if (!S.getLangOpts().CPlusPlus11)
6023 return false;
6024
6025 // C++11 [dcl.constexpr]p4:
6026 // In the definition of a constexpr constructor [...]
6027 bool Ctor = true;
6028 switch (CSM) {
6029 case Sema::CXXDefaultConstructor:
6030 if (Inherited)
6031 break;
6032 // Since default constructor lookup is essentially trivial (and cannot
6033 // involve, for instance, template instantiation), we compute whether a
6034 // defaulted default constructor is constexpr directly within CXXRecordDecl.
6035 //
6036 // This is important for performance; we need to know whether the default
6037 // constructor is constexpr to determine whether the type is a literal type.
6038 return ClassDecl->defaultedDefaultConstructorIsConstexpr();
6039
6040 case Sema::CXXCopyConstructor:
6041 case Sema::CXXMoveConstructor:
6042 // For copy or move constructors, we need to perform overload resolution.
6043 break;
6044
6045 case Sema::CXXCopyAssignment:
6046 case Sema::CXXMoveAssignment:
6047 if (!S.getLangOpts().CPlusPlus14)
6048 return false;
6049 // In C++1y, we need to perform overload resolution.
6050 Ctor = false;
6051 break;
6052
6053 case Sema::CXXDestructor:
6054 case Sema::CXXInvalid:
6055 return false;
6056 }
6057
6058 // -- if the class is a non-empty union, or for each non-empty anonymous
6059 // union member of a non-union class, exactly one non-static data member
6060 // shall be initialized; [DR1359]
6061 //
6062 // If we squint, this is guaranteed, since exactly one non-static data member
6063 // will be initialized (if the constructor isn't deleted), we just don't know
6064 // which one.
6065 if (Ctor && ClassDecl->isUnion())
6066 return CSM == Sema::CXXDefaultConstructor
6067 ? ClassDecl->hasInClassInitializer() ||
6068 !ClassDecl->hasVariantMembers()
6069 : true;
6070
6071 // -- the class shall not have any virtual base classes;
6072 if (Ctor && ClassDecl->getNumVBases())
6073 return false;
6074
6075 // C++1y [class.copy]p26:
6076 // -- [the class] is a literal type, and
6077 if (!Ctor && !ClassDecl->isLiteral())
6078 return false;
6079
6080 // -- every constructor involved in initializing [...] base class
6081 // sub-objects shall be a constexpr constructor;
6082 // -- the assignment operator selected to copy/move each direct base
6083 // class is a constexpr function, and
6084 for (const auto &B : ClassDecl->bases()) {
6085 const RecordType *BaseType = B.getType()->getAs<RecordType>();
6086 if (!BaseType) continue;
6087
6088 CXXRecordDecl *BaseClassDecl = cast<CXXRecordDecl>(BaseType->getDecl());
6089 if (!specialMemberIsConstexpr(S, BaseClassDecl, CSM, 0, ConstArg,
6090 InheritedCtor, Inherited))
6091 return false;
6092 }
6093
6094 // -- every constructor involved in initializing non-static data members
6095 // [...] shall be a constexpr constructor;
6096 // -- every non-static data member and base class sub-object shall be
6097 // initialized
6098 // -- for each non-static data member of X that is of class type (or array
6099 // thereof), the assignment operator selected to copy/move that member is
6100 // a constexpr function
6101 for (const auto *F : ClassDecl->fields()) {
6102 if (F->isInvalidDecl())
6103 continue;
6104 if (CSM == Sema::CXXDefaultConstructor && F->hasInClassInitializer())
6105 continue;
6106 QualType BaseType = S.Context.getBaseElementType(F->getType());
6107 if (const RecordType *RecordTy = BaseType->getAs<RecordType>()) {
6108 CXXRecordDecl *FieldRecDecl = cast<CXXRecordDecl>(RecordTy->getDecl());
6109 if (!specialMemberIsConstexpr(S, FieldRecDecl, CSM,
6110 BaseType.getCVRQualifiers(),
6111 ConstArg && !F->isMutable()))
6112 return false;
6113 } else if (CSM == Sema::CXXDefaultConstructor) {
6114 return false;
6115 }
6116 }
6117
6118 // All OK, it's constexpr!
6119 return true;
6120}
6121
6122static Sema::ImplicitExceptionSpecification
6123ComputeDefaultedSpecialMemberExceptionSpec(
6124 Sema &S, SourceLocation Loc, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
6125 Sema::InheritedConstructorInfo *ICI);
6126
6127static Sema::ImplicitExceptionSpecification
6128computeImplicitExceptionSpec(Sema &S, SourceLocation Loc, CXXMethodDecl *MD) {
6129 auto CSM = S.getSpecialMember(MD);
6130 if (CSM != Sema::CXXInvalid)
6131 return ComputeDefaultedSpecialMemberExceptionSpec(S, Loc, MD, CSM, nullptr);
6132
6133 auto *CD = cast<CXXConstructorDecl>(MD);
6134 assert(CD->getInheritedConstructor() &&((CD->getInheritedConstructor() && "only special members have implicit exception specs"
) ? static_cast<void> (0) : __assert_fail ("CD->getInheritedConstructor() && \"only special members have implicit exception specs\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6135, __PRETTY_FUNCTION__))
6135 "only special members have implicit exception specs")((CD->getInheritedConstructor() && "only special members have implicit exception specs"
) ? static_cast<void> (0) : __assert_fail ("CD->getInheritedConstructor() && \"only special members have implicit exception specs\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6135, __PRETTY_FUNCTION__))
;
6136 Sema::InheritedConstructorInfo ICI(
6137 S, Loc, CD->getInheritedConstructor().getShadowDecl());
6138 return ComputeDefaultedSpecialMemberExceptionSpec(
6139 S, Loc, CD, Sema::CXXDefaultConstructor, &ICI);
6140}
6141
6142static FunctionProtoType::ExtProtoInfo getImplicitMethodEPI(Sema &S,
6143 CXXMethodDecl *MD) {
6144 FunctionProtoType::ExtProtoInfo EPI;
6145
6146 // Build an exception specification pointing back at this member.
6147 EPI.ExceptionSpec.Type = EST_Unevaluated;
6148 EPI.ExceptionSpec.SourceDecl = MD;
6149
6150 // Set the calling convention to the default for C++ instance methods.
6151 EPI.ExtInfo = EPI.ExtInfo.withCallingConv(
6152 S.Context.getDefaultCallingConvention(/*IsVariadic=*/false,
6153 /*IsCXXMethod=*/true));
6154 return EPI;
6155}
6156
6157void Sema::EvaluateImplicitExceptionSpec(SourceLocation Loc, CXXMethodDecl *MD) {
6158 const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
6159 if (FPT->getExceptionSpecType() != EST_Unevaluated)
6160 return;
6161
6162 // Evaluate the exception specification.
6163 auto IES = computeImplicitExceptionSpec(*this, Loc, MD);
6164 auto ESI = IES.getExceptionSpec();
6165
6166 // Update the type of the special member to use it.
6167 UpdateExceptionSpec(MD, ESI);
6168
6169 // A user-provided destructor can be defined outside the class. When that
6170 // happens, be sure to update the exception specification on both
6171 // declarations.
6172 const FunctionProtoType *CanonicalFPT =
6173 MD->getCanonicalDecl()->getType()->castAs<FunctionProtoType>();
6174 if (CanonicalFPT->getExceptionSpecType() == EST_Unevaluated)
6175 UpdateExceptionSpec(MD->getCanonicalDecl(), ESI);
6176}
6177
6178void Sema::CheckExplicitlyDefaultedSpecialMember(CXXMethodDecl *MD) {
6179 CXXRecordDecl *RD = MD->getParent();
6180 CXXSpecialMember CSM = getSpecialMember(MD);
6181
6182 assert(MD->isExplicitlyDefaulted() && CSM != CXXInvalid &&((MD->isExplicitlyDefaulted() && CSM != CXXInvalid
&& "not an explicitly-defaulted special member") ? static_cast
<void> (0) : __assert_fail ("MD->isExplicitlyDefaulted() && CSM != CXXInvalid && \"not an explicitly-defaulted special member\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6183, __PRETTY_FUNCTION__))
6183 "not an explicitly-defaulted special member")((MD->isExplicitlyDefaulted() && CSM != CXXInvalid
&& "not an explicitly-defaulted special member") ? static_cast
<void> (0) : __assert_fail ("MD->isExplicitlyDefaulted() && CSM != CXXInvalid && \"not an explicitly-defaulted special member\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6183, __PRETTY_FUNCTION__))
;
6184
6185 // Whether this was the first-declared instance of the constructor.
6186 // This affects whether we implicitly add an exception spec and constexpr.
6187 bool First = MD == MD->getCanonicalDecl();
6188
6189 bool HadError = false;
6190
6191 // C++11 [dcl.fct.def.default]p1:
6192 // A function that is explicitly defaulted shall
6193 // -- be a special member function (checked elsewhere),
6194 // -- have the same type (except for ref-qualifiers, and except that a
6195 // copy operation can take a non-const reference) as an implicit
6196 // declaration, and
6197 // -- not have default arguments.
6198 unsigned ExpectedParams = 1;
6199 if (CSM == CXXDefaultConstructor || CSM == CXXDestructor)
6200 ExpectedParams = 0;
6201 if (MD->getNumParams() != ExpectedParams) {
6202 // This also checks for default arguments: a copy or move constructor with a
6203 // default argument is classified as a default constructor, and assignment
6204 // operations and destructors can't have default arguments.
6205 Diag(MD->getLocation(), diag::err_defaulted_special_member_params)
6206 << CSM << MD->getSourceRange();
6207 HadError = true;
6208 } else if (MD->isVariadic()) {
6209 Diag(MD->getLocation(), diag::err_defaulted_special_member_variadic)
6210 << CSM << MD->getSourceRange();
6211 HadError = true;
6212 }
6213
6214 const FunctionProtoType *Type = MD->getType()->getAs<FunctionProtoType>();
6215
6216 bool CanHaveConstParam = false;
6217 if (CSM == CXXCopyConstructor)
6218 CanHaveConstParam = RD->implicitCopyConstructorHasConstParam();
6219 else if (CSM == CXXCopyAssignment)
6220 CanHaveConstParam = RD->implicitCopyAssignmentHasConstParam();
6221
6222 QualType ReturnType = Context.VoidTy;
6223 if (CSM == CXXCopyAssignment || CSM == CXXMoveAssignment) {
6224 // Check for return type matching.
6225 ReturnType = Type->getReturnType();
6226 QualType ExpectedReturnType =
6227 Context.getLValueReferenceType(Context.getTypeDeclType(RD));
6228 if (!Context.hasSameType(ReturnType, ExpectedReturnType)) {
6229 Diag(MD->getLocation(), diag::err_defaulted_special_member_return_type)
6230 << (CSM == CXXMoveAssignment) << ExpectedReturnType;
6231 HadError = true;
6232 }
6233
6234 // A defaulted special member cannot have cv-qualifiers.
6235 if (Type->getTypeQuals()) {
6236 Diag(MD->getLocation(), diag::err_defaulted_special_member_quals)
6237 << (CSM == CXXMoveAssignment) << getLangOpts().CPlusPlus14;
6238 HadError = true;
6239 }
6240 }
6241
6242 // Check for parameter type matching.
6243 QualType ArgType = ExpectedParams ? Type->getParamType(0) : QualType();
6244 bool HasConstParam = false;
6245 if (ExpectedParams && ArgType->isReferenceType()) {
6246 // Argument must be reference to possibly-const T.
6247 QualType ReferentType = ArgType->getPointeeType();
6248 HasConstParam = ReferentType.isConstQualified();
6249
6250 if (ReferentType.isVolatileQualified()) {
6251 Diag(MD->getLocation(),
6252 diag::err_defaulted_special_member_volatile_param) << CSM;
6253 HadError = true;
6254 }
6255
6256 if (HasConstParam && !CanHaveConstParam) {
6257 if (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment) {
6258 Diag(MD->getLocation(),
6259 diag::err_defaulted_special_member_copy_const_param)
6260 << (CSM == CXXCopyAssignment);
6261 // FIXME: Explain why this special member can't be const.
6262 } else {
6263 Diag(MD->getLocation(),
6264 diag::err_defaulted_special_member_move_const_param)
6265 << (CSM == CXXMoveAssignment);
6266 }
6267 HadError = true;
6268 }
6269 } else if (ExpectedParams) {
6270 // A copy assignment operator can take its argument by value, but a
6271 // defaulted one cannot.
6272 assert(CSM == CXXCopyAssignment && "unexpected non-ref argument")((CSM == CXXCopyAssignment && "unexpected non-ref argument"
) ? static_cast<void> (0) : __assert_fail ("CSM == CXXCopyAssignment && \"unexpected non-ref argument\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6272, __PRETTY_FUNCTION__))
;
6273 Diag(MD->getLocation(), diag::err_defaulted_copy_assign_not_ref);
6274 HadError = true;
6275 }
6276
6277 // C++11 [dcl.fct.def.default]p2:
6278 // An explicitly-defaulted function may be declared constexpr only if it
6279 // would have been implicitly declared as constexpr,
6280 // Do not apply this rule to members of class templates, since core issue 1358
6281 // makes such functions always instantiate to constexpr functions. For
6282 // functions which cannot be constexpr (for non-constructors in C++11 and for
6283 // destructors in C++1y), this is checked elsewhere.
6284 bool Constexpr = defaultedSpecialMemberIsConstexpr(*this, RD, CSM,
6285 HasConstParam);
6286 if ((getLangOpts().CPlusPlus14 ? !isa<CXXDestructorDecl>(MD)
6287 : isa<CXXConstructorDecl>(MD)) &&
6288 MD->isConstexpr() && !Constexpr &&
6289 MD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) {
6290 Diag(MD->getLocStart(), diag::err_incorrect_defaulted_constexpr) << CSM;
6291 // FIXME: Explain why the special member can't be constexpr.
6292 HadError = true;
6293 }
6294
6295 // and may have an explicit exception-specification only if it is compatible
6296 // with the exception-specification on the implicit declaration.
6297 if (Type->hasExceptionSpec()) {
6298 // Delay the check if this is the first declaration of the special member,
6299 // since we may not have parsed some necessary in-class initializers yet.
6300 if (First) {
6301 // If the exception specification needs to be instantiated, do so now,
6302 // before we clobber it with an EST_Unevaluated specification below.
6303 if (Type->getExceptionSpecType() == EST_Uninstantiated) {
6304 InstantiateExceptionSpec(MD->getLocStart(), MD);
6305 Type = MD->getType()->getAs<FunctionProtoType>();
6306 }
6307 DelayedDefaultedMemberExceptionSpecs.push_back(std::make_pair(MD, Type));
6308 } else
6309 CheckExplicitlyDefaultedMemberExceptionSpec(MD, Type);
6310 }
6311
6312 // If a function is explicitly defaulted on its first declaration,
6313 if (First) {
6314 // -- it is implicitly considered to be constexpr if the implicit
6315 // definition would be,
6316 MD->setConstexpr(Constexpr);
6317
6318 // -- it is implicitly considered to have the same exception-specification
6319 // as if it had been implicitly declared,
6320 FunctionProtoType::ExtProtoInfo EPI = Type->getExtProtoInfo();
6321 EPI.ExceptionSpec.Type = EST_Unevaluated;
6322 EPI.ExceptionSpec.SourceDecl = MD;
6323 MD->setType(Context.getFunctionType(ReturnType,
6324 llvm::makeArrayRef(&ArgType,
6325 ExpectedParams),
6326 EPI));
6327 }
6328
6329 if (ShouldDeleteSpecialMember(MD, CSM)) {
6330 if (First) {
6331 SetDeclDeleted(MD, MD->getLocation());
6332 } else {
6333 // C++11 [dcl.fct.def.default]p4:
6334 // [For a] user-provided explicitly-defaulted function [...] if such a
6335 // function is implicitly defined as deleted, the program is ill-formed.
6336 Diag(MD->getLocation(), diag::err_out_of_line_default_deletes) << CSM;
6337 ShouldDeleteSpecialMember(MD, CSM, nullptr, /*Diagnose*/true);
6338 HadError = true;
6339 }
6340 }
6341
6342 if (HadError)
6343 MD->setInvalidDecl();
6344}
6345
6346/// Check whether the exception specification provided for an
6347/// explicitly-defaulted special member matches the exception specification
6348/// that would have been generated for an implicit special member, per
6349/// C++11 [dcl.fct.def.default]p2.
6350void Sema::CheckExplicitlyDefaultedMemberExceptionSpec(
6351 CXXMethodDecl *MD, const FunctionProtoType *SpecifiedType) {
6352 // If the exception specification was explicitly specified but hadn't been
6353 // parsed when the method was defaulted, grab it now.
6354 if (SpecifiedType->getExceptionSpecType() == EST_Unparsed)
6355 SpecifiedType =
6356 MD->getTypeSourceInfo()->getType()->castAs<FunctionProtoType>();
6357
6358 // Compute the implicit exception specification.
6359 CallingConv CC = Context.getDefaultCallingConvention(/*IsVariadic=*/false,
6360 /*IsCXXMethod=*/true);
6361 FunctionProtoType::ExtProtoInfo EPI(CC);
6362 auto IES = computeImplicitExceptionSpec(*this, MD->getLocation(), MD);
6363 EPI.ExceptionSpec = IES.getExceptionSpec();
6364 const FunctionProtoType *ImplicitType = cast<FunctionProtoType>(
6365 Context.getFunctionType(Context.VoidTy, None, EPI));
6366
6367 // Ensure that it matches.
6368 CheckEquivalentExceptionSpec(
6369 PDiag(diag::err_incorrect_defaulted_exception_spec)
6370 << getSpecialMember(MD), PDiag(),
6371 ImplicitType, SourceLocation(),
6372 SpecifiedType, MD->getLocation());
6373}
6374
6375void Sema::CheckDelayedMemberExceptionSpecs() {
6376 decltype(DelayedExceptionSpecChecks) Checks;
6377 decltype(DelayedDefaultedMemberExceptionSpecs) Specs;
6378
6379 std::swap(Checks, DelayedExceptionSpecChecks);
6380 std::swap(Specs, DelayedDefaultedMemberExceptionSpecs);
6381
6382 // Perform any deferred checking of exception specifications for virtual
6383 // destructors.
6384 for (auto &Check : Checks)
6385 CheckOverridingFunctionExceptionSpec(Check.first, Check.second);
6386
6387 // Check that any explicitly-defaulted methods have exception specifications
6388 // compatible with their implicit exception specifications.
6389 for (auto &Spec : Specs)
6390 CheckExplicitlyDefaultedMemberExceptionSpec(Spec.first, Spec.second);
6391}
6392
6393namespace {
6394/// CRTP base class for visiting operations performed by a special member
6395/// function (or inherited constructor).
6396template<typename Derived>
6397struct SpecialMemberVisitor {
6398 Sema &S;
6399 CXXMethodDecl *MD;
6400 Sema::CXXSpecialMember CSM;
6401 Sema::InheritedConstructorInfo *ICI;
6402
6403 // Properties of the special member, computed for convenience.
6404 bool IsConstructor = false, IsAssignment = false, ConstArg = false;
6405
6406 SpecialMemberVisitor(Sema &S, CXXMethodDecl *MD, Sema::CXXSpecialMember CSM,
6407 Sema::InheritedConstructorInfo *ICI)
6408 : S(S), MD(MD), CSM(CSM), ICI(ICI) {
6409 switch (CSM) {
6410 case Sema::CXXDefaultConstructor:
6411 case Sema::CXXCopyConstructor:
6412 case Sema::CXXMoveConstructor:
6413 IsConstructor = true;
6414 break;
6415 case Sema::CXXCopyAssignment:
6416 case Sema::CXXMoveAssignment:
6417 IsAssignment = true;
6418 break;
6419 case Sema::CXXDestructor:
6420 break;
6421 case Sema::CXXInvalid:
6422 llvm_unreachable("invalid special member kind")::llvm::llvm_unreachable_internal("invalid special member kind"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6422)
;
6423 }
6424
6425 if (MD->getNumParams()) {
6426 if (const ReferenceType *RT =
6427 MD->getParamDecl(0)->getType()->getAs<ReferenceType>())
6428 ConstArg = RT->getPointeeType().isConstQualified();
6429 }
6430 }
6431
6432 Derived &getDerived() { return static_cast<Derived&>(*this); }
6433
6434 /// Is this a "move" special member?
6435 bool isMove() const {
6436 return CSM == Sema::CXXMoveConstructor || CSM == Sema::CXXMoveAssignment;
6437 }
6438
6439 /// Look up the corresponding special member in the given class.
6440 Sema::SpecialMemberOverloadResult lookupIn(CXXRecordDecl *Class,
6441 unsigned Quals, bool IsMutable) {
6442 return lookupCallFromSpecialMember(S, Class, CSM, Quals,
6443 ConstArg && !IsMutable);
6444 }
6445
6446 /// Look up the constructor for the specified base class to see if it's
6447 /// overridden due to this being an inherited constructor.
6448 Sema::SpecialMemberOverloadResult lookupInheritedCtor(CXXRecordDecl *Class) {
6449 if (!ICI)
6450 return {};
6451 assert(CSM == Sema::CXXDefaultConstructor)((CSM == Sema::CXXDefaultConstructor) ? static_cast<void>
(0) : __assert_fail ("CSM == Sema::CXXDefaultConstructor", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6451, __PRETTY_FUNCTION__))
;
6452 auto *BaseCtor =
6453 cast<CXXConstructorDecl>(MD)->getInheritedConstructor().getConstructor();
6454 if (auto *MD = ICI->findConstructorForBase(Class, BaseCtor).first)
6455 return MD;
6456 return {};
6457 }
6458
6459 /// A base or member subobject.
6460 typedef llvm::PointerUnion<CXXBaseSpecifier*, FieldDecl*> Subobject;
6461
6462 /// Get the location to use for a subobject in diagnostics.
6463 static SourceLocation getSubobjectLoc(Subobject Subobj) {
6464 // FIXME: For an indirect virtual base, the direct base leading to
6465 // the indirect virtual base would be a more useful choice.
6466 if (auto *B = Subobj.dyn_cast<CXXBaseSpecifier*>())
6467 return B->getBaseTypeLoc();
6468 else
6469 return Subobj.get<FieldDecl*>()->getLocation();
6470 }
6471
6472 enum BasesToVisit {
6473 /// Visit all non-virtual (direct) bases.
6474 VisitNonVirtualBases,
6475 /// Visit all direct bases, virtual or not.
6476 VisitDirectBases,
6477 /// Visit all non-virtual bases, and all virtual bases if the class
6478 /// is not abstract.
6479 VisitPotentiallyConstructedBases,
6480 /// Visit all direct or virtual bases.
6481 VisitAllBases
6482 };
6483
6484 // Visit the bases and members of the class.
6485 bool visit(BasesToVisit Bases) {
6486 CXXRecordDecl *RD = MD->getParent();
6487
6488 if (Bases == VisitPotentiallyConstructedBases)
6489 Bases = RD->isAbstract() ? VisitNonVirtualBases : VisitAllBases;
6490
6491 for (auto &B : RD->bases())
6492 if ((Bases == VisitDirectBases || !B.isVirtual()) &&
6493 getDerived().visitBase(&B))
6494 return true;
6495
6496 if (Bases == VisitAllBases)
6497 for (auto &B : RD->vbases())
6498 if (getDerived().visitBase(&B))
6499 return true;
6500
6501 for (auto *F : RD->fields())
6502 if (!F->isInvalidDecl() && !F->isUnnamedBitfield() &&
6503 getDerived().visitField(F))
6504 return true;
6505
6506 return false;
6507 }
6508};
6509}
6510
6511namespace {
6512struct SpecialMemberDeletionInfo
6513 : SpecialMemberVisitor<SpecialMemberDeletionInfo> {
6514 bool Diagnose;
6515
6516 SourceLocation Loc;
6517
6518 bool AllFieldsAreConst;
6519
6520 SpecialMemberDeletionInfo(Sema &S, CXXMethodDecl *MD,
6521 Sema::CXXSpecialMember CSM,
6522 Sema::InheritedConstructorInfo *ICI, bool Diagnose)
6523 : SpecialMemberVisitor(S, MD, CSM, ICI), Diagnose(Diagnose),
6524 Loc(MD->getLocation()), AllFieldsAreConst(true) {}
6525
6526 bool inUnion() const { return MD->getParent()->isUnion(); }
6527
6528 Sema::CXXSpecialMember getEffectiveCSM() {
6529 return ICI ? Sema::CXXInvalid : CSM;
6530 }
6531
6532 bool visitBase(CXXBaseSpecifier *Base) { return shouldDeleteForBase(Base); }
6533 bool visitField(FieldDecl *Field) { return shouldDeleteForField(Field); }
6534
6535 bool shouldDeleteForBase(CXXBaseSpecifier *Base);
6536 bool shouldDeleteForField(FieldDecl *FD);
6537 bool shouldDeleteForAllConstMembers();
6538
6539 bool shouldDeleteForClassSubobject(CXXRecordDecl *Class, Subobject Subobj,
6540 unsigned Quals);
6541 bool shouldDeleteForSubobjectCall(Subobject Subobj,
6542 Sema::SpecialMemberOverloadResult SMOR,
6543 bool IsDtorCallInCtor);
6544
6545 bool isAccessible(Subobject Subobj, CXXMethodDecl *D);
6546};
6547}
6548
6549/// Is the given special member inaccessible when used on the given
6550/// sub-object.
6551bool SpecialMemberDeletionInfo::isAccessible(Subobject Subobj,
6552 CXXMethodDecl *target) {
6553 /// If we're operating on a base class, the object type is the
6554 /// type of this special member.
6555 QualType objectTy;
6556 AccessSpecifier access = target->getAccess();
6557 if (CXXBaseSpecifier *base = Subobj.dyn_cast<CXXBaseSpecifier*>()) {
6558 objectTy = S.Context.getTypeDeclType(MD->getParent());
6559 access = CXXRecordDecl::MergeAccess(base->getAccessSpecifier(), access);
6560
6561 // If we're operating on a field, the object type is the type of the field.
6562 } else {
6563 objectTy = S.Context.getTypeDeclType(target->getParent());
6564 }
6565
6566 return S.isSpecialMemberAccessibleForDeletion(target, access, objectTy);
6567}
6568
6569/// Check whether we should delete a special member due to the implicit
6570/// definition containing a call to a special member of a subobject.
6571bool SpecialMemberDeletionInfo::shouldDeleteForSubobjectCall(
6572 Subobject Subobj, Sema::SpecialMemberOverloadResult SMOR,
6573 bool IsDtorCallInCtor) {
6574 CXXMethodDecl *Decl = SMOR.getMethod();
6575 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
6576
6577 int DiagKind = -1;
6578
6579 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)
6580 DiagKind = !Decl ? 0 : 1;
6581 else if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
6582 DiagKind = 2;
6583 else if (!isAccessible(Subobj, Decl))
6584 DiagKind = 3;
6585 else if (!IsDtorCallInCtor && Field && Field->getParent()->isUnion() &&
6586 !Decl->isTrivial()) {
6587 // A member of a union must have a trivial corresponding special member.
6588 // As a weird special case, a destructor call from a union's constructor
6589 // must be accessible and non-deleted, but need not be trivial. Such a
6590 // destructor is never actually called, but is semantically checked as
6591 // if it were.
6592 DiagKind = 4;
6593 }
6594
6595 if (DiagKind == -1)
6596 return false;
6597
6598 if (Diagnose) {
6599 if (Field) {
6600 S.Diag(Field->getLocation(),
6601 diag::note_deleted_special_member_class_subobject)
6602 << getEffectiveCSM() << MD->getParent() << /*IsField*/true
6603 << Field << DiagKind << IsDtorCallInCtor;
6604 } else {
6605 CXXBaseSpecifier *Base = Subobj.get<CXXBaseSpecifier*>();
6606 S.Diag(Base->getLocStart(),
6607 diag::note_deleted_special_member_class_subobject)
6608 << getEffectiveCSM() << MD->getParent() << /*IsField*/false
6609 << Base->getType() << DiagKind << IsDtorCallInCtor;
6610 }
6611
6612 if (DiagKind == 1)
6613 S.NoteDeletedFunction(Decl);
6614 // FIXME: Explain inaccessibility if DiagKind == 3.
6615 }
6616
6617 return true;
6618}
6619
6620/// Check whether we should delete a special member function due to having a
6621/// direct or virtual base class or non-static data member of class type M.
6622bool SpecialMemberDeletionInfo::shouldDeleteForClassSubobject(
6623 CXXRecordDecl *Class, Subobject Subobj, unsigned Quals) {
6624 FieldDecl *Field = Subobj.dyn_cast<FieldDecl*>();
6625 bool IsMutable = Field && Field->isMutable();
6626
6627 // C++11 [class.ctor]p5:
6628 // -- any direct or virtual base class, or non-static data member with no
6629 // brace-or-equal-initializer, has class type M (or array thereof) and
6630 // either M has no default constructor or overload resolution as applied
6631 // to M's default constructor results in an ambiguity or in a function
6632 // that is deleted or inaccessible
6633 // C++11 [class.copy]p11, C++11 [class.copy]p23:
6634 // -- a direct or virtual base class B that cannot be copied/moved because
6635 // overload resolution, as applied to B's corresponding special member,
6636 // results in an ambiguity or a function that is deleted or inaccessible
6637 // from the defaulted special member
6638 // C++11 [class.dtor]p5:
6639 // -- any direct or virtual base class [...] has a type with a destructor
6640 // that is deleted or inaccessible
6641 if (!(CSM == Sema::CXXDefaultConstructor &&
6642 Field && Field->hasInClassInitializer()) &&
6643 shouldDeleteForSubobjectCall(Subobj, lookupIn(Class, Quals, IsMutable),
6644 false))
6645 return true;
6646
6647 // C++11 [class.ctor]p5, C++11 [class.copy]p11:
6648 // -- any direct or virtual base class or non-static data member has a
6649 // type with a destructor that is deleted or inaccessible
6650 if (IsConstructor) {
6651 Sema::SpecialMemberOverloadResult SMOR =
6652 S.LookupSpecialMember(Class, Sema::CXXDestructor,
6653 false, false, false, false, false);
6654 if (shouldDeleteForSubobjectCall(Subobj, SMOR, true))
6655 return true;
6656 }
6657
6658 return false;
6659}
6660
6661/// Check whether we should delete a special member function due to the class
6662/// having a particular direct or virtual base class.
6663bool SpecialMemberDeletionInfo::shouldDeleteForBase(CXXBaseSpecifier *Base) {
6664 CXXRecordDecl *BaseClass = Base->getType()->getAsCXXRecordDecl();
6665 // If program is correct, BaseClass cannot be null, but if it is, the error
6666 // must be reported elsewhere.
6667 if (!BaseClass)
6668 return false;
6669 // If we have an inheriting constructor, check whether we're calling an
6670 // inherited constructor instead of a default constructor.
6671 Sema::SpecialMemberOverloadResult SMOR = lookupInheritedCtor(BaseClass);
6672 if (auto *BaseCtor = SMOR.getMethod()) {
6673 // Note that we do not check access along this path; other than that,
6674 // this is the same as shouldDeleteForSubobjectCall(Base, BaseCtor, false);
6675 // FIXME: Check that the base has a usable destructor! Sink this into
6676 // shouldDeleteForClassSubobject.
6677 if (BaseCtor->isDeleted() && Diagnose) {
6678 S.Diag(Base->getLocStart(),
6679 diag::note_deleted_special_member_class_subobject)
6680 << getEffectiveCSM() << MD->getParent() << /*IsField*/false
6681 << Base->getType() << /*Deleted*/1 << /*IsDtorCallInCtor*/false;
6682 S.NoteDeletedFunction(BaseCtor);
6683 }
6684 return BaseCtor->isDeleted();
6685 }
6686 return shouldDeleteForClassSubobject(BaseClass, Base, 0);
6687}
6688
6689/// Check whether we should delete a special member function due to the class
6690/// having a particular non-static data member.
6691bool SpecialMemberDeletionInfo::shouldDeleteForField(FieldDecl *FD) {
6692 QualType FieldType = S.Context.getBaseElementType(FD->getType());
6693 CXXRecordDecl *FieldRecord = FieldType->getAsCXXRecordDecl();
6694
6695 if (CSM == Sema::CXXDefaultConstructor) {
6696 // For a default constructor, all references must be initialized in-class
6697 // and, if a union, it must have a non-const member.
6698 if (FieldType->isReferenceType() && !FD->hasInClassInitializer()) {
6699 if (Diagnose)
6700 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
6701 << !!ICI << MD->getParent() << FD << FieldType << /*Reference*/0;
6702 return true;
6703 }
6704 // C++11 [class.ctor]p5: any non-variant non-static data member of
6705 // const-qualified type (or array thereof) with no
6706 // brace-or-equal-initializer does not have a user-provided default
6707 // constructor.
6708 if (!inUnion() && FieldType.isConstQualified() &&
6709 !FD->hasInClassInitializer() &&
6710 (!FieldRecord || !FieldRecord->hasUserProvidedDefaultConstructor())) {
6711 if (Diagnose)
6712 S.Diag(FD->getLocation(), diag::note_deleted_default_ctor_uninit_field)
6713 << !!ICI << MD->getParent() << FD << FD->getType() << /*Const*/1;
6714 return true;
6715 }
6716
6717 if (inUnion() && !FieldType.isConstQualified())
6718 AllFieldsAreConst = false;
6719 } else if (CSM == Sema::CXXCopyConstructor) {
6720 // For a copy constructor, data members must not be of rvalue reference
6721 // type.
6722 if (FieldType->isRValueReferenceType()) {
6723 if (Diagnose)
6724 S.Diag(FD->getLocation(), diag::note_deleted_copy_ctor_rvalue_reference)
6725 << MD->getParent() << FD << FieldType;
6726 return true;
6727 }
6728 } else if (IsAssignment) {
6729 // For an assignment operator, data members must not be of reference type.
6730 if (FieldType->isReferenceType()) {
6731 if (Diagnose)
6732 S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
6733 << isMove() << MD->getParent() << FD << FieldType << /*Reference*/0;
6734 return true;
6735 }
6736 if (!FieldRecord && FieldType.isConstQualified()) {
6737 // C++11 [class.copy]p23:
6738 // -- a non-static data member of const non-class type (or array thereof)
6739 if (Diagnose)
6740 S.Diag(FD->getLocation(), diag::note_deleted_assign_field)
6741 << isMove() << MD->getParent() << FD << FD->getType() << /*Const*/1;
6742 return true;
6743 }
6744 }
6745
6746 if (FieldRecord) {
6747 // Some additional restrictions exist on the variant members.
6748 if (!inUnion() && FieldRecord->isUnion() &&
6749 FieldRecord->isAnonymousStructOrUnion()) {
6750 bool AllVariantFieldsAreConst = true;
6751
6752 // FIXME: Handle anonymous unions declared within anonymous unions.
6753 for (auto *UI : FieldRecord->fields()) {
6754 QualType UnionFieldType = S.Context.getBaseElementType(UI->getType());
6755
6756 if (!UnionFieldType.isConstQualified())
6757 AllVariantFieldsAreConst = false;
6758
6759 CXXRecordDecl *UnionFieldRecord = UnionFieldType->getAsCXXRecordDecl();
6760 if (UnionFieldRecord &&
6761 shouldDeleteForClassSubobject(UnionFieldRecord, UI,
6762 UnionFieldType.getCVRQualifiers()))
6763 return true;
6764 }
6765
6766 // At least one member in each anonymous union must be non-const
6767 if (CSM == Sema::CXXDefaultConstructor && AllVariantFieldsAreConst &&
6768 !FieldRecord->field_empty()) {
6769 if (Diagnose)
6770 S.Diag(FieldRecord->getLocation(),
6771 diag::note_deleted_default_ctor_all_const)
6772 << !!ICI << MD->getParent() << /*anonymous union*/1;
6773 return true;
6774 }
6775
6776 // Don't check the implicit member of the anonymous union type.
6777 // This is technically non-conformant, but sanity demands it.
6778 return false;
6779 }
6780
6781 if (shouldDeleteForClassSubobject(FieldRecord, FD,
6782 FieldType.getCVRQualifiers()))
6783 return true;
6784 }
6785
6786 return false;
6787}
6788
6789/// C++11 [class.ctor] p5:
6790/// A defaulted default constructor for a class X is defined as deleted if
6791/// X is a union and all of its variant members are of const-qualified type.
6792bool SpecialMemberDeletionInfo::shouldDeleteForAllConstMembers() {
6793 // This is a silly definition, because it gives an empty union a deleted
6794 // default constructor. Don't do that.
6795 if (CSM == Sema::CXXDefaultConstructor && inUnion() && AllFieldsAreConst) {
6796 bool AnyFields = false;
6797 for (auto *F : MD->getParent()->fields())
6798 if ((AnyFields = !F->isUnnamedBitfield()))
6799 break;
6800 if (!AnyFields)
6801 return false;
6802 if (Diagnose)
6803 S.Diag(MD->getParent()->getLocation(),
6804 diag::note_deleted_default_ctor_all_const)
6805 << !!ICI << MD->getParent() << /*not anonymous union*/0;
6806 return true;
6807 }
6808 return false;
6809}
6810
6811/// Determine whether a defaulted special member function should be defined as
6812/// deleted, as specified in C++11 [class.ctor]p5, C++11 [class.copy]p11,
6813/// C++11 [class.copy]p23, and C++11 [class.dtor]p5.
6814bool Sema::ShouldDeleteSpecialMember(CXXMethodDecl *MD, CXXSpecialMember CSM,
6815 InheritedConstructorInfo *ICI,
6816 bool Diagnose) {
6817 if (MD->isInvalidDecl())
6818 return false;
6819 CXXRecordDecl *RD = MD->getParent();
6820 assert(!RD->isDependentType() && "do deletion after instantiation")((!RD->isDependentType() && "do deletion after instantiation"
) ? static_cast<void> (0) : __assert_fail ("!RD->isDependentType() && \"do deletion after instantiation\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6820, __PRETTY_FUNCTION__))
;
6821 if (!LangOpts.CPlusPlus11 || RD->isInvalidDecl())
6822 return false;
6823
6824 // C++11 [expr.lambda.prim]p19:
6825 // The closure type associated with a lambda-expression has a
6826 // deleted (8.4.3) default constructor and a deleted copy
6827 // assignment operator.
6828 if (RD->isLambda() &&
6829 (CSM == CXXDefaultConstructor || CSM == CXXCopyAssignment)) {
6830 if (Diagnose)
6831 Diag(RD->getLocation(), diag::note_lambda_decl);
6832 return true;
6833 }
6834
6835 // For an anonymous struct or union, the copy and assignment special members
6836 // will never be used, so skip the check. For an anonymous union declared at
6837 // namespace scope, the constructor and destructor are used.
6838 if (CSM != CXXDefaultConstructor && CSM != CXXDestructor &&
6839 RD->isAnonymousStructOrUnion())
6840 return false;
6841
6842 // C++11 [class.copy]p7, p18:
6843 // If the class definition declares a move constructor or move assignment
6844 // operator, an implicitly declared copy constructor or copy assignment
6845 // operator is defined as deleted.
6846 if (MD->isImplicit() &&
6847 (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment)) {
6848 CXXMethodDecl *UserDeclaredMove = nullptr;
6849
6850 // In Microsoft mode up to MSVC 2013, a user-declared move only causes the
6851 // deletion of the corresponding copy operation, not both copy operations.
6852 // MSVC 2015 has adopted the standards conforming behavior.
6853 bool DeletesOnlyMatchingCopy =
6854 getLangOpts().MSVCCompat &&
6855 !getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015);
6856
6857 if (RD->hasUserDeclaredMoveConstructor() &&
6858 (!DeletesOnlyMatchingCopy || CSM == CXXCopyConstructor)) {
6859 if (!Diagnose) return true;
6860
6861 // Find any user-declared move constructor.
6862 for (auto *I : RD->ctors()) {
6863 if (I->isMoveConstructor()) {
6864 UserDeclaredMove = I;
6865 break;
6866 }
6867 }
6868 assert(UserDeclaredMove)((UserDeclaredMove) ? static_cast<void> (0) : __assert_fail
("UserDeclaredMove", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6868, __PRETTY_FUNCTION__))
;
6869 } else if (RD->hasUserDeclaredMoveAssignment() &&
6870 (!DeletesOnlyMatchingCopy || CSM == CXXCopyAssignment)) {
6871 if (!Diagnose) return true;
6872
6873 // Find any user-declared move assignment operator.
6874 for (auto *I : RD->methods()) {
6875 if (I->isMoveAssignmentOperator()) {
6876 UserDeclaredMove = I;
6877 break;
6878 }
6879 }
6880 assert(UserDeclaredMove)((UserDeclaredMove) ? static_cast<void> (0) : __assert_fail
("UserDeclaredMove", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6880, __PRETTY_FUNCTION__))
;
6881 }
6882
6883 if (UserDeclaredMove) {
6884 Diag(UserDeclaredMove->getLocation(),
6885 diag::note_deleted_copy_user_declared_move)
6886 << (CSM == CXXCopyAssignment) << RD
6887 << UserDeclaredMove->isMoveAssignmentOperator();
6888 return true;
6889 }
6890 }
6891
6892 // Do access control from the special member function
6893 ContextRAII MethodContext(*this, MD);
6894
6895 // C++11 [class.dtor]p5:
6896 // -- for a virtual destructor, lookup of the non-array deallocation function
6897 // results in an ambiguity or in a function that is deleted or inaccessible
6898 if (CSM == CXXDestructor && MD->isVirtual()) {
6899 FunctionDecl *OperatorDelete = nullptr;
6900 DeclarationName Name =
6901 Context.DeclarationNames.getCXXOperatorName(OO_Delete);
6902 if (FindDeallocationFunction(MD->getLocation(), MD->getParent(), Name,
6903 OperatorDelete, /*Diagnose*/false)) {
6904 if (Diagnose)
6905 Diag(RD->getLocation(), diag::note_deleted_dtor_no_operator_delete);
6906 return true;
6907 }
6908 }
6909
6910 SpecialMemberDeletionInfo SMI(*this, MD, CSM, ICI, Diagnose);
6911
6912 // Per DR1611, do not consider virtual bases of constructors of abstract
6913 // classes, since we are not going to construct them.
6914 // Per DR1658, do not consider virtual bases of destructors of abstract
6915 // classes either.
6916 // Per DR2180, for assignment operators we only assign (and thus only
6917 // consider) direct bases.
6918 if (SMI.visit(SMI.IsAssignment ? SMI.VisitDirectBases
6919 : SMI.VisitPotentiallyConstructedBases))
6920 return true;
6921
6922 if (SMI.shouldDeleteForAllConstMembers())
6923 return true;
6924
6925 if (getLangOpts().CUDA) {
6926 // We should delete the special member in CUDA mode if target inference
6927 // failed.
6928 return inferCUDATargetForImplicitSpecialMember(RD, CSM, MD, SMI.ConstArg,
6929 Diagnose);
6930 }
6931
6932 return false;
6933}
6934
6935/// Perform lookup for a special member of the specified kind, and determine
6936/// whether it is trivial. If the triviality can be determined without the
6937/// lookup, skip it. This is intended for use when determining whether a
6938/// special member of a containing object is trivial, and thus does not ever
6939/// perform overload resolution for default constructors.
6940///
6941/// If \p Selected is not \c NULL, \c *Selected will be filled in with the
6942/// member that was most likely to be intended to be trivial, if any.
6943static bool findTrivialSpecialMember(Sema &S, CXXRecordDecl *RD,
6944 Sema::CXXSpecialMember CSM, unsigned Quals,
6945 bool ConstRHS, CXXMethodDecl **Selected) {
6946 if (Selected)
6947 *Selected = nullptr;
6948
6949 switch (CSM) {
6950 case Sema::CXXInvalid:
6951 llvm_unreachable("not a special member")::llvm::llvm_unreachable_internal("not a special member", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 6951)
;
6952
6953 case Sema::CXXDefaultConstructor:
6954 // C++11 [class.ctor]p5:
6955 // A default constructor is trivial if:
6956 // - all the [direct subobjects] have trivial default constructors
6957 //
6958 // Note, no overload resolution is performed in this case.
6959 if (RD->hasTrivialDefaultConstructor())
6960 return true;
6961
6962 if (Selected) {
6963 // If there's a default constructor which could have been trivial, dig it
6964 // out. Otherwise, if there's any user-provided default constructor, point
6965 // to that as an example of why there's not a trivial one.
6966 CXXConstructorDecl *DefCtor = nullptr;
6967 if (RD->needsImplicitDefaultConstructor())
6968 S.DeclareImplicitDefaultConstructor(RD);
6969 for (auto *CI : RD->ctors()) {
6970 if (!CI->isDefaultConstructor())
6971 continue;
6972 DefCtor = CI;
6973 if (!DefCtor->isUserProvided())
6974 break;
6975 }
6976
6977 *Selected = DefCtor;
6978 }
6979
6980 return false;
6981
6982 case Sema::CXXDestructor:
6983 // C++11 [class.dtor]p5:
6984 // A destructor is trivial if:
6985 // - all the direct [subobjects] have trivial destructors
6986 if (RD->hasTrivialDestructor())
6987 return true;
6988
6989 if (Selected) {
6990 if (RD->needsImplicitDestructor())
6991 S.DeclareImplicitDestructor(RD);
6992 *Selected = RD->getDestructor();
6993 }
6994
6995 return false;
6996
6997 case Sema::CXXCopyConstructor:
6998 // C++11 [class.copy]p12:
6999 // A copy constructor is trivial if:
7000 // - the constructor selected to copy each direct [subobject] is trivial
7001 if (RD->hasTrivialCopyConstructor()) {
7002 if (Quals == Qualifiers::Const)
7003 // We must either select the trivial copy constructor or reach an
7004 // ambiguity; no need to actually perform overload resolution.
7005 return true;
7006 } else if (!Selected) {
7007 return false;
7008 }
7009 // In C++98, we are not supposed to perform overload resolution here, but we
7010 // treat that as a language defect, as suggested on cxx-abi-dev, to treat
7011 // cases like B as having a non-trivial copy constructor:
7012 // struct A { template<typename T> A(T&); };
7013 // struct B { mutable A a; };
7014 goto NeedOverloadResolution;
7015
7016 case Sema::CXXCopyAssignment:
7017 // C++11 [class.copy]p25:
7018 // A copy assignment operator is trivial if:
7019 // - the assignment operator selected to copy each direct [subobject] is
7020 // trivial
7021 if (RD->hasTrivialCopyAssignment()) {
7022 if (Quals == Qualifiers::Const)
7023 return true;
7024 } else if (!Selected) {
7025 return false;
7026 }
7027 // In C++98, we are not supposed to perform overload resolution here, but we
7028 // treat that as a language defect.
7029 goto NeedOverloadResolution;
7030
7031 case Sema::CXXMoveConstructor:
7032 case Sema::CXXMoveAssignment:
7033 NeedOverloadResolution:
7034 Sema::SpecialMemberOverloadResult SMOR =
7035 lookupCallFromSpecialMember(S, RD, CSM, Quals, ConstRHS);
7036
7037 // The standard doesn't describe how to behave if the lookup is ambiguous.
7038 // We treat it as not making the member non-trivial, just like the standard
7039 // mandates for the default constructor. This should rarely matter, because
7040 // the member will also be deleted.
7041 if (SMOR.getKind() == Sema::SpecialMemberOverloadResult::Ambiguous)
7042 return true;
7043
7044 if (!SMOR.getMethod()) {
7045 assert(SMOR.getKind() ==((SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted
) ? static_cast<void> (0) : __assert_fail ("SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7046, __PRETTY_FUNCTION__))
7046 Sema::SpecialMemberOverloadResult::NoMemberOrDeleted)((SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted
) ? static_cast<void> (0) : __assert_fail ("SMOR.getKind() == Sema::SpecialMemberOverloadResult::NoMemberOrDeleted"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7046, __PRETTY_FUNCTION__))
;
7047 return false;
7048 }
7049
7050 // We deliberately don't check if we found a deleted special member. We're
7051 // not supposed to!
7052 if (Selected)
7053 *Selected = SMOR.getMethod();
7054 return SMOR.getMethod()->isTrivial();
7055 }
7056
7057 llvm_unreachable("unknown special method kind")::llvm::llvm_unreachable_internal("unknown special method kind"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7057)
;
7058}
7059
7060static CXXConstructorDecl *findUserDeclaredCtor(CXXRecordDecl *RD) {
7061 for (auto *CI : RD->ctors())
7062 if (!CI->isImplicit())
7063 return CI;
7064
7065 // Look for constructor templates.
7066 typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl> tmpl_iter;
7067 for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end()); TI != TE; ++TI) {
7068 if (CXXConstructorDecl *CD =
7069 dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl()))
7070 return CD;
7071 }
7072
7073 return nullptr;
7074}
7075
7076/// The kind of subobject we are checking for triviality. The values of this
7077/// enumeration are used in diagnostics.
7078enum TrivialSubobjectKind {
7079 /// The subobject is a base class.
7080 TSK_BaseClass,
7081 /// The subobject is a non-static data member.
7082 TSK_Field,
7083 /// The object is actually the complete object.
7084 TSK_CompleteObject
7085};
7086
7087/// Check whether the special member selected for a given type would be trivial.
7088static bool checkTrivialSubobjectCall(Sema &S, SourceLocation SubobjLoc,
7089 QualType SubType, bool ConstRHS,
7090 Sema::CXXSpecialMember CSM,
7091 TrivialSubobjectKind Kind,
7092 bool Diagnose) {
7093 CXXRecordDecl *SubRD = SubType->getAsCXXRecordDecl();
7094 if (!SubRD)
7095 return true;
7096
7097 CXXMethodDecl *Selected;
7098 if (findTrivialSpecialMember(S, SubRD, CSM, SubType.getCVRQualifiers(),
7099 ConstRHS, Diagnose ? &Selected : nullptr))
7100 return true;
7101
7102 if (Diagnose) {
7103 if (ConstRHS)
7104 SubType.addConst();
7105
7106 if (!Selected && CSM == Sema::CXXDefaultConstructor) {
7107 S.Diag(SubobjLoc, diag::note_nontrivial_no_def_ctor)
7108 << Kind << SubType.getUnqualifiedType();
7109 if (CXXConstructorDecl *CD = findUserDeclaredCtor(SubRD))
7110 S.Diag(CD->getLocation(), diag::note_user_declared_ctor);
7111 } else if (!Selected)
7112 S.Diag(SubobjLoc, diag::note_nontrivial_no_copy)
7113 << Kind << SubType.getUnqualifiedType() << CSM << SubType;
7114 else if (Selected->isUserProvided()) {
7115 if (Kind == TSK_CompleteObject)
7116 S.Diag(Selected->getLocation(), diag::note_nontrivial_user_provided)
7117 << Kind << SubType.getUnqualifiedType() << CSM;
7118 else {
7119 S.Diag(SubobjLoc, diag::note_nontrivial_user_provided)
7120 << Kind << SubType.getUnqualifiedType() << CSM;
7121 S.Diag(Selected->getLocation(), diag::note_declared_at);
7122 }
7123 } else {
7124 if (Kind != TSK_CompleteObject)
7125 S.Diag(SubobjLoc, diag::note_nontrivial_subobject)
7126 << Kind << SubType.getUnqualifiedType() << CSM;
7127
7128 // Explain why the defaulted or deleted special member isn't trivial.
7129 S.SpecialMemberIsTrivial(Selected, CSM, Diagnose);
7130 }
7131 }
7132
7133 return false;
7134}
7135
7136/// Check whether the members of a class type allow a special member to be
7137/// trivial.
7138static bool checkTrivialClassMembers(Sema &S, CXXRecordDecl *RD,
7139 Sema::CXXSpecialMember CSM,
7140 bool ConstArg, bool Diagnose) {
7141 for (const auto *FI : RD->fields()) {
7142 if (FI->isInvalidDecl() || FI->isUnnamedBitfield())
7143 continue;
7144
7145 QualType FieldType = S.Context.getBaseElementType(FI->getType());
7146
7147 // Pretend anonymous struct or union members are members of this class.
7148 if (FI->isAnonymousStructOrUnion()) {
7149 if (!checkTrivialClassMembers(S, FieldType->getAsCXXRecordDecl(),
7150 CSM, ConstArg, Diagnose))
7151 return false;
7152 continue;
7153 }
7154
7155 // C++11 [class.ctor]p5:
7156 // A default constructor is trivial if [...]
7157 // -- no non-static data member of its class has a
7158 // brace-or-equal-initializer
7159 if (CSM == Sema::CXXDefaultConstructor && FI->hasInClassInitializer()) {
7160 if (Diagnose)
7161 S.Diag(FI->getLocation(), diag::note_nontrivial_in_class_init) << FI;
7162 return false;
7163 }
7164
7165 // Objective C ARC 4.3.5:
7166 // [...] nontrivally ownership-qualified types are [...] not trivially
7167 // default constructible, copy constructible, move constructible, copy
7168 // assignable, move assignable, or destructible [...]
7169 if (FieldType.hasNonTrivialObjCLifetime()) {
7170 if (Diagnose)
7171 S.Diag(FI->getLocation(), diag::note_nontrivial_objc_ownership)
7172 << RD << FieldType.getObjCLifetime();
7173 return false;
7174 }
7175
7176 bool ConstRHS = ConstArg && !FI->isMutable();
7177 if (!checkTrivialSubobjectCall(S, FI->getLocation(), FieldType, ConstRHS,
7178 CSM, TSK_Field, Diagnose))
7179 return false;
7180 }
7181
7182 return true;
7183}
7184
7185/// Diagnose why the specified class does not have a trivial special member of
7186/// the given kind.
7187void Sema::DiagnoseNontrivial(const CXXRecordDecl *RD, CXXSpecialMember CSM) {
7188 QualType Ty = Context.getRecordType(RD);
7189
7190 bool ConstArg = (CSM == CXXCopyConstructor || CSM == CXXCopyAssignment);
7191 checkTrivialSubobjectCall(*this, RD->getLocation(), Ty, ConstArg, CSM,
7192 TSK_CompleteObject, /*Diagnose*/true);
7193}
7194
7195/// Determine whether a defaulted or deleted special member function is trivial,
7196/// as specified in C++11 [class.ctor]p5, C++11 [class.copy]p12,
7197/// C++11 [class.copy]p25, and C++11 [class.dtor]p5.
7198bool Sema::SpecialMemberIsTrivial(CXXMethodDecl *MD, CXXSpecialMember CSM,
7199 bool Diagnose) {
7200 assert(!MD->isUserProvided() && CSM != CXXInvalid && "not special enough")((!MD->isUserProvided() && CSM != CXXInvalid &&
"not special enough") ? static_cast<void> (0) : __assert_fail
("!MD->isUserProvided() && CSM != CXXInvalid && \"not special enough\""
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7200, __PRETTY_FUNCTION__))
;
7201
7202 CXXRecordDecl *RD = MD->getParent();
7203
7204 bool ConstArg = false;
7205
7206 // C++11 [class.copy]p12, p25: [DR1593]
7207 // A [special member] is trivial if [...] its parameter-type-list is
7208 // equivalent to the parameter-type-list of an implicit declaration [...]
7209 switch (CSM) {
7210 case CXXDefaultConstructor:
7211 case CXXDestructor:
7212 // Trivial default constructors and destructors cannot have parameters.
7213 break;
7214
7215 case CXXCopyConstructor:
7216 case CXXCopyAssignment: {
7217 // Trivial copy operations always have const, non-volatile parameter types.
7218 ConstArg = true;
7219 const ParmVarDecl *Param0 = MD->getParamDecl(0);
7220 const ReferenceType *RT = Param0->getType()->getAs<ReferenceType>();
7221 if (!RT || RT->getPointeeType().getCVRQualifiers() != Qualifiers::Const) {
7222 if (Diagnose)
7223 Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
7224 << Param0->getSourceRange() << Param0->getType()
7225 << Context.getLValueReferenceType(
7226 Context.getRecordType(RD).withConst());
7227 return false;
7228 }
7229 break;
7230 }
7231
7232 case CXXMoveConstructor:
7233 case CXXMoveAssignment: {
7234 // Trivial move operations always have non-cv-qualified parameters.
7235 const ParmVarDecl *Param0 = MD->getParamDecl(0);
7236 const RValueReferenceType *RT =
7237 Param0->getType()->getAs<RValueReferenceType>();
7238 if (!RT || RT->getPointeeType().getCVRQualifiers()) {
7239 if (Diagnose)
7240 Diag(Param0->getLocation(), diag::note_nontrivial_param_type)
7241 << Param0->getSourceRange() << Param0->getType()
7242 << Context.getRValueReferenceType(Context.getRecordType(RD));
7243 return false;
7244 }
7245 break;
7246 }
7247
7248 case CXXInvalid:
7249 llvm_unreachable("not a special member")::llvm::llvm_unreachable_internal("not a special member", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7249)
;
7250 }
7251
7252 if (MD->getMinRequiredArguments() < MD->getNumParams()) {
7253 if (Diagnose)
7254 Diag(MD->getParamDecl(MD->getMinRequiredArguments())->getLocation(),
7255 diag::note_nontrivial_default_arg)
7256 << MD->getParamDecl(MD->getMinRequiredArguments())->getSourceRange();
7257 return false;
7258 }
7259 if (MD->isVariadic()) {
7260 if (Diagnose)
7261 Diag(MD->getLocation(), diag::note_nontrivial_variadic);
7262 return false;
7263 }
7264
7265 // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
7266 // A copy/move [constructor or assignment operator] is trivial if
7267 // -- the [member] selected to copy/move each direct base class subobject
7268 // is trivial
7269 //
7270 // C++11 [class.copy]p12, C++11 [class.copy]p25:
7271 // A [default constructor or destructor] is trivial if
7272 // -- all the direct base classes have trivial [default constructors or
7273 // destructors]
7274 for (const auto &BI : RD->bases())
7275 if (!checkTrivialSubobjectCall(*this, BI.getLocStart(), BI.getType(),
7276 ConstArg, CSM, TSK_BaseClass, Diagnose))
7277 return false;
7278
7279 // C++11 [class.ctor]p5, C++11 [class.dtor]p5:
7280 // A copy/move [constructor or assignment operator] for a class X is
7281 // trivial if
7282 // -- for each non-static data member of X that is of class type (or array
7283 // thereof), the constructor selected to copy/move that member is
7284 // trivial
7285 //
7286 // C++11 [class.copy]p12, C++11 [class.copy]p25:
7287 // A [default constructor or destructor] is trivial if
7288 // -- for all of the non-static data members of its class that are of class
7289 // type (or array thereof), each such class has a trivial [default
7290 // constructor or destructor]
7291 if (!checkTrivialClassMembers(*this, RD, CSM, ConstArg, Diagnose))
7292 return false;
7293
7294 // C++11 [class.dtor]p5:
7295 // A destructor is trivial if [...]
7296 // -- the destructor is not virtual
7297 if (CSM == CXXDestructor && MD->isVirtual()) {
7298 if (Diagnose)
7299 Diag(MD->getLocation(), diag::note_nontrivial_virtual_dtor) << RD;
7300 return false;
7301 }
7302
7303 // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25:
7304 // A [special member] for class X is trivial if [...]
7305 // -- class X has no virtual functions and no virtual base classes
7306 if (CSM != CXXDestructor && MD->getParent()->isDynamicClass()) {
7307 if (!Diagnose)
7308 return false;
7309
7310 if (RD->getNumVBases()) {
7311 // Check for virtual bases. We already know that the corresponding
7312 // member in all bases is trivial, so vbases must all be direct.
7313 CXXBaseSpecifier &BS = *RD->vbases_begin();
7314 assert(BS.isVirtual())((BS.isVirtual()) ? static_cast<void> (0) : __assert_fail
("BS.isVirtual()", "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7314, __PRETTY_FUNCTION__))
;
7315 Diag(BS.getLocStart(), diag::note_nontrivial_has_virtual) << RD << 1;
7316 return false;
7317 }
7318
7319 // Must have a virtual method.
7320 for (const auto *MI : RD->methods()) {
7321 if (MI->isVirtual()) {
7322 SourceLocation MLoc = MI->getLocStart();
7323 Diag(MLoc, diag::note_nontrivial_has_virtual) << RD << 0;
7324 return false;
7325 }
7326 }
7327
7328 llvm_unreachable("dynamic class with no vbases and no virtual functions")::llvm::llvm_unreachable_internal("dynamic class with no vbases and no virtual functions"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7328)
;
7329 }
7330
7331 // Looks like it's trivial!
7332 return true;
7333}
7334
7335namespace {
7336struct FindHiddenVirtualMethod {
7337 Sema *S;
7338 CXXMethodDecl *Method;
7339 llvm::SmallPtrSet<const CXXMethodDecl *, 8> OverridenAndUsingBaseMethods;
7340 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
7341
7342private:
7343 /// Check whether any most overriden method from MD in Methods
7344 static bool CheckMostOverridenMethods(
7345 const CXXMethodDecl *MD,
7346 const llvm::SmallPtrSetImpl<const CXXMethodDecl *> &Methods) {
7347 if (MD->size_overridden_methods() == 0)
7348 return Methods.count(MD->getCanonicalDecl());
7349 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
7350 E = MD->end_overridden_methods();
7351 I != E; ++I)
7352 if (CheckMostOverridenMethods(*I, Methods))
7353 return true;
7354 return false;
7355 }
7356
7357public:
7358 /// Member lookup function that determines whether a given C++
7359 /// method overloads virtual methods in a base class without overriding any,
7360 /// to be used with CXXRecordDecl::lookupInBases().
7361 bool operator()(const CXXBaseSpecifier *Specifier, CXXBasePath &Path) {
7362 RecordDecl *BaseRecord =
7363 Specifier->getType()->getAs<RecordType>()->getDecl();
7364
7365 DeclarationName Name = Method->getDeclName();
7366 assert(Name.getNameKind() == DeclarationName::Identifier)((Name.getNameKind() == DeclarationName::Identifier) ? static_cast
<void> (0) : __assert_fail ("Name.getNameKind() == DeclarationName::Identifier"
, "/tmp/buildd/llvm-toolchain-snapshot-5.0~svn306458/tools/clang/lib/Sema/SemaDeclCXX.cpp"
, 7366, __PRETTY_FUNCTION__))
;
7367
7368 bool foundSameNameMethod = false;
7369 SmallVector<CXXMethodDecl *, 8> overloadedMethods;
7370 for (Path.Decls = BaseRecord->lookup(Name); !Path.Decls.empty();
7371 Path.Decls = Path.Decls.slice(1)) {
7372 NamedDecl *D = Path.Decls.front();
7373 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
7374 MD = MD->getCanonicalDecl();
7375 foundSameNameMethod = true;
7376 // Interested only in hidden virtual methods.
7377 if (!MD->isVirtual())
7378 continue;
7379 // If the method we are checking overrides a method from its base
7380 // don't warn about the other overloaded methods. Clang deviates from
7381 // GCC by only diagnosing overloads of inherited virtual functions that
7382 // do not override any other virtual functions in the base. GCC's
7383 // -Woverloaded-virtual diagnoses any derived function hiding a virtual
7384 // function from a base class. These cases may be better served by a
7385 // warning (not specific to virtual functions) on call sites when the
7386 // call would select a different function from the base class, were it
7387 // visible.
7388 // See FIXME in test/SemaCXX/warn-overload-virtual.cpp for an example.
7389 if (!S->IsOverload(Method, MD, false))
7390 return true;
7391 // Collect the overload only if its hidden.
7392 if (!CheckMostOverridenMethods(MD, OverridenAndUsingBaseMethods))
7393 overloadedMethods.push_back(MD);
7394 }
7395 }
7396
7397 if (foundSameNameMethod)
7398 OverloadedMethods.append(overloadedMethods.begin(),
7399 overloadedMethods.end());
7400 return foundSameNameMethod;
7401 }
7402};
7403} // end anonymous namespace
7404
7405/// \brief Add the most overriden methods from MD to Methods
7406static void AddMostOverridenMethods(const CXXMethodDecl *MD,
7407 llvm::SmallPtrSetImpl<const CXXMethodDecl *>& Methods) {
7408 if (MD->size_overridden_methods() == 0)
7409 Methods.insert(MD->getCanonicalDecl());
7410 for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
7411 E = MD->end_overridden_methods();
7412 I != E; ++I)
7413 AddMostOverridenMethods(*I, Methods);
7414}
7415
7416/// \brief Check if a method overloads virtual methods in a base class without
7417/// overriding any.
7418void Sema::FindHiddenVirtualMethods(CXXMethodDecl *MD,
7419 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
7420 if (!MD->getDeclName().isIdentifier())
7421 return;
7422
7423 CXXBasePaths Paths(/*FindAmbiguities=*/true, // true to look in all bases.
7424 /*bool RecordPaths=*/false,
7425 /*bool DetectVirtual=*/false);
7426 FindHiddenVirtualMethod FHVM;
7427 FHVM.Method = MD;
7428 FHVM.S = this;
7429
7430 // Keep the base methods that were overriden or introduced in the subclass
7431 // by 'using' in a set. A base method not in this set is hidden.
7432 CXXRecordDecl *DC = MD->getParent();
7433 DeclContext::lookup_result R = DC->lookup(MD->getDeclName());
7434 for (DeclContext::lookup_iterator I = R.begin(), E = R.end(); I != E; ++I) {
7435 NamedDecl *ND = *I;
7436 if (UsingShadowDecl *shad = dyn_cast<UsingShadowDecl>(*I))
7437 ND = shad->getTargetDecl();
7438 if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(ND))
7439 AddMostOverridenMethods(MD, FHVM.OverridenAndUsingBaseMethods);
7440 }
7441
7442 if (DC->lookupInBases(FHVM, Paths))
7443 OverloadedMethods = FHVM.OverloadedMethods;
7444}
7445
7446void Sema::NoteHiddenVirtualMethods(CXXMethodDecl *MD,
7447 SmallVectorImpl<CXXMethodDecl*> &OverloadedMethods) {
7448 for (unsigned i = 0, e = OverloadedMethods.size(); i != e; ++i) {
7449 CXXMethodDecl *overloadedMD = OverloadedMethods[i];
7450 PartialDiagnostic PD = PDiag(
7451 diag::note_hidden_overloaded_virtual_declared_here) << overloadedMD;
7452 HandleFunctionTypeMismatch(PD, MD->getType(), overloadedMD->getType());
7453 Diag(overloadedMD->getLocation(), PD);
7454 }
7455}
7456
7457/// \brief Diagnose methods which overload virtual methods in a base class
7458/// without overriding any.
7459void Sema::DiagnoseHiddenVirtualMethods(CXXMethodDecl *MD) {
7460 if (MD->isInvalidDecl())
7461 return;
7462
7463 if (Diags.isIgnored(diag::warn_overloaded_virtual, MD->getLocation()))
7464 return;
7465
7466 SmallVector<CXXMethodDecl *, 8> OverloadedMethods;
7467 FindHiddenVirtualMethods(MD, OverloadedMethods);
7468 if (!OverloadedMethods.empty()) {
7469 Diag(MD->getLocation(), diag::warn_overloaded_virtual)
7470 << MD << (OverloadedMethods.size() > 1);
7471
7472 NoteHiddenVirtualMethods(MD, OverloadedMethods);
7473 }
7474}
7475
7476void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc,
7477 Decl *TagDecl,
7478 SourceLocation LBrac,
7479 SourceLocation RBrac,
7480 AttributeList *AttrList) {
7481 if (!TagDecl)
7482 return;
7483
7484 AdjustDeclIfTemplate(TagDecl);
7485
7486 for (const AttributeList* l = AttrList; l; l = l->getNext()) {
7487 if (l->getKind() != AttributeList::AT_Visibility)
7488 continue;
7489 l->setInvalid();
7490 Diag(l->getLoc(), diag::warn_attribute_after_definition_ignored) <<
7491 l->getName();
7492 }
7493
7494 ActOnFields(S, RLoc, TagDecl, llvm::makeArrayRef(
7495 // strict aliasing violation!
7496 reinterpret_cast<Decl**>(FieldCollector->getCurFields()),
7497 FieldCollector->getCurNumFields()), LBrac, RBrac, AttrList);
7498
7499 CheckCompletedCXXClass(
7500 dyn_cast_or_null<CXXRecordDecl>(TagDecl));
7501}
7502
7503/// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared
7504/// special functions, such as the default constructor, copy
7505/// constructor, or destructor, to the given C++ class (C++
7506/// [special]p1). This routine can only be executed just before the
7507/// definition of the class is complete.
7508void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) {
7509 if (ClassDecl->needsImplicitDefaultConstructor()) {
7510 ++ASTContext::NumImplicitDefaultConstructors;
7511
7512 if (ClassDecl->hasInheritedConstructor())
7513 DeclareImplicitDefaultConstructor(ClassDecl);
7514 }
7515
7516 if (ClassDecl->needsImplicitCopyConstructor()) {
7517 ++ASTContext::NumImplicitCopyConstructors;
7518
7519 // If the properties or semantics of the copy constructor couldn't be
7520 // determined while the class was being declared, force a declaration
7521 // of it now.
7522 if (ClassDecl->needsOverloadResolutionForCopyConstructor() ||
7523 ClassDecl->hasInheritedConstructor())
7524 DeclareImplicitCopyConstructor(ClassDecl);
7525 // For the MS ABI we need to know whether the copy ctor is deleted. A
7526 // prerequisite for deleting the implicit copy ctor is that the class has a
7527 // move ctor or move assignment that is either user-declared or whose
7528 // semantics are inherited from a subobject. FIXME: We should provide a more
7529 // direct way for CodeGen to ask whether the constructor was deleted.
7530 else if (Context.getTargetInfo().getCXXABI().isMicrosoft() &&
7531 (ClassDecl->hasUserDeclaredMoveConstructor() ||
7532 ClassDecl->needsOverloadResolutionForMoveConstructor() ||
7533 ClassDecl->hasUserDeclaredMoveAssignment() ||
7534 ClassDecl->needsOverloadResolutionForMoveAssignment()))
7535 DeclareImplicitCopyConstructor(ClassDecl);
7536 }
7537
7538 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveConstructor()) {
7539 ++ASTContext::NumImplicitMoveConstructors;
7540
7541 if (ClassDecl->needsOverloadResolutionForMoveConstructor() ||
7542 ClassDecl->hasInheritedConstructor())
7543 DeclareImplicitMoveConstructor(ClassDecl);
7544 }
7545
7546 if (ClassDecl->needsImplicitCopyAssignment()) {
7547 ++ASTContext::NumImplicitCopyAssignmentOperators;
7548
7549 // If we have a dynamic class, then the copy assignment operator may be
7550 // virtual, so we have to declare it immediately. This ensures that, e.g.,
7551 // it shows up in the right place in the vtable and that we diagnose
7552 // problems with the implicit exception specification.
7553 if (ClassDecl->isDynamicClass() ||
7554 ClassDecl->needsOverloadResolutionForCopyAssignment() ||
7555 ClassDecl->hasInheritedAssignment())
7556 DeclareImplicitCopyAssignment(ClassDecl);
7557 }
7558
7559 if (getLangOpts().CPlusPlus11 && ClassDecl->needsImplicitMoveAssignment()) {
7560 ++ASTContext::NumImplicitMoveAssignmentOperators;
7561
7562 // Likewise for the move assignment operator.
7563 if (ClassDecl->isDynamicClass() ||
7564 ClassDecl->needsOverloadResolutionForMoveAssignment() ||
7565 ClassDecl->hasInheritedAssignment())
7566 DeclareImplicitMoveAssignment(ClassDecl);
7567 }
7568
7569 if (ClassDecl->needsImplicitDestructor()) {
7570 ++ASTContext::NumImplicitDestructors;
7571
7572 // If we have a dynamic class, then the destructor may be virtual, so we
7573 // have to declare the destructor immediately. This ensures that, e.g., it
7574 // shows up in the right place in the vtable and that we diagnose problems
7575 // with the implicit exception specification.
7576 if (ClassDecl->isDynamicClass() ||
7577 ClassDecl->needsOverloadResolutionForDestructor())
7578 DeclareImplicitDestructor(ClassDecl);
7579 }
7580}
7581
7582unsigned Sema::ActOnReenterTemplateScope(Scope *S, Decl *D) {
7583 if (!D)
7584 return 0;
7585
7586 // The order of template parameters is not important here. All names
7587 // get added to the same scope.
7588 SmallVector<TemplateParameterList *, 4> ParameterLists;
7589
7590 if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
7591 D = TD->getTemplatedDecl();
7592
7593 if (auto *PSD = dyn_cast<ClassTemplatePartialSpecializationDecl>(D))
7594 ParameterLists.push_back(PSD->getTemplateParameters());
7595
7596 if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D)) {
7597 for (unsigned i = 0; i < DD->getNumTemplateParameterLists(); ++i)
7598 ParameterLists.push_back(DD->getTemplateParameterList(i));
7599
7600 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
7601 if (FunctionTemplateDecl *FTD = FD->getDescribedFunctionTemplate())
7602 ParameterLists.push_back(FTD->getTemplateParameters());
7603 }
7604 }
7605
7606 if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
7607 for (unsigned i = 0; i < TD->getNumTemplateParameterLists(); ++i)
7608 ParameterLists.push_back(TD->getTemplateParameterList(i));
7609
7610 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD)) {
7611 if (ClassTemplateDecl *CTD = RD->getDescribedClassTemplate())
7612 ParameterLists.push_back(CTD->getTemplateParameters());
7613 }
7614 }
7615
7616 unsigned Count = 0;
7617 for (TemplateParameterList *Params : ParameterLists) {
7618 if (Params->size() > 0)
7619 // Ignore explicit specializations; they don't contribute to the template
7620 // depth.
7621 ++Count;
7622 for (NamedDecl *Param : *Params) {
7623 if (Param->getDeclName()) {
7624 S->AddDecl(Param);
7625 IdResolver.AddDecl(Param);
7626 }
7627 }
7628 }
7629
7630 return Count;
7631}
7632
7633void Sema::ActOnStartDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
7634 if (!RecordD) return;
7635 AdjustDeclIfTemplate(RecordD);
7636 CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordD);
7637 PushDeclContext(S, Record);
7638}
7639
7640void Sema::ActOnFinishDelayedMemberDeclarations(Scope *S, Decl *RecordD) {
7641 if (!RecordD) return;
7642 PopDeclContext();
7643}
7644
7645/// This is used to implement the constant expression evaluation part of the
7646/// attribute enable_if extension. There is nothing in standard C++ which would
7647/// require reentering parameters.
7648void Sema::ActOnReenterCXXMethodParameter(Scope *S, ParmVarDecl *Param) {
7649 if (!Param)
7650 return;
7651
7652 S->AddDecl(Param);
7653 if (Param->getDeclName())
7654 IdResolver.AddDecl(Param);
7655}
7656
7657/// ActOnStartDelayedCXXMethodDeclaration - We have completed
7658/// parsing a top-level (non-nested) C++ class, and we are now
7659/// parsing those parts of the given Method declaration that could
7660/// not be parsed earlier (C++ [class.mem]p2), such as default
7661/// arguments. This action should enter the scope of the given
7662/// Method declaration as if we had just parsed the qualified method
7663/// name. However, it should not bring the parameters into scope;
7664/// that will be performed by ActOnDelayedCXXMethodParameter.
7665void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
7666}
7667
7668/// ActOnDelayedCXXMethodParameter - We've already started a delayed
7669/// C++ method declaration. We're (re-)introducing the given
7670/// function parameter into scope for use in parsing later parts of
7671/// the method declaration. For example, we could see an
7672/// ActOnParamDefaultArgument event for this parameter.
7673void Sema::ActOnDelayedCXXMethodParameter(Scope *S, Decl *ParamD) {
7674 if (!ParamD)
7675 return;
7676
7677 ParmVarDecl *Param = cast<ParmVarDecl>(ParamD);
7678
7679 // If this parameter has an unparsed default argument, clear it out
7680 // to make way for the parsed default argument.
7681 if (Param->hasUnparsedDefaultArg())
7682 Param->setDefaultArg(nullptr);
7683
7684 S->AddDecl(Param);
7685 if (Param->getDeclName())
7686 IdResolver.AddDecl(Param);
7687}
7688
7689/// ActOnFinishDelayedCXXMethodDeclaration - We have finished
7690/// processing the delayed method declaration for Method. The method
7691/// declaration is now considered finished. There may be a separate
7692/// ActOnStartOfFunctionDef action later (not necessarily
7693/// immediately!) for this method, if it was also defined inside the
7694/// class body.
7695void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, Decl *MethodD) {
7696 if (!MethodD)
7697 return;
7698
7699 AdjustDeclIfTemplate(MethodD);
7700
7701 FunctionDecl *Method = cast<FunctionDecl>(MethodD);
7702
7703 // Now that we have our default arguments, check the constructor
7704 // again. It could produce additional diagnostics or affect whether
7705 // the class has implicitly-declared destructors, among other
7706 // things.
7707 if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method))
7708 CheckConstructor(Constructor);
7709
7710 // Check the default arguments, which we may have added.
7711 if (!Method->isInvalidDecl())
7712 CheckCXXDefaultArguments(Method);
7713}
7714
7715/// CheckConstructorDeclarator - Called by ActOnDeclarator to check
7716/// the well-formedness of the constructor declarator @p D with type @p
7717/// R. If there are any errors in the declarator, this routine will
7718/// emit diagnostics and set the invalid bit to true. In any case, the type
7719/// will be updated to reflect a well-formed type for the constructor and
7720/// returned.
7721QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R,
7722 StorageClass &SC) {
7723 bool isVirtual = D.getDeclSpec().isVirtualSpecified();
7724
7725 // C++ [class.ctor]p3:
7726 // A constructor shall not be virtual (10.3) or static (9.4). A
7727 // constructor can be invoked for a const, volatile or const
7728 // volatile object. A constructor shall not be declared const,
7729 // volatile, or const volatile (9.3.2).
7730 if (isVirtual) {
7731 if (!D.isInvalidType())
7732 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
7733 << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc())
7734 << SourceRange(D.getIdentifierLoc());
7735 D.setInvalidType();
7736 }
7737 if (SC == SC_Static) {
7738 if (!D.isInvalidType())
7739 Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be)
7740 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
7741 << SourceRange(D.getIdentifierLoc());
7742 D.setInvalidType();
7743 SC = SC_None;
7744 }
7745
7746 if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
7747 diagnoseIgnoredQualifiers(
7748 diag::err_constructor_return_type, TypeQuals, SourceLocation(),
7749 D.getDeclSpec().getConstSpecLoc(), D.getDeclSpec().getVolatileSpecLoc(),
7750 D.getDeclSpec().getRestrictSpecLoc(),
7751 D.getDeclSpec().getAtomicSpecLoc());
7752 D.setInvalidType();
7753 }
7754
7755 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7756 if (FTI.TypeQuals != 0) {
7757 if (FTI.TypeQuals & Qualifiers::Const)
7758 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
7759 << "const" << SourceRange(D.getIdentifierLoc());
7760 if (FTI.TypeQuals & Qualifiers::Volatile)
7761 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
7762 << "volatile" << SourceRange(D.getIdentifierLoc());
7763 if (FTI.TypeQuals & Qualifiers::Restrict)
7764 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor)
7765 << "restrict" << SourceRange(D.getIdentifierLoc());
7766 D.setInvalidType();
7767 }
7768
7769 // C++0x [class.ctor]p4:
7770 // A constructor shall not be declared with a ref-qualifier.
7771 if (FTI.hasRefQualifier()) {
7772 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_constructor)
7773 << FTI.RefQualifierIsLValueRef
7774 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
7775 D.setInvalidType();
7776 }
7777
7778 // Rebuild the function type "R" without any type qualifiers (in
7779 // case any of the errors above fired) and with "void" as the
7780 // return type, since constructors don't have return types.
7781 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
7782 if (Proto->getReturnType() == Context.VoidTy && !D.isInvalidType())
7783 return R;
7784
7785 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
7786 EPI.TypeQuals = 0;
7787 EPI.RefQualifier = RQ_None;
7788
7789 return Context.getFunctionType(Context.VoidTy, Proto->getParamTypes(), EPI);
7790}
7791
7792/// CheckConstructor - Checks a fully-formed constructor for
7793/// well-formedness, issuing any diagnostics required. Returns true if
7794/// the constructor declarator is invalid.
7795void Sema::CheckConstructor(CXXConstructorDecl *Constructor) {
7796 CXXRecordDecl *ClassDecl
7797 = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext());
7798 if (!ClassDecl)
7799 return Constructor->setInvalidDecl();
7800
7801 // C++ [class.copy]p3:
7802 // A declaration of a constructor for a class X is ill-formed if
7803 // its first parameter is of type (optionally cv-qualified) X and
7804 // either there are no other parameters or else all other
7805 // parameters have default arguments.
7806 if (!Constructor->isInvalidDecl() &&
7807 ((Constructor->getNumParams() == 1) ||
7808 (Constructor->getNumParams() > 1 &&
7809 Constructor->getParamDecl(1)->hasDefaultArg())) &&
7810 Constructor->getTemplateSpecializationKind()
7811 != TSK_ImplicitInstantiation) {
7812 QualType ParamType = Constructor->getParamDecl(0)->getType();
7813 QualType ClassTy = Context.getTagDeclType(ClassDecl);
7814 if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) {
7815 SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation();
7816 const char *ConstRef
7817 = Constructor->getParamDecl(0)->getIdentifier() ? "const &"
7818 : " const &";
7819 Diag(ParamLoc, diag::err_constructor_byvalue_arg)
7820 << FixItHint::CreateInsertion(ParamLoc, ConstRef);
7821
7822 // FIXME: Rather that making the constructor invalid, we should endeavor
7823 // to fix the type.
7824 Constructor->setInvalidDecl();
7825 }
7826 }
7827}
7828
7829/// CheckDestructor - Checks a fully-formed destructor definition for
7830/// well-formedness, issuing any diagnostics required. Returns true
7831/// on error.
7832bool Sema::CheckDestructor(CXXDestructorDecl *Destructor) {
7833 CXXRecordDecl *RD = Destructor->getParent();
7834
7835 if (!Destructor->getOperatorDelete() && Destructor->isVirtual()) {
7836 SourceLocation Loc;
7837
7838 if (!Destructor->isImplicit())
7839 Loc = Destructor->getLocation();
7840 else
7841 Loc = RD->getLocation();
7842
7843 // If we have a virtual destructor, look up the deallocation function
7844 if (FunctionDecl *OperatorDelete =
7845 FindDeallocationFunctionForDestructor(Loc, RD)) {
7846 MarkFunctionReferenced(Loc, OperatorDelete);
7847 Destructor->setOperatorDelete(OperatorDelete);
7848 }
7849 }
7850
7851 return false;
7852}
7853
7854/// CheckDestructorDeclarator - Called by ActOnDeclarator to check
7855/// the well-formednes of the destructor declarator @p D with type @p
7856/// R. If there are any errors in the declarator, this routine will
7857/// emit diagnostics and set the declarator to invalid. Even if this happens,
7858/// will be updated to reflect a well-formed type for the destructor and
7859/// returned.
7860QualType Sema::CheckDestructorDeclarator(Declarator &D, QualType R,
7861 StorageClass& SC) {
7862 // C++ [class.dtor]p1:
7863 // [...] A typedef-name that names a class is a class-name
7864 // (7.1.3); however, a typedef-name that names a class shall not
7865 // be used as the identifier in the declarator for a destructor
7866 // declaration.
7867 QualType DeclaratorType = GetTypeFromParser(D.getName().DestructorName);
7868 if (const TypedefType *TT = DeclaratorType->getAs<TypedefType>())
7869 Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
7870 << DeclaratorType << isa<TypeAliasDecl>(TT->getDecl());
7871 else if (const TemplateSpecializationType *TST =
7872 DeclaratorType->getAs<TemplateSpecializationType>())
7873 if (TST->isTypeAlias())
7874 Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name)
7875 << DeclaratorType << 1;
7876
7877 // C++ [class.dtor]p2:
7878 // A destructor is used to destroy objects of its class type. A
7879 // destructor takes no parameters, and no return type can be
7880 // specified for it (not even void). The address of a destructor
7881 // shall not be taken. A destructor shall not be static. A
7882 // destructor can be invoked for a const, volatile or const
7883 // volatile object. A destructor shall not be declared const,
7884 // volatile or const volatile (9.3.2).
7885 if (SC == SC_Static) {
7886 if (!D.isInvalidType())
7887 Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be)
7888 << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
7889 << SourceRange(D.getIdentifierLoc())
7890 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7891
7892 SC = SC_None;
7893 }
7894 if (!D.isInvalidType()) {
7895 // Destructors don't have return types, but the parser will
7896 // happily parse something like:
7897 //
7898 // class X {
7899 // float ~X();
7900 // };
7901 //
7902 // The return type will be eliminated later.
7903 if (D.getDeclSpec().hasTypeSpecifier())
7904 Diag(D.getIdentifierLoc(), diag::err_destructor_return_type)
7905 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
7906 << SourceRange(D.getIdentifierLoc());
7907 else if (unsigned TypeQuals = D.getDeclSpec().getTypeQualifiers()) {
7908 diagnoseIgnoredQualifiers(diag::err_destructor_return_type, TypeQuals,
7909 SourceLocation(),
7910 D.getDeclSpec().getConstSpecLoc(),
7911 D.getDeclSpec().getVolatileSpecLoc(),
7912 D.getDeclSpec().getRestrictSpecLoc(),
7913 D.getDeclSpec().getAtomicSpecLoc());
7914 D.setInvalidType();
7915 }
7916 }
7917
7918 DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7919 if (FTI.TypeQuals != 0 && !D.isInvalidType()) {
7920 if (FTI.TypeQuals & Qualifiers::Const)
7921 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
7922 << "const" << SourceRange(D.getIdentifierLoc());
7923 if (FTI.TypeQuals & Qualifiers::Volatile)
7924 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
7925 << "volatile" << SourceRange(D.getIdentifierLoc());
7926 if (FTI.TypeQuals & Qualifiers::Restrict)
7927 Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor)
7928 << "restrict" << SourceRange(D.getIdentifierLoc());
7929 D.setInvalidType();
7930 }
7931
7932 // C++0x [class.dtor]p2:
7933 // A destructor shall not be declared with a ref-qualifier.
7934 if (FTI.hasRefQualifier()) {
7935 Diag(FTI.getRefQualifierLoc(), diag::err_ref_qualifier_destructor)
7936 << FTI.RefQualifierIsLValueRef
7937 << FixItHint::CreateRemoval(FTI.getRefQualifierLoc());
7938 D.setInvalidType();
7939 }
7940
7941 // Make sure we don't have any parameters.
7942 if (FTIHasNonVoidParameters(FTI)) {
7943 Diag(D.getIdentifierLoc(), diag::err_destructor_with_params);
7944
7945 // Delete the parameters.
7946 FTI.freeParams();
7947 D.setInvalidType();
7948 }
7949
7950 // Make sure the destructor isn't variadic.
7951 if (FTI.isVariadic) {
7952 Diag(D.getIdentifierLoc(), diag::err_destructor_variadic);
7953 D.setInvalidType();
7954 }
7955
7956 // Rebuild the function type "R" without any type qualifiers or
7957 // parameters (in case any of the errors above fired) and with
7958 // "void" as the return type, since destructors don't have return
7959 // types.
7960 if (!D.isInvalidType())
7961 return R;
7962
7963 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
7964 FunctionProtoType::ExtProtoInfo EPI = Proto->getExtProtoInfo();
7965 EPI.Variadic = false;
7966 EPI.TypeQuals = 0;
7967 EPI.RefQualifier = RQ_None;
7968 return Context.getFunctionType(Context.VoidTy, None, EPI);
7969}
7970
7971static void extendLeft(SourceRange &R, SourceRange Before) {
7972 if (Before.isInvalid())
7973 return;
7974 R.setBegin(Before.getBegin());
7975 if (R.getEnd().isInvalid())
7976 R.setEnd(Before.getEnd());
7977}
7978
7979static void extendRight(SourceRange &R, SourceRange After) {
7980 if (After.isInvalid())
7981 return;
7982 if (R.getBegin().isInvalid())
7983 R.setBegin(After.getBegin());
7984 R.setEnd(After.getEnd());
7985}
7986
7987/// CheckConversionDeclarator - Called by ActOnDeclarator to check the
7988/// well-formednes of the conversion function declarator @p D with
7989/// type @p R. If there are any errors in the declarator, this routine
7990/// will emit diagnostics and return true. Otherwise, it will return
7991/// false. Either way, the type @p R will be updated to reflect a
7992/// well-formed type for the conversion operator.
7993void Sema::CheckConversionDeclarator(Declarator &D, QualType &R,
7994 StorageClass& SC) {
7995 // C++ [class.conv.fct]p1:
7996 // Neither parameter types nor return type can be specified. The
7997 // type of a conversion function (8.3.5) is "function taking no
7998 // parameter returning conversion-type-id."
7999 if (SC == SC_Static) {
8000 if (!D.isInvalidType())
8001 Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member)
8002 << SourceRange(D.getDeclSpec().getStorageClassSpecLoc())
8003 << D.getName().getSourceRange();
8004 D.setInvalidType();
8005 SC = SC_None;
8006 }
8007
8008 TypeSourceInfo *ConvTSI = nullptr;
8009 QualType ConvType =
8010 GetTypeFromParser(D.getName().ConversionFunctionId, &ConvTSI);
8011
8012 if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) {
8013 // Conversion functions don't have return types, but the parser will
8014 // happily parse something like:
8015 //
8016 // class X {
8017 // float operator bool();
8018 // };
8019 //
8020 // The return type will be changed later anyway.
8021 Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type)
8022 << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
8023 << SourceRange(D.getIdentifierLoc());
8024 D.setInvalidType();
8025 }
8026
8027 const FunctionProtoType *Proto = R->getAs<FunctionProtoType>();
8028
8029 // Make sure we don't have any parameters.
8030 if (Proto->getNumParams() > 0) {
8031 Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params);
8032
8033 // Delete the parameters.
8034 D.getFunctionTypeInfo().freeParams();
8035 D.setInvalidType();
8036 } else if (Proto->isVariadic()) {
8037 Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic);
8038 D.setInvalidType();
8039 }
8040
8041 // Diagnose "&operator bool()" and other such nonsense. This
8042 // is actually a gcc extension which we don't support.
8043 if (Proto->getReturnType() != ConvType) {
8044 bool NeedsTypedef = false;
8045 SourceRange Before, After;
8046
8047 // Walk the chunks and extract information on them for our diagnostic.
8048 bool PastFunctionChunk = false;
8049 for (auto &Chunk : D.type_objects()) {
8050 switch (Chunk.Kind) {
8051 case DeclaratorChunk::Function:
8052 if (!PastFunctionChunk) {
8053 if (Chunk.Fun.HasTrailingReturnType) {
8054 TypeSourceInfo *TRT = nullptr;
8055 GetTypeFromParser(Chunk.Fun.getTrailingReturnType(), &TRT);
8056 if (TRT) extendRight(After, TRT->getTypeLoc().getSourceRange());
8057 }
8058 PastFunctionChunk = true;
8059 break;
8060 }
8061 // Fall through.
8062 case DeclaratorChunk::Array:
8063 NeedsTypedef = true;
8064 extendRight(After, Chunk.getSourceRange());
8065 break;
8066
8067 case DeclaratorChunk::Pointer:
8068 case DeclaratorChunk::BlockPointer:
8069 case DeclaratorChunk::Reference:
8070 case DeclaratorChunk::MemberPointer:
8071 case DeclaratorChunk::Pipe:
8072 extendLeft(Before, Chunk.getSourceRange());
8073 break;
8074
8075 case DeclaratorChunk::Paren:
8076 extendLeft(Before, Chunk.Loc);
8077 extendRight(After, Chunk.EndLoc);
8078 break;
8079 }
8080 }
8081
8082 SourceLocation Loc = Before.isValid() ? Before.getBegin() :
8083 After.isValid() ? After.getBegin() :
8084